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Abstract. For an adiscal or monotone regular coisotropic submanifold N of a

symplectic manifold I define its Floer homology to be the Floer homology of a

certain Lagrangian embedding of N . Given a Hamiltonian isotopy ϕ = (ϕt) and
a suitable almost complex structure, the corresponding Floer chain complex

is generated by the (N,ϕ)-contractible leafwise fixed points. I also outline

the construction of a local Floer homology for an arbitrary closed coisotropic
submanifold.

Results by Floer and Albers about Lagrangian Floer homology imply lower

bounds on the number of leafwise fixed points. This reproduces earlier results
of mine.

The first construction also gives rise to a Floer homology for a Boothby-

Wang fibration, by applying it to the circle bundle inside the associated com-
plex line bundle. This can be used to show that translated points exist.

1. Introduction. Consider a symplectic manifold (M,ω), a coisotropic submani-
fold N ⊆ M , and a Hamiltonian diffeomorphism ψ : M → M . The isotropic (or
characteristic) distribution TNω on N gives rise to the isotropic foliation on N . A
leafwise fixed point for ψ is a point x ∈ N for which ψ(x) lies in the leaf through
x of this foliation. We denote by Fix(ψ,N) the set of such points. A fundamental
problem in symplectic geometry is the following:

Problem. Find conditions under which Fix(ψ,N) is non-empty and find lower
bounds on its cardinality.

This generalizes the problems of showing that a given Hamiltonian diffeomor-
phism has a fixed point and that a given Lagrangian submanifold intersects its
image under a Hamiltonian diffeomorphism. References for solutions to the general
problem are provided in [20, 22].

Example (translated points). As explained in [19, p. 97], translated points of the
time-1-map of a contact isotopy starting at the identity are leafwise fixed points of
the Hamiltonian lift of this map to the symplectization.

We denote

Nω :=
{

isotropic leaves of N
}
.
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We call N regular (or “fibering”) iff there exists a smooth manifold structure on
Nω, such that the canonical projection from N to Nω is a smooth submersion.1 Let
X be a manifold and h ∈ C

(
[0, 1]×X,M

)
. We call h a semistrong (N,ω)-homotopy

iff for every t ∈ [0, 1] there is a leaf F of N that contains the image of {t} × ∂X
under h.

We denote by D the closed unit disk in R2. We call (N,ω) (or simply N) adiscal
iff every map u ∈ C

(
D,M

)
that sends ∂D = S1 to a leaf of N , is semistrongly

(N,ω)-homotopic to a constant map.
The main result of [20] (Theorem 1.1) implies the following. We denote by bi(N)

the i-th Z2-Betti-number of N .

Theorem 1.1 (leafwise fixed points for adiscal coisotropic). Assume that (M,ω)
is geometrically bounded, N is closed2, regular, and adiscal, and that (N,ψ) is
nondegenerate in the sense of [20, p. 105]. Then the following estimate holds:

∣∣Fix(ψ,N)
∣∣ ≥ dimN∑

i=0

bi(N). (1)

This bound is sharp if there exists a Z2-perfect Morse function on N , see [20,
Theorem 1.2]. The idea of the proof of Theorem 1.1 given in [20], is to find a
suitable Lagrangian embedding ιN of N into a geometrically bounded symplectic
manifold, see (5) below. We then apply Y. Chekanov’s Main Theorem in [3], which
implies the result in the Lagrangian case.3 The Lagrangian intersection points of
the image of ιN correspond to leafwise fixed points of ψ.

Similarly to Theorem 1.1, in [21] for a regular N , we defined monotonicity and the
minimal Maslov number m(N), and we proved the following result ([21, Theorem
3]):

Theorem 1.2 (leafwise fixed points for monotone coisotropic). Assume that (M,ω)
is geometrically bounded or convex at infinity4, N ⊆ M is closed, monotone, and
regular, and (N,ψ) is non-degenerate. Then the following estimate holds:

|Fix(ψ,N)| ≥
m(N)−2∑

i=dimN−m(N)+2

bi(N). (2)

The idea of the proof of this theorem given in [21], is to use the same Lagrangian
embedding as in the proof of Theorem 1.1. We then apply P. Albers’ Main Theorem
in [2], which states Theorem 1.2 in the Lagrangian case.

Finally, the main result of [22] (Theorem 1) implies that leafwise fixed points exist
for an arbitrary closed coisotropic submanifold if the Hamiltonian flow is suitably
C0-small. More precisely, it implies the following:

Theorem 1.3 (leafwise fixed points for C0-close coisotropic). Let (M,ω) be a sym-
plectic manifold and N ⊆M be a closed coisotropic submanifold. Then there exists

1Such a structure is unique if it exists. In this case the symplectic quotient of N is well-defined.
2This means compact and without boundary.
3[20, Theorem 1.1] is formulated in a more general setting than Theorem 1.1. Chekanov’s result

is needed to deal with that setting, whereas in the setting of Theorem 1.1 Floer’s original article
[5] suffices.

4[20, Theorem 1.1] is stated for the geometrically bounded case, but the proof goes through in

the convex at infinity case.
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a C0-neighbourhood U ⊆ C(N,M) of the inclusion N →M with the following prop-
erty. Let (ϕt)t∈[0,1] be a Hamiltonian flow on M satisfying ϕt|N ∈ U , for every

t ∈ [0, 1]. If (N,ϕ1) is nondegenerate then the following estimate holds:

∣∣Fix(ϕ1, N)
∣∣ ≥ dimN∑

i=0

bi(N). (3)

This result is optimal in the sense that the C0-condition cannot be replaced by
Hofer smallness of ϕ1. The idea of the proof of Theorem 1.3 given in [22], is to

find a suitable embedding of N as a Lagrangian submanifold Ñ of some symplectic

manifold M̃ that is a Weinstein neighbourhood of Ñ , see (7) below. We then use
Weinstein’s neighbourhood theorem and the existence of Lagrangian intersection
points for the zero-section in the cotangent bundle. These points correspond to
leafwise fixed points for ϕ1. Since N is not assumed to be regular in Theorem 1.3,

in contrast with Theorems 1.1 and 1.2, we can construct M̃ only locally around Ñ .
The point of this note is to reinterpret the proofs of Theorems 1.1 and 1.2 in

terms of a version of Floer homology for an adiscal or monotone regular coisotropic
submanifold. I also outline a definition of a local version of Floer homology for
an arbitrary closed coisotropic submanifold and use it to reinterpret the proof of
Theorem 1.3. Details of the construction of this homology will be carried out
elsewhere. For the extreme cases N = M and N Lagrangian, local versions of Floer
homology were developed in [7, 15, 16, 4, 18, 9]; see also the book [17, Section 17.2].5

Potentially a (more) global version of coisotropic Floer homology may be defined
under a suitable condition on N that is weaker than regularity, so that the C0-
condition on (ϕt) in Theorem 1.3 can be relaxed.6 This may also yield a lower
bound on

∣∣Fix(ψ,N)
∣∣ that is higher then the sum of the Betti numbers of N , for a

suitably generic pair (ψ,N).
Based on the ideas outlined below, one can define a Floer homology for certain

regular contact manifolds and use it to show that a given time-1-map of a contact
isotopy has translated points. Namely, consider a closed manifold N and a con-
tact form α on N . Assume that α is regular, i.e., that its symplectic quotient is
well-defined. Then N is naturally a smooth principal S1-bundle, which is called a
Boothby-Wang fibration. The associated real two-dimensional vector bundle E is
equipped with a natural symplectic form, see e.g. [8, proof of Lemma 3, p. 200].
The idea is now to define the Floer homology of (N,α) to be the Floer homology
of the circle bundle in E of some radius r. If the symplectic quotient of N is mono-
tone then for a suitable choice of r this circle bundle is a monotone coisotropic
submanifold with minimal Maslov number at least 2. Hence its Floer homology is
well-defined. Since part of the symplectization of (N,α) symplectically embeds into
E, it follows that translated points exist under suitable hypotheses.

Various versions of coisotropic Floer homology may play a role in mirror sym-
metry, as physicists have realized that the Fukaya category should be enlarged by
coisotropic submanifolds, in order to make homological mirror symmetry work, see
e.g. [11].

5In [1] a Lagrangian Floer homology was constructed that is “local” in a different sense.
6This can only work under suitable conditions on N . The reason is that by [10, Theorem 1.1],

there exists a closed hypersurface N in R2n and a Hamiltonian diffeomorphism on R2n that is
arbitrarily Hofer-close to id and has no leafwise fixed points w.r.t. N .
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2. Floer homology for an adiscal or monotone regular coisotropic sub-
manifold. To explain the coisotropic Floer homology in the regular case, consider a
geometrically bounded symplectic manifold (M,ω), and a closed, regular coisotropic
submanifold N ⊆M .

Suppose first also that N is adiscal. We define the Floer homology of N as follows.
Let ϕ = (ϕt)t∈[0,1] be a Hamiltonian isotopy starting at id, such that (N,ϕ1) is
nondegenerate. We call a point x0 ∈ M a (N,ϕ)-contractible leafwise fixed point
iff the path x : [0, 1] → M , x(t) := ϕt(x0), is semistrongly (N,ω)-homotopic to a
constant path.7 We define

Fixc(N,ϕ) :=
{

(N,ϕ)-contractible leafwise fixed points
}
,

CF(N,ϕ) :=
⊕

Fixc(N,ϕ) Z2. (4)

Remark. By definition this direct sum contains one copy of Z2 for each point in
Fixc(N,ϕ).

We now define a collection of boundary operators on CF(N,ϕ), one for each
(N,ϕ1)-regular time-dependent almost complex structure. To explain this, observe
that, since N is regular, Nω carries canonical smooth and symplectic structures
AN,ω and ωN . We define

M̂ := M ×Nω, ω̂ := ω ⊕ (−ωN ),

ιN : N → M̂, ιN (x) :=
(
x, isotropic leaf through x

)
, N̂ := ιN (N), (5)

ϕ̂t := ϕt × idNω .

The map ιN is a ω̂-Lagrangian embedding of N into M̂ , see [20, Lemma 3.2]. It
follows from [21, Proposition 61, p. 43] that the restriction of the map ιN , given by

ιN : Fixc(N,ϕ)→ Fixc(N̂ , ϕ̂) = (6){
x̂ ∈ N̂ ∩

(
ϕ̂1
)−1

(N̂)
∣∣∣ t 7→ ϕ̂t(x̂) contractible with endpoints in N̂

}
is well-defined and injective. A straightforward argument shows that it is surjective.

Let p ∈ (2,∞) and ψ be a Hamiltonian diffeomorphism on M . We call a t-

dependent ω̂-compatible smooth almost complex structure Ĵ on M̂ (N,ψ)-regular,
iff the vertical differential of its Cauchy-Riemann operator is surjective for all finite-

energy Ĵ-holomorphic strips with compact image and boundary on N̂ and ψ̂(N̂).
(For definitions see [5, Proposition 2.1].8) We define Jreg(N,ψ) := Jreg

(
M,ω,N, ψ,

p
)

to be the set of all (N,ψ)-regular Ĵ .9 For every Ĵ ∈ Jreg(N,ϕ1) we define the
Floer boundary operator

∂N,ϕ,Ĵ : CF(N,ϕ)→ CF(N,ϕ)

to be the (Lagrangian) Floer boundary operator of
(
M̂, ω̂, N̂ , ϕ̂, Ĵ

)
, where CF(N,ϕ)

is as in (4). (See [5, Definition 3.1].)
To see that this operator is well-defined, recall that it is defined on the direct

sum of Z2’s indexed by the set occurring on the right hand side of (6).10 Using the

7By definition, for every such point x0, the point x(1) = ϕ1(x0) lies in the isotropic leaf of x0.
Hence x0 is a leafwise fixed point of ϕ1.

8The exponent p enters the Banach bundle setup of that proposition.
9It follows from the proof of [5, Proposition 2.1] that this set is dense in the set of all t-dependent

ω̂-compatible almost complex structures, and therefore nonempty. See [6, Theorem 5].
10Sometimes this is called the “Z2-vector space spanned by this index set”. Here we identify

the intersection N̂ ∩
(
ϕ̂1
)−1

(N̂) with ϕ̂1(N̂) ∩ N̂ via the map ϕ̂1.
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bijection (6), we identify this direct sum with CF(N,ϕ). Hence ∂N,ϕ,Ĵ is defined

between the right spaces.
We check the conditions of [5, Definition 3.1]. Since N is closed, the same holds

for Nω. Since (M,ω) is geometrically bounded, it follows that (M̂, ω̂) is geometri-

cally bounded. The Lagrangian N̂ is diffeomorphic to N via ιN , and therefore also
closed. Since N is adiscal, it follows from [21, Proposition 61, p. 43] that the same

holds for N̂ . Since
(
N,ϕ1

)
is nondegenerate, by [20, Lemma 3.2(c)] the intersection

of N̂ and ϕ̂−1(N̂) is transverse. Hence the conditions of [5, Definition 3.1] are sat-
isfied, and therefore the boundary operator ∂N,ϕ,Ĵ is well-defined.11 By [5, Lemma

3.2] it squares to 0. Hence we may define the Floer homology of
(
N,ϕ, Ĵ

)
to be the

homology

HF
(
N,ϕ, Ĵ

)
:= H

(
CF(N,ϕ), ∂N,ϕ,Ĵ

)
.

Let G be a Z-grading of the Z2-vector space CF(N,ϕ), which via the identification
(6) is compatible with the Viterbo-Maslov index for strips satisfying Lagrangian

boundary conditions.12 Such a G induces a grading on HF
(
N,ϕ, Ĵ

)
. For every pair

Ĵ0, Ĵ1 ∈ Jreg(N,ϕ1) we denote by

ΦĴ0,Ĵ1
: HF

(
N,ϕ, Ĵ0

)
→ HF

(
N,ϕ, Ĵ1

)
the canonical isomorphism provided by the proof of [5, Proposition 3.1, p. 522].
This isomorphism respects the grading G. It does not depend on the choice of G.

Definition 2.1 (Floer homology for adiscal coisotropic). We define the Floer ho-
mology of (N,ϕ) to be

HF(N,ϕ) :=

((
HF
(
N,ϕ, Ĵ

))
Ĵ∈Jreg(N,ϕ1)

,
(

ΦĴ0,Ĵ1

)
Ĵ0,Ĵ1∈Jreg(N,ϕ1)

)
.

Remarks. • This is a collection of graded Z2-vector spaces together with
grading-preserving isomorphisms.

• Philosophically, the Floer homology of (N,ϕ) is defined to be HF
(
N,ϕ, Ĵ

)
,

for some choice of Ĵ . The collection of isomorphisms
(

ΦĴ0,Ĵ1

)
encodes the

sense in which this does “not depend” on this choice.

By the proof of [5, Theorem 1] HF(N,ϕ) is isomorphic to the singular homology

of N̂ (hence of N) with Z2-coefficients. Since HF(N,ϕ) is generated by the (N,ϕ)-
contractible leafwise fixed points of ϕ1, this reproves Theorem 1.1.

Suppose now that N is monotone in the sense of [21] and of minimal Maslov
number m(N) ≥ 2. 13

Definition 2.2 (Floer homology for monotone coisotropic). We define the Floer

homology of (N,ϕ) to be the Floer homology of (N̂ , ϕ̂), as defined in [13, 14].

11In [5] Floer assumes that the symplectic manifold is closed. However, the same construction
of Floer homology works for geometrically bounded symplectic manifolds. Here we use that we

only consider Floer strips with compact image.
12By [5, Proposition 2.4] such a grading exists and each two gradings differ by an additive

constant.
13We continue to assume that (M,ω) is geometrically bounded, N is closed and regular, and

that (N,ϕ1) is nondegenerate.
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Since N is monotone, the same holds for N̂ . The minimal Maslov numbers of

N and N̂ agree, see the proof of [21, Theorem 3, p. 17]. It follows that the Floer
homology of (N,ϕ) is well-defined. By [2, Corollary 2.1] it is isomorphic to singular
homology in degrees i = dimN −m(N)+2, . . . ,m(N)−2. It follows that (2) holds.
This reproves Theorem 1.2.

3. Local Floer homology for an arbitrary coisotropic submanifold. Con-
sider now the situation in which (M,ω) is any symplectic manifold, N an arbitrary
closed coisotropic submanifold of M , and ϕ = (ϕt) a Hamiltonian flow on M whose
restriction to N stays “C0-close” to the inclusion N → M , such that (N,ϕ1) is
nondegenerate. We also fix an ω-compatible almost complex structure J on M .
Heuristically, we define the local Floer homology HF(N,ϕ, J) as follows. Its chain
complex is generated by the points x ∈ Fix(N,ϕ1), for which there is a “short”
path from x to ϕ1(x) within the isotropic leaf through x.

To explain the boundary operator ∂ = ∂N,ϕ,J , we denote by iN : N → M
the inclusion map. We equip the product M × N with the presymplectic form

ω⊕ (−i∗Nω). By [22, Lemma 4] there exists a symplectic submanifold M̃ of M ×N
that contains the diagonal

Ñ :=
{

(x, x)
∣∣x ∈ N} (7)

as a Lagrangian submanifold. We shrink M̃ , so that it is a Weinstein neighbour-

hood of Ñ . The flow ϕ induces a Hamiltonian flow ϕ̃ that is defined on an open

neighbourhood Ñ of M̃ . The structure J induces an almost complex structure J̃

on M̃ that is ω̃-compatible.
The boundary operator ∂ is now defined to be the boundary operator of the

“local Lagrangian Floer homology” of
(
M̃, ω̃, Ñ , ϕ̃, J̃

)
. This map counts finite

energy J̃-holomorphic strips in M̃ that stay “close” to Ñ , have Viterbo-Maslov

index 1, map the lower and upper boundaries of the strip to Ñ and (ϕ̃1)−1(Ñ), and

connect two intersection points of Ñ and (ϕ̃1)−1(Ñ). Such points correspond to
points x ∈ Fix(N,ϕ1), for which there exists a short path from x to ϕ1(x) within a
leaf. (See [22, Lemma 6].)

To understand why heuristically, the boundary operator ∂ is well-defined and

squares to zero, observe that Ñ intersects (ϕ̃1)−1(Ñ) transversely, since (N,ϕ1) is

nondegenerate. (See [22, Lemma 7].) Therefore, for generic J̃14, the moduli space

of J̃-strips is a 0-dimensional manifold in a natural sense. (Here we divided by the
translation action.) It is compact for the following reasons:

• Holomorphic strips with boundary on Ñ and (ϕ̃1)−1(Ñ) stay inside some

fixed compact neighbourhood of Ñ , provided that ϕ̃1 is close enough to the

identity. This follows from the fact that there is a neighbourhood Ũ of Ñ and

an exhausting J̃-plurisubharmonic function on Ũ .
• Disks or spheres cannot bubble off. This follows from our assumption that

M̃ is a Weinstein neighbourhood of Ñ , which implies that Ñ is an exact

Lagrangian in M̃ .
• Index-1-strips generically do not break.

It follows that heuristically, ∂ is well-defined. For similar reasons we have ∂2 = 0.

14Here one needs to work with a family of almost complex structures depending on the time t.
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Given two choices of symplectic submanifolds M̃, M̃ ′ ⊆ M × N containing Ñ ,

one obtains a symplectomorphism between open neighbourhoods of Ñ in M̃ and

M̃ ′, by sliding M̃ to M̃ ′ along the isotropic leaves of N . This symplectomorphism

intertwines the corresponding ϕ̃’s and J̃ ’s. It follows that the boundary operator

does not depend on the choice of M̃ , and therefore, heuristically, is well-defined.
To make the outlined Floer homology rigorous, the words “close” and “short”

used above, need to be made precise. To obtain an object that does not depend on
the choice of “closeness”, the local Floer homology of (N, J) should really be defined
to be the germ of the map

ϕ 7→ HF(N,ϕ, J)

around id : M →M .
By showing that HF(N,ϕ, J) is isomorphic to the singular homology of Ñ , it

should be possible to reproduce the lower bound (3) of Theorem 1.3.

Remark (local presymplectic Floer homology). A presymplectic form on a mani-
fold is a closed two-form with constant rank. By [12, Proposition 3.2] every presym-
plectic manifold can be coisotropically embedded into some symplectic manifold. By
[12, 4.5. Théorème on p. 79] each two coisotropic embeddings are equivalent. Hence
heuristically, we may define the local Floer homology of a presymplectic manifold
to be the local Floer homology of any of its coisotropic embeddings.

Remark (relation between the constructions). Assume that N is regular. Then
the constructions of its “global” and local Floer homologies are related as follows.

Namely, the symplectic submanifold M̃ ⊆M ×N can be viewed as a local version

of M̂ . More precisely, shrinking M̃ if necessary (so that it still contains Ñ), the

manifold M̃ symplectically embeds into M̂ via the map

(x, y) 7→
(
x, isotropic leaf through y

)
.
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