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A Convex Formulation for Binary Tomography
Ajinkya Kadu and Tristan van Leeuwen

Abstract—Binary tomography is concerned with the recovery
of binary images from a few of their projections (i.e., sums of
the pixel values along various directions). To reconstruct an im-
age from noisy projection data, one can pose it as a constrained
least-squares problem. As the constraints are nonconvex, many
approaches for solving it rely on either relaxing the constraints or
heuristics. In this paper, we propose a novel convex formulation,
based on the Lagrange dual of the constrained least-squares prob-
lem. The resulting problem is a generalized least absolute shrinkage
and selection operator problem, which can be solved efficiently. It
is a relaxation in the sense that it can only be guaranteed to give
a feasible solution, not necessarily the optimal one. In exhaustive
experiments on small images (2 × 2, 3 × 3, 4 × 4), we find, how-
ever, that if the problem has a unique solution, our dual approach
finds it. In the case of multiple solutions, our approach finds the
commonalities between the solutions. Further experiments on real-
istic numerical phantoms and an experiment on the X-ray dataset
show that our method compares favorably to Total Variation and
DART.

Index Terms—Binary tomography, inverse problems, duality,
LASSO.

I. INTRODUCTION

D ISCRETE tomography is concerned with the recovery of
discrete images (i.e., images whose pixels take on a small

number of prescribed grey values) from a few of their projections
(i.e., sums of the pixel values along various directions). Early
work on the subject mostly deals with the mathematical analysis,
combinatorics, and geometry. Since the 1970s, the development
of algorithms for discrete tomography has become an active
area of research as well [1]. It has found applications in image
processing and computer vision [2], [3], atomic-resolution elec-
tron microscopy [4], [5], medical imaging [6], [7] and material
sciences [8]–[11].

A. Mathematical Formulation

The discrete tomography problem may be mathematically
formulated as follows. We represent an image by a grid of
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N = n × n pixels taking values xj ∈ U = {u0 , u1 , . . . , uK }.
The projections are linear combinations of the pixels along m
different (lattice) directions. We denote the linear transformation
from image to projection data by

y = Ax,

where xj denotes the value of the image in the jth cell, yi is
the (weighted) sum of the image along the ith ray, and aij is
proportional to the length of the ith ray in the jth cell1.

The goal is to find a solution to this system of equations with
the constraint that xj ∈ U , i.e.,

find x ∈ UN such that Ax = y.

When the system of equations does not have a unique solution,
finding one that only takes values in UN has been shown to
be an NP-hard problem for more than 3 directions, i.e., m ≥ 3
[12].

Due to the presence of noise, the system of equations may
not have a solution, and the problem is sometimes formulated
as a constrained least-squares problem

min
x∈UN

1
2 ‖Ax − y‖2 . (1)

Obviously, the constraints are non-convex and solving (1) ex-
actly is not trivial. Next, we briefly discuss some existing ap-
proaches for solving it.

B. Literature Review

Methods for solving (1) can be roughly divided into
four classes: algebraic methods, stochastic sampling methods,
(convex) relaxation and (heuristic/greedy) combinatorial ap-
proaches.

The algebraic methods exploit the algebraic structure of the
problem and may give some insight into the (non-) uniqueness
and the required number of projections [13], [14]. While theo-
retically very elegant, these methods are not readily generalized
to realistic projection models and noisy data.

The stochastic sampling methods typically construct a proba-
bility density function on the space of discrete images, allowing
one to sample images and use Markov Chain Monte Carlo type
methods to find a solution [15]–[17]. These methods are very
flexible but may require a prohibitive number of samples when
applied to large-scale datasets.

Relaxation methods are based on some form convex or non-
convex relaxation of the constraint. This allows for a natural

1We note that other projection models exist and can be similarly represented
by aij .
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extension of existing variational formulations and iterative al-
gorithms [18]–[22]. While these approaches can often be im-
plemented efficiently and apply to large-scale problems, getting
them to converge to the correct discrete solution can be challeng-
ing. Another variant of convex relaxation includes the linear-
programming based method [23]. This method works well on
small-scale images and noise-free data.

The heuristic algorithms, finally, combine ideas from combi-
natorial optimization and iterative methods. Such methods are
often efficient and known to perform well in practice [24], [25].

A more extensive overview of various methods for binary
tomography and variants thereof (e.g., with more than two grey
levels) are discussed in [26].

C. Contributions and Outline

We propose a novel, convex, reformulation for discrete to-
mography with two grey values {u0 , u1} (often referred to as
binary tomography). Starting from the constrained least-squares
problem (1) we derive a corresponding Lagrange dual problem,
which is convex by construction. Solving this problem yields
an image with pixel values in {u0 , 0, u1}. Setting the remaining
zero-valued pixels to u0 or u1 generates a feasible solution of
(1) but not necessarily an optimal one. In this sense, our ap-
proach is a relaxation. Exhaustive enumeration of small-scale
(n = 2, 3, 4) images with few directions (m = 2, 3) show that if
the problem has a unique solution, then solving the dual problem
yields the correct solution. When there are multiple solutions,
the dual approach finds the common elements of the solutions,
leaving the remaining pixels undefined (zero-valued). We con-
jecture that this holds for larger n and m as well. This implies
that we can only expect to usefully solve problem instances that
allow a unique solution and characterize the non-uniqueness
when there are a few solutions.

For practical applications, the most relevant setting is where
the equations alone do not permit a unique solution, but the
constrained problem does. Otherwise, more measurements or
prior information about the object would be needed in order to
usefully image it. With well-chosen numerical experiments on
synthetic and real data, we show that our new approach is com-
petitive for practical applications in X-ray tomography as well.

The outline of the paper is as follows. We first give an intu-
itive derivation of the dual problem for invertible ATA before
presenting the main results for general A. We then discuss two
methods for solving the resulting convex problem. Then, we
offer the numerical results on small-scale binary problems to
support our conjecture. Numerical results on numerical phan-
toms and real data are presented in Section IV. Finally, we
conclude the paper in Section V.

II. DUAL PROBLEM

For the purpose of the derivation, we assume that the prob-
lem has pixel values ±1. The least-squares binary tomography
problem can then be formulated as:

x� � argmin
x

(
inf
φ

1
2 ‖Ax − y‖2

)
,

subject to x = sign(φ),

(2)

where φ ∈ RN is an auxiliary variable, and sign(·) denotes the
elementwise signum function. In our analysis, we consider the
signum function such that sign(0) = 0. The Lagrangian for this
problem is defined as

L(x,φ,ν) � 1
2 ‖Ax − y‖2 + νT (x − sign(φ)) . (3)

The variable ν ∈ RN is the Lagrange multiplier associated with
the equality constraint x = sign(φ). We refer to this variable as
the dual variable in the remainder of the paper. We define the
dual function g(ν) corresponding to the Lagrangian (3) as

g(ν) � inf
x,φ

L(x,φ,ν)

The primal problem (2) has a dual optimization problem ex-
pressed as

ν� � argmax
ν

g(ν).

As the dual function is always concave [27], this provides a
way to define a convex formulation for the original problem.
We should note two important aspects of duality theory here:
i) we are not guaranteed in general that maximizing g(ν) yields
a solution to the primal problem; ii) the reformulation is only
computationally useful if we can efficiently evaluate g. The
conditions under which the dual problem yields a solution to
the primal problem are known as Slater’s conditions [28] and
are difficult to check in general unless the primal problem is
convex. We will later show, by example, that the dual problem
does not always solve the primal problem. Classifying under
which conditions we can solve the primary problem via its dual
is beyond the scope of this paper.

It turns out we can obtain a closed-form expression for g. Be-
fore presenting the general form of g, we first present a detailed
derivation for invertible ATA to provide some insight.

A. Invertible ATA

The Lagrangian is separable in terms of x and φ. Hence,
we can represent the dual function as the sum of two functions,
g1(ν) and g2(ν).

g(ν) = inf
x

{
1
2 ‖y − Ax‖2 + νT x

}
︸ ︷︷ ︸

g1 (ν)

+ inf
φ

{
− νT sign(φ)

}
︸ ︷︷ ︸

g2 (ν)

(4)

First, we consider g1(ν). Assuming ATA to be a non-singular
matrix, we find the unique minimizer by setting the gradient to
zero:

x� =
(
ATA

)−1 (
AT y − ν

)
. (5)

Substituting x� back in the expression and re-arranging some
terms we arrive at the following expression for g1 :

g1(ν) = − 1
2 ‖AT y − ν‖2

(AT A)−1 + 1
2 y

T y, (6)

where ‖z‖2
W = zT Wz is a weighted �2-norm.
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Next, we consider g2(ν). Note that this function is separable
in terms of νi

g2(ν) = inf
φ

{
−

N∑
i=1

(
νi sign(φi)

)}
.

The function −ν sign(φ) achieves its smallest value for φ = ν
when ν �= 0. This solution is not unique of course, but that does
not matter as we are only interested in the sign of φ. When
νi = 0 the function takes on value 0 regardless of the value of
φi . We thus find

g2(ν) = −‖ν‖1 . (7)

Hence, the dual function for the Lagrangian in (3) takes the
following explicit form:

g(ν) = − 1
2 ‖AT y − ν‖2

(AT A)−1 − ‖ν‖1 + 1
2 y

T y (8)

The maximizer to dual function (8) is found by solving the
following minimization problem:

ν� = argmin
ν∈RN

1
2 ‖ν − AT y‖2

(AT A)−1 + ‖ν‖1 . (9)

This optimization problem lies in the class of least absolute
shrinkage and selection operator (LASSO) [29]. The primal so-
lution can be synthesized from the solution of the dual problem
via x� = sign(φ�) = sign(ν�).

It is important to note at this point that the solution of the dual
problem only determines those elements of the primal problem,
xi , for which νi �= 0. The remaining degrees of freedom in
x need to be determined by alternative means. The resulting
solution is a feasible solution of the primal problem, but not
necessarily the optimal one.

To gain some insight into the behaviour of the dual objective,
consider a one-dimensional example with A = 1:

x� = argmin
x∈{−1,1}

1
2 (x − y)2 . (10)

The solution to this problem is given by x� = sign(y). The
corresponding dual problem is

ν� = argmin
ν∈R

1
2 (ν − y)2 + |ν|, (11)

the solution of which is given by ν∗ = max(|y| − 1, 0) sign(y).
Hence, for |y| > 1, the solution of the dual problem yields the
desired solution. For |y| ≤ 1, however, the dual problem yields
ν� = 0 in which case the primal solution x∗ = 0. We will see
in section II-C that when using certain iterative methods to
solve the dual problem, the iterations will naturally approach
the solution ν� = 0 from the correct side, so that the sign of the
approximate solution may still be useful.

B. Main Results

We state the main results below. The proofs for these state-
ments are provided in the Appendix section.

Proposition 1: The dual objective of (2) for general A ∈
Rm×N is given by

g(ν)=

{
− 1

2 ‖ν − AT y‖2
(AT A)†

− ‖ν‖1 + 1
2 y

T y ν ∈ RAT ,

−∞ otherwise

where † denotes the pseudo-inverse and RAT is the range of
AT . This leads to the following optimization problem

ν� = argmin
ν∈RA T

1
2 ‖ν − AT y‖2

(AT A)†
+ ‖ν‖1 . (12)

Remark 1: In case m ≥ N and A has full rank (i.e., RAT =
Rn ), ATA is invertible and the general form (12) simplifies to
(9).

Corollary 1: The minimization problem (12) can be restated
as

μ� = argmin
μ∈Rm

1
2 ‖AA† (μ − y) ‖2 + ‖AT μ‖1 , (13)

and the primal solution is recovered through x� = sign(AT μ�).
Remark 2: For m ≤ N andA full row rank, we haveAA† =

I and the formulation (13) simplifies to

μ� = argmin
μ∈Rm

1
2 ‖μ − y‖2 + ‖AT μ‖1 . (14)

This form implicitly handles the constraints on the search space
of μ in Proposition 1. It allows us to use the functional form
for matrix A thereby reducing the storage and increasing the
computational speed to find an optimal dual variable μ� .

Proposition 2: The dual problem for a binary tomography
problem with grey levels u0 < u1 is given by:

ν� = argmin
ν∈RA T

1
2 ‖ν − AT y‖2

(AT A)†
+ p(ν), (15)

where p(ν) =
∑

i |u0 |max(−νi, 0) + |u1 |max(νi, 0) is an
asymmetric one-norm. The primal solution is obtained using

x� = u01 + (u1 − u0)H(ν�),

where H(·) denotes the Heaviside function.
We summarize the procedure in algorithm 1 for finding

the optimal solution via solving the dual problem. In prac-
tical applications, the formulation in step 10 is very useful
since the projection matrix A generally has a low rank, i.e.,
rank(A) < min(m,N).

Remark 3: The realistic tomographic data contains Poisson
noise. In such case, the binary tomography problem takes the
constrained weighted least-squares form [30], [31]:

x� = argmin
x

(
inf
φ

1
2 ‖y − Ax‖2

Λ

)
, s.t. x = sign(φ), (16)

where Λ ∈ Rm×m is a diagonal matrix with elements Λi > 0
representing the least-squares weight per projection. The dual
objective of (16) is given by

g(ν) =

{
− 1

2 ‖ν − AT Λy‖2
B − ‖ν‖1 + 1

2 y
T y ν ∈ RAT ,

−∞ otherwise,
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Algorithm 1: Dual problem for various cases.

Input: A ∈ Rm×N , y ∈ Rm

Output: x� ∈ {−1, 0, 1}N

1: if rank(A) = min(m,N) then
2: if m > N then
3: ν� � argminν

1
2 ‖ν − AT y‖2

(AT A)−1 + ‖ν‖1

4: return x� = sign (ν�)
5: else
6: ν� � argminν

1
2 ‖ν − y‖2 + ‖AT ν‖1

7: return x� = sign
(
AT ν�

)
8: end if
9: else

10: ν� � argminν
1
2 ‖AA† (ν − y) ‖2 + ‖AT ν‖1

11: return x� = sign
(
AT ν�

)
12: end if

where B �
(
AT ΛA

)†
. This leads to optimization problem

ν� = argmin
ν∈RA T

1
2 ‖ν − AT Λy‖2

(AT ΛA)†
+ ‖ν‖1 . (17)

If rank(A) = m with m ≤ N , the problem (17) reduces to

μ� = argmin
μ∈Rm

1
2 ‖μ − Λ1/2y‖2 + ‖AT Λ1/2μ‖1 , (18)

and the primal solution is recovered from x� =
sign(AT Λ1/2μ�).

C. Solving the Dual Problem

When AT A is invertible, the dual formulation (12) can be,
in principle, solved2 using a proximal gradient algorithm ([32],
[33]):

νk+1 � SL−1

(
νk − L−1 (

ATA
)−1 (

AT y − νk

))
, (19)

where L = ‖ (
AT A

)−1 ‖ and the soft thresholding operator
Sτ (·) = max(| · | − τ, 0) sign(·) is applied component-wise to
its input. We can interpret this algorithm as minimizing subse-
quent approximations of the problem, as illustrated in Fig. 1.

An interesting note is that, when starting from ν0 = 0, the
first iteration yields a thresholded version of A†y. As such, the
proposed formulation is a natural extension of a naive segmen-
tation approach and allows for segmentation in a data-consistent
manner.

If AAT is invertible we have AA† = I and it seems more
natural to solve (14) instead. Due to the appearance of AT in the
one-norm, it is no longer straightforward to apply a proximal
gradient method. A possible strategy is to replace the one-norm
with a smooth approximation of it, such as | · | =

√
(·)2 + ε.

As illustrated in Fig. 2, this will slightly shift the minimum of
the problem. Since we are ultimately only using the sign of the
solution, this may not be a problem. The resulting objective is
smooth and can be solved using any gradient-descent algorithm.

2In practice, computing the inverse of ATA for large-scale problem is
difficult.

Fig. 1. Plot of the dual function g (gray line) corresponding the primal ob-
jective (x − y)2 for y = 1.5 (left) and y = 0.5 (right) and its approximations
(red line) at x = 1.

Fig. 2. Plot of the dual function g (gray line) corresponding the primal objec-
tive (x − y)2 for y = 1.5 (left) and y = 0.5 (right) and its smooth approxima-

tion (red line) using | · | ≈
√

(·)2 + ε with ε = 0.1.

We also note that splitting methods can be used to solve (14).
For example, the alternating direction method of multipliers
(ADMM) [34] and/or split-Bregman method [35]. Another class
of method that can solve (14) are the primal-dual methods (e.g.,
Arrow-Hurwicz primal-dual algorithm [36], Chambolle-Pock
algorithm [37]). These methods rely on the proximal operators
of functions and iterate towards finding the saddle point of the
problem. If the proximal operators are simple, these are compu-
tationally faster than the splitting methods. Recently, proximal
gradient methods have been developed to solve problems of
form (14) [38].

The dual problem (15) for binary tomography problem with
grey levels u0 < u1 is also solved using proximal gradient
method. We provide the proximal operator for an asymmetric
one-norm in the following proposition.

Proposition 3: The proximal operator for an asymmetric
one-norm function

p(x) =
N∑

i=1

|u0 |max (−xi, 0) + |u1 |max (xi, 0)

with u0 < u1 , is given by

Pp,λ(z) � argmin
x

{ 1
2 ‖x − z‖2 + λp(x)

}
= Sλu0 <λu1 (z),

where λ > 0, and Sa<b(·) is an asymmetric soft-thresholding
function

Sa<b(t) =

⎧⎪⎨
⎪⎩

t − |b| t ≥ |b|
0 −|a| < t < |b|
t + |a| t ≤ −|a|

.
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Fig. 3. Example for n = 4 and m = 3 (using directions (0,1), (1,0) and
(1,1)). Two images with the same projections are shown in the top row while the
intersection and the results obtained by the pseudo-inverse and the dual problem
are shown in the bottom row.

TABLE I
SUMMARY OF COMPLETE ENUMERATION EXPERIMENTS

III. NUMERICAL EXPERIMENTS—BINARY TOMOGRAPHY

To illustrate the behavior of the dual approach, we consider
the simple setting of reconstructing an n × n image from its
sums along m lattice directions (here restricted to the horizon-
tal, vertical and two diagonal directions, so m ∈ [2, 4]). For
m,n > 2 the problem is known to be NP-hard. For small n we
can simply enumerate all possible images, find all solutions in
each case by a brute-force search and compare these to the so-
lution obtained by the dual approach. To this end, we solved the
resulting dual problem (13) using the CVX package in Matlab
[39]. This yields an approximate solution, and we set elements
in the numerically computed dual solution smaller than 10−9

to zero. We then compare the obtained primal solution, which
has values −1, 0, 1 to the solution(s) of the binary tomography
problem. From performing these computations for n = 2, 3, 4
and m = 2, 3, 4 we conclude the following:

� If the problem has a unique solution, then the dual approach
retrieves it.

� If the problem has multiple solutions, then the dual ap-
proach retrieves the intersection of all solutions. The re-
maining pixels in the dual solution are undetermined (have
value zero).

An example is shown in Fig. 3.
A summary of these results is presented in Table I. The table

shows the number of cases with a unique solution where the
dual approach gave the correct solution and, in case of mul-
tiple solutions, the number of cases where the dual approach

Fig. 4. Example of a 4 × 4 binary image that is not h,v,d-convex but does
permit a unique solution.

correctly determined the intersection of all solutions). In a few
instances with multiple solutions, CVX failed to provide an
accurate solution (denoted with ∗ in the table).

Based on these experiments, we conjecture that there is a
subclass of the described binary tomography problem that is
not NP-hard. We should note that, as n grows the number of
cases that have a unique solution grows smaller unless m grows
accordingly. It has been established that binary images that are
h,v,d-convex3 can be reconstructed from their horizontal, ver-
tical and diagonal projections in polynomial time [24], [40].
However, we can construct images that are not h,v,d-convex but
still permit a unique solution, see Fig. 4. Such images are also
retrieved using our dual approach.

IV. NUMERICAL EXPERIMENTS—X-RAY TOMOGRAPHY

In this section, we present numerical results for limited-angle
X-ray tomography on a few numerical phantoms and an exper-
imental X-ray dataset. First, we describe the phantoms and the
performance measures used to compare our proposed dual ap-
proach (abbreviated as DP) to several state-of-the-art iterative
reconstruction techniques. We conclude this section with results
on an experimental dataset. All experiments are performed using
Matlab in conjunction with the ASTRA toolbox [41].

A. Phantoms

For the synthetic tests, we consider four phantoms shown in
Fig. 5. All the phantoms are binary images of size 128 × 128
pixels. The grey levels are u0 = 0 and u1 = 1. The detector has
128 pixels, and the distance between the adjacent detectors is the
same as the pixel size of the phantoms. We consider a parallel
beam geometry for the acquisition of the tomographic data in
all the simulation experiments.

B. Tests

We perform three different tests to check the robustness of
the proposed method. First, we consider the problem of sparse
projection data. For all the phantoms, we first start with 45
projections at angles ranging from 0 to π and subsequently
reduce the number of projections. This setup is also known as

3For h,v,d-convexity one uses the usual definition of convexity of a set but
considers only line segments in the horizontal, vertical and diagonal directions.
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Fig. 5. Phantom images used in the simulation experiments. (a) Phantom 1. (b) Phantom 2. (c) Phantom 3. (d) Phantom 4.

sparse sampling, where the aim is to reduce the scan time by
decreasing the number of projections.

Next, we consider a limited angle scenario. Such a situ-
ation usually arises in practice due to the limitations of the
setup. For the test, we acquire projections in the range [0, θmax]
for θmax ∈ {5π/6, 2π/3, 7π/12, π/2}. Reconstruction of lim-
ited angle data is known to lead to so-called streak artifacts in
the reconstructed image. Strategies to mitigate these streak arti-
facts include the use of regularization method with some prior
information. We will experiment how the binary tomography
can lead to the removal of these artifacts.

Finally, we test the performance of the proposed method in
the presence of noise. We consider an additive Gaussian noise
in these experiments. We measure the performance of our ap-
proach for tomographic data with a signal-to-noise ratio (SNR)
of {10, 20, 30, 50} dB.

To avoid inverse crime [42] in all the test scenarios, we gen-
erate data using strip kernel and use Joseph kernel for modeling.

C. Comparison With Other Reconstruction Methods

There exist a vast amount of reconstruction methods for to-
mography. Here, consider the following three:

LSQR: Least squares QR method described in [43]. We per-
form a total of 1000 iterations with a tolerance of
10−6 . We segment the resulting reconstruction using
Otsu’s thresholding algorithm [44].

TV: The total-variation method leads to an optimization
problem described below:

min
x∈RN

‖Ax − y‖2 + λ‖Dx‖1 ,

where λ is a corresponding regularization parameter,
and D matrix captures the discrete gradient in both
directions. We use the Chambolle-Pock method [37]
to solve the above optimization problem with non-
negativity constraints on the pixel values. For each
case, we perform iterations till the relative duality
gap reach a tolerance value of 10−4 . To avoid slow
convergence, we scale the matrices A and D to have
unit matrix norm. The regularization parameter λ is
selected using Morozov’s discrepancy principle us-
ing the noise level defined as ‖y − Axtrue‖.4 Finally,

4Since the data is generated from a different modeling kernel, we compute
noise level from the mismatch of the projection of true image with the data. The

We segment the TV-reconstructed image using Otsu’s
thresholding algorithm.

DART: We use the method described in [25] for DART on
the above binary images. The grayvalues are taken
to be the same as true grayvalues. We perform 20
Algebraic Reconstruction Method (ARM) iterations
initially before performing 40 DART iterations. In
each DART iteration, we do 3 algebraic reconstruction
iterations. We use the segmented image as a result of
the DART iterations to perform the further analysis
of the method.

DP: We solve the dual formulation (14) with a smooth
approximation of the �1-norm (as discussed in section
II) using L-BFGS method [45] with a maximum of
500 iterations.

D. Performance Measures

In order to evaluate the performance of reconstruction meth-
ods, we use the following two criteria.
RMS The root-mean-square (RMS) error

RMS � ‖Ax� − y‖,
measures how well the forward-projected reconstructed
image matches the projection data. This measure is use-
ful in practice, as it does not require knowledge of the
ground truth. The RMS value close to the noise level of
the data considered as a good reconstruction.

JI The Jaccard index JI � 100
(
1 − ∑N

i=1(αi + βi)/N
)

measures the similarity between the reconstructed im-
age (x� ) and the ground truth (xtrue) in a discrete sense.
The parameters α and β represent missing and over-
estimated pixels respectively and given by

αi � (x�
i = u0) ×

(
xtrue

i = u1
)
,

βi � (x�
i = u1) ×

(
xtrue

i = u0
)
.

The blue and red dots denote the missing and the overes-
timated pixels in Figs. 7–11. If JI has high value (close to
1), the reconstruction is considered good. Although this
measure is not readily applicable to real datasets, it is
a handy measure to compare the various reconstruction
methods on synthetic examples.

discrepancy principle then selects the parameter which fits data close to such
noise level.

Authorized licensed use limited to: University Library Utrecht. Downloaded on February 13,2024 at 14:50:30 UTC from IEEE Xplore.  Restrictions apply. 



KADU AND VAN LEEUWEN: CONVEX FORMULATION FOR BINARY TOMOGRAPHY 7

Fig. 6. The high resolution (2000 × 2000 pixels) filtered back-projection
reconstruction of the carved cheese from 360 projections from 0 to 2π .

Fig. 7. Limited projection test I for Phantom 1. Performance of various
reconstruction methods with 10 projection angles from 0 to π .

Fig. 8. Limited projection test II for Phantom 3. Performance of proposed
method vs number of projections.

Fig. 9. Limited angle test I for Phantom 2. Performance of various recon-
struction methods with 10 projection angles from 0 to π

2 .

E. Experimental Data Setup

We use the experimental X-ray projection data of a carved
cheese slice [46]. Fig. 6 shows a high-resolution filtered back-
projection reconstruction of the data. The cheese contains the
letters C and T and the object is (approximately) binary with two
grey levels corresponding to calcium-containing organic com-
pounds of cheese and air. The dataset consists of projection data
with two different resolutions (128 × 128, 512 × 512) and the
corresponding projection matrix modeling the linear operation
of X-ray transform.

We perform two sets of experiments: (1) Sparse sampling
with 15 angles ranging from 0 to 2π and (2) limited-angle using
15 projections from 0 to π/2.

Fig. 10. Limited angle test II for Phantom 4. Performance of proposed method
vs maximum angle.

Fig. 11. Noisy Projection test on phantoms 1 and 2. Performance of proposed
method vs expected total incident photon counts.

F. Sparse Projections Test

Fig. 7 presents the reconstruction results from various meth-
ods for phantoms 1. The tomographic data are generated for ten
equidistant projection angles from 0 to π. The reconstruction
results show the difference between the reconstructed image
and the ground truth. It is evident that, compared to the other
methods, the proposed method reconstructions are very close to
the ground truth. The results from LSQR are the worst as it does
not incorporate any prior information about the model. The TV
method also leads to artifacts as it includes partial information
about the model. The DART and DP are very close to each
other. For all the phantoms, we tabulate the data misfit (RMS)
and Jaccard index (JI) in Table II.

We also show reconstructions with the proposed approach for
a varying number of projection angles in Fig. 8. We note that the
problem becomes harder to solve as the number of projections
gets smaller. Hence, we may also expect the reconstruction to
become poorer. We see that the proposed approach can recon-
struct almost correctly with as few as ten projection angles.

G. Limited Angle Test

Fig. 9 shows the results of phantom 2 with various recon-
struction methods for limited angle tomography ( 10 equispaced
angles in the range 0 to π/2). It is visible that the reconstructions
from DART and the proposed method are very close to the true
images of the phantoms. The values for data misfit and Jaccard
index for all the tests with each of the synthetic phantoms are
tabulated in Table III.

We also look at how the reconstructions with the proposed
method vary with limiting the angle (see Fig. 10). As the an-
gle gets limited, the reconstruction problem gets difficult. The
proposed method can reconstruct almost correctly with angle
limited to π/2.
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TABLE II
LIMITED PROJECTION TEST PERFORMANCE MEASURES

TABLE III
LIMITED ANGLE TEST PERFORMANCE MEASURES

H. Noisy Projection Test

This test aims to check the sensitivity of the proposed method
to noise in the data. We perform four experiments with varying
levels of Poisson noise in the data. In particular, we use expected
incident photon counts I0 =

{
106 , 104 , 103 , 102

}
. Note that the

lower incident photon counts lead to low SNR. Fig. 11 shows
the results on phantoms 1 and 2 for increasing noise level. We
see that the reconstruction is stable against a moderate amount
of noise and degrades gradually as the noise level increases.

I. Real Data Test

We look at the results of reconstructions from the proposed
method for two sets of experiments at various resolutions and
compare them with the reconstructions from LSQR and TV.
Since the ground truth image is not available, we compare these
reconstructions visually.

Fig. 12. Histogram of filtered backprojection image of the carved cheese.

Fig. 13. Real Data Test I—Sparse projection tomography. Performance of
various methods with different resolutions. Top row corresponds to 128 × 128
pixels. Bottom row corresponds to 512 × 512 pixels. Figure below each image
denote the histogram. The red contours represent the thresholded image.

In order to apply DP, we first need to estimate the grey values
of the object. The object, a thin slice of cheese, consists of two
materials; the organic compound of the cheese, which is we
assume to be homogeneous, and air. For air, the grey value is
zero. We estimate the grey value of the organic compound of
cheese from the histogram of an FBP reconstruction provided
with the data. Fig. 12 represents the histogram. We obtain a
value of 0.00696 for this compound.

We first consider the reconstructions from sparse angular sam-
pling (15 projections spanning from 0 to 2π). The tests are per-
formed on two different resolutions: 128 × 128, and 512 × 512.
Fig. 13 presents the results of the reconstructions with LSQR,
TV, and DP for these resolutions. The DP reconstruction is dis-
crete and correctly identifies the letters C and T with also a
little hole at the left side of C. Although LSQR reconstruction
is poor for 128 × 128, it improves with the resolution. We still
see the mild streak artifacts in these reconstructions. The TV
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Fig. 14. Real Data Test II—Limited angle tomography. Performance of var-
ious methods with different resolutions. Top row corresponds to 128 × 128
pixels. Bottom row corresponds to 512 × 512 pixels. Figure below each image
denote the histogram. The red contours represent the thresholded image.

reconstruction removes these streak artifacts but fails to identify
the homogeneous cheese slice correctly.

In the second test, we limit the projection angles to 0 − π/2.
Fig. 14 shows the results of the reconstructions from LSQR,
TV, and DP for two different resolutions. We see that the re-
constructions improve with increment in the resolution. LSQR
reconstructions have severe streak artifacts, which are the char-
acteristics of the limited data tomography. TV and DP recon-
structions do not possess these artifacts. TV reconstruction can
capture the shape of the cheese, but it blurs out the carved parts
C and T. DP reconstructs the shape of cheese quite accurately
and has C and T are also identified.

V. CONCLUSION

We presented a novel convex formulation for binary tomog-
raphy. The problem is primarily a generalized LASSO problem
that can be solved efficiently when the system matrix has full
row rank or full column rank. Solving the dual problem is not
guaranteed to give the optimal solution, but can at least be used
to construct a feasible solution. In a complete enumeration of
small binary test cases (images of n × n pixels for n = 2, 3, 4)
we observed that if the problem has a unique solution, then the
proposed dual approach finds it. In case the problem has mul-
tiple solutions, the dual approach finds the part that is common
in all solutions. Based on these experiments we conjecture that
this holds in the general case (beyond the small test images).
Of course, verifying beforehand if the problem has a unique
solution may not be possible.

We test the proposed method on numerical phantoms and real
data, showing that the method compares favorably to some of
the state-of-the-art reconstruction techniques (Total Variation,
DART). The proposed method is also reasonably stable against
a moderate amount of noise.

We currently assume the grey levels are known apriori. Ex-
tension to multiple (i.e., more than 2) unknown grey levels is

possible in the same framework but will be left for future work.
To make the method more robust against noise additional regu-
larization may be added.

APPENDIX A
PROOFS

A. Proposition 1

Proof: In (4), the g1(ν) has a closed-form expression for
general A. To see this, let us first denote

f(x,ν) � 1
2 ‖y − Ax‖2 + νT x. (A.1)

We are interested in the infimum value of this function with
repsect to x. To obtain this, we set the gradient of f with respect
to x to zero

∇xf = AT (Ax − y) + ν = 0.

Since A is a general matrix, it may be rank-deficient. Hence,
the optimal value x� only exists if ν is in the range of AT and
it is given by

x� =
(
ATA

)† (
AT y − ν

)
.

Substituting this value in (A.1), we get the following:

g1(ν) = inf
x

f(x,ν)

=

{
f(x� ,ν) ν ∈ RAT

−∞ otherwise

=

{
− 1

2 ‖ν − AT y‖(AT A)† + 1
2 y

T y ν ∈ RAT

−∞ otherwise
.

Now we return to the dual objective in equation (4). Substi-
tuting the explicit forms for g1(ν) from above and g2(ν) from
equation (7), we get the expression for the dual objective:

g(ν)=

{
− 1

2 ‖ν − AT y‖2
(AT A)†

− ‖ν‖1 + 1
2 y

T y ν ∈ RAT ,

−∞ otherwise.

The above dual objective leads to the following maximization
problem with respect to the dual variable ν

ν� = argmax
ν∈RN

g(ν).

As we are only interested in the maximum value of the dual
objective, the space of ν can be constrained to the range of AT .
This is valid as the dual objective is −∞ for the ν outside the
range of AT . Hence, the maximization problem reduced to the
following minimization problem:

ν� = argmin
ν∈RA T

1
2 ‖ν − AT y‖2

(AT A)†
+ ‖ν‖1 .

B. Corollary 1

Proof: Since the search space for the dual variable ν is con-
strained to the range of AT , we can express this variable as
AT μ, where μ ∈ Rm . Substituting ν = AT μ in (12), we get

μ� = argmin
μ∈Rm

1
2 ‖AT (μ − y) ‖2

(AT A)†
+ ‖AT μ‖1 . (A.2)
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Using the identities (AT A)†AT = A† and A = AA†A [47],
we can re-write the weighted norm ‖AT r‖2

(AT A)†
as ‖AA†r‖.

The dual problem (A.2) now reads

μ� = argmin
μ∈Rm

1
2 ‖AA† (μ − y) ‖2 + ‖AT μ‖1 .

Correspondingly, the primal solution x� related to the dual op-
timal μ� is

x� = sign(φ�) = sign (ν�) = sign
(
AT μ�

)
.

C. Proposition 2

Proof: The primal problem for binary tomography problem
with grey levels u0 < u1 can be stated as:

x� = argmin
x

(
inf
φ

1
2 ‖Ax − y‖2

)
,

subject to x = u01 + (u1 − u0) H(φ),

where H(·) denotes the Heaviside function and φ is an auxiliary
variable. Such problem admits a Lagrangian

L(x,φ,ν)= 1
2 ‖Ax −y‖2 + νT (x − u01− (u1− u0) H(φ)) ,

where ν ∈ RN is a Lagrangian multiplier (also known as dual
variable) corresponding to the equality constraint. This gives
rise to a dual function

g(ν) = inf
x

{ 1
2 ‖Ax − y‖2 + νT x

}
︸ ︷︷ ︸

g1 (ν)

+ inf
φ

{− (u1 − u0) νT H(φ)
}

︸ ︷︷ ︸
g2 (ν)

−u0ν
T 1.

Since we already know g1(ν) (refer to equation (6)), we require
the explicit form for g2(ν). For its computation, we use the
componentwise property of the Heaviside function to separate
the infimum.

g2(ν) =
N∑

i=1

inf
φi

{− (u1 − u0) νiH(φi)}

= −
N∑

i=1

sup
φi

{(u1 − u0) νiH(φi)}

Since the range of Heaviside function is only two values, namely
{0, 1}, we get the simple form for g2(ν):

g2(ν) = −
N∑

i=1

q(νi)

where q(νi) =

{
(u1 − u0)νi if νi > 0
0 otherwise

= (u1 − u0) max(νi, 0).

This infimal value is attained at φ� = H(ν). Now the dual
problem reads

ν� = argmin
ν∈RA T

{
1
2 ‖ν − AT y‖2

(AT A)†

+
∑

i

(u1 − u0) max(νi, 0) + u0ν
T 1

}
.

(A.3)

We note that the last two terms in the dual objective can be
compactly represented by

p(ν) =
∑

i

|u0 |max(−νi, 0) + |u1 |max(νi, 0),

where p(·) is known as an asymmetric one-norm. The optimal
point of the problem (A.3) is denoted by ν� and the correspond-
ing primal optimal is retrieved using

x� = u01 + (u1 − u0)H(φ�) = u01 + (u1 − u0)H(ν�).

D. Proposition 3

Proof: The minimization problem for the proximal operator
of an asymmetric one-norm function p(·) reads

min
x∈RN

f(x) = 1
2 ‖x − z‖2 + λp(x), (A.4)

where λ > 0 is a parameter. Since the function is convex, we
get the following from the first-order optimality condition [27]:

0 ∈ ∂f(x�),

∈ x� − z + λ∂p(x�), (A.5)

where x� is an optimal point of (A.4), and ∂p(x) is a sub-
differential of function p(·) at x. This sub-differential is

∂p(xi) =

⎧⎪⎨
⎪⎩
|u1 | xi > 0
[−|u0 |, |u1 |] xi = 0
−|u0 | xi < 0

.

Now coming back to the first-order optimality condition in
(A.5), we get the explicit form for optimal solution x� :

x�
i =

⎧⎪⎨
⎪⎩

zi − λ|u1 | zi ≥ λ|u1 |
0 −λ|u0 | ≤ zi ≤ λ|u1 |
zi + λ|u0 | zi ≤ −λ|u0 |

.

We recognize this function as an asymmetric soft-thresholding
function.
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