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EXTREMAL AREAS OF POLYGONS WITH FIXED
PERIMETER

G. Khimshiashvili,∗ G. Panina,† and D. Siersma‡ UDC 515.164.174

We consider the configuration space of planar n-gons with fixed perimeter, which is diffeomorphic
to the complex projective space CPn−2. The oriented area function has the minimum number of
critical points on the configuration space. We describe its critical points (these are regular stars)
and compute their indices when they are Morse. Bibliography: 11 titles.

1. Introduction

One of the results on the isoperimetric problem discussed in the classical treatise by Legen-
dre [7] states that the regular n-gon has the maximum area among all n-gons with fixed
perimeter. For the historic development of this problem, we refer to [2]. The aim of the
present paper is to elaborate upon this classical result by placing it in the context of Morse
theory on a naturally associated configuration space. To this end, we follow the paradigms
used in [9, 10] and begin with several definitions and recollections.

An n-gon is an n-tuple of points (p1, . . . , pn) ∈ (R2)n, some of which may coincide. Its
perimeter is (as usual)

P(p1, . . . , pn) = |p1p2|+ |p2p3|+ · · ·+ |pnp1|.
The configuration space Cn considered in what follows is defined as the space of all polygons

(modulo rotations and translations) whose perimeter equals 1 (one can fix any other positive
number).

The oriented area of a polygon with vertices pi = (xi, yi) is defined as

2A = x1y2 − x2y1 + · · · + xny1 − x1yn.

The oriented area as a Morse function has been studied in various settings: for configuration
spaces of flexible polygons (those with the side lengths fixed) in R

2 and R
3, see [5, 9–11]. We

shall use some of the previous results in the new setting of this paper.

Let σ be the cyclic renumbering: given a polygon P = (p1, . . . , pn),

σ(p1, . . . , pn) = (p2, p3, . . . , pn, p1).

In other words, we have an action of Zn on Cn which renumbers the vertices of a polygon.
A regular star is an equilateral n-gon such that

σ(p1, . . . , pn) = (p1, . . . , pn),

see Figs. 1, 2.
A complete fold is a regular star with pi = pi+2. It exists for even n only.
A regular star that is not a complete fold is uniquely determined by its winding number w

with respect to the center.
We can now formulate the main result of the paper.

∗Ilia State University, Tbilisi, Georgia, e-mail: gogikhim@yahoo.com.
†St.Petersburg Department of Steklov Institute of Mathematics and St.Petersburg State University,

St.Petersburg, Russia, e-mail: gaiane-panina@rambler.ru.
‡Utrecht University, Utrecht, The Netherlands, e-mail: d.siersma@uu.nl.

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 481, 2019, pp. 136–145. Original article sub-
mitted Jule 12, 2019.

1072-3374/20/2475-0731 ©2020 Springer Science+Business Media, LLC 731

DOI 10.1007/s10958-020-04835-9



Theorem 1. (1) The space Cn is homeomorphic to CPn−2. Therefore, we regard it as a
smooth manifold, keeping in mind the smooth structure of the projective space.

(2) Smooth critical points of the function A on Cn are regular stars and complete folds
only.

(3) Nonsmooth points of A are Lipschitz-regular points of A.
(4) The function A has the minimum number of critical points on CPn−2.
(5) The stars with the maximum winding numbers are nondegenerate critical points of the

function A.
(6) Under the assumption that all regular stars are nondegenerate critical points, the Morse

index is

M(P ) =

⎧
⎨

⎩

2w(P ) − 2 if w(P ) < 0;
2n− 2w(P ) − 2 if w(P ) > 0;
n− 2 if P is a complete fold.

As an illustration, below we present figures showing some regular stars together with their
winding numbers.

Fig. 1. Regular stars for n = 7 with their winding numbers.

Fig. 2. Regular stars for n = 8 with positive winding numbers.

It is worth mentioning that a scholarly example of an exact Morse function on the complex
projective space is

F (u1 : · · · : un−1) =
a1|u1|2 + · · ·+ an|un−1|2

|u1|2 + · · ·+ |un−1|2
for distinct real numbers ai. We will discuss more on this in the last section; now let us
only mention that an obvious difference with the area function is that a cyclic permutation of
indices preserves the critical points of the area and cyclically permutes the critical points of F .
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2. Proof of Theorem 1

There are three (well-known) statements to be used in the proof.

Statement A. Assume that a smooth manifold C ′ is a codimension k submanifold of a smooth
manifold C. Let q ∈ C ′ be a Morse point of some function f : C → R. If q is also a Morse
point of the restriction f |C′ , then for the Morse indices of f related to C and C ′, we have

MC′(q) + k ≥ MC(q) ≥ MC′(q).

The proof easily follows from Sylvester’s formula for the index of a symmetric matrix.

Statement B. Assume that a smooth manifold C is a Cartesian product C = C1 × C2, and
a function f : C → R is a sum f = f1 + f2 where f1,2 : C1,2 → R. Then q = (q1, q2) ∈ C is a
Morse point if and only if q1 and q2 are Morse points of f1 and f2, respectively. In this case,
the Morse indices sum up:

M(q)C = MC1(q1) +MC2(q2).

This follows by noticing that, in this case, the Hessian matrix has block form.

Statement C. Assume that q is a point in a smooth manifold Mn that is an isolated critical
point of a smooth function f . Assume that there exist two submanifolds of complementary
dimensions Nk ⊂ Mn and Ln−k ⊂ Mn intersecting transversally at q. Assume also that q is a
nondegenerate local maximum of the restriction f |Nk and a nondegenerate local minimum of
the restriction f |Ln−k . Then q is a Morse point of f whose Morse index is k.

The proof again follows from Sylvester’s formula for the index of a symmetric matrix.
Claim (1) of Theorem 1 was probably known earlier. Assume that we have a polygon

P ∈ Cn. Identifying its ambient space R
2 with C, let us interpret its edges p1p2,. . . ,pn−2pn−1

as complex numbers u1, . . . , un−1. This (n− 1)-tuple is never identically zero, so it determines
a point (u1 : · · · : un−1) ∈ CPn−2. Conversely, each point in the projective space yields a set
of mutually homothetic polygons with a unique representative whose perimeter equals 1.

Claim (2) appeared already in [6] (yet is unpublished). The proof follows from two obser-
vations.

First, it is easy to show that a critical point is an equilateral polygon. Second, freeze the
points p1, p3, . . . , pn. Setting l1 = |p1p2|, l2 = |p2p3|, move the point p2 in such a way that
l1 + l2 remains fixed. The point p2 travels along an ellipse. The area of the triangle p1p2p3 is
critical if and only if l1 = l2.

Second, if we freeze all the edge lengths of the polygon, we know from [9] that being critical
means being cyclic. Therefore, a critical polygon is an equilateral polygon which is inscribed
in a circle.

It remains to consider polygons having coinciding edges going in opposite directions, that
is, with pi = pi+2. These are complete folds. Claim (2) is proven.

Claim (3) is missing in [6]. The configuration space Cn inherits a smooth structure from
CPn−2, but the function A is not everywhere continuously differentiable, since the perimeter in-
volves square roots. The nonsmooth points are the configurations with two (or more) colliding
consecutive vertices; they form an arrangement of hyperplanes in CPn−2. To make sure that
nonsmooth points of A “behave like regular ones” in the Morse-theoretic sense, we will use the
concept of Clarke subdifferential δc from nonsmooth analysis. This subdifferential is related
to the limits of all gradients at smooth points in a neighborhood of singular points. It was
introduced by Clarke in [4]. The generalized gradient δcf of a locally Lipschitz function f has
values in the set of nonempty compact convex sets, satisfies the sum, product, quotient, and
chain rules with set addition and scalar multiplication. We use especially the paper [1], which
contains also the definition of a critical point and the regular interval theorem.
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In the homogeneous coordinates (u1 : · · · : un−1) ∈ CPn−2, the signed area function is A
P2 ,

where A is the area on C
n−1 and P is the perimeter. More precisely,

ACPn−2(u1 : · · · : un−1) =

∑

1≤i<j≤n−1
(uiuj − ujui)

(|u1|+ · · ·+ |un−1|+ |u1 + · · · + un−1|)2 .
Fix a nonsmooth point of P and let for this point u1=x1+iy1 = 0 and w := u2 + · · · un−1 �=0.

Now take a local chart and consider the real partial subderivative with respect to (x1, y1). We
use the following facts:

(a) A′(0) = i · w (usual derivative); this is w rotated by π
2 ;

(b) δc
√

x21 + y21 = D, where D is the unit disk in R
2;

(c) δcP(0) = P ′(0) = w
|w| + D (Clarke derivative via the sum rule).

Next, we use the quotient rule:
( A

P2

)′
=

A′ · P − 2A · P ′

P3
= P0i · w − 2A0

w

|w| − 2A0D.

According to [1], a point q is called a critical point for a locally Lipschitz function f : M → R

on a smooth manifold M if and only if O ∈ δc(f)(q). Proposition 1.2 of [1] extends the first
Morse lemma (regular interval theorem) for Clarke regular points to locally Lipschitz functions.

We conclude the proof of (3) by showing that a nonsmooth point of P is never critical with
respect to A

P2 . It suffices to show this for the partial subderivative with respect to (x1, y1).
The condition for a critical point in this case is

P0i · w − 2A0
w

|w| ∈ 2A0D.

By computing the norms of both sides we get P2
0 |w|2 +4A2

0 ≤ 4A2
0, and this is never the case.

Claim (3) is proven.
Claim (4). We conclude that the number of critical points is n− 1. Since the sum of the

Betti numbers and the LS-category of CPn−2 is also equal to n − 1, the number of critical
points is minimal.

Claims (5) and (6). Each of the regular stars (which is not a complete fold) is uniquely
determined by its winding number. The latter ranges from 1 to [n−1

2 ] and from −1 to −[n−1
2 ].

Therefore, the Morse function is exact, and the Morse indices of the critical points are
0, 2, 4, . . . , 2n− 4; it remains to understand which star has which index.

Denote by S(n,w) the n-gonal regular star with index w.
First, observe that each of the regular stars (with winding number w) has its symmetric

image whose winding number is −w.
The only exception is a complete fold, which is symmetric to itself.

Splitting construction. Take a neighborhood of a regular star P with a positive winding
number w (which is not a complete fold) and consider two transversally intersecting submani-
folds of Cn. The first one is the configuration space of equilateral polygons EQUILAT . That
is, it consists of all polygons whose edge lengths are equal. Its dimension is n − 3, and the
following is known from [9].

Lemma 1. The Morse index of P related to EQUILAT is n− 1− 2w.

Therefore, for S(n, [n−1
2 ]) the Morse index of P related to this manifold is 0. Moreover,

from [5] it is known that P is a nondegenerate minimum.

The other manifold CY CL is the subspace of all polygons that are cyclic. Its dimension
is n− 1.
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Lemma 2. Let P be a regular star that is not a complete fold with w > 0. Then P is a
nondegenerate local maximum on CY CL. So, the Morse index of P related to CY CL is n−1.

Proof. The problem is equivalent to the following setting. Take the space of all n-gons inscribed
in the unit circle and consider the function ACPn−2 = A

P2 . It is well defined in a neighborhood
of a regular star. It suffices to prove that the regular star with w > 0 is its local maximum.

Introduce local coordinates by setting xi to be the shift of the ith vertex of the star and

ti = xi+1 − xi. Note that
n∑

i=1
xi = 2π and

n∑

i=1
ti = 0. We will compute the 2-jets j2 (Taylor

expansions up to order 2). This suffices to find the Morse indices. Computations show that in

these coordinates, j2Ã is a negative definite quadratic form.
In more detail,

j2P(t1, . . . , tn) =
√

(2− 2 cosα) ·
(
n− 1/8

n∑

i=1

t2i

)
,

j2A(t1, . . . , tn) =
sinα

2
·
(
2n −

n∑

i=1

t2i

)
,

and

j2(2A/P2)(t1, . . . , tn) =
1 + cosα

8n2 sinα
·
(
4n−

n∑

i=1

t2i

)
,

where α = 2wπ
n . Note that since w > 0, the first factor is always positive and, therefore, the

quadratic part is negative definite.
The lemma is proven. �

Assume that n is odd. Now, an application of Statement C proves Claims (5) and (6) of
Theorem 1 for S(n, [n−1

2 ]). By symmetry, Claims (5) and (6) are also proven for S(n,−[n−1
2 ]).

Proof of Claim (6) for the remaining cases. We now assume that all critical points are nonde-
generate. Two mutually symmetric stars have indices i and n − 2 − i, so it suffices to prove
(6) for one of them. Besides, by symmetry reasons we immediately conclude that Claim (6)
holds for complete folds.

First, we prove the statement for odd n. Take all the stars S(n,w) with n−1
2 > w > 0. By

Lemma 2, we have M(S(n,w)) ≥ n− 1. So, their indices taken together are

2n− 4, 2n − 6, . . . , n + 1.

Now let us take all the stars S(n,w) with n−1
2 < w < 0. By symmetry, their indices

taken together are 0, 2, 4, . . . , n − 5. On the other hand, by Lemma 1, their indices relative
EQUILAT give exactly the same set. This relative index never exceeds the index rel Cn, so
Claim (6) for odd n is proven.

Next, we prove the statement for even n. By a kind of analogy, consider all stars S(n,w)
with w > 0. By Lemma 2, we have M(S(n,w)) ≥ n− 1. So, their indices taken together are
2n− 4, 2n − 6, . . . , n.

Now let us take all the stars S(n,w) with w < 0. By symmetry, their indices taken together
are 0, 2, 4, . . . , n − 4. On the other hand, by Lemma 1, their indices relative EQUILAT give
exactly the same set. Since the relative index never exceeds the index rel Cn, Claim (6) is
proven. We have now completed the proof of Theorem 1. �
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3. Concluding remarks

The study of Morse functions on the space Cn = CPn−2 can be related to its Veronese-type
embedding into the space HMat of Hermitian matrices. Its image is known (see [3]) to be a
taut embedding. It follows that the restriction of almost every R-linear function on HMat to
the image of Cn = CPn−2 is an exact Morse function, so it has the minimum number of critical
points. The function F mentioned in the introduction is of this type. Our function A is not
of this type, since in the coordinates of Cn = CPn−2 it is the quotient of the area and the
squared perimeter:

ACPn−2(u1 : · · · : un−1) =

∑

1≤i<j≤n−1
(uiuj − ujui)

(|u1|+ · · ·+ |un−1|+ |u1 + · · · + un−1|)2 .

The numerator extends to a linear function, but the denominator contains square roots of
the coordinates. But it still has the good property that it has the minimum number of critical
points. A more general question is how the geometry and metric of the projective space can
be used to obtain a deeper understanding.

It seems also worth adding that Theorem 1 suggests several further developments in the
same spirit.

First, one can obtain similar descriptions of extremals of the area under different constraints.
The most obvious option is to fix the sum of certain powers of the side lengths. In other words,
one looks for extremals of the area under the condition that

∑
(ai)

p = const,

where p is a fixed positive number. For symmetry reasons, regular stars and complete folds
are critical in this case too. However, it is not obvious that there are no other extremals,
since the geometric reasoning used for fixed perimeter is not directly applicable. For p = 2,
a rigorous analytic proof of this fact is given in [6] without discussing the nondegeneracy
and Morse indices of stars. Perhaps, this case fits better in the framework of the Veronese
embedding. Moreover, it is not difficult to verify that the same method of proof is applicable
for any positive p.

Finally, in line with the general idea of duality in the calculus of variations, one may consider
a dual problem by fixing the values of the area and looking for extremals of the perimeter.
Some conclusions and lines of research are immediate. For example, it is easy to verify that
generically the critical points of A with P fixed are the same as the critical points of P with A
fixed. One can also derive the Morse index formula for the dual problem from our Theorem 1.
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