
Adv. Appl. Prob. 51, 358–377 (2019)
doi:10.1017/apr.2019.23

© Applied Probability Trust 2019

THE DIAMETER OF KPKVB RANDOM GRAPHS
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Abstract

We consider a random graph model that was recently proposed as a model for complex
networks by Krioukov et al. (2010). In this model, nodes are chosen randomly inside a
disk in the hyperbolic plane and two nodes are connected if they are at most a certain
hyperbolic distance from each other. It has previously been shown that this model has
various properties associated with complex networks, including a power-law degree
distribution and a strictly positive clustering coefficient. The model is specified using
three parameters: the number of nodes N, which we think of as going to infinity, and
α, ν > 0, which we think of as constant. Roughly speaking, α controls the power-
law exponent of the degree sequence and ν the average degree. Earlier work of Kiwi
and Mitsche (2015) has shown that, when α < 1 (which corresponds to the exponent
of the power law degree sequence being < 3), the diameter of the largest component
is asymptotically almost surely (a.a.s.) at most polylogarithmic in N. Friedrich and
Krohmer (2015) showed it was a.a.s. �( log N) and improved the exponent of the
polynomial in log N in the upper bound. Here we show the maximum diameter over
all components is a.a.s. O( log N), thus giving a bound that is tight up to a multiplicative
constant.
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1. Introduction

The term complex networks usually refers to various large real-world networks, occurring
in diverse fields of science, that appear to exhibit very similar graph theoretical properties.
These include having a constant average degree, a so-called power-law degree sequence,
clustering and ‘small distances’. In this paper we study a random graph model that was
recently proposed as a model for complex networks and has the above properties. We
refer to it as the Krioukov–Papadopoulos–Kitsak–Vahdat–Boguñá model, or KPKVB model,
after its inventors [15]. We should however point out that many authors simply refer to
the model as ‘hyperbolic random geometric graphs’ or even ‘hyperbolic random graphs’.
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The diameter of KPKVB random graphs 359

In the KPKVB model a random geometric graph is constructed in the hyperbolic plane. We
use the Poincaré disk representation of the hyperbolic plane, which is obtained when the unit
disk D= {(x, y) ∈R

2 : x2 + y2 < 1} is equipped with the metric given by the differential form
ds2 = 4(dx2 + dy2)/(1 − x2 − y2)2. (This means that the length of a curve γ : [0, 1] →D under

the metric is given by 2
∫ 1

0 (
√

(γ ′
1(t))2 + (γ ′

2(t))2/(1 − γ 2
1 (t) − γ 2

2 (t))) dt.) For an extensive,
readable introduction to hyperbolic geometry and the various models and properties of the
hyperbolic plane, we refer the reader to [17]. Throughout this paper we will represent points
in the hyperbolic plane by polar coordinates (r, ϑ), where r ∈ [0, ∞) denotes the hyperbolic
distance of a point to the origin and ϑ denotes its angle with the positive x-axis.

We now discuss the construction of the KPKVB random graph. The model has three
parameters: the number of vertices N and two additional parameters α, ν > 0. Usually the
behavior of the random graph is studied for N → ∞ for a fixed choice of α and ν. We start by
setting R = 2 log (N/ν). Inside the disk DR of radius R centered at the origin in the hyperbolic
plane we select N points, independent from each other, according to the probability density f
on [0, R] × (−π, π ] given by

f (r, ϑ) = 1

2π

α sinh (αr)

cosh (αR) − 1
, r ∈ [0, R], ϑ ∈ (−π, π ].

We call this distribution the (α, R)-quasi uniform distribution. For α = 1, this corresponds to
the uniform distribution on DR. We connect points if and only if their hyperbolic distance is
at most R. In other words, two points are connected if their hyperbolic distance is at most the
(hyperbolic) radius of the disk that the graph lives on. We denote the random graph we have
thus obtained by G(N; α, ν).

As observed by Krioukov et al. [15] and rigorously shown by Gugelmann et al. [10], the
degree distribution follows a power law with exponent 2α + 1, the average degree tends to
2α2ν/π (α − 1

2 )2 when α > 1
2 , and the (local) clustering coefficient is bounded away from zero

a.a.s. (Here and in the rest of the paper a.a.s. stands for asymptotically almost surely, meaning
with probability tending to 1 as N → ∞.) Earlier works of the first author with Bode and
Fountoulakis [4] and Fountoulakis [7] established the ‘threshold for a giant component’: when
α < 1, there is always a unique component of size linear in N no matter how small ν (and hence
the average degree) is; when α > 1, all components are sublinear no matter the value of ν; and
when α = 1, there is a critical value νc such that, for ν < νc, all components are sublinear and,
for ν > νc, there is a unique linear sized component (all of these statements holding a.a.s.).
Whether or not there is a giant component when α = 1 and ν = νc remains an open problem.

In another paper of the first author with Bode and Fountoulakis [5] it was shown that α = 1
2

is the threshold for connectivity: for α < 1
2 , the graph is a.a.s. connected; for α > 1

2 , the graph is
a.a.s. disconnected; and when α = 1

2 , the probability of being connected tends to a continuous,
nondecreasing function of ν which is identically 1 for ν ≥ π and strictly less than 1 for ν < π .

Friedrich and Krohmer [8] studied the size of the largest clique as well as the number
of cliques of a given size. Bläsius et al. [3] and Boguña et al. [6] considered fitting the
KPKVB model to data using maximum likelihood estimation. Kiwi and Mitsche [14] studied
the spectral gap and related properties, and Bläsius et al. [2] considered the treewidth and
related parameters of the KPKVB model.

Abdullah et al. [1] considered typical distances in the graph. That is, they sampled two
vertices of the graph uniformly at random from the set of all vertices and considered the (graph-
theoretic) distance between them. They showed that this distance between two random vertices,
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360 T. MÜLLER AND M. STAPS

conditional on the two points falling in the same component, is precisely (c + o(1)) log log N
a.a.s. for 1

2 < α < 1, where c := −2 log (2α − 1).
Here we will study another natural notion related to the distances in the graph, the graph

diameter. Recall that the diameter of a graph G is the supremum of the graph distance dG(u, v)
over all pairs u, v of vertices (so it is infinite if the graph is disconnected). It has been
shown previously by Kiwi and Mitsche [13] that, for α ∈ ( 1

2 , 1), the largest component of
G(N; α, ν) has a diameter that is O((log N)8/(1−α)(2−α)) a.a.s. This was subsequently improved
by Friedrich and Krohmer [9] to O((log N)1/(1−α)). Friedrich and Krohmer [9] also gave an
a.a.s. lower bound of �(log N). We point out that in these upper bounds the exponent of log N
tends to ∞ as α approaches 1.

Here we are able to improve the upper bound to O(log N), which is sharp up to a
multiplicative constant. We are able to prove this upper bound not only in the case when α < 1
but also in the case when α = 1 and ν is sufficiently large.

Theorem 1. Let α, ν > 0 be fixed. If either

(i) 1
2 < α < 1 and ν > 0 is arbitrary, or

(ii) α = 1 and ν is sufficiently large,

then, a.a.s. as N → ∞, every component of G(N; α, ν) has diameter O(log (N)).

We remark that our result still leaves open what happens for other choices of α and ν as
well as several related questions. See Section 5 for a more elaborate discussion of these.

1.1. Organization of the paper

In our proofs we will also consider a Poissonized version of the KPKVB model, where the
number of points is not fixed but is sampled from a Poisson distribution with mean N. This
model is denoted GPo(N; α, ν). It is convenient to work with this Poissonized version of the
model as it has the advantage that the numbers of points in disjoint regions are independent
(see, for instance, [12]).

The paper is organized as follows. In Section 2 we discuss a somewhat simpler random
geometric graph �, introduced in [7], that behaves approximately the same as the (Poissonized)
KPKVB model. The graph � is embedded into a rectangular domain ER in the Euclidean
plane R

2. In Section 3.1 we discretize this simplified model by dissecting ER into small
rectangles. In Section 3.2 we show how to construct short paths in �. The constructed paths
have length O(log (N)) unless there exist large regions that do not contain any vertex of �.
In Section 3.3 we use the observations of Section 3.2 to formulate sufficient conditions for
the components of the graph � to have diameter O(log N). In Section 4 we show that the
probability that � fails to satisfy these conditions tends to 0 as N → ∞. We also translate these
results to the KPKVB model, and combine everything into a proof of Theorem 1.

2. The idealized model

We start by introducing a somewhat simpler random geometric graph, introduced in [7],
that will be used as an approximation of the KPKVB model. Let X1, X2, . . . ∈ DR be an infinite
supply of points chosen according to the (α, R)-quasi uniform distribution on DR described
above. Let G = G(N; α, ν) and GPo = GPo(N; α, ν). Let Z ∼ Po (N) be the number of vertices
of GPo. By taking {X1, . . . , XN} as the vertex set of G and {X1, . . . , XZ} as the vertex set of
GPo, we obtain a coupling between G and GPo.
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FIGURE 1: 	 maps DR to a rectangle ER ⊂R
2.

We will compare our hyperbolic random graph to a random geometric graph that lives on
the Euclidean plane. To this end, we introduce the map 	 : DR →R

2 given by 	 : (r, ϑ) 
→
(ϑ 1

2 eR/2, R − r). The map 	 works by taking the distance of a point to the boundary of the
disk as the y-coordinate and the angle of the point as the x-coordinate (after scaling by 1

2 eR/2).
The image of DR under 	 is the rectangle ER = (−πeR/2/2, πeR/2/2] × [0, R] ⊂R

2 (see
Figure 1).

On ER we consider the Poisson point process Pα,λ with intensity function fα,λ defined
by fα,λ(x, y) = λe−αy. We will denote by Vα,λ the point set of this Poisson process. We also
introduce the graph �α,λ, with vertex set Vα,λ, where points (x, y), (x′, y′) ∈ Vα,λ are connected
if and only if |x − x′|πeR/2 ≤ e(y+y′)/2. Here |a − b|d = infk∈Z |a − b + kd| denotes the distance
between a and b modulo d.

If we choose λ = να/π it turns out that Vλ can be coupled to the image of the vertex set of
GPo under 	 and that the connection rule of �λ approximates the connection rule of GPo. In
particular, we have the following result.

Lemma 1. ([7, Lemma 27].) Let α > 1
2 . There exists a coupling such that a.a.s. Vα,να/π is the

image of the vertex set of GPo under 	.

Let X̃1, X̃2, . . . ∈ ER be the images of X1, X2, . . . under 	. On the coupling space of
Lemma 1, a.a.s. we have Vλ = {X̃1, . . . , X̃Z}.
Lemma 2. ([7, Lemma 30].) Let α > 1

2 . On the coupling space of Lemma 1, a.a.s. it holds for
1 ≤ i, j ≤ Z that

(i) if ri, rj ≥ 1
2 R and X̃iX̃j ∈ E(�α,να/π ), then XiXj ∈ E(GPo).

(ii) if ri, rj ≥ 3
4 R then X̃iX̃j ∈ E(�α,να/π ) if and only if XiXj ∈ E(GPo).

Here ri and rj denote the radial coordinates of Xi, Xj ∈ DR.

Lemma 2 will prove useful later because, as it turns out, cases (i) and (ii) cover almost all
the edges in the graph.

For (Ai)i and (Bi)i, two sequences of events with Ai and Bi defined on the same probability
space (�i, Ai, Pi), we say that Ai happens a.a.s. conditional on Bi if P(Ai | Bi) → 1 as i → ∞.
By a straightforward adaptation of the proofs given in [7], we can show the following result.
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362 T. MÜLLER AND M. STAPS

FIGURE 2: An example of the Poissonized KPKVB random graph GPo (left) and the graph �α,να/π

(right), under the coupling of Lemma 1. The graph GPo is drawn in the native model of the hyperbolic
plane, where a point with hyperbolic polar coordinates (r, ϑ) is plotted with Euclidean polar coordinates
(r, ϑ). Points are colored based on their angular coordinate. Dashed edges indicate edges for which the

coupling fails. The parameters used are N = 200, α = 0.8, and ν = 1.3.

Corollary 1. The conclusions of Lemmas 1 and 2 also hold conditional on the event Z = N.

In other words, Corollary 1 states that the probability that the conclusions of Lemmas 1
and 2 fail, given that Z = N, is also o(1). For completeness, we prove this as Lemmas 15
and 16 in Appendix A. An example of GPo and �να/π is shown in Figure 2.

3. Deterministic bounds

For the moment, we continue in a somewhat more general setting, where V ⊂ ER is any
finite set of points and � is the graph with vertex set V and connection rule (x, y) ∼ (x′, y′) ⇐⇒
|x − x′|πeR/2 ≤ e(y+y′)/2.

3.1. A discretization of the model

We dissect ER into a number of rectangles, which have the property that vertices of � in
rectangles with nonempty intersection are necessarily connected by an edge. This is done as
follows. First, divide ER into � + 1 layers L0, L1, . . . , L�, where

Li = {(x, y) ∈ ER : i log(2) ≤ y < (i + 1) log (2)}
for i < � and L� = {(x, y) ∈ ER : y ≥ � log (2)}. Here � is defined by

� :=
⌊ log (6π ) + R/2

log (2)

⌋
. (1)

Note that this gives 6πeR/2 ≥ 2� > 3πeR/2. We divide Li into 2�−i (closed) rectangles of equal
width 2i−�πeR/2 = 2ib, where b = 2−�πeR/2 ∈ [ 1

6 , 1
3 ) is the width of a rectangle in the lowest

layer L0 (see Figure 3). In each layer, one of the rectangles has its left edge on the line x = 0.
We have now partitioned ER into 2�+1 − 1 = O(N) boxes.

The boxes are the vertices of a graph B in which two boxes are connected if they share at
least a corner (see Figure 4(a)). Here we identify the left and right edges of ER with each other,
so that (for example) also the leftmost and rightmost box in each layer become neighbors.
The dissection has the following properties.
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log(2)

L�

L4

L3

L2

L1

L0

b

FIGURE 3: Partitioning ER with boxes. All layers except L� have height log (2). The boxes in layer Li

have width 2ib, where b ∈ [ 1
6 , 1

3 ) is the width of a box in L0. The small circles serve as an example of V .

(a) (b)

FIGURE 4: The connection rules of B and B∗. (a) A box with its eight neighbors in B. (b) A box with
its five neighbors in B∗.

Lemma 3. The following statements hold for B and �:

(i) if vertices of � lie in boxes that are neighbors in B then they are connected by an edge
in �;

(ii) the number of boxes that lie (partly) above the line y = R/2 is at most 63.

Proof. We start with (i). Consider two points (x, y) and (x′, y′) that lie in boxes that are
neighbors in B. Suppose that the lowest of these two points lies in Li. Then y, y′ ≥ i log(2).
Furthermore, the horizontal distance between (x, y) and (x′, y′) is at most three times the width
of a box in Li. It follows that

|x − x′|πeR/2 ≤ 3 · 2i · b ≤ 2i ≤ e(y+y′)/2,

so (x, y) and (x′, y′) are indeed connected in �.
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X

Y Y

X

FIGURE 5: If two blue boxes X and Y are not connected by a path of blue (striped) boxes, then a red
(dotted) walk exists that intersects every path in B from X to Y (Lemma 4). This walk can be chosen

such that it either connects two boxes in L0 (left) or is cyclic (right).

To show (ii), we note that the first layer Li that extends above the line y = R/2 has index
i = �(R/2)/log 2�. Therefore, we must count the boxes in the layers Li, Li+1, . . . , L�, of which
there are 2�−i+1 − 1. We have

� − i + 1 =
⌊ log (6π ) + R/2

log 2

⌋
−

⌊ R/2

log 2

⌋
+ 1 ≤

⌈ log (6π )

log 2

⌉
+ 1 = 6,

so there are indeed at most 26 − 1 = 63 boxes that extend above the line y = R/2. �

Let B∗ be the subgraph of B where we remove the edges between boxes that have only
a single point in common (see Figure 4(b)). Note that B∗ is a planar graph and that B is
obtained from B∗ by adding the diagonals of each face ([11] deals with a more general notation
of matching pairs of graphs). We make the following observation (see Figure 5; compare
Proposition 2.1 of [11]) for later reference.

Lemma 4. Suppose that each box in B is colored red or blue. If there is no path of blue boxes
in B between two blue boxes X and Y, then B∗ (and, hence, also B) contains a walk of red
boxes Q that intersects every walk (and, hence, also every path) in B from X to Y.

We leave the straightforward proof of this last lemma to the reader. It can, for instance,
be derived quite succinctly from the Jordan curve theorem. A proof can be found in the MSc
thesis of the second author [16].

3.2. Constructing short paths

We will use the boxes defined in the previous subsection to construct short paths between
vertices of �. Recall that V ⊂ ER is an arbitrary finite set of points and � is the graph with
vertex set V and connection rule (x, y) ∼ (x′, y′) if and only if |x − x′|πeR/2 ≤ e(y+y′)/2. We will
also make use of the dissection into boxes introduced in the previous section. A box is called
active if it contains at least one vertex of � and inactive otherwise.

Suppose that x and x′ are two vertices of � that lie in the same component. How can we find
a short path from x to x′? A natural strategy would be to follow a short path of boxes from the
box A containing x to the box A′ containing x′. These boxes are connected by a path L(A, A′)
of length at most 2R (see Figure 6(a)). If all the boxes in L(A, A′) are active, Lemma 3(i)
immediately yields a path in � from x to x′ of length at most 2R, which is a path of the desired
length. The situation is more difficult if we also encounter inactive boxes, and modifying the
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A

A′
A′

A

(a) (b)

L(A, A′) W(A, A′)

FIGURE 6: (a) Two boxes A, A′ in B and the path L(A, A′) that connects them. We can form L(A, A′) by
concatenating the shortest paths from A and A′ to the lowest box lying above both A and A′. (b) Active
boxes are colored gray and inactive boxes are colored white. The union of L(A, A′) and the inactive

components intersecting L(A, A′) is called W(A, A′) and outlined in black.

path to avoid inactive boxes may be impossible because a path of active boxes connecting
A to A′ may fail to exist. Nevertheless, it turns out that the graph-theoretic distance between x
and x′ can be bounded in terms of the size of inactive regions one encounters when following
L(A, A′).

To make this precise, we define W(A, A′) to be the set of boxes that either lie in L(A, A′)
or from which an inactive path (i.e. a path of inactive boxes) exists to a box in L(A, A′) (see
Figure 6(b)). Note that W(A, A′) is a connected subset of B, consisting of all boxes in L(A, A′)
and all inactive components intersecting W(A, A′) (by an inactive component we mean a
component of the induced subgraph of B on the inactive boxes). The main result of this section
is that the graph-theoretic distance between x and x′ is bounded by the size of W(A, A′).

Before we continue, we first recall some geometric properties of the graph �.

Lemma 5. ([7, Lemma 3].) Let x, y, z, w ∈ V.

(i) If xy ∈ E(�) and z lies above the line segment [x, y] (i.e. [x, y] intersects the segment
joining z and the projection of z onto the horizontal axis), then at least one of xz and yz
is also present in �.

(ii) If xy, wz ∈ E(�) and the segments [x, y] and [z, w] intersect, then at least one of the edges
xw, xz, yw, and yz is also present in �. In particular, {x, y, z, w} is a connected subset
of �.

We now prove a lemma that allows us to compare paths in � with walks in B. This will
enable us to translate information about � (such as that two boxes contain vertices in the same
component of �) to information about the states of the boxes.

Lemma 6. Suppose that boxes X, Y ∈ B respectively contain vertices x, y ∈ V that lie in the
same component of �. Then B contains a walk X = B0, B1, . . . , Bn = Y with the following
property:

(P) if Bi and Bj are active but Bi+1, Bi+2, . . . , Bj−1 are not, then � has vertices a ∈ Bi, b ∈ Bj

that are connected in � by a path of length at most three.
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v2

v1

vm–2

e y

vm–1

vm

x

v0

v′0 v′m

FIGURE 7: Proof of Lemma 6. The edge e of � connects vertices x and y. If a red (dotted) walk of boxes
exists that separates the boxes containing x and y, then e intersects one of the segments [vi, vi+1], [v0, v′

0],
or [vm, v′

m]. This contradicts the assumption that no red box contains a neighbor of x or y.

Proof. We prove the statement by induction on the length of the shortest path from x to y
in �.

First suppose that this length is 1, so that there is an edge e connecting x and y. We claim
that a walk X = B0, B1, . . . , Bn = Y in B exists with the property that if Bi is active then Bi

contains a neighbor of x or y. For this we use Lemma 4. We color a box blue if it is either
inactive or active and it contains a neighbor of x or y. All other boxes are colored red. Note that
X and Y are blue, because X contains a neighbor of y (namely, x) and Y contains a neighbor
of x (namely, y). We intend to show that B contains a blue path from X to Y . Aiming for a
contradiction, we suppose that this is not the case. By Lemma 4, there must then exist a red
walk S = S0, S1, . . . , Sm that intersects each path in B from X to Y . If we remove S from ER

then ER\S falls apart in a number of components. Because there is no path in B from X to Y
that does not intersect S, X and Y lie in different components. (We say S separates X and Y .)
We choose vertices vi ∈ V ∩ Si for all i (these vertices exist because all red boxes are active;
see Figure 7). By Lemma 3(i), vi and vi+1 are neighbors in � for each i.

We may assume that either S0 and Sm are both boxes in the lowest layer L0, or S0 and Sm are
adjacent in B (see Figure 5). In the latter case, we consider the polygonal curve γ consisting
of the line segments [v0, v1], [v1, v2], . . . , [vm, v0]. This polygonal curve consists of edges
of �. Let us observe that each of these edges passes through boxes in S and maybe also boxes
adjacent to boxes in S, but the edges cannot intersect any box that is neither on S nor adjacent
to a box of S. So in particular, none of these edges can pass through the box X, because X is
not adjacent to a box in S (this box should then have been blue by Lemma 3(i)). From this it
follows that γ also separates x and y. Therefore, the edge e crosses an edge [vi, vi+1] of � (see
Figure 7). By Lemma 5(ii), this means that vi or vi+1 neighbors x or y, which is a contradiction
because vi and vi+1 do not lie in a blue box.

We are left with the case that S0 and Sm lie in the lowest layer L0. Let v′
0 and v′

m denote the
projections of v0 and vm, respectively, on the horizontal axis. By an analogous argument, we
find that the polygonal line through v′

0, v0, v1, . . . , vm, v′
m separates x and y. We now see that

e either crosses an edge [vi, vi+1] (we then find a contradiction with Lemma 5(ii)) or one of
the segments [v0, v′

0] and [vm, v′
m] (we then find a contradiction with Lemma 5(i)). From the

contradiction we conclude that a blue path must exist connecting X and Y .
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We have now shown that if x and y are neighbors in �, there exists a walk X = B0, B1, . . . ,

Bn = Y such that the Bi that are active contain a neighbor of x or y. This means that if
Bi, Bi+1, . . . , Bj are such that Bi and Bj are active but Bi+1, . . . , Bj−1 are not, then Bi contains a
vertex a that neighbors x or y and Bj contains a vertex b that neighbors x or y. Now d�(a, b) ≤ 3
follows from the fact that both a and b neighbor an endpoint of the same edge e. We conclude
that if x and y are neighbors in � then a walk satisfying (P) exists.

Now suppose that the statement holds whenever x and y satisfy d�(x, y) ≤ k and consider
two vertices x and y with d�(x, y) = k + 1. Choose a neighbor y′ of y such that d�(x, y′) = k.
Let Y ′ be the active box containing y′. By the induction hypothesis, there exists walks from
X to Y ′ and from Y ′ to Y satisfying (P). By concatenating these two walks, we obtain a walk
from X to Y satisfying (P), as desired. �

Note that by itself this lemma is insufficient to construct short paths, as the proof is
nonconstructive and there is no control over the number of boxes in the walk obtained.
Nevertheless, we can use Lemma 6 to prove the main result of this section.

Lemma 7. There exists a constant c such that the following holds (for all finite V ⊆ ER with �

constructed as above). If the vertices x, x′ ∈ V and the boxes A, A′ ∈ B are such that

(i) x ∈ A and x′ ∈ A′, and

(ii) x, x′ lie in the same component of �,

then d�(x, x′) ≤ c|W(A, A′)|.
Proof. We claim that there is a walk S = S0, S1, . . . , Sn in B from A to A′ such that

(i) if Si and Sj are active but Si+1, . . . , Sj−1 are not, then � has vertices a ∈ Si, b ∈ Sj that
are connected in � by a path of length at most three;

(ii) if Si is active then either Si itself or an inactive box adjacent to Si belongs to W(A, A′).

We define Bx to be the set of active boxes that contain vertices of the component of � that
contains x and x′. By assumption, we have A, A′ ∈ Bx. If A and A′ are adjacent the existence
of a walk S satisfying (i) and (ii) is trivial, so we assume A and A′ are not adjacent. The proof
consists of proving the result for the case that A and A′ are the only boxes in L(A, A′) that
belong to Bx, and then a straightforward extension to the general case.

If A and A′ are the only boxes in L(A, A′) that belong to Bx, then the boxes in between
A and A′ on L(A, A′) are either inactive, or they are active but contain vertices of a different
component of �. Therefore, the box B in L(A, A′) directly following A must be inactive and
belongs to some inactive component F (recall that an inactive component is a component of
the induced subgraph of B on the inactive boxes). We will prove the stronger statement that a
walk S = S0, S1, . . . , Sn from A to A′ exists satisfying (i) and

(ii’) if Si is active then Si is adjacent to a box in F.

By Lemma 6 there exists a walk S from A to A′ satisfying (i). We will modify S such that (ii’)
also holds. We proceed in two steps. In step 1 we remove all inactive boxes in S that are not
in F. In step 2 we remove all active boxes from S that are not adjacent to a box in F.

Step 1. There is a walk S satisfying (i) that contains no inactive boxes outside F.
We start with the walk S that Lemma 6 provides. This walk satisfies (i). Suppose that S

contains some inactive box X not in F (see Figure 8(a)). Because B ∈ F, there can then be no
inactive path in B from X to B. It follows from Lemma 4 that there is an active walk Q that
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L(A, A′) L(A, A′)

B

A

E
X

S

Q

B

A

S

Si

Sj

B′

A′
A′

B′

E′

(a) (b)

FIGURE 8: Proof of Lemma 7. (a) Step 1. The walk S satisfies (i) and connects A with A′. If from an
inactive box X there is no inactive path to B (dotted line), then there is an active walk Q (dashed line) that
connects active boxes E and E′ in S on either side of X. (b) Step 2. The walk S satisfies (i) and contains
no inactive boxes outside F. The boxes A, Si, Sj, and A′ (striped) all belong to F′. The proof works by
finding a path in F′ from Si to Sj (dashed line). In both figures active boxes are colored gray and inactive

boxes are colored white.

intersects all walks in B from X to B (we apply Lemma 4 with the inactive boxes colored blue
and all other boxes colored red). One such walk from X to B is obtained by following S towards
A (which is a neighbor of B). Another possible walk is obtained by first following S towards
A′ and then following L(A, A′) towards B. We define boxes E and E′ such that Q intersects the
walk in B from X to B via S and A in E and the walk in B from X to B via S, A′ and L(A, A′)
in E′ (see Figure 8(a)). Because E belongs to S, E also belongs to Bx. It follows that E′ also
belongs to Bx, which implies that E′ lies in S (the boxes in L(A, A′) between A and A′ do not
lie in Bx by assumption). We see that Q contains two active boxes E and E′ that lie on either
side of X. Because Q contains only active boxes, we can replace the part of S from E to E′ by
a walk of active boxes from E to E′. Doing so we find a walk that still satisfies (i) but from
which the box X is removed. By repeatedly applying this procedure, we remove all such boxes
X from S. The resulting walk satisfies (i) and contains no inactive boxes outside F.

Step 2. There is a walk S satisfying (i) that contains no active boxes outside F′, where F′ is
the set of active boxes adjacent to a box in F.

We start with the walk constructed in step 1. Since A is adjacent to B it belongs to F′.
Let B′ be the box in L(A, A′) directly preceding A′. We claim that B′ belongs to F. Note that
B′ is inactive. We use Lemma 4 to show that an inactive path from B to B′ exists. If such a
path would not exist then an active walk Q would exist that intersects all walks from B to B′.
In particular, Q would contain an active box in L(A, A′) \ {A, A′} (which does not lie in Bx,
because by assumption A and A′ are the only boxes in L(A, A′) that belong to Bx) and an active
box in S (which lies in Bx, because we know there is a path in � from a vertex in this box to
a vertex in A). This is a contradiction, because by Lemma 3(i) there cannot be an active walk
between a box in Bx and an active box not in Bx. It follows that an inactive path from B to B′
exists, so B′ belongs to F. Furthermore, every box in S that has an inactive neighbor in S also
lies in F′, because this inactive neighbor lies in F by step 1.

Now consider active boxes Si, Si+1, . . . , Sj in S such that Si and Sj lie in F′ but Si+1, . . . ,

Sj−1 do not (see Figure 8(b)). We claim that there is a path in F′ from Si to Sj. Color all boxes
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in F′ blue and all other boxes red. Then our claim is that B contains a blue path from Si to Sj.
We use Lemma 4 and argue by contradiction. If this blue path would not exist then there would
exist a red walk Q that intersects every walk from Si to Sj. Because Si and Sj lie in F′, there
exists such a walk that apart from Si and Sj contains only boxes in F. Because Q does not
contain Si and Sj (which are blue) it must contain a box in F. Furthermore, Q also contains one
of the active boxes Si+1, . . . , Sj. Therefore, Q is a connected set of boxes that contains a box
in F and an active box. This implies that Q must also contain a box in F′, which contradicts
the fact that Q consists of red boxes. This contradiction shows that there must be a blue path in
B from Si to Sj, i.e. a path in F′ from Si to Sj. We replace the boxes Si+1, . . . , Sj−1 of S by this
path, thereby removing the boxes Si+1, . . . , Sj−1 from S. Repeatedly applying this operation,
we remove all active boxes that do not lie in F′ from S. This completes step 2.

The walk constructed in step 2 satisfies (i) and (ii’), so we are now done with the case that
L(A, A′) contains no boxes in Bx other than A and A′.

Now suppose A and A′ are not the only boxes in L(A, A′) that belong to Bx; let A = A0,
A1, . . . , An = A′ be all the boxes in L(A, A′) that belong to Bx (ordered by their position in
L(A, A′)). All these boxes contain vertices in the same component of �. For all i, we have
L(Ai, Ai+1) ⊂ L(A, A′) and, furthermore, Ai and Ai+1 are the only boxes in L(Ai, Ai+1) that
belong to Bx. Therefore, a walk from Ai to Ai+1 satisfying (i) and (ii) exists. By concatenating
these walks for all i, we find a walk S from A to A′ satisfying (i) and (ii).

We now construct a path in � from x to x′ of length at most 37|W(A, A′)|. We may assume
that the active boxes in S are all distinct, because if S contains an active box twice we can
remove the intermediate part of S. The number of active boxes in S is at most 9|W(A, A′)|
because each active box in S lies in W(A, A′) or is one of the at most eight neighbors of an
inactive box in W(A, A′). Suppose that Si and Sj are active boxes in S such that Si+1, . . . , Sj−1
are all inactive. Then, for every vertex v ∈ Si, there is a path in � of length at most four to a
vertex in Sj: by (i), there are vertices a ∈ Si, b ∈ Sj such that d�(a, b) ≤ 3 and, furthermore, v
and a are neighbors because they lie in the same box. It follows that there is a path of length at
most 36|W(A, A′)| from x to a vertex in A′; hence, a path of length at most 36|W(A, A′)| + 1 ≤
37|W(A, A′)| from x to x′. This shows that we may take c = 37. �

3.3. Bounding the diameter

In this subsection we continue with the general setting where V ⊆ ER is an arbitrary finite
set, and � is the graph with vertex set V and connection rule (x, y) ∼ (x′, y′) if and only if
|x − x′|πeR/2 ≤ e(y+y′)/2. Here we will translate the bounds from the previous section into results
on the maximum diameter of a component of �. We start with a general observation on graph
diameters.

Lemma 8. Suppose that H1 and H2 are induced subgraphs of G such that V(G) = V(H1) ∪
V(H2) (but H1 and H2 need not be vertex disjoint). If every component of H1 has diameter at
most d1 and H2 (is connected and) has diameter at most d2, then every component of G has
diameter at most 2d1 + d2 + 2.

In particular, if H2 is a clique then every component of G has diameter at most 2d1 + 3.

Proof. Let C be a component of G. If C contains no vertices of H2, then C is a component
of H1 as well. So in this case C has diameter at most d1. If C is not a component of H1 then, for
any vertex v ∈ C, there is a path of length at most d1 + 1 from v to a vertex in H2. Thus, since
there is a path of length at most d2 between any two vertices in H2, any two vertices u, v ∈ C
have distance at most (d1 + 1) + d2 + (d1 + 1) = 2d1 + d2 + 2 in G, as required. �
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We let �̃ := �R/2 log 2� − 1 be the largest i such that layer i is completely below the
horizontal line y = R/2; we set Ṽ := V ∩ {y ≤ �̃ · log 2}, and we let �̃ := �[Ṽ] be the subgraph
of � induced by Ṽ . For A, A′ ∈ B, we let W̃ = W̃(A, A′) denote the set W(A, A′) but
corresponding to Ṽ instead of V . (That is, boxes in layers �̃ + 1, . . . , � are automatically
inactive. Note that this could potentially increase the size of W substantially.)

The following lemma gives sufficient conditions for an upper bound on the diameter of
each component of �̃. The lemma also deals with graphs that can be obtained by �̃ by adding
a specific type of edges.

Lemma 9. There exists a constant c such that the following holds. Let �̃ and W̃ be as above,
and let K = {(x, y) ∈ ER : y > R/4}. Consider the following two conditions:

(i) for any two boxes A and A′, we have |W̃(A, A′)| ≤ D for some D (possibly depending
on n);

(ii) there is no inactive path (with respect to Ṽ) in B connecting a box in L0 with a box in K.

If (i) holds, then each component of �̃ has diameter at most cD. If, furthermore, (ii) holds then,
for any graph �′ that is obtained from �̃ by adding an arbitrary set of edges E′ each of which
has an endpoint in K, every component of �′ has diameter cD.

Proof. The first statement follows directly from Lemma 7.
If, furthermore, (ii) holds, there exists a cycle of active boxes in ER\K that separates K from

L0. Since vertices in neighboring boxes are connected in �̃, this means that there is a cycle in
�̃ that separates K from L0. Every vertex in K lies above some edge in this cycle and, thereby,
lies in the component C of this cycle by Lemma 5(i). Thus, every edge of �′ that is not present
in �̃ has an endpoint in the component C of �̃.

Let d be the maximum diameter over all components of �̃. By an application of Lemma 8
(with C as one of the two subgraphs; note that we may assume that no added edge connects
vertices in the same component, because this can only lower the diameter), we see that the
diameter of �′ is at most 3d + 2. This proves the second statement (with a larger value
of c). �

4. Probabilistic bounds

We are now ready to use the results from the previous sections to obtain (probabilistic)
bounds on the diameters of components in the KPKVB model. Recall from Section 2 that �α,λ

is a graph with vertex set Vα,λ, where two vertices (x, y) and (x′, y′) are connected by an edge
if and only if |x − x′|πeR/2 ≤ e(y+y′)/2. Here Vα,λ is the point set of the Poisson process with
intensity fα,λ = 1ER

λe−αy on ER = (−πeR/2/2, πeR/2/2] × [0, R] ⊂R
2.

Consistently with the previous sections, we define the subgraph �̃α,λ of �α,λ, induced by
the vertices in

Ṽα,λ := {(x, y) ∈ Vα,λ : y ≤ (�̃ + 1) log 2}.
In the remainder of this section all mention of active and inactive (boxes) will be with respect
to Ṽα,λ.

Our plan for the proof of Theorem 1 is to first show that, for λ = να/π, the graph �̃α,λ

satisfies the conditions in Lemma 9 for some D = O(R). In the final part of this section we spell
out how this result implies that a.a.s. all components of the KPKVB random graph G(N, α, ν)
have diameter O(R).
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We start by showing that Lemma 9(i) is a.a.s. satisfied by �̃α,λ. To do so, we need to estimate
the probability that a box is active if V is the point set Vα,λ of the Poisson process above. For
0 ≤ i ≤ �̃, let us write

pi = pi,α,λ := Pα,λ (B is active), (2)

where B ∈ Li is an arbitrary box in layer Li.

Lemma 10. For each 0 ≤ i < �̃, we have

pi = 1 − exp
[
− b

21−α

α
λ2(1−α)i

]
≥ 1 − exp

[
− 1

12
λ2(1−α)i

]
.

Proof. The expected number of points of Ṽα,λ that fall inside a box B in layer Li satisfies

E(|B ∩ Vα,λ|) =
∫ (i+1) log (2)

i log (2)

∫ 2ib

0
λe−αy dx dy = λb

1 − 2−α

α
2(1−α)i.

Since the number of points that fall in B follows a Poisson distribution and because b(1 −
2−α)/α ≥ 1

12 , the result follows. �
Lemma 11. There exists a λ0 such that if α = 1 and λ > λ0 then the following holds. Let E
denote the event that there exists a connected subgraph C ⊆ B with |C| > R such that at least
half of the boxes of C are inactive. Then P1,λ(E) = O(N−1000).

Proof. The proof is a straightforward counting argument. If C is a connected subset of the
boxes graph B and A ∈ C is a box of C, then there exists a walk P, starting at A, through all
boxes in C, that uses no edge in B more than twice (this is a general property of a connected
graph). Since the maximum degree of B is 8, the walk P visits no box more than 8 times.
Thus, the number of connected subgraphs of B of cardinality i is no more than |B| · 88i =
(2�+1 − 1) · 224i = eO(R) · 224i (using the definition of � given in (1)). Given such a connected
subgraph C of cardinality i > R, there are

( i
i/2

)
ways to choose a subset of cardinality i/2. Out

of any such subset at most 63 boxes lie above level �̃ by Lemma 3 and, by Lemma 10, each of
the remaining i/2 − 63 > i/4 is inactive with probability at most e−λ/12. This gives

P1,λ(E) ≤
∑
i>R

|B|88i
(

i

i/2

)
e−(i/2−63)λ/12

≤ eO(R)
∑
i>R

88i2ie−i/4λ/12

= eO(R)O((225e−λ/48)R)

= exp[O(R) − λ�(R)]

= O(N−1000),

where the third and fifth lines follow provided λ is chosen sufficiently large. �
Corollary 2. There exist constants c and λ0 such that if α = 1 and λ > λ0 then

P1,λ(there exist boxes A, A′ with |W̃(A, A′)| > cR) = O(N−1000).

Proof. We let λ0 be as provided by Lemma 11 and we take c := 5. We note that, for every
two boxes A, A′, the set W̃(A, A′) is a connected set and all boxes except for some of the
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FIGURE 9: (a) An h-block (in the figure h = 5). An h-block is the union of 2h − 1 boxes in the lowest
h layers. (b) Definition of a lonely block (used in the proof of Lemma 13). The lowest h layers are
partitioned into h-blocks. An h-block B in W ′ is called lonely if both boxes B1 and B2 lying above it are
not in W ′. If |W ′| > 3 and B is lonely, one of the blocks adjacent to B contains a horizontal path in W.

at most 2R boxes on L(A, A′) must be inactive by definition of W̃. Hence, if it happens that
|W̃(A, A′)| > 5R for some pair of boxes A, A′ then event E defined in Lemma 11 holds. The
corollary thus follows directly from Lemma 11. �

We now want to show that in the case when 1
2 < α < 1 and λ > 0 we also have that, with

probability very close to 1, |W̃(A, A′)| = O(R) holds for all A, A′. Recall that the probability
that a box in layer i is inactive is upper bounded by exp(−λ2(1−α)i/12) (this bound now
depends on i), which decreases rapidly if i increases. However, for small values of i, this
expression could be very close to 1, depending on the value of λ. In particular, we cannot hope
for something like Lemma 11 to hold for all 1

2 < α < 1 and λ > 0.
To gain control over the boxes in the lowest layers, we merge boxes in the lowest layers into

larger blocks. An h-block is defined as the union of a box in Lh−1 and all 2h − 2 boxes lying
below this box (see Figure 9(a)). In other words, an h-block consists of 2h − 1 boxes in the
lowest h layers that together form a rectangle. The following lemma shows that the probability
that an h-block contains a horizontal inactive path can be made arbitrarily small by taking h
large.

Let us denote the probability by

qh = qh,α,λ := Pα,λ(H has a vertical, active crossing), (3)

where H is an arbitrary h-block, and a ‘vertical, active crossing’ means a path of active boxes
(in B∗) inside the block connecting the unique box in the highest layer to a box in the bottom
layer.

Lemma 12. If α < 1 and λ > 0 then, for every ε > 0, there exists an h0 = h0(ε, α, λ) such that
qh > 1 − ε for all h0 ≤ h ≤ �̃.
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Proof. In the proof that follows, we shall always consider blocks that do not extend
above the horizontal line y = R/2, (i.e. boxes in layers h ≤ R/2 log 2 − 1) so that we can use
Lemma 10 to estimate the probability that a box is active.

An (h + 1)-block H consists of one box B in layer Lh and two h-blocks H1 and H2. There is
certainly a vertical, active crossing in H if B is active and either H1 or H2 has a vertical, active
crossing. In other words,

qh+1 ≥ ph(2qh − q2
h), (4)

where ph ≥ 1 − exp[− 1
12λ2(1−α)h] is the probability that B is active. We choose δ = δ(ε)

small, to be made precise shortly. Clearly there is an h0 such that ph > 1 − δ for all h0 ≤ h ≤ �̃.
Thus, it follows from (4) that qh+1 ≥ f (qh) for all such h, where f (x) = (1 − δ)(2x − x2). It is
easily seen that f has fixed points x = 0, (1 − 2δ)/(1 − δ), that x < f (x) < (1 − 2δ)/(1 − δ) for
0 < x < (1 − 2δ)/(1 − δ) and (1 − 2δ)/(1 − δ) < f (x) < x for (1 − 2δ)/(1 − δ) < x ≤ 1.
Therefore, using the fact that clearly 0 < qh0 < 1 (there is, for instance, a strictly positive
probability all boxes of the block H are active, respectively inactive), we must have
f (k)(qh0 ) → (1 − 2δ)/(1 − δ) as k → ∞, where f (k) denotes the k-fold composition of f with
itself. Hence, provided we choose δ = δ(ε) sufficiently small, there is a k0 = k0(ε) such that
qh0+k ≥ f (k)(qh0 ) > 1 − ε for all k0 ≤ k ≤ �̃ − h0. �
Lemma 13. For every α < 1 and λ > 0, there exists a c = c(α, λ) such that

Pα,λ(there exist boxes A and A′ with |W̃(A, A′)| > cR) = O(N−1000).

Proof. Let pi be as defined in (2) and qi as defined in (3). Let ε > 0 be arbitrary, but fixed,
to be determined later on in the proof. By Lemmas 10 and 12, there exists an h such that

p := min{qh, pi : h ≤ i ≤ �̃} > 1 − ε.

We now create a graph B′, modified from the boxes graph B, as follows. The vertices of B′
are the boxes above layer h, together with the h-blocks. Boxes or blocks are neighbors in B′ if
they share at least a corner. Note that the maximum degree of B′ is at most 8.

Given two boxes A, A′ ∈ B, we define W ′(A, A′) ⊆ B′ as the natural analogue of W̃(A, A′),
i.e. the set of all boxes of W̃(A, A′) above layer h together with all h-blocks that contain at least
one element of W̃(A, A′). Note that W ′(A, A′) is a connected set in B′ and that |W ′(A, A′)| ≥
|W̃(A, A)|/(2h − 1).

We will say that an h-block B is lonely if the two boxes in Lh adjacent to B both do not lie in
W̃(A, A′) (see Figure 9(b)). Observe that if B is lonely then at least one of the two neighbouring
blocks must have a horizontal, inactive crossing. This shows that

|blocks without an active, vertical crossing| ≥ 1
2 |lonely blocks|. (5)

Consider two boxes A, A′ ∈ B and assume that |W̃(A, A′)| > cR, where c is a large constant
to be made precise later. By a previous observation |W ′(A, A′)| ≥ (c/(2h − 1))R = : dR. We
distinguish two cases.

Case (a): at least |W ′(A, A′)|/100 of the elements of W ′(A, A′) are boxes (necessarily
above layer h). Subtracting the at most 63 boxes of levels �̃ + 1, . . . , � and the at most 2R
boxes of L(A, A′), we see that at least |W ′(A, A)|/100 − (2R + 63) ≥ |W ′(A, A′)|/1000 boxes
of W ′(A, A′) must be inactive and lie in levels h, . . . , �̃. (Here the inequality holds assuming
that |W ′(A, A′)| ≥ dR with d sufficiently large.)
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Case (b): at most |W ′(A, A′)|/100 of the elements of W ′(A, A′) are boxes. Hence, at least
99
100 |W ′(A, A′)| of the elements of W ′(A, A′) are h-blocks. Of these, at least 97

100 |W ′(A, A′)|
blocks must be lonely, since each box of W ′ is adjacent to no more than two h-blocks of W ′.
Thus, by the previous observation (5), at least 97

200 |W ′(A, A′)| ≥ |W ′(A, A′)|/1000 elements of
W ′ are blocks without a vertical, active crossing.

Combining the two cases, we see that either W ′ contains |W ′(A, A′)|/1000 inactive boxes in
the levels h, . . . , �̃, or W ′ contains |W(A, A′)|/1000 blocks without a vertical, active crossing.
Summing over all possible choices of A, A′ and all possible sizes of W ′(A, A′), we see that

Pα,λ(there exist A, A′ with |W̃(A, A′)| > cR) ≤ |B|2
∑
i≥dR

88i(1 − p)i/1000

≤ |B|2
∑
i≥dR

(88ε1/1000)i

= |B|2O((88ε1/1000)dR)

= exp[O(R) − d�(R)]

= O(N−1000),

where the factor 88i in the first line is a bound on the number of connected subsets of
B′ of cardinality i that contain A, A′; the third line holds provided ε is sufficiently small
(ε < 8−8000 will do); and the last line holds provided c (and, thus, also d = c/(2h − 1)) was
chosen sufficiently large. �

We now turn to the proof of (ii) of Lemma 9.

Lemma 14. If either

(i) 1
2 < α < 1 and λ > 0 is arbitrary, or

(ii) α = 1 and λ is sufficiently large,

then it holds with probability 1 − O(N−1000) that there are no inactive paths in B from L0 to
K := {(x, y) ∈ ER : y > R/4}.

Proof. Since only the boxes below the line y = R/2 are relevant, we can freely use
Lemma 10. Note that an inactive path in B from L0 to K would have length at least R/4
(the height of each layer equals log 2 < 1) and that it would have a subpath of length at least
R/8 that lies completely in {(x, y) : y > R/8}. Let q be the maximum probability that a box
between the lines y = R/8 and y = R/2 is inactive. Since there are exp(O(R)) boxes and at
most 9k paths of length k starting at any given box, the probability that such a subpath exists
is at most exp(O(R))9R/8qR/8 = exp(O(R) + log (q)R/8). If α = 1 then q ≤ exp(−λ/12), which
can be chosen arbitrarily small by choosing λ sufficiently large. For sufficiently small q, we
then have exp(O(R) + log (q)R/8) ≤ exp(−R/2) = O(N−1000) and, therefore, such a path does
not exist with probability 1 − O(N−1000). If α < 1, we have q ≤ exp(−λ/12 · 2(1−α)R/8) and
it follows that exp(O(R) + log (q)R/8) = exp(O(R) − λ/12 · 2(1−α)R/8 · R/8) = exp(−ω(R)), so
we can draw the same conclusion. �

We are almost ready to finally prove Theorem 1, but it seems helpful to first prove a version
of the theorem for GPo, the Poissonized version of the model.
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Proposition 1. (Theorem 1 for GPo.) If either

(i) 1
2 < α < 1 and ν > 0 is arbitrary, or

(ii) α = 1 and ν is sufficiently large,

then, a.a.s., every component of GPo(N; α, ν) has diameter O(log (N)).

Proof. Let G̃Po be the subgraph of GPo induced by the vertices of radii larger than
R − (�̃ + 1) log 2. (Here �̃ := �R/2 log 2� − 1 is as before.) By the triangle inequality, all
vertices of GPo with distance at most R/2 from the origin form a clique. Moreover, by
Lemmas 1, 2, and 3, a.a.s. the vertices of GPo with radii between R/2 and R − (�̃ + 1) log 2 can
be partitioned into up to 63 cliques corresponding to the boxes above level �̃. In other words,
a.a.s., G̃Po can be obtained from GPo by successively removing up to 64 cliques. Therefore, by
up to 64 applications of Lemma 8, it suffices to show that a.a.s. every component of G̃Po has
diameter O(log N). Again invoking Lemmas 1 and 2 as well as Lemma 9, it thus suffices to
show that a.a.s. �̃α,να/π satisfies conditions (i) and (ii) of Lemma 9. This is taken care of by
Corollary 2 and Lemma 14 in the case when α = 1 and ν is sufficiently large, and Lemmas 13
and 14 in the case when α < 1 and ν > 0 is arbitrary. �

Finally, we are ready to give a proof of Theorem 1.

Proof of Theorem 1. Let us point out that GPo conditioned on Z = N has exactly the same
distribution as G = G(N; α, ν). We can therefore repeat the previous proof, where we substitute
the use of Lemmas 1 and 2 by Corollary 1, but with one important additional difference.
Namely, now we have to show that �̃α,να/π satisfies conditions (i) and (ii) of Lemma 9
a.a.s. conditional on Z = N. To this end, let E denote the event that �̃α,να/π fails to satisfy
one or both conditions. By Corollary 2, respectively Lemma 13, and Lemma 14, we have
P(E) = O(N−1000). Using the standard fact that P( Po (N) = N) = �(N−1/2), it follows that

P(E | Z = N) ≤ P(E)

P(Z = N)
= O(N−1000)

�(N−1/2)
= o(1),

as required. �

5. Discussion and further work

In this paper we have given an upper bound of O(log N) on the diameter of the components
of the KPKVB random graph, which holds when 1

2 < α < 1 and ν > 0 is arbitrary and when
α = 1 and ν is sufficiently large. Our upper bound is sharp up to the leading constant hidden
inside the O( · )-notation.

The proof proceeds by considering the convenient idealized model introduced by
Fountoulakis and the first author [7], and a relatively crude discretization of this idealized
model. The discretization is obtained by dissecting the upper half-plane into rectangles
(‘boxes’) and declaring a box active if it contains at least one point of the idealized model.
With a mix of combinatorial and geometric arguments, we are then able to give a deterministic
upper bound on the component sizes of the idealized model in terms of the combinatorial
structure of the active set of boxes, and, finally, we apply Peierls-type arguments to give
a.a.s. upper bounds for the diameters of all components of the idealized model and the KPKVB
model.
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We should also remark that the proof in [5] that G(N; α, ν) is a.a.s. connected when α < 1
2

in fact shows that the diameter is a.a.s. O(1) in this case. What happens with the diameter when
α = 1

2 is an open question.
What happens when α > 1 or α = 1 and ν is arbitrary is another open question. In the latter

case our methods seem to break down at least partially. We expect that the relatively crude
discretization we used in the current paper will not be helpful here and a more refined proof
technique will be needed.

Another natural question is to see whether one can say something about the difference
between the diameter of the largest component and the other components. We remark that, by
the work of Friedrich and Krohmer [9], the largest component has diameter �(log N) a.a.s.,
but their argument can easily be adapted to show that there will be components other than the
largest component that have diameter �(log N) as well.

Another natural, possibly quite ambitious, goal for further work would be to determine the
leading constant (i.e. a constant c = c(α, ν) such that the diameter of the largest component is
(c + o(1)) log N a.a.s.) if it exists, or indeed even just to establish the existence of a leading
constant without actually determining it. We would be especially curious to know if anything
special happens as ν approaches νc.

We have only mentioned questions directly related to the graph diameter here. To the best
of our knowledge the study of (most) other properties of the KPKVB model is largely virgin
territory.

Appendix A. The proof of Corollary 1

We show that Lemmas 1 and 2 hold when conditioned on Z = N. Recall that we say that an
event A happens a.a.s. conditional on B if P(A | B) → 1 as N → ∞.

Lemma 15. (Lemma 1 conditional on Z = N.) Let α > 1
2 . On the coupling space of Lemma 1,

conditional on Z = N, a.a.s. Vνα/π is the image of the vertex set of GPo under 	.

Proof. Write V = {X1, . . . , XZ} and Ṽ = Vνα/π . As in [7], there are independent Poisson
processes P0, P1, and P2 on ER such that 	(V) = P0 ∪ P1, Ṽ = P0 ∪ P2 and E|P1|, E|P2| =
o(1). We now find that

P(Ṽ = 	(V) | Z = N) = P(|P1| = |P2| = 0 | |P0| + |P1| = N)

= P(|P1| = 0 | |P0| + |P1| = N)P(|P2| = 0)

because P0, P1, and P2 are independent. From E|P2| = o(1), it follows that P(|P2| = 0) =
1 − o(1). Furthermore, since the conditional distribution of a Poisson distributed variable
given its sum with an independent Poisson distributed variable is binomial, we have P(|P1| =
0 | |P0| + |P1| = N) = (N

N

)
(1 −E|P1|/N)N = (1 − o(1)/N)N = 1 − o(1), from which it fol-

lows that P(Ṽ = 	(V) | Z = N) = 1 − o(1). �
Lemma 16. (Lemma 2 conditional on Z = N.) Let α > 1

2 . On the coupling space of Lemma 1,
conditional on Z = N, a.a.s. it holds for 1 ≤ i, j ≤ Z that

(i) if ri, rj ≥ 1
2 R and X̃iX̃j ∈ E(�α,να/π ), then XiXj ∈ E(GPo);

(ii) if ri, rj ≥ 3
4 R then X̃iX̃j ∈ E(�α,να/π ) if and only if XiXj ∈ E(GPo).

Here ri and rj denote the radial coordinates of Xi, Xj ∈ DR.
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Proof. Let A denote the event that (i) or (ii) fails for some i, j ≤ Z, and let B denote the
event that (i) or (ii) fails for some i, j ≤ min (N, Z). It follows that

P(B | Z ≥ N) ≤ P(B)

P(Z ≥ N)
≤ P(A)

P(Z ≥ N)
N→∞−→ 0

1/2
= 0, (6)

because P(A) → 0 by Lemma 2 and P(Z ≥ N) → 1
2 by the central limit theorem. Next, let us

observe that P(B | Z = N) = P(B | Z = N + 1) = · · · since the points with index greater than
min (N, Z) are irrelevant for the event B. From this, it follows that

P(B | Z ≥ N) =
∑

i≥N P(B | Z = i)P(Z = i)∑
i≥N P(Z = i)

= P(B | Z = N). (7)

Combining (6) and (7), we see that P(B | Z = N) = o(1), as desired. �
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