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Abstract
The CLIN30 Shared Task is defined as a computational approach to classify have-doubling, which

is a syntactic phenomenon combining a past participle construction with an additional participle,
usually from the verb have, e.g., ‘he has had lived there’. This paper describes perfect doubling, a
particular subform of the have-doubling construction, in detail, and introduces a dataset to study
the phenomenon in a computational way. Different classification approaches from the Shared Task
participants are discussed, and an error analysis of classification results is provided. The models
reach up to nearly 80% accuracy, which is a viable starting point for further research.

1. Introduction

The field of computational linguistics has historically been used for various different research goals.
One of these goals is the application of computational techniques to solve real world language-related
tasks, with early examples in, e.g., machine translation (Locke and Booth 1955) and conversational
agents (Weizenbaum 1966). Another goal is the study of language itself using computational meth-
ods, such as the research field known as lexicostatistics (Swadesh 1952) and the development of
corpus linguistics (Kuc̆era and Francis 1967). A third research goal is the development of compu-
tational linguistics as such, i.e., a more fundamental approach geared towards methodology rather
than direct applications in the real world or in regular linguistics, for example the SemEval series
(Agirre et al. 2009).

The Shared Task of the 30th Computational Linguistics in The Netherlands conference (CLIN30)
is a text classification task about the syntactic construction have-doubling. The task is to develop a
classifier based on a corpus of historical Dutch sentences that predicts whether a given sentence pro-
vides the context for have-doubling. The topic of the Shared Task is compatible with all three general
research goals. First of all, there are various applications that could benefit from a computational
analysis of have-doubling, such as modernization of historical text or relation extraction. Further-
more, regular linguistic analysis may gain insights from computational models of have-doubling,
especially if such models are to some degree explainable. Finally, the dataset and objectives of the
current Shared Task may be used to apply pre-existing methodologies in order to investigate how
these models behave outside of the regular application domain.

This paper is organized as follows: first, the linguistic background on have-doubling will be
discussed (Section 2), followed by an overview of Natural Language Processing aspects (Section 3).
After the introduction, the task definition of the Shared Task and a description of the dataset are
provided (Section 4). Next, the approaches and results of the task are described (Section 5), followed
by an analysis of classification errors (Section 6). The paper concludes with a general overview and
directions for further research (Section 7).
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2. Linguistic background
Linguistically, syntactic doubling is the doubling of the same syntactic element (see e.g. Koeneman
et al. (2011, p. 35ff.)). Perfect doubling is a type of syntactic doubling where the doubled element is
the perfect auxiliary of a verb. This phenomenon occurs most frequently as have-doubling, with the
perfect auxiliary have (Barbiers et al. 2008, p. 40). Formally, have-doubling constructions contain
a form of the word have combined with a lexical past participle, as well as an additional, past
participial form of have. An example from a historical variety of Dutch is given in (1). This example
is found in the personal journal of the Dutch politician Willem Frederik from 1647.1

(1) Graf
Count

Hendrick
Hendrick

van
van

den
den

Berch
Berch

heeft
has

daer
there

gewoont
lived

gehadt.
had

Approx: Count Hendrick van den Berch lived there.

In present-day standard Dutch the perfect doubling construction is no longer present, however it
remains in use in various dialects in the Netherlands and Flanders (example 2), as well as in varieties
of French (3) and German (4), see e.g. Schaden (2007), Haß (2016). In Dutch a perfect tense can be
constructed using either the verb have or the verb be as perfect auxiliary, and both in present-day
dialectical Dutch and in historical varieties of Dutch the corresponding be-doubling construction is
attested ((5) and (6)). Examples (2) – (5) are repeated from Koeneman et al. (2011), example (6)
is found in Witkam (1986).

Despite the large number of language varieties in which perfect doubling is found, the occurrences
are generally very low. The frequency in historical varieties of Dutch has been estimated at between
30 and 50 per 1 million words in selected time periods, and less than 10 per 1 million words overall
(see (Wall 2018b, Figure 6), (Wall 2018a) and (Wall In preparation)).

(2) Ik
I

heb
have

het
it

gezegd
said

gehad.
had

I said it. (present-day South-eastern Dutch)

(3) Quand
when

j’ai
I have

eu
had

d̂ıné,
dined

je
I

suis
am

sorti.
left

After having dined, I left. (present-day regional French)

(4) Wia
as

i
I

hamkumman
home.come

bin,
am

hot
has

mai
my

schwesta
sister

den
the

opfl
apple

scho
already

gessen
eaten

ghobt.
had

When I arrived at home, my sister had already eaten the apple. (present-day Bavarian)

(5) Ik
I

ben
am

twee
two

keer
times

gevallen
fallen

geweest.
been

I fell twice. (present-day South-eastern Dutch)

(6) dat
that

Mommillan
Mommillan

niet
not

en is
is

gecomen
come

geweest
been

in
in

handen
hands

van
of

de
the

Fransoisen
French

that Mommillan did not fall in the hands of the French (17th century Dutch)

2.1 Semantics

Considering the semantics of perfect doubling, in general there is little difference in meaning between
a sentence with perfect doubling and the same sentence without doubling. Compare (1) and the
constructed example (1a) without the additional past participle:

1. https://www.dbnl.org/tekst/will077glor01_01/will077glor01_01_0008.php
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(1) Graf
Count

Hendrick
Hendrick

van
van

den
den

Berch
Berch

heeft
has

daer
there

gewoont
lived

gehadt.
had

Count Hendrick van den Berch lived there.
(1a) Graf

Count
Hendrick
Hendrick

van
van

den
den

Berch
Berch

heeft
has

daer
there

gewoont.
lived

Count Hendrick van den Berch lived there. (constructed example)

These two sentences are almost completely interchangeable in meaning: they both express a past
event. Research in linguistics has focused on this issue: if the meaning is so similar or even equivalent,
then what is the reason that speakers of the language choose a perfect doubling construction over
the run-of-the-mill form of the perfect?

A number of authors, e.g., Schaden (2007), Koeneman et al. (2011) distinguish two core readings
of perfect doubling constructions: the anterior and superperfect. The anterior reading characterizes
the use of perfect doubling as a relative past tense, i.e., it is used approximately to denote that one
event is anterior relative to another (see Koeneman et al. (2011, p.72)). Sentence (4) is an example
of this interpretation, which expresses approximately that the apple was eaten before the subject
came home. The second, superperfect reading indicates “an action or state which is definitively
complete and unlikely to recur; an action or state which took place or existed in a distant past; an
action or state which occurred at an indeterminate point or points in time; an action or state which
is in some way exceptional; heightened speaker involvement in the action or state on the part of the
speaker” (Carruthers (1994) in Koeneman et al. (2011, p. 73)).

Note as well as perfect doubling constructions it has been argued that there is another type of
have-doubling in historical varieties of Dutch with the same surface form but where an important
difference compared to perfect doubling constructions is that the syntactic subject is not an agent,
see e.g. Duinhoven (1997, pp. 346–348). Constructions with this broad interpretation are also found
in, amongst other varieties, modern Dutch dialects, e.g., van Bree (1981). An example is shown in
(7), repeated from Koeneman et al. (2011, p. 42).

(7) Ik
I

heb
have

het
the

haar
hair

geverfd
dyed

gehad.
had

My hair has been dyed. (Limburg Dutch)

In (7), the subject have can be interpreted as a possessor of the direct object, het haar ‘the hair’,
rather than as the agent, i.e. the dyer of the hair.

In what follows, we will abstract away from the differences between these constructions and
simply refer to both as have-doubling constructions.

2.2 Syntax

One syntactic factor which has been noted as significant for perfect doubling constructions in both
modern Dutch dialects (Koeneman et al. 2011) and historical varieties of Dutch (Wall 2018a) is the
word order restrictions in verb clusters in subordinate clauses. For Dutch dialects, these word order
restrictions are those shown in (8), repeated from Koeneman et al. (2011, p. 44).

(8) ... dat ik de fiets
a. * heb

have
gehad
had

gestolen.
stolen

b. * heb
have

gestolen
stolen

gehad.
had

c. gestolen
stolen

gehad
had

heb.
have
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d. gestolen
stolen

heb
have

gehad.
had

that I had stolen the bicycle.

(8) shows that, according to grammaticality judgements collected by and reported in Koeneman
et al. (2011, pp. 41, 44), Dutch dialect speakers only allow orders in which the lexical past participle
proceeds the other cluster elements (8c,8d); orders in which it follows one, (8b), or both elements,
(8a) are disallowed. Similarly, based on a single-author corpus of the work of Early Modern Dutch
author D. V. Coornhert, Wall (2018a, pp. 160–161) finds that the (8c,8d)-type orders overwhelmingly
predominate although the (8b)-type is allowed in a minority of cases (cf. its *-status in modern Dutch
dialects). Both Koeneman et al. (2011) and in turn Wall (2018a) relate this to the lexical participle
having an adjectival rather than verbal categorial status (cf. Wall (2018b)). More broadly, this
connects to an extensive literature on verb cluster variation in both historical (e.g., Coupé (2015),
Coussé (2008)) and modern varieties of Dutch (e.g., Dros-Hendriks (2018)).

The current Shared Task formulates the analysis of have-doubling as a classification task on
sentences, i.e., to predict whether a sentence provides the context for a have-doubling construction
or not (see Section 4 for details). As a supplement to linguistic findings, error analysis of the
classifiers as well as analysis of influential classification features may provide more insights into the
linguistic properties of perfect doubling.

3. NLP perspective on have-doubling
With the advance of Digital Humanities, an increasing amount of Natural Language Processing
(NLP) research is being performed on under-resourced languages and language varieties that lack
large annotated corpora, lexicons, language models and tools. Research into have-doubling can
be classified into this category, as both historical language varieties and present-day dialectical
variants belong to the class of under-resourced languages. The current Shared Task contributes to
this area by investigating how various approaches that are known to work well in a high-resource
setting perform on a small amount of data. Furthermore, one of the participants investigates the
usefulness of modern Parts-of-Speech (POS) tags for historical text in the context of this task (see
Section 5.1). The task itself also provides an addition to the field of historical NLP given the
focus on classifying a syntactic phenomenon, complementing related work that focuses on semantics
(Moritz and Büchler 2017), morphosyntax (Kestemont et al. 2016), POS-tagging (van Halteren
and Rem 2013, Hupkes and Bod 2016), translation and rephrasing (Pagé-Perron et al. 2017), or
information retrieval (Gotscharek et al. 2011).

Possible applications include normalization of historical text into modern standard language, to
allow the use of resources and tools intended for modern varieties (see for some examples Tjong
Kim Sang et al. (2017), Scherrer et al. (2019), Ruzsics et al. (2019)). Given that have-doubling does
not occur in present-day standard Dutch, the doubled verb needs to be removed during normaliza-
tion. This presupposes that a have-doubling construction can be identified and possibly decomposed
into elements, for the removal process to be successful. While identification of have-doubling based
on POS-tags is relatively trivial, the lack of accurate POS-tagging tools for a certain language variety
is often among the reasons for normalizing a text. Therefore, a non-trivial approach to identifying
have-doubling constructions is needed. Similarly, a more language-agnostic statistical modernization
approach based on example sentence pairs does not require the specific information that a historical
or dialectical sentence contains have-doubling, however in order to create such sentence pairs for
training it is necessary to correctly identify have-doubling constructions as such.

The identification of have-doubling constructions can also be valuable outside of a normalization
context. Examples include increasing the accuracy of Information Retrieval related measures that
are sensitive to the number of tokens in a sentence or n-gram overlap, such as cosine similarity or
ROUGE scores (Lin 2004).
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Furthermore, at the document level, the property of containing have-doubling somewhere in the
text can be an interesting variable in document classification approaches, given that have-doubling is
correlated with certain historical periods and a particular geographical distribution, and potentially
with various other sociolinguistic dimensions of interest (Wall 2018b), (Wall In preparation).

4. Shared Task definition

The objective of the CLIN30 Shared Task is to determine whether a given sentence provides the con-
text for a have-doubling construction. The main aspect of interest is to find out which properties of
the sentence are associated to have-doubling, rather than to detect have-doubling as such. To opera-
tionalize this task, examples of have-doubling are preprocessed to strip out the defining occurrence of
the past participial form of have. The task for the classifier is then to determine whether a sentence
originally contained have-doubling or not, i.e., whether the have-participle has been removed from
a sentence or not. As an example, sentence (1a) would be presented, for which the classifier should
predict that this sentence was constructed from an actual example of have-doubling.

If such a classifier is successful, then an argument can be made that have-doubling sentences are
indeed different from regular perfect tense sentences in other ways than just the seemingly redundant
second participle. Analysis of features and results can provide further indications towards the nature
of such differences. However, such conclusions must take possible bias in the selection of positive
and negative examples into account.

4.1 Data

The data for the Shared Task consists of 1030 example sentences from historical varieties of Dutch,
ranging from the 13th century to the 19th century2. Half of the examples (515 sentences) contain
have-doubling. The other half of the data contains negative examples, i.e., perfect tense sentences
without doubling.

The data originates from two different data providers. First, the Digital Library of Dutch Liter-
ature (DBNL)3 has been used.4 This resource contains documents from all historical time periods
for written Dutch. The quality of the materials is usually very high, with virtually no transcription
errors. The Shared Task dataset contains 277 positive examples and 515 negative examples from
DBNL. The distribution over time for this part of the data is provided in Figure 1. Secondly, ma-
terials found using the search interface of the Nederlab project have been used, predominantly (227
examples) from the correspondence archive of the Dutch politician Anthonie Heinsius (1641-1720).
All of the examples from this data source are part of the positive class, i.e., the sentences all contain
have-doubling (see for further discussion of this issue Section 4.2). This resource consists of letters
digitized using Optical Character Recognition (OCR). The source of the OCR is a printed edition
from 1976 consisting of manual transcriptions of the original letters. Although the quality of this
source is relatively high, the OCR results still contain a high degree of transcription errors. All of
these documents originate from the period between 1702 and 1720, from a variety of correspondents.
A few examples (11 in total) in the Nederlab part of the data originate from different sources. Note
that the data curation policy and implementation of search tools and source formatting of both data
providers influence the results of the data collection process, and the contents of the current dataset,
while determined by the historical texts, is mediated by the context of the data provider.

2. For the availability of the data see https://git.science.uu.nl/-/snippets/61.
3. https://www.dbnl.org
4. For technical implementation reasons the DBNL data collection has been performed from scratch using the DBNL

website as a source. The resulting dataset is similar, although not identical, to data collected previously by Wall
(see Wall (2018b) and (Wall In preparation) for details of her dataset and collection procedure as well as non-
computational analyses).
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Figure 1: Distribution of publication year/year of writing

4.2 Example selection procedure

For the DBNL part of the data, using the search interface on the DBNL website all documents were
retrieved that contain one of a certain group of historical forms of the past participle had. This
includes the historical spellings gehadt, ghehadt, gehat, ghehat from the full timespan of DBNL, as
well as all documents containing the modern form gehad that were originally published between
1500 and 1800. This resulted in around 20,000 documents in total. Secondly, these documents were
cleaned to remove footnotes and margin notes, that often contain remarks by editors in present-day
Dutch. Afterwards, all documents were POS-tagged using Frog (van den Bosch et al. 2007), which
was configured with an Early Modern Dutch language model5 that was trained on the Letters as
Loot (Brieven als Buit) dataset (Rutten and van der Wal 2014).

Using the POS-tags, all phrases were selected that contain at least three verbs, of which at least
two forms of the verb have. A sentence is defined by the language model in Frog, and may contain
punctuation characters. A phrase is defined as a substring of a sentence delimited by a comma (or
the start or end of the sentence). The pre-selection resulted in 6572 potential example sentences.
After manual inspection6 of all potential examples, 277 positive examples of have-doubling remained.
For the negative examples (perfects without doubling) a similar procedure was implemented, with a
pre-selection of all sentences with at least two verbs of which exactly one was a form of have. From
this set, two (non-overlapping) random subsets were selected and manually checked, one to match
the DBNL positive examples and one to match the Nederlab positive examples. This procedure
resulted in a balanced dataset with an equal number of positive and negative examples (515 each).

It should be noted that, while the described procedure was performed exhaustively on all DBNL
data, this does not imply that each and every example of have-doubling was actually found. Notably,
the definition of a phrase is quite strict, and will cause some occurrences of have-doubling to be
filtered out - however given the manual component in the example selection procedure it was opted
to limit the number of results from pre-selection using this definition of a phrase. Moreover, the
automatic POS-tagging is not 100% accurate, which means that examples may be missed containing
verbs that are incorrectly tagged as a different Part-of-Speech.

5. https://github.com/LanguageMachines/frogdata/tree/master/config/nld-vnn
6. This manual inspection step has caused a small minority of examples not to confirm to the definition of have-

doubling as stated (i.e., two forms of have with a lexical past participle complement). However, as the number of
such instances appears to be small and the purpose here is a computational study, these do not detract from the
overall conclusions.
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The positive examples from Nederlab were collected with the Nederlab search interface7 in Spring
and Summer 20188. Parallel to the DBNL data, a search was made for the modern form gehad and a
minimally larger group of historical spelling variants to those used above (ghehad, gehadt, ghehadt,
gehat, ghehat)9 in texts whose metadata indicated that they had an author who died between
1701 and 175010. The resulting examples were then manually sorted to include only instances
of have-doubling, and exclude perfects of lexical have. Nederlab houses various digitalized texts.
The majority of these examples originated from the Briefwisseling van Anthonie Heinsius 1702-
1720, which contains the correspondence both from and to the important Dutch statesman in that
period11. Taken on its own this large set of positive examples has the advantage of being homogenous
for genre and time period, which may make it easier to find which other variables are behind the
use of have-doubling. In addition six examples that were found using the specified query in the
Nederlab interface are hosted by Delpher12, which features digitalized copies of a range of texts held
in academic institutions, and five examples are hosted by DBNL, which were kept as part of the
Nederlab category instead of being grouped together with the other DBNL data.

Finally, full sentences from which the selected phrases originated have been retrieved for inclusion
into the dataset. The sentence borders were manually identified for each instance. Generally this
selection follows the grammatical definition of a sentence, however in the case of historical varieties
of Dutch some sentences can be extremely long, in which case a suitable part of the sentence has been
used. Further, when a sentence contained two or more different occurrences of have-doubling, the
sentence was split to create the corresponding amount of positive examples. The average sentence
length is relatively high (around 48.5 words) and many sentences contain multiple subordinate clauses
and verb clusters (cf. (Burridge 1993, p. 12)). Furthermore, sentence partitioning was performed
by a single annotator, which may introduce inconsistencies in the data. To check the impact of
these data characteristics on classification results additional experiments have been performed using
a fixed-length sentence window, as discussed at the end of the current section. For the Nederlab
examples, all OCR errors in the verbs that are elements of the have-doubling construction were
manually corrected, as well as a number of other OCR errors in the sentences. Most errors are
examples of single character substitutions and whitespace errors, as illustrated in Figure 2. The
corrections in the sentences outside of the verbs were however not performed thoroughly, and many
errors remain in the data.

As mentioned in Section 4.1, even though the dataset has an equal number of positive and
negative examples, all negative examples were selected from documents obtained through the DBNL
data provider, whereas the positive examples were selected from DBNL as well as Nederlab. In order
to check for possible bias caused by this variable, additional experiments have been performed on
the DBNL set only (i.e., training without Nederlab positive examples and a smaller set of negative
examples matching the size of the DBNL positive set). Of course the amount of training data is
reduced significantly by this experiment, which may also influence the results.

Another variable of interest is sentence length, which will be discussed in Section 6.2.1. The
variation in length is very large, ranging from just a few words to over 100 words in the same
sentence. To control for this variable an additional experiment was performed in which the input

7. https://www.nederlab.nl/onderzoeksportaal/?action=verkennen
8. Note the date of the searches is relevant as both Nederlab and the collections therein have since undergone updates

and may as a result return different results.
9. However, all examples in the resultant dataset involve one of the spelling variants gehad, gehadt and ghehadt, and

as such this dataset differs little from the DBNL dataset. Indeed, the vast majority of examples in both datasets
contain either the modern form gehad or the historical variant gehadt, hence the spelling variant of have does not
constitute a significant difference between the datasets.

10. The reasons for the confinement of these examples to this period was largely practical: as noted in Section 2.1
the overall frequency of have-doubling is very low, which also made it difficult to construct a suitable dataset for
the task. As such, one of the authors made available a large number of examples from previous work conducted
on this phenomenon to supplement the above DBNL data, which fell only within this period.

11. http://resources.huygens.knaw.nl/briefwisselingheinsius
12. https://www.delpher.nl
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Haar H o . M o . genoegzaam alleenig nvt consideratie voor de dry hoge magten van de Q u
a d r u p -le Alliantie gedehbereert hebben om de accessie tot dezelve, dewijle d o o r geene
traetaten zijn verbonden [...] ende naderhanl dat diversehe resolution om tot de gemelte
Quadruple Alliantie Ie aeeederen.
Haar Ho.Mo. genoegzaam alleenig uyt consideratie voor de dry hoge magten van de Quadruple
Alliantie gedelibereert hebben om de accessie tot dezelve, dewijle door geene tractaten zijn
verbonden [...] ende naderhant dat diversche resolutiën om tot de gemelte Quadruple Alliantie
te accederen,

Figure 2: Example of manual OCR correction: C. Hop to Heinsius, September 15th, 1719. Correc-
tions indicated in bold.

selected phrase
dye ten tijde van haer eerste beroepinge zeer weynich tydts hyer gewoont hebben gehadt
full sentence
Alsmen dan daertegen naedenckt, hoe dat nu lange iaren achtervolcht is den voet om in den kerck-
enraedt veel uytheemschen te gebruycken, ia zelfs degeene, dye ten tijde van haer eerste beroepinge
zeer weynich tydts hyer gewoont hebben gehadt.
window
om in den kerckenraedt veel uytheemschen te gebruycken, ia zelfs degeene, dye ten tijde van haer
eerste beroepinge zeer weynich tydts hyer gewoont hebben gehadt

Figure 3: Example of sentence selection: C.P. Hooft, Memoriën en Adviezen, 1611. Have-doubling
indicated in bold.

sentences were cut off to a window of 25 word tokens. The window was centered around the lexical
participle, with 12 tokens on either side of the participle token. In case the participle occurred near
the start or end of the sentence the window was shifted accordingly (i.e., if the participle occurred
within 12 tokens from the start then the window consisted of the first 25 tokens of the sentence, and
if the participle occurred within 12 tokens from the end then the window consisted of the final 25
tokens). If the full sentence was less then 25 tokens then the window consisted of the full sentence.
An example of the selection procedure is shown in Figure 3.

5. Approaches and results
Two teams participated in the Shared Task, one from the Fraunhofer Center for Machine Learning
(Fraunhofer IAIS, Germany) and one from Utrecht University (The Netherlands). The participants
were given a dataset consisting of all sentences13, the labels, and metadata (source url, author, year,
verbs cluster). However, the task prescribed that the classification must be performed using only
the sentences and the labels, with the metadata to be used for analysis of the classification results.
POS and other syntactic information was not provided to the participants.

The Fraunhofer team used the RatVec framework (Brito et al. 2019) to apply kernel PCA (Prin-
cipal Component Analysis) using a POS-based similarity function. The Utrecht team used various
machine learning algorithms with bag-of-words features, including experiments using word embed-
dings for dimension reduction. The performance of the different approaches is measured as classi-
fication accuracy, i.e., the ratio of correct predictions to all test examples, computed using 10-fold
cross-validation. The training and test examples in each fold are selected randomly.

13. The Fraunhofer team used a dataset of 1032 examples that contained a duplicate positive entry and an additional
corresponding negative entry. For the experiments of the Utrecht team these two entries were removed.
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5.1 Details of the Fraunhofer approach

The Fraunhofer approach treats each sentence as a sequence of POS-tags that are modeled via the
RatVec framework (Brito et al. 2019), which generates a low-dimensional vector representation for
each sequence by aplying kernel PCA and trains a k-nearest neighbors classifier. Given a list of
n sequences S and a kernel function f , training the representation learning model consists of the
following steps:

1. Compute a kernel matrix K by evaluating f , the similarity function on all sequence pairs

Kij = f(si, sj) ∀si, sj ∈ S (1)

2. Diagonalize K and select the d eigenvectors v1, . . . , vd, where d ≤ n belonging to the largest
eigenvalues.

3. Construct a projection matrix P by dividing the selected eigenvectors by their respective
eigenvalues

P =
[
v1
λ1
, . . . ,

vd

λd

]
. (2)

Any new sequence t not belonging to the training dataset S can get a vector representation by
evaluating f on t against all sequences in S. The product of the resulting kernelized distance vector
with the projection matrix P constitutes the d-dimensional representation rt of t:

rt = P>f(t, S) (3)

For this Shared Task in particular, S consisted of coarse POS-sequences related to a set of randomly
selected sentences from the subcorpora j, k, l, m, and n of the Corpus Gesproken Nederlands (CGN)
(van Eynde et al. 2000), where the number of sentences varied from 2000 to 8000 depending on
the training dataset. The kernel function f was the composition of the 2-spectrum kernel (Leslie
et al. 2002) with either a RBF kernel or a polynomial kernel14. The shared task sentences were
converted to POS sequences15 by means of the Frog parser (van den Bosch et al. 2007). In order
to improve POS-tagging, the historical sentences were translated to modern Dutch with the tool
provided for the CLIN27 Shared Task (Tjong Kim Sang et al. 2017). Then, the POS-tag sequences
were transformed to low dimensional vectors via the trained RatVec model, which constitutes the
training dataset for a k-nearest neighbors classifier. As such, these experiments allowed us to assess
the usefulness of modern POS tags for historical text. Preliminary experiments have been performed
using historical data POS-tagged with a historical language model, instead of the CGN. These
experiments however resulted in low accuracy scores, therefore these experiments have not been
developed further. An overview of the best performing classifiers of this approach is displayed in
Table 1.

5.2 Details of the Utrecht approach

In the Utrecht approach, three existing machine learning algorithms were applied to have-doubling
classification. First, a Multinomial Naive Bayes classifier was used as implemented in the Python
library Scikit-learn. Multinomial Naive Bayes is often used in text classification, either using word
frequency or using tf-idf vectors. In the current experiments, the Naive Bayes classifier was used
to demonstrate the performance of a simple machine learning algorithm, therefore a basic word

14. The tested hyperparameter combinations including kernel choice, dimensionality of the produced vectors, and
k-value for the k-nearest neighbors classifiers can be found in the open-sourced repository: https://github.com/
ebritoc/clin30_ratvec

15. Although POS-tags were used while constructing the dataset, the final set given to participants did not include
the tags. Therefore, any approaches for which POS-tags were used needed to re-tag the data.
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Figure 4: Layout of LSTM network

Approach Full data DBNL Full data, DBNL,
window window

RatVec 0.67 0.61 0.64 0.63
Naive Bayes 0.77 0.71 0.75 0.75
Logistic Regression 0.79 0.73 0.78 0.75
LSTM, pre-trained embeddings, fixed 0.65 0.61 0.66 0.62
LSTM, pre-trained embeddings, adaptive 0.71 0.64 0.70 0.67
LSTM, on-the-fly embeddings 0.73 0.65 0.75 0.67

Table 1: Overview of classification accuracy

frequency count for each example sentence was used as input to the classifier. Tokenization of the
data was performed by the Scikit library, which converts the input to lower case and uses a pattern
consisting of 2 or more alphanumeric characters to represent tokens, with punctuation characters
used as token separator. This creates a vocabulary of around 10 thousand words on which the term
frequency matrix was based. The classifier itself has very few parameters, which have been left to
Scikit defaults.

A second set of cross-validation experiments was performed using a Logistic Regression classifier
from the Scikit library. The same tokenization was used. The classifier uses the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (lbfgs) as the solver and a multinomial distribution
over the labels16. The input consisted of a bag-of-words representation of the sentences, similar to
the Naive Bayes experiments.

The third set of experiments used a Long Short Term Memory network (LSTM) as implemented
in the Python library Keras with TensorFlow backend. An LSTM is a recurrent neural network that
is particularly suited for sequential data such as natural language sentences. Moreover, this approach
provides a straightforward way of incorporating word embeddings, by adding an embedding layer on
top of the input (see Figure 4). In the experiments the softmax activation function, the categorical
cross-entropy loss function17 and the Adaptive Moment Estimation optimizer (Adam) were used.

Two different sets of word embeddings were used for the LSTM experiments. The first set
consisted of pre-trained Word2Vec embeddings generated from a 4.5 million word corpus of Early
Modern Dutch (1600–1750) obtained from DBNL. With this set two experiments were performed,
in the first experiment the embeddings were fixed, while in the second experiment the pre-trained
embeddings were adapted during training. The second set consisted of on-the-fly embeddings based
on the input data which were trained together with the classifier.

The results of the experiments are listed in Table 1.

16. Other parameters have been tested, such as a liblinear solver and the one-versus all class distribution. These
settings did not significantly influence the performance of the Logistic Regression classifier.

17. During initial experiments, categorical cross-entropy surprisingly outperformed a binary loss function.
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Figure 5: Sentences represented by their two first principal components obtained via the RatVec
approach. The positive class refers to the sentences containing have-doubling.

6. Error analysis

The error analysis presented in this section is performed on the results of the experiments with
the full dataset. The results regarding influence of bias in the data as derived from the additional
experiments are discussed in Section 7.

6.1 Kernel Principal Components Analysis

The vector representations derived from the RatVec approach allow the visualization of the rep-
resented sentences: similar sentences (according to the applied similarity function) are mapped to
vectors close to each other in their vector space. Figure 5 shows the two first principal components
for the RatVec classifier colored according to their class. This visualization provides some insights
into the performance of the classifier. By checking the represented sentences, the first principal
component (x-axis) seems to be correlated with sentence length. In fact, a Pearson’s correlation of
-0.62 (calculated with the sentence length measured as number of tokens) validates this observation
(shorter sentences tend to appear rather in the right-hand side of Figure 5). This can be explained
by the applied 2-spectrum kernel. It indirectly makes sentences “distinguishable” by their number
of tokens since the longer the sentences are, the more likely they will have bigrams in common
with other sequences. Table 2 shows that sentences containing have-doubling (positive class) are on
average longer than the negative examples, which explains that sentence length is a discriminative
factor. The combination of both principal components shows a correlation with the data source:
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Class Mean Standard deviation
positive (+) 205 114
negative (–) 146 73
Total 176 100

Table 2: Statistics on number of tokens per sentence

most of the positive outliers in the bottom left of the graph are found in the Nederlab part of the
data while positive DBNL examples can be found in the area to the top right of the main cloud.

6.2 Logistic Regression

From the Utrecht experiments, the Logistic Regression classifier showed the best performance, there-
fore the following error analysis was performed for this classifier. While analysis for Naive Bayes
has not been performed to the same level of detail, various observations for Logistic Regression are
also applicable to the Naive Bayes results, for example occurrences of irrealis in false positives, or
the general difficulty in classifying short sentences.

6.2.1 Sentence length

Error analysis of the Logistic Regression experiments shows a difference in sentence length of around
5 words on average between correctly classified and incorrectly classified sentences. Figure 6 (left)
shows the length differences for a typical run of the Logistic Regression algorithm. These results
indicate that very short sentences (< 5 words) are difficult to classify. The figure also shows that
the distribution of errors extends to longer sentences as well, however the distribution of correctly
classified sentences extends a bit further, including sentences of over 75 words in length. This
indicates that, while shorter sentences are indeed somewhat more difficult, the difference in the
average is mainly caused by the performance differences for longer sentences. Still, the average
sentence length is very high. Most sentences contain multiple subordinate clauses, of which only
one clause is part of a have-doubling construction. However, the current state of the art in parsing
historical varieties of Dutch is not yet sufficiently accurate to reliably identify relevant subordinate
clauses for use in classification. Note that the additional experiments on using a window of 25 words
centered on the lexical past participle showed as well that long sentences have only limited impact
on classification accuracy over the datasets in general.

6.2.2 Publication year

Another possible source of bias is publication year, given that this variable is unevenly distribution
over the classes (see Figure 1 and further discussion in Section 4.2). To evaluate the impact of
this variable, an analysis was performed to check errors grouped by publication year, as shown in
Figure 6 (right). The figure shows that this variable is unlikely to be a source of bias, given that
correct and incorrect classifications are found in the full time period of the corpus.

6.2.3 Class error distribution and data source

The errors are approximately equally distributed over the two classes. However, the data source has a
large effect on classification. Out of the false negative examples (i.e., the original sentence contained
have-doubling but the classifier predicted that the example was a sentence without have-doubling)
almost all examples originate from the DBNL set, while the Nederlab set does not contribute a
significant amount of false negatives. This bias can be explained by the fact that all negative
examples are extracted from DBNL data, while Nederlab data only contributed to positive examples.
Therefore, when an example is more similar to DBNL, it has a higher probability to be negative,
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Figure 6: Logistic Regression results by sentence length (left) and publication year (right) for a
typical run.

and vice versa. The two data sources show a large difference in vocabulary and spelling, because
Nederlab contains OCR errors while DBNL does not, and because the time span of DBNL is very
large while Nederlab data originates mostly from the first half of the 18th century. The influence
of the data sources is examined in further experiments, as mentioned in Section 4.2 and discussed
further in Section 7.

6.2.4 Analysis of individual sentences

Detailed inspection of individual misclassified sentences shows a number of potential causes for
error. Sentences (9) and (10) show false positives18. Sentence (9) shows a modal construction using
three verbs, which is not considered an example of have-doubling although it shares some similarities
(notably a present tense form of have combined with a past participle had). However, in this case the
complement of gehadt is not another past participle, but the noun phrase de Papieren van Butkens
(the papers of Butkens). Note that, because this is not a form of have-doubling, the participle gehadt
is present in the example, whereas in the training set used to construct the classifier the word gehadt
and any of its variants has been stripped from have-doubling constructions. The presence of this
token therefore is unlikely to have influenced the decision of the classifier, however the similarities
in the context may have been sufficient to result in a false positive classification. Indeed a test in
which this sentence is presented to the classifier with and without gehadt shows that in both cases
the sentence is classified as (false) positive. Another factor which might make (9) be misidentified
as have-doubling is that it is an irrealis, as shown by the presence of the auxiliary zoude ‘would’.
Have-doubling constructions are thought to be particularly frequent in the irrealis (e.g. (Kern 1912,
p. 290)).

The source of Sentence (10) is a song book from 1745 taken from DBNL. This is relatively
late compared to true positive examples of have-doubling from DBNL (see Figure 1). The modern
spelling of the participle gedaan (done) contrasts with the spelling gedaen from earlier sources. The
modern spelling is relatively more prevalent in the Nederlab part of the data (gedaan constitutes
45% of occurrences of gedaen/gedaan) vs. the DBNL part (28% gedaan). Because the Nederlab part
provided only positive examples, the classifier may be biased towards classifying modern spelling as
a case of have-doubling, although this effect is partly counterbalanced by the fact that a significant

18. For presentation purposes only the relevant phrases from the full sentences are shown.
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part of the negative examples (from DBNL) is also modern19. In order to prevent (or at least
discover) this kind of false positive error it will therefore be useful to take such domain knowledge
into account, for example by postprocessing classification results using publication year as a factor.
Note that while this particular error may be an example of dataset bias, in general the source of the
examples does not appear to be a significant source of bias, as discussed in Section 7.

Sentence (11) is an example of false negative prediction. Sentence (11) contains the participle
getemoigneert, which is a French loan word that occurs only two times in the entire dataset. There-
fore, it is unlikely that the classifier can identify this word as a participle and therefore as part of
a have-doubling construction. A pattern-based POS-tagging approach, or for example using sub-
word units, may prove useful to improve performance for such low-frequency vocabulary items (see
Section 7 for further discussion).

(9) Aangaande
Regarding

de
the

Papieren
papers

van
of

Butkens,
Butkens,

die
that

ouwendijk
ouwendijk

zoude
should

gehadt
had

hebben
have

Regarding the papers of Butkens, that Ouwendijk supposedly had had
(10) ook

also
eenige
some

daar
there

je
you

een
a

Wys
melody

op
on

zult
should

moeten
must

maken,
make,

zo
so

als
as

ik
I

gedaan
done

heb
have

Also some to which you have to make a melody, as I have done
(11) dat

that
sijn
his

ongenoege
disapproval

aan
to

dien
the

commissaris
commissioner

hadde
had

getemoigneert
communicated

gehadt
had.

that he had communicated his disapproval to the commissioner

Note however that the analysis presented in this section is predicated on a syntactic interpre-
tation of the patterns and generalizations learned by the Logistic Regression classifier. While such
an interpretation is potentially valid, the possibility should be taken into account that the clas-
sifier operates on a different level entirely, and an apparent correlation with syntactic patterns is
coincidental. Further feature and error analysis is needed to establish the validity of the current
interpretation.

7. Discussion and future work
The results of the experiments show that simple models such as Naive Bayes and Logistic Regression
perform better than more complex models such as neural networks and principal components analysis
on the task of have-doubling prediction on the Shared Task dataset. For the LSTM networks this
can be explained partly by the word embedding approach. The pre-trained embeddings performed
the worst of all classifiers, which is likely to be caused by the high out-of-vocabulary rate of this
set of embeddings (68%). A more extensive set of embeddings may improve the performance of this
approach. Alternatively, subword embeddings (Bojanowski et al. 2017) and approaches incorporating
byte-pair encoding (Devlin et al. 2019) may be able to overcome the issue of out-of-vocabulary words,
although for the current dataset these approaches are not expected to result in large performance
improvements given the small amount of data. Allowing the pre-trained embeddings to be adapted
during training did improve performance, but compared to the fully on-the-fly trained embeddings
the pre-trained embeddings did not offer any additional accuracy. While the embeddings that were
trained on-the-fly on the Shared Task data showed the highest performance of the LSTM models (0.73
accuracy), this model was still significantly worse than the simple models. This is likely to be caused
by the small size of the dataset, which does not provide sufficient context for computing accurate

19. A test that presented two versions of this sentence to the classifier with different spelling of gedaan did not show
the assumed bias towards the modern spelling. However, the other words in the sentence are also spelled in a
modern way, which may be responsible for the prediction error. No further spelling changes were tested, in order
to avoid creating a fully artificial example.
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word embeddings. Furthermore, even though the results obtained with 10-fold cross-validation were
stable in repeated experiments, the individual folds did show considerable variation. This provides
additional indications that the dataset is too small to allow for training a robust LSTM model. The
results of the separate experiments for the DBNL part of the data reinforce this explanation, with
consistently lower scores for the smaller dataset.

As noted in Section 4.2 the selection of negative examples and the distribution of sentence length
and time period may influence classifier behavior, i.e., the data characteristics may cause the classifier
to recognize the biased variables instead of the actual have-doubling constructions. However, the
results of additional experiments that controlled for these variables indicate that the classification
algorithms are robust to the amount of bias on the data. The experiment on only DBNL data
showed some performance drop for each classifier, which is expected when the amount of training
data is reduced by 50%, but the performance remains clearly above chance levels by a wide margin.
In the condition of equal sentence length all models regain some performance for the DBNL set.
This is expected given that the window is generally shorter than the original sentence and more
focused on the have-doubling context with a much reduced presence of unrelated other verbs and
clauses. More importantly, however, it indicates that sentence length is not used as a spurious proxy
for have-doubling classification. Interestingly, the window effect is much less pronounced for the full
dataset, with only improvement for two LSTM variants and a marginally decreased performance for
the other models. The differences are however rather minor, so these results do not point towards
a bias effect for sentence length. Also for the RatVec approach, while some sentence length and
dataset bias was observed in the error analysis, the results of the additional experiments show that
this method still has discriminative power for have-doubling constructions when the bias variables
are controlled.

Considering the performance differences between the Utrecht approach and the RatVec system,
the Principal Component Analysis approach in the RatVec system was trained on the CGN, which
is rather different from the language used in the historical, written sources of the Shared Task.
Training on a different, more closely related corpus (such as Letters as Loot (Rutten and van der
Wal 2014)) is likely to result in improved performance.

None of the proposed models provide straightforward ways to explain the predictions of the
classifier, limiting the possibilities of gaining linguistic insights from the models. However, feature
and error analysis has shown a possible linguistic approach of analyzing the examples of have-
doubling based on classifier results. In future work post-hoc explainability (such as Štrumbelj and
Kononenko (2014)) or intrinsically explainable models such as decision trees or bayesian networks
could be investigated to implement this aspect as envisaged by the Shared Task organizers.

As have-doubling is highly infrequent in corpora, this may make it less suitable as a linguistic
phenomenon to be analysed by current computational linguistic means. However, despite the lack
of data the best model in the current experiments reaches up to 80% accuracy. The CLIN30 Shared
Task has therefore provided a first step in analyzing have-doubling computationally, which may help
further research to address the final 20%.
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