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1. Introduction

A normative conflict consists of a number of obligations that cannot jointly
be met. Normative conflicts arise, for example, in the context of moral dilem-
mas. Think of Sartre’s famous example of the French student [14]: During
World War 2, the student faces a choice between two possible courses of
action: he can either join the French resistance to avenge his brother, who
was killed by the invading German forces, or he can take care of his wid-
owed mother, of whom he is the only living relative. The student cannot
do both, but, as Sartre argues, the student has an obligation to do both.
He faces a normative conflict. A conflict tolerant deontic logic (CTDL) is a
deontic logic in which normative conflicts are consistent. CTDLs are needed
when one, like Sartre, holds that there are real normative conflicts, which
cannot be dissolved, e.g. by showing that what seems like an obligation isn’t
really one. When faced with a normative conflict, one should still be able
to reason about the implications of one’s (conflicting) obligations, to decide
what’s the best course of action. A conflict intolerant deontic logic, which
renders normative conflicts inconsistent, would, of course, not be of much
help here: since from a contradiction anything follows, in such a logic one
cannot reasonably reason about the conflict at hand. This is the problem of
conflict tolerance.

What should such a CTDL look like? In a recent survey, Lou Goble sets
out to answer this question, and he proposes three desiderata a CTDL should
satisfy [11]:
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Consistent Conflicts At least some normative conflicts should be consistent,
i.e. we can have � ¬(A1 ∧ · · · ∧ An) but OA1, . . . , OAn � ⊥ (p. 297).

No Deontic Explosion Normative conflicts should not result in deontic ex-
plosion, i.e. we can have � ¬(A1 ∧ · · · ∧An) but OA1, . . . , OAn � OB for
some B (p. 298).1

Minimal Deontic Laws Certain minimal laws of deontic logic, which are plau-
sible from considerations independent of any particular view of deontic
conflicts, should be validated (p. 302). As examples, Goble explicitly
mentions:
(DDS) O(A ∨ B), O¬A � OB (‘deontic disjunctive syllogism’).
(M) O(A ∧ B) � OB (‘monotonicity’).
(AGG) OA,OB � O(A ∧ B) (‘aggregation’).

There are different routes one might take here.2 In this paper, we’re inter-
ested in what Goble calls logics “with limited replacement”, i.e. systems
in which the rule of substitution can only be applied for a restricted class
of statements. In particular, we’re interested in Goble’s system BDL, in
which substitution is only allowed for what Goble calls analytically equiva-
lent statements [11, pp. 315–18].

BDL is a promising candidate for a CTDL since it satisfies all of Goble’s
desiderata. But as Goble himself points out:

On the formal front, BDL [. . . ] so far lack[s] any semantics or model
theory, and it is difficult to see how that might be developed, while
respecting the limits necessary to protect their treatment of normative
conflicts. [11, p. 318]

In this paper, we develop a sound and complete semantics for BDL. What
makes this particularly challenging is the fact that Goble’s desiderata rule
out any semantics that validates replacement of classical equivalences inside
the O operator, such as possible world semantics (for more on that, see
below).

1Note that in the presence of the principle of Ex Contradictione Quodlibet (ECQ), i.e.
⊥ � A for all A, No Deontic Explosion entails Consistent Conflicts. The two are kept apart
so as not to decide from the very start that the background logic needs to have (ECQ).
The logics we’ll be studying in this paper do have (ECQ) and, correspondingly, we can
focus our attention on No Deontic Explosion. In our exposition, however, we follow Goble’s
paper.

2For an overview of these options, see §4 and §5 of [11].
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By building on Kit Fine’s recent truthmaker semantics for analytic equiv-
alence [8], we are able to meet Goble’s challenge. We propose new, conflict
tolerant semantic clauses for statements of obligation, which are partially
inspired by Fine’s truthmaker treatment of statements of permission [7].
Based on a notion of admissible states, Kit Fine essentially proposed the
following truth-condition for permission statements of the form PA (for “it
is permitted that A”):

• PA is true iff every state that is a truthmaker of A is admissible.

We will now use this very notion of admissible states to develop a semantics
for obligation. Put intuitively, our truth-condition for obligation statements
is this:

• OA is true iff there is no admissible state that is a falsemaker of A.

In what follows, we start by developing a sound and complete semantics
for the weaker system BDL−, which we’ll introduced in this paper as BDL
without (DDS). However, by adding an additional semantic constraint, we’ll
also be able obtain the validity of (DDS), resulting in a sound and complete
semantics for full BDL.

The structure of the paper is as follows. In Section 2, we discuss the lim-
ited replacement approach to CTDLs and introduce Goble’s system BDL.
We show that Goble’s proposed system for analytic equivalence is deduc-
tively equivalent to Angell’s system AC of analytic containment [2]. In the
following section, Section 3, we extend Kit Fine’s truthmaker semantics for
AC with our conflict tolerant semantic clauses for obligation. In Section 4,
we give a semantic constraint on our models that is equivalent to the valid-
ity of (DDS), thereby obtaining a sound and complete semantics for BDL.
In Section 5, we prove the main result of our paper: the soundness of com-
pleteness of our semantics for BDL− and BDL. We conclude the paper, in
Section 6, with a few general remarks on BDL and a discussion of possible
concepts of permission in BDL and their interaction with obligation.

Syntax

The syntax in our paper is as follows: Our base language L is a proposi-
tional language with the connectives ¬ (‘negation’), ∧ (‘conjunction’), and
∨ (‘disjunction’), which is defined over a (countable) set A of propositional
variables or atoms. We use p, q, r, . . . as meta-variables for atoms. The syntax
of L is given in a concise fashion by the following Backus–Naur-Form:

A ::= p | ¬A | (A ∧ A) | (A ∨ A).
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We use A,B,C, . . . as meta-variables for formulas. We also refer to the for-
mulas of L as non-deontic formulas. The deontic language LD extends L
with formulas in which the obligation operator O has been applied to non-
deontic formulas, i.e. LD is the smallest set X such that:

1. A ⊆ X,

2. if A ∈ L, then O(A) ∈ X, and

3. if A,B ∈ X, then ¬A, (A ∧ B), (A ∨ B) ∈ X.

The formulas in LD\L we also call deontic formulas. Throughout the paper,
the usual notational conventions about formulas apply: outermost brackets
may be omitted; ¬ binds stronger than ∧, which in turn binds stronger
than ∨; etc. A → B is defined as ¬A ∨ B and A ↔ B is defined as
(A → B) ∧ (B → A).

2. CTDLs with Limited Replacement

The (standard) rule of replacement (RE) says that we can infer OB from
OA given that A ↔ B is a theorem of a certain background logic. Now the
problem is this: any CTDL that contains the rule of replacement and takes
classical logic as its background logic either violates No Deontic Explosion or
Minimal Deontic Laws. The argument is relatively straightforward. Suppose
that a CTDL contains (RE) and classical logic as its background logic. Now
according to Minimal Deontic Laws, it also contains (M). Then, using (RE)
and (M), we can derive the rule of monotonicity (RM), which says that we
can infer OB from OA, if A → B is a theorem.3 Since our background logic
is classical, (RM) immediately results in deontic explosion: it follows from
¬(A1 ∧ · · · ∧ An) being provable that A1 ∧ · · · ∧ An → B is provable; but
then we can infer OB from OA1, . . . , OAn using (RM) and (AGG), in direct
contradiction to No Deontic Explosion. Hence no CTDL with classical logic
as its background logic can satisfy both No Deontic Explosion and Minimal
Deontic Laws.

In fact, (RM) is equivalent to (RE) and (M) in the sense that any deontic
logic that has (RM) has (RE) and (M) and vice versa.4 In other words, in

3Suppose A → B is a theorem. By classical logic we get A ↔ A∧B as a theorem. Now
suppose that we have a derivation of OA. Using (RM), we can infer O(A ∧ B). Using (M),
we can derive OB.

4Above we’ve shown how to derive (RM) from (RE) and (M) using classical logic.
For the converse direction, simply note that (RE) follows by applying (RM) “in both
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the light of the rule (RE) and classical logic, we cannot distinguish between
the problematic rule (RM) and the desired axiom (M). This observation
motivates restricting the replacement rule, giving us the class of CTDLs
with limited replacement [11, §5.4].5 The idea is that we no longer sanction
the inference from OA to OB only on the basis of A ↔ B being provable,
but rather demand a stronger form of equivalence to hold between A and B
as a side-condition for replacement. The question is: What does a plausible
such notion of equivalence look like?

Goble proposes an interesting CTDL with limited replacement, which
instead of (classical) logical equivalence, uses the stronger condition of ‘an-
alytic equivalence’ as the condition for replacement in deontic contexts.6

Goble formalizes this notion using the binary operator ⇔A, which operates
on non-deontic formulas. More specifically, an analytic equivalence claim is
a statement of the form A ⇔A B, where A,B ∈ L. Goble proposes the
following axiomatization for analytic equivalences [11, p. 316]:7

Axioms:

A ⇔A A A ⇔A ¬¬A
A ⇔A (A ∧ A) A ⇔A (A ∨ A)
(A ∧ B) ⇔A (B ∧ A) (A ∨ B) ⇔A (B ∨ A)
(A ∧ (B ∧ C)) ⇔A ((A ∧ B) ∧ C) (A ∨ (B ∨ C)) ⇔A ((A ∨ B) ∨ C)
(A ∧ (B ∨ C)) ⇔A ((A ∧ B) ∨ (A ∧ C)) (A ∨ (B ∧ C)) ⇔A ((A ∨ B)

∧(A ∨ C))
(¬A ∧ ¬B) ⇔A ¬(A ∨ B) (¬A ∨ ¬B) ⇔A ¬(A ∧ B)

Rules:

(R1) A ⇔A B/B ⇔A A (R2) A ⇔A B, B ⇔A C/A ⇔A C
(R3) A ⇔A B/(A ∧ C) ⇔A (B ∧ C) (R4) A ⇔A B/(A ∨ C) ⇔A

(B ∨ C)
(R5) A ⇔A B/¬A ⇔A ¬B

Footnote 4 continued
directions” and (M) follows from (RM) using that fact that, in classical logic, from A ∧ B,
we can infer A and B.

5Another possible response to the problem sketched above is, of course, to abandon
classical logic as the background logic for our CTDL. For a discussion of this approach,
see [11, pp. 321–26].

6Restricting replacement in the context of a deontic logic is a common strategy to
avoid paradoxes. Straßer and Beirlaen [16], for example, propose a very similar deontic
logic based on a system they call equivalence logic (EL).

7Goble includes the axiom (A → B) ⇔A (¬A ∨ B), which we don’t include here since
we define A → B as ¬A ∨ B.
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It turns out that Goble’s system is deductively equivalent to the well-
understood system AC of analytic containment, which is due to Angell
[1,2]. In [8], Fine gives an axiomatization of AC that is almost identical
to Goble’s system, except that Fine’s system neither has the identity axiom
A ⇔A A nor the negation replacement rule A ⇔A B/¬A ⇔ ¬B (R5). It’s
easily shown that we can derive the identity axiom from the other axioms
of Goble’s system, which makes the axiom redundant:

1. A ⇔A ¬¬A (Axiom)

2. ¬¬A ⇔A A (from 1. using R1)

3. A ⇔A A (from 1. and 2. using R2)

Moreover, Fine shows that the negation replacement rule is admissible in
the system (Theorem 2, [8, p. 203]). From this it follows that Goble’s system
indeed is just AC.

Proposition 2.1. A ⇔A B is provable in Goble’s system iff A ⇔A B is
provable in AC.

In a sense, this observation vindicates Goble’s choice of system: it turns
out that Goble’s system coincides with a well-known system for a non-
classical notion of equivalence, which has been independently studied by
philosophers and logicians [5,6,8]. Moreover, there is a semantics for AC,
which, as we’ll show in the next section, can be extended in a natural fashion
to account for deontic formulas.

Goble now defines a CTDL in which replacement is restricted to analytic
equivalent formulas. The system BDL of ‘basic deontic logic’ is formulated
in LD and consists of classical propositional logic, plus (DDS), (M), and
(AGG), as well as the replacement rule (RBE), which allows us to infer
OB from OA given that �AC A ⇔A B [11, p. 314]. Note that AC plays
the role of a “background system” here: derivability in AC of a certain
analytic equivalence is a side-condition for the rule (RBE) in the system
BDL, but AC itself is not part of BDL. This raises the question of how
one can build a system in which one can explicitly reason with statements
expressing analytic equivalences. This, however, goes beyond the scope of
our paper.
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BDL and BDL−

The system BDL has the following axioms and rules:

Axioms

1. all substitution instances of classical tautologies
over the language LD

2. O(A ∧ B) → (OA ∧ OB) (M)

3. (OA ∧ OB) → O(A ∧ B) (AGG)

4. (O(A ∨ B) ∧ O¬A) → OB (DDS)

Rules
A → B A

B
(MP ) OA

OB
�ACA⇔AB (RBE)

The system BDL− is BDL without (DDS).

We denote derivability in BDL− by �BDL− and derivability in BDL by
�BDL. If it’s clear from the context which system we’re talking about, we
may omit the subscript.

Before we start with semantics, let us briefly point out a few facts that’ll
turn out to be useful later in the paper.

First, note that the following rule

OA
OB

�ACA∧B⇔AA (RBM)

is derivable in both BDL− and BDL using (RBE) and (M). We call it
(RBM) by analogy with (RBE) and with (RM).

Second, note that using the rule (RBM), we can show that

�BDL− O(A ∧ B) → O(A ∨ B)

by observing that �AC (A ∧ B) ∧ (A ∨ B) ⇔A (A ∧ B).

3. Truthmaker Semantics for BDL−

Fine formulates his semantics for AC in a modified version of Bas van
Fraassen’s truthmaker semantics [10]. Van Fraassen originally used his se-
mantics to give a characterization of what’s effectively the 4-valued logic of
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First Degree Entailment, and in his paper, Fine shows how the semantics
can be extended to AC [8].

Here we present a slightly different version of the semantics, which as
far as we can see, was first suggested in passing by Yablo [17, p. 57]. The
semantics is developed against a background theory of fine-grained states
of affairs. These states are taken to be primitive entities of the semantics,
not reducible to the possible worlds where they obtain or the like. Formally
speaking, a state is a set of pairs of atoms and truth-values:

Definition 3.1. (State). σ is a state iff σ ⊆ A × {0, 1}.8

States can be “negated” in a natural way:

Definition 3.2. (Negation of a state). Let σ be a state. We write σ for the
negation of σ, and define σ := {(pi, 1 − x) : (pi, x) ∈ σ}.

Philosophically speaking, we can think of our states as Ersatz -states in
the same way that Carnapian state descriptions are Ersatz -worlds, see [4].
We read the state {(p1, x1), (p2, x2), . . .} as the state of p1 having the truth-
value x1, p2 having the truth-value x2, . . . .

Note that this definition allows for incomplete and inconsistent states.
A state σ is said to be incomplete iff there is a p ∈ A such that neither
(p, 1) ∈ σ nor (p, 0) ∈ σ. And σ is said to be inconsistent iff both (p, 1) ∈ σ
and (p, 0) ∈ σ for some p ∈ A. Intuitively, an incomplete state is one that
fails to settle a certain subject matter, and an inconsistent state is one that
is over-determined with respect to some subject matter.

We can think of classical valuations as special kinds of states in the
following way:

Definition 3.3. (Classical Valuation). ω is a classical valuation iff ω is a
state and for every p ∈ A, either (p, 1) ∈ ω or (p, 0) ∈ ω and not both.

In fact, mathematically speaking, that’s just what valuations are: func-
tions from A to {0, 1}. Philosophically speaking, classical valuations are
just Ersatz -worlds: they are technical stand-ins for ways the world can be.
In what follows, we will use the familiar notion for valuations ω, i.e. ω(p) = 1
for (p, 1) ∈ ω, and ω(p) = 0 for (p, 0) ∈ ω.

The idea behind truthmaker semantics is that states are those things in
the world that make statements true or false. Fine gives us the following
informal characterization of truthmaking: he says that σ is a truthmaker of

8Note that this includes the empty state ∅ among the states. This is, however, techni-
cally innocuous, since the empty state will not play any technical role in what follows.



Truthmakers and Normative Conflicts 57

A just in case (i) σ necessitates the truth of A and (ii) σ is wholly relevant
to the truth of A [9, p. 559].9 Note the requirement (ii) that a state be
wholly relevant to the truth of a statement. The idea is, roughly, that in
order for a state to count as a truthmaker for A it may not contain any
part that is irrelevant to A’s truth. Consider the the state of Socrates being
a bald philosopher, for example. Clearly, the state necessitates the truth of
the statement “Socrates is a philosopher”—necessarily, if Socrates is a bald
philosopher, then “Socrates is a philosopher” is true. But, and that’s the
crucial point, the state is not wholly relevant to the truth of the statement
since it contains the state of Socrates being bald as a part, which is irrelevant
to the truth of “Socrates is a philosopher.”10

There is also an analogous falsemaking relation, which holds between a
state σ and a statement A just in case (i’) σ necessitates the falsehood of A
and (ii’) σ is wholly relevant to the falsehood of A.

In our present setting, there will be precisely one state that necessitates
the truth of an atom p in a wholly relevant way, which is just the state
{(p, 1)}. And there is exactly one state that necessitates the falsehood of p
in a wholly relevant way, which is {(p, 0)}. If we start from this and take
Fine’s recursive clauses for the truthmaking and falsemaking relation, we
end up with the following definition (cf. [8, pp. 205–6]11):

Definition 3.4. (Truthmakers, Falsemakers). For all A ∈ L, the set [A]+

of truthmakers of A and the set [A]− of falsemakers of A is defined by
simultaneous recursion as follows:

(i) (a) [p]+ = {{(p, 1)}}
(b) [p]− = {{(p, 0)}}

(ii) (a) [¬A]+ = [A]−

(b) [¬A]− = [A]+

(iii) (a) [A ∧ B]+ = {σ ∪ τ : σ ∈ [A]+, τ ∈ [B]+}

9More precisely, this is what Fine calls “exact” truthmaking to distinguish it from
truthmaking in other senses. Unless further specified, whenever we speak of the truthmak-
ers of a statement, this is what we mean.

10For further explanation, see [9, p. 559].
11Here, we work with what Fine calls the “inclusive” clauses for truthmaking. Fine

also discusses a non-inclusive version of the semantics, which we don’t need in the present
paper. Moreover, we work with a structure that is (model-isomorphic to) the canonical
model Fine uses in his paper. From a logical point of view, as we’ll explain below, restricting
ourselves to the canonical model doesn’t change anything with respect the soundness and
completeness of AC in our semantics. We chose the current presentation of the semantics
for ease of exposition.
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(b) [A ∧ B]− = [A]− ∪ [B]− ∪ [A ∨ B]−

(iv) (a) [A ∨ B]+ = [A]+ ∪ [B]+ ∪ [A ∧ B]+

(b) [A ∨ B]− = {σ ∪ τ : σ ∈ [A]−, τ ∈ [B]−}
One way of thinking about what’s going on here is that we’re keeping

track of the precise truth and falsity conditions of a given statement: the
members of [A]+ are the exact conditions that need to be satisfied by a
valuation for A to be true under the valuation, and the members of [A]− are
the exact conditions for A’s falsehood.

Fine [8] discusses various notions of semantic content that can be devel-
oped in the truthmaker setting. To get a semantics for AC, we need the
notion of replete content, which is defined in terms of convexity:

Definition 3.5. (Convex set). A set Σ of states is said to be convex if and
only if for all states σ, τ, δ, if σ, δ ∈ Σ and σ ⊆ τ ⊆ δ, then τ ∈ Σ.

Every set of states can canonically be transformed into a convex set, by
filling in the missing pieces:

Definition 3.6. (Convex closure). We define the convex closure, conv(Σ),
of a set of states Σ as the smallest Θ such that Σ ⊆ Θ and Θ is convex, i.e.

conv(Σ) =
⋂

{Θ : Σ ⊆ Θ, Θ is convex}.

For conv([A]+) we also write �A�+, and for conv([A]−) we write �A�−.

It follows from basic set-theory that conv(Σ) is well-defined. It is worth-
while, however, to note the following facts about the operation:

Lemma 3.7. (Properties of convex closure). We have:

1. conv(Σ) is convex

2. Σ ⊆ conv(Σ)

3. If Σ ⊆ Δ, then conv(Σ) ⊆ conv(Δ)

4. conv(Σ) = Σ ∪ {σ : ∃τ, π ∈ Σ : τ ⊆ σ ⊆ π}

Proof. 1.Suppose, for proof by contradiction, that conv(Σ) is not
convex, i.e. there are σ, τ ∈ conv(Σ) and a π with σ ⊆ π ⊆ τ but π /∈
conv(Σ). Since σ, τ ∈ conv(Σ) and conv(Σ) =

⋂{Θ : Σ ⊆ Θ, Θ is convex},
we know that for all Θ such that Σ ⊆ Θ and Θ convex, σ, τ ∈ Θ. Pick
an arbitrary such Θ. Since σ ⊆ π ⊆ τ and Θ is convex, we know that
π ∈ Θ. But then π ∈ Θ for all Σ ⊆ Θ and Θ is convex. But then
π ∈ ⋂{Θ : Σ ⊆ Θ, Θ is convex} = conv(Σ). Contradiction.
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2. Obviously, Σ ⊆ Θ, for all Θ such that Σ ⊆ Θ and Θ is convex. It
follows immediately that Σ ⊆ ⋂{Θ : Σ ⊆ Θ, Θ is convex}.

3. Note that, since Σ ⊆ Δ, Σ ⊆ Θ for all Θ such that Δ ⊆ Θ and Θ is
convex. But from this it follows that {Θ : Δ ⊆ Θ, Θ convex} ⊆ {Θ : Σ ⊆
Θ, Θ convex}. But then, by basic set-theory,

⋂
{Θ : Σ ⊆ Θ, Θ convex}

︸ ︷︷ ︸
=conv(Σ)

⊆
⋂

{Θ : Δ ⊆ Θ, Θ convex}
︸ ︷︷ ︸

=conv(Δ)

.

4. conv(Σ) ⊆ Σ ∪ {σ : ∃τ, π ∈ Σ : τ ⊆ σ ⊆ π}: To see this, note that
Σ ⊆ Θ and {σ : ∃τ, π ∈ Σ : τ ⊆ σ ⊆ π} ⊆ Θ, for all Θ such that Σ ⊆ Θ
and Θ is convex. Hence

⋂{Θ : Σ ⊆ Θ, Θ is convex} = conv(Σ) ⊆ Σ∪{σ :
∃τ, π ∈ Σ : τ ⊆ σ ⊆ π}, as desired.

Σ ∪ {σ : ∃τ, π ∈ Σ : τ ⊆ σ ⊆ π} ⊆ conv(Σ): Suppose that σ ∈ Σ ∪ {σ :
∃τ, π ∈ Σ : τ ⊆ σ ⊆ π}. We can infer that either (a) σ ∈ Σ or (b) σ is
such there are τ, π ∈ Σ with τ ⊆ σ ⊆ π. If (a), then, by 2., σ ∈ conv(Σ).
If (b), then we know that τ, π ∈ conv(Σ) since τ, π ∈ Σ and Σ ⊆ conv(Σ)
by 2. But by 1. conv(Σ) is convex and so σ ∈ conv(Σ).

Following Fine, we call �A�+ the set of replete truthmakers of A and �A�−

replete falsemakers of A. To illustrate the difference between exact (in the
sense of inclusive semantics truthmaker semantics as developed in Defini-
tion 3.4) and replete truthmakers, it’s maybe helpful to look at an example.
Take the formula (p ∧ q ∧ r) ∨ p. This formula has two exact truthmakers:
the state that makes the left disjunct (i.e. (p ∧ q ∧ r)) true, and the state
that makes the right disjunct (i.e. p) true, and this is why we have [(p ∧ q ∧
r)∨p]+ = {{(p, 1), (q, 1), (r, 1)}, {(p, 1)}}. The set of replete truthmakers for
the same formula now contains additional elements, in our example �(p ∧
q ∧ r) ∨ p�+ = {{(p, 1), (q, 1), (r, 1)}, {(p, 1), (q, 1)}, {(p, 1), (r, 1)}, {(p, 1)}}.
Intuitively speaking, the set of replete truthmakers (falsemakers) also con-
tains all those states that make the formula true (false) but that are also
contained in the statement’s subject matter.

Finally, note that under the present semantics, truth and falsemakers are
closed under union:

Lemma 3.8. For all A ∈ L, if σ, τ ∈ [A]+, then σ ∪ τ ∈ [A]+ and if σ, τ ∈
[A]−, then σ ∪ τ ∈ [A]−.

Proof. By induction on complexity.
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Intuitively, this means that the “fusion” of two truthmakers (falsemak-
ers) still is a truthmaker (falsemaker).12 This fact carries over to replete
truthmakers:

Corollary 3.9. For all A ∈ L, if σ, τ ∈ �A�+, then σ ∪ τ ∈ �A�+ and if
σ, τ ∈ �A�−, then σ ∪ τ ∈ �A�−.

It can be shown that Goble’s axioms and rules for analytic equivalence
exactly describe identity of replete truthmakers (or falsemakers, for that
matter):

Theorem 3.10. (Replete Truthmakers and Analytic Equivalence). For all
A,B ∈ L, the following three statements are equivalent:

• �AC A ⇔A B

• �A�+ = �B�+

• �A�− = �B�−

Proof. This is a corollary of Fine’s soundness and completeness result for
his semantics for AC [8, Theorems 14 and 21]. Fine shows that �AC A ⇔A B
iff the replete truth and falsemakers of A and B are the same in a wider
class of truthmaker models, to which our concrete truthmaker model struc-
ture belongs. In fact, the truthmaker model we’re working with is (model-
isomorphic to) Fine’s canonical model (see footnote 11), meaning that in
it, all and only those formulas have the same replete truth and falsemakers
that are provable in AC. From this observation, the above result follows
immediately.

In this sense, replete truthmakers are the semantic foundation for analytic
equivalence. Besides being an interesting observation in itself, this observa-
tion is a partial solution to Goble’s challenge to find an intuitive semantical
framework for BDL, because it gives us a semantic framework to interpret
the Goble’s notion of analytic equivalence.

To interpret obligations we add one final ingredient to our base model: a
set Ok, which contains all those states that are normatively admissible. So
this leads us to the following definition of a base model:

Definition 3.11. (Base Model). A model is a tuple M = (ω, Ok), where
ω is a classical valuation over L and Ok ⊆ ℘(A × {0, 1}).

12For a discussion of this, see [8, p. 206].
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To interpret obligations, we use the following idea: what it means for A
to be obligatory is that no replete falsemaker of A is admissible. Because
we have �A�− = �¬A�+,13 A is obligatory iff no replete truthmaker of ¬A
is admissible. Putting all these conditions together results in the following
truth-conditions for all formulas of the deontic language LD:

Definition 3.12. (Truth). Let M = (ω,Ok) be a model. Note that the
truth-conditions for p ∈ A and for non-deontic formulas are classical:

(i) M � p iff ω(p) = 1

(ii) M � ¬A iff M � A

(iii) M � A ∧ B iff M � A and M � B

(iv) M � A ∨ B iff M � A or M � B

(v) M � OA iff �A�− ∩ Ok = ∅
So Ok is a set of states, i.e. a set of sets of ordered pairs of atoms and

truth-values. To give you an idea of how we interpret these Ok sets, consider
the following example. Assume that Ok = {{(p, 1), (q, 0)}, {(p, 1), (t, 1)}}.
This Ok set renders two states admissible: the state in which p is true and
q is false (e.g. you drink and you don’t drive), and the state in which p is
true and t is true (e.g. you drink and you take a taxi).

So far there are no conditions on the set Ok of admissible states. A
consequence of that is that a complex state {(p, 1), (t, 1)} can be in Ok,
without any of its substates, e.g. {(p, 1)}, being in Ok. This enables us to
express that two things might be admissible only in combination with one
another, while not being admissible in isolation.14

To get a semantics for BDL− and BDL, however, we need Ok to satisfy
additional conditions. To validate the axioms of BDL−, we need to assume
that if two states are inadmissible, then any state “in between” will also be
inadmissible, and we need to assume that if the combination of two states
is admissible, then at least one of the two states is admissible:

Definition 3.13. (Reverse Convexity). A set of states Σ is reverse convex
iff the complement of Σ with respect to the set of all states, ΣC , is convex,
i.e. for all σ, τ, δ: if σ /∈ Σ and τ /∈ Σ and σ ⊆ δ ⊆ τ , then δ /∈ Σ.

13To see this, note that [A]− = [¬A]+, i.e. we have both [A]− ⊆ [¬A]+ and [¬A]+ ⊆
[A]−. Since �A�− = conv([A]−) and �¬A�+ = conv([¬A]+) by definition, Lemma 3.7.3
gives us both �A�−⊆ �¬A�+ and �¬A�+⊆ �A�−, i.e. �A�− = �¬A�+.

14We will come back to this closure condition for Ok later in Section 4 when we talk
about (DDS) and a semantics for the stronger logic BDL.
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Definition 3.14. (Reverse Closure). A set of states Σ is reverse closed iff
ΣC is closed under union, i.e. for any two states σ, τ /∈ Σ, we have σ∪τ /∈ Σ.

To illustrate what the reverse convexity condition says, consider an ex-
ample in which it is violated. For instance, take the Ok set that only renders
the state admissible which makes p and r true, Ok = {{(p, 1), (r, 1)}}. As
a consequence, we have {(p, 1), (r, 1), (s, 1)} /∈ Ok and {(p, 1)} /∈ Ok. So
neither is the state admissible which makes p, r and s true, nor is the state
admissible which makes p true. Intuitively speaking, this means that there
is an admissible state such that neither a stronger nor a weaker state is ad-
missible. Reverse convexity excludes this situation, i.e. it excludes Ok sets
like the one in this example.15

These two conditions now finally give us the notion of a BDL− model:

Definition 3.15. (BDL− model). A BDL− model is model M = (ω, Ok)
such that Ok is reverse convex and reverse closed.16

Validity and logical consequence are defined as usual:

Definition 3.16. (Validity). For all A ∈ LD,

� A iff for all BDL− models M: M � A.

Definition 3.17. (Logical Consequence). For all Φ ⊆ LD and A ∈ LD,

Φ � A iff for all BDL− models M, if M � Φ, then M � A.

To illustrate how our semantics works, we now consider two concrete
models. The first one shows that, although the semantics validates (M),
obligations are not generally closed under logical consequence. In particular,
we show that that weakening in the form of OA → O(A ∨ B) is not valid.
The second one shows that normative conflicts are satisfiable.

(i) Let M = (ω,Ok) with Ok = {σ : (q, 0) ∈ σ}. It’s easily checked, then,
that Ok so defined is both reverse convex and reverse closed. And since
�p�− = {{(p, 0)}}, we have �p�− ∩ Ok = ∅ and so by the truth-condition
for obligation formulas M � Op. However, in light of the fact that

15Note that both conditions (reverse convexity and reverse closure) really concern the
complement of a set of states. Why this is so, will become apparent soon.

16Note that in many cases, the condition of reverse convexity forces us to include ∅
among the members of Ok. Otherwise, we’d get trivial counterexamples. Consider, e.g.,
any set Ok such that for all σ, τ ∈ Ok, σ ∩ τ = ∅. If then ∅ /∈ Ok, the set would not be
reverse convex, since ∅ ⊆ σ for all σ. Intuitively, however, this is not a serious constraint,
since ∅ corresponds to the empty state, which obtains no matter what. Including this state
among the admissible states is philosophically innocuous.
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�p ∨ q�− = {{(p, 0), (q, 0)}} we get �p ∨ q�− ∩ Ok �= ∅, i.e. M � O(p ∨ q).
Hence, we get M � Op → O(p ∨ q).

(ii) Let M = (ω,Ok) with Ok = {∅} ∪ {{(pi, 1)} : i ≥ 2 and pi ∈ A}.17

Clearly, Ok so defined is reverse closed and reverse convex. Ok renders
a state admissible that makes p2 true, one that makes p3 true, and so
on. According to the truth-condition for obligations, this makes ¬p2,
¬p3, etc. not obligatory. So we have: M � ¬O¬pi, for all i ≥ 2. What
about p1, though? Since for all p ∈ A we have [p]+ = �p�+ and [p]− =
�p�−, there is neither a truthmaker nor a falsemaker of p1 in Ok, i.e.
�p1�

−∩Ok = ∅ and �¬p1�
−∩Ok = ∅. And this means that M � Op1 and

M � O¬p1, i.e. M satisfies a normative conflict. Despite the fact that
normative conflicts are satisfiable, it is also easily shown that BDL−’s
base logic is classical:

Lemma 3.18. (Classicality). For all A ∈ LD and all BDL− models, either
M � A or M � A and never both.

4. On Deontic Disjunctive Syllogism and BDL

In the semantics for BDL−, (DDS) is not valid. It’s easy to construct a
countermodel: let M = (ω,Ok) be such that

• ω is arbitrary, and

• Ok = {∅, {(q, 0)}}.

Note that Ok is reverse convex and reverse closed. We have M � O¬p,
M � O(p ∨ q) but M � Oq, since �q�− = {{(q, 0)}} ∩ Ok �= ∅. Hence (DDS)
is not a valid schema for our semantics.

To obtain a sound and complete semantics for BDL we need a condi-
tion on BDL− models which guarantees that (DDS) preserves truth in the
models that satisfy the condition. This is what we set out to do in this
section.

First, we need some further auxiliary concepts. Just like we can negate
states, we can also negate finite sets of states, i.e. contents. Note that infi-
nite sets of states don’t play the role of semantic values of formulas in our
language, and thus the restriction to finite states and finite sets of states in
the following is semantically innocuous.18

17Note that we need to include ∅ in Ok to ensure that it is reverse convex. See previous
footnote.

18This claim can be established by a simple induction on the complexity of formulas.
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Definition 4.1. (Negation of a content). Let σ1, . . . , σn be states. We de-
fine:

{σ1, . . . , σn} =

{
{f(σ1), . . . , f(σn)} : f : {σ1, . . . , σn}

→
n⋃

i=1

σi is a choice function

}

19

For simplicity, let’s also introduce the notion of fusions of contents:

Definition 4.2. (Fusion of Contents). We call Σ ◦ Λ the fusion of two sets
of sets Σ and Λ, and define Σ ◦ Λ = {σ ∪ τ : σ ∈ Σ and τ ∈ Λ}.

We’ll use the following lemma every now and then later in the paper:

Lemma 4.3. For all A ∈ L, we have [A]+ ◦ [A]+ = [A]+ and [A]− ◦ [A]− =
[A]−.

Proof. This follows from the fact that truth and falsemakers are closed
under fusions (Lemma 3.8).

Lemma 4.4. For all A ∈ L,

• [A]+ = [¬A]+

• [A]− = [¬A]−

Proof. By induction on complexity. For the base case, note that:

• [p]+ = [¬p]− = {{(p, 1)}} and {{(p, 1)}} = {{(p, 0)}}
• [¬p]+ = [p]− = {{(p, 0)}} and {{(p, 0)}} = {{(p, 1)}}

For ¬A, note that

• [¬A]+ = [A]− IH= [¬A]− = [A]+=[¬¬A]+

• [¬A]− = [A]+ IH= [¬A]− = [A]−=[¬¬A]−

We only consider the case for A ∨ B, leaving the case for A ∧ B to the
interested reader. We first note the following identity:

Σ ◦ Δ = Σ ∪ Δ. (∗)

Applying this repeatedly, we get the following argument:

19Here a choice function is understood in the standard set-theoretic sense as a function
f on sets such that for all sets A in the domain of the function, f(A) ∈ A.
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• [A ∨ B]+ = [A]+ ∪ [B]+ ∪ ([A]+ ◦ [B]+) ∗= [A]+ ◦ [B]+ ◦ [A]+ ∪ [B]+ ∗=
[A]+◦[B]+◦[A]+◦[B]+ = [A]+◦[B]+ IH= [¬A]+◦[¬B]+ = . . . = [¬(A∨B)]+

• [A ∨ B]− = [A]− ◦ [B]− =
Lemma 4.3

[A]− ◦ [B]− ◦ ([A]− ∪ [B]−) ∗= [A]− ∪
[B]− ∪ [A]− ◦ [B]− IH= [¬A]− ∪ [¬B]− ∪ [¬A]− ◦ [¬B]− = . . . = [¬(A∨B)]−

It immediately follows:

Corollary 4.5.

1. �¬A�+ = conv([A]+)

2. �¬A�− = conv([A]−)

Definition 4.6. (Trace formulas). For all finite states σ, we set

tr(σ) =
∧

({p : (p, 1) ∈ σ} ∪ {¬p : (p, 0) ∈ σ})

And for all finite sets of finite states Σ, we set:

tr(Σ) =
∨

{tr(σ) : σ ∈ Σ.}
Note that we only define trace formulas for finite states and finite sets of

finite states. Again, this is because infinite states and infinite sets of states
don’t play a role in the present semantics.

Lemma 4.7. For all finite states σ and all finite sets of finite states Σ,

1. [tr(σ)]+ = {σ}
2. [tr(Σ)]+ = Σ

The following theorem illustrates that (DDS)’s validity corresponds to a
certain closure property of Ok sets:

Theorem 4.8. Let M be a class of BDL−-models. Then, the following are
equivalent:

1. for all A,B ∈ L and for all M ∈ M, M � O(A ∨ B) ∧ O¬A → OB,

2. for all M = (ω,Ok) ∈ M, for all finite sets of finite states Σ, Δ, if
conv(Σ ◦ Δ) ∩ Ok = ∅ and conv(Σ) ∩ Ok = ∅, then conv(Δ) ∩ Ok = ∅.

Proof. 1. ⇒ 2. Assume that for all A,B,C ∈ L and for all M ∈ M,
M � O(A∨B)∧O¬A → OB. For proof by contradiction, assume that there
is an M and Σ, Δ with conv(Σ ◦ Δ) ∩ Ok = ∅ and conv(Σ) ∩ Ok = ∅ but
conv(Δ)∩Ok �= ∅. Consider O(tr(Σ)∨ tr(Δ)), O¬tr(Σ), and Otr(Δ). Using
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Lemmas 4.4 and 4.7, we get [tr(Σ) ∨ tr(Δ)]− = [tr(Σ)]− ◦ [tr(Δ)]− = Σ ◦ Δ.
So �tr(Σ)∨ tr(Δ)�+ = conv(Σ◦Δ). But then, we get M � O(tr(Σ)∨ tr(Δ)),
since by assumption conv(Σ ◦ Δ) ∩ Ok = ∅. In a similar fashion, we can
determine that M � O¬tr(Σ) and M � Otr(Δ), which is in contradiction
to the assumption that M � O(A ∨ B) ∧ O¬A → OB, for all A,B. Hence
for all M = (ω,Ok) ∈ M, for all sets of states Σ, Δ, if conv(Σ◦Δ)∩Ok = ∅
and conv(Σ) ∩ Ok = ∅, then conv(Δ) ∩ Ok = ∅.

2. ⇒ 1. Conversely, assume that for all M = (ω, Ok) ∈ M, for all sets of
states Σ, Δ, if conv(Σ ◦Δ)∩Ok = ∅ and conv(Σ)∩Ok = ∅, then conv(Δ)∩
Ok = ∅. This means that for any formulas A,B, if

conv([A]+ ◦ [B]+)︸ ︷︷ ︸
=�A∨B�−

∩Ok = ∅

and

conv([A]+)︸ ︷︷ ︸
=�¬A�−

∩Ok = ∅

then

conv([B]+)︸ ︷︷ ︸
=�B�−

∩Ok �= ∅

Which is just to say that if M � O(A ∨ B) and M � O¬A, then M � OB.
In other words, M � O(A ∨ B) ∧ O¬A → OB.

Because of this fact we can define BDL models as follows:

Definition 4.9. (BDL model). A BDL model is a BDL− model M =
(ω,Ok) in which Ok also satisfies:

For all finite sets of finite states Σ, Δ, if conv(Σ ◦ Δ) ∩ Ok = ∅ and
conv(Σ) ∩ Ok = ∅, then conv(Δ) ∩ Ok = ∅.

Validity and logical consequence for BDL are defined as usual:

Definition 4.10. (Validity, BDL) For all A ∈ LD,

�BDL A iff for all BDL models M: M � A.

Definition 4.11. (Logical Consequence, BDL). For all Φ ⊆ LD and A ∈
LD,

Φ �BDL A iff for all BDL models M, if M � Φ, then M � A.

This finally gives us a semantics for full BDL.
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We now conclude this section with two observation concerning (DDS).
The first observation shows that (DDS) is incompatible with a property

we might want the set Ok of admissible states to satisfy.
As we have seen in one of the examples at the end of Section 3, the Ok

set is not closed under subsets. So an Ok set of a BDL model does not have
to satisfy the following closure property:

Definition 4.12. (Closure under subsets). A set of states Σ is closed under
subsets iff for all σ ∈ Σ, we also have σ′ ∈ Σ, whenever σ′ ⊆ σ.

That Ok sets do not have to satisfy closure under subset means that a
state can be admissible without all of its parts being admissible. But this
seems odd: how can a complex state be admissible and still contain a part
that is not admissible? So it seems only natural to further restrict Ok such
that situations like these are excluded, i.e. to require Ok sets to be closed
under subsets. As natural as this might look at first sight, it has disastrous
consequences if combined with (DDS): as soon as we require Ok sets to be
closed under subsets, we end up with an extension of BDL that validates
deontic explosion in situations of normative conflicts. To see this note that
closing Ok under subsets results in the validity of

(Add) OA → O(A ∨ B).20

(Add) doesn’t (always) sit well with (DDS) and normative conflicts.21 The
following argument is well-known, and it is as simple as it is effective: suppose
that there is a normative conflict, i.e. OA and O¬A. It’s obvious that OA,
(Add) and (MP) result in O(A ∨ B), which together with O¬A and (DDS)
results in OB, for arbitrary B. Hence, the logic contains a version of deontic
explosion. And now the dilemma is apparent: we cannot have (DDS) and
make Ok sets closed under subsets. Whether this speaks against (DDS) or
against (Add), we leave to the reader to decide.22

Now to our second observation concerning (DDS). Although we show
later in Section 6.2 that BDL does not lead to (deontic) explosion in the
presence of a normative conflict, BDL contains weaker forms of “explosion
like” principles. As one of the reviewers pointed out, BDL contains the
following principle:

20See also the first example at the end of Section 3.
21Goble also makes this observation in [11].
22Another interesting approach is to restrict DDS to premises without normative con-

flicts. Goble himself has been working with this weakened version of DDS in [12], Christian
Straßer explored this idea further in [15].
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(ELP) OA,O¬A,O(B ∨ C) |=BDL OB

Proof. Note that we have

(P1) OA,O(B ∨ C) |=BDL− O(A ∨ B).

To see this, note that from OA and O(B ∨ C), we can infer in BDL that
O(A∧ (B ∨C)). Now, it is tedious but possible to show that (A∧ (B ∨C))∧
(A∨B) ⇔A A∧ (B ∨C) (in fact, this is the same situation as in the proof of
Lemma 5.11). This means that from O(A∧(B∨C)) we can infer O(A∨B) by
a single application of (RBM). In other words, OA, O(B∨C) �BDL O(A∨B).
By soundness (see Theorem 5.2 below), the claim follows. To prove (ELP),
let us suppose OA,O¬A,O(B ∨ C). By (P1) we get O(A ∨ B), but since
we also have O¬A, (DDS) leads to OB. And this concludes the proof of
(ELP).

Although (ELP) might already look quite bad by itself, in presence of
a normative conflict, it renders conjunction and disjunction semantically
indistinguishable within the scope of the obligation operator:

(ConDis) OA,O¬A �BDL O(B ∨ C) ↔ O(B ∧ C)

Proof. To see this, note that (ELP) also gives us OA, O¬A,O(B∨C) |=BDL

OC, which together with (AGG) results in OA, O¬A,O(B∨C) |=BDL O(B∧
C). So, we have that OA,O¬A |=BDL O(B ∨ C) → O(B ∧ C). Since, we’ve
already observed that O(A ∧ B) → O(A ∨ B) is valid in BDL− and hence
in BDL, we get the desired result.

5. Main Results: Soundness and Completeness of BDL− and BDL

In this section, we set out to prove the soundness and completeness of BDL−

with respect to our semantics. The soundness and completeness of the se-
mantics for BDL then follows as a corollary from the soundness and com-
pleteness result and Theorem 4.8.

We start with soundness and observe the following lemma:

Lemma 5.1. The following are equivalent for all BDL− models M = (ω,
Ok):

1. �A ∧ B�− ∩ Ok = ∅
2. �A�− ∩ Ok = ∅ and �B�− ∩ Ok = ∅
Proof. 1. ⇒ 2. First, note that taking the convex closure of a set of states
is a monotonic operation (Lemma 3.7), i.e. for all sets of states Σ and Λ, if
Σ ⊆ Λ, then conv(Σ) ⊆ conv(Λ). Now, remember that



Truthmakers and Normative Conflicts 69

�A ∧ B�− = conv( [A ∧ B]−︸ ︷︷ ︸
=[A]−∪[B]−∪[A∨B]−

).

Since �A�− = conv([A]−) and �B�− = conv([B]−), using the aforementioned
monotonicity, we get that �A�−, �B�− ⊆ �A∧B�−. So, if �A∧B�− ∩Ok = ∅,
then also both �A�− ∩ Ok = ∅ and �B�− ∩ Ok = ∅.

2. ⇒ 1. To prove this direction, we need to use both conditions for BDL−

models, reverse convexity and reverse closure. Suppose that �A�− ∩ Ok = ∅
and �B�− ∩Ok = ∅. And suppose further that σ ∈ �A∧B�− for an arbitrary
σ. We now show that σ �∈ Ok. Since

�A ∧ B�− =
Lemma 3.7

[A]− ∪ [B]− ∪ [A ∨ B]−︸ ︷︷ ︸
=[A∨B]−

∪{σ : ∃τ, π

∈ [A]− ∪ [B]− ∪ [A ∨ B]−, τ ⊆ σ ⊆ π},

we can distinguish four cases: (i) σ ∈ [A]−, (ii) σ ∈ [B]−, (iii) σ ∈ [A ∨ B]−,
and (iv) σ ∈ {σ : ∃τ, π ∈ [A]− ∪ [B]− ∪ [A ∨ B]−, τ ⊆ σ ⊆ π}. In case
(i), since σ ∈ [A]− and [A]− ⊆ �A�−, we get that σ ∈ �A�−. But since,
by assumption, �A�− ∩ Ok = ∅, it follows that σ /∈ Ok. Case (ii) works
analogously. For case (iii), assume that σ ∈ [A ∨ B]−, i.e. there are τ and π
such that σ = τ ∪ π with τ ∈ [A]− and π ∈ [B]−. If there are such τ and π,
we know that τ, π /∈ Ok (by the arguments from cases (i) and (ii)). So we
can conclude that τ ∪ π = σ /∈ Ok by the reverse closure property of Ok.
Finally, for (iv) σ ∈ {σ : ∃τ, π ∈ [A]− ∪ [B]− ∪ [A ∨ B]−, τ ⊆ σ ⊆ π}, note
that we’ve already seen in cases (i–iii) that all τ, π ∈ [A]− ∪ [B]− ∪ [A ∨ B]−

are not in Ok. So if τ ⊆ σ ⊆ π, then σ /∈ Ok by the reverse convexity
property of Ok.

In combination with our previous observations, this lemma gives us the
soundness of our semantics for BDL−:

Theorem 5.2. (Soundness for BDL−). For all Γ ⊆ LD and A ∈ LD,

Γ �BDL− A ⇒ Γ �BDL− A.

Proof. By Lemma 3.18, all substitution instances of classical tautologies
are true in all BDL− models. By Lemma 5.1, (M) and (AGG) are true in
all BDL− models. (MP) preserves truth in BDL− models by a standard
argument. And by Theorem 3.10, (RBE) preserves truth in BDL− models.

Next we turn to completeness. For this, we need a few auxiliary concepts.
Remember that a literal is either an atom p ∈ A or the negation ¬p of an
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atom p ∈ A. In the following, we’ll use λ (possibly indexed) as a meta-
variable for literals.

Remember further that a formula is in conjunctive normal form iff it is
a conjunction of disjunction of literals:

Definition 5.3. A formula A ∈ L is in conjunctive normal form (CNF) iff

A = (λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n )

for literals λj
i and f a function that gives us the length of the i-th conjunct.

In standard propositional logic, we can show that every formula is equiv-
alent to a formula in CNF. This is the CNF Theorem. We have the following
truthmaker version of this result, which essentially says that every formula
is analytically equivalent to a formula in CNF:

Theorem 5.4. (Analytic CNF Theorem). For every formula A ∈ L, there
is a formula B in conjunctive normal form, such that both

1. �A�+ = �B�+ and

2. �A�− = �B�−.

Proof. By induction on the complexity of A, as in the standard proof of the
CNF Theorem. Note that all the transformations in the standard argument
are also analytic equivalences. Note in particular that we have �A ∨ (B ∧
C)�+ = �(A ∨ B) ∧ (A ∨ C)�+ and �A ∨ (B ∧ C)�− = �(A ∨ B) ∧ (A ∨ C)�−,
which essentially relies on the fact that we’re using replete contents!

Literals correspond in a natural way to the “building blocks” of our states,
i.e. pairs of the form (p, x), where p ∈ A and x ∈ {0, 1}:

Definition 5.5. (Trace states). Let λ be a literal. Then we define:

tr(λ) :=

{
(p, 1) if λ = p

(p, 0) if λ = ¬p
.

Now, to the completeness argument. The argument proceeds in a more
or less standard fashion by means of a canonical model construction via
maximally consistent sets.

Definition 5.6. A set of formulas Φ is consistent with respect to BDL−

iff there is no A such that Φ �BDL− A and Φ �BDL− ¬A.

Definition 5.7. A set of formulas Φ is maximally consistent with respect
to BDL− iff both of the following hold:

1. Φ is consistent with respect to BDL−
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2. for all sets Φ′ ⊇ Φ that are consistent with respect to BDL−, Φ = Φ′.

By a standard argument, we can show that every consistent set of for-
mulas can be extended to a maximally consistent set:

Theorem 5.8. For any consistent set of formulas Φ there is a maximally
consistent set of formulas Φ∗ such that Φ ⊆ Φ∗.

Note that maximally consistent sets have the following canonical proper-
ties:

Lemma 5.9. If Φ is maximally consistent with respect to BDL−, then for
all A,

1. either A ∈ Φ or ¬A ∈ Φ and never both

2. A ∈ Φ ⇔ Φ � A

3. A /∈ Φ ⇔ Φ � ¬A

A maximally consistent set determines a canonical model as follows:

Definition 5.10. (Canonical Model). Let Φ be a set of formulas that is
maximally consistent with respect to BDL−. We define the canonical BDL−

model MΦ = (ωΦ, OkΦ) for Φ as follows:

(i) ωΦ(p) =

{
1 if p ∈ Φ
0 if p /∈ Φ

(ii) OkΦ = {{tr(λ1), . . . , tr(λn)} : Φ �BDL− O(λ1 ∨ . . . ∨ λn)}
For the remainder of the proof it’s useful to note that any state σ can be

written as {tr(λ1), . . . , tr(λn)} for suitable literals λ1, . . . , λn. In the follow-
ing, we make free use of this observation without further notice.

We now check that MΦ is indeed a BDL− model:

Lemma 5.11. For Φ a maximally consistent set of formulas and MΦ =
(ωΦ, OkΦ) as defined in Definition 5.10:

1. ωΦ is a valuation,

2. OkΦ is reverse convex,

3. OkΦ is reverse closed.

Proof. 1. Since for all p, either p ∈ Φ or p /∈ Φ and never both, we know
that ωΦ is a well-defined function from A to {0, 1}.
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2. To see that OkΦ is reverse convex, suppose that τ, π /∈ OkΦ and τ ⊆ σ ⊆
π. This means that:

• τ = {tr(λ1), . . . , tr(λn)}
• σ = {tr(λ1), . . . , tr(λn), . . . , tr(λn+m)}
• π = {tr(λ1), . . . , tr(λn), . . . , tr(λn+m), . . . , tr(λn+m+k)}

with
• Φ � O(λ1 ∨ · · · ∨ λn)
• Φ � O(λ1 ∨ · · · ∨ λn+m+k)

To see this note that {tr(λ1), . . . , tr(λn)} /∈ {{tr(γ1), . . . , tr(γn)} : Φ �

O(γ1 ∨ · · · ∨ γn), for literals γ1≤i≤n} just in case it’s not the case that
Φ �BDL− O(λ1 ∨ · · · ∨ λn), meaning precisely Φ � O(λ1 ∨ · · · ∨ λn).

We want to show that Φ � O(λ1 ∨ · · · ∨ λn+m). Since Φ � O(λ1 ∨ · · · ∨ λn)
and Φ � O(λ1 ∨· · ·∨λn+m+k) we can infer via (AGG) that Φ � O((λ1 ∨ . . .∨
λn) ∧ (λ1 ∨ · · · ∨ λn+m+k)). It is somewhat tedious but possible to show in
AC that (λ1∨ . . .∨λn+m)∧(λ1∨· · ·∨λn)∧(λ1∨· · ·∨λn+m+k) is analytically
equivalent to (λ1 ∨ · · · ∨ λn) ∧ (λ1 ∨ · · · ∨ λn+m+k). By a single application
of (RBM) (see Section 2) we get Φ � O(λ1 ∨ · · · ∨ λn+m), meaning σ /∈ OkΦ

as desired.

3. To show that OkΦ is reverse closed, suppose that σ, τ /∈ OkΦ, meaning:
• σ = {tr(λ1), . . . , tr(λn)}
• τ = {tr(λ′

1), . . . , tr(λ′
m)}

with
• Φ � O(λ1 ∨ · · · ∨ λn)
• Φ � O(λ′

1 ∨ · · · ∨ λ′
m).

We want to show that that σ ∪ τ /∈ OkΦ, meaning that

σ ∪ τ = {tr(λ1), . . . , tr(λn), tr(λ′
1), . . . , tr(λ′

m)}
is such that Φ � O(λ1 ∨ · · · ∨ λn ∨ λ′

1 ∨ · · · ∨ λ′
m). Since we know that

Φ � O(λ1 ∨ · · · ∨ λn) and Φ � O(λ′
1 ∨ · · · ∨ λ′

m), we can conclude via (AGG)
that Φ � O((λ1∨· · ·∨λn)∧(λ′

1∨· · ·∨λ′
m)). Since we know that � O(A∧B) →

O(A ∨ B), we can infer that Φ � O(λ1 ∨ · · · ∨ λn ∨ λ′
1 ∨ · · · ∨ λ′

m), as desired.

Note that Φ being maximally consistent doesn’t play a role for the fact
that OkΦ is reverse convex and reverse closed. It does play a role, however,
in showing that MΦ has the following important property:
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Lemma 5.12. (Truth lemma). If Φ is maximally consistent, then

MΦ � A ⇔ A ∈ Φ.

Proof. By induction on the complexity of the members of A:

1. If p ∈ Φ, then ωΦ(p) = 1 by definition, and so MΦ �BDL− p as desired.
If p /∈ Φ, then ωφ(p) = 0 and so MΦ � p as desired.

2. If ¬A ∈ Φ, then A /∈ Φ, since Φ is consistent. Hence MΦ � A by the
induction hypothesis and so MΦ �BDL− ¬A. If ¬A /∈ Φ, then A ∈ Φ,
since Φ is maximally consistent. Hence MΦ �BDL− A and so MΦ � ¬A
as desired.

3. If A ∧ B ∈ Φ, then, since A ∧ B � A and A ∧ B � B and Φ is maximally
consistent, we get that A,B ∈ Φ. So MΦ � A and MΦ � B by the
induction hypothesis and so MΦ � A ∧ B as desired. If A ∧ B /∈ Φ, then
¬(A∧B) ∈ Φ since Φ is maximally consistent. Next we show that ¬A ∈ Φ
or ¬B ∈ Φ. For if both ¬A /∈ Φ and ¬B /∈ Φ, then, since Φ is maximally
consistent, we’d have A,B ∈ Φ. But then we’d get Φ � A∧B, and, since
¬(A ∧ B) ∈ Φ, Φ � ¬(A ∧ B), making Φ inconsistent. So ¬A ∈ Φ or
¬B ∈ Φ. So either A /∈ Φ of B /∈ Φ. So either MΦ � A or MΦ � B.
Hence MΦ � A ∧ B as desired.

4. The cases for A ∨ B ∈ Φ and A ∨ B /∈ Φ are analogous to the previous
case.

5. The main cases are (a) OA ∈ Φ and (b) OA /∈ Φ.

(a) Suppose that OA ∈ Φ. Then, of course, Φ � OA. Now by the
analytic CNF Theorem 5.4, there is a B in CNF, such that �A�+ =
�B�+ and �A�− = �B�−. By Theorem 3.10, we get �AC A ⇔A B
and so by (RBE) Φ � OB. Let

B = (λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n ),

where f is a function that gives us the length of the i-th conjunct
of B. By (M), we get

Φ � O(λ1
i ∨ · · · ∨ λ

f(i)
i )

for all 1 ≤ i ≤ n. By definition of OkΦ this means that

{tr(λ1
i ), . . . , tr(λ

f(i)
i )} /∈ OkΦ. It is easily checked that �λ1

i ∨ · · · ∨
λ

f(i)
i �− = {{tr(λ1

i ), . . . , tr(λ
f(i)
i )}} and so �λ1

i ∨· · ·∨λ
f(i)
i �−∩OkΦ =

∅ for all 1 ≤ i ≤ n. By repeated application of Lemma 5.1, we get

�(λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n )�− ∩ OkΦ = ∅,
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which just means that MΦ � O((λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨
λ

f(n)
n )). Since

B = (λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n )

and �A�− = �B�−, this implies that MΦ � OA.
(b) Suppose OA /∈ Φ. Then, since Φ is maximally consistent, Φ � OA.

Again, by the analytic CNF Theorem 5.4 and Theorem 3.10, there’s
a B such that �AC A ⇔A B. We can conclude that also Φ � OB.
For if Φ � OB, then by (RBE) we’d get Φ � OA and so OA ∈ Φ,
since Φ is maximally consistent. Contradiction. Hence Φ � OB.Now
let again

B = (λ1
1 ∨ . . . ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n ),

where f is again a function that gives us the length of the i-th
conjunct of B. Next we conclude that Φ � O(λ1

i ∨ · · · ∨ λ
f(i)
i ),

for some 1 ≤ i ≤ n. For if Φ � O(λ1
i ∨ · · · ∨ λ

f(i)
i ) for all 1 ≤

i ≤ n, we’d get Φ � OB by (AGG). Since �λ1
i ∨ . . . ∨ λ

f(i)
i �− =

{{tr(λ1
i ), · · · , tr(λf(i)

i )}} and OkΦ = {{tr(λ1), . . . , tr(λn)} : Φ �

O(λ1∨· · ·∨λn)}, we can conclude that �λ1
i ∨· · ·∨λ

f(i)
i �−∩OkΦ �= ∅.

By Lemma 5.1, we can conclude that

�(λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n )�− ∩ OkΦ �= ∅,

which just means that MΦ � O((λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨
λ

f(n)
n )). And since

B = (λ1
1 ∨ · · · ∨ λ

f(1)
1 ) ∧ · · · ∧ (λ1

k ∨ · · · ∨ λf(n)
n )

and �A�− = �B�−, this implies that MΦ � OA.

The rest of the proof is routine:

Lemma 5.13. If Φ � A, then Φ ∪ {¬A} is consistent.

Theorem 5.14. (Completeness for BDL−). For all Φ ⊆ LD and A ∈ LD,

Φ �BDL− A ⇒ Φ �BDL− A.

Proof. We prove the contrapositive. So suppose that Φ � A. Then Φ∪{¬A}
is consistent by Lemma 5.13. Extend Φ ∪ {¬A} to a maximally consistent
set (Φ ∪ {¬A})∗ ⊇ Φ ∪ {¬A} using Theorem 5.8. Consider M(Φ∪{¬A})∗ . By
Lemma 5.12, we get M(Φ∪{¬A})∗ � φ, for all φ ∈ Φ, and M(Φ∪{¬A})∗ � ¬A.
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So, in particular, M(Φ∪{¬A})∗ � φ, for all φ ∈ Φ, and M(Φ∪{¬A})∗ � A,
giving us that Φ � A.

This concludes our proof of the soundness and completeness of BDL−.
As advertised, the soundness and completeness of BDL follows as a corol-

lary from this result:

Corollary 5.15. (Soundness and Completeness of BDL). For all Φ ⊆ LD

and A ∈ LD,

Φ �BDL A ⇔ Φ �BDL A.

Proof. We have Φ �BDL A iff Φ ∪ {(O(A ∨ B) ∧ O¬A) → OB : A,B ∈
L} �BDL− A. By the soundness and completeness for BDL−, we have that
Φ ∪ {(O(A ∨ B) ∧ O¬A) → OB : A,B ∈ L} �BDL− A iff Φ ∪ {(O(A ∨ B) ∧
O¬A) → OB : A,B ∈ L} �BDL− A. Finally, by Theorem 4.8, we know that
Φ ∪ {(O(A ∨ B) ∧ O¬A) → OB : A,B ∈ L} �BDL− A iff Φ �BDL A.

To see the latter, first note that, by Definition 4.9 M = (ω, Ok) is a BDL
model iff M is a BDL− model in which for all finite sets of finite states Σ, Δ,
if conv(Σ ◦ Δ) ∩ Ok = ∅ and conv(Σ) ∩ Ok = ∅, then conv(Δ) ∩ Ok = ∅.
By Theorem 4.8, this means that M is a BDL model iff M � (O(A ∨ B) ∧
O¬A) → B, for all A,B ∈ L.

Now suppose that Φ ∪ {(O(A ∨ B) ∧ O¬A) → OB : A,B ∈ L} �BDL− A,
i.e. for all BDL− models M, if M � C, for all C ∈ Φ∪{(O(A∨B)∧O¬A) →
OB : A,B ∈ L} �, then M � A. But we’ve just seen that M is a BDL
model iff M � (O(A ∨ B) ∧ O¬A) → B, for all A,B ∈ L. So it follows that
for all BDL models M, if M � C, for all C ∈ Φ, then M � A—or, in other
words, Φ �BDL A.

Conversely, suppose that Φ �BDL A, i.e. for all BDL models M, if
M � C, for all C ∈ Φ, then M � A. But since a BDL− model M is a BDL
model iff M � (O(A ∨ B) ∧ O¬A) → B, for all A,B ∈ L, we can infer that
for all BDL− models, M, if M � C, for all C ∈ Φ ∪ {(O(A ∨ B) ∧ O¬A) →
OB : A,B ∈ L} �, then M � A—as desired.

6. Discussion

After having established our main result, we take this conclusion to discuss
some limitations and possible extensions of our work.

6.1. Modularity

In this paper, we developed a sound and complete semantics for BDL and,
along the way, for BDL−. This was our main goal, and we went straight
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for the desired result. To obtain the result, we postulated two conditions
on the set Ok of admissible states, namely reverse closure and reverse com-
plexity. A natural question to ask at this point is what happens if we drop
these two conditions?23 Does our semantics allow for a kind of modularity
where certain conditions on the Ok-set correspond to the validity of certain
formulas?

Observe that in the proof of the soundness lemma (Lemma 5.1), we
needed both conditions, reverse closure and reverse convexity, to establish
the semantic fact that corresponds to the validity of (AGG). In fact, if we
drop either reverse closure and reverse convexity, (AGG) will no longer be
valid.

To see this, first consider the “model” M = (ω, Ok) with Ok = {σ :
{(p, 0), (q, 0)} ⊆ σ} where, for concreteness sake, we let ω(p) = 0 for all p ∈
A. This “model” doesn’t satisfy reverse closure since {(p, 0)}, {(q, 0)} /∈ Ok
but {(p, 0)}∪{(q, 0)} = {(p, 0), (q, 0)} ∈ Ok. So, strictly speaking, M is not
a model, since we require that models be reverse closed. But let’s pretend
for the moment that we redefine everything to allow for structures like M
as models. Note that M does satisfy reverse convexity.24 By applying our
definition for M � OA in this case, we get that M � Op and M � Oq, since
�p�− = {{(p, 0)}}∩Ok = ∅ and �q�− = {{(q, 0)}}∩Ok = ∅. At the same time,
however, we have that M � O(p∧q), since �p∧q�− = {{(p, 0), (q, 0)}}∩Ok =
{{(p, 0), (q, 0)}} �= ∅. So we get that M � Op ∧ Oq → O(p ∧ q)—meaning
that if we allow non reverse closed models like M, (AGG) wouldn’t be valid.

A similar argument can be given for reverse convexity. Take the model
M = {ω,Ok} with ω like above and Ok = {{(q, 0)}, {(p, 0), (q, 0)}}. In
this model reverse closure is satisfied but reverse convexity fails. To see
the former, note that there are no σ, τ /∈ Ok such that τ ∪ σ ∈ Ok. To
see the latter, note that {(p, 0)} /∈ Ok and {(p, 0), (q, 0), (r, 0)} /∈ Ok but
{(p, 0)} ⊆ {(p, 0), (q, 0)} ⊆ {(p, 0), (q, 0), (r, 0)} and {(p, 0), (q, 0)} ∈ Ok.
Now note that M � Op, since �p�− = {{(p, 0)}} ∩ Ok = ∅, and note that
M � O(p ∨ q ∨ r), since �p ∨ q ∨ r�− = {{(p, 0), (q, 0), (r, 0)}} ∩ Ok = ∅.
However, we have M � O(p ∧ (p ∨ q ∨ r)). To see this, first note that
{(p, 0)} ∈ �p ∧ (p ∨ q ∨ r)�− and {(p, 0), (q, 0), (r, 0)} ∈ �p ∧ (p ∨ q ∨ r)�−.
Since {(p, 0)} ⊆ {(p, 0), (q, 0)} ⊆ {(p, 0), (q, 0), (r, 0)} and �p ∧ (p ∨ q ∨ r)�−

23We’d like to thank an anonymous referee for raising this question.
24Proof : For proof by contradiction, assume that σ, τ /∈ Ok but there is a π with

σ ⊆ π ⊆ τ with π ∈ Ok—meaning that reverse convexity is violated. Then, since π ∈ Ok,
{(p, 0), (q, 0)} ⊆ π. So, since π ⊆ τ , {(p, 0), (q, 0)} ⊆ τ . But then τ ∈ Ok. Contradiction.
So Ok is reverse convex.
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is convex, it follows that {(p, 0), (q, 0)} ∈ �p ∧ (p ∨ q ∨ r)�−. Therefore,
�p ∧ (p ∨ q ∨ r)�− ∩ Ok �= ∅ and so M � O(p ∧ (p ∨ q ∨ r)).

To sum up, if we allow our models to violate either the reverse closure
or the reverse convexity of Ok, (AGG) will turn out invalid. Since these
two conditions together do entail the validity of (AGG), we get that the
validity of (AGG) is, in our semantics, equivalent to the conjunction of
reverse closure and reverse convexity.

Finally, note that, in order to establish the semantic fact that corresponds
to the validity of (M), no conditions on Ok were needed—the fact follows
from the semantic clause for the O-operator and basic set-theory. This means
that even if we drop reverse closure and reverse convexity, (M) will still be
valid on the resulting semantics. In order to invalidate (M), we need to tinker
with the semantic clause for O. It’s an open question to determine whether
there’s a more general form of our semantics, with a different clause for O,
where the validity of (M) is equivalent to a condition on the structure.

6.2. Goble’s Desiderata

In [11, p. 318] Goble claims that BDL meets all three desiderata for a logic
for normative conflicts. As we have already indicated at the end of Section 3,
we can now formally prove this. Let us first reiterate Goble’s desiderata:

Consistent Conflicts At least some normative conflicts should be consistent,
i.e. we can have � ¬(A1 ∧ · · · ∧ An) but OA1, . . . , OAn � ⊥.

No Deontic Explosion Normative conflicts should not result in deontic ex-
plosion, i.e. we can have � ¬(A1 ∧ · · · ∧ An) but OA1, . . . , OAn � OB.

Minimal Deontic Laws Certain minimal laws of deontic logic should be val-
idated:
(DDS) O(A ∨ B), O¬A � OB (‘deontic disjunctive syllogism’).
(M) O(A ∧ B) � OB (‘monotonicity’).
(AGG) OA,OB � O(A ∧ B) (‘aggregation’).

Put in semantic terms, these desiderata can be expressed by the following
theorem:

Theorem 6.1. For some A1, . . . , An, . . . , B1, . . . , Bm, C, there is a BDL
model M such that:25

(RBM) � ¬(A1 ∧ · · · ∧ An) and M � OA1, . . . , OAn

(NDE) � ¬(B1 ∧ · · · ∧ Bm) and M � OB1, . . . , OBm and M �� OC

25For the sake of completeness, we state the theorem in full length here.
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(DL1) O(A ∨ B), O¬A � OB

(DL2) O(A ∧ B) � OB

(DL3) OA,OB � O(A ∧ B)

Proof. Given that we’ve already established the soundness and complete-
ness of BDL, this proof turns out to be very simple. (DL1), (DL2) and (DL3)
follow from BDL’s soundness. Since (NDE) implies (RBM) it suffices to
prove (NDE). We construct a BDL model M such that M � Op∧O¬p but
M � Oq. Since our background logic is classical, we have that � ¬(p ∧ ¬p),
hence such a model would indeed give us (NDE).

Let M = (ω,Ok) with any classical valuation ω (for concreteness sake,
let ω(p) = 0 for all p ∈ P), and Ok = {σ : σ is a state} \ {{(p, 1)}, {(p, 0)},
{(p, 0), (p, 1)}}. Since there are only three states not contained in Ok, it’s
quite easily checked that Ok is reverse convex and reverse closed. So M is a
BDL− model. To show that M is also a BDL model, following
Definition 4.9, we have to establish that:

• For all finite sets of finite states Σ, Δ, if conv(Σ ◦ Δ) ∩ Ok = ∅ and
conv(Σ) ∩ Ok = ∅, then conv(Δ) ∩ Ok = ∅.

There are, in fact, only 8 finite sets of states whose convex closures have an
empty intersection with Ok, namely the subsets of {{(p, 1)}, {(p, 0)}, {(p, 0),
(p, 1)}}. But it’s easily checked that for each of these, the condition is sat-
isfied. Here just one example: take Σ = {{(p, 1)}} and Δ = {{(p, 0)}}. We
have:

conv(Σ ◦ Δ) = conv({{(p, 1)}} ◦ {{(p, 0)}}) = conv({(p, 0), (p, 1)})

= {(p, 0), (p, 1)} ∩ Ok = ∅
conv(Σ) = con({{(p, 1)}}) = {{(p, 1)}} ∩ Ok = ∅
conv(Δ) = conv({{(p, 0)}}) = {{(p, 1)}} ∩ Ok = ∅

Hence M is a BDL model. Now, it’s easily checked that:

�p�− = conv([p]−) = conv({{(p, 0)}}) = {{(p, 0)}} ∩ Ok = ∅,

and hence M � Op, as well as:

�¬p�− = conv([p]−) = conv({{(p, 1)}}) = {{(p, 1)}} ∩ Ok = ∅,

and hence M � O¬p. At the same time, we have that

�¬q�− = conv([q]−) = conv({{(q, 0)}}) = {{(q, 0)}} ∩ Ok = {{(q, 0)}} �= ∅,

and hence M � Oq, as desired.
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6.3. Permissions in BDL and BDL−

As we mentioned in the introduction, one of the starting points for our paper
was Fine’s truthmaker semantics for permission statements [7, p. 335]. Fine’s
idea was that in a truthmaker setting, we can distinguish a set of admissible
states (our Ok) and then say:

• PA is true iff every state that’s a truthmaker for A is admissible.

Using the same notion of admissible states that Fine uses to model

• OA is true iff no falsemaker of A is admissible.

We showed that this semantic clause allows us to provide sound and complete
semantics for the Goble’s CTDL BDL—solving an important open problem
in deontic logic.

So, effectively, what we did is that we used a framework for the semantics
of permission statements in order to define a semantics for obligation state-
ments. Note that we didn’t introduce any new semantic components to the
existing framework to interpret obligation. Indirectly (read “semantically”),
we obtained a notion of obligation from a concept of permission—from per-
mission to obligation.

A natural question to ask at this point is how the logic of permission
sketched by Fine and the logic of obligation studied in this paper interact.
In order to answer this question, let’s first make the above a little bit more
precise. First, we add a permission operator P to our language, allowing for
permission statements of the form PA, where A ∈ L. We then extend our
semantic clauses by saying that for a model M = (ω, Ok):

(vi) M � PA iff �A�+ ⊆ Ok.

Note that we’re reading “truthmaker” in Fine’s semantic clause to mean
replete truthmaker.26 So what’s the deontic logic that results from this?

A first observation we can make about the interaction of permission and
obligation in this setting is that we get

OA � ¬P¬A.

The proof is straight-forward: Suppose that M � OA. Then �A�− ∩Ok = ∅.
Since �A�− = �¬A�+, we can infer that �¬A�+ � Ok, i.e. M � P¬A and so
M � ¬P¬A.

26There are other options, of course. See, for example, [3].
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The converse, however, doesn’t hold:

¬P¬A � OA.

To see this, consider any model M = (ω,Ok) with Ok = {σ : {(p, 0)} ⊆ σ}.
We get that M � ¬P¬(p ∧ q). To see this, note that {(q, 0)} ∈ �¬(p ∧ q)�+

but {(q, 0)} /∈ Ok. So �¬(p ∧ q)�+ � Ok, meaning M � P¬(p ∧ q) and so
M � ¬P¬(p∧q). But, at the same time, we have that {(p, 0)} ∈ �¬(p∧q)�+ =
�p ∧ q�− and {(p, 0)} ∈ Ok. So M � O(p ∧ q).

It is perhaps interesting to observe further that in the present setting,
obligation doesn’t entail permission:

OA � PA.

To see this, take any model M = (ω,Ok) with Ok = {σ : (q, 1) ⊆ σ}. In
such a model, we have M � Op, since �p�− = {(p, 0)}∩Ok = ∅. But we don’t
have M � Pp, since �p�+ � Ok. If all the falsemakers of A are inadmissible,
that doesn’t mean that all its truthmakers are admissible.

Finally, we may ask ourselves about the logic of permission itself. As Fine
[7, p. 335] points out, a nice feature of the present concept of permission is
that (using a suitable notion of truthmakers), it gives us the so-called princi-
ple of free choice permission: P (A∨B) is logically equivalent to P (A)∧P (B).
To validate this principle on the present approach, where we read “truth-
maker” in Fine’s clause to mean replete truthmaker, we need to postulate
the following two conditions on the set Ok of admissible states:

(Closure) If σ, τ ∈ Ok, then σ ∪ τ ∈ Ok,

(Convexity) If σ, τ ∈ Ok and σ ⊆ π ⊆ τ , then π ∈ Ok.

Given these two conditions on the Ok set, we can easily establish that:

� P (A ∨ B) ↔ PA ∧ PB.

For suppose that M = (ω,Ok) is a model in which Ok is closed and convex
in the above sense. Suppose further that M � P (A∨B), i.e. �A∨B�+ ⊆ Ok.
�A∨B�+ = conv([A]+∪[B]+∪([A]+◦[B]+)). Since [A]+∪[B]+ ⊆ conv([A]+∪
[B]+ ∪([A]+ ◦ [B]+)), we get [A]+ ∪ [B]+ ⊆ Ok. By set-theory, we get [A]+ ⊆
Ok and [B]+ ⊆ Ok. But since taking the convex closure of a set is monotonic,
meaning if Σ ⊆ Δ, then conv(Σ) ⊆ conv(Δ) (cf. Lemma 3.7), we get that
conv([A]+) = �A�+ ⊆ conv(Ok) and conv([B]+) = �B�+ ⊆ conv(Ok). But
since Ok is convex by assumption, we have conv(Ok) = Ok and we get
M � PA and M � PB, as desired.

Conversely, suppose that M � PA and M � PB, i.e. �A�+ ⊆ Ok and
�B�+ ⊆ Ok. Since [A]+ ⊆ �A�+, we get that [A]+ ⊆ Ok and, analogously,
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[B]+ ⊆ Ok. By set-theory, it follows that [A]+ ∪ [B]+ ⊆ Ok. Next, we
establish that [A∧B]+ = [A]+◦[B]+ ⊆ Ok. To show this, we need the closure
of Ok under unions. Suppose that σ ∈ [A]+◦[B]+. This means, by definition,
that there is a τ ∈ [A]+ and a π ∈ [B]+ such that σ = τ ∪ π. Since τ ∈ [A]+

and π ∈ [B]+, we have τ, π ∈ Ok—for, as we’ve just established, [A]+ ⊆ Ok
and [B]+ ⊆ Ok. But since we’ve assumed that Ok is closed under ∪, we get
that τ ∪ π = σ ∈ Ok, as desired. So, we also have [A ∧ B]+ ⊆ Ok, which
together with the previously established fact that [A]+∪[B]+ ⊆ Ok, gives us
[A]+ ∪ [B]+ ∪ [A∧B]+ ⊆ Ok. By the monotonicity of taking convex closures,
it follows that conv([A]+ ∪ [B]+ ∪ [A ∧ B]+) = �A ∨ B�+ ⊆ conv(Ok) = Ok,
meaning M � P (A ∨ B) as claimed.

This is, in our opinion, a desirable feature of the present concept of per-
mission, since the principle of free choice permission is notoriously difficult
to model semantically (see, e.g., [13, pp. 214–17]). Demanding that Ok be
closed under ∪ and convex, however, also has some unexpected consequences
for obligation. For example, the move validates:

O(A ∨ B) → (OA ∨ OB).
27 To see this, assume that we have a model M = (ω, Ok) where Ok is closed
and convex and M � O(A∨B), i.e. �A∨B�−∩Ok = ∅. Now assume, for proof
by contradiction, that both M � OA and M � OB, i.e. �A�− ∩ Ok �= ∅ and
�B�−∩Ok �= ∅. This means that there’s a σ ∈ �A�− with σ ∈ Ok and there’s
a τ ∈ �B�− with τ ∈ Ok. Since σ ∈ �A�− and τ ∈ �B�−, σ ∪ τ ∈ �A ∨ B�−.
And since σ, τ ∈ Ok, σ ∪ τ ∈ Ok by closure. But then �A ∨ B�− ∩ Ok �= ∅.
Contradiction. Hence we have M � OA or M � OB

What the previous example illustrates is that, given how we defined our
concept of obligation indirectly via a concept of permission, there can be
unexpected interactions between permission and obligation. It would be in-
teresting to further investigate the deontic logic that we were only able to
sketch here, but we’ll have to leave this for further research.
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