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A rank 2
Dijkgraaf-Moore-Verlinde-Verlinde

formula

Lothar Göttsche and Martijn Kool

We conjecture a formula for the virtual elliptic genera of moduli

spaces of rank 2 sheaves on minimal surfaces S of general type.

We express our conjecture in terms of the Igusa cusp form χ10 and

Borcherds type lifts of three quasi-Jacobi forms which are all re-

lated to the Weierstrass elliptic function. We also conjecture that

the generating function of virtual cobordism classes of these moduli

spaces depends only on χ(OS) and K2
S via two universal functions,

one of which is determined by the cobordism classes of Hilbert

schemes of points on K3. We present generalizations of these con-

jectures, e.g. to arbitrary surfaces with pg > 0 and b1 = 0.

We use a result of J. Shen to express the virtual cobordism

class in terms of descendent Donaldson invariants. In a prequel,

we used T. Mochizuki’s formula, universality, and toric calculations

to compute such Donaldson invariants in the setting of virtual χy-

genera. Similar techniques allow us to verify our new conjectures

in many cases.

1. Introduction

Denote by S a smooth projective complex surface with b1(S) = 0. For

a polarization H on S, denote by M := MH
S (r, c1, c2) the moduli space

of rank r Gieseker H-stable torsion free sheaves on S with Chern classes

c1 ∈ H2(S,Z) and c2 ∈ H4(S,Z). Suppose there are no rank r strictly

Gieseker H-semistable sheaves with Chern classes c1, c2. Then MH
S (r, c1, c2)

is projective. Moreover it has a perfect obstruction theory, which was stud-

ied by T. Mochizuki in his theory of algebraic Donaldson invariants [Moc].

The virtual tangent bundle T vir of M is given by

T vir = RπM∗RHom(E,E)0[1],
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where E denotes a universal sheaf on M×S, πM : M×S → M is projection,
and (·)0 denotes the trace-free part.1 Therefore we have a virtual cycle [M ]vir

of degree

(1) vd(M) = 2rc2 − (r − 1)c21 − (r2 − 1)χ(OS).

The first topic of this paper is the virtual elliptic genera Ellvir(M).
Virtual elliptic genera of schemes with perfect obstruction theory were in-
troduced by the first author and B. Fantechi in [FG]. They are defined as
follows. Denote by K0(M) the K-group generated by locally free sheaves on
M . For any rank r vector bundle V on M

ΛtV :=

r∑
n=0

[ΛnV ] tn, Symt V :=

∞∑
n=0

[Symn V ] tn.

These definitions extend to complexes in K0(M) by setting Λt(−V ) =
Sym−t V and Symt(−V ) = Λ−tV . The virtual elliptic genus, which refines
the complex elliptic genus [Hir, Wit, Kri], is defined as

Ellvir(M) := y−
vd(M)

2 χvir
−y(M, E(T vir)).

Here

χvir
−y(M,V ) :=

∑
p≥0

(−y)pχvir(M,V ⊗ Ωp,vir
M ),

E(V ) :=

∞⊗
n=1

Λ−yqnV
∨ ⊗ Λ−y−1qnV ⊗ Symqn(V ⊕ V ∨),

(2)

and Ωp,vir
M := ΛpT vir∨. See [FG] for the definition of χvir(M, ·).

In order to formulate our first conjecture, we recall notions from the
theory of modular forms. See [Kaw, EZ, Lib] and references therein.

Siegel modular forms. The ring of modular forms for SL(2,Z) is C[G4,
G6]. For any even k ≥ 2, Gk denotes the Eisenstein series of weight k. It has
the following expansion in q = e2πiτ

Gk(q) = −Bk

2k
+

∞∑
n=1

σk−1(n)q
n, σk(n) :=

∑
d|n

dk, Bk = kth Bernoulli number.

1Although E may only exist étale locally, RπM∗RHom(E,E)0 exists globally
[HL, Sect. 10.2].
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J. Igusa found generators for the ring of Siegel modular forms of genus 2
[Igu1, Igu2]. One such generator is the Igusa cusp form of weight 10 denoted
by χ10, which is a function of

Ω =

(
τ z
z σ

)
,

which takes values in the (genus 2) Siegel upper half plane H2. We set
i :=

√
−1 and

p := e2πiσ, q := e2πiτ , y := e2πiz.

Weak Jacobi forms. We recall that the ring of weak Jacobi forms of even
weight and integer index is a polynomial algebra over C[G4, G6] with two
generators φ−2,1, φ0,1 of respectively weight −2, 0 and index 1 [EZ]. The
generator φ−2,1 has Fourier expansion

φ−2,1(q, y) = (y
1

2 − y−
1

2 )2
∞∏
n=1

(1− yqn)2(1− y−1qn)2

(1− qn)4
.

The elliptic genus of an even d-dimensional Calabi-Yau manifold is a weak
Jacobi form of weight 0 and index d

2 [BL1, KYY, KM]. Specifically for a K3
surface

Ell(K3) = 2φ0,1(q, y).

Borcherds type lift. For a meromorphic function f : H × C → C, where
H denotes the upper half plane, and with Fourier expansion

f(q, y) =
∑

m≥0,n∈Z
cm,nq

myn,

we define its Borcherds type lift by

La(f) := exp
(
−

∞∑
l=1

pal(f |0,1Vl)(τ, z)
)

=
∏

l>0,m≥0,n∈Z
(1− palqmyn)clm,n ,

(3)

where a ∈ Z and Vl are the Hecke operators in [EZ, Sect. I.4]. We set
L(f) := L1(f). We will also encounter Borcherds type lifts of

f ev(q, y) :=
∑

m≥0,n∈Z
c2m,nq

2myn.
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We use the same definitions when y can have half-integer powers.
A result by V. Gritsenko and V. Nikulin [GN] based on the Borcherds

lifting procedure [Bor] expresses χ10 as an infinite product

(4) χ10(p, q, y) = pΔ(p)φ−2,1(q, y) L(Ell(K3)),

where

Δ(p) = p

∞∏
n=1

(1− pn)24

is the discriminant modular form.
A celebrated formula from string theory by R. Dijkgraaf, G. Moore,

E. Verlinde, and H. Verlinde [DMVV] expresses the generating function for
elliptic genera of Hilbert schemesK3[n] of n points on aK3 surface as follows

∞∑
n=0

Ell(K3[n]) pn =
1

L(Ell(K3))
.

This was proved in mathematics by L. Borisov and A. Libgober [BL2, BL3].
In fact, they showed that the formula holds with K3 replaced by any smooth
projective surface. By (4), this can be expressed as

∞∑
n=0

Ell(K3[n]) pn =
pΔ(p)φ−2,1(q, y)

χ10(p, q, y)
.

Quasi-Jacobi forms. As mentioned above, elliptic genera of Calabi-Yau
varieties are weak Jacobi forms (we only discussed the even-dimensional
case). Libgober [Lib] shows that the Calabi-Yau condition can be dropped
as long as we relax the modularity property too. More precisely, elliptic
genera of d-dimensional complex manifolds span a specific subspace in the
ring of so-called quasi-Jacobi forms. In our first conjecture, we encounter lifts
of quasi- and weak Jacobi forms build from the following Jacobi-Eisenstein
series:

G1,0(q, y) := −1

2

y + 1

y − 1
+

∞∑
n=1

∑
d|n

(yd − y−d)qn,

Gk,0(q, y) :=
(
y
∂

∂y

)k−1
G1,0(q, y).

Here G1,0, G2,0 are quasi-Jacobi forms of respectively weight 1, 2 and index
0. Moreover G2,0−2G2, Gk,0 for k > 2 are weak Jacobi forms of respectively
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weight 2, k and index 0. These functions can all be expressed in terms of

the Weierstrass elliptic function

℘(q, y) =
1

12
+

y

(1− y)2
+

∞∑
n=1

∑
d|n

d(yd − 2 + y−d)qn = G2,0(q, y)− 2G2(q).

By [EZ, Thm. 3.6, 9.3], the weak Jacobi form φ0,1 can be written as

φ0,1(q, y) = 12(G2,0(q, y)− 2G2(q))φ−2,1(q, y).

In a similar way we define

φ0, k
2
(q, y) :=Gk,0(q, y)φ−2,1(q, y)

k

2 , k �= 2.

Then φ0, 1
2
is a quasi-Jacobi form of weight 0 and index 1

2 , and the φ0, k
2
for

k ≥ 2 are weak Jacobi forms of weight 0 and index k
2 .

Denote by SW(a) the Seiberg-Witten invariant of S in class a ∈ H2(S,

Z).2 Then a ∈ H2(S,Z) is called a Seiberg-Witten basic class when SW(a) �=
0. Many surfaces have 0 and KS as their only Seiberg-Witten basic classes,

e.g. minimal general type surfaces [Mor, Thm. 7.4.1]. We conjecture the

following.3

Conjecture 1.1. Let S be a smooth projective surface such that b1(S) = 0,

pg(S) > 0, KS �= 0, and the only Seiberg-Witten basic classes of S are 0 and

KS. Let H, c1, c2 be chosen such that there are no rank 2 strictly Gieseker H-

semistable sheaves on S with Chern classes c1, c2. Let M := MH
S (2, c1, c2).

Then Ellvir(M) is given by the coefficient of pvd(M) of

ψS(p, q, y) := 8

(
1

2L2(φ0,1)

)χ(OS)

×
(

2L4(2φ0, 1
2
φ0, 3

2
)L(−2φ0, 1

2
)

L2
(
− 2φev

0, 1
2

|
(q

1
2 ,y)

− φ0, 1
2
|(q2,y2) + 2φ2

0, 1
2

))K2
S

,

2We use Mochizuki’s notation [Moc]: SW(a) stands for S̃W(2a−KS) with S̃W(b)

being the usual Seiberg-Witten invariant in class b ∈ H2(S,Z).
3In Remark 7.1 of Section 7, we motivate how we initially found the formula of

Conjecture 1.1.
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where

L2(φ0,1) = L2(Ell(K3))
1

2 =

(
χ10(p

2, q, y)

p2Δ(p2)φ−2,1(q, y)

) 1

2

.

Next we shift our attention to algebraic cobordism theory [LM, LP]. We

consider the algebraic cobordism ring over a point with rational coefficients

Ω∗ :=
∞⊕
d=0

Ωd(pt)⊗Z Q.

This is isomorphic to the polynomial ring freely generated by the cobordism

classes of Pd. Moreover, Ωd(pt)⊗Z Q has a basis

vI := vi11 · · · vidd , where I = (i1, . . . , id) ∈ Zd
≥0 and |I| =

∑
kik = d

such that the cobordism class [X] of a d-dimensional smooth projective

variety X is

[X] =

∫
X

d∏
i=1

(
1 +

∞∑
k=1

xki vk
)
,

where x1, . . . , xd denote the Chern roots of TX . The coefficients of vI ap-

pearing in this expression are symmetric in the Chern roots. From this, it

follows that the class [X] is uniquely determined by its collection of Chern

numbers.

The cobordism class of the Hilbert scheme S[n] of n points on a smooth

projective surface S was studied by the first author, G. Ellingsrud, and

M. Lehn [EGL]. It was shown that there exist two universal functions F0,

F1 ∈ 1 +Q[v1, v2, . . .][[p]] such that

∞∑
n=0

[S[n]] pn = F
χ(OS)
0 F

K2
S

1 ,

for any surface S. Therefore F 2
0 is the generating series of cobordism classes

of K3[n].

WhenM is a projective scheme with a perfect obstruction theory, J. Shen

[She] constructed its virtual cobordism class

[M ]virΩ∗
∈ Ωvd(M),
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where vd = vd(M) is the virtual dimension (see also [CFK] and [LS] in the
context of dg-manifolds/derived schemes). Denoting projection by π : M →
pt, Shen proved that π∗[M ]virΩ∗

is uniquely determined by its collection of

virtual Chern numbers. In terms of the basis vI , this can be expressed as
follows. Let T vir = [E0 → E1] be a resolution by vector bundles and denote
the Chern roots of E0 by x1, . . . , xn and the Chern roots of E1 by u1, . . . , um.
Then

π∗[M ]virΩ∗
=

∫
[M ]vir

n∏
i=1

(
1 +

∞∑
k=1

xki vk
) m∏
j=1

1(
1 +

∑∞
k=1 u

k
j vk

) .
Conjecture 1.2. There exists a universal power series L(p,v) ∈ 1 +Q[v1,
v2, . . .][[p]] with the following property. Let S be a smooth projective surface
such that b1(S) = 0, pg(S) > 0, KS �= 0, and the only Seiberg-Witten basic
classes of S are 0 and KS. Let H, c1, c2 be chosen such that there are no rank
2 strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2. Then
for M := MH

S (2, c1, c2) we have that π∗[M ]virΩ∗
is given by the coefficient of

pvd(M) of

ψS(p,v) := 8

(
1

2

( ∞∑
n=0

[K3[n]] p2n
) 1

2

)χ(OS)(
2L(p,v)

)K2
S

.

Remark 1.3. Using the virtual Hirzebruch-Riemann-Roch theorem of
[CFK, FG], the elliptic genera Ellvir(M) in Conjecture 1.1 can be expressed
in terms of q, y and virtual Chern numbers of M . In particular, Conjecture
1.2 implies Conjecture 1.1 except for the explicit expression for the power
series which is raised to the power K2

S . Specializing Ellvir(M) to q = 0 gives
the virtual χy-genus χvir

y (M). We conjectured an explicit formula for these
virtual χy-genera in [GK1], which is implied by Conjecture 1.1.4 Specializing
further to y = 1 gives the virtual Euler characteristics evir(M). The formula
for these virtual Euler characteristics coincides with part of a formula of
C. Vafa and E. Witten from the physics literature [VW]. Their formula was
one of the main motivations for [GK1]. The full Vafa-Witten formula is (con-
jecturally) explained by Y. Tanaka and R. P. Thomas’s recently introduced
Vafa-Witten invariants, which contain the virtual Euler characteristics that
we computed in [GK1] as well as contributions from “other components with
non-zero Higgs field”.

4This follows from a basic calculation using the definitions and the Jacobi triple
product identity.
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Remark 1.4. In physics language [HIV], the generating function for evir(M)

describes a topological twist of N = 4 supersymmetric Yang-Mills on the

4-manifold S. Moreover, χvir
y (M) describes a 5-dimensional theory on S×S1

compactified along the circle S1, Ellvir(M) describes a 6-dimensional theory

on S × T compactified along the real torus T , and π∗[M ]virΩ∗
appears to

describe a new infinite-dimensional version of these theories.

In this paper we verify Conjectures 1.1 and 1.2 in a large number of

examples by computer calculations (Section 8). Our strategy is similar to

the one followed in [GK1] for virtual χy-genus, which in turn relies on ideas

from [GNY1, GNY3]. Specifically:

• Write Ellvir(M) and π∗[M ]virΩ∗
in terms of descendent Donaldson in-

variants of S using a theorem of J. Shen [She].

• Write descendent Donaldson invariants of S in terms of Seiberg-Witten

invariants and certain explicit integrals over S[n1] × S[n2] using

Mochizuki’s formula [Moc].

• Use a universality argument to show that the integrals over S[n1]×S[n2]

are governed by seven universal functions.

• Note that these seven universal functions are determined on S = P2

and P1 × P1, where we calculate them up to some order.

In Section 7 we generalize Conjectures 1.1 and 1.2 in two different di-

rections:

• Conjecture 7.2 can be seen as a statement purely about intersection

numbers on Hilbert schemes of points. Together with a strong version

of Mochizuki’s formula, it implies Conjectures 1.1 and 1.2. It also im-

plies a generalization of Conjectures 1.1 and 1.2 to arbitrary blow-ups

of surfaces S satisfying b1(S) = 0, pg(S) > 0, KS �= 0, and the only

Seiberg-Witten basic classes of S are 0 and KS .

• Conjecture 7.7 is a generalization of Conjectures 1.1 and 1.2 to ar-

bitrary surfaces S satisfying b1(S) = 0 and pg(S) > 0. It implies a

blow-up formula. It also implies a formula for surfaces with canoni-

cal divisor with irreducible reduced connected components. The latter

refines an equation from Vafa-Witten [VW, Eqn. (5.45)]. Conjecture

7.7 itself can be seen as a refinement of (part of) a formula from the

physics literature due to Dijkgraaf-Park-Schroers [DPS, Eqn. (6.1),

lines 2+3].

Conjectures 7.2 and 7.7 are also checked in examples in Section 8.
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The physics approach to the calculation of elliptic genera of instanton
moduli spaces was discussed in N. Nekrasov’s PhD thesis [Nek] and the
papers [LNS, BLN].

Some results in this paper, mostly the consequences discussed in Section
7, follow from minor modifications of arguments appearing in [GK1] for
the case of virtual χy-genus. In order to keep this paper self-contained, we
nevertheless reproduce the main idea of the proofs of these results (besides
giving a reference to the full argument in [GK1]).

2. Notation

Throughout this paper, we deal with virtual cobordism classes and virtual
elliptic genera simultaneously. Therefore we introduce the following nota-
tion. Using the functions appearing in Conjectures 1.1 and 1.2 we define

F cob
0 (p,v) :=

( ∞∑
n=0

[K3[n]] p2n
) 1

2

, F cob
1 (p,v) := L(p,v),

F ell
0 (p, q, y) :=

1

L2(φ0,1)
,

F ell
1 (p, q, y) :=

L4(2φ0, 1
2
φ0, 3

2
)L(−2φ0, 1

2
)

L2
(
− 2φev

0, 1
2

|
(q

1
2 ,y)

− φ0, 1
2
|(q2,y2) + 2φ2

0, 1
2

) .
We also define

ucob := v, uell := (q, y)

and we view v = (v1, v2, . . .) as formal variables. This notation allows us to
consider both cases F �

i (p, u
�), 
 ∈ {cob, ell} simultaneously.

3. Expression in terms of Donaldson invariants

We fix a smooth projective surface S with b1(S) = 0 and polarization H.
Denote by M := MH

S (r, c1, c2) the moduli space of rank r Gieseker H-stable
torsion free sheaves on S with Chern classes c1, c2. We assume there are no
rank r strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2,
so MH

S (r, c1, c2) is projective. We also assume there exists a universal sheaf
E on M × S (though we get rid of this assumption later in Remark 4.3). In
this section, we use a result of Shen [She] to show that

π∗[M ]virΩ∗
, Ellvir(M)
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can be written in terms of descendent Donaldson invariants.
We first recall descendent insertions. Let σ ∈ H∗(S,Q) and α ≥ 0, then

τα(σ) := πM∗
(
chα+2(E) ∩ π∗

S σ
)
,

where πM : M × S → M and πS : M × S → S denote projections. We
refer to τα(σ) as a descendent insertion of degree α. The insertions τ0(σ)
are called primary insertions. Donaldson invariants with primary insertions
feature in the Witten conjecture, which is proved for algebraic surfaces in
[GNY3]. In this paper and [GK1] we need higher descendents.

We introduce some further notation. For X a projective C-scheme and
E a rank r vector bundle on X with Chern roots x1, . . . , xr, we define

(5) Tcob(E,v) :=

r∏
i=1

(
1 +

∞∑
k=1

xki vk
)
,

where we view v = (v1, v2, . . .) as formal variables. By setting Tcob(−E,v) =
1/Tcob(E,v), we extend this definition to the entire K-group. Furthermore
we introduce

(6) Tell(E, q, y) := y−
r

2 ch(E(E)) ch(Λ−yE
∨) td(E),

where E(·) was defined in (2). The following multiplicative property plays
an important role in Section 5

T�(E1 + E2, u
�) = T�(E1, u

�)T�(E2, u
�),(7)

for all E1, E2 ∈ K0(X) and 
 ∈ {cob, ell}. Here we use the notation of
Section 2. For 
 = cob the multiplicative property is obvious and for 
 = ell,
we use

E(E1 ⊕ E2) = E(E1)⊗ E(E2).

In [GK1] we introduced a similar expression, denoted by Ty(E, t), to deal
with virtual χy-genus and virtual Euler characteristic. The object Ty(E, t)
also satisfies (7).

Proposition 3.1. Let S,H, r, c1, c2 and M := MH
S (r, c1, c2) be as above. For

both 
 ∈ {cob, ell}, there exists a formal power series expression P �(E, u�)
in variables u� whose coefficients are polynomial expressions in certain de-
scendent insertions τα(σ) satisfying

π∗[M ]virΩ∗
=

∫
[M ]vir

P cob(E,v), Ellvir(M) =

∫
[M ]vir

P ell(E, q, y).
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Proof. By the virtual Hirzebruch-Riemann-Roch formula [CFK, FG]

Ellvir(M) = y−
vd(M)

2

∫
[M ]vir

ch(E(T vir)) ch(Λ−yT
vir∨) td(T vir).

We can expand the integrand in qnym and write each coefficient as a poly-
nomial expression in ci(T

vir). Since π∗[M ]virΩ∗
involves all virtual Chern num-

bers, the existence of P ell(E, q, y) follows from the existence of P cob(E,v).
The existence of the polynomial P cob(E,v) was proved by Shen
[She, Thm. 0.2].5

4. Expression in terms of Hilbert schemes

We consider MH
S (2, c1, c2) as in the previous section. Proposition 3.1 ex-

presses virtual cobordism class and virtual elliptic genus in terms of de-
scendent Donaldson invariants. We now recall Mochizuki’s formula [Moc,
Thm. 1.4.6], which allows us to write descendent Donaldson invariants in
terms of integrals over Hilbert schemes of points on S and Seiberg-Witten
invariants of S. See Section 1 for our conventions on Seiberg-Witten invari-
ants.

We denote the Hilbert scheme of n points on S by S[n]. On S[n1]×S[n2]×
S, we have pull-backs of the universal ideal sheaves I1, I2 from S[n1] × S,
S[n2]×S, which we denote by the same symbol. Moreover, for any L ∈ Pic(S)
and i = 1, 2, we consider the tautological vector bundles

L[ni] := p∗q
∗L,

with p : Zi → S[ni], q : Zi → S projections from the universal subscheme
Zi ⊂ S[ni] × S.

We endow S[n1] × S[n2] with a trivial C∗ action. We denote the genera-
tor of the character group of C∗ by s. Correspondingly, we write s for the
generator of

H∗(BC∗,Q) = H∗
C∗(pt,Q) ∼= Q[s].

Remark 4.1. Roughly speaking, Mochizuki derives his formula
[Moc, Thm. 1.4.6] from a virtual wall-crossing formula on a master space M.
This master space comes equipped with a C∗ action and the Hilbert schemes

5Shen works with Pandharipande-Thomas invariants on threefolds. The re-
sult [She, Thm. 0.2] holds in our setting by replacing −RπP∗RHom(I•, I•)0 by
−RπM∗RHom(E,E)0.
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S[n1] × S[n2] arise as components of the C∗-fixed locus of M. Although this
master space itself plays no role in the formulation of Mochzuki’s formula,
Theorem 4.2 below, the trivial C∗ action on S[n1]×S[n2] features prominently.
We denote it by C∗ = C∗

M
when we want to stress its origin.

Let P (E) be any polynomial in descendent insertions τα(σ), which arises
from a polynomial in Chern numbers of T vir (e.g. such as in Proposition
3.1). Denote the group of Weil divisors on S modulo linear equivalence by
A1(S). For any a1, a2 ∈ A1(S) and n1, n2 ∈ Z≥0, we define (after Mochizuki)

Ψ(a1, a2, n1, n2) := Coeffs0

(
P (I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s)

Q(I1(a1)⊗ s−1, I2(a2)⊗ s)

× Eu(O(a1)
[n1]) Eu(O(a2)

[n2] ⊗ s2)

(2s)n1+n2−χ(OS)

)
.(8)

We explain the notation appearing in this formula. Here Ii(ai) is short-
hand for Ii ⊗ π∗

SO(ai), which are considered as sheaves on S[n1] × S[n2] × S.
Similarly O(ai)

[ni] are considered as vector bundles on S[n1] × S[n2] pulled
back from its factors. The scheme S[n1] × S[n2] has trivial C∗

M
= C∗ action,

and we consider O(ai)
[ni] endowed with the trivial C∗-equivariant structure.

Furthermore

O(a2)
[n2] ⊗ s2

denotes O(a2)
[n2] with C∗-equivariant structure given by tensoring with

character s2. Similarly, we endow S[n1] × S[n2] × S with trivial C∗ action,
endow Ii(ai) with trivial C∗-equivariant structure, and denote by

I1(a1)⊗ s, I2(a2)⊗ s−1

the C∗-equivariant sheaves obtained by tensoring with the characters s and
s−1 respectively. Next, Eu(·) denotes C∗-equivariant Euler class (which is the
ordinary Euler class in Eu(O(a1)

[n1]). Furthermore, P (·) is the expression
obtained from P (E) by formally replacing E by ·. For any C∗-equivariant
sheaves E1, E2 on S[n1] × S[n2] × S flat over S[n1] × S[n2]

Q(E1, E2) := Eu(−Rπ∗RHom(E1, E2)−Rπ∗RHom(E2, E1)),

where π : S[n1] × S[n2] × S → S[n1] × S[n2] denotes projection. All pull-
backs and push-forwards in P (·), Q(·, ·) are C∗-equivariant with respect to
the trivial C∗ actions on S[n1] × S[n2] × S, S[n1] × S[n2], and S, and the
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only non-trivial equivariant structures come from the characters s±1. Finally
Coeffs0(·) takes the coefficient of s0.6 We define

Ψ̃(a1, a2, n1, n2, s)

by expression (8) but without Coeffs0(·). Let c1, c2 be a choice of Chern
classes. For any decomposition c1 = a1 + a2, Mochizuki defines

(9) A(a1, a2, c2) :=
∑

n1+n2=c2−a1a2

∫
S[n1]×S[n2]

Ψ(a1, a2, n1, n2).

We denote by Ã(a1, a2, c2, s) the same expression with Ψ replaced by Ψ̃.
With these ingredients, Mochizuki’s formula is as follows

[Moc, Thm. 1.4.6]:

Theorem 4.2 (Mochizuki). Let S be a smooth projective surface with
b1(S) = 0 and pg(S) > 0. Let H, c1, c2 be chosen such that there exist no rank
2 strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2. Sup-
pose the universal sheaf E exists on MH

S (2, c1, c2)×S. Suppose the following
conditions hold:

(i) χ(ch) > 0, where χ(ch) :=
∫
S ch ·td(S) and ch = (2, c1,

1
2c

2
1 − c2).

(ii) pch > pKS
, where pch and pKS

are the reduced Hilbert polynomials of
ch and KS.

(iii) For all SW basic classes a1 with a1H ≤ (c1 − a1)H the inequality is
strict.

Let P (E) be any polynomial in descendent insertions, which arises from a
polynomial in Chern numbers of T vir (e.g. such as in Prop. 3.1). Then

(10)

∫
[MH

S (2,c1,c2)]vir
P (E) = −21−χ(ch)

∑
c1 = a1 + a2

a1H < a2H

SW(a1)A(a1, a2, c2).

Remark 4.3. The assumption that E exists on M ×S, where M := MH
S (2,

c1, c2) is not needed. As remarked in the introduction, T vir = −Rπ∗RHom(E,
E)0 always exists globally so the left-hand side of Mochizuki’s formula al-
ways makes sense. Also, Mochizuki [Moc] works over the Deligne-Mumford

6This differs from Mochizuki who uses pg(S) instead of χ(OS) and takes a
residue. Our definition differs by a factor 2 from Mochizuki’s. Mochizuki works
on the moduli stack of oriented sheaves which maps to M via a degree 1

2 : 1 étale
morphism, which accounts for the difference.
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stack of oriented sheaves, which always has a universal sheaf. This can be
used to show that global existence of E on M × S can be dropped from the
assumptions. In fact, when working on the stack, P can be any polynomial
in descendent insertions defined using the universal sheaf on the stack.

Remark 4.4. The first author, Nakajima, and K. Yoshioka conjecture in
[GNY3] that assumptions (ii) and (iii) can be dropped from Theorem 4.2.
They also conjecture that the sum in Mochizuki’s formula can be replaced
by a sum over all classes a1 ∈ H2(S,Z). Assumption (i) is necessary as we
see from our calculations in Section 8.

From Proposition 3.1 and Theorem 4.2 we deduce that

π∗[M ]virΩ∗
, Ellvir(MH

S (2, c1, c2))

are given by equation (10) by taking respectively 
 = cob, ell and

(11) P (E) = P �(E, u�) = T�(−Rπ∗RHom(E,E)0, u
�),

where E is replaced by

I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s.

We note that the rank of

(12) −Rπ∗RHom(I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s, I1(a1)⊗ s−1 ⊕ I2(a2)⊗ s)0

equals the rank of T vir.
Recall that S[n1] × S[n2] has trivial C∗

M
= C∗ action and for any C∗-

equivariant complex E on S[n1] × S[n2], such as the complex given by (12),
we denote by T�

C∗(E, u�) the C∗-equivariant analog of (5) and (6). For 
 = ell,
this means replacing ch, td by chC

∗
, tdC

∗
in (6). For 
 = cob, this means

replacing Chern roots by C∗-equivariant Chern roots in (5). In particular,
we do not need to work with a C∗-equivariant cobordism ring and we re-
gard vk as formal variables. Only in the formula of Conjecture 1.2 these
formal variables become the generators of the (non-equivariant) algebraic
cobordism ring Ω∗ as explained in the introduction.

5. Expression in terms of universal functions

Let S be any smooth projective surface. We are interested in expression (9)
with P (E) given by (11). It is convenient to work with generating functions
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starting with constant term 1. We first address this normalization, for which

we need the following result of Borisov-Libgober [BL1, Prop. 3.1]. For a

vector bundle E on S with Chern roots x1, . . . , xr, the following equality

holds

Tell(E, q, y) =

r∏
i=1

xi
θ1(q, e

xiy−1)

θ1(q, exi)
,

where θ1(q, y) denotes the following Jacobi theta function

θ1(q, y) :=
∑
n∈Z

(−1)nq
1

2

(
n+ 1

2

)2

yn+
1

2

= q
1

8 (y
1

2 − y−
1

2 )

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn).

Definition 5.1. Define the following functions

f cob(s,v) :=Tcob
C∗ (s2,v)

= 1 +

∞∑
k=1

(2s)kvk,

f ell(s, q, y) :=Tell
C∗(s2, q, y)

= y−
1

2 chC
∗
(E(s2)) chC∗

(Λ−ys
−2) tdC

∗
(s2)

= 2s
θ1(q, e

2sy−1)

θ1(q, e2s)
,

where T�
C∗(·, u�) were introduced at the end of the previous section. For

any a ∈ A1(S) we abbreviate χ(a) := χ(O(a)). For any 
 ∈ {cob, ell},
a1, c1 ∈ A1(S), we define

Z�
S(a1, c1, s, p, u

�) := (2s)−χ(OS)

(
2s

f�(s, u�)

)−χ(c1−2a1)

×
(

−2s

f�(−s, u�)

)−χ(2a1−c1)

×
∑

n1,n2≥0

pn1+n2

∫
S[n1]×S[n2]

Ψ̃(a1, c1 − a1, n1, n2),
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where Ψ̃ was defined in the previous section and we take P (E) = P �(E, u�)
as in (11). The coefficient in front has been chosen such that

Zell
S (a1, c1, s, p, y, q) ∈ 1 + pQ[y±

1

2 ]((s))[[p, q]],

Zcob
S (a1, c1, s, p,v) ∈ 1 + pQ[v]((s))[[p]].

Proposition 5.2. There exist universal functions

Aell
1 (s, p, y, q), . . . , Aell

7 (s, p, y, q) ∈ 1 + pQ[y±
1

2 ]((s))[[p, q]],

Acob
1 (s, p,v), . . . , Acob

7 (s, p,v) ∈ 1 + pQ[v]((s))[[p]],

such that for any smooth projective surface S, 
 ∈ {cob, ell}, and a1, c1 ∈
A1(S) we have

Z�
S(a1, c1, p, u

�)

=
(
A�

1

)a2
1
(
A�

2

)a1c1 (
A�

3

)c21 (
A�

4

)a1KS
(
A�

5

)c1KS
(
A�

6

)K2
S

(
A�

7

)χ(OS).

Proof. Let T�
C∗(·, u�) be the C∗-equivariant version of (5) and (6) defined at

the end of Section 4. The proof of this proposition is almost verbatim the
same as [GK1, Prop. 3.3], which in turn makes use of [GNY1, Lem 5.5]. The
main ideas are as follows:

Step 1: Universal dependence. By [EGL], for any polynomial expression
X in Chern classes of

TS[n] , O(a1)
[n], O(c1)

[n],

there exists a polynomial Y in the Chern numbers (a21, a1c1, c
2
1, a1KS , c1KS ,

K2
S , χ(OS)) such that ∫

S[n]

X = Y,

where Y only depends on X. The integrals appearing in Mochizuki’s formula
(Theorem 4.2 with P (E) given by (11)) are over S[n1]×S[n2]. Defining S2 :=
S 
 S (disjoint union), we have

S
[n]
2 =

⊔
n1+n2=n

S[n1] × S[n2]

and the integrals appearing in Mochizuki’s formula can be expressed as∫
S

[n]
2

X, to which [EGL] applies (as shown in [GNY1, Sect. 5]). In particular,
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there exist

Gell ∈ Q[y±
1

2 , x1, . . . , x7]((s))[[p, q]], Gcob ∈ Q[v, x1, . . . , x7]((s))[[p]]

such that for all S, a1, c1 and 
 = ell, cob, we have

Z�
S(a1, c1, p, u

�) = expG�(a21, a1c1, c
2
1, a1KS , c1KS ,K

2
S , χ(OS)).

Step 2: Multiplicativity Let S′, S′′ be any smooth projective surfaces,

which are not necessarily connected, let S = S′ 
 S′′, and let a1, c1 ∈ A1(S).

Denote

a′1 = a1|S′ , a′′1 = a1|S′′ , c′1 = c1|S′ , c′′1 = c1|S′′ .

We claim that

Z�
S(a1, c1, p, u

�) = Z�
S′(a′1, c

′
1, p, u

�)Z�
S′′(a′′1, c

′′
1, p, u

�).

This follows from the multiplicative properties (5) and (6) of T�
C∗(·, u�),

which were defined at the end of Section 4.

Next, we take 7 triples (S(i), a
(i)
1 , c

(i)
1 ), where S(i) is an irreducible smooth

projective surface and a
(i)
1 , c

(i)
1 ∈ A1(S(i)), such that the corresponding vec-

tors

wi := ((a
(i)
1 )2, . . . , χ(OS(i))) ∈ Q7

are Q-independent (see Section 6 for one such choice). Then the vector

w = (a21, . . . , χ(OS)) of Chern numbers of any triple (S, a1, c1), where S is

an irreducible smooth projective surface and a1, c1 ∈ A1(S), can also be

realized as the vector of Chern numbers of an appropriate disjoint union

of (S(i), a
(i)
1 , c

(i)
1 ) (as long as the coefficients ni in the decomposition w =∑7

i=1 niwi are non-negative integers). From this observation A�
1, . . . , A

�
7 can

be constructed in terms of G� evaluated on the basis {wi}7i=1 as in [GNY1,

Lem. 5.5].



182 Lothar Göttsche and Martijn Kool

For 
 ∈ {cob, ell} and any α = (α1, α2, α3, α4, α5, α6, α7) ∈ Z7 we define

A�
α(s, p, u

�) :=− 2

(
2−1

(
2s

f�(s, u�)

)2(
−2s

f�(−s, u�)

)2

p−1A1(s, 2p, u
�)

)α1

×
(
2

(
2s

f�(s, u�)

)−2(
−2s

f�(−s, u�)

)−2

pA2(s, 2p, u
�)

)α2

×
(
2−

1

2

(
2s

f�(s, u�)

) 1

2
(

−2s

f�(−s, u�)

) 1

2

A3(s, 2p, u
�)

)α3

×
((

2s

f�(s, u�)

)(
−2s

f�(−s, u�)

)−1

A4(s, 2p, u
�)

)α4

×
(
2

1

2

(
2s

f�(s, u�)

)− 1

2
(

−2s

f�(−s, u�)

) 1

2

A5(s, 2p, u
�)

)α5

×A6(s, 2p, u
�)α6

×
(
s

2

(
2s

f�(s, u�)

)(
−2s

f�(−s, u�)

)
A7(s, 2p, u

�)

)α7

.

(13)

Proposition 3.1, Theorem 4.2, and Proposition 5.2 at once imply the follow-
ing result.

Corollary 5.3. Suppose S satisfies b1(S) = 0 and pg(S) > 0. Let H, c1, c2 be
chosen such that there exist no rank 2 strictly Gieseker H-semistable sheaves
with Chern classes c1, c2 on S. Assume furthermore that:

(i) c2 <
1
2c1(c1 −KS) + 2χ(OS).

(ii) pch > pKS
, where pch and pKS

are the reduced Hilbert polynomials of
ch and KS.

(iii) For all SW basic classes a1 satisfying a1H ≤ (c1−a1)H the inequality
is strict.

Then

π∗[M
H
S (2, c1, c2)]

vir
Ω∗

= Coeffs0pc2

[ ∑
a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

SW(a1)

× Acob
(a2

1,a1c1,c21,a1KS ,c1KS ,K2
S ,χ(OS))

(s, p,v)
]
,
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Ellvir(MH
S (2, c1, c2)) = Coeffs0pc2

[ ∑
a1 ∈ H2(S,Z)

a1H < (c1 − a1)H

SW(a1)

× Aell
(a2

1,a1c1,c21,a1KS ,c1KS ,K2
S ,χ(OS))

(s, p, q, y)
]
.

Remark 5.4. Following Remark 4.4, we conjecture that this corollary holds
without assuming (ii) and (iii) and with the sum replaced by the sum over all
a1 ∈ H2(S,Z). We refer to this as “the strong form of Mochizuki’s formula”.

6. Expression in terms of combinatorics

Consider the following seven choices

(S, a1, c1) = (P2,O,O), (P2,O(1),O(1)), (P2,O,O(1)), (P2,O(1),O(2)),

(P1×P1,O,O), (P1×P1,O(1, 0),O(1, 0)), (P1×P1,O,O(1, 0)).

Then the corresponding 7× 7 matrix with rows

(a21, a1c1, c
2
1, a1KS , c1KS ,K

2
S , χ(OS))

has full rank. Hence the universal functions A�
1, . . . , A

�
7, for 
 ∈ {cob, ell}, are

entirely determined by Z�
S for the above seven choices of (S, a1, c1). Therefore

we want to calculate Z�
S on toric surfaces. We use Atiyah-Bott localization in

order to turn this into a combinatorial problem, which can be implemented
on a computer, allowing us to determine the universal functions A�

i up to
certain orders in the formal variables p, u�, s.

Let S be a toric surface with torus T = C∗2 and topological Euler
characteristic e(S). Let {Uσ}σ=1,...,e(S) be the cover of maximal T -invariant
affine open subsets of S. On Uσ we use coordinates xσ, yσ such that T acts
with characters of weight vσ, wσ ∈ Z2

t · (xσ, yσ) = (χ(vσ)(t)xσ, χ(wσ)(t) yσ).

Here χ(m) : T → C∗ denotes the character of weight m ∈ Z2.
Consider the integrals over S[n1] × S[n2] appearing in Definition 5.1. Let

T̃ := T × C∗
M,

where C∗
M

= C∗ denotes the torus coming from master space localization
(Remark 4.1), which acts trivially on S[n1]×S[n2]. The action of T on S[n1]×
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S[n2] is induced from the action of T on S. The T -fixed locus of S[n1]×S[n2]

can be indexed by pairs (λ,μ) with

λ = {λ(σ)}σ=1,...,e(S), μ = {μ(σ)}σ=1,...,e(S),

where λ(σ), μ(σ) are partitions satisfying

(14)
∑
σ

|λ(σ)| = n1,
∑
σ

|μ(σ)| = n2.

Here |λ| =
∑�

i=1 λi denotes the size of partition λ = (λ1 ≥ · · · ≥ λ�). A

partition λ corresponds to a monomial ideal of C[x, y] as follows

IZλ
:= (yλ1 , xyλ2 , . . . , x�−1yλ� , x�).

For a partition λ(σ) we denote the subscheme defined by the corresponding

monomial ideal in variables xσ, yσ by Zλ(σ) .

Let a1, c1 ∈ A1(S). In order to apply localization, we make an arbitrary

choice of T -equivariant structure on the line bundles O(a1), O(c1 − a1).

For any T -equivariant divisor a, the restriction O(a)|Uσ
is trivial with T -

equivariant structure determined by some character of weight aσ ∈ Z2. Con-

sider the following element of K0
T̃
(S[n1] × S[n2])

En1,n2
:=RΓ(O(c1 − 2a1))⊗O ⊗ s2 +RΓ(O(2a1 − c1))⊗O ⊗ s−2

+ 2RΓ(OS)⊗O −Rπ∗RHom(I1(a1)⊗ s−1 ⊕ I2(c1 − a1)

⊗ s, I1(a1)⊗ s−1 ⊕ I2(c1 − a1)⊗ s).

Applying Atiyah-Bott localization, we see that the integral in Definition 5.1

is given by

∫
S[n1]×S[n2]

Ψ̃(a1, c1− a1, n1, n2) =
∑
(λ,μ)

∏
σ

Eu(H0(O(a1)|Z
λ(σ)

))

Eu(TZ
λ(σ)

)

×
Eu(H0(O(c1 − a1)|Z

μ(σ)
)⊗ s2)

Eu(TZ
μ(σ)

)

×
T�
T̃
(En1,n2

|(Z
λ(σ) ,Zμ(σ) ), u

�)

Eu(En1,n2
|(Z

λ(σ) ,Zμ(σ) )−TZ
λ(σ)

−TZ
μ(σ)

)
,

(15)
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where Eu(·) denotes T̃ -equivariant Euler class, TZ denotes the C∗2-represen-
tation of the tangent space of the Hilbert scheme at Z ⊂ C2, the sum is over
all (λ,μ) satisfying (14), and T�

T̃
(·, u�) is the T̃ -equivariant version of (5)

and (6) (defined as at the end of Section 4). The calculation is now reduced
to the computation of the following elements of the T -equivariant K-group
K0

T (pt)

H0(O(a)|Z
λ(σ)

), RHomS(OZ
λ(σ)

,OZ
λ(σ)

), RHomS(OZ
λ(σ)

,OZ
μ(σ)

(a)),

for certain T -equivariant divisors a. The first one is straight-forward

Zλ(σ) =

�(λ(σ))−1∑
i=0

λ
(σ)
i+1−1∑
j=0

χ(vσ)
i χ(wσ)

j .

Multiplying by χ(aσ) gives H
0(O(a)|Z

λ(σ)
). Define

χ(m) := χ(−m) =
1

χ(m)
,

for any m ∈ Z2. This defines an involution on KT
0 (pt) by Z-linear extension.

Proposition 6.1. Let W,Z ⊂ S be 0-dimensional T -invariant subschemes
supported on a chart Uσ ⊂ S and let a be a T -equivariant divisor on S with
weight aσ ∈ Z2 on Uσ. Then we have the following equality in KT

0 (pt)

RHomS(OW ,OZ(a)) = χ(aσ)WZ
(1− χ(vσ))(1− χ(wσ))

χ(vσ)χ(wσ)
.

Proof. This follows from a 2-dimensional version of a calculation in [MNOP].
The argument is given in [GK1, Prop. 4.1]. The main steps are as follows.

Let v := vσ, w := wσ, a := aσ, and write Uσ = Spec R with R =
C[xσ, yσ]. Then

RHomS(OW ,OZ(a)) = RHomUσ
(OW ,OZ(a)),

because W,Z are supported on Uσ. The formula of the proposition follows
from

Γ(Uσ,O(a))−RHomUσ
(IW , IZ(a))

= χ(a)
(
Z +

W

χ(v)χ(w)
−WZ

(1− χ(v))(1− χ(w))

χ(v)χ(w)

)
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by using IZ = OUσ
−OZ , IW = OUσ

−OW . This formula can be derived as

follows.

Choose T -equivariant graded free resolutions

0 → Er → · · · → E0 → IW → 0,

0 → Fs → · · · → F0 → IZ → 0,

where

Ei =
⊕
j

R(dij), Fi =
⊕
j

R(eij).

Then we have Poincaré polynomials

PW =
∑
i,j

(−1)iχ(dij), PZ =
∑
i,j

(−1)iχ(eij),

and

RHomUσ
(IW , IZ(a)) =

∑
i,j,k,l

(−1)i+k Hom(R(dij), R(a+ ekl))

=
∑
i,j,k,l

(−1)i+kR(a+ ekl − dij)

=
χ(a)PWPZ

(1− χ(v))(1− χ(w))
.

The formula follows by eliminating PZ , PW using W = OUσ
− IW , Z =

OUσ
− IZ .

This reduces the calculation of (15) to combinatorics, which we imple-

mented in a PARI/GP program. We computed Acob
i , Aell

i up to the following

orders:

• Aell
i up to order piqj , where i ≤ 6 and j ≤ 14.

• Acob
i up to order p6 with the specialization vi = 0 for i ≥ 6.

7. Further conjectures and consequences

In this section we introduce two further conjectures:
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• Conjecture 7.2 is a statement about intersection numbers on Hilbert
schemes of points. Together with the strong form of Mochizuki’s for-
mula it implies Conjectures 1.1 and 1.2. It also implies a generalization
of Conjectures 1.1 and 1.2 to arbitrary blow-ups of surfaces S satisfy-
ing b1(S) = 0, pg(S) > 0, KS �= 0, and the only Seiberg-Witten basic
classes of S are 0 and KS .

• Conjecture 7.7 generalizes Conjectures 1.1 and 1.2 to arbitrary surfaces
S with b1(S) = 0 and pg(S) > 0. This conjecture is a refinement of
(part of) a formula from the physics literature due to Dijkgraaf-Park-
Schroers [DPS, Eqn. (6.1), lines 2+3]. Conjecture 7.7 implies a blow-up
formula (Proposition 7.9). This can be seen as a (partial!) refinement
of the blow-up formula of W.-P. Li and Z. Qin [LQ1, LQ2]. Conjecture
7.7 also implies a formula for surfaces S with b1(S) = 0 and canonical
divisor with irreducible reduced connected components (Proposition
7.10). This refines a formula from physics due to Vafa-Witten [VW,
Eqn. (5.45)].

In this section we encounter the ratio F �
1 (−p, u�)/F �

1 (p, u
�). By defini-

tion (3), we have La(· · · )|(−p,q,y) = La(· · · )|(p,q,y) for any even a. Hence the

definition of F ell
1 (p, q, y) in Section 2 implies

F ell
1 (−p, q, y)

F ell
1 (p, q, y)

=
L(2φ0, 1

2
)

L(2φ0, 1
2
)
∣∣
(−p,q,y)

.

Before we continue, we motivate the shape of the formula of Conjecture
1.1.

Remark 7.1. Let S be a smooth projective surface with b1(S) = 0, pg(S) >
0, and KS �= 0. Suppose the only Seiberg-Witten basic classes of S are 0
and KS .

(1) From the results of [GK1], we expected that the formula for virtual
elliptic genera of moduli spaces of Gieseker H-stable rank 2 sheaves
on S should have strong similarities with the case of Hilbert schemes
of points. The Dijkgraaf-Moore-Verlinde-Verlinde formula for elliptic
genera of Hilbert schemes of points involves a Borcherds type lift of
φ0,1, so we expected to be able to express the generating function of
elliptic genera in the rank 2 case in terms of similar quasi-Jacobi forms
of index 0, which led us to consider φ0, k

2
introduced in Section 1.

(2) From the results of [GK1] we also expected the generating function
of virtual elliptic genera (and cobordism classes) of moduli spaces of
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Gieseker H-stable rank 2 sheaves on S to be of the form 8Aχ(OS)BK2
S ,

for some universal series A, B. When “stable=semistable”, moduli
spaces of stable sheaves on a K3 surface are deformation equivalent
to Hilbert schemes of points of the same dimension [Huy, Yos]. There-
fore A is given by the DMVV formula (see also Conjecture 7.7, which
includes the case S is K3.).

(3) Similarly, B would then be determined on the blow-up of a K3 surface
in a point. Matching coefficients for virtual dimension ≤ 4 led to the
explicit form of the formula. Once the prediction was in place, we
tested it in many examples, and up to much higher virtual dimension,
as will be described in Section 8.

7.1. Numerical conjecture

The following conjecture generalizes [GK1, Conj. 6.1].

Conjecture 7.2. Let 
 ∈ {cob, ell}. Let β ∈ Z4 be such that β1 ≡ β2 mod 2

and β3 ≥ β4 − 3, and let (γ1, γ2) ∈ Z2. Then for all n < 1
2(β1 − β2) + 2β4,

we have

Coeffs0p4n−β1−3β4

[
p−β1−3β4A�

(γ1,γ2,β1,γ1,β2,β3,β4)
(s, p4, u�)

+ (−1)β4p−β1−3β4A�
(β3−γ1,β2−γ2,β1,β3−γ1,β2,β3,β4)

(s, p4, u�)
]

equals the coefficient of p4n−β1−3β4 of

ψ�
γ1,γ2,β3,β4

(p, u�) := 8

(
1

2
F �
0 (p, u

�)

)β4
(
2F �

1 (p, u
�)

)β3

(−1)γ2

(
F �
1 (−p, u�)

F �
1 (p, u

�)

)γ1

.

We check this conjecture in various cases in Section 8. The first applica-
tion of this conjecture is the following proposition.

Proposition 7.3. Assume the strong form of Mochizuki’s formula (Remark
5.4). Conjecture 7.2 for 
 = cob implies Conjecture 1.2. Conjecture 7.2 for

 = ell implies Conjecture 1.1.

Proof. This is proved in [GK1, Prop. 6.3]. The idea is as follows.

We only need Conjecture 7.2 for γ1 = γ2 = 0. Let S be a smooth
projective surface satisfying b1(S) = 0, pg(S) > 0, KS �= 0, and the only
Seiberg-Witten basic classes of S are 0 and KS . Let H, c1, c2 be chosen
such that there are no rank 2 strictly Gieseker H-semistable sheaves on S
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with Chern classes c1, c2. Take (β1, β2, β3, β4) = (c21, c1KS ,K
2
S , χ(OS)). Then

clearly β1 ≡ β2 mod 2. For S minimal of general type, β3 ≥ β4 − 3 holds
by Noether’s inequality. For other surfaces, β3 ≥ β4 − 3 follows from some
elementary considerations as explained in the proof of [GK1, Prop. 6.3].

Suppose c2 satisfies

(16) vd < c21 − 2c1KS + 5χ(OS),

where vd is given by (1). Assume Conjecture 7.2 for 
 = ell (
 = cob) holds
and the strong form of Mochizuki’s formula holds. Then all assumptions of
Corollary 5.3 are satisfied and Conjecture 1.1 (Conjecture 1.2) follows as
long as (16) is satisfied. When (16) is not satisfied, we can replace c1 by
c1 + tH for t � 0. Tensoring by OS(tH), MH

S (r, c1, c2) is isomorphic to a
moduli space of the same virtual dimension for which (16) is satisfied.

7.2. Fixed first Chern class

Let S be a smooth projective surface with b1(S) = 0 and polarization H. Let
c1 be chosen such that there exist no rank 2 Gieseker H-semistable sheaves
with first Chern class c1. We consider the generating functions

Zcob
S,c1(p,v) =

∑
c2

π∗[M
H
S (2, c1, c2)]

vir
Ω∗

pvd(M
H
S (2,c1,c2)),

Zell
S,c1(p, q, y) =

∑
c2

Ellvir(MH
S (2, c1, c2)) p

vd(MH
S (2,c1,c2)).

Set i :=
√
−1. We make use of the following general principle. Let ψ(x) =∑∞

n=0 ψnx
n be any formal power series in x and suppose we want to extract

the coefficients ψn for which n ≡ α mod 4 for some α ∈ Z. This can be
done as follows:

3∑
k=0

i−αk

4
ψ(ikx) =

3∑
k=0

∞∑
n=0

ik(n−α)

4
ψnx

n

=

∞∑
n=0

(1

4

3∑
k=0

ik(n−α)
)
ψnx

n

=
∑

n≡α mod 4

ψnx
n.

(17)

From this simple principle, the following two propositions follow at once
(their analogs for virtual χy-genus are [GK1, Prop. 6.4, 6.5]).
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Proposition 7.4. Let 
 ∈ {cob, ell} and assume Conjecture 7.2 is true for 
.
Let β ∈ Z4 such that β1 ≡ β2 mod 2 and β3 ≥ β4− 3, and let (γ1, γ2) ∈ Z2.

Coeffs0

[
p−β1−3β4A�

(γ1,γ2,β1,γ1,β2,β3,β4)
(s, p4, u�)

+ (−1)β4p−β1−3β4A�
(β3−γ1,β2−γ2,β1,β3−γ1,β2,β3,β4)

(s, p4, u�)
]

= 2(−1)γ2

3∑
k=0

(ik)β1−β4

(
1

2
F �
0 (i

kp, u�)

)β4
(
2F �

1 (i
kp, u�)

)β3

×
(
F �
1 (−ikp, u�)

F �
1 (i

kp, u�)

)γ1

+O(pβ1−2β2+5β4).

Proposition 7.5. Let 
 ∈ {cob, ell}. Assume Conjecture 1.1 is true when

 = ell and Conjecture 1.2 is true when 
 = cob. Let S be a smooth projective
surface with b1(S) = 0, pg(S) > 0, and KS �= 0. Suppose the Seiberg-Witten
basic classes of S are 0 and KS. Let H, c1 be chosen such that there are no
rank 2 strictly Gieseker H-semistable sheaves on S with first Chern class c1.
Then

Z�
S,c1(p, u

�) = 2

3∑
k=0

(ik)c
2
1−χ(OS)

(
1

2
F �
0 (i

kp, u�)

)χ(OS)(
2F �

1 (i
kp, u�)

)K2
S

.

In fact Conjecture 7.2 can be used to generalize this proposition as fol-
lows (the analog for virtual χy-genus is [GK1, Prop. 6.6]).

Proposition 7.6. Assume the strong form of Mochizuki’s formula holds
(Remark 5.4). Let 
 ∈ {cob, ell} and assume Conjecture 7.2 is true for 
. Let
S0 be a smooth projective surface with b1(S0) = 0, pg(S0) > 0, and KS0

�= 0.
Suppose the Seiberg-Witten basic classes of S0 are 0 and KS0

. Suppose S
is obtained from S0 by repeated blow-ups and denote the total transforms of
the exceptional divisors by E1, . . . , Em. Suppose that K2

S ≥ χ(OS) − 3. Let
H, c1 be chosen such that there exist no rank 2 strictly Gieseker H-semistable
sheaves on S with first Chern class c1. Then

Z�
S,c1(p, u

�) =

2

3∑
k=0

(ik)c
2
1−χ(OS)

(
1

2
F �
0 (i

kp, u�)

)χ(OS)(
2F �

1 (i
kp, u�)

)K2
S

×
m∏
j=1

(
1 + (−1)c1Ej

F �
1 (i

kp, u�)

F �
1 (−ikp, u�)

)
.
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Proof. Let M := {1, . . . ,m} and write EI =
∑

i∈I Ei for any I ⊂ M . Then
KS = KS0

+ EM and χ(OS) = χ(OS0
). The SW basic classes of S are EI

(with SW invariant 1) and KS0
+ EI = KS − EM\I (with SW invariant

(−1)χ(OS)), where I runs over all subsets of M [Mor, Thm. 7.4.6]. The rest
is a short calculation (as for [GK1, Prop. 6.6]).

7.3. Arbitrary surfaces with holomorphic 2-form

The following conjecture generalizes [GK1, Conj. 6.7]. This conjecture can
be seen as a refinement of (part of) a formula of Dijkgraaf-Park-Schroers
[DPS, Eqn. (6.1), lines 2+3].

Conjecture 7.7. Let 
 ∈ {cob, ell} and let S be a smooth projective surface
with b1(S) = 0 and pg(S) > 0. Let H, c1, c2 be chosen such that there are no
rank 2 strictly Gieseker H-semistable sheaves on S with first Chern class c1.
For M := MH

S (2, c1, c2), the coefficient of pvd(M) of Z�
S,c1

(p, u�) equals the

coefficient of pvd(M) of

ψ�
S,c1(p, u

�) := 4

(
1

2
F �
0 (p, u

�)

)χ(OS)(
2F �

1 (p, u
�)

)K2
S

×
∑

a∈H2(S,Z)

SW(a)(−1)c1a

(
F �
1 (−p, u�)

F �
1 (p, u

�)

)aKS

.

If there are no strictly Gieseker H-semistable sheaves with first Chern
class c1, this conjecture implies (using (17))

Z�
S,c1(p, u

�) =
1

2
ψ�
S,c1(p, u

�) +
1

2
ic

2
1−χ(OS)ψ�

S,c1(ip, u
�).

Remark 7.8. A simple computation shows that this conjecture implies both
Propositions 7.5 (without assuming Conjectures 1.1, 1.2) and 7.6 (without
assuming Conjecture 7.2 and without assuming χ(OS) ≥ K2

S − 3). In fact,
this conjecture implies both Conjectures 1.1 and 1.2.

The first application of Conjecture 7.7 is the following blow-up formula.
The analog for virtual χy-genus is [GK1, Prop. 6.9]. The proof follows im-
mediately from the description of the Seiberg-Witten basic classes and in-
variants of a blow-up [Mor, Thm. 7.4.6].

Proposition 7.9. Let 
 ∈ {cob, ell}. Assume Conjecture 7.7 holds for 
.
Let π : S̃ → S be the blow-up in a point of a smooth projective surface S
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with b1(S) = 0, pg(S) > 0. Suppose H, c1 are chosen such that there are no
rank 2 strictly Gieseker H-semistable sheaves on S with first Chern class c1.
Let c̃1 = π∗c1 − εE with ε = 0, 1 and suppose H̃ is a polarization on S̃ such
that there are no rank 2 strictly Gieseker H̃-semistable sheaves on S̃ with
first Chern class c̃1. Then

Z�
S̃,c̃1

(p, u�) =
1

2
ψ�
S̃,c̃1

(p, u�) +
1

2
ic̃

2
1−χ(OS̃)ψ�

S̃,c̃1

(
ip, u�

)
,

ψ�
S̃,c̃1

(p, u�) =
1

2

(
F �
1 (p, u

�)−1 + (−1)εF �
1 (−p, u�)−1

)
ψ�
S,c1(p, u

�).

(18)

In [LQ1, LQ2], Li-Qin derive a formula for the virtual Hodge polynomi-
als of a blow-up. Here “virtual” is meant in the sense of Deligne’s weight
filtration, not virtual classes. Interestingly the χvir

y -specialization of (18) co-
incides with the χy-specialization of the virtual Hodge polynomials of Li-Qin
[GK1, Prop. 6.9].

The second (more involved) application of Conjecture 7.7 is to surfaces
with b1 = 0, pg > 0, and canonical divisor with irreducible reduced connected
components. The following proposition is proved in the same way as [GK1,
Prop. 6.11] and refines a formula of Vafa-Witten [VW, Eqn. (5.45)].

Proposition 7.10. Let 
 ∈ {cob, ell}. Let S be a smooth projective surface
with b1(S) = 0 and pg(S) > 0. Suppose |KS | contains a reduced curve whose
connected components C1, . . . , Cm are irreducible. Let NCj/S denote the nor-
mal bundles of Cj ⊂ S. Let H, c1 be chosen such that there are no rank 2
strictly Gieseker H-semistable sheaves with first Chern class c1. Then

Z�
S,c1(p, u

�) = 2

(
1

2
F �
0 (p, u

�)

)χ(OS)

×
m∏
j=1

(
(2F �

1 (p, u
�))C

2
j + (−1)c1Cj+h0(NCj/S

)(2F �
1 (−p, u�))C

2
j

)

+ 2(−i)c
2
1−χ(OS)

(
1

2
F �
0 (−ip, u�)

)χ(OS)

×
m∏
j=1

(
(2F �

1 (−ip, u�))C
2
j + (−1)c1Cj+h0(NCj/S

)(2F �
1 (ip, u

�))C
2
j

)
.

Proof. The Seiberg-Witten basic classes and invariants of S can be described
as follows [GK1, Lem. 6.14]. For I ⊂ M := {1, . . . ,m}, let CI :=

∑
i∈I Ci,
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where I = ∅ corresponds to the zero divisor. Next, define an equivalence

relation I ∼ J , when CI and CJ are linearly equivalent. Then the SW basic

classes of S are {CI ∈ H2(S,Z)}I⊂M and

SW(CI) = |[I]|
∏
i∈I

(−1)h
0(NCi/S

),

where |[I]| is the number of elements of the equivalence class of I and NCi/S

is the normal bundle of Ci. The rest of the proof is an easy calculation as

for [GK1, Prop. 6.11].

8. Verification of the conjectures in examples

In this section we use Corollary 5.3 in order to verify Conjectures 1.1, 1.2,

7.2, 7.7 in a number of examples. In Section 6 we mentioned that we have

determined the universal functions A�
i up to the following orders:

• Aell
i up to order piqj , where i ≤ 6 and j ≤ 14.

• Acob
i up to order p6 with the specialization vi = 0 for i ≥ 6.

Using the methods of [EGL] we have determined the cobordism class of

K3[n] for n ≤ 7. This determines

F cob
0 (p,v) mod p16.

We use this in the verifications of the conjectures for Zcob
S,c1

(p,v). Assuming

Conjecture 1.2 in a special case, see Remark 8.1, we determine

F cob
1 (p,v) = L(p,v)|v6=v7=···=0 mod p14.

We use this as our definition of L(p,v) in our verifications of the conjectures

for Zcob
S,c1

(p,v).

8.1. K3 surfaces and their blow-ups

For a K3 surface S the only Seiberg-Witten basic class is 0. Let H, c1 be

chosen such that c1H > 0 is odd. We put c := c21 ∈ 2Z. For 2 ≤ c ≤ 14 even

and 
 = cob, ell, we determined

Z�
S,c1(p, u

�) mod pmin{c+10,22−c}.
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The orders of u� are determined by the orders up to which we calculated
A�

i as mentioned at the beginning of this section. We suppress these orders
throughout this section. Conjecture 7.7 is confirmed in this range.

For S,H, c1 as above, let π : S̃ → S be the blow-up of S in a point and
denote the exceptional divisor by E. Let c̃1 = π∗c1 + εE, and H̃ = rH − E
with r � 0 and r + ε odd. For 
 = cob, ell, ε = 0, 1, and 2 ≤ c ≤ 14 even,
we determined

Z�
S̃,c̃1

(p, u�) mod pmin{c+2ε+10,22−c+ε}.

Conjectures 1.1 and 1.2 are verified in this range.

Remark 8.1.

(1) Let S̃ be the blow-up of an ellipticK3 surface with section and 24 nodal
singular fibres (and no further singular fibres). Denote the (pull-back
of) a section and fibre class on K3 by B,F respectively. As before we
denote the exceptional divisor by E. Assume Conjecture 1.2 is true for
S̃, H̃, and c̃1 = B,B + F,B + E,B + F + E. Then7

L(p,v)−1 =
1

F cob
0 (p,v)2

∑
c̃1=B,B+F,B+E,B+F+E

×
∑
c̃2

π∗[M
H̃
S̃
(2, c̃1, c̃2)]

vir
Ω∗

p4c̃2−c̃21−6.

(2) Therefore, using the above notation and assuming Conjecture 1.2 for
S̃ with c = 4, 6, ε = 0, 1, we determine the L(p,v)|v6=v7=...=0 modulo
p14. In particular we find

L(p,v)−1 = 1 + 2v1p− 16v3p
3 + 4(v41 − 3v2v

2
1 + v3v1)p

4

+ 4(v51 − 6v31v2 − 12v21v3 + 9v1v
2
2 + 22v2v3 + 38v5)p

5

+O(p6).

8.2. Elliptic surfaces

Let S → P1 be an elliptic surface with a section B, 12n rational nodal fibres,
and no other singular fibres. We take n ≥ 2. The canonical class is KS =

7In the sum on RHS, for each of the choices of c̃1, we choose a possibly different
polarization H̃ such that there are no rank 2 strictly Gieseker H̃-semistable sheaves
on S̃ with first Chern class c̃1.
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(n−2)F , where F denotes the class of a fibre. Then χ(OS) = n and B2 = −n.
Moreover, the Seiberg-Witten basic classes of S are 0, F, . . . , (n− 2)F and

SW(pF ) = (−1)p
(
n− 2

p

)
.

This follows from the description of SW basic classes and invariants in the
proof of Proposition 7.10. For polarizations H such that c1H > 2KSH is
odd, we determined

Z�
S,εB+dF (p, u

�) mod pmin{28−c21−3n,5n+c21−2ε(n−2)},

for all n = 3, . . . , 6, ε = 0, 1, d = 0, . . . , 8, and 
 = cob, ell. This allows us to
verify Conjecture 7.7 in this range.

8.3. Double covers

We consider double covers π : S → P2 branched along a smooth curve
of degree 8. Then K2

S = 2, χ(OS) = 4 and we note that |KS | contains
smooth connected curves. Hence the Seiberg-Witten basic classes are 0, KS

with Seiberg-Witten invariants SW(0) = 1, SW(KS) = (−1)χ(OS) = 1. In
this section we assume that the strong form of Mochizuki’s formula holds
(Remark 5.4).

We denote by L the pullback of the hyperplane class on P2. We assume
for simplicity that Pic(S) = ZL and take polarizationH = L. Then there are
no rank 2 strictly μ-semistable sheaves on S with first Chern class c1 = L.
For both 
 = cob, ell, we determined

Z�
S,L(p, u

�) mod p14,

Z�
S,2L,odd(p, u

�) mod p8,

where “odd” means that we only sum over c2 odd, so that there are no
rank 2 strictly Gieseker semistable sheaves on S with Chern classes c1 = 2L
and c2. We verified Conjectures 1.1 and 1.2 in this range. In particular, for
M = ML

S (2, L, 4) we find

cvir1 (M)2 = 48, cvir2 (M) = 120.

Next we consider double covers of π : S → P1 × P1 branched along
a smooth curve of bidegree (6, 6) and (6, 8). Denote the pull-backs of the
classes of P1 × {pt} and {pt} × P1 by respectively B̃ and F̃ , and let c1 =
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ε1B̃ + ε2F̃ . For a suitably chosen polarization H, 
 = cob, ell, ε1 = 0, 1, and
1 ≤ ε2 ≤ 5, we determined

Z�
S,c1(p, u

�) mod pmin
{
25−4(ε1+ε2−ε1ε2),13−4ε1ε2,−3+4(2ε1+2ε2−ε1ε2)

}
,

for bidegree (6, 6)

Z�
S,c1(p, u

�) mod pmin
{
35−4(2ε1+ε2−ε1ε2),7−4ε1ε2,−25+4(4ε1+2ε2−ε1ε2)

}
,

for bidegree (6, 8).

We verified Conjectures 1.1 and 1.2 in this range. E.g. for bidegree (6, 8)
and M := MH

S (2, B̃, 6) we find

cvir3 (M) = −36864, cvir1 (M)cvir2 (M) = −67584, cvir1 (M)3 = −90112.

This is in accordance with Conjecture 1.2.

Denote by F1 = P(OP1 ⊕OP1(1)) the first Hirzebruch surface. Let B be
the section satisfying B2 = −1 and let F be the class of the fibre F1 → P1.

We consider double covers π : S → F1 branched over a smooth connected
curve in

|OF1
(6B + 10F )|.

Denote the pull-backs of B,F by B̃, F̃ respectively and let c1 = ε1B̃ + ε2F̃ .
For a suitably chosen polarization H, 
 = cob, ell, −2 ≤ ε1 ≤ 6, and −2 ≤
ε2 ≤ 6, we determined Z�

S,c1
(p, u�) modulo pmin{N+28,M}, where M,N are

the explicit expressions given in [GK1, Sect. 7.4] which we do not reproduce
here. We verified Conjectures 1.1 and 1.2 in this range. E.g. for a suitably

chosen polarization H and M := MH
S (−B̃ + 3F̃ , 2), we find

cvir4 (M) = 85920, cvir1 (M)cvir3 (M) = 161088, cvir2 (M)2 = 241056,

cvir1 (M)2cvir2 (M) = 279936, cvir1 (M)4 = 345600.

This is in accordance with Conjecture 1.2.

8.4. Hypersurfaces

Finally we consider the very general quintic in S ⊂ P3. Then Pic(S) is
generated by the hyperplane class H and K2

S = χ(OS) = 5. Since |KS |
contains smooth connected curves, the Seiberg-Witten basic classes are 0,
KS and SW(0) = 1, SW(KS) = (−1)χ(OS) = −1. We assume that the
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strong form of Mochizuki’s formula holds (Remark 5.4). For 
 = cob, ell, we
determined

Z�
S,H(p, u�) mod p8.

Our answers agree with Conjectures 1.1 and 1.2. E.g. for M := MH
S (2, H, 6)

we find that

cvir4 (M) = 52720, cvir1 (M)cvir3 (M) = 93280, c2(M)2 = 145200,

cvir1 (M)2cvir2 (M) = 157760, cvir1 (M)4 = 185600.

This is in accordance with Conjecture 1.2.

Remark 8.2. It is remarkable that in all the examples that we computed,
the Chern numbers cviri1

(M) · · · cvirik
(M) have the sign (−1)vd(M). This is rem-

iniscent of [EGL, Rem. 5.5], where it is noted that at least for n ≤ 7 all
Chern numbers of S[n] are polynomials in c1(S)

2 and c2(S) with positive
coefficients.

8.5. Verification of Conjecture 7.2

For both 
 ∈ {cob, ell}, we checked Conjecture 7.2 modulo

mod p
min

{
2β1−2β2+8β4,28−4γ1+4γ2,28+4β2−4β3+4γ1−4γ2

}
−β1−3β4

and for γ1 = 0, . . . , 4, γ2 = 0, . . . , 4, β1 = β2 = 4, . . . , 10, β3 = 2, . . . , 5, β4 =
2, . . . , 5. The above bounds come from: (1) the bound mod pβ1−2β2+5β4

which is part of the statement of Conjecture 7.2 and (2) the order to which
we calculated A�

i as stated at the beginning of this section (see also (13)).
This allows us to calculate up to S[n1]×S[n2] with n1+n2 ≤ 6. As throughout
this section, for 
 = cob we used the specialization vi = 0 for i ≥ 6.
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[FG] B. Fantechi and L. Göttsche, Riemann-Roch theorems and elliptic

genus for virtually smooth schemes, Geom. Topol. 14 (2010) 83–

115. MR2578301
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