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Abstract. We introduce a modification procedure for Engel structures that is rem-
iniscent of the Lutz twist in 3-dimensional Contact Topology. This notion allows us
to define what an Engel overtwisted disc is, and to prove a complete h-principle for
overtwisted Engel structures with fixed overtwisted disc.

1. About this paper

A maximally non-integrable 2-plane field D on a 4-manifold M is called an Engel
structure. Maximal non-integrability means that E = [D,D] is a distribution of rank 3
that satisfies [E , E ] = TM . Engel structures hold a privileged position in the taxonomy
of distributions: they are one of the four topologically stable families of distributions
(i.e. distributions described by an open condition and having a unique local model
up to diffeomorphism) [Mo2]. In this paper we study them from the perspective of
the h-principle, viewing them as sections of the Grassmann bundle Gr(TM, 2) which
satisfy a certain differential relation of order 2. The goal is to study the space of such
sections, comparing it with the space of formal solutions. In the case when M and
D are orientable and oriented, formal solutions are trivializations of TM in which the
first two components of the framing span D.

Gromov’s method of flexible continuous sheaves [Gr] shows that Engel structures,
which are given by an open and Diff-invariant partial differential relation, satisfy the
h-principle in open manifolds. This does not prove the analogous result for closed man-
ifolds. In [EM, Intrigue F2] it is stated: “On the other hand, it is unknown whether
the h-principle holds for Engel structures on closed 4-manifolds. In particular, it is
an outstanding open question whether any closed parallelizable 4-manifold admits an
Engel structure”.

It was proven in [Vo] that every parallelizable 4-manifold does admit an Engel structure.
The proof relies on the interplay between Engel and contact structures: First, the
ambient manifold is decomposed into round handles, then one can proceed handle by
handle constructing the desired Engel structure. During this process, the boundary of
each handlebody inherits a contact structure. The heart of the argument is to be able
to manipulate these contact structures to ensure that the handles can indeed be glued.
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More recently, the existence problem for Engel structures (in every formal class) was
solved [CPPP]. It was shown that the inclusion

i : Engel(M)→ FEngel(M)

of the space of Engel structures into the space of formal Engel structures is a surjec-
tion in homotopy groups whenever M is closed; here Engel(M) and FEngel(M) are
endowed with the C2 and C0 topologies, respectively. The key contribution of [CPPP]
is a method for constructing and manipulating Engel structures locally. As such, the
approach differs from the one in [Vo] and is more of an h-principle. However, the proof
in [CPPP] does not work relative to subsets U of the manifold. This is because it relies
on increasing the amount of turning of D with respect to the leaves of the character-
istic foliation (see Sections 2.1 and 2.2). This is not possible when the characteristic
foliation is tangent to the boundary of ∂U (as sketched in Figure 1).

formal Engel structure W

Engel structure on U

 

 

Figure 1. In general one cannot extend every Engel structure from
U = Op(∂D4) to the interior of M = D4 using the methods of [CPPP].
The integral lines of the characteristic foliation are depicted as vertical
segments.

Currently, the outstanding open question in Engel Topology is whether i might in
fact be a homotopy equivalence. While answering this question is beyond the scope
of this article, we are able to define what an overtwisted Engel structure is and show
that Engel structures with fixed overtwisted disc satisfy the complete h-principle. In
particular, the result we obtain is relative in the parameter and the domain. An
important corollary, which does not follow from [Vo] nor [CPPP], is that every Engel
germ in ∂D4 extends to the interior of D4 if it extends formally.

1.1. Outline of the paper. Throughout the paper we use Gromov’s notation Op(A)
to denote an arbitrarily small neighborhood of the set A. We write int(A) for the
interior of the set A.

The Engel-Lutz twist and overtwisted Engel structures. In 3-dimensional Contact Topol-
ogy one defines the full Lutz twist [Lu] as a surgery operation along a transverse knot.
One replaces the contact structure on a standard neighborhood of the knot by a contact
structure which “twists” more. While this operation does not change the homotopy
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class as a plane field, it can change the homotopy class as a contact structure. In
particular, the resulting contact structure is always overtwisted [El].

The main focus of this article are Engel-Lutz twists. This construction is the En-
gel analogue of the classical full Lutz twist. One replaces the Engel structure in a
neighborhood of a 2-torus transverse to D by another Engel structure which has more
“twisting”. This operation preserves the formal type, but we do not know whether the
resulting Engel structure is Engel homotopic to the original one. This is explained in
Section 4.

Before defining the Engel-Lutz twist, we show that there are many transverse 2-tori in
a given Engel manifold (Section 3). More precisely, we prove that transverse 2-tori can
be constructed along knots transverse to the even-contact structure [D,D]. Moreover,
the transverse surfaces we construct are quite flexible and can be isotoped effectively.

When one attempts to construct an Engel structure from a formal Engel structure, a
certain family of Engel germs along ∂D4 is obtained (Proposition 6.3). A key obser-
vation is that the Engel-Lutz twist can be used to extend these germs to the interior
of D4 (Subsection 6.3). Motivated by this fact, in Section 5 we endow the 4-ball with
a specific Engel structure DOT, which is a portion of the Engel-Lutz twist satisfying
a certain numerical constraint. We say that the Engel manifold ∆OT = (D4,DOT) is
an overtwisted disc. If an Engel embedding ∆ : ∆OT −→ (M,D) exists, we say that
(M,D) is an overtwisted Engel manifold.

The numerical constraint just mentioned is needed to prove one of the key properties
satisfied by ∆OT: self-replication (Lemma 5.2). I.e., up to Engel homotopy, one can
find arbitrarily many copies of the overtwisted disc in a neighbourhood of a single ∆OT.
Proving this property motivates many of the constructions of transverse surfaces that
we carry out in Section 3.

Statement of the main results. Let ∆ : D4 −→ M be a smooth embedding. We define
EngelOT(M,∆) ⊂ Engel(M) to be the subspace of those Engel structures on M such
that their pullback by ∆ is DOT. Its formal analogue is FEngel(M,∆) ⊂ FEngel(M),
the subspace of those formal Engel structures that pullback to DOT under ∆ (so, in
particular, they are Engel on im(∆)).

In families, the overtwisted discs may vary parametrically: Let K be a compact man-
ifold. We will say that a K-family of Engel structures D : K −→ Engel(M) is over-
twisted if there is a locally trivial fibration of overtwisted discs ∆k ⊂ (M,D(k)), k ∈ K.
We will say that the family ∆ = (∆k)k∈K is the certificate of overtwistedness of D. In
Subsection 6.6.4 we discuss a different (but equivalent up to homotopy) way in which
overtwistedness can appear in the parametric setting.

The terminology “overtwisted” is justified by our main result, which states that over-
twisted families of Engel structures are flexible. I.e. they satisfy the following extension
property, relative to the parameter and the domain:

Theorem 1.1. Let M be a smooth 4-manifold (possibly non-compact or with bound-
ary). Let U ⊂ M be a closed subset such that M \ U is connected. Let K ′ ⊂ K be
compact CW-complexes.
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Suppose D0 : K −→ FEngel(M) is a family of formal Engel structures satisfying:

• D0(k) is Engel at p ∈M if p ∈ Op(U) or k ∈ Op(K ′),
• D0 has a certificate of overtwistedness (∆k)k∈K with ∆k ⊂M \ U .

Then, there is a homotopy D : K × [0, 1] −→ FEngel(M) such that

• D(·, 0) = D0,
• D(k, s)(p) = D(k, 0)(p) whenever k ∈ Op(K ′) or p ∈ Op(U) ∪∆k,
• D(·, 1) : K −→ Engel(M).

Remark 1.2. The assumption that M \U is connected can be dropped if one assumes
that D0 has certificates of overtwistedness in each connected component of M \ U . �

The proof of Theorem 1.1 spans Section 6. We invite the reader to check that our ap-
proach provides an alternate proof of Eliashberg’s classification of overtwisted contact
structures in dimension 3 [El].

From the theorem, the complete h-principle for Engel structures with fixed overtwisted
disc follows immediately (Subsection 6.6.1):

Corollary 1.3. The inclusion

EngelOT(M,∆) −→ FEngel(M,∆)

is a homotopy equivalence.

As is often the case, the particular trivialization of the overtwisted disc does not matter
for π0 statements. Write EngelOT(M) ⊂ Engel(M) for the subspace of overtwisted
Engel structures. The following statement follows from Theorem 1.1:

Corollary 1.4. The inclusion

EngelOT(M) −→ FEngel(M)

induces a bijection between path components.

More generally, the homotopy type of the certificate is not relevant for lower dimen-
sional families:

Corollary 1.5. Let K be a CW-complex of dimension at most 3. Two overtwisted
families D0,D1 : K −→ Engel(M) are homotopic if and only if they are formally
homotopic.

Corollaries 1.4 and 1.5 are worked out in Subsection 6.6.3.

Theorem 1.1 addresses one of the shortcomings in [CPPP], namely that the result
proved there is not relative in the domain (see Figure 1).

Corollary 1.6. Let K be a compact CW-complex and let D0 : K −→ FEngel(D4) be
a family of formal Engel structures in the 4-ball with D0(k)|∂D4 Engel. Then, there is
a family D1 : K −→ Engel(D4) which, relative to ∂D4, is formally homotopic to D0.
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In the non-parametric case, this is shown in Subsection 6.3 without relying on the
full force of Theorem 1.1. The parametric version is deduced from Theorem 1.1 in
Subsection 6.6.2.

Finally, in Subsection 6.6.4 we briefly explain how an h-principle for foliations endowed
with a leafwise Engel structure can be deduced from our main result.

Looseness and overtwistedness. In [dP2] (see also the paper [CPP]) an alternative
characterization of Engel flexibility is introduced and, using it, a result similar to
Corollary 1.3 is obtained for a different subclass of Engel structures, which we call
loose in [CPP]. Normally, any two seemingly different notions of overtwistedness are
in fact equivalent up to homotopy, provided that both are defined by formally trivial
models on a ball. However, this is not the case here: Overtwistedness and looseness,
as far as is currently understood, are two separate phenomena which are different in
nature. Let us explain why.

Suppose we have two different definitions, the first given by the presence of some local
model, which we call the disc of type I, and the second one given by another local
model, which we call the disc of type II. Suppose D is an overtwisted structure of type
I. We modify it away from its overtwisted disc to introduce a disc of type II, and then
we use the parametric nature of Theorem 1.1 to construct a homotopy between them
through overtwisted structures of type I. This shows that an overtwisted structure of
type I contains a disc of type II up to homotopy.

This argument cannot be applied here because Engel looseness is not given by a local
model. It is a global property of the structure. Then, an intriguing open question is
how Engel overtwistedness and looseness might be related. A closely related question
is whether there exist Engel families that are not overtwisted nor loose.

A relevant (and related) remark is that the extension problem for Engel structures
(Corollary 1.6 in the present paper) cannot be deduced from the results in [CPP].
This is due to the fact that looseness is a global property and therefore not well-suited
for performing constructions relative in the domain.

Acknowledgments: The work in this article has profited from an AIM-Workshop
on Engel structures which was held in the spring of 2017. We would like to thank
all the participants of this workshop for their questions and all the discussions we
had. In particular, we would like to thank Roger Casals, Yakov Eliashberg, Dieter
Kotschick, Emmy Murphy, and Fran Presas. We are also grateful to the anonymous
referees for their valuable suggestions. Á. del Pino is supported by the NWO Vici
Grant 639.033.312 of Marius Crainic and by his own NWO 016.Veni.192.013 grant.

2. Definitions and standard results

We start by reviewing the relevant definitions and going over basic results. Unless
stated otherwise, all distributions we consider are smooth.
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2.1. Engel structures.

Definition 2.1. Let M be a smooth 4-manifold.

• An even-contact structure is a smooth hyperplane field E such that [E , E ] =
TM .
• An Engel structure is a smooth plane field D such that [D,D] is an even-

contact structure.

When U ⊂ M is closed, we say that a plane field D is Engel on U if it is an Engel
structure on some open neighborhood of U .

For an even-contact structure E and any p ∈M , we can consider the map

E(p)× E(p) −→ TpM/E(p)

X, Y 7−→ [X, Y ](p).

The commutator is defined using local extensions of the vectors X, Y to local sections
of E , but the result is independent of choices. Thus, we have an antisymmetric bilinear
form on E(p) taking values in a real vector space of dimension one. Therefore, this form
has a kernel, which we denote byW(p). It defines a foliation of rank oneW ⊂ E which
we will call the kernel foliation1 of E . It is characterized by the property [W , E ] ⊂ E ,
i.e. all flows tangent to W preserve E .

If D is an Engel structure satisfying E = [D,D], it follows that W ⊂ D, because
otherwise [D,D] 6⊂ E . Consequently, from every Engel structure D we obtain a flag of
distributions

(1) W ⊂ D ⊂ E ⊂ TM

where the rank increases by one at every step. Whenever E = [D,D] is induced by an
Engel structure, E has a canonical orientation defined by X, Y, [X, Y ], where {X, Y }
is any local frame of D. However, there are no canonical orientations for the other
elements of the flag.

Example 2.2. F. Engel proved that Engel structures have a unique local model up to
diffeomorphism. Namely, we can always find local coordinates (x, y, z, w) in which

E = ker(dy − zdx), D = ker(dy − zdx, dz − wdx), W = 〈∂w〉.
This particular choice of model defines the tautological distribution in J2(R,R), the
space of 2-jets of functions from R to R. �

Motivated by the discussion preceding the example, we now define the formal analogue
of an Engel structure:

Definition 2.3. A formal Engel structure is a complete (non-oriented) flag W ⊂
D ⊂ E ⊂ TM , together with two isomorphisms

det(D) ∼= E/D,
det(E/W) ∼= TM/E .

(2)

1Other common names for W include characteristic foliation and isotropic foliation.
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The space of formal Engel structures on M , endowed with the C0-topology, is denoted
by FEngel(M). The natural inclusion

ι : Engel(M) −→ FEngel(M)

induces the C2-topology on the space of Engel structures Engel(M).

If D is an Engel structure, the first isomorphism in Equation (2) is induced by

Λ2D −→ E/D
X ∧X ′ 7−→ [X,X ′].

(3)

The induced map being an isomorphism is a reformulation of the fact that E inherits
a canonical orientation from D. The second isomorphism is induced by the map

Λ2E −→ TM/E
Y ∧ Y ′ 7−→ [Y, Y ′]

(4)

whose kernel is W ∧ E . We will often write (W ,D, E) when we talk about a formal
Engel structure, omitting the morphisms (2).

Lastly, consider the case when W and D are oriented and fix a framing {W ∈ W , X ∈
D} of D compatible with the orientations. Then, the following expression is a framing
of TM :

W,X, [W,X], [X, [W,X]]

This framing is unique, up to homotopy, once the orientations of W and D have been
fixed. We call it the Engel framing. Under these orientation assumptions the Engel
condition can be rephrased in terms of a pair of forms α, β defining D = ker(α)∩ker(β)
and ker(α) = E as follows

α ∧ dα 6= 0,

α ∧ β ∧ dα = 0,

α ∧ β ∧ dβ 6= 0.

For instance, in the normal form presented in Example 2.2, we can choose α = dy−zdx
and β = dz − wdx.

Remark 2.4. Consider the space of Engel structures endowed with orientations for
both W and D. Its formal counterpart is then the space of oriented flags. �

2.2. The development map. Following [Mo] we now recall an interpretation of the
condition [D,D] = E in terms of the holonomy of W .

Consider a point p ∈ M and write Wp for the leaf of W through p. We let W̃p be its
universal cover, in which we fix a preferred preimage of p; we abuse notation and still

denote it by p. Given a point q ∈ W̃p, with image in Wp also denoted by q, we can
find a locally defined vector field W which is tangent to W and non-vanishing on the
segment of Wp connecting p and q. The flow ϕ of W preserves W and E .

We let t be the time such that ϕt(p) = q in the universal cover. Then, the differential
of ϕ−t induces a linear map

hp(q) := Dϕ−t : E(q)/W(q) −→ E(p)/W(p).
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This map is independent of the choice of W and it represents the linearized holonomy
of the foliation W . Therefore, one can consider the images of D(q) in E(p)/W(p) for

all q in W̃p. This defines the development map

hp : W̃p −→ P(E(p)/W(p))

q 7−→ Dϕ−t(D(q)) with ϕt(p) = q as above.
(5)

The Engel condition [W ,D] = E implies that hq is an immersion.

When D is oriented, one can replace the projective space P(E(p)/W(p)) ∼= RP1 by the

space P̃(E(p)/W(p)) ∼= S1 of oriented lines in E(p)/W(p).

2.3. Curves on spheres and the Engel condition. Fix coordinates (p, t) in D3×R.
A plane field D in D3 ×R containing ∂t can be described in terms of a smooth family
of curves (Hp : R −→ S2)p∈D3 , where S2 is the unit sphere in R3. Indeed, once we fix a
framing X(p), Y (p), Z(p) of TD3, we can identify (Hp)p∈D3 with the vector field

(p, t) 7−→ (Hp(t))1 ·X + (Hp(t))2 · Y + (Hp(t))3 · Z,

where the subscript i corresponds to taking the i-th coordinate. Using this identifica-
tion, we construct a plane field

D(p, t) = 〈∂t, Hp(t)〉.

We write Ḣp(t) = [∂t, Hp(t)] and Ḧp(t) = [∂t, Ḣp(t)]. Then

[D,D](p, t) = 〈∂t, Hp(t), Ḣp(t)〉[
D, [D,D]

]
(p, t) =

〈
∂t, Hp(t), Ḣp(t), Ḧp(t), [Hp(t), Ḣp(t)]

〉
.

The following characterization of Engel structures tangent to ∂t will be fundamental.
Its proof follows from the discussion above. For additional details we refer the reader
to [CPPP].

Proposition 2.5. A D3-family of curves (Hp)p∈D3 in S2 determines an Engel structure
near (p, t) ∈ D3 × R if and only Hp is an immersion at time t and at least one of the
following conditions holds.

(i) The vectors Hp(t), Ḣp(t), Ḧp(t) are linearly independent.

(ii) The vector fields Hq(t) and Ḣq(t) span a contact structure in a neighborhood of
(p, t) in D3 × {t}.

We remark thatHp being an immersion is equivalent to the fact thatD is non-integrable
(i.e. [D,D] 6⊂ D). Note that conditions (i) and (ii) are both open and not mutually
exclusive. Moreover, we do not require for the contact structure in (ii) to be positive
with respect to a fixed orientation of D3.

By definition, the kernel foliation is tangent to ∂t if and only if condition (i) fails. If
condition (i) is satisfied, then Hp is strictly convex or strictly concave at t.
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2.4. Model structures. In Section 6 we will perform certain local manipulations
of formal Engel structures. We will now describe a family of local models that is
suitable for this purpose. The reader should compare the construction presented here
to condition (ii) in Proposition 2.5.

Let I be a 1-manifold. We write (y, x) for the product coordinates in Γ = I × [0, 1]. A
pair of smooth functions f± : Γ −→ R satisfying f− ≤ 0 < f+ determines a domain

D(I, f−, f+) = {(y, x, z) ∈ Γ× R | f−(y, x) ≤ z ≤ f+(y, x)}
which we endow with the contact structure

ξ = ker(cos(z)dy − sin(z)dx) = 〈∂z, cos(z)∂x + sin(z)∂y〉.

Let J = [a, b] be an interval with coordinate w. A function c : D(I, f−, f+)× J −→ R
determines a complete flag in D(I, f−, f+)× J :

W = 〈∂w〉
Dc =W ⊕ 〈Xc = cos(c)∂z + sin(c)(cos(z)∂x + sin(z)∂y)〉
E =W ⊕ ξ,

(6)

where the distribution E is even-contact, does not depend on c, and has W as its
characteristic foliation. Whether the plane field Dc is Engel depends on the behaviour
of c, as explained below.

Using the flag we can describe a formal Engel structure by fixing bundle isomor-
phisms as in Equation (2). First note that, since E is even-contact, the isomorphism
det(E/W) ∼= TM/E is determined by Equation (4). The other bundle isomorphism
det(D) ∼= E/D is unique, up to homotopy, once we impose for {∂w, ∂z, cos(z)∂x +
sin(z)∂y} to be a positive framing of E . It is given by an identification

Λ2D −→ E/D
∂t ∧Xc 7−→ b · (− sin(c)∂z + cos(c) (cos(z)∂x + sin(z)∂y)) ,

where b is a positive function. Often, Dc will be Engel on some subset U of the model.
Then, the isomorphism is prescribed on U by Equation (3), and we will assume that
b|U = (∂tc)|U .

Definition 2.6. The formal Engel manifold

M(I, J, f−, f+, c) =
(

(D(I, f−, f+)× J) ,W ,Dc, E
)

is said to be a model structure with

angular function c

height function c(y, x, z, b)− c(y, x, z, a)

height min(y,x,z)∈∂D(I,f−,f+)(c(y, x, z, b)− c(y, x, z, a))

bottom boundary {w = a}
top boundary {w = b}

vertical boundary
{

(y, x, z, w)
∣∣ (y, x, z) ∈ ∂D(I, f−, f+)

}
projection π : D(I, f−, f+)× J −→ D(I, f−, f+)
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The model is solid if ∂wc > 0 everywhere.

It is immediate that parametric families of models can be considered by smoothly
varying the functions f−, f+, c, and the parametrisation of I and J .

Condition (ii) of Proposition 2.5 implies that a model structure is Engel at (y, x, z, w)
if and only if ∂wc(y, x, z, w) 6= 0. Having chosen {∂w, ∂z, cos(z)∂x + sin(z)∂y} as a
positive framing of E , we need to further require ∂wc(y, x, z, w) > 0 to obtain the
correct formal class. In particular, a solid model is a genuine Engel structure on the
4-manifold M(I, J, f−, f+, c).

Lemma 2.7. Let M(I, J, f−, f+, c) be a model with positive height function everywhere
and satisfying ∂wc(y, x, z, w) > 0 along the boundary. Then Dc can be homotoped to a
solid model through model structures and relative to the boundary.

Proof. Since c(y, x, z, b) > c(y, x, z, a), one can construct a function

csol : D(I, f−, f+)× J −→ R
which coincides with c on a neighborhood of the boundary and satisfies ∂wc

sol > 0.
Then M(I, J, f−f+, tc

sol + (1− t)c), t ∈ [0, 1], provides the desired homotopy through
model structures. �

2.5. Loops transverse to the even-contact structure. Let (M,D) be an Engel
manifold. In Sections 3 and 4, we will construct surfaces and hypersurfaces transverse
to D. These submanifolds will lie in standard neighborhoods of curves transverse to
E = [D,D]. In this subsection we will explain some elementary facts about such curves.

Definition 2.8. A transverse curve is an embedding of a 1-manifold into (M,D)
which is transverse to E = [D,D]. When a transverse curve is closed and connected,
we will sometimes call it a transverse loop.

2.5.1. Normal form of D close to a transverse loop. Let I be a compact 1-manifold.
We consider I×R3 with coordinates (y, x, z, w) and endowed with the Engel structure

Dtrans = ker(αtrans = dy − zdx, βtrans = dx− wdz).

The following proposition states that any Engel structure D is isomorphic to this model
in the vicinity of a transverse curve.

Proposition 2.9. Let (M,D) be an Engel manifold, E the associated even-contact
structure, and γ : I −→ M a transverse curve. Then, the map γ can be extended to
an Engel diffeomorphism

ϕ : Op(I × {0}) ⊂ (I × R3,Dtrans) −→ Op(im(γ)) ⊂ (M,D).

The space of germs of such diffeomorphisms is weakly contractible.

Proof. Since γ is transverse to E , there is a hypersurface N ' I × R2 containing γ
which is transverse to W . Then TN ∩ E is a contact structure ξ on N , γ is transverse
to it, and the Engel structure induces a Legendrian line field H = TN ∩ D ⊂ TN ∩ E
on N .
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We choose a vector field H spanning H and a surface Γ = I × (−ε, ε) ⊂ N which is
transverse to H and contains γ. Using the characteristic foliation ξ(Γ) one obtains
coordinates (x, y) on a neighborhood of γ within Γ such that γ = {x = 0} and ξ(Γ)
is defined by dy. Then we use the flow of H and the contact condition to obtain
coordinates (x, y, z) in N such that ξ = ker(dy− zdx). By construction, H is spanned
by ∂z.

Finally, we choose a vector field W spanningW near N . Due to the condition [D,D] =
E there are coordinates (x, y, z, w) on a neighborhood of γ in which the even-contact
structure E is defined by ker(dy − zdx) and D = E ∩ ker(dx− wdz).

Conversely, if ϕ is a diffeomorphism with the desired property, there are submanifolds
Γ ⊂ N and a vector fieldH which produce ϕ as above: we simply pickN = ϕ({w = 0}),
Γ = ϕ({z, w = 0}), and H = ϕ∗(∂z). The spaces of germs of such submanifolds and
vector fields are convex and therefore weakly contractible. Thus, the same is true for
the space of germs of diffeomorphisms satisfying the hypotheses of the proposition. �

2.5.2. Existence and classification of transverse curves. The following lemma proves
the h-principle in π0 for embedded transverse curves. It is an elementary consequence
of the corresponding h-principle for immersed transverse curves in contact 3-manifolds.

Lemma 2.10. Let γ : [0, 1] −→ M be a smooth map that, in a neighborhood of the
endpoints, is embedded and positively transverse to E. Then it can be homotoped,
relative to the boundary, to an embedded transverse arc.

Let γ0, γ1 : [0, 1] −→M be embedded arcs, transverse to E, that agree in a neighborhood
of their endpoints, and which lie in the same homotopy class as maps. Then they are
homotopic, relative to the boundary, as embedded transverse arcs.

Proof. Let us prove the second statement, which is slightly more involved. The proof
of the first is analogous.

Since γ0 and γ1 lie in the same homotopy class, we can choose a smooth homotopy
(γs)s∈[0,1] between them. Because γ0 and γ1 are transverse to E and agree near their
endpoints, we can view γs as family of formal immersions transverse to E (that is, as
a family of curves together with an injective bundle map T [0, 1] −→ TM/E). These
bundle maps are unique up to homotopy. Using the Smale-Hirsch theorem [EM, 8.2.1]
we can assume that the (γs)s∈[0,1] are immersions, but not necessarily transverse to E .
For dimension reasons, standard transversality theorems imply that the (γs)s∈[0,1] can
be assumed to never be tangent to W . Similarly, after a perturbation we may assume
that γs is embedded for all s.

We can pick a family of embeddings ψs : [0, L] × D2 −→ M which are transverse to
W and satisfy ψs(y, 0, 0) = γs(y). Intersecting the tangent space of the image of ψs
with E we obtain a contact structure ξs on Ns = ψs([0, 1] × D2). The h-principle for
transverse immersions in contact manifolds (see [EM, 14.2.2]) implies that there is a
smooth family of immersions

γ̂s : [0, L] −→ (Ns, ξs) ⊂M
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which are transverse to ξs (and therefore transverse to E) interpolating between γ0 and
γ1. We may assume that γ̂s coincides with γ0 and γ1 on a neighborhood [0, l] ∪ [1− l]
of the points {0, 1}.

In order to turn γ̂s into a family of transverse embeddings, we use the extra dimension
complementary to Ns. Let g : [0, 1] −→ [0, 1] be a smooth function such that

• g ≡ 0 on [0, l/2] ∪ [1− l/2, 1],
• g is strictly monotone outside of [l, 1− l].

Locally in a neighborhood of γ̂s we can choose a vector field W orienting W ; denote
its flow by hr. Let λ : [0, 1] −→ [0, 1] be a non-decreasing surjective function which is
constant close to its endpoints. If ε > 0 is small enough

γs : [0, 1] −→M

y 7−→ hελ(s)g(y)

(
γ̂s(y)

)
is a family of transverse embeddings interpolating between the curves γ0 and γ1. �

2.6. Curves tangent to the even-contact structure. One of the technical steps
in Section 6 requires us to manipulate curves that are tangent to the even-contact
structure but transverse to its kernel. The following statement provides standard
neighborhoods for such curves:

Proposition 2.11. Let (M, E) be a 4-dimensional even-contact manifold and ν : I −→
M an embedded curve tangent to E but transverse to its kernel.

Then, there is an even-contact embedding:(
Op(I × {0}) ⊂ I × R3, ker(dz − ydx), 〈∂w〉

)
−→ (Op(im(ν)) ⊂M, E ,W),

where the coordinates in I × R3 are (y, x, z, w).

Proof. This follows from the standard neighborhood theorem for Legendrians in a
contact 3-manifold and the fact that any even-contact structure is semi-locally given
by a contact slice stabilized by R. �

The following proposition states a parametric existence h-principle for contractible
families of curves tangent to an even-contact structure.

Proposition 2.12. Let K be a contractible space and (M, Ek)k∈K a K-family of 4-
dimensional even-contact manifolds with corresponding kernels (Wk)k∈K. Let J ⊂ I be
intervals.

Fix a family of embeddings (νk : I −→M)k∈K with νk|Op(J) tangent to Ek and transverse
to Wk. Then, there is a C0-small perturbation ν̃k of νk such that

• ν̃k is an embedded curve everywhere tangent to Ek but transverse to Wk, and
• ν̃k ≡ νk over the interval J .

For its proof, we need two standard h-principle results. The first one provides embed-
dings transverse to W :
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Lemma 2.13. Let K be a contractible space, M a 4-dimensional manifold, and (Wk)k∈K
a family of line fields in M . Let J ⊂ I be intervals.

Fix a family of embeddings (νk : I −→ M)k∈K with νk|Op(J) transverse to Wk. Then,
there is a C0-small perturbation ν̃k of νk which satisfies:

• ν̃k is an embedded curve everywhere transverse to Wk, and
• ν̃k ≡ νk over the interval J .

Proof. For a fixed k0 ∈ K, standard transversality implies that νk0 can be C∞-
perturbed to yield an embedded curve transverse to Wk0 . The homotopy between
the two, as embeddings, endows νk0 with the structure of an embedding that is for-
mally transverse to Wk0 . Then, since the parameter space K is contractible, it follows
that the whole family (νk)k∈K can be regarded as a family of embeddings that are
formally transverse to the corresponding line fields (Wk)k∈K .

For all points p ∈M , the subset TpM \Wk(p) is connected and its convex hull is TpM ,
i.e. it is an ample subset. Then the result follows from the complete h-principle for
ample, Diff-invariant, 1-dimensional differential relations (see [EM, Section 10.4]). �

The second ingredient we need is a method for producing Legendrian knots in contact
3-manifolds.

Lemma 2.14. Let K be a contractible space and (Nk, ξk)k∈K a K-family of 3-dimensional
contact manifolds. Let J ⊂ I be intervals.

Fix a family of knots (νk : I −→ Nk)k∈K with νk|Op(J) tangent to ξk. Then, there is a
C0-small perturbation ν̃k of νk which satisfies:

• ν̃k is a Legendrian knot for ξk, and
• ν̃k ≡ νk over the interval J .

Proof. If (Nk, ξk) ' (R3, ξstd), we can use the front projection and view νk as a (possibly
singular) curve in the plane together with a slope at every point recording the missing
coordinate. Then ν̃k is drawn in the front projection as a cuspidal curve such that
the slope approximates the given one. In the general case, for each t ∈ [0, 1], we
can find, parametrically in k, a Darboux ball (Op(νk(t)), ξk). We may then use the
corresponding local front projections and the relative nature of the statement (in the
domain, not the parameter) to conclude. �

Proof of Proposition 2.12. First we apply Lemma 2.13 to yield a new family of em-
bedded curves (ν ′k)k∈K which are transverse to the line fields (Wk)k∈K . Transversality
with respect to Wk implies that each ν ′k can be thickened to an embedded transverse
3-manifold endowed with a contact structure (Nk, ξk = TNk ∩ Ek). Then we apply
Lemma 2.14, parametrically in k, to homotope ν ′k to an embedding ν̃k which is still
contained in Nk but is additionally tangent to Ek. This concludes the proof. �
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3. Transverse surfaces in Engel manifolds

Let (M,D) be an Engel manifold, I a compact 1-manifold, and γ : I −→M a transverse
curve. The purpose of this section is to construct embedded surfaces transverse to D
and contained in a tubular neighborhood of γ. Later, in Section 4, we will describe
how to perform an Engel-Lutz twist along such a surface.

Throughout this section we will assume that M , D, and all surfaces appearing in the
discussion are oriented. In particular, D is trivial as a vector bundle.

3.1. Transverse surfaces. The following notion is the central object in the discus-
sions that follow.

Definition 3.1. Let (M,D) be an Engel manifold. A transverse surface in M is an
immersed surface S whose tangent space at each point is transverse to D.

It follows that the even-contact structure E = [D,D] intersects a transverse surface in
a line field.

An immersed surface S ⊂ (M,D = ker(α) ∩ ker(β)), with E = ker(α), is transverse if
and only if:

• ker(α) ∩ TS = E ∩ TS has rank 1 everywhere,
• ker(β) ∩ TS has rank 1 everywhere, and
• these two line fields are everywhere transverse to each other.

3.1.1. Profiles and transverse cylinders. Let γ : I −→ M be a transverse curve. We
will construct transverse surfaces in Op(γ) using the normal form from Proposition 2.9.
A reference concerning transverse knots in contact 3-manifolds is [Et].

Our first example is an explicit transverse cylinder/torus:

Example 3.2. Let r : I −→ R be a positive function. The map

S : I × S1 −→ (I × R3,Dtrans)

(y, θ) 7−→


y
x(y, θ) = r(y)2 sin(θ) cos(θ)
z(y, θ) = r(y) sin(θ)
w(y, θ) = 2r(y) cos(θ)


is an embedding of I × S1. We now determine a condition which ensures that the
1-forms S∗(dy− zdx) and S∗(dx−wdz) are linearly independent everywhere, i.e. that
S is transverse to Dtrans. We compute

S∗(dy − zdx) = (1− 2r(y)2r′(y) sin(θ)2 cos(θ))dy

+ r(y)3 sin(θ)(sin(θ)2 − cos(θ)2)dθ

S∗(dx− wdz) = −r(y)2dθ.

(7)

Therefore, S is transverse to Dtrans if |2r(y)2r′(y)| < 1. In particular, the construction
yields a transverse surface whenever the function r(y) is constant. �
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Let us explain in more geometric terms the role of the non-integrability of Dtrans in
Equation (7). We will work under the simplified assumption that r(y) is constant:
The 2-torus S intersects the level {y = y0} in a curve η that is transverse to ker(βtrans)
(and in particular transverse to ∂w). The front projection of η (i.e. its projection to
the (x, z)-plane) is a planar curve that does not depend on y0; it is a figure-eight, as
depicted in Figure 2. The short line segments in Figure 2 indicate how the line field
Dtrans ∩ T{w = w(y, θ) = w(θ)} varies along the knot. Using βtrans we can recover the
missing coordinate w from the line field.

If Dtrans was integrable and tangent to 〈∂w〉, the line field Dtrans ∩ T{w = w0} would
be independent of w0 and it would project to a non-singular line field in the (x, z)-
plane. Since the projection of η is a closed curve, it would necessarily be tangent
to this line field somewhere. The non-integrability of Dtrans precisely implies that
Dtrans∩T{w = w0} varies with w0, providing enough flexibility to construct embedded
transverse curves in the projection and therefore embedded transverse tori in the model.

x

z
w

Figure 2. Cross section of a transverse torus that is C0-close to a trans-
verse knot γ.

Example 3.2 can be reformulated as follows.

Lemma 3.3. Let η be a transverse knot in (R3, ξstd = ker(βtrans)). The surface

S = I × η ⊂ (I × R3,Dtrans)

is embedded and transverse to D.

Proof. Since S is tangent to ∂y, it is transverse to ker(αtrans). It is also transverse to
ker(βtrans) because η itself is transverse to this hyperplane field. Using βtrans(∂y) = 0
we have:

αtrans ∧ βtrans

(
∂

∂y
, η̇

)
= αtrans(∂y)βtrans(η̇)− αtrans(η̇)βtrans(∂y) = βtrans(η̇) 6= 0.

�

In order to generalize this construction we fix the following terminology.

Definition 3.4. Let γ be a transverse curve. Suppose (ηy)y∈I is an isotopy of transverse
knots in (R3, ξstd) such that

S : I × S1 −→ (I × R3,Dtrans)

(y, θ) 7−→ (y, ηy(θ))
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is an embedded transverse surface lying in a standard neighborhood of γ. We say that
γ is the core of S and the family (ηy)y∈I is its profile.

As stated before, we think of the profile as a family of planar curves in the front
projection (x, z) to which we add an oriented line at every point to record the missing
coordinate w. The explicit expression we gave in Example 3.2 corresponds to the
constant profile shown in Figure 2.

3.1.2. Scaling of profiles. In order to build more general surfaces using gluing construc-
tions, we will use diffeomorphisms of the form

ψλ : I × R3 −→ I × R3

(y, x, z, w) 7−→ (y, λ2(y)x, λ(y)z, λ(y)w)
(8)

where λ is a positive function of y.

Lemma 3.5. Let (ηy)y∈I be an isotopy of transverse knots in (R3, ξstd) for a compact
1-manifold I. The embedded surface

S : I × S1 −→ (I × R3,Dtrans)

(y, θ) 7−→ ψλ (y, ηy(θ))

is transverse to Dtrans if λ(y) = λ > 0 is small enough.

Proof. For λ = 1 there is no guarantee that S is transverse to Dtrans because of the
uncontrolled behavior of ηy as y varies. We use the notation

ψ∗λαtrans = dy − λ3zdx =: αλ

ψ∗λβtrans = λ2(dx− wdz) =: βλ.

Again, we compute∣∣∣∣αtrans ∧ βtrans

(
∂S

∂y
(y, θ),

∂S

∂θ
(y, θ)

)∣∣∣∣ =

∣∣∣∣αλ ∧ βλ(∂y +
∂ηy
∂y

(θ), η̇y(θ)

)∣∣∣∣
= (1 +O(λ3))λ2C +O(λ5).

Where η̇y(θ) = (∂θηy)(θ). The constant C > 0 is a lower bound for |β(η̇y)| and the
constants implicit in the Landau symbols depend only on the family (ηy)y∈I . Therefore,
S is transverse if λ > 0 is sufficiently small. �

Finally, we show how to isotope a cylinder, relative to the boundary and through
transverse surfaces, so that its profile ηy can become arbitrarily small for some values
of y if a quantitative condition is satisfied.

Lemma 3.6. Let η be a transverse knot in (R3, ξstd). Then there exists a constant τ0

depending only on η with the following property.

For every function λ : I −→ (0, 1] satisfying |λ′(y)| < τ0, the surface

S : I × S1 −→ (I × R3,Dtrans)

(y, θ) 7−→ ψλ(y, η(θ))

is transverse to D.



THE ENGEL-LUTZ TWIST AND OVERTWISTED ENGEL STRUCTURES 17

Proof. The proof is almost identical to the one of Lemma 3.5, and we use notation
similar to the one introduced there. The pullbacks of αtrans and βtrans under ψλ are

ψ∗λαtrans = (1− 2λ2λ′xz)dy − λ3zdx =: αλ

ψ∗λβtrans = λ2(dx− wdz) + λλ′(2x− zw)dy =: βλ.

Again, we seek a condition on λ which ensures that S is a transverse surface:∣∣∣∣αtrans ∧ βtrans

(
∂S

∂y
(y, θ),

∂S

∂θ
(y, θ)

)∣∣∣∣ = |αλ ∧ βλ(∂y, η̇(θ))|

= (1− 2λ2λ′xz)λ2C −O(λ4λ′).

As above, C > 0 is a lower bound for |β(η̇)| and the constants implicit in the Landau
symbols depend only on η. Hence, if λ2λ′ is sufficiently small, then S is transverse to
Dtrans. This is immediate if |λ′| < τ0 for a sufficiently small constant τ0. �

Thus, if the core of a cylinder is sufficiently long, it is possible to shrink its profile as
much as we want over some subinterval. More formally: Let I = [0, L] with L > 2

τ0

and fix a constant 0 < δ < L/2 − 1

τ0

. Then, there exists λ(y) satisfying |λ′(y)| < τ0

with λ|[L/2−δ,L/2+δ] arbitrarily small. This will be crucial when we define the Engel
overtwisted disc in Subsection 5.1 and we prove its self-replicating property Lemma
5.2; more details are provided there.

Remark 3.7. Consider an isotopy (γt)t∈[0,1] of curves transverse to E . Let S0 be
a transverse surface with core γ0 and profile (ηy)y∈I . Suppose that the profile (and
thus S0) can be shrunk into an arbitrarily small tubular neighborhood of γ0 using the
dilation from Equation (8) (as in Lemma 3.5). Then one obtains a family of surfaces
(St)t∈[0,1] transverse to D by shrinking (ηy)y∈I until it fits into a tubular neighborhood
of γ0 that can be identified with the standard neighborhoods of all the γt.

Moreover, once the profile is sufficiently thin, one can apply Lemma 3.5 to interpo-
late through transverse surfaces between S0 and some other S1, lying in a standard
neighborhood of γ1, which is given in terms of some other profile (η̃y)y∈I . �

3.2. Universal twist systems. We finish the section describing a particular collection
of transverse surfaces. This collection of cylinders will play an important role in the
proof of our main theorem, and the properties we require are motivated by that proof.

Let I be the interval [a, b]. Fix coordinates (x, z, w) in R3 and write R3
− = {z ≤ 0}.

Suppose we are given constants λ0, δ0, ε0 > 0 which are potentially very small. We
will now construct a t-dependent family (St)t∈[0,1] of embedded transverse surfaces in
(I × R3,Dtrans), depending also smoothly on the parameters λ0, δ0, and ε0. Each St
will be a collection of infinitely many cylinders.

The cylinders comprising St are all copies of a single cylinder shifted in the x-direction
by consecutive applications of the translation

Tλ : I × R3 −→ I × R3
−

(y, x, z, w) 7−→ (y, x+ λ2, z, w).
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The core of each cylinder will be a curve parallel to the y-axis. The construction is
done in several steps and it is only at the very end that we will achieve transversality
with Dtrans. We abbreviate T := T1.

3.2.1. A nice transverse knot. Let η1 ⊂ (R3
−, ξtrans = ker(βtrans)) be a transverse unknot

with self-linking number −3 satisfying the following properties:

(1) η1 is disjoint from {z = 0} in the complement of η+
1 = η1 ∩ {z, w = 0}.

(2) ∪n∈ZT n(η+
1 ) is a covering of the x-axis.

(3) η1 is disjoint from T n(η1) for n 6= ±1.
(4) η1 and T (η1) intersect in a non-degenerate interval P which is contained in the

x-axis, and they are otherwise disjoint. P and T (P ) are disjoint.
(5) There is an isotopy (ηt)t∈[1/2,1] of η1, supported in a neighborhood of P , such

that ηt is disjoint from T (ηt) for t ∈ [1/2, 1). This isotopy is purely vertical:
only the w-coordinate varies. The following condition holds for t < 1:
(A) Given any two points (x, z, w) ∈ ηt and (x, z, w′) ∈ T (ηt), it holds that

w < w′. In particular, the link ∪n∈ZT n(ηt) is an unlink.
(6) There is an isotopy (ηt)t∈[0,1/2] of η1/2 such that η0 is contained in {x0 − 1/2 <

x < x0 + 1/2} for some x0. This isotopy induces a T -equivariant isotopy of
unlinks (∪n∈ZT n(ηt))t∈[0,1/2] such that all the components of ∪n∈ZT n(η0) have
disjoint front projection. We further assume that the isotopy is constant for
t ∈ [0, 1/4].

The isotopy (ηt)t∈[0,1] can be assumed to be smooth. A knot η1 with the desired proper-
ties exists: its front projection is shown in Figure 3, along with the front projection of
the translation T (η1). The isotopy (ηt)t∈[0,1/2] separating the front projections simply
makes the upper half of the knot progressively smaller.

Remark 3.8. Properties (4) and (5) may be achieved precisely because we chose
an unknot with self-linking number −3, instead of the standard one from Figure 2.
These properties are essential in order for us to spread the overtwisted disc around the
manifold in the proof of our h-principle.

It is worth pointing out that, however, one can carry out the same construction using
an unknot with further stabilisations. Doing so would eventually lead to a different
definition of overtwisted disc (Definition 5.1), which would nonetheless be equivalent
up to homotopy. �

3.2.2. An infinite family of cylinders. Write R3
−(y0) for the half-hyperplane {y = y0} ⊂

I × R3
−. Recall the parameters λ0, δ0, ε0 > 0 introduced at the beginning of the sub-

section. We now fix a smooth family of bump functions (χt)t∈[0,1] : [a, b] −→ [0, 1] with
the following properties.

• χt(y) ≡ t if y ∈ [a+ δ0, b− δ0].
• χt(y) ≡ 0 if y ∈ [a, a+ 2δ0/3] ∪ [b− 2δ0/3, b].
• χt is non-decreasing if y ∈ [a, a+ δ0].
• χt is non-increasing if y ∈ [b− δ0, b].
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Figure 3. The profile η1 (in black) arising in the construction of uni-
versal twist systems and its translate T (η1) (in gray). The w-direction
points away from the reader.

We may construct another smooth family of functions (ρt)t∈[0,1] : [a, b] −→ [λ0, 1]
satisfying:

• ρt(y) ≡ 1 if y ∈ [a+ 2δ0/3, b− 2δ0/3] and t ∈ [1/4, 1].
• ρt(y) ≡ λ0 if y ∈ [a, a+ δ0/3] ∪ [b− δ0/3, b] or t ∈ Op(0).
• ρt is non-decreasing in the interval y ∈ [a, a+ 2δ0/3].
• ρt is non-increasing in the interval y ∈ [b− 2δ0/3, b].
• t→ ρt(y) is non-decreasing for every fixed y.

Remark 3.9. The functions ρt and χt depend on the parameters δ0 and λ0. We may
assume that this dependence is smooth. Further, we assume that the derivative ρ′t
remains uniformly bounded as λ0 goes to zero. �

These two families of functions allow us to define a family of (not yet transverse)
cylinders (St)t∈[0,1] by imposing

St ∩ R3
−(y) = ψρt(y)(ηχt(y))

where ψλ is the scaling function defined in Equation 8. What we achieve is the fol-
lowing: For t ∈ [1/4, 1] and y ∈ [a + δ0, b − δ0], the profile of St is precisely ηt. As
y approaches 0 or 1, the profile becomes η0 and then it decreases in size; the precise
scaling is given by the constant λ0. Similarly, the surfaces (St)t∈[0,1/4] have a constant
profile which is a rescaling of η0 which becomes smaller as t goes to 0.

3.2.3. Scaling. Consider the collections of infinite cylinders (
⋃
n∈Z T

n(St))t∈[0,1]. The
proof of Lemma 3.5 can be applied parametrically in t. Using this fact we claim that
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there is a constant λ > 0, depending smoothly on λ0, δ0, and ε0, such that the collection
of surfaces

St = ψλ

(⋃
n∈Z

T n(St)

)
=
⋃
n∈Z

T nλ (ψλ(St))

satisfies:

• St is a collection of transverse cylinders,
• if t 6= 1, the cylinders in St are disjoint.
• St ⊂ {|z|, |w| < ε0}.

The first fact follows from Lemma 3.5, the second is immediate from the construction.
Finally, the third holds for any λ sufficiently small (depending on ε0).

Definition 3.10. The collection of transverse cylinders (St)t∈[0,1] is a universal twist
system.

Remark 3.11. The family (St)t∈[0,1] depends on the three parameters λ0 (an upper
bound for the size of the profiles at y = 0, 1 and t = 0), δ0 (the size of the interval
in the y-direction in which the profiles perform the unlinking and the shrinking), and
ε0 (an upper bound for the size of the cylinders in the (x, z, w)-coordinates). Let us
clarify how they depend on each other.

We fix δ0 and ε0 first. The constant λ that determines the final scaling of the profiles
depends on both; as they converge to zero so does λ. Lemma 3.6 and Remark 3.9
imply that λ does not depend on λ0. We will fix λ0 last in our constructions. �

4. The Engel-Lutz twist

Having constructed transverse tori, we immediately obtain many examples of trans-
verse hypersurfaces in (M,D): Consider the boundary of a suitable tubular neighbor-
hood of a given transverse torus. If the torus is contained in the vicinity of its core γ,
so is the 3-manifold we obtain.

In this section we describe how to add Engel torsion along a transverse 3-manifold;
this is analogous to adding Giroux torsion along a transverse torus in 3-dimensional
Contact Topology. The special case when this operation is performed along a transverse
3-torus obtained from a transverse loop γ is what we call an Engel-Lutz twist with core
γ. These procedures are well-defined up to homotopy through Engel structures.

Additionally, we show that if the core is contractible, then the Engel-Lutz twist pre-
serves the homotopy type of the Engel framing. Similarly, the formal type of the Engel
structure is unchanged when one introduces Engel torsion along the same transverse
3-manifold twice. Again, all of this is very reminiscent of the Lutz twist.

4.1. Hypersurfaces transverse to the Engel structure.

Definition 4.1. Let (M,D) be an Engel manifold. An immersed 3-dimensional sub-
manifold N ⊂ M is a transverse hypersurface if its tangent space at each point is
transverse to D.
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Given a closed, orientable, embedded, transverse 3-manifold N ⊂ (M,D), we want to
describe the germ D|N . First, we note that D imprints the following data on N :

• a line field HN = TN ∩ D, and
• a 2-plane field ξN = TN ∩ E which contains HN .

Of course, if N is not only transverse to D but in addition transverse to W , then ξN
is a contact structure and HN is a Legendrian line field.

Once an orientation of N is fixed, we can define subsets

N+ = {x ∈ N | ξN is a positive contact structure close to x}
N− = {x ∈ N | ξN is a negative contact structure close to x}
N0 = N \ (N+ ∪N−).

Equivalently, N0 is the set where W is tangent to N . By definition, the regions N±

are open while N0 is closed. If N is chosen C∞-generically, N+ and N− are open
3-dimensional manifolds separated by the possibly disconnected surface N0.

Let T be a vector field transverse to N and tangent to D; denote its flow by φt. Using
φt for small times t ∈ [−ε, ε], we obtain a tubular neighborhood U(N) ∼= N × (−ε, ε)
of N ∼= N × {0}. We use coordinates (p, t) ∈ N × (−ε, ε) in the model, i.e. ∂t = T .
We may assume that the following conditions hold:

• T is tangent to W in the complement of an arbitrarily small neighborhood of
N0 × (−ε, ε),
• If T (p, 0) is tangent to W for p ∈ N , then the T -orbit ∪t∈(−ε,ε)φt(p) is part of

the leaf of W through p.
• Conversely, if T (p, 0) /∈ W for p ∈ N , then the segment ∪t∈(−ε,ε)φt(p) is never

tangent to W .

Indeed, first we take the complement of a neighborhood of N0 ⊂ N , we thicken it in
the direction of W , and we pick T to be tangent to W there. Then we extend T to
a whole neighborhood of N by requiring it to be transverse to W in the remaining
region.

Write Nt = N ×{t}. Fix a vector field H on N × (−ε, ε) such that D∩TNt is spanned
by the restriction of H to Nt and let

H ′ = [∂t, H] H ′′ = [∂t, H
′].

We can associate a sign to each connected component of N0 indicating whether the
framing 〈H,H ′, H ′′〉 of TN is positive or negative. We write N0,+ (respectively N0,−)
for the union of those connected components of N0 in which it is positive (respectively
negative).

Proposition 4.2. Let (M,D) be an Engel manifold and N ⊂ M a transverse hyper-
surface with framing {X ∈ D ∩ TN, Y ∈ E ∩ TN,Z}. Then, the Engel structure in
U(N) can be written as

D(p, t) = 〈∂t, H = X + tY + g(p, t)Z〉,
where g : U(N) ∼= N × (−ε, ε) −→ R is a function with the following properties:
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• g(p, t) = 0 if ∂t ∈ W(p, 0),
• g(p, t) is convex if p ∈ N0,+,
• g(p, t) is concave if p ∈ N0,−.

Proof. Consider the framing {T,X, Y, Z} of TM along N . Using the flow of T we can
extend this framing to a translation invariant framing on U(N). The Engel structure
D can now be described by a smooth family of curves (Hp : (−ε, ε) −→ S2)p∈N such
that D(p, t) is spanned by

T = ∂t and H(p, t) = (Hp(t))1 ·X + (Hp(t))2 · Y + (Hp(t))3 · Z.
Since D is an Engel structure, the curves Hp satisfy at least one of the conditions
in Proposition 2.5. The conditions on T stated above ensure that each curve Hp is
an immersion whose image is either contained in a great circle or is convex/concave
everywhere. In either case, Hp(t) is graphical over the equator

t 7−→ (Hp(t))1 ·X + (Hp(t))2 · Y.
Shrinking ε and scaling T appropriately one obtains the claim using the implicit func-
tion theorem. �

The following elementary constructions provide many examples of transverse 3-mani-
folds.

Definition 4.3. Let (M,D) be an Engel manifold and let S be a transverse surface.
A trivialized tubular neighborhood U ' S×D2 of S is thin if the 3-manifolds S× ∂D2

ε

are transverse to D for all 0 < ε ≤ 1.

Lemma 4.4. Any transverse surface S in an Engel manifold (M,D) has a thin tubular
neighborhood.

Proof. One can find a neighbourhood S ×D2
ε in which the slices {s} ×D2

ε are tangent
to D along S. Indeed, this can be achieved using the flow of a radial vector field R
tangent to D, singular along S. Once this property holds, thinness is immediate by
suitably shrinking ε. �

The transverse submanifolds obtained in this way are confined to small neighborhoods
of S, but once a transverse hypersurface is available it can be isotoped through trans-
verse hypersurfaces.

Lemma 4.5. Let N be a hypersurface transverse to D. Let X be a vector field tangent
to D and transverse to N with flow ϕt. Then ϕt(N) is a transverse hypersurface for
all t.

4.2. Adding Engel torsion along a transverse hypersurface. Let us continue
using the notation introduced in the previous section. We want to modify D on a
neighborhood U(N) of N such the resulting Engel structure L(D) satisfies:

• L(D) coincides with D outside of U(N),
• T is tangent to L(D), and



THE ENGEL-LUTZ TWIST AND OVERTWISTED ENGEL STRUCTURES 23

• in the region where T (p, 0) is tangent to W(p, 0), the even-contact structures
associated to L(D) and D are the same, but L(D) performs one additional turn
along the flow lines of T .

This is achieved by replacing the family of curves (Hp)p∈N by a family (λp)p∈N . First,
we construct a C2-family of C2-curves (ηp)p∈N that has all the desired properties except
that the curves are only piecewise smooth. In a second step we smooth (ηp)p∈N (both
individually and as a family) to obtain (λp)p∈N . During the argument we do not keep
track of the parametrisation of the curves since any regular parametrisation works.

We now describe (ηp : (−ε, ε) −→ S2)p∈N . Each curve ηp consists of three pieces. The
first and third pieces are, respectively, Hp((−ε, 0]) and Hp([0, ε)). The middle piece
consists of the (unique, possibly non-maximal) circle in S2 which

• passes through (1, 0, 0),
• is tangent to the maximal circle spanned by (1, 0, 0) and (0, 1, 0), and
• has the same geodesic curvature as Hp at t = 0.

These three pieces depend smoothly on p, each one of them is smooth and, at the
gluing points, the assumption on the curvature guarantees C2-regularity.

The smoothing step from ηp to λp is clear. Indeed, since the relevant properties of the
curves depend only on their 2-jet and the segments ηp are already C2-smooth, any C2-
small smoothing yields a smooth family of curves with the same convexity properties
as the family (ηp)p∈N .

Lemma 4.6. The plane field L(D) is an Engel structure.

Proof. Consider the curves (λp)p∈N from the construction. Whenever Hp is strictly
convex (resp. concave), so is λp. Therefore, condition (i) from Proposition 2.5 implies
that L(D) is Engel whenever Hp has non-vanishing curvature.

Let U be the complement, i.e. the set of those (p, t) such that Hp is everywhere tangent
to the maximal circle C given by (1, 0, 0) and (0, 1, 0). This means that condition (i)
from Proposition 2.5 fails in U for Hp. Since D is Engel, the (contact) condition (ii)
must hold in a neighbourhood of U .

The curves λp are tangent to C on U . Since U is a closed set, we cannot invoke
condition (ii) of Proposition 2.5 directly. However, one notes that the maximal circles
tangent to the curves λp C

∞-converge to C as (p, t) approaches U . This implies that
condition (ii) of Proposition 2.5 holds in small neighborhood of U for L(D). This
concludes the proof. �

Definition 4.7. We say that the plane field L(D), obtained from D and N by the
procedure we just described, is the result of introducing Engel torsion along N .

If N is a 3-torus arising from a 2-torus S, as in Definition 4.3, we say that L(D) is
obtained from D by introducing an Engel-Lutz twist along S. The tubular neighbor-
hood in which the Engel-Lutz twist is performed is an Engel-Lutz tube carried by
S.
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before / after twist

before / after twist

N
-

0

N
+

N

Figure 4. The Engel-Lutz twist in terms of the curves Hp and λp near
a hypersurface N = N+∪N−∪N0 (represented by the U -shaped curve).

The construction is shown pictorially in Figure 4. In this figure, the kernel foliation is
vertical, and each segment transverse to N represents a fibre of the tubular neighbor-
hood U(N). The horizontal segment on the right goes through the region N0,+. The
vertical ones on the left are away from N0 and are therefore tangent to the kernel. For
each segment we draw two spheres showing the corresponding curves Hp (left) and λp
(right). For the horizontal one, Hp is a short convex curve and λp is a convex loop
with the same endpoints. For the vertical ones, Hp is a short piece of equator and λp
is a curve running around that same equator with the same endpoints but describing
one more turn; we draw λp not overlapping with Hp to show the additional turn and
the boundary condition more clearly.

Remark 4.8. Since N is still transverse to L(D), Engel torsion can be introduced
several times along the same hypersurface N . �

Remark 4.9. The construction described above is well-defined up to deformations
through Engel structures. To see this, it suffices to note that the vector fields T
satisfying the required properties in a neighborhood of N forms a convex and therefore
contractible space.

More generally, note that the construction can also be carried out parametrically when
(Nk)k∈K is a family of closed manifolds transverse to a family of Engel structures
(Dk)k∈K . In the proof of the h-principle for overtwisted Engel structures, it will be
essential to introduce Engel-Lutz twists parametrically along a family of transverse
surfaces. �

The addition of Engel torsion along a hypersurface has already appeared in the lit-
erature in less generality, which we now recall. The first example deals with Engel
structures obtained from contact structures which are trivial as bundles.

Example 4.10. Let (N, ξ) be a contact 3-manifold admitting a global framing C1, C2.
Let t be the coordinate S1 = R/2πZ. For each positive integer k, we define an Engel
manifold (

N × S1,Dk = 〈∂t, Xk = cos(kt)C1 + sin(kt)C2〉
)
.

The even-contact structure of Dk is the preimage of ξ under the bundle projection and
the characteristic foliation W is spanned by ∂t. The hypersurfaces N ×{t} are clearly
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transverse to Dk (indeed, they are transverse to their kernel W). Introducing Engel
torsion to Dk along N × {t} produces Dk+1. It is easy to see that the homotopy type
of the Engel framing changes when one passes from Dk to Dk+1, but it only depends
on the parity of k (see [KS, dP]). �

The second example deals with the Engel structures on mapping tori. It is very similar,
but not equivalent, to the previous example.

Example 4.11. In [Ge] H. Geiges constructs an Engel structure Dk on any mapping
torus with trivial tangent bundle. The Engel structures Dk produced in this way are
tangent to the suspension vector field. Trivializing the suspension vector field allows
us to express Dk as a 3-dimensional family of curves, as in Proposition 2.5. The key
property of his construction is that these curves become convex if k is large enough.
The fibers are 3-manifolds transverse to Dk and passing from Dk to Dk+1 amounts to
introducing Engel torsion along one of them. �

4.3. Modification of the formal data when adding Engel torsion. Example 4.10
shows that an Engel-Lutz twist sometimes does change the homotopy type of the
Engel framing. We first show that the Engel-Lutz twist applied twice along the same
hypersurface results in an Engel structure with an Engel framing that is homotopic to
the original one. This is analogous to the case of contact structures.

Proposition 4.12. Let D be an Engel structure on M and let N be a transverse
hypersurface. The Engel framing of L(L(D)) is homotopic to the Engel framing of D.

Proof. We will make use of the notation introduced in Subsections 4.1 and 4.2. In the
first part of this proof we compare the pairs (D, E) and (L(D), [L(D),L(D)]). The
need for the double Lutz twist will come into play only in the second part.

The vectors T,Hp(t), Ḣp(t) form a basis of the even-contact structure E = [D,D]
at (p, t) ∈ N(U). We claim that the even-contact structure associated to L(D) is
homotopic to E . To show this we use the curves (ηp)p∈N , those appearing in the
intermediate step of the construction of an Engel-Lutz twist, before smoothing. It
suffices to see that one can homotope the middle pieces of the curves ηp, through

non-maximal circles, to the great circle spanned by Hp(0) and Ḣp(0). The plane
field Dweak associated to the homotoped curves is not integrable and the hyperplane
field Eweak = [Dweak,Dweak] is homotopic to the even contact structure of L(D) by
construction. It is clear that Eweak is in turn homotopic to E . Iterating this argument,
we see that the even-contact structure associated to L(L(D)) is homotopic to E as
well.

Notice that T is tangent to all the distributions throughout all homotopies that have
been discussed so far. In the following, we may therefore pretend that the hyperplane
fields underlying the even-contact structures associated to D, L(D), and L(L(D)) are
the same (as long as we do not use assumptions on their characteristic foliation).

In the model, the plane field D is coorientable within the oriented hyperplane field E ,
so we may fix a coorientation. Then, one can homotope D inside of E to a plane field
which coincides with D in a neighborhood of ∂U(N) and which is transverse to T in
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the interior of the model. Choose the neighborhood of ∂U(N) so small that D, L(D),
and L(L(D)) coincide there. Then, we tilt D away from T (staying within E) in the
direction prescribed by its coorientation until it coincides with E ∩ (N × {t}). The
same can be done, in the same way, with L(D) and L(L(D)). Therefore, the pairs(

D, E
)
,
(
L(D), [L(D),L(D)]

)
, and

(
L(L(D)), [L(L(D)),L(L(D))]

)
are homotopic as oriented pairs of hyperplane fields containing a plane field.

In the second part of the proof we focus on L(L(D)). Let us abbreviate

L(L(E)) = [L(L(D)),L(L(D))] with kernel L(L(W)).

It is difficult to compare the characteristic foliation of L(D) with the characteristic fo-
liation of D, but we can homotope the pair (L(L(D)),L(L(E))) to (D, E) and carry the
characteristic foliation of L(L(D)) along (as a family of oriented vector fields contained
in the plane fields).

By construction, we can view L(L(D)) as obtained fromD by inserting two copies of the
same layer N×(−δ, δ) carrying the same Engel structure (that is, two copies of the En-
gel torsion model). We can then choose the homotopy connecting (L(L(D)),L(L(E)))
and (D, E) in such a way that the two layers always coincide at every step, includ-
ing the homotopy of L(L(W)). Denote by W1 ⊂ D the line field at the end of the
homotopy.

Then, W1 is a line field in D which coincides with W near ∂U(N) and, in the interior,
describes twice the same loop within D as one moves along the fibers of U(N) =
N × (−ε, ε) −→ N . We have shown that the Engel framing of L(L(D)) is homotopic
to a framing whose last two components (i.e the components complementary to D)
coincide with those of the Engel framing of D, while the first two describe a certain loop
twice. Since π1(SO(4)) = Z2, the Engel framings of L(L(D)) and D are homotopic. �

Without topological assumptions onN it is not true, in general, that the Engel framings
of L(D) and D are homotopic. However, the following statements are corollaries of the
first part of the proof of the proposition:

Corollary 4.13. Assume that N is contained in a ball. Then the Engel framing of
L(D) is homotopic to the Engel framing of D relative to the boundary of the ball.

Proof. In view of the first half of the proof of Proposition 4.12 we may assume that,
after a homotopy, the last two components of the Engel framings of L(D) and D agree.
The first two components span the same plane field and can therefore be described
by maps into SO(2) ⊂ SO(4). Since the ball is simply connected, any two maps into
SO(2) are necessarily homotopic relative to the boundary. �

Corollary 4.14. Assume that N is the boundary ∂(S ×D2) of a thin neighborhood of
a transverse torus S. Then the Engel framing of L(D) is homotopic, relative to the
boundary of a slightly bigger neighborhood, to the Engel framing of D.

In particular, introducing an Engel-Lutz twist does not change the formal type of the
Engel structure.



THE ENGEL-LUTZ TWIST AND OVERTWISTED ENGEL STRUCTURES 27

Proof. The argument is similar to the one used in the previous corollary, but ob-
struction theoretical in nature. We can again assume that the last two components
of the framings induced by D and L(D) coincide, so they correspond to maps into
SO(2) ⊂ SO(4). We fix the standard cell decomposition of T 2 with exactly one 2-cell
D, two 1-cells γ1 and γ2, and one 0-cell p.

We first claim that the restrictions of the two framings to {p} × D2 are homotopic,
relative to the boundary of the disc. Indeed, the two framings glue to a map of S2 into
SO(2) and we conclude that this map is contractible because π2(SO(2)) = 0.

Exactly in the same manner, the two framings along each γi × D2 agree along the
boundary γi × ∂D2, and along {p} × D2, due to the previous step. In particular, they
define together a class in π3(SO(2)) = 0. The case of the top-cell is analogous. �

5. Overtwisted Engel structures

In 3-dimensional Contact Topology, a Lutz twist along a knot transverse to the contact
structure gives rise to a S1-family of overtwisted discs. Motivated by this, we will
define an Engel overtwisted disc to be a portion of an Engel-Lutz tube that satisfies
an additional quantitative property.

5.1. The overtwisted disc. Let I = [0, L] and fix coordinates (y, x, z, w) on I ×D3.
On I × D3 we consider the Engel structure

(9) Dtrans = ker(α = dy − zdx) ∩ ker(β = dx− wdz) = 〈∂w, ∂z + w(∂x + z∂y)〉.

Of course, this is the standard form of an Engel structure in the vicinity of a transverse
curve γ ∼= I × {0} obtained in Proposition 2.9.

Let η ⊂ (D3, ker(β)) be a transverse unknot with self-linking number −3, as shown in
Figure 3. According to Lemma 3.3, the cylinder Σ = I × η with profile η is transverse
to Dtrans. Let τ0 be the scaling constant obtained from η by applying Lemma 3.6.

Definition 5.1. Consider the Engel structure L(Dtrans) obtained from Dtrans by an
Engel-Lutz twist along Σ = I × η. If the length of I satisfies L > 2

τ0
, then

∆OT = (I × D3,DOT = L(Dtrans))

is an overtwisted disc. The curve I × {0} ⊂ I × D3 is said to be its core.

An Engel structure is overtwisted if it admits an Engel embedding of an overtwisted
disc.

5.2. Self-replication of overtwisted discs. As we showed in Lemma 3.6, the re-
quirement on L ensures that we can shrink the transverse cylinder Σ

• through transverse embedded surfaces and
• relative to the boundary
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so that a piece of the resulting surface is an arbitrarily thin cylinder of small (but fixed)
length. The existence of this homotopy guarantees the self-replicating property of the
overtwisted disc, i.e. in the presence of an overtwisted disc we can produce new ones by
an Engel homotopy. This is a property that appeared in a similar form in E. Murphy’s
definition of a loose chart for higher dimensional Legendrians [Mur, Proposition 4.4],
and later in the h-principle for overtwisted contact structures in all dimensions [BEM,
Section 5].

Lemma 5.2. Let ∆OT = ([0, L]× D3,DOT) be an overtwisted disc. Then, there are:

• a path of Engel structures ([0, L]× D3,Dr)r∈[0,r0],
• a path of Engel embeddings Fr : ([0, L]× D3,DOT) −→ ([0, L]× D3,Dr), and
• an Engel embedding G : ([0, L]× D3,DOT) −→ ([0, L]× D3,Dr0)

such that Dr = DOT on a neighborhood of the boundary, D0 = DOT, F0 is the identity,
and the images of G and Fr0 are disjoint.

Proof. The Engel structure DOT is obtained from the standard Engel structure ([0, L]×
D3,Dtrans = ker(α = dy − zdx) ∩ ker(β = dx−wdz)) by applying an Engel-Lutz twist
along the surface Σ = I × η. By assumption, L and the constant τ0 from Lemma 3.6
satisfy 2 < Lτ0.

Recall the y-dependent rescaling of the D3-factor

ψλ : [0, L]× D3 −→ [0, L]× D3

(y, x, z, w) 7−→ (y, λ(y)2x, λ(y)z, λ(y)w),

from Equation 8. Since L > 2
τ0

, we can construct a path of functions λr : [0, L] −→
(0, 1], r ∈ [0, 1), such that

• λ0(t) = 1 for all t,
• λr(t) = 1 for all t in a neighborhood of ∂[0, L],
• λr(t) = 1− r if t ∈ [Lr/2, L(1− r/2)], and
• |λ′r(t)| < τ0.

By Lemma 3.6, the cylinders Σr = ψλr([0, L]×η) are embedded and transverse. Adding
an Engel-Lutz twist to Dtrans along Σr yields a path of Engel structures Dr in [0, L]×D3

with D0 = DOT. All of them agree near the boundary of the model.

The embeddings Fr are

Fr : ([0, L]× D3,Dtrans) −→ ([Lr/2, Lr/2 + L(1− r)3]× D3,Dtrans)

(y, x, z, w) 7−→
(
y(1− r)3 + Lr/2, x(1− r)2, z(1− r), w(1− r)

)
.

A simple computation shows that Fr is a well-defined embedding, since Lr/2 + L(1−
r)3 ≤ L(1−r/2) ≤ 1 for all r. Additionally, the conformal nature of the Engel structure
implies that Fr is an Engel embedding. Since F−1

r (Σr) = Σ, we can invoke Remark 4.9
and regard Fr as an Engel embedding of ([0, L]× D3,DOT) into ([0, L]× D3,Dr).
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When r is sufficiently close to 1, the map

Gr : ([0, L]× D3,Dtrans) −→ ([L/2, Lr/2 + L(1− r)3]× D3,Dtrans)

(y, x, z, w) 7−→
(
y(1− r)3 + L/2, x(1− r)2, z(1− r), w(1− r)

)
.

is well-defined and its image is disjoint from Fr(I × D3). We fix such a value r0 for r
and set G = Gr0 . �

We do not know whether this result still holds when the condition on L is dropped.

Remark 5.3. Mimicking the proof of the lemma one can show that the choice of
constant L in the definition of overtwisted disc is not important as long as Lτ0 > 2. �

5.3. Overtwisted Engel structures. Finally, we define what an overtwisted family
of Engel structures is.

Definition 5.4. Let K be a compact manifold. A family of Engel structures D : K −→
Engel(M) is overtwisted if there is a submanifold ∆ ⊂M ×K satisfying:

• (∆,D) −→ K is a locally trivial fibration of Engel manifolds
• whose fiber is Engel diffeomorphic to ∆OT.

The manifold ∆ is said to be the certificate of overtwistedness of D.

That is, we require that there exists a family of overtwisted discs compatible with the
family of Engel structures. We will often write ∆k for an explicit paremetrisation of
the overtwisted disc of D(k). If ∆ is not a globally trivial fibration, we cannot choose
∆k parametrically in k globally.

Examples of overtwisted Engel structures arise from Engel-Lutz twists.

Lemma 5.5. Let (M,D) be an Engel manifold. Let Σ be a transverse 2-torus with
core transverse to [D,D] and profile as depicted in Figure 3. Then, the Engel man-
ifold (M,L(D)) obtained by Engel-Lutz twisting along Σ is overtwisted up to Engel
homotopy.

Proof. We homotope Σ to make its profile arbitrarily small using Lemma 3.5. This
homotopy of transverse surfaces provides, by parametric Engel-Lutz twisting, a ho-
motopy of Engel structures (Ds)s∈[0,1] which starts on D0 = L(D) and finishes on D1

overtwisted. This follows from the fact that the shrinking allows us to ensure that the
length constant L is large enough. �

It is unclear to the authors whether this result still holds when Σ is not obtained from
a transverse knot.

We can now invoke [CPPP] and deduce:

Corollary 5.6. Fix a smooth embedding ∆ : [0, L] × D3 −→ M . For all m ≥ 0 the
following map is surjective:

πm(EngelOT(M,∆)) −→ πm(FEngelOT(M,∆)).
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Proof. Given any Sm-family D0 of formal Engel structures in FEngelOT(M,∆), we
apply the existence h-principle from [CPPP] to produce a family of Engel structures
D1/3 which is formally homotopic to D0. Doing so destroys the overtwisted disc of D0

because [CPPP] is not an h-principle relative in the domain (as pointed out in the
introduction). Still, after a homotopy, we may assume that im(∆) is a Darboux ball
for each D1/3(k), k ∈ Sm.

Choose a family of knots
(
γk ⊂ im(∆) ⊂M

)
k∈Sm with γk transverse to [D1/3(k),D1/3(k)].

From this we obtain a Sm-family of 2-tori. Parametrically introducing an Engel-Lutz
twist yields an overtwisted family D2/3 which is formally homotopic to D1/3 by Corol-
lary 4.14. We isotope the structures D2/3 to yield a family D1 such that ∆ is an Engel
embedding of the overtwisted disc. �

Remark 5.7. Even though the proof we just presented relies on [CPPP], we will
recover Corollary 5.6 later on as a particular instance of our main result Theorem 1.1,
which is independent of [CPPP].

5.4. Replication of the certificate. The following is a corollary of Lemma 5.2:

Lemma 5.8. Let K be a compact manifold and K ′ ⊂ K a smooth ball. Let D0 :
K −→ Engel(M) be a family of Engel structures with certificate ∆0 ⊂ M ×K. Then,
there is a homotopy of Engel structures (Ds)s∈[0,1] : K −→ Engel(M) supported in a
neighborhood of ∆0 such that

• Ds is overtwisted with certificate ∆0,
• there is a K ′-family of Engel embeddings of the overtwisted disc

∆1
k : ∆OT −→ (M,D1(k)) , k ∈ K ′

such that ∆1
k(∆OT) is contained in Op(∆0) \∆0.

Proof. The desired Engel homotopy will be constant on the complement of Op(K ′)
in the parameter. Let us assume that K = Op(K ′) is a smooth ball. Then ∆0 is a
globally trivial fibration by overtwisted discs ∆0

k : ∆OT −→ (M,D0(k)), k ∈ K.

We can apply Lemma 5.2 to D0 to obtain a homotopy of Engel families (D̃s)s∈[0,1]

supported near ∆0. It yields

D̃s : K −→ Engel(M), D̃0 = D0,

Fk,s : ∆OT −→ (M, D̃s), Fk,0= ∆0
k,

and a certificate Gk : ∆OT −→ (M, D̃1) which is disjoint from Fk,1.

By the isotopy extension theorem applied to Fk,s there are isotopies ψk,s of M such

that Fk,s = ψk,s ◦∆0
k. We set Ds(k) = ψ∗k,sD̃s(k). The certificate ∆1

k is ψ−1
k,1 ◦ Gk. We

can cut-off the replication as k goes from ∂K ′ to ∂Op(K ′) to ensure that the homotopy
is relative to the complement of Op(K ′). �

Lemma 5.8 yields copies of the certificate in the vicinity of ∆0. We will use such copies
whenever a certain Engel homotopy requires a certificate of overtwistedness. This way,
Engel homotopies can be performed relative to the original certificate ∆0.
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5.5. Homotopies of overtwisted discs. We conclude this section showing how ho-
motopies of the core can be used to construct homotopies of the overtwisted disc. A
key observation was explained in Remark 4.9: adding Engel torsion is parametric as
the Engel structure and the transverse 3-manifold vary in families.

Let (M,D) be an overtwisted Engel manifold with ∆ : ∆OT −→ (M,D) an Engel
embedding of the overtwisted disc. We denote its core by γ : [0, L] −→ M , the
corresponding transverse cylinder by Σ, and its (constant) profile by η. Apart from L
(the length of ∆OT in the y-coordinate) we fix a constant l satisfying L/2 > l > 1/τ0.
Here τ0 is the constant from Lemma 3.6 measuring the allowed speed of scaling for the
profile η (which already appeared in the definition of the overtwisted disc). We use
the terminology

A0 = ∆({y = 0}) is the lower boundary,

AL = ∆({y = L}) is the upper boundary.

The endpoint γ(0) (respectively γ(L)) of the core of the overtwisted disc lies in A0

(respectively AL).

We cut M along A0 and AL to produce a manifold with boundary and corners M∆.
The boundary ∂M∆ has two connected components, each of which consists of two
copies of A0 (respectively, AL) glued to one another along their common boundary.
M∆ inherits an Engel structure, which we still denote by D. Similarly, we write γ and
∆ for their lift to M∆. Observe that (M∆,D) is, by definition, obtained from some
other Engel structure (M∆,L−1(D)) by Engel-Lutz twisting along the cylinder Σ with
core γ and profile η. As such, the structures D and L−1(D) differ from one another
only on im(∆). L−1(D) is given instead by an Engel embedding of the standard model
around γ:

ϕ : ([0, L]× D3,Dtrans) −→ (M∆,L−1(D)).

We will refer to the region ϕ({y ∈ [0, l] ∪ [L− l, L]} as the scaling region.

Let (γt)t∈[0,1] be a homotopy of embedded transverse arcs in (M∆,L−1(D)) with γ0

being the core γ. By Proposition 2.9 this homotopy extends to a homotopy of standard
neighborhoods

ϕt : (Ut,Dtrans) −→ (M∆,L−1(D)) with ϕ0 = ϕ.

Here Ut is a neighborhood of [0, Lt]×{0} in [0, Lt]×R3, Lt is a constant that depends
smoothly on t, and L0 = L. We will henceforth assume that Lt > 2l, and we require
that the curves γt agree with γ on the scaling region [0, l] ∪ [Lt − l, Lt], that is:

• γt(y) = γ(y) and ϕt(y, ·) = ϕ(y, ·) for all y ∈ [0, l], and
• γt(Lt − y) = γ(L− y) and ϕt(Lt − y, ·) = ϕ(L− y, ·) for all y ∈ [0, l].

We consider a homotopy of profiles ηt(y) with t ∈ [0, 1] and y ∈ [0, Lt] such that

• η0(y) = η,
• ηt(y) = η and ηt(Lt − y) = η for all y ∈ [0, l].
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Recall the y-dependent rescaling from Equation 8

ψλ : [0, Lt]× D3 −→ [0, Lt]× D3

(y, x, z, w) 7−→ (y, λ(y)2x, λ(y)z, λ(y)w).

The following result is an immediate consequence of Lemma 3.6.

Proposition 5.9. In the situation described above, there is a homotopy of overtwisted
Engel structures (Dt)t∈[0,1] satisfying:

• D0 = D,
• the overtwisted disc ∆t of Dt has γt as core and a rescaling of (ηt(y))y∈[0,Lt] as

profile.

Proof. As shown in Lemma 3.5, there is a number λ0 ∈ (0, 1] such that all the surfaces

(10)
⋃

y∈[0,Lt]

{y} × ψλ0(ηt(y)) ⊂ [0, Lt]× D3

are transverse to Dtrans and contained in Ut for all t ∈ [0, 1]. Our choice of l readily
implies that there exists a smooth family of functions ρt : [0, Lt] −→ (0, 1] satisfying

• ρ0 ≡ 1,
• |ρ′t| < τ0,
• ρt ≡ 1 in Op({0, Lt}), and
• ρt ≡ λ0 on [l, Lt − l] for all t in the complement of Op({0}).

It follows from the properties of ρt that all the surfaces in the homotopy

(11) Σt = ϕt

 ⋃
y∈[0,Lt]

{y} × ψρt(y)

(
ηt(y)

) , t ∈ [0, 1],

are transverse and, by construction, Σ0 = Σ. One of these surfaces is shown in Figure 5.

l L -lt

MΔ

γt

tΣ

y

Figure 5. A transverse surface Σt together with a tubular neighbor-
hood where an Engel-Lutz twist is performed.

We then add an Engel-Lutz twist to
(
M∆,L−1(D)

)
along the surface Σt. Doing this

parametrically in t yields a homotopy of overtwisted Engel structures (Dt)t∈[0,1] starting
at D. Since this is a homotopy relative to the lower and upper boundaries of the
overtwisted disc, it can be regarded as a homotopy in M instead of M∆. �
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6. h-principle for overtwisted Engel structures

The rest of the article is concerned with the proof of Theorem 1.1 and its corollaries.
First, we go over the general setup, applying standard methods to reduce the proof to
a simplified problem which will be treated in Subsections 6.4 and 6.5.

6.1. Setup. We fix a 4-manifold M , a smooth compact manifold K of arbitrary di-
mension, and a K-parametric family of formal Engel structures

Wk ⊂ Dk ⊂ Ek ⊂ TM, k ∈ K.

When we say that this triple is Engel we mean that it is a formal Engel structure arising
from a genuine Engel structure. Even though neither Ek norWk can be recovered from
Dk (unless Dk is actually Engel), we will often just write Dk for the complete formal
Engel structure in order to keep the notation less cluttered.

The h-principle we want to show will be valid for overtwisted Engel structures. As
such, we require that:

• the family (Dk)k∈K has a certificate of overtwistedness ∆ ⊂M ×K.

Since the h-principle we want to prove is parametric and relative in the parameter and
the domain, we also assume that:

• there is a CW-complex K ′ ⊂ K such that Dk is Engel for all k ∈ K ′,
• there is a submanifold U ⊂M such that (Dk)|U is Engel for all k,
• the manifold M \ U is connected,
• ∆ is contained in (M \ U)×K.

We denote Mk = M×{k}. For ease of notation, we will write V = (M×K ′)∪(U×K) ⊂
M ×K.

To deal with the parametric nature of the statement it is sometimes more convenient to
view (Dk)k∈K as a formal Engel structure on the foliation FM×K by fibers of M×K −→
K. We use the notation DM×K for the plane field on M ×K which coincides with Dk
on each fibre Mk. The distributions EM×K and WM×K are defined analogously. We
say that DM×K is an Engel structure on an open subset A of M ×K if, for each k, Dk
is an Engel structure on Mk ∩ A.

In this setting, the h-principle for overtwisted Engel structures is

Theorem 6.1. DM×K is homotopic to a fiberwise Engel structure D̃M×K through a
family of fibrewise formal Engel structures, relative to V and ∆.

Note that the parametric and relative nature of the statement yields the analogous
result when K is a CW-complex (as stated in Theorem 1.1).

In order to make quantitative statements on angles and distances, we fix Riemannian
metrics on M and K.
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6.2. Reductions using standard h-principle methods. In this section we reduce
the proof of Theorem 6.1 to an extension problem given in a standardized form. To
describe this extension problem, we use the language of model structures (Subsection
2.4), which we recall briefly.

A model structure M(I, J, f−, f+, c) is a formal Engel structure with domain

{y ∈ I, x ∈ [0, 1], f− ≤ z ≤ f+, w ∈ J}
where I is a 1-manifold and J is an interval. The functions f−, f+, and c define a
formal Engel structure with flag

W = 〈∂w〉
Dc =W ⊕ 〈cos(c)∂z + sin(c) (cos(z)∂x + sin(z)∂y)〉
E =W ⊕ ker(cos(z)dy − sin(z)dx).

According to Equation (2), to specify the formal class we must additionally pick some
orientations. For a model structure, being Engel with the desired formal class means
that ∂wc > 0 holds everywhere.

Definition 6.2. Let ε > 0 be a small constant and K0 a smooth manifold, possibly
with boundary. A family of model structures

Bk = M(I, [−ε, 1],−ε, fk,+, ck)
with k ∈ K0 satisfying

• ∂wck > 0 if k ∈ ∂K0,
• ∂wck > 0 on a 2ε-neighborhood of the boundary of the model,
• ck(y, x, z, w) ≡ arcsin(w) if w ∈ [−ε, ε], and
• ck(y, x, z, w) > −π

is a shell if I is a closed interval, and a circular shell if I = S1.

The following proposition is the main result of this subsection.

Proposition 6.3. There is a K-family of formal Engel structures

W ′M×K ⊂ D′M×K ⊂ E ′M×K
satisfying the following conditions:

(i) The family is homotopic to the original formal data WM×K ⊂ DM×K ⊂ EM×K,
relative to ∆ and V .

(ii) E ′M×K is a K-family of even-contact structures whose family of characteristic
line fields is W ′M×K.

(iii) D′M×K is an Engel structure (with associated even-contact structure E ′M×K) in
the complement of a finite collection of disjoint shells {Bi}i which are contained
in M ×K \ (V ∪∆).

(iv) For every subset of indices {ij}j, the intersection⋂
j

Bij

/
FM×K ⊂ K
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is either contractible or empty, where Bij

/
FM×K indicates the projection of Bij

to the parameter space K.

Condition (iv) will be used in Subsection 6.4, Proposition 6.17, to connect each ball
Bi with the overtwisted disc.

The rest of the subsection is dedicated to the proof of Proposition 6.3. The result will
be achieved in several steps, none of which use the overtwistedness of DM×K .2

6.2.1. Reduction to balls and genuine even-contact structures. The Engel condition
is open and Diff-invariant as a relation in the space of 2-jets of plane fields on M .
Therefore, Gromov’s h-principle (see [EM, Proposition 7.2.3]) for open, Diff-invariant
relations on open manifolds implies that the given formal Engel structure is homotopic
to a genuine Engel structure in the complement of a non-empty family of balls (Dk)k∈K
disjoint from V and ∆. These balls can be assumed to vary smoothly with k (for
instance, by placing them in a neighborhood of ∆). This h-principle is also parametric
and relative, i.e. we the distributions on V and ∆ are unchanged.

We may consider the neighborhoods Op(∆k) that contain Dk as a (smoothly) trivial
fibration over K with D4 fibres. This allows us to assume, for the rest of the proof,
that the manifold M is just D4 (so it is in particular compact) and that the formal
Engel structure is a genuine Engel structure near ∂D4. It follows that all distributions
are orientable and coorientable.

According to [McD, Proposition 7.2] (see also [EM, Section 10.4]) the formal even-
contact structure (Ek,Wk) is homotopic to a family of honest even-contact structures

(Ẽk, W̃k). By this we mean that Ẽk is a smooth family of even-contact structures whose

characteristic foliations are W̃k. The relative nature of this h-principle allows us to
assume that this homotopy is constant on V and ∆.

From now on, we assume that (Ek,Wk) is an even-contact structure containing Dk for
all k ∈ K. This even-contact structure will change in the course of the argument.
We have achieved condition (ii) from Proposition 6.3, condition (i) is satisfied by all
homotopies introduced so far.

6.2.2. Adapted triangulations. A basic ingredient in our constructions is a triangulation
T of M × K which is adapted to several distributions on M × K. This means that
every (parametrised) simplex σ is so small that each distribution is almost constant
with respect to the affine coordinates σ ' {x0 + . . .+xn = 1 and xi ≥ 0} ⊂ Rn+1. The
following definitions are minor adaptations of definitions from Thurston’s paper [Th].

Definition 6.4. Let N be a manifold of dimension n and ξ a smooth distribution
of codimension q. A top-dimensional simplex σ ⊂ N is in weak general position
with respect to ξ if, in the coordinates provided by σ and for all points p ∈ σ, the

2The proof is relatively technical but nonetheless standard. In particular, we introduce notation
whose sole purpose is establishing claim (iv). The proof of Theorem 1.1 can be understood treating
Proposition 6.3 as a black box.
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linear projection σ −→ Rn/ξp along ξp maps each q-dimensional subsimplex of ∂σ to a
non-degenerate simplex of Rq ' Rn/ξp.

A triangulation T of N is in general position with respect to ξ if every top-dimensional
simplex is in general position.

In particular, being in (weak) general position guarantees that all simplices are trans-
verse to ξ in the sense that the intersection of the tangent space of each simplex with
ξ has minimal dimension everywhere.

In [Th], weak general position is achieved as follows: Any given triangulation is
first carefully subdivided and then suitably modified by moving (in the language of
Thurston, jiggling) the vertices of the subdivision. Furthermore, the subdivision pro-
cess can be defined in such a manner that all subsequent subdivisions of the trian-
gulation are taken into account. This allows us to refine Definition 6.4 so that all
subdivisions are still nicely adapted to the distributions we are interested in.

The key property of the subdivision scheme is the following: For each simplex σ,
there is a finite collection of vector subspaces in Euclidean space (as given by the
parametrisation of σ) so that each simplex appearing in a subdivision is contained in
an affine plane (of the same dimension) whose associated linear subspace is contained
in the prefixed collection. In particular, the number of equivalence classes, up to
translation and scaling, of simplices appearing in all subdivisions is finite.

This is not the case for the barycentric subdivision, but division schemes of this form
do exist (cf. [Wh, p. 358] or [Th]), and they play a crucial role in the proof of the
jiggling Lemma in [Th]. The choice of such a subdivision scheme is assumed in the
following definition.

Definition 6.5. A top-dimensional simplex σ is in general position with respect to
ξ if all top-dimensional simplices of future subdivisions are in weak general position
with respect to ξ.

A triangulation T of N is in general position with respect to ξ if every top-dimensional
simplex is in general position.

Even though a priori we will want simultaneous control of all subdivisions (Subsub-
section 6.2.4), in the end we will choose one that is sufficiently fine for our purposes
(Subsubsection 6.2.6).

Now we particularise to the distributions we work with:

Definition 6.6. A top-dimensional simplex σ ⊂ M × K is adapted to WM×K ⊂
DM×K ⊂ EM×K if the following conditions are satisfied:

i. σ is in general position with respect to the foliation FM×K by fibers of M×K −→
K,

ii. σ is in general position with respect to the distributions WM×K, DM×K, and
EM×K,

iii. the plane field DM×K |σ describes less than one projective turn with respect to
the line field WM×K |σ.
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Figure 6. A plane field tangent to the line field shown in the image and
also containing some fixed coordinate direction is C0-close to a foliation
and, as such, may be in general position. However, its development map
might perform a full turn.

A triangulation T is adapted, if:

• it is a triangulation of the pair (M ×K,Op(V ∪∆)), where Op(V ∪∆) is an
Engel neighborhood of V ∪∆,
• every top simplex σ ∈ T is adapted.

By a triangulation of (M ×K,Op(V ∪ ∆)) we mean that there is a triangulation T∂
of ∂(Op(V ∪∆)) which T extends to the rest of (M ×K) \ Op(V ∪∆).

Remark 6.7. Condition (iii) for an adapted simplex should be understood in terms of
the development map: We defined it for Engel structures in Equation (5) p. 8, and this
definition extends to the present formal setting. The only difference with the Engel
case is that now the development maps of DM×K |σ are not immersions in general (as
that would imply that DM×K |σ is Engel). Condition (iii) is then equivalent to the
assumption that the (oriented) development maps do not take antipodal values. This
does not follow from Condition (ii), since the leaves of the kernel foliation may still
twist around each other, as indicated in Figure 6. �

6.2.3. More on adapted simplices. Let us introduce some notation: We will writeWσ ⊂
Dσ ⊂ Eσ for the restriction of the formal Engel structure to a top-dimensional simplex
σ. If σ is adapted, the subsimplices of σ are transverse toWσ, Dσ, and Eσ. In particular,
a codimension-1 simplex is never tangent toWσ, Dσ intersects it in a line field, and Eσ
in a plane field.

Fix auxiliary orientations of Wσ and Dσ. Then, we write σ− for the union of those
faces where Wσ points into σ. Similarly, the line field Tσ− ∩Dσ divides the boundary
of σ− into the regions ∂−σ− and ∂+σ−, depending on whether it points inwards or
outwards, respectively. Both ∂±σ− are codimension-2 complexes and homeomorphic
to closed balls.

Given a subset of M ×K, in this case σ, we write Kσ for the subset of those k ∈ K
such that Mk meets σ. For k ∈ Kσ let σk = σ ∩Mk and σk,− = σ− ∩Mk. When σ
is adapted, Eσ induces a contact structure ξk on σk,−. This contact structure contains
the line field Hk = Tσk,− ∩ Dσ.

Figure 7 illustrates the various parts of σ in the non-parametric case: σ is shown as a
3-dimensional simplex and Wσ corresponds to the vertical direction. The line field in
the bottom face represents the imprint Hk of Dσ on σ−.

Some immediate properties of adapted simplices are summarized in the next lemma:
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σ ⊂∂σ -

σ

∂w

∂z∂ σ-

∂  ,∂yx

-

Figure 7. Various parts of σ. The thickened line represents ∂−σ−. The
coordinate directions shown are provided, roughly, by the identification
of σ with a model structure (Section 2.4); this will be proven in Subsec-
tion 6.2.7.

Lemma 6.8. Let σ be an adapted simplex. Then:

• the set Kσ is homeomorphic to a closed ball of dimension dim(K),
• for every k ∈ ∂(Kσ), σk is a point,
• for every k ∈ int(Kσ), σk is a polyhedron homeomorphic to a closed 4-ball,
• for every k ∈ int(Kσ), the union of the codimension-1 faces of σk which are

positively transverse to WM×K is homeomorphic to a closed 3-ball. The same
is true for the negatively transverse faces.

6.2.4. Sequences of triangulations and coverings. Conditions (i), (ii), and (iii) in Propo-
sition 6.3 can be achieved by modifying the development map of DM×K in the vicinity
of the codimension-1 skeleton of an adapted triangulation. This is the content of
Lemma 6.12. It yields a structure D′M×K that is Engel in the complement of finitely
many balls, each of which is obtained by slightly shrinking one of the top-dimensional
simplices of the triangulation. However, condition (iv) does not follow immediately
from this argument. To achieve it, we will need to consider an infinite sequence of
triangulations, each of which is a subdivision of the previous one. For a sufficiently
fine subdivision condition (iv) is satisfied. This will be shown in the upcoming lemmas.

The first auxiliary lemma provides an infinite sequence of successive refinements of a
given triangulation. Such sequences were used in [Th].

Lemma 6.9. There is

• a finite cover {Ui} of (M × K) \ Op(V ∪ ∆) by balls that are simultaneously
flowboxes of WM×K and foliation charts of FM×K,
• an infinite sequence {Tj}∞j=0 of adapted triangulations, and

• a finite list of top-dimensional model simplices {τk ⊂ Rdim(M×K)},

with the following properties:

• Tj+1 is a subdivision of Tj.
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• Every top-dimensional simplex σ of a triangulation Tj is adapted and contained
in some Ui. In the coordinates provided by Ui, σ agrees with one of the model
simplices {τk} up to rescaling and translation.

Proof. We apply Thurston’s argument [Th, Section 5] of perturbing and carefully sub-
dividing using a crystalline subdivision scheme to yield a first adapted triangulation T0.
Such a scheme is described in detail in [Wh, p. 358] and can be applied simultaneously
to all the distributions involved.

The fact that we want to take all future subdivisions into account does not affect
Thurston’s argument since all model simplices are taken into account in his argument.

Each top-dimensional simplex σ ∈ T0 is in general position with respect to WM×K ,
DM×K , EM×K , and FM×K . This implies that we can find an identification of σ with
the standard simplex σ′ in Rdim(M×K) such that:

• FM×K is mapped to a linear foliation which is transverse to all the simplices in
the standard triangulation of the unit cube,
• WM×K is mapped to a linear line field which is transverse to all the simplices

in the standard triangulation of the unit cube,
• DM×K and EM×K are mapped to distributions transverse to all the simplices in

the standard triangulation of the unit cube.

This identification can be extended to a diffeomorphism between a neighborhood U ⊃ σ
and a neighborhood of σ′. By construction, U is a foliation chart of FM×K and a
flowbox of WM×K . Doing this for each top-dimensional simplex σi ∈ T0 we find the
covering of M × K by flowboxes/foliation charts {Ui}. Because M × K is compact,
there are only finitely many of them.

Every subsequent triangulation Tj is obtained from T0 by subdividing each top-simplex
σ ∈ T0 using the triangulation that σ′ inherits from the standard cube. The key
property of this scheme is that it yields only finitely many shapes of simplices up to
rescaling for all subdivisions, i.e. independently of j. �

For condition (iv) in Proposition 6.3 to hold, we need to achieve the Engel condition
in a neighborhood of uniform size of the codimension–1 skeleton (that is, once the top-
simplices are identified with the model simplices, the relative size of the neighborhood
should not depend on j). For this purpose, we construct coverings adapted to the
triangulations we are working with:

Definition 6.10. Let T be an adapted triangulation, which we regard as a collection
of simplices {σ}. A covering {U(σ)}σ∈T of (M ×K) \Op(V ∪∆) is associated to T
if:

i. Every simplex σ is contained in the union ∪σ′⊂σU(σ′), where the union ranges
over all the subsimplices of σ (including σ itself).

ii. Each U(σ) is both a flowbox of WM×K and foliation chart of FM×K.
iii. U(σ) and U(σ′) only intersect if one is a subsimplex of the other. Moreover, if

σ′ ( σ and σ has positive codimension, then U(σ) intersects the boundary of
U(σ′) only in its vertical part.



40 ÁLVARO DEL PINO AND THOMAS VOGEL

Condition (ii.) allows us to decompose the boundary of each U(σ) into a horizontal part
∂hU(σ), which is transverse toWM×K , and a vertical part ∂vU(σ), which is tangent to
WM×K .

These properties will allow us to inductively achieve the Engel condition on U(σ) for
all simplices σ of positive codimension (see Lemma 6.12). Before we do so, we need to
construct neighborhoods of the codimension-1 skeleton with uniform size.

Lemma 6.11. There are:

• coverings {U(σ)}σ∈Tj of (M ×K)\ (V ∪∆) associated to each triangulation Tj,
and
• simplices {τ ′k ⊂ τk} obtained from the model simplices {τk} by scaling with

respect to the barycenter using a constant smaller than 1,

such that, after identifying the top-dimensional simplex σ ∈ Tj with τk,

∂τ ′k ⊂
⋃
σ′(σ

U(σ′).

Proof. A similar result was proven in [CPPP, Proposition 29]. We now give a sketch
of the proof.

Every simplex σ ∈ Tj arises from the subdivision of some top-dimensional simplex
σi ∈ T0 and is therefore contained in the WM×K-flowbox Ui. We proceed by induction
on their dimension dim(σ) < dim(M ×K).

Let us start with the 0-simplices: Given σi ∈ T0, we fix neighborhoods U(σ) ⊃ σ for
every j and every vertex σ ∈ Tj obtained in the subdivision of σi. We require U(σ)
to be a foliation chart and a flowbox as in the statement. If we fix the length of U(σ)
along WM×K and we shrink the other directions, every 1-simplex incident to σ will
enter through the vertical boundary ∂vU(σ). This follows from the fact that every face
is transverse to WM×K .

If dim(σ) > 0, we first shrink σ to a slightly smaller simplex σ′ whose boundary is
still contained in the union ∪τ(σU(τ). Then, we thicken σ′ to U(σ) in such a way that
the thickening along WM×K is much greater than in the complementary directions. It
follows that the simplices containing σ will enter U(σ) through the vertical boundary
∂vU(σ).

All sets we construct can be assumed not to depend on the simplex itself but on the
model simplex they are identified with. In particular, once we have dealt with all the
simplices in the codimension-1 skeleton, we can choose a constant (which is smaller
than but sufficiently close to 1, and does not depend on j) to scale τk and obtain the
desired τ ′k. �

6.2.5. Achieving the Engel condition in the codimension-1 skeleton. Given any adapted
triangulation T with associated cover {U(σ)}σ∈T , we can deform DM×K into a family
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of formal Engel structures D′M×K which is Engel over the neighborhood⋃
{σ∈T | dim(σ)<dim(M×K)}

U(σ)

of the codimension-1 skeleton of T .

Lemma 6.12. Let WM×K ⊂ DM×K ⊂ EM×K be a family of formal Engel structures
such that condition (ii) of Proposition 6.3 holds. Let T be an adapted triangulation
and {U(σ)}σ∈T an associated covering.

Then, there is a plane field D′M×K such that

• D′M×K is homotopic to DM×K through plane fields contained in EM×K and con-
taining WM×K,
• D′M×K = DM×K on V and ∆,
• D′M×K is Engel in U(σ) for every simplex σ ∈ T with dim(σ) < dim(M ×K).

Proof. Recall that there is a subcomplex T∂ ⊂ T which triangulates the boundary
∂(Op(V ∪ ∆)). The structure DM×K is already Engel along T∂. The proof is by
induction on the dimension of the simplices of T \T∂. The relative nature of our claim
follows by not modifying DM×K along T∂.

Let σ ∈ T be a vertex. We fix a trivialization W ofWM×K and an oriented W -invariant
framing {W,X, Y } of EM×K on a neighborhood Op(U(σ)) such that DM×K is spanned
by {W, cos(c)X + sin(c)Y }, where c : Op(U(σ)) −→ R is some function. We could in
fact choose local coordinates in this neighborhood so that in becomes a model structure
(see Subsection 2.4). The Engel condition (with the correct orientations) amounts to
LW c > 0, which in the model structure would be precisely ∂wc > 0.

We therefore homotope c, relative to the boundary of Op(U(σ)), to yield a function
c̃ : Op(U(σ)) −→ R with the property that LW c̃ > 0 in U(σ). This implies that the
corresponding plane field is an Engel structure on U(σ). This can be iterated over all
the 0-simplices. The resulting plane field is again denoted by DM×K .

Because T is adapted, a 1-simplex is nowhere tangent toWM×K . Hence, we can choose
a W -invariant framing {W,X, Y } of EM×K on a neighborhoodOp(U(σ)) of the simplex.
Then DM×K is spanned by {W, cos(c)X + sin(c)Y }, where c is a smooth function. For
every vertex σ′ ⊂ σ it holds that LW c > 0 on U(σ)∩U(σ′). Condition (iii) of Definition
6.10 implies that each leaf ofWM×K |U(σ) is either contained or disjoint from ∪σ′(σU(σ′).
Therefore, we can replace c by a function c̃ which coincides with c on ∂Op(U(σ)) and
on U(σ′) and satisfies LW c̃ > 0. We thus obtain a plane field which is Engel on U(σ).

This procedure can be iterated until we have dealt with all simplices of codimension
at least 1, always relative to the neighborhoods of simplices of lower dimension. In the
regions where LW c ≤ 0, we can choose LW c̃ to be positive but arbitrarily close to zero.
This ensures that T is still adapted to the resulting formal Engel structure D′M×K . �

6.2.6. Achieving the contractibility hypothesis. We now explain how to achieve claim
(iv) from Proposition 6.3.
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Recall that each top-dimensional simplex σ in Tj is contained in a flowbox/foliation
chart Ui0 . Under the identification of Ui0 with the standard model, σ is mapped to (a
scaled and translated copy of) some model simplex τl0 (from a finite list {τl}).

Apply Lemma 6.12 to each adapted triangulation Tj (produced by Lemma 6.9) with
associated covering {U(σ)}σ∈Tj (constructed in Lemma 6.11). Under the identification
of σ with τl0 , the neighborhood ∪σ′(σU(σ′) of ∂σ ∼= ∂τl0 covers some rescaling τ ′l0 with
fixed scaling factor. Fix some strictly convex neighborhood τ ′l0 ⊂ τ̃l0 ⊂ τl0 and write σ̃
for its image in σ.

Consider the simplex σ in the coordinates provided by the foliation charts {Ui}. In
terms of Ui0 , σ is a genuine linear simplex. However, this might not the case for
the other charts. Still, as finer subdivisions are considered (i.e. j goes to infinity)
σ converges (in the C∞ topology and after rescaling to have fixed diameter) to an
affine simplex in all Ui. This follows from the fact that the change of coordinates
between Ui and Ui′ converges to linear map when we rescale it in progressively smaller
neighborhoods of a point.

This argument implies that the set σ̃, which was convex in the coordinates of Ui0 , is
also convex in terms of all the other charts Ui if j is large enough. The same is true
for their projections to the leaf space K. That is, the set σ̃/FM×K is strictly convex in
the coordinates provided by each Ui/FM×K for j large enough. By compactness, this
can be achieved for all σ ∈ Tj simultaneously. This implies that any finite intersection
of them is either empty or contractible, as desired.

We fix a sufficiently large number j, and henceforth we just write T = Tj.

6.2.7. Construction of shells. The last step in the proof is to produce a shell B =
(Bk)k∈Kσ̃ from each σ̃, where σ is a top-dimensional simplex of T . We consider a
rescaling σ′ ⊃ σ̃ of σ with respect to the barycenter by a factor smaller than but very
close to 1; Bk will be a smoothing of σ′k. The coordinates (y, x, z, w) provided in the
simplex by Bk are shown roughly in Figure 7, p. 38.

Fix a vector field W spanning Wσ. Since σ′ is adapted, W is transverse to the faces
of each σ′k. We write σ′− for the union of those faces where W points into σ′, and
we restrict our attention to the subset (σ′k,− = Mk ∩ σ′−)k∈Kσ̃ . Each face of σ′k,− is
either positively or negatively transverse to the line field Dσ ∩ σ′− and the union of the
positive (resp. negative) faces is homeomorphic to a 2-ball. It follows that σ′k,− can be
smoothed, yielding a hypersurface Nk with the following properties:

(1) Nk is a smooth hypersurface in Mk, transverse toWk, and contained in a small
neighborhood of σ′k,−. In particular, N = ∪k∈Kσ̃Nk is a smooth hypersurface in
M ×K transverse to Wσ.

(2) The holonomy ofWσ yields an embedding pr : σ′k,− −→ Nk such that the image
is disjoint from ∂Nk.

(3) The boundary ∂Nk is a smooth 2-sphere. It decomposes into two discs, de-
pending on whether TNk ∩ Dk is inwards or outwards pointing. The positive
disc Γk is a smoothing of ∂−σ

′
k,−.
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Since σ′ is adapted, we can assume that ∂Γk consists of two intervals: the characteristic
foliation Γk ∩Ek is transverse to ∂Γk on the interior of both intervals and its holonomy
identifies the two. Hence, we can equip Γk with coordinates (x, y) such that

(12) TΓk ∩ Ek = 〈∂x〉 .

Using the flow of a vector field spanning TNk ∩ Dk we obtain a family of contact
embeddings

ψk : (Nk, Ek ∩ TNk) −→ (R3, ker(cos(z)dy ± sin(z)dx))(13)

mapping Γk to a smoothing of [0, 1] × [0, 1] ⊂ {z = 0} (because of (12)) and taking
the leaves of TNk ∩ Dk to lines parallel to the z-axis.

To obtain the correct sign for the contact structure in Equation 13, we might need to
apply the reflection along the {x = 0} hyperplane. Therefore, we assume that we have
a contact embedding

ψk : (Nk, E ∩ TNk) −→ (R3, ker(cos(z)dy − sin(z)dx)).

Since Nk is a compact manifold with boundary, we can extend these embeddings
slightly so that their image is

{y ∈ [0, 1], x ∈ [0, 1], z ∈ [f−,k, f+,k]}
for some smooth functions f−,k < 0 < f+,k. We may choose f−,k ≡ −ε with ε > 0
small enough.

The embedding ψk extends to an embedding Ψk : Bk = Nk × [−ε, 1] −→ R3 × R such
that

• Nk is mapped to {w = 0},
• each leaf of Wσ intersecting Nk is mapped to the interval {ψk(p)} × [−ε, 1] for
p ∈ Nk.

Since the development map of Dσ does not describe a projective turn (condition (iii)
in Definition 6.6), the extended embedding Ψk determines an angular function ck van-
ishing along {w = 0} such that its values lie in (−π, π).

It might happen that ∂wck < 0 along the boundary of the model we have constructed.
To fix this, one applies the contact transformation (x, y, z) 7→ (−x, y,−z). After
applying this transformation, ∂wck > 0 along the boundary of the model. In particular,
we can reparametrize Wσ so that ck ≡ arcsin(w) if w ∈ [−ε, ε] (by possibly reducing ε
and the domain of Ψk).

This construction goes through for every top-dimensional simplex σ of T , yielding a
shell (Bk)k∈σ̃. The proof of Proposition 6.3 is complete. �

6.3. Extension in the non-parametric case. The π0-version of Corollary 1.6 states
that any Engel germ (Op(∂D4),D) with formal extension to the interior can also be
extended to the interior as an Engel structure. With the tools introduced so far we
can give a streamlined proof of this fact without invoking Theorem 1.1. The proof is a
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simplified version of the proof of our main theorem and showcases an important part
of the argument.

The first ingredient is the following corollary of Proposition 6.3.

Corollary 6.13. Let (M,D) be a formal Engel manifold with D Engel over some closed
region U ⊂ M . Assume that M \ U is connected and that there exists a formal Engel
embedding of the overtwisted disc ∆ : ∆OT −→ (M \ U,D).

Then, D is homotopic to a formal Engel structure D′ satisfying:

• D′ = D on U and ∆,
• D′ is Engel in the complement of a finite collection of circular shells.

Proof. It can be proven directly mimicking the last step (Subsection 6.2.7) in the proof
of Proposition 6.3.

Alternatively, we apply Proposition 6.3 to reduce to the case where the germ (D4,D)
is described by a shell B. We find a slightly smaller shell B′ ⊂ B. Then we connect
its boundary components {y = 0} and {y = 1} using a curve γ ⊂ B transverse to
[D,D] which is otherwise disjoint from B′. We can extend the parametrisation of B′

to a neighborhood of γ, yielding the claim. We leave the details to the reader. �

Then, the π0-version of Corollary 1.6 follows from an application of:

Proposition 6.14. Any circular shell is formally homotopic, relative to the boundary,
to a genuine Engel structure.

Proof. Let B = M(S1, [−ε, 1],−ε, f+, c) be the circular shell. We first construct a
transverse surface S ⊂ B as in Section 3. The core is parametrised by y 7→ (y, x =
1/2, z = 0, w = 0) and the profile η (which normally would be a family of transverse
loops S1 ≡ [0, 1]/∼ −→ (R3, ker(dx−wdz)) parametrised by y) is, in this case, a single
transverse loop independent of y. Moreover, we require

• η(θ) = (x = θ, z = 0, w = 0), for θ ∈ [ε, 1− ε],
• z ◦ η(θ) < 0, for θ /∈ [ε, 1− ε], and
• |w ◦ η(θ)| < ε.

The last requirement implies the following condition on the slope:
∣∣∣d(x◦η)
d(z◦η)

∣∣∣ < ε. There-

fore, it is easy to construct a curve η with the desired properties if we introduce
sufficiently many stabilizations, c.f. Figure 8. By Lemma 3.3, S is a torus transverse
to Dc.

Consider the rank 1-foliation H = ∪w0(Dc ∩ T{w = w0}). In the region {|w0| ≤ ε} we
may orient it using the vector field ∂z + w0(∂x + z∂y). We pick a constant ρ > 0 so
that Uρ(S) = {q ∈ B | dist(p,S) ≤ ρ} is a thin tubular neighborhood satisfying:

• Uρ(S) is contained in {|w| ≤ ε},
• N = ∂Uρ(S) is transverse to Dc, and
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Figure 8. Front projection of the transverse curve η.

• the set of tangencies N0 = W ∩ TN is a disjoint union of two tori. Each
torus is obtained from S by pushing along the line field H and is, in particular,
transverse to Dc.

Let η+ be the part of the profile η where η(θ) = (x = θ, z = 0, w = 0) and

S+ =
⋃

y∈[ε,1−ε]

η+ ⊂ S.

We denote the region within N0 obtained from S+ by flowing along H positively by
N+

0 . According to Lemma 4.5, one can isotope a transverse hypersurface using the
flow of a vector field that is both tangent to the Engel structure and transverse to the
hypersurface. In the present situation, we use the leaves of H to isotope N (note that
H is transverse to N at least in the vicinity of N0).

We want the isotopy to push a small neighborhood of N+
0 ⊂ N positively while leaving

the rest of the 3-manifold fixed. We denote the flow of ∂z+w0(∂x+z∂y) by ϕ. We then
choose a function χ : N −→ R such that χ|N+

0
= f+− ε, and χ ≡ 0 in the complement

of Op(N+
0 ), allowing us to define:

N ′ =
{
ϕχ(p)(p) | p ∈ N

}
.

This is a transverse 3-torus which is isotopic to N through transverse hypersurfaces.

The restriction of Dc to

M ′ = {2ε ≤ x ≤ 1− 2ε, 0 ≤ z ≤ f+ − 2ε, w ≥ ε}
is a circular shell. The hypersurface N ′ is disjoint from M ′ and, by construction, its
projection π(N ′) to the (y, x, z)-hyperplane contains π(M ′). Now we perform an Engel-
Lutz twist along N ′. This takes place away from M ′, so the resulting formal Engel
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structure L(Dc) is still a circular shell in M ′. Let c′ : M ′ −→ R be the corresponding
angular function. A priori, c′ agrees with c, but the presence of the Engel-Lutz twist
allows us lower its value by at most 2π, effectively homotoping L(Dc) in the band {w ∈
(0, ε]}. Doing this, we can set c′(y, x, z, ε) < c(y, x, z, 1) = c′(y, x, z, 1) everywhere.

Lemma 2.7 shows that (M ′,Dc′) is homotopic to a solid model relative to its boundary.
This implies that L(Dc) is homotopic to a genuine Engel structure relative to the
boundary of the original circular shell. �

Observe that the proof we have just presented is clearly parametric (although we
avoided this for simplicity). However, we do not know whether it is relative in the
parameter: is there an Engel homotopy that adds Engel torsion? An affirmative answer
to this question would prove that all Engel structures are overtwisted up to homotopy
(proving the complete h-principle for Engel structures).

6.4. Setup for the extension. The rest of the paper is dedicated to completing the
proof of Theorem 1.1 (equivalently, Theorem 6.1). After the reduction argument from
Proposition 6.3, we may assume that DM×K is Engel in the complement of a finite
collection of pairwise disjoint shells {Bi = (Bi

k)k∈Ki⊂K}i. We have to construct a
homotopy, relative to V and ∆, between DM×K and a K-family of Engel structures.

The construction can be carried out independently for each shell, so let us focus on
the particular shell B = B0

k = (Bk = B0
k)k∈K0 . The construction has two main steps.

(1) First, we homotope DM×K inside the region where DM×K is already Engel.
Doing so, we make overtwisted discs with specific properties appear within
B. We will describe them using the language of universal twist systems from
Subsection 3.2. Their properties are motivated by the next step.

(2) The second step is similar to the strategy outlined in Proposition 6.14: The
presence of the overtwisted discs allows us to modify the angular functions
(ck)k∈K0 of B close to its bottom boundary. Some further manipulations allow
us to apply Lemma 2.7 and conclude the proof. Since this takes place within
B, it is relative to V and ∆.

This process is relative to the other shells, so the argument can be iterated. The current
Subsection introduces certain definitions and constructions needed for the proof, which
we then carry out in Subsection 6.5.

6.4.1. Overtwisted discs associated to shells. We want all subsequent formal Engel
homotopies to be relative to the certificate and yet we do need a certificate to complete
the proof. The replication Lemma 5.8 can be used to obtain new overtwisted discs as
follows.

We use Lemma 5.8 to modify DM×K in the Engel region Op(∆)∩ (M ×Op(K0)). This
modification is an Engel homotopy that introduces an additional family of overtwisted
discs

∆′k : ∆OT −→ (M,Dk), k ∈ K0.
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It is relative in the parameter to the complement of Op(K0) ⊂ K, and relative in the
domain to ∆ and the complement of Op(∆).

Any further operations involving overtwisted discs and the shell B will make use of
∆′ = (∆′k)k∈K0 , so that our constructions do not affect the original certificate ∆.

6.4.2. Connections between the shell and the overtwisted disc. The following definition
packages the notion of a smooth family of paths connecting B with the certificate ∆′

associated to it:

Definition 6.15. A submanifold ν : [0, 1]×K0 −→M ×K is a connection between
∆′ and B if

• ν(·, k) ⊂Mk = M is an embedded path transverse to Wk and tangent to Ek,
• ν(·, k) is disjoint from V , ∆, and all shells except B,
• ν(·, k) intersects Bk only at the endpoint ν(1, k). In the coordinates of Bk this

corresponds to (0, 0,−ε, 0).
• ν(·, k) is disjoint from the scaling region of ∆′k. It intersects ∆′k only at the

endpoint ν(0, k). In the coordinates of ∆′k this corresponds to (L/2, 0, 0, 0).

In particular, a connection is contained in the region in which DM×K is Engel. A key
fact, which follows from the first two items in the definition and Proposition 2.11, is
that the Engel structure is unique up to diffeomorphism on a neighborhood of ν(·, k).

We will construct a connection between B and ∆′ in Proposition 6.17. For this we
will use the following lemma (which rephrases the parametric ambient connected sum
lemma in [BEM, Lemma 9.1]).

Lemma 6.16. Let P0 be a contractible set. Let {Pi ⊂ P0}i=1,...,m be a finite collection
of compact subsets such that

(14)
⋂
j∈J

Pj is contractible or empty for all J ⊂ {1, . . . ,m}.

Let M be a connected manifold with dim(M) > 1 and fix a collection of families of
pairwise disjoint embeddings of the closed disc

Bi : Ddim(M) × Pi −→M × P0

Bi(p, k) =
(
Bik(p), k

)
for i = 0, . . . ,m. Then, there is a collection {Di}i=0,...,m of pairwise disjoint embeddings
of Ddim(M) into M , and a P0-family of isotopies (ψk : M −→M)k∈P0 such that

ψk ◦ Bik(p) = Di(p) for all i, k, and p.

Proof. We argue by induction on m. In the base case m = 0 we reason as follows: Since
P0 is contractible, the isotopy extension theorem ensures the existence of a P0-family
of isotopies ψ0

k : M −→ M satisfying ψ0
k ◦ B0

k(p) = D0(p), for some embedding of the
disc D0.
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The inductive hypothesis is that the lemma holds for all collections of size at most
m− 1 satisfying the contractibility hypothesis and for all manifolds (not just M). By
the base case we may assume that B0

k = D0 for all k ∈ P0.

We view B1 as a family of embeddings into M \D0. By the argument that was used in
the base case, there is a P1-family of isotopies ψ1

k : (M,D0) −→ (M,D0) (i.e. relative
to D0) satisfying ψ1

k ◦ B1
k(p) = D1(p).

Now, we apply the inductive hypothesis to the sets P1 (playing the role of P0), {P1 ∩
Pi}i>1, the families {(Bik)P1∩Pi}i=1,...,m, and the manifold M \D0. The result is a family
of isotopies (ψ′k : (M,D0) −→ (M,D0))k∈P1 with ψ′k ◦ Bik = Di for k ∈ P1 and all i.

Now the embeddings have been normalised over the parameter region P1. This allows
us to transport ψ′k ◦ B1

k = D1 to a neighborhood of D0, reducing the number of sets Pi
by one: Choose a neighborhood U of D0 such that Bik ∩ U = ∅ for all k and i > 0. By
the assumptions on M it is possible to modify the isotopies ψ′k so that

ψ′k ◦ B1
k = D1 ⊂ U

(ψ′k ◦ Bik) ∩ U = ∅, for i ≥ 1.

Then, we conclude by noting that the inductive hypothesis applies once again to P0,
{Pi}i>1, the families {(Bik)k∈Pi}i=2,...,m, and the manifold M \ U . �

For i > 0 the embeddings Bi in the lemma correspond to the shell B, the restrictions
(Bi

k)k∈K0∩Ki of the shells Bi, and the copy of the overtwisted disc (∆′k)k∈K0 . Note that
assumption (14) follows from condition (iv) in Proposition 6.3.

Proposition 6.17. There is a connection ν : [0, 1] × K0 −→ M × K0 between the
certificate ∆′ and the shell B.

Proof. Let Bi
k with k ∈ Ki, i = 1, . . . ,m, be the collection of shells other than B.

Recall that V is of the form (U×K)∪ (M×K ′). In particular, K0 and K ′ are disjoint.
Using Lemma 6.16 we find a K0-family of isotopies ψk : M −→ M , supported in the
complement of U , such that

D = ψk ◦Bk D∆ = ψk ◦∆k

D∆′ = ψk ◦∆′k Di = ψk ◦Bi
k

are embeddings of balls in M \ U that do not depend on k ∈ K0. In particular, after
applying the isotopy ψk, we may assume that

• the region {z ≤ 0, w ≤ ε} ⊂ Bk, as a parametrized subset of M , and
• the overtwisted disc ∆′k, as a parametrized subset of M ,

are independent of k ∈ K0.

Since M \ (U ∪D∆ ∪D1 ∪ . . .∪Dm) is connected manifold, there is an embedded path
ν̃ : [0, 1] −→M such that

• ν̃ is disjoint from the balls U ∪D∆ ∪D1 ∪ . . . ∪Dm,
• ν̃(0) is mapped to ∆′k(L/2, 0, 0, 0) = D∆′(L/2, 0, 0, 0),
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Figure 9. A connection ν(·, k) from an overtwisted disc ∆′k to Bk.

• ν̃(1) is mapped to Bk(0,−ε, 0, 0) = D(0,−ε, 0, 0),
• ν̃ is transverse to Wk and tangent to Ek for all k at times t ∈ Op({0, 1}).

The last property follows from the explicit models we have around the endpoints,
allowing us to prefix the path ν̃ there. Embeddedness follows from C∞-genericity,
since the dimension of M is 4.

We can regard ν̃ as a submanifold ν̃ = (ν̃k, k) : [0, 1] × K0 −→ M × K that does
not actually depend on the parameter k ∈ K0. Do note, however, that each ν̃k maps
into a different even-contact manifold (M, Ek). Still, since K0 is a ball, we can apply
Proposition 2.12 to obtain a C0-deformation ν of the family ν̃ relative to the endpoints.
The curves in the family ν are tangent to EM×K , embedded, and transverse toWM×K .
Therefore, the resulting manifold is a connection. �

We henceforth fix a connection ν between B and ∆′. Schematically, this is shown in
Figure 9.

6.4.3. Twist systems. We want to place a portion of the universal twist system inside
of the shell B. Let us recall some notation from Section 3.2, p. 17.

The universal twist system is a 1-parametric family of surfaces (St)t∈[0,1] contained in
I×R3

−, we consider the case when I is a closed interval. Each of the surfaces St consists
of infinitely many cylinders stacked side to side along the plane {z = 0}:

St = ψλ

(⋃
n∈Z

T n(St)

)
=
⋃
n∈Z

T nλ (ψλ(St)),

where St is a single cylinder, Tλ is the translation in x of length λ2, and T = T1. The
scaling constant λ in the definition depends on two parameters (see Remark 3.11):

• ε0, the size of St in the x, z, and w coordinates, and
• δ0, the length of the interval at the ends of the cylinder in which the unlinking

and shrinking take place.

A third parameter, λ0 ∈ (0, 1], controls the shrinking of St at its ends. It does not affect
λ. In particular, once we fix λ we are allowed to further shrink the ends of the universal
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twist system (while remaining transverse to the Engel structure and embedded). We
single out the region

S+
t = St ∩ {z = 0} ⊂ St.

By construction, the union ⋃
n∈Z

ψλ
(
T n(S+

t )
)

contains the infinite band {y ∈ [δ0, 1− δ0], z = w = 0}.

Observe that the bottom part of any shell, i.e. a sufficiently small collar of the bottom
boundary {w = a}, is itself a solid shell of the form

M([0, 1], [−ε, ε],−ε, f+, arcsin(w)).

By construction, the Engel structure in this region is the one we used to define the
universal twist system:

Dtrans = ker(αtrans = dy − zdx) ∩ ker(βtrans = dx− wdz).

Definition 6.18. Let St be a universal twist system with scaling constant λ > 0. Con-
sider a shell M([0, 1], [−ε, 1],−ε, f+, c) and a pair of integers m−,m+ ∈ Z satisfying

(a) ψλ

(⋃
m−≤n≤m+

T n(St)
)

is contained in [0, 1]× (0, 1)× (−ε, 0]× (−ε, ε),

(b) ψλ

(⋃
m−≤n≤m+

T n(S+
1 )
)

contains the square [ε, 1− ε]2 × {(0, 0)}.

Then, the collection of surfaces described in item (a) can be regarded as a subset of the
shell and is called a twist system.

Proposition 6.19. Any shell M([0, 1], [−ε, 1],−ε, f+, c) admits a twist system. This
holds parametrically for compact families of shells.

Proof. We choose constants ε0 and δ0 in the construction of the universal twist system
to be much smaller than ε. Then there are integers m− and m+ that satisfy the claim.
The parametric statement follows by taking a sufficiently small constant ε suitable for
all the models in the family. �

We apply the Lemma to the shell B = (Bk)k∈K0 . To each model Bk we assign a twist
system Sk,t. This surface does not actually depend on k when we use the coordinates
provided by Bk. Similarly, we write S+

k,t ⊂ Sk,t for the corresponding collection of
surfaces as defined in item (b) of Definition 6.18. The cores of the cylinders in Sk,t will
be denoted by {αnk}m−≤n≤m+ .

Remark 6.20. Twist systems will play a role analogous to the one of the 2-torus S
in the proof of Proposition 6.14. Let us briefly compare the two.

The profile of the torus S is a transverse unknot η with many stabilizations. The
precise number of stabilizations needed depends on how large the Engel region of the
circular shell is and, as such, we do not have an a priori bound. However, we do not
need such a bound for proving statements that are not relative in the parameter space.

However, for a complete h-principle, one has to define what the overtwisted disc is.
In our approach this means that one has to fix the profile of a transverse surface.
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We choose η−3, the unknot with a single stabilization. This implies that we cannot
introduce in our shells a single, wide surface like S, but rather a thin cylinder coming
from the overtwisted disc. In order to be able to use these cylinders as in the proof
of Proposition 6.14 we stack many of them next to each other. This is exactly what a
twist system is.

It is worth noting that we could have chosen as profile a knot with more stabilizations
as well. However, we do not know whether an unstabilized unknot can be used. �

6.4.4. Homotopies of cores after undoing the Engel-Lutz twist. In this section we show
that the twist systems we have introduced can be obtained by homotoping the core of
an overtwisted disc and transporting the transverse surface and the Engel-Lutz twist
along. First, we describe how to move the core itself. We make extensive use of the
notation introduced in Subsection 5.5, p. 31, which we briefly review. We continue
using the notation from the previous subsection as well.

Given the shell B = (Bk)k∈K0 , we produce a copy ∆′ = (∆′k)k∈K0 of the certificate using
Lemma 5.8. The core of ∆′ is denoted by γ : [0, L] × K0 −→ M × K. Additionally,
we fix a connection ν : [0, 1]×K0 −→ M ×K between B and ∆′. Let K ′0 ⊂ K0 be a
subset such that Bk is a solid shell for k ∈ K0 \K ′0.

As in Section 5.5 we write (M × K0)∆′ = M∆′ × K0 = (M∆′

k )k∈K0 for the manifold
obtained from M × K0 by cutting along the upper {y = L} and lower {y = 0}
boundaries of the certificate ∆′.

The restriction of the formal Engel structure DM×K to the manifold (M × K0)∆′ is
obtained from some other structure L−1(DM×K) by an Engel-Lutz twist along a K0-
family of cylinders Σk with core γ. All elements we have been working with (shells and
connections) are disjoint from the upper and lower boundary of ∆′, so we can regard
them as lying in (M ×K0)∆′ . In particular, the shell B inherits the same formal Engel
structure from L−1(DM×K).

We write L−1(Dk) for the restriction of L−1(DM×K) to Mk and L−1(Ek) for the in-
duced even contact structure. In im(∆′) the structure L−1(Dk) is given by an Engel
embedding

ϕ : ([0, L]× D3,Dtrans) −→
(
M∆′

k ,L−1(Dk)
)

of the standard neighborhood of the core γ(·, k). We also recall that the length of the
scaling region l satisfies L/2 > l > 1/τ0 (where τ0 is the constant from Lemma 3.6)
and that the cores of the surfaces forming a twist system (Sk,t) are independent of t.

Proposition 6.21. In this setting, there is a path of families of embedded transverse
curves

γs : [0, L]×K0 −→
(

(M ×K0)∆′ ,L−1(DM×K)
)

with s ∈ [0, 1] such that

• γ0 is the core γ of ∆′,
• γs is disjoint from V , ∆, and all shells other than B,
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• for k ∈ K ′0, γ1 contains the cores {αnk},m− ≤ n ≤ m+, of the twist systems
(Sk,t), and
• γs = γ0 outside of Op({L/2}) × K0. In particular, they agree in the scaling

region.

Proof. Consider the family of open manifolds

Ck = Op(γ ∪ ν(·, k) ∪Bk({|w| < ε})
with k ∈ K0. By construction, (Ck,L−1(Dk))k∈K0

is a family of genuine Engel manifolds

diffeomorphic to a ball. Moreover, the even-contact structure L−1(Ek) on Ck does not
depend on k ∈ K0: First, note that we have explicit models in the vicinity of γ
(according to Proposition 2.9), in Bk({|w| < ε}) (provided by the model structure),
and in a neighborhood of ν(·, k) (Proposition 2.11). These three models glue, so we
can identify all the manifolds (Ck,L−1(Ek))k∈K0 with a fixed even-contact manifold
(C ∼= D4, EC).

Under this identification, the curves γ(·, k) are all identified with the same curve γ̃0 in
(C, EC). Similarly, for a given n, the cores αnk are all identified with a single curve α̃n.
By the existence part of the h-principle for transverse knots Lemma 2.10 (on p. 10)
there is a transverse embedded curve γ̃1 : [0, 1] −→ (C, EC) such that

• γ̃1(y) = γ̃0(y) for y outside of Op({L/2}), and
• γ̃1 ⊃ α̃n for all n.

According to the classification part of Lemma 2.10 there is a homotopy (γ̃s)s∈[0,1], as
embedded curves transverse to EC , between γ̃0 and γ̃1.

Now we reintroduce k in the discussion. Fix a bump function χ : K0 −→ [0, 1] such
that

• χ(k) ≡ 0 in the complement of Op(K ′0), and
• χ(k) ≡ 1 in K ′0.

Using the identification between γ(·, k) ⊂ Ck ⊂M∆′

k and γ̃0 ⊂ C, we define the desired
homotopy γs of γ

γs : [0, 1]×K0 −→ (M ×K0)∆′

(y, k) 7−→ γs(y, k) = γ̃χ(k)s(y).

This homotopy takes place, in the domain, in the region Op({1/2})×Op(K ′0). Simi-
larly, in the target space, it takes place within (Ck)k∈K0 . �

Now that we can move the core effectively, we explain how to move the overtwisted
disc along the homotopy (γs)s∈[0,1].

Proposition 6.22. Fix a constant t0 arbitrarily close to but smaller than 1. There is
a homotopy of formal Engel structures (Ds)s∈[0,1] in M ×K satisfying

• D0 = DM×K,
• D1 has an Engel-Lutz twist along the twist systems (Sk,t0) for k ∈ K ′0, and
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• Ds differs from D0 only in a neighborhood of the overtwisted disc ∆′, the con-
nection ν, and the region {|w| < ε} ⊂ B.

Proof. We apply Proposition 5.9 to DM×K and (γs)s∈[0,1], parametrically in k. This

provides a homotopy of formal Engel structures (D̃s)s∈[0,1] such that

• D̃0 = DM×K ,

• D̃s differs from D0 only in a neighborhood of ∆′, ν, and {|w| < ε} ⊂ B, and

• D̃s is obtained from L−1(DM×K) by an Engel-Lutz twist along a family of
cylinders Σs with cores γs. In the regions where γ1(·, k) agrees with the cores of
Sk,t0 , the profiles describing Σ1 can be assumed to be a rescaling of the profile
of the twist system.

Recall now that the size of the ends of a twist system were controlled by a constant λ0.
In particular, we choose them to be arbitrarily small. This implies that we can enlarge
the profiles of each (Σs)s∈Op({1}) along the cores of the twist system until Σ1 contains⋃

k∈K′0

Sk,t0 .

The resulting cylinders are still transverse. Adding an Engel-Lutz twist to L−1(DM×K)
along this path of families of cylinders yields the result. �

6.5. Extension. To conclude the proof of Theorem 6.1, we need one more ingredient.
The following proposition contains the main geometric ideas in this paper, most of
which are essentially a refinement of the method shown in Subsection 6.3. It will
become apparent during the proof that the properties of a twist system (Subsection
6.4.3) are precisely what is needed for the argument to go through.

Proposition 6.23. Fix a shell

(B,D) = M([0, 1], [−ε, 1],−ε, f+, c)

and a twist system

S =
⋃

m−≤n≤m+

ψλ(T
n(St0)) ⊂ {z ≤ 0; |w| < ε}

with t0 sufficiently close to but smaller than 1. Write L(D) for the formal Engel
structure obtained from D by performing an Engel-Lutz twist along the surfaces S.

Then L(D) is homotopic through formal Engel structures to an honest Engel structure
D′ satisfying:

• the homotopy is relative to the boundary ∂B,
• in {|w| > ε}, the even-contact structure remains fixed and the homotopy only

modifies the angular function.

Remark 6.24. When we look at a shell (B,D) in isolation, the structure L(D) is
obtained from D by an Engel-Lutz twist, which is a surgery procedure. However, the
shell does not exist in isolation, but within the manifold M . As such, the structure
L(D) is obtained from D by a formal homotopy (which is in fact an Engel homotopy
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along the codimension-1 skeleton), as explained in Subsection 6.4.4. In particular, the
Engel-Lutz twist we use is already present in the Engel manifold by assumption (it
comes from the overtwisted disc) and not introduced a posteriori.

Note as well that B is a shell with respect to the original formal Engel structure D,
but not with respect to the formal Engel structure L(D). �

Proof. Let Sn = ψλ (T n(St0)) , n = m−, . . . ,m+, be the individual cylinders in the twist
system, and

S+
n = Sn ∩ {y ∈ [ε, 1− ε], z = 0}

S+ =
⋃

m−≤n≤m+

S+
n .

Let δ > 0 be a small constant which will be determined later.

Because of property (5) of the profile of the universal twist system (Section 3.2 p. 18),
there is a function ω : {z ≥ 0;w = 0} −→ [0, ε) such that

• ω(y, x, z) ≡ 0 whenever z > δ,
• the points in S+

m+
are of the form (y, x, 0, ω(y, x, 0)), and

• ω(y, x, 0) > w for all j < m+ and (y, x, 0, w) ∈ Sj.

That is, the hypersurface L(y, x, z) = (y, x, z, ω(y, x, z)) lies above the (Sj)j<m+ , con-
tains S+

m+
, and agrees with {z ≥ 0;w = 0} in the complement of Op({z, w = 0}). Let

us single out the following regions (c.f. Figure 10).

• The portion of B lying above L

B′ = {(y, x, z, w) | z ≥ 0;w ≥ ω(y, x, z)},
• The surface contained in L and lying directly above S+

j

Lj =
⋃

(y,x,0,w)∈S+
j

{(y, x, 0, ω(y, x, 0))},

• The strip connecting S+
j with Lj

Aj =
⋃

(y,x,0,w)∈S+
j

{(y, x, 0)} × [w, ω(y, x, 0)].

We claim that there is a path of formal Engel structures (Ds)s∈[0,1] with the following
properties.

• D0 is obtained from D by an Engel-Lutz twist along (Sj)j<m+ .
• Ds = D0 in the complement of a small neighborhood of

⋃
j<m+

Aj.
• Ds is transverse to Sm+ .
• (B′,Ds) is a shell with an angular function cs such that

c0(y, x, z, w)− π/2 < cs(y, x, z, w) ≤ c0(y, x, z, w) = c(y, x, z, w)

c1 ≡ −π/2 + δ on
⋃
j<m+

Lj.
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Sm+

+

Sj
+

jA y

Lj w

x

B'

Figure 10. Parts of L,Lj and Aj.

In particular, note that the leftmost region of S+
m+

(the region with smaller x-coordinate)
is contained in

⋃
j<m+

Lj.

For the construction of Ds we will first modify S0 inductively over the regions Op(Aj)
for j = m−, . . . ,m+ − 1. Let us start with j = m−: Consider the structure Dm−,0
obtained from D by adding an Engel-Lutz twist along Sm− . By construction, Dm−,0
describes more than one turn along the ∂w-flowlines contained in the strip Am− (these
flowlines are leaves of the kernel).

Using an isotopy tangent to W we can push this turning of the structure upwards.
When we push approximately a quarter of a turn in terms of the framing {∂z, ∂x+z∂y}
upwards, we obtain a path of formal Engel structures Dm−,s, s ∈ [0, 1], satisfying the
following conditions.

• Dm−,s = Dm−,0 in the complement of a small neighborhood of Am− .
• On the complement of a small neighborhood of Sm− the formal Engel structure
Dm−,s is determined by an angular function cm−,s such that

c(y, x, z, w)− π/2 < cm−,s(y, x, z, w) ≤ c(y, x, z, w),

cm−,1 ≡ −π/2 + δ on Lm− .

We now use property (A) from the definition of the (universal) twist system crucially
(c.f. p. 18): If the neighborhood of Am− containing the support of the isotopy is small
enough, then Dm−,s is transverse3 to Sj for all j > m−. Since Sm−+1 lies below Lm− ,
it follows that cm−,s ∈ (−π/2,−π/2 + δ) on Sm−+1.

This construction can be iterated. For each n = m− + 1, . . . ,m+ − 1 we consider the
family (Dn−1,s)s∈[0,1] constructed in the previous inductive step. Using the fact that
Dn−1,s is transverse to Sn we add an Engel-Lutz along Sn, parametrically in s. We
denote the resulting family by Dn,s = L (Dn−1,2s) for s ∈ [0, 1/2]. By hypothesis,
Dn,1/2 is described by an angular function cn,1/2 that is precisely −π/2+δ in the region
∪j<nLj (away from a neighborhood of the (Sj)j≤n).

3This can be seen in Figure 3: If η is the profile of the twist system and T (η) is its translate, the
regions η+ and T (η+) overlap over some interval P . It is in a neighborhood of this interval (or rather,
its counterpart for the twist system) in which the angular function is changing. This corresponds to
turning the line field depicted in the figure clockwise until it becomes almost parallel to the x-axis. It
follows that T (η) remains transverse.
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As above we define a formal Engel homotopy (Dn,s)s∈[1/2,1], of Dn,1/2 using an isotopy
along ∂w in a neighborhood of the strip An (i.e. along the kernel foliation). This allows
us to modify the angular function so that it is precisely −π/2+δ in the region ∪j≤nLj.
This completes the induction.

As above, it follows that Sm+ is transverse to the path of formal Engel structures
(Ds)s∈[0,1] that we have constructed. Now we thicken Sm+ to a family (Ns)s∈[0,1] of
transverse 3-dimensional manifolds. We may assume that

• Ns lies in an arbitrarily small neighborhood of Sm+ ,
• Ns fails to be transverse to the kernel of Ds along two disjoint surfaces N0,±

s

which are themselves transverse to Ds,
• N0,+

s and N0,−
s are obtained from Sm+ by an isotopy tangent to Ds, and

• in the vicinity of S+
m+

, this flow is along the Legendrian marking TL ∩ Ds.

We can now define an isotopy of 3-manifolds (Ns)s∈[1,2] transverse to D1 by pushing

N0,+
1 further along the line field TL ∩ D1. By construction, the Legendrian marking

TL ∩ D1 is given by the line field

cos(−π/2 + δ)
∂

∂z
+ sin(−π/2 + δ)

(
∂

∂x
+ z

∂

∂y

)
in a neighborhood of ∪j<m+Lj. In general, TL ∩D1 is a line field lying in the tangent
cone given by turning clockwise from −(∂x + z∂y) to ∂z.

x

Sm+

z

original profile profile after isotopy

Sm  -1+

Sm  -2+

η    ⊂m+

η      ⊂m  -1+

η      ⊂m  -2+

Figure 11. The line field TL ∩ D1.

If we flowN1 along TL∩D1 for sufficiently long times, and δ was chosen to be sufficiently
small, we will obtain a transverse 3-manifold N2 which contains

L ∩ {y, x ∈ [ε, 1− ε]; z ∈ [ε, f+ − ε]}.
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In particular, note that the region where the Engel condition fails lies above this
hypersurface. The continuous lines in Figure 11 represent TL∩D1. The area contained
in the pointed square lies below the region in which D1 is not Engel. The thick line
on the left corresponds to Sm+ . The dashed line depicts N0,+

2 , which is obtained from
Sm+ by pushing along the Legendrian marking. The manifold N2 covers the region
between the solid and the dashed curves.

Now we can finish the proof as in the Subsection 6.3. First, we construct a path
of formal Engel structures (Ls(D))s∈[0,1] by adding Engel torsion to each Ds along
the corresponding Ns. This corresponds to adding an Engel-Lutz twist along Sm+ .
Therefore, L0(D) is precisely L(D), as desired. We define (Ls(D))s∈[1,2] to be the
structures obtained by adding Engel torsion to D1 along (Ns)s∈[1,2]. In particular,
we obtain a family for formal Engel structure L2(D) that has Engel torsion below
the region where the formal Engel structure is not necessarily induced by an Engel
structure. As above, this implies that we can push this additional turning upwards,
thereby modifying the angular function c2 of L2(D) over the region B′.

By definition, c2(y, x, z, 1) = c(y, x, z, 1) > −π and an application of Lemma 2.7 pro-
duces a homotopy (Ls(D))s∈[2,3] of L2(D) with L3(D) Engel. This homotopy preserves
the even-contact structure, since it simply changes the angular function. �

The parametric version of Proposition 6.23 is stated in the next corollary.

Corollary 6.25. Fix a shell

(Bk,Dk) = M([0, 1], [−ε, 1],−ε, fk,+, ck) k ∈ K0

and a twist system

Sk =
⋃

m−≤n≤m+

ψλ(T
n(St0)) ⊂ {z ≤ 0; |w| < ε}

where t0 is sufficiently close to but smaller than 1. Let L(Dk) be the formal Engel
structure obtained from Dk by performing an Engel-Lutz twist along the surfaces Sk.

Then L(Dk) is homotopic through formal Engel structures to an honest Engel structure
D′k such that

• the homotopy is relative to a ε-neighborhood of ∂(∪KBk), and
• the even-contact structure remains fixed on {|w| > ε}. There, the homotopy

only affects the angular function.

Proof. The argument is identical to the one in the proof of Proposition 6.23, as one
must simply add parameters and suitable cut–off functions. We leave the details to
the reader, but we will briefly sketch the main points.

We fix a family of hypersurfaces (Lk)k∈K0 lying slightly above {w = 0} and extending
the last component ψλ(T

m+(St0)) of the twist system (which, in the paremetrisation of
the shell, does not depend on k). The proof has two parts. In the first one, the angular
function is modified close to the hyperplane {z = 0} so that it agrees with −π/2 + δ
in the region of Lk lying above the other components of the twist system. This has to



58 ÁLVARO DEL PINO AND THOMAS VOGEL

be done relative to ∂K0 in the parameter. Since the argument boils down to isotoping
the formal Engel structure using an isotopy of the angular function, this process can
be capped off close to the boundary ∂K0.

In second part of the argument we use flows along TLk ∩ Dk to thicken the surface
ψλ(T

m+(St0)) to a transverse 3-manifold covering most of the hypersurface Lk. Again,
this flow can be capped off as k approaches ∂K0, so that the resulting 3-manifold is
instead the boundary of a thin tubular neighborhood of the surface. In this manner,
for k ∈ Op(∂K0), the resulting Engel structure is simply L(Dk).

Lastly, we apply Lemma 2.7, parametrically on k, to modify the angular function in
the region lying above Lk. For k ∈ Op(∂K0), the angular function is already increasing
and, hence, the relative nature of the lemma yields the claim. �

We can finally prove the main theorem.

Proof of Theorem 6.1 (and Theorem 1.1). After applying the reduction from Proposi-
tion 6.3, we obtain a family of formal Engel structures DM×K that is Engel in the
complement of a collection of shells. Given one such shell (B = Bk)k∈K0 we associate
to it

• a copy ∆′ of the certificate (Subsection 6.4.1),
• a connection ν between B and ∆′ (Proposition 6.17), and
• a K0-family of twist systems (Sk)k∈K0 (Proposition 6.19).

Write K ′0 ⊂ K0 for a ball such that the formal Engel structure in Bk is Engel for
k ∈ K0 \K ′0.

Using Proposition 6.21 we construct a homotopy (γs)s∈[0,1] of the core γ0 of the over-
twisted disc ∆′ so that γ1 contains the cores of the twist systems (Sk)k∈K′0 . Proposi-
tion 6.22 implies that there is a homotopy of formal Engel structures (DM×K,s)s∈[0,1],
starting from DM×K , where the overtwisted disc moves along (γs)s∈[0,1]. The final
structure DM×K,1 is still only a formal Engel structure, but it has an Engel-Lutz twist
along Sk for all k ∈ K ′0.

On Bk, k ∈ K ′0, the structure DM×K,1 is obtained from DM×K,0 by adding an Engel-
Lutz twist along Sk, k ∈ K ′0. Then Corollary 6.25 yields a formal Engel homotopy
(DM×K,s)s∈[1,2] between DM×K,1 and an Engel structure DM×K,2. This homotopy is
relative to the boundary of the shell (Bk)k∈K′0 , so the argument can be iterated for the
other shells. �

6.6. Proofs of Corollaries of Theorem 1.1. In this Subsection we prove some
consequences of Theorem 1.1.

6.6.1. Proof of Corollary 1.3. In Corollary 5.6 we already showed that the inclusion
EngelOT(M,∆) −→ FEngel(M,∆) induces a surjection in homotopy groups. Alter-
natively, one can apply Theorem 1.1 taking K ′ to be the empty set and K to be a
sphere.
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For the general statement we need to show the vanishing of the relative homotopy
groups πk(FEngel(M,∆),EngelOT(M,∆)). This is also an application of Theorem 1.1
with K = Dk and K ′ = ∂Dk. �

6.6.2. Proof of Corollary 1.6. The non-parametric statement was already proven in
Subsection 6.3. The general statement is proven as follows: Set M = D4 and U = ∂D4.
Take a point p in the interior of D4 and find a family of intervals (γk)k∈K with γk
passing through p and transverse to E0(k) = [D0(k),D0(k)]; the space of such families
is contractible. We can then deform D0 in Op({p}) × K to yield a formal Engel
family D1/2 such that (Op({p}),D1/2(k))k∈K is a locally trivial fibration with fiber
([0, L]×D3,DOT), where γk corresponds to [0, L]×{0}. This is a certificate ∆ ⊂ D4×K.
An application of Theorem 1.1 yields a homotopy (Ds)s∈[1/2,1] relative to U = ∂D4 with
D1 honestly Engel. �

6.6.3. Proof of Corollaries 1.4 and 1.5. The proof of Corollary 1.4 goes as follows:
Consider D0 and D1 overtwisted Engel structures with overtwisted discs ∆0 and ∆1,
respectively. We first homotope them in Op(∆i) arguing as in Lemma 5.2: this allows
us to assume that both overtwisted discs have the same length L. Then, using an
isotopy of the manifold we set ∆0 = ∆1. A homotopy between D0 and D1 is then
provided by Corollary 1.3.

The proof of Corollary 1.5 is slightly more involved. Consider the K-family D0 with
certificate ∆0 = (∆0

k)k∈K . We can isotope D0, parametrically in k, to assume that
im(∆0

k) is an arbitrarily small ball. If we assume that dim(K) < 4, the union⋃
k∈K

im(∆0(k)) ⊂M

does not cover the whole of M ; choose a point p disjoint from it. We can argue similarly
for D1 and assume that the certificate ∆1 misses the same point p.

Since D0 and D1 are formally homotopic, there are formal Engel families D̃0 and D̃1

satisfying:

• D̃0 and D̃1 have a certificate ∆ in U ×K (where U is a small neighborhood of
p),

• D̃i is formally homotopic to Di and agrees with it in the complement of Op(U).

An application of Theorem 1.1 provides a formal homotopy between D̃0 and some D1/3

which is honestly Engel. This homotopy is relative to the complement of Op(U) and
to ∆ (and uses ∆ as certificate). A second application of Theorem 1.1 states that D0

and D1/3 are Engel homotopic (using ∆0 as certificate). Similarly, we produce a formal

homotopy between D̃1 and some D2/3 genuinely Engel, which is itself Engel homotopic
to D1 (using ∆1 as certificate) and to D1/3 (using ∆ as certificate). This concludes the
proof. �
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6.6.4. Foliated results. A well-known observation due to Gromov says that any com-
plete h-principle (that is, relative in the parameter and the domain) automatically
yields a foliated h-principle. When this h-principle requires some extra data to be fixed
(the certificate), the foliated analogue requires slightly more work, see [CPP15, BEM].
Still, the methods used in the proof of Theorem 1.1 (or a careful application of the
Theorem itself), readily imply the following.

Let (W 4+m,F4) be a manifold endowed with a smooth foliation of rank 4. Let W ⊂
D ⊂ E ⊂ F be a complete flag for the foliation and assume that we are additionally
given bundle isomorphisms

det(D) ∼= E/W ,

det(E/W) ∼= F/E .
(15)

This data is a formal foliated Engel structure. We want to homotope a formal
foliated Engel structure so that D is a leafwise Engel structure and W ⊂ D ⊂ E is
the corresponding leafwise Engel flag. We may suppose that there is a closed subset
V ⊂ W where the Engel condition already holds.

Let K be a compact, possibly disconnected, m-manifold. Suppose we are given a
(embedded) foliation chart

∆ :

(
D4 ×K,

∐
k∈K

D4 × {k}

)
−→ (W \ V,F)

satisfying ∆i(·, k)∗D = DOT and, additionally, every leaf of (W \ V,F) intersects the
image of ∆. We say that ∆ is a certificate of overtwistedness for the formal leafwise
Engel structure.

Remark 6.26. The case where (W,F) is a trivial fibration is precisely the usual
parametric setting for the h-principle. In this case, the two definitions of certificate
are different but equivalent up to homotopy. Indeed, one may use Theorem 1.1 to
produce a certificate in the usual sense if we are given a certificate in the foliated
sense, and vice versa. We leave this to the reader. �

The h-principle in the foliated setting reads:

Theorem 6.27. Let (W,F ,W0,D0, E0) be a formal foliated Engel manifold. Suppose
that the formal structure is already Engel over some closed subset V and that there is
a certificate of overtwistedness ∆ ⊂ W \ V .

Then, there is a homotopy of formal foliated Engel structures (Ws ⊂ Ds ⊂ Es)s∈[0,1]

with W1 ⊂ D1 ⊂ E1 a foliated Engel flag. This homotopy is relative to ∆ and V .

In particular, this statement recovers Theorem 1.1.
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[dP2] Á. del Pino, Engel structures and symplectic foliations, PhD thesis, Universidad Autónoma
de Madrid.

[Th] W. Thurston, The theory of foliations of codimension greater than one, Comment. Math.
Helv. 49 (1974), 214–231.

[Vo] T. Vogel, Existence of Engel structures, Ann. of Math. (2) 169 (2009), no. 1, 79–137.
[Wh] H. Whitney, Geometric Integration Theory, Princeton Univ. Press 1957.

Utrecht University, Department of Mathematics, Budapestlaan 6, 3584 Utrecht, The
Netherlands.

Email address: a.delpinogomez@uu.nl

Mathematisches Institut der LMU, Theresienstr. 39, 80333 München, Germany.

Email address: tvogel@math.lmu.de


	1. About this paper
	1.1. Outline of the paper

	2. Definitions and standard results
	2.1. Engel structures
	2.2. The development map
	2.3. Curves on spheres and the Engel condition
	2.4. Model structures
	2.5. Loops transverse to the even-contact structure
	2.6. Curves tangent to the even-contact structure

	3. Transverse surfaces in Engel manifolds
	3.1. Transverse surfaces
	3.2. Universal twist systems

	4. The Engel-Lutz twist
	4.1. Hypersurfaces transverse to the Engel structure
	4.2. Adding Engel torsion along a transverse hypersurface
	4.3. Modification of the formal data when adding Engel torsion

	5. Overtwisted Engel structures
	5.1. The overtwisted disc
	5.2. Self-replication of overtwisted discs
	5.3. Overtwisted Engel structures
	5.4. Replication of the certificate
	5.5. Homotopies of overtwisted discs

	6. h-principle for overtwisted Engel structures
	6.1. Setup
	6.2. Reductions using standard h-principle methods
	6.3. Extension in the non-parametric case
	6.4. Setup for the extension
	6.5. Extension
	6.6. Proofs of Corollaries of Theorem 1.1

	References

