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Abstract We present an overview of results from 11 integrated assessment models (IAMs)
that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33) on
the viability of large-scale deployment of bioenergy for achieving long-run climate goals.
The study explores future bioenergy use across models under harmonized scenarios for future
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climate policies, availability of bioenergy technologies, and constraints on biomass supply. This
paper provides a more transparent description of IAMs that span a broad range of assumptions
regarding model structures, energy sectors, and bioenergy conversion chains. Without emission
constraints, we find vastly different CO2 emission and bioenergy deployment patterns across
models due to differences in competition with fossil fuels, the possibility to produce large-scale
bio-liquids, and the flexibility of energy systems. Imposing increasingly stringent carbon budgets
mostly increases bioenergy use. A diverse set of available bioenergy technology portfolios
provides flexibility to allocate bioenergy to supply different final energy as well as remove carbon
dioxide from the atmosphere by combining bioenergy with carbon capture and sequestration
(BECCS). Sector and regional bioenergy allocation varies dramatically across models mainly due
to bioenergy technology availability and costs, final energy patterns, and availability of alternative
decarbonization options. Although much bioenergy is used in combination with CCS, BECCS is
not necessarily the driver of bioenergy use. We find that the flexibility to use biomass feedstocks
in different energy sub-sectors makes large-scale bioenergy deployment a robust strategy in
mitigation scenarios that is surprisingly insensitive with respect to reduced technology availability.
However, the achievability of stringent carbon budgets and associated carbon prices is sensitive.
Constraints on biomass feedstock supply increase the carbon price less significantly than exclud-
ing BECCS because carbon removals are still realized and valued. Incremental sensitivity tests
find that delayed readiness of bioenergy technologies until 2050 is more important than poten-
tially higher investment costs.

1 Introduction

The future of bioenergy use recently became a highly controversial topic. Several studies
identified bioenergy as a substitute for fossil fuels and a potentially crucial option to reduce
greenhouse gas (GHG) emissions from the energy sector for long-run climate objectives.
Moreover, bioenergy combined with carbon capture and storage (i.e., BECCS) allows for
carbon dioxide removals (CDR) to offset CO2 emissions and potentially reverse warming
by means of net negative emissions. The interactions of bioenergy deployment and
emission reductions were part of previous model comparison exercises and single-model
studies (Grahn et al. 2007; Rose et al. 2014; van Vuuren et al. 2010) and assessment reports
(Chum et al. 2011; Clarke et al. 2014). Despite the large variations in total bioenergy use
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and deployment patterns, various studies found that bioenergy is valuable in scenarios
achieving ambitious climate change targets, and highlighted the potential role of BECCS
(Klein et al. 2014; Kriegler et al. 2014; Rose et al. 2014).

This raised critique about assumptions on, among others, biomass feedstock supply and
bioenergy technologies availability in integrated assessment models (Anderson and Peters 2016;
Buck 2016; Field andMach 2017; Fuss et al. 2014).Moreover, large-scale bioenergy production can
lead and intensify various issues such as direct and indirect land-use GHG emissions, competition
with food production, threats to biodiversity, and social conflicts on many issues such as land
tenureship (Creutzig et al. 2013; Fargione et al. 2010). The main focus of this study is biomass use
whereas biomass production systems are treated in a companion paper (Rose et al., 2018, Global
biomass supplymodeling for long-runmanagement of the climate system, this Issue, in preparation).

This paper represents an overview of results from 11 integrated assessment models (IAMs)
that participated in the 33rd study of the Stanford EnergyModeling Forum (EMF-33). Building
on EMF-27 (Kriegler et al. 2014; Rose et al. 2014), this study focuses on the three-sided
relationship between CO2 emission limitations, bioenergy use, and advanced bioenergy tech-
nologies (ABTs). ABTs include options to convert ligno-cellulosic biomass into modern energy
carriers such as electricity, liquids, and hydrogen (incl BECCS variants). The EMF-33 study
brings together IAMs that represent a range of modeling approaches and that explicitly consider
alternative biomass feedstock uses in the energy sector and at least one BECCS option.

The EMF-33 scenario protocol explores a set of assumptions along two dimensions. First, the
emission reduction requirements vary in strength. Specifically, the cumulative 2011–2100 emis-
sion limitations include scenarios that help to inform the well-below 2 and 1.5 °C objectives
mentioned in the Paris Agreement (see also Rogelj et al. 2015). The second dimension considers
biomass feedstock supply and ABT availability. Limitations on annual biomass feedstock avail-
ability are implemented by imposing an upper limit. ABTs are not yet fully mature for commercial
deployment and large-scale ramp-up, although a few small-scale projects are in operation (Bhave
et al. 2017; Lomax et al. 2015). Variations of future ABTavailability are explored by (i) excluding
certain technology options such as BECCS, (ii) delaying technology availability, or (iii) increasing
technology costs. These variations require changes to the scale and structure of the energy sector
in general and bioenergy use in particular to comply with the carbon budget. EMF-27 tested the
availability of all CCS technologies (incl fossil CCS). EMF-33 goes a step further and differen-
tiates exclusion of specific ABTs and tests the more gradual sensitivity of ABT maturity.

This EMF-33 overview on bioenergy deployment presents key results and contributes to two
major insights. First, we improve the transparency of models and scenarios and relate differences
in results to differences in model assumptions focusing on bioenergy use. Second, we revise
previous bioenergy deployment quantifications as well as provide new quantifications and
analyze the role of bioenergy and ABTs in the context of global emission limitations. The study’s
large set of models allows us to explore the uncertainty space of future bioenergy deployment
patterns and identify crucial assumptions that affect results to improve transparency, understand-
ing, and evaluation of models and scenarios. This overview is complemented by thematic EMF-
33 studies on techno-economic specifications of ABTs (Daioglou et al. 2018, Bioenergy tech-
nologies and climate change mitigation pathways, this Issue, in preparation), BECCS (Muratori
et al., 2018, Bioenergy and carbon capture and storage (BECCS): results from the EMF-33 study,
this Issue, in preparation), bioenergy and transportation (Bibas et al., 2018, Bioenergy contri-
bution to the transport sector decarbonization: a multi-model assessment, this Issue, in prepa-
ration.), and international trade in bioenergy (Daioglou et al. 2018, Implications of climate
change mitigation strategies on international bioenergy trade, this Issue, submitted).
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2 Methods

2.1 EMF-33 models

Eleven IAMs contribute to EMF-33. All participated in model comparisons (e.g., Bauer et al.
2017; Riahi et al. 2017; Kriegler et al. 2014; Rose et al. 2014).

Table 1 presents key model characteristics that are most relevant to understand scenarios of
bioenergy use. The models represent in detail the development and restructuring of the energy
sector that is influenced by policies. The models take care of system-relevant boundaries and
limitations such as geological storage and land availability. ABTs are considered in all models
with varying breadth and detail. All models comprise bio-electricity with CCS based on
integrated gasification, but not all models assume that bioenergy-to-liquids with CCS is
available. A subset of models represents hydrogen production fueled with biomass, also using
ligno-cellulosic feedstocks, both with and without a CCS option. Other conversion routes in
Table 1 are not considered ABTs in this study.

Secondary energy carriers (i.e., fuels) derived from bioenergy are combined with fuels
derived from other primary energy sources to supply final energy. The flexibility to swap fuels
is an important modeling assumption for bioenergy demand development (Kaya et al. 2017).
Models with non-linear sharing (e.g., logit, CES…) derive scenarios with stable energy mixes
inherited by the historic status quo. Price changes lead to smooth changes of energy mixes.
Models with full flexibility shift fuel mixes towards the cheapest cost alternative subject to
constraints on ramping-up of new capacities or explicit integration limits. Hence, these models
derive scenarios with endogenous successions of competitive technologies.

All models but two (IMAGE, POLES) represent land-use competition between biomass
production and crop, forest, and pasture land. IMAGE allows bioenergy expansion only in
non-commercial land (such rest lands).

2.2 The scenario protocol

The scenario protocol is summarized in Table S1, along with a summary of the scenarios
submitted for each model. The scenario protocol harmonized definitions and variations of
carbon budgets and availability of bioenergy technologies. Moreover, definitions for data
reporting are harmonized.

Due to the study’s energy sector focus, we harmonized budgets on cumulative CO2

emissions 2011–2100 from sources from the energy and industry sectors net of CDR by
BECCS. Temporary over-shooting of the budget is allowed. Different to Rogelj et al. (2015),
CO2 emissions from the land-use sector and non-CO2 GHG emissions are not accounted for in
the budget. Afforestation is included as an additional CDR option in some models, but it does
not offset CO2 emissions of the energy and industry budget. To manage intersectoral carbon
leakage, we apply the carbon price resulting from the energy sector budget constraint to
consistently value land-use CO2 and all other GHG emissions using CO2-equivalent emission
taxes. This can affect biomass supply (i) penalizing direct and indirect land-use sector
emissions and (ii) incentivizing afforestation that competes with biomass for land.

The intertemporal carbon budgets are combined with near-term policies until 2020, includ-
ing Cancun pledges or 2020 objectives in nationally determined contributions (NDCs) as
agreed in the Paris Agreement. After 2020, each model implements the policy necessary to
achieve a carbon budget (see Table 1). The choice of the carbon budgets is motivated by the
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goals of the Paris Agreement (see also Rogelj et al. 2015). The low budget of 1000 GtCO2 lies
in the range of emissions likely to achieve a 2 °C target, whereas the very low budget
(400 GtCO2) aims at the 1.5 °C target. The high budget (1,600 GtCO2), however, is unlikely
to achieve the 2 °C target. Note that total GHG emissions are not harmonized and, thus,
climate outcomes vary across models.

The budget scenarios are first run with full availability of ABTs and default assumptions of
biomass feedstock availability. Both assumptions are varied along with the stringency of the
budgets. The variations of ABTs consider the exclusion of (i) all ABTs, of (ii) BECCS
technologies, and of (iii) ABTs that convert ligno-cellulosic feedstocks into liquid fuels. These
three exclusion scenarios are complemented by two more gradual variations. First, we
increased the investment costs of all ABTs by 100% and, secondly, we delayed the readiness
of ABT deployment to 2050. Finally, we limited global biomass feedstock supply for modern
uses to 100 EJ/year.

Over 165 baseline and CO2 budget scenarios were submitted for EMF-33, but the number
of submissions varying by model, with a low of five scenario submissions and a high of 20
(Table S1). All models ran the high and low budget scenarios with their full set of default
technologies, bioenergy, and non-bioenergy, and ten ran the very low budget scenario, but not
all were able to find a feasible solution. An infeasible (unachievable) solution means that,
given the models assumptions about economic growth, techno-economics, biomass supply
constraints, technology deployment dynamics, and the models solution algorithm, the model
could not produce a viable emissions path that satisfied the emissions budget constraint.
Limitations on bioenergy technology and feedstock supply reduced the number of models
finding feasible solutions for both the low and the very low budgets.

3 Results

3.1 CO2 emissions and bioenergy use

The main socioeconomic drivers of future energy demand (see Figure S3) are relatively similar
across models and are similar to SSP2-like assumptions (Riahi et al. 2017). Baseline CO2

emissions from energy and industry (Fig. 1a) vary significantly across models and show
diverse patterns resulting in cumulative 2011–2100 CO2 emissions ranging from 3600 to
5,500 GtCO2. Some models feature slight growth and stabilize around 50 GtCO2/year whereas
other models project continued growth exceeding 80 GtCO2/year in 2100 (e.g., MESSAGE-
GLOBIOM).

Generally, high baseline CO2 emissions represent abundant fossil fuels and thus bioenergy
use is limited (Fig. 1b). Conversely, scarce fossil fuel availability depresses growth of final
energy use, implying greater demand for non-fossil energy sources like bioenergy that can
exceed 100 EJ/year by 2050 and reach nearly 200 EJ/year by 2100. Consequently, higher final
energy use across models in 2100 is not necessarily associated with higher bioenergy use (see
Figure S5). Bioenergy is not necessarily the only non-fossil alternative; non-bioenergy renew-
ables and nuclear can serve as alternatives in the energy sector (see Figure S14).

Implementing a carbon budget strongly limits the variation in future emission pathways,
but increases the range of bioenergy use across models (Fig. 1c). But still, emission profiles
vary across models with more than 20 GtCO2/year differences in 2100 in the low budget
case (Fig. 1b). Somemodels deploy as much as 280 EJ/year of bioenergy by 2050. However,
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for the high-budget case, only two models exceed 150 EJ/year. For the low budget, four
models go significantly beyond that line and for the very low budget, only one out of six
models falls below the 150 EJ/year. For comparison, Chum et al. (2011) identified 100–
300 EJ/year in 2050 as a plausible range with the upper end requiring policy efforts
regarding efficiency improvements in the agricultural sector and good governance.

Bioenergy use generally grows until 2100 but at slower rates. Some models reach ~400 EJ/year
of bioenergy use. In general, for varying carbon budgets, eachmodel approaches a relatively similar
long-term deployment level. Consequently, most models show larger differences in deployment
levels across the carbon budgets in 2050 than those in 2100. Few models (GCAM, BET) show
stronger long-term than mid-term sensitivity because other CO2 emission mitigation options are
more competitive around 2050. Across models, we find that more ambitious mid-term emission
limitations lead to higher bioenergy use in the mid-term, whereas delayed emission mitigation and
higher removals towards the end of the century increase bioenergy use in 2100 (see Figure S6). In
summary, stronger emission limitations generally lead to higher bioenergy use within and across
models and, thus, the development of CO2 emissions and bioenergy use are interrelated.

Models differ in biomass supply assumptions. High bioenergy use is associated with
models with low afforestation activity and eventually high bioenergy crop yield rates (RE-
MIND-MAgPIE, GRAPE). Large afforestation can put a limit on available land for biomass
feedstock growth (AIM/CGE). Only the GCAM model combines high bioenergy deployment
with high afforestation (see SOM for details). Models like POLES, MESSAGE-GLOBIOM,
and IMAGE impose constraints on land availability that effectively limit biomass potential.
This leads to increasing biomass feedstock prices as growing demands face limited supply (see
Table S4 and the EMF-33 biomass supply assessment for more insights and information on
biomass supply modeling (Rose et al., 2018, Global biomass supply modeling for long-run
management of the climate system, this Issue, in preparation).

The challenge to integrate biofuels into the secondary energy mix depends on the assumed
system flexibility. If biofuel integration is challenging, which is represented by non-linear
sharing approaches, total bioenergy use is sensitive to the energy market size and, thus, to
reductions of fossil fuel consumption. As fossil fuel use needs to decrease and bioenergy is a
complement to rather than a substitute for fossil fuels, absolute bioenergy use declines while
its relative share increases. The market size effect is stronger with less flexible substitution
(Imaclim-NLU) and tighter carbon budgets (AIM/CGE, POLES).

The regional allocation of modern bioenergy use includes significant trade flows (Figures S11
and S12). Economically affluent OECD countries show the highest bioenergy use per capita in both
baseline and carbon budget scenarios. Therefore, OECD countries use a significant share of global
bioenergy. Asia showsmuch smaller per-capita modern bioenergy use, but its large population leads
to large total use. In most models, Latin America exports biomass feedstocks to OECD and Asia.
Despite large land areas, Reforming Economies in Eastern Europe and the Former Soviet Union are
no significant exporter in most models (see Daioglou et al. 2018, Implications of climate change
mitigation strategies on international bioenergy trade, this Issue, submitted; Rose et al., 2018, Global
biomass supplymodeling for long-runmanagement of the climate system, this Issue, in preparation).

3.2 Specialization patterns of bioenergy use

The models allocate biomass to different conversion routes suggesting different ABT deployment
and broader energy sector development (see Figures S14–S18). Biomass feedstocks are allocated
to deliver the highest value, which depends on various assumptions: availability of bioenergy and
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non-bioenergy technology alternatives, their techno-economic parameters, prices and final energy
demands, constraints on investment dynamics, and the strength of climate policies.

The question of bioenergy allocation is mostly a compromise between electricity and liquid
fuel production (Fig. 2). Biomass electricity production features high carbon capture rates and
low energy conversion efficiency, and non-bioenergy decarbonization opportunities are rela-
tively abundant in many models (e.g., renewables, nuclear). Liquid fuel production, however,
captures a smaller fraction of the carbon content of biomass but the energy conversion
efficiency is relatively high and liquid fuel production is difficult to decarbonize while
transport energy and service demands grow.

In baseline scenarios, no model allocates significant amounts of bioenergy to electricity gener-
ation, whereas bio-liquid production is more competitive (up to 45 EJ/year in 2050). In the longer
run, this discrepancy increases, because fossil fuels (particularly oil) get scarcer in most models and
bio-liquid production can substitute fossils, e.g., AIM/CGE, GRAPE, Imaclim-NLU, and POLES
(see Table S3). Models applying non-linear sharing approaches for modeling energy mixes (AIM/
CGE,GCAM, IMAGE, POLES) allocate bioenergymore evenly between liquid fuel and electricity.

Carbon budgets boost BECCS deployment, but sectoral allocations vary significantly. If
BECCS is only available for electricity production, it expands strongly (BET, DNE21+,
GRAPE). The bio-electricity share in the electricity mix remains limited (see Figure S16).
GRAPE shows by far the highest share, partly due to a hard limit on the share of non-
bioenergy renewables, but remains below 50%. High deployment of BECCS in the electricity
sector is associated to relatively high oil consumption (see Figure S14), because the high
capture rate offsets the CO2 emissions. Only the models FARM and Imaclim-NLU show
reluctance to expand the electricity BECCS option.

If also bio-liquid with CCS is available, three models specialize into it (GCAM, MES-
SAGE-GLOBIOM, and REMIND-MAgPIE). These models are equipped with large potentials
for low-carbon electricity generation making bio-liquid production the more attractive alter-
native (see Figure S16). AIM/CGE, IMAGE, and POLES show a relatively balanced mix of
bio-electricity and bio-liquid. IMAGE and POLES assume more challenges in renewable
electricity integration, and therefore bio-electricity is deployed. Although significant amounts
of biomass feedstocks are used for electricity generation in this subset of models, its share in
the total electricity mix remains small (< 10%). Despite huge biomass input for liquids
production, in all models, transportation sector decarbonization also relies on developing
new drive trains based on electricity, hydrogen, and gases (see Figure S18).

Somemodels project significant electricity sector decarbonization under baseline conditions and,
thus, EMF-33 models project dramatically different sectoral baseline CO2 emissions. We find that a
larger sectoral share of baseline emissions budget is correlated with a greater share of bioenergy
deployment for models with similar bioenergy options available (Figure S8). For instance, a larger
electricity share of baselineCO2 emissions correspondswith deploying a larger fraction of bioenergy
in electricity (e.g., GCAM, IMAGE); the inverse also holds (e.g., REMIND-MAGPIE).

3.3 CCS and bioenergy

The EMF-33 models are ambiguous about the question whether CDR via BECCS deployment
triggers additional bioenergy use (Figure S7(a)). Several models expand bioenergy beyond baseline
levels to combine it with CCS (e.g., GRAPE, REMIND-MAgPIE). Other models partly reallocate
baseline bioenergy use to combine it with CCS, for instance, in 2050 allowingCDR expansion up to
5 GtCO2/year, but bioenergy use increases by less than 50 EJ/year. In some models (e.g., POLES),
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CDR deployment becomes increasingly constrained as carbon budgets get more stringent. Thus,
additional bioenergy primarily increases low-carbon energy supply but not carbon removal.

The comparison of bioenergy use in baseline and policy cases is relevant for the economics
of BECCS. If bio-liquid production is projected to become competitive with fossil fuels, the
additional effort to upgrade and operate the CCS equipment is relatively small. As Daioglou
et al. (2018, Bioenergy technologies and climate change mitigation pathways, this Issue, in
preparation) point out, models assume additional costs (18%, ranging 10–43%) and efficiency
losses (9%, ranging 4–14%) are relatively small (compared to bio-liquid plant without CCS).
Therefore, BECCS can start to penetrate the system at relatively small carbon prices below 30
USD per tCO2 as highlighted by Muratori et al. (2018, Bioenergy and carbon capture and
storage (BECCS): results from the EMF-33 study, this Issue, in preparation).

Cumulative CDR by BECCS ranges between 600 and 1300 GtCO2 if the very low-budget
case is imposed (Figure S7(b)). In the low-budget case, 5 out of 11 models remove at maximum
500 GtCO2 from the atmosphere (one model exceeds 1000 GtCO2). With higher cumulative
CDR, also the overshoot beyond the carbon budget limit increases. In the very low-budget case,
the overshoot ranges between 345 and 615 GtCO2 whereas it is no more than 125 GtCO2 in the
high-budget case. Large CDR deployment does not necessarily imply large overshoots (GRAPE
and DNE21+ in Table S5) because CDR also offsets residual emissions. Combined fossil and
bioenergy CCS ranges between 700 and 1200 GtCO2 in seven models for all carbon budgets.
Models with high fossil CCS shares show small baseline fossil fuel prices. In comparison with
EMF-27, total CCS decreased (Koelbl et al. 2014) but the share of BECCS increased. EMF-33
scenarios could reach geological storage limits of 1000 GtCO2 assessed by Scott et al. (2015),
but compared with Dooley (2013), all models are well within the limits of 3900 GtCO2.
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(b, c) in scenarios with full technology availability. Includes traditional bioenergy use
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3.4 Sensitivity of ABT and biomass availability

EMF-27 investigated the sensitivity of total bioenergy use with respect to CCS technology
exclusion for both fossil and bioenergy CCS (Rose et al. 2014). EMF-33 revisits this important
issue by (i) performing a more focused sensitivity analysis of ABT availability, (ii) explaining
the economics behind the results, and (iii) providing a more detailed quantification of different
effects. It is important to note upfront that the limitation seriously constrains the emission
reduction potentials and, thus, makes many models fail to achieve the low budget and all fail to
achieve the very low budget.

The net impact on total bioenergy use in the carbon budget framework is the result
of three effects. First, the direct technology effect is simply the reduction of bioenergy
use by the ABTs that are excluded. Second, the reallocation effect that shifts biomass
supply to the remaining bioenergy technologies. Third, the policy feedback effect that
increases CO2 prices required to comply with the carbon budget due to the reduced
mitigation portfolio. Higher carbon prices drive bioenergy demand upwards to substi-
tute fossil fuels, unless the marked size effect prevails. However, higher CO2 prices
also increase biomass supply costs because direct and indirect land-use emissions of
bioenergy are penalized. The demand and supply side policy feedback effects shift
bioenergy use to opposite directions with the net effect uncertain.

Figure 3 compares (i) the direct technology (DT) effect and (ii) the combined reallocation
and policy feedback (RPF) effect. Generally, the DT is significantly offset in most models by
the RPF effect. Particularly, the BNo BECCS^ scenario indicates that demand for low-carbon
energy acts as a major driver for bioenergy use even without the CDR possibility. For instance,
models that deploy BECCS at large scale (> 100 EJ/year in 2100) reallocate 50% or more of
the reduced bioenergy to alternative conversion routes. In 2050, total bioenergy use can be
higher because deeper reductions in fossil fuel use become necessary. The RPF effect can
reinforce the DT effect, if the market size effect prevails (negative values in the table for AIM/
CGE and Imaclim-NLU).

The exclusion of advanced bio-liquid production is relevant for a subset of models that
show very strong RPF effects that imply only small changes in total bioenergy use. Therefore,
models that comprise only a limited portfolio of ABTs without bio-liquid production do not
necessarily understate total bioenergy use, but may suggest a bias of its allocation and further
biases in the overall energy sector development.

The policy feedback effect on the biomass supply side prevails for REMIND-MAgPIE in
2100. The DT effect in the No BECCS case is approximately the same for both carbon
budgets, but the low-budget case shows smaller RPF effect due to much higher biomass prices
triggered by higher carbon prices. The SOM provides more information (see Figure S9).

Limiting modern biomass supply to 100 EJ/year has been considered in EMF-27
already (Rose et al. 2014), but the impacts on BECCS use have not been investigated.
The supply side constraint requires more stringent climate policies, which triggers a
positive demand side feedback effect on BECCS deployment in 2050 in most models
(see Table S6). More bioenergy is allocated to BECCS conversion routes and to alterna-
tives with higher capture rates. For instance, in the high-budget case, most models remove
more carbon in 2050 using less biomass. Models that do not increase BECCS deployment
(IMAGE and POLES) derive investment decisions in a recursive dynamic model frame-
work and, therefore, do not anticipate the future constraint that triggers upwards adjust-
ment of BECCS investments.
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3.5 Implications on carbon prices

In the carbon budget framework, varying assumptions on ABTs and biomass supply require
changes in CO2 prices to comply with the carbon budget. Models implement carbon prices
with very different time profiles that are made comparable by computing the present value
(PV) of carbon prices assuming a 5% annual discount rate (see SOM for methodology and
CO2 price paths implemented by the models).

All models show that increasing carbon prices are required for tighter carbon budgets but
cover a considerable range (Fig. 4a). For the high- and low-budget cases, most models cluster
in a relatively narrow range. At the upper end, the range is pushed by the Imaclim-NLU model
that finds decarbonization in the energy sector difficult. At the lower end of the range, the
models MESSAGE-GLOBIOM and REMIND-MAgPIE assume plenty of decarbonization
alternatives and flexible reconfiguration of the energy sector, although bioenergy use differs
considerably. In the low-budget case, six models cluster between 25 and 30 USD/tCO2. These
models are also relatively similar in the high-budget case, but in the very low-budget case,
three models found the target unachievable and three cover a large range between 80 and
120 USD/tCO2. As models approach the limits of feasible solutions (like the very low budget),
carbon prices become highly sensitive.

Figure 4b shows for the three ABT exclusion scenarios, the percentage increases of PV
carbon prices compared with the case of full technology availability (panel a). In all three
sensitivity cases, models find greater impacts on the carbon price as the carbon budgets
become more stringent. In case of the high budget, limitations of biomass supply or
exclusion of BECCS technologies increases carbon prices by more than 50% for the majority
of models, whereas in the case of the low budget, carbon prices more than double. Models at the
upper end of these relative changes use relatively large quantities of bioenergywith BECCS and
rely more on CDR like REMIND-MAGPIE, whereas models at the lower end like POLES use
less bioenergy with BECCS and rely less on CDR (see Fig. 2).
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The complete exclusion of BECCS or even all ABTs and the significant impacts on carbon
prices are useful to isolate some of the potential value of bioenergy, but these are pessimistic
assumptions. Therefore, we tested the sensitivity of more moderate changes of the IAMs standard
bioenergy assumptions. The exclusion of ABTs for fuel production addresses the sensitivity of a
subset of technologies. Also, in standard settings, IAMs generally assume that ABTs are available
from 2030 at techno-economic assumptions taken from the literature.We test these assumptions by
(i) doubling the investment costs and (ii) delaying the earliest deployment of ABTs to 2050.

The more gradual change in assumptions leads to significantly smaller impacts on
carbon prices (panel c). The exclusion of ABTs for fuel production limits increases below
25% in case of the high and the low budget. The reallocation of bioenergy to alternative
uses (see Fig. 3) mutes the impact on carbon prices also for models that allocate biomass
feedstock to fuel production. The impact of doubling ABT investment costs is also less
than 25% and reflects the relatively small capital cost share compared with the feedstock
costs and the premium generated by CDR realized with BECCS technologies (see
Daioglou et al. (2018, Bioenergy technologies and climate change mitigation pathways,
this Issue, in preparation)). The impact hardly increases as more stringent budgets are
assumed because the relative importance of capital costs decreases. The delayed readiness
of ABTs has a small impact on carbon prices for the high carbon budget, but becomes much
larger for the low and the very low carbon budget.

4 Summary and conclusions

The EMF-33 study quantifies and compares results of 11 global long-term IAMs applying
a harmonized scenario protocol focused on advanced bioenergy use and CO2 emission
reductions. The model comparison helps to understand scenario results by identifying
robust conclusions and relating differences in results to differences in models. The future
of global bioenergy use and its role in climate change mitigation scenarios depends on
many factors spanning several dimensions of the integrated energy, land-use, and economy
system. The most important drivers of bioenergy deployment patterns are assumptions on
bioenergy conversion technologies costs and their availability, the potentials and con-
straints of biomass feedstock supply, and the baseline scenarios that determine total and
sectoral emission mitigation requirements. Comparing various IAMs helps to identify
robust and general findings as well as crucial assumptions and sticking points that affect
the modeling projections. The vast range future bioenergy use and the very significant
sensitivities highlight the broad room for maneuvering and the importance of policy
making and technology development. Our study also identifies robust findings that refer
to key trade-offs that are crucial for policy making.

Without climate policies, the models project 3600–5,500 GtCO2 cumulatively emitted
2011–2100. Limiting these emissions to 1600 or 1000 or even 400 GtCO2, in line with climate
change stabilization ambitions, is challenging. Increasing ABT deployment becomes generally
more important for more stringent emission budgets. Particularly, achieving tighter budgets
boosts bioenergy deployment by 2050. Also, in the long-run across models, lower CO2

emissions are associated with higher bioenergy use saturating at levels specific to individual
models. An inverse sensitivity is observed for some models due to the market size effect that
can imply decreasing bioenergy use due to stricter emission limitations, if its integration into
the energy system is challenging. Overall, advanced bioenergy use is a robust and valuable
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option for limiting CO2 emissions. However, it only can play a limited role because total energy
demand exceeds bioenergy potentials by far and needs to be complemented by other options,
such as energy efficiency improvements and renewable energies.

The robustness and value of bioenergy deployment arise from the flexibility to convert biomass
feedstocks into various useful energy carriers and the eventual combination with CCS, which
offsets emissions from fossil fuel use. In particular, addingCCS to liquid biofuel production features
a low carbon capture rate, but is preferred to electricitywith high carbon capture rate because liquids
are more difficult to decarbonize and demand remains substantial. Bio-liquids with CCS are a key
technology that is crucial for understanding sectoral allocation of bioenergy. If it is excluded in
scenarios with strong emission limitations, total bioenergy use is hardly reduced, but reallocated to
other purposes like electricity generation with CCS. Large fractions of bioenergy are used with
BECCS in most models, but abandoning it altogether also leads to bioenergy reallocation to
technologies without CCS. If modern bioenergy use is limited to 100 EJ/year, the use of BECCS
by 2050 can increase. The reallocation of bioenergy use is reinforced by higher carbon prices that
are required to comply with emission budgets under reduced mitigation technology portfolios.

Carbon prices increase over time and for tighter carbon budgets, but bioenergy use and
CDR potentials approach limits that are specific to models. Adding constraints on BECCS
availability leads consistently to higher carbon price increases than limiting biomass feedstock
supply. Both limitations become significantly more important for tighter budgets. Only six
models could project scenarios that achieve the 400 GtCO2 budget, but excluding BECCS or
limiting bioenergy use makes this budget infeasible for all models. Since tighter carbon
budgets require earlier ramp-up of ABT deployment, the timely maturity of ABTs by 2050
is more important than the doubling of investment costs.
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A general finding is that deployment of ABTs in mitigation scenarios is a highly robust and
socially valuable strategy in IAM models. However, the total use of bioenergy and its
allocation is uncertain acrossmodels, but allocation is also flexible for withinmodel sensitivity
analysis. The allocative flexibility indicates that bioenergy strategies are robust, even if only
few ABTs are included. The considerable sensitivity of carbon prices with respect to ABT
limitations suggests that biomass feedstocks are scarce and ABTs should facilitate bioenergy
uses with greatest benefit regarding both, satisfying energy demands and mitigating emissions.

From a methodological perspective, the limitations and flexibility of bioenergy use repre-
sented in IAMs are relevant when comparing it with non-IAM-based analysis. For example,
the consequences of BECCS utilization are analyzed in pure technology deployment frame-
works in which the link between BECCS deployment and bioenergy use is stiff (Smith et al.
2015; Anderson and Peters 2016). In such analysis, the system boundaries are narrow and do
not comprise overall energy and land system effects of technology performance along with
adjustments in deployment patterns, if a given emission target should be achieved and policy
feedback effects need to be considered.

The results of this study on bioenergy technologies and use as a mean to achieve emission
reduction targets point to a complex, multi-level policy challenge. A targeted R&D strategy to
develop ABTs, incl BECCS technologies, can help to achieve emission reduction targets with
lower CO2 prices. However, the huge bioenergy demand that has to be expected by 2050 and
beyond can threaten environment, food markets, and land tenureships. In default settings, IAMs
assume constraints on land-use (e.g., protection of biodiversity-rich areas), but it is a real-world
policy challenge to implement the corresponding regulations. Also, at the international level,
climate policies must comprehensively address all emissions to avoid adverse free-riding and
leakage effects (Otto et al. 2015). This is related to bioenergy trade from developing and emerging
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economies to developed countries as is identified with the EMF-33 models. Tragically, successful
R&D policies to develop ABTs could worsen leakage effects via international bioenergy markets.

The results indicate that more research is required to assess impacts of fragmented interna-
tional climate policies and failure of national land-use policies. Future comprehensive assess-
ments would also gain from improved analysis comprising additional CDR options (Smith et al.
2015), algae biomass feedstocks (Laurens 2017), and final energy demand changes (Wilson
et al. 2012) that could reduce pressure on land systems. IAMs can help to assess this complex,
multi-level policy problem although not all relevant dynamics are fully represented (e.g., Buck
2016; Creutzig et al. 2013). Increased collaboration with experts from environmental, social,
and political disciplines has great potential to improve IAMs in these highly relevant areas.

Acknowledgements The views expressed in this paper are those of the individual authors and do not
necessarily reflect those of the author’s institutions or funders. All errors are the responsibility of the authors.
NB and JS received funding from the German Research Foundation (DFG) Priority Programme (SPP) 1689
(CEMICS). SR was supported by the Electric Power Research Institute (EPRI); however, the views expressed
here are solely those of the authors and do not necessarily represent those of EPRI or its funders. SF and TH were
supported by the Environment Research and Technology Development Fund (2-1702) of the Environmental
Restoration and Conservation Agency, Japan.

References

Anderson K, Peters G (2016) The trouble with negative emissions. Science 354:182–183
Bauer N et al (2017) Shared socio-economic pathways of the energy sector—quantifying the narratives. Glob.

Environ Change 42:316–330
Bhave A et al (2017) Screening and techno-economic assessment of biomass-based power generation with CCS

technologies to meet 2050 CO2 targets. Appl Energy 190:481–489
Buck HJ (2016) Rapid scale-up of negative emissions technologies: social barriers and social implications. Clim

Chang 139:1–13
Calvin K et al (2017) The SSP4: a world of deepening inequality. Glob. Environ Change 42:284–296
Chum H et al (2011) Bioenergy, in: IPCC Special Report on Renewable Energy Sources and Climate Change

Mitigation (SRREN), Chapter 2. Cambridge University Press, Cambridge and New York
Clarke L et al (2014) Assessing transformation pathways. In: Climate Change 2014: Mitigation of Climate

Change. Chapter 6. Contribution of working group III to AR5 of the IPCC. Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA

Creutzig F et al (2013) Integrating place-specific livelihood and equity outcomes into global assessments of
bioenergy deployment. Environ Res Lett 8:035047

Dooley JJ (2013) Estimating the supply and demand for deep geologic CO2 storage capacity over the course of
the 21st century. Energy Procedia 37:5141–5150

Fargione JE et al (2010) The ecological impact of biofuels. Annu Rev Ecol Evol Syst 41:351–377
Field CB, Mach KJ (2017) Rightsizing carbon dioxide removal. Science 356:706–707
Fricko O et al (2017) The marker quantification of the shared socioeconomic pathway 2. Glob Environ Change

42:251–267
Fujimori S et al (2017) SSP3: AIM implementation of shared socioeconomic pathways. Glob Environ Change

42:268–283
Fuss S et al (2014) Betting on negative emissions. Nat Clim Chang 4:850–853
Grahn M et al (2007) Biomass for heat or as transportation fuel? Biomass Bioenergy 31:747–758
Kato E et al (2017) A sustainable pathway of bioenergy with carbon capture and storage deployment. Energy

Procedia 114:6115–6123
Kaya A et al (2017) Constant elasticity of substitution functions for energy modeling in general equilibrium

integrated assessment models: a critical review and recommendations. Clim Chang 145:27–40
Keramidas K et al (2017) POLES-JRC model documentation (JRC Technical Report No. EUR 28728 EN).

Seville, Spain
Klein D et al (2014) The value of bioenergy in low stabilization scenarios: an assessment using REMIND-

MAgPIE. Clim Chang 123:705–718

1567



Climatic Change (2020) 163:1553 1568–

Koelbl BS et al (2014) Uncertainty in carbon capture and storage (CCS) deployment projections: a cross-model
comparison exercise. Clim Chang 123:461–476

Kriegler E et al (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27
study on global technology and climate policy strategies. Clim Chang 123:353–367

Kriegler E et al (2017) Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st
century. Glob. Environ. Change 42:297–315

Laurens L (2017) State of technology review—algae bioenergy (Task No. Task 39). IEA Bioenergy, Golden, CO
Lomax G et al (2015) Reframing the policy approach to greenhouse gas removal technologies. Energy Policy 78:

125–136
Otto SAC et al (2015) Impact of fragmented emission reduction regimes on the energy market and on CO2

emissions related to land use. Technol. Forecast Soc. Change Part A 90:220–229
Riahi K et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas

emissions implications: an overview. Glob. Environ Change 42:153–168
Rogelj J et al (2015) Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat

Clim Chang 5:519–527
Rose SK et al (2014) Bioenergy in energy transformation and climate management. Clim Chang 123:477–493
Sands R et al (2017) Dedicated energy crops and competition for agricultural land. Economic Research Report

223, U.S. Department of Agriculture, Economic Research Service, Washington DC
Sano F et al (2015) Assessments of GHG emission reduction scenarios of different levels and different short-term

pledges through macro- and sectoral decomposition analyses. Technol. Forecast. Soc. Change Part A 90:
153–165

Scott V et al (2015) Fossil fuels in a trillion tonne world. Nat Clim Chang 5:419–423
Smith P et al (2015) Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang 6:42–50
van Vuuren DP et al (2010) Bio-energy use and low stabilization scenarios. Energy J 31:193–221
van Vuuren DP et al (2017) Energy, land-use and greenhouse gas emissions trajectories under a green growth

paradigm. Glob. Environ Change 42:237–250
Waisman H et al (2012) The Imaclim-R model: infrastructures, technical inertia and the costs of low carbon

futures under imperfect foresight. Clim Chang 114:101–120
Wilson C et al (2012) Marginalization of end-use technologies in energy innovation for climate protection. Nat

Clim Chang 2:780–788
Yamamoto H et al (2014) Role of end-use technologies in long-term GHG reduction scenarios developed with

the BET model. Clim Chang 123:583–596

1568


	Global...
	Abstract
	Introduction
	Methods
	EMF-33 models
	The scenario protocol

	Results
	CO2 emissions and bioenergy use
	Specialization patterns of bioenergy use
	CCS and bioenergy
	Sensitivity of ABT and biomass availability
	Implications on carbon prices

	Summary and conclusions
	References




