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Preface

This thesis is the result of four years of research, done at the Institute for Theo-
retical Physics of Utrecht University under the supervision of Dr. D. Schuricht.
The research focusses at zero temperature behaviour of strongly correlated 1D
systems, in particular Majorana and parafermion chains.

Chapter 1 gives an introduction to the thesis, with some motivation and back-
ground for studying parafermion systems. Thereafter Chapters 2 and 3 focus
on exact ground states in (among others) parafermion systems, while Chap-
ters 4, 5 and 6 discuss a combination of numerics and analytics to understand
the phase diagram of extended parafermion models.

The summer of 2020 I spent investigating the origins of the Institute for The-
oretical Physics in Utrecht. This resulted in both a Dutch and English article,
presented side by side at the end of this thesis.

I hope the reader finds the thesis inspiring and learns a thing or two.

Jurriaan Wouters
August 2021, Utrecht
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1 Introduction
Computers have an important position in modern day life. With the sus-
tained improvement of computational speed, applications that seemed out of
reach a decade ago are implemented in the cheapest smartphones nowadays.
The possibilities seem endless, however, there are many challenges still insur-
mountable. Some problems involve calculations that will never be feasible on
an ordinary computer for the shear vastness of possible outcomes, more than
there are particles in the universe. Think of route optimization for logistics
companies, which scales (super)exponentially with the number of stops. But
there are also tons of scientific applications like molecular simulation (for drug
development) and numerical simulations in quantum chemistry, biology or
for physical systems. The latter includes simulations of quantum mechanical
systems with non-trivial interactions, such as the ones discussed in this thesis.
Their current implementations on ordinary computers require approximate
calculations and give only partial results.

Already in the 1982, Richard Feynman proposed the use of quantum me-
chanics for simulating our quantum mechanical world [1]. These quantum
computers would employ the collective properties of quantum states, eg super-
position, which we will discuss later on. This allows for simultaneous evalua-
tion of the many possible outcomes, where a classical ordinary computer can
only do one calculation at the time. The creation of a quantum computer would
bring solutions to these exponentially hard problems within reach. There are
many experimental proposals for quantum computers. Some prominent exam-
ples of devices in operation are Google’s Sycamore [2], IBM’s Q System One [3]
and D-Wave Systems [4], all based on superconducting Josephson junctions [5].
However, none of these systems outperform the best classical computers, yet
[6–8]. For the so called quantum speed-up, ie faster than classical algorithms,
a quantum computer needs to meet several requirements, like scalability of
the processing unit, stability of the information and freedom of initialization
and manipulation [9, 10]. For an ordinary computer all these criteria are met,
whereas all state-of-the-art quantum computers are lacking in at least one of
these aspects.
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1 Introduction

The challenge lies in the delicacy of the quantum bits (or qubits), the smallest
building block of a quantum computer, analogous to the bit in the classical
computer. These quantum systems need multiple states (eg spin up and spin
down) at exactly the same energy, a degeneracy of the ground state. Quantum
mechanically the system can be forced into a superposition of these states. Cou-
pling many of these superpositioned qubits into an entangled state describes
an exponential number of classical states. To be more concrete, the number of
classical states represented by 𝑛 qubits is 2𝑛 , showing the exponential growth.
While a classical computer does only one calculation at the time, a quantum
computer, does computations on all these states in unison. This scheme relies
on the presumption that the qubit states remain at the same energy. Dis-
tortions, like impurities and proximity effects, can cause the states to split in
energy, breaking the superposition, which loses the information stored on the
computer.

One promising class of qubits less sensitive to these external factors are based
on topological systems [11–16]. Continued experimental efforts manufacturing
and manipulating these topological qubits revealed the challenging nature,
although there have been some extraordinary successes [17–22]. In this thesis
we hope to contribute to the theoretical understanding of these elusive devices.

Topological systems are quite novel in condensed matter physics. Usually
particles form states of matter that can be classified based on symmetries of the
bulk of the system using the powerful Landau theory [23]. In this framework
phases and transitions among them are distinguished by local order parameters
and spontaneous symmetry breaking.a In the 1980s, models appeared that
could no longer be captured in the Landau paradigm. The experimentally
realized integer quantum Hall (IQH) effect [24–26] could not be classified by
symmetries of the bulk alone, but required intricate knowledge of the physics of
the boundaries of the system. Also, the theoretical formulation of the fractional
quantum Hall (FQH) effect [27] and the chiral spin liquid description of high
temperature superconductors [28, 29] showed physical behaviour that could
not be explained by spontaneous symmetry breaking. A new kind of robust
order was necessary, topological order. Soon thereafter the first topological
invariants were formulated [30] and a classification of topological systems and
corresponding invariants followed suit, known as the tenfold way [31].

On a microscopic level a topological phase is characterized by long range
entanglement. Macroscopically, topology can be recognized by a robust de-

aFor instance separating liquid water from ice. Ice accommodates a lattice symmetry, however
the continuous translational and rotational symmetry of water are broken.
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generacy of the ground state, caused by the presence of zero energy modes at
the surface of the system, eg edge currents for FQH [26, 32]. The non-locality
of these modes makes the degenerate states robust against local perturbations,
eg local magnetic field fluctuations, crystalline impurities etc. The degeneracy
can only be broken by energetic processes, like a quantum phase transition. On
the other side of such a transition usually lives a trivial phase, with only one
ground state, lacking the degeneracy.b

𝛾1

𝛾2𝐿

p-wave superconductor

quantum wire

Figure 1.1: Proposal for experimental
realization of Majorana zero modes
in a quantum-wire-superconductor
setup, from Ref. [11].

An example of such a topological sys-
tem is the model proposed by Kitaev in
2001 [11]. This effective 1D system is
comprised of a quantum wire of spinless
fermions (𝑐 𝑗), coupled to a 3D p-wave su-
perconductor, see Figure 1.1. In the for-
mer, fermions can hop along the chain be-
tween sites, with an energy 𝑤. The latter
induces a superconducting pairing Δ of
the spinless fermions in the wire. There
is an on-site/chemical potential �, which
will play the role of modulator between
the topological and trivial phase.

An intuitive picture arises with the introductions of Majorana fermions (𝛾𝑗).
First proposed by Ettore Majorana [33], a complex fermion can artificially be
decomposed in to two real Majoranas:

𝑐 𝑗 = 𝛾2𝑗−1 + i𝛾2𝑗 (1.1)

In this representation, the Hamiltonianc becomes simple, pictorially shown in
Figure 1.2, where we have taken Δ = 𝑤 for convenience. The circles denote
the even site (white) and odd site (grey) Majorana fermions, coupled with
alternating energies � and 𝑤. Remember that, in reality, two neighbouring
Majoranas form a fermion, as indicated by the rectangles.

Two limits are important to distinguish. With � ≫ 𝑤 the Majoranas are
bound into the original fermions (𝑐 𝑗), as the dotted bonds become irrelevant.
The ground state is unique, with finite energy gap to the excited states and the

bThis is by no means a complete discussion of topological systems. Only the necessary back-
ground is presented for understanding 1D topological chains, as they are the protagonist
of this thesis.

cFor the explicit form of the Hamiltonian, see Chapters 2 and 3.
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1 Introduction

� � � � �𝑤 𝑤 𝑤 𝑤

Figure 1.2: Pictorial representation of the Kitaev Hamiltonian with 𝐿 = 5 fermions
decomposed in 2𝐿 = 10 Majorana fermions.

phase is trivial. However, for � = 0, the solid bonds disappear and the Majo-
ranas bind with neighbours originally belonging to different fermions. In this
quantum mechanical musical chairs, two Majoranas are left out, the first (white,
𝛾1) and last (grey, 𝛾2𝐿). These are recombined into a long-ranged complex
fermion, decoupled from the system. In other words, the energy of the system
does not depend on the presence or absence of this long-ranged fermion. These
edge Majoranas therefore have evident name: Majorana zero modes. Since this
mode can be added free of (energy) charge, the ground state is twofold degen-
erate, two states at exactly the same energy.d Hence, this phase is topological.

𝜑

𝜗

|0⟩

|1⟩

|𝜓⟩

Figure 1.3: The Bloch sphere, the
geometrical representation of
any normalized pure state of a
two-level quantum system.

Moreover, the ground states are locally indis-
tinguishable, making the topological phase
extremely robust. Local disorder cannot hy-
bridize the two [34–41], neither can small in-
teractions [38, 39, 41–54]. Only approaching
the transition at� = 𝑤 closes the macroscopic
bulk gap, destroying the topological nature.
Finally, the reality of the Majorana fermions
gives them a great advantage, since it pre-
vents decoherence due to dephasing [12].

These trademarks make the Majorana a
candidate for a stable quantum bit. If we
consider the two robust ground states with-
out |0⟩ and with the long-ranged fermion |1⟩,
we can obtain the superposition of the two as
follows

|𝜓⟩ = cos(𝜗/2) |0⟩ + 𝑒 i𝜑 sin(𝜗/2) |1⟩ , (1.2)

where the angles represent the degrees of freedom and are schematically shown

dTechnically the energy difference is exponentially small, exp(−Δ𝐸𝐿), where Δ𝐸 is the gap
above the ground state. This vanishes extremely fast (away from transitions) with system
size 𝐿.

4



on the Bloch sphere in Figure 1.3.e Manipulating these angles 𝜗 and 𝜑 is the
basis of calculation in a quantum computer. This operation is done by quantum
gates, microscopic components responsible for modulating one of more qubits.
For Majorana qubits these manipulations arise from rotating Majoranas around
each other in space, also known as braiding, denoted by 𝑠 [14]. Pictorially, this
is shown in Figure 1.4a. Braiding these Majorana qubits is an example of
non-Abelian anyon braiding, for the non-commuting braid group. Alas, recent
developments uncovered that these braid operations for Majoranas cannot quite
cover the whole Bloch sphere [55, 56]. In other words, not all two-level states
can be reached, which is one of requirements for a so-called universal quantum
computer [9, 10].

𝑠

(a)

𝑠

(b)

𝑠2

(c)

Figure 1.4: Braiding of two particles. The vertical axis of (a) represents time. In (b) the
direction of time is along the path. Topologically the operations in (a) and (b) are
equivalent. double braiding is shown in (c).

One route for resolving this obstacle leads through the other type of braid-
ing, Abelian anyon braiding, the simpler of the two.f To understand this, we
consider what happens when we apply the braid operator twice (𝑠2), bringing
both particles back to their original position. Since we only worry about the
relative movement of the particles, the operation in Figure 1.4b is equivalent
to the winding in Figure 1.4a. The double braiding (𝑠2) is therefore shown in
Figure 1.4c.

In 3D (or higher) this loop can simply be lifted over the the stationary particle
and contracted to a point. That makes the double exchange trivial, indeed:
𝑠2 |𝜓⟩ = |𝜓⟩. A single exchange can therefore describe bosons: 𝑠 |𝜓⟩ = |𝜓⟩, or
fermions: 𝑠 |𝜓⟩ = − |𝜓⟩, the only two types of particles allowed in 3D.

eThe virtue of a quantum computer comes from the entanglement. Coupled qubits are not
simply represented by Equation (1.2), but an rather a highly entangled state.

fAbelian anyon statistics are related to an Abelian group, like U(1). Hence non-Abelian anyon
statistics are self-explanatory, with for instance the state (1.2) related to SU(2)
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1 Introduction

In 2D, the particle trajectory cannot be contracted into a point, without going
through the other particle (which is forbidden). Therefore the double exchange
is not necessarily trivial. States can obtain an arbitrary phase 𝑠 |𝜓⟩ = 𝑒 i� |𝜓⟩
from the exchange, such that 𝑠2 |𝜓⟩ = 𝑒2i� |𝜓⟩. For 0 and 𝜋 we recover bosons
and fermions, while generic � defines fractional statistics. These particles were
named “anyons” by Wilczek in 1982 [57], after they were predicted five years
earlier by Leinaas and Myrheim [58]. The first anyon system was proposed
theoretically in 1982 as well, when Tsui et al. formulated the fractional quantum
Hall system [27]. In 2020 the first experimental evidence of fractional statistics
was seen [59].

The path towards a new candidate for stable qubits follows these fractional
statistics, in the form of parafermion, the fractional cousins of Majoranas. Orig-
inally proposed in statistical mechanics for understanding the Potts model (a
spin-like lattice model), these parafermions are Abelian anyons [60]. Exchang-
ing parafermions produces a phase of � = 2𝜋

𝑚 , with 𝑚 > 2.g The symmetry
group associated to these particles are the rotations of the 𝑚-polygon, isomor-
phic to Z𝑚 , see Figure 1.5. Therefore they are denoted by Z𝑚 parafermions.

Figure 1.5: Three examples of eigenvalues on the unit circle of Z𝑚 braid groups for
𝑚 = 3, 4, 6.

Similar to the Kitaev chain for Majoranas, a so-called parafermion chains
exist, with a trivial and topological phase [61]. Moreover, the topological phase
features a robust 𝑚-fold degeneracy, protected by a non-local symmetry.

Even though there have been only a handful discussions on direct parafermion
braiding, they would have similar shortcomings as Majoranas. They cannot be
used for a universal quantum computer, since braiding parafermions would
not cover the whole Bloch sphere [62]. Nevertheless, recently it was shown that
parafermions can be manipulated to form Fibonacci anyons [62, 63]. For Fi-

gFor 𝑚 = 2 we recover Majorana fermions. Parafermions are hence a generalization of
Majoranas.
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bonacci anyons a braiding procedure is known that yields a universal quantum
computer [16].

Here we will leave the discussion concerning quantum computing, as this
thesis focusses on the theoretical discussion of the low energy behaviour (close
to T = 0 K) of Majorana and parafermion systems. A detailed mathematical
discussion of the parafermions is given in the relevant chapters.

Experimental proposals for parafermions are based on fractional quantum
Hall (FQH) systems [16, 56, 64]. The edge currents of FQH experience fractional
statistics. These currents can be captured as parafermions by decorating the
edge with heterostructures (usually ferromagnets and superconductors). For
a detailed discussion, see Section 5.3. First steps toward realizing parafermion
excitations experimentally have been shown in Refs. [65–67].

Theoretically, parafermions pose new challenges compared to Majoranas.
The unusual statistics limit the analytical tools at our disposal. Even the sim-
plest (hermitian) parafermion chain cannot be solved exactly by means applica-
ble to bilinear boson or fermion systems [61]. In other words, there are no free
parafermions, any system behaves as an interacting one.h There are, however,
still some analytical approaches for understanding parafermion systems.

First of all, there exists a mapping from a parafermion chain to the 2D Potts
model, by virtue of the Fradkin–Kadanoff transformation [60] and transfer
matrix formalism [71]. This model was studied extensively, with the help
of statistical mechanics [72–75] and conformal field theory [76–79]. Valuable
results can be translated back to parafermion language, offering a starting point
for further research.

Moreover, in some particular cases there are some more analytical arms that
can be twisted. While the whole spectrum might remain elusive, in the ground
state(s) can be obtained exactly. Which is valuable, since we are interested in
the T ≈ 0 K behaviour. These so-called frustration free lines help paint a bright
partial picture. Also, in some limiting cases perturbative expansions shed light
on the physical background of the systems in question. Finally, conformal field
theory (CFT) and bosonization allowed for a better understanding of certain
transitions and critical phases.

When all analytical options are depleted, we still have a very powerful nu-
merical tool at our disposal. In obtaining the results in this thesis we have
leaned heavily on Density Matrix Renormalization Group (DMRG) calcula-

hThere are non-hermitian parafermion systems that is “free”, since they can be written in a
bilinear form [68–70].
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1 Introduction

tions [80, 81]. This 1D algorithm approximates the many body Hilbert space
based on entanglement arguments and is widely used in the study of fermion-
and spin(-like) strongly correlated systems. For an overview, see Ref. [81]

With these tools at our disposal, we have attacked several problems concern-
ing parafermions. We have studied the topological phases in multiple models,
adding potential heterogeneity and interactions to the Kitaev chain, consider-
ing four site interactions for the Z3 parafermion chain and describing classes of
Z𝑚 models with topological nature. In this quest, we have encountered several
other interesting phases the parafermions can form, leading to many new open
questions.

1.1 Outline
This thesis can be roughly separated into two parts. Chapters 2 and 3 dis-
cuss examples of frustration free systems. In Chapter 2 we observe that the
zero modes and degeneracy in the Kitaev chain survive in the presence of an
alternating chemical potential and interactions. Chapter 3 discusses an overar-
ching approach for finding frustration free models, by a applying a conjugation
method proposed by Witten [82]. Besides the interacting Kitaev chain and sev-
eral Z𝑚 parafermion models, also the 𝑞-deformed XXZ and AKLT model are
revisited using this method.

In Chapters 4, 5, 6 we discuss several phase diagrams of parafermion sys-
tems. Chapter 4 is dedicated to Z3 Fock parafermions, showing the different
critical phases that appear for this exotic system. Fock parafermions are to
parafermions what fermions are to Majoranas, adding a notion of particle
filling. In Chapter 5 an extension of the Z3-parafermion chain is discussed,
including four-parafermion interactions. This is inspired by both an experi-
mental proposal and a generalization of Coulomb interactions. We encounter
several XXZ like phases, two gapped ferro- and anti-ferromagnetic phases and
a Luttinger liquid phase. Finally, this discussion is continued in Chapter 6 for
large interactions. This regime is not fully understood, yet show some novel
interesting phases.
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2 Exact ground states for
interacting Kitaev chains

This chapter is based on: J. Wouters, H. Katsura and D. Schuricht,
Exact ground states for interacting Kitaev chains, Physical Review B
98(11), 155119 (2018). J.W. performed most of the calculations and
all numerical simulations, discussed the results and contributed to
the final version of the manuscript.

We introduce a frustration-free, one-dimensional model of spinless fermions
with hopping, p-wave superconducting pairing and alternating chemical po-
tentials. The model possesses two exactly degenerate ground states even for
finite system sizes. We present analytical results for the strong Majorana zero
modes, the phase diagram and the topological order. Furthermore, we gener-
alise our results to include interactions.

2.1 Introduction
Majorana fermions have attracted a lot of attention over the last two decades.
Motivated by their anticipated future role [83, 84] in quantum computing ap-
plications, systems supporting Majorana zero modes have been widely studied
in condensed-matter physics, culminating in recent experiments [20, 85–90] on
superconductor-semiconductor nanowire systems.

The prime example of a model possessing Majorana zero modes is the Kitaev
chain [11]. It describes spinless fermions on a tight-binding chain with open
boundary conditions, which are subject to p-wave superconducting pairing
with fermionic parity as symmetry operator. Depending on the parameters, the
system will be either in its trivial or its topological phase. The latter is marked by
a two-fold degenerate ground state, with corresponding zero-energy modes in
the insulating gap. The zero modes are hermitian and normalisable, localised at
the boundaries of the chain, commute with the Hamiltonian and anti-commute
with fermion parity operator, making them Majorana edge zero modes [61].
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2 Exact ground states for interacting Kitaev chains

Furthermore, because the two ground states live in the two different symmetry
sectors, hybridisation is exponentially suppressed, hence the fermionic parity is
protected by topology. Theoretical works on disorder [34–41], dimerization [52,
53, 91, 92] and interactions [38, 39, 41–54] have shown that the topological phase
is very robust against various perturbations. Furthermore, via the non-local
Jordan–Wigner transformation, the Kitaev chain can be mapped to a transverse-
field Ising/XY chain, with the mentioned perturbations leading to more general
spin-1/2 spin chains.

In this chapter we propose an inhomogeneous modification to the Kitaev
chain, for which the zero modes and ground state obtain special properties.
It turns out that the Majorana mode energy in this model becomes exactly
zero, even for finite lattice sizes. This is in contrast with the generic Kitaev
chain in its topological phase, where the energy decays exponentially with the
length of the system. Moreover, we can obtain the ground states in a simple
product form. The latter is equivalent to the model being frustration-free,
meaning all local Hamiltonians are simultaneously minimised when projected
onto the ground-state subspace. We will elaborate more on this notion later in
this chapter. Well known frustration-free models are the AKLT chain [93, 94]
and the Kitaev toric code [12]. There has also been progress concerning spin
chains/Majorana models [49, 95]. An overview of homogeneous frustration-
free XYZ/interacting-Majorana chains was given in Ref. [96].

Furthermore, we also introduce an interacting frustration-free model. This
is an extension of the non-interacting inhomogeneous Kitaev chain, obtained
by exploiting the local fermion-parity invariance. For this interacting model,
we derive the ground-state energy analytically and give an estimate on the
spectral gap. The exact ground states are inherited from the non-interacting
model, which gives the opportunity to analytically compute zero-temperature
correlation functions.

This chapter is organised as follows: In Section 2.2 we introduce the non-
interacting model with alternating chemical potentials. We discuss in detail its
properties, including the construction of the exact ground states, strong zero
modes, phase diagram and topological order. In Section 2.3 we briefly discuss
the construction of exact strong zero modes in the system with completely
inhomogeneous chemical potentials. Finally, in Section 2.4 we return to the
alternating setup but include interactions. The exact, two-fold degenerate
ground state of the resulting model is calculated and the phase diagram is
obtained, before we end with a conclusion. Technical details of our derivations
are deferred to several appendices.
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2.2 Non-interacting model

2.2 Non-interacting model

We begin by introducing the non-interacting model and discussing its proper-
ties in detail. Interactions will be added in Section 2.4.

2.2.1 Hamiltonian

We consider an open chain of length 𝐿 supporting spinless fermions. The
creation and annihilation operators on site 𝑗 are given by 𝑐†𝑗 and 𝑐 𝑗 respectively,
satisfying canonical anti-commutation relations {𝑐𝑖 , 𝑐 𝑗} = {𝑐†𝑖 , 𝑐†𝑗 } = 0 and
{𝑐𝑖 , 𝑐†𝑗 } = 𝛿𝑖 𝑗 . The number operator on site 𝑗 is defined as 𝑛 𝑗 = 𝑐†𝑗 𝑐 𝑗 . The
Hamiltonian of the non-interacting model is given by

𝐻 = −
𝐿−1∑
𝑗=1

[
𝑡(𝑐†𝑗 𝑐 𝑗+1 + 𝑐†𝑗+1𝑐 𝑗) + Δ(𝑐†𝑗 𝑐†𝑗+1 + 𝑐 𝑗+1𝑐 𝑗)

]

−
𝐿∑
𝑗=1

𝑞 𝑗(2𝑛 𝑗 − 1) + 𝑆, (2.1)

𝑆 =
1
2

[
𝑞1(2𝑛1 − 1) + 𝑞𝐿(2𝑛𝐿 − 1)] , (2.2)

where 𝑡 and Δ are the hopping and pairing energies respectively. For later use
we introduce the parametrisation

𝑡 =
� + �−1

2 , Δ =
� − �−1

2 , (2.3)

which effectively removes the overall energy scale and thus reduces the number
of parameters by one. An overall scale can be reintroduced, not changing
anything qualitatively in the rest of the chapter. Furthermore, 𝑞 𝑗 denotes a
chemical potential at lattice site 𝑗. Except for Section 2.3 we will consider the
alternating setup

𝑞 𝑗 =

{
𝑞, if 𝑗 odd,
𝑞−1 , if 𝑗 even.

(2.4)
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2 Exact ground states for interacting Kitaev chains

Finally we note that the surface term 𝑆 alters the chemical potential on the
edges. This allows us to rewrite Equation (2.1) as sum of local Hamiltonians

𝐻 =
𝐿−1∑
𝑗=1

ℎ 𝑗 , (2.5)

ℎ 𝑗 = −𝑡(𝑐†𝑗 𝑐 𝑗+1 + 𝑐†𝑗+1𝑐 𝑗) − Δ(𝑐†𝑗 𝑐†𝑗+1 + 𝑐 𝑗+1𝑐 𝑗)
− 𝑞 𝑗2 (2𝑛 𝑗 − 1) − 𝑞 𝑗+1

2 (2𝑛 𝑗+1 − 1). (2.6)

The homogeneous system (i.e., 𝑞 𝑗 constant) is equivalent to the non-interacting
point of the model studied in Ref. [49].

For simplicity, we will only consider even system lengths. Furthermore,
we can assume 𝑞 > 0 and � > 0, since charge conjugation [𝑐 𝑗 → (−1)𝑗𝑐†𝑗 ] is
equivalent to 𝑞 → −𝑞while � → −� can be achieved by 𝑐 𝑗 → (−1)𝑗𝑐 𝑗 . Moreover,
we can restrict 𝑞 and � to be larger than 1, because inversion (𝑐 𝑗 → 𝑖𝑐𝐿−𝑗+1)
induces 𝑞 → 𝑞−1 and 𝑐 𝑗 → 𝑖𝑐 𝑗 induces � → �−1.

The total fermion number 𝐹 =
∑
𝑗 𝑛 𝑗 =

∑
𝑗 𝑐

†
𝑗 𝑐 𝑗 is not conserved by the Hamil-

tonian. However, the fermionic parity, i.e., the fermion number modulo two is
a symmetry of the model,

[𝐻, (−1)𝐹] = 0, (2.7)

where (−1)𝐹 is the fermionic parity operator.

2.2.2 Exact ground states

In general the ℎ 𝑗 ’s cannot be diagonalised simultaneously, because [ℎ 𝑗 , ℎ 𝑗+1] ≠
0. However, progress can be made in the frustration-free case. This occurs if
there exists a subspace, the ground-state space, with projector 𝐺0, such that
every ℎ 𝑗 is minimised when projected onto this space, i.e., ℎ 𝑗𝐺0 = 𝜖0𝐺0 with 𝜖0
being the smallest eigenvalue of ℎ 𝑗 . The ground states of the full Hamiltonian𝐻
minimise each ℎ 𝑗 independently and the Hamiltonian𝐻 is said to be frustration-
free. There are many examples of frustration-free models, possibly the most
well known are the AKLT chain [93, 94] and the Kitaev toric code [12]. An
extensive discussion on frustration-free systems was recently given by Jevtic
and Barnett [96]. They give a systematic derivation of spin chain models with
a factorised ground state, which support Majorana zero modes.

In this section we will show that the model (2.1) is frustration-free. The
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2.2 Non-interacting model

determination of the ground-state subspace requires to minimise every local
Hamiltonian, so we start by considering the two-site problem. The four states
for this subsystem are |◦◦⟩ = |vac⟩, |•◦⟩ = 𝑐†𝑗 |vac⟩, |◦•⟩ = 𝑐†𝑗+1 |vac⟩ and
|••⟩ = 𝑐†𝑗 𝑐

†
𝑗+1 |vac⟩, where |vac⟩ denotes the vacuum state on the lattice sites

𝑗 and 𝑗 + 1. The local Hamiltonians also preserve fermionic parity, so we can
split system in an even and an odd sector,

ℎ𝑒𝑗 = −1
2

(
𝑞 𝑗 + 𝑞−1

𝑗 � − �−1

� − �−1 −𝑞 𝑗 − 𝑞−1
𝑗

)
, (2.8)

ℎ𝑜𝑗 = −1
2

(
𝑞 𝑗 − 𝑞−1

𝑗 � + �−1

� + �−1 −𝑞 𝑗 + 𝑞−1
𝑗

)
, (2.9)

which act on the basis {|••⟩ , |◦◦⟩} and {|•◦⟩ , |◦•⟩} respectively. For both
sectors the eigenvalues are given by 𝜖± = ± 1

2𝒩 , with 𝒩 =
√
𝑞2 + 𝑞−2 + �2 + �−2.

The corresponding eigenstates with energy 𝜖− are

|𝜓𝑒
𝑗 ⟩ =

©
«
𝒩 + 𝑞 𝑗 + 𝑞−1

𝑗

� − �−1
ª®
¬
|••⟩ + |◦◦⟩ , (2.10)

|𝜓𝑜
𝑗 ⟩ =

©
«
𝒩 + 𝑞 𝑗 − 𝑞−1

𝑗

� + �−1
ª®
¬
|•◦⟩ + |◦•⟩ . (2.11)

We note that any linear combination of these eigenstates minimises the local
Hamiltonian ℎ 𝑗 .

In order to find the ground state of the full system we first look for linear
combinations of the eigenstates |𝜓𝑒 ,𝑜

𝑗 ⟩ that can be written as a product of single-
site states. Making the ansatz

|𝜓𝑒
2𝑘−1⟩ ± 𝑥1 |𝜓𝑜

2𝑘−1⟩ = (𝑥0𝑐†2𝑘−1 ± 1)(𝑥1𝑐†2𝑘 ± 1) |vac⟩ , (2.12)
|𝜓𝑒

2𝑘⟩ ± 𝑥0 |𝜓𝑜
2𝑘⟩ = (𝑥1𝑐†2𝑘 ± 1)(𝑥0𝑐†2𝑘+1 ± 1) |vac⟩ , (2.13)

where we distinguish between even and odd sites because of the alternating

13



2 Exact ground states for interacting Kitaev chains

nature of the model, the coefficients are found to be

(𝑥0)2 =
𝒩 + 𝑞 + 𝑞−1

� + �−1
𝒩 + 𝑞 − 𝑞−1

� − �−1 , (2.14)

(𝑥1)2 =
� + �−1

� − �−1
𝒩 + 𝑞 + 𝑞−1

𝒩 + 𝑞 − 𝑞−1 . (2.15)

Now, since ℎ 𝑗 commutes with 𝑥0,1𝑐†𝑘 ± 1 for 𝑘 ≠ 𝑗 , 𝑗 + 1, the ground states
minimising all local Hamiltonians and consequently the full system are

|Ψ±⟩ =
𝐿/2∏
𝑘=1

(𝑥0𝑐†2𝑘−1 ± 1)(𝑥1𝑐†2𝑘 ± 1) |vac⟩ (2.16)

with ground-state energy

𝐸0 = −𝐿 − 1
2 𝒩 . (2.17)

Note that for � = 1 the ground state becomes non-degenerate, as both 𝑥0 and
𝑥1 diverge and the ground state is a fully filled state. In Section 2.2.3 we
will see that the system possesses strong zero modes supporting the two-fold
degeneracy in the ground state. Moreover, the zero modes indicate that there
are no more linearly independent ground states, i.e., the ground-state subspace
is two-dimensional.

At this point we have to note that the model in question is non-interacting,
hence finding the ground state is always possible. However, this specific fac-
torised form is reserved for only a small class of models. An alternative, more
direct approach for finding the ground states is discussed in Appendix 2.A.
There the notion of Lindblad operators is employed to verify the states in Equa-
tion (2.16) span the full ground-state subspace, further explored in Chapter 3
as well.

As noted above, the Hamiltonian (2.1) preserves fermionic parity. However,
|Ψ±⟩ belong neither to the even nor the odd parity sector. More explicitly,
because (−1)𝐹(𝑥0,1𝑐†𝑘 ±1) = −(𝑥0,1𝑐†𝑘 ∓1)(−1)𝐹 , the action of the fermionic parity
on the ground states is (−1)𝐹 |Ψ±⟩ = |Ψ∓⟩. Also, the states are not orthogonal.
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However, the linear combinations

|Ψ𝑒⟩ = 1√
2(𝑁 +𝑀)

(|Ψ+⟩ + |Ψ−⟩) , (2.18)

|Ψ𝑜⟩ = 1√
2(𝑁 −𝑀)

(|Ψ+⟩ − |Ψ−⟩) , (2.19)

belong to the even and odd sector, respectively, and thus are orthogonal to each
other. The coefficients that normalise the states are

𝑁 := ⟨Ψ± |Ψ±⟩ =
[
(𝑥2

0 + 1)(𝑥2
1 + 1)

]𝐿/2
, (2.20)

𝑀 := ⟨Ψ∓ |Ψ±⟩ =
[
(𝑥2

0 − 1)(𝑥2
1 − 1)

]𝐿/2
, (2.21)

which satisfy 𝑁/𝑀 = �𝐿.

The ground states (2.18) and (2.19) are locally indistinguishable, as can be
seen as follows: [49] Consider any local operators with an even (𝑂𝑒) and odd
(𝑂𝑜) number of fermion creation an annihilation operators, supported on a
sublattice 1 < 𝑗1 < . . . < 𝑗𝑘 < 𝐿, such that 𝑗𝑘 − 𝑗1 = ℓ − 1. Immediately,
we note that ⟨Ψ𝑒 |𝑂𝑜 |Ψ𝑒⟩ = ⟨Ψ𝑜 |𝑂𝑜 |Ψ𝑜⟩ = 0, since 𝑂𝑜 changes the fermionic
parity of the states, while |Ψ𝑒 ,𝑜⟩ belong respectively to the even or odd sector.
Furthermore, the even local operators we can bound as (see Appendix 2.B)

| ⟨Ψ𝑒 |𝑂𝑒 |Ψ𝑒⟩ − ⟨Ψ𝑜 |𝑂𝑒 |Ψ𝑜⟩ | ≤ 𝐾∥𝑂𝑒 ∥ 𝑒−𝐿/� , (2.22)

where∥𝑂𝑒 ∥ is the operator norm [as defined in Equation (2.92)], 𝐾 is a constant,
small compared to 𝑒𝐿/�, and

� =
1

ln[max(�, �−1)] > 0 (2.23)

is the correlation length. Hence it is not possible to distinguish the two ground
states (2.18) and (2.19) by measuring local expectation values in a thermody-
namically large system.

15



2 Exact ground states for interacting Kitaev chains

Finally let us rewrite the system (2.1) in the form of a spin chain using the
Jordan–Wigner transformation

𝑐 𝑗 =
𝑗−1∏
𝑘=1

(
−𝜎𝑧𝑘

) 𝜎𝑥𝑗 − 𝑖𝜎
𝑦
𝑗

2 ,

𝑐†𝑗 =
𝑗−1∏
𝑘=1

(
−𝜎𝑧𝑘

) 𝜎𝑥𝑗 + 𝑖𝜎
𝑦
𝑗

2 ,

(2.24)

with 𝜎𝑖 for 𝑖 = 𝑥, 𝑦, 𝑧 denoting the Pauli matrices. Plugging this in into Equa-
tion (2.6) results in a XY chain in a transverse field,

ℎ 𝑗 = −1
2 (�𝜎

𝑥
𝑗 𝜎

𝑥
𝑗+1 + �−1𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 + 𝑞 𝑗𝜎𝑧𝑗 + 𝑞−1

𝑗 𝜎𝑧𝑗+1). (2.25)

Now it can be confirmed along the lines of Refs. [97] and [98] that the system
is frustration-free for all values of � and 𝑞.

2.2.3 Strong zero modes

As we saw in the previous section, the model has a two-fold degenerate ground
state. This is reminiscent of the two ground states of the Kitaev chain in its
topological phase. The major difference is that due to the specific tuning of
the edge chemical potential the ground states of the model (2.1) are perfectly
degenerate and uncoupled for all system sizes. On the other hand, in a generic
non-interacting Kitaev model, the coupling between the ground states decays
exponentially with the length of the system [11].

The perfect degeneracy of the ground states in the system (2.1) suggests that
there exists a single-particle mode 𝑇0 with zero energy, mapping one ground
state to the other, i.e., |Ψ𝑜⟩ ∝ 𝑇0 |Ψ𝑒⟩. This mode must anti-commute with
the fermionic parity operator, ({(−1)𝐹 , 𝑇0} = 0), mapping one parity sector to
the other. Also it has to commute at least with the ground-state part of the
Hamiltonian. This is what is sometimes called a “weak” zero mode [99].

In fact, since we are dealing with a non-interacting problem, the last property
can be extended to the full Hilbert space, i.e., the zero mode commutes with
the full Hamiltonian, [𝐻,𝑇0] = 0. Furthermore, due to particle-hole symmetry
these zero modes are necessarily Majorana modes (𝑇†

0 = 𝑇0). In this section
we will derive explicit expressions for these modes, called strong Majorana zero
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modes, satisfying the following properties [61]:

1. 𝑇†
0 = 𝑇0,

2. {(−1)𝐹 , 𝑇0} = 0,

3. [𝐻,𝑇0] = 0,

4. 𝑇†
0 𝑇0 = 𝑇2

0 = 1.

To do so, we first split the spinless complex fermions into two Majorana
fermions 𝑎 𝑗 = 𝑎†𝑗 and 𝑏 𝑗 = 𝑏†𝑗 per lattice site in the usual fashion,

𝑐 𝑗 =
𝑎 𝑗 − 𝑖𝑏 𝑗

2 , 𝑐†𝑗 =
𝑎 𝑗 + 𝑖𝑏 𝑗

2 . (2.26)

The particular choice of the hopping and superconducting parameters becomes
clear in the Majorana representation, in which the local Hamiltonian becomes

ℎ 𝑗 = − 𝑖2 (�𝑏 𝑗𝑎 𝑗+1 − �−1𝑎 𝑗𝑏 𝑗+1 − 𝑞 𝑗𝑎 𝑗𝑏 𝑗 − 𝑞−1
𝑗 𝑎 𝑗+1𝑏 𝑗+1). (2.27)

Requiring condition 3, or equivalently [ℎ 𝑗 , 𝑇0] = 0 for all 𝑗, we find two zero
modes of the form

𝑇𝑎0 = 𝛼
𝐿/2∑
𝑗=1

1
�2(𝑗−1)

(
𝑎2𝑗−1 − 𝑞

�
𝑎2𝑗

)
, (2.28)

𝑇𝑏0 = 𝛽
𝐿/2∑
𝑗=1

�2(𝑗−1)
(
𝑏2𝑗−1 − 𝑞�𝑏2𝑗

)
, (2.29)

where 𝛼 and 𝛽 are normalisation factors fixed by condition 4. Note that by
construction they also satisfy the first two requirements above. Thus 𝑇𝑎0 and 𝑇𝑏0
are indeed strong zero modes. We stress that these zero modes are exact even
for finite system sizes, in contrast to the modes in a generic non-interacting
Kitaev chain.

Let us also comment on the localisation of the zero modes 𝑇𝑎0 and 𝑇𝑏0 . Ob-
viously they decay with � and �−1 respectively, localising them at one of the
edges. For � > 1, 𝑇𝑎0 is localised at the left (𝑗 = 1) boundary, while 𝑇𝑏0 lives at
the right edge (𝑗 = 𝐿). For � < 1 the situation is reversed. Thus for all � ≠ 1
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2 Exact ground states for interacting Kitaev chains

we have two strong zero modes localised at the opposite boundaries. At � = 1
both modes are delocalised and the ground state becomes singly degenerate.

Finally, in Appendix 2.C we discuss the action of the zero modes on the
ground states. As one would expect the zero modes map one ground state
to the other, i.e., 𝑇𝑎,𝑏0 |Ψ𝑒⟩ = |Ψ𝑜⟩. This confirms that the ground states are
in a different fermion parity sector, since the Majorana zero modes change the
parity by 1.

2.2.4 Phase Diagram

In the previous section we derived the existence of exact strong zero modes,
supported by the two-fold degeneracy of the ground state. This hints towards
a topological superconductor region in the phase diagram. Also there appears
to be a phase transition at � = 1. In this section we will derive the spectrum to
confirm this picture by examining the gap throughout the phase diagram. We
have to note that, even though we are interested in finite-size systems allowing
for the presence of edge effects, here we will be considering the gap in the
thermodynamic limit, as only in this limit the system can become truly gapless.
In this section we are interested in the bulk gap and bulk phase transition.

With the local Hamiltonian in the Majorana language (2.27) and recalling
the alternating chemical potential (2.4), the Hamiltonian can be brought into
matrix form

𝐻 =
𝑖
2

𝐿∑
𝑗 ,𝑘=1

𝑎 𝑗𝐵 𝑗𝑘𝑏𝑘 , (2.30)

𝐵 =

©
«

𝑞 �−1

� 2𝑞−1 �−1

. . . . . . . . .
� 2𝑞 �−1

� 𝑞−1

ª®®®®®®®
¬
. (2.31)

The 𝐿 × 𝐿 matrix 𝐵 is non-hermitian, and is not necessarily diagonalisable.
However, 𝐵𝐵⊤ is hermitian and the eigenvalues are (2𝜖𝑘)2, with 𝜖𝑘 the single-
particle energies of the model. Diagonalising the pentadiagonal 𝐵𝐵⊤ is quite
troublesome. Fortunately, we can construct a symmetric tridiagonal matrix 𝐶,
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2.2 Non-interacting model

such that 𝐵𝐵⊤ = 𝐶2, with

𝐶 =
1
𝒩

©
«

𝛾1 𝛿−1

𝛿−1 𝛾− 𝛿
𝛿 𝛾+ 𝛿−1

. . . . . . . . .
𝛿 𝛾+ 𝛿−1

𝛿−1 𝛾𝐿

ª®®®®®®®®®
¬

, (2.32)

where
𝛾± = �2 + �−2 + 2𝑞±2 , 𝛾1 = 𝑞−2 + �2 ,

𝛿 = 𝑞�−1 + 𝑞−1�, 𝛾𝐿 = 𝑞2 + �−2.
(2.33)

The matrix 𝐶 can be diagonalised analytically, see Appendix 2.D. For 𝑘 = 2𝜋𝑛
𝐿

with 𝑛 = 1, 2, . . . , 𝐿2 − 1 we find the eigenvalues

𝜖±𝑘 =
1
2

(
𝒩 ±

√
𝑞2 + 𝑞−2 + 2 cos 𝑘

)
. (2.34)

Furthermore, there are two additional modes with energies

𝜖−0 = 0, 𝜖+0 =
1
2𝒩 . (2.35)

Note that all eigenvalues are non-negative, because𝐵𝐵⊤ is positive semidefinite.
The smallest non-zero eigenvalue is

𝜖−𝑘=2𝜋/𝐿 =
1
2

(
𝒩 − (𝑞 + 𝑞−1) + 𝑘2

2(𝑞 + 𝑞−1)

)
+ 𝒪(𝑘4), (2.36)

which gives a spectral gap in the thermodynamic limit (𝐿→ ∞) of

Δ𝐸 =
1
2

[
𝒩 − (𝑞 + 𝑞−1)

]
. (2.37)

From Equation (2.37) we see that the gap only vanishes at � = 1 indicating
the phase transition. This is depicted in the 𝑞-� phase diagram in Figure 2.1.
At the phase transition the low-energy spectrum is quadratic in 𝑘, putting the
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2 Exact ground states for interacting Kitaev chains

1

1

𝑟ℓ

ℓ 𝑟

�

𝑞0

Figure 2.1: Phase diagram for the non-interacting model in 𝑞−� plane. The localisation
of the zero modes is indicated in the white squares, where ℓ and 𝑟 refer to the left
(near site 1) and right (near site 𝐿) edges. The first letter denotes the location of 𝑇𝑎0 ,
the second of𝑇𝑏0 . In Figure 2.2 a cut along 𝑞 = 1 (the homogeneous system) is shown
in the phase space of the Kitaev parameters (�,Δ).

critical model out of reach for conformal field theories. To clarify the nature
of the phase transition, we consider Figure 2.2. In this figure we show a cut
of Figure 2.1 along 𝑞 = 1 (the homogeneous point) projected onto the �-Δ
space, i.e., using the conventional Kitaev parameters [100]. The dashed lines
represent the Ising and XX transitions. The solid line depicts the cut along
𝑞 = 1. Clearly, the phase transition at � = 1 occurs at the crossing of the Ising
and XX line. As we discuss in Appendix 2.E, for general 𝑞 this crossing can
be identified as a transition in the Dzhaparidze-Nersesyan-Pokrovsky-Talapov
(DN-PT) universality class [101–103]. Figure 2.1 also shows the localisation of
the zero modes given by ℓ and 𝑟 in each region, where the first letter corresponds
to 𝑇𝑎0 and the second to 𝑇𝑏0 .

2.2.5 Topological order

We have discussed the presence of zero modes, the double degeneracy of the
ground state, and the spectral gap. We also concluded that the ground states
cannot be distinguished by local measurements. These properties do not come
by surprise, because of the tight connection to the Kitaev chain. Specifically,
at 𝑞 = 1 the bulk model (2.1) reduces to the Kitaev chain, which will be in its
topological phase for all � ≠ 1. It is then easy to see that we can adiabatically
change the system away from 𝑞 = 1. Starting at 𝑞 = 1 for � > 1, we can
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2

−1

0

1

η = 1

η = ∞

η = 0

Ising

XX

µ/t

∆/t

Figure 2.2: Cut along 𝑞 = 1 in Figure 2.1 embedded in the Δ/𝑡-�/𝑡 phase space for
the conventional Kitaev chain. The dashed lines represent the Ising and XX phase
transitions. The solid line is the cut along 𝑞 = 1. At the phase transition (� = 1) the
cut passes through the intersection of the Ising and XX transition lines, where the
spectrum becomes quadratic at small momenta. Adapted from Ref. [100].

make a smooth path to any other �′ > 1 and 𝑞 > 0 without closing the gap
(see Figure 2.1), thus remaining in the topological phase. The same argument
applies to all � < 1.

To support this statement, we consider two topological invariants: the Z2
invariant[104–106] for class D topological superconductors, and, since we do
not explicitly break time reversal symmetry, the Z invariant[51, 107] for class
BDI.
Z2 invariant: The fermionic parity of the closed system with twisted boundary

conditions (TBC) is related to the topological properties of the open system. In
general twisted boundary conditions are implemented by adding the boundary
Hamiltonian

ℎbound = −Φ
[
𝑡
(
𝑒 𝑖𝜑1 𝑐†𝐿𝑐1 + h.c.

)
− Δ

(
𝑒 𝑖𝜑2 𝑐†𝐿𝑐

†
1 + h.c.

) ]
(2.38)

− 𝑞1

2 (2𝑛1 − 1) − 𝑞𝐿
2 (2𝑛𝐿 − 1).

Recall that 𝑡 and Δ are given by Equation (2.3). The open system corresponds
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2 Exact ground states for interacting Kitaev chains

to Φ = 0. For Φ = 1 we find periodic boundary conditions (PBCs) for (𝜑1 , 𝜑2) =
(0, 0), and anti-periodic boundary conditions (APBCs) for (𝜑1 , 𝜑2) = (𝜋,𝜋). In
Ref. [106] it was shown that a different fermionic parity for the ground states for
PBCs and APBCs corresponds to the topological phase, while equal fermionic
parity corresponds to the trivial phase. In Appendix 2.F we show that the
ground states for PBCs and APBCs are

|ΨPBC⟩ = |Ψ𝑜⟩ , |ΨAPBC⟩ = |Ψ𝑒⟩ . (2.39)

The parity of |Ψ𝑒⟩ is +1 and the parity of |Ψ𝑜⟩ is −1, which confirms the
existence of the topological phase for all � ≠ 1.
Z invariant: Using the second invariant we will be able to directly link the

topological phase in Figure 2.1 to the topological phase in the conventional
Kitaev chain [11].

In Ref. [107] it was shown that for a model in class BDI there exists a Z
invariant in the form of a winding number

𝑊 = − 𝑖
𝜋

∫ 𝑘=𝜋

𝑘=0

d𝑧(𝑘)
𝑧(𝑘) , (2.40)

where 𝑧 = det(𝐴(𝑘))/| det(𝐴(𝑘))|. The matrix 𝐴(𝑘) is related to the rotated BdG
Hamiltonian in 𝑘-space

𝑈ℋ(𝑘)𝑈† =
(

0 𝐴(𝑘)
𝐴⊤(−𝑘) 0

)
. (2.41)

From the periodic alternating model [i.e. (𝜑1 , 𝜑2) = (0, 0) and Φ = 1 in Equa-
tion (2.38)] we obtain

𝐴𝑞(𝑘) = −
(

𝑞 𝑡 cos(𝑘) + 𝑖Δ sin(𝑘)
𝑡 cos(𝑘) + 𝑖Δ sin(𝑘) 𝑞−1

)
, (2.42)

where the 𝑞-subscript refers to the alternating model. Direct evaluation now
yields

𝑊𝑞 =

{
1, 𝑡 > 1,
0, 𝑡 < 1.

(2.43)

For the gapped regions (� ≠ 1) the system is in the upper case, hence topological.
The phase transition � = 1 corresponds to 𝑡 = 1, where𝑊 is not well defined.
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2.3 Fully inhomogeneous model

We can also reach this conclusion indirectly, by realising that det[𝐴𝑞(𝑘)] does
not dependent on 𝑞. In fact, if one would calculate 𝐴Kit(𝑘) for the conventional
homogeneous Kitaev chain, but viewed with a two site unit cell, one would
find

det[𝐴𝑞(𝑘)] = det[𝐴Kit(𝑘)]. (2.44)

Consequently, also 𝑊𝑞 = 𝑊kit. This relates the topological phase for general 𝑞
to the topological phase for the conventional Kitaev chain. Finally we note that
the two invariants are related by the fact that the Z2 invariant is just the parity
of the Z invariant [107].

2.3 Fully inhomogeneous model
In this section we briefly discuss a model with more general couplings than the
alternating setup (2.4). Specifically, we consider completely inhomogeneous
couplings � 𝑗 and 𝑞 𝑗 , i.e., the local Hamiltonian takes the form

ℎ 𝑗 = − 𝑖2 (� 𝑗𝑏 𝑗𝑎 𝑗+1 − �−1
𝑗 𝑎 𝑗𝑏 𝑗+1 − 𝑞 𝑗𝑎 𝑗𝑏 𝑗 − 𝑞−1

𝑗 𝑎 𝑗+1𝑏 𝑗+1). (2.45)

From the most general ansatz for Majorana zero modes,

𝑇𝑎0 =
𝐿∑
𝑗=1

𝛼 𝑗𝑎 𝑗 , 𝑇𝑏0 =
𝐿∑
𝑗=1

𝛽 𝑗𝑏 𝑗 , (2.46)

one finds by requiring [ℎ 𝑗 , 𝑇𝑎,𝑏0 ] = 0 for all 𝑗 that the coefficients have to satisfy
the recursion relations

𝛼 𝑗+1 = − 𝑞 𝑗
� 𝑗

𝛼 𝑗 , 𝛽 𝑗+1 = −𝑞 𝑗� 𝑗𝛽 𝑗 . (2.47)

The constants 𝛼1 and 𝛽1 are fixed by the normalisation. We note that the
localisation of the modes is not clear a priori.

As a trivial but instructive special case one can consider the homogeneous
model with 𝑞 𝑗 = 𝑞 and � 𝑗 = �. This model was originally studied by Hinrichsen
and Rittenberg [108–110] in the context of deformations of XY spin chains. In
fact, they continued the work done by Saleur [111], who discussed a spin
chain model corresponding to the homogeneous fermionic model introduced
in Equation (2.45) with � = 1.
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2 Exact ground states for interacting Kitaev chains

In the homogeneous setup Hinrichsen and Rittenberg showed that the zero
modes simplify to

𝑇𝑎 =

√
1 − (𝑞/�)2
1 − (𝑞/�)2𝐿

𝐿∑
𝑗=1

(
− 𝑞
�

) 𝑗−1
𝑎 𝑗 , (2.48)

𝑇𝑏 =

√
1 − (𝑞�)2
1 − (𝑞�)2𝐿

𝐿∑
𝑗=1

(−𝑞�) 𝑗−1 𝑏 𝑗 . (2.49)

Depending on the parameters the modes are localised on the same or op-
posite edges. The phase diagram can be deduced from the single-particle
energies [110]

Λ𝑘 =

√
(𝑞�−1 − 𝑒 𝑖𝑘)(𝑞�−1 − 𝑒−𝑖𝑘)(𝑞� − 𝑒 𝑖𝑘)(𝑞� − 𝑒−𝑖𝑘)

4𝑞2 (2.50)

for 𝑘 = 2𝜋𝑛
𝐿 with 𝑛 = 1, . . . , 𝐿 − 1, which imply that the spectral gap closes for

� = 𝑞 or � = 𝑞−1. The phase diagram and the localisation of the Majorana zero
modes are shown in Figure 2.3.

The gapless lines split the phase space into four regions, each with a different
edge mode localisation. To understand which regions are considered topolog-
ical, we look at the bulk-boundary correspondence such that we can neglect
the surface terms. Without the fine tuned surface chemical potential the model
reduces to the Kitaev chain, the phase transition in the Kitaev chain directly
corresponds to the transitions are � = 𝑞 and � = 𝑞−1. The resulting topological
phases are shown as shaded regions in Figure 2.3. They are characterised by
the appearance of Majorana zero modes at opposite edges. On the other hand,
in the trivial phases the zero modes appear on the same edge and are thus not
protected against local perturbations.

We note that the homogeneous model has a richer phase diagram than the
model with alternating chemical potential we considered in Section 2.2. How-
ever, we stress that the homogeneous model is in general not frustration-free.

2.4 Interacting model
In this section we add interactions to the model from Section 2.2. By a special
construction we will make the model interacting while keeping the ground
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𝑟ℓ

ℓ 𝑟
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𝑞0

Figure 2.3: Phase diagram for the homogeneous model (2.45) with � 𝑗 = � and 𝑞 𝑗 = 𝑞.
The shaded region shows the topological phase, characterised by the existence of
Majorana zero modes on opposite edges. The notation is as in Figure 2.1.

states in the disentangled form (2.16). Consequently, the interacting model
will also prove to be frustration-free. There have been recent developments on
frustration-free interacting spinless fermion models [49, 96]. We will show that
in a specific limit we retrieve the model in Ref. [49]. Moreover, the two-fold de-
generate ground state provides us with the notion of a weak zero modes [112]. In
the last part of this section we will discuss the phase diagram of the interacting
model, giving more insight in the topological order.

2.4.1 Hamiltonian

Recall that the non-interacting system left the fermionic parity invariant, al-
lowing us to split the local Hamiltonian in even- and odd-parity parts [cf.
Equations (2.8, 2.9)],

ℎ 𝑗 = ℎ𝑒𝑗𝑃
𝑒
𝑗 + ℎ𝑜𝑗 𝑃𝑜𝑗 , (2.51)

where 𝑃𝑒 ,𝑜𝑗 project onto the even/odd fermion parity sectors of the two-site
Hilbert space at lattice sites 𝑗 and 𝑗 + 1. We can define two semi-projectors
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2 Exact ground states for interacting Kitaev chains

(𝑄2 = 𝑐, with 𝑐 not necessarily 1), one in each sector, via

𝑄𝑒 ,𝑜
𝑗 =

(
ℎ𝑒 ,𝑜𝑗 + 𝒩

2

)
𝑃𝑒 ,𝑜𝑗 , (2.52)

such that Equation (2.51) becomes

ℎ 𝑗 = 𝑄𝑒
𝑗 +𝑄𝑜

𝑗 −
𝒩
2 . (2.53)

The semi-projectors (2.52) annihilate the ground states (2.16). In terms of
fermionic operators they are explicitly expressed as

𝑄𝑒
𝑗 = −� − �−1

2 (𝑐†𝑗 𝑐†𝑗+1 + 𝑐 𝑗+1𝑐 𝑗) −
𝑞 𝑗 + 𝑞−1

𝑗

2 (𝑛 𝑗 + 𝑛 𝑗+1 − 1)

+𝒩
4

[
1 + (2𝑛 𝑗 − 1)(2𝑛 𝑗+1 − 1)] , (2.54)

𝑄𝑜
𝑗 = −� + �−1

2 (𝑐†𝑗 𝑐 𝑗+1 + 𝑐†𝑗+1𝑐 𝑗) −
𝑞 𝑗 − 𝑞−1

𝑗

2 (𝑛 𝑗 − 𝑛 𝑗+1)

+𝒩
4

[
1 − (2𝑛 𝑗 − 1)(2𝑛 𝑗+1 − 1)] . (2.55)

In particular, we see that the projectors (2.52) both contain a density-density
interaction term, which drops out when considering the combination (2.53).

On the other hand, the existence of the density-density interaction in 𝑄𝑒 ,𝑜
𝑗

points to a way to construct a frustration-free, interacting system. We set

𝐻int =
∑
𝑗

ℎint
𝑗 , (2.56)

ℎint
𝑗 =

√
2
[
cos 𝜙 𝑄𝑒

𝑗 + sin 𝜙 𝑄𝑜
𝑗

]
−𝒩 cos(𝜙 − 𝜋

4 )
2 ,

where the parameter 𝜙 is restricted to 0 < 𝜙 < 𝜋/2. The non-interacting
model corresponds to the choice 𝜙 = 𝜋/4. We stress that by construction the
two factorised states Equation (2.16) are the exact ground states of (2.56) with
energy

𝐸0 = −(𝐿 − 1) cos(𝜙 − 𝜋
4 )

2 𝒩 . (2.57)
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Moreover, 𝐻int is frustration-free, and for 𝑞 = 1 it reduces to the model dis-
cussed in Ref. [49].

Again it is instructive to make the link to spin chains. By applying the
Jordan–Wigner transformation (2.24) we obtain the XYZ chain in an alternating
magnetic field

𝐻int = − 1
2

𝐿−1∑
𝑗=1

(
𝐽𝑥𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝐽𝑦𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 + 𝐽𝑧𝜎𝑧𝑗 𝜎𝑧𝑗+1

)
−

𝐿∑
𝑗=1

𝐵 𝑗𝜎𝑧𝑗 , (2.58)

where
𝐽𝑥 = 𝜌� + 𝜚�−1 , 𝐽𝑦 = 𝜌�−1 + 𝜚�, 𝐽𝑧 = 𝜚𝒩 , (2.59)

with 𝜌 = cos(𝜙 − 𝜋/4) and 𝜚 = sin(𝜙 − 𝜋/4), and

𝐵 𝑗 =

{
𝐵0 = 𝜌𝑞 − 𝜚𝑞−1 , if 𝑗 odd,
𝐵1 = 𝜌𝑞−1 − 𝜚𝑞, if 𝑗 even.

(2.60)

It turns out that these parameters satisfy the following condition

𝐵0𝐵1 = 𝐽2
𝑧 + 𝐽𝑥 𝐽𝑦 − 𝐽𝑧

√
(𝐽𝑥 + 𝐽𝑦)2 + (𝐵0 − 𝐵1)2. (2.61)

This shows great resemblance to the frustration-free condition for homoge-
neous XYZ chains provided by Refs. [97] and [98], in which case the condition
becomes 𝐵2 = (𝐽𝑥 − 𝐽𝑧)(𝐽𝑦 − 𝐽𝑧). Thus it seems that the frustration-free condition
in the alternating case is indeed given by Equation (2.61).

It is illustrative to return to the language of the interacting Kitaev chain

𝐻 = −
∑
𝑗

[
𝑡(𝑐†𝑗 𝑐 𝑗+1 + 𝑐†𝑗+1𝑐 𝑗) + Δ(𝑐†𝑗 𝑐†𝑗+1 + 𝑐 𝑗+1𝑐 𝑗)

]

− 1
2

∑
𝑗

�𝑗(2𝑛 𝑗 − 1) +𝑈
∑
𝑗

(2𝑛 𝑗 − 1)(2𝑛 𝑗+1 − 1), (2.62)

where the parameters 𝑡, Δ, �𝑗 and 𝑈 are non-trivial functions of 𝑞, � and 𝜙.
The chemical potential alternates between the values

�𝑗 =

{
�0 = �0(𝑞, �, 𝜙), if 𝑗 odd,
�1 = �1(𝑞, �, 𝜙), if 𝑗 even.

(2.63)
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Figure 2.4: Frustration-free lines in𝑈 − � space for 𝑡 = Δ. The Peschel–Emery line [49,
113] for the homogeneous case is given by the red dashed line. The other lines
depict the alternating model. For every 𝑞 the two chemical potentials in the system
are given as a function of the interaction 𝑈 . As an example 𝑞 = 0.6 and 𝑈 = 0.4 is
explicitly shown, the two chemical potentials are indicated by the two yellow dots.
The vertical lines are guides to the eye, each𝑈 relates to two �𝑗 ’s.

The condition of the model to be frustration-free results in relations between
the parameters 𝑡, Δ, �0,1 and 𝑈 . For example, in Figure 2.4 we set 𝑡 = Δ which
fixes the function �(𝜙), which in turn determines the chemical potential and
interaction as functions of 𝑞 and 𝜙, i.e., �0,1(𝑞, 𝜙) and 𝑈(𝑞, 𝜙). Inverting the
latter relation we obtain the conditions on the chemical potentials �0,1(𝑞,𝑈)
for the model to become frustration-free, which is plotted in Figure 2.4 for
different values of 𝑞. One way to view this result is that given an interaction
strength 𝑈 and the chemical potential �0 on the odd sites we can determine
the inhomogeneity parameter 𝑞 and thus the chemical potential �1 on the
even sites. In the homogeneous case 𝑞 = 1 we recover the Peschel–Emery
line [49, 113]. In the limit 𝑞 → 0 one of the chemical potentials diverges, and
the other approaches 4𝑈 .

2.4.2 Weak zero modes
In general, if the ground state is degenerate one can always find operators
mapping one ground state to the other. Some interacting systems allow for
strong zero modes, commuting with the full Hamiltonian [114–116]. However,
in general interactions destroy this feature and only the commutation within
the low-energy sector remains. For the system (2.56) we already know the exact
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form of the zero modes, because for |Ψ𝑒 ,𝑜⟩ we showed that 𝑇𝑎,𝑏0 |Ψ𝑒⟩ = |Ψ𝑜⟩
(see Appendix 2.C). However, in the interacting model we have [𝐻int , 𝑇𝑎,𝑏0 ] ≠ 0,
thus the modes 𝑇𝑎,𝑏0 are weak zero modes as defined in Ref. [112].

2.4.3 Phase Diagram
In this section we discuss the phase diagram of the interacting model (2.56).
Without interactions it was possible to obtain exact results for the ground-state
energy density and the spectral gap. When adding interactions generically one
loses the analytical expressions for the observables and the only rescue lies in
numerical tools. However, due to the specific construction for the interacting
model, the ground-state energy can still be found analytically as we saw in
Equation (2.57). For the spectral gap there is no analytic solution. Neverthe-
less, we can find lower and upper bounds for the gap by using the min-max
principle [117]. This will give an indication for the gapped and gapless regions
in phase space. To confirm these results, and fill in the remaining blanks we
also perform a numerical analysis.

We start by discussing the bounds on the spectral gap. Recall that the local
Hamiltonians are given by

ℎint
𝑗 =

√
2
[
cos 𝜙 𝑄𝑒

𝑗 + sin 𝜙 𝑄𝑜
𝑗

]
. (2.64)

We are not concerned with the constant term, because we are interested in the
energy gap. Since 𝑄𝑒 ,𝑜 are projection operators, they are positive semidefinite.
We introduce the notion of operator inequality as: 𝐴 ≥ 𝐵 if 𝐴 − 𝐵 is positive
semidefinite. Two cases have to be distinguished: (i) 0 < 𝜙 < 𝜋/4 and (ii)
𝜋/4 < 𝜙 < 𝜋/2. In case (i), we have

√
2 sin 𝜙 (𝑄𝑒

𝑗 +𝑄𝑜
𝑗 ) ≤ ℎint

𝑗 ≤
√

2 cos 𝜙 (𝑄𝑒
𝑗 +𝑄𝑜

𝑗 ). (2.65)

From Equation (2.51) we recognise that 𝑄𝑒
𝑗 + 𝑄𝑜

𝑗 is nothing but a local Hamil-
tonian of the non-interacting model (up to a constant shift). This allows us to
write √

2 sin 𝜙𝐻 ≤ 𝐻int ≤
√

2 cos 𝜙𝐻, (2.66)

where 𝐻int =
∑𝐿−1
𝑗=1 ℎ

int
𝑗 . Then, the min-max principle tells us that [117]

√
2 sin 𝜙 𝐸𝑛 ≤ 𝐸int

𝑛 ≤
√

2 cos 𝜙 𝐸𝑛 , (2.67)
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2 Exact ground states for interacting Kitaev chains

where𝐸𝑛 and𝐸int
𝑛 (𝑛 = 1, 2, 3, . . .) are 𝑛th eigenvalue of𝐻 and𝐻int, respectively.

Since the interacting and the non-interacting Hamiltonians share the same
ground states annihilated by all 𝑄𝑒 ,𝑜

𝑗 , we have

√
2 sin 𝜙Δ𝐸 ≤ Δ𝐸int ≤

√
2 cos 𝜙Δ𝐸, (2.68)

where Δ𝐸 = 𝐸3 is the energy gap of the non-interacting system introduced
in Equation (2.37), while Δ𝐸int = 𝐸int

3 is the one of the interacting system.
Repeating the same argument, we find that the gap in case (ii) is bounded as

√
2 cos 𝜙Δ𝐸 ≤ Δ𝐸int ≤

√
2 sin 𝜙Δ𝐸. (2.69)

Concluding, by using the min-max principle we have found upper and lower
bounds on the gap energy for the interacting system.

From these bounds we can already draw several conclusions. First of all
for � ≠ 1 and 𝜙 ≠ 0,𝜋/2 the system is gapped. The lower bound is finite,
since both sin 𝜙, cos 𝜙 and Δ𝐸 are positive. Also, for � = 1 the gap has to
close, independent of the interaction (governed by 𝜙). Approaching this point
both the upper and lower bound vanish, since both are proportional to Δ𝐸 (the
non-interacting gap). In the following part we will discuss numerical results
to confirm these statements. Moreover, there are two boundaries (𝜙 = 0,𝜋/2),
that cannot be addressed by the above reasoning. At these points the lower
bound vanishes, while the upper bound is finite. We will come back to these
special points below.

We use a density-matrix renormalisation group (DMRG) algorithm to explore
the low-energy spectrum in parameter space [80, 81, 118]. Using finite-size scal-
ing we obtained ground-state energy and spectral gap in the thermodynamic
limit. Examples of these results (for 𝑞 = 2) are shown in Figures 2.5 and 2.6.
The top figures show that the exact and numerical findings for the ground-state
energy match perfectly.

The bottom panel of Figure 2.5 shows the numerical results for the energy
gap Δ𝐸 between the ground states and the first excited state. For the non-
interacting case (𝜙 = 𝜋/4) also the analytic result is depicted by the solid blue
line. For the interacting cases the dashed (dotted) line depicts the lower (upper)
bound on the gap energy, confirming that the gap lies between the two bounds.
As expected, for all interaction parameters 𝜙 the system only becomes gapless
at � = 1. This we can clearly see in the inset, where the gap is depicted on
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Figure 2.5: Ground-state energy per lattice site, 𝜖0 = 𝐸0/𝐿, (top panel) and spectral gap
(bottom panel) as a function of � obtained numerically (DMRG, bond dimension
𝐷 = 16, results for system sizes 𝐿 = 40, 80, . . . , 160 extrapolated to the thermody-
namic limit) for 𝑞 = 2 and for three values for the interaction parameter 𝜙. The
non-interacting 𝜙 = 𝜋/4 results are depicted by blue squares, the two interacting
cases 𝜙 = 𝜋/6,𝜋/3 by red crosses and green circles respectively. In the top panel,
the analytical results for ground-state energy are shown as solid lines [see Equa-
tion (2.57), red and green are overlapping]. In the bottom panel, the analytical
spectral gap for 𝜙 = 𝜋/4 is shown as the blue line [Equation (2.37)]. The inset shows
the same results on a log scale, to emphasize the gap closing at � = 1. The lower
and upper band are depicted by respectively the dashed and dotted line [Equa-
tions (2.68, 2.69)].

a logarithmic scale.a Also, the lower panel of Figure 2.6 confirms that, away
from � = 1, the gap does not close for 0 < 𝜙 < 𝜋/2. From Figure 2.6 we can

aHere we have to note that the predicted gap at � = 1 vanishes, however the DMRG can
never truly reach zero, due to the diverging entanglement at critical points. This is the only
numerical point lying outside the bounds.
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2 Exact ground states for interacting Kitaev chains

also deduce what happens when approaching the extremal cases 𝜙 = 0 and
𝜙 = 𝜋/2. The bounds do not converge (to zero), nevertheless, the gap closes
when approaching either boundary.

−1.2

−1

𝜖0

0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

𝜙/𝜋

Δ𝐸

� = 1.5, 𝑞 = 2

Figure 2.6: Ground-state energy per lattice site, 𝜖0 = 𝐸0/𝐿, (top panel) and spectral gap
(bottom panel) as a function of 𝜙 obtained numerically for 𝑞 = 2 and � = 1.5. The
purple triangles depict the DMRG results, for the 𝜖0 also the analytical results are
shown by the solid line [Equation (2.57)]. The lower and upper band are depicted
by respectively the dashed and dotted line [Equations (2.68, 2.69)]. The DMRG
calculations were performed with the parameters of Figure 2.5.

The phase diagram of the interacting model is shown in Figure 2.7. The solid
line represents the phase transition, which, as we argue in Appendix 2.E, is
in the DN-PT universality class (like the non-interacting model) [103]. At the
dashed lines the ground state becomes highly degenerate due to additional
symmetry. We stress that the phase diagram is independent on the inhomo-
geneity parameter 𝑞.
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Figure 2.7: Phase diagram of the interacting model (2.56) in � − 𝜙 plane. The solid
black line denotes a phase transition in the DN-PT universality class, while at the
dashed black lines the ground state becomes highly degenerate due to additional
symmetry (see main text). The phase diagram is independent of the inhomogeneity
parameter 𝑞.

Finally, let us discuss what happens for 𝜙 = 0,𝜋/2. In the phase diagram
Figure 2.7 they correspond to the dashed black lines. For these specific pa-
rameters only the even or odd two-site projector [Equation (2.52)] is present in
the Hamiltonian. As we will see, this induces an additional symmetry in the
low-energy sector, which in turn raises the ground-state degeneracy to 𝐿 + 1.
Here we explicitly show the construction of the ground states for 𝜙 = 𝜋/2, the
derivation for 𝜙 = 0 is similar. We consider two different cases 𝑞 = 1 and 𝑞 ≠ 1.

Case 1: 𝑞 = 1: The local Hamiltonian reduces to the isotropic Heisenberg
term if we rewrite the model in spin language using Equation (2.24),

ℎint
𝑗 = −� + �−1

2
√

2

[
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 + 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1

]
. (2.70)

The Hamiltonian possesses an sl2-symmetry generated by

𝒮𝑧 =
∑
𝑗

𝜎𝑧𝑗 , 𝒮± =
∑
𝑘

𝜎±
𝑗 , (2.71)

where 𝜎± = 𝜎𝑥±𝑖𝜎𝑦
2 . If we define the fully polarised state |⇑⟩ = |↑↑ . . . ↑⟩, then

the ground states are given by

|Ψ𝑝⟩ = (𝒮−)𝑝 |⇑⟩ , 𝑝 = 0, 1, . . . , 𝐿, (2.72)
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2 Exact ground states for interacting Kitaev chains

which are the 𝐿 + 1 states with 𝑆tot = 𝐿/2.
Case 2: 𝑞 ≠ 1: The model can be represented as an XXZ chain with alternating

magnetic field,

ℎint
𝑗 = − 𝒩

2
√

2

[
� + �−1

𝒩
(
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1

)
+ 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 +

𝑞 𝑗 − 𝑞−1
𝑗

𝒩
(
𝜎𝑧𝑗 − 𝜎𝑧𝑗+1

)
− 1

]
,

(2.73)

where we have shifted the spectrum such that we have a zero-energy ground
state. We note in passing that the model shows great resemblance to the XXZ
model studied in Ref. [119], which supports U𝑞(sl2) symmetry. In that case the
ground state is also 𝐿 + 1-fold degenerate. However, because of the quantum
group symmetry, the excited states also have additional degeneracies which
are not observed in the spectrum of Equation (2.73). Nevertheless, we can still
construct the lowering operator analogous to 𝒮− in Equation (2.71) to derive
the 𝐿 + 1 ground states.

Note that the polarised state |⇑⟩ is still a ground state. We can define a
lowering operator

�̃�− =
∑
𝑗

𝑔𝑗𝜎−
𝑗 , 𝑔𝑗 =




√
1 − 𝑞−𝑞−1

𝒩 , 𝑗 odd,√
1 + 𝑞−𝑞−1

𝒩 , 𝑗 even.
(2.74)

The coefficients 𝑔𝑗 have been obtained recursively ensuring that ℎ 𝑗�̃�− |⇑⟩ = 0.
Since (𝜎−

𝑗 )2 = 0 we see that (�̃�−)𝐿+1 = 0. Furthermore, it turns out that

|Ψ𝑝⟩ = (�̃�−)𝑝 |⇑⟩ (2.75)

for 𝑝 = 0, 1, . . . , 𝐿 are ground states. The ground states (�̃�−)𝑝 |⇑⟩ are non-
vanishing. This is because, away from the phase transition (� = 1), the co-
efficients 𝑔𝑗 are strictly positive, hence there is no destructive interference for
𝑝 ≤ 𝐿, when acting on a single state (|⇑⟩).

We can check that the Hamiltonian still leaves

𝑆𝑧 = 𝒮𝑧/2 (2.76)

invariant. Since |Ψ𝑝⟩ belongs to the 𝑆𝑧 = 𝐿/2 − 𝑝 sector, the ground states are
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linearly independent. Details of the construction of this operator and the proof
of Equation (2.75) are given in Appendix 2.G.

2.5 Conclusion
In this chapter we have investigated frustration-free topological systems. Specif-
ically, we studied non-interacting and interacting generalisations of the Kitaev
chain, with alternating chemical potential on the lattice sites. Both introduced
models possess two exactly degenerate ground states of product form. This
allowed us to determine exactly the Majorana zero modes mapping the ground
states onto each other. Only in the non-interacting case, these modes com-
mute with the full Hamiltonian, making them strong zero modes. We stress
that due to a fine-tuned boundary term all our results are exact even for finite
systems, which is in contrast to the generic Kitaev chain where the Majorana
edge mode energy only vanishes exponentially with the system length. For the
non-interacting model we have shown that there is a finite energy gap above
the ground states, except at the phase transition (� = 1) given by the zero-
pairing limit. Hence there exists a smooth path connecting the inhomogeneous
model to the (homogeneous) Kitaev chain, proving that both are in the same
topological phase. Also, we have shown both analytically and numerically
that the interacting model remains gapped in a certain region, implying that
the interacting model is in the same topological phase as the corresponding
non-interacting model.

In the future it would be interesting to investigate whether frustration-free
models can also be constructed for genuinely interacting systems like Z𝑛 clock
models [120–124]. It would also be interesting to generalise our interacting
model to include non-hermiticity. In a recent work, it was shown that a non-
hermitian one-dimensional spinless p-wave superconductor can support com-
plex edge modes in addition to Majorana zero modes [125]. These give rise to a
purely imaginary shift in energy. Future work could be dedicated to discussing
a non-hermitian extension of the models discussed in this chapter.

2.A Lindblad operators
An alternative approach in finding the ground states of the non-interacting
Hamiltonian is by virtue of Lindblad operators. Less steps are required for
deriving that |Ψ±⟩ are the ground states of 𝐻, it is, however, a less transparent
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method. A similar approach has been used by Tanaka [126], who discussed
a more general model with interaction, which includes as a special case the
non-interacting model.

Lindblad operators 𝐿 𝑗 are defined in the context of non-equilibrium dynamics
and govern the dissipation in the system [127–130]. For certain states |𝐷⟩, called
dark states in the quantum optics literature, this dissipation term vanishes,
which is expressed in terms of the Lindblad operators as

𝐿 𝑗 |𝐷⟩ = 0. (2.77)

Here we leave the dissipation picture and use the notion of dark states to define

𝐿 𝑗 =
√
𝑔
(
𝑥−1
𝑗 𝑐 𝑗 − 𝑥 𝑗𝑐†𝑗 − 𝑥−1

𝑗+1𝑐 𝑗+1 − 𝑥 𝑗+1𝑐†𝑗+1

)
, (2.78)

where 𝑔 = �2−�−2

𝒩 and 𝑥 𝑗 = 𝑥0 (𝑥1) for 𝑗 odd (even). One can now easily
see that the dark states of 𝐿 𝑗 are given by |Ψ±⟩ as defined in Equation (2.16).
Furthermore, the Lindblad operators are chosen such that

𝐻 =
∑
𝑗

ℎ 𝑗 , ℎ 𝑗 = 𝐿†𝑗 𝐿 𝑗 −
𝒩
2 , (2.79)

with ℎ 𝑗 the non-interacting Hamiltonian in Equation (2.6). Hence we have
found two ground states of the Hamiltonian. In the following we will drop the
overall constant 𝒩/2.

Assuming that we have no knowledge of the ground state degeneracy from
zero modes or the like, we still have to show that we have found all ground
states. This can be done by Witten’s conjugation argument: [82, 131]. The
model we are interested in has at least a two-fold degenerate ground state and
is given by

𝐻 =
∑
𝑗

𝐿†𝑗 𝐿 𝑗 . (2.80)

Now consider an invertible matrix ℳ, then we can define �̃� 𝑗 = ℳ𝐿 𝑗ℳ−1 such
that

�̃� =
∑
𝑗

�̃�†𝑗 �̃� 𝑗 (2.81)
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has the same number of ground states as 𝐻. If we choose

ℳ = [1 + (𝑥−1
0 − 1)𝑛1][1 + (𝑥−1

1 − 1)𝑛2] . . . [1 + (𝑥−1
1 − 1)𝑛𝐿] (2.82)

then �̃� 𝑗 =
√
𝑔
(
𝑐 𝑗 − 𝑐†𝑗 − 𝑐 𝑗+1 − 𝑐†𝑗+1

)
and the conjugated Hamiltonian becomes

�̃� = −2𝑔
∑
𝑗

[
𝑐†𝑗 𝑐 𝑗+1 + 𝑐†𝑗+1𝑐 𝑗 + 𝑐 𝑗+1𝑐 𝑗 + 𝑐†𝑗 𝑐†𝑗+1

]
, (2.83)

which is nothing but the Kitaev chain in the limit 𝑡 = Δ and � = 0, which clearly
has two ground states.

2.B Local operator and correlation length
In order to determine the correlation length, we calculate the equal-time Green
function𝐺𝑒 ,𝑜(𝑖 , 𝑗) = ⟨Ψ𝑒 ,𝑜 |𝑐†𝑖 𝑐 𝑗 |Ψ𝑒 ,𝑜⟩. Note that𝐺𝑒 ,𝑜 does depend on the specific
𝑖 and 𝑗 and not only on the distance, because translational invariance is broken.
If we define 𝑑 = |𝑖 − 𝑗 |, the Green function can be written as

𝐺𝑒 ,𝑜(𝑖 , 𝑗) = 𝑥𝑖𝑥 𝑗

(1 − 𝑥4
𝑖 )(1 − 𝑥4

𝑗 )

[
�−𝑑

1 ± �𝐿
+ �𝑑

1 ± �−𝐿

]
, (2.84)

where the upper sign corresponds to 𝐺𝑒 and the lower to 𝐺𝑜 . Furthermore,
𝑥𝑖 = 𝑥0 for 𝑖 odd and 𝑥𝑖 = 𝑥1 for 𝑖 even, with 𝑥0,1 defined in Equations (2.14, 2.15),
and we have used the identity

𝑥2
0 + 1
𝑥2

0 − 1
𝑥2

1 + 1
𝑥2

1 − 1
= �2. (2.85)

For large 𝐿 the Green function is proportional to

𝐺𝑒 ,𝑜(𝑖 , 𝑗) ∝
{
�𝑑 � < 1,
�−𝑑 � > 1,

(2.86)

which scales as 𝑒−𝑑/� with the correlation length

� =
1

log[max(�, �−1)] . (2.87)
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We note that � diverges at the phase transition (� = 1).
Next we show that the difference between the expectation values of an even

local operator 𝑂𝑒 with respect to |Ψ𝑒⟩ and |Ψ𝑜⟩ satisfies the bound (2.22). First
we recognise that for an even local operator 𝑂𝑒[

𝑂𝑒 , (−1)𝐹] = 0, (2.88)

and recall that |Ψ−⟩ = (−1)𝐹 |Ψ+⟩. Therefore we can already infer that

⟨Ψ− |𝑂𝑒 |Ψ−⟩ = ⟨Ψ+ |𝑂𝑒 |Ψ+⟩ , (2.89)
⟨Ψ− |𝑂𝑒 |Ψ+⟩ = ⟨Ψ+ |𝑂𝑒 |Ψ−⟩ . (2.90)

This simplifies the left-hand side of Equation (2.22) to

|𝑁 ⟨Ψ+ |𝑂𝑒 |Ψ−⟩ −𝑀 ⟨Ψ+ |𝑂𝑒 |Ψ+⟩ |
|𝑁2 −𝑀2 | ≤ 𝑁 | ⟨Ψ+ |𝑂𝑒 |Ψ−⟩ | +𝑀 | ⟨Ψ+ |𝑂𝑒 |Ψ+⟩ |

|𝑁2 −𝑀2 |
≤ ∥𝑂𝑒 ∥ 𝑁𝑀 + 𝑁 | ⟨Ψ+ |𝑂𝑒 |Ψ−⟩ |

|𝑁2 −𝑀2 | , (2.91)

where 𝑁 and 𝑀 are given by Equations (2.20, 2.21) respectively. Here ∥𝑂𝑒 ∥ is
the operator norm defined as

∥𝑂𝑒 ∥ := inf{𝑐 :
𝐴 |𝜙⟩ ≤ 𝑐

|𝜙⟩ for all |𝜙⟩ ∈ C⊗𝐿}. (2.92)

In the last line we have resolved one of the two correlators. The other one is more
involved. In the following we will derive an upper bound for | ⟨Ψ+ |𝑂𝑒 |Ψ−⟩ |,
which becomes a bit intricate because of the inhomogeneous nature of the
system. The estimation hinges on the fact that 𝑂𝑒 is a local operator with a
support on ℓ sites.

First of all, notice that there are 𝐿− ℓ sites for which |Ψ±⟩ commutes with 𝑂𝑒 ,
therefore we can reduce

⟨Ψ+ |𝑂𝑒 |Ψ−⟩ =𝐶1

[
(𝑥2

0 − 1)(𝑥2
1 − 1)

] 𝐿
2 −⌊ ℓ2+1⌋

⟨Ψ̃+ |𝑂𝑒 |Ψ̃−⟩ , (2.93)

where
𝐶1 = max(𝑥2

0 + 1, 𝑥2
0 − 1)max(𝑥2

1 + 1, 𝑥2
1 − 1), (2.94)

and ⌊·⌋ is the floor function. Both the constant and the floor are a result
of the alternating pattern in the model. They only contribute marginally to
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magnitude, but for completeness we will keep them in. Furthermore, Ψ̃± are
the ground states restricted on sites 𝑖 ∈ [𝑗1 , 𝑗𝑘].

Using the Schwarz’s inequality we obtain

| ⟨Ψ̃+ |𝑂𝑒 |Ψ̃−⟩ |2 ≤ ⟨Ψ̃+ |Ψ̃+⟩ ⟨Ψ̃− |𝑂†
𝑒𝑂𝑒 |Ψ̃−⟩

≤
(
𝐶2

[
(𝑥2

0 + 1)(𝑥2
1 + 1)

] ⌊ ℓ2 ⌋ ∥𝑂𝑒 ∥
)2

, (2.95)

with
𝐶2 = max(𝑥2

0 + 1, 1)max(𝑥2
1 + 1, 1). (2.96)

Plugging this all in yields

𝑁 | ⟨Ψ+ |𝑂𝑒 |Ψ−⟩ | ≤ 𝑁𝑀𝐶3

(
(𝑥2

0 + 1)(𝑥2
1 + 1)

(𝑥2
0 − 1)(𝑥2

1 − 1)

) ⌊ℓ/2⌋
∥𝑂𝑒 ∥

= 𝑁𝑀𝐶3�
2⌊ℓ/2⌋ ∥𝑂𝑒 ∥ , (2.97)

using Equation (2.85) and defining 𝐶3 = 𝐶1𝐶2
(𝑥2

0−1)(𝑥2
1−1) . Hence we find

| ⟨Ψ𝑒 |𝑂𝑒 |Ψ𝑒⟩ − ⟨Ψ𝑜 |𝑂𝑒 |Ψ𝑜⟩ | ≤ (1 + 𝐶3�2⌊ℓ/2⌋)∥𝑂𝑒 ∥
|�𝐿 − �−𝐿 | (2.98)

≈ (1 + 𝐶3�
2⌊ℓ/2⌋)∥𝑂𝑒 ∥ 𝑒−𝐿/� ,

where we have used 𝑁/𝑀 = �𝐿 and � is defined in Equation (2.87). For � ≠ 1
and 𝑙 ≪ 𝐿 (i.e., 𝑂𝑒 local) the numerator is small compared to 𝑒𝐿/�. Hence
Equation (2.98) vanishes for large systems.

2.C Action of zero modes
In this appendix we will explicitly derive that 𝑇𝑎0 (analogously one can show
this for 𝑇𝑏0 ) maps one ground state to the other, i.e., 𝑇𝑎0 |Ψ𝑒⟩ ∝ |Ψ𝑜⟩.

Before we proceed with the derivation let us note that

𝑥1(𝑥2
0 − 1)

𝑥2
1 + 1

= 𝑥0𝑞�−1 , (2.99)

which we will need later on.

39



2 Exact ground states for interacting Kitaev chains

Suppose |Ψ𝑒⟩ = ∑
𝑗 � 𝑗𝑎 𝑗 |Ψ𝑜⟩, then ⟨Ψ𝑜 |𝑎 𝑗 |Ψ𝑒⟩ = � 𝑗 , because 𝑎2

𝑗 = 1. Here we
have assumed ⟨Ψ𝑜 |𝑎 𝑗𝑎𝑘 |Ψ𝑜⟩ = 0 for 𝑗 ≠ 𝑘, which is true because ⟨Ψ± |𝑎 𝑗𝑎𝑘 |Ψ±⟩ =
⟨Ψ± |𝑎 𝑗𝑎𝑘 |Ψ∓⟩ = 0 due to the specific construction of the ground states.

And we define the shorthand notation |(±)𝑗⟩ = (𝑥 𝑗𝑐†𝑗 ± 1) |vac⟩ (with 𝑥 𝑗 = 𝑥0,1

depending on parity), such that for instance |Ψ+⟩ = |(+ + . . .+)⟩. Using this
notion

𝑐 𝑗 |Ψ±⟩ = (−1)𝑗−1 |(∓ ∓ . . .∓)⟩ (𝑥 𝑗) |vac⟩ 𝑗 |(± ± . . .±)⟩ , (2.100)

𝑐†𝑗 |Ψ±⟩ = (−1)𝑗−1 |(∓ ∓ . . .∓)⟩ (±𝑐†𝑗 ) |vac⟩ 𝑗 |(± ± . . .±)⟩ , (2.101)

which in turn yields

⟨Ψ± |𝑐 𝑗 |Ψ±⟩ = ⟨Ψ± |𝑐†𝑗 |Ψ±⟩ = ±𝑥 𝑗(−1)𝑗−1
𝑗−1∏
𝑘=1

(𝑥2
𝑘 − 1)

𝐿∏
𝑙=𝑗+1

(𝑥2
𝑙 + 1), (2.102)

⟨Ψ∓ |𝑐 𝑗 |Ψ±⟩ = − ⟨Ψ∓ |𝑐†𝑗 |Ψ±⟩ = ∓𝑥 𝑗(−1)𝑗−1
𝑗−1∏
𝑘=1

(𝑥2
𝑘 + 1)

𝐿∏
𝑙=𝑗+1

(𝑥2
𝑙 − 1). (2.103)

Recall that 𝑎 𝑗 = 𝑐 𝑗+𝑐†𝑗 (from Equation (2.26)) and |Ψ𝑒 ,𝑜⟩ = 1√
2(𝑁±𝑀)

(|Ψ+⟩ ± |Ψ−⟩)
(from Equations (2.18, 2.19)) such that

⟨Ψ𝑜 | 𝑎 𝑗 |Ψ𝑒⟩ = 2𝑥 𝑗(−1)𝑗−1
√
𝑁2 −𝑀2

𝑗−1∏
𝑘=1

(𝑥2
𝑘 − 1)

𝐿∏
𝑙=𝑗+1

(𝑥2
𝑙 + 1)

=
2𝑥 𝑗(−1)𝑗−1
√
𝑁2 −𝑀2

𝑁

𝑥2
𝑗 + 1

𝑗−1∏
𝑘=1

𝑥2
𝑘 − 1
𝑥2
𝑘 + 1

. (2.104)

If 𝑗 is odd then

� 𝑗 =
2√

1 − �−2𝐿

𝑥0

𝑥2
0 + 1

©
«
−
√

(𝑥2
0 − 1)(𝑥2

1 − 1)
(𝑥2

0 + 1)(𝑥2
1 + 1)

ª®
¬
𝑗−1

=
2√

1 − �−2𝐿

𝑥0

𝑥2
0 + 1

(
−�−1

) 𝑗−1
, (2.105)
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using Equation (2.85). For even 𝑗 we get

� 𝑗 = − 2√
1 − �−2𝐿

1
𝑥2

0 + 1
𝑥1(𝑥2

0 − 1)
𝑥2

1 + 1

(
−�−1

) 𝑗−2

=
2√

1 − �−2𝐿

𝑥0

𝑥2
0 + 1

[
−𝑞�−1

(
−�−1

) 𝑗−2
]
, (2.106)

using Equation (2.99). Comparing these results to Equation (2.28) we con-
clude that � 𝑗 = 𝐾𝛼 𝑗 , for some constant 𝐾. Finally, we check that the � 𝑗 ’s are
normalised correctly:

⟨Ψ𝑒 |Ψ𝑒⟩ =
∑
𝑗

�2
𝑗 =

4𝑥2
0

(𝑥2
0 + 1)2

�2 + 𝑞2

�2 − �−2
. (2.107)

By simply plugging in 𝑥0 one can verify that this equals unity. Hence 𝑇𝑎0 maps
one ground state to the other, up to an overall phase. For 𝑇𝑏0 one can do a
similar derivation.

2.D Spectrum

In this appendix we derive the spectrum for the non-interacting model. The
first eigenvalue we have already encountered, since there is a zero-energy
mode in the system. The other eigenvalues we find by diagonalising 𝐶 in
Equation (2.32). We use the following ansatz for the eigenstates of 𝐶:

𝑇𝑎𝑘 (2𝑙 − 1) = 𝛼𝑒 𝑖𝑘(2𝑙−1) + �̄�𝑒−𝑖𝑘(2𝑙−1) , (2.108)
𝑇𝑎𝑘 (2𝑙) = 𝛽𝑒 𝑖𝑘(2𝑙) + �̄�𝑒−𝑖𝑘(2𝑙). (2.109)

Note that we have taken this two-site periodicity, suitable for the diagonali-
sation of the Hamiltonian with the alternating chemical potential. Using this
ansatz we obtain the following equations for the bulk spectrum(

𝛾+ − 2𝜖(𝑘) 𝛿𝑒−𝑖𝑘 + 𝛿−1𝑒 𝑖𝑘

𝛿𝑒 𝑖𝑘 + 𝛿−1𝑒−𝑖𝑘 𝛾− − 2𝜖(𝑘)
) (

𝛼
𝛽

)
= 0, (2.110)
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2 Exact ground states for interacting Kitaev chains

which is satisfied if the determinant of the matrix vanishes, resulting in the
following eigenvalues

𝜖±(𝑘) = 1
2

(
𝒩 ±

√
𝑞2 + 𝑞−2 + 2 cos(𝑘)

)
. (2.111)

It is important to note that we have not yet specified anything for 𝑘. If the
system were periodic, we would find 𝑘 = 2𝜋𝑛

𝐿 for 𝑛 ∈ {0, . . . , 𝐿2 − 1}.

In the open system to find a constraint on 𝑘 we have to study the boundary
conditions. To do so we return to 𝐶2 = 𝐵𝐵⊤, because it offers four boundary
equations, which we need to set the four free parameters (𝛼,�̄�,𝛽,�̄�):

(
𝛿−2 + 𝛾2

1 − 𝜖2 (𝛾1 + 𝛾−)𝛿−1 1 0
(𝛾1 + 𝛾−)𝛿−1 𝛿−2 + 𝛿2 + 𝛾2− − 𝜖2 (𝛾+ + 𝛾−)𝛿 1

) ©
«

𝑇(1)
𝑇(2)
𝑇(3)
𝑇(4)

ª®®®®
¬
= 0, (2.112)

(
1 (𝛾+ + 𝛾−)𝛿 𝛿−2 + 𝛿2 + 𝛾2+ − 𝜖2 (𝛾+ + 𝛾𝐿)𝛿−1

0 1 (𝛾+ + 𝛾𝐿)𝛿−1 𝛿−2 + 𝛾2
𝐿 − 𝜖2

) ©
«

𝑇(𝐿 − 3)
𝑇(𝐿 − 2)
𝑇(𝐿 − 1)
𝑇(𝐿)

ª®®®®
¬
= 0, (2.113)

where we have dropped the super- (𝑎) and subscript (𝑘) for brevity. Plugging
in the ansatz gives a 4×4 matrix. The determinant of this matrix vanishes when
𝑘 = 2𝜋𝑛

𝐿 with 𝑛 ∈ {1, . . . , 𝐿2 − 1}. For 𝑘 = 0 the determinant also vanishes, but
that occurs because the ansatz eigenfunction becomes trivial. Therefore, we can
only determine 2(𝐿/2−1) = 𝐿−2 eigenvalues from 𝐶 directly. Adding the zero
mode gives us 𝐿 − 1 eigenvalues. It turns out we can construct the remaining
mode explicitly. The following Majorana modes satisfy [𝐻,𝑇𝑎,𝑏𝒩/2] = ±𝒩

2 𝑇
𝑎,𝑏
𝒩/2:

𝑇𝑎𝒩/2 = 𝛼1

𝐿/2∑
𝑗=1

(
−𝑞−2

) 𝑗−1
(
𝑎2𝑗−1 + �

𝑞
𝑎2𝑗

)
, (2.114)

𝑇𝑏𝒩/2 = 𝛽1

𝐿/2∑
𝑗=1

(
−𝑞−2

) 𝑗−1
(
𝑏2𝑗−1 + 1

𝑞�
𝑏2𝑗

)
, (2.115)

therefore the final eigenvalue is 𝒩/2.
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2.E Phase transition

2.E Phase transition
Here we show that the phase transition at � = 1 is in the DN-PT universality
class. First we will address the non-interacting problem, and then also consider
the interactions. We use the results for the staggered XXZ chain

𝐻 = − 1
2

𝐿∑
𝑗=1

[
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 + Δ𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 + 2(ℎ + (−1)𝑗ℎ𝑠)𝜎𝑧𝑗

]
. (2.116)

In Ref. [103] it was shown that there is a DN-PT phase transition at

ℎ =
√
ℎ2
𝑠 + 1 − Δ. (2.117)

For the non-interacting model with PBCs, then we can read from Equation (2.25)
that at criticality [� = 1, recall Equation (2.4)]

ℎ − ℎ𝑠 = 𝑞
ℎ + ℎ𝑠 = 𝑞−1

}
⇒ ℎ = (𝑞−1 + 𝑞)/2,

ℎ𝑠 = (𝑞−1 − 𝑞)/2. (2.118)

Thus with 𝐽 = 1 andΔ = 0 we see that Equation (2.117) is satisfied, i.e., the model
is precisely at the DN-PT transition. Similarly, when including interaction the
phase transition still occurs at � = 1. From Equations (2.58-2.60) we can derive
that

ℎ = cot 𝜙 (𝑞−1 + 𝑞),
Δ = (cot 𝜙 − 1)(𝑞−1 + 𝑞), (2.119)
ℎ𝑠 = 𝑞−1 − 𝑞,

where an overall factor of
√

2 sin(𝜙) has been taken out. Thus the condition
(2.117) is also satisfied for the interacting model.

2.F Ground state for PBCs and APBCs
Following Appendix D in Ref. [106] we derive the ground states for PBCs and
APBCs. From Equation (2.16) we define

𝐴±
𝐿 =

𝐿/2∏
𝑘=1

(𝑥0𝑐†2𝑘−1 ± 1)(𝑥1𝑐†2𝑘 ± 1), (2.120)
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2 Exact ground states for interacting Kitaev chains

such that |Ψ±⟩ = 𝐴± |vac⟩. Subsequently

𝐴𝑒𝐿 = 𝐴+
𝐿 + 𝐴−

𝐿 , 𝐴𝑜𝐿 = 𝐴+
𝐿 − 𝐴−

𝐿 , (2.121)

which implies |Ψ𝑒 ,𝑜⟩ = 1√
2(𝑁±𝑀)

𝐴𝑒 ,𝑜 |vac⟩.

We will now prove that |Ψ𝑜⟩ (|Ψ𝑒⟩) is the ground state for PBCs (APBCs).
The open chain we studied in section 2.2 is closed by adding a boundary term,
as we saw in Equation (2.38). For PBCs and APBCs we can identify

ℎbound = ℎ𝐿 (2.122)

with ℎ𝐿 as in Equation (2.6), which acts on site 𝐿 and 𝐿 + 1 ≡ 1. For PBCs
we can identify 𝑐𝐿+1 = 𝑐1. Therefore, ℎbound is minimised by (𝑥1𝑐†𝐿 ± 1)(𝑥0𝑐†1 ±
1) 𝑓 (𝑐†2 , . . . , 𝑐†𝐿−1), where 𝑓 is some polynomial. Rewriting

𝐴±
𝐿 = 𝐴±

𝐿−1𝑥1𝑐†𝐿 ± 𝐴±
𝐿−1 = −𝑥1𝑐†𝐿𝐴

∓
𝐿−1 ± 𝐴±

𝐿−1 , (2.123)

brings 𝑐†𝐿 next to 𝑐†1. Next we note that

𝐴𝑜𝐿 = (𝑥1𝑐†𝐿 + 1)𝐴+
𝐿−1 − (𝑥1𝑐†𝐿 − 1)𝐴−

𝐿−1 (2.124)
= (𝑥1𝑐†𝐿 + 1)(𝑥0𝑐†1 + 1)(. . .) − (𝑥1𝑐†𝐿 − 1)(𝑥0𝑐†1 − 1)(. . .), (2.125)

with (. . .) some polynomial in 𝑐†2 , . . . , 𝑐
†
𝐿−1. Therefore𝐴𝑜𝐿 |vac⟩minimises ℎbound,

so the ground state for PBCs is |Ψ𝑜⟩.

For APBCs 𝑐†𝐿+1 = −𝑐†1, so ℎbound is minimised by
(𝑥1𝑐†𝐿 ± 1)(−𝑥0𝑐†1 ± 1) 𝑓 (𝑐†2 , . . . , 𝑐†𝐿−1). Using Equation (2.123) we recognise

𝐴𝑒𝐿 = −(𝑥1𝑐†𝐿 − 1)𝐴+
𝐿−1 − (𝑥1𝑐†𝐿 + 1)𝐴−

𝐿−1 (2.126)
= −(𝑥1𝑐†𝐿 − 1)(𝑥0𝑐†1 + 1)(. . .) − (𝑥1𝑐†𝐿 + 1)(𝑥0𝑐†1 − 1)(. . .),

concluding that |Ψ𝑒⟩ is the ground state for APBCs.
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2.G Odd projector

In this appendix we derive the ground states of the Hamiltonian in Equa-
tion (2.73). It is known that there are 𝐿+ 1 unique ground states [132, 133]. For
notational convenience we rewrite

ℎint
𝑗 = −𝒩

[
cos(�𝑗)

(
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1

)
+ 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 + sin(�𝑗)

(
𝜎𝑧𝑗 − 𝜎𝑧𝑗+1

)
− 1

]
,

(2.127)

where we used that

cos(�𝑗)2 + sin(�𝑗)2 =
(� + �−1)2 + (𝑞 𝑗 − 𝑞−1

𝑗 )2
𝒩2 = 1.

One can easily check that the polarised state |⇑⟩ is one of the ground states of
the system, 𝐻 |⇑⟩ = 0. We claim that all the ground states are given by

|Ψ𝑝⟩ = (�̃�−)𝑝 |⇑⟩ , (2.128)

for 𝑝 = 0, 1, . . . , 𝐿 with �̃�− defined in Equation (2.74), such that 𝐻 |Ψ𝑝⟩ = 0.

In order to prove this statement we need the following two conditions:

𝐻�̃�− |⇑⟩ = [𝐻, �̃�−] |⇑⟩ = 0, (2.129)
[[𝐻, �̃�−], �̃�−] = 0. (2.130)

To derive this, we plug Equation (2.74) into Equation (2.129) resulting in the
following constraint on 𝑔𝑗 :

𝑔𝑗 cos(�𝑗) = 𝑔𝑗+1(1 − sin(�𝑗)), (2.131)

is satisfied by

𝑔𝑗+1 =
1 + sin(�𝑗)

cos(�𝑗) 𝑔𝑗 =
𝒩 + 𝑞 𝑗 − 𝑞−1

𝑗

� + �−1 𝑔𝑗 . (2.132)
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2 Exact ground states for interacting Kitaev chains

Choosing 𝑔1 =
√

1 − 𝑞−𝑞−1

𝒩 results in Equation (2.74), which proves Equa-
tion (2.129). Finally, simply writing out the commutator

[[ℎ 𝑗 , 𝑔𝑗𝜎𝑧𝑗 + 𝑔𝑗+1𝜎
𝑧
𝑗+1], 𝑔𝑗𝜎𝑧𝑗 + 𝑔𝑗+1𝜎

𝑧
𝑗+1], (2.133)

and plugging in 𝑔𝑗 verifies Equation (2.130).
Now suppose |Ψ𝑝⟩ and |Ψ𝑝+1⟩ are ground states of 𝐻. For 𝑝 = 0 this is true,

because of 𝐻 |⇑⟩ = 0 and Equation (2.129). Using Equation (2.130):

0 = [[𝐻, �̃�−], �̃�−] |Ψ𝑝⟩
=

(
𝐻(�̃�−)2 − 2�̃�−𝐻�̃�− + (�̃�−)2𝐻

)
|Ψ𝑝⟩

= 𝐻 |Ψ𝑝+2⟩ − 2�̃�−𝐻 |Ψ𝑝+1⟩ + (�̃�−)2𝐻 |Ψ𝑝⟩
= 𝐻 |Ψ𝑝+2⟩ . (2.134)

Hence also |Ψ𝑝+2⟩ is a zero-energy ground state of𝐻, and therefore by induction
all |Ψ𝑝⟩ are ground states. Next, we note that (𝜎−

𝑗 )2 = 0, and therefore (�̃�−)𝐿+1 =
0, allowing for finite (𝒮−)𝑝 for 𝑝 = 0, 1, . . . , 𝐿.

Finally, we have to prove that (a) all |Ψ𝑝⟩ exist and (b) we have found a
complete ground-state basis.

(a): For the first point we note that 𝑔𝑗 > 0 for all 𝑗, therefore (𝒮−)𝑝 is a non-
negative matrix and (𝒮−)𝑝 ≠ 0 for 𝑝 ≤ 𝐿. Hence, the states |Ψ𝑝⟩ are non-trivial
(i.e.,

|Ψ𝑝⟩
 > 0).

(b): For the second point we observe that𝑆𝑧 |Ψ𝑝⟩ = (𝐿/2−𝑝) |Ψ𝑝⟩, with𝑆𝑧 as in
Equation (2.76). In other words, all |Ψ𝑝⟩ belong to different 𝑆𝑧 sectors. Proving
the completeness is equivalent to showing that the ground state |Ψ𝑝⟩ is the
unique ground state in the respective 𝑆𝑧 sector. Given that 𝑆𝑧 commutes with
the Hamiltonian, the Hamiltonian matrix (ℋ ) becomes block diagonal in the
𝑆𝑧 basis. Each block (ℋ𝑝) corresponds to a fixed 𝑆𝑧 sector. In Equation (2.127)
we note that only the cos(�𝑗) terms gives rise to off-diagonal terms in ℋ𝑝 , with
a strictly negative coefficient −(� + �−1). Because 𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 corresponds

to a non-negative matrix, the off-diagonal elements of the matrix are non-
positive. Note that we are allowed to add a constant term, making the full matrix
non-positive. Since ℋ𝑝 is hermitian, irreducible and non-positive, the Perron-
Frobenius theorem tells us that the ground state is non-degenerate [134]. ■
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3 Frustration-free models from
Witten’s conjugation

This chapter is based on: J. Wouters, H. Katsura and D. Schuricht,
Interrelations among frustration-free models via Witten’s conjugation,
SciPost Physics Core 4(4), 027 (2021). J.W. performed all calculations,
except for Sections 3.3.3 and 3.3.4 which were in conjunction with
H.K. Moreover, J.W. performed numerical simulations, discussed
the results and contributed to the final version of the manuscript.

We apply Witten’s conjugation argument [82] to spin chains, where it allows
us to derive frustration-free systems and their exact ground states from known
results. We particularly focus on Z𝑝-symmetric models, with the Kitaev and
Peschel–Emery line of the axial next-nearest neighbour Ising (ANNNI) chain
being the simplest examples. The approach allows us to treat two Z3-invariant
frustration-free parafermion chains, recently derived by Iemini et al. [120] and
Mahyaeh and Ardonne [124] in a unified framework. We derive several other
frustration-free models and their exact ground states, including Z4- and Z6-
symmetric generalisations of the frustration-free ANNNI chain.

3.1 Introduction
Strongly correlated quantum systems are notoriously hard to study. Even when
restricted to one spatial dimension the applicability of analytical methods is
rather limited. Notable exceptions are provided by systems like the quantum
Ising or XY spin chain that can be mapped to effectively non-interacting mod-
els [135], thus allowing the determination of the full spectrum by elementary
means. A second class of systems is provided by integrable models [136].
They also allow the determination of the full energy spectrum, although more
sophisticated methods like the algebraic Bethe ansatz [137, 138] have to be em-
ployed and simple results in a closed form are usually not available. A third
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3 Frustration-free models from Witten’s conjugation

type of systems are so-called frustration-free models [139]. These are distin-
guished by the fact that the ground-state manifold can be given in an exact,
closed form. In this chapter we will discuss such frustration-free models and
present an overarching framework connecting many of them.

One of the first frustration-free models was described by Peschel and Emery
[113]. They realised that for a constrained set of couplings the ground state of
the axial next-nearest neighbour Ising (ANNNI) [140] model takes the simple
form of a product state, thus facilitating the straightforward calculation of cor-
relation functions. Along this Peschel–Emery line the model can be viewed as
a deformation of the trivial ferromagnetic Ising model. Several generalisations
to other two-dimensional models including the three-state Potts model were
discovered in the following [141–144]. Recently, frustration-free models of this
type have been investigated in the context of Majorana zero modes [49, 96, 145]
by employing the original results of Peschel and Emery.

Another famous example of a frustration-free model is the Affleck–Kennedy–
Lieb–Tasaki (AKLT) chain [93, 94, 139], which was originally devised in the
context of the Haldane conjecture for integer spin chains [146–148]. The idea
to construct a parent Hamiltonian was subsequently used to construct further
frustration-free models like the q-deformed AKLT model [149, 150], valence
bond solids with general Lie group symmetries [151–155], or supersymmetric
systems [156, 157]. As the ground state of the AKLT model can be written as a
compact matrix product state it has served as the starting point for the develop-
ment of the general theory of matrix product and tensor network states [158–
163] and their application in numerical simulations [81, 164] as well as the
classification of quantum phases and their symmetry protections [165–169].

Our investigation was motivated in particular by two recent works by Iemini
et al. [120] and Mahyaeh and Ardonne [124]. They constructed two different,
frustration-free Z3-clock models. The motivation for these studies was given
by their relation to parafermions, thus naturally generalising Majorana zero
modes to Z3-symmetric systems [61]. Like in the case of the Peschel–Emery
line discussed above, both models can be viewed as deformations of a simple
classical system, in this case the three-state zero-bias Potts chain. One of our
main results is to reformulate both models in a unified framework, thus treating
them on an equal footing and clarifying their relation (illustrated in Figure 3.3).

This will be achieved by applying Witten’s conjugation argument [82, 131],
originally introduced for supersymmetric systems, to spin chains. Starting
from a simple model with known ground-state manifold, we derive interacting
deformations as well as their exact ground states. The explicit construction
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then allows the calculation of correlation functions and, in some cases, the
proof of the existence of an energy gap. We will apply this line of argument to
Z𝑝-symmetric systems, with the two specific Z3-symmetric models mentioned
above analysed in detail. Furthermore, we construct several new frustration-
free models, including generalisations of the Peschel–Emery line to Z4- and
Z6-symmetric systems.

In this context we note that a method very similar to the Witten conjugation
has been applied in the field of matrix product states to construct frustration-
free models from the respective parent Hamiltonians [166, 167, 170, 171]. The
framework of matrix product (or generalised valence bond solid) states also
allows for the calculation of correlation functions, and provides the starting
point to prove the existence of an energy gap for the corresponding parent
Hamiltonians. These proofs are based either on the martingale method [172]
or finite-size criteria [158, 173–175]. The latter link the energy gap of a finite-
size system to a lower bound on the energy gap in the thermodynamic limit.
The first work following such an approach was done by Knabe [176], who used
exact diagonalisation on finite-size systems to obtain a lower bound for the
energy gap in the spin-1 AKLT model. We will use this approach to obtain
bounds for the energy gaps of several models considered in this chapter. We
note that our proofs can in principle be extended by using more advanced
methods [172, 174], however, the obtained bounds are physically less practical
as we discuss for instance for the model in Section 3.6.5. In order to keep our
discussion less abstract, we thus take a more explicit approach not relying on
matrix product states in the following but note that many of the results we
present below can be rephrased in such terms.

This chapter is organised as follows: In the next section we discuss Witten’s
conjugation argument and tailor it to frustration-free spin chains. Section 3.3
recalls some known families of frustration-free models that are rederived using
the deformation approach. In Section 3.4 we introduce the necessary notations
to discuss Z𝑝-symmetric clock models. In Sections 3.5 and 3.6 we analyse
two types of deformations, in particular covering the models introduced in
References [120, 124] in the special case 𝑝 = 3. In addition, we consider several
frustration-free Z𝑝-models. While Witten’s conjugation argument applied here
ensures the form of the ground state, it does not guarantee the existence of
an energy gap. Therefore, in the appendix we apply Knabe’s method [176] to
obtain lower bounds for the energy gap for some of the considered models.
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3.2 Conjugation argument
Originally [82] Witten introduced his conjugation argument in the context of
supersymmetric quantum mechanical models. More specifically he discussed,
given a supersymmetric Hamiltonian 𝐻, how to construct an inequivalent
Hamiltonian �̃� with the same number of zero-energy states. In this section we
recall this argument, already tailoring the notation to the spin-chain systems
we will discuss in the following sections. For completeness we recall Witten’s
original argument in Appendix 3.A.

We consider a lattice with a finite-dimensional Hilbert space for each of
the lattice sites. More specifically, in this work we restrict ourselves to one-
dimensional chains with open boundary conditions, and assume the local
Hamiltonian to act non-trivially on neighbouring sites only. We note, however,
that the argument presented here is applicable more generally, for example,
to periodic boundary conditions, higher-dimensional lattices or longer-ranged
models. Coming back to our setup, we consider a Hamiltonian of the form

𝐻 =
𝑁−1∑
𝑗=1

𝐻𝑗 , 𝑗+1 =
𝑁−1∑
𝑗=1

𝐿†𝑗 , 𝑗+1𝐿 𝑗 , 𝑗+1 , (3.1)

where each terma 𝐻𝑗 , 𝑗+1 = 𝐿†𝑗 , 𝑗+1𝐿 𝑗 , 𝑗+1 acts non-trivially on the neighbouring
lattice sites 𝑗 and 𝑗+1 only, and is positive semi-definite, ⟨Ψ|𝐻𝑗 , 𝑗+1 |Ψ⟩ ≥ 0 for all
|Ψ⟩. Consequently, the ground-state manifold 𝐺 is spanned by |Ψ1⟩ , . . . , |Ψ𝑛⟩,
1 ≤ 𝑛, with 𝐿 𝑗 , 𝑗+1 |Ψ𝑖⟩ = 0 for all 𝑗; in other words, 𝐺 is the intersection of the
kernels of the operators 𝐿 𝑗 , 𝑗+1, 𝐺 =

⋂
𝑗 ker(𝐿 𝑗 , 𝑗+1).

The representation (3.1) now allows us to say something about the ground
states of a deformed/conjugated Hamiltonian. Consider an invertible opera-
tor 𝑀 𝑗 that acts non-trivially on the local Hilbert space of lattice site 𝑗 only,
with which we define an invertible operator acting non-trivially on the whole
chain via 𝑀 =

∏
𝑗 𝑀 𝑗 . Using this operator we can write down the conjugated

operators as

�̃� 𝑗 , 𝑗+1 = 𝑀𝐿 𝑗 , 𝑗+1𝑀−1 = 𝑀 𝑗𝑀 𝑗+1𝐿 𝑗 , 𝑗+1𝑀−1
𝑗+1𝑀

−1
𝑗 , (3.2)

where we used [𝐿 𝑗 , 𝑗+1 , 𝑀𝑘] = 0 for 𝑘 ≠ 𝑗 , 𝑗 + 1.

aWe use capital letters to denote operators acting on the Hilbert space of the full chain, with
subindices indicating on which lattice sites they act non-trivially.
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Now the deformed/conjugated local Hamiltonian is given by

�̃� =
𝑁−1∑
𝑗=1

�̃�𝑗 , 𝑗+1 =
𝑁−1∑
𝑗=1

�̃�†𝑗 , 𝑗+1𝐶 𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 , (3.3)

where we have introduced the hermitian operator 𝐶 𝑗 , 𝑗+1 as additional degrees
of freedom in the construction. The operator 𝐶 𝑗 , 𝑗+1 = 𝐾†

𝑗 , 𝑗+1𝐾 𝑗 , 𝑗+1 is assumed
to be positive definite, ⟨Ψ| 𝐶 𝑗 , 𝑗+1 |Ψ⟩ > 0 for all |Ψ⟩, and thus invertible. The
product form of 𝑀 and the locality of 𝐶 𝑗 , 𝑗+1 and 𝐿 𝑗 , 𝑗+1 ensure that the resulting
Hamiltonian is still local. Note that in general there is no unique annihilation
operator 𝐿 𝑗 , 𝑗+1. Later in this section we will discuss the interplay between the
freedom of 𝐶 𝑗 , 𝑗+1, 𝐿 𝑗 , 𝑗+1 and 𝑀 𝑗 .

In this setting we can now prove the following theorem (see Reference [82]
and Appendix 3.A for the original supersymmetric case):

Theorem 1. The ground-state manifold �̃� of the conjugated Hamiltonian �̃� is given
by �̃� = span{𝑀 |Ψ1⟩ , . . . , 𝑀 |Ψ𝑛⟩}, thus the ground-state degeneracies of 𝐻 and �̃�
are identical.

We note that the states 𝑀 |Ψ𝑖⟩ do not form an orthonormal basis, but since
𝑀 is invertible the states {𝑀 |Ψ1⟩ , . . . , 𝑀 |Ψ𝑛⟩} are linearly independent.

Proof. First we show that since 𝐶 𝑗 , 𝑗+1 is positive definite we have ker(�̃�) =⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1). The proof is simple: Note that a priori

⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1) ⊆ ker(�̃�).

Now suppose |Ψ⟩ ∈ ker(�̃�), ie, �̃� |Ψ⟩ = 0, then

⟨Ψ| �̃� |Ψ⟩ =
∑
𝑗

⟨Ψ| �̃�†𝑗 , 𝑗+1𝐶 𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 |Ψ⟩ =
∑
𝑗

𝐾 𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 |Ψ⟩ 2
= 0. (3.4)

This implies𝐾 𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 |Ψ⟩ = 0 for all 𝑗, and consequently𝐾†
𝑗 , 𝑗+1𝐾 𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 |Ψ⟩ =

0. Since 𝐶 𝑗 , 𝑗+1 = 𝐾†
𝑗 , 𝑗+1𝐾 𝑗 , 𝑗+1 is invertible we deduce �̃� 𝑗 , 𝑗+1 |Ψ⟩ = 0 for all 𝑗. Thus

we have shown that |Ψ⟩ ∈ ⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1), which implies ker(�̃�) ⊆ ⋂

𝑗 ker(�̃� 𝑗 , 𝑗+1).
Second we have to show

⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1) = �̃�. Note that for all 1 ≤ 𝑗 ≤ 𝑁 − 1

and 1 ≤ 𝑖 ≤ 𝑛 we have

�̃� 𝑗 , 𝑗+1𝑀 |Ψ𝑖⟩ = 𝑀𝐿 𝑗 , 𝑗+1 |Ψ𝑖⟩ = 0, (3.5)

yielding �̃� ⊆ ⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1).
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3 Frustration-free models from Witten’s conjugation

Conversely, suppose |Ψ̃⟩ ∈ ⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1), then for all 1 ≤ 𝑗 ≤ 𝑁 − 1 we find

�̃� 𝑗 , 𝑗+1 |Ψ̃⟩ = 𝑀𝐿 𝑗 , 𝑗+1𝑀−1 |Ψ̃⟩ = 0, (3.6)

from which we conclude that 𝑀−1 |Ψ̃⟩ ∈ ⋂
𝑗 ker(𝐿 𝑗 , 𝑗+1). Consequently we can

expand the state as 𝑀−1 |Ψ̃⟩ = ∑
𝑖 𝑎𝑖 |Ψ𝑖⟩ with suitable 𝑎𝑖 ∈ C, resulting in

|Ψ̃⟩ =
𝑛∑
𝑖=1

𝑎𝑖𝑀 |Ψ𝑖⟩ ∈ �̃�. (3.7)

Therefore
⋂
𝑗 ker(�̃� 𝑗 , 𝑗+1) ⊆ �̃�, which together with the above implies⋂

𝑗 ker(�̃� 𝑗 , 𝑗+1) = �̃�.
Finally, we note that since �̃� is positive semi-definite, its ground-state mani-

fold is given by its kernel (provided it is non-zero), thus resulting in �̃� = ker(�̃�)
as had to be shown. □

We stress that the theorem above provides a direct way to determine the
ground-state degeneracy of the deformed Hamiltonian. On the other hand, the
theorem does not make any statement about the energy gap above the ground-
state manifold or the excited states of the model. Thus, in Appendix 3.B we
will discuss a separate approach to prove the existence of a finite energy gap
for some specific models.

Before applying the theorem to the construction of spin chain models, let
us discuss the degree of freedom in the choices for 𝐿 𝑗 , 𝑗+1, 𝐶 𝑗 , 𝑗+1 and 𝑀 𝑗 . First,
assuming a local Hilbert space of dimension 𝑝, we have the freedom to perform
a local basis transformationb 𝑣 𝑗 , with 𝑣 𝑗 ∈ U(𝑝), at each lattice site 𝑗. Under this
the operators 𝑀 𝑗 transform as

𝑀 𝑗 → 𝑉𝑗𝑀 𝑗𝑉†
𝑗 , 𝑉𝑗 = 1 ⊗ . . . ⊗ 1 ⊗ 𝑣 𝑗 ⊗ 1 ⊗ . . . ⊗ 1, (3.8)

and accordingly

𝐿 𝑗 , 𝑗+1 → 𝑉𝑗𝑉𝑗+1𝐿 𝑗 , 𝑗+1𝑉†
𝑗 𝑉

†
𝑗+1 , 𝐶 𝑗 , 𝑗+1 → 𝑉𝑗𝑉𝑗+1𝐶 𝑗 , 𝑗+1𝑉†

𝑗 𝑉
†
𝑗+1. (3.9)

Using this we can always choose a suitable basis in the local Hilbert spaces to

bWe use small letters to denote operators acting on the Hilbert space of one or two lattice sites.
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simplify 𝑀 𝑗 . Second, recalling that the deformed local Hamiltonian is given by

�̃�𝑗 , 𝑗+1 = (𝑀†)−1𝐿†𝑗 , 𝑗+1𝑀
†𝐶 𝑗 , 𝑗+1𝑀𝐿 𝑗 , 𝑗+1𝑀−1 , (3.10)

we can also perform a transformation on the bonds between lattice sites 𝑗 and
𝑗 + 1 with 𝑢𝑗 , 𝑗+1 ∈ U(𝑝2). Specifically setting

𝐿 𝑗 , 𝑗+1 → 𝑈 𝑗 , 𝑗+1𝐿 𝑗 , 𝑗+1 , 𝐶 𝑗 , 𝑗+1 → (𝑀†)−1𝑈 𝑗 , 𝑗+1𝑀†𝐶 𝑗 , 𝑗+1𝑀𝑈†
𝑗 , 𝑗+1𝑀

−1 , (3.11)

where
𝑈 𝑗 , 𝑗+1 = 1 ⊗ . . . ⊗ 1 ⊗ 𝑢𝑗 , 𝑗+1 ⊗ 1 ⊗ . . . ⊗ 1, (3.12)

we see that the local Hamiltonian remains invariant. In the examples in the
following sections we will use these freedoms to simplify 𝐿 𝑗 , 𝑗+1.

3.3 Frustration-free models revisited
In this section we will revisit several known frustration-free models within the
framework of Witten’s conjugation. We first consider two spin-1/2 models:
the XY model [97, 98, 177] with transverse magnetic field and the ANNNI
model [49, 113]. Then we review the q-deformed XXZ chain [119, 178, 179], and
finally we consider the q-deformed AKLT model [149, 150].

3.3.1 XY chain in transverse magnetic field
We rederive the frustration-free line for the XY model in a magnetic field.
Our starting point is the classical Ising chain (which is equivalent to the Ki-
taev/Majorana chain [11] in the decoupling limit),

𝐻𝑗 , 𝑗+1 = 2 − 2𝜎𝑥𝑗 𝜎
𝑥
𝑗+1 (3.13)

with the exact ground states

|Ψ±⟩ = 1
2𝑁/2

⊗
𝑗

( |↑⟩ 𝑗 ± |↓⟩ 𝑗
)
, (3.14)

where |↑⟩ 𝑗 and |↓⟩ 𝑗 denote the eigenstates of 𝜎𝑧𝑗 with eigenvalues ±1. We are
looking for models that have a Z2-symmetry generated by

∏
𝑗 𝜎

𝑧
𝑗 . We choose
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𝑀 𝑗 diagonal, real and positive, thus there is only one independent parameter
in 𝑀 𝑗 ,

𝑀 𝑗 = 1 ⊗ . . . ⊗ 1 ⊗ 𝑚 𝑗 ⊗ 1 ⊗ . . . ⊗ 1, 𝑚𝑗 =
(
1

𝑟

)
, 0 < 𝑟 < ∞. (3.15)

The operator 𝑚 𝑗 acts at lattice site 𝑗 only, with the matrix representation given
in the basis {|↑⟩ 𝑗 , |↓⟩ 𝑗}. Hence the deformed ground states are

|Ψ̃±⟩ = 𝑀 |Ψ±⟩ . (3.16)

Note that the states above are not orthogonal. Orthonormal ground states are
instead given by

|Φ̃±⟩ = 1
𝑁±

(
𝑀 |Ψ+⟩ ±𝑀 |Ψ−⟩

)
(3.17)

with suitable normalisations 𝑁±. If we take

𝐿 𝑗 , 𝑗+1 = 𝜎𝑥𝑗 − 𝜎𝑥𝑗+1 , 𝐶 𝑗 , 𝑗+1 = 1, (3.18)

the deformation (3.3) gives the frustration-free line for the Kitaev chain[11], ie,
the Jordan–Wigner transform of the XY chain with magnetic field

�̃�(1)
𝑗 , 𝑗+1 = −𝐽𝑥𝜎𝑥𝑗 𝜎𝑥𝑗+1 − 𝐽𝑦𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 +

𝐵(1)

2 (𝜎𝑧𝑗 + 𝜎𝑧𝑗+1) + 𝜖, (3.19)

with the parameters

𝐽𝑥 =
(𝑟 + 𝑟−1)2

2 , 𝐽𝑦 =
(𝑟 − 𝑟−1)2

2 , 𝐵(1) = 𝑟2 − 𝑟−2 , 𝜖 = 𝑟2 + 𝑟−2 , (3.20)

which correspond to the parameters on the Barouch–McCoy circle [177]. Due to
Theorem 1 the model �̃�(1) =

∑
𝑗 �̃�

(1)
𝑗 , 𝑗+1 possesses a two-fold degenerate ground

state. In Section 3.5.3 we will discuss the Z3-generalisation [120] of this model.
Section 3.5 will be dedicated to generalise the construction to arbitrary Z𝑝-
symmetry.
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3.3.2 ANNNI model
For the second example we obtain an interacting parent Hamiltonian of (3.16)
by choosing

𝐶 𝑗 , 𝑗+1 =
𝑟2

2 𝑀
−2
𝑗 𝑀

−2
𝑗+1 , (3.21)

which acts non-trivially on the neighbouring lattice sites 𝑗 and 𝑗 + 1, with 𝑀 𝑗

and 𝐿 𝑗 as in Section 3.3.1. The resulting deformed local Hamiltonian is the
ANNNI model

�̃�(2)
𝑗 , 𝑗+1 = −𝜎𝑥𝑗 𝜎𝑥𝑗+1 + 𝐽𝑧𝜎𝑧𝑗 𝜎𝑧𝑗+1 +

𝐵(2)

2
(
𝜎𝑧𝑗 + 𝜎𝑧𝑗+1

) + 𝜖, (3.22)

with
𝐽𝑧 =

(𝑟 − 𝑟−1)2
4 , 𝐵(2) =

𝑟2 − 𝑟−2

2 , 𝜖 =
(𝑟 + 𝑟−1)2

4 . (3.23)

The frustration-free line rediscovered here is the well-known Peschel–Emery
line [49, 113] defined by the relation 𝐵(2) = 2

√
𝐽𝑧(1 + 𝐽𝑧). The exact two-fold

ground-state degeneracy of �̃�(2) =
∑
𝑗 �̃�

(2)
𝑗 , 𝑗+1 is assured by Theorem 1. In

Section 3.6.1 we discuss the Z3-generalisation [124] of this setup, while in
Section 3.6.4 we extend the construction to Z4-symmetry.

By construction the models (3.19) and (3.22) share the same ground states.
Thus their combination is also a parent Hamiltonian,

�̃�𝑗 , 𝑗+1 = 𝛼1�̃�
(1)
𝑗 , 𝑗+1 + 𝛼2�̃�

(2)
𝑗 , 𝑗+1 , (3.24)

as long as 𝛼𝑖 ≥ 0. The parameters in the resulting spin model reproduce
the frustration-free condition for the XYZ model [95, 97, 98]. Furthermore,
the existence of an energy gap above the ground states for (3.24) has been
proven [49]. We also note that the construction above can be extended to in-
homogeneous magnetic fields, in particular with an alternating bias [145], or
higher-dimensional systems [180, 181]. Finally, we note that the states (3.16)
allow a straightforward calculation of correlation functions. For example, the
two-point function of the Ising order parameter is independently of the sepa-
ration 𝑗 − 𝑗′ given by [177]

⟨Ψ̃± |𝜎𝑥𝑗 𝜎𝑥𝑗′ |Ψ̃±⟩
⟨Ψ̃± |Ψ̃±⟩

=
4

(𝑟 + 𝑟−1)2 , (3.25)

which simplifies to unity at the Ising point (𝑟 = 1) as expected.
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3.3.3 𝑞-deformed XXZ chain
As a third example we show that the XXX chain and the q-deformed XXZ chain
are related via Witten’s conjugation. We start with the local Hamiltonian of the
spin-1/2 XXX Heisenberg chain

𝐻𝑗 , 𝑗+1 = 1 − (
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 + 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1

)
. (3.26)

We first note that the local Hamiltonian satisfies (𝐻𝑗 , 𝑗+1)2 = 4𝐻𝑗 , 𝑗+1, which
means that the operators 𝐻𝑗 , 𝑗+1/4 act as projectors. Thus we can write

1
4𝐻𝑗 , 𝑗+1 = |sing⟩𝑗 , 𝑗+1⟨sing| 𝑗 , 𝑗+1 (3.27)

withc |sing⟩𝑗 , 𝑗+1 = (|↑⟩ 𝑗 |↓⟩ 𝑗+1 − |↓⟩ 𝑗 |↑⟩ 𝑗+1)/
√

2 denoting the singlet state on the
lattice sites 𝑗 and 𝑗 + 1. On all other lattice sites 𝐻𝑗 , 𝑗+1 acts trivially. To make
the link to the notion introduced above we write

1
4𝐻𝑗 , 𝑗+1 = 𝐿†𝑗 , 𝑗+1𝐿 𝑗 , 𝑗+1 , 𝐿𝑗 , 𝑗+1 = |↑⟩ 𝑗 |↓⟩ 𝑗+1 ⟨sing| 𝑗 , 𝑗+1. (3.28)

Next we consider the generators of U𝑞(sl2) [182]

𝑞𝑆
𝑧
, 𝑆±𝑞 =

𝑁∑
𝑗=1

𝑞𝜎
𝑧
1/2 · · · 𝑞𝜎𝑧𝑗−1/2

𝜎±
𝑗 𝑞

−𝜎𝑧𝑗+1/2 · · · 𝑞−𝜎𝑧𝑁/2 , (3.29)

where we assume 𝑞 ∈ R, 𝑞 > 0, and

𝑆𝑧 =
1
2

𝑁∑
𝑗=1

𝜎𝑧𝑗 , 𝜎±
𝑗 =

𝜎𝑥𝑗 ± i𝜎𝑦𝑗
2 . (3.30)

These generators satisfy the algebra

𝑞𝑆
𝑧
𝑆±𝑞 𝑞−𝑆

𝑧
= 𝑞±1𝑆±𝑞 , [𝑆+𝑞 , 𝑆−𝑞 ] =

𝑞2𝑆𝑧 − 𝑞−2𝑆𝑧

𝑞 − 𝑞−1 , (3.31)

which reduce to the standard relations among the generators of SU(2) in the
limit 𝑞 → 1.

cFor the tensor product of states on neighbouring lattice sites we use the short-hand notation
|↑⟩ 𝑗 |↓⟩ 𝑗+1 = |↑⟩ 𝑗 ⊗ |↓⟩ 𝑗+1 and so on.
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3.3 Frustration-free models revisited

In order to proceed, we next define the operator 𝑀 via

𝑀(𝑞) = 𝑞−𝜎
𝑧
1/2 · · · 𝑞−𝑗𝜎𝑧𝑗 /2 · · · 𝑞−𝑁𝜎𝑧𝑁/2 , (3.32)

with the inverse given by

𝑀(𝑞)−1 = 𝑞𝜎
𝑧
1/2 · · · 𝑞 𝑗𝜎𝑧𝑗 /2 · · · 𝑞𝑁𝜎𝑧𝑁/2. (3.33)

With this one gets

�̃� 𝑗 , 𝑗+1 = 𝑀(𝑞)𝐿 𝑗 , 𝑗+1𝑀(𝑞)−1 =

√
1 + 𝑞2

2 |↑⟩ 𝑗 |↓⟩ 𝑗+1 ⟨sing(𝑞)| 𝑗 , 𝑗+1 , (3.34)

where the q-deformed singlet state is given by

|sing(𝑞)⟩𝑗 , 𝑗+1 =
1√

𝑞 + 𝑞−1
(𝑞−1/2 |↑⟩ 𝑗 |↓⟩ 𝑗+1 − 𝑞1/2 |↓⟩ 𝑗 |↑⟩ 𝑗+1). (3.35)

Thus we obtain

�̃�†𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 =
1 + 𝑞2

2 |sing(𝑞)⟩𝑗 , 𝑗+1⟨sing(𝑞)| 𝑗 , 𝑗+1 , (3.36)

which is manifestly U𝑞(sl2) invariant as it is the projection onto the q-deformed
singlet state on the bond (𝑗 , 𝑗 + 1). A straightforward calculation choosing
𝐶 𝑗 , 𝑗+1 = 1 shows that

1
4 �̃�𝑗 , 𝑗+1 = �̃�†𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 (3.37)

= − 𝑞4

[
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 + 𝜎

𝑦
𝑗 𝜎

𝑦
𝑗+1 +

𝑞 + 𝑞−1

2
(
𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 − 1

) + 𝑞 − 𝑞−1

2
(
𝜎𝑧𝑗 − 𝜎𝑧𝑗+1

) ]
, (3.38)

which, up to the prefactor 𝑞, is the local Hamiltonian of the q-deformed XXZ
chain [119, 178, 179, 182].

After deriving the Hamiltonian, let us consider the ground states in more
detail. The ground states of the Heisenberg chain (3.26) are given byd

(𝑆−1 )𝑖 |⇑⟩ , 𝑖 = 0, 1, . . . , 𝑁 , with |⇑⟩ = |↑ · · · ↑⟩ . (3.39)

dWe note that the subscript refers to the deformation parameter, ie, 𝑆−1 ≡ 𝑆−𝑞=1.
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3 Frustration-free models from Witten’s conjugation

According to Theorem 1 the ground states of the q-deformed model read

𝑀(𝑞) (𝑆−1 )𝑖 |⇑⟩ ∝ (�̃�−1 )𝑖 |⇑⟩ with �̃�−1 = 𝑀(𝑞)𝑆−1 𝑀(𝑞)−1 =
𝑁∑
𝑗=1

𝑞 𝑗𝜎−
𝑗 . (3.40)

However, the U𝑞(sl2) algebra dictates that the ground-state manifold is spanned
by

(𝑆−𝑞 )𝑖 |⇑⟩ . (3.41)

By induction we will show that there is a correspondence (up to normalisation)
between these sets of states, ie,

(𝑆−𝑞 )𝑖 |⇑⟩ ∝ (�̃�−1 )𝑖 |⇑⟩ . (3.42)

Obviously this relation holds for 𝑖 = 0. Now suppose that (3.42) is true up to
𝑖 − 1. If we write

𝑆±𝑞 = 𝑞−𝑆
𝑧± 1

2

𝑁∑
𝑗=1

𝑞𝜎
𝑧
1 · · · 𝑞𝜎𝑧𝑗−1 𝜎±

𝑗 , (3.43)

then

(𝑆−𝑞 )𝑖 |⇑⟩ ∝ 𝑆−𝑞 (�̃�−1 )𝑖−1 |⇑⟩ = (𝑖 − 1)!𝑆−𝑞
∑

𝑗1<···< 𝑗𝑖−1

𝑞 𝑗1+···+𝑗𝑖−1𝜎−
𝑗1
· · · 𝜎−

𝑗𝑖−1
|⇑⟩ (3.44)

= (𝑖 − 1)!𝑞− 𝑁+1
2
𝑞 𝑖 − 𝑞−𝑖
𝑞 − 𝑞−1

∑
𝑗1<···< 𝑗𝑖

𝑞 𝑗1+···+𝑗𝑖𝜎−
𝑗1
· · · 𝜎−

𝑗𝑖
|⇑⟩ (3.45)

=
𝑞− 𝑁+1

2

𝑖
𝑞 𝑖 − 𝑞−𝑖
𝑞 − 𝑞−1 (�̃�−1 )𝑖 |⇑⟩ , (3.46)

where the precise prefactor is in fact irrelevant for our purpose. This shows
that the relation (3.42) is indeed fulfilled, and thus that the ground states of the
q-deformed model are given by 𝑀(𝑞) (𝑆−1 )𝑖 |⇑⟩.

3.3.4 𝑞-deformed AKLT chain
Arguably one of the most prominent frustration-free models is the AKLT
chain [93, 94, 139]. Even though the ground state of this system is a ma-
trix product state, we will see that we can still employ the tools outlined above
to derive its 𝑞-deformed generalisation [149, 150, 183].
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3.3 Frustration-free models revisited

We start with the original AKLT chain written as

𝐻 =
∑
𝑗

𝐻𝑗 , 𝑗+1 , 𝐻𝑗 , 𝑗+1 ≡
2∑

𝑚=−2
|𝜓𝑚⟩ 𝑗 , 𝑗+1 ⟨𝜓𝑚 | 𝑗 , 𝑗+1 , (3.47)

where 𝐻𝑗 , 𝑗+1 is the projector onto the subspace of total spin-2 on the neigh-
bouring lattice sites 𝑗 and 𝑗 + 1. It can be written in terms of the corresponding
eigenstates |𝜓𝑚⟩ 𝑗 , 𝑗+1 and acts trivially on all other lattice sites. The eigenstates
are given by

|𝜓2⟩ 𝑗 , 𝑗+1 = |+⟩ 𝑗 |+⟩ 𝑗+1 , |𝜓1⟩ 𝑗 , 𝑗+1 = 1/
√

2
(
|+⟩ 𝑗 |0⟩ 𝑗+1 + |0⟩ 𝑗 |+⟩ 𝑗+1

)
,

|𝜓0⟩ 𝑗 , 𝑗+1 = 1/
√

6
(
|+⟩ 𝑗 |−⟩ 𝑗+1 + |−⟩ 𝑗 |+⟩ 𝑗+1 + 2 |0⟩ 𝑗 |0⟩ 𝑗+1

)
, (3.48)

|𝜓−1⟩ 𝑗 , 𝑗+1 = 1/
√

2
(
|0⟩ 𝑗 |−⟩ 𝑗+1 + |−⟩ 𝑗 |0⟩ 𝑗+1

)
, |𝜓−2⟩ 𝑗 , 𝑗+1 = |−⟩ 𝑗 |−⟩ 𝑗+1 ,

with |±⟩ 𝑗 , |0⟩ 𝑗 denoting the eigenstates of the spin-1 operator 𝑆𝑧𝑗 at a given
lattice site 𝑗. Note that since 𝐻𝑗 , 𝑗+1 is a projector, we can match our convention
by simply setting 𝐿 𝑗 , 𝑗+1 = 𝐻𝑗 , 𝑗+1. For the deformation we choose (𝑞 ∈ R, 𝑞 > 0)

𝑀(𝑞) =
∏
𝑗

𝑀 𝑗(𝑞), 𝑀 𝑗(𝑞) = 𝑞−2𝑗𝑆𝑧𝑗

(
𝑞 + 𝑞−1

2

) (𝑆𝑧𝑗 )2/2

. (3.49)

and we define q-deformed states

|�̃�𝑞
2⟩ 𝑗 , 𝑗+1 = |+⟩ 𝑗 |+⟩ 𝑗+1 , |�̃�𝑞

1⟩ 𝑗 , 𝑗+1 =
1√

1 + 𝑞4

(
|+⟩ 𝑗 |0⟩ 𝑗+1 + 𝑞2 |0⟩ 𝑗 |+⟩ 𝑗+1

)
,

|�̃�𝑞
0⟩ 𝑗 , 𝑗+1 =

𝑞−2 |+⟩ 𝑗 |−⟩ 𝑗+1 + 𝑞2 |−⟩ 𝑗 |+⟩ 𝑗+1 + (𝑞 + 𝑞−1) |0⟩ 𝑗 |0⟩ 𝑗+1√
𝑞4 + 𝑞−4 + (𝑞 + 𝑞−1)2

, (3.50)

|�̃�𝑞
−1⟩ 𝑗 , 𝑗+1 =

1√
1 + 𝑞4

(
|0⟩ 𝑗 |−⟩ 𝑗+1 + 𝑞2 |−⟩ 𝑗 |0⟩ 𝑗+1

)
, |�̃�𝑞

−2⟩ 𝑗 , 𝑗+1 = |−⟩ 𝑗 |−⟩ 𝑗+1 .
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3 Frustration-free models from Witten’s conjugation

We then work out that the conjugated annihilation operator �̃� 𝑗 , 𝑗+1 is given by

�̃� 𝑗 , 𝑗+1 ≡ |�̃�𝑞−1

2 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞
2 | 𝑗 , 𝑗+1 + |�̃�𝑞−1

−2 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞
−2 | 𝑗 , 𝑗+1 (3.51)

+ 𝑎(𝑞)
(
|�̃�𝑞−1

1 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞
1 | 𝑗 , 𝑗+1 + |�̃�𝑞−1

−1 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞
−1 | 𝑗 , 𝑗+1

)
+ 𝑏(𝑞) |�̃�0⟩ 𝑗 , 𝑗+1 ⟨�̃�𝑞

0 | 𝑗 , 𝑗+1

with the auxiliary state

|�̃�0⟩ 𝑗 , 𝑗+1 = 𝑞2 |+⟩ 𝑗 |−⟩ 𝑗+1 + 𝑞−2 |−⟩ 𝑗 |+⟩ 𝑗+1 +
4

𝑞 + 𝑞−1 |0⟩ 𝑗 |0⟩ 𝑗+1 (3.52)

and the parameters

𝑎(𝑞) = 𝑞2 + 𝑞−2

2 , 𝑏(𝑞) = (𝑞2 + 𝑞−2)(𝑞2 + 𝑞−2 + 1)
6 . (3.53)

Now we choose 𝐶 𝑗 , 𝑗+1 as

𝐶 𝑗 , 𝑗+1 = |�̃�𝑞−1

2 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞−1

2 | 𝑗 , 𝑗+1 + |�̃�𝑞−1

−2 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞−1

−2 | 𝑗 , 𝑗+1

+ 1
𝑎(𝑞)2

(
|�̃�𝑞−1

1 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞−1

1 | 𝑗 , 𝑗+1 + |�̃�𝑞−1

−1 ⟩ 𝑗 , 𝑗+1 ⟨�̃�
𝑞−1

−1 | 𝑗 , 𝑗+1

)

+ 1
𝑏(𝑞)2 |�̃�0⟩ 𝑗 , 𝑗+1 ⟨�̃�0 | 𝑗 , 𝑗+1 , (3.54)

such that the deformed local Hamiltonian becomes the projector

�̃�𝑗 , 𝑗+1 = �̃�†𝑗 , 𝑗+1𝐶 𝑗 , 𝑗+1�̃� 𝑗 , 𝑗+1 ≡
2∑

𝑚=−2
|�̃�𝑞

𝑚⟩ 𝑗 , 𝑗+1 ⟨�̃�𝑞
𝑚 | 𝑗 , 𝑗+1 . (3.55)

Hence we obtain the 𝑞-deformed AKLT model [149, 150, 183].

The above result shows the deformation at the level of the Hamiltonian. Let
us also look explicitly at the ground state. The four ground states of the unde-
formed AKLT chain can be written in the matrix product state representation
as (

|Ψ1,1
AKLT⟩ |Ψ1,2

AKLT⟩
|Ψ2,1

AKLT⟩ |Ψ2,2
AKLT⟩

)
= 𝐴1 · · ·𝐴𝐿 , with 𝐴 𝑗 =

(
|0⟩ 𝑗 −√2 |+⟩ 𝑗√
2 |−⟩ 𝑗 − |0⟩ 𝑗

)
. (3.56)
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3.4 Introduction to Z𝑝-clock models

According to Theorem 1, the ground state of the q-deformed model is generated
by the matrix

�̃� 𝑗 =

(
|0⟩ 𝑗 −𝑞−2𝑗

√
𝑞 + 𝑞−1 |+⟩ 𝑗

𝑞2𝑗
√
𝑞 + 𝑞−1 |−⟩ 𝑗 − |0⟩ 𝑗

)
. (3.57)

Generically a matrix product state is defined up to a gauge freedom. If we take

𝑓𝑗−1, 𝑗 =

(
𝑞 𝑗

𝑞−(𝑗−1)

)
, (3.58)

we can redefine the matrix representation as

�̃�tr
𝑗 = 𝑓𝑗−1, 𝑗�̃� 𝑗 𝑓 −1

𝑗 , 𝑗+1 =

(
𝑞−1 |0⟩ 𝑗 −√

𝑞 + 𝑞−1 |+⟩ 𝑗√
𝑞 + 𝑞−1 |−⟩ 𝑗 −𝑞 |0⟩ 𝑗

)
, (3.59)

which is identical to the one given in References [150, 183] for the ground state
of the q-deformed AKLT chain.

Finally we note that a similar derivation to the one presented in this sec-
tion can be used to relate the AKLT chain (3.47) to a frustration-free point in
the (representation) symmetry protected phase of 𝑆3-invariant chains recently
studied by O’Brien et al. [184].

3.4 Introduction to Z𝑝-clock models
The rest of the chapter considers Z𝑝-clock models, and frustration-free systems
of this type. Therefore, let us first briefly review the Z𝑝-clock algebra. Consider
a local 𝑝-dimensional Hilbert space and two local operators 𝜎 and 𝜏 satisfying

𝜎𝑝 = 𝜏𝑝 = 1, 𝜎𝑝−1 = 𝜎† , 𝜏𝑝−1 = 𝜏† , 𝜎𝜏 = 𝜔𝜏𝜎, (3.60)

where 𝜔 = exp(2𝜋i/𝑝) is the 𝑝th root of unity. Denoting the eigenstates of 𝜎
and 𝜏 by |𝜎, 𝑖⟩ and |𝜏, 𝑖⟩ with 𝑖 = 0, . . . , 𝑝 − 1 respectively, the action of the
operators is given by

𝜎 |𝜎, 𝑖⟩ = 𝜔𝑖 |𝜎, 𝑖⟩ , 𝜏 |𝜎, 𝑖⟩ = |𝜎, 𝑖 + 1⟩ , (3.61)
𝜏 |𝜏, 𝑖⟩ = 𝜔𝑖 |𝜏, 𝑖⟩ , 𝜎 |𝜏, 𝑖⟩ = |𝜏, 𝑖 − 1⟩ , (3.62)
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3 Frustration-free models from Witten’s conjugation

where 𝑖 ± 1 has to be taken modulo 𝑝. The states |𝜎, 𝑖⟩ can be represented in
terms of the states |𝜏, 𝑖⟩ as

|𝜎, 𝑖⟩ = 1√
𝑝

(
|𝜏, 0⟩ + 𝜔𝑖 |𝜏, 1⟩ + · · · + 𝜔(𝑝−1)𝑖 |𝜏, 𝑝 − 1⟩

)
. (3.63)

The Potts/clock model is a generalisation of the Ising model. Here we start
with the counterpart of the classical Ising chain (3.13), namely the classical
Potts model, whose local Hamiltonian is given by

𝐻𝑗 , 𝑗+1 = 2 − 𝜎𝑗𝜎
†
𝑗+1 − 𝜎†

𝑗 𝜎𝑗+1 , (3.64)

where 𝜎𝑗 and 𝜏𝑗 denote the operators 𝜎 and 𝜏 introduced above, now acting
non-trivially on the local Hilbert space of site 𝑗. The classical Potts model
possesses a 𝑝-fold degenerate ground state

|Ψ𝑖⟩ =
⊗
𝑗

|𝜎, 𝑖⟩ 𝑗 (3.65)

with |𝜎, 𝑖⟩ 𝑗 denoting the eigenstates of 𝜎𝑗 . Furthermore, the system has an
energy gap above the ground states.

Finally, we note that the clock operators 𝜎𝑗 and 𝜏𝑗 have a parafermionic dual
by virtue of the Fradkin–Kadanoff transformation [60], which is the general-
isation of the Jordan–Wigner transformation to Z𝑝-symmetry. The resulting
parafermions can be regarded as generalisation of Majorana fermions [61].

We can already discuss the most general form of deformation that we con-
sider in the rest of the chapter. So far the only requirement for 𝑀 𝑗 is the invert-
ibility. In this work we restrict ourselves to models that preserve Z𝑝-symmetry
generated by

𝜔𝑃 =
∏
𝑗

𝜏𝑗 . (3.66)

Since 𝑀 has to commute with 𝜔𝑃 , the local operator 𝑚 𝑗 has to be diagonal in
the 𝜏-basis, ie,

𝑚 𝑗 =

©
«

𝛼0
𝛼1

. . .
𝛼𝑝−1

ª®®®®®
¬
=

1
𝑝

𝑝−1∑
𝑘,𝑙=0

𝛼𝑘𝜔
−𝑘𝑙𝜏𝑙 (3.67)
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for 𝛼𝑘 ∈ C. Note that we can take out an overall scaling factor, so we end up
with 𝑝−1 independent complex coefficients 𝛼𝑘/𝛼0, 𝑘 = 1, . . . , 𝑝−1. For now we
will leave it in the most general form. In line with the cyclicity of the algebra,
the coefficients 𝛼𝑘 are also defined modulo 𝑝,

𝛼𝑘 = 𝛼𝑘mod 𝑝 , (3.68)

for instance 𝛼−𝑘 = 𝛼𝑝−𝑘 . Later we will see that in specific examples we get more
constraints on the coefficients 𝛼𝑘 .

Starting with the ground states (3.65) we obtain the deformed states by acting
with the operator 𝑀 =

∏
𝑗 𝑀 𝑗 =

⊗
𝑗 𝑚 𝑗 , ie,

|Ψ̃𝑖⟩ = 𝑀 |Ψ𝑖⟩ =
⊗
𝑗

𝑚 𝑗 |𝜎, 𝑖⟩ 𝑗 . (3.69)

This form immediately allows us to calculate correlation functions. For exam-
ple, the two-point function of the order parameter 𝜎 becomes������

⟨Ψ̃𝑖 |𝜎𝑗𝜎†
𝑗′ |Ψ̃𝑖⟩

⟨Ψ̃𝑖 |Ψ̃𝑖⟩

������ =
|∑𝑘 𝛼

∗
𝑘𝛼𝑘+1 |2

(∑𝑘 |𝛼𝑘 |2)2
≤ 1, (3.70)

where the upper bound is obtained by virtue of the Schwarz inequality. Other
correlation functions can be obtained in a similar way. In the following sections
we will derive the parent Hamiltonian for the deformed ground states.

3.5 Frustration-free Z𝑝-generalisations of the XY
chain

In this section we generalise the Z2-XY chain discussed in Section 3.3.1 to
arbitrary Z𝑝-symmetry. Specifically we use the term XY in the sense that we
take 𝐿 𝑗 , 𝑗+1 and 𝐶 𝑗 , 𝑗+1 of the following form

𝐿 𝑗 , 𝑗+1 = 𝜎𝑗 − 𝜎𝑗+1 , 𝐶 𝑗 , 𝑗+1 = 1. (3.71)

Furthermore, we require the resulting model to possess 𝜔𝑃-symmetry, which
fixes 𝑚 𝑗 to be given by (3.67). In the case 𝑝 = 3 we recover a model recently
studied by Iemini et al. [120], see Section 3.5.2.
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3 Frustration-free models from Witten’s conjugation

For the choices (3.67) and (3.71) it is straightforward to work out the conju-
gated Hamiltonian (we set 𝛼−1 ≡ 𝛼𝑝−1 to lighten the notation). First,

�̃� 𝑗 , 𝑗+1 =
1
𝑝

𝑝−1∑
𝑘,𝑙=0

𝛼𝑘−1
𝛼𝑘

𝜔−𝑘𝑙
(
𝜎𝑗𝜏

𝑙
𝑗 − 𝜎𝑗+1𝜏

𝑙
𝑗+1

)
, (3.72)

where we used [see Equation (3.60)]

𝑀 𝑗𝜎𝑗𝑀−1
𝑗 =

1
𝑝2

∑
𝑘,𝑘′,𝑙 ,𝑙′

𝛼𝑘
𝛼𝑘′

𝜔−(𝑘+1)𝑙−𝑘′𝑙′𝜎𝑗𝜏𝑙+𝑙
′

𝑗 =
1
𝑝

𝑝−1∑
𝑘,𝑙=0

𝛼𝑘−1
𝛼𝑘

𝜔−𝑘𝑙𝜎𝑗𝜏𝑙𝑗 . (3.73)

With (3.72) the conjugated local Hamiltonian then becomes

�̃�𝑗 , 𝑗+1 =
1
𝑝2

∑
𝑘,𝑘′,𝑙 ,𝑙′

𝛼∗
𝑘−1
𝛼∗
𝑘

𝛼𝑘′−1
𝛼𝑘′

𝜔𝑘𝑙−𝑘′𝑙′
[(
𝜏𝑙

′−𝑙
𝑗 + 𝜏𝑙

′−𝑙
𝑗+1

)
−

(
𝜏−𝑙𝑗 𝜎†

𝑗 𝜎𝑗+1𝜏
𝑙′
𝑗+1 + h.c.

)]

= −
(
𝐵†
𝑗 𝜎

†
𝑗 𝜎𝑗+1𝐵 𝑗+1 + h.c.

)
+
𝑝−1∑
𝑙=0

𝛾𝑙
(
𝜏𝑙𝑗 + 𝜏𝑙𝑗+1

)
, (3.74)

where

𝐵 𝑗 =
𝑝−1∑
𝑙=0

𝛽𝑙𝜏
𝑙
𝑗 , 𝛽𝑙 =

1
𝑝

𝑝−1∑
𝑘=0

𝛼𝑘−1
𝛼𝑘

𝜔−𝑘𝑙 , 𝛾𝑙 =
1
𝑝

𝑝−1∑
𝑘=0

����𝛼𝑘−1
𝛼𝑘

����
2
𝜔−𝑘𝑙 . (3.75)

Admittedly this form is not yet very insightful. Thus in the following sections
we will consider specific cases for which the Hamiltonian simplifies.

3.5.1 Z𝑝-XY model: most general real coefficients
One simplification occurs with the requirement that the coefficients 𝛽𝑙 and 𝛾𝑙
are real. For odd 𝑝 this implies the following conditions (we set 𝛼0 = 𝑟0 = 1
due to the freedom in the overall scaling of 𝑚 𝑗)

𝛼𝑘 =



𝑒 i�𝑘 𝑟𝑘 , 𝑘 = 1, . . . , 𝑝−1

2 ,

𝑒 i�𝑝−𝑘−1
𝑟2
(𝑝−1)/2
𝑟𝑝−𝑘−1

, 𝑘 = 𝑝+1
2 , . . . , 𝑝 − 1,

(3.76)

for 𝑟1 , . . . , 𝑟(𝑝−1)/2 > 0 and �1 , . . . , �(𝑝−1)/2 ∈ [0, 2𝜋).
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Similarly, for 𝑝 even 𝛽𝑙 and 𝛾𝑙 are real provided

𝛼𝑘 =



𝑒 i�𝑘 𝑟𝑘 , 𝑘 = 1, . . . , 𝑝2 − 1,
±𝑒 i�𝑝−𝑘−1 𝑠

𝑟𝑝−𝑘−1
, 𝑘 = 𝑝

2 , . . . , 𝑝 − 1,
(3.77)

for 𝑟1 , . . . , 𝑟𝑝/2−1 , 𝑠 > 0 and �1 , . . . , �𝑝/2−1 ∈ [0, 2𝜋).

3.5.2 Z𝑝-XY model: compact form with real coefficients
In order to obtain a compact form for the Hamiltonian (3.74) the results from
the section can be further specified. Taking 𝛼𝑘 = 𝑟𝑘 with 𝑟 ∈ R\{0} such that
the ratio between consecutive 𝛼𝑘 is constant, we obtain for the coefficients

𝛽𝑙 =
1
𝑝𝑟

(
𝑟𝑝 + 𝑝𝛿𝑙 ,0 − 1

)
, 𝛾𝑙 =

1
𝑝𝑟2

(
𝑟2𝑝 + 𝑝𝛿𝑙 ,0 − 1

)
. (3.78)

Thus the local Hamiltonian simplifies to

�̃�𝑗 , 𝑗+1 = 𝜖 −

©
«
1 + 𝑏

𝑝−1∑
𝑙=1

𝜏𝑙𝑗
ª®
¬
𝜎†
𝑗 𝜎𝑗+1

©
«
1 + 𝑏

𝑝−1∑
𝑙=1

𝜏𝑙𝑗+1
ª®
¬
+ h.c.


− 𝑓

2

𝑝−1∑
𝑙=1

(
𝜏𝑙𝑗 + 𝜏𝑙𝑗+1

)
,

(3.79)
with

𝑏 =
𝑟𝑝 − 1

𝑟𝑝 + 𝑝 − 1 , 𝑓 =
2𝑝(1 − 𝑟2𝑝)
(𝑟𝑝 + 𝑝 − 1)2 , 𝜖 =

𝑝(𝑟2𝑝 + 𝑝 − 1)
(𝑟𝑝 + 𝑝 − 1)2 , (3.80)

where we have done a multiplicative rescaling to set the coupling of 𝜎†
𝑗 𝜎𝑗+1

to −1. For 𝑝 = 2 the model simplifies to the XY model (3.19) discussed in
Section 3.3.1.

We note that for odd 𝑝 the model parameters depend on the sign of 𝑟, while
for even 𝑝 the coefficients only contain even powers of 𝑟. The latter suggests
that there are two sets of ground states for the same Hamiltonian,

|Ψ̃+
𝑖 ⟩ = 𝑀(𝑟) |Ψ𝑖⟩ , |Ψ̃−

𝑖 ⟩ = 𝑀(−𝑟) |Ψ𝑖⟩ . (3.81)

However, from the expansion we recognise

|Ψ̃−
𝑖 ⟩ = |Ψ̃+

𝑖+𝑝/2⟩ , (3.82)
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3 Frustration-free models from Witten’s conjugation

so both 𝑀(𝑟) and 𝑀(−𝑟) provide the same set of ground states. Moreover,
the physical properties do not change under 𝑟 → 1/𝑟. We can see this from
𝑚 𝑗 = diag(1, 𝑟 , . . . , 𝑟𝑛) → diag(1, 𝑟−1 , . . . , 𝑟−𝑛) ∝ diag(𝑟𝑛 , 𝑟𝑛−1 , . . . , 1). The
latter is related to the original 𝑚 𝑗 by a conjugation and cyclic rotation of the
basis, hence the physical properties remain invariant.

Finally we note that for 𝑝 = 3 and 𝑟 > 0 we reproduce the model introduced
by Iemini et al. [120]. There the authors also derive the positive-definite form
(3.3) by the use of Fock parafermions [185]. Using elementary methods, in
Appendix 3.B.2 we show that the model possesses a finite energy gap for
0.5695 ≲ 𝑟 ≲ 1/0.5695 ≈ 1.7560, thus confirming the corresponding numerical
results [120]. We note that our proof does not exclude the existence of an energy
gap outside this interval, which can be extended by improving our analysis or
using alternative methods [158, 172, 174]. We note, however, that special care
has to be taken regarding the treatment of the boundary conditions.

3.5.3 Z3-XY model: real coefficients from complex deformation

Our construction allows us to directly generalise the model discussed above.
From Section 3.5.1 we see that for 𝑝 = 3 there is an additional freedom in the
choice of 𝑚 𝑗 in the form of a complex phase, ie, we can choose

𝑚 𝑗 =
©
«
1

𝑒 i�𝑟
𝑟2

ª®®
¬
, (3.83)

which results in

�̃�𝑗 , 𝑗+1 = 𝜖−
[(

1 + 𝑏+𝜏𝑗 + 𝑏−𝜏†𝑗
)
𝜎†
𝑗 𝜎𝑗+1

(
1 + 𝑏−𝜏𝑗+1 + 𝑏+𝜏†𝑗+1

)
+ 𝑓

2

(
𝜏𝑗 + 𝜏𝑗+1

)
+ h.c.

]
(3.84)

with the parameters

𝑓 =
6(1 − 𝑟6)

(𝑟3 + 2 cos�)2 , 𝑏± =
𝑟3 − cos� ± √

3 sin�

𝑟3 + 2 cos�
, 𝜖 =

6(𝑟6 + 2)
(𝑟3 + 2 cos�)2 . (3.85)

For � = 0 we recover the model studied in Reference [120]. We note that the
parameters (3.85) possess a divergence at 𝑟 = 3√−2 cos� provided � ∈ [𝜋2 , 3𝜋

2 ].
This divergence is an artefact of fixing the prefactor of the −𝜎†

𝑗 𝜎𝑗+1-term to
unity, it can be removed by rescaling the Hamiltonian by (𝑟3 + 2 cos�)2.
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3.6 Frustration-free Z𝑝-generalisations of the
ANNNI model

In this section we construct Z𝑝-invariant generalisations of the ANNNI model
(see Section 3.3.2), for which we will use the terme axial next-nearest neigh-
bour Potts (ANNNP) model [144]. More specifically, we consider Z𝑝-invariant
Hamiltonians where besides the classical Potts term 𝜎𝑗𝜎†

𝑗+1 + 𝜎†
𝑗 𝜎𝑗+1 only terms

of the form 𝜏𝑙𝑗𝜏
𝑙′
𝑗+1 with 𝑙 , 𝑙′ = 0, . . . , 𝑝 − 1 appear. In particular, there are no

terms containing products of 𝜎- and 𝜏-operators.
First we will derive some general results following from this simple set of

rules. Then we discuss several specific examples. We take 𝑚 𝑗 to be defined by
(3.67) and 𝐿 𝑗 , 𝑗+1 = 𝜎𝑗 − 𝜎𝑗+1 as before. Furthermore, generalising (3.21) we set
𝐶 𝑗 , 𝑗+1 = 𝐾 𝑗𝐾 𝑗+1, where 𝐾 𝑗 acts non-trivially at lattice site 𝑗 with the matrix 𝑘 𝑗 .
Now making the ansatz (in the 𝜏-basis)

𝑘 𝑗 = diag
(
𝛼1
𝛼0
,
𝛼2
𝛼1
, . . . ,

𝛼𝑝−1

𝛼𝑝−2
,

𝛼0
𝛼𝑝−1

)
, (3.86)

and recalling that 𝐶 𝑗 , 𝑗+1 has to be hermitian and positive definite, we deduce
that the 𝛼𝑘 have to be real and positive (we set 𝛼0 = 1). From the form above
we also deduce that the following identity holds, 𝐾 𝑗𝑀 𝑗𝜎𝑗𝑀−1

𝑗 = 𝜎𝑗 . Hence we
find for the deformed local Hamiltonian

�̃�𝑗 , 𝑗+1 = �̃�†𝑗 , 𝑗+1𝐾 𝑗𝐾 𝑗+1�̃� 𝑗 , 𝑗+1 = �̃�†𝑗 , 𝑗+1
(
𝜎𝑗𝐾 𝑗+1 − 𝐾 𝑗𝜎𝑗+1

)
=

(
𝑀−1

𝑗 𝜎†
𝑗𝑀 𝑗 −𝑀−1

𝑗+1𝜎
†
𝑗+1𝑀 𝑗+1

) (
𝜎𝑗𝐾 𝑗+1 − 𝐾 𝑗𝜎𝑗+1

)
= −(

𝜎𝑗𝜎
†
𝑗+1 + 𝜎†

𝑗 𝜎𝑗+1
) + (

𝑀−1
𝑗 𝜎†

𝑗𝑀 𝑗𝜎𝑗𝐾 𝑗+1 + 𝐾 𝑗𝑀−1
𝑗+1𝜎

†
𝑗+1𝑀 𝑗+1𝜎𝑗+1

)
. (3.87)

Here the first two terms represent the classical Potts model. Note that, both 𝑀 𝑗

and 𝐾 𝑗 are diagonal in the 𝜏-basis and can therefore be expanded in powers of
𝜏𝑗 .

𝑀−1
𝑗 𝜎†

𝑗𝑀 𝑗𝜎𝑗 =
∑
𝑙

Δ𝑙𝜏𝑙𝑗 , 𝐾 𝑗 =
∑
𝑙

Γ𝑙𝜏𝑙𝑗 , (3.88)

eAlternatively, since the models will be written in terms of the clock operators, we could use
the term axial next-nearest neighbour clock (ANNNC) model [186].
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where we introduced the abbreviations

Δ𝑙 =
1
𝑝

∑
𝑘

𝛼𝑘−1
𝛼𝑘

𝜔−𝑘𝑙 , Γ𝑙 =
1
𝑝

∑
𝑘

𝛼𝑘+1
𝛼𝑘

𝜔−𝑘𝑙 . (3.89)

Hence, the last two terms in (3.87) only produce contributions of the form
𝜏𝑙𝑗𝜏

𝑙′
𝑗+1, as was intended. We will not write down the explicit expansion, since

it is tedious and not insightful. Instead, in the next sections we will discuss
several explicit examples. Doing so we obtain a general complex Z3-ANNNP
model. Furthermore, we rediscover the known frustration-free line [124, 144] in
the Z3 case, with purely real coefficients. Finally, we discuss a frustration-free
line for 𝑝 = 2𝑞 even, of which the original ANNNI model (3.22) is the simplest
representative and Z4- and Z6-ANNNP examples are given below.

3.6.1 Z3-ANNNP model: with complex coefficients
The simplest non-trivial example (besides ANNNI) we can derive with this
construction is the Z3-ANNNP. The most general deformation for Z3 is

𝑚 𝑗 =
©
«
1

𝑟
𝑠

ª®®
¬
, (3.90)

with the corresponding𝐶 𝑗 , 𝑗+1 determined by (3.86). The deformed Hamiltonian
takes the simple form

�̃� = −
∑
𝑗

[
𝜎𝑗𝜎

†
𝑗+1 +

𝑓
2 (𝜏𝑗 + 𝜏𝑗+1) + 𝑔1𝜏𝑗𝜏𝑗+1 + 𝑔2𝜏𝑗𝜏

†
𝑗+1 + h.c.

]
+ 𝜖, (3.91)

which is also the quantum limit of the axial next-nearest neighbour Potts
model [144]. Since the operators 𝜎𝑗 and 𝜏𝑗 are not self-adjoint, more terms
and coefficients than in the original ANNNI model (3.22) appear. The similar-
ity with the ANNNI model is exemplified by the following identifications:

ANNNI model Z3-ANNNP model
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 → 𝜎𝑗𝜎†

𝑗+1
𝜎𝑧𝑗 → 𝜏𝑗

𝜎𝑧𝑗 𝜎
𝑧
𝑗+1 → 𝜏𝑗𝜏𝑗+1 , 𝜏𝑗𝜏†𝑗+1
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The coefficients generated by the deformation (3.90) are in general complex

𝑓 =
2
9


2
(
𝑟𝑠 + 𝜔

𝑟
𝑠2 + �̄�

𝑠
𝑟2

)
−

(
1
𝑟𝑠

+ �̄�
𝑟2

𝑠
+ 𝜔

𝑠2

𝑟

)
, (3.92)

𝑔1 = −2
9


𝜔

(
𝑟2

𝑠
+ 𝑠
𝑟2

)
+ �̄�

(
𝑠2

𝑟
+ 𝑟
𝑠2

)
+ 𝑟𝑠 + 1

𝑟𝑠


, (3.93)

𝑔2 =
1
9


3 +

(
1
𝑟𝑠

+ 𝑠2

𝑟
+ 𝑟2

𝑠

)
− 2

(
𝑟𝑠 + 𝑠

𝑟2 + 𝑟
𝑠2

)
. (3.94)

Even though there is some elegance in the generality of this model, these
complex coefficients are not very practical. Therefore in the next sub-sections
we discuss two specific cases.

Z3-ANNNP model: real coefficients reproducing Reference [124]

The first example features purely real coefficients. This model was originally
obtained by direct calculation by Mahyaeh and Ardonne [124]. We rediscover
it by considering the deformation (3.90) with 𝑠 = 𝑟, ie,

𝑚 𝑗 =
©
«
1

𝑟
𝑟

ª®®
¬
, 𝐿𝑗 , 𝑗+1 = 𝜎𝑗 − 𝜎𝑗+1 , 𝐶 𝑗 , 𝑗+1 = 𝐾 𝑗𝐾 𝑗+1 , 𝑘 𝑗 =

©
«
𝑟

1
𝑟−1

ª®®
¬
,

(3.95)
such that the coefficients become

𝑓 =
2(1 + 2𝑟)(1 − 𝑟3)

9𝑟2 , 𝜖 =
2(1 + 𝑟 + 𝑟2)2

9𝑟2 , (3.96)

𝑔1 = −2(1 − 𝑟)2(1 + 𝑟 + 𝑟2)
9𝑟2 , 𝑔2 =

(1 − 𝑟)2(1 − 2𝑟 − 2𝑟2)
9𝑟2 . (3.97)

The exact ground states originally constructed in Reference [124] follow by
direct application of Theorem 1. Furthermore, in Appendix 3.B.2 we prove
that the model possesses an energy gap above these ground states at least

in the interval
√

3
2
√

2 − 2 ≈ 0.3483 ≲ 𝑟 ≲ 3.9912. Finally we note that for
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𝑟 = (√3− 1)/2 ≈ 0.366 the model (3.91) simplifies as the parameter 𝑔2 vanishes.

Z3-ANNNP with ground state deformation of Z3-XY model

For the second example we consider the deformation that we encountered
before for Z3-XY, namely 𝑠 = 𝑟2,

𝑚 𝑗 =
©
«
1

𝑟
𝑟2

ª®®
¬
. (3.98)

Thus the deformed ground states are identical to the ones for � = 0 discussed in
Section 3.5.3. However, due to the non-trivial choice for 𝐶 𝑗 , 𝑗+1 the Hamiltonian
will differ, specifically we obtain (3.91) with the coefficients

𝑓 = �̄�
(1 − 𝑟3)

[
(1 − 𝑟3) + 3

√
3i(1 + 𝑟3)

]
9𝑟3 , 𝑔1 = −2𝜔𝑔2 , 𝑔2 = −(1 − 𝑟3)2

9𝑟3 .

(3.99)
The coefficient 𝑔1 can be chosen to be real via a gauge transformation, ie, a
permutation of diagonal elements of 𝑚 𝑗 .

3.6.2 Z𝑝-ANNNP model: most general real coefficients

For general Z𝑝 we discuss the case when all coefficients take real values. From
(3.88) and (3.89) we recognise that the coefficient of 𝜏𝑙𝑗𝜏

𝑙′
𝑗+1 is Δ𝑙Γ𝑙′ + Γ𝑙Δ𝑙′ . This

is real for example if Γ∗𝑙 = Δ𝑙 , which yields the constraints (recall that 𝛼𝑘 > 0)

𝛼−𝑘 ≡ 𝛼𝑝−𝑘 = 𝛼𝑘 (3.100)

for all 𝑘. Thus there are (𝑝 − 1)/2 real degrees of freedom for 𝑝 odd and 𝑝/2 for
𝑝 even. The expansion is still not in a compact form. In Section 3.6.3 we will
discuss a Hamiltonian with a compact form for 𝑝 even. For 𝑝 odd we did not
obtain a simple compact form, except for the case 𝑝 = 3 discussed in the next
section.

The condition (3.100) has another consequence. Under charge conjugation

𝜎𝑗 → 𝜎†
𝑗 , 𝜏𝑗 → 𝜏†𝑗 , (3.101)
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we see that
𝑀−1

𝑗 𝜎†
𝑗𝑀 𝑗𝜎𝑗 → 𝐾 𝑗 , 𝐾 𝑗 → 𝑀−1

𝑗 𝜎†
𝑗𝑀 𝑗𝜎𝑗 . (3.102)

In this particular case the Hamiltonian (3.87) is invariant under charge conjuga-
tion, and together with the Z𝑝-symmetry generated by 𝜔𝑃 , the full symmetry
group is the dihedral group D𝑝 [187, 188]. Note that for 𝑝 = 3 the dihedral
group is isomorphic to the symmetric group S3 of all permutations.

3.6.3 Z2𝑞-ANNNP model: compact form with real coefficients

For even 𝑝 = 2𝑞 it is possible to construct a model depending on a single
parameter which possesses real coefficients and a simple closed form. We start
with

𝑚 𝑗 = diag(1, 𝑟 , . . . , 𝑟𝑞−1 , 𝑟𝑞 , 𝑟𝑞−1 , . . . , 𝑟), 𝑘 𝑗 = diag(𝑟, . . . , 𝑟 , 𝑟−1 , . . . , 𝑟−1).
(3.103)

Using Equation (3.67) we see that

𝑀−1
𝑗 𝜎†

𝑗𝑀 𝑗𝜎𝑗 =
𝑝−1∑
𝑙=0

[
𝑟−1 + (−1)𝑙𝑟

]
�𝑞(𝑙)𝜏𝑙𝑗 , (3.104)

𝐾 𝑗 =
𝑝−1∑
𝑙=0

(−𝜔)𝑙
[
𝑟−1 + (−1)𝑙𝑟

]
�𝑞(𝑙)𝜏𝑙𝑗 , (3.105)

where

�𝑞(𝑙) = 1
2𝑞

𝑞∑
𝑘=1

𝜔−𝑘𝑙 =




1
2 , if 𝑙 = 0,
0, if 𝑙 even ≠ 0,
1

2𝑞
∑𝑞
𝑘=1 𝜔

−𝑘𝑙 , if 𝑙 odd.
(3.106)

Note that both (3.104) and (3.105) only contribute odd powers of 𝜏 (or the
identity), hence the last two terms in (3.87) can only give odd powers of 𝜏𝑗-
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operators. The full expression becomes

𝑀−1
𝑗 𝜎†

𝑗𝑀 𝑗𝜎𝑗 𝑘 𝑗+1 + 𝑘 𝑗𝑀−1
𝑗+1𝜎

†
𝑗+1𝑀 𝑗+1𝜎𝑗+1

=
∑
𝑙 ,𝑙′

[
(−𝜔)𝑙 + (−𝜔)𝑙′

] [
𝑟−1 + (−1)𝑙𝑟

] [
𝑟−1 + (−1)𝑙′𝑟

]
�𝑞(𝑙)�𝑞(𝑙′)𝜏𝑙𝑗𝜏𝑙

′
𝑗+1.

(3.107)

Let us consider the different terms individually. First, the term with 𝑙 = 𝑙′ = 0
turns into an energy shift given by

𝜖 =
(𝑟 + 𝑟−1)2

2 . (3.108)

Second, the terms with 𝑙 = 0 or 𝑙′ = 0 turn into a magnetic-field term of the
form − 𝑓

2 (𝜏𝑙𝑗 + 𝜏𝑙𝑗+1) for odd 𝑙, with the prefactor given by

𝑓 = −(𝑟−2 − 𝑟2)(1−𝜔𝑙)�𝑞(𝑙) = 𝑟2 − 𝑟−2

2𝑞

𝑞∑
𝑘=1

(
𝜔−𝑘𝑙 −𝜔−(𝑘−1)𝑙 ) = 𝑟−2 − 𝑟2

𝑞
. (3.109)

Finally, the remaining terms with 𝑙 , 𝑙′ ≠ 0′ yield the terms𝑈𝑙𝑙′𝜏𝑙𝑗𝜏
𝑙′
𝑗+1 with

𝑈𝑙𝑙′ = −
(
𝜔𝑙 + 𝜔𝑙′

) (
𝑟 − 𝑟−1

)2
�𝑞(𝑙)�𝑞(𝑙′). (3.110)

Note that
[
𝜔𝑙�𝑞(𝑙)�𝑞(𝑙′)] ∗ = 𝜔𝑙′�𝑞(𝑙)�𝑞(𝑙′) and therefore𝑈∗

𝑙𝑙′ = 𝑈𝑙𝑙′ = 𝑈𝑙′𝑙 , such
that the full local Hamiltonian becomes

�̃�𝑗 , 𝑗+1 = −(
𝜎𝑗𝜎

†
𝑗+1 + 𝜎†

𝑗 𝜎𝑗+1
) − 𝑓

2

𝑝−1∑
𝑙=1
𝑙 odd

(
𝜏𝑙𝑗 + 𝜏𝑙𝑗+1

)
+

𝑝−1∑
𝑙 ,𝑙′=1
𝑙 ,𝑙′ odd

𝑈𝑙𝑙′𝜏
𝑙
𝑗𝜏
𝑙′
𝑗+1 + 𝜖. (3.111)

We note that the Hamiltonian for even 𝑝 is invariant under 𝑟 → 1/𝑟 and 𝜏 → −𝜏.

3.6.4 Z4-ANNNP model

The first new non-trivial example originating from the construction of the
previous section is obtained for 𝑝 = 4. In this case the local Hamiltonian
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becomes remarkably simple

�̃�𝑗 , 𝑗+1 = −
[
𝜎𝑗𝜎

†
𝑗+1 +

𝑓
2 (𝜏𝑗 + 𝜏𝑗+1) −𝑈𝜏𝑗𝜏𝑗+1 + h.c.

]
+ 𝜖 (3.112)

with the parameters

𝑓 =
𝑟−2 − 𝑟2

2 , 𝑈 =
(𝑟 − 𝑟−1)2

4 , 𝜖 =
(𝑟 + 𝑟−1)2

2 . (3.113)

Note the absence of terms like 𝜏2
𝑗 , 𝜏𝑗𝜏

2
𝑗+1 and 𝜏𝑗𝜏†𝑗+1, in contrast to the frustration-

free Z3-ANNNP model (3.91). The correlation functions of the four-fold de-
generate ground states |Ψ̃𝑖⟩ are identical to the ones in the ANNNI model, see
Equation (3.25), ������

⟨Ψ̃𝑖 |𝜎𝑗𝜎†
𝑗′ |Ψ̃𝑖⟩

⟨Ψ̃𝑖 |Ψ̃𝑖⟩

������ =
4

(𝑟 + 𝑟−1)2 , (3.114)

In Appendix 3.B.3 we prove that the model (3.112) possesses an energy gap
Δ̃ above the ground states. More specifically, we show that the lower bound
for the gap in the thermodynamic limit is given by 4 min(𝑟2 ,𝑟−2)

𝑟2+𝑟−2 ≤ Δ̃. For com-
pleteness in Figure 3.1 we compare this to numerical results for the energy gap.
The latter were obtained by extrapolating finite-size data from system sizes
𝐿 = 64, 76, 88, 100 to 𝐿 → ∞, with the finite-size results being calculated by
employing the density matrix renormalisation group (DMRG) method [81, 118]
using the TeNPy [189] library.

Closer inspection of the parameters (3.113) shows that they satisfy the relation
𝑓 = 2

√
𝑈(1 +𝑈), which is identical to the relation along the Peschel–Emery line

in the ANNNI model. This points towards a closer relation between the models
(3.112) and (3.22), which we discuss in the following. In fact, even away from
the frustration-free line one can map the Z4-ANNNP chain to two decoupled
ANNNI chains. For simplicity we consider an infinitely long system (ie, we
ignore the boundary conditions) and drop the constant energy shift 𝜖; thus
(3.112) turns into the Hamiltonian

𝐻ANNNP = −
∑
𝑗

(
𝜎𝑗𝜎

†
𝑗+1 + 𝑓 𝜏𝑗 −𝑈𝜏𝑗𝜏𝑗+1 + h.c.

)
. (3.115)

Introducing the dual operators via
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Figure 3.1: Energy gap Δ̃ above the four-fold degenerate ground states |Ψ̃𝑖⟩ of the
frustration-free ANNNP model (3.112). The dots show the energy gap obtained
by extrapolating the finite-size data for 𝐿 = 64, 76, 88, 100 to the thermodynamic
limit. The dashed line is the lower bound for the energy gap proven to exist in
Appendix 3.B.3. Inset: Zoom in to small-𝑟 region, logarithmic scale.

𝜎†
𝑗 𝜎𝑗+1 → �̃�𝑗 , 𝜏𝑗 → �̃�𝑗−1�̃�

†
𝑗 , (3.116)

which satisfy the clock algebra (3.60) with 𝑝 = 4, we can rewrite this as

𝐻dual
ANNNP = −

∑
𝑗

(
�̃�𝑗 + 𝑓 �̃�𝑗 �̃�†

𝑗+1 −𝑈 �̃�𝑗 �̃�
†
𝑗+2 + h.c.

)
. (3.117)

Next we introduce two sets of Pauli matrices 𝜎𝑥/𝑧𝑖, 𝑗 , 𝑖 = 1, 2, per lattice site 𝑗, and
consider the mapping [188, 190, 191]

�̃�𝑗 = 𝑒 𝑖
𝜋
4

(
𝜎𝑥1, 𝑗 − 𝑖𝜎𝑥2, 𝑗√

2

)
, �̃�𝑗 + �̃�†𝑗 = 𝜎𝑧1, 𝑗 + 𝜎𝑧2, 𝑗 . (3.118)

From the second relation in (3.118) we can already infer that the �̃�𝑗-terms are
mapped to a transverse magnetic field on the Ising ladder. For the other terms,
we use the following simple identity

�̃�𝑗 �̃�
†
𝑗+𝑗′ + h.c. = 𝜎𝑥1, 𝑗𝜎

𝑥
1, 𝑗+𝑗′ + 𝜎𝑥2, 𝑗𝜎

𝑥
2, 𝑗+𝑗′ . (3.119)

Thus the dual of the Z4-ANNNP model can be written as the sum of two
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decoupled ANNNI chains

𝐻dual
ANNNP = 𝐻dual

ANNNI,1 + 𝐻dual
ANNNI,2 (3.120)

with
𝐻dual

ANNNI,𝑖 = −
∑
𝑗

(
𝜎𝑧𝑖, 𝑗 + 𝑓 𝜎𝑥𝑖, 𝑗𝜎

𝑥
𝑖, 𝑗+1 −𝑈𝜎𝑥𝑖, 𝑗𝜎

𝑥
𝑖, 𝑗+2

)
. (3.121)

Performing another duality transformation (3.121) can be brought into the form
(3.22) discussed in Section 3.3.2. The condition for the parameters 𝑓 and 𝑈 to
be on the frustration-free line directly turns intro the Peschel–Emery line for
the two ANNNI models.

3.6.5 Z6-ANNNP model
Interestingly, in the case 𝑝 = 6 the deformation (3.103) leads to another rather
simple model with the local Hamiltonian

�̃�𝑗 , 𝑗+1 = −
[
𝜎𝑗𝜎

†
𝑗+1 +

𝑓
2

(
𝜏𝑗 + 1

2𝜏
3
𝑗 + 𝜏𝑗+1 + 1

2𝜏
3
𝑗+1

)

−𝑈
(
𝜏𝑗𝜏𝑗+1 + 1

4𝜏𝑗𝜏
3
𝑗+1 +

1
4𝜏

3
𝑗 𝜏𝑗+1 − 1

2𝜏𝑗𝜏
†
𝑗+1 +

1
8𝜏

3
𝑗 𝜏

3
𝑗+1

)
+ h.c.

]
+ 𝜖,

(3.122)

where the parameters are given by

𝑓 =
𝑟−2 − 𝑟2

3 , 𝑈 =
2
9 (𝑟 − 𝑟

−1)2 , 𝜖 =
(𝑟 + 𝑟−1)2

2 . (3.123)

We note that even though theZ6-symmetry allows a wealth of terms of the form
𝜏𝑙𝑗𝜏

𝑙′
𝑗+1, along the frustration-free line the relative prefactors of them are fixed to

fairly simple values. In Figure 3.2 we show the energy gap above the six-fold
degenerate ground state. The numerical results were obtained by extrapolation
from finite-size data, they clearly indicate the existence of a finite energy gap
along the frustration-free line. In addition, in Appendix 3.B.4 we prove that
the model is gapped at least in the interval 0.5754 ≲ 𝑟 ≲ 1/0.5754 ≈ 1.7379.
We note in passing that using more advanced methods for open boundary
conditions [174] it is possible to enlarge the region for which the existence of
a finite energy gap can be proven. However, the obtained lower bounds are
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Figure 3.2: Energy gap Δ̃ above the six-fold degenerate ground states of the frustration-
free ANNNP model (3.122). The dots show the energy gap obtained by extrapolating
the finite-size data for 𝐿 = 64, 76, 88, 100 to the thermodynamic limit. The dashed
line is the lower bound for the energy gap obtained in Appendix 3.B.4.

found to be quite small (< 10−5).

3.7 Discussion

We have presented a constructive approach to understand and derive one-
dimensional frustration-free spin models. Starting from a simple point, for
example a classical system, we derived the corresponding frustration-free quan-
tum models and their exact ground states. We have shown that many known
frustration-free spin-1/2, spin-1 and Z𝑝-clock models can be understood in this
framework on an equal footing. Hence our approach provides an overarching
framework for many frustration-free systems.

More specifically, the approach allowed us to connect two distinct frustration-
freeZ3-clock models recently introduced by Iemini et al. [120] and Mahyaeh and
Ardonne [124]. As we have shown, both models can be interpreted as different
deformations of the classical three-state Potts chain, see Figure 3.3 for an illustra-
tion of their relation. As a side remark, we analytically showed that the energy
gap remains finite in a finite region around the classical point for both models.
This in particular implies that both models (or their parafermion analogues)
are in the same (topological) phase. Furthermore, we have constructed several
new frustration-free Z𝑝-clock models, including Z4- and Z6-generalisations of

76



3.7 Discussion

XY-deformation [120]
Secs. 3.5.2 and 3.5.3

𝑚 𝑗 =
©
«
1

𝑟
𝑟2

ª®
¬

ANNNP-deformation [124], Sec. 3.6.1

𝑚 𝑗 =
©
«
1

𝑟
𝑟

ª®
¬
, 𝑘 𝑗 =

©
«
𝑟

1
𝑟−1

ª®
¬

𝑟 ≈ 0.5695 𝑟 ≈ 1.7560
𝑟 ≈ 0.3483

𝑟 ≈ 3.9912

gapped regions
(see App. 3.B.2)

classical Potts model 3.64
𝐿 𝑗 , 𝑗+1 = 𝜎𝑗 − 𝜎𝑗+1

𝑟 = 1

Figure 3.3: Schematic sketch of the relation between the two frustration-free Z3-clock
models introduced by Iemini et al. [120] (see Sections 3.5.2 and 3.5.3) and Mahyaeh
and Ardonne [124] (see Section 3.6.1). Both models can be obtained as deformations
of the classical three-state Potts chain (red dot) using the local deformations 𝑚 𝑗 and
central term 𝑘 𝑗 depending on the parameter 𝑟. The green lines indicate the regions
in which the systems are proven to be gapped in Appendix 3.B.2. In particular,
within this region the two models can be connected without closing the energy gap,
implying that they are in the same phase.

the Peschel–Emery line of the original ANNNI chain.
We stress that the list of frustration-free clock models considered above is

by no means extensive. On the contrary, the examples discussed here should
be regarded as a proof of principle on how to apply the general construction.
Several generalisations come to mind: First, one may consider chiral classical
models [192, 193] as starting points in the deformation construction. However,
since in this case the local Hamiltonians are no longer given by simple projec-
tors, the deformed Hamiltonians so obtained may become quite complicated.
Second, in this chapter we have kept the considered deformations to be homo-
geneous, a restriction that is not required by Theorem 1. Thus our results can
be extended to inhomogeneous systems. Third, another generalisation would
be to relax the requirement for the operator 𝐶 𝑗 , 𝑗+1 to be positive definite. In
such a case, the ground states of the undeformed model are no longer trans-
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formed into ground states of the new model. However, they will still be exact
eigenstates, potentially in the middle of the spectrum, and thus may be relevant
in the context of quantum many-body scars [194–199].

3.A Witten’s conjugation argument

In this appendix we recall Witten’s original conjugation argument on the
ground-state degeneracy of supersymmetric Hamiltonians. Consider two su-
percharges 𝑄 and 𝑄† as well as a Hamiltonian 𝐻 satisfying

𝑄2 = (𝑄†)2 = 0, 𝐻 = 𝑄†𝑄 +𝑄𝑄†. (3.124)

First we note that any zero-energy ground state |𝜓⟩ of 𝐻 is annihilated by both
𝑄 and 𝑄†. Furthermore, it is not possible to obtain |𝜓⟩ by action of 𝑄, ie,
|𝜓⟩ ≠ 𝑄 |𝜙⟩ for any state |𝜙⟩. (To see this assume |𝜓⟩ = 𝑄 |𝜙⟩. But since |𝜓⟩
is a zero-energy ground state we have 0 = 𝑄† |𝜓⟩ = 𝑄†𝑄 |𝜙⟩ which implies
⟨𝜙 |𝑄†𝑄 |𝜙⟩ = ∥𝑄 |𝜙⟩ ∥2 = 0 and thus 𝑄 |𝜙⟩ = 0 in contradiction with the
assumption that |𝜓⟩ is a ground state.)

Now let us consider the deformed/conjugated operators �̃� = 𝑀𝑄𝑀−1, �̃�† =
(�̃�)† and �̃� = �̃�†�̃�+�̃��̃�† with𝑀 being invertible. Obviously, if |𝜓⟩ is a ground
state of 𝐻, the deformed state |�̃�⟩ = 𝑀 |𝜓⟩ is annihilated by �̃�. Furthermore,
|�̃�⟩ cannot be written as |�̃�⟩ = �̃� |�̃�⟩ for any |�̃�⟩, since this would imply
that |𝜓⟩ = 𝑄𝑀−1 |�̃�⟩ in contradiction with the assumption that |𝜓⟩ was a
ground state of 𝐻. Thus |�̃�⟩ is a ground state of �̃� establishing a one-to-one
correspondence between the ground-state manifolds of 𝐻 and �̃�.

3.B Energy gap of some Z3-, Z4- and Z6-models

The conjugation argument does only provide information about the ground-
state manifold. In order to obtain information about the energy gap above
it, additional techniques have to be employed. In Appendix 3.B.1 we recall
Knabe’s method [176], which was originally applied to the AKLT model with
periodic boundary conditions. This is then applied in Appendices 3.B.2, 3.B.3
and 3.B.4 to prove the existence of an energy gap in specific Z3-, Z4-, and
Z6-models.
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3.B.1 Knabe’s method

We consider a system with 𝑁 sites, open boundary conditions and the Hamil-
tonian

𝐻𝑁 =
𝑁−1∑
𝑗=1

𝑃𝑗 , 𝑗+1 , (3.125)

with the 𝑃𝑗 , 𝑗+1 two-site projection operators. We assume
⋂
𝑗 ker(𝑃𝑗 , 𝑗+1) ≠ {0},

ie, the ground state is at zero energy, and denote the energy gap of 𝐻𝑁 by Δ𝑁 .

Theorem 2 (Knabe’s method [176]). For the projector Hamiltonian 𝐻𝑁 the gap
above the ground state (Δ𝑁 ) is bounded from below by

Δ𝑁 ≥ 𝑚 − 1
𝑚 − 2

(
min

𝑚′=2,...,𝑚
{Δ𝑚′} − 1

𝑚 − 1

)
, (3.126)

where Δ𝑚′ denotes the gap of the 𝑚′-site, sub-system Hamiltonian

ℎ 𝑗 ,𝑚′ =
𝑗+𝑚′−2∑
𝑘=𝑗

𝑃𝑘,𝑘+1. (3.127)

Proof. Note that 𝐻𝑁 is positive semi-definite, therefore 𝐻2
𝑁 ≥ Δ𝑁𝐻𝑁 . In other

words, if we obtain the above inequality with Δ𝑁 , the Theorem is proven. We
have the analogous statement for ℎ 𝑗 ,𝑚′ , ℎ2

𝑗 ,𝑚′ ≥ Δ𝑚ℎ 𝑗 ,𝑚′ , and moreover realise
that 𝑃2

𝑗 , 𝑗+1 = 𝑃𝑗 , 𝑗+1 and [𝑃𝑗 , 𝑗+1 , 𝑃𝑘,𝑘+1] = 0 for | 𝑗 − 𝑘 | > 1.

To prove the bound, we first expand 𝐻2
𝑁

𝐻2
𝑁 =

𝑁−1∑
𝑗=1

ℎ2
𝑗 ,2 +

𝑚−2∑
𝑚′=1

𝑁−𝑚′−1∑
𝑗=1

(
ℎ 𝑗 ,2ℎ 𝑗+𝑚′,2 + h.c.

)
+

∑
| 𝑗−𝑘 |>𝑚−2

ℎ 𝑗 ,2ℎ𝑘,2 (3.128)

≥ 𝐻𝑁 +
𝑚−2∑
𝑚′=1

𝑚 − 𝑚′ − 1
𝑚 − 2

𝑁−𝑚′−1∑
𝑗=1

(
ℎ 𝑗 ,2ℎ 𝑗+𝑚′,2 + h.c.

)
, (3.129)

with the second step following from the fact that ℎ 𝑗 ,2ℎ𝑘,2 is positive semi-
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3 Frustration-free models from Witten’s conjugation

definite for |𝑘 − 𝑗 | > 1. This can be further reduced to

𝐻2
𝑁 ≥ 𝐻𝑁 + 1

𝑚 − 2


𝑁−𝑚+1∑
𝑗=1

ℎ2
𝑗 ,𝑚 +

𝑚−1∑
𝑚′=2

(
ℎ2

1,𝑚′ + ℎ2
𝑁−𝑚′+1,𝑚′

)
− (𝑚 − 1)𝐻𝑁


(3.130)

≥
(
1 − 𝑚 − 1

𝑚 − 2

)
𝐻𝑁 + 1

𝑚 − 2


Δ𝑚

𝑁−𝑚+1∑
𝑗=1

ℎ 𝑗 ,𝑚 +
𝑚−1∑
𝑚′=2

Δ𝑚′
(
ℎ1,𝑚′ + ℎ𝑁−𝑚′+1,𝑚′

)
.

(3.131)

Because we have the expansion

𝐻𝑁 =
1

𝑚 − 1


𝑁−𝑚+1∑
𝑗=1

ℎ 𝑗 ,𝑚 +
𝑚−1∑
𝑚′=2

(
ℎ1,𝑚′ + ℎ𝑁−𝑚′+1,𝑚′

)
(3.132)

and Δ𝑚′ ≤ 1, the last term of (3.131) can be simplified to obtain

𝐻2
𝑁 ≥ − 1

𝑚 − 2𝐻𝑁 + 𝑚 − 1
𝑚 − 2 min

𝑚′=2,...,𝑚
{Δ𝑚′}𝐻𝑁 (3.133)

=
𝑚 − 1
𝑚 − 2

(
min

𝑚′=2,...,𝑚
{Δ𝑚′} − 1

𝑚 − 1

)
𝐻𝑁 . (3.134)

This proves the Theorem with the lower bound
Δ𝑁 ≥ 𝑚−1

𝑚−2

(
min𝑚′=2,...,𝑚 {Δ𝑚′} − 1

𝑚−1

)
. □

Remark 3. Given that the models considered here can be viewed as parent Hamiltonians
for matrix product ground states, one can apply more powerful tools [158, 172, 174] to
prove the existence of energy gaps.f These methods allow one to extend the parameter
regions with proven energy gaps. However, in some cases, Knabe’s method gives us
a better lower bound for an energy gap for fixed parameters. We also note that when
analysing the energy gap, special care has to be taken regarding the treatment of different
boundary conditions.

fFor example, for a so-called injective matrix product state one can prove that the correspond-
ing parent Hamiltonian has a unique ground state and a finite energy gap [158, 159, 172].
However, most of the ground states we have looked at in this article do not qualify as
injective (see, eg, Reference [96] for the ANNNI model), because of the degeneracy.
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Note that the argument above assumes the Hamiltonian to be the sum of
projectors. The systems studied in this chapter do not fit that picture. However,
since they are frustration-free we can still obtain a bound using the following
observation:

Corollary 4. For a frustration-free model with an 𝑛-fold degenerate zero-energy ground
state and a 𝑝-dimensional local Hilbert space, with 𝑝2 > 𝑛, we can arrange the two-site
eigenvalues Δ̃𝑘2 and normalised eigenstates |�̃�𝑘⟩ such that Δ̃𝑘2 ≤ Δ̃𝑙2 for 𝑘 < 𝑙 and
Δ̃1

2 , . . . , Δ̃
𝑛
2 = 0. Then two-site Hamiltonian can be bounded from below as follows,

�̃�𝑗 , 𝑗+1 =
𝑝2∑

𝑘=𝑛+1
Δ̃𝑘2 |�̃�𝑘⟩ ⟨�̃�𝑘 | = Δ̃𝑛+1

2

𝑝2∑
𝑘=𝑛+1

|�̃�𝑘⟩ ⟨�̃�𝑘 | +
𝑝2∑

𝑘=𝑛+1

(
Δ̃𝑘2 − Δ̃𝑛+1

2
) |�̃�𝑘⟩ ⟨�̃�𝑘 |

≥ Δ̃𝑛+1
2 𝑃𝑗 , 𝑗+1 = Δ̃2𝑃𝑗 , 𝑗+1 , (3.135)

with the gap Δ̃2 = Δ̃𝑛+1
2 of the frustration-free Hamiltonian �̃�𝑗 , 𝑗+1 and 𝑃𝑗 , 𝑗+1 denoting

the projector onto the space orthogonal to its ground-state manifold. The min-max
theorem [117] then implies for the gap Δ̃𝑁 of the frustration-free model on 𝑁 sites

Δ̃𝑁 ≥ Δ̃2Δ𝑁 . (3.136)

Thus in order to prove that a frustration-free Hamiltonian possesses an en-
ergy gap Δ̃ above its ground states in the thermodynamic limit, we proceed as
follows: (i) We consider projectors 𝑃𝑗 , 𝑗+1 onto the space orthogonal to the local
ground states on the lattice sites 𝑗 and 𝑗 + 1 and determine the gap Δ2 above
these ground states. (ii) From that we construct the auxiliary 𝑚-site Hamilto-
nian ℎ1,𝑚 =

∑𝑚
𝑗=1 𝑃𝑗 , 𝑗+1 and determine its energy gapΔ𝑚 . (iii) If this gap satisfies

min𝑚′=2,...,𝑚 {Δ𝑚′} > 1/(𝑚 − 1), then the auxiliary 𝑁-site Hamiltonian 𝐻𝑁 will
have a gap Δ𝑁 satisfying (3.126). (iv) Due to (3.136) the gap Δ̃ of the original
frustration-free Hamiltonian is bounded from below by

Δ̃ = lim
𝑁→∞

Δ̃𝑁 ≥ lim
𝑁→∞

Δ̃2Δ𝑁 ≥ Δ̃2
𝑚 − 1
𝑚 − 2

(
min

𝑚′=2,...,𝑚
{Δ𝑚′} − 1

𝑚 − 1

)
. (3.137)

Every 𝑚 > 2 gives a lower bound on the gap, so the supremum over subsystem
sizes is also a lower bound. Usually, the bound increases for increasing𝑚. Since
the computation of Δ𝑚 requires exact diagonalisation of a 𝑝𝑚 × 𝑝𝑚 matrix, the
maximal feasible𝑚 is constrained by computational resources. In the following
appendices we apply this line of argument to several models.
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3 Frustration-free models from Witten’s conjugation

3.B.2 Gap in Z3-models

In order to treat both Z3-models (3.84) (for � = 0) and the models discussed
in Section 3.6.1 within the same framework, we consider the general, diagonal
deformation with

𝑚 𝑗 =
©
«
1

𝑟
𝑠

ª®®
¬
, (3.138)

where 𝑟, 𝑠 > 0. For each point in the (𝑟, 𝑠)-plane we get a lower bound on
the thermodynamic gap by means of (3.126), provided that for some feasi-
ble 𝑚 the relevant energy gap of the auxiliary 𝑚-site Hamiltonian satisfies
min𝑚′=2,...,𝑚 {Δ𝑚′} > 1/(𝑚 − 1). Computational resources allow us to go up to
𝑚 = 7. In Figure 3.4 we have depicted the maximal lower bound for𝑚 = 3, . . . , 7
in the (𝑟, 𝑠)-plane obtained from this. Note that this is a lower bound for the
gap of the auxiliary projector Hamiltonian. For a particular parent Hamilto-
nian like (3.84) and (3.91), the true gap depends on the local gap Δ̃2. As long
as the local parent Hamiltonian has the same degeneracy as the local auxiliary
Hamiltonian it is gapped for the same parameter regime, by virtue of (3.137).
We only consider the triangle 𝑠 ≤ 𝑟 ≤ 1, since due to the dihedral symmetry
of the model there is a six-fold symmetry in the (𝑟, 𝑠)-plane. The red line de-
notes the boundary of the region that is definitively gapped, ie, for all points
above this line in the (𝑟, 𝑠)-plane it is assured that the full system is gapped in
the thermodynamic limit. The blue and green lines correspond to the ground
states of (3.84) (for � = 0) and (3.91), respectively, with the black star indicating
the model (3.91) at the special point 𝑔2 = 0. Given the six-fold symmetry in
the (𝑟, 𝑠)-plane, we have to be careful how to display the green (1, 𝑟 , 𝑟) and
blue (1, 𝑟 , 𝑟2) lines. For the blue line, note that (1, 𝑟 , 𝑟2) ≃ (𝑟−2 , 𝑟−1 , 1), since
the Hamiltonian is invariant under rescaling of 𝑀. Also the freedom in the
form of the dihedral symmetry lets us write (1, 𝑟 , 𝑟2) ≃ (1, 𝑟−1 , 𝑟−2), permuting
the entries. Hence the blue line for 𝑟 > 1, maps to the blue line for 𝑟 < 1
under the symmetry. Using the same reasoning for the green line we obtain
(1, 𝑟 , 𝑟) ≃ (𝑟−1 , 1, 1) ≃ (1, 1, 𝑟−1), mapping (1, 𝑟 , 𝑟) for 𝑟 > 1 to (1, 1, 𝑠) for 𝑠 = 𝑟−1.

Let us zoom in on the two lines 𝑠 = 𝑟2 and 𝑠 = 𝑟 that correspond to the ground
states of (3.84) and (3.91) respectively. In Table 3.1 we list the lower and upper
limit 𝑟low,up for the gapped region for different sub-system sizes 𝑚. For 𝑠 = 𝑟2

the upper limit is simply 𝑟up = 1/𝑟low, as follows from the symmetry discussed
above. As 𝑚 increases we see that the region increases in both directions.
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Figure 3.4: Log-log contour plot for the deformation in Equation (3.138) of the lower
bound max𝑚=3,...,7

𝑚−1
𝑚−2

(
min𝑚′=2,...,𝑚 {Δ𝑚′} − 1

𝑚−1

)
. For a finite lower bound the

system is gapped in the thermodynamic limit 𝑁 → ∞, ie, all points above the red
line yield gapped systems. The blue and green lines correspond to the ground states
of (3.84) (for � = 0) and (3.91), respectively. The star is the special point with 𝑔2 = 0.

On the other hand, for 𝑠 = 𝑟 something peculiar occurs. The lower limit 𝑟low

is significantly better for 𝑚 = 3 than for 𝑚 = 4, . . . , 7. This lower limit has the

exact value of 𝑟low = 21/4 − 2−1/4 =
√

3
2
√

2 − 2 ≈ 0.3483 The upper limit, on the
other hand, does become more informative as 𝑚 increases.

In total we deduce that the full system (3.84) (for � = 0) is gapped in the
thermodynamic limit for 0.5695 ≲ 𝑟 ≲ 1/0.5695 and (3.91) for 0.3483 ≲ 𝑟 ≲
3.9912. In particular this implies that in this parameter regime the models can
be adiabatically connected to the classical model obtained for 𝑟 = 𝑠 = 1 as
sketched in Figure 3.3.

3.B.3 Gap in Z4-ANNNP model

We can apply the same method to analyse the gap of the Z4-ANNNP model
(3.112). For this model it is sufficient to consider 𝑚 = 3, since

Δ3 =
1
2 + min(𝑟2 , 𝑟−2)

𝑟2 + 𝑟−2 , (3.139)
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𝑠 = 𝑟2 (Z3-XY model) 𝑠 = 𝑟 (Z3-ANNNP model)
𝑚 𝑟low 𝑟up 𝑟low 𝑟up

3 0.6337 1.5779 0.3483 2
4 0.6204 1.6119 0.4216 2.6796
5 0.6026 1.6595 0.4259 3.0146
6 0.5853 1.7086 0.4200 3.6233
7 0.5695 1.7560 0.4116 3.9912

Table 3.1: Lower and upper limit 𝑟low,up for the gapped regions of the Z3-XY model
(3.84) and Z3-ANNNP model (3.91) as deduced from different sub-system sizes 𝑚.
The bold values indicate the extremal values which are stated in the main text.

which is strictly larger than 1/2 for 0 < 𝑟 < ∞. Thus we deduce for the gap in
the thermodynamic limit

Δ̃ ≥ 4 min(𝑟2 , 𝑟−2)
𝑟2 + 𝑟−2 . (3.140)

Instead of using Corollary 4, the lower bound (3.140) can also be obtained from
the mapping to two decoupled ANNNI chains, together with the lower bound
for the energy gap along the Peschel–Emery line of the ANNNI chain obtained
in Reference [49].

3.B.4 Gap in Z6-ANNNP model
For the Z6-ANNNP model (3.122) the condition of Δ3 > 1/2 shows that the
model is gapped at least in the interval 0.5754 ≲ 𝑟 ≲ 1/0.5754, where we have
used the invariance of the model under 𝑟 → 1/𝑟. The region does not improve
for 𝑚 = 4, 5 and higher sub-systems sizes are not accessible with our current
resources.
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4 Phase diagram of tight-binding
Z3-Fock parafermion chain

This chapter is based on: I. Mahyaeh, J. Wouters and D. Schuricht,
Phase diagram of the Z3-Fock parafermion chain with pair hopping, SciPost
Physics Core 3(2), 011 (2020). I.M. and J.W. together performed the
calculations and numerical simulations, discussed the results and
contributed to the final version of the manuscript.

We study a tight binding model of Z3-Fock parafermions with single-particle
and pairhopping terms. The phase diagram has four different phases: a gapped
phase, a gapless phase with central charge 𝑐 = 2, and two gapless phases with
central charge 𝑐 = 1. We characterise each phase by analysing the energy
gap, entanglement entropy and different correlation functions. The numerical
simulations are complemented by analytical arguments.

4.1 Introduction
Usually, particles come in two flavours: bosons, satisfying commutation rela-
tions Ψ(𝑥1 , 𝑥2) = Ψ(𝑥2 , 𝑥1) and fermions, with anti-commutation Ψ(𝑥1 , 𝑥2) =
−Ψ(𝑥2 , 𝑥1). In 2D a third class of (quasi-)particles can exist, known as anyons [57,
200], satisfying a fractional relation Ψ(𝑥1 , 𝑥2) = 𝑒 𝑖�Ψ(𝑥2 , 𝑥1) [58]. These non-
trivial statistics stem from the 2D braid group, different from 3D (and higher),
since intertwined exchange paths cannot be contracted to points in 2D [201].

Anyonic statistics arise for instance in fractional quantum Hall (FQH) sys-
tems, where the vortex excitations have and anyonic nature [202–204]. There
are several proposals to capture the fractional modes on 1D interfaces of FQH
systems [16, 56, 64]. The appearing 1D quasi modes are generally called
parafermions. Historically these parafermions were introduced [60] to analyse
clock models. Recently they have attracted attention for generalizing Majo-
ranas. After Kitaev’s seminal paper [11], the study of Majorana systems has
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taken off. The edge modes in the Kitaev chain have become a prototypical
example of 1D topological physics. The Majoranas in Kitaev’s descriptions, de-
compose spinless fermions into real particles, sharing the fermionic statistics.
Parafermions form the natural extension following fractional statistics [60, 61].

𝛾
𝑝
𝑗 = 1, 𝛾†

𝑗 = 𝛾
𝑝−1
𝑗 , 𝛾𝑗𝛾𝑘 = 𝜔sgn(𝑘−𝑗)𝛾𝑘𝛾𝑗 , (4.1)

where 𝜔 = exp(2𝜋i/𝑝), for general 𝑝 ≥ 2. Note that this simplifies Majorana
algebra for 𝑝 = 2, where in particular the reality condition 𝛾†

𝑗 = 𝛾𝑗 is satisfied.
With the Fradkin–Kadanoff transformation [60] these parafermions are re-

lated to clock variables

𝛾2𝑗−1 = ©
«
∏
𝑘< 𝑗

𝜏𝑘
ª®
¬
𝜎𝑗 , 𝛾2𝑗 = 𝜔(𝑝−1)/2𝛾2𝑗−1𝜏𝑗 , (4.2)

The clock operators generalize the Pauli matrices, with fractionality appearing
in the algebra

𝜎
𝑝
𝑗 = 𝜏

𝑝
𝑗 = 1, 𝜎†

𝑗 = 𝜎
𝑝−1
𝑗 , 𝜏†𝑗 = 𝜏

𝑝−1
𝑗 , (4.3)

𝜎𝑗𝜏𝑗 = 𝑒2𝜋i/𝑝𝜏𝑗𝜎𝑗 , 𝜎𝑖𝜏𝑗 = 𝜏𝑗𝜎𝑖 for 𝑖 ≠ 𝑗. (4.4)

The most notable clock system is the Potts model, generalizing the transverse
field Ising chain

𝐻Potts = −𝐽
∑
𝑗

(
𝜎†
𝑗 𝜎𝑗+1 + 𝜎†

𝑗+1𝜎𝑗
) − 𝑓

∑
𝑗

(
𝜏†𝑗 + 𝜏𝑗

)
(4.5)

As the Majoranas helped to interpret the topological nature of the fermionic
dual of the Ising model, so do parafermions offer a interpretation of the topol-
ogy of the Potts model. Due to the fractionality, the edge modes are not as
stable as in the Kitaev case, and often only appear as weak zero modes [61,
115, 188, 205]. However, the fractional nature of the parafermions gives rise to
𝑝-fold degeneracy in these topological systems.

While parafermions have proven useful in statistical mechanics and the study
of edge zero modes, they possess a huge drawback. Due to the relations (4.1) it is
not possible to interpret 𝛾†

𝑗 as a particle creation operator at site 𝑗. Very recently
this limitation was overcome by Cobanera and Ortiz [185] who introduced the
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so-called Fock parafermions (FPFs). Here the term “Fock" refers to the fact that
the newly introduced operators 𝐹†𝑗 and 𝐹𝑗 can be interpreted as creation and
annihilation operators for particles, which act on a Fock space in the sense that
a definite number of particles at lattice site 𝑗 can be defined (see next section
for the detailed definition). Hence FPFs constitute particles with anyonic and
fractional exclusion statistics and thus provide the ideal framework to study
the consequences of generalised quantum statistics on the properties of many-
particle systems. In this work we will specifically investigate which types of
many-particle states of FPFs exist in one-dimensional systems.

A first step in this direction has been taken very recently by Rossini et al. [206],
who studied a tight-binding chain of FPFs simply hopping between neighbour-
ing sites. For 𝑝 = 3 (the case we will restrict ourselves) they uncovered a gapped
phase reminiscent of a Mott insulator at unit filling, while at all other fillings
a gapless anyonic Luttinger phase [207] emerged. In our work we will extend
these results by generalising the simple hopping model to include also coherent
hopping of two-particle pairs, which is possible as two FPFs may exist at the
same lattice site. As a consequence of the pair hopping two additional phases
appear in the phase diagram (see Figure 4.1): A second Luttinger phase (la-
belled R) and, between the two Luttinger phases, a gapless phase with central
charge 𝑐 = 2 (labelled M).

This chapter is organised as follows. In the next section we review the con-
struction of FPFs. In Section 4.3 we define the model and present its phase
diagram, the main result of this chapter. In Section 4.4 we explain the im-
plementation of the numerical simulations, while in Section 4.5 we present
our detailed results and analysis of the phase diagram. We conclude with a
discussion in Section 4.6.

4.2 Fock parafermions

In this section we discuss Fock parafermions as introduced by Cobanera and Or-
tiz [185]. They appear as particle-like excitations constructed from parafermions
in the same way as spinless fermions are obtained from Majorana fermions. To
be more specific, let us start with the discussing the concept of parafermions [60,
61], which can be viewed as a fractional generalization of Majorana fermions.
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Consider a set of 2𝐿 parafermion operators 𝛾𝑗 satisfying

𝛾𝑗𝛾𝑘 = 𝜔sgn(𝑘−𝑗)𝛾𝑘𝛾𝑗 , 𝜔 = exp
(

2𝜋i
𝑝

)
, (4.6)

with integer 𝑝 ≥ 2. For 𝑝 = 2 we obtain the simple anti-commutation relations
of Majorana fermions, but for 𝑝 > 2 the parafermions are neither commuting
nor anti-commuting. The other relations fixing the algebra are

𝛾
𝑝−1
𝑗 = 𝛾†

𝑗 , 𝛾
𝑝
𝑗 = 1, (4.7)

in which 1 is the identity operator. An explicit realisation is provided by (4.2).
As for Majoranas, for parafermions there is no notion of filling, ie, there are

no highest and lowest weight states as we see from Equation (4.7). However, for
Majorana fermions this can be remedied by introducing spinless Dirac fermions
via

𝑐 𝑗 =
1
2 (𝛾2𝑗−1 + i𝛾2𝑗), 𝑐†𝑗 =

1
2 (𝛾2𝑗−1 − i𝛾2𝑗), (4.8)

which then allow a direct interpretation as particle annihilation and creation
operators.

In Reference [185] a similar particle description was introduced for parafermions.
These so-called FPF operators are defined as

𝐹𝑗 =
𝑝 − 1
𝑝

𝛾2𝑗−1 − 1
𝑝

𝑝−1∑
𝑚=1

𝜔𝑚(𝑚+𝑝)/2𝛾𝑚+1
2𝑗−1𝛾

†𝑚
2𝑗 . (4.9)

They possess anyonic commutation relations on different sites,

𝐹𝑗𝐹𝑘 = 𝜔sgn(𝑘−𝑗)𝐹𝑘𝐹𝑗 , 𝐹†𝑗 𝐹𝑘 = 𝜔− sgn(𝑘−𝑗)𝐹𝑘𝐹†𝑗 , 𝑗 ≠ 𝑘, (4.10)

which implies that their statistical angle is given by � = 2𝜋/𝑝, while on-site
they satisfy

𝐹𝑝𝑗 = 0, 𝐹†𝑚𝑗 𝐹𝑚𝑗 + 𝐹𝑝−𝑚𝑗 𝐹†(𝑝−𝑚)
𝑗 = 1, 𝑚 = 1, . . . , 𝑝 − 1. (4.11)

The Fock space can be constructed by acting with the creation operators on the
vacuum state,

|𝑛1 , 𝑛2 , . . . , 𝑛𝐿⟩ = 𝐹†𝑛1
1 𝐹†𝑛2

2 . . . 𝐹†𝑛𝐿𝐿 |0⟩ . (4.12)
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Note that due to the first relation in (4.11) the highest possible filling on each
site is 𝑝 − 1, thus generalising the usual Pauli principle. Furthermore, we can
indeed define the number operator,

𝑁𝑗 =
𝑝−1∑
𝑚=1

𝐹†𝑚𝑗 𝐹𝑚𝑗 , (4.13)

which obeys the usual algebra with creation and annihilation operators,[
𝑁𝑗 , 𝐹†𝑗

]
= 𝐹†𝑗 ,

[
𝑁𝑗 , 𝐹𝑗

]
= −𝐹𝑗 , (4.14)

and acts as follows on the Fock states as

𝑁𝑗 |𝑛1 , 𝑛2 , . . . , 𝑛𝐿⟩ = 𝑛 𝑗 |𝑛1 , 𝑛2 , . . . , 𝑛𝐿⟩ . (4.15)

Finally we note that for 𝑝 = 4 the FPF operators can be linked to spinful fermions
via a non-linear relation [208]. However, in our work we will not use this since
we focus exclusively on the case 𝑝 = 3 in the following.

4.3 The model and its phase diagram
In this section we introduce the model and its symmetries and present its
phase diagram, the main result of this chapter. We discuss the observables
and correlation functions which will be used to analyse the different phases in
Section 4.5.

Having introduced the operators creating and annihilating FPFs in the pre-
vious section, we are now in the position to define the model which we will
study in this chapter. We restrict ourselves to the simplest non-trivial case of
𝑝 = 3 and consider the one-dimensional Hamiltonian

𝐻(𝑔) = −𝑡
𝐿−1∑
𝑗=1

[
(1 − 𝑔)𝐹†𝑗 𝐹𝑗+1 + 𝑔𝐹†2

𝑗 𝐹
2
𝑗+1 + h.c.

]
. (4.16)

Throughout our work we set 𝑡 = 1 and use it as the energy unit. The parameter
𝑔 is restricted to the interval 0 ≤ 𝑔 ≤ 1, interpolating between the extreme
cases of pure single-particle hopping and pure coherent pair hopping. The
latter is allowed due to the possibility of having two FPFs at the same lattice
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Figure 4.1: The phase diagram of the model (4.16). We identified four phases: the left
(L) phase (white region), the right (R) phase (yellow), the middle (M) phase (orange)
and the gapped (G) phase (thick violet line at unit filling 𝑛 = 1). The properties of
the phases are summarised in Table 4.1. The detailed analyses at the coloured points
(𝐿1,2,3 etc.) are presented in Section 4.5. The black star, 𝑆 ≃ (0.58, 0.80), indicates the
point where the three phases, L, R and M, meet. The phase transitions have been
determined at the black dots; for fixed 𝑛 the estimated uncertainty is of the order of
Δ𝑔 = 0.01. The transition between the L and R phase seems to be second order.

site. We consider a one-dimensional chain of 𝐿 lattice sites with free boundary
conditions.

We note that the three-state quantum Potts chain (4.5) can in principle also
be written in terms of FPFs. However, the resulting expression is much more
complicated that the hopping Hamiltonian (4.16), containing for example terms
that break the particle-number conservation.

The model (4.16) with 𝑔 = 0, ie, the case of pure single-particle hopping, was
studied by Rossini et al. [206]. They showed that there exists a Mott-like phase
at unit filling, ie, if there are 𝐿 FPFs in total, while at all other filling fractions
the model is gapless and can be described by an anyonic Luttinger liquid [207].
The aim of our work is to extend the analysis to 𝑔 ≠ 0 and study the effect of
the additional pair hopping on the phase diagram.
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phase energy gap 𝑐 𝐺1(𝑟) 𝐺2(𝑟)
L gapless 1 ∼ 𝑟−2/3 ∼ 𝑟−𝛼2(𝑔,𝑛)

R gapless 1 0 ∼ 𝑟−13/18

M gapless 2 ∼ 𝑟−𝛼
′
1(𝑔,𝑛) ∼ 𝑟−𝛼

′
2(𝑔,𝑛)

G gapped - ∼ exp
[−𝑟/�1(𝑔)

] ∼ exp
[−𝑟/�2(𝑔)

]

Table 4.1: Summary of the properties of the four phases in Figure 4.1. The central
charge 𝑐 is obtained from the fit of the EE to the CC formula (4.17). In the L and R
phase we obtain the value 𝑐 = 1 up to about 1%. In the M phase the deviation from
𝑐 = 2 is slightly larger, as indicated in the inset of Figure 4.7a.

Coming back to the Hamiltonian (4.16), we observe a U(1) symmetry which
results in the conservation of the total number of particles, 𝑁 =

∑𝐿
𝑗=1 𝑁𝑗 , as

can be checked using Equation (4.14). Moreover the model is invariant under
the particle-hole transformation 𝐹𝑗 → 𝐹†𝑗 . The proof is presented in Appendix
4.A. This implies that, although the Hilbert space can have states with at most
𝑁 = 2𝐿 particles, it is sufficient to restrict the study to those with 𝑁 ≤ 𝐿. Since
we are interested in the thermodynamic limit, the relevant quantity would
rather be the density or the filling defined by 𝑛 = 𝑁/𝐿. Therefore we will
present the results for 0 < 𝑛 ≤ 1.

Our main result is the phase diagram of the model (4.16) which is presented
in Figure 4.1. The phase diagram consists of four phases: the left phase (white
region in Figure 4.1, which will be indicated by L throughout the paper), the
right phase (yellow region, indicated by R), the middle phase (orange region,
indicated by M) and the gapped phase (the thick violet line at 𝑛 = 1, indicated
by G). To characterise and distinguish different phases we look into different
properties and observables: the energy gap, the entanglement entropy and two-
point correlation functions. The results of this characterisation are summarised
in Table 4.1: we find two gapless phases (L and R) that allow a Luttinger
liquid description (𝑐 = 1) which are distinguished by the different power-law
behaviour of the correlation functions, another gapless phase (M) with central
charge 𝑐 = 2, and a gapped phase (G) which can be regarded as the extension of
the anyonic Mott-like phase to 𝑔 ≠ 0. A detailed discussion of the four phases
is given in Section 4.5.
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Studying the energy difference between the ground state and the first excited
state, 𝛿(𝐿) = 𝐸1(𝐿) − 𝐸0(𝐿), as a function of system size, 𝐿, is a classical way of
determining whether the model is gapped. For a gapped system this differ-
ence will converge to a finite value while for a gapless system it converges to
zero as 𝐿−𝑧 , where 𝑧 is the dynamical critical exponent. For a gapless system
in one dimension which can be described by a conformal field theory (CFT)
the dynamical critical exponent is 𝑧 = 1 [76, 78]. The scaling behaviour of
entanglement entropy (EE), 𝑆(𝑙), as a function of subsystem size, 𝑙, is another
probe to separate different phases from each other. For a gapped phase the
EE saturates to a constant value. For a gapless system, however, the EE grows
with the subsystem size. For an open chain at criticality with an underlying
CFT, one can read off the central charge, 𝑐, using the Calabrese-Cardy (CC)
formula [209, 210],

𝑆(𝑙) = 𝑐
6 log

[
𝐿
𝜋

sin
(
𝜋𝑙
𝐿

)]
+ 𝑆0 , (4.17)

in which 𝑆0 is a non-universal constant. Finally, correlation functions play an
essential role in our understanding of the phases. In a gapped phase a typical
two-point correlation function decays exponentially as a function of distance
with a correlation length of the order of the inverse gap. For a gapless sys-
tem, however, the two-point correlation functions show power-law behaviour.
Hence, following Reference [206], we will also study the two-point correlation
functions of FPF operators

𝐺1(𝑟) =
�����
〈
𝐹†𝐿

2 − 𝑟
2
𝐹 𝐿

2 + 𝑟
2

〉����� , 𝐺2(𝑟) =
�����
〈
(𝐹†)2𝐿

2 − 𝑟
2
𝐹2
𝐿
2 + 𝑟

2

〉����� . (4.18)

We measure the correlations between two lattice sites of distance 𝑟 which are
symmetrically distributed around the middle of the chain. This is to minimise
the finite-size effects from the edges.

The analysis of the phases using the tools discussed above we will be pre-
sented in Section 4.5. In addition, in some cases it is also possible to employ
analytical methods like bosonisation [211, 212], which for example allows us to
obtain an effective Luttinger liquid description in the L and R phases. Before
presenting the detailed results for the phase diagram we will briefly discuss
the implementation of our numerical simulations in the next section.
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4.4 The implementation for numerical studies

To study the model numerically we performed density matrix renormalisation
group (DMRG) simulations [81, 118] using the ALPS [213–215] and TeNPy [189]
libraries and checked that the obtained results are the same. To implement the
model for performing DMRG and bosonisation we use the Fradkin–Kadanoff
transformation [60],

𝐹𝑗 =
©
«
𝑗−1∏
𝑘=1

𝑈𝑘
ª®
¬
𝐵 𝑗 , (4.19)

where

𝑈𝑘 = 1 ⊗ · · · ⊗ 𝑈︸︷︷︸
𝑘

⊗ · · · ⊗ 1, 𝑈 =
©
«
1 0 0
0 𝜔 0
0 0 𝜔2

ª®®
¬
, (4.20)

𝐵 𝑗 = 1 ⊗ · · · ⊗ 𝐵︸︷︷︸
𝑗

⊗ · · · ⊗ 1, 𝐵 =
©
«
0 1 0
0 0 1
0 0 0

ª®®
¬
. (4.21)

The matrix representations of the local operators𝑈 and 𝐵 are given in the local
basis where the clock operator 𝜏 is diagonal, ie,𝑈 = 𝜏. The operators acting on
different sites commute while the on-site algebra is given by

𝐵 𝑗𝑈 𝑗 = 𝜔𝑈 𝑗𝐵 𝑗 . (4.22)

Applying this transformation together with the resulting relation 𝐵†2
𝑗 𝑈

2
𝑗 = 𝐵†2

𝑗 ,
the Hamiltonian (4.16) becomes

𝐻(𝑔) = −𝑡
𝐿−1∑
𝑗=1

[
(1 − 𝑔)𝐵†

𝑗𝑈 𝑗𝐵 𝑗+1 + 𝑔𝐵†2
𝑗 𝐵

2
𝑗+1 + h.c.

]
, (4.23)

which is local and consists of bosonic degrees of freedom only. Hence it can be
easily implemented for the DMRG calculation.

The DMRG simulations for the entanglement entropy and the correlation
functions were performed for a chain of size 𝐿 = 240, our default system size.
To find the central charge of the gapless phases using the CC formula or its
modified variation, as it will be later introduced, we dropped the first and the
last ten sites to stay away form finite-size effects due to the edges. The data
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4 Phase diagram of tight-binding Z3-Fock parafermion chain

for the correlation functions will be presented for 𝑟 ∈ [10 − 𝐿/2] and the same
interval will be used for the fittings. For the finite-size scaling of the energy gap
we use a range of system sizes, usually between 𝐿 = 64 and 𝐿 = 240. The DMRG
was performed with the bond dimension 𝜒 = 500 in the L, R and G phases,
and 𝜒 = 800− 1000 in the M phase. The number of sweeps which is needed for
the convergence varies and depends on the parameters. The typical number of
sweeps in the L, R and G phases is between 20 and 50. In the M phase, however,
40 to 60 sweeps were done. Each sweep consists of minimisation from the first
site to the very last one and then from the last site back to the first one.

4.5 The results
In this section we present the detailed results of our numerical and analytical
study of the phase diagram. The specific values of the parameters at which we
present numerical data are indicated by coloured points in Figure 4.1. We will
use the same colour to present the EE and correlation functions 𝐺1 and 𝐺2 for
each one of these points.

4.5.1 The L phase
Rossini et al. [206] studied the model (4.16) for the special case of 𝑔 = 0 and
various filling fractions 𝑛. They found that the model is gapless for any filling
𝑛 < 1 and well described by an anyonic Luttinger liquid [207] with Luttinger
parameter 𝐾 = 𝑝/2 such that the correlation functions decay as power laws
𝐺1(𝑟) ∼ 𝑟−𝛼1 with 𝛼1 = 2/𝑝 and 𝐺2(𝑟) ∼ 𝑟−𝛼2 with 𝛼2 = 4𝛼1. Although the
numerical results of Reference [206] match very well with the theoretical predic-
tions derived by Calabrese and Mintchev [207] for 𝐺1, there are discrepancies
between the theory and the numerics for 𝐺2. Our numerical and analytical
results show that the properties of the model at 𝑔 = 0 extend to a finite region
with 𝑔 > 0.

The results of the numerical calculations in the L phase are shown at the
points 𝐿1 = (𝑔, 𝑛) = (0, 0.3), 𝐿2 = (0.25, 0.5) and 𝐿3 = (0.5, 0.9). These points
were selected to show the typical behaviour. The L phase, which is depicted
as a white region in Figure 4.1, is found to be gapless with the central charge
𝑐 = 1, as is confirmed by the fit of the EE shown in Figure 4.2a to the CC
formula. In Figure 4.2b we show the energy difference 𝛿(𝐿) = 𝐸1(𝐿) − 𝐸0(𝐿) at
the point 𝐿2 and system sizes 𝐿 ∈ [64− 176]. We used a power-law function for
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Figure 4.2: EE and gap for the points 𝐿1, 𝐿2 and 𝐿3 in the L phase. (a) EE as a function
of subsystem size 𝑙 for a chain of size 𝐿 = 240. The solid lines are the CC formula
with 𝑐 = 1. We have shifted the red points by 0.2 and the green points by 0.4 for
visibility. (b) The energy difference between the first excited state and the ground
state at the point 𝐿2 as a function of 1/𝐿 for 𝐿 ∈ [64 − 176]. The fitting parameters
for the solid line are 𝑏 ≈ 0.99 and 𝛿0 ≃ 10−4, thus indicating a gapless phase.

the fitting, 𝛿(𝐿) = 𝑎/𝐿𝑏 + 𝛿0, which gave us 𝑏 ≈ 0.99 and 𝛿0 ≃ 10−4. Therefore
we can conclude that the dynamical critical exponent is given by 𝑧 = 1, which
confirms that the low-energy physics can be described by a CFT.

In Figure 4.3 we present the two-point correlation functions 𝐺1(𝑟) and 𝐺2(𝑟)
for the same three points in the L phase. The correlation function 𝐺1(𝑟) shows
a power-law behaviour, 𝐺1(𝑟) ∼ 𝑟−𝛼1 with 𝛼1 ≈ 2/3, as it was the case for
𝑔 = 0. In addition we observe weak oscillations with a wave number 𝑞1 that
takes the values 𝑞1 ≈ 0.95 at 𝐿1 and 𝑞1 ≈ 1.57 at 𝐿2, while at 𝐿3 we were not
able to determine 𝑞1 with sufficient accuracy. The origin of these oscillations
seems to involve doubly-occupied sites, as is indicated by comparison to the
bosonisation treatment (see below). The result on the correlation function 𝐺2
shows a power-law decay too, 𝐺2(𝑟) ∼ 𝑟−𝛼2 , but the exponent 𝛼2 depends on
both the pairwise hopping, 𝑔, and the filling fraction, 𝑛, as it is indicated in the
inset.

In the following we provide an argument for our finding of 𝐺1(𝑟) ∼ 𝑟−2/3

based on a bosonisation [211, 212] treatment. Or starting point is the obser-
vation that the probability to have two particles at the same site is strongly
suppressed throughout the L phase. For example, at the point 𝐿2 the prob-
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Figure 4.3: Correlation functions at the three points 𝐿1, 𝐿2 and 𝐿3 in the L phase. (a)
𝐺1(𝑟) as function of 𝑟. To avoid mixing the data points, we multiplied 𝐺1(𝑟) for the
point 𝐿3 by 1.5. For comparison 𝑟−2/3 as derived in (4.35) is also plotted. (b) 𝐺2(𝑟) as
function of 𝑟. We fitted a power law with exponent 𝛼2, the obtained values are given
in the legend. We note that both correlation functions show a power-law decay, and
that 𝐺2(𝑟) ≪ 𝐺1(𝑟) at small 𝑟 consistent with the strongly suppressed probability to
find two particles at the same site.

ability of having an empty site, a site with one particle and a site with two
particles are 𝑃(0) ≃ 0.54, 𝑃(1) ≃ 0.42 and 𝑃(2) ≃ 0.04, respectively. Therefore
one can argue that it is reasonable to project the model to the local Hilbert
space with at most one particle at a given site, and thus drop the second term
in the Hamiltonian. Using this projection, we can identify the operator 𝐵 𝑗 in
the subspace spanned by |0⟩ and |1⟩ with the raising spin-1/2 operator 𝜎+

𝑗 ,

𝐵 𝑗 → 𝜎+
𝑗 =

(
0 1
0 0

)
, (4.24)

and simplify 𝐺1(𝑟) to

𝐺1(𝑟) =
����
〈
𝐹†0𝐹𝑟

〉���� =
����
〈
𝐵†

0𝑈0𝑈1 · · ·𝑈𝑟−1𝐵𝑟
〉���� ∼

����
〈
𝜎−

0𝑈
(𝑝)
0 𝑈 (𝑝)

1 · · ·𝑈 (𝑝)
𝑟−1𝜎

+
𝑟

〉���� , (4.25)

in which
𝑈 (𝑝)
𝑘 = 1 ⊗ · · · ⊗ 𝑈 (𝑝)︸︷︷︸

𝑘

⊗ · · · ⊗ 1, 𝑈 (𝑝) =
(
1 0
0 𝜔

)
. (4.26)
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Due to the projection we are left with two states per site. We can use a Jordan–
Wigner (JW) transformation and relate the spin-1/2 operators to a set of spinless
fermions, 𝜓 𝑗 ,

𝜎𝑧𝑗 = 2𝑛 𝑗 − 1, 𝜎+
𝑗 = 𝑒 i𝜋

∑
𝑘< 𝑗 𝑛𝑘𝜓†

𝑗 , 𝑛 𝑗 = 𝜓†
𝑗𝜓 𝑗 , (4.27)

where the 𝜓 𝑗 satisfy
{
𝜓𝑖 ,𝜓 𝑗

}
= 0 and {𝜓𝑖 ,𝜓†

𝑗 } = 𝛿𝑖 𝑗 . Applying the JW transfor-
mation to 𝐺1(𝑟) and rewriting the matrix𝑈 (𝑝) we obtain

𝐺1(𝑟) ∼
����
〈
𝜎−

0𝑈
(𝑝)
0 𝑈 (𝑝)

1 · · ·𝑈 (𝑝)
𝑟−1𝜎

+
𝑟

〉���� =
�������
〈
𝜎−

0


𝑟−1∏
𝑘=0

𝑒 i 2𝜋
3 (1−𝑛𝑘 )


𝜎+
𝑟

〉������� (4.28)

= 𝑒 i 2𝜋
3 𝑟

����
〈
𝜓0 𝑒−i 2𝜋

3
∑𝑟−1
𝑘=0 𝑛𝑘 𝑒 i𝜋

∑𝑟−1
𝑙=0 𝑛𝑙 𝜓†

𝑟

〉���� = 𝜔𝑟

����
〈
𝜓0 𝑒 i 𝜋3

∑𝑟−1
𝑘=0 𝑛𝑘 𝜓†

𝑟

〉���� . (4.29)

Assuming that the fermions have a Fermi surface, we can linearise around the
two resulting Fermi points 𝑘 = ±𝑘F,

𝜓 𝑗 =
√
𝑎
[
𝑒 i𝑘F𝑥𝜓+(𝑥) + 𝑒−i𝑘F𝑥𝜓−(𝑥)

]
, (4.30)

where 𝑎 denotes the lattice constant and 𝑥 = 𝑗𝑎 the spatial coordinate that
will be treated as a continuous variable. In addition we use the bosonisation
dictionary [211, 212],

𝜓±(𝑥) = 1√
2𝜋𝛼

𝑒 i
√
𝜋[±𝜙(𝑥)−�(𝑥)] , (4.31)

in which 𝛼−1 is the momentum cut-off, and 𝜙(𝑥) and �(𝑥) are dual fields that
satisfy the commutation relation

[
𝜙(𝑥), �(𝑦)] = iΘ(𝑦 − 𝑥), with Θ(𝑥) being the

Heaviside step function. To continue we recall that for bosonisation normal
ordering is necessary. Hence for the density operator we use 𝑛𝑘 =: 𝑛𝑘 : +�̄�,
in which �̄� is the average density on each site in the ground state and : 𝑛𝑘 :=
𝜕𝑥𝜙/

√
𝜋. Furthermore, assuming that the interactions are incorporated via

a Luttinger parameter 𝐾 we rescale the bosonic fields as 𝜙(𝑥) → √
𝐾𝜙(𝑥),
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�(𝑥) → �(𝑥)/√𝐾 to bring the correlation function into the standard form

𝐺1(𝑟) ∼
����
〈 [
𝑒

i
√
𝜋
[√
𝐾𝜙(0)− �(0)√

𝐾

]
+ 𝑒−i

√
𝜋
[√
𝐾𝜙(0)+ �(0)√

𝐾

] ]
𝑒 i

√
𝜋𝐾
3 [𝜙(𝑟)−𝜙(0)]

×
[
𝑒
−i
√
𝜋
[√
𝐾𝜙(𝑟)− �(𝑟)√

𝐾

]
𝑒−i𝑘F𝑟 + 𝑒 i

√
𝜋
[√
𝐾𝜙(𝑟)+ �(𝑟)√

𝐾

]
𝑒 i𝑘F𝑟

] 〉����. (4.32)

Using the Wick theorem, the neutrality condition for vertex operators, and

〈
𝑒 i𝛽[𝜙(𝑟)−𝜙(0)]〉 =

〈
𝑒 i𝛽[�(𝑟)−�(0)]〉 =

(
𝛼2

𝛼2 + 𝑟2

) 𝛽2
4𝜋

(4.33)

we get

𝐺1(𝑟) ∼ 𝐴1

(
1
𝑟

) 1
2𝐾+ 2

9𝐾

1 + cos (2𝑘F𝑟)

(
𝛼
𝑟

) 2
3𝐾


, (4.34)

where we have limited ourselves to the two leading terms at large separations,
and 𝐴1 is a non-universal constant. For 𝐾 > 0 the first term in 𝐺1(𝑟) decays
slower than the second one and thus is dominant at large separations. Hence
we conclude that at large 𝑟

𝐺1(𝑟) ∼ 𝑟−
1

2𝐾− 2
9𝐾 ∼ 𝑟−

2
3 , (4.35)

where in the last step we have used that for the free anyon gas [206, 207]
the Luttinger parameter 𝐾 is related to the statistical parameter � = �/𝜋 via
𝐾 = 1/� = 3/2. We stress that we have derived the result (4.35) from the
microscopic model (4.16), thereby linking it to the phenomenological theory
applied by Calabrese and Mintchev [207]. In particular, our line of argument
shows why the anyonic Luttinger model indeed provides a good description
of the L phase. We note, however, that the oscillations in 𝐺1(𝑟) observed in
Figure 4.3a are not adequately described by the second term in (4.34). Thus
they are not captured by the line of argument presented above, which hints
at the importance of doubly-occupied sites. Moreover, the behaviour 𝐺2(𝑟) ∼
𝑟−𝛼2 cannot be described by the bosonisation approach, as obviously doubly
occupancy will be relevant for this correlation function. We do not have a clear
understanding yet how the oscillations in 𝐺1(𝑟) or the power-law scaling of
𝐺2(𝑟), in particular the exponent 𝛼2, relate to the filling 𝑛 and the parameter 𝑔.
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Figure 4.4: EE and energy gap for three points 𝑅1, 𝑅2 and 𝑅3 in the R phase. (a) EE
as a function of subsystem size 𝑙. The solid lines are the CC formula with 𝑐 = 1.
We have shifted the red points by 0.2 and the green points by 0.4 for visibility. (b)
Energy gap above the ground state at the point 𝑅2. The fitting parameters for the
solid line are 𝑏 ≈ 0.99 and 𝛿0 ≃ 10−4, again indicating a gapless phase.

4.5.2 The R phase
The parameter 𝑔 controls the relative strength of single-particle and pair-
hopping amplitudes. By increasing 𝑔 for the filling 𝑛 ≲ 0.8 the system directly
enters the R phase (yellow region in Figure 4.1) from the L phase. For larger
filling, 0.8 ≲ 𝑛 < 1, there exists a phase with the central charge 𝑐 ≈ 2 between
the L phase and the R phase. This M phase will be discussed in Section 4.5.3.
The point where the three phases L, R and M meet is located at 𝑆 ≃ (0.58, 0.80)
and marked with a black star in the phase diagram.

In this section we present details on the R phase. Numerical results are shown
for the selected points 𝑅1 = (0.74, 0.3), 𝑅2 = (0.8, 0.5) and 𝑅3 = (1, 0.75). The
EE and energy gap at these three points are given in Figure 4.4. We conclude
that also the R phase is gapless with central charge 𝑐 = 1. More precisely, the
energy gap scales as 𝛿(𝐿) = 𝑎/𝐿𝑏 + 𝛿0 with 𝑏 ≈ 0.99 and 𝛿0 = 10−4, thus the
dynamical critical exponent is given by 𝑧 = 1.

The difference between the L and R phase shows up only when considering
the correlation functions. In the R phase the correlation function 𝐺1(𝑟) decays
exponentially as a function of distance 𝑟, 𝐺1(𝑟) ∼ exp(−𝑟/�1), with a correlation
length, �1, of the order of a few lattice constants. Away from the phase transition
one even finds �1 ∼ 𝑎, ie, the correlation function essentially vanishes. This
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Figure 4.5: The correlation function 𝐺2(𝑟) is plotted as function of 𝑟 for the three points
𝑅1, 𝑅2 and 𝑅3 in the R phase. To avoid mixing the data points, we multiplied 𝐺2(𝑟)
by 1.5 and 2 for the red and green data points, respectively. (a) For comparison
we plot the prediction (4.40) as solid line. (b) We fitted the data with sub-leading
oscillations decaying as a power law, ie, 𝐺2(𝑟) = 𝐴2𝑟−

13
18 + 𝐴′

2𝑟
−𝛽2 cos(𝑞2𝑟 + 𝜙2). The

resulting wave numbers 𝑞2 are given in the legend. For the point 𝑅3 the wave length
2𝜋/𝑞2 ≈ 5 becomes rather short, increasing the uncertainty in the fit. The accuracy
of the fit for the exponent 𝛽2 was not sufficient to obtain reliable results.

finding can be understood by noting that deep in the R phase the probability
of having one particle on a site is generally much smaller than having two
particles or an empty site. For instance, at the point 𝑅2 the probability of
having an empty site, a site with one particle and a site with two particles are
𝑃(0) ≃ 0.24, 𝑃(1) ≃ 0.01 and 𝑃(2) ≃ 0.75, respectively. In the special case of
𝑔 = 1 we even find 𝑃(1) = 0 in the ground state. This can be understood from
the Hamiltonian𝐻(1), in which only the operators 𝐹2

𝑗 or 𝐹†2
𝑗 appear, which both

annihilate the one-particle state. So the on-site one-particle sector decouples
and does not play a crucial role on the low-energy physics.

We can use this information from the numerics and assume that in the
R phase the low-energy physics can be captured by the second term in the
Hamiltonian only, ie, we approximate

𝐻(𝑝)
R (𝑔) = −𝑡 𝑔

𝐿−1∑
𝑗=1

𝐹†2
𝑗 𝐹

2
𝑗+1 + h.c. = −𝑡 𝑔

𝐿−1∑
𝑗=1

𝐵†2
𝑗 𝐵

2
𝑗+1 + h.c.. (4.36)
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4.5 The results

Following our line of argument used above for the L phase we project the
Hamiltonian onto the space with empty or doubly occupied on-site subspaces
|0⟩ and |2⟩, respectively. Hence we can identify the operator 𝐵2

𝑗 with the raising
spin-1/2 operator 𝜎+

𝑗 in this subspace,

𝐵2
𝑗 → 𝜎+

𝑗 =
(
0 1
0 0

)
, (4.37)

which gives rise to the XX-Hamiltonian,

𝐻(𝑝)
R (𝑔) = −𝑡 𝑔

𝐿−1∑
𝑗=1

𝜎−
𝑗 𝜎

+
𝑗+1 + h.c.. (4.38)

This projected Hamiltonian is quite fruitful. First of all we note that it is well-
known that the XX-model is gapless and can be described with the bosonic CFT
with the central charge 𝑐 = 1[76, 78]. Moreover, we can calculate 𝐺2(𝑟) in the
same way that we calculated 𝐺1(𝑟) in the L phase,

𝐺2(𝑟) =
����
〈
𝐹†2

0 𝐹
2
𝑟

〉���� =
����
〈
𝐵†2

0 𝑈
2
0𝑈

2
1 · · ·𝑈2

𝑟−1𝐵
2
𝑟

〉���� . (4.39)

Using the definition of the matrix 𝑈 , we see that the projection of 𝑈2 onto
the subspace spanned by |0⟩ and |2⟩ has the same form as the matrix 𝑈 (𝑝)
in Equation (4.26). Therefore the calculation we presented for the correlation
function𝐺1(𝑟) in Section 4.5.1 can be directly applied to the correlation function
𝐺2(𝑟) in the R phase. Furthermore, since the XX-model is a free theory it seems
reasonable to set the Luttinger parameter to its non-interacting value, 𝐾 = 1.
As a result we finally arrive at the prediction

𝐺2(𝑟) ∼ 𝑟−
1
2− 2

9 = 𝑟−
13
18 . (4.40)

In Figure 4.5 we present the correlation function 𝐺2(𝑟) for the three points 𝑅1,2,3
deep in the R phase. The agreement between the numerical results and the
simple prediction (4.40) from LL theory is quite good. On top of the power-
law decay we observe oscillations with a wave number 𝑞2. As can be seen
from the fitted values given in the legend of Figure 4.5b, the wave number
strongly depends on the filling fraction 𝑛. On the other hand, we determined
the wave number at the point 𝑅′

2 = (1, 0.5) to be 𝑞2 ≈ 0.8, indicating that there
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4 Phase diagram of tight-binding Z3-Fock parafermion chain

seems to be no (strong) dependence on the parameter 𝑔. This is also consistent
with results obtained along the cut (𝑔, 0.3) for 0.6 ≤ 𝑔 ≤ 0.7 (not shown, see
Figure 4.12 for the energy along this cut) which show essentially constant wave
numbers for both 𝐺1(𝑟) and 𝐺2(𝑟) within the phases L and R.a Furthermore, the
oscillations seem not to be described by the first correction to (4.40), ie, they are
not captured by the Luttinger-liquid description of 𝐺2(𝑟). Thus at the moment
we lack a clear understanding of the oscillations.

Finally we note that there are subtleties in the R phase at the filling 𝑛 = 1.
In Figure 4.6 we present the EE and the pair correlation function 𝐺2(𝑟) for the
point 𝑅4 = (0.65, 1). The correlation function 𝐺1(𝑟) vanishes, as it is the case
throughout the R phase. Due to the bifurcation in the EE profile, in order to
find the central charge we use the modified CC formula[216, 217],

𝑆(𝑙) = 𝑐
6 log

[
𝐿
𝜋

sin
(
𝜋𝑙
𝐿

)]
+ 𝑆0 + 𝑎1 + 𝑎2 cos(𝜋𝑙)[

𝐿
𝜋 sin

(
𝜋𝑙
𝐿

)] 𝑏 , (4.41)

in which 𝑎1, 𝑎2 and 𝑏 are new fitting parameters in addition to the central
charge 𝑐 and the constant 𝑆0. Using the modified CC formula we get the
central charge 𝑐 = 1 for the filling 𝑛 = 1 in the R phase, just as was obtained
for lower fillings. The same bifurcation also appears in the correlation function
𝐺2(𝑟). Therefore, in order to extract a power law we picked the upper part of
the data for fitting with the result 𝐺2(𝑟) ∼ 𝑟−0.78, which is still quite close to the
prediction 13/18 ≈ 0.72 we obtained deep in the R phase from bosonisation.
The difference between the prediction and the numerical value could be due to
the fit to the upper part of data and the fact that at this point 𝑃(1) ≃ 0.1, which
means that the local state |1⟩ plays a more important role than it does deep in
the R phase.

4.5.3 The M phase

For sufficiently large filling fractions, 0.8 < 𝑛 ≤ 1, another gapless phase
between the L and R phases exists. This M phase is indicated as the orange
region in the phase diagram, Figure 4.1. The M phase is found to be gapless
with central charge 𝑐 = 2, as can be deduced from the fit of the CC formula

aIncidentally we observe that for a fixed filling fraction 𝑛 the wave numbers are approximately
related by 𝑞1 ≈ 2𝑞2, both at 𝑛 = 0.3 and 𝑛 = 0.5.
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Figure 4.6: EE and the correlation function 𝐺2(𝑟) at the point 𝑅4 = (0.65, 1). (a) The
EE as a function of subsystem size 𝑙 together with a fit of the modified CC formula
(4.41). We find 𝑐 = 1 and 𝑏 = 0.78. The inset shows the bifurcation of the data points
between even and odd 𝑙. (b) The correlation function 𝐺2(𝑟) together with a fit (red
solid line) to the upper branch of the data.

(4.17) to the EE calculated at the points 𝑀1 = (0.56, 0.85), 𝑀2 = (0.54, 0.9) and
𝑀3 = (0.53, 1) shown in Figure 4.7a. Verifying the CFT prediction regarding
the scaling of the low-lying energy levels, 𝛿(𝐿) ∼ 1/𝐿, turned out to be a hard
task. This could be due to two issues: The M phase is a fairly small region,
therefore any chosen point is quite close to the phase boundaries with the L
and the R phases. This in turn demands very large system sizes. In addition,
the high central charge 𝑐 = 2 and oscillatory features suggest that larger bond
dimensions are required. In Figure 4.7b we present our results for the energy
gap at the point 𝑀3, system sizes 𝐿 ∈ [16− 120] and bond dimension 𝜒 = 1000.
While we observe a strongly fluctuating dependence on the system size, the
results clearly indicate a vanishing of the energy gap in the thermodynamic
limit.

The two-point correlation functions 𝐺1(𝑟) and 𝐺2(𝑟) are presented in Fig-
ure 4.8. They both show a power-law behaviour as it is expected from CFT. The
correlation function 𝐺1(𝑟) is quite smooth and behaves as 𝐺1(𝑟) ∼ 𝑟−𝛼1 with an
exponent 𝛼1 ≃ 0.75 − 0.8. Although ripples and fluctuations in the correlation
functions 𝐺2(𝑟) are clearly visible, it still has a power-law trend, 𝐺2(𝑟) ∼ 𝑟−𝛼2

with 𝛼2 ≃ 1.1. Since in the M phase all three states at each site play a role, it is
not clear at this point whether one can relate the properties of this phase to a
Luttinger liquid picture.
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Figure 4.7: (a) EE as a function of subsystem size 𝑙 for the points 𝑀1, 𝑀2 and 𝑀3 in
the M phase. The fits are performed with the CC formula (4.17), giving a central
charge of 𝑐 ≈ 2. We have shifted the red points by 0.2 and the green points by 0.4
for visibility. (b) Energy gap above the ground state at the point 𝑀3. The fitting
parameters for the solid line are 𝑏 ≈ 1 and 𝛿0 ≃ 10−4.

The location of the M phase between the L and R phases suggest the following
interpretation: In the M phase one has two sets of gapless bosonic modes, which
is supported by its central charge 𝑐 = 1+ 1 = 2. A priori we do not see a reason
why these two theories should have the same effective velocity.b Now, when
crossing the phase boundary to the L phase, a gap opens in one of the bosonic
theories (which is naively related to pair excitations), while when going to
the R phase the other theory develops a gap (naively related to single-particle
excitations).

4.5.4 The G phase
Finally we consider the gapped G phase indicated by a thick violet line in
Figure 4.1. This phase was identified by Rossini et al. [206] at 𝑔 = 0 and
interpreted as an anyonic Mott-like phase. Our analysis reveals that this phase
extends to finite values of 𝑔with the transition to the gapless M phase located at
𝑔 ≃ 0.45. Using DMRG we numerically calculated the energy gap as a function
of system size, Δ(𝐿), and used a power-law fit to extract the gap Δ = Δ(𝑔) in the

bThe situation is reminiscent to the one-dimensional Hubbard model away from half fill-
ing [218], and might be similar to the 𝑐 = 3/2 phase recently discussed in Reference [219].
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Figure 4.8: The correlation functions 𝐺1(𝑟) and 𝐺2(𝑟) for the three points, 𝑀1, 𝑀2 and
𝑀3, in the M phase are plotted in (a) and (b), respectively. To avoid mixing the data
points, 𝐺1(𝑟) for the point 𝑀3 was multiplied by 1.2, 𝐺2(𝑟) for 𝑀2 was multiplied by
2.5 and 𝐺2(𝑟) for 𝑀3 was multiplied by 3.2. For both correlation functions we fitted
power laws with exponents 𝛼1,2, the obtained values are given in the legends.
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Figure 4.9: (a) Finite-size scaling of the energy gap, Δ(𝐿), as a function of system size
𝐿 ∈ [64 − 240] at several points in the G phase. (b) Rescaled energy gap in the
thermodynamic limit, Δ(𝑔)/Δ(0), as a function of 𝑔. The orange and the yellow
lines correspond to the M and the R phases, respectively, while the stars indicate the
transition points.
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Figure 4.10: EE as a function of the subsystem size 𝑙 for three points 𝑇1, 𝑇2 and 𝑇3 in
the G phase. We note that in the middle of the chain the EE takes a constant value
indicating a finite correlation length [209].

thermodynamic limit via

Δ(𝐿) = 𝑎
𝐿𝑏

+ Δ. (4.42)

The finite-size data and fits as well as the 𝑔-dependence of the extracted gap
Δ(𝑔) are presented in Figure 4.9. For convenience we rescaled the gap with its
value at 𝑔 = 0, namely Δ(0) = 0.106 𝑡.

We have calculated the EE and correlation functions at the points𝑇1 = (0.2, 1),
𝑇2 = (0.3, 1) and𝑇3 = (0.42, 1) in the G phase. The data are shown in Figures 4.10
and 4.11, respectively. The EE saturates quite quickly as a function of subsystem
size 𝑙 to a constant value, which is indicative of a finite correlation length [209].
This is also supported by the behaviour of the correlation functions, which
show an exponential decay with power-law corrections,

𝐺𝑖(𝑟) = 𝐴𝑖𝑟−𝛽𝑖 exp(−𝑟/�𝑖), 𝑖 = 1, 2. (4.43)

The obtained fitting parameters are given in Figure 4.11. The correlations
lengths are much smaller than system size, usually of the order 10-20 lattice
constants.
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Figure 4.11: The correlation functions 𝐺1(𝑟) and 𝐺2(𝑟) for the three points 𝑇1, 𝑇2 and
𝑇3 in the G phase are plotted in (a) and (b), respectively. To avoid mixing the data
points, 𝐺1(𝑟) for 𝑇2 was multiplied by 1.5, 𝐺1(𝑟) for 𝑇3 was multiplied by 2, 𝐺2(𝑟) for
𝑇2 was multiplied by 2.5 and 𝐺2(𝑟) for 𝑇3 was multiplied by 4.5. We note that both
correlation functions show an exponential decay at large distances, as indicated by
the fitted functions (4.43) shown as solid lines.

4.5.5 On the nature of the transitions
So far we focussed on the properties of the individual phases. In this sec-
tion we will examine the nature of the transitions between them by studying
the ground-state energy and its derivatives together with the information we
gathered so far.

The transition between the L and the R phases

First we consider the phase transition between the two gapless phases with the
central charge 𝑐 = 1, namely the L phase and the R phase. As discussed above,
these two phases are best distinguished by the behaviour of the correlation
functions and in particular by the vanishing of 𝐺1(𝑟) in the R phase. To further
investigate the nature of the transition we calculated the ground-state energy
𝐸(𝑔) at a fixed filling. For example, in Figure 4.12 we show 𝐸(𝑔) and its first and
second derivatives with respect to 𝑔 at the filling 𝑛 = 0.3. We see that while
the energy and its first derivative are smooth and continuous, there exists a
divergence in the second derivative 𝜕2𝐸

𝜕𝑔2 at 𝑔c ≃ 0.64. This value is identical to
the one extracted from the change of the behaviour in 𝐺1(𝑟). We have checked
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Figure 4.12: Ground-state energy 𝐸(𝑔) as well as its first and second order derivatives
with respect to the parameter 𝑔 but at fixed filling 𝑛 = 0.3. We observe a divergence
in 𝜕2𝐸

𝜕𝑔2 at 𝑔c ≃ 0.64 indicating the existence of a second-order phase transition between
the L and R phase.

the presence of the two phases down to the filling 𝑛 = 0.1. The transition
parameter 𝑔c(𝑛) = 0.64 is the same within the accuracy of our numerics for the
fillings 0.1 ≤ 𝑛 ≤ 0.4, therefore in Figure 4.1 we extrapolate it down to 𝑛 = 0.
In summary, we conclude that the L and R phases are separated by a phase
transition that seems to be of second order, but that future work is required to
obtain a complete characterisation.

The transitions to the M phase

For the transition between the M phase and the L and R phases, we studied again
the ground-state energy and its first and second derivatives (not shown). While
the energy and its first derivative are smooth within our precision, the second
order derivative is smooth in the L and the R phases but quite fluctuating and
spiky within the M phase. This may be related to the presence of fluctuations as
it was recently observed in the incommensurate phase of the Kitaev–Hubbard
model [220].

For the phase transitions at 𝑛 = 1 between the M phase and G phase we
performed a scaling analysis. For systems of size 𝐿 ∈ [64 − 100] we numerically
calculated the energy difference between the first excited state and the ground
state, Δ(𝐿, 𝑔) = 𝐸1(𝐿, 𝑔) − 𝐸0(𝐿, 𝑔). As it is presented in Figure 4.13a the
quantity 𝐿𝑧Δ with 𝑧 = 1 for various system sizes cross at 𝑔c ≃ 0.45. This value
is consistent with the critical parameter 𝑔c obtained from the EE. Figure 4.13b
also shows that by scaling the 𝑔-axis as 𝐿1/�(𝑔 − 𝑔c) with � = 1 all the data
close to the transition collapse to a single curve. Thus we conclude that our
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Figure 4.13: (a) The energy gap at 𝑛 = 1 scaled with the system size, 𝐿Δ(𝐿, 𝑔), indicates
a phase transition at 𝑔c ≃ 0.45. (b) The scaling collapse of data using the critical
exponents 𝑧 = � = 1.

results are consistent with the existence of a second-order transition. We note,
however, that reasonable scaling collapse of the data is still obtained if 𝑧 is
varied provided � is adapted appropriately.

4.6 Conclusion and outlook
In this work we studied a one-dimensional model for FPFs with 𝑝 = 3, which
contained single-particle and coherent pair-hopping terms between nearest-
neighbour sites. Using a combination of numerical simulations and analytical
arguments we determined the phase diagram as a function of the relative
strength between the two hopping terms and the filling fraction, ie, the num-
ber of FPFs per lattice site. We identified four different phases: two distinct
gapless Luttinger phases with central charge 𝑐 = 1, one gapless phase with
𝑐 = 2, and one gapped phase. All phases were characterised by the energy
gap, entanglement entropy and behaviour of two-point correlation functions.
While we were able to locate the phase transitions accurately, their complete
characterisation had to be left for future studies.

Our work can be seen as a step towards the general understanding of the
many-particle states of FPFs, or more broadly towards a better understanding
of the manifestations of anyonic statistics in many-particle phases. Of course
there are many open directions for future research: First, it would be very
interesting to analyse the effects of extensions to the simple model (4.16), for
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example by including additional complex phases. These are known [221, 222]
to have drastic effects on the phase diagram of parafermionic models, and can
be crucial for the existence of edge zero modes [61]. Similarly, the addition
of BCS-like terms will break the particle number conservation and thus is ex-
pected to support additional phases in the phase diagram. Second, studying
the properties of FPFs with 𝑝 > 3 is of interest. So far only the pure hopping
model (ie, 𝑔 = 0) for 𝑝 = 6 was studied by Rossini et al. [206], who pointed out
analogies with counter-propagating boundary modes in the � = 1/3 Laughlin
state. Third, it would be of general interest to establish possible experimen-
tal realisations of FPFs, for example based on structures combining quantum
Hall systems and superconductors, quantum Hall bilayers, or two-dimensional
topological insulators [112].

4.A Proof of “particle-hole" symmetry

In this section we prove that it is sufficient to study the model for 0 < 𝑛 ≤ 1.
First of all note that the number operator for FPFs,

𝑁𝑗 = 1 ⊗ · · · ⊗ 𝑁︸︷︷︸
𝑗

⊗ · · · ⊗ 1 , 𝑁 =
©
«
0 0 0
0 1 0
0 0 2

ª®®
¬
, (4.44)

can be rewritten in terms of the bosonic operators (4.21) as

𝑁𝑗 = 𝐹†2
𝑗 𝐹

2
𝑗 + 𝐹†𝑗 𝐹𝑗 = 𝐵†2

𝑗 𝐵
2
𝑗 + 𝐵†

𝑗 𝐵 𝑗 . (4.45)

We now perform the transformation

𝑈 𝑗 → 𝑈†
𝑗 , 𝐵𝑗 → 𝐵†

𝑗 , (4.46)

which preserves the bosonic algebra (4.22). From Equation (4.19) one can see
that this transformation corresponds to 𝐹𝑗 → 𝐹†𝑗 . Applying it to 𝑁𝑗 we get for
the particle density

𝑁𝑗 → 𝐵2
𝑗 𝐵

†2
𝑗 + 𝐵 𝑗𝐵†

𝑗 = 2 − 𝑁𝑗 ⇒ 𝑛 =
1
𝐿

𝐿∑
𝑗=1

𝑁𝑗 → 2 − 𝑛. (4.47)
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The action of (4.46) on the Hamiltonian (4.23) is given by

𝐻(𝑔) = −𝑡(1 − 𝑔)
𝐿−1∑
𝑗=1

(
𝐵†
𝑗𝑈 𝑗𝐵 𝑗+1 +𝑈†

𝑗 𝐵 𝑗𝐵
†
𝑗+1

)
− 𝑡 𝑔

𝐿−1∑
𝑗=1

(
𝐵†2
𝑗 𝐵

2
𝑗+1 + 𝐵2

𝑗 𝐵
†2
𝑗+1

)
(4.48)

→ −𝑡(1 − 𝑔)
𝐿−1∑
𝑗=1

(
𝐵 𝑗𝑈†

𝑗 𝐵
†
𝑗+1 +𝑈 𝑗𝐵†

𝑗 𝐵 𝑗+1

)
− 𝑡 𝑔

𝐿−1∑
𝑗=1

(
𝐵2
𝑗 𝐵

†2
𝑗+1 + 𝐵†2

𝑗 𝐵
2
𝑗+1

)
(4.49)

= −𝑡(1 − 𝑔)
𝐿−1∑
𝑗=1

(
𝜔𝐵†

𝑗𝑈 𝑗𝐵 𝑗+1 + �̄�𝑈†
𝑗 𝐵 𝑗𝐵

†
𝑗+1

)
− 𝑡 𝑔

𝐿−1∑
𝑗=1

(
𝐵†2
𝑗 𝐵

2
𝑗+1 + 𝐵2

𝑗 𝐵
†2
𝑗+1

)
.

(4.50)

We recall that we can choose other representations for the matrix 𝑈 in Equa-
tion (4.20) as long as it satisfies the requirements 𝑈3 = 1 and 𝑈2 = 𝑈†. Thus
we can redefine 𝑈 𝑗 as �̃� 𝑗 = 𝜔𝑈 𝑗 , which still satisfies the algebra (4.22) with
the 𝐵 𝑗 ’s. Therefore Equation (4.50) can be rewritten in terms of �̃� 𝑗 and then
retrieves its original form (4.48).

Note that although the model (4.16) can be defined for any 𝑝 ≥ 3, its bosonic
representation (4.23) was written specifically for the case of 𝑝 = 3. Hence our
proof is also restricted to this case.
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5 Phase diagram of a parafermion
chain with four site interactions

This chapter is based on: J. Wouters, F. Hassler, H. Katsura and D.
Schuricht, Phase diagram of an extended parafermion chain,
arXiv:2106.15823 (2021) currently under review at SciPost Physics
Core. A revised version has been uploaded to arXiv. J.W. performed
all calculations, except for Section 5.3, and numerical simulations,
discussed the results and contributed to the final version of the
manuscript.

We study the phase diagram of an extended parafermion chain, which,
in addition to terms coupling parafermions on neighbouring sites, also pos-
sesses terms involving four sites. Via a Fradkin—Kadanoff transformation the
parafermion chain is shown to be equivalent to the non-chiral Z3 axial next-
nearest neighbour Potts model. We discuss a possible experimental realisa-
tion using heteronanostructures. The phase diagram contains several gapped
phases, including a topological phase where the system possesses three (nearly)
degenerate ground states, and a gapless Luttinger-liquid phase.

5.1 Introduction
The properties, experimental realisations and potential applications of Majo-
rana fermions in condensed-matter systems have been studied to a great extent
in the past two decades. In a seminal work Kitaev [11] introduced, amongst
other things, a one-dimensional toy model of spinless fermions and showed
that the phase diagram contained a topological phase where Majorana zero
modes are localised at the edges. This Majorana chain is equivalent to the
well-known quantum Ising chain (see, eg, Fendley [61]). The topological and
trivial phases of the Majorana chain correspond to the ferromagnetic and para-
magnetic phases of the Ising model, separated by a transition described by
a conformal field theory (CFT) [76, 78] with central charge 𝑐 = 1/2. Several
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extensions of this toy model have been studied, like the inclusion of disor-
der [36, 37, 223], interactions [42, 44–46, 48, 49, 224], or both [40, 41, 225, 226].
Without disorder, the interacting Majorana chain is equivalent to the axial next-
nearest neighbour Ising (ANNNI) model [113, 140]. Besides the topological and
trivial phases, already present in the absence of interactions, this model also
possesses an incommensurate charge density wave phase as well as a Mott
insulating phase [44, 45, 227–229].

The Majorana/quantum Ising chain possesses a Z2-symmetry. An obvious
path for generalisation is given by consideringZ3-symmetrica systems, which in
turn leads to parafermions [60]. In the corresponding parafermion chain theZ3-
symmetry turns out to be less restrictive than the Z2-symmetry of its Majorana
cousin, for example, the breaking of time-reversal and spatial parity symmetry
via chiral interactions is allowed. The parafermion chain is equivalent [61]
to the Z3-clock model, which, in the non-chiral case, simplifies to the three-
state quantum Potts chain [230]. The latter possesses an ordered phase with
three-fold degenerate ground state, which is separated from a paramagnetic
phase by a quantum phase transition described by a CFT with central charge
𝑐 = 4/5. In addition, the chiral model possesses an incommensurate phase [192,
221, 222]. Interestingly, the transition between the ordered and paramagnetic
phases in the non-chiral model is no longer described by a CFT [222]. In
the parafermion description the ordered phase is topological, possessing zero-
energy modes linked to the degeneracy of the ground state [61, 115, 188, 205]. In
addition to the chiral interactions, theZ3-symmetry allows several extensions of
the parafermion chain, which correspond to the terms coupling parafermions
beyond neighbouring sites [124, 231–233]. The equivalent clock models can be
viewed as Z3-generalisations of the ANNNI model. It is interesting to note that
for specific parameters these clock models become frustration free [124, 145],
implying that the degenerate ground states can be constructed explicitly. This
behaviour generalises the well-known frustration-free Peschel–Emery line [113]
of the ANNNI model.

In this work we focus on a specific extension of the parafermion chain, which,
in addition to terms coupling parafermions on neighbouring sites, also pos-
sesses terms involving four sites next to each other. In terms of clock vari-
ables our model becomes the non-chiral Z3 axial next-nearest neighbour Potts
(ANNNP) model [144]. Our specific choice is motivated by a possible exper-
imental realisation of this extended parafermion chain using heterostructures

aThe generalisation to arbitrary Z𝑛-symmetry is straightforward, however, in this chapter we
will restrict ourselves to 𝑛 = 3.
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containing ferromagnets, superconductors and fractional quantum Hall states.
We provide a detailed characterisation of the phase diagram of our model
(shown in Figure 5.2), which, for moderate strengths of the extension, contains
four gapped phases: the topological and trivial phases already present in the
pure parafermion chain, and two phases showing antiferromagnetic and ferro-
magnetic Ising-type order. In addition, we identify a critical Luttinger-liquid
phase with central charge 𝑐 = 1. The latter as well as the two Ising-type phases
can be linked to the physics of the spin-1/2 XXZ Heisenberg chain. Further-
more, we provide evidence that the topological phase is pinched between the
Luttinger-liquid phase and the ferromagnetic Ising phase.

This chapter is organised as follows: In the next section we define the ex-
tended parafermion chain. In Section 5.3 we discuss a proposal to experimen-
tally realise it in heteronanostructures, thus motivating our specific choice of
the considered extension. We then link the extended parafermion chain to the
non-chiral ANNNP model, which provides the starting point for our further
analysis. In Section 5.5 we give a qualitative discussion of the phase diagram,
whose details are elaborated on in Sections 5.6 and 5.7. We then give a brief
outlook on the phase diagram at stronger extension parameters, followed by
a concluding discussion of our results in Section 5.8. The appendix contains
further details of our analysis, including a discussion of duality transforma-
tions, additional supporting numerical results, and details of the mapping to
the effective XXZ chain.

5.2 Extended parafermion chain
In this chapter we are investigating the phase diagram of a one-dimensional
parafermionic system which can be viewed as an extension of the parafermion
chain [61, 205] by terms coupling parafermions on four neighbouring sites.
Specifically, we consider an open chain of length 2𝐿. At each lattice site we
define parafermion operators 𝜒𝑙 , 𝑙 = 1, . . . , 2𝐿, satisfying

𝜒3
𝑙 = 1, 𝜒†

𝑙 = 𝜒2
𝑙 , 𝜒𝑙𝜒𝑚 = 𝜔sgn(𝑚−𝑙)𝜒𝑚𝜒𝑙 for 𝑚 ≠ 𝑙 , 𝜔 = 𝑒2𝜋i/3 , (5.1)

which can be regarded as direct generalisation of Majorana fermions. Using
this the Hamiltonian of the extended parafermion chain can be written as

𝐻 = −𝐽
𝐿−1∑
𝑗=1

𝜒2𝑗𝜒
†
2𝑗+1 − 𝑓

𝐿∑
𝑗=1

𝜒†
2𝑗−1𝜒2𝑗 +𝑈

𝐿−1∑
𝑗=1

𝜒†
2𝑗−1𝜒2𝑗𝜒

†
2𝑗+1𝜒2𝑗+2 + h.c.. (5.2)
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The parameters 𝐽, 𝑓 and 𝑈 are assumed to be realb, making the model non-
chiral. Unless it is stated otherwise, we set 𝐽 = 1. In the absence of the last
term, ie, 𝑈 = 0, this model is known as the parafermion chain [61, 205]. The
term ∝ 𝑈 corresponds to an extension involving four neighbouring sites. One
thus might be tempted to call the model (5.2) “interacting parafermion chain",
however, due to the non-trivial relations (5.1) the model is not quadratically
solvable even for 𝑈 = 0. We note that a similar extension to the parafermion
chain has been studied by Milsted et al. [186] and Zhang et al. [232]. The former
focussed on the Z6 variant of Equation (5.2), while the latter discussed the Z3
model in a different parameter regime.c For 𝑓 = 𝑈 = 0 we recognise that
𝜒1 and 𝜒2𝐿 decouple from the system and form a non-local zero-energy edge
mode that generates a three-fold degeneracy throughout the whole spectrum.
This degeneracy is protected by the non-local Z3-symmetry 𝜔𝑃 =

∏
𝑗(𝜒†

2𝑗−1𝜒2𝑗).
Contrary to the Majorana chain, these exact modes disappear when going away
from the classical point. While the ground state might retain its degeneracy, the
degenerate excited states hybridise and thus split in energy [61, 115, 188, 205],
ie, the zero modes cease to commute with the full Hamiltonian. The region
around the classical point where the ground state remains (approximately)
degenerate is called the topological phase.

Before analysing the phase diagram of the extended parafermion chain (5.2),
in the next section we present a proposal to experimentally realise the model us-
ing heterostructures containing ferromagnets, superconductors and fractional
quantum Hall states.

5.3 Proposal for experimental realisation
Recently, there have been several proposals put forward that allow to realise
parafermionic bound states by cleverly constraining the fractionalised edge
states of two-dimensional interacting systems [16, 56, 64]. To fix the ideas,
we discuss the set-up described by Ref. [64] in more detail. Its starting point
are helical edge states of a fractional quantum spin Hall state at filling factor
� = 1/𝑚. Such an edge configuration can also be realised at the interface
of two fractional quantum Hall states with 𝑔-factors of opposite signs [56].

bComplex parameters would lead to chiral interactions, which in turn break spatial parity
and time-reversal symmetry.

cThe Hamiltonian in [232] is related to (5.2) via a duality transformation as discussed in
Appendix 5.A.
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Figure 5.1: Schematic display of a fractional quantum Hall system with appearing effec-
tive parafermion degrees of freedom. The alternating placement of superconductors
(SC) and ferromagnets (FM) traps the edge modes. These trapped modes obey the
Z6-parafermion algebra.

Independent of the realisation, the low-energy degrees of freedom are counter-
propagating modes of fractionalised electrons with charge 𝑒∗ = 𝑒/𝑚 and spin
1/𝑚 (in units of the electron spin), see Figure 5.1.

There are two (dual) ways of opening a gap in these edge states. Coupling
them to a (𝑠-wave) superconductor (SC) allows a transfer of charge 2𝑒 to and
from the superconducting condensate. The electric charge 𝑒𝑄 𝑗 on the 𝑗-th
superconducting island can thus assume the values

𝑒𝑄 𝑗 = 0, 𝑒
𝑚
,

2𝑒
𝑚
, . . . ,

(2𝑚 − 1)𝑒
𝑚

(mod 2𝑒). (5.3)

The (clock) operator describing the charge is thus given by 𝑒 i𝜋𝑄 𝑗 and commutes
with the Hamiltonian [64].

The second way to open a gap is via backscattering. This involves a change
of the spin which can be achieved by coupling the edge state to a ferromagnetic
(FM) insulator. The spin 𝑆 𝑗 in the 𝑗-th ferromagnetic region may assume the
values

𝑆 𝑗 = 0, 1
𝑚
,

2
𝑚
, . . . ,

(2𝑚 − 1)
𝑚

(mod 2) (5.4)

due to the fact that the ferromagnet serves as a reservoir of spins in units of 2.
Note that the backscattering leads to the formation of an insulating phase and
correspondingly the charge vanishes in the FM segments. The corresponding
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clock operators satisfy

𝑒 i𝜋𝑆𝑗 𝑒 i𝜋𝑄𝑘 = 𝑒 i 𝜋𝑚 (𝛿 𝑗 ,𝑘+1−𝛿 𝑗 ,𝑘 )𝑒 i𝜋𝑄𝑘 𝑒 i𝜋𝑆𝑗 , (5.5)

displaying the fractional statistics. Using the algebra in Equation (5.5) the
SC and FM operators can be represented by the parafermion modes on the
interfaces,

𝜒2𝑗𝜒
†
2𝑗−1 = 𝑒 i𝜋𝑄 𝑗 , 𝜒2𝑗+1𝜒

†
2𝑗 = 𝑒 i𝜋𝑆𝑗 . (5.6)

With this procedure only Z2𝑚-parafermions can be realised natively while we
concentrate on the case Z3 in this work. Note however that starting from Z6
(𝑚 = 3), Z3-parafermions naturally emerge by allowing for fluctuations of the
gauge field with restricted dynamics [234]. An alternative experimental avenue
to the Z3-parafermions is the spin-unpolarised � = 2/3-state [16].

The entrapment of the parafermions is not perfect and exchange processes
through the FMs and SCs couple the parafermions. Tunnelling of a fractional
charge 𝑒∗ through the FM segments is described by the operator 𝑒 i𝜋𝑆𝑗 and yields
the term

𝐻𝐽 = −𝐽
∑
𝑗

(
𝑒 i�𝑒 i𝜋𝑆𝑗 + h.c.

)
, (5.7)

with some coupling 𝐽𝑒 i�. In general the coupling is complex, for the purpose
of this chapter, we will set � = 0. Moreover, we set 𝐽 = 1, fixing the overall
energy scale.

Charging effects on the small mesoscopic islands perturbatively can only
involve the operator 𝑒 i𝜋𝑄 𝑗 . The charging effects are due to the Aharonov–
Casher phase of a superconducting vortex encircling the island. The charging
energy assumes the form

𝐻 𝑓 = −
∑
𝑗

(
𝑓 𝑒 i𝜋𝑄 𝑗 + h.c.

)
, (5.8)

where 𝑓 can be made real by an appropriate gate voltage. This term is due to
the self-capacitance of the island. The terms (5.7) and (5.8) realise the (dual of)
Z3-Potts model studied in Ref. [61]. This is the parafermionic analogue of the
Kitaev chain [11].
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Following Reference [45], we argue that the charging effects due to cross-
capacitances between adjacent islands are important. They are described by
the term

𝐻𝑈 = 𝑈
∑
𝑗

(
𝑒 i𝜋(𝑄 𝑗+𝑄 𝑗+1) + h.c.

)
, (5.9)

with𝑈 ∈ R due to the Aharonov–Casher effect encircling two adjacent islands.
We note that the realisation proposed here will generically lead to the regime
|𝑈 | ≲ | 𝑓 |. With the relation (5.6), the effective Hamiltonian 𝐻𝐽 +𝐻 𝑓 +𝐻𝑈 maps
to (5.2) whose phase diagram we will investigate in the following.

5.4 ANNNP model

The analysis of the phase diagram of the extended parafermion chain will be
fostered by mapping it to the equivalent non-chiral Z3 ANNNP model [144].
The latter generalises the quantum Potts chain by including an additional cou-
pling term, which is reminiscent to the addition of a transverse interaction term
when generalising the quantum Ising chain to the ANNNI model [113, 140].

We begin with the Fradkin–Kadanoff transformation [60]

𝜒2𝑗−1 = ©
«
𝑗−1∏
𝑘=1

𝜏𝑘
ª®
¬
𝜎𝑗 , 𝜒2𝑗 =

©
«
𝑗−1∏
𝑘=1

𝜏𝑘
ª®
¬
𝜎𝑗𝜏𝑗 = 𝜒2𝑗−1𝜏𝑗 , (5.10)

which relates the 2𝐿 parafermion operators 𝜒𝑙 to clock operators 𝜎𝑗 and 𝜏𝑗 ,
𝑗 = 1, . . . , 𝐿. These clock operators commute off-site,

[𝜏𝑖 , 𝜏𝑗] = [𝜎𝑖 , 𝜎𝑗] = [𝜏𝑖 , 𝜎𝑗] = 0, 𝑖 ≠ 𝑗 , (5.11)

while on the same lattice site they satisfy

𝜎3
𝑗 = 𝜏3

𝑗 = 1, 𝜎†
𝑗 = 𝜎2

𝑗 , 𝜏†𝑗 = 𝜏2
𝑗 , 𝜎𝑗𝜏𝑗 = 𝜔𝜏𝑗𝜎𝑗 , 𝜔 = 𝑒2𝜋i/3. (5.12)

An explicit matrix representation for the clock operators on an individual lattice
site is given by

𝜏 =
©
«
1

𝜔
𝜔2

ª®®
¬
, 𝜎 =

©
«

1
1

1

ª®®
¬
. (5.13)
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5 Phase diagram of a parafermion chain with four site interactions

In terms of the clock operators the extended parafermion chain (5.2) becomes

𝐻 = −𝐽
𝐿−1∑
𝑗=1

𝜎𝑗𝜎
†
𝑗+1 − 𝑓

𝐿∑
𝑗=1

𝜏𝑗 +𝑈
𝐿−1∑
𝑗=1

𝜏𝑗𝜏𝑗+1 + h.c. (5.14)

with 𝐽 = 1. We note that the ANNNP model resides on a chain of length
𝐿, ie, there has been an effective halving of the system size. The non-local
Z3-symmetryd of the Hamiltonian is generated by 𝜔𝑃 =

∏
𝑗 𝜏𝑗 . On the clock

variables the spatial parity transformation acts as [221] 𝑃𝜎𝑗𝑃 = 𝜎𝐿−𝑗+1, 𝑃𝜏𝑗𝑃 =
𝜏𝐿−𝑗+1, while time reversal is implemented via 𝑇𝜎𝑗𝑇 = 𝜎𝑗 , 𝑇𝜏𝑗𝑇 = 𝜏†𝑗 together
with complex conjugation of scalars. This shows that indeed for real parameters
𝐽, 𝑓 and𝑈 the system is time-reversal and parity invariant. At𝑈 = 0 the model
reduces to the quantum Potts chain [230], which possesses a critical point at
𝑓 = 1 described by a CFT with central charge 𝑐 = 4/5 [76, 78]. At 𝑓 = 0
we obtain the classical (ferromagnetic) Potts model, which has a three-fold
degenerate ground state.

5.5 Phase diagram
The phase diagram of the extended parafermion chain/Z3-ANNNP model for
weak to moderate values of 𝑈 is shown in Figure 5.2. The discussion con-
cerning large 𝑈 can be found in Chapter 6. The phases and transitions were
studied using a combination of numerical simulations, conformal field the-
ory [76, 78] and perturbative arguments. For the numerics we used the TeNPy
implementation [189] of the density matrix renormalisation group (DMRG)
algorithm [81, 118]. First the rough topography of the phase diagram was
obtained from an inexpensive DMRG calculation, see Figure 5.12 of the sup-
porting numerical results in Appendix 5.B. Then the detailed properties of the
phases and transitions were investigated, as is discussed in Sections 5.6 and 5.7.

We see that the model displays a variety of phases. The top half of the
phase diagram ( 𝑓 ≥ 0) resembles the picture for the ANNNI model [45, 49],
with two gapped phases separated by a critical line. The ground state of
the paramagnetic phase is singly degenerate, while the Z3-ordered phase has

dWe note in passing that the model (5.14) possesses an additional Z2-symmetry 𝜎𝑗 → 𝜎†
𝑗 ,

𝜏𝑗 → 𝜏†𝑗 which enlarges the Z3-symmetry to a full 𝑆3-symmetry [188].
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Figure 5.2: Phase diagram of the extended parafermion chain/Z3-ANNNP model. We
distinguish the following four gapped phases: a paramagnetic phase (red), a topo-
logical phase (yellow), an Ising antiferromagnetic (purple) and an Ising ferromag-
netic (green) phase. Furthermore, we identify a critical 𝑐 = 1 XXZ like phase (violet)
with central charge 𝑐 = 1. We also indicate the transition points 𝐶1 and 𝐶2 corre-
sponding to specific conformal field theories, the points 𝐺1 and 𝐺2 at which the
model becomes frustration-free and thus allows an exact description of the ground
state, and a Pokrovsky–Talapov transition (PTT) [221]. The dashed lines indicate
cuts along which detailed results are shown in Figures 5.3, 5.4, and 5.9b (with the
corresponding symbols for marked points).

a threefold degenerate ground state. The latter is due to approximate zero-
energy parafermion modes, which explains the term “topological phase". The
top half of the phase diagram is discussed in detail in Section 5.6

In contrast to the ANNNI model, the Z3-ANNNP model is not invariant
under 𝑓 → − 𝑓 (which is a consequence of the Z2-symmetry of the ANNNI
model). The lack of this invariance is manifest in the phase diagram, which
shows four phases for 𝑓 < 0: the topological phase, a gapped antiferromagnetic
phase, a critical XXZ phase, and a ferromagnetic phase. The latter three can be
related to the physics of the XXZ chain in the limit 𝑓 → −∞, which predicts
the transitions to be at 𝑈 = ±1/3. The detailed description of these phases is
given in Section 5.7.
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5 Phase diagram of a parafermion chain with four site interactions

5.6 Upper half of the phase diagram ( 𝑓 ≥ 0)
Given that the Z3-ANNNP model is not integrable, the applicability of an-
alytical methods is limited. Still, the quantum Potts model (𝑈 = 0) is well
understood due to its relation to the two-dimensional classical Potts model.
Two topologically distinct phases are separated by a quantum phase transition
at 𝑓 = 1 (𝐶1 in Figure 5.2) described by a CFT with central charge 𝑐 = 4/5. The
two distinct phases can be characterised by analysing the limiting cases 𝑓 → ∞
and 𝑓 = 0 respectively.

In the limit 𝑓 → ∞ the ground state is unique and given by a product state

|Ψ0⟩ = |0⟩⊗𝐿𝜏 , (5.15)

where |𝑖⟩𝜏, 𝑖 = 0, 1, 2, span the space of eigenstates of 𝜏,

𝜏 |𝑖⟩𝜏 = 𝜔𝑖 |𝑖⟩𝜏 . (5.16)

In the parafermionic language this is identified as the trivial phase due to
the absence of boundary modes. The whole phase denoted as paramagnetic in
Figure 5.2 is adiabatically connected to this limit, in particular, it possesses a
unique ground state with an energy gap above it. Explicit numerical evidence
for the gap at a representative point (𝑈 = −1, 𝑓 = 1) is shown in Figure 5.13(a)
of Appendix 5.B.2.

The nature of the Z3-ordered phase is obvious from studying the 𝑓 = 0 point
(𝐺1). Here the threefold degenerate ground state is given by

|Φ𝑖
0⟩ = |𝑖⟩⊗𝐿𝜎 for 𝑖 = 0, 1, 2, (5.17)

where |𝑖⟩𝜎 span the space of eigenstates of 𝜎,

𝜎 |𝑖⟩𝜎 = 𝜔𝑖 |𝑖⟩𝜎 . (5.18)

The parafermion dual of this system is topological, with edge states 𝜒1 and 𝜒2𝐿.
Recent progress on frustration-free models allows us to analytically discuss

one additional point in the topological phase. In Ref. [124] it was shown
that at 𝑈 = 1, 𝑓 = 1 + √

3 the model is frustration free (point 𝐺2), enabling the
construction of the exact ground states. Furthermore, this point is adiabatically
(ie, without closing the energy gap) connected to the classical Potts model
(𝐺1) [145]. In fact, the points 𝐺1 and 𝐺2 lie on a frustration free line of a more
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𝑈

Δ

Δ1
Δ3

Figure 5.3: Energy gaps Δ𝑛 between the ground state and the 𝑛th eigenstate obtained
from finite-size scaling as a function of𝑈 for fixed 𝑓 = 1 +√

3 (see dashed line close
to 𝐺2 in Figure 5.2). In the Z3-ordered phase we observe the threefold degeneracy of
the ground state (Δ1 = Δ2 = 0) with a finite gap above it (Δ3 > 0). In contrast, in the
paramagnetic phase the ground state is unique (Δ1 > 0). The transition (determined
with the methods discussed in Section 5.6.1) is located at 𝑈𝑐 ≈ 0.97. The gap Δ3 is
very small close to the transition.

general Hamiltonian, obtained from (5.14) by adding a term∝ (𝜏𝑗𝜏†𝑗+1+h.c.)with
a suitable prefactor. The situation is reminiscent to the Peschel–Emery line in
the ANNNI model [49, 113]. The numerically calculated energy gaps shown in
Figure 5.3 confirm that at𝐺2 the model indeed possesses a threefold degenerate
ground state. The model is gapped down to the transition to the paramagnetic
phase at𝑈𝑐 ≈ 0.97. Further numerical results presented in Appendix 5.B.2 [see
Figure 5.13(b) for the point 𝑈 = 𝑓 = 1] show that the model is gapped with a
threefold degenerate ground state throughout the topological phase.

Finally, a simplification occurs along the line 𝑓 = 0. Performing two duality
transformations (see Appendix 5.A for the details) we can bring the Hamilto-
nian in the following form

𝐻 = −
∑
𝑎=o,e


𝐿/2−2∑
𝑗=1

𝜎𝑎𝑗 (𝜎𝑎𝑗+1)† −𝑈
𝐿/2−1∑
𝑗=1

𝜏𝑎𝑗


+ h.c., (5.19)

where we omitted the boundary terms. The result (5.19) represents two decou-
pled (o/e) quantum Potts chains. Consequently, at𝑈 = −1 the model possesses
a second-order phase transition corresponding to a CFT with 𝑐 = 4/5+4/5 = 8/5
(see also Reference [235]) depicted by 𝐶2 in Figure 5.2, separating a trivial from
a topological phase.
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5 Phase diagram of a parafermion chain with four site interactions

5.6.1 Potts transition in the vicinity of 𝐶1

In this subsection we perform a more detailed analysis of the Potts transition.
We begin with a scaling analysis of finite-size data, followed by a inspection of
the vicinity of the point 𝐶1.

Scaling analysis

In Figure 5.4 we show several observables along a cut at 𝑈 = −0.5 (indicated
by a dashed line in Figure 5.2). The numerical data were obtained for system
sizes 𝐿 = 64, 70, . . . , 100.
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Figure 5.4: Finite-size results for 𝑈 = −0.5, locating the transition at 𝑓𝑐 = 0.3394 from
the central charge (a) with 𝑐 ≈ 0.813 (𝐿max = 100). From (b) we confirm the dynam-
ical exponent is close to 1. From the Callan–Symanzik 𝛽 function in (c) we derive
1/� ≈ 1.179 and the structure factor 𝒮 gives 2 − � = 1.691. The exponents in (b), (c)
and (d) are obtained by requiring that the finite-size data are independent of 𝐿 at
the transition 𝑓𝑐 .
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5.6 Upper half of the phase diagram ( 𝑓 ≥ 0)

First, we consider the entanglement entropy 𝑆. In a conformally invariant
system this is predicted by the Calabrese–Cardy formula [209, 210]

𝑆(𝐿, 𝑙) = 𝑆0 + 𝑐
6 log

[
𝐿
𝜋

sin
(
𝜋𝑙
𝐿

)]
, (5.20)

with 𝑐 being the central charge, 𝑙 the bipartition length, and 𝑆0 being a model-
dependent constant. Setting 𝑙 = 𝐿/2 we obtain the central cut entanglement
entropy, for which we realise that

𝑐 = 6𝑆(𝐿, 𝐿/2) − 𝑆(𝐿max , 𝐿max/2)
log(𝐿/𝐿max) . (5.21)

For a critical system the right-hand side of (5.21) is length (𝐿) independent.
Thus we can locate the transition as the point where the finite-size data collapse,
obtaining the central charge in the process. From the entanglement-entropy
results in Figure 5.4a we can infer that 𝑓𝑐 = 0.3394 with 𝑐 ≈ 0.813, which is in
good agreement with the predicted value of 𝑐 = 4/5.
Second, we consider the energy gap whose scaling behaviour is given by [222,
236]

Δ(𝐿) = 𝐿−𝑧Δ̃(𝐿1/� | 𝑓 − 𝑓𝑐 |) (5.22)

with 𝑧 being the dynamical exponent. The critical exponent � governs the
divergence of the correlation length � ∝ | 𝑓 − 𝑓𝑐 |−�. At the 𝑓 = 𝑓𝑐 we find 𝑧 by
requiring 𝐿𝑧Δ(𝐿) to be independent of 𝐿. From this ansatz we obtain 𝑧 ≈ 0.954
[see Figure 5.4b], in good agreement with the value 𝑧 = 1 expected for a CFT.

Third, we consider the Callan–Symanzik function 𝛽 [237]

𝛽 =
Δ

Δ − 2 𝜕Δ
𝜕 ln 𝑓

∝ | 𝑓 − 𝑓𝑐 |, (5.23)

which allows us to determine the critical exponent �. The finite-size ansatz
implies that 𝛽(𝐿) scales as 𝐿−1/�. The CFT prediction for the Potts transition is
determined from the scaling dimension of the perturbing field, in this case the
energy operator 𝐸, to be

� =
1

2 − Δ𝐸
=

5
6 (5.24)

with Δ𝐸 = 4/5 for the critical Potts model [76]. From Figure 5.4c we get the
numerical value 1/� = 1.179, again close to the prediction.
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Figure 5.5: The Callan–Symanzik 𝛽 function for the𝑈(𝜏𝑗𝜏𝑗+1 +h.c.) perturbation at 𝐶1.
The scaling at the transition is independent of the system size, ∝ 𝐿0, indicating that
the perturbation is marginal.

Finally, the last critical exponent we can easily study is the scaling of the
two-point correlation function Γ(𝑟) = ⟨𝜎†

𝑖+𝑟𝜎𝑖⟩ ∝ 𝑟−� with ⟨.⟩ denoting the
ground-state expectation value. From the finite-size scaling ansatz we see that
the structure factor behaves as

𝒮(𝐿) =
∑
𝑖 , 𝑗

⟨𝜎𝑖𝜎†
𝑗 ⟩ ∝ 𝐿2−� . (5.25)

From the CFT description we recognise that � relates to the scaling dimension
of the 𝜎-field [76] � = 4Δ𝜎 = 4/15. Consequently, the theoretical prediction is
2 − � = 26/15 ≈ 1.7333, with the numerical data in Figure 5.4d yielding the
estimate 2 − � = 1.691.

We obtained similar results for several points along the transition line de-
picted in Figure 5.2, indicating that the transition along the whole line is de-
scribed by the Potts CFT with 𝑐 = 4/5.

Perturbation around 𝐶1

In general it is possible to link the lattice operators in the quantum Potts chain
to scaling fields in the Potts CFT [79]. Unfortunately, for the 𝜏𝑗𝜏𝑗+1-perturbation
coupled to𝑈 , which is of interest here, the corresponding field expansion was
not derived in Reference [79]. However, from numerical analysis we can obtain
its scaling dimension Δ𝑈 . The Callan–Symanzik function (5.23) in Figure 5.5
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Figure 5.6: The phase boundary between the paramagnetic and topological phase. The
dots are obtained with finite-size scaling from the DMRG calculation. The red line
is the CFT prediction (5.29), with the prefactor obtained from a fit to the numerical
data.

shows that the 𝜏𝑗𝜏𝑗+1 perturbation at 𝐶1 scales with 1/� = 0, ie, is independent
of the system size at the transition. From Equation (5.24) we conclude that the
corresponding field has scaling dimension Δ𝑈 = 2 and is thus marginal.

The qualitative behaviour of the transition line close to 𝐶1 is consistent with
a simple mean-field argument. Decoupling the 𝑈(𝜏𝑗𝜏𝑗+1 + h.c.) perturbation
is tantamount to a shift in the on-site field term, 𝑓 → 𝑓 ∗ = 𝑓 − 2 ⟨𝜏𝑗⟩𝑈 ;
implying that the transition is shifted to 𝑓𝑐 = 1 + 2 ⟨𝜏𝑗⟩𝑈 . Numerically we
obtain ⟨𝜏𝑗⟩ = 0.609 > 0 at 𝑈 = 0, in qualitative agreement with the positive
slope of the transition between the trivial and topological phase.

5.6.2 Potts transition in the vicinity of 𝐶2

Finally, let us look more closely at the phase transition in the vicinity of𝑈 = −1.
As already discussed in relation to (5.19), using a duality transformation the
model with 𝑓 = 0 can be written as two copies of a quantum Potts chain, im-
plying that the transition at 𝑈 = −1, 𝑓 = 0 possesses central charge 𝑐 = 8/5.
Now let us reinstate the 𝑓 -term within the dual description, which results
in the Hamiltonian (again dropping the boundary terms; for details see Ap-
pendix 5.A)
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5 Phase diagram of a parafermion chain with four site interactions

𝐻 = −
∑
𝑎=o,e


𝐿/2−2∑
𝑗=1

𝜎𝑎𝑗 (𝜎𝑎𝑗+1)† −𝑈
𝐿/2−1∑
𝑗=1

𝜏𝑎𝑗


− 𝑓

𝐿/2−1∑
𝑗=1

(�o
𝑗 �

e
𝑗 + �e

𝑗�
o
𝑗+1) + h.c., (5.26)

Starting from the 𝑈 = −1, 𝑓 = 0, the perturbing fields related to the lattice
operators are known to be [79]

(𝑈 + 1)(𝐸o + 𝐸e), 2 𝑓 �o�e , (5.27)

which are the energy density and disorder fields respectively for each copies of
the Potts chain. Both terms independently open up a gap, as can be seen in the
phase diagram Figure 5.2. However, a proper combination of the perturbations
will leave the system gapless, ie, there will be a gapless line 𝑓𝑐(𝑈). At first
order in the couplings the renormalisation-group equations contain the scaling
dimensions of the relevant fields 𝐸o,e and �o,e

𝜕𝑙(𝑈 + 1) = (2 − Δ𝐸)(𝑈 + 1), 𝜕𝑙 𝑓 = (2 − Δ��) 𝑓 = (2 − 2Δ�) 𝑓 , (5.28)

with Δ𝐸 = 4/5 and Δ� = 2/15 [76]. At the phase transition neither flows

to strong coupling, thus the scalings are necessarily proportional: | 𝑓𝑐 |
1

2−2Δ� ∝
|𝑈𝑐 + 1| 1

2−Δ𝐸 . Therefore, the transition follows a power law in the vicinity of
𝑈𝑐 = −1 (see, eg, References [62, 220] for a similar line of argument),

| 𝑓𝑐 | ∝ |𝑈 + 1|13/9. (5.29)

In Figure 5.6 we see that the numerically obtained transition points (black
dots) are in very good agreement with the scaling prediction (red line). Thus
the emerging picture is that under the perturbations (5.27) the 𝑐 = 8/5 fixed
point is unstable, with the flow along the line (5.29) being described by the
Potts CFT with 𝑐 = 4/5. This is also consistent with the fact that due to the 𝑐-
theorem [76, 238] the central charge cannot increase under the renormalisation-
group flow. We note in passing that such an analysis for the Ising transition in
the ANNNI model shows similar behaviour, with the scaling exponent replaced
by 7/4 [220].

5.7 Lower half of the phase diagram ( 𝑓 < 0)
The phase diagram of ANNNI model is symmetric around the 𝑓 -axis due to
the underlying Z2-symmetry of the model. In contrast, the ANNNP model
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5.7 Lower half of the phase diagram ( 𝑓 < 0)

possesses a Z3-symmetry, which in turn breaks the symmetry of the phase
diagram under 𝑓 → − 𝑓 . While we have discussed above the phase digram in
Figure 5.2 for 𝑓 > 0, and seen that it looks very similar to the one of the ANNNI
model, for 𝑓 < 0 a completely different topography appears. It is the aim of
this section to discuss the lower half of the phase diagram in detail.

5.7.1 Chiral clock model at𝑈 = 0
In the absence of the𝑈-term the model (5.14) becomes a special case of the chiral
Z3 clock model [61], whose phase diagram as a function of the chiral angles
(𝜙, �) was studied by Zhuang et al. [221]. More specifically, our model (5.14)
at 𝑈 = 0, 𝑓 < 0 is equivalent to the chiral model at positive field strength and
𝜙 = 𝜋/3, � = 0. The phase diagram for the latter shows a Pokrovsky–Talapov
transition between the topological phase and a gapless, incommensurate phase
with central charge 𝑐 = 1. Using our conventions this translates into a transition
from the topological phase to a gapless phase with 𝑐 = 1 at 𝑓PTT ≈ −4, in
complete agreement with our numerical results shown in Figure 5.2.

5.7.2 Limit 𝑓 → −∞: Effective XXZ model
We start the discussion by considering the limit 𝑓 → −∞, in which the field term
− 𝑓 (𝜏𝑗 + 𝜏†𝑗 ) in (5.14) becomes dominant. As the local eigenstates |0⟩ 𝑗 , |1⟩ 𝑗 , |2⟩ 𝑗
have energies −2 𝑓 , 𝑓 , 𝑓 , this limit projects onto the two local states |1⟩ 𝑗 , |2⟩ 𝑗 .
This allows us to derive an effective spin-1/2 model, with the third state, |0⟩ 𝑗 ,
only appearing in virtual processes.

The remaining terms in (5.14) are treated perturbatively. The first-order
contributions to the effective Hamiltonian are (see Appendix 5.C for derivation)

𝐻(1)
eff = −

∑
𝑗

[
𝜎+
𝑗 𝜎

−
𝑗+1 + 𝜎−

𝑗 𝜎
+
𝑗+1 +

3𝑈
2 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1

]
, (5.30)

where 𝜎±
𝑗 = (𝜎𝑥𝑗 ± i𝜎𝑦𝑗 )/2 with 𝜎𝑎𝑗 , 𝑎 = 𝑥, 𝑦, 𝑧, denoting the Pauli matrices acting

on lattice site 𝑗. Thus at leading order we recognise the spin-1/2 XXZ model
with an U(1) symmetry generated by

∑
𝑗 𝜎

𝑧
𝑗 . [We note that a similar argument

was used in References [62, 239] to explain the appearance of critical 𝑐 = 1
phases parafermion chains to the XY phase of (5.30).] For this integrable model,
the phase diagram is well-known [211] and consists of an antiferromagnetic
Ising phase for 3𝑈 < −1, a ferromagnetic Ising phase 3𝑈 > 1, and a Luttinger-
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5 Phase diagram of a parafermion chain with four site interactions

liquid phase with 𝑐 = 1 in between. The Luttinger parameter of the critical
phase is given by (at 𝑓 = −∞)

𝐾 =
𝜋

2 arccos(3𝑈) . (5.31)

Note that the ferromagnetic Heisenberg point (𝑈 = 1/3) is not described by a
CFT, as the dispersion becomes quadratic, or equivalently Luttinger parameter
diverges. The transition to the antiferromagnetic phase at 𝑈 = −1/3 appears
at 𝐾 = 1/2, where a gap opens due to the relevance of perturbations to the
Luttinger-liquid field theory. The effective model (5.30) provides a good ap-
proximation close to 𝑓 = −∞. The line under the phase diagram (Figure 5.2)
indicates this limit.

The second-order contributions provide more information at finite | 𝑓 | (see
Appendix 5.C for the details),

𝐻(2)
eff =

∑
𝑗

[
1

6 𝑓 (𝜎
+
𝑗 𝜎

−
𝑗+1 + 𝜎−

𝑗 𝜎
+
𝑗+1) +

1
4 𝑓 𝜎

𝑧
𝑗 𝜎

𝑧
𝑗+1 (5.32)

+ 1
3 𝑓 (𝜎

+
𝑗 𝜎

−
𝑗+2 + 𝜎−

𝑗 𝜎
+
𝑗+2) +

2
3 𝑓 (𝜎

+
𝑗 𝜎

+
𝑗+1𝜎

+
𝑗+2 + 𝜎−

𝑗 𝜎
−
𝑗+1𝜎

−
𝑗+2)

]
. (5.33)

In the absence of 𝑈 , a similar expansion has been obtained in Reference [239]
in the analysis of 𝑆3-invariant spin chains [184]. In Reference [240], a similar
effective description was found, discussing edge effects in fractional quantum
Hall systems. The first two terms (5.32) only cause a shift of the XXZ parameters,
which in turn shifts the locations of the phase transitions to

AFM: 𝑈 = −1
3 + 2

9 𝑓 , FM: 𝑈 =
1
3 + 1

9 𝑓 . (5.34)

We note that both transition points are shifted to the left, in agreement with
the numerical results leading to the phase diagram. In addition, the Luttinger
parameter will also acquire corrections to the leading result (5.31). The two
three-site terms (5.33) need a more careful consideration: The first term is a
next-nearest neighbour spin-flip term, conserving the U(1) symmetry. It has
been shown that, for small perturbations, this terms only renormalises the
XXZ parameters [241], leading to a further shift of the transition points on
top of (5.34). The second term of (5.33) is more involved. It breaks the U(1)
symmetry down to Z3, which is expected to open a gap. However, as we
will show in the next section, for small perturbations the effect of this term
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5.7 Lower half of the phase diagram ( 𝑓 < 0)

is barely visible. The reason for this is that within a bosonisation treatment
this term has a scaling dimension of 9

4𝐾 + 𝐾 (see Appendix 5.C.3), which is
strictly larger than 2 for any 𝐾, meaning that in the Luttinger-liquid regime
this term is irrelevant.e However, this line of argument is not applicable at
the ferromagnetic Heisenberg point, since the model is not described by a
CFT. A further analytical discussion is beyond the scope of this chapter, but we
suspect that this term is responsible for the appearance of the Z3-ordered phase
visible at finite − 𝑓 . We note in passing that a similar U(1)-breaking term has
been shown to lead to Z3-order in a dilute Bose gas [242], although the precise
relation to our setup remains unclear.

Finally we note that the analysis presented above critically depends on the
absence of chirality breaking in the original model (5.14). Introducing a chiral-
ity breaking term would, in the limit 𝑓 → −∞, result in an additional, strong
magnetic field term ∝ 𝑓

∑
𝑗 𝜎

𝑧
𝑗 to be added to the effective Hamiltonian (5.30).

This in turn would destroy the Luttinger-liquid phase as well as the antifer-
romagnetic and ferromagnetic Ising phases of the XXZ model and transform
them into a trivial, paramagnetic phase.

5.7.3 DMRG results for finite | 𝑓 |
The perturbative argument is only valid for sufficiently negative field strengths.
In this section we discuss numerical results to connect this limit to the region
with finite | 𝑓 |.

In principle, the DMRG simulations allow for a straightforward calculation
of the central charge from the entanglement entropy via the Calabrese–Cardy
formula (5.20). However, as the entanglement entropy of the XXZ model is
sensitive to finite-size effects, a modified relation was proposed [216] taking
the finite-size oscillations into account,

𝑆mod(𝐿, 𝑙) = 𝑆(𝐿, 𝑙) + 𝑎 cos(𝜋𝑙)
𝐿
𝜋 sin

(
𝜋𝑙
𝐿

) . (5.35)

Furthermore, we study the correlation function

𝐺(𝑙) =
��� ⟨𝜎†

𝑗 𝜎𝑗+𝑙⟩
��� ∝ 𝑙−𝑏 , 𝑏 =

1
2𝐾 , (5.36)

eThis contradicts the conclusion in Refs. [239, 240], identifying this term as relevant (in some
regime). We stress that the numerical evidence never showed any gap appearing as a result
of this (small) perturbation, except at the isotropic point.
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Figure 5.7: DMRG results (orange dots) for the Z3-ANNNP model for 𝑈 = −0.25,
𝑓 = −3 and 𝐿 = 200. (a) Entanglement entropy, with the fitted prediction (5.35)
(solid line). (b) Correlation function 𝐺(𝑙) with the corresponding power scaling 𝑙−𝑏
(solid line).

for which we obtain the scaling exponent 𝑏 from the XXZ description. With
the spin-1/2 projection we recognise

⟨𝜎†
𝑗 𝜎𝑗+𝑙⟩ = ⟨�̃�+

𝑗 �̃�
−
𝑗+𝑙⟩ with �̃�± = diag(0, 𝜎±). (5.37)

The scaling behaviour then follows from standard bosonization [211].
As an example Figure 5.7 shows fits of these predictions to numerical results

for 𝑈 = −0.25 and 𝑓 = −3, confirming 𝑐 ≈ 1 in the critical XXZ region as well
as determining the Luttinger parameter to be 𝐾 = 0.9.

In Figure 5.8 we show the central charge (𝑐) and the scaling exponent (𝑏)
for a cut along 𝑓 = −300. The differently coloured circles correspond to the
full Z3-ANNNP model (red) and the various XXZ perturbative approximations
(first order in dark blue, second order without the U(1)-breaking term in light
blue, second order with U(1)-breaking term in yellow). First of all, we note that
the agreement of the results for the different models is remarkable, convincing
us of the validity of the XXZ approximation for 𝑓 = −300. Moreover, the
results for the first- and second-order models conserving the U(1) symmetry
are indistinguishable. This confirms that the next-nearest neighbour spin-flip
term (5.33) is (marginally) irrelevant. Finally, around 𝑈 = 1/3 there is some
discrepancy between the different models, indicating that the U(1)-breaking
term is important in this regime. Going away from 𝑈 = 1/3, however, the
U(1)-breaking term seems irrelevant as well.

We note that the results for both the Z3-ANNNP model as well as the XXZ
approximations appear to show criticality even for 𝑈 < −1/3. We attribute
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Figure 5.8: Numerical results for the different XXZ approximations (with and without
the U(1)-breaking term) and the full Z3-ANNNP model for 𝐿 = 200 at 𝑓 = −300.
The top panel shows the central charge from fitting to the Calabrese–Cardy formula
(5.20). The bottom panel shows the power-law scaling for the correlation function
𝐺(𝑙). The solid horizontal line at 𝑏 = 1 shows the scaling for the antiferromagnetic
Heisenberg model. The vertical dashed lines indicate the transition points.

this to finite-size effects, since the corresponding antiferromagnetic transition
in the XXZ model is of Kosterlitz–Thouless type for which the gap opens very
slowly [211]. This makes the determination of the transition point from the
central charge quite inaccurate. However, the antiferromagnetic transition is
also characterised by the Luttinger parameter taking the value 𝐾 = 1/2. We
thus use the corresponding value for the scaling exponent (𝑏 = 1) to locate the
transition, as is shown in the bottom panel of Figure 5.8.

We have already seen in Figure 5.8 that in the vicinity of the ferromagnetic
transition at 𝑈 = 1/3 the U(1)-breaking term seems to be important. To elab-
orate on this, we show the central charge and scaling exponents for smaller
values of the field, 𝑓 = −30 and 𝑓 = −3, in the upper and middle panels of
Figure 5.9. Indeed we observe that the XXZ chain without the U(1)-breaking
term does not yield a satisfying description of the full ANNNP model. We
also checked (results not shown) that the local state |0⟩ 𝑗 is (almost) projected
out even for 𝑓 = −3, ie, the restriction of the local Hilbert space to two states
is still reasonable. In general we observe that the effective XXZ description
is less accurate around the ferromagnetic transition, in particular for 𝑓 = −3
higher-order corrections seem to become important.
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Figure 5.9: Numerical results for the different XXZ approximations (with and without
the U(1)-breaking term) and the full Z3-ANNNP model for 𝐿 = 200 for (a) 𝑓 = −30
and (b) 𝑓 = −3. The top and middle panels show the central charge and scaling
exponent respectively; the solid horizontal lines at 𝑏 = 1 indicate the value of
the exponent at the antiferromagnetic transition. The bottom panels show the three
order parameters introduced in (5.38). Here the solid horizontal line at 1/4 indicates
the value of the long-range order 𝐺(𝐿/2) for the ferromagnetic Heisenberg point.
The vertical dashed lines indicate the transitions. The black circles highlight the
points for which further results are shown in Figure 5.10.

In order to further characterise the gapped phases, we have calculated three
order parameters in the full ANNNP model. The results are shown in the
bottom panels of Figure 5.9. Specifically, we determined the Z3-embedded
antiferromagnetic and ferromagnetic order parameters as well as the long-
range Z3-order defined as〈∑

𝑗(−1)𝑗 �̃�𝑧𝑗
〉
,

〈∑
𝑗 �̃�

𝑧
𝑗

〉
, 𝐺(𝐿/2) =

���⟨𝜎†
𝑗 𝜎𝑗+𝐿/2⟩

��� . (5.38)

134



5.7 Lower half of the phase diagram ( 𝑓 < 0)

0 50 100 150 200

−0.5

0

0.5

1

𝑗

⟨𝜎
𝑧 𝑗⟩ 𝑈 = −0.75

𝑈 = 0.75

(a)

0 50 100 150 200
0

0.2

0.4

0.6

𝑙

𝐺
(𝑙)

𝑈 = 0.25

(b)

Figure 5.10: Example points displaying the respective order for the various gapped
phases for 𝑓 = −3. (a) The antiferromagnetic (𝑈 = −0.75) and ferromagnetic
(𝑈 = 0.75) behaviour of the local magnetisation. (b) The correlation function (5.36)
signalling Z3/topological order. All data for 𝐿 = 200.

Here �̃�𝑧𝑗 = diag(0, 1,−1)𝜏 in the local eigenbasis of 𝜏𝑗 . In Figure 5.10 we show
the order parameters for representative points in the different gapped phases,
clearly confirming the nature of these phases as antiferromagnetic, ferromag-
netic and Z3-long-range ordered, respectively. We note that the study of 𝐺(𝐿/2)
is preferable over the short-range correlations | ⟨𝜎†

𝑗 𝜎𝑗+1⟩ |, because the latter can
be potentially close to 1 in the critical phase, while the long-range correlation
decays with the system size (although with a power law). In contrast, 𝐺(𝐿/2)
will become constant in the ferromagnetic regime, as can be seen exemplarily
in Figure 5.10(b). We also note that the antiferromagnetic and ferromagnetic
Ising phases have a two-fold degenerate ground state with a finite energy gap
above; see Figure 5.14 in Appendix 5.B.2. On the other hand, in the critical XXZ
phase shows an even-odd effect (Figure 5.15, Appendix 5.B.2).

Coming back to the bottom panels of Figure 5.9 we see that the three gapped
phases can be well distinguished by the order parameters (5.38). This reveals
the nature of the phases and can be used to locate the phase transitions. In
particular, the transition between the Z3-ordered and ferromagnetic phases
becomes clear from the crossover in the respective order parameters.

The transition from the Luttinger-liquid phase to the Z3-ordered phase is
more subtle. For this we assume that the transition approaches the Heisenberg
ferromagnet and recognise that the long-range order parameter is still finite
in the critical phase. For the ferromagnetic Heisenberg model the extensive
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5 Phase diagram of a parafermion chain with four site interactions

ground-state manifold is spanned by

|Ψ𝑖
0⟩ =

1
𝒩 (𝑆−)𝑖 |↑ · · · ↑⟩ for 𝑖 = 0, . . . , 𝐿, with 𝑆− =

𝐿∑
𝑗=1

𝜎−
𝑗 , (5.39)

and 𝒩 denoting the normalisation of the states. With some combinatorics, we
obtain

⟨Ψ𝑖
0 |𝜎+

𝑗 𝜎
−
𝑗+𝑙 |Ψ𝑖

0⟩ = 𝑖
(𝐿 − 2)!

(𝐿 − 𝑖 − 1)!
/

𝐿!
(𝐿 − 𝑖)! =

𝑖(𝐿 − 𝑖)
𝐿(𝐿 − 1) (5.40)

Since our system is at half filling, 𝑖 = 𝐿/2, the ferromagnetic transition in the
thermodynamic limit is characterised by ⟨𝜎†

𝑗 𝜎𝑗+𝐿/2⟩ = ⟨𝜎+
𝑗 𝜎

−
𝑗+𝐿/2⟩ = 1/4 [with

(5.37)]. Comparing this prediction to the numerical data allows us to locate the
remaining transition, as can be seen in Figure 5.9. Note that the result coincides
with the point at which 𝑏 → 0, since 𝐾 → ∞ as the system approaches the
ferromagnetic transition.

Finally, from the topography of the phase diagram shown in Figure 5.12 in
Appendix 5.B.1 we deduce that the antiferromagnetic region extends up to
vanishing 𝑓 , while the transition to Z3-ordered phase keeps the ferromagnetic
region from touching the 𝑓 = 0 axis (in the studied range for𝑈). We also infer,
in combination with the discussion above, that XXZ critical region extends up
to 𝑈 = −1, 𝑓 = 0 where the critical point with 𝑐 = 8/5 is located. We would
like to stress that the vicinity of this point is very difficult to study numerically,
since both the left and right transitions are rather soft. Similar difficulties were
experienced in the vicinity of a multi-critical point in the ANNNI model [220].

5.7.4 Results along an almost frustration-free line

As discussed in Section 5.6 the model possesses two frustration-free points in
the phase diagram, 𝐺1 and 𝐺2. These points are characterised by the fact that
the local Hamiltonian

ℎ 𝑗 , 𝑗+1 = −𝜎𝑗𝜎†
𝑗+1 −

𝑓
2 (𝜏𝑗 + 𝜏𝑗+1) +𝑈𝜏𝑗𝜏𝑗+1 + h.c. (5.41)

has a threefold degenerate local ground state (one for each sector), and that
all local Hamiltonians can be minimised simultaneously, giving a threefold
degenerate ground state of the full system [124, 145].
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While it is not possible to find further frustration-free points in the phase
diagram, we can obtain an “almost frustration-free (AFF) line" by only requiring
that the local Hamiltonian (5.41) has a threefold degenerate ground state. This
yields the relation

𝑈AFF =
1
2


𝑓
2 −

√
1 + 𝑓

3 + 𝑓 2

4 +
√

1 + 𝑓 2 − 2 𝑓
3


, (5.42)

of which the points 𝐺1 and 𝐺2 are special cases, see Figure 5.11 for a sketch.
Away from these points the many-body ground states cannot be written as
exact product states, however, there are product states that turn out to be very
close to the true ground states. Let us define

|Φ𝑘⟩ =
𝐿⊗
𝑗=1

(
|0⟩ 𝑗 + 𝛼𝜔𝑘 |1⟩ 𝑗 + 𝛼𝜔2𝑘 |2⟩ 𝑗

)
, 𝛼 =

1
4

[
−2 − 3 𝑓 +

√
36 + 3 𝑓 (4 + 3 𝑓 )

]
,

(5.43)
for 𝑘 = 0, 1, 2.

Note that these states are not orthonormal, so we consider the orthogonal
basis

|ΨapproxGS
𝑙 ⟩ = 1

𝑁𝑙

[
|Φ0⟩ + 𝜔−𝑙 |Φ1⟩ + 𝜔−2𝑙 |Φ2⟩

]
, 𝑙 = 0, 1, 2, (5.44)

which are eigenstates of the symmetry operator 𝜔𝑃 =
∏

𝑗 𝜏𝑗 as well, with
corresponding eigenvalues 𝜔𝑙 , displaying the Z3-ordered nature of the phase.

The overlap | ⟨ΨapproxGS
𝑙 |Ψ𝑙⟩ | of these approximate eigenstates with the nu-

merical ground states is shown in Figure 5.11. We note that the overlap im-
proves for decreasing 𝑓 . For example, at 𝑓 = −10 we obtain | ⟨ΨapproxGS

𝑙 |Ψ𝑙⟩ | ≈
(0.9997)𝐿, resulting in a 97% overlap for 𝐿 = 100. Even though the approxi-
mate ground states are not exact eigenstates, their resemblance to the actual
ground states strongly suggests that along the line (5.42) the system possesses
a Z3-ordering. Obviously, for 𝑓 = 0 we recover the trivial point 𝐺1. In the
other limit, 𝑓 → −∞, the line approaches 𝑈 = 1/3, thus exactly pinching in
between the critical XXZ and Ising ferromagnetic regions. This suggestsf that
the Z3-ordered phase indeed connects to the ferromagnetic transition of the
effective XXZ chain.

fWe note that the approximate ground states (5.44) simplify in this limit to
⊗

𝑗(𝜔𝑘 |1⟩ 𝑗 +
𝜔2𝑘 |2⟩ 𝑗) ≡

⊗
𝑗(𝜔𝑘 |↑⟩ 𝑗 + 𝜔2𝑘 |↓⟩ 𝑗), which belong to the ground-state manifold of the ferro-

magnetic XXZ chain at𝑈 = 1/3.
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Figure 5.11: (a) The red line indicates the location of the almost frustration-free line
(5.42) inside the topological (yellow) phase. (b) Energy gap Δ above the ground-
state manifold and overlap ⟨ΨapproxGS

𝑙 |Ψ𝑙⟩ along the almost frustration-free line.
Both results were obtained by fitting the data for 𝐿 = 40, 45, . . . , 60.

5.8 Discussion
In this chapter we have studied an extended parafermion chain, which pos-
sessed terms coupling parafermions on four neighbouring sites. We mapped
the model to the non-chiral Z3-ANNNP model via a Fradkin–Kadanoff trans-
formation and analysed the phase diagram for weak to moderate couplings of
the four-site term. By applying a combination of DMRG simulations, scaling
arguments and analytical results in special limiting cases we identified four
gapped phases: a topological phase possessing a three-fold degenerate ground
state, a trivial (paramagnetic) phase as well as an antiferromagnetic and ferro-
magnetic Ising ordered phase. The latter two as well as an additional critical
Luttinger-liquid phase can be connected to the well-known phase diagram of
the XXZ Heisenberg chain. We provided evidence that the topological phase is
pinched between the Luttinger-liquid phase and the ferromagnetic Ising phase
and extends to the limit of arbitrarily negative field strengths 𝑓 . Furthermore,
we discussed a possible experimental realisation of the extended parafermion
chain using hetero-nanostructures consisting of ferromagnets, superconduc-
tors and fractional quantum Hall states.

In this chapter we have omitted the large 𝑈 regime, which is explored in
Chapter 6 in great detail. There are several other directions for future studies:
(i) TheZ3-symmetry of the model (5.14) allows the inclusion of terms in addition
to𝑈

∑
𝑗(𝜏𝑗𝜏𝑗+1+h.c.). For example, including a term∼ ∑

𝑗(𝜏𝑗𝜏†𝑗+1+h.c.) allows the
construction [124, 145] of a family of frustration-free models, of which the points
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𝐺1 and 𝐺2 in Figure 5.2 are just special cases. These frustration-free models
could serve as starting point for an analytic study of the topological phase. We
note that the addition of such a term is also feasible within the framework of
the hetero-nanostructures discussed in Section 5.3. (ii) The properties of the
parafermion chain critically depend on the chirality breaking in the model,
see, eg, References [221, 222, 232] for studies of the phase diagram in chiral
parafermion chains. Thus it would be natural to extend the model (5.14) by
including chirality breaking, which, as indicated in Section 5.7.2, is expected to
have a drastic effect on the phase diagram.

5.A Duality transformation
In this appendix we discuss the duality transformation of the Potts model (see,
eg, Reference [243]), with extra care to treat the boundary terms. We start with
the Hamiltonian (5.14)

𝐻 = −
𝐿−1∑
𝑗=1

𝜎𝑗𝜎
†
𝑗+1 − 𝑓

𝐿∑
𝑗=1

𝜏𝑗 +𝑈
𝐿−1∑
𝑗=1

𝜏𝑗𝜏𝑗+1 + h.c. (5.45)

Let us now apply the following transformation,

�𝑗 = 𝜎𝑗𝜎
†
𝑗+1 , �𝑗 =

∏
𝑖≤ 𝑗

𝜏†𝑖 ⇔ 𝜎𝑗 =
∏
𝑖< 𝑗

�†𝑖 , 𝜏𝑗 = �𝑗−1�
†
𝑗 , (5.46)

with auxiliary operator 𝜎1 = �†0 and the exception 𝜏1 = �†
1. Note that �𝐿 is

not defined, which is not a problem for the moment. Applying this, the dual
Hamiltonian reads

𝐻 = −
𝐿−2∑
𝑗=1

�𝑗 − 𝑓
𝐿−1∑
𝑗=1

�𝑗�
†
𝑗+1 +𝑈

𝐿−2∑
𝑗=1

�𝑗�
†
𝑗+2 + 𝐵 + h.c. (5.47)

where 𝐵 = −�𝐿−1 − 𝑓 �†
1 +𝑈�†

2. Up to boundary terms, for 𝑈 = 0 we recognise
that (5.45) and (5.47) are physically equivalent at 𝑓 = 1, ie, the model is self-dual
at this point in the thermodynamic limit. We note that the model (5.47) has
been studied byg Zhang et al. [232] with a focus on the phase diagram in the
presence of chirality breaking.

gThe relation between the parameters in Equation (4) of Reference [232] and the ones in (5.47)
is given by ℎ → 𝐽 ≡ 1, 𝐽 → 𝑓 and 𝐽′ → 𝑈 . In particular, the supercritical point corresponds
in our convention to the limit 𝑓 = 2𝑈 with 𝑈 → ∞, indicating that the Potts transition
between the trivial and topological phases extends to arbitrary large𝑈 .
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5 Phase diagram of a parafermion chain with four site interactions

Next, we turn off the perpendicular field, ie, we consider 𝑓 = 0. The operators
� and � can be split on the odd/even (o/e) sites to obtain

𝐻 = −
∑
𝑎=o,e


𝐿/2−1∑
𝑗=1

�𝑎𝑗 −𝑈
𝐿/2−1∑
𝑗=1

�𝑎𝑗 (�𝑎𝑗+1)†

+ 𝐵 + h.c., (5.48)

where 𝐵 = −�o
𝐿/2 + 𝑈(�e

1)† contains the boundary terms. We recognise two
decoupled Potts chains in their dual representation: For each chain we can do
another duality transformation

𝜏𝑎𝑗 = �𝑎𝑗 (�𝑎𝑗+1)† , 𝜎𝑎𝑗 =
∏
𝑖≤ 𝑗

(�𝑎𝑖 )† ⇔ �𝑎𝑗 =
∏
𝑖< 𝑗

(𝜏𝑎𝑖 )† , �𝑎𝑗 = 𝜎𝑎𝑗−1(𝜎𝑎𝑗 )† , (5.49)

with auxiliary operator �1 = 𝜏†0 and the exception �𝑎1 = (𝜎𝑎1)†. This gives

𝐻 = −
∑
𝑎=o,e


𝐿/2−2∑
𝑗=1

𝜎𝑎𝑗 (𝜎𝑎𝑗+1)† −𝑈
𝐿/2−1∑
𝑗=1

𝜏𝑎𝑗


+ 𝐵 + h.c. (5.50)

with
𝐵 = −

(
�o
𝐿/2 − �e

1 − �o
1

)
+𝑈(�e

1)†. (5.51)

It is interesting to relate the original order parameter 𝜎𝑗 to the new operators
𝜎𝑎𝑗 ,

𝜎𝑗 =



∏

𝑖<(𝑗−1)/2(�o
𝑖 )†(�e

𝑖 )† = 𝜎o
(𝑗−1)/2𝜎

e
(𝑗−1)/2 , 𝑗 odd,[∏

𝑖< 𝑗/2(�o
𝑖 )†(�e

𝑖 )†
]
(�o
𝑗/2)† = 𝜎e

𝑗/2−1𝜎
o
𝑗/2 , 𝑗 even,

(5.52)

with the inverse relation given by

𝜎𝑎𝑗 =

{∏
𝑖< 𝑗 �

†
2𝑖−1 =

∏
𝑖<2𝑗(𝜎𝑖)(−1)𝑖 , 𝑎 = o,∏

𝑖< 𝑗 �
†
2𝑖 =

∏
2<𝑖<2𝑗+1(𝜎𝑖)−(−1)𝑖 , 𝑎 = e.

(5.53)

Thus we see that the relation is non-local involving string operators. We also
rewrite the symmetry operator, 𝜔𝑃 =

∏
𝑗 𝜏𝑗 = �†

𝐿 = (�e
𝐿/2)† =

∏
𝑗 𝜏

e
𝑗 . For 𝑓 = 0,

the original Hamiltonian has another symmetry �̃�𝑃 =
∏

𝑗 𝜎𝑗 =
∏

𝑗 ,𝑎(𝜎𝑎𝑗 )†.
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Finally, for completeness we reinstate the 𝑓 -term for the second transforma-
tion. Even though the resulting lattice model is non-local in terms of the original
operators 𝜎 and 𝜏, the following expression will be useful in Section 5.6.2

𝐻 = −
∑
𝑎=o,e


𝐿/2−1∑
𝑗=1

�𝑎𝑗 −𝑈
𝐿/2−1∑
𝑗=1

�𝑎𝑗 (�𝑎𝑗+1)†

−
𝐿/2−1∑
𝑗=1

𝑓 �e
𝑗

[
(�o

𝑗 )† + (�o
𝑗+1)†

]
+ 𝐵 + h.c.

(5.54)
with 𝐵 = −�o

𝐿/2 − 𝑓
[
(�o

1)† + �o
𝐿/2(�e

𝐿/2)†
]
+𝑈(�e

1)†.

5.B Supporting numerical results
In this appendix we present additional numerical material to support certain
points in the main text.

5.B.1 Rough topography of the phase diagram

The overall structure of the phase diagram presented in Section 5.5 was deter-
mined largely based on an inexpensive DMRG calculation, ie, for small systems
(𝐿 = 50 − 100). The results of these calculations are shown in Figure 5.12. It
displays the central-cut entanglement entropy and central charge. The entan-
glement entropy follows naturally from the DMRG calculation. With Schmidt
decomposition we can write the ground state as

|Ψ⟩ =
∑
𝑎

𝑠𝑎 |Ψ𝐴
𝑎 ⟩ |Ψ𝐵

𝑎 ⟩ , (5.55)

where 𝐴, 𝐵 are the left and right subsystems, such that 𝐿𝐴 + 𝐿𝐵 = 𝐿 and∑
𝑎 𝑠

2
𝑎 = 1. Also |Ψ𝐴

𝑎 ⟩ and |Ψ𝐵
𝑎 ⟩ form an orthonormal basis in their respective

subspace. The reduced density matrix becomes

𝜌𝐴 = Tr𝐵𝜌 =
∑
𝑎

𝑠2
𝑎 |Ψ𝐴

𝑎 ⟩ ⟨Ψ𝐴
𝑎 | , (5.56)

with the entanglement entropy given by [81]

𝑆(𝐿, 𝐿𝐴) = −Tr𝜌𝐴 log(𝜌𝐴) = −
∑
𝑎

𝑠2
𝑎 log(𝑠2

𝑎). (5.57)
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Figure 5.12: Rough topography of the phase diagram for the Z3-ANNNP model. The
central-cut entanglement entropy and central charge results were obtained for small
system sizes 𝐿 =50–100 and low bond dimension in the parity sector 0. Even though
the nature of the phases and transitions cannot be conclusively derived from these
plots, it gives a good visual guide for the features to be studied in more detail.

The area law predicts that the entanglement entropy should be constant with re-
spect to system size for gapped systems, which can be used as a first tool to iden-
tify gapped phases studying the central-cut entanglement entropy 𝑆(𝐿, 𝐿/2).

As an example, consider the unique product state (5.15) the central-cut en-
tanglement entropy is simply given by 𝑆 = −1 log(1) = 0. In the top left of
the phase diagram in Figure 5.12a we find 𝑆 ≈ 0, indicating that this region is
indeed connected to the trivial product state. On the other hand, for the Z3-
ordered phase at 𝑈 = 𝑓 = 0, the ground state for each parity sector is a linear
combination of the three degenerate ground states (5.17). Hence the central-cut
entanglement entropy is given by 𝑆 = −∑2

𝑎=0
1
3 log(1/3) = log(3) ≈ 1.09, which

we observe throughout the topological phase. We note that the central-cut
entanglement entropy can also be deceiving. For example, the ground states
for the antiferromagnetic and ferromagnetic phases for 𝑓 < 0 seem to be singly
degenerate (𝑆 = 0), while they are in fact doubly degenerate with the two de-
generate ground states lying in different symmetry sectors and the central-cut
entanglement entropy vanishing in each of them.
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Figure 5.13: Energy gaps Δ𝑛 between the 𝑛th energy eigenstate and the ground state,
obtained from finite-size scaling for system sizes 𝐿 = 10, . . . , 60: (a) at 𝑓 = 1, 𝑈 = −1
in the paramagnetic/trivial phase, (b) at 𝑓 = 𝑈 = 1 in the Z3-ordered/topological
phase.

In the critical regions the central-cut entanglement entropy is not a good
indicator, since it diverges logarithmically with the system size. Instead, here
we employ the central charge 𝑐 obtained by fitting the entanglement entropy
(5.57) to the Calabrese–Cardy formula [209, 210] (5.20). It is important to note
that this fit only give a qualitative view. The central charge in Figure 5.12b(b)
is often overestimated at points close to transitions, because at finite sizes the
correlation lengths exceed the system size. Nevertheless, it shows the presence
of a transition in the top left and bottom right. Moreover, there are several
critical regions that can be identified, in particular the critical XXZ phase in the
bottom left (see Section 5.7).

5.B.2 Finite-size scaling of energy gaps

Here we present data for the finite-size scaling in the gapped regions discussed
in Sections 5.6 and 5.7. The plots in Figure 5.13 show the gap for the paramag-
netic/trivial phase and Z3-ordered/topological phase. These confirm both the
thermodynamic gaps and the respective degeneracies of the ground states.

In Figure 5.14 we show the finite-size scaling for the energy gap in the anti-
ferromagnetic and ferromagnetic phase described in Section 5.7, showing that
both are indeed gapped with a two-fold degeneracy.

143



5 Phase diagram of a parafermion chain with four site interactions

0 0.005 0.01 0.015

0

0.2

0.4

1/𝐿

Δ
(𝐿
) Δ2

Δ1

(a) Ising antiferromagnetic ( 𝑓 = −3, 𝑈 =
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Figure 5.14: Finite-size scaling of the energy gaps Δ𝑛 for representative points in the
Ising antiferromagnetic (a) as well as the Ising ferromagnetic (b) phase. Both DMRG
results are for system sizes 𝐿 = 64, 65, . . . , 100. In both cases we findΔ1 = 0, showing
that the ground states are two-fold degenerate, while Δ2 > 0 in the thermodynamic
limit.

On the other hand, in Figure 5.15 we see that both the gap to the first and
second excited states vanish at 𝑈 = −0.25, 𝑓 = −3, thus this point indeed
belongs to a critical region. There is even-odd effect in the finite-size gap that
we can explain from the effective XXZ description; for an extensive discussion
see Reference [216]. For even chain lengths (and in the absence of a magnetic
field) the ground state is unique with total spin ⟨𝑆𝑧⟩ = ⟨∑𝑗 𝜎

𝑧
𝑗 ⟩ = 0. The

first excited state is two-fold degenerate with ⟨𝑆𝑧⟩ = ±1, with the two states
related by a global spin flip. On the other hand, for odd lengths the smallest
magnetisation commensurate with the system is ⟨𝑆𝑧⟩ = ± 1

2 , hence there is
a double degeneracy of the ground states. We recognise this pattern in the
finite-size scaling in Figure 5.15.

5.C Effective XXZ chains

In this appendix we derive the effective XXZ chain describing the limit 𝑓 → −∞,
which was presented in Section 5.7.2. We note that a similar expansion has been
obtained in Reference [239].
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Figure 5.15: Finite-size scaling of the gap 𝛿𝑛 to the 𝑛-th excited states from system sizes
𝐿 = 64, 65, . . . 100 for the system in the critical XXZ phase (𝑈 = −0.25, 𝑓 = −3).

5.C.1 First-order term

The eigenvalues of the local field term− 𝑓 (𝜏𝑗+𝜏†𝑗 ) are−2 𝑓 , 𝑓 , 𝑓 for the eigenstates
|0⟩ 𝑗 , |1⟩ 𝑗 , |2⟩ 𝑗 respectively. Thus for 𝑓 → −∞ there will be a large energy gap
between the state |0⟩ 𝑗 and the states |1⟩ 𝑗 , |2⟩ 𝑗 , which allows us to project onto
a local, two-dimensional Hilbert space. Let us denote the resulting projected
many-body Hilbert space by 𝒢, with the notation |Ψ𝑖⟩ ∈ 𝒢 and |Φ𝑖⟩ ∉ 𝒢,
and the respective energies due to this leading term by 𝐸Ψ𝑖 and 𝐸Φ𝑖 . For
the remaining terms we can write down an effective first-order Hamiltonian
describing the action of 𝑉𝜎 =

∑
𝑗 𝑣

𝜎
𝑗 , with 𝑣𝜎𝑗 = −𝜎𝑗𝜎†

𝑗+1 − 𝜎†
𝑗 𝜎𝑗+1, ie, terms that

represent ⟨Ψ𝑖 |𝑉𝜎 |Ψ𝑘⟩. If we view the operators as tensor products of 2 × 2
matrices acting on the local states |1⟩ 𝑗 , |2⟩ 𝑗 , we can write

− 𝜎𝑗𝜎
†
𝑗+1 − 𝜎†

𝑗 𝜎𝑗+1 = −𝜎+
𝑗 𝜎

−
𝑗+1 − 𝜎−

𝑗 𝜎
+
𝑗+1 , (5.58)

with 𝜎±
𝑗 being the effective spin-1/2 raising and lowering operators acting at site

𝑗, ie, 𝜎+
𝑗 = |1⟩ 𝑗 ⟨2| 𝑗 and 𝜎−

𝑗 = |2⟩ 𝑗 ⟨1| 𝑗 . Similarly, we have 𝜎𝑧𝑗 = |1⟩ 𝑗 ⟨1| 𝑗 − |2⟩ 𝑗 ⟨2| 𝑗 .
Using this we recognise that

𝜏𝑗 = 𝜔
𝜎𝑧𝑗 = −1

2 + i
√

3
2 𝜎𝑧𝑗 . (5.59)
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This allows us to rewrite the term𝑈𝜏𝑗𝜏𝑗+1 + h.c. as

𝑈𝜏𝑗𝜏𝑗+1 + h.c. = −3𝑈
2 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 +

𝑈
2 . (5.60)

Taken together we thus deduce that at leading order the effective Hamiltonian
describing the large − 𝑓 limit of the ANNNP model becomes

𝐻(1)
eff = −

∑
𝑗

[
𝜎+
𝑗 𝜎

−
𝑗+1 + 𝜎−

𝑗 𝜎
+
𝑗+1 +

3𝑈
2 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1

]
. (5.61)

Hence the behaviour of the ANNNP model in this limit is governed by the
XXZ Heisenberg chain, which is known to be critical for |𝑈 | ≤ 1/3 with central
charge 𝑐 = 1 [211].

5.C.2 Second-order term

The second-order terms originate from perturbations of the form

∑
𝑘

⟨Ψ𝑖 |𝑉𝜎 |Φ𝑘⟩ ⟨Φ𝑘 |𝑉𝜎 |Ψ𝑙⟩
𝐸Ψ − 𝐸Φ𝑘

, (5.62)

where 𝐸Ψ = 𝐸Ψ𝑖 = 𝐸Ψ𝑙 the unperturbed energies of the ground states. Let us
start with the contributions to effective two-site terms. The diagonal terms read

⟨12|𝑣𝜎𝑗 |00⟩ ⟨00|𝑣𝜎𝑗 |12⟩
𝐸Ψ − 𝐸Φ𝑘

=
⟨21|𝑣𝜎𝑗 |00⟩ ⟨00|𝑣𝜎𝑗 |21⟩

𝐸Ψ − 𝐸Φ𝑘

=
1

6 𝑓 , (5.63)

⟨11|𝑣𝜎𝑗 |20⟩ ⟨20|𝑣𝜎𝑗 |11⟩
𝐸Ψ − 𝐸Φ𝑘

+
⟨11|𝑣𝜎𝑗 |02⟩ ⟨02|𝑣𝜎𝑗 |11⟩

𝐸Ψ − 𝐸Φ𝑘

(5.64)

=
⟨22|𝑣𝜎𝑗 |10⟩ ⟨10|𝑣𝜎𝑗 |22⟩

𝐸Ψ − 𝐸Φ𝑘

+
⟨22|𝑣𝜎𝑗 |01⟩ ⟨01|𝑣𝜎𝑗 |22⟩

𝐸Ψ − 𝐸Φ𝑘

=
2

3 𝑓 , (5.65)

which can be summarised as 1
4 𝑓 𝜎

𝑧
𝑗 𝜎

𝑧
𝑗+1 + 1

2 𝑓 . Similarly, the off-diagonal two-site
contribution is given by

⟨12|𝑣𝜎𝑗 |00⟩ ⟨00|𝑣𝜎𝑗 |21⟩
𝐸Ψ − 𝐸Φ𝑘

=
1

6 𝑓 , (5.66)
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which becomes the spin-flip term 1
6 𝑓 (𝜎+

𝑗 𝜎
−
𝑗+1 + 𝜎−

𝑗 𝜎
+
𝑗+1). Furthermore, there are

three-site contributions such as

⟨111|𝑣𝜎𝑗+1 |102⟩ ⟨102|𝑣𝜎𝑗 |222⟩
𝐸Ψ − 𝐸Φ𝑘

+
⟨111|𝑣𝜎𝑗 |201⟩ ⟨201|𝑣𝜎𝑗+1 |222⟩

𝐸Ψ − 𝐸Φ𝑘

=
2

3 𝑓 , (5.67)

and its hermitian conjugate, which taken together become
2

3 𝑓 (𝜎+
𝑗 𝜎

+
𝑗+1𝜎

+
𝑗+2 + 𝜎−

𝑗 𝜎
−
𝑗+1𝜎

−
𝑗+2). This term breaks the U(1) symmetry of the XXZ

chain, but preserves the Z3-symmetry.
Finally, there is a next-nearest neighbour hopping term,

⟨112|𝑣𝜎𝑗 |202⟩ ⟨202|𝑣𝜎𝑗+1 |211⟩
𝐸Ψ − 𝐸Φ𝑘

=
⟨122|𝑣𝜎𝑗+1 |101⟩ ⟨101|𝑣𝜎𝑗 |221⟩

𝐸Ψ − 𝐸Φ𝑘

=
1

3 𝑓 , (5.68)

which can be written as 1
3 𝑓 (𝜎+

𝑗 𝜎
−
𝑗+2 + 𝜎−

𝑗 𝜎
+
𝑗+2). Taken together we arrive at the

second-order Hamiltonian

𝐻(2)
eff =

∑
𝑗

[
1

6 𝑓 (𝜎
+
𝑗 𝜎

−
𝑗+1 + 𝜎−

𝑗 𝜎
+
𝑗+1) +

1
4 𝑓 𝜎

𝑧
𝑗 𝜎

𝑧
𝑗+1

+ 1
3 𝑓 (𝜎

+
𝑗 𝜎

−
𝑗+2 + 𝜎−

𝑗 𝜎
+
𝑗+2) +

2
3 𝑓 (𝜎

+
𝑗 𝜎

+
𝑗+1𝜎

+
𝑗+2 + 𝜎−

𝑗 𝜎
−
𝑗+1𝜎

−
𝑗+2)

]
. (5.69)

5.C.3 U(1) breaking term

Following the bosonisation dictionary of Giamarchi [211] the low-energy be-
haviour of the XXZ model is governed by a Luttinger liquid

𝐻 =
𝑢

2𝜋

∫
𝑑𝑥

[
𝐾

(∇�(𝑥))2 + 1
𝐾

(∇𝜙(𝑥))2
]
, (5.70)

with 𝜙 and � being a bosonic field and its dual, and (at 𝑓 = −∞)

𝐾 =
𝜋

2 arccos(3𝑈) , 𝑢 =
1

2 − 1/𝐾 sin
[
𝜋

(
1 − 1/2𝐾

) ]
(5.71)

denoting the Luttinger parameter and velocity respectively. The local spin-flip
operators 𝜎+

𝑗 are related to the bosonic field via [the Fermi momentum is given
by 𝑘F = 𝜋/(2𝑎)]
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𝜎+
𝑗 =

√
𝑎𝑆+(𝑥) = 𝑒−i�(𝑥)

√
2𝜋

[
(−1)𝑥 + cos(2𝜙(𝑥))

]
, (5.72)

where 𝑥 = 𝑗𝑎 with 𝑎 being the lattice constant (which we set to one), and 𝑆+(𝑥)
the continuum operator related to 𝜎+

𝑗 . With this in mind the U(1)-breaking term

in 𝐻(2)
eff will become a sum of terms of the form 𝑒−i𝑎�(𝑥)−i𝑏𝜙(𝑥) with individual

scaling dimensions Δ𝑎,𝑏 = 𝑎2

4𝐾 + 𝑏2𝐾
4 . Some of these terms will contain rapidly

oscillating factors (−1)𝑥 , which will thus not contribute in the continuum limit.
The leading non-oscillating term turns out to possess the scaling dimension

Δ+++ =
9

4𝐾 + 𝐾, (5.73)

which is strictly larger than 2 for any value of 𝐾. Thus we conclude that the
term ∝ 𝜎+

𝑗 𝜎
+
𝑗+1𝜎

+
𝑗+2 is irrelevant in the Luttinger-liquid regime.
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6 Strong interaction for extended
parafermion chain

This chapter contains unpublished results, continuing the
investigation from Chapter 5.

In Chapter 5 we have encountered an extended parafermion/Z3-ANNNP
chain. Besides the topological and trivial phases, present for the unaltered
parafermion chain [61], the additional interaction gave rise to emergent XXZ
phases. Nevertheless, the discussion was confined to small interactions, war-
ranted by the experimental suggestions. Moreover, the phases and transitions
for𝑈 < 1.5 are well understood.

In this chapter we present the findings for 𝑈 > 1.5. These understanding
of the large interaction regime is by no means comparable to the results in the
previous chapter. However, the compelling nature of the phases and transitions
justifies the discussion.

6.1 Introduction
For the ANNNI model [140, 144] large interactions give rise to new phases.
Besides the usual topological and trivial phase, a critical incommensurate
and insulating Mott phase appear [44, 45, 220, 227–229]. For the extended
parafermion/Z3 ANNNP chain (see Equation (5.14) in Section 5.4) we en-
counter an even richer phase diagram, see Figure 6.1. The rough topography of
the phase diagram was obtained from an inexpensive DMRG calculation, see
Figure 6.7 of the supporting numerical results in Appendix 6.A. There appear
several critical regions, with exotic nature. Besides a 𝑐 = 2 line, which is related
by duality to the XXZ phase in Section 5.7, there is an unknown 𝑐 = 1 phase for
𝑓 < 0 and an intricate XXZ like phase related to large 𝑈, 𝑓 . Certain areas are
left grey, because our data was not conclusive here. This came mostly down to
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6 Strong interaction for extended parafermion chain

a lack of computing power, when dealing with highly critical phases. Part of
the discussion in Reference [232] also considered this corner of the phase dia-
gram, albeit in a different parametrization and focussing mainly on the 𝑓 → ∞
regime. However, the extend and nature of their critical region (for 𝑈, 𝑓 > 1)
is equivalent. Also for the analogous Z6-ANNNP chain a comparable critical
phase has been found in this regime in Ref. [186].

In this chapter we discuss the findings into this elaborate part of the param-
eter space. By virtue of duality transformations discussed in Appendix 5.A we
recognize XXZ behaviour along 𝑓 = 0, further discussed in Section 6.2. More-
over for 𝑓 ≫ 1, there is a correspondence to another XXZ chain, that shows an
intricate even-odd effect, as described in Sections 6.3, 6.4 and 6.5. Finally, we
elaborate on the grey transition regions in Section 6.6.
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Figure 6.1: An extension of the phase diagram in Figure 5.2, showing 𝑈 > 1.5. Here
are some critical region that have been determined in detail. The transitions are still
poor understood. The dashed horizontal (Figure 6.6a) and vertical line (Figure 6.6b)
correspond to detailed cuts.

150



6.2 Duality transformation 𝑓 = 0

6.2 Duality transformation 𝑓 = 0
The duality transformations of Appendix 5.A illustrate that the physics along
the 𝑓 = 0 line corresponds to two decoupled copies of the quantum Potts
model (𝑈 = 0) line, where −𝑈 takes the role of 𝑓 . With this in mind we deduce
from Section 5.7 that there exists a topological phase for 𝑈 ≲ 4 and a critical
XXZ-like phase for 𝑈 ≳ 4 [221]. Since the duality transformations dictate two
decoupled Potts copies, the critical line is described by a CFT with 𝑐 = 2, shown
in Figure 6.1 as the blue line along the 𝑈 = 0 axis. The topological phase is
depicted by the yellow line. In Figure 6.2a the finite size scaled central charge is
shown for 𝑓 = 0 and𝑈 ∈ [2, 5]. This confirms the 𝑐 ≈ 2 for𝑈 ≳ 4. For𝑈 ∈ [2, 4]
the central charge data is inconclusive. The gap close to this Pokrovsky–Talapov
transition (PTT) opens very slowly, making it seemingly critical. Here we lean
on the more detailed results from Ref. [221] and the duality transformation to
locate the transition at 𝑈 ≈ 4. Moreover, to illustrate the challenge around a
PTT we compare it to the𝑈 = 0, 𝑓 = −4 transition directly related to the results
from Ref. [221]. The central charge around this point, shown in Figure 6.2b,
displays similar ambiguous behaviour when approaching the soft PTT. Finally,
we note that this duality argument does not offer any insight for 𝑓 ≠ 0, since
the perturbation coupled to 𝑓 is non-local in the dual representation. Where
the numerical results showed conclusive evidence for 𝑓 ≠ 0 the phase diagram
is coloured accordingly in Figure 6.1. Otherwise, the unknown phase is shown
in grey.

6.3 Classical limit 𝑓 ≫ 1
In the previous chapter we encountered the paramagnetic phase for 𝑓 ≫ 1, see
Equation (5.15). The simple product state |0⟩⊗𝐿𝜏 is the ground state for 𝑓 > 2𝑈 .
This limit is classical in the sense that all terms of the Hamiltonian commute.
Because of the dominating 𝑈, 𝑓 , the 𝜎 terms are negligible, the remaining 𝜏
terms commute.

In this chapter we focus on large𝑈 > 1.5, as indicated in Figure 6.1. We will
observe that this region connects to the classical limit for 𝑓 < 2𝑈 . Contrary to
the paramagnetic phase, the ground state for this region is a highly degenerate
product state. The low energy states show a two-site pattern in the following
way

|. . . , 𝑖 , 0, 𝑗 , 0, 𝑘, 0, 𝑙 , . . .⟩ , with 𝑖 , 𝑗 , 𝑘, 𝑙 = 1, 2, (6.1)
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6 Strong interaction for extended parafermion chain
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(b)𝑈 = 0

Figure 6.2: Central charge for 𝑈 ∈ [2, 5], 𝑓 = 0 in (a) and 𝑈 = 0, 𝑓 ∈ [−5,−2] in (b).
Data obtained from fitting Equation 5.20 to the finite size central-cut entanglement
from DMRG for 𝐿 = 64, 76, . . . , 100.

an alternating order of 0’s and 1,2’s. This is only the local behaviour, the precise
form of the ground state will be discussed in Sections 6.4 and 6.5, depending
on the parity of the length of the chain. The alternating degree of freedom on
the chain presents us with an exponential (≈ 2𝐿/2) degeneracy, at first order. In
the next sections we will discuss the higher order perturbative terms that paint
a clearer picture of low energy behaviour.

We note that the structure of Equation (6.1) resembles the charge den-
sity/Mott behaviour (𝑘 = 𝜋) encountered in ANNNI, with the addition of
the large degeneracy.

6.4 Odd system length
We start the detailed discussion with the simplest case, 𝐿 is odd. The ground
state subspace 𝐺𝑜(𝐿) (the 𝐿 is usually omitted) in the classical limit (𝑈, 𝑓 ≫ 1
and 0 < 𝑓 < 2𝑈) is spanned by

|Ψ𝑜
®𝑖 ⟩ = |0, 𝑖1 , 0, 𝑖2 , 0, . . . , 𝑖(𝐿−1)/2 , 0⟩ . (6.2)

for 𝑖1 , 𝑖2 , . . . , 𝑖(𝐿−1)/2 = 1, 2, with a gap of Δ = 3 min( 𝑓 , 2𝑈 − 𝑓 ).
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6.4 Odd system length

Analogous to Section 5.7.2, we recognize an effective spin-1/2 chain, in this
case of length 𝐿−1

2 . Every odd site is fixed to 0, while the even sites can be
represented by a spin-1/2, matching the local degrees of freedom.

We can reinstate the 𝜎𝑗𝜎†
𝑗+1 terms perturbatively for the effective spin 1/2

chain.
𝑉𝜎 = −

∑
𝑗

[
𝜎†
𝑗 𝜎𝑗+1 + h.c.

]
(6.3)

The first non-vanishing perturbative contributions are second order and as
shown in Appendix 6.B yield an effective XXZ-Hamiltonian.

𝐻(2)
eff = −

∑
𝑘

[
2

3 𝑓 (𝜎
+
𝑘 𝜎

−
𝑘+1 + h.c) +

(
1

3 𝑓 + 3𝑈 + 1
6𝑈 − 1

3 𝑓

)
𝜎𝑧𝑘𝜎

𝑧
𝑘+1

]
, (6.4)

where 𝑘 = 1, . . . , 𝐿−3
2 corresponds to the effective sites of the spin-1/2 chain. The

XXZ chain
[∑

𝑘 𝐽𝑥𝑦(𝜎+
𝑘 𝜎

−
𝑘+1 + h.c) + 𝐽𝑧

2 𝜎
𝑧
𝑘𝜎

𝑧
𝑘+1

]
is critical (𝑐 = 1) for Δ = 𝐽𝑧/𝐽𝑥𝑦 ∈

[−1, 1]. From Equation (6.4) we observe that Δ takes values from 1 through
−2/3 for 𝑓 ∈ [0, 2𝑈], with Δ = 0 for 𝑓 = 𝑈 reducing to the non-interacting XX
chain. For odd 𝐿 and large𝑈, 𝑓 the system represented by a critical XXZ chain
on every odd site. This is represented by the blue and orange outline, depicting
the classical limit. We denote this phase as the sublattice critical XXZ phase.

6.4.1 Finite𝑈, 𝑓
At finite 𝑈, 𝑓 we recover this sublattice critical XXZ phase. The blue-orange
phase in Figure 6.1 is accurately described by the effective spin-1/2 picture for
odd 𝐿.

Let us look at an exemplary point 𝐶3 (𝑈 = 4, 𝑓 = 2). In Figure 6.3a, fi-
nite size scaled DMRG results confirm that this point is indeed gapless. The
system size dependency, resembles the finite size XXZ behave, as discussed
in Appendix 5.B.2 (although for a different periodicity, due to the sublattice
structure).

The central charge is obtained from the modified Calabrese-Cardy formula
[209, 210, 216]:

𝑆odd
mod(𝐿, 𝑙) = 𝑆(𝐿, 𝑙) +

𝑎 cos
(
𝜋
𝑙− 1

2
2

)
𝐿
𝜋 sin

(
𝜋𝑙
𝐿

) , (6.5)
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Figure 6.3: DMRG results for 𝑈 = 4 and 𝑓 = 2 for odd system lengths. Finite size
scaling for 𝐿 = 63, 65, . . . , 99 in (a), with the first an second excitation gap 𝛿𝑖(𝐿) and
the distinction of 𝐿 = 1 and 3 mod 4 branches. Entanglement entropy and eigenstate
occupation in (b) for 𝐿 = 101.

where 𝑆(𝐿, 𝑙) is defined in Equation (5.20), taking into account that the spin-
1/2 degrees of freedom live on every second site. Using Equation (6.5) the top
panel of Figure 6.3b confirms that the critical XXZ central charge (𝑐 ≈ 1).

The numerical results allow us to directly test the claim that this region has a
|0⟩ on every second site, alternating with a |𝑖⟩ with 𝑖 = 1, 2. For this we define
the projector on these three eigenstates of 𝜏:

𝑃 𝑖𝑗 = (1 + 𝜔−𝑖𝜏𝑗 + 𝜔𝑖𝜏†𝑗 )/3 (6.6)

for 𝑖 = 0, 1, 2. The spatial expectation values are shown in the bottom panel
of Figure 6.3b. The oscillating behaviour ⟨𝑃0

𝑗 ⟩ and ⟨𝑃1
𝑗 + 𝑃2

𝑗 ⟩ confirms that the
ground state subspace shows the signatures of the large 𝑈, 𝑓 limit. Due to the
conjugation invariance (|1⟩ ⇄ |2⟩) numerical data shows ⟨𝑃1

𝑗 ⟩ ≈ ⟨𝑃2
𝑗 ⟩.
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6.5 Even system length

6.5 Even system length

For even 𝐿 the story is more complicated. In the classical limit 𝑈, 𝑓 ≫ 1 there
are three low energy subspaces 𝒢+, 𝒢− and 𝒢𝑑. The first two are spanned
respectively by

|Ψ+
®𝑖 ⟩ = |𝑖1 , 0, 𝑖2 , 0, . . . , 𝑖𝐿/2 , 0⟩ (6.7)

|Ψ−
®𝑖 ⟩ = |0, 𝑖1 , 0, 𝑖2 , . . . , 0, 𝑖𝐿/2⟩ , . (6.8)

for 𝑖1 , 𝑖2 , . . . , 𝑖𝐿/2 = 1, 2. The classical energy of these states is

𝐸±
0 = −𝐿

[
𝑓
2 +𝑈

]
. (6.9)

The third is a family of subspaces 𝒢𝑑 for 𝑑 = 1, . . . , 𝐿2 spanned by

|Ψ𝑑
®𝑖 ⟩ = |0, 𝑖1 , 0, 𝑖2 , . . . , 0, 𝑖𝑑−1 , 0, 0︸︷︷︸

𝑑

, 𝑖𝑑 , 0, . . . , 0, 𝑖𝐿/2−1 , 0⟩] (6.10)

There is domain wall |00⟩, left from the 𝑑th spin 1/2 degree of freedom. The
states left |0, 𝑖1 , 0, 𝑖2 , . . . , 0, 𝑖𝑑−1 , 0⟩ and right |0, 𝑖𝑑 , 0, 𝑖𝑑+1 , . . . , 0, 𝑖𝐿/2−1 , 0⟩ of the
domain wall are both ground states of odd length systems. The energy of this
state is

𝐸dw
0 = −𝐿

[
𝑓
2 +𝑈

]
− 3( 𝑓 −𝑈), (6.11)

Next we consider the two cases 𝑓 < 𝑈 and 𝑓 > 𝑈 .

𝑓 < 𝑈

In the thermodynamic limit for 𝑓 < 𝑈 the first ground state is represented by
the first two subspaces 𝒢+ ⊕ 𝒢−, as (6.9) < (6.11).

These two subspaces are decoupled by the perturbative Hamiltonian (6.3),
because they only hybridize at 𝐿th order. Like in the odd case, the effective
Hamiltonian we obtain from (second order) perturbation is for both subspaces
the XXZ model given by (6.4), with a careful repositioning of the spin-1/2 sites.
This gives direct sum of the sublattice XXZ model, completely decoupled, with
a central charge 𝑐 = 1. This phase is denoted by the blue outline in Figure 6.1.
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6 Strong interaction for extended parafermion chain

If we write the XXZ ground state for each respective sector as |Ψ±⟩ we can
write

1√|𝛼 |2 + |𝛽 |2
[
𝛼 |Ψ−⟩ + 𝛽 |Ψ+⟩] (6.12)

as the generic ground state. The oscillating nature of the |0⟩ states appears as
follows (see Equation (6.6))

⟨𝑃0
𝑗 ⟩ =

1√|𝛼 |2 + |𝛽 |2
·
{
|𝛼 |2 for 𝑗 odd
|𝛽 |2 for 𝑗 even

(6.13)

Regardless of 𝛼, 𝛽 is shows this observable a two site periodicity. We will use
this knowledge in the finite𝑈, 𝑓 exploration.

𝑓 > 𝑈

For 𝑓 > 𝑈 the domain wall subspaces 𝒢𝑑 have the first order lowest energy.
For odd system lengths this feature does not appear, domain wall states are
always excited. In the outline of Figure 6.1 this phase is coloured orange.

We recognize that every individual 𝒢𝑑 can be written as the direct product
of two odd-𝐿 subspaces 𝒢0(2𝑑 − 1) ⊗ 𝒢0(𝐿 − 2𝑑 + 1). Following Section 6.4
second order perturbation theory gives the direct product of two XXZ chains.
However, this is not the leading order correction.

Contrary to the previous cases, there is a relevant first order contribution for
the 𝒢𝑑’s:

𝑉𝜎 |Ψ𝑑
®𝑖 ⟩ = −

[
|Ψ𝑑−1

®𝑖 ⟩ + |Ψ𝑑+1
®𝑖 ⟩

]
, (6.14)

with 𝑉𝜎 defined by Equation 6.3 In other words, the first perturbative term
shifts the domain wall back and forth: 𝑉𝜎𝒢𝑑 = − [𝒢𝑑−1 + 𝒢𝑑+1] . If we define
𝒢 = 𝒢1 ⊕ · · · ⊕ 𝒢 𝐿

2 , the first order contributions on the subspaces can be written
as

𝑉𝜎𝒢 = −

©
«

0 𝐼
𝐼 0 𝐼

𝐼 0 . . .
. . . . . . 𝐼

𝐼 0

ª®®®®®®®
¬

©
«

𝒢1

𝒢2

𝒢3

...
𝒢 𝐿

2 −1

𝒢 𝐿
2

ª®®®®®®®®®
¬

. (6.15)

where 𝐼 acts trivially, if we order 𝒢 𝑗 appropriately,. This is the most relevant
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6.5 Even system length

perturbation, which we have to consider first. The coupling between the sub-
spaces will lift the degeneracy and dictate the spectrum up to first order. For
this simple block tridiagonal matrix, the eigenvalues and vectors are known
exactly [244, p.67]. The gapless spectrum is given by

𝐸𝑘 = −2 cos
(

𝑘𝜋
𝐿/2 + 1

)
, (6.16)

for 𝑘 = 1, . . . , 𝐿2 . For 𝑘 = 1 we get the ground state given by corresponding
eigenvector (�1 , . . . , �𝐿/2)⊤ with

�𝑑 =
1√

(𝐿/2 + 1)/2
sin

(
𝜋𝑑

𝐿/2 + 1

)
, (6.17)

normalized to 1. These �𝑑 weigh the different domain wall subspaces. How-
ever, the degeneracy for each subspace still remains. Consequently, first order
perturbation theory gives the ground states:

|Ψ®𝑖1 ,...,®𝑖𝐿/2⟩ =
𝐿/2∑
𝑑=1

�𝑑 |Ψ𝑑
®𝑖𝑑⟩ . (6.18)

This is still a large subspace and higher order corrections are required to un-
derstand the physics. Adding the second order perturbations (XXZ), is quite
non-trivial and beyond the scope of this chapter. Fortunately, we can already
obtain some insights from this first order perturbative result. Regardless of
the second order contributions, the occupation number ⟨𝑃0

𝑗 ⟩ (6.6) follows from
Equation (6.17)

⟨𝑃0
𝑗 ⟩ =




1 −
[
𝑗 − sin(𝜋𝑗/(𝐿/2+1))

sin(𝜋/(𝐿/2+1))
]
/(𝐿 + 2), for 𝑗 odd,[

𝑗 + 1 − sin(𝜋(𝑗+1)/(𝐿/2+1))
sin(𝜋/(𝐿/2+1))

]
/(𝐿 + 2), for 𝑗 even.

(6.19)

6.5.1 Finite𝑈, 𝑓
At finite 𝑈, 𝑓 it is a priori not clear whether the 𝒢± or 𝒢𝑑 persists. For-
tunately, the 0-occupation number of the respective descriptions, defined in
Equations (6.13) and (6.19) is good indicator, since both show very different
behaviour. The 𝒢± is simply oscillating, while the 0-occupation number for 𝒢𝑑

shows a cross-over.

157



6 Strong interaction for extended parafermion chain

Using 𝐶3 (𝑈 = 4, 𝑓 = 2) as an example, we see in the top pane of Figure 6.4a
the occupation numbers. Note that ⟨𝑃1 + 𝑃2⟩ = 1 − ⟨𝑃0⟩. The exact results
for the domain wall picture is depicted by the solid lines. Even though the
correspondence is not perfect, the nature of the system is clearly the domain
wall states. This picture was confirmed for multiple points, both for larger 𝑈
and large 𝑓 . One of these point is shown in the top pane of Figure 6.4b. Because
of the larger 𝑓 , the numerical results follow the domain wall prediction.
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Figure 6.4: Occupation number (top) and entanglement entropy (bottom) for 𝑈 = 4
and even system length (𝐿 = 100) at 𝐶3 ( 𝑓 = 2) in (a) and a point deeper in the
critical phase ( 𝑓 = 5) in (b). The Calabrese–Cardy fit to the entanglement entropy is
very poor, suggesting the absence of a CFT.

In this domain wall picture, proceeding with perturbation theory beyond first
order is very non-trivial. The difficulty lies in the mixing of the domain wall mo-
bility and the XXZ-like interactions. The bottom panels of Figure 6.4, showing
the entanglement entropy, confirms this obscure behaviour. The Calabrese-
Cardy formula 5.20 cannot be fitted to the entanglement. This can mean one of
two things. Contrary to the odd 𝐿, the system is not described by a conformal
field theory, which is very likely because of the intricate nature of the states.
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6.6 Transitions for odd 𝐿

Or the numerical calculations were not sufficient to observe the true critical be-
haviour. On this, we would like to mention that going to 𝐿 = 400 with sufficient
bond dimension did not reveal a clearer picture.

It has to be said that the entanglement entropy presented here does suggest
that the system is gapless. In the gapped case, the entanglement entropy usually
saturates to a fixed value. Direct calculation of the finite size gap confirms this
suspicion for the point 𝐶3, as can be seen in Figure 6.5. Again, the scaling of the
gap shows a XXZ-like even-odd effect, as we encountered in Appendix 5.B.2
and 6.4. However, the precise reasoning is not so clear here.
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Figure 6.5: DMRG results for 𝑈 = 4 and 𝑓 = 2 for even system lengths. Finite size
scaling for 𝐿 = 64, 66, . . . , 102, 182, . . . , 200 in with the first an second excitation gap
𝛿𝑖(𝐿) and the distinction of 𝐿 = 0 and 2 mod 4 branches.

More importantly, the scaling of 𝛿1(𝐿 = 2 mod )) = 𝛿2(𝐿 = 0 mod )) sug-
gests that there is indeed no underlying CFT at 𝐶3. For a CFT the scaling of all
excitations should be proportional to 1/𝐿. The scaling of 1/𝐿1.74... contradicts
this requirement.

Nevertheless, in order to understand the precise nature of this phase for 𝐿
even, more extensive calculations are required.

6.6 Transitions for odd 𝐿
The phase diagram presented in Figure 6.1 also shows several grey areas, where
we would expect the transition lie. Our numerical methods and computation
resources could not fully resolve these regions. Because the critical phase
around 𝐶3 for even 𝐿 is poorly understood we restrict this discussion to odd 𝐿.
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6 Strong interaction for extended parafermion chain

We will look at two cuts, depicted by the dashed lines in Figure 6.1, crossing the
transitions to understand the difficulties. Besides the critical phases described
in previous sections, these cuts cover the two gapped phases, the topological
(Section 5.6) and the Ising ferromagnetic (Section 5.7).

We use the numerically obtained central charge, the scaling of the correlation
function and relevant order parameters to distinguish the phases. The central
charge follows from a fit to the (modified) Calabrese-Cardy formula (5.20),(6.5).
The relevant correlator 𝐺(𝑙) is defined in Equation (5.36) and shows power law
behaviour in gapless system, scaling as 𝑙−𝑏 (𝑙 the distance of the two point
function). The Z3 ordered phase can be distinguished with the long range
Z3 order

���⟨𝜎†
𝑗 𝜎𝑗+𝐿/2⟩

���. The ferromagnetic phase is characterized by
〈∑

𝑗 �̃�
𝑧
𝑗

〉
,

with �̃�𝑧𝑗 = diag(0, 1,−1)𝜏. An extensive explanation of both parameters is in
Section 5.7.3. Finally, we introduce an order parameter for the oscillating nature
of the sublattice XXZ states. With Equation (6.2) and Figure 6.3b in mind we
define the sublattice order as

𝒟 =
���∑

𝑗

(−1)𝑗𝑃0
𝑗

���/𝐿. (6.20)

Cut along 𝑓 = 2

The first cut follows 𝑓 = 2 and runs over 𝑈 ∈ [1.5, 3], covering the Z3 to
sublattice critical XXZ transition.

In Figure 6.6a we clearly distinguish the Z3 phase, 𝑐 = 0 (top panel) and Z3
order (bottom panel) is finite, for𝑈 < 2.3.

For𝑈 > 2.6 the central charge and sublattice order (𝒟, bottom panel) confirm
the sublattice XXZ phase. The dotted line in the bottom panel denotes the
sublattice order in the classical limit 𝒟 = 1/2.

The grey region in between shows long range Z3-order (𝑏 = 0, but ⟨𝜎†
𝑗 𝜎𝑗+𝐿/2⟩

finite), however it also shows criticality 𝑐 > 0, with reduced sublattice order.
This classifies neither as gappedZ3-ordered, nor gapless sublattice critical XXZ.
Like in incommensurate phase the ANNNI model there could be an additional
phase separating the ordered from the density wave phase.

Cut along𝑈 = 4

The second cut for𝑈 = 4 and 𝑓 ∈ [−1, 0.5] is shown in Figure 6.6b.
Clearly, the gapped Ising ferromagnetic phase is confirmed for 𝑓 < 0.875 by

the central charge (top panel) and ferromagnetic order (bottom panel).
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Figure 6.6: Numerical results for the Z3-ANNNP for 𝐿 = 201. The top panes show the
central charge from fitting to the CC (5.20). The middle panes show the power law
scaling for the𝐺(𝑙). The third panes show the relevant order parameters. The dotted
horizontal lines (at 1

2 ) in the lower panes indicate the dimerization for the classical
limit (𝑈, 𝑓 ≫ 1) ground state given by Equation (6.2). The dashed lines show the
transitions, with the colours naming the phases. The regions where the results were
inconclusive are depicted by the grey areas.

For 𝑓 > 0.25 the sublattice order and central charge confirm the 𝑐 = 1
sublattice XXZ behaviour.

Also, we see evidence of the dual 𝑐 = 2 critical point at 𝑓 = 0. As discussed in
Section 6.2, this can be described by two decoupled 𝑐 = 1 Potts chains related.
The central charge not exactly 2, this could either be a due to the system size
being to short to capture the 𝑐 = 2 entanglement, or there is some hidden
coupling (at the boundaries) that gaps out part of the low energy degrees of
freedom.

Moreover, there is a 𝑐 = 1 phase for 𝑓 ∈ [−0.875, 0.45], which we do not
know the origin for. It show ferromagnetic order in seems to be connected to
the transition between the ferromagnetic and Z3-ordered phase, see Figure 6.1.

Finally there are two grey transition regions, that show varying central charge
and no definitive order. Together with the unknown 𝑐 = 1 phase, these grey
regions require additional investigation.
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6 Strong interaction for extended parafermion chain

6.7 Discussion
In this chapter we continued the investigation from Chapter 5 taking the inter-
action 𝑈 to a larger regime. With the phase diagram for the large-𝑈 ANNNI
in mind, we expected this regime to be quite different from the small-𝑈 case.

A combination of perturbation theory and numerical DMRG calculations led
to the discovery of several critical phases. Duality transformations yielded a
𝑐 = 2 XXZ phase for 𝑓 = 0, and a 𝑐 = 1 phase with unknown origin appeared
for 𝑓 < 0. Finally, there is an elusive critical phase covering the top right of the
phase diagram, showing a complicated even-odd effect concerning the system
size. For odd system sizes this phase is very well described by a 𝑐 = 1 critical
XXZ phase, occupying every second site.

For even 𝐿 the system is still critical, however, not related to a CFT. At first or-
der perturbation theory the ground states show some domain wall behaviour.
The exact root of the criticality is unclear, because the second order perturbative
contributions had not been resolved. This intricate phase desires further inves-
tigation. Unifying the first and second order perturbative term might shed a
light on the nature of the even 𝐿 phase. Also, more advanced computational
efforts can help to understand the critical behaviour in this particular regime.

Among the critical phases and the gapped phases (topological and Ising
ferromagnetic) lie transition regions, which could not be classified as one of
the existing phase, our current methods. Attention in future studies would
be required to understand the physical nature of these regions. Moreover, the
influence of chirality in this particular corner of the phase diagram is likely to
reveal an even more diverse set of phases. The results in Ref. [232] show several
novel critical and gapped phase for one particular chirality � = 𝜋/3 (defined
in Equation 5.7). Finally, also for Z𝑛>3 interesting phases can appear as was
shown in Ref. [186] for Z6.
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6.A Rough topography of the phase diagram

6.A Rough topography of the phase diagram
Following the same method described in Appendix 5.B.1 we obtain the rough
phase diagram for large interactions.
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Figure 6.7: Rough topography of the phase diagram for the Z3-ANNNP model, with
large 𝑈 . The central-cut entanglement entropy and central charge results were
obtained for small system sizes 𝐿 =50–100 and low bond dimension in the parity
sector 0. Even though the nature of the phases and transitions cannot be conclusively
derived from these plots, it gives a good visual guide for the features to be studied
in more detail.
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6 Strong interaction for extended parafermion chain

6.B Effective XXZ chain

The different ground state manifolds, defined in (6.2),(6.7),(6.8),(6.10) all share
the sublattice spin-1/2 degree of freedom. Therefore, the relevant part for the
states is the alternating bulk part

|Ψbulk
®𝑖 ⟩ = |. . . , 𝑖 𝑗 , 0, 𝑖 𝑗+1 , 0, . . .⟩ , with . . . , 𝑖 𝑗 , . . . = 1, 2. (6.21)

Recall, that the perturbation is given by

𝑉𝜎 =
∑
𝑗

𝑣𝜎𝑗 = −
∑
𝑗

[
𝜎†
𝑗 𝜎𝑗+1 + h.c.

]
(6.22)

There is no first order contribution, since ⟨Ψbulk
®𝑖 |𝑉𝜎 |Ψbulk

®𝑖 ⟩ = 0.

The second-order terms originate from perturbations of the form

∑
𝑘

⟨Ψ𝑖 |𝑉𝜎 |Φ𝑘⟩ ⟨Φ𝑘 |𝑉𝜎 |Ψ𝑙⟩
𝐸Ψ − 𝐸Φ𝑘

, (6.23)

where 𝐸Ψ = 𝐸Ψ𝑖 = 𝐸Ψ𝑙 the unperturbed energies of the ground states.
On the spin- 1

2 degree of freedom on every second site we define operators
𝜎±,𝑧
𝑗 acting on |1⟩ , |2⟩, such that 𝜎𝑧 |1⟩ = |1⟩ and 𝜎𝑧 |2⟩ = − |2⟩.
There are hopping terms contributing to the effective Hamiltonian:

⟨102|𝑣𝜎2𝑗 |222⟩ ⟨222|𝑣𝜎2𝑗+1 |201⟩
𝐸Ψ − 𝐸Φ𝑘

+
⟨102|𝑣𝜎2𝑗+1 |111⟩ ⟨111|𝑣𝜎2𝑗 |201⟩

𝐸Ψ − 𝐸Φ𝑘

= − 2
3 𝑓 (6.24)

In operator language this matrix becomes − 2
3 𝑓 (𝜎+

𝑗 𝜎
−
𝑗+1 + 𝜎−

𝑗 𝜎
+
𝑗+1).

The second contribution comes from the following overlaps

⟨01010|𝑣𝜎2𝑗+1 |01220⟩ ⟨01220|𝑣𝜎2𝑗+1 |01010⟩
𝐸Ψ − 𝐸Φ𝑘

+
⟨01010|𝑣𝜎2𝑗+1 |01100⟩ ⟨01100|𝑣𝜎2𝑗+1 |01010⟩

𝐸Ψ − 𝐸Φ𝑘

+
⟨01010|𝑣𝜎2𝑗 |02210⟩ ⟨02210|𝑣𝜎𝑗 |01010⟩

𝐸Ψ − 𝐸Φ𝑘

+
⟨01010|𝑣𝜎2𝑗 |00110⟩ ⟨00110|𝑣𝜎2𝑗 |01010⟩

𝐸Ψ − 𝐸Φ𝑘

= − 2
3 𝑓 + 3𝑈 − 2

3𝑈 (6.25)
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6.B Effective XXZ chain

and

⟨01020|𝑣𝜎2𝑗+1 |01110⟩ ⟨01110|𝑣𝜎2𝑗+1 |01020⟩
𝐸Ψ − 𝐸Φ𝑘

+
⟨01020|𝑣𝜎2𝑗+1 |01200⟩ ⟨01200|𝑣𝜎2𝑗+1 |01020⟩

𝐸Ψ − 𝐸Φ𝑘

+
⟨01020|𝑣𝜎2𝑗 |02220⟩ ⟨02220|𝑣𝜎2𝑗 |01020⟩

𝐸Ψ − 𝐸Φ𝑘

+
⟨01020|𝑣𝜎2𝑗 |00120⟩ ⟨00120|𝑣𝜎2𝑗 |01020⟩

𝐸Ψ − 𝐸Φ𝑘

= − 2
3 𝑓 − 2

6𝑈 (6.26)

These terms can be summarized −
(

1
3 𝑓+3𝑈 + 1

6𝑈 − 1
3 𝑓

)
𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 modulo an overall

energy shift.
The effective Hamiltonian is an XXZ model

𝐻(2)
eff = −

∑
𝑗

[
2

3 𝑓 (𝜎
+
𝑗 𝜎

−
𝑗+1 + h.c) +

(
1

3 𝑓 + 3𝑈 + 1
6𝑈 − 1

3 𝑓

)
𝜎𝑧𝑗 𝜎

𝑧
𝑗+1

]
(6.27)

The anisotropy is given by Δ = − 𝑓
𝑓+𝑈 − 𝑓

2𝑈 + 1. For 𝑓 ≪ 𝑈 the anisotropy
approaches -1, for 𝑓 = 𝑈 there is only spin-flip (i.e. Δ = 0) and for 𝑓 → 2𝑈 we
have Δ = 2

3 . Recall that this discussion is valid for 𝑈, 𝑓 ≫ 1 and 2𝑈 − 𝑓 ≪ 1.
For large 𝑈 , we can approach 𝑓 = 2𝑈 arbitrarily close, without violating the
latter requirement, contrary to the limit 𝑓 ↓ 0, which cannot be approached
perturbatively.
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7 Summary and Outlook
The work in this thesis mostly revolved around parafermions, either in the
simplest Z2-Majorana- or the the general Z𝑛-form. Typically, the systems were
examined in their condensed matter lattice representation, with the occasional
excursion to the accompanying field theory description. In particular, the work
focussed on the low energy behaviour of these one dimensional systems, with
several exotic phases, topology, criticality and quantum phase transitions.

In the introduction (Chapter 1) parafermions were presented in the context
of condensed matter, strongly correlated systems and quantum computers.

Thereafter, the first part, Chapters 2 and 3 focussed on frustration free sys-
tems. These are models with fine tuned parameters, that possess an exact
ground state degeneracy. In Chapter 2 the Kitaev chain was met with a com-
bination of an alternating chemical potential and interactions. For a specific
set of coupling constants this system was shown to have a two-fold degenerate
ground state, with a finite gap, displaying topological order.

Chapter 3 presented a general framework for obtaining frustration free mod-
els, mainly topological models. Based on Witten’s conjugation argument, the
ground state and Hamiltonian were simultaneously deformed, keeping their
relation intact. This deformation connected these deformed Hamiltonians to
well understood undeformed systems. For instance, we recovered the Peschel–
Emery frustration free line for the ANNNI model in Section 3.3.2, deformed
from the topological/ferromagnetic classical Ising model. Also recently dis-
covered Z3 frustration free models were rederived in this framework, as well as
the 𝑞-deformations for the XXZ and AKLT model. Moreover, two novel classes
of Z𝑛 parafermion models were obtained, showing the straightforward appli-
cation of the framework. The most important contribution of this chapter was
the overarching description for all these, so far disconnected, models, making
interpolations and extension more easily accessible. Due to the topological
nature of many of the models in question, the presence of these frustration free
lines is important, as they give a handle on the ground state degeneracy.

In the second part, two parafermion systems were taken away from analytical
safe haven, employing the use of a numerical method called Density Matrix
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Renormalization Group. The phase diagrams of the tight binding Z3 Fock
parafermion chain and an extended Z3 parafermion chain were obtained with
a combination of numerical and analytical tools.

Chapter 4 was dedicated to the first of these two models. It was concluded
that the phase diagram involves with three distinct critical phases (two 𝑐 = 1 and
one 𝑐 = 2) and a gapped line. Perturbatively, some of these phases were linked
to effective Luttinger liquids, supported by numerical correlation functions.

Finally, Chapters 5 and 6 discussed a four site interaction added to the
parafermion chain. Beside the topological and trivial phase, three phases
related to the XXZ model were identified in Chapter 5. Two gapped phases, an-
tiferromagnetic and ferromagnetic Ising phases, were numerically confirmed
to show their relevant order. In between lie a critical XXZ phase, or Luttinger
liquid phase. Numerical evidence clearly confirmed the central charge (𝑐 = 1)
and Luttinger parameter (𝐾 from the correlation functions). Second order per-
turbation theory uncovered an U(1) breaking term for the effective spin-1/2
theory, only opening a Z3 ordered gap at the Heisenberg ferromagnetic point.

The discussion of this model was continued in Chapter 6, where focus lie on
the large interaction limit. This part of the phase diagram was not fully under-
stood. However, it was clear that some interesting even-odd effect dominated
for large interactions. The phase showed clear signs of criticality, related to an
effective spin-1/2 description on every second site. The true nature was well
understood for odd systems lengths, where even system sizes showed critical
non CFT behaviour, with interesting domain wall ground states.

The work of the final two chapters gives a lot of interesting leads for future re-
search. One straightforward continuation for either chapter is a Z𝑛-symmetric
model for 𝑛 ≥ 4. Moreover, the extension chosen in Chapters 5 and 6 is by
no means the most general, supporting the Z3 symmetry. Furthermore, if the
reality conditional on the coupling constants is lifted, an even larger parameter
space appears. Careful deliberation of possible experimental setups can distil
the next most relevant interactions, avoiding dealing with an intangibly large
set of parameters.

Also, the Fock parafermion model from Chapter 4 can easily be extended, in-
cluding for instance superconductor-like terms, analogous to the Kitaev chain.

Finally, the conjugation approach for frustration free models from Chapter 3
can naturally be applied to more systems that meet the criteria, involving chiral
classical Z𝑛 models and quantum many-body scar states.

I hope this thesis conveys the fascinating world of parafermions and inspires
others to continue fill in the blanks of this still largely unexplored terrain.
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Nederlandse samenvatting
De taal van (theoretisch) natuurkundig wetenschappelĳk onderzoek is abstract
en wiskundig. Het is een taal die je in een jaar of tien meester wordt, maar die
niet geschikt is om het werk aan een breed publiek te presenteren. Met deze
samenvatting, geformuleerd in meer gangbare taal, wil ik graag mĳn familie,
vrienden en andere geïnteresseerden zonder achtergrond in natuurkunde een
inkĳkje geven in het onderzoek dat ik de afgelopen vier jaar heb gedaan. Ik
plaats mĳn onderzoek in de hedendaagse wetenschappelĳke context, geef een
motivatie voor de onderzoeksrichting, en leg de belangrĳkste resultaten van
dit proefschrift aan u voor.

De hoofdstukken in dit proefschrift dragen alle een eigen steentje bĳ aan het
theoretische onderzoek naar parafermionen en topologische systemen. Beide
termen komen in deze samenvatting aan de orde en worden in verband gebracht
met de bouw van quantumcomputers.

Quantumcomputers
De smartphone in uw broekzak, de laptop waarop ik dit proefschrift samenstel,
de supercomputers van IBM, dat zĳn allemaal elektronische rekenaars die de
uitkomst zĳn van 75 jaar innovatie. De computer is niet meer weg te denken
uit ons leven, van de deurbel tot de e-bike en het scheerapparaat. Ons dagelĳks
leven wordt een stuk eenvoudiger dankzĳ de computer. Het wetenschappelĳk
leven ook. De computer neemt repetitieve berekeningen uit handen en doet
dat sneller dan de mens ooit met pen en papier zou kunnen. Toch zĳn er
bepaalde problemen die met de snelste computers die nu voorhanden zĳn niet
op te lossen zĳn. Ondanks dat volgens de wet van Moore de rekensnelheid
elke paar jaar verdubbelt, blĳven deze problemen altĳd buiten bereik van het
huidige type computers.

Dit wordt duidelĳk met behulp van een simpel voorbeeld. Een pakketbe-
zorger moet 3 pakketjes bezorgen naar adressen A, B, C. Om te bepalen wat
de snelste route is moet hĳ alle adresvolgordes afgaan, eerst A, dan B dan C,
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maar ook A–C–B en B–A–C.a Voor elke volgorde berekent hĳ de afstand en zo
kan hĳ de snelste route vinden. Het berekenen van 3 adressen is nog wel te
behappen voor de bezorger. Bĳ 5 adressen wordt het al lastiger, dan zĳn er
namelĳk 60 adresvolgordes mogelĳk. Heeft de pakketbezorger 28 adressen om
langs te gaan, dan moeten er 1,6×1029 (ofwel ruim honderd miljard miljard mil-
jard) volgordes bekeken worden. Dat is onbegonnen werk. Routeoptimalisatie
groeit als de faculteit (𝑁 !/2) van het aantal adressen (𝑁). Met andere woorden:
het aantal mogelĳke volgordes groeit sneller dan exponentieel. Ook in de bi-
ologie, scheikunde en natuurkunde zĳn er tal van optimalisaties en simulaties
die (sneller dan) exponentieel groeien. Voor systemen met veel componenten
gaan dit soort berekeningen al snel de beste supercomputer boven de pet en
moeten er benaderingen worden gedaan om een zo goed mogelĳk antwoord te
krĳgen.

Al in de jaren tachtig opperde de beroemde natuurkundige Richard Feynman
om de hulp van quantummechanica in te roepen om dit soort berekeningen
te doen, een quantumcomputer. Die belooft dit soort exponentiële proble-
men wel het hoofd te kunnen bieden. Om dat te begrĳpen kĳken we naar
de kleinste bouwsteentjes van computers. Normale computers maken gebruik
van vele miljarden transistoren, kleine elektronische componenten die ver-
schillende spanningen aan kunnen geven. Als die transistor een lage spanning
aangeeft is dat in computertaal een 0. Een hoge spanning correspondeert met
een 1. Die 0 of 1, een bit, is de kleinste eenheid van de berekeningen in een
computer. De combinatie van veel bits levert een binair getal, bĳvoorbeeld
11111100110 (2022 in het decimale stelsel).

Een quantumcomputer werkt anders. Voor deze computer zĳn de bouwste-
nen quantumbits, qubits. Deze bevinden zich noch in 0 noch in 1, maar in een
combinatie van de twee, 0+1. Elke qubit is dus twee toestanden tegelĳk. Bĳ de
koppeling van vele qubits komt een magische exponentiële groei naar voren.
Als we twee van deze qubits combineren, zĳn die gezamenlĳk 00+01+10+11,
vier toestanden. Met niet meer dan 10 qubits worden 210 = 1024 toestanden
tegelĳk aangesproken. De exponentiële groei werkt hier in ons voordeel, want
slechts 100 qubits vertegenwoordigen al 2100 = 1,3 × 1030 configuraties, genoeg
voor de pakketbezorger om de perfecte route langs 28 adressen uit te stippe-
len. In een quantumcomputer kunnen berekeningen op al die configuraties
tegelĳk worden gedaan, terwĳl in een klassieke computer elke toestand apart

aDe oplettende lezer zal opmerken dat er nog 3 routes mogelĳk zĳn. Zo is er bĳvoorbeeld
C–B–A. Omdat dat het omgekeerde van A–B–C is, kunnen we die buiten beschouwing
laten.
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beschouwd moet worden. Zo kan met één enkele berekening een optimale
route worden verkregen.

Er zĳn al tal van quantumcomputers in gebruik. Grote techbedrĳven als
Google, IBM en Microsoft stellen apparaten beschikbaar met enkele tientallen
qubits. Deze quantumcomputers kunnen inmiddels goed concurreren met
klassieke computers, maar halen nog niet de rekenkracht die nodig is om de
grote optimalisatieproblemen aan te pakken. Daarvoor is het aantal qubits in
één apparaat simpelweg nog niet groot genoeg.

Een van de grote uitdagingen bĳ het opschalen van het aantal qubits is de sta-
biliteit van deze bouwstenen. Het koppelen van veel qubits blĳkt lastig omdat
ze door externe factoren en wisselwerkingen gemakkelĳk kunnen vervallen tot
een 0 óf een 1. Dan gaat de combinatie van de twee verloren en is de opgeslagen
informatie verdwenen.

De quantummechanische aard van de deeltjes gooit hier roet in het eten.
Natuurkundig onderscheiden we grofweg twee soorten systemen, zoals weer-
gegeven in de linker helft van Figuur 2. De systemen bestudeerd in dit proef-
schrift kunnen worden beschreven door elektronen, geladen deeltjes, die over
een draad (kralenketting) van atomen kunnen bewegen. Deze elektronen rang-
schikken zich in de toestand met de laagste energie. In deze grondtoestand
zitten deze deeltjes statisch in het systeem. Dit is te vergelĳken met de stilhan-
gende kogels in een Newtonpendel in de linker helft van Figuur 1. De rechter
helft van Figuur 1 laat de aangeslagen toestand zien: de beweging wordt er
heen- en weergekaatst door de kogels. Als de elektronen worden aangeslagen,
door een elektrische spanning of een verandering van temperatuur, gaan ze be-
wegen en transporten ze hun lading door het materiaal. Met andere woorden:
er gaat een stroom lopen.

Figuur 1: Newtonpendel, in de grondtoestand (links) en in een aangeslagen toestand
(rechts).
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Zoals te zien is in Figuur 2 is het aanslaan van zo’n toestand gemakkelĳk
in een geleider, bĳvoorbeeld koper. Daarin is de benodigde energie klein, de
lading gaat er gemakkelĳk in stromen. Voor isolatoren zoals plastic is dat een
stuk lastiger. De hoge energie, benodigd voor het aanslaan, maakt het lastig
stroom te laten lopen door dit soort materialen.

0 0 0 1

geleider isolator tweevoudig ontaard

grondtoestand

aangeslagen toestanden

0 10 1

0

1

en
er

gi
e

0
1

Figuur 2: De aangeslagen toestanden (zwarte lĳn) in een geleider (links) liggen qua
energie heel dicht bĳ de energie van de grondtoestand: elektronen kunnen eenvou-
dig door het systeem stromen. Voor een isolator (midden) is er een energiesprong
nodig om het systeem van de grondtoestand in de aangeslagen toestand te brengen:
stroom wordt slecht geleid. Sommige isolatoren hebben meerdere toestanden op de-
zelfde laagste energie. Die zĳn tweevoudig ontaard (rechts). Verstoringen kunnen
ervoor zorgen dat er een energieverschil ontstaat (cirkels rechts) en de ontaarding
verloren gaat.

Er zĳn daarnaast verschillende soorten isolatoren. Dat is afhankelĳk van
hun grondtoestand. In uitzonderlĳke gevallen zĳn er in die isolatoren twee
toestanden met precies dezelfde energie. Dat wordt een tweevoudig ontaarde
toestand genoemd. De rechter tekening van Figuur 2 laat deze situatie zien.
Deze ontaarding kan gebruikt worden om een quantumbit te creeëren. We
wĳzen de ene toestand aan als 0 en de andere als 1 en maken een somtoestand
0 + 1. Deze somtoestand blĳft behouden als de twee heel precies op dezelfde
energie blĳven. Dat laatste is helaas niet gegarandeerd. Kleine verstoringen
en onderlinge wisselwerkingen zorgen ervoor dat de twee energieën iets gaan
verschuiven. De energie van de 0 wordt bĳvoorbeeld lager dan die van 1.
Omdat het systeem naar de laagste energie streeft, zal de somtoestand vervallen
in 0 en de quantuminformatie is verloren.

In dit proefschrift heb ik naar systemen gekeken die robuust zĳn voor dit
soort destructieve ontwikkelingen. Deze systemen zĳn eendimensionale topo-
logische materialen. Dit zĳn draden van atomen, die de bewegingsruimte van
driedimensionale elektronen beperken tot één richting. In het kort betekent
het “topologische” van deze systemen dat de interessante eigenschappen zich

188



aan de uiteinden van de draden bevinden, het begin en het eind. Op quan-
tummechanische schaal liggen deze twee uiteinden ver uit elkaar. Omdat de
tweevoudige ontaarding van de grondtoestanden zich voordoet aan deze ein-
den, hebben ze geen onderlinge interactie. Dat maakt de ontaarding robuust:
de somtoestand kan blĳven bestaan, althans, theoretisch. Experimenteel zĳn er
nog de nodige kinken in de kabel. De natuur is nooit zo perfect als de modellen
die we ontwerpen. Daarom is er ook voor theoretici werk aan de winkel. Alle
denkbare effecten van experimentele verstoringen en wisselwerkingen dienen
in duidelĳk in kaart gebracht te worden. Dit proefschrift draagt bĳ aan het
onderzoek naar deze topologische qubits.

Majoranas en parafermionen
In de natuur komen deeltjes voor in twee gedaantes: bosonen en fermionen.
Twee bosonen, zoals lichtdeeltjes, kunnen zich op dezelfde plek bevinden.
Denk aan twee lichtstralen die elkaar zonder probleem kruisen. Voor fermi-
onen is het expliciet uitgesloten dat twee deeltjes dezelfde plek en snelheid
hebben. De elektronen in onze eendimensionale draad behoren tot die catego-
rie. Bovendien gebeurt er iets bĳzonders in onze topologische systemen. De
natuurkundige beschrĳving van dit verschĳnsel laat zich mooi vatten in Ma-
joranafermionen. Deze deeltjes, voorgesteld door Ettore Majorana, hebben de
eigenaardige eigenschap dat ze hun eigen antideeltjes zĳn. Normale fermionen,
zoals elektronen, hebben die eigenschap niet. Het antideeltje van een fermion
kan zich heel anders gedragen dan het fermion zelf. De qubits vervaardigd
uit deze topologische systemen kunnen we daarom ook wel Majoranaqubits
noemen.

In Hoofdstuk 2 worden aan zo’n Majoranasysteem verstoringen toegevoegd
die zich kunnen voordoen in de experimentele werkelĳkheid. Hier laat ik
zien dat de topologische eigenschappen, belangrĳk voor het qubit, nog steeds
behouden blĳven.

Recent is gebleken dat het rekenen met de Majoranaqubits in de quantum-
computer veel lastiger is dan voorheen gedacht. De hoop is daarom ook ge-
vestigd op een broertje van de Majoranas, de parafermionen. Dit zĳn deeltjes
die noch bosonen, noch fermionen zĳn, ze bevinden zich er tussenin. Para-
fermionen zĳn natuurkundig niet toegestaan in de drie dimensies waar wĳ
normaal gesproken in leven. Maar als een systeem wordt beperkt tot één of
twee dimensies, zoals de draad hierboven, kunnen deze deeltjes onder extreme
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omstandigheden de kop op steken. In Hoofdstukken 3, 4, 5 en 6 worden deze
parafermionen bestudeerd. Net als Majoranadraden vertonen deze parafer-
miondraden, onder bepaalde omstandigheden, topologische eigenschappen.
Dat maakt ze eveneens geschikt voor het construeren van een quantumbit, een
parafermionqubit. In Hoofdstukken 3, 5 en 6 bekĳk ik het effect van de ver-
storing en wisselwerkingen op het topologisch gedrag van de parafermionen.
Daarmee draag ik bĳ aan de theoretische studie vooruitlopend op parafermion-
qubits. Hoofdstuk 4 is gewĳd aan parafermionen in een andere gedaante, Fock
parafermionen. Hierin draait de natuurkunde niet om topologie, maar heb ik
laten zien onder welke voorwaarden dit exotische systeem zich als geleider of
isolator gedraagt.

Het onderzoek dat ten grondslag lag aan dit proefschrift onderscheidt zich
in twee categorieën. Ten eerste kan al veel van het gedrag van systemen met
pen en papier worden bestudeerd. Formules geven een algemeen beeld van
de natuurkunde. Dit heten analytische resultaten. Waar deze methoden te-
kort schoten, werd de hulp van de computer ingeroepen. Met behulp van
algoritmes geven de numerieke resultaten een gedetailleerd beeld van de fysi-
sche eigenschappen van de systemen in kwestie. Hiermee heb ik aan den lĳve
ondervonden hoe lastig een quantummechanisch systeem te simuleren is op
een klassieke computer. Deze tak van onderzoek is een goed voorbeeld van
een directe toepassing van quantumcomputing en zal in een extreme stroom-
versnelling komen als snellere quantumcomputers het daglicht zien. Wellicht
zĳn die binnenkort gebaseerd op de Majorana- of parafermionqubits. In de
toekomst gaat zowel de natuurkundige als de pakketbezorger de vruchten
plukken van deze opwindende nieuwe technologie.
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Geschiedenis van het Instituut voor
Theoretische Fysica te Utrecht
This chapter is the odd one out. In the summer of 2020 I investigated the origins
of the Institute for Theoretical Physics, spurred by the lack of a founding date.
This resulted in a lecture on the history of the institute in October 2020, the
publication of a Dutch article in het Nederlands Tĳdschrift voor Natuurkunde and
a shorter English piece in Fylakra. Here I present both articles, side by side.

Dit hoofstuk is gebaseerd op: J.J. Wouters,
Ornstein en de ontwikkeling van het Utrechtse Insti-
tuut voor Theoretische Fysica, Nederlands Tĳdschrift
voor Natuurkunde 87(9), 42-46 (2021).

Tot voor kort was het niet bekend wanneer
het Instituut voor Theoretische Fysica was op-
gericht. Met deze kwestie in gedachten heb
ik de geschiedenis van theoretische natuur-
kunde in Utrecht onder de loep genomen. De
rode draad in dat verhaal is de ingewikkelde
relatie met de experimentele natuurkunde:
onafhankelĳk doch onlosmakelĳk verbonden.

Ruim een eeuw theoretische natuurkunde
in Utrecht heeft tal van wetenschappelĳke suc-
cessen opgeleverd. Denk aan de Nobelprĳs
voor Gerard ’t Hooft en Martinus Veltman of
Nico van Kampens bĳdragen aan de statisti-
sche mechanica, maar ook Hendrik Kramers’
werk in de jonge quantumtheorie of Leonard
Ornsteins en George Uhlenbecks beschrĳving
van de Brownse beweging. Ter ere van het
105-jarig bestaan zet het Instituut voor The-
oretische Fysica (ITF) in Utrecht komend na-

This chapter is based on: J.J.
Wouters, Celebrating 105 Years In-
stitute for Theoretical Physics, Fy-
lakra, 65(3), 30 (2021)

We typically associate
the Institute for Theoretical
Physics (ITP) in Utrecht to
the Nobel Prize of Gerard ‘t
Hooft and Martinus Veltman,
perhaps to the statistical
physics contributions of Nico
van Kampen, Hans Kramers’
works on quantum theory,
and even to the Ornstein-
Uhlenbeck effect describing
Brownian Motion.a However,
until quite recently, we did
not know when the ITP was
founded. Last year, the di-

aLast year a mural dedicated to this
work was revealed at the Oost-
erkade in Utrecht, close to the
Physical Laboratory.
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jaar deze rĳke geschiedenis in het zonnetje.
Een heuglĳk moment met een wat wrange bĳ-
smaak. Het eeuwfeest is namelĳk gemist en
de huidige pandemie maakt planning van fes-
tiviteiten lastig.

De wringende relatie tussen de theoreti-
sche en experimentele natuurkunde in Utrecht
kwam bĳvoorbeeld naar voren toen in 1958 de
eerste plannen werden gemaakt voor de ver-
huizing vanuit de Utrechtse binnenstad naar
de Uithof. Het ITF had zes jaar eerder een
eigen pand betrokken en zich daarmee ruim-
telĳk definitief losgemaakt van de experimen-
tele natuurkunde. In de nieuwe huisvesting
dreigden de theoretici wederom als een van
de onderafdelingen van het Fysisch Laborato-
rium te worden beschouwd. De verzamelde
docenten van de afdeling natuurkunde schre-
ven het bestuur van de universiteit:a

“De vergadering wenst nog eens na-
drukkelĳk als haar unaniem oordeel te
kennen te geven dat het feit dat het In-
stituut voor Theoretische Fysica orga-
nisatorisch een op zichzelf staand insti-
tuut is, ook bĳ de bouw tot uiting moet
komen.”

Dit bekroonde een periode van zestig jaar
waarin theoretische fysica als zelfstandige dis-
cipline volwassen werd en zich losmaakte van
de experimentele natuurkunde.

De basis voor het ITF werd eind negentiende
eeuw gelegd. Toegenomen aandacht en finan-
ciering voor natuurkunde leidde tot professi-
onalisering. De experimenten werden duur,

aBrief van afdeling natuurkunde aan College van Cu-
ratoren d.d. 17 november 1958, in: Archief Be-
stuursgebouw Universiteit Utrecht, in: Fysisch La-
boratorium.

rector of the institute, René
van Roĳ, prompted by the 30th

anniversary celebrations of
the Debye Institute for Nano-
materials Scienceb, asked
around for clues concerning
the early days of ITP. I took up
the baton and spent some time
delving into the history of the
theoretical physics at Utrecht,
focusing on the first half of the
twentieth century.

The story of the foundation
of the institute, turned out to
be as much about the emer-
gence of theoretical physics as
it is about theoretical physics’
complicated relationship with
experimental physics.

Deep into the ninetieth cen-
tury, there was just physics.
The one professor surveyed
both the experiments and the-
ory, even though the latter
assumed a supporting role.
By the end of the nineti-
eth century, professionaliza-
tion accelerated the physics re-
search. As a result, specializa-
tions, like theoretical physics
emerged. Nonetheless the
theorists were mere assistants
to the experimentalists; even
Hendrik Lorentz was the theo-
retical left hand of Kamerlingh
Onnes in Leiden.

bSee FYLAKRA issue 4 of 2019.
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Fig. 1:
Physisch Laboratorium aan Bĳlhouwerstraat om-
streeks 1920 - Utrechts Archief

Physical Laboratory at Bĳlhouwerstraat
around 1920 - Utrechts Archief

te tĳdrovend en te complex om te combineren
met theoretisch werk.

Waar voorheen slechts één leerstoel gereser-
veerd was voor natuurkunde, werd in 1896 in
Utrecht een nieuw professoraat gecrëerd om
aan de theoretische wensen te voldoen. Victor
August Julius werd de eerste hoogleraar the-
oretische natuurkunde. Gelĳktĳdig werd zĳn
neef Willem Henri Julius benoemd tot hoogle-
raar experimentele natuurkunde en directeur
van het Physisch Laboratorium.

Dat laboratorium, gevestigd aan de Bĳlhou-
werstraat in Utrecht, was een kwart eeuw eer-
der in opdracht van Christophorus Buys Bal-
lot neergezet. Om de uitbreiding van zo-
wel de personeelsgeleding, studentenaantal-
len als experimenten het hoofd te bieden, wer-
den eind negentiende eeuw al meerdere vleu-

In Utrecht, theoretical
physics ‘started’ with the ap-
pointment of the first theory
professor, Victor Juliusc, on the
12th of August 1896 (around
125 years ago). Alongside
him was his nephew, director
of the Physical Laboratory
and professor experimental
physics Willem Julius. Both
worked in the lab, commis-
sioned by Buys Ballot in 1875
at the Bĳlhouwerstraat. Sup-
porting classes for medicine
and pharmacy students were
also held at this location,

cThe one from the Julius institute
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gels aangebouwd. Ondanks de verbouwin-
gen bleef er structureel ruimtegebrek: voor
een volwaardige werkruimte voor puur the-
oretisch onderzoek was geen plaats. Dit gaf
treffend de positie van theorie binnen de na-
tuurkunde weer. Zĳ stond slechts ten dienste
van de proefondervindelĳke oudere broer.

Toen Victor Julius in 1902 kwam te overlĳ-
den, werd zĳn leerstoel kortstondig bekleed
door Henri du Bois (1902-1904) en Cornelis
Wind (1904-1911). Het komen en gaan van
hoogleraren versterkte de positie van de the-
oretische natuurkunde allerminst: Du Bois
richtte zich voornamelĳk op experimenten en
Wind deed meer aan meteorologie dan na-
tuurkunde. Door Peter Debye aan te stellen
hoopte men in 1912 de theoretische leerstoel
nieuw leven in te blazen. Met onder andere Jo-
hannes van der Waals in Amsterdam en Hen-
drik Lorentz en Paul Ehrenfest in Leiden liep
Utrecht hopeloos achter in dit snelgroeiende
vakgebied. Helaas zat Debye hier niet op zĳn
plek: hĳ vertelde later dat theoretici nog altĳd
niet welkom waren in het lab.b In 1914 besloot
Debye een aanbod in Göttingen te accepteren.
Ondanks de moeizame relatie met het Phy-
sisch Lab was Debye een geliefd hoogleraar.
Terwĳl hĳ op het punt stond op de trein naar
Duitsland te stappen, ondernamen zowel zĳn
studenten als het bestuur van de universiteit
een laatste poging hem te behouden. In april
1914 lobbyden ze bĳ de Minister van Binnen-
landsche Zaken voor uitbreiding van het la-
boratorium en het aanstellen van een assistent

bInterview met Peter Debye door Thomas S. Kuhn en
George Uhlenbeck, 3 mei 1962,

Niels Bohr Library & Archives, American Insti-
tute of Physics.

besides physics research and
education. Despite several re-
constructions the lab suffered
from a continuous shortage
on space. Around 1900,
there was no longer room
for theoretical physics, with
teaching and experiments
consuming the whole lab.
After Julius passed away
in 1902, also his successors,
Henri du Bois (1902-1904) and
Cornelis Wind (1904-1911) did
not carry theory in Utrecht
into the twentieth century. Du
Bois was at heart an experi-
mentalist and Wind fancied
meteorology.

In 1912, the physics depart-
ment hoped to spur on theo-
retical physics by appointing
Peter Debye as Wind’s succes-
sor. However, the lack of space
in the lab was one of the rea-
sons for Debye to leave for Göt-
tingen already in 1914.d Both
the students as well as the uni-
versity regretted his decision
and requested the minister to
allocate additional funding for
both extensions of the lab as
well as an assistant to facili-

dInterview with Peter Debye by
Thomas S. Kuhn and George Uh-
lenbeck, 3 May 1962, Niels Bohr
Library & Archives, American In-
stitute of Physics.
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om de theoriehoogleraar te faciliteren.c

Deze uiterste poging overtuigde Debye niet
in Utrecht te blĳven, maar het bleek wel een
belangrĳke aanzet voor de verbetering van de
status van de theoretische natuurkunde. Kort
daarna gingen het Rĳk en de universiteit haast
maken met uitbreiding van het lab. In
januari 1915 werden de ontwerpen voor de
uitbreiding goedgekeurd en kon de bouw
beginnen.d Gelĳktĳdig werd Leonard Salo-
mon Ornstein benaderd om Debye op te vol-
gen. Ornstein was een student van de Leidse
hoogleraar theoretische natuurkunde Lorentz
en promoveerde in 1908 op Toepassing der
statistische mechanica van Gibbs op moleculair-
theoretische vraagstukken.

Na de onvrede van Debye was de bereidheid
theorie te faciliteren aanzienlĳk vergroot. Dit
voelde Ornstein haarfijn aan en hĳ eiste on-
middellĳk een assistent en een leeszaal.e De
eerste assistent theoretische natuurkunde, A.
Koerts, werd een jaar later aangesteld.f En
toen de verbouwing begin 1916 voltooid was,
nam Ornstein met zĳn assistent zĳn intrek in
het lab.g Waarschĳnlĳk kreeg hĳ twee kamers
toebedeeld in de nieuwbouw op de westvleu-
gel. Om de positie van zĳn onderzoeksgroep

cBrief van J.H.W.Q ter Spill aan Minister van Binnenland-
sche Zaken, d.d. 9 april 1914, in: Nationaal Archief,
2.04.13, 475; Brief van Curatoren aan Minister van Bin-
nenlandsche Zaken, d.d. 22 april 1914, in: Nationaal
Archief, 2.04.13, 475;

dBrief van Rĳksbouwkundige voor gebouwen van Onder-
wĳs enz. aan Minister van Binnenlandsche Zaken, d.d.
22 december 1914, in: Nationaal Archief, 2.04.13, 475;

eNotulen van de Faculteitsraadvergadering 20 april 1915, in:
Archief Bestuursgebouw Universiteit Utrecht, in: Facul-
teit der Wis- en Natuurkunde, 137.

fNederlandsche Staatscourant 12 februari 1916, p. 2.
gBrief van W.H. Julius aan College van Curatoren d.d. 28

september 1916, in: Het Utrechts Archief 59, 2019.

tate the theory professor.e It
would not persuade Debye to
stay. Nonetheless, it would
lay the foundation for accep-
tance of theoretical physics in
Utrecht.

Within a year, plans for an
extension were approved and
the work started. In the mean-
time Leonard Ornstein was ap-
proached by Julius for the va-
cant theory seat. Ornstein was
a lecturer in Groningen at the
time, after doing his PhD in
Leiden with Lorentz on statis-
tical mechanics. He entered
Utrecht in 1915 as a young, but
determined theorist, immedi-
ately demanding both an as-
sistant and several rooms for
theoretical physics. The assis-
tant was appointed less than
a year later, concurrent with
the completion of the lab ren-
ovation. Several rooms on the
second floor of the new west
wing were reserved for his
newly formed research group.
He named this group the In-
stitute for Theoretical Physics.

eLetter from J.H.W.Q ter Spill to
Minister van Binnenlandsche Za-
ken, d.d. 9 April 1914, in: Nation-
aal Archief, 2.04.13, 475; Letter
from Curatoren to Minister van
Binnenlandsche Zaken, d.d. 22
April 1914, in: Nationaal Archief,
2.04.13, 475;
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te versterken, gaf Ornstein haar de naam Insti-
tuut voor Theoretische Natuurkunde.

De eerste aanwĳzing daarvoor weerklonk in
de openingsrede van rector magnificus prof.
Ernst Cohen op 18 september 1916:h

“In het Physisch Laboratorium waren
kort na het begin van den afgeloopen
kursus de nieuwe bĳgebouwde ver-
trekken zoover gereed, dat zĳ in ge-
bruik konden worden genomen; hier-
door werd het mogelĳk, aldaar een In-
stituut voor theoretische Natuurkunde
onder leiding van onzen ambtgenoot
Ornstein te stichten, . . . ”

Daarmee kunnen we stellen dat het Instituut
voor Theoretische Natuurkunde te Utrecht
zĳn oorsprong kent in het academisch jaar
1915-1916. Bĳ gebrek aan vroegere datering,
beschouwen wĳ, bĳ het ITF, vanaf nu 18 sep-
tember 1916 als oprichtingsdatum. Ondanks
dat dit het startpunt van het ITF is, zullen we
zien dat de autonomie van de groep theoretici
nog lang beperkt zou blĳven.

Al snel verzamelde Ornstein een grote
groep onderzoekers om zich heen. Naast
een handjevol theoretici waren dit voorna-
melĳk experimentatoren. Toen Ornstein in
Utrecht aankwam was hĳ een verstokt theo-
reticus, neerkĳkend op de experimentele na-
tuurkunde. Maar de geavanceerde instru-
menten van Julius en diens assistent Willem
Moll wekten zĳn belangstelling voor het ex-
periment. De artikelen die in de eerste jaren
van Ornsteins hand kwamen waren niet en-
kel theoretisch, met behulp van de nieuwe

hE.J. Cohen, Dingen en Menschen, Utrecht, 18 septem-
ber 1916

Fig. 2: Ornstein, rond 1917 - Uni-
versiteitsmuseum

The first notion thereof dates
to the 18th of September 1916,
when the rector of the univer-
sity acknowledges that Orn-
stein “founded the Institute
for Theoretical Physics in the
newly build rooms”.f Hence,
we can establish this as the
founding date of the ITP, al-
most 105 years ago at the time
of writing.

In the remainder of our
story, we will discuss that

fE.J. Cohen, Dingen en Menschen,
Utrecht, 18 september 1916
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instrumenten verschenen ook al snel expe-
rimentele bĳdrages uit zĳn groep. Samen
met Moll deed hĳ onderzoek naar vloeibare
kristalleni en met Herman Burger startte het
Utrechtse onderzoek naar Brownse beweging.
j Daarnaast legde hĳ met zĳn oud-collega
Frits Zernike de laatste hand aan het, in Gro-
ningen gestarte, theoretisch onderzoek naar
dichtheidsverdelingen in vloeistoffen, waar-
uit de Ornstein-Zernike-vergelĳkingen voort-
kwamen.k Al deze werken werden door Orn-
stein en zĳn assistenten ondertekend met In-
stituut voor Theoretische Natuurkunde Utrecht.

Hiermee zien we dat er een omslag had
plaatsgevonden. Waar het voorheen de the-
oretici waren die de experimentatoren van
dienst waren, zette Ornstein experimentato-
ren aan het werk om zĳn theoriën te onder-
zoeken en te ondersteunen.

Toen Julius in 1920 door ziekte moest af-
treden als directeur van het Physisch Labo-
ratorium, was Ornstein een vanzelfsprekende
opvolger. Onderwĳl had Ornsteins groep een
aanzienlĳk deel van het lab tot haar beschik-
king. Wederom zien we de relatie tussen
theorie en experiment veranderen, want Orn-
stein was de experimentele natuurkunde gaan
waarderen. Hĳ vond het van essentieel belang
dat er nauw werd samengewerkt tussen the-

iZie bĳv. W.J.H. Moll en L.S. Ornstein, Bĳdrage tot de studie
der vloeibare kristallen., Versl K Akad Wet Amst 1916, 25,
p. 682, 1916.

jZie bĳv. H.C. Burger, Over de theorie der Brown’sche beweging,
Versl K Akad Wet Amst 1916-1917, 25–2, p. 1482, 1917.;
Vĳftien jaar later volgt hieruit het werk met Uhlenbeck,
samengevat in de Ornstein-Uhlenbeck vergelĳking. Re-
cent is hierover een muurschildering opgeleverd aan de
Oosterkade in Utrecht, nabĳ het Physisch Laboratorium.

kZie bĳv. L. Ornstein en F. Zernike, Die linearen Dimensionen
der Dichteschwankungen, Phys. Z., vol. 19, p. 134, 1918.

the recognition of an indepen-
dent group theorist was by no
means guaranteed in the cen-
tury that followed.

The first few years were
fruitful for the ITP. Ornstein
gathered a group of assis-
tants, both theorists and exper-
imentalists around him and
promptly they started writ-
ing papers on liquid crystals,
Brownian motion, fluid den-
sity theory etc.g All of these
were signed with Institute for
Theoretical Physics, but most
were based (partly) on exper-
imental results. The peck-
ing order had changed. Orn-
stein put experimentalists at
work to support his theories,
instead of the inverse relation
of half a decade earlier. Orn-
stein had also changed. He
came in as a pure theorist,
looking down at experiments.
Yet, the advanced instruments,
designed by Julius and his as-
sistant Moll, made him appre-
ciate the value of experimental
physics.

When Julius fell ill in 1920,
Ornstein’s group had practi-
cally taken over the lab, and it
was more than reasonable that

gSee for instance: W.J.H. Moll en
L.S. Ornstein, Contributions to the
research of liquid crystals , KNAW,
Proc 1916, 19, p. 1315, 1916.
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orie en experiment: “Een innige samenwer-
king van theorie en experiment is de eerste
eisch. . . ”l Vanaf de jaren twintig trad het Phy-
sisch Laboratorium weer als een eenheid naar
buiten. Hiermee verdween de naam Instituut
Theoretische Natuurkunde naar de achtergrond.

In deze periode centreerde het onderzoek
zich rond de nieuwe fotometer van Moll. Dit
apparaat stelde hen in staat met ongekend
hoge nauwkeurigheid atomaire emissiespec-
tra te meten. De Utrechtse resultaten wa-
ren cruciaal voor validatie en verfijning van
de quantummechanische beschrĳving van het
atoom. Bovendien droegen Burger en Orn-
stein ook theoretisch bĳ, met hun som- en
intensiteitsregels. De filosofie achter deze
theoriën sloot aan bĳ de quantummechani-
sche ideën van Sommerfeld en Einstein. Hun
wiskundige benadering was gestoeld op een
deterministisch wereldbeeld. Daartegenover
stond de benadering van Bohr en Heisenberg,
bekend als de Kopenhaagse interpretatie, die
later gangbaar zou worden. Ornstein zou zich
nooit kunnen vereenzelvigen met die laatste
kĳk op de natuurkunde. Hĳ was van mening
dat “physica . . . geen physica meer zou zĳn”,
als Bohr en Heisenberg gelĳk hadden.m

Het is daarom opvallend dat Ornstein vanaf
1926 een leerling van Bohr, Hans Kramers, aan
zĳn zĳde kreeg als hoogleraar theoretische na-
tuurkunde.

lA. M. van Dyck-Huffnagel en L. Ornstein, Het natuur-
kundig laboratorium der Rĳks-universiteit te Utrecht.
(Utrecht, 1926), p. 52

mH. A. Kramers, Levensbericht van L.S. Ornstein (12 Nov.
1880 - 20 Mei 1941), in: Jaarboek der Nederlandsche
Akademie van Wetenschappen 1940-1941 (Amster-
dam, 1941), p. 227

he took over as director. This
again signaled a significant
change for the ITP, as Ornstein
altered course. He started to
view theory and experiment as
inseparable, all the work from
the lab was to be published un-
der Physical Laboratory. More-
over, Ornstein reserved the ti-
tle (Physical) Institute for the
entire lab. Nonetheless, there
were always several dedicated
theory assistants present and
Ornstein remained the theory
professor.

This would change just a
few years later when Julius
passed away in 1925. Orn-
stein took over his experimen-
tal seat (as was common for
the director) and was looking
to fill the theoretical physics
vacancy with Herman Burger,
a long-time assistant. The
faculty preferred a more the-
oretically inclined candidate
and selected Hans Kramers in
1926. As a student of both
Niels Bohr and Paul Ehrenfest,
Kramers was a representative
of modern quantum theory, a
supporter of the Copenhagen-
interpretation. This stood in
stark contrast with Ornstein’s
quantum philosophy, which
was more in line with Arnold
Sommerfeld and Alfred Ein-
stein, built upon mathematical
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Fig. 3:
Zittend derde van links: Kramers, vervolgens: on-
bekend, Ornstein, Moll, Burger. Portret Julius aan
muur, 1928 - Universiteitsmuseum Utrecht

Seated third from left: Kramers, therafter:
unknown, Ornstein, Moll, Burger. Wall:

portrait of Julius, 1928 - UMU

Toen Julius in 1925 overleed, nam Ornstein
ook zĳn leerstoel over. Van oudsher opereerde
de hoogleraar experimentele natuurkunde na-
melĳk als directeur van het Physisch Labo-
ratorium. Voor Ornstein was het niet van-
zelfsprekend dat de vrĳgekomen theoretische
leerstoel naar een theoreticus zou gaan. Zĳn
voorkeur ging naar zĳn vertrouweling Bur-
ger om de eenheid te behouden binnen het
lab, ook wel aangeduid als ‘firma Ornstein-
Burger’. De faculteit nam daar echter geen
genoegen mee en ging op zoek naar een theo-
retisch beter onderlegde kandidaat. Professor
Ehrenfest in Leiden schoof zĳn oud-leerling
Kramers naar voren en verzocht Albert Ein-
stein, Max Planck, Niels Bohr en Lorentz hem
aan te bevelen bĳ de faculteit in Utrecht. Met
succes.n

nM. Dresden, H.A. Kramers Between Tradition and Revo-
lution (Springer New York, 1987), p. 312

rigor on a deterministic world-
view.

There was very little col-
laboration between Ornstein’s
and Kramers’ groups, which
gave Kramers a lot of free-
dom to choose the direction of
his theoretical research.h Af-
ter Kramers left for Leiden in
1934 another modern quan-
tum mechanist, George Uh-
lenbeck (1936-1939) was ap-
pointed. Like his predecessor
he experienced a great deal of
independence, while working
in the experiment-dominated
lab.

hM. Dresden, H.A. Kramers Between
Tradition and Revolution (Springer
New York, 1987), p. 71
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Met Kramers deed de moderne theoretische
natuurkunde zĳn intrede in Utrecht. Door de
verschillen in filosofie tussen Ornstein en Kra-
mers bleef de samenwerking tussen theorie en
experiment beperkt.o Dit gaf Kramers veel
vrĳheid zĳn eigen richting te kiezen en met
enkele assistenten vormde hĳ weer een onaf-
hankelĳk theoretische vakgroep.

Vanwege de geringe uitwisseling had Kra-
mers geen warme banden met het Physisch
Laboratorium. Toen Ehrenfest in 1933 over-
leed, nam Kramers maar al te graag zĳn positie
in Leiden over, waar de theorie op een hoger
voetstuk stond. Kramers’ opvolger Uhlenbeck
(1936-1939) was eveneens een leerling van Eh-
renfest en een vertegenwoordiger van de mo-
derne quantummechanica. Ook hĳ genoot re-
latieve vrĳheid in het onderzoek, en kon niet
op intensieve samenwerking rekenen met zĳn
experimentele collega’s.

Naast het verdwĳnen van de etiket Instituut
voor Theoretische Natuurkunde, gebruikte
Ornstein vanaf 1925 de naam Instituut om het
gehele natuurkundig lab aan te duiden. Eind
1940 werd Ornstein vanwege zĳn Joodse ach-
tergrond ontslagen. De onervaren kernfysicus
Pim Milatz volgde hem op. Een half jaar later
overleed Ornstein. Kort daarna trad Léon Ro-
senfeld, eveneens een student van Bohr, aan
als hoogleraar theoretische natuurkunde. Sa-
men met promovendus Bram Pais stortten zĳ
zich op de veldenbeschrĳving van mesonen.p
Op 30 april 1943 stuurde Pais een artikel naar
een Deens tĳdschrift dat hĳ ondertekende met

oIbid. p.71
pL. Rosenfeld, ‘Meson theories in five dimensions, Proc.

KNAW, vol. 45, nr. 2, pp. 155–158, 1942.

This carries us over to WWII.
At the end of 1940, Ornstein
was fired from the university,
for being Jewish. The young
professor Pim Milatz took over
as director. Meanwhile, Léon
Rosenfeld succeeded Uhlen-
beck as professor theoretical
physics. Together with assis-
tant Abraham Pais he worked
on the field theoretical descrip-
tion of mesons. When Pais
sent a paper of their newest
work to a Danish journal in
1943, he signed it with Institute
for Theoretical Physics.i This is
the first time in twenty years
that this name surfaced, and
it was meant to stay. After
the war all scientific contribu-
tions from the theory group
bore the signature ITP, show-
ing that Rosenfeld felt the urge
and freedom to reinvigorate
the institute from the 1910s.

Until 1952 the ITP took
refuge in the Physical Labora-
tory, when the expansion of
the group, led by Sybren de
Groot, urged them to seek bet-
ter housing. At first a tempo-
rary solution was found in the
form of a single floor in a resi-
dential home at the Maliebaan.

iA. Pais, On the photo-disintegration
of the deuterion, Dan Mat Fys
Medd, vol. 20, nr. 17, p. 30,
1943.
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Instituut voor theoretische Natuurkunde.q Het
was voor het eerst in twintig jaar dat deze be-
naming opdook en het betekende het startsein
voor de heropleving van het instituut.

Waarom Rosenfeld deze naam weer ging
voeren, blĳft enigszins gissen. Na Ornsteins
ontslag ontstond er een machtsvacuüm bĳ na-
tuurkunde. Mogelĳk gaf dat Rosenfeld, an-
ders dan zĳn voorgangers, de ruimte het In-
stituut voor Theoretische Natuurkunde te her-
introduceren.r

Tot begin jaren vĳftig woonde het insti-
tuut in bĳ het Physisch Laboratorium. On-
der Sybren de Groot verhuisden de theoretici
in 1952 naar een eigen gebouw aan de Ma-
liebaan, waar ze een verdieping in een woon-
huis betrokken. Dat was een noodoplossing,
maar in alle opzichten een verbetering ten op-
zichte van de krappe vertrekken aan de Bĳl-
houwerstraat. Vanaf dat moment stond het
instituut op eigen benen, het was niet meer on-
derhevig aan de grillen van het Physisch Lab
en werd definitief onafhankelĳk. Nadat het in
1955 verhuisde naar een volwaardig pand aan
de Maliesingel, groeide het uit tot een solide
onderzoeksgroep met meerdere professoraten
en een vaste bezetting van enkele tientallen
promovendi en postdocs.

qA. Pais, On the photo-disintegration of the deuterion, Dan Mat
Fys Medd, vol. 20, nr. 17, p. 30, 1943.

rRosenfeld lĳkt bekend met Ornsteins instituut voor theo-
retische natuurkunde, zie: Verslag Rosenfeld, in: Niels
Bohr Archives, Léon Rosenfeld Papers, 1911-1974 - Box
6.7.1: Utrecht (1940-47) - Folder 1, Copenhagen

Fig. 4: Maliesingel 23, 1974 -
Gemeentearchief Utrecht,
63356 / collectie Het Utrechts
Archief

Fortunately, in 1955 a more
permanent solution was real-
ized at the Maliesingel.

The ITP has survived several
university reorganizations and
in 1973 moved to the Uithof,
nowadays occupying the top
floor of the Buys Ballot Build-
ing. The discontent of De-
bye and the changing perspec-
tive on physics in the 1910s
paved the way for a solid the-
oretical physics group. With
the foundation of the ITP, Orn-
stein acknowledged this newly
gained status. In the 1940s
and 1950s, the institute ma-
tured under Rosenfeld and De
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Fig. 5:
Buys Ballotlaboratoriun 1971 - P. van der Linden,
831240 / collectie Het Utrechts Archief.

Buys Ballot Laboratory 1971 - P. van der
Linden, 831240 / collectie HUA.

Nu, bĳna zeventig jaar later, bepalen de on-
derzoekers van het ITF nog altĳd grotendeels
zelf de richting van het onderzoek en onder-
wĳs. Samenwerking met experimentele na-
tuurkunde is aan de orde van de dag, maar
gebeurt op voet van gelĳkheid. Het belang
van toegewĳde theoreten werd voor het eerst
duidelĳk halverwege de jaren 1910, wat Orn-
stein onderkende door het instituut theoreti-
sche natuurkunde te beginnen in 1916. Onder
Rosenfeld, De Groot en Léon van Hove ont-
wikkelde het ITF zich tot een onafhankelĳk
organisatie, een volwassen onderzoeksgroep.
Deze roerige geschiedenis vieren we in sep-
tember, ter ere van het 105-jarig bestaan van
het Instituut voor Theoretische Fysica.

Groot into an independent re-
search group.

This year we celebrate the
105th anniversary. It is of
course a shame that we are a
few years late celebrating the
centenary.
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