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1. Introduction and statement of results

Denote by MR the (uncompactified) moduli stack of elliptic curves over some (com-
mutative) ring R. The aim of this note is to study vector bundles on MR. This extends 
the classification of line bundles by Fulton and Olsson, who prove:

Theorem 1.1. (See [7].) If R is a reduced ring or a Z[ 12 ]-algebra, then

Z/12 × Pic
(
A1

R

)
→ Pic(MR)(

[k], E
)
�→ ωk ⊗ π∗E
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is an isomorphism for π: MR → A1
R the map defined by the j-invariant (which is 

isomorphic to the canonical map into the coarse moduli space).

Here, ω denotes the line bundle on MR defined by the following property: Let p: E →
X be an elliptic curve over a scheme X. Then the evaluation ωX at the map X → MR

classifying E is given by p∗Ω1
E/X .

Note that we have the following special case of Theorem 1.1:

Corollary 1.2. If R is a regular local ring, the map Z/12 → Pic(MR), [k] �→ ωk, is an 
isomorphism.

Proof. By [9], II.6.6 and II.6.15, we have Pic(A1
R) ∼= Pic(SpecR). �

We will take some first steps towards the study of vector bundles of higher rank on 
the moduli stack of elliptic curves. We will be able to give a complete classification only 
under severe restriction on the local ring R, but have several partial results. Before we 
go into the details, we want to fix the definition of a vector bundle we want to use:

Definition 1.3. Let (X , OX ) be a ringed site. Then a vector bundle on X is a locally free 
OX -module of finite and constant rank.

Our first main theorem concerns the situation at primes bigger than 3:

Theorem A. Let R be a discrete valuation ring or a field with (residue) characteristic 
not equal to 2 or 3. Then every vector bundle on MR is a sum of line bundles.

The author learned of this result in the case of a field from Angelo Vistoli, where it is 
also true for the compactified moduli stack. Theorem A will be proven in the more general 
context of weighted projective and affine lines in Section 3. As the question whether every 
vector bundle on A1

R for a regular local ring decomposes into (trivial) line bundles is the 
open Bass–Quillen conjecture (see [16, VIII.6]), an extension of Theorem A to arbitrary 
regular local rings does not seem feasible in the moment, though some generalizations are 
certainly possible. As our applications to stable homotopy theory (see [19]) only require 
the case R = Z(p), we stay with discrete valuation rings. Note also that the results in 
[14] indicate that Theorem A might not be true for the compactified moduli stack if R
is not a field.

The rest of this article will be concerned with the situation at 2 and 3, where not every 
vector bundle splits into line bundles. The easiest examples of indecomposable higher 
rank vector bundles are non-trivial extensions of line bundles. At the prime 3 we achieve 
a classification of all vector bundles which are iterated extensions of line bundles:

Theorem B. Let E be a vector bundle on M(3) = MZ(3) that is an iterated extension of 
line bundles. Then E is a sum of vector bundles of the form ωk, ωk⊗Eα and ωk⊗f∗f∗O.
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Here, the vector bundle Eα is of rank 2 and will be introduced in Subsection 4.2. The 
vector bundle f∗f∗O is of rank 3 and arises from the forgetful map f : M0(2)(3) → M(3)
from the moduli stack of elliptic curves with one chosen point of exact order 2.

The situation at the prime 2 seems to be more involved and here we can prove that 
there are actually infinitely many indecomposable vector bundles:

Theorem C. There are infinitely many indecomposable vector bundles on M(2) = MZ(2)

(of arbitrary high rank).

This indicates that a complete classification of vector bundles on M(2) might be quite 
difficult, while the classification of vector bundles on M(3) could be achieved by a positive 
answer to the following question:

Question 1.4. Is every vector bundle on M(3) an iterated extension of line bundles?

At last, we give an overview over the structure of this article. The second section 
provides some basics about weighted projective stacks. The third section proves The-
orem A, first for fields and then for discrete valuation rings. This will be done in the 
more general context of weighted projective and affine lines. In Section 4 we will give 
a detailed (cohomological) analysis of some low-rank vector bundles on M(3) and their 
extensions. In Section 5 we will exploit this to show that we have already constructed 
all iterated extensions of line bundles, i.e. we prove Theorem B. In Section 6, we see 
how integral representations of GL2(F3) give rise to vector bundles on M(2) and use 
representation-theoretic arguments to prove Theorem C. In Appendix A, we will review 
some results about quasi-coherent sheaves and completions used in Section 3.

2. Basics about weighted projective stacks

Away from 2 and 3, the moduli stack of elliptic curves is a weighted projective line 
and it is more natural to study vector bundles in this context. For the convenience 
of the reader, we define in this section weighted projective stacks, prove some of their 
properties and compute their cohomology. This is probably all well-known and we claim 
no originality here.

For a0, . . . , an ∈ N and a commutative ring R, the weighted projective stack
PR(a0, . . . , an) is the (stack) quotient of An

R−{0} by the multiplicative group Gm under 
the action which is the restriction of the map

φ: Gm × An+1
R → An+1

R

Z
[
t, t−1]⊗R[t0, . . . , tn] ← R[t0, . . . , tn]

tai ⊗ ti ← � ti
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to Gm × (An+1
R − {0}). Here, An+1

R − {0} denotes the complement of the zero point, i.e. 
of the common vanishing locus of all ti. On geometric points, the action corresponds to 
the map (t, t0, . . . , tn) �→ (ta0t0, . . . , tantn). In the special case of n = 1 we speak of a 
weighted projective line.

Recall that there is an equivalence between affine schemes with Gm-action and graded 
rings given as follows: If SpecA has a Gm-action, an element a ∈ A is homogeneous of 
degree i if and only if a �→ a ⊗ ti under the map A → A ⊗Z[t, t−1] corresponding to the 
action map SpecA × Gm → SpecA. Under this correspondence, φ corresponds thus to 
the grading |ti| = ai.

I learned the following proof from Akhil Mathew.

Proposition 2.1. For every a0, . . . , an ∈ N and every commutative ring R, the projective 
stack X = PR(a0, . . . , an) is a proper and smooth Artin stack over SpecR.

Proof. Since X � PZ(a0, . . . , an) ×Spec Z SpecR and properness is preserved under base 
change, we can assume R = Z. Every stack quotient of a smooth scheme by a smooth 
group scheme is a smooth Artin stack, so X is a smooth Artin stack.

Next, we have to show that X is separated. For a preliminary remark assume 
that A is a local ring. Then the groupoid X(A) is equivalent to the groupoid with 
objects (n + 1)-tuples (x0, . . . , xn) ∈ An+1 where at least one xi is invertible and 
a morphism between (x0, . . . , xn) and (y0, . . . , yn) is an element λ ∈ A× such that 
(λa0x0, . . . , λanxn) = (y0, . . . , yn). Indeed, while X is the stack of Gm-torsors with 
Gm-equivariant map to An+1 − {0}, we just described the value of the prestack of triv-
ial Gm-torsors with Gm-equivariant map to An+1 − {0} (see [2], Definition 3.11 and 
Example 3.12). These agree on every scheme whose Picard group is trivial.

For π: X → SpecZ to be separated it suffices to show that for every valuation 
ring A with quotient field K and every two objects x, y ∈ X(R) with an isomorphism 
λ: xK → yK in X(K), there is exactly one isomorphism λ: x → y in X(A) such 
that λK = λ ([17, Proposition 7.8]). As a valuation ring is local, x corresponds to 
(x0, . . . , xn) ∈ An+1, y to (y0, . . . , yn) ∈ An+1 and λ to an element λ′ ∈ K× with 
λ′ aixi = yi. If xi is invertible, λ′ ai ∈ A and thus also λ′ ∈ A.

As π is thus separated and also of finite type, for π to be proper it is now enough to 
show the following: For every discrete valuation ring A with quotient field K and object 
x ∈ X(K), there is a finite extension L of K such that we have an object y ∈ X(B)
(for B the integral closure of A in L) and an equivalence yL → xL in X(L) (see [17, 
Theoreme 7.10]). The object x corresponds again to an (n +1)-tuple (x0, . . . , xn) ∈ Kn+1. 
The object x is isomorphic to yK for some y ∈ X(A) if and only if the valuation of xi

is divisible by ai for i = 0, . . . , n + 1. This can be assumed after ramified (finite) base 
change. �
Remark 2.2. Set again X = PR(a0, . . . , an) and let x ∈ X(k) be a field-valued point 
corresponding to an (n +1)-tuple (x0, . . . , xn) ∈ kn+1. We claim that the automorphism 
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group scheme Aut(x) is isomorphic to μd = Spec k[u]/(ud − 1), where d is the greatest 
common divisor of all ai such that xi 	= 0.

Indeed, let R be a k-algebra and denote by xR ∈ X(R) the pullback. As in the last 
proof, the automorphism group of xR consists of all λ ∈ R with(

λa0x0, . . . , λ
anxn

)
= (x0, . . . , xn).

As the xi are either invertible or zero, the condition is exactly λai = 1 if xi 	= 0. Thus, 
we have a natural bijection Aut(x)(R) ∼= μd(R).

A stack quotient of a smooth scheme by a smooth group scheme is a smooth 
Deligne–Mumford stack if the stabilizers are finite and reduced (see [6]). We see that 
PR(a0, . . . , an) is actually a Deligne–Mumford stack if all ai are invertible on R.

Proposition 2.3. For every a0, . . . , an ∈ N and every commutative ring R, there is a finite 
fpqc map ψ: Pn

R = PR(1, . . . , 1) → PR(a0, . . . , an).

Proof. By definition, we have Pn
R = (SpecR[x0, . . . , xn] −{0})//Gm and PR(a0, . . . , an) =

(SpecR[t0, . . . , tn] − {0})//Gm with gradings |xi| = 1 and |ti| = ai for all i = 0, . . . , n. 
We define a map f : R[t0, . . . , tn] → R[x0, . . . , xn] of graded rings by ti �→ xai

i . This 
map makes R[x0, . . . , xn] into a free module of finite rank over R[t0, . . . , tn]. The map f

induces a Gm-equivariant map g: SpecR[x0, . . . , xn] → SpecR[t0, . . . , tn], which is finite, 
flat, quasi-compact and surjective. As all these properties descent via fpqc-maps and

SpecR[x0, . . . , xn] SpecR[t0, . . . , xn]

SpecR[x0, . . . , xn]//Gm SpecR[t0, . . . , tn]//Gm

is a pullback square, the map g//Gm: SpecR[x0, . . . , xn]//Gm → SpecR[t0, . . . , tn]//Gm

has all these properties as well. As the complement of the vanishing locus of x0, . . . , xn

is the same as that of xa0
0 , . . . , xan

n , this restricts to a finite fpqc map

ψ: Pn
R → PR(a0, . . . , an). �

For every integer m, there is a line bundle O(m) on PR(a0, . . . , an) defined as follows: 
The map φ gives a Gm-action on An

R. The category of quasi-coherent modules on An
R//Gm

is equivalent to graded R[t0, . . . , tn]-modules by Galois descent, where |ti| = ai. For M
a graded module, denote by M [m] the graded module with M [m]k = Mm+k. Then 
R[t0, . . . , tn][m] is a graded R[t0, . . . , tn]-module, which corresponds to a line bundle on 
An

R//Gm whose restriction to P(a0, . . . , an) we denote by O(m).

Example 2.4. Denote by MR the compactified moduli stack of elliptic curves over a ring 
R (in the sense of M1 in [5, IV.2.4]). We have an equivalence
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MR �
(
SpecR[c4, c6] − {0}

)
//Gm

∼= P(4, 6)

for R a ring where 6 is invertible. This equivalence is given by the Weierstraß form 
E: y2 = x3 + c4x + c6. Under this equivalence, the line bundle ω on MR corresponds 
to O(1) on PR(4, 6). The reason is that f(u)∗ω0 = uω0, where ω0 = dx

2y is the usual 
invariant differential, which is a local trivialization of ω, and f(u) is the endomorphism 
of the elliptic curve E given by f(u)(x) = u−2x and f(u)(y) = u−3y.

Our next aim is to calculate the cohomology of the line bundle O(m) on a weighted 
projective stack.

Proposition 2.5. Let X = PR(a0, . . . , an) be a weighted projective stack. Define sets

A(m) =
{

(λ0, . . . , λn) ∈ Zn+1
≥0 :

n∑
i=0

λiai = m

}
, and

B(m) =
{

(λ0, . . . , λn) ∈ Zn+1
<0 :

n∑
i=0

λiai = m

}
.

Then

H0(X;O(m)
)

= free R-module on A(m)

Hi
(
X;O(m)

)
= 0 for 1 ≤ i ≤ n− 1

Hn
(
X;O(m)

)
= free R-module on B(m)

Note, in particular, that H0(X; O(m)) = 0 for m < 0 and

H0(X;O(m)
) ∼= Hn

(
X;O

(
−

n∑
i=0

ai −m

))
.

Proof. We compute the cohomology as Čech cohomology with respect to the cover by 
the open substacks

Ui = SpecR[t0, . . . , tn]
[
t−1
i

]
//Gm.

Note that Hj(Ui; F) = 0 for j > 0 and every quasi-coherent sheaf F by Lemma 3.15.
The Čech complex associated to this cover and the sheaf 

⊕
l∈Z O(l) agrees with the 

one for the standard covering of the projective space Pn
R, if we view 

⊕
l∈Z O(l) as an 

ungraded sheaf. As in this classical case (see [9, III.5.1]), we obtain



L. Meier / Journal of Algebra 428 (2015) 425–456 431
H0
(
X;

⊕
l∈Z

O(l)
)

= R[t0, . . . , tn]

Hi

(
X;

⊕
l∈Z

O(l)
)

= 0 for 1 ≤ i ≤ n− 1

Hn

(
X;

⊕
l∈Z

O(l)
)

= free R-module on the set of monomials ti00 · · · tinn with all ij < 0

The group Hi(X; O(m)) is isomorphic to the part of degree m, where |ti| = ai again. 
The proposition follows easily now. �

As an example, we depict some range of cohomology in the case of PR(4, 6), where 
squares stand for copies of R:

3. Vector bundles away from 2 and 3

3.1. The case of a field

I have learned most of the proofs in this subsection from Angelo Vistoli.
Recall that a coherent sheaf F is called reflexive if the canonical map from F to its 

double-dual is an isomorphism. In particular, every vector bundle is reflexive.

Lemma 3.1. Pullbacks along flat maps preserve reflexive sheaves.

Proof. It follows from [25, IV, Proposition 18] that pullbacks along flat maps between 
affine schemes preserve duals. Since flatness is a local condition and duals are computed 
locally, thus pullback along any flat map between algebraic stacks preserves duals. �
Lemma 3.2. Let X be an Artin stack and i: U → X a quasi-compact open immersion. 
For every reflexive sheaf ξ on U , there is a reflexive sheaf F on X with i∗G ∼= ξ.

Proof. Note first that i∗ξ is quasi-coherent by [17, Proposition 13.2.6] since i is quasi-
compact. By [17, Corollaire 15.5] there is then a coherent sheaf G on MR with i∗G = ξ. 
Let F denote its double-dual. This is reflexive ([10], 1.2 – which we can use also for 
stacks since both reflexivity and coherence are local conditions) and, in addition, we 
have i∗F = ξ since ξ is already reflexive and i is flat. �

By the lemma, we get directly the following:
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Proposition 3.3. For R a ring, every reflexive sheaf on MR is the restriction of a reflexive 
sheaf on MR.

By Example 2.4, we have an equivalence MK � (SpecK[c4, c6] − {0})//Gm =
PK(4, 6) for K a field of characteristic not 2 or 3. Therefore, it is enough to classify 
reflexive sheaves on weighted projective lines.

Proposition 3.4. Let K be an arbitrary field, m, n ∈ N. Then every reflexive sheaf F on 
PK(m, n) is a direct sum of line bundles of the form O(a).

Proof. By Galois descent, the sheaf F corresponds to a Gm-equivariant sheaf on 
A2

K − {0}, with respect to the action given by t(x, y) = (tmx, tny); we will denote 
this Gm-equivariant sheaf by abuse of notation still by F . This new sheaf F is reflex-
ive since pullbacks by flat maps preserve reflexive sheaves by Lemma 3.1. Using the 
inclusion (A2

K − {0})//Gm ↪→ A2
K//Gm, we can by Lemma 3.2 extend F to a reflexive 

Gm-equivariant sheaf on A2
K , which we denote by abuse of notation again by F . Since 

every reflexive sheaf on a regular 2-dimensional scheme is locally free [10, Corollary 1.4], 
F is locally free as a non-equivariant sheaf. The datum of a Gm-equivariant sheaf on 
A2

K is equivalent to that of a graded module over K[t1, t2]. Each shift K[t1, t2][a] for 
a ∈ Z defines a Gm-equivariant line bundle on A2, restricting to O(a) on PK(m, n). 
Thus, our proposition follows directly from the following more general (and not very 
difficult) proposition. �
Proposition 3.5. (See [16], II.4.6.) Let R be a ring graded in degrees ≥ 0, R0 its zeroth 
degree part and R+ its part of positive degree. Then for every graded projective R-module, 
we have an isomorphism of graded R-modules R⊗R0 (P/R+P ) ∼= P . In particular, if R0

is a field, every graded R0-module is a sum of shifts of R0 and so P is isomorphic to a 
sum of shifts of R.

Corollary 3.6. For K a field of characteristic not 2 or 3, every vector bundle on MK or 
MK is a direct sum of line bundles.

Remark 3.7. The analogue of Proposition 3.4 is certainly not true for higher dimensional 
(weighted) projective spaces. There is a nice overview of the topic of indecomposable 
vector bundles on projective spaces in the introduction of [21].

3.2. Vector bundles on weighted affine lines over a discrete valuation ring

We do not attempt to classify vector bundles over weighted projective lines over a 
regular local ring; this is probably difficult even if dim(R) = 1 as in [14]. We try to 
classify vector bundles over weighted affine lines instead.
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Definition 3.8. Let R be a ring and a and b be positive integers. Then a weighted affine 
line of type (a, b) is the non-vanishing locus of a section Δ ∈ O(m)(PR(a, b)) whose 
vanishing locus is isomorphic to SpecR//μgcd(a,b).

An example of a weighted affine line is MR if 1
6 ∈ R. Indeed, it is the non-vanishing 

locus of Δ ∈ O(12)(PR(4, 6)) where Δ = c34−c26
1728 for PR(4, 6) = (SpecR[c4, c6] −{0})//Gm.

We wish to prove the following theorem:

Theorem 3.9. Let a and b be positive integers and R be a discrete valuation ring. Then 
every vector bundle on a weighted affine line of type (a, b) is a direct sum of line bundles 
of the form O(n) (or rather their restrictions).

Corollary 3.10. Every vector bundle on MR for R a discrete valuation ring with 1
6 ∈ R

is a sum of tensor powers of ω. In particular, this holds for R = Z(p) for p > 3.

We will mimic the proof strategy of [11], where Horrocks proves the analogous result 
for non-weighted affine lines. More precisely, we will first show that a vector bundle 
on a weighted affine line is trivial if it can be extended to the corresponding weighted 
projective line (for an arbitrary noetherian local ring R) and then that vector bundles 
can be extended (for R a regular local ring of dimension ≤ 1).

Lemma 3.11. Let R be a local ring and X be an algebraic stack over R such that X →
SpecR is a closed morphism. Assume furthermore that there is a closed fpqc cover Y → X
for some reduced scheme Y . Let

0 → E → F → G → 0

be a short exact sequence of sheaves on X where E and F are vector bundles. Assume 
that

0 → E ⊗R k → F ⊗R k → G ⊗R k → 0

is a short exact sequence of vector bundles on X ×Spec RSpec k for R/mR = k the residue 
field. Then G is a vector bundle.

Proof. Let A be the local ring of an arbitrary closed point in Y . It is enough to show 
that G(SpecA) is a free A-module. We have exact sequences

0 → E(SpecA) → F(SpecA) → G(SpecA) → 0

and

0 → E(SpecA) ⊗R k → F(SpecA) ⊗R k → G(SpecA) ⊗R k → 0.
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There is an isomorphism G(SpecA) ⊗R k ∼= (A ⊗R k)rk F−rk E . Lifting the basis elements, 
we get an A-linear map f : Ark F−rk E → G(SpecA). It is surjective, as can be tested at 
the closed point of SpecA, which maps to the closed point of SpecR.

The ring A is reduced, hence integral. Denote by K the quotient field of A. Then

fK : Ark F−rk E ⊗A K → G(SpecA) ⊗A K

is also a surjection; hence an isomorphism since we have a short exact sequence

0 → E(SpecK) → F(SpecK) → G(SpecK) = G(SpecA) ⊗A K → 0,

which implies that G(SpecA) ⊗AK ∼= Ark F−rk E⊗AK. Since K is a flat A-module, we ob-
tain ker(f) ⊗AK = 0 and ker(f) is completely A-torsion. But Ark F−rk E is A-torsionfree. 
Therefore, ker(f) = 0 and f is an isomorphism. �
Proposition 3.12. Let R be a noetherian reduced local ring. Let E be vector bundle on 
X = PR(a, b). Then there exists a short exact sequence

0 → O(l) → E → E/O(l) → 0

with E/O(l) a vector bundle on X and l ∈ Z.

Proof. Write m for the maximal ideal of R and k for R/m. The sheaf Ek = E ⊗R k is a 
locally free sheaf on Xk = X ×Spec R Spec k. Denote by O(n)k the sheaf O(n) on Xk. 
By Proposition 3.4, we have an isomorphism Ek ∼=

⊕
n rnO(n)k. By tensoring E with a 

suitable power of O(1), we can assume that rn = 0 for n < 0 and r0 	= 0.
Denote the completion of R with respect to m by R̂. Since R̂ is flat over R, we have 

Γ (E) ⊗R R̂ ∼= Γ (E ⊗R R̂). By Theorem 11.ii from [23], we get thus an isomorphism

Γ (E) ⊗R R̂
∼=−−→ lim←−−

i

Γ
(
E ⊗R R/mi

)
.

We are going to show that the homomorphisms in the inverse limit are surjective. 
Since E is locally free, the sequence

0 → E ⊗R mi−1/mi → E ⊗R R/mi → E ⊗R R/mi−1 → 0

is exact for i ≥ 2. The R-module mi−1/mi is isomorphic to kN for some N for i ≥ 1. So

H1(X; E ⊗R mi−1/mi
) ∼= N⊕

H1(Xk; Ek) ∼=
N⊕⊕

n

rnH
1(Xk;O(n)k

)
.

By Proposition 2.5, H1(X; O(n)k) vanishes for n ≥ 0. Thus,
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Γ
(
E ⊗R R/mi

)
→ Γ

(
E ⊗R R/mi−1)

is surjective for i ≥ 2 and thus also

Γ (E) ⊗R R̂ ∼= lim←−−
i

Γ
(
E ⊗R R/mi

)
→ Γ (Ek).

As the target is a k-module, the morphism factors over

Γ (E) ⊗R k → Γ (Ek)

and thus also

Γ (E) → Γ (E) ⊗R k → Γ (Ek)

is surjective.
Since r0 	= 0, there is an injective map f : OXk

→ Ek whose cokernel is a vector bundle 
of rank rk E − 1. The map f corresponds to a nowhere vanishing section s ∈ Γ (Ek) and 
since Γ (E) → Γ (Ek) is surjective, we can lift s to a section s ∈ Γ (E); since every closed 
point of X is over the closed point of SpecR, this is also nowhere vanishing. The section 
s corresponds to an injective map OX

f−→ E , yielding a short exact sequence

0 → OX
f−→ E → E/OX → 0.

By Proposition 2.1 and Proposition 2.3, PR(a, b) is a proper Artin stack and P1
R →

PR(a, b) a proper fpqc map from a reduced scheme. As proper maps are closed, 
Lemma 3.11 implies that E/OX is a vector bundle again. �
Corollary 3.13. Let R be a noetherian reduced local ring. Let E be vector bundle on 
X = PR(a, b) and j: U ↪→ X be an open substack such that Ext1(F ; G) vanishes for all 
vector bundles F and G. Then j∗E is a direct sum of line bundles.

Proof. By the last proposition, there is a short exact sequence of vector bundles

0 → OU (k) → j∗E → j∗E/j∗O(k) → 0.

As Ext1(j∗E/j∗OU (k), j∗O(k)) = 0, the extension splits. The assertion follows by induc-
tion. �
Proposition 3.14. Let R be a discrete valuation ring and U ⊂ PR(a, b) be a weighted 
affine line with gcd(a, b) = 1. Then every vector bundle E on U is the restriction of a 
vector bundle F on PR(a, b).
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Proof. Let U be the non-vanishing locus of some Δ ∈ O(m)(PR(a, b)). Then the comple-
tion of PR(a, b) at the vanishing locus of Δ is equivalent to Spf R[[q]]; here, q corresponds 
to Δ under a trivialization of O(m) on Spf R[[q]]. Let Û be the “non-vanishing locus” of 
Δ (or, equivalently, q) on this completion or, more precisely, the ringed site with same 
underlying site as PR(a, b) and sheaf of rings OÛ = ÔPR(a,b)[ 1

Δ ] as in Theorem A.8.
By Theorem A.8 and Lemma A.6, the datum of a vector bundle on PR(a, b) is thus 

equivalent to that of a vector bundle E on U , a finitely generated projective module P on 
R[[q]] and an isomorphism E(Û) → P [ 1q ]. Hence, a vector bundle E on U is the restriction 
of a vector bundle on PR(a, b) if there is a finitely generated projective R[[q]]-module P
such that E(Û) ∼= P [ 1q ]. But by [11, Theorem 2] every projective module over R((q)) =
R[[q]][ 1q ] is free, in particular E(Û). Thus, we can choose P to be R[[q]]rk E . �
Lemma 3.15. Let X � SpecA//Gm for a graded ring A. Then ExtiOX (E , F) = 0 for E a 
vector bundle, F a quasi-coherent sheaf and i > 0.

Proof. Quasi-coherent sheaves on X are equivalent to graded A-modules by Galois 
descent. Clearly, the functor HomA-grmod(A, −) is exact on graded A-modules. Thus, 
Hi(X ; F) = 0 for every i > 0 and every quasi-coherent sheaf F . But, ExtiOX (E , F) ∼=
Hi(X ; HomOX (E , F)) by the degenerated Grothendieck spectral sequence, where Hom

denotes the Hom-sheaf, since the Ext-sheaves ExtiOX
(E , F) vanish for i > 0. �

Proof of Theorem 3.9. We want to reduce to the case gcd(a, b) = 1. For this reduction 
it is enough to show that if the theorem is true for (a, b), then it is also true for (la, lb)
for l ∈ Z>0. Let PR(a, b) = (SpecR[xa, xb] − {0})//Gm and U be a weighted projective 
line, i.e. the non-vanishing locus of some section Δ ∈ Γ (O(m)). As Δ corresponds to 
a homogeneous polynomial of degree > 0, U can also be seen as the non-vanishing lo-
cus of Δ on SpecR[xa, xb]//Gm. Thus, U � SpecR[xa, xb, Δ−1]//Gm and QCoh(U) �
SpecR[xa, xb, Δ−1]-grmod. The category R[xla, xlb, Δ̃−1]-grmod (where |xla| = la, 
|xlb| = lb and |Δ̃| = l|Δ|) is equivalent to an l-fold product of R[xa, xb, Δ−1]-grmod. The 
equivalence is given by sending a tuple (M0, . . . , Ml−1) of graded R[xa, xb, Δ−1]-modules 
to 

⊕l−1
i=0 Mi[i]. Reformulating, we get an equivalence from the l-fold product of 

Vect(PR(a, b) − V (Δ)) to Vect(PR(la, lb) − V (Δ̃)) sending a tuple (E0, . . . , El−1) to ⊕l−1
i=0 Ei ⊗O(i). If the Ei decompose all into line bundles, also 

⊕l−1
i=0 Ei ⊗O(i) does.

Assume now gcd(a, b) = 1 and let U ⊂ PR(a, b) be a weighted affine line with a 
vector bundle E on it. We can use the last proposition to find a vector bundle F on 
PR(a, b) which restricts to E . Thus, E is a sum of line bundles by Corollary 3.13 as 
U � SpecR[xa, xb, Δ−1]//Gm and thus all Ext-groups between vector bundles vanish by 
Lemma 3.15. �
4. Examples of vector bundles on M(3) and their extensions

In this section, we will give a detailed exposition of some vector bundles of low rank 
on the moduli stack of elliptic curves at p = 3. Our main aim will be to compute the 
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groups of extensions between them, which will be key to the classification of iterated 
extensions of line bundles in the next section.

To compute these Ext-groups we will first recall the cohomology of the moduli stack 
of elliptic curves. Then we will discuss two examples of indecomposable vector bundles, 
Eα and f∗f∗O. In the third subsection, we will show that f∗f∗O is self-dual and con-
struct two short exact sequences connecting Eα and f∗f∗O by representation theoretic 
methods. In the fourth subsection, we will classify extensions between Eα and Eα ⊗ ωj

for arbitrary j.

4.1. The cohomology of the moduli stack of elliptic curves

A computation of the cohomology on M(3) = MZ(3) can be found in slightly different 
language in [1, Section 3]. More precisely, he calculates the cohomology of the graded 
Hopf algebroid (

A = Z(3)[a1, a2, a3, a4, a6], A[r, s, t]
)
,

where |ai| = i, |r| = 2, |s| = 1 and |t| = 3. Recall that a Hopf algebroid is just a 
cogroupoid object in commutative rings (we give here just the rings corepresenting ob-
jects and morphisms of this groupoid and leave the structure maps implicit). A graded 
Hopf algebroid is a cogroupoid object in (strictly) commutative graded rings. Given an 
algebraic stack X and an affine morphism q: SpecR → X , we get a Hopf algebroid 
(R, Γ ), where

SpecR×X SpecR � SpecΓ.

If q is faithfully flat, we get an equivalence of categories between quasi-coherent sheaves 
on X and (R, Γ )-comodules (see [22, Section 3.4]).

In the case of the moduli stack of elliptic curves, the Weierstraß form gives an fpqc 
map SpecA[Δ−1] → M(3) with

SpecA
[
Δ−1]×M(3) SpecA

[
Δ−1] � SpecA

[
Δ−1][r, s, t, u±1].

Comodules over (
A
[
Δ−1], A[

r, s, t, u±1][Δ−1])
are equivalent to graded comodules over(

A
[
Δ−1], A[r, s, t]

[
Δ−1]).

One can check that the structure maps of this Hopf algebroid agree with those found in 
[1, Section 3].
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The line bundle ω on M(3) corresponds to the graded comodule A[Δ−1] seen as sitting 
in degree 1. The reason is essentially that Φ∗

r,s,t,uω0 = uω0, where ω0 = dx
2y+a1x+a3

is the 
usual invariant differential over the Weierstraß elliptic curve E over SpecA[Δ−1] (i.e. a 
trivialization of ω) and Φr,s,t,u is the endomorphism of E classified by r, s, t, u ∈ A (as 
in [24], Section 9.2 and Proposition 9.4).

Bauer computes in [1] the cohomology of the graded Hopf algebroid (A, A[r, s, t]), i.e. 
the Ext-groups Extl(A,A[r,s,t])-grcomod(A, A[k]) where A[k]m = Ak+m denotes an index 
shift of A. This is by the previous discussion, after inverting Δ, isomorphic to

ExtlOM(3)

(
O, ωk

) ∼= H l
(
M(3);ωk

)
.

Summarizing his calculation, we have

H1(M(3);ωi
)

=
{
Z/3Z if i ≡ 2 mod 12,
0 else,

H2(M(3);ωi
)

=
{
Z/3Z if i ≡ 6 mod 12,
0 else.

Chosen generators of H1(M(3); ω2) and H2(M(3); ω6) are denoted by α and β. The 
algebra H∗(M(3); ω∗) is for cohomological degree > 0 generated over Z/3 by α, β and 
Δ±1 with only relation α2 = 0.

4.2. Examples of indecomposable vector bundles

The aim of this subsection is to define vector bundles Eα and f∗f∗O, compute their 
cohomology groups and deduce that these vector bundles are indecomposable.

For brevity, we denote the structure sheaf OM(3) by O and all Ext-groups will be in 
the category of O-modules. The class α ∈ H1(M(3); ω2) ∼= Ext1(ω−2, O) classifies an 
extension

0 → O → Eα → ω−2 → 0. (1)

Up to isomorphism, which is not necessarily the identity on ωj, all non-trivial extensions 
of two line bundles are given as

0 → ωj → Eα ⊗ ωj → ωj−2 → 0

since the extension classified by −α is isomorphic to the one classified by α (via multi-
plication by −1).

We now want to compute some further Ext-groups.
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Proposition 4.1. We have

Ext1
(
ωj , Eα

)
=

{
Z/3Z if j ≡ −4 mod 12,
0 else,

Ext2
(
ωj , Eα

)
=

{
Z/3Z if j ≡ −6 mod 12,
0 else.

Furthermore, left multiplication with β defines isomorphisms Exti(ωj , Eα) ∼=
Exti+2(ωj , Eα).

We denote that generator of the Ext1-group by α̃ that maps to α under the map

Ext1
(
ω−4, Eα

) ∼= Ext1
(
ω−2, ω2 ⊗ Eα

)
→ Ext1

(
ω−2,O

)
induced by Eα → ω−2 as in (1).

Proof. We have an exact sequence
Hom(ωj , ω−2)

Ext1(ωj ,O) Ext1(ωj , Eα) Ext1(ωj , ω−2)

Ext2(ωj ,O) Ext2(ωj , Eα) Ext2(ωj , ω−2)

Ext3(ωj ,O) · · ·

δ0

δ1

δ2

To handle this, we need the following lemma:

Lemma 4.2. (See [20], II.9.1.) Let

0 → A → B → C → 0

be an extension in an abelian category A (with enough injectives or projectives), corre-
sponding to an Ext-class x ∈ Ext1(C, A), and T an arbitrary object in A. The boundary 
map Extk(T, C) → Extk+1(T, A) of the long exact sequence for Ext-groups out of T equals 
right multiplication by x. Similarly, the boundary map Extk(A, T ) → Extk+1(C, T ) of 
the sequence for Ext-groups into T equals left multiplication by x.

The map δ0 is therefore surjective, δ2k−1 is zero (since (βkαΔl) ·α = 0) and δ2k is an 
isomorphism for k > 0. Hence, we get isomorphisms Ext2k−1(ωj , Eα) ∼= Ext2k−1(ωj , ω−2)
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and Ext2k(ωj , Eα) ∼= Ext2k(ωj , O) for k > 0. These isomorphisms commute with left 
multiplication by β (as these isomorphisms are induced by post composing with a map 
of sheaves). This results in the Ext-groups given in the proposition. �
Corollary 4.3. The vector bundle Eα is indecomposable.

Proof. If Eα
∼= ωk⊕ωl, then Ext1(ωj , Eα) 	= 0 for j ≡ k−2 mod 12 and j ≡ l−2 mod 12. 

If k 	≡ l mod 12, this is a contradiction to the last proposition. If k ≡ l mod 12, then 
Ext1(ωk−2, Eα) ∼= (Z/3)2, which is also a contradiction to the last proposition. �

By dualizing the defining extension of Eα and tensoring with ω−2, we get an extension

0 → O → Ěα ⊗ ω−2 → ω−2 → 0,

where Ěα denotes the dual of Eα – note that dualizing is here exact since ω−2 is a 
vector bundle. This extension is non-split (else the dual sequence would split as well) 
and therefore we have the following:

Lemma 4.4. We have an isomorphism Ěα
∼= Eα ⊗ ω2.

Now consider the following lemma:

Lemma 4.5. Let (X , O) be a ringed site, E and F be vector bundles and G be a quasi-
coherent sheaf on X . Then we have Exti(E , F ⊗ G) ∼= Exti(E ⊗ F̌ , G).

Proof. Since vector bundles are (strongly) dualizable, we have a natural isomorphism

HomO(E ,F ⊗ G) ∼= HomO(E ⊗ F̌ ,G)

of Hom-sheaves. The same holds for all higher Ext-sheaves (they are all zero). Therefore,

Exti(E ,F ⊗ G) ∼= Hi
(
X ;HomO(E ,F ⊗ G)

) ∼= Hi
(
X ;HomO(E ⊗ F̌ ,G)

)
∼= Exti(E ⊗ F̌ ,G)

by the Grothendieck spectral sequence converging from the cohomology of the Ext-
sheaves to the Ext-groups. �

In particular, we have

Exti
(
Eα ⊗ ωj ,O

) ∼= Exti
(
ωj , Ěα

) ∼= Exti
(
ωj−2, Eα

)
.

This vanishes for i = 1 iff j 	≡ −2 mod 12.
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Remark 4.6. One possibility to construct Eα (or rather Ěα) concretely is the following: 
The reason for Eα not to split is the same as for the Hasse invariant not to lift, namely 
the non-vanishing of H1(M(3); ω2). At the prime 3, the Hasse invariant is a section 
A ∈ H0(M(3); ω2/3), i.e. a morphism O → ω2/3. Define a vector bundle E as the fiber 
product O ×ω2/3 ω2. Since ω2 → ω2/3 is surjective, E → O is surjective and non-split 
(since a splitting corresponded to a lifting of the Hasse invariant). The kernel is given by 
the map ω2 → E inducing ω2 3−→ ω2 and ω2 0−→ O. Thus, we get a non-split extension

0 → ω2 → E → O → 0.

Thus, E ∼= Eα ⊗ ω2 ∼= Ěα by Lemma 4.4.

A further, particularly important example of a vector bundle is the following: Let

f : M0(2)(3) → M(3)

be the usual projection map from the moduli stack of elliptic curves with chosen point 
of exact order 2. Then f∗f∗ωj = f∗f

∗O ⊗ ωj defines a family of rank 3 vector bundles 
on M(3).

Lemma 4.7. The cohomology groups Hi(M(3); f∗F) vanish for i > 0 for every quasi-
coherent sheaf F on M0(2).

Proof. The map f is finite and, in particular, affine. Therefore, all higher direct images 
Rif∗ vanish and, using a degenerate form of the Leray spectral sequence, we get

Hi(M(3); f∗F) ∼= Hi
(
M0(2)(3);F

)
.

The latter vanishes by Lemma 3.15 since M0(2)(3) � SpecZ(3)[b2, b4, Δ−1]//Gm by
[3, Section 1.3.2]. �
Corollary 4.8. The vector bundle f∗f∗O is indecomposable.

Proof. If it is not indecomposable, it is a sum of a line L and a plane bundle E . By the 
classification of line bundles and Section 4.1, there exists some j ∈ Z such that L ⊗ωj has 
non-trivial first cohomology, but f∗f∗O ⊗ ωj ∼= f∗f

∗ωj has trivial first cohomology. �
Note that the last lemma implies Exti(E , f∗f∗O) = 0 for all i > 0 for every vector 

bundle E . Indeed, we have a (Grothendieck) spectral sequence

Hs
(
ExttO(E , f∗f∗O)

)
⇒ Exts+t(E , f∗f∗O).

Since E is a vector bundle, all Ext-sheaves for t > 0 vanish. Furthermore, Hom(E , f∗f∗O)
∼= f∗HomOM (2) (f∗E , OM0(2)(3)). Thus its cohomology groups vanish for s > 0 by 
0 (3)
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the last lemma and the spectral sequence is concentrated in s = t = 0. Likewise 
Exti(f∗f∗O, E) = 0 for all i > 0 by Lemma 4.5 since f∗f∗O is self-dual by Lemma 4.12 in 
the next subsection. To show this lemma (and more), it will be convenient to do a short 
excursion to representation-theoretic methods. But first, let us summarize the preceding
discussion:

Proposition 4.9. Every extension of vector bundles

0 → E → F → G → 0

on M(3) splits if E or G is isomorphic to f∗f∗O ⊗ ωj for some j.

4.3. Representation-theoretic methods

In this subsection, we will use integral representations of S3 to produce vector bundles 
on M(3). We will recover by these means the examples of the last subsection, but in a 
more concrete setting. This will allow us to prove that f∗f∗O is self-dual and to produce 
the short exact sequences (6) and (7).

We denote by p: M(2)(3) → M(3) the forgetful morphism from the moduli stack of 
elliptic curves with level-2-structure at the prime 3. This S3-torsor is classified by a map 
i: M(3) → SpecZ(3)//S3, which fits into a (2-)commutative square

M(2)(3) SpecZ(3)

M(3)
i SpecZ(3)//S3

Set Λn = ωn(M(2)(3)). By [27, Proposition 7.1], we have M(2)(3) � SpecΛ∗//Gm

and thus QCoh(M(2)(3)) � Λ∗-grmod. This induces a diagram

S3 − Λ∗-grmod S3 − Z(3)-mod

QCoh(M(3)) QCoh(SpecZ(3)//S3)
i∗

The upper left corner consists of graded Λ∗-modules with semilinear S3-action (with 
respect to the S3-action on Λ∗ induced by that on M(3)(2)). The two vertical maps 
are equivalences by Galois descent. We denote the composition of the inverse of the 
right vertical equivalence with i∗ by I: Z(3)[S3]-mod → QCoh(M(3)). Viewing the right 
hand side as graded S3-equivariant Λ∗-modules, this corresponds just to the functor 
M �→ M ⊗Λ∗ with diagonal S3-action (i.e. the upper horizontal functor). Thus, we have 
S3-equivariantly
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IZ(3)[S3](SpecΛ∗) ∼=
⊕
S3

Λ∗;

here we let S3 act on S3 from the left by h · g = gh−1; on the right hand side S3 acts 
simultaneously by permuting the factors (by the action just described) and on Λ∗. This 
convention is chosen for the following reason: Consider the map

M(3)(2) × S3
�−−→ M(3)(2) ×M(3) M(3)(2)

indicated by the formula (m, g) �→ (m, gm). If S3 acts just on the left factor in the 
right hand side, the map becomes equivariant if we act on S3 ×M(3)(2) via h · (g, m) =
(gh−1, hm). We can base change this by SpecΛ∗×M(3)(2) to get an equivalence

SpecΛ∗ × S3
�−−→ SpecΛ∗ ×M(3) M(3)(2)

Thus, we have also p∗p∗O(SpecΛ∗) ∼=S3

⊕
S3

Λ∗ and therefore IZ(3)[S3] ∼= p∗p
∗O for

p: M(2)(3) → M(3)

the forgetful map as above. Note that it is true in general that IM is a vector bundle of 
rank n if M ∈ Z(3)[S3]-mod is free of rank n as a Z(3)-module.

Similarly, for P the standard permutation representation of S3 of rank 3, we have that 
IP ∼= f∗f

∗O (since M(3)(2) ×M(3) M0(2)(3) �S3

∐
{1,2,3} M(3)(2)). As

∐
{1,2,3}

M(3)(2) → M(3)(2) ×M(3) M0(2)(3) → M(3)(2) ×M(3) M(3) � M− (3)(2)

is the fold map 
∐

{1,2,3} M(3)(2) → M(3)(2), the functor I sends the diagonal map 
Z(3) → P to the adjunction unit O → f∗f∗O.

The group S3 acts on Z(3)[ζ3] for ζ3 a third root of unity via permuting the ordered 
set (1, ζ3, ζ2

3 ) of roots of unity. Denote the basis vector corresponding to 1, 2, 3 in P by 
t1, t2, t3 ∈ P . We have two exact sequences

0 → Z(3) → P → Z(3)[ζ3] → 0 (2)

and

0 → (1 − ζ3)Z(3)[ζ3] → P → Z(3) → 0 (3)

of Z(3)[S3]-modules (sending t1 to 1 respectively 1 −ζ3 to t1−t2). Here, the map Z(3) → P

is the diagonal and the map P → Z(3) is the summing map. Since i is flat, I is exact 
and we get exact sequences

0 → O → f∗f
∗O → IZ(3)[ζ3] → 0 (4)
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and

0 → I
(
(1 − ζ3)Z(3)[ζ3]

)
→ f∗f

∗O → O → 0. (5)

Proposition 4.10. We have Λ∗ ∼= Z(3)[λ1, λ2, Δ−1] with Δ = 16λ2
1λ

2
2(λ1−λ2)2 and |λ1| =

|λ2| = 2. Furthermore, the sub-S3-representation Z(3)〈λ1, λ2〉 ⊂ Λ2 (where Z(3)〈λ1, λ2〉
denotes the free Z(3)-module of rank 2 on generators λ1 and λ2) is isomorphic to (1 −
ζ3)Z(3)[ζ3].

Proof. This follows from the existence of the Legendre normal form, but we will give 
precise references.

The first statement is contained in the discussion before [27, Proposition 7.1] except 
for the formula for Δ, which follows by relating the λi to the usual bi.

A formula for the action of S3 on Λ∗ is given in [27, Lemma 7.3]. It follows that the 
map Z(3)〈λ1, λ2〉 → (1 −ζ3)Z(3)[ζ3] given by λ1 �→ ζ3−1 and λ2 �→ ζ2

3−1 is S3-equivariant 
and thus an S3-equivariant isomorphism. �
Lemma 4.11. We have I((1 − ζ3)Z(3)[ζ3]) ∼= ω4 ⊗Eα, with notation as in the last subsec-
tion.

Proof. Since the higher cohomology of f∗f∗O vanishes, we have by the long exact se-
quence associated to extension (5) that

H2
k

(
M(3); I

(
(1 − ζ3)Z(3)[ζ3]

))
=

{
Z/3 for k ≡ 2 mod 12
0 else.

Thus, the rank 2 vector bundle I((1 − ζ3)Z(3)[ζ3]) is indecomposable (since every line 
bundle has non-trivial second cohomology in every 12-th degree).

By the last proposition, the multiplication map Λ∗ ⊗ Λ∗ → Λ∗ restricts to an 
S3-equivariant map Λ∗ ⊗ (1 − ζ3)Z(3)[ζ3] → Λ∗+2, which is surjective (since λ2 is a 
unit as it is a divisor of Δ). By Galois descent, this induces in turn a surjective map 
I((1 − ζ3)Z(3)[ζ3]) → ω2. Its kernel is a line bundle (since locally every surjection onto 
a vector bundle splits). The vector bundle I((1 − ζ3)Z(3)[ζ3]) is thus a non-split exten-
sion of ω2 with another line bundle. Hence, by the considerations at the beginning of 
Subsection 4.2, it has to be isomorphic to Eα ⊗ ω4. �
Lemma 4.12. We have IZ(3)[ζ3] ∼= ω−2 ⊗Eα and f∗f∗O is self-dual.

Proof. Equip P̌ = Hom(P, Z(3)) with the S3-action (g ·f)(p) = f(g−1(p)). Then sending 
each basis vector of P to its dual vector defines an S3-equivariant isomorphism P ∼= P̌ . 
With this identification, the dual of the diagonal is the summing map. Thus, the short 
exact sequences (2) and (3) are dual to each other and hence the dual of (Z(3)[ζ3]) is 
isomorphic to (1 − ζ3)Z(3)[ζ3]. Since i is a flat map, I = equivalence ◦ i∗ sends duals 
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to duals (see [25, IV, Proposition 18] for the commutative algebra statement). Hence, 
IZ(3)[ζ3] ∼= ω−2 ⊗Eα by Lemma 4.4 and (f∗f∗O)̌ ∼= f∗f

∗O. �
Thus, the short exact sequences (4) and (5) are isomorphic to

0 → O → f∗f
∗O → Eα ⊗ ω−2 → 0 (6)

and

0 → Eα ⊗ ω4 → f∗f
∗O → O → 0 (7)

where the map O → f∗f
∗O is the adjunction map and the map f∗f∗O → O is its dual 

(under a chosen isomorphism (f∗f∗O)̌ ∼= f∗f∗O).
The two extensions (6) and (7) are non-split (as can be seen by computing coho-

mology). Thus, extension (7) corresponds to ± the Ext1-class α̃ introduced in Proposi-
tion 4.1.

4.4. Extensions of Eα and Eα ⊗ ωj

Proposition 4.13. Let

0 → Eα → Y → Eα ⊗ ωj → 0

be a non-split extension. Then j ≡ −2 mod 12 and Y ∼= Eα ⊗Eα
∼= f∗f

∗O ⊕ ω−2.

Proof. If we tensor the extension (6) with Eα, we get:

0 → Eα → f∗f
∗O ⊗ Eα → Eα ⊗ Eα ⊗ ω−2 → 0

The middle term is isomorphic to f∗f∗O ⊕ f∗f
∗O ⊗ ω−2 (as can be seen by tensor-

ing the extension (1) with f∗f∗O) and therefore Exti(f∗f∗O ⊗ Eα, F) = 0 for every 
vector bundle F and i > 0 by Proposition 4.9. Thus, using Lemma 4.5 for the second 
isomorphism,

Ext2
(
ωj−4, Eα

) ∼= Ext1
(
ωj−2, Eα ⊗Eα

) ∼= Ext1
(
Eα ⊗ ωj , Eα

)
,

which is zero unless j ≡ −2 mod 12, when it is isomorphic to Z/3, by Proposition 4.1. 
Tensoring (1) with Eα gives an extension

0 → Eα → Eα ⊗Eα → Eα ⊗ ω−2 → 0,

which is non-split since H1(M(3); Eα ⊗Eα ⊗ω6) = 0 differs from H1(M(3); (Eα ⊕Eα ⊗
ω−2) ⊗ ω6) ∼= Z/3 by the calculation above and Proposition 4.1. It follows that this 
extension represents a generator of Ext1(Eα ⊗ ω−2, Eα).
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Consider now the extension X corresponding to an element in Ext1(Eα ⊗ ω−2, Eα)
coming from a generator in Ext1(Eα⊗ω−2, O) (corresponding to (6)) via the map induced 
by O → Eα. This extension sits in a diagram

0 0

0 O f∗f
∗O Eα ⊗ ω−2

=

0

0 Eα X Eα ⊗ ω−2 0

ω−2
∼=

ω−2

0 0

with rows and columns exact. This implies X ∼= f∗f
∗O⊕ω−2 by Proposition 4.9. Thus, 

the cohomology of X ⊗ ω6 differs from that of (Eα ⊕ Eα ⊗ ω−2) ⊗ ω6 and the middle 
horizontal extension is non-split. Hence, Eα⊗Eα

∼= X as Ext1(Eα⊗ω−2, Eα) = Z/3. �
5. Classification of iterated extensions of line bundles on M(3)

In this section, we want to classify all iterated extensions of line bundles on M(3). For 
shortness, we will call iterated extensions of line bundles standard vector bundles. More 
precisely:

Definition 5.1. We define the notion of a standard vector bundle on a ringed site X in-
ductively on the rank as follows: Every line bundle on X is called standard. Furthermore, 
a vector bundle E on X is called standard if there is an injection L ↪→ E from a line 
bundle on X such that the cokernel is a standard vector bundle.

Equivalently, we can characterize the class of standard vector bundles as the smallest 
sub-class of all vector bundles which is closed under extensions and contains all line 
bundles.

Theorem 5.2 (Theorem B). Every standard vector bundle on M(3) is a direct sum of the 
form 

⊕
I ω

ni ⊕
⊕

J Eα ⊗ ωnj ⊕
⊕

K f∗f
∗O ⊗ ωnk .

Proof. We will prove this theorem by induction on the rank of the vector bundle. The 
rank 1 case is the classification of line bundles.
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So assume that we have proven the theorem for all standard vector bundles of rank 
smaller than n and that X is a standard vector bundle of rank N . By the induction 
hypothesis, we have a short exact sequence

0 → ωq → X → Y → 0 (8)

where Y is of the form⊕
IY

ωni ⊕
⊕
JY

Eα ⊗ ωnj ⊕
⊕
KY

f∗f
∗O ⊗ ωnk

and of rank (N − 1). We will call the depicted summands of Y its standard summands. 
Furthermore, we can assume that there is no vector bundle Z which is isomorphic to⊕

IZ

ωmi ⊕
⊕
JZ

Eα ⊗ ωmj ⊕
⊕
KZ

f∗f
∗O ⊗ ωmk

with |IZ | < |IY | such that there is a surjective morphism X → Z with a line bundle as 
kernel. In addition, we assume (for notational simplicity) that q = 0.

We assume for contradiction that X is not of the form which is demanded by the 
theorem we want to prove. Then the extension (8) is non-trivial. Since the Ext functor 
commutes with (finite) direct sums, there is at least one standard summand S of Y
such that the map Ext1(Y, O) → Ext1(S, O) (induced by the inclusion) sends the class 
x ∈ Ext1(Y, O) corresponding to (8) to a non-trivial class. We will prove the theorem 
case by case:

1) S = f∗f
∗O ⊗ ωj : this cannot happen since Ext1(f∗f∗O ⊗ ωj , O) = 0 by Proposi-

tion 4.9.
2) S = Eα ⊗ ωj : Since the only non-split extension of O and an Eα ⊗ ωj is f∗f∗O

with j = −2 (as follows from Proposition 4.1), we get a diagram (with rows and columns 
exact) of the form:

0 0

0 O

=

f∗f∗O Eα ⊗ ω−2 0

0 O X Y 0

Y − (Eα ⊗ ω−2) =
Y − (Eα ⊗ ω−2)

0 0
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The left vertical extension is trivial since Ext1(Y − (Eα⊗ω−2), f∗f∗O) = 0 by Propo-
sition 4.9. Therefore,

X ∼= f∗f
∗O ⊕

(
Y −

(
Eα ⊗ ω−2)).

3) S = ωj : Since the only non-split extension of O and an ωj is Eα with j = −2, we 

get a diagram (with rows and columns exact) of the form:

0 0

0 O

=

Eα ω−2 0

0 O X Y 0

Y − ω−2 =
Y − ω−2

0 0

If the left vertical extension in the diagram is non-split, there is a standard sum-
mand S′ of Y − ω−2 such that the map Ext1(Y − ω−2, Eα) → Ext1(S′, Eα) induced 

by the inclusion sends the element y ∈ Ext1(Y − ω−2, Eα) corresponding to the left 
vertical extension to a non-trivial class. If S′ ∼= ωl, then the argument is similar to the 

case before and we get X ∼= (Y − ω−2 − ω−4) ⊕ f∗f
∗O. The case S′ ∼= f∗f

∗O ⊗ ωl

can again not occur because Ext1(f∗f∗O ⊗ ωl, Eα) = 0. Therefore, we can assume 

that S′ is isomorphic to Eα ⊗ ωl for some l. By Proposition 4.13, the only non-
trivial extension of Eα with some Eα ⊗ ωl is f∗f∗O ⊕ ω−2 with l = −2. So we can 

assume that we get a commutative diagram (with rows and columns exact) of the 

form:
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0 0

0 Eα

=

f∗f
∗O ⊕ ω−2 Eα ⊗ ω−2 0

0 Eα X Y − ω−2 0

Y − ω−2 − (Eα ⊗ ω−2) =
Y − ω−2 − (Eα ⊗ ω−2)

0 0

Pushing the left vertical extension forward along the projection map f∗f∗O⊕ω−2 →
f∗f

∗O produces the following diagram (with rows and columns exact):

0 0

ω−2 =
ω−2

0 f∗f
∗O ⊕ ω−2 X Y − ω−2 − (Eα ⊗ ω−2)

=

0

0 f∗f
∗O Z Y − ω−2 − (Eα ⊗ ω−2) 0

0 0

The lower horizontal extension splits by Proposition 4.9 so that Z ∼= f∗f∗O ⊕ (Y −
ω−2 − (Eα ⊗ ω−2)). Thus, there is a surjective map X → Z with a line bundle as kernel 
and |IZ | = |IY | − 1 (where IZ is the set of standard line bundle summands as above), 
which is a contradiction to the minimality of |IY |.

This completes the proof of Theorem A. �
Corollary 5.3. Let E be a standard vector bundle on M(3) with H1(M(3); E ⊗ ωk) = 0
for all k ∈ Z. Then the rank of E is divisible by 3.

Proof. By the main theorem of this section, E is a sum of vector bundles of the form 
ωj , Eα ⊗ ωj and f∗f∗O ⊗ ωj . But ωj ⊗ ω2−j and Eα ⊗ ωj ⊗ ω4−j have non-trivial first 
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cohomology. Therefore, E is a sum of vector bundles of the form f∗f∗O⊗ωj . These have 
rank 3. �
6. Vector bundles on M(2)

We will turn now our attention to M(2) = MZ(2) , where the situation is in some 
respects quite different from bigger primes; we will see that we have here infinitely many 
indecomposable vector bundles (of arbitrary high rank).

Recall that we have a GL2(F3)-Galois covering M(3)(2) → M(2) for M(3) the moduli 
stack of elliptic curves with level-3 structure at the prime 2. Set G = GL2(F3).

Consider the elliptic curve E: y2+y = x3 over F2. This has, according to [26], III.10.1, 
automorphism group S of order 24. By [15, 2.7.2], the morphism S → G (given by the 
operation of S on E[3]) is injective. Using elementary group theory, we get that G has a 
unique subgroup of order 24, namely SL2(F3); thus S embeds onto SL2(F3). The group 
SL2(F3) has as a 2-Sylow group the quaternion group Q, the multiplicative subgroup of 
the quaternions generated by i and j. This defines an action of Q on E.

Since the finite group scheme E[3] over F2 is isomorphic to (Z/3)2, we can choose a 
level-3 structure on E. This gives the following 2-commutative diagram

SpecF2 ×Q

pr1

M(3)(2) ×G SpecZ×G

pr1

SpecF2 M(3)(2) SpecZ

SpecF2//Q
e M(2)

π SpecZ//G

Thus, we get functors I: Z[G]-mod → QCoh(M(2)) and R: QCoh(M(2)) →
F2[Q]-mod given by π∗ and e∗, composed with the Galois descent equivalence, respec-
tively. As Q acts on E[3] via the inclusion Q ⊂ G, the functor RI is given up to
isomorphism by tensoring with F2 and restricting to Q ⊂ G.

Our next aim is to define certain integral G-representations, which will allow us (via 
the functor I) to prove the existence of an infinite family of indecomposable vector 
bundles on M(2). There is a family of C2 × C2-representations over Z given as Mn =
Zx1 ⊕ · · · ⊕ Zxn ⊕ Zy0 ⊕ · · · ⊕ Zyn and

(
g1 + (−1)i

)
xi = yi−1,

(
g2 + (−1)i

)
xi = yi,(

g1 − (−1)i
)
yi =

(
g2 + (−1)i

)
yi = 0,
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where g1 and g2 generate C2 × C2 (see [13], 6.2). The modules Mn = Mn ⊗Z F2 (and, 
hence, also the Mn) are indecomposable as C2 ×C2-modules (see [12], Proposition 5(ii) 
and its corollary). The same holds if we pull them back to representations of Q via the 
surjective morphism ρ: Q → C2 × C2 (given by dividing out i2 ∈ Q). Indeed, as there 
is no C2 ×C2-equivariant idempotent on Mn, there is also no Q-equivariant idempotent 
on Mn. By abuse of notation, we denote ρ∗Mn also by Mn.

Let (Yj)j∈J be the collection of indecomposable vector bundles on M(3). Decompose 
I indG

Q Mn as 
⊕

j∈J ajYj (with almost all aj = 0). Thus, RI indG
Q Mn

∼=
⊕

j∈J ajR(Yj). 
Since

RI indG
Q Mn

∼= resGQ indG
Q Mn

∼=
⊕
G/Q

Mn,

we see that Mn is a direct summand of this module. Recall now the theorem of Krull–
Remak–Schmidt:

Theorem 6.1 (Krull–Remak–Schmidt). Every noetherian and artinian module over a ring 
has a (up to permutation and isomorphisms) unique decomposition into indecomposable 
modules.

Thus, as Mn is finite-dimension as an F2-vector space and hence noetherian and 
artinian, Mn has to be a summand of one of the RYj. Since rkMn = 2n + 1, the rank 
of RYj (and hence of Yi) must be at least 2n + 1. Therefore, M(2) has indecomposable 
vector bundles of arbitrary high rank.
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Appendix A. Quasi-coherent sheaves and completions

In this appendix we review some descent results for (quasi-)coherent sheaves on Artin 
stacks with respect to completions. Similar results appear for affine schemes and algebraic 
spaces instead of Artin stacks in [8] and [18]. We will freely restrict to noetherian and 
separated situations when convenient.

Throughout this section let X be an Artin stack. In [17] and [23, Definition 3.1], the 
lisse-étale site corresponding to X is defined: It is the full subcategory of X -schemes 
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consisting of smooth X -schemes and a family {fi: Ui → U} is called a covering if each 
fi is étale and the maps are jointly surjective. Denote by Xlis-et the corresponding topos.

Call a sheaf of rings A on Xlis-et flat if for every smooth map f : U → V of smooth 
X -schemes the associated map f−1AV → AU is faithfully flat ([23, Definition 3.7]). An 
example is the structure sheaf OX . A sheaf of A-modules is cartesian if for every map 
U → V of smooth X -schemes the natural map

AU ⊗f−1AV
f−1MV → MU

is an isomorphism. For A = OX an OX -module is cartesian if and only if it is quasi-
coherent. Therefore, we denote the category of cartesian A-modules by QCoh(X , A) and 
the category of those cartesian A-modules locally of finite presentation by Coh(X , A).

Theorem A.1. (See [23], Proposition 4.4.) Let X be an Artin stack, A a flat sheaf of 
rings on Xlis-et and X → X a smooth cover by an algebraic space. Denote by X• the sim-
plicial algebraic space given by Xn � X×Xn+1. Denote furthermore by ModCart(X+

• ) the 
category of systems of cartesian modules Fn on (Xn,lis-et, A) together with isomorphisms 
φα: α∗Fm → Fn for every injective order-preserving α: [m] → [n] such that

φα ◦ (α∗φβ) = φα◦β : α∗β∗Fk
∼= (α ◦ β)∗Fk → Fn

for α: [m] → [n] and β: [k] → [m] injective. Then the functor

QCoh(X ,A) → ModCart
(
X+

•
)

given by pullback is an equivalence of categories.

We now want to discuss completions of stacks in the style of [4].

Proposition A.2. (See [17], 14.2.) There is a natural bijection between ideal sheaves on 
X and closed substacks, sending an ideal I to a substack V (I).

Definition A.3. Let X be a locally noetherian Artin stack and I an ideal sheaf. The 
(formal) completion of X along I is defined to be the ringed site X̂ with the same 
underlying site as X and OX̂ given as lim←−−OX /In. By the correspondence between ideal 
sheaves and closed substacks, we can also speak of the (formal) completion of X along a 
closed algebraic substack.

From now on, let X always be noetherian. As above, for a chosen ideal sheaf I we 
denote by QCoh(X̂ ) the category of cartesian OX̂ -modules and by Coh(X̂ ) the full sub-
category of modules locally of finite presentation. Note that X̂ is flat since the completion 
Â → B̂ with respect to an ideal of A is flat if A → B is flat for A and B noetherian.

We like now to recall a variant of a result by Ferrand and Raynaud [8]:
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Proposition A.4. Let A be a noetherian ring, I = (t) ⊂ A a principal ideal and Â the 
completion of A with respect to I. Then we have cartesian squares of categories:

QCoh(SpecA) QCoh(U)

QCoh(Spec Â) QCoh(Û)

and

Coh(SpecA) Coh(U)

Coh(Spec Â) Coh(Û)

Here U and Û denote the complements of V (I) in SpecA and Spec Â, respectively. The 
equivalence of the fiber product to the upper left corner can be chosen functorial in (A, I).

Proof. The map Spec Â � U → SpecA is a faithfully flat map of affine schemes. Thus, 
by [8, Proposition 4.2], we have a cartesian square

QCoh(SpecA) QCoh(U)

QCoh(U) × QCoh(Spec Â) QCoh(U) × QCoh(Û)

Here, the lower horizontal map is just the identity on the first factor and the map induced 
by the inclusion on the second. This gives the first square. The functoriality follows from 
the construction of the A-module as a pullback.

To deduce the second square from the first, we only need to prove that the functor

QCoh(SpecA) → QCoh(Spec Â) × QCoh(U) � QCoh
(
Spec Â � QCoh(U)

)
detects coherence. This holds since Spec Â�U → SpecA is fpqc (since A is noetherian) 
and pullback along fpqc-morphisms detects coherence. �

We will generalize this result to algebraic stacks.

Definition A.5. A substack X0 of X is called locally principal closed if there is an fpqc-
covering {Ui

fi−−→ X} such that X0 ×X Ui is the vanishing locus of a ti ∈ H0(Ui; OUi
). 

This is a generalization of the notion of an effective Cartier divisor.
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For a cosimplicial ring A•, we define a category ModCart(A•
+) as follows: An object is 

a family (Mn)n≥0 of An-modules together with an isomorphism φα: An⊗Am Mm → Mn

for every injective order-preserving α: [m] → [n] such that the φα are compatible with 
compositions as in Theorem A.1. Morphism are compatible families of morphisms Mn →
Nn of An-modules. Define the full subcategory fModCart(A•

+) on objects (Mn)n∈N where 
every Mn is a finitely presented An-module.

Before we use this definition, we have to define a preliminary lemma.

Lemma A.6. Let (t) ⊂ A be an ideal of a noetherian ring. Then Γ : QCoh(ŜpecA) →
Mod(Â) and Γ : QCoh(ŜpecA[ 1t ]) → Mod(Â[ 1t ]) are equivalences. Here, A and SpecA
are (formally) completed with respect to (t) – the latter in the sense of Definition A.3; 
furthermore, ŜpecA[ 1t ] is the ringed site with sheaf of rings OŜpec A

[ 1t ] on (SpecA)lis-et.
These equivalences restrict to equivalences

Γ : Coh(ŜpecA) → fMod(Â)

and

Γ : Coh
(

ŜpecA
[
1
t

])
→ fMod

(
Â

[
1
t

])
to the finitely generated modules.

Proof. First, we will show that Γ : QCoh(ŜpecA) → Mod(Â) is exact. It is enough to 
show that a map M → N of Â-modules is surjective if M⊗ÂB̂ → N⊗ÂB̂ is surjective for 
some smooth surjective map SpecB → SpecA (where B is also completed with respect 
to (t)). This is true since Spec B̂ → Spec Â is fpqc.

The functor Γ also commutes with arbitrary direct sums. Indeed, we can use [28, 
II.1.5.1] to see that the lisse-étale site of SpecA is noetherian and for noetherian sites, 
all sheaf cohomology commutes with arbitrary direct sums by [28, I.3.11.2].

There is a functor Λ: Mod(Â) → QCoh(ŜpecA) associating to every Â-module M the 
sheafification of the presheaf associating to every smooth SpecA-scheme X the module 
OŜpec A

(X) ⊗Â M . Clearly Γ (Λ(
⊕

Â)) ∼=
⊕

Â for arbitrary direct sums of Â (which 

are flat Â-modules) and thus also Γ (Λ(M)) ∼= M for every Â-module M since Γ and 
Λ are both right exact. Furthermore, ΛΓ (F) ∼= F since F is cartesian. Both Λ and 
Γ are compatible with the action of A. Thus, Γ restricts to an equivalence of the full 
subcategories where t acts invertible, yielding the second equivalence. �

Since we are only interested in applications to coherent modules, we will state the 
remaining results only for these.

Theorem A.7. Let X be a noetherian separated Artin stack and X0 be a locally principal 
closed substack of X . Let U be the complement of X0 and X̂ the completion of X along X0. 
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Furthermore, let Û be the ringed site with same underlying site as X and OÛ = OX̂ [ 1t ]
locally for X0 the vanishing locus of t.

Let SpecA → X be a smooth cover such that SpecA ×X X0 is cut out by a single 
element t ∈ A. Define a cosimplicial ring A• by SpecAn = SpecA×Xn+1. Then pullback 
defines equivalences

Coh(X ) → fModCart(A•
+)

Coh(X̂ ) → fModCart(Â•+)

Coh(Û) → fModCart

(
Â•

[
1
t

]
+

)
Proof. The first equivalence is clear by Theorem A.1 since SpecA → X is a fpqc map 
and detects therefore coherence. The second and the third equivalence follow in the same 
way from Theorem A.1, the fact that completion and localization preserve flatness and 
the previous lemma. �
Theorem A.8. Let X be a noetherian separated Artin stack and X0 be a locally principal 
closed substack of X . Let U be the complement of X0 and X̂ the completion of X along X0. 
Furthermore, let Û be the ringed site with same underlying site as X and OÛ = OX̂ [ 1t ]
locally for X0 the vanishing locus of t. Then we have cartesian squares

Coh(X ) Coh(U)

Coh(X̂ ) Coh(Û)

and

Vect(X ) Vect(U)

Vect(X̂ ) Vect(Û).

Proof. We begin by showing the first square to be cartesian. This is true if X is an 
affine scheme and X0 is cut out by a single element by Proposition A.4 and Lemma A.6. 
The general case follows from the last theorem by choosing a smooth cover SpecA → X
where X0 is cut out by a single element t.

A coherent sheaf on X , X̂ or Û is a vector bundle iff its restriction to (SpecA)lis-et
is. Since Spec Â � SpecA[ 1t ] → SpecA is fpqc and being locally free is detected by fpqc 
maps, the second square follows. �
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