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Abstract

In the context of elasticity theory, rigidity theorems allow one to derive global
properties of a deformation from local ones. This paper presents a new asymptotic
version of rigidity, applicable to elastic bodies with sufficiently stiff components ar-
ranged into fine parallel layers. We show that strict global constraints of anisotropic
nature occur in the limit of vanishing layer thickness, and give a characterization of
the class of effective deformations. The optimality of the scaling relation between
layer thickness and stiffness is confirmed by suitable bending constructions. Beyond
its theoretical interest, this result constitutes a key ingredient for the homogeniza-
tion of variational problems modeling high-contrast bilayered composite materials,
where the common assumption of strict inclusion of one phase in the other is clearly
not satisfied. We study a model inspired by hyperelasticity via I"-convergence, for
which we are able to give an explicit representation of the homogenized limit prob-
lem; it turns out to be of integral form with its density corresponding to a cell
formula.

1. Introduction

Rigidity is a prevalent concept in different areas of mathematics. Generally
speaking, it refers to powerful statements that allow one to draw far-reaching con-
clusions from seemingly little information, such as deducing global properties of a
function from local ones. A classical result along these lines is often referred to as
Liouville’s theorem on geometric rigidity, see e.g. [38]. This says that every smooth
local isometry of a domain corresponds to a rigid body motion. A generalization to
the Sobolev setting is due to RESHETNYAK [53], and states thatif u € wlp (2; R™)
with @ C R" a bounded Lipschitz domain and 1 < p < oo satisfies

Vu € SO(n) (1.1)
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pointwise almost everywhere in €2, then u is harmonic and
u(x) = Rx +b forx € Qwith R € SO(n) and b € R". (1.2)

It is not hard to see that if connectedness of the domain fails, then global rigidity is
no longer true, as different connected components can then be rotated and translated
individually.

Yet, for a domain that has several rigid components arranged into very fine
parallel layers (see Fig. 1), global geometric constraints of anisotropic nature occur
in the limit of vanishing layer thickness. Since these restrictions become prominent
only after a limit passage, we speak of asymptotic rigidity of layered structures.
A first rigorous result in this direction can be found in [16] for the special case
n = 2 and p = 2. There it was proven that, under the assumption of local volume
preservation and up to global rotations, only shear deformations aligned with the
orientation of the layers can occur as effective deformations.

In this paper, we extend the result of [16] to arbitrary dimensions n = 2 and
general 1 < p < oo, and more significantly, relax the assumption of rigid layers
by requiring only sufficient stiffness (see Theorem 1.1). Formally, this corresponds
to replacing the exact differential inclusion (1.1) by an approximate one, very
much like the quantitative rigidity estimate by FRIESECKE et al. [33, Theorem 3.1]
generalizes Reshetnyak’s theorem. The paper [33] has initiated increased interest
in rigidity and its quantification over the last few years, especially among analysts
working on variational methods with applications in materials science. For instance,
a quantitative version of piecewise rigidity for S BV -functions [12] was established
in [32], and there is recent work on the rigidity of conformal maps [31], of non-
gradient fields [50] and of the non-Euclidean setting [45].

To be more precise about our results, some notation on the geometry of bi-
layered structures is needed. Throughout the manuscript, let 2 C R” with n > 2
be a bounded Lipschitz domain, A € (0, 1), and ¥ = (0, 1]" the periodicity cell.
We set

Yot = (0, 11""1 x (0, 4) and Yitr = ¥\ Ysoft,

cf. Fig. 1. Without further mention, Yo and Yfr are identified with their Y -periodic
extensions. To describe the thickness of two neighboring layers, we introduce a
parameter ¢ > 0, which is supposed to be small and captures the length scale of
the heterogeneities. The disjoint sets € Ygigr N €2 and € Yo N €2 partition the domain
2 into two phases of alternating layers. Notice that the parameter X stands for the
relative thickness of the softer components.

Under certain technical assumptions on the domain, in particular, flatness and
cross-section connectedness, which are specified in Definitions 3.6 and 3.7, we
obtain as our first main result a characterization for the asymptotic behavior of
sequences of functions on 2 whose gradients are increasingly close to SO (n) in
eYqiff N as e — 0.

Theorem 1.1. Let Q2 C R” be a bounded, flat and cross-section connected Lipschitz
domain and 1 < p < oo.
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Fig. 1. Illustration of bi-layered structure with stiff (gray) and softer (white) components
and periodicity cell Y, subdivided into Yo and Yigr

(1) Suppose that (uz): C WLP(Q: RY) is such that
/ dist” (Vug, SO(n)) dx < Ce® (1.3)
&Yty NS2

foralle > Owitha = 0and a constant C > 0. If &« > p and ug — u in
WLr(Q; R") for some u € WhP(Q; R"), then

u(x) = Rx)x +b(x), x €, (1.4)

with R € WhP(Q; SOn)) and b € W'P(Q; R") such that 3; R = 0 and
ob=0fori=1,...,(n—1).

(i) Ifu € wWhp(Q:; R") is of the form (1.4), then there exists a sequence (ug), C
WP (Q:; R") such that uy — u in WhHP (S R") and Vu, € SO((n) a.e. in
eYsirr N Q for every ¢ > 0.

One observes that (1.4) resembles (1.2), just that now R will in general not
be constant, but depends on the x,-variable, and hence, varies in the direction
orthogonal to the layers. This condition can be considered the result of a non-trivial
interplay between the effects of rigidity and anisotropy.

The proof of Theorem 1.1(i) consists of three main steps: the layerwise ap-
proximation of each u, by rigid body motions, a compactness argument for the
resulting one-dimensional auxiliary functions of piecewise constant rotations, and
a limit representation argument. Regarding its overall structure, the reasoning is or-
ganized similarly to [16, Proposition 2.1]. Technically, however, the transition from
exact to the approximate differential inclusions requires two substantial changes,
which make the arguments more involved than in [16]. Instead of Reshetnyak’s
theorem, we apply the quantitative rigidity estimate on each layer, and the Fréchet—
Kolmogorov compactness result (see Lemma 3.4) is used as a refinement of Helly’s
selection principle.

Proving the second part of Theorem 1.1 involves the explicit construction of an
approximating sequence (u.). with the desired properties. To this end, we critically
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exploit the special structure of u as in (1.4), which features a splitting of the x,,-
variable from the remaining ones, so that u has essentially the character of a one-
dimensional function.

Remark 1.2. (a) The gradient of u as in (1.4) takes the form
Vu=R+ (0,R)xRe, + 0,bRey,, (1.5)

which necessarily requires that (Vu)e; = Re; foralli =1,...,n — 1.

(b) We point out that the scaling regime @ > p, which quantifies the relation
between thickness and stiffness of the layers, is optimal for Theorem 1.1(i). As
shown in Section 2, asymptotic rigidity of layered structures fails for o < p.
We provide explicit examples inspired by bending deformations, for which the
limit maps u are such that 9;u# depends non-trivially on x; or du is not normed
to one.

Note that the two extreme cases @ = 0 and “a = o0” (formal for ¢* = 0)
in (1.3) correspond the situations of the stiff layers being actually soft or fully
rigid, respectively.

(c) Theorem 1.1 can be extended in different directions. One generalization con-
cerns a (p, g)-version Theorem 1.1(i). Indeed, if the exponent p in (1.3) is
replaced by ¢ € (p, 0o) the statement remains valid provided that « > ¢. In
this more general setting, we can let I < p < co. The only modification in the
case p = 1 is that R and b will be BV -functions. We refer to Remark 3.5(a)
and Remark 3.2(b) for more details. Moreover, as mentioned in Remark 3.2(c),
asymptotic rigidity in the sense of Theorem 1.1(i) still holds if the relative

thickness of the stiff layers depend on ¢, being much larger than e» "' Fora
comment on reduced assumptions for the domain €2, see Remark 4.2 as well
as Theorem 3.1.

(d) If one requires additionally in Theorem 1.1 that the limit function u is locally
volume preserving: that is u € W17 (Q; R") for r > n with det Vu = 1 a.e. in
2, then Re,, is constant, see Corollary 3.9. In the two-dimensional setting with
n = 2, this implies that R is constant, and one can think of u as horizontal shear
deformation up to global rotations, cf. also [16, Proposition 2.1].

From the viewpoint of applications in materials science, Theorem 1.1 identi-
fies characteristics of macroscopically attainable deformations of bi-layered high-
contrast composite materials. This observation constitutes an important step to-
wards a rigorous characterization of their effective behavior via homogenization.
Indeed, we will discuss in the following how asymptotic rigidity of layered struc-
tures serves as the basis for solving a relevant class of homogenization problems
in the context of hyperelasticity.

In the 1970s, the Italian school around De Giorgi established the concept of I"-
convergence [28,29] (see also [8,26] for a comprehensive introduction), which has
been used successfully among others in homogenization theory to bridge between
microscopic and macroscopic scales. This is a natural notion for variational con-
vergence, i.e. limit passages in parameter-dependent minimization problems. The
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key property is that if a sequence of energy functionals I"-converges to a limit func-
tional, this implies, under the assumption of suitable compactness, the convergence
of the corresponding infima and (almost) minimizers.

By now classical homogenization results via I"-convergence include the papers
by MARCELLINI [46] in the convex setting, as well as the first work in the non-
convex case with standard p-growth by MULLER [47] and BRAIDES [7]. Within
multiscale analysis, which comprises homogenization and relaxation theory, vari-
ational problems with non-convex pointwise or differential constraints are known
to be technically challenging, cf. [9,17,20,30,42]. Despite recent partial progress
towards attacking the issue of localization, i.e. proving that limit functionals pre-
serve integral form, with different methods, e.g. [20,30,40,52], there are still gen-
eral open questions that cannot be worked out with existing tools. In this article,
we investigate homogenization problems subject to a special type of approximate
differential inclusion constraint, which do not satisfy standard assumptions and
therefore require a tailored approach.

Leta > 0 and p € (1, 00). Consider for each ¢ > 0 the integral functional E,
defined for u € WHP(Q; R") by

1
E.(u) = / — dist?(Vu, SO(n)) dx + / Wsott (Vu) dx
Y@ €% eYsort N2

with anintegrand Wyop : R"*" — R, whichis in general not convex or quasiconvex.
These functionals model the elastic energy of a layered composite. The first term
with diverging elastic constants, scaling like ¢ ™%, is the contribution of the stiff
components and the second term is associated with the softer components.

In the regime & > p, we show that the I'-limit of (E;). as ¢ — 0 with re-
spect to strong convergence in L?(€2; R"), or equivalently weak convergence in
wl.r (2; R™), exists and determine a characterizing formula. The required techni-
cal assumptions on the geometry of 2 are those of Definitions 3.6 and 3.7 and the
density Wi is supposed to satisfy (H 1)-(H3), see Section 5. In fact, the I"-limit
has integral form, is subject to the constraints on the admissible macroscopic de-
formations induced by asymptotic rigidity (cf. Theorem 1.1), and can be expressed
purely in terms of the energy density Wi and the relative thickness A of the softer
layers. More precisely,

Enom (1) :=T'- lim E¢(u) = / AW (L (Vu — (1 =M R)) dx (1.6)
E—> Q

for all u of the form (1.4), and Epom (1) = oo otherwise. Here, quocft stands for the
quasiconvex envelope of Wy ; for background information on generalized notions
of convexity and relaxations, see e.g. [25].

Next, we collect a few remarks to put the above mentioned homogenization
result—a detailed formulation of the full version is given in Theorem 5.2—in
context with related work in the literature.

Remark 1.3. (a) General theorems on homogenization tend to be rather implicit
in the sense that they involve (multi)cell formulas (e.g. [7,47]), which again
require to solve infinite dimensional minimization problems. In contrast, the
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I'-limit in (1.6) is clearly explicit with regards to the macroscopic effect of the
heterogeneities. If the relaxation of the softer components, or in other words, the
quasiconvexification of Wi, is known, the representation of the homogenized
energy density becomes even fully explicit. To illustrate the latter, we discuss
the prototypical example of the Saint-Venant Kirchhoff stored energy function
in Example 5.1.

(b) As we demonstrate in Remark 5.5, the density in (1.6) coincides with a single-

cell formula. This indicates that microstructures ranging over multiple cells (or
layers) are not energetically favorable, in contrast with the general theory. In-
deed, Miiller’s well-known counterexample [47], which involves a polyconvex
energy density function, gives evidence that multi-cell formulas are necessary
in general to describe homogenized limits of non-convex problems (see also [5]
for further examples). The recent paper [51] refines this observation by showing
that a single-cell formula is sufficient in a neighborhood of rotations, though.

(c) Next, we highlight a selection of related references on the variational analysis of

different types of elastic high-contrast composites. The case of stiff inclusions
in a softer phase is covered in [10,30], while [10, 13, 14] study the asymptotics
of material models with increasingly soft inclusions. For results on the extreme
regime of perforated materials, we refer to the seminal paper [1], and more
recently, in the context of brittle elastic materials to [11]. The effective behavior
of fiber-reinforced brittle materials is studied in [6].

A common feature of all these results is the isotropy of the derived homoge-
nized energies. In contrast, strong anisotropy at the macroscopic level arises in
Theorem 5.2 from the layered geometry of the heterogeneities, especially in
the form of restrictions on the class of admissible deformations.

(d) Asymptotic rigidity as a concept and technical tool is not only limited to the

homogenization problem in Theorem 5.2. It can be used also in other contexts
and has the potential for extensions in different directions, as recent work on the
asymptotic analysis of models for layered materials in finite crystal plasticity
illustrates, see [16,27] and [15, Chapter 5, 6]. In particular, [27] contains a BV -
version of Theorem 1.1 in the case of fully rigid components, which makes a first
connection with applications in fracture mechanics. A step towards carrying the
results to problems in stochastic homogenization is made in [15], by assuming
a random distribution of the layer thickness.

We conclude the introduction with a few words about the proof of Theorem 5.2,

focussing on the main ideas and technical challenges. The construction of a recov-
ery sequence for affine limit maps (Step 1) is based on laminates made of rotations
and shear components (cf. [16, Section 4]), which we augment with suitable per-
turbations on the softer layers. The harder part is the case of general limits (Step 3).
Recall that Theorem 1.1(ii) provides an admissible approximating sequence for any
possible limit map as in (1.4). However, these sequences fail to be energetically
optimal in general. To remedy this problem, we localize by piecewise constant ap-
proximation of the limit functions, which can be done in a constraint preserving
way due to the essentially one-dimensional character of the representation in (1.4)
(see also (1.5)). Finally, we determine locally optimal microstructures as in the
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affine case and glue them onto the sequence from Theorem 1.1(ii) in the softer
parts. This construction is sufficient to recover the energy.

In essence, our reasoning for the liminf-inequality (Steps 2 and 4) comes down
to using Theorem 1.1(i) and to applying Jensen’s inequality twice, first to obtain
a lower bound energy estimate on each softer layer and then, in the optimization
process over the entirety of layers. Besides, we employ the properties of Null-
Lagrangians. The presented arguments rely strongly on the hypothesis that Wscfﬁ
is polyconvex (referred to as (H 1)), meaning that the quasiconvex envelope can
be written as a convex function of the vector of minors, or in other words, that
the quasiconvex envelope coincides with the polyconvex one. Notice that the same
assumption can be found e.g. in [20] in the context of relaxation problems with
constraints on the determinant.

Dropping (H1) appears to be a non-trivial task. On a technical level, if the
Jensen’s inequalities mentioned above were to be replaced straight away by the
related formulas defining quasiconvexity (see (5.2)), this would require careful
cut-off arguments at the boundaries. In the stiff layers, though, cut-off conflicts
with the rigidity constraints and difficulties may arise from non-local effects due
to interaction between different layers. Hence, it remains an open question to un-
derstand whether removing (H 1) from the list of assumptions makes the I"-limit
Ehom in (1.6) (if existent) smaller. Or in more intuitive terms, can the energy be
further reduced by oscillations of the rotation matrices and long range effects over
multiple layers?

Structure of the article This paper is organized into five sections. In the subse-
quent Section 2, we discuss a range of explicit bending examples, which illustrate
softer macroscopic behavior in the regimes 0 < o < p and establish in particular
the optimality of the condition & > p in Theorem 1.1(i). Sections 3 and 4 contain
the proofs of the asymptotic rigidity result formulated in Theorem 1.1. In Section 3,
we prove a generalization of the necessity part (i) as well as Corollary 3.9, followed
by a more detailed discussion on the geometric assumptions on the domain 2. Sec-
tion 4 proceeds with the proof of the sufficiency statement (ii) of Theorem 1.1. In
Section 5, we state our second main result on homogenization via I"-convergence,
that is Theorem 5.2. For its proof, both parts of Theorem 1.1 are key. We conclude
by relating the homogenization formula of (1.6) to the cell formula as it occurs in
models of composites with rigid layers. The “Appendix” provides two technical
auxiliary results in form of a specialized reverse Poincaré type inequality and a
lemma on locally one-dimensional functions.

Notation The standard unit vectors in R” are denoted by ey, ..., e,. For the
Euclidean inner product between two vectors a, b € R" we write a -b. Moreover, let
a®b=ab” € R"" fora,b € R",and seta’ = (—ay, az. ..., ap—1,a1)" € R"
for a € R”, which generalizes the usual notation for perpendicular vectors in two
dimensions. The Frobenius norm of A € R™*" is given by |A| = v AAT. Our
notation for block diagonal matrices is A = diag(Ay, A2, ..., Ay) € R with
Aj € R"*" and Y7 | n; = n. In the following, we will often split up a € R" as
a=(d,a,),wherea’ = (ai, ..., a,—1). Foramatrix A € R"*" a similar splitting
into its columns is used, that is A = (A’|Ae,,) with A’ € R™*®=D For ¢ € R, the
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expressions | 7] and [#] stand for the largest integer smaller and smallest integer
larger than 7, respectively.

By a domain 2 C R" we mean an open, connected subset of R”. An open
cuboid is the Cartesian product Q = (ay, by) X - -+ X (a,, by) =: x;(a;, bj) C R"
with a;,b; € Rand a; < b; fori = 1, ..., n. Hence for us, cuboids will always
be oriented along the coordinate axes. Furthermore, 1 and yg are the indicator
and characteristic function corresponding to a subset £ C R”,i.e., 1g(x) = 1 and
xe(x) =0ifx € E,and 1g(x) = 0and xg(x) = oo if x ¢ E. For a measurable
set U and an integrable function f : U — R™, let f,, fdx := ‘—[1]‘ Jy fdx.

We use the common notation for Lebesgue and Sobolev spaces, as well as
for function spaces of continuously differentiable functions. By Lg (2; R™), we
denote the space of functions in L” (£2; R™) with the property that their mean value
vanishes. Periodic boundary condition are indicated by a lower case #, for example
in W;’p(Y; R™).

The distributional derivative of a function f € Llloc(Q; R™) is denoted by Df,
for partial derivatives in the ¢;-direction we write 8;u. Moreover, Df = (D' f|9, f)
with D' f = 31 f]...|0p—1f). If f : Q — R™ is classically or weakly differen-
tiable, we denote the (weak) gradient of f by V f. Here again, one has the splitting
Vf=N'flo,f) with V' f = 31 f|...|0u—1f). Incase f : J — R™ is a one-
dimensional function with J/ C R an open interval, we simply write f’ for the
derivative of f.

Convergence of a sequence (u¢). as ¢ — 0 means that (ugj) j converges as
J — oo for any subsequence ¢; | 0. Note finally the use of generic constants,
mostly denoted by ¢ or C, which may vary from line to line without change in
notation.

2. Optimality of the Scaling Regimes

While for « = 0 in (3.2) the class of effective deformations with finite energy
comprises arbitrary Sobolev maps with vanishing mean value, the material response
inthe case “a = 00’ isratherrigid. This raises the natural question up to which value
of « softer material response can be encountered. In this section, we discuss four
examples of macroscopically attainable deformations. They show that Theorem 1.1
and Corollary 3.9 fail for small elastic constants in the regime a < p, and illustrate
the effect of (local) volume preservation. For simplicity, we assume throughout this
section that 2 C R” is the unit cube, i.e. 2 = (0, 1)".

The idea behind the first two constructions for « = p is to bend the individ-
ual stiffer layers, first uniformly in Example 2.3, and then in a locally volume-
preserving way inspired by the bending of a stack of paper in Example 2.4. Exam-
ple 2.5 is based on a wrinkling construction for the individual layers, and shows
that compression in layer direction is possible for & € (0, p). Finally, we look into
the effect of the local volume condition for « > p in Example 2.6.

The calculations behind these examples share a common structure and are all
based on the following auxiliary result. We deliberately keep its formulation slightly
more general than actually needed in what follows. This facilitates the construction
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of an even larger variety of explicit deformations and yields immediate insight into
their asymptotic properties.

As regards notation, we write [[x]]s for the orthogonal projection of x € &Ygifr
onto the midsection of the stiff layer containing x; if x € &¥soft, [x], refers to the
projection onto the midsection of the closest stiff layer above x. Precisely, fore > 0
andr € R, welet[1], =¢[L] —e+ IJZ’—’XS, so that

[*], = (X1, ..., xp—1, [xn]s) forx e R".

Due to

ltn — [xnlel = |2 — [2] + 1 — 42| <26 forany x € R, 2.1

we observe that [x], — x ase — 0.

Lemma 2.1. Let Q = [0,1]""! x [-4,2] and 1 < p < co. Fore € (0,1), let
fo € C*(Q; R") be such that |3; f:| = 1, 81 f. € span{ey, e,} and 9; f. = e; for
i =2,...,n—1, and define a Lipschitz function u, : Q — R" by

ue(x) = fe([x],) + Gon = [xa)e)01 fi-([x],) for x € e¥gier N Q. (2.2)

and by linear interpolation in the e, -direction in & Ysor; N 2.
Then, for any ¢ € (0, 1),

dist? (Vug, SO(n)) dx < 27?0 full " — . 2.3)
~/£YsﬁffﬂQ f ety (Q;R™)

Moreover, if limg_,q £||V2fs||Loo@;Rnxnx,l) = 0 and if there is F € LP(Q; R"™™M)
such that either

(i) Vfe— FinLP(Q:R™") ase — 0, or
(ii) Vfo — F in LP(Q; R"”™) as ¢ — 0 and 8,(V f;) = 0 forall ¢ € (0, 1),

then

Vu, =~ F in LP(Q; R™"™). 2.4)
Remark 2.2. The choice of @ as the domain of the functions f; ensures that u,
as in (2.2) is well-defined. Indeed, if t € [0, 1] and € € (0, 1), then —% <-5=
[1]e S 1+e<2.

Proof. By definition, the functions u, are continuously differentiable on the con-
nected components of € Yigr N 2 and € Ysore N 2. Then,

Ve (x) = 1 fe ([x],) ® e1 + (xn — [xa1)d3 f([x],) ® e1
+Y0 ) e @ei + 01 f2([x],) ® en (2.5)
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for x € Yy N €2, and a straight-forward calculation yields the gradients for
X € EYSOft n Q,

Vug(x) = (Blfg([[x]}s —ge,) + ‘%saflfj([[x]]g — gen)) ® e
+ 55 (0 — [ 2 + ) (01 £ ([x],) — 01 fe([x], — cen) @ e
- IETA(XH —[2le+ 8)(3121st([[)€]}5) + o5 £ ([x], — gen)) @ el
Y0 e ®@ei + L (fo([x],) — fellx], — ce) @ ey
— L2000 + 0 £ ([x], — sen) @ en,

see [15, Lemma 3.4.3]) for more details.
In view of (2.5) and the observation that 9; f ([x],) ® e + Zf_zl e Qe +

Blfj([[x]]e) ®e, € SO) for all x € Q due to |91 f:| = |81f}| = 1 and
01 fe € span{ey, e,}, the elastic energy contribution on the stiffer layers can be
estimated by

/ dist” (Vug, SO(n)) dx < / | — (1007, £ ([x],) ® er|” dx
e Ystifr N2 & Yaiigr N

< 107 e gy [ b = Ll

By (2.1), this implies (2.3).
For the proof of (2.4), consider the auxiliary fields V, € L% (2; R"*") given
by

Ve=01fe ®e1+ Y00, e @ei + (31 £ ® en) Levynna

(2.6)
+ (G0 fe = 200 £5) ® en) Levune:

Recall that the indicator function associated with a set £ C R" is denoted by 1.
We will show that

Ve — Vu, — 0 in L=(Q; R, 2.7

Indeed, along with the mean value theorem and (2.1), one obtains for x in the
interior of & Yy N €2 that

[Vie (x) — Ve (x)]
<101 fo(x]) = 01 fe(®) @ el + [ (n = [xal)07y f:-([x],) © el
101 £ ([x]) = 1 f5 () © e
< 1w = [alel (110, fell oo gy + 1871 fell oo gimeny + 1980 f 1o (g
< 68V fell oo gumnnny
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and, similarly, for x € eYgor N €2,
[Vue(x) = Ve(@)| = [Vueey(x) — Veey (x)| + [Vugen (x) — Veey (x)]
< 3e(H2) 193, fell oo iy + 2ENOT L2l oo (g
+ 220107, fell poo @iy + 1|0 fe (X1, E) — O fo ()]
< 66 (12) (107, fell oo @y + 1071 fell oo e
+ 195, fe l Loo ()
< 18e(H2) IV fell poo (gemmencny»

with some & € ([x,]c — &, [x,]¢). Accounting for limg_,¢ € ||V2f8 ||LOO@;R,,W,,) =
0 leads to (2.7).

Incase (i), it follows from (2.6) along with a weak-strong convergence argument
that

Ve = Fer®e1+ Y1, e @e + (1 —0)(Fe) Qe

(2.8)
+Fey®ey — (1 —A)(Fe))" ®e, = F in L'(S2; R,

where we have used in particular that 1,y ;ne A (1 —2) and Ly, 400 X xin
L>®(2),as well as Fe; = ¢; fori =2,...,n — 1. The latter follows directly from
the assumption that 0; f, = ¢; foralle € (0, 1)ifi =2,...,n— 1.

Combining (2.8) and (2.7) shows that Vu, — F in LY(Q; R"™*"). Since
(Vug), is uniformly bounded in L?(2; R"*") by (2.3) and the requirement that
£ ||8121 Sellpoo (O:R") — 0, we finally infer (2.4), which finishes the proof under the
assumption of (i).

If assumption (ii) is satisfied, then ; f;- depends only on x;. Since L.y, on
the other hand is constant in the x-variable, we observe a separation of variables
in the product (31 f;-) ey, In light of this observation, consider test functions
@ € CO(Q; R") of the form ¢(x) = (¢ @ Y)(x) 1= ¢ (x1) VY (x2, ..., x,) forx € Q
with ¢ € C°([0, 1]; R") and ¥ € C°([0, 17*~1). Then, due to Fubini’s theorem
and the lemma on weak convergence of rapidly oscillating periodic functions (see
e.g. [18, Section 2.3]), it follows that

/ (81ng_ “ @) Leygpne dx
Q

= (/[071] 81f€l . ¢dX1)(/[0’1]n1 Leyggno ¥ dxa ... dxn>

N </[O’l](Fel)J%ﬁ(Xl)d)ﬂ)(/munl(l —MYda... dxn)

=(1—A)/(Fe1)l-¢dx ase — 0. (2.9)
Q

We recall that as a corollary of the Stone-Weierstrass theorem (see e.g. [54, Theo-
rem 7.32]) and the density of CO(S; R") in L9(Q2; R™) with 1 < g < oo, the span
of functions ¢ ® v is dense in L7(£2; R"). Consequently, we infer from (2.9) that

B f5) Levggne — (1 — A)(Fep)® in LP(Q; R").
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u,

IS g
/ ////lllllllll\\

/

N

u(z) = g(z1) + 2262 + ¢, ¢ € R?

Fig. 2. Illustration of the deformations of Example 2.3 for n = 2, with uniform bending of
the stiffer layers described by g(7) = sin(t — %)el + cos(t — %)ez fort € [0, 1]

Then the third term in (2.6) converges weakly to (1—A) (Fe1) 1 ®e, in LP (Q; R**").
Arguing similarly for the other product terms in (2.6) eventually yields V, — F in
LP(2; R™™). In conjunction with (2.7) this proves (2.4), and thus the statement
in case (ii). O

As announced at the beginning of the section, we will next discuss four spe-
cializations of Lemma 2.1, using the same notations. These examples illustrate the
optimality of the scaling regimes in Theorem 1.1 and Corollary 3.9.

Example 2.3. (Uniform bending of the individual stiffer layers) Let g : [0, 1] —
span{ey, e,} C R” be a C2-curve parametrized by arc length, i.e., |¢’(¢)| = 1 for
all ¢ € [0, 1]. We follow Lemma 2.1 to define deformations u, by choosing for all
e€ (0,1,

f) =f) =g+ ve, yeQ. (2.10)

i=2

This choice of f is motivated by uniform bending of the individual stiffer layers
in the two-dimensional setting, where the curve g describes the bending of the
mid-fibers, see Fig. 2.
Then, Lemma 2.1 implies that for any constant C > 27| g” ||ZOo (0.1:R")>
/ dist? (Vug, SO(n)) dx < Ce?,
& Ysiifr ME2

which shows that the sequence (u.). has finite elastic energy on the stiffer com-
ponent for « = p. As for the gradient of the limit deformation u, we infer from
versioni) of Lemma 2.1 that Vu, — Vu = V f in L?(2; R"*"). In view of (2.10),

n
Vux) =gx)®ei+y ei®e =Rx)+a(x) Qe xeQ,
i=2

with R(x) = g'(x1) ®e1 + Y1~} e @e; + g (x1) - ®e, and @(x) = e, — g’ (x1) .
Clearly, for general g, 1R # 0, so that the limit deformation u does not have the
form (3.3) obtained in Theorem 1.1 for the regime o > p.
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We remark that the limit deformation u is not locally volume preserving for g
with non-trivial curvature, since det Vu = g’ - e # 1.

To recover limit deformations that satisfy the local volume constraint, a slightly
more involved bending construction as in the next example is needed.

Example 2.4. (Macroscopically volume-preserving bending deformations) In the
context of Lemma 2.1, we consider for ¢ € (0, 1) the functions

) ’z:}’leh y e 0,

with g : [0, 2] — span{eq, e,} C R" a C?-curve parametrized by arclength.
Then the sequence (), defined by (2.2) in the stiffer component and by linear
interpolation in the softer one satisfies

o) = 5= O D (575

/ dlstp(Vug, SO(n)) dx < 2,, ”gHHLOO(O 2- R”) IJ’
Y MS2

and we obtain that Vu, — Vu = V f in LP(2; R"*"). Due to

n—1

Vf(X)=g( x+1)®el+zez®el

=2

ot () eare() e
x,,+1g xp+1 " gx,,+1 "

for x € 2, one can rewrite the gradient of the limit deformation u with the help of

a map of rotations R € L*°(Q2; SO (n)) defined for x € Q by R(x)e; = g (x Jrl)
and R(x)e; = ¢; fori =2,...,n — 1. Precisely,

Vu=R+aQ®e,,
with a(x) = — 8/ (54) +e(47) — &' (5 +1) for x € Q. The rotations
R depend non- tr1V1ally on x1, hence, the limit map u is not in compliance with
Theorem 1.1. Since det Vu = det Vf = —g’ - g+, the deformation u is locally

volume preserving if we chose g such that g’ - g = 1.

An simple deformation of this type, which is intuitively inspired by the bending
of a stack of paper, is depicted in Fig. 3.

Next, we discuss an example in the regime o < p, where macroscopic shorten-
ing in the ej-direction occurs due to wrinkling of the stiffer layers. A similar effect
occurs in the context of plate theory, cf. [33, Section 5].

Example 2.5. (Wrinkling of stiffer layers) Let 8 € R,y € (0, 1),and g : [0, 1] —
span{ey, e,} C R" be a 1-periodic C2-function with |g/(r)] = 1 for all t € R. We
define g, : [0, 1] > R" by g.(r) = €7 g(¢77t) fort € [0, 1] and ¢ € (0, 1), and
observe that by the weak convergence of periodically oscillating sequences,

1
g — g :=/O g(1)dr =g(1) — g(0) inL'©, 1;R").
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%

Fig. 3. Illustration of the deformations of Example 2.4 for n = 2, with g(t) = sin(r —
%)el + cos(t — %)ez for t € [0, 2]. Notice also that the limit deformation u satisfies the
local volume constraint, whereas the bending deformations of the individual layers in the
left picture do not

N——\
Y m—|

N————\

Ue

SRR

PN o
—

Fig. 4. Illustration of the deformation in Example 2.5 for n = 2

Unless g’ is constant, |g’| < 1. Under these assumptions, the functions

n—1

fe() = ge(y) + Bynen + Y _viei. yeQ

i=2

meet the requirements of Lemma 2.1 with assumption (ii) and F = g’ ® e; +
?:_21 ei ®e; + Be, ® e,. Thus, for u, as in Lemma 2.1,

/ dist? (Viee, SOm)) dx < 276”1/ o 0, 1500
eYuiff N2 T

< pPgpU=y) ) < cegP=7),

18" 1 e 1.0
and Vi, — Vu = F in L' (Q; R"*"). In particular, |(Vu)ei| = |Fei| = |g| < 1.

Since det Vu = det F = B(g’ - e1), (local) volume preservation of the limit
deformation u can be achieved by a suitable choice of 8 and g. Graphically speaking,
B can be viewed as a stretching factor in the e, -direction that compensates the loss
of length in the e -direction due to the asymptotic shortening of the mid-fibers in the
stiffer layers, so that overall volume is preserved. A specific case of this wrinkling
construction is depicted in Fig. 4.

Our last example highlights the role of the local volume constraint of the limit
deformation in the regime o = 0. In particular, it shows that fora > p local volume
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Fig. 5. Illustration of the deformation of Example 2.6 forn = 2, where the increasing rotation
of the stiffer layers is described by R € C2([—l, 2]; §O(2)) with R(t)e; = cos(t)e] +
sin(t)ep fort € [—%, 2]

preservation of the limit deformation is necessary to obtain asymptotic rigidity in
the sense of Corollary 3.9.

Example 2.6. (Rotation of stiffer layers) Let R € C! ([—%, 2]; SO(n)) with Re; =
e fori =2,...,n—1.Foreache € (0, 1), we set

fe) = fO) =1 — HROwer + ser + Y _ yiei, y€ O,
i=2

and take u, as defined in Lemma 2.1. Since 911 f = 0, it follows from (2.3) that
/ dist? (Vug, SO(n))dx =0
eYsiifr N2

for any ¢ € (0, 1). Moreover, Vu, — Vu = V f in LP(Q; R"*"), so that for
x e Q,

n
Vu(x) = R(xp)e1 @ e1 + Zei ® e + (x1 — %)R/(xn)el ® e,
i=2
= R(xp) + R'(xx)x @ e, +d(x,) ® ey,

where d (1) = —%R/(t)el — R'(t)te, fort € (0, 1). Hence, we obtain
u(x) = R(xp)x + b(xy),

with b(t) = —3Rej — [y sR'(s)eyds + ¢ for t € (0,1) and ¢ € R". It is now
immediate to see that u has the form stated in Theorem 1.1, but neither is Re,
constant nor is the local volume condition satisfied in general.

In 2d, this construction corresponds to a x>-dependent rotation of the individual
stiffer layers around their barycenters, see Fig. 5.

We conclude this section with a reference to Fig. 6, which illustrates at one
glance our findings in different scaling regimes for two space dimensions. Notice
that any (2 x 2)-matrix can be expressed as R(BI + a ® ep) with R € SO(2),
B eRanda e R2.
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| “ (a) Vu | (b) Vu with det Vu = 1 |
a=0 Characterization: Characterization:
no further restriction on R, 5,a B2+ Bag =1
a € (0,p) || Explicit construction:
B#1
see Example 2.5
a=p Explicit construction: Explicit construction:
V'R=0R#0 R # const.
see Example 2.3 see Example 2.4
a € (p,o0) || Characterization: Characterization:
R € WhP(Q; SO(2)) with R =0, | R = const., f = 1
B=1,01a =Rl curl R aller,01a=0
see Theorem 1.1 see Corollary 3.9, Remark 3.10
Explicit construction:
R # const.
see Example 2.6

Fig. 6. Overview of the results on the asymptotic behavior of weakly converging sequences
(ug)e C wl P (Q; Rz) satistying (1.3) in the different scaling regimes for n = 2, a without
and b with local volume constraint on the limit map u. It is used here that for any u €
WLP(Q; R?) there are R € L®(Q; SO(2)), B € LP(Q) and a € LP(2; R?) with Vu =
R(BI+a®ep)

3. Proof of Necessity in Theorem 1.1

We will show in this section that weak limits of bounded energy sequences in
the context of our model for layered materials with stiff and soft components have
a strongly one-dimensional character. To make this more precise, we first introduce
the following terminology. A measurable function f : Q@ — R™, where Q C R"
is an open set, is said to be locally one-dimensional in the e, -direction if for every
x € Q there is an open cuboid Q, C Q with x € O, such thatfor all y, z € Qy,

FO) = f@ ify, =z (3.1

We call f (globally) one-dimensional in the e,-direction if (3.1) holds for all
v,z € Q. For f € Wli)’cp (2; R™) with p = 1 local one-dimensionality in the ¢, -
direction of f, which means that there exists a representative of f with the property,
is equivalent to the condition V' f = 0, as can be seen from a standard mollification
argument. Hence, if V' f = 0, the function f can be identified locally (i.e. for any
x € Q on an open cuboid Q, C  containing x) with a one-dimensional W!7-
function. Since the latter is absolutely continuous, it follows that f is continuous.
The next result and its implications discussed subsequent to its proof generalize
the necessity statement of Theorem 1.1 relaxing the assumptions on the domain.

Theorem 3.1. Let Q C R" withn 2 2 be a bounded open set, 1 < p < oo and
o > p. Furthermore, let (ugs)s C WP (2 R™) be such that for all ¢ > 0,

/ dist” (Vug, SO(n))dx < Ce“ 3.2)
&Yttt N2
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with a constant C > 0, and ue — u in WhP (S R") for some u € WP (Q; R").

Then there exist R € Wlocp(Q SOm)) with V'R = 0and b € Wll P RM
with V'b = 0 such that

u(x) = R(x)x + b(x) forx € Q. 3.3)

Remark 3.2. (a) Notice that the functions R and b are both locally one-dimensional
in the e, -direction and continuous. In particular, u € C O(Q; R™).

(b) It is straightforward to generalize Theorem 3.1 to a (p, ¢)-version. Precisely, if
p in (3.2) is replaced with any p < g < oo, the same conclusion remains true
under the assumption that @ > ¢, cf. [15, Section 3.3]. For a discussion of the
case p = 1, see Remark 3.5

(c) One can show that the statement of Theorem 3.1 remains true if the relative
thickness of the softer layers A € (0, 1) depends on ¢ (then denoted by X;)

in such a way that 1 — 1, > ¢! For more details, we refer to [15, Theo-
rem 3.3.1].

Theorem 3.1 builds on two classical results, which we recall here for the readers’
convenience. The first one is the quantified rigidity result for Sobolev functions
established in [33, Theorem 3.1], cf. also [19,22,23] for generalizations to other
WP _settings.

Theorem 3.3. (Quantitative rigidity estimate) Let U C R" withn = 2 be a bounded
Lipschitz domain and 1 < p < o0. Then there exists a constant C = C(U, p) > 0
with the property that for each u € WP (U; R") there is a rotation R € SO(n)
such that

||Vu — R”Lp(U;Rnxn) é C” dist(Vu, SO(}’I))”LP(U)

A straightforward scaling argument shows that the constant C remains unaf-
fected by uniform scaling and translation of U. Applying the above theorem to
increasingly thinner domains, however, leads to degenerating constants. If U =
P. =0 xel C R"withe > 0,0 c R" ! acube and I C R a bounded open
interval one obtains that

C(P.,p)=¢"'C(P, p), (3.4)

see [34, Section 4] and [15, Section 3.5.1].

The second tool is the Fréchet—Kolmogorov theorem, a compactness result for
LP-functions, see e.g. [2, Sections 2.15, U.2] and [37]. Here, we will apply it only
in the basic version formulated in the next lemma, that is, for families of functions
of one real variable with uniformly bounded essential supremum.

Lemma 3.4. Let J, J' C R be open, bounded intervals with J cC J' and 1 <
p < oo. If the sequence (f¢)e is uniformly bounded in L (J'; R™) satisfying

lim Sup/ |fet + &) — fe]"dt =0,

[El=0¢>0

then (f¢). is relatively compact in LP (J; R™).
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Regarding structure, the next proof proceeds along the lines of [16, Proposi-
tion 2.1], which, as mentioned in the introduction, constitutes a special case of
Theorem 1.1. Yet, the individual steps are more involved and require new, refined
arguments to relax the assumption of the stiff layers being fully rigid and to over-
come the restriction to two space dimensions.

Proof of Theorem 3.1. Let Q = O x J C Q be acuboid with O c R"~! an open
cube of side length / > 0 and J C R an open interval. Suppose that there exist
open intervals J/, J” with J cc J' cc J” and Q" := O x J” C Q. Moreover,
let Q' := O x J'. We define horizontal strips by setting

Pl= @R xeli,i+1)NQ" fori € Zande > 0.

The index set I, contains all i € Z with |P€i| = ¢| 0|, and we assume ¢ > 0 to be
small enough, so that Q € Q" C |, Pi C Q.

For the proof, it suffices to show the existence of R € Wl’p(Q; SO (n)) and
b € WhP(Q;R") with VR = 0 and V/'b = 0 in Q, respectively, such that
the characterization (3.3) holds for x € Q. Then we can approximate 2 from
inside with overlapping cuboids to obtain the same statements for any compact
K C Q. Indeed, the resulting characterizations in terms of R and b coincide on
the overlapping parts. Finally, exhausting €2 with compact nested subsets proves
Theorem 3.1 in the stated generality.

In what follows, the constants C > 0 depend at most on n, p, A, 2 and ¢
from (3.2), in particular, they are independent of ¢, / and J.

Step 1: Layerwise approximation by rigid body motions In this first step, we will
construct a sequence of piecewise affine functions (w;), such that the restriction
of each w; to a strip Pei is a rigid body motion and

é}i_l)% lue — wellLr(o;,rry = 0. (3.5
Applying Theorem 3.3 (under consideration of the scaling behavior of the constant
according to (3.4)) to the individual stiff layers yields the existence of C > 0 and
of rotations R, € SO (n) for every i € I, such that

||VI/[S - Ie‘ls ”Lp(gystifmeS[;Rnxn) é C8_1 || diSt(Vug, SO(n))”Lp(é‘YgtifmeE[)' (3.6)

Let w, € L°(Q'; R") be defined by w, = o, + b,, where

os(x) = Z(R;x)]lpmg,(x), xeqQ, (3.7)
i€l
and
be =Y bilping withbl = ][ ue — Rixdx.
iel, ¢ SYstiffﬁPg
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The specific choice of the values bé implies that f Yy pi e — We dx =0, and
therefore allows us to apply Poincaré’s inequality to u, — w, on each stiff layer.
Hence, one obtains for every i € I, that

llue — w€||LP(gYS[iffﬂPSi;]R") = ClVue — Ré||Lp(gymffmp€f;ﬂwn), (3.8)

see e.g. [35, Section 7.8] for details on the domain dependence of the Poincaré
constant.

Next we derive a corresponding bound on the softer layers. By a shifting argu-
ment, this problem can be reduced to estimate (3.8) for the stiff layers. The error
is given in terms of difference quotients in the e,-direction of u, — w,, which
we control uniformly. More precisely, for fixed i € I, we cover €Yot N PE" with
finitely many shifted copies of & Yifr N P;, that is, we choose 0 < 8. < Xe for

k=1,...,N = (ﬁ] such that the §, ;-shifted stiff layers Oé,k = (&Y N
Pl) — 8¢ pey satisfy eYson N Pl C U,I{VZI Oé «- Then,

/. |u6—w8|'"dx§C/ ue — we|P dx
Ok eYqiff NP,
+ C/ 4 [(e — we)(x) — (U — we)(x — as,ken)|p dx
&Y NP}
P P P
= C(lue =welly p ey i pi sy F0ei I ntte=OnWell, pi )

Here, we have used a one-dimensional difference quotient estimate with respect
to the x,-variable. Summing over the N covering cuboids then leads to

/ lug — we|?P dx
SYsoﬂﬂPEi

P P i ).
§ C(”ué‘ — We ”Lp(eystifmeg[an) + 81) ”Vué‘ ”L/’(PE[;R”X”) + 8p|Pgl |)’

notice that the last term results from the fact that Vw, € SO (n) on Ps" by (3.7).
Finally, we take the sum over i € I, to deduce from (3.8) and (3.6) that

lug — we|? dx
Q/
< C(e7 Pl dist(Vu,, SO(n)||€p(8YSlime) + &Pu, ||PW1,p(Q;Rn) +£71Q]).

Therefore, by (3.2) and the uniform boundedness of (u¢). in wlr(Q; R,

lte — wellLpgimny < Cler ™ +e). (3.9)

Since o > p, this implies (3.5).

Step 2: Compactness of the approximating rigid body motions Consider for
& > 0 the piecewise constant one-dimensional auxiliary function X, : J' — SO (n)
defined by

Te(t) =) Rileisny(®), telt, (3.10)

ielg
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with Ré as in Step 1. In relation to (3.7), it holds that o, (x) = X (x,)x forx € Q.
Step 2a: Estimate for rotations on different strips Next we will show that for
every £ € Rsuchthat JU(J +&) C J/,

1Ze(- 4+ &) — ZellLrgirrxn)
< CU P (lue — wellLrorimny + € luellwip:mn))- (3.1
To this end, we estimate the expression ||we (- + §e,) — WellLr(@;rr) from above

and below.
The upper bound follows from

lwe (- + &en) — wellLr(o:RM)
S lwe — uellLroirry + lwe (- +Een) —ue(- + Een)llLr(o:rr
+ lue(- + &en) — ucllLro;rm
S 2lwe — uellroirry + ENOnuellLror:rr). (3.12)

. i+ & . i+ &
For the lower bound, we setd, , = bt —b§+SRéH£J

to derive that

e, anduse Lemma A.1

Ll i ~
lwe (- + Ee) = well ] pgopmy = D / R = Rhx 4+l |" dx
el PnQ
it & . .
>crr Y RS - RUPIPIN B 2 CIP B+ §) — X

i€l

7 :
LP(J;Rnxn)
(3.13)

Combining (3.12) and (3.13) gives (3.11).

Step 2b: Application of the Fréchet—Kolmogorov theorem To establish strong
L?-convergence of (X;). as € — 0, observe that in view of (3.9) and the uniform
boundedness of (uz), in WP (2; R"), estimate (3.11) turns into

1

IZeC + &) = ZellLoqmmen S CLTPT N (E 07, (3.14)

It is standard to verify (see e.g. [33, Proof of Theorem 4.1] for an analogous argu-
ment) that then

lim Sup sup ”25( + E) — 2€||L1)(J;Rnxn) =0.
E]—0 &>0

Hence, by Theorem 3.4, there exist a subsequence (not relabeled) and a ¥y €
LP(J; R™") such that

Y. = Yo in LP(J; R™™M). (3.15)

Note that ¥ may still depend on the subsequence at this point. In Step 3, £ will
be characterized in terms of the limit function u, which makes ¥ unique and the
above argument independent of the choice of subsequences. Due to the strong L?”-
convergence of (X.)., which preserves lengths and angles almost everywhere, we
conclude that g € SO(n) a.e.in J'.
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Step 2c: Regularity of ¥ As a result of (3.14), we obtain an estimate on the
difference quotients of X, precisely

/)ES(I+$)_ES(I)‘pdtécl—p—n+l(l+%——p£a—p)'
J

3
Passing to the limit j — oo results in
2o(t — Xo(t
/’ o +2) 0()‘pdt§Cl_”_”+l, (3.16)
J

which shows that ¢ € W7 (J; R"*"), see e.g. [44, Theorem 10.55].
Step 3: Representation of the limit function u Recall the definitions of o, in (3.7)
and X, in (3.10). With op(x) = Xg(x,)x for x € Q one has that

/ o — 00]” dx < Z/ |RE — So(xa)|P|x]7 dx < C/ |2 — Zol” dt,
o P.NQ J

ielg
Then, by (3.15),
o, — op in L7(Q;R"). (3.17)

Since by = w, — 0, = (We — Ug) +u, — o, we find in view of (3.5), (3.17) and the
convergence u, — u in L?(2; R") by the compact embedding of W7 (Q; R")
into L?(Q; R™) that

by > u—o9p=:b inLP(Q;R").

Due to the regularity of u and oy, it follows that b € W?(Q; R"). Since by is
independent of the x’-variables, the same is true for b. Finally, defining

R(x) = ¥p(x,) forx e Q, (3.18)
proves the desired representation of u. O

Remark 3.5. (a) Setting p = 1 in Remark 3.2b) in combination with Theo-
rem 3.1 leads to the representation (3.3) with R € BVoc(2; SO(n)) and
b € BVipc(Q2; R") satisfying D’'R = 0 and D'b = 0, respectively. The rea-
soning is the same as for p > 1, but instead of getting o € Wh1(J; R"*")
from (3.16), we can only deduce that 3y € BV (J; R"*"), see e.g. [44, Corol-
lary 2.43].

(b) Notice that in view of (3.18) and (3.16) it holds that

IR 15 gy = CA+17P). (3.19)

This estimate is not uniform for all cuboids Q C €2 as used in the proof of
Theorem 3.1. In fact, the bound becomes large for cuboids with small cross-
section. One can therefore not expect in general that the weak derivatives of R
be p-integrable on the whole of 2.
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(b) (0 (d)

Fig. 7. Illustration of Definitions 3.6 and 3.7: examples of bounded Lipschitz domains that
are a cross-section connected, b not cross-section connected, ¢ flat and d not flat

(a)

(c) If © in Theorem 3.1 is of the form Q@ = O x I with O c R"! an open
cube of side length / > 0 and / C R an interval, then the proof shows that
R € WhP(Q; SO(n)), and hence also b € W7 (Q; R"), for any p > 1.
Indeed, let us choose intervals J;y CC [ for k € N such that J; C Ji4+1 and
I =g, Jk and set O = O x Ji. Then by estimate (3.19),

RIS 1.p gy meny = C (3.20)

with C > 0 independent of k. Since the cuboids Qj exhaust €2, the uniform
bound (3.20) yields that R € W“’(Q; SO(n)).

The observation of Remark 3.5(c) can be extended to a larger class of Lipschitz
domains. In fact, under suitable additional assumptions on €2, namely connect-
edness of cross-sections and a flatness property, which are introduced in Defini-
tions 3.6 and 3.7, we can drop the restriction to local W!-?-regularity of R and b
in Theorem 3.1, as Corollary 3.8 below shows.

Definition 3.6. (Connectedness of cross-sections) An open set Q2 C R” is called
cross-section connected if forany ¢ € R the intersection €2; of €2 with the hyperplane
H; = {x € R" : x,, = t} is connected.

Clearly, every convex set is cross-section connected, but also cylinders and
cones in R” (oriented in the e,-direction) with non-convex cross section are. In
Fig. 7a, b we give a two-dimensional example for illustration. An important property
of domains 2 as in Definition 3.6 is that any locally one-dimensional vector (and
matrix) field in the e,-direction defined on €2 is already globally one-dimensional
in the e,,-direction, cf. Lemma A.2.

Definition 3.7. LFlatness) We call an open set 2 C R” flat, if for all 7 € R the
intersection of 2 with the hyperplane H; = {x € R" : x,, = t} is either empty or
has nonempty relative interior.

The intuitive geometric interpretation of flatness of bounded domains is that it rules
out sets with sharp or rounded corners and peaks pointing in the direction of e,.
Simple examples include cylinders with axis parallel to e,, whereas cones with
the same orientation are not flat, see also Fig. 7c, d. A bounded Lipschitz domain
© C R” does in general not satisfy the condition of Definition (3.7), but it can
be turned into a flat Lipschitz domain by cutting it off on top and bottom, i.e., by
taking (R*~! x (a, b)) N 2, where a, b € R with a < b are such that the cross
sections €2, and €2, are non-empty.
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Corollary 3.8. In addition to the assumptions of Theorem 3.1, let Q@ C R" be a flat

and cross-section connected Lipschitz domain. Then the representation (3.3) holds
with R € WhP(Q; SO(n)) and b € WhP(Q; R™).

Proof. Let Qg be the smallest open cuboid containing 2 and let a, b € R with
a < band Oq C R"! be such that Qq = Oq x Jqo with Jg = (a, b). We observe
first that due to the connectedness of the cross-sections of €2, the map R from (3.3) is
globally one-dimensional in the e, -direction and can thus be identified with a one-
dimensional function ¥ € WIL’CP (Jo: SO(n)), see Lemma A.2 and Remark A.3.

Moreover, since €2 is a flat Lipschitz domain there exist x, € 2, and x; € Q)
along with open cuboids Q, = O X (a,a +r)and Qp = O x (b —r, b) of height
r > 0 and cross-section O C R"~! such that 0, N Qg C Qand O, N Qq C Q.
Applying Remark 3.5(c) to the restrictions R, = R|g, and R, = R|gp, gives
that R, € WhP(Qu; SO(n)) and R, € WLP(Qp; SO(n)), which correspond
to elements in ¥, € W'P(a,a + r; SO(n)) and £, € WhP(b — r, b; SO(n)),
respectively. Hence, ¥ € W!?(Jq; SO(n)) and R € WP (Qgq; SO(n)), thus
also R € WhP(Q; SO(n)).

Since b = u — Rx withu € WhP(Q: R™), one immediately gets the desired
statement for . O

We conclude this section with the following specialization of Corollary 3.8,
which involves the additional condition that the limit map is locally volume pre-
serving.

Corollary 3.9. In addition to the assumptions on R, (ug)e and u in Corollary 3.8,
letu € W (2 R") for r = n be such that det Vu = 1 a.e. in Q.

Then the limit representation in (3.3) holds with Re, constant. If Q is simply
connected, one has in particular that

Vu=05I+a®ey,), (3.21)

where Q € SO(n), S = diag(§’, 1) with S’ € WhP(Q; SO(n — 1)) satisfying
V'S = 0and a € L™r-PY(Q; R") with D'a = (§)! (8,S") and a, = 0.

Proof of Corollary 3.9. By Theorem 3.1, we know that u has the representa-
tion (3.3). Hence,

Vu=R+ (0,R)xR®e, +0,bQ®e¢e, =R+a®e,=RI+a®ey,)

withd = (8, R)x+9d,banda = RT a.Since det Vu = det(R(I+a®e,)) = 1+ay,,
we conclude in view of the local volume preservation constraint that a,, = 0.

Differentiating the identity O = a, = a - Re, with respect to the ith variable
fori € {1,...,n — 1}, while taking into account that V'R = 0 and V'b = 0,
implies that 9, (Re;) - Re, = 0. Since Re; is orthogonal on Re,, pointwise almost
everywhere, it follows from the product rule that

op(Rep) - Re; =0 fori=1,...,n—1.
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Together with
0 = $du|Rey|* = 8,(Rey) - Rey,

we obtain that 9,,(Re,) = 0. Hence, Re,, is constant, and R splits multiplicatively
into the product of Q and S as in the statement.

Finally, the restriction on the distributional derivatives of a with respect to
the first n — 1 variables follows via straightforward calculation from the gradient
structure of Vu, which requires that curl Vu = 0. 0O

Remark 3.10. If n = 2, the gradient representation of u in (3.21) becomes
Vu=00+ ye; ® e2),

with O € SO(2) and y € LP(2) with d;y = 0, cf. also [16, Proposition 2.1].
In the two-dimensional setting, the class of limit deformations u of € is highly
restricted, in fact, only horizontal shearing and global rotation can occur.

4. Sufficiency Statement in Theorem 1.1

Our starting point in this section are functions u € W17 ($; R") with gradients
of the form

Vu(x) = R(x) + 0, R)x ®e, +d(x) ®e,, x €, “.1)

where R € WHP(Q; SO(n)) and d € LP(2; R") with V'R = 0 and D'd = 0,
respectively. If not mentioned otherwise, 1 < p < oo and 2 C R” is a bounded
domain.

We will show how such u (under suitable technical assumptions) can be ap-
proximated in the sense of weak convergence in W7 (Q; R"*") by functions u,
that are defined on a layered domain with length scale of oscillations ¢ and co-
incide with rigid body motions on the stiff components. This in particular proves
Theorem 1.1(ii).

Before stating the general result, let us consider a simple example for motivation.
If u is affine, then Vu = F forsome F € R"*" and there existamatrix R € SO (n)
and a vector dp € R” such that Vu = F = Rp + dr ® e,. This motivates the
definition

A={F eR"™ :F=Rr+dr ®e, with Rp € SO(n) anddr € R"}. (4.2)
Moreover, we set
Fo=Rp+idr®e, forFe A 4.3)

In the affine case, the construction of a suitable approximation is particularly simple.
The idea is to compensate for the stiff layers by performing stronger deformations
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on the softer layers, which leads to the following laminate construction: for ¢ > 0,
let vf € W1 (Q: R") be such that

R on &Y N Q2
F F stiff ,
va = Rr ILSYSﬁffﬁQ + F) :I]-EYsof(ﬂQ. = F)\ on {_-‘,‘YSOft A Q’ (44)

then VUSF € SO(n) a.e. in eYgyif N 2 and va =R+ %Ilgysoﬁd ® e, — Vu
in LP(2; R"™) as a consequence of the weak convergence of highly oscillating
sequences (see e.g. [18, Section 2.3]). Finally, we set u, = vf for all € to obtain
the desired approximating functions in this special case.

The construction behind the general approximation result is inspired by the case
of affine limits. In view of (4.3), we have

(Vi) (x) = (Vu(x))x = Rx) + 3@ R ()x @ ey + 1d(x) ® €. X € Q.
(4.5)

Proposition 4.1. Ler Q@ C R” be a bounded, flat and cross-section connected Lip-
schitz domain and let u € WP (Q; R") with Vu as in (4.1). Then there exists a
sequence (Ug)e C WI’P(Q; R™) with Vu, € SO (n) a.e. in eYgige N Q2 such that
Vu, — Vu in LP(2; R"™*").

More specifically, there is (R;)s C WP (Q; SO(n)) with V'R, = 0 0on Q and
0, Re = 0 on eYgife N Q such that

Vu, = R, in eYger N Q, (4.6)
and

Re — Rin WhP(Q R™™) and || Vue—(Vu)ill Lo evoqna:rixn — 0 as & — 0.
(4.7)

Remark 4.2. The same result still holds also under relaxed conditions on a bounded
Lipschitz domain €2, namely when €2 can be partitioned into finitely many compo-
nents that are flat and cross-section connected. More details can be found in [15,
Section 4.2].

Proof. Let Qg denote the smallest cuboid containing 2. By (4.1) and Lemma A.2
(see also Remark A.3(b)), we may assume after constant extension orthogonal to
e, that R € Wh? (Qq; SO(n)) is globally one-dimensional in the e,-direction
and continuous. Upon writing Qg = Oq X Jq with Oq C R an open cuboid
and Jo C R an open, bounded interval, there is a one-dimensional function ¥ €
Wl’p(JQ; SO (n)) such that R(x) = X (x,) forx € Qq.

Let (Z.). € WP (Jq; SO(n)) be the approximating sequence for ¥ resulting
from Lemma 4.3 below, that is, ¥, — X in Wl’P(]Q; R"*") and E; = 0in
elgiger N Jo. Moreover, the convergence (4.8) holds. We set R.(x) = X.(x,) for
x € Qgq, so that R, € WP (Qgq: SO(n)) with V'R, = 0, and define

Us = Relevyinnog + Ui e Levonnogs
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where
Ue(x) = Re(x) + (3, R)(X)x ® ey + 1d(x) ® €y, x € Qq.

We claim that for each ¢ > 0 the function U, has gradient structure, meaning that
there exists a potential u, € WI'P(QQ; R™) with Vu, = U,. To see this, it suffices
to show that the distributional curl of U, vanishes on Q. We remark that Q¢ as
a cuboid is simply connected. Indeed, let ¢ € C°(Qq; R") and k, 1 € {1, ..., n}
with k < [. Due to V'R, = 0 and V'd = 0, one obtains in the case [ < n that

/ Ugey - djp dx — / Ugej - drp dx
Oq Oq

= / Reex - 0jpdx — / Ree; - Orpdx =0,
Qa Oq

and for [ = n, along with 9, R, = 0 on Y N Qgq, that

/ Ugsey - O dx — / Ugey - O dx
Oq Oq

= / Reex - 0ppdx — / Loy, q (0nRe)x - O dx
Oq Oq

= / Reep - 0y dx +/ (OpRe)ex - pdx = 0.
Oq Oq

Thus, curl U, = 0 as desired.
After restricting u, and R, to €2, the statements (4.6) and (4.7) follow now
directly from the properties of the sequence (X;).. O

The proof of the previous proposition builds builds on a structure preserving
approximation result for one-dimensional functions with values in the set of rota-
tions. Let us denote by Iy the 1-periodic extensions of the interval (0, 1) to the real
line, which corresponds to a one-dimensional section of Y in the e,-direction,
that is Yy = R" ™! x Igi. In addition, we set Igig = R\ Isot.

Lemma 4.3. Let J C R be an open and bounded interval, 1 < p < oo and
Y € WLP(J; SO(n)). Then there exists a sequence () C WHP(J; SO (n))
with

X =0 aeinelggNJ,
such that ¥, — X in WI’P(J; R™ ™), Furthermore,

||2;/ — %EIHLp(sIS(,ﬂﬂJ;R"X") — 0 ase —> 0. (48)

Proof. Instead of trying to approximate X directly with SO (n)-valued functions,
it seems easier to parametrize X in a suitable way. Intuitively speaking, the idea is
to stop the parametrization on the stiff layers and accelerate it on the softer ones.



Asymptotic Rigidity of Layered Structures and Homogenization 77

R ~
R
// idR
6__ 7
4 — ¢
0 EN € 2e

Fig. 8. Illustration of the re-parametrization function ¢,

More precisely, for every ¢ > 0, take ¢, : R — R as the piecewise affine
function defined by

@e(t) = e[t] fort € elgs,

and by linear interpolation on & /o, see Fig. 8. By construction, one has that

oL =7 onelp, 4.9)

and (@), converges locally uniformly to the identity function on R for ¢ — 0.

First, we extend the function ¥ from J to an open real interval J' that contains J
compactly. In fact, via reflection one obtains ¥ € WbLr(J'; SO(n)) (not renamed)
with

||E||W1,p(1/;so(n)) = C||E||w1,p(1;so(n)) < 00,

where ¢ > 0 depends only on J'.

Next, we define X, : J — SO(n) by £, = ¥ o ¢, for sufficiently small ¢.
Notice that X, is well-defined, since @, (J) = @g(elsore N J) C J' if ¢ is small
enough. As the composition of an absolutely continuous function with a monotone
Lipschitz function, X, is absolutely continuous. In particular, the chain rule holds
(see e.g. [44, Theorem 3.44]), i.e.

T = (2 o gL, (4.10)

and thus, X, € WLP(J: SO®n)). Since =, — T pointwise and the functions
| X |2 < nae. in J, it follows from Lebesgue’s dominated convergence theorem
that X, — X in LP(J; R™*").

For the asserted weak convergence of (X;), in whr(J; R ™), it suffices ac-
cording to Urysohn’s lemma to show that the sequence (%), is uniformly bounded
in LP(J; R"™™), Indeed,
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/P _
”Zg”Lp(J;Rnxn) —/
&
1

== 12/ (¢e)|* dr
22 EZ: /s(i,i+k)ﬁj ¢
1

= I gs " dr
e I.GZZ /s(i,i+1)ﬂ]/ ¢

1
EWWNM=7/ 1% (pe) > dt
LsoreNJ A elsoiNJ

[IA

1
= 12132 gripoeny:
Here we have exploited (4.10) and (4.9), the fact that ¥, is constant on & Igsr, as
well as the chain rule and transformation formula on the (finitely many) connected
components of ¢ Isof;, Where the restriction of ¢, is invertible.

To show (4.8), we approximate X’ in L?(J'; R"*") by a sequence (g;); C
C°(J'; R™™). By change of variables on the connected components of &lop it
follows that

IZ" 0 @e — gj 0 @ellLreronrreomy = I1E" = gjllLerrmn),

and therefore

12" 0 0e — B/ Lr (e 1egun:RI*n)
< llgjo@e — &jllLrrrrmy + 21185 — Il Lo rexn). (4.11)

Since g o ¢ — g; in LP(J; R"*") for every j € N by dominated convergence,
passing to the limits ¢ — 0 and j — oo (in this order) in (4.11) proves (4.8). O

5. Homogenization of Layered High-Contrast Materials

Before proving Theorem 5.2, formulated below, we introduce the setting and
precise assumptions. Throughout this section, 2 C R" is a bounded Lipschitz
domain that satisfies the flatness condition and connectedness property of Defini-
tions 3.7 and 3.6, respectively, and p > n. For ¢ > 0 and « > 0 we consider the
heterogeneous energy density W : Q@ x R"*" — [0, oco) given by

e W (F if x € eYgipr N 2,
Wga (x, F) = stift (F) : stiff
Wiott (F) if x € e¥so N L2,

where Wyifr, Weore @ R™" — [0, 00) are continuous functions that satisfy the
following conditions regarding convexity, growth and coercivity, and local Lipschitz
continuity:

(H1) quocﬁ is polyconvex;

(H2) c|F|P — é < Wort (F) < C(1 + |F|P) for all F € R"*" with constants
C,c>0;

(H3) [Weot(F) — Wt (G)| < L1+ |F|P~'+|G|[P~H|F — G| forall F, G €
R™™" with L > 0;
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(H4) Wyigr (F) 2 kdist? (F, SO (n)) for all F € R"*" with a constant k > 0.
An equivalent way of expressing (H 1) is by

qc  __ yypC
Wsoft - Wsoft’

(5.1

where Ws(fﬁ and Wfocﬂ are the quasiconvex and polyconvex envelopes of W, that
is, the largest quasiconvex and polyconvex functions below W, . For a detailed
introduction to generalized notions of convexity and the corresponding generalized
convexifications we refer to [25]. Let us just recall briefly that a continuous function
W R — R with standard p-growth (i.e., with an the upper bound as in (H2))

is quasiconvex if for any F € R"*",

inf ][ W(F + Vo) dx = W(F). (5.2)
peWy P ((0,1y:R) J(0.1)"

Moreover, a continuous W : R"*" — R is polyconvex if there exists a convex
function g : R™™ — R such that

W(F) = g(M(F)) forall F € R"*",

where M(F) € R™™ with t(n) = > (Z) is the vector of minors of F.

We remark that explicit formulas for quasiconvex envelopes are in general
hard to obtain. This is why quasiconvexifications are rather rare in the literature,
see e.g. [21,24,43] for a few examples (including extended-valued densities). A
common strategy is to determine upper and lower bounds in terms of rank-one and
polyconvex envelopes and to show that the latter two match. Hence, in those cases
where relaxations are explicitly known, (H 1) is usually satisfied.

Example 5.1. Let n = 2 or n = 3. The Saint Venant-Kirchhoff stored energy
function,

A
Wsk (F) = ZIFTF — 12+ %(|F|2 —n)?, FeR™n,

with the Lamé constants A, u > 0, is one of the simplest energy densities of
relevance in hyperelasticity (see e.g. [36, Section 28]), and meets requirements for
Wiott- It is straightforward to see that Wgg has standard growth (H2) with p = 4
and is locally Lipschitz continuous in the sense of (H3). In [43], Le Dret and Raoult
give an explicit expression of the quasiconvexification Wg%, which coincides with
the convex, polyconvex and rank-one convex envelopes. Thus, in particular, (H 1)
is satisfied, too.

Let £, : LP(Q2; R") — R U {oo} be the integral functional with density Wg,
ie.

E.(u) =/ WZ(x, Vu) dx (5.3)
Q

ifu e Wh-P(Q; R") and E,(u) = oo otherwise in L?(Q2; R").
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Recallingthat A = {F € R"" : F = Rp+dp®e, with Rp € SO(n) and df €
R"} (cf. (4.2)), we define for F' € A,
C

Whom(F) = AW (Fy) =2 inf ][ Weort (Fy + V) dx, (54)
peW, P ((0,1y;R) (0, 1)"

where F; = Rp + 1dp ® ey = 1(F — (1 = M)Rp) € A.

Now we are ready to formulate the main theorem of this section. Theorem 5.2
provides a characterization of the effective behavior of the bilayered materials mod-
eled by (5.3) by homogenization via I'-convergence for vanishing layer thickness.
The limit problem shows a splitting of the effects of the heterogeneities and relax-
ation of microstructures on the softer components. With regards to homogenization,
the resulting formulas are explicit and can be expressed in terms of the relative layer
thickness. Provided the relaxation of Wog is known, Whop, is even fully explicit.

Theorem 5.2. If « > p, the family (E.). as in (5.3) converges in the sense of
I-convergence regarding the strong LP-topology to the limit functional Enom :
LP(Q2; R") - Ry given by

/ Whom(Vu)dx  ifu(x) = R(x)x + b(x) with R € WLr(Q; SO n)) such
Q
Enom (1) = that V'R = 0 and b € WP (Q; R™) such that V'b = 0,

00 otherwise.

Precisely, this means that the following two conditions are satisfied:

(i) (Lower bound) For eachu € L? (2; R") and any sequence (ug). C LP(2; R")
withug — uin LP(2; R") as ¢ — 0 it holds that

liminf E;(ug) 2 Enom(u);
e—0

(ii) (Existence of a recovery sequence) For each u € LP(2; R") there exists a
sequence (ug)s C LP(2; R™") withuy, — u in LP(2; R") as ¢ — 0 such that

lim Eg(ug) = Enom(u).
e—0

Moreover, any sequence (ug)e C Lg (2; R™) of uniformly bounded energy for
(Eg)e, thatis Ec(uy) < C forall € > 0, is relatively compact in LP (2; R™).
Remark 5.3. (a) If W is convex, then Wscg:ft = Wi = Weott, sothat Wyom (F) =

AWsott (Fy) for F € A. In this case, the proof of Theorem 5.2 can be simplified

as indicated below.

(b) It is well-known that the definition of quasiconvexity in (5.2), as well as the
representation formula for the quasiconvex envelope W9, is independent of the
choice of the domain, see e.g. [25, Proposition 5.11]. Therefore, we have for
any open set O C R” that

qu(fft(F) = inf ][ Wsott(F +Vo)dy, F eR"™".
peW, P (0;R") J O



Asymptotic Rigidity of Layered Structures and Homogenization 81

Alternatively, Wscgﬁ

cube Q C R" as

can be expressed with the help periodic perturbations on a

W:l:ft(F) = 1inf ][ Wsot(F + V)dy, F e R™",
peW, (R /0
see e.g. [49, Proposition 4.19] or [25, Proposition 5.13].
(c) The homogenized energy density Wyon is non-negative and inherits the prop-
erty (H2) from Wgog. This follows from the fact that Ws%cﬁ has standard p-
growth, because Wyof has, along with the estimate

I Fl =4 SIRIS ((F|I+1) forF e A (5.5)

Moreover, Whon, is locally Lipschitz continuous in the sense that, just as Wyom,
it satisfies hypothesis (H 3). Precisely, one can find Lpoym > 0 such that

| Whom (F) = Whom(G)| < Lyom(1+|F|P~'+|G|P™1)|F—G| forall F, G € A.
(5.6)

To see this, we exploit that the property (H3) carries over from Wyof; to Ws(fﬁ
(cf. e.g. [48, Lemma 2.1 c)]). Hence,

C

| Whom (F) — Whom (G)| < AW (Fy) — WX (Gl
<AL+ |F )P~ G P Y Fy — G

for F,G € A with a constant L > 0. In view of (5.5), it only remains to
estimate |F) — G, | suitably from above by |FF — G|. We observe that

|F5. — G| £ YF — Gl + 52(F — Gl + |Rren — Rgenl)
< 22| F — G|+ =2 |Rpey — Rgenl,

where A stands for the n x (n — 1)-matrix that results from removing the last
column of A € R™ ", We denote the n-dimensional cross product of vectors
Vl,...,0 ER'byv; X+ XV, = x;’:_ll v; € R". The latter is by definition
the uniquely determined vector that is orthogonal on the hyperplane spanned
by vi, ..., vy,—1 such that the orientation of vy, ..., v,—_1, xl'.':_]1 v; is positive
and its norm is the volume of the parallelotope associated with vy, ..., v,_1.
For every rotation R € SO(n), one has that Re,, = x?;llRe,-.

The multilinearity of the cross product in R" and the fact that |Rpe;| =

|Rgei| = 1fori =1, ..., n allows us to obtain iteratively that
|Rpen — Rgenl = | X[Z} Rpei — [ Rgeil
= |Rre1 — Rgeil + [Rge1 X Rgez x - -+ x Rgen—1 — Rgel

X Rpey X -++ X Rpe,—1|

n—1
-+ £ Y |Rrei—Rgeil £ (n—1)|Rp—Rg| < (n—1)|F=G].

i=1

A

Finally, we combine the above estimates to deduce the desired local Lipschitz
property (5.6).
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(d) As mentioned in the introduction, proving a I'-limit homogenization result as
above without the hypothesis (H 1) is an open problem. In any case, Theorem 5.2
provides an upper bound on the I'-limit (if existent) in that situation.

We subdivide the proof of Theorem 5.2 into three main parts. After showing
compactness, we first determine the homogenization I"-limit for all affine functions,
and then prove the general statement via a localization argument. Note that the spe-
cific structure of the admissible limit deformations as characterized in Theorem 3.1,
in particular the resulting multiplicative separation of x” and x,-variables in (4.1),
is key. This observation allows us to construct an approximation that fulfills the
(asymptotic) constraints on the stiff layers, cf. Proposition 4.1.

The first part of the proof is standard, yet, we sketch it here for the readers’
convenience.

Proof of Theorem 5.2 (Part I): Compactness. Let (u.). C Lg (2; R™) be such
that E.(u;) < C for all & > 0. Then, since dist(F, SO (n)) = |F| — /n for all
F € R™" the lower bounds on Wyor; and Wigr in (H2) and (H4), imply that
(Vug)e is uniformly bounded in L?(€2; R"). The stated relative compactness of
(ug)e in LP(2; R™) follows now from Poincaré’s inequality, which shows that

||M8||W1,p(Q;Rn) < C foralle >0,
along with the compact embedding W7 (Q; R") e« LP(Q;R"). O

Proof of Theorem 5.2 (Part II): Affine case. Supposethatu € W7 (Q; R") with
Enhom (1) < oo is affine. Hence, there is F € R"*" with F € A, cf. (4.2).

Step 1: Existence of a recovery sequence The construction of a recovery se-
quence for u as above, that is, finding (u;), C L?(2; R") with

ug — uin LP(Q; R™) and E.(us) = Ehom(u) ase — 0 (5.7

requires a careful adaptation of by now classical techniques, see e.g. [47]. Indeed,
instead of glueing small-scale oscillations on top of an affine function, the former
are glued onto an appropriate laminate, namely the one constructed in (4.4).
Let § > 0. In view of Remark 5.3b), one can find ¢5 € Wol‘p(Ysoft; R™) such
that
w

soft

(F) S Wort(Fy + Ves) dy < Wi (F) +8. (5.8)
Ysoft

We set ¢s equal to zero in the remainder of the unit cube and extend it Y -periodically

to R". For ¢ > 0 let v/’ be a Lipschitz function with gradients as in (4.4) and

vanishing mean value on 2. Then, vf — uin LP?(2; R™) as ¢ — 0. With

us.(x) = vl (x) + eps (), x e,

it follows that us . — u in LP(2; R") as ¢ — 0. Regarding energies, we obtain
that

Es(“&,s) = / Wsoft(FA + VQDB(%)) dx
e¥soft N2

- / Wiott (s + Vg (5)) Ly (5) dox.
Q
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Hence, as ¢ tends to zero,
lim E¢(use) = |Q|/ Weoit (Fa + Vs ) Ly, dx
e—0 Y

= A2 Wot (F. + Vs) dx,

Ysoft

and we infer, along with (5.8), that

Enom (us) g Slg% Ee(“S,s) g Enom (us) + A|R2]6.

By Attouch’s diagonalization lemma (see e.g. [4, Lemma 1.15, Corollary 1.16])
there exist (¢) such that use)  — uin LP(Q; R") and E¢(us(e),e) — Enom (1)
as ¢ — 0. Finally, defining u, := us() ¢ yields the desired recovery sequence for
u.

Step 2: Lower bound Let (ug), C LP(2; R")besuchthatu, — win LP(2; R™).
Since the energies E, and Epoy depend only on gradients, one may assume that the
functions u, and u# have vanishing mean value, i.e., ug,u € Lg (22; R™). We will
show that

liminf Ez(s) = Enom (). (5.9)
e—0

Without loss of generality, let liminf, ¢ E¢(us) = limg— ¢ E;(1g) < 00. In
view of Part I, one may further assume that

e — u in WhHP(Q: R™). (5.10)

We remark that (5.9) follows immediately, if one can prove that

lim inf / Weort (Vitg) dx = / Woom (Vi) dx = Q| Woom(F)  (5.11)
Sysufth Q

e—0

for any open cuboid Q = O x J CC , where O C R"~! and J C R and open
interval. To deduce (5.9), we can then exhaust 2 with disjoint cuboids Q; C 2 for
i € Nsuch that |2\ [J7Z; Qi| = 0 and apply (5.9) on each Q;. More precisely, for
any N € N,

N N

lim inf W& (Vug)dx = Wsoft (Vue) dx 2> | W) F
I?LI(I)I/Q e (Vug) x_igl:/sYsaf[ﬂQi soft (Vite) x_ilL:Jle| hom (£),

so that taking the supremum over N € N implies (5.9).

It remains to prove (5.11), which relies substantially on hypothesis (H 1), or
equivalently on (5.1). Since Wsrz)Cﬁ is polyconvex, we can find a convex function
g : R™™ — R such that WP(F) = g(M(F)) for all F € R ". Moreover, let
Pg =R" " xe¢[i,i+1)NQfori e Nand I, C N an index set such that i € I,
if and only if | P!| = | O|. As a consequence, |¢Ysore N P} | = Ae|O| foralli € I,
and one finds with Q. = ;. P! C Q that

|Q¢| = e#l, — |Q] and |eYsore N Q| — A|Q] ase — 0. (5.12)
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Due to the convexity of g we can invoke Jensen’s inequality, applied twice,
first in the version for Lebesgue-measurable functions and second in the discrete
version, to obtain

[ Wz [ wh ez Yy / ¢ (M(Vu)) dx
YsottNQ ALY iel, YsotthI
> g ][ M(Vup) dx) (5.13)
ielg YsoﬂmPg

1
> Le#l g( ][ M Vu )dx)
“o\#I, ZI Yot NP} ’

= /\IQslg(]é o M(Vue) dx).

With the aim of eventually passing to the limit ¢ — 0 in (5.13), we will show
first that

M(Vug)leyno — M(F) — (1 — )M(Rp) in L'(Q;R™™).  (5.14)

For this the properties of u, due to the presence of the stiff layers need to be taken into
account. Owing to (H4) and (5.10), the sequence (u;), satisfies the requirements
of Theorem 3.1, and also Corollary 3.8. Following the proofs, we find the one-
dimensional auxiliary sequence (X;), C L?(J; SO (n)) defined in (3.10) with the
properties that 3, — Xg in L?(J; R"*") and X¢(x,) = Rf for x € Q, cf. (3.15)
and (3.18).

For each ¢, we extend ¥, constantly in x” and call the resulting function S, €
L*>®(Q; SO(n)). As a consequence of (3.6) (cf. also (3.10)) it holds that

a
£—1
|| VM&\ — S(‘J”[p(SYS[iffﬂQ;]R"X") S Cer

Summing up, we have hence found a sequence (Sy), C L*°(Q; SO (n)) such
that

Sg — RF in LP(Q, Rnxn) and ||VM8 - SE”LP(SmefﬂQ;R"X") — 0 (515)

ase — 0.
To see (5.14), let us rewrite the expression M(Vug) 1.y, 4o as follows:

M(VME)ILSYSOf[mQ = M(Vus) - M(Vua)ﬂerffﬁQ
= M(VMS) - (M (Vua) _M(SS)):H-SYsﬁfme _M(SS)ILSYS[iffﬂQ'
(5.16)

Itis well-known that for p > n weak continuity of minors holds, thatis, M(Vu,) —
M(Vu) = M(F) in L'(Q; R*™), see e.g. [25, Theorem 8.20, Part 4]. Further-
more, the first convergence in (5.15) yields

M(Se) = M(RF) inL'(Q; R*™),
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while the second allows us to conclude that
||M(VM3) — M(S€)||L1(s)’mffﬂQ;RT(")) — 0 (517)

Both convergences follow from the following estimate based on the Leibniz formula
for determinants, together with Holder’s inequality and the uniform bounds on
(Se)e and (Vug)e in L°(2; R™* ™) and LP (2; R"*"), respectively. Forany A, B €
Rm xXm s

| det A — det B| = ‘ Z Sgn(a)(l_[Aza(l) 1_[310(1))‘
oeSy
(5.18)
= Z Z‘(AJG(J) Bjoj) - H Aok -
0ES j=1 1<k<j j<t<m

where S, denotes the symmetric group over a set of m elements. To give more detail
regarding the argument behind (5.17), we observe that with M" (F) denoting any
subdeterminant of F € R"*" of order m < n,

pom
IM™ (Vue) = M™ (SO ergrnoy = 1C1 7M™ (Vug) — Mm(Ss)lng(EmemQ)

17 m

H/\

Z Z ”VME ”LP(Q Rnxn) ”S{" “L”(Q Rxn) “(Vué‘)j,a(]) _(Ss)j,o'(]) ||LI)(€Y5]ifme)
eSS, j=1

S C I\ Vue — Selleevgpno:Rrxn),

with a constant C > 0 depending on m, p and Q and the uniform bound on
IVuellLr@;rrxn)-

From the lemma on weak convergence of highly oscillating periodic functions
[18, Section 2.3] we infer that 1oy ;no A (1 — ) in L°°(Q). Finally, applying
these results to the individual terms in (5.16) along with a weak-strong convergence
argument implies (5.14).

Next, we observe that, as a Null-Lagrangian or polyaffine function, G +
M(G) for G € R™" is also rank-one affine, cf. [25, Theorem 5.20]. Since
F = AF, + (1 —MRpand F, — Rp = L1(F — Rp) = 1dr ® ey, it follows
that

M(F) = AM(Fp) + (1 = )M(RF).
Then, together with (5.14), we obtain
M(Vite) Leyno = AM(F;) in L'(Q; R™™),

which, in view of (5.12) and the uniform boundedness of (Vu.). in L?(Q; R"),
results in

lim M Vug)dx = M(F)). (5.19)
e—0 eYsotN Qe
Finally, we combine (5.13) with (5.12) and (5.19) and exploit the continuity of
g as a convex function to arrive at (5.11). This concludes the proof of the lower
bound. 0O
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Remark 5.4. (a) Step 1 can be performed as above for any open and bounded set
€2, meaning that the restriction to a flat, cross-section Lipschitz domain is not
necessary for the construction of a sequence satisfying (5.7).

(b) Note that the recovery sequence constructed in Step 1 can be assumed to have
the same boundary values as v/, i.e. u, — vl € Wol’p(Q; R™). Indeed, the
small-scale oscillations glued onto the laminate v for sufficiently small & can
be adapted outside of {x € 2 : dist(x, 92) > 2¢} to vanish on {x € Q :
dist(x, 02) < e}. This modification affects neither the convergence of (i),
nor of (Eg(ug))e.

Based on the findings of Part II for the affine case, we will now prove the
homogenization I"-convergence result for general limit functions.

Proof of Theorem 5.2 (Part ITI): General case. Let u € W!7(Q; R") be such
that u(x) = R(x)x + b(x) for x € Q, where R € W'P(Q; SO(n)) and b €
WP (Q; R") satisfy V'R = 0 and V'b = 0. As in the previous parts, we have
arranged the arguments in several steps, numbered consecutively.

Step 3: Existence of a recovery sequence We aim to find a sequence (uz), C
WP (Q; R") suchthatu, — uin WP (Q; R") andlim sup,_, o E¢(s) < Enom (1)
The idea behind the construction of a recovery sequence for u is to use the ap-
proximating sequence from Proposition 4.1 and to perturb it in the softer layers
by suitably relaxing microstructures that guarantee the optimal energy. To obtain
these perturbations, the results from Step 1 (Part IT) are applied to piecewise affine
approximations of u.

Step 3a: Piecewise constant approximation of Vu. Recall that the gradient of
uis

Vu=R+ (0,R)x ®e, +d R e,. (5.20)

First we approximate the functions in (5.20), thatis d, 9, R, R, and the identity
map idg» : x — x, by simple functions. Indeed, by following standard construc-
tions (e.g. [3, Theorem 1.2]), it is not hard to see that uniform approximation of
the continuous function R is possible while preserving the values in SO (n). With-
out loss of generality, we may assume that all four approximations above have a
common partition of 2. Due to the globally one-dimensional character of d, 9, R
and R, the elements of the partition that do not intersect with d€2 can be assumed
to be cubes aligned with the coordinate axes. To be precise, for every § > 0 there
are finitely many cubes Qfs C R", which we index by s, with maximal side length
8 such that |Q\ U;¢;, Q51 = 0 and Q5 N Q # @ fori € Is, and df, & € R",
Sé € R™" and Rg € SO (n) such that the simple functions defined by

Rs = ZRéﬂngQ’ ds = desﬂggnszv
i€l i€l

Ss=) Silping and &= &Lyings

i€l iels
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satisfy
[Rs — RllLoo(@;rrxny + Ids — dllLr(q;rm) (521)
+ 1S5 — O Rl LRy + 1185 — idrn || Loo(@;Rn) < 6. '
Consider the piecewise constant function Us € L*°(2; R"*") defined by
Us=Rs + Ssks @ en +ds ® en = ) Uil ying. (5.22)
J€ls
where Ué = Rg + Sgé;‘é ® e, —I—d(’g' ® e, € Afori € Is. Then,
Us — Vull prq:rexny = C8, (5.23)

with a constant C > 0 independent of §. Indeed, in view of (5.21) and (5.20), this
is an immediate consequence of the estimate

||U8 — Vu”Lp(Q;Ran) § ||R5 — RHLOO(Q;R"X'I) + dlam(Q)HS,g — 8nR||Lp(Q;]Rnxn)
+ 100 Rl Lr (@ rrxm) 165 — idgre ||Lr ;R
+ llds — dllLr ;R

Step 3b: Locally optimal microstructure By Step 1 (Part II), where recovery
sequences in the affine case were established, we can find under consideration of
Remark 5.42) on each Q5 N Q2 with § > 0 and i € Is a sequence (uj ), C

WP (Q§ N Q; R") such that Vuj , — Us in LP(Q§ N Q; R"™") as ¢ — 0 and

lim [ W&, Vuj,)dx = lim  Waer(Vuj ) dx
e=0./gjna £=0Jevonnojng
= /  Whom(Us) dx. (5.24)
0ingQ

. ; Ui ; . . .
Now, with wj , 1= v:° € Wl’c’o(Qis N 2; R") a laminate as introduced in (4.4), let
i i

Ps.e = ug’g —wjs . on 05NQ.

According to Remark 5.4b), we may assume that the boundary values of ug . and
wg" . coincide, which entails that ‘/’fs e € WO1 P (QfS N ©2; R™). Let us join these local

components together in one function ¢s . € Wol’p (2; R") given by

e =) ¢helging: (5.25)

iels
Note that by construction ¢s . = 0 in &Y N 2. Moreover,

Vgse =0 in LP(Q;R"")ase — 0, (5.26)
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and Vs el L (@:rnxn) is uniformly bounded with respect to ¢ and §. In analogy
to (5.25) we define for later reference the map of local laminates

Wes = ) ws Loing € LR, (5.27)

iels

Since the homogenized energy density Wyony satisfies the local Lipschitz condi-
tion (5.6) according to Remark 5.3(c), we infer along with (5.23) and Holder’s
inequality that

/ Waom (Us) dx < / Waom (Vi) dx + Cl|Us — Vitll (g znen,
Q Q
§/ Whom (Vi) dx + C8.
Q

Summing over all i € I5 in (5.24) and taking the limit ¢ — 0 gives that

lim sup/ WZ(x, Us)dx = lim sup/ Weott (Us ) dx
Q eYeort N2

£—0 £—0

< / Whom (Vu) dx 4 C§, (5.28)
Q

where Ue s = D¢y, Vug’E]ngﬂQ.

Step 3c: Optimal construction with admissible gradient structure After diag-
onalization, the functions Ug s(;) would define a recovery sequence as desired,
provided they have gradient structure, i.e., there is a potential u, € W7 (Q; R")
with Vug = Uy s(¢). Due to incompatibilities at the interfaces between neighbor-
ing cubes, however, this can in general not be expected. To overcome this issue
and to obtain an admissible recovery sequence, we discard the local laminates
we 5 from (5.27), and instead add the locally optimal microstructures ¢s . onto the
functions v,, which result from Proposition 4.1 applied to u.

More precisely, applying Proposition 4.1 to the given u provides us with an
approximating sequence in W17 (2; R") with useful properties, which we call
(vg)e. In particular,

Vv, — Vu in LP(Q; R™), (5.29)
Vv, € §O(n) ae. in Y N 2,
Vve — (Vi) Lr (e veonne:Rrxmy — 0 (5.30)

with (Vu), as in (4.5).
Letus, € WP (Q; R") be given by

Use = Vg + @s.c — ][ Ve + @s.¢ —udx.
Q



Asymptotic Rigidity of Layered Structures and Homogenization 89

Next, we estimate the energetic error brought about by replacing w, s in Step 3b
with v.. By (H3), Holder’s inequality and the above definitions,

/ |Wsoft(U8,e) - Wsoft(vu8,e)| dx
&Ysoft N2

-1 -
S L|141Us e|P~" + |Vus o] ”Lﬁ(ay ﬂnQ)||U8,8_VMS,S”LP(sYsof[ﬂQ;R"X”)
SO

< C(1+ [IVellr:rry + 1(Us)all Lr (@ rrxny
+ IV@esll L@k 1(Us)s. — VUl L (e v ng: R1xn). (5.31)

with C > 0 independent of ¢ and §. The first factor in the last line of (5.31) is
uniformly bounded (with respect to § and €) as a consequence of (5.29), (5.23)
and the remark below (5.26). The second factor can be controlled with the help
of (5.30) and the following estimate, which exploits (5.21) and (5.23):

I1(Vu)r — (Us)allLr (evionne: Rrxm)
< (1= DIR = RsllLoo(@meny + 3 IV = Usll Lo(unmny < €8 (5.32)

Thus,

/ |Wsoft(U8,a) - Wsoft(vuﬁ,sﬂ dx
eYsort N2
S C(I(Vw)n — Vel Lo eyoune:rrxn) + 8). (5.33)

Step 3d: Diagonalization As both U, s and Vu; . lie in SO (n) almost every-
where on the stiff layers, (5.28) in combination with (5.33), (5.30) and (H2) yields
that

lim sup Eg (ug ) < / Whom (Vu) dx + C8.
Q

£—0

Moreover, we derive from (5.29) and (5.26) that Vu, s — Vu in LP(2; R") as
& — Oforevery§. After exploiting Poincaré’s inequality, the compact embedding of
WP into L, and the Urysohn subsequence principle it follows then that u, 5 — u
in LP(Q2;R") as e — 0.

Finally, the diagonalization lemma by ATTOUCH (see e.g. [4, Lemma 1.15,
Corollary 1.16]) guarantees the existence of a sequence §(¢) such that u, :=
Ug 5(c) € WLP(Q; R") satisfies that

lim sup E; (uz) g/ Whom (V) dx
Q

e—0

and that u, — u in L?(2; R"). This shows that (u), is a recovery sequence for u
as stated.

Step 4: Lower bound. Let (u;)s C WP (€2; R") be a sequence of uniformly
bounded energy, i.e., E.(u;) < C forall ¢ > 0, such thatu, — u in whp(Q: R
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for some u € WP (; R"). By Theorem 3.1, Vi has the form (4.1). We will show
that

lim inf / Wioft (Vtz) dx = / AWE (Vu)) dx = / Whom (V) dx,
e—~0 eYsoft N2 Q ‘ 2
(5.34)

which implies the desired liminf-inequality lim inf, o E¢(ue) = Ehom (u).

To tie this general case to the affine one in Step 2, we adjust to our specific
situation a common approximation strategy (see e.g. [47, Theorem 1.3]) based on
comparison sequences that involve elements of the constructed recovery sequences.
Note that there is no need for the comparison sequence to have full gradient struc-
ture, which allows us to argue separately on each piece of the piecewise constant
approximation of Vu.

Step 4a: Construction of a comparison sequence. First, we approximate Vu by
piecewise constant functions Us as in Step 3a, see (5.22) and (5.23). For¢,§ > 0
let we s and v, be as in Step 3c. Recall that forany § > O and i € I,

Vuwj, — Uj in LP(Q§; R ™) ase — 0, (5.35)
and that the sequence (vg): C WLP(Q; R") satisfies (5.29) and (5.30). Moreover,
||VU5 — R”LP(EYSﬁffﬂQ;R”X”) — 0 ase — 0, (536)

in view of Proposition 4.1.
Now let us introduce

28,6 = Ug — Vg + W5 ¢ + ][ Ve — WS e dx.
Q

These functions have vanishing mean value on Q2 and satisfy Zfs e = 28l ol €
B ’ 5

Wl’p(Qfs; R™) for any i € Is. Due to (5.35), (5.29) and the assumption on the
weak convergence of (u;),, it follows for every § > O that

Vzgyg = Vu, — Vo, + ng’g — Ug in Lp(QfS; R") ase — 0.

Hence, as a consequence of the result in thQ affine case (see Step 2, qut 1D),
applied to the restriction of zs . to any cuboid Qf withi € Is :=={i € Is : Q§ CC
0}, we deduce that

e—0

lim inf/ W& (x, Vzh ) dx = / Whom (U}) dx.
5Ysofthi§ Qi;
In fact, if
I dist(Vz .. SO ey unoiy = O (5.37)

as ¢ — 0, one can follow the reasoning of Step 2 in Part II to see that even

lim inf / Wit (V25 ) dx = /  Whom (U}) dx. (5.38)
e—~0 SYsofthig ' Qig
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To verify (5.37) fori € I:;, we mimic the arguments leading to (5.15) on the
cuboid Qf CC . This implies in particular that

”Vu&‘ - R”Lp(sYSufmeg;Rnxn) — 0. (539)

Then,

i i .
IVzs.e — Rs ”L”(sysﬁffﬁQZg:R”X”)

— i i :
- ”VZ&S - lesﬁ”LP(&?Ystifmef;;R"x")

= Ve = Vel L evgnno) e

= 1Vite = Rl eygpngiimmen IR = Vel ey angiimen

which, in light of (5.39) and (5.36), gives (5.37).

Step 4b: Energy estimates For the homogenized energy, we derive from the local
Lipschitz continuity of Wyony (cf. Remark 5.3(c)), along with (5.23) and Holder’s
inequality, that

/ Whom(Us) — Whom (Vi) dx < Cl|Us — Vull ogpnny < C8.
Q

Furthermore, with (H2) and the uniform L”-bounds on Vu, and was’ > We have
foranyi € Is,

/ ) |Ws0ft(vzfs,8) — Wsort (Viug)|
SY.softhig

= / ) [Wsort (Vue — Vo, + va,e) — Wsort (Vg )| dx
SYsoﬂmQS

§ C”VUS — VU)B,E ”LP(SYSOﬂQQ:'S;Rnxn)
< C(IV0e = (Vi eyt e + 10V105 = U2 Loeynngr meny)-

Dueto (5.30), the first expression on the right hand side converges to zero as ¢ —
0, while the second can be estimated from above by § by (5.32). Considering (5.38),
we conclude after summing over i € Is that

lim inf/ Weott (Vug) dx = Whom (Vu) dx — C$,
&Y501tNS2s Q5

e—0

where Qs = ;. is Qg. Since |2\25| — 0 by construction, passing to the limit
6 — 0 establishes (5.34), which concludes the proof. O

As the next remark shows, the homogenized energy density Whom from (5.4)
coincides with the single-cell formula arising from arelated model without elasticity
(“a = 00”) on the stiff layers. This observation indicates that microstructures
developing over multiple cells, as they are to be expected in general homogenization
problems with non-convex energy densities (cf. [47] and more recently [5]), do not
occur. They are indeed inhibited by the presence of the stiff horizontal layers.
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Remark 5.5. With Wy satisfying (H1)-(H3) and Wy (F) = xsom)(F) for F €
R™" Jet W : Q x R™" — [0, 0o] be given by
Wiig(F)  for x € Yyer N 2,

Wx,F =
( ) {Wsoft(F) for x € Yot N €2,

and denote by chu the cell formula associated with W, i.e.,

Ween(F) = inf ][ Wy, F +Vy)dy, F eR™"
yew, P (v;Rn) JY

We will show that for FF € R"*",

Ween(F) = (5.40)

Whom(F)  for F € A,
00 otherwise.

Indeed, if chu(F ) < 00, there exists ¥ € W,i’p (Y; R™) such that the expres-
sion fY Wiig (v, F + V) dy is finite. This implies F'+ Vi € SO (n) a.e. in Y,
and we infer from Reshetnyak’s theorem [53] (cf. also Theorem 3.3) that for some
R e SO(n),

F+Vy =R on Y. (5.41)

Therefore, since i is periodic, one obtains fori = 1,...,n — 1 that
Fe; = Fe; +/ oy dy = / Re; dy = Re;,
Y Y

and hence, F € A and in particular, F = R + d ® e, with d € R". By (5.41),
Vi = —d ® e, on Ygif.

Considering the piecewise affine function v € W# °°(Y; R™) with zero mean
value and gradient

Vo = (=Llyg + li_xﬂYsoﬂ)d ® en,

we can find ¢ € W;‘p (Y; R"™) such that Vg = 0 in Y and ¢ is represented as
Y = v + ¢. Thus,

inf ][W(y,F—i—VW)dy
yJY

yew, P (v;Ry
=inf{ [ Weor(F+Vu)dy: v e Wy (Vi R, Vi = ~d & e, on Yir |
ysofl
- inf{ Weott (F + 152d @ e, + Vo) dy : 9 € W) P (Y; R"), Vg =0 on mef}

Ysoft

—inf{ {  AWan(F+ Vo)dy ¢ € Wy (Vi R, 9 = 0on Yun
Ysoft

=A inf Wsoft(F)u + V(p) dy!
$eW,? (Yeoit:R") Yoot

where the last equality makes use of Remark 5.3b). This verifies (5.40).
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Appendix A. Collected Auxiliary Results

In the next lemma, we provide a type of reverse Poincaré inequality for special
affine maps given as the difference of two rotations on a domain that is thin in
one dimension. The special feature of this result (e.g. in comparison with classical
Caccioppoli estimates for harmonic maps [39]) is that the constant can be chosen
independently of the thickness of the domain in the e,-direction.

Lemma A.l. For an integern > 2 let P = O x I with O C R"™! an open cube
of side length | > 0 and I C R an interval of length h > 0, and let | < p < o0.
Then there exists a constant C > 0 depending only on n and p such that for all
rotations R1, Ry € SO (n) and translation vectors d € R",

/ (Ry — Ri)x +d| dx = CI” |P| Ry — Ry P,
P

Proof. We will prove the result for p = 1, for general p the statement then follows
immediately from Holder’s inequality.

Moreover, without loss of generality let R, be the identity matrix [ = I, €
R™" We set R = Ry € SO(n) and write A := 1 — R € R"*". Let P denote the
translation of the open cuboid P centered in the origin. The arguments below make
use of the nested sets P C Z C P, where Z is the cylinder with circular cross
section inscribed in P and P is the largest centered, open cuboid contained in Z.

Precisely,
— _ 71
Z=Bjp' x(=3.3) ad P=(-57 57" x(=5.3).

where B;"l the (n — 1)-dimensional ball around the origin with radius r.
With this notation in place, we observe that

/|Ax+d|dsz|Ax|dxg/|Ax|dx. (A.1)
P P z

To derive the desired estimate, we determine the singular values of A. It follows
from the specific structure of A that

ATA=21— (R+R").
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Considering that every R € SO (n) can be transformed into block diagonal form
with the help of another rotation U € SO(n), i.e. there is an integer k < % and
two-dimensional rotations @1, ..., ®; € SO (2) such that

R =UT diag(®1, ..., 0, T,_%) U,

see e.g. [41, Satz 8.3.10], we conclude from the fact that the symmetric part of a
two-dimensional rotation matrix is diagonal that ATA =UT DU, where

D =2diag(1 — 01,1 —61,...,1 =6, 1 —6,0,...,0) € R™*",

with 6; = (©;);; € [—1,1). One may assume without loss of generality that
6; < 6 < ... < 6, which implies that 2(1 — 6) is the largest eigenvalue of AT A,
and hence corresponds to the squared spectral norm of A. Since all norms on R"*"
are equivalent, there is a constant C = C(n) > 0 such that «/2(1 — 0;) = C|A]|,
where | - | denotes the Frobenius norm. Hence,

/|Ax|dx=/\/ATAx-xdxz/\/D(Ux)'dex

VA Z Z
2,/2(1—91)/ ,/x2+x2dx2C|A|/ JxZ 4+ xZdx. (A2)
= Uz 1 2 = Uz 1 2

In view of (A.1) and (A.2) it remains to show that

/ VX2 +x3dx = Cl|P|, (A.3)
vz

with C > 0 depending only on n. If U = I, we simply neglect one of the two
additive terms in the integrand, say x22, and estimate that

l
[ \n—2 2Jn [ \n o
dx 2 dx =2h| — dx; =h{—) =n"2[|P|.
/z"”' x_/ﬁ|x1| x=20(—-) /O wdn=h(—=) =nip
(A4)

For general U, our argument requires to select a suitable rotation of the plane
spanned by the unit vectors e; and e> to guarantee that the axes of the rotated
cylinder U Z is orthogonal to e;. More precisely, one observes that any planar
rotation S = diag(X, [,,_») with ¥ € SO(2) leaves the integral in (A.3) unchanged,
and therefore

[ e[ fedez [Cmiee @s)
Uz SUZ SUZ

Since the intersection of span{ej, e»} with the (n — 1)-dimensional orthogonal
complement of span{Ue, } is at least a one-dimensional subspace, we can choose a
planar rotation S such that Ue,, - STe; = 0, and thus (SU)7e; - ¢, = 0. Then there
exists Q = diag(E,1;) € SO(n) with & € SO(n—1) such that 07 e; = (SU) ¢y,
and

/ |x1|dx=/|SUx-e1|dx=/|Qx-el|dx=/ |x1|dx=/|x1|dx,
sUZ z z 0z z
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where we have used the invariance of the cylinder Z under rotations that leave the
xp-component unaffected. In view of (A.5) and (A.4) this shows (A.3), and hence,
finishes the proof. O

Next we give details on the extension result for locally one-dimensional func-
tions in the e,-direction used in Sections 3 and 4. Recall that for a bounded do-
main @ C R”, the smallest open cuboid containing €2 is denoted by Qg and
Qq = Oq x Jg with Oq c R* ! an open cuboid and an open interval Jo C R.

Lemma A.2. Let 2 C R” be a bounded, flat and cross-section connected Lipschitz
domain. If v € WhP(Q; R™) satisfies V'v = 0, then v can be extended to Qg
by a globally one-dimensional function in the e,-direction v € WP (Qgq; R™) N
C%(Qa; R™).

In particular, one can identify v with the one-dimensional function v € WP
(Ja; R™) defined by the identity v(x) = v(xy) for x € Qq.

Proof. As pointed out at the beginning of Section 3, v is locally one-dimensional

in the e,-direction, and hence, locally constant on any non-empty cross section

Q = HNQ ={x € R": x, =t} N Q. Since the latter are connected by

assumption, it follows that v is also globally one-dimensional in the e, -direction.
We can now define an extension v of v to Qg by setting

5(x) =v(y) withy € Q, (A.6)

for x € Qgq. Observe that with Qg the smallest open cuboid such that Q C Qgq,
the intersection H,, N 2 = Q,, is non-empty for all x € Q. Clearly, v is globally
one-dimensional in the e, -direction by definition. It therefore remains to prove that
i € WhP(Qq: R™) (for continuity one can then argue as in the first paragraph of
Section 3).

To see this we will construct a sequence w; € C ®(Qgq; R™) that approximates
7in WhP(Qq; R™). Let Jo = (a,b) witha,b € R, a < b. Since Q is a flat
Lipschitz domain there exist x, € 2, and x; € 2, and balls B, (x;) and B, (xp)
with radius » > 0 such that B, (x,) N Qo C Q2 and B,(xp) N Qo C 2. Exploiting
further that €2 is open and connected, hence also path-connected, we can connect the
edge points x, with x, by a C!-curve y (after smoothing of a continuous curve).
Moreover, one can be chosen y to be monotone in x, due to the cross-section
connectedness of €2 and even strictly monotone, which implies that y is a regular
curve, considering that €2 is open. After reparametrization we obtain

y € C'(la, b]; R") with y(r) € @ forall ¢ € [a, b]. (A7)

For the composition w = v oy € WP (Jq; R™) there exist approximating
functions w; € C ®(Jg; R™) such that w j — win WP (a, b). Without chang-
ing notation, let us identify w; and w with their constant expansion in x’, that is
with elements in W7 (Qq; R™) and C®(Qgq; R™), respectively. Finally, in view
of (A.6) and (A.7),

wj > w=voy =7 inWl’p(QQ;Rm),

which shows that 7 € WP (Qgq; R™) and concludes the proof. 0O
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Remark A.3. (a) Since only local arguments have been used in the proof above,

Lemma A.2 still holds if W17 (€2; R™) is replaced with WIL’CP (S2; R™). In this
case, it is even enough to require that 2 C R” is a bounded, cross-section
connected domain.

(b) As Lemma A.2 relies on constant extensions only, changing the codomain of v
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from R™ to SO (n) does not change the statement.
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