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Abstract

In the context of elasticity theory, rigidity theorems allow one to derive global
properties of a deformation from local ones. This paper presents a new asymptotic
version of rigidity, applicable to elastic bodies with sufficiently stiff components ar-
ranged into fine parallel layers. We show that strict global constraints of anisotropic
nature occur in the limit of vanishing layer thickness, and give a characterization of
the class of effective deformations. The optimality of the scaling relation between
layer thickness and stiffness is confirmedby suitable bending constructions.Beyond
its theoretical interest, this result constitutes a key ingredient for the homogeniza-
tion of variational problems modeling high-contrast bilayered composite materials,
where the common assumption of strict inclusion of one phase in the other is clearly
not satisfied. We study a model inspired by hyperelasticity via �-convergence, for
which we are able to give an explicit representation of the homogenized limit prob-
lem; it turns out to be of integral form with its density corresponding to a cell
formula.

1. Introduction

Rigidity is a prevalent concept in different areas of mathematics. Generally
speaking, it refers to powerful statements that allow one to draw far-reaching con-
clusions from seemingly little information, such as deducing global properties of a
function from local ones. A classical result along these lines is often referred to as
Liouville’s theorem on geometric rigidity, see e.g. [38]. This says that every smooth
local isometry of a domain corresponds to a rigid body motion. A generalization to
the Sobolev setting is due to Reshetnyak [53], and states that if u ∈ W 1,p(�;Rn)

with � ⊂ R
n a bounded Lipschitz domain and 1 < p < ∞ satisfies

∇u ∈ SO(n) (1.1)
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pointwise almost everywhere in �, then u is harmonic and

u(x) = Rx + b for x ∈ � with R ∈ SO(n) and b ∈ R
n . (1.2)

It is not hard to see that if connectedness of the domain fails, then global rigidity is
no longer true, as different connected components can then be rotated and translated
individually.

Yet, for a domain that has several rigid components arranged into very fine
parallel layers (see Fig. 1), global geometric constraints of anisotropic nature occur
in the limit of vanishing layer thickness. Since these restrictions become prominent
only after a limit passage, we speak of asymptotic rigidity of layered structures.
A first rigorous result in this direction can be found in [16] for the special case
n = 2 and p = 2. There it was proven that, under the assumption of local volume
preservation and up to global rotations, only shear deformations aligned with the
orientation of the layers can occur as effective deformations.

In this paper, we extend the result of [16] to arbitrary dimensions n � 2 and
general 1 < p < ∞, and more significantly, relax the assumption of rigid layers
by requiring only sufficient stiffness (see Theorem 1.1). Formally, this corresponds
to replacing the exact differential inclusion (1.1) by an approximate one, very
much like the quantitative rigidity estimate by Friesecke et al. [33, Theorem 3.1]
generalizes Reshetnyak’s theorem. The paper [33] has initiated increased interest
in rigidity and its quantification over the last few years, especially among analysts
working on variationalmethodswith applications inmaterials science. For instance,
a quantitative version of piecewise rigidity for SBV -functions [12] was established
in [32], and there is recent work on the rigidity of conformal maps [31], of non-
gradient fields [50] and of the non-Euclidean setting [45].

To be more precise about our results, some notation on the geometry of bi-
layered structures is needed. Throughout the manuscript, let � ⊂ R

n with n � 2
be a bounded Lipschitz domain, λ ∈ (0, 1), and Y = (0, 1]n the periodicity cell.
We set

Ysoft = (0, 1]n−1 × (0, λ) and Ystiff = Y\Ysoft,

cf. Fig. 1.Without furthermention,Ysoft andYstiff are identifiedwith theirY -periodic
extensions. To describe the thickness of two neighboring layers, we introduce a
parameter ε > 0, which is supposed to be small and captures the length scale of
the heterogeneities. The disjoint sets εYstiff ∩� and εYsoft ∩� partition the domain
� into two phases of alternating layers. Notice that the parameter λ stands for the
relative thickness of the softer components.

Under certain technical assumptions on the domain, in particular, flatness and
cross-section connectedness, which are specified in Definitions 3.6 and 3.7, we
obtain as our first main result a characterization for the asymptotic behavior of
sequences of functions on � whose gradients are increasingly close to SO(n) in
εYstiff ∩ � as ε → 0.

Theorem 1.1. Let � ⊂ R
n be a bounded, flat and cross-section connected Lipschitz

domain and 1 < p < ∞.
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Fig. 1. Illustration of bi-layered structure with stiff (gray) and softer (white) components
and periodicity cell Y , subdivided into Ysoft and Ystiff

(i) Suppose that (uε)ε ⊂ W 1,p(�;Rn) is such thatˆ
εYstiff∩�

dist p (∇uε, SO(n)
)
dx � Cεα (1.3)

for all ε > 0 with α � 0 and a constant C > 0. If α > p and uε ⇀ u in
W 1,p(�;Rn) for some u ∈ W 1,p(�;Rn), then

u(x) = R(x)x + b(x), x ∈ �, (1.4)

with R ∈ W 1,p(�; SO(n)) and b ∈ W 1,p(�;Rn) such that ∂i R = 0 and
∂i b = 0 for i = 1, . . . , (n − 1).

(ii) If u ∈ W 1,p(�;Rn) is of the form (1.4), then there exists a sequence (uε)ε ⊂
W 1,p(�;Rn) such that uε ⇀ u in W 1,p(�;Rn) and ∇uε ∈ SO(n) a.e. in
εYstiff ∩ � for every ε > 0.

One observes that (1.4) resembles (1.2), just that now R will in general not
be constant, but depends on the xn-variable, and hence, varies in the direction
orthogonal to the layers. This condition can be considered the result of a non-trivial
interplay between the effects of rigidity and anisotropy.

The proof of Theorem 1.1(i) consists of three main steps: the layerwise ap-
proximation of each uε by rigid body motions, a compactness argument for the
resulting one-dimensional auxiliary functions of piecewise constant rotations, and
a limit representation argument. Regarding its overall structure, the reasoning is or-
ganized similarly to [16, Proposition 2.1]. Technically, however, the transition from
exact to the approximate differential inclusions requires two substantial changes,
which make the arguments more involved than in [16]. Instead of Reshetnyak’s
theorem, we apply the quantitative rigidity estimate on each layer, and the Fréchet–
Kolmogorov compactness result (see Lemma 3.4) is used as a refinement of Helly’s
selection principle.

Proving the second part of Theorem 1.1 involves the explicit construction of an
approximating sequence (uε)ε with the desired properties. To this end, we critically
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exploit the special structure of u as in (1.4), which features a splitting of the xn-
variable from the remaining ones, so that u has essentially the character of a one-
dimensional function.

Remark 1.2. (a) The gradient of u as in (1.4) takes the form

∇u = R + (∂n R)x ⊗ en + ∂nb ⊗ en, (1.5)

which necessarily requires that (∇u)ei = Rei for all i = 1, . . . , n − 1.
(b) We point out that the scaling regime α > p, which quantifies the relation

between thickness and stiffness of the layers, is optimal for Theorem 1.1(i). As
shown in Section 2, asymptotic rigidity of layered structures fails for α � p.
We provide explicit examples inspired by bending deformations, for which the
limit maps u are such that ∂1u depends non-trivially on x1 or ∂1u is not normed
to one.
Note that the two extreme cases α = 0 and “α = ∞” (formal for εα = 0)
in (1.3) correspond the situations of the stiff layers being actually soft or fully
rigid, respectively.

(c) Theorem 1.1 can be extended in different directions. One generalization con-
cerns a (p, q)-version Theorem 1.1(i). Indeed, if the exponent p in (1.3) is
replaced by q ∈ (p,∞) the statement remains valid provided that α > q. In
this more general setting, we can let 1 � p < ∞. The only modification in the
case p = 1 is that R and b will be BV -functions. We refer to Remark 3.5(a)
and Remark 3.2(b) for more details. Moreover, as mentioned in Remark 3.2(c),
asymptotic rigidity in the sense of Theorem 1.1(i) still holds if the relative
thickness of the stiff layers depend on ε, being much larger than ε

α
p −1. For a

comment on reduced assumptions for the domain �, see Remark 4.2 as well
as Theorem 3.1.

(d) If one requires additionally in Theorem 1.1 that the limit function u is locally
volume preserving: that is u ∈ W 1,r (�;Rn) for r � n with det∇u = 1 a.e. in
�, then Ren is constant, see Corollary 3.9. In the two-dimensional setting with
n = 2, this implies that R is constant, and one can think of u as horizontal shear
deformation up to global rotations, cf. also [16, Proposition 2.1].

From the viewpoint of applications in materials science, Theorem 1.1 identi-
fies characteristics of macroscopically attainable deformations of bi-layered high-
contrast composite materials. This observation constitutes an important step to-
wards a rigorous characterization of their effective behavior via homogenization.
Indeed, we will discuss in the following how asymptotic rigidity of layered struc-
tures serves as the basis for solving a relevant class of homogenization problems
in the context of hyperelasticity.

In the 1970s, the Italian school around De Giorgi established the concept of �-
convergence [28,29] (see also [8,26] for a comprehensive introduction), which has
been used successfully among others in homogenization theory to bridge between
microscopic and macroscopic scales. This is a natural notion for variational con-
vergence, i.e. limit passages in parameter-dependent minimization problems. The
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key property is that if a sequence of energy functionals �-converges to a limit func-
tional, this implies, under the assumption of suitable compactness, the convergence
of the corresponding infima and (almost) minimizers.

By now classical homogenization results via �-convergence include the papers
by Marcellini [46] in the convex setting, as well as the first work in the non-
convex case with standard p-growth by Müller [47] and Braides [7]. Within
multiscale analysis, which comprises homogenization and relaxation theory, vari-
ational problems with non-convex pointwise or differential constraints are known
to be technically challenging, cf. [9,17,20,30,42]. Despite recent partial progress
towards attacking the issue of localization, i.e. proving that limit functionals pre-
serve integral form, with different methods, e.g. [20,30,40,52], there are still gen-
eral open questions that cannot be worked out with existing tools. In this article,
we investigate homogenization problems subject to a special type of approximate
differential inclusion constraint, which do not satisfy standard assumptions and
therefore require a tailored approach.

Let α > 0 and p ∈ (1,∞). Consider for each ε > 0 the integral functional Eε

defined for u ∈ W 1,p(�;Rn) by

Eε(u) =
ˆ

εYstiff∩�

1

εα
dist p(∇u, SO(n)) dx +

ˆ
εYsoft∩�

Wsoft(∇u) dx

with an integrandWsoft : Rn×n → R,which is in general not convexor quasiconvex.
These functionals model the elastic energy of a layered composite. The first term
with diverging elastic constants, scaling like ε−α , is the contribution of the stiff
components and the second term is associated with the softer components.

In the regime α > p, we show that the �-limit of (Eε)ε as ε → 0 with re-
spect to strong convergence in L p(�;Rn), or equivalently weak convergence in
W 1,p(�;Rn), exists and determine a characterizing formula. The required techni-
cal assumptions on the geometry of � are those of Definitions 3.6 and 3.7 and the
density Wsoft is supposed to satisfy (H1)-(H3), see Section 5. In fact, the �-limit
has integral form, is subject to the constraints on the admissible macroscopic de-
formations induced by asymptotic rigidity (cf. Theorem 1.1), and can be expressed
purely in terms of the energy density Wsoft and the relative thickness λ of the softer
layers. More precisely,

Ehom(u) := �- lim
ε→0

Eε(u) =
ˆ

�

λW qc
soft

( 1
λ
(∇u − (1 − λ)R)

)
dx (1.6)

for all u of the form (1.4), and Ehom(u) = ∞ otherwise. Here, W qc
soft stands for the

quasiconvex envelope of Wsoft; for background information on generalized notions
of convexity and relaxations, see e.g. [25].

Next, we collect a few remarks to put the above mentioned homogenization
result—a detailed formulation of the full version is given in Theorem 5.2—in
context with related work in the literature.

Remark 1.3. (a) General theorems on homogenization tend to be rather implicit
in the sense that they involve (multi)cell formulas (e.g. [7,47]), which again
require to solve infinite dimensional minimization problems. In contrast, the
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�-limit in (1.6) is clearly explicit with regards to the macroscopic effect of the
heterogeneities. If the relaxation of the softer components, or in other words, the
quasiconvexification of Wsoft, is known, the representation of the homogenized
energy density becomes even fully explicit. To illustrate the latter, we discuss
the prototypical example of the Saint-Venant Kirchhoff stored energy function
in Example 5.1.

(b) As we demonstrate in Remark 5.5, the density in (1.6) coincides with a single-
cell formula. This indicates that microstructures ranging over multiple cells (or
layers) are not energetically favorable, in contrast with the general theory. In-
deed, Müller’s well-known counterexample [47], which involves a polyconvex
energy density function, gives evidence that multi-cell formulas are necessary
in general to describe homogenized limits of non-convex problems (see also [5]
for further examples). The recent paper [51] refines this observation by showing
that a single-cell formula is sufficient in a neighborhood of rotations, though.

(c) Next, we highlight a selection of related references on the variational analysis of
different types of elastic high-contrast composites. The case of stiff inclusions
in a softer phase is covered in [10,30], while [10,13,14] study the asymptotics
of material models with increasingly soft inclusions. For results on the extreme
regime of perforated materials, we refer to the seminal paper [1], and more
recently, in the context of brittle elastic materials to [11]. The effective behavior
of fiber-reinforced brittle materials is studied in [6].
A common feature of all these results is the isotropy of the derived homoge-
nized energies. In contrast, strong anisotropy at the macroscopic level arises in
Theorem 5.2 from the layered geometry of the heterogeneities, especially in
the form of restrictions on the class of admissible deformations.

(d) Asymptotic rigidity as a concept and technical tool is not only limited to the
homogenization problem in Theorem 5.2. It can be used also in other contexts
and has the potential for extensions in different directions, as recent work on the
asymptotic analysis of models for layered materials in finite crystal plasticity
illustrates, see [16,27] and [15, Chapter 5, 6]. In particular, [27] contains a BV -
version of Theorem1.1 in the case of fully rigid components,whichmakes a first
connection with applications in fracture mechanics. A step towards carrying the
results to problems in stochastic homogenization is made in [15], by assuming
a random distribution of the layer thickness.

We conclude the introduction with a fewwords about the proof of Theorem 5.2,
focussing on the main ideas and technical challenges. The construction of a recov-
ery sequence for affine limit maps (Step 1) is based on laminates made of rotations
and shear components (cf. [16, Section 4]), which we augment with suitable per-
turbations on the softer layers. The harder part is the case of general limits (Step 3).
Recall that Theorem 1.1(ii) provides an admissible approximating sequence for any
possible limit map as in (1.4). However, these sequences fail to be energetically
optimal in general. To remedy this problem, we localize by piecewise constant ap-
proximation of the limit functions, which can be done in a constraint preserving
way due to the essentially one-dimensional character of the representation in (1.4)
(see also (1.5)). Finally, we determine locally optimal microstructures as in the
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affine case and glue them onto the sequence from Theorem 1.1(ii) in the softer
parts. This construction is sufficient to recover the energy.

In essence, our reasoning for the liminf-inequality (Steps 2 and 4) comes down
to using Theorem 1.1(i) and to applying Jensen’s inequality twice, first to obtain
a lower bound energy estimate on each softer layer and then, in the optimization
process over the entirety of layers. Besides, we employ the properties of Null-
Lagrangians. The presented arguments rely strongly on the hypothesis that W qc

soft
is polyconvex (referred to as (H1)), meaning that the quasiconvex envelope can
be written as a convex function of the vector of minors, or in other words, that
the quasiconvex envelope coincides with the polyconvex one. Notice that the same
assumption can be found e.g. in [20] in the context of relaxation problems with
constraints on the determinant.

Dropping (H1) appears to be a non-trivial task. On a technical level, if the
Jensen’s inequalities mentioned above were to be replaced straight away by the
related formulas defining quasiconvexity (see (5.2)), this would require careful
cut-off arguments at the boundaries. In the stiff layers, though, cut-off conflicts
with the rigidity constraints and difficulties may arise from non-local effects due
to interaction between different layers. Hence, it remains an open question to un-
derstand whether removing (H1) from the list of assumptions makes the �-limit
Ehom in (1.6) (if existent) smaller. Or in more intuitive terms, can the energy be
further reduced by oscillations of the rotation matrices and long range effects over
multiple layers?

Structure of the article This paper is organized into five sections. In the subse-
quent Section 2, we discuss a range of explicit bending examples, which illustrate
softer macroscopic behavior in the regimes 0 < α � p and establish in particular
the optimality of the condition α > p in Theorem 1.1(i). Sections 3 and 4 contain
the proofs of the asymptotic rigidity result formulated in Theorem 1.1. In Section 3,
we prove a generalization of the necessity part (i) as well as Corollary 3.9, followed
by a more detailed discussion on the geometric assumptions on the domain�. Sec-
tion 4 proceeds with the proof of the sufficiency statement (ii) of Theorem 1.1. In
Section 5, we state our second main result on homogenization via �-convergence,
that is Theorem 5.2. For its proof, both parts of Theorem 1.1 are key. We conclude
by relating the homogenization formula of (1.6) to the cell formula as it occurs in
models of composites with rigid layers. The “Appendix” provides two technical
auxiliary results in form of a specialized reverse Poincaré type inequality and a
lemma on locally one-dimensional functions.

Notation The standard unit vectors in R
n are denoted by e1, . . . , en . For the

Euclidean inner product between two vectors a, b ∈ R
n wewrite a ·b. Moreover, let

a ⊗ b = abT ∈ R
n×n for a, b ∈ R

n , and set a⊥ = (−an, a2, . . . , an−1, a1)T ∈ R
n

for a ∈ R
n , which generalizes the usual notation for perpendicular vectors in two

dimensions. The Frobenius norm of A ∈ R
n×n is given by |A| = √

AAT . Our
notation for block diagonal matrices is A = diag(A1, A2, . . . , Am) ∈ R

n×n with
Ai ∈ R

ni ×ni and
∑m

i=1 ni = n. In the following, we will often split up a ∈ R
n as

a = (a′, an), where a′ = (a1, . . . , an−1). For a matrix A ∈ R
n×n a similar splitting

into its columns is used, that is A = (A′|Aen) with A′ ∈ R
n×(n−1). For t ∈ R, the
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expressions �t
 and �t� stand for the largest integer smaller and smallest integer
larger than t , respectively.

By a domain � ⊂ R
n we mean an open, connected subset of Rn . An open

cuboid is the Cartesian product Q = (a1, b1) × · · · × (an, bn) =: ×i (ai , bi ) ⊂ R
n

with ai , bi ∈ R and ai < bi for i = 1, . . . , n. Hence for us, cuboids will always
be oriented along the coordinate axes. Furthermore, 1E and χE are the indicator
and characteristic function corresponding to a subset E ⊂ R

n , i.e., 1E (x) = 1 and
χE (x) = 0 if x ∈ E , and 1E (x) = 0 and χE (x) = ∞ if x /∈ E . For a measurable
set U and an integrable function f : U → R

m , let −́U f dx := 1
|U |

´
U f dx .

We use the common notation for Lebesgue and Sobolev spaces, as well as
for function spaces of continuously differentiable functions. By L p

0 (�;Rm), we
denote the space of functions in L p(�;Rm)with the property that their mean value
vanishes. Periodic boundary condition are indicated by a lower case #, for example
in W 1,p

# (Y ;Rm).
The distributional derivative of a function f ∈ L1

loc(�;Rm) is denoted by D f ,
for partial derivatives in the ei -direction we write ∂i u. Moreover, D f = (D′ f |∂n f )

with D′ f = (∂1 f | . . . |∂n−1 f ). If f : � → R
m is classically or weakly differen-

tiable, we denote the (weak) gradient of f by ∇ f . Here again, one has the splitting
∇ f = (∇′ f |∂n f ) with ∇′ f = (∂1 f | . . . |∂n−1 f ). In case f : J → R

m is a one-
dimensional function with J ⊂ R an open interval, we simply write f ′ for the
derivative of f .

Convergence of a sequence (uε)ε as ε → 0 means that (uε j ) j converges as
j → ∞ for any subsequence ε j ↓ 0. Note finally the use of generic constants,
mostly denoted by c or C , which may vary from line to line without change in
notation.

2. Optimality of the Scaling Regimes

While for α = 0 in (3.2) the class of effective deformations with finite energy
comprises arbitrary Sobolevmapswith vanishingmean value, thematerial response
in the case “α = ∞” is rather rigid. This raises the natural question up towhich value
of α softer material response can be encountered. In this section, we discuss four
examples of macroscopically attainable deformations. They show that Theorem 1.1
and Corollary 3.9 fail for small elastic constants in the regime α � p, and illustrate
the effect of (local) volume preservation. For simplicity, we assume throughout this
section that � ⊂ R

n is the unit cube, i.e. � = (0, 1)n .
The idea behind the first two constructions for α = p is to bend the individ-

ual stiffer layers, first uniformly in Example 2.3, and then in a locally volume-
preserving way inspired by the bending of a stack of paper in Example 2.4. Exam-
ple 2.5 is based on a wrinkling construction for the individual layers, and shows
that compression in layer direction is possible for α ∈ (0, p). Finally, we look into
the effect of the local volume condition for α > p in Example 2.6.

The calculations behind these examples share a common structure and are all
based on the following auxiliary result.We deliberately keep its formulation slightly
more general than actually needed in what follows. This facilitates the construction
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of an even larger variety of explicit deformations and yields immediate insight into
their asymptotic properties.

As regards notation, we write �x�ε for the orthogonal projection of x ∈ εYstiff
onto the midsection of the stiff layer containing x ; if x ∈ εYsoft, �x�ε refers to the
projection onto the midsection of the closest stiff layer above x . Precisely, for ε > 0
and t ∈ R, we let [t]ε = ε

⌈ t
ε

⌉ − ε + 1+λ
2 ε, so that

�x�ε = (x1, . . . , xn−1, [xn]ε) for x ∈ R
n .

Due to

|xn − [xn]ε| = ε
∣∣ xn

ε
− ⌈ xn

ε

⌉ + 1 − 1+λ
2

∣∣ � 2ε for any x ∈ R
n, (2.1)

we observe that �x�ε → x as ε → 0.

Lemma 2.1. Let Q = [0, 1]n−1 × [− 1
2 , 2] and 1 < p < ∞. For ε ∈ (0, 1), let

fε ∈ C2(Q;Rn) be such that |∂1 fε| = 1, ∂1 fε ∈ span{e1, en} and ∂i fε = ei for
i = 2, . . . , n − 1, and define a Lipschitz function uε : � → R

n by

uε(x) = fε(�x�ε) + (xn − [xn]ε)∂1 f ⊥
ε (�x�ε) for x ∈ εYstiff ∩ �, (2.2)

and by linear interpolation in the en-direction in εYsoft ∩ �.
Then, for any ε ∈ (0, 1),

ˆ
εYstiff∩�

dist p(∇uε, SO(n)) dx � 2pε p‖∂211 fε‖p
L∞(Q;Rn)

. (2.3)

Moreover, if limε→0 ε‖∇2 fε‖L∞(Q;Rn×n×n) = 0 and if there is F ∈ L p(Q;Rn×n)

such that either

(i) ∇ fε → F in L p(Q;Rn×n) as ε → 0, or
(ii) ∇ fε ⇀ F in L p(Q;Rn×n) as ε → 0 and ∂n(∇ fε) = 0 for all ε ∈ (0, 1),

then

∇uε ⇀ F in L p(�;Rn×n). (2.4)

Remark 2.2. The choice of Q as the domain of the functions fε ensures that uε

as in (2.2) is well-defined. Indeed, if t ∈ [0, 1] and ε ∈ (0, 1), then − 1
2 < − ε

2 �
[t]ε � 1 + ε < 2.

Proof. By definition, the functions uε are continuously differentiable on the con-
nected components of εYstiff ∩ � and εYsoft ∩ �. Then,

∇uε(x) = ∂1 fε(�x�ε) ⊗ e1 + (xn − [xn]ε)∂211 f ⊥
ε (�x�ε) ⊗ e1

+ ∑n−1
i=2 ei ⊗ ei + ∂1 f ⊥

ε (�x�ε) ⊗ en (2.5)
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for x ∈ εYstiff ∩ �, and a straight-forward calculation yields the gradients for
x ∈ εYsoft ∩ �,

∇uε(x) = (
∂1 fε(�x�ε − εen) + 1−λ

2 ε∂211 f ⊥
ε (�x�ε − εen)

) ⊗ e1

+ 1
λε

(
xn − ⌈ xn

ε

⌉
ε + ε

)(
∂1 fε(�x�ε) − ∂1 fε(�x�ε − εen)

) ⊗ e1

− 1−λ
2λ

(
xn − ⌈ xn

ε

⌉
ε + ε

)(
∂211 f ⊥

ε (�x�ε) + ∂211 f ⊥
ε (�x�ε − εen)

) ⊗ e1

+ ∑n−1
i=2 ei ⊗ ei + 1

λε

(
fε(�x�ε) − fε(�x�ε − εen)

) ⊗ en

− 1−λ
2λ

(
∂1 f ⊥

ε (�x�ε) + ∂1 f ⊥
ε (�x�ε − εen)

) ⊗ en,

see [15, Lemma 3.4.3]) for more details.
In view of (2.5) and the observation that ∂1 fε(�x�ε) ⊗ e1 + ∑n−1

i=2 ei ⊗ ei +
∂1 f ⊥

ε (�x�ε) ⊗ en ∈ SO(n) for all x ∈ � due to |∂1 fε| = |∂1 f ⊥
ε | = 1 and

∂1 fε ∈ span{e1, en}, the elastic energy contribution on the stiffer layers can be
estimated by

ˆ
εYstiff∩�

dist p(∇uε, SO(n)) dx �
ˆ

εYstiff∩�

∣∣(xn − [xn]ε)∂211 f ⊥
ε (�x�ε) ⊗ e1

∣∣p dx

� ‖∂211 fε‖p
L∞(Q;Rn)

ˆ
�

∣∣xn − [xn]ε
∣∣p dx .

By (2.1), this implies (2.3).
For the proof of (2.4), consider the auxiliary fields Vε ∈ L∞(�;Rn×n) given

by

Vε = ∂1 fε ⊗ e1 + ∑n−1
i=2 ei ⊗ ei + (

∂1 f ⊥
ε ⊗ en

)
1εYstiff∩�

+ (
( 1
λ
∂n fε − 1−λ

λ
∂1 f ⊥

ε ) ⊗ en
)
1εYsoft∩�.

(2.6)

Recall that the indicator function associated with a set E ⊂ R
n is denoted by 1E .

We will show that

Vε − ∇uε → 0 in L∞(�;Rn×n). (2.7)

Indeed, along with the mean value theorem and (2.1), one obtains for x in the
interior of εYstiff ∩ � that

|∇uε(x) − Vε(x)|
� |(∂1 fε(�x�ε) − ∂1 fε(x)

) ⊗ e1| + |(xn − [xn]ε)∂211 f ⊥
ε (�x�ε) ⊗ en|

+ |(∂1 f ⊥
ε (�x�ε) − ∂1 f ⊥

ε (x)
) ⊗ en|

� |xn − [xn]ε|
(‖∂21n fε‖L∞(Q;Rn) + ‖∂211 fε‖L∞(Q;Rn) + ‖∂21n f ⊥

ε ‖L∞(Q;Rn)

)

� 6ε‖∇2 fε‖L∞(Q;Rn×n×n),
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and, similarly, for x ∈ εYsoft ∩ �,

|∇uε(x) − Vε(x)| � |∇uεe1(x) − Vεe1(x)| + |∇uεen(x) − Vεen(x)|
� 3ε

( 1+λ
λ

)‖∂21n fε‖L∞(Q;Rn) + 2
λ
ε‖∂211 f ⊥

ε ‖L∞(Q;Rn)

+ 3
λ
ε‖∂21n fε‖L∞(Q;Rn) + 1

λ

∣∣∂n fε(x1, ξ) − ∂n fε(x)
∣∣

� 6ε
( 1+λ

λ

)(‖∂21n fε‖L∞(Q;Rn) + ‖∂211 fε‖L∞(Q;Rn)

+ ‖∂2nn fε‖L∞(Q;Rn)

)

� 18ε
( 1+λ

λ

)‖∇2 fε‖L∞(Q;Rn×n×n),

with some ξ ∈ ([xn]ε − ε, [xn]ε). Accounting for limε→0 ε‖∇2 fε‖L∞(Q;Rn×n×n) =
0 leads to (2.7).

In case (i), it follows from (2.6) alongwith aweak-strong convergence argument
that

Vε ⇀ Fe1 ⊗ e1 + ∑n−1
i=2 ei ⊗ ei + (1 − λ)(Fe1)⊥ ⊗ en

+ Fen ⊗ en − (1 − λ)(Fe1)
⊥ ⊗ en = F in L1(�;Rn×n),

(2.8)

where we have used in particular that 1εYstiff∩�
∗
⇀ (1 − λ) and 1εYsoft∩�

∗
⇀ λ in

L∞(�), as well as Fei = ei for i = 2, . . . , n − 1. The latter follows directly from
the assumption that ∂i fε = ei for all ε ∈ (0, 1) if i = 2, . . . , n − 1.

Combining (2.8) and (2.7) shows that ∇uε ⇀ F in L1(�;Rn×n). Since
(∇uε)ε is uniformly bounded in L p(�;Rn×n) by (2.3) and the requirement that
ε‖∂211 fε‖L∞(Q;Rn) → 0, we finally infer (2.4), which finishes the proof under the
assumption of (i).

If assumption (ii) is satisfied, then ∂1 f ⊥
ε depends only on x1. Since 1εYstiff on

the other hand is constant in the x1-variable, we observe a separation of variables
in the product (∂1 f ⊥

ε )1εYstiff . In light of this observation, consider test functions
ϕ ∈ C0(�;Rn) of the form ϕ(x) = (φ ⊗ψ)(x) := φ(x1)ψ(x2, . . . , xn) for x ∈ �

with φ ∈ C0([0, 1];Rn) and ψ ∈ C0([0, 1]n−1). Then, due to Fubini’s theorem
and the lemma on weak convergence of rapidly oscillating periodic functions (see
e.g. [18, Section 2.3]), it follows thatˆ

�

(∂1 f ⊥
ε · ϕ)1εYstiff∩� dx

=
(ˆ

[0,1]
∂1 f ⊥

ε · φ dx1
)(ˆ

[0,1]n−1
1εYstiff∩� ψ dx2 . . . dxn

)

→
( ˆ

[0,1]
(Fe1)

⊥φ(x1) dx1
)( ˆ

[0,1]n−1
(1 − λ)ψ dx2 . . . dxn

)

= (1 − λ)

ˆ
�

(Fe1)
⊥ · ϕ dx as ε → 0. (2.9)

We recall that as a corollary of the Stone-Weierstrass theorem (see e.g. [54, Theo-
rem 7.32]) and the density of C0(�;Rn) in Lq(�;Rn) with 1 � q < ∞, the span
of functions φ ⊗ ψ is dense in Lq(�;Rn). Consequently, we infer from (2.9) that

(∂1 f ⊥
ε )1εYstiff∩� ⇀ (1 − λ)(Fe1)

⊥ in L p(�;Rn).
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ε

ε → 0

uε
g

u(x) = g(x1) + x2e2 + c, c ∈ R
2

Fig. 2. Illustration of the deformations of Example 2.3 for n = 2, with uniform bending of
the stiffer layers described by g(t) = sin(t − 1

2 )e1 + cos(t − 1
2 )e2 for t ∈ [0, 1]

Then the third term in (2.6) convergesweakly to (1−λ)(Fe1)⊥⊗en in L p(�;Rn×n).
Arguing similarly for the other product terms in (2.6) eventually yields Vε ⇀ F in
L p(�;Rn×n). In conjunction with (2.7) this proves (2.4), and thus the statement
in case (ii). ��

As announced at the beginning of the section, we will next discuss four spe-
cializations of Lemma 2.1, using the same notations. These examples illustrate the
optimality of the scaling regimes in Theorem 1.1 and Corollary 3.9.

Example 2.3. (Uniform bending of the individual stiffer layers) Let g : [0, 1] →
span{e1, en} ⊂ R

n be a C2-curve parametrized by arc length, i.e., |g′(t)| = 1 for
all t ∈ [0, 1]. We follow Lemma 2.1 to define deformations uε by choosing for all
ε ∈ (0, 1),

fε(y) = f (y) := g(y1) +
n∑

i=2

yi ei , y ∈ Q. (2.10)

This choice of f is motivated by uniform bending of the individual stiffer layers
in the two-dimensional setting, where the curve g describes the bending of the
mid-fibers, see Fig. 2.

Then, Lemma 2.1 implies that for any constant C > 2p‖g′′‖p
L∞(0,1;Rn)

,
ˆ

εYstiff∩�

dist p(∇uε, SO(n)) dx � Cε p,

which shows that the sequence (uε)ε has finite elastic energy on the stiffer com-
ponent for α = p. As for the gradient of the limit deformation u, we infer from
version i) of Lemma 2.1 that∇uε ⇀ ∇u = ∇ f in L p(�;Rn×n). In view of (2.10),

∇u(x) = g′(x1) ⊗ e1 +
n∑

i=2

ei ⊗ ei = R(x) + ã(x) ⊗ en, x ∈ �,

with R(x) = g′(x1)⊗ e1 +∑n−1
i=1 ei ⊗ ei + g′(x1)⊥ ⊗ en and ã(x) = en − g′(x1)⊥.

Clearly, for general g, ∂1R �= 0, so that the limit deformation u does not have the
form (3.3) obtained in Theorem 1.1 for the regime α > p.
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We remark that the limit deformation u is not locally volume preserving for g
with non-trivial curvature, since det∇u = g′ · e1 �≡ 1.

To recover limit deformations that satisfy the local volume constraint, a slightly
more involved bending construction as in the next example is needed.

Example 2.4. (Macroscopically volume-preserving bending deformations) In the
context of Lemma 2.1, we consider for ε ∈ (0, 1) the functions

fε(y) = f (y) := (yn + 1)g
( y1

yn + 1

)
+

n−1∑

i=2

yi ei , y ∈ Q,

with g : [0, 2] → span{e1, en} ⊂ R
n a C2-curve parametrized by arclength.

Then the sequence (uε)ε defined by (2.2) in the stiffer component and by linear
interpolation in the softer one satisfiesˆ

εYstiff∩�

dist p(∇uε, SO(n)) dx � 2p‖g′′‖p
L∞(0,2;Rn)

ε p,

and we obtain that ∇uε ⇀ ∇u = ∇ f in L p(�;Rn×n). Due to

∇ f (x) = g′( x1
xn + 1

)
⊗ e1 +

n−1∑

i=2

ei ⊗ ei

− x1
xn + 1

g′( x1
xn + 1

)
⊗ en + g

( x1
xn + 1

)
⊗ en

for x ∈ �, one can rewrite the gradient of the limit deformation u with the help of
a map of rotations R ∈ L∞(�; SO(n)) defined for x ∈ � by R(x)e1 = g′( x1

xn+1 )

and R(x)ei = ei for i = 2, . . . , n − 1. Precisely,

∇u = R + ã ⊗ en,

with ã(x) = − x1
xn+1g′( x1

xn+1

) + g
( x1

xn+1

) − g′( x1
xn+1

)⊥ for x ∈ �. The rotations
R depend non-trivially on x1, hence, the limit map u is not in compliance with
Theorem 1.1. Since det∇u = det∇ f = −g′ · g⊥, the deformation u is locally
volume preserving if we chose g such that g′ · g⊥ ≡ 1.

An simple deformation of this type, which is intuitively inspired by the bending
of a stack of paper, is depicted in Fig. 3.

Next, we discuss an example in the regime α < p, where macroscopic shorten-
ing in the e1-direction occurs due to wrinkling of the stiffer layers. A similar effect
occurs in the context of plate theory, cf. [33, Section 5].

Example 2.5. (Wrinkling of stiffer layers) Let β ∈ R, γ ∈ (0, 1), and g : [0, 1] →
span{e1, en} ⊂ R

n be a 1-periodic C2-function with |g′(t)| = 1 for all t ∈ R. We
define gε : [0, 1] → R

n by gε(t) = εγ g(ε−γ t) for t ∈ [0, 1] and ε ∈ (0, 1), and
observe that by the weak convergence of periodically oscillating sequences,

g′
ε ⇀ ḡ′ :=

ˆ 1

0
g′(t) dt = g(1) − g(0) in L1(0, 1;Rn).
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ε

ε → 0

uε u

Fig. 3. Illustration of the deformations of Example 2.4 for n = 2, with g(t) = sin(t −
1
2 )e1 + cos(t − 1

2 )e2 for t ∈ [0, 2]. Notice also that the limit deformation u satisfies the
local volume constraint, whereas the bending deformations of the individual layers in the
left picture do not

ε

ε → 0

uε u

Fig. 4. Illustration of the deformation in Example 2.5 for n = 2

Unless g′ is constant, |ḡ′| < 1. Under these assumptions, the functions

fε(y) = gε(y1) + βynen +
n−1∑

i=2

yi ei , y ∈ Q

meet the requirements of Lemma 2.1 with assumption (ii) and F = ḡ′ ⊗ e1 +∑n−1
i=2 ei ⊗ ei + βen ⊗ en . Thus, for uε as in Lemma 2.1,ˆ

εYstiff∩�

dist p(∇uε, SO(n)) dx � 2pε p‖g′′
ε ‖p

L∞(0,1;Rn)

� 2pε p(1−γ )‖g′′‖p
L∞(0,1;Rn)

� Cε p(1−γ ),

and ∇uε ⇀ ∇u = F in L1(�;Rn×n). In particular, |(∇u)e1| = |Fe1| = |ḡ′| < 1.
Since det∇u = det F = β(ḡ′ · e1), (local) volume preservation of the limit

deformationu canbe achievedby a suitable choice ofβ and g.Graphically speaking,
β can be viewed as a stretching factor in the en-direction that compensates the loss
of length in the e1-direction due to the asymptotic shortening of themid-fibers in the
stiffer layers, so that overall volume is preserved. A specific case of this wrinkling
construction is depicted in Fig. 4.

Our last example highlights the role of the local volume constraint of the limit
deformation in the regime α � 0. In particular, it shows that for α > p local volume
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ε

ε → 0

uε
u

Fig. 5. Illustration of the deformation ofExample 2.6 forn = 2,where the increasing rotation
of the stiffer layers is described by R ∈ C2([− 1

2 , 2]; SO(2)) with R(t)e1 = cos(t)e1 +
sin(t)e2 for t ∈ [− 1

2 , 2]

preservation of the limit deformation is necessary to obtain asymptotic rigidity in
the sense of Corollary 3.9.

Example 2.6. (Rotation of stiffer layers) Let R ∈ C1([− 1
2 , 2]; SO(n))with Rei =

ei for i = 2, . . . , n − 1. For each ε ∈ (0, 1), we set

fε(y) = f (y) := (y1 − 1
2 )R(yn)e1 + 1

2e1 +
n∑

i=2

yi ei , y ∈ Q,

and take uε as defined in Lemma 2.1. Since ∂11 f = 0, it follows from (2.3) that
ˆ

εYstiff∩�

dist p(∇uε, SO(n)) dx = 0

for any ε ∈ (0, 1). Moreover, ∇uε ⇀ ∇u = ∇ f in L p(�;Rn×n), so that for
x ∈ �,

∇u(x) = R(xn)e1 ⊗ e1 +
n∑

i=2

ei ⊗ ei + (
x1 − 1

2

)
R′(xn)e1 ⊗ en

= R(xn) + R′(xn)x ⊗ en + d(xn) ⊗ en,

where d(t) = − 1
2 R′(t)e1 − R′(t)ten for t ∈ (0, 1). Hence, we obtain

u(x) = R(xn)x + b(xn),

with b(t) = − 1
2 Re1 − ´ t

0 s R′(s)en ds + c for t ∈ (0, 1) and c ∈ R
n . It is now

immediate to see that u has the form stated in Theorem 1.1, but neither is Ren

constant nor is the local volume condition satisfied in general.
In 2d, this construction corresponds to a x2-dependent rotation of the individual

stiffer layers around their barycenters, see Fig. 5.

We conclude this section with a reference to Fig. 6, which illustrates at one
glance our findings in different scaling regimes for two space dimensions. Notice
that any (2 × 2)-matrix can be expressed as R(βI + a ⊗ e2) with R ∈ SO(2),
β ∈ R and a ∈ R

2.
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Fig. 6. Overview of the results on the asymptotic behavior of weakly converging sequences
(uε)ε ⊂ W 1,p(�;R2) satisfying (1.3) in the different scaling regimes for n = 2, a without
and b with local volume constraint on the limit map u. It is used here that for any u ∈
W 1,p(�;R2) there are R ∈ L∞(�; SO(2)), β ∈ L p(�) and a ∈ L p(�;R2) with ∇u =
R(βI + a ⊗ e2)

3. Proof of Necessity in Theorem 1.1

We will show in this section that weak limits of bounded energy sequences in
the context of our model for layered materials with stiff and soft components have
a strongly one-dimensional character. To make this more precise, we first introduce
the following terminology. A measurable function f : � → R

m , where � ⊂ R
n

is an open set, is said to be locally one-dimensional in the en-direction if for every
x ∈ � there is an open cuboid Qx ⊂ � with x ∈ Qx such that for all y, z ∈ Qx ,

f (y) = f (z) if yn = zn . (3.1)

We call f (globally) one-dimensional in the en-direction if (3.1) holds for all
y, z ∈ �. For f ∈ W 1,p

loc (�;Rm) with p � 1 local one-dimensionality in the en-
direction of f , whichmeans that there exists a representative of f with the property,
is equivalent to the condition∇′ f = 0, as can be seen from a standard mollification
argument. Hence, if ∇′ f = 0, the function f can be identified locally (i.e. for any
x ∈ � on an open cuboid Qx ⊂ � containing x) with a one-dimensional W 1,p-
function. Since the latter is absolutely continuous, it follows that f is continuous.

The next result and its implications discussed subsequent to its proof generalize
the necessity statement of Theorem 1.1 relaxing the assumptions on the domain.

Theorem 3.1. Let � ⊂ R
n with n � 2 be a bounded open set, 1 < p < ∞ and

α > p. Furthermore, let (uε)ε ⊂ W 1,p(�;Rn) be such that for all ε > 0,
ˆ

εYstiff∩�

dist p(∇uε, SO(n)) dx � Cεα (3.2)
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with a constant C > 0, and uε ⇀ u in W 1,p(�;Rn) for some u ∈ W 1,p(�;Rn).
Then there exist R ∈ W 1,p

loc (�; SO(n)) with ∇′ R = 0 and b ∈ W 1,p
loc (�;Rn)

with ∇′b = 0 such that

u(x) = R(x)x + b(x) for x ∈ �. (3.3)

Remark 3.2. (a) Notice that the functions R andb are both locally one-dimensional
in the en-direction and continuous. In particular, u ∈ C0(�;Rn).

(b) It is straightforward to generalize Theorem 3.1 to a (p, q)-version. Precisely, if
p in (3.2) is replaced with any p < q < ∞, the same conclusion remains true
under the assumption that α > q, cf. [15, Section 3.3]. For a discussion of the
case p = 1, see Remark 3.5

(c) One can show that the statement of Theorem 3.1 remains true if the relative
thickness of the softer layers λ ∈ (0, 1) depends on ε (then denoted by λε)
in such a way that 1 − λε � ε

α
p −1. For more details, we refer to [15, Theo-

rem 3.3.1].

Theorem3.1 builds on two classical results, whichwe recall here for the readers’
convenience. The first one is the quantified rigidity result for Sobolev functions
established in [33, Theorem 3.1], cf. also [19,22,23] for generalizations to other
W 1,p-settings.

Theorem 3.3. (Quantitative rigidity estimate)Let U ⊂ R
n with n � 2 be a bounded

Lipschitz domain and 1 < p < ∞. Then there exists a constant C = C(U, p) > 0
with the property that for each u ∈ W 1,p(U ;Rn) there is a rotation R ∈ SO(n)

such that

‖∇u − R‖L p(U ;Rn×n) � C‖ dist(∇u, SO(n))‖L p(U ).

A straightforward scaling argument shows that the constant C remains unaf-
fected by uniform scaling and translation of U . Applying the above theorem to
increasingly thinner domains, however, leads to degenerating constants. If U =
Pε = O × ε I ⊂ R

n with ε > 0, O ⊂ R
n−1 a cube and I ⊂ R a bounded open

interval one obtains that

C(Pε, p) = ε−1C(P1, p), (3.4)

see [34, Section 4] and [15, Section 3.5.1].
The second tool is the Fréchet–Kolmogorov theorem, a compactness result for

L p-functions, see e.g. [2, Sections 2.15, U.2] and [37]. Here, we will apply it only
in the basic version formulated in the next lemma, that is, for families of functions
of one real variable with uniformly bounded essential supremum.

Lemma 3.4. Let J, J ′ ⊂ R be open, bounded intervals with J ⊂⊂ J ′ and 1 �
p < ∞. If the sequence ( fε)ε is uniformly bounded in L∞(J ′;Rm) satisfying

lim|ξ |→0
sup
ε>0

ˆ
J
| fε(t + ξ) − fε(t)|p dt = 0,

then ( fε)ε is relatively compact in L p(J ;Rm).
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Regarding structure, the next proof proceeds along the lines of [16, Proposi-
tion 2.1], which, as mentioned in the introduction, constitutes a special case of
Theorem 1.1. Yet, the individual steps are more involved and require new, refined
arguments to relax the assumption of the stiff layers being fully rigid and to over-
come the restriction to two space dimensions.

Proof of Theorem 3.1. Let Q = O × J ⊂ � be a cuboid with O ⊂ R
n−1 an open

cube of side length l > 0 and J ⊂ R an open interval. Suppose that there exist
open intervals J ′, J ′′ with J ⊂⊂ J ′ ⊂⊂ J ′′ and Q′′ := O × J ′′ ⊂ �. Moreover,
let Q′ := O × J ′. We define horizontal strips by setting

Pi
ε = (Rn−1 × ε[i, i + 1)) ∩ Q′′ for i ∈ Z and ε > 0.

The index set Iε contains all i ∈ Z with |Pi
ε | = ε|O|, and we assume ε > 0 to be

small enough, so that Q ⊂ Q′ ⊂ ⋃
i∈Iε Pi

ε ⊂ Q′′.
For the proof, it suffices to show the existence of R ∈ W 1,p(Q; SO(n)) and

b ∈ W 1,p(Q;Rn) with ∇′ R = 0 and ∇′b = 0 in Q, respectively, such that
the characterization (3.3) holds for x ∈ Q. Then we can approximate � from
inside with overlapping cuboids to obtain the same statements for any compact
K ⊂ �. Indeed, the resulting characterizations in terms of R and b coincide on
the overlapping parts. Finally, exhausting � with compact nested subsets proves
Theorem 3.1 in the stated generality.

In what follows, the constants C > 0 depend at most on n, p, λ,� and c
from (3.2), in particular, they are independent of ε, l and J .

Step 1: Layerwise approximation by rigid body motions In this first step, wewill
construct a sequence of piecewise affine functions (wε)ε such that the restriction
of each wε to a strip Pi

ε is a rigid body motion and

lim
ε→0

‖uε − wε‖L p(Q′;Rn) = 0. (3.5)

Applying Theorem 3.3 (under consideration of the scaling behavior of the constant
according to (3.4)) to the individual stiff layers yields the existence of C > 0 and
of rotations Ri

ε ∈ SO(n) for every i ∈ Iε such that

‖∇uε − Ri
ε‖L p(εYstiff∩Pi

ε ;Rn×n) � Cε−1‖ dist(∇uε, SO(n))‖L p(εYstiff∩Pi
ε ). (3.6)

Let wε ∈ L∞(Q′;Rn) be defined by wε = σε + bε, where

σε(x) =
∑

i∈Iε

(Ri
εx)1Pi

ε ∩Q′(x), x ∈ Q′, (3.7)

and

bε =
∑

i∈Iε

bi
ε1Pi

ε ∩Q′ with bi
ε = −

ˆ
εYstiff∩Pi

ε

uε − Ri
εx dx .
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The specific choice of the values bi
ε implies that

´
εYstiff∩Pi

ε
uε −wε dx = 0, and

therefore allows us to apply Poincaré’s inequality to uε − wε on each stiff layer.
Hence, one obtains for every i ∈ Iε that

‖uε − wε‖L p(εYstiff∩Pi
ε ;Rn) � C‖∇uε − Ri

ε‖L p(εYstiff∩Pi
ε ;Rn×n), (3.8)

see e.g. [35, Section 7.8] for details on the domain dependence of the Poincaré
constant.

Next we derive a corresponding bound on the softer layers. By a shifting argu-
ment, this problem can be reduced to estimate (3.8) for the stiff layers. The error
is given in terms of difference quotients in the en-direction of uε − wε, which
we control uniformly. More precisely, for fixed i ∈ Iε we cover εYsoft ∩ Pi

ε with
finitely many shifted copies of εYstiff ∩ Pi

ε , that is, we choose 0 < δε,k � λε for
k = 1, . . . , N := � λ

1−λ
� such that the δε,k-shifted stiff layers Oi

ε,k := (εYstiff ∩
Pi

ε ) − δε,ken satisfy εYsoft ∩ Pi
ε ⊂ ⋃N

k=1 Oi
ε,k . Then,ˆ

Oi
ε,k

|uε − wε|p dx � C
ˆ

εYstiff∩Pi
ε

|uε − wε|p dx

+ C
ˆ

εYstiff∩Pi
ε

|(uε − wε)(x) − (uε − wε)(x − δε,ken)|p dx

� C
(‖uε−wε‖p

L p(εYstiff∩Pi
ε ;Rn)

+δ
p
ε,k‖∂nuε−∂nwε‖p

L p(Pi
ε ;Rn)

)
.

Here, we have used a one-dimensional difference quotient estimate with respect
to the xn-variable. Summing over the N covering cuboids then leads toˆ

εYsoft∩Pi
ε

|uε − wε|p dx

� C
(‖uε − wε‖p

L p(εYstiff∩Pi
ε ;Rn)

+ ε p‖∇uε‖p
L p(Pi

ε ;Rn×n)
+ ε p|Pi

ε |);

notice that the last term results from the fact that ∇wε ∈ SO(n) on Pi
ε by (3.7).

Finally, we take the sum over i ∈ Iε to deduce from (3.8) and (3.6) thatˆ
Q′

|uε − wε|p dx

� C
(
ε−p‖ dist(∇uε, SO(n)‖p

L p(εYstiff∩�) + ε p‖uε‖p
W 1,p(�;Rn)

+ ε p|�|).
Therefore, by (3.2) and the uniform boundedness of (uε)ε in W 1,p(�;Rn),

‖uε − wε‖L p(Q′;Rn) � C(ε
α
p −1 + ε). (3.9)

Since α > p, this implies (3.5).
Step 2: Compactness of the approximating rigid body motions Consider for

ε > 0 the piecewise constant one-dimensional auxiliary function�ε : J ′ → SO(n)

defined by

�ε(t) =
∑

i∈Iε

Ri
ε1ε[i,i+1)(t), t ∈ J ′, (3.10)
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with Ri
ε as in Step 1. In relation to (3.7), it holds that σε(x) = �ε(xn)x for x ∈ Q′.

Step 2a: Estimate for rotations on different strips Next we will show that for
every ξ ∈ R such that J ∪ (J + ξ) ⊂ J ′,

‖�ε(· + ξ) − �ε‖L p(J ;Rn×n)

� Cl−p−n+1(‖uε − wε‖L p(Q′;Rn) + ξ‖uε‖W 1,p(�;Rn)

)
. (3.11)

To this end, we estimate the expression ‖wε(· + ξen) − wε‖L p(Q;Rn) from above
and below.

The upper bound follows from

‖wε(· + ξen) − wε‖L p(Q;Rn)

� ‖wε − uε‖L p(Q′;Rn) + ‖wε(· + ξen) − uε(· + ξen)‖L p(Q;Rn)

+ ‖uε(· + ξen) − uε‖L p(Q;Rn)

� 2‖wε − uε‖L p(Q′;Rn) + ξ‖∂nuε‖L p(Q′;Rn). (3.12)

For the lower bound,we set di
ε,ξ = b

i+� ξ
ε



ε −bi
ε+ξ R

i+� ξ
ε



ε en and useLemmaA.1
to derive that

‖wε(· + ξen) − wε‖p
L p(Q;Rn)

=
∑

i∈Iε

ˆ
Pi

ε ∩Q

∣∣(R
i+� ξ

ε



ε − Ri
ε)x + di

ε,ξ

∣∣p dx

� Cl p
∑

i∈Iε

|Ri+� ξ
ε



ε − Ri
ε|p|Pi

ε ∩ B ′| � Cl p‖�ε(· + ξ) − �ε‖p
L p(J ;Rn×n)

.

(3.13)

Combining (3.12) and (3.13) gives (3.11).
Step 2b: Application of the Fréchet–Kolmogorov theorem To establish strong

L p-convergence of (�ε)ε as ε → 0, observe that in view of (3.9) and the uniform
boundedness of (uε)ε in W 1,p(�;Rn), estimate (3.11) turns into

‖�ε(· + ξ) − �ε‖L p(J ;Rn×n) � Cl−p−n+1(ξ + ε
α
p −1

). (3.14)

It is standard to verify (see e.g. [33, Proof of Theorem 4.1] for an analogous argu-
ment) that then

lim sup
|ξ |→0

sup
ε>0

‖�ε(· + ξ) − �ε‖L p(J ;Rn×n) = 0.

Hence, by Theorem 3.4, there exist a subsequence (not relabeled) and a �0 ∈
L p(J ;Rn×n) such that

�ε → �0 in L p(J ;Rn×n). (3.15)

Note that �0 may still depend on the subsequence at this point. In Step 3, �0 will
be characterized in terms of the limit function u, which makes �0 unique and the
above argument independent of the choice of subsequences. Due to the strong L p-
convergence of (�ε)ε, which preserves lengths and angles almost everywhere, we
conclude that �0 ∈ SO(n) a.e. in J ′.
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Step 2c: Regularity of �0 As a result of (3.14), we obtain an estimate on the
difference quotients of �ε, precisely

ˆ
J

∣∣∣
�ε(t + ξ) − �ε(t)

ξ

∣∣∣
p
dt � Cl−p−n+1(1 + ξ−pεα−p).

Passing to the limit j → ∞ results in
ˆ

J

∣∣∣
�0(t + ξ) − �0(t)

ξ

∣∣∣
p
dt � Cl−p−n+1, (3.16)

which shows that �0 ∈ W 1,p(J ;Rn×n), see e.g. [44, Theorem 10.55].
Step 3: Representation of the limit function uRecall the definitions of σε in (3.7)

and �ε in (3.10). With σ0(x) = �0(xn)x for x ∈ Q one has that
ˆ

Q
|σε − σ0|p dx �

∑

i∈Iε

ˆ
Pε∩Q

|Ri
ε − �0(xn)|p|x |p dx � C

ˆ
J
|�ε − �0|p dt,

Then, by (3.15),

σε → σ0 in L p(Q;Rn). (3.17)

Since bε = wε −σε = (wε − uε)+ uε −σε we find in view of (3.5), (3.17) and the
convergence uε → u in L p(�;Rn) by the compact embedding of W 1,p(Q;Rn)

into L p(Q;Rn) that

bε → u − σ0 =: b in L p(Q;Rn).

Due to the regularity of u and σ0, it follows that b ∈ W 1,p(Q;Rn). Since bε is
independent of the x ′-variables, the same is true for b. Finally, defining

R(x) = �0(xn) for x ∈ Q, (3.18)

proves the desired representation of u. ��
Remark 3.5. (a) Setting p = 1 in Remark 3.2b) in combination with Theo-

rem 3.1 leads to the representation (3.3) with R ∈ BVloc(�; SO(n)) and
b ∈ BVloc(�;Rn) satisfying D′ R = 0 and D′b = 0, respectively. The rea-
soning is the same as for p > 1, but instead of getting �0 ∈ W 1,1(J ;Rn×n)

from (3.16), we can only deduce that �0 ∈ BV (J ;Rn×n), see e.g. [44, Corol-
lary 2.43].

(b) Notice that in view of (3.18) and (3.16) it holds that

‖R‖p
W 1,p(Q;Rn×n)

� C(1 + l−p). (3.19)

This estimate is not uniform for all cuboids Q ⊂ � as used in the proof of
Theorem 3.1. In fact, the bound becomes large for cuboids with small cross-
section. One can therefore not expect in general that the weak derivatives of R
be p-integrable on the whole of �.
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(a) (b) (c) (d)

Fig. 7. Illustration of Definitions 3.6 and 3.7: examples of bounded Lipschitz domains that
are a cross-section connected, b not cross-section connected, c flat and d not flat

(c) If � in Theorem 3.1 is of the form � = O × I with O ⊂ R
n−1 an open

cube of side length l > 0 and I ⊂ R an interval, then the proof shows that
R ∈ W 1,p(�; SO(n)), and hence also b ∈ W 1,p(�;Rn), for any p > 1.
Indeed, let us choose intervals Jk ⊂⊂ I for k ∈ N such that Jk ⊂ Jk+1 and
I = ⋃∞

k=1 Jk and set Qk = O × Jk . Then by estimate (3.19),

‖R‖p
W 1,p(Qk ;Rn×n)

� C, (3.20)

with C > 0 independent of k. Since the cuboids Qk exhaust �, the uniform
bound (3.20) yields that R ∈ W 1,p(�; SO(n)).

The observation of Remark 3.5(c) can be extended to a larger class of Lipschitz
domains. In fact, under suitable additional assumptions on �, namely connect-
edness of cross-sections and a flatness property, which are introduced in Defini-
tions 3.6 and 3.7, we can drop the restriction to local W 1,p-regularity of R and b
in Theorem 3.1, as Corollary 3.8 below shows.

Definition 3.6. (Connectedness of cross-sections) An open set � ⊂ R
n is called

cross-section connected if for any t ∈ R the intersection�t of�with the hyperplane
Ht = {x ∈ R

n : xn = t} is connected.
Clearly, every convex set is cross-section connected, but also cylinders and

cones in R
n (oriented in the en-direction) with non-convex cross section are. In

Fig. 7a, bwegive a two-dimensional example for illustration.An important property
of domains � as in Definition 3.6 is that any locally one-dimensional vector (and
matrix) field in the en-direction defined on � is already globally one-dimensional
in the en-direction, cf. Lemma A.2.

Definition 3.7. (Flatness) We call an open set � ⊂ R
n flat, if for all t ∈ R the

intersection of � with the hyperplane Ht = {x ∈ R
n : xn = t} is either empty or

has nonempty relative interior.

The intuitive geometric interpretation of flatness of bounded domains is that it rules
out sets with sharp or rounded corners and peaks pointing in the direction of en .
Simple examples include cylinders with axis parallel to en , whereas cones with
the same orientation are not flat, see also Fig. 7c, d. A bounded Lipschitz domain
� ⊂ R

n does in general not satisfy the condition of Definition (3.7), but it can
be turned into a flat Lipschitz domain by cutting it off on top and bottom, i.e., by
taking (Rn−1 × (a, b)) ∩ �, where a, b ∈ R with a < b are such that the cross
sections �a and �b are non-empty.
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Corollary 3.8. In addition to the assumptions of Theorem 3.1, let � ⊂ R
n be a flat

and cross-section connected Lipschitz domain. Then the representation (3.3) holds
with R ∈ W 1,p(�; SO(n)) and b ∈ W 1,p(�;Rn).

Proof. Let Q� be the smallest open cuboid containing � and let a, b ∈ R with
a < b and O� ⊂ R

n−1 be such that Q� = O� × J� with J� = (a, b). We observe
first that due to the connectedness of the cross-sections of�, themap R from (3.3) is
globally one-dimensional in the en-direction and can thus be identified with a one-
dimensional function � ∈ W 1,p

loc (J�; SO(n)), see Lemma A.2 and Remark A.3.
Moreover, since � is a flat Lipschitz domain there exist xa ∈ �a and xb ∈ �b

along with open cuboids Qa = O × (a, a + r) and Qb = O × (b − r, b) of height
r > 0 and cross-section O ⊂ R

n−1 such that Qa ∩ Q� ⊂ � and Qb ∩ Q� ⊂ �.
Applying Remark 3.5(c) to the restrictions Ra = R|Qa and Rb = R|Qb gives
that Ra ∈ W 1,p(Qa; SO(n)) and Rb ∈ W 1,p(Qb; SO(n)), which correspond
to elements in �a ∈ W 1,p(a, a + r; SO(n)) and �b ∈ W 1,p(b − r, b; SO(n)),
respectively. Hence, � ∈ W 1,p(J�; SO(n)) and R ∈ W 1,p(Q�; SO(n)), thus
also R ∈ W 1,p(�; SO(n)).

Since b = u − Rx with u ∈ W 1,p(�;Rm), one immediately gets the desired
statement for b. ��

We conclude this section with the following specialization of Corollary 3.8,
which involves the additional condition that the limit map is locally volume pre-
serving.

Corollary 3.9. In addition to the assumptions on �, (uε)ε and u in Corollary 3.8,
let u ∈ W 1,r (�;Rn) for r � n be such that det∇u = 1 a.e. in �.

Then the limit representation in (3.3) holds with Ren constant. If � is simply
connected, one has in particular that

∇u = QS(I + a ⊗ en), (3.21)

where Q ∈ SO(n), S = diag(S′, 1) with S′ ∈ W 1,p(�; SO(n − 1)) satisfying
∇′S′ = 0 and a ∈ Lmax{r,p}(�;Rn) with D′a = (S′)T (∂n S′) and an = 0.

Proof of Corollary 3.9. By Theorem 3.1, we know that u has the representa-
tion (3.3). Hence,

∇u = R + (∂n R)x ⊗ en + ∂nb ⊗ en = R + ã ⊗ en = R(I + a ⊗ en)

with ã = (∂n R)x +∂nb and a = RT ã. Since det∇u = det(R(I+a⊗en)) = 1+an ,
we conclude in view of the local volume preservation constraint that an = 0.

Differentiating the identity 0 = an = ã · Ren with respect to the i th variable
for i ∈ {1, . . . , n − 1}, while taking into account that ∇′ R = 0 and ∇′b = 0,
implies that ∂n(Rei ) · Ren = 0. Since Rei is orthogonal on Ren pointwise almost
everywhere, it follows from the product rule that

∂n(Ren) · Rei = 0 for i = 1, . . . , n − 1.
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Together with

0 = 1
2∂n|Ren|2 = ∂n(Ren) · Ren,

we obtain that ∂n(Ren) = 0. Hence, Ren is constant, and R splits multiplicatively
into the product of Q and S as in the statement.

Finally, the restriction on the distributional derivatives of a with respect to
the first n − 1 variables follows via straightforward calculation from the gradient
structure of ∇u, which requires that curl∇u = 0. ��
Remark 3.10. If n = 2, the gradient representation of u in (3.21) becomes

∇u = Q(I + γ e1 ⊗ e2),

with Q ∈ SO(2) and γ ∈ L p(�) with ∂1γ = 0, cf. also [16, Proposition 2.1].
In the two-dimensional setting, the class of limit deformations u of � is highly
restricted, in fact, only horizontal shearing and global rotation can occur.

4. Sufficiency Statement in Theorem 1.1

Our starting point in this section are functions u ∈ W 1,p(�;Rn)with gradients
of the form

∇u(x) = R(x) + ∂n R(x)x ⊗ en + d(x) ⊗ en, x ∈ �, (4.1)

where R ∈ W 1,p(�; SO(n)) and d ∈ L p(�;Rn) with ∇′ R = 0 and D′d = 0,
respectively. If not mentioned otherwise, 1 < p < ∞ and � ⊂ R

n is a bounded
domain.

We will show how such u (under suitable technical assumptions) can be ap-
proximated in the sense of weak convergence in W 1,p(�;Rn×n) by functions uε

that are defined on a layered domain with length scale of oscillations ε and co-
incide with rigid body motions on the stiff components. This in particular proves
Theorem 1.1(ii).

Before stating the general result, let us consider a simple example formotivation.
Ifu is affine, then∇u = F for some F ∈ R

n×n and there exist amatrix RF ∈ SO(n)

and a vector dF ∈ R
n such that ∇u = F = RF + dF ⊗ en . This motivates the

definition

A = {F ∈ R
n×n : F = RF + dF ⊗ en with RF ∈ SO(n) and dF ∈ R

n}. (4.2)

Moreover, we set

Fλ = RF + 1
λ

dF ⊗ en for F ∈ A. (4.3)

In the affine case, the construction of a suitable approximation is particularly simple.
The idea is to compensate for the stiff layers by performing stronger deformations
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on the softer layers, which leads to the following laminate construction: for ε > 0,
let vF

ε ∈ W 1,∞(�;Rn) be such that

∇vF
ε = RF1εYstiff∩� + Fλ1εYsoft∩�. =

{
RF on εYstiff ∩ �,

Fλ on εYsoft ∩ �,
(4.4)

then ∇vF
ε ∈ SO(n) a.e. in εYstiff ∩ � and ∇vF

ε = R + 1
λ
1εYsoftd ⊗ en ⇀ ∇u

in L p(�;Rn×n) as a consequence of the weak convergence of highly oscillating
sequences (see e.g. [18, Section 2.3]). Finally, we set uε = vF

ε for all ε to obtain
the desired approximating functions in this special case.

The construction behind the general approximation result is inspired by the case
of affine limits. In view of (4.3), we have

(∇u)λ(x) = (∇u(x))λ = R(x) + 1
λ
(∂n R)(x)x ⊗ en + 1

λ
d(x) ⊗ en, x ∈ �.

(4.5)

Proposition 4.1. Let � ⊂ R
n be a bounded, flat and cross-section connected Lip-

schitz domain and let u ∈ W 1,p(�;Rn) with ∇u as in (4.1). Then there exists a
sequence (uε)ε ⊂ W 1,p(�;Rn) with ∇uε ∈ SO(n) a.e. in εYstiff ∩ � such that
∇uε ⇀ ∇u in L p(�;Rn×n).

More specifically, there is (Rε)ε ⊂ W 1,p(�; SO(n)) with ∇′ Rε = 0 on � and
∂n Rε = 0 on εYstiff ∩ � such that

∇uε = Rε in εYstiff ∩ �, (4.6)

and

Rε ⇀ R in W 1,p(�;Rn×n) and ‖∇uε−(∇u)λ‖L p(εYsoft∩�;Rn×n) →0 as ε → 0.
(4.7)

Remark 4.2. The same result still holds also under relaxed conditions on a bounded
Lipschitz domain �, namely when � can be partitioned into finitely many compo-
nents that are flat and cross-section connected. More details can be found in [15,
Section 4.2].

Proof. Let Q� denote the smallest cuboid containing �. By (4.1) and Lemma A.2
(see also Remark A.3(b)), we may assume after constant extension orthogonal to
en that R ∈ W 1,p(Q�; SO(n)) is globally one-dimensional in the en-direction
and continuous. Upon writing Q� = O� × J� with O� ⊂ R

n−1 an open cuboid
and J� ⊂ R an open, bounded interval, there is a one-dimensional function � ∈
W 1,p(JQ; SO(n)) such that R(x) = �(xn) for x ∈ Q�.

Let (�ε)ε ⊂ W 1,p(J�; SO(n)) be the approximating sequence for � resulting
from Lemma 4.3 below, that is, �ε ⇀ � in W 1,p(J�;Rn×n) and �′

ε = 0 in
ε Istiff ∩ J�. Moreover, the convergence (4.8) holds. We set Rε(x) = �ε(xn) for
x ∈ Q�, so that Rε ∈ W 1,p(Q�; SO(n)) with ∇′ Rε = 0, and define

Uε = Rε1εYstiff∩Q� + Uλ,ε1εYsoft∩Q�,
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where

Uλ,ε(x) = Rε(x) + (∂n Rε)(x)x ⊗ en + 1
λ

d(x) ⊗ en, x ∈ Q�.

We claim that for each ε > 0 the function Uε has gradient structure, meaning that
there exists a potential uε ∈ W 1,p(Q�;Rn) with ∇uε = Uε. To see this, it suffices
to show that the distributional curl of Uε vanishes on Q�. We remark that Q� as
a cuboid is simply connected. Indeed, let ϕ ∈ C∞

c (Q�;Rn) and k, l ∈ {1, . . . , n}
with k < l. Due to ∇′ Rε = 0 and ∇′d = 0, one obtains in the case l < n that

ˆ
Q�

Uεek · ∂lϕ dx −
ˆ

Q�

Uεel · ∂kϕ dx

=
ˆ

Q�

Rεek · ∂lϕ dx −
ˆ

Q�

Rεel · ∂kϕ dx = 0,

and for l = n, along with ∂n Rε = 0 on εYstiff ∩ Q�, that
ˆ

Q�

Uεek · ∂nϕ dx −
ˆ

Q�

Uεen · ∂kϕ dx

=
ˆ

Q�

Rεek · ∂nϕ dx −
ˆ

Q�

1εYsoft (∂n Rε)x · ∂kϕ dx

=
ˆ

Q�

Rεek · ∂nϕ dx +
ˆ

Q�

(∂n Rε)ek · ϕ dx = 0.

Thus, curlUε = 0 as desired.
After restricting uε and Rε to �, the statements (4.6) and (4.7) follow now

directly from the properties of the sequence (�ε)ε. ��
The proof of the previous proposition builds builds on a structure preserving

approximation result for one-dimensional functions with values in the set of rota-
tions. Let us denote by Isoft the 1-periodic extensions of the interval (0, λ) to the real
line, which corresponds to a one-dimensional section of Ystiff in the en-direction,
that is Ystiff = R

n−1 × Istiff . In addition, we set Istiff = R
n\Isoft.

Lemma 4.3. Let J ⊂ R be an open and bounded interval, 1 � p < ∞ and
� ∈ W 1,p(J ; SO(n)). Then there exists a sequence (�ε)ε ⊂ W 1,p(J ; SO(n))

with

�′
ε = 0 a.e. in ε Istiff ∩ J,

such that �ε ⇀ � in W 1,p(J ;Rn×n). Furthermore,

‖�′
ε − 1

λ
�′‖L p(ε Isoft∩J ;Rn×n) → 0 as ε → 0. (4.8)

Proof. Instead of trying to approximate � directly with SO(n)-valued functions,
it seems easier to parametrize � in a suitable way. Intuitively speaking, the idea is
to stop the parametrization on the stiff layers and accelerate it on the softer ones.
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ϕε

idR

t

ε

R

0 ελ ε 2ε
Fig. 8. Illustration of the re-parametrization function ϕε

More precisely, for every ε > 0, take ϕε : R → R as the piecewise affine
function defined by

ϕε(t) = ε�t� for t ∈ ε Istiff ,

and by linear interpolation on ε Isoft, see Fig. 8. By construction, one has that

ϕ′
ε = 1

λ
on ε Isoft, (4.9)

and (ϕε)ε converges locally uniformly to the identity function on R for ε → 0.
First, we extend the function� from J to an open real interval J ′ that contains J

compactly. In fact, via reflection one obtains � ∈ W 1,p(J ′; SO(n)) (not renamed)
with

‖�‖W 1,p(J ′;SO(n)) � c‖�‖W 1,p(J ;SO(n)) < ∞,

where c > 0 depends only on J ′.
Next, we define �ε : J → SO(n) by �ε = � ◦ ϕε for sufficiently small ε.

Notice that �ε is well-defined, since ϕε(J ) = ϕε(ε Isoft ∩ J ) ⊂ J ′ if ε is small
enough. As the composition of an absolutely continuous function with a monotone
Lipschitz function, �ε is absolutely continuous. In particular, the chain rule holds
(see e.g. [44, Theorem 3.44]), i.e.

�′
ε = (�′ ◦ ϕε)ϕ

′
ε, (4.10)

and thus, �ε ∈ W 1,p(J ; SO(n)). Since �ε → � pointwise and the functions
|�ε|2 � n a.e. in J , it follows from Lebesgue’s dominated convergence theorem
that �ε → � in L p(J ;Rn×n).

For the asserted weak convergence of (�ε)ε in W 1,p(J ;Rn×n), it suffices ac-
cording to Urysohn’s lemma to show that the sequence (�′

ε)ε is uniformly bounded
in L p(J ;Rn×n). Indeed,
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‖�′
ε‖p

L p(J ;Rn×n)
=

ˆ
ε Isoft∩J

|�′(ϕε)ϕ
′
ε|2 dt = 1

λ2

ˆ
ε Isoft∩J

|�′(ϕε)|2 dt

= 1

λ2

∑

i∈Z

ˆ
ε(i,i+λ)∩J

|�′(ϕε)|2 dt

� 1

λ2

∑

i∈Z

ˆ
ε(i,i+1)∩J ′

|�′|2|ϕ′
ε|−1 dt

= 1

λ
‖�′‖2L2(J ′;Rn×n)

.

Here we have exploited (4.10) and (4.9), the fact that �ε is constant on ε Istiff , as
well as the chain rule and transformation formula on the (finitely many) connected
components of ε Isoft, where the restriction of ϕε is invertible.

To show (4.8), we approximate �′ in L p(J ′;Rn×n) by a sequence (g j ) j ⊂
C∞

c (J ′;Rn×n). By change of variables on the connected components of ε Isoft it
follows that

‖�′ ◦ ϕε − g j ◦ ϕε‖L p(ε Isoft∩J ;Rn×n) � ‖�′ − g j‖L p(J ′;Rn×n),

and therefore

‖�′ ◦ ϕε − �′‖L p(ε Isoft∩J ;Rn×n)

� ‖g j ◦ ϕε − g j‖L p(J ;Rn×n) + 2‖g j − �′‖L p(J ′;Rn×n). (4.11)

Since g j ◦ ϕε → g j in L p(J ;Rn×n) for every j ∈ N by dominated convergence,
passing to the limits ε → 0 and j → ∞ (in this order) in (4.11) proves (4.8). ��

5. Homogenization of Layered High-Contrast Materials

Before proving Theorem 5.2, formulated below, we introduce the setting and
precise assumptions. Throughout this section, � ⊂ R

n is a bounded Lipschitz
domain that satisfies the flatness condition and connectedness property of Defini-
tions 3.7 and 3.6, respectively, and p > n. For ε > 0 and α > 0 we consider the
heterogeneous energy density W α

ε : � × R
n×n → [0,∞) given by

W α
ε (x, F) =

{
ε−αWstiff(F) if x ∈ εYstiff ∩ �,

Wsoft(F) if x ∈ εYsoft ∩ �,

where Wstiff , Wsoft : R
n×n → [0,∞) are continuous functions that satisfy the

following conditions regarding convexity, growth and coercivity, and localLipschitz
continuity:

(H1) W qc
soft is polyconvex;

(H2) c|F |p − 1
C � Wsoft(F) � C(1 + |F |p) for all F ∈ R

n×n with constants
C, c > 0;

(H3) |Wsoft(F)− Wsoft(G)| � L(1+|F |p−1 +|G|p−1)|F − G| for all F, G ∈
R

n×n with L > 0;
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(H4) Wstiff(F) � k dist p(F, SO(n)) for all F ∈ R
n×n with a constant k > 0.

An equivalent way of expressing (H1) is by

W qc
soft = W pc

soft, (5.1)

where W qc
soft and W pc

soft are the quasiconvex and polyconvex envelopes of Wsoft, that
is, the largest quasiconvex and polyconvex functions below Wsoft. For a detailed
introduction to generalized notions of convexity and the corresponding generalized
convexifications we refer to [25]. Let us just recall briefly that a continuous function
W : Rn×n → R with standard p-growth (i.e., with an the upper bound as in (H2))
is quasiconvex if for any F ∈ R

n×n ,

inf
ϕ∈W 1,p

0 ((0,1)n;Rn)

−
ˆ

(0,1)n
W (F + ∇ϕ) dx � W (F). (5.2)

Moreover, a continuous W : Rn×n → R is polyconvex if there exists a convex
function g : Rτ(n) → R such that

W (F) = g(M(F)) for all F ∈ R
n×n,

where M(F) ∈ R
τ(n) with τ(n) = ∑n

i=1

(
n
k

)
is the vector of minors of F .

We remark that explicit formulas for quasiconvex envelopes are in general
hard to obtain. This is why quasiconvexifications are rather rare in the literature,
see e.g. [21,24,43] for a few examples (including extended-valued densities). A
common strategy is to determine upper and lower bounds in terms of rank-one and
polyconvex envelopes and to show that the latter two match. Hence, in those cases
where relaxations are explicitly known, (H1) is usually satisfied.

Example 5.1. Let n = 2 or n = 3. The Saint Venant-Kirchhoff stored energy
function,

WSK (F) = λ

4
|FT F − I|2 + μ

8
(|F |2 − n)2, F ∈ R

n×n,

with the Lamé constants λ,μ > 0, is one of the simplest energy densities of
relevance in hyperelasticity (see e.g. [36, Section 28]), and meets requirements for
Wsoft. It is straightforward to see that WSK has standard growth (H2) with p = 4
and is locally Lipschitz continuous in the sense of (H3). In [43], Le Dret and Raoult
give an explicit expression of the quasiconvexification W qc

SK , which coincides with
the convex, polyconvex and rank-one convex envelopes. Thus, in particular, (H1)
is satisfied, too.

Let Eε : L p(�;Rn) → R ∪ {∞} be the integral functional with density W α
ε ,

i.e.

Eε(u) =
ˆ

�

W α
ε (x,∇u) dx (5.3)

if u ∈ W 1,p(�;Rn) and Eε(u) = ∞ otherwise in L p(�;Rn).
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Recalling thatA = {F ∈ R
n×n : F = RF+dF⊗en with RF ∈ SO(n) and dF ∈

R
n} (cf. (4.2)), we define for F ∈ A,

Whom(F) = λW qc
soft(Fλ) = λ inf

ϕ∈W 1,p
0 ((0,1)n;Rn)

−
ˆ

(0,1)n
Wsoft

(
Fλ + ∇ϕ

)
dx, (5.4)

where Fλ = RF + 1
λ

dF ⊗ en = 1
λ
(F − (1 − λ)RF ) ∈ A.

Now we are ready to formulate the main theorem of this section. Theorem 5.2
provides a characterization of the effective behavior of the bilayeredmaterials mod-
eled by (5.3) by homogenization via �-convergence for vanishing layer thickness.
The limit problem shows a splitting of the effects of the heterogeneities and relax-
ation ofmicrostructures on the softer components.With regards to homogenization,
the resulting formulas are explicit and can be expressed in terms of the relative layer
thickness. Provided the relaxation of Wsoft is known, Whom is even fully explicit.

Theorem 5.2. If α > p, the family (Eε)ε as in (5.3) converges in the sense of
�-convergence regarding the strong L p-topology to the limit functional Ehom :
L p(�;Rn) → R∞ given by

Ehom(u) =

⎧
⎪⎪⎨

⎪⎪⎩

ˆ
�

Whom(∇u) dx if u(x) = R(x)x + b(x) with R ∈ W 1,p(�; SO(n)) such

that ∇′ R = 0 and b ∈ W 1,p(�;Rn) such that ∇′b = 0,

∞ otherwise.

Precisely, this means that the following two conditions are satisfied:

(i) (Lower bound) For each u ∈ L p(�;Rn) and any sequence (uε)ε ⊂ L p(�;Rn)

with uε → u in L p(�;Rn) as ε → 0 it holds that

lim inf
ε→0

Eε(uε) � Ehom(u);

(ii) (Existence of a recovery sequence) For each u ∈ L p(�;Rn) there exists a
sequence (uε)ε ⊂ L p(�;Rn) with uε → u in L p(�;Rn) as ε → 0 such that

lim
ε→0

Eε(uε) = Ehom(u).

Moreover, any sequence (uε)ε ⊂ L p
0 (�;Rn) of uniformly bounded energy for

(Eε)ε, that is Eε(uε) < C for all ε > 0, is relatively compact in L p(�;Rn).

Remark 5.3. (a) IfWsoft is convex, thenW qc
soft = W c

soft = Wsoft, so thatWhom(F) =
λWsoft(Fλ) for F ∈ A. In this case, the proof of Theorem 5.2 can be simplified
as indicated below.

(b) It is well-known that the definition of quasiconvexity in (5.2), as well as the
representation formula for the quasiconvex envelope W qc, is independent of the
choice of the domain, see e.g. [25, Proposition 5.11]. Therefore, we have for
any open set O ⊂ R

n that

W qc
soft(F) = inf

ϕ∈W 1,p
0 (O;Rn)

−
ˆ

O
Wsoft(F + ∇ϕ) dy, F ∈ R

n×n .
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Alternatively, W qc
soft can be expressed with the help periodic perturbations on a

cube Q ⊂ R
n as

W qc
soft(F) = inf

ϕ∈W 1,p
# (Q;Rn)

−
ˆ

Q
Wsoft(F + ∇ϕ) dy, F ∈ R

n×n,

see e.g. [49, Proposition 4.19] or [25, Proposition 5.13].
(c) The homogenized energy density Whom is non-negative and inherits the prop-

erty (H2) from Wsoft. This follows from the fact that W qc
soft has standard p-

growth, because Wsoft has, along with the estimate

1
2λ |F | − n

λ
� |Fλ| � 1

λ
(|F | + 1) for F ∈ A. (5.5)

Moreover, Whom is locally Lipschitz continuous in the sense that, just as Whom,
it satisfies hypothesis (H3). Precisely, one can find Lhom > 0 such that

|Whom(F)−Whom(G)| � Lhom(1+|F |p−1+|G|p−1)|F −G| for all F, G ∈ A.

(5.6)

To see this, we exploit that the property (H3) carries over from Wsoft to W qc
soft

(cf. e.g. [48, Lemma 2.1c)]). Hence,

|Whom(F) − Whom(G)| � λ|W qc
soft(Fλ) − W qc

soft(Gλ)|
� λL̃(1 + |Fλ|p−1 + |Gλ|p−1)|Fλ − Gλ|

for F, G ∈ A with a constant L̃ > 0. In view of (5.5), it only remains to
estimate |Fλ − Gλ| suitably from above by |F − G|. We observe that

|Fλ − Gλ| � 1
λ
|F − G| + 1−λ

λ
(|F̂ − Ĝ| + |RF en − RGen|)

� 2−λ
λ

|F − G| + 1−λ
λ

|RF en − RGen|,
where Â stands for the n × (n − 1)-matrix that results from removing the last
column of A ∈ R

n×n . We denote the n-dimensional cross product of vectors
v1, . . . , vn ∈ R

n by v1 ×· · ·×vn−1 = ×n−1
i=1 vi ∈ R

n . The latter is by definition
the uniquely determined vector that is orthogonal on the hyperplane spanned
by v1, . . . , vn−1 such that the orientation of v1, . . . , vn−1,×n−1

i=1 vi is positive
and its norm is the volume of the parallelotope associated with v1, . . . , vn−1.
For every rotation R ∈ SO(n), one has that Ren = ×n−1

i=1 Rei .
The multilinearity of the cross product in R

n and the fact that |RF ei | =
|RGei | = 1 for i = 1, . . . , n allows us to obtain iteratively that

|RF en − RGen | = | ×n−1
i=1 RF ei − ×n−1

i=1 RGei |
� |RF e1 − RGe1| + |RGe1 × RGe2 × · · · × RGen−1 − RGe1

× RF e2 × · · · × RF en−1|

� · · · �
n−1∑

i=1

|RF ei −RGei | � (n−1)|R̂F − R̂G | � (n−1)|F −G|.

Finally, we combine the above estimates to deduce the desired local Lipschitz
property (5.6).
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(d) As mentioned in the introduction, proving a �-limit homogenization result as
abovewithout the hypothesis (H1) is an openproblem. In any case, Theorem5.2
provides an upper bound on the �-limit (if existent) in that situation.

We subdivide the proof of Theorem 5.2 into three main parts. After showing
compactness, we first determine the homogenization�-limit for all affine functions,
and then prove the general statement via a localization argument. Note that the spe-
cific structure of the admissible limit deformations as characterized in Theorem 3.1,
in particular the resulting multiplicative separation of x ′ and xn-variables in (4.1),
is key. This observation allows us to construct an approximation that fulfills the
(asymptotic) constraints on the stiff layers, cf. Proposition 4.1.

The first part of the proof is standard, yet, we sketch it here for the readers’
convenience.

Proof of Theorem 5.2 (Part I): Compactness. Let (uε)ε ⊂ L p
0 (�;Rn) be such

that Eε(uε) < C for all ε > 0. Then, since dist(F, SO(n)) � |F | − √
n for all

F ∈ R
n×n , the lower bounds on Wsoft and Wstiff in (H2) and (H4), imply that

(∇uε)ε is uniformly bounded in L p(�;Rn). The stated relative compactness of
(uε)ε in L p(�;Rn) follows now from Poincaré’s inequality, which shows that

‖uε‖W 1,p(�;Rn) � C for all ε > 0,

along with the compact embedding W 1,p(�;Rn) ↪→↪→ L p(�;Rn). ��
Proof of Theorem 5.2 (Part II): Affine case. Suppose thatu ∈ W 1,p(�;Rn)with
Ehom(u) < ∞ is affine. Hence, there is F ∈ R

n×n with F ∈ A, cf. (4.2).
Step 1: Existence of a recovery sequence The construction of a recovery se-

quence for u as above, that is, finding (uε)ε ⊂ L p(�;Rn) with

uε → u in L p(�;Rm) and Eε(uε) → Ehom(u) as ε → 0 (5.7)

requires a careful adaptation of by now classical techniques, see e.g. [47]. Indeed,
instead of glueing small-scale oscillations on top of an affine function, the former
are glued onto an appropriate laminate, namely the one constructed in (4.4).

Let δ > 0. In view of Remark 5.3b), one can find ϕδ ∈ W 1,p
0 (Ysoft;Rn) such

that

W qc
soft(Fλ) � −

ˆ
Ysoft

Wsoft(Fλ + ∇ϕδ) dy � W qc
soft(Fλ) + δ. (5.8)

We setϕδ equal to zero in the remainder of the unit cube and extend itY -periodically
to R

n . For ε > 0 let vF
ε be a Lipschitz function with gradients as in (4.4) and

vanishing mean value on �. Then, vF
ε → u in L p(�;Rn) as ε → 0. With

uδ,ε(x) = vF
ε (x) + εϕδ(

x
ε
), x ∈ �,

it follows that uδ,ε → u in L p(�;Rn) as ε → 0. Regarding energies, we obtain
that

Eε(uδ,ε) =
ˆ

εYsoft∩�

Wsoft
(
Fλ + ∇ϕδ(

x
ε
)
)
dx

=
ˆ

�

Wsoft(Fλ + ∇ϕδ

( x
ε
)
)
1Ysoft (

x
ε
) dx .
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Hence, as ε tends to zero,

lim
ε→0

Eε(uδ,ε) = |�|
ˆ

Y
Wsoft

(
Fλ + ∇ϕδ

)
1Ysoft dx

= λ|�| −
ˆ

Ysoft

Wsoft(Fλ + ∇ϕδ) dx,

and we infer, along with (5.8), that

Ehom(uδ) � lim
ε→0

Eε(uδ,ε) � Ehom(uδ) + λ|�|δ.

By Attouch’s diagonalization lemma (see e.g. [4, Lemma 1.15, Corollary 1.16])
there exist δ(ε) such that uδ(ε),ε → u in L p(�;Rn) and Eε(uδ(ε),ε) → Ehom(u)

as ε → 0. Finally, defining uε := uδ(ε),ε yields the desired recovery sequence for
u.

Step 2: Lower bound Let (uε)ε ⊂ L p(�;Rn)be such thatuε → u in L p(�;Rn).
Since the energies Eε and Ehom depend only on gradients, one may assume that the
functions uε and u have vanishing mean value, i.e., uε, u ∈ L p

0 (�;Rn). We will
show that

lim inf
ε→0

Eε(uε) � Ehom(u). (5.9)

Without loss of generality, let lim infε→0 Eε(uε) = limε→0 Eε(uε) < ∞. In
view of Part I, one may further assume that

uε ⇀ u in W 1,p(�;Rn). (5.10)

We remark that (5.9) follows immediately, if one can prove that

lim inf
ε→0

ˆ
εYsoft∩Q

Wsoft(∇uε) dx �
ˆ

Q
Whom(∇u) dx = |Q|Whom(F) (5.11)

for any open cuboid Q = O × J ⊂⊂ �, where O ⊂ R
n−1 and J ⊂ R and open

interval. To deduce (5.9), we can then exhaust � with disjoint cuboids Qi ⊂ � for
i ∈ N such that |�\⋃∞

i=1 Qi | = 0 and apply (5.9) on each Qi . More precisely, for
any N ∈ N,

lim inf
ε→0

ˆ
�

W α
ε (∇uε) dx �

N∑

i=1

ˆ
εYsoft∩Qi

Wsoft(∇uε) dx �
∣
∣

N⋃

i=1

Qi
∣
∣Whom(F),

so that taking the supremum over N ∈ N implies (5.9).
It remains to prove (5.11), which relies substantially on hypothesis (H1), or

equivalently on (5.1). Since W pc
soft is polyconvex, we can find a convex function

g : Rτ(n) → R such that W pc(F) = g(M(F)) for all F ∈ R
n×n . Moreover, let

Pi
ε = (Rn−1 × ε[i, i + 1)) ∩ Q for i ∈ N and Iε ⊂ N an index set such that i ∈ Iε

if and only if |Pi
ε | = ε|O|. As a consequence, |εYsoft ∩ Pi

ε | = λε|O| for all i ∈ Iε,
and one finds with Qε = ⋃

i∈Iε Pi
ε ⊂ Q that

|Qε| = ε#Iε → |Q| and |εYsoft ∩ Qε| → λ|Q| as ε → 0. (5.12)



84 Fabian Christowiak & Carolin Kreisbeck

Due to the convexity of g we can invoke Jensen’s inequality, applied twice,
first in the version for Lebesgue-measurable functions and second in the discrete
version, to obtain
ˆ

εYsoft∩Q
Wsoft(∇uε) dx �

ˆ
εYsoft∩Q

W pc
soft(∇uε) dx �

∑

i∈Iε

ˆ
εYsoft∩Pi

ε

g
(M(∇uε)

)
dx

� λε
∑

i∈Iε

g
(

−
ˆ

εYsoft∩Pi
ε

M(∇uε) dx
)

(5.13)

� λε#Iε g
( 1

#Iε

∑

i∈Iε

−
ˆ

εYsoft∩Pi
ε

M(∇uε) dx
)

= λ|Qε| g
(

−
ˆ

εYsoft∩Qε

M(∇uε) dx
)
.

With the aim of eventually passing to the limit ε → 0 in (5.13), we will show
first that

M(∇uε)1εYsoft∩Q ⇀ M(F) − (1 − λ)M(RF ) in L1(Q;Rτ(n)). (5.14)

For this the properties ofuε due to the presence of the stiff layers need to be taken into
account. Owing to (H4) and (5.10), the sequence (uε)ε satisfies the requirements
of Theorem 3.1, and also Corollary 3.8. Following the proofs, we find the one-
dimensional auxiliary sequence (�ε)ε ⊂ L p(J ; SO(n)) defined in (3.10) with the
properties that �ε → �0 in L p(J ;Rn×n) and �0(xn) = RF for x ∈ Q, cf. (3.15)
and (3.18).

For each ε, we extend �ε constantly in x ′ and call the resulting function Sε ∈
L∞(Q; SO(n)). As a consequence of (3.6) (cf. also (3.10)) it holds that

‖∇uε − Sε‖L p(εYstiff∩Q;Rn×n) � Cε
α
p −1

.

Summing up, we have hence found a sequence (Sε)ε ⊂ L∞(Q; SO(n)) such
that

Sε → RF in L p(Q;Rn×n) and ‖∇uε − Sε‖L p(εYstiff∩Q;Rn×n) → 0 (5.15)

as ε → 0.
To see (5.14), let us rewrite the expression M(∇uε)1εYsoft∩Q as follows:

M(∇uε)1εYsoft∩Q = M(∇uε) − M(∇uε)1εYstiff∩Q

= M(∇uε)−
(M(∇uε)−M(Sε)

)
1εYstiff∩Q −M(Sε)1εYstiff∩Q .

(5.16)

It iswell-known that for p > n weakcontinuity ofminors holds, that is,M(∇uε) ⇀

M(∇u) = M(F) in L1(�;Rτ(n)), see e.g. [25, Theorem 8.20, Part 4]. Further-
more, the first convergence in (5.15) yields

M(Sε) → M(RF ) in L1(Q;Rτ(n)),
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while the second allows us to conclude that

‖M(∇uε) − M(Sε)‖L1(εYstiff∩Q;Rτ (n)) → 0. (5.17)

Both convergences follow from the following estimate based on theLeibniz formula
for determinants, together with Hölder’s inequality and the uniform bounds on
(Sε)ε and (∇uε)ε in L∞(�;Rn×n) and L p(�;Rn×n), respectively. For any A, B ∈
R

m×m ,

| det A − det B| =
∣∣∣

∑

σ∈Sm

sgn(σ )
( m∏

i=1

Ai,σ (i) −
m∏

i=1

Bi,σ (i)

)∣∣∣

�
∑

σ∈Sm

m∑

j=1

∣∣∣(A j,σ ( j)−B j,σ ( j)) ·
∏

1�k< j

Ak,σ (k) ·
∏

j<��m

B�,σ (�)

∣∣∣,

(5.18)

whereSm denotes the symmetric group over a set ofm elements. To givemore detail
regarding the argument behind (5.17), we observe that withMm(F) denoting any
subdeterminant of F ∈ R

n×n of order m � n,

‖Mm(∇uε) − Mm(Sε)‖L1(εYstiff∩Q) � |Q| p−m
p ‖Mm(∇uε) − Mm(Sε)‖L

p
m (εYstiff∩Q)

� |Q| p−m
p

∑

σ∈Sm

m∑

j=1

‖∇uε‖ j−1
L p(Q;Rn×n)

‖Sε‖m− j
L p(Q;Rn×n)

‖(∇uε) j,σ ( j)−(Sε) j,σ ( j)‖L p(εYstiff∩Q)

� C ‖∇uε − Sε‖L p(εYstiff∩Q;Rn×n),

with a constant C > 0 depending on m, p and Q and the uniform bound on
‖∇uε‖L p(�;Rn×n).

From the lemma on weak convergence of highly oscillating periodic functions

[18, Section 2.3] we infer that 1εYstiff∩Q
∗
⇀ (1 − λ) in L∞(Q). Finally, applying

these results to the individual terms in (5.16) along with a weak-strong convergence
argument implies (5.14).

Next, we observe that, as a Null-Lagrangian or polyaffine function, G �→
M(G) for G ∈ R

n×n is also rank-one affine, cf. [25, Theorem 5.20]. Since
F = λFλ + (1 − λ)RF and Fλ − RF = 1

λ
(F − RF ) = 1

λ
dF ⊗ en , it follows

that

M(F) = λM(Fλ) + (1 − λ)M(RF ).

Then, together with (5.14), we obtain

M(∇uε)1εYsoft∩Q ⇀ λM(Fλ) in L1(Q;Rτ(n)),

which, in view of (5.12) and the uniform boundedness of (∇uε)ε in L p(Q;Rn),
results in

lim
ε→0

−
ˆ

εYsoft∩Qε

M(∇uε) dx = M(Fλ). (5.19)

Finally, we combine (5.13) with (5.12) and (5.19) and exploit the continuity of
g as a convex function to arrive at (5.11). This concludes the proof of the lower
bound. ��
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Remark 5.4. (a) Step 1 can be performed as above for any open and bounded set
�, meaning that the restriction to a flat, cross-section Lipschitz domain is not
necessary for the construction of a sequence satisfying (5.7).

(b) Note that the recovery sequence constructed in Step 1 can be assumed to have
the same boundary values as vF

ε , i.e. uε − vF
ε ∈ W 1,p

0 (�;Rn). Indeed, the
small-scale oscillations glued onto the laminate vF

ε for sufficiently small ε can
be adapted outside of {x ∈ � : dist(x, ∂�) > 2ε} to vanish on {x ∈ � :
dist(x, ∂�) < ε}. This modification affects neither the convergence of (uε)ε
nor of (Eε(uε))ε.

Based on the findings of Part II for the affine case, we will now prove the
homogenization �-convergence result for general limit functions.

Proof of Theorem 5.2 (Part III): General case. Let u ∈ W 1,p(�;Rn) be such
that u(x) = R(x)x + b(x) for x ∈ �, where R ∈ W 1,p(�; SO(n)) and b ∈
W 1,p(�;Rn) satisfy ∇′ R = 0 and ∇′b = 0. As in the previous parts, we have
arranged the arguments in several steps, numbered consecutively.

Step 3: Existence of a recovery sequence We aim to find a sequence (uε)ε ⊂
W 1,p(�;Rn) such thatuε ⇀ u inW 1,p(�;Rn) and lim supε→0 Eε(uε) � Ehom(u).
The idea behind the construction of a recovery sequence for u is to use the ap-
proximating sequence from Proposition 4.1 and to perturb it in the softer layers
by suitably relaxing microstructures that guarantee the optimal energy. To obtain
these perturbations, the results from Step 1 (Part II) are applied to piecewise affine
approximations of u.

Step 3a: Piecewise constant approximation of ∇u. Recall that the gradient of
u is

∇u = R + (∂n R)x ⊗ en + d ⊗ en . (5.20)

First we approximate the functions in (5.20), that is d, ∂n R, R, and the identity
map idRn : x �→ x , by simple functions. Indeed, by following standard construc-
tions (e.g. [3, Theorem 1.2]), it is not hard to see that uniform approximation of
the continuous function R is possible while preserving the values in SO(n). With-
out loss of generality, we may assume that all four approximations above have a
common partition of �. Due to the globally one-dimensional character of d, ∂n R
and R, the elements of the partition that do not intersect with ∂� can be assumed
to be cubes aligned with the coordinate axes. To be precise, for every δ > 0 there
are finitely many cubes Qi

δ ⊂ R
n , which we index by Iδ , with maximal side length

δ such that |�\⋃
i∈Iδ Qi

δ| = 0 and Qi
δ ∩ � �= ∅ for i ∈ Iδ , and di

δ, ξ
i
δ ∈ R

n ,
Si
δ ∈ R

n×n , and Ri
δ ∈ SO(n) such that the simple functions defined by

Rδ =
∑

i∈Iδ

Ri
δ1Qi

δ∩�, dδ =
∑

i∈Iδ

di
δ1Qi

δ∩�,

Sδ =
∑

i∈Iδ

Si
δ1Qi

δ∩� and ξδ =
∑

i∈Iδ

ξ i
δ1Qi

δ∩�,
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satisfy

‖Rδ − R‖L∞(�;Rn×n) + ‖dδ − d‖L p(�;Rn)

+ ‖Sδ − ∂n R‖L p(�;Rn) + ‖ξδ − idRn ‖L∞(�;Rn) < δ.
(5.21)

Consider the piecewise constant function Uδ ∈ L∞(�;Rn×n) defined by

Uδ = Rδ + Sδξδ ⊗ en + dδ ⊗ en =
∑

j∈Iδ

Ui
δ1Qi

δ∩�, (5.22)

where Ui
δ = Ri

δ + Si
δξ

i
δ ⊗ en + di

δ ⊗ en ∈ A for i ∈ Iδ . Then,

‖Uδ − ∇u‖L p(�;Rn×n) � Cδ, (5.23)

with a constant C > 0 independent of δ. Indeed, in view of (5.21) and (5.20), this
is an immediate consequence of the estimate

‖Uδ − ∇u‖L p(�;Rn×n) � ‖Rδ − R‖L∞(�;Rn×n) + diam(�)‖Sδ − ∂n R‖L p(�;Rn×n)

+ ‖∂n R‖L p(�;Rn×n)‖ξδ − idRn ‖L p(�;Rn)

+ ‖dδ − d‖L p(�;Rn).

Step 3b: Locally optimal microstructure By Step 1 (Part II), where recovery
sequences in the affine case were established, we can find under consideration of
Remark 5.4a) on each Qi

δ ∩ � with δ > 0 and i ∈ Iδ a sequence (ui
δ,ε)ε ⊂

W 1,p(Qi
δ ∩ �;Rn) such that ∇ui

δ,ε ⇀ Uδ in L p(Qi
δ ∩ �;Rn×n) as ε → 0 and

lim
ε→0

ˆ
Qi

δ∩�

W α
ε (x,∇ui

δ,ε) dx = lim
ε→0

ˆ
εYsoft∩Qi

δ∩�

Wsoft(∇ui
δ,ε) dx

=
ˆ

Qi
δ∩�

Whom(Uδ) dx . (5.24)

Now, with wi
δ,ε := v

Ui
δ

ε ∈ W 1,∞(Qi
δ ∩�;Rn) a laminate as introduced in (4.4), let

ϕi
δ,ε = ui

δ,ε − wi
δ,ε on Qi

δ ∩ �.

According to Remark 5.4b), we may assume that the boundary values of ui
δ,ε and

wi
δ,ε coincide, which entails that ϕ

i
δ,ε ∈ W 1,p

0 (Qi
δ ∩ �;Rn). Let us join these local

components together in one function ϕδ,ε ∈ W 1,p
0 (�;Rn) given by

ϕδ,ε =
∑

i∈Iδ

ϕi
δ,ε1Qi

δ∩�. (5.25)

Note that by construction ϕδ,ε = 0 in εYstiff ∩ �. Moreover,

∇ϕδ,ε ⇀ 0 in L p(�;Rn×n) as ε → 0, (5.26)
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and ‖∇ϕδ,ε‖L p(�;Rn×n) is uniformly bounded with respect to ε and δ. In analogy
to (5.25) we define for later reference the map of local laminates

wε,δ =
∑

i∈Iδ

wi
δ,ε1Qi

δ∩� ∈ L∞(�;Rn). (5.27)

Since the homogenized energy density Whom satisfies the local Lipschitz condi-
tion (5.6) according to Remark 5.3(c), we infer along with (5.23) and Hölder’s
inequality that

ˆ
�

Whom(Uδ) dx �
ˆ

�

Whom(∇u) dx + C‖Uδ − ∇u‖L p(�;Rn×n)

�
ˆ

�

Whom(∇u) dx + Cδ.

Summing over all i ∈ Iδ in (5.24) and taking the limit ε → 0 gives that

lim sup
ε→0

ˆ
�

W α
ε (x, Uδ,ε) dx = lim sup

ε→0

ˆ
εYsoft∩�

Wsoft(Uδ,ε) dx

�
ˆ

�

Whom(∇u) dx + Cδ, (5.28)

where Uε,δ = ∑
i∈Iδ ∇ui

δ,ε1Qi
δ∩�.

Step 3c: Optimal construction with admissible gradient structure After diag-
onalization, the functions Uε,δ(ε) would define a recovery sequence as desired,
provided they have gradient structure, i.e., there is a potential uε ∈ W 1,p(�;Rn)

with ∇uε = Uε,δ(ε). Due to incompatibilities at the interfaces between neighbor-
ing cubes, however, this can in general not be expected. To overcome this issue
and to obtain an admissible recovery sequence, we discard the local laminates
wε,δ from (5.27), and instead add the locally optimal microstructures ϕδ,ε onto the
functions vε, which result from Proposition 4.1 applied to u.

More precisely, applying Proposition 4.1 to the given u provides us with an
approximating sequence in W 1,p(�;Rn) with useful properties, which we call
(vε)ε. In particular,

∇vε ⇀ ∇u in L p(�;Rn), (5.29)

∇vε ∈ SO(n) a.e. in εYstiff ∩ �,

‖∇vε − (∇u)λ‖L p(εYsoft∩�;Rn×n) → 0 (5.30)

with (∇u)λ as in (4.5).
Let uδ,ε ∈ W 1,p(�;Rn) be given by

uδ,ε = vε + ϕδ,ε − −
ˆ

�

vε + ϕδ,ε − u dx .
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Next, we estimate the energetic error brought about by replacing wε,δ in Step 3b
with vε. By (H3), Hölder’s inequality and the above definitions,

ˆ
εYsoft∩�

|Wsoft(Uδ,ε) − Wsoft(∇uδ,ε)| dx

� L
∥∥1+|Uδ,ε|p−1 + |∇uδ,ε|p−1

∥∥
L

p
p−1 (εYsoft∩�)

‖Uδ,ε−∇uδ,ε‖L p(εYsoft∩�;Rn×n)

� C
(
1 + ‖∇vε‖L p(�;Rn) + ‖(Uδ)λ‖L p(�;Rn×n)

+ ‖∇ϕε,δ‖L p(�;Rn)

)‖(Uδ)λ − ∇vε‖L p(εYsoft∩�;Rn×n), (5.31)

with C > 0 independent of ε and δ. The first factor in the last line of (5.31) is
uniformly bounded (with respect to δ and ε) as a consequence of (5.29), (5.23)
and the remark below (5.26). The second factor can be controlled with the help
of (5.30) and the following estimate, which exploits (5.21) and (5.23):

‖(∇u)λ − (Uδ)λ‖L p(εYsoft∩�;Rn×n)

� (1 − 1
λ
)‖R − Rδ‖L∞(�;Rn×n) + 1

λ
‖∇u − Uδ‖L p(�;Rn×n) � Cδ. (5.32)

Thus,
ˆ

εYsoft∩�

|Wsoft(Uδ,ε) − Wsoft(∇uδ,ε)| dx

� C
(‖(∇u)λ − ∇vε‖L p(εYsoft∩�;Rn×n) + δ

)
. (5.33)

Step 3d: Diagonalization As both Uε,δ and ∇uδ,ε lie in SO(n) almost every-
where on the stiff layers, (5.28) in combination with (5.33), (5.30) and (H2) yields
that

lim sup
ε→0

Eε(uε,δ) �
ˆ

�

Whom(∇u) dx + Cδ.

Moreover, we derive from (5.29) and (5.26) that ∇uε,δ ⇀ ∇u in L p(�;Rn) as
ε → 0 for every δ.After exploitingPoincaré’s inequality, the compact embeddingof
W 1,p into L p, and the Urysohn subsequence principle it follows then that uε,δ → u
in L p(�;Rn) as ε → 0.

Finally, the diagonalization lemma by Attouch (see e.g. [4, Lemma 1.15,
Corollary 1.16]) guarantees the existence of a sequence δ(ε) such that uε :=
uε,δ(ε) ∈ W 1,p(�;Rn) satisfies that

lim sup
ε→0

Eε(uε) �
ˆ

�

Whom(∇u) dx

and that uε → u in L p(�;Rn). This shows that (uε)ε is a recovery sequence for u
as stated.

Step 4: Lower bound. Let (uε)ε ⊂ W 1,p(�;Rn) be a sequence of uniformly
bounded energy, i.e., Eε(uε) < C for all ε > 0, such that uε ⇀ u in W 1,p(�;Rn)



90 Fabian Christowiak & Carolin Kreisbeck

for some u ∈ W 1,p(�;Rn). By Theorem 3.1, ∇u has the form (4.1). We will show
that

lim inf
ε→0

ˆ
εYsoft∩�

Wsoft(∇uε) dx �
ˆ

�

λW qc
soft((∇u)λ) dx =

ˆ
�

Whom(∇u) dx,

(5.34)

which implies the desired liminf-inequality lim infε→0 Eε(uε) � Ehom(u).
To tie this general case to the affine one in Step 2, we adjust to our specific

situation a common approximation strategy (see e.g. [47, Theorem 1.3]) based on
comparison sequences that involve elements of the constructed recovery sequences.
Note that there is no need for the comparison sequence to have full gradient struc-
ture, which allows us to argue separately on each piece of the piecewise constant
approximation of ∇u.

Step 4a: Construction of a comparison sequence. First, we approximate ∇u by
piecewise constant functions Uδ as in Step 3a, see (5.22) and (5.23). For ε, δ > 0
let wε,δ and vε be as in Step 3c. Recall that for any δ > 0 and i ∈ Iδ ,

∇wi
δ,ε ⇀ Ui

δ in L p(Qi
δ;Rn×n) as ε → 0, (5.35)

and that the sequence (vε)ε ⊂ W 1,p(�;Rn) satisfies (5.29) and (5.30). Moreover,

‖∇vε − R‖L p(εYstiff∩�;Rn×n) → 0 as ε → 0, (5.36)

in view of Proposition 4.1.
Now let us introduce

zδ,ε = uε − vε + wδ,ε + −
ˆ

�

vε − wδ,ε dx .

These functions have vanishing mean value on � and satisfy zi
δ,ε = zδ,ε|Qi

δ
∈

W 1,p(Qi
δ;Rn) for any i ∈ Iδ . Due to (5.35), (5.29) and the assumption on the

weak convergence of (uε)ε, it follows for every δ > 0 that

∇zi
δ,ε = ∇uε − ∇vε + ∇wi

δ,ε ⇀ Ui
δ in L p(Qi

δ;Rn) as ε → 0.

Hence, as a consequence of the result in the affine case (see Step 2, Part II),
applied to the restriction of zδ,ε to any cuboid Qi

δ with i ∈ Ĩδ := {i ∈ Iδ : Qi
δ ⊂⊂

Q}, we deduce that

lim inf
ε→0

ˆ
εYsoft∩Qi

δ

W α
ε (x,∇zi

δ,ε) dx �
ˆ

Qi
δ

Whom(Ui
δ ) dx .

In fact, if

‖ dist(∇zi
δ,ε, SO(n))‖L p(εYstiff∩Qi

δ)
→ 0 (5.37)

as ε → 0, one can follow the reasoning of Step 2 in Part II to see that even

lim inf
ε→0

ˆ
εYsoft∩Qi

δ

Wsoft(∇zi
δ,ε) dx �

ˆ
Qi

δ

Whom(Ui
δ ) dx . (5.38)
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To verify (5.37) for i ∈ Ĩδ , we mimic the arguments leading to (5.15) on the
cuboid Qi

δ ⊂⊂ �. This implies in particular that

‖∇uε − R‖L p(εYstiff∩Qi
δ;Rn×n) → 0. (5.39)

Then,

‖∇zi
δ,ε − Ri

δ‖L p(εYstiff∩Qi
δ;Rn×n)

= ‖∇zi
δ,ε − ∇wi

δ,ε‖L p(εYstiff∩Qi
δ;Rn×n)

= ‖∇uε − ∇vε‖L p(εYstiff∩Qi
δ;Rn×n)

� ‖∇uε − R‖L p(εYstiff∩Qi
δ;Rn×n) + ‖R − ∇vε‖L p(εYstiff∩Qi

δ;Rn×n),

which, in light of (5.39) and (5.36), gives (5.37).
Step 4b: Energy estimates For the homogenized energy, we derive from the local

Lipschitz continuity of Whom (cf. Remark 5.3(c)), along with (5.23) and Hölder’s
inequality, that

ˆ
�

|Whom(Uδ) − Whom(∇u)| dx � C‖Uδ − ∇u‖L p(�;Rn×n) < Cδ.

Furthermore, with (H2) and the uniform L p-bounds on ∇uε and ∇wi
δ,ε, we have

for any i ∈ Iδ ,ˆ
εYsoft∩Qi

δ

|Wsoft(∇zi
δ,ε) − Wsoft(∇uε)|

=
ˆ

εYsoft∩Qi
δ

|Wsoft(∇uε − ∇vε + ∇wδ,ε) − Wsoft(∇uε)| dx

� C‖∇vε − ∇wδ,ε‖L p(εYsoft∩Qi
δ;Rn×n)

� C
(‖∇vε − (∇u)λ‖L p(εYsoft∩Qi

δ;Rn×n) + ‖(∇u)λ − (Uδ)λ‖L p(εYsoft∩Qi
δ;Rn×n)

)
.

Due to (5.30), the first expression on the right hand side converges to zero as ε →
0, while the second can be estimated from above by δ by (5.32). Considering (5.38),
we conclude after summing over i ∈ Ĩδ that

lim inf
ε→0

ˆ
εYsoft∩�δ

Wsoft(∇uε) dx �
ˆ

�δ

Whom(∇u) dx − Cδ,

where �δ = ⋃
i∈ Ĩδ

Qi
δ . Since |�\�δ| → 0 by construction, passing to the limit

δ → 0 establishes (5.34), which concludes the proof. ��
As the next remark shows, the homogenized energy density Whom from (5.4)

coincideswith the single-cell formula arising froma relatedmodelwithout elasticity
(“α = ∞”) on the stiff layers. This observation indicates that microstructures
developing overmultiple cells, as they are to be expected in general homogenization
problems with non-convex energy densities (cf. [47] and more recently [5]), do not
occur. They are indeed inhibited by the presence of the stiff horizontal layers.
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Remark 5.5. With Wsoft satisfying (H1)-(H3) and Wrig(F) = χSO(n)(F) for F ∈
R

n×n , let W : � × R
n×n → [0,∞] be given by

W (x, F) =
{

Wrig(F) for x ∈ Ystiff ∩ �,

Wsoft(F) for x ∈ Ysoft ∩ �,

and denote by W cell the cell formula associated with W , i.e.,

W cell(F) = inf
ψ∈W 1,p

# (Y ;Rn)

−
ˆ

Y
W (y, F + ∇ψ) dy, F ∈ R

n×n .

We will show that for F ∈ R
n×n ,

W cell(F) =
{

Whom(F) for F ∈ A,

∞ otherwise.
(5.40)

Indeed, if W cell(F) < ∞, there exists ψ ∈ W 1,p
# (Y ;Rn) such that the expres-

sion −́Y Wrig(y, F + ∇ψ) dy is finite. This implies F + ∇ψ ∈ SO(n) a.e. in Ystiff ,
and we infer from Reshetnyak’s theorem [53] (cf. also Theorem 3.3) that for some
R ∈ SO(n),

F + ∇ψ = R on Ystiff . (5.41)

Therefore, since ψ is periodic, one obtains for i = 1, . . . , n − 1 that

Fei = Fei +
ˆ

Y
∂iψ dy =

ˆ
Y

Rei dy = Rei ,

and hence, F ∈ A and in particular, F = R + d ⊗ en with d ∈ R
n . By (5.41),

∇ψ = −d ⊗ en on Ystiff .
Considering the piecewise affine function v ∈ W 1,∞

# (Y ;Rn) with zero mean
value and gradient

∇v = (−1Ystiff + 1−λ
λ

1Ysoft )d ⊗ en,

we can find ϕ ∈ W 1,p
# (Y ;Rn) such that ∇ϕ = 0 in Ystiff and ψ is represented as

ψ = v + ϕ. Thus,

inf
ψ∈W 1,p

# (Y ;Rn)

−
ˆ

Y
W (y, F + ∇ψ) dy

= inf
{ˆ

Ysoft

Wsoft(F + ∇ψ) dy : ψ ∈ W 1,p
# (Y ;Rn), ∇ψ = −d ⊗ en on Ystiff

}

= inf
{ˆ

Ysoft

Wsoft(F + 1−λ
λ

d ⊗ en + ∇ϕ) dy : ϕ ∈ W 1,p
# (Y ;Rn), ∇ϕ = 0 on Ystiff

}

= inf
{

−
ˆ

Ysoft

λWsoft(Fλ + ∇ϕ) dy : ϕ ∈ W 1,p
# (Y ;Rn), ϕ = 0 on Ystiff

}

= λ inf
φ∈W 1,p

0 (Ysoft;Rn)

−
ˆ

Ysoft

Wsoft(Fλ + ∇φ) dy,

where the last equality makes use of Remark 5.3b). This verifies (5.40).
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Appendix A. Collected Auxiliary Results

In the next lemma, we provide a type of reverse Poincaré inequality for special
affine maps given as the difference of two rotations on a domain that is thin in
one dimension. The special feature of this result (e.g. in comparison with classical
Caccioppoli estimates for harmonic maps [39]) is that the constant can be chosen
independently of the thickness of the domain in the en-direction.

Lemma A.1. For an integer n � 2 let P = O × I with O ⊂ R
n−1 an open cube

of side length l > 0 and I ⊂ R an interval of length h > 0, and let 1 � p < ∞.
Then there exists a constant C > 0 depending only on n and p such that for all
rotations R1, R2 ∈ SO(n) and translation vectors d ∈ R

n,ˆ
P

∣∣(R2 − R1)x + d
∣∣p dx � Cl p |P| |R2 − R1|p.

Proof. Wewill prove the result for p = 1, for general p the statement then follows
immediately from Hölder’s inequality.

Moreover, without loss of generality let R2 be the identity matrix I = In ∈
R

n×n . We set R = R1 ∈ SO(n) and write A := I − R ∈ R
n×n . Let P denote the

translation of the open cuboid P centered in the origin. The arguments below make
use of the nested sets P̂ ⊂ Z ⊂ P , where Z is the cylinder with circular cross
section inscribed in P and P̂ is the largest centered, open cuboid contained in Z .
Precisely,

Z = Bn−1
l/2 × (− h

2 , h
2

)
and P̂ = (− l

2
√

n
, l
2
√

n

)n−1 × (− h
2 , h

2

)
,

where Bn−1
r the (n − 1)-dimensional ball around the origin with radius r .

With this notation in place, we observe thatˆ
P

|Ax + d| dx �
ˆ

P
|Ax | dx �

ˆ
Z

|Ax | dx . (A.1)

To derive the desired estimate, we determine the singular values of A. It follows
from the specific structure of A that

AT A = 2I − (R + RT ).

http://creativecommons.org/licenses/by/4.0/
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Considering that every R ∈ SO(n) can be transformed into block diagonal form
with the help of another rotation U ∈ SO(n), i.e. there is an integer k � n

2 and
two-dimensional rotations �1, . . . , �k ∈ SO(2) such that

R = U T diag(�1, . . . , �k, In−2k) U,

see e.g. [41, Satz 8.3.10], we conclude from the fact that the symmetric part of a
two-dimensional rotation matrix is diagonal that AT A = U T DU , where

D = 2 diag(1 − θ1, 1 − θ1, . . . , 1 − θk, 1 − θk, 0, . . . , 0) ∈ R
n×n,

with θi = (�i )11 ∈ [−1, 1). One may assume without loss of generality that
θ1 � θ2 � · · · � θk , which implies that 2(1− θ1) is the largest eigenvalue of AT A,
and hence corresponds to the squared spectral norm of A. Since all norms on Rn×n

are equivalent, there is a constant C = C(n) > 0 such that
√
2(1 − θ1) � C |A|,

where | · | denotes the Frobenius norm. Hence,ˆ
Z

|Ax | dx =
ˆ

Z

√
AT Ax · x dx =

ˆ
Z

√
D(U x) · U x dx

�
√
2(1 − θ1)

ˆ
U Z

√
x21 + x22 dx � C |A|

ˆ
U Z

√
x21 + x22 dx . (A.2)

In view of (A.1) and (A.2) it remains to show thatˆ
U Z

√
x21 + x22 dx � Cl |P|, (A.3)

with C > 0 depending only on n. If U = I, we simply neglect one of the two
additive terms in the integrand, say x22 , and estimate that

ˆ
Z

|x1| dx �
ˆ

P̂
|x1| dx = 2h

( l√
n

)n−2
ˆ l

2
√

n

0
x1 dx1 = h

( l√
n

)n = n− n
2 l |P|.
(A.4)

For general U , our argument requires to select a suitable rotation of the plane
spanned by the unit vectors e1 and e2 to guarantee that the axes of the rotated
cylinder U Z is orthogonal to e1. More precisely, one observes that any planar
rotation S = diag(�, In−2)with� ∈ SO(2) leaves the integral in (A.3) unchanged,
and thereforeˆ

U Z

√
x21 + x22 dx =

ˆ
SU Z

√
x21 + x22 dx �

ˆ
SU Z

|x1| dx . (A.5)

Since the intersection of span{e1, e2} with the (n − 1)-dimensional orthogonal
complement of span{Uen} is at least a one-dimensional subspace, we can choose a
planar rotation S such that Uen · ST e1 = 0, and thus (SU )T e1 · en = 0. Then there
exists Q = diag(�, I1) ∈ SO(n)with� ∈ SO(n−1) such that QT e1 = (SU )T e1,
andˆ

SU Z
|x1| dx =

ˆ
Z

|SU x · e1| dx =
ˆ

Z
|Qx · e1| dx =

ˆ
Q Z

|x1| dx =
ˆ

Z
|x1| dx,
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where we have used the invariance of the cylinder Z under rotations that leave the
xn-component unaffected. In view of (A.5) and (A.4) this shows (A.3), and hence,
finishes the proof. ��

Next we give details on the extension result for locally one-dimensional func-
tions in the en-direction used in Sections 3 and 4. Recall that for a bounded do-
main � ⊂ R

n , the smallest open cuboid containing � is denoted by Q� and
Q� = O� × J� with O� ⊂ R

n−1 an open cuboid and an open interval J� ⊂ R.

Lemma A.2. Let � ⊂ R
n be a bounded, flat and cross-section connected Lipschitz

domain. If v ∈ W 1,p(�;Rm) satisfies ∇′v = 0, then v can be extended to Q�

by a globally one-dimensional function in the en-direction ṽ ∈ W 1,p(Q�;Rm) ∩
C0(Q�;Rm).

In particular, one can identify v with the one-dimensional function ν ∈ W 1,p

(J�;Rm) defined by the identity ṽ(x) = ν(xn) for x ∈ Q�.

Proof. As pointed out at the beginning of Section 3, v is locally one-dimensional
in the en-direction, and hence, locally constant on any non-empty cross section
�t = Ht ∩ � = {x ∈ R

n : xn = t} ∩ �. Since the latter are connected by
assumption, it follows that v is also globally one-dimensional in the en-direction.

We can now define an extension ṽ of v to Q� by setting

ṽ(x) = v(y) with y ∈ �xn (A.6)

for x ∈ Q�. Observe that with Q� the smallest open cuboid such that � ⊂ Q�,
the intersection Hxn ∩ � = �xn is non-empty for all x ∈ �. Clearly, ṽ is globally
one-dimensional in the en-direction by definition. It therefore remains to prove that
ṽ ∈ W 1,p(Q�;Rm) (for continuity one can then argue as in the first paragraph of
Section 3).

To see this we will construct a sequencew j ∈ C∞(Q�;Rm) that approximates
ṽ in W 1,p(Q�;Rm). Let J� = (a, b) with a, b ∈ R, a < b. Since � is a flat
Lipschitz domain there exist xa ∈ �a and xb ∈ �b and balls Br (xa) and Br (xb)

with radius r > 0 such that Br (xa) ∩ Q� ⊂ � and Br (xb) ∩ Q� ⊂ �. Exploiting
further that� is open and connected, hence also path-connected, we can connect the
edge points xa with xb by a C1-curve γ (after smoothing of a continuous curve).
Moreover, one can be chosen γ to be monotone in xn due to the cross-section
connectedness of � and even strictly monotone, which implies that γ is a regular
curve, considering that � is open. After reparametrization we obtain

γ ∈ C1([a, b];Rn) with γ (t) ∈ �t for all t ∈ [a, b]. (A.7)

For the composition w = v ◦ γ ∈ W 1,p(J�;Rm) there exist approximating
functions w j ∈ C∞(J�;Rm) such that w j → w in W 1,p(a, b). Without chang-
ing notation, let us identify w j and w with their constant expansion in x ′, that is
with elements in W 1,p(Q�;Rm) and C∞(Q�;Rm), respectively. Finally, in view
of (A.6) and (A.7),

w j → w = v ◦ γ = ṽ in W 1,p(Q�;Rm),

which shows that ṽ ∈ W 1,p(Q�;Rm) and concludes the proof. ��
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Remark A.3. (a) Since only local arguments have been used in the proof above,
Lemma A.2 still holds if W 1,p(�;Rm) is replaced with W 1,p

loc (�;Rm). In this
case, it is even enough to require that � ⊂ R

n is a bounded, cross-section
connected domain.

(b) As Lemma A.2 relies on constant extensions only, changing the codomain of v

from R
m to SO(n) does not change the statement.
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