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The first published proof that the harmonic series
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exceeds any given quantity was given by Pietro Mengoli in 1650 [9]. The same result
had been proved by Nicole Oresme in Question 2 of his Questiones super geome-
triam Euclidis [7, pp. 131–135], dated around 1350. These Questiones were copied
as a manuscript but were not published until the 20th century. There is no indication
that Mengoli knew of this work. Oresme’s proof is the one still commonplace today,
based on grouping the terms of the series into blocks of 2 terms, 4 terms, 8 terms, etc.
Mengoli’s proof is also based on the grouping of terms, but in a different manner. He
groups the terms into blocks of three and applies the inequality
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. (1)

This inequality follows, as Mengoli says, from the fact that the first term exceeds
the middle by more than the middle exceeds the last, i.e., 1

n−1 − 1
n

> 1
n

− 1
n+1 , and

therefore, replacing the outer terms by the middle one will diminish the first by more
than it will increase the last.

Applying this inequality to the harmonic series gives
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Note that the harmonic series recurs in the final expression: if we let S denote the sum
of the harmonic series, we have just proved that S > 1 + S. From this inequality, it fol-
lows that S cannot be finite, so this is one way of arriving at the desired result. Indeed,
most modern accounts of Mengoli’s proof put this exact reasoning in his mouth. In
particular, [4, pp. 7–10], [8], and [1, pp. 11–12] all phrase Mengoli’s proof in this
exact way.

We believe it is highly unfortunate that this has become the standard account of
Mengoli’s proof, for in fact he does not argue in this way, and indeed the fact that
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he does not do so is arguably one of the most interesting and historically illuminat-
ing aspects of his proof. Below we give a complete English translation of Mengoli’s
argument, so that it may be appreciated in his own terms and its persistent misrepre-
sentations eradicated.

In the fourth paragraph of the translation, we see that Mengoli does indeed note and
utilise the self-replicating nature of the above estimation procedure. However, he does
not treat as an entity the completed series in the manner of the inequality S > 1 + S.
Instead he notes that (1) tells us that the sum of the first three terms,
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i.e., greater than the sum (2), and the sum of the next 27 terms is greater than
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i.e., greater than the sum (3), etc. Therefore, when the terms of the original series
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are grouped into blocks of size 3, 9, 27, etc., the sum of each block exceeds 1, since by
repeated application of (1) the sum of each such block is greater than the sum of the
previous block and thus greater than the sum of the first three terms and hence greater
than 1. (Note that Mengoli does not include a leading term 1, as is customary today
when talking about the harmonic series.)

Thus a faithful schematic representation of Mengoli’s proof is not to conclude from
S > 1 + S that S cannot be finite, but rather to apply this inequality repeatedly to
yield S > 1 + S > 2 + S > 3 + S > · · · , and a fortiori S > 1, S > 2, S > 3, etc.,
from which it follows that the series continued sufficiently far can be made to exceed
any given quantity. The accounts of Mengoli’s proof given by [11], [5], [10, pp. 14–
23], and [2, pp. 204–205] capture this aspect of the proof much more faithfully than
the sources cited above.

But even the very idea of considering the sum of the series as a number or alge-
braic entity that can be denoted by a single symbol such as S is foreign to Mengoli.
And that with good reason. For what grounds do we have for assuming that an infi-
nite series can be considered as a unified algebraic entity and be operated on as such?
Mengoli’s approach dextrously avoids all the potential pitfalls of dealing with infini-
ties in a careless fashion. Instead of speaking in abstractions such as saying that the
harmonic series equals infinity, he remains thoroughly finitistic, saying that the series
exceeds 1 if you take 3 terms, 2 if you take 3 + 9 terms, 3 if you take 3 + 9 + 27 terms,
etc. This captures the infinity of the series in the most concrete and constructive man-
ner possible, in unequivocal terms that are not susceptible to any philosophical qualms
about infinities.
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Mengoli’s cautious approach to the infinite is very much in keeping with the way the
infinite was treated in classical Greek mathematics. In particular, the Greek “method
of exhaustion” was a fundamental technique for avoiding appeal to the infinite. Greek
mathematicians used this technique to determine many areas by, in effect, limiting
processes of polygonal approximations. But to avoid explicit use of the infinite and
instead phrase their results in safe, finitistic terms, they showed, by a double reduction
ad absurdum, that all other possible values for the area, except the one claimed in the
theorem at hand, would be impossible. To rule out any given value for the area other
than the correct one, only a finite number of steps in the polygonal approximation
would be needed, whence the proof avoids assuming the completion of an infinite
number of operations or making any explicit reliance on the infinite. In other words,
the method of exhaustion deals only with the potential infinity (as Aristotle called it)
of the procedure having the potential of being extended indefinitely, as opposed to
the actual infinity of considering the approximation process or series as having been
carried through to its completion.

Indeed, Mengoli cites Archimedes’ Quadrature of the Parabola as having occa-
sioned his work on infinite series. This is a prime example of the method of exhaustion.
In it, Archimedes shows that the area of a segment of a parabola can be approximated
by inscribed triangles in such a way that the triangles added at each step of the approx-
imation have one quarter the area of those at the preceding step. Thus the total area of
the parabolic segment is

A + 1

4
A + 1

42
A + 1

43
A + · · · = 4

3
A,

where A is the area of the initial inscribed triangle (which itself is straightforward
to determine). Again, Archimedes does not speak of the sum of an infinite series but
rather shows that, by bringing the approximation far enough, any other possible value
for the area is ruled out.

Mengoli was surely very sensitive to this context. In fact, as Eneström [3] points
out, this even explains the title of Mengoli’s work, which is called “New arithmetical
quadratures” even though it contains no actual quadratures (i.e., area determinations).
Thus Mengoli evidently associated the theory of series very closely with the classical
method of exhaustion, so it is not surprising that he remains committed to its finitistic
paradigm.

The nature of Mengoli’s proof makes it a perfect showcase for the great importance
attached to these considerations at the time. For if there ever were a time to employ a
form of reasoning (such as that S > 1 + S implies S = ∞) that considers a series as a
single, completed algebraic entity, then this was it. Indeed, as we have pointed out, the
temptation to reason in this way in this case is so strong that even several writers on the
history of mathematics have succumbed to it when describing Mengoli’s proof. Thus
the fact that Mengoli does not do so is an especially telling testament to his dedication
to the ancient manner of dealing with infinities in strictly finitistic terms. It is a great
pity, therefore, that this crucial aspect of his proof is misrepresented in the standard
modern accounts of it.

The translation

Mengoli’s proof of the divergence of the harmonic series occurs in the first five para-
graphs of the Preface of his 1650 Novae quadraturae arithmeticae [9]. We now give a
complete English translation of this passage. The translation will be followed by some
explanatory notes.
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Meditating often on Archimedes’ quadrature of the parabola, in which infinitely
many triangles, being in continued quadruple proportion, do not exceed cer-
tain bounds, the universal quadrature came to mind, demonstrated by geome-
ters using the same proof, in which infinitely many magnitudes in some contin-
ued proportion of greater inequality are gathered into determined homogeneous
quantities. This admirable theorem! In contemplating it, I was led to the ques-
tion, whether magnitudes arranged under such a rule, whatever it may be, such
that some can be taken smaller than any given quantity, or that decreasing terms
vanish in infinitum, when composed infinitely can exceed each given quantity.

Having gone about to try arithmetical fractions for the purpose of such an
experiment, I set them out thus, so that all the unities are denominated by all the
numbers after unity,
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In this arrangement, the magnitude can be taken less than any given amount, and
therefore these magnitudes decreasing in quantity according to the increase of
the rank, disappear into infinity.

Propounding the question in the terms of the assumed arrangement, I was
therefore searching for an argument to decide whether the unities denominated
by every number starting with unity, laid out to infinity, taken together would
make up some infinite or finite extent. It seemed that the answer would have to
be in favor of a finite extent, since the powers of numbers and of fractions are
opposed: that of numbers in multiplication, by which quantities progress towards
infinity, but that of fractions in division, by which a thing is reduced downright
to indivisibles: now the numbers taken together exceed any given quantity; so
by the opposite reasoning it seems that the fractions cannot exceed any given
quantity. This sophism was the reason of my expectation, held for almost an
entire month, that I would be able to decide in favor of this geometrical view
about the matter; but when I now examine the procedure of proof, my judgment
changes to the other view.

The procedure is the following. Because in the given fractions equal mag-
nitudes are denominated by numbers in arithmetic proportion, and thus three
consecutive terms, say A, B, and C, are in harmonic proportion, for example,

A B C
1
2

1
3

1
4

and A has the same proportion to C as the excess of A to B has to the excess
of B to C, and moreover, A is greater than C, therefore the excess of A to B is
greater than the excess of B to C. The total of A and C is greater than twice B,
and the total of the three A, B, C is greater than thrice the middle term B. So
by this argument, the fractions in this arrangement taken three at a time from the
first,
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are greater than thrice the middle terms: and the middle terms are unities denom-
inated by numbers multiplied by three, 1

3 ,
1
6 ,

1
9 ,

1
12 , and thrice these are 1, 1

2 ,
1
3 ,

1
4 ,

the same ones which in the above argument taken three at a time are greater
than thrice the middle terms. Therefore the given fractions of the arrangement,
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taken according to numbers in subtriple proportion, 3, 9, 27, 81, all exceed uni-
ties. For any given number, one can take equally many numbers in continued
subtriple proportion starting from three, and then the fractions of the proposed
arrangement taken according to the sum of the numbers in continued proportion
will exceed the given number. Therefore the proposed fractions, arranged up to
infinity and taken together, are capable of filling an infinite extent.

For example, let 4 be the assigned number, and starting from three take four
numbers in continued subtriple proportion, 3, 9, 27, 81, whose sum is 120: then
120 of the given fractions exceed the assigned number 4. For, the first three
exceed thrice 1

3 , namely unity; the next nine exceed thrice the sum of 1
6 ,

1
9 ,

1
12 ,

namely the sum of 1
2 ,

1
3 ,

1
4 , but as I have shown the sum of those exceeds unity,

and so these nine exceed unity; and by the same demonstration the following 27
and 81 exceed unities.

Notes on the text

Mengoli opens his discussion with a reference to Archimedes’ Quadrature of the
Parabola. This shows the context in which he was led to the study of series, namely
using them—in particular geometric series—for the determination of areas according
to the method of exhaustion. This explains why he uses the term “quadrature” to mean,
in effect, the sum of a series, even though this term normally means finding an area.
Indeed, as noted above, the “new quadratures” promised in the title of Mengoli’s work
are quadratures only in the sense of summing series. Mengoli’s interest is not in the
geometrical application of series. In the above translated paragraphs, he instead poses
a more abstract question which arises from reflecting on such series, namely the ques-
tion of whether the sum of an infinite series can exceed any quantity even though its
terms become smaller and smaller and approach zero.

In the terminology of the first paragraph, then, “universal quadrature” does not mean
finding the area of any figure, but rather finding the sum of any sequence of magni-
tudes in a “continued proportion of greater inequality,” this being “universal” in that it
generalizes the sequence of areas Archimedes used in which each was one-quarter the
previous. To say that homogeneous magnitudes a1, a2, a3, . . . are in continued propor-
tion means that a1 : a2 = a2 : a3, a2 : a3 = a3 : a4, etc. In other words, a sequence of
homogeneous magnitudes a1, a2, a3, . . . is in continued proportion when there is some
dimensionless quantity r such that a1 = ra2, a2 = ra3, a3 = ra4, etc. “Quadruple pro-
portion” means r = 4. To say that a ratio a : b is in greater inequality means that
a > b. Thus, the “universal quadrature” means summing any geometric series with
strictly decreasing terms. To speak about the magnitudes “composed infinitely” means
summing the magnitudes. Heath [6, p. 85] may be consulted for a summary of the
notions of arithmetic, geometric, and harmonic proportions in classical Greek mathe-
matics.

In the second paragraph, by “arithmetical fractions” Mengoli means that the denom-
inators are in arithmetic proportion rather than geometric proportion, i.e., the terms are
of the form 1

a1
, 1

a2
, 1

a3
, 1

a4
, . . . where a1, a2, a3, a4, . . . satisfy a1 − a2 = a2 − a3, a2 −

a3 = a3 − a4, etc. “Decreasing in quantity according to the increase of the rank” means
that the greater the index of a term, the smaller the magnitude of the term.

In the third paragraph, Mengoli states that he at first believed that the harmonic
series must have a finite value since when one makes a number bigger and bigger, the
corresponding fraction becomes smaller and smaller, and thus eventually “indivisible”,
so that it would contribute nothing to a sum. Mengoli’s point that he was misled by
this “sophism” (i.e., a confusing or deceptive argument) “for almost an entire month”
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serves to make the reader appreciate the counterintuitive nature of his result.
The fourth paragraph contains the proof that the harmonic series diverges. In sym-

bols, Mengoli says that for A, B, and C to be in harmonic proportion means that

A

C
= A − B

B − C
.

If a, b, and c are in arithmetic progression, i.e., a − b = c − b, then their reciprocals
1
a
, 1

b
, 1

c
are in harmonic proportion:

1
a

− 1
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1
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− 1
c

=
b−a

ab
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c − b

c

a
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a
=

1
a

1
c

.

If A, B, and C are in harmonic proportion and A > C, then A − B > B − C, so A +
C > 2B and hence A + B + C > 3B. Using this fact that applies to triples in harmonic
proportion, we chunk the sequence 1

2 ,
1
3 , . . . into triples of the form 1

3n−1 ,
1

3n
, 1

3n+1 , and
the sum of each triple is greater than thrice the middle term, i.e., greater than 1

n
.

Thus, first, the sum of the three terms
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3
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4

is greater than 3
3 = 1. Second, the sum of 1
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1
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1
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1
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1
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1
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11 ,
1

12 ,
1
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4 , so the
sum of the nine terms
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is greater than the sum of

1

2
,

1

3
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4
.

But we know that the latter sum is itself greater than 1, so the sum of (4) is greater than
1. Third, the sum of 1

14 ,
1

15 ,
1

16 is greater than 3
15 = 1

5 , the sum of 1
17 ,

1
18 ,

1
19 is greater

than 3
18 = 1

6 , etc., and the sum of 1
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1
39 ,

1
40 is greater than 3

39 = 1
13 , so the sum of the

27 terms
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is greater than the sum of
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But we know that the latter sum is itself greater than 1, so the sum of (5) is greater than
1. Thus, Mengoli chunks the sequence

1

2
,

1

3
,

1

4
, . . . (6)

into blocks with 3, 9, 27, etc. terms, and the sum of the terms in each block is greater
than 1. There are infinitely many blocks, and therefore the sum of (6) is greater than
1 + 1 + 1 + · · · , namely it fills an “infinite extent.”
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The ratio 1 : 3 is a “subtriple proportion,” and saying that the numbers 3, 9, 27, 81
are in subtriple proportion means that the consecutive ratios 3 : 9, 9 : 27, 27 : 81 are
subtriple proportions.

In the fifth paragraph Mengoli spells out an explicit recipe for how many terms will
suffice for the series to exceed any given number. Generally, for a positive integer n, the
sum of the first

∑n

k=1 3k = 3n+1−3
2 terms of the sequence 1

2 ,
1
3 ,

1
4 , . . . is greater than n.

Mengoli gives as an example n = 4, for which 34+1−3
2 = 120, and 1

2 + 1
3 + · · · + 1

121 >

4. (In fact, ones computes that this sum is equal to 5.368 . . ..) Again, this shows very
clearly Mengoli’s commitment to a finitistic or constructive notion of what it means
for a sum to be infinite.
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