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Spectral sequences in string topology

LENNART MEIER

Inthis paper, we investigate the behavior of the Serre sgplesgtquence with respect
to the algebraic structures of string topology in geneealihomology theories,
specificially with the Chas—Sullivan product and the cqroesling coproduct and
module structures. We prove compatibility for two kinds difefi bundles: the
fiber bundleQ™™ — L"M — M for an h,—oriented manifoldM and the looped
fiber bundleL"F — L"E — L"B of a fiber bundleF — E — B of h,—oriented
manifolds. Our method lies in the construction of Gysin niisms of spectral
sequences. We apply these results to study the ordinarylbggnof the free loop
spaces of sphere bundles and some generalized homologiesfode loop spaces
of spheres and projective spaces. For the latter purposeonsgtruct explicit
manifold generators for the homology of these spaces.

55P35, 55T10; 57R19

1 Introduction

Let h, be ahomology theory and be ad—dimensionah,—oriented smooth manifold.
In [1], Chas and Sullivan defined a product on the singular honyotdghe free loop
space and Cohen and Jones generalized #]ito[the case of an arbitrary homology
theoryh, . This product is now called theéhas—Sullivan producind is of the form

ho(LM) @ hg(LM) — hgq_a(LM).

Later several people generalized this product, giving aevhonch of algebraic struc-
tures on different mapping spaces between manifolds, famgke coproduct and
module structures. A description of some of these can bedfautihe exposition paper
Notes on string topologlgy Cohen and Voronowg|.

To enhance the calculational perspectives, it is, of courseful to understand the
behavior of these algebraic structures in the Serre spesgrpience associated to
certain fiber bundles. The first theorem of this kind was pnawdoy Cohen, Jones and
Yan in [5]. We will generalize their theorem to arbitrary homologgadhies. Denoting
the Serre spectral sequence of a fiber bugdby £(¢) and by [@, b)] a bidegree shift,
we can state two of our main results:
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Theorem4.6 Let M be ad—dimensionah, —oriented manifold. Then
EO™ — L"M — M)[(d, 0)]

can be equipped with the structure of a multiplicative sgagsequence which converges
to the Chas—Sullivan product dn(L"M). Furthermore, the induced product on the
E2—termH, q(M; hq(2"M)) is equal to the intersection product with coefficients in
the local system of ring$§.(2"M) whose muiltiplication is given by the Pontryagin
product.

Theorem 4.7 Let M — N — O be a fiber bundle oh,—oriented manifolds of
dimensionam, n ando respectively, with projection magp. Then

E(L"M — L"N — L"O)[(0, m)]

can be equipped with the structure of a multiplicative syagsequence which converges
to the Chas—Sullivan product ¢q(L"N). Furthermore, the induced product on &re-
term Hpm(L"O; hq+m(L"M)) is equal to the Chas—Sullivan product with coefficients
in the local system of ring§...m(L"O).

There are similar theorems about (Goresky—Hingston) ahmtand module struc-
tures.

We get these theorems as corollaries from the existencemkimds of Gysin mor-
phisms (i.e. "wrong-way maps”) of spectral sequences, iwhiay be of independent
interest and lie at the technical heart of this paper.

Theorem 4.1 (Intersection on the baselet ¢ be a fiber bundle with a finite-
dimensional manifold as base and fibdf and letA C B be a closed submanifold
of codimensiord with h, —oriented normal bundle. Then there is a morphss/h)

of convergent spectral sequences of bidedred, 0) between the Serre spectral se-
quencesE (&) and £(¢|a) which induces the usual Gysin morphidiy(B; bq(F)) —
Hp—d(A; hq(F)) on E2. Furthermore, it converges to the Gysin morphism in the ho-
mology of the total spaces.

Theorem 4.4 (Intersection in the fiber)Let ¢ = (F — E — B) be a smooth
fiber bundle with base a finite-dimensional manifold and fiadtilbert manifold,
¢=F —-F N B) an open subbundle&y, = (Fo — Eq — B) be a subbundle of
constant codimensioa with h, —oriented normal bundle argg = (F, — E; — B) be
the intersection of the two subbundles. Then there is a nignpd (Ep) of convergent
spectral sequences of bideg(8e—d) betweert (¢, ¢’) and&(&o, &p). This induces the
usual Gysin morphisriy(B; ho(F, F')) — Hp(B; hq—a(Fo, Fp))) on E2. Furthermore,
it converges to the Gysin morphism in the homology of thel spaces.
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The proofs of these results use Jakob’s bordism-like detsami of an arbitrary homol-
ogy theory, which was introduced into string topology by @@ in [2]. Both results
can be generalized to suitable Hilbert manifolds as base.

As in every mathematical discipline, it is crucial to congpand understand examples
to fill the abstract definitions with life. First, we want toropute the Chas—Sullivan
product for a certain class of sphere bundles over spheregtibpal homotopy theory.
Then, we give explicit manifold generators for the singllamologies of the free loop
spaces of spheres and projective spaces and use this itifamne do computations
in complex and oriented bordism and in Landweber exact theoiWe get complete
answers in the case of odd-dimensional spheres. At lastpveesdmple computation
for the Goresky—Hingston coproduct.

Most of the theorems about the behavior of the Serre spesgrplence with respect
to the Chas—Sullivan product and other algebraic strusturere already shown by
other people in the case of singular homology: We alreadytioveed p]. Le Borgne
([14]) has constructed the Gysin morphisms of spectral seqesearwapplied them to
something analogous th7. Kallel and Salvatore {[2]) have proven compatibility of
the Serre spectral sequences associaté'id — L"M — M with module structures.
To the knowledge of the author, all the results about splestguences are new for
other homology theories. It should be noted that the teclasiopf the mentioned
authors do not generalize since they use chain methodshdfoore, they do not treat
the compatibility with the Goresky—Hingston coproduct.

Le Borgne has also computed homologies of free loop spacephare bundles in
some other cases than in this paper by a different method.

The paper is structured as follows:

In section 2, we discuss some preliminaries. First, we révaldefinition of a Hilbert

manifold and some of their properties. These notions areitapt for our project since
(Sobolev) mapping spaces between manifolds provide exangblHilbert manifolds.

Then we recall the definition of Jakob’s geometric homologg give a discussion of
Gysin morphisms both in the finite and in the infinite-dimensil case.

In section 3, we recall the definition of the Chas—Sullivandoict and also of module
and coproduct structures, which will be the basic objecth@fpaper.

In section 4, we construct first the intersection on the biasthé sense o4.1) in the
finite-dimensional case and use then naturality and apmation by finite-dimensional
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manifolds to generalize it to the infinite-dimensional ca&#er constructing also the
intersection in the fiber, we prove several statements abeubehavior of the Serre
spectral sequence with respect to product, coproduct amidiiestructures.

In section 5, we begin by considering free loop spaces ofrsphendles. By rational
homotopy theory, we can prove that the Serre spectral sequetiapses g2 in many
cases. Then we construct very concrete manifold generatdng free loop spaces of
spheres and (complex and quaternionic) projective spawtsise these to prove that
the Atiyah—Hirzebruch spectral sequence collapsds?dor these spaces in various
homology theories. Atthe end, we do a sample computatiothéGoresky—Hingston
coproduct.
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2 Preliminaries

2.1 Hilbert manifolds

A Hilbert manifoldis a metrizable space which is locally homeomorphic to arsdga
Hilbert spaceE. One can define smooth Hilbert manifolds and their tanggrases
in analogy to the finite-dimensional case. We will assumeHilbert manifolds to
be smooth in this paper. To define later Gysin morphisms, vggnbeith certain
transversality results. We do not claim originality heresasilar, but deeper, results
were already proven by Quinn iag].

Lemma 2.1 LetE — M be a Euclidean smooth Hilbert space bundle over a compact
manifold M, possibly with boundary. Furthermore, la,L1,--- C E be a countable
collection of sub Hilbert manifolds of finite codimensiondat. M — R a positive
function onM. Then there is a smooth sectisn M — E with |s(p)| < e(p) for all

p € M such thats is transverse to all;. If A C M is a closed submanifold and the
zero section is already transverse to then A, we can choosga = 0.
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Proof The proof is completely analogous to the finite-dimensiarzede if one uses
the corresponding results in differential topology forbitt manifolds and Kuiper's
theorem that every Hilbert space bundle is trivial. See xangple my diploma thesis
[15, section 2.4.3]. O

Theorem 2.2 (Relative Transversality Theorembet 7: E — B be a fiber bundle
where the fiber and the base are Hilbert manifolds. FurthesymetES, ES,--- C E
be a countable collection of subbundles which are in evegr Bbb Hilbert manifolds
of finite codimension. Let: M — E be a smooth map from a compact maniféid
Then there is a homotogyt: M x | — E betweenf and a mam: M — E which is
transverse to alE}) such thatr oH = wof o pr,. If AC M is a closed submanifold
with f|a transverse to alEL, we can choosél|ax = f o pr;.

Remark The theorem generalizes immediately to the case where g ibanot a
Hilbert manifold but a differentiable space in the senseikbiSki; see the discussion
before 2.31 in 15]. Note also that folB = pt, we get simply the usual (absolute)
transversality theorem.

Proof Consider the closed embeddingxdi: M — M xg E, where the pullback is
overrof: M — B. We can construct a tubular neighbourhobaf M in M xg E
and identify it with a neighbourhood in the normal bundle. wNchoose a section
s: M — T transverse to alM xg Eio. We can identify the tangent bundle Bf xg E
with pr; TM&@pr; TVE whereT,E denotes the vertical part E. Sincer|gi : E),— B
is a submersion for all, we have thas: M — M xg E — M x E is transverse to all
M x Ej. Hence, we get thay := pr, os ist transverse to alE,. o

If one uses that every (infinite-dimensional) Hilbert matdfis diffeomorphic to an
open subset of the standard Hilbert space, smooth appri@imean also be proven
just as in the finite-dimensional case.

An important example for a Hilbert manifold is the spad&M, N) of Sobolev maps
between a compact manifold of dimensionn and an arbitrary manifoldN, which

is homotopy equivalent ttMap(M, N) with the usual compact-open topology. This is
surely well known for a long time, but the author was unablértd a complete proof

in the literature. A proof can be found in the companion pdpét, where also a
precise definition oH"(M, N) and further references are given. In the following, we
will write Map(M, N) for H"(M, N), which will be no source of confusion since at the
end we are only interested in the homotopy type.

A useful fact about these mapping spaces is the followingaqimation theorem:
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Theorem 2.3 Let M, N be manifolds and assuné& to be compact. Then there exists
a sequence of submanifolé’s C P, C --- € Map(M, N) such that one can deform
every mapX — Map(M, N) from a compackK to a map into one of the; .

This is a generalization of the corresponding well-knoweotiem for the loop space.
A proof along the lines of Milnor's17, §16] can be found in15, section 2.6.2].

2.2 Geometric homology

In this section, we want recall a bordism description for btogy due to Martin Jakob
([11]), which works for every (generalized) homology theory.cétn be thought as
a geometric way to build out of a cohomology theory the cqoesling homology
theory.

Definition 2.4 (Geometric cycles) Let* be a cohomology theory anX(A) a pair
of topological spaces. Aeometric cyclds a triple P,a,f) wheref: P — X is a
continuous map from a compact conneckéd-oriented manifold® with boundary to
X such thatf (0P) € A anda € h*(P).

If P is of dimensionp anda € h™(P), then P, a,f) is a geometric cycle ofiegree
p—m.

We want to consider two relations on the class of geometigtesy

(1) (Bordism relation) We call two triplesP(a, f) and @', &, f') bordant if there is
a geometric cycleW, b, g) such thatP [[(—P’) € OW is a regularly embedded
submanifold of codimension 0 which inherits thé—orientation of W. We
require further thatolp = a,blp = &, glp = f, glp = f' and g(OW —
P][P) C A. Two bordant cycles are defined to be equivalent.

(2) (Vector bundle modification) LetP(a,f) be a geometric cycle and consider
a smoothh*—orientedd—dimensional vector bundle: E — P, take the unit
sphere bundleSE ¢ 1) of the Whitney sum ofe with a copy of the trivial
line bundle overP. The bundleS(E & 1) admits a section s. Bg: h*(P) —
h*+td(S(E @ 1)) we denote the Gysin morphism in cohomology associatéugo
sectiort. We impose that

(P.af) ~ (SE®1)s(a),fp)

This can, for example, be defined via Poincare duality. Fbeopossibilites in the
analogous case of homology, see the next section.
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We lay upon the group of cycles the equivalence relationggded by the relations 1
and 2. An equivalence class of geometric cycles is callgelanetric clasand will be
denoted by P, a, f]. We defineghy(X, A) to be the abelian group of geometric classes
of degreeq, where addition is defined via disjoint union.

Theorem 2.5 ([11], Corollary 4.3) There is a natural isomorphism
ghy(X, A) — hy(X, A)

defined by
[P,a,f] — f.(@an[P]),

where[P] is the fundamental class ¢, OP) andh, is the homology theory corre-
sponding to the spectrum representfrig

We will identify gh, and h, via this isomorphism in the rest of this paper. For
later applications, we give an explicit description of theision isomorphism: Let
[P,a f] € h.(X,A) be a geometric class ar8l C A such thatB c A. The preim-
agesf~1(B) and f~1(X — A) are closed and we can choose a smooth Urysohn
function g: P — R separating them. Choose a regular valudetween 0 and

1. ThenQ := g~1([0,X]) is a manifold with boundary iPA — B. The restriction
[Q,alq, f|g] is the image of the excision isomorphism (X — B, A — B). Indeed,

(P x [0,1],pr;(a),f o pry) is a bordism betweenP[a,f] and i.[Q, alo,f|g] since
Q[P is aregular submanifold of codimension OR [ P.

2.3 Gysin morphisms

For the definition of the Chas—Sullivan product, the comgion of Gysin morphisms
(also calledumkehr mapén the literature) is crucial. Let: A — B be the inclusion
of a sub Hilbert manifold of finite codimensiahwith h,—oriented normal bundle. We
associate to this data a Gysin morphism, i.e. a”wrong-wath: h,(B) — h,_4(A).
We will give two constructions in the general case and a tobing in the finite-
dimensional case.

The first uses the theory of geometric homoliglet [P, a, f] be a geometric cycle in
hp(B). By the transversality theorem, we can assume fthattransversal té\. Now,
we define5([P, a,f]) := [P, als, 5] € hp—a(A), whereP := f~1(A). Itis easy to see

2We follow here (up to sign) Chatau2]f
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that this class is well-defined. This is the description i ithfinite-dimensional case
we will primarly use in this paper.

Another possible construction uses the Thomisomorphisetv L N — A be atubular
neighborhood ofA andu € h%(N, N — A) the Thom class. Then the composition

h.(B) — h.(B,B — A) = h,(N,N — A) ™ h,_4(N) = h,_4(A)

is an alternative way to define Gysin maps. It coincides withd¢onstruction above
in the finite-dimensional case and also for mapping spacegka manifolds by the
approximation theorer@2.3. Therefore, our definition of the Chas—Sullivan product
will agree with that of Cohen and JoneY [which can also be found in Cohen and
Voronov [6]) as also shown by Chataur in a different way. Note that omescéstitute
for h, here also ordinary homology withcal coefficients.

In the finite-dimensional case, there is also a cellular woogon of Gysin maps.
To make this precise, we need the following (simple) lemmiaictvis proven in the
author’s diploma thesislp, section 2.5]:

Lemma 2.6 Let A C B be a closed submanifold of a finite-dimensional manifold.
Then one can triangulai transversal t@\ in the sense that every stratum ist transverse
to A. Furthermore, one can triangulate evéy\ A; for the simplicesA;j of T in a
way such that the triangulations coincide in the intersastA N Aj N Aj. Thus one
obtains a induced triangulation &f

Let C.(A) and C.(B) denote the cellular chain complexes. By sending a simglex
of the triangulation oB to the sum of all the simplices ak N A, we get a chain map
s: C.(B) — C,_4(A) which induces a Gysin map on homology.

This cellular description of the Gysin morphism is also ahbig¢ to describe Gysin
morphisms for homology with local coefficients: L&tbe a local system and= xa
be the midpoint of a simpleA. Inthe cellular complex with respect ththe coefficient
of A lies in Gx. Choose arbitrary paths fromto the midpoints of the simplices of
ANAin A and map via them the coefficient &f to coefficients for these simplices
(note that all possible choices of these paths are homQtoplis describes a Gysin
mapg': H.(B;G) = H._a(A;G|a).

We want to show the equivalence of the cellular construatidh the construction via
the Thom isomorphism in the case of singular homology. Wefoan the sub chain
complexT,(N,N — A) of all singular chainsS,(N, N — A) which are transverse ta

(i.e. transverse in each stratum). Given a cycleSji(N,N — A), one can form an
associated simplicial complég with a mapf : K — B by glueing the simplices. By a
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variant of the transversality theorem (see e1f],[2.29 and 2.12), one can homotope
f to a mapg transverse t& without movingdK into A. Then K, g) defines a cycle
in T.(N,N — A) which is homologous toK, f). A similar argument can be applied
for boundaries. Thereforel.(N,N — A) is quasi-isomorphic t&,(N,N — A). By
the universal coefficient theorem, the dual chain complexeslso quasi-isomorphic.
Therefore, it is enough to define the Thom class HY(N,N — A) on d-simplices
transverse ta\.

For a transversd—simplex (A, f), we defineu(A) as the oriented intersection number
A NA. This is a cocycle, since for every transverse-+H 1)—simplex Q\’,f) the
intersectionA’ N A is represented by a compact 1-manifold with boundary and the
number of oriented boundary points of such a manifold ist ®©we restrictu to
(v1(x), v 1(x) — {x}) for anx € A, we get the orientation class sincesends the
generator of the homology to 1. Therefoterepresents the Thom class.

The cellular Gysin map is surely unchanged under subdissif the triangulation.
Therefore, we can assume that evekysimplex intersect® in at most one point.
Furthermore, we can assume via an isotopy of the trianguldliat locally atA every
d—simplex is only in one fiber. Therefore, we can assume viatalda subdivision
that thep—backface of everyp(+- d)—dimensional simplex\ intersectingA maps via
the projection map homeomorphically onfon A.

A simplex in our triangulation determines a singular simpigth the induced orienta-
tion. Itis now clear that it is the same if we cap this simplathw and project it down
to A or if we apply the cellular Gysin. This argument clearly woedso with (local)
coefficients and proves our claim. This shows in particdiat the cellular Gysin does
not depend on the chosen triangulation at the level of hogyolo

One can also define Gysin morphisms in a relative settingBLet B be a submanifold,
transverse tdA\. Let furthermore P, a, f] € hy(B, B') be a geometric cycle. Then we
can make first|gp transverse t&A N B’ in B’ and extend the homotopy to whdketo
getamapf’: P — B. Since this is already transverseAoon 9P, we can homotope
f’ toamapg: P — B which is transverse té such that the homotopy stays constant
on 9P. We defineu[P, a,f] = [P, als, gls] € hn_a(A, B’ N A), whereP := g~ 1(A).
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It is also possible to use the Thom map:

h.(B,B)

l

h.(B,B' U (B — A) = h,(N,»~XANB) U (N — A)

|

h,_q(N,v"Y(ANB)) = h,_q(A,AN B

HereN denotes again a tubular neighborhoodtaih B.

3 The Chas-Sullivan product

In this section, we want to recall the definition of the Chagdi&an product. We
will follow the approach by David Chataur exhibited i#].] We will fix the notation
L"M = Map(S', M) for the unpointed an€l"M = Map*(S', M) for the pointed maps.

Let M be anh,—oriented manifold of dimensiod for a homology theorh, . Consider
the diagram

L"™ xp L"'M ——=L"M x L"M

evl lev X ev

M MxM

Here A stands for the diagonal, is the inclusion and ev the evaluation at the base
point pt of S'. Since ev is a submersioh!'™ x L"M is a sub Hilbert manifold of
L"M x L"M and the normal bundle af"M x,; L"M in L"M x L"M s the pullback of
the normal bundle oM in M x M.

We have a map
v: L"'M xy L"'M = Map(S' v S", M) — Map(S',M) = L"M

induced by the collapse map S' — S'Vv S'. Note that one has to be careful how
to identify the wedge summands with the standard sphere.p@ssble convention is
apparent in the following coordinate description of thdajgde map:
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o V1Im(@20-1P ) A/1-(20—1) V1-(2—1)
(ZXO 17 1_)(% X ’ 1_)(% X27 RN m Xn)l for Xo 2 0
oy 1 V1@ 1P /1 (2x0+1P V1-(2x0+17?
( 2X0 17 \/1_)% X17 \/1_)(% X27 sty m Xn)2 for XO S 0

The Chas—Sullivan produdas now defined as the composition

(XOa"'7Xn)'_>

lx WT

Mpg(L™ x L'M) —“ = hoq_a(L"™M xy L"M)

For notational convenience, we defihg(L"M) = h,4(L"M). Note that, ifh = H
is ordinary homology, one usually chooses the notafitufL"M) for h,(L"M). The
above composition may now be written as:

117 Np(L"M) @ ha(L™M) — hp(L"M)

Warning One has to be careful with signs here since there are diffemventions

in the literature. The sign convention where the Chas~&uiliproduct is graded
commutative is used, for example, in the original Chas arlliv8u article [1] and also

in [2] (where it is ensured by an "artificial” sign), while our sigonvention agrees,

for example, with that in§] (Theorem 1.2.1 seems to have the wrong sign as stated

there): interchanging a factor of degrpend a factor of degreq induces a factor of
(~1pe,

Remark As an aside, we remark that it is also possible to give a camgléinite-
dimensional bordism-like description of the Chas-Sutliysioduct in the case of ordi-
nary homology via Kreck’s theory of stratifolds. Stratilslare smooth spaces which
are stratified by smooth manifolds satisfying certain ctiods on the topology and
the relationship of the strata. It is possible to carry outimaf the usual differential
topology in this setting. Especially we can construct atiétld bordism homology
theory, which coincides with singular homology in the casspmaces having the ho-
motopy type of CW-complexes (for more details and precidinitiens see Kreck
[13]). Let now [S, 1], [S,f2] € H.(LM) be homology classes. We can interpret a
mapf: S— LM asamap evf: S— M with a loop inQ2(ev(f (p))) attached to each
p € S. Intersect ewf; and ewf, transversally to getamap: S xy S — M and
attach to eaclp € S xy S the composition of the loops attached tq(py and pr(p).
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This is a representative of the Chas—Sullivan producggff{] and [S, f2] as is shown
in the author’s diploma thesid$, section 3.2.1]. This is close in spirit to the original
definition in Chas and Sullivari].

A closer look at the definition of the Chas—Sullivan produsteals that the only
thing we have used o8’ is that it is both a manifold and an H-cogroup (via the
mapS' — S'Vv §"). Since everyn—dimensional manifoldN has the structure of an
H-comodule ovelS via the mapc: N — N Vv S, collapsing the boundary of a little
disk, we get (forM h,—oriented) the following module structure:

ho(Map(N, M)) & hy(L"M) hp+q—a(Map(N, M))

lx %T

hpsq(Map(N, M) x L"M) —“— hy,q_a(Map(N, M) xy L"M)

Here.: Map(N,M) xy L"M — Map(N, M) x L"M is the inclusion and
v: Map(N, M) xpu L"M — Map(N, M)

is the map induced bg. This defines d,(L"S—module structure oh,(Map(N, M)),
which was first considered by Kallel and Salvatorelig][ This structure isindependent
of the chosen disk since all embeddings of a disk are isatopiote that we could
substituteh,(Map(N, M)) by h;)(Map(N, M)), whereh’ is a module homology theory
over h.

Besides the module structure, there is also the structuee aufalgebra orh,(LM)
if h, is a graded field (e.g., for ordinary homology with field cagéfints or Morava
K-theory ash). To define the coproduct, lét LM xy LM — LM be the inclusion of
all loopsa: [0,1] — M with «(0) = a(%) = (1) ande: LM xy LM — LM x LM
the usual inclusion. Then we get a map

hn(LM) . hn—d(LM xy LM) —> hy_g(LM x LM) = (h,(LM) ® h,(LM))n_g.

This coincides as a special case with the TQFT-constructfi@ohen and Godin §)).
Sadly enough, this coproduct is zero for all classes of @ebigger thand, at least
in the case of singular homology, by work of Tamandi9]) and Goresky—Hingston
([10Q]). For this reason, Goresky and Hingston constructed @rctthomological case)
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an alternative version of the coproduct, which we want talideere in our language:

hn_1(LM, M) 22 hy(LM x [,LM x 9l UM x 1)
J
ha(LM, A)

hn_a(Map(8, M), A" Map(8, M))

o

hn—da(Map(8, M), f1(LM) U f2(LM))

hn_g(LM x LM,LM x M UM x LM)

o

hn—a(LM, M) & hn_q(LM, M)

Here,J: LM x| — LM is induced by the map: | x I — I, wherej(t,—) sends
0to 0,3 totand 1to 1 andis linear on both halfs of the interval. Furtheen

A is the union of the tubular neighborhoods of the images oftivee embeddings
f12: LM — LM, sending a loop to the same loop with doubled speed on one half
of the interval and constant on the other. TAigan be chosen as a subbundle since
f1/2(LM) are subbundles dfM — M.

By the same way, we can define a coproducthp(f2M, pt). We call both of these
coproductsGoresky—Hingston coproductsmd denote them by gy. Intuitively, they
can be seen as unparametrized versions of the Cohen—Gaaiwdcat.

4 Spectral sequences

4.1 Preliminaries

Let ¢ = (E 5 B) be a fiber bundle witlB a path-connected CW-complex and fitber
and¢’ = (E' ™ B) be a subbundle with fibeF’. We defineE® to be the preimage

of the p—skeleton ofB underr andE’® correspondingly. Recall that for a homology
theory h, the defining exact coupl€(¢, £’) of the associated Serre spectral sequence
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E(&,¢) is given by
P hpyo(EP, E'P) i P hp4o(EP, E'P)
P.g P.d

0, (-1 | £
D hp(EP, EP-D U E'®)
pP,q

Here the morphisms are the same as in the exact sequencetiapline
(EP EP-D |y E/0) EP)

via the excision isomorphisr, (E®-Y U E'®) E'P)) = h (EP-D EP-1), So, two
of the three maps are induced by inclusions, the third isrghwe restricting a cycle
[P, a,f] to a codimension 0 submanifold of the boundary. Hieterm is isomorphic
to

P (2™ @h ey M (%), 7 %)) ]pia,
p—cellsa of B

with X, € int(c), i.e. thep-th part of the cellular complex computirdy(B; hq(F, F))
where b, (F, F’) denotes the local system given by the homologies of thedfibér
is easy to work out that, if we have a smooth fiber bundle of smamanifolds, the
isomorphism sends a geometric cyele- [P, a, f] to

zN 7 %) = [PN 7 (%), @1 (k) FlPrm 1)

for f h 7—1(x,). Here one uses the explicit description of the excisionghism given
in 2.2 Note furthermore that ik andy are two regular values off and~: | — B
is a path withy(0) = x and~(1) = y which is also transverse tof , then the fiber
transport of the homology clags) 7~1(x) along~y is zN 7~ 1(x).

To ease the formulation of the results of the next sectioesyant to fix some general
terminology for spectral sequences. forphism of spectral sequences, Eand E*,
of level k and bidegreeg; b) consists of homomorphisnfs: Ej, — E8+a,q+b for all

n > k which commute with the differentials and satigfi(f") = f"*1. Now assume
that E and E converge to graded abelian groupg® and D> which are filtered by
F* and F* respectively. If we have a morphisfii, betweenE and E and in addition
homomorphismDg® — D2, which mapFf to FP72. | and inducef> on E>,
we speak of anorphism of convergent spectral sequenddsrphisms of convergent

exact couples induce morphisms of the associated convesgeatral sequences.
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4.2 Intersecting on the base and in the fiber

The goal of this subsection is to define Gysin morphisms ofeSgrectral sequences
which "compute” the corresponding Gysin morphisms of thenblmgy of the total
space.

4.2.1 Intersecting on the base

Let ¢ = (F — E 5 B) be a fiber bundle witB a (finite-dimensional) manifold
andA C B a closed submanifold of codimensiahwith h,—oriented normal bundle.
Choose a triangulation d transverse t@ and triangulateA as in2.6.

Theorem 4.1 (Intersecting on the baseYhere is a morphisnss(A) of convergent
spectral sequences of level 1 and bidegred, 0) betweenf(§) and £(&|a) where
the spectral sequences are defined by the triangulationge.ab®he morphism is
canonical starting with level 2 and induces the usual GysimpmsmHg(B; hq(F)) —
Hp—d(A; bq(F)) on this level.

Proof We want to construct a morphism of the corresponding exagilesC(¢) and
C(¢|a). That means, we need to construct morphisms

Oa: hp+q(E(p)) - hp+q—d(7T_1(A(p_d)))

and
011 hpig(EP ECY) = g g(mHAPD), nHAPDy)

which commute with the boundary maps. We concentrate onefaéive case since
this is more difficult.

Let [P, a,f] € hyo(E®, EP-D). We want to find a homotopy
(P,0P) x | — (E® EP-D)

from f to a mapg such thatrg is transverse tA. To smoothzf, consider open
neighbourhoodsJ,, of the p—skeletonBP with U,_; C Up such that there are smooth
retractsrp: Up — BP with rpfy,_, = rp—1. In addition, we can assume that Uy, is
mapped toA N BP by rp. There is a homotopy;: 0P x | — Uy_1 from 7f|gp to

a smooth map. Extend this homotopy to a homotefgy P x | — Uy from =f to a
mapf. This mapf is smooth ondP, so we can find a homotopila: P x | — U,

to a smooth map such théty|sp = fo pry. Now, rp o Ha(x, 1) is homotopic torf
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and smooth. Sinc& — B is a fibration, we can lift this homotopy. Therefore, we can
assumerf to be smooth.

We can homotoperf|gp in BP~1 to be transverse té N BP~1 since we can first
do this inUp_; and then use,. We can extend this to a mdpon the whole ofP.
Sincef is tranverse toA on AP, we can homotope it to §: P — B® in B® which
is transverse té\ N B® while leaving OP fixed. We can lift this homotopy t& and
getamapy: P — E® | for which 7g = § is transverse ta\.

SinceBP N A A9, we can define the maps, and o, by transverse intersection of
our representativ® with A. More precisely, defin€ := (7f)~1(A) and send P, a, f]
to

[Q, alo; flal € Mprg—d(Elar-a, Elap-1-9)

and the same in the absolute case. Si@e= P N Q, we get a morphism of exact
couples and therefore of convergent spectral sequeBk€s) — E(l*_d)*(g |a)-

We now have to check that it induces the usual Gysin morphisiB% To that end,
choose thex, for the cells of B to be regular values ofif and those for the cells
of A to be regular values off|qg. By choosing paths transverse 46 from the x,
for cells o of B to the x5 for 3 in the intersection ofx with A, one sees that our
construction coincides with the cellular description o tBysin morphism by the
previous subsection. O

Proposition 4.2 (Naturality) Let¢: E' — E be a map of fiber bundles = (F' —

E' — B) and¢ = (F — E — B). Let A C B be a submanifold and the map on the
based : B’ — B be transverse tA. Then the following diagram commutes beginning
with the second level:

s
EE)——=E(9)
l/SB(fl(A)) l/SB(A)
¢*
EEt-1(a)) —=E([n)
Proof The normal bundle of ~1(A) in B’ is the pullback of the normal bundle éfin

B. Since the Thom class is natural, the proposition follovestlie Thom isomorphism
description of the Gysin morphism. O

We now want to generalize the intersection morphism to anitefidimensional con-
text. So let¢ = (F —+ E — B) be a fiber bundle with projection map where B
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is a Hilbert manifold andA C B a closed sub Hilbert manifold of codimensiah
with h,—oriented normal bundle. Assume, furthermore, that the ¢ollection of
finite-dimensional manifold®, ¢ P, C --- C B with inclusionSLEH . P — Pigj and

ti: P; — B such that every map: X — B from a compact space can be homotoped
into one of theP; — this is, for example, the caseBfis a mapping space (s€e3).

Proposition 4.3 In the situation above, there is a (canonical) morphsytA) of
convergent spectral sequences of level 2 and biddgrae0) betweer€ (€) and&(£|a)-
The morphism induces the usual Gysin morphl8piB; hq(F)) — Hp_a(A; hq(F)) on
=2

Proof Let x be in Ejy(§). This element is represented by an elemeiit qu =
Hp(B; hq(F)) with dx(2) = d3(2) = - - - = dn—1(2) = 0. Since

there is arN € N such that there is a preimagec qu(§|pN) of z under the map

(N)«: EElRy) — E(©)

with dao(y) = ds(y) = --- = dn_1(y) = 0, therefore representing a preimagg ¢f

x in EJ (§py)- By the transversality theorem, we can assume Bhats transverse to

A, hencePy N A C Py is a closed submanifold dPy. We now definesg(A)(X) =
(en)«S8(Pn N AX([Y]D). We have to check that this is a well-defined map and that it
defines a morphism of spectral sequences.

The map is independent of the choices because of the naturalntersecting on the
base: Supposed).(y1) — (tn,)«(Y2) = dk(u) is a boundary for som& < n where
yi € E%(¢lp,), i = 1,2, are cycles. We can findae E?(¢[p,) (N>>0) with un(v)
representings and .\ (y1) — ¢n2(¥2) = dk(v). Now we use thaty, factors overy, that
intersecting on the base is natural and that:ffip;] = «2[y2] in E"(¢|p,) to deduce
that our map is well-defined.

The map is a morphism of spectral sequences since intargecti the base is a
morphism of spectral sequences for e&h O

Remark If ¢ is asmooth fiber bundle of Hilbert manifolds, it is clear bg ttonstruc-

tion of the intersection on the base that it converges to ualuGysin morphism on
the homology of the total spaces. Here we take in the caseistietivcoefficients the
Thom isomorphism description of the Gysin map, which maler$ept sense in the
twisted setting.
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4.2.2 Intersecting in the fiber

Let ¢ = (F — E 5 B) be a smooth fiber bundle with fiber a Hilbert manifold and

7.r/

base a finite-dimensional manifold agtl= (F" — E’ — B) be an open subbundle.
Let £, = (Fo — Eo — B) be a subbundle of constant codimens@and h,—oriented
normal bundle. Denote b§}) = (F;, — E{, — B) the intersection of the two subbundles.
Note that one can often reduce from other situations to tle@ gpbbundle case by a
tubular neighborhood argument.

Theorem 4.4 (Intersecting in the fiber) There is a morphisns=(Eg) of convergent
spectral sequences of level 1 and bidedfee-d) betweer€ (¢, ¢’) and& (&o, &) This
induces the usual Gysin morphiskp(B; ho(F,F')) — Hp(B; hq—a(Fo, Fh))) on E2.
Furthermore, it converges to the Gysin morphism in the hogyobf the total spaces.

Proof We want to define a morphism of the corresponding exact ceuplach
induces the usual Gysin morphism on tB&term. We will only discuss explicitely
the case of th&-term, the others are similar. Let

[P,af] € hyq(r 1(BP), 7 1(BP~Y) U »'~1(BP))

be a homology class. We need to find a homotopy friorto a g such thatg m

Eo, glop M Eo, g h 7~1(x,) (for a point x, in the interior of everyp-cell) and
Alt-1(r-1(x,y) M EoN 71(x,). The first is necessary to define the Gysin morphism, the
second to insure that this is compatible with the morphisnibe exact couple and the
last two guarantee that it coincides with the Gysin morphisnE?. As in the proof

of 4.1, we can as a first thing assume tfids smooth.

Choose thex, to be regular values in eveny-cell o of «f: (xf)~1(BP — BP1) —
BP — BP~1 and of the restrictionrf|5p. Thenf andf|sp are transverse to the 1(x,).
Choose disk®,, inside B° — BP~1 around thex, and trivialize¢ on them ad,, x F
and¢’ asD,, x F’. After pulling the bundlet back along a smooth self m&® — BP
homotopic to the identity, which is identity outside tbg and maps a small disk around
the x, constantly tox,, we can, after possibly makinB, smaller, assume tha{
embeds int¢ on D, asD,, x F' C D, x F. We have £f)~1(D,) = DP x (7f)"1(x,)
and we can by a homotopy assume the functiopf prDP x (7f)~1(x,) — F to
be constant on everp? x {y}. Now use the transversality theorem to make first
flif)-1x0)n0p transverse tar' ~1(x,) N Eo C 7'~ %(x,) and thenf|(-1,, ) transverse
to 7 1(x,) NEg C m~1(x,) for all p-cells a and extend this homotopy "constantly” on
DP x (nf)~1(x,) and on the rest in an arbitrary way. After possibly making disks
smaller, we know that is already transverse &, on theDP x (7f)~1(x,). View now
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f asamafP — w—l(Up) for Uy as in the last subsection. Then we can make fijggt
and thenf transverse t&Ey by a homotopy leaving fixed on theDP x (7f)~1(x,)
such that the image dfis still contained inm—1(BP) by theoren.2.

By intersecting withEg, we now get a morphism of the exact couples which commutes
with the boundary operator as above. More precisely we Ra f] to [Q, &g, f|o] €
hp1q—d(E® N Eo, (EC~Y U E'®) N Ep) with Q = f~1(Ep). This induces a convergent
morphism&(¢, &) — £(&o, &) of level 1 and bidegree (6-d). That this map induces
the Gysin morphism oft2 can be seen by the explicit isomorphism of fe-term to

the cellular complex: there is no difference if we intersiast with F and then with

Fo or if we first intersect withEg and then withFq (if everything is transverse). The
well-definedness is proven as usual. O

As in the case of the intersection on the base, we can exterch#ies we are interested
in to an infinite-dimensional context. So let n@be a Hilbert manifold and the other
notation as above and assume that there is a collection -fihensional manifolds
Py C P» C --- C B such that every map: X — B from a compact space can be
homotoped into one of th®;. We will state only the absolute form of the theorem
since it is enough for our applications.

Theorem 4.5 Inthe situation above, there is a morphisgEy) of convergent spectral
sequences of level 2 and bidegi@e—d) betweené(§) andE&(&o). This induces the
usual Gysin morphismHy(B; hq(F)) — Hp(B; hg—a(Fo))) on E2. Furthermore, it
converges to the Gysin morphism in the homology of the tqiatss.

Proof As in the case of the intersection on the base. O

4.3 Multiplicative, comultiplicative and module structures

Define E[(a, b)] to be the shifted spectral sequence WiH(a, b)lpq = Ef, yqsn)-
For ad—dimensional manifoldM, setH,(M) = H,,4(M) and also recall the notation
h.(M) = h,14(M).

Theorem 4.6 Let M be ad—dimensionah, —oriented manifold. Then
EO™ — L"M — M)[(d, 0)]

can be equipped with the structure of a multiplicative sgagsequence which converges
to the Chas—Sullivan product dn.(L"M). Furthermore, the induced product on the
E2—termH..(M; h..(Q"M)) is equal to the intersection product with coefficients in the
local system of ring§..(2"M) whose multiplication is given by the Pontryagin product.
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Proof Leté = (2"M — L"M — M) and denote byAy: M — M x M the diagonal.
Then we define the multiplicative structure as the compmsiti

E(©) ® E(€) 5 £(€ x &) =M, £(AL (€ x 9) 15 £(9).

Here ~ is defined as in sectioB. Note that the cross product is a map of spectral
sequences. All claims follow from the corresponding ones3gsin morphisms. O

In the next theorem, we need the Chas-Sullivan product imarg homology with
local coefficients. While in sectio we have only considered untwisted coefficients,
we can simply use the Thom isomorphism construction for theitGmap as above.

Theorem 4.7 Let M — N — O be a fiber bundle oh,—oriented manifolds of
dimensionam, n ando respectively. Then

E(L"M — L"N — L"O)[(0, m)]

can be equipped with the structure of a multiplicative sgagsequence which converges
to the Chas-Sullivan product dn.(L"N). Furthermore, the induced product on the
E2—termH.,.(L"O; b..m(L"M)) is equal to the Chas—Sullivan product with coefficients
in the local system of ring§..m(L"M).

Proof Let¢ = (L"M — L"N — L"O), v = (L"M xy L"M — L"N xy L"N —
L"O xo L"O) and:: L"O xo L"O — L"O x L"O be the inclusion. We define the
multiplicative structure as the composition

E(©) ® () 5 £(€ x &) 2 £(7(¢ x g)) TENNM, £y 2, £(¢)

Here~ is again defined as in secti@ By proposition2.3, we are in the situation of
theoremd4.3and the intersection morphism is defined. O

There is also the notion of eomultiplicative spectral sequencehich is simply a
comonoid in spectral sequences, i.e. one has alfnapE ® E which is coassociative
(we will not consider counits).

In section3 we have defined the Goresky—Hingston coproductshdhM) and on
h,(Q2M) for h, being a graded field. Fov a coalgebra over a fiel#t, we have
furthermore a coproduct od,.(M; V):

H.(M; V) = Ho (M;V @ V) 25 Ho (M x M: V@ V) 2 H,(M; V) @ Ho(M; V)

The same diagram also defines a coproduct in the case of loeffilctents.
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Theorem 4.8 Let M be ad-dimensionalh,—oriented manifold withh, a graded
field. Then

E((QM, pt) — (LM, M) — M)[(0,d — 1)]

can be equipped with the structure of a comultiplicativectjiad sequence which con-
verges to the Goresky—Hingston coproducttQng—1(LM, M). Furthermore, the in-
duced coproduct on tHe? —termH..(M; b... @—1)(22M, pt)) is equal to the coproduct on
M with coefficients in the Goresky—Hingston coalgebra logatamb .. q—1)(Q2M, pt).

Proof Let¢( = QM — LM — M and view (,0l) as a bundle over the point aid
as the identity bundlél — M. Furthermore lefA be as in the end of sectidhand
§1/2 defined by the embeddinds/,. Consider the diagramm

E(E,M) = E((E,M) x (1,01))

J

EE,A

s (LM xyLM)
EExmEANEXME) = E(E xmE, 61U &)

E((& M) x (6, M) = £ M) @ EE,M)

All claims follow from the corresponding ones for Gysin mbigms. O

There are also spectral sequence results for the coproeficed by Cohen and Godin,
which we will not state here explicitely.

For E a multiplicative spectral sequence, there is also the naifa module spectral
sequence, i.e. a spectral sequeiteaogether with a morphisnkt ® E' — E’ and
the usual coherence diagrams. Recall thaiifis a d—manifold andN a module
over aringR, we have aril, (M; R)—module structure ofil.(M; N) defined analogous
to the intersection product (here we use the cross produ@¥; R) ® H.(M; N) —
H.(M x M;N)).

Theorem 4.9 LetZ be a closeah—manifold andM be ad—dimensionah, —oriented
manifold. Then

E(Map*(Z,M) — Map(Z, M) — M)|[(d, 0)]
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can be equipped with the structure of a module spectral sequeverE(Q"M —
L"M — M)[(d, 0)] which converges to the module structurelafMap(Z, M)). Here
Map* stands for the pointed maps. Furthermore, the induced recduicture on the
E2—termH..(M; h..(Map*(Z, M)) coincides with the module structure described above.

Proof As in the multiplicative case. O

Theorem 4.10 Let Z be a closech—manifold. Furthermore, lIéfl — N — O be a
fiber bundle oh, —oriented manifolds of dimensioms, n ando respectively. Then

EMap(Z, M) — Map(Z,N) — Map(Z, O))[(o, m)]

can be equipped with the structure of a module spectral sequeverE(L"M —
L"N — L"O)[(o,m)] which converges to the module structure log(Map(Z, N)).
Furthermore the induced module structure onEReterm

H*+O(Mamzv 0)1 h*—i—m(MamZv M))

coincides with the module structure described in secion

Proof As in the multiplicative case. O

5 Examples

In this subsection, we will do three different things, inetijand method. First, we
want to widen our knowledge about ordinary homology of freepl spaces to the
case of certain sphere bundles. Secondly, we want to congoute extraordinary
homologies of free loop spaces, for example Landweber e¢ixaoties (e.g., complex
cobordism and complex K-Theory), Morava K-theory and dedrbordism. We will
study the Atiyah—Hirzebruch spectral sequence assoctatsgheres and (complex)
projective space and show that it degenerate€€én To achieve this, we need to
construct first explicit manifold generators for the ordinaomology of the free loop
spaces of the spheres and projective spaces, which mayebestitg in its own right.
At last, we turn our attention to the Goresky—Hingston cdpua.

5.1 The case of sphere bundles

We want to study the homology of the free loop space of cegjlirere bundles. While
the integral homology of free loop spaces is usually hardtapute, there is a more
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efficient tool for the rational homology, namely rationahmatopy theory. Recall that
rational homotopy theory associates functorially to ex@nyply-connected space a
(graded) commutative differential graded algebra (dg&)y &v of the form AV. Here

V is a graded rational vector space akd is the free (graded) commutative dga over
V, i.e. atensor product of polynomial rings for the basis epts ofV of even degree
and exterior algebras for the odd parts. This is callechtiremal modelM(X) of X.
The cohomology ofM(X) = AV is isomorphic to the rational cohnomology Kf(see
Felix, Halperin and Thomas9)]).

In addition, we will need the following two facts of rationamotopy theory:

(1) The vector spac¥ is naturally isomorphic to the dual af,(X; Q) := m.(X)®Q
(see P], Thm 15.11).

(2) The minimal model oL X depends only on the minimal model ¥ This can
be seen by the explicit formulas of VigtPoirrier and Sullivan inZ0].

While the minimal model olLX only gives information about the rational cohomol-
ogy, we want to use rational homotopy theory in combinatidgti the Serre spectral
sequence to do integral computations for the free loop sh&cef a fiber bundle
S¢— E — 9. We use the computation & (S") for n > 1 by Cohen, Jones and Yan
[5I:

H,(LS") = A(a)® Z[u] for n odd,

H.(LS") = A(b)® Z[a,V]/(@,ab, 2av) for neven

with generatorsaa € H_p(LS"), b € H_1(LS"), u € H,_1(LS") andv € Hyn_2(LS").
For this computation, they used the multiplicative speésteguence exhibited ih.3in
the special case of singular homology.

Firstassumé > 1 n > 1 odd. The odd dimensional spheres have only one nontrivial
rational homotopy group, namely(S;Q) = Q. Henceni(E;Q) = 7i(SQ) &
7i(S"; Q) in every degree by the long exact sequence of homotopy grdspwe have
M(E) = A() ® A(%y) with |x| = k and |xy| = n. For dimension reasons, there are
no differentials. Thus we hava1(E) = M(S¢ x ") as differential graded algebras.
We conclude

H.(LE; Q) 2 H,(L(S* x SY); Q).

Consider theE2—term of the Serre spectral sequence associate@te+ LE — LS.
Every occuring group is torsionfree. Therefore, our ralaromputation shows that
the spectral sequence degenerateés?and we have

HL(LE) 2 HL(LS) ® H.(LS") 2 A(&, @) © Z[Ug, Un]
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with |ax| = —k, |an| = —n, |u| = k—1 and|u,| = n—1 (for the grading conventions,
see sectiod). Note that all extension are trivial in the sense that

0O—-F"1 o F" S FYF1 >0

splits since all occuring groups B> are torsionfree. To show that the isomorphism
above holds also multiplicatively, we apply the followingoposition to the Serre
spectral sequence associated k — LN — LO:

Proposition 5.1 Let E be a multiplicative convergent first quadrant spectral se-
quence of modules over a noetherian riRgthat converges multiplicatively to a
graded groupG, and has the grading conventions of the homological Serre-spe
tral sequence. Assume thaf; = EJ5 ®@r EgC and that this is finitely generated
over R in every bidegree. Furthermore, require that all filtratiextensions are
trivial and EJ§ = R[Xo, X1, ... %] ® ARRnt1,Xnt2,...), |X| odd fori > n. Then

G = @p +q—k Epq holds multiplicatively.

Proof Denote the filtration of3q by Fj. As ESy = Fh/Fp~* andFf = Gp, we have
a surjective maf5, — E5 = Ego. Lift the X to X in G,. Since the multiplication
on E>* = FP/FP~1 is induced by that oG, , we have thakx is a lift for Xx. The
groupsEg; act onG, andE* in a compatible way via multiplication. Consider the
map

L: EX —» G,, vy IxN—y. xS,

wherey € E3C. This map is clearly amap of algebras. Itis also clear thasitirjective
onto F®. Assume inductively that it is surjective on&P. The productslIxk with

S kijx| = p+ 1 form aEZ—basis forFP*1/FP and are images df. Therefore, we
see thatl is surjective ontd=P™1 and conclude by induction that it is surjective onto
the whole ofG,. SinceEY = G, additively and both are finitely generated (hence
noetherian)R—modules in every degreg, is an isomorphism (of algebras). Indeed,
identify E2 and G, and consider the ascending chain k&)( n € N. For someN,

we have keid(N) = ker(LN*1). Since everyy € G, is of the form LN(y), we get
Ly=0iff y=0. O

Now we consider the case > 1 odd andn > 2 even. Assume furthermore that
k # n+1 and thanh—1 is no multiple ofk— 1. Even dimensional spher&? have two
non-zero rational homotopy groups, namel(S"; Q) = Q and mn_1(S", Q) = Q.
By the long exact homotopy sequence, we have

m(E Q) = m(S Q) @ m(S'; Q)
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in every degree. So we get
M(E) = AX) @ Z[Xn] @ A(yzan-1)

with x| = K, |Xa| = n and |y2n—1] = 2n — 1. Since the Serre spectral sequence
associated t&& — E — S degenerates &2, we haved(x,) = d(x,) = 0 and
d(y2n_1) must be a non-zero multiple of. Therefore, M(E) is isomorphic to the
minimal modelM(S¢ x S") and hence we have

H.(LE; Q) = H, (LS x LS"; Q).

Consider the Serre spectral sequence associate8tes LE — LS. A differential
di(X) can only be non-zero ifl(x) is torsion. The only torsion elements Hf,(LS")
are theav for j > 1 (see5.2.1for notation). Hence, we have

d(l®ag) =d(louyg) =das®1)=dbge®1l)=dVe®1)=0

for all i > 2 as one sees by an analysis of possible differentials. EPa¢erm of the
Serre spectral sequence is isomorphididLS") ® H, (LS. By multiplicativity, the
spectral sequence degeneratesatBecause filtration issues may come up, we cannot
deduce in this case the concrete structure of the homology.

5.2 Manifold generators

In this subsection, we will exhibit concrete manifold geater for the homology
classes of the free loop spaces of spheres and projecticesp@ur basic source for
the computation of these homology rings is again Cohen,sJand Yan §].

5.2.1 The spheres

In this section, we will present concrete generators fohttraology ofLS" for n > 1.

To achieve this, we consider first the simpler caseQ&". It is well known that
H.(QS") = Z[X] with x € H,_1(22S"), where the product is induced by composing
loops. By adjunction from the identity, we get a map S"! — QxuS—! = O,
This represents a class y,_1(2S"), which is easy to be seen a additive generator.

To visualizex, think of the base point as the north pole. The pojmts S™1 of the
equator parametrize the minimal geodesigsbetween north and south pole. Now
choose a distinguished minimal geodesidrom the south to the north pole (the
"way backwards”). Therp — § x v, definesf: §1 — QS wherex denotes the
concatenation of paths (note that the suspensions abovedareed).
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Now consider the free loop space. We use the same notatiothdogenerators of
homology as in the last section. Sinaes in Hg(LM), it can be represented by an
arbitrary loop, for example a constant loop. By studyingSkere spectral sequence for
OM — LM — M, itcan be shownthgt : H,_1(2M) — H_1(LM) is an isomorphism
(see p]). Therefore,j.(X) is a generator oH_;(LM) and hence up to sign equal o
for n even and taau for n odd.

For identifying the other generators, we begin with theerasase ohh odd Consider
the Gysin morphism
ji't Ho(LSY) — H,_g(QSY).

We want to find a preimage of underj'. This is a fortiori a generator dfl,_1(LS")

and therefore up to sign equalwo Let S" be equipped with the standard metric of the
sphere of circumference 1 ar®T'S be the unit sphere bundle in the tangent bundle
TS'. LetV be a vector field of unit length. We define a miap STS — LS by

exp,(tv) fort < 3
(b (m {exp_p((t— LV(—p)) for t > 1 )

Herep denotes a point ir8" andv is a unit tangent vector tp. By the description of
x above it is clear thaf (F,[STS]) = x.

This construction cannot work far even since in this case we hai,_1(LS") = 0
for n > 2 and the generatobv € H,_1(LS?) maps to zero undej’, because a
representative f) can be chosen with im(ef) = pt. 3

To construct an explicit representative yfwe need an alternative representative of
x2. By our description above we get as a representative:

exp,(2sv) for s < 3
exp_,(2(s— w) for 3 <s< 3
exp(2(s — 3)Vv) for 3 <
exp_,(2(s — )(—w)) for

Vi,Vo) — | S— -
(v1, V) o< 3
3
7<s<1

Herev; and v, are unit tangent vectors at the base pgirand w is a unit tangent
vector at—p. This map is now easy to be seen to be homotopic to

*This gives an eccentric proof for the theorem of the hairy, Ib&lcause the only thing we
used forn odd was the existence of a non-vanishing vector field.
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1) (V1,V2) <s s {epr(SVl) fors< 3 >

exp (5~ H(-w)for <s<1

where —v, denotes the parallel transport wf along any geodesic frorp to —p.
By this description, it is now easy to construct a preimagecotinderj': consider
the pullbackE of the product bundle&STS x STS via the diagonalS" — S' x S'.
Then construcF: E — LS by defining F(p, v1, v») by the formula abovel]. This
is obviously a preimage of?. Sincex? is an additive generator dfl,_»(Q2S") and
Z{v} is the non-torsion part dflz,_», the class[E, F] equalsv up to sign.

By the Chas—Sullivan product, we get now explicit genesatimr every class in
H.(LM). In particular every class iRl (LM) is represented by a manifold.

Remark We could also have used the explicit generators to deducautiglicative
structure ofH,(LM) from the additive structure, without using the compaitipibf the
Chas—Sullivan product with the Serre spectral sequence.

5.2.2 Projective spaces

In [5] the authors show that
H.,(LCP™ = A(w) ® Z[c, u] /(c™, w”, (n + 1)c"u),

where|w| = —1,

c| = —2 and|u| = 2n. By the same methods, one can show
H,(LHP") = A(W) ® Z[c,u]/(c", we, (n + 1)c"u)

with |w| = —1, |c| = —4 and|u|] = 4n+ 2. We will find explicit generators for these
homology classes. In the followingS will stand for one ofC or H andd will be the
R-dimension ofK.

There is a homotopy fibratios¥"tD-1 _ KP" — KP> (see p]). If we loop this,
we get a homotopy sectioff(KP>) — Q(KP"), since the mafRKP> ~ -1
Si+1D-1 js nullhomotopic. Therefore, we get (additively):

H. (QKP") = H,(QS" ™1 @ H,(STh) = Z[y] @ A@2),

wherely| = d(n+ 1) — 2 and|z = d — 1. Here we us€2KP> ~ -1, The above
isomorphism holds also multiplicatively, because the &epectral sequence is here
multiplicative, since the Pontrjagin product is inducedaayiap and the Serre spectral
sequence is natural (note that there are no filtration iSsuemension reasons).
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In this whole section, let the projective spaces be equippttthe metric coming from
the standard metric of the sphere of circumference 1. Thergéorc is represented by
c: KP"! < KP" — LKP". This holds because e¢: KP"! — KP" represents a
generator offl_4(KP").

Letd > 1 andSTS™ -1 pe the unit sphere bundle of the tangent bundigéft -1,
Let E be the quotient of the sphere bundle via the (isometric)omctif ™1 on
Fg(+1)-1_ Clearly, the composit8 TSM+D-1 | F+1)-1 _; | KP" of the generator
u of H,(LS+1-1) and the looped Hopf map factors ovér This mapE — LKP"
is our generatou. To see this, we simply interseatwith QKP" and observe that this
equalsy in the notation above.

For the last generator look &iKP"|,,n-1. This has certainly a nonvanishing section
s by obstruction theory, because than)-th cohomology ofKP"~* vanishes. We can
assume thas(x) has unit length for everx € KP" 1. Let now L be the (trivial)
S*~1-pundle inTKP"|,pn-1 generated bg. Then we define our may': L — LKP"
via

ts expy(3t- 1) fort <
(p,1) — {t . epr(%(l —t)-g(p)) fort > %

If we multiply the represented homology clagé][with ¢, i.e. intersect with &P*
connecting @ € KP"* with expp(%,rs(p)), we get obviously the image of the generator
[f] € He—1(QS) = Hy_1(QKPY) under the mamKP! — QKP" — LKP". The
first is an isomorphism ohlyg_1 because of the description of the homology i P"
above. The latter is also an isomorphism ldn by inspection of the Serre spectral
sequence associated ®tKP" — LKP" — KP" (see p]). Sow is an additive (non-
torsion) generator sincavf]c" ! is. SinceH_1(LKP") = Z, this settlesv’ (modulo
sign) as the generatov described in ).

Remark A similar description inthe cadg = R can be found in the author’s diploma
thesis [L5, section 3.6.2].

5.3 Calculations in generalized homology theories
5.3.1 Complex cobordism and Landweber-exact theories

We define natural transformatiops MSQ,(X) — Hp(X) andv: MURp(X) — Hu(X)
by sending a representing cyclel [f] to f,([M]).
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We have the following well-known proposition:

Proposition 5.2 If X is (homotopy equivalent to) a CW-complex, then its Atiyah—
Hirzebruch spectral sequence (AHSS) fdt) degenerates &2 if and only if
v: MUp(X) — Hp(X) is an epimorphism for ath > 0.

To see the degeneration of the AHSS MU, we have to find stably almost complex
structures on our generators®R.1and5.2.2 The sphereS' is framed and therefore
stably almost complex. Recall, we denoted the sphere sdlbdohthe tangent bundle
by STS. We have thaBTS ¢ STS' @ ¢) = ' x S" has trivial normal bundle. Since
the tangent bundle of' x S is stably trivial, the tangent bundle &TS is stably
trivial, too, and therefore stably almost complex. Thisdivds the case for the sphere.

The manifoldsCP" andCP" x S' are clearly almost complex. It remains to show that
STS"1/s! is stably almost complex, whet® acts via complex multiplication and
its derivative. As in the paragraph above, it suffices to wars(S+1 x 1) /st
where St acts via the diagonal action. Emb&¥t! x M1 into CM1 x C™YL,
This gives an embeddingS+! x 1) /st s (C™L x €M) /C* = CP?™E of
codimension 1. Since the latter is complex and the normatilleus trivial (note that
(1 x g1y /St is simply connected), degeneration is proven.

By localizing atp, we can deduce that the AHSS faM with M a sphere or a
complex projective space degenerateEaslso forBP. It is not difficult to show that
one gets thereby degeneration also for all Landweber-dkacties, i.e. homology
theoriesh, of the form h,(X) = MU.(X) ®mu, hs or hy(X) = BP.(X) ®gp, hs.
This includes, among others, complex K-homology, elliptienology, the Johnson—
Wilson theoriesE(n) and the MoravaE—theoriesE,. Note that the isomorphism
h.(LM) = MU, (LM) ®mu, hs or h,(LM) = BP,(LM) ®gp, h, holds multiplicatively
with respect to the Chas—Sullivan product for iU, — respectivelyBP,—oriented
manifold M.

A further class of homology theories for which we get degatien is provided by
all homology theoriesh with Tor'(H.(LM),h,) = 0 and a natural transformation
MU — h which is surjective on coefficients. Indeed, we get in thiseca map of
Atiyah-Hirzebruch spectral sequencédM, MU) — £(LM, h), which is surjective
on everyE'-term. Furthermore, we get also degeneration for all homyotheoriest’
with h,(X) = h,(X) @n, h, for all X. Examples for such homology theories include
the Morava K-theorie&(n) and K(n) and the spectr&(n) and B(n) for a fixed prime

p where H,(LM) has nop-torsion. The transformationsiU — h are in all these
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examples multiplicative (see, for exampl&],[V.4). Therefore, the Chas—Sullivan
product is in these examples determined by that in\tue-case.

For the odd dimensional spheres, we have in addition thdiitedition extension are
trivial, i.e.

0-F 1SS FY/F™1 50
splits sinceF"/F"~1 is a freeh,—module. Therefore, we have additively
h, (LS = H, (L) ® h,
for all mentioned homology theorids. .
We haveE2(LM, MU)pq = Hp(LM) ® MU, (pt). By 5.1, the above isomorphisms
MU, (L) >~ H, (LS @ MU,
BP, (L) =~ H, (L) BP,

hold now also multiplicatively. Thereby, we can concludeaaalogous isomorphism
for all mentioned homology theories.

In the light of the physical interest in equivariant inderahy on the free loop space,
it would be exciting to extend these calculations to $hezquivariant K-theory of free
loop spaces.

5.3.2 Oriented Bordism
In analogy t056.3.1, Conner and Floyd show:

Proposition 5.3 ([7], 15.1) If X is (homotopy equivalent to) a CW-complex, then
the Atiyah—Hirzebruch spectral sequence for orientedibordegenerates & if and
only if u: MSQ,(X) — Hn(X) is surjective for allh > 0.

As we have described concrete manifold generatobsZriand5.2.2 we get degener-
ation for free loop spaces of spheres and (complex and ou@ér) projective spaces.
But we can prove even more in some cases:

Theorem 5.4 ([7], 15.2) If X is (homotopy equivalent to) a CW-complex for which
eachH(X) ist finitely generated and has no odd torsion, then

MSQ,(X) = @ Hp(X; MSQy)

p-+g=n
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We can apply this theorem to these free loop spaces of spaiedasomplex or quater-
nionic projective spaces which have no odd torsion in hogld herefore, we have
additive isomorphisms

1

H..(LS*; MSQ.(pt))

H.(LS*1) @ MSO.(pt)
H..(LCP?~1; MSQ. (pt))
H.(LHIP* ~1; MSQ.(pt)

MSO,(LSX)
MSQ. (LS
MSO.(CP?-Y)
MSQ.(HP? 1)

11l

[12

Sadly enoughMSQ. is not torsionfree, but has also 2—torsion (a complete dwier
nation can be found ir2[l]). Therefore, we can deduce only that these isomorphisms
hold also for the multiplicative structure if we localizeat odd prime, except in the
case of odd-dimensional spheres, where the above isorsargtolds multiplicatively

for all primes.

5.4 Computation of Coproducts

The aim of this section is to use explicit generators for thenblogy of QS" to
compute the Goresky-Hingston loop coproduct for the basef space and deduce
via a Serre spectral sequence argument from this the comdsy coproduct structure

on the homology of.S'. More general computations by other methods with somewhat
weaker results were already done 19, 13.9.

We have to replace the generatorsf(2S") = Z[x] in 5.2.1by a certain pertubation
to ensure transversality. More precisely, we choose a g#iah the equator which
does not lie on the "way backwardsy as the new base point and conjugate the
generator presented ;2.1by the shortest geodesic frof to the north pole. We
want to compute the coproduct ®f, represented by the mag'( 1)k — QS which

is the k-th power of the map just described. Precomposing wWitlwe get a map
(S kx| — QS", where we call the second variable treight Outside the boundary,

1
this intersect€2S' x QS transversally at the heighﬁ'{si—i for1 =0,...,k—1 with

2
level sets § 1) x (SHk1-1 5 O x QF", representingd x x*~'=1. Therefore,
the Goresky—Hingston coproduct &h.(2S", {P}) (which is here well-defined even
for integer coefficients) is given by the formula

k—2

Ten() = le & -1,
I=1
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The coproduct ol (S") = A(a) isgiven byA(l) = 1® a+a® 1 andA(a) = a® a.
The coproduct structure on tHe?-term of the Serre spectral sequence 8" —
LS' — S is just the tensor product of the two coproduct structurdse H>®-term is
isomorphic toE? for n odd and carries the subquotient coproduct structure f@ren
for every field coefficients. Filtration issues do not ocaur,this gives the coproduct
structure forLS'. Note that theE*>°-term doesot inherit a coproduct structure far
even if we chooséteger coefficients.
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