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Hypothesis: The shape of colloidal particles affects the structure of colloidal dispersions. The effect of the
cube shape on the thermodynamics of colloidal cube dispersions has not yet been studied experimen-
tally. Static light scattering measurements on colloidal cubic silica shells at finite concentrations allows
us to measure the structure factor of colloidal cube fluids and to test theoretical predictions for the equa-
tion of state of hard convex superballs.
Experiments: Hollow silica nanocubes of varying concentrations in N,N,-dimethylformamide were stud-
ied with static light scattering. The structure factor was extracted from the scattering curves using exper-
imental form factors. From this experimental structure factor, the specific density of the particles, and the
osmotic compressibility were obtained. This osmotic compressibility was then compared to a theoretical
equation of state of hard superballs.
Findings: The first experimental structure factors of a stable cube fluid are presented. The osmotic com-
pressibility of the cube fluid can be described by the equation of state of a hard superball fluid, showing
that silica cubes in N,N,-dimethylformamide with LiCl effectively interact as hard particles.
� 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction phases form for particles with different shapes. Dispersions of
Colloidal shape affects colloidal phase behaviour; both simula-
tions [1] and experiments [2–4] show that various (liquid) crystal
cubic particles exhibit rich phase behaviour upon assembly by
depletion [5] or gravitational [6] forces. Further, it was found that
the formed structures depend on the shape details of the cubes
[2,5–7]. While the crystalline phase behaviour of cubic particles
has been studied [2,6], no scattering studies have yet been con-
ducted on the structure of colloidal cubes in the fluid phase. In this
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paper we will focus on the concentration-dependent thermody-
namic properties of colloidal cubic silica shells (CSS).

Understanding the interactions and stability of cubic particles is
not only of fundamental interest, but is also important for potential
applications of cubes in the area of sensing [8], catalysis [9] and
energy storage [10] technologies. Additionally, cubic silica shells
might find application in optical thin films [11,12], the preparation
of which require knowledge and control of the stability of and
interactions between the particles [13,14].

Static light scattering (SLS) is a well-established method for
studying colloidal interactions [15], and has been used extensively
to examine interactions between colloidal spheres. For example,
the repulsions between hard and charged spheres [16,17] and
depletion-mediated interactions [18] between colloidal spheres
have been investigated by SLS. Additionally, SLS has been used to
successfully study dispersions of anisotropic disk- [19] and rod-
like [20] particles. This shows that SLS may also be a suitable tech-
nique to study the structural properties of dispersions of cubes
with varying interactions. Such studies are wanted because even
the concentration-dependent structure factor of cubic colloids
interacting via a hard-particle potential, is yet unknown.

Cubic particles have been examined with scattering techniques
such as small angle X-ray scattering [2,6], but no experimental
reports are available on light scattering by concentrated fluids of
cubic colloids in the Rayleigh-Gans-Debye regime. The lack of SLS
studies on colloidal cubes might be due to absence of cubes that
are suitable for that purpose. Until recently, reported cubic colloids
were either too large [21,22] or made from light-absorbing materi-
als like metals or metal-salts [23–25], factors which obstruct light
scattering studies. Recently, we developed a method to prepare
hollow silica nanocubes in the 80–150 nm range [26]. In Part I of
this work on the scattering by cubic silica shells, we determined
the particle form factor and particle refractive index [27]. Here
we present scattering experiments on dispersions with cube vol-
ume fractions in the range 1–25 vol%. Experimental static structure
factors of stable cube fluids are obtained, and the osmotic com-
pressibility of colloidal cubes is compared to the equation of state
of a hard superball fluid [28].

2. Theory

2.1. Static light scattering

In the Rayleigh-Gans-Debye regime, the excess scattering inten-
sity of a collection of monodisperse spherical particles over that of
the solvent can be written in terms of the Rayleigh ratio RðKÞ as
[27]

RðKÞ ¼ PðKÞSðKÞv2
cqðnc � nsÞ22p2n2

mk
�4
0 ; ð1Þ

with:

K ¼ 4pnm

k0
sin

h
2

� �
: ð2Þ

Here, PðKÞ is the form factor, SðKÞ is the structure factor, vc is the
volume of the particles, q the number density of the particles, k0
the wavelength of light in vacuum, h the scattering angle, and
nc; ns, and nm, the refractive indices of the particle, the solvent
and the colloidal dispersion, respectively.

For a collection of discrete scatterers, the ensemble average
intensity (without pre-factors) is given by [29]:

hIðKÞi ¼
XN
j¼1

XN
k¼1

hFjðKÞF�
kðKÞeiKðrj�rkÞi; ð3Þ

where FjðKÞ and FkðKÞ are the scattering amplitudes of particles j
and k, and rj and rk are the locations of particles j and k respectively.
Fore an ensemble of monodisperse spheres, Eq. (3) reduces to Eq.
(1) with the structure factor SðKÞ, defined as [30,29]:

SðKÞ ¼ 1
N

XN
j¼1

XN
k¼1

eiKðrj�rkÞ ; ð4Þ

where N is the total number of particles. In the case of cubic silica
shells, the simplification of Eq. (3) to Eqs. (1) and (4) only holds over
the full K-range if orientational correlations are absent, or in the K
regime where the scattering amplitudes are similar to the orienta-
tionally averaged scattering. No theory seems to be available to
account for the orientational correlation in the scattering of concen-
trated cubic particles. However, calculated values of FðKÞ for perfect
cubic shells depicted in Fig. A.6, show that for KRel < 5, the scatter-
ing amplitudes are similar for all particle orientations. This is in line
with the scattering of rods that Dhont discusses [31], where it is
shown that for low contrast and in the limit of low K the scattering
equations of rods reduces to those of spheres. Additionally, Meijer
et al. [6] demonstrated that the crystal structure of superball parti-
cles with m ¼ 3:6 in the crystal phase, where orientational correla-
tion between the particles is present, can be resolved by considering
the particles as monodisperse spheres. In light of the arguments
presented above, we think the static light scattering of cubic silica
shells can be initially analysed in terms of equations for monodis-
perse spheres, especially in the low K regime, in which we operate.

Eq. (4) describes how correlations between particle positions,
influence the scattering intensity. For concentrated fluids of hard
spheres, the structure factor can be approximated and calculated
over the full K-range by the Percus–Yevick model [32]. For our
cubic silica shells, no comparison with theory can yet be made over
the full K-range of our experiments. At zero wavevector, however,
the structure factor couples directly to the thermodynamic proper-
ties of a particle fluid via the general relation [33]:

1
SðK ¼ 0Þ ¼

1
kBT

@P
@q

� �
T
: ð5Þ

Here kB is the Boltzmann’s constant, T the absolute temperature in
Kelvin, q is the particle number density andP the osmotic pressure.
SðK ¼ 0Þ is directly coupled to the osmotic compressibility and
K ! 0 is therefore often referred to as the thermodynamic limit.
The osmotic compressibility, in turn, follows from the equation of
state for a fluid of hard particles [34]. Recently, we developed a
way to calculate the equation of state for superball particles with
an arbitrary shape parameter m [28], which we will use here to link
theory to our experiments.

2.2. Superballs

Superballs are mathematical shapes in the form of cubic parti-
cles with rounded edges. The superball shape is defined by [35]:
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where m is the shape parameter and Rel is the edge length of the
superball. For m = 2 and m = 1, Eq. (6) describes a perfect sphere
and a cube, respectively. The equation of state for hard superballs
is [28]:

Pvc

kBT
¼ /þQ/2 þR/3 �S/4

ð1� /Þ3
: ð7Þ

Here, / is the volume fractions of superballs, and:

Q ¼ 3c� 2; R ¼ 1� 3cð1� cÞ; S ¼ cð6c� 5Þ; ð8Þ
where the parameter c is defined by [36]:

c ¼ sccc
3vc

: ð9Þ
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Here sc; cc and vc are the surface area, the surface integrated mean
curvature [37] and the volume of the particle, respectively. The
asphericity parameter cmeasures the extent to which a convex par-
ticle deviates from a spherical shape and is related to m. For low
volume fractions we obtain from Eq. (7)

Pvc

kBT
¼ /þ B2/

2 þ . . . : ð10Þ

Here, B2 is the second osmotic virial coefficient normalised by the
colloid particle volume, and can be obtained from c via:

B2 ¼ 3cþ 1: ð11Þ
For spheres (m = 2), B2 ¼ 4 and for perfect cubes (m ¼ 1), B2 = 5.5.
For spheres, (c = 1), Eq. (7) reduces to the Carnahan-Starling equa-
tion of state for hard spheres. In the equation of state [Eq. (7)], the
osmotic pressure is given as a function of particle volume fraction.
Generally, the volume fraction is not precisely known; the experi-
mental concentration measure is colloid weight per dispersion vol-

ume. Scaled particle theory predicts that ln½SðK ¼ 0Þ�1� increases
linearly with / up to / = 0.4 [15], which allows us to determine
the specific volume of the particles (r), for the conversion of weight
concentration to volume fractions, a procedure proposed by de
Kruif et al. [30].

3. Materials and methods

3.1. Materials

N,N-Dimethylformamide (DMF, Anhydrous 99.8%) was pur-
chased from Sigma–Aldrich and LiCl (Anhydrous, 99%) was
obtained from Alfa Aesar. Particles were concentrated in DMF with
40 mM LiCl. For DMF, this results in a Debye screening length in
the order of j�1 = 1 nm.

4. Preparation of cubic silica shells

Cubic silica shells were prepared by using a template of cubic
Cu2O nanoparticles with an edge length Rel of 105 � 11 nm. These
particles were coated with a silica shell using the PVP assisted
Stöber method [21,38]. After dissolving the core in nitric acid, cubis
silica shells were obtained with an Rel of 125 � 10 nm. Experimen-
tal details are presented in previous work [26]. A TEM micrograph
of the particles used in this study is presented in Fig. 1.

4.1. Static light scattering

For the analysis of particles with SLS, a home-built setup was
used, schematically depicted in Fig. A.1. In the set-up a mercury
lamp is used as a light source. The light passes several optical filters
to control the intensity, wavelength, polarisation and beam width/
height. The scattered light is collected by a movable detector that
scans over a scattering angle range 20� 6h 6140�. The samples
were prepared by redispersing the particles in DMF filtered with
0.2 lm PTFE filters and transferring the dispersion to a dust-free
cuvette. The cuvette was subsequently placed in a toluene bath
to perform the experiment.

4.2. Structure factor measurements

Scattering curves of the most concentrated sample (Table A.1)
were measured for light with wavelengths k = 365 nm and
404 nm. The sample was then diluted, after which a new set of
scattering curves was measured. This dilution procedure was
repeated until the scattering intensity was too low to obtain reli-
able scattering curves. The concentration of the sample with the
lowest concentration was then determined by drying a known vol-
ume, weighing the solid residue and correcting for LiCl present in
the sample. Dilution factors and concentrations are listed in
Table A.1.

5. Results

5.1. Measured scattering curves

In Fig. 2 static light scattering curves from cubic silica shells are
plotted logarithmically against K2 to obtain Guinier plots. It is seen
that at low concentration, the curves are linear over almost the
entire K range; only in the limit of low scattering angles and for
high scattering angles, some deviations from linearity are visible.
At low K these deviations are probably caused by residual dust par-
ticles or small clusters. For large K, especially at the lowest concen-
trations, the curves seem to bend upward. This upward swing in
the scattering curve manifests the first minimum of the form fac-
tor, expected from theory to be located within the range
4 � 107 m�1 < K < 5 � 107 m�1 for hollow cubes with an Rel of
125 nm [27].

The slope of the Guinier plot was determined to extract the
radius of gyration ðRgÞ of the particles and to extrapolate the scat-
tered intensity in the limit K ! 0. For the lowest concentrations,
obtained radii of gyration are Rg = 75.7 � 0.4 nm and 75.76 �
0.24 nm for k = 365 nm and 404 nm, respectively. These values
agree with the Rg calculated from TEM data (75 � 6 nm). The slight
increase in radius of gyration determined by SLS with respect to
TEM is expected, since larger particles scatter more light than
smaller particles do. This results in a larger apparent size from
SLS. Scattering of spheres in the Guinier region, for instance yields
an average radius Rm from R2

m ¼ hR8i=hR6i, which differs from the
size determined from TEM analysis, yielding a number average
hRi [39]. We expect that the scattering results of cubic silica shells
manifest a similar, higher order moment of the size distribution.
The extrapolated scattering intensity from SLS at K ¼ 0 is plotted
as a function of concentration in Fig. 3. Fluctuation theory and
scaled particle theory predict [15,33] that the scattering intensity
for K = 0 has a maximum around / � 0.12 for hard particles with
c = 1 (spheres). This maximum follows from the expression for
SðK ¼ 0Þ from scaled particle theory [15];

1
kBT

@P
@q

� �
¼ ½1þ ð3c� 1Þ/�2

ð1� /Þ4
; ð12Þ

which indicates that the structure factor suppresses the total scat-
tering intensity for K ¼ 0. Eq. (12) can also be derived directly from
Eq. (7). Combining Eq. (12) with Eq. (1) and using that PðK ¼ 0Þ ¼ 1
and / ¼ qvc it follows that the scattering intensity increases lin-
early at low volume fractions but passes through a maximum
around / � 0:12. In both plots in Fig. 3, the maximum is visible.
Both maxima occur at a concentration of roughly 100 g/L, indicating
that the maximum concentration of 220 g/L corresponds to a vol-
ume fraction of roughly 0.24. This results also provide an estimated
specific volume of the particles of 1.2 mL/g.

5.2. Structure factor

The structure factor SðKÞ can be extracted by dividing Rayleigh
ratio’s and correcting for the concentration:

SðKÞ ¼ RðK; cÞ
RðK; c0Þ

c0
c
: ð13Þ

Here RðK; cÞ is the Rayleigh ratio for concentration c and RðK; c0Þ is
the Rayleigh ratio for the lowest concentration c0. We expect SðKÞ



Fig. 1. TEM micrograph of the particles that were used for the scattering experiments. A: The cubic cuprous oxide template. B: The coated core shell particles. C: The cubic
silica shells with an average edge length of 125 � 10 nm and an m value of 4.1 � 0.6.

Fig. 2. Scattering curves for dispersions containing particles depicted in Fig. 1 in DMF with 40 mM LiCl. Particle concentrations range from 220 g/L to 10 g/L. A: scattering
intensities obtained using light with k = 365 nm. B: scattering intensities obtained using light with k = 404 nm. The curves connecting the data-points are t.o guide the eye.

Fig. 3. Scattering intensity at K ¼ 0, obtained by extrapolation. Left: Data obtained for light with k = 365 nm. Right: Data obtained for light with k = 404 nm. The solid curves
are to guide the eye.
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for RðK; c0Þ to be close to unity since the particle concentration is
low [40]. From Fig. 4 it is clear that increasing the concentration
results in a significant contribution of the structure factor to the
overall scattering. The curves for concentrations of 13 and 20 g/L
are close to 1 over almost the entire K-range, showing that it was
justified to use the scattering profile for the lowest concentration



Fig. 4. Static structure factors measured with SLS as a function of scattering wave vector K. A: SðKÞ for light with k = 365 nm. B: SðKÞ for light with k = 404 nm. The curves
connecting the data points are to guide the eye.
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as the form factor. Hence, for low concentrations SðKÞ � 1. For high
concentrations, SðK ! 0Þ drops dramatically with increasing con-
centration and SðKÞ exhibits a pronounced maximum for
KRel � 5:4. As discussed by Frenkel et al. [41] and de Kruif et al.
[30], ln½SðKÞ� increases linearly with K2 in the Guinier region, also
for polydisperse particles, and so we can obtain the value of
SðK ¼ 0Þ by linear extrapolation, as shown in Fig. A.2. The extrapo-
lated values for SðK ¼ 0Þ can then be used to determine thermody-
namic properties, as discussed in the Theory section. To determine
the volume fraction of the silica cubes, theoretical values of
ln½SðK ¼ 0Þ � 1�, obtained from Eq. (12) and Eq. (9) were plotted
against / for various m values (Fig. A.3, left). For superballs with
Fig. 5. Static structure factors measured with SLS compared with the Percus–Yevick appr
for light with k = 365 nm. B: SðKÞ for light with k = 404 nm. The curves connecting the
an m value of 4, the slope is 8.06. This value is then used to deter-
mine the specific volume of the particles by plotting the experimen-

tal values for ln½SðK ¼ 0Þ�1� against the concentration (c) (Fig. A.3–2,
right). It was found that the specific volume of the particles is 1.15
� 0.18 mL/g, a value which corresponds well to the estimated speci-
fic volume (r = 1.2 mL/g) from Fig. 3. Using r volume fractions fol-
low from: / ¼ cr which enables us to compare our experiments to
theory.

Since theoretical models for the structure factor of cubic parti-
cles seem to be absent yet, the experimental measured structure
factors were compared to the Percus–Yevick (PY) results for the
SðKÞ for hard spheres [32,33]. In Fig. 5 the experimental structure
oximation for hard spheres [32] as a function of scattering wave vector KRd. A: SðKÞ
data points are to guide the eye.



Fig. 6. Osmotic compressibility plotted against the particle volume fraction. The blue and red dots are experimental data obtained for light with k = 365 and k = 404 nm
respectively. A: Obtained data compared to predictions for superballs with shape parameter m = 2, 4, and 10. B: Obtained data are compared to the osmotic equation of state
of hard spheres from Ref. [42].
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factor is plotted for four concentrations against KRd, where Rd is the
diagonal length of the cubic silica shells. The PY-approximation
results for hard spheres are plotted for volume fractions corre-
sponding to the calculated volume fractions, as depicted in
Table A.1. In the figure it is visible that the experimental SðKRdÞ
is described well by the PY-predictions for hard spheres, which
are supposed to be accurate at least up to 30 vol% of hard spheres.
The main difference is that at low K values (KRd < 2) the structure
factor of the cubic shells is lower compared to the hard sphere
model, and that the first structure factor peak of the CSS around
KRd � 6 is significantly higher than the PY-predictions. This might
be an effect of the cubic shape, but could also be an effect of a pre-
sent double-layer repulsion, which promotes structure in the dis-
persion. Furthermore we note the PY-predictions only described
the experimental structure factors well, when the data is nor-
malised over the diagonal length of the cube Rd. When the data
is normalised over the edge length of the cube Rel, the PY-model
does not describe the data well, as depicted in Fig. A.4. This indi-
cated that the cubic silica shells are free to rotate in de dispersion
and the structure of the dispersion is mainly determined by the
volume which freely rotating cubes explore.

In Fig. 6-A experimental values (data) of SðK ¼ 0Þ�1 are plotted
against theoretical predictions (curves) of the osmotic compress-
ibility obtained from Eq. (5) using Eq. (7). Additionally in Fig. 6-B
the obtained data are compared to the experimental osmotic com-
pressibility as reported in Ref. [42], which is the only experimental
equation of state of hard particles reported in literature that we are
aware of. The two different experimental datasets are obtained by
scattering of light with k = 365 nm (blue dots) and 404 nm (red
dots) and the theoretical curves are obtained from the equation
of state of superballs with m = 2, 4, and 10. The uncertainty in

SðK ¼ 0Þ�1, represented by the vertical error bars, results from
the error from the extrapolation of SðKÞ to K ¼ 0. Considering the

large difference in the values of SðK ¼ 0Þ�1 between measurements
done at k = 365 nm and 404 nm, the actual error is probably signif-
icantly larger than the uncertainty obtained from extrapolation.
The difference between the datasets is probably a result from the
low scattering intensity at the lowest concentration, the method
we used to extract SðKÞ from the total scattering intensity RðKÞ, a
difference in the relative refractive index [27], or a combination
thereof. The uncertainty in the volume fraction of the particles
(horizontal error bars) originates from the determination of the
specific weight of the nanocubes (Fig. A.3-right) and is about
10%. The data clearly (semi-) quantitatively follow the same trend
as the theoretical curves. At low and intermediate volume frac-
tions, the experimental data are significantly lower compared to
the theoretical predictions while at high volume fractions
(/ > 0:15) the experimental data follow the theoretical curves
more closely. Besides the uncertainty in the experimental values

of SðK ¼ 0Þ�1 discussed above, another discrepancy arises from
our method to determine the structure factor. To extract SðKÞ using
Eq. (13), scattering curves with a finite concentration is employed,
while in Eq. (5) the scattering intensity in the limit of infinite dilu-
tion is used. This extraction method results in an off-set of the
experimental osmotic compressibility with respect to the theoret-
ical equation of state. If we correct for this in the theoretical equa-
tion of state, by shifting the curve so that 1=ðSðK ¼ 0ÞÞ ¼ 1 at
q ¼ 0:01, the experimental data and theory are in good agreement
over the entirely probed concentration range (Fig. A.5). The reason-
able agreement of the experimental osmotic pressure with the the-
oretical equation of state implies that the pair-interactions
between hollow silica cubes in DMF in 0.04 M LiCl can be described
as the interactions between hard superballs.

6. Conclusions and outlook

The structure of dispersions of hollow silica nanocubes dis-
persed in N,N-dimethylformamide with LiCl, was studied employ-
ing static light scattering. The static structure factor was obtained
as a function of concentration, resulting in the first experimental
static structure factor of a stable cube fluid. From the structure fac-
tor in the thermodynamic limit we were able to determine the
osmotic compressibility and the specific weight of the silica nano-
cubes. The experimental osmotic compressibility can be described
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by a Carnahan–Starling like equation of state of hard superballs
[28]. In the fluid phase, we find that the osmotic compressibility
of cubic particles is similar to the osmotic compressibility of hard
spheres [42], a similarity that is in agreement with scaled particle
theory [15].

The results presented here allow us to further investigate the
pair interactions between cubic colloids. Dispersions of cubic silica
shells in N,N-dimethylformamide with LiCl are suited for experi-
ments with dynamic light scattering. Since the wave vector regime
of static light scattering is limited, extending the analysis to small
angle X-ray and neutron scattering is required to further asses the
effect that concentration has on the structure of cubic shell fluids.
Neutron scattering in particular might increase our insight in the
structure of these fluids since the contrast of the medium and
the particles can be controlled. Additionally, static light scattering
experiments can be extended to cubic shells with interactions
beyond the hard-core potential. The silica particles in DMF are also
promising for studying the influence of an added second com-
pound, for instance non-adsorbing polymers, on the interaction
between cubes in the fluid-phase [43].
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