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Chapter 1

Introduction

Optimal control problems are a classical topic whose wide range of applicability continues
to grow [12, 116, 76, 16, 10, 104, 21, 75, 125]. In economic markets, business people try to
control the cost of products to maximize their benefits. For the issue of natural resources
protection, governments have to make optimal policies on how to utilize natural resources
to relieve the huge demand for consumption with increasing population, which is becom-
ing very urgent [80, 47]. In robotics technology, engineers try to reduce the uncertainties
arising from limited knowledge to direct robot behaviors [87, 13]. In multi-agent systems
(e.g Cucker-Smale model), scientists try to find sparse controls to nudge the dynamics into
a coordinated state [124, 7] when a system does not self-organise spontaneously. Even in
weather prediction, when the weather models or the observations are imperfect, geosci-
entists apply optimal control techniques to improve state estimates through minimising
the error covariance cost [94, 63]. However, in general, solving optimal control problems
is a complex computation issue as many times there are no analytical solutions. In this
thesis, we study a numerical algorithm to solve optimal control problems and apply it in
two distinct applications: sparse control of Cucker-Smale dynamics and data assimilation
via a particle filter.

Optimal control theory

An optimal control problem consists of a cost functional related to the state and control
functions (of time) and a set of differential equations describing the controlled dynamics.
And the optimal control problem is to find a best control functional to minimize the cost
functional under the constrained dynamics.

Since the solutions to many optimal control problems cannot be found by analytical means,
many numerical methods have been developed to solve general optimal control problems.
The numerical methods are classified into two categories, which are direct methods and
indirect methods. Direct methods use the discretize-then-optimize approach in which one
discretizes the original optimal control problem to obtain a nonlinear discrete problem
to be solved numerically by well-established optimization methods. Especially, either the
state or the control, or both, will be approximated by using some appropriate functions
such as piecewise linear functions.

Indirect methods (optimize-then-discretize) employ the calculus of variations to obtain
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the first-order optimality conditions [104], [27], [85]. These involve applying Pontryagin’s
maximum principle (a necessary condition for optimality) or the Hamilton-Jacobi-Bellman
equation (a sufficient and necessary condition). For the Pontryagin principle, this yields
a two-point boundary-value problem which arises from the derivative of a Hamiltonian
function. In the end, the resulting dynamical system becomes a Hamiltonian system,
which includes a state equation and co-state equation, as well as an optimization prob-
lem or a constraint. The resulting system of forward-backward equations is subsequently
discretized and solved.

There are many numerical algorithms to solve the two-point boundary-value problem.
Among the algorithms, the forward-backward sweep (FBS) method is easy to be imple-
mented and advantageous with respect to memory use. However, the forward-backward
sweep method for the Pontryagin maximum principle is not generically convergent for
nonlinear dynamics [82].

Cucker-Smale model

It is a common phenomenon that some birds such as starlings will aggregate into huge
flocks with hundreds to thousands of individuals. After flying for a period, they will fly in
the same direction even the initial state is chaotic. This phenomenon is called “flocking”
in which birds (more generally “agents”) are self-organised into an ordered behavior from
a disordered state effected by their neighbours’s motion. The flocking phenomenon is very
common in nature, for example the shoaling behavior of fish [96], the swarming behavior
of insects.

Recently, especially with the computer technology highly developed, many agent-based
models are proposed to study the flocking behavior. In 2007, Cucker and Smale proposed a
mathematical model named Cucker-Smale model (C-S model) [32, 33] which concentrates
on the alignment of agents’ velocities. The C-S model makes use of a communication
weight that depends on the metric distance between agents. Cucker and Smale indicated
that the model exhibits a kind of phase transition phenomenon between the local flock-
ing and global flocking depending on the decay rate of the communication weight. The
main result in [32] about the Cucker-Smale model can be summarized that under certain
parameter conditions, the agents reach uniform velocity regardless of the initial condi-
tions, whereas under other parameter conditions, the initial velocities and the positions
of the flock have to satisfy certain compatible conditions so that all agents can converge
to uniform velocity asymptotically.

In recent years, the Cucker-Smale model has attracted much attention as a toy model for
attempts at influencing or controlling self-organization in complex systems. The paper
[106] investigated the flocking behavior of an extended Cucker-Smale model with hierar-
chical leadership. The paper [56] provided a simple model for Cucker-Smale model and
derived some conditions for reaching exponential flocking. In [91] the authors proposed an
augmented Cucker-Smale model by introducing inter-agent bounding forces. The paper
[107] proposed two Cucker-Smale models by introducing cohesive and repulsive forces.
In [46] the authors studied sparse control in the Cucker-Smale model. Similiarly, [20]
consider consensus stabilization for the Cucker-Smale model by two kinds of controls:
feedback control and open-loop, sparse optimal control. The paper [14] studies different
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variations of the feedback structure for consensus stabilization. In our thesis, we apply
the regularized forward-backward sweep method to studying the optimal control for the
Cucker-Smale model for different norms in the cost function.

In particular, sparse control is designed to model a minimal amount of intervention of
an external policy maker. To get optimal sparse control for the Cucker-Smale model, the
`1 norm is employed in the cost function to penalize the control. Applying the `1 norm
to minimize the control was introduced in [31] which studied models of linear fuel con-
sumption. The paper [117] studied the sparsity character with `1 norm in optimal control
problems. Employing `1 norm to enforce the sparsity of the controls is studied in many
other research works related to optimal control problems [24, 28, 29, 118]. However, the `1

norm is non-differentiable, which presents a challenge to finding the sparse solution.

Data assimilation

Data assimilation has been heavily developed in the field of numerical weather forecasting
(among others). Meteorologists try to employ all the available measurement data from
the atmosphere, e.g. temperature, pressure, velocity field observations, to attain a good
estimate of current weather conditions, which are in turn used as initial conditions in
weather prediction models. The initial step in weather forecasting is very crucial since
most weather prediction problems are chaotic dynamics and they are very sensitive to the
initial conditions.

In general, to estimate or predict the state of dynamical systems, we could just employ
state evolution models described by some initial value problems. However, in many cases,
the dynamic models are subject to structural errors from simplifications, assumptions, or
contain unknown parameters (including the unknown initial conditions). Alternatively we
could just use the observations which are usually made of a real-world system, to estimate
or predict the whole state. However, in many situations, observations are sparse, incom-
plete (i.e. of lower dimension than the full state) and imperfect versions of reality. Hence,
two different kinds of errors will be caused [94]: (i) ”model error” which is the difference
between the computational model and the real dynamic system. (ii) ”measurement error”
which is unavoidable in the observation measure process. Therefore, how to minimise the
impact of the error to obtain a best estimation or prediction is the main purpose of data
assimilation.

Data assimilation is a technique that combines dynamic models and observational data
to obtain an optimal estimation or prediction of the real state of a system. Since it can
improve the accuracy of the estimate of the state, data assimilation has been widely used
in many areas [70, 45, 95, 99].

Data assimilation methods utilize a forecast (also known as the first guess, or background
information) based on a dynamic model, then adjust the forecast value based on a set of
observed data and estimated errors. The difference between the forecast state and obser-
vation is called innovation or departure. Data assimilation techniques are classified into
two categories, [15]: (i) sequential data assimilation, which involves an analysis process
through combining the dynamic model and observations at successive times and updating
the estimation when new observations are obtained, for example the Kalman filter [121],
extended Kalman filter, ensemble Kalman filter [43], and particle filters[23]. (ii) Varia-
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tional data assimilation minimize the covariance error cost over a fixed time interval, for
example three dimensional variational data assimilation (3D-Var) [30], four dimensional
variational data assimilation (4D-Var) [63]. We will explain these in more detail in the
next chapter.

In this thesis, in Chapter 2, first, we present some background material for the succeeding
chapters. We start with basic theory about optimal control theory and symplectic inte-
grators. Subsequently, we introduce the Cucker-Smale model in detail. Then, some basic
data assimilation algorithms will be presented. In Chapter 3, we prove the convergence of
a regularised forward-backward sweep method when discretized with a symplectic Runge-
Kutta method. In Chapter 4, the augmented forward-backward sweep method is applied
to the Cucker-Smale model. As is known, the Cucker-Smale model is convergent (i.e. the
agent velocities converge to a uniform state) automatically under some parameter condi-
tions. In this chapter, we focus on the situation that the model is not convergent, such
that external forces, e.g. a control, are added in this model. We observe that the forward-
backward iteration converges rapidly when the 2-norm is employed in the cost, which is
convex and differentiable. However, the costs employing the 1-norm are more complex
to solve, but can be alleviated to some degree using a further regularization. In Chapter
5, we construct a new particle filter for data assimilation. The particle filter combines
an optimal control structure with a Wasserstein cost function. Hence, the augmented
forward-backward sweep algorithm from Chapter 3 is adapted to solve the particle filter.
The new particle filter is applied to estimate uncertainty due to noisy dynamics or noisy
measurements. In Chapter 6, we will present the conclusion for this thesis.
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Chapter 2

Preliminaries

In this chapter, some background knowledge is provided for the material in the following
chapters. In section 2.1, we discuss optimal control theory. Since the Hamiltonian structure
of the optimal control problem is relevant for its iterative solution, symplectic integrators
are explained in section 2.2. In section 2.3, the basic details of the Cucker-Smale model
are introduced. Finally, some background on data assimilation algorithms is presented in
section 2.4.

2.1 Optimal control problem

The state of the continuous system to be controlled is described by a vector x(t) : T → Rd,
where T = [0, T ] represents a time interval. The control function u(t) is an element of
the set of admissible controls u ∈ U ⊂ Rm,m ≤ d at time t. The motion of the system is
described by a differential equation

ẋ(t) = f(x(t), u(t)), x(0) = ξ (2.1.1)

where ẋ(t) is a commonly used notation for dx(t)
dt

, f : Rd × U → Rd is a given function,
and ξ ∈ Rd is the initial value for the state.

Considering the set of admissible controls U , we define the cost functional J : U → R
by

J [u] = Φ(x(T )) +

∫ T

0

h(x(t), u(t))dt (2.1.2)

where Φ : Rd → R is the cost at the terminal time and h : Rd×U → R is the running cost.
Furthermore, the functions Φ and h are also assumed to be continuously differentiable.
Since x(t) is the unique trajectory driven by a given control u which satisfies the initial
condition, the cost functional J depends on u. The optimal control problem is associated
with finding a control through minimizing (or maximizing) the cost functional J .

The optimal control u(t) may not exist, which means it may be impossible to find an
admissible control and associated admissible trajectory in (2.1.1). In this thesis, we try to
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find the optimal control rather than prove its existence. To ensure a unique state equation
x(t) given an admissible optimal control u(t) we assume the function f to be continuous
in the variables x(t) and u(t) and continuously differentiable with respect to x, i.e. the
functions f(x, u) and

fx =
∂f

∂x
(x(t), u(t))

are continuous [19, 67].

Hence under the above assumptions, if we know the initial condition and the control
trajectory u(t) over the whole time interval [0, T ], then we can integrate the differential
equation (2.1.1) to get the state trajectory x(t).

Considering simple optimal control problem examples [19]:

Example 1. A factory produces a good which could be sold or reinvested. At the very
beginning, the factory productive capacity is ξ > 0. At time t, the producing good is x(t).
To maximize the sales of the good, one part of the good is sold with fixed price P > 0 and
the rest of the good is reinvested. We introduce the fraction u(t) as the share of good sold.
Hence the cost function is ∫ T

0

u(t)x(t)Pdt

and the state dynamic is
ẋ = (1− u)x, x(0) = ξ.

Example 2. Supposing we know the initial point x(0) = a and the terminal time is T ,
we are trying to find a curve x(t) : [0, T ] → R for which length is minimal. The curve
function satisfies

ẋ(t) = u(t)

The length of the curve is calculated as∫ T

0

√
1 + u(t)2dt

In the following, to simplify the expressions, sometimes, we omit the time notation (t);
thus, x(t) will be written simply as x, u(t) will simply written as u. We mainly talk
about the case of minimizing the cost functional, which is similar to the maximum case.
Combining (2.1.1) with (2.1.2), we restate the optimal control problem as :

min
u∈U

Φ(x(T )) +

∫ T

0

h(x(t), u(t))dt,

subject to

ẋ(t) = f(x(t), u(t)), x(0) = ξ.

(2.1.3)

The admissible control u∗ ∈ U is called an optimal control if it satisfies

J [u∗] ≤ J [u], for all u ∈ U
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The associated x∗ is called the optimal trajectory or the optimal path. The optimal control
problem (2.1.3) is referred to as the Bolza form. If Φ = 0 in the cost functional, we say
the optimal control problem is in Lagrange form. We say the problem is in Mayer form if
h = 0 in the cost functional.

For the optimal control problems, there are some more complex forms like adding some
constraints on state or control [105, 76]. In this thesis, we are concerned with the ba-
sic optimal control problem in Bolza form, only involving (2.1.1)-(2.1.2) without extra
constraints on the states or the control and with initial time and final time fixed.

2.1.1 Calculus of variations and Pontryagin’s maximum princi-
ple

Optimal control theory follows from the calculus of variations [50, 52, 40] which is con-
cerned with the optimization of functionals and is a tool to derive necessary conditions for
the optimum. In this section, we will apply the calculus of variations on the cost function
of (2.1.2) subject to equation (2.1.1). To this end, the problem can be reformulated as
an unconstrained optimization problem by introducing the Lagrange multiplier function
λ(t) : T → Rd and the Lagrangian functional:

L = Φ(x(T )) + λT0 (x(0)− ξ) +

∫ T

0

h(x(t), u(t)) + λT (t)(ẋ(t)− f(x(t), u(t))) dt. (2.1.4)

The variation of (2.1.2) is given by taking independent variations in δu, δx, δλ, and

δL = DxΦ · δx|T +

∫ T

0

[Dx(h(x(t), u(t))− λTDxf(x(t), u(t))]δx

+[Du(h(x(t), u(t))− λTDuf(x(t), u(t))]δu

+λT δẋ+ [ẋ− f(x(t), u(t))]T δλ dt. (2.1.5)

The notation Dx, Du stand for the derivative with respect to x and u, resp. Integrating
by parts for

∫
λT δẋdt yields

δL = (DxΦ + λ) · δx|T +

∫ T

0

[−λ̇+Dx(h(x(t), u(t))− λTDxf(x(t), u(t))]δx

+[Du(h(x(t), u(t))− λTDuf(x(t), u(t))]δu

+[ẋ− f(x(t), u(t))]T δλ dt. (2.1.6)

At an extremum of L it holds that δL = 0 for all independent variations δx, δλ, δu. The
variational derivatives of the functional L with respect to the functions x(t), λ(t) and
u(t), denoted Lx, Lλ, Lu, are defined with respect to the L2 inner product. The first order
necessary conditions for an optimum of (2.1.4) are given by the Euler-Lagrange equations
(Lx ≡ Lλ ≡ Lu ≡ 0):

We write Dxf(x(t), u(t)) = fx(x(t), u(t)), Duf(x(t), u(t)) = fu(x(t), u(t)), the same with
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h(x(t), u(t)). Hence the first order necessary conditions are

ẋ(t) = f(x(t), u(t)), x(0) = ξ (2.1.7)

λ̇(t) = −fx(x(t), u(t))λ+ hx(x(t), u(t)), λ(T ) = −Φx(x(T )), (2.1.8)

0 = fu(x, u)Tλ(t)− hu(x, u). (2.1.9)

The function λ(t) is called the adjoint or costate variable and the equation (2.1.8) is
called the adjoint equation (or the costate equation). If u is an optimal control in the
interior of U , then it satisfies (2.1.7)-(2.1.9). It is convenient to define the Hamiltonian
function

H(x, λ, u) = λT (t)f(x, u)− h(x, u), (2.1.10)

which combines the objective function and state equations much like a Lagrangian in a
static optimization problem and the multiplier λ(t) as the costate variable. The optimal
control policy function u∗(t) with the optimal trajectory of the state variable x∗(t) and
the adjoint variable λ∗(t) is

H(x∗(t), u∗(t), λ∗(t)) ≥ H(x(t), u(t), λ(t))

for all u(t) ∈ U . With the Hamiltonian function, we rewrite first-order necessary conditions
(2.1.7)–(2.1.9)

ẋ(t) = ∂H/∂λ, x(0) = ξ (2.1.11)

λ̇(t) = −∂H/∂x, λ(T ) = −Φx(x(T )) (2.1.12)

0 = Hu(x(t), λ(t), u(t)). (2.1.13)

The triple (x∗, λ∗, u∗) is the local minimum of the cost functional J and u∗ is the sta-
tionary point of the Hamiltonian function with x∗ and λ∗ at each time t ∈ [0, T ]. Note
that minimizing the objective functional J corresponds to maximizing the Hamiltonian
with respect to u. The condition (2.1.13) above can be generalized to apply to controls
u(t) constrained to lie in U by replacing (2.1.13) with Pontryagin’s Maximum prin-
ciple

ẋ(t) = ∂H/∂λ, x(0) = ξ (2.1.14)

λ̇(t) = −∂H/∂x, λ(T ) = −Φx(x(T )) (2.1.15)

u∗ = arg max
u(t)∈U

H(x, λ, u), ∀t ∈ T . (2.1.16)

For general optimal control problems, Pontryagin’s maximum principle gives necessary
optimality conditions which are in the form of Hamiltonian differential equation. If the
Hamiltonian function satisfies the concavity condition, then the maximum principle con-
dition is also a sufficient condition. Pontryagin’s maximum principle, which defines a two
point boundary value problem, is very useful as it allows to find analytical solutions to
special types of optimal control problems [9] and to define numerical algorithms to search
for solutions in general cases. Since Pontryagin’s maximum principle leads to a Hamilto-
nian system with a constraint or maximality condition on the control Hamiltonian, it is
natural to consider symplectic methods for its numerical integration.
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2.2 Variational integrators and symplectic integra-

tors

Symplectic integrators are numerical schemes for Hamiltonian systems that preserve the
symplectic property inherent in the solution operator of the Hamiltonian problems. They
are widely used in nonlinear dynamics, molecular dynamics, discrete element methods,
accelerator physics, plasma physics and quantum physics. Historically, symplectic inte-
grators were firstly developed by De Vogelaere [36]. Then they were further developed
by Ruth [98], Channell [25], Menyuk [84]. Meanwhile, Lasagni [72], Sanz-Serna [103] and
Suris [109] showed that implicit Runge-Kutta methods are symplectic for an appropriate
choice of parameters. Next, we will discuss definitions of symplecticity, symplectic Runge-
Kutta method and symplectic partitioned Runge-Kutta method. We summarize a few
results given in [59].

2.2.1 Symplectic maps

To describe the problem clearly, we introduce the conjugate variables (p, q) ∈ Rd × Rd

consistent with most literature. Consider the following Hamiltonian system:

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
,

(2.2.1)

where H is the Hamiltonian function, which is sufficiently differentiable. If the total energy
of a Hamiltonian problem is conserved, it will be satisfied

H(p(t), q(t)) = H(p(0), q(0)), for all time t

along the exact solution of the problem. To see that this is so, take the derivative of the
Hamiltonian function, we will have

d

dt
H(p(t), q(t)) =

∂H

∂p

T

ṗ+
∂H

∂q

T

q̇ =
∂H

∂p

T

(−∂H
∂q

) +
∂H

∂q

T

(−∂H
∂p

) = 0.

Consider the parallelogram P ⊂ R2d spanned by the vectors ξ =
(
ξp

ξq

)
and η =

(
ηp

ηq

)
and

the operator ω : R2d ×R2d → R

ω(ξ, η) = ξTJη

where J =
(

0 I
−I 0

)
, I is the identity matrix of dimension d, ξp, ξq, ηp, ηq ∈ Rd.

Definition 2.2.1. If a linear map A : R2d → R2d satisfies ω(Aξ,Aη) = ω(ξ, η) for all
ξ, η ∈ R2d, then the linear map A is called symplectic, equivalently ATJA = J

In the case d = 1, one can check that the expression ω(ξ, η) is equivalent to the area of
the parallelogram spanned by ξ and η. Since ω is unchanged under symplectic A, we see
that in the case d = 1, area is preserved under a symplectic transformation.
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Definition 2.2.2. A differentiable map f : X → Rd × Rd (where X ⊂ Rd × Rd is an

open set) is said to be a symplectic map if its Jacobian matrix F = ∂f(p,q)
∂(p,q)

is symplectic

at any point (p, q) ∈ X , i.e.,
F TJF = J.

Definition 2.2.3. We define the flow of the Hamiltonian system ϕt : X → Rd ×Rd as

(p(t), q(t)) = ϕt(p(0), q(0))

with the initial condition (p(0), q(0)), where (p(t), q(t)) is the solution of the Hamiltonian
system.

Theorem 2.2.1. (Poincare 1899) Let the Hamiltonian function H(p, q) be twice con-
tinuously differentiable on X ⊂ R2d. Then for each fixed t, the flow ϕt is a symplectic
transformation wherever it is defined, i.e. the Jacobian Dφt = ∂(p(t),q(t))

∂(p(0),q(0))
satisfies

DϕTt JDϕt = J

Considering a one-step numerical integrator, if τ denotes the step length and (pn, qn)
denotes the numerical approximations at time tn = nτ to (p(tn), q(tn)) of the solution of
the (2.2.1)

(pn+1, qn+1) = ϕτ (pn, qn),

where the transformation ϕτ is assumed to depend smoothly on τ and the Hamiltonian
function H. Given an initial condition (p0, q0), the numerical approximation at time tn+1

is obtained by iterating the mapping ϕτ n+ 1 times, which is

(pn+1, qn+1) = ϕn+1
τ (p0, q0).

Definition 2.2.4. A numerical one-step method (pn+1, qn+1) = ϕτ (pn, qn) is called sym-
plectic if, when applied to a Hamiltonian system, the discrete flow (p, q) → ϕτ (p, q) is a
symplectic transformation for all sufficiently small step size τ .

2.2.2 Symplectic Runge-Kutta methods

In the following section, we set y = (p, q)T , then the equations (2.2.1) could be rewrit-
ten

ẏ(t) = J−1∇H =: f(y). (2.2.2)

An s-stage Runge-Kutta method for (2.2.2) is given by the formulas

yn+1 = yn + τ
s∑
i=1

bif(Yi),

Yi = yn + τ

s∑
j=1

aijf(Yj), i = 1, · · · , s
(2.2.3)

where τ is the time interval, bi ≥ 0, aij are real parameters, and
∑s

i=1 bi = 1. Butcher [18]
proposed a coefficient tableau to represent the Runge-Kutta method
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c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

where mostly (not all) ci =
∑s

j=1 aij(i = 1, · · · , s). This kind of expression is often called
the Butcher form. If aij = 0, j ≥ i, such a Runge-Kutta method is called an explicit
Runge-Kutta scheme, otherwise it is called an implicit Runge-Kutta scheme.

Definition 2.2.5. A Runge-Kutta method is symplectic if the Jacobian matrix of its
transformation (2.2.3) is symplectic, i.e., ∂yn+1

∂yn
is a symplectic map.

To figure out the coefficient character of a symplectic Runge-Kutta method, we set M =
(mij)

s
i,j=1 to be the real s× s matrix given by

mij = biaij + bjaji − bibj

for i, j = 1, ..., s. Lasagni [72], Sanz-Serna [103], Suris [109] and Hairer [59] showed
that

Theorem 2.2.2. If M = 0, the corresponding Runge-Kutta method is symplectic

It is straightforward to see that explicit Runge-Kutta methods cannot satisfy the condition
M = 0.

• For the backward Euler method,

1 1
1

M = 1, hence it is not symplectic.

• For the implicit midpoint rule,

1/2 1/2
1

M = 0, hence it is symplectic.

• For the 2-stage Gauss-Legendre Runge-Kutta method,

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
1/2 1/2

M = 0, hence, it is symplectic.

• For the 3-stage, fourth-order method of Lobatto IIIA methods,

0 0 0 0
1/2 5/24 1/3 -1/24

1 1/6 2/3 1/6
1/6 2/3 1/6

M 6= 0 (for instance, M11 = −1/36), and the method is not symplectic.
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• For the explicit 4-stage classical method,

0 0 0 0 0
1/2 1/2 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6

M 6= 0 (again, M11 = −1/36), and the method is not symplectic.

2.2.3 Symplectic partitioned Runge-Kutta method

In the differential equations, it is possible for us to integrate some components of the
unknown vector with one Runge-Kutta method and integrate the remaining components
with a different Runge-Kutta method, assuming the internal stages are collocated. For
example, in the Hamiltonian system (2.2.1), the component p and the component q may
be integrated by two different Runge-Kutta schemes, which is called partitioned-Runge-
Kutta method. To be more specify, the partitioned Runge-Kutta with tableaux

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

and

C1 A11 · · · A1s
...

...
. . .

...
Cs As1 · · · Ass

B1 · · · Bs

applied to the Hamiltonian system, becomes

pn+1 = pn − τ
s∑
i=1

bi
∂H

∂q
(Qi, Pi), n = 1, · · · , N (2.2.4)

qn+1 = qn + τ
s∑
i=1

Bi
∂H

∂p
(Qi, Pi), n = 1, · · · , N (2.2.5)

Pi = pn − τ
s∑
j=1

aij
∂H

∂q
(Qj, Pj), i = 1, · · · , s (2.2.6)

Qi = qn + τ

s∑
j=1

Aij
∂H

∂p
(Qj, Pj), i = 1, · · · , s (2.2.7)

There is a similar result regarding symplecticity of partitioned Runge-Kutta schemes.

Theorem 2.2.3. If the coefficients of a partitioned Runge-Kutta method satisfy the fol-
lowing condition:

biAij +Bjaji − biBj = 0, i, j = 1, · · · s (2.2.8)
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then the partitioned Runge-Kutta method is symplectic [1, 110, 51, 100].

Partitioned Runge-Kutta methods are of particular interest because they may be made
explicit in some case, e.g., when the Hamiltonian is separable H(p, q) = H1(p) + H2(q).
Also, they arise naturally from discrete variational principles, as we illustrate in Chapter
3. Specifically, for any Runge-Kutta method, there exists a symplectic conjugate Runge-
Kutta method such that the pair constitutes a partitioned Runge-Kutta method. However,
the conjugate Runge-Kutta method may be of a different order of accuracy than the
original one.

Next, we will present two simple symplectic partitioned Runge-Kutta algorithms.

There are two first order symplectic Euler methods that combine one explicit Euler
method and one implicit Euler method, specifically as follows (implicit in p)

pn+1 = pn − τ
∂H

∂q
(pn+1, qn)

qn+1 = qn + τ
∂H

∂p
(pn+1, qn),

or alternatively, (implicit in q)

pn+1 = pn − τ
∂H

∂q
(pn, qn+1)

qn+1 = qn + τ
∂H

∂p
(pn, qn+1).

Störmer-Verlet methods are second order symplectic methods, which combine the
trapezoidal method and the implicit midpoint method. The Butcher tableau for these
methods is

0 0 0
1 1/2 1/2

1/2 1/2

0 1/2 0
1 1/2 0

1/2 1/2

Some manipulation yields the method

pn+1/2 = pn − τ/2
∂H

∂q
(pn+1/2, qn)

qn+1 = qn + τ/2(
∂H

∂p
(pn+1/2, qn) +

∂H

∂p
(pn+1/2, qn+1))

pn+1 = pn+1/2 − τ/2
∂H

∂q
(pn+1/2, qn+1),

or, reversing the application to the variables,

qn+1/2 = pn + τ/2
∂H

∂p
(pn, qn+1/2)

pn+1 = pn − τ/2(
∂H

∂q
(pn, qn+1/2) +

∂H

∂q
(pn+1, qn+1/2))

qn+1 = qn+1/2 + τ/2
∂H

∂p
(pn+1, qn+1/2).
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Comparing with non-symplectic integrators, symplectic integrators have some advantages
as follows (see [86, 68]).

1. Symplectic integrators conserve the Hamiltonian (total energy)H to within bounded
oscillations of amplitude proportional to τ k, where k is the order of accuracy of the
method. This property makes symplectic integrators advantageous for long integra-
tions of Hamiltonian systems.

2. Symplectic integrators are volume preserving maps for Hamiltonian fields, making
them effective for statistical mechanical calculations.

Neither of the above properties is relevant for the application of symplectic integrators
to optimal control problems. However, in Chapter 3 we show that symplectic integrators
have another advantageous property in that context.

2.3 Cucker-Smale model

In this section, we review background information about the Cucker-Smale model. The
Cucker-Smale model describes how a group of agents interact when influenced by their
neighbours. In general, it depends on a simple rule that the individuals tend to align their
motion vector with that of their neighbours according to the distance between the agents.
The closer they are, the more they are influenced by their neighbours. In the model, a
system of M interacting agents is considered. For each agent, the state is described by
a pair (xi(t), vi(t)) of vectors in Rd × Rd, where xi(t) represents the position state of
the i-th agent at time t and the vi(t) represents its velocity. Therefore the state of the
group of M agents is given by x(t) = (x1(t), x2(t), · · · , xM(t)) and the velocity of the
group of M agents is v(t) = (v1(t), · · · , vM(t)). The space of the position states is (Rd)M ,
the same with the space of the velocity. The dynamics of the agents is governed by the
Cucker-Smale equations

ẋi(t) = vi(t), i = 1, · · · ,M,

v̇i(t) =
M∑
j=1

φ(‖xj(t)− xi(t)‖)(vj(t)− vi(t)), i = 1, · · · ,M,

x(0) = x0, v(0) = v0,

(2.3.1)

where ‖ · ‖ denotes the `2-Euclidean norm,

‖xi‖ =
( d∑
j=1

(xji )
2
)1/2

, ‖x‖ = (
M∑
i=1

‖xi‖2)1/2.

In the following, to express the problem easily, we write x and x(t) interchangeably,
the same with other functions related to time t. In the equation (2.3.1), the function
φ ∈ C1([0,+∞]), called the influence function, is non-increasing and positive. It is a
function of the distance between agents. And it quantifies the weight with which agent i
and agent j influence each other.
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Typically, the function φ is given by [33, 57, 56].

φ(‖xi − xj‖) =
K

(σ + ‖xi − xj‖2)β
. (2.3.2)

where K > 0, β ≥ 0, σ > 0 are constants modelling the social properties of the group of
agents.

Some other forms of φ are discussed in other papers. For example, [56] consider the
function

φ(‖xi − xj‖) =
K

‖xi − xj‖β
.

However, for this case, the distance between two agents may not approach zero. In this
thesis, we use the general form (2.3.2).

The question of interest is whether a group of agents converge to a common velocity
vector, at which point they will move as a solid body. The mean state and mean velocity
are

x̄ =
1

M

M∑
i=1

xi, (2.3.3)

v̄ =
1

M

M∑
i=1

vi, (2.3.4)

and the fluctuations are defined by

x̆i := xi − x̄, v̆i := vi − v̄. (2.3.5)

In the following, we will simply present some definitions and theorems [20, 32, 56, 55].

It is not difficult to find that the Cucker-Smale model is symmetric in the sense that the
coefficient matrix φij satisfies

φij = φji,

namely, agent i and agent j have the same influence on the alignment of each other. The
symmetry implies that the total momentum in the Cucker-Smale model is conserved,

d

dt
v̄(t) = 0

which means
v̄(t) = v̄(0).

To illustrate the problem easily, we define a symmetric bilinear form B on (Rd)M×(Rd)M

by

B(w,v) =
1

2M2

M∑
i,j=1

‖wi − vj‖2

for any v,w ∈ (Rd)M . In order to characterize consensus emergence in terms of the
solution of the Cucker-Smale model (2.3.1), we define the following quantities

X(t) = B(x(t),x(t)), V (t) = B(v(t),v(t)).
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Definition 2.3.1. (Consensus). The solution (x(t),v(t)) of the Cucker-Smale (2.3.1) is
said to tend to consensus if the velocity vectors vi(t) tend to the mean velocity v̄, i.e.,

lim
t→+∞

‖vi(t)− v̄(t)‖ = 0,

for every i = 1, · · ·M , equivalently

lim
t→+∞

V (t) = 0,

and the position fluctuations are uniformly bounded in time t

sup
0≤t<∞

M∑
i=1

‖xi(t)− x̄(t)‖ <∞,

for every i = 1, · · ·M .

Remark . Because of uniqueness, a solution of (2.3.1) cannot reach consensus within
finite time, unless the initial datum is already a consensus point.

The following theorems are from the paper [56]

Theorem 2.3.1. (Unconditional consensus emergence) Assume that the parameter 0 ≤
β ≤ 1

2
. Let (x,v) ∈ RdM ×RdM be the solution of the equation (2.3.1), and let (x̆, v̆) ∈

RdM ×RdM denote the fluctuations (2.3.5), then there exist positive constants xc1 and xc2
independent of t satisfying

xc1 ≤ ‖x̆‖ ≤ xc2, ‖v̆‖ ≤ ‖v̆0‖ exp−φ(xc2)t,

i.e, the Cucker-Smale dynamic (2.3.1) converges asymptotically to consensus.

Theorem 2.3.2. (Conditional flocking) Let (x,v) be a solution to (2.3.1) with β > 1
2
,

supposing the initial configuration (x0,v0) satisfies

2β − 1

K
‖v0‖ < (1 + ‖x0‖2)

1−2β
2

or √
V 0 ≤

∫ ∞
√
X0

φ(
√

2Mr)dr.

Then there exist positive constants xc1 and xc2 independent of t satisfying

xc1 ≤ ‖x̆(t)‖ ≤ xc2, ‖v̆(t)‖ ≤ ‖v̆0‖e−φ(xc2)t,

i.e, the Cucker-Smale dynamic (2.3.1) converges asymptotically to consensus.

From the theorems, we find that when the initial fluctuation of the velocities is small
enough and the initial positions of the agents are sufficiently close to consensus, the
dynamics of the Cucker-Smale will tend to consensus exponentially.

Next we will give a simple example to express the theorems.

Two-agent Cucker-Smale model [20, 32] Two agents move on R with position and
velocity at time t, (x1(t), v1(t)) and (x2(t), v2(t)), respectively. To simplify the problem,
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we set the parameters β = 1 > 1
2
, K = 2, σ = 1, and let x(t) = x1(t) − x2(t), v(t) =

v1(t)− v2(t), then the Cucker-Smale Equation (2.3.1) reduces to a simple formula
ẋ(t) = v

v̇(t) = − 2v

1 + x2

v(0) > 0.

(2.3.6)

Putting the first equation into the second equation in (2.3.6), we have

v̇ = − 2ẋ

1 + x2
,

and the solution is easily found to be

v(t) = −2 arctanx(t) + 2 arctanx(0) + v(0).

Analysing the solution, we found:

When the initial conditions satisfy 2 arctanx(0) + v(0) < π, the relative main state x(t)
is globally bounded by 1

2
tan(2 arctan x(0) + v(0)) which is sufficient for consensus.

When the initial conditions satisfy 2 arctanx(0) + v(0) = π, then v(t) = π− 2 arctanx(t),
hence the system tends to consensus as well.

However, when 2 arctanx(0) + v(0) > π, which means there exists ε > 0 such that
|2 arctanx(0) + v(0)| ≥ π + ε, then the consensus parameter v(t) remains far away from
0 at every time, since

v(t) = −2 arctanx(t) + 2 arctanx(0) + v(0) ≥ −2 arctanx(t) + π + ε > ε,

Namely, in this situation the uncontrolled solution does not tend to consensus. In Chapter
4 we consider the problem of reaching consensus via optimal control.

2.4 Basic algorithms for data assimilation

In this section, we review standard data assimilation algorithms. Since data assimilation
is usually applied to discretized systems, we will use a formulation in terms of discrete
maps (discrete time).

2.4.1 Variational data assimilation: 3D-Var and 4D-Var

Variational data assimilation techniques are based on minimising appropriate cost func-
tions which are subject to model constraints. In general, there are two popular variational
data assimilation algorithms, i.e. three dimensional variational data assimilation (3D-Var),
four dimensional variational data assimilation (4D-Var).

3D-Var

3D-Var is a relatively simple variational data assimilation method. It generates a corrected
state at each time, independent of data or solution at other times. 3D-Var proceeds under
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the assumption that the model error (in each time step) is distributed as N (0, B) and
the observation error is distributed as N (0, R). To obtain the optimum estimation of the
state x at the current time, we try to minimise the cost function given by

J(x) = (x− xb)TB−1(x− xb) + (z −H(x))TR−1(z −H(x)),

where xb is the background state obtained by propagating the model from the previous
time, H is the observation operator(Notice: The H is different from the Hamiltonian
function), z is the observation. The cost function includes two parts, the distance between
the state x to the background state xb and the distance between the model trajectory and
the observations over the assimilation time window. To find the optimum state x∗ which
minimises the cost function J , we calculate the gradient of J , which is

∇J(x) = 2B−1(x− xb)− 2HTR−1(z −H(x)) (2.4.1)

and choose x∗ such that ∇J(x∗) = 0. The 3D-Var method is limited by the use of only
local information, as well as by its assumption of normally distributed errors.

4D-Var

4D-Var is a generalization of the 3D-Var that combines the observations with the time
domain, which means that all observations obtained within a time window should be taken
into account when we define the cost function. Usually, 4D-Var is a popular method to
seek the best estimation of the initial value for the state so that the prediction is consistent
with the observations within the assimilation interval [t0, tN ]. The cost function is

J(x0) =
1

2
(x0 − xb0)TB−1

0 (x0 − xb0) +
1

2

N∑
n=0

(zn −H(xn))TR−1
n (zn −H(xn)),

where xb0 is the initial predict or background value at t0, zn is the observation at tn . N
is the time step number within [t0, tN ]. B0 is the background error covariance at time t0
and the Rn is the observation error covariance at time tn.

In general, the 4D-var depends on perfect model, which means we assume the model given
by

xn+1 = f(xn).

describes the system exactly over the assimilation period, thus we can neglect the model
error. Minimising the cost function in 4D-Var is usually associated with adjoint variables
λn, which is a little complex to compute.

4D-Var can be regard as optimal control problem with control x0 and the Lagrangian
formulation

L =
1

2
(x0−xb0)TB−1

0 (x0−xb0)+
1

2

N∑
n=0

(zn−H(xn))TR−1
n (zn−H(xn))+

N−1∑
n=0

λn+1(xn+1−f(xn)).

The method in Chapter 3 of this thesis could be applied to this formulation, but has not
yet been done so.
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2.4.2 Sequential data assimilation

Sequential data assimilation algorithms are applied step-by-step as opposed to over a
window as with 3D-Var.

2.4.3 Kalman filter

The Kalman filter [66] is one of the most important and commonly used estimation
algorithms in data assimilation. It provides estimates for some unknown variables when
observed measurements are given. The Kalman filter is formulated for a linear dynamical
system and linear measurement process. The state evolution from time n to time n+ 1 is
given as

xn = Fxn−1 +Wn−1

where the state xn ∈ Rd and F is the state transition matrix. The initial condition is x0.
Wn is the process noise (state noise), which is assumed to be drawn from a zero mean
multivariate normal distribution with covariance Q, i.e. Wn ∼ N (0, Q).
At time n an observation (or measurement ) zn ∈ Rm of the true state xn+1 is made
according to

zn = Hxn + vn

where zn is the observation vector, H is the observation matrix (Notice the matrix H is
different from Hamiltonian function), and vn is the observation noise that is also assumed
to be normally distributed with zero mean and covariance R, i.e. vn ∼ N (0, R).

In Algorithm 1 the Kalman filter iterates two steps: prediction (propagation) and update
(correction). In the following, we will use the superscript b to denote the predicted (prior
or background) estimate and superscript a to denote the update (posterior or “analysis”)
estimate. The Kalman filter propagates an estimate xn of the mean state as well as an
estimate Pn of the error covariance.

Algorithm 1 Kalman Filter

procedure Initialization
Set xa0 = x0 and P 0

a = B, where B is the initial guess covariance matrix.

for n = 1, . . . , N − 1 do
procedure Prediction

Predicted state xbn = Fxan−1,
Predicted error covariance P b

n = FP a
n−1F

T +Q,

procedure Update
Measurement residual (innovation) ỹn = zn −Hxbn
Kalman gain: Kn = P b

nH
T (R +HP b

nH
T )−1,

Updated state estimate xan = xbn +Knỹn,
Updated error covariance P a

n = (I −KnH)P b
n

As mentioned, the Kalman filter is only suited to linear and Gaussian systems. Next we
review other common algorithms, the extended Kalman filter and ensemble Kalman filter,
which can be applied to nonlinear systems.
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2.4.4 Extended Kalman filter

The extended Kalman filter [64, 49] is generalized to nonlinear dynamics, which means
the discrete dynamics are

xn = f(xn−1) +Wn−1

where the map f is nonlinear. Its Jacobian is denoted Df . The noise is assumed the same
as for the Kalman filter.

Algorithm 2 Extended Kalman Filter

procedure Initialization
Set xa0 = x0 and P a

0 = B, where B is the initial guess covariance matrix.

for n = 1, . . . , N − 1 do
procedure Prediction

Predicted state xbn = f(xan−1),

Predicted error covariance P b
n = DfnP

a
n−1Df

T
n +Q, where Dfn = ∂f

∂x
|xan

procedure Update
Measurement residual (innovation): ỹn = zn −Hxbn
Kalman gain: Kn = P b

nH
T (R +HP b

nH
T )−1,

Updated state estimate xan = xbn +Knỹn,
Updated error covariance P a

n = (I −KnH)P b
n

For the extended Kalman filter, the measurement operator could also be nonlinear, and
the matrix H would be the Jacobian of the nonlinear operator, as in the case of the
ensemble Kalman filter described next

2.4.5 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) introduced by Evensen(1994) [42] can be viewed as a
Monte Carlo approximation of the Kalman filter. Comparing with the standard Kalman
filter and the extended Kalman filter, the state distribution of the EnKF is represented by
an ensemble or sample from the distribution, and the covariance matrix is approximated by
the sample covariance. Since the ensemble representation is a form of dimension reduction,
it is computationally feasible for high-dimensional systems. In other words, the EnKF is
suitable for systems with a large number of variables, such as discretizations of partial
differential equations in geophysical models.

We consider again a discrete non-linear system

xn = f(xn−1) +Wn−1,

The EnKf does not need to compute the covariance matrix of the probability density
function of the state, instead using an M -member ensemble {x1, x2, · · · , xM} to approxi-
mate the density. The assumption about the noise distribution is identical to that of the
Kalman filter.

Similar to the Kalman filter, the ensemble Kalman filter consists of a prediction step and
an update step at every time n. The ensemble Kalman filter obtains a sample from the
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forecast distribution by simply applying the non-linear evolution equation

xb(i)n = f(x
a(i)
n−1) +W i

n−1,

where i = 1, · · · ,M . The forecast ensemble x
b(1)
n , · · · , xb(M)

n at time n is updated based on
new observed data z

b(1)
n , · · · , zb(M)

n .

The observations are
zin = zn + vin, i = 1, . . . ,M

An ensemble Kalman filter corrects the forecast ensemble xbi , i = 1, · · · ,M , to yield an
analysis ensemble xai , i = 1, · · · ,M . Therefore it provides a coupling between the under-
lying forecast and analysis random variables. The basic algorithmic steps of the EnKF
can be summarised as follows:

Generate an M -member ensemble at initial time with state x0, and the prior covariance
guess B

x
a(i)
0 = x0 + ηi, i = 1, . . . ,M

where the ηi ∼ N (0, B) are drawn from a normal distribution with zero mean and covari-
ance B.

(i) Prediction

The forecast step is used to define the empirical mean

xb(i)n = f(x
a(i)
n−1), i = 1, . . . ,M,

x̄bn =
1

M

M∑
i=1

xb(i)n

and the covariance matrix

P b
n =

1

M − 1

M∑
i=1

(xb(i)n − x̄bn)(xb(i)n − x̄bn)T

(ii) Updating:

the Kalman gain: Kn = P b
nH

T (HP b
nH

T +R)−1,

analysis: x
a(i)
n = x

b(i)
n +Kn(zin −Hxb(i)n ),

The analysis can be calculated as the mean of the analysis

xan =
1

M

N∑
i=1

xa(i)
n

and

P a
n =

1

M − 1

M∑
i=1

(xa(i)
n − xan)(xa(i)

n − xan)T .
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2.4.6 Particle filter

Particle filter is a kind of Monte Carlo-based data assimilation methods, which use a set
of particles to represent probabilities. The probability density over the system state is
expressed as an empirical distribution, by randomly extracting the particle states from
the posterior probability. Like ensemble Kalman filter, particle filter is a good way to
track the state of a high-dimensional dynamical system given a model related to the
state evolution in time and observations of particular states. However, the advantage of
applying particle filter compared with Kalman filter is that for high-dimensional, nonlinear
problems, particle filter methods do not rely on an assumption of Gaussianity of the
posterior distribution.

In the following, we will explain the basic particle filter algorithm. We assume a noisy
dynamic model with state vector xn which comprises all the variables at given time step
n. It is supposed to be a Markov process. Additionally, we also have the measurement
information which represent observations of the system. The observation zn takes value
from some state xn and is conditionally independent with the previous states. In other
words, zn only depends on xn.

To describe the algorithm, we denote by p(x0) the initial distribution of the process;
by p(xn|xn−1) the Markov transition probability density, which we usually get from the
dynamic model; and by p(zn|xn) the measurement likelihood.

The goal is to estimate the posterior probability distributions

p(xn|z1:n),

where we employ the notation z1:n as shorthand for z1, . . . , zn.

Prediction

First, depending on the previous observation data z1:n−1, we can predict the state distri-
bution through the Chapman-Kolmogorov equation:

p(xn|z1:n−1) =

∫
p(xn−1|z1:n−1)p(xn|xn−1)dxn−1.

Update

We will apply Bayes’ rule to calculate the prior distribution after receiving the new ob-
servation zn

p(xn|z1:n) =
p(xn|z1:n−1)p(zn|xn)∫
p(x′n|z1:n−1)p(zn|x′n)dx′n

(2.4.2)

Next, the sequential Monte Carlo method (SMC) may be employed to approximate the
integrals above.

The basic Monte Carlo method

Computing the expected value of function f(x), we would sample M independent random
variables from the probability distribution p(x), Hence, the probability density p(x) could
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be approached by p(x) ≈ PM(x) = 1
M

∑M
i=1 δ(x − xi), and the function’s expected value

becomes

EPM [f ] ≈
∫
f(x)

1

M

M∑
i=1

δ(x− x(i))dx =
1

M

M∑
i=1

f(x(i))

This estimate is unbiased and converges to the expected value of the original distribution
with large particle number M . However, the probability p(x), which we need to compute,
is unknown. Hence, importance sampling is introduced next.

Importance sampling

Choosing an alternative probability density q(x), named the importance probability den-
sity, we sample M independent particles xin ∼ q(xn).

E[f(xn)] =

∫
f(xn)p(xn|z1:n)dxn =

∫
f(xn)q(xn|z1:n)ω̃(xn)dxn∫
q(xn|z1:n)ω̃(xn)dxn

≈
1
M

∑M
i=1 ω̃

(i)
n f(x

(i)
n )

1
M

∑M
i=1 ω̃

(i)
n

=
M∑
i=1

ω(i)
n f(x(i)

n )

with weights

ω̃(xn) =
p(xn|z1:n)

q(xn|z1:n)
, ω(i) =

ω̃(i)∑M
i=1 ω̃

(i)
.

However, especially for high dimensional problems, it is difficult to choose an appropriate
function q(x), which should be as close to our desired probability distribution as possi-
ble in order to obtain good quality estimation. We introduce the sequential importance
sampling.

Sequential importance sampling (SIS)

The importance sampling functions should be selected so that they are successively con-
ditional to avoid the computational cost of recomputing the weights over the whole state
sequence each time a new measurement is received:

q(x0:n|z1:n) = q(x0)
n∏
k=1

q(xk|x0:k−1, z1:k).

The importance weight is

ω(i)
n =

p(x
(i)
0:n|z1:n)

q(x
(i)
0:n|z1:n)

.

Since the state trajectories are preserved, this allows us to update recursively the impor-
tance weights:

ω(i)
n ∝ ω

(i)
n−1

p(zn|x(i)
n )p(x

(i)
n |x(i)

n−1)

q(x
(i)
n |x(i)

n−1, zn)
.

where ωin−1 represents the weight at time step n − 1 for particle i. In application, we
simply sample choose the transition probability as the importance sampling function,
which is

q(xn) = p(xn|xn−1)
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Then the importance weights at time step n takes the form:

ω(i)
n ∝ ω

(i)
n−1p(zn|x(i)

n )

However, this algorithm has a drawback during the filtering process. A small number of the
particles will usually accumulate most of the weight of the sample, which leads to weight
unbalance. This situation is problematic because the particles with very low weights will
have negligible effects on the filtering distributions. This can be avoided by introducing
a resampling step from the discrete distribution of the particles before propagation to
replace the set of particles with equally weighted distribution.

Resampling

Starting with the weighted approximation, the posterior probability is

p̂(xn|z1:n) = P̂M(xn) =
M∑
j=1

ω(i)δ(xn − x̂(i)
n )

we replace the above measure with a uniformly weighted measure

p(xn|z1:n) = PM(xn) =
1

M

M∑
i=1

δ(xn − x(i)
n ).

such that the probability of selecting each sample in the new approximation is equal to
its weight in the original sample:

p(xin = x̂jn) = ω(j), i, j = 1, · · · ,M.

The traditional particle filter illustrated above is a Bayesian particle method. In Chapter
5, we introduce a new particle filter method for problems in which a large amount of mea-
surement data is available, either due to repeated (noisy) experiments or due to redundant
observations. The first case provides us with samples from p(xn|xn−1) as determined by a
stochastic process. The second case provides us with samples of the conditional expecta-
tion p(z|x). We address the resampling problem by adding an optimal control to minimize
Wasserstein distance of the empirical measure in the observation space.

In this section we have reviewed the basic and common algorithms for data assimilations.
Many variants and improved methods have been developed [94].
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Chapter 3

Symplectic Runge-Kutta
discretization of a regularized
forward-backward sweep iteration
for optimal control problems

Abstract

Li, Chen, Tai & E. (J. Machine Learning Research, 2018) have proposed a regularization
of the forward-backward sweep iteration for solving the Pontryagin maximum principle
in optimal control problems. The authors prove the global convergence of the iteration in
the continuous time case. In this thesis we show that their proof can be extended to the
case of numerical discretization by symplectic Runge-Kutta pairs. We demonstrate the
convergence with a simple numerical experiment.

This chapter is transcripted from the paper ”Symplectic Runge-Kutta discretization of
regularized forward-backward sweep iteration for optimal control problems” published in
the Journal of Computational and Applied Mathematics.



26 3.1. Background

Recently, Li et al. [77] proposed a new indirect iteration for optimal control problems in
the context of deep neural networks, that utilizes the ‘method of successive approxima-
tions’, i.e. forward and backward integrations, combined with an ‘augmented Lagrangian’
regularization that ensures global convergence. The authors argue that this approach is
particularly suitable for high-dimensional optimal control problems as encountered in deep
learning. Large scale optimal control problems figure centrally in a number of modern ap-
plications such as deep neural networks [77], reinforcement learning [111, 12], filtering
and data assimilation methods [8, 126] and mean field and stochastic differential games
[22]. In this thesis we describe how the iteration of Li et al. combines naturally with
symplectic/variational integrators to yield a convergent numerical scheme.

Optimal control problems possess a natural variational structure that gives rise to Hamil-
tonian dynamics which may be exploited in a numerical treatment [65]. Symplectic meth-
ods for Hamiltonian initial value problems have been much studied since the mid-1990s
due to their demonstrated superiority for conserving energy and other first integrals
[102, 59, 74]. In contrast, optimal control problems lead to boundary value problems, and
it is unclear that the advantages of symplectic integrators for IVPs should translate to
the BVP setting. Recent papers that address the use of symplectic Runge-Kutta methods
for optimal control stress the conservation of quadratic invariants [101, 48] and the persis-
tence of critical orbits in modified equation expansions [26]. See also recent work on the
preservation of bifurcations under symplectic discretization of boundary value problems
[83].

In the first three sections of this thesis we review the Hamiltonian structure of optimal
control problems (§3.1), the regularized forward-backward sweep iteration proposed by
Li et al. [77] (§3.1.2) and the discrete variational approach to constructing symplectic
Runge-Kutta methods (§3.2). In Section 3.3 we prove the convergence of the discrete
regularized forward-backward sweep iteration, which follows closely the proof of [77] for
the continuous case. It is the symplectic structure of the discretization that facilitates this
proof. Finally, in Section 3.4 we demonstrate the convergence of the method for a simple
example using two symplectic discretizations.

3.1 Background

In this section we define continuous optimal control of differential equations and dis-
cuss their Hamiltonian structure, and we review the regularized forward-backward sweep
iteration of Li et al. [77].

3.1.1 Hamiltonian structure of optimal control problems

The state of the system to be controlled is described by a vector x(t) : T → Rd, where
T = [0, T ] represents a time interval. The control function u(t) is for each t an element
of the set of admissable controls U ⊂ Rm. The motion of the system is described by a
differential equation

ẋ(t) = f(x(t), u(t)), x(0) = ξ, (3.1.1)
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where f : Rd × U → Rd and ξ ∈ Rd is the initial state. The control u(t) is chosen to
minimize the objective functional

J [u] = Φ(x(T )) +

∫ T

0

h(x(t), u(t)) dt, (3.1.2)

where Φ : Rd → R is the end cost and h : Rd × U → R is the running cost.

In [77] no running cost h is considered. We include it here because it is present in many
applications and its treatment is straightforward. As in [77] (cf. equations (A1) and (A2)
of that article) we assume that Φ and f are twice continuously differentiable with respect
to x and satisfy Lipschitz conditions for all x, x′ ∈ Rd, u ∈ U and t ∈ T . We require
similar assumptions on h:

|Φ(x)− Φ(x′)|+ ‖Φx(x)− Φx(x
′)‖ ≤ K‖x− x′‖,

‖f(x, u)− f(x′, u)‖+ ‖fx(x, u)− fx(x′, u)‖ ≤ K‖x− x′‖,
|h(x, u)− h(x′, u)|+ ‖hx(x, u)− hx(x′, u)‖ ≤ K‖x− x′‖,

(3.1.3)

where hx denotes the vector of partial derivatives of h with respect to x and fx denotes
the Jacobian matrix of partial derivatives of f with respect to x. Here and throughout this
chapter, we denote by ‖ · ‖ the Euclidean norm on vector spaces. Note that the solution
x(t) of (3.1.1) is well-defined for appropriate u(t) so that we may think of J as a functional
essentially depending only on u(t).

The problem can be reformulated as a constrained optimization problem by introducing
the Lagrange multiplier function λ(t) : T → Rd and the Lagrangian functional

L[x, λ, u] = Φ(x(T )) + λT0 (x(0)− ξ) +

∫ T

0

h(x, u) + λT (ẋ− f(x, u)) dt. (3.1.4)

(Throughout the paper we use the transpose and dot product notation interchangeably,
whichever is more convenient.) The variational derivatives of the functional L with respect
to the functions x(t), λ(t) and u(t), denoted Lx, Lλ and Lu, are defined with respect to
the L2 inner product. The first order necessary conditions for an optimum of (3.1.4) are
given by the Euler-Lagrange equations (Lx ≡ Lλ ≡ Lu ≡ 0):

ẋ = f(x, u), x(0) = ξ, (3.1.5)

λ̇ = −fx(x, u)Tλ+ hx(x, u), λ(T ) = −Φx(x(T )), (3.1.6)

0 = fu(x, u)Tλ− hu(x, u). (3.1.7)

In particular, if f and h are smooth and u is an optimal control in the interior of U , then
it satisfies (3.1.5)–(3.1.7). It is convenient to define a function g(x, λ, u) for the right side
of (3.1.6):

g(x, λ, u) = −fx(x, u)Tλ+ hx(x, u). (3.1.8)

A Legendre transform yields the Hamiltonian function

H(x, λ, u) = λTf(x, u)− h(x, u), (3.1.9)
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and Hamilton’s equations are

ẋ = Hλ(x, λ, u), (3.1.10)

λ̇ = −Hx(x, λ, u), (3.1.11)

0 = Hu(x, λ, u). (3.1.12)

Note that minimizing the objective functional J corresponds to maximizing the Hamil-
tonian with respect to u. The condition (3.1.12) above can be generalized to apply to
controls u(t) constrained to lie in U by replacing (3.1.12) with Pontryagin’s maximum
principle

ẋ = f(x, u∗), x(0) = ξ, (3.1.13)

λ̇ = g(x, λ, u∗), λ(T ) = −Φx(x(T )) (3.1.14)

u∗(t) = arg max
u(t)∈U

H(x, λ, u), ∀t ∈ T (3.1.15)

3.1.2 Regularized forward-backward sweep iteration

Solution of (3.1.13)–(3.1.15) is challenging due to the boundary conditions. One approach
is to solve in succession (3.1.13) for x(t), (3.1.14) for λ(t) and (3.1.15) for u∗(t) and iterate.
Such a forward-backward sweep iteration typically diverges unless the Lipschitz constant
K and the time interval T are small [82]. In a recent article, Li et al. [77] proposed
a modified iteration based on a regularized Lagrangian approach. They introduce the
augmented Hamiltonian function

H̃(x, λ, u, p, q) = H(x, λ, u)− ρ

2

(
‖p−Hλ(x, λ, u)‖2 + ‖q +Hx(x, λ, u)‖2

)
, (3.1.16)

where ρ > 0 is a regularization parameter. Subsequently, the forward-backward sweep
iteration is modified to solve consecutively:

ẋ(k+1) = H̃λ(x
(k+1), λ(k), u(k), ẋ(k+1), λ̇(k)), (3.1.17)

λ̇(k+1) = −H̃x(x
(k+1), λ(k+1), u(k), ẋ(k+1), λ̇(k+1)), (3.1.18)

u(k+1) = arg max
u(t)∈U

H̃(x(k+1), λ(k+1), u, ẋ(k+1), λ̇(k+1)). (3.1.19)

It is important to note that along solutions to (3.1.13) and (3.1.14), the right two terms of
(3.1.16) are zero. Consequently, only (3.1.19) is modified with respect to (3.1.15). However,
Li et al. show that this modification is sufficient to ensure convergence [77].

Li et al. introduce the regularized forward-backward sweep iteration to train deep neural
networks [77] and argue that an advantage of this approach is that it is suitable for
application to high dimensional systems.

The analysis of [77] addresses only the continuous time case. Li et al. point out that
the question of whether Pontryagin’s principle holds under numerical discretization is
‘a delicate one’ and refer to counterexamples. In this paper we show that for varia-
tional/symplectic RK methods, an analysis analogous to that of Li et al. holds. In partic-
ular, their proof of convergence may be translated directly to discrete form.



Chapter 3. Symplectic RK discretization of forward-backward sweep iteration 29

3.2 Variational integrators and symplectic Runge–

Kutta pairs

Symplectic Runge-Kutta methods possess two properties that make them attractive for
numerical integration of Hamiltonian initial value problems: they conserve certain quadra-
tic first integrals and they conserve a modified Hamiltonian function over exponentially
long time intervals. See the monographs [102, 59, 74] for a complete discussion. Symplectic
Runge-Kutta methods can be derived using a discrete variational formalism, see [81].

Variational methods are also well known in the optimal control literature see e.g. the
work of Marsden, Leok and Ober-Blöbaum [88] and references therein. In a recent review,
Sanz-Serna [101] argues that it is the property of conservation of quadratic integrals that
it is most relevant in the adjoint context.

For optimal control, the use of the variational integrator framework may have additional
advantages: first, by discretizing the integral before optimizing, one constructs a discrete
problem for which an optimum may be established, whereas directly discretizing the Euler-
Lagrange equations relies on the approximation property in the limit τ → 0, where τ > 0
is the step size, to guarantee an optimum. Second, backward error analysis implies the
existence of a modified Hamiltonian, near the continuous Hamiltonian, which may have
consequences for optimality in the presence of nonunique minima. Backward error analysis
may also be applicable for control problems on long time intervals, or for problems with
multiple time scales for which the time interval is long on a fast time scale.

We discretize the interval T into N > 0 equal steps of size τ = T/N . An s-stage Runge-
Kutta method for the state equation (3.1.1) is

xn+1 = xn + τ
s∑
i=1

bif(Xi,n, Ui,n), (3.2.1)

Xi,n = xn + τ
s∑
j=1

aijf(Xj,n, Uj,n), i = 1, . . . , s, (3.2.2)

where n = 0, . . . , N − 1 denotes the time step index and the coefficients bi and aij,
i, j = 1, . . . , s, are chosen to ensure accuracy, stability, and additional properties. See
the monographs [60, 61] for a thorough treatment. Numerical consistency requires the
coefficients bi satisfy

∑
i bi = 1. In this paper we will also assume that bi ≥ 0, i =

1, . . . , s.

To simplify notation we will frequently suppress the time step index n in the internal
stage variables Xi,n and Ui,n. In all formulas the stage variables are evaluated at time
level n, so there should be no ambiguity.

A variational integrator for the Lagrangian (2.1.4) is a quadrature formula consistent
with the above RK method. Enforcing the internal stage relations (3.2.2) requires the
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introduction of additional Lagrange multipliers. The discrete Lagrangian becomes

L[x,λ,X,u,G] = Φ(xN) + λT0 (x0 − ξ) + τ

N−1∑
n=0

{
s∑
i=1

bih(Xi, Ui) + λTn+1

(
xn+1 − xn

τ
−

s∑
i=1

bif(Xi, Ui)

)

−
s∑
i=1

biGi ·
(
Xi − xn − τ

s∑
j=1

aijf(Xj, Uj)

)}
. (3.2.3)

Here and henceforth we denote x = {xn |n = 0, . . . , N}, X = {Xi,n | i = 1, . . . , s;n =
0, . . . , N − 1}, etc. An exception is the control variable, which only appears at internal
stage values. Consequently we may denote u = {Ui,n | i = 1, . . . , s;n = 0, . . . , N − 1}
without ambiguity. We also denote un = {Ui,n | i = 1, . . . , s}.
The associated discretization of the cost function (3.1.2) is

Jτ [u] = Φ(xN) + τ
N−1∑
n=0

s∑
i=1

bih(Xi, Ui). (3.2.4)

One can formally construct a discrete variational derivative of (3.2.3) with respect to
discrete function spaces and a discrete inner product. However for uniform time step τ
it is sufficient to consider just partial derivatives of L. The Euler-Lagrange equations
become:

∂L
∂λn

= 0 = xn+1 − xn − τ
s∑
i=1

bif(Xi, Ui), x0 = ξ, (3.2.5)

∂L
∂Gi

= 0 = Xi − xn − τ
s∑
j=1

aijf(Xj, Uj), (3.2.6)

∂L
∂xn

= 0 = −λn+1 + λn + τ
s∑
i=1

biGi, λN = −Φx(xN), (3.2.7)

∂L
∂Xk

= 0 = bkhx(Xk, Uk)− bkfx(Xk, Uk)
Tλn+1 − bkGk + τ

s∑
i=1

biaikfx(Xk, Uk)
TGi,

(3.2.8)

∂L
∂Uk

= 0 = bkhu(Xk, Uk)− bkfu(Xk, Uk)
Tλn+1 − τ

s∑
i=1

biaikfu(Xk, Uk)
TGi. (3.2.9)

The relations (3.2.5)–(3.2.6) are clearly equivalent to (3.2.1)–(3.2.2). Solving (3.2.7)
for λn+1, substituting into (3.2.8) and defining the coefficients ãij = bj − bjaji/bi, one
finds

Gi = −fx(Xi, Ui)
T

[
λn + τ

s∑
j=1

ãijGj

]
+ hx(Xi, Ui).
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Similarly (3.2.9) is written

0 = hu(Xi, Ui)− fu(Xi, Ui)
T

[
λn + τ

s∑
j=1

ãijGj

]
. (3.2.10)

It is useful to introduce the auxiliary stage variable Λi to represent the term in square
brackets in the previous two expressions:

Λi = λn + τ

s∑
i=1

ãijGj,

such that (cf. (3.1.8))

Gi = g(Xi,Λi, Ui) = −fx(Xi, Ui)
TΛi + hx(Xi, Ui)

and the condition (3.2.10) becomes

0 = hu(Xi, Ui)− fu(Xi, Ui)
TΛi.

In terms of the new variable, the variational Runge-Kutta discretization of Pontryagin’s
maximum principle is

xn+1 = xn + τ
s∑
i=1

bif(Xi, Ui), x0 = ξ, (3.2.11)

Xi = xn + τ
s∑
j=1

aijf(Xj, Uj), i = 1, . . . , s, (3.2.12)

λn+1 = λn + τ
s∑
i=1

big(Xi,Λi, Ui), λN = −Φx(xN), (3.2.13)

Λi = λn + τ
s∑
j=1

ãijg(Xj,Λj, Uj), i = 1, . . . , s, (3.2.14)

0 = hu(Xi, Ui)− fu(Xi, Ui)
TΛi, i = 1, . . . , s. (3.2.15)

This system consists of the state equations (3.2.11) and (3.2.12), the adjoint equations
(3.2.13) and (3.2.14), and the optimality condition (3.2.15).

Recalling the Hamiltonian (3.1.9), we can also write the above relations in a form that
emphasizes the Hamiltonian structure:

xn+1 = xn + τ
s∑
i=1

biHλ(Xi,Λi, Ui), x0 = ξ, (3.2.16)

Xi = xn + τ

s∑
j=1

aijHλ(Xj,Λj, Uj), i = 1, . . . , s, (3.2.17)

λn+1 = λn − τ
s∑
i=1

biHx(Xi,Λi, Ui), λN = −Φx(xN), (3.2.18)

Λi = λn − τ
s∑
j=1

ãijHx(Xj,Λj, Uj), i = 1, . . . , s, (3.2.19)

0 = Hu(Xi,Λi, Ui), i = 1, . . . , s. (3.2.20)
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In some cases, it is appropriate to replace the latter condition by the more general

Ui = arg max
u∈U

H(Xi,Λi, u), i = 1, . . . , s. (3.2.21)

As noted in [101], a pair of RK methods defined by coefficients {bi, aij} and {bi, ãij},
where ãij = bj − bjaij/bi, constitute a symplectic partitioned RK pair. That is, if these
methods are applied to a pair of differential equations ẋ = Hλ(x, λ), λ̇ = −Hx(x, λ),
then the resulting map from tn to tn+1 is a symplectic map. Hence, we obtain the well-
known result that the discrete variational approach automatically produces a symplectic
integrator for the Euler-Lagrange equations.

3.2.1 Symplectic Euler method

The elementary example of a symplectic variational integrator is the symplectic Euler
method, which corresponds to the RK pair with s = 1, b1 = 1, a11 = 0 = 1 − ã11.
In this case all the internal stage relations can be eliminated, leaving the discrete La-
grangian

L[x,λ,u] = Φ(xN) + λT0 (x0 − ξ) + τ
N−1∑
n=0

h(xn, un) + λTn+1

(
xn+1 − xn

τ
− f(xn, un)

)
.

(3.2.22)
The discrete Pontryagin maximum principle is

xn+1 = xn + τf(xn, un), (3.2.23)

λn+1 = λn − τfx(xn, un)Tλn+1 + τhx(xn, un), (3.2.24)

0 = fu(xn, un)Tλn+1 − hu(xn, un), (3.2.25)

with boundary conditions x0 = ξ, λN = −Φx(xN).

Note that (3.2.23)–(3.2.25) can also be written in terms of the Hamiltonian H:

xn+1 − xn
τ

= Hλ(xn, λn+1, un), (3.2.26)

λn+1 − λn
τ

= −Hx(xn, λn+1, un), (3.2.27)

0 = Hu(xn, λn+1, un). (3.2.28)

3.2.2 Reduced notation for Runge-Kutta methods

Hager [58] introduced notation that casts general symplectic Runge-Kutta methods
(3.2.16)-(3.2.20) in a form consistent with the symplectic Euler method. Define

f τ (x, u) =
s∑
i=1

bif(Xi(x, u), Ui(u)), hτ (x, u) =
s∑
i=1

bih(Xi(x, u), Ui(u)), (3.2.29)

where we view the stage values Xi and Ui as functions of grid point value x and discrete
control u = {U1, . . . , Us} according to

Xi(x, u) = x+ τ

s∑
j=1

aijf(Xj(x, u), Uj(u)), i = 1, . . . , s. (3.2.30)
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Similarly, define the Hamiltonian

Hτ (x, λ, u) = λTf τ (x, u)− hτ (x, u). (3.2.31)

With this notation, the discretization of Pontryagin’s maximum principle with any sym-
plectic Runge-Kutta pair can be written as

xn+1 − xn
τ

= Hτ
λ(xn, λn+1, un), (3.2.32)

λn+1 − λn
τ

= −Hτ
x(xn, λn+1, un), (3.2.33)

0 = Hτ
u(xn, λn+1, un). (3.2.34)

To see the equivalence, note that evaluating (3.2.30) at xn yields the implicit relations
(3.2.12). Taking the derivative of (3.2.31) with respect to λ and substituting (3.2.29)
shows (3.2.32) to be equivalent to (3.2.11). The proof of the relation (3.2.33) is more
involved. We adapt the proof from [58] to our notation.

Let Ψi(x) = ∂xXi(x, u) and denote Ψi = Ψi(xn). Then computing the derivative of (3.2.30)
at xn yields the linear system

Ψi = I + τ
∑
j

aijfx(Xi, Ui)Ψj. (3.2.35)

The derivative on the right side of (3.2.33) is

Hτ
x(xn, λn+1, un) =

s∑
j=1

bjΨ
T
j fx(Xj, Uj)

Tλn+1 − bjΨT
j hx(Xj, Uj). (3.2.36)

Rearranging (3.2.8) gives

bjGj − τ
s∑
i=1

biaijfx(Xj, Uj)
TGi = bjhx(Xj, Uj)− bjfx(Xj, Uj)

Tλn+1.

Premultiplying by ΨT
j and summing over j gives

s∑
j=1

bjΨ
T
j Gj − τ

s∑
i,j=1

biaijΨ
T
j fx(Xj, Uj)

TGi

=
s∑
j=1

bjΨ
T
j hx(Xj, Uj)− bjΨT

j fx(Xj, Uj)
Tλn+1 = −Hτ

x(xn, λn+1, un), (3.2.37)

where the last equality follows from (3.2.36). Now changing the index of summation in
the first sum on the left, we obtain

−Hτ
x(xn, λn+1, un) =

s∑
i=1

biΨ
T
i Gi − τ

s∑
i=1

(
s∑
j=1

aijΨ
T
j fx(Xj, Uj)

T

)
biGi,

=
s∑
i=1

biGi,

=
λn+1 − λn

τ
,
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where the second equality follows from (3.2.35), thus confirming (3.2.33).

The proof of (3.2.20) follows similar arguments, see [58]. Note the analogy between the
relations (3.2.16)–(3.2.20) and (3.2.26)–(3.2.27) for the symplectic Euler method.

3.3 Convergence analysis

In this section we prove the convergence of the regularized forward-backward sweep itera-
tion (3.1.17)–(3.1.19) for symplectic Runge-Kutta methods. The proof here follows closely
that of Li et al. for the continuous case [77]. It is the symplectic/variational structure that
facilitates this analogy.

Using the compact notation (3.2.29) and (3.2.31), we define the discrete regularized Hamil-
tonian function

H̃τ (x, λ, u, q, p) = Hτ (x, λ, u)− ρ

2

(
‖q −Hτ

λ(x, λ, u)‖2 + ‖p+Hτ
x(x, λ, u)‖2

)
. (3.3.1)

In iterate k, the symplectic Runge-Kutta discretization of the regularized forward-backwa-
rd sweep iteration (3.1.17)–(3.1.19) solves, in sequence,

x
(k+1)
n+1 = x(k+1)

n + τH̃τ
λ

(
x(k+1)
n , λ

(k)
n+1, u

(k)
n ,

x
(k+1)
n+1 − x(k+1)

n

τ
,
λ

(k)
n+1 − λ(k)

n

τ

)
, (3.3.2)

λ
(k+1)
n+1 = λ(k+1)

n − τH̃τ
x

(
x(k+1)
n , λ

(k+1)
n+1 , u(k)

n ,
x

(k+1)
n+1 − x(k+1)

n

τ
,
λ

(k+1)
n+1 − λ(k+1)

n

τ

)
, (3.3.3)

u(k+1)
n = arg max

u∈U
H̃τ

(
x(k+1)
n , λ

(k+1)
n+1 , u,

x
(k+1)
n+1 − x(k+1)

n

τ
,
λ

(k+1)
n+1 − λ(k+1)

n

τ

)
, (3.3.4)

proceeding as follows: (3.3.2) by forward integration with u and λ fixed, then (3.3.3) by
backward integration with x and u fixed, and finally (3.3.4) solved for each time step
independently (e.g. in parallel), with x and λ fixed.

It is important to recall that with u fixed, along solutions of (3.3.2) and (3.3.3) the extra
regularization terms in the extended Hamiltonian H̃τ are identically zero and

H̃τ
λ

(
xn, λn+1, un,

xn+1 − xn
τ

,
λn+1 − λn

τ

)
= Hτ

λ(xn, λn+1, un),

H̃τ
λ

(
xn, λn+1, un,

xn+1 − xn
τ

,
λn+1 − λn

τ

)
= Hτ

x(xn, λn+1, un),

i.e., the regularization terms only affect the maximization step (3.3.4).

Notation and identities

In the following we consider a single iteration of (3.3.2)–(3.3.4). We think of Hτ , x and
λ as functions of u. Consequently we denote by xun and λun the numerical solutions to
(3.2.32) and (3.2.33) given a candidate control u.
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It is convenient to define the composite notation

zn =

(
xn
λn+1

)
, Hτ

z (zn, un) =

(
Hτ
x(xn, λn+1, un)

Hτ
λ(xn, λn+1, un)

)
.

We consider two control sequences u and v, and we are interested in bounding the change
in H̃τ when u is replaced by v. To that end we define an operator that denotes the
difference between quantities dependent on u and v:

δuxn = xvn − xun.

We use this notation also for functions, e.g.

δuH
τ |n = Hτ (zvn, vn)−Hτ (zun, un).

We denote by δ̄uH
τ the change due to an update in u with x and λ fixed as functions of

u:
δ̄uH

τ |n = Hτ (xun, λ
u
n+1, vn)−Hτ (xun, λ

u
n+1, un). (3.3.5)

We denote the temporal forward difference operator by δt:

δtxn =
xn+1 − xn

τ
,

and remark that δt commutes with δu when applied to variables, i.e. δuδtxn = δtδuxn.

Next we note the discrete integration by parts formula:

τ
N−1∑
n=0

λTn+1δtxn =
N−1∑
n=0

λTn+1(xn+1 − xn)

= −λT0 x0 + λT0 x0 − λT1 x0 + λT1 x1 + · · · − λTNxN−1 + λTNxN

= λTnxn
∣∣N
0
− τ

N−1∑
n=0

(δtλn)Txn.

This formula holds for any discrete functions defined for n = 0, . . . , N , and in particular
we may insert the difference operator δu to obtain two useful alternatives:

τ
N−1∑
n=0

λun+1 · δtδuxn = λun · δuxn
∣∣N
0
− τ

N−1∑
n=0

δtλ
u
n · δuxn. (3.3.6)

τ
N−1∑
n=0

δuλn+1 · δtδuxn = δuλn · δuxn
∣∣N
0
− τ

N−1∑
n=0

δtδuλn · δuxn. (3.3.7)

Estimates

In the Appendix of this chapter we show that—possibly with a restriction on step size—
the Lipschitz conditions (3.1.3) on f and h translate into related Lipschitz conditions
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on f τ and hτ . Henceforth choosing K to be a generic Lipschitz constant we obtain the
bounds

‖f τ (x, u)− f τ (x′, u)‖+ ‖f τx (x, u)− f τx (x′, u)‖ ≤ K‖x− x′‖,
|hτ (x, u)− hτ (x′, u)|+ ‖hτx(x, u)− hτx(x′, u)‖ ≤ K‖x− x′‖. (3.3.8)

Note also that the leftmost terms in the above inequalities as well as the analogous ones
of (3.1.3) imply global bounds on the derivatives (which may be relaxed, see [77])

‖Φx(x)‖ ≤ K, ‖fx(x, u)‖ ≤ K, ‖hx(x, u)‖ ≤ K, ‖f τx (x, u)‖ ≤ K, ‖hτx(x, u)‖ ≤ K.
(3.3.9)

We use two discrete forms of Grönwall’s lemma [41]. Let {bn} be a given, monotone
sequence and τ,K > 0. Then the following implication holds:

an+1 ≤ (1 + τK)an + τbn,∀n ⇒ an ≤ eτnKa0 +K−1eτnKbn−1. (3.3.10)

Under the same conditions, the following implication holds:

an+1 ≤ bn+1 + τK
n∑

m=0

am,∀n ⇒ an ≤ eτnKbn. (3.3.11)

From (3.2.36) and (3.5.5), and using the bounds (3.3.9) on fx and hx,

‖λn‖ ≤ ‖λn+1‖+ τ‖Hτ
x(xnλn+1, un)‖ ≤ (1 + τK)‖λn+1‖+ τK,

where we have absorbed the constant from (3.5.5) into K. Further using Grönwall bound
(3.3.10) and the bound (3.3.9) on Φx(x),

‖λn‖ ≤ K1 := (K + 1)eτKN = (K + 1)eKT . (3.3.12)

From δuxn+1 = δuxn + τδuf
τ |n and δux0 = 0 we calculate

‖δuxn‖ ≤ τ
n−1∑
m=0

‖δuf τ |m‖

≤ τ
n−1∑
m=0

‖δ̄uf τ |m‖+ ‖f τ (xvm, vm)− f τ (xum, vm)‖

≤ τ
n−1∑
m=0

‖δ̄uf τ |m‖+K‖δuxm‖,

and using Grönwall bound (3.3.11),

‖δuxn‖ ≤ τeKT
N−1∑
m=0

‖δ̄uf τ |m‖. (3.3.13)
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Similarly, from δuλn = δuλn+1 + τδuH
τ
x(xn, λn+1, un) we obtain

‖δuλn‖ ≤ ‖δuλN‖+ τ
N−1∑
m=n

‖δuHτ
x |m‖

≤ K‖δuxN‖+ τ

N−1∑
m=n

‖δ̄uHτ
x |m‖+ τK

N−1∑
m=n

‖δuλm+1‖+ τK(K1 + 1)
N−1∑
m=n

‖δuxm‖,

where the last term uses (3.1.3) and the Lipschitz condition (3.3.8) on Hτ
x . The discrete

Grönwall’s lemma gives

‖δuλn‖ ≤ KeKT

(
‖δuxN‖+ τ(K1 + 1)

N−1∑
m=0

‖δuxm‖
)

+ τeKT
N−1∑
m=0

‖δ̄uHτ
x |m‖.

Finally, making use of (3.3.13) gives

‖δuλn‖ ≤ τK2

N−1∑
m=0

‖δ̄uf τ |m‖+ τeKT
N−1∑
m=0

‖δ̄uHτ
x |m‖, K2 = Ke2KT (1 + (K1 + 1)T ).

(3.3.14)

The following estimates make use of Taylor’s theorem in the mean value form:

δuH
τ
z |n · δuzn = δ̄uH

τ
z |n · δuzn + δuzn ·Hτ

zz(z
u
n + r1δuzn, un) · δuzn, (3.3.15)

for some r1 ∈ [0, 1], where Hτ
zz denotes the Hessian matrix of second partial derivatives

of Hτ .
δuΦx(xN) · δuxN = δuxN · Φxx(x

u
N + r2δuxN) · δuxN , (3.3.16)

for some r2 ∈ [0, 1]. Similarly,

Φx(x
u
N) · δuxN = Φ(xvN)− Φ(xuN)− 1

2
δuxN · Φxx(x

u
N + r3δuxN) · δuxN , (3.3.17)

for some r3 ∈ [0, 1].

δuH
τ = δ̄uH

τ +Hτ
z (zun, v) · δuzn +

1

2
δuzn ·Hτ

zz(z
u
n + r4δuzn, vn) · δuzn, (3.3.18)

for some r4 ∈ [0, 1].

Convergence of the iteration

Convergence of the regularized forward-backward sweep iteration relies on Lemma 2 of
[77], the proof of which we adapt for the symplectic RK method here. The result we want
states that under the assumptions (3.1.3), there exists a constant C > 0 such that for any
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two discrete controls u,v ∈ U , the discrete cost function (3.2.4) satisfies

Jτ (v) ≤ Jτ (u)− τ
N−1∑
n=0

δ̄uH
τ |n + Cτ

N−1∑
n=0

‖f τ (xun, vn)− f τ (xun, un)‖2

+ Cτ
N−1∑
n=0

‖Hτ
x(xun, λ

u
n+1, vn)−Hτ

x(xun, λ
u
n+1, un)‖2

= Jτ (u)− τ
N−1∑
n=0

δ̄uH
τ |n + Cτ

N−1∑
n=0

‖δ̄uHτ
z |n‖2 (3.3.19)

Define the discrete functional

I(x,λ,u) = τ
N−1∑
n=0

λTn+1δtxn −Hτ (xn, λn+1, un)− hτ (xn, un) ≡ 0. (3.3.20)

The functional I is identically zero for sequences x and λ satisfying (3.2.32)–(3.2.33).
Note the identity

δu(λn+1 · δtxn) = λun+1 · δtδuxn + δuλn+1 · δtxun + δuλn+1 · δtδuxn. (3.3.21)

We find

0 ≡ I(xv,λv,v)− I(xu,λu,u) =

τ
N−1∑
n=0

λun+1 · δtδuxn + δuλn+1 · δtxun + δuλn+1 · δtδuxn

− τ
N−1∑
n=0

(
Hτ (xvn, λ

v
n+1, vn)−Hτ (xun, λ

u
n+1, un)

)
− τ

N−1∑
n=0

(hτ (xvn, vn)− hτ (xun, un))

In our notation this is

0 ≡ δuI = τ

N−1∑
n=0

λun+1 · δtδuxn + δuλn+1 · δtxun + δuλn+1 · δtδuxn− δuHτ |n− δuhτ |n. (3.3.22)

Remark. This is the point where the symplectic/variational property of the symplectic
RK method is important. Since xn and λn are discretized by a symplectic partitioned
Runge-Kutta method, we see that I is also equivalent to the constraint part of the discrete
Lagrangian:

I = τ

N−1∑
N=0

λTn+1

(
xn+1 − xn

τ
− f τ (xn, un)

)
,

which is identically zero along a solution to the state dynamics (3.2.32). Of course, one
could define I as above for an arbitrary choice of the λn. Then I would be identically zero,
but one would not be able to translate this into a statement about the Hamiltonian.
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Using (3.3.6) the first two terms on the right side of (3.3.22) are equal to

τ
N−1∑
n=0

λun+1 · δtδuxn + δuλn+1 · δtxun

= λun · δuxn
∣∣N
0

+ τ

N−1∑
n=0

f τ (xun, un) · δuλn+1 +Hτ
x(xun, λ

u
n+1, un) · δuxn,

or in compact notation

τ

N−1∑
n=0

λun+1 · δtδuxn + δuλn+1 · δtxun = λun · δuxn
∣∣N
0

+ τ

N−1∑
n=0

Hτ
z (zun, un) · δuzn. (3.3.23)

Similarly, using (3.3.7) the third term on the right side of (3.3.22) is equal to

τ
N−1∑
n=0

δuλn+1 · δtδuxn =
1

2
τ
N−1∑
n=0

δuλn+1 · δtδuxn +
1

2
τ
N−1∑
n=0

δuλn+1 · δtδuxn

=
1

2
δuλn · δuxn

∣∣N
0

+
1

2
τ
N−1∑
n=0

(
Hτ
x(xvn, λ

v
n+1, vn)−Hτ

x(xun, λ
u
n+1, un)

)
· δuxn

+
(
Hτ
λ(xvn, λ

v
n+1, vn)−Hτ

λ(xun, λ
u
n+1, un)

)
· δuλn+1,

or,

τ
N−1∑
n=0

δuλn+1 · δtδuxn =
1

2
δuλn · δuxn

∣∣N
0

+
1

2
τ
N−1∑
n=0

δuH
τ
z |n · δuzn. (3.3.24)

Remark. Again the symplectic property of the discretization allows us to express this
as the gradient of the Hamiltonian collocated at the numerical solution of the forward
and backward equations, which in turn will allow cancellation with the second term of the
Taylor expansion in (3.3.27).

Combining (3.3.22), (3.3.23) and (3.3.24) gives

0 ≡ δuI = (λun +
1

2
δuλn) · δuxn

∣∣N
0

+

τ
N−1∑
n=0

Hτ
z (zun, un) · δuzn +

1

2
δuH

τ
z |n · δuzn − δuHτ |n − δuhτ |n. (3.3.25)

Given that δux0 = 0, the boundary term in (3.3.25) reduces to

(λuN +
1

2
δuλN) · δuxN = −Φx(xN) · δuxN −

1

2
(Φx(x

v
N)− Φx(x

u
N)) · δuxN . (3.3.26)

We substitute (3.3.15) and (3.3.18) into the second and third summand of (3.3.25),
(3.3.26) into the boundary term, and subsequently the estimates (3.3.16) and (3.3.17)



40 3.3. Convergence analysis

to yield:

0 ≡ δuI = −
(

Φ(xvN)− Φ(xuN)− 1

2
δuxN · Φxx(x

u
N + r3δuxN) · δuxN

)
− 1

2
(δuxN · Φxx(x

u
N + r2δuxN) · δuxN) + τ

N−1∑
n=0

−δuhτ |n +Hτ
z (zun, un) · δuzn

+
1

2

(
δ̄uH

τ
z |n · δuzn + δuzn ·Hτ

zz(z
u
n + r1δuzn, un) · δuzn

)
−
(
δ̄uH

τ |n +Hτ
z (zun, vn) · δuzn +

1

2
δuzn ·Hτ

zz(z
u
n + r4δuzn, vn) · δuzn

)
,

or,

δuΦ(xN) + τ

N−1∑
n=0

δuh
τ (xn, un) =

− 1

2
δuxN · (Φxx(x

u
N + r2δuxN)− Φxx(x

u
N + r3δuxN)) · δuxN

− τ
N−1∑
n=0

δ̄uH
τ |n +

1

2
τ
N−1∑
n=0

δ̄uH
τ
z |n · δuzn

+
1

2
τ
N−1∑
n=0

δuzn · (Hτ
zz(z

u
n + r1δuzn, vn)−Hτ

zz(z
u
n + r4δuzn, vn)) · δuzn. (3.3.27)

Next, we use the estimates (3.3.13) and (3.3.14) and the fact that the quadratic terms are
bounded by some constant K3 to calculate

Jτ [v]− Jτ [u] ≤− τ
N−1∑
n=0

δ̄uH
τ |n,

+K3‖δuxN‖2 +K3τ

N−1∑
n=0

(
‖δuxn‖2 + ‖δuλn+1‖2

)
,

+
1

2
τ
N−1∑
n=0

‖δuxn‖‖δ̄uf τ |n‖+
1

2
τ
N−1∑
n=0

‖δuλn+1‖‖δ̄uHτ
x |n‖,

≤− τ
N−1∑
n=0

δ̄uH
τ |n + C

(
τ
N−1∑
n=0

‖δ̄uf τ |n‖
)2

+ C

(
τ
N−1∑
n=0

‖δ̄uHτ
x |n‖

)2

,

≤− τ
N−1∑
n=0

δ̄uH
τ |n + Cτ

N−1∑
n=0

‖δ̄uf τ |n‖2 + Cτ

N−1∑
n=0

‖δ̄uHτ
x |n‖2,

which is the result sought (cf. (3.3.19)).

It now remains to show that the regularized forward-backward sweep iteration converges.
We first show that an estimate of the same form as (3.3.19) holds for δuH

τ when the
regularized Hamiltonian is maximized. These can be combined to show monotone decay
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of the objective function Jτ [u]. Thereafter, it is shown that the sum of the decrements is
finite, which implies convergence of the differences.

Let v denote the improved control obtained by solving (3.3.4). The resulting change in
H̃τ must be nonnegative, hence

0 ≤ τ

N−1∑
n=0

δ̄uH̃
τ |n = τ

N−1∑
n=0

δ̄uH
τ |n

− ρ

2

[
‖x

u
n+1 − xun
τ

− f τ (xun, vn)‖2 + ‖λ
u
n+1 − λun
τ

+Hτ
x(xun, λ

u
n+1vn)‖2

]
+
ρ

2

[
‖x

u
n+1 − xun
τ

− f τ (xun, un)‖2 + ‖λ
u
n+1 − λun
τ

+Hτ
x(xun, λ

u
n+1, un)‖2

]
. (3.3.28)

The last term in square brackets vanishes since xun and λun satisfy (3.2.32)–(3.2.33). Con-
sequently, the above expression is equivalent to

0 ≤ τ
N−1∑
n=0

δ̄uH̃
τ |n = τ

N−1∑
n=0

δ̄uH
τ |n −

ρ

2

[
‖δ̄uf τ |n‖2 + ‖δ̄uHτ

x |n)‖2
]
. (3.3.29)

Combining this with Lemma 2 gives

Jτ [v]− Jτ [u] ≤ −(1− 2C

ρ
)τ

N−1∑
n=0

δ̄uH
τ |n. (3.3.30)

The summation on the right side is nonnegative, as a consequence of (3.3.29) . Therefore,
choosing ρ > 2C ensures that Jτ is nonincreasing. Next suppose we iterate (3.3.2)–(3.3.4).
Let u(k) denote the control variable in iteration k. Then it holds that

M∑
k=0

τ
N−1∑
n=0

δ̄uH
τ |(k)
n ≤ D−1(Jτ [u(0)]− Jτ [u(M+1)]) ≤ D−1(Jτ [u(0)]− inf

u∈U
Jτ [u]),

where D = (1 − 2C/ρ) > 0. Consequently, in the limit M → ∞ this sum is bounded,
which implies

N−1∑
n=0

δ̄uH
τ |n → 0,

proving convergence of the iteration.

3.4 Numerical illustration

In this section we study numerically the convergence of the discrete regularized forward-
backward sweep iteration. As a test problem we control the motion of a damped oscillator
in a double well potential. The controlled motion is given by

x =

(
q
p

)
, f(x, u) =

(
p

q − q3 − νp+ u

)
, (3.4.1)
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where ν > 0 is a damping parameter. The control u(t) acts only on the velocity. As initial
condition we choose ξ = (−1, 0) in the left potential well, and we seek to minimize the
cost function

J [u] =
α

2
‖x(T )− xf‖2 +

∫ T

0

1

2
u(t)2 dt, (3.4.2)

where the target final position is xf = (1, 0), in the right potential well. For the numerical
computations we take T = 6, ν = 1, and α = 10.

We solve the optimal control problem using the discrete regularized forward-backward
sweep iteration (3.3.2)–(3.3.4) and the symplectic Euler scheme (3.2.23)–(3.2.25). We
iterate until the update to the control variable u is less than a prescribed tolerance

N−1∑
n=0

‖u(k)
n − u(k−1)

n ‖ < ε,

where ε = 1e−8. The computed optimal path x(t) = (q(t), p(t)) is shown as a solid blue
curve on the left plot of Figure 3.1. The background contours are level sets of the total
energy function E = 1

2
p2 + 1

4
q4 − 1

2
q2. The optimal control must accelerate the motion of

the particle to reach an energy level above the saddle point, allowing it to cross to the
potential well on the right.

For this computation we chose ρ = 100 for the regularization parameter. Convergence
occurs in 4206 iterations. Figure 3.2 shows the discrete cost function (3.2.4) during the
first 2000 iterations for values ρ = 50, ρ = 100 and ρ = 200. For ρ = 100, the convergence
is monotone as predicted by the theory of the previous section (cf. (3.3.30)). For ρ = 50,
we observe an initial reduction in cost, which eventually oscillates and does not converge.
For ρ = 200, the iteration converges but at a slower rate than for ρ = 100. Hence, our
experience suggests there is a critical value of ρ below which there is no convergence of the
regularized forward-backward sweep iteration, and above which the convergence becomes
steadily slower.

The minimal cost obtained using the symplectic Euler method and N = 160 was J =
0.7712. We also computed the optimal solution for N = 20 time steps, shown as the red
dash-dot line in the left plot of Figure 3.1. As noted in Section 3.2, by discretizing the
Lagrangian we obtain a discrete optimal control problem for each N . For the case N = 20
the optimal path deviates significantly from that for N = 160. Because the Lipschitz
constant is larger for this solution, it was necessary to take ρ = 400 for convergence.
The optimal cost in the case N = 20 is J = 0.7006, which is less than the optimal cost
obtained in the case N = 160.

We also solved the optimal control problem using the implicit midpoint rule, a second
order symplectic Runge-Kutta method with s = 1 and coefficients a11 = b1 = 1/2. The
solutions for N = 20 and N = 160 are shown in the right plot of Figure 3.1. Here we see
that the discrete optimum at low resolution is much closer to that at high resolution. The
optimal costs were computed J = 0.7837 for N = 20 and J = 0.7769 for N = 160. Both
resolutions converged with ρ = 100.

Although the convergence is monotone in the cost J for large enough ρ, the forward-
backward sweep iteration may require a large number of iterations to attain a sufficiently
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Figure 3.1: Optimal motion in q–p plane, computed with the symplectic
Euler method (left) and implicit midpoint method (right), for N = 160

(solid blue line) and N = 20 (dash-dot red line).
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Figure 3.2: Convergence of the cost function for the regularized forward-
backward sweep iteration using the symplectic Euler method (3.2.23)–

(3.2.25), with ρ = 50 (blue), ρ = 100 (red) and ρ = 200 (yellow).
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small cost. Acceleration techniques such as Anderson acceleration [119] may be employed
to improve the convergence rate. We implement (3.3.2)–(3.3.4) as a fixed point iteration on
the control function u, i.e. u(k+1) = F(u(k)). Subsequently we apply Anderson acceleration
with restarts every three iterations. In Figure 3.3 we see that the cost function converges in
221 iterations (nearly a factor 20 fewer), but the cost no longer decays monotonically. See
[62] for a more sophisticated strategy with adaptive damping and preserving monotonicity.
In our experience the choice of a good acceleration algorithm depends heavily on the
problem.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
iteration number

100

101

102

co
st

, J

Anderson
fixed point

Figure 3.3: Comparison of the Anderson accelerated (blue) and fixed
point (red) iterations. Shown are the cost functions using the symplectic

Euler method (3.2.23)–(3.2.25), with ρ = 100.

3.5 Summary

In this chapter we have extended the convergence proof of a regularized forward-backward
sweep iteration [77] for solving optimal control problems to the discrete setting. We showed
that if the continuous problem is discretized by a symplectic partitioned Runge-Kutta pair
(using a variational integrator approach), then the convergence proof of [77] may be easily
adapted. Numerical experiments with the first order, explicit symplectic Euler method and
the second order implicit midpoint rule demonstrate monotonic convergence of the cost
function if the regularization parameter ρ is chosen large enough. For insufficiently large ρ
the cost undergoes bounded oscillations; whereas for excessively large ρ the convergence is
slower. In our experiments, convergence was observed even with large step sizes, however
the resulting discrete optimization problem is an inaccurate approximation of the con-
tinuous problem. In an efficient implementation, the regularized forward-backward sweep
iteration may be combined with an acceleration techniques for nonlinear iterations such
as Anderson acceleration [119].
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Appendix

In this appendix we prove that the bounds (3.3.8) follow from (3.1.3).

Since bi ≥ 0, i = 1, . . . , s,

‖f τ (x′, u)− f τ (x, u)‖ ≤
s∑
i=1

bi‖f(Xi, Ui)− f(X ′i, Ui)‖, (3.5.1)

where X ′i satisfies

X ′i = x′ + τ
s∑
j=1

aijf(X ′j, Uj).

Denoting ∆Xi = Xi−X ′i and using the Lipschitz condition on f (cf. (3.1.3)), we find

‖∆Xi‖ ≤ ‖x− x′‖+ τ
s∑
j=1

|aij| ·K‖∆Xj‖.

Denote by |A| the matrix with elements |aij|, by |∆X| the vector with elements ‖∆Xi‖,
and let 1 be the vector of dimension s with all elements equal to 1. Then the above
inequality becomes

(I − τK|A|)|∆X| ≤ ‖x− x′‖1. (3.5.2)

For explicit Runge-Kutta methods, the matrix on the left always has positive inverse given
by

(I − τK|A|)−1 =
s−1∑
i=0

(τK|A|)i.

For implicit Runge-Kutta methods, the matrix on the left of (3.5.2) is an M-matrix with
positive inverse if we impose the step size restriction

τ ≤ (K max
ij
|aij|)−1. (3.5.3)

In either of the above cases we find

‖Xi −X ′i‖ ≤ Kτ‖x− x′‖, Kτ = ‖(I − τK|A|)−11‖∞. (3.5.4)

Returning to (3.5.1) we obtain

‖f τ (x′, u)− f τ (x, u)‖ ≤
s∑
i=0

biKK
τ‖x− x′‖ = KKτ‖x− x′‖.

proving the first bound in (3.3.8).

To prove the second bound, recall (3.2.35). Taking norms, and using the bound (3.1.3),

‖Ψi‖ ≤ 1 + τ

s∑
j=1

|aij|K‖Ψj‖,
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from which we conclude that
‖Ψi‖ ≤ Kτ . (3.5.5)

We also find

‖Ψi −Ψ′i‖ ≤ τ

s∑
j=1

|aij|‖fx(Xj, Uj)Ψj − fx(X ′j, Uj)Ψ′j‖

= τ
s∑
j=1

|aij|‖fx(Xj, Uj)(Ψj −Ψ′j) + (fx(Xj, Uj)− fx(X ′j, Uj))Ψ′j‖

≤ τ

s∑
j=1

|aij|(K‖Ψj −Ψ′j‖+KKτ‖Xj −X ′j‖)

≤ τ
s∑
j=1

|aij|(K‖Ψj −Ψ′j‖+K(Kτ )2‖x− x′‖)

≤ τ(max
i

s∑
j=1

|aij|)K(Kτ )3‖x− x′‖,

where the last inequality follows by inverting the matrix of (3.5.2)—in the case of implicit
RK methods under the step size restriction (3.5.3). Similarly, we compute

‖f τx (x, u)− f τx (x′, u)‖ ≤
s∑
i=1

bi‖fx(Xi, Ui)Ψi − fx(X ′i, Ui)Ψ′i‖

=
s∑
i=1

bi‖fx(Xi, Ui)(Ψi −Ψ′i) + (fx(Xi, Ui)− fx(X ′i, Ui))Ψ′i‖

≤
s∑
i=1

bi(K‖Ψi −Ψ′i‖+KKτ‖Xi −X ′i‖)

≤ (τ max
i

s∑
j=1

|aij|)K2(Kτ )3 +K(Kτ )2)‖x− x′‖,

proving the second bound in (3.3.8).

The bounds on hτ and hτx in (3.3.8) follow the same reasoning.
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Chapter 4

Accelerated convergence of the
regularized maximum principle for
optimal control of the Cucker-Smale
model

Abstract

In this chapter, we investigate numerically the convergence properties of the regularized
forward-backward sweep method in the context of consensus forming in the Cucker-Smale
model. Using Anderson acceleration, we observe that the fast convergence is possible, but
depends on the norm used in the cost function. For sparse control in the `1 norm, con-
vergence may be very slow. Regularization of the norm alleviates the slow convergence to
some degree.

This chapter is transcripted from the paper ”Accelerated convergence of the regularized
maximum principle for optimal control of the Cucker-Smale model” submitted to the Jour-
nal of Optimal Control Applications and Methods.
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4.1 Background

In recent article [78], we discussed the numerical implementation of a regularized forward-
backward sweep iteration for solving optimal control problems, originally proposed by Li,
Chen, Tai & E [77]. The method makes use of only local in time information in the form
of forward and backward time integration sweeps, can be parallelized in the optimization
step, and the convergence can be proved under the condition that a symplectic Runge-
Kutta pair (or variational integrator) is employed to discretize the regularized Euler-
Lagrange equations [78]. We also observed that the rate of convergence could be improved
by complementing the iteration with an acceleration technique for nonlinear iterations,
such as Anderson acceleration [113].

In this chapter we report on further experiments with the regularized forward-backward
sweep method in the context of sparse optimal control of multi-agent systems.

Self-organization is an interesting phenomenon in multi-agent systems, which commonly
appears in biological, economical and social groups. In recent years some mathematical
models, see e.g. [5], are proposed to simulate this kind of behavior. Of particular interest
is the Cucker-Smale model proposed in [32, 33], which represents synchronized motion as
observed in flocks of birds and schools of fish. Within the model, agents in d-dimensional
space adapt their velocity vectors towards that of their neighbors[56, 55] naturally. The
Cucker-Smale model has also been suggested as a model of consensus forming.

However, the Cucker-Smale dynamics does not converge to consensus for all initial con-
ditions. When consensus is not reached under the free dynamics, an extra intervention,
e.g., a control function, may be used to impose consensus, see [20]. Since the focus on
multi-agent systems typically assumes large populations, it is difficult or undesirable in
practice to attempt to continuously control all agents. Hence, the recent work has ad-
dressed sparsity constraints on the control, striving for most components of the control
to be zero most of the time. One means of achieving sparse optimal control is through
the use of `1-norms in the cost function, which in turn leads to discontinuous controls
and the need for upper bound constraints on the admissibility set. Consequently we study
the convergence of the regularized forward-backward sweep iteration for constrained and
discontinuous controls.

The model consists of M interacting agents, each characterized by its position xi(t) ∈ Rd

and velocity vi ∈ Rd, i = 1, . . . ,M . The dynamics is governed by

ẋi = vi, i = 1, . . . ,M (4.1.1)

v̇i =
∑
j 6=i

φ(‖xj − xi‖)(vj − vi), i, j = 1, . . . ,M (4.1.2)

xi(0) = xi0, vi(0) = v(i0), (4.1.3)

where φ : R+ → R+ is a bounded, non-increasing, continuous function that represents
the influence of an agent. Generally, φ is taken to be

φ(r) =
1

(1 + r2)β
, (4.1.4)
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where β > 0 is a parameter that affects the decay rate of the radius of influence of agents.
The system is said to reach ‘consensus’ if the velocities vi of individual agents converge
to a common vector. Specifically, defining

V (t) =
1

2M2

∑
i,j

‖vi(t)− vj(t)‖2, X(t) =
1

2M2

∑
i,j

‖xi(t)− xj(t)‖2. (4.1.5)

it has been shown that the system converges asymptotically to the consensus state V = 0,
i.e.,

V (t) ≤ V (0)e−κt, κ > 0

in two situations. First, under significantly slow decay of influence β ≤ 1
2
, consensus

will be reached from arbitrary initial condition, with the rate κ depending on the initial
condition [32, 33, 56]. Second, for β > 1

2
, consensus conditionally will be reached if the

initial condition satisfies:

‖v(0)‖ < 1

2β − 1
(1 + ‖x(0)‖2)

1
2
−β

When the conditions for consensus given above are not met, the Cucker-Smale model
generally does not reach consensus, and several authors have employed the model to
study how consensus can be influenced by an outside agent. Of particular interest is the
possibility of a sparse controller who exerts influence only locally within the population
or for short intervals of time. To this end, we consider a system in which each agent is
additionally subjected to an external control ui(t) ∈ Rd. The time evolution of the state
is governed by

ẋi = vi, (4.1.6)

v̇i =
∑
j 6=i

φ(‖xj − xi‖)(vj − vi) + ui, (4.1.7)

The objective is to find admissible controls to steer the system into the consensus region in
finite time. The paper [20] considers consensus stabilization for the Cucker-Smale system
by means of both feedback-based controllers and sparse optimal control. The paper [14]
studied different variations of feedback control structure for consensus stabilization. Local
control based on instantaneous feedback models the more realistic situation where the
policymaker is not omniscient. The optimal control problem presented in the next section
describes a model where the policy maker is allowed to see how the dynamics can develop.
Balio et al. [7] investigated numerical realization of optimal consensus control for the
Cucker-Smale model.

This chapter is organized as follows: In Section 2, we formulate the maximum principle
optimal control problem for the Cucker-Smale model and recall the regularized forward-
backward sweep iteration method proposed in [77], whose numerical implementation is
discussed in [78]. In Section 3, we discuss the maximization of the regularized Hamiltonian
in three different norms on the control function. Section 4 discusses a simple example to
illustrate the need for upper bound constraints on the set of admissible controls. In Section
4 we study the convergence of the regularized forward-backward sweep iteration with
Anderson acceleration, including dependence on norm in the cost function and method
parameters.
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4.2 Optimal control of the Cucker-Smale model

Control sparsity can be attained by minimizing the cost of the control with respect to
the `1-norm [31]. Recalling the vector notation x(t) = (x1(t), x2(t), · · · , xM(t)) ∈ RdM ,
v(t) = (v1(t), v2(t), · · · , vM(t)) ∈ RdM , u(t) = (u1(t), u2(t), · · · , uM(t)) ∈ RdM in pre
Cucker-Smale model interpretion in preliminaries part, we introduce the norms ‖ · ‖q,p to
indicate a mixed `q-`p-norm that is `q in Rd and `p in RM :

‖x‖q,p =

(
M∑
i=1

(‖xi‖q)p
)1/p

. (4.2.1)

(When not stated explicitly, ‖ · ‖ denotes the 2-norm in this article.)

We consider the optimal control problem of determining a trajectory of (4.1.6)–(4.1.7),
with initial condition (x(0),v(0)) = (x0,v0), which minimizes a cost functional that
penalizes distance to consensus and magnitude of the control in the mixed `q-`p-norm.
More precisely, the cost functional considered here is, for a given γ > 0,

J [u] =

∫ T

0

M∑
i=1

1

2
‖vi − v̄‖2 +

γ

p

M∑
i=1

‖ui‖pqdt. (4.2.2)

(We emphasize that the second term is equivalent to ‖u(t)‖pq,p.)
The Pontryagin Maximum Principle (see [92]) provides a necessary condition for the ex-
istence of an optimal control. We make use of the Hamiltonian formulation, with Hamil-
tonian functional

H(x,v,λ,µ,u) =
M∑
i=1

[
λTi vi + µTi

(
M∑
j=1

φ(‖xj − xi‖)(vj − vi) + ui

)]

−
M∑
i=1

1

2
‖vi − v̄‖2 − γ

p

M∑
i=1

‖ui‖pq , (4.2.3)

where λ(·) = (λ1, · · · , λM) ∈ RMd and µ(·) = (µ1, · · · , µM) ∈ RMd are adjoint variables
associated to x(t) and v(t), respectively, and satisfying

λ̇i = −
M∑
j=1

φ′(‖xj − xi‖)
‖xj − xi‖

〈xj − xi, vj − vi〉(µj − µi), (4.2.4)

µ̇i = −λi −
M∑
j=1

φ(‖xj − xi‖)(µj − µi) + (vi − v̄), (4.2.5)

λi(T ) = 0, µi(T ) = 0, i = 1, · · · ,M. (4.2.6)

The maximum principle states that an optimal control u maximizes the Hamiltonian
H, among solutions of Hamilton’s equations. For convenience of notation, let us define
augmented vectors zi = (xi, vi) ∈ R2d, νi = (λi, µi) ∈ R2d, z = (zi, i = 1 . . . ,M) ∈ R2dM
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and ν = (νi, i = 1, . . . ,M) ∈ R2dM . In these variables, the maximum principle states that
an optimal control u(t) satisfies

ż =
∂H

∂ν
(z,ν,u), z(0) = z0, (4.2.7)

ν̇ = −∂H
∂z

(z,ν,u), ν(T ) = 0, (4.2.8)

u(t) = arg max
u∈Un

H(z(t),ν(t),u), ∀t ∈ (0, T ). (4.2.9)

Solution of (4.2.7)–(4.2.9) is a boundary value optimization problem due to the initial and
terminal conditions (4.1.3) and (4.2.6). One approach is to iterate, successively solving
(4.2.7) for the zi(t) forward in time, (4.2.8) for the νi(t) backward in time, and (4.2.9)
for the ui(t). Such a method of successive approximations will typically diverge unless
an initial guess near the optimal u is known. In [77] the authors proposed a regularized
forward-backward sweep for solving the Pontryagin equations, and they proved the global
convergence of the iteration in the continuous case. In [78] we extended the proof to
numerical discretization by symplectic Runge-Kutta pairs. Li et al. [77] introduced the
extended Hamiltonian functional

H̃(z,ν,u, z̃, ν̃) = H(z,ν,u)− ρ

2

(∥∥∥∥z̃ − ∂H

∂ν

∥∥∥∥2

+

∥∥∥∥ν̃ +
∂H

∂z

∥∥∥∥2
)
, (4.2.10)

where ρ > 0 is a regularization parameter. Solutions to equations (4.2.7)–(4.2.9) are
approximated by successively solving, in the kth iteration,

ż(k+1) =
∂H̃

∂ν
(z(k+1),ν(k),u(k), ż(k+1), ν̇(k)), z(k+1)(0) = z0,

(4.2.11)

ν̇(k+1) = −∂H̃
∂z

(z(k+1),ν(k+1),u(k), ż(k+1), ν̇(k+1)), ν(k+1)(T ) = 0,

(4.2.12)

u(k+1)(t) = arg max
u∈Un

H̃(z(k+1)(t),ν(k+1)(t),u, ż(k+1)(t), ν̇(k+1)(t)), ∀t ∈ (0, T ). (4.2.13)

It can be checked that the added term to the augmented Hamiltonian (4.2.10) is identically
zero along solutions to (4.2.7)–(4.2.8). Hence (4.2.11)–(4.2.12) are unmodified, whereas
the maximization (4.2.13) ensures that updates to the control function remain close to
solutions of Hamilton’s equations [77]. For significantly large ρ, and appropriate Lipschitz
conditions, Li et al. prove convergence of the iteration (4.2.11)–(4.2.13) in the continuous
case.

In the kth iteration of (4.2.11)–(4.2.13), having performed forward and backward integra-
tions for fixed u, the discrete optimization step (4.2.13) is carried out for fixed z and ν.
Consequently, the Hamiltonian (4.2.3) can be written

H(u) =
∑
i

µTi ui −
γ

p
‖ui‖pq + H̄,
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where H̄ collects terms that are constant during the optimization step. Similarly, since
z(k+1) and ν(k+1) are solutions of (4.2.11) and (4.2.12) for u = u(k), the optimization step
(4.2.13) can be expressed as

u(k+1)(t) = arg max
u∈Un

H(u)− ρ

2

(∥∥∥∥∂H∂ν (u(k))− ∂H

∂ν
(u)

∥∥∥∥2

+

∥∥∥∥∂H∂z (u(k))− ∂H

∂z
(u)

∥∥∥∥2
)
.

Explicitly, and ignoring constant terms, the optimization step becomes

u(k+1)(t) = arg max
u∈Un

(µ(k+1))Tu− γ

p
‖u‖pq,p −

ρ

2
‖u(k) − u‖2. (4.2.14)

In [78] we showed that the convergence proof of [77] extends in a straightforward manner
to the numerical discretization, if (4.2.11)–(4.2.13) are discretized using a symplectic
Runge-Kutta method or symplectic partitioned Runge-Kutta pair.

Discretization yields a set of variables xji , v
j
i , λ

j
i , µ

j
i ∈ Rd, i = 1, . . . ,M , j = 0, . . . , J ,

where j denotes the time index. Within each time step, the Runge-Kutta method makes
use of a set of internal stage variables Xj,`

i , V j,`
i , Λj,`

i , M j,`
i , U j,`

i , where ` = 1, . . . , L is the
stage index of an L-stage Runge-Kutta method. The control variables U j,`

i appear only as
internal stage variables. For details of the symplectic Runge-Kutta implementation, we
refer the reader to [78].

The discrete form of (4.2.14) becomes

U j,`
i = arg max

U∈U
(M j,`

i )TU − γ

p
‖U‖pq −

ρ

2
‖U − (U j,`

i )(k)‖2, ∀i, j, `, (4.2.15)

where, due to the additive nature, this optimization may be performed independently for
all i, j, and `.

4.3 Considerations for solving the Hamiltonian opti-

mization step

In this section we discuss the exact solutions of the decoupled optimization problems
(4.2.15), depending on the choices of `q-`p-norm. When considering sparse control, different
norms have been employed in the literature. The `1-`1-norm, considered in [6, 31, 20],
which acts on a few agents over a finite time frame, presents a challenge due to the lack of
smoothness of the cost functional. The mixed norm `2-`1 has been employed in [20], where
the authors present a full analysis of optimal sparse control solutions, distinguishing five
regions.

4.3.1 Constrained control functions

The Hamiltonian maximization step (4.2.15) decouples into a collection of independent
optimization problems on Rd, in each of which we seek to maximize

A[u] = (µTu− γ

p
‖u‖pq −

ρ

2
‖u− ū‖2

2), (4.3.1)
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where γ, µ ∈ Rd and ū ∈ Rd are treated as parameters. In the following we discuss each
of the `2-`2, `1-`1 and `2-`1-norms separately.

Maximum in the `2-`2-norm.

For p = q = 2, the function A[u] is convex and differentiable. The maximum of (4.3.1) is
attained at u∗ solving ∇A[u∗] = 0, i.e.,

u∗ =
µ+ ρū

γ + ρ
.

Maximum in the `1-`1-norm

For q = p = 1, the function (4.3.1) becomes

A[u] = µu− γ‖u‖1 −
ρ

2
‖u− ū‖2

2. (4.3.2)

Let u(j) denote the jth component of u, 1 ≤ j ≤ d. Then maximizing A[u] in (4.3.2)
amounts to maximizing a sum of scalar functions

Ā[u(j)], j = 1, . . . , d,

where each of the Ā takes the form

Ā[η] = κη − γ|η| − ρ

2
(η − η̄)2, (4.3.3)

for scalar η and known scalar parameters κ and η̄.

For the particular case ρ = 0 we have

Ā[η] = κη − γ|η|. (4.3.4)

If κ > γ > 0, then Ā[η] has no maximum. Hence, it is necessary to bound the control
from above. In this paper we add a constraint on each component of the control, i.e., we
choose the admissible control set U = {u ∈ Rd | ‖u‖∞ ≤ umax}.
For general ρ, the function (4.3.3) is not differentiable at η = 0. For η 6= 0, its gradient
is

Ā′[η] = κ− γ sign(η)− ρ(η − η̄)

If the optimum η∗ satisfies Ā′[η∗] = 0, then

γ

ρ
sign(η∗) = (

κ

ρ
+ η̄)− η∗. (4.3.5)

Let b = κ
ρ
+η̄. The functions on the left and right sides of (4.3.5) are shown in the following
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The optimum η∗ is given by

η∗ =


b− γ

ρ
, b > γ

ρ
,

b+ γ
ρ
, b < −γ

ρ
,

0, otherwise,

(4.3.6)

where the last condition follows because for |b| < γ
ρ
, it can be checked that Ā[η] < Ā[0]

for all nonzero η. The optimal control is the argument maximizing Ā[η] over the set
{η∗,M,−M}.
Maximum in the `2-`1-norm

For ρ = 0, and similar to the `1-`1 case, if for some j it holds that |µj| > γ, the optimal
control is unbounded. Therefore, we need to impose the same constraint on u as in the
`1-`1 case.

For general ρ, when u 6= 0 the gradient condition ∇A[u] = 0 yields

µ− γ u

‖u‖ − ρ(u− ū) = 0,

or (
1 +

γ

ρ‖u‖

)
u = α := ū+

µ

ρ
.

If this equation has a solution, then u and α have the same direction. Taking the 2-norm
of both sides yields

‖u‖+
γ

ρ
= ‖α‖,

which has a solution only if ‖α‖ ≥ γ
ρ
. In this case, we get the candidate optimal con-

trol
u∗ = α(1− γ

ρ‖α‖), α = ū+
µ

ρ
, ‖α‖ ≥ γ

ρ
. (4.3.7)

If ‖α‖ < γ
ρ
, we can rewrite (4.3.1) as

A[u] = ραTu− γ‖u‖ − ρ

2

(
‖u‖2 + ‖ū2‖

)
.

The first term on the right can be bounded by

ραTu ≤ ρ‖α‖‖u‖ < γ‖u‖.

Substituting, we find

A[u] < −ρ
2
‖u‖2 − ρ

2
‖ū‖2 ≤ A(0).

Consequently, if ‖α‖ < γ
ρ
, we set u∗ = 0.

Furthermore, the optimal control u∗ needs to satisfy u∗ ∈ U .
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4.3.2 Soft constraints

Since the sparse control is constrained, the (augmented )Hamiltonian is not differentiable
at the boundary of the admissible control set U . We introduce soft constraints using the
approach of Wang & Li [120] to study the role of smoothness in the convergence of the
regularized forward-backward sweep method. Suppose umin ≤ u ≤ umax, then the soft
constraint is imposed by replacing u with

ũ =
1

2
(
√

(u− umin)2 + δ2 −
√

(u− umax)2 + δ2 + umin + umax). (4.3.8)

Our numerical experiments show that the use of soft constraints can have a significant
impact on convergence.

4.3.3 Splitting approach for `1-`1 optimization

Vossen & Maurer [117] have proposed a splitting approach that converts the `1 opti-
mization problem into an optimization problem with constrained control. In their ap-
proach they split the controls into two parts to ensure differentiability. For i = 1, . . . ,M ,
j = 1, . . . , d, define the new control functions corresponding to the positive and negative
branches of the original control:

u+
i = max{0, ui}, u−i = max{0,−ui}, (4.3.9)

where the maximum is applied element-wise to the vector ui ∈ Rd. Then we have the
relations

ui = u+
i − u−i , |ui| = u+

i + u−i ,

where also the absolute value is applied element-wise. In this notation, we find

‖ui‖1 = 1T |ui| = 1T (u+
i + u−i ),

where 1 = (1, . . . , 1)T ∈ Rd.

This results in an optimal control problem involving the extended control variable u =
(u+

1 , · · · , u+
n , u

−
1 , . . . , u

−
M) ∈ R2dM . The cost function (4.2.2) is replaced by:

J [ω] =

∫ T

0

M∑
i=1

1

2
‖vi − v̄‖2 + γ

M∑
i=1

1T (u+
i + u−i ). (4.3.10)

with the added (element-wise) constraints 0 ≤ u+
i ≤ umax, 0 ≤ u−i ≤ −umin, i = 1, . . . ,M ,

(where we assume umin ≤ 0). Note that in this formulation, the cost function is linear in
the extended control variable.

4.4 A simple two-agent symmetric problem

In this section, we discuss a difficulty with the use of unconstrained sparse controls using
a simple two-agent system with symmetric initial condition x1(0) = (1, 0) = −x2(0),
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v1(0) = (1, 1), v2(0) = (−1, 1). The motion can be expressed in terms of scalar quantities
x(t), y(t), v(t), u(t), w ∈ R such that

x1 =

(
x
y

)
, x2 =

(
−x
y

)
, v1 =

(
v
w

)
, v2 =

(
−v
w

)
, u1 =

(
u
0

)
, u2 =

(
−u
0

)
.

Neglecting the irrelevant motion in the y-direction, the reduced system is

ẋ = v, (4.4.1)

v̇ = −2φ(2x)v + u, (4.4.2)

with initial conditions x(0) = v(0) = 1. We seek to minimize the `1 cost functional

J =

∫ T

0

1

2
v(t)2 + γ|u(t)| dt. (4.4.3)

If we do not constrain the maximum value of the control u we find that the optimal
control assumes the form of a singular adjustment of the initial velocity. For the numerical
solution, the control is nonzero only during the first time step, the velocity is adjusted
instantaneously to an optimal value, and the system evolves further without control. This
behavior persists upon reducing the step size or using higher order methods.

Discretizing the problem using Euler’s method with step size τ , the velocity equation in
the first time step is

v1 = v0 − 2τ φ(2x0)v0 + τ u0.

Substituting the initial conditions x0 = v0 = 1, the necessary control for reaching velocity
v1 = ξ in the first time step is

u0 =
ξ − (1− 2τ φ(2))

τ

The first step contributes to the total cost by an amount:

J0(ξ) =
1

2
τ + γ|ξ − 1 + 2τ φ(2)|. (4.4.4)

In the left graph of Figure 4.1 we plot J0 as a function of ξ for γ = {1, 0.5, 0.25} using
time step τ = 1/80. We also plot the discretized cost of a non-controlled trajectory of
(4.4.1)–(4.4.2) with initial condition v1 = ξ,

Ju=0(ξ) = τ

N−1∑
n=1

1

2
v2
n, v1 = ξ,

as well as the sum of these two: J̃(ξ) = J0(ξ) + Ju=0(ξ). The optimal solutions are
shown in the right graph of Figure 4.1. The minima in the graph on the left in Fig. 4.1
are obtained, for the cases γ = {1, 0.5, 0.25}, respectively, at ξ = {0.339, 0.228, 0.143},
whereas the velocities of the optimal solutions after one time step in the graph on the
right of Fig. 4.1 are v1 = {0.352, 0.230, 0.142}. We note that the optimal velocity at time
t = τ is well approximated by the values of ξ at the minima J̃(ξ). We observe that
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Figure 4.1: With unconstrained controls, the optimal solution of the 2-
agent model with `1 cost (4.4.3) is a discontinuous jump to a new initial
velocity. In the graph on the left, the yellow curve is the cost of a non-
controlled solution starting from initial condition (x0 = 1, v0 = ξ), the blue
lines are the cost of adjusting velocity from v0 = 1 to v0 = ξ in a single
time step (4.4.4), and the red lines are the sums of these two costs for,
respectively, γ = 1 (solid), γ = 0.5 (dashed), γ = 0.25 (dash-dotted). The
graph on the right shows the optimal solutions. In each case the control is

nonzero only in the first time step.

the approximation improves when the step size is reduced, suggesting that the optimal
solution is a discontinuous adjustment of the initial velocity.

For comparison, in Figure 4.2 we illustrate the optimal solution obtained with control
constraint |u| ≤ 1 with γ = 1. With constraints on the control, the state converges to a
continuous function. The control is still ‘sparse’ in the sense that it is nonzero only on a
relatively short interval.
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Figure 4.2: With constraint |u| < 1, the solution of the 2-agent problem
becomes continuous in the state space (γ = 1). The control is still sparse

in the sense that it is nonzero only on an interval.
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4.5 Numerical results for n-agent systems

In this section, we report on numerical experiments to test the convergence behavior of
the regularized forward-backward sweep iteration for optimal control of consensus in M -
agent systems. In all experiments, the agents move in the plane (d = 2). We will consider
optimal control in the three norms `2-`2, `1-`1 and `2-`1. We choose parameter values
β = 2 in (4.1.4) and γ = 1/(2M) in (4.2.2). For the initial condition we (uniformly)
randomly place agents on the unit circle centered at the origin ‖xi(0)‖ = 1, i = 1, . . . ,M .
Moreover we assume a radial velocity configuration with vi(0) = xi(0), chosen such that
consensus would not be reached without a control.

In all experiments we apply the optimal control over a time window of length T = 10. The
optimal control problem is discretized using the first order symplectic Euler pair [78] using
step size τ = 0.125. The method is explicit in the forward sweep and linearly implicit
in the backward sweep. To accelerate convergence of the iteration we apply Anderson
acceleration using the implementation described in Henderson & Varadan [62]. The results
we report were computed using a fixed restart every m iterations, or following an increase
in the cost function. We did not apply damping. The iteration was carried out until
the update between the kth and (k + 1)th control iterates was smaller than a specified
tolerance:

‖u(k+1) − u(k)‖ < tol . (4.5.1)

4.5.1 Optimal control in the `2-`2-norm

We first consider the convergence of the regularized forward-backward sweep algorithm
when the `2-`2-norm is used in (4.2.2) (q = p = 2). The resulting cost function is convex in
the control u. In this case, the set of admissible controls U can be taken unconstrainted,
so soft constraints (4.3.8) are unneeded. We solve the optimal control problem for a
population size M = 20.

Figure 4.3(a) shows the consensus function V (t) given by (4.1.5) as a function of t for the
uncontrolled and controlled cases, illustrating that control is needed to reach consensus.
Figure 4.3(b) shows the optimal control u. In the `2-`2-norm, the control is ‘non-sparse’,
i.e., active for all time t.

Without regularization (ρ = 0) the forward-backward sweep method does not converge.
Setting ρ = 3, convergence to the specified tolerance tol = 10−6 occurs in k = 503
iterations. Applying Anderson acceleration with restart every m = 5 iterations reduces
the number of iterations to k = 44, as shown in Figure 4.4.

4.5.2 Optimal control in the `1-`1-norm

For the choice q = p = 1 in (4.2.2), the optimal control becomes sparse in the sense
that the control is nonzero only for a short adjustment period at the beginning of the
time interval. Thereafter the system evolves under its own dynamics, with no control.
As we saw in Section 4.4 it is necessary to place constraints on the admissible control
space to avoid a singular control. In this section we place upper and lower bounds on each
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Figure 4.3: Convergence to consensus with `2-`2-norm cost function
(4.2.2) with p = q = 2. (a) The consensus function V (t) given in (4.1.5)
with (blue) and without (red) control. (b) the optimal control is not sparse,

but rather active on all agents over the entire interval.
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Figure 4.4: Convergence of the regularized forward-backward sweep al-
gorithm (4.2.11)–(4.2.13) for ρ = 3 (red) is monotone but relatively slow.
Applying restarted Anderson acceleration (blue) significantly speeds con-

vergence.
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component of the control: umax = 0.5 = −umin and study the effect on convergence of the
regularization parameter δ in the soft-constraint function (4.3.8).

For the case of M = 20 agents, Figure 4.5 illustrates the effect of soft constraints on
the optimal control. In the left panel of Figure 4.5 the choice δ = 0.01 shows a visi-
ble effect of the regularization compared to the right panel, for which δ = 0.001. For
these computations, the regularization parameter in the forward-backward sweep method
(4.2.11)–(4.2.13) was chosen to be ρ = 1, and the Anderson acceleration was restarted
every 6 iterations.

In the (mathematically equivalent) Vossen & Maurer formulation of the `1 control dis-
cussed in Section 4.3.3, it can be seen that the augmented controls ωi appear linearly
in the cost function. Such a formulation leads to a bang-bang controller that attains its
extreme values (ωi = 0 or ωi = umax). Note that if the constraint umax = 0.5 is active
for both components of a control u ∈ R2, then ‖u‖1 = 1. Similarly if the constraint is
active on one component and the other component is zero (due to sparsity), then we find
‖u‖1 = 0.5. In Figure 4.5 we observe that for most agents, only one component of the
control is active. This explains the plateau observed in Fig. 4.5 at u = 0.5.
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Figure 4.5: Left: control u when δ = 0.01. Right: control u when δ =
0.001,

We have introduced the soft constraint (4.3.8) to study the effect of smoothness of the
control on convergence of the regularized forward-backward sweep iteration with Anderson
acceleration. Figure 4.6 shows the number of iterations needed for convergence to tol =
10−6 for values of δ = {1, 2, 5} × 10−l, for l = 1, . . . , 4. Except for very small values
δ < 0.001, the number of iterations increases with decreasing δ. (At the smallest values
of δ the convergence dependence is irregular, due to lack of resolution using time step
τ = 0.125.) In these computations, ρ = 8 is employed. We choose δ = 0.01 as a compromise
between accuracy and computational cost.

Using δ = 0.01 we investigated the effect of periodically restarting Anderson acceleration
for different population sizes. We restart Anderson acceleration every m iterations or
whenever the cost J increases within an iteration. Table 4.1 indicates the number of
iterations required to satisfy (4.5.1) for tol = 10−6 for restart numbers 4 ≤ m ≤ 9. We
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Figure 4.6: Number of iterations using cost (4.2.2) with q = p = 1 needed
to satisfy (4.5.1) for tol = 10−6 as a function of regularization parameter

10−4 ≤ δ ≤ 10−1. The dependence is monotone for δ ≥ 10−3.

found the optimal convergence rate to be near m = 8, with more pronounced effect for
larger populations.

Table 4.1: Number of iterations for convergence (4.5.1) to tol = 10−6 with
`1-`1 cost (4.2.2) as a function of restart number of Anderson acceleration

for increasing population size.

population size M

iteration count restart number m
4 5 6 7 8 9

10 180 245 222 196 192 189
20 688 410 456 427 360 378
30 312 340 330 322 304 342

4.5.3 Optimal control in the `2-`1-norm

Also for the `2-`1-norm we compute the sparse control of M = 20 agents under the
parameter δ = 0.01 and δ = 0.001. In the `2-`1-norm, the control only becomes bang-
bang type when one component of the individual control (ui ∈ R2) is zero (inactive).
Figure 4.7 shows the converged optimal control satisfying (4.5.1) for tol = 10−6, with
ρ = 3, restart number m = 7. For both values of δ the control is sparse in the sense
that beyond a short adjustment time, the control is inactive (u = 0). For δ = 0.01, the
individual controls vary smoothly while active, whereas for δ = 0.001, the bang-bang
nature is noticeable once all controls have become single-component.

Table 4.2 again shows iteration counts m for different restart numbers of Anderson accel-
eration and increasing population size. Also in the `2 − `1-norm, m = 8 is optimal with
pronounced improvement.
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Figure 4.7: Number of iterations using cost (4.2.2) with q = 2 and p = 1
needed to satisfy (4.5.1) for tol = 10−6 as a function of regularization

parameter 10−4 ≤ δ ≤ 10−1. The dependence is monotone for δ ≥ 10−3.

Table 4.2: Number of iterations for convergence (4.5.1) to tol = 10−6 with
`2-`1 cost (4.2.2) as a function of restart number of Anderson acceleration

for increasing population size.

population size M

iteration count restart number m
4 5 6 7 8 9

10 236 185 210 231 184 207
20 416 335 348 350 328 297
30 396 415 498 497 320 441
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4.6 Summary

In this chapter, we employed regularized forward-backward sweep iteration (4.2.11)–
(4.2.13) and restarted Anderson acceleration to compute optimal control of consensus in
the Cucker-Smale model. We tested the convergence of the algorithm for different choice
of norm in the cost functional. The `1-`1-norm and `2-`1-norm cases lead to non-smooth
sparse optimal controls, whose formulation require placing upper bound constraints on the
admissible controls. To improve convergence of the algorithm we employed soft constraints
(4.3.8) with regularization parameter δ to smooth the transition near the boundary of the
admissible control region. Numerical experiments indicate that a significant improvement
in convergence rate can be achieved with moderate values of the smoothing paramter,
however with noticeable effect on the optimal solution. We also investigated the efficiency
of dependence of Anderson acceleration on restart number, which we found to be robust
with respect to norm and population size.
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Chapter 5

Ensemble data assimilation using
optimal control in the Wasserstein
metric

Abstract

A data assimilation method is proposed that is based on optimal control minimizing the
cost of mismatch in the Wasserstein metric on the observation space. The method is appro-
priate for systems in which multiple, noisy, partial observations are available (e.g. citizen
weather stations or smart phones). The method is demonstrated for: (i) deterministic
dynamics with uncertain initial conditions, (ii) multiple noisy observations of a randomly
forced ODE, (iii) observations from multiple sample paths from an SDE. A bi-modal mea-
sure and a measure supported on a strange attractor are tested.

This chapter is transcripted from the paper ”Ensemble data assimilation using optimal con-
trol in the Wasserstein metric” Submitted in the Journal of Computational Science.
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5.1 Introduction

Data assimilation is a commonly used computational method for combining dynamic
model simulations and observational data to estimate a state or trajectory of a dynamical
system in fields as diverse as weather forecasting, computer vision, robotics and navigation.
In uncertainty quantification, data assimilation may be used to approximate an evolving
probability measure expressing uncertainty in the model, initial conditions or observations.
Standard references on data assimilation include [44, 73, 94, 8].

Since particle filters were introduced in [54], they have become a very popular class of
method that solve estimation problems in a recursive way depending on the observation
data [4, 38]. Particle filter algorithms use a set of particles to represent the posterior distri-
bution of the stochastic process and they update their prediction in an approximate way. A
common method of particle filters is sequential importance sampling (SIS), which relates
all particles generated according to their importance weight at every stage [17]. However,
The disadvantage of particle filters is that SIS will have a significant weight-degeneracy
after a large number of iterations, i.e. all but one particle will be eliminated due to the
low weight [108, 71]. To avoid this problem, Sampling Importance Resampling (SIR) was
introduced. The difference with SIS is that SIR resamples particles at every time stage,
Specifically, it replicates the high-weighted particles and eliminates low-weighted parti-
cles. This approach is very useful and applied to solve many different kinds of problems.
However the main difficulty is that weights always become unbalanced, hence most resam-
pled particles coincide which leads to lower particle diversity especially for deterministic
dynamics.

In [122, 123], the authors proposed a method to derive a particle filter by applying opti-
mal control techniques. The method has a self-oriented formulation that provides a self-
correcting feedback mechanism to stabilize the particles around the posterior. Inspired
by [122, 123], in this paper, we introduce an alternative method to the construction of a
particle filter by adding a control in the particle states. In contrast to [122, 123], we evolve
particle states deterministically. We obtain the optimal control without calculating the
posterior distribution of the particle states. We employ a Wasserstein metric [69, 115] in
the cost function to measure the distance between probability distributions in the obser-
vation space. Reich [93] introduced optimal transport into particle methods as a means
of resampling.

Although computationally complex, the Wasserstein distance is more robust than, e.g.,
the Kullback-Leibler divergence [97, 3]. Since it relies on a metric equipped in a metric
space, the Wasserstein distance can be employed for two measures even if their supports
are mutually exclusive. As a result, the Wasserstein approach is applicable to alterna-
tive measures besides absolutely continuous ones, e.g. empirical measures or measures
supported on strange attractors [37].

5.2 Data assimilation problem

In this chapter we study an optimal control-based data assimilation method for modelling
uncertainty of a partially observed process. Our starting point is an ensemble of possibly
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noisy observations given in the form of K discrete time series

Ẑk
n = Ẑk(nτ) ∈ R`, n = 0, . . . , N, k = 1, . . . , K,

where k denotes the ensemble index and n the time index over an interval T = Nτ .

We assume the underlying process X(t), t ∈ [0, T ] is time-continuous and is described by
either a deterministic (case σ ≡ 0) or stochastic differential equation

dX = a(X) dt+ Σ dW, (5.2.1)

where X(t) ∈ D ⊂ Rd is the state at time t, a(X) : D → Rd, Σ ∈ Rd×s and W (t) is an
s-dimensional Wiener process.

Let h(X) : D → R` be an observation function. Usually, one needs to deal with partial
observations: ` < d. An underlying assumption is that the state X(t) is detectable by
the observation function h. We assume the state X(t) is unknown, due to uncertainty in
initial condition, model error, or noise in the dynamics or measurements.

We distinguish three scenarios:

In the first scenario, we consider a deterministic system (i.e. Σ ≡ 0 in (5.2.1)) with
uncertain initial condition and partial observations. The observations are given by

Ẑk
n = h(X̂k(nτ)), n = 0, . . . , N, k = 1, . . . , K, (5.2.2)

where X̂k(t), k = 1, . . . , K, denotes an ensemble of solutions of the deterministic differ-
ential equation (5.2.1), σ ≡ 0, with initial conditions X̂k(0) drawn from a probability
distribution.

In the second scenario, X̂(t) corresponds to a single sample path of the SDE (5.2.1) for
which multiple noisy observations are available. This scenario models the case of weather
measurements using a scattering of imperfect personal devices such as smart phones or
private weather stations. The observations are given by

Ẑk
n = h(X̂(nτ)) + ηkn, n = 0, . . . , N, k = 1, . . . , K, (5.2.3)

where the kth time series {ηkn}Nn=0 denotes the kth realization of the discrete noise pro-
cess, and ηkn ∼ N (0, R), where R ∈ R`×` is the covariance matrix of the observational
noise.

In the third scenario we assume we are given K sample paths of (5.2.1), i.e., X̂k(t),
k = 1, . . . , K, and the kth sequence {Ẑk

n}Nn=0 is observed from Xk(t), for k = 1, . . . , K.
This scenario models the case of (possibly noisy) measurements of a repeated experiment
with random forcing. The observations are given by

Ẑk
n = h(X̂k(nτ)) + ηkn, n = 0, . . . , N, k = 1, . . . , K.

In all three scenarios, our objective is to estimate the uncertainty in our knowledge of the
underlying process X̂(t) by approximating an evolving probability measure µ(x, t) such
that for measurable A ⊂ D,∫

A

µ(x, nτ) dx = Prob{X(nτ) ∈ A}.
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The measure µ will be approximated by an empirical measure νn(x) supported on an
ensemble of J particles:

νn(x) =
1

J

J∑
j=1

δ(x−Xj
n), (5.2.4)

where δ denotes the Dirac distribution. The motion of the jth particle is governed by the
drift vector field a(X) and an optimal control via the differential equation

dXj

dt
= a(Xj) +Buj(t), j = 1, . . . , J,

Zj(t) = h(Xj(t)), j = 1, . . . , J,

where B ∈ Rd×m and uj(t) ∈ Rm is the control input for jth particle at time t, chosen to
minimize a cost function that penalizes mismatch (in the observation space) with respect
to a Wasserstein metric. Of course, optimizing the mismatch does not guarantee the
convergence of the measure ν to µ. Nevertheless such a strategy is common in variational
data assimilation methods such as 4D-Var. The convergence question is related to concepts
such as the synchronization of chaos, detectability, and Lyapunov stability theory [48, 53,
35, 114, 90]. By comparison with variational data assimilation, we can view the controls
uj(t) as representing the unknown model error required to explain the observations.

The particle motion is discretized in time using Euler’s method to obtain the discrete
dynamics

Xj
n+1 = Xj

n + τ a(Xj
n) + τ Bujn+1, n = 0, . . . , N − 1, j = 1, . . . , J, (5.2.5)

Zj
n = h(Xj

n), n = 0, . . . , N, j = 1, . . . , J. (5.2.6)

5.2.1 Wasserstein cost function.

In this chapter we study numerically the use of a Wasserstein metric to measure the
mismatch in empirical distributions defined by the measurement ensemble and particle
filter. The Wasserstein metric has found increased application in data assimilation, ma-
chine learning and data science in general, due to a number of attractive properties.
For instance, the Wasserstein distance is well defined for singular measures and distribu-
tions, e.g. for measuring distance between empirical distributions or measures supported
on strange attractors. Also, in the Wasserstein metric, the geodesic path between two
distributions is the optimal transport path, along which the deformation of a density
is minimal. Consequently, in the context of data assimilation when observations may be
sparse, the probability density function will deform in a minimal way between observation
times.

Our goal is to choose the controls ujn in (5.2.5) so that the particle distribution νn ap-
proximates µ(x, n∆t). Given that we only have access to the sample observations {Ẑk

n}
we minimize a cost function that penalizes mismatch in the Wasserstein metric. Let

ζ̂n(z) =
1

K

K∑
k=1

δ(z − Ẑk
n), ζn(z) =

1

J

J∑
j=1

δ(z − Zj
n) (5.2.7)



Chapter 5. Ensemble data assimilation in the Wasserstein metric 69

The cost function is defined as

C = τ
N−1∑
n=0

[
J∑
j=1

1

2
‖ujn+1‖2 +

β

2
W2

2 (ζ̂n+1, ζn+1)

]
, (5.2.8)

where W2 denotes the 2-Wasserstein distance (see below) and the constant β ≥ 0 is a
weight parameter.

5.2.2 Calculation of Wasserstein distance.

The Wasserstein distance is a metric on the space of probability measures. The p-Wasserst-
ein distance between two probability measures µ and ν on a metric space (X , d) is given
by

Wp(µ, ν) =

(
inf
π∈Π

∫
X×X

d(x, y)pdπ(x, y)

) 1
p

where Π denotes the set of transport couplings of µ and ν, that is, Π = {π(x, y)|
∫
π(dx, y)

= µ(y),
∫
π(x, dy) = ν(x)}.

For empirical measures such as (5.2.4), computing the Wasserstein distance reduces to
solving an optimal transportation problem of weighted point sets, a special case of the
minimum cost flow problem [11, 2]. Given empirical measures

µ(x) =
1

J

J∑
j=1

δ(x− X̂j), ν(x) =
1

K

K∑
k=1

δ(x−Xk),

consider the space of finite transport maps:

F =

{
F = (fjk) ∈ RJ×K

∣∣∣∣fjk ≥ 0,
∑
j

fjk =
1

K
,
∑
k

fjk =
1

J

}
.

The 2-Wasserstein distance is equal to

W2(µ, ν) =

(
min
F∈F

∑
jk

fjkd
2
jk

)1/2

, (5.2.9)

where we use a weighted norm

d2
jk = ‖X̂j −Xk‖2

M = (X̂j −Xk)TM(X̂j −Xk). (5.2.10)

For instance, for noisy observations (5.2.3) with covariance matrix R, we choose M = R−1

to reflect our confidence/uncertainty in the observations.

The minimization (5.2.9) constitutes a linear program. The Wasserstein distance can be
efficiently estimated using the Sinkhorn algorithm [34].
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5.3 Optimal control

To determine the optimal control {unj } in (5.2.5), we minimize the cost function (5.2.8)
under constraints (5.2.5)–(5.2.6). We introduce Lagrange multipliers {λjn} and {Λj

n} and
define a discrete Lagrangian functional:

L = C + L0 + Lλ,

where C is the cost function (5.2.8), L0 enforces the constraint on the initial conditions,
Xj

0 = ξj0, presumed known (or sampled from a known initial distribution),

L0 =
J∑
j=1

[
λj0(Xj

0 − ξj0) + Λj
0(Zj

0 − h(ξj0))
]
, (5.3.1)

and Lλ defines the constraint relations:

Lλ =
N−1∑
n=0

J∑
j=1

[
(λjn+1)T (Xj

n+1 −Xj
n − τa(Xj

n)− τBujn+1) + (Λj
n+1)T (Zj

n+1 − h(Xj
n+1))

]
.

(5.3.2)
Note that we include the observation function (5.2.6) as a constraint, as the observations
appear implicitly in the cost function (5.2.8).

We demand that the Lagrangian be stationary under variations with respect to Xj
n , Zj

n, λjn
and Λj

n. In addition we minimize L with respect to ujn. Assuming sufficient differentiability,
we set derivatives of L with respect to these variables equal to zero. This approach is
known to yield a variational integrator [81] that defines a symplectic map. In the context
of optimal control, see for example [88, 101].

Assuming the cost C is differentiable with respect to u at a (local) minimum, from
∂L/∂ujn = 0 follows

ujn = BTλjn, n = 1, . . . , N, j = 1, . . . , J, (5.3.3)

Enforcing ∂L/∂λjn = 0 and ∂L/∂Λj
n = 0, and making use of (5.3.3), we obtain the filter

relations (5.2.5)–(5.2.6):

Xj
n+1 = Xj

n + τ a(Xj
n) + τBBTλjn+1, n = 0, . . . , N − 1, (5.3.4)

Zj
n = h(Xj

n), n = 0, . . . , N, (5.3.5)

Xj
0 = ξj0. (5.3.6)

From ∂L/∂Zj
n = 0, we obtain the definition

Λj
n = −τ β

2

∂

∂Zj
n

W2
2 (ζn, ζ̂n), n = 1, . . . , N, j = 1, . . . , J, (5.3.7)

where ζn and ζ̂n are given by (5.2.7).
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Finally, from the condition ∂L/∂Xj
n = 0, and making use of (5.3.7), we obtain the adjoint

relations:

λj1 = λj0 − τ ∇a(Xj
0)Tλj1, (5.3.8)

λjn+1 = λjn − τ ∇a(Xj
n)Tλjn+1 + τ

β

2
∇h(Xj

n)T
∂

∂Zj
n

W2
2 (ζn, ζ̂n), n = 1, . . . , N − 1, (5.3.9)

λjN = τ
β

2
∇h(Xj

N)T
∂

∂Zj
N

W2
2 (ζN , ζ̂N). (5.3.10)

Numerical evaluation of the gradient of Wasserstein distance. To evaluate the
second term on the right of (5.3.9), we represent ∇h(Xj

n) as a matrix of dimension `× d.
Denote the columns of this matrix by the vectors ĥ1, . . . , ĥd ∈ R`. We approximate the
Λj
n in (5.3.7) numerically using a finite difference formula:(

∇h(Xj
n)T

∂W2
2

∂Zj
n

)
i

≈ 1

ε

[
W2

2 (ζ(j,i)
n (ε), ζ̂n)−W2

2 (ζn, ζ̂n)
]
, (5.3.11)

where

ζ(j,i)
n (ε) =

1

J

[
δ(z − (Zj

n + εĥi)) +
∑
k 6=j

δ(z − Zk
n)

]
,

and ε can be chosen to be the square root of machine precision. Consequently, the second
term on the right of (5.3.9) can be approximated using d+1 evaluations of the Wasserstein
distance.

The complete set of equations that define the filter can be expressed in terms of the
variables Xj

n, Z
j
n and λjn given by (5.3.4)–(5.3.6) and (5.3.8)–(5.3.10). Forward-backward

sweep iteration proceeds by solving (5.3.4)–(5.3.6) forward in time, followed by (5.3.8)–
(5.3.10) backward in time, and repeating. However, such iteration is not convergent in
general, especially for nonlinear dynamics.

Instead, the regularized forward-backward sweep method [78] proposed to augment the
optimal control (5.3.3)

ujn =
1

1 + ρ

[
λjn + ρ

(
Xj
n+1 −Xj

n

τ
− a(Xj

n)

)]
, n = 1, . . . , N, j = 1, . . . , J. (5.3.12)

where ρ > 0 is the regularization parameter. Convergence of the resulting iteration for
suficiently large ρ is proven for continuous dynamics in [78]. The proof is confirmed for
the discrete case with symplectic discretization in [78]. In practice the convergence can
be greatly accelerated using Anderson acceleration with restart [62]. The Wasserstein
distance is Lipschitz continuous with respect to the state variable [3, 39]. Consequently, it
satisfies the criterion for convergence of the regularized forward-backward sweep algorithm
[77, 78].

5.4 Numerical experiments

In this section, we study numerically the properties of the proposed filter for quantifying
uncertainty in some simple differential equations. We first study the propagation of uncer-
tainty in the initial condition of a deterministic differential equation, the Lorenz attractor
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model [79]. Subsequently, we consider stochastically forced motion in a double-well po-
tential, for which the equilibrium distribution is bi-modal. We study both the case of a
single sample path with noisy measurements and the case of multiple samples. In all nu-
merical experiments we directly observe one dependent variable. Hence, the observations
are partial (` < d), but the observation operator is linear (corresponding to a row of the
identity).

For all experiments we computed the Wasserstein distance by solving the linear program
(5.2.9), for which the complexity is unfavorable for large ensemble size [112, 89]. Improved
performance could possibly be achieved using the Sinkhorn iteration [34], especially given
that the many Wasserstein distances that need to be computed via (5.3.11). Note that
the transport paths in (5.3.11) are expected to be very similar, providing good starting
values for the iterations. We have not investigated this further.

5.4.1 Uncertainty in initial condition: deterministic Lorenz 63
model

In this section we study the behavior of the particle filter to approximate a probability
measure relaxing onto the attractor of the Lorenz 63 system [79]. The invariant measure
of the Lorenz system is a Sinai-Ruelle-Bowen measure, supported on a strange attractor
of fractal dimension. The dynamics is deterministic, but we introduce uncertainty in the
initial conditions by drawing an ensemble from a normal distribution. We compare the
particle filter to the ensemble Kalman filter (EnKF, [44]) to study the potential advantage
of optimizing with respect to mismatch in the Wasserstein metric. The EnKF method
focuses on properties of evolving Gaussian distributions (approximating the mean and
covariance matrices), which are smooth absolutely continuous measures. The Wasserstein
metric does not require differentiability of the evolving density. Consequently, it is useful
for comparing measures that evolve on a strange attractor. Applying Euler’s method, the
discrete Lorenz system is given by

x̂n+1 = x̂n + τ c1(ŷn − x̂n), (5.4.1)

ŷn+1 = ŷn + τ (x̂n(c2 − ẑn)− ŷn), (5.4.2)

ẑn+1 = ẑn + τ (x̂nŷn − c3ẑn), (5.4.3)

with the parameters c1 = 10, c2 = 28, c3 = 8/3 as originally studied by Lorenz. We employ
step-size τ = 0.001.

To generate observations, we simulate an ensemble of K = 30 trajectories over the time
interval t ∈ [0, 6], with initial conditions Xk

0 = (xk0, y
k
0 , z

k
0 ) drawn from

xk0 ∼ N (1, 0.52), yk0 ∼ N (−1, 0.52), zk0 ∼ N (25, 0.52).

This initial condition was chosen with a small variance but rapidly spreading ensemble
that splits across the two lobes of the Lorenz attractor. The (partial) observable is the
x-component

Ẑk
n = x̂kn, k = 1, . . . , K, n = 1, · · · , N.
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The control is applied only to the y-component. The particle dynamics satisfy

xn+1 = xn + τ c1(yn − xn), (5.4.4)

yn+1 = yn + τ (xn(c2 − zn)− yn) + τun+1, (5.4.5)

zn+1 = zn + τ (xnyn − c3zn). (5.4.6)

We select a particle filter ensemble size J = 100. For the Wasserstein metric (5.2.9)-
(5.2.10) we choose M = I, and in the cost function β = 60.

The states of the two methods are shown in Figure 5.1. The particle filter appears to
provide better coverage of the empirical measure. In particular it can be seen that some
EnKF ensemble members appear in the low probability region between the two lobes of
the attractor.

Figure 5.1: Comparison of particle filter (left) and ensemble Kalman filter
(right) for the Lorenz attractor at time t = 6. Partial observations (x-
component only) were generated from a sample ensemble of trajectories
whose final states are indicated by purple circles. The final states of the

filters are indicated with yellow circles.

.

The better approximation of the evolving measure by the particle filter is confirmed in
Figure 5.2, where we compare the Wasserstein distances between the sample ensemble µn
based on the full states {X̂k

n} and the filter ensembles νn(X) computed using the particle
filter and EnKF. We see that Wasserstein distances of the empirical measures to that
of the sample ensemble W2(ν0, µ0) < 1 for both filters, the final distance W2(νN , µN) is
approximately 0.5 for the particle filter and 5 for the EnKF.

5.4.2 Noisy observations: a randomly forced ODE

For the experiments in this and the next section we consider stochastically forced motion
in a double-well potential:

dq = p dt+ σq dWq,

dp = (q − q3 − rp) dt+ σq dWp,
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Figure 5.2: The Wasserstein distance in full state (x, y, z)

where r > 0 is a damping parameter. For the numerical experiments we choose r = 1,
σq = σp = 0.1. Probability distributions transported by this system converge to a bi-
modal equilibrium state with peaks centered at the stable equilibria (q∗, p∗) = (±1, 0) of
the drift vector field.

To generate samples of this system we discretize using the Euler-Maruyama method

q̂n+1 = q̂n + τ p̂n + σq∆Wq,n, (5.4.7)

p̂n+1 = p̂n + τ (q̂n − q̂3
n − rp̂n) + σp∆Wp,n, (5.4.8)

where ∆Wp,n, ∆Wq,n ∼ N (0, τ) are independent and normally distributed. Noisy obser-
vations of the variable q are obtained from

Ẑn = q̂n + ηn, n = 0, 1, . . . , N, (5.4.9)

where ηn ∼ N (0, σ2
n).

For the particle filter, the motion of the jth controlled particle is given by

qjn+1 = qjn + τ pjn + τ ujq,n+1, (5.4.10)

pjn+1 = pjn − τ ((qjn)3 − qjn + rpjn) + τ ujp,n+1, (5.4.11)

for j = 1, . . . , J , and the observation function applied to the jth particle yields

Zj
n = qjn, n = 0, . . . , N. (5.4.12)

For all experiments we choose stepsize τ = 0.01. In each computation, the regularization
parameter ρ in (5.3.12) was experimentally determined as small as possible to still observe
convergence of the forward-backward sweep iteration.

We first investigate the scenario of noisy observations of a single sample path of (5.4.7)–
(5.4.8). We choose initial conditions q̂0 = 0.2, p̂0 = 0.5 and integrate to time t = 5. The
particle filter positions were sampled from initial distribution ν0(q, p) given by the product
measure

q0 ∼ N (0.2, 0.042), p0 ∼ N (0.5, 0.062). (5.4.13)
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Observational noise was generated with standard deviation σn = 0.1, and for each time
step we sample K = 30 noisy observations. Wasserstein metric is given by (5.2.9)–(5.2.10)
with M = R−1 and R = σ2

nI, where I is the identity matrix.

We apply the particle filter with particle number J = 30 and J = 10. The results for
J = 30 are shown in Figures 5.3. For these simulations, we chose β = 4 in the cost function
(5.2.8). The red curves in 5.3 show the sample path q̂n (upper plots) and p̂n (lower plots).
The noisy measurement data {Ẑk

n}Kk=1 is plotted in yellow in 5.3(a) the sample mean is
plotted as yellow circles in 5.3(b). The particle trajectories are plotted as blue curves in
Figures 5.3(a) and (c). The particle mean trajectory is plotted in blue in Figures 5.3(b)
and (d). As expected, the pdf of the observed q-component is approximately normally
distributed about the sample path. This is not the case for the unobserved p-component,
for which the marginal pdf is time-dependent. We see that the mean particle motion is
much smoother than the sample path. It also appears as if the q-component, which is
directly observed, is better estimated than the p-component.

In Figure 5.4 we repeat the above experiment, but for a smaller particle size J = 10 for
the particle filter. The conclusions are similar. The particle mean trajectory is of similar
accuracy to the higher resolution simulation in Figure 5.3.

The parameter β in the cost function (5.2.8) determines the relative weight of the obser-
vations compared of the cost of controlling the particle motion. In Figure 5.5 we choose a
much larger value β = 200 and repeat the experiment. We observe that the particle filter
paths are much less smooth in the q-component in Figure 5.5(a) and that the particle
ensemble mean closely follows the sample path in Figure 5.5(b). There is no noticable
improvement in the trajectories of the unobserved component p

5.4.3 Multiple sample paths of a stochastic system

In this section we generate observations by simulating an ensemble of sample paths of the
stochastic double well potential (5.4.7)–(5.4.8). All parameters are identical to those in
the previous section unless stated otherwise.

We first study the approximation of the bimodal distribution at high resolution. For this
example, we choose a deterministic (Dirac distribution) initial condition q0 = −1, p0 = 0
for both the samples and the filter particles. We generated a large number K = 20000
of sample paths to approximate the time evolving pdf, which is exhibited at time t = 5
by the yellow curve in Figure 5.6. We then generated observations using an ensemble of
size K = 200 without noise (i.e. σn = 0 in (5.4.9)) and applied the particle filter (5.3.4)–
(5.3.10) with J = 200 particles. Histograms of the samples and particle filter pdfs are
shown in Figure 5.6 for parameter values β = 4 (left plot) and β = 200 (right plot). The
bi-modality of the pdf is clearly noticable, and the approximation more closely matches
the observations for β = 200 as expected.

Figure 5.7 shows the time evolution of the Wasserstein distance W2 over the full state
empirical measures νn(q, p) µn(q, p) for β = 4 and β = 200. For β = 200, the Wasserstein
distance is bounded below W2 < 0.007 for most of the interval. For β = 4 the distance is
somewhat greater at around W2 < 0.02 but decreases over time.
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Figure 5.3: Noisy observations of a single sample path, particle number
J = K = 30. The sample path is shown in red: q̂(t) (upper two plots),
p̂(t) (lower two plots). The observations are indicated by the yellow dots
in (a) and the observation sample mean by the yellow circles in (b). The
particle filter trajectories are indicated by blue curves in (a) and (c), and
the particle ensemble mean by the blue curves in (b) and (d). For this

simulation β = 4 was used.
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Figure 5.4: Same as Figure 5.3, but with particle number J = 10. The
sample path is shown in red: q̂(t) (upper two plots), p̂(t) (lower two plots).
The observations are indicated by the yellow dots in (a) and the observation
sample mean by the yellow circles in (b). The particle filter trajectories are
indicated by blue curves in (a) and (c), and the particle ensemble mean by
the blue curves in (b) and (d). For this simulation β = 4 was used in the

cost function (5.2.8).
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Figure 5.5: Same as Figure 5.4, but computed with β = 200 in the cost
function (5.2.8). The sample path is shown in red: q̂(t) (upper two plots),
p̂(t) (lower two plots). The observations are indicated by the yellow dots
in (a) and the observation sample mean by the yellow circles in (b). The
particle filter trajectories are indicated by blue curves in (a) and (c), and

the particle ensemble mean by the blue curves in (b) and (d).
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Figure 5.6: Histograms of coordinate q(t) of the sample ensemble (red)
and filter (blue) at time t = 5 for weight parameters β = 4 (left ) and
β = 200 (right) for a 200-member ensemble. The yellow curve indicates
the expected bin size based on a high-resolution sample of 20000 members.
The figure shows that the proposed method is effective at approximating a

bi-modal probability density function.
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Figure 5.7: Time-evolution of Wasserstein distance between the particle
ensemble νn(q, p) and the sample ensemble µn(q, p) for β = 4 and β = 200.
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In Figures 5.8 and 5.9 we compare the particle filter approximation of an evolving measure
with particle number J = 20 and sample path ensemble sizes K = 20 and K = 30. For
both simulations we draw initial distributions for both sample paths and particles from
(5.4.13). We use β = 4 and M = (0.1)−2I in (5.2.10) (consistent with experiments in the
previous section). We see that the sample path means of both the q- and p-components
are well approximated.
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Figure 5.8: Multiple sample paths of an SDE. An ensemble of K = 20
sample paths of the system (5.4.7)–(5.4.8) are plotted as yellow curves in
(a) (q-component) and (c) (p-component). The corresponding particle filter
paths (J = 20) are plotted as blue curves in (a) and (c). The ensemble
means and particle filter means are compared in (b) and (d). For these

simulations, β = 4.
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Figure 5.9: Same as Figure 5.9, but with K = 30. An ensemble of sample
paths of the system (5.4.7)–(5.4.8) are plotted as yellow curves in (a) (q-
component) and (c) (p-component). The corresponding particle filter paths
with particle number J = 20 are plotted as blue curves in (a) and (c). The
ensemble means and particle filter means are compared in (b) and (d). For

these simulations, β = 4.
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5.5 Conclusion

In this chapter, we construct a particle filter in the form of an optimal control that min-
imizes mismatch in the Wasserstein distance on observation space. Numerical examples
show that the Wasserstein distance between the empirical measure on the whole state
space is well bounded over the assimilation window. We compared scenarios with (i) de-
terministic (chaotic) dynamics with uncertainty in initial conditions, (ii) a single sample
path of an SDE with multiple uncertain observations, and (iii) multiple sample paths of
an SDE with accurate (partial) observations. The method was shown to recover bi-modal
probability measures, compare favorably to the ensemble Kalman filter for an SRB mea-
sure, and accurately reproduce the sample path mean for latter scenario. The numerical
implementation used was suboptimal, as is a topic for future research.
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Chapter 6

Summary

In this thesis, we mainly study a numerical method for solving optimal control problems
and apply it to Cucker-Smale dynamics and data assimilation.

Pontryagin’s maximum principle, which provided the necessary condition for optimal con-
trol problems, results in two-point boundary problem. One numerical method that is easy
to employ for such problems is the so-called ”forward-backward sweep” method. How-
ever this method is not always convergent especially when applied to non-linear systems.
In this thesis, in Chapter 3, we extend the “regularised forward-backward sweep itera-
tion method” from the continuous setting in paper [77] to the discrete setting for solving
optimal control problems. The continuous problem is discretized by using a variational
integrator which yields a symplectic method. The regularised forward-backward iteration
method depends on a regularization parameter ρ. We provide the proof that when ρ is
large enough, the forward-backward sweep method is convergent all the time. The proof
is firstly given for the first order symplectic Euler method, then it is extended to general
symplectic Runge-Kutta methods. According to the proof, the parameter ρ depends on
the length of the time window and the Lipschitz constant. Numerical experiments illus-
trate convergence, which may still be slow, especially for large ρ. However, significant
speed up can be realized using Anderson acceleration.

The Cucker-Smale model is a conceptual model of flocking, in which a group of agents
attempt to synchronize into uniform motion. The conditions for synchronization to occur
depend on the initial condition and on the force. When these conditions are not met,
some extra control may be added to the Cucker-Smale model to make the dynamic tend
to consensus. In this contex, it is interesting to consider ‘sparse control’, in which steering
by the external controller is limited to a small number of finite actions. We apply the
method of Chapter 3 to this problem in Chapter 4. The optimal control cost functional
combines distance to velocity consensus and the magnitude of the control in a class of
so-called `p-`q-norms. In this chapter, we focus on discussing the `2-`2-norm, `1-`1-norm,
`2-`1-norm on the control. The results in these three different cases show that the optimal
controls become 0 or asymptotically tend to 0, after a finite time period. We calculate the
optimal control in these three cases, and find the optimal control is unbounded in `1-norm,
therefore we implemented constrained controls. Meanwhile, to avoid slow convergence
due to discontinuity of the control, we add a soft-constraint δ and study the effect of
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the smoothness of the control on the convergence of the regularized forward-backward
sweep iteration. Under the condition of `1-`1 norm, the experiment shows that the control
is a bang-bang controller, either zero or sharply constrained, before the control totally
goes to 0. The optimal control under the `2-`1 norm is also sparse. After studying the
effect of the soft-constraint parameter δ on the iteration convergence, we find that the
convergence is faster with smaller parameter δ, however the solution is more smooth and
less accurate.

In Chapter 5, we proposed a new data assimilation algorithm, to utilizes the probability
distribution of an ensemble of controlled particles to quantify uncertainty in stochastic
systems. Most importantly, the controlled dynamical system for the particles is deter-
ministic. In the end, the method is defined as an optimal control problem. The cost
function is composed of the norm of the control function and the Wasserstein distance
on the observation space. To solve this optimal control problem, we apply the regularised
forward-backward sweep iteration mentioned in chapter 3. Two different sampling pro-
cesses were studied. With the first situation, we take many noisy samples of the observable
along a distinct sample path. Alternatively, we take single observations of an ensemble
of sample paths. The state and observation error distributions are assumed to be Gaus-
sian. We compared cases with more particles than observations and fewer particles than
observations. Experiments with a (bi-modal) double well potential indicate good results,
with no evidence of ensemble collapse. We also compare to the ensmble Kalman filter
for deterministic ensemble simulation of the Lorenz-63 model to illustrate the advantage
of the Wasserstein distance for dynamics on a strange attractor. We find the cost of the
method to be high, but improvement may be possible with more efficient implementation
of the Wasserstein distance (e.g. using the Sinkhorn algorithm).



Chapter 7. Nederlandse samenvatting 85

Chapter 7

Nederlandse samenvatting

Dit proefschrift is voornamelijk gewijd aan een oplossingsmethode voor optimale regel-
problemen en de toepassing hiervan op Cucker-Smale dynamische systemen en data-
assimilatie.

Het maximumprincipe van Pontryagin verschaft noodzakelijke voorwaarden voor oplossin-
gen van optimale regelproblemen voor tweepunts-randwaardeproblemen die het mogelijk
maken om numerieke oplossingsmethoden als de “forward-backward sweep” toe te passen.
Convergentie van deze methode is echter niet gegarandeerd, wat met name een probleem
is voor niet-lineaire systemen. In hoofdstuk 3 van dit proefschrift breiden we de zogeheten
“geregulariseerde forward-backward sweep” methode uit het artikel [77] uit naar een dis-
crete context voor toepassing op discrete optimale regelproblemen. Het oorspronkelijke
continue regelprobleem wordt gediscretiseerd door middel van een variationele integra-
tor die symplectisch is. We tonen aan dat er altijd convergentie optreedt voor voldoende
grote waarden van de regularisatieparameter ρ die gebruikt wordt bij de geregulariseerde
forward-backward iteratiemethode. Het bewijs hiervoor geven we eerst alleen voor de
eerste orde symplectische Eulermethode, om het resultaat vervolgens uit te kunnen brei-
den naar Runge-Kutta methoden in het algemeen door deze tot de Eulermethode te
reduceren. Uit het bewijs blijkt dat de parameter ρ afhankelijk is van zowel de tijds-
duur als van de Lipschitz-constante. Experimenteel kan eenvoudig worden vastgesteld dat
de regularisatieparameter ρ en de convergentiesnelheid negatief gecorreleerd zijn, wat de
vraag hoe de convergentiesnelheid verbeterd kan worden bijzonder interessant maakt. De
Anderson versnellingsmethode is toegepast in het beschreven experiment.

Aangezien de convergentie van de Cucker–Smale dynamica bepaalde beginvoorwaarden
vereist wordt een extra regelgrootheid toegevoegd aan het Cucker–Smale model om te
garanderen dat de dynamica naar een consensus convergeert. Dit wordt in hoofdstuk
4 beschreven. Het probleem wordt vervolgens omgezet in een optimaal regelprobleem
waarbij de kostenfunctie de afstand tot consensus combineert met de grootte van het
regelsignaal in de `p − `q-norm. In dit hoofstuk kijken we voornamelijk naar de `2 − `2-
norm, de `2−`1-norm en de `1−`1-norm op het regelsignaal. Het resultaat voor alledrie deze
gevallen is dat de optimale regeling 0 wordt of uiteindelijk asymptotisch naar 0 neigt. We
berekenen de optimale regeling in deze gevallen en vinden zo dat er een optimale regeling
bestaat op een ∞-punt in de `1-norm, en hiermee dat begrenzing van het regelsignaal
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noodzakelijk is. Ondertussen zorgen we ervoor dat de regeling op de rand differentieerbaar
is door een zachte beperking δ op de rand toe te voegen. We bestuderen het effect van de
gladheid van de regeling op de convergentie van de forward-backward sweep iteratie. Voor
de `1− `1-norm toont het experiment aan dat de regeling een aan-uit regeling is, die ofwel
nul is ofwel op de rand zit, totdat deze geheel naar 0 gaat. Het optimale regelsignaal voor
de `2 − `1-norm is ook ijl. Wanneer we het effect van de parameter δ op de convergentie
van de iteratie bestuderen zien we een snellere convergentie voor kleinere δ, maar ook dat
de gevonden oplossingen minder glad en minder nauwkeurig worden.

In hoofdstuk 5 dragen we een nieuw algoritme aan voor data-assimilatie dat gebruik maakt
van de kansverdeling van de gecontroleerde dynamica van deeltjes om een stochastisch
systeem te benaderen. Wat hierbij vooral belangrijk is is dat het dynamische systeem
deterministisch is. Uiteindelijk wordt het algoritme geconverteed naar een optimaal regel-
probleem, waarbij de kostenfunctie bestaat uit regelfuncties en een Wasserstein-matrix.
Om dit optimale regelprobleem op te lossen passen we de geregulariseerde backward-
forward sweep uit hoofdstuk 3 toe. Er kleven wel een paar nadelen aan deze methode,
zoals het feit dat de Wasserstein-afstand niet eenvoudig te bepalen valt omdat deze voor
elk moment in de tijd berekend moet worden.

Omdat in dit hoofdstuk wordt aangenomen dat de toestands- en waarnemingsfouten beide
Gaussisch verdeeld zijn hebben we twee verschillende bemonsteringsmethoden bekeken.
Bij de eerste methode bemonsteren we de waarneming veelvuldig en beschouwen we de
resultaten als echte waarnemingen. In het tweede geval bemonsteren we zowel de toestand
als de waarneming herhaaldelijk en gebruiken we de gevonden waarden in plaats van de
echte toestand en waarneming. Tijdens het experiment hebben we de relatie tussen het
aantal deeltjes en het aantal bemonsteringen onderzocht en hebben we geprobeerd de
cumulatieve verdeling van deeltjes en monsters te vergelijken. In alle gevallen blijkt het
algoritme goede schattingen te geven voor de ware toestand van het systeem. In het Lorenz
63 experiment maken we een vergelijking met het ensemble Kalman filter en zien we dat
onze methode soms beter werkt.

Al met al zien we dat de geregulariseerde forward-backward sweep iteratiemethode con-
vergentie kan garanderen en zo kan helpen om optimale regelproblemen op te lossen. In
sommige gevallen hebben we deze methode kunnen combineren met versnellingsmethoden
zoals de Anderson versnellingsmethode. Er zijn nog wel een aantal problemen die nader
bekeken moeten worden. Wat is de relatie tussen de regularisatieparameter ρ en de con-
vergentiesnelheid? Wanneer we de geregulariseerde forward-backward methode toepassen
op het Cucker–Smale model introduceren we ook de split-methode. Er zal verder onder-
zocht moeten worden of deze methode ook effectief gecombineerd kan worden met de
geregulariseerde forward-backward methode.
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