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General introduction and thesis rationale

1
Adapted from

Thinking differently about cancer treatment regimens 
Jeff Settleman, João M. Fernandes Neto and René Bernards 

Cancer Discovery (2021)



These findings highlight the potential harm to patients of combination treatments 
without rational basis. The substantial number of trials testing combinations with 
PD1 or PDL1 antibodies also highlights the lack of mechanistic basis for many such 
trials.
In the case of BRAF mutant colon cancer, genetic screens to identify synthetic 
lethal interactions, together with biochemical analyses, have revealed that BRAF 
inhibition results in feedback reactivation of EGFR. Moreover, a combination of 
BRAF and EGFR inhibitors was shown to be effective in pre-clinical models of 
BRAF mutant colon cancer (8,9). Based on a positive phase III study, this drug 
combination was recently approved for this indication (10). This example highlights 
how fundamental insights into crosstalk and feedback mechanisms that operate in 
cancer cells can help inform rational and effective combination therapies (Figure 
1A). This type of approach may therefore be useful to resuscitate compounds that 
were unsuccessful as single agents in oncology such as, for example, inhibitors of 
the unfolded protein response kinase ERN1. Such drugs were shown to be potent 
inhibitors of the ERN1 kinase, but did not have significant effects on a large panel 
of cancer cell lines (11). Moreover, emerging evidence indicates that the highly 
selective KRASG12C inhibitors produce only modest clinical efficacy as single 
agents due to adaptive resistance and could benefit from treatment combinations 
to extend response duration (12–16). Indeed, CRISPRi modifier screens have 
identified “collateral dependencies” of cancer cells treated with KRASG12C 
inhibitors that inform potentially effective combinations with this drug (17). 
Collectively, these data point towards the utility of unbiased genetic approaches 
to identify rational combination therapies that may provide superior benefit as 
compared to the corresponding monotherapies.

Sequential drug treatment 
A potential challenge associated with drug combinations identified through 
synthetic lethality genetic screens is the issue of combination toxicity in the clinic. 
This begs the question as to whether it is possible to avoid combination toxicity 
by developing treatment regimens that show synergy without concomitant drug 
administration. Theoretically, this could be achieved if the first of two drugs induces 
a major vulnerability in the cancer cell that is targeted by a second drug to kill the 
cell (Figure 1B). Indeed, Fang et al (18) demonstrated that while a combination of 
PARP and WEE1 inhibitors was highly toxic in animal models of ovarian cancer, 
the sequential therapy with these two drugs caused minimal toxicity and showed 
significant efficacy. That this sequential therapy showed synergy is explained 
by the finding that monotherapy-induced DNA damage or G2 cell cycle arrest 
was maintained after drug removal, allowing the acquired vulnerability to be 
maintained during the second drug treatment cycle (18). Similarly, it has been 

The adage “If you do what you did, you get what you got” is often used to remind us 
that meaningful change sometimes requires a fundamentally different approach. 
This certainly appears to apply to cancer drug development. The vast majority 
of novel cancer drugs are developed as single agent therapies and are delivered 
to patients at a maximum tolerated dose. For a variety of reasons, both economic 
and regulatory, this drug development model has remained virtually unchanged 
for several decades, resulting in the attrition of more than 30% of early stage 
investigational agents due to lack of single agent efficacy (1), contributing to the 
high cost of the few that are granted regulatory approval. Moreover, approved 
drugs often deliver only modest clinical benefit to patients with advanced disease 
due to the development of resistance. However, a drug without single agent 
activity is not necessarily a bad drug. As one example, small molecule inhibitors 
of the BRAFV600E oncoprotein do not elicit clinical responses in most patients 
with BRAF mutant colorectal cancer (a case of intrinsic resistance (2)), but do 
provide benefit to most patients with BRAF mutant melanoma (3). It is fortunate in 
retrospect that Tsai et al (4) developed their BRAF inhibitor PLX4720 in melanoma, 
even though Davies et al  (5) had initially found that a significant fraction of colon 
cancers similarly harbour activating mutations in the BRAF gene. Otherwise, the 
drug known as vemurafenib, which has become a major clinical and commercial 
success, would most likely also have ended up on the graveyard of compounds 
lacking single agent activity, together with many other potentially useful candidate 
drugs (4). We discuss here a number of rational drug combination strategies that 
we feel have the potential to decrease attrition rates during clinical development 
and deliver additional benefit for patients with cancer, while highlighting some of 
the current challenges in the field.

Synthetic lethal drug combinations
Based on drug approval history, it has been argued that drugs that lack single 
agent activity are not worth pursuing in combination, due to low success rate and 
marginal combination benefit in the face of considerable combination toxicity (6). 
However, the 18 or so combination therapies these investigators evaluated largely 
consisted of combinations of targeted agents that lacked single agent activity 
with chemotherapies or hormonal therapies, combinations for which there was 
no rational mechanistic basis. In many trial and error combination studies, each 
compound has demonstrated some single agent activity and the expectation is that 
the combination would be superior. One salient example that highlights the risk of 
this approach is the combination of cetuximab (EGFR inhibitor) and bevacizumab 
(VEGF inhibitor), two blockbuster drugs approved for the treatment of colon cancer. 
A large study in colon cancer found that addition of cetuximab to a regimen of 
chemotherapy and bevacizumab resulted in worse outcome for some patients (7). 
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Figure 1: Schematic representation of the drug treatment regimens discussed.
A – Synthetic lethal drug combinations. Synthetic lethality refers to a situation in which two agents are 
individually non-lethal, but become lethal when used in combination. B – Sequential drug treatment. The 
first drug is used to bring the cancer cells in a metastable state having an acquired vulnerability (e.g. 
senescence), the second drug acts on the acquired vulnerability (e.g. a senolytic agent). C – Alternating 
dosing. Drug resistance comes with an associated fitness cost. Resistance to drug 1 is associated with an 
acquired vulnerability to drug 2. Alternating treatment of the drug-sensitive and drug-resistant populations 
can keep the tumor in control over longer periods of time. D – Intermittent dosing. Termination of drug 

shown that sequential, but not simultaneous, treatment of triple negative breast 
cancer cells with EGFR inhibitors and DNA damaging drugs leads to efficient 
cell killing (19). Finally, pre-clinical data also support the use of sequential drug 
regimens for combination immunotherapies (reviewed in (20)).
Successful sequential drug treatment strategies require that a metastable state is 
induced by the first therapy that persists beyond cessation of the first therapy and 
is associated with a significant new vulnerability. We and others have argued that 
induction of senescence in cancer cells might be an effective first step in a sequential 
drug treatment strategy, as senescence is a stable proliferation arrest characterized 
by major changes in metabolism, gene expression and cytokine production (21,22). 
Such senescence-induced cellular changes might cause vulnerabilities that enable 
selective killing of senescent cells with drugs that specifically target them--so-called 
“senolytic” drugs (Figure 1B). Therapy-induced senescence has been described 
as a side effect of several cancer therapeutics, including many chemotherapies 
(23). Thus, cancer cells are still able to become senescent, even though they have 
successfully bypassed the classical telomere-shortening senescence checkpoint 
(24). Indeed, both chemical and genetic screens have identified targets and 
compounds to induce senescence in cancer or kill senescent cancer cells (25–27). 
Moreover, pre-clinical evidence indicates that a combination of a pro-senescence 
drug and a senolytic compound may be effective therapeutically (28,29). 
Senescent cells also secrete a number of cytokines, due to the activation of the 
cGAS-STING pathway as a result of the accumulation of cytoplasmic nucleic acids 
in senescent cells (30). This attracts a broad spectrum of inflammatory cells, 
including T cells, NK cells and macrophages to the senescent cancer cell mass, which 
provides additional opportunities to eliminate senescent cancer cells. For instance, 
it was shown that pancreatic cancer cells rendered senescent by a combination of 
a CDK4/6 inhibitor and a MEK kinase inhibitor are efficiently cleared by treatment 
with PD1 checkpoint immunotherapy (31). 
The notion that pre-treatment with a drug can sensitize to PD1 therapy has also 
been observed clinically. Induction therapy of metastatic breast cancer patients 
with some, but not all, forms of chemotherapy resulted in enhanced responses to 
nivolumab (anti-PD1). Pre-treatment with cisplatin and doxorubicin in particular 
was associated with inflammatory gene signatures and response to PD1 therapy 
(32). The stimulatory effect of certain chemotherapies on the PD1 response may 
be caused by immunogenic cell death or by induction of senescence, leading to 
changes in the tumor microenvironment due to cytokine production (33,34). These 
examples highlight the considerable promise of sequential treatments for future 
clinical application.
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The use of AURORA kinase inhibitors in patients having EGFR inhibitor-resistant 
NSCLC is also undergoing clinical testing (NCT04085315).

Intermittent dosing 
A relatively rare clinical phenomenon is the observation that termination of drug 
administration following development of resistance can lead to tumor regression. 
Moreover, after such a “drug-holiday”, tumors often have re-gained sensitivity to 
the original drug—the so-called “retreatment response” (39) (Figure 1D). This 
phenomenon is most readily explained by an addiction of the drug resistant cell 
to the drug, leading to a selective disadvantage of the drug-resistant population 
in the absence of drug. Indeed, in pre-clinical models of melanoma, intermittent 
dosing with BRAF inhibitors provides longer-lasting tumor control as compared 
to continuous dosing (40). However, recent clinical data appear to indicate that 
intermittent BRAF inhibitor dosing is inferior to continuous drug administration, 
highlighting the challenge of translating dosing and treatment schedules from mice 
to humans (41).

Multiple low dose treatment
In advanced cancers, development of resistance is almost unavoidable due to 
secondary mutations. When targeted drugs are used as single agents, resistance 
mutations often emerge that involve mutations in the drug target itself. For instance, 
secondary mutations in the genes encoding the BCR-ABL, EGFR and ALK kinases 
have been described upon inhibition of these kinases, but mutations in genes that 
act either upstream, downstream or in parallel to the oncogenic pathway that is 
being targeted have been observed as well (42). To avoid this type of resistance, 
“vertical targeting” of two components in the same oncogenic signaling pathway has 
been shown to lead to longer-lasting therapeutic responses. Thus, in BRAF mutant 
melanoma and lung cancer, combined inhibition of the BRAF and MEK kinases was 
more effective than treatment with the single agents (43,44). In pre-clinical models 
of BRAF mutant melanoma it was possible to forestall resistance through a triple 
combination of BRAF, MEK and ERK inhibitors (each at high concentration) to 
prevent resistance, but drugs had to be administered intermittently to limit toxicity 
(45). 
It is generally believed that for a drug combination to be efficient, each drug must 
have considerable single agent activity to suppress clonal diversity. This is seen 
for example in the treatment of HIV, where combinations of drugs that target the 
viral reverse transcriptase, protease and integrase proteins are used to prevent 
resistance (46). However, recent evidence indicates that vertical targeting of 
EGFR mutant lung cancers with three or four drugs that act in the EGFR signaling 
pathway can be an effective treatment strategy, even when the four drugs are used 

administration following development of resistance can result in tumor regression due to a disadvantage 
of the drug-resistant population in the absence of drug. After a drug-holiday, the drug-resistant population 
is depleted and the drug-sensitive population tumors respond again to the original drug. E – Multiple 
low dose. Targeting the same oncogenic signaling pathway with multiple drugs, each at low dose, can 
add up to complete pathway inhibition, while at the same time reducing the pressure on each of the 
nodes to develop resistance mutations. F – Treating reversible resistance. A minor fraction of a cancer 
may be epigenetically distinct, such that these cells enter a state of dormancy during treatment, which 
would allow re-population of the tumor following termination of therapy. Targeting these “drug tolerant 
persisters” with selective drugs can eliminate this population, preventing tumor re-growth. G – Bystander 
effect. A therapy that kills the majority of the cancer cells can lead to killing of drug-insensitive cells, for 
example by the release of signals (e.g. cytokines) by the dying cancer cells.

Alternating dosing 
It is observed generally in the clinic that second-line therapies are less effective 
than first-line therapies, with third line being even less effective than second line 
treatments. However, it has been appreciated for nearly sixty years that resistance 
to one cancer drug might come at a “fitness cost”, which can yield a vulnerability to 
another drug, a phenomenon referred to as “collateral sensitivity” (35). Identification 
of collateral sensitivities of drug-resistant cancer cells represents a large 
untapped opportunity for the discovery of potentially important drug targets for 
selectively killing drug-resistant cancer cells. We have collectively been remarkably 
unsuccessful in finding collateral sensitivities of chemotherapy-resistant cancer 
cells, most likely due to the heterogeneity in chemotherapy resistance mechanisms. 
The recent identification of sensitization to checkpoint immunotherapy by some 
chemotherapies discussed above, is a notable exception. However, there is reason 
to be more optimistic that collateral sensitivities associated with resistance to 
targeted cancer drugs may be more homogeneous. This optimism is based on the 
limited options cancer cells have to develop resistance to targeted cancer drugs. 
Most often, such drug-resistant cancer cells will reactivate the inhibited pathway 
through upstream, downstream or parallel pathway activation, which makes the 
acquired vulnerabilities more predictable. As one example, biochemical studies 
have demonstrated that resistance of melanoma to BRAF inhibitors is associated 
with a marked increase in sensitivity to histone deacetylase (HDAC) inhibitors. 
A pilot study in patients demonstrated that a brief treatment of BRAF-inhibitor 
resistant melanoma patients with HDAC inhibitors eliminated the drug-resistant 
cell population (36). This model suggests a treatment strategy in which the drug-
sensitive and drug-resistant subpopulation is targeted in an alternating fashion 
(Figure 1C). This alternating treatment concept is currently being tested in a phase 
1 trial (NCT02836548). Along the same lines, it has been observed that resistance 
of EGFR mutant lung cancer cells to selective EGFR inhibitors is associated with a 
greatly increased sensitivity to AURORA kinase inhibitors, making AURORA kinase 
inhibition a collateral sensitivity of EGFR inhibitor-resistant lung cancers (37,38). 
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tolerant persister” (DTP) state (54). When propagated in the laboratory, clonal 
cancer cell lines have been found to exhibit phenotypic heterogeneity that typically 
includes the presence of small subpopulations of cells that do not share the same 
vulnerabilities to drug treatment as are seen with the bulk population of cells (54). 
Consequently, these DTPs survive an otherwise lethal drug exposure and maintain 
viability for long periods of time in the presence of continuous drug exposure. 
Significantly, upon drug withdrawal, DTPs can resume proliferation, giving rise 
to a largely drug-sensitive cell population. Collectively, reversibly senescent cells, 
dormant cells, mesenchymal cells, cancer stem cells, and DTPs share features that 
suggest that they are highly related and may in fact reflect common underlying 
mechanisms. Consequently, they may exhibit overlapping vulnerabilities that could 
provide opportunities to target such tumor cell populations with therapeutics 
aimed specifically at overcoming drug resistance as part of a combination treatment 
regimen that also targets the bulk cell population (Figure 1F). 
The reversible nature of these various states of drug resistance implicates epigenetic 
regulation. Indeed, the role of epigenetic control in the EMT process in cancer cells 
is now well established (55). Similarly, epigenetic changes appear to be the critical 
determinants of “decisions” to enter and exit stem cell states—including those 
exhibited by cancer stem cells (56). Senescent cells are characterized by a distinct 
organizational structure of heterochromatin, suggesting that epigenetic regulation 
is likely to play a role in the transition into and out of senescence (57). DTPs have 
also been found to harbor distinct chromatin features, including a repressed 
chromatin state associated with specific alterations in histone methylation (54,58). 
Importantly, despite their resistance to “conventional” therapeutics, these distinct 
chromatin features associated with reversibly drug-tolerant states appear to yield 
specific therapeutic vulnerabilities. For example, the DTP state can be disrupted 
by targeting the KDM5 family histone demethylases, the SETDB1, G9a, and EZH2 
methyltransferases, and the class I histone deacetylases (54,58,59). 
In addition to chromatin regulators, various other vulnerabilities have been 
associated with reversible states of drug resistance. These include, for example, 
the senolytic agents described above, cancer stem cell-targeted agents such as 
BMI1 inhibitors (60) and the antibiotic salinomycin (61), as well as agents that 
have been reported to selectively kill mesenchymal cells, such as the multi-kinase 
inhibitor dasatinib (62). In addition to epigenetic modulators, other potential 
target-associated vulnerabilities have been described for DTPs, including the 
cancer stem cell-enriched protein ALDH1A1 (aldehyde dehydrogenase) (63) and 
the selenocysteine family protein GPX4 (glutathione peroxidase 4) (64). Recently, it 
was reported that targeting YAP-TEAD pathway signaling disrupts a senescence-like 
state of cancer cell dormancy associated with resistance to EGFR kinase inhibition, 
with the potential to prolong treatment effects (65).

at only 20% of the effective single agent concentration (47). In a related study, low 
dose inhibition of RAF and ERK proved effective in KRAS mutant cancers (48). 
A key difference between the viral and cancer therapies is that in the latter, all 
drugs target the same signaling pathway, thereby allowing synergistic inhibition 
at low drug concentrations. At the same time, partial inhibition of multiple nodes 
of a pathway reduces the selective pressure on these nodes to gain a resistance 
mutation. These observations of synergy between low drug doses in the MAP kinase 
pathway are clearly at odds with the generally held view that this pathway serves 
to amplify signals. As such, these data highlight that much remains to be learned 
about crosstalk and feedback mechanisms that operate in this signaling context. 
Collectively, these findings emphasize that we may have to consider combinations 
of more than two targeted agents, preferably in the same signaling cascade, to 
forestall resistance (Figure 1E). That such combinations are not necessarily overly 
toxic was demonstrated in a recent study, in which BRAF, MEK and EGFR inhibitors 
were successfully combined in the clinic (10).

Treating reversible resistance 
Much of our current understanding of cancer drug resistance mechanisms has 
been informed by the identification of specific mutational events that underlie 
stable, propagatable states of resistance (49). The development of such resistance-
conferring mutations is certainly consistent with fundamental principles of 
Darwinian evolution, and likely reflects the stochastic emergence of such mutations 
at low frequency in tumor cell populations prior to drug exposure—resulting in 
the outgrowth of stably drug-resistant cancer cell clones through natural selection. 
However, non-mutational, and therefore potentially reversible mechanisms of 
drug resistance are becoming increasingly recognized. For example, the drug-
induced senescence described above may be reversible, such that, upon drug 
withdrawal, such “senescent” cancer cells could lose their senescence features 
and resume proliferation. Similarly, cancer cell “dormancy” is another relatively 
poorly understood cell state associated with transient quiescence and treatment 
resistance (50). 
The differentiation and de-differentiation of cancer cells has also been linked to 
fluctuation between states of differing drug sensitivity and resistance. For example, 
the epithelial-mesenchymal transformation (51), a slowly reversible state change, 
has been associated with the acquisition of drug resistance in many epithelial 
cancers (52). Moreover, the molecular features exhibited by the generally more 
treatment-refractory mesenchymal cell state are often shared by cancer stem 
cells, a subpopulation of phenotypically “plastic” tumor cells that have also been 
associated with drug resistance (53). 
Another form of reversible drug resistance has been described as the “drug-
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to immunotherapy cannot occur, as sequencing of resistant tumors has shown 
(69). Hence, it seems plausible that the superior responses of immunotherapies 
compared to MAP kinase inhibitors in melanoma can be explained by killing of 
resistant cancer cells through a bystander effect. Such bystander effects can be 
caused by signals (e.g., cytokines) that are secreted by the dying cancer cells. While 
the precise mechanism of action of bystander effects are understood only poorly, 
this clearly represents an opportunity to overcome intra-tumor heterogeneity 
(Figure 1G).

Conclusions
First, the paradigm that new oncology drugs should first show single agent activity 
before combinations are considered needs to be revisited. Rather than waiting 
for a phase 2 (single agent) trial to report results, drug developers could invest 
earlier in finding the best combinations and consider developing the drugs further 
in combination after phase 1 (Figure 2). A good example of this is the clinical 
development of SHP2 inhibitors. While they may have single agent activity in 
tyrosine kinase-driven cancers (70), ample pre-clinical evidence indicates that these 
drugs are more effective when combined with MEK inhibitors (71–73). While the 
dose escalation of one of these agents (RMC4630) as a single agent is still ongoing, 
studies are also underway to test this inhibitor in combination with MEK inhibitors 
(NCT03989115). Fortunately, the Food and Drug Administration appreciates the 
need for co-development of such drug combinations and has recently released a 
guidance document to assist in the development of “two or more new drugs that 
have not been previously developed for any indication to be used in combination 
to treat a disease or condition” (https://www.fda.gov/media/80100/download).
Second, more efforts could be directed to identifying the vulnerabilities of 
drug-resistant cancer cells. Identification of such vulnerabilities may result in 
development of second line therapies that are potentially more effective than the 
first line therapy-rather than less effective, as is currently often the case. The study 
of such vulnerabilities can also uncover new classes of drug targets that are distinct 
from the oncogenic drivers that are currently a main focus of drug development. 
Alternating dosing schedules that target the drug-sensitive and drug-resistant 
populations in a periodic fashion may then be used to control the tumor over 
prolonged periods of time. 
Finally, greater effort could be made to study the synergistic effects of multiple 
targeted agents used in combination. The notion that such drugs can still be 
combined efficiently when used at low dose may provide ample opportunity to 
combine such agents with limited toxicity.

Considering that these non-mutational mechanisms of drug resistance reflect 
a form of dynamic phenotypic heterogeneity that appears to be broadly present 
within tumor cell populations, the potential benefit resulting from disruption of 
such states could be substantial. Thus, combination treatments could be deployed 
in which an agent that targets the bulk population of cancer cells could be combined 
with an agent that selectively targets the “pre-existing” phenotypically distinct, 
and more treatment-refractory subpopulation of cells, with the goal of forestalling 
resistance (Figure 1F). An alternative approach would be to target mechanisms 
that enable the transition of cancer cells into the transiently-maintained states of 
drug tolerance—for example, with agents that block the EMT process. Similarly, 
it may be possible to drive the drug-resistant subpopulation of cells into a state 
that “matches” the drug sensitivity of the bulk population—effectively “leveling 
the playing field” by promoting a greater degree of homogeneity among tumor cell 
subpopulations. In any of these treatment schemes, the “up-front” administration 
of the combination therapy is expected to delay or prevent the emergence of drug 
resistance. However, it is also possible that such treatments could be sequenced, 
especially if the transition between plastic states of sensitivity and resistance 
require significant time, thereby yielding a window during which treatments could 
be spaced (Figure 1F). If effective, this approach provides an opportunity to reduce 
the potential for dosing limitations imposed by overlapping toxicities between the 
combination agents.

Overcoming heterogeneity
The presence of intra-tumor heterogeneity represents a formidable obstacle 
to successful therapy, independent of the treatment strategy and cancer type. 
Changes in selective pressures during the lifetime of a cancer can yield a diversity 
of subclones having different genotypes. Nevertheless, there are reasons to be 
hopeful that heterogeneity can ultimately be overcome. First, cancer subclones 
share “truncal” mutations that can be targeted for therapy (66). For instance, the 
anti HER2 antibody trastuzumab is very effective both in HER2-positive metastatic 
breast cancer and as an adjuvant therapy for early breast cancer (67). Second, 
sequencing of tumor subclones provides clear evidence for convergent evolution, 
indicating that subclones have limited options to evolve (66). Third, even patients 
with advanced disease (and consequently likely have more heterogeneous tumors), 
can still have long-lasting responses, indicating that in these patients, drug-resistant 
subclones were unable to dominate the tumor cell population. In the treatment of 
advanced melanoma, secondary resistance mutations to BRAF inhibitor therapy 
occur so frequently that survival benefit is limited (3). In contrast, treatment of 
such patients with immunotherapy leads to a subgroup of patients experiencing 
very long survival (68). This is not because mutations that confer resistance 
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The increasing number of cancer compounds together with the notion that 
drug combinations deliver more benefit has created a big challenge in cancer 
therapy: with so many drugs, testing all combinations is becoming an impossible 
task. In chapter 3 we show that by combining perturbation experiments with 
mathematical models of signal transduction it is possible to predict which multi-
drug combinations will selectively kill certain cells. 
In chapter 4 we developed a fluorescent-based MSI sensor to identify cells with 
an increased rate of frameshift mutations and, using CRISPR screens, we identified 
MED12 as a new potential regulator of microsatellite instability (MSI). 
CRISPR is an invaluable technology nowadays, which we used throughout this 
thesis. With the increased experience with this tool we noticed that some aspects 
could be optimised. In chapter 5 we show that by optimizing Cas9 expression 
levels, the time necessary for gene editing can be reduced, contributing to improved 
performance of CRISPR based screening.
In chapter 6, I provide a general discussion that places my own findings in the 
context of the work of others. I also provide a future perspective of the field in 
general.

Figure 2: Schematic representation of the drug development process. 	  
Top: In conventional drug development, new chemical entities are first tested as single agents in clinical 
studies. Only after single-agent approval, combination studies are considered. Bottom: Proposed drug 
development model. During the pre-clinical phase of drug development, genetic and biochemical studies 
are performed to identify rational and effective combination therapies. These combination regimens are 
developed in parallel to (or even instead of) the development of the novel chemical entity as a single agent. 
This model could lead to less attrition of new chemical entities and longer lasting therapeutic benefits for 
patients.

Thesis rationale and outline
As mentioned in this introduction, development of new cancer drug treatment 
regimens based on insights into signalling pathway interactions and cancer cell 
vulnerabilities can increase the success of cancer therapies. The work described 
in this thesis aimed to address opportunities we consider promising to overcome 
drug resistance associated with interactions between signalling pathways and 
the presence of multiple co-existing cell states within tumors with distinct 
vulnerabilities.
In chapter 2 we identify a novel treatment regimen for resistant NSCLC tumors, 
which we named Multiple Low Dose (MLD). We show that partial inhibition 
of multiple components of cancer-activated signalling pathways is difficult to 
circumvent and we argue that single-agent MTD type of regimens should be 
revisited. The promising pre-clinical data in mice suggest that MLD therapy could 
deliver clinical benefit and its potential goes beyond NSCLC.
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Introduction

Inhibition of signalling pathways that are activated by oncogenic mutations elicit 
therapeutic responses due to “addiction” of the cancer to the activated pathway 
(74). However, in advanced cancers, development of resistance is practically 
inevitable due to secondary mutations that restore signalling through the drug-
inhibited pathway. Such acquired resistance mutations affect either the drug target 
itself or components that act upstream, downstream or parallel to the activated 
signalling component (42,75). In BRAF mutant melanoma and NSCLC, inhibition 
of two components of the same oncogenic pathway (BRAF+MEK, referred to 
as “vertical targeting”) has been shown to provide more lasting clinical benefit 
compared to inhibition of only BRAF (44,76). More recently, both clinical (10,77) 
and pre-clinical (78) studies have shown that inhibition of three components of the 
same oncogenic pathway further increases therapeutic benefit. In these scenarios 
the drugs are usually administered at maximum tolerated dose (MTD). The increase 
in the number of drugs being used in combination is often accompanied by an 
increase in toxicity and to this date virtually no studies have been done to assess the 
efficacy of using drugs below-MTD. In a preclinical model, multiple drugs used at 
low dose also demonstrated promising activity in ovarian clear cell carcinoma (79). 
In this study we explore the use of a Multiple Low Dose (MLD) strategy in EGFR 
mutant NSCLC. In this approach, multiple drugs that act in the same oncogenic 
signalling pathway are combined at low concentration. We hypothesized that this 
might add up to complete pathway inhibition without causing prohibitive toxicity. 
Further, by using low drug concentrations, the pressure exerted on each node of the 
pathway should greatly diminish, reducing the selective pressure on each node and 
therefore diminishing the chances of acquiring resistance. 

Results

The mechanisms of resistance to EGFR inhibition (standard-of-care) in EGFR 
mutant NSCLC are well understood. We therefore compared the efficacy of MLD 
therapy to standard-of-care MTD therapies in this indication. We used PC9 NSCLC 
cells, which harbour an activating mutation in the gene encoding EGFR (54). We 
used four drugs, each inhibiting a different node in the MAPK pathway: gefitinib 
(EGFR inhibitor), LY3009120 (pan-RAF inhibitor (80)), trametinib (MEK inhibitor) 
and SCH772984 (ERK inhibitor (81)), as shown schematically in Fig. 1a. We 
established dose-response curves for each of the four drugs using 5-day culture 
assays (Fig. 1b). From these data, we inferred for all 4 inhibitors the IC20 dose, 
i.e. a drug concentration that inhibits cell viability by 20% - henceforth referred 

Abstract

Resistance to targeted cancer drugs is thought to result from selective pressure 
exerted by a high drug dose. Partial inhibition of multiple components in the same 
oncogenic signalling pathway may add up to complete pathway inhibition, while 
decreasing the selective pressure on each component to acquire a resistance 
mutation. We report here testing of this Multiple Low Dose (MLD) therapy model 
in EGFR mutant NSCLC. We show that as little as 20% of the individual effective 
drug doses is sufficient to completely block MAPK signalling and proliferation 
when used in 3D (RAF + MEK + ERK) or 4D (EGFR + RAF + MEK + ERK) inhibitor 
combinations. Importantly, EGFR mutant NSCLC cells treated with MLD therapy 
do not develop resistance. Using several animal models, we find durable responses 
to MLD therapy without associated toxicity. Our data support the notion that MLD 
therapy could deliver clinical benefit, even for those having acquired resistance to 
third generation EGFR inhibitor therapy.
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the possible combinations of EGFR, RAF, MEK and ERK inhibitors at LD in PC9 cells. PC9 cells were cultured 
with all possible drug combinations of EGFR, RAF, MEK and ERK inhibitors at the low doses determined 
in (b). In (c) cell viability from 3 biologically independent replicates (each with 3 technical replicates) 
was measured by CellTiter-Blue® assay after 4 days of treatment; In black the observed experimental 
viability; In dark-grey the expected viability and in light-grey the synergy scores, calculated using the Bliss 
independence model, are plotted. In (d) cells were treated for 10 days, after which plates were stained and 
scanned; A representative image from the 3 biologically independent replicates performed is displayed. In 
(e) protein for western blotting was harvested after 24 hours of treatment; The level of pathway inhibition 
was determined by examining pRSK protein levels in the western blot. Tubulin was used as loading 
control. A representative image from the 3 biologically independent replicates performed is displayed.

To address if we could further reduce the drug concentrations, we diluted the 4D 
combination. When the drugs were reduced to half of the IC20 concentrations, the 
4D combination was no longer able to achieve complete inhibition of proliferation 
and was similarly unable to mediate complete MAPK pathway inhibition, indicating 
that there is a threshold that limits efficacy (Supplemental Figs. 1a, b). Based on 
this, we continued our MLD studies using the IC20 concentrations as “Low Dose”. To 
make sure our findings were not drug-specific, we tested the MLD approach using 
different inhibitors for each of the nodes in the MAPK pathway (erlotinib as EGFRi, 
BGB-283 as RAFi, selumetinib as MEKi and LY-3214996 as ERKi). Supplemental 
Figs. 1c, d show that we obtained essentially the same effect with these drugs in 3D 
and 4D combinations. This, together with the notion that each drug is used at low 
dose, makes it very unlikely that off target effects of the four drugs are responsible 
for the observed effects.
Next, we tested how MLD therapy compares to standard-of-care high dose therapy 
in terms of resistance development. To mimic high dose therapy, we treated PC9 
cells with a concentration of EGFR inhibitor gefitinib that inhibited cell viability by 
~99% in a 5-day culture assay – henceforth referred as High Dose (HD). We found 
that 3D and 4D combinations inhibit cell proliferation and induce apoptosis at 
comparable levels to cells treated with HD of gefitinib (Fig. 2a and Supplemental Fig. 
2a, b). The level of pathway inhibition is also similar between cells treated with 3D 
and 4D combinations and HD of gefitinib (Fig. 2d). Additionally, we performed RNA-
Seq transcriptome analyses in cells treated with 4D combination (Supplemental 
Fig. 2c, d). These data showed that 4D combo treated cells displayed a significant 
downregulation of MYC and E2F target genes as well as cell cycle genes. Moreover, 
MAPK activity markers (84) were significantly downregulated and several pro-
apoptotic genes were found to be upregulated, while anti-apoptotic genes were 
downregulated. To study how MLD therapy compares to HD therapy regarding 
resistance, we treated PC9 cells with 3D or 4D combinations and with HD of gefitinib 
or osimertinib for one month (Fig. 2b). As seen by others previously(85,86), cells 
treated with HD of gefitinib or osimertinib quickly developed resistance, but the 
cells treated with 3D or 4D combinations did not. Additionally, we treated PC9 cells 

as Low Dose (LD). To assess the efficacy of the MLD strategy we then tested the 
impact of all possible drug combinations of the 4 drugs at LD on cell viability 
(assessed by CellTiter-Blue® assay), on cell proliferation (assessed by long-term 
colony formation assay) and on pathway activity (measured by p-RSK levels (82) 
using Western Blotting) (Figs. 1c-e). The expected viability and the synergy scores 
were calculated using the Bliss independence model (83). We found that PC9 cells 
treated with the single drugs at low dose were only minimally affected, as expected. 
However, some of the drug combinations showed a striking combination effect, 
much higher than expected based on drug additivity. In particular, the combination 
of RAF+MEK+ERK inhibitors at low dose (henceforth called 3D combination) 
and the combination of EGFR+RAF+MEK+ERK inhibitors at low dose (henceforth 
called 4D combination) showed an almost complete inhibition of cell viability and 
proliferation, along with a complete blockade of MAPK pathway signalling. Due 
to these notable findings we pursued the MLD study focusing on the 3D and 4D 
combinations. 

Figure 1: Multiple Low Dose therapy blocks MAPK pathway and proliferation in PC9 cells.	  
a, Schematic of the Multiple Low Dose (MLD) efficacy determination. After plating, cells are treated with 
increasing drug concentrations. Four days later cell viability is measured and the low dose (LD) is assessed. 
At last, the efficacy of all the possible combinations at LD is determined. b, Dose-response curves of EGFR, 
RAF, MEK and ERK inhibitors in PC9 cells. PC9 cells were cultured with increasing concentrations of EGFRi 
Gefitinib, RAFi LY3009120, MEKi Trametinib or ERKi SCH772984 for 4 days, after which cell viability was 
measured using CellTiter-Blue®. Standard deviation (SD) from 3 biologically independent replicates 
(each with 3 technical replicates) is plotted. Low doses (IC20s) were then determined: gefitinib=7nM, 
LY3009120=250 nM, 292 trametinib=8nM and SCH772984=250nM. c-e, Determination of the efficacy of all 
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Figure 2: MLD therapy minimizes therapeutic resistance and is effective in EGFRi-resistant PC9 cells.
a, MLD therapy abrogates cell proliferation and induces apoptosis in PC9 cells. PC9 cells were plated and 
incubated overnight to allow attachment to the plate. Cells were then treated with DMSO, with EGFR, RAF, 
MEK, ERK inhibitors at low dose, with 3D Combo (RAF+MEK+ERK inhibitors at LD) or with 4D Combo 
(EGFR+RAF+MEK+ERK inhibitors at LD) and placed in the IncuCyte®. Confluence (left) and caspase 3/7 
activation (right) over time was measured by the IncuCyte®. Standard error of the mean (SEM) from 2 
biologically independent replicates (each with 3 technical replicates) is plotted. b, MLD therapy prevents 
the acquisition of drug resistance in PC9 cells. PC9 cells were cultured with DMSO, with EGFR, RAF, MEK 
and ERK inhibitors at low dose (for 7 days) and with high dose (HD) of Osimertinib (200 nM), HD of 
Gefitinib (280 nM) and with 3D and 4D Combinations (for 1 month), after which plates were stained 
and scanned; A representative image from 3 biologically independent replicates is displayed. c, EGFRi-
resistant PC9 cells remain sensitive to MLD therapy. PC9, PC9-OR (Osimertinib-resistant) and PC9-GR 
(Gefitinib-resistant) cells (see methods) were cultured with DMSO, with low doses of EGFR, RAF, MEK 
or ERK inhibitors, with 3D or 4D combinations or with HD of Gefitinib or Osimertinib for 4 days, after 
which cell viability was measured using CellTiter-Blue®. Standard deviation (SD) from 3 biologically 
independent replicates (each with 3 technical replicates) is plotted. d, MLD therapy blocks MAPK pathway 
in EGFRi-resistant PC9 cells. PC9, PC9-OR and PC9-GR cells were cultured with DMSO, HD of Osimertinib, 
HD of Gefitinib or with 3D or 4D combinations. Protein for western blotting was harvested after 24 hours 
of treatment; The level of pathway inhibition was measured by examining pERK and pRSK protein levels 
and the level of EGFR inhibition was measured by examining pEGFR protein levels in the western blot. 
Tubulin and Vinculin were used as loading control. A representative image from 2 biological replicates is 
displayed.

for 16 days with high dose of gefitinib or with 3D or with 4D MLD combinations; 
we then either removed the drugs, continued to treat with the original drug, or 
treated with 4D MLD combination for another 16 days (Supplemental Fig. 2e). 
We observed resistant colonies after 32 days of gefitinib treatment, but not in 
the cells treated with 3D or 4D combinations. Apparently, 16 day-treatment with 
3D or 4D combinations had killed all cells, as continued culturing for another 16 
days in media without drugs did not yield any colonies. Importantly, PC9 cells that 
had developed resistance to high dose EGFR inhibitor, were still responsive to 4D 
MLD combination. This striking result indicates that EGFR inhibitor-resistant cells 
remain sensitive to 3D and 4D combinations. This suggests that MLD therapy might 
be an option for patients having developed resistance to standard-of-care EGFR 
inhibitor therapy.
To study further if EGFRi-resistant cells are indeed sensitive to 3D and 4D 
combinations, we generated PC9 cells resistant to clinically-used EGFR inhibitors. 
We cultured PC9 cells in the presence of gefitinib (PC9-GR) or osimertinib (PC9-
OR) until cells were no longer responsive to the inhibitors (see methods). We 
performed exome sequencing of the two resistant cell populations to gain insight 
into the mechanisms of acquired resistance. These data showed acquisition of the 
well-known T790M mutation in the PC9-GR cells and a number of mutations in 
the PC9-OR cells, none of which has been previously associated with resistance 
to osimertinib (Supplemental Table 2). We then tested the sensitivity of the 
resistant lines to 3D and 4D combinations. In both resistant cell populations, we 
saw an almost complete inhibition of cell viability after only 4 days of MLD therapy 
treatment and a complete MAPK pathway signalling blockade (Fig. 2c, d). 
We then tested if the MLD strategy would also be effective in additional in vitro 
tumour models. After low dose determination (Supplemental Figs. 3a-c and 
Supplemental Table 1) we tested the MLD strategy in patient-derived (colorectal 
and NSCLC) organoids. Treatment with 3D and 4D combinations resulted in a major 
reduction in cell viability (Fig. 3a). In addition, we tested 6 different MAPK pathway 
addicted cell lines: HCC827 and H3255 (EGFR mutant lung cancer), H2228 and 
H3122 (EML4-ALK translocated lung cancer, in which EGFRi was replaced with ALK 
inhibitor crizotinib in the 4D combination), DiFi and Lim1215 (EGFR dependent 
colorectal cancer) and in 2 different PI3K pathway addicted cell lines: SKBR3 and 
HCC1954 (HER2 amplified breast cancer, in which 4D combination consisted of 
HER2, PI3K, AKT and mTOR inhibitors). When treated with 4D combination, 
proliferation of all cell lines was inhibited, regardless of the tumour type/driver/
genotype, pointing towards a broad applicability of the MLD treatment strategy 
(Supplemental Fig. 3d).
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be affected by 3D or 4D MLD treatment. We serum-starved BJ cells overnight and 
then incubated with 3D or 4D MLD drug combinations for two hours. After this, 
cells were stimulated with 100 ng/ml of EGF in the presence of 3D or 4D drug 
combinations. Twenty minutes after EGF stimulation, a significant amount of p-RSK 
was detected, which was no longer detected at 4 hours post EGF stimulation (Fig. 
4c). These data suggest that the efficient inhibition of MAPK signalling exerted by 
3D and 4D MLD treatment is the result of an effect of these drugs on homeostatic 
feedback/cross-talk signalling (88,90), as pulsatile signalling through the MAPK 
pathway seems to be much less affected than persistent signalling through an 
oncogene-activated MAPK pathway.
To address if the MLD strategy is effective in vivo, we used patient derived xenograft 
(PDX) tumours from four different patients who had developed resistance to first- 
or second-line therapy with EGFR inhibitors erlotinib or osimertinib (91) in the 
clinic by acquiring EGFR T790M mutation, KRAS mutation or MET amplification 
(Supplemental Table 3). For the in vivo studies we defined LD as 20% (for gefitinib 
and trametinib)  and 30% (for LY3009120 and SCH772984 – due to the shorter 
half-lives) of the published maximum tolerated dose (MTD) in mice for each of 
the individual drugs (80,81,92,93). Osimertinib-resistant PDX-1 was implanted 
subcutaneously and orthotopically in the lungs. In both models, treatment with 3D 
or 4D combination resulted in a reduction in tumour volume, without associated 
toxicity (Fig. 4a-d). Interestingly however, treatment with 4D combo was slightly 
more effective than 3D combo. Due to this finding we focused the in vivo studies that 
followed on the 4D combination. In all PDX models tested we observed similar results 
to PDX-1, i.e., a reduction in tumour volume, without significant toxicity (Figs. 4e, f 
and Supplemental Fig. 4e). Additionally, in gefitinib-resistant models PDX-2 and PDX-
3 we tested if it would be possible to acquire resistance to the 4D MLD combination 
therapy during a drug holiday. In both PDX models, re-starting of 4D MLD therapy 
after a drug holiday resulted in a second response to the drug combination, indicating 
that overt resistance had not developed in vivo (Figs. 4e, f).
We also implanted PC9 cells in nude mice and treated them with vehicle, with EGFR, 
RAF, MEK and ERK inhibitors individually at low dose and with 4D combination. The 
use of low dose regimens was inadequate to suppress PC9 tumour growth when used 
as single agents, but when used in combination we observed a sustained reduction in 
the tumour volume of PC9 xenografts over a period of 70 days, which was associated 
with an extended survival (Supplemental Fig. 4a, b). These observations are also 
supported by immunohistochemical staining of the tumours, which show decreased 
Ki67 (a proliferation marker) and pERK (MAPK activation) levels in the tumours 
treated with 4D combination (Fig. 4g). Significantly, mice treated with 4D combination 
did not show any significant signs of toxicity, assessed by the weight of the mice over 
time and by the morphology of the GI tract and bone marrow (Supplemental Figs. 4c, 

Figure 3: MLD therapy is effective in patient-derived organoids and is tolerated by normal cell lines.
a, MLD therapy is effective in several colorectal and lung cancer patient-derived organoids. Organoids 
were cultured with DMSO, with EGFR, RAF, MEK and ERK inhibitors at LD and with 3D and 4D combos. 
After 5 days of drug treatment cell viability was measured using CellTiter-Glo®. SEM from 3 biologically 
independent replicates (each with 3 technical replicates) is plotted. b, Cell viability of normal cells is much 
less affected by MLD therapy than tumour cells. BJ and  RPE1 cells were treated with DMSO, with EGFR, 
RAF, MEK and ERK inhibitors at low and high doses and with 3D and 4D Combos (using the LD and HD 
concentrations determined for PC9 cells). After 4 days of drug treatment cell viability was measured. SD 
from 3 replicates is plotted. c, MLD therapy allows pulsed signaling in normal cells. BJ cells, after overnight 
starvation, were treated with the indicated inhibitors/concentrations for 2 hours, after which EGF (100 
ng/mL) was added. Cells were harvested before, 20 minutes and 4 hours after EGF stimulation. The level 
of pathway inhibition was measured by examining pERK and pRSK protein levels. The level of EGFR 
inhibition was measured by examining pEGFR protein levels in the western blot. Tubulin was used as 
loading control. A representative image from 2 biological replicates is displayed.

One of the major concerns when using multiple drugs in combination is the 
possible toxicity to normal tissues (87). To test the effect of the MLD strategy on 
“normal” (non-tumorigenic) cell lines we used primary human BJ (fibroblast) and 
RPE1 (retinal pigment epithelium) cells. Upon 3D and 4D MLD drug combination 
treatment, cell viability was reduced, but to a much lesser extent than in cancer 
cells. This indicates that the MLD strategy might be tolerated by normal tissues 
(Fig. 3b). Since the MAPK pathway is rich in cross-talk and feedback control circuits 
(88,89), we also tested how a pulse of signalling through the EGFR pathway would 

30  |  CHAPTER 2 MULTIPLE LOW DOSE THERAPY  | 31

2 2



or with 4D Combos for 26 days, after which mice were sacrificed. In (a) tumour volume percentages ± 
SEM is shown, in (c) tumour size (mm3) at sacrifice ± SEM is shown and in (b) and (c) the mice weight 
percentages ± SEM is shown. (e) After tumour establishment, mice were treated 5 days/week with Vehicle 
(N=3), with gefitinib (80 mg/kg) (N=4) or with 4D Combo for 6 weeks (group A, N=3) or with 4D Combo 
for 8 weeks (group B, N=3). Mice treated with vehicle and gefitinib were sacrificed when tumours reached 
~2000mm3. After 6 weeks, Group A was taken off treatment and mice were sacrificed when tumours 
reached ~2000mm3. After 8 weeks Group B was taken off treatment and was given 3 weeks of drug 
holiday. Mice were then treated for another 2 weeks with 4D combo, after which they were sacrificed. 
Tumour volume percentages ± SEM is shown. (e) After tumour establishment, mice were treated 5 days/
week with vehicle (N=4), with gefitinib (80 mg/kg) (N=5) or with 4D Combo (N=9) for 4 weeks, after 
which mice were sacrificed, except for 4 animals from the 4D Combo group. These 4 mice were spared and 
were given 3 weeks drug holiday (4D Combo DH group), followed by another 3 weeks of treatment, after 
which they were sacrificed. Tumour volume percentages ± SEM is shown. g, Representative H&E, Ki67 
and pERK stainings from tumour sections of PC9 xenografts are displayed. h, Schematic representation of 
the MLD therapy for the treatment of EGFR mutant NSCLC. While MTD therapy often results in secondary 
mutations which ultimately lead to resistance, MLD therapy is able to minimize therapeutic resistance 
even in EGFRi-resistant tumours without toxicity, both in vitro and in vivo.

Despite the significant tumour regressions observed in the in vivo experiments 
none of the mice were fully cured, unlike in the in vitro data where all the cells 
were killed by the 3D or 4D combinations. To study why this is the case we studied 
the pharmacokinetics and pharmacodynamics of the four drugs in vivo over time. 
We found that drug plasma concentrations of gefitinib and trametinib dropped 
relatively slowly (T1/2 8 hours), but the pan-RAF and ERK inhibitors were less 
stable in plasma (T1/2 of 5 and 4 hours, respectively). A similar difference was 
seen for intra-tumoural drug concentrations (Supplemental Figs. 5a, b). Consistent 
with this, we observed a complete inhibition of pRSK in tumour biopsies two 
hours after 4D combination drug administration, which progressively decreased 
after 8 and 24 hours (Supplemental Fig. 5c). These data indicate that, unlike in 
the in vitro experiments, two of the four drugs were not present at a significant 
concentration during at least 12 hours of the 24-hour treatment cycle. As a result 
of this, a sustained MAPK pathway inhibition was not achieved in vivo, possibly 
explaining why we didn’t achieve full tumour regressions. We tested this hypothesis 
in vitro, by removing RAF and ERK inhibitors from the treatment for approximately 
8 hours every day. We found that, as hypothesized, when the drugs in the 3D or 
4D combination were not present continuously the MLD therapy became less 
effective (Supplemental Fig. 5d). Finally, we tested whether there was any drug-
drug interaction by measuring the half-lives of the drugs when given alone or in 
combination (Supplemental Fig. 5e). Overall, there is not any apparent drug-drug 
interaction, except for LY3009120, for which the half-life increases when given in 
the 4D Combo.

f). In the clinic, the T790M mutation is already present (at very low percentages) in the 
majority of the tumours before undergoing anti-EGFR treatment (94,95). To mimic 
this scenario, we implanted in nude mice a mix of PC9 cells and PC9-GR cells (which 
are T790M positive) in a 9:1 ratio, respectively. Mice were treated with vehicle, with 
MTD of gefitinib and with 4D combination. Treatment with MTD of gefitinib resulted 
in a quick reduction of tumour volume which was followed by outgrowth of resistant 
cells, unlike the mice treated with 4D combination, where a sustained tumour control 
was observed (Supplemental Fig. 4d).

Figure 4: MLD therapy induces tumour regression without toxicity in vivo.	  
a-f, Patient derived xenografts (PDX) are sensitive to MLD therapy. PDX tumours (see Supplemental Table 
3) were implanted subcutaneously (a, e, f) or orthotopically in the lungs (c) of Crl:NU-Foxn1nu mice. 
PDX-1 was derived from a biopsy of a patient who became resistant to 3rd generation EGFR inhibitor 
osimertinib. PDX-2 and PDX-3 were derived from biopsies of patients who became resistant to 1st 
generation EGFR inhibitor erlotinib. PDX1 was implanted both subcutaneously (a) and orthotopically in 
the lungs (c). We defined the in vivo LD as 20-30% of the MTD for each of the individual drugs - gefitinib 
(10 mg/kg), LY3009120 (6 mg/kg), trametinib (0.5 mg/kg) and SCH772984 (15 mg/kg). After tumour 
establishment, mice were treated 5 days/week with vehicle, with osimertinib (5 mg/kg) and with 3D 
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The MLD therapy described here is fundamentally different from metronomic 
chemotherapy (96,97). In this latter scenario, low doses of chemotherapy are 
given at high frequency with the aim to suppress division of endothelial cells of the 
tumour vasculature. In the present MLD schedule, we target the MAPK pathway of 
the tumour itself, as growth inhibition in all cases parallels inhibition of the MAPK 
pathway (as judged by pRSK). Three-drug combinations given at MTD have been 
used before in pre-clinical (78) and clinical studies (10,77) for BRAFV600E mutant 
tumours, showing clear therapeutic benefits, but such regimen have an associated 
cost of toxicity. 
The lack of significant toxicity of the MLD therapy in mice may be explained by the 
fundamentally different nature of MAPK pathway signalling between normal and 
EGFR mutant cancer cells. In the former, signalling is transiently activated when 
growth factors are present. In the latter, oncogenic mutations result in persistent 
activation of the pathway. Importantly, we show here that transient signalling in 
normal cells is, at least initially, not interrupted by MLD treatment (Fig. 3c). This 
may explain why long-term exposure of mice to MLD treatment is without major 
toxicity, as judged by lack of weight loss and lack of toxicity to gut epithelium and 
bone marrow. However, mice and humans are fundamentally different with respect 
to drug toxicity and only a phase I clinical trial will be able to fully assess the toxicity 
of this strategy in humans.
Extrapolation of dose from animals to humans based only on mg/kg conversion 
is difficult, since body surface area and differences in pharmacokinetics should 
also be taken into consideration. To convert the animal dose in mg/kg to human 
equivalent doses (HED) in mg/kg, it is recommended to divide by 12.3 (98). If 
we estimate the HED based on the low-doses used in our in vivo experiments for 
Gefitinib and Trametinib (where dosing in humans is known) using this approach 
then Gefitinib (10mg/kg in mice) corresponds to 57mg once daily in patients, 
which is approximately one quarter of the dose used in patients (250mg qd). 
And Trametinib (0.5mg/kg in mice) corresponds to 2,8mg once daily in patients, 
which is a bit higher than the dose used in patients (2mg qd). However, we also 
performed an in vivo experiment using lower concentrations of Gefitinib (1mg/kg) 
and Trametinib (0.1mg/kg) (Supplemental Figure 4d). These drug concentrations 
correspond to 2,5% of the human daily dose for gefitinib and 28% of the daily 
human dose of trametinib, using the calculation method of Nair mentioned above. 
These data indicate that with these further reduced concentrations of Gefitinib and 
Trametinib we still have a significant anti-tumor effect in vivo. Due to the difficulty 
in translating drug doses from mice to humans we feel that only a well-designed 
phase 1 trial can help assess the potential clinical utility of the MLD strategy 
proposed here.
Even though we focused mostly on EGFR mutant NSCLC, we have also shown that 

Discussion

We report here that treatment of EGFR mutant NSCLCs with MLD therapy 
effectively suppresses development of drug resistance, without associated toxicity. 
As such, our data challenge the common paradigm that patients should be treated 
with the MTD of a targeted agent. Our data are consistent with a model in which 
diffuse inhibition of an oncogenic pathway at multiple nodes reduces selective 
pressure on each of the nodes to mutate and thereby increase response time (Fig 
4h). Our findings also challenge the current model for MAPK pathway signalling, 
which postulates that the MAPK kinase cascade functions to amplify signals. Such 
amplification cascade model is clearly at odds with the data obtained here in which 
a very partial inhibition of each of 4 nodes in this cascade adds up to complete 
pathway inhibition. Further mechanistic studies are required to better understand 
the efficacy of the MLD strategy.
Importantly, we show that tumours having the most common mechanisms of 
clinically-observed resistance to high dose standard of care EGFR inhibitors still 
respond to MLD therapy. Therefore, MLD treatment strategy appears especially 
promising for patients that have already developed resistance to all clinically 
used EGFR inhibitors, including osimertinib. In such resistant tumours, multiple 
metastases may be present having different resistance mutations. In this study 
we have shown that MLD therapy is effective in PDX models having diverse EGFR 
inhibitor resistance mechanisms, including EGFR T790M mutation, KRAS mutation, 
MET amplification and even SCLC transformation, highlighting that MLD therapy 
could apply to a diverse range of EGFR TKI resistant tumours. However, not all the 
resistance mechanisms have been tested and it is possible that some might not 
respond to MLD therapy. Indeed, in clinical practice, an MLD treatment strategy can 
only be tested in patients having developed resistance to standard-of-care EGFR 
inhibitors. We find in PDX models that 4D MLD is consistently somewhat better than 
3D MLD, which may relate to the notion that not all EGFR alleles in the tumour may 
have acquired resistance mutations to the EGFR inhibitor therapy. Furthermore, it 
will be important to maintain osimertinib in an experimental MLD therapy trial, 
as this drug crosses the blood-brain barrier, and such late-stage patients may have 
(latent) brain metastases. We therefore suggest that clinical testing of the MLD 
strategy should include osimertinib.
While we never observed development of resistance to MLD therapy in vivo, even 
after long drug exposure, we did not achieve complete tumour regressions. This 
is most likely due to the short half-lives of the RAF and ERK inhibitors used in 
this study, which resulted in a situation in which we did not achieve a continuous 
pathway blockade. This may be improved by using continuous release formulations 
of these drugs, or by using drugs with longer half-lives. 
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Cultrex was removed by incubation of the cell pellet in 1 mg/ml dispase II (Sigma 
D4693) for 15 minutes. Whole organoids were counted using a hemocytometer 
and trypan blue. PDOs were resuspended in 1:3 Advanced Dulbecco’s Modified 
Eagles Medium with Nutrient Mixture F-12 Hams (Ad-DF) (Invitrogen 12634), 
supplemented with 1% penicillin/streptomycin (Invitrogen 15140122), 1% HEPES 
(Invitrogen 15630056) and 1% GlutaMAX (Invitrogen 35050) (Ad-DF+++):Cultrex 
at a concentration of 20 organoids/µl. Five µl/well was dispensed in clear-bottomed, 
white-walled 96-well plates (Greiner Bio-One 655098) and overlaid with 200 µl CRC 
or NSCLC culture medium. We generated 10-step dose response curves using the 
Tecan D300e digital dispenser, interpolated IC20 values and re-screened organoids 
in presence of a range of concentration around the IC20 of each drug separately 
and in 3D and 4D Combos. In addition, we re-performed the dose-response curves 
to control for variation between experiments. Read-out was performed at day 10 
in the positive control (10 µM phenylarsine oxide), negative control (DMSO), and 
the drug-treated wells. Quantification of cell viability was done by replacing the 
CRC medium with 50 µL Cell-TiterGlo 3D (Promega G9681) mixed with 50 µL Ad-
F+++. Measurements were performed according to manufacturer’s instructions on 
an Infinite 200 Pro plate reader (Tecan Life Sciences) with an integration time of 
100 ms.

Compounds, reagents and antibodies 
Gefitinib (100140), LY3009120 (206161), trametinib (201458), SCH772984 
(406578), osimertinib (206426), crizotinib (202222), lapatinib (100946), BKM120 
(204690), MK2206 (201913) and AZD8055 (200312) were purchased from 
MedKoo Biosciences. Erlotinib (S7786), BGB-283 (S7926), selumetinib (S1008) 
and LY-3214996 (S8534) were purchased from Selleckchem. Annexin V-FITC 
Apoptosis Staining Detection Kit was purchased from Abcam (ab14085).
Antibodies against Tubulin (T9026) and Vinculin (V9131) were purchased from 
Sigma; antibodies against EGFR (4267), pERK (4377), ERK (9102) and RSK 
(8408) were purchased from Cell Signalling; antibody against pRSK (04-419) was 
purchased from Millipore; antibody against pEGFR (ab5644) was purchased from 
Abcam.

Colony formation and IncuCyte cell proliferation assays
Cells were seeded in the appropriate density (Supplemental Table 1) in 6-well 
plates. Cells were incubated for approximately 24 hours to allow attachment to 
the plates, after which drugs were added to the cells using the Tecan D300e digital 
dispenser as indicated. The culture media/drugs were refreshed every 3/4 days. 
When control wells (DMSO) were confluent (unless otherwise stated in the text) 
cells were fixed using a solution of 2% formaldehyde (Millipore 104002) diluted 

the MLD strategy can potentially be effective in other tumour types. Overall, our 
findings challenge the current paradigm of using the maximum tolerated dose of 
single targeted cancer drugs and suggest that, instead, it might be more beneficial 
to use a combination of multiple drugs that target the oncogenically activated 
pathway using sub-optimal drug concentrations.

Materials and methods

Cell lines culture and drug-response assays
The PC9 cell line was obtained from ATCC. PC9OR (osimertinib-resistant) and PC9GR 
(gefitinib-resistant) cells were made by continuous (2 months) drug exposure of 
PC9 cells to 1µM osimertinib (AZD9291) and to 2µM gefitinib, respectively. Exome 
sequencing was performed to determine if any de novo genetic alterations had 
occurred (Supplemental Table 2). The HCC827, H3255, H3122, H2228, SKBR3, 
HCC1954, BJ and RPE1 cell lines were obtained from ATCC. And DiFi and Lim1215 
cell lines were a gift from A. Bardelli (Torino, Italy). BJ and RPE1 cells were 
cultured in DMEM (Gibco 41966029). SKBR3 and HCC1954 which were cultured 
in DMEM/F-12 medium (Gibco 31331028). All the other cell lines were cultured 
in RPMI medium (Gibco 21875034). All the cell lines media were supplemented 
with 10% FBS (Serana), 1% penicillin/streptomycin (Gibco 15140122) and 2 mM 
L-glutamine (Gibco 25030024). All cell lines were cultured at 37°C and with 5% 
CO2. All cell lines were validated by STR profiling and mycoplasma tests were 
performed every 2-3 months.
All drug-response assays were performed in triplicate, using black-walled 384-
well plates (Greiner 781091). Cells were plated at the optimal seeding density 
(Supplemental Table 1) and incubated for approximately 24 hours to allow 
attachment to the plate. Drugs were then added to the plates using the Tecan D300e 
digital dispenser. 10 µM phenylarsine oxide was used as positive control (0% cell 
viability) and DMSO was used as negative control (100% cell viability). Four days 
later, culture medium was removed and CellTiter-Blue (Promega G8081) was added 
to the plates. After 1-4 hours incubation, measurements were performed according 
to manufacturer’s instructions using the EnVision (Perkin Elmer). 

Organoid culture and drug-response assays
Colorectal (CRC) and non-small cell lung cancer (NSCLC) organoids were established 
and handled as previously described1. All drug-response assays were performed 
in replicate, each by independent researchers. PDOs were mechanically and 
enzymatically dissociated into single cells, pipetted through a 40 µM cell strainer, 
and re-plated to allow for organoids formation. At day 4 PDOs were collected, 
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PC9 cell line xenografts: One million PC9 cells were resuspended in PBS and mixed 
1:1 with matrigel (Corning 354230). Cells were injected subcutaneously into the 
posterior flanks of 7-week-old immunodeficient BALB/cAnNRj-Foxn1nu mice (half 
male and half female; Janvier Laboratories, The Netherlands). Tumour formation 
was monitored twice a week. Tumour volume, based on calliper measurements, 
was calculated by the modified ellipsoidal formula (tumour volume = 1/2(length 
× width2)). When tumours reached a volume of approximately 200 mm3, mice 
were randomized into the indicated treatment arms. Vehicle, gefitinib, LY3009120, 
trametinib, SCH772984 or the combination of the 4 inhibitors were formulated in 
DMSO: Kolliphor EL (Sigma 27963): Saline solution, in a ratio of (1:1:8). Mice were 
treated 5 days a week (Monday to Friday) at the indicated doses by intraperitoneal 
injection.
Patient-derived xenografts (PDX) and orthotopic xenograft (PDOX): Primary 
tumours were obtained from Bellvitge Hospital (HUB) and the Catalan Institute of 
Oncology (ICO) with approval by the Ethical Committee. Ethical and legal protection 
guidelines of human subjects, including informed consent from the patient to 
implant the tumour in mice, were followed. PDX-1 was generated from a lung 
adenocarcinoma biopsy from a patient who was treated with Erlotinib (first line), 
Gefitinib + Capmatinib (second line) and Cisplatin+Pemetrexed (third line). This 
tumour has an EGFR mutation (del19) and MET amplification. PDX-2 was generated 
from a lung adenocarcinoma biopsy from a patient who was treated with Erlotinib 
(first line), Gefitinib + Capmatinib (second line) and Carboplatin+Gemcitabine 
and Nivolumab (third line). This tumour has an EGFR mutation (L858R) and 
MET amplification. PDX-32 was generated from a lung adenocarcinoma biopsy of 
a brain metastasis from a patient who was treated with Erlotinib (first line) and 
Osimertinib (second line). PDX-4 was generated from a lung adenocarcinoma 
biopsy from a patient who was treated with Afatinib (first line) and CBDCA + 
pemetrexed (second line). This tumour has a germline p53 mutation and an EGFR 
mutation (del19). Tumours were isolated and implanted subcutaneously (or 
orthotopically, in the lungs, in the case of PDX-3) into Crl:NU-Foxn1nu mice by 
following previously reported procedures2,3. In the subcutaneous models, tumour 
volume was monitored twice a week by a digital caliper. When tumours reached a 
volume of approximately 200-600 mm3, mice were randomized into the indicated 
treatment arms. In the orthotopic model, tumours were left to grow for 2 weeks, 
followed by 26 days of treatment. Vehicle, gefitinib, osimertinib or the 3D and 4D 
Combos were formulated in DMSO: Kolliphor EL (Sigma 27963): Saline solution, 
in a ratio of (1:1:8). Mice were treated 5 days a week (Monday to Friday) at the 
indicated doses by intraperitoneal injection.

in phosphate-buffered saline (PBS). Two hours later, they were stained, using a 
solution of 0.1% crystal violet (Sigma HT90132) diluted in water. Not more than 10 
minutes later the staining solution was removed, plates were washed with water 
left to dry overnight. Finally, plates were scanned and stored.
For IncuCyte proliferation assays, cells were seeded in 96-well plates and 
incubated overnight to allow attachment to the plates. Drugs were added to the 
cells using the Tecan D300e digital dispenser. Cells were imaged every 4 hours in 
the IncuCyte ZOOM (Essen Bioscience). Phase-contrast images were collected and 
analysed to detect cell proliferation based on cell confluence. For cell apoptosis, 
IncuCyte® Caspase-3/7 green apoptosis assay reagent (Essen Bioscience  4440) 
was also added to culture medium and cell apoptosis was analysed based on green 
fluorescent staining of apoptotic cells.

Western Blots
After the indicated culture period, cells were washed with chilled PBS and then 
lysed with RIPA buffer (25mM Tris - HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium 
deoxycholate, 0.1% SDS) containing protease inhibitors (Complete (Roche) and 
phosphatase inhibitor cocktails II and III). Samples were then centrifuged for 10 
minutes at 14.000 rpm at 4°C and supernatant was collected. Protein concentration 
of the samples was normalized after performing a Bicinchoninic Acid (BCA) assay 
(Pierce BCA, Thermo Scientific), according to the manufacturer’s instructions. 
Protein samples (denatured with DTT followed by 5 minutes heating at 95°C) 
were then loaded in a 4-12% polyacrylamide gel. Gels were run (SDS-PAGE) for 
approximately 60 minutes at 165 volts. Proteins were then transferred from the 
gel to a polyvinylidene fluoride (PVDF) membrane, using 330 mA for 90 minutes. 
After the transfer, membranes were placed in blocking solution (5% bovine serum 
albumin (BSA) in PBS with 0,1% Tween-20 (PBS-T). Subsequently, membranes 
were probed with primary antibody in blocking solution (1:1000) and left shaking 
overnight at 4°C. Membranes were then washed 3 times for 10 minutes with PBS-T, 
followed by one hour incubation at room temperature with the secondary antibody 
(HRP conjugated, 1:10000) in blocking solution. Membranes were again washed 3 
times for 10 minutes in PBS-T. Finally, a chemiluminescence substrate (ECL, Bio-
Rad) was added to the membranes and the Western Blot was resolved using the 
ChemiDoc (Bio-Rad).

Mouse xenografts studies
All animal experiments were approved by the Animal Ethics Committee of the 
Netherlands Cancer Institute or by the Animal Ethics Committee of the Institut 
Català d’Oncologia and performed in accordance with institutional, national and 
European guidelines for Animal Care and Use. 
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In vivo pharmacokinetics and pharmacodynamics studies
Plasma and tumour samples were assayed by liquid chromatography triple 
quadrupole mass spectrometry (LC-MS/MS) using an API4000 detector (Sciex) for 
the simultaneous determination of Gefitinib (MRM: 447.4/128.1), LY3009120 MRM: 
425.5/324.2), Trametinib (616.3/491.2) and SCH772984 (MRM: 588.4/320.2). 
Gefitinib-d8 (MRM: 455.4/136.3) was used as internal standard. LC separation was 
achieved using a Zorbax Extend C18 column (100 × 2.0 mm; ID). Mobile phase A 
and B comprised 0.1% formic acid in water and methanol, respectively. The flow 
rate was 0.4 ml/min and a linear gradient from 20%B to 95%B in 2.5 min, followed 
by 95%B for 2 min, followed by re-equilibration at 20%B for 10 min was used for 
elution. Sample pre-treatment was accomplished by mixing 5 ul (plasma) or 25 ul 
(tumour homogenate) with 30 or 150 ul, respectively, of formic acid in acetonitrile 
(1+99) containing the internal standard. After centrifugation, the clear supernatant 
was diluted 1+4 with water and 50 ul was injected into the LC-MS/MS system.
The plasma/tumour samples were harvested at the time points indicated in 
supplemental figure 5. Blood samples were obtained by tail cut (at 2h and 8h time 
points) and by cardiac puncture at the 24h time point. Samples were collected 
on ice in tubes containing potassium EDTA as anticoagulant. The tubes were 
immediately cooled in melting ice and centrifuged (10 minutes, 5000g, 4°C) to 
separate the plasma fraction, which was transferred into clean vials. For the 
tumours samples, the mice were sacrificed by cervical dislocation, the tumour was 
dissected and frozen at -80°C. Half of the tumour was then lysed mechanically with 
RIPA buffer and lysates were analysed by Western blot. The other half was weighed 
and homogenized in 1 ml of ice-cold 1% of BSA in water and stored at −20°C until 
further analysis.
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Supplementary Figure 2: MLD therapy induces apoptosis and prevents drug resistance.	  
a, Gating strategy used for (b). Live cells were gated from all events; then single cells were gated from the 
live cells and, finally, Annexin V levels were plotted from the single cells. b, 3D and 4D Combos induce 
apoptosis at comparable levels as high doses of each inhibitor in PC9 cells. PC9 cells were stained with 
Annexin V-FITC Apoptosis Staining/Detection kit (ab14085) after 48 hours of drug treatment. The 
Annexin V levels were measured by flow cytometry (BD LSRFortessa) and analysed using FlowJo 10. 
c, d, Transcriptome analysis of PC9 cells treated with 4D combo. (c) Volcano plot of differential gene 
expression analysis. (d) Median log2-fold change of the MSigDB hallmark gene-sets, ranked from high to 
low. For (c) and (d) PC9 cells were treated with DMSO for 48 hours or with 4D combo for 48 or 72 hours. 
Experiments were performed in duplicates. Because the difference between 48 and 72 hour 4D combo 

Supplementary Information

Supplementary Figure 1: A drug concentration threshold is necessary for 
the efficacy of MLD therapy, which is not drug-specific.	  
a, Dilution of 4D Combo results in incomplete inhibition of proliferation. PC9 cells were plated and 
incubated overnight to allow attachment to the plate. Cells were then treated with DMSO, with 4D Combo 
and with the indicated dilutions of 4D Combo. Cells were cultured for 7 days, after which plates were 
stained and scanned; A representative image from 3 biologically independent replicates is displayed. 
b, Dilution of 4D Combo results in incomplete MAPK pathway inhibition. PC9 cells were cultured with 
DMSO, with EGFR, RAF, MEK and ERK inhibitors both at low and at high doses, with 4D Combo and with 
different dilutions of 4D combo. Protein for western blotting was harvested after 48 hours of treatment. 
The level of pathway inhibition was measured by examining pERK and pRSK protein levels; Tubulin was 
used as loading control. A representative image from 2 biological replicates is displayed. c, d, MLD therapy 
efficacy is not drug-specific. PC9 cells were plated and incubated overnight to allow attachment to the 
plate; Cells were then treated with two different inhibitors for each of the nodes in the MAPK pathway 
(gefitinib or erlotinib as EGFRi, LY3009120 or BGB-283 as RAFi, Trametinib or selumetinib as MEK and 
SCH772984 or LY-3214996 as ERKi) as indicated. In (d) cell viability was measured using CellTiter-Blue® 
after 4 days of treatment. Standard deviation (SD) from 3 biologically independent replicates (each with 
3 technical replicates) is plotted. In (e) the confluence (left) and caspase 3/7 activation (right) over time 
was measured by the IncuCyte®; 3 days after the first treatment the drugs and media were refreshed. SEM 
from 3 replicates is plotted.
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Supplementary Figure 4: MLD therapy reduces tumour volume in vivo without toxicity.	  
a-d, PC9 xenografts are sensitive to 4D Combo without toxicity. (a-c) PC9 cells were grown as tumour 
xenografts in BALB/cAnNRj-Foxn1nu mice. After tumour establishment (200–250 mm3), mice were 
treated 5 days/week with vehicle, gefitinib (10 mg/kg), LY3009120 (6 mg/kg), trametinib (0.5 mg/
kg), SCH772984 (15 mg/kg) or the combination of the 4 inhibitors (4D Combo) for 10 weeks. In (a) the 
mean tumour volume percentages ± SEM is shown; In (b) the Kaplan-Meier survival curve is shown; 
In (c) the mice weight percentages ± SEM is shown. (d) PC9 cells and PC9GR cells were mixed in a 9:1 
ratio, respectively, and were grown as tumour xenografts in BALB/cAnNRj-Foxn1nu mice. After tumour 
establishment (200–250 mm3), mice were treated 5 days/week with vehicle, with the MTD of gefitinib (80 
mg/kg) and with 4D Combo – cocktail containing gefitinib (1 mg/kg), LY3009120 (6 mg/kg), trametinib 
(0.1 mg/kg), SCH772984 (15 mg/kg) for 30 days. The mean tumour volume percentages ± SEM is shown. 
e, EGFR and p53 mutant PDX responds to 4D Combo. PDX-4 was generated from a biopsy of patient with 
EGFR and TP53 mutation that progressed after afatinib and chemotherapy treatment. After tumour 
establishment, mice were treated 5 days/week with Vehicle (N=3), with gefitinib (80 mg/kg) (N=5) or 
with 4D combo (N=6) – cocktail containing gefitinib (10 mg/kg), LY3009120 (6 mg/kg), trametinib (0.5 
mg/kg) and SCH772984 (15 mg/kg) (N=6) for 18 days. Tumour volume percentages ± SEM is shown. 
f, Representative H&E stainings from the GI tract and the bone marrow of the PC9 xenografts in a-c are 
displayed.

treatment was comparable to the variability between replicates, the four MLD treated samples were 
considered replicates. Differential expression analysis was performed using the R-package limma (99) 
and the MSigDB hallmark gene-sets analysis was performed using version 6.2 of MSigDB (100). e,  MLD 
therapy prevents the acquisition of drug resistance in PC9 cells. PC9 cells were cultured with high dose 
of gefitinib (280 nM) and with 3D and 4D Combos (4 plates per condition). After 16 days in culture, one 
plate was fixed and stained. From the remaining three plates (per condition) one was switched to DMSO 
treatment, the other was switched to 4D Combo and the third one continued with the previous treatment. 
Sixteen days later (after 32 days of “treatment” in total) cells were fixed and stained and then plates were 
scanned. A representative image from the 3 replicates performed is displayed.
 

Supplementary Figure 3: MLD therapy is effective in multiple cancer cell lines.	  
a-c, Dose-response curves across the organoid and cell line panel. (a) Organoids were cultured with 
DMSO or with the different inhibitors and after 5 days of drug treatment cell viability was measured using 
CellTiter-Glo®. SEM from 3 biologically independent replicates (each with 3 technical replicates) is plotted. 
(b, c) Cells were plated in 384-well plates. Drugs were added ~24h after plating; after 4 days of exposure 
to the drugs cell viability was measured using CellTiter-Blue®. SEM from 3 biologically independent 
replicates (each with 3 technical replicates) is plotted. Low doses (IC20s) were then determined (see 
Supplemental Table 1). d, MLD therapy is effective in several cell lines/tumour types. HCC827, H3255, 
Lim1215, DiFi, H2228, H3122, SKBR3 and HCC1954 cell lines were treated with DMSO, with the indicated 
pathway inhibitors at low dose and with their combination (4D Combo). After 10 days of treatment plates 
were stained and scanned; A representative image from 3 biologically independent replicates is displayed.

44  |  CHAPTER 2 MULTIPLE LOW DOSE THERAPY  | 45

2 2



Supplementary Figure 6: PK-PD studies in PC9 xenografts reveal different half-lives of the inhibitors. 
a-d, Pharmacokinetic and pharmacodynamics studies in PC9 xenografts. In (a-c) PC9 cells were injected 
(bilaterally) subcutaneously in BALB/cAnNRj-Foxn1nu mice. After tumour establishment (~200 mm3), 
mice were treated with vehicle (N=4) or 4D Combo (N=12). Vehicle mice were sacrificed 2H after 
treatment; Mice treated with 4D combo were sacrificed 2, 8 and 24h after treatment, respectively; 4 mice 
were sacrificed per time point. Blood and tumours were harvested; half of the tumour was used for the 
PD study and the other half was used for biochemical analysis. The drug concentrations in the blood and 
in the tumours were determined by mass spectrometry. In (a) the concentration of the individual drugs in 
the plasma is displayed and in (b) the concentration of the individual drugs in the tumours is displayed; 
SEM is plotted. In (c) the level of pathway inhibition in the tumours was measured by examining pRSK 
protein levels in the western blot (WB). Tubulin was used as loading control. WB was quantified using the 
Image Lab software, from Bio Rad. d, Intermittent MLD therapy is less efficient in reducing cell growth in 
PC9 cells. PC9 cells were plated and incubated overnight to allow attachment to the plate. Cells were then 
treated with DMSO, with EGFR, RAF, MEK, ERK inhibitors at low dose, with 3D Combo or with 4D Combo. 
To mimic the availability of the drugs in vivo, in some of the 3D and 4D combo replicates the RAF and ERK 
inhibitors were removed from the culture media for approximately 8 hours every day (called intermittent 
MLD therapy). Confluence over time was measured by the IncuCyte®. SEM from 3 replicates is plotted. 
e, BALB/cAnNRj-Foxn1nu mice were treated with gefitinib (1mg/kg, N=3), LY3009120 (6mg/kg, N=3), 
trametinib (0,1mg/kg, N=3), SCH772984 (15mg/kg, N=3) or 4D Combo (N=3) and blood was harvested 2, 
4, 8 and 24h after treatment. The drug concentrations in the blood was determined by mass spectrometry. 
The concentration of the drugs in the plasma given as single agent or in the 4D Combo is displayed.

Supplementary Figure 5: Small cell lung cancer transformation of PDX4.	 
Biopsy samples from either the primary human lung cancer (a-c), the subcutaneous xenograft of this tumor 
(d-f) or the orthotopic xenograft of this tumor (g-i) were fixed and stained with H&E. Immunohistochemical 
staining with synaptophysin antibody was performed to assess small cell lung cancer transformation. a-c: 
Small cell carcinoma metastatic to a mediastinal lymph node. The tumor has a sheet-like growth pattern. 
The tumor cells have ovoid or spindled nuclei and scant cytoplasm. Nuclear chromatin is finely granular 
and nucleoli are absent. There are brisk mitotic activity with atypical mitotic figures. d-f: subcutaneous 
xenograft of lung cancer shown in a-c. g-i: orthotopic xenograft of lung cancer shown in a-c. a, d and g: 
original magnification 100X, scale bars 200 µm. b, c, e, f, h, i: original magnification 400X, scale bars 50 µm. 
a, b, d ,e, g, h: H&E stain. c, f, i: immunohistochemical stain for synaptophysin.
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Supplementary Table 2: Compendium of de novo mutations found in PC9OR and PC9GR by Exome 
Sequencing

Supplementary Table 3: Compendium of patient, tumour, treatments and mutations information for all 
the PDXs used in the study.
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Introduction

The dependency of tumors on activated signaling pathways results in therapeutic 
responses to inhibitors that block pathway activity (74). However, resistance to 
such targeted inhibitors inevitably develops (42,101). Combinations of two targeted 
inhibitors can give more lasting clinical benefit, but resistance nonetheless emerges 
(43,102). Combining more than two drugs might further extend the duration of 
the response (103), but toxicity becomes a major concern when multiple drugs 
are combined at their maximum tolerated dose (MTD). Recently, we found that 
partial inhibition of three or four kinases by combining Multiple drugs at Low Dose 
(MLD) is surprisingly effective in receptor tyrosine kinase (RTK) driven tumors 
in multiple cancer types. It prevents the development of resistance, and it is well 
tolerated by mice (47). Others have also shown the potential of multi-drug (low 
dose) combinations in pre-clinical (48,79,104,105) and clinical (106,107) settings.
These findings warrant further exploration of multiple-drug combination 
strategies and call for a systematic way to explore the opportunities, including 
optimizing the dosing of the different drugs. The combinatorial explosion of the 
search space – there are more than 2 million possible 4-way combinations of the 
89 (as of 2017 (108)) FDA approved targeted inhibitors, and 24 billion if each drug 
is to be tested at 10 different concentrations – means that in-vitro testing of all 
combinations is infeasible and hence computational approaches are required to 
prioritize promising combinations. Nowak-Sliwinska and collaborators presented 
a “Feedback Systems Control” approach to explore the search-space of possible 
multi-drug combinations (105,109,110). While this approach is promising, the 
method does not optimize for selectivity and the obtained results lack a mechanistic 
underpinning, making it hard to assess to what extent the results will generalize. 
Another promising approach is building mathematical models of cellular signaling, 
based on a limited set of (perturbation) experiments (111–118). Unfortunately, 
current approaches suffer from two major shortcomings. First, only a very limited 
number of such modeling approaches focus on the difference between cells with 
different mutation profiles (111,119), which is critical for optimizing selectivity. 
Second, how inhibition of oncogenic signaling affects proliferation and apoptosis 
quantitatively, remains underexplored (117,118,120).
We therefore set out to establish and validate a combined experimental and 
computational pipeline to prioritize multi-drug low-dose combinations based 
on mathematical models of drug response (Fig 1). Importantly, we aimed to find 
combinations that are selective for cells with or without a particular mutation. 
To isolate the effect of the mutation, we used an isogenic cell line pair with and 
without a mutation. Specifically, we used MCF10A, a cell line derived from epithelial 
breast tissue (121), and an isogenic clone with the activating PI3KH1047R-mutation 

Abstract

Inhibition of aberrant signalling with targeting inhibitors is an important 
treatment strategy in cancer. Unfortunately, due to compensatory mechanisms, 
response to single drug treatment is often short-lived. Multi-drug combinations 
have the potential to mitigate compensatory mechanisms, but to avoid toxicity such 
combinations must be selective and the dosage of the individual drugs should be 
as low as possible. Since the search space of possible multi-drug combinations and 
their optimal dosage is enormous, this calls for an efficient approach to identify 
the most promising drug combinations and dosages. To meet this challenge, 
we developed a combined experimental and computational pipeline. For the 
experimental component, we perform, for a given isogenic cell line pair, a limited 
set of drug perturbations and record pre- and post-treatment signalling states 
and longer term viability. In the computational component we employ these to 
reconstruct cell line specific signalling networks and map changes in signalling 
output to changes in cell viability. We then employ these models to prioritize 
selective low-dose, multi–drug combinations in silico, based on the mutation status 
of the cell line. As proof of principle, we applied this approach to a breast cell line 
and an isogenic clone with an activating PI3K mutation, for which we predicted 
and validated multiple selective multi-drug combinations. Remarkably, of the 30 
combinations predicted to be selective, we were able to validate 25 (83%). Applying 
this pipeline to suitably chosen model systems will allow for the identification of 
biomarker-specific combination treatment regimens.
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Results

The signaling and viability response to drug perturbations in MCA10A 
parental and PI3KH1047R mutated cells
To test how oncogenic mutations affect signal transduction networks and their 
downstream effects on cellular phenotypes such as cell viability, we used the 
MCF10A cell line (121) and an isogenic clone with the activating PI3KH1047R 
mutation knocked in under its endogenous promoter (122). In the absence of drug 
perturbations, PI3KH1047R-mutant MCF10A cells have a comparable growth rate as 
their parental cells (122). As expected, the baseline signaling activity of AKT and 
PRAS40, both downstream of PI3K, is elevated, but the other signaling nodes do not 
show significant differences in activity (Fig 2A). Dose response curves of selected 
PI3K and the MAPK pathway inhibitors showed subtle differences in sensitivities 
between the parental and the mutant cells (Fig S1A).
To study how the signaling of these cells respond to drug-perturbations and if the 
PI3KH1047R mutation influences this, we perturbed both cell lines with inhibitors of 
the PI3K and MAPK pathways, and selected 2-drug combinations of these. Single 
drugs were tested at two different concentrations, corresponding roughly to their 
IC50 and IC90 values (except RAFi, which was only tested at IC90) and drug-
combinations were tested with both drugs at their IC50 values, to obtain a total of 
34 different perturbations. We measured the response (log2 fold change relative to 
DMSO control) of nine main nodes in the PI3K and MAPK signaling pathway using a 
multiplexed luminex assay in both cell lines to obtain more than 600 signaling drug-
response measurements (Fig 2B, Table S1,S2). In addition we measured the effect 
on cell viability using CillTiter Blue (Fig 2C, Table S3,S4) . Luminex quantification 
showed excellent concordance with Western Blots (Fig S1B). Generally, the 
differences in both signaling response and cell viability between the parental and 
PI3K-mutant cells were subtle but consistent. For instance, while the responses of 
the signaling nodes of the parental and PI3KH1047R cells are strongly correlated (Fig 
2B and Fig S1C), phospho-AKT shows a strong negative response to growth-factor 
receptor inhibition (EGFRi or IGF1Ri) that is nearly absent in the PI3KH1047R mutant 
cells (Fig 2B, highlighted).

knocked in under its endogenous promoter (122). We measured the response 
of the MAPK and AKT pathway and cell viability after drug perturbations, and 
used the measurement to build mutant specific signaling networks models using 
Comparative Network Reconstruction, a method we recently developed (111). 
In addition, we parameterized the relation between signaling response and cell 
viability. Combining this allowed us to simulate the effect of arbitrary multi- drug 
combinations and thus to prioritize promising ones. Our models indicated that no 
drug combination would likely be selective for the PI3K-mutant cells, but low-dose 
multi-drug combinations that we predicted to be selective for the parental cells 
were indeed selective, which validated our computational pipeline.

Figure 1: Overview of pipeline to prioritize promising selective low-dose multi-drug combinations.
Top: MCF10A parental and PI3KH1047R cells are treated with inhibitors targeting the MAPK and AKT 
pathways. The signaling and cell viability responses are measured and used to build mutant specific 
models of signal-transduction networks and to parametrize the relationship between signaling response 
and cell viability. Bottom: These models are used to simulate the response to unobserved multi-drug 
combinations, at arbitrary concentrations, of the signaling networks and how this affects cell viability. 
In this way, low-dose multi-drug combinations that are likely selective for a particular cell type can be 
prioritized.
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the most important quantitative differences between two or more cell lines. Prior 
knowledge about the network topology can be included, but the algorithm can also 
propose edges to be added to the network. The edge-weights are interpreted as 
the percent change in the downstream node activity in response to a 1% change 
in activity of the upstream node. Importantly, CNR identifies which edges are 
quantitatively different between the two cell lines.
We used the canonical MAPK and PI3K pathway interactions as prior information, 
and extended the network topology with 4 edges that were added in a leave-one-
out cross validation loop (Fig 3A and Fig S2A). The model gave a good fit to the 
data (Pearson correlation = 0.91) (Fig 3B). As expected, most of these differences 
are located close to AKT in the network (note, PI3K is not measured) (Fig 3A). 
Specifically, in the PI3KH1047R cells, AKT is less sensitive to changes in EGFR and 
unresponsive to IGF1R inhibition (Fig 3A,C), which is consistent with PI3K being 
constitutively activated. Additionally, AKT is less responsive to PI3K and mTOR 
inhibition (Fig 3D,E). At the IC50, AKT is also less sensitive to AKT inhibition, but 
when AKTi is applied at its IC90, the PI3KH1047R cells show a larger response (Fig 
3F). This last observation might be explained by the higher baseline AKT activity of 
PI3KH1047R cells, since if AKT activity is reduced to a similar absolute level, the fold-
change of AKT in the mutant is higher.
In order to be able to predict the signaling-response to drugs combined at arbitrary 
concentrations, we used the direct target-inhibition estimates for drug k on node 
i (Sik) for the IC50 and IC90 to parameterize the general relation between target 
inhibition and drug concentration. To this end, we modelled the response as Sik([Ik]) 
- Imax,ik * [Ik]/(KI,ik + [Ik]), where [Ik] is concentration of inhibitor k, Imax,ik the maximal 
response of node i to inhibitor k (as [Ik] goes to infinity) and KI,ik the inhibitor 
concentration where the half-maximal response is attained (Fig 3C-F and Fig S2B, 
dashed lines, c.f. Materials and Methods equation (4)).

Figure 2: Profiling signaling and viability response of MCF10A Parental en PI3KH1047R cells to drug pertur- 
bations. 
A. Node activity in the unperturbed cells. Most nodes have similar activity in the parental and PI3KH1047R 
cells, except AKT and PRAS40 (highlighted) which are downstream of PI3K. B. Heatmap representing 
log2-fold changes compared to DMSO controls of the signaling nodes in response to drug treatment. 
Signaling response is measured after 2 hours of drug treatment. The color scale is capped between -4 and 
4 for visualization purposes. C. Cell viability under the same drug treatments as reported in panel B. Cell 
viability is measured after 3 days of drug treatment.

Network reconstructions identify relevant differences between parental and 
PI3K-mutant cells
To establish how the PI3KH1047R mutation affects the signal transduction network, 
we used the drug- response measurements to perform Comparative Network 
Reconstruction (CNR) (111) of the MAPK and AKT pathways. CNR is a method we 
recently developed to reconstruct and quantify signaling networks and identify 
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viability. The fitted parameters (KM,ERK and KM,AKT) differ slightly between the 
two cell lines, but the bootstrapped 95% confidence intervals strongly overlap (Fig 
S3B), so we do not want to over interpret these differences.

Figure 4: Short term signaling response is predictive for longer term cell viability. 
A. Scatterplot of cell viability against log2-fold changes in AKT (left panel) and ERK (right panel) activity 
in response to drug treatments. The Pearson correlations are 0.36 and 0.42 respectively. B. Scatterplot of 
model fit against measured cell viability based on a model where both ERK and AKT response are used 
to explain cell viability (c.f. Materials and Methods, equation (3)). The Peason correlation between fit and 
measurement is 0.71.

Prediction and validation of selective multi-drug-combinations
We then combined the network models (Fig 3A) with the parametrization of the 
signaling-viability model (Fig 4A) to simulate the effect on cell viability of any 
multi-drug combination at any concentration. When applying this model to the 
training data, the Pearson correlation between measured and fitted cell viability 
was 0.78 (Fig 5A). We decided that this was accurate enough to make predictions 
about unseen multi-drug combinations. Hence, we used our model to prioritize 
multi-drug combinations and dosings that maximize the selectivity, defined as the 
difference in viability between the two cell lines.
We first tried to optimize for PI3KH1047R-selectivity. To do this, for all possible 
3-drug combinations we optimized the concentrations such that the viability of 
the PI3KH1047R mutants is minimized, under the constraint that the viability of 
the parental cells remains above 0.8 relative to DMSO control (c.f. Materials and 
Methods, equation (6)). To look for low-dose drug combinations, we also added 
the constraint that each drug can be used maximally at its IC10. However, no 
drug-combination was predicted to be selective for the PI3KH1047R cells at any 
combination of concentrations. Since none of the single drugs shows selectivity 
towards the PI3KH1047R cells (Fig 2C), this is not very surprising. Moreover, our 

Figure 3: Mutant specific network reconstructions show expected differences.
A. Comparative Network Reconstruction (CNR) of MCF10A parental and PI3KH1047R cells. Edges and direct 
perturbation effects that differ between the two cell lines are highlighted in blue. Ovals indicate nodes. 
As expected, the most and the strongest differences between the cell lines are located close to AKT in the 
network (note that PI3K is not measured). B. Comparison of network model fit with measured signaling 
response shows that the network model can explain the signaling response data well (Pearson correlation 
0.91). C-F. The estimated direct effect of IGF1R (C), mTOR (D), PI3K (E) and AKT (F) inhibition on AKT 
activity as a function of applied inhibitor concentration. Points indicate the estimated effects of the 
concentrations used in the CNR reconstruction, the dashed lines indicate the interpolated curves between 
these points (c.f. Materials and Methods, equation (4)). IGF1R PI3K, and mTOR inhibition were modelled 
as directly affecting AKT because their actual targets were not measured.

Short-term signaling response is informative for long-term cell viability
To prioritize multi-drug combinations, the response of the signaling network to a 
drug perturbation needs to be related to its effect on cell viability. Important open 
questions here are: Is the short-term signaling response predictive to longer term 
cell viability? If so, which signaling outputs are most predictive?
The association between the individual node-responses and cell viability were 
moderate even for the most strongly associated nodes, phospho-AKT and 
phospho-ERK, which had a Pearson correlation with cell viability of 0.36 and 0.42, 
respectively (Fig 4A). The responses of all other nodes also correlated somewhat 
with cell viability (Fig S3A), but clearly no single node alone is a good predictor for 
cell viability. We therefore investigated whether a model combining the phospho-
AKT and phospho-ERK response could fit the cell viability data better. We used 
a model with the property that cell viability goes to 0 if either phospho-ERK or 
phospho-AKT are fully inhibited (c.f. Materials and Methods, equation (3)). The 
biological assumption behind this is that both ERK and AKT activation are required 
for cell survival and growth. This model gave a good fit to the data (Fig 4B), with 
a Pearson correlation between fitted and measured viability of 0.71. Importantly, 
this means that the short-term signaling response is predictive for longer-term cell 
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Figure 5: Experimental validation of selective drug combination predictions. 
A. Scatterplot comparing full model fit (network model combined with signaling response-viability 
mapping) to the training data. The Pearson correlation between fit and measurement is 0.78. B-C. 
Overview of drug combinations that we predicted to be selective (B) and non-selective (C) based on 
this model. Drug concentrations are color-coded relative to their IC10. Bottom row indicates predicted 
selectivity (defined as the difference in viability between PI3KH1047R and parental cells) of the combination. 
These combinations were subsequently tested in the validation experiments. D. Boxplot comparing the 
measured selectivity of the drug combinations predicted to selective (panel B) or non-selective (panel 
C). Each point represents the mean selectivity of one drug combination, which were each tested in 8 
replicates. The difference is highly significant (Wilcoxon signed-rank test p < 10−7). E. Comparison of the 
measured selectivity of IGFRi mono treatment, indicated by the horizontal gray line, with the selected 
IGF1Ri-containing 3-drug combinations (red boxplot). IGF1Ri containing combinations are significantly 
more selective than IGF1Ri mono treatment (one- sample t-test p < 10−7). F. Box plots comparing cell-
viability of Parental and PI3KH1047R cells of the 11 (out of 17) IGF1Ri containing drug-combinations that are 
significantly more selective than IGF1Ri mono treatment.

Discussion

In this study, we have shown that it is possible to prioritize promising multiple 
low dose (MLD) drug combinations based on a combination of single and 
2-drug response measurements and mathematical modeling. We have used 
drug-perturbation experiments to reconstruct, quantify and compare signal- 
transduction networks of an isogenic cell line pair, and linked the responses of 
these networks to cell viability. This showed that the short-term signaling response 
is predictive for cell viability, which is measured in longer-term experiments. Based 
on the so-obtained models we were able to predict and validate drug combinations 
that are selective for a particular cell line, even though the differences between the 
cell lines were subtle.

network reconstructions indicated that the main effect of the PI3KH1047R mutation 
is to render the MCF10A parental line independent of growth-factor stimulation. 
Indeed, when we grew MCF10A parental and PI3KH1047R cells in the media without 
growth-factor, this is what we observed (Fig 4).
We then looked for drug-combinations that we predicted to be selective for the 
parental cells. In our optimizations, we found 30 such combinations with a 
selectivity > 0.1 (Fig 4B). Interestingly, IGF1R inhibition was part of all of the 17 
combinations that we predict to be most selective, while its selectivity in the training 
data was only modest (Fig 2C). However, the difference in signaling response, and 
specifically phospho-AKT, was much more pronounced (Fig 2B), and this latter 
aspect gets picked up in the network reconstructions (Fig 3A). A particularly 
interesting example is the combination IGF1Ri + PI3Ki + GSK3i, since both PI3Ki 
and GSK3i at their lower dose (IC50) show no selectivity towards the parental cells, 
and yet this combination is predicted to be one of the more selective ones (Fig 
5B, highlighted). As a control, we also selected 44 combinations that we predicted 
to be non-selective for either cell line (Fig 5C). We then treated the parental and 
PI3KH1047R cells with the 30 predicted to be selective and 44 control combinations 
and measured their viability (Table S5). Combinations that we predicted to be 
selective were indeed so, and this was highly significant when compared to the 
non-selective control combinations (Wilcoxon signed-rank test p < 10−7) (Fig 
5D). Individually, 25 of the 30 combinations predicted to be selective were indeed 
significantly selective (one-sided t-test p < 0.05) (Table S6).
As mentioned above, of the 30 predicted-to-be-selective combinations we tested, 
17 contain the IGF1R inhibitor, which is also mildly selective for parental cells as 
monotherapy. (None of the other inhibitors showed selectivity as a monotherapy 
at their IC10, Fig S5). To rule out the possibility that our result is mainly driven by 
the selectivity of IGF1R mono-therapy, we compared the 17 IGF1Ri containing drug 
combinations with IGF1Ri monotherapy. Figure 5E shows that each of the IGF1Ri 
containing combinations we tested (red boxplot) is more selective than IGF1Ri 
treatment alone (indicated by horizontal gray line). This effect is highly significant 
(one-sample t-test p < 10−7). When looking at the individual drug combinations, we 
found that 11 of the 17 IGF1Ri containing combination treatments are significantly 
more selective than IGF1Ri monotherapy (one sided t-test p < 0.05) (Fig 5E, Table S7). 
This also includes the IGF1Ri + PI3Ki + GSK3i combination highlighted above, which is 
amongst the second most selective combinations when ranked by effect size.
These results indicate that our pipeline is capable of making an accurate 
prioritization of selective low-dose multi-drug combinations. Importantly, these 
predictions are not always obvious, and would not have been possible without the 
help of mathematical models of the signal transduction networks and its relation 
to cell viability.
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Materials and Methods

Cells and cell culture
Human parental and PI3KH1047R/+ MCF10A cell lines were obtained from Horizon 
discovery (HD PAR- 003 and HD 101-011). Cells were cultured in DMEM/F-12 
including 2.5 mM L-glutamine and 15 mM HEPES, supplemented with 5% horse 
serum, 10 µg/mL insulin, 0.5 µg/mL hydrocortisone and 0.1 µg/mL cholera toxin. 
Mycoplasma tests were performed every 2 months.

Reagents and compounds
The following inhibitors were used in this study: EGFRi (Gefitinib), IGF1Ri (OSI-
906), RAFi (LY3009120), MEKi (Trametinib), ERKi (SCH772984), PI3Ki (BKM120), 
AKTi (MK-2206), mTORi (AZD8055). All inhibitors were purchased from MedKoo 
Biosciences. The luminex antibodies against CREB1S133, EGFRY1068, ERK1T202/
Y204, GSK3S21/S9, MEK1S217/S221, p70RSKT389, PRAS40T246 and RPS6S235 
were purchased from ProtATonce Ltd. The luminex antibody against AKT1T473 
was purchased from BioRad.

Drug perturbation and validation experiments
All the cell-viability measurements were performed in biological triplicates, each 
with 2 technical replicates, using black-walled 384-well plates (Greiner 781091). 
Cells were plated at the optimal seeding density (200 cells per well) and incubated 
for approximately 24 hours to allow attachment to the plate. Drugs were then added 
to the plates using the Tecan D300e digital dispenser. 10 µM phenylarsine oxide 
was used as positive control (0% cell viability) and DMSO was used as negative 
control (100% cell viability). Three days later, culture medium was removed and 
CellTiter-Blue (Promega G8081) was added to the plates. After 2 hours incubation, 
measurements were performed according to manufacturer’s instructions using 
the EnVision (Perkin Elmer). Viabilities were normalized per cell line according 
to (treatment - PAOmean)/(DMSOmean - PAOmean). IC50 and IC90 values were 
fitted using the R-package MixedIC50 (129) (code available at https://github.com/
NKI-CCB/MixedIC50).
The signaling response measurements were performed using 6-well plates (Greiner 
657165). 300K cells per well were plated and incubated for approximately 24 
hours to allow attachment to the plate. Drugs were then added to the plates and 
protein was harvested after 2 hours using the Bio-Plex Pro Cell Signaling Reagent 
Kit (BioRad 171304006M) according to the manufacturer’s instructions. Protein 
concentration of the samples was normalised after performing a Bicinchoninic 
Acid (BCA) assay (Pierce BCA, Thermo Scientific), according to the manufacturer’s 
instructions. Cell lysates were analyzed using the Bio-Plex Protein Array system 

According to our model, no drug combination is likely to be selective for the PI3KH1047R-
mutant MCF10A cells compared to their parental counterparts. The absence of 
oncogene-specific sensitivities is presumably due to an absence of “oncogene 
addiction” (74) to the PI3K mutation (or any other) in the PI3KH1047R MCF10A cells. 
In the absence of drug-treatment the mutation has no effect on proliferation (under 
the growth conditions we used), and this mutation therefore presumably does not 
induce any vulnerabilities. Our network reconstruction suggests that the main 
effect of the PI3KH1047R mutation on MCF10A cells is to make them growth-factor 
independent, consistent with previous observations (123) and likely the reason 
that IGF1R inhibition selectively affects the parental cells. Interestingly, while as 
monotherapy low-dose IGF1Ri is mildly selective, combinations of IGF1Ri with 
selected other drugs are strongly selective for the parental cells. Importantly, which 
combinations are most selective is often far from obvious. For instance, while in 
the training data PI3Ki and GSK3i at their lower dose (IC50) individually show no 
selectivity towards the parental cells at all, the combination IGF1Ri + PI3Ki + GSK3i 
is one of the most selective drug combinations, both as predicted by our model and 
as measured validation experiments. This underscores the need for mathematical 
modelling in prioritizing promising combinations.
While isogenic cell line pairs with a mutation knocked in are interesting models 
because they allow study of the effect of the mutation in isolation, they may not 
always be the best model to study oncogene- specific sensitivities due to their 
lack of oncogene addiction. An interesting alternative approach might be to use 
cancer cell lines of which one of the driver mutations is removed (124–126). 
Alternatively, a larger, more heterogeneous panel of cell lines with and without 
a particular biomarker could be used (113,116,127,128). In this scenario, one 
would look at commonalities in the signaling network response of the cell lines 
with the biomarker compared to the lines without out, and use this to propose 
combinations that are selective of the biomarker carrying cell lines. Finally, the use 
of matched tumor and normal organoids from the same patient could be used for 
truly personalized models.
In conclusion, we have shown here that it is feasible to make accurate, non-trivial 
predictions about selectivity of multi-drug combinations based on mathematical 
models of signaling transduction networks. In combination with suitable model 
systems, this framework therefore makes it possible to rationally design biomarker-
selective low-dose multidrug combinations.
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concentrations for the difference in perturbations strengths, i.e. if 
 and .

•	 The MEK inhibitor interferes not only with MEK phosphorylation, but also its 
catalytic efficiency. Hence, MEK inhibition was modelled as a direct effect on 
both MEK and it’s downstream proteins.

•	 Some inhibitors target kinases that were not measured in our assay. The 
effect of these inhibitors was modelled as a perturbation to the (canonical) 
downstream nodes of the kinases being inhibited. Specifically, IGF1R inhibition 
was modelled as a perturbation to MEK1 and AKT1, PI3K inhibition as a 
perturbation to AKT1, RAF inhibition as a perturbation to MEK1, and mTOR 
inhibition as a perturbation to AKT1 and p70S6K.

Prior information about network topology was added by setting the indicators of a 
set of canonical MAPK and PI3K pathway interactions to 1. Hyperparameter were 
set to ” = 0.1 and „ = 2.0 based on a leave one out cross validation loop. Single drug 
treatments were not included in the leave one out cross validation because each 
drug concentration needs to be present in at least one perturbation to estimate the 
corresponding parameter. The final model was obtained by restricting the topology 
to the prior network information with addition of the 4 edges that were identified 
in the leave one out cross-validation, and then performing the optimization with „ 
= 2.0.
 
The relation between signaling output and cell viability
The viability (relative to DMSO control) upon perturbation k, vk, were fitted to the 
following function:

	 (3)

Where RAKT,K and RERK,K are the log2-fold changes of phospho-AKT and phospho-
ERK relative to DMSO control upon perturbation k, respectively. Fitting was 
performed using the nls function of R. Bootstraps were performed using the 
function bootstrap from the “rsample” package (131).

Simulation and prediction of selective 3-drug combinations
The relations between the applied concentration of drug k, [Ik], and target 
inhibition of node i in response to this, sik  were fitted to the following function for 
each inhibitor-target pair,

			   (4)

(Bio-Rad, Hercules, CA) according to the suppliers protocol as described previously 
(113). Intensities were normalized by subtracting blanks for each epitope and 
correcting for protein concentration.

Computational pipeline and data analysis
Comparative network reconstruction
MAPK and AKT signaling networks of the parental and PI3KH1047R mutant cell lines 
were reconstructed based on the Luminex drug-response data using Comparative 
Network Reconstruction (CNR) (111). Briefly, CNR is a network reconstruction 
method based on Modular Response Analysis (130). It links the matrix of measured 
node responses to a set of perturbations, R (where Rik is defined as log2 fold change 
in node i in response to perturbation k) to the matrix unobserved interaction 
strengths r (where rij is the logarithmic partial derivative of node i with respect 
to node j) and direct perturbation effects s (with sik the scaled direct effect of 
perturbation k on node i ). These matrices are related through

r • R = -s	 (1)

CNR solves this equation using an optimization procedure with penalties on the 
number of edges (non-zero entries in r) and differences between cell lines (entries 
in r that are quantitatively different between the cell lines). The optimization 
problem reads:

 

	 Solving this optimization problem gives the matrices r and s from a given 
R.
Additional constraints reflecting the experimental design were added to the CNR 
problem.

•	 sik is negative and stronger for higher drug concentrations, i.e.  
0 > sik ([IC50]) > = sik ([IC90]). 

•	 Each inhibitor-target pair has a single indicator for both inhibitor 

(2)
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Data and Code availability

All data and code required to reproduce the results and figures in this paper are 
available at https://github.com/evertbosdriesz/cnr-selective-combos.
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The parameters Imax,ik and KI,ik were fitted to this function using the sik-values for 
the [Ik] = IC50 and IC90 obtained from the CNR optimizations with the curve_fit 
function from the python package “scipy.optimize” package (132). For convenience 
all drug concentrations were normalized to the highest concentration applied (the 
IC90), and in all analyses only interpolations and not extrapolations are used (0 ≤ 
[I] ≤1).
RA+B+C, the vector of simulated log2-fold changes in response to a perturbation 
with 3 drugs A, B and C, at concentration [IA], [IB] and [IC] was calculated as

		  (5)

to obtain RAKT,A+B+C and RERK,A+B+C. These were then used to calculate viability 
according to equation [eq:viability].

For each possible 3-drug combination, the selectivity for cell line х relative to у was 
optimized by solving the following optimization problem:

			   (6)

Similarly, unselective control combinations were obtained by solving the 
optimization problem:

		  (7)

for all possible 3-drug combinations.

The optimizations were performed in Wolfram Mathematica (version 12.0) using 
the NMinimize function.
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Figure S2: A. Network topology used for modeling. Edges used as prior information are indicated in gray. 
Edges added in a leave one out cross validation loop are indicated in purple. B. The estimated direct effect 
of different inhibitors on their target, as a function of applied inhibitor concentration. Points indicate the 
estimated effects obtained from the CNR reconstruction, at the concentrations used in the perturbation 
experiments. The dashed lines indicate the interpolated curves between these points. (c.f. Materials and 
Methods, equation (4))

Supplementary Information

Figure S1: A. Dose-response curves of the inhibitors used in this study. B. Correlation between phosho-
ERK quantification using Luminex (top) and Western blot (bottom). C. Correlation between the response 
in Parental (x-axis) and PI3KH1047R (y-axis) cells. Response is defined as log2-fold change compared to 
DMSO controls.
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Figure S5: Viability of the low-dose single-drug controls, all measured at their IC10. Except for IGF1Ri, 
none of the drugs show selectivity towards the parental cells. Treatments were performed in 8 replicates.

Figure S3: A. Correlation between node response and cell viability of all measured nodes. B. Bootstrapping 
intervals of the estimated values for the parameters KM,AKT and KM,ERK in equation (3)

Figure S4: Growth of MCF10A parental and PI3KH1047R cells in different growth media. In contrast to the 
parental cells the PI3K mutant cells grow well in the absence of serum if either Insulin or EGF is provided.
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Introduction

Microsatellites are repetitive DNA tracts in which certain DNA motifs (ranging from 
one to several base pairs in length) are repeated, typically 5 to 50 times (133,134). 
Microsatellites are abundant in the genome, however they occur mainly in non-
coding DNA. Replication slippage, caused by the transient dissociation of the 
replicating DNA strands followed by misaligned re-association, occurs frequently 
in microsatellites but mutations are generally corrected by the mismatch-repair 
(MMR) system. However, in the absence of a proficient MMR system, due to 
genetic or epigenetic alterations of MMR genes MLH1, MSH2, MSH6, and PMS2, 
the rate of mutations will significantly increase, leading to a phenotype known as 
microsatellite instability (MSI) (135). MMR deficiency, and therefore microsatellite 
instability, increases the chances of developing cancer (136), but on the other 
hand, patients with MSI tumors have a better prognosis compared to microsatellite 
stable (MMS) patients (137). And with the recent advances in immunotherapy, 
the prognosis has even further improved, as MSI tumors have been shown to 
respond better to immune checkpoint blockade therapies (138). Because loss of 
MMR increases the mutation rate in tumors, the rate of putative frameshift peptide 
neoantigens also increases. Frameshift mutations are genetic mutations caused by 
insertions or deletions of a number of nucleotides in a DNA sequence that is not 
divisible by three (139). Due to the triplet nature of gene expression by codons, 
such a mutation can result in completely different transcripts than the original, 
which can lead to a more immunogenic tumour microenvironment (140,141).
It has been almost 10 years since the so-called MSI-like phenotype was identified 
in colorectal cancer (142). Tumors with this phenotype score negative for MSI in a 
clinical diagnostic assay, but have an expression profile similar to MSI tumors and, 
like MSI tumors, have a better prognosis. More recently, a study also showed that 
a fraction of MSS tumors have a high immunoscore and better prognosis (143). 
Together, these data suggest that there might be additional (currently unknown) 
genes involved in the regulation of DNA mismatch repair. Because a positive MSI 
test or dMMR is the eligibility criteria for immunotherapy, some MSS patients who 
could benefit from immunotherapy are currently not identified. We developed 
a fluorescent-based sensor in such a way that when cells acquire an increased 
rate of frameshift mutations, the sensor becomes irreversibly activated. We then 
performed a whole-genome CRISPR/Cas9 screen to study which genes, when 
inactivated, could potentiate such a phenotype in an unbiased way.

Abstract

Inactivation of the DNA mismatch repair (MMR) system, due to (epi)genetic 
alterations of MMR genes, increases the frequency of mutations across the genome, 
creating a phenotype known as microsatellite instability (MSI). This phenotype 
has been associated with a better prognosis for some time, but only since recently 
it has been recognised as a predictive biomarker (for immunotherapy). Because 
MSI tumors accumulate more insertions and/or deletions in coding microsatellites 
regions of the genome, the rate of frameshift neoantigens increases, which 
promotes immunogenicity. To investigate if additional genes exist that can cause 
the MSI phenotype, we developed a fluorescent-based sensor to identify genes 
whose inactivation increases the rate of frameshift mutations in cancer cells. 
Using CRISPR/Cas9 screens, we found MED12 as a potential new regulator of 
microsatellite instability. 
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(TMZ), to enrich for MMR deficient cells. We generated high Cas9 expressing 
SW#8_G23 cells and transduced them with the Brunello gRNA library. To increase 
the chances of activating the sensor we kept the cells in culture for 36 days. We 
then selected the cells which had activated the sensor with G418 for 12 days (Fig. 
2A). In the TMZ arm we also harvested cells before selection with G418, to rule 
out any side-effect from G418. The screen performed well technically, as judged 
by the depletion of essential genes over non-essential genes (Sup. Fig. 2B). As 
expected, treating the cells with TMZ enriched for sgRNAs targeting MMR genes 
(Fig. 2B). And not surprisingly, these genes were also enriched after selecting the 
cells which activated our sensor with G418 (Sup. Fig. 2C). However, in the unbiased 
arm (untreated), only PMS2 scored as a potential hit (Fig. 2C). 

Figure 1: Development of the fluorescent-based sensor to study microsatellite instability.	  
A. Schematic representation of the MSI sensor. B-D. Validation of the MSI sensor in MSS cell line SW480. 
In (B) SW480 cells were transduced with the MSI reporter and with Cre. Activation of the reporter was 
measured by flow cytometry and the best clone (SW#8) was selected for further studies. In (C) SW#8 cells 
were transduced with the MSI activator (G23) and with sgRNAs targeting positive control genes (MSH2 
and MLH1) or a non-targeting control (NTC). Activation of the reporter was measured by flow cytometry 
after 3 weeks in culture. In (D) protein was isolated from the cell lines, as indicated, to assess levels of 
MSH2 and MLH1 by western blot. Tubulin was used as a loading control. A representative image from two 
biological replicates is displayed.

Results

Microsatellites, because of their repetitive nature, are more prone to frameshift 
mutations than other genomic regions (144). For this reason, to increase the 
sensitivity of our frameshift mutation sensor, we cloned an “MSI domain” (i.e., a tract 
of tandem nucleotide repeats) followed by a protein coding gene (Cre recombinase). 
We designed the MSI domain in such a way that the protein coding gene would be 
out-of-frame, and thereby would not be expressed, unless a frameshift mutation 
that would make it in-frame would occur. We called this vector the MSI activator. 
Because of the high mutation rate in microsatellites, it would be possible that, after 
being mutated in-frame, a subsequent mutation could place it again out-of-frame. 
To ensure that if the MSI activator was ever mutated in-frame we could detect it 
irreversibly, we cloned a second vector – called the MSI reporter. Here, a selection 
marker (neomycin) and a red fluorescent protein (Katushka) were cloned in-frame, 
after a transcriptional STOP cassette flanked by loxP sites. With this double system, 
upon activation of the MSI activator, Cre would get expressed which would lead 
to the excision of the transcriptional STOP cassette, making the cells irreversibly 
resistant to neomycin and Katushka-positive (Fig. 1A). We also included selection 
markers in these reporters (hygromycin and blasticidin, respectively) to facilitate 
selection of cells with the double integration. 
We used the MSS colorectal cancer cell line SW480 (145) to validate our MSI sensor. 
We first transfected the cells with the MSI reporter and tested its activation by 
expressing Cre recombinase in the cells. This resulted in a heterogeneous activation 
of the reporter, possibly due to the different integration sites of the reporter. However, 
after single-cell sorting we were able to pick a clone (called SW#8) which became 
completely activated upon Cre induction (Fig. 1B). Next, we transfected the SW#8 cells 
with the MSI activator (SW#8_G23) and then knocked-out MMR genes MLH1 or MSH2. 
We observed that the KO of MLH1 or MSH2 significantly increased the activation of 
our MSI sensor over time, compared to the control (Figs. 1C-D). Additionally, all the 
Katushka positive cells were resistant to G418 (Sup. Fig. 1A). However, it is important 
to notice that it took a significant amount of time (>3 weeks) to see a significant 
difference. This is not unexpected, as a frameshift mutation needs to occur within our 
MSI domain (23 bp region), out of the many other microsatellites in the genome, to 
be activated. Therefore, the longer the cells are cultured for, the higher the chances of 
activating the sensor. We also validated our sensor using a MSI cell line (Sup. Fig. 1B).
To find potential new regulators of microsatellite instability we performed a 
whole-genome (WG) CRISPR/Cas9 screen. We hypothesised that regulators of 
microsatellite instability would, in some way, deregulate the MMR system. Because 
MMR deficient cells are resistant to Temozolomide (146) (Sup. Fig. 2A), we also 
included an arm in the screen where the cells were treated with Temozolomide 
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Figure 2: Identification of MED12 as a potential regulator of microsatellite instability.	  
A. Schematic representation of the genome-wide CRISPR screen. B, C. Robust rank analysis of the 
sgRNAs enrichment in the genome-wide screen. Cas9 expressing SW#8 cells were screened with the 
Brunello whole-genome sgRNA library. In (B) the Robust rank distribution of the enriched sgRNAs in 
the Temozolomide treated arm (T36) compared to the reference (T12) is displayed. In (C) the Robust 
rank distribution of the enriched sgRNAs in the untreated arm (T48) compared to the reference (T12) 

The other MMR genes scored within the top 500, but far from being significant. 
This indicates that, in such a complex screening system, using a whole-genome 
library creates too much “noise”, which hinders the chances of identifying hits. To 
potentially increase those chances, we would have to increase the representation 
of the library as well as the time given to the cells to activate the reporter, but 
such conditions would be very difficult to achieve logistically with a whole genome 
library. To overcome the “noise” problem and the logistical hurdles, we decided 
to re-screen our cells with a smaller “MSI-focused” sgRNA library, comprised of 
sgRNAs targeting the top enriched genes from our WG screens, as well as candidate 
genes from literature and control genes. This time, we transduced the high Cas9 
expressing SW#8_G23 cells with the “MSI-focused” gRNA library, using a 2000-fold 
library representation. To further increase the chances of activating the sensor we 
kept the cells in culture for 85 days. We also harvested cells at day 7, to assess the 
depletion of essential genes over non-essential genes and proliferation differences, 
and at day 44, to assess if the extra time was beneficial (Sup. Fig. 2D). With these 
screening conditions, all MMR genes scored as hits in the screen, as well as MED12 
(Fig. 2D). Culturing the cells for longer than 44 days didn’t make a significant 
difference, as the top 5 hits (MLH1, MSH2, MSH6, PMS2 and MED12) were the same 
after 44 and 85 days in culture. 
To study further whether MED12 regulates microsatellite instability, we generated 
MED12 KOs in SW#8_G23 cells, as well as KOs of MSH2 and MLH1 as positive 
controls. We observed that, after 3 months in culture, loss of MED12 led to an 
increase in the activation of our MSI sensor approximately 4-fold as compared 
to control cells, but very far from the 145-fold increase observed in the positive 
controls (Figs. 3A, B). We also observed that MED12 KO cells acquired resistance to 
Temozolomide, albeit to a lesser extent than knockout of MLH1 or MSH2 (Fig. 3C). 
We also tested the MSI status of the MED12 clones using the Promega MSI Analysis 
System, which is the gold standard MSI assay in clinical research. Using this PCR-
based method, we tested five nearly monomorphic mononucleotide repeat markers 
(BAT-25, BAT-26, MONO-27, NR-21 and NR-24). By evaluating the length of these 
markers it is possible to detect contractions or expansions. Scoring positive for 
at least 2 markers is the criteria for classifying a sample as MSI positive. In our 
samples, the positive controls MLH1 and MSH2 scored positive for 2 markers (BAT-
25 and Mono-27), but only one of the four MED12 KO clones scored positive for 2 
markers (Fig. 3D). Finally, we observed that MED12 KO cells slightly downregulated 
MLH1 and MSH2 expression (Fig. 3B).  
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Conclusions and future perspectives

This study aimed to identify new regulators of microsatellite instability using a 
fluorescent-based sensor and CRISPR screens. Our findings suggest that MED12 
might play a role in microsatellite instability by downregulating members of 
the MMR system. MED12 is a component of the mediator of RNA polymerase II 
transcription (MEDIATOR) complex.  As an essential component of the RNA 
polymerase II general transcriptional machinery it plays a crucial part in the 
activation and repression of transcription initiation (147,148). This can potentially 
explain how MED12 could be involved with microsatellite instability regulation, i.e. 
MED12 loss might impair the transcription of the MMR genes, causing expression 
downregulation. However, this downregulation is only “mild”, explaining why the 
MSI phenotype takes longer to appear, in line with the differences observed in the 
activation of the MSI sensor in the MED12 KO cells compared to the KO of MSH2 
or MLH1. A closer look into the analysis of the Temozolomide arm of the genome-
wide CRISPR screen revealed that MED12 was actually a top hit, but only in one of 
the biological replicates. It is unclear why that was the case but that explains why it 
didn’t score as a hit in the analysis. Additionally, EP300, which is also a regulator of 
MLH1 expression (149) was also in the top 8 genes, which were enriched in the MSI-
focused screen. The link between MED12 and MMR raises the question whether 
MED12 could indeed contribute to microsatellite instability in CRC tumors, but 
more work is necessary to better understand this link. Additional cell lines should 
be included in validation studies as well as bioinformatics analysis to see whether 
there’s a correlation between MED12 mutations and MSI status in patients. 
Lynch syndrome is a hereditary condition caused by germline inactivation in one 
of the MMR genes. This condition increases the chances of developing cancer, and 
because of the accumulation of multiple mutations over time patients also develop 
MSI tumors. Another condition that causes MSI tumors are Lynch-like syndrome 
patients. Cancers from Lynch-like syndrome patients show MSI but the mechanism 
for the generation of MSI is unknown because they have no germline mutations 
in the DNA MMR genes (150). In a clinical study which analyzed tumors from 
patients with Lynch-like syndrome, MED12 was found to be mutated in 29% of 
the tumors (151), which is significantly higher than the 5% mutation frequency 
observed in CRC patients (152), providing some clinical evidence linking MED12 
and MSI. Similarly to Lynch-like tumors, MSI-like tumors display a MSI signature 
but have no germline mutations in the DNA MMR genes (142). This is in line with 
the finding from our study in which only one clone scored as MSI positive, but all 
clones downregulated the MMR genes. As a transcriptional regulator, it is plausible 
that alterations in MED12 could cause this. In future work, we should analyze the 
transcriptome of MED12 KO cells and compare it to that of MSI cell lines. 

is displayed. D. Robust rank analysis of the sgRNAs enrichment in the MSI-focused library screen. Cas9 
expressing SW#8 cells were screened with the MSI-focused library. The Robust rank distribution of the 
enriched sgRNAs after 44 and 85 days in culture (left and right, respectively) compared to the reference 
(T7) is displayed.	

 

Figure 3: Validation of MED12 as a potential regulator of microsatellite instability.	  
A-D. SW#8_G23_Cas9 cells were transduced with sgRNAs targeting positive control genes (MSH2 and 
MLH1), a negative control gene (OR9Q2) and with 2 different sgRNAs targeting MED12. For each MED12 
sgRNA 2 different clones were generated (#1 and #2). In (A) activation of the reporter was measured 
by flow cytometry after 3 months in culture. In (B) protein was isolated from the cell lines, as indicated, 
to assess levels of MSH2, MLH1 and MED12 by western blot. Tubulin was used as a loading control. A 
representative image from three biological replicates is displayed. In (C) cells were cultured with increasing 
concentrations of Temozolomide for 4 days, after which cell viability was measured using CellTiter-Blue®. 
Standard deviation (SD) from 3 biologically independent replicates (each with 3 technical replicates) is 
plotted. In (D) the MSI status of the cells was tested by PCR. The results for the BAT-25 and Mono-27 
markers are displayed.
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hours incubation, measurements were performed according to manufacturer’s 
instructions using the EnVision (Perkin Elmer).

Western Blots
After the indicated culture period, cells were washed with chilled PBS and then 
lysed with RIPA buffer (25mM Tris - HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium 
deoxycholate, 0.1% SDS) containing protease inhibitors (Complete (Roche) and 
phosphatase inhibitor cocktails II and III). Samples were then centrifuged for 10 
minutes at 14.000 rpm at 4°C and supernatant was collected. Protein concentration 
of the samples was normalized after performing a Bicinchoninic Acid (BCA) assay 
(Pierce BCA, Thermo Scientific), according to the manufacturer’s instructions. 
Protein samples (denatured with DTT followed by 5 minutes heating at 95°C) 
were then loaded in a 4-12% polyacrylamide gel. Gels were run (SDS-PAGE) for 
approximately 60 minutes at 165 volts. Proteins were then transferred from the 
gel to a polyvinylidene fluoride (PVDF) membrane, using 330 mA for 90 minutes. 
After the transfer, membranes were placed in blocking solution (5% bovine serum 
albumin (BSA) in PBS with 0,1% Tween-20 (PBS-T). Subsequently, membranes 
were probed with primary antibody in blocking solution (1:1000) and left shaking 
overnight at 4°C. Membranes were then washed 3 times for 10 minutes with PBS-T, 
followed by one hour incubation at room temperature with the secondary antibody 
(HRP conjugated, 1:10000) in blocking solution. Membranes were again washed 3 
times for 10 minutes in PBS-T. Finally, a chemiluminescence substrate (ECL, Bio-
Rad) was added to the membranes and the Western Blot was resolved using the 
ChemiDoc (Bio-Rad).

CRISPR/Cas9 screen
The appropriate number of cells to achieve 250-fold representation of the library, 
multiplied by five to account for 20% transduction efficiency, were transduced at 
approximately 40-60% confluence in the presence of polybrene (8 μg/mL) with the 
appropriate volume of the lentiviral-packaged sgRNA library. Cells were incubated 
overnight, followed by replacement of the lentivirus-containing medium with fresh 
medium containing puromycin (2-4 μg/mL). The lentivirus volume to achieve a MOI 
of 0.2, as well as the puromycin concentration to achieve a complete selection in 3 
days was previously determined for each cell line. Transductions were performed 
in triplicate. After puromycin selection, cells were split into the indicated arms (for 
each arm, the appropriate number of cells to keep a 250-fold representation of 
the library was plated at approximately 10-20% confluence) and a T0 (reference) 
time point was harvested. Cells were maintained as indicated. In case a passage 
was required, cells were reseeded at the appropriate number to keep at least a 
500-fold representation of the library. Cells (enough to keep at least a 500-fold 

Recently, Bardelli’s lab has shown that inactivation of MMR genes triggered 
neoantigen generation and increased response to immunotherapy (153). It would 
be interesting to replicate this study using MED12 KO cells, to address if loss of 
MED12 contributes to an increase in immunogenicity in vivo. 
In the clinic, MSI status can be assessed by 3 methods: immunohistochemistry (IHC) 
for the MMR proteins MLH1, MSH2, MSH6 and PMS2, (PCR)-based assessment 
of microsatellite alterations using five microsatellite markers including at least 
BAT-25 and BAT-26, and next-generation sequencing (154). The first two are 
significantly cheaper, therefore it is not surprising that in the majority of hospitals 
the latter is not performed. However, there is increasing evidence suggesting that 
a subset of patients which score negative for dMMR and MSI could also benefit 
from immunotherapy. Due to economic reasons it is not possible to perform next-
generation sequencing on every patient that comes into the clinic to identify such a 
patient subset. In our study we tried to identify markers which could help identify 
this subset of patients without the need for next generation sequencing approaches.
Overall, we developed a new system to study, in real time, the development of 
microsatellite instability. Using this system together with CRISPR screening 
technology we could identify MED12 as a potential new MSI regulator. Since in most 
hospitals MSI testing is done by immunohistochemistry our findings indicate that it 
could be relevant to also assess the expression of MED12 by immunohistochemistry 
in tumors which score negative for dMMR and MSI. In case patients have low 
expression of MED12 they should then be further evaluated. This would give more 
patients the opportunity to receive the best possible treatment.

Materials and methods

Cell culture and drug response assays
SW480 cells were cultured in RPMI medium (Gibco 21875034). All the cell lines 
media were supplemented with 10% FBS (Serana), 1% penicillin/streptomycin 
(Gibco 15140122) and 2 mM L-glutamine (Gibco 25030024). All cell lines were 
cultured at 37°C and with 5% CO2. All cell lines were validated by STR profiling 
and mycoplasma tests were performed every 2-3 months.
All drug-response assays were performed in triplicate, using black-walled 384-
well plates (Greiner 781091). Cells were plated at the optimal seeding density 
and incubated for approximately 24 hours to allow attachment to the plate. Drugs 
were then added to the plates using the Tecan D300e digital dispenser. 10 µM 
phenylarsine oxide was used as positive control (0% cell viability) and DMSO was 
used as negative control (100% cell viability). Four days later, culture medium was 
removed and CellTiter-Blue (Promega G8081) was added to the plates. After 1-4 
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pLG-TRACR_Reverse 5’-GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-3’. 
The fragments were purified and cloned into pLG.  The representation of the 
custom sgRNA library was validated by next generation sequencing. 

MSI PCR test
MSI status was determined using the MSI Analysis kit (MD1641, Promega) 
according to the manufacturer’s instructions. 

representation of the library, to account for losses during DNA extraction) were 
collected when indicated, washed with PBS, pelleted and stored at -80°C until DNA 
extraction.

DNA extraction, PCR amplification and Illumina sequencing 
Genomic DNA (gDNA) was extracted (Zymo Research, D3024) from cell pellets 
according to the manufacturer’s instructions. For every sample, gDNA was 
quantified and the necessary DNA to maintain a 250-fold representation of the 
library was used for subsequent procedures (for this we assumed that each cell 
contains 6.6 pg genomic DNA). Each sample was divided over 50 μl PCR reactions 
(using a maximum of 1 µg gDNA per reaction) using barcoded forward primers to 
be able to deconvolute multiplexed samples after next generation sequencing (for 
primers and barcodes used, see Supplementary Table 3). PCR mixture per reaction: 
10 μl 5x HF Buffer, 1 μl 10 μM forward primer, 1 μl 10 μM reverse primer, 0.5 μl 
Phusion polymerase (Thermo Fisher, F-530XL), 1 μl 10mM dNTPs, adding H2O and 
template to 50 μl. Cycling conditions: 30 sec at 98°C, 20× (30 sec at 98°C, 30 sec at 
60°C, 1 min at 72°C), 5 min at 72 °C. The products of all reactions from the same 
sample were pooled and 2 μl of this pool was used in a subsequent PCR reaction 
using primers containing adapters for next generation sequencing (Supplementary 
Table 2). The same cycling protocol was used, this time for 15 cycles. Next, PCR 
products were purified using the ISOLATE II PCR and Gel Kit (Bioline, BIO-52060) 
according to the manufacturer’s instructions. DNA concentrations were measured 
and, based on this, samples were equimolarly pooled and subjected to Illumina 
next generation sequencing (HiSeq 2500 High Output Mode, Single-Read, 65 bp). 
Mapped read-counts were subsequently used as input for the further analyses.

Bioinformatics Analysis
For each CRISPR screen the sgRNA count data for each sample was normalized for 
sequence depth using DESeq2, with the difference that the median instead of the 
total value of a sample was used. Then we took the results from the DESeq2 analysis, 
and sorted it on the DESeq2 statistic. We then sorted the results by alphabetical 
order of the gene. We then ran the MAGeCK Robust Rank (RRA) tool on this list to 
generate a multiple testing corrected pvalue (FDR). 

Generation of custom MSI-focused sgRNA library
For the design of the custom sgRNA library we used the Broad GPP sgRNA design 
portal. The sgRNA sequences were ordered as a pool of oligonucleotides (Agilent) 
with flanking sequences to enable PCR amplification and Gibson assembly into 
pLentiGuide-Puro (pLG, addgene #52963). The pooled oligo library was amplified 
using pLG_U6_foward 5’- GGCTTTATATATCTTGTGGAAAGGACGAAACACCG-3’ and 
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Supplementary Figure 2: Using CRISPR screens to identify potential regulators of microsatellite 
instability.
A. Cells were cultured with increasing concentrations of Temozolomide for 4 days, after which cell viability 
was measured using CellTiter-Blue®. Standard deviation (SD) from 3 replicates is plotted. B,C. Analysis 
of the genome-wide screen. Cas9 expressing SW#8 cells were screened with the Brunello whole-genome 
sgRNA library. In (B) the analysis of the depletion (log2 Fold Change) of the sgRNAs targeting essential 
genes over non-essential genes is displayed. Box plot shows the median (horizontal line), interquartile 
range (hinges), and the smallest and largest values no more than 1.5 times the interquartile range 
(whiskers). Comparisons were made using the Wilcoxon test. In (C) the Robust rank distribution of the 
enriched sgRNAs in the Temozolomide treated arm (T48) compared to the reference (T12) is displayed. D. 
Schematic representation of the MSI-focused CRISPR screen.

Supplementary Information

Supplementary Figure 1: Development of the fluorescent-based sensor to study microsatellite instability.
A. Validation of the MSI reporter. SW#8 cells were transduced with the MSI activator (G23) and with 
sgRNAs targeting positive control genes (MSH2 and MLH1) or a non-targeting control (NTC). After 3 
weeks in culture, G418 (200µg/mL) was added to the cells. 10 days later plates were fixed and stained. 
B. Validation of the MSI sensor in MSI cell line VACO432. VACO432 cells were transduced with the MSI 
reporter and activator (and with Cre as a positive control). Activation of the reporter was measured by 
flow cytometry after 3 weeks in culture.
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Abstract

CRISPR technology is an invaluable tool for large-scale functional genomic screening. 
Genome editing efficiency and timing are important parameters impacting the 
performance of pooled CRISPR screens. Here we show that by optimizing Cas9 
expression levels, the time necessary for gene editing can be reduced, contributing 
to improved performance of CRISPR based screening.

Introduction

The simplicity, speed and low-cost of CRISPR technology has led to its widespread 
application in biomedical research in recent years. In particular, large scale pooled 
CRISPR screening technologies have yielded many new discoveries in a variety of 
research fields (155–158). Since its establishment, the technology has undergone 
many improvements, and the CRISPR toolbox has been significantly expanded 
(159,160). sgRNA design has improved to a level where efficient screening is 
possible with whole-genome (WG) libraries containing only two independent 
sgRNAs per gene (161). Nevertheless, one aspect that remains rather ambiguous 
is the optimal method of sgRNA and Cas9 delivery. Most publicly available sgRNA 
libraries can be purchased in a “1 vector system” (e.g. lentiCRISPRv2 backbone) 
which delivers both the sgRNA library and Cas9 expression at the same time, or in 
a “2 vector system” (e.g. lentiGuide-Puro backbone) which delivers only the sgRNA 
library and requires a Cas9-expressing cell line to be generated first. To date, no 
comprehensive comparison has been made to address differences in screening 
efficiencies between the two systems. Here, we demonstrate that the level of Cas9 
expression is a crucial determinant of editing speed. Therefore, a system that 
allows for control of Cas9 expression can significantly reduce the time necessary 
for editing, thereby increasing screen performance.

Results and discussion

Pooled CRISPR screens generally use a low multiplicity of infection (MOI<1) to 
prevent the presence of more than one sgRNA per cell. When using a “1 vector 
system”, most infected cells will integrate a single copy of a sgRNA and Cas9 in 
a single step (1-step). Depending on the position of the integration, which is 
unpredictable in pooled screening, this could result in varying levels of sgRNA 
and Cas9 expression across a population of cells. When using a “2 vector system”, 
first Cas9-expressing cells are established and subsequently a sgRNA library is 
introduced at low MOI (2-step) into these cells. Although the expression of sgRNAs 
can still vary depending on the position of the integration, the expression of 
Cas9 can be optimized independently to increase screening efficiency. We show 
experimentally that using a 2-step approach results in higher Cas9 expression 
levels in MCF10A cells, as compared to a 1-step approach (Fig. 1A).
To test whether Cas9 expression affects the performance of CRISPR screens, we 
performed two screens using either a 1-step or a 2-step system (Sup. Fig. 1A). 
For each screening system the same collection of sgRNAs (Brunello library) was 
used. To evaluate the performance of each screen, we analyzed the depletion of 
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essential genes over non-essential genes, as previously described (162,163). By 
using the 2-step system we observe significantly more depletion of essential genes, 
in comparison to the 1-step system, indicating that increasing the level of Cas9 
expression improved screening efficiency (Fig. 1B, Sup. Figs. 1B, C and Sup. Table 
1). 
To further study the relationship between Cas9 expression and editing timing and 
efficiency we expressed Cas9 in 3 different cell lines (SW480, A375 and HEK293T), 
using either constitutively expressed Cas9 (lentiCas9-P2A-EGFP) or an inducible 
Cas9 expression (lenti-iCas9-P2A-EGFP). With both vectors, the Cas9 expression 
should be directly proportional to the expression of EGFP.  For the constitutively 
expressed Cas9, we used fluorescence activated cell sorting to select cell 
populations with low, medium and high levels of Cas9 expression (Sup. Figs. 2A-D). 
For the inducible system, a range of Cas9 levels was achieved by increasing doses 
of doxycycline (10ng/mL to 1 ug/mL). We then used these cell lines expressing 
different levels of CAS9 to measure editing efficiency both indirectly (using 
pXPR011 – Sup. Fig. 2E) and directly (using TIDE analysis (164) – Fig. 1C and Sup. 
Figs. 3A-D) in a time-course experiment. These results show that higher Cas9 levels 
reduce the time required for editing, meaning that higher Cas9 expression resulted 
in faster editing kinetics. Importantly, this correlation was observed in all cell lines 
examined. Of note, a low level of CAS9 expression, due to leakiness of the inducible 
system, led to gene editing for sgRNAs 1 and 2, even in the absence of doxycycline 
(Figure 1C). To confirm whether the correlation between Cas9 levels and editing 
efficiency was independent of sgRNA sequence, we generated a sgRNA library 
(consisting of 486 sgRNAs targeting essential genes and 210 targeting safe-haven 
regions) and performed screens in all of our cell lines (Sup. Fig. 4A). As expected, 
we found that the amount of depletion of sgRNAs targeting essential genes was 
directly proportional to the level of Cas9 expression in the cells (Fig. 1D and Sup. 
Figs. 4B-D and Sup. Table 2). 
There is a general preconception in the CRISPR field that high Cas9 expression 
can result in toxicity and increasing off-target effects. Indeed, several reports in 
different model organisms have shown that high Cas9 expression is toxic (165). We 
also observed that mammalian cell lines expressing very high levels of Cas9 tend 
to downregulate Cas9 expression over time (data not shown). To address whether 
high Cas9 expression increases off-target effects, we analyzed the behavior of 
sgRNAs targeting safe-havens in our screens. We did not observe any increase in 
the number of outliers in the conditions with high Cas9 (Fig. 1D and Sup. Figs. 
4B-D). Instead, the same outliers were found across the different levels of Cas9 
expression and, as expected, became more pronounced in the high Cas9 conditions 
due to the faster editing speed. This indicates that off-targets are predominantly 
caused by poor sgRNA design and not by high Cas9 expression. However, because 

high Cas9 expression exacerbates sgRNA effects, off-target effects affecting cell 
fitness do become more apparent.
In conclusion, our findings suggest that in a heterogeneous population of cells, 
gene editing via CRISPR/Cas9 behaves similarly to an enzymatic reaction, i.e. the 
percentage of edited cells increases over time until it reaches a plateau. Although 
the editing rate depends on factors such as sgRNA design (specificity of target site 
selection), target region (open versus closed chromatin) and DNA repair capacity 
(NHEJ versus HDR) (166), our data show that editing speed is highly dependent on 
the level of Cas9 expression. The maximum achievable editing efficiency does not 
seem to be influenced by Cas9 expression, as it accumulates to the same level (Fig. 
1C). However, in CRISPR screens increasing editing speed is desirable and therefore 
also higher levels of Cas9. In addition, due to variation in the characteristics of 
single cell derived clonal lines, the use of polyclonal populations is preferred (167). 
The introduction of a construct expressing Cas9 together with GFP, for example, can 
be used for the polyclonal selection of high Cas9 expressing cells by using GFP as 
a “selection” marker. This strategy is favored over the generation and subsequent 
validation of single cell derived clonal lines (168). Our data highlight that Cas9 
expression is a crucial parameter that influences the timing of gene editing, and 
the careful optimization per model system can significantly impact the outcome of 
large-scale pooled CRISPR screens.

Cell culture 
MCF10A, SW480, A375 and HEK293T cell lines were obtained from ATCC. MCF10A 
cells were cultured in DMEM/F-12 medium containing 2.5 mM L-glutamine and 
15 mM HEPES, supplemented with 5% horse serum, 10 µg/mL insulin, 0.5 µg/
mL hydrocortisone and 0.1 µg/mL cholera toxin. SW480 cells were cultured in 
RPMI medium; A375 and HEK293T cells were cultured in DMEM medium. All the 
media were supplemented with 10% FBS, 1% penicillin/streptomycin and 2 mM 
L-glutamine. All cell lines were cultured at 37°C and with 5% CO2. All cell lines 
were validated by STR profiling and mycoplasma tests were performed every 2-3 
months.
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Figure 1: The importance of time and Cas9 expression for efficient gene editing.	  
A, Comparison of 1-step versus 2-step system. MCF10A and MCF10A_iCas9 cells were transduced with a 
sgRNA targeting a non-essential gene (OR9Q2), cloned in the lentiCRISPRv2 vector (1-step system) and 
in the lentiGuide-Puro vector (2-step system), respectively. The level of Cas9 expression was measured by 
examining Cas9 levels in the western blot. Tubulin was used as loading control. The quantification from 
3 biological replicates, as well as a representative blot are shown. B, Comparison of depletion of sgRNAs 
targeting essential genes for 1-step and 2-step systems. MCF10A cells were screened with the same whole-
genome sgRNA library (Brunello), using either a 1-step or a 2-step system. The analysis of the depletion 
(log2 Fold Change) of the sgRNAs targeting essential genes over non-essential genes is displayed. Box plot 
shows the median (horizontal line), interquartile range (hinges), and the smallest and largest values no 
more than 1.5 times the interquartile range (whiskers). Comparisons were made using the Wilcoxon test. 
C, Analysis of editing speed in relation to Cas9 expression levels. SW480_iCas9 cells were transduced with 
3 different sgRNAs. Cells were kept in puromycin for 7 days. At day 7, a fraction of the cells was harvested 
as a reference sample, while the rest of the cells were placed back in culture and treated with either 10 
ng/mL or 1 µg/mL doxycycline. Cells were kept in continuous culture with doxycycline and harvested 
from these two arms at the indicated time-points. Gene editing efficiency was analyzed using TIDE. D, 
Analysis of editing speed in relation to Cas9 expression levels for a sgRNA library targeting essential genes 
and safe-havens. SW480_iCas9 cells were screened with a library of essential and safe-haven sgRNAs. To 
induce different levels of Cas9 expression, cells were treated with 10, 40 or 1000 ng/mL of doxycycline 
and cultured for 8 population doublings. The analysis of the depletion (log2 Fold Change) of the sgRNAs 
targeting essential genes and safe-havens is displayed. Box plot shows the median, interquartile range and 
the smallest and largest values no more than 1.5 times the interquartile range. Comparisons were made 
using the Wilcoxon test.

Methods

Western blots
After the indicated culture period, cells were washed with chilled PBS, then 
lysed with RIPA buffer (25mM Tris-HCl, pH 7.6, 150 mM NaCl, 1% NP-40, 1% 
sodium deoxycholate, 0.1% SDS) containing Complete Protease Inhibitor cocktail 
(Roche) and phosphatase inhibitor cocktails II and III (Sigma). Samples were then 
centrifuged for 10 min at 15,000 x g at 4°C and supernatant was collected. Protein 
concentration of the samples was normalized after performing a Bicinchoninic 
Acid (BCA) assay (Pierce BCA, Thermo Scientific), according to the manufacturer’s 
instructions. Protein samples (denatured with DTT followed by 5 min heating at 
95°C) were then loaded in a 4-12% polyacrylamide gel. Gels were run (SDS-PAGE) 
for approximately 45 min at 175 volts. Proteins were transferred from the gel to a 
polyvinylidene fluoride (PVDF) membrane at 330 mA for 90 min. After the transfer, 
membranes were incubated in blocking solution (5% bovine serum albumin (BSA) 
in PBS with 0.1% Tween-20 (PBS-T)). Subsequently, membranes were probed with 
primary antibody in blocking solution (1:1000) overnight at 4°C. Membranes were 
then washed 3 times for 10 min with PBS-T, followed by 1 h incubation at room 
temperature with the secondary antibody (HRP conjugated, 1:10,000) in blocking 
solution. Membranes were again washed 3 times for 10 min in PBS-T. Finally, a 
chemiluminescence substrate (ECL, Bio-Rad) was added to the membranes and 
signal imaged using the ChemiDoc-Touch (Bio-Rad).

Generation of Cas9-expressing cancer cell lines
MCF10A cells were transduced with a lentivirus containing Edit-R Inducible 
Cas9 (Horizon CAS11229) at approximately 40% confluence in the presence of 
polybrene (4 μg/mL). Cells were incubated overnight, followed by replacement of 
the lentivirus-containing medium with fresh medium containing Blasticidin (10 μg/
mL). After selection, several single cell clones were generated and Cas9 expression 
was assessed by Western blot. A clone with high Cas9 expression upon doxycycline 
treatment, and undetectable Cas9 expression in the absence of doxycycline, (named 
“MCF10A_iCas9”) was used for subsequent experiments. 
SW480 cells were transduced with Lenti-iCas9-neo (Addgene 85400) at 
approximately 60% confluence in the presence of polybrene (8 μg/mL). Cells were 
incubated overnight, followed by replacement of the lentivirus-containing medium 
with fresh medium containing G418 (100 μg/mL). After selection was completed, 
a titration of doxycycline (1 to 1000 ng/mL) was performed and the induction of 
Cas9 expression was assessed by flow cytometry. We determined that 10, 40 and 
1000 ng/mL of doxycycline induced low, medium and high levels of Cas9 expression, 
respectively. Cas9 expression levels were confirmed by Western blot and flow 
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cytometry one week later. The Cas9-expressing cell line was named “SW480_iCas9”.
SW480, A375 and HEK293T cells were transduced with lentiCas9-EGFP (Addgene 
63592) at approximately 40-60% confluence in the presence of polybrene (8 μg/
mL). Cells were incubated overnight, followed by replacement of the lentivirus-
containing medium with fresh medium. After 1 week in culture cells were sorted 
on low, medium and high GFP levels (BD FACSAria™ Fusion Cell Sorter). Cas9 
expression levels were confirmed by Western blot and flow cytometry one week 
later. The Cas9-expressing cells were named according to their cell line name and 
Cas9 expression level, i.e. “name_Cas9expression level”.

Editing efficiency assessment by flow cytometry and TIDE analysis
Parental and Cas9-expressing cell lines, as indicated, were transduced with 
pXPR_011 (Addgene, 59702) at approximately 40-60% confluence in the presence 
of polybrene (8 μg/mL). Cells were incubated overnight, followed by replacement 
of the lentivirus-containing medium with fresh medium containing puromycin (2 
μg/mL). Cells were harvested 20 h, 3 days (SW480), 6 days and 10 days (HEK293T 
and A375) after transduction with pXPR_011, GFP levels were assessed by flow 
cytometry (BD LSRFortessa) and analyzed using FlowJo 10. pXPR_011 results in 
the expression of both GFP and a sgRNA targeting GFP in the transduced cells. 
Therefore, editing efficiency can be (indirectly) assessed by analyzing the reduction 
in GFP signal over time.
SW480_iCas9 cells were transduced with 3 different sgRNAs cloned into pU6-
sgRNA-EF1-Puro-T2A-GFP (see sgRNA cloning section below) at approximately 
60% confluence in the presence of polybrene (8 μg/mL). Cells were incubated 
overnight, followed by replacement of the lentivirus-containing medium with fresh 
medium containing puromycin (2 μg/mL). Cells were kept in puromycin for 7 days. 
At day 7, a fraction of the cells was harvested, another fraction was analyzed by 
flow cytometry to confirm equal infection efficiencies indicating similar sgRNA 
expression levels, and the rest of the cells were placed back in culture and treated 
with either 10 ng/mL or 1 µg/mL doxycycline. Cells were harvested from these 
two induction arms after 2, 4, 8, 12, 16, (20, 24 and 32 – only for sgRNA 3) days 
in continuous culture with doxycycline. DNA was isolated from all samples, 
Sanger sequencing was performed and editing efficiency was analyzed using TIDE 
(https://tide.nki.nl/). At day 13, cells were also harvested for western blot and 
flow cytometry analysis, to assess Cas9 expression levels.

sgRNA cloning
To generate OR9Q2 (non-essential gene) sgRNA-expressing MCF10A cells, we clo-
ned OR9Q2 sgRNA (5’-ATAACCGAGAAGGCCCGCTG-3’) sequence into lentiCRISPRv2 
(Addgene, #52961) and lentiGuide-Puro (Addgene, #52963). Backbones were 

digested with BsmBI and cloned using Gibson assembly. sgRNAs targeting 3 diffe-
rent locations in the genome were cloned into a modified version of pU6-sgRNA 
EF1Alpha-puro-T2A-BFP (Addgene, #60955), where BFP was replaced by super-
folder GFP (sfGFP) – named “pU6-sgRNA-EF1-Puro-T2A-GFP”. Puro-T2A-BFP was 
removed using NheI and EcoRI sites. To introduce Puro-T2A-sfGFP, we amplified 
Puro-T2A as well as sfGFP, adding homology arms to both PCR products. Puromy-
cin-T2A was amplified using the following oligos: FW: 5’-GTTTTTTTCTTCCAT-
TTCAGGTGTCGTGAGCTAGCCCACCATGACCGAGTACAAGCCCAC-3’, RV: 5’-AACTC-
CAGTGAAAAGTTCTTCTCCTTTGCTGGTGGCGACCGGTGGGCCAGGATTCTCCTC-3’ 
sfGFP was amplified using the following oligos: FW: 5’-GAGGAGAATCCTGGCC-
CACCGGTCGCCACCAGCAAAGGAGAAGAACTTTTCACTGGAGTT-3’ RV: 5’-ATGTAT-
GCTATACGAAGTTATTAGGTCCCTCGACGAATTCTTATTTGTAGAGCTCATCCA-3’ 
The resulting PCR products were inserted into the open sgRNA vector backbo-
ne through Gibson Assembly. To introduce the custom designed sgRNA sequen-
ces into the pU6-sgRNA-EF1-Puro-T2A-GFP vector, the vector was digested using 
BstXI and BamHI. The sgRNAs were PCR-amplified using sgRNA-specific forward 
primers and a universal reverse primer: FW_1: 5’-TTGGAGAACCACCTTGTTG-
GAATATGTTTAAGCCTAGAGAGTTTAAGAGCTAAGCTGGAA, FW_2: 5’-TTGGAGAAC-
CACCTTGTTGGTATAGGATAATAGCTGGAAGGTTTAAGAGCTAAGCTGGAA, FW_3: 
5’- TTGGAGAACCACCTTGTTGGAGAGGTCTAATTCTAGGGCCGTTTAAGAGCTAAGCT-
GGAA, RV: 5’- GTAATACGGTTATCCACGCGGCCGCCTAATGGATCCTAGTACTCGAGA. 
The resulting PCR products were isolated and used for Gibson Assembly.

Generation of custom sgRNA library
For the design of the custom sgRNA library targeting essential genes and safe-ha-
vens we used the Broad GPP sgRNA design portal and the safe-havens as designed 
previously (169). The sgRNA sequences (Supplemental Table 2) were ordered as a 
pool of oligonucleotides (Agilent) with flanking sequences to enable PCR amplifica-
tion and Gibson assembly into pLentiGuide-Puro (pLG, addgene #52963). The poo-
led oligo library was amplified using pLG_U6_foward 5’- GGCTTTATATATCTTGTG-
GAAAGGACGAAACACCG-3’ and pLG-TRACR_Reverse 5’-GACTAGCCTTATTTTAACT-
TGCTATTTCTAGCTCTAAAAC-3’. The fragments were purified and cloned into pLG 
as described by Morgens (170).  The representation of the custom sgRNA library 
was validated by next generation sequencing. 

sgRNA libraries and screens
Two different versions of the Brunello library were used – a “1 vector system” 
(backbone expresses both Cas9 and the library – Addgene, 73179) and a “2 vector 
system” (backbone expresses only the library – Addgene, 73178). In this study we 
also used our Essential/Safe-havens library described above.

96  |  CHAPTER 5 IMPROVING CRISPR SCREENING BY OPTIMIZING CAS9 EXPRESSION  | 97

5 5



The appropriate number of cells to achieve 250-fold representation of the library, 
multiplied by five to account for 20% transduction efficiency, were transduced 
at approximately 40-60% confluence in the presence of polybrene (4-8 μg/mL) 
with the appropriate volume of the lentiviral-packaged sgRNA library. Cells were 
incubated overnight, followed by replacement of the lentivirus-containing medium 
with fresh medium containing puromycin (2-4 μg/mL). The lentivirus volume to 
achieve a MOI of 0.2, as well as the puromycin concentration to achieve a complete 
selection in 3 days was previously determined for each cell line. Transductions 
were performed in triplicate (technical for negative selection screens and biological 
for positive selection screens). After puromycin selection, cells were split into the 
indicated arms (for each arm, the appropriate number of cells to keep a 250-fold 
representation of the library was plated at approximately 10-20% confluence) and 
a T0 (reference) time point was harvested. Cells were maintained as indicated. 
In case a passage was required, cells were reseeded at the appropriate number 
to keep at least a 500-fold representation of the library. Cells (enough to keep at 
least a 500-fold representation of the library, to account for losses during DNA 
extraction) were collected when indicated, washed with PBS, pelleted and stored 
at -80°C until DNA extraction.

DNA extraction, PCR amplification and Illumina sequencing 
Genomic DNA (gDNA) was extracted (Zymo Research, D3024) from cell pellets 
according to the manufacturer’s instructions. For every sample, gDNA was 
quantified and the necessary DNA to maintain a 250-fold representation of the 
library was used for subsequent procedures (for this we assumed that each cell 
contains 6.6 pg genomic DNA). Each sample was divided over 50 μl PCR reactions 
(using a maximum of 1 µg gDNA per reaction) using barcoded forward primers to 
be able to deconvolute multiplexed samples after next generation sequencing (for 
primers and barcodes used, see Supplementary Table 3). PCR mixture per reaction: 
10 μl 5x HF Buffer, 1 μl 10 μM forward primer, 1 μl 10 μM reverse primer, 0.5 μl 
Phusion polymerase (Thermo Fisher, F-530XL), 1 μl 10mM dNTPs, adding H2O and 
template to 50 μl. Cycling conditions: 30 sec at 98°C, 20× (30 sec at 98°C, 30 sec at 
60°C, 1 min at 72°C), 5 min at 72 °C. The products of all reactions from the same 
sample were pooled and 2 μl of this pool was used in a subsequent PCR reaction 
using primers containing adapters for next generation sequencing (Supplementary 
Table 2). The same cycling protocol was used, this time for 15 cycles. Next, PCR 
products were purified using the ISOLATE II PCR and Gel Kit (Bioline, BIO-52060) 
according to the manufacturer’s instructions. DNA concentrations were measured 
and, based on this, samples were equimolarly pooled and subjected to Illumina 
next generation sequencing (HiSeq 2500 High Output Mode, Single-Read, 65 bp). 
Mapped read-counts were subsequently used as input for the further analyses.

Bioinformatics Analysis
For each CRISPR screen the sgRNA count data for each sample was normalized 
for sequence depth using the method described by DESeq23 with the difference 
that the total value instead of the median of a sample was used. Because of the 
composition of the sgRNA library with a large fraction of sgRNAs targeting essential 
genes, the T1 samples were corrected by dividing with the median of T1/T0 ratios 
for the population of non-essential sgRNAs. For the  genome-wide CRISPR screen 
comparing the efficiency of the 1-step and 2-step systems, a differential analysis 
was performed using DESeq2 (171).  The output was sorted on the DESeq2 test 
statistic with the most depleted sgRNA at the top. We then used MAGeCK Robust 
Rank Algorithm to determine enrichment of sgRNAs targeting each gene (172). For 
the ROC curves in supplemental Fig. 1B and 1C the output of these two analyses 
were filtered for 50 positive and 50 negative controls genes as described by Evers 
and colleagues (162). The Comparisons of the distribution of different groups of 
sgRNAs were performed using the Wilcoxon test. 

Reagents
Primary antibodies: Tubulin (Sigma, T9026) and Cas9 (Cell Signaling, 14697). 
Secondary antibody: Goat Anti-Mouse IgG (H + L)-HRP Conjugate (BioRad, 
1706516).
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Supplementary Information

Supplementary Figure 1: Genome-wide CRISPR screen to compare the efficiency of the 
1-step and 2-step systems.
A, Schematic of the screen layout. 1-step system: ~120x106 MCF10A cells were transduced 
with the lentiCRISPRv2 Brunello library. After 3 days of puromycin selection, a reference 

sample was harvested and 1.6x107 cells were plated (in triplicate). At day 6 and 11 cells 
were split and 1.6x107 cells were reseeded per replicate. At day 15, all cells were harvested. 
Abundance of sgRNA for each sample was analyzed by sequencing. 2-steps system: ~150x106 
MCF10A_iCas9 cells were transduced with the lentiGuide-Puro Brunello library. After 3 days 
of puromycin selection, a reference sample was harvested and 2x107 cells were plated (in 6 
replicates). Three replicates were cultured in the absence of doxycycline, while the other 3 
replicates were cultured in the presence of 1 µg/mL doxycycline. At day 6 and 11 cells were split 
and 4x107 cells were reseeded per replicate. At day 15, all cells were harvested. Abundance 
of sgRNAs for each sample was analyzed by sequencing. B-C, ROC curves for sgRNAs based on 
the DESeq2 results sorted on the DESeq2 statistic (B) and for genes based on the rank column 
in the RRA output, both in increasing order (C) p-values for essential genes. FPR, false-positive 
rate; TPR, true-positive rate.
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Supplementary Figure 2: Editing speed is proportional to Cas9 expression level.
A, Schematic of the generation of Cas9 expressing cell lines. Cell lines were transduced using either 
lentiCas9-P2A-EGFP or lenti-iCas9-P2A-EGFP. Cells transduced with lenti-iCas9-P2A-EGFP were selected 

with G418 and then treated with increasing concentrations of doxycycline. Then, using flow cytometry, we 
selected cell populations with different levels of Cas9 expression (low, medium or high), based on EGFP 
expression. B, Validation of the Cas9 expressing lines using western blot. The level of Cas9 expression 
was measured by examining Cas9 levels by Western blotting. Tubulin was used as loading control. 
Representative blots from 2 biological replicates are shown. C, Gating strategy used for all flow cytometry 
experiments. All events were gated on live cells, these were then gated on single cells, and EGFP levels 
were finally plotted on the single cells. D, Validation of the Cas9-expressing lines using flow cytometry. The 
level of Cas9 expression was measured (indirectly) by examining EGFP levels (x-axis) by flow cytometry. 
E, Editing speed is proportional to Cas9 expression level. Parental and Cas9-expressing cell lines were 
transduced with pXPR_011. Cells were harvested at the indicated time-points after transduction with 
pXPR_011 and GFP levels (x-axis) were assessed by flow cytometry and analysed using FlowJo 10.

Supplementary Figure 3: Editing speed is proportional to Cas9 expression level.	  
A, Schematic of editing efficiency assessment by TIDE analysis. SW480_iCas9 cells were transduced with 
3 different sgRNAs. Cells were incubated overnight, followed by replacement of the lentivirus-containing 
medium with fresh medium containing puromycin (2 μg/mL). Cells were kept in puromycin for 7 days. At 
day 7, a fraction of the cells was harvested as reference sample, (B) another fraction was analyzed by flow 
cytometry to confirm equal infection efficiency indicating similar sgRNA expression levels, while the rest 
of the cells were placed back in culture and treated with either 10ng/mL or 1µM/mL doxycycline. Cells 
were harvested from these two arms at different time-points over time. DNA was isolated from all samples, 
Sanger sequencing was performed and editing efficiency was analyzed using TIDE. At day 13, cells were 
also harvested for Western blotting (C) and flow cytometry analysis (D) to assess Cas9 expression levels.
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Supplementary Figure 4: Editing speed is proportional to Cas9 expression, independent of sgRNA 
sequence.
A, Schematic of the screen layout. For each Cas9 expressing subline 2.5x106 cells were transduced with the 
essential/safe-haven library using a MOI of 0.2. Cells were incubated overnight, followed by replacement 
of the lentivirus-containing medium with fresh medium containing puromycin (2 μg/mL). After 3 days 
of puromycin selection, a reference sample was harvested and 2x108 cells were plated (in triplicate). 
Cells were cultured for 8 population doublings (~10 days), after which 5x108 cells per replicate were 
harvested, DNA was extracted, samples were barcoded using PCR and sent for sequencing. B-D, Editing 
speed is proportional to Cas9 expression, independent of sgRNA sequence. Cells screened as outlined 
above were analyzed for the depletion (log2 Fold Change) of the sgRNAs targeting essential genes and 
safe-havens . Log2FC depicts the log 2 fold change sgRNA counts T1/T0.  Box plot shows the median 
(horizontal line), interquartile range (hinges), and the smallest and largest values no more than 1.5 times 
the interquartile range (whiskers). Comparisons were made using the Wilcoxon test.
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Cancer therapy has improved significantly in the last 10-20 years but there is still 
a long road ahead... Chemotherapy has been the backbone of cancer treatment 
for decades but the discovery that cancer is a consequence of genetic mistakes 
and that inhibition of oncogenic proteins elicits therapeutic responses fueled the 
development of targeted strategies. As a result of technological developments 
such as next generation sequencing, which expanded our knowledge about cancer 
biology, the targeted therapy field exploded in the last years. But the initial hype 
quickly faded, as we discovered that most advanced tumors are intrinsically 
resistant or develop resistance in a short period of time. In my PhD thesis, I aimed 
to address the problem of drug resistance with rational but innovative approaches. 
Here, I will discuss the impact of our findings and share my view on some of the 
obstacles that we need to overcome to implement them in the clinic, or in standard 
laboratory practice. 
It is well established that drug combinations are more effective than single agent 
targeted drugs. However, combining drugs is often associated with toxicity. 
We reasoned that this toxicity could be, at least in some cases, due to the drug 
administration model, i.e. the delivery of a drug to patients at the maximum 
tolerated dose (MTD). One recent example of this is the recent BEACON trial(10), 
where patients with BRAF V600E–Mutated Colorectal Cancer received triple 
therapy (EGFR+BRAF+MEK inhibition) or double therapy (BRAF+EGFR inhibition). 
Here, even though the overall survival of the triplet therapy was superior, this 
combination was not approved because the increased toxicity did not justify 
the added benefits to the double therapy. This drug administration model has 
remained virtually unchanged for decades, despite some evidence that MTD is 
not always necessary to achieve a clinical response (173). We reasoned that if we 
reduced the concentration of drugs we might eliminate the toxicity problem when 
using drug combinations while maintaining efficacy. In chapter 2 of this thesis we 
show that  partial inhibition of multiple components of cancer-activated signalling 
pathways results in complete pathway inhibition, which is more difficult to 
circumvent than by a single drug at MTD, therefore reducing chances of resistance. 
The promising pre-clinical data in mice propelled us to start a clinical trial but 
we quickly realized  one translational disadvantage of using multiple drugs -  it is 
impossible to find companies which have all the inhibitors in their portfolio. This 
means that agreements between several companies are needed. It’s been over 2 
years since we started the process of initiating a clinical trial to bring the MLD 
strategy to the clinic and this bureaucratic nightmare is nowhere near the end. 
This collaboration problem stems from economic and regulatory reasons, but one 
underlying culprit is the reliance of most large pharmaceutical companies on an 
archaic drug development model, as discussed in chapter 1. Even though this is 
starting to change, as evidenced by the recent efforts of Revolution Medicines, who 

is testing their SHP2 inhibitor in combination with MEK inhibitors early in the 
process of clinical development rather than putting their focus on demonstrating 
single agent activity. Changing this drug development model requires a different 
approach to how we develop cancer treatments, but it also requires some regulatory 
changes. The most important one being that new investigative agents should not 
need to show single agent efficacy in patients before combination therapies are 
considered, if there is a sound rationale and strong pre-clinical efficacy data. Single 
agent toxicity studies will still be required to understand if the compound is toxic 
when used alone before testing drug combinations, but this process requires less 
patients and therefore it is relatively quick. When companies start to develop drug 
combinations from the get-go it will become clear that collaboration is necessary, 
as evidenced by the above-mentioned example of Revolution Medicines, who is 
collaborating with Genentech to supply the MEK inhibitor Cobimetinib.  As this 
becomes more common, the whole process will speed up, which ultimately will 
benefit everyone.
Even with improvements in the drug development model, most likely, there 
will still be a high attrition rate of early-stage investigational agents. One of the 
reasons for this is the models we currently use to predict response to cancer 
treatments. The majority of pre-clinical efficacy studies are done using xenograft 
models. They are the quickest way to analyze the response of a human tumor 
to therapeutic regimens and they provide realistic heterogeneity of tumor cells. 
However, these mice are immunocompromised, therefore providing a less realistic 
tumor microenvironment. With the notion that the immune system and the tumor 
microenvironment are of utmost importance to treatment outcome, it becomes 
clear that using only xenografts is not enough. To provide the immune context, 
including also GEMMs in pre-clinical efficacy studies should become common 
practice. The biggest limitation to these models used to be the time involved in their 
development. But nowadays, with CRISPR technology, that’s no longer an issue. 
Another challenge, commonly overlooked, is drug delivery and pharmacokinetics. 
Most treatment regimens are discovered using in vitro methods, where drugs are 
in general stable for several days. However, in vivo, liver enzymes degrade most 
compounds in a matter of hours, as we’ve shown in chapter 2, making it difficult to 
maintain constant target inhibition, which is necessary for efficacy. These are some 
of the reasons why exciting lab discoveries too often don’t make it to the clinic. 
The increasing number of cancer compounds, together with the notion that drug 
combinations deliver more benefit has created another challenge. The number of 
possible drug combinations is becoming enormous, making it impossible to test all 
possible combinations experimentally. CRISPR screens offer an unbiased way to 
tackle this issue. However, they are mostly limited to identifying 2-drug combinations. 
And, as we’ve shown in chapter 2, using multi-drug combinations at low doses 
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might be a better approach to prevent drug resistance. This multidimensional 
information (targets and dose) is something CRISPR screens cannot offer. One way 
to overcome this problem is to develop computational pipelines that reconstruct 
signaling networks based on experimental perturbation experiments, connect 
changes in signaling output to changes in cell viability, and use these models to 
prioritize multi–drug combinations in silico. In chapter 3 we developed such 
an approach and we were able to predict and validate drug combinations that 
were selective for a particular cell line. One limitation of our approach is that 
the experimental model where experimental perturbation experiments were 
performed played a key role in the outcome. Unfortunately,  there are no perfect 
models and heterogeneity will always be present in experimental approaches. But 
nowadays, with the increasing amount of publicly available data, particularly in the 
characterization of human cancer cell lines it becomes possible to include the effects 
of mutations and expression levels of genes in cancer-related pathways, per cell 
line, in the computational pipeline (174). To overcome this hurdle experimentally 
we would have to use large cell line panels, which would be extremely laborious, 
expensive and time consuming. For all these reasons, I believe that computational 
modelling is the way forward in cancer research, but the number of collaborations 
between “dry” and “wet” labs must increase so that in silico discoveries don’t end 
up in the “literature pile” with no experimental or clinical follow-up. Finally, large 
sequencing and screening efforts, such as the Cancer Cell Line Encyclopedia and 
DepMap have provided critical data for developing more advanced computational 
pipelines and therefore it will only be a matter of time until in silico discoveries will 
make it to the clinic. 
Cancer immunotherapy has been the “hottest” topic in cancer research in recent 
years. It revolutionized cancer therapy because, for the first time, a large number 
of patients with (previously) incurable cancers now stay in remission for a large 
number of years or even get cured. Deficient MMR and MSI was one of the first 
predictive biomarkers to be approved for selecting patients for immunotherapy. 
Importantly, there is evidence suggesting that a subset of patients with MSS tumors 
could also benefit from immunotherapy (142,143), but because they don’t meet 
the eligibility criteria they are not treated with immunotherapy. Since induction 
of MSI increases the immunogenicity of tumors and consequently the response to 
immunotherapy (153), we reasoned that if we could identify novel genes which 
regulate MSI we could potentially use them as additional predictive biomarkers 
for immunotherapy treatment. To that end, in chapter 4 we tried to find new 
regulators of microsatellite instability by performing CRISPR screens in a MSS 
cell line carrying a fluorescent-based MSI sensor. Remarkably, after more than 20 
years of research into colon cancer, we were the first to identify a novel candidate 
MSI gene: MED12. MED12 is a member of the MEDIATOR complex, an essential 

component of the transcriptional machinery and therefore it was not surprising 
to observe that MED12 suppression led to a downregulation of the expression 
of MMR genes MLH1 and MSH2. Induction of MSI by inactivation of MMR has 
recently been proposed as a potential treatment strategy to sensitize tumors to 
immunotherapy (153). We found that MED12-induced MMR downregulation is 
only mild and therefore induction of MSI by MED12 inhibition would take a long 
time. Additionally, since MED12 is part of a large complex involved in transcription, 
which makes it virtually impossible to “drug”, using MED12 as a drug target should 
not be considered. However, it would be particularly interesting to look into the 
status of MED12 in the so-called MSI-like tumors. These are tumors which display 
an MSI expression profile, respond to treatment like MSI tumors but test negative 
for MSI. If we find a link between MED12 and this phenotype, MED12 could 
become a predictive biomarker, allowing more patients who should benefit from 
immunotherapy to become eligible to receive it. 
Technology has revolutionized the modern world and the incredible pace at 
which cancer biology has progressed in the last decade is mostly thanks to a few 
technological advances. One of them, which transformed genetic studies from 
time consuming, expensive and specialized into a routine lab technique is CRISPR. 
Thanks to CRISPR we can now edit genomes in a matter of days, virtually for free. 
But, just like with every technique, there are always some tweaks that can improve 
efficiency. And after using CRISPR for a while I noticed that the editing time could 
be significantly improved by increasing the expression of Cas9. In chapter 5 we 
performed a comprehensive study to address this issue and provide evidence 
which indicates that optimizing Cas9 expression can improve the efficiency of 
CRISPR screens. One particular example where decreasing editing time is of major 
importance is in drug-resistance screens. Here, one wants to ensure that all genes 
are edited before the drug is added to the cells. Adding the drug too early (before 
editing occurs) can potentially result in the death of cells carrying a sgRNA which 
would confer resistance to the drug; and adding the drug too late will increase the 
logistical hurdles of CRISPR screens. Ensuring high Cas9 expression is very simple 
and with some expression vectors it can be done in less than a week. This modest 
time investment at the early stage of a project will be paid back later with interest. 
Ultimately, it will reduce the length of the experiments, and therefore also the costs. 
CRISPR screens are used in a variety of research fields and therefore this small 
tweak can potentially influence many future discoveries.
With this thesis I tried to develop new strategies to address the problem of drug 
resistance. One of the things I learned during this process is that we don’t always 
have to “reinvent the wheel” to make a difference, as shown in chapter 5, and that 
using rational approaches with strong mechanistic basis is the best way to discover 
novel treatment strategies, as exemplified by the high failure rate of the hundreds 

110  |  CHAPTER 6 GENERAL DISCUSSION  | 111

6 6



of “trial and error” PD1 trials.  Despite all the advances in the cancer field in recent 
years, there are still infinite challenges that need to be addressed. Nevertheless, 
as a scientific community, we are making steady progress in our understanding of 
drug resistance and such findings are reaching the clinic faster than ever before. 
As one example, Jin et al uncovered the resistance mechanism to lenvatinib using 
a CRISPR screen and, in less than 2 years, were able to demonstrate clinical proof-
of-concept of the drug combination that overcomes lenvatinib resistance (175). 
Findings like this suggest that the pace at which patients can benefit from scientific 
discoveries will continue to increase in years to come, which is enough reason to be 
optimistic about the future of cancer treatment.
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Nederlandse samenvatting

Kankertherapie is significant verbeterd in de afgelopen 10-20 jaar, maar er is nog 
een lange weg te gaan. Chemotherapie was decennia lang de ruggengraat van de 
kankerbehandelingen, maar de ontdekking dat kanker een gevolg is van genetische 
fouten en dat de remming van oncogene eiwitten therapeutische reacties 
teweegbrengt, wakkerde de ontwikkeling van doelgerichte strategieën aan. Het 
veld van doelgerichte therapie is in afgelopen jaren geëxplodeerd met dank aan 
technologische ontwikkelingen, zoals next generation sequencing wat onze kennis 
over kankerbiologie heeft vergroot. Maar de aanvankelijke hype vervaagde snel, 
toen we ontdekten dat de meeste geavanceerde tumoren intrinsiek resistent zijn 
of in korte tijd resistentie ontwikkelen. In mijn PhD thesis streefde ik ernaar het 
probleem van resistentie tegen geneesmiddelen aan te pakken met rationele 
maar innovatieve benaderingen. In hoofdstuk 1 van deze thesis bespreken we 
in detail de kansen die we als veelbelovend beschouwen om resistentie tegen 
geneesmiddelen te overwinnen en geven we commentaar op het huidige model 
van geneesmiddelontwikkeling.
Het is algemeen bekend dat combinaties van geneesmiddelen effectiever zijn dan 
op één middel gerichte geneesmiddelen. Het combineren van medicijnen wordt 
echter vaak geassocieerd met toxiciteit. We redeneerden dat deze toxiciteit, althans 
in sommige gevallen, te wijten zou kunnen zijn aan het medicijntoedieningsmodel, 
d.w.z. de levering van een medicijn aan patiënten met de maximaal getolereerde 
dosis (MTD). Dit model voor medicijntoediening is decennialang vrijwel 
onveranderd gebleven, ondanks enig bewijs dat MTD niet altijd nodig is om een 
klinische respons te bereiken. We redeneerden dat als we de concentratie van 
geneesmiddelen zouden verlagen, we het toxiciteitsprobleem bij het gebruik van 
combinaties van geneesmiddelen zouden kunnen elimineren met behoud van 
de werkzaamheid. In hoofdstuk 2 van deze thesis laten we zien dat gedeeltelijke 
remming van meerdere componenten van door kanker geactiveerde signaalroutes 
resulteert in volledige remming van de route, wat moeilijker te omzeilen is dan met 
een enkel medicijn bij MTD, waardoor de kans op resistentie wordt verminderd. 
Dankzij de veelbelovende preklinische gegevens bij muizen zijn we bezig met het 
starten van een klinische proef om de MLD-strategie in de kliniek te testen.
Het toenemende aantal kankerverwekkende stoffen, samen met het idee dat 
combinaties van geneesmiddelen meer voordelen opleveren, hebben voor een 
nieuwe uitdaging gezorgd. Het aantal mogelijke combinaties van geneesmiddelen 
wordt enorm, waardoor het onmogelijk is om alle mogelijke combinaties 
experimenteel te testen. CRISPR-screens bieden een onbevooroordeelde manier om 
dit probleem aan te pakken. Ze zijn echter meestal beperkt tot het identificeren van 
combinaties van 2 geneesmiddelen. En, zoals we in hoofdstuk 2 hebben aangetoond, 

kan het gebruik van combinaties van meerdere geneesmiddelen in lage doses een 
betere benadering zijn om resistentie tegen geneesmiddelen te voorkomen. Deze 
multidimensionale informatie (doelen en dosis) is iets dat CRISPR-screens niet 
kunnen bieden. Een manier om dit probleem op te lossen, is door computationele 
pijplijnen te ontwikkelen die signaleringsnetwerken reconstrueren op basis van 
experimentele verstoringsexperimenten, veranderingen in signaleringsoutput te 
verbinden met veranderingen in levensvatbaarheid van cellen, en deze modellen te 
gebruiken om prioriteit te geven aan combinaties van meerdere geneesmiddelen 
in silico. In hoofdstuk 3 hebben we een dergelijke benadering ontwikkeld en waren 
we in staat om combinaties van geneesmiddelen te voorspellen en valideren die 
selectief waren voor een bepaalde cellijn.
Immunotherapie heeft de afgelopen jaren een revolutie teweeggebracht in de 
kankertherapie. Dankzij immunotherapie blijven patiënten met (voorheen) 
ongeneeslijke kankers nu een groot aantal jaren in remissie of worden ze zelfs 
genezen. Deficiënte MMR en MSI was een van de eerste voorspellende biomarkers 
die werd goedgekeurd voor het selecteren van patiënten voor immunotherapie. 
Belangrijk is dat er aanwijzingen zijn dat een subgroep van patiënten met 
MSS-tumoren ook baat zou kunnen hebben bij immunotherapie, maar omdat 
ze niet voldoen aan de geschiktheidscriteria, worden ze niet behandeld met 
immunotherapie. Aangezien inductie van MSI de immunogeniciteit van tumoren 
verhoogt en bijgevolg de respons op immunotherapie, redeneerden we dat 
als we nieuwe genen konden identificeren die MSI reguleren, we ze mogelijk 
zouden kunnen gebruiken als aanvullende voorspellende biomarkers voor 
immunotherapiebehandeling. Daartoe hebben we in hoofdstuk 4 geprobeerd 
nieuwe regulatoren van microsatelliet-instabiliteit te vinden door CRISPR-screens 
uit te voeren in een MSS-cellijn met een op fluorescentie gebaseerde MSI-sensor. 
Opmerkelijk is dat we na meer dan 20 jaar onderzoek naar darmkanker de eersten 
waren die een nieuw kandidaat-MSI-gen identificeerden: MED12.
Technologie heeft een revolutie teweeggebracht in de moderne wereld en het 
ongelooflijke tempo waarin de kankerbiologie de afgelopen tien jaar is gevorderd, 
is grotendeels te danken aan enkele technologische ontwikkelingen. Een van hen, 
die genetische studies transformeerde van tijdrovend, duur en gespecialiseerd in 
een routinematige laboratoriumtechniek, is CRISPR. Dankzij CRISPR kunnen we 
nu vrijwel gratis genomen in enkele dagen tijd bewerken. Maar, net als bij elke 
techniek, zijn er altijd enkele tweaks die de efficiëntie kunnen verbeteren. En na een 
tijdje CRISPR te hebben gebruikt, merkte ik dat de bewerkingstijd aanzienlijk kon 
worden verbeterd door de expressie van Cas9 te vergroten. In hoofdstuk 5 hebben 
we een uitgebreide studie uitgevoerd om dit probleem aan te pakken en bewijs te 
leveren dat aangeeft dat het optimaliseren van Cas9-expressie de efficiëntie van 
CRISPR-schermen kan verbeteren.
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Met deze thesis heb ik geprobeerd nieuwe strategieën te ontwikkelen om het 
probleem van resistentie tegen geneesmiddelen aan te pakken. Een van de dingen 
die ik tijdens dit proces heb geleerd, is dat we niet altijd het wiel opnieuw hoeven 
uit te vinden om een verschil te maken, zoals in hoofdstuk 5 wordt aangetoond, en 
dat het gebruik van rationele benaderingen met een sterke mechanistische basis 
de beste manier is om nieuwe ontdekkingen te doen. behandelingsstrategieën, 
zoals geïllustreerd door het hoge percentage mislukkingen van de honderden 
“trial and error” PD1-onderzoeken. Ondanks alle vooruitgang op het gebied van 
kanker in de afgelopen jaren, zijn er nog oneindig veel uitdagingen die moeten 
worden aangepakt. Niettemin boeken we als wetenschappelijke gemeenschap 
gestaag vooruitgang in ons begrip van resistentie tegen geneesmiddelen en 
dergelijke bevindingen bereiken de kliniek sneller dan ooit tevoren. Jin et al. 
hebben bijvoorbeeld het resistentiemechanisme tegen lenvatinib blootgelegd 
met behulp van een CRISPR-screening en waren in minder dan 2 jaar in staat om 
klinische proof-of-concept aan te tonen van de combinatie van geneesmiddelen 
die resistentie tegen lenvatinib overwint. Bevindingen als deze suggereren dat het 
tempo waarin patiënten kunnen profiteren van wetenschappelijke ontdekkingen 
de komende jaren zal blijven toenemen, reden genoeg om optimistisch te zijn over 
de toekomst van de kankerbehandeling.
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