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Predicting a Distal Outcome Variable From a Latent
Growth Model: ML versus Bayesian Estimation

Sanne C. Smid, 1 Sarah Depaoli, 2 and Rens Van De Schoot 1,3

1Utrecht University
2University of California
3North-West University

Latent growth models (LGMs) with a distal outcome allow researchers to assess longer-term
patterns, and to detect the need to start a (preventive) treatment or intervention in an early stage.
The aim of the current simulation study is to examine the performance of an LGM with
a continuous distal outcome under maximum likelihood (ML) and Bayesian estimation with
default and informative priors, under varying sample sizes, effect sizes and slope variance values.
We conclude that caution is needed when predicting a distal outcome from an LGMwhen the: (1)
sample size is small; and (2) amount of variation around the latent slope is small, even with a large
sample size. We recommend against the use of ML and Bayesian estimation with Mplus default
priors in these situations to avoid severely biased estimates. Recommendations for substantive
researchers working with LGMswith distal outcomes are provided based on the simulation results.

Keywords: Simulation study, latent growth model, distal outcome, informative priors

Latent growth models (LGMs) are commonly used to study
developmental processes over time (Duncan, Duncan, &
Strycker, 2006; Little, 2013, pp. 246–285; McArdle &
Nesselroade, 2003; Meredith & Tisak, 1990). LGMs can be
extended with a distal (long-term) outcome variable, which
refers to a wave of assessment that occurs long after the other
waves of assessment in the LGM. By estimating the regres-
sion coefficients from the latent intercept and latent slope to
the distal outcome variable, researchers can examine
whether someone’s initial status (latent intercept) or growth
rate (latent slope) can predict the distal outcome variable.
Examples within the field of public health include predict-
ing: young adult depression from conduct and emotional
problems at a younger age (Koukounari, Stringaris, &

Maughan, 2017); health-risking sexual behavior among
young adults from adolescent substance initiation (Spoth,
Clair, & Trudeau, 2014); or reading and writing problems
from the development of babies with a family risk of dys-
lexia (Wijnen, de Bree, van Alphen, de Jong, & van der Leij,
2015).

Another example of an LGMwith distal outcomes is from
Holgersen, Boe, Klöckner, Weisæth, and Holen (2010), who
studied post-traumatic stress caused by an oil rig disaster. An
LGM is analyzed with four time points closely after the oil
rig disaster (one to three days; four to seven days; two weeks;
and three weeks), and two distal outcome variables mea-
sured five and 27 years after the disaster. By using this
model, Holgersen et al. (2010) were able to investigate
whether the participants’ initial status or growth rate on post-
traumatic stress can predict the levels of stress five and 27
years later.

Hence, LGMs with distal outcomes allow for the assess-
ment of longer-term patterns through the inclusion of distal
outcomes. Based on the analysis of LGMs with distal out-
comes, a treatment or intervention can be started sooner in
order to take preventive actions. Adding a distal outcome
variable to an LGM can therefore truly enhance the prac-
tical implications of a study.
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In a review of the literature, no methodological or simu-
lation studies were found examining the performance of
LGMs with a distal outcome. However, if researchers
base their sample size and choice for estimation method
on LGM simulation results, then the expected influence of
the distal outcome variable is overlooked. Therefore, we
see an important need to examine the performance of an
LGM with a distal outcome, so that researchers who want
to analyze such a model can rely on simulation results
suitable for their model of interest. To our knowledge,
this is the first simulation study examining the performance
of an LGM with a distal outcome.

One important component when examining the perfor-
mance of LGMs is the estimation method implemented.
Much of the literature implementing LGMs represents
frequentist estimation (e.g., maximum likelihood).1

A viable alternative estimation method that is more
recently established in the literature is Bayesian estima-
tion (for examples of Bayesian LGM simulation studies
see: van de Schoot, Broere, Perryck, Zondervan-
Zwijnenburg, & van Loey, 2015; Zhang, Hamagami,
Wang, Nesselroade, & Grimm, 2007; Zondervan-
Zwijnenburg, Depaoli, Peeters, & van de Schoot, 2018).
Within the Bayesian framework, prior information about
parameters of the model is combined with the observed
data. A Markov chain Monte Carlo (MCMC) estimation
algorithm is used to obtain the posterior, which is
a compromise between the data and the specified prior
distributions.2 One unique benefit of Bayesian estimation
is the inclusion of prior information (e.g., Kruschke,
Aguinis, & Joo, 2012; Lee & Wagenmakers, 2014; van
de Schoot & Depaoli, 2014). Using informative priors
can lead to a decrease in estimation bias and an increase
in statistical power compared to the results of frequentist
methods, such as maximum likelihood estimation (see,
e.g., Miočević, MacKinnon, & Levy, 2017; van de
Schoot et al., 2015). These features are especially valu-
able under instances of small sample sizes. As discussed
in – among many others – Gelman et al. (2014) and
McNeish (2016a) and echoed in the literature review of
Smid, McNeish, Miočević, and van de Schoot (2019), the
successful use of Bayesian estimation with small samples
requires a thoughtful specification of priors.

Intended goals and organization of the paper

In the current study, we examine the performance of an
LGM with a continuous distal outcome. Our interests are
specifically on factors that have been shown to be impor-
tant in the LGM literature, which include: estimator, sam-
ple size, the amount of variation around the latent slope,
and effect size of the regression coefficients (see, e.g.,
Hertzog, von Oertzen, Ghisletta, & Lindenberger, 2008;
Liu, Zhang, & Grimm, 2016; McNeish, 2016a; van de
Schoot et al., 2015; Zondervan-Zwijnenburg et al.,
2018). Regarding the estimator, we are particularly inter-
ested in comparing Bayesian estimation under various
prior specifications (e.g., informative priors versus diffuse
default priors) to frequentist maximum likelihood estima-
tion. This investigation will highlight ‘best practice’ when
assessing longitudinal growth in the presence of a distal
outcome.

Next, we discuss relevant simulation literature on the
model, and then we introduce the (Bayesian) LGM with
a distal outcome. We then describe the simulation design
and discuss the results. We conclude with a discussion and
recommendations for researchers working with LGMs
with distal outcomes.

PREVIOUS RESEARCH ON DISTAL OUTCOMES

Within the finite mixture modeling framework, distal out-
comes are regularly studied (for empirical studies see, e.g.,
Eastman, Mitchell, & Putnam-Hornstein, 2016; Hipwell
et al., 2016; Jiang et al., 2016; Petras & Masyn, 2010;
and for methodological and simulation studies see, e.g.,
Bakk & Vermunt, 2016; Bray, Lanza, & Tan, 2015;
Huang, Brecht, Hara, & Hser, 2010; van de Schoot,
Sijbrandij, Winter, Depaoli, & Vermunt, 2017; Vermunt,
2010). Distal outcomes and covariates can impact the latent
class structure within mixture models, and several methods
are proposed to deal with this (Bakk, Oberski, & Vermunt,
2016; Asparouhov & Muthén, 2014; Bakk & Vermunt,
2016; Lanza, Tan, & Bray, 2013; Vermunt, 2010).
Relevant to the current investigation is that adding a distal
outcome increases the complexity of the model (Huang
et al., 2010). A more complex model has a higher chance
of non-convergence during the estimation process (Huang
et al., 2010), implying a larger sample size is needed for
proper estimation. Additionally, Lanza et al. (2013) discuss
another factor that further complicates predicting a distal
outcome variable from latent class membership: Namely,
the value of the predictor – the true class membership – is
not known, but estimated in the model. There are similar
concerns for the model under investigation in the current
study. Akin to mixture models, the values of the predictors –
the true values of the latent intercept and latent slope from
the LGM – are unknown and estimated by the growth

1Maximum likelihood (ML) estimation is based on asymptotic theory,
which implies that large sample sizes are required to meet the assumptions
of the estimation method to obtain unbiased parameter estimates. For
a conceptual explanation of ML estimation, we refer to Myung (2003),
and we refer to Meng and Rubin (1993) for a technical in-depth
discussion.

2 For an elaborative discussion of Bayesian estimation, we refer to,
among many others: Depaoli and van de Schoot (2017), Gelman et al.
(2014), Kaplan (2014), Kaplan and Depaoli (2013), Kruschke (2015), Lee
(2007) and van de Schoot et al. (2014).
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model. Furthermore, model complexity of LGMs increases
when a distal outcome variable is added. We therefore
expect that a relatively larger sample size is needed to
circumvent convergence problems.

LATENT GROWTH MODELS WITH A DISTAL
OUTCOME

There is a rich body of simulation literature examining
many different aspects of performance surrounding the
LGM (see, e.g., Hertzog et al., 2008; Shin, Davison, &
Long, 2017; Tong & Ke, 2016; Ye, 2016). One aspect
that is commonly addressed is the performance of LGMs
under small sample sizes (see, e.g., McNeish, 2016a,
2016b, 2017; van de Schoot et al., 2015; Zondervan-
Zwijnenburg et al., 2018). Different types of LGMs
have been examined in this context, however, there is
no previous simulation work including distal outcomes.
Simulation literature on LGMs (that do not include distal
outcomes) has shown that small sample sizes in relation
to the complexity of the model (i.e., N < 50, in an LGM
with four time-points and two covariates) can lead to
convergence problems when frequentist methods are
used (see, e.g., McNeish, 2016a). Furthermore, analyzing
LGMs with small sample sizes can lead to biased para-
meter estimates and low levels of statistical power when
frequentist methods are used (e.g., van de Schoot et al.,
2015; Zondervan-Zwijnenburg et al., 2018). There are
similar concerns for LGMs with distal outcomes. The
distal outcome variable can cause higher rates of drop-
outs, as the time interval between the different measure-
ment moments is longer than for LGMs without distal
outcomes.

The model

Consider a general LGM with a latent intercept and
a latent linear slope, as originally described by
McArdle (1986), McArdle and Epstein (1987), and
Meredith and Tisak (1990).3 The LGM consists of
a measurement model (Equation 1) and structural model
(Equation 2):

yit ¼ ηIi þ ηSiλt þ εit; (1)

with

ηIi ¼ αI0 þ ξIi; (2)

ηSi ¼ αS0 þ ξSi ;

where yit is the observed outcome for person i at time t, ηIi
and ηSi respectively represent the person-specific latent
intercept and latent linear slope factors, λt denotes the
time score at time t, and εit is the person- and time-
specific error term. αI0 is the population mean of individual
intercept factor values, αS0 is the population mean of indi-
vidual slope factor values, and ξIi and ξSi represent the
differences between the latent factors (ηIi and ηSi) and the
population means (αI0 and αS0).

The LGM can be extended by including a distal outcome
variable (see Figure 1). When adding a distal outcome
variable, the structural model, as shown in Equation 2, is
extended with:

ηDi ¼ aD0 þ β1ηIi þ β2ηSi þ ξDi; (3)

where ηDi is the person-specific latent factor for the
distal outcome, aD0 is the intercept of the distal out-
come; that is, the population mean of the individual
distal outcome variable values when ηIi and ηSi are
zero. β1 and β2 are the regression coefficients represent-
ing the relations between the LGM and the distal out-
come variable, and ξDi represents the person-specific
difference between ηDi and aD0. A more detailed
description of all parameters in this model can be
found in Appendix A1.

Bayesian specification of the model

Within the Bayesian framework, prior distributions are
specified for all unknown parameters in the model. Hence,
for the Bayesian LGM with a distal outcome this contains
the following parameters: latent factor means α, regression
coefficients β, covariance matrix Ψ containing the latent
factor variances and covariance ξ; and matrix Θ contain-
ing the residual variances ε. We refer to these parameters as
θ, which represents a vector of the unknown parameters in
matrices α; β; Ψ and Θ. Hence, the prior distributions
p α; β; Ψ; Θð Þ are denoted by p θð Þ.

We followed the discussion in Lee (2007, pp. 95–98), and
adjusted the posterior distribution for the inclusion of a distal
outcome here. In the posterior analysis, the observed data Y
yit; . . . ; yntð Þ is augmented with the matrix of latent vari-
ables η, resulting in the joint posterior distribution [θ; ηjY].
The unknown parameters in θ can be divided into two
groups: θy, the unknown parameters in Θ associated with
the measurement model; and θw, the unknown parameters
in α; β; and Ψ associated with the structural model. The
prior distributions of the measurement model are assumed to
be independent of the prior distributions of the structural
model, and can therefore be seen as two different sets of

prior distributions: p θð Þ ¼ p θy
� �

p θwð Þ. Hence, the

3 For an introduction into LGMs, we refer to, among many others:
Curran, Obeidat, and Losardo (2010), Duncan et al. (2006), McArdle
(2012), Little (2013), and Stoel, van den Wittenboer and Hox (2004).
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likelihood is expressed by p Yjη; θÞ ¼ pðYjη; θy
� �

and
p ηjθÞ ¼ pðηjθwð Þ. Accordingly, the posterior distribution
of the LGM with a distal outcome is given by
pðθy; θwjY; ηÞ / pðYjη; θy

� �
p θy
� �

pðηjθw½ Þp θwð Þ� �.

SIMULATION DESIGN

The model of interest in the current simulation study, is
an LGM with a latent intercept, latent linear slope, four
time points, and one continuous distal outcome vari-
able, as represented by Equations 1–3, and shown in
Figure 1. The population values for this model are
based on McNeish (2016a). Data sets were generated
and analyzed using Mplus version 8 (Muthén &
Muthén, 2017), and R version 3.4.4 via the package
MplusAutomation version 0.7 (Hallquist & Wiley,
2017; R Core Team, 2018). The following data genera-
tion conditions were varied: sample size (3 levels),
effect size (2 levels), and population values for the
slope variance parameter (2 levels). These three condi-
tions were fully crossed with each other, resulting in 12
different settings for data generation. For each of these
12 settings, 1,000 data sets were generated, and we
analyzed these datasets using eight different estimation
methods: maximum likelihood (ML) estimation;

Bayesian estimation with Mplus default priors;
Bayesian estimation with weak, medium, and strong
informative priors centered at the population values;
and Bayesian estimation with weak, medium, and
strong priors deviating from the population values.
Accordingly, the simulation design includes: 3 (sample
sizes) x 2 (effect sizes) x 2 (slope variance values) x 8
(estimation methods) = 96 cells. An overview of the
simulation design can be found in Table 1, and the
varying conditions are detailed below.

FIGURE 1 The model and population values used in the current simulation study. Note that in this figure, population values are given for a small latent
slope variance ψs (0.10). For a large latent slope variance (1.00), the regression coefficients for β2 are adjusted to 0.10/0.40 to still represent a small/large
effect.

TABLE 1
Overview of the Simulation Design

3 sample sizes: 26 (very small), 52 (small), 325 (large)
2 effect sizes for β1 and β2: 0.20 (small), 0.80 (large)
2 population values for slope variance: 0.10 (small), 1.00 (large)
8 estimation settings:

• Maximum likelihood estimation (ML)
• Bayesian estimation with only Mplus default priors (BayesDefault)
• Bayesian estimation with six sets of informative priors:

•weak, medium and strong priors centered at population values (Info
Weak, Info Medium, Info Strong)

• weak, medium and strong priors deviating from population values
(Deviating Weak, Deviating Medium, Deviating Strong)
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Conditions simulation design

Sample size

Sample size was computed as a factor of the number of
unknown parameters, given by: n = d*a, where a denotes
the number of unknown parameters in the model of interest,
d = 2 represents a very small sample, and d = 4 represents
a small sample (as discussed in Lee & Song, 2004, p. 660).
In the current study, the number of unknown parameters in
the model, a, is 13. Therefore, n = 26 represents a very
small sample size, and n = 52 a small sample size. We also
included n = 325 to see how the various estimation meth-
ods perform under a large sample size.

Effect size

Two different effect sizes are investigated for β1 and β2:
a small effect size, represented by a standardized regression
coefficient of 0.20; and a large effect size, represented by
a standardized regression coefficient of 0.80. Supplementary
file S1 shows the computation of the corresponding unstan-
dardized regression coefficients which are used for data gen-
eration (all Supplementary files are available on the Open
Science Framework: https://osf.io/ycfvg/).

Slope variance

We investigated two levels of variation around the latent
slope to examine whether this influences the prediction of
the distal outcome variable in an LGM. In empirical stu-
dies, the ratio of the intercept and slope variance is often
small to moderate (Hertzog et al., 2008; Liu et al., 2016),
and the slope variance is usually less than 1/4 of the inter-
cept variance (Ke & Wang, 2015). Small ratios are regu-
larly studied in the context of simulation studies (see, e.g.,
Bauer & Curran, 2003; Liu et al., 2016; McNeish, 2016a;
Muthén & Muthén, 2002). However, larger ratios are also
important to examine, as empirical research can produce
any values along that continuum. In the current simulation
study, the intercept variance was fixed at 1.00, and the two
following levels of slope variation were examined: a small
slope variation of 0.10 (ratio of 1/10), and a large slope
variation of 1.00 (ratio of 1/1).

Estimation methods

To investigate the impact of various estimation methods
on the results, we compared ML to seven levels of
Bayesian estimation. For ML, all Mplus default settings
were used regarding convergence (see Muthén & Muthén,
2017). For the Bayesian analyses, the median point esti-
mate of the posterior was saved, no thinning was used (i.e.
thinning interval = 1), and two Markov chains were speci-
fied for each model parameter. The Gelman–Rubin poten-
tial scale reduction (PSR) factor (see, e.g., Gelman et al.,

2014; Gelman & Rubin, 1992) was used to assess conver-
gence. The convergence criterion was set to 0.01 instead of
the 0.05 Mplus default, to request a stricter criterion and
ensure convergence was obtained. The minimum and max-
imum number of iterations per chain were increased and set
at 50,000 and 150,000, respectively. The first half of the
iterations within each chain was discarded as the burn-in
phase, and the remaining iterations defined the posterior.
Aside from the PSR factor, convergence was also visually
examined for two randomly selected data sets for each of
the 12 data generating conditions. These randomly selected
data sets were analyzed using the different Bayesian esti-
mation conditions, and then trace plots for all estimated
parameters were visually examined for fluctuations or other
signs of non-convergence.

Prior Specifications for Bayesian Estimation.
Here, we discuss the prior specifications for the seven
Bayesian estimation settings. First, Bayesian estimation with
only diffuse Mplus default priors was used (i.e. BayesDefault);
default priors can be found inAppendixA2. The other six levels
of Bayesian estimation contain informative prior distributions
for five parameters in themodel to mimic an achievable applied
data situation, where the researcher would have information
about some model parameters but not all of them. The model
parameters with informed priors were: the mean of the latent
intercept; the mean of the latent slope; the intercept of the distal
outcome; and the two regression coefficients. Mplus default
priors were used for the remaining model parameters.

Two main types of prior distributions were specified: prior
distributions that contained information similar to the popula-
tion values (informative prior conditions), and distributions that
contained information that was deviating from the population
values (deviating prior conditions). By investigating these two
types of priors, we were able to examine the upper-bound
performance (i.e. when prior distributions are centered at the
population values), as well as a scenario that is probably more
realistic in practice (i.e., when the location of the prior distribu-
tions deviates from the population values). Under these two
main categories of prior location (centered at the population
value, and deviating from it),we investigated varying degrees of
precision in the prior distributions.

Specifically, we investigated weak, medium, and
strong levels of certainty by manipulating the variance
hyperparameter of the prior. In order to set up these
conditions, we used the information we gained from the
results of the condition implementing all Mplus default
prior settings. Upon obtaining the results from the default
prior settings, we logged the posterior standard deviation
(SD) for the five model parameters in question. We then
used this value to help us set three different degrees of
(un)certainty within the prior setting. Specifically, for all
five parameters, a normal distribution was specified, N(μ,
σ2), where σ2 = 150%, 100%, and 50% of the (posterior

PREDICTING DISTAL OUTCOME FROM LGM 173

https://osf.io/ycfvg/


SD)2 of the default prior setting results; these three set-
tings created weak, medium, and strong prior distribu-
tions, respectively. The weakly informative prior had
a variance hyperparameter of 1.50*(posterior SD)2, indi-
cating it contained relatively more uncertainty (i.e. more
variation). The medium informative prior used the poster-
ior standard deviation from the default prior analysis: The
variance hyperparameter was 1.0*(posterior SD)2.
Finally, the strong informative prior was computed as
0.50*(posterior SD)2, indicating it contained the most
certainty out of the three conditions.

For the informative prior distributions, the mean hyper-
parameter (μ) of the prior distribution was set to the popu-
lation value in order to center the bulk of the prior over the
population value. For the deviating prior distribution con-
ditions, the mean hyperparameter (μ) was computed such
that it deviated from the true population value. Specifically,
μ was specified in order that there was a 5% overlap
between the informative and deviating prior distributions.
For example, in the case of parameter β2 with n =325,
small slope variance and small effect size, the population
value was 0.32. The corresponding posterior SD produced
by BayesDefault was 0.4086. Accordingly, the weakly
informative prior was N(0.32, (0.40862 * 1.5 =) 0.25), the
medium informative prior was N(0.32, (0.40862 * 1 =)
0.167), and the strong informative prior was N(0.32,
(0.40862 * 0.5 =) 0.083). Then, the deviating prior distribu-
tions were fixed to overlap with these distributions by 5%
(see Figure 2). Consequently, the weakly deviating prior
was N(−1.642, 0.25), the medium deviating prior was N
(−1.282, 0.167), and the strong deviating prior was N
(−0.813, 0.083). This allowed us to assess the impact of
priors that were slightly deviating from the population,

potentially representing a setting more realistic to applied
inquiries where the truth of the population is unknown.

Note that in the informative conditions, the mean hyper-
parameters were the same in the weak, medium, and strong
distributions. While in the deviating prior conditions, the
means differed for the weak, medium, and strong condi-
tions to maintain the 5% overlap between the informative
and deviating prior distributions. The variance hyperpara-
meters were the same in the informative and deviating
weak conditions; the informative and deviating medium
conditions; and the informative and deviating strong con-
ditions. Appendix A3 shows all of these prior conditions.
For more information on the varying conditions in the
simulation design, we refer to Supplementary file S1.

Evaluation criteria

With small samples or complex models, convergence pro-
blems, warnings, and inadmissible parameter solutions can
occur. Therefore, the number of completed and non-
completed replications (which were highlighted by warning
messages) was examined for each of the cells of the simu-
lation design. Furthermore, for all parameters in the model,
the following evaluation criteria were examined: relative
mean bias, mean squared error (MSE), and coverage.

Relative mean bias was computed by
�θ� θ
� ��

θ

h i
� 100,

where �θ denotes the average estimate across replications, and
θ denotes the specified population value (Muthén & Muthén,
2017). Because the population value of the covariance of the
intercept and slope was zero, the relative bias could not be
computed. The absolute bias (computed by (�θ� θÞ�100) is
therefore reported for the covariance parameter. In interpret-
ing parameter bias, the cutoff value of ±10% was used as
suggested by Hoogland and Boomsma (1998). Values outside
this interval represented problematic levels of bias.

The MSE was computed by SDð Þ2 þ �θ� θ
� �2

, where
SD denotes the standard deviation across replications, �θ
denotes the average estimate across replications, and θ
denotes the specified population value (Muthén &
Muthén, 2017). The MSE takes the relative bias and varia-
bility across replications into account. Therefore, the smal-
ler the MSE, the closer the estimated value is to the
population value, across replications.

Coverage was denoted by the proportion of replications for
which the 95% confidence or credibility interval contains the
population value. Values between 0.925 and 0.975 are consid-
ered to represent good parameter coverage (Bradley, 1978).
Values outside the interval could suggest biased standard error
estimates.

Finally, for the two regression coefficients β1 and β2,
statistical power was reported, that is, the proportion of
estimates across replications that differs significantly from
zero (Muthén & Muthén, 2017). The preferred value for
power is considered to be 0.80 (Muthén & Muthén, 2002).

FIGURE 2 Prior distributions for regression coefficient β2, when n =
325, the slope variance is small (0.10), and the effect size is small (0.20).
The three grey lines represent deviating prior distributions, which contain
weak, medium and strong amounts of information, respectively. The three
black lines represent the weak, medium and strong prior distributions
centered at population values. The triangle shows the specified population
value, and the three crosses the mean hyperparameters of the three deviat-
ing prior distributions. Note that the mean hyperparameters of the three
deviating priors differ, to maintain the 5% overlap with the three informa-
tive prior distributions.
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RESULTS

In this section, we focus extensively on the results of the
parameters related to the distal outcome, and briefly discuss
results of the other LGM parameters. The results of the
medium prior distributions are very similar to either the
weak or strong prior distributions, and have therefore been
moved to Supplementary file S2 to conserve space.

Convergence and warnings

TheML analyses did encounter convergence problems in 8.6%
of the cases, when taking all 12 data generation conditions into
account (out of the 12,000 requested replications, 1,030 of them
had convergence problems). Furthermore, standard errors could
not be computed in 0.075% of the cases (9 out of 12,000
replications). The total number of completed replications
under ML is shown in Table 2. The amount of non-completed
replications when the slope variance was small is 3.11 times as
high as when the slope variance was large (786 non-completed
replications versus 253). Besides non-convergence errors,
warnings related to the latent covariancematrix psi, and residual
covariance matrix theta were given when ML was used, see
Table 2. The total number of warningswas also higherwhen the
slope variance was small: 2.89 times as high than when the
variance of the slope was large (total of 1,112 warnings versus
384). Warnings related to the residual covariance matrix theta
were present 1.80 timesmore oftenwhen the slope variancewas
large, while warnings related to the latent variable covariance

matrix psi occurred 5.44 times more often when the slope
variance was small. For more information on convergence and
warnings, we refer to Supplementary file S1.

From the 1,000 requested replications, the Bayesian ana-
lyses produced a 100% convergence rate, without any
reported warnings. However, when visually examining
trace plots for all parameters for 2 randomly selected data
sets per data generation condition, to inspect if the multiple
chains truly reached convergence, spikes were detected
under the Mplus default priors when small sample sizes
were implemented. Spikes are extreme values sampled dur-
ing MCMC, which cannot always be identified by the poten-
tial scale reduction (PSR) factor if they are happening
uniformly across the duration of the chain. For instance,
for regression coefficient β2, the trace plot showed spikes
with estimates up to 4500 and down to −2000, while the
population value for this parameter was 1.27.4 With a larger
sample size and large slope variance, no spikes were
observed in the trace plots. Interestingly, no spikes were
detected when informative and deviating priors were used
in the analyses, even in the conditions with the smallest
sample size. The appearance of spikes (yes/no) for the vary-
ing simulation conditions when Bayesian estimation with

TABLE 2
Overview of the Simulation Process: the Number of Completed Replications and Warnings When Using Maximum Likelihood (ML) Estimation,

and the Occurrence of Spikes When Using Bayesian Estimation with Mplus Default Priors, for the Varying Simulation Conditions

Small slope variance Large slope variance

Sample
Size

Effect
Size

Completed
replications
for ML Warnings for ML

Spikes for Bayes
Default

Completed
replications
for ML Warnings for ML

Spikes for Bayes
Default

26 Small 830a Total = 345,
θ = 45, Ψ = 300

Yes 914 Total = 150,
θ = 92, Ψ = 58

Yes

Large 758 Total = 332,
θ = 38, Ψ = 294

Yes 908 Total = 162,
θ = 79, Ψ = 83

Yes

52 Small 885c Total = 217,
θ = 3, Ψ = 214

Yes 963a Total = 31,
θ = 17, Ψ = 14

Yes

Large 787b Total = 185,
θ = 3, Ψ = 182

Yes 962 Total = 41,
θ = 12, Ψ = 29

Yes

325 Small 986b Total = 11,
θ = 0, Ψ = 11

Yes 1,000 No warnings No

Large 968 Total = 22,
θ = 22, Ψ = 0

No 1,000 No warnings No

Note. For each of the cells, 1,000 replications were requested. The a, b, and c denote the occurrence of one, two and three non-completed replication(s),
respectively, because the standard errors could not be computed. All other non-completed replications were caused by non-convergence. ‘Total’ shows the
total number of warnings from the completed replications, reported in the Mplus output when ML estimation was used, θ denotes the number of warnings
related to the residual covariance matrix theta, and Ψ the number of problems with the latent variable covariance matrix psi. The detection of spikes (yes/no)
for BayesDefault is based on the visual assessment of traceplots for all parameters for 2 randomly selected data sets per data generation condition. For more
details on (non-)convergence and spikes, we refer to Supplementary file S1.

4 The values of the extreme spikes for parameter β2 correspond to the
following data generation conditions: small slope variance, large effect size,
n =26. The replication number of the data set is 30. The spikes appeared when
Bayesian estimation with default priors was used. For more information, see
Supplementary file S1.
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default priors was used, is reported in Table 2. Interested
readers are referred to Supplementary file S1 for the trace
plots with spikes for one of the examined data sets, and more
details on the visual convergence checks we performed.

Relative bias

We have organized this section into subsections to pro-
mote clarity and highlight the most important patterns
that emerged. First, the results of the LGM are dis-
cussed, followed by an extensive discussion of the
results of the distal outcome. The results of the LGM
parameters are very similar to findings from previous
simulation studies and are therefore only briefly dis-
cussed in the main text.

Relative bias in the LGM

Results of the LGM parameters can be found in
Supplementary file S3. The most problematic levels of
bias are found for the variance parameters of the intercept
and slope, which is in line with previous LGM simulation
results (see, e.g., McNeish, 2016a, 2016b; van de Schoot
et al., 2015). The highest levels of bias for both parameters
are reported when the slope variance was small, although
the impact of the slope variance was more extreme for the
variance parameter of the latent slope. Unexpected was the
deterioration of both variance parameter estimates when
informative priors were specified for other parameters in
the model in combination with Mplus default priors for the
variance parameters (i.e. weak and strong informative prior
conditions), and the improvement of the variance of the
intercept parameter when deviating priors were specified
for other parameters in the model (i.e. weak and strong
deviating prior conditions) in comparison to the Bayesian
default priors condition and ML results. For the variance
parameters of the intercept and slope, ML estimation
resulted in the median closest to the population value
when samples were small, followed by Bayesian estimation
with default priors, Bayesian estimation with informative
and deviating priors (for more information, see Figures 3–4
in Supplementary file S4). This might indicate that the
specified prior distributions for the variance parameters
were not suitable for the current study, in combination
with informative priors for other parameters in the model.
This issue will be further explored and discussed in the
‘Additional Exploration Priors on Variance Parameters’
section, and covered in more detail in the Discussion
section.

Relative bias in the distal outcome

We start this subsection with a discussion of the two
regression coefficients, as these will often be the main
parameters of interest in substantive studies. The section

will be continued by the description of the results of the
intercept and variance of the distal outcome.

Relative Bias for Regression Coefficients β1 and β2.
With a small slope variance, problematic levels of bias were
found when ML and the Bayesian condition with default
prior settings (BayesDefault) were used, even in combination
with a large sample size. Furthermore, higher levels of bias
were also produced with smaller sample sizes. The specifica-
tion of informative priors led to considerable improvements
of the regression coefficient estimates, as can be seen in
Figure 3–4. Deviating prior distributions resulted in extre-
mely high levels of bias for the two regression coefficients.
Higher levels of bias with deviating priors were associated
with a small effect size. Furthermore, a counterintuitive pat-
tern was visible for both coefficients when the slope variance
was small and BayesDefault and ML were used. As can be
seen in Figure 4a,b, the estimate of
β2 with BayesDefault was negatively biased when n= 26
and positively biased when n = 325, and vice versa for β1
(see Figure 3a for β1). The pattern disappeared when infor-
mative priors were specified (Figure 4a,b), and did return
when deviating priors were used, when the slope variance
and effect size were small (Figure 4e). When the slope
variance was large, we did not encounter this pattern and
results looked more sensible: The amount of bias decreased
when the sample size increased. Note that the results for the
smaller sample sizes should be interpreted with caution.
When inspecting the distribution of estimates across replica-
tions, outliers were detected under small sample sizes, as
well as when BayesDefault or ML was used. It is reasonable
to assume that these outliers influenced the relative mean
bias estimates and could have caused the counterintuitive
patterns shown in Figure 4a,b. Therefore, boxplots are pre-
sented in Figures 5 and 6 to show the entire distribution of
estimates across replications. Hence, the figures showing the
relative mean bias should be interpreted in combination with
the boxplots in which the outliers are clearly visible.

In Figures 5 and 6 it can be seen that when the
sample size increases, the amount of outliers decreases
and the distributions of estimates are closer to the true
population values. Furthermore, the distributions of esti-
mates based on Bayesian estimation with informative
priors (weak and strong) were closer to the population
values than when ML and BayesDefault were used. The
distributions of estimates based on the deviating priors
(weak and strong) were clearly deviated from the popu-
lation values, although less outliers did occur compared
to ML and BayesDefault. Comparing β1 and β2, more
extreme outliers were present for the estimation of β2
(especially when the slope variance was small, see
Figure 6a,b). For β1, the estimation of the four data
generation scenarios led to more or less similar distri-
butions and amount of outliers.
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Relative Bias for Intercept αD. When ML and
BayesDefault were used, too high levels of bias were only
reported for the intercept of the distal outcome when the effect
size was large and the slope variance was small (see Figure 7).
The estimates were biased for all sample sizes, and the coun-
terintuitive pattern that was observed for the regression coef-
ficients was present when the slope variancewas small and the

effect size was large (see Figure 7b). As expected, the use of
informative priors improved the estimates. With a large slope
variance (Figure 7c,d) – regardless of the effect size – the bias
of the distal outcome intercept was close to 0% when
using ML, BayesDefault and the two informative prior con-
ditions. The specification of deviating priors led to extremely
biased estimates when sample sizes were small.

FIGURE 3 Relative bias for regression coefficient β1, under varying sample sizes, effect sizes, slope variance values, and estimation methods. The static
black horizontal lines represent the ±10% interval. Subfigures at the left (A-D) present a smaller range of the y-axis to show the performance close to the
±10% boundaries, and therefore deviating prior conditions are not included here. Subfigures at the right (E-H) represent corresponding data generation
conditions as A-D, but also include the deviating conditions. Note that therefore the y-axes of the A-D graphs differ from the y-axes of the E-H graphs.
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The boxplots in Figure 8 show larger ranges of
distributions and more outliers when the slope variance
was small (Figure 8a,b) compared to when the slope
variance was large (Figure 8c, d). This indicates that
the results were more stable across replications when
the slope variance was large.

Relative Bias for Variance Parameter ψD. For the
variance of the distal outcome, biased estimates were
reported for ML when the sample size was small, and this
also occurred for BayesDefault when the sample size was
small in combination with a small slope variance and small
effect (see Figure 9). The estimation of the variance

FIGURE 4 Relative bias for regression coefficient β2, under varying sample sizes, effect sizes, slope variance values, and estimation methods. The static
black horizontal lines represent the ±10% interval. Subfigures at the left (A-D) present a smaller range of the y-axis to show the performance close to the
±10% boundaries, and therefore deviating prior conditions are not included here. Subfigures at the right (E-H) represent corresponding data generation
conditions as A-D, but also include the deviating conditions. Note that therefore the y-axes of the A-D graphs differ from the y-axes of the E-H graphs.
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parameter improved when informative priors were specified
for other parameters in the model and resulted in unbiased
estimates. There was only one exception: When n = 26, the
slope variance was small, and the effect was large (Figure
9b), the estimate was slightly biased. Deviating prior dis-
tributions, specified for other model parameters, led to
increased levels of bias in comparison to ML,
BayesDefault, and the informative prior conditions.

In the boxplots in Figure 10, it can be seen that the highest
outliers were associated with ML estimation and deviating
priors, when samples were small (n = 26, 52); and when the
effect size was large.

Mean squared error

In Supplementary file S3, the mean squared error (MSE)
values are shown for the varying parameters, sample sizes,
effect sizes, and slope variance values. For all parameters,
higher levels of MSE were associated with smaller sample

sizes, the use of Bayesian estimation with weak and/or strong
deviating priors, and/or ML estimation. As the MSE took into
account both variability and bias of the estimates, the MSE
values showed a similar pattern as the distributions of esti-
mates shown in the boxplots in Figures 5, 6, 8, 10, and in
Supplementary file S4.

Coverage

Results in terms of coverage can be found in Supplementary
file S3. When ML was used, 21.15% of the cases showed
under-coverage, but only in 5.13% of all values the coverage
values were below 0.90.5 With BayesDefault, under-coverage
only occurred in 3.21%, and values below 0.90 were not

FIGURE 5 Distribution of the estimates for parameter β1 across completed replications, under varying sample sizes, effect sizes, slope variance values,
and estimation methods. The static black horizontal line denotes the true population value for β1. Outliers are displayed as black circles. Outliers outside the
interval [−4; 5] only occurred for ML, and are denoted by *.

5 These values represent the percentage of cases that showed under- or
over-coverage from a total of 156 cases. 156 is computed as follows: 3
(sample sizes) x 2 (effect sizes) x 2 (slope variance values) x 13 (para-
meters) = 156.
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obtained. Under-coverage was especially associated with smal-
ler sample sizes. The use of informative priors never resulted in
under-coverage rates, while the use of deviating priors often led
to extremely low coverage values – especially for the five
parameters for which deviating priors were specified. Under-
coverage was found in 60.90% of the cases for weak deviating
distributions, and 55.13% of the cases for the strong deviating
distributions, and dramatically low coverage values were
obtained down to 0.002.

ML resulted in 3.21% of the cases in over-coverage
rates, while the use of BayesDefault led to over-coverage
rates in 25% of the cases. The use of informative priors
resulted in over-coverage rates for all situations for the five
parameters for which informative priors were specified. For
the other eight parameters, over-coverage occurred in
13.54% of the cases for the weak informative priors, and
in 9.38% for the strong informative priors.6 Deviating
priors hardly ever resulted in coverage rates that were too
high; 2.56% of the cases for weak deviating priors yielded

over-coverage, as well as 3.85% of the cases for strong
deviating priors.

Power of the regression coefficients β1 and β2

In Table 3, the power rates of β1 and β2 are presented.
With a small sample size, it was impossible to detect
a small effect when ML or BayesDefault were used.
Only in 16.7%, the power levels of ML and
BayesDefault were at or above 0.80.7 Higher levels of

FIGURE 6 Distribution of the estimates for parameter β2 across completed replications, under varying sample sizes, effect sizes, slope variance values,
and estimation methods. The static black horizontal line denotes the true population value for β2. Outliers are displayed as black circles. Note that the range
of the y-axes of subfigures A and B differs from the range of the y-axes of subfigures C and D.

6Here, we used 96 cases instead of 156, because we were interested in
the remaining parameters for which no informative and deviating prior
distributions were specified: 3 (sample sizes) x 2 (effect sizes) x 2 (slope
variance values) x 8 (parameters) = 96.

7Here, we used 48 cases instead of 156, because we were interested in
the two regression coefficient parameters: 3 (sample sizes) x 2 (effect
sizes) x 2 (slope variance values) x 2 (estimation methods) x 2 (para-
meters) = 48.
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power were associated with a larger sample size, a large
effect in the simulated data and a large slope variance.
With the use of informative priors, the large effect was
detected with all sample sizes for both small and large
slope variances. Additionally, it became possible to
detect the small effect when the largest sample size was
used under informative priors. Although high levels of
power were reported for the deviating priors when the
effect and/or sample size was large, the coverage was
dramatically low for the corresponding estimates, espe-
cially for β1.

Additional exploration priors on variance parameters

In all simulation conditions, Mplus default priors were speci-
fied for the variance parameters (see Appendix A2). After
finding some unexpected results as discussed in the section:
‘Relative bias in the LGM’, we explored alternate prior dis-
tributions for the variance parameters. The Inverse Wishart
distribution is the default prior distribution in Mplus for the
covariance matrix of a multivariate normal distribution, which
means that one prior distribution is specified for all elements
in the covariance matrix (Muthén & Muthén, 2017).
Consequently, all elements in the covariance matrix are
assigned an equal level of informativeness (e.g., Asparouhov
& Muthén, 2010). For a comprehensive discussion of the
Inverse Wishart prior distribution, we refer to Schuurman,
Grasman, and Hamaker (2016) and Liu et al. (2016).

As suggested by Liu et al. (2016), another option is to
specify separate priors for the varying parts of the covariance
matrix. This type of prior allows for separate prior distributions
for each variance and covariance parameter. We followed the
suggestions of Liu et al. (2016) when specifying the prior
distributions for the additional exploration. An Inverse
Gamma prior: IG (0.001, 0.001) was specified for the variance
parameters of the intercept, slope, and distal outcome. In turn,
a Uniform prior, U [−1, 1], was specified for the covariance of
the intercept and slope. For one of the worst-case cells in the
design: n =26, small slope variance, small effect size, we ran
1,000 replications for the informative and deviating prior con-
ditions including the separate priors for the variance parameters
and compared those to the existing results.

The specification of the Inverse Gamma and Uniform
priors for the variance parameters resulted in an improve-
ment of the estimates and led to sensible findings (see
Supplementary file S5 for the results in terms of relative
bias, and Supplementary file S6 for the boxplots of the
distribution of estimates across replications). Informative
priors led to a decrease in bias compared to the
BayesDefault condition. In turn, deviating priors led to
increased levels of bias for all four variance parameters
compared to the results of informative prior conditions.
For the variance of the slope and variance of the distal
outcome, higher levels of bias were found for the deviat-
ing prior results compared to BayesDefault results. While
for the variance of the intercept, and the covariance of the
intercept and slope, the deviating prior condition showed

FIGURE 7 Relative bias for the intercept of the distal outcome, under varying sample sizes, effect sizes, slope variance values and estimation methods.
The static black horizontal lines represent the ±10% interval.
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an improvement over BayesDefault results in terms of
bias. The distribution of estimates across replications
(see boxplots in Supplementary file S6), showed similar
patterns. The informative prior conditions resulted in dis-
tributions closer to the true population values, and less
variable than the results of ML and BayesDefault. The
estimates resulting from the specification of deviating
priors showed more variable distributions, and their med-
ians were further away from the population value com-
pared to the informative prior condition.

DISCUSSION

The aim of the current study was to examine the perfor-
mance of an LGM with a continuous distal outcome, under
varying estimation methods, sample sizes, effect sizes, and
variation around the latent slope. Caution is needed when
predicting a distal outcome from an LGM when the sample

size is small, or when the slope variance is small – regard-
less of the sample size. The use of Bayesian estimation with
informative priors did improve the estimates in terms of
relative bias, MSE, coverage, and power. On the other
hand, the specification of priors that deviated from the
population values deteriorated the results, especially when
sample sizes were small.

Predicting a distal outcome variable can completely fail
when there is almost no variation around the latent slope.
Even a sample size of 325 is not large enough to yield
unbiased regression coefficients when maximum likelihood
or Bayesian estimation with default priors are used.
Additionally, the prediction of the distal outcome from the
latent intercept is also negatively impacted by a small varia-
tion around the latent slope, although it is less impactful
when the effect size increases. Furthermore, Liu et al.
(2016) associated more variation around the latent slope
with higher levels of power to identify individual differences
around the latent slope. A similar result was found in the

FIGURE 8 Distribution of the estimates for the intercept of the distal outcome across completed replications, under varying sample sizes, effect sizes,
slope variance values and estimation methods. The static black horizontal line denotes the true population of 0.50 for the intercept of the distal outcome.
Outliers are displayed as black circles. Outliers outside the interval [−4; 4] only occurred for ML, and are denoted by *.
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current study: Higher levels of power were reported for the
two regression coefficients in the large slope variance con-
dition in comparison to the small slope variance condition.

The results of Bayesian estimation with Mplus default
priors (BayesDefault condition) in the current study, are in
line with the many recent simulation studies, claiming
Bayesian estimation with default priors is not preferred
when sample sizes are small (see, e.g., Depaoli & Clifton,
2015; Holtmann, Koch, Lochner, & Eid, 2016; McNeish,
2016a, 2016b; Shi & Tong, 2017). Spikes were detected
when default priors were used in two conditions: (1) when
sample sizes were small, and (2) when the slope variance
and effect size were small in combination with all exam-
ined sample sizes. When prior information was incorpo-
rated, by specifying either informative or deviating prior
distributions, no spikes were detected. Note that the weakly
informative and weakly deviating prior conditions were still
relatively informative distributions in comparison to the
default diffuse priors implemented in Mplus. It is plausible
to assume that the Mplus default prior distributions were
not informed enough to prevent spikes for the parameter
estimation in the current model and are therefore likely to
be the cause of high levels of bias when using Bayesian
estimation with default priors.

Findings of the LGM parameters of the model were in line
with the existing simulation literature on LGMs; that is, the
most problematic levels of bias were detected for the variance
parameters of the intercept and slope (e.g., McNeish, 2016a,
2016b; van de Schoot et al., 2015). In McNeish (2016a), an

LGM with two covariates was examined with population
values and sample sizes comparable to the current study.
These similarities allowed us to explore the differences in
results. For instance, McNeish (2016a) showed that when
using Bayesian estimation with Mplus default priors,
a sample size of 50 was sufficient to obtain an unbiased
estimate for the variance parameter of the intercept. While in
the current study, with an LGMwith a distal outcome, a sample
size of 52 still led to a biased estimate for the same parameter.

The additional exploration of the variance parameters in
the model indicated that the use of separate priors for the
variance components (as suggested by Liu et al., 2016) led
to sensible results, whereas the Mplus default prior distri-
butions for variance parameters did not. Schuurman et al.
(2016) examined various specifications of the Inverse
Wishart prior for the covariance matrix, and concluded
that the prior settings can negatively impact the parameter
estimates when the variances are close to zero. However,
we decided to implement this prior in the current study
based on findings of previous studies. Based on
a systematic literature review, Smid et al. (2019) indicated
that informative priors for other parameters in the model
could improve the estimates of variance parameters, when
default priors were specified for the variance parameters.
Depaoli (2012), Depaoli and Clifton (2015), and Holtmann
et al. (2016) reported similar findings: priors on parameters
in one part of the model impacted results for parameters in
another part of the model. Further research is needed to
examine the exact conditions under which this finding

FIGURE 9 Relative bias for the variance of the distal outcome, under varying sample sizes, effect sizes, slope variance values and estimation methods.
The static black horizontal lines represent the ±10% interval.
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holds. Options to further explore the behavior of the var-
iance parameters under varying prior distributions include
the use of the half-Cauchy prior as suggested by Gelman
(2006), or the use of reference priors as specified in Tsai
and Hsiao (2008). Another option is the use of data-
dependent priors (Darnieder, 2011; McNeish, 2016b), in
which frequentist parameter estimates are implemented in
prior distributions. One criticism of data-dependent priors
is that data are used twice: first to obtain frequentist para-
meter estimates, and second when the data are analyzed by
using the data-dependent priors (Darnieder, 2011). One way
to avoid ‘double-dipping’ is the use of data-splitting tech-
niques. For instance, in the first step, 50% of the data is
analyzed using frequentist estimation, and in step two the
results of step one are incorporated in prior distributions to
analyze the other 50% of the data using Bayesian estima-
tion. On the other side, as the data set needs to be split into
two parts, this method is not ideal when the sample size is
already small. Hence, there is no clear-cut solution as it

depends on the model and the specific situation. However,
based on the results of the current study, we conclude that
the specification of priors for the variance parameters is of
importance – regardless of the use of informative prior
distributions for other parameters in the model. It is there-
fore necessary to further assess the Inverse Wishart (or
Inverse Gamma, depending on the model) prior distribution
under varying conditions in the future.

Finally, aside from the factors varied in the current simula-
tion design, the number of time points in an LGM can also
influence the performance since the number of time points
directly impacts the amount of data points. Future research
should therefore consider examining the potential influence of
the number of time points in an LGM with a distal outcome.
Another factor that should be examined is the potential impact
of a categorical distal outcome instead of a continuous distal
outcome. Also, the impact of adding a quadratic and/or cubic
slope to the LGM could be of interest since trajectory shape is
also likely to influence the impact of prior settings. Including

FIGURE 10 Distribution of the estimates for the variance of the distal outcome across completed replications, under varying sample sizes, effect sizes,
slope variance values and estimation methods. The static black horizontal line denotes the true population of 0.25 for the variance of the distal outcome.
Outliers are displayed as black circles.
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additional slopes to the growth model increases model com-
plexity, as there could be three to four latent factors that could
be used to predict the distal outcome.

RECOMMENDATIONS FOR SUBSTANTIVE
RESEARCHERS

The sample size needed to analyze an LGM with a distal out-
come depends on the following four items: (1) the parameter of
interest, (2) the amount of variation around the latent intercept
and slope, (3) the effect size, and (4) the amount of prior
information that a researcher can (or wants to) specify. For
example, to predict a distal outcome from the participants’
growth rate, a sample size of 26 would be sufficient to obtain
an unbiased parameter estimate for the regression coefficient β2
when using ML, BayesDefault, or Bayesian estimation with
informative priors when the effect size and slope variance are
large (although the statistical power was extremely low in this
condition when BayesDefault was used). In contrast, a small
effect and slope variance linked to a sample size of 325 would

not be sufficient to obtain an unbiased estimate for β2 when
using ML or BayesDefault. In this case, only the use of infor-
mative priors could lead to an unbiased estimate when n =325.

The specification of informative priors improved the esti-
mates in terms of bias,MSE, coverage, and power.Accordingly,
Bayesian estimation with informative priors can be used with
a smaller sample size or slope variance, and it could therefore be
a solution for the analysis of data with such characteristics.
However, note that informative priors represent the upper-
bound performance of Bayesian estimation and not necessarily
the practical application of Bayesian estimation in applied
research settings. The specification of priors that deviated
from the population values deteriorated the results, especially
when sample sizes were small. Specifically, the deviating priors
negatively influenced the estimation of the parameters for
which deviating information was included, but also parameters
for which no deviating information was specified.

In real life applications, it is likely to have prior distributions
that at least slightly deviate from the data. One might therefore
opt to choose BayesDefault instead of risking the specification
of deviating priors (when comparing BayesDefault to situations
when the prior deviates from the population in the current
study). However, as discussed earlier, BayesDefault can lead
to severely biased estimates when samples are small (see, e.g.,
Depaoli & Clifton, 2015; Holtmann et al., 2016; McNeish,
2016a, 2016b; Shi & Tong, 2017), and is therefore hard to
recommend as a viable approach.

Hence, we recommend researchers take the most careful
approach possible, which entails: (1) carefully constructing
prior distributions; and (2) assessing the impact and robustness
of the specified priors through an extensive sensitivity analysis.
For more information on how to elicit prior information (e.g.,
based on previous studies, meta-analyses, or knowledge of
experts in the field), we refer to: O’Hagan et al. (2006);
Zondervan-Zwijnenburg, Peeters, Depaoli, and van de Schoot
(2017); Veen, Stoel, Zondervan-Zwijnenburg, and van de
Schoot (2017); Bolsinova, Hoijtink, Vermeulen, and Béguin
(2017); and van de Schoot et al. (2018). We also refer to
Kruschke (2015, pp. 721–725) for an overview of items that
should always be reported when Bayesian estimation is used,
including reporting details on prior specifications. For informa-
tion on how to perform a sensitivity analysis, we refer to
Depaoli and van de Schoot (2017), and van Erp, Mulder, and
Oberski (2018). An example of a sensitivity analysis in an
empirical setting can be found in van de Schoot et al. (2018).

The results of the current study further emphasize the impor-
tance of inspecting trace plots for all parameters for the appear-
ance of spikes when using Bayesian estimation (see also
Depaoli & Clifton, 2015; van de Schoot et al., 2015). The
inspection of trace plots should be a standard procedure when
Bayesian estimation is used to assess whether the different
chains have truly converged (see, e.g., Gelman et al., 2014;
Kaplan, 2014; Lynch, 2007) – note that convergence criteria
cannot always identify spikes, as we saw in the current
investigation.

TABLE 3
Power of the Regression Coefficients β1 and β2

Effect
Size

Slope
Variance

Sample
Size ML

Bayes
Default

Info
Weak

Info
Strong

Dev
Weak

Dev
Strong

Parameter: β1
small small 26 0.108 0.005 0.061 0.100 0.629 0.548

52 0.159 0.016 0.145 0.274 0.292 0.253
325 0.594 0.151 0.726 0.977 0.040 0.018

large 26 0.089 0.035 0.053 0.074 0.642 0.610
52 0.132 0.096 0.126 0.174 0.356 0.245

325 0.735 0.710 0.979 1.000 0.113 0.324
large small 26 0.534 0.068 0.944 1.000 0.085 0.001

52 0.659 0.149 0.997 1.000 0.021 0.083
325 0.867 0.422 1.000 1.000 0.904 1.000

large 26 0.569 0.257 0.937 0.998 0.142 0.039
52 0.766 0.596 0.993 1.000 0.332 0.485

325 0.999 1.000 1.000 1.000 1.000 1.000
Parameter: β2
small small 26 0.051 0.013 0.058 0.126 0.222 0.085

52 0.050 0.035 0.087 0.174 0.317 0.168
325 0.290 0.258 0.438 0.710 0.811 0.916

large 26 0.161 0.020 0.098 0.154 0.058 0.106
52 0.212 0.073 0.195 0.364 0.015 0.009

325 0.849 0.794 0.995 1.000 0.849 0.968
large small 26 0.294 0.068 0.996 1.000 0.592 0.726

52 0.366 0.157 0.998 1.000 0.944 0.996
325 0.810 0.798 1.000 1.000 1.000 1.000

large 26 0.657 0.189 0.986 1.000 0.161 0.236
52 0.839 0.359 1.000 1.000 0.913 0.998

325 0.999 0.994 1.000 1.000 1.000 1.000

Note. Bold values represent power rates below 0.80. ML refers to max-
imum likelihood estimation; BayesDefault refers to Bayesian estimation
using Mplus default priors; Info Weak and Info Strong refer to the weakly
and strongly informative prior settings in the simulation design, and Dev
Weak and Dev Strong to the weakly and strongly deviating prior settings.
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Although further research is needed to completely examine
the performance of the Inverse Wishart prior distribution,
researchers should be cautious with the use of the Inverse
Wishart default prior in Mplus for the covariance matrix.
Caution is especially needed when the individual variance
parameters are expected to be small (as shown by Schuurman
et al., 2016). In such a situation, researchers should preferably
specify separate priors as suggested by Liu et al. (2016).
However, extreme caution is needed if adapting this approach,
as one could easily end up with a non-positive definite matrix.

To conclude, LGMs with a distal outcome are useful to
assess longer-term patterns, and to detect the need to start
a (preventive) treatment or intervention in an early stage. The
results of the current study showed that when predicting a distal
outcome from an LGM, prudence is called for when: (1) the
sample size is small; and (2) the variance of the slope is
(expected to be) small. ML and Bayesian estimation
with Mplus default prior settings should not be used in these
situations to avoid severely biased estimates. A larger sample
size or the specification of informative priors can help to
improve the results. Note that the smaller the sample size, the
larger the impact of prior distributions on the posterior, and
therefore deliberate decisions about prior distributions are
necessary. It is our hope that these findings help to uncover
the important estimation issues tied to properly assessing the
impact of distal outcomes on final model results.
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APPENDIX A1. MODEL MATRICES AND
A DESCRIPTION OF THE PARAMETERS IN THE
INVESTIGATED LGM WITH A DISTAL OUTCOME

Measurement model matrices:

ν ¼
0
0
0
0
0

2
6664

3
7775Λ ¼

1
1
1
1
0

0
1
2
3
0

0
0
0
0
0

2
6664

3
7775Θ ¼

θx1
0
0
0
0

θx2
0
0
0

θx3
0
0

θx4
0 0

2
6664

3
7775

This leads to the measurement model, as given in Equation A1:

yit ¼ ηIi þ ηSiλt þ εit: (A1)

Structural model matrices:

α ¼
αI0
αS0
αD0

2
4

3
5

B ¼
0
0
β1

0
0
β2

0
0
0

2
4

3
5

Ψ ¼
ψI
ψS
0

ψI�S
0 ψD

2
4

3
5

This leads to the structural model, as shown in Equations A2 and A3:

ηIi ¼ aI0 þ ξIi; (A2)

ηSi ¼ aS0 þ ξSi;

ηDi ¼ aD0 þ β1ηIi þ β2ηSi þ ξDi; (A3)

where
yit = observed outcome y for person i (i = 1, …, n) at time t (in simulation
design: 0, 1, 2, 3).
ηIi = random intercept factor: the expected outcome on y for person i at
time score λt = 0.
ηSi = random linear slope factor: the expected outcome on y for person
i for 1 unit increase in time, on the scale of λt.
λt = time score at time t: 0, 1, 2, 3.
εit = represent individual and identically distributed measurement and
time-specific errors on yit for person i at time t, and dεit are usually
assumed to be uncorrelated over time.

ηIi = random intercept factor: the expected outcome on y (here measured
by x1-x4) for person i at time score λt = 0.
ηSi = random linear slope factor: the expected outcome on y (here measured
by x1-x4) for person i for one unit increase in time, on the scale of λt.
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ηDi = random distal outcome factor: the expected outcome on d (here
measured by the distal outcome variable) for person i, when taking the
predictions of the latent intercept and latent slope into account.

aI0 = population mean of individual intercept factor values.
aS0 = population mean of individual slope factor values.
aD0 = population mean of individual distal outcome variable values when
ηIi and ηSi are zero, that is, the intercept of distal outcome variable.

ξIi = deviation of ηIi from αI0
ξSi = deviation of ηSi from αS0
ξDi = deviation of ηDi from αD0
β1 = difference in the mean of the distal outcome factor corresponding to
the one unit difference in the latent intercept factor; regression coefficient;
distal outcome is regressed on latent intercept.
β2 = difference in the mean of the distal outcome factor corresponding to
the one unit difference in the latent slope factor; regression coefficient;
distal outcome is regressed on latent slope.

Equations and interpretation are based on Masyn, Petras, and Lu (2014)
and Duncan, Duncan and Strycker (2006, pp. 56–62).

APPENDIX A2. MPLUS DEFAULT PRIORS
(MUTHÉN & MUTHÉN, 2017) AS USED IN THE

BAYESDEFAULT SETTING

● Mean latent intercept, mean latent slope, and intercept
distal outcome: N (0, 1010)

● Regression coefficients: N (0, 1010)
● Variances Intercept, Slope, and Covariance Intercept-
Slope: IW (0, −3)

● Variance Distal outcome: IG (−1, 0)
● Residual variances: IG (−1, 0)
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APPENDIX A3. OVERVIEW OF THE WEAK, MEDIUM AND STRONG INFORMATIVE AND DEVIATING PRIOR
DISTRIBUTIONS USED IN THE SIMULATION STUDY

Small effect size

Parameter
Sample
Size

Population
Value

Posterior
SD

Informative
Weak

Informative
Medium

Informative
Strong

Deviating
Weak

Deviating
Medium

Deviating
Strong

Small slope variance

β1 26 0.1 0.1464 N(0.1,0.032) N(0.1,0.021) N(0.1,0.011) N(−0.603,0.032) N(−0.474,0.021) N(−0.306,0.011)

β2 26 0.32 0.4728 N(0.32,0.335) N(0.32,0.224) N(0.32,0.112) N(−1.95,0.335) N(−1.533,0.224) N(−0.991,0.112)

αD 26 0.5 0.222 N(0.5,0.074) N(0.5,0.049) N(0.5,0.025) N(−0.566,0.074) N(−0.37,0.049) N(−0.115,0.025)

αI 26 0.1 0.2645 N(0.1,0.105) N(0.1,0.07) N(0.1,0.035) N(−1.17,0.105) N(−0.937,0.07) N(−0.633,0.035)

αS 26 0.4 0.1241 N(0.4,0.023) N(0.4,0.015) N(0.4,0.008) N(−0.196,0.023) N(−0.086,0.015) N(0.056,0.008)

β1 52 0.1 0.1205 N(0.1,0.022) N(0.1,0.015) N(0.1,0.007) N(−0.479,0.022) N(−0.372,0.015) N(−0.234,0.007)

β2 52 0.32 0.5101 N(0.32,0.39) N(0.32,0.26) N(0.32,0.13) N(−2.129,0.39) N(−1.68,0.26) N(−1.094,0.13)

αD 52 0.5 0.2149 N(0.5,0.069) N(0.5,0.046) N(0.5,0.023) N(−0.532,0.069) N(−0.342,0.046) N(−0.096,0.023)

αI 52 0.1 0.1856 N(0.1,0.052) N(0.1,0.034) N(0.1,0.017) N(−0.791,0.052) N(−0.628,0.034) N(−0.414,0.017)

αS 52 0.4 0.0878 N(0.4,0.012) N(0.4,0.008) N(0.4,0.004) N(−0.022,0.012) N(0.056,0.008) N(0.157,0.004)

β1 325 0.1 0.0679 N(0.1,0.007) N(0.1,0.005) N(0.1,0.002) N(−0.226,0.007) N(−0.166,0.005) N(−0.088,0.002)

β2 325 0.32 0.4086 N(0.32,0.25) N(0.32,0.167) N(0.32,0.083) N(−1.642,0.25) N(−1.282,0.167) N(−0.813,0.083)

αD 325 0.5 0.1629 N(0.5,0.04) N(0.5,0.027) N(0.5,0.013) N(−0.282,0.04) N(−0.139,0.027) N(0.048,0.013)

αI 325 0.1 0.0717 N(0.1,0.008) N(0.1,0.005) N(0.1,0.003) N(−0.244,0.008) N(−0.181,0.005) N(−0.099,0.003)

αS 325 0.4 0.0347 N(0.4,0.002) N(0.4,0.001) N(0.4,0.001) N(0.233,0.002) N(0.264,0.001) N(0.304,0.001)

Large slope variance

β1 26 0.1 0.18 N(0.1,0.049) N(0.1,0.032) N(0.1,0.016) N(−0.764,0.049) N(−0.606,0.032) N(−0.399,0.016)

β2 26 0.1 0.1502 N(0.1,0.034) N(0.1,0.023) N(0.1,0.011) N(−0.621,0.034) N(−0.489,0.023) N(−0.316,0.011)

αD 26 0.5 0.1293 N(0.5,0.025) N(0.5,0.017) N(0.5,0.008) N(−0.121,0.025) N(−0.007,0.017) N(0.142,0.008)

αI 26 0.1 0.2639 N(0.1,0.104) N(0.1,0.07) N(0.1,0.035) N(−1.167,0.104) N(−0.934,0.07) N(−0.631,0.035)

αS 26 0.4 0.2224 N(0.4,0.074) N(0.4,0.049) N(0.4,0.025) N(−0.668,0.074) N(−0.472,0.049) N(−0.216,0.025)

β1 52 0.1 0.1588 N(0.1,0.038) N(0.1,0.025) N(0.1,0.013) N(−0.662,0.038) N(−0.522,0.025) N(−0.34,0.013)

β2 52 0.1 0.1113 N(0.1,0.019) N(0.1,0.012) N(0.1,0.006) N(−0.434,0.019) N(−0.336,0.012) N(−0.209,0.006)

αD 52 0.5 0.0851 N(0.5,0.011) N(0.5,0.007) N(0.5,0.004) N(0.091,0.011) N(0.166,0.007) N(0.264,0.004)

αI 52 0.1 0.1861 N(0.1,0.052) N(0.1,0.035) N(0.1,0.017) N(−0.793,0.052) N(−0.629,0.035) N(−0.416,0.017)

αS 52 0.4 0.1583 N(0.4,0.038) N(0.4,0.025) N(0.4,0.013) N(−0.36,0.038) N(−0.221,0.025) N(−0.039,0.013)

β1 325 0.1 0.0406 N(0.1,0.002) N(0.1,0.002) N(0.1,0.001) N(−0.095,0.002) N(−0.059,0.002) N(−0.013,0.001)

β2 325 0.1 0.0334 N(0.1,0.002) N(0.1,0.001) N(0.1,0.001) N(−0.06,0.002) N(−0.031,0.001) N(0.007,0.001)

αD 325 0.5 0.0317 N(0.5,0.002) N(0.5,0.001) N(0.5,0.001) N(0.348,0.002) N(0.376,0.001) N(0.412,0.001)

αI 325 0.1 0.0714 N(0.1,0.008) N(0.1,0.005) N(0.1,0.003) N(−0.243,0.008) N(−0.18,0.005) N(−0.098,0.003)

αS 325 0.4 0.0628 N(0.4,0.006) N(0.4,0.004) N(0.4,0.002) N(0.099,0.006) N(0.154,0.004) N(0.226,0.002)
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Large effect size

Parameter
Sample
Size

Population
Value

Posterior
SD

Informative
Weak

Informative
Medium

Informative
Strong

Deviating
Weak

Deviating
Medium

Deviating
Strong

Small slope variance

β1 26 0.4 0.1682 N(0.4,0.042) N(0.4,0.028) N(0.4,0.014) N(−0.408,0.042) N(−0.259,0.028) N(−0.066,0.014)

β2 26 1.27 0.465 N(1.27,0.324) N(1.27,0.216) N(1.27,0.108) N(−0.962,0.324) N(−0.553,0.216) N(−0.019,0.108)

αD 26 0.5 0.2314 N(0.5,0.08) N(0.5,0.054) N(0.5,0.027) N(−0.611,0.08) N(−0.407,0.054) N(−0.141,0.027)

αI 26 0.1 0.2646 N(0.1,0.105) N(0.1,0.07) N(0.1,0.035) N(−1.17,0.105) N(−0.937,0.07) N(−0.633,0.035)

αS 26 0.4 0.124 N(0.4,0.023) N(0.4,0.015) N(0.4,0.008) N(−0.195,0.023) N(−0.086,0.015) N(0.056,0.008)

β1 52 0.4 0.1424 N(0.4,0.03) N(0.4,0.02) N(0.4,0.01) N(−0.284,0.03) N(−0.158,0.02) N(0.005,0.01)

β2 52 1.27 0.4847 N(1.27,0.352) N(1.27,0.235) N(1.27,0.117) N(−1.057,0.352) N(−0.63,0.235) N(−0.073,0.117)

αD 52 0.5 0.2101 N(0.5,0.066) N(0.5,0.044) N(0.5,0.022) N(−0.509,0.066) N(−0.324,0.044) N(−0.082,0.022)

αI 52 0.1 0.1855 N(0.1,0.052) N(0.1,0.034) N(0.1,0.017) N(−0.791,0.052) N(−0.627,0.034) N(−0.414,0.017)

αS 52 0.4 0.0878 N(0.4,0.012) N(0.4,0.008) N(0.4,0.004) N(−0.022,0.012) N(0.056,0.008) N(0.157,0.004)

β1 325 0.4 0.078 N(0.4,0.009) N(0.4,0.006) N(0.4,0.003) N(0.026,0.009) N(0.094,0.006) N(0.184,0.003)

β2 325 1.27 0.4344 N(1.27,0.283) N(1.27,0.189) N(1.27,0.094) N(−0.816,0.283) N(−0.433,0.189) N(0.066,0.094)

αD 325 0.5 0.1759 N(0.5,0.046) N(0.5,0.031) N(0.5,0.015) N(−0.344,0.046) N(−0.19,0.031) N(0.012,0.015)

αI 325 0.1 0.0717 N(0.1,0.008) N(0.1,0.005) N(0.1,0.003) N(−0.244,0.008) N(−0.181,0.005) N(−0.099,0.003)

αS 325 0.4 0.0346 N(0.4,0.002) N(0.4,0.001) N(0.4,0.001) N(0.234,0.002) N(0.264,0.001) N(0.304,0.001)

Large slope variance

β1 26 0.4 0.1765 N(0.4,0.047) N(0.4,0.031) N(0.4,0.016) N(−0.447,0.047) N(−0.292,0.031) N(−0.089,0.016)

β2 26 0.4 0.157 N(0.4,0.037) N(0.4,0.025) N(0.4,0.012) N(−0.354,0.037) N(−0.215,0.025) N(−0.035,0.012)

αD 26 0.5 0.1394 N(0.5,0.029) N(0.5,0.019) N(0.5,0.01) N(−0.169,0.029) N(−0.046,0.019) N(0.114,0.01)

αI 26 0.1 0.2639 N(0.1,0.104) N(0.1,0.07) N(0.1,0.035) N(−1.167,0.104) N(−0.934,0.07) N(−0.631,0.035)

αS 26 0.4 0.2223 N(0.4,0.074) N(0.4,0.049) N(0.4,0.025) N(−0.667,0.074) N(−0.471,0.049) N(−0.216,0.025)

β1 52 0.4 0.1596 N(0.4,0.038) N(0.4,0.025) N(0.4,0.013) N(−0.366,0.038) N(−0.226,0.025) N(−0.042,0.013)

β2 52 0.4 0.1173 N(0.4,0.021) N(0.4,0.014) N(0.4,0.007) N(−0.163,0.021) N(−0.06,0.014) N(0.075,0.007)

αD 52 0.5 0.0946 N(0.5,0.013) N(0.5,0.009) N(0.5,0.004) N(0.046,0.013) N(0.129,0.009) N(0.238,0.004)

αI 52 0.1 0.1858 N(0.1,0.052) N(0.1,0.035) N(0.1,0.017) N(−0.792,0.052) N(−0.628,0.035) N(−0.415,0.017)

αS 52 0.4 0.1582 N(0.4,0.038) N(0.4,0.025) N(0.4,0.013) N(−0.36,0.038) N(−0.22,0.025) N(−0.038,0.013)

β1 325 0.4 0.0526 N(0.4,0.004) N(0.4,0.003) N(0.4,0.001) N(0.147,0.004) N(0.194,0.003) N(0.254,0.001)

β2 325 0.4 0.0391 N(0.4,0.002) N(0.4,0.002) N(0.4,0.001) N(0.212,0.002) N(0.247,0.002) N(0.292,0.001)

αD 325 0.5 0.0351 N(0.5,0.002) N(0.5,0.001) N(0.5,0.001) N(0.331,0.002) N(0.362,0.001) N(0.403,0.001)

αI 325 0.1 0.0714 N(0.1,0.008) N(0.1,0.005) N(0.1,0.003) N(−0.243,0.008) N(−0.18,0.005) N(−0.098,0.003)

αS 325 0.4 0.0628 N(0.4,0.006) N(0.4,0.004) N(0.4,0.002) N(0.099,0.006) N(0.154,0.004) N(0.226,0.002)

Note. Parameters β1 and β2 refer to the two regression coefficients, αD refers to the intercept of the distal outcome, and αI and αS refer to the means of the latent
intercept and latent linear slope (see also Figure 1).
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