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Abstract
Background/aim Active mobility may play a relevant role in the assessment of environmental exposures (e.g. traffic-related
air pollution, livestock emissions), but data about actual mobility patterns are work intensive to collect, especially in large
study populations, therefore estimation methods for active mobility may be relevant for exposure assessment in different
types of studies. We previously collected mobility patterns in a group of 941 participants in a rural setting in the Netherlands,
using week-long GPS tracking. We had information regarding personal characteristics, self-reported data regarding weekly
mobility patterns and spatial characteristics. The goal of this study was to develop versatile estimates of active mobility, test
their accuracy using GPS measurements and explore the implications for exposure assessment studies.
Methods We estimated hours/week spent on active mobility based on personal characteristics (e.g. age, sex, pre-existing
conditions), self-reported data (e.g. hours spent commuting per bike) or spatial predictors such as home and work address.
Estimated hours/week spent on active mobility were compared with GPS measured hours/week, using linear regression and
kappa statistics.
Results Estimated and measured hours/week spent on active mobility had low correspondence, even the best predicting
estimation method based on self-reported data, resulted in a R2 of 0.09 and Cohen’s kappa of 0.07. A visual check indicated
that, although predicted routes to work appeared to match GPS measured tracks, only a small proportion of active mobility
was captured in this way, thus resulting in a low validity of overall predicted active mobility.
Conclusions We were unable to develop a method that could accurately estimate active mobility, the best performing
method was based on detailed self-reported information but still resulted in low correspondence. For future studies aiming to
evaluate the contribution of home-work traffic to exposure, applying spatial predictors may be appropriate. Measurements
still represent the best possible tool to evaluate mobility patterns.
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Introduction

Environmental epidemiological studies aim at evaluating
risks to human health from environmental exposures [1],
examples of environmental exposures are for instance;
ultrafine particles of air pollution [2], electromagnetic fields
[3] or livestock-associated emissions [4]. Personal exposure
in environmental health studies is often approximated by
assigning or measuring exposure levels at a single location,
usually the home address. The fact that people are mobile is
often ignored. Active mobility, using only physical activity
for locomotion (in this study walking and biking), may
affect exposure of persons to different environmental sub-
stances, especially if exposure levels display strong spatial,
or spatio-temporal variation [5–9]. Examples include:
exposure to traffic-related air pollution near roads [10], but
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also exposure expected to be beneficial to health, such as
time near urban green space during daily mobility [11].
Ignoring (active-) mobility may therefore increase mis-
classification of exposure and thus change measures of
association [12]. In general, misclassification usually biases
risk estimates towards the null, in particular when mis-
classification is non-differential, meaning that true effects
may remain unobserved [13].

Detailed self-reported data on (active-) mobility has been
infrequently collected in previous studies, partly because
collecting this type of information is laborious for partici-
pants, especially when using activity diaries [14]. Further-
more, data quality, in particular responder bias, is an issue
of concern. In a previous study we found that study parti-
cipants strongly overestimated their time spent on active
mobility when compared with GPS measured data [15].
Collecting outdoor activity data using GPS loggers or
mobile phones is only sometimes performed, or performed
in smaller subpopulations, due to associated costs and work
time [7, 8, 10, 11, 14, 16–24]. Several studies have reported
that underlying general characteristics of study participants
may explain part of observed variability in mobility patterns
[15, 25–27].

Because measuring mobility patterns is challenging, other
methods have been based on location information using
Geographic Information Systems (GIS). Such GIS based
methods have been used for example to assess exposure
experienced during commutes on commonly used routes
(e.g. home to work, home to school) [10, 11, 16, 20, 21].
When GIS based methods were applied, the predicted routes
can be validated using GPS logging. Such validation efforts
were generally performed in smaller study populations (max
N= 175) [10, 11, 16, 20, 21] and results of these analyses
vary in the sense that estimated and measured exposure
may [16], or may not show correspondence [10, 11, 20, 21].

The goal of this study was to design different methods to
estimate active mobility based on available data in a study
cohort, namely general characteristics, self-reported data
and location information. All data were available from the
VGO GPS study and in a second step we validate our
approaches using GPS measurements originating from this
study. Finally, we discuss the implications of these
approaches for exposure assessment studies.

Methods

Study population

In 2012 the “Farming and Neighbouring Residents’ Health”
study (Dutch acronym: VGO study) was initiated. The focus
of the VGO study was on the health of non-farming

resident’s living in an area with a high density of livestock
farms (Supplementary Fig. 1). For this study 2494 people
volunteered to undergo a medical examination (lung
function measurements, blood, nasal- and buccal-epithelia
collection, stool sample) in a field study that took place
in between March 2014 and February 2015. Participants
were also asked to fill in a baseline questionnaire
(VGO questionnaire), including questions about participant
characteristics, health and lifestyle [28, 29]. Farmers and
people living on farms were excluded a priori from the
VGO study, since the focus was on health of non-farming
residents.

From the VGO population a representative subgroup [30]
was recruited to take part in the VGO GPS study. Initially
1517 VGO cohort members were invited, 67% participated
in the GPS study, resulting in 1014 logged GPS tracks.
After GPS data cleaning, 941 usable GPS tracks remained
for further analysis, with a median of 186 h of GPS data
logged [30]. Participants in the VGO GPS study filled in a
mobility baseline questionnaire (Q1). For each VGO GPS
study participant information was available on employment
status, the nature of work activities and the home and work
address (if applicable) from the VGO questionnaire. Med-
ical ethical approval was obtained for the VGO study from
the Medical Ethical Committee of the University Medical
Centre Utrecht (protocol number 13/533), and all partici-
pants provided informed consent.

Estimation method development

We developed three estimation methods to predict time
spent in active mobility, all based on different types of
determinants. We predicted the number of hours/week spent
on active mobility and compared intra-individually with
GPS measured hours/week spent on active mobility. The
aim of our first estimation method (Estimation method 1)
was to develop a regression model that could be broadly
applied in environmental epidemiology. In order to predict
active mobility, we used individual general characteristics
of study participants. The method makes use of previously
identified determinants of GPS measured movement pat-
terns in the VGO GPS study population [15]. The following
determinants were identified: age group (<45, 45–55, 55–65
and >65 year), BMI (normal weight [<25 kg/m2], over-
weight [25–30 kg/m2], obese [>30 kg/m2]), smoking status
(never, former, current), working status (job yes/no), hay
fever (yes/no) and number of workdays (N/week from Q1).
Using these determinants, we calculated per participant (see
Supplementary Table 1) the expected hours/week spent
on active mobility. For an overview of the applied calcu-
lations and formulas see supplementary data (Estimation
method 1).
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For our second estimation method (Estimation method 2)
we used adjusted self-reported data regarding mobility
patterns from questionnaire data of the VGO GPS study. In
this questionnaire, participants were asked to report weekly
mobility. Items in this questionnaire included time spent for
commuting, during work hours, during leisure time and as
outdoor activity (see supplement Estimation method 2 for
an overview of used questions as input for this method).
Walking and biking were assessed separately and subse-
quently added, resulting in a total of hours/week spent
biking and walking. From our previous study we knew that
VGO GPS study participants strongly overestimated their
time spent on mobility (walking, biking and motorised)
[15]. We therefore adjusted the calculated weekly hours
walking by 1/13.7 and weekly hours biking by 1/2.8, since
these numbers represented the amount of overestimation of
walking and biking, respectively [15].

The third estimation method (Estimation method 3) made
use of location information to predict weekly active mobi-
lity. For these type of estimations data regarding commonly
visited locations (e.g. home, work, school) were necessary,
which enabled calculation of commonly used routes. For
every participant the home address and, if applicable, the
work address was available. Addresses were geo-coded
using cadastral data from the Netherlands (BAG data 2015).
Information about supermarkets was obtained from the
national information system on work locations (Dutch
acronym: LISA [31], 2017). Addresses and coordinates of
all locations selling groceries within the research area were
obtained and the closest shop was assigned to every indi-
vidual home address [32]. Distance calculations were based
on the road network from topographical maps (TOP10NL
[33], 2017) [34]. For every participant the home address,
assigned closest supermarket, and, if available, work
address were selected and the shortest, road based, route
was calculated in km (see Supplementary Fig. 1 for a visual
example of the analysis) [35]. Based on these distances,
most likely transport modes were assigned using a recent
representative survey from the Netherlands Ministry of
Infrastructure and the Environment [36]. This survey reports
distances travelled using specific transport modes. We used
reported median distances, to indicate whether a used route
was most likely travelled walking, (E-) biking or using
motorised transport. In a next step, we calculated approx-
imate durations spent in active transport using reported
average speeds for these travel modes (see Supplementary
Table 2 for an overview of distance cut-offs and used
average speeds). Since calculated routes were one-way, all
estimated distances were multiplied by 2. We assumed that
people went to the supermarket once a week and for the
route to work we multiplied with the number of workdays
participants reported to work, see Supplementary Table 3
for an overview of this process.

Estimation methods compared with GPS measured
hours/week spent on active mobility

Processing of our GPS data has been described in detail
previously [15]. In brief, we used an algorithm that assigned
every logged point as either an indoors or outdoors point.
Points assigned outdoors were grouped into episodes and
for every episode a transport mode was assigned based on
acceleration, deceleration and the 95th percentile of the
maximum speed [15, 37]. Each GPS coordinate was thus
categorised into walking, biking or motorised transport and
time spent per specific transport mode was extracted as
hours/week [15]. The GPS measured times were here con-
sidered as ‘gold-standard’ and reference data.

Statistical analysis

For all estimation methods, we compared intra-individually
whether GPS measured hours/week of active transport (e.g.
hours/week walking and biking) correlated with the hours/
week of active transport predicted for that specific partici-
pant. Linear regression was used to compare estimated
hours/week with GPS measured hours/week.

Next to linear regression we compared GPS measured
and predicted hours/week spent on active mobility on a
categorical level using Cohen’s kappa analyses. Participants
were indicated as ‘high-’, ‘medium-’ or ‘low-’ actively
mobile based on tertiles for both estimated and GPS mea-
sured hours/week spent on active mobility.

Sensitivity analyses

We applied two sensitivity analyses to check for differences
in specific groups. First, we reran the analyses, but stratified
the dataset by age categories (<45, 45–55, 55–65 and >65
year [15]), since age is related to occupational status [38]
and life situation [39] what might be related to differences
in daily mobility. In the second sensitivity analysis we
stratified based on reporting of a work address (Yes/No),
since having a work address may explain the majority of
weekly mobility, because of daily commuting and this is
one of two driving factors in Estimation method 3.

All statistical analyses were performed using R (3.4.3.)
and all GIS analyses were performed in ArcGIS ArcMap
10.5.1 (ESRI, Redlands, CA, USA) and automated using
Python 2.7.

Results

Due to incomplete data (missing information for Estimation
method 1, e.g. age, BMI, smoking status), data from seven
individuals was removed from the original 941 usable
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datasets. Therefore, analyses were performed with data of
934 people in the VGO GPS population. The average age of
participants was 57 years (range 20–72 years) and 55%
of participants were women, hay fever was reported by 18%
of participants (N= 163). Of participants, 33% were of
normal weight (BMI <25), 49% overweight (BMI 25–30)
and 19% were obese (BMI >30). Most participants were
former smokers (52%), a minority was a current smoker
(8%) and 40% had never smoked. Work participation was
high, 68% indicated having a job, and the median number
of workdays was 2 days/week (range 0–5 days/week) see
Table 1 for an overview of population characteristics.

Comparisons predicted versus GPS measured hours/
week spent on active mobility

Figure 1 shows boxplots of GPS measured and estimated
hours/week spent on active mobility. Figure 2a–d displays
more detailed distributions of hours/week spent on active
mobility, Fig. 2b–d shows the predictions from Estimation
methods 1–3, respectively, Fig. 2a pertains to GPS measured
hours/week spent on active mobility. From these distribu-
tions we observe that only Estimation method 2 (Figs. 1, 2c)
shows variation and a range in observed values that is
similar to the GPS measured hours/week (Figs. 1, 2a). The
distributions of Estimation methods 1 and 3 (Fig. 2b, d) are
not in line with the GPS measured spread and range of
hours/week spent on active mobility (Figs. 1, 2a).

When we compared estimated and measured hours/week
spent on active mobility using linear regression, the pre-
dicted and measured hours/week for Estimation method 2
showed low agreement (R2= 0.09) (Fig. 3). In line with the
distribution plots, estimated hours/week spent on active
mobility from Estimation methods 1 and 3 had a low
agreement with GPS measured hours/week in the linear
regression analyses, with R2 values of: 0.05 for Estimation

method 1 (Fig. 3) and <0.01 for Estimation method 3
(Fig. 3). An overview of R2 values of the linear regression
analyses and descriptions of the used input for the estima-
tion methods and the reference are provided in Table 2.

Kappa analyses

Cohen’s kappa analyses showed a very low agreement between
estimated and GPS measured hours/week spent on active
mobility when participants were categorised into low, medium
or high groups of active mobility, again the highest agreement
was observed for Estimation method 2 (0.07). An overview of
the used cut-offs and kappa statistics are given in Table 3.

Sensitivity analyses

We repeated all estimation methods stratified for reported
work address (yes and no) and for different previously
determined age categories (<45, 45–55, 55–65, >65 year).
The stratified analyses did not result in material differences
between the strata and were similar to calculations in the
whole population. The stratified estimated hours/week spent
on active mobility were in the same range as the estimated
hours/week of the whole population and we observed a low
agreement between estimated and measured values for both
linear comparisons and kappa analyses. An overview of
hours/week spent on active mobility of sensitivity analyses
is provided in Supplementary Table 4.

Discussion

Active mobility may play a relevant role in exposure to
spatially variable environmental substances, therefore,

Table 1 Population characteristics

Age Years (mean (range)) 57.3 (20.4–72.0)

Gender Female (N, (%)) 513 (55.0%)

BMI Normal weight [<25 kg/m2] (N, (%)) 305 (32.7%)

Overweight [25–30 kg/m2] (N, (%)) 455 (48.8%)

Obese [>30 kg/m2] (N, (%)) 173 (18.5%)

Smoking Never (N, (%)) 373 (40.0%)

Former (N, (%)) 484 (51.8%)

Current (N, (%)) 74 (7.9%)

No data (N, (%)) 3 (0.3%)

Hay fever Yes (N, (%)) 163 (17.5%)

Work Yes (N, (%)) 631 (67.5%)

Workdaysa Number (median (range)) 2 (0–5)

aInformation is provided for the whole study population and therefore
does include zero values for those not working

Fig. 1 Boxplots of GPS measured and estimated hours/week spent on
active mobility. Est. method 1 is Estimation method 1, Est. method 2 is
Estimation method 2 and Est. method 3 is Estimation method 3. We
set the maximum Y-value to 15 h/week to allow for a better visual
comparison, therefore, outliers >15 h/week are not visible in this plot.
A boxplot with all outliers visible is available in Supplementary Fig. 2
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active mobility should be included in environmental expo-
sure assessment models. Collecting active mobility data
however, is challenging especially in large study popula-
tions. Therefore, to include active mobility data in exposure
assessment in large populations, we developed estimation
methods for active mobility based on general character-
istics, self-reported data and location information such as
home and work address. Estimated hours/week spent on
active mobility were compared with individually measured
matching GPS data. We observed low agreement between
estimated and GPS measured hours/week spent on active
mobility for all three approaches.

Estimation method 1, based on individual general
characteristics

Studies with a focus on mobility assessment often identify
general characteristics that partially explain variability in
mobility patterns [15, 23, 25–27]. Therefore, we explored a
method based on previously identified general character-
istics (e.g. age, BMI, smoking status, workdays/week)
related to variability in active mobility patterns in the VGO
GPS study [15]. The spread and range of estimated hours/

week spent on active mobility was not in line with GPS
measured hours/week. This method showed low agreement
between estimated and GPS measured hours/week spent on
active mobility (R2= 0.05, kappa= 0.05). Although the
factors used in Estimation method 1 explained some of the
variation in mobility patterns, other factors such as trans-
port mode preferences [26] and distances to often visited
locations [23, 27], were not considered in our previous
analysis [15]. The limited spread and range of the estimated
hours/week are most likely an effect of the limited
explained variability of the used determinants. Note that
our estimation method likely overestimated explained
variability, as the development and validation dataset were
identical.

Estimation method 2, based on adjusted self-
reported data

The method based on adjusted self-reported data about
active mobility represented the best estimate of hours/week
spent on active mobility, when compared with GPS mea-
sured hours/week. Still, when compared intra-individually
using linear regression and kappa analyses, we saw a low

Fig. 2 Frequency distributions of hours/week spent on active mobility.
a Provides on overview of GPS measured hours/week spent on active
mobility, these acted as reference values. b Gives an overview of
estimated hours/week spent on active mobility from Estimation
method 1 (general characteristics method). c Shows an overview of

estimated hours/week spent on active mobility from the method based
on adjusted self-reported data: Estimation method 2. d Displays esti-
mated hours/week spent on active mobility from Estimation method 3
(GIS based method). Note, that axis of the plots differ in range to allow
for a better plot fit
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agreement between estimated and GPS measured hours/
week spent on active mobility.

Self-reported data has long been considered as a standard
method to obtain information about mobility in a population
[40, 41] and has for example also been applied to improve
exposure estimates to air pollution [6]. The information
available from the mobility baseline questionnaire (Q1) of
the VGO GPS study, was relatively extensive. From 934
participants we had detailed self-reported mobility data and a
GPS dataset [30]. Essential for this method is reliable

questionnaire data regarding active mobility, however, cor-
rectly estimating time spent on mobility is difficult for par-
ticipants leading to reporting errors [14, 15, 19, 42]. We tried
to adjust reporting error by applying a correction factor based
on previous research, to correct for the previously observed
overestimation [15], but this adjustment did not materially
improve agreement between self-reports and measurements.

Recently, a new approach was tested, namely map-based
questionnaires (MBQ’s) which seem to provide a new,
possibly inexpensive method to assess mobility in large

Fig. 3 Scatterplots of matched comparisons between estimated (x-axis)
and GPS measured (y-axis) hours/week spent on active mobility. Black
dot, predicted hours/week spent on active mobility from Estimation
method 1 (general characteristics method) versus GPS measured. Light
grey triangle predicted hours/week spent on active mobility from
Estimation method 2 (adjusted self-reported data method) versus GPS

measured. Dark grey squares predicted hours/week spent on active
mobility from Estimation method 3 (GIS based method) versus GPS
measured. We set the axis-maximum to 15 h/week to allow for a better
visual comparison between plots, therefore outliers >15 h/week are not
visible in these plots. Plots with all outliers visible are available in
Supplementary Fig. 3

Table 2 Description of input data for estimation methods, GPS reference and R2 values

Estimation
method

Input data Reference R2

1 GMRs of explanatory variables from [15], for non-motorised transport
(age [categorical], BMI [categorical], smoking status, working status,
hay fever, workdays [N/week]), estimates in hours/week

Combined GPS data of active mobility: data
assigned as ‘walking’ and ‘biking’ by way of an
algorithm [15, 37], outcomes in hours/week

0.05

2 Adjusted reported data from Q1, correction based on calculated
overestimation from [15], estimates in hours/week

0.09

3 GIS network analyses of weekly time spent in active transport,
calculated using commuting route and/or route to closest supermarket,
estimates in hours/week

<0.01
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study populations. MBQ’s showed high agreement between
GPS measured and MBQ indicated activity locations [24].
So far, it remains unclear if assessment of activity locations
can be expanded to evaluate time spent in active transport in
a valid way.

Estimation method 3, GIS based approach

More recent attempts target location-based GIS analyses to
include mobility data in exposure assessment approaches
[10, 11, 16]. Our GIS based method used the residential
address, the location of the closest supermarket, and, if
available, the work address to calculate the shortest routes
between these locations. Based on route lengths, people
were assigned to a likely mobility mode and duration of
time spent in active transport was calculated [37, 43].
Several underlying reasons may contribute to the poor
performance of this approach:

Firstly, we used specific route length cut-offs (<0.5 km:
walking, 0.5–2.5 km: bike, 2.5–3.7 km: E-bike, adapted from
[36]), to assign most likely mobility modes. Misclassification
may occur by performing this step. Median travel distances
for mobility modes were based on a recent survey, which
were used as cut-offs in our analyses. When we repeated our
analysis using the 75th-percentile instead of medians, this did
not improve the fit of the estimation (data not shown).

Secondly, this last method was developed using only the
residential address, closest supermarket, and, if available, the
work address. GIS can be used to estimate shortest routes
between locations, and GIS calculated routes tend to estimate
travelling distance correctly when compared with actual
(GPS-) measured routes [10, 20, 21]. This was indeed what
we observed when we visually compared a sample of esti-
mated commuting routes with matching GPS tracks. What
also followed from this check was that peoples’ activities
display a larger spatial distribution than can be estimated
using these three locations. Clearly, people also spend time
with their family, are involved in sports activities, go to other
shops than supermarkets, or visit (nature-) parks or beaches.

Study implications for exposure assessment studies

This study was performed in residents of a rural area in the
Netherlands and results from this study may be not

generalisable to other settings. Our estimation methods were
unable to predict active mobility; this means that these
methods are unlikely to improve exposure assessment. Still,
active mobility is not the only situation where people are
exposed to environmental emissions. One may also be
exposed while travelling in motorised transport [44], but
this was not the focus of our study. In a previous analysis
we observed that self-reported time spent outdoors in the
vicinity of the home was associated with pneumonia risk in
people living in the vicinity of goat farms, but active
mobility appeared not to be associated to this increased risk
[30]. The contribution of active mobility to health relevant
levels of environmental exposures will likely depend on
spatial and spatio-temporal distributions of the respective
exposure of interest.

Conclusions

Our main objective was to test different approaches to
predict active mobility based on accessible data in a study
cohort, since data regarding active mobility is challenging
to obtain in large cohorts. Our estimation methods based on
general characteristics, self-reported data and location-based
information were equally unable to accurately predict active
mobility. Estimated commuting routes did to some degree
match GPS tracks, so if the goal is to analyse the con-
tribution of homework traffic to an exposure, using a GIS
based method may be applicable but requires further study.
Overall, measurements still represent the best possible tool
to evaluate mobility patterns [11, 18, 19, 21, 45, 46].
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