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Spectral sequences in string topology

LENNART MEIER

In this paper, we investigate the behavior of the Serre spectral sequence with respect
to the algebraic structures of string topology in generalized homology theories,
specificially with the Chas–Sullivan product and the corresponding coproduct and
module structures. We prove compatibility for two kinds of fiber bundles: the
fiber bundleΩnM → LnM → M for an h∗–oriented manifoldM and the looped
fiber bundleLnF → LnE → LnB of a fiber bundleF → E → B of h∗–oriented
manifolds. Our method lies in the construction of Gysin morphisms of spectral
sequences. We apply these results to study the ordinary homology of the free loop
spaces of sphere bundles and some generalized homologies ofthe free loop spaces
of spheres and projective spaces. For the latter purpose, weconstruct explicit
manifold generators for the homology of these spaces.

55P35, 55T10; 57R19

1 Introduction

Let h∗ be a homology theory andM be ad–dimensionalh∗–oriented smooth manifold.
In [1], Chas and Sullivan defined a product on the singular homology of the free loop
space and Cohen and Jones generalized it in [4] to the case of an arbitrary homology
theoryh∗ . This product is now called theChas–Sullivan productand is of the form

hp(LM) ⊗ hq(LM) → hp+q−d(LM).

Later several people generalized this product, giving a whole bunch of algebraic struc-
tures on different mapping spaces between manifolds, for example coproduct and
module structures. A description of some of these can be found in the exposition paper
Notes on string topologyby Cohen and Voronov [6].

To enhance the calculational perspectives, it is, of course, useful to understand the
behavior of these algebraic structures in the Serre spectral sequence associated to
certain fiber bundles. The first theorem of this kind was proven in by Cohen, Jones and
Yan in [5]. We will generalize their theorem to arbitrary homology theories. Denoting
the Serre spectral sequence of a fiber bundleξ by E(ξ) and by [(a,b)] a bidegree shift,
we can state two of our main results:

http://arxiv.org/abs/1001.4906v3
http://www.ams.org/mathscinet/search/mscdoc.html?code=55P35, 55T10,(57R19)
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Theorem 4.6 Let M be ad–dimensionalh∗–oriented manifold. Then

E(ΩnM → LnM → M)[(d,0)]

can be equipped with the structure of a multiplicative spectral sequence which converges
to the Chas–Sullivan product onh∗(LnM). Furthermore, the induced product on the
E2–term H∗+d(M; hq(ΩnM)) is equal to the intersection product with coefficients in
the local system of ringsh∗(ΩnM) whose multiplication is given by the Pontryagin
product.

Theorem 4.7 Let M → N → O be a fiber bundle ofh∗–oriented manifolds of
dimensionsm, n ando respectively, with projection mapπ . Then

E(LnM → LnN → LnO)[(o,m)]

can be equipped with the structure of a multiplicative spectral sequence which converges
to the Chas–Sullivan product onh∗(LnN). Furthermore, the induced product on theE2–
term Hp+m(LnO; hq+m(LnM)) is equal to the Chas–Sullivan product with coefficients
in the local system of ringsh∗+m(LnO).

There are similar theorems about (Goresky–Hingston) coproduct and module struc-
tures.

We get these theorems as corollaries from the existence of two kinds of Gysin mor-
phisms (i.e. ”wrong-way maps”) of spectral sequences, which may be of independent
interest and lie at the technical heart of this paper.

Theorem 4.1 (Intersection on the base)Let ξ be a fiber bundle with a finite-
dimensional manifoldB as base and fiberF and letA ⊂ B be a closed submanifold
of codimensiond with h∗–oriented normal bundle. Then there is a morphismsB(A)
of convergent spectral sequences of bidegree(−d,0) between the Serre spectral se-
quencesE(ξ) and E(ξ|A) which induces the usual Gysin morphismHp(B; hq(F)) →
Hp−d(A; hq(F)) on E2. Furthermore, it converges to the Gysin morphism in the ho-
mology of the total spaces.

Theorem 4.4 (Intersection in the fiber)Let ξ = (F → E → B) be a smooth
fiber bundle with base a finite-dimensional manifold and fibera Hilbert manifold,

ξ′ = (F′ → E′ π′

−→ B) an open subbundle,ξ0 = (F0 → E0 → B) be a subbundle of
constant codimensiond with h∗–oriented normal bundle andξ′0 = (F′

0 → E′

0 → B) be
the intersection of the two subbundles. Then there is a morphism sF(E0) of convergent
spectral sequences of bidegree(0,−d) betweenE(ξ, ξ′) andE(ξ0, ξ

′

0). This induces the
usual Gysin morphismHp(B; hq(F,F′)) → Hp(B; hq−d(F0,F′

0))) on E2. Furthermore,
it converges to the Gysin morphism in the homology of the total spaces.



Spectral sequences in string topology 3

The proofs of these results use Jakob’s bordism-like description of an arbitrary homol-
ogy theory, which was introduced into string topology by Chataur in [2]. Both results
can be generalized to suitable Hilbert manifolds as base.

As in every mathematical discipline, it is crucial to compute and understand examples
to fill the abstract definitions with life. First, we want to compute the Chas–Sullivan
product for a certain class of sphere bundles over spheres byrational homotopy theory.
Then, we give explicit manifold generators for the singularhomologies of the free loop
spaces of spheres and projective spaces and use this informations to do computations
in complex and oriented bordism and in Landweber exact theories. We get complete
answers in the case of odd-dimensional spheres. At last, we do a sample computation
for the Goresky–Hingston coproduct.

Most of the theorems about the behavior of the Serre spectralsequence with respect
to the Chas–Sullivan product and other algebraic structures were already shown by
other people in the case of singular homology: We already mentioned [5]. Le Borgne
([14]) has constructed the Gysin morphisms of spectral sequences and applied them to
something analogous to4.7. Kallel and Salvatore ([12]) have proven compatibility of
the Serre spectral sequences associated toΩnM → LnM → M with module structures.
To the knowledge of the author, all the results about spectral sequences are new for
other homology theories. It should be noted that the techniques of the mentioned
authors do not generalize since they use chain methods. Furthermore, they do not treat
the compatibility with the Goresky–Hingston coproduct.

Le Borgne has also computed homologies of free loop spaces ofsphere bundles in
some other cases than in this paper by a different method.

The paper is structured as follows:

In section 2, we discuss some preliminaries. First, we recall the definition of a Hilbert
manifold and some of their properties. These notions are important for our project since
(Sobolev) mapping spaces between manifolds provide examples of Hilbert manifolds.
Then we recall the definition of Jakob’s geometric homology and give a discussion of
Gysin morphisms both in the finite and in the infinite-dimensional case.

In section 3, we recall the definition of the Chas–Sullivan product and also of module
and coproduct structures, which will be the basic objects ofthe paper.

In section 4, we construct first the intersection on the base (in the sense of4.1) in the
finite-dimensional case and use then naturality and approximation by finite-dimensional
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manifolds to generalize it to the infinite-dimensional case. After constructing also the
intersection in the fiber, we prove several statements aboutthe behavior of the Serre
spectral sequence with respect to product, coproduct and module structures.

In section 5, we begin by considering free loop spaces of sphere bundles. By rational
homotopy theory, we can prove that the Serre spectral sequence collapses atE2 in many
cases. Then we construct very concrete manifold generatorsof the free loop spaces of
spheres and (complex and quaternionic) projective spaces and use these to prove that
the Atiyah–Hirzebruch spectral sequence collapses atE2 for these spaces in various
homology theories. At the end, we do a sample computation forthe Goresky–Hingston
coproduct.

Acknowledgements

Most of the results in this paper are part of my diploma thesis[15], written under the
supervision of Matthias Kreck. To him belongs my gratitude for encouraging support
and helpful advice.

2 Preliminaries

2.1 Hilbert manifolds

A Hilbert manifoldis a metrizable space which is locally homeomorphic to a separable
Hilbert spaceE. One can define smooth Hilbert manifolds and their tangents spaces
in analogy to the finite-dimensional case. We will assume allHilbert manifolds to
be smooth in this paper. To define later Gysin morphisms, we begin with certain
transversality results. We do not claim originality here assimilar, but deeper, results
were already proven by Quinn in [18].

Lemma 2.1 Let E → M be a Euclidean smooth Hilbert space bundle over a compact
manifold M , possibly with boundary. Furthermore, letL0,L1, · · · ⊂ E be a countable
collection of sub Hilbert manifolds of finite codimension and ε : M → R a positive
function onM . Then there is a smooth sections: M → E with |s(p)| < ε(p) for all
p ∈ M such thats is transverse to allLi . If A ⊂ M is a closed submanifold and the
zero section is already transverse to theLi on A, we can chooses|A = 0.
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Proof The proof is completely analogous to the finite-dimensionalcase if one uses
the corresponding results in differential topology for Hilbert manifolds and Kuiper’s
theorem that every Hilbert space bundle is trivial. See for example my diploma thesis
[15, section 2.4.3].

Theorem 2.2 (Relative Transversality Theorem)Let π : E → B be a fiber bundle
where the fiber and the base are Hilbert manifolds. Furthermore, let E0

0,E
1
0, · · · ⊂ E

be a countable collection of subbundles which are in every fiber sub Hilbert manifolds
of finite codimension. Letf : M → E be a smooth map from a compact manifoldM .
Then there is a homotopyH : M × I → E betweenf and a mapg: M → E which is
transverse to allEi

0 such thatπ ◦ H = π ◦ f ◦ pr1. If A ⊂ M is a closed submanifold
with f |A transverse to allEi

0, we can chooseH|A×I = f ◦ pr1.

Remark The theorem generalizes immediately to the case where the base is not a
Hilbert manifold but a differentiable space in the sense of Sikorski; see the discussion
before 2.31 in [15]. Note also that forB = pt, we get simply the usual (absolute)
transversality theorem.

Proof Consider the closed embedding id×f : M → M ×B E, where the pullback is
over π ◦ f : M → B. We can construct a tubular neighbourhoodT of M in M ×B E
and identify it with a neighbourhood in the normal bundle. Now choose a section
s: M → T transverse to allM ×B Ei

0. We can identify the tangent bundle ofM ×B E
with pr∗1 TM⊕pr∗2 TvE whereTvE denotes the vertical part ofTE. Sinceπ|Ei

0
: Ei

0 → B
is a submersion for alli , we have thats: M → M ×B E → M × E is transverse to all
M × Ei

0. Hence, we get thatg := pr2 ◦s ist transverse to allEi
0.

If one uses that every (infinite-dimensional) Hilbert manifold is diffeomorphic to an
open subset of the standard Hilbert space, smooth approximation can also be proven
just as in the finite-dimensional case.

An important example for a Hilbert manifold is the spaceHn(M,N) of Sobolev maps
between a compact manifoldM of dimensionn and an arbitrary manifoldN, which
is homotopy equivalent toMap(M,N) with the usual compact-open topology. This is
surely well known for a long time, but the author was unable tofind a complete proof
in the literature. A proof can be found in the companion paper[16], where also a
precise definition ofHn(M,N) and further references are given. In the following, we
will write Map(M,N) for Hn(M,N), which will be no source of confusion since at the
end we are only interested in the homotopy type.

A useful fact about these mapping spaces is the following approximation theorem:
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Theorem 2.3 Let M,N be manifolds and assumeM to be compact. Then there exists
a sequence of submanifoldsP1 ⊂ P2 ⊂ · · · ⊂ Map(M,N) such that one can deform
every mapX → Map(M,N) from a compactX to a map into one of thePi .

This is a generalization of the corresponding well-known theorem for the loop space.
A proof along the lines of Milnor’s [17, §16] can be found in [15, section 2.6.2].

2.2 Geometric homology

In this section, we want recall a bordism description for homology due to Martin Jakob
([11]), which works for every (generalized) homology theory. Itcan be thought as
a geometric way to build out of a cohomology theory the corresponding homology
theory.

Definition 2.4 (Geometric cycles) Leth∗ be a cohomology theory and (X,A) a pair
of topological spaces. Ageometric cycleis a triple (P,a, f ) where f : P → X is a
continuous map from a compact connectedh∗–oriented manifoldP with boundary to
X such thatf (∂P) ⊂ A anda ∈ h∗(P).

If P is of dimensionp and a ∈ hm(P), then (P,a, f ) is a geometric cycle ofdegree
p− m.

We want to consider two relations on the class of geometric cycles:

(1) (Bordism relation) We call two triples (P,a, f ) and (P′,a′, f ′) bordant if there is
a geometric cycle (W,b,g) such thatP

∐
(−P′) ⊂ ∂W is a regularly embedded

submanifold of codimension 0 which inherits theh∗–orientation ofW. We
require further thatb|P = a,b|P′ = a′ , g|P = f , g|P′ = f ′ and g(∂W −
P
∐

P′) ⊂ A. Two bordant cycles are defined to be equivalent.

(2) (Vector bundle modification) Let (P,a, f ) be a geometric cycle and consider
a smoothh∗–orientedd–dimensional vector bundleπ : E → P, take the unit
sphere bundleS(E ⊕ 1) of the Whitney sum ofE with a copy of the trivial
line bundle overP. The bundleS(E ⊕ 1) admits a section s. Bys! : h∗(P) →
h∗+d(S(E⊕1)) we denote the Gysin morphism in cohomology associated tothis
section1. We impose that

(P,a, f ) ∼ (S(E ⊕ 1), s!(a), fp).

1This can, for example, be defined via Poincare duality. For other possibilites in the
analogous case of homology, see the next section.
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We lay upon the group of cycles the equivalence relations generated by the relations 1
and 2. An equivalence class of geometric cycles is called ageometric classand will be
denoted by [P,a, f ]. We defineghq(X,A) to be the abelian group of geometric classes
of degreeq, where addition is defined via disjoint union.

Theorem 2.5 ([11], Corollary 4.3) There is a natural isomorphism

ghq(X,A) → hq(X,A)

defined by

[P,a, f ] 7→ f∗(a∩ [P]),

where [P] is the fundamental class of(P, ∂P) and h∗ is the homology theory corre-
sponding to the spectrum representingh∗ .

We will identify gh∗ and h∗ via this isomorphism in the rest of this paper. For
later applications, we give an explicit description of the excision isomorphism: Let
[P,a, f ] ∈ h∗(X,A) be a geometric class andB ⊂ A such thatB ⊂ Å. The preim-
ages f−1(B) and f−1(X − Å) are closed and we can choose a smooth Urysohn
function g: P → R separating them. Choose a regular valuex between 0 and
1. Then Q := g−1([0, x]) is a manifold with boundary inA − B. The restriction
[Q,a|Q, f |Q] is the image of the excision isomorphism inh∗(X − B,A− B). Indeed,
(P × [0,1],pr∗1(a), f ◦ pr1) is a bordism between [P,a, f ] and i∗[Q,a|Q, f |Q] since
Q
∐

P is a regular submanifold of codimension 0 inP
∐

P.

2.3 Gysin morphisms

For the definition of the Chas–Sullivan product, the construction of Gysin morphisms
(also calledumkehr mapsin the literature) is crucial. Letι : A →֒ B be the inclusion
of a sub Hilbert manifold of finite codimensiond with h∗–oriented normal bundle. We
associate to this data a Gysin morphism, i.e. a ”wrong-way” mapι! : h∗(B) → h∗−d(A).
We will give two constructions in the general case and a thirdone in the finite-
dimensional case.

The first uses the theory of geometric homology2: Let [P,a, f ] be a geometric cycle in
hp(B). By the transversality theorem, we can assume thatf is transversal toA. Now,
we defineι!G([P,a, f ]) := [P̃,a|P̃, f |P̃] ∈ hp−d(A), whereP̃ := f−1(A). It is easy to see

2We follow here (up to sign) Chataur [2].
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that this class is well-defined. This is the description in the infinite-dimensional case
we will primarly use in this paper.

Another possible construction uses the Thom isomorphism: Letν : N → A be a tubular
neighborhood ofA andu ∈ hd(N,N − A) the Thom class. Then the composition

h∗(B) → h∗(B,B− A) ∼= h∗(N,N − A)
∩u−→ h∗−d(N) ∼= h∗−d(A)

is an alternative way to define Gysin maps. It coincides with the construction above
in the finite-dimensional case and also for mapping spaces between manifolds by the
approximation theorem2.3. Therefore, our definition of the Chas–Sullivan product
will agree with that of Cohen and Jones [4] (which can also be found in Cohen and
Voronov [6]) as also shown by Chataur in a different way. Note that one can substitute
for h∗ here also ordinary homology withlocal coefficients.

In the finite-dimensional case, there is also a cellular construction of Gysin maps.
To make this precise, we need the following (simple) lemma, which is proven in the
author’s diploma thesis [15, section 2.5]:

Lemma 2.6 Let A ⊂ B be a closed submanifold of a finite-dimensional manifold.
Then one can triangulateB transversal toA in the sense that every stratum ist transverse
to A. Furthermore, one can triangulate everyA∩∆i for the simplices∆i of T in a
way such that the triangulations coincide in the intersections A∩∆i ∩∆j . Thus one
obtains a induced triangulation ofA.

Let C∗(A) and C∗(B) denote the cellular chain complexes. By sending a simplex∆

of the triangulation ofB to the sum of all the simplices of∆ ∩ A, we get a chain map
s: C∗(B) → C∗−d(A) which induces a Gysin map on homology.

This cellular description of the Gysin morphism is also suitable to describe Gysin
morphisms for homology with local coefficients: LetG be a local system andx = x∆
be the midpoint of a simplex∆. In the cellular complex with respect toG the coefficient
of ∆ lies in Gx. Choose arbitrary paths fromx to the midpoints of the simplices of
∆ ∩ A in ∆ and map via them the coefficient of∆ to coefficients for these simplices
(note that all possible choices of these paths are homotopic). This describes a Gysin
mapg! : H∗(B;G) → H∗−d(A;G|A).

We want to show the equivalence of the cellular constructionwith the construction via
the Thom isomorphism in the case of singular homology. We canform the sub chain
complexT∗(N,N − A) of all singular chainsS∗(N,N − A) which are transverse toA
(i.e. transverse in each stratum). Given a cycle inS∗(N,N − A), one can form an
associated simplicial complexK with a mapf : K → B by glueing the simplices. By a
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variant of the transversality theorem (see e.g., [15], 2.29 and 2.12), one can homotope
f to a mapg transverse toA without moving∂K into A. Then (K,g) defines a cycle
in T∗(N,N − A) which is homologous to (K, f ). A similar argument can be applied
for boundaries. Therefore,T∗(N,N − A) is quasi-isomorphic toS∗(N,N − A). By
the universal coefficient theorem, the dual chain complexesare also quasi-isomorphic.
Therefore, it is enough to define the Thom classu ∈ Hd(N,N − A) on d-simplices
transverse toA.

For a transversed–simplex (∆, f ), we defineu(∆) as the oriented intersection number
∆ ∩ A. This is a cocycle, since for every transverse (d + 1)–simplex (∆′, f ) the
intersection∆′ ∩ A is represented by a compact 1–manifold with boundary and the
number of oriented boundary points of such a manifold ist 0. If we restrict u to
(ν−1(x), ν−1(x) − {x}) for an x ∈ A, we get the orientation class sinceu sends the
generator of the homology to 1. Therefore,u represents the Thom class.

The cellular Gysin map is surely unchanged under subdivisions of the triangulation.
Therefore, we can assume that everyd–simplex intersectsA in at most one point.
Furthermore, we can assume via an isotopy of the triangulation that locally atA every
d–simplex is only in one fiber. Therefore, we can assume via a suitable subdivision
that thep–backface of every (p+ d)–dimensional simplex∆ intersectingA maps via
the projection map homeomorphically onto∆ ∩ A.

A simplex in our triangulation determines a singular simplex with the induced orienta-
tion. It is now clear that it is the same if we cap this simplex with u and project it down
to A or if we apply the cellular Gysin. This argument clearly works also with (local)
coefficients and proves our claim. This shows in particular that the cellular Gysin does
not depend on the chosen triangulation at the level of homology.

One can also define Gysin morphisms in a relative setting: LetB′ ⊂ B be a submanifold,
transverse toA. Let furthermore [P,a, f ] ∈ hn(B,B′) be a geometric cycle. Then we
can make firstf |∂P transverse toA∩ B′ in B′ and extend the homotopy to wholeP to
get a mapf ′ : P → B. Since this is already transverse toA on ∂P, we can homotope
f ′ to a mapg: P → B which is transverse toA such that the homotopy stays constant
on ∂P. We defineι! [P,a, f ] = [P̃,a|P̃,g|P̃] ∈ hn−d(A,B′ ∩ A), whereP̃ := g−1(A).
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It is also possible to use the Thom map:

h∗(B,B′)

��
h∗(B,B′ ∪ (B− A)) ∼= h∗(N, ν−1(A∩ B′) ∪ (N − A))

∩u
��

h∗−d(N, ν−1(A∩ B′)) ∼= h∗−d(A,A∩ B′)

HereN denotes again a tubular neighborhood ofA in B.

3 The Chas–Sullivan product

In this section, we want to recall the definition of the Chas–Sullivan product. We
will follow the approach by David Chataur exhibited in [2]. We will fix the notation
LnM = Map(Sn,M) for the unpointed andΩnM = Map∗(Sn,M) for the pointed maps.

Let M be anh∗–oriented manifold of dimensiond for a homology theoryh∗ . Consider
the diagram

LnM ×M LnM

ev
��

ι // LnM × LnM

ev× ev
��

M ∆ // M × M

Here∆ stands for the diagonal,ι is the inclusion and ev the evaluation at the base
point pt of Sn. Since ev is a submersion,LnM ×M LnM is a sub Hilbert manifold of
LnM × LnM and the normal bundle ofLnM ×M LnM in LnM × LnM is the pullback of
the normal bundle ofM in M × M .

We have a map

γ : LnM ×M LnM = Map(Sn ∨ Sn,M) → Map(Sn,M) = LnM

induced by the collapse mapc: Sn → Sn ∨ Sn. Note that one has to be careful how
to identify the wedge summands with the standard sphere. Onepossible convention is
apparent in the following coordinate description of the collapse map:
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(x0, . . . , xn) 7→





(2x0 − 1,
√

1−(2x0−1)2√
1−x2

0

x1,

√
1−(2x0−1)2√

1−x2
0

x2, . . . ,

√
1−(2x0−1)2√

1−x2
0

xn)1 for x0 ≥ 0

(−2x0 − 1,−
√

1−(2x0+1)2√
1−x2

0

x1,

√
1−(2x0+1)2√

1−x2
0

x2, . . . ,

√
1−(2x0+1)2√

1−x2
0

xn)2 for x0 ≤ 0

TheChas–Sullivan productis now defined as the composition

hp(LnM) ⊗ hq(LnM)

×

��

hp+q−d(LnM)

hp+q(LnM × LnM) ι! // hp+q−d(LnM ×M LnM)

γ∗

OO

For notational convenience, we defineh∗(LnM) = h∗+d(LnM). Note that, ifh = H
is ordinary homology, one usually chooses the notationH∗(LnM) for h∗(LnM). The
above composition may now be written as:

µ : hp(LnM) ⊗ hq(LnM) → hp+q(LnM)

Warning One has to be careful with signs here since there are different conventions
in the literature. The sign convention where the Chas–Sullivan product is graded
commutative is used, for example, in the original Chas and Sullivan article [1] and also
in [2] (where it is ensured by an ”artificial” sign), while our signconvention agrees,
for example, with that in [6] (Theorem 1.2.1 seems to have the wrong sign as stated
there): interchanging a factor of degreep and a factor of degreeq induces a factor of
(−1)pq+d .

Remark As an aside, we remark that it is also possible to give a completely finite-
dimensional bordism-like description of the Chas-Sullivan product in the case of ordi-
nary homology via Kreck’s theory of stratifolds. Stratifolds are smooth spaces which
are stratified by smooth manifolds satisfying certain conditions on the topology and
the relationship of the strata. It is possible to carry out much of the usual differential
topology in this setting. Especially we can construct a stratifold bordism homology
theory, which coincides with singular homology in the case of spaces having the ho-
motopy type of CW-complexes (for more details and precise definitions see Kreck
[13]). Let now [S1, f1], [S2, f2] ∈ H∗(LM) be homology classes. We can interpret a
map f : S→ LM as a map ev◦f : S→ M with a loop inΩ(ev(f (p))) attached to each
p ∈ S. Intersect ev◦f1 and ev◦f2 transversally to get a mapF : S1 ×M S2 → M and
attach to eachp ∈ S1×M S2 the composition of the loops attached to pr1(p) and pr2(p).
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This is a representative of the Chas–Sullivan product of [S1, f1] and [S2, f2] as is shown
in the author’s diploma thesis [15, section 3.2.1]. This is close in spirit to the original
definition in Chas and Sullivan [1].

A closer look at the definition of the Chas–Sullivan product reveals that the only
thing we have used ofSn is that it is both a manifold and an H-cogroup (via the
map Sn → Sn ∨ Sn). Since everyn–dimensional manifoldN has the structure of an
H-comodule overSn via the mapc: N → N ∨ Sn, collapsing the boundary of a little
disk, we get (forM h∗–oriented) the following module structure:

hp(Map(N,M)) ⊗ hq(LnM)

×

��

hp+q−d(Map(N,M))

hp+q(Map(N,M) × LnM) ι! // hp+q−d(Map(N,M) ×M LnM)

γ∗

OO

Hereι : Map(N,M) ×M LnM → Map(N,M) × LnM is the inclusion and

γ : Map(N,M) ×M LnM → Map(N,M)

is the map induced byc. This defines ah∗(LnS)–module structure onh∗(Map(N,M)),
which was first considered by Kallel and Salvatore in [12]. This structure is independent
of the chosen disk since all embeddings of a disk are isotopic. Note that we could
substitutehp(Map(N,M)) by h′p(Map(N,M)), whereh′ is a module homology theory
over h.

Besides the module structure, there is also the structure ofa coalgebra onh∗(LM)
if h∗ is a graded field (e.g., for ordinary homology with field coefficients or Morava
K-theory ash). To define the coproduct, leti : LM ×M LM → LM be the inclusion of
all loopsα : [0,1] → M with α(0) = α(1

2) = α(1) andι : LM ×M LM → LM × LM
the usual inclusion. Then we get a map

hn(LM) i! // hn−d(LM ×M LM)
ι∗ // hn−d(LM × LM) ∼= (h∗(LM) ⊗ h∗(LM))n−d.

This coincides as a special case with the TQFT-constructionof Cohen and Godin ([3]).
Sadly enough, this coproduct is zero for all classes of degree bigger thand, at least
in the case of singular homology, by work of Tamanoi ([19]) and Goresky–Hingston
([10]). For this reason, Goresky and Hingston constructed (in the cohomological case)
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an alternative version of the coproduct, which we want to recall here in our language:

hn−1(LM,M) ∼= hn(LM × I ,LM × ∂I ∪ M × I )

J
��

hn(LM,A)

i!
��

hn−d(Map(8,M),A∩ Map(8,M))

∼=

��
hn−d(Map(8,M), f1(LM) ∪ f2(LM))

��
hn−d(LM × LM,LM × M ∪ M × LM)

∼=

��
hn−d(LM,M) ⊗ hn−d(LM,M)

Here, J : LM × I → LM is induced by the mapj : I × I → I , where j(t,−) sends
0 to 0, 1

2 to t and 1 to 1 and is linear on both halfs of the interval. Furthermore,
A is the union of the tubular neighborhoods of the images of thetwo embeddings
f1/2 : LM → LM , sending a loop to the same loop with doubled speed on one half
of the interval and constant on the other. ThisA can be chosen as a subbundle since
f1/2(LM) are subbundles ofLM → M .

By the same way, we can define a coproduct onh∗(ΩM,pt). We call both of these
coproductsGoresky–Hingston coproductsand denote them byΨGH . Intuitively, they
can be seen as unparametrized versions of the Cohen–Godin coproduct.

4 Spectral sequences

4.1 Preliminaries

Let ξ = (E
π→ B) be a fiber bundle withB a path-connected CW-complex and fiberF

and ξ′ = (E′ π′

−→ B) be a subbundle with fiberF′ . We defineE(p) to be the preimage
of the p–skeleton ofB underπ andE′(p) correspondingly. Recall that for a homology
theoryh∗ the defining exact coupleC(ξ, ξ′) of the associated Serre spectral sequence
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E(ξ, ξ′) is given by

⊕
p,q

hp+q(E(p),E′(p)) i //
⊕
p,q

hp+q(E(p),E′(p))

j
uu❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦

⊕
p,q

hp+q(E(p),E(p−1) ∪ E′(p))

k

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

Here the morphisms are the same as in the exact sequence of thetriple

(E(p),E(p−1) ∪ E′(p),E′(p))

via the excision isomorphismh∗(E(p−1) ∪ E′(p),E′(p)) ∼= h∗(E(p−1),E′(p−1)). So, two
of the three maps are induced by inclusions, the third is given by restricting a cycle
[P,a, f ] to a codimension 0 submanifold of the boundary. TheE1–term is isomorphic
to ⊕

p−cellsα of B

[(h∗(Dp
α,S

p−1
α ) ⊗h∗(pt) h∗(π−1(xα), π′−1(xα))]p+q,

with xα ∈ int(α), i.e. thep-th part of the cellular complex computingHp(B; hq(F,F′))
whereh∗(F,F′) denotes the local system given by the homologies of the fibers. It
is easy to work out that, if we have a smooth fiber bundle of smooth manifolds, the
isomorphism sends a geometric cyclez= [P,a, f ] to

z∩ π−1(xα) := [P∩ π−1(xα),a|P∩π−1(xα), f |P∩π−1(xα)]

for f ⋔ π−1(xα). Here one uses the explicit description of the excision morphism given
in 2.2. Note furthermore that ifx and y are two regular values ofπf andγ : I → B
is a path withγ(0) = x and γ(1) = y which is also transverse toπf , then the fiber
transport of the homology classz∩ π−1(x) alongγ is z∩ π−1(x).

To ease the formulation of the results of the next sections, we want to fix some general
terminology for spectral sequences. Amorphism of spectral sequences E∗

∗∗
and Ẽ∗

∗∗

of level k and bidegree (a,b) consists of homomorphismsf n : En
pq → Ẽn

p+a,q+b for all

n ≥ k which commute with the differentials and satisfyH(f n) = f n+1 . Now assume
that E and Ẽ converge to graded abelian groupsD∞

∗
and D̃∞

∗
which are filtered by

F∗

∗
and F̃∗

∗
respectively. If we have a morphismf ∗

∗∗
betweenE and Ẽ and in addition

homomorphismsD∞

r → D̃∞

r+a+b which mapFp
r to F̃p+a

r+a+b and inducef∞ on E∞ ,
we speak of amorphism of convergent spectral sequences. Morphisms of convergent
exact couples induce morphisms of the associated convergent spectral sequences.
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4.2 Intersecting on the base and in the fiber

The goal of this subsection is to define Gysin morphisms of Serre spectral sequences
which ”compute” the corresponding Gysin morphisms of the homology of the total
space.

4.2.1 Intersecting on the base

Let ξ = (F → E
π→ B) be a fiber bundle withB a (finite-dimensional) manifold

andA ⊂ B a closed submanifold of codimensiond with h∗–oriented normal bundle.
Choose a triangulation ofB transverse toA and triangulateA as in2.6.

Theorem 4.1 (Intersecting on the base)There is a morphismsB(A) of convergent
spectral sequences of level 1 and bidegree(−d,0) betweenE(ξ) and E(ξ|A) where
the spectral sequences are defined by the triangulations above. The morphism is
canonical starting with level 2 and induces the usual Gysin morphismHp(B; hq(F)) →
Hp−d(A; hq(F)) on this level.

Proof We want to construct a morphism of the corresponding exact couplesC(ξ) and
C(ξ|A). That means, we need to construct morphisms

σa : hp+q(E(p)) → hp+q−d(π−1(A(p−d)))

and
σr : hp+q(E(p),E(p−1)) → hp+q−d(π−1(A(p−d)), π−1(A(p−1−d)))

which commute with the boundary maps. We concentrate on the relative case since
this is more difficult.

Let [P,a, f ] ∈ hp+q(E(p),E(p−1)). We want to find a homotopy

(P, ∂P) × I → (E(p),E(p−1))

from f to a mapg such thatπg is transverse toA. To smoothπf , consider open
neighbourhoodsUp of the p–skeletonBp with Up−1 ⊂ Up such that there are smooth
retractsrp : Up → Bp with rp|Up−1 = rp−1 . In addition, we can assume thatA∩ Up is
mapped toA∩ Bp by rp. There is a homotopyH1 : ∂P× I → Up−1 from πf |∂P to
a smooth map. Extend this homotopy to a homotopyH1 : P× I → Up from πf to a
map f̃ . This mapf̃ is smooth on∂P, so we can find a homotopyH2 : P × I → Up

to a smooth map such thatH2|∂P = f̃ ◦ pr1. Now, rp ◦ H2(x,1) is homotopic toπf
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and smooth. SinceE → B is a fibration, we can lift this homotopy. Therefore, we can
assumeπf to be smooth.

We can homotopeπf |∂P in B(p−1) to be transverse toA ∩ B(p−1) since we can first
do this in Up−1 and then userp. We can extend this to a map̃f on the whole ofP.
Since f̃ is tranverse toA on ∂P, we can homotope it to ãg: P → B(p) in B(p) which
is transverse toA∩ B(p) while leaving∂P fixed. We can lift this homotopy toE and
get a mapg: P → E(p) , for which πg = g̃ is transverse toA.

SinceBp ∩ A ⊂ Ap−d , we can define the mapsσa andσr by transverse intersection of
our representativeP with A. More precisely, defineQ := (πf )−1(A) and send [P,a, f ]
to

[Q,a|Q, f |Q] ∈ hp+q−d(E|A(p−d),E|A(p−1−d))

and the same in the absolute case. Since∂Q = ∂P∩ Q, we get a morphism of exact
couples and therefore of convergent spectral sequencesE1

∗∗
(ξ) → E1

(∗−d)∗(ξ|A).

We now have to check that it induces the usual Gysin morphism on E2. To that end,
choose thexα for the cells ofB to be regular values ofπf and those for the cells
of A to be regular values ofπf |Q. By choosing paths transverse toπf from the xα
for cells α of B to the xβ for β in the intersection ofα with A, one sees that our
construction coincides with the cellular description of the Gysin morphism by the
previous subsection.

Proposition 4.2 (Naturality) Let φ : E′ → E be a map of fiber bundlesξ′ = (F′ →
E′ → B′) and ξ = (F → E → B). Let A ⊂ B be a submanifold and the map on the
basesf : B′ → B be transverse toA. Then the following diagram commutes beginning
with the second level:

E(ξ′)
φ∗ //

sB(f−1(A))
��

E(ξ)

sB(A)
��

E(ξ′|f−1(A))
φ∗ // E(ξ|A)

Proof The normal bundle off−1(A) in B′ is the pullback of the normal bundle ofA in
B. Since the Thom class is natural, the proposition follows via the Thom isomorphism
description of the Gysin morphism.

We now want to generalize the intersection morphism to an infinite-dimensional con-
text. So letξ = (F → E → B) be a fiber bundle with projection mapπ where B
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is a Hilbert manifold andA ⊂ B a closed sub Hilbert manifold of codimensiond
with h∗–oriented normal bundle. Assume, furthermore, that there is a collection of
finite-dimensional manifoldsP1 ⊂ P2 ⊂ · · · ⊂ B with inclusionsιii+j : Pi → Pi+j and
ιi : Pi →֒ B such that every mapf : X → B from a compact space can be homotoped
into one of thePi – this is, for example, the case ifB is a mapping space (see2.3).

Proposition 4.3 In the situation above, there is a (canonical) morphismsB(A) of
convergent spectral sequences of level 2 and bidegree(−d,0) betweenE(ξ) andE(ξ|A).
The morphism induces the usual Gysin morphismHp(B; hq(F)) → Hp−d(A; hq(F)) on
E2.

Proof Let x be in En
pq(ξ). This element is represented by an elementz in E2

pq
∼=

Hp(B; hq(F)) with d2(z) = d3(z) = · · · = dn−1(z) = 0. Since

H∗(B; h∗(F)) ∼= colimi H∗(Pi; h∗(F)),

there is anN ∈ N such that there is a preimagey ∈ E2
pq(ξ|PN) of z under the map

(ιN)∗ : E(ξ|PN) → E(ξ)

with d2(y) = d3(y) = · · · = dn−1(y) = 0, therefore representing a preimage [y] of
x in En

pq(ξPN). By the transversality theorem, we can assume thatPN is transverse to
A, hencePN ∩ A ⊂ PN is a closed submanifold ofPN . We now definesB(A)(x) =

(ιN)∗sB(PN ∩ A)([y]). We have to check that this is a well-defined map and that it
defines a morphism of spectral sequences.

The map is independent of the choices because of the naturality of intersecting on the
base: Suppose (ιn1)∗(y1) − (ιn2)∗(y2) = dk(u) is a boundary for somek < n where
yi ∈ E2(ξ|Pni

), i = 1,2, are cycles. We can find av ∈ E2(ξ|PN) (N>>0) with ιN(v)
representingu andιn1

N (y1)− ιn2
N (y2) = dk(v). Now we use thatιni factors overιN , that

intersecting on the base is natural and that theιn1
N [y1] = ιn2

N [y2] in En(ξ|PN) to deduce
that our map is well-defined.

The map is a morphism of spectral sequences since intersecting on the base is a
morphism of spectral sequences for eachPi .

Remark If ξ is a smooth fiber bundle of Hilbert manifolds, it is clear by the construc-
tion of the intersection on the base that it converges to the usual Gysin morphism on
the homology of the total spaces. Here we take in the case of twisted coefficients the
Thom isomorphism description of the Gysin map, which makes perfect sense in the
twisted setting.
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4.2.2 Intersecting in the fiber

Let ξ = (F → E
π→ B) be a smooth fiber bundle with fiber a Hilbert manifold and

base a finite-dimensional manifold andξ′ = (F′ → E′ π′

−→ B) be an open subbundle.
Let ξ0 = (F0 → E0 → B) be a subbundle of constant codimensiond andh∗–oriented
normal bundle. Denote byξ′0 = (F′

0 → E′

0 → B) the intersection of the two subbundles.
Note that one can often reduce from other situations to the open subbundle case by a
tubular neighborhood argument.

Theorem 4.4 (Intersecting in the fiber)There is a morphismsF(E0) of convergent
spectral sequences of level 1 and bidegree(0,−d) betweenE(ξ, ξ′) andE(ξ0, ξ

′

0). This
induces the usual Gysin morphismHp(B; hq(F,F′)) → Hp(B; hq−d(F0,F′

0))) on E2.
Furthermore, it converges to the Gysin morphism in the homology of the total spaces.

Proof We want to define a morphism of the corresponding exact couples which
induces the usual Gysin morphism on theE2-term. We will only discuss explicitely
the case of theE-term, the others are similar. Let

[P,a, f ] ∈ hp+q(π−1(Bp), π−1(Bp−1) ∪ π′−1(Bp))

be a homology class. We need to find a homotopy fromf to a g such thatg ⋔

E0, g|∂P ⋔ E0, g ⋔ π−1(xα) (for a point xα in the interior of everyp-cell) and
g|f−1(π−1(xα)) ⋔ E0∩π−1(xα). The first is necessary to define the Gysin morphism, the
second to insure that this is compatible with the morphisms in the exact couple and the
last two guarantee that it coincides with the Gysin morphismon E2. As in the proof
of 4.1, we can as a first thing assume thatf is smooth.

Choose thexα to be regular values in everyp-cell α of πf : (πf )−1(Bp − Bp−1) →
Bp−Bp−1 and of the restrictionπf |∂P . Thenf andf |∂P are transverse to theπ−1(xα).
Choose disksDα insideBp − Bp−1 around thexα and trivializeξ on them asDα × F
andξ′ asDα × F′ . After pulling the bundleξ back along a smooth self mapBp → Bp

homotopic to the identity, which is identity outside theDα and maps a small disk around
the xα constantly toxα , we can, after possibly makingDα smaller, assume thatξ′

embeds intoξ on Dα asDα×F′ ⊂ Dα×F . We have (πf )−1(Dα) ∼= Dp× (πf )−1(xα)
and we can by a homotopy assume the function pr2 f : Dp × (πf )−1(xα) → F to
be constant on everyDp × {y}. Now use the transversality theorem to make first
f |(πf )−1(xα)∩∂P transverse toπ′−1(xα) ∩ E0 ⊂ π′−1(xα) and thenf |(πf )−1(xα) transverse
to π−1(xα)∩E0 ⊂ π−1(xα) for all p-cellsα and extend this homotopy ”constantly” on
Dp × (πf )−1(xα) and on the rest in an arbitrary way. After possibly making the disks
smaller, we know thatf is already transverse toE0 on theDp× (πf )−1(xα). View now
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f as a mapP → π−1(Up) for Up as in the last subsection. Then we can make firstf |∂P

and thenf transverse toE0 by a homotopy leavingf fixed on theDp × (πf )−1(xα)
such that the image off is still contained inπ−1(Bp) by theorem2.2.

By intersecting withE0, we now get a morphism of the exact couples which commutes
with the boundary operator as above. More precisely we map [P,a, f ] to [Q,a|Q, f |Q] ∈
hp+q−d(E(p) ∩ E0, (E(p−1) ∪ E′(p)) ∩ E0) with Q = f−1(E0). This induces a convergent
morphismE(ξ, ξ′) → E(ξ0, ξ

′

0) of level 1 and bidegree (0,−d). That this map induces
the Gysin morphism onE2 can be seen by the explicit isomorphism of theE1–term to
the cellular complex: there is no difference if we intersectfirst with F and then with
F0 or if we first intersect withE0 and then withF0 (if everything is transverse). The
well-definedness is proven as usual.

As in the case of the intersection on the base, we can extend the cases we are interested
in to an infinite-dimensional context. So let nowB be a Hilbert manifold and the other
notation as above and assume that there is a collection of finite-dimensional manifolds
P1 ⊂ P2 ⊂ · · · ⊂ B such that every mapf : X → B from a compact space can be
homotoped into one of thePi . We will state only the absolute form of the theorem
since it is enough for our applications.

Theorem 4.5 In the situation above, there is a morphismsF(E0) of convergent spectral
sequences of level 2 and bidegree(0,−d) betweenE(ξ) andE(ξ0). This induces the
usual Gysin morphismHp(B; hq(F)) → Hp(B; hq−d(F0))) on E2. Furthermore, it
converges to the Gysin morphism in the homology of the total spaces.

Proof As in the case of the intersection on the base.

4.3 Multiplicative, comultiplicative and module structures

Define E[(a,b)] to be the shifted spectral sequence withEk[(a,b)]pq = Ek
(p+a)(q+b) .

For ad–dimensional manifoldM , setH∗(M) = H∗+d(M) and also recall the notation
h∗(M) = h∗+d(M).

Theorem 4.6 Let M be ad–dimensionalh∗–oriented manifold. Then

E(ΩnM → LnM → M)[(d,0)]

can be equipped with the structure of a multiplicative spectral sequence which converges
to the Chas–Sullivan product onh∗(LnM). Furthermore, the induced product on the
E2–termH∗(M; h∗(ΩnM)) is equal to the intersection product with coefficients in the
local system of ringsh∗(ΩnM) whose multiplication is given by the Pontryagin product.
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Proof Let ξ = (ΩnM → LnM → M) and denote by∆M : M → M×M the diagonal.
Then we define the multiplicative structure as the composition

E(ξ) ⊗ E(ξ)
×−→ E(ξ × ξ)

sB(∆M)−−−−→ E(∆∗

M(ξ × ξ))
γ∗−→ E(ξ).

Here γ is defined as in section3. Note that the cross product is a map of spectral
sequences. All claims follow from the corresponding ones for Gysin morphisms.

In the next theorem, we need the Chas-Sullivan product in ordinary homology with
local coefficients. While in section3 we have only considered untwisted coefficients,
we can simply use the Thom isomorphism construction for the Gysin map as above.

Theorem 4.7 Let M → N → O be a fiber bundle ofh∗–oriented manifolds of
dimensionsm, n ando respectively. Then

E(LnM → LnN → LnO)[(o,m)]

can be equipped with the structure of a multiplicative spectral sequence which converges
to the Chas–Sullivan product onh∗(LnN). Furthermore, the induced product on the
E2–termH∗(LnO; h∗+m(LnM)) is equal to the Chas–Sullivan product with coefficients
in the local system of ringsh∗+m(LnM).

Proof Let ξ = (LnM → LnN → LnO), ν = (LnM ×M LnM → LnN ×N LnN →
LnO ×O LnO) and ι : LnO ×O LnO →֒ LnO × LnO be the inclusion. We define the
multiplicative structure as the composition

E(ξ) ⊗ E(ξ)
×→ E(ξ × ξ)

sB(ι)−−→ E(ι∗(ξ × ξ))
sF(LnN×NLnN)−−−−−−−−→ E(ν)

γ∗−→ E(ξ)

Hereγ is again defined as in section3. By proposition2.3, we are in the situation of
theorem4.3and the intersection morphism is defined.

There is also the notion of acomultiplicative spectral sequence, which is simply a
comonoid in spectral sequences, i.e. one has a mapE → E⊗E which is coassociative
(we will not consider counits).

In section3 we have defined the Goresky–Hingston coproducts onh∗(LM) and on
h∗(ΩM) for h∗ being a graded field. ForV a coalgebra over a fieldk, we have
furthermore a coproduct onH∗(M; V):

H∗(M; V) → H∗(M; V ⊗ V)
∆∗−−→ H∗(M × M; V ⊗ V) ∼= H∗(M; V) ⊗k H∗(M; V)

The same diagram also defines a coproduct in the case of local coefficients.
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Theorem 4.8 Let M be a d–dimensionalh∗–oriented manifold withh∗ a graded
field. Then

E((ΩM,pt) → (LM,M) → M)[(0,d − 1)]

can be equipped with the structure of a comultiplicative spectral sequence which con-
verges to the Goresky–Hingston coproduct onh∗+d−1(LM,M). Furthermore, the in-
duced coproduct on theE2–termH∗(M; h∗+(d−1)(ΩM,pt)) is equal to the coproduct on
M with coefficients in the Goresky–Hingston coalgebra local systemh∗+(d−1)(ΩM,pt).

Proof Let ξ = ΩM → LM → M and view (I , ∂I ) as a bundle over the point andM
as the identity bundleM → M . Furthermore letA be as in the end of section3 and
ξ1/2 defined by the embeddingsf1/2 . Consider the diagramm

E(ξ,M) ∼= E((ξ,M) × (I , ∂I ))

J
��

E(ξ,A)

sF(LM×MLM)
��

E(ξ ×M ξ,A∩ ξ ×M ξ) ∼= E(ξ ×M ξ, ξ1 ∪ ξ2)

i
��

E((ξ,M) × (ξ,M))
∼=−→ E(ξ,M) ⊗ E(ξ,M)

All claims follow from the corresponding ones for Gysin morphisms.

There are also spectral sequence results for the coproduct defined by Cohen and Godin,
which we will not state here explicitely.

For E a multiplicative spectral sequence, there is also the notion of a module spectral
sequence, i.e. a spectral sequenceE′ together with a morphismE ⊗ E′ → E′ and
the usual coherence diagrams. Recall that, ifM is a d–manifold andN a module
over a ringR, we have anH∗(M; R)–module structure onH∗(M; N) defined analogous
to the intersection product (here we use the cross productH∗(M; R) ⊗ H∗(M; N) →
H∗(M × M; N)).

Theorem 4.9 Let Z be a closedn–manifold andM be ad–dimensionalh∗–oriented
manifold. Then

E(Map∗(Z,M) → Map(Z,M) → M)[(d,0)]
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can be equipped with the structure of a module spectral sequence overE(ΩnM →
LnM → M)[(d,0)] which converges to the module structure onh∗(Map(Z,M)). Here
Map∗ stands for the pointed maps. Furthermore, the induced module structure on the
E2–termH∗(M; h∗(Map∗(Z,M)) coincides with the module structure described above.

Proof As in the multiplicative case.

Theorem 4.10 Let Z be a closedn–manifold. Furthermore, letM → N → O be a
fiber bundle ofh∗–oriented manifolds of dimensionsm, n ando respectively. Then

E(Map(Z,M) → Map(Z,N) → Map(Z,O))[(o,m)]

can be equipped with the structure of a module spectral sequence overE(LnM →
LnN → LnO)[(o,m)] which converges to the module structure onh∗(Map(Z,N)).
Furthermore the induced module structure on theE2–term

H∗+o(Map(Z,O); h∗+m(Map(Z,M))

coincides with the module structure described in section3.

Proof As in the multiplicative case.

5 Examples

In this subsection, we will do three different things, in object and method. First, we
want to widen our knowledge about ordinary homology of free loop spaces to the
case of certain sphere bundles. Secondly, we want to computesome extraordinary
homologies of free loop spaces, for example Landweber exacttheories (e.g., complex
cobordism and complex K-Theory), Morava K-theory and oriented bordism. We will
study the Atiyah–Hirzebruch spectral sequence associatedto spheres and (complex)
projective space and show that it degenerates onE2. To achieve this, we need to
construct first explicit manifold generators for the ordinary homology of the free loop
spaces of the spheres and projective spaces, which may be interesting in its own right.
At last, we turn our attention to the Goresky–Hingston coproduct.

5.1 The case of sphere bundles

We want to study the homology of the free loop space of certainsphere bundles. While
the integral homology of free loop spaces is usually hard to compute, there is a more
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efficient tool for the rational homology, namely rational homotopy theory. Recall that
rational homotopy theory associates functorially to everysimply-connected spaceX a
(graded) commutative differential graded algebra (dga) over Q of the formΛV . Here
V is a graded rational vector space andΛV is the free (graded) commutative dga over
V , i.e. a tensor product of polynomial rings for the basis elements ofV of even degree
and exterior algebras for the odd parts. This is called theminimal modelM(X) of X.
The cohomology ofM(X) = ΛV is isomorphic to the rational cohomology ofX (see
Félix, Halperin and Thomas [9]).

In addition, we will need the following two facts of rationalhomotopy theory:

(1) The vector spaceV is naturally isomorphic to the dual ofπ∗(X;Q) := π∗(X)⊗Q

(see [9], Thm 15.11).

(2) The minimal model ofLX depends only on the minimal model ofX. This can
be seen by the explicit formulas of Vigué-Poirrier and Sullivan in [20].

While the minimal model ofLX only gives information about the rational cohomol-
ogy, we want to use rational homotopy theory in combination with the Serre spectral
sequence to do integral computations for the free loop spaceLE of a fiber bundle
Sk → E → Sn. We use the computation ofH(Sn) for n > 1 by Cohen, Jones and Yan
[5]:

H∗(LSn) = Λ(a) ⊗ Z[u] for n odd,

H∗(LSn) = Λ(b) ⊗ Z[a, v]/(a2,ab,2av) for n even

with generatorsa ∈ H−n(LSn), b ∈ H−1(LSn), u ∈ Hn−1(LSn) andv ∈ H2n−2(LSn).
For this computation, they used the multiplicative spectral sequence exhibited in4.3in
the special case of singular homology.

First assumek > 1,n > 1 odd. The odd dimensional spheres have only one nontrivial
rational homotopy group, namelyπk(Sk;Q) = Q. Henceπi(E;Q) = πi(Sk;Q) ⊕
πi(Sn;Q) in every degree by the long exact sequence of homotopy groups. So we have
M(E) = Λ(xk) ⊗ Λ(xn) with |xk| = k and |xn| = n. For dimension reasons, there are
no differentials. Thus we haveM(E) ∼= M(Sk × Sn) as differential graded algebras.
We conclude

H∗(LE;Q) ∼= H∗(L(Sk × Sn);Q).

Consider theE2–term of the Serre spectral sequence associated toLSk → LE → LSn.
Every occuring group is torsionfree. Therefore, our rational computation shows that
the spectral sequence degenerates atE2 and we have

H∗(LE) ∼= H∗(LSk) ⊗H∗(LSn) ∼= Λ(ak,an) ⊗ Z[uk,un]
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with |ak| = −k, |an| = −n, |uk| = k−1 and|un| = n−1 (for the grading conventions,
see section3). Note that all extension are trivial in the sense that

0 → Fn−1 → Fn → Fn/Fn−1 → 0

splits since all occuring groups inE∞ are torsionfree. To show that the isomorphism
above holds also multiplicatively, we apply the following proposition to the Serre
spectral sequence associated toLM → LN → LO:

Proposition 5.1 Let E be a multiplicative convergent first quadrant spectral se-
quence of modules over a noetherian ringR that converges multiplicatively to a
graded groupG∗ and has the grading conventions of the homological Serre spec-
tral sequence. Assume thatE∞

∗∗
∼= E∞

∗0 ⊗R E∞

0∗ and that this is finitely generated
over R in every bidegree. Furthermore, require that all filtrationextensions are
trivial and E∞

∗0 = R[x0, x1, . . . xn] ⊗ ΛR(xn+1, xn+2, . . . ), |xi | odd for i > n. Then
Gk

∼=
⊕

p+q=k E∞

pq holds multiplicatively.

Proof Denote the filtration ofGq by F∗

q . As E∞

p0 = Fp
p/Fp−1

p andFp
p = Gp, we have

a surjective mapGp → E∞

p0 = E2
p0. Lift the xj to xj in Gp. Since the multiplication

on E∞ = Fp/Fp−1 is induced by that onG∗ , we have thatxixj is a lift for xixj . The
groupsE∞

0∗ act onG∗ and E∞ in a compatible way via multiplication. Consider the
map

L : E∞

∗∗
→ G∗, y · Πxi

ki 7→ y ·Πxki
i ,

wherey ∈ E∞

0∗ . This map is clearly a map of algebras. It is also clear that itis surjective
onto F0. Assume inductively that it is surjective ontoFp. The productsΠxi

ki with∑
ki |xi | = p+ 1 form aE∞

0∗ –basis forFp+1/Fp and are images ofL. Therefore, we
see thatL is surjective ontoFp+1 and conclude by induction that it is surjective onto
the whole ofG∗ . SinceE∞

∗∗
∼= G∗ additively and both are finitely generated (hence

noetherian)R–modules in every degree,L is an isomorphism (of algebras). Indeed,
identify E∞

∗∗
andG∗ and consider the ascending chain ker(Ln), n ∈ N. For someN,

we have ker(LN) = ker(LN+1). Since everyy ∈ G∗ is of the form LN(y′), we get
Ly = 0 iff y = 0.

Now we consider the casek > 1 odd andn > 2 even. Assume furthermore that
k 6= n±1 and thatn−1 is no multiple ofk−1. Even dimensional spheresSn have two
non-zero rational homotopy groups, namelyπn(Sn;Q) ∼= Q and π2n−1(Sn,Q) ∼= Q.
By the long exact homotopy sequence, we have

πi(E;Q) = πi(S
k;Q) ⊕ πi(S

n;Q)
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in every degree. So we get

M(E) ∼= Λ(xk) ⊗ Z[xn] ⊗ Λ(y2n−1)

with |xk| = k, |xn| = n and |y2n−1| = 2n − 1. Since the Serre spectral sequence
associated toSk → E → Sn degenerates atE2, we haved(xk) = d(xn) = 0 and
d(y2n−1) must be a non-zero multiple ofx2

n . Therefore,M(E) is isomorphic to the
minimal modelM(Sk × Sn) and hence we have

H∗(LE;Q) ∼= H∗(LSk × LSn;Q).

Consider the Serre spectral sequence associated toLSk → LE → LSn. A differential
di(x) can only be non-zero ifdi(x) is torsion. The only torsion elements ofH∗(LSn)
are theavj for j ≥ 1 (see5.2.1for notation). Hence, we have

di(1⊗ aLSk) = di(1⊗ uLSk) = di(aLSn ⊗ 1) = di(bLSn ⊗ 1) = di(vLSn ⊗ 1) = 0

for all i ≥ 2 as one sees by an analysis of possible differentials. TheE2–term of the
Serre spectral sequence is isomorphic toH∗(LSn) ⊗H∗(LSk). By multiplicativity, the
spectral sequence degenerates atE2. Because filtration issues may come up, we cannot
deduce in this case the concrete structure of the homology.

5.2 Manifold generators

In this subsection, we will exhibit concrete manifold generator for the homology
classes of the free loop spaces of spheres and projective spaces. Our basic source for
the computation of these homology rings is again Cohen, Jones and Yan [5].

5.2.1 The spheres

In this section, we will present concrete generators for thehomology ofLSn for n > 1.
To achieve this, we consider first the simpler case ofΩSn. It is well known that
H∗(ΩSn) ∼= Z[x] with x ∈ Hn−1(ΩSn), where the product is induced by composing
loops. By adjunction from the identity, we get a mapf : Sn−1 → ΩΣSn−1 ∼= ΩSn.
This represents a class inHn−1(ΩSn), which is easy to be seen a additive generator.

To visualizex, think of the base point as the north pole. The pointsp ∈ Sn−1 of the
equator parametrize the minimal geodesicsγp between north and south pole. Now
choose a distinguished minimal geodesicδ from the south to the north pole (the
”way backwards”). Thenp 7→ δ ∗ γp definesf : Sn−1 → ΩSn where∗ denotes the
concatenation of paths (note that the suspensions above arereduced).
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Now consider the free loop space. We use the same notation forthe generators of
homology as in the last section. Sincea is in H0(LM), it can be represented by an
arbitrary loop, for example a constant loop. By studying theSerre spectral sequence for
ΩM → LM → M , it can be shown thatj∗ : Hn−1(ΩM) → H−1(LM) is an isomorphism
(see [5]). Therefore,j∗(x) is a generator ofH−1(LM) and hence up to sign equal tob
for n even and toau for n odd.

For identifying the other generators, we begin with the easier case ofn odd. Consider
the Gysin morphism

j! : H∗(LSn) → H∗−d(ΩSn).

We want to find a preimage ofx under j! . This is a fortiori a generator ofHn−1(LSn)
and therefore up to sign equal tou. Let Sn be equipped with the standard metric of the
sphere of circumference 1 andSTSn be the unit sphere bundle in the tangent bundle
TSn. Let V be a vector field of unit length. We define a mapF : STSn → LSn by

(p, v) 7→
(

t 7→
{

expp(tv) for t ≤ 1
2

exp
−p((t − 1

2)V(−p)) for t ≥ 1
2

)

Herep denotes a point inSn andv is a unit tangent vector top. By the description of
x above it is clear thatj!(F∗[STSn]) = x.

This construction cannot work forn even since in this case we haveHn−1(LSn) = 0
for n > 2 and the generatorbv ∈ Hn−1(LS2) maps to zero underj! , because a
representative (S, f ) can be chosen with im(ev◦f ) = pt. 3

To construct an explicit representative ofv, we need an alternative representative of
x2. By our description above we get as a representative:

(v1, v2) 7→




s 7→





expp(2sv1) for s≤ 1
4

exp
−p(2(s− 1

4)w) for 1
4 ≤ s≤ 1

2

expp(2(s− 1
2)v2) for 1

2 ≤ s≤ 3
4

exp
−p(2(s− 3

4)(−w)) for 3
4 ≤ s≤ 1




Here v1 and v2 are unit tangent vectors at the base pointp and w is a unit tangent
vector at−p. This map is now easy to be seen to be homotopic to

3This gives an eccentric proof for the theorem of the hairy ball, because the only thing we
used forn odd was the existence of a non-vanishing vector field.
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(v1, v2) 7→
(

s 7→
{

expp(sv1) for s≤ 1
2

exp
−p((s− 1

2)(−v2)) for 1
2 ≤ s≤ 1

)
(1)

where−v2 denotes the parallel transport ofv2 along any geodesic fromp to −p.
By this description, it is now easy to construct a preimage ofx2 under j! : consider
the pullbackE of the product bundleSTSn × STSn via the diagonalSn → Sn × Sn.
Then constructF : E → LSn by definingF(p, v1, v2) by the formula above (1). This
is obviously a preimage ofx2 . Sincex2 is an additive generator ofH2n−2(ΩSn) and
Z{v} is the non-torsion part ofH2n−2, the class [E,F] equalsv up to sign.

By the Chas–Sullivan product, we get now explicit generators for every class in
H∗(LM). In particular every class inH∗(LM) is represented by a manifold.

Remark We could also have used the explicit generators to deduce themultiplicative
structure ofH∗(LM) from the additive structure, without using the compatibility of the
Chas–Sullivan product with the Serre spectral sequence.

5.2.2 Projective spaces

In [5] the authors show that

H∗(LCP
n) ∼= Λ(w) ⊗ Z[c,u]/(cn+1,wcn, (n+ 1)cnu),

where|w| = −1, |c| = −2 and|u| = 2n. By the same methods, one can show

H∗(LHPn) ∼= Λ(w) ⊗ Z[c,u]/(cn+1,wcn, (n+ 1)cnu)

with |w| = −1, |c| = −4 and|u| = 4n+ 2. We will find explicit generators for these
homology classes. In the following,K will stand for one ofC or H andd will be the
R-dimension ofK.

There is a homotopy fibrationSd(n+1)−1 → KPn → KP∞ (see [5]). If we loop this,
we get a homotopy sectionΩ(KP∞) → Ω(KPn), since the mapΩKP∞ ≃ Sd−1 →
Sd(n+1)−1 is nullhomotopic. Therefore, we get (additively):

H∗(ΩKPn) ∼= H∗(ΩSd(n+1)−1) ⊗ H∗(S
d−1) ∼= Z[y] ⊗ Λ(z),

where|y| = d(n+ 1)− 2 and|z| = d − 1. Here we useΩKP∞ ≃ Sd−1 . The above
isomorphism holds also multiplicatively, because the Serre spectral sequence is here
multiplicative, since the Pontrjagin product is induced bya map and the Serre spectral
sequence is natural (note that there are no filtration issuesfor dimension reasons).
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In this whole section, let the projective spaces be equippedwith the metric coming from
the standard metric of the sphere of circumference 1. The generatorc is represented by
c: KPn−1 →֒ KPn →֒ LKPn. This holds because ev◦c: KPn−1 → KPn represents a
generator ofH−d(KPn).

Let d > 1 andSTSd(n+1)−1 be the unit sphere bundle of the tangent bundle ofSd(n+1)−1 .
Let E be the quotient of the sphere bundle via the (isometric) action of Sd−1 on
Sd(n+1)−1. Clearly, the compositeSTSd(n+1)−1 → LSd(n+1)−1 → LKPn of the generator
u of H∗(LSd(n+1)−1) and the looped Hopf map factors overE. This mapE → LKPn

is our generatoru. To see this, we simply intersectu with ΩKPn and observe that this
equalsy in the notation above.

For the last generator look atTKPn|KPn−1 . This has certainly a nonvanishing section
s by obstruction theory, because the (dn)-th cohomology ofKPn−1 vanishes. We can
assume thats(x) has unit length for everyx ∈ KPn−1. Let now L be the (trivial)
Sd−1-bundle inTKPn|KPn−1 generated bys. Then we define our mapw′ : L → LKPn

via

(p, l) 7→
{

t 7→ expp(1
2t · l) for t ≤ 1

2

t 7→ expp(1
2(1− t) · s(p)) for t ≥ 1

2

If we multiply the represented homology class [w′] with cn−1, i.e. intersect with aKP1

connecting ap ∈ KPn−1 with expp(1
4s(p)), we get obviously the image of the generator

[f ] ∈ Hd−1(ΩSd) ∼= Hd−1(ΩKP1) under the mapΩKP1 →֒ ΩKPn →֒ LKPn. The
first is an isomorphism onHd−1 because of the description of the homology ofΩKPn

above. The latter is also an isomorphism onH1 by inspection of the Serre spectral
sequence associated toΩKPn → LKPn → KPn (see [5]). So w′ is an additive (non-
torsion) generator since [w′]cn−1 is. SinceH−1(LKPn) ∼= Z, this settlesw′ (modulo
sign) as the generatorw described in [5].

Remark A similar description in the caseK = R can be found in the author’s diploma
thesis [15, section 3.6.2].

5.3 Calculations in generalized homology theories

5.3.1 Complex cobordism and Landweber-exact theories

We define natural transformationsµ : MSOn(X) → Hn(X) andν : MUn(X) → Hn(X)
by sending a representing cycle [M, f ] to f∗([M]).
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We have the following well-known proposition:

Proposition 5.2 If X is (homotopy equivalent to) a CW-complex, then its Atiyah–
Hirzebruch spectral sequence (AHSS) forMU degenerates atE2 if and only if
ν : MUn(X) → Hn(X) is an epimorphism for alln ≥ 0.

To see the degeneration of the AHSS forMU , we have to find stably almost complex
structures on our generators of5.2.1and5.2.2. The sphereSn is framed and therefore
stably almost complex. Recall, we denoted the sphere subbundle of the tangent bundle
by STSn. We have thatSTSn ⊂ S(TSn ⊕ ǫ) ∼= Sn ×Sn has trivial normal bundle. Since
the tangent bundle ofSn × Sn is stably trivial, the tangent bundle ofSTSn is stably
trivial, too, and therefore stably almost complex. This finishes the case for the sphere.

The manifoldsCPn andCPn ×S1 are clearly almost complex. It remains to show that
STS2n+1/S1 is stably almost complex, whereS1 acts via complex multiplication and
its derivative. As in the paragraph above, it suffices to consider (S2n+1 × S2n+1)/S1 ,
where S1 acts via the diagonal action. EmbedS2n+1 × S2n+1 into Cn+1 × Cn+1.
This gives an embedding (S2n+1 × S2n+1)/S1 →֒ (Cn+1 × Cn+1)/C∗ ∼= CP2n+1 of
codimension 1. Since the latter is complex and the normal bundle is trivial (note that
(S2n+1 × S2n+1)/S1 is simply connected), degeneration is proven.

By localizing at p, we can deduce that the AHSS forLM with M a sphere or a
complex projective space degenerates atE2 also forBP. It is not difficult to show that
one gets thereby degeneration also for all Landweber-exacttheories, i.e. homology
theoriesh∗ of the form h∗(X) = MU∗(X) ⊗MU∗

h∗ or h∗(X) = BP∗(X) ⊗BP∗
h∗ .

This includes, among others, complex K-homology, elliptichomology, the Johnson–
Wilson theoriesE(n) and the MoravaE–theoriesEn. Note that the isomorphism
h∗(LM) = MU∗(LM) ⊗MU∗

h∗ or h∗(LM) = BP∗(LM) ⊗BP∗
h∗ holds multiplicatively

with respect to the Chas–Sullivan product for anMU∗– respectivelyBP∗–oriented
manifold M .

A further class of homology theories for which we get degeneration is provided by
all homology theoriesh with Tor1(H∗(LM),h∗) = 0 and a natural transformation
MU → h which is surjective on coefficients. Indeed, we get in this case a map of
Atiyah-Hirzebruch spectral sequencesE(LM,MU) → E(LM,h), which is surjective
on everyEr -term. Furthermore, we get also degeneration for all homology theoriesh′

with h′
∗
(X) ∼= h∗(X) ⊗h∗ h′

∗
for all X. Examples for such homology theories include

the Morava K-theoriesk(n) andK(n) and the spectraP(n) andB(n) for a fixed prime
p where H∗(LM) has nop-torsion. The transformationsMU → h are in all these
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examples multiplicative (see, for example, [8], V.4). Therefore, the Chas–Sullivan
product is in these examples determined by that in theMU -case.

For the odd dimensional spheres, we have in addition that allfiltration extension are
trivial, i.e.

0 → Fn−1 → Fn → Fn/Fn−1 → 0

splits sinceFn/Fn−1 is a freeh∗–module. Therefore, we have additively

h∗(LS2k+1) ∼= H∗(LS2k+1) ⊗ h∗

for all mentioned homology theoriesh∗ .

We haveE2(LM,MU)pq = Hp(LM) ⊗ MU∗(pt). By 5.1, the above isomorphisms

MU∗(LS2k+1) ∼= H∗(LS2k+1) ⊗ MU∗

BP∗(LS2k+1) ∼= H∗(LS2k+1) ⊗ BP∗

hold now also multiplicatively. Thereby, we can conclude ananalogous isomorphism
for all mentioned homology theories.

In the light of the physical interest in equivariant index theory on the free loop space,
it would be exciting to extend these calculations to theS1-equivariant K-theory of free
loop spaces.

5.3.2 Oriented Bordism

In analogy to5.3.1, Conner and Floyd show:

Proposition 5.3 ([7], 15.1) If X is (homotopy equivalent to) a CW-complex, then
the Atiyah–Hirzebruch spectral sequence for oriented bordism degenerates atE2 if and
only if µ : MSOn(X) → Hn(X) is surjective for alln ≥ 0.

As we have described concrete manifold generators in5.2.1and5.2.2, we get degener-
ation for free loop spaces of spheres and (complex and quaternionic) projective spaces.
But we can prove even more in some cases:

Theorem 5.4 ([7], 15.2) If X is (homotopy equivalent to) a CW-complex for which
eachHn(X) ist finitely generated and has no odd torsion, then

MSOn(X) ∼=
⊕

p+q=n

Hp(X; MSOq)
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We can apply this theorem to these free loop spaces of spheresand complex or quater-
nionic projective spaces which have no odd torsion in homology. Therefore, we have
additive isomorphisms

MSO∗(LS2k) ∼= H∗(LS2k; MSO∗(pt))

MSO∗(LS2k+1) ∼= H∗(LS2k+1) ⊗ MSO∗(pt)

MSO∗(CP2k
−1) ∼= H∗(LCP

2k
−1; MSO∗(pt))

MSO∗(HP2k
−1) ∼= H∗(LHP2k

−1; MSO∗(pt))

Sadly enough,MSO∗ is not torsionfree, but has also 2–torsion (a complete determi-
nation can be found in [21]). Therefore, we can deduce only that these isomorphisms
hold also for the multiplicative structure if we localize atan odd prime, except in the
case of odd-dimensional spheres, where the above isomorphism holds multiplicatively
for all primes.

5.4 Computation of Coproducts

The aim of this section is to use explicit generators for the homology of ΩSn to
compute the Goresky-Hingston loop coproduct for the based loop space and deduce
via a Serre spectral sequence argument from this the corresponding coproduct structure
on the homology ofLSn. More general computations by other methods with somewhat
weaker results were already done in [10], 13.9.

We have to replace the generators forH∗(ΩSn) ∼= Z[x] in 5.2.1by a certain pertubation
to ensure transversality. More precisely, we choose a pointP on the equator which
does not lie on the ”way backwards”δ as the new base point and conjugate the
generator presented in5.2.1by the shortest geodesic fromP to the north pole. We
want to compute the coproduct ofxk , represented by the map (Sn−1)k → ΩSn which
is the k-th power of the map just described. Precomposing withJ, we get a map
(Sn−1)k×I → ΩSn, where we call the second variable theheight. Outside the boundary,

this intersectsΩSn × ΩSn transversally at the heights
l+ 1

2

k+ 1
2

for l = 0, . . . , k − 1 with

level sets (Sn−1)l × (Sn−1)k−l−1 → ΩSn × ΩSn, representingxl × xk−l−1 . Therefore,
the Goresky–Hingston coproduct onH∗(ΩSn, {P}) (which is here well-defined even
for integer coefficients) is given by the formula

ΨGH(xk) =
k−2∑

l=1

xl ⊗ xk−l−1.
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The coproduct onH∗(Sn) ∼= Λ(a) is given by∆(1) = 1⊗a+a⊗1 and∆(a) = a⊗a.
The coproduct structure on theE2-term of the Serre spectral sequence forΩSn →
LSn → Sn is just the tensor product of the two coproduct structures. The E∞ -term is
isomorphic toE2 for n odd and carries the subquotient coproduct structure forn even
for every field coefficients. Filtration issues do not occur,so this gives the coproduct
structure forLSn. Note that theE∞ -term doesnot inherit a coproduct structure forn
even if we chooseintegercoefficients.
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[20] M Vigu é-Poirrier , D Sullivan, The homology theory of the closed geodesic problem,
J. Differential Geom 11 (1976) 633–644MR0455028

[21] C Wall , Determination of the cobordism ring, Annals of Mathematics 72 (1960) 292–
311 MR0120654

Mathematisches Institut, Endenicher Allee 60, 53115 Bonn,Germany

lmeier@math.uni-bonn.de

http://www.math.uni-bonn.de/people/lmeier/

http://www.math.uni-bonn.de/people/lmeier
http://www.math.uni-bonn.de/people/lmeier
http://www.ams.org/mathscinet-getitem?mr=0163331
http://www.ams.org/mathscinet-getitem?mr=0264713
http://dx.doi.org/10.1016/j.jpaa.2009.07.011
http://www.ams.org/mathscinet-getitem?mr=2577666
http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.jdg/1214433729&page=record
http://www.ams.org/mathscinet-getitem?mr=0455028
http://www.jstor.org/stable/1970136
http://www.ams.org/mathscinet-getitem?mr=0120654
mailto:lmeier@math.uni-bonn.de
http://www.math.uni-bonn.de/people/lmeier/

	1 Introduction
	2 Preliminaries
	2.1 Hilbert manifolds
	2.2 Geometric homology
	2.3 Gysin morphisms

	3 The Chas–Sullivan product
	4 Spectral sequences
	4.1 Preliminaries
	4.2 Intersecting on the base and in the fiber
	4.2.1 Intersecting on the base
	4.2.2 Intersecting in the fiber

	4.3 Multiplicative, comultiplicative and module structures

	5 Examples
	5.1 The case of sphere bundles
	5.2 Manifold generators
	5.2.1 The spheres
	5.2.2 Projective spaces

	5.3 Calculations in generalized homology theories
	5.3.1 Complex cobordism and Landweber-exact theories
	5.3.2 Oriented Bordism

	5.4 Computation of Coproducts

	Bibliography

