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GORENSTEIN DUALITY FOR REAL SPECTRA
J.P.C.GREENLEES AND L.MEIER

ABSTRACT. Following Hu and Kriz, we study the Cs-spectra BPR(n) and ER(n) that
refine the usual truncated Brown—Peterson and the Johnson—Wilson spectra. In particular,
we show that they satisfy Gorenstein duality with a representation grading shift and identify
their Anderson duals. We also compute the associated local cohomology spectral sequence
in the cases n =1 and 2.
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1. INTRODUCTION

1.A. Background.

Philosophy. For us, Real spectrum is a loose term for a Cs-spectrum built from the Cs-
spectrum MR of Real bordism, considered by Araki, Landweber and Hu-Kriz [HKO1]. The
present article shows that bringing together Real spectra and Gorenstein duality reveals rich
and interesting structures.

It is part of our philosophy that theorems about Real spectra can often be shown in the
same style as theorems for the underlying complex oriented spectra although the details
might be more difficult, and groups needed to be graded over the real representation ring
RO(Cy) (indicated by ¥ ) rather than over the integers (indicated by *). This extends a well
known phenomenon: complex orientability of equivariant spectra makes it easy to reduce
questions to integer gradings, and we show that even in the absence of complex orientability,
good behaviour of coefficients can be seen by grading with representations.

Bordism with reality. In studying these spectra, the real regular representation p = RC,
plays a special role. We write o for the sign representation on R so that p =1+ 0. One of
the crucial features of MR is that it is strongly even in the sense of [HM16], i.e.

(1) the restriction functor w,fg MR — 79, MU is an isomorphism for all k£ € Z, and
(2) the groups ﬂ,f;f_lMR are zero for all k € Z.

We now localize at 2, and (with two exceptions) all spectra and abelian groups will hence-
forth be 2-local. The Quillen idempotent has a Cy-equivariant refinement, and this defines
the Cy-spectrum BPR as a summand of MR,). The isomorphism allows us to lift the

usual v; to classes v; € W(CQQ_I)

BPR by sequences of 7; and localizations thereof. For example, we can follow [HK0I] and
[Hu02] and define

pBPR. The Real spectra we are interested in are quotients of

BPR(n) = BPR/(Up+1, Unt2,---)
and
ER(n) = BPR({n)[v,].

These spectra are still strongly even, as we will show. Apart from the big literature on
K-theory with Reality (e.g. [Ati66], [Dug05] and [BGI10]), Real spectra have been studied
by Hu and Kriz, in a series of papers by Kitchloo and Wilson (see e.g. [KW15| for one of
the latest installments), by Banerjee [Banl3|, by Ricka [Ricl4] and by Lorman [Lorl6]. A
crucial point is that a morphism between strongly even Cs-spectra is an equivalence if it is
an equivalence of underlying spectra [HM16, Lemma 3.4].

We are interested in two dualities for Real spectra: Anderson duality and Gorenstein
duality. These are closely related [GS17] but apply to different classes of spectra.

Anderson duality. The Anderson dual Z* of a spectrum X is an integral version of its Brown-
Comenetz dual (in accordance with our general principle, Z denotes the 2-local integers).
The homotopy groups of the Anderson dual lie in a short exact sequence

(1.1) 0 — Exty (7« 1X,Z) = 7.(Z~) — Homy(r_.X,Z) — 0.

One reason to be interested in the computation of Anderson duals is that they show

up in universal coefficient sequences (see [And69] or Section [3.B]). The situation is nicest
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for spectra that are Anderson self-dual in the sense that Z* is a suspension of X. Many
important spectra like KU, KO, Tmf [Stol2] or T'mf1(3) are indeed Anderson self-dual.
These examples are all unbounded as the sequence nearly forces them to be.

Anderson duality also works Cy-equivariantly as first explored by [Ric14]; the only change
in the above short exact sequence is that equivariant homotopy groups are used. The Cs-
spectra KR [HS14] and T'mf,(3) [HM16] are also Cy-equivariantly self-Anderson dual, at
least if we allow suspensions by representation spheres.

One simpler example is essential background: if Z denotes the constant Mackey functor
(i.e., with restriction being the identity and induction being multiplication by 2) then the
Anderson dual of its Eilenberg-MacLane spectrum is the Eilenberg-MacLane spectrum for
the dual Mackey functor Z* = Homgy(Z,Z) (i.e., with restriction being multiplication by 2
and induction being the identity). It is then easy to check that in fact H(Z*) ~ X2~V HZ.
(From one point of view this is the fact that RP! = S(20)/ C; is equivalent to the circle).
The dualities we find are in a sense all dependent on this one.

Gorenstein duality. By contrast with Anderson self-duality, many connective ring spectra
are Gorenstein in the sense of [DGI06G]. We sketch the theory here, explaining it more fully
in Sections [ and [7

The starting point is a connective commutative ring Cy-spectrum R, whose Oth homotopy
Mackey functor is constant at Z:

m5*(R) = Z.
This gives us a map R — HZ of commutative ring spectra by killing homotopy groups.
We say that R is Gorenstein of shift a € RO(Cy) if there is an equivalence of R-modules

Homg(HZ, R) ~ X*HZ.
We are interested in the duality this often entails. Note that the Anderson dual Z%F
obviously has the Matlis lifting property
Homp(HZ, 7Z") ~ HZ,
where Z* = Homy(Z,Z) as above. Thus if R is Gorenstein, in view of the equivalence
H(Z*) ~ ¥*'=9) {7, we have equivalences
Hompg(HZ,CellyzR) ~ Homg(HZ, R)
~Y'HZ
~ 2“72(1*")1-[(2*)
~ Homp(HZ, 20 21=) 7k,
Here, Cellyz denotes the HZ-R-cellularization as in Section . We would like to remove

the Homp(HZ,-) from the composite equivalence above.

Definition 1.2. We say that R has Gorenstein duality of shift b if we have an equivalence
of R-modules

CellgzR ~ P72,

As in the non-equivariant setting, the passage from Gorenstein to Gorenstein duality
requires showing that the above composite equivalence is compatible with the right action
of & = Homgr(HZ,HZ). This turns out to be considerably more delicate than the non-

equivariant counterpart because connectivity is harder to control; but if one can lift the
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R-equivalence to an £-equivalence, the conclusion is that if R is Gorenstein of shift a then
it has Gorenstein duality of shift b = a — 2(1 — o).

Local cohomology. The duality statement becomes more interesting when the cellularization
can be constructed algebraically. For any finitely generated ideal J of the RO(Cy)-graded
coefficient ring R?, we may form the stable Koszul complex I' ; R, which only depends on the

radical of J. In our examples, this applies to the augmentation ideal J = ker(RiQ — H Z%),
which may be radically generated by finitely many elements v; in degrees which are multiples
of p. Adapting the usual proof to the Real context, Proposition shows that I'yR — R
is HZ-R-cellularization:

CeHHzR ~ FJR
The RO(Cy)-graded homotopy groups of I'yR can be computed using a spectral sequence
involving local cohomology.

Conclusion. In favourable cases the Gorenstein condition on a ring spectrum R implies
Gorenstein duality for R; this in turn establishes a strong duality property on the RO(Cs)-
graded coefficient ring, expressed using local cohomology.

1.B. Results. Our main theorems establish Gorenstein duality for a large family of Real
spectra. We present in this introduction the particular cases of BPR(n) and ER(n), deferring
the more general theorem to Section [5] Let again ¢ denote the non-trivial representation
of Cy on the real line and p = 1 + o the real regular representation. Furthermore set
D, = 2" —n — 2 so that D,p = |[v1] + - -+ + |v,|. Other terms in the statement will be
explained in Section

Theorem 1.3. For each n > 1 the Cy-spectrum BPR(n) is Gorenstein of shift —D,p —n,
and has Gorenstein duality of shift —D,p —n — 2(1 — o). This means that

where J, = (Ty,...,0,). This induces a local cohomology spectral sequence
* —Dpp—n— —0 BPR(n
H3 (BPR(n)$?) = w2 (5 Premn-2-)z 208,

Theorem 1.4. For each n > 1 the Cy-spectrum ER(n) has Gorenstein duality of shift
—Dyup—(n—1)—2(1 —0). This means that
ER(n n— —0
2o o $Pupt (D200 BR(p)

(2)
~ DT 3D R ()

for J,_1 = o1 N WEQ ER(n). This induces likewise a local cohomology spectral sequence.

We note that this has implications for the Cy-fixed point spectrum (BPR(n))®? = BPR(n).
The graded ring
m.(BPR(n)) = 7%2(BPR(n))
is the integer part of the RO(Cz)-graded coeflicient ring WiQ(BPR<n>). However, since the

ideal J, is not generated in integer degrees, the statement for BPR(n) is usually rather

complicated, and one of our main messages is that working with the equivariant spectra
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gives more insight. On the other hand, ER(n) = ER(n)%? has integral Gorenstein duality
because one can use the additional periodicity to move the representation suspension and
the ideal J,, to integral degrees.

We will discuss the general result in more detail later, but the two first cases are about
familiar ring spectra.

Example 1.5. (See Sections @ and ) For n = 1, connective K-theory with Reality kR is
2-locally a form of BPR(1). For this example we can work without 2-localization, so that Z
means the integers. Our first theorem states that kR is Gorenstein of shift —-p—1=-2—¢
and that it has Gorenstein duality of shift —4 + ¢. This just means that

ZM ~ ¥ fib(kR — KR).

The local cohomology spectral sequence collapses to a short exact sequence associated to the
fibre sequence just mentioned. We will see in Section (11| that the sequence is not split, even
as abelian groups.

Theorem [1.4| recovers the main result of [HS14], i.e. that ZX® ~ 34 KR, which also implies
ZKO ~ YAKO. 1t is a special feature of the case n = 1 that we also get a nice duality
statement for the fixed points in the connective case. Indeed, by considering the RO(C5)-
graded homotopy groups of kR, one sees [BG10, 3.4.2] that

(R ® S79)2 ~ ¥lko.
This implies that connective ko has untwisted Gorenstein duality of shift —5, i.e. that
7k ~ ¥5fib(ko — KO).

This admits a closely related non-equivariant proof, combining the fact that ku is Gorenstein
(clear from coefficients) and the fact that complexification ko — ku is relatively Gorenstein
(connective version of Wood’s theorem [BG10, 4.1.2]).

Example 1.6. (See Examples 4.13| and [5.12| or Lemma and Corollary [7.5]) The 2-
localization of the Cy-spectrum tmfi(3) is a form of BPR(2), and the theorem is closely
related to results in [HM16]. It states that tmf;(3) is Gorenstein of shift —4p —2 = —6 — 4o
and has Gorenstein duality of shift —8 —20. We show in Section [13|that there are non-trivial
differentials in the local cohomology spectral sequence.

Passing to fixed points we obtain the 2-local equivalence

BPR(2) = (BPR(2))%2 = tmfy(3).

By contrast with the n = 1 case, as observed in [HMI6], ¢tm fy(3) does not have untwisted
Gorenstein duality of any integer degree.

A variant of Theorem also computes the Cy-equivariant Anderson dual of T'M F}(3)
and the computation of the Anderson dual of Tm f(3) from [HMI6] follows as well.

The results apply to tmf1(3) and TM F(3) themselves (i.e., with just 3 inverted, and not
all other odd primes).

We remark that our main theorem also recovers the main result of [Ricl4] about the

Anderson self-duality of integral Real Morava K-theory.
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1.C. Guide to the reader. While the basic structure of this paper is easily visible from
the table of contents, we want to comment on a few features.

The precise statements of our main results can be found in Section 5 We will give two
different proofs of them. One (Part 3) might be called ‘the hands on approach’” which is ele-
mentary and explicit, and one (Part 2) uses Gorenstein techniques inspired by commutative
algebra. The intricacy and dependence on specific calculations in the explicit approach and
the make the conceptual approach valuable. The subtlety of the structural requirements of
the conceptual approach make the reassurance of the explicit approach valuable. The exact
results proved in Parts 2 and 3 are also slightly different.

While the Gorenstein approach only relies on the knowledge of the homotopy groups
of HZ and the reduction theorem Corollary 1.7, we need detailed information about the
homotopy groups of quotients of BPR for the hands-on approach. In Appendix [A] we give
a streamlined account of the computation of 7$* BPR (which appeared first in [HKO01]). In
Section , we give a rather self-contained account of the homotopy groups of BPR(n) and
of other quotients of BPR, which can also be read independently of the rest of the paper.
While some of this is rather technical, most of the time we just have to use Corollary
whose statement (though not proof, perhaps) is easy to understand.

We give separate arguments for the computation of the Anderson dual of kR so that this
easier case might illustrate the more complicated arguments of our more general theorems.
Thus, if the reader is only interested in kR, he or she might ignore most of this paper. More
precisely, under this assumption one might proceed as follows: First one looks at Section
for a quick reminder on 7r§2 kR, then one skims through Sections and ‘to pick up
the relevant definitions and then one proceeds directly to Section [6] or ctlon to get the
proof of the main result in the case of kR. Afterwards one may look at the pictures and
computations in the rest of Section [11]to see what happens behind the scenes of Gorenstein
duality.

Part 1. Preliminaries and results

2. BASICS AND CONVENTIONS ABOUT (5-SPECTRA

2.A. Basics and conventions. We will work in the homotopy category of genuine G-
spectra (i.e., stable for suspensions by SV for any finite dimensional representation V') for
G = Csy, the group of order 2. We will denote by ® the derived smash product of spectra.

We may combine the equivariant and non-equivariant homotopy groups of a Csy-spectrum
into a Mackey functor, which we denote by 7¢2X and denote Cy-equivariant and underlying
homotopy groups correspondingly by 72X and 7¢X. For an abelian group A, we write A
for the constant Mackey functor (i.e., restriction maps are the identity), and A* for its dual
(i.e., induction maps are the identity). We write HM for the Eilenberg-MacLane spectrum
associated to a Mackey functor M.

Another Cs-spectrum of interest to us is kR, the Ch-equivariant connective cover of

Atiyah’s K-theory with Reality [Ati66]. The term “Real spectra” derives from this example.
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The examples of Real bordism and the other Cs-spectra derived from it will be discussed in
Section [l

We will usually grade our homotopy groups by the real representation ring RO(C,), and
we write My for RO(C,)-graded groups. In addition to the real sign representation o and the
regular representation p the virtual representation 6 = 1 — ¢ is also significant. Examples
of RO(Cy)-graded homotopy classes are the geometric Euler classes ay: S° — SV; in
particular, a = a, will play a central role. In addition to a, we will also often have a class
u = ug, of degree 2.

We often want to be able to discuss gradings by certain subsets of RO(Cs). To start with
we often want to refer to gradings by multiples of the regular representation (where we write
M,,), but we also need to discuss gradings of the form kp — 1. For this, we use the notation

sp— = {kp | k€ ZYU{kp—1|k € Z}.

Following [HM16] we call an RO(Cs)-graded object M even if My, 1 = 0 for all k. An
RO(Cy)-graded Mackey functor is strongly even if it is even and all the Mackey functors in
gradings kp are constant. We call a Cs-spectrum (strongly) even if its homotopy groups are
(strongly) even.

If X is a strongly even Cs-spectrum and x € mo X, we denote by T its counterpart in
W%X . If we want to stress that we consider a certain spectrum as a Cy-spectrum, we will

also sometimes indicate this by a bar; for example, we may write ¢tm f;(3) if we want to stress
the Cy-structure of tm f1(3).

2.B. Cellularity. In a general triangulated category, it is conventional to say M is K-
cellular if M is in the localizing subcategory generated by K (or equivalently by all integer
suspensions of K). A reference in the case of spectra is [DGI06, Sec 4.1]. We say that a
Cy-spectrum M is K-R-cellular (for a Cy-spectrum K) if it is in the localizing subcategory
generated by the suspensions S* ® K for all integers k. We note that this is the same as
the localizing subcategory generated by integer suspensions of K and (Cy); ® K because of
the cofibre sequence
(Co)y — S° — S7.
We say that a map N — M is a K-R-cellularization if N is K-R-cellular and the induced
map
Hom(K, N) — Hom(K, M)

is an equivalence of Cy-spectra. The K-R-cellularization is clearly unique up to equivalence.
We note that cellularity and R-cellularity are definitely different. For example (Cs)y is
not S°-cellular, but it is S°-R-cellular.
In this article, we will only use R-cellularity.

2.C. The slice filtration. Recall from [HHRI16, Section 4.1 or [Hill2] that the slice cells
are the Cy-spectra of the form

e S*» of dimension 2k,
o S#r=1 of dimension 2k — 1, and
o S*® (Cy), of dimension k.

A Cy-spectrum X is < k if for every slice cell W of dimension > k + 1 the mapping space

Q>*Homg(W, X) is equivariantly contractible. As explained in [HHR16, Section 4.2], this
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leads to the definition of X — P*X, which is the universal map into a Cy-spectrum that is
< k. The fibre of

X — P'X
is denoted by Py, X. The k-slice PFX is defined as the fibre of
P*X — P"'X

or, equivalently, as the cofibre of the map P,.1 X — P, X. We have the following two useful
propositions:

Proposition 2.1 ([Hil12], Cor 2.12, Thm 2.18). If X is an even Cq-spectrum, then P2~ X =
0 for all k € Z.

Proposition 2.2 ([Hill2], Cor 2.16, Thm 2.18). If X is a Cy-spectrum such that the restric-
tion map in ggj is injective, then PX is equivalent to the Eilenberg-MacLane spectrum

Co
EkpX.

This allows us to give a characterization of an Eilenberg-MacLane spectrum based on
regular representation degrees.

Corollary 2.3. Any even Cy-spectrum X with

A ifk=0
Cao X — =
Thp (X) {0 else

for an abelian group A is equivalent to HA.

Proof: By the last two propositions, we have

HA ifk=
P,fXﬁ{_ itk=0

0 else

By the convergence of the slice spectral sequence [HHRI16, Theorem 4.42], the result fol-
lows. O]

3. ANDERSON DUALITY, KOSZUL COMPLEXES AND (GORENSTEIN DUALITY

3.A. Duality for abelian groups. It is convenient to establish some conventions for
abelian groups to start with, so as to fix notation.
Pontrjagin duality is defined for all graded abelian groups A by

AY = Homgz(A,Q/Z).
Similarly, the rational dual is defined by
AY? = Homgy(A, Q).

Since Q and Q/Z are injective abelian groups these two dualities are homotopy invariant
and pass to the derived category. Finally the Anderson dual A* is defined by applying
Homy(A, -) to the exact sequence

0—72—>Q—Q/Z—0
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so that we have a triangle
A* — AV 5 AV,
If M is a free abelian group, then the Anderson dual is simply calculated by
M* = Homgy(M,Z)

(since M is free, the Hom need not be derived).
If M is a graded abelian group which is an Fo-vector space then up to suspension the
Anderson dual is the vector space dual:

MY = Homg, (M, Fy) ~ S~ M*

(since vector spaces are free, Hom need not be derived).

3.B. Anderson duality. Anderson duality is the attempt to topologically realize the alge-
braic duality from the last subsection. It appears that it was invented by Anderson (only
published in mimeographed notes [And69]) and Kainen [Kai71], with similar ideas by Brown
and Comenetz [BCT76]. For brevity and consistency, we will only use the term Anderson dual-
ity instead of Anderson—Kainen duality or Anderson—Brown—Comenetz duality throughout.
We will work in the category of Cs-spectra, where Anderson duality was first explored by
Ricka in |Ric14].

Let I be an injective abelian group. Then we let I® denote the Cy-spectrum representing
the functor

X — Hom(r%2 X, I).

For an arbitrary Cs-spectrum, we define X as the function spectrum F(X, I®). For a general
abelian group A, we choose an injective resolution

A—=T—J
and define A% as the fibre of the map I* — JX. For example, we get a fibre sequence
7Z* — Q* — (Q/Z)*.
In general, we get a short exact sequence of homotopy groups
0 — Extz (72 _(X), A) = 72(A%) = Hom (7% (X), A) — 0.

The analogous exact sequence is true for RO(Cs)-graded Mackey functor valued homotopy
groups by replacing X by (Co/H), A XV X. Our most common choices will be A = Z and

From time to time we we use the following property of Anderson duality: If R is a
strictly commutative Co-ring spectrum and M an R-module, then Homp(M, A®) ~ AM
as R-modules as can easily be seen by adjunction.

One of the reasons to consider Anderson duality is that it provides universal coefficient
sequences. In the Cy-equivariant world, this takes the following form [Ricl14, Proposition
3.11]:

0 — Bxty(ES2,(X), A) = (AP)$2(X) — Homy(ES?(X), A) — 0,

(67

where E and X are Cs-spectra, a € RO(Cy) and A is an abelian group.
Our first computation is the Anderson dual of the Eilenberg—-MacLane spectrum of the
constant Mackey functor Z
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Lemma 3.1. The Anderson dual of the Eilenberg-MacLane spectrum HZ (as an S-module)
s given by

7ML ~ H7* ~ Y HYZ,
where 6 =1 —o.

Proof: The first equivalence follows from the isomorphisms
6 (ZM2) 2= Homy (2 HZ, 7) = L.
Since
7T*CQ (52—20 ® HZ) _ HéQ (5420—2; Z) _ H*(S2a—2/ CZ; Z),
and S* = S % S(20) is the unreduced suspension of of S(20), the second equivalence is a
calculation of the cohomology of RP?! . O

Remark 3.2. This proof shows that if Cs is replaced by a cyclic group of any order we still
have

ZHE — H7* ~ S HZ
where A = € — « (with € the trivial one dimensional complex representation and « a faithful
one dimensional representation).

Anderson duality works, of course, also for non-equivariant spectra. We learned the fol-
lowing proposition comparing the equivariant and non-equivariant version in a conversation
with Nicolas Ricka.

Proposition 3.3. Let A be an abelian group. We have (AX)% ~ AX?) for cvery Cy-
spectrum X .

Proof: Let infng denote the inflation of a spectrum Y to a Ch-spectrum with ‘trivial
action’; i.e. the left derived functor of first regarding it as a naive Cy-spectrum with trivial
action and then changing the universe. This is the (derived) left adjoint for the fixed point
functor [MMO02, Prop 3.4].

Let I be an injective abelian group. Then there is for every spectrum Y a natural isomor-
phism

[V, (1)) = [infg?Y, 1%
>~ Hom(n§?(infS?Y @ X), I)
>~ Hom(mo(Y ® X), 1)
~ [y, [X7)],

Here, we use that fixed points commute with filtered homotopy colimits and cofibre se-
quences and therefore also with smashing with a spectrum with trivial action. Thus, there
is a canonical isomorphism in the homotopy category of spectra between (X “) and (I%)¢>
that is also functorial in I (by Yoneda). For a general abelian group A, we can write AXX )
as the fibre of (I9)X“® — (I")X (and similarly for the other side) for an injective resolution

0 — A — I° — I'. Thus, we obtain a (possibly non-canonical) equivalence between AX?)
and (AX)C2, O

10



Remark 3.4. An analogous result holds, of course, for every finite group G.

3.C. Koszul complexes and derived power torsion. Let R be a non-equivariantly
Cs-ring spectrum and M be an R-module. In this section we will recall two versions of
stable Koszul complexes. Among their merits is that they provide models for cellularization
or R-cellularization in cases of interest for us. A basic reference for the material in this
section is [GM95a].

As classically, the r-power torsion in a module N can be defined as the kernel of N — N [%],

we define the derived J-power torsion of M with respect to an ideal J = (z1,...,2,) C
W§2<R) as

1 1

1 n
This is also sometimes called the stable Koszul complex and also denoted by K(x1,...,x,).

As shown in [GM95al Section 3|, this only depends on the ideal J and not on the chosen
generators. As algebraically, the derived functors of J-power torsion are the local cohomology
groups, we might expect a spectral sequence computing the homotopy groups of I';M in
terms of local cohomology. As in [GM95al Section 3], this takes the form

(3.5) Hy(7S2 M) = 52 (T, M).

Our second version of the Koszul complex can be defined in the one-generator case as
rr(z) = holim ©U-DIEIR /4!
—

for x € 7TS,2(R). Here, the map R/z' — Y7*IR/2™*! is induced by the diagram of cofibre
sequences

SR -2 R R/z!

S

SR L kR s el R gt

More generally, we can make for a sequence x = (z1,...,2,) in 73?(R) the definition

/iR(X; M) = liR(Jil) ®R cee ®R KR(xn) ®R M

~ hol}m (=D =Dl gyl )

The spectrum kg (z) comes with an obvious filtration by X(=9I#l R /2! with filtration quo-
tients ¥~1*IR/x. We can smash these filtrations together to obtain a filtration of kp(x)
with filtration quotients wedges of summands of the form Y —hlzl==tlealR /(3 .. 2,) (see
[Til13] 1.3.11-12] or [Til16) 2.8, 2.12]). Using the following lemma, we obtain also a corre-
sponding filtration on I';R.

Lemma 3.6. For x as above, we have
kp(x) ~ Sloil-Flenp )

Proof: See [GM95a, Lemma 3.6]. O
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We can also define kg(x; M) (and likewise the other versions of Koszul complexes) for an
infinite sequence of x; by just taking the filtered homotopy colimit over all finite subsequences.
Usually Lemma [3.6] breaks down in the infinite case.

Remark 3.7. The homotopy colimit defining rkg(x; M) has a directed cofinal subsystem,
both in the finite and in the infinite case. Indeed, the colimit ranges over all sequences
(I1,1s,...) with only finitely many entries nonzero. For the directed subsystem, we start
with (0,0, ...) and raise in the n-th step the first n entries by 1. Directed homotopy colimit
are well-known to be weak colimits in the homotopy category of R-modules, i.e. every system
of compatible maps induces a (possibly non-unique) map from the homotopy colimit [Mar83),

Sec 3.1] [Sch12) Sec I1.5].

One of the reason for introducing I' ;M is that it provides a model for the R-cellularization
of M with respect to R/J = (R/x1) ®g -+ ®g (R/x,) in the sense of Section

Proposition 3.8. Suppose that x1 ..., x, € W%R and set J = (x1,...,x,). Then 'yM —
M is a R-cellularization with respect to R/J in the (triangulated) category of R-modules.

Proof: Clearly, kg(x1,...,2,; M) is R-cellular with respect to M/J; furthermore M/J is
R/ J-R-cellular as clearly M is R-cellular. To finish the proof, we have to show that

Hompg(R/J,T' M) — Hompg(R/J, M)

is an equivalence. Note that I';M = I'y (',
show that

yM). Thus, it suffices by induction to

Hompg(A/z,T',B) — Homg(A/x, B)
is an equivalence for all R-modules A, B. This is equivalent to
Homp(A/z, Blz™']) =0

which is true as multiplication by x induces an equivalence

Homg(A, Blz™]) £ Homp(S" 4, Blz™)).

Corollary 3.9. Let M be a connective R-module and A an abelian group. Then the Anderson
dual AM is R-cellular with respect to R/J for every ideal J C 7T€2 finitely generated in degrees
a+bo witha>1anda+b>1.

Proof: By the last proposition, we have to show that I';AM ~ AM_ For this it suffices to
show that AM[z7!] is contractible for every generator z of J. As M is connective, we know
that m,1po M = 0if a < 0 and a+b < 0 (this follows, for example, using the cofibre sequence
(Cy)y — S — S9). Thus, TaypeAM = 0if a > 0 and @ + b > 0. The result follows. O

12



4. REAL BORDISM AND THE SPECTRA BPR(n)

4.A. Basics and homotopy fixed points. The Cs-spectrum MR of Real bordism was
originally defined by Araki and Landweber. In the naive model of Cy-spectra, where a
Cy-spectrum is just given as a sequence (X,,) of pointed Cs-spaces together with maps

S X, = X

it is just given by the Thom spaces MR,, = BU(n)” with complex conjugation as Cy-action.
Defining it as a strictly commutative Cy-orthogonal spectrum requires more care and was
done in [Schl4, Example 2.14] and [HHR16, Section B.12]. An important fact is that the
geometric fixed points of MR are equivalent to MO (first proven in [AM7§| and reproven in
[HHR16], Proposition B.253]).

As shown in [Ara79] and [HKOI, Theorem 2.33], there is a splitting

MR ~ " BPR,

where the underlying spectrum of BPR agrees with BP. This splitting corresponds on
geometric fixed points to the splitting

MO ~ @ N HIF.

As shown in [HKO01] (see also Appendix , the restriction map
T 2BPR — m,BP

is an isomorphism. Choose now arbitrary indecomposables v; € my9i_1) B and denote their

lifts to ﬂgf-fl)pBPR and their images in 778371)pMR by v;. We denote by BPR(n) the
quotient

BPR/(Tpi1,Upyay---)

in the homotopy category of MR-modules. At least a priori, this depends on the choice of
V;.

We want to understand the homotopy groups of BPR(n). This was first done by Hu
in [Hu02] (beware though that Theorem 2.2 is not correct as stated there) and partially
redone in [KW13]. For the convenience of the reader, we will give the computation again.
Note that our proofs are similar but not identical to the ones in the literature. The main
difference is that we do not use ascending induction and prior knowledge of HZ to compute
®“2 BPR(n), but precise knowledge about WiQBPR — this is not simpler than the original
approach, but gives extra information about other quotients of BPR, which we will need
later. We recommend that the reader looks at Appendix A for a complete understanding of
the results that follow.

We will use the Tate square [GM95b] and consider the following diagram in which the
rows are cofibre sequences:

BPR(n) ® (ECy)+ BPR(n) BPR(n) ® ECy SBPR(n) ® (EC,),

5 | | |

BPR(n)(F®)+ @ (EC,), — BPR(n)PC)+ —~ BPR(n)PC)+ @ ECy, — SBPR(n) @ (ECh),
13



After taking fixed points this becomes
BPR(H)}LCQ —_— BPR<’/L>CQ — BPR<H>CDCQ —— ZBPR<’/L>}LCZ

- | | |

BPR{(n),c, —= BPR(n)"®> — = BPR(n)'> —~ SBPR{n)sc,

First, we compute the homotopy groups of the homotopy fixed points. For this we use the
RO(C5)-graded homotopy fixed point spectral sequence, described for example in [HMI6],
Section 2.3].

Proposition 4.1. The RO(Cs)-graded homotopy fixed point spectral sequence
Ey = H*(Cy; 73 BPR(n)) = Z[v1, ..., Uy, u™", a]/2a = WSQ(BPR<n>(ECQ)+)
has differentials generated by d2¢+1_1(u2171) = a1, for i <n and Eyni = B,

Proof: The description of FEani1 is entirely analogous to the proof of [A.2] using that
a7, = 0 in WSQBPR<H>(EC2)+. Now we need to show that there are no further dif-

ferentials: As every element in filtration f is divisible by of in E?""", the existence of a
nonzero d,, (with m > 2"*1) implies the existence of a nonzero d,,, with source in the 0-line.
Moreover, a nonzero d,, of some element u'v (for ¥ a polynomial in the ¥;) on the 0-line
implies a nonzero d,,, on u' as ¥ is a permanent cycle (in the image from BPR). The image
of such a differential must be of the form a™u"@, where ¥ is a polynomial in Ty, ..., T,. As
a"; =0for 1 <i<nin E2"", the polynomial 7" must be constant. Counting degrees, we
see that
(20 —1) = 2lo = [u!| = 1 = |a™u!| = 2I' — (2I' + m)o

and thus m = 2[ — 2I' = 1. This is clearly a contradiction. O

Corollary 4.2. We have
72 (BPR(n) PP+ @ ECy) = Fy[u*?", a*'].

In particular, we get T, BPR(n)'®> = Fy[2®'], where z = u2"a~ 2" and |x| = 271, These
are understood to be additive isomorphisms.

Proof: Recall that
72 (BPR(n) PP+ @ ECy) = 72 (BPR(n) )+ )[a™").

as S°°7 is a model of ECQ. The result follows as all U; are a-power torsion, but u?"™ isnot. [J

4.B. The homotopy groups of BPR(n). Computing the homotopy groups of the fixed
points is more delicate than the computation of the homotopy fixed points. We first have
to use our detailed knowledge about the homotopy groups of BPR. Given a sequence

L= (ly,...), we denote by BPR /%! the spectrum BPR/(v, i _l” ...), where i; runs over all

indices such that I;, # 0. Similarly BPR/%; is understood to be BPR if 5 = 0. We use the

analogous convention when we have algebraic quotients of homotopy groups.
14



We recommend the reader skips the proof of the following result for first reading, as the
technical detail is not particularly illuminating.

Proposition 4.3. Let k > 1 and [ = (I, [a,...) be a sequence of nonnegative integers with
lr = 0. Then the element Ty, acts injectively on (72 .BPR) /Tt if 0 < ¢ < 281 4+ 1, with a
splitting on the level of Z2y-modules.

*pc

Proof: Recall from Appendix [A|that Wi"’B PR is isomorphic to the subalgebra of
P/(2a,5;0*"" )

(where 7 runs over all positive integers) generated by ;(j) = w27, (with i, j € Z and i > 0)
and a, where P = Z)[a, v;, u™]. The degrees of the elements are |a| =1 — p and

0 (5)] = (2" = 1)p + 275(4 — 2p) = (2" — 1 — 2"F15)p + 2742,

We add the relations @i = 0 if I; # 0.

We will first show that the ideal of Dj-torsion elements in (75> BPR) /ol is contained in the
ideal generated by a2 =1 and T4 15,(j) for s with I; # 0 and j divisible by 2875 if s < k.
Indeed, because the ideal (Qaﬁiayﬂ_l,ﬁl) C P is generated by monomials, a polynomial in
P defines a Ti-torsion element in (71'32BPR) /vt if and only if each of its monomials define
7Up-torsion elements. A monomial zp in P can only define a nonzero v,-torsion element in
(7> BPR) /3! if it is divisible by a®"' =1 or . In the latter case xp is of the form volsu™,
where U is a polynomial in the v;. This is divisible by vl; in 7r* *BPR if and only if m is
divisible by 2¢ for some v; in v. Thus, zp defines a nonzero element x in (WiQBPR) /vt such
that U2 defines 0 only if 2¥|m, which corresponds to the condition above.

Let x be a nonzero Uy-torsion element in (WSZBPR) /v, represented by a monomial in P.
First assume that z is divisible by a™ with n > 2¥*! — 1, but not by a"*'. Then, z is not
divisible by any 7;(j) with ¢ < k as a"v;(j) = 0. We demand that z is in degree xp — ¢ with
¢ > 0; in particular, z # a™. Let 7;(j) a divisor of x with minimal i. Thus, the degree of z
must be of the form *p + 2°72m +n. We know that n < 2! — 2. The largest negative value
the non-p-part can take is —2%2 4 2i71 — 2 = 21 _ 9 The statement about injectivity
follows in this case as ¢ > k.

Now assume that z is a Tj-torsion element not divisible by a” for n > 2¥+! — 1. Then «
must be of the form v ~17,(j) < where j is divisible by 2¢7% if s < k. Observe that

o, ()0 (m) = 01,(25 5 +m) =0 € (WCQBPR)/@L

s

for t < s, so that y is not divisible by any 7,(m) for t < s. Likewise observe that if s <t < k,
then

o5, (5) v (m) = 05T, (m + 257'5) = 0 € (7 BPR) /2,

s

where j = 2¥7%5/. Thus, ¥ is also not divisible by any v;(m) with s <t < k. As [v,(j)| =
*p + d, where d is divisible by 2¥*2, and the same is true for [v;(j)| with ¢ > k, we see that
if |z| is of the form %p — ¢ with ¢ > 0, then we have

c 2 2k+2 o (2k+l - 2) — 2k+1 + 2.

The statement about injectivity follows also in this case.
15



We still have to show the split injectivity. If Uyy = 2z, but y not divisible by 2, then y
must be of the form 2ou2"7 in P, where ¥ is a polynomial in the 7;. Thus, |y| = 2¥72j 4 p,
so we are fine in degree xp — ¢ for 0 < ¢ < 21 41 < 2k2 _ 1, O

Remark 4.4. The exact bounds in the preceding proposition are not very important. The
only important part for later inductive arguments is that the bound grows with k.

Corollary 4.5. Letl = (I1,1ls,...) be a sequence with only finitely many nonzero entries and
let j be the smallest index such that l; # 0. Then the map

(- BPR)/0* — 7. (BPR/7")

is an isomorphism for 0 < ¢ < 27+1,
Proof: We use induction on the number n of nonzero indices in [. If n = 0 (and j = o0),
the statement is clear.

For the step, define [' to be the sequence obtained from [ by setting I; = 0. Consider the
short exact sequence

0= (w2 (B/T)/T) = w52 (BJT) = {75y (B/T)}, = 0.

Here, the notion {X}, denotes the elements in X killed by z.
Assume ¢ < 271, By the induction hypothesis, 7r*p (BT = (22 B) /T as ¢ < 272,

*p—C
so that (1< Mg C(B/_l')) T = (7<2  B) /Tt Furthermore,

*p—cC
{#bHABrwhﬁzﬁ BT,
J
~
as follows from c+1 < 2j+2 and c+1 < 23'4rl +1 by the induction hypothesis and Proposition
| Thus, we see that (7 T2 .B) /vt — 7T*p B/t is an isomorphism. O

The following corollary is crucial:

Corollary 4.6. Let I C Z)[vy, .. .| be an ideal generated by powers of the v;. Then BPR/I
1s strongly even.

Proof: As being strongly even is a property closed under filtered homotopy colimits, we are
reduced to the case that [ is finitely generated. By the last corollary, it suffices to show that
BPR itself is strongly even. That the Mackey functor WCQ(BPR) is constant is clear from
Theorem [A.4]

Assume that z is a nonzero element in 7°2 , BPR. We can assume that z is represented

*p 1
by a*u'v in the Es-term of the homotopy fixed point spectral sequence for BPR, where v is
a monomial in the v; (with ¥y = 2), k > 0 and [ € Z. The element z is in degree k + 41 + *p.
Let j > 0 be the minimal number such that 7,|v. Then 2’|l and k < 2+t _ 2. This is clearly

in contradiction with k& + 4l = —1. O

We recover the Cs-case of the reduction theorem of [HK0I, Prop 4.9] and [HHR16, Thm
6.5].
16



Corollary 4.7. There is an equivalence BPR/(v1,0s, ...) ~ HZ .

Proof: This follows directly from the last corollary and Corollary O
Corollary 4.8. Let I C Z)[v1,...] be an ideal generated by powers of the v;. Then

WprHBPR/I = Fol{a} ® Zo)[01,702,...]/1.

Proof: As BPR/I is strongly even, this follows from [HMI16, Lemma 2.15]. O

This allows us to compute WSQBPR<TL>.

Proposition 4.9. The spectrum BPR(n) is the connective cover of its Borel completion
BPR(n)FC2)+ The cofibre C of BPR(n) — BPR(n)¥C2)+ has homotopy groups

WE(QC >~ Fola™, u™ 2" Ju™?",
with the naming of the elements indicating the map WSQBPR<n>(EC2)+ — WSQC.

Proof: This is clear on underlying homotopy groups. Thus, we have only to show that
BPR(n)®* — BPR(n)"2 is a connective cover. For that purpose, it is enough to show that
BPR(n)®®2 is connective and that the fibre of BPR(n)®“2 — BPR(n)'“? has homotopy
groups only in negative degrees.

We have BPR(n)®“2 ~ BPR®“2/(v,,1,...). As noted in the proof of Proposition
, the image of ; in MR?“2 is 0. As the quotient BPR®“2 /v, ,1,... can be taken in
the category of MR?®“2-modules, we are only quotiening out by 0. It follows easily that
(BPR/(Tpi1,s- - Unim))®? has in the homotopy groups an F, in all degrees of the form
S el +1) = S0 g,2" with g5 = 0 or 1. As geometric fixed point commute
with homotopy colimits, we see that m,BPR(n)*®2 = F,[y] (additively) with |y| = 2", It
remains to show that y* maps nonzero to m, BPR(n)!“> (and hence maps to z*).

It is enough to show that a~¥*I=1¢y* maps nonzero to T ESBPR(n) ® (ECy)4 in the se-

quence coming from the Tate square, i.e. that a"yk‘_lyk is not in the image from (the fixed
points of) BPR(n). But a ¥*I=14/* is in degree (|y*| 4+ 1)p — 1 and 7r272 p_lBPR<”> =0

ly*|+1)
by Corollary [4.6] O
Let us describe the homotopy groups of BPR(n) in more detail. We set 75 = 2 for
convenience. Denote by BB (for basic block) the Zyy[a, 1, ... ,v,]/2a-submodule of
Z(2) [@17 cee 7@71]/(@2’“—17 @k)ogkgn

generated by 1 and by vg(m) = w'mp, for 0 < k <mnand 0 < m < 27k, By Proposition

[4.1] we see that
7% BPR(n)Fe)+ = BR[U*]

with U = u?". Note that this isomorphism is not claimed to be multiplicative; in general,

BPR(n) is not even known to have any kind of (homotopy unital) multiplication.
17



Define BB’ to be the kernel of the map BB — Fya| given by sending all Ty, and ©(m) to
zero. Set NB = X 1Fy[a]¥ & BB’', where N B stands for negative block. Then it is easy to
see from the last proposition that

7S BPR(n) = BB[U| & U 'NB[U™'],
where this isomorphism is again only meant additively. We will be a little bit more explicit

about the homotopy groups of BPR(n) in the cases n = 1 and 2 in Part

4.C. Forms of BPR(n). Our next goal is to identify certain spectra as forms of BPR(n).
We take the following definition from [HMI6]:

Definition 4.10. Let F be an even 2-local commutative and associative Cy-ring spectrum
up to homotopy. By [HM16, Lemma 3.3], F' has a Real orientation and after choosing one,
we obtain a formal group law on 7r*Cp2E. The 2-typification of this formal group law defines
a map 75, BP = W%BPR — 7T*CPQE. We call E a form of BPR(n) if the map

Z(g)[@h ... ,@n] C E*pBPR — E*pE

is an isomorphism of constant Mackey functors.
This depends neither on the choice of v; nor on the chosen Real orientation, as can be
seen using that 7, is well-defined modulo (2,7, ...,7;_1).

Equivalently, one can say that E is a form of BPR(n) if and only if F is strongly even and
its underlying spectrum is a form of BP(n). We want to show that every form of BPR(n)
is also of the form BPR /U, 11, Up2, ... for some choice of elements v;. For this, we need the
following lemma from [HM16, Lemma 3.4]:

Lemma 4.11. Let f: E — F be a map of Cy-spectra. Assume that f induces isomorphisms
W,SPQE — W]S[?E and wpE — m I

for all k € Z. Assume furthermore that W,S;_IE — T]SpQ_lF is an injection for all k € Z (for
example, if W,S;_IE =0). Then f is an equivalence of Cy-spectra.

Proposition 4.12. Let E be a form of BPR(n). Then one can choose indecomposables

T; € W(CQ%_l)pBPR fori>mn—+1 such that E ~ BPR/(U,41,Tpnio,--- ).

Proof: First choose any system of 7;. Choose furthermore a Real orientation f: BPR — E
and denote f(7;) by z;. Define a multiplicative section
st 7T*Cp2E — WSPQBP]R
by s(z;) =7; for 1 <i <n.
Now define a new system of v; by
o, =1; — s(fu (V7))

for i > n 4+ 1. As these agree with v; mod (74, ...,7,), they are still indecomposable. Fur-
thermore, the v}V are for ¢ > n + 1 clearly in the kernel of f,. Thus, we obtain a map
BPR(n)/ (03,05, ... ) — E that is an isomorphism on 7{?. By Corollary (4.6, the source

is strongly even. By Lemma the map is an equivalence.

18



Examples 4.13. We consider Real versions of the classical examples ku and tm fi(3).
(1) The connective Real K-theory spectrum ARy is a form of BPR(1). Indeed, the un-
derlying spectrum ku sy is well known to be a form of BP(1) and kR y) is also strongly
even (as can be seen by the results from [BGI10, 3.7D] or from the computation in

Section .

(2) Define tmf1(3) as the equivariant connective cover of the spectrum Tmf(3), i.e.
Tmf1(3) with the algebro-geometrically defined Cq-action (see [HMI6l Section 4.1]
for details). As shown in [HMI1G, Corollary 4.17], tmfi(3) ) is a form of BPR(2).

By Proposition (4.12} we can construct ¢mfi(3), by killing a sequence 3,73, . ..

in BPR. This construction is used in [LO16] to define a Cg-equivariant version of
tmf1(3)2). In particular, we see (using the discussion before Proposition 4.23 in

[HMI6]) that T'MFi(3), (with the algebro-geometrically defined Cp-action) agrees

5. RESULTS AND CONSEQUENCES

In this section, we want to discuss our main results in more detail than in the introduction
and we will also derive some consequences and give some examples. Recall to that purpose
the notation from Sections and [1.A] Furthermore, we will implicitly localize everything
at 2 so that Z means Z,) etc. Our main theorem is the following:

Theorem 5.1. Let (my,mo,...) be a sequence of nonnegative integers with only finitely
many entries bigger than 1 and let M be the quotient BPR/(v{",052,...), where we only
quotient by the positive powers of v;. Denote by v the sequence of v; in FSZMR such that
m; = 0, by |v| the sum of their degrees and by m' the sum of all (m; — 1)|v;| for m; > 1.
Then

ZM ~ A2 e (T M.

The most important case is that My = Mpio = --- =1 so that
M = BPR(n)/(@{",...,00"").

r n

If k is the number of elements in v, we also get
ZM o SRR A2 A

where we view M as an MR-module.

The first form will be proved as Theorem and the second follows from it using Lemma
3.6 The second form also follows from Corollary (using that I'z preserves cofibre se-
quences to pass to quotients of BPR(n)).

,,,,,

that BPR(n) has Gorenstein duality with respect to HZ ~ BPR(n)/(v1,...,0,). (The last
equivalence follows from Corollary [4.7])

Example 5.3. Set kR(n) = BPR(n)/(v1,...,U,-1) to be connective integral Real Morava
K-theory and KR(n) = kR(n)[v,'] its periodic version. Then

ARRESD Vel N N
~ N =rHeof (kR(n) — KR(n))
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This includes for n = 1 the case of usual (2-local) connective Real K-theory.

Example 5.4. To have a slightly stranger example, take M = BPR(3)/(v{,v3). Then
ZM ~ SP9T, M.

So far, we have only talked about quotients of BPR. This does not include important Real
spectra like the Real Johnson-Wilson theories ER(n) = BPR(n)[v,'] or the (integral) Real
Morava K-theories KR(n). For this, we have to study the behaviour of our constructions
under localizations.

Let M be an RO(Cy)-graded Z[v]-module, where v has some degree |v| € RO(Cs). We
say that M has bounded v-divisibility if for every degree a + bo, there is a k such that
/Uk: Ma+bof\vk| — MaerO'
is zero. We will also apply the concept to modules that are just Z|v|-graded.

Lemma 5.5. The class of RO(Csy)-graded Zlv]-modules of bounded v-divisibility is closed
under submodules, quotients and extensions.

Proof: This is clear for submodules and quotients. Let
0K —->M-—=N-—0

be a short exact sequence of Z[v]-modules where K and N are of bounded v-divisibility. For
a given degree a € RO(Cy), we know that there is a k such that v* maps trivially into K,.
Furthermore, there is an n such that v maps trivially into N,_gj,|. Thus, multiplication by
0™ is the zero map Mo (jtn)o| — Ma. d

Let M be an MR-module. We say that M is of bounded v, -divisibility if both 7722]\/[ and
m¢M are of bounded v,,-divisibility. This is, for example, true if M is connective.

Lemma 5.6. We have the following two properties of v, -divisiblity.

(1) Being of bounded v,,-divisibility is closed under cofibres and suspensions.
(2) An MR-module M is of bounded v, -divisibility if and only if 7T*Cp2M and w¢M are of
bounded v,,-divisibility.

Proof: Both statements follow from the last lemma. For the second item, we additionally
use the exact sequence

e Ca Cs
Tospp1 M — 7 M —m

e
at(b+1)o ot M = mo M

induced by the cofibre sequence
(02)+ — SO — 57,

Lemma 5.7. If M has bounded v,,-divisibility, then there is a natural equivalence

M[5-1] ~ 3 holim ( s el A Ty anM)
F

n

of MR-modules.
20



Proof: We apply the endofunctor H: N + holim(--- — XN LN N) of MR-modules to
—
the cofibre sequence
Iy, M — M — M[v,"].

Clearly H(M|v,']) ~ M[v;!]. Thus, we just have to show that H (M) ~ 0. This follows by
the lim'-sequence and bounded ,-divisibility. U

Lemma 5.8. Let B be a quotient of BPR by powers of the v;. Then B[v™!] has bounded
U, -divisibility if U is a product of U; not containing v,. Hence, the same is also true for the
stable Koszul complex I's B, where U is a sequence of U; not containing v,,.

Proof: By Lemma , it is enough to check the first statement on 72 and on 7¢. On

the latter, it is clear and the former is isomorphic to it by Corollary . For the second
statement we use that ['; B is the fibre of B — C(t; B), where C(T; B) has a filtration with

subquotients MR-modules of the form X7 B[z~ for some z € 7T§2 MR |GM95a, Lemma 3.7].
Thus, the second statement follows from Lemma [5.6] O

Theorem 5.9. Let the notation be as in Theorem and assume for simplicity that only
finitely many m; are zero and that m, = 0. Then

MU ~ I G gy V'
Here v\ v,, denotes the sequence of all U; such that m; =0 and i # n.
Proof: The preceding lemmas imply the following chain of equivalences:
ZMWl] - Zhogm(Mi—"m*anlMW—"%)
~ holim(- - - 2 ZM)
.<_
::2*”“+@H*H4‘2Phohn1(-.-fﬁ>r%ﬂ4>
- T
~ N T +R+A=20 ) o1y ( .. E”_> Iz, (FE\EnM)>
- T

~ Z—m’+\iH—(ki—l)-&-ﬁl—Qﬂ(Fﬁ\ﬂ M)[TY

n

~ E_m’+@+(k_1)+4_2pfg\g (M[U;l])

Example 5.10. We recover the following result by Ricka [Ricl4]:
ZERM) ~ v4-20 KR ().

Here, KR(n) denotes integral Morava K-theory ER(n)/(T1,...,Tp_1).
21



Example 5.11. In the following, we will use that there are invertible classes x,7, €
T ER(n) of degree —22"+1 4272 — p and (2" — 1)p respectively, where z = TLo2" 2" (-2

ZPRM) ~ 3y Propt(n=D44=2pp o R ()
~ Z—(n+2)ﬁ+(n+3)1"@1 o) ER(n)

-----

This says that ER(n) has Gorenstein duality with respect to ER(n)/(t1,...,0,-1) = KR(n).
Note that we can replace the ideal (vy,...,7,_1) by an ideal generated in integral degrees,
namely (012, ..., Tp_12%"  ~1).

Example 5.12. Recall from [HM16] the spectra tmfi(3), T'mfi(3) and TMF;(3) and the
corresponding Cy-spectra tm f1(3), Tmf;(3) and TM Fi(3). Recall that we have m.tm f1(3) =
Zlay, as], where a; and a3 can be identified with the images of the Hazewinkel generators v,
and vy, and that tmf;(3) is a form of BPR(2) (as already discussed in Example . This
gives the Anderson dual of tmfi(3). Tweaking the last theorem a little bit, allows also to
show that

ZTMEG) ~ y5+201, M (3).

We can also recover one of the main results of [IMI6], namely that Z7™15) ~ $5+20Tm £, (3).
Indeed, Tm f1(3) is by [HMI16l Section 4.3] the cofibre of the map

Fil,ﬂgtmfl (3) — tmf1 (3) .

As the source is equivalent to £~6-2°Z!13) applying Anderson duality shows that Z7™/1()
is the fibre of

YOt m f1(3) — XTIy, tmfi(3).

This is equivalent to ¥572°T'm f1(3). This example does not require 2-localization, only that
3 is inverted.

Remark 5.13. By Proposition (3.3} all the results in this section have direct implications for
the Anderson duals of the fixed point spectra. These are easiest to understand in the case
of ER(n) = (ER(n))®?, where we get

ZER(M) o y(n42)(22 =2 ) bnd3p -1y ER(n).
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Part 2. The Gorenstein approach

In this part, we explain the Gorenstein approach to prove Gorenstein duality, first for kR
and then for BPR(n).

6. CONNECTIVE K-THEORY WITH REALITY

The present section considers K-theory with reality, which is more familiar than BPR(n)
for general n, and no 2-localization is necessary. The arguments are especially simple, firstly
because kR is a commutative ring spectrum, and secondly becaue we only need to consider
principal ideals. Simple as the argument is, we see in Section [L1| that the consequences for

coefficient rings are interesting.
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6.A. Gorenstein condition and Matlis lift. It is well known that there is a cofibre
sequence

Yeku — ku — HZ.

If one knows the coefficient ring ku, = Z[v], this is easy to construct, since we can identify
ku/v as the Eilenberg-MacLane spectrum from its homotopy groups.
There is a version with Reality [Dug05]. Indeed, we may construct the cofibre sequence

YPER 25 kR —s HZ,

where kR /7 is identified using Corollary
Since the Dugger sequence is self dual we immediately deduce that kR is Gorenstein.

Lemma 6.1.
Homg(HZ, kR) = X" 'HZ
and kR — HZ is Gorenstein.

Proof: Apply Homg(+, kR) to the Dugger sequence. O

To actually get Gorenstein duality we need to construct a Matlis lift (adapted from [DGI06,
Section 6]), which is a counterpart in topology of the injective hull of the residue field.

Definition 6.2. If M is an HZ-module, we say that a kR-module M is a Matlis lift of M
if M is HZ-R-cellular and

Homyg (T, M) ~ Hompz(T, M)
for all HZ-modules T.
The Anderson dual provides one such example.

Lemma 6.3. The kR-module X~20-9ZFR s o Matlis lift of HZ. Indeed,
(i) Z"® is HZ-R-cellular and
(ii) There is an equivalence

YSPHZ ~ HZ* = Homye(HZ, ZF?),
where d =1 — 0.

Proof: One could prove the first part from the slice tower, but it also follows directly from

Corollary [3.9

The second statement is immediate from Lemma [B.11 O

6.B. Gorenstein duality. We next want to move on to Gorenstein duality, so we write
€ = Homyr(HZ, HZ).
Combining Lemmas [6.1] and [6.3], we have
(6.4) Homyg(HZ, kR) ~ X" ' HZ ~ Homyg(HZ, 2"+ 7ZM)

We now want to remove the Homgg (HZ, -) from this equivalence.
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Lemma 6.5. (Effective constructibility) The evaluation map
HOIHkR(HZ, M) ®e HZ — M
1s HZ-R-cellularization for every left kR-module M .

Proof: Since the domain is clearly HZ-R-cellular, it is enough to show the map is an
equivalence for all cellular modules M.

This is clear for M = HZ. The class of M for which the statement is true is closed under
(i) triangles, (ii) coproducts (since HZ is small) and (iii) suspensions by representations.
This gives all R-cellular modules. 0

Local cohomology gives an alternative approach to cellularization. Recall that we define
the v-power torsion of a kR-module M by the fibre sequence

I'eM — M — M[1/7].
The following lemma is a special case of Proposition |3.8|

Lemma 6.6. The map
I'sM — M

1s HZ-R-cellularization.
It remains to check that the two £-actions on HZ coincide.
Lemma 6.7. There is a unique right £-module structure on HZ.

Proof: Suppose that HZ' is a right £-module whose underlying Cs-spectrum is equivalent
to the Eilenberg-MacLane spectrum HZ. We first claim that HZ' can be constructed as an
E-module with cells in degrees kp for £ < 0:

HZ ~¢ SPUe"Ues U

Once that is proved, we argue as follows. If HZ" is another right £&-module with underlying
COy-spectrum HZ, we may construct a map HZ' — HZ" skeleton by skeleton in the usual
way. We start with the £-module map £ = (HZ')®Y) — HZ' giving the unit, and successively
extend the map over the cells of HZ'. At each stage the obstruction to the existence of an
extension over (HZ')™* lies in 7% _ (HZ"). These groups are zero. We end with a map
which is an isomorphism on 0th homotopy Mackey functors and therefore an equivalence.

For the cell-structure, it is enough to show that for every right £-module HZ' of the
homotopy type of the Eilenberg-MacLane spectrum HZ, there is a map & — HZ' of right
E-modules whose fibre has the homotopy type of X~?~'HZ. Indeed, suppose we have already
constructed a right £-module (HZ')™ with an £&-map to HZ' with fibre of the homotopy type
N~ +Dp=1[f7, Then it is easy to see that the cofibre (HZ')" V) of the map L~ +r-1g
N-(Hr=1 g7, — (HZ')™ has the analogous property. Taking the homotopy colimit, we
get a map hoEm(HZ’)(”) — HZ' with fibre holim Y-(+e-1 7 which is clearly zero (e.g.
by Lemma and the fact that HZ is even; we refer to [Ricl4] Section 3.4] for a table of
T PHZ).

We choose the map f: & — HZ' representing 1 € 7T§2HZ and call the fibre F'. We want

to show that f agrees with the canonical map & — HZ on homotopy groups of the form

W,SEU for k € Z. Indeed, the only nonzero class in HZ' in these degrees is a € ﬂgf,H 7', which
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has to be hit by a € ng,é' as it comes from the sphere. Thus, W,SEJF &~ W,SEUE_l_pHZ for
all k and hence F' ~ X"1'"?HZ as Cy-spectra, as we needed to show. 0

From this the required statement follows.

Corollary 6.8. (Gorenstein duality) There is an equivalence of kR-modules

AR ~ N4z O

Proof: By (6.4) and Lemma we know that
Homyr(HZ, kR) ®¢ HZ ~ Homyp(HZ, 27 @ HZ.

By Lemma (6.5, the two sides are the cellularizations of kR and X ~4+7Z*® respectively. By
Lemmas [6.6{ and the former is I'ykR and the latter is X=4T7ZR itself. O

The implications of this equivalence for the coefficient ring are investigated in Section [11]

7. BP(n) WITH REALITY

We now turn to the case of BPR(n) for a general n. The counterpart of the argument of
Section |§| is a little simpler when BPR(n) is a commutative ring spectrum. For n = 1 and
n = 2, the spectra kR, and tmf,(3), are both known to be a commutative ring spectra, and
their 2-localizations give BPR(n) when n = 1 and n = 2 respectively. However for higher n
it is not known that BPR(n) is a commutative ring spectrum. This is a significant technical
issue, but one that is familiar when working with non-equivariant B P-related theories since
BP is not known to be a commutative ring. The established method for getting around this
is to use the fact that BP and BP(n) are modules over the commutative ring MU. We will
adopt precisely the same method by working with MR-modules. The only real complication
is that we are forced to work with spectra whose homotopy groups are bigger than we might
like, but if we focus on the relevant part, it causes no real difficulties.

7.A. Gorenstein condition and Matlis lift. As mentioned in the introduction of this
section, we will work in the setting of MR-modules. More precisely, we will always (implic-
itly) localize at 2 and set S = MRy). As discussed in Section [4.A] we can define S-modules
BPR(n), once we have chosen a sequence of v; (for example, the Hazewinkel or Araki gen-

erators).
The ideal

Jn=U1,...,70,)
plays a prominent role, and we will abuse notation by writing
S/J, = cof(§ =% S) ®g cof (S =2 §) ®g - - - ®g cof (S == §),
and then
M/J, =M ®gS/J,.
In particular,
BPR(n)/J, = BPR{(n) /v, /0, 1/ -+ /01 ~ HZ

by the Cy-case of the reduction theorem, here proved as Corollary [4.7]
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If BPR(n) is a ring spectrum
Homppgry (HZ, M) = Homppg, (BPR(n) ®s S/J,, M) = Homg(S/J,, M),

so that the right hand side gives a way for us to express the fact that certain BPR(n)-
modules (such as BPR(n) and ZB"®™) are Matlis lifts, using only module structures over

S.
Applying this when M = BPR(n), we obtain the Gorenstein condition.

Lemma 7.1. The map BPR(n) — HZ is Gorenstein of shift —D,p — n in the sense that
Homg(S/J,, BPR(n)) ~ S=Prr—"H7,
where
Dyp = |0n| + O] + -+ |01] = [2”+1 —n— 2] p.
Proof: Since each of the maps 7; : %S — S is self-dual, for any S-module M, we have
Homg(S/J,, M) ~ 27 PmP=S/ ], @5 M.
OJ

Applying this when M = ZBPRM we obtain the Anderson Matlis lift.

Lemma 7.2. The Anderson dual of BPR(n) is a Matlis lift of HZ" in the sense that
(i) ZBPR™ s HZ-R-cellular and
(ii) There is an equivalence

Y22 H7 ~ HZ* ~ Homg(S/J,, ZETRM).

Proof: One could prove the first part from the slice tower, but it also follows directly from

Corollary [3.9

For the second statement observe that
Homg(S/J,,, ZBPRM) ~ Homg(S/J, ®s BPR(n), Z%) ~ ZHL.

Thus, Lemma [3.1| implies the statement. ([l

7.B. Gorenstein duality. Throughout this section, we will write R = BPR(n) for brevity.
Combining Lemmas [7.1] and we have an equivalence of S-modules

Homg(S/Jn, R) ~ 2P "HZ ~ Homg(S/J,, £~ PrtntD=(Dn=2ozR)
We now want to remove the Homg(S/.J,,,-) from this equivalence. The endomorphism
ring
&, = Homg(S/J,,, S/ J,,)
of the small S-module S/.J,,, replaces &, = Homg(HZ, HZ) from the case that R = BPR(n)
is a ring spectrum. We note that
&, ®s R =Homg(S/J,,S/7,) ®s R ~ Homg(S/J,, S/ J,) @ R).

If R = BPR(n) were a commutative ring, this would be a ring equivalent to Homgr(HZ, HZ).

In any case, the following is proved exactly like Lemma (6.5
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Lemma 7.3. (Effective constructibility) The evaluation map
Homg(S/Jp, M) ®g S/ Jn — M
is S/ J,-R-cellularization. O

Of course local cohomology gives an alternative approach to cellularization. Recall that
we define

anM - Fgls ®S F@S ®S ct ®S FinS ®S M

Then Proposition [3.8| gives the following lemma.

Lemma 7.4.
anM — M

1s HZ-R-cellularization.

It remains to check that the two &, actions on HZ coincide. For kR (i.e., n = 1) we
showed there was a unique right &£,-module structure on HZ. This may be true for En—modlile
structures, but we will instead just prove in the next subsection that the two particular &,-
modules that arose from the left and right hand ends of the first display of this subsection
are equivalent.

The required Gorenstein duality statement follows. Its implications for the coefficient ring
for n = 2 are investigated explicitly in Section [13]

Corollary 7.5. (Gorenstein duality) There is an equivalence of MR-modules
Iy R~ $—(Dn+n+2)—(Dn—2)o 7 R
with R = BPR(n).
Proof: We will argue in Subsection that the equivalence
Homg(S/J,, R) ~ Homg(S/J,, 5~ Prr—=27R)

is in fact an equivalence of right modules over &,. By Lemmal7.3] R and S~ (Prtn+2)=(Dn-2)o 7R
have equivalent S/.J,, cellularizations. We have seen above that the cellularization of R is
I'; BPR(n) and that P27 jtself is cellular. O

7.C. The equivalence of induced and coinduced Matlis lifts of HZ. For brevity we
will still write R = BPR(n), and note that we have a map S = MR — BPR(n) = R.
The two S-modules that concern us are of a very special sort, one looks as if it is obtained
from an S-module by ‘extension of scalars from S to R’ and one looks as if it is obtained by
‘coextension of scalars from S to R’.

Lemma 7.6. We have equivalences of right gn-modules
Homg(S/J,, R) ~ Homg(S/J,,S) ®s R.

Homg(S/J,, Z*) = Homg(R, Homg(S/J,,, Z°))
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Proof: The first equivalence is immediate from the smallness of S/.J,,.
The second equivalence follows from the equivalence

Z" ~ Homg(R, Z")
of S-modules. O

Suspending the equivalences from Lemma so that we are comparing two gn—modules
equivalent to HZ (see Lemma [7.2]) we have

Y] = Homg(S/J,, 2P R) ~ Homg(S/J,, 2P S) @ R = X; ®s R
and
Yy = Homg(S/J,, ¥ Z") ~ Homg(S, Homg(S/J,,, 2% 7)) = Homg(R, X>).
In Subsectionwe will construct an gn—map a : X1 — Y, and then argue in Subsection
that this extends along X; = X; ®5 S — X;®s R =Y, togiveamap a:Y;, — Y,
which is easily seen to be an equivalence: it is clearly a *p— isomorphism and hence an

equivalence by Lemma
To see our strategy, note that the extension problem

X, —*— Homg(S/J,, Homg (R, Z%))

—
—
—
—
— ~
— «

X1 ®s R

in the category of &,-modules is equivalent to the extension problem

X1 ®z, 8/T, ©s R——~17°

X4 Qg S/jn ®Rs R®s R
in the category of S-modules. The point is that by the defining property of the Anderson

dual, this latter extension problem can be tackled by looking in 7Tg ?. The 0th homotopy
groups of the spectra on the left are easily calculated from the known ring WSQ(H Z).

7.D. Construction of the map a. We construct the map « using a similar method as in
the proof of Lemma [6.7]

Lemma 7.7. There is a map
a: X — Y,
of right gn—modules that takes the image of 1 € WSQ(S) to a generator of 7T002 (HZ) = Z.

Proof: First we claim that X; has a gn—cell structures with one 0-cell and other cells in
dimensions which are negative multiples of p. More precisely, there is a filtration

gn:Xl[o] —>X1[1] —>X{2} — = Xy
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so that X; ~ holim X {d] and there are cofibre sequences
- d

X — xi — \/5%E,,

By definition X; = Homg(S/J,, £P***"S). By Proposition and Lemma , this is

equivalent to
Homg(S/ T, ED””+”anS) ~ Homg(S/ Ty, ks(V1, ..., 0p))

because I'; S — S is S/J,-R-cellularization. The usual construction of the stable Koszul
complex from the unstable Koszul complex recalled in Subsection [3.C], shows that

HS(Ul, . ,@n)

has a filtration with subquotients sums of (—kp)-fold suspensions of S/.J,. This induces a
corresponding filtration on Xj.

As in Lemma we may construct a by obstruction theory. Indeed, we start by choosing
a map E,=X 1[0] — YQ[O] taking the unit to a generator. At the dth stage we have a problem

X{d—l] .y,

7
Ve
\L Ve
7

x|
The obstruction to extension is in a finite product of groups
(S, Yol =7, (HZ) =0

where the vanishing is from the known value of W,SQ(H Z). O

7.E. The map &. Referring to the second extension problem diagram above, we note
S/J, ®s R~ HZ as S-modules. Thus, we have to solve the lifting problem

X, ®g, HL ®5 S ——~Z°

-~
-~

-

1®1®7rl -
X1®; HZ®s R

where HZ is equipped with some gn—module structure. Denote the upper left corner by 7.
The map T'— T ®g R is a split inclusion on underlying M U-modules. Indeed,

T~X,®z S/J, @5 R

and the map R — R ®g R is a split inclusion on underlying spectra because BP(n) has the

structure of a homotopy unital M U-algebra [EKMMO97, V.2.6].
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By the definition of Anderson duals, we have a diagram of short exact sequences:
0 — Ext) (79(T ®5 R),Z) — [T ®g R, Z%]° — Homy(7*(T ®g R),Z) — 0

| | |

0 ——— Exty(n(T), Z) [T, 25)% Homy (5°(T), Z) 0

We want to show that the maps 7T,§2T — W,?QT ®g R are split injections for k = 0, —1,
which solves the problem. For the computation of 7¢27 recall from the last section that X
has a filtration starting with Xl[x] = gn and with subquotients sums of terms of the form
Z*dpgn. Thus, T obtains a filtration starting with 7 = HZ and with subquotients sums
of terms of the form =% HZ. The map HZ = T — T clearly induces isomorphisms on
7$? for k = 0, —1 by the known homotopy groups of HZ (see e.g. [Ricl4, Section 3.4] for a
table). Thus, 7927 = 0 and EOC2T =7.

If we have a map Z — M from the constant Mackey functor, it is a split injection on
(Cy/Cy) if it is one on (Cy/e). But we have already seen above that on underlying spectra
T — T ®g R is a split inclusion. Thus, we have shown that 75T — 702(T ®g R) is split
injective, which provides the map &'.

Part 3. The hands-on approach

In this part, we give a different way to compute the Anderson dual of BPR(n) by first
computing the Anderson dual of BPR itself. Again, we will first do the case of kR.

8. THE CASE OF kR AGAIN

To illustrate our strategy, we give an alternative calculation of the Anderson dual of kR.
This can also be deduced from our main theorem below, but it might be helpful to see the
proof in this simpler case first. General references for the RO(Cy)-graded homotopy groups

of kR are [BG10, Section 3.7] or Section [11.B]
We want to show the following proposition:

Proposition 8.1. There is an equivalence kyp (V) — L2747,
Recall here that v € W§2 kR is the Bott element for Real K-theory and
krr(T) = hocolim R~ VPER /5™,
Our idea is simple: To obtain a map from the homotopy colimit, we have just to give maps
N UPER /T — B2 IZMR

that are compatible in the homotopy category (see Remark . We will show in the next
lemma that these maps are essentially unique: The Mackey functor of homotopy classes of
kR-linear maps X~ (""DPER /5" — $27~47ZFR is isomorphic to Z and the precomposition with
the map L~ (""VPkR /5" — L"kR /7"*! induces the identity on Z.

Choosing the Cs-equivariant map ryr (V) — $2P~*ZFR that corresponds to 1 € Z for every

n induces an equivalence on underlying homotopy groups. By Lemma the result follows
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as soon as we have established that rxr(7) is strongly even and that the Mackey functor
m,, X ZF is constant. These two facts will also be shown in the following lemma, finishing
the proof of the proposition.

Lemma 8.2. Denote for a Z[v] module M by { M}~ the T"-torsion in it. Then we have:

(1) kR /7™ is strongly even and hence the same is true for ryg(7).

(2) max2P MR = (CnQ 2)p+4ZkR is constant for all n € Z.
(n—1) =n y12p—drzkR]C c 20-47kR | o~
(3) [T Dok /o, D2 2 {1y | szl 2 g

kR v

Proof: The first part follows as
7rkp z(kR/_n) - ,/Tkp z(kR)/_n

for ¢ = 0,1 because w,fj_ikR =0fori=1,2.
For the second part consider the short exact sequence

0 — Ext(z}? kR, Z) — x% 2" — Hom(z}_,kR,Z) — 0.

We have z%_ﬁR =0 for all k£ € Z. For k < 2, the Mackey functor zkj_ 4kR vanishes as well
and for k > 2, we have E%_JJR =~ 7*, generated by v*~2 and 20*~2u. Thus,

0 ifk<?2
C kR ~
2 Z Y
T—kpra {z i k<2

This shows part (2). As multiplication by 7" does not hit 7r( 1) kR, the whole Mackey

( )t 4ZkR is v"-torsion. This gives the second isomorphism of the third part.
For the remaining isomorphism, note that the cofibre sequence

SRR 2 £(DegR — 5 DRkR /57— SPHER
induces a short exact sequence

0 — (253, T2 [, — [EO VR0 SH 2 o (1%, sEzR) S0

functor w

We have 72, 52 4ZF® o 72 7FE which sits in a short exact sequence

0 — Bxty(n26kR, Z) — m52 Z* — Homg(x,?;kR, Z) — 0.

But because of connectivity, = 02 KR =0 for ¢ > 3. 0

9. DuALITY FOR BPR

We will use throughout the abbreviation B = BPR and will furthermore implicitly localize
everything at 2 so that Z = Zy) etc. and all Hom and Ext groups are over Z = Z) unless

marked otherwise. Denote by T a sequence of indecomposable elements 7; € 7 B. The

aim of this section is to show that X% ~1Z8 ~ kyr(7; B).

Recall that kyr(7; B) is defined as fOHOWS' Given a sequence [ = (Iy,1ls,...) with [; > 0,
we denote by B/o! the spectrum B/(v g2 ...), where ¢; runs over all indices such that

7,17 22’
l;; > 0. Set

(21 Dp

| = L|o1| + Lo|va] + - -
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Then
kyr(T; B) = hoc?lim »I=URB /gt

where [ runs over all sequences [ where all but finitely many [/; are zero and 1 denotes the
constant sequence of ones. Furthermore, the i-th entry of [ —1 is defined to be the maximum
of 0 and [; — 1.

Thus, to get a map rkyr(T; B) — X% 1ZP, we have to understand the homotopy classes
of maps B/ut — ¥%~4ZP. This will be the content of the next subsection.

9.A. Preparation. Recall the Mackey functor Z* defined by
Z'(Cy ) Co) 2L (Cyfe) =L
with transfer equalling 1 while restriction is multiplication by 2.

Lemma 9 1. As Z[vy, Vs, . ..]-modules, we have the following isomorphisms.

(1) © *p 2 B =7 ®7Z[01,0s,...| where Z* is generated by 1 on underlying and by 2u~!

on Cy-equivariant homotopy groups.

(2) wfg sB=0

(3) m *p 2 «B 2 TFo{a*v1(—1)} ®z Z[v1,0s, .. .].

Proof: By Theorem M the groups 7& »_.B are additively generated by nonzero elements of
the form z = a'v with ¥ a monomial in the 7;(j). Let ;(j) be the one occuring with minimal
i, where j is chosen such that 7 = 7;(j)7" with " a monomial in the T, (this is possible by
the third relation in Theorem [A.4). Then |z| = *p + j2"2 + [ and 0 < [ < 201 — 1.

For ¢ = 4, this implies j = —1, ¢ = 0 and [ = 0. Thus, z is of the form vy(—1)v’. As the
restriction of 7o(—1) to 7§ B equals 2, the result follows.

For ¢ = 5, we must have [ > 272 — 5, which implies [ > 271 — 1 or ¢ = 0; in the latter
case [ must be zero, which is not possible.

For ¢ = 6, we must have [ = —j2%2 — 6, which implies [ > 2! — 1 ori <1 and j = —1.
As i = 0 is again not possible, z = a’7y(—1)7 with 7’ € 7{2. O

Lemma 9.2. For a sequence [ = (ly,1,...), the map

7%, ZP/" — Hom(x% @ 4B/ L) = L&y (L1, 7y, ... |/

_*p+4
is an isomorphism, where Z[v1, Vs, ...|" = Homy(Z[v1, Vs, ...],Z) (so that the gradings be-
come nonpositive). Here, the second map is the dual of the map
Z* @7 L1, s, ... | /0 = 7%, B/T

sending 1 € Z*(Cy/Cy) to the image of u=" under the map B — B/vt and 1 € Z*(Cy/e) to
1.

Proof: We have a short exact sequence
0 — Ext(z®2,_;B/T", Z) — 1% ,ZP/" — Hom(z®,_,B/7",Z) — 0.

If I; = 0, then Corollary [£.5 and Lemma[0.1]directly imply the statement. If I; # 0, Corollary
only allows us to identify the homotopy Mackey functor in degree — * p — 4, but not the

one in degree — x p — 5. We give a separate argument in this case.
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If [; # 0, consider the sequence ' = (0,15, 13,...) and the corresponding cofibre sequence

7 , ,
sheB/w - B/T' — B/t — shet B/

This induces a short exact sequence

0 —>( Ty 5B/v )/vll1 —>7r*p 5B/v — {7T*p 6B/v } o= 0.
Here the last term denotes the sub Mackey functor of 72 oD /ot " killed by v 7't. By Corollary
and Lemma m we see that 7r*p sB/tt = 0. O

As B = BPR is not known to have an F_-structure, we have to work with MR-linear
maps instead, for which the following lemma is useful:

Lemma 9.3. The map
7P ~ Hom (MR, ZP) — Homyr(B, Z5)
18 an equivalence.
Proof: Let e: MR — MR be the Quillen—Araki idempotent. Recall that
B = hocolim (MR%MR% ) .
Thus,
7P ~ hoiim ( LG MR & ZMR>
Hence,

Hom (B, ZB) ~ holim ( L Hom gk (B, ZMR) LN HomMR(B7zM]R)) ‘

+—

As every Homyg(B,ZM®) is equivalent to a holim over Homyr(MR,ZM®) ~ ZMR  con-
nected by e*, we get that Hom (B, Z?) is the homotopy limit holimy- .5~ ZM%, where Z~
denotes the poset of negative numbers and all connecting maps are e*. This is equivalent to
the homotopy limit indexed over the diagonal, which in turn is equivalent to the homotopy
limit indexed over a vertical. 0

Recall that we want to show that X = ¥271Z5 is equivalent to xyg(T, B). The reason
for the choice of suspension is essentially (as before) that HZ ~ X*~1HZ".

Proposition 9.4. For a sequence I = (l1,1ls,...), we have an isomorphism
=B/, X]J\C;R = 7 &g (L1, 7y, ... ]/,

natural with respect to the maps B /vt — Z—Il’—L\pB/@l’ in the defining homotopy colimit for
kur(T; B) for ' = (4,1, ...) a sequence with I} > 1; for all i > 1.
Proof: The last lemma implies that we also have

ZP/" ~ Homyr(B/v, ZP)

as the functors Z’ and Hom g (?, Z?) behave the same way with respect to cofibre sequences
and (filtered) homotopy colimits. Then we just have to apply Lemma [9.2] O
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9.B. The theorem. We first describe the homotopy groups of X = ¥?*~*Z? with B = BPR
as before. By Lemma[9.2] we get

72X = Hom(x (7, B, Z) = L@y Z[01, T, ... ]".

Let [ be a sequence with only finitely many nonzero entries. By Proposition [9.4] the
element (71)* induces a corresponding MR-linear map Y~ -1B /5t — X which is unique
up to homotopy. By this uniqueness, these maps are also compatible for comparable [. By
Remark [3.7], this induces a map

Fare (2, B) = hocolim (z-UB/t) & x,
where [ ranges over all sequences where only finitely many [; are nonzero.
Theorem 9.5. This map h: kyr(T; B) — X is an equivalence of Cy-spectra.
Proof: By Corollary , we get on T, -level
colim Y -UZT, Ty, ]/ (@, . ) = 2Ry 2Ty, .. ],

which is an isomorphism. The odd underlying homotopy groups of both sides are zero. To
apply Lemma [4.11] it is left to show that W]S;_IFLMR<@; B) = 0 for all k € Z. Again by

Corollary 7 it is even true that WE;_I<B /o) is zero for all k € Z and all sequences [. [

10. DUALITY FOR REGULAR QUOTIENTS
The goal of this section is to prove our main result Theorem [5.1}

Theorem 10.1. Let (mq,ms,...) be a sequence of nonnegative integers with only finitely
many entries bigger than 1. Denote by T’ the sequence of U; in 7TS(2MR such that m; =0 and
by m' the sum of all (m; — 1)[v;| for m; > 1. Then there is an equivalence

7B/7" ~ Z_m/+4_2p/<oMR@'; B/7™).

Here and for the rest of the section we will implicitly localize everything at 2 again. Before
we prove the theorem, we need some preparation.

Lemma 10.2. Let m = (my,...) be a sequence of nonnegative integers with a finite number
n of nonzero entries. Then

7B/ ~ Zflmlfn(ZB)/@m_

Proof: Let Y be an arbitrary (Co-)spectrum and ¥*'Y % Y — Y/v be a cofibre sequence.
Then we have an induced cofibre sequence

yALLERS/ARRIS YLl AR 3 AL v LI AB VL)
Thus, Z¥/* ~ L=I=1(ZY) Jv. The claim follows by induction. O

Lemma 10.3. The element U3* acts trivially on B/vY for everyi > 1,k > 1.
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Proof: By the commutativity of the diagram
Yhlvilg o ka\B/@f

ok =k
J{vi Lvi

B/v;

_ . ok
we see that the composite Y% B — Ykl B /5t = B/v¥ is zero, so that the latter map
factors over an MR-linear map L*P+1B — B/wk. As [ B B /0¥ g is a retract
of [L2PHIMR, B/o* yr = 7T20k2|@- B/v%, we just have to show that v2*z = 0 for every
x € T‘-kaiH'IB/@f'
We have a short exact sequence

0 (x5 B) [0k = 72(B/v) = {752 oy 1B}, =0,

[+1

**k‘l@ﬂfl

As v¥x clearly maps to zero, it is the image of a y € (77323)/6?. But ¥y = 0. O

Lemma 10.4. We have

B/v; @ur B/ ~ B/(©,,07").
Furthermore, there is an equivalence

hocolim »~VIB /Gl @y B/ ~ S B /5
of MR-modules if m > 1.
Proof: We have
B ®pyr B ~ hocolim(B % B % ---) ~ B,

where e denotes again the Quillen—Araki idempotent, and thus also

B/v; ®ur B/U] ~ B/ (v, 7}").

Thus, the maps in the homotopy colimit in the lemma are induced by the following diagram

of cofibre sequences:

b _ _
EIE\B/me _ Z_(l_l)lvilB/W - E_(l_l)h’ilB/@é Rur B/

S l

Sl B g s 5l B Y B/ @y B/

We can assume that the homotopy colimit only runs over [ > 3m so that by the last lemma
the two cofibre sequences split and we get

2_(1_1)Wi|B/E§ QMR B/gz” ~ Z—(l—1)|§i|B/U7iﬂ D EW“B/U;“.
The corresponding map
Z*(lfl)\UAB/@;n D E\E‘HlB/@lm N 2*”@43/@? D E\@HlB/Wiﬂ

induces multiplication by v; on the first summand, the identity on the second plus possibly

a map from the second summand to the first.
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Using this decomposition, it is easy to show that
hocolim »==VIB /Gl @yp B/ — R B/5m

(defined by the projection on the second summand for [ > 3m) is an equivalence. Indeed,
on homotopy groups the map is clearly surjective. And if

(z,y) € n2E "I B/v) @ n 2 LW B o

maps to 0 € WSQEWHB/ET, then y = 0 and (z,0) represents 0 in the colimit because v;
acts nilpotently. 0

Proof of theorem: As in the theorem, let 7’ be the sequence of 7; such that m; = 0 and
also denote by v’ = (T;,, T4, . .. ) the sequence of T; such that m; # 0.
We begin with the case that m has only finitely many nonzero entries (say n). By Lemma

10.2] we see that
7B/ ~ E*ImI*H(ZB)/@m_
Combining this with Theorem [9.5] we obtain
7B/ ~ 2—\m\—n+4—2p,€MR@7 B) /7™

T T @, kur (T, B/T™))

Thus, we have to show that #ym (7", B/7™) ~ XPal+-Riul+n g jm,
By Lemma [10.4] we have an equivalence

—my /b i, _l; _m; 1 —m;
(B/g™)/(@;},...,0.0) = (B/v)" ®@ur B/v)") @ug - .. @uw (B/Tr @um B/y).
If we let now the homotopy colimit run over the sequences (I;,, .. .,l;, ), we can do it separately
for each tensor factor. Hence, we obtain again by Lemma [10.4] an equivalence

rue (T, B/u™) o SPultuling g,

Thus, we have shown the theorem in the case that m has only finitely many nonzero entries.
We prove the case that m has possibly infinitely many nonzero entries by a colimit argu-
ment. Define m_, to be the sequence obtained from m by setting mg41, mg42,... to zero.
Then B/m ~ hocolimy, B/m.,, and thus ZZ/™ ~ holimy Z/™<r. Denote by T, the sequence
of T; such that m; = 0 or i > k and by m/, the quantity |m., — 1|; note that m}, = m’ for k
large. -
We have to show that the map

h: E_m,“MR@/7 B/™) — ho}cim E_m;“’fMR@/ska B [v™sk)
is an equivalence. This map is defined as follows: We know that
kur(T, B/T™) ~ hocglim kur (T, B/U™sk).

Using this, we get a map induced from the maps ryr(2', B/0™<%) — kyr(Vsy,, B/0™<*) for
k large.
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By Corollary , we can describe what happens on 7r*cp2: The left hand side has as Z-basis
monomials of the form ¥ with only finitely many n; nonzero, n; < 0 and n; > —m,; + 1 if
m; # 0. Likewise,

77*0,3 <Zm;“ Kur (T, B/ng’“)>

has as Z-basis monomials of the form ¥® with only finitely many n; nonzero, n; < 0 and
n; > —m; + 1 if m; # 0 and ¢+ < k. The maps in the homotopy limit induce the obvious
inclusion maps. Thus, clearly the map

<2 <Em/RMR(@,,B/§m)> > lim 72 (zm%ﬁm(@;k, B/@mSk)>

is an isomorphism.
It remains to show that lim; 7rfp2+1 (ki pr (U, B/T™s<#)) vanishes. By Corollary ,
every term has as Fo-basis monomials of the form az® with only finitely many n; nonzero,
n; < 0and n; > —m;+1if m; # 0 and « < k. The system becomes stationary in every degree,
more precisely if * > —25t1. Thus, the lim'-term vanishes. A similar lim'-argument also
shows that the odd underlying homotopy groups of holimy, "%k g (T, B/T™<*+) vanish.
As the source of h is strongly even by Corollary and by the arguments we just gave
the morphism A induces an isomorphism on E*Cp? and on (odd) underlying homotopy groups,

Lemma [4.11] implies that h is an equivalence. U

Part 4. Local cohomology computations

In Part 4, we will describe the local cohomology spectral sequence in some detail, and use
it to understand the structure of the HZ-cellularization of BPR(n). The calculation is not
difficult, but on the other hand it is quite hard to follow because it is made up of a large
number of easy calculations which interact a little, and because one needs to find a helpful
way to follow the RO(Cy)-graded calculations.

In contrast the case of kR is simple enough to be explained fully without further scaffolding,
and it introduces many of the structures that we will want to highlight. Since it may also be
of wider interest than the general case of BPR(n) we devote Section[L1]to it before returning
to the general case in Section [I2] Section [13] will then give a more detailed account in the
interesting case n = 2.

Let us also recall some notation used throughout this part. As in the rest of the paper
we work 2-locally, except when speaking about AR or tmf;(3) when fewer primes need be
inverted. We often write § = 1 — o € RO(C;). We also recall the duality conventions
from Section in particular, for an Fo-vector space V'V equals the dual vector space
Homg, (V,F3) and for a torsionfree Z-module M, we set M* = Hom (M, Z).

If R is a Cy-spectrum, we will use the notation R% for its RO(Cy)-graded homotopy

groups. We will also write RZCQ = 7r€2(R(E02)+) and similarly for geometric fixed points and

the Tate construction.
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11. THE LOCAL COHOMOLOGY SPECTRAL SEQUENCE FOR kR

This section focuses entirely on the classical case of kR, where there are already a number
of features of interest. This gives a chance to introduce some of the structures we will use
for the general case.

11.A. The local cohomology spectral sequence. Gorenstein duality for kR (Corollary
has interesting implications for the coefficient ring, both computationally and struc-
turally. Writing % for RO(C;)-grading as usual, the local cohomology spectral sequence
[GMO95al, Section 3] takes the following form.

Proposition 11.1. There is a spectral sequence of kR?-modules
* C —440, C
Hiy (kR = S 7m 2 (ZFF),

The homotopy of the Anderson dual in an arbitrary degree o € RO(Cs) lies in an exact
sequence

0 — Bxty(kR%, |, Z) — 7$2(Z") — Homy (KR, Z) — 0.
Since local cohomology is entirely in cohomological degrees 0 and 1, the spectral sequence
collapses to a short exact sequence

0 — ST H (kRG?) — S74772(Z) — HY (KRG?) — 0.
This sequence is not split, even as abelian groups.

One should not view Proposition as an algebraic formality: it embodies the fact that
k:R% is a very special ring. To illustrate this, we recall the calculation of kR% in Subsection
[I1.B] In Subsection we calculate its local cohomology, and how the Gorenstein duality

isomorphism with the known homotopy of the Anderson dual works.

11.B. The ring kR%. One may easily calculate k]RiQ. This has already been done in
[BG10], but we sketch a slightly different method. We will first calculate kRZCQ and then

use the Tate square [GM95D)].
In the homotopy fixed point spectral sequence

— o+l hCs
Z[v, a,u™]/2a = kR

all differentials are generated by ds(u) = va3. Indeed, this differential is forced by n* = 0
and there is no room for further ones. It follows that U = u? is an infinite cycle, and so the
whole ring is U-periodic:

kR = BBIU, U™,
where BB is a certain ‘basic block’. This basic block is a sum

BB = BR & (2u) - Z[v]

as BR-modules, where
BR = Z[v,a]/(2a,va®).

It is worth illustrating BB in the plane (with BB,.j, placed at the point (a,b)). The
squares and circles represent copies of Z, and the dots represent copies of 5. The left hand
vertical column consists of 1 (at the origin, (0,0)) and the powers of a, but the feature to
concentrate on is the diagonal lines representing Z[v] submodules. These are either copies
of Z[v] or of Fy[v] or simply copies of .
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Proceeding with the calculation, we may invert a to find the homotopy of the Tate spec-
trum kR* = F(E(Cy) 4, kR) A S>7:

kRS = Fala,a” '|[U, U

One also sees that the homotopy of the geometric fixed points (the equivariant homotopy of
ER® = kR A §°7) is

kRS = Fala,a '[U]

using the following lemma:

Lemma 11.2. Let X be a Cy-spectrum which is non-equivariantly connective and such that
X — XhC2 s q connective cover. Then X®2 — X'C2 is a connective cover as well.

Proof: This follows from the diagram of long exact sequences

T Xno, — M X ——=mX®2 — =1 X, —— M1 X2

L i |

T Xno, —> mpX"? ——= m X —— X0, —— me X2,
the fact that X}, ¢, is connective and the 5-lemma. [

Now the Tate square
kR kR N S%°

l l

kREC2)+ —— FREC)+ A Gooo

gives k‘R%.

It is convenient to observe that the two rows are of the form M — M][1/a], so that the
fibre is I'y M. Since the two rows have equivalent fibres, we calculate the homotopy of the
second and obtain

KRy, = NB[U, U™,
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where NB is quickly calculated as the (a)-local cohomology H(, (BB) (and named NB for

‘negative block’). The element a acts vertically and we can immediately read off the answer:
the tower Z[a]/(2a) gives some H', and the rest is a-power torsion:

NB = BB' @ YF;[a]",

where BB’ C BB is the sub-BR-module generated by 2,7, 2u (Informally, we may say that
BB’ omits from BB all monomials a* for k > 1 and the generator 1). Note that NB is
placed so that its element 2 is in degree 0 for ease of comparison to BB; all occurrences of
NB in kRiQ involve nontrivial suspensions.

Again, it is helpful to display the negative block. This differs from BB in that the powers
of a have been deleted, and replaced by a new left hand column ¥ 7°Fy[a]. The other new
feature is that the copy of Z[v] generated by 1 has been replaced by the kernel (2,7) of
Z[v] — Ty, as indicated by the circle at the origin, labelled by its generator 2.

]
—b[7]
VoA
—Ar
VAl
NR =37
IND (Vhg7m
UQFJ /)
—1r; ()
(V%8 J
ha (]
a0 v
(]
v
Ve
22U 0D

The Tate square then lets us read off
KR = @ NB-{U"Y e @ BB - {U*} = (U™ - NB[U™']) ® BB[U]

k<1 k>0

The Z[U] module structure is given by letting U act in the obvious way on the NB and BB
parts, and by the maps

NB — BB'— BB

in passage from the U™! factor of NB to the U° factor of BB.

Perhaps it is helpful to note that with the exception of the towers U *~°F;[a]¥, we have
a subring of BB[U, U], which consists of blocks BB - U" for i > 0 and blocks BB’ - U’ for
1< 0.

11.C. Local cohomology. Recall that we are calculating local cohomology with respect to
the principal ideal () so that we only need to consider kRS? as a Z[v]-module. As such it
is a sum of suspensions of the blocks BB and N B, so we just need to calculate the local

cohomology of these.
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More significantly, Z[v] is graded over multiples of the regular representation, so local
cohomology calculations may be performed on one diagonal at a time (i.e., we fix n and
consider gradings n + xp). The only modules that occur are

Z[v],Fy[v],Fy and the ideal (2,7) C Z[7],

each of which has local cohomology that is very easily calculated.
Lemma 11.3. The local cohomology of the basic block BB is as follows.

H?B)(BB) = a’Fy]a]

Hl(BB) = S°Z[0]" & S~ Z[)* & L7 Fy[0]" & T F,[0]".

Proof: The local cohomology is the cohomology of the complex

BB — BBJ[1/7].
It is clear that

BB[1/v] = Z[v,v | ®u-Zv,v | @ a-Fu[0,0 ] @ a® - Fo[v,07 1]
OJ

Turning to N B, we recall that NB = BB'@©X°Fy[a]", and we have a short exact sequence

0 — BB’ — BB — FyJa] — 0.
The local cohomology is thus easily deduced from that of BB.
Lemma 11.4. The local cohomology of the negative block N B is as follows.

H(NB) = S°Faa]"
Hi»(NB) = S Z[0]* @ F, & L7 L[] & SF2[0]Y & X Fa[v]"
More properly, the Z[v]-module structure of the sum of the first two terms is
YL @ Fy, =2 Z[o)*/(2-17).
Proof: The local cohomology is the cohomology of the complex
NB — NBJ[1/7].

It is clear that N B[1/v] = BB[1/7], which makes the part coming from the 2-torsion clear.
For the Z-torsion free part, it is helpful to consider the exact sequence

0— (2,0) — Z[v] — F, — 0

and then consider the long exact sequence in local cohomology. U

Immediately from the defining cofibre sequence I'vAR — kR — EkR[1/7] we see that
there is a short exact sequence

0 — H(lm(Z‘lkRi?) — 1 (D) kR) — H(Om(k]Ri?) — 0.

This gives ’/TSZ (I kR) up to extension. The Gorenstein duality isomorphism can be used to

resolve the remaining extension issues, and the answer is recorded in the proposition below.
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FIGURE 1. Gorenstein duality for kR

The diagram Figure (1| should help the reader interpret the statement and proof of the
calculation of the homotopy of I'z)AR. We have omitted dots, circles and boxes except at
the ends of diagonals or where an additional generator is required. The vertical lines denote
multiplication by a and the dashed vertical line is an exotic multiplication by a that is not
visible on the level of local cohomology. The green diamond does not denote a class, but
marks the point one has to reflect (non-torsion classes) at to see Anderson duality. Torsion
classes are shifted by —1 after reflection (i.e., shifted one step horizontally to the left).

Proposition 11.5. The homotopy of the derived v-power torsion is given by

(D mkR) = (U™ - GNB[U']) @ GBBI[U]
where GBB and GN B are based on the local cohomology of BB and N B respectively, and
described as follows. We have

GBB =X [Z[t]* ® a-Fa[v]Y ® a* - Fo[v]Y ® u- N]
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where N (with top in degree 0) is given by an ezxact sequence
0 — Z[v]* — N — Fs[a] — 0,

non-split in degree 0.
Similarly,

GNB ="' [ZP]*/(2- (1*) @ a-F2[0]" & a® - Fo[v]Y & &' Z[0]* @ XF>a]]

where the action of a is as suggested by the sum decomposition except that multiplication by
a is non-trivial wherever possible (i.e., when one dot is vertically above another, or where a
bozx is vertically above a dot).

Proof: We first note that the contributions from the different blocks do not interact. Indeed,
the only time that different blocks give contributions in the same degree come from the F[al
towers of BB: one class in that degree is T-divisible (and not killed by 7) and the other class
is annihilated by . We may therefore consider the blocks entirely separately.
The block GBB comes from the local cohomology of BB and therefore lives in a short
exact sequence
0 — Hy (X 'BB) — GBB — H{,,(BB) — 0
The block GN B comes from the local cohomology of NB and therefore lives in a short
exact sequence
0 — Hiy(S'NB) — GNB — H(;,(NB) — 0
Most questions about module structure over BB[U] are resolved by degree, but there are
two which remain. These can be resolved Gorenstein duality and the known module
structure in Z*E.
In GBB, the additive extension in 7%  is non-trivial:

7%, (TohR) 2 Z.
Also the multiplication by a
Fo =~ GNB_1,y — GNB_, =Ty
is nonzero (where GNB_;, corresponds to 72 (I'z)kR) in the U~'-shift). O

Remark 11.6. It is striking that the duality relates the top BB to the bottom NB (i.e.,
Anderson duality takes the part of ['zkR coming from the local cohomology of BB to NB),
and it takes the bottom NB to the top BB (i.e., Anderson duality takes the part of I'zAR
coming from the local cohomology of NB to BB). Indeed, as commented after Lemma, m,
since NB = I'(,y BB, we have
YT BB ~ (T'(,)BB)*
and
I3 BB ~ ¥ > 7BB*,

with the second stating that BB is Gorenstein of shift —2 — o for the ideal (a, ).

By extension, Anderson duality takes the part of I';zkR coming from the local cohomology

of all copies of BB to all copies of NB and vice versa. This might suggest separating kR
into a part with homotopy BB[U], giving a cofibre sequence

(BB[U]) — kR — (U'NB[U™]),
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where the angle brackets refer to a spectrum with the indicated homotopy. However one
may see that there is no Cs-spectrum with homotopy the Mackey functor corresponding to
BBIU] (considering the bo and (b + 1)o rows one sees that the non-equivariant homotopy
of the spectrum would be zero up to about degree 2b; taking all rows together it would have
to be non-equivariantly contractible and hence a-periodic). Similarly, there is no spectrum
with homotopy U~'NB[U™!|, so these dualities are purely algebraic.

12. THE LOCAL COHOMOLOGY SPECTRAL SEQUENCE FOR BPR(n)

Gorenstein duality for BPR(n) (Example has interesting implications for the coeffi-
cient ring, both computationally and structurally. Writing % for RO(Cs)-grading as usual,
the local cohomology spectral sequence [GM95a), Section 3] takes the form described in the
following proposition. We now revert to our standard assumption of working 2-locally, so
that Z means the 2-local integers.

Proposition 12.1. There is a spectral sequence of BPR(n)S?—modules
H;ﬂ (BPR(?’L) iz) - Ef(Dn+n+2)f(Dn72)aﬂ.Sz (ZBP]R(n)>

for J, = (Uy,...,0,). The homotopy of the Anderson dual in an arbitrary degree o € RO(Cs)
15 easily calculated

0 — BExtyz(BPR(n)? |, Z) — 7$2ZPPR™ s Homg(BPR(n)“2, Z) — 0.

—a—1

Forn > 2 the local cohomology spectral sequence has some non-trivial differentials.

One should not view Proposition [12.1] as an algebraic formality: it embodies the fact that
BPR(M%’ is a very special ring.

In the present section we will discuss the implications of this for the coefficient ring for
general n. The perspective is a bit distant so the reader is encouraged to refer back to kR
(i.e., the case n = 1) in Section (11| to anchor the generalities.

However the case n = 1 is too simple to show some of what happens, so we will also
illustrate the case tmf1(3) (i.e., the case n = 2) in Section

12.A. Reduction to diagonals. For brevity we write Ry = BPR(n)iQ. Because the ideal

Jn = (Dy,...,7,) is generated by elements whose degrees are a multiple of p, we can do .J,-
local cohomology calculations over the subring R, , of elements in degrees which are multiples
of p.

Thus, for an Ry-module My we have a direct sum decomposition

M* - @ Md—i—*p
d

as R,,-modules, where we refer to the gradings d+ *p as the d-diagonal. Hence, we also have

HY (My) = D HY (Masy)-
d

(We have abused notation by also writing .J,, for the ideal of R,, generated by 7y, ...,7,.)
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12.B. The general shape of BPR(M%. By the description at the end of Section , we
have an isomorphism

Ry =U"'-NB[U '@ BB[U]
with BB and N B as described there. It is easy to see that BB and NB decompose as R, -
modules into modules of a certain form we will describe now. We will implicitly 2-localize

everywhere.
The modules BB and N B decompose into are

P=R.,=2Z[v,...,v,) and Py = P/(0y,...,0s) = Fa[Uss1,..., 0]

for s > 0 and the ideals expressed by the exact sequences

0— (2,71,...,0) — P — P, — 0
or
0 — (Vsg1,-..,0) — Py — Py — 0

with s > 0.
Their local cohomology is easily calculated. In the first two cases, the modules only have
local cohomology in a single degree

Hj (P) = Hj (P) = P"(=Dnp)

H; (P.) = H2=*(P,) = P,((Ds — Dy)p).

The top non-zero degree of P* is zero, so that 1* € P*(—D,p) is in degree —D,,p = —|v;| —

-+« — |[v,|. We alert the reader to the fact that star is used in two ways: occasionally in H*

to mean cohomological grading and rather frequently here in P* to mean the Z-dual of P.
Now we turn to the ideal (Usiq,...,7¢). If ¢ = s+ 1 the ideal is principal and (Ts;1) =

Py((s+ 1)p); thus we get a single local cohomology group
H3~((Te1)Ps) = PJ((Ds — Dp+ s+ 1)p)

as can be seen from the long exact sequence of local cohomology.
Otherwise we get two local cohomology groups

Hg;s((@s—l-h . ,@t)?s) = ?Z((Dn — Ds)p) and Hg;t+1((ﬁs+17 s 7Et)?s) = F;/((D” - Dt)p)

The case of (2,7y,...,7;) is similar but with an extra case. The case t = 0 is easy since
then (2) = P so the local cohomology is all in cohomological degree n where it is P*(—D,,p).
If t =1 we again get a single local cohomology group

n = * oM
5 ((2,01)P) = P*(=Dyp) ® Py ((D1 — Dy)p).
Otherwise we get two local cohomology groups

H? ((2,...,T)P) = P*(~Dyp) and H2-Y((2,....5,)P) = P, (D, — Dy)p).
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12.C. The special case n = 1. The best way to make the patterns apparent is to look at
the simplest cases. In this section we begin with k:R% as treated in Section above, and
we encourage the reader to relate the calculations here to the diagrams in Section [I1 In
that case,

P = kRS2 = Z[vy], Py = Fo[v1] and Py = Fs.

Displaying BB by d-diagonal, we have

0~ O U= WN - O
)
—
—
)
SN~—
i

The position of the modules along the d-diagonal can be inferred from the label at the top
of the column. Thus the first column has generators in degree —do, and the second column
similarly, but in the column of u (namely the 2-column). Noting that w is on the 4-diagonal,
the dth row has generators in |u| — (d—4)oc = 2— (d—2)o. For example, along the 4-diagonal
we have a*P; @ (2u)P.

Taking local cohomology, and shifting Hi down by s (as in the local cohomology spectral
sequence), we have

S|

|

—_

U
\

DO
s

0 DU W N O
s
o

Here, we colored H'-groups brown. Note that shifting down by s both lowers d by s
and adds a shift by —sp. For example, considering the 3-diagonal of this table, the P,
comes directly from the 3-diagonal of BB, whilst the P*(—2p) comes from the (2)P on the
4-diagonal of BB; the local cohomology is P*(—p), but its diagonal is shifted by —1 since

it is a first local cohomology, and because it is by reference to the 2-column the shift is —p.
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The top of this module is calculated by reference to the column of |u| (i.e., the 2-column),
and has top in degree 2 — (3 —2)0 — 2p = —30.

We saw in Section [L1] that the two modules on the 3-diagonal give a non-trivial additive
extension (in degree —30) after running the spectral sequence.

12.D. The special case n = 2. Continuing our effort to make patterns visible, we consider
tmf1(3)% in this subsection (i.e., the case n = 2). With Z denoting the integers with 3
inverted here, this has

P = tmfl(?))fj = Z[@l,ﬁg],?o = FQ[Uh@Q],?l = ]FQ[EQ] and ?2 = ]FQ.

Thus for n = 2 we have

m e 0o uhs Wi~ ol
S
-

—_
N}
T
[
—~
\)
~—

—_
w
’“U

[\

Once again, the column labelled v’ is the 2ith column, and shifts along the diagonal have as
reference point where this column meets the relevant diagonal.

We take local cohomology, again remembering that HZ is shifted down by s, which
changes the diagonal by s. For example, on the 7-diagonal, P, comes from the 7-diagonal
in BB, whereas the F(\)/(—Sp) comes from the 2nd local cohomology of the entry (7;) Py on

the 9-diagonal; the local cohomology of Py is Fg (—4p), this is shifted by a further —2p from
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the change of diagonal, and +p because of the ;.

H(*m,ag)(BB) (n=2)
d 1 U u? ud
—2| P*(—6p)
—1| Py(=6p)
0 | Py(—6p
1
2 | P(—4p)  P*(—6p)
3 P, (—4p)
4 Ff (—4p)
5| Pi(—4p)
6 Py (=5p) ® P*(—6p)
7 P, Fg(—f)/))
8 P, Py (—5p)
9 P,
10 P, P*(—6p)
11 P,
12 P,
13 P,

We have colored again H!'-groups in brown and now also H2-groups in teal. We will
see below that there are non-trivial extensions on the 2- and 10-diagonals, and that there
are differentials in the local cohomology spectral sequence from the 7-, 8 and 9-diagonals
(differentials go from the d-diagonal to the (d — 1)-diagonal).

12.E. Moving from the basic block BB to the negative block NB. Moving from BB
to N B only affects the 0 column, where in each case M is replaced by ker(M — Fy) = (2)M.
In effect this replaces P, by 0. It also adds on a new (—1)-column of P, = [, going up
from the o row. We resist the temptation to display a table for N B explicitly, but note that
NB =T, BB as for kR.

12.F. Gorenstein duality. With the above data in mind, we may consider the d-diagonal
BBy, where the lowest value of d is 0 and the highest is N = 4(2" — 1). If we ignore the
difference between BB and N B (which is at most Fy in any degree) we find approximately
that BBy has a relationship to BBy _4, namely something like an equality

H” (BB4)* = BBy_a.

There are various ways in which this is inaccurate and needs to be modified. Firstly, if the
local cohomology of BB, is entirely in cohomological degree n — € with € # 0, there will be
a shift of e (if it is in several degrees there is a further complication). Secondly, Anderson
duality introduces a shift of 1 diagonal if applied to torsion modules. Thirdly, we have seen
that there may be extensions between these local cohomology groups, sometimes removing
Z-torsion. Finally, there may be differentials.

In fact all of these effects are ‘small’ in the sense that the growth rate along a diagonal

is bounded by a polynomial of degree n — 1. Encouraged by this, if we ignore all of these
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effects we see that BB is a Gorenstein module in the sense that the reverse-graded version
is equivalent to the dual of its local cohomology.

H3 (BB)" = rev(BB).
This is rather as if there is a cofibre sequence
S — BPR(n) — @

with S Gorenstein and @ a Poincaré duality algebra of formal dimension N = 2(1—¢)(2"—1).

13. THE LOCAL COHMOLOGY SPECTRAL SEQUENCE FOR tm f(3)

We examine the local cohomology spectral sequence and Gorenstein duality in more detail
for tmfi(3). Actually, our calculations are equally valid for all forms of BPR(2), but we
prefer the more evocative name tm f;(3) of the most prominent example. More of the general
features are visible for ¢tm f;(3) than for kR.

As usual we will implicitly localize everywhere at 2 (although for tmf,(3) itself it would
actually suffice to just invert 3).

13.A. The local cohomology spectral sequence. We make explicit the implications for
the coefficient ring, both computationally and structurally. Writing % for RO(Cy)-grading
as usual, the spectral sequence takes the following form.

Proposition 13.1. There is a spectral sequence of tmfl(B)iQ -modules
H (tmfi(3)32) = L7527 m2 (2 1),
The homotopy of the Anderson dual is easily calculated

0 — Exty(tmfi(3)2_,,Z) — 7221 s Homy(tm f1(3)2,Z) — 0.

—a—1
The local cohomology spectral sequence has some non-trivial differentials.

13.B. The ring tmfl(S)%. The ring tmf1(3)22 is approximately calculated in [HM16] and
is more precisely desribed as

BB[UJ@ U 'NB[U™|

as at the end of Section with n = 2. We already tabulated BB in Section [12.D] but
we want also want to display a bigger chart of With f1(3) as Figure |2 to give the reader a
feeling of how the blocks piece together.

A black diagonal line means a copy of P when it starts in a box, a copy of (2)P when it
starts in a small circle, a copy of (2,7;)P when it starts in a dot and a copy of (2,7,7s)
when it starts in a big circle. A red diagonal line means a copy of Py and a green diagonal
line a copy of P;. A red dot is a copy of Fy = Ps.
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FIGURE 2. The homotopy of tm f;(3)

13.C. Local cohomology. We are calculating local cohomology with respect to the ideal
Jy = (01,73) so that we only need to consider tm f1(3)32 as a Z[vy,Uz]-module. As such it
is a sum of suspensions of the blocks BB and N B, so we just need to calculate the local
cohomology of these. This was described in Section [12] above. Here we will simply describe
the extensions and the behaviour of the local cohomology spectral sequence.

The basis of this discussion are the tables of BB and GBB from Subsection [12.D]together
with the analogues for NB and GN B. Although these are organized by diagonal, Figure
displaying BB, GBB,U"'NB and U"'GN B may help visualize the way the modules are
distributed along each diagonal. The vertical lines denote multiplication by a and the dashed

vertical line is an exotic multiplication by a that is not visible on the level of local cohomology.
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The green diamond does not denote a class, but marks the point one has to reflect (non-
torsion classes) at to see Anderson duality. Torsion classes are shifted after reflection by —1
(i.e., one step horizontally to the left).

The strategy is to take the known subquotients from the local cohomology calculation,
and resolve the extension problems using Gorenstein duality.

Proposition 13.2. We have an isomorphism
m g, tmfi(3) 2 GBBIU| & U 'GNB[U ],

where GBB and GN B are described in the following. We will simultaneously describe what
differentials and extensions in the local cohomology spectral sequence caused the passage from
H3 (BB) and H5 (NB) to GBB and GN B respectively.

(i) The Z[vy,vs2)-modules along the diagonals in GBB are as follows.

GBB (n=2)

7 Module Top degree
—2 P~ —6 — 4o
~1 P, —6— 50

0 P, —6— 60

1 0

2 (2,5,)P) —4—60

3 P, —4—To

4 P/ —4 -8

5 P, —4-9g

6 (2,5,)P]* —2—80

7 (01,02)Py —2—90

8 (v1,72)Py —2— 100

9 0
10 ((2,71,7,)P]* 0— 100

104k > 11 F, 0— (10 + k)o

There are three non-trivial differentials
dy : H} (BB) — H3 (BB)
from the groups at —7o,—8c,—9c to the groups at — 70 — 1,—80 — 1,—90 — 1, which have

affected the values on the 6-, 7-, 8- and 9-diagonals in the table.
The extensions

0 — P* — [(2,71)P]* — Fa[vn]Y — 0
on the 2-diagonal and the 6-diagonal are Anderson dual to the defining short exact sequence
0 — (2,7,)P — P — Fy[v5] — 0
in the following sense: The Anderson dual of the latter exact sequence is a triangle
Folvo]* — P* — [(2,11) P]* — XFy[0,]" = Fy[v,]Y,
which induces (on homology) the extensions above. The extension

0 — P*—[(2,01,09)P]" — Fy — 0
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FIGURE 3. Gorenstein duality for tmf;(3)
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on the 10-diagonal is Anderson dual to the short exact sequence
0 — (2,v1,09)P — P — Fy — 0.

(11) The Z[vy1,Us]-modules along the diagonals in GN B are as follows (take the direct sum
of the two entries for the (—2)-, (—1)-, 0- 1- and 2-diagonals)

GNB (n=2)
i Module — Top degree
—k< -3 F, —1—ko
—2 P* Ty —6—40,—1+4+0
1 P,.F, —6—50,—1+00
0 P,,F, —6—60,—-1—0¢
1 F, —1-20
2 P*P, —4—60,—1—30
3 ?\1/ —1—-4o
4 P,  —1-50
5 P/ —1-60
6 | [27)P] -1-To
7 Py, —-1-8c
8 Py,  —-1-9
9 0
10 Pt 0— 100

The extension
0 — P* — [(2,01)P]" — Falvs]Y — 0
on the 6-diagonal is Anderson dual to the short exact sequence
0 — (2,7,)P — P — Fyvy] — 0.

Proof: We first note that the contributions from the different blocks do not interact. Indeed,
the only time that different blocks give contributions in the same degree comes from the Fy[al
towers of BB, and one class in that degree is divisible by ©; or 5 and not killed by both v
and U,. We may therefore consider the blocks entirely separately.

The block GBB comes from the local cohomology of BB in the sense that there is a
spectral sequence

Hi(BB) = GBB.
Thus there is a filtration
GBB = GBB° 2 GBB' 2 GBB* 2 GBB* =0

with
0 — GBB’/GBB' — HY (BB) ey %"'H} (BB) — %'GBB* — 0
and
GBB'/GBB® =~ %'H; (BB).
The block GN B comes from the local cohomology of N B in a precisely analogous way.

Most questions about module structure over BB[U| are resolved by degree. The remaining

issues are resolved by using Gorenstein duality.
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Referring to the table for Hi(BB) in Subsection the first potential extension is on

the 2-diagonal. Using Gorenstein duality to compare with N Bs_g we see that the actual
extension on the 2-diagonal of GBB is

0 — P* — [(2,9,)P]* — Flv — 0,

where we have shifted the modules so they all have top degree 0. There is an additive
extension on the 10-diagonal by reference to the Anderson dual. Finally the three non-zero
dy differentials from —1 — ko for k = 7,8 and 9 are necessary for connectivity (this removes
the need to discuss the possible extensions on the 7- and 8-diagonals).

The situation is rather similar for GNB. We will not explicitly display N B since the only
effect (apart from the addition of Fy[a]¥) is on the first column, where a module is replaced
by the kernel of a surjection to Fy. It is perhaps worth displaying Hi(N B), where we leave

out the big Fy[a]Y-tower in ng NB. We will color again H'-groups in brown and H2-groups
in teal.

H* (NB) (n=2)

7 1 u? u? u®
-2  P*(=6p)
-1 Pg(—Gp) @ P,

0 | Py(—6p) @ P-

1 P,

2 | P/(-4p) P (—6p)

3| P, (—4p)

4 | P,(—4p)

5 P\1/ (—4p)

6 P/ (~5p) @ P*(—6p)

7 Py (~5p)

8 Py (=5p)

9

10 P*(—6p)
11

12

13

In this case all extensions are split, except for the one on the 6-diagonal and there are no
differentials. The a multiplications in the F[a]¥ tower are clear from Gorenstein duality and
the a-tower Fs[a] in BB. O

Remark 13.3. (i) Summarizing the way a diagonal BBj contributes to N B as in
H (BB5)* ~ NBy

as sketched in Subsection [[2.Fl We have
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0 0'st.H; (BBs)' ~NBy| 6 &st.H; (NBs)* ~ BBy
0 12 0 12
1 10 1 10
2 9 2 9
3 8 3 8
4 8,6 4 8,6
5 5 5 5
6 4 6 4
7 2 7 .
8 4,3 8 4
9 2 9 2
10 1,0 10 1
11 0 11 .
12 0 12 0

Because most of the modules are 2-torsion the most common pairing is between § and
11 — ¢ rather than between § and 12 — ¢ as happens for the main U-power diagonals.
(ii) We also note as before that since NB = I'(o) BB, we have

E6+4O—F(§17§2)BB ~ (I'yBB)*
(where we have written ~ rather than ~ in recognition of the differentials) and
ST 5, 50,0 BB ~ BB,

with the second stating that BB is Gorenstein of shift —6 — 40 for the ideal (71,72, a).

APPENDIX A. THE COMPUTATION OF wffBPR

Our main goal in this appendix is to compute the homotopy fixed point spectral sequence
for BPR and hence for MR. All the results in this appendix and the essential idea of the
argument for Proposition are contained in [HKOT] (see especially Formula 4.16). We just
rearranged their arguments and added some details. Our argument for the multiplicative
extensions might be considered new though. We have strived for elementary and short proofs
though they retain some computational complexity. We hope this is helpful for the reader to
understand this crucial computation. Note that even before Hu and Kriz, the computation
of WEQBPR was announced in [AMTS].

We will work throughout 2-locally. As before, we denote by p the regular real Cs-

representation and by o the sign representation. We need a few facts, first proven by Araki:
(1) If E is a Real-oriented spectrum, then Eg2(CP°°) &~ Eé; [u] with |u| = —p and
Eé;((CP‘X’ x CP>) = Eé; [1 ®u,u®1]. This induces a formal group law on 72 E

and the forgetful map WSp?E — 75, maps it to the usual formal group law from the

complex orientation of E. [HKO0I, Theorem 2.10]
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(2) Thus, we get a ring map 75, MU — 72> MR from the Lazard ring so that 7§, MU is
a retract of Wfp? MR. For every class in z € m, MU, we have thus a corresponding
class 7 € 72 MR. [HKOI, Proposition 2.27]

(3) There is a splitting MRy >~ P,, X" BPR, where the underlying spectrum of BPR
agrees with BP. This splitting corresponds on geometric fixed points to the splitting
MO ~@,, X" HF,. [HK01, Theorem 2.33]

Define a: S° — S as before to be the inclusion of the points 0 and oo; we will denote the
image of a in mx MR and w4 BPR by the same symbol. The class a has degree —o =1 — p.

Proposition A.1. We have a®"" =%, = 0 in 75> MR.
Proof: We have a fibre sequence
(ECy)y ® MR — MR — E Cy @ MR.
First, we claim that the image of T, under MR — ECy @ MR is zero. Indeed, as a is

invertible on E C, @ MR, the formal group law on WSPQ(E Cy ® MR) agrees with that on

7T*C2(E Co ®@MR) = 1, MO, which is additive. Therefore, the map
MUy, — 72 MR — 702 E Co @ MR
sends all v, to zero. Thus, 7, and hence also a®"" ~17, are in the image of the map
(ECy); ® MR — MR.
Observe that
a2 T, = —( 2" =)o+ (2" = 1)(140) =2" —1—2"0.
We claim that 752 | ony ((ECy)y ® MR) is zero. Indeed, we have
792 1 ong (B Ca)y ® MR) 22 mgn_1 (2" MR) s,

This can be computed by the homotopy orbit spectral sequence

H,(Co; 12" MR) = 7y (S "MR) -

But 7, 22" MR = 0 for ¢ < 2" so that mgn_1(3?"“MR),c, = 0. Thus, we see that
a®"' 1w, = 0 in 73 MR. O

For a Cy-spectrum X the RO(Cy) graded homotopy fixed point spectral sequence is defined
by combining the homotopy fixed point spectral sequences

BE(r) = HO(Co,myig(X AS77)) = m§2((X A S777)P%) 2 82, (X (FC0)

into a single spectral sequence with differential
dn : EP(r) — BP0 (p),

Note that we use an Adams grading convention here. We will often call p 4 ro the degree of
an element.
The RO(Csz)-graded homotopy fixed point spectral sequence (HFPSS) for BPR has FEs-
term
Z(g) [a7 Uil,ﬁl,ﬂg, .. ]/QCL
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with

la] = (—0,1), |u| = (2 —20,0), and [7;] = ((2' — 1)p,0).
This can be seen, for example, by the identification with the Bockstein spectral sequence
for a discussed in [HMI16, Lemma 4.8]. As BPR is a retract of MRy, it has the structure
of a (homotopy) ring spectrum and thus the RO(C5)-graded homotopy fixed point spectral
sequence is multiplicative by [HMI16l Sec 2.3].

By the discussion above, a and the T; are permanent cycles. As a?" v, is zero, it must
be hit by a differential. This is the crucial ingredient for the following central proposition. It
is fully formal in the sense that we do not need any other input in addition to the things we
already discussed; we argue just with the form of the spectral sequence. We will set vy = 2
for convenience.

Proposition A.2. In the HFPSS for BPR, we have Fon = Eon+1_1 and it is the subalgebra
of

+1_1q

EQ/(CLgﬁl, e ,a2n_15n_1)
generated by a,u*""", the v; for i >0 and by the 5;u*7 fori <n—1 and j € Z.

Proof: We prove it by induction. It is obviously true for n = 1 by the checkerboard
phenomenon; indeed, for all generators of the Fs-term in degree (a + bp, q) we have a + ¢
even.

Now assume it to be true for a given n. First, we will show that dyn+1_;
Indeed, as a2n+1*16n is nonzero in Fan+1_1, it must be hit by a don+1_1. Its source x is in the
zero-line in degree 2" — 27y, As the zero-line in F, is generated by u of degree 4 — 2p and
by the 7; in regular representation degrees, we see that the exponent of v in x must be 277!
so that there is no room for further 7;. Thus, dont1_1 (62" ') = a2 ~17,.

Next, we want to show that d,(T;u?7) = 0 for 2! —1 < ¢ < 22 — 1 and i < n. Write
dy(T;u*7) = a%z. The degree of z is

(2" = Dp+2(4=2p) —q(l—p) = 1= (2" —q - 1)+ (2" = 2" j + g~ 1)p.

Thus, z = u?3~T 7, where T is a polynomial in the 7,. The degree of ¥ is (2 — 2 + 2 p.

As % < 2" we have

(u2n71 ) _ a2n+1 _1@,”.

9] < 774 < [5/]
for 7 > n 4+ 2. Thus, no monomial in 7 is divisible by 72, or 7,. Assume that [0] = [T,41].
Then £t =27+l — 1 42— 20 = 271 — 27 4+ 1 which is odd; but then X! ¢ Z, which is a
contradiction. Thus, every monomial in v is divisible by some vy for some k < n as v # 1
for degree reasons. But a?v, = 0 in E,. Thus, also a’z = 0 in Ej,.
Similarly, write d,(u®") = a%z for 2" —1 < ¢ < 2""? —1 and assume that this is nonzero.
The degree of x is

2"(4-2p) —q(l—p) = 1= (2" —g =1+ (¢—2"")p.

Thus, we can write z in Ey as u2"~“ 7, where 7 is a polynomial in the 7,. The degree of
v is % < 271 — 1. Thus, no monomial in ¥ can be divisible by @, for r > n + 1. Thus,
every monomial in v is divisible by some vy, for some k& < n as v # 1 for degree reasons. But
a'vy = 0 in E,. Thus, d,(u*") = 0.
By the Leibniz rule, this implies the proposition. U
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Before we proceed to solve the multiplicative extension issues, we need a technical lemma.

Lemma A.3. Assume that there is an element a*u'v # 0 above the zero line in the E.-term
of the RO(Cy)-graded HFPSS for BPR with T a monomial in the U, and in the same degree
as U;0,u? 9. Let p be the minimal index such that v, divides v (which we will show to exist).
Then i > p+ m.
Proof: The degree of v;v,,u®"7 is
27j(4— 2p) + (2 — 1+ 27 — 1)p = 272 4 (2 2™ — 2™ — 2)p,
Let a*u'v # 0 be an element in E,, in this degree with ¥ a monomial in the v, of degree
np and assume that & > 0. (In the following we will use the notation ||v,|| = |v,|/p so that
||7]] = n.) We get
4+ k= 2"
n—2—k=242m_2mtlj_9
This implies n = 2¢ + 2™ — 2 + % We see that n # 0. Let p be the minimal index such

that U,|v. Then 27|l and we set ¢ = [/2P. Then k = 2™*%j — 2P"2¢. Due to the relation
a2p+1*1®p =0, we have k < 2P*1 — 2 and thus m + 2 < p (as else 2P|k and thus k > 2P1),

In particular, 2" divides £. Now observe that n > ||v,|| = 2? — 1 so that
. k
21+2m—122p—§.
As k < 2Pt 2 the right hand side is positive; as it is also divisible by 271 it is thus it is at
least 21, We see that i > m + 1. Thus n = 2™ —2 mod 2™ As [|7,|]| = =1 mod 2™

for ¢ > p > m+ 1, we see that the total exponent of ¥ (i.e. the degree of ¥ as a monomial in
the 7,) must be = 2™ + 2 mod 2™*!. In particular, n > ||7,]|(2™ + 2) = (2P — 1)(2™ + 2).
Thus,

k . .

3 =n—20—2m 42> optm _9f 4 (9Pl gmtl),
If p4+m > 4, then the right hand side is at least 2P, which would be a contradiction. Thus
t>p+m. [l

Now, we are ready to prove the main result of the appendix. Note that [HK0I, Theorem
4.11] gives a different relation than our last one; our relation implies their relation, but not
vice versa. Note also that our arguments for the multiplicative relations are completely
algebraic (using the form of the spectral sequence), while [HK01] uses additionally a Cs-
equivariant Adams spectral sequence.

Theorem A.4. The ring WS?BPR 15 1somorphic to the Es-term of the homotopy fized point
spectral sequence above, i.e. to the subalgebra of
Zoyla, T, u*')/ (20, Tia® " 7)

(where i runs over all positive integers) generated by Uy, (n) = u* "0, (with m,n € Z and
m > 0) and a with Ty = 2. Consequently, it is the quotient R of the ring

Zyo)la, Um(n)m > 0,n € Z]
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by the relations

Ui(1)0m(n) = 00, (2™ + n) fori>m

with E’ = 51(())
Here, |a| =1 — p and [v,,(n)| = 2™ 2n + (2™ — 1 — 2™F1n)p.

Proof: It is enough to show that the expression above computes the homotopy fixed points
T BPR(E )+ Indeed, Proposition |A.2 implies that (a~!BPR® C2)+)02 ~ HTF, so that the

map BPR®%2 — BPR!®? is an equivalence and hence also BPR — BPR¥FC2)+ by the Tate
square.

Set 14(0) = 2. By Proposition , the classes u?" "7, are permanent cycles in the HFPSS:;
choose element v,,(n) € 7r,(ifBP]R(ECZ’)Jr representing them. Again by Proposition , the
Um(n) generate together with a the E..-term of the HFPSS. Thus, we get a surjective map
R — FE,. The third relation defining R allows to define a normal form: Every monomial in
the T;(j) equals in R an element of the form v7,,(k), where T is a monomial in the 7, and m
was the smallest index of all 7;(j). Thus, two monomials in the T;(j) are equal in R if they
are equal in F; hence, the map R — F, is also injective.

We now check that the relations are also satisified in WSQBPR(E ©2)+. This is clear or was
already shown for the first two relations. Let now ¢ be the least number such that m < i
and

i(J)0m(n) # iU (275 + n)
for some j, m,n if such an 7 exists. The difference must be detected by a class a*u'v, where ©
is a polynomial in the 7,,. Let p the minimal index such that every monomial in v is divisible
by a 7, with » < p. From Lemma we know that p < i — 1 (and in particular i > 1).
Thus,

k

0i(J)0m (n)0i1 # V0 (27" ) + )Ty
as their difference is detected by a nonzero class a*u'vv;_, (indeed: this could only be zero

if k> 2'—1, but k < 2°*! —1). By the minimality of 7, we have
@m(2i_mj + n)@_l = 61_1(2‘])@771(71)

In addition, ©;v;_1(2j) = v;(j)v;—1 because there is no element of higher filtration in the
same degree as U;_17;(j) by Lemma . The last two equations combine to the chain of
equalities

is always true for ¢ > m. 0
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Remark A.5. We remark that all the work above for the multiplicative extensions was
actually necessary. For example, we get from the homotopy fixed point spectral sequence
only that 757;(1) — U5(1)v1(—15) has filtration at least 1. But there are indeed classes in

3

this degree of higher filtration, for example a®v3v,.
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