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Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) has been associated with multiple health
effects. Mechanistic studies using metabolomics
could provide supporting evidence for such
associations by identifying relevant biological
pathways. In this study, we investigated meta-
bolic perturbations in a cohort of TCDD
exposed workers to better understand TCDD
related health effects. Eighty one workers who
had been exposed to TCDD in the past and 63
nonexposed workers were included in the study.
Serum metabolites were detected using ultra
high pressure liquid chromatography coupled
online to a Q-TOF Premier mass spectrometer
with a scan range of 70–1,000 m/z. Current
plasma levels of TCDD were determined by
high-resolution gas chromatography/isotope dilu-
tion high resolution mass spectrometry. TCDD
blood levels at the time of last exposure were
estimated using a one-compartment first order
kinetic model. Differentially expressed metabo-

lites were identified using linear regression mod-
els, partial least squares regression (PLSr) and a
regression-based Bayesian variable selection
approach. Features that were present in all
quality control samples and had a coefficient of
variation <30% were included in the analyses
(n 5 421 features). Adjusted linear regression
analysis showed several significant perturbations
(n 5 27; P < 0.05) but these observations did
not survive multiple testing correction (q value >
0.05). PLSr analyses and Bayesian variable
selection regression analyses revealed no
obvious metabolic perturbations associated with
TCDD levels. This is the first metabolomic analy-
sis related to TCDD exposure in humans. No
significant metabolic features were identified. It
is concluded that TCDD exposure at levels pres-
ent in this study does not lead to significant
perturbations of the serum metabolome. Environ.
Mol. Mutagen. 54:558-565, 2013. VC 2013
Wiley Periodicals, Inc.
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INTRODUCTION

Over the past 30 years, several studies reported on the

adverse health effects of exposure to 2,3,7,8-tetrachlorodi-

benzo-p-dioxin (TCDD), a persistent environmental con-

taminant generated as an unwanted by-product of

numerous chemical reactions involving chlorine com-

pounds. It produces a broad spectrum of effects on human

organs including the skin, liver, reproductive, nervous,
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hematopoietic and immune system [IARC, 1997]. More-

over, based on animal and human epidemiology data,

TCDD was classified by the WHO’s International Agency

for Research on Cancer (IARC) as a “known human

carcinogen.” This spectrum of toxicities is known to be

mediated via its binding to the aryl hydrocarbon receptor,

a specific intracellular protein expressed by major cell

types of the immune system [Marshall and Kerkvliet,

2010].

Recently, comprehensive analysis of endogenous small

molecules (metabolites) present in cells, tissues, organs,

and biological fluids commonly referred to as metabolo-

mics has found broad application in the identification of

markers of exposure and disease. Such analyses may aid

in our understanding of disease mechanisms and the

effects of toxicants on the biological system as metabolic

markers result from a complex interplay among gene

expression, protein expression, and the environment [Kad-

durah-Daouk and Krishnan, 2008]. Recently, animal and

in vitro studies have shown metabolic changes in lipid

accumulation, fatty acid beta-oxidation, inflammation and

alteration of amino acids and phase II drug-like metabo-

lism related to TCDD exposure [Lin et al., 2011; Ruiz-

Aracama et al., 2011].

The aim of the current study was to investigate pertuba-

tions in the serum metabolome possibly related to TCDD

exposure in a retrospective cohort of Dutch workers, part

of the IARC multinational study of workers exposed to

chlorophenoxy herbicides, chlorophenols and dioxins

[Bueno de Mesquita et al., 1993; Kogevinas et al., 1997;

Hooiveld et al., 1998; Boers et al., 2010]. We previously

found evidence for several health effects associated with

TCDD exposure including mortality from all causes, ische-

mic heart disease, and non-Hodgkin’s lymphoma (NHL)

within this population [Boers et al., 2012].

MATERIAL ANDMETHODS

Study Population

The cohort study design and exposure assessment have been previ-

ously described in detail [Bueno de Mesquita et al., 1993; Hooiveld

et al., 1998; Boers et al., 2010]. The cohort consists of workers from

two chlorophenoxy herbicide producing factories. Current analyses uti-

lized a subset of workers from factory A (n 5 92) who were exposed to

TCDD as a byproduct of production of 2,4,5-trichlorophenoxyacetic acid

and 2,4,5-trichlorophenol during 1953 to 1969, and/or during an occupa-

tional accident in 1963 and a random sample of workers from factory B

(n 5 78) who were not exposed to TCDD. In factory B, the main prod-

ucts were 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-chloro-2-

methylphenoxy propanoic acid (MCPP), and 2,4-dichlorophenoxyacetic

acid (2,4-D). These compounds are unlikely to be contaminated with

TCDD, but can be contaminated with other chlorinated dioxins including

dichlorodibenzo-p-dioxins and hexachlorodibenzo-p-dioxins. All study

subjects were male. The study was conducted with the approval of the

Medical Ethics Committee of the University Medical Center Utrecht, the

Netherlands and written informed consent was obtained from each study

subject after the study was explained. Participants were asked to com-

plete a self-administered questionnaire, which included questions on

occupational history, personal medical history, medication used in the

weeks prior to the blood collection, anthropometric characteristics,

smoking status and alcohol intake. Blood plasma samples were collected

according to a standard protocol during home visits between May 2007

and September 2008 [Boers et al., 2012; Saberi Hosnijeh et al., 2012].

ExposureMeasurements

Heparin plasma samples of all subjects were analyzed for TCDD, at

the Centers for Diseases Control and Prevention (CDC; Atlanta, USA)

using high-resolution gas chromatography/isotope-dilution high-

resolution mass spectrometry. Results were lipid adjusted and reported

as parts per trillion (ppt) [Patterson et al., 1991]. TCDD is highly persis-

tent with a long half-life in blood and human tissues. As we measured

current levels of TCDD (TCDDcurrent) �35 years since last exposure

(lag), a one-compartment first order kinetic model with a TCDD half-

life (t1/2) of 7.1 years was used to estimate TCDD blood levels at the

time of last exposure (TCDDmax) [Saberi Hosnijeh et al., 2011; Boers

et al., 2012; Saberi Hosnijeh et al., 2012]:

TCDDmax5background1ðmeasured TCDD

2backgroundÞ3expðln ð2Þ3lag=t1=2Þ

Current TCDD levels and estimated maximum TCDD levels were

subsequently used to investigate exposure-response relations between

TCDD levels and serum metabolites.

Serum ion Metabolites

Sample Preparation

Nearly 60 ll of cold MeOH was added to 20 ll of each serum sam-

ple and after vortexing, incubated overnight in 220�C. The samples

were centrifuged and 35 ll of the supernatant were mixed with 25 ll of

the standard mix. The standard mix consisted of Methionine C13, Trypt-

amine D4, Phenylalanine C13, Hippurate D2 and Acetylcarnitine D3.

Nearly 20 ll of each sample were pooled and mixed to make the quality

control (QC) sample.

Chromatography

The samples (5 lL) were injected onto a 2.1 3 100 mm2 (1.7 lm)

HSS T3 Acquity column kept at 50�C (Waters, Milford, MA) and eluted

using a 27 min gradient of 99.5% A to 99.5% B (A 5 water, 0.1% for-

mic acid; B 5 acetonitrile, 0.1% formic acid), with the last 4 min as

column re-equilibration. Samples were analyzed using an ultra high pres-

sure liquid chromatography (UPLC) system (UPLC Acquity, Waters,

Elstree, UK) coupled online to a Q-TOF Premier mass spectrometer

(Waters MS Technologies, Manchester, UK).

Mass Spectrometry

The mass spectrometer was operating in positive electrospray mode

(ESI) with a scan range of 70–1,000 m/z. ESI conditions were as fol-

lows: source temperature 120�C, desolvation temperature 350�C, desol-

vation gas flow 800 L h21, capillary voltage 3 kV, sample cone

voltage 10 V. Mass spectrometric conditions were optimized through

direct infusion of available BA standards. The Q-TOF Premier was

operated in V optics mode with scan time of 0.5 s and an interscan

delay of 0.1 s. A solution of 200 pg lL21 (50:50 acetonitrile: water)

leucine enkephalin (m/z 556.2771) was used as the lock mass. Data

were collected in centroid mode. The paired samples were analyzed

consecutively in two batches. The QC sample was injected regularly

throughout the run (after every six samples) to assess the stability of

the analytical platform.
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Data Extraction

Visual inspection of the chromatograms showed good retention time

and intensity reproducibility up to 13 min where the lipids that could

not be washed of the column were accumulated (Fig. 1).

Data Normalization

DataBridge tool, implemented in MassLynx4.1 software (Waters), was

used to export the raw data in netCDF format. Data processing was per-

formed using XCMS software. As the peak-picking algorithm “Centwave”

was chosen, and the peak width for the peak picking was set to values 3–20

sec [Veselkov et al., 2011]. Different data pretreatment methods (i.e., Nor-

malization of the data to the total area, median fold change normalization,

pareto scaling, log transformation, and feature-wise normalization) were

tested on the data set. Finally, a feature-wise normalization was performed

in which the average intensity for every feature on the QCs of each batch

was calculated and the corresponding intensities of each sample in that

batch were divided with this value. The two batches were analyzed sepa-

rately using the exact same parameters and then the results “stitched” in a

single table. For further analysis of the data we used the features that were

present in all the QC samples and had a coefficient of variation (CV) <30%

(n 5 421 features).

Statistical Analysis

Individual TCDD levels which were below the limit of detection

(exposed workers n 5 30, nonexposed workers n 5 45) were imputed

using a maximum likelihood estimation method previously described

[Boers et al., 2012]. TCDD measures were log-transformed as measured

levels appeared to follow a log-normal distribution. Differences in con-

tinuous and categorical parameters between exposed and nonexposed

subjects were tested using a two sample t test and chi-square test,

respectively.

Differentially expressed metabolites were identified using linear

regression analysis of the relation between log-transformed TCDD

(as the independent variable) and individual metabolites (as dependent

variable), adjusted for potential confounders body mass index (in kg

m22; continuous variable); alcohol intake (unit/week; continuous vari-

able), smoking status (categorical variable), medication (categorical vari-

able), and chronic and acute medical conditions (categorical variables).

P values were calculated using a Wald test and corrected for multiple

testing using the positive false discovery rate (pFDR) approach [Storey,

2003]. The pFDR has been defined as the conditional FDR given that at

least one hypothesis is rejected. Calculated q values are a measure of

significance related to the proportion of false positive findings.

Partial least squares (PLS) regression [Mevik and Wehrens, 2007], a

dimension reduction technique, was used to find the latent variables

formed by linear combination of predictor variables that maximize the

covariance between these latent variables and the response variable(s).

We used leave-one-out cross-validation to estimate the optimal number

of latent variables (components) to create. Predictor variables (metabo-

lites) were mean-centered and scaled before PLS regression analyses. In

addition a regression-based Bayesian variable selection with spike-and-

slab priors of (nonlinear) generalized additive models [Scheipl et al.,

Fig.1. Base peak ion chromatograms of quality control samples of both batches, showing good retention time and inten-

sity reproducibility. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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2012] was used to (1) choose an appropriate subset of potential covari-

ates and their interactions, (2) to determine whether linear or more flexi-

ble functional forms are required to model the effects of the respective

covariates, and (3) to estimate their shapes.

As more than 50% of high and low exposed workers had a chronic

disease, analyses were also run using subjects free of chronic disease at

the time of blood draw as a sensitivity analysis. Moreover, analyses

were repeated for the exposed factory only (factory A).

Statistical analyses were performed using the R 2.13.2 language and

environment (The R Foundation for Statistical Computing, Auckland Uni-

versity, Auckland, New Zealand) and SAS 9.2 (SAS Institute, Cary, NC).

RESULTS

Characteristics of Participants

Out of 170 subjects, TCDD was measured successfully

in 165 workers. We excluded 16 subjects (seven workers

from factory A and nine from factory B) with a previous

cancer diagnosis (other than skin cancer) from the analy-

ses to remove the possibility that the metabolite profile

may have been changed due to malignant disease or med-

ications used. Five subjects with high amount of polyeth-

ylene glycol that can cause ion suppression were

excluded as well. This resulted in 144 subjects available

for analysis: 81 exposed workers from factory A and 63

nonexposed workers from factory B. Subject characteris-

tics are shown in Table I. Exposed workers were signifi-

cantly older than nonexposed workers. Distribution of

other covariates among exposed and nonexposed workers

was similar. More than 50% of exposed and nonexposed

workers suffered from chronic diseases such as diabetes,

cardiovascular diseases and hypertension. Geometric

mean (GM) and geometric standard deviation (GSD) lev-

els of TCDDcurrent and historical maximum exposure

(TCDDmax) were significantly higher in exposed workers

(TCDDcurrent: 2.09 6 6.74 ppt; TCDDmax: 29.91 6 34.22

ppt) compared to presumed nonexposed workers

(TCDDcurrent and TCDDmax: 0.44 6 5.13 ppt).

Metabolite Data

Pairwise (Pearson) correlations between the 421 differ-

ent metabolite levels were generally modest (Fig. 2), with

over 80% of the correlations below 0.2 and only 5%

exceeding 0.4.

Dimension Reduction and Variable Selection Results

Linear regression models adjusted for covariates did not

reveal any obvious candidates as illustrated by the flat

P value distribution (Fig. 3). Although, 27 features were

identified to be associated with current TCDD level using

an adjusted linear regression model, these features were

not significant after pFDR adjustment (Table II). Cross-

validation of the PLS regression model resulted in a

single-component model that explained 24% of the varia-

tion in log-transformed TCDD levels (Fig. 4). However,

the loading plot (Fig. 5) indicates that the PLS regression

did not result in a model with clear single metabolite

effects, but rather indicates general higher metabolite levels

TABLE I. General Characteristics of Exposed and Nonexposed Workers

Exposed (n 5 81) Nonexposed (n 5 63) P valuea

Age (years)b 69.03 (7.65) 59.54 (9.30) <0.0001

Body mass index (kg m22)b 26.94 (3.00) 26.95 (3.60) 0.99

Alcohol intake (units/week)b 13.58 (13.43) 14.37 (15.32) 0.74

Smoking status, N (%) 0.92

Current smoker 18 (22.2%) 15 (23.8%)

Former smoker 49 (60.5%) 36 (57.1%)

Never smoker 14 (17.3%) 12 (19.0%)

Skin cancer, N (%) 6 (7.4%) 2 (3.2%) 0.27

Infectious disease in the past 4 weeks, N (%) 7 (8.6%) 5 (7.9%) 0.88

Chronic disease, N (%)c 43 (53.1%) 27 (42.9%) 0.22

Chronic inflammatory disease, N (%)d 20 (24.7%) 15 (23.8%) 0.90

Medication, N (%) 0.27

Immunosuppressant 7 (8.6%) 2 (3.2%)

NSAIDs 20 (24.7%) 12 (19.0%)

Antibiotics 0 1 (1.6%)

TCDDcurrent (ppt)e 2.09 (6.74) 0.44 (5.13) <0.0001

TCDDmax (ppt)f 29.91 (34.22) 0.44 (5.13) <0.0001

aP values from t tests for continuous variables and X2 tests for categorical variables.
bMean (standard deviation); NSAIDs: nonsteroidal anti-inflammatory drugs.
cChronic diseases included: diabetes, coronary heart disease, and hypertension.
dChronic inflammatory diseases: chronic obstructive pulmonary disease, psoriasis, sarcoidosis, asthmatic bronchitis, rheumatoid arthritis, liver failure,

Crohn’s disease, fibromyalgia and allergy.
eCurrent levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDDcurrent) parts per trillion, geometric mean (geometric standard deviation).
fEstimated maximum levels of TCDD (TCDDmax) parts per trillion, geometric mean (geometric standard deviation).
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in exposed workers. The Bayesian variable selection

approach (unadjusted) suggested that linear component of

one feature (m/z feature of 381.28) was related to TCDD

exposure [marginal posterior inclusion probabilities P
(gamma 5 1) 5 0.263, term importance (pi) 5 0.067,

level of significance > 0.25] (data not shown). However,

the model adjusted for all covariates showed no significant

(non)-linear effects in measured metabolites either.

Sensitivity analyses among exposed workers from fac-

tory A only, among subjects without chronic disease only,

and models with estimated TCDD blood levels at the time

of last exposure (TCDDmax) showed overall similar results.

DISCUSSION

TCDD is the most toxic form of dioxins which has been

comprehensively examined in multiple acute, subchronic,

and chronic animal and human studies. It can cause repro-

ductive and developmental problems, damage the immune

system, and interfere with hormones [IARC, 1997]. More-

over, TCDD is carcinogenic in experimental animals, but

has not been conclusively proven to cause cancer in humans.

As such, evidence for a carcinogenic effect in humans has

remained controversial [Boffetta et al., 2011].

In this study we looked at perturbations in metabolic

profiles of TCDD exposed workers to provide more

insight in the disease and exposure processes. The

exposed subjects in our study are among the highest his-

torically exposed occupational individuals, based on

back-extrapolated blood TCDD concentrations, and

Fig. 2. Heatmap showing the pairwise Pearson correlations between different metabolites.

Fig. 3. P value distribution of adjusted generalized linear regression

models for TCDD blood level in relation to m/z features. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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certainly higher than levels that have been found in envi-

ronmental settings. This is the first study in humans, to

our knowledge, that evaluated the patterns or finger-

prints of metabolites in response to TCDD exposure.

Screening with linear regression analysis did show some

significant perturbations (P < 0.05) but these did not

survive multiple testing correction (q values > 0.05).

Application of two complementary statistical methods

namely PLSr and regression-based Bayesian variable

selection did not reveal any obvious targets as well,

except an indication of higher metabolite levels in

exposed workers in PLSr analyses. However, it should

be note that these analyses were unadjusted for con-

founder variables which cannot be directly done in PLSr

analyses. Although our study did not show significant

changes in measured features in relation to TCDD blood

levels, several animal and in vitro studies have shown

metabolic changes of TCDD toxicity. A recent animal

study that evaluated the toxic effects of TCDD using

metabolite profiling of blood samples of AhR sensitive

mice showed a variety of metabolic shifts in pathways

of lipid accumulation, fatty acid beta-oxidation, inflam-

mation and alteration of amino acids and phase II drug-

like metabolism [Lin et al., 2011]. Another in vitro

Fig. 4. Regression of log-transformed TCDD levels on the estimated

latent variable from a single-component PLS model that explains 24.6%

of the variation in log-transformed TCDD levels between individuals.

TABLE II. Mean and Standard Deviation of Log-Transformed TCDD Levels for Exposed and Nonexposed Workers and
Adjusted Linear Regression Slope Estimates for the Relation Between Individual m/z Features and Log-Transformed TCDD
Blood Levels and Corrected P Values

Mean (standard deviation)

m/z feature Retention time Exposed Nonexposed Estimatea P value pFDR; Q value

426.3317 642.709 0.839 (1.551) 0.798 (1.795) 20.364 0.0004 0.4657

373.2862 642.7964 0.936 (1.653) 0.792 (1.601) 20.32 0.0023 0.4657

511.336 464.4749 1.158 (0.492) 0.984 (0.228) 1.097 0.0038 0.4657

445.2994 446.8566 1.046 (0.340) 0.962 (0.244) 1.418 0.0054 0.4657

525.3186 378.8389 0.899 (0.157) 0.886 (0.106) 3.142 0.0057 0.4657

489.3256 458.9924 1.106 (0.413) 0.980 (0.228) 1.174 0.0080 0.4657

467.3123 453.1441 1.082 (0.377) 0.963 (0.233) 1.232 0.0095 0.4657

209.9357 1432.553 0.985 (0.119) 0.996 (0.101) 3.439 0.0108 0.4657

302.2439 510.5203 1.205 (0.868) 0.867 (0.668) 20.488 0.0111 0.4657

401.2803 433.2547 1.050 (0.313) 0.951 (0.208) 1.428 0.0111 0.4657

520.3628 378.8389 0.928 (0.150) 0.905 (0.086) 3.057 0.0131 0.4657

696.4804 417.6791 1.005 (0.255) 0.939 (0.168) 1.707 0.0135 0.4657

564.3918 389.7549 0.945 (0.171) 0.918 (0.107) 2.553 0.0148 0.4657

653.4544 409.1598 0.980 (0.222) 0.946 (0.158) 1.895 0.0154 0.4657

565.396 389.7549 0.944 (0.168) 0.911 (0.110) 2.466 0.0189 0.4805

609.4255 399.7146 0.956 (0.201) 0.920 (0.135) 2.04 0.0197 0.4805

608.4216 399.714 0.969 (0.199) 0.919 (0.129) 2.071 0.0201 0.4805

652.4506 409.1605 0.987 (0.230) 0.924 (0.156) 1.774 0.0207 0.4805

569.3483 389.7549 0.944 (0.177) 0.888 (0.115) 2.347 0.0230 0.4805

740.5136 425.5416 1.003 (0.283) 0.954 (0.228) 1.339 0.0236 0.4805

327.2289 361.8583 0.036 (0.092) 1.109 (5.819) 20.093 0.0239 0.4805

521.3669 378.8389 0.917 (0.153) 0.900 (0.088) 2.657 0.0277 0.5271

357.2933 749.3755 0.949 (0.925) 1.023 (1.078) 20.351 0.0288 0.5271

461.2917 708.3252 0.854 (0.122) 0.911 (0.141) 22.508 0.0318 0.5582

309.0766 1431.932 0.951 (0.306) 0.958 (0.136) 1.316 0.0358 0.6036

488.2906 900.2296 1.114 (0.270) 0.596 (0.387) 20.978 0.0384 0.6226

586.2607 1105.999 0.921 (0.517) 0.837 (0.306) 20.716 0.0480 0.7492

Features with P value <0.05 have been shown.
aLinear regression models adjusted for factory, age, body mass index, chronic disease, chronic inflammatory disease, infectious disease, medication,

smoking status, and alcohol intake; statistical significance of the slope estimates (P value) was determined using a Wald test and was used to calcu-

late corrected P values (Q values) according to the positive false discovery rate (pFDR) approach.
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study on liver cell line HepG2 exposed to TCDD also

showed changes in the general metabolism of these

cells, which involved fatty acids, amino acids and nucle-

otides [Ruiz-Aracama et al., 2011]. We did not confirm

such perturbations in humans exposed to TCDD.

Typically samples show high variability in metabolite

concentration, and the derived metabolic profiles by

UPLC/MS method have a heteroscedastic noise structure

characterized by increasing variance as a function of

increased signal intensity. These sources of experimental

and instrumental noise substantially complicate informa-

tion recovery when statistical tools are used [Veselkov

et al., 2011]. Our metabolite data had a good reproduci-

bility up to 13 min in the chromatograms. Moreover, we

used different normalization approaches to reduce the sys-

tematic variation and only features with a coefficient of

variation <30% were used in the final analyses. As such

data quality does not seem to be the reason for an

absence of any obvious metabolic pertubations.

Our study had some limitations. First, workers with rel-

atively high exposures may have died or been unable to

participate, which might have led to selective survival

bias in our results. Second, we assumed a single one-

compartment first-order kinetic model for all workers.

However several publications have reported that elimina-

tion of TCDD is more consistent with a two-compartment

model, with a rapid elimination for high body concentra-

tions in the first 3 years followed by a slower elimination

[Michalek et al., 2002; Aylward et al., 2005]. We had no

data available in our cohort to investigate elimination

speed. Therefore, for simplicity and because of its wide-

spread use, we used a first order kinetic model. Moreover,

exposed workers were not closely matched to the non-

exposed workers with regard to age. Although analyses

were adjusted for age, some residual confounding might

have remained due to changes in the levels of exposure,

changes in life-style and differences in work setting.

However, internal analyses among exposed only (Factory

A), where age differences were minimal, did not reveal

any effect either hinting that the age difference between

exposed and unexposed subjects did not cloud the analy-

ses. We allowed metabolic features with a coefficient of

variance <30% into the analyses. This choice was based

on an attempt to strike a balance between avoiding inclu-

sion of metabolic features that are too noisy and thereby

possibly weakening the ability to detect significant (other)

findings and being overly conservative. Finally, as

changes in metabolite concentrations are minimal and the

levels within an individual vary over time, sufficient bio-

logical samples and repeated experiments are essential for

reliability (in terms of statistical analysis) and to detecting

relatively small differences in analyte concentrations. We

can therefore not exclude that we missed minor biological

perturbations due to the relatively small study size.

In conclusion, no significant TCDD related pertubations

were identified in this study. However, future studies

should extend on the current database and to potentially

replicate some of the suggestive metabolic findings of

this study.
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