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Abstract

In recent years, the use of integrative, information-driven computational approaches for modeling the structure
of biomolecules has been increasing in popularity. These are now recognized as a crucial complement to
experimental structural biology techniques such as X-ray crystallography, nuclear magnetic resonance (NMR)
spectroscopy and cryo-electron microscopy (cryo-EM). This trend can be credited to a few reasons such as
the increased prominence of structures solved by cryo-EM, the improvements in proteomics approaches such
as cross-linking mass spectrometry (XL-MS), the drive to study systems of higher complexity in their native
state, and the maturation of many computational techniques combined with the widespread availability of
information-driven integrative modeling platforms.
In this review, we highlight recent works that exemplify how the use of integrative and/or information-driven

approaches and platforms can produce highly accurate structural models. These examples include systems
which present many challenges when studied with traditional structural biology techniques such as flexible
and dynamic macromolecular assemblies and membrane-associated complexes.
We also identify some key areas of interest for information-driven, integrative modeling and discuss how

they relate to ongoing challenges in the fields of computational structural biology. These include the use of
coarse-grained force fields for biomolecular simulationsdallowing for simulations across longer (time-) and
bigger (size-dimension) scalesdthe use of bioinformatics predictions to drive sampling and/or scoring in
docking such as those derived from coevolution analysis and finally the study of membrane and membrane-
associated protein complexes.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Introduction

Biological macromolecules such as proteins and
nucleic acids make up the majority of the machinery
of life since they are responsible for performing most
cellular functions. Although a lot of meaningful
insights about these functions can be deduced by
experimental work that falls under the umbrella of
functional assays, these kinds of experiments (e.g.,
yeast two-hybrid assays) usually fail to reveal any
direct information regarding the structure of the
biomolecules involved in a given process. True
understanding of the mechanism of action that
underlies any cellular function can however only be
gained by resolving at atomic detail the molecular
uthor(s). Published by Elsevier Ltd. This
ses/by/4.0/).
structures of the components and assemblies
involved, allowing us a glimpse at the molecular
mechanisms at play [1].
Historically, the two main techniques used for

experimental structure determination of biomole-
cules have been X-ray crystallography and nuclear
magnetic resonance (NMR) spectroscopy [2]. More
recently, cryo-electron microscopy (cryo-EM) has
been added to the arsenal of structural biologists and
has now overtaken NMR as the second most
popular technique for obtaining molecular structures
with 846 vs 395 models deposited in the PDB during
2018 for cryo-EM and NMR, respectively, although
both are still lagging far behind X-ray crystallography
(>10000 models deposited in 2018).
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All three techniques have unique advantages and
disadvantages that make them suitable for specific
applications, with X-ray crystallography still being
the method of choice for systems which do not
contain flexible or disordered regions. On the
opposite end, NMR can still capture valuable
information about flexible systems as well as
characterize dynamics under conditions that can
be considered native-like. Solution-state NMR has,
however, size limitations which only make it applic-
able for rather small systems when it comes to
solving 3D structures. It does, however, allow
to answer specific questions, in particular, related
to the dynamics of large systems such as nucleo-
somes [3e7], proteasomes [8e12], mRNA signaling
machinery [13e16], as well as systems with high
clinical significance such as kinase and chaperone
complexes [17e19], for which NMR has a long and
well-documented history of serving as the primary
data source driving the simulations [20]. Although
solid-state NMR [21,22] does not suffer from size
limitations, it still has difficulty in yielding atomic
resolutionequality spatial information, especially 3D
structures, despite recent methodological advance-
ments in specific fields [23e25]. Cryo-EM is increas-
ingly becoming one of the most popular ways of
determining the structure of biomolecules and most
importantly large complexes and macromolecular
assemblies. However, it cannot yet routinely pro-
duce structural models of atomic resolution, the level
of detail which is required to understand molecular
mechanisms in depth, as can be seen from the
recent statistics of the Electron Microscopy Data
Resource (EMDataResourcedhttps:/ /www.
emdataresource.org/statistics.html) and those of
the European Bioinformatics Institute (EBIdhttps://
www.ebi.ac.uk/pdbe/emdb/statistics_num_res.html/).
The field is still undergoing rapid transformations
reflecting its nascent state, with the absence of well-
defined standard practices and ongoing instrumen-
tation and software optimizations being highlighted
as potential points of improvement that should lead
to higher quality structures being made available
through cryo-EM in the coming years [26]. The
Electron Microscopy Data Bank (EMDB) [27] has
recently sponsored two blind challenges whose
stated goals were to emphasize the need for map
and model validation standards and engage with the
cryo-EM community toward the shared development
of assessment benchmarks and best practices [28].
A careful reading of the relative strengths and

weaknesses of the three techniques mentioned in
the previous paragraph reveals an ideal use case for
computational structural modeling which relies on
the use of high-quality structural models solved with
X-ray crystallography or NMR spectroscopy, for
determining the finer structural details of interacting
biomolecules, combined with the use of cryo-EM
density maps for determining the overall topology
and stoichiometry of the wider context of the
complex. Indeed, we believe that the revolution
cryo-EM ushered in the field of structural biology a
few years ago is only going to lead to an increased
demand for computational techniques that not only
can make use of the data that are being made
available through cryo-EM studies but also combine
those with other types of data available through other
techniques, to generate structural models that would
normally be beyond the reach of any of those
techniques taken on their own.
An additional reason necessitating the use of

integrative approaches is the need to study biologi-
cal systems in their proper context, not only as
single-structures but also as macromolecular
assemblies and high-order complexes as this is
seen as a stepping-stone toward realizing a struc-
tural model of the cell in atomic or near atomic detail
[29,30]. A complicating factor is that, to achieve this
goal, experimental data measured under as close as
possible physiological conditions need to be cap-
tured, once again requiring robust integrative mod-
eling frameworks and protocols to unify the various
sources of experimental information in cohesive
structural models.
In addition to the three aforementioned structure

determination techniques, a plethora of complimen-
tary techniques is available that can provide some
pieces of the puzzle for the biological systems under
study. Prime examples are cross-linking mass
spectrometry (XL-MS) and small-angle X-ray scat-
tering (SAXS). XL-MS can be used to determine
distances between specific residues of biomolecular
complexes that can then be used in modeling
because they allow for an upper distance bound
between the residues they are targeting. Variations
of the technique also enable the study of dynamics of
complex populations in native-like conditions or even
within living cells. SAXS, on the other hand, is the
solution equivalent of X-ray crystallography and can
provide low-resolution shape information about
complexes in solution and, similarly to XL-MS, can
also yield information regarding dynamic popula-
tions. Both of these techniques, along with the
previously mentioned ones, will be discussed in
detail in the next section.
Next to experimental methods, computational and

bioinformatics approaches such as coevolution
analyses can be used to identify residues at protein
interfaces which evolve in tandem, allowing to use
those residue pairs in integrative modeling directly in
the simulation or during the scoring stage. Additional
developments, such as the availability of coarse-
grained force fields, allow for simulations across
longer (time) and bigger (size) scales, enabling
multiscale studies from the quantum to various
levels of coarse-grained representations. These
pave the way for continuous and mesoscale studies
of biomolecular systems. Some docking codes now
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also support modeling of membrane complexes with
specially adapted implicit potentials. All these
developments mean that systems of increasing
complexity and high relevance can now be studied
within reasonable computational costs.
Integrative and Information-driven
Modeling

We have so far mentioned integrative and informa-
tion-driven modeling without explicitly defining what
constitutes such a modeling approach and distin-
guishes it from de novo or first-principles modeling.
The main emphasis of this mini-review is on the use
of biomolecular docking for modeling the 3D
structure of biomolecular protein-protein complexes
with a special focus at the end on membrane protein
complexes. We concentrate on integrative methods
that use some kind of information (typically a
combination of various experimental and/or bioinfor-
matics sources) to drive the modeling process,
excluding the so-called template-based approaches
that fall more under the umbrella of homology
modeling.
Molecular docking refers to a set of techniques

that allows us to predict the 3D structure of a
biomolecular complex via simulation when starting
from the 3D structures of its unbound (free)
components [31]. Unlike de novo modeling, infor-
mation-driven modeling centers on the concept of
using experimentally determined (or predicted) data
to guide the modeling process in the hope of
sampling or selecting only the meaningful part of
the conformational, interaction landscape of the
complex. It thus bypasses the need to exhaustively
sample the vast conformational space, which would
cover a 6D space for a binary complex consisting of
rigid molecules. Its complexity will, however, greatly
increase when considering flexibility and/or model-
ing a larger number of subunits. Integrative model-
ing refers thus to the use of some docking protocol
that combines multiple sources of information (e.g.,
cryo-EM density map and XL-MSederived distance
restraints) to generate a 3D model of the assembly
under study [32,33].
Docking has existed as a standalone field for

close to 40 years [34,35] and is one of the main two
computational methods which allows us to study
the 3D structure of interacting biomolecules, the
other being atomistic binding simulations based,
for example, on molecular dynamics (MD) simula-
tions [36,37]. Docking has seen a wide range of
applications from structure-based drug design [38]
to protein-protein interaction studies [39,40] and
network biology [41,42]. Unlike atomistic simula-
tions, the computational requirements of docking
can be met quite easily [36], which allows us to
generate models at a fraction of the time of what
would be required by MD. Similar to MD and other
biomolecular simulation approaches though, two
factors govern its performance: Sampling and
scoring. Simply put, sampling refers to the process
that is used to generate the binding poses from the
unbound conformations. Scoring, on the other
hand, is the process which allows us to discrimi-
nate between gooddor native-likedand baddor
nonenative-likedmodels. In the context of inte-
grative modeling, the information at hand can be
used to guide the simulation toward specific con-
formations, thus affecting the way the sampling is
performed, as a filter to select or discard models
based on their agreement with the experimental
data, thus affecting the way the scoring is
performed, or both.
A detailed overview of the challenges of the

various types of docking depending on the nature
of the interacting biomolecules such as protein-
protein [1,43], proteinenucleic acid [44e46], pro-
teinesmall molecule [47,48] and protein-peptide [49]
is beyond the scope of this mini-review as are the
intricate details of the algorithms used by various
docking programs to achieve good sampling and
scoring performance. The latter is something that
has been continuously evaluated over a period
spanning almost 20 years in CAPRI (Critical
Assessment of PRediction of Interactions) [50]d
the blind docking experiment [51e55]. Recent
CAPRI evaluations clearly demonstrate that the
best strategy to model complexes is to follow a
template-based approach when homologous com-
plexes or interfaces can be identified from the PDB
database [56,57]. Among the various docking soft-
ware, several are supporting the use of data directly
during sampling, such as HADDOCK (High Ambi-
guity Driven DOCKing) [58,59], the pioneer of
information-driven docking, together with other
widely used codes such as ATTRACT [60e63],
Hex [64,65], IMP [66,67], LightDock [68,69], and
ROSETTA [70,71]. In general, most docking codes
under active development have added support for
the use of information either to drive the simulation
or, more commonly, as a way to filter the generated
models [1].
The next section is going to focus on the various

types of experimental information that can be used
by integrative modeling frameworks.
Information Sources for Integrative
Modeling

Of course, integrative modeling entirely depends
on the availability of data to drive the simulation. In
this section, we will expand on some of the most
widely used types of information that can be used in
an integrative capacity starting from simple experi-
mental setups which do not require extensive
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expertise or instrumentation before proceeding to
more complicated ones.
The most commonly used approaches are those

that yield residue-level information. This kind of data
can be obtained from mutagenesis, cross-linkingd
providing upper limits to the distance between the
cross-linked residues, hydrogen-deuterium
exchange (HDX), and NMR spectroscopy experi-
ments. The next set of techniques can yield anything
from low-resolution information to high-resolution
structural models of macromolecular assemblies;
Cryo-EM and SAXS belong to this category. Finally,
computational techniques such as multiple
sequence alignments, coevolution analysis, and
metagenomics sequencing can yield high-quality
information and interfacial and interacting residues.

Mutagenesis

Mutagenesis experiments [72e75] rest on the
hypothesis that mutation of residues that are
functionally important for complex formation will
prevent the biomolecules (proteins specifically in
this case) from interacting with each other and
thus the complex from being formed (Fig. 1, panel
A.1). It has been used to map the interfaces or
binding sites of interacting proteins [76e78]. The
benefits of mutagenesis experiments are the
relative ease with which the experiment can be
performed, with a large variety of detection
methods possible, and the fact that it provides
residue-level information which constitutes high-
quality data that can significantly aid the modeling
process compared with assays which can only
provide qualitative information with regard to
whether two biomolecules are interacting or not.
The main downside is that, owing to the indirect
nature of the experiment, it needs to be combined
with functional and folding assays to ensure that
lack of complex formation is a result of the
mutation that was introduced and not of the
Fig. 1. Schematic representation of some of the experime
Panel A shows methods which can be used to map interf
experimental setup for a mutagenesis experiment combined
the interface of the two proteins prevent complex formation. Mu
experimental setup for an HDX experiment during which the exc
complex are compared to detect the regions which are occlude
protons. Panel B shows methods which can be used to calcul
which has undergone cross-linking with the intermolecular
intramolecular ones as dotted gray lines. Panel B.2 shows a
specific residues allowing us to calculate the distance betwee
fluorophores are shown as purple and green circles, respectiv
been attached enabling calculation of intermolecular distance
purple radicals. Panel C shows shape-based methods. The free
information about the complex structure which can be derive
representation of the complex was generated with PyMOL [2
ChimeraX [241]. The complex shown is the Ubiquitin-UBA dom
is colored orange and UBA light blue.
incorrect folding of one of the partners. Another
complicating factor is allosteric effects, which can
be very challenging to detect. Recent improve-
ments to existing high-throughput mutagenesis
pipelines which minimize experimental errors
should enable the rapid creation of mutant
libraries, which, in turn, will allow quick screening
of hundreds of mutations [79,80]. Despite these
advancements and the benefits conveyed in
targeted mutagenesis as demonstrated for exam-
ple in the CRISPR/CAS9 system [81,82], we do
not expect mutagenesis data to become a
dominant part of integrative modeling protocols. It
will however remain a valuable source of informa-
tion, even more these days where next-generation
sequencing has boosted the amount of genomic
information available, including the identification of
disease-related mutations.

Hydrogen-deuterium exchange

HDX is based on the principle of constant
exchange of protons between biomolecules and
water in which they are dissolved. In a typical HDX
experiment (Fig. 1, panel A.2), the solvent (H2O) is
exchanged for D2O, which means that the
exchangeable protons of the protein (e.g., the
backbone amide pro tons) w i l ldat some
pointdexchange their proton for deuterium. The
rate at which this exchange event takes place is
determined by the stability of the hydrogen bond
network the proton is part of, its solvent accessibility,
and the chemical characteristics of the residue it
belongs to as well as those in its immediate vicinity
[83]. Time-resolved measurements of these
exchange events allow us to calculate the so-called
protection factors for every exchanging amide [84],
which in turn can be used to map protein-protein
interfaces. These protection factors need to be
determined separately for the unbound monomers
and the complex. Owing to the properties of
ntal methods which can be used in integrative modeling.
aces of interacting biomolecules. Panel A.1 shows the
with a binding assay. Mutations of residues which lie at
tated sites are shown as purple stars. Panel A.2 shows the
hange rates for both the free forms of the proteins and their
d at the interface of the complex due to slower exchanging
ate residue-based distances. Panel B.1 shows a complex
cross-links shown as continuous black lines and the

complex to which fluorophore dyes have been attached at
n the target residues with FRET. The donor and acceptor
ely. Panel B.3 shows a complex to which spin labels have
s with DEER spectroscopy. The labels are as shown as
structures of the complex are combined with shape-based
d from cryo-EM densities or SAXS shapes. The surface
40]. All molecular graphics structures were created with
ain from Cbl-b ubiquitin ligase (PDB entry 2oob). Ubiquitin
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deuterium, detection can be performed with either
NMR ordmuchmore commonlydmass spectrometry
(MS). An important point regarding the mapped
regions when MS is the detection method is that,
owing to the nature of the technique, it is not
individual residues that are identified but peptide
fragments whose length usually ranges between 5
and 10 residues complicating somewhat the way
they can be used during computational modeling.
Benefiting from methodological improvements in
liquid chromatography (LC) and MS, along with
major progress in analysis software, HDX is increas-
ing in popularity, also aided by the relatively simple
experimental setup it requires [85]. The nature of
HDX experiments means these can be applied
broadly for the study of any biomolecule with
exchangeable protons. Although HDX data are not
used as often in integrative modeling of complexes,
we expect that situation to change in the coming
years. Of particular note is the fact that the HDX
community, in anticipation of this increased interest
in the field, has taken steps to codify practices
ranging from sample preparation, measurement,
and data analysis to publication and dissemination
of data in standardized formats [85]. These efforts
are of particular importance as they allow easier
Fig. 2. Structural models determined with integrative appr
complex bound to UbcH5c and RNF168-RING domain. The m
spatial restraints (CSPs) in combination with mutagenesis and X
the histones in blue, and the UbcH5c and RNF168-RING dom
peptide bound to its G-proteinecoupled receptor (GHSR) (PDB
using NMR-derived spatial restraints (CSPs) and mutagenesis
with some clipping to enable visualization of the binding pocket
David Goodsell. Only the top model from each submission is
integration in modeling paradigms which combine
multiple experimental sources of information [86].

Chemical cross-linking

Chemical cross-linking, most often combined with
mass spectrometry for detection purposesdXL-
MSdrefers to the chemical linking of residues
(most often lysine or cysteine) which are located
on the surface of proteins using compounds which
consist of two reactive heads and a (flexible) spacer
of known maximal length [87,88]. After the cross-
linking reagent has been added to the protein/cell
sample and the sample has been washed, it is
subjected to trypsination (or treatment with another
protease) and the peptide fragments are detected
via mass spectrometry [89] (Fig. 2, panel B.1). The
benefit of XL-MS when compared to mutagenesis or
HDX experiments is that the residue information is
not ambiguous as it always comes in pairs (unless
there are two lysines within the detected peptide
fragment) and, in addition to the residues them-
selves, it provides information regarding their dis-
tance as the maximal spacer distance is known a
priori. Recent improvements in cross-linking proto-
cols and reagents along with widespread availability
oaches. Panel A shows a rendering of the nucleosome
odel was determined with HADDOCK using NMR-derived
L-MS data (PDB-dev entry 29). The DNA is shown in gray,
ain in orange. Panel B shows a rendering of the ghrelin
-dev entry 24). The model was determined with ROSETTA
data. GHSR is colored orange with the peptide in light blue
. Both models are illustrated with the program “illustrate” by
shown.
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of proteomics facilities as well as the high-throughput
nature of modern MS should also be counted among
the benefits of XL-MS. All these allow for rapid and
semiautomated retrieval of the distance profiles after
sample preparation is complete [90]. Additional
advancements have been made in spectral analysis
and database search algorithms [91e93] generating
high-quality, quantitative XL-MS data which can be
used to monitor the structure and dynamics of
macromolecules and their assemblies in solution
[94e96]. The wide variety of residues and chemical
types which can be targeted for cross-linking
ensures the wide applicability of the technique.
Additionally, the combination of spacers of different
lengths can provide distance information across
varying scales, allowing us to capture data about
both short and longer distances all of which can be
used during the modeling process. Impressively,
these experiments can be performed in intact cells or
intact cell compartments, allowing us to extract
information about the native state of the system
under study [97e99]. Two major challenges of using
cross-link data in docking are the fact that the cross-
links captured might reflect multiple conformational
states of the complex or assembly under study, the
inherent difficulty of distinguishing between intra-
and intermolecular cross-linksdor cross-links
between two residues of the same protein and
residues of different proteins when dealing with
symmetrical systems, and the high reactivity of the
reagents which can capture nonnative, encounter
complexes. Despite these, we expect XL-MS to
further develop in the coming years, and XL-
MSederived distance restraints to become increas-
ingly prevalent in integrative modeling as integrative
modeling software also develops ways of dealing
with these shortcomings in a consistent way. Similar
to the HDX community, multiple leading MS groups
have decided to establish community guidelines
regarding best practises in sample preparation,
measurement, data analysis, model validation, and
result reporting [100e103]. Development of software
which can automatically group cross-links into the
conformational states to which they correspond and
identify potential false positives would be a valuable
addition. This would allow docking software which
can make use of distance restraints to determine
different structural models for the different states
more closely reflecting the behavior of the system
under study in solution. The DisVis standalone
program and web server [104,105] can already
perform the task of identifying potential false
positives through enumeration of violations of
distance restraints after exhaustive rotational and
translational sampling, and developments to allow
clustering of distinct distances into conformational
states are already under way.
Nuclear magnetic resonance spectroscopy

Until fairly recently, NMR spectroscopy was one
of the two ways (the other way of course being X-
ray crystallography) of obtaining high-resolution
structures of biomolecules. Its application to com-
plexes was limited as solution-state NMR cannot
routinely deal with complexes whose size is
greater than 40 kDa [106]. The most easily
obtainable measurements for macromolecular
complexes are chemical shift perturbations
(CSPs) which allow for the mapping of the
interacting regions of biomolecules [107] at the
residue/atomic level. In addition to CSPs, addi-
tional restraints can be recorded from NMR
experiments such as, for example, intermolecular
NOEs, residual dipolar couplings (RDCs), and
relaxation anisotropy [108,109] which reveal
details regarding the relative orientation of two
interacting biomolecules. Paramagnetic probes
[110] can be used to provide additional information
to standard NMR experiments in the form of long-
distance atomic information [111], to probe inter-
acting surfaces of biomolecules [112,113] and
study dynamics [114]. Unlike solution NMR, solid-
state NMR (ssNMR) [115,116] has no theoretical
limitations on the size of the systems which can be
studied; however, obtaining atomic-resolution
structures can be complicated because of the
spectral complexity [117,118]. More recently,
ssNMR has been applied successfully for the
study of transmembrane systems ranging from
the KcsA ion channel [25,119] to small pepti-
deebased antibiotics which interfere with the lipid-
II cycle [24]. Of course, the application of
NMRdwhether in solid or solution statedto small
and flexible systems such as peptides is not new
even when considering membrane-embedded pep-
tides [120,121]. One of the recent developments in
the field of NMR has been the ability to study
molecules in cells allowing for qualitative compar-
isons between native and nonnative species or
analysis of conformational heterogeneity across
different cell types [122e125]. A limiting factor of
NMR is the often costly procedure of preparing
samples for NMR as well as the relative difficulty in
analyzing and interpreting the experimental mea-
surements. In light of these observations, we
expect NMR to continue to factor significantly in
integrative modeling over the coming years mainly
owing to the undeniable benefit and unique ability
of NMR of being able to study dynamics at atomic
resolution in real time across different time scales.
This is particularly attractive when compared with
techniques such as XL-MS which can only
estimate dynamics as a result of conformational
heterogeneity observed in the distance profiles.
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Cryo-electron microscopy

The techniques which fall under the umbrella of
cryo-EM have been revolutionizing structural and
integrative biology for a few years now. This is for
the most part due to advancements in detector
technology, automation, and software [126,127].
Cryo-EMederived structures can now match or even
surpass structures of the same system obtained with
X-ray crystallography [128]. This is also reflected in the
number of near atomic-resolution structures deposited
in the EMDB [129] with a third of the structures
deposited in 2018 having a resolution of 4 Å or better
(https://www.emdataresource.org)da trend which
further improved in 2019. Single particle analysis
(SPA) constitutes the overwhelming majority of cryo-
EM experiments undertaken in recent years [128]. The
typical cryo-EMSPA experiment constitutes of loading
an aqueous solution containing the biological sample
on a grid mesh, blotting to remove excess solution and
to form a thin layer, and covering it with a thin carbon
film after which the sample-loaded grid is plunge
frozen. The particles are then imaged with an electron
beam using sufficiently low doses to prevent radiation
damage. Many 2D images are collected, aligned, and
then used to computationally reconstruct the molecule
in 3D [130,131]. When the resolution is not sufficient to
determine the molecular structure at atomic or near-
atomic resolution, various rigid or flexible fitting
protocols can be used to fit existing structural models
of the components of the assembly into the EM-
derived map [132e135]. In the time period preceding
the resolution revolution, these inherently integrative
protocols were the most common way of generating
structural models with cryo-EM (Fig. 1, panel C). More
recently, popular codes such as ATTRACT, IMP
(which supported cryo-EM data from day 1), HAD-
DOCK, and ROSETTA have added support for cryo-
EMederived density maps during the modeling
process [61,67,105,136e139].
However, the ever-increasing performance gains

in terms of resolution for structures solved with cryo-
EM pose some interesting questions for the field of
integrative modeling, specifically is there a place for
integrative approaches in an era where atomic
resolution models for a wide variety of systems and
molecular weights can routinely be obtained with
cryo-EM data alone? We believe the answer is yes,
for multiple reasons. First and most importantly,
methodological limitations make it difficult to study
small and/or flexible systems with cryo-EM. Some
recently solved structures show, however, promising
results in that direction [140,141] even potentially
allowing us to study interactions between drugs and
proteins [142]. Secondly, even in the cases where a
high-resolution model has been obtained, the
resolution distribution might not be uniform with
some parts of the molecule having lower resolution
than others. This nonuniformity can arise as a result
of structural heterogeneity, nonisotropic distribution
of sampled orientations, or even processing arte-
facts. Some groups have already suggested alter-
native ways of measuring resolution that take into
account significant local variations from the reported
mean value [143,144]. Sample structural heteroge-
neity is usually considered a limiting factor for cryo-
EM as it makes the averaging of aligned images
more difficult and results in lower-resolution models.
Whereas most cryo-EM sample preparation proto-
cols emphasize the importance of structural homo-
geneity to be able to generate high-resolution
models, some recently described approaches
embrace the importance of structural heterogeneity
as an inherent property of dynamic systems such as
biological samples, allowing for identification of
distinct conformational states [145e147]. It is
expected that identification of these distinct states
will allow to simultaneously estimate the conforma-
tional landscape and thermodynamic behavior of the
system. Such results would be very desirable when
attempting to describe the intermediate states of a
cellular process or when studying systems for which
high structural variability is expected [148].
We conclude that despite the impressive

advances made recently in the field of cryo-EM, we
expect the importance of integrative approaches in
the context of cryo-EM to increase. Integrative
modeling might be used either as a way to validate
the structural models, as a way to aid the modeling
process for systems which are difficult to study with
cryo-EM alone, or to model parts of the cryo-EM
maps that might not reach sufficient resolution for de
novo structure determination. The modeling of such
systems from cryo-EM data can significantly benefit
from the inclusion of additional data (e.g., from XL-
MS or NMR [149,150]). The importance of integra-
tive approaches can also be seen by recent studies
which favorably compare integrative models with
high-resolution structures of the same complexes
made available years later by cryo-EM [33]. In light of
these observations, we expect cryo-EM to play a
prominentdif not dominantdrole in many aspects of
integrative modeling in the forthcoming years.

Small-angle X-ray scattering

Biological SAXS is the solution equivalent to X-ray
crystallography. It is another field which has been
undergoing a renaissance in recent years with more
improvements expected in the next few years [151].
In a basic SAXS experiment, a macromolecular
solution is bombarded with X-ray beams and the
scattering pattern is recorded by a detector placed in
close proximity to the sample. The most basic
information that can be extracted from the measure-
ment is the scattering curve which is extracted from
the distance profile between all sample atoms which
can in turn be used to construct a low-resolution

https://www.emdataresource.org
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shape or envelope of the system under study [152].
The potential for SAXS data to be useful in
integrative studies was realized early [153] with
protocols resembling those that are used for fitting X-
raye or NMR-derived structural models into med-
ium- to low-resolution EM density maps where the
unbound structures of the components of the
complex were docked against each other and
the shape of the resulting complex was scored
against the SAXS-calculated shape [154,155] or
directly against the scattering curve [151,156e162].
More recently, protocols that can make use of
the shape information to guide the docking
toward conformations that agree with the SAXS
shape have been described [163] (Fig. 1, panel C).
The maturity of SAXS protocols, the standardization
of guidelines for publishing SAXS data, the relative
ease with which samples can be prepared, the
automated manner of data acquisition and analysis,
as well as the high-throughput nature of BIO SAXS
are some of the factors which make SAXS a very
attractive option for probing macromolecular inter-
actions under solution conditions without a size
limitation, but sample purity and homogeneity are
important aspects to be able to derive reliable
structural data [164]. In addition to calculating low-
resolution shapes of macromolecular complexes,
SAXS can be used to qualitatively and quantitatively
compare samples, probe conformational differ-
ences, assembly states, folding status, and, in
some cases, even refine flexible, low-resolution
regions of structures determined with X-ray crystal-
lography [152]. All these factors combine to paint a
very favorable picture of SAXS in its current and
future states. The ability to probe dynamics in
solution without size limitations while at the same
time deriving shape-based restraints which can
either be used to restrain the sampling of docking
simulations or filter out nonenative-like solutions
when scoring generated models are counted among
its greatest strengths. We only expect the contribu-
tion of SAXS in the field of integrative modeling to
further proliferate.

Other experimental sources of information

In addition to the experimental methods that have
already been mentioned, structural biologists have
access to a plethora of other methods giving various
levels of experimental information about the interact-
ing biomolecules. Covering all of these techniques as
well as the ways in which the data that can be derived
from them for use in integrative modeling is beyond
the scope of this review. We will mention though two
techniques standing out because of their high
importance for the field of modeling, both of which
can provide distance information between residues of
the interacting biomolecules. The first is F€orster
Energy Resonance Transfer (FRET). It allows to
detect the energy transfer between donor and
acceptor fluorophores allowing for the calculation of
long-range distances between those parts [165]
(Fig. 1, panel B.2). It does, however, require covalent
attachment of dyes to specific parts of the molecules.
FRET data have been used successfully in integrative
modeling efforts either alone or in combination with
data from other sources to determine the structure of
biomolecular complexes and study their dynamics
[166e170]. Similarly to FRET, the double electron-
electron resonance technique (DEER) is a spectro-
scopic approach which enables the calculation of
long-distances between interacting spin labels that
have been attached to specific residues (most
commonly cysteines) [171,172] (Fig. 1, panel B.3). It
has been applied widely to study systems of varying
sizes and composition including small protein-protein
complexes to large molecular machines and RNA-
containing complexes [173e176].

Bioinformatics and computational approaches

Perhaps, some of the most interesting advance-
ments in the field of integrative modeling in recent
years originate from bioinformatics and computa-
tional techniques which, on their own, cannot be
classified as integrative but whose output can be
combined in integrative modeling frameworks just
similar to experimental data. In this section, we are
only going to provide a succinct overview of recent
developments in the field, emphasizing three areas:
The coming of age of coevolution, the appearance of
membrane-specific modeling tools, and the use of
coarse-graining approaches.
Coevolution

Coevolution rests on the observation that some-
times mutations at specific positions in a protein
sequence correlate with mutations at other positions
of the same or interacting proteins, the hypothesis
being that if such residues “coevolve,” they might be
in spatial proximity. When a mutation is introduced in
one of the interacting pairs, a compensatory mutation
arises in the other because of evolutionary pressure
relating to functional or conformational importance of
that residue pair [177]. This information can be used in
the structure determination of proteins [178] but most
importantly for integrative modeling purposes. The
concept can be quite easily extended to protein
residues which belong to different proteins forming a
complex or being part of a larger molecular assembly
[179]. Methods such as EVcomplex, GREMLIN
[180,181], and InterEvDock [182] have been applied
successfully in docking simulations [183e185]. Of
particular note is the recent development of Inter-
EvDock2, a free and fully automated web server
which allows the user to input sequences instead of
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structures, submit multimeric next to monomeric
components, and automatically derive coevolution-
based restraints to use for scoring the models
generated during the simulation [186]. The use of
coevolution-based data does not stop with protein
folding and determination of soluble protein-protein
interfaces though. More recently, it has been used to
determine transmembrane protein interaction sites
[187,188], identify new protein-protein interaction
networks [189], and novel protein contact maps
making use of metagenomics data [190]. The robust
state of the coevolution community in combination
with the intuitive nature of the output data makes us
confident that the use of coevolution-derived spatial
restraints is only going to become more prevalent in
the near future. One potential limiting factor for the use
of coevolution-based restraints for docking is the need
for extensive and diverse sequencing data to get
deep enough alignments, although deep learning
methods are becoming more robust with respect to
the alignment depth [191]. This limitation can, for
example, hamper their applicability for the study of
mammalian systems, for which sequencing data are
not as exhaustive compared with those of bacteria
and yeast.

Membrane modeling

Another field which has attracted attention recently
and has seen many developments is membrane
protein modeling. It is traditionally considered as one
of the most difficult kinds of systems to study with
experimental structural biology methods because of
the nature of the lipid bilayer which requires that,
either it is dissolved with detergents and
reconstituted or that native or native-like membrane
mimetics are used. The former is easier and has
been used with success for X-ray and NMR but
raises questions about the effect the detergent has
on the 3D structure. The use of native or native-like
membrane mimetics is much closer to physiological
conditions, which means that any structure deter-
mined this way should be closer to its counterpart in
the cellular environment, but this introduces many
challenges in sample preparation and measure-
ments. A relatively recent advancement enabling
studies of membrane proteins and their complexes
in native-like and even native environments is the
advent of styreneemaleic acid (SMA) copolymers
which can be used in combination with synthetic
liposomes or native membranes to solubilize
patches of protein-containing lipid bilayers without
the adverse effects of detergents [192]. These, so-
called, SMALPs (SMA-lipid particles) have already
been used together with MS to determine the
stoichiometry [193], acquire atomic resolution struc-
tures of membrane protein complexes using X-ray
crystallography and cryo-EM [194,195], as well as
study their dynamics with solid-state NMR [196,197].
Computational methods therefore remain an attrac-
tive alternative for the study of membrane-bound or
membrane-associated proteins and their complexes
[198]. The simplestdyet most effectivedway in
which membrane protein modeling has been made
easier in the recent years comes from a higher
availability of representative 3D structures in the
PDB, thanks, in no small part, to advances in cryo-
EM [199]. This, in combination with the availability of
membrane-specific homology modeling, tools such
as MEDELLER [200] and Memoir [201], which
implement protocols similar to and inspired by one
of the most popular homology model ing
toolsdMODELLER [202]denables the creation of
structural models that strongly approximate native
ones [203]. These can be used to confidently model
structures which have not yet been determined
experimentally. These models can act as the starting
point for further investigation, which usually involves
some degree of integrative modeling, for example,
rigid/flexible fitting in low-medium resolution cryo-EM
maps or embedding into membranes and studying
the system by MD. This wider availability of
transmembrane (TM) protein structures is also
reflected in the enrichment of entries in databases
that deal with membrane proteins exclusively [199],
such as the manually curated mpstruc (membrane
proteins of known 3D structuredhttps://blanco.
biomol.uci.edu/mpstruc/), which annotates all non-
redundant proteins in the PDB. The latter also serves
as the starting point for the classification system the
PDB uses for identifying entries as TM, for OPM
(orientations of proteins in membranesdhttps://
opm.phar.umich.edu/) [204], which computes the
membrane insertion angle, tilt and width for trans-
membrane and membrane-associated proteins, and
for MemProtMD (http://memprotmd.bioch.ox.ac.uk/)
which inserts proteins in lipid bilayers via self-
assembly with coarse-grained MD simulations and
also makes available the preequilibrated membrane
bilayereprotein structures [205,206]. The plethora of
G-proteinecoupled receptor (GPCR) structures
which have been solved recently is of major
importance not only to the structural biology com-
munity but to areas of pharmaceutical research as
well owing to the importance of GPCRs in many
diseases [207]. These structures, along with impor-
tant details regarding the method that was used to
determine them, the conditions under which the
experiments were performed, and various aggre-
gated statistics and analyses are collected in
GPCRdb (GPCR databasedhttps://gpcrdb.org/)
[208]. Coarse-grained MD force fields such as
MARTINI [209e212], which was originally devel-
oped for membrane, have also been extended to
include proteins and nucleic acids. These allow to
simulate larger systems and/or reach longer time
scales. The MARTINI force field has recently been
implemented into HADDOCK for the modeling of

http://memprotmd.bioch.ox.ac.uk/


2871Integrative Modelling of Biomolecular Complexes
proteins and nucleic acids complexes [213,214].
Other docking codes such as ATTRACT [61], CABS-
dock [215,216], the Integrative Modeling Platform
(IMP) [66,67], and PyRy3D (http://pyry3d.icm.edu.pl/)
also support coarse-graining. Despite these signifi-
cant advances, the only docking codes which
currently offer the ability to dock TM proteins with
specific implicit membrane potentials are (to the best
of our knowledge) ROSETTA [217,218], DOCK/
PIERR [219,220], and Memdock [221]. More
recently a generic, ready-to-dock benchmark of
membrane protein complexes accompanied by
docking decoys for the purpose of training mem-
brane-specific scoring functions was made available
[222,223]. The lack of widely available explicit
support for the docking of membrane proteins has
resulted in some creative integrative modeling with,
for example, researchers using HADDOCK to probe
the interaction between the K-RAS4B oncogenic
protein when complexed with the Cmpd2 inhibitor
and lipid nanodisks making use of NMR-derived
restraints to drive the simulation [224]. In summary,
we believe it is high time the field of membrane
complexes modeling is given the attention it
deserves by the docking community as all the
ingredients for successful integrative modeling are
in place, with experimental methods providing good
template structures for modeling as well as experi-
mental restraints, computational tools similar to
coevolution providing additional data to drive the
docking, and plentiful implicit or explicit implementa-
tions of membrane bilayers allowing for studies at
different representation levels.
Perspectives

We have highlighted some key areas of experi-
mental and computational structural biology and
identified the ones which, we believe, will factor
significantly in the coming years for the field of
integrative modeling in general and molecular dock-
ing specifically. Despite these advances, there are,
however, also some areas for which we believe
developments have been lacking. Chief among
these is the fact that many docking codes can still
not make use of information during the simulation,
instead only in the scoring stage, and therefore
cannot be considered integrative approaches, with
some exceptions existing, e.g., ATTRACT, HAD-
DOCK, IMP, PyRy3D, and RosettaDock to cite the
most known ones. Another limiting factor is the fact
that the number of distinct subunits which can be
included in the simulation is still limited, with most
codes, except a few, supporting only one receptor
and one ligand [1,186,225], i.e., binary complexes.
Another aspect of integrative modeling is that being

able to combine multiple sources of information into a
single docking run does not necessarily mean that the
resulting models benefit from the included information.
The reason for this is that information needs to be
combined in a probabilistically sound way, that is, in a
way that reflects the uncertainty of the original
measurements and properly propagates it [66,226].
Perhaps, the most well-known examples of software
which properly accounts for this and weights the
multiple data sources used in the modeling through a
Bayesian framework are IMP [66,67] and the Infer-
ential Structure Determination Software (ISD) [227].
IMP has most famously been used for the determina-
tion of an integrative model for the nuclear pore
complex [228], which was validated last year when the
cryo-EM structure for the entire complex was solved
with a final resolution of 28 Å [229]. ISD [227], originally
developed for NMR [230], has recently been extended
and applied to challenging systems such as mem-
brane proteins, bacterial pili and chromosomes
[231e233], and also largemacromolecular assemblies
using shape-based (SAXS or cryo-EM) data [234].
Another alternative to one-stop integrative model-

ing software is the combination of multiple codes in
easy-to-use and cohesive workflows which hide the
technical details away from the end users and allow
for seamless flow of information between different
packages. Some encouraging work in this direction
has already started with CROSS-ID [103], a package
for the analysis and visualization of XL-MS data
which is part of XlinkX [98,102] and makes uses of
DisVis for the visualization and validation of cross-
link data. Another interesting initiative is the BioExcel
consortium as one of their stated goals is to promote
integration among several flagship computational
biology/chemistry packages such as HADDOCK
and GROMACS [235,236].
Finally, next to development in integrative soft-

ware, proper description and archival of integrative
models is an important area which is benefiting from
the advent of PDB-dev [32,237], a portal developed
by wwPDB in collaboration and consultation with
experts in the field of integrative modeling. Its aim is
to act as a hub to collect structural models, and all
their associated data, that have been determined by
integrative approaches. Two examples of integrative
models deposited into PDB-dev obtained with
various software and data types are shown in Fig. 2.
Conclusions

In this review, we have discussed aspects of
integrative modeling and in particular recent devel-
opments related to the various types of information
that can be used to aid the modeling process. We
conclude that the future for integrative modeling
software is bright as the availability and quality of
data are only going to increase as will the ability of
algorithms and hardware to handle that data
efficiently and meaningfully. There still remain,
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however, long-standing challenges, such as accu-
rate binding affinity prediction and accurately model-
ing large conformational changes. These have been
challenges in the biomolecular simulation world
since the very first days of the field [1,225]. Our
ability to model the structure of biomolecules as well
as biomolecular complexes has been continuously
evaluated over a period spanning more than 20
years in the CASP (Critical Assessment of Structure
Prediction) [238] and CAPRI (Critical Assessment of
PRediction of Interactions) [239] experiments, with
the first focusing on single protein structure predic-
tion (with a multimer component) and the latter on
protein complexes. In recent iterations of the
challenge, CASP has featured a data-assisted
category for which some information about the target
system is disseminated to the participating groups,
thus evaluating the ability of software to incorporate
information in the prediction and its outcome. In
CAPRI so far, only once was a SAXS scattering
profile provided. The field would clearly benefit from
truly integrative blind modeling challenges as such
blind challenges have been and will remain impor-
tant catalysts for further development and advances.
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