
3

Independence and Efficient Domination on P6-free Graphs

DANIEL LOKSHTANOV, University of Bergen

MARCIN PILIPCZUK, University of Warsaw

ERIK JAN VAN LEEUWEN, Utrecht University

In the Maximum Weight Independent Set problem, the input is a graphG, every vertex has a non-negative

integer weight, and the task is to find a set S of pairwise nonadjacent vertices, maximizing the total weight

of the vertices in S . We give an nO (log2 n) time algorithm for this problem on graphs excluding the path P6

on 6 vertices as an induced subgraph. Currently, there is no constant k known for which Maximum Weight

Independent Set on Pk -free graphs becomes NP-hard, and our result implies that if such a k exists, then

k > 6 unless all problems in NP can be decided in quasi-polynomial time.

Using the combinatorial tools that we develop for this algorithm, we also give a polynomial-time algorithm

for Maximum Weight Efficient Dominating Set on P6-free graphs. In this problem, the input is a graph

G, every vertex has an integer weight, and the objective is to find a set S of maximum weight such that every

vertex inG has exactly one vertex in S in its closed neighborhood or to determine that no such set exists. Prior

to our work, the class of P6-free graphs was the only class of graphs defined by a single forbidden induced

subgraph on which the computational complexity of Maximum Weight Efficient Dominating Set was

unknown.

CCS Concepts: • Mathematics of computing → Graph theory; Graph algorithms; Combinatorics; •

Theory of computation → Graph algorithms analysis; Branch-and-bound; Complexity classes; Problems,

reductions and completeness;

Additional Key Words and Phrases: Independence, efficient domination, P6-free graphs, (quasi)polynomial-

time algorithms

ACM Reference format:

Daniel Lokshtanov, Marcin Pilipczuk, and Erik Jan van Leeuwen. 2017. Independence and Efficient Domina-

tion on P6-free Graphs. ACM Trans. Algorithms 14, 1, Article 3 (November 2017), 30 pages.

https://doi.org/10.1145/3147214

D. Lokshtanov was supported by the BeHard grant under the recruitment programme of the Bergen Research Foundation.

M. Pilipczuk received funding from the European Research Council under the European Union’s Seventh Framework Pro-

gramme (FP/2007-2013)/ERC Grant Agreement n. 267959 (when M.P. was at the University of Bergen), from the Centre for

Discrete Mathematics and its Applications (DIMAP) at the University of Warwick, and from the Warwick-QMUL Alliance

in Advances in Discrete Mathematics and its Applications (when M.P. was at the University of Warwick). E. J. van Leeuwen

was at Max-Planck Institut für Informatik, Saarland Informatics Campus, when most of the work on this article was done.

An extended abstract of this article appeared as D. Lokshtanov, M. Pilipczuk, and E. J. van Leeuwen. 2016. Independence and

Efficient Domination on P6-free Graphs. In R. Krauthgamer, editor, Proceedings of the 27th Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA’16). SIAM, 1784–1803.

Authors’ addresses: D. Lokshtanov, Department of Informatics, University of Bergen, Norway, PB 7803, N-5020, Bergen;

email: daniello@ii.uib.no; M. Pilipczuk, Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland;

email: malcin@mimuw.edu.pl; E. J. v. Leeuwen, Department of Information and Computing Sciences, Utrecht University,

PO Box 80.089, 3508 TB Utrecht, The Netherlands; email: e.j.vanleeuwen@uu.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

© 2017 ACM 1549-6325/2017/11-ART3 $15.00

https://doi.org/10.1145/3147214

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

https://doi.org/10.1145/3147214
mailto:Permissions@acm.org
https://doi.org/10.1145/3147214

3:2 D. Lokshtanov et al.

1 INTRODUCTION

An independent set in a graph is a set of pairwise nonadjacent vertices. In the Independent Set
problem, the input is a graphG on n vertices and an integer t , and the task is to determine whether
G contains an independent set of size at least t . Independent Set is a fundamental and extremely
well-studied graph problem. It was one of the very first problems to be shown NP-complete [27,
38], and a significant amount of research [2, 22, 24, 33, 41, 42, 46, 55]1 has gone into identifying
classes of graphs on which the problem becomes polynomial-time solvable.

A complete classification of the complexity status of Independent Set on all classes of graphs
seems out of reach. However, obtaining such a classification for all classes of graphs defined by
excluding a single connected graph H as an induced subgraph (we call such graphs H -free) looks
like an attainable, yet very challenging, goal. In particular, Alekseev [1] showed in 1982 that Inde-
pendent Set remains NP-complete on H -free graphs whenever H is connected but neither a path
nor a subdivision of the claw.

The complexity of Independent Set on classes of Pk -free graphs (we denote by Pk the path on
k vertices) has been subject to intense scrutiny but has yielded rather modest progress. For P4-free
graphs, a polynomial-time algorithm was given by Corneil et al. [24] in 1981, and it took more
than 30 years until a polynomial-time algorithm for the problem on P5-free graphs was discovered
by Lokshtanov et al. [41] in 2014. Meanwhile, a substantial amount of work was devoted to In-
dependent Set on subclasses of P5-free graphs [6, 7, 16, 31, 47, 59], and some progress has been
reported on subclasses of P6-free graphs [4, 11, 12, 14, 30, 39, 40, 43, 45, 48, 50–53] and even on
subclasses of P7-free graphs [17, 30, 43, 44, 49]. Recently, Bacsó et al. [3] and Brause [21] indepen-
dently proved subexponential-time exact algorithms for Independent Set on Pk -free graphs for
any fixed k , generalizing an earlier such result for P5-free graphs [54].

In this article, we push the boundary of knowledge on the complexity of Independent Set on

Pk -free graphs a step forward by giving a nO (log2 n)-time algorithm for Independent Set on P6-
free graphs. Our algorithm also works for the weighted version of the problem. In the Maximum
Weight Independent Set problem, the input is a graphG where every vertex has a non-negative
integer weight, and the task is to compute an independent set in G that maximizes the sum of the
weights of the vertices in it.

Theorem 1.1. There is an nO (log2 n)-time, polynomial-space algorithm for Maximum Weight In-

dependent Set on n-vertex P6-free graphs.

The algorithm of Theorem 1.1 does not completely resolve the complexity status of Indepen-
dent Set on P6-free graphs as it runs in quasipolynomial time rather than polynomial time. How-
ever, Theorem 1.1 does imply that Maximum Weight Independent Set on P6-free graphs is not
NP-hard unless all problems in NP can be solved in quasipolynomial time.

This result hints at the existence of a polynomial-time algorithm for the problem also on P6-free
graphs. Very recently, Grzesik et al. [34] actually proved that Maximum Weight Independent
Set can be solved in polynomial time on P6-free graphs.

On the way to developing our algorithm for Independent Set, we prove several new combina-
torial properties of P6- and P7-free graphs. We leverage these new combinatorial insights to develop
a polynomial-time algorithm for the Efficient Dominating Set problem on P6-free graphs. We
say that a vertex dominates itself and all of its neighbors. An efficient dominating set in a graph
G is a vertex set S such that every vertex v in the graph is dominated by exactly one vertex in S .
Not all graphs have an efficient dominating set, and, in the Efficient Dominating Set problem,

1This list is far from exhaustive; see the Information System on Graph Classes and Their Inclusions (ISGCI) [25].

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:3

the input is a graph G and the task is to determine whether G has an efficient dominating set. We
remark that the problem also goes by the name Perfect Code [5]. Observe that we do not ask
for the smallest or largest efficient dominating set, only whether there exists one. This is because
whenever a graph G has an efficient dominating set, all such sets have the same cardinality [36].
In the weighted variant, called Maximum Weight Efficient Dominating Set, every vertex has
an integer weight and the task is to find a maximum weight efficient dominating set if one exists.
Since the weights may be negative, there is no real difference between maximizing and minimizing
the weight of the solution. Our second main theorem is the following:

Theorem 1.2. There is a polynomial-time algorithm for Maximum Weight Efficient Dominat-

ing Set on P6-free graphs.

Prior to our work, the P6 was the only graph H , connected or not, for which the complexity
of Efficient Dominating Set on H -free graphs was unknown [10]. Thus, our work completes
the complexity classification of Efficient Dominating Set (and Maximum Weight Efficient
Dominating Set) on classes of graphs defined by a single forbidden induced subgraph and resolves
the main open problem of [9, 10, 13, 15]. We remark that an alternative polynomial-time algorithm
for Maximum Weight Efficient Dominating Set on P6-free graphs has been independently
obtained by Brandstädt and Mosca [18–20] using different methods.2

Methodology. The polynomial-time algorithm for Maximum Weight Independent Set on P5-
free graphs of Lokshtanov et al. [41] demonstrated that investigating potential maximal cliques and
minimal separators (see Section 2 for definitions) yields valuable insights on the structure of P5-
free graphs. Our algorithm for P6-free graphs is also based on studying potential maximal cliques
and minimal separators. However, this is where the similarity between the two algorithms ends
because essentially all of the arguments used in the algorithm for P5-free graphs quickly break
down for P6-free graphs.

At heart our algorithm is very simple: The algorithm picks a node v and proceeds recursively
in two branches. In the first,v is included in the independent set, and the algorithm needs to solve
G − N (v) recursively. In the second, v is excluded from the independent set, and the algorithm is
called recursively onG −v . If in any recursive call the graph becomes disconnected, the algorithm
solves the connected components independently. The crux of the analysis is to show that one can
always cleverly choose the vertexv , such that after only a few branches either the size of the graph
decreases by at least 0.1n, or the graph breaks into connected components of size at most 0.9n.

Roughly speaking, the vertex v to branch on is chosen as follows. The algorithm identifies a
nuke in G: A relatively small vertex set S such that every connected component of G − S has size
at most 0.9n (for a formal definition of a nuke, see Definition 4.1). The algorithm then picks a vertex
v with a large neighborhood in S to branch on. In order to guarantee the existence of a nuke S
and a vertex v with a large neighborhood in S, we prove the following theorem about minimal
separators in P7-free graphs.

Theorem 1.3. There exists a positive constant 0 < α ≤ 1 such that for every P7-free graph G, for

every minimal separator S in G, and for every probability measure μ on S , there exists a vertex v ∈
V (G) satisfying μ (N (v) ∩ S) ≥ α .

The reason that Theorem 1.3 is not already sufficient to yield a quasipolynomial-time algorithm
for Independent Set on P7-free graphs is that, despite the similarity between the definitions of
nukes and minimal separators, not all nukes are minimal separators. For P6-free graphs, we are

2Although Brandstädt and Mosca [18] appeared on arXiv a few weeks after this paper, the authors contacted us and shared

with us a preliminary version of their work [18–20] immediately after we posted our work.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:4 D. Lokshtanov et al.

able to prove an analogue of Theorem 1.3 for nukes rather than minimal separators, and this is

sufficient to give a nO (log2 n)-time algorithm for Maximum Weight Independent Set. As a first
step to lift Theorem 1.3 to work for nukes, we generalize it to potential maximal cliques in P7-free
graphs.

Theorem 1.4. There exists a positive constant 0 < β ≤ 1 such that for every connected P7-free

graph G on at least two vertices, for every potential maximal clique Ω in G, and every probability

measure μ on Ω, there exists a vertex v ∈ V (G) satisfying μ (N (v) ∩ Ω) ≥ β .

Theorem 1.4 turns out to be very useful not only in our quasipolynomial-time algorithm
for Maximum Weight Independent Set, but for the polynomial-time algorithm for Maximum
Weight Efficient Dominating Set as well. Indeed, an almost immediate consequence of The-
orem 1.4 is that for any P7-free graph G, any efficient dominating set X in G and any potential
maximal clique Ω in G, |X ∩ Ω | ≤ 1/β (see Lemma 6.2 for a simple proof).

The preceding observation strongly suggests that one can solve Maximum Weight Efficient
Dominating Set on P7-free graphs in polynomial time by doing dynamic programming over the
tree decomposition of an arbitrarily chosen minimal triangulation of G. For P7-free graphs, this
approach fails, as is expected from the NP-completeness of Efficient Dominating Set on P7-free
graphs [15, 58]. On the other hand, for P6-free graphs, we are able to carry this approach through.

We mention here that this approach follows a completely disjoint direction from the one fol-
lowed in recent papers [9, 13] that gave polynomial-time algorithms for subclasses of P6-free
graphs. In particular, those papers show that one can reduce to Maximum Weight Independent
Set on the square of the graph by proving special properties of the square when the graph is from
such a subclass and has an efficient dominating set.

Furthermore, the drawback of our approach is that it inherently leads to a huge degree of the
polynomial in the running time bound in Theorem 1.2. A careful inspection of our proofs shows
that we prove Theorem 1.4 with β = 1/576. As the dynamic programming algorithm enumerates
all subsets of a potential maximal clique up to size 1/β , this enumeration adds a factor of n576

to the running time bound. Since the running time bound of Brandstädt and Mosca [18–20] is
much better, we refrain from a precise estimation of the running time bound of the algorithm of
Theorem 1.2.

Outline of the Paper. In Section 2, we set up the definitions and necessary notations. In
Section 3, we prove Theorems 1.3 and 1.4, while Section 4 contains the generalization of
Theorem 1.3 to nukes. We then proceed to the main algorithmic results: Section 5 contains
the quasipolynomial-time algorithm for Maximum Weight Independent Set, while Section 6
contains the polynomial-time algorithm for Maximum Weight Efficient Dominating Set, both
on P6-free graphs. In Section 7, we conclude with some open problems and counterexamples to
the most natural generalizations of the structural results underlying our algorithms.

2 PRELIMINARIES

For all graph terminology not defined here, we refer to the monograph by Diestel [26]. For a graph
G and sets A,B ⊆ V (G), we denote NB (A) := N (A) ∩ B.

Let G be a graph; throughout, we assume that all graphs are finite, simple, and undirected.
Given distinct, nonadjacent s, t ∈ V (G), a set S ⊆ V (G) is an s-t separator if s and t are in distinct
components of G \ S . We say that S ⊆ V (G) is a minimal s-t separator if no S ′ � S is also an s-t
separator. Then S ⊆ V (G) is a (minimal) separator of G if S is a (minimal) s-t separator for some
s, t ∈ V (G). Given a separator S ⊆ V (G), a component C of G \ S is said to be full if every vertex

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:5

of S has a neighbor in C . It can be shown that S is a minimal separator if and only if G \ S has at
least two full components (cf. Golumbic [32, Ch. 4 Ex. 10]).

A set M ⊆ V (G) is a module of G if every vertex v ∈ V (G) \M is either fully adjacent or fully
anti-adjacent toM ; that is, eithervu ∈ E (G) for eachu ∈ M orvu � E (G) for eachu ∈ M . A module
M of G is trivial if M = V (G), M = ∅, or |M | = 1. A graph is prime if it only has trivial modules. A
modular partitionM of G is a set of disjoint modules of G with union V (G). The quotient graph

G/M induced byM has a vertex for each module ofM and has an edge between two vertices if
and only if the corresponding modules are fully adjacent to each other. Observe that, by definition,
a non-edge between two vertices in the quotient graph implies that the corresponding modules
are fully anti-adjacent to each other. A module M of G is proper if M � V (G). A module M of G is
strong if for every other module M ′ of G, either M ⊆ M ′, M ′ ⊆ M , or M ∩M ′ = ∅.

Theorem 2.1 ([35, Theorem 2]). Let G be a connected graph on at least two vertices and letM
denote the set of maximal proper strong modules of G. ThenM is a modular partition of G, and the

quotient graph G/M is either a clique or a prime graph.

A graph G is chordal if every induced cycle of G has length three. A clique tree for a graph
G is a pair (T ,Φ) where T is a tree and Φ is a bijection between V (T) and the set of maximal
cliques of G, and for every v ∈ V (G), the vertices t ∈ V (T) for which v ∈ Φ(t) induce a subtree
of T . Equivalently, for every pair t , t ′ ∈ V (T) and every t ′′ ∈ V (T) on the path between t and t ′,
Φ(t) ∩ Φ(t ′) ⊆ Φ(t ′′). It is known that a graph is chordal if and only if it admits a clique tree [23, 29,
56, 57]. Moreover, since the number of maximal cliques of a chordal graphG is at most |V (G) | [28],
a clique tree of a chordal graph can be constructed in polynomial time.

A tree decomposition of a graphG is a pair (T ,Π) whereT is a tree and Π : V (T) → 2V (G) such that
the following three properties hold: V (G) =

⋃
t ∈V (T) Π(t); for each uv ∈ E (G) there is a t ∈ V (T)

such thatu,v ∈ Π(t); for eachv ∈ V (G), the vertices t ∈ V (T) for whichv ∈ Π(t) induce a subtree
of T .

A triangulation of a graph G is a set F ⊆ ((V (G) ×V (G)) \ {vv | v ∈ V (G)}) \ E (G) such that
the graph G + F := (V (G),E (G) ∪ F) is chordal. We say that F is a minimal triangulation of G if
no F ′ � F is a triangulation of G.

A potential maximal clique ofG is a set Ω ⊆ V (G) such that Ω induces a maximal clique in some
minimal triangulation of G. We need the following properties of potential maximal cliques due to
Bouchitté and Todinca [8]:

Theorem 2.2 ([8, Lemma 3.14]). Let G be a graph. If Ω ⊆ V (G) is a potential maximal clique of

G, then for every connected component C of G \ Ω, the set NG (C) ⊆ Ω is a minimal separator of G.

Theorem 2.3 ([8, Theorem 3.15]). LetG be a graph. A set Ω ⊆ V (G) is a potential maximal clique

of G if and only if the following two conditions hold:

(1) for every connected component C of G \ Ω, we have NG (C) � Ω;

(2) for every two distinct vertices x ,y ∈ Ω, either xy ∈ E (G) or there exists a component C of

G \ Ω such that x ,y ∈ NG (C) (in this case, we say that the non-edge xy is covered by the

component C).

Throughout this article, we use the following notation for probability measures. Let U be a
universe and X ⊆ U . If we define μ as a probability measure on X , then we implicitly assume
that μ (v) = 0 for all v ∈ U \ X . This implies that, for any Y ⊆ U , it holds that μ (Y) = μ (Y ∩ X).
Moreover, if μ is a probability measure on X and Z ⊆ X with μ (Z) > 0, then the restriction of μ to
Z is the probability measure μ ′ on Z such that μ ′(v) = μ (v)/μ (Z) for all v ∈ Z .

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:6 D. Lokshtanov et al.

Fig. 1. Two possibilities for (x ,y) being lucky.

Finally, throughout this article, we often identify graphs and connected components with their
vertex sets.

3 HITTING SEPARATORS AND POTENTIAL MAXIMAL CLIQUES

3.1 Proof of Theorem 1.3

For the sake of convenience, we first restate Theorem 1.3.

Theorem 1.3. There exists a positive constant 0 < α ≤ 1 such that for every P7-free graph G, for

every minimal separator S in G, and for every probability measure μ on S , there exists a vertex v ∈
V (G) satisfying μ (N (v) ∩ S) ≥ α .

We now prove the theorem. Let G be a graph, let S be a minimal separator of G, let μ be any
probability measure on S , and let 0 < α ≤ 1 be some constant chosen later. For the sake of con-
tradiction, assume that for every v ∈ V (G) we have μ (N (v)) < α . This implies that μ (x) < α for
every x ∈ S because by the minimality of S , x has a neighbor v in some (full) component of G \ S ,
and thus μ (x) ≤ μ (N (v)) < α .

Let A and B be two full components of G \ S . We say that x ∈ S is lucky (with respect to A) if
there exists an induced P4 in G with one endpoint in x and the remaining three vertices in A. We
say that an ordered pair (x ,y) ∈ S × S is lucky (with respect to A) if x is lucky or there exists an
induced P4 in G with endpoints x and y and its middle two vertices in A. We emphasize here that
this definition is not symmetric with respect to x and y. The following lemma is the crucial step
in the argumentation.

Lemma 3.2. Let G be a graph, and let S , μ, α , A, and B as above; in particular, μ (N (v)) < α for

every v ∈ V (G). If we choose two vertices x ,y ∈ S independently at random according to distribution

μ, then the probability that (x ,y) is not lucky with respect to A (or B) is less than 6α .

Proof. If |A| = 1, then the single vertex a of A is adjacent to all vertices of S , as A is a full
component of G \ S . Hence, μ (N (a)) = 1 > α , a contradiction. Therefore, |A| > 1.

Consider the graph G[A], and letM be the family of maximal proper strong modules of G[A].
Note thatM is a modular partition and that the quotient graph of this partition is a clique or a
prime graph (Theorem 2.1) since G[A] is connected and |A| > 1. Now pick two arbitrary vertices

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:7

Fig. 2. The left panel shows part of the reasoning of Lemma 3.2 with the choice of C being the connected

component ofG[A \ N (x)] that containsp. The right panel shows an archetypical P7 constructed in the proof

of Theorem 1.3.

p,q ∈ A in two distinct modules of M that are adjacent in the quotient graph. We can indeed
pick such p,q because the quotient graph is connected, as G[A] is connected. Moreover, |M| > 1,
because for all modules M ∈ M it holds that M � V (G) by the fact that M is proper; note that
M � ∅ because |A| > 1, and thus the set of singleton modules (one for each vertex) is a family of
proper strong modules.

Consider some (x ,y) ∈ S × S that are chosen independently at random according to distribution
μ. In the following, we continuously use that μ (N (v)) < α for every v ∈ V (G) and μ (u) < α for
every u ∈ S . With probability less than 2α , we have x ∈ N (p) ∪ N (q), and with probability less
than 2α , we have x = y or xy ∈ E (G). Furthermore, with probability less than α , we have N (y) ∩
A ⊆ N (x) ∩A, since, for a fixed choice of y and v ∈ N (y) ∩A, the probability that x ∈ N (v) is
at most α . Now assume that none of the aforementioned events happens, and pick arbitrary r ∈
(N (y) \ N (x)) ∩A.

Let F be the family of connected components of G[A \ N (x)]. Consider any C ∈ F and any
vertex v ∈ N (x) ∩A. If v is neither fully adjacent nor fully anti-adjacent to C , then since C is
connected, there exist two neighboring vertices u,w ∈ C such that u ∈ N (v) and w � N (v). Since
u,w � N (x) by the definition of C and F , the vertices x ,v,u,w form a P4 in G with one endpoint
in x ; then x is lucky, and, by extension, (x ,y) is lucky. Hence, we may assume that for every
C ∈ F and every v ∈ N (x) ∩A, the vertex v is either fully adjacent or fully anti-adjacent to C . In
particular, every C ∈ F is a module of G[A].

Consider the component C ∈ F that contains the vertex p; note that C exists because x � N (p)
by assumption (see Figure 2). Since C is a module of G[A] andM is the family of maximal proper
strong modules of G[A], either there exists a module M ∈ M that contains C , or C is a union of
several modules ofM and the quotient graph G[A]/M is a clique.

If C ⊆ M for some M ∈ M, then consider the module M ′ ∈ M that contains q. By the choice
of M and M ′, M ′ is fully adjacent to M , and, in particular, M ′ is fully adjacent to C . Since C ∈ F
and C ⊆ M , we have that M ′ cannot contain any vertices of any other component in F . Hence,
M ′ ⊆ N (x). However, q � N (x), a contradiction.

Therefore,C is a union of several modules ofM and the quotient graphG[A]/M is a clique. Then
C is fully adjacent to A \C , and, in particular, to every C ′ ∈ F \ {C}, which implies that F = {C}.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:8 D. Lokshtanov et al.

Therefore, there exists a vertexv ∈ N (x) ∩AwithA \ N (x) ⊆ N (v) becauseG[A] is connected and
C = A \ N (x) is a module. Observe that y ∈ N (v) with probability less than α , since μ (N (v)) < α .
If this does not happen (i.e., y � N (v)), then x ,v, r ,y form a P4, as r ∈ (N (y) \ N (x)) ∩A. Hence,
(x ,y) is lucky.

By the union bound, the total probability that any of the aforementioned events happen is less
than 6α . The lemma follows. �

We are now ready to conclude the proof of Theorem 1.3. Pick three vertices x ,y1,y2 ∈ S inde-
pendently at random, each with distribution μ. The goal will be to find a P4 in A from x (possibly
to y1) and a P4 in B from x (possibly to y2) that jointly form a P7 in G. Consider the following
set of “bad” events. In the following, we repeatedly rely on Lemma 3.2 and the assumptions that
μ (N (v)) < α for every v ∈ V (G) and μ (u) < α for every u ∈ S :

• (x ,y1) is not lucky with respect toA; this happens with probability less than 6α . Otherwise,
let P1 be the witnessing P4.

• (x ,y2) is not lucky with respect to B; this happens with probability less than 6α . Otherwise,
let P2 be the witnessing P4.

• Some vertices from the set {x ,y1,y2} are equal or adjacent; this happens with probability
less than 6α .

• One of the (two or three) vertices fromV (P1) ∩A is adjacent toy2; since the choice of x and
y1 is independent of the choice of y2, and the path P1 is a function of the pair (x ,y1) only,
this happens with probability less than 3α (y2 needs to land outside the neighborhoods of
V (P1) ∩A).

• One of the (two or three) vertices fromV (P2) ∩ B is adjacent toy1; since the choice of x and
y2 is independent of the choice of y1, and the path P2 is a function of the pair (x ,y2) only,
this happens with probability less than 3α (y1 needs to land outside the neighborhoods of
V (P2) ∩ B).

By the union bound, the probability that none of the aforementioned “bad” events happens is
greater than 1 − 24α . Hence, for certain, when α = 1

24 , there is a choice of x ,y1,y2 ∈ S for which

the paths P1 and P2 exist and jointly form a P7 in G. Hence, if G is P7-free, then there is a vertex
v ∈ V (G) satisfying μ (N (v)) ≥ α for some constant α > 0 (in fact even α ≥ 1

24).

3.2 Proof of Theorem 1.4

The main tool in the proof is the following general lemma.

Lemma 3.3. Let H be a graph on nH vertices and mH edges, let G be a graph, let Ω be a potential

maximal clique in G, and let μ be a probability measure on Ω. Then there exists either:

(1) a vertex v ∈ V (G) with μ (v) > 1
2n2

H

or with μ (N (v)) > 1
2n2

H

;

(2) a minimal separator S ⊆ V (G) of G with μ (S) > 1
2nH mH

; or

(3) an induced subgraph ofG isomorphic to a graph obtained from H by replacing every edge by

a path of length at least two (i.e., subdividing at least once).

Proof. Let H ,G, Ω, and μ be as in the statement, and assume for the sake of contradiction that
neither of the first two outcomes happen. Consider the following random experiment: Indepen-
dently, for every p ∈ V (H), choose a vertex xp ∈ Ω according to the distribution μ.

For two distinct vertices p,q ∈ V (H), we have xp = xq with probability at most 1
2n2

H

,

and xpxq ∈ E (G) (i.e., xq ∈ N (xp)) with probability at most 1
2n2

H

. Consequently, all vertices

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:9

Fig. 3. Illustration of the proof of Lemma 3.3 for H = P4.

X := {xp : p ∈ V (H)} are pairwise distinct and nonadjacent with probability at least

1 −
(
nH

2

)
· 2 · 1

2n2
H

>
1

2
.

Assume that the aforementioned event happens. For every two distinct and nonadjacent vertices
x ,y ∈ Ω, fix a componentC (x ,y) ofG \ Ω that covers the non-edge xy (i.e., x ,y ∈ N (C)). For every
edge pq ∈ E (H), consider the componentCpq := C (xp ,xq). As the choices of xr for distinct vertices
r ∈ V (H) are independent, the probability that xr ∈ N (Cpq) for a fixed r ∈ V (H) \ {p,q} is at most

1
2nH mH

since N (Cpq) is a minimal separator ofG by Theorem 2.2 and thus μ (N (Cpq)) ≤ 1
2nH mH

by

assumption. Consequently, the probability that X is an independent set of size nH and for every
pq ∈ E (H) we have N (Cpq) ∩ X = {xp ,xq } is strictly greater than

1

2
− nHmH ·

1

2nHmH
= 0.

If this event happens, then for every pq ∈ E (H) choose a shortest path between xp and xq with
internal vertices in Cpq . The union of all aforementioned paths forms an induced subgraph of G
isomorphic to a graph obtained from H by replacing each edge with a path of length at least two,
obtaining the last outcome. �

For the sake of convenience, we restate Theorem 1.4, and then prove it using Lemma 3.3.

Theorem 1.4. There exists a positive constant 0 < β ≤ 1 such that for every connected P7-free

graph G on at least two vertices, for every potential maximal clique Ω in G, and every probability

measure μ on Ω, there exists a vertex v ∈ V (G) satisfying μ (N (v) ∩ Ω) ≥ β .

Proof. LetG be a connected P7-free graph on at least two vertices, let Ω be a potential maximal
clique of G, let μ be any probability measure on Ω, and let 0 < β ≤ 1 be some constant chosen
later. Let α denote the constant of Theorem 1.3. For certain, if β = min{ α

24 ,
1
32 }, then the following

happens. Apply Lemma 3.3 with H = P4 and consider its outcomes:

(1) If μ (N (v)) > 1
32 ≥ β , then we are done. Otherwise, if μ (v) > 1

32 ≥ β , then by connectivity
of G there is a vertex u ∈ N (v) with μ (N (u)) ≥ β .

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:10 D. Lokshtanov et al.

(2) Note that μ (S) > 1
24 . Apply Theorem 1.3 to S and the restriction μ ′ of μ to S ; recall that

μ (S) > 0.1, so this restriction is well defined. It follows that there is a v ∈ V (G) with
μ ′(N (v)) ≥ α and thus μ (N (v)) > α

24 ≥ β .
(3) By the choice of H , this implies the existence of an induced P7 in G, a contradiction.

Therefore, there is a vertex v ∈ V (G) satisfying μ (N (v)) ≥ β for some contant β > 0 (in fact even
β ≥ 1

576). �

4 NUKING A GRAPH

In this section we study the following notion.

Definition 4.1 (Nuke, Shelter). For a constant 0 < η ≤ 0.1 and a threshold τ ≥ 0, a set of vertices
X is a (η,τ)-nuke in a graph G if the following holds:

(i) (1 − 2η) |V (G) | ≤ τ ≤ (1 − η) |V (G) |
(ii) |X | ≤ η |V (G) |;

(iii) for every connected component C of G − X we have |C | + |X | ≤ τ .

Given a (η,τ)-nukeX inG, any connected component ofG − X is called a shelter.3 If the parameters
η and τ are clear from the context, we will simply call the set X a nuke in G.

Intuitively, a nuke is a small set of vertices in G whose removal breaks G into connected com-
ponents of multiplicatively smaller size. Our algorithm keeps track of a nuke X in the given input
P6-free graphG and tries to branch on vertices ofG so thatX will be removed fromG as quickly as
possible. This motivation introduces two delicate issues that result in a slightly technical definition
of a nuke. First, during branching, we need to keep the threshold τ constant, while the size of G
drops a bit—if we define the nuke so that, say, |C | + |X | ≤ (1 − η) |V (G) |, a set X may stop to be
a nuke due to a removal of a vertex from G and consequent decrease of the bound (1 − η) |V (G) |.
Second, we would like to argue about inclusion-wise minimal nukes, which makes the measure
|C | + |X | (as opposed to simply |C |) more natural, as we can then assume that every element of an
inclusion-wise minimal nuke is adjacent to at least two shelters.

The rest of this section is devoted to a proof of the following structural statement.

Theorem 4.2. There exists a constant 0 < γ ≤ 1 such that for every constant 0 < η ≤ 0.1, for every

connected P6-free graph G on at least two vertices, for every threshold (1 − 2η) |V (G) | ≤ τ ≤ (1 −
η) |V (G) |, for every inclusion-wise minimal (η,τ)-nuke X in G, and for every probability measure μ
on X , there exists a vertex v ∈ V (G) with μ (N (v)) ≥ γ .

Let η, τ , G, X , and μ be as in the statement of Theorem 4.2. We set γ = 0.1β ≤ 0.1, where the
constant β comes from Theorem 1.4. We will prove Theorem 4.2 by contradiction: Assume that for
everyv ∈ V (G) we have μ (N (v)) < γ . We will unravel subsequent observations about the structure
of G, leading to a final contradiction.

We start with the following observation.

Claim 4.3. There exists a minimal triangulation Ĝ of G, such that X is a (η,τ)-nuke of Ĝ as well,

and, moreover, the shelters of Ĝ − X are exactly the same as of G − X .

Proof. Consider the following completion G0 of G: We first turn X into a clique and then, for
every shelterC ofG − X ,we turnC into a clique and make it completely adjacent toX . Clearly,G0

3The main motivation for introducing the notion of a shelter is to explicitly distinguish connected components of G − X

from connected components of G − Ω for some potential maximal clique Ω; we will call the former shelters, while the latter

will be simply connected components.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:11

is a chordal graph, and the set of connected components ofG0 − X andG − X are the same. Conse-

quently, any minimal triangulation Ĝ ofG that is a subgraph ofG0 has the required properties. �

We fix a minimal triangulation Ĝ ofG satisfying the statement of Claim 4.3. Observe the follow-
ing.

Claim 4.4. If two vertices v,u ∈ V (G) \ X appear in the same maximal clique of Ĝ, then they are

contained in the same shelter of G − X .

Proof. Recall thatX is a nuke of Ĝ as well, with Ĝ − X having the same set of shelters asG − X .

Furthermore, uv ∈ E (Ĝ). �

Claim 4.5. For any maximal clique Ω in Ĝ, we have μ (Ω) ≤ 0.1.

Proof. Suppose for the sake of contradiction that μ (Ω) > 0.1 for some maximal clique Ω in

Ĝ. Since Ĝ is already triangulated, Ω is a potential maximal clique in Ĝ, too. Moreover, by the

conditions on G, Ĝ is P7-free (even P6-free) and has at least two vertices. Now apply Theorem 1.4

to Ĝ, Ω, and μ restricted to Ω; recall that μ (Ω) > 0.1 by assumption, so this restriction is well
defined. Let v be the resulting vertex. Then μ (N (v)) ≥ 0.1β = γ , a contradiction (recall that we
assumed that μ (N (v)) < γ at the beginning of the proof of Theorem 4.2). �

Claim 4.6. There exists a maximal clique Ω in Ĝ such that for every connected component C of

G − Ω we have μ (C) ≤ 0.5.

Proof. Construct the clique tree (T ,Φ) of Ĝ. Now, starting from an arbitrary vertex v of T ,
iteratively advance to the neighbor of v in a subtree T ′ of T −v for which μ (Φ(T ′) \ Φ(v)) > 0.5,

until no longer possible. If we can show this process is finite, then Φ(v) is a maximal clique in Ĝ
with the desired property.

To show that this process is finite, note that, in each iteration, there is at most one subtree
into which we can advance by the properties of a clique tree. Now suppose that the process ad-
vances from a vertex v to its neighbor u and then back to v . Let Tv denote the subtree of T − uv
containing v and Tu the subtree of T − uv containing u. First, note that μ (Φ(Tu) \ Φ(v)) > 0.5
by assumption. However, μ (Φ(Tv) \ Φ(u)) > 0.5 by assumption as well. By the properties of a
clique tree, the latter implies that μ (Φ(Tv) \ Φ(v)) + μ (Φ(v) \ Φ(u)) = μ (Φ(Tv) \ Φ(u)) > 0.5 and
thus μ (Φ(Tv) \ Φ(v)) + μ (Φ(v)) > 0.5. However, μ (Φ(Tv) \ Φ(v)) + μ (Φ(Tu) \ Φ(v)) + μ (Φ(v)) ≤
1, because Φ(Tv) ∩ Φ(Tu) ⊆ Φ(v) by the properties of a clique tree. Combined, this means that
μ (Φ(Tu) \ Φ(v)) < 0.5, a contradiction. Hence, the process is finite by the finiteness of T . �

Fix one maximal clique Ω as promised by Claim 4.6. We say that a component C of G − Ω is
nuked if C ∩ X � ∅.

Claim 4.7. There are at least two nuked components.

Proof. By the choice of Ω, every nuked component contains at most half of the measure of X .
Furthermore, by Claim 4.5, μ (Ω) ≤ 0.1. Thus, there are at least two nuked components. �

By Claim 4.4, all vertices of Ω \ X are contained in one shelter of G − X . Let D be this shelter;
we set D = ∅ if Ω ⊆ X .

Claim 4.8. |D | ≥ (0.5 − 3η) |V (G) | ≥ 0.2|V (G) |.

Proof. By Claim 4.7, there exists a nuked component C with |C | ≤ |V (G) |/2. Consider the set
X ′ = X \C . By the minimality ofX ,X ′ is not a (η,τ)-nuke inG. However, as |X ′ | < |X | ≤ η |V (G) |,
both condition (i) and (ii) of Definition 4.1 hold. Hence, the only reason for X ′ to not be a nuke is

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:12 D. Lokshtanov et al.

that condition (iii) does not hold, and thus there exists a shelterC ′ ofG − X ′ that is too large; that
is, |C ′ | + |X ′ | > τ . By the construction ofX ′, the shelters ofG − X ′ andG − X are the same, except
for C ∪ D, which is a shelter of G − X ′, but may contain multiple shelters of G − X . Therefore
C ′ = C ∪ D. Hence, using condition (i) of Definition 4.1,

(1 − 2η) |V (G) | ≤τ < |C ′ | + |X ′ | ≤ |C | + |D |+ |X ′ | ≤ |V (G) |/2 + |D | + |X | ≤ (0.5 + η) |V (G) | + |D |.

�

Note that Claim 4.8 in particular implies that D � ∅; that is, Ω is not completely contained in X .

Claim 4.9. X = N (D).

Proof. Clearly, N (D) ⊆ X . By the minimality ofX , it suffices to show that N (D) is a nuke inG.
Condition (i) of Definition 4.1 holds trivially, and condition (ii) holds by the fact that |N (D) | ≤ |X |.
Hence, it remains to verify that condition (iii) holds. Consider a shelter D ′ ofG − N (D). If D ′ = D,
then |D ′ | + |N (D) | ≤ |D | + |X | ≤ τ by the assumption that X is a nuke. Otherwise, by Claim 4.8
and the assumption η ≤ 0.1 we have

|D ′ | + |N (D) | ≤ |V (G) \ D | ≤ (0.5 + 3η) |V (G) | ≤ (1 − 2η) |V (G) | ≤ τ .

Hence, N (D) is a nuke, which, by the minimality of X , implies that X = N (D). �

Claim 4.10. For every nuked componentC ofG − Ω, it holds that N (C) \ X � ∅; that is, there exists

a non-nuked vertex in the neighborhood of C .

Proof. A direct corollary from the facts that X = N (D), D is connected, and contains vertices
of Ω. �

Claim 4.11. For every x ∈ X there exists a shelter D ′ ofG − X that is different from D and contains

a vertex adjacent to x .

Proof. If that is not the case, then X \ {x } is a nuke as well. Indeed, conditions (i) and (ii)
of Definition 4.1 hold trivially. For condition (iii), note that each shelter of X is still a shelter of
X \ {x }, except the shelter D, which becomes a shelter D ∪ {x }. However, |D ∪ {x }| + |X \ {x }| =
|D | + |X | ≤ τ . Hence, X \ {x } is a nuke, contradicting the minimality of X . �

Our goal is now to exhibit a restricted structure of the nuked components of G − Ω, using the
fact that G is P6-free. Intuitively, every nuked component gives rise to a potential P3 or even P4

sticking into such a component; by combining two such paths, we should obtain a forbidden P6.
The next four observations assert the existence of such sticking out P3s and P4s.

Claim 4.12. For every nuked component C of G − Ω, and every v ∈ N (C) \ X , there exists a P3 in

G with one endpoint in v and the remaining two vertices in C .

Proof. See Figure 4 for an illustration of the proof. Let x ∈ C ∩ X , and let D ′ be a shelter of
G − X different from D and adjacent to x whose existence is asserted by Claim 4.11. Since N (C) \
X ⊆ D, we have D ′ ⊆ C . Consequently, D ′ ∩ N (v) = ∅; in particular, C is not contained in N (v).
The existence of the asserted P3 follows from the connectivity of C . �

Claim 4.13. For every nuked componentC ofG − Ω with μ (C) ≥ 0.1 and for everyv ∈ N (C) there

exists a P3 in G with one endpoint in v and the remaining two vertices in C .

Proof. If such a P3 does not exist, by the connectivity of C we have C ⊆ N (v). However, then
μ (N (v)) ≥ μ (C) ≥ 0.1. �

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:13

Fig. 4. Illustration of the proof of Claim 4.12. In this and all subsequent figures in this section, the nuke is

depicted in gray. Furthermore, in this and the next two figures, the component D is marked with gray dots.

Fig. 5. Illustration of the proof of Claim 4.14.

Claim 4.14. For every nuked component C of G − Ω, if there exists a vertex x ∈ (C ∩ X) \ N (Ω \
X), then there exists a nonempty set Z ⊆ N (C) \ X such that for every v ∈ Z there exists a P4 in G
with one endpoint in v and the remaining three vertices in C \ N (N (C) \ (X ∪ Z)).

Proof. See Figure 5 for an illustration of the proof. DefineZ to be the set of vertices in N (C) \ X
that are reachable from x via a path with all internal vertices inC ∩ D. The fact that Z is nonempty
follows from the facts thatD is connected, ∅ � N (C) \ X ⊆ D, and x ∈ X = N (D). Note thatZ ⊆ Ω,
because Z ⊆ N (C) and C is a (nuked) component of G − Ω.

Consider anyv ∈ Z . Let P be a shortest path fromv to x with all internal vertices inC ∩ D. By the
definition ofZ , such a path exists. Since P is a shortest path, it is an induced one. Furthermore, since
Z ⊆ Ω while x � N (Ω \ X), the path P contains at least three vertices. Prolong P with a neighbor
of x in D ′, a shelter different from D adjacent to x (whose existence is asserted by Claim 4.11),
obtaining a path on at least four vertices with one endpoint in v and remaining vertices in C .

To finish the proof, it suffices to argue that no vertex of P except for v may have a neighbor in
N (C) \ (X ∪ Z). This statement is true for the part of P contained inC ∩ D, by the definition of Z .
By assumptions, x has no neighbor in Ω \ X . Finally, no vertex in D ′ is adjacent to any vertex of
N (C) \ (X ∪ Z) ⊆ D. �

Claim 4.15. For every nuked component C of G − Ω, for every two vertices u,v ∈ N (C) \ X , if

there exists a vertex x ∈ C ∩ X ∩ (N (v) \ N (u)), then there exists a P3 in G with one endpoint in v
and the remaining two vertices in C \ N (u).

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:14 D. Lokshtanov et al.

Fig. 6. Illustration of the proof of Claim 4.15.

Fig. 7. Illustration of the proof of Claim 4.16. The dotted connection between v1 and v2 may be realized

through a third component.

Proof. See Figure 6 for an illustration of the proof. LetD ′ be a shelter ofG − X , different fromD
and adjacent to x , whose existence is asserted by Claim 4.11. For the required P3, take the vertices
v , x , and any vertex of N (x) ∩ D ′. �

We now study the possible relations between the neighborhoods of nuked components. The
following observation serves as a starting point.

Claim 4.16. For every two nuked componentsC1,C2 ofG \ Ω, it holds that N (C1) \ X ⊆ N (C2) \ X
or N (C2) \ X ⊆ N (C1) \ X .

Proof. See Figure 7 for an illustration of the proof. By contradiction, assume that there exists
vi ∈ N (Ci) \ (X ∪ N (C3−i)) for i = 1, 2. For i = 1, 2, let P i be a P3 with endpoint in vi and other
vertices inCi , whose existence is asserted by Claim 4.12. Ifv1v2 ∈ E (G), then concatenated paths P1

and P2 form a P6, a contradiction. Otherwise, by Theorem 2.3 there exists a componentC ofG \ Ω
with v1,v2 ∈ N (C). Clearly, C � Ci for i = 1, 2. Hence, by concatenating P1, a shortest path from
v1 to v2 through C , and P2, we obtain an induced path on at least 7 vertices, a contradiction. �

Claim 4.16 allows us to order the nuked components of G − Ω as C1,C2, . . . ,Cr , so that

N (C1) \ X ⊇ N (C2) \ X ⊇ . . . ⊇ N (Cr) \ X .

By Claim 4.7, r ≥ 2.
We say that two nuked components Ci and Cj , 1 ≤ i, j ≤ r , i � j are linked if for every choice

of u ∈ N (Ci) \ X and v ∈ N (Cj) \ X there exists an induced path in G with endpoints u and v

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:15

Fig. 8. Illustration of the proof of Claim 4.17. The existence of the dotted connection between v and u is

implied by the linkedness of Ci and Cj .

and all internal vertices inV (G) \ N [Ci ∪Cj]. We remark that if u = v or uv ∈ E (G), then the last
assertion is true as we can take an one- or two-vertex path, respectively.

In the next few observations, we investigate the properties of linked components.

Claim 4.17. If Ci and Cj are linked, then for every two vertices u,v ∈ Ω \ X , one of the following

holds:

(1) N (u) ∩ X ∩Ci = N (v) ∩ X ∩Ci ,

(2) N (u) ∩ X ∩Cj = N (v) ∩ X ∩Cj ,

(3) N (u) ∩ X ∩ (Ci ∪Cj) � N (v) ∩ X ∩ (Ci ∪Cj), or

(4) N (v) ∩ X ∩ (Ci ∪Cj) � N (u) ∩ X ∩ (Ci ∪Cj).

Proof. See Figure 8 for an illustration of the proof. Assume the contrary. By symmetry, we
can consider only the case where (N (v) ∩Ci ∩ X) \ N (u) � ∅ and (N (u) ∩Cj ∩ X) \ N (v) � ∅.
Clearly, v ∈ N (Ci) \ X , u ∈ N (Cj) \ X , and u � v . By applying Claim 4.15 twice, we obtain a P3

Pv with endpoint in v and the remaining two vertices in Ci \ N (u), and a P3 P
u with endpoint in

u and the remaining two vertices in Cj \ N (v). These two paths, together with the induced path
between u and v promised by the fact that Ci and Cj are linked, yield an induced path on at least
six vertices, a contradiction. �

With every nuked component Ci , we associate the family Fi := {N (v) ∩Ci ∩ X : v ∈ Ω \ X }.

Claim 4.18. If Ci and Cj are linked, then Fi or Fj has a unique maximal element with respect to

inclusion.

Proof. Assume otherwise. Let u,v ∈ Ω \ X be such that Au := N (u) ∩Ci ∩ X and Av :=
N (v) ∩Ci ∩ X are two different maximal elements of Fi , and p,q ∈ Ω \ X be such that Bp :=
N (p) ∩Cj ∩ X and Bq := N (q) ∩Cj ∩ X are two different maximal elements of Fj . By Claim 4.17
we have N (u) ∩Cj ∩ X = N (v) ∩Cj ∩ X ; let us denote this set by B. Similarly, N (p) ∩Cj ∩ X =
N (q) ∩Cj ∩ X , and we denote this set A. If B and Bp are incomparable with respect to inclusion,
then Claim 4.17 asserts thatA = Au (for pairu andp) andA = Av (for pairv andp), a contradiction.
By maximality of Bp , we have B ⊆ Bp . Similarly, we infer that B ⊆ Bq . Hence, B ⊆ Bp ∩ Bq ; by the
incomparability of Bp and Bq , we infer that B � Bp . However, Claim 4.17 asserts then that Au ⊆ A
(for the pair p,u) and Av ⊆ A (for the pair p,v). This is a contradiction with the maximality and
incomparability of Au and Av . �

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:16 D. Lokshtanov et al.

Fig. 9. Illustration of the proof of Claim 4.20. The set X ∩ Ω is omitted in order to keep the picture clear.

Claim 4.19. Let I ⊆ {1, 2, . . . , r } be a set of indices such that for any i, j ∈ I , i � j, Ci and Cj are

linked. Then there exists a vertex v ∈ Ω \ X and an index i0 such that

X ∩ N (Ω \ X) ∩ ��
�

⋃
i ∈I \{i0 }

Ci
��
�
⊆ N (v).

Proof. If |I | ≤ 1, the claim is straightforward, so assume otherwise. By Claim 4.18, there exists
at most one index i0 such that Fi0 does not admit a unique maximal element. (If no such index
exists, we set i0 ∈ I arbitrarily.)

Foru ∈ Ω \ X , we define Iu ⊆ I \ {i0} to be the set of indices i ∈ I \ {i0} for which N (u) ∩Ci ∩ X
is the unique maximal element of Fi ; note that this unique maximal element exists because i ∈
I \ {i0}. Let v be a vertex such that |Iv | is maximized.

We prove that Iv = I \ {i0}. Assume the contrary: There exists j ∈ I \ {i0} such that N (v) ∩Cj ∩
X is not the maximal element of Fj . Let w ∈ Ω \ X be such that N (w) ∩Cj ∩ X is the maximal
element of Fj . We have N (v) ∩Cj ∩ X � N (w) ∩Cj ∩ X . By Claim 4.17, for every i ∈ Iv we have
N (v) ∩Ci ∩ X ⊆ N (w) ∩Ci ∩ X . However, N (v) ∩Ci ∩ X is the unique maximal element of Fi .
Consequently, Iv ⊆ Iw . However, j ∈ Iw \ Iv , which contradicts the choice of v .

Using that Iv = I \ {i0},N (v) ∩Ci ∩ X is the maximal element of Fi for each i ∈ I \ {i0}, meaning
that N (u) ∩Ci ∩ X ⊆ N (v) ∩Ci ∩ X ⊆ N (v) for each u ∈ Ω \ X and each i ∈ I \ {i0}. Hence, X ∩
N (Ω \ X) ∩⋃

i ∈I \{i0 }Ci ⊆ N (v), as claimed. �

Consider now the following corollary of Claim 4.14.

Claim 4.20. For every 2 ≤ i ≤ r we haveX ∩Ci ⊆ N (Ω \ X). Furthermore, ifX ∩C1 � N (Ω \ X),
then the set Z whose existence is asserted in Claim 4.14 for the componentC1 is completely contained

in N (C1) \ (X ∪ N (C2)).

Proof. See Figure 9 for an illustration of the proof. Let 1 ≤ i ≤ r and suppose that X ∩Ci �
N (Ω \ X) (for i ≥ 2, this is for the sake of contradiction; for i = 1, this is the assumption in the claim
statement). LetZi ⊆ N (Ci) \ X denote the nonempty set whose existence is asserted by Claim 4.14.
If i = 1, then also assume for the sake of contradiction that Z1 � N (C1) \ (X ∪ N (C2)). Let j ∈
{1, 2} \ {i} (Cj exists, because r ≥ 2 by Claim 4.7).

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:17

Fig. 10. Illustration of the proof of Claim 4.23. The dotted connection between v and u may be realized

through a third component.

We first observe that Zi ∩ (N (Cj) \ X) � ∅. If i > j, then this follows from the fact that Zi ⊆
N (Ci) \ X by definition (see Claim 4.14) and that N (Ci) \ X ⊆ N (Cj) \ X by the ordering on the
nuked components. If i < j, then i = 1, j = 2, and Z1 contains a vertex u � N (C1) \ (X ∪ N (C2)) by
assumption, and thus u ∈ N (C2) \ X , because Z1 ⊆ N (C1) \ X . This proves the observation.

Now letv ∈ Zi ∩ (N (Cj) \ X) (v exists by the preceding observation). By Claim 4.14 and the fact
that v ∈ Zi , there exists a P4 in G with one endpoint in v and the remaining three vertices in Ci .
By Claim 4.12 and the fact thatv ∈ N (Cj) \ X , there exists a P3 inG with one endpoint inv and the
remaining two vertices inCj . The concatenation of these two paths is a P6 inG, a contradiction. �

Observe now the following:

Claim 4.21. For every 2 ≤ i, j ≤ r , i � j, the components Ci and Cj are linked.

Proof. Two vertices u ∈ N (Ci) \ X and v ∈ N (Cj) \ X can be linked either via a direct edge if
it exists in G or via a shortest path with internal vertices in C1. �

Combining now Claim 4.20 with Claim 4.19 applied to I = {2, 3, . . . , r }, we obtain that:

Claim 4.22. There exists an index i0 ∈ {2, . . . , r } such that μ (C1 ∪Ci0) ≥ 0.8. In particular,

μ (C1), μ (Ci0) ≥ 0.3.

Proof. By Claim 4.19, applied to I = {2, 3, . . . , r }, we have an index i0 and a vertex v adjacent
to all vertices of X ∩Cj ∩ N (Ω \ X) for j � {1, i0}. However, by Claim 4.20, these are actually all
vertices of X ∩Cj . Since μ (N (v)) < γ ≤ 0.1 and μ (Ω) ≤ 0.1, the first claim follows. The second
claim follows from the choice of Ω: μ (C) ≤ 0.5 for every connected component C of G − Ω. �

Fix the index i0 from Claim 4.22.

Claim 4.23. N (C1) ∪ N (Ci0) � Ω.

Proof. See Figure 10 for an illustration of the proof. By contradiction, assume that N (C1) ∪
N (Ci0) = Ω. By Theorem 2.3, neither N (C1) nor N (Ci0) equals the whole Ω, thus there exists v ∈
N (C1) \ N (Ci0) and u ∈ N (Ci0) \ N (C1). By Claim 4.13, there exist a P3 Pv with endpoint in v
and remaining two vertices in C1, and a P3 P

u with endpoint in u and remaining two vertices in
Ci0 . If uv ∈ E (G), then these two paths together give a P6 in G, a contradiction. Otherwise, by
Theorem 2.3, there exists a component C of G − Ω such that u,v ∈ N (C). Clearly, C � {C1,Ci0 }.
However, then a concatenation of Pv , a shortest path from v to u with internal vertices in C , and
Pu , yields an induced path in G on at least 7 vertices, a contradiction. �

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:18 D. Lokshtanov et al.

Fig. 11. Illustration of the proof of Claim 4.25. The vertex u is not adjacent to any of the three vertices inC1

since u � Z (Claim 4.20). The existence of a connection between u and v is guaranteed by the linkedness of

C1 and Ci0 .

Claim 4.24. C1 and Ci0 are linked.

Proof. Consider any v ∈ N (C1) \ X and u ∈ N (Ci0) \ X ; we are going to exhibit an induced
path from v to u with internal vertices in V (G) \ N [C1 ∪Ci0]. If v = u or vu ∈ E (G), then we are
done with the one- or two-vertex path. If there exists a connected componentC ofG − Ω different
from C1 or Ci0 such that u,v ∈ N (C), then we can choose a shortest path from v to u with all
internal vertices in C .

Otherwise, let w be an arbitrary vertex of Ω \ N (C1 ∪Ci0), whose existence follows from
Claim 4.23, and we route a path through the vertex w . Let Pv = vw if vw ∈ E (G), and otherwise
let Pv be a shortest path from v to w with internal vertices in a connected component C covering
the nonedge vw ; note that C � {C1,Ci0 } as w � N (C1 ∪Ci0). Similarly, define the path Pu from u
to w . Since no component different from C1 or Ci0 has both u and v in their neighborhood, the
concatenation of Pv and Pu forms the desired path. �

In the next two claims, we exhibit the final contradiction.

Claim 4.25. C1 ∩ X ⊆ N (Ω \ X).

Proof. See Figure 11 for an illustration of the proof. Assume the contrary. By Claim 4.20, the
set Z whose existence is asserted by Claim 4.14 for the component C1 is completely contained in
N (C1) \ (X ∪ N (C2)) ⊆ N (C1) \ (X ∪ N (Ci0)). Consider any v ∈ Z and u ∈ N (Ci0) \ X ⊆ N (C1) \
(X ∪ Z). By Claim 4.14, there exists a P4 P

v with endpoint in v and internal vertices in C1 \ N (u).
Furthermore, by Claim 4.13, there exists a P3 P

u with endpointu and internal vertices inCi0 . Recall
thatv � N (Ci0); thus, Pu does not contain any neighbor ofv , except for possiblyu. Hence, the paths
Pv and Pu , together with the path between v and u whose existence is asserted by the fact that
C1 andCi0 are linked following Claim 4.24, form an induced path in G on at least seven vertices, a
contradiction. �

Claim 4.26. There exists a vertex v such that C1 ∩ X ⊆ N (v) or Ci0 ∩ X ⊆ N (v).

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:19

Proof. By Claim 4.19 applied to I = {1, i0}, we obtain a vertex v such that C1 ∩ X ∩ N (Ω \
X) ⊆ N (v) or Ci0 ∩ X ∩ N (Ω \ X) ⊆ N (v). However, Ci0 ∩ X ⊆ N (Ω \ X) due to Claim 4.20 and
C1 ∩ X ⊆ N (Ω \ X) due to Claim 4.25. �

We now complete the proof of Theorem 4.2. Recall that by Claim 4.22, we have μ (C1), μ (Ci0) ≥
0.3. Moreover, by Claim 4.26, there exists a vertex v such that C1 ∩ X ⊆ N (v) or Ci0 ∩ X ⊆ N (v).
Since μ is a probability measure over X , this implies that μ (N (v)) ≥ 0.3. This contradicts our as-
sumption that μ (N (u)) < γ ≤ 0.1 for every u ∈ V (G), and thus finishes the proof.

5 THE ALGORITHM FOR MAXIMUM WEIGHT INDEPENDENT SET

We now make use of Theorems 1.4 and 4.2 to design an algorithm that solves Maximum Weight

Independent Set in n-vertex P6-free graphs in nO (log2 n) time.

5.1 Description of the Algorithm

The algorithm consists of two recursive procedures, FindIS and FindISNuke, which both aim to
find an independent set of maximum weight in a given connected vertex-weighted P6-free graphG.
The procedure FindIS is the “base” procedure, which we call on the graph G. Both procedures
make recursive calls to themselves and to each other. We describe each procedure and then analyze
their running time.

5.1.1 Procedure FindIS. The input for the procedure FindIS is just a connected P6-free graph
G. As a base case, if the input graph consists of one vertex, FindIS returns the weight of this vertex.
Otherwise, it checks if there exists a vertex of degree at least 0.05β |V (G) |, where the constant β
comes from Theorem 1.4.

If such a vertex v exists, then the procedure branches on the vertex v . In one branch, we seek
a solution not containing v , and we call FindIS independently on every connected component of
G −v . In the second branch, we seek a solution containing v , and we call FindIS independently
on every connected component of G − N (v).

Otherwise—that is, if all vertices are of degree less than 0.05β |V (G) | —the algorithm takes an

arbitrary minimal triangulation Ĝ of G (see, e.g., Heggernes [37] for algorithms that find such

a triangulation), constructs its clique tree, and finds a maximal clique Ω in Ĝ such that every
connected component ofG − Ω has at most |V (G) |/2 vertices (such a maximal clique can be found
in polynomial time by the arguments in Claim 4.6). We observe the following:

Claim 5.1. |Ω | < 0.05|V (G) |.
Proof. If |Ω | ≥ 0.05|V (G) |, then Theorem 1.4 applied to Ω with the uniform measure, implies

that there exists a vertex v with |N (v) | ≥ |N (v) ∩ Ω | ≥ 0.05β |V (G) |, a contradiction. �

By the choice of Ω, if we set τ = 0.8|V (G) |, then Ω is a (0.1,τ)-nuke in G (with a lot of slack in
the inequalities in condition (ii) and (iii) of Definition 4.1). The algorithm passes the graph G, the
threshold τ , and the nuke Ω to the procedure FindISNuke.

5.1.2 Procedure FindISNuke. The input for the procedure FindISNuke is a connected P6-free
graphG, a threshold τ , and a set X ⊆ V (G) with the promise that, for every connected component
C of G − X , it holds that |C | + |X | ≤ τ .

The algorithm first checks if G contains at least two vertices and X is a non-empty (0.1,τ)-
nuke of G (note that X is such a nuke when FindISNuke is invoked by FindIS). If this is not the
case, then the algorithm invokes FindIS on the graph G, forgetting about τ and X . Otherwise,
it finds any inclusion-wise minimal (0.1,τ)-nuke Y ⊆ X , and finds a vertex v with |N (v) ∩ Y | ≥
γ |Y |; the existence of such vertex is guaranteed by applying Theorem 4.2 to Y with the uniform

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:20 D. Lokshtanov et al.

measure. The algorithm branches on vertex v as usual. That is, in one branch, we seek a solution
not containingv , and we call FindISNuke independently on every connected component ofG −v .
In the second branch, we seek a solution containing v , and we call FindISNuke independently on
every connected component of G − N (v). In every subcall, we pass the same threshold τ and the
set Y restricted to the vertex set of the connected component in question. Clearly, since we delete
only vertices fromG or reduce X to a minimal sub-nuke, in the subcalls, we maintain the promise
that for every connected component C of G − X it holds that |C | + |X | ≤ τ .

5.2 Analysis

As the algorithm performs exhaustive branching, it clearly returns an optimum solution. Also, the
polynomial space bound is immediate. It remains to argue about the running time.

Consider the recursion treeT0 of the algorithm and focus on one call c to FindIS(G) that resulted
in a subcall FindISNuke(G,τ ,X); here, τ = 0.8|V (G) | and X is a potential maximal clique in G of
size at most 0.05|V (G) | (by Claim 5.1). Every call to FindISNuke results either in branching and
multiple calls to the same procedure (call it a branching call) or in a single call to FindIS (call
it a fallback call). Let T be a maximal subtree at T0, rooted at the chosen call c to FindIS, that
contains (apart from the root) only calls to FindISNuke. That is, we put into T all recursive calls
that originated from c and stop whenever we encounter a fallback call; in particular, all leaves of
T are fallback calls.

Claim 5.2. T has |V (G) |O (log |V (G) |) leaves.

Proof. In every branch of FindISNuke, we either (A) delete one vertex from G, or (B) delete
a constant fraction of the minimal sub-nuke Y of X (recall that the vertex v we branch on was
chosen so that |N (v) ∩ Y | ≥ γ |Y |). Color the edges of T either by “A” or “B” depending on the
type of branch. Note that the path P� from a leaf � of T to the root of T can contain at most
log |V (G) | edges of T colored B because FindISNuke stops when the nuke is empty, and each
B branch reduces the size of the nuke by a constant fraction. Moreover, each path P� has length
at most |V (G) |, because each branch reduces the number of vertices of G by at least 1 and has a
unique coloring because the edges to the children of a vertex of T are colored distinctly. Hence, T
has |V (G) |O (log |V (G) |) leaves. The fact that the algorithm independently considers every connected
component only helps in the analysis. �

Let FindISNuke(G ′,τ ′,X ′) be a leaf of T . We claim the following:

Claim 5.3. |V (G ′) | < 8
9 |V (G) |.

Proof. Since we are considering a fallback call, either |V (G ′) | = 1, |X ′ | = 0, or X ′ is not a
(0.1,τ ′)-nuke of G ′. In the first case, since |V (G) | > 1, the claim is obvious. In the second case,
by the fact that the input graph of any call to FindISNuke is connected and the promise main-
tained in the course of algorithm that for every connected component C of G ′ − X ′, it holds that
|C | + |X ′ | ≤ τ , the claim also holds.

In the third case, consider the reasons why X ′ may not be a (0.1,τ ′)-nuke of G ′. Clearly,
τ ′ = τ = 0.8|V (G) | and, by the promise maintained in the course of algorithm that for every con-
nected component C of G ′ − X ′, it holds that |C | + |X ′ | ≤ τ . Furthermore, (1 − 2 · 0.1) |V (G ′) | ≤
(1 − 2 · 0.1) |V (G) | = τ . Hence, either (1 − 0.1) |V (G ′) | < τ = 0.8|V (G) | or |X ′ | > 0.1|V (G ′) |. In the
first case |V (G ′) | < 8

9 |V (G) |, while in the second case |V (G ′) | ≤ |V (G) |/2 because |X | ≤ 0.05|V (G) |
and X ′ ⊆ X . �

By Claim 5.3, if we contract every such subtree T to a single super-node of the recursion tree

T0, then, at each such super-node, we branch into |V (G) |O (log |V (G) |) subcases, and in each subcase
decrease the number of vertices by a multiplicative factor.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:21

Now focus on a call c to FindIS that branches on a vertex v ∈ V (G) of degree at least
0.05β |V (G) |. Observe that at most one recursive subcall of c is invoked on a graph with at least
(1 − 0.05β) |V (G) | vertices: the one for the largest connected component of G −v . Mark the edges
of the recursion tree that correspond to such subcalls. The marked edges form vertex-disjoint top-
bottom paths in the recursion tree. If we contract them (along with the aforementioned subtrees

T), we obtain a recursion tree where every node has |V (G) |O (log |V (G) |) subcases and where in
each subcase the number of vertices decreases by a constant factor. Consequently, the size of the

recursion tree is |V (G) |O (log2 |V (G) |) . This finishes the analysis of the algorithm and concludes the
proof of Theorem 1.1.

6 THE ALGORITHM FOR MAXIMUM WEIGHT EFFICIENT DOMINATING SET

In this section, we prove Theorem 1.2. The overall approach is as follows: We take any minimal
triangulation of the input graphG and perform the standard dynamic programming algorithm on
the clique tree of this triangulation (which is a tree decomposition ofG). In this standard dynamic
programming algorithm, every state at bag B keeps information about which vertices of B are
contained in the constructed efficient dominating set and which vertices of B have already been
dominated by the forgotten parts of the graph.

The main insight is that we can use Theorem 1.4, together with technical insight from the
proof of Theorem 1.1, to show that in P6-free graphs there are only polynomially many reason-
able states for the aforementioned dynamic programming algorithm. This then yields the claimed
polynomial-time algorithm.

6.1 Bounding the Number of States

Before we state this main result formally, we need the following definition. Let Ω be a potential
maximal clique in G, and let C be the set of connected components of G − Ω. A state is a function
f : Ω → C ∪ {Ω,⊥}. A state f is consistent with an efficient dominating set X if X ∩ Ω = f −1 (⊥),
and, furthermore, for every v ∈ Ω \ X , the unique vertex of N (v) ∩ X belongs to the vertex set of
f (v).

Theorem 6.1. Given a P6-free graphG and a potential maximal clique Ω inG, one can in polyno-

mial time compute a family S of states of polynomial size such that, for every efficient dominating

set X in G, there exists a state f ∈ S consistent with X .

This subsection is devoted to the proof of Theorem 6.1. We describe the algorithm as a branching
algorithm that outputs a state at every leaf of the branching tree, and every leaf-to-root path of the
branching tree contains O (logn) nodes of constant degree and O (1) nodes of degree polynomial
in n. Furthermore, it will be straightforward to perform the computation required at every node
of the branching tree in polynomial time. These properties give the promised polynomial bounds
on the size of the output and the total running time.

Every node of the branching tree is labeled with two vertex sets X0 and Y , and the goal of the
subtree rooted at the node labeled (X0,Y) is to output a family of states such that for every efficient
dominating set X with X0 ⊆ X and (X \ X0) ⊆ Y (henceforth called an efficient dominating set
consistent with (X0,Y)) there exists an output consistent state. In every branching step, in every
subcase, the algorithm puts some vertices intoX0 and/or removes some vertices fromY . Since every
two elements of an efficient dominating set are within distance at least three, we implicitly assume
that if the algorithm puts a vertexv into X0, it at the same time removes from Y all vertices within
distance at most two from v . Furthermore, we immediately terminate a branch if two vertices of
X0 are within distance less than three or if there exists v ∈ V (G) with N [v] ∩ (X0 ∪ Y) = ∅.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:22 D. Lokshtanov et al.

The algorithm terminates branching at nodes labeled (X0,Y) where for everyv ∈ Ω either N [v]
contains a vertex of X0, or N [v] ∩ Y is contained in a single component of C. For such a label
(X0,Y), we define a state f as follows: f (v) = ⊥ for v ∈ X0 ∩ Ω, f (v) = Ω for v ∈ N (X0) ∩ Ω,
and otherwise f (v) is the unique component of C that contains vertices of N [v] ∩ (X0 ∪ Y). It is
straightforward to verify that if X is consistent with (X0,Y), then f is well-defined and f is also
consistent with X . Consequently, the algorithm outputs the function f in this leaf node of the
branching tree.

At the root of the branching tree, we have X0 = ∅ and Y = V (G).

6.1.1 Guessing Vertices from the Solution Inside the Potential Maximal Clique. We start with the
following observation:

Lemma 6.2. For every P7-free graph G, every potential maximal clique Ω in G, and every efficient

dominating set X in G, we have |Ω ∩ X | ≤ 1/β , where the constant β comes from Theorem 1.4.

Proof. Without loss of generality, we can assume that G is connected (we can consider every
component independently) and contains at least two vertices (for one-vertex graphs the statement
is trivial).

Let � = |Ω ∩ X |. Consider a measure μ on Ω such that μ (v) = 1/� if v ∈ Ω ∩ X and μ (v) = 0
otherwise. By Theorem 1.4, there exists a vertex u with μ (N (u)) ≥ β . However, by the definition
of an efficient dominating set, we have |N (u) ∩ X | ≤ 1. Consequently, μ (N (u)) ≤ 1/�, hence � ≤
1/β . �

By Lemma 6.2, our algorithm can, as a first step, guess all vertices from the solution that lie in
Ω. More formally, the algorithm branches into a subcase for every subset XΩ ⊆ Ω of size at most
1/β ; we label the subcase corresponding toXΩ by (XΩ,V (G) \ (N 2[XΩ] ∪ Ω)). We emphasize here
that we not only removed from Y all vertices within distance at most two from XΩ , but also all
vertices from Ω. Thus, from this point, we have that Y ∩ Ω = ∅.

6.1.2 Reduction Rule. Fix a node of the branching tree labeled (X0,Y) with Y ∩ Ω = ∅. We say
that a component C ∈ C is active if C ∩ Y � ∅. Let A = Ω \ N [X0] be the set of vertices that are
not yet dominated by the vertices from X0. Let B ⊆ A be the set of these vertices v such that the
vertices of N (v) ∩ Y appear in at least two connected components of C. Note that the algorithm
terminates branching and outputs a state if B = ∅; the main goal in the branching step is to shrink
the set B as much as possible.

We start by introducing a reduction rule aimed at shrinking the set Y without performing any
branching. For a vertexu ∈ V (G) \ Ω, letC (u) be the component of C that containsu. Assume that
for some vertex v ∈ B there exists u ∈ N (v) ∩ Y such that N [u] ∩ Y ⊆ N (v). Let X be an efficient
dominating set consistent with (X0,Y). Since Y ∩ N [X0] = ∅, the vertex u is dominated by some
vertex w ∈ N [u] ∩ (X \ X0) ⊆ N [u] ∩ Y . By our assumption, w also dominates v . Consequently,
in every efficient dominating set consistent with (X0,Y), the vertex v is dominated by an element
of C (u), and we can introduce the following reduction rule:

Reduction Rule. If there exist vertices v ∈ B and u ∈ N (v) ∩ Y such that N [u] ∩ Y ⊆ N (v), then
remove from Y all vertices of N (v) \C (u).

Note that the Reduction Rule removes neither v , nor u, nor the vertex dominating them in any
efficient dominating set consistent with (X0,Y). Furthermore, an application of the Reduction Rule
on a vertexv ∈ B effectively removesv from the set B as it leaves in Y only the neighbors ofv that
are in the component C (u). Also observe that the Reduction Rule triggers on any vertex of B that
is fully adjacent to an active component (recall that Ω ∩ Y = ∅).

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:23

Fig. 12. Illustration of the proof of Lemma 6.3. The dotted connection between v1 and v2 may be realized

through a third component.

In what follows, we assume that, at every node of the recursion tree, the Reduction Rule is
applied exhaustively. Observe that if this rule is not applicable, then for everyv ∈ B andu ∈ N (v) ∩
Y , there exists a vertex w ∈ (Y ∩ N (u)) \ N (v); note that w ∈ C (u) and {v,u,w } induce a P3 in G.
The main intuition of the remaining proof is that the graph needs to be highly structured in order
to not allow two such P3’s to “glue” together into a P6 in G.

6.1.3 Structure of B-Neighborhoods. As a first application of this principle, observe the
following:

Lemma 6.3. If C1,C2 are two different components of C, then N (C1) \ N (C2) is fully adjacent to

C1, or N (C2) \ N (C1) is fully adjacent to C2.

Proof. See Figure 12 for an illustration of the proof. Assume the contrary. Let vi ∈ N (Ci) \
N (C3−i) be a vertex that is not fully adjacent to Ci for i = 1, 2. Since vi is not fully adjacent to
Ci , but vi ∈ N (Ci) andCi is connected, there exists an induced P3 with one endpoint vi and other
vertices inCi ; denote this P3 as P i . Furthermore, by Theorem 2.3, eitherv1v2 ∈ E (G) or there exists
a componentC ∈ C such thatv1,v2 ∈ N (C). Clearly,C � {C1,C2}. Consequently, by concatenating
P1, P2, and the edgev1v2 or a shortest path betweenv1 andv2 with internal vertices inC , we obtain
an induced path on at least 6 vertices, a contradiction. �

Since our Reduction Rule removes from B vertices that are fully adjacent to some active compo-
nent, we infer from Lemma 6.3 that we can enumerate active components as C1,C2, . . . ,Cr such
that NB (Ci) ⊇ NB (Cj) for every i ≤ j. Furthermore, since every element in B has neighbors in Y
in at least two components by definition, we have that NB (C1) = NB (C2) = B. Summing up,

B = NB (C1) = NB (C2) ⊇ NB (C3) ⊇ . . . ⊇ NB (Cr). (6.1)

6.1.4 Obtaining Linkedness. In order to “glue” two P3’s, we use the following notion. We say
that two active components C1 and C2 are linked if for every two vertices v1 ∈ B ∩ N (C1), v2 ∈
B ∩ N (C2) there exists an induced path in G with endpoints v1 and v2 and all internal vertices
in V (G) \ (N [C1] ∪ N [C2]). We explicitly allow 1-vertex and 2-vertex paths here (if v1 = v2 or
v1v2 ∈ E (G)).

We start by observing the following:

Lemma 6.4. Every pair of active components is linked, except for possibly the pair {C1,C2}.
Proof. By (6.1), for every other pair {Ci ,Cj }, we can use either C1 or C2 to route the desired

path. �

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:24 D. Lokshtanov et al.

Our goal now is to ensure that also {C1,C2} are linked. The following lemma uses essentially
the same arguments as Claim 4.24 of Section 4.

Lemma 6.5. If two active componentsC1 andC2 satisfy N (C1) ∪ N (C2) � Ω, then they are linked.

Proof. Let w ∈ Ω \ (N (C1) ∪ N (C2)) and consider two vertices v1 ∈ B ∩ N (C1), v2 ∈ B ∩
N (C2). Ifv1 = v2 or v1v2 ∈ E (G), then we are trivially done. Furthermore, if there exists a compo-
nentC ∈ C \ {C1,C2} with v1,v2 ∈ N (C), then we are done as well by taking a shortest path from
v1 to v2 with all internal vertices in C .

In the remaining case, we start with connecting for i = 1, 2 the vertex vi with w by an induced
path P i as follows: If viw ∈ E (G), then we take P i to be this edge only, while otherwise we take
a component Di ∈ C with vi ,w ∈ N (Di) (whose existence is promised by Theorem 2.3) and take
as P i a shortest path from vi to w with internal vertices in Di . Note that Di � {C1,C2}, since
w ∈ N (Di). Furthermore, v3−i � Di , as no component other than C1 and C2 can neighbor both v1

andv2. Consequently, D1 � D2, and the concatenation of P1 and P2 gives the desired path fromv1

to v2. �

By Lemma 6.5, the pair {C1,C2} is linked unless N (C1) ∪ N (C2) = Ω. However, if this is the
case, then, by Theorem 2.3, we have that both N (C1) \ N (C2) and N (C2) \ N (C1) are nonempty.
By Lemma 6.3, there exists i ∈ {1, 2} and a vertexvi ∈ Ω that is fully adjacent toCi . Consequently,
every efficient dominating set consistent with (X0,Y) contains exactly one vertex of Ci : it needs
to contain at least one to dominate Y ∩Ci , but at most one since every vertex of Ci dominates vi .

We branch into |Y ∩Ci | directions, guessing the vertex from Y ∩Ci that belongs to the solution
and putting it into X0. Furthermore, in every branch, we remove from Y all vertices of Y ∩Ci . In
every subcase,Ci is no longer an active component, but witnesses that every two other components
that remain active are linked: Since B ⊆ N (Ci), we can always route a path between the desired
endpoints through Ci .

By the preceding analysis and branching step, we can assume henceforth that any pair of active
components is linked.

6.1.5 Branching on Bad Vertices. Partition Y into Y1 = {y ∈ Y : |NB (y) | ≥ |B |/16} and Y2 = Y \
Y1. Let Y ∗1 be the set of vertices y ∈ Y1 for which the addition of y to the solution (i.e., to X0)
and the subsequent exhaustive application of the Reduction Rule reduces B to an empty set. Let
Y ◦1 = Y1 \ Y ∗1 .

If we would know that some vertex ofY ∗1 belongs to the solution, then we could just guess it and
the Reduction Rule would reduce the set B completely (we analyze this more precisely in the next
subsection). In this subsection, we focus on the analysis of the set of “bad” vertices Y ◦1 , showing
that any such vertex also gives ground to a good branching—but in a completely different fashion.

Let y ∈ Y ◦1 be chosen arbitrarily. Define Y ◦ and B◦ as follows: If we add y toX0 and exhaustively
apply the Reduction Rule, then let Y ◦ be the set to which Y is shrunk and B◦ � ∅ the set to which
B is shrunk. It is important to note that we do not actually add y to X0; we only aimed to define
Y ◦ and B◦. We claim the following:

Lemma 6.6. For every z ∈ N [y] ∩ Y , it holds that NB (y) ⊆ N (z) or B◦ ⊆ N (z).

Proof. See the left panel of Figure 13 for an illustration of the proof. Fix a vertex z as in the
statement and assume the contrary: There exist p ∈ NB (y) \ N (z) and q ∈ B◦ \ N (z). Note that
z � y, as p ∈ NB (y) and p � N (z). Since q ∈ B◦, there exists at least two components of C that
contain vertices of N (q) ∩ Y ◦. Let Cq be one of these components that is different from C (y), and
let s ∈ N (q) ∩Cq ∩ Y ◦. Since the Reduction Rule does not trigger on q and s after y has been put
into X0, there exists t ∈ (N (s) ∩ Y ◦) \ N (q); clearly, t lies also in Cq .

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:25

Fig. 13. Illustration of the proof of Lemma 6.6 (left) and of Lemma 6.7 (right).

Observe that q, s, t induce a P3, and that s and t are not adjacent to p ∈ NB (y) as s, t ∈ Y ◦. Fur-
thermore, p,y, z induce a P3, while y and z are not adjacent to q. Since Cq and C (y) are linked,
we can connect p and q by an induced path avoiding N [Cq] ∪ N [C (y)], giving together with the
aforementioned P3’s an induced path on at least six vertices, a contradiction. �

Lemma 6.6 allows us to branch into two directions, deciding whether the element of the sought
efficient dominating set that dominates the vertexy also dominates the setNB (y) or the setB◦. That
is, in the first subcase, we delete fromY all vertices ofN (NB (y)) \C (y), while in the second subcase,
we delete from Y all vertices of N (B◦) \C (y). We claim that in both subcases, after exhaustively
applying the Reduction Rule, the size of B decreased at least by a multiplicative factor of 1 − 1/16.

Clearly this is the case in the first subcase as then NB (y) is removed from B and |NB (y) | ≥ |B |/16
since y ∈ Y1. We claim the following:

Lemma 6.7. In the second subcase, the Reduction Rule also removes the entire set NB (y) from B.

Proof. See the right panel of Figure 13 for an illustration of the proof. Assume that this is not the
case. Let B′,Y ′ be the reduced sets in the second subcase and letp ∈ NB (y) ∩ B′. Sincep ∈ B′, there
exist at least two components of C that contain vertices of N (p) ∩ Y ′; let Cp be such component
different fromC (y) and let a ∈ Cp ∩ N (p) ∩ Y ′. Since the Reduction Rule does not trigger on p and
a, given sets B′ and Y ′, there exists b ∈ (N (a) ∩ Y ′) \ N (p); clearly also b ∈ Cp .

Consider now any q ∈ B◦. Since a,b ∈ Y ′ \C (y), we have that a and b are not adjacent to q.
Furthermore, since q ∈ B◦, there exist at least two components of C that contain vertices of N (q) ∩
Y ◦; letCq be such a component different fromCp , and let s ∈ Cq ∩ N (q) ∩ Y ◦. Since the Reduction
Rule does not trigger on q and s given sets B◦ and Y ◦, there exists t ∈ (N (s) ∩ Y ◦) \ N (q); clearly,
also t ∈ Cq . Furthermore, p is adjacent to neither s nor t as s, t ∈ Y ◦ and p ∈ NB (y).

Consequently, the vertices p,a,b,q, s, t , together with a path between p and q promised by the
fact that Cp and Cq are linked, induce a path on at least six vertices, a contradiction. �

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:26 D. Lokshtanov et al.

We infer that in both subcases at least a constant fraction of the set B has been reduced. Conse-
quently, in the branching tree, every leaf-to-root path contains only O (logn) nodes with a branch-
ing described in this subsection.

6.1.6 Final Branch. We are left with cases (X0,Y) when Y ◦1 = ∅. Consider the following natural
branch: We guess whether there exists an element of the solution in Y ∗1 or not. That is, in one
branch, we remove Y ∗1 = Y1 from Y . In the second branch, we immediately branch again into |Y ∗1 |
directions, picking a vertex y ∈ Y ∗1 and putting it into X0. By the definition of Y ∗1 , in the latter
subcases B is reduced to an empty set, and branching terminates. Our main claim is that, in the
first branch, the size of B shrinks by at least a half.

Lemma 6.8. In the first branch, if B′ and Y ′ are the sets B and Y after exhaustive application of the

Reduction Rule, then |B′ | ≤ |B |/2.

Proof. Assume the contrary. Since Y ′ ⊆ Y2, we have that for every y ∈ Y ′ it holds that

|NB′ (y) | ≤ |NB (y) | < |B |/16 < |B′ |/8.
For every p ∈ B′, pick two componentsC1

p andC2
p that contain a vertex of N (p) ∩ Y ′. Furthermore,

for every i = 1, 2, pick a vertex vi
p ∈ N (p) ∩ Y ′ ∩Ci

p and a vertex w i
p ∈ (N (vi

p) ∩ Y ′) \ N (p); the
existence of the latter is guaranteed by the fact that the Reduction Rule does not trigger on p and
vi

p , given the sets B′ and Y ′. Clearly, p,vi
p ,w

i
p induce a P3 in G.

Consider the following random experiment: Choose two vertices p,q ∈ B′ uniformly indepen-
dently at random. Since the choice ofp andq is independent, while all verticesvi

p ,w
i
p ,v

i
q ,w

i
q belong

to Y ′, the probability that q is adjacent to vi
p is less than 1/8. Consequently, with positive proba-

bility q is fully anti-adjacent to {v1
p ,w

1
p ,v

2
p ,w

2
p }, while p is fully anti-adjacent to {v1

q ,w
1
q ,v

2
q ,w

2
q }.

Let p,q be a pair for which the aforementioned event happens. By potentially swapping the
top indices, we may assumeC1

p � C
1
q . However, then p,v1

p ,w
1
p ,q,v

1
q ,w

1
q , together with an induced

path between p and q whose existence is promised by the fact that C1
p and C1

q are linked, gives an
induced path in G on at least six vertices, a contradiction. �

By Lemma 6.8, on every leaf-to-root path a branching node described in this subsection may
appear only O (log |V (G) |) times. This finishes the description of the algorithm and concludes the
proof of Theorem 6.1.

6.2 The Actual Algorithm

As described in the beginning of the section, the actual algorithm for Maximum Weight Effi-
cient Dominating Set is a standard dynamic programming algorithm using Theorem 6.1 as the
source of its state space. For the sake of the analysis, we fix X0 to be a maximum weight efficient
dominating set in G (if such a set exists).

We first pick any minimal triangulation Ĝ ofG (see Heggernes [37] for algorithms finding such
a triangulation) and compute its clique tree, which is at the same time a tree decomposition of G.
In other words, we compute a tree decomposition (T ,Π) ofG, where, for every node t ∈ V (T), the
bag Π(t) is a potential maximal clique of G.

We root T at an arbitrary vertex r , and for a node t we denote by Γ(t) the union of all bags
Π(s), where s ranges over all descendants of t in the tree T . Note that the properties of a tree
decomposition ensure that every connected component ofG − Π(t) is either completely contained
in or completely disjoint from Γ(t).

For every t ∈ V (T), we invoke Theorem 6.1 on Ω = Π(t), obtaining a family St .
For a node t , a setY ⊆ Γ(t) is called a partial solution if N [u] ∩ N [v] = ∅ for every distinctu,v ∈

X and N [X] contains Γ(t) \ Π(t). Clearly, if X is an efficient dominating set in G, then X ∩ Γ(t)

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:27

is a partial solution. A partial solution Y is consistent with a state f ∈ St if Y ∩ Π(t) = f −1 (⊥),
every vertex v ∈ Π(t) ∩ N (Y) is dominated by an element of Y in f (v), and for every vertex v ∈
Π(t) \ N [Y] the component f (v) is disjoint from Γ(t).

Our goal is to compute, in bottom-up fashion for every node t ∈ V (T) and every state f ∈ St

a partial solution Y (t , f) consistent with f (or Y (t , f) = ⊥, meaning that no such set has been
found) with the following property: If X0 exists and f is consistent with X0 ∩ Γ(t), then Y (t , f)
exists and has weight of at least the weight of X0 ∩ Γ(t). Note that Theorem 6.1 ensures that if
X0 exists, then for every node t there exists a state f t

0 consistent with X0 and thus also consistent
with the partial solution X0 ∩ Γ(t). Consequently, if X0 exists, then Y (r , f r

0) is a maximum weight
efficient dominating set in G.

It remains to describe the computation for fixed values of t and f and to prove the aforemen-
tioned property. For every child t ′ of t , and every f ′ ∈ St ′ , we say that the set Y ′ := Y (t ′, f ′) is
partially consistent with f if Y ′ ∩ Π(t) ∩ Π(t ′) = f −1 (⊥) ∩ Π(t ′), every vertex v ∈ Π(t) ∩ N (Y ′)
is dominated by an element of Y ′ in f (v), and for every vertex v ∈ Π(t) \ N [Y ′] the component
f (v) is disjoint from Γ(t ′) or equals Ω. For every child t ′ of t , we compute a maximum weight
set Yt ′ among all sets Y (t ′, f ′) for f ′ ∈ St ′ that are partially consistent with f ; we terminate the
computation and set Y (t , f) = ⊥ if for some child t ′ the set Yt ′ does not exist (i.e., we picked the
maximum over an empty set). A direct check shows that if all sets Yt ′ have been computed, then
the union of all sets Yt ′ is a partial solution consistent with f , and we pick it as Y (t , f).

Consider now the state f t
0 and assume that, for every child t ′ of t , the setY (t ′, f t ′

0) exists and has

weight at least the weight ofX0 ∩ Γ(t ′). Observe that Y (t ′, f t ′
0) is also partially consistent with f t

0 .
A direct check from the definition of consistency shows that for any Y (t ′, f ′) partially consistent
with f t

0 , the setX ′0 := (X0 \ Γ(t ′)) ∪ Y (t ′, f ′) is also an efficient dominating set. Since Yt ′ is chosen

to be a set Y (t ′, f ′) of maximum weight that is partially consistent with f t
0 , and Y (t ′, f t ′

0) is one of
the candidates, X ′0 is a maximum-weight efficient dominating set. By repeating this replacement
argument for every child t ′ of t , we infer that the computed value Y (t , f t

0) has weight at least the
weight of X0 ∩ Γ(t).

Since the computations are polynomial in the size of G and the sizes of the families St , using
Theorem 6.1, we conclude the proof of Theorem 1.2.

7 CONCLUSION

We have developed a quasi-polynomial-time algorithm for Maximum Weight Independent Set
and a polynomial-time algorithm for Maximum Weight Efficient Dominating Set in P6-free
graphs. Our algorithms rely on a detailed analysis of the interactions between minimal separators,
potential maximal cliques, and vertex neighborhoods in P6-free graphs. In light of these develop-
ments, a few open questions seem natural for the Maximum Weight Independent Set problem.

First, can Maximum Weight Independent Set on P6-free graphs be solved in polynomial time?
Very recently, Grzesik et al. [34] answered this question affirmatively.

Second, can our quasipolynomial-time algorithm be generalized to P7-free graphs? We remark
that polynomial-time algorithms are known for Independent Set on various subclasses of
P7-free graphs [17, 30, 43, 44, 49]. Moreover, Theorems 1.3 and 1.4 work for P7-free graphs.
However, Theorem 4.2 does not, as can be seen on the following example. Consider the graph
G consisting of k + 1 pairwise disjoint cliques on k vertices each, denoted A,C1,C2, . . . ,Ck , with
a vertex ci distinguished in every clique Ci and made adjacent to a private vertex ai ∈ A (see
the left panel of Figure 14). G contains many P6’s with middle two vertices in A, but no P7. The
set X = {c1, c2, . . . , ck } is a nuke in G, but no vertex of G is adjacent to more than one vertex
of X . Furthermore, if one adds a new vertex y to G that is adjacent to X , then X ∪ {y} becomes

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

3:28 D. Lokshtanov et al.

Fig. 14. Counterexamples to generalizations of Theorem 4.2 to P7-free graphs (left panel, the nuke vertices

are white) and of Theorem 1.3 to P8-free graphs (right panel). Every rectangle denotes a clique on k vertices.

a potential maximal clique. Recall that the algorithm for Maximum Weight Independent Set
works by picking a central PMC as a pivot nuke and branching on vertices adjacent to a constant
fraction of the pivot nuke. Hence, with a similar approach on P7-free graphs, the algorithm may
end up with such a seemingly useless nuke as X in G.

Considering P8-free graphs and beyond, we note that polynomial-time algorithms are know for
Independent Set on various subclasses [30, 43]. Recently, Bacsó et al. [3] and Brause [21] inde-
pendently proved subexponential-time exact algorithms for Independent Set on Pk -free graphs
for any fixed k . However, our approach breaks down even further: Not only does Theorem 4.2 not
seem to generalize, as explained previously, but also Theorems 1.3 and 1.4 do not seem to gener-
alize to less restrictive graph classes. We can see this as follows. Consider a graph G consisting
of k + 2 cliques on k vertices each, denoted A,B, S1, S2, . . . , Sk , with every Si adjacent to a private

vertex ai ∈ A and bi ∈ B. The set S :=
⋃k

i=1 Si is a minimal separator in G of size k2 with A and
B as full components, yet no vertex of G contains more than k vertices of S in its neighborhood.
Furthermore, although G contains many P7’s with endpoints and middle vertex in S , it does not
contain a P8 nor an E-graph (a P5 with an additional degree-1 vertex attached to the middle vertex
of the path).

Finally, we remark that although the polynomial-time algorithm for Maximum Weight Effi-
cient Dominating Set on P6-free graphs seems to close a research direction (as the problem is
NP-hard on P7-free chordal graphs), it would be interesting to see if one can obtain the same end
result using the approach of Brandstädt et al. and Brandstädt and Karthick [9, 13]; that is, by ei-
ther obtaining a polynomial-time algorithm for Maximum Weight Independent Set in hole-free
graphs or showing that the square of a P6-free graph having an efficient dominating set is perfect.

ACKNOWLEDGMENTS

M. Pilipczuk acknowledges discussions with Krzysztof Choromański, Dvir Falik, Anita Liebenau,
and Viresh Patel on the usage of minimal separators and potential maximal cliques in study of the
Erdős-Hajnal conjecture; in particular, the current proofs of Theorems 1.3 and 1.4, (that replaced
our previous proofs more heavy on case analysis) were partially inspired by some quantitative
proof attempts in the study of subcases of the Erdős-Hajnal conjecture.

REFERENCES

[1] Vladimir E. Alekseev. 1982. The effect of local constraints on the complexity of determination of the graph indepen-

dence number. Combinatorial-Algebraic Methods in Applied Mathematics (1982), 3–13. (in Russian).

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

Independence and Efficient Domination on P6-free Graphs 3:29

[2] Vladimir E. Alekseev. 2004. Polynomial algorithm for finding the largest independent sets in graphs without forks.

Discrete Applied Mathematics 135, 1–3 (2004), 3–16.

[3] Gábor Bacsó, Dániel Marx, and Zsolt Tuza. 2016. H-free graphs, independent sets, and subexponential-time algo-

rithms. In 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016,

Aarhus, Denmark (LIPIcs), Jiong Guo and Danny Hermelin (Eds.), Vol. 63. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 3:1–3:12.

[4] Manu Basavaraju, L. Sunil Chandran, and T. Karthick. 2012. Maximum weight independent sets in hole- and dart-free

graphs. Discrete Applied Mathematics 160, 16–17 (2012), 2364–2369.

[5] Norman Biggs. 1973. Perfect codes in graphs. Journal of Combinatorial Theory, Series B 15, 3 (1973), 289–296.

[6] Hans L. Bodlaender, Andreas Brandstädt, Dieter Kratsch, Michaël Rao, and Jeremy Spinrad. 2005. On algorithms for

(P5, gem)-free graphs. Theoretical Computer Science 349, 1 (2005), 2–21.

[7] Rodica Boliac and Vadim V. Lozin. 2003. An augmenting graph approach to the stable set problem in P5-free graphs.

Discrete Applied Mathematics 131, 3 (2003), 567–575.

[8] Vincent Bouchitté and Ioan Todinca. 2001. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM

Journal on Computing 31, 1 (2001), 212–232.

[9] Andreas Brandstädt, Elaine M. Eschen, Erik Friese, and T. Karthick. 2017. Efficient domination for classes of P6-free

graphs. Discrete Applied Mathematics 223 (2017), 15–27.

[10] Andreas Brandstädt and Vassilis Giakoumakis. 2014. Weighted efficient domination for (P5 + kP2)-free graphs in

polynomial time. CoRR abs/1407.4593 (2014).

[11] Andreas Brandstädt and Vassilis Giakoumakis. 2015. Addendum to: Maximum weight independent sets in hole- and

co-chair-free graphs. Information Processing Letters 115, 2 (2015), 345–350.

[12] Andreas Brandstädt and Chính T. Hoàng. 2007. On clique separators, nearly chordal graphs, and the maximum weight

stable set problem. Theoretical Computer Science 389, 1–2 (2007), 295–306.

[13] Andreas Brandstädt and T. Karthick. 2016. Weighted efficient domination in two subclasses of P6-free graphs. Discrete

Applied Mathematics 201 (2016), 38–46.

[14] Andreas Brandstädt, Tilo Klembt, and Suhail Mahfud. 2006. P6- and triangle-free graphs revisited: Structure and

bounded clique-width. Discrete Mathematics & Theoretical Computer Science 8, 1 (2006), 173–188.

[15] Andreas Brandstädt, Martin Milanic, and Ragnar Nevries. 2013. New polynomial cases of the weighted efficient dom-

ination problem. In Proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science

(MFCS’13), Lecture Notes in Computer Science. Springer, 195–206.

[16] Andreas Brandstädt and Raffaele Mosca. 2003. On the structure and stability number of P5- and co-chair-free graphs.

Discrete Applied Mathematics 132, 1–3 (2003), 47–65. Stability in Graphs and Related Topics.

[17] Andreas Brandstädt and Raffaele Mosca. 2015. Maximum weight independent sets for (P7, triangle)-free graphs in

polynomial time. CoRR abs/1511.08066 (2015).

[18] Andreas Brandstädt and Raffaele Mosca. 2015. Weighted efficient domination for P6-free graphs in polynomial time.

CoRR abs/1508.07733 (2015).

[19] Andreas Brandstädt and Raffaele Mosca. 2016. Weighted efficient domination for P5-free and P6-free graphs. SIAM

Journal on Discrete Mathematics 30, 4 (2016), 2288–2303.

[20] Andreas Brandstädt and Raffaele Mosca. 2016. Weighted efficient domination for P6-free and for P5-free graphs.

In Proceedings of the 42nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG’16) Revised

Selected Papers (Lecture Notes in Computer Science), Pinar Heggernes (Ed.). Vol. 9941. Springer, 38–49.

[21] Christoph Brause. 2017. A subexponential-time algorithm for the maximum independent set problem in Pt -free

graphs. Discrete Applied Mathematics 231 (2017), 113–118.

[22] Hajo Broersma, Ton Kloks, Dieter Kratsch, and Haiko Müller. 1999. Independent sets in asteroidal triple-free graphs.

SIAM Journal on Discrete Mathematics 12, 2 (1999), 276–287.

[23] Peter Buneman. 1974. A characterisation of rigid circuit graphs. Discrete Mathematics 9, 3 (1974), 205–212.

[24] Derek G. Corneil, H. Lerchs, and Lorna Stewart Burlingham. 1981. Complement reducible graphs. Discrete Applied

Mathematics 3, 3 (1981), 163–174.

[25] Hendrik N. de Ridder et al. Information System on Graph Classes and Their Inclusions (ISGCI), http://www.

graphclasses.org.

[26] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics, Vol. 173. Springer.

[27] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman and Co.

[28] Fanica Gavril. 1972. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maxi-

mum independent set of a chordal graph. SIAM Journal on Computing 1, 2 (1972), 180–187.

[29] Fanica Gavril. 1974. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combina-

torial Theory, Series B 16, 1 (1974), 47–56.

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

http://www.graphclasses.org

3:30 D. Lokshtanov et al.

[30] Michael U. Gerber, Alain Hertz, and Vadim V. Lozin. 2003. Stable sets in two subclasses of banner-free graphs. Discrete

Applied Mathematics 132, 1–3 (2003), 121–136.

[31] Michael U. Gerber and Vadim V. Lozin. 2003. On the stable set problem in special P5-free graphs. Discrete Applied

Mathematics 125, 2–3 (2003), 215–224.

[32] Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press.

[33] Martin Grötschel, László Lovász, and Alexander Schrijver. 1981. The ellipsoid method and its consequences in com-

binatorial optimization. Combinatorica 1 (1981), 169–197.

[34] Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. 2017. Polynomial-time algorithm for

maximum weight independent set on P6-free graphs. CoRR abs/1707.05491 (2017).

[35] Michel Habib and Christophe Paul. 2010. A survey of the algorithmic aspects of modular decomposition. Computer

Science Review 4, 1 (2010), 41–59.

[36] Teresa W. Haynes, Stephen Hedetniemi, and Peter Slater. 1998. Fundamentals of Domination in Graphs. CRC Press.

[37] Pinar Heggernes. 2006. Minimal triangulations of graphs: A survey. Discrete Mathematics 306, 3 (2006), 297–317.

[38] Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations. 85–103.

[39] T. Karthick. 2016. Weighted independent sets in a subclass of P6-free graphs. Discrete Mathematics 339, 4 (2016),

1412–1418.

[40] T. Karthick and Frédéric Maffray. 2016. Weighted independent sets in classes of P6-free graphs. Discrete Applied

Mathematics 209 (2016), 217–226.

[41] Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. 2014. Independent set in P5-free graphs in polynomial

time. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14). SIAM, 570–581.

[42] Vadim V. Lozin and Martin Milanic. 2008. A polynomial algorithm to find an independent set of maximum weight in

a fork-free graph. Journal on Discrete Algorithms 6, 4 (2008), 595–604.

[43] Vadim V. Lozin and Dieter Rautenbach. 2003. Some results on graphs without long induced paths. Information Pro-

cessing Letters 88, 4 (2003), 167–171.

[44] Frédéric Maffray and Lucas Pastor. 2016. Maximum weight stable set in (P7, bull)-free graphs. CoRR abs/1611.09663

(2016).

[45] Frédéric Maffray and Lucas Pastor. 2016. The maximum weight stable set problem in (P6, bull)-free graphs. In Graph-

Theoretic Concepts in Computer Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016,

Revised Selected Papers (Lecture Notes in Computer Science), Pinar Heggernes (Ed.). Vol. 9941. Springer, 85–96.

[46] George J. Minty. 1980. On maximal independent sets of vertices in claw-free graphs. Journal of Combinatorial Theory,

Series B 28, 3 (1980), 284–304.

[47] Raffaele Mosca. 1997. Polynomial algorithms for the maximum stable set problem on particular classes of P5-free

graphs. Information Processing Letters 61 (1997), 137–143.

[48] Raffaele Mosca. 1999. Stable sets in certain P6-free graphs. Discrete Applied Mathematics 92, 2–3 (1999), 177–191.

[49] Raffaele Mosca. 2008. Stable sets of maximum weight in (P7, banner)-free graphs. Discrete Mathematics 308, 1 (2008),

20–33.

[50] Raffaele Mosca. 2009. Independent sets in (P6, diamond)-free graphs. Discrete Mathematics & Theoretical Computer

Science 11, 1 (2009), 125–140.

[51] Raffaele Mosca. 2012. Some results on stable sets for k-colorable P6-free graphs and generalizations. Discrete Mathe-

matics & Theoretical Computer Science 14, 2 (2012), 37–56.

[52] Raffaele Mosca. 2012. Stable sets for (P6, K2,3)-free graphs. Discussiones Mathematicae Graph Theory 32, 3 (2012),

387–401.

[53] Raffaele Mosca. 2013. Maximum weight independent sets in (P6, co-banner)-free graphs. Information Processing Let-

ters 113, 3 (2013), 89–93.

[54] Bert Randerath and Ingo Schiermeyer. 2010. On maximum independent sets in P5-free graphs. Discrete Applied Math-

ematics 158, 9 (2010), 1041–1044.

[55] Najiba Sbihi. 1980. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe sans etoile. Discrete

Mathematics 29, 1 (1980), 53–76.

[56] Yukio Shibata. 1988. On the tree representation of chordal graphs. Journal of Graph Theory 12, 3 (1988), 421–428.

[57] J. R. Walter. 1972. Representations of Rigid Cycle Graphs. Ph.D. Dissertation. Wayne State University.

[58] Chain-Chin Yen and Richard C. T. Lee. 1996. The weighted perfect domination problem and its variants. Discrete

Applied Mathematics 66, 2 (1996), 147–160.

[59] Igor E. Zverovich and Olga I. Zverovich. 2004. Stability number in subclasses of P5-free graphs. Applied Mathematics

Journal Chinese University Series B 19, 2 (2004), 125–132.

Received January 2017; revised September 2017; accepted September 2017

ACM Transactions on Algorithms, Vol. 14, No. 1, Article 3. Publication date: November 2017.

