
TPLP 20 (3): 358–390, 2020. c© Cambridge University Press 2019. This is an Open Access

article, distributed under the terms of the Creative Commons Attribution licence (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction

in any medium, provided the original work is properly cited.

doi:10.1017/S1471068419000437 First published online 10 October 2019

358

A Comparative Study of Some Central Notions
of ASPIC+ and DeLP

ALEJANDRO J. GARCÍA
Institute for Computer Science and Engineering (CONICET-UNS),

Department of Computer Science & Engineering,
Universidad Nacional del Sur, Bahia Blanca, Argentina

(e-mail: ajg@cs.uns.edu.ar)

HENRY PRAKKEN
Department of Information and Computing Sciences,

Utrecht University & Faculty of Law,
University of Groningen,

Utrecht & Groningen, The Netherlands
(e-mail: h.prakken@uu.nl)

GUILLERMO R. SIMARI
Institute for Computer Science and Engineering (CONICET-UNS),

Department of Computer Science & Engineering,
Universidad Nacional del Sur, Bahia Blanca, Argentina

(e-mail: grs@cs.uns.edu.ar)

submitted 18 December 2018; revised 10 September 2019; accepted 10 September 2019

Abstract

This paper formally compares some central notions from two well-known formalisms for rule-
based argumentation, DeLP and ASPIC+. The comparisons especially focus on intuitive ad-
equacy and inter-translatability, consistency, and closure properties. As for differences in the
definitions of arguments and attack, it turns out that DeLP ’s definitions are intuitively appeal-
ing but that they may not fully comply with Caminada and Amgoud’s rationality postulates of
strict closure and indirect consistency. For some special cases, the DeLP definitions are shown
to fare better than ASPIC+. Next, it is argued that there are reasons to consider a variant of
DeLP with grounded semantics, since in some examples its current notion of warrant arguably
has counterintuitive consequences and may lead to sets of warranted arguments that are not
admissible. Finally, under some minimality and consistency assumptions on ASPIC+ arguments,
a one-to-many correspondence between ASPIC+ arguments and DeLP arguments is identified
in such a way that if the DeLP warranting procedure is changed to grounded semantics, then
DeLP ’s notion of warrant and ASPIC+’s notion of justification are equivalent. This result is
proven for three alternative definitions of attack.

KEYWORDS: rule-based argumentation, defeasible logic programming, ASPIC+

1 Introduction

ASPIC+ (Prakken 2010) and defeasible logic programming, or DeLP for short (Garćıa

and Simari 2004), are two well-known rule-based formalisms for argumentation. “Rule-

based” is not about expressiveness but about how arguments are constructed. In a rule-

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068419000437
mailto:ajg@cs.uns.edu.ar
https://orcid.org/0000-0002-3431-7757
mailto:h.prakken@uu.nl
https://orcid.org/0000-0001-6247-0428
mailto:grs@cs.uns.edu.ar
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 359

based approach1, arguments are formed by chaining applications of inference rules into

inference trees or graphs. This approach can be contrasted with approaches defined in

terms of logical consequence notions, in which arguments are premises–conclusion pairs

where the premises are consistent and imply the conclusion according to the consequence

notion of some adopted “base logic.” Examples of this approach are classical-logic argu-

mentation (Cayrol 1995; Besnard and Hunter 2001, 2008; Gorogiannis and Hunter 2011)

and its generalization into abstract Tarskian-logic argumentation (Amgoud and Besnard

2013). It is important to note that, unlike these logic-based approaches, rule-based ap-

proaches in general do not adopt a single base logic but two base logics, one for the strict

and one for the defeasible rules.

ASPIC+ and DeLP are similar in various respects: both have a distinction between

strict and defeasible inference rules and both use preferences to resolve attacks into de-

feats. The shared rule-based approach and these further similarities warrant a detailed

comparison between the two frameworks. Such a comparison is the topic of this paper. It

will turn out that there are also differences, the main one being that while ASPIC+ eval-

uates arguments with the by now standard Dungean semantics of abstract argumentation

frameworks (AFs) (Dung 1995), DeLP has a special-purpose definition of argument eval-

uation. Both of ASPIC+ and of DeLP various versions exist. As for DeLP , we will discuss

the version introduced by Garćıa and Simari (2004), which arguably is the standard ver-

sion. As for ASPIC+, we will unless indicated otherwise assume the version of Modgil

and Prakken (2013) with defeat-conflict-freeness, no consistency constraints on premise

sets, and the contrariness relation corresponding to “strong” or “symmetric” negation.

We will compare DeLP 2004 with ASPIC+ 2013, and we will also study modifications

of both systems with ideas from the other systems. In particular, we will consider a ver-

sion of DeLP with grounded semantics and a version of ASPIC+ with DeLP ’s notion of

rebutting attack, either with or without DeLP ’s consistency constraints on arguments.

Just before this paper was finished, we learned that Parsons and Cohen (2018) had also

carried out a comparison between ASPIC+and DeLP . Nevertheless, our investigation

can be regarded as complementary to theirs. In their work, they seek to revisit aspects

that differentiate DeLP from ASPIC+, analyze the common ground between the two

approaches, and study the possibility of establishing conditions that would help bridge

the gap between them. The discussion mainly centers on the similarities and differences

between ASPIC+and DeLP regarding knowledge representation capabilities, the mech-

anism adopted for argument construction, and the different types of attack and defeat

they consider. Their focus is not on formally proving properties of or relations between

the two formalisms.

To summarize our main findings, as for differences in the definitions of arguments

and attack, it will turn out that DeLP ’s definitions are intuitively appealing and in

some special cases the DeLP definitions will be shown to fare better than ASPIC+.

On the other hand, the DeLP definitions may not fully comply with the rationality

postulates of strict closure and indirect consistency introduced by Caminada and Amgoud

(2007). In Section 4.1, we will include a thorough discussion about these issues. As we

will discuss in Section 6, while the DeLP definition of warrant is similar to grounded

semantics, there are also differences, caused by the fact that the constraints on the

1 This and some other fragments in this paper are taken (or adapted) from Modgil and Prakken (2018).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

360 A. J. Garćıa et al.

argument evaluation do not coincide with the constraints on games in the game-theoretic

proof theory for grounded semantics. For these reasons, we will introduce a special version

of DeLP under grounded semantics, since in some examples its current notion of warrant

arguably has counterintuitive consequences and may lead to sets of warranted arguments

that are not admissible under Dung’s definition. Finally, under some minimality and

consistency assumptions on ASPIC+ arguments, a one-to-many correspondence between

ASPIC+arguments and DeLP arguments will be identified in such a way that if the

DeLP warranting procedure is changed to grounded semantics, then DeLP ’s notion of

warrant and ASPIC+’s notion of justification are equivalent. This result will be proven

for three alternative definitions of attack.

This paper is organized as follows. We start with a brief sketch of the history of both

frameworks in Section 2 and a summary of the formalisms in Section 3. We then compare

the argument and attack definitions of the two formalisms in Sections 4 and 5. We will

argue that DeLP ’s definitions are interesting alternatives to ASPIC+ definitions which

in some special cases represent possible improvements. Then in Section 6, we compare the

different ways in which ASPIC+ and DeLP evaluate arguments. We will argue that some

differences reveal possible drawbacks of the DeLP semantics. After observing that the

motivation behind DeLP ’s semantics is similar to the intuitions underlying (Dung’s 1995)

grounded semantics, we propose a version of DeLP with grounded semantics, arguing

that all the examples given by Garćıa and Simari (2004) as reasons for their special

semantics are treated as they want by grounded semantics. Finally, in Section 7, we

prove correspondence results with respect to arguments, attacks, defeats, and extensions

between ASPIC+ and DeLP .

2 History

ASPIC+ originated from the European ASPIC project as an attempt to integrate and

consolidate the then state of the art in formal argumentation (see Amgoud et al . 2006). It

was, in particular, inspired by the research of Pollock (1987, 1995), and Vreeswijk (1997).

A basic version without preferences or premise attack was used by Caminada and Amgoud

(2007) as a vehicle for introducing and studying various so-called rationality postulates for

argumentation. Prakken (2010) introduced the first full version of ASPIC+, introducing

premise attack and preferences. Since then the framework has been further developed

and studied in several publications. For a detailed overview, see Section 5 of Modgil and

Prakken (2018). In consequence, ASPIC+ as it has been developed over the years is not

a single framework but a family of frameworks varying on several elements.

DeLP was developed on the basis of Simari and Loui (1992), who presented a rule-based

argumentation system with both strict and defeasible inference rules, with specificity as a

means to resolve attacks and with an argument evaluation definition taken from Pollock

(1987), which was later by Dung (1995) shown to be equivalent to his grounded semantics.

Inspired by this work, DeLP was developed in a series of papers, culminating in Garćıa

and Simari (2004), which is now regarded as the standard paper on DeLP . The idea of

argument evaluation in terms of a dialectical tree, now typical for DeLP , was introduced

by Garćıa et al . (1993) and Simari et al . (1994b). The first paper establishing conditions

on the construction of the branches of a dialectical tree (called an argumentation line) was

Garćıa et al . (1998); thus, this was the paper that gave up grounded semantics for DeLP .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 361

3 Formal Preliminaries

In this section, we summarize the formal systems used throughout the paper. More details

can be found in the papers already mentioned above and in Baroni et al . (2011, 2018)

for abstract AFs, Modgil and Prakken (2014, 2018) for ASPIC+, and Garćıa and Simari

(2014, 2018) for DeLP . It is relevant at this point to remark that the presentations of

ASPIC+ and DeLP contained in this paper heavily rely on earlier presentations of these

systems, such as the ones cited.

3.1 Abstract argumentation frameworks

An abstract argumentation framework (AF) is a pair 〈A, attack〉, where A is a set

of arguments and attack ⊆ A × A. The theory of AFs (Dung 1995) identifies sets

of arguments (called extensions) which are internally coherent and defend themselves

against attack. An argument A ∈ A is defended by a set by S ⊆ A if for all B ∈ A: if
B attacks A, then some C ∈ S attacks B. A set S of arguments is conflict-free if no

argument in S attacks an argument in S. Then, relative to a given AF ,

• E is admissible if E is conflict-free and defends all its members;

• E is a complete extension if E is admissible and A ∈ E iff A is defended by E;

• E is a preferred extension if E is a ⊆-maximal admissible set;

• E is a stable extension if E is admissible and attacks all arguments outside it;

• E ⊆ A is the grounded extension if E is the least fixpoint of operator F , where

F (S) returns all arguments defended by S.

Finally, for T ∈ {complete, preferred, grounded, stable}, X is sceptically or credulously

justified under the T semantics if X belongs to all, respectively at least one, T extension.

In ASPIC+, the attack relation is renamed to defeat to distinguish it from a more

basic notion of conflict between arguments, which in ASPIC+ is called attack. Moreover,

the following terminology is used. Argument A strictly defeats argument B if A defeats

B and B does not defeat A. Argument A weakly defeats argument B if A defeats B and

B defeats A.

In the comparisons between ASPIC+ and DeLP , we will use grounded semantics. In

particular, we will use the following game-theoretic proof theory, which is sound and

complete with respect to grounded semantics (Prakken 1999; Modgil and Caminada

2009).

Definition 1

An argument game for grounded semantics is a finite nonempty sequence of moves

movei = (Playeri, Argi) (i > 0), such that

1. Playeri = P iff i is odd; and Playeri = O iff i is even;

2. If Playeri = Playerj = P and i �= j, then Argi �= Argj ;

3. If Playeri = P , then Argi strictly defeats Argi−1;

4. If Playeri = O, then Argi defeats Argi−1.

The first condition says that the proponent begins and then the players take turns, while

the second condition prevents the proponent from repeating its attacks. The last two

conditions form the heart of the definition: they state the burdens of proof for P and O.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

362 A. J. Garćıa et al.

The non-repetition rule and the condition that P moves strict defeaters (as opposed to

O being allowed to move any defeater) are not needed for soundness and completeness

but they make many otherwise infinite games finite.

Definition 2

A player wins an argument game iff the other player cannot move. An argument A is

provably justified iff the proponent has a winning strategy in a game beginning with A.

As is well-known, a strategy for the proponent can be displayed as a tree of games which

only branches after the proponent’s moves and which then contains all defeaters of this

move. A strategy for the proponent is then winning if all games in the tree end with a

move by the proponent. We will use these observations below in comparing the grounded

argument game with DeLP ’s dialectical trees.

3.2 ASPIC+

We next specify the present paper’s instance of the ASPIC+ framework. It defines ab-

stract argumentation systems as structures consisting of a logical language L with sym-

metric negation and two sets Rs and Rd of strict and defeasible inference rules defined

over L. In the present paper, L is a language of propositional or predicate-logic literals,

since this is also the language assumed by DeLP . Arguments are constructed from a

knowledge base (a subset of L) by combining inferences over L. Formally:

Definition 3 (Argumentation System)

An argumentation system (AS) is a pair AS = (L,R) where:

• L is a logical language consisting of propositional or ground predicate-logic literals

• R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form

{ϕ1, . . . , ϕn} → ϕ and {ϕ1, . . . , ϕn} ⇒ ϕ, respectively (where ϕi, ϕ are meta-

variables ranging over wff in L), such that Rs∩Rd = ∅. Here ϕ1, . . . , ϕn are called

the antecedents and ϕ the consequent of the rule.2

We write ψ = −ϕ just in case ψ = ¬ϕ or ϕ = ¬ψ. Note that − is not part of the logical

language L but a metalinguistic function symbol to obtain more concise definitions. Also,

for any rule r the antecedents and consequent are denoted, respectively, with ant(r) and

cons(r).

The set Rs is said to be closed under transposition if whenever S → ϕ ∈ Rs, then

S\{si}∪−ϕ→ −si ∈ Rs for any si ∈ S. This notion is important since many consistency

and closure results in the literature depend on the condition that Rs is closed under

transposition.

Definition 4 (Consistency)

For any S ⊆ L, let the closure of S under strict rules, denoted ClRs
(S), be the smallest

set containing S and the consequent of any strict rule in Rs whose antecedents are in

ClRs
(S). Then a set S ⊆ L is directly consistent iff � ψ, ϕ ∈ S such that ψ = −ϕ, and

indirectly consistent iff ClRs
(S) is directly consistent.

Note that the notion of indirect consistency is relative to a given set of strict rules.

2 Below the brackets around the antecedents will usually be omitted.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 363

Definition 5 (Knowledge Bases)

A knowledge base over an AS = (L,R) is a set K ⊆ L.

In this paper, K corresponds to the “necessary premises” in other ASPIC+ publications,

which are intuitively certain and therefore not attackable. Since the “facts” in DeLP are

also not attackable, we assume in this paper that the set of attackable or “ordinary”

premises from other ASPIC+ publications is empty. We will, as is also usually done

in DeLP , represent what intuitively are uncertain premises ϕ as defeasible rules ⇒ ϕ.

In what follows, for a given argument, the function Prem returns all the formulas of K
(called premises) used to build the argument, Conc returns its conclusion, Sub returns

all its subarguments, LDR returns the last defeasible rules used in the argument, Rules

and DefRules return, respectively, all rules and all defeasible rules of the argument, and

TopRule returns the last rule used in the argument. An argument is now formally defined

as follows.

Definition 6 (Arguments)

A argument A on the basis of a knowledge base K in an argumentation system AS is

a structure obtainable by applying one or more of the following steps finitely many times:

1. ϕ if ϕ ∈ K with: Prem(A) = {ϕ}; Conc(A) = ϕ; Sub(A) = {ϕ}; LDR(A) = ∅;
Rules(A) = ∅; DefRules(A) = ∅; TopRule(A) = undefined.

2. [{A1, . . . , An} → ψ]3 if A1, . . . , An are arguments such that Conc(A1), . . . ,

Conc(An)→ ψ ∈ Rs with:

Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An);

Conc(A) = ψ;

Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
LDR(A) = LDR(A1) ∪ . . . ∪ LDR(An); Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An)∪
{Conc(A1), . . . , Conc(An)→ ψ};
DefRules(A) = Rules(A) ∩ Rd;

TopRule(A) = Conc(A1), . . . , Conc(An)→ ψ.

3. [{A1, . . . , An} ⇒ ψ] if A1, . . . , An are arguments such that Conc(A1), . . . ,

Conc(An)⇒ ψ ∈ Rd, with:

LDR(A) = {Conc(A1), . . . , Conc(An) ⇒ ψ};
Rules(A) = Rules(A1) ∪ . . . ∪ Rules(An) ∪ {Conc(A1), . . . , Conc(An) ⇒ ψ};
TopRule(A) = Conc(A1), . . . , Conc(An)⇒ ψ

and the other notions defined as in (2).

An argument A is strict if DefRules(A) = ∅, otherwise A is defeasible.

When Conc(A) = ϕ we sometimes say that A is an argument for ϕ. Each of the func-

tions Func in this definition is also defined on sets of arguments S = {A1, . . . , An}
as follows: Func(S) = Func(A1) ∪ . . . ∪ Func(An). Note that we overload the → and

⇒ symbols to denote an argument while they also denote strict, respectively, defea-

sible inference rules. This is common practice in argumentation and originates from

Vreeswijk (1997).

3 The square brackets make the presentation of examples more concise. They and the curly brackets
will be omitted if there is no danger for confusion.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

364 A. J. Garćıa et al.

Fig. 1. Argument A3 from Example 1 with subarguments A1 and A2.

Example 1

Consider a knowledge base in an argumentation system with L consisting of

p, q, r, s, t, u, v, x and their negations, with Rs = {s1, s2} and Rd = {d1, d2, d3}, where:
d1: p⇒ q s1: p, q → r

d2: ⇒ t s2: t→ ¬q
d3: v, x⇒ ¬t s3: u→ v

Let K = {p, u, x}. An argument A3 for r (i.e., with conclusion r) with subarguments

A1 for p and A2 for q is displayed in Figure 1, with the premises at the bottom and the

conclusion at the top of the tree. In this and the next figure, strict inferences are indicated

with solid lines while defeasible inferences and rebuttable conclusions are displayed with

dotted lines. The figure also displays the formal structure of the argument. Note that the

argument can also be written as [p, [p⇒ q]→ r]. We have that

Prem(A3) = {p} DefRules(A3) = {d1}
Conc(A3) = r Rules(A3) = {s1, d1}
Sub(A3) = {A1, A2, A3} TopRule(A3) = s1
LDR(A3) = {d1}

All of A1, A2, and A3 are defeasible since DefRules(A1) = DefRules(A2) =

DefRules(A3) = {d1}.
In general, ASPIC+ has three ways of attack: on an argument’s uncertain premises

(undermining attack), on the conclusion of a defeasible rule (rebutting attack), and on

a defeasible rule itself (undercutting attack). However, in this paper, we only consider

rebutting attack.

Definition 7 (Rebutting Attack)

A attacks or rebuts B iff Conc(A)=−ϕ for some B′∈Sub(B) of the form B′′
1 , . . . , B

′′
n⇒ϕ.

Example 2

In our running example, argument A3 is rebutted on A2 by an argument B2 for ¬q:
B1: ⇒ t

B2: B1 → ¬q

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 365

Fig. 2. The arguments and attacks in the running example.

Note that A2 does not in turn rebut B2 on B2, since B2 has a strict top rule while the

argument on which an argument is (directly) rebutted has to have a defeasible top rule.

For the same reason, B2 can potentially only be rebutted on B1. Our argumentation

theory allows for such a rebuttal:

C1: u

C2: C1 → v

C3: x

C4: C2, C3 ⇒ ¬t
Note that B1 in turn rebuts C4, since C4 has a defeasible top rule. All arguments and

(direct) attacks in the example are displayed in Figure 2.

Caminada and Amgoud (2007) also consider a variant called “unrestricted rebut,” which

allows direct rebuttals on arguments with a strict top rule provided the attacked argument

is defeasible:

Definition 8 (Unrestricted Rebutting Attack)

A u-rebuts B iff Conc(A) = −Conc(B′) for some defeasible B′ ∈ Sub(B).

Example 3

In our running example, this yields one additional rebutting relation, since A2

u-rebuts B2. Furthermore, argument A3 can be potentially u-rebutted on its final con-

clusion r. However, C2 cannot be u-rebutted, since it is not defeasible but strict.

Below we will assume Definition 7 of attack unless specified otherwise.

The ASPIC+ counterpart of an abstract AF is a structured AF (SAF).

Definition 9 (Structured AFs)

Let AT be an argumentation theory (AS,K). A structured argumentation framework

(SAF) defined by AT is a triple 〈A, C,�〉, where A is the set of all arguments on the

basis of AS, � is an ordering on A, and (X,Y) ∈ C iff X attacks Y .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

366 A. J. Garćıa et al.

Example 4

In our running example A = {A1, A2, A3, B1, B2, C1, C2, C3, C4}, while C is such that B2

attacks both A2 and A3, argument C4 attacks both B1 and B2, and B1 attacks C4.

The attack relation tells us which arguments are in conflict with each other. If an argu-

ment A successfully attacks, that is, defeats, B, then A can be used as a counterargument

to B. Whether a rebutting attack succeeds as a defeat, depends on the argument order-

ing �. In the following definition, A ≺ B is defined as usual as A � B and B �� A.
Definition 10 (Defeat)

Argument A defeats argument B if A rebuts B on B′ and A �≺ B′.

Example 5

In our running example, the attack of B2 on A2 (and thereby on A3) succeeds if B1 �≺ A2.

In that case, B2 strictly defeats both A2 and A3. If B1 and C4 are incomparable or of equal

priority, then these two arguments defeat each other, while C4 strictly defeats B2. If C4 ≺
B1, then B1 strictly defeats C4 while if B1 ≺ C4, then C4 strictly defeats both B1 and B2.

AFs are then generated from SAFs by letting the attacks from an AF be the defeats

from a SAF .

Definition 11 (AFs corresponding to SAFs)

An abstract argumentation framework (AF) corresponding to a SAF = 〈A, C,�〉 (where C
is ASPIC+’s attack relation) is a pair (A, attack) such that attack is the defeat relation

on A determined by SAF .

A nonmonotonic consequence notion can then be defined as follows. Let T ∈ {complete,

preferred, grounded, stable} and let L be from the AT defining SAF . A wff ϕ ∈ L is

sceptically T -justified in SAF if ϕ is the conclusion of a sceptically T -justified argument,

and credulously T -justified in SAF if ϕ is not sceptically T -justified and is the conclusion

of a credulously T -justified argument.

Example 6

In our running example, if B2 does not defeat A2, then all extensions in any se-

mantics contain A3 so r is sceptically justified. Let us next assume that B2 defeats

A2. Then if C4 strictly defeats B1, we have a unique extension in all semantics,

namely {A1, A2, A3, C1, C2, C3, C4}. In both cases, this yields that wff r is sceptically

justified. Alternatively, if B1 strictly defeats C4, then there again is a unique exten-

sion in all semantics, which now is {A1, B1, B2, C1, C2, C3}. Then r is neither scep-

tically nor credulously justified. Finally, if B1 and C4 defeat each other, then the

grounded extension is E = {A1, C1, C2, C3, C4} while there are two preferred extensions

E1 = {A1, A2, A3, C1, C2, C3, C4} and E2 = {A1, B2, C1, C2, C3}. So then r is credu-

lously but not sceptically justified in preferred semantics but is neither sceptically nor

credulously justified in grounded semantics.

3.3 Defeasible Logic Programming

DeLP is a formalization of defeasible reasoning in which results of logic programming

and argumentation are combined. DeLP has the declarative capability of representing

knowledge in a language that extends the language of logic programming with the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 367

possibility of representing weak information in the form of defeasible rules, and an

argumentation-based inference mechanism for warranting conclusions.

While ASPIC+ in general abstracts from the logical language, DeLP chooses a logic-

progra-mming language with “strong” negation to represent knowledge in which the

antecedents and consequent of a rule (strong or weak) are ground literals. It is possi-

ble to employ in DeLP default negation, which is also known as negation as failure,

but since this does not crucially change the analysis below, we will for simplicity ignore

this extension here. As usual, rules written with free variables are schemes for all their

ground instances. Although DeLP and the instance of ASPIC+presented above are sim-

ilar, they are not fully equivalent. Elements in which DeLP and ASPIC+ coincide are

the predicate-logic literal language with strong negation, a set of indisputable facts, two

sets of strict and defeasible rules, and a binary argument preference relation. However,

DeLP ’s definitions of argument, attack, and defeat are not equivalent to those of AS-

PIC+. Moreover, a significant difference with ASPIC+ is that DeLP , as defined by Garćıa

and Simari (2004), does not evaluate arguments by generating abstract argumentation

frameworks. Instead, DeLP ’s notion of warrant is defined in terms of dialectical trees

in a way that is similar to the argument game of grounded semantics but with some

significant differences, as we will see below.

This section will introduce a description of DeLP ’s features for knowledge represen-

tation [mainly taken from Garćıa and Simari (2014)], then the details concerning its

inference mechanism will be explained. Although the work leading to the formalization

of DeLP began in the early 1990s (Simari et al . 1994a,b) as an evolution of the work

of Simari and Loui (1992), its formalization was completed by Garćıa (2000) and finally

published in Garćıa and Simari (2004, 2014). Further developments can be found in the

following related material: (Garćıa et al . 2007, 2013; Tucat et al . 2009; Mart́ınez et al .

2012; Cohen et al . 2016; Garćıa and Simari 2018).

The knowledge representation language of DeLP is determined by a set of atoms.

Atoms can be preceded by the strong negation symbol “∼”. Atoms that are not preceded

by strong negation will also be called positive literals and atoms preceded by strong

negation will be called negative literals, the term literal, or sometimes objective literal,

will refer to either one. A pair of literals involving a positive and a negative literal over

the same atom are called complementary or contradictory. For instance, “∼guilty” and

“guilty” are two complementary literals. A defeasible logic program, abbreviated dlp, is

a set of facts, strict rules, and defeasible rules defined as follows:

- Facts are ground (objective) literals, for example, guilty, price(100), ∼close. In
DeLP , facts are used for representing information that is considered to hold in the

application domain. Hence, as it will be explained below, a dlp cannot contain two

complementary facts.

- Strict Rules represent a relation between a ground literal L0, or head of the

rule, and a set of ground literals {Li}i>0, or body of the rule, and are denoted

L0 ← L1 , . . . ,Ln ; strict rules correspond syntactically to basic rules in logic pro-

gramming (Lifschitz 1996). The use of the adjective “strict” emphasizes that the re-

lation between the head and the body of the rule is such that if the body is accepted

then the head must also be accepted. The examples of strict rules shown below can

be understood as expressing that: someone who is guilty cannot be innocent, cats

are mammals, and if there are not many surfers then there are few surfers:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

368 A. J. Garćıa et al.

∼innocent ← guilty

mammal ← cat

few surfers ← ∼many surfers

- Defeasible Rules are used to represent a weaker connection between pieces of

information, they are denoted L0 −−≺ L1 , . . . ,Ln , and like strict rules, the head of

the rule L0 is a ground literal and its body {Li}i≥0 is a set of ground literals. A

defeasible rule with empty body is called a presumption; sometimes we will also

call the head of such a rule a presumption. Note that initially Garćıa and Simari

(2004) required defeasible rules to have nonempty bodies. Here and below, we

follow their extension in Section 6.2 of DeLP with presumptions. Unlike strict

rules, acceptance of the body of a defeasible rule does not always lead to the

acceptance of the head. Examples of defeasible rules follow. The first one represents

that usually, mosquitoes are not dangerous, and the second says that reasons to

believe mosquitoes are carrying dengue, justify the belief they are dangerous :

∼dangerous −−≺ mosquito

dangerous −−≺ mosquito, dengue

Note that, from a syntactic point of view, strict and defeasible rules differ only in the

symbol between the head and the body of the rule. It is interesting to remark here that

the representational choice between these two forms of relating the head and the body of

a rule is ultimately a matter of context, sometimes a rule could change accordingly to the

environment in which it is used; for instance, a rule that locally can be considered strict

could become defeasible in a larger environment. Defeasible rules allow to represent a

weak connection between the body (antecedent) and the head (consequence) of the rule.

A defeasible rule H −−≺ B expresses that reasons to believe in B provide a (defeasible)

reason to believe in H. As an example, consider a scenario where an agent has to decide

how to spend the day. Then, the defeasible rule “nice −−≺ waves” can represent that

“reasons to believe that there are big waves at the beach, is a reason to believe that it

should be a nice day for surfing.” The connection between “waves” and “nice” is weak in

the sense that there might be other reasons such as “normally, if it is raining it is not nice

for surfing,” represented as “∼nice −−≺ rain,” that will lead to the contrary conclusion.

Suppose that today there are big waves and it is raining, then the acceptance of the body

of the rule “nice −−≺ waves” does not lead directly to the acceptance of the head.

Nevertheless, strict rules establish a strict connection between body and head; thus,

the rule “∼working ← vacation” represents the fact that in vacation an agent is not

working. Then, as we will show below, due to this strict connection in DeLP if “vacation”

is accepted, then “∼working” is also accepted.

Note that the symbols “ −−≺ ” and “ ← ” denote meta-relations between a literal

and a set of literals, and have no interaction with language symbols. As in logic progra-

mming, strict and defeasible rules are not conditionals nor implications, they are inference

rules. Consequently, strict rules do not automatically contrapose or (in Caminada and

Amgoud’s 2007 terms) “transpose.” In DeLP , a knowledge engineer has to separately

determine for each strict rule whether adding its transposition is appropriate for that

rule. This is relevant since many positive results in the literature on satisfaction of Cam-

inada and Amgoud’s rationality postulates depend on the assumption that the set of

strict rules is closed under transposition.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 369

Definition 12 (Defeasible Logic Program)

A defeasible logic program (dlp) is set of facts, rules, and presumptions. However, when

required, a dlp is denoted (Π,Δ), to distinguish the subset Π of facts and strict rules

and the subset Δ of defeasible rules and presumptions. Moreover, when we want to

refer to just the facts in Π we write Πf and for the strict rules we write Πs. Naturally,

Πf ∪Πs = Π.

Example 7

Π7=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

monday
cloudy
dry season
waves
grass grown
hire gardener
vacation
∼working ← vacation
few surfers ← ∼many surfers
∼surf ← ill

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Δ7=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

surf −−≺ nice, spare time
nice −−≺ waves
∼nice −−≺ rain
rain −−≺ cloudy
∼rain −−≺ dry season
spare time −−≺ ∼busy
∼busy −−≺ ∼working
cold −−≺ winter
working −−≺ monday
busy −−≺ yard work
yard work −−≺ grass grown
∼yard work −−≺ hire gardener
many surfers −−≺ waves
∼many surfers −−≺ monday

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Definition 13 (Defeasible Derivation)

Given a dlp (Π,Δ), a defeasible derivation of a ground literal L from (Π,Δ), denoted

as (Π,Δ) |∼ L, is a finite sequence L1, . . . , Ln = L of ground literals such that for

all Li(1 ≤ i ≤ n): Li ∈ Π or Li is a presumption in Δ; or there exists a rule Ri

in (Π,Δ) (strict or defeasible) with head Li and body B1, B2, . . . , Bm such that every

literal Bj , 1 ≤ j ≤ m, of the body is an element Lk already appearing in the sequence

preceding Li (k < i). If L has a derivation that only uses facts and strict rules from Π

and no defeasible rules, in this case we say that L has a strict derivation.

In the program (Π7,Δ7) shown in Example 7, the literal surf has a defeasible deriva-

tion: vacation, ∼working , ∼busy , spare time, waves, nice, surf , which contains two facts

(vacation and waves), and the use of a strict rule (∼working ← vacation) and four defea-

sible rules. Note that every fact of a DeLP has a defeasible derivation; however, not every

head of a rule has a derivation, for instance, neither cold nor ∼surf have a defeasible

derivation. Note that ∼working has a strict derivation from Π7. Note that literals that

have a strict derivation must be facts or the head of a strict rules; however, a literal

can be the head of a strict rule and might have a defeasible derivation, but not a strict

derivation. For instance, few surfers has no strict derivation from Π7, although it has

a defeasible derivation from (Π7,Δ7) that uses a defeasible rule for the derivation of

∼many surfers .

It is important to note that in DeLP the set Π is used to represent non-defeasible infor-

mation, consequently it is required that the set be representationally coherent. Therefore,

for any program (Π,Δ), we assume that Π is non-contradictory: no pair of contradictory

literals can be derived from Π, that is, no strict derivation for complementary literals can

be obtained from a DeLP . Saying that Π is non-contradictory is equivalent to saying in

ASPIC+ that K is indirectly consistent relative to Rs.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

370 A. J. Garćıa et al.

Definition 14 (Argument)

Let (Π,Δ) be a dlp and L a ground literal. We say that A is an argument for the con-

clusion L from (Π,Δ), denoted 〈A, L〉, if A is a set of defeasible rules (A ⊆Δ), such that:

1. there exists a defeasible derivation for L from Π ∪ A, and
2. no pair of contradictory literals can be defeasibly derived from Π ∪ A.
3. A is minimal in that there is no proper subset of A satisfying conditions (1) and (2).

Observe that although facts and strict rules are used in the defeasible derivation, the

argument structure only mentions the defeasible rules, that is, facts and strict rules are

not part of an argument. Note also that unlike in Definition 6 of ASPIC+-arguments, the

set of defeasible rules of a DeLP argument has to be minimal and its set of “conclusions”

has to be indirectly consistent. (Strictly speaking, the set of conclusions of a DeLP

argument is not formally defined, but the set of all literals in the defeasible derivation

corresponding to an argument can be seen as such.)

Note that it could happen that a literal L has a defeasible derivation from a dlp but

there is no argument for L from that dlp. For instance, consider the dlp (Π7,Δ7) of

Example 7, from the fact monday and the defeasible rule working −−≺ monday , there is a

defeasible derivation for the literal working . However, note that there is a strict derivation

for ∼working , and hence from the set Π7 ∪ {working −−≺ monday} both literals working

and ∼working can be defeasibly derived, for that reason there is no argument for the

literal working from (Π7,Δ7). Consider S = {nice −−≺ waves,∼busy −−≺ ∼working} ⊆ Δ7.

Observe that S∪Π7 is non-contradictory and allows for the defeasible derivation of nice;

however, S is not an argument for nice because it is not minimal. Observe that A2 ⊂ S
is an argument for nice: A2 = {nice −−≺ waves}.
Attack on arguments is in DeLP defined in terms of disagreement between literals.

Two literals L and Q are said to disagree in the context of the program (Π,Δ) if the set

Π∪{L,Q} is contradictory, that is, from Π∪{L,Q} is possible to strictly derive a literal

and its complementary. For example, given Π = {(h ← a), (∼h ← b)}, the literals a

and b disagree. This notion of disagreement allows us to find direct and indirect conflicts

between arguments. This is equivalent to saying in ASPIC+ that K∪{L,Q} is indirectly
inconsistent relative to Rs. Note that two complementary literals always disagree (e.g.,

nice and ∼nice). Since for any program (Π,Δ) it is required that Π be non-contradictory,

the disagreement cannot come from Π.

Given a dlp (Π,Δ) and two arguments 〈A, L〉 and 〈B, Q〉 obtained from it, if B ⊆ A,
then we say that 〈B, Q〉 is a subargument of 〈A, L〉 and that 〈A, L〉 is the superargument

of 〈B, Q〉 (note that trivially every argument is a subargument/superargument of itself).

Definition 15 (Counterargument/Attack)

In DeLP , an argument 〈B, Q〉 is a counterargument for 〈A, L〉 at literal P , if there exists
a subargument 〈C, P 〉 of 〈A, L〉 such that P and Q disagree. The literal P is referred to

as the counterargument point and 〈C, P 〉 as the disagreement subargument. If 〈B, Q〉 is a
counterargument for 〈A, L〉, then we also say that 〈B, Q〉 attacks 〈A, L〉, and that 〈B, Q〉
and 〈A, L〉 are in conflict.

Except for the disagreement check instead of a simple syntactic check for complemen-

tariness, this definition is similar to Definition 7 of rebutting attack in ASPIC+ in that an

argument can attack a subargument of its target and does so on a specific point. On the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 371

other hand, unlike in ASPIC+, in DeLP the attacking point can be the consequent of

a strict rule. For instance, we include below Example 4 “Married John” from Caminada

and Amgoud (2007) in terms of DeLP syntax.

Example 8

Let Π8={wr , go,∼hw ← b, hw ← m, } and Δ8={m −−≺ wr , b −−≺ go} with: wr = “John

wears something that looks like a wedding ring,” go = “John often goes out until late

with his friends,” hw = “John has a wife,” b = “John is a bachelor,” m = “John is

married.” The following arguments can be constructed:

A1: 〈{ }, wr}〉 A2: 〈{ }, go〉
A3: 〈{m −−≺ wr},m}〉 A4: 〈{b −−≺ go}, b〉
A5: 〈{m −−≺ wr}, hw}〉 A6: 〈{b −−≺ go},∼hw〉

In DeLP arguments, A1 and A2 have no defeaters; argument A5 defeats A6 and vice

versa; and argument A3 defeats A4 and vice versa. Note also that argument A3 defeats

A6 and argument A4 defeats A5. Consequently, b = “John is a bachelor” and m = “John

is married” are not warranted (justified).

As a further example, consider the dlp (Π7,Δ7) of Example 7 and the sets A1=

{(∼nice −−≺ rain) ; (rain −−≺ cloudy)}, A2= {nice −−≺ waves }, A3= {rain −−≺ cloudy },
A4= {∼rain −−≺ dry season }. Then, 〈A1,∼nice〉 is a counterargument for 〈A2,nice〉 and
vice versa because in this particular case the conclusion of both arguments disagrees. As

another example, 〈A4,∼rain〉 is a counterargument for 〈A1,∼nice〉 at the counterargu-

ment point rain and 〈A3, rain〉 is the disagreement subargument. Note that in DeLP , a

counterargument for an argument A is also a counterargument for any superargument

of A. Also note that in DeLP there is no possible counterargument for a claim hav-

ing a strict derivation, see Garćıa and Simari (2004) for the proof. Observe that from

(Π7,Δ7) there is a strict derivation for ∼working , however, although there is a deriva-

tion for working , no argument for working can exists, and hence, no counterargument

for ∼working .
The argument comparison criterion is modular in DeLP ; hence, it is possible to use

any preference criterion established over the set of arguments (see Garćıa and Simari

2014 for details and Teze et al . 2015 for an application). This allows the user to select

the most appropriate criterion for the application domain that is being represented. For

the rest of the presentation, we will assume an abstract preference criterion ≺ of strict

comparison on the set of arguments, where A ≺ B means that argument B is strictly

better than argument A.

Definition 16 (Defeaters)

Argument 〈A1, L1〉 is a proper defeater of argument 〈A2, L2〉 iff there exists a sub-

argument 〈A, L〉 of 〈A2, L2〉 such that 〈A1, L1〉 attacks 〈A2, L2〉 at literal L and

〈A, L〉 ≺ 〈A1, L1〉. Argument 〈A1, L1〉 is a blocking defeater of argument 〈A2, L2〉 iff
there exists a subargument 〈A, L〉 of 〈A2, L2〉 such that 〈A1, L1〉 attacks 〈A2, L2〉 at
literal L and 〈A, L〉 �≺ 〈A1, L1〉 and 〈A1, L1〉 �≺ 〈A, L〉. Argument A is a defeater of

argument B iff A is a proper or a blocking defeater of B.

In the context of program (Π7,Δ7), 〈A4,∼rain〉 is a counterargument for 〈A1,∼nice〉
at the counterargument point rain and 〈A3, rain〉 is the disagreement subargument;

therefore, A4 is compared with A3 to determine if it is a defeater.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

372 A. J. Garćıa et al.

To facilitate comparison of both approaches, in the rest of the paper, a DeLP strict

rule a ← b can also be denoted using ASPIC+ notation as b → a, and defeasible rule

a −−≺ b as b ⇒ a. Also, a dlp (Π,Δ) can be denoted (K,Rs,Rd) assuming Π= K ∪ Rs

and Δ = Rd.

The notions of proper and blocking defeater are not equivalent to the ASPIC+ notions

of strict and weak defeater (see Section 3.1). Consider the following example:

Example 9

Consider a dlp with K = {q , s}, Rs = ∅ and Rd = {p −−≺ ; r −−≺ p, q ; ¬r −−≺ ;

¬p −−≺ ¬r , s}. Then we have the following DeLP arguments:

A1: 〈{p −−≺ }, p}〉 A2: 〈{p −−≺ ; r −−≺ p, q}, r〉
B1: 〈{¬r −−≺ },¬r〉 B2: 〈{¬r −−≺ ; ¬p −−≺ ¬r , s},¬p〉

And let A1 ≺ B2 and B1 ≺ A2 (a preference based on strict specificity). Note that A1

is a subargument of A2 and B1 is a subargument of B2. Then, A2 and B2 are proper

defeaters of each other, while the ASPIC+ relation of strict defeat is asymmetric. Note

also that A2 and B2 weakly defeat each other while they are not blocking defeaters of

each other.

An argumentation line for an argument 〈A1, L1〉 is a sequence of arguments from

a dlp, denoted Λ = [〈A1, L1〉, 〈A2, L2〉, 〈A3, L3〉, . . .], where each element of the se-

quence 〈Ai, Li〉, i > 1, is a defeater of its predecessor 〈Ai−1, Li−1〉. The first element,

〈A1, L1〉, becomes a supporting argument for the conclusion L1, 〈A2, L2〉 an interfer-

ing argument, 〈A3, L3〉 a supporting argument, 〈A4, L4〉 an interfering one, continu-

ing in that manner. Thus, an argumentation line can be split into two disjoint sets:

ΛS = {〈A1, L1〉, 〈A3, L3〉, 〈A5, L5〉, . . .} of supporting arguments for the conclusion L1,

and ΛI = {〈A2, L2〉, 〈A4, L4〉, . . .} of interfering arguments for L1.

Definition 17

Given a program (Π,Δ), a set of arguments {〈Ai, Li〉}ki=1 is concordant if it is not

possible to have a defeasible derivation for a pair of contradictory literals from the set

Π ∪⋃k
i=1Ai.

Definition 18 (Acceptable Argumentation Line)4

An argumentation line Λ= [〈A1, L1〉, . . . 〈An, Ln〉] from a dlp (Π,Δ) is acceptable if and

only if:

1. Λ is a finite sequence.

2. The set ΛS of supporting arguments (resp. ΛI) is concordant.

3. No argument 〈Ak, Lk〉 in Λ is a subargument of an argument 〈Ai, Li〉 appearing
earlier in Λ, i < k.

4. For all i, such that 〈Ai, Li〉 is a blocking defeater for 〈Ai−1, Li−1〉, if 〈Ai+1, Li+1〉
exists, then 〈Ai+1, Li+1〉 is a proper defeater for 〈Ai, Li〉.

Given a program, there can be more than one argumentation line starting with the

same argument 〈A, L〉. Therefore, analyzing a single acceptable argumentation line for

4 Garćıa and Simari 2004’s definition of acceptable argumentation line has been modified in a 2014
work (Garćıa and Simari 2014) and recently in an unpublished paper correcting some unsuitable
behavior in particular cases pointed out by Henry Prakken (see Example 15).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 373

〈A, L〉 will not be enough to determine whether 〈A, L〉 is an undefeated argument. In the

general situation, there might be several defeaters 〈B1, Q1〉, 〈B2, Q2〉, . . ., 〈Bk, Qk〉 for
〈A1, L1〉, and for each defeater 〈Bi, Qi〉 there could be in turn several defeaters; thus, a

tree structure is defined which is called a dialectical tree. In this tree, the root is labeled

with 〈A, L〉 and every node (except the root) represents a defeater (proper or blocking) of

its parent. Each branch in the tree, that is, each path from a leaf to the root, corresponds

to a different acceptable argumentation line.

Definition 19 (Dialectical Trees)

Let 〈A1, L1〉 be an argument obtained from a DeLP -program P, a dialectical tree for

〈A1, L1〉 from P is denoted T〈A1, L1〉 and is constructed as follows:

1. The root of the tree is labeled with 〈A1, L1〉.
2. Let N be a node labeled 〈An, Ln〉, and [〈A1, L1〉, . . . , 〈An, Ln〉] be the sequence of

labels of the path from the root to N . Let {〈B1, Q1〉, 〈B2, Q2〉, . . . ,〈Bk, Qk〉} be

the set of all the defeaters for 〈An, Ln〉 from P. For each defeater 〈Bi, Qi〉 (1 ≤
i ≤ k), such that the argumentation line Λ′ = [〈A1, L1〉, . . . , 〈An, Ln〉, 〈Bi, Qi〉] is
acceptable, the node N has a child Ni labeled 〈Bi, Qi〉. If there is no defeater for

〈An, Ln〉 or there is no 〈Bi, Qi〉 such that Λ′ is acceptable, then N is a leaf.

A dialectical tree provides a useful structure for considering all possible acceptable

argumentation lines that can be generated for deciding whether the starting argument

is defeated. Given a literal L and an argument 〈A, L〉, to decide whether the literal

L is warranted, every node in the dialectical tree T〈A,L〉 is recursively marked as “D”

(defeated) or “U” (undefeated), obtaining a marked dialectical tree T ∗〈A,L〉. Nodes are

marked by a bottom-up procedure that starts marking all leaves in T ∗〈A,L〉 as “U”s.

Then, for each inner node 〈B, Q〉 of T ∗〈A,L〉, either:

(a) 〈B, Q〉 will be marked as “U” iff every child of 〈B, Q〉 is marked as “D”, or

(b) 〈B, Q〉 will be marked as “D” iff it has at least a child marked as “U”.

This marking procedure provides an effective way of determining if a DeLP -query L is

warranted. It is important to note that given a DeLP -query L, there can be several argu-

ments that support L; therefore, L will be warranted if there exists at least one argument

A for L such that the root of a dialectical tree for 〈A, L〉 is marked as “U”. Given an ar-

gument 〈A, L〉 obtained from a program P, we will write Mark(T ∗〈A,L〉) = U to denote

that the root of T ∗〈A,L〉 is marked as “U”; otherwise, we will write Mark(T ∗〈A,L〉) = D

(if the root of T ∗〈A,L〉 is marked as “D”). Thus, we can define warrant in terms of the

marking procedure Mark :

Definition 20 (Warrant)

Let (Π,Δ) be a dlp and L a ground literal. We say that L is warranted from (Π,Δ) if

there exists at least one argument 〈A, L〉 from (Π,Δ), such that Mark(T ∗〈A,L〉) = U , we

also say that T ∗〈A,L〉 warrants L and that A is a warrant for L. When no such argument

exists the literal L is said to be unwarranted.

Each acceptable argumentation line can be seen as a two-player argument game like

the grounded game except that the rules of the game are given by the conditions of

Definition 18 on acceptable argument lines. Thus, there is an equivalence between the

above definition of warrant and the notion of a winning strategy for the proponent in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

374 A. J. Garćıa et al.

the corresponding argument game. Given a dialectical tree in which the root is labeled

U , the proponent in the game has a winning strategy for each defeater moved by the

opponent picking a reply from the tree that is labeled U . Conversely, if the proponent

has a winning strategy in a game for argument A, then A will clearly have to be labeled

U in its dialectical tree, since this tree contains the winning strategy as a subtree that

contains all legal defeaters of any supporting argument in the tree. This equivalence will

be exploited below in Section 6.4 in the proposal to consider a version of DeLP where the

conclusions will be obtained through grounded semantics, we distinguish this particular

system by denoting it as DeLP(GR).

4 Comparing the Argument Definitions

In this section, we compare the argument definitions of DeLP and ASPIC+. At first

sight, the deduction nature of DeLP arguments would seem to allow a straightforward

many-to-one mapping onto ASPIC+ arguments in that DeLP arguments would capture

one possible ordering of the inferences in an ASPIC+ argument. A mapping of this kind

was by Prakken (2010) established between the arguments of assumption-based argu-

mentation and ASPIC+ arguments. However, two features of DeLP arguments prevent

a straightforward mapping onto ASPIC+ arguments: the minimality requirement and

the consistency requirement. We discuss both requirements in turn.

4.1 On rationality postulates

In this and the following sections, we will report several positive and negative results

on satisfaction of the rationality postulates of Caminada and Amgoud (2007). We now

make some introductory remarks on these postulates, in order to put the later results

into perspective. While it is hard to disagree that the postulates of direct consistency and

closure under subarguments should be satisfied, this is different for indirect consistency

and closure under strict rules.5 Various positions can be adopted. One position (which is

the one of Caminada and Amgoud) is that strict closure and indirect consistency should

always be satisfied, given the intuitive reading of strict rules S strictly implies p as “If S

then always, or without exception, p”.

Another position (which is the one of the first and third author of this paper) is that

these properties are only desirable for sets of arguments that are not attackable (for

instance, in DeLP or ASPIC+ sets of arguments that only use facts and strict rules).

By contrast, if an antecedent of a strict rule is provided by a defeasible rule, then it may

be reasonable to not accept the consequent of the strict rule even if all its antecedents

are accepted. This is one reason why a knowledge engineer in DeLP has to determine

separately for each strict rule whether it transposes (cf. Section 3.3 above).

A third position [adopted by the second author of this paper in Prakken (2016)] is

that what is decisive is the properties of the argument ordering. Prakken (2010) defined

when an argument is “reasonable” (in a technical sense) and showed that (together with

indirect consistency of the necessary part of the knowledge base and closure of the strict

rules under contraposition or transposition) both strict closure and indirect consistency

5 See similar discussions in formal epistemology on whether justified beliefs should be classically consis-
tent and closed under deduction (Nelkin 2000).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 375

are satisfied for ASPIC+ if the argument ordering is “reasonable.” Modgil and Prakken

(2013) showed the same for a weaker definition of reasonable argument orderings. Prakken

(2016) agrees with the second position that strict closure should only hold in general for

sets of arguments that are not attackable. He then argues that whether strict closure and

indirect consistency should hold for other cases depends on whether it makes sense to

require that the argument ordering is “reasonable,” and, so he argues, this depends on

the nature of the knowledge and inference rules.

With this in mind, in the remainder of this paper, several results on (non-)satisfaction

of strict closure and indirect consistency will be reported in a neutral way, without taking

a stance on whether these results are good or bad for the investigated system(s). This

posture is to leave the door open for more research on this crucial topic.

4.2 Minimality

DeLP requires arguments to be subset-minimal in their sets of defeasible rules. The

general ASPIC+ framework imposes no explicit minimality conditions on arguments,

although the definition of an ASPIC+ argument is such that it cannot contain “unused”

premises or rules: if an argument A contains inferences, then all premises in Prem(A)

and all rules in Rules(A) are used in at least one inference. In various publications, the

addition of minimality conditions on arguments has been studied. Modgil and Prakken

(2013) study a minimality requirement on the set of premises in order to establish rela-

tions with classical argumentation as studied by Gorogiannis and Hunter (2011). DeLP

does not impose minimality of premise sets (which in DeLP are the facts used in an

argument). It can even be the case that a DeLP argument which is minimal in its set of

defeasible rules is non-minimal in its sets of premises or strict rules. Consider:

A: 〈{f1 ⇒ p; p, f2 → q}, q〉
B: 〈{f1 ⇒ p; f1 ⇒ r; p, r ⇒ q}, q〉

where K = {f1, f2}. Argument A is minimal in its set of defeasible rules but B is minimal

in its sets of premises and strict rules. The ASPIC+ definition of an argument allows

arguments that are non-minimal in their set of defeasible rules. The just-given example

illustrates this, since ASPIC+ counterparts of both A and B can be constructed.

Requiring arguments to be minimal in their set of defeasible rules makes sense on

the assumption that arguments with a non-minimal set of defeasible rules can never be

stronger than a minimal version with the same conclusion (this assumption does not

hold in general for ASPIC+). For DeLP , this assumption is reasonable, since defeasible

rules are the only fallible elements in a DeLP argument. Given this assumption, the above

example shows that if arguments are required to be minimal in their set of defeasible rules,

they cannot be required to be also minimal in their sets of premises and/or strict rules.

4.3 Consistency

DeLP arguments have to be consistent in that no pair of complementary literals should

be derivable from the set of all facts and strict rules of the program plus the defeasi-

ble rules used in the argument. In ASPIC+, this would amount to saying that the set

Conc(Sub(A)) ∪K is indirectly consistent (since as noted above, all rules of an ASPIC+

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

376 A. J. Garćıa et al.

argument are used to derive conclusions). Only one publication on ASPIC+ has stud-

ied the same constraint, namely Prakken (2016). However, in that paper, the constraint

was combined with a different notion of rebutting attack, in order to capture forms of

probabilistic reasoning. Wu and Podlaszewski (2015) study a slightly weaker constraint,

namely that Sub(A) is indirectly consistent.

The DeLP consistency constraint is intuitively appealing. However, Wu and

Podlaszewski (2015) remark that their slightly weaker constraint for ASPIC+ arguments

induces counterexamples to indirect consistency. A very similar example can be con-

structed in DeLP .

Example 10

Consider a dlp with Πf = {f1, f2}, Πs = {r ← p, q ; ¬q ← p,¬r} and Δ = {p −−≺ f1 ;

¬r −−≺ f2 ; q −−≺ p}. This enables the following DeLP arguments:

A1: 〈{p −−≺ f1}, p〉
A2: 〈{p −−≺ f1 ; q −−≺ p}, q〉
A3: 〈{p −−≺ f1 ; q −−≺ p; r ← p, q}, r〉
A4: 〈{¬r −−≺ f2},¬r〉
A5: 〈{¬r −−≺ f2 ; p −−≺ f1 ;¬q ← p,¬r},¬q〉

In DeLP , both A2 and A5 and A3 and A4 attack each other. If these conflicts are resolved

with a last-link ordering on arguments as defined by Modgil and Prakken (2013), then

the following sets of rules have to be compared:

LDR(A2) = {p⇒ q} with LDR(A5) = {f1 ⇒ p; f2 ⇒ ¬r}
LDR(A3) = {f1 ⇒ p; p⇒ q} with LDR(A4) = {f2 ⇒ ¬r}

If the rules are in increasing order of priority ordered as f1 ⇒ p < f2 ⇒ ¬r < p⇒ q, then

with the last-link ordering, by comparing sets on their minimal elements, we obtain that

A3 ≺ A4 and A5 ≺ A2. Then, in DeLP , the attacks of A2 on A5 and A4 on A3 succeed

as proper defeats, so A1, A2 and A4 are warranted while A3 and A5 are not warranted.

Thus, the set of warranted arguments is not strictly closed and not indirectly consistent.

We can conclude from this example that DeLP ’s strong consistency requirement on

arguments does not in general suffice for satisfying strict closure and indirect consistency.

5 Comparing the Attack Relations

In order to compare the attack relations of DeLP and ASPIC+, we first define an AS-

PIC+ counterpart of DeLP rebuttal.

Definition 21 (dlp-rebutting attack)

A dlp-rebuts B iff for some B′ ∈ Sub(B) it holds that Conc(A)∪Conc(B)∪K is indirectly

inconsistent.

It is easy to verify for ASPIC+ that rebut implies unrestricted rebut and unrestricted

rebut implies dlp-rebut. Counterexamples to the converse implications can easily be

constructed.

Next, we address the question whether adopting dlp-rebut (but not DeLP ’s strong

consistency condition) could improve ASPIC+. So, in the remainder of this section,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 377

we assume all definitions of ASPIC+ except that rebutting attack is replaced with

dlp-rebutting attack. In particular, we do for now not require that arguments are non-

contradictory in the sense of Definition 14(2).

For complete, preferred, and stable semantics, the answer to our question arguably

is negative, as can be shown with the following example, inspired by an example of

Caminada and Wu (2011), who read it as “any two of three persons can ride on a

tandem together, but they cannot ride the tanden together all three of them.”

Example 11

Consider an ASPIC+ AT with K = {f1, f2, f3} and Rs = {p, q → ¬r; p, r → ¬q;
q, r → ¬p} and Rd consisting of the defeasible rules in the following arguments:

A: f1 ⇒ p

B: f2 ⇒ q

C: f3 ⇒ r

A+B: A,B → ¬r
A+ C: A,C → ¬q
B + C: B,C → ¬p

With DeLP rebut, A+B and C rebut each other, A+C and B rebut each other, and B+C

and A rebut each other. If all arguments are incomparable in the argument ordering, then

all these attacks succeed as defeats, so there exists an admissible set containing all of

A,B, and C, which violates strict closure and indirect consistency. Note that Rs is closed

under transposition. On the other hand, the grounded extension is {f1, f2, f3}, which is

strictly closed and indirectly consistent.

This example shows that if satisfying strict closure and indirect consistency is regarded

as desirable, then adopting dlp-rebut in ASPIC+ is not in general an improvement but

may be an improvement in special cases. The example also shows that adopting dlp-rebut

affects the set of extensions in at least complete, preferred, and stable semantics even if

the strict rules are closed under transposition.

Caminada et al . (2014) prove for unrestricted rebut (see Definition 8 above) that for a

limited case with a total preference ordering on the set of defeasible rules and a weakest-

or last-link argument ordering, the grounded extension satisfies both strict closure and

indirect consistency (under the assumption that the set of strict rules is closed under

transposition). Since unrestricted rebut and dlp-rebut are similar, it is interesting to see

if similar results can be obtained for dlp-rebut. We first investigate this for the so-called

simple argument ordering, which is such that A � B iff A is defeasible and B is strict.

Direct consistency can be easily shown on the assumption that K is indirectly consis-

tent.

Proposition 12

Suppose attack in ASPIC+ is dlp-rebut, K is indirectly consistent and the argument

ordering is simple. Then for any AF corresponding to a SAF with grounded extension

E, it holds that there is no ϕ such that both ϕ and ¬ϕ are in Concs(E).

Proof

Suppose for contradiction ϕ,¬ϕ ∈ Conc(E). Then there exist two arguments A and B

in E such that Conc(A) = ϕ and Conc(B) = ¬ϕ. Since K is assumed to be indirectly

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

378 A. J. Garćıa et al.

consistent, at least one of A and B is defeasible. Assume without loss of generality that

B is defeasible. Then A �≺ B so A defeats B. But then E is not conflict free.

However, unlike in the case studied by Caminada et al . (2014), there are counterex-

amples to strict closure and indirect consistency for ASPIC+ with dlp-rebut even if K
is indirectly consistent and Rs is closed under transposition.

Example 13

Let K = {t} and Rd = {⇒ a1,⇒ a2,⇒ q} while Rs consists of the following rules:

a1, a2 → p p, q → r p, q → ¬r t, r → s t, r → ¬s
a1,¬p→ ¬a2 p,¬r → ¬q p, r → ¬q t,¬s→ ¬r t, s→ ¬r
a2,¬p→ ¬a1 q,¬r → ¬p q, r → ¬p r,¬s→ ¬t r, s→ ¬t

t,¬r → u t,¬r → ¬u
t,¬u→ r t, u→ r

¬r,¬u→ ¬t ¬r, u→ ¬t
We first show that arguments⇒ a1 and⇒ a2 are in the grounded extension but⇒ a1,⇒
a2 → p is not.

Consider first argument ⇒ a1. This argument has several defeaters. All of them com-

bine the arguments for p and q to conclude either r or ¬r and then combine the resulting

argument for either r or ¬r with the argument for q into an argument for ¬p. This argu-
ment then is with ⇒ a2 combined into an argument for ¬a1. These complex arguments

all have a strict defeater, namely t, since t together with r implies s and ¬s while t

together with ¬r implies u and ¬u. Note that t is strictly preferred over all arguments it

dlp-rebuts, sine t is strict while all arguments it dlp-rebuts are defeasible. Since t, being

strict, has no defeaters by consistency of K, there is a winning strategy in the grounded

game for ⇒ a1, so ⇒ a1 is in the grounded extension.

The proof that ⇒ a2 is in the grounded extension is entirely similar.

We next show that ⇒ a1,⇒ a2 → p is not in the grounded extension. Call this

argument A. It is dlp-rebutted by argument C of the form ⇒ q. Since both A and C

are defeasible, they defeat each other. Next, observe that there is no strict defeater of C,

since all dlp-rebuttals of C need the argument for p as a subargument, which is defeasible.

So there is no winning strategy for A in the grounded game, so A is not in the grounded

extension.

Note that this also yields a counterexample if the set of defeasible rules is totally ordered

and arguments are compared with the weakest- or last-link argument ordering as in

Caminada et al . (2014), since we can then give all four defeasible rules equal priority.

Note that various arguments in the example are contradictory in the sense of Defini-

tion 14(2), so imposing DeLP’s consistency condition on arguments (by requiring that

the set of all conclusions of all their subarguments is indirectly consistent) excludes this

counterexample for DeLP . However, other counterexamples for DeLP exist, for instance,

Example 10 from Section 4.3. If strict closure and indirect consistency are regarded as

desirable, then this is worrying not just for DeLP but also for ASPIC+ since with the

original ASPIC+ definition of rebuttal strict closure and indirect consistency can, as

noted above, for the full case with preferences not be shown without allowing inconsis-

tent arguments. We have now seen that replacing rebut with dlp-rebut does not change

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 379

this, so as regards strict closure and indirect consistency the current state of the art for

ASPIC+ is still suboptimal.

6 Differences in Argument Evaluation

While the DeLP definition of warrant is similar to grounded semantics, there are also

differences, caused by the fact that the constraints on argument lines (Definition 18)

do not coincide with the constraints on games in the game-theoretic proof theory for

grounded semantics (Definition 1). The choices made on the definition of argumentation

lines by Garćıa and Simari (2004) establish constraints based on particular intuitions

that were shown in examples. However, we believe this definition of argumentation lines

has some arguably counterintuitive consequences over the set of warranted literals. We

will discuss them below and then show that adopting grounded semantics avoids these

counterintuitive consequences.

6.1 Having to move a proper defeater after a blocking defeater

Condition (4) of the definition of an acceptable argument line requires the move of a

proper defeater if the previous argument was a blocking defeater, regardless whether the

previous argument was a supporting or an interfering argument. This differs from the

grounded game, in which the proponent must move strict defeaters while the opponent

can move weak defeaters.

Example 14

Consider a dlp with Πf = {p, s, u}, Πs = ∅ and Δ consisting of the rules of the following

arguments:

A1: 〈{q −−≺ p}, q〉 A2: 〈{q −−≺ p; r −−≺ q}, r〉
B1: 〈{t −−≺ s}, t〉 B2: 〈{t −−≺ s ; ¬r −−≺ t},¬r〉
C: 〈{¬t −−≺ u},¬t〉

A2 and B2 attack each other on ¬r and r, while C attacks B1 and thus also B2 on

t. Assume an argument ordering that makes A2 and B2 as well as C and B1 blocking

defeaters of each other (e.g., by not assigning any priority to the rules). Then A2 is not

warranted. Its dialectical tree consists of just one argument line, namely A2, B2 and A2

is marked D in this tree. Note that the line cannot be extended with C, since B2 is a

blocking defeater of A2 while C is not a proper defeater of B2.

Assume now an argument ordering in which C and B1 are still blocking defeaters of

each other but in which B2 is a proper defeater of A2 (for instance, by giving all rules

in B2 priority over all rules in A2). Then A2 is warranted, since its dialectical tree again

consists of just one argument line but now it is A2, B2, C and A2 is marked U in this

tree. Note that the line cannot be extended with B1 since C is a blocking defeater of B2

while B1 is not a proper defeater of C.

So by strengthening B’s attack on A, A turns from not warranted into warranted, which

seems counterintuitive. This example could be analyzed from the reverse perspective of

A being warranted and debilitating B to a blocking defeater will lead to A not being

warranted. This clash of intuitions becomes an interesting issue to study, and a possible

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

380 A. J. Garćıa et al.

avenue for doing so is to adopt the grounded game because supporting arguments have

to be strict defeaters while interfering arguments can be weak defeaters. According to

the grounded game, A2 is not justified with the second argument ordering, since the line

A2, B2, C can be extended with B1 after which C is not allowed since it is not a strict

defeater of B1.

6.2 The non-repetition rule

Suppose that in line with our analysis of Example 14 condition (3) of acceptable argument

lines is changed to the effect that supporting arguments must be strict defeaters while

interfering arguments can be weak defeaters. Then in Example 14 argument A2 is still

warranted with the second argument ordering, since the line A2, B2, C cannot be extended

with B1 for another reason: B1 is a subargument of an argument already moved in the

line, namely B2, so condition (2) of acceptable argument lines prevents extending the line

with B1. So this condition could also be changed by adopting the rule of the grounded

game that only the proponent cannot repeat its arguments. Moreover, this non-repetition

rule might not be extended to proper subarguments of an already-moved argument, as

shown by the following example.

Example 15

Consider a dlp with Πf = {f1, f2, f3, f4}, Πs = ∅ and Rd consists of the rules of the fol-

lowing arguments. Assume also that arguments are ordered according to strict specificity

relations between the conflicting rules.

A: 〈{p −−≺ f1}, p〉
B: 〈{q −−≺ f2 ; ¬p −−≺ q},¬p〉
C: 〈{r −−≺ f3 , f4 ; s −−≺ r ; ¬q −−≺ s , f2},¬q〉
D: 〈{¬r −−≺ f4 ; ¬s −−≺ ¬r},¬s〉

Note that A and B weakly defeat each other, C strictly defeats B on its subargument

for q, and D strictly defeats C by weakly defeating its subargument for s. Now there is

a strict defeater of D, namely

E: 〈{r −−≺ f3 , f4}, r〉

However, E is a subargument of C, so if constraint (3) on argument lines is adopted in

the grounded game, then the game loses completeness, since A and C are in the grounded

extension. Note that the non-repetition rule of the grounded game does not prevent the

moving of E, since E is not identical to C.

We next show that DeLP ’s non-repetition rule can in combination with the other

DeLP constraints on argument lines make that the set of warranted arguments is not

admissible in the sense of Dung (1995).

Example 16

Consider a dlp with Πf = {f1, f2, f3, f4, f5}, Πs = ∅ and Rd consists of the rules of

the following arguments. Assume also that arguments are ordered according to strict

specificity relations between the conflicting rules.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 381

A: 〈{p −−≺ f1}, p〉
B: 〈{r −−≺ f2 ; s −−≺ r , f5 ; t −−≺ s ;¬p −−≺ t , f1},¬p〉
C: 〈{u −−≺ f3 ; ¬t −−≺ u},¬t〉
D: 〈{w −−≺ f4 ; ¬u −−≺ w , f3},¬u〉
E: 〈{¬s −−≺ f5 ; ¬w −−≺ ¬s , f4},¬w〉

According to specificity, B is a proper defeater of A, C is a blocking defeater of B, D is a

proper defeater of C, and E is a proper defeater of D. So A,B,C,D,E is an acceptable

argument line.

Here the argument line terminates, while there is a proper defeater of E, namely

F : 〈{r −−≺ f2 ; s −−≺ r}, s〉

But F cannot be appended to the argument line since it is a subargument of B. So A is

warranted. Moreover, it is easy to see that C, which is a supporting argument for A, is

not warranted, because of the argument line

C: 〈{u −−≺ f3 ; ¬t −−≺ u},¬t〉
D: 〈{w −−≺ f4 ; ¬u −−≺ w , f3},¬u〉
E: 〈{¬s −−≺ f5 ; ¬w −−≺ ¬s , f4},¬w〉
F : 〈{r −−≺ f2 ; s −−≺ r}, s〉

Note that here F can be appended to C,D,E, since A is not in this line.

In sum, we have that A is warranted even though there is no warranted supporting

argument that defends A against its defeater B. So we end up with a set of warranted

arguments that is not admissible in the sense of Dung (1995). If admissibility is accepted

as a minimum rationality constraint on argument evaluation, then this is another reason

to adopt grounded semantics for DeLP .

Garćıa and Simari motivate their non-repetition rule with an example that has essen-

tially the same structure as Example 9. In this example, they want to prevent infinite

argumentation lines. The grounded game indeed prevents this: the only possible game

for A2 is P1: A2, O1: B2 and the game terminates with a win by O since P cannot repeat

its argument A2.

Garćıa and Simari motivate the subargument part of their non-repetition rule with a

schematic example of the following form (leaving the rules implicit):

Example 17

Consider the following arguments, where each argument X1 is a subargument of X2:

〈{A1}, p〉 〈{A2},¬r〉
〈{B1}, q〉 〈{B2},¬p〉
〈{C1}, s〉 〈{C2},¬q〉
〈{D1},¬p〉 〈{D2},¬s〉

Assuming that the other constraints on argumentation lines are satisfied, they want to

prevent the infinite line A2, B2, C2, D2, A1, B2, In the grounded game, this is indeed

achieved, since the proponent is not allowed to repeat C2 in attack on B2.

We conclude that the non-repetition rule of the grounded game treats all of Garćıa

and Simari’s examples in the way they want and avoids the arguably counterintuitive

outcomes of DeLP in other examples.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

382 A. J. Garćıa et al.

6.3 Concordance

Constraint (2) on argument lines requires both the set of all supporting and the set of all

interfering arguments in the line to be concordant, which means that the set of all rules

of all these arguments must be consistent with the facts. If the dlp satisfies Caminada

and Amgoud’s 2007 rationality postulate of strict closure (saying that the set of all

conclusions of all arguments in an extension must be indirectly consistent), then for the

set of supporting arguments the requirement of concordance is a semantically redundant

but computationally desirable addition to the grounded game: redundant since if an

argument is warranted/justified, then all of proponent’s arguments in a winning strategy

for the argument will be in the grounded extension and will thus satisfy concordance;

and desirable since it may prune the search space. However, otherwise concordance for

supporting arguments can make a difference. In such cases, there seems to be no clear

reason why either adopting or not adopting concordance is better.

However, for the set of interfering arguments requiring concordance is arguably unde-

sirable, as the following example shows.

Example 18

Consider a dlp with Πf = {f1, f2, f3, f4}, Πs = ∅ and Rd consists of the rules of the fol-

lowing arguments. Assume also that arguments are ordered according to strict specificity

relations between the conflicting rules.

A: 〈{p −−≺ f1}, p〉
B: 〈{q −−≺ f2 ; ¬p −−≺ q},¬p〉
C: 〈{r −−≺ f3 ; ¬q −−≺ r , f2},¬q〉
D: 〈{¬q −−≺ f4 ; ¬r −−≺ ¬q},¬r〉

The dialectical tree for A has just one line, viz. A,B,C. Note that D cannot be appended

to the line since B and D support contradictory (sub)conclusions q and ¬q. So A is

warranted. Yet C, which supports A, is not warranted, since the line C can be extended

with D. Note also that {A} is not an admissible set since it does not defend A against

B while {A,C} is not an admissible set, since it does not defend C against D.

If admissibility is adopted as a minimum constraint on sets of warranted arguments, then

this example shows that concordance for the set of interfering arguments is undesirable.

In other words, arguing in favor of concordance for the set of interfering arguments

requires arguing against admissibility as a minimum requirement on sets of warranted

arguments. A less controversial solution is to adopt the game for grounded semantics,

which, as shown above, is arguably also a good idea for other reasons.

Example 19

Consider the following arguments, built from the rules in the previous example, where

each argument X1 is a subargument of X2:

〈{A1}, p〉 〈{A2},¬r〉
〈{B1}, q〉 〈{B2},¬p〉
〈{C1}, r〉 〈{C2},¬q〉

Assuming that the other constraints on argumentation lines are satisfied, they want to

prevent the line A2, B2, C2, A2. In the grounded game this not prevented but this does

not make A2 warranted or the line infinite. The line can (as an argument game) only

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 383

be continued with P3: B2, O3: C2 after which the game terminates with a loss by the

proponent since he cannot repeat A2. So the grounded game satisfies Garćıa and Simari’s

intuitions about this example.

6.4 Reformulating DeLP with grounded semantics

We have seen that DeLP ’s definition of warrant has some arguably counterintuitive

outcomes, due to the particular constraints on acceptable argumentation lines. We have

also seen that adopting grounded semantics both avoids these outcomes and treats Garćıa

and Simari’s motivating examples in the way they want. Therefore and because of the

similarities between DeLP ’s notion of warrant and the grounded argument game, it seems

a good idea to develop a version of DeLP with its current account of warrant replaced with

grounded semantics. This can be done by replacing the current constraints on acceptable

argument lines with the rules of the grounded game (where proponent and opponent

arguments are, respectively, equated with supporting and interfering arguments), and

by replacing proper and blocking defeat with strict defeat and defeat. Then given the

equivalence noted at the end of Section 3.3, either the grounded game or an accordingly

modified definition of dialectical trees can be used to redefine warrant. Thus adopting

grounded semantics for DeLP would also establish clear links between DeLP and a large

body of other research on formal argumentation. Among other things, it would facilitate

a study of the satisfaction of rationality postulates in DeLP . Finally, a version of DeLP

with grounded semantics would in fact adopt the semantics of Simari and Loui (1992),

which paper was the original source of inspiration for the development of DeLP and

which, as noted above, proposes a notion of warrant that was by Dung (1995) shown to

be equivalent to grounded semantics.

The question arises whether the move to grounded semantics and leaving all other

definitions as they are (let us call the resulting system DeLP(GR)) changes anything as

regards strict closure and indirect consistency. As it turns out, the answer is no, since

Example 10 from Section 4.3 is also forDeLP(GR) a counterexample to satisfaction of strict

closure and indirect consistency. The point is that neither A2 nor A5 has a defeater, so

the grounded game for these arguments ends after the first move. So while the move to

DeLP(GR) ensures admissibility of the set of warranted arguments, it does not guarantee

strict closure and indirect consistency of the set of warranted conclusions. On the other

hand, Proposition 12 applies to DeLP(GR), so the set of warranted conclusions is, as in

original DeLP , guaranteed to be directly consistent.

7 Correspondence Results

We next study correspondence results between aspects of DeLP , DeLP(GR), and ASPIC+.

Of all these results, only Proposition 26 will depend on DeLP(GR); all other results hold

for both DeLP and DeLP(GR). Throughout this section, we will implicitly assume corre-

sponding defeasible logic programs and argumentation theories with the same language

and the same sets of rules and facts. That is, we assume that f ∈ K just in case f ∈ Πf ,

that S → ϕ ∈ Rs just in case ϕ← S ∈ Πs and that S ⇒ ϕ ∈ Rs just in case ϕ −−≺ S ∈ Δ.

Below we will leave the translation between the ASPIC+ and DeLP notations implicit.

We first address the problem of finding a correspondence between DeLP arguments

and ASPIC+ arguments. To find such a correspondence, several assumptions on ASPIC+

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

384 A. J. Garćıa et al.

argumentation theories are needed, since DeLP has unlike ASPIC+ minimality and con-

sistency conditions on arguments. Accordingly, we define simplified ASPIC+ argumen-

tation theories as those AT in which all arguments A are minimal in that if Conc(A) = p

then there exists no argument A′ such that Conc(A′) = p and DefRules(A′) ⊂
DefRules(A); and in which for all arguments A the set Conc(Sub(A))∪Rs∪K is indirectly

consistent.

Lemma 20

Let AT = (AS,K) be any ASPIC+ argumentation theory. For any argument A based

on AT it holds that Conc(Sub(A)) equals the set of all antecedents and consequents of

any rule in Rules(A).

Proof

Immediate from the definition of an ASPIC+ argument.

Proposition 21

Let (Π,Δ) be any defeasible logic program with a corresponding ASPIC+ argumentation

theory (AS,K). For any DeLP argumentD = 〈R, p〉 given (Π,Δ) there exists an ASPIC+

argument A for p on the basis of (AS,K) with DefRules(A) = R.

Proof

Let D = 〈R, p〉 be any DeLP argument given (Π,Δ). Then there exists a defeasible

derivation Dd = L1, . . . , Ln = p of p given (Π, R). Assume without loss of generality that

Dd is minimal. We prove by induction on the definition of defeasible derivations that for

any element of Dd there exists an ASPIC+ argument A on the basis of (AS,K) with

DefRules(A) ⊆ R.
There are two base cases. If Li is a fact, then Li ∈ K so Li is an ASPIC+ argument

with DefRules(A) = ∅ ⊆ R. If Li is a presumption, then ⇒ Li ∈ Rd so ⇒ Li is an

ASPIC+ argument with DefRules(A) = {⇒ Li} ⊆ R.
The induction hypothesis is that for all elements Li ofDd such that there exists a rule r

in Π∪R with body B1, . . . , Bm and head Li and such that all of B1, . . . , Bm precede Li in

Dd there exists an ASPIC+ argument Cj for any Bj (1 ≤ j ≤ m) with DefRules(Cj) ⊆
R. For the induction step, consider any such a rule r and let the ASPIC+ arguments

for B1, . . . , Bm be C1, . . . , Cm. Then if r ∈ Π, then r ∈ Rs, so C = C1, . . . , Cm → Li

is an ASPIC+ argument with DefRules(C) = DefRules(C1) ∪ . . . DefRules(Cm) ⊆
R. Otherwise, r ∈ R so r ∈ Rd, so C1, . . . , Cm ⇒ Li is an ASPIC+ argument with

DefRules(C) = DefRules(C1) ∪ . . . DefRules(Cm) ∪ {r} ⊆ R.
Finally, to prove that DefRules(A) = R, assume for contradiction that there exists a

rule r ∈ R such that r �∈ DefRules(A). Then by Lemma 20 it holds that r’s head is not

in Conc(Sub(A)). But consider then the sequence Dd′ obtained by listing all elements of

Conc(Sub(A)) in any order such that the bodies of any rule precede the rule’s head. It

is easy to verify that Dd′ is a defeasible derivation of p given (Π,Δ). But Dd′ ⊂ Dd, so

Dd is not minimal: contradiction.

Proposition 22

Let (Π,Δ) be any defeasible logic program with a corresponding ASPIC+ argumentation

theory (AS,K) that is simplified. For any ASPIC+ argument A for p on the basis of

(AS,K) there exists a DeLP argument D = 〈DefRules(A), p〉 given (Π,Δ).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 385

Proof

Suppose A is an ASPIC+ argument for p. There are two base cases. Assume first A = p.

Then p ∈ Πf and p is a defeasible derivation since p is a fact. Moreover, since the

ASPIC+ AT is simplified, {p} ∪ Rs ∪ K is indirectly consistent, so (since Π = Rs ∪ K),
no pair of contradictory literals can be derived from Π ∪ ∅. Finally, ∅ is obviously a

minimal subset of Δ satisfying all this. So D = 〈∅, p〉 is a DeLP argument for p given

(Π,Δ).

Assume next A is of the form ⇒ p. Then p is a defeasible derivation since ⇒ p ∈ Δ

so p is a presumption. Moreover, since AT is simplified, there exists no strict ASPIC+

argument for p so A is minimal in its set of defeasible rules. Then the proof that D =

〈{⇒ p}, p〉 is a DeLP argument for p given (Π,Δ) is similar as for facts.

The induction hypothesis is that for any ASPIC+ argument {A1, . . . , Am} →/⇒ p

there exist DeLP arguments for Conc(A1), . . . , Conc(Am) given (Π,Δ). For the induction

step, consider any such ASPIC+ argument. Then there exist defeasible derivations Ddj
for all these conclusions Conc(Aj) (1 ≤ j ≤ m). Then clearly Dd1, . . . , Ddm, p is a

defeasible derivation for p. Moreover, since the ASPIC+ AT is assumed to be simplified,

Conc(Sub(A))∪K is indirectly consistent and since the heads of all rules in DefRules(A)

are in Conc(Sub(A)), no pair of contradictory literals can be derived from Π∪DefRules(A)
(recall that Π = Rs ∪ K). If there existed a DeLP argument D = 〈R, p〉 for p such that

R ⊂ DefRules(A), then by Proposition 21 there would exist an ASPIC+ argument A′ for
p with DefRules(A′) = R. But then A would not be minimal in its set of defeasible rules

[note that Conc(Sub(A′)) ∪ K is indirectly consistent since D satisfies the consistency

constraint on DeLP arguments]. So then AT would not be simplified, which contradicts

our assumption that it is simplified. Thus D = 〈DefRules(A), p〉 is a DeLP argument

for p given (Π,Δ).

There are counterexamples to Proposition 22 for non-simplified ASPIC+ argumentation

theories. Some counterexamples are due to DeLP ’s consistency constraint on arguments.

Consider an ASPIC+ AT with K = {p} and Rd = {⇒ ¬p}. Then there are ASPIC+

arguments p for p and⇒ ¬p for ¬p but the latter has no corresponding DeLP argument,

since both p and ¬p can be defeasibly derived from Π ∪ {⇒ ¬p} (recall that K ∈ Π).

Other counterexamples are due to DeLP ’s minimality constraint on arguments. Consider

an ASPIC+ AT with K = {p}, Rs = {p→ q}, and Rd = {⇒ q}. Then the ASPIC+ ar-

gument⇒ p for p has no corresponding DeLP argument, since 〈∅, q〉 is a DeLP argument

for q, so 〈{⇒ q}, q〉 is not minimal.

It can be shown that the correspondence between ASPIC+ and DeLP arguments is

many-to-one.

Proposition 23

Let (Π,Δ) be any defeasible logic program with a corresponding ASPIC+ argumentation

theory (AS,K) that is simplified.

1. For some DeLP arguments given (Π,Δ), there exist more than one corresponding

ASPIC+ arguments on the basis of (AS,K).
2. For all ASPIC+ arguments (AS,K), there exists a unique corresponding DeLP

argument given (Π,Δ).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

386 A. J. Garćıa et al.

Proof

For (1) consider an example with Πf = {p; r; q ← p; q ← r} and Δ = {s −−≺ q}. TheDeLP

argument {s −−≺ q} for s has two corresponding ASPIC+ arguments A1 = [p → q] ⇒ s

and A2 = [p→ r]⇒ s.

(2) follows since each ASPIC+ argument has a unique set of defeasible rules and uses

all these rules, while DeLP arguments are defined by minimal sets of defeasible rules.

Then the construction in the proof of Proposition 22 clearly induces a unique DeLP

argument.

We next prove correspondences with respect to the attack relations. To this end, we first

define DeLP -counterparts of ASPIC+’s rebutting and unrestricted rebutting attacks.

Definition 22 (a-rebutting and ua-rebutting attack)

A DeLP argument 〈A, p〉 a-rebuts a DeLP argument 〈B, q〉 on 〈B′, q′〉 if 〈B′, q′〉 is a

subargument of 〈B, q〉 and p = −q′ and q′ was derived in 〈B′, q′〉 with a defeasible rule.

A DeLP argument 〈A, p〉 ua-rebuts a DeLP argument 〈B, q〉 on 〈B′, q′〉 if 〈B′, q′〉 is a
subargument of 〈B, q〉 and p = −q′ and B′ �= ∅.
In the proofs of the following propositions, we overload the symbol ⊆ by writing for two

DeLP arguments D1 = 〈S1, p〉 and D2 = 〈S2, q〉 that D1 ⊆ D2 to mean that S1 ⊆ S2.

Likewise for other set-theoretic notations.

Proposition 24

For all ASPIC+ arguments A and A′ on the basis of a simplified argumentation theory,

it holds that if A is (rebutted, u-rebutted, dlp-rebutted) by A′ then the DeLP argument

D corresponding to A is (a-rebutted, ua-rebutted, rebutted) by the DeLP argument D′

corresponding to A′.

Proof

Suppose ASPIC+ argument A′ for p′ rebuts, u-rebuts, or dlp-rebuts ASPIC+ argument

A on A′′ for p. Consider the corresponding DeLP arguments D′ for p′ and D′′ for p,
which exist and are unique by Proposition 22. Note that D′′ ⊆ D by Proposition 22 since

DefRules(A′′) ⊆ DefRules(A).

For rebut, p = −p′ while p′ was derived in A′′ with A′′ defeasible top rule. Since A′′’s
top rule is in D′′, D′ a-rebuts D′′ since p and p′ are complementary literals. But then D′

a-rebuts D since D′′ ⊆ D.

For u-rebut, p = −p′ while DefRules(A′′) �= ∅. Then by Proposition 22 it holds that

D′′ �= ∅. Then D′ ua-rebuts D′′ since p and p′ are complementary literals. But then D′

ua-rebuts D since D′′ ⊆ D.

For dlp-rebut, K ∪ {p, p′} is indirectly inconsistent. Then in DeLP the set Π ∪ {p, p′}
is contradictory. Then D′ rebuts D′′. But then D′ rebuts D since D′′ ⊆ D.

Proposition 25

For all DeLP arguments D and D′ based on any defeasible logic program it holds that

if D is (rebutted, a-rebutted, ua-rebutted) by D′ then all ASPIC+ arguments A corre-

sponding to D are (dlp-rebutted, rebutted, u-rebutted) by any ASPIC+ argument A′

corresponding to D′.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 387

Proof

Suppose D′ for p′ rebuts, a-rebuts, or ua-rebuts D on D′′ for p. Consider any ASPIC+

argument A corresponding to D and A′ corresponding to D′ , which exist by Proposi-

tion 22. By the same proposition, DefRules(A) = D and DefRules(A′) = D′.
For rebut, Π∪{p, p′} is contradictory, that is, there exists a defeasible derivation for two

literals h and −h from this set. Note that such a defeasible derivation is strict since the set

contains no defeasible rules. Then in ASPIC+ the set K∪{p, p′} is indirectly inconsistent.

By Lemma 20 and the fact that DefRules(A) = D, we have that p ∈ Conc(Sub(A)) and

p′ ∈ Conc(Sub(A′)). Then A′ dlp-rebuts A.
For a-rebut, p and p′ are complementary literals while p′ was derived in D′′ with a

defeasible rule. Then p = −p′. By Lemma 20 and the fact that DefRules(A) = D, we

have that p ∈ Conc(Sub(A)). Moreover, by construction of A, p is derived in A with a

defeasible rule. Then A′ a-rebuts some subargument of A so A′ a-rebuts A.
For ua-rebut, p and p′ are complementary literals while D′′ �= ∅. Then p = −p′. By

Lemma 20 and the fact that DefRules(A) = D, we have that p ∈ Conc(Sub(A)). Then

A′ a-rebuts some subargument of A so A′ a-rebuts A.

Propositions 21, 22, 24, and 25 together imply the following proposition (recall that

DeLP(GR) is the variant of DeLP modified with grounded semantics).

Proposition 26

Let (Π,Δ) be any defeasible logic program with a corresponding ASPIC+ argumentation

theory (AS,K) that is simplified. Let the DeLP(GR) and ASPIC+ orderings coincide in

that for all DeLP(GR) argumentsD1 andD2 it holds thatD1 ≺ D2 iff for all corresponding

ASPIC+ arguments A1 and A2 it holds that A1 ≺ A2 and for all ASPIC+arguments A1

and A2 it holds that A1 ≺ A2 iff for the corresponding DeLP arguments D1 and D2 it

holds that D1 ≺ D2. Let also DeLP(GR) attack be rebut (a-rebut, ua-rebut) iff ASPIC+

attack is dlp-rebut (rebut, u-rebut). Then any DeLP(GR) argument D is warranted iff

all corresponding ASPIC+ arguments A are justified and any ASPIC+ argument A is

justified iff the corresponding DeLP argument D is warranted.

Proof

(Sketch) From left to right, consider any DeLP argument D that is warranted. Then

there exists a dialectical tree TD for D with D labeled U . Consider any corresponding

dialectical tree TA of ASPIC+ arguments obtained by replacing any supporting argument

in TD by some corresponding ASPIC+ argument and replacing any interfering argument

in TD by all corresponding ASPIC+ arguments. By Proposition 25 and our assumptions

on the argument orderings, the defeat relations between DeLP arguments in TA are

preserved as defeat relations between the corresponding ASPIC+ arguments in TD. It is

left to prove that TA contains all defeaters of any of its supporting arguments. Assume

for contradiction that some defeater B of some supporting argument A in TA is not

in TA. By Proposition 22 B has a unique corresponding DeLP argument Bd. Then by

Proposition 24 and our assumptions on the argument orderings it holds that Bd defeats

the DeLP argument Ad corresponding to A. But then Bd is in TD so B is in TA.

Contradiction.

From right to left, the proof is similar but simpler since any ASPIC+ argument has

just one corresponding DeLP argument.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

388 A. J. Garćıa et al.

8 Conclusion

In this paper, we have made detailed comparisons between DeLP and ASPIC+ as for-

malisms for rule-based argumentation. The comparisons especially focussed on inter-

translatability, consistency and closure properties, and intuitive adequacy. Computa-

tional and implementational issues were not discussed but from other sources, such as

Modgil and Prakken (2018) and Garćıa and Simari (2018), it is clear that these issues

have received substantially more attention for DeLP than for ASPIC+. Our comparisons

have hopefully contributed to a better understanding of the two formalisms and their

relations, similarities, and differences.

To summarize our main findings, we have first seen that DeLP ’s notion of rebutting

attack and its consistency and minimality constraints on arguments are intuitively ap-

pealing and in some special cases more so than there ASPIC+ counterparts. However,

we have also seen that the DeLP definitions may not fully comply with Caminada and

Amgoud’s rationality postulates of strict closure and indirect consistency in cases where

ASPIC+ satisfies these postulates. In Section 4.1, we have included a thorough discussion

about these issues.

Furthermore, we have argued that there are reasons to consider a variant of DeLP with

grounded semantics, since its current notion of warrant arguably has counterintuitive

consequences in some examples and in general leads to sets of warranted arguments that

are not admissible. We have seen that both problems can be avoided by adopting the

argument game for grounded semantics in DeLP . A version of DeLP with grounded

semantics would also be a return to the semantics of Simari and Loui (1992), which

paper was the original source of inspiration for the development of DeLP . Arguing in

defence of DeLP ’s current notion of warrant requires arguing, first, that its treatment

of Example 14 is not counterintuitive and second, that admissibility is not a minimum

requirement for sets of warranted arguments. Alternatively, if one agrees that Example 14

is treated incorrectly by DeLP but not that admissibility must be satisfied by warrant,

then less substantial changes in the definition of acceptable argument lines might suffice.

Finally, we have under some minimality and consistency assumptions on ASPIC+

arguments identified a one-to-many mapping between DeLP arguments and ASPIC+

arguments in such a way that if DeLP is modified with grounded semantics, then the

resulting DeLP(GR)’s notion of warrant is equivalent to ASPIC+’s notion of justification.

This result was proven for three alternative definitions of attack.

As for future research, since DeLP(GR) generates abstract argumentation frameworks,

it can be investigated to which extent properties of DeLP(GR) depend on grounded seman-

tics or are inherited by other semantics for AFs. Future research could also investigate

whether incorporating DeLP ’s notion of rebutting attack and/or its consistency and min-

imality requirements on arguments in ASPIC+ can be done in a way that fully preserves

the current results on how ASPIC+ respects the various rationality postulates. Given

the results in this paper, this would require further changes in the ASPIC+ framework.

References

Amgoud, L. and Besnard, P. 2013. Logical limits of abstract argumentation frameworks.
Journal of Applied Non-classical Logics 23, 229–267.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

A comparative study of ASPIC+ and DeLP 389

Amgoud, L., Bodenstaff, L., Caminada, M., McBurney, P., Parsons, S., Prakken, H.,
van Veenen, J. and Vreeswijk, G. 2006. Final review and report on formal argumentation
system. Deliverable D2.6, ASPIC IST-FP6-002307.

Baroni, P., Caminada, M. and Giacomin, M. 2011. An introduction to argumentation
semantics. The Knowledge Engineering Review 26, 365–410.

Baroni, P., Caminada, M. and Giacomin, M. 2018. Abstract argumentation frameworks and
their semantics. In Handbook of Formal Argumentation, P. Baroni, D. Gabbay, M. Giacomin,
and L. van der Torre, Eds, vol. 1. College Publications, London, 157–234.

Besnard, P. and Hunter, A. 2001. A logic-based theory of deductive arguments. Artificial
Intelligence 128, 203–235.

Besnard, P. and Hunter, A. 2008. Elements of Argumentation. MIT Press, Cambridge, MA.

Caminada, M. and Amgoud, L. 2007. On the evaluation of argumentation formalisms. Arti-
ficial Intelligence 171, 286–310.

Caminada, M., Modgil, S. and Oren, N. 2014. Preferences and unrestricted rebut. In Com-
putational Models of Argument. Proceedings of COMMA 2014, S. Parsons, N. Oren, C. Reed,
and F. Cerutti, Eds. IOS Press, Amsterdam etc, 209–220.

Caminada, M. and Wu, Y. 2011. On the limitations of abstract argumentation. In Proceedings
of the 23rd Benelux Conference on Artificial Intelligence (BNAIC-11), Gent, Belgium.

Cayrol, C. 1995. On the relation between argumentation and non-monotonic coherence-based
entailment. In Proceedings of the 14th International Joint Conference on Artificial Intelligence,
1443–1448.

Cohen, A., Garćıa, A. J. and Simari, G. R. 2016. A structured argumentation system with
backing and undercutting. Engineering Applications of AI 49, 149–166.

Dung, P. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n–person games. Artificial Intelligence 77, 321–357.

Garćıa, A. J., Chesñevar, C. I. and Simari, G. R. 1993. Making argument systems computa-
tionally attractive. In Proceedings of the XIII International Congress of the Chilean Computer
Science Society.

Garćıa, A. J. and Simari, G. R. 2004. Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming 4, 95–138.

Garćıa, A. J. and Simari, G. R. 2014. Defeasible logic programming: DeLP-servers, contextual
queries, and explanations for answers. Argument and Computation 5, 63–88.

Garćıa, A. J. and Simari, G. R. 2018. Argumentation based on logic programming. In Hand-
book of Formal Argumentation, P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre,
Eds, vol. 1. College Publications, London, 408–433.

Garćıa, A. J., Simari, G. R. and Chesñevar, C. I. 1998. An argumentative framework
for reasoning with inconsistent and incomplete information. In Proceedings of the ECAI’98
Workshop on Practical Reasoning and Rationality, Brighton, UK.

Garćıa, A. J. 2000. Defeasible Logic Programming: Definition, Operational Semantics and Par-
allelism. Ph.D. thesis, Computer Science and Engineering Department, Universidad Nacional
del Sur, Bah́ıa Blanca, Argentina.

Garćıa, A. J., Chesñevar, C. I., Rotstein, N. D. and Simari, G. R. 2013. Formalizing
dialectical explanation support for argument-based reasoning in knowledge-based systems.
Expert Systems with Applications 40, 8, 3233–3247.

Garćıa, A. J., Rotstein, N. D., Tucat, M. and Simari, G. R. 2007. An argumentative
reasoning service for deliberative agents. In Knowledge Science, Engineering and Management,
Second International Conference, KSEM 2007, Z. Zhang and J. H. Siekmann, Eds. Lecture
Notes in Computer Science, vol. 4798. Springer, 128–139.

Gorogiannis, N. and Hunter, A. 2011. Instantiating abstract argumentation with classical-
logic arguments: postulates and properties. Artificial Intelligence 175, 1479–1497.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

390 A. J. Garćıa et al.

Lifschitz, V. 1996. Foundations of logic programs. In Principles of Knowledge Representation,
G. Brewka, Ed. CSLI Publications, 69–128.

Mart́ınez, M. V., Garćıa, A. J. and Simari, G. R. 2012. On the use of presumptions in struc-
tured defeasible reasoning. In Computational Models of Argument. Proceedings of COMMA
2012, B. Verheij, S. Szeider, and S. Woltran, Eds. Frontiers in Artificial Intelligence and
Applications, vol. 245. IOS Press, 185–196.

Modgil, S. and Caminada, M. 2009. Proof theories and algorithms for abstract argumenta-
tion frameworks. In Argumentation in Artificial Intelligence, I. Rahwan and G. Simari, Eds.
Springer, Berlin, 105–129.

Modgil, S. and Prakken, H. 2013. A general account of argumentation with preferences.
Artificial Intelligence 195, 361–397.

Modgil, S. and Prakken, H. 2014. The ASPIC+ framework for structured argumentation:
A tutorial. Argument and Computation 5, 31–62.

Modgil, S. and Prakken, H. 2018. Abstract rule-based argumentation. In Handbook of Formal
Argumentation, P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, Eds, vol. 1. College
Publications, London, 73–141.

Nelkin, D. 2000. The lottery paradox, knowledge, and rationality. The Philosophical Re-
view 109, 373–409.

Parsons, S. and Cohen, A. 2018. On the relationship between DeLP and ASPIC+. In
Argumentation-based Proofs of Endearment. Essays in Honor of Guillermo R. Simari on
the Occasion of his 70th Birthday, C. Chesñevar et al., Ed. College Publications, London,
293–323.

Pollock, J. 1987. Defeasible reasoning. Cognitive Science 11, 481–518.

Pollock, J. 1995. Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press,
Cambridge, MA.

Prakken, H. 1999. Dialectical proof theory for defeasible argumentation with defeasible priori-
ties (preliminary report). In Formal Models of Agents, J.-J. Meyer and P.-Y. Schobbens, Eds.
Number 1760 in Springer Lecture Notes in AI. Springer Verlag, Berlin, 202–215.

Prakken, H. 2010. An abstract framework for argumentation with structured arguments.
Argument and Computation 1, 93–124.

Prakken, H. 2016. Rethinking the rationality postulates for argumentation-based inference.
In Computational Models of Argument. Proceedings of COMMA 2016, P. Baroni, T. Gordon,
T. Scheffler and M. Stede, Eds. IOS Press, Amsterdam etc, 419–430.

Simari, G. R. and Loui, R. 1992. A mathematical treatment of defeasible argumentation and
its implementation. Artificial Intelligence 53, 125–157.

Simari, G. R., Chesñevar, C. I. and Garćıa, A. J. 1994a. Focusing inference in defeasible
argumentation. In IV Iberoamerican Conference on Artificial Intelligence. IBERAMIA’94.

Simari, G. R., Chesñevar, C. I. and Garćıa, A. J. 1994b. The role of dialectics in defeasible
argumentation. In XIV International Conference of the Chilean Computer Society, November
1994, Concepcin , Chile, 111–122.

Teze, J. C., Gottifredi, S., Garćıa, A. J. and Simari, G. R. 2015. Improving
argumentation-based recommender systems through context-adaptable selection criteria.
Expert Systems with Applications 42, 21, 8243–8258.

Tucat, M., Garćıa, A. J. and Simari, G. R. 2009. Using defeasible logic programming with
contextual queries for developing recommender servers. In AAAI Fall Symposium Series.

Vreeswijk, G. 1997. Abstract argumentation systems. Artificial Intelligence 90, 225–279.

Wu, Y. and Podlaszewski, M. 2015. Implementing crash-resistence and non-interference in
logic-based argumentation. Journal of Logic and Computation 25, 303–333.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068419000437
Downloaded from https://www.cambridge.org/core. IP address: 83.85.136.114, on 13 Aug 2020 at 08:51:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068419000437
https://www.cambridge.org/core

	Introduction
	History
	Formal Preliminaries
	Abstract argumentation frameworks
	ASPIC+
	Defeasible Logic Programming

	Comparing the Argument Definitions
	On rationality postulates
	Minimality
	Consistency

	Comparing the Attack Relations
	Differences in Argument Evaluation
	Having to move a proper defeater after a blocking defeater
	The non-repetition rule
	Concordance
	Reformulating DeLP with grounded semantics

	Correspondence Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

