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Abstract
Proactive interference occurs when previously learned information interrupts the storage or retrieval of new information.
Congruent with previous reports, traditional analyses dealing with response times and error rates separately have indicated an
increase in sensitivity to proactive interference in older adults. We reanalyzed the same data using diffusion decision model
(DDM). Such models enable a more fine-grained interpretation concerning the latent processing mechanisms underlying per-
formance. Now a different picture emerged. The DDM results showed that older adults needed more evidence than young adults
before responding. The results also clearly indicated that peripheral processes (encoding time and motor execution), as well as
recognition memory, decline with age. However, the drift rates, reflecting proactive interference, were similar, suggesting—
contrary to earlier reports—that the inhibitory processes observed with this paradigm remain intact in older adults.
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Proactive interference (PI) occurs when information previous-
ly stored disturbs the learning or remembering of new infor-
mation. PI negatively affects performance in short-term mem-
ory, which is crucial for normal cognitive processing (e.g.,
Conway & Engle, 1994; Engle, Conway, Tuholski, &
Shisler, 1995). Given that PI is considered one of the principal
sources of forgetting in short-term memory (Jonides et al.,
2008), a better understanding of age-related changes in PI
constitutes a major objective in cognitive psychology.

PI in short-term memory is frequently investigated using
the recent-probes task (Monsell, 1978). This is a recognition
task in which participants memorize a set of items (the target
set; Fig. 1A). After a short retention interval, a probe is pre-
sented, and participants have to decide whether it was one of
the target set. This probe can be either positive, because it
matches a member of the target set, or negative because not
matching any member of the target set. Critically, although
some negative probes were not presented recently (non-recent

negative probes), other negative probes had been presented in
the preceding target set (recent negative probes), inducing PI.
PI experienced for recent negative probes hurts performance
by slowing response times (RTs) and impairing rejection of
these probes (for a review, see Jonides & Nee, 2006).

Regarding the effects of aging, it has repeatedly been
reported that older adults have more difficulty resolving
PI in short-term memory (e.g., Jonides et al., 2000;
Manard, Carabin, Jaspar, & Collette, 2014). Specifically,
the difference in performance between recent negative and
non-recent negative probes was observed to be larger for
older than for younger adults, suggesting an age-related
increase in sensitivity to PI. Increased PI with age has
previously been observed with either accuracy (e.g.,
Loosli, Rahm, Unterrainer, Weiller, & Kaller, 2014), RTs
(e.g., Manard et al., 2014), or both (Pettigrew & Martin,
2014). Inhibition is assumed to play a role in the resolu-
tion or reduction of interference, by suppressing no-
longer-relevant information that has already entered
short-term memory (e.g., Friedman & Miyake, 2004;
Lustig, Hasher, & Zacks, 2007). It is therefore possible
that the increase of sensitivity to PI with age results from
less efficient inhibitory processes in older than in younger
adults (e.g., Jonides et al., 2000). This is consistent with
the inhibitory deficit theory, arguing for a general decline
across different types of inhibitory processes with age
(Hasher & Zacks, 1988; Lustig et al., 2007). This theory
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proposes that older adults have difficulties preventing ir-
relevant information from entering or remaining in the
focus of attention (Hasher & Zacks, 1988; Lustig et al.,
2007). Indeed, deficient inhibitory processes in older
adults have been observed across a wide range of cogni-
tive tasks (for a review, see Hasher, Zacks, & May, 1999).
However, not all cognitive tasks involving inhibition re-
veal such age-related deficiencies (e.g. Collette, Schmidt,
Scherrer, Adam, & Salmon, 2009), suggesting that age-
related inhibitory deficiencies may be specific to the in-
hibitory task at hand. Furthermore, even if older adults
underperform in a given inhibitory task, this does not
necessarily imply that the inhibitory process itself is defi-
cient. Other functions, such as a decline in sensory pro-
cessing or in motor execution time, can also contribute to
lower performances (e.g., Burke & Osborne, 2007). For
instance, Rabaglia and Schneider (2016) found worse sup-
pression of irrelevant information in older than in younger
participants. However, this difference disappeared when
visual filters were applied, such that the contrast sensitiv-
ity of the targets was equal in both groups.

The relative contribution of these additional processes and
how they are affected by age can be studied using the diffusion
decision model (DDM). DDM analyses use both RTs and
accuracy data to infer the most likely combination of param-
eters to have generated the data. These parameters are associ-
ated with psychological interpretations. Specifically, the
DDM assumes that noisy information for each choice alterna-
tive is accumulated over time until a predefined boundary is
reached, after which the response associated with this bound-
ary is executed (Ratcliff, 1978; Ratcliff & McKoon, 2008).
The standard DDM has four main parameters: drift rate,
boundary separation, starting point, and nondecision time
(Fig. 1B). Drift rate is the average rate of information accu-
mulated per unit of time and therefore provides a measure of
performance (processing efficiency). Boundary separation is

defined by the amount of information needed to make a deci-
sion and reflects the level of caution. The starting point rep-
resents a predecision response bias for one or the other choice
alternative. Finally, the nondecision time is a measure of pe-
ripheral processes such as stimulus encoding and response
execution (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008).
Because the parameter values might not be identical from trial
to trial, DDM also includes intertrial variabilities of the drift
rate, starting point, and nondecision time as additional param-
eters (for more details about the DDM and its application, see
Ratcliff & McKoon, 2008).

Previous applications of DDM in the domain of aging
(e.g., Ratcliff, Thapar, & McKoon, 2004, 2010) have typ-
ically shown an increase in nondecision time with age,
meaning that older adults need more time to encode the
stimuli and to execute motor responses than do young
adults. Additionally, it was observed that older adults
adopted a stronger level of caution, reflected by a higher
boundary separation for older than for younger adults.
Importantly, no decline with age was found in many cog-
nitive processes (e.g., recognition memory), which was
supported by similar drift rates between younger and
older adults (e.g., Ratcliff et al., 2004).

The aim of the present study was to assess the psycho-
logical processes responsible for age-related differences in
sensitivity to PI. To do so, a sample of younger and older
adults performed the recent-probes task. We first com-
pared the performance between age groups using tradi-
tional analyses on both mean RTs and error rates. Then,
a DDM analysis was performed. Applying the DDM
allowed us to determine whether the potential age differ-
ences observed with inferential analyses was due to a
decline in cognitive processing or to other components
of processing, such as peripheral processes or level of
caution. Within the present task context, a possible main
effect of age on drift rate is interpreted as reflecting

Fig. 1 Schematic representations of the recent-probes task (A) and the diffusion decision model (B)
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difficulties in recognition memory (e.g., Ratcliff et al.,
2010). Crucially, if the inhibitory processes underlying
PI are affected by age, the difference in drift rate between
recent negative and non-recent negative trials should in-
crease with age.

Method

Participants

The participants were 25 young adults (M = 19.53 years, SE =
0.39; 19 women, 6 men) and 38 older adults (M = 71.95 years,
SE = 1.50; 28 women, 10 men). We aimed for a final set of
about 25 participants in each group. This number was based
on earlier published studies on proactive interference, typ-
ically using this sample size (e.g., Loosli et al., 2014).
More older adults were tested anticipating a higher rejec-
tion rate of participants in this age group following the
exclusion criteria mentioned below. However, none of the
older adults met these exclusion criteria, resulting in
slightly imbalanced group sizes.

The young adults were undergraduates from the Université
Libre de Bruxelles (ULB) and received course credits. The
older adults were recruited through flyers and announcement
on a website and received monetary compensation for their
participation. The study protocol was approved by the local
ethics committee (ULB, Faculty of Psychological and
Educational Sciences). All participants were French-speakers
and had normal or corrected-to-normal vision. The exclusion
criteria were alcoholism, history of stroke, head trauma, epi-
lepsy, metabolic or psychiatric disorders, or low level of edu-
cation (at most primary education). The Montreal Cognitive
Assessment (MoCA; Nasreddine et al., 2005) was used to
discard older adults with potential risk of dementia (MoCA
score > 26). Older adults with high depressive symptoms
(score > 10) were excluded using the Geriatric Depression
Scale (GDS; Yesavage et al., 1982). The older (M = 13.10
years, SE = 0.44) and young (M = 12.88 years, SE = 0.29)
adults had similar years of education [t(61) = 0.38, p = .708].
Participants were tested at the university (32 participants) or at
home (31 participants) in one session of approximately 60
min.

Material and procedure

Participants performed the recent-probes task, during
which they had to decide whether a probe was part of the
target set that had previously been presented (Fig. 1A). A
trial started with a fixation point (500 ms), followed by the
target set (1,500 ms). The target set consisted of four low-
ercase consonants and was followed by a delay of 3,000
ms. Next, a single consonant probe was presented.

Participants had to indicate whether or not the probe
belonged to the current target set by performing a left or
a right key press. After a response, the next trial was initi-
ated, with an intertrial interval of 1,000 ms. On half of the
trials, the probe required a positive response, because it
was a member of the target set (positive trials). On the
other half, the probe required a negative response, because
the probe was not a member of the target set (negative
trials). Two types of negative trials were used: recent neg-
ative trials and non-recent negative trials. For the recent
negative trials, the probe had been a member of the previ-
ous target set. For the non-recent negative trials, the probe
had not been a member of either of the two previous target
sets. The task included three blocks of 160 trials (total 480
trials), with 240 positive trials, 120 non-recent negative
trials, and 120 recent negative trials. Half of the partici-
pants had to press the left button (A key) for positive trials
and the right button (L key) for negative trials, whereas this
response mapping was reversed for the remaining partici-
pants. The task was run on a 17-in. laptop computer using
Matlab.

Results

The RTs cutoffs were 200 and 7,000 ms, which excluded
0.28% of the data. A repeated measures analysis of variance
(ANOVA) with condition (three levels: positive, non-recent
negative, recent negative) as a within-subjects factor and age
(two levels: young adults, older adults) as a between-subjects
factor was performed separately on error rates and RTs (only
correct trials). To assess the PI effect, the critical comparison
was the difference in performance between the non-recent
negative and recent negative conditions.

An analysis of error rates revealed a main effect of condi-
tion [F(2, 122) = 17.85, p < .001, ηp

2 = .23]. Planned compar-
isons showed that more errors were made in the recent nega-
tive than in the non-recent negative condition (p < .001), in-
dicating a PI effect (recent negative condition, error rate =
5.43%, SE = 0.67; non-recent negative condition, error rate
= 2.63%, SE = 0.37). The main effect of age was not signifi-
cant [F(1, 61) = 1.49, p = .227, ηp

2 = .02]. The interaction
between condition and age was not significant, either [F(2,
122) = 0.40, p = .669, ηp

2 = .007; Fig. 2A]. Planned compar-
isons indicated that the interaction between the PI effect and
age did not reach significance [F(1, 61) = 0.75, p = .391, ηp

2 =
.01].

The same analysis on RTs showed that the main effect of
condition was significant [F(2, 122) = 42.38, p < .001, ηp

2 =
.41]. Planned comparisons revealed that recent negative trials
were responded to more slowly than non-recent negative trials
(p < .001), indicating a significant PI effect (recent negative
condition, mean RTs = 1,046 ms, SE = 42.35; non-recent
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negative condition, mean RTs = 960 ms, SE = 38.20). We
found a significant effect of age [F(1, 61) = 32.01, p < .001,
ηp

2 = .34], indicating that older adults (mean RTs = 1,169 ms,
SE = 45.37) were globally slower than younger adults (mean
RTs = 761 ms, SE = 55.94). The interaction between condition
and age just failed to reach significance [F(2, 122) = 2.77, p =
.066, ηp

2 = .04; Fig. 2B]. Importantly, planned comparisons
showed that the PI effect significantly interacted with the fac-
tor age [F(1, 61) = 7.95, p = .006, ηp

2 = .12]: The PI effect was
present in both age groups (p < .001), but it was larger in older
(mean difference = 112 ms) than in younger (mean difference
= 59 ms) adults. Replicating earlier findings (Manard et al.,
2014), a higher sensitivity to PI in older adults was found with
RTs but not with error rates.

Diffusion decision model analyses

To test which cognitive factors best explain the behavioral
effects, the parameters of six different models were estimated,
and a model selection procedure was performed (for more
details about the model selection procedure, see Donkin,
Brown, & Heathcote, 2011; see also Raftery, 1995;
Wasserman, 2000). The parameters of the model that were
deemed best by the model selection were interpreted in terms
of their cognitive factors.

In Model 1, drift rate and intertrial variability of the drift
rate were allowed to vary across the three conditions (positive,
non-recent negative, recent negative). All other parameters
were held fixed across conditions. In Model 2, drift rate, in-
tertrial variability of the drift rate, boundary separation, and
intertrial variability of the starting point were allowed to vary
across conditions. All other parameters were held fixed across
conditions. In Model 3, drift rate, intertrial variability of the
drift rate, boundary separation, intertrial variability of the
starting point, nondecision time, and intertrial variability of
the nondecision time were allowed to vary across conditions.

For these three models, the starting point was fixed at half of
the boundary separation. To exclude any potential response
bias,1 Models 4, 5, and 6 were the same as Models 1, 2, and 3,
with the difference that the starting point, fixed across condi-
tions, could differ from half of the boundary separation. We
fitted the DDM to the data for each participant separately
using maximum likelihood estimation. Likelihood was opti-
mized by using a SIMPLEX search algorithm (Nelder &
Mead, 1965) to find the best-fitting parameter values for each
model. The diffusion constant was fixed to 0.1, and the mea-
surement scale of RTs was seconds. Because the fit of more
complex models (with more free parameters) will be at least as
good as the fit of less complex models, the Bayesian informa-
tion criterion (BIC; Schwarz, 1978) was computed in order to
select the model with the best trade-off between model com-
plexity and goodness of fit. For 31 (12 young adults and 19
older adults) of the 63 participants, the best model was Model
1, with drift rate and intertrial variability of the drift rate free to
vary across conditions (Table 1). The second best model was
the same model with an estimated starting point. This empha-
sizes that drift rate is really what drives the conditions (for
~85% of the participants). The fit of this model averaged over
participants for each condition and age group separately is
shown in Fig. 3. Overall, the model fits reasonably well.
However, misfits between the data and the model for error
responses are observed in each condition and age group, pos-
sibly due to the relatively low number of incorrect trials. To
conclude, the simplest model provides the better compromise
between quality of fit and simplicity. The remaining models
also fit the data adequately but introduce unnecessary model
complexity. The individual estimated parameter values of the
best-fitting model were then used to examine age differences
for the main components of the DDM (i.e., drift rate, boundary
separation, and nondecision time). The estimated parameter
values by age group are provided in Table 2.

1 We thank an anonymous reviewer for this suggestion.

Fig. 2 Behavioral results of the recent-probes task. Panels A and B depict the behavioral results for accuracy (A) and reaction times (B), averaged over
participants and conditions for each age group (error bars represent 95% confidence intervals)
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The repeated measures ANOVA on drift rate, with condi-
tion (three levels: positive, non-recent negative, recent nega-
tive) as a within-subjects factor and age (two levels: young
adults, older adults) as a between-subjects factor, indicated a
significant main effect of condition [F(2, 122) = 39.81, p <
.001, ηp

2 = .39]. Planned comparisons showed that the drift
rate is lower for the recent negative as compared to the non-
recent negative condition (p < .001), suggesting a PI effect
(recent negative condition, mean drift rate = 0.213, SE =
0.01; non-recent negative condition, mean drift rate = 0.273,
SE = 0.01). A significant effect of age [F(1, 61) = 5.38, p =
.024, ηp

2 = .08] showed a globally lower rate of information
processing for older adults (mean drift rate = 0.251, SE = 0.01)
than for younger adults (mean drift rate = 0.295, SE = 0.01);
an interaction between condition and age was not observed
[F(2, 122) = 0.67, p = .511, ηp

2 = .01; Fig. 4A]. Crucially,
planned comparisons indicated that the interaction between
the PI effect and age for rate of information processing was

not significant [F(1, 61) = 0.01, p = .925, ηp
2 = .001]. To

understand whether the interaction between PI effect and age
was not found due to low power or because the null hypoth-
esis was true, we performed a Bayesian ANOVA. This analy-
sis allowed us to quantify the support for the absence of an
interaction. The Bayes factor model comparison yielded sub-
stantial evidence for the absence of an interaction between PI
effect and age. The best model was the additive model (with
main effects of both PI and age but with no effect of the
interaction PI × Age). This model was preferred by a factor
of 5.911 over the full model (with both main effects and an
interaction). It is about six times as likely that no interaction
was present in the data as that an interaction was present.
Regarding the boundary separation parameter, independent-
sample t-tests revealed a higher boundary separation for older
than for younger adults [t(61) = 4.39, p < .001; Fig. 4B],
indicating that older adults needed more information in order
to make a decision. Similarly, independent-sample t-tests

Table 1 Model selection procedure. Parameters columns depict the
different parameter constraints for each model. The n Best and
Percentage columns, respectively, depict the number of participants and
the percentage for that this was the best model, according to Bayesian

information criterion values. The Ranking column sorts models (highest
ranking = winning model) on the basis of their n Best and Percentage
values

Parameters

Model Free Across Conditions Fixed Across Conditions Starting Point n Best Percentage Ranking

1 Drift rate
Intertrial variability of drift rate

Boundary separation
Intertrial variability

of starting point
Nondecision time
Intertrial variability

of nondecision time

Unbiased response
(half of the boundary separation)

31 49.21% 1

2 Drift rate
Intertrial variability of drift rate
Boundary separation
Intertrial variability of starting point

Nondecision time
Intertrial variability

of nondecision time

Unbiased response
(half of the boundary separation)

4 6.35% 3

3 Drift rate
Intertrial variability of drift rate
Boundary separation
Intertrial variability of starting point
Nondecision time
Intertrial variability of nondecision time

Unbiased response
(half of the boundary separation)

4 6.35% 3

4 Drift rate
Intertrial variability of drift rate

Boundary separation
Intertrial variability of

starting point
Nondecision time
Intertrial variability

of nondecision time

Biased response
(fixed across conditions)

23 36.51% 2

5 Drift rate
Intertrial variability of drift rate
Boundary separation
Intertrial variability of starting point

Nondecision time
Intertrial variability

of nondecision time

Biased response
(fixed across conditions)

0 0% 6

6 Drift rate
Intertrial variability of drift rate
Boundary separation
Intertrial variability of starting point
Nondecision time
Intertrial variability of nondecision time

Biased response
(fixed across conditions)

1 1.59% 5
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showed a higher nondecision time for older than for younger
adults [t(61) = 5.09, p < .001, Fig. 4B], indicating that older
adults took more time for stimulus encoding and response
execution.

Discussion

The aim of the present study was to investigate possible age-
related changes in sensitivity to PI in short-term memory. To

this end, the performance of young and older adults was com-
pared in a recent-probes task in which probes from a previous
trial interfered with the recognition process in the current trial.
In addition to traditional analyses, the DDM was applied in
order to obtain a more detailed understanding of the latent psy-
chological processes driving age differences in sensitivity to PI.

Inferential analyses on mean performance (RTs and error
rates) showed that both young and older adults were sensitive
to PI. Non-recent negative trials were performed faster and with
fewer errors than recent negative trials. Replicating previous find-
ings (Manard et al., 2014), a higher sensitivity to PI in older
adults was observed with RTs, whereas no age effect was found
with error rates. Thus, a deficit with age in resistance to PI might
be inferred if only RTs were considered as a measure of perfor-
mance. At the same time, no deficit would be inferred on the
basis of accuracymeasures. Because theDDM takes into account
RTs and response accuracy data simultaneously, it allows for a
more comprehensive view concerning the role of age in PI.

First, model selection indicated that the drift rate but not the
other main parameters accounted for the behavioral effects
observed in the recent-probes task, which can be understood
as a difference in processing efficiency. Furthermore, analysis
of the main components of the DDM showed a higher

Fig. 3 Quantile probability plots showing the best-fitting model, aver-
aged over participants for the positive (A, D), non-recent negative (B, E),
and recent negative (C, F) trials, separately for young (top graphs) and
older (bottom graphs) adults. Each graph represents the response

proportion (x-axis) and RTs distributions (represented by five quantiles;
y-axis). For incorrect (left) and correct (right) responses, the observed and
predicted quantiles are represented by crosses and circles, respectively

Table 2 Estimated parameter values (means and standard errors) for
Model 1 in young and older adults for the recent-probes task

Parameters Young Adults Older Adults

M SE M SE

Drift rate

Positive 0.366 0.025 0.304 0.020

Non-recent negative 0.290 0.017 0.255 0.014

Recent negative 0.230 0.014 0.196 0.011

Boundary separation 0.176 0.010 0.229 0.007

Nondecision time 0.304 0.011 0.455 0.023
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boundary separation with age, meaning that older adults
adopted a more conservative level of caution than young
adults. Finally, longer nondecision times were observed for
older than for younger adults, indicating an increase in periph-
eral processes with age. The results of both boundary separa-
tion and nondecision time replicated previous applications of
the DDM in the domain of aging (e.g., Ratcliff et al., 2004).

Concerning the drift rate parameter, the results showed a low-
er processing efficiency for recent negative than for non-recent
negative trials. Importantly, the size of this PI effect in short-term
memory remained constant with age. Reconciling the findings of
both approaches, earlier methodological work had demonstrated
that interactions in RTs can be explained by the nonlinear map-
ping from drift rate to RTs (Wagenmakers, Krypotos, Criss, &
Iverson, 2012). Our interpretation of the present results differs
from previous studies that had suggested that the inhibitory abil-
ity to resist PI declines with age (e.g., Jonides et al., 2000). Our
results suggest that the inhibitory functions associated with resis-
tance to PI in a recognition task are not affected by normal aging
(for a similar proposal, see Collette et al., 2009). As such, the
present results do not match with the inhibitory deficit theory,
which argues for a general decline across the different types of
inhibitory processes with age (e.g., Lustig et al., 2007). In line
with the inhibitory deficit theory, we assume that inhibition is a
combination of several functions, rather than a unitary construct
(e.g., Friedman & Miyake, 2004; Hasher et al., 1999; Lustig
et al., 2007). However, at least the type of inhibition needed to
resolve PI in a recognition task seems to be preserved with age.
Note that our study focused on PI in a recognition task. Future
studies might determine whether our conclusions can be gener-
alized to other types of PI tasks (e.g., retrieval tasks).

Although no increase with age in sensitivity to PI was
observed, DDM analyses did reveal overall lower perfor-
mance (reflected by a smaller overall drift rate) for older
than for younger adults. This result suggests an age-

related impairment in recognition memory. This is in con-
trast with a previous study that showed similar drift rates
in younger and older adults (Ratcliff et al., 2010). A pos-
sible explanation for these inconsistent findings is that our
item recognition task and the one implemented by Ratcliff
et al. (2010) involved different memory mechanisms. In
the item recognition task used by Ratcliff and colleagues,
participants had to remember a list of 16 words presented
sequentially, which represents a number largely beyond
the working memory span. In addition, half of the words
were presented twice. After presentation of the list, par-
ticipants were asked to decide whether or not a test word
was part of the study list. Such a task seems to rely more
on long-term memory mechanisms, whereas our recent-
probes task relies on short-term memory mechanisms.

In summary, through the present study, we aimed to
better understand potential age-related changes in sensitiv-
ity to PI. Replicating previous studies (e.g., Jonides et al.,
2000), inferential analyses indicated an increase in PI with
age. This increase is typically explained by a general def-
icit in inhibitory function with age. The DDM provides a
more fine-grained interpretation concerning the latent pro-
cessing mechanisms underlying performance. First, an
analysis of nondecision time and boundary separation con-
firmed an increase of peripheral processes and level of
caution with age. Second, older adults also showed overall
lower processing efficiency, indicated by a lower drift rate.
This lower drift rate is interpreted as a decline in recogni-
tion memory. Crucially, however, the present DDM results
did not reveal any evidence for a deficit with age in the
general capacity to resist PI. This result seems to indicate
that inhibitory abilities to resist PI in short-term memory
remain intact in older adults. Further applications of the
DDM will help specify exactly which inhibitory processes
remain intact with age and which become deficient.

Fig. 4 Panel A depicts modeling results of drift rate, averaged over
participants and conditions for each age group (error bars represent
95% confidence intervals). Panel B represents modeling results

showing age differences for the boundary separation (left) and nondeci-
sion time (right) parameters (error bars represent 95% confidence
intervals)
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