The Genome of Peronospora belbahrii Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters

Marco Thines,1,2,3 Rahul Sharma,1,2,3 Sander Y. A. Rodenburg,4,5 Anna Gogleva,6 Howard S. Judelson,7 Xiaojuan Xia,1,2 Johan van den Hoogen,4 Miloslav Kitner,8 Joël Klein,9 Manon Neilen,9 Dick de Ridder,9 Michael F. Seidl,4 Guido van den Ackerveken,9 Francine Govers,4 Sebastian Schornack,9 and David J. Studholme10

1 Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323 Frankfurt (Main), Germany
2 Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
3 Integrative Fungal Research (IPF) and Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, 60325 Frankfurt (Main), Germany
4 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
5 Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
6 University of Cambridge, Sainsbury Laboratory, 47 Bateman Street, Cambridge, CB2 1LR, U.K.
7 Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521 U.S.A.
8 Department of Botany, Faculty of Science, Palacký University Olomouc, Slepčitělú 27, 78371 Olomouc, Czech Republic
9 Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
10 Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.

Accepted 23 February 2020.

The sequence data and annotations of this study have been deposited at ENA under the BioProject accession numbers PRJEB15119 and PRJEB20871. The assembly scaffolds have been accessioned in ENA with the numbers CACTHD010000001 to CACTHD010002780. The Kyoto Encyclopedia of Genes and Genomes orthology hidden Markov models are deposited at the NARCIS data repository under doi:10.4121/uuid:9b6e6aa0-b815-409f-9e96-04828b03290b. The mitochondrial genome was deposited in GenBank under the accession number MN530986.

Current address for Johan van den Hoogen: Global Ecosystem Ecology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.

Current address for Michael F. Seidl: Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.

† Corresponding author: M. Thines; m.thines@thines-lab.eu

Funding: This work was supported by the research funding program LOEWE “Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts in the framework of LOEWE IPF and the LOEWE Center for Translational Biodiversity Genomics (TBG). Further funding was received by the Food-for-Thought Fund of the Wageningen University Fund, the Research Council Earth and Life Sciences of the Netherlands Organization of Scientific Research in the framework of a VENI grant (863.15.005), and a JSTP grant (833.13.002), the National Institute of Food and Agriculture and National Science Foundation of the United States (the Gatsby Charitable Foundation [GAT3395/GLD]), and the Royal Society (UF160413).

The e-Xtra logo stands for “electronic extra” and indicates that six supplementary figures and 14 supplementary tables are published online.

The author(s) declare no conflict of interest.

© 2020 The American Phytopathological Society

Along with Plasmopara destructor, Peronospora belbahrii has arguably been the economically most important newly emerging downy mildew pathogen of the past two decades. Originating from Africa, it has started devastating basil production throughout the world, most likely due to the distribution of infested seed material. Here, we present the genome of this pathogen and results from comparisons of its genomic features to other oomycetes. The assembly of the nuclear genome was around 35.4 Mbp in length, with an N50 scaffold length of around 248 kbp and an L50 scaffold count of 46. The circular mitochondrial genome consisted of around 40.1 kbp. From the repeat-masked genome, 9,049 protein-coding genes were predicted, out of which 335 were predicted to have extracellular functions, representing the smallest secretome so far found in peronosporalean oomycetes. About 16% of the genome consists of repetitive sequences, and, based on simple sequence repeat regions, we provide a set of microsatellites that could be used for population genetic studies of P. belbahrii. P. belbahrii has undergone a high degree of convergent evolution with other obligate parasitic pathogen groups, reflecting its obligate biotrophic lifestyle. Features of its secretome, signaling networks, and promoters are presented, and some patterns are hypothesized to reflect the high degree of host specificity in Peronospora species. In addition, we suggest the presence of additional virulence factors apart from classical effector classes that are promising candidates for future functional studies.

Keywords: comparative genomics, downy mildew, evolutionary biology, metabolic pathways, oomycetes

Oomycetes comprise more than 2,000 species with a broad array of lifestyles. They are found in almost all ecosystems, efficiently colonizing decaying organic matter as well as living hosts and play important ecological roles as saprotrophs and...
pathogens (Judelson 2012; Thines 2014). Many oomycete species are responsible for huge economic losses and pose a major threat to food security. Unlike fungi, oomycetes are diploid for most of their life cycle and, therefore, have the potential to propagate as heterozygous clones.

Most known oomycete species cause downy mildew and are obligate biotrophic. Among this group of more than 800 species, about 500 belong to the genus Peronospora (Thines and Choi 2016; Thines 2014). *Peronospora belbahrii* is a highly specialized species causing basil downy mildew disease (Thines et al. 2009). Since its introduction, probably from Africa, it has emerged as a major threat to production of the culinary herb basil (*Ocimum basilicum*) (Thines and Choi 2016; Thines et al. 2009), paralleled in its huge recent impact only by *Plasmopara destructor*, the downy mildew of ornamental balsamine (Görg et al. 2017).

The lifestyle of pathogens is reflected by its primary and secondary metabolism. Obligate biotrophs fully rely on their host for survival and utilize metabolites provided by their hosts (Judelson 2017). Therefore, obligate biotrophs have reduced sets of enzyme-encoding genes required for metabolic pathways (Baxter et al. 2010; Kemen et al. 2011; Sharma et al. 2015a and b; Spanu 2012). For example, in addition to the widespread auxotrophy for thiamine and sterol in oomycetes (Dahlin et al. 2017; Judelson 2017), obligate biotrophic oomycetes have lost the ability to reduce inorganic nitrogen and sulfur (Baxter et al. 2010; Kemen et al. 2011; Sharma et al. 2015a and b; Spanu 2012).

The first line of pathogen attack relies on hydrolytic enzymes such as cutinases, glycolysyl hydrolases, lipases, and proteases that degrade plant cell-wall components to promote pathogen entry (Blackman et al. 2015). Besides these enzymes, oomycetes secrete effectors that target host processes (Schornack et al. 2009). After germination and penetration, downy mildews are nutritionally dependent on living host cells, from which they extract nutrients via haustoria, which are believed to represent the main interaction interface between host and pathogen (Ellis et al. 2007; Schornack et al. 2009; Soylu and Soylu 2003). Extracellular proteins secreted from hyphae and haustoria play key roles in establishing stable interactions by modulating plant immune responses and plant metabolism (Meijer et al. 2014). While the biological function of many oomycete effectors still remains to be resolved, they have been classified based on sequence similarity and other recognizable sequence features, such as the *WY* domain (Boutemy et al. 2011) in host-translocated (cytoplasmic) effectors and apo-plastic effectors. The latter include protease inhibitors, small cysteine-rich proteins (SCPs), eelctins, and necrosis-inducing-like protein (NLPs). NLPs are widely distributed across plant-pathogenic oomycetes and share a highly conserved NPP1 domain (Feng et al. 2014; Seidl and Van den Ackerveken 2019). Most cytoplasmic effectors carry short motifs associated with their translocation, such as the characteristic RXLR effector motif that often co-occurs with a downstream EER motif (Dou et al. 2008; Tyler et al. 2013).

The availability of next-generation sequencing enables economical and facile analysis of genomes, leading to many important insights into the biology of many oomycetes (Ali et al. 2017; Baxter et al. 2010; Gaulin et al. 2018; Grünwald 2012; Haas et al. 2009; Jiang et al. 2013; Judelson 2012; Lamour et al. 2012; Lévesque et al. 2010; Links et al. 2011; McCarthy and Fitzpatrick 2017; Raffaele and Kamoun 2017; Schena et al. 2008; Soanes et al. 2007; Sharma et al. 2015; Tian et al. 2011; Tyler et al. 2006). Because of their economic importance, some downy mildews have had their genomes sequenced, including *Bremia lactucae*, *Hyaloperonospora arabidopsidis*, *Peronospora effusa*, *Peronospora tabacina*, *Plasmopara viticola*, *Plasmopara halstedii*, *Plasmopara muralis*, and *Plasmopara destructor* (filed as *Plasmopara obducens*), *Pseudoperonospora cubensis*, *Pseudoperonospora humuli*, and *Sclerospora graminicola* (Baxter et al. 2010; Derevmina et al. 2015; Feng et al. 2018; Fletcher et al. 2018, 2019; Kobayashi et al. 2017; Nayaka et al. 2017; Sharma et al. 2015; Tian et al. 2011; Ye et al. 2016).

Here, we augment this repertoire with the annotated genome sequence of *P. belbahrii*. Using comparative genomics, we uncover evidence of convergent evolution in loss of metabolic function between this species and phylogenetically distant obligate pathogens, we identify features of its signaling networks and secretome, and we identify sequence features of its promoters. Finally, we present a set of microsatellite repeats that will be useful as markers for diversity and population studies.

RESULTS

General features of the genome assembly.

We assembled Illumina HiSeq 2000 sequencing data from four genomic libraries into 2,780 scaffolds. The draft assembly was rather contiguous, with an N50 scaffold length of 246.53 kbp and an L50 scaffold count of 46 (Supplementary Table S1). The total length of 35.39 Mbp falls within the range observed for other *Peronospora* genome assemblies (Supplementary Table S1). In total, 9,049 protein-coding genes were predicted from the repeat-masked genome. The circular mitochondrial genome was 40,106 bp long (Supplementary Fig. 1).

Repeat sequences account for 5.71 Mbp, which is 16.15% of the total assembly size. Furthermore, 18.20% of the scaffold-level assembly consisted of gaps between contigs. Nevertheless, more than 92% of the short-insert paired sequence reads were successfully mapped against the genome assembly, suggesting a high degree of completeness (Supplementary Table S2). This was also confirmed with BUSCO3 (Simão et al. 2015). Of the 234 core genes of the BUSCO Alveolata/Straminipila-specific library, 207 (88%) are found as intact and single-copy. This is similar to other *Peronospora* genome assemblies (Supplementary Fig. 2), which contain between 94 (40%) and 221 (94%) complete single-copy genes. Of the core genes reported as missing by BUSCO3, most could be found by tBLASTn searches (Altschul et al. 1990) against the genome. In addition, synteny with other oomycete genome drafts revealed a rather high degree of synteny. There are 4,574 blocks on the *P. belbahrii* genome having synteny with *Bremia lactucae*, with a mean length of 2,063 bp and a total length of 9,437,307 bp. Given that the length of the *P. belbahrii* assembly is 35,394,047 bp, the synteny coverage is 26.66%, which is remarkably high, given the huge divergence and differences in genome size between the two species (Supplementary Fig. 3).

We note that the size of our genome assembly is smaller than that of a publicly available but unpublished *P. belbahrii* assembly (deposited by the University of Michigan, accession GCA_002864105.1), which is 59.2 Mbp in length and was assembled using Abyss2 (Jackman et al. 2017). However, BUSCO3 analysis reveals that the Michigan assembly contains a high frequency of gene duplication (Supplementary Fig. S2). We also observed similar duplications when we assembled our data using Abyss2 instead of Velvet. The duplication level can be explained by assembly of distinct alleles into separate contigs. In line with this, the analysis of our genome data confirms substantial heterozygosity in the *P. belbahrii* genome (Fig. 1; Supplementary Table S3).

Heterozygosity.

The genome of *P. belbahrii* displays significant levels of heterozygosity (Supplementary Table S3) as also indicated by a clear peak near to 50% allelic frequency in Figure 1A. A similar peak is also observed for some other oomycete genomes.
investigated (Supplementary Table S4), including those of *P. tabacina*, *Phytophthora ramorum* and *Saprolegnia parasitica* (Fig. 1A). The distribution of heterozygosity over the *P. belbahrii* genome is not uniform and we identified several long stretches of the genome showing little or no heterozygosity. For instance, we identified a patchy distribution of heterozygosity over scaffold 882 (249 kbp), in which there is a region of 70 kbp that shows no detectable heterozygosity with normal sequencing depth, while other regions of this scaffold show more typical levels of heterozygosity as exemplified by another region of 72 kbp (Fig. 1B).

Gene spacing and promoter structure.

Intergenic regions upstream of *P. belbahrii* start codons span a wide range of sizes (Supplementary Fig. S4A), consistent with the organization of its genome into gene-dense and gene-sparse regions (GDR and GSR, respectively); the former are defined as those in which genes have their 5' ends within 2 kb of another gene. Seventy-six percent of predicted *P. belbahrii* genes are in GDRs, which is more than in other oomycetes such as *Phytophthora infestans* (51%) and *Plasmopara halstedii* (67%) (Baxter et al. 2010; Haas et al. 2009; Sharma et al. 2015). However, GSRs are likely to be disproportionately located in the unassembled gaps in draft-quality genome assemblies, meaning that these percentages should be interpreted with care.

The median intergenic distance within *P. belbahrii* GDRs is 530 bp, which is slightly larger than in *Plasmopara halstedii* (420 bp) and *Phytophthora infestans* (430 bp).

P. belbahrii promoters are relatively AT-rich, rising to 59% AT at 50 bp upstream of the start codon (Supplementary Fig. S4B). *P. belbahrii* contains core promoter motifs at different frequencies as compared with other oomycetes (Supplementary Fig. S4C). Each core motif occurs mostly within 100 bp of the start codon, as illustrated for the INR+FPR supra-motif in Supplementary Figure 4D.

As 64% of *P. belbahrii* promoters lacked a known core promoter sequence, attempts were made to identify alternative motifs using MEME (Bailey et al. 2009). Several candidates were identified, all of which resembled microsatellites. Figure 2A shows the most significant motif (*P = 10^{-33}*) compared with shuffled promoters, which is composed of TC dinucleotide repeats and showed a strong orientation bias (*P = 10^{-40}*) [Fig. 2B]. A search of all *P. belbahrii* promoters for (TC)_n repeats with n = 3 revealed significant over-representation of arrays having up to eight repeat units (*P < 10^{-3}*) compared with shuffled sequences. A search for other dinucleotide microsatellites indicated that (TC/GA)_n was the most plentiful in *P. belbahrii*, with Z = 5.7 (*P < 10^{-6}*) for over-representation compared with a shuffled dataset (Supplementary Fig. S4C). Some other microsatellites were also

![Fig. 1. Heterozygosity. A, Frequency distributions of relative abundances of the major allele over all genomic sites in sequenced oomycete genomes. For each species, raw Illumina sequence reads were aligned against the appropriate genome assembly using BWA-mem, discarding reads that align to more than one location. For each single-nucleotide polymorphism (SNP) site in each genome, the relative abundance of the most commonly occurring nucleotide (A, C, G, or T) was counted. The histogram shows the frequency distribution for the relative abundance of the most commonly occurring nucleotide. The histograms have been cropped at the top for clarity. A clear peak around 0.5 indicated diploidy and the presence of an increased number of heterozygous SNPs. B, Distribution of heterozygosity across scaffold 882 of the *Peronospora belbahrii* genome assembly (displayed in the center). In the upper panel, a heterozygous 72-kbp region is shown. Heterozygous sites are visible as two-colored vertical lines, with the relative lengths indicating the relative abundance of the two bases in the reads aligned at that site. The central panel shows an overview of the heterozygosity profile and the depth of coverage (y axis) over the whole scaffold. The black circles indicate the number of heterozygous sites per 5-kbp window. The green circles indicate the normalized depth of coverage (divided by the coverage median, 51.6). The dashed horizontal lines indicate 0.5, 1, and 2x median depth of coverage. The yellow shading indicates regions where no heterozygosity was detected and depth of coverage was at least 90% of the median. The lower panel shows a 72-kbp region that lacks detectable heterozygosity.](744)
over-represented in promoters, including those with CT/AG, CA/TG, or AC/GT repeats.

Microsatellites.

Microsatellites have potential use in identification processes and population studies. We characterized the full microsatellite complement of *P. belbahrii* and compared it with 34 other species of pathogens. The proportion of microsatellite sequences in the majority of oomycete genomes ranged from 0.023 (Albugo candida) to 0.331% (Pythium irregulare) when only two 6-bp arrays were considered. Higher ratios were observed for 1- to 6-bp simple sequence repeat (SSR) arrays (from 0.044% for Plasmopara halstedii to 0.341% for *Pythium irregulare*) (Supplementary Tables S5 to S7). The fraction of the genome comprised of SSR arrays in fungi with respectively similar lifestyle was higher (0.146% for Blumeria graminis f. sp. tritici to 0.668% for Colletotrichum graminifolia). The proportion of SSRs in genomes was not correlated with the size of the assembled genomes ($R^2 = 0.0008$). Interestingly, a low proportion of mononucleotides was observed in Saprolegnia parasitica (less than 1%), *P. belbahrii*, and *Pythium* species (3 to 10%). Dinucleotide and trinucleotide motifs were the most abundant types of repeats in the *P. belbahrii* genome, each representing more than 42% of all screened motifs (Supplementary Table S6). In coding regions of *P. belbahrii* di- and especially trinucleotide SSR arrays were frequently found, namely AAG/CTT, ATC/GAT, and AG/CT (Supplementary Table S7). In oomycete genomes, a higher proportion of AAG/CTT and AGC/GCT among other 3-bp arrays was observed, while the presence of 4- to 6-bp repeats was lower than in biotrophic fungi (Supplementary Tables S5 and S6). A total of 110 SSR markers (including 12 markers in coding regions) with potential use in population genetic studies were designed (Supplementary Table S8). These represent mainly di- and trinucleotide repeats (43 and 54 markers, respectively), while markers with tetra- to hexanucleotide repeats are less abundant (11, 1, and 1, respectively). All markers (109) are spread across 77 scaffolds and have been found in the alternative *P. belbahrii* assembly, and 19 of them are variable (i.e., we found an allele with a different size in the GCA_002864105.1 assembly).

Metabolism.

To compare metabolism of the obligate biotroph *P. belbahrii* with that of other oomycetes, Kyoto Encyclopedia of Genes and Genomes (KEGG)-based metabolic networks were constructed for 11 oomycete species with different lifestyles (Fig. 3). Overall, the metabolic networks of the obligate biotrophs *P. belbahrii*, Plasmopara halstedii, Albugo laibachii, and Hylaloperonospora arabidopsidis contain fewer genes, enzymes, reactions, and metabolites in comparison with the hemibiotrophs and the animal pathogen *Saprolegnia parasitica* (Fig. 3). The enzymes in each metabolic network were associated with reactions of 108 different KEGG pathways (Supplementary Table S9). Species clustered together according to their lifestyle when classified by numbers of supported reactions per pathway (Fig. 3), despite the fact that the non-oomycete peronosporalean *Albugo candida* and *Albugo labaichii* are phylogenetically not closely related to the downy mildews. As obligate biotrophy arose multiple times among the oomycetes (Thines 2014), this suggests convergent evolution of metabolic functions and defects.

Remarkably, the top ten most variant pathways (by coefficient of variation), contain three pathways classified in the KEGG BRITE category lipid metabolism (Supplementary Table S9). The steroid biosynthesis pathway was the most variable between species, in terms of supported reactions per pathway (Supplementary Table S9). *Peronospora belbahrii*, *Plasmopara halstedii*, and *Hyaloperonospora arabidopsidis* support only one reaction in this pathway, catalyzed by a cholesterol ester acylhydrolase (EC 3.1.1.13) and *Albugo laibachii* supports one additional reaction, catalyzed by an Acyl-CoA cholesterol O-acyltransferase (EC: 2.3.1.26). The obligate biotrophs contain generally fewer enzymes that function in the phenylpropanoid biosynthesis pathway (KEGG pathway map00940) than other oomycetes. Interestingly, *P. belbahrii* is an extreme case supporting only five reactions in this pathway, whereas the number of reactions in other oomycetes ranges from nine to 22. The analysis of primary metabolism pathways shows that all these mildews are unable to assimilate nitrate and nitrite and also lack an enzyme in the sulfur metabolism pathway generating cysteine (Fig. 4), which is in line with the previous studies (Baxter et al. 2010; Jiang et al. 2013).

In addition to the loss of metabolic pathways found in other oomycetes, *P. belbahrii*, like other members of the genus, does
not produce zoospores. To check whether its genome has retained genes normally required for forming flagella or remnants of such genes, sequences of 100 flagellum-associated proteins from Phytophthora infestans (Judelson et al. 2012) were used to search the P. belbahrii predicted proteome, using BLASTp, and its genome, using tBLASTn. No significant matches were detected, indicating a complete loss of its capacity to produce flagella.

Signaling.
Phospholipid modifying and signaling enzymes (PMSEs) may participate in both releasing carbon for metabolism and generating signaling molecules. Orthologs of nearly all genes encoding PMSE enzymes that have been identified in Phytophthora spp. and other oomycetes were found in P. belbahrii (Supplementary Table S10), but in comparison with Phytophthora spp., the total number is reduced (van den Hoogen et al. 2018). In P. belbahrii, as in Hyaloperonospora arabidopsidis and Plasmopara halstedii, there are fewer genes coding for phospholipase D (PLD) compared with Phytophthora infestans, largely due to a decrease in sPLDs, the subclass comprising PLDs that are likely secreted due to the presence of a signal peptide (Meijer et al. 2011). Also type H of the phosphatidylinositol kinase (PIK) genes are missing. From the largest PMSE family in oomycetes, phosphatidylinositol phosphate

Fig. 3. Metabolic pathway analyses in 11 oomycete species with different lifestyles (depicted by circles). A, Hierarchical clustering of the species based on the number of reactions per KEGG pathway. B, The number of different EC numbers, genes, reactions, and metabolites included in the metabolic network and C, the number of reactions identified in four metabolic pathways for each of the species.

Fig. 4. Presence or absence analysis of enzymes in the nitrogen and sulfur metabolism pathways. Arrows indicate the direction of the reaction. The horizontal bars are composed of black and white squares representing the species in the order of the phylogenetic tree on the right and presence or absence of the enzyme catalyzing the reaction in the respective species.
kinases (PIPKs) with an N-terminal G-protein coupled receptor (GPCR) domain (GPCR-PIPKs), 11 members are detected in *P. belbahrii* (Supplementary Table S10). In common with other peronosporalean oomycetes, *P. belbahrii* lacks a canonical phospholipase C gene. The only light-sensing proteins detected in the genomes of *P. belbahrii* and other oomycetes belong to the CRY/PHR superfamily. Each species contained three such proteins, which formed three well-supported clades in phylogenetic analyses (Supplementary Fig. S5A). Each of the three *P. belbahrii* proteins (PEBEL_00732, PEBEL_04497, and PEBEL_06190) had the canonical (Chaves et al. 2011) photolyase and FAD chromophore binding domains expected for CRY/PHRs (Supplementary Fig. S5B). None had long C-terminal domains present on animal cryptochromes and are known to mediate circadian rhythm. *Peronospora belbahrii* also contained a fourth predicted protein (PEBEL_00742), which was 99.4% identical at the nucleotide level to PEBEL_06190, probably representing a duplicated gene.

The secretome.

Out of 9,049 protein-coding genes, 413 were predicted as encoding secreted protein–encoding genes. A set of 381 candidate genes encoding proteins with a leading signal peptide and no transmembrane domain was used as a starting point for further predictions and annotations. Additional curation resulted in 335 putative extracellular proteins (Table 1; Supplementary Table S11) organized as 76 tribes and 84 singletons. For roughly half of all proteins (171), it was possible to assign a particular functional category (i.e., not ‘hypothetical’). Annotated proteins with functions previously assigned to the infection process (effectors, pathogen associated molecular patterns, SCP, cell wall–degrading enzymes [CWDE], proteases) comprise 31% of all secreted proteins (Table 1). In general, when compared with other obligate parasitic oomycetes, we found reduced repertoires of secreted proteins in the *P. belbahrii* secretome (Table 1). Strikingly, we identified no CRN (crinkling and necrosis) proteins with predicted signal peptides and only two NPP-like proteins. Proteins with similarity to CRNs but lacking a predicted signal peptide have been found in oomycete genomes previously, but the low number of NLPs is unprecedented.

Among predicted effectors (Supplementary Tables S11 and S12), the most abundant category encompasses RxLR-like effectors (22 proteins, five with a WY fold), three of which (PEBEL_01290, PEBEL_01294, PEBEL_02639) share sequence homology with known oomycete avirulence genes from *Phytophthora sojae* (Avh154, Avh160 and Avh152). Of 22 predicted RxLR effectors, 14 have the exact RxLR motif, while five harbor a RxLK motif and three singletons have other variations of the motif (Fig. 5).

Only two protease inhibitors were identified (PEBEL_30414, PEBEL_30415), both having sequence similarity to Kazal-like serine protease inhibitors (Supplementary Tables S11 and S12; Table 1).

Six *P. belbahrii* predicted secreted proteins contain potential nuclear localization sequence (NLS) signals (Supplementary Table S12). Presence of an NLS in combination with a signal peptide suggests a role of these proteins in the host nucleus, yet only one (PEBEL_07289) carries a recognizable RxLR motif implied in host translocation, while six other (PEBEL_06934, PEBEL_06683, PEBEL_07130, PEBEL_04801, PEBEL_08621, and PEBEL_05668) might remain extracellular or be translocated by an RxLR-independent mechanism.

The *P. belbahrii* secretome contains several hydrolytic enzymes (63, 19% of all extracellular proteins), which we classified into two main categories, CWDEs and proteases. CWDEs are mainly represented by glycosyl hydrolases (*n* = 24),

Table 1. Classes of secreted proteins in selected oomycete genomes

<table>
<thead>
<tr>
<th>Genome/protein class</th>
<th>Peronospora belbahrii</th>
<th>P. tabacina</th>
<th>Plasmopara halstedii</th>
<th>Hyaloperonospora arabidopsidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLP</td>
<td>2</td>
<td>13</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>RxLR effector</td>
<td>22</td>
<td>120</td>
<td>274</td>
<td>134</td>
</tr>
<tr>
<td>CRN</td>
<td>0</td>
<td>7</td>
<td>77</td>
<td>20</td>
</tr>
<tr>
<td>SCP</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Protease</td>
<td>26</td>
<td>23</td>
<td>8</td>
<td>>65</td>
</tr>
<tr>
<td>CWDE</td>
<td>37</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Elicitin and elicitin-like</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

a Secreted proteins were predicted as described by Derevnina et al. (2015). The table contains averaged numbers for two sequenced strains (968-J2 and 968-S26).

b According to gene family annotation from Sharma et al. (2015).

c According to gene family annotation from Baxter et al. (2010).
while proteases are dominated by serine and cysteine proteases (Table 1). We detected only five proteins with similarity to known immune response elicitors, represented exclusively by elicitors.

To identify common and specific secreted protein families, OrthoMCL was used to group predicted secreted members of *P. belbahrii* with those from several plant-pathogenic oomycetes into protein families based on homology. Eleven families representing 23 proteins solely contain sequences from *P. belbahrii*. Nine of the 23 proteins (39%) are predicted as RxLR effectors, whereas the predicted RxLR effector proteins only make up 7.4% of the total predicted secretome. Furthermore, 91 *P. belbahrii* proteins did not cluster with any other protein in the set and are probably unique to the *P. belbahrii* secretome (Supplementary Tables S11 and S12).

Twenty-three ortholog families with a combined 68 genes were found to be exclusively present in one or more downy mildews. Of these, 12 families (35 genes) are not shared with *P. belbahrii*. A BLASTp search of the other families against the National Center for Biotechnology Information nonredundant database on the full proteins (including signal peptide) showed that the best non–downy mildew matches for the *P. belbahrii* proteins in six of these families do not have signal peptide (Supplementary Table S13). These proteins have potentially evolved to acquire a signal peptide and a new function in downy mildews.

DISCUSSION

We assembled and annotated the genome sequence for *P. belbahrii* with the aim to produce a useful resource to the community for follow-up studies. The size and quality of the resulting genome are comparable to genome assemblies of other members of the genus and other oomycetes. While the genome is similar to many other oomycetes in terms of size and architecture, a remarkable diversity in the occurrence of di-nucleotide repeats in promoters was observed. The (TC/GA)$_n$ repeats were over-represented strongly not only in *P. belbahrii* but also in *Hyaloperonospora arabidopsidis* and three *Phytophthora* species but not in *Plasmopara halstedii*. Notably, (TC/GA)$_n$ elements were not over-represented in the regions downstream of *P. belbahrii* genes. Interestingly, (TA/AT)$_n$ showed a strong tendency toward under-representation in most oomycete promoters, even though it is over-represented in members of several other eukaryotic kingdoms including fungi (*Saccharomyces cerevisiae*) (Bunnik et al. 2014; Sawaya et al. 2013; Vinces et al. 2009). In other species, dinucleotide repeats are believed to affect the positioning of nucleosomes on DNA (Bunnik et al. 2014; Sawaya et al. 2013; Vinces et al. 2009). Tandemly repeated DNA sequences in promoters are of interest, since they display a propensity to mutate, which may enable the tuning of gene expression by affecting chromatin structure (Vinces et al. 2009). Under-representation of the AT-rich repeats in most oomycetes is, in itself, likely a signal of function and is suggestive of divergence in organization of chromatin in oomycetes. In many cases, SSR repeat number appears to be a key factor that determines gene expression and expression level. Some genes can only be expressed at a specific repeat number of SSRs. For example, the GAA array, which is the most frequent trinucleotide repeat (i.e., AAG/CTT) in the majority of analyzed oomycete genomes, including *P. belbahrii*, is reported to be the key factor influencing the promoter activity of the *Escherichia coli lacZ* gene (Liu et al. 2000). In addition to their potential importance in regulating gene expression, SSRs are also of considerable interest for population genetics studies. Therefore, a set of 110 microsatellite markers was developed in this study, which may prove to be a useful tool for future population genetic studies in *P. belbahrii* and closely related species on other culinary herbs and of which 19 were found to be variable in comparison with an unpublished genome assembly of *P. belbahrii*.

So far, relatively little is known about oomycete metabolism. Several metabolic pathways have been affected by the consequences of the close symbiosis of downy mildews and their hosts, which led to a reliance on the host metabolism to provide nutrients for the pathogen (Judelson 2017; Thines 2014). It is interesting to note that, based on hierarchical clustering of metabolic networks, the different oomycete species clustered together according to their lifestyle and that, therefore, *Albugo candida* clustered with the downy mildews, irrespective of its distant phylogenetic relationship to them (Thines 2014). Similarly, the hemibiotrophic *Phytophthora* species clustered together, forming a sister group to the obligate biotrophic taxa. This supports the theory that similar evolutionary forces due to the adaptation to similar lifestyles will lead to convergent patterns (Kemen et al. 2011; Sharma et al. 2015b). In line with previous studies, we found that the metabolic networks of obligate pathogens are generally smaller (Rodenburg et al. 2018; Spanu 2012) and lack enzyme-encoding genes for reactions in various metabolic pathways (Baxter et al. 2010; Judelson 2017; Kemen et al. 2011; Sharma et al. 2015a).

Many cellular pathways are linked to phospholipid signaling, including not only metabolic pathways, but also pathways regulating the expression of genes required for successful colonization. Despite the importance of phospholipid signaling demonstrated in many organisms, in oomycetes only a few PMSEs have been studied in detail. The domain composition of GPCR-PiPKs, shared by all oomycetes, points to a mechanism that directly links G-protein mediated signaling with phospholipid signaling (van den Hoogen et al. 2018). Silencing of a PIK-A and PIK-D in *Phytophthora sojae* showed that these two PIKs are required for full virulence (Lu et al. 2013), and GPCR-PiPKs were found to be involved in sporangia development, chemotaxis, zoospore development, and oospore development (Hua et al. 2013; Yang et al. 2013). Given this wide span of lifecycle stages affected, it seems possible that other developmental stages are also influenced by phospholipid signaling, such as formation of the hyphal network and the production of haustoria.

Extracellular effector proteins secreted from hyphae and haustoria play key roles in infection strategies of pathogenic oomycetes, helping to establish colonization and to modulate plant responses (Meijer et al. 2014). By investigating the protein domains of secreted proteins, their role in infection can be clarified. While a large part of the secretome of *P. belbahrii* could be classified through sequence similarity, 203 proteins remain hypothetical and could represent yet-to-be discovered effector proteins.

Besides canonical effector proteins such as RxLRs, two proteins that possess a carbonic anhydrase domain (Pfam PF00194) were identified in the secretome. In a study of the secretome of *Phytophthora infestans*, carbonic anhydrases were found to be expressed in planta during infection of potato and they were suggested to be potential new virulence factors (Raffaele et al. 2010). In addition, the secretome comparison revealed 23 families containing 68 proteins that are only found in downy mildews but not in more distantly related *Phytophthora*, *Pythium*, or *Saprolegnia* species. Of these, 10 families (28 proteins) include proteins derived from *P. belbahrii*. Remarkably, a similarity BLASTp search revealed that proteins in six of these families had an ortholog without signal peptide in other oomycetes, like in *Phytophthora* species. Possibly these genes are present in other oomycetes and have evolved to encode for secreted proteins within the lineage of the downy
other group has three proteins from three species (et al. 2006), or bZIP_2 (Gamboa-Meléndez et al. 2013). For mildews. Some of these proteins have interesting domains, e.g., Hyaloperonospora arabidopsidis (P. tabacina, P. belbahrii, and Plasmopara halstedii). The other group has three proteins from three species (P. belbahrii, Hyaloperonospora arabidopsidis, and Plasmopara halstedii). The functions of these proteins are unknown, and since they seem to be present in the secretome of downy mildew species but not of other oomycetes included, they are interesting candidates for functional validation.

Strikingly, we found an underrepresentation of two common groups of effectors, the CRNs and NLPs compared with other secretomes. It is possible that CRNs are underrepresented because they might have not been predicted by SignalP, since several known CRNs have noncanonical signal peptides (Stam et al. 2013). However, the generally low number of classical effectors, such as the potentially necrosis-causing CRNs, NLPs, and RxLRs in P. belbahrii, might reflect the combined effects of adaption to biotrophy and host specificity.

Of the only 22 RxLR-like effectors found in P. belbahrii, seven did not have orthologs in other species. Possibly, these effectors can be considered species-specific or have become too dissimilar from their orthologs to be recognized. Among the RxLR effectors, PEBEL_07289 is a notable member, with C-terminal homology to Nudix hydrolases. The effector AVR3b Phytophthora sojae, another NUDIX domain containing an RxLR effector has been demonstrated to increase susceptibility to Phytophthora capsici and Phytophthora parasitica (Dong et al. 2011). It is noteworthy that the genome of P. belbahrii was predicted to contain the lowest number of RxLR-like effectors compared with other sequenced Peronosporaceae. This might hint at a very high specialization of P. belbahrii, another NUDIX domain containing an RxLR effector to be recognized. Among the RxLR effectors sequenced, the best assembly was decided on the basis of N50, L50, number of scaffolds, and genome completeness, using Quast (Gurevich et al. 2013) and BUSCO (Simão et al. 2015). Assemblies were also generated using SPAdes version 3.12.0 and SOAPdenovo version 2.04, exploring a range of k-mer sizes; however, these yielded less-complete and less-contiguous assemblies than the Velvet assembly. The mitochondrial genome was assembled from the Illumina short reads, and a mitochondrial backbone sequence of P. tabacina (Derevnina et al. 2015) was assembled using the Mitomaker pipeline. The mitochondrial genome of P. tabacina and P. belbahrii was made using Easyfig software (available online).

Repeatelement andgene prediction.

Repeat elements were predicted and masked using the RepeatScout v1 (Price et al. 2005), RepeatModeler v1.0.4 (available online), and RepeatMasker pipelines (TarailoGraovac and Chen 2009), as described before (Sharma et al. 2015). The repeat-masked scaffolds were used for gene predictions. Both ab initio and transcript-based gene prediction tools were used to define gene boundaries as described previously (Sharma et al. 2015) (Supplementary Fig. S6). Translated protein sequences were searched for an extracellular secretion signal and transmembrane domain using SignalP (Petersen et al. 2011), TargetP (Emanuelsson et al. 2000), and TMHMM (Krogh et al. 2001) as described (Sharma et al. 2015). Due to low RNA-Seq support for some genes predicted to code for secreted proteins, gene boundaries of potential secreted effectors were manually curated by looking for potential alternative start codons up to 280 bp upstream of the start codon predicted by evidence modeling.

Estimation of heterozygosity.

The availability of shotgun sequencing reads at high coverage, drawn randomly from both chromosomes from each homologous pair, offers the opportunity to estimate patterns of heterozygosity across the genome of various oomycetes (Supplementary Table S4). First, poor-quality sequence read pairs...
were removed using TrimGalore with the −q 30 and −paired options, and then, the remaining read pairs from the 300-bp library were aligned against the *P. belbahrii* genome assembly using BWA-mem (Li and Durbin 2009). Multi-mapping reads were eliminated using samtools view (Li et al. 2009) with the −q 1 option. For each single-nucleotide position in this alignment of reads against the genome assembly, we counted the frequency of each of the four possible bases in the reads aligned at that site. Thereby, for each site in the genome, we were able to estimate whether it was likely to be homozygous (most common base close to 100% frequency and second-most common close to zero) or heterozygous (close to 50% most common base and for second-most common base). Using R (R Development Core Team 2013), we plotted a histogram describing the frequency distribution of relative abundance of the most abundant base and second-most abundant base at each position in the genome. If the genome is highly homozygous, then the histogram would be expected to display a single peak close to 100% abundance for the most common base and a single peak close to zero for the second-most abundant. However, heterozygous sites would contribute to a second peak close to 50% abundance of the most common base and for the second-most abundant base. We also took a sliding-window approach to identify regions of high and low heterozygosity relative to the average over the whole genome. Each non-overlapping window of 5 kbp was examined for heterozygous sites, i.e., sites where the abundance of the most common base was between 48 and 52%. The density of heterozygous sites was defined as the number of heterozygous sites per 5-kb window. Density of heterozygous sites was plotted along with depth of coverage against genomic position, using R. The R scripts used for these analyses are available from Github.

Metabolic networks.
Metabolic networks were reconstructed for *P. belbahrii*, *Plasmopara halstedii*, *Phytophthora infestans*, *Phytophthora capsici*, *Phytophthora sojae*, *Phytophthora ramorum*, *Pythium vexans*, *Hyaloperonospora arabidopsidis*, *Pythium ultimum*, *Albugo laibachi*, and *Saprolegnia parasitica* using the RAVEN toolbox (Agren et al. 2013). Briefly, KEGG orthologous groups of enzymes (Chen et al. 2016; Kanehisa et al. 2012) were aligned using ClustalW2 v2.0.10 (Larkin et al. 2007), and, based on these multiple sequence alignments, hidden Markov models (HMMs) were trained using HMMER v3.2 (Eddy 2011). Subsequently, the proteomes were matched to the HMMs with an E-value threshold of 10−50. The resulting enzyme orthologs were associated to KEGG reactions, which are linked to compounds and pathways. A metabolic reaction may occur if one or more catalyzing enzymes are encoded in the genome. Hence, for each KEGG metabolic pathway, the number of supported reactions per species was counted. For these numbers, the coefficient of variation (variance/mean) was used to select the most variant pathways between species. In addition, these numbers were used to perform hierarchical clustering (unweighted pair group method with arithmetic means) of the species, using 1 minus the Spearman correlation coefficient as a distance measure.

Promoter structure.
Core promoter motifs as defined for *Phytophthora infestans* (Roy et al. 2013) were used to search 200 bp of DNA 5’ of *P. belbahrii* coding sequences using FIMO (Bailey et al. 2009). Searches for new motifs were performed using MEME (Bailey et al. 2009). Microsatellites within promoters were scored using MICAS (Sreenu et al. 2003). Twice-shuffled promoter sequences were used as control datasets and Fisher’s exact test was used for tests of significance.

Microsatellite motifs and prediction of SSR markers.
The overall statistics for the most frequent motif types, repeat numbers, and length of microsatellite sequences in *P. belbahrii* genome were calculated in Phobos (Mayer et al. 2010). SSRs with perfect repeat motifs ranging from mono- to hexanucleotides were considered, with the minimum number of ten (1 bp) or five (2 to 6 bp) repeat units. Searches of each motif were performed in separate runs (i.e., for the 3-bp array, the “Repeat unit size range” was set from “3 to 3” and “Minimum length” set to “15 + 0 but not less than 15”), with results exported in “one-per-line” format, “Printing mode” set to “normalized – cyclic + rev. complement”, and all other settings set as default. Subsequent data analyses were conducted in Microsoft Excel 2010. For comparison, the genomes of other oomycetes and selected fungi (Supplementary Table S14) were analyzed as for *P. belbahrii*.

To facilitate the design of *P. belbahrii* SSR markers, only perfect di- to hexanucleotide repeats, with minimum repeats set to 8, 7, 6, 6, and 6 respectively, were extracted using Phobos. Primer pairs were designed using Primer3 (Untergasser et al. 2012), yielding PCR products of 150 to 500 bp. Data resulting from SSR analyses refer to duplex DNA, even if we show only the sequence of the repeated motif on one strand for simplicity, i.e., notations like AC and (AC)5 (GT)5 are equivalent. To see if the proportion of SSR arrays is correlated with the size of an assembled genome, linear regression in MS Excel was performed using the standard formula implemented in MS Excel 2010. Finally, the relative abundance (calculated as the ratio of the number of microsatellites per megabase of sequence analyzed) and relative density (the ratio of the microsatellite length in base pairs per megabase pair of the sequence analyzed) of microsatellites were calculated separately.

Light sensing and phospholipid signaling.
Representative light-sensing proteins from other eukaryotes were used to query a database of predicted proteins from *P. belbahrii*, *Plasmopara halstedii*, *Hyaloperonospora arabidopsidis*, and *Phytophthora infestans*, using BLASTp. If no hits were found, the entire genome was searched using tBLASTn. Protein alignments were made using MUSCLE and trees generated using PhyML using the LG distance model.

The genome of *P. belbahrii* was screened for PMSE encoding genes. A database of *Phytophthora infestans*, *Hyaloperonospora arabidopsidis*, and *Plasmopara halstedii* PMSE protein sequences was created, and BLASTp and tBLASTn and searches were performed with an E-value cut-off score of 1e−10. Hits were manually inspected and PMSE gene models were linked to gene IDs. All gene models were manually inspected. Multiple sequence alignments on catalytic domains were made, using MUSCLE (Edgar 2004), and iterated 100 times, and phylogenetic trees were built using neighbor-joining with the Jukes-Cantor genetic distance model in Geneious R9 (Kearse et al. 2012).

The secretome.
For annotating candidate secreted proteins, profiles were built using several approaches: BLASTp search against GenBank NR database with E-value cutoff of 10−6; an InterProScan v5.16 (Mulder et al. 2005) search against databases of functional domains with default parameters; RxLR and EER motif prediction using regular expressions; WY motif prediction based on WY-fold HMM, using the hmmsearch function in the HMMR3 package (available online); LxLFLAK and HVLVVVVP motif predictions based on an HMM model built using known CRN effectors from other oomycetes, according to Haas et al. (2009); and NLS motif prediction by NLStradamus version 1.8 (Nguyen Ba et al. 2009), posterior
threshold = 0.6 and PredictNLS (Cokol et al. 2000) with default parameters. All obtained data are aggregated in Supplementary Table S6. Functional categories were assigned based on manual curation of the resulting table. The category “Hypothetical” was assigned to proteins either having similarity to only hypothetical proteins or when the best 20 hits of the BLASTp output did not show consistency in terms of distinct functional categories. Proteins having significant sequence similarity to ribosomal, transmembrane proteins, or proteins with either known intracellular localization (e.g., heat shock proteins), having respective domains identified by InterProScan, or both were marked as possible false predictions. The contamination category was assigned for proteins with significant sequence similarity (revealed by BLASTp) to amino acid sequences from phylogenetically distant taxa (e.g., plants or mammals). It should be noted that this category will also include highly conserved proteins. Entries marked as both “false prediction” or “contamination” were excluded from further consideration.

Nine oomycete genomes were selected for secretome comparison: three downy mildew species (Hyaloperonospora arabidopsisidis, P. tabacina (two strains), and Plasmopora halstedii), three representative Phytophthora species (Phytophthora infestans, Phytophthora sojae, and Phytophthora ramorum), the more distantly related plant pathogen Pythium ultimum, and the fish-parasitizing oomycete Saprolegnia diclina. For each of these species the set of all predicted proteins was used to filter out the proteins that belong to the secretome as described for the P. belbahrii secretome. OrthoMCL 2.0 (Fischer et al. 2011) was used to create groups of orthologous proteins, with default settings. OrthoMCL 2.0 (Fischer et al. 2011) was used to create groups of orthologous proteins, with default settings.

AUTHOR-RECOMMENDED INTERNET RESOURCES

Easyfig software: https://www.ncbi.nlm.nih.gov/pubmed/21278367

Github: https://github.com/davidjstuhlmeyer/heterozygosity

HMMR3 package: http://hmmer.org

Mitomaker pipeline: http://sourceforge.net/projects/mitomaker

RepeatModeler v1.0.4: http://www.repeatmasker.org/RepeatModeler

TrimGalore: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore

LITERATURE CITED

Hua, C., Meijer, H. J., de Keijzer, J., Zhao, W., Wang, Y., and Govers, F.
Judelson, H. S., Shrivastava, J., and Manson, J. 2012. Decay of genes
Judelson, H. S. 2012. Dynamics and innovations within oomycete genomes:
752 / Molecular Plant-Microbe Interactions
Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S.,
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock,
Lamour, K., Liu, Z., Ma, L., Maclen, D., Chibucos, M. C., McDonald,
McDonald, H., McWalters, J., Meijer, H. J., Morgan, W., Morris, P. F., Munro, C. A.,
O’Neill, K., Ospina-Giraldo, M., Pinzón, A., Pritchard, L., Ramsahoye,
Lévesque, C. A., Brouwer, H., Cano, L., Hamilton, J. P. Holt, C., Huitema,
E., Raffaele, S., Robideau, G. P., Thines, M., Win, J., Zerillo, M. M.,
Beakes, G. W., Boore, J. L., Busam, D., Dumas, B., Ferriera, S.,
Fuerstenberg, S. I., Gachon, C. M., Gauvin, E., Govers, F., Grenville-
Briggs, L., Horner, N., Hostetler, J., Jiang, R. H., Johnson, K., Krajaenun,
Lin, H., Meijer, H. J., Moore, B., Morris, P., Plantmart, V., Puiu, D.,
Shetty, J., Stajich, J. E., Tripathy, S., Wavra, S., van West, P., Whitty,
B. R., Coutinho, P. M., Henriassat, B., Martin, F., Thomas, P. D., Tyler,
B. M., De Vries, R. P., Kamoun, S., Mardall, J., Tisserat, N., and Buell,
C. R. 2010. Genome sequence of the necrotrophic plant pathogen
Pythium ultimum reveals original pathogenicity mechanisms and effector
function. Genome Biol. 11:R73.
Li, H., and Durbin, R. 2009. Fast and accurate short read alignment with
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., How, N., Naray-
G., Abecasis, G., and Durbin, R., and 1000 Genome Project Data
Processing Subgroup. 2009. The sequence alignment/map format and
Links, M. G., Holub, E., Jiang, R. H. Y., Sharpe, A. G., Hedges, D.,
Beynon, E., Sillito, D., Clarke, W. E., Uzuhashi, S., and Borhan, M.
H. 2011. De novo sequence assembly of Albago candida reveals
a small genome relative to other biotrophic oomycetes. BMC Genomics
12:503.
Liu, X., Ng, C., and Ferenci, T. 2000. Global adaptations resulting from
Maclen, D., and Jones, J. D. 2011. Gene gain and loss during evolution of obligate
bacterial plant disease management and accelerate research. Can. J. Plant
Pathol. 34:131-143.
range of Peronospora belbahri, causal agent of basil downy mildew, in
Israel. Eur. J. Plant Pathol. Published online.

Vol. 33, No. 5, 2020 / 753

