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Introduction

After a period in which the pharmaceuticals industry 
focused greatly on highly reductionist target-based drug 
discovery, the industry has now in some respects returned to 
its roots with a much greater emphasis on phenotypic meth-
ods.1 The methods are often employed in more physiologi-
cally relevant cell systems such as three-dimensional 
patient-derived organoids.2 The major drawback of reliance 
on a discovery approach of purely phenotypic drug leads, 
however, is that the target remains unknown, and the lack of 
a defined target makes lead optimization more difficult.

High-content screening methods, when combined with 
multivariate data analytics methods, can provide insight 
into mechanism of action. This is reflected in the recent 
interest in Cell Painting, a target agnostic phenotypic profil-
ing method. To be useful for target identification, these 
methods are often combined with functional genomics.3

Previously, this mostly involved small interfering 
(siRNA) or small hairpin RNA (shRNA) gene knockdown 
screens, but as the limitations inherent in these methods, 
such as off-target effects, became apparent, they fell out of 
favor.4 Recently, there has been more interest in CRISPR-
based gene knockout screens, but as with any other new 

technology, these methods have their own drawbacks that 
are now becoming apparent.5

There are substantial data analytics challenges associ-
ated with leveraging the full power of high-content screens. 
Currently, the most common approach is to use image anal-
ysis software to extract numeric descriptors of the cellular 
phenotype at either the well or object (cell or organoid) 
level. This need can generally be met with commercial 
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image analysis platforms that are delivered with automated 
high-content imagers or the open-source CellProfiler plat-
form.6 Other options that require more specialist expertise 
include Image J7 and image analysis functionality that is 
available in the KNIME data pipelining platform.8

The mining of the resultant numeric data sets has been 
more problematic. PerkinElmer provides an adapter for the 
Tibco Spotfire data visualization tool called High Content 
Profiler. Genedata support high content in their Screener 
platform. In this study, the data are mined using the HC 
StratoMineR platform.9 We have previously shown how 
this platform can be used to mine high-content data sets 
using an exploratory, unsupervised data analytics workflow, 
in which data reduction followed by the calculation of a 
multidimensional distance score that allows for the detec-
tion of phenotypic outliers. These outliers could then be 
subjected to hierarchical clustering to identify groups with 
similar phenotypes.9–11

One drawback of an unsupervised approach is that it is 
difficult to connect the structure within the clustering with 
the underlying biology. Here, we seek to better connect the 
biologist with the reasons why certain outliers are cluster-
ing together.

An alternative approach to the unsupervised method9–11 
would be to use supervised machine learning approaches.12 
These are popularly referred to as artificial intelligence 
(AI). A training set is used to build a multiclass model that 
can subsequently be used to classify reagents in a high-con-
tent screen according to similarity to one or more interest-
ing phenotypes.

A number of studies in the area of high-content screen-
ing have applied machine learning to high-resolution data. 
Neumann et al.13 took 190,000 time-lapse movies from 19 
million cell divisions. Approximately 200 features were 
extracted using segmentation, and 3000 nuclei were manu-
ally annotated. The set was used to train a support vector 
machine (SVM) classifier with an accuracy of 87%. The 1.9 
billion nuclei were classified into 1 of 16 morphological 
classes. Phenotypic profiles were used to classify devia-
tions from control groups and identify relevant changes. 
Genome-wide scores were used to flag mitotic hits.

Fuchs et al.14 conducted a siRNA screen in HeLa cells to 
generate automated high-content screening images stained 
for DNA, tubulin, and actin. The cell body and nuclei were 
segmented, and features were extracted from all three chan-
nels. Finally, cells were classified using an SVM model 
based on eight cellular phenotype classes. This was built on 
a training set of 1740 cells. The measured accuracy ranged 
from 96.9% to 100%.

Ljosa et al.15 used CellProfiler to generate 453 features 
for 2.2 million cells from MCF-7 breast cancer cells treated 
with 113 different compounds at eight concentrations. Cell 
data were standardized and normalized prior to analysis. 
Mean values, Kolmogorov-Smirnov statistics, SVM, and 

factor analysis were used to calculate profile values for each 
treatment. Then, a mechanism of action score was gener-
ated from the calculated statistics.

Advanced Cell Classifier and the Analyst module of 
CellProfiler allow for the annotation of machine learning 
classes by directly selecting cell images.16,17 No matter what 
populations are chosen, the quality of the analysis is heavily 
dependent on the quality of the training set used. We hypoth-
esized that the unsupervised data analytics pathway9–11 
would be useful for the generation of a high-quality training 
set that could then be successfully used to build an effective 
machine learning model. In this study, the approach of 
unsupervised analysis followed by a supervised analysis is 
carried out on a data set that was previously analyzed.9,18 
We show that the combination of unsupervised and super-
vised data analytics methods has the potential to enhance 
the ability to identify new knowledge in functional genom-
ics screens.

Materials and Methods

Wet-Lab Protocol and Data Set

The data set used in this study is a genome-wide high-content 
siRNA screen that was performed to identify novel regulators 
in mitosis. In short, a Dharmacon (Lafayette, CO) genome-
wide ON-TARGETplus siRNA SMARTpool library was 
transfected in HeLa cells in 384-well microplates (1500 cells 
per well). After fixation, the cells were stained with diamid-
ino-2-phenylindole (DAPI) after siRNA knockdown for the 
identification of the nucleus and an antibody against phos-
phorylated histone H3 to identify cells in mitosis.

Images were acquired using a Thermo (Waltham, MA) 
Array Scan VTi, and numeric features for each cell were 
extracted using the Cellomics Target Activation/
Morphology Explorer image analysis software. The meth-
ods used in this screen are described in much greater detail 
elsewhere.9,18 The data set contains ~46 million records, 
and each record represents a single cell, consisting of 74 
features.9,18 To carry out the data analysis, the data were 
exported to flat files, one per microplate. The data were 
available in two resolutions: low (well averages, each 
record is a well) and high (object level, each record is a 
cell), and in two cell lines.

Data Preprocessing

Preprocessing data is a very tedious but important part of 
a data analysis process.9,19,20 First, data are divided into 
meta features (information about the data) and analytical 
features (used for data analysis). Examples of analytical 
features are intensity, area, shape, and texture features on 
various channels (Thermo Scientific, 2010; retrieved from 
http://www.med.cam.ac.uk/wp-content/uploads/2016/02/
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MorphologyExplorer_V4_LC06170800.pdf). Features with 
a standard deviation of 0 or containing ≥95% missing data 
are omitted. Those with a correlation coefficient ≥0.99 are 
inspected for missing data, and only the feature with the 
lowest number of missing data points is retained.

An additional feature selection is then performed by 
omitting features containing an equal uniform distribution 
across the different classes. Features are then normalized on 
a plate-by-plate basis by dividing each feature by the 
median of the negative control (scrambled siRNA). The 
z-distribution of the skewness is inspected for significance 
(p < 0.001). Here, the Kolmogorov-Smirnov and Shapiro-
Wilk tests are too sensitive.21–23 Features are log trans-
formed in cases of positive skewness and transformed using 
a square root in cases of negative skewness. Finally, features 
are scaled using a robust z-score.24

A significant missing completely at random (MCAR) 
outcome results in case-wise deletion of missing data, 
whereas an insignificant MCAR outcome is handled by 
imputation methods (e.g., regression, random forest [RF], 
or predictive mean matching).25,26 The method described by 
Young et al.,10 Omta et al.,9 and Caicedo et al.11 focuses on 
the numeric data analysis after preprocessing, as described 
above to identify hits. The number of features that are left 

over after preprocessing can subsequently be included for 
carrying out further analysis (i.e., exploratory, descriptive, 
or predictive analysis). All of the analysis results were gen-
erated using R and HC StratoMineR.9,27 All data analyses 
were carried out on an AWS EC2 r5.xlarge with an Intel 
Xeon Platinum 8000 series with four cores and 32 GB of 
RAM. This hardware was used because it can be compared 
with a standard modern laptop.

Results

In this study, the siRNA data set was reanalyzed with a sim-
ilar strategy to that used in the original study,9,18 followed 
by a supervised machine learning approach. The complete 
data analysis workflow in this article was carried out in four 
stages: stage A (exploratory data analysis) is an unsuper-
vised approach (Fig. 1A), stage B (annotation) involves the 
annotation of the data in preparation for stage C (Fig. 1B), 
stage C (predictive data analysis) is a supervised machine 
learning stage (Fig. 1C), and in stage D (evaluation), the 
results of stage C are evaluated (Fig. 1D). The data set used 
in these stages contains 41 useful features that were 
extracted from the DAPI and pS10-H3 channels.

Figure 1.  Process of combining unsupervised with supervised analysis. (A) Describes the exploratory data analysis using well-
resolution data carried out in an unsupervised fashion. (B) Describes the annotation process in which classes are labeled using the 
results of A and using a GO-term analysis from String-DB. (C) Describes the predictive analysis stage. A supervised machine learning 
model is trained based on the data that was annotated in stage B. (D) Describes the aggregation of the results and the evaluation of 
the four hit lists that are generated.
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Stage A: Exploratory Data Analysis

The first stage in the data analysis workflow is an exploratory 
data analysis stage or unsupervised approach (Fig. 1A) using 
well-level resolution data, which was carried out as described 
in Omta et al.9 The data in this stage contains only ~47,000 
records per cell line (two cell lines). After preprocessing, data 
reduction was carried out using common factor analysis. 
Common factor analysis generated five common factors that 
were then used to calculate a Euclidean distance score from 
the median of the negative controls. In addition, p values 
were calculated and are based on the negative controls and 
corrected with the false discovery rate (FDR) to avoid type II 
errors. For each screened siRNA pool, the difference between 
the distance scores from the parental and EIC cell lines was 
calculated. Those that came from wells that had a p value 
<0.05 in the parental cell line were chosen as hits. The genes 
targeted by these 154 siRNA pools were analyzed in 
String-DB.28 As we have seen previously in our analysis, the 
hit list was enriched for genes involved in mitosis, but also 

ribosomal genes, genes related to proteasomal degradation, 
and splicing genes. In this and subsequent String-DB analy-
ses, we followed four Biological Process GO terms: (1) 
GO:1903047 or mitotic cell cycle process, which we refer to 
as “mitosis” (red dots in Fig. 2); (2) GO:0006413 or transla-
tional initiation, referred to as “ribosome” (green dots in Fig. 
2); (3) GO:0000398 mRNA splicing, via spliceosome, 
referred to as “splicing” (purple dots in Fig. 2); and (4) 
GO:0016579 protein deubiquitination, referred to as “protea-
some” (yellow dots in Fig. 2). Within our 154 hits, it was 
clear that mitosis genes were poorly enriched (15 genes, FDR 
= 0.001) compared with splicing (30 genes, FDR = 7.21E-
22), proteasome (16, FDR = 3.92E-08), and ribosome (25 
genes, FDR = 1.12E-22). This would suggest that looking 
for novel mitosis genes in the unconnected or gray nodes 
would be far more likely to deliver genes involved in one of 
the other processes (see Fig. 2).

In a previous study, hierarchical clustering was used to 
identify groups of genes that were highly enriched for 
mitotic cell-cycle genes.9 The addition of supervised 

Figure 2.  The interaction of a set of 154 genes that resulted from the analysis of comparing the parental cell line to the EIC cell 
line was visualized using String-DB. Four pathways in this set were found to be significantly enriched: (1) mitotic cell-cycle process 
(Mitosis, GO:1903047; 15/154 genes, false discovery rate [FDR] = 0.001) visualized in red; (2) translational initiation (Ribosome, 
GO:0006413; 25/154 genes, FDR = 1.12E-22) visualized in green; (3) mRNA splicing, via spliceosome (Splicing, GO:0000398; 30/154 
genes, FDR = 7.21E-22) visualized in purple; and (4) protein deubiquitination (Proteasome, GO:0016579; 16/154 genes, FDR = 3.92E-
08) visualized in yellow. Gray items are unknown to the ontology.
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machine learning functionality now provided the opportu-
nity to use a new strategy that could combine the unsuper-
vised and supervised data analytics approaches to address 
the problem.

A higher-resolution parental data set was available at cell 
resolution as opposed to well-averaged data. We used the 
distance-based unsupervised method to identify 344 very 
strong hits. siRNAs that showed a significant difference (p 
< 0.0001) from the negative control (scrambled siRNA) 
using a multiparametric distance score9–11 (see Fig. 1A) 
were subjected to hierarchical clustering in combination 
with K-means clustering, in which six clusters were gener-
ated (see Fig. 1A). Analysis of these in String-DB high-
lighted four clusters that were highly enriched for mitosis, 
splicing, proteasome, & ribosome genes (see Fig. 3). From 
the hierarchical cluster analysis and K-means clustering, 
each cluster was submitted to String-DB separately (see 
Supplementary Data S1, S2, S3, and S4). Cluster 2 
(Supplementary Data S2) was clearly most enriched for 
mitosis genes (14 of 48 genes, FDR = 4.39E-09) and clus-
ter 5 (Supplementary Data S4) for ribosomal genes (30 of 
95 genes, FDR = 9.25E-36). Interestingly, the splicing and 

proteasome genes proved more difficult to separate but both 
were distributed across cluster 3 (Supplementary Data S3; 
splicing, 11 of 69 genes, FDR = 3.37E-12; proteasome, 11 
of 69, FDR = 0.0011; and mitosis, 13 of 69 genes, FDR = 
1.08E-05). Cluster 1 (Supplementary Data S1; splicing, 15 
of 55, FDR = 1.76E-12; proteasome, 7 of 55 genes, FDR = 
0.00089). It was notable that cluster 1 was centered around 
ubiquitin-C (see Supplementary Data S1), whereas cluster 3 
was centered around ubiquitin-B (see Supplementary Data 
S3). Cluster 1 also had significant enrichment for mitotic 
genes (7 of 55, FDR = 0.0233; see Supplementary Data 
S1). This information was taken from the String-DB Homo 
Sapiens Process ontology. The enrichment and annotation 
were verified using Gorilla29 and confirms our findings with 
an FDR of 4.64E-02 of mitosis in cluster 2, an FDR of 
1.22E-5 of ribosome in cluster 5, and an FDR of 4.99E-02 
of splicing in cluster 1.

Stage B: Annotation

We randomly chose a total of 52 genes (~124,000 cells) 
from the hit list containing 344 genes that was generated in 

Figure 3.  The interaction of a set of 344 resulting genes from the unsupervised analysis of the parental cell line was visualized using 
String-DB. Four pathways in this set were found to be significantly enriched: (1) mitotic cell-cycle process (mitosis, GO:1903047), 
visualized in red; (2) translational initiation (ribosome, GO:0006413), visualized in green; (3) mRNA splicing, via spliceosome (splicing, 
GO:0000398), visualized in purple; and (4) protein deubiquitination (proteasome, GO:0016579), visualized in yellow. Gray items are 
unknown to the ontology.
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stage A to label the data and to create a training set for train-
ing a four-class classifier model at single-cell level in stage 
C (see Fig. 1C). The resulting GO-Terms from String-DB 
were used to annotate the siRNAs that showed significant 
involvement in the four identified pathways in stage A (see 
Fig. 1A). We chose 15 mitosis genes (GO:1903047) from 
cluster 2 for the mitotic class (~36,000 cells) and 13 ribo-
some genes (GO:0006413) from cluster 5 for the ribosome 
class (~31,000 cells). Because both splicing (GO:0000398) 
and proteasome (GO:0016579) genes are across clusters 1 
and 3, we decided to build a ProteaSplice class using 24 
proteasome and splicing genes (~57,000 cells). The fourth 
class is a rest class and is introduced with the ability to cap-
ture cells belonging to neither of the three pathway classes. 
The rest class is a scrambled siRNA and labeled as 
NEGATIVE, which was originally already present in the 
data set.

Stage C: Predictive Data Analysis

Using the results of the unsupervised approach to label the 
object-level resolution data with three additional training 
classes as described in stage B is then followed by a super-
vised machine learning approach (see Fig. 1C). In the pre-
dictive data analysis or supervised approach (stage C), data 
at the object level is used and contains ~57 million records. 
Instead of calculating a distance score, as previously has 
been done with well resolution data9–11 a classification algo-
rithm is used in stage C, using data at the object level.

To explore the possible classification and feature-driven 
approaches, a preliminary analysis was conducted includ-
ing three classification algorithms. In addition, principal 

component analysis (PCA), independent component analy-
sis (ICA), or the original feature set was used for building 
classification models (see the column labeled “Features/
PCA/ICA” in Table 1). Both PCA and ICA are methods 
used to reduce the dimensionality. These methods support 
the reduction of redundancy, bias, and required computa-
tional power and attempt to avoid the curse of dimensional-
ity.30 The results of the preliminary analysis can be seen in 
Table 1.

The features are simply the original features available in 
the data set that were treated as described in the Data 
Preprocessing section. The PCA approach implies the same 
preprocessing approach and the creation of seven principal 
components (based on the elbow method) using a general-
ized least-squares approach.31 The ICA approach also 
implies the same preprocessing treatment and the creation 
of seven components using a nonlinear method.32 For this 
preliminary analysis, binary classification models were 
trained33 using built-in NEGATIVE and POSITIVE con-
trols to explore the options of the original feature space or 
dimensionality reduction in combination with three classifi-
cation algorithms.

In all nine scenarios, 50,000 records were randomly 
sampled with replacement of the total set of ~325,000 
records34 of data containing the label NEGATIVE or 
POSITIVE. The 50,000 records were then split into an 80% 
train set and a 20% test set. For the optimization of the 
hyperparameters, a fourfold cross-validation was applied to 
the train set.35

A random search grid was created to find the optimal 
hyperparameter settings for all nine scenarios36 (see Table 
1). For RFs,37 trees were constantly kept at 128 trees,38 and 

Table 1.  Exploration of Algorithms and the Data Feature Space.

Scenario Classification Algorithm Features/PCA/ICA Accuracy, % Kappa Time, s

1 Random forest
(mtry = 20)

Features 96.01 0.917 106.616

2 Random forest
(mtry = 4)

PCA 86.44 0.729 35.302

3 Random Forest
(mtry = 4)

ICA 85.91 0.7183 36.219

4 Support vector machine
(sigma = 0.03768469, C = 43.53546)

Features 96.02 0.920 1517.326

5 Support vector machine
(sigma = 0.0657829, C = 477.636)

PCA 86.82 0.736 3460.237

6 Support vector machine
(sigma = 0.1616871, C = 43.53546)

ICA 86.63 0.7327 2491.188

7 Neural networks
(size = 20, decay = 1.044708e-03)

Features 96.57 0.931 96.339

8 Neural networks
(size = 20, decay = 1.044708e-03)

PCA 86.43 0.729 49.987

9 Neural networks
(size = 20, decay = 1.044708e-03)

ICA 86.03 0.7207 53.248

ICA, independent component analysis; PCA, principal component analysis.
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the hyperparameter mtry was tuned (see Table 1). For 
SVM,39 a radial kernel was chosen,40 and the hyperparam-
eters sigma and C were tuned to optimize the performance 
of SVM. For neural networks,41 an architecture of one layer 
was used. The hyperparameter size and decay were tuned. 
The hyperparameter size implies the number of nodes in the 
hidden layer. The hyperparameter decay implies the penalty 
for the size of the weights. The output of tuning the neural 
network hyperparameters size and decay was the same for 
all three cases (features, PCA, and ICA).

The hyperparameters for SVM and neural network are 
hard to tune and to understand compared with the hyperpa-
rameter of RF. SVM performs well but is very slow. Our 
final decision is RF because of the ease of use (minimal 
hyperparameter tuning), the speed of the algorithm (see 
Table 1), and the relative low chance of overfitting.42 We 
chose single features over a dimensionality reduction 
method because RF builds trees based on a random set of 
features (mtry). RF is not very sensitive to the number of 
random features (mtry), the total number of features, and the 
tree size with respect to overfitting.42 This work was carried 
out in R using the packages nnet, e1071, and randomForest.

For the classification and identification of our siRNAs 
and targets, a supervised multiclass machine learning model 
using RF43 was built based on the four classes described in 
stage B. Each single cell can be classified into one of these 
classes according the model using the feature space of the 
data set. Stratified data sampling was carried out because of 
variation in class size (see stage B).

The multinomial RF model was applied in classification 
mode and trained using 128 trees.38 The labeled data, con-
taining ~430,000 cells was split into 80% training and 20% 
for testing.44 The model was trained using ~345,000 data 
points in fourfold cross-validation and showed a substantial 
Kappa agreement score, which corrected for agreement 
expected by chance,45 between the observed and predicted 
classes of 0.8517 and an accuracy of 91.1%.45,46 A random 
search grid was created to tune the RF model to find the 

ideal hyperparameter setting. The hyperparameter setting 
mtry =10 was finally found to be the best option.

The Kappa score can be explicitly important to data sets 
with imbalanced or skewed classes (see stage B). Table 2 
shows the resulting confusion matrix of the classification 
model. A confusion matrix allows for an indication of the 
model’s accuracy in classifying the test data set. Each row 
represents the actual class of the cells, and each column repre-
sents the predicted class of the cells. Each number represents 
the percentage of cells predicted within the grid. The diagonal 
in bold shows the percentages that are predicted correctly.

Stage D: Evaluation

We applied this model to the entire parental data set. Each 
cell in every well across the data set was classified into one 
of the four classes. This information was then aggregated 
using medians and standard errors as an estimator per well 
to generate the probabilities of each well being a member of 
the four classes. We ranked all the wells according to the 
probability that they were in the mitotic class and generated 
four hit lists based on P-value cutoffs of 0.05, 0.005, 0.0005, 
and 0.00005 with 16%, 23%, 29%, and 38% of mitosis 
genes, respectively (see Fig. 4A). Figure 4B demonstrates 
the same data but in absolute numbers.

To determine the likelihood that our approach would 
make it easier to identify novel regulators of mitosis, we 
carried out a simple search in PubMed for [Gene Name] 
AND Mitosis for the genes in the p < 0.0005 list, not 
assigned to any of our key GO groups. Four genes, 
FAM110,47 Rec114,48 UBR5,49 and NKAP,50 were found to 
have been recently reported to be involved in mitosis or 
meiosis.

Discussion

Our study has demonstrated how the combination of unsu-
pervised and supervised machine learning can greatly 

Table 2.  Cellular Resolution Multiclass Classification.a

Predicted Class (Cellular Resolution)

Mitosis NEGATIVE ProteaSplice Ribosome Total

Actual class (cellular  
  resolution)

Mitosis 92.65%
(10,427)

4.18%
(470)

2.11%
(238)

1.06%
(119)

100%
(11,254)

  NEGATIVE 0.87%
(437)

92.50%
(46,729)

4.72%
(2384)

1.92%
(969)

100%
(50,519)

  ProteaSplice 1.09%
(178)

11.50%
(1877)

86.06%
(14,047)

1.35%
(220)

100%
(16,322)

  Ribosome 0.68%
(56)

7.21%
(597)

1.73%
(143)

90.38%
(7481)

100%
(8277)

aThe rows represent the actual class of the cells, and the columns represent the predicted class of the cells. The diagonal (in bold) shows the cells and 
percentages of correctly classified cells. This table is the result of the classification model applied to the test set containing a total of 86,372 cells.
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enhance the efficiency with which new knowledge can be 
extracted from functional genomics screens. Our original 
analysis, relying solely on unsupervised methods, resulted 
in a hitlist that was overwhelmed with hits that were of little 
interest because they were already known to be involved in 
the core machinery of protein translation, degradation, and 
RNA splicing. It could well have been that interesting hits 
with novel mechanisms of action could have been found in 
this, but these would have been difficult to identify.

The unsupervised analysis did prove to be very useful, 
however, as identifying hits using a multiclass RF model 
allowed for the generation of hit lists that were far more heav-
ily enriched in genes that were centrally involved in mitosis.

In this case, this approach could potentially have been 
used to generate more information from a genome-wide 
screen that generated only a single publication on three 
genes that were already known to be involved in mitotic 
spindle assembly. Confirming that there are novel regula-
tors of mitosis in the supervised machine learning hit lists is 

unfortunately beyond the scope of this study, but we believe 
that our approach provides biologists the opportunity to be 
able to deal better with the challenges of validating and 
characterizing hits from functional genomics screens.

Results of unsupervised machine learning can be used as 
input for rich data visualizations. In-depth data exploration 
using these visualizations allows for identifying patterns, 
systematic errors, false-positives, and outliers to add labels 
to subpopulations and add value to the data set.51 These 
manual annotations are invaluable for training a supervised 
machine learning model. The supervised model can be 
trained using the annotations and can be applied to classify 
new (unseen) data.

The classification result contains a probability score for 
each class in each record. Each probability score represents 
the likelihood that a record belongs to a class. The sum of 
the probabilities of the classes for each record is equal to 1. 
The set of probabilities represents a matrix pm and contains 
as many records as the classified data set. The number of 
columns of matrix pm is equal to the number of classes that 
are included in the supervised classification model.

Supplementary Data S5 demonstrates a hypothetical 
example of the output of a three-class classification model in 
a probability matrix (pm). The matrix pm is visualized using 
a heatmap and clustered using an unsupervised method to 
organize the data according to similarity. When a cluster 
contains records with equally distributed probabilities 
among the classes (~0.33), we hypothesize that the cluster 
belongs to a fourth class. This approach of combining unsu-
pervised and supervised machine learning can potentially be 
used to generate new classes and identify new phenotypes.

One major challenge in phenotypic screening is how to 
gain insight into what distinguishes different phenotypes. 
Using the unsupervised fashion, we can create groups of 
phenotypes using a combination of hierarchical clustering 
and common factor analysis or PCA profiles. In extreme 
cases, looking at the images is enough to be able to define 
what is different (e.g., a cluster of toxic reagents). In many 
cases, however, the differences are subtle and hard to define. 
Tracking back through principal components to identify 
extracted features that are contributing to phenotypic differ-
ences is also not efficient.

However, through the feature importance plot from a 
supervised machine learning model, one can observe what 
the key differentiating features are for a set of classes (see 
Supplementary Data S6). This provides an immediate 
insight into the biology, especially in a two-class model in 
which one of the classes is based on the negative controls. 
For screens in which the goal is to identify reagents that 
give one phenotype, this would allow a screener to simplify 
feature extraction, by limiting it to the critical features and 
reducing the abundance of redundant features that can be 
extracted nowadays. This could be especially useful for 
screens based on the Cell Painting method.3

Figure 4.  Results classification. 
(A) The x-axis represents the data sets; the y-axis represents 
the absolute number of genes in the set. The colors represent 
the four identified pathways, annotated as classes in the data. 
(B) The x-axis represents the data sets; the y-axis represents 
the percentage of genes in the set. The colors represent the 
four identified pathways, annotated as classes in the data.
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One possible improvement to the proposed method in 
this article would be to allow users to build supervised 
machine learning models on subpopulations of cells within 
wells and not just on all-cells-in-well populations. In com-
mercial platforms, this is currently possible at the image 
level, for example, in PE Columbus, by clicking on indi-
vidual cells and assigning them to individual classes. The 
recently introduced Phenoglyphs functionality in GE’s IN 
Carta platform allows a user to define the classes in a more 
iterative fashion. The Classifier function in the open-source 
CellProfiler Analyst17 offers similar functionality to the 
open-source Advanced Cell Classifier16 platform.

Machine learning methods have long been applied in the 
analysis to high-content data sets, but this has almost exclu-
sively been in a post hoc analysis, by data scientists writing 
project-specific scripts. The availability of AI functionality 
in the StratoMineR platform and the other tools described 
above gives the screener the ability to leverage the power of 
AI, but it is critical that the screener can validate the quality 
of the generated model.

The use of convolutional neural networks to classify 
high-content images directly can be done using deep learn-
ing. Deep learning allows for an alternative approach with-
out the intermediate step of conducting feature extraction, 
and it is attracting much attention.52 The success of these 
approaches, however, will also highly depend on the quality 
of the training sets used and the quantity of available data in 
each training class. We believe that this will require an anal-
ogous method to the one we describe here.
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