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Introduction

1.1 Scope of this thesis

Form follows function. A famous design rule in architecture, this phrase states that the
shape of a building should be determined by its intended function. In materials science,
however, one could state the opposite: function follows form. The properties of materials,
and thus their possible functions, are determined by the form of the interactions between
the microscopic building blocks that make up the material.

Of course, there are many more differences between architecture and materials science.
Building a material is not like building a house. One cannot lay it brick-by-brick, atom-
by-atom. Atoms and molecules are too small, too light, too fast, and one needs far too
many to form a chunk of material of any reasonable size. While one can build a house
with only a few thousand bricks, to build even a cube of sugar one already needs some 10%!
atoms. You would have to place them either very fast or spend a very long time building.
Of course, nature provides a much more elegant way. When it snows, there is no tiny
machine in the clouds that prints snowflakes — they simply form from the water itself.
The diamonds we find in the earth are not constructed, they are formed naturally at the
high pressures and temperatures found deep in the earth’s crust. These materials are not
manually assembled, but rather they assemble themselves. This process of self-assembly is
a cornerstone of modern material design: rather than performing the assembly ourselves,
we make clever use of chemistry and thermodynamics to instead design a process that will
cause our material to assemble itself for us. This requires two things: the right building
blocks, and an appropriate environment. These building blocks can be many things:
atoms, molecules, polymers, proteins, nanocrystals, generally anything smaller than a
few hundred micrometers can be made to self-assemble. The appropriate environment is
generally described in terms of thermodynamics and chemistry: a certain temperature,
pressure, pH or salt concentration, occasionally supplemented by reservoirs of specific
chemicals, polymers or an applied electric or magnetic field. The astute reader will at
this point exclaim “that description is so broad it covers pretty much everything!”, and
they would be right. The design space of materials is absolutely, staggeringly huge. As a
result, much of modern material science is devoted to investigating what does what: how
do the properties of some material change with the temperature, or with the concentration
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of some added chemical? And, importantly: why? With this knowledge, we can make
design rules that provide us with general recipes that we can follow in order to obtain
materials with specific properties: compress or cool a fluid quickly, and it will likely
become a glass. Do so slowly, and it will instead form a crystal. Want this crystal to
form at low densities? Make particles interact over a long range. Good design rules are
useful heuristic tools that allow us to quickly and effectively design materials without
going through the lengthy process of checking the influence of all variables every time.

In this thesis, we do a similar what-does-what investigation with a focus on the effects
of geometry. Specifically, we study how the shape of particles and the shape of the
environment they assemble in influences their self-assembly. We investigate geometric
effects on self-assembly in four settings: in bulk, within a droplet of fluid, at the interface
between two fluids, and far from thermodynamic equilibrium. Before we can get started,
however, there are a few concepts and methods to introduce and review.

1.2 Nano- and colloidal scale particles

What is it that drives small enough objects (< 100 pum) to self-assemble? Though not
his intention, this answer to this question was already discovered back in 1827 by the
botanist Robert Brown [1]. Using a microscope, Brown closely studied the behaviour of
plant pollen suspended in water and made the following observation:

While examining the form of these particles immersed in water, I observed
many of them very evidently in motion; [...] These motions were such as to
satisfy me, after frequently repeated observation, that they arose neither from
currents in the fluid, nor from its gradual evaporation, but belonged to the
particle itself.

To Brown, it appeared that these particles (the pollen) possessed some motion inherent
to themselves. The smallest of such particles that he observed he called “molecules”,
speculating that he was seeing the elementary particles of which all organic matter was
composed. In truth, the smallest particles that Brown observed were approximately 1 ym
in size — far larger than our current definition of molecules, which are a thousand times
smaller (~ 0.1 — 1 nm). Instead, what Brown had observed was the random motion that
results from the countless collisions between the plant pollen particles and the many (to
him invisible) water molecules in which they were suspended. The underlying cause of this
phenomenon that we now call Brownian motion was later explained by William Sutherland
[2] and Albert Einstein [3]. Combined with further experiments by Jean-Baptiste Perrin
[4], their results cemented the idea of the existence of atoms in the scientific community.
Brownian motion occurs for any small enough particle suspended in a fluid, and it is
this motion that allows small enough objects to self-assemble. But how small is “small
enough”? By its definition, the size of particles undergoing Browian motion must be large
enough to have their behaviour dominated by collisions with multiple, smaller particles
such as atoms of smaller molecules. This places a lower bound of around 1 nm. On the
other end, if particles become too large, a molecule bumping into them will barely change
their momentum, and collisions will become so numerous that they average out to zero.
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In practice, this then results in an upper bound of about 1 um. We call this regime
in which particles are larger than a few molecules, yet small enough to self-assemble the
colloidal regime. The name “colloid” comes from the Greek word KoAAa, meaning “glue”,
as coined by Thomas Graham in 1860 [5]. It is a bit of a misnomer for its more modern
use. Colloids are found in a much wider range of products than just glue: from care
products such as gels, shampoo, and sunscreen to foods like milk, mayonnaise and salad
dressing, to the solar panels that increasingly adorn our roofs, and even to the ink or the
display that you are using to read this thesis. Not only are colloids interesting in their own
right, they also serve as a convenient window into the behaviour of atoms and molecules
at the even smaller scales. Like colloids, atoms and molecules undergo a random thermal
motion due to collisions with each other. This similarity in random motion allows us to
use colloids, which are large and slow enough to study under a microscope, to study the
self-assembly of the much smaller and harder to follow atoms and molecules.

1.3 Equilibrium versus non-equilibrium

In this thesis we encounter in a number of ways the concepts of equilibrium and non-
equilibrium. While many who study thermodynamics or materials science will have a
learned understanding of these concepts, it is worthwhile to consider them in more de-
tail. The laws of thermodynamics state that two otherwise isolated systems brought into
contact with one another may exchange e.g. energy or volume, but that there are certain
quantities such as temperature or pressure that will eventually become equal between
them. The exchange of energy or volume between the two systems does not stop, but
instead reaches a balance — an equilibrium, in which no net energy or volume flows from
one to the other, at least on average. However, most things we see in our daily lives are
not actually in equilibrium. Glasses, gels and many plastics exist in a state of kinetic
arrest: they are perpetually in a state of inching ever so slowly towards thermodynamic
equilibrium, yet this rate is so slow that it may as well be zero. Correspondingly, these
materials have properties that are quite different from what they would have were they
in equilibrium. Furthermore, their non-equilibrium nature makes it challenging to pre-
dict their properties using statistical thermodynamics theories, which are generally built
around the assumption of thermodynamic equilibrium.

The most dramatic example of non-equilibrium matter, however, has to be life. Bio-
logical processes have evolved in such a way that they consume available energy around
them to actively avoid moving towards a state of thermodynamic equilibrium. In recent
times there has been an increased interest in extending the concepts of equilibrium ther-
modynamics to these far-from-equilibrium or active matter systems, both in theoretical
settings and in experimental ones.

1.4 Entropic crystals and the shape explosion

It is no secret that physicists love spheres. Many complicated problems in physics have
been solved by first considering how it works for spheres. A famous example relevant to
this thesis is the crystallization of hard spheres. Owing to their simplicity, hard spheres
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were one of the first systems to be studied by using computer simulations. “Hard” here
refers to the fact that interactions between particles simply follow one rule: they cannot
overlap. Defined in physical terms, we say that the interaction energy u of two overlapping
hard spheres is infinite, and that it is zero when they do not. Correspondingly, the Boltz-
mann weight e~*/*27 (with T' denoting the temperature and kp Boltzmann’s constant),
which describes the statistical probability of such a configuration occurring, is respectively
either zero (e=>° = 0) or one (e = 1). Introducing some more thermodynamics, a system
in equilibrium is one that minimizes the (Helmholtz) free energy*:

F=U-TS (1.1)

where S is the entropy of the system and U is the total potential energy, which is the
sum of all interaction energies u. Since the interaction energy of non-overlapping hard
spheres is just © = 0, and the probability of finding an overlapping system is e™*° = 0,
the total potential energy of the system is always zero and the free energy is determined
solely by the entropy S. Thus, hard spheres are an example of an entropic system: one
for which its thermodynamics is determined exclusively by entropy and not by energy.
Back in 1957, Wood and Jacobson [6] as well as Alder and Wainwright [7] performed
computer simulations on a system of hard spheres, and demonstrated that this system
can undergo a phase transition from a fluid to a crystal. At the time, their results
were somewhat controversial. In fact, when the results of Wood, Jacobson, Alder and
Wainwright were discussed at a meeting between physicists in New Jersey in 1957, half
of the audience stated they did not believe that the presented results could indicate a
fluid-to-solid phase transition [8-10]. It was and still is counterintuitive that entropy,
being associated with disorder, could stabilize a highly ordered crystalline phase. The
resolution of this conundrum is to go back to Boltzmann’s famous statement S = kgIn W
and to realize that entropy is not a measure of disorder, but a measure of the amount
of possibilities or, slightly more accurately, the number of possible configurations (the W
in that equation). A crystal of hard spheres (which is a face-centered cubic lattice) is
stabilized by the fact that particles have more space to move in a crystal lattice than in a
disordered fluid of equal density. Correspondingly, having more space to more gives them
more possible places to be, and thus more entropy. Nowadays, we call these crystals that
are stabilized by entropy entropic crystals.

Sixty years after Wood, Jacobson, Alder and Wainwright we are still discovering new
things about hard-sphere crystallization. However, most things in life are not spheres,
and to look beyond spheres is a fruitful endeavor. For instance, particles elongated along
one direction can form liquid crystal phases [11], and their study eventually led to the de-
velopment of liquid crystal displays (LCDs) which you and I likely spend much of our time
looking at. On the colloidal scale, the shape of particles determines for a large part the
phases they can form, particularly at high densities. Advances in chemistry over the last
few decades have made it possible to synthesize nano- and colloidal scale particles with a

*Technically we should also consider the kinetic energy K here and write F' = E—TS with £ = K4+U
the total energy of the system, but for the calculations of many systems (including hard spheres) the
kinetic energy K can be computed analytically and its free energy subtracted as a constant. It is really
the potential energy part that is interesting, and so we omit the kinetic energy throughout most of this
text.
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zoo of different shapes, such as ellipsoids [12], tetrahedra [13], cubes [14], octahedra [15,
16], dodecahedra [17], and many more. This rich variety in particle shapes is accompanied
by an equally rich variety in crystal phases, and much recent work has been devoted to
documenting these phases and finding design rules for these anisotropic particles [18, 19],
either for use in designing colloidal entropic crystals or simply to better understand the
entropic contributions in nanoparticle crystals. Currently, the most widely considered
applications of these materials are based on their optical properties. Just like the afore-
mentioned liquid crystals are now widely in use for displays, nanoparticle and colloidal
crystals are considered promising candidates for photonic crystals: crystals with highly
specific optical properties that can be used in e.g. fibre optics [20] or sensing [21]. Nature
also uses such photonic crystals quite a bit: the vivid colors of butterfly wings [22, 23] or
beetle shells [24] are often the result of photonic crystal Bragg refraction, rather than from
pigments. In additional to the geometry of the particle shape, there are also geometric
effects arising from the environment in which self-assembly takes place. The process of
crystallization is heavily influenced by the presence of walls, with wall-assisted heteroge-
neous nucleation generally being many orders of magnitude faster than bulk homogeneous
nucleation [25]. Self-assembling particles inside of an evaporating droplet can lead to sig-
nificantly different behaviour from what is found in bulk, due to the interactions between
the particle shape and the geometric confinement induced by the spherical droplet [26,
27]. Confining particles between two walls enforces a (quasi-)2D self-assembly, which can
introduce completely different phases than in 3D [28, 29]. Likewise, some methods of
colloidal self-assembly take place at the interface between two fluids: here not only the
shape of the particles is of influence [30-32], but also that of the interface, and there
are even interactions between these two effects [33]. The next few sections describe the
theoretical and computational methods required to study such systems.

1.5 Statistical mechanics in a nutshell

In the field of statistical physics, we are interested in the collective or large-scale be-
haviour of a system of many particles. We can describe such a system microscopically
by considering the evolution of the relevant properties of the individual particles: their
position 7, orientation {2, momentum p and angular momentum L. These properties all
vary over time t as they interact and collide with one another. The state of the system

at one particular point in time, which we call the microstate, is then given by the set of
properties of all individual particles T'(t) = {r(t)", p(t)", Q(t)", L(t)V} where

(O ={ri(t),r2(t). ... . rn(B)}

Q)" = {(t), (1), ..., (1)}
O = {pi(t), p2(t), ... PN (1)}

()Y = {L1(t), La(t), ..., L (1)}

T

(1.2)

&

are the sets of all particle positions, orientations, momenta and angular momenta at
a given moment in time. The set of all possible microstates forms a phase space [34].
However, we are rarely interested in individual microstates. When we drink a glass of
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water, we do not care about the momenta of all the individual water molecules, but
rather whether the water is hot or cold. These large-scale, macroscopic properties such
as temperature and pressure are macrostates. Macrostates describe collective properties
of a system, while microstates describe the complete state of all of its components. For
a typical system, its microstate changes extremely rapidly. However, we know that our
glass of water is not likely to quickly and spontaneously cool down or heat up. Somehow,
the way its macrostate (its temperature 7') depends on its microstate I'(¢) must be such
that for all the configurations I' the system visits, the temperature 7" must be almost the
same. This independence leads to a concept known as ergodicity. Let us assume we have
some function T'(I'(¢)) that can extract the temperature from a given microstate I'. If we
measure this temperature times over some time period 7, we can define the time averaged
temperature T as:

_ 1 r7
T = f/ T(0(t))dt (1.3)
T Jo
A system that is ergodic (i.e. that possesses ergodicity) then has the following property:
_ 1 r7
T=lim - [ T(I(t)dt= /f(F)T(F)dF —(T). (1.4)
=00 T Jo

This states that for an ergodic system the time average T of our macroscopic quantity
(here the temperature T') is equivalent to the ensemble average (T') of that quantity,
where the latter is the average over some normalized probability distribution P(I"). This
probability distribution P(I") assigns a probability to every possible microstate I" of the
system, and importantly, it is static — it does not change with time. This static property
should seem familiar, and indeed: systems in thermodynamic equilibrium are (generally)
ergodic.

The appropriate form of this probability distribution P(I') depends on the thermo-
dynamic ensemble, which describes the properties that a system is allowed to exchange
with its environment. For a canonical ensemble i.e. for a system that can exchange only
energy with its surroundings but for which the number of particles N, the volume V' and
the temperature T' are fixed, this probability distribution is the Boltzmann distribution
normalized by the partition function Z =1/ [ e E@/ksTdT:

o~ E()/kpT

- [ e~EM/ksTqr

P(T) (1.5)

1.6 Computer simulations of statistical mechanics

We have just seen from Eq. 1.4 that there are two ways to obtain the macroscopic
properties of ergodic systems from their microscopic ones: either by time averaging, or by
ensemble averaging. Mirroring this duality in an entirely non-coincidental way, there are
two main methods of doing computer simulations of statistical mechanics: one can either
simulate the system by evolving its microstate I'(¢) in time according to its equations
of motion, which describes Molecular Dynamics simulations (MD), or one can sample I'
from the probability distribution P(I"), which describes Monte Carlo simulations (MC).
For an excellent in-depth introduction into MD and MC methods, see Ref. [9]. We use
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a variation of an MD method in Chapter 2, while in the rest of this thesis we primarily
use MC simulations. For the sake of being concise, we describe the MD-based method
in Chapter 2 itself, and describe the MC method that we use throughout the rest of the
thesis here.

The typical goal of Monte Carlo simulations is the evaluation of the statistical average,
which is the integral equation

@@:/P@M@mn (1.6)

where A(T") measures some macroscopic observable property of our system and P(I") is
the equilibrium probability distribution of the system. For a system of any appreciable
complexity, this integral cannot be computed analytically. Instead, one has to sample
it numerically, which in this case means finding an approximation to (A) by computing
the value of the integrand P(I')A(I") at a finite number of points. The simplest way
of doing so is by simply looking at what values the integrand takes at different random
values of I'. This, however, turns out to be extremely inefficient. In many cases, the
majority of possible values of I' have a probability P(I') that is extremely low, if not
zero. As a result, they barely contribute to the integral. A much more efficient way to
obtain a good estimate is to do importance sampling, in which we sample the important
parts of the integral where P(I") is large more than the unimportant parts where P(T")
is small. However, to do so we would need to know which points I are more probable,
before generating them and calculating P(I'). In practice, for this to be possible we
would need to know the partition function Z analytically, which is a similar integral as
the one we are trying to compute in the first place. However, courtesy of Metropolis et
al. [35] and Hastings [36], there is a clever trick we can do to calculate the statistical
average without computing the partition function Z, which has the additional benefit of
evaluating Eq. 1.6 in such a way that it mimics the time evolution of a real system. This
trick is to use Markov chains. Markov chains are a method to construct a series of steps
through a phase space for which one only needs to compute the transition probabilities
P(I'y — T'y) of going from an old state I'y to a new state I'y, rather than the absolute
probability P(I'). An example of a possible step in a Markov chain would be one that
moves a single particle from a position r; to a new nearby position ry = 1 + Ar, where
Ar is a small displacement. When used to evaluate ergodic systems, these transition
probabilities inherit some of the properties of the absolute probability P(I"). Like P(T"),
P(I'y — T'y) must be constant in time. For this probability to remain constant, there
must be a balance between the probability to go from any point I'y and the probability
to go to that point:

/PGV+BMB:/P@r+HMB W, (1.7)

This is known as the balance condition. It can also be more formally expressed in matrix
notation [9, 36, 37]. One can understand this condition by making the analogy with a
fluid: if more probability “flows into” a point than out of it, the probability in that point
will increase, and the underlying absolute probability distribution P(I") would no longer
be constant. Typically, a stronger condition is used, known as detailed balance, in which
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the transition probabilities between any two points are balanced:
P(Fl — FQ) = P(F2 — Fl) ‘le,VFg. (18)

So how do we construct a Markov chain in practice, and how does it help us avoid needing
to calculate the partition function? To start, we rewrite the total transition probability
into a product of three parts:

P(Fl — FQ) = P(Fl)p(Fl — FQ)CL(Fl — F2)7 (19)

which are the absolute probability P(I';) of starting at I'y, the probability p(I'y — T')
of generating a step from I'y to I'y, and the probability a(I'y — TI's) of accepting this
generated step. We can use this to rewrite Eq. 1.8 into:

P(Fl)p<F1 — Fg)a(Fl — FQ) = P(FQ)p(FQ — Fl)a(F2 — Fl) (110)

The absolute probabilities are known up to their normalization, e.g. Eq. 1.5. Generally,
the generation probability is chosen to be symmetric i.e. p(I'y — I'y) = p(I'y — T'y) ]9,
35]. Doing the same for simplicity, we can rewrite Eq. 1.10 to obtain the acceptance ratio
a(F1 — PQ)/(I(FQ — Fl)l

aly = Ty)  PTs) e~ BI2)/ksT | 7 B

a(ly = Ty)  P(Ty) e PO0/ksT /7

¢~ (B(C2)=B(T0)/kpT (1.11)

where we can see that the partition functions Z fortuitously cancel out. Following
Metropolis’” original choice, this ratio holds if we choose the acceptance probability of
just one move to be:

e~ (BE(T2)—ET))/kT i1 E(Fg) > E(Fl);

1 it B(Ty) < B(T)). (1.12)

a(l'y = Ty) = {

We can now generate new trial points I's in a wide variety of ways, and as long as we
accept transitions I'y — I's only according to the Metropolis criterion 1.12 these points
will efficiently sample the underlying, normalized distribution P(I"). This is the power of
the Metropolis-Hastings or Markov chain Monte Carlo method: that we can evaluate the
statistical integral (Eq. 1.6) without computing the partition function by using a series
of steps that additionally have importance sampling built in.

1.7 The anisotropic hard-particle model

Real particle interactions are complicated. In general, interactions between colloidal par-
ticles are a combination of electrostatics, Pauli exclusion, van der Waals forces and ligand
interactions between their constituent atoms/molecules. For all of these forces individu-
ally there exist models that describe their behaviour, and for simple geometries such as
between two flat walls or two spheres there are often even analytical expressions avail-
able. However, as we have remarked earlier, most things in life are not spheres. Thus, we
usually have to approximate. Experimentally, colloidal particles are generally stabilized
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against rapid aggregation to allow for self-assembly. This stabilization tends to remove
significant long-range interactions such as the electrostatic ones, leaving only the short-
range interactions: van der Waals, Pauli exclusion and ligand interactions. Under some
conditions it is possible to model such systems as hard particles. Extending the idea of
hard spheres discussed in Section 1.4, this amounts to simplifying their interactions to
the following pair potential energy u:

(1.13)

oo if the two particles overlap;
u =
0 if the two particles do not overlap.

This model has a number of significant benefits. In terms of thermodynamics, the hard-
particle model simplifies matters considerably by always having zero potential energy.
As a consequence, these systems are governed purely by entropy. Furthermore, in this
model thermodynamic problems often reduce to packing problems: because the Boltz-
mann weight of any overlapping configuration is ¢e™>° = 0, hard-particle behaviour is
determined by how to most efficiently fill the available space. As an example: the ther-
modynamic equilibrium solid phase of hard spheres can be found in a grocery shop: a
face-centered cubic lattice — the most space-efficient way to stack oranges — is also the
one that thermodynamics favors for a crystal of hard spheres. Similarly, the crystal phase
of hard cubes is a simple cubic crystal. The importance of packing in these systems allows
us to borrow from our spatial intuition to hypothesize, verify and interpret phenomena
in hard-particle systems. Finally, the hard-particle model lends itself very well to MC
simulations, since the corresponding acceptance probabilities for MC moves reduce to

1 if 4 — j causes no overlap;

a(l'y = T's) = min [1, e_B(U(FQ)_U(Fl))] = { (1.14)

0 if ¢+ — 7 causes overlap.

Thus, computing the transition probabilities reduces to finding out whether a change in
microstate I'y — I's makes any particles overlap or not. For some shapes, determining
whether two particles of this shape overlap with one another is simple. For hard spheres,
it is almost trivial: if the distance between two particles, r, is less than the sum of their
radii R, they overlap. Otherwise, they do not:

0 if ro < R;

1.15

a(ry = rg) = {

Such analytical overlap expressions can be derived for a few other shapes as well, such as
spherocylinders [38], ellipsoids [39] or superballs [40, 41]. For other, more general particle
shapes this gets a little more complicated, and we must venture into the computer science
field of collision detection. This field of research provides us with several algorithms to
detect collisions and overlaps between objects of general shapes. These algorithms are
typically devised to work for conver objects: objects for which a line between any two
points on their surface stays entirely within that object. The simplest of such algorithms
is the Separating Axis Theorem (SAT) algorithm [42]. In simple terms, it reduces the
complicated problem from three to one dimension by stating that two shapes are non-
overlapping as long as at least one axis can be found for which the projections of the two
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shapes onto this axis are non-overlapping. A more advanced algorithm is the Gilbert-
Johnson-Keerthi (GJK) algorithm [43], which is the one we will be using throughout this
thesis. We will not describe the GJK algorithm in detail here. Due to its popularity,
many excellent resources exist beyond the original article both in the form of scientific
articles [44] as well as tutorials [45]. Due to GJK’s somewhat complex nature, some
significant effort has been made to find simpler algorithms of equivalent (or superior)
performance. One such algorithm is the Minkowski Portal Refinement (MPR) algorithm
[46]. For non-convex objects, one has two options. For simple non-convex objects, one can
decompose them into multiple convex objects and use the SAT/GJK/MPR algorithms.
For more complex ones, it is possible to decompose their surfaces into triangular facets
and check whether any facets of two particles intersect. We apply the former approach
for the non-convex hourglass-shaped particles we consider in Chapter 3.

1.8 Phase transitions and coexistence

Thermodynamic phases, roughly speaking, are macrostates with specific properties. Most
people are familiar with the basic three: gas, liquid and solid. Each phase has some set
of properties that is different from the rest: a gas is dilute and flows, a liquid is dense
and flows, and a solid is dense and does not flow. Thermodynamic systems can undergo
a phase transition from one phase to another. A solid can melt into a liquid, a liquid can
freeze into a solid, a solid sublimates into a gas, etc. In truth, there are many, many more
phases than the basic three. Thermodynamics allows us to calculate properties of phases
and phase transitions by considering the free energy. Which free energy to use depends
on the thermodynamic ensemble i.e. which properties the system is allowed to exchange:
working primarily in the canonical ensemble, we will use the Helmholtz free energy F.
Calculating free energies can be quite challenging. We will describe the methods we use
to do so later on in this thesis when they are required, but for the moment let us consider
how we can extract information about phase transitions once the free energy is known.
While these concepts are general, let us as an example consider the free energy per unit
volume F = F/V of a system that has a fluid-solid phase transition that depends on its
density p = N/V. Fig. 1.1 shows the free energy per unit volume F of the two phases
as a function of the density p. The equilibrium state of the system is the one in which
it minimizes its total free energy F. In between the two densities p; and p,, this occurs
through a coexistence of the two phases: part of the system is a fluid, and part of it
a solid. Though the total number of particles N, volume V and temperature T' of the
system as a whole are fixed, the two phases can exchange volume and particles freely.
Phase coexistence between two phases is given by the following equilibrium conditions of
equal temperature, pressure p and chemical potential p:

Ty =Ty (1.16)
Py = Du; (1.17)
fhf = Ha- (1.18)
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Figure 1.1: Phase coexistence between a low-density fluid and a high-density crystal. The
free energy of the system as a whole is minimized when part of the system occupies the fluid
phase, while another part occupies the crystal phase. The properties of this phase coexistence
can be extracted from the common tangent indicated by the dotted line.

Fig. 1.1 shows a very useful geometric way to extract the coexistence properties. Let us
write the chemical potential as:

oF oOF
= = = — , 1.19
ONlyr  Oplp (19
and the pressure as:
oF oF
WV |y r 9 /lr 20
Combining Eqgs. 1.19, 1.20 and 1.17 then yields:
Fr—Fu
fhf = by = ———. 1.21
d Pf — Pz ( )

The combination of Eq. 1.21 and the condition that the F(p) must have the same slope
(Eq. 1.19) dictates that the minimum total free energy is achieved by a coexistence with
densities p; and p,, which geometrically forms a straight line tangent to the free-energy
curves of the two phases. It is this common tangent construction that we use to obtain
phase coexistence properties.

1.9 Outline of this thesis

In this thesis we study the geometric effect of particle and environment shape on self-
assembly in four different settings, spread over five chapters.

In Chapter 2 we study the effect of particle shape on a far-from-equilibrium system
of self-propelled rods, and demonstrate that changing their shape from disks/spheres to
rods suppresses the seemingly-universal Motility-Induced Phase Separation (MIPS) that
is widely exhibited by self-propelled particles.
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In Chapter 3 we model how a system of experimentally realized hourglass-shaped
NaYF, nanoparticles self-assembles at a fluid-fluid interface. The assembly of these par-
ticles at the interface is dominated by the extremely strong capillary interactions between
particles, which in turn depend sensitively on their shape. We determine numerically the
form of the capillary deformation induced by the anisotropic particle shape, and combine
this information with MC simulations to explain qualitatively a number of self-assembly
phenomena observed in the experimental system.

In Chapter 4 we consider the bulk self-assembly of a system of particles with a rounded
tetrahedral shape. Following up on recent literature that suggests these particles can form
a densely packed quasicrystal approximant [47] and on recent experimental work in which
nanoparticles with this shape form elongated supraparticles, we determine the densest
packings and bulk phase behaviour, which turns out to feature a veritable wealth of solid
phases.

The complexity of the phase behaviour exhibited by the rounded tetrahedra motivated
us to search for ways to automate the detection and classification of solid phases. For
this reason, we perform in Chapter 5 a dimensionality reduction technique known as
Principal Component Analysis (PCA) to identify features that can be used to identify
and distinguish between crystal structures without knowing their structure or good order
parameters a priori.

Finally, in Chapter 6 we further investigate the self-assembly of the rounded tetrahedra
that has them forming elongated supraparticles in the experimental setting. Leveraging
our knowledge of the bulk crystal phases determined in Chapter 4, we determine the
crystal structure of the experimental supraparticles, finding it to indeed be one of our
suggested candidates, though there are also some subtle differences. We subsequently use
free-energy calculations to characterize the coexistence properties phases relevant to the
range of experimental particle shapes, and spherical confinement simulations to investigate
the effect of the spherical boundary on the self-assembly in further detail.



2

Suppression of Motility-Induced
Phase Separation

To study the role of torque in motility-induced phase separation (MIPS), we simulate a
system of self-propelled particles whose shape varies smoothly from isotropic (disks/spheres)
to weakly elongated (rods). We construct the phase diagrams of 2D active disks, 3D ac-
tive spheres and 2D /3D active rods of aspect ratio /o = 2. A stability analysis of the
homogeneous isotropic phase allows us to predict the onset of MIPS based on the effective
swimming speed and rotational diffusion of the particles. Both methods find suppression
of MIPS as the particle shape is elongated. We propose a suppression mechanism based
on the duration of collisions, and argue that this mechanism can explain both the sup-
pression of MIPS found here for rodlike particles and the enhancement of MIPS found for
particles with Vicsek interactions.

Based on:
R. van Damme, J. Rodenburg, R. van Roij and M. Dijkstra, “Interparticle torques suppress motility-
induced phase separation for rodlike particles”; J. Chem. Phys. 150, 164501 (2019)
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2.1 Introduction

Recently, there has been an increased interest in the thermodynamics of what has been
coined active matter: systems formed by agents that can convert ambient or external
energy into kinetic energy. These systems are diverse. Many are biological in nature:
birds, fish, cells and bacteria all convert some form of ambient chemical energy into
kinetic energy. Synthetic systems also exist in the form of colloidal particles that self-
propel, typically by diffusiophoresis [48-51]. All these active-matter systems are driven so
far out of thermodynamic equilibrium that current theories of statistical thermodynamics
fail to describe many of their properties. The problem lies not in constructing models
for their dynamics — computational active matter models are quite simple and have been
around for a while, one of the most famous of which being the seminal work of Vicsek
from 1995 [52]. However, it has unfortunately proven to be very difficult to relate the
dynamics to their steady states or to any kind of probability distribution. If we could
apply the concepts of equilibrium statistical thermodynamics to active systems, it would
greatly improve our ability to describe and predict the structure and behaviour of these
systems. Some progress has been made in this regard. For instance, for self-propelled
disks, studies have investigated the non-equilibrium pressure [53, 54|, the glass [55, 56]
and hexatic [57-59] transitions, equations of state [60], and effective free energies [61].

For active 2D disks or 3D spheres, two well-studied model systems, there is often a pa-
rameter regime in which the system demixes into a dense and a dilute region. This phase
separation closely resembles the well-known gas-liquid coexistence found in, for instance,
water or Lennard-Jones systems. Unlike the gas-liquid phase separation, however, the
clustering in active matter occurs because of the motility rather than the particle-particle
attractions. Hence, the phenomenon has been coined motility-induced phase separation
(MIPS). Fig. 2.1 shows an example of this phenomenon. MIPS has been studied ex-
tensively in recent years: it has been identified for both active Brownian [62-65] and
run-and-tumble particles [66], its nucleation has been studied [67], its interface has been
shown to allow for a negative surface tension [68], and it has been derived from equations
of state [54, 60], and from nonequilibrium thermodynamics theories [61].

All of the above studies logically constrained themselves to the simplest possible model
systems, in which particles interact either through isotropic hard-particle excluded-volume
or short-range repulsive interactions. Importantly, such models contain no torques. Stud-
ies that do include torques typically fall into two categories. The first uses particles with
Vicsek-like alignment interactions [69, 70], which mimic a visual alignment mechanism,
such as for birds or fish. The second uses particles with an anisotropic, typically rod-
like shape [71-75]. This most closely mimics bacteria, whose alignment arises not from
a visual interaction, but rather simply from bumping into one another. While studies
of active rods reveal a zoo of nonequilibrium phases, they most curiously do not exhibit
MIPS; there seems to be no parameter regime for which there is a separation into dense
and dilute regions without strong alignment. Naturally, this raises questions such as:
why does MIPS occur for 2D disks and 3D spheres, but not for 2D and 3D rods? How
anisotropic or rod-like must a particle be for MIPS to disappear? In this chapter, we will
address these questions by both simulations and theory.

To address these questions numerically, we need a model system which exhibits MIPS,
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and a means to identify MIPS when it occurs. Section 4.2 describes both the Active
Brownian Particle model we use, and the modified cluster algorithm we apply to identify
MIPS. To study the disappearance of MIPS, we require a theoretical model that includes
the effect of torques between particles. In Section 2.3 we derive an analytical criterion for
the onset of MIPS based on a stability analysis of density fluctuations in the homogeneous
and isotropic fluid phase. In Section 2.4.1 we discuss the phase diagrams for the 2D disks,
3D spheres and 2D and 3D rods, showing unambiguously that MIPS indeed disappears for
increasing aspect ratio. Subsequently, we discuss the mechanism behind this suppression
in Section 2.4.2. Section 2.5 then concludes this chapter by discussing the influence of
torque on MIPS in a more general context.

Figure 2.1: Motility-induced phase separation for a 2D system of hard disks with diameter
o at a packing fraction of ¢ = (7/4)0?/A = 0.36, where A is the total system area. The
color-coding helps visualize the local density. (a) In the absence of self-propulsion, the system
is in a homogeneous and isotropic fluid state. (b) With strong self-propulsion the system phase-
separates into a dilute gas and a dense, dynamic hexatic phase.

2.2 Computational methods

2.2.1 Active Brownian Particles

Using Brownian Dynamics (BD) simulations, we study a 2D system of N spherocylinder-
shaped active Brownian particles (ABP) of end-to-end length [ and diameter ¢ < [ in a
periodic area A, self-propelling with a velocity vy along their long axis é. The particles are
subject to rotational and translational noise, with rotational diffusion constant D, and
translational diffusion tensor D, = Déé + D (Z — éé), with parallel and perpendicular
components D and D, respectively. For such a 2D system, shown schematically in Fig.
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2.2, the overdamped Langevin equations are given by

Ori = v0€; + BDy; - > Fij + /2Dy, - A; (2.1)
1#£]
040 = BD, Z Tij + /2D, A7, (2.2)
i#]

where i = 1,..., N is the particle label, 7; is the position of particle i, & = (cos6;,sin 6;)
the particle orientation, and f = 1/kgT. The force F;; and torque 7;; are due to particle-
particle interactions. We assume fluctuation-dissipation to hold on the scale of individual
particles®, such that the translational and rotational noise terms Aﬁ’a and Al, respectively,
are Gaussian distributed random numbers with zero mean and unit variance, i.e.:

(Ai) = 0; (2.3)
(AF(OAT (1) = 80050t — 1), (2:4)

To describe excluded-volume interaction between particles ¢ and j, we let the forces F;; =
(Ouwca(rs,ij)/O0rsii)Ps.i; be the result of a pairwise short-range repulsive Weeks-Chandler-
Andersen potential (WCA) [76] uwca(rs;;) acting on the shortest distance r,;; between
particle cores:

T's,ij T's,ij

te[(e2)"* = ()] e it g <200
) = .
0 it rgi; > 21/64,

uwcA(Tsij (2.5)

For disks (I/o = 1), the distance r,;; is simply the distance between their centers. For
rods (I/o > 1) the cores of the particles are no longer points, but lines. The distance r; ;;
then corresponds to the shortest distance between these two line segments. The torques
T are calculated from the forces by T;; = a;; < F;j, where a;; is the lever arm for the
applied force F;; on rod ¢ by rod j. For each pair of particles, both the shortest distance
rsi; and the lever arms a;; are calculated using the algorithm described in Ref. [38]. In
2D this torque always points out of plane, so we only need to consider its scalar magnitude
T in the equations of motion.

This 2D model easily generalizes to 3D: aside from vectorial quantities now being three-
rather than two-dimensional, we must now also consider the direction of the torque. For
convenience, we also switch to vector notation in the orientational equation of motion.
The equations of motion in 3D are thus:

0tri = 'Uoéi + ﬁDtﬂ' . ZF” -+ 2Dt,i . Af, (26)
1#]
i#]

*As fluctuation-dissipation is an equilibrium phenomenon, there is reason to believe that it may not
hold for active matter systems. If it does not, the force/torque and noise terms in Egs. 2.1 and 2.2 will
not be related by a common diffusion constant D.
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Figure 2.2: Schematic representation of the model. Particles are 2D or 3D spherocylinders of
diameter o and end-to-end length [, self-propelled with a velocity vg in their forward direction é.
They interact based on their core-to-core distance 7y ;;, causing repulsive forces F;; and torques
T ;. Additionally, they diffuse rotationally with diffusion constant D,., and translationally along
their long and short axis with diffusion constants D) and D, respectively.

We nondimensionalize the 2D and 3D system by expressing all distances in units of the
particle diameter o, all energies in terms of the thermal energy kg7, and all units of time
in terms of 7 =1/D,.

2.2.2 Choice of model parameters and additional assumptions

For our investigation, we will study the influence of four parameters: the dimensionality
d =2 and d = 3, the aspect ratio [ /o, the packing fraction ¢ = N((7/4)0? + (I — o)o)/A
(¢ = N((n/6)c® + (7/4)(l — 0)c?)/V in 3D) and the Péclet number Pe = vy/cD,.. Note
that literature sometimes defines the Péclet number in terms of the translational diffusion
instead.

The diffusion constants D), D, and D, for 3D cylindrical particles (or rather, their
hydrodynamic friction coefficients) were determined by Tirado et al. [77]. As their expres-
sions are valid for [/o 2 4.6, the very short spherocylinders we use in the present work are
not very well described by this method. To determine the effect of shape anisotropy on the
diffusion of 3D spherocylinders, the hydrodynamic friction coefficients were determined
by Bram Bet using the bead-shell model from Ref. [78] and compared them to the exact
expressions for ellipsoids derived by Perrin [79, 80]. Fig. 2.3 shows the dimensionless
friction coefficients &, £, and &, (as defined in Ref. [78]) of short spherocylinders and
ellipsoids for aspect ratios 1 < /o < 2.5. It is evident from the similarity between the
two that for these aspect ratios one can safely use the exact ellipsoid expressions as a
good approximation. After further research, however, we found that the influence of the
diffusion constant change with aspect ratio is negligible for the aspect ratio range we look
at in both 2D and 3D, so for simplicity we will set Dy = D, = D, = 02D, /d from now on,
with d being the dimensionality i.e. d = 2 in 2D and d = 3 in 3D. This choice corresponds
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to the correct ratio between translational and rotational diffusion for spheres.

1.25 T T

— - — - &, (spherocylinder)

-------- &, (spherocylinder)
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Figure 2.3: Dimensionless hydrodynamic friction coefficients £ for 3D ellipsoids and sphero-
cylinders for small aspect ratios 1 < [/o < 2.5, defined with respect to a sphere of the same
volume [78]. The red long-short dashed and dotted lines indicate the translational friction co-
efficients of spherocylinders &; || and & 1, while the red solid and dashed lines indicate the total
friction coefficient & = (§|| + 2¢£1)/3 of ellipsoids and spherocylinders, respectively. The green
and blue lines indicate the rotational friction coefficients around and perpendicular to the long
axis & and & |, respectively.

Some care is required in the way we vary the Péclet number. The most straightforward
way is to simply vary it by changing the self-propulsion velocity vy. However, if we do
this and keep the pair interaction strength fixed, the ratio between active and interaction
forces will depend on the Péclet number. The result of changing this ratio is that the
particle interaction effectively becomes softer as the Péclet number increases. In the
extreme case, MIPS may even disappear for high enough Péclet numbers. Earlier work
has remarked on this subtlety of varying the Péclet number [81, 82]. As our aim is not
to provide quantitative but only qualitative data on the phase behaviour, we nevertheless
use the straightforward approach by fixing € = 24kgT and changing the Péclet number
by varying vyg.

2.2.3 Identifying motility-induced phase separation by cluster-
ing regions of similar density

MIPS is a separation of a system of self-propelled particles into a dense and a dilute region.
While it can be identified quite readily from visual inspection of particle configurations,
it is also useful to have a more quantitative method. Two of these methods are common.
The first is to measure the distribution of the local density: for a homogeneous system,
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Figure 2.4: Representation of our clustering algorithm. From unlabeled coordinates (a),
construct a Voronoi tesselation and obtain local densities (b), then use these to create clusters
of particles with similar density (c).

such a distribution is unimodal, while for a phase-separated system it is bimodal [83-85].
However, such a distribution can not tell us whether the system has separated into one or
into multiple domains, which means it cannot distinguish between micro- and macrophase
separation. This distinction becomes important for rods.

The other method is to group particles together into clusters based on a distance
cutoff and to determine the fraction f. of particles in the largest cluster [50, 62, 86].
Since MIPS eventually forms one large, dense cluster in a very dilute background gas,
fa — 1 for MIPS for large enough systems, while for a homogeneous fluid f, — 0. This
latter method requires a cutoff distance that specifies whether particles are close enough
to belong to the same cluster. In practice, we found that there is no single cutoff distance
that yielded reasonable results for the resulting cluster fraction across all shapes and
densities we wish to study.

To solve this problem, we developed a slightly different clustering method, shown
schematically in Fig. 2.4. From the particle positions (Fig. 2.4a), we make a Voronoi
construction. This provides us not only with a parameter-free way to define neighbouring
particles, but also with a means of measuring the local packing fraction: ¢, = ((7/4)0? +
(I—o0)o)/A, (in 2D) or ¢y = ((7/6)0> + (7/4)(l — )0?)/V, (in 3D), with A, and V,, the
area and volume of the Voronoi cell (colors in Fig. 2.4b), respectively. Our requirements
for two particles to belong to the same cluster are then that (a) their Voronoi cells are
connected and (b) they both have a local packing fraction that is either lower or higher
than the mean packing fraction ¢ by a certain cutoff A¢. Using this method, we create
clusters of similar local density (Fig. 2.4c). We choose A¢ = 0.025, as we found through
trial and error that this cutoff allows us to meaningfully distinguish between homogeneous
states with f, < 0.5 and phase-separated states with f, > 0.5 for all aspect ratios and
Péclet numbers of interest and for nearly all densities, both in d = 2 and d = 3. Note that
fa is not guaranteed to go to zero in the homogeneous phase when using this definition
of clusters due to density fluctuations, but fq = 0.5 still offers a reasonable threshold.
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2.3 An analytical criterion for the onset of MIPS

Having described the means to obtain and identify MIPS numerically, we now describe
an analytical criterion for the onset of MIPS. We are aware of three ways to obtain such
a criterion: by constructing an effective free energy and proceeding as in equilibrium [61,
87], by looking at the particle flux balance between a dense cluster and a dilute gas phase
(63, 88], and by a stability analysis of density fluctuations of the homogeneous isotropic
phase [82, 89]. The first method cannot be applied directly to our system, as one of its
underlying assumptions is that no torques act between the particles. The second method
is also likely to fail, as it relies on the assumption that the orientations of particles in the
boundary of the dense cluster evolve diffusively, which is not the case for rods. Thus, we
opt for the third method: deriving a criterion for the (in)stability of the homogeneous
isotropic phase to density fluctuations, by extending the mean-field-like method from
Ref. [89] to 3D systems with torques. In short, we map our system to an active ideal gas,
where the effect of the many-body forces and torques is subsumed into a modified, effective
swim speed v°f, rotational diffusion D¢, and translation diffusion D¢, These effective
constants then depend on the mean density p and input swimming speed vy. By doing this
mapping, we effectively make two approximations: that the only effect of the interparticle
forces JF is to slow particles down, and that the only effect of the torques T is to change
the rate at which particles change their orientation. The former is a good approximation
in the absence of structural order, the latter in the absence of orientational order. Both
approximations become poorer at higher densities, where structure and alignment become
important.

2.3.1 Effective Smoluchowski equation

To render the problem analytically tractable, our first goal is to simplify the effect of
the pairwise forces and torques. We will do this using a mean-field-like approximation.
Following the same procedure as Refs. [82, 89], we start from the Smoluchowski equation
for the one-particle probability density function (PDF) ¢ (r, é,t), given by

where V are the 2D and 3D gradient operators and R is the rotation operator, defined
as R = 0y in 2D and R = € x V¢ in 3D. Note that similar to our numerical model we
neglect the influence of particle shape anisotropy on the translational diffusion and simply
set D; = D,Z. The pairwise force density F and torque density 7, which arise due to
the particle-particle interactions of a pair potential V3, g,(7r1,72), can then be written in

(2)

terms of the two-body probability density v, , (71, 72,t) as

.7:(7"1, él, t) = /d’l"zdég (_V1Vé1,é2 (7‘1, 7‘2)) wé?ég (7‘1, T, t), (29)
T(Tl, él, t) = /d’l"zdég (_Rl‘/él,ég (7‘1, Tz)) wg),@ (7‘1, T, t) (210)

In order to close this hierarchy, the force and torque densities F and T need to be
expressed in terms of the one-body PDF. To do so, we first use the identity

¢é?)éz (rlv T2, t) = ¢(T17 é17 t)¢(”'% é27 t)gé1é2 (rlv T2, t) (211)
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to rewrite Eq. (2.9) as F = Fi, where

Flr1,8,,1) = / dradey (= V1 Ve, 6, (11, 72)) V(1. 2, 8)ge, o, (71, 72, 1). (2.12)

To obtain a closure, we make the following assumptions. First, we assume that the force
F acts along the direction of self-propulsion, i.e. F = (F - €)é, making Eq. 2.8:

Whereas this is exact in a homogeneous, isotropic bulk as dictated by symmetry, in general
we neglect a possible second component that is perpendicular to €. In Ref. [89], Speck et
al. consider this second component to act along the gradient of the one-particle PDF i.e.
F = (F-é)é+aV. This additional assumption leads to a modified translational diffusion
Dt = (1 — Ba)D;. We measured the magnitude of this modification for 3D spheres and
rods, and found that the modification provided by fa is of negligible influence on the
location of the phase boundaries except near Pe = 0. For simplicity, we thus neglect this
effect by setting a = 0, i.e. DT = D, from now on. We did not explicitly check the
validity of this assumption in the 2D case, but see no reason to assume a difference.

To continue our derivation, we make the second assumption that F - & is linear in the
local density p(r,t) = [ déy(r, é,t) and has no further dependence on (r, é,t):

F(r,ét) - é=—p(r,t)((p,vo). (2.14)

Here the constant ¢ is independent of (7, é,t), but can still depend on the mean density
p = NJ/A (or N/V in 3D) and the self-propulsion strength vy. In this way, using Eq.
(2.8), the effect of the interaction forces can be absorbed into a modified self-propulsion
velocity v°, which is given by

v o(r,t)] = vo — BDip(r, )¢ (p, vo), (2.15)

Applying a similar approach for the torque, we make the approximation that its only
influence is to modify the rotational diffusion i.e.

T(r,é,t) ~ bRi(r, é,t), (2.16)

We assume the corresponding constant b to be homogeneous and isotropic, depending
only on the mean density and self-propulsion i.e. b = b(p, vg). With these approximations
we can further simplify Eq. (2.13) to the Smoluchowski equation for an active ideal gas:

o = -V - (v*"ey — D,VY) + DR - Ry, (2.17)
where the influence of forces and torques is now captured by the effective self-propulsion

v* and rotational diffusion constant and D¢ respectively.

2.3.2 Stability analysis of the homogeneous isotropic phase

Now that we have reduced the full Smoluchowski Eq. (2.8) into the ideal-gas form of Eq.
(2.17), we can perform a linear stability analysis on the homogeneous isotropic phase. We
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start by defining the relevant moments of the one-particle PDF v (r, é,t),

pr,t) = / dey(r,e,t) (density); (2.18)
ma(r,t) = /déeaw(r,é,t) (polarization); (2.19)
Sap(r,t) = /dé(eaeﬂ - Cliéaﬁ)@/)(r, é,t) (nematic). (2.20)

Here, the Greek indices label the Cartesian vector- or tensor components, and in the
following we shall employ the Einstein summation convention. Considering the same
moments of the ideal gas Smoluchowski equation (2.17) yields the following evolution
equations:

Op=—V_. (veﬁm - Dth) ; (2.21)

D, = — g™ (Sus + Clipaaﬁ) — Didgma] — (d — 1)Dm, (2.22)
1

8t8a5 = — &Y[Ueﬂ(Baﬁ-y — gmyéam) — Dt(‘)VSag] — d(d - 1)D5HSQ5. (2.23)

Here B is the next (third) order moment. The structure of this hierarchy of time-evolution
equations (2.21)-(2.23) is such that the time-derivative of each moment depends linearly
on itself and on the moment one order lower and higher. However, as we shall see,
moments beyond m are irrelevant for the instability we wish to consider.

A steady-state solution to Eq. (2.17) is the homogeneous isotropic phase: ¥(r,é,t)
p. Expressed in terms of the moment equations (2.21)-(2.23), this gives p(r,t) = p
(homogeneity) and m(r,t) = S(r,t) = 0 (isotropy). To obtain a criterion for the stability
of this solution, we investigate the behaviour of small perturbations to the homogeneous
state:

ol 1) = -+ Sp(r, 1) (2.24)
m(r,t) = dm(r,t); (2.25)
S(r,t) =38S(r,t). (2.26)

Since MIPS is a macroscopic phase separation, we should study the instability with respect
to long-range perturbations i.e. perturbations with small spatial gradients. In this limit,
the dynamics are dominated by the terms in Eqs. (2.21)-(2.23) with the fewest gradients.
Of the three moments, it is p whose time evolution is slowest. Its timescale is of order
V=L, while m and S evolve as (D)™t ~ V% As we are interested in the evolution of
the density perturbations, i.e. of the slow variable, we can assume that at any given time,
the higher moments m and S are given by their steady-state solutions that correspond to
the density profile p(r,t) at that instant. Solving Eq. (2.23) for its steady-state solution
8S.p Teveals that it scales as O(V?'). Therefore, its contribution to the evolution of
polarization perturbations (Eq. (2.22)) is of higher order. To leading order, the evolution
of polarization perturbations is then given by

1

5m('r’, t) = —W

V (v (r,t)p(r,1)) - (2.27)
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Recalling that v*f = vy — 8D, p(r,)((p, 1), we can take this gradient explicitly and obtain

om(r,t) = — (vog — 28Dyp(r,t)C) Vp(r,t). (2.28)

1
d(d—1)Dst
Using this result, the equation for the time evolution of density perturbations becomes

D:0p(r,t) = Ds,(p,v0)V3dp(r, t), (2.29)
which is a diffusion equation with diffusion constant

(vo — BDypC)(vo — 28D p()

Ds,(5,v0) = Dy + (2.30)

d(d —1)Dett
v (20° — )
_p,+ L\ )
‘A=

Whenever the diffusion constant Dy, is negative, density perturbations dp(r,t) will grow.
Therefore, the region in (p,vg)-space where the homogeneous isotropic phase becomes
unstable is given by the condition Ds,(p,v9) < 0. This can only occur for self-propulsion

velocities vy above the critical threshold v* = 2\/5\/ d(d — 1)\/ DyD¢f.

The effective constants v and D¢ can now be found in two ways: we can either
formulate closed-form equations for these effective constants, or we could measure them
in some way. We choose the latter method, and determine their value from the following
correlation functions:

>

(74(t) - &(t)) = v, (2.31)
(&:(t) - €,(0)) = exp(—(d — 1) D;™), (2.32)

which measure the effective velocity in the direction of self-propulsion and how quickly
a particle loses its orientation, respectively. In this way, we can measure v°T and D¢t
by simulating a system in the homogeneous isotropic phase at different values of the
mean density p and self-propulsion vy, calculate the diffusion constant Ds, and use that
to predict the stability of the state. In the next section we show how finite size effects
suppress the formation of a MIPS phase, and how we use this effect to measure the v°f
and DT of the fluid phase even for mean densities p and self-propulsions vy for which a
larger system would undergo MIPS.

2.3.3 Finite-size effects when measuring effective swim speed
and rotational diffusion

Measuring the effective swim speed v°f and rotational diffusion D¢ from simulations with
only a few particles (N ~ 100) means these constants will suffer from finite-size effects.
Figure 2.5 shows the scaling of (a) the effective swim speed v and (b) the fraction of
particles in the largest cluster f., with the inverse of the number of particles N for 3D
active spheres; at a packing fraction ¢ = 0.44 and a Péclet number of Pe = 100. A clear
kink can be seen in both graphs at roughly the same system size (N ~ 4000), which
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after visual inspection of the corresponding snapshots (Fig. 2.6) can be associated with
MIPS. As our small-N simulations take place well below this threshold and v*® does not
scale strongly with the number of particles in this regime, we assume that they provide a
reasonable estimate of the effective swim speed even when a larger system would phase-
separate.

35
2 30
a:\
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25 4 ;
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; (a) : (b)
205 —4 -3 -2 -1 0.0 '
10 10 10 10 10 10°° 1074 1073 1072 107!
1/N 1/N

Figure 2.5: Effective swim speed v°% (a) and fraction of particles in the largest cluster fu (b)
for 3D active spheres as a function of the inverse of the number of particles N, at a packing
fraction ¢ = 0.44 and a Péclet number of Pe = 100. Both v* and f,; display a clear kink around
N ~ 4000 that denotes MIPS. The dashed lines are drawn to show the transition in scaling from
the fluid to the MIPS regime, and the dotted line denotes the intercept at N == 4000.

Figure 2.6: Two representative snapshots of the simulated system of Fig. 2.5 for (a) N = 2000
in the fluid regime, and (b) N = 10000 in the MIPS regime. Particles are coloured according
to their local density. While no large-scale phase separation can be seen for (a), (b) has clearly
separated into a dense and a dilute region.

2.4 Results & Discussion

Before we start looking at the influence of particle elongation on MIPS, it is worthwhile to
consider the established behaviour of 2D active disks. While the phase boundaries of MIPS
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for disks have been studied by a number of authors [53, 60, 63, 89, 90|, comprehensive
studies that also include the high-density hexatic and solid phases have only appeared
more recently [57-59], spurred on by developments in the understanding of the melting
of 2D disks in equilibrium [91-95]. Digregorio et al. [57] report not only the commonly-
reported U-shaped MIPS region (in the density-activity plane), but also that there is a
narrow density regime in which a hexatic phase can be found. This regime spans from the
passive system (Pe = 0) to the MIPS region (Pe ~ 100). Klamser et al. [58] and Paliwal
and Dijkstra [59] focus on this hexatic phase in greater detail and compare its behaviour
to equilibrium 2D disks.

In the present work we focus on the MIPS phase specifically, and will not consider the
hexatic/solid phase boundaries in detail. Instead, we will restrict ourselves to a density
regime that largely excludes these phases, and merely identify any solid-like phases by
looking at where the effective velocity v*® becomes sufficiently small: +*T < 0.10D,.
Although this is not a very accurate measure, it serves to crudely distinguish the solid or
hexatic phases from the fluid and MIPS phases, at least at low self-propulsion. We use
this criterion for all phase diagrams throughout this chapter.

To explore the MIPS-related phase behaviour, we performed Brownian Dynamics sim-
ulations with N = 10* particles in the packing-fraction range 0.1 < ¢ < 0.7, and the
Péclet-number range 1 < Pe < 100 (2D) and 1 < Pe < 150 (3D). This spans the entire
density range from the fluid regime to just below the hexatic/solid regimes [57, 96]. The
Péclet range spans from below the MIPS critical point to high enough Péclet that the
MIPS region attains a near-constant width in density [81, 90]. We also performed sim-
ulations with a smaller number of particles N = 100 to measure the effective constants
v*T and DT, The initial state for all simulations was one with random positions and
orientations. As previously discussed, using only a limited number of particles (N = 100)
ensures that the system remains in the homogeneous isotropic phase regardless of density
or activity.

A few more remarks considering the differences between the present work, Refs. [57—
59] and others: Ref. [57] defines the Péclet number in terms of the active force, while we
express it in terms of vy and D, — this shifts the scale by a constant factor of D,0?/D; = 3.
Qualitatively, we can expect to find similar features. Quantitatively, the phase boundaries
will be shifted somewhat because of differences in the repulsive pair potential: Ref. [57]
uses the repulsive part of U o< (o/r)% — (0/r)%2, while we use the repulsive part of U
(o/r)'? — (o/r)8. Our softer potential decreases the size of the liquid-hexatic coexistence
region [94]. Given the similar temperatures (kg1'/e = 1/24, versus kgT'/e = 1/20 in Ref.
[57]), the slightly longer range of the WCA potential (cutoff radius r /o = 2'/6 ~ 1.12, as
opposed to r/o = 21/32 ~ 1.02 in Ref. [57]) will shift the solid phases to slightly lower
packing fractions. A similar comparison can be made to Paliwal and Dijkstra [59], who use
a similar WCA potential, but with an interaction strength of €¢/kpT = 1 compared to our
¢/kpT = 24, which likewise slightly shifts the position and width of the hexatic and solid
phase boundaries. We ourselves have not done so, but in principle the phase boundaries
of all these systems should be comparable using the definitions of dimensionless density
and interaction strength used by Klamser, Kapfer and Krauth [58].

Let us now leave the hexatic phase behind, shift our focus back to MIPS, and try to
answer the questions posed in the introduction: How elongated do particles have to be to
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Figure 2.7: Phase diagram of 2D self-propelled disks (a) and rods of aspect ratio [/o = 2.0 (b),
for different Péclet numbers Pe and packing fractions ¢. Data points indicate the resulting phase
of N = 10* particles as obtained from Brownian dynamics simulations, in which we distinguished
MIPS, fluid and solid phases. The colors indicate the diffusion constant of density fluctuations
Ds,. Spinodal decomposition to a MIPS state is then predicted where Ds, < 0.

not display MIPS? And what is the mechanism that suppresses MIPS for rods?

2.4.1 Phase diagrams of self-propelled disks, spheres and rods

Figure 2.7 shows phase diagrams in the Péclet number Pe - packing fraction ¢ represen-
tation for 2D disks (a) and rods (b). Both show the MIPS region predicted on the basis
of the stability analysis (blue-tinted region, D < 0), and the MIPS region found from
simulations with N = 10* using the cluster method (black points). Let us focus on the
disks first (Fig. 2.7a). Both methods seem to indicate MIPS in roughly the same region,
but there are a few notable differences.

On the low density side, we find a discrepancy: MIPS is found outside of the predicted
spinodal region. In analogy with the gas/liquid phase separation, this might be because
MIPS in this region occurs through nucleation and growth rather than through spinodal
decomposition. Is this also the case? A simple way to see whether MIPS forms through
a nucleation process or not is to look at domain growth, which we can track using a time
series of cluster fraction f. defined in Section 2.2.3. If the system immediately decays
from an isotropic to a MIPS state in a manner similar to spinodal decomposition, this
fraction will likewise increase immediately. If, on the other hand, the system stays in
the fluid state for a prolonged period of time, only to later transition into MIPS through
a nucleation process, fq will retain the value corresponding to the fluid for a nonzero
amount of time. Figure 2.8 compares the time evolution of the fraction f. of particles
in the largest cluster for a number of Péclet numbers at two different densities: one on
the low density side of the MIPS regime at ¢ = 0.25 and one on the high density side at
¢ = 0.7. On the low density side and outside of the predicted spinodal region, the cluster
fraction can stay constant for a significant amount of time (¢ > 307) before transitioning
to a MIPS state. On the high density side of the MIPS region, such a delay is absent.
The stability analysis predicts spinodal decomposition in this regime, and the cluster
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Figure 2.8: Time series of the largest cluster fraction f. for active disks (I/o = 1). At
low density ¢ = 0.25, the system occasionally only clusters after a significant amount of time
(t > 107), suggesting that the transition is triggered by a rare nucleation event. At high density
¢ = 0.7, this is never the case—only spinodal decomposition is observed.

growth agrees. This asymmetry is consistent with the findings of Speck et al. [89], who
report that the MIPS transition is discontinuous at low densities, but continuous at high
densities.

There is also a discrepancy between the stability analysis and the large-scale simulation
at low Péclet numbers. This is to be expected: in this region the fluid-MIPS transition
is continuous, and the difference in density between the coexisting phases is small when
we are close to a critical point. Consequently, distinguishing between clusters of particles
is difficult, and the exact choice of cluster fraction threshold f. can shift the boundary
quite a bit in this region.

Having identified the most important features of the phase diagram for active disks,
let us now turn to rods and see how these features change. Figure 2.7b shows the phase
diagram in the density-activity representation for rods with an aspect ratio of [/o = 2,
using the same density and activity ranges as for the disks. The most obvious difference
with the rods is that the MIPS region is now both shifted to higher densities and much
narrower. The predictions of the stability analysis are worse for the rods: the predicted
spinodal now lies in the middle of the simulated MIPS region. We find that the transition
from fluid to MIPS now appears to be completely continuous—the system always starts
clustering immediately, without any nucleation-like transient period. As can be seen from
Figure 2.9a, the suppression is continuous with increasing aspect ratio, and it eventually
pushes the fluid-MIPS transition into the regime where solid phases typically emerge.

Let us now see whether the 3D case is similar. Figure 2.10 displays phase diagrams in
the (¢, Pe) representation, in Fig. 2.10a for 3D spheres and in Fig. 2.10b for 3D rods with
l/o = 2. Somewhat unsurprisingly, they are similar to their 2D counterparts. The most
important feature is retained: MIPS disappears when the aspect ratio is increased. The
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Figure 2.9: (a) Spinodal lines for 2D active rods as predicted from Eq. 2.30, as a function

of the packing fraction ¢ for varying aspect ratios, and (b) the corresponding effective self-
propulsion velocity v*% and rotational diffusion Dfﬁ at Péclet number Pe = 100 as a function of
the packing fraction ¢ for varying aspect ratios. At high activity, the effective self-propulsion
decreases more slowly with density, while the rotational diffusion is enhanced.

fluid gap we found in between the solid and MIPS phases is also present for the active
spheres. However, there are also notable differences between the 2D and 3D cases.

In contrast to the 2D case, we observe no region for the active spheres where the MIPS
transition is discontinuous. All simulations that form MIPS appear to undergo immediate
spinodal decomposition. This does not necessarily mean that there is no binodal region:
it may simply be quite small or have low nucleation barriers. The density regime of the
metastable region for 3D active spheres is not well understood. We are only aware of
one comparable simulation study by Stenhammar et al. [81], who looked at 2D and 3D
active disks/spheres to study the influence of dimensionality. However, their binodal lines
were defined as the density at which a high-Péclet system phase separated, which is not
directly comparable to the metastable region we define here. Hence, further studies are
needed to explain the difference in the width of the metastable region between d = 2 and
d=3.

Another difference occurs at high Péclet number, where the predicted MIPS region
for the spheres continues to shift towards higher density, instead of moving towards a
constant one. We believe this to be the behaviour that we discussed in Section 2.2.2:
for higher Péclet numbers the particles can approach each other closer due to the active
forces, causing the effective diameter of the particles to decrease. This effect appears to be
stronger in 3D than in 2D, presumably due to the increased coordination of each particle.

The final difference between the 2D and 3D cases is perhaps the most notable one:
for the rods, no MIPS is detected at all in the simulations by using the cluster method.
Whatever mechanism suppresses MIPS appears to be stronger in 3D than in 2D. Cu-
riously enough, the stability analysis still predicts MIPS in a significant portion of the
phase diagram. This discrepancy, combined with its 2D counterpart, suggests that our
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Figure 2.10: Phase diagram of 3D self-propelled spheres (a) and rods of aspect ratio [/o = 2.0
(b), in the Péclet number Pe-packing fraction ¢ representation. Data points indicate the resulting
phase of N = 10% particles as obtained from Brownian dynamics simulations, in which we
distinguished MIPS, fluid and solid phases. The colors indicate the diffusion constant of density
fluctuations Ds,. Spinodal decomposition to a MIPS state is then predicted to occur in the blue
region where D;, < 0. The small region of predicted instability in (b) under the points indicated
as solid is an artefact of the fluid-solid transition there, where Dy, fluctuates strongly as both
v and D go to zero.

theoretical approach breaks down for higher aspect ratios. We will see why this is the
case in the next section, where we discuss the suppression mechanism.

Armed with the knowledge of these phase diagrams, can we now answer the first ques-
tion posed in our introduction: “How rodlike must a particle be for MIPS to disappear?”
Only partially, unfortunately. Determining the exact aspect ratio where MIPS disappears
turns out to be quite difficult. We now know that the nature of the suppression stems
from the fluid-MIPS transition shifting to higher densities, but unfortunately our methods
to identify MIPS are less reliable at higher densities. More importantly, however, when
the particle interactions are not isotropic, MIPS is no longer defined unambiguously and
multiple types of clustered phases are possible which all fit the present criteria. When we
identify MIPS according to a) the system phase-separating into a single dense cluster in a
background gas and b) this cluster having no net orientational order, there are still mul-
tiple realizations of such a system (Fig. 2.11), such as a dense cluster with large domains
of oppositely oriented particles (I/o = 1.1) or a percolating cluster with low orientational
order and many voids (/o = 1.3, 2.0). Therefore, establishing the boundaries of MIPS
at these higher densities requires a more careful consideration of both hexatic [57] and
orientational order [97]. We leave this investigation to future work and instead, having
established that MIPS is suppressed when particles become elongated, we now turn to
finding out why.
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Figure 2.11: 2D Simulation snapshots for N = 10000 rods with aspect ratios /o = 1.1 (top),
[/o = 1.3 (middle) and [/o = 2.0 (bottom), at ¢ = 0.6, Pe = 100, deep within the MIPS region.
The columns depict the same snapshot three times with various color maps. The left column
shows the distribution of clusters, where each cluster is assigned a unique color. In the middle
column the color is indicative of the particle orientation, with nematic symmetry. Zooming
in also shows black stripes that indicate the polar orientations. In the right column the color
represents the local density. Even though all three snapshots show a separation into dense and
dilute regions, form a single connected cluster and have no global orientational order (and are
thus classified as MIPS), the three cases are clearly different.
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Figure 2.12:

Simulation results for the effective self-propulsion speed v of 2D active disks

and 3D active spheres (a,b), effective self-propulsion speed v°ff for 2D and 3D active rods (c,d),
and effective rotational diffusion D for 2D and 3D rods with an aspect ratio I /o = 2.0 (e,f). All
insets show effective velocity divided by input velocity, for comparison with v*f = vo(1 — ¢/¢¢p)
with ¢, the close packing density.

2.4.2 Torque-induced suppression of motility-induced phase sep-
aration

Since the main difference between the disk and rod systems is the presence of torque, it
is likely that the suppression of MIPS must arise there. In our stability analysis, the only
effect of torques seems to be to modify the rotational diffusion. Looking at Eq. (2.30), it
might be possible to suppress MIPS if D¢ is increased enough to make the second term
smaller than DT, Is this the case? Is the rotational diffusion perhaps enhanced so much
that we effectively end up with a thermal system again?

Not so. Looking at Figs. 2.12e and 2.12f, we can see that DT is indeed increased
significantly where MIPS vanishes. However, when we insert the actual values of v and
D we see that this is not the case: the typical values of v*T are simply too large. So if
it is not DI it must be v°f that contains the key information that allows us to predict
MIPS or its suppression. After all, the stability analysis does correctly predict that MIPS
is suppressed for high aspect ratios. Comparing the effective swimming speeds of different
aspect ratios (Figs. 2.12a and 2.12¢, or 2.12b and 2.12d), we see that the rods slow down
less with increasing density than the disks. In other words, the rods hinder each other’s



40 CHAPTER 2

Pe=100, $=0.05

0.0015

£ .0.0010
S
"~ 0.0005

0.0000
1.0 15 20 25 3.0 35 4.0

l/o

Figure 2.13: Mean duration of collisions (7.) normalized by the timescale of rotations 7 = 1/D,
for 2D self-propelled rods at a packing fraction ¢ = 0.05 and a Péclet number of Pe = 100. As
the aspect ratio increases, collisions between particles become shorter.

movement less than the disks do. Why is this? Again we must look to the main difference
between the two systems: torque.

For disks, one can derive a linear decrease of the velocity with increasing density
v = (1 — p/p*) from mean-field theory and kinetic arguments [55, 85, 98]. This is
done by assuming that particles slow down at low density due to time spent in binary
collisions, which leads to v*f(p) ~ vy(1 — 7./7/), where 7, is the time spent in a collision
and 7 = 1/(owvpp) the mean free time between collisions. At low density, we expect the
mean free time 7; to be mostly unaffected by the presence of torques as long as there
are no significant short-range orientational correlations. The duration of collisions 7,
however, can change significantly when torques are involved. For disks, the duration of
their collision—of their hindrance—is determined by how long it takes for them to slide
around each other. Rods, however, will rotate to reorient their swimming directions away
from the combined center of mass of the collision. This will decrease the collision duration.
Since collisions are now shorter, the rods spend more time moving freely: less hindered.
Furthermore, this reorientation leads to an enhanced rotational diffusion—exactly what
we find.

To verify this hypothesis, we measured the duration of particle collisions for 2D rods
in a homogeneous and isotropic fluid by timing how long pairs of particles are within a
certain distance r. of each other. We choose this to be r. = 2165 i.e. the interaction
range of the WCA potential Eq. 2.5. In Fig. 2.13 we show the mean duration of collisions
between 2D rods measured at a Péclet number of Pe = 100 and a packing fraction of
¢ = 0.05 as a function of their aspect ratio {/o. As can be seen from the decrease in
(1.) /T, collisions between particles indeed become shorter as the aspect ratio is increased.
It would be interesting to see whether it is possible to derive the suppression of MIPS from
a kinetic theory based on the duration of collisions. Perhaps future work could explore
this avenue.

Interestingly, the existence of this suppression mechanism suggests that an inverse
mechanism might also exist. If the torques between two colliding particles cause the
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particles to rotate towards their center of mass, collisions would be prolonged and MIPS
would be enhanced. Precisely this inverse effect was reported earlier in Refs. [69, 70]:
MIPS is enhanced for self-propelled particles that align through Vicsek interactions. In
binary collisions, the Vicsek torques always rotate particles towards the combined center
of mass, increasing the duration of collisions, increasing hindrance and thus enhancing
MIPS.

Is the changing density dependence of v*# with increasing anisotropy enough to com-
pletely describe the suppression of MIPS? If we would have a system of self-propelled
particles with some arbitrary shape and we would know how the effective swim speed
depends on density, could we then predict whether and where it will undergo MIPS?
Unfortunately, no. As we can see from the rod phase diagrams in Figs. 2.7b and 2.10b,
our stability analysis predicts the right qualitative trend, but its quantitative prediction
is poor. This is probably due to neglecting alignment effects in the stability analysis.
As the rod length increases, nematic and polar alignment of the particles start playing a
more significant role in their phase behaviour, which is not captured by our theory. For
instance consider Fig. 2.14, where we show a snapshot of rods at ¢ = 0.5, Pe = 100,
just outside the MIPS region, and colour particles according to nematic orientation. The
clusters formed by the rods have significant short-range nematic order. Incorporating the
dynamics of the polarization and nematic fields using theory developed for active nemat-
ics [99, 100] might allow for more accurate predictions for the onset of MIPS for longer
rods.
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Figure 2.14: Simulation snapshot of 2D rods with aspect ratio [/o = 2 at a packing fraction
of ¢ = 0.5 and a Péclet number of Pe = 100. Particles are coloured according to their orienta-
tion. Dense clusters display significant short-range orientational order, and no large-scale phase
separation can be seen.
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2.5 Conclusions & Outlook

In this chapter, we showed that motility-induced phase separation does not occur for rod-
like particles when they become sufficiently anisotropic. This disappearance is observed
both from many-particle simulations and from a stability analysis of the homogeneous
isotropic fluid phase. The latter provides a simple criterion for the onset of MIPS by
considering the effective swimming speed of the particles and their effective rotational
diffusion. Both methods agree qualitatively in that MIPS is pushed to higher densities
for increasing rod aspect ratio, and they agree quantitatively for short rods that deviate
only slightly from disks or spheres. For longer aspect ratios the quantitative agreement
is lost, presumable due to alignment interactions that are present, but not taken into
account in the stability analysis.

We also propose a more intuitive explanation for the suppression mechanism. MIPS
relies on particles slowing down sufficiently with increasing density [61]. This hindrance
is closely linked to the duration of collisions between particles [55, 85, 98]. Excluding
torques, the duration of collisions is determined by how long it takes for them to slide
along one another. Including torques can dramatically decrease the duration of colli-
sions by rotating the forward axes of the self-propelled particles away from each other.
Formulated in this way, we can also explain the results of Refs. [69, 70], where MIPS
is enhanced for particles with Vicsek interactions. Simply put, Vicsek torques prolong
particle collisions, while rodlike excluded volume torques shorten them. Intriguingly, this
provides us with a particle design tool to enhance or suppress MIPS. MIPS is enhanced for
Vicsek-like interactions [69, 70], for faceted, concave and/or rough particles [86, 101, 102],
while it is suppressed for smooth particles and rodlike shapes [97]. In addition to steric
interactions, hydrodynamic interactions between active particles also play an important
role in whether or not MIPS can form. While hydrodynamics seems to usually suppress
MIPS [103-105], the details depend on whether particles are “pushers” or “pullers” and
on the dimensionality [106, 107].

Despite recent advancements, the role of torque in active systems is still not well
understood. Much of the developed theory has been restricted to the torque-free regime,
but recent numerical studies suggest that torque, either from boundaries [108] or from
particle interactions [69, 70], can have a significant effect on the structure and dynamics
of active matter systems. In order to understand active matter beyond torque-free model
systems, more theoretical work is needed to elucidate the influence of torques in active
systems.
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2.6 Addendum

Active matter is a fast-moving field. Since the original publication on which this chapter
is based, a number of works have been published on similar questions, yielding additional
insights. While we cannot discuss all of them, we would be remiss if we did not at least
mention two works that are particularly relevant to the contents of this chapter.

Most directly related is the work of GrofSimann, Aranson and Peruani [109], who devel-
oped an analytical model for self-propelled rodlike particles (“vectorial active matter”) for
which the polar and nematic fields could be fully taken into account in the derivation of
the phase boundaries. They show that for their model, elongation of particles from disks
()/1L = 1) to even slightly elongated particles ({; /I, = 1.04) immediately destabilizes the
MIPS phase into a phase of global positional and orientational disorder, but with large
density fluctuations. Elongation to [j/l, = 1.21 causes local nematic order to arise in the
globally disordered phase, and further elongation has the nematic alignment overtaken by
a polar one, wherein particles form increasingly larger dense polar domains.

One of the assumptions we have made early on in this work in Section 2.2.1 to construct
the Langevin equations Eq. 2.1 and 2.2 is that the fluctuation-dissipation theorem (FDT)
holds. An interesting recent work exploring the validity of this assumption is provided by
Burkholder and Brady [110]. Their findings suggest that in general the FDT does not hold
for self-propelled swimmers, but that one can still construct a modified Stokes-Einstein-
Sutherland expression (relating the diffusivity to the drag) that includes the effects of
activity.
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Capillary-driven self-assembly of
hourglass-shaped particles at a
fluid-fluid interface

In this chapter we study the self-assembly of hourglass-shaped NaYF, nanoparticles at an
air-hexane interface. We use capillary deformation calculations to show that particles ad-
sorb onto the interface in three ways: with their long axes horizontal, vertical or tilted with
respect to the interface. The vertical and tilted configurations also deform the surround-
ing fluid-fluid interface, causing capillary interactions between adsorbed nanoparticles.
We capture the deformation of the interface with a multipole expansion, and describe
the resulting capillary interactions between particles as pairwise multipole-multipole in-
teractions. We subsequently perform many-particle Monte Carlo simulations in which
particles interact through a combination of a non-convex hard-particle interaction and
the aforementioned capillary multipole-multipole interactions. We find that this effec-
tively reproduces experimental observations on the self-assembly, namely i) that particles
are found in both the vertical and horizontal adsorption configurations, ii) that these
two configurations demix, but only partially, iii) that horizontally adsorbed particles do
not form large dense-packed domains and iv) that horizontal particles form end-to-end
attached strings at low density.

Based on:

S. Najmr, R. van Damme, M. Zhang, G. Soligno, M. Zanini, M.A. Fernandez-Rodriguez, J.D. Lee, L.
Isa, M. Dijkstra, C.B. Murray, “Synthesis of Nanocrystalline 3-NaYF, Heterostructures with Tunable
Negative Curvature and their Self-Assembly Patterns at Interfaces”, to be submitted.
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3.1 Introduction & experimental motivation

When two immiscible fluids such as oil and water are put together, they do not mix.
Instead, an interface forms between the two. The formation of this interface has a free-
energy cost, but this cost is smaller than having the two fluids mix. Interestingly, because
of this free-energy cost, it can be favorable for particles to attach to the interface between
the two fluids if the cost for them to be in contact with both fluids is lower than that
to form the interface. This phenomenon of interfacial adsorption is used to great effect
in multiple methods for 2D nanoparticle self-assembly [111-114]. In most cases these
methods were applied for spherical nanoparticles, for which the adsorption at a fluid-
fluid interface is fairly well understood (e.g. Refs. [115-117]). For spherical particles
small enough to neglect the influence of gravity, the fluid-fluid interface is pinned to
roughness on the surface of the particles, which causes the interface to be deformed locally
in the shape of a quadrupole [116]. Recent advances in synthesis, meanwhile, have made
it possible to synthesize monodisperse nanoparticles with a variety of shapes beyond
spheres. In applying the aforementioned self-assembly methods to these nonspherical
particles, one naturally has to wonder: how do these nonspherical particles adsorb at a
fluid-fluid interface, and what effect does this have on the self-assembly? This is not an
easy question to answer. As a first step beyond spheres, studies of the last twenty years
or so have investigated the adsorption of rodlike particles such as ellipsoids [30, 118-121],
cylinders [33, 122], dumbbells [123, 124], cuboids [125], and even mosquito eggs [126].
The quadrupolar deformation of the interface found for spheres is also found for rods, but
the elongated particle shape introduces additional anisotropy that significantly influences
the self-assembly. More recent studies have also investigated faceted polyhedral particle
shapes: cubes [32, 119, 127-129], octahedra [130] and rhombicuboctahedra [131], to name
a few. These cubelike particles display both a quadrupolar or a hexapolar deformation
depending on specific system parameters. The adsorption behaviour of all these particle
shapes turns out to be significantly richer than that of spheres and depends sensitively
on the particle shape and chemical composition of the system. In this chapter we will
consider a next step up in complexity and study the adsorption and self-assembly of
faceted, non-convex particles shaped like hourglasses.

The particles we consider in this chapter were synthe-
sized and characterized by Stan Najmr and Mingyue Zhang
in the group of Christopher Murray from the University
of Pennsylvania. We here briefly describe the synthesis
and self-assembly procedure they employed, which is based
on those of Refs. [132-134]. In short, the particles are
made from hexagonal prism NaYF, cores [135, 136] that are
etched in a way whereby NaYF, is removed from the mid-
dle of the prism while another material (NaNdF}) nucleates
and grows onto the ends. The endcaps obtain a roughly
Figure 3.1:  Transmission hexagonal shape, while the middle is rounded slightly from
Electron Microscopy (TEM) the initial hexagonal prism shape to become more like two
image of hourglass-shaped par- cones. The result is an hourglass-shaped particle of roughly
ticles. L =200 nm in size, as can be seen in Fig. 3.1.
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Following the procedure of Ref. [113], the particles are dispersed in hexane and left
to self-assemble by dropcasting them onto a surface of diethylene glycol (DEG) and let-
ting the hexane slowly evaporate. Once the hexane has evaporated, the self-assembled
structures are left adsorbed onto the air/DEG interface. They can then be deposited onto
a substrate from the bottom-up, leaving the self-assembled structure intact for imaging
techniques such as Transmission Electron Microscopy (TEM). Representative TEM im-
ages of the resulting dried systems are shown in Figs. 3.1, 3.2 and 3.3. In Fig. 3.2 we see
that particles can be found in two orientations: either vertical or horizontal with respect
to the substrate. Vertically aligned hourglasses are typically found in nearly close-packed
hexagonal domains, while horizontally aligned hourglasses are typically found in large do-
mains with low long-range structural order. The two orientations often appear demixed
i.e. domains are composed of either horizontally or vertically oriented particles. We
do occasionally observe interlocking arrangements of horizontally and vertically aligned
particles, such as on the bottom right of Fig. 3.3, but these hardly ever form extended
domains. Our goal in this chapter will be to explain this behaviour by modeling the ad-
sorption and capillary self-assembly of these non-convex, anisotropic particles using sim-
ulations, and to use the resulting knowledge to improve our control over the self-assembly.

Figure 3.2: Transmission Electron Microscopy (TEM) image of hourglass-shaped particles
lying on a TEM grid. Particles are oriented either vertically or horizontally with respect to the
substrate, and the two orientations are typically found to be demixed.

Before we turn to the more involved numerical analysis of the adsorption and self-
assembly of these particles, it is instructive to first consider the importance of capillary
adsorption and gravity in the self-assembly process with a few order-of-magnitude esti-
mates. The air/hexane interface has a surface tension of approximately v 2~ 0.018 N/m at




48 CHAPTER 3

JCT
il s

Figure 3.3: Transmission Electron Microscopy (TEM) image of hourglass-shaped particles
lying on a TEM grid. Horizontally aligned particles are often found arranged end-to-end in
string-like assemblies. Some interlocking arrangements of horizontally and vertically oriented
particles can also be seen.

room temperature (e.g. Ref. [137]). As an order-of-magnitude estimate, we assume each
particle to exclude an area A = L? ~ 4 - 107 m? when it adsorbs onto the air-hexane
interface. This adsorption provides an energy gain of roughly vA ~ 7-1071¢ J. Expressed
in terms of the thermal energy at room temperature (293 K), kgT, ~ 4 - 1072! J, this
yields A ~ 2 - 10° kgT,. In other words, particles will strongly and irreversibly adsorb
onto the air/hexane interface. The influence of gravity in capillary systems is typically

captured by two numbers. First, the capillary length ¢ = \/v/(gAp), which characterizes
the length over which gravity-induced deformations of the fluid-fluid interface decay, with
7 the relevant interfacial tension, g ~ 9.81 m/s* and Ap the difference in mass density
between the two fluids. Second, the Bond number Bo = L?/* with L a characteristic
length scale of the system, a dimensionless number that captures the relative importance
of gravitational forces relative to capillary ones. For our system of L ~ 200 nm-sized hour-
glass particles adsorbed at an air/hexane interface with v = 0.018 N/m and Ap ~ 655
kg/m3, we have £ ~ 2 mm and Bo ~ 107® < 1, which means we can safely neglect the
effects of gravity in our calculations.
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3.2 Theory & Methods

To model the self-assembly of the hourglass particles we will need to consider both effective
pair interactions between the hourglasses and their capillary interactions. We discuss the
particle interactions and the parametrization of the model particle shape in Section 3.2.1.
In Section 3.2.2 we introduce the thermodynamics associated with the adsorption of the
hourglasses at a fluid-fluid interface and describe the numerical method we use to simulate
how anisotropic particles adsorb at and deform the fluid-fluid interface. Finally, Section
3.2.3 describes how to express the deformation of the interface in terms of a multipole
expansion, and how this can be used to obtain an effective capillary pair interaction
between adsorbed particles.

3.2.1 Effective pair interactions and shape parametrization

The effective pair interactions of nanoparticles can be complicated, as they are the com-
bined result of Pauli exclusion, van der Waals dispersion, electrostatic forces and lig-
and interactions. The fact that these particles are stable (i.e. do not aggregate) in
the hexane solution suggests that there are no significant long-range attractions between
the particles. In contrast, it is clear from Figs. 3.2 and 3.3 that particles approach
each other close enough during self-assembly that we will need to take into account
their anisotropic shape. To make the problem analytically tractable, we assume that
we can model the effective pair interactions with an anisotropic hard-particle model.
To model the hard-particle interactions between these hourglass-
shaped particles we need to be able to calculate when two parti-
cles are overlapping. Because the hourglass shape is not convex,
we cannot directly calculate overlaps using the Gilbert-Johnson-
Keerthi algorithm as described in Section 1.7. However, this is
relatively easy to solve: we simply decompose the non-convex
hourglass shape into four convex components: two regular hexag-
onal prisms and two hexagonal frustums (Fig. 3.4). We then
check for overlaps between all pairs of components belonging to
different particles. If any two components overlap, the compos-
ite hourglasses overlap, and if no components overlap then nei-
ther do the hourglass particles. This decomposition does come
at a performance cost: we now need to perform up to 16 overlap
checks per particle pair. However, this cost can be reduced by i)
stopping the overlap check if any pair of components is found to
overlap, since overlap is then already established and ii) checking
for overlap between the circumscribed spheres of each component
Figure 3.4: De- first, which is considerably cheaper and allows one to discard
composition of the non- pairs of components that are far away from each other. Note also
convex hourglass shape that one could form the hourglass shape with only two compo-
into four convex compo- nents, which may be more computationally efficient. Although
nents. the overlap check could probably be further optimized, we found
the described method sufficient for our purposes.




50 CHAPTER 3

The synthesis procedure by which the hourglass-
shaped particles are created allows for a fair degree of
control over the exact particle shape simply by varying
the duration of the etching step. Figure 3.6 shows a
selection of particle shapes obtained in this way with a
table of their associate shape parameters. In this chapter
we will focus specifically on the hourglass shape shown
in Fig. 3.5, which has shape parameters L; = 157 nm,
Ly = 81 nm, W; = 136 nm, W5 = 65 nm and ¢ = 116°.
Note that this set of shape parameters is from a different
synthesis batch than those of Fig. 3.6, but its shape is
very similar. We also investigated the adsorption of the
particle shapes obtained after ¢ = 60 min. and ¢t = 75
min. of etching, but we found the adsorption not signif- Figure 3.5: The exact hourglass

icantly different from that of the shape in Fig. 3.5. shape investigated in this chapter,
with L1 = 157 nm, Ly = 81 nm,
Wi = 136 nm, W5 = 65 nm and
¢ = 116°.

t (min) | Ly (nm) | Lo (nm) | Wy (nm) | Wa (nm) | ¢ (°)

15 172 172 182 182 183

S 30 199 171 168 163 | 163

S 45 217 152 169 130 153

L2 %“@ Mg 237 141 170 00 | 141
He 75 260 161 176 58 125

90 251 154 183 44 116

105 255 155 178 39 115

14 120 252 146 173 34 145

15 min 30 min 45 min 60 min 75 min 90 min 105 min 120 min
>

Etching time

Figure 3.6: Experimentally obtainable particle shapes by stopping the etching process at
various times t.
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3.2.2 Thermodynamics and simulation of the adsorption of par-
ticles at a fluid-fluid interface

Consider the system shown in Fig. 3.7: two immiscible fluids
and a particle suspended in one of the fluids. The immisci-
bility of the two fluids implies an energy cost Ay for the
interface between them, with v > 0 the interfacial tension
between the two fluids and Ay the area of the interface. A
similar cost is given for the particle with v, A, though if fluid
2 is a good solvent for the particle we will likely have that
Vo < 7. The total thermodynamic potential 4., for this
desorbed case is then given by:

Fluid 1 7, Ao
Fluid 2

Y2, Ap

Figure 3.7: A particle
with surface area A, des-
orbed from a fluid-fluid in-
terface with surface area Ag.

Qdes = ’}/AO + ")/QAp. (31)
Now consider what happens if the particle adsorbs onto the
interface, as shown in Fig. 3.8. It will expose some part A;
of its area A, to fluid 1, and the rest of its area i.e. Ay = A, — A; to fluid 2 such that the
thermodynamic potential 2,4, is given by

Qugs = YA+ 1AL + 711 A, (3.2)

where A is the area of the fluid-fluid interface excluding the area now occupied by the
particle, and ~; is the surface tension between the particle and fluid 1. Note that we are
neglecting the influence of gravity in this description, which is justified given the small
size of the particles.

One can now answer the question “where does the particle
go?” with “wherever the total energy is minimized”. At this
point, it is convenient to consider the energy difference E
between the adsorbed and non-adsorbed case i.e.

Y1, Al
Fluid 1
Fluid 2

E = Qads - Qdes = 714 - fVAO + A1(71 - 72) (33)

Figure 3.8: A particle ad-

sorbed onto a fluid-fluid in-
terface. Due to the adsorp-
tion of the particle, the area
of the interface between the
two fluids is now A < Ao,
and the particle has two ar-
eas A7 and Ay in contact
with fluids 1 and 2, respec-
tively.

Since the potential of the desorbed case 24.s does not depend
on the particle coordinates as long as it remains away from
the interface, this difference F has the same energy minimum
as Eq. 3.2. Eq. 3.3 can be rewritten in terms of the contact
angle 6:

M~ 2

Y

E =~(A— A+ Ajcosb).

cosf = ; (3.4)

(3.5)

The interfacial tension v now sets the energy scale of adsorption, while the contact angle
0 describes the preference of the particle for either fluid. We can now find the equilibrium
adsorption configuration by minimizing Eq. 3.5 with respect to the particle’s position
and orientation. A particle of arbitrary shape at a fluid-fluid interface has three degrees
of freedom: its height z. with respect to the flat interface, the polar angle ¢ of its long
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axis with respect to the surface normal, and the angle 1 of its orientation around its own
long axis. Thus, we have that

E(Zm Q,D, 90) =7 (A(Zcu ¢) @) - AO + Al (Zm wv 90) COS 0) (36)

and we obtain the equilibrium configuration by minimizing with respect to z., ¢, and ¢.
While earlier work on the adsorption of colloidal particles at fluid-fluid interfaces followed
this route [118, 119, 138-142], later work [128, 143, 144] revealed that an important effect
was missing: when a particle adsorbs onto the interface, the interface will deform to
further minimize the energy. To include this effect, we must not only minimize Eq. 3.6
with respect to the particle coordinates, but also with respect to the shape of the interface.
This can be done by describing the shape of the interface surrounding the particle by a
height profile h, which leads to the adsorption energy

E[hzc,%@] = 7 (A[hzc,w,so] - AO + Al [h'zcﬂpﬁp] CO8 0) ) (37>

where I/, A and A; are now functionals of the height profile h_, , and we use the subscript
to indicate that each set of particle coordinates z., 1, and ¢ has its own equilibrium height
profile.

We minimize Eq. 3.7 using the numerical method developed in Refs. [143, 144].
In short, we apply a simulated annealing Monte Carlo scheme to find the equilibrium
height profile h(r, ¢) (in our method given in polar coordinates) for a fixed input particle
orientation (1, ¢) and contact angle §. The height of the particle z. is automatically
solved for by allowing the volume of the two fluids in the simulation to vary.

3.2.3 Multipole expansion of the interfacial deformation

While the numerical method described in the previous section allows us to find the ad-
sorption energy, the associated capillary deformation and even the capillary interactions
between particles, we still need some way to incorporate their results into a many-particle
simulation. Ideally, we would like to capture the capillary interactions in the form of
some pair potential u(r, ¢;, ¢;) that depends only on the relative position r and planar
orientations ¢; ; of the two particles 7 and j. To what extent it is possible to reduce the
many-body capillary interactions to an effective capillary pair potential is a matter of
current research (e.g. [145]) which will be discussed later in this chapter. For now, we
will simply introduce the framework by which it can be done by describing the height
profile, or rather the deformation field h in terms of a polar multipole expansion. This
derivation follows those of Refs. [143, 144, 146, 147]. Consider a 2D fluid-fluid interface
whose normal at a point (z,y, z) is given by #(x,y, z), and where we have chosen the
Z-direction to be antiparallel to gravity. For completeness we include the gravitational
terms in the derivation and only neglect them later. The Young-Laplace equation then

states that: A L )
A Y4 z-\r,Yy,z
V- -n(z,y,z) = — — —Qz

where V = (%, 6%, %), Ap is the Laplace pressure, v the surface tension between the

two fluids, and ¢ = \/v/(gAp) is the capillary length as defined earlier. If the surface is

(3.8)
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sufficiently flat, we can describe its shape by the height profile h(z,y) similar to Section
3.2.2. One can then express the divergence of the surface normal in terms of the mean
curvature 2H (x,y) = V - n(z, y) to obtain [148]:

A h(z,

If the interface is only weakly curved, one can apply the linear approximation

on\>  [(0h\® Onoh
(2 < () o1

(3.9)

to obtain the linearized Young-Laplace equation
Vih = — — = (3.11)

In our experimental system of evaporating hexane the interface is flat in the absence of
any adsorbed particles, which means that the Laplace presssure Ap = 0. This leaves us
with only the simple equation

h
2p

V*h = 2k

which can be solved in polar coordinates for the height h(r, ¢), either through a real-space

route as in Refs. [116, 144] or via a Fourier transform as in Ref. [147]. Following the

former, we use separation of variables

(3.12)

h(r,¢) = ¥ (r)®(o) (3.13)
to write Eq. 3.11 (with Ap = 0) into an angular part
10°® 9
with m € N, which is solved by the set of functions
D, (¢) = ¢ cos(meo — by,), (3.15)
and a radial part
0% oY r?
2 2
which is solved by the so-called modified Bessel functions of the second kind K,,*:
UV (1) = am K (r/0). (3.17)

The general solution for the deformation height field h(r,¢) is then given by a linear
combination of the various modes m:

h(r,¢) = agKo(r/l) + i U K (1/0) cos(mep — byy,). (3.18)

m=1

*Technically the modified Bessel functions of the first kind v, (r) = D,,, I, (/) are also valid solutions,
but they are discarded by the boundary condition h(r — oo, ¢) = 0.
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Due to its similarity with electrostatics, this procedure is referred to as a multipole expan-
sion, with the various m € {0,1, 2,3, ...} referred to as the capillary monopole (or charge),
dipole, quadrupole, hexapole, etc. We have split off the monopole term m = 0 in Eq.
3.18 for two reasons. The first is that its angular dependence is trivial (there is none).
The second is that this monopolar term contains the deformation due to gravity. Simply
put, a particle adsorbing onto a fluid-fluid interface will push the interface one way or
another due to its weight — “down” if it is heavier or “up” if it is lighter than the two
fluids. For this reason, the monopolar term is always present. However, its significance
depends on the relative strength of the gravitational and interfacial forces, and it is thus
only important if the adsorbed particles are heavy enough. As our particles (~ 200 nm)
are small compared to the capillary length ¢ ~ 2 mm, Ky(r/{) varies only very little over
the length scales we are interested in (i.e. r/¢ < 1). Thus, it can be neglected for indi-
vidual particles, although it may become relevant for the assembly of aggregates [147]. In
this limit of /¢ < 1, we can simplify the remaining multipole terms by using the limiting
behaviour of the modified Bessel functions K,,(z) for x < 1 [147]:

Ko(z) ~ ("”2_”' (i)m (r<1, m=1,23,..) (3.19)
to obtain:
W) =S am (l)m cos(mé — By), (3.20)
m=1 r

where «,,, denotes the combination of a,, with the additional constants from the approxi-
mation. This is the same set of solutions we would have obtained if we had approximated
h/f? = 0 in Eq. 3.12 and solved the resulting Laplace equation V2h = 0. It is in-
structive to consider which of these modes are actually relevant for self-assembly. The
dipolar mode m = 1 is not very common, because any particle adsorbed onto the inter-
face with a dipolar deformation can rotate to eliminate said deformation. They are only
found as the dominant mode when the orientation of the particles is pinned by e.g. an
external electric or magnetic field or by surface roughness [116]. The quadrupolar mode
m = 2, however, cannot be eliminated by rotation and is often found as the dominant
term in experimental systems [30, 33, 116, 126], though in other cases it is the hexapolar
mode m = 3 [124, 131]. Interactions between particles adsorbed at the interface now
arise because the interfacial deformation can be further minimized by arranging particles
such that the positive and negative “poles” of the multipoles are brought together’. In
general, this is a strong many-body effect. However, especially for dilute systems, one
can obtain the qualitative behaviour by considering only pairwise multipole-multipole in-
teractions. A pairwise capillary quadrupole-quadrupole potential was first calculated by
Stamou, Duschel and Johannsmann [116] for small particles and negligible gravity, while
later Danov et al. calculated the potential for arbitrary multipole-multipole interactions,
first in the same limit of small particles and negligible gravity (r/¢ > 1) [146], and later
including the effects of gravity [147]. For two capillary multipoles ¢, j of order m;, m; > 1,
in the limit of negligible gravity and for distances r larger than the particle diameter L,

tIn contrast to electromagnetism, like capillary charges do not repel, but attract.
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the pair interaction energy w is of the form [146]:

m;+m;

Um;,m; (T7 ¢i7 ¢]) - _Amzmmj (,rl,) COS<mi¢i + mj¢j)? (321)

where we have summarized all constants into the term A,,, ,,; because we will be determin-
ing this combined constant from our capillary deformation calculations. It has dimensions
of [energy|/[distance]™*™i and depends on the multipole orders, the interfacial tension,
the height of the capillary deformations around both particles individually and on their
size. Note that in Eq. 3.21 the sign of ¢; is different than in Refs. [146, 147] — this is
merely a different choice of coordinates.

3.3 Results & Discussion

This section is organized as follows. In Section 3.3.1 we use the method for computing
capillary deformations described in Section 3.2.2 to calculate the ways in which individual
hourglass-shaped particles adsorb onto a fluid-fluid interface. In Section 3.3.2 we investi-
gate the self-assembly of hard hourglass-shaped particles that additionally interact via a
capillary multipole-multipole interaction. As we will see, a polar multipole expansion fails
to capture the experimentally observed behaviour, and so in Section 3.3.3 we simulate the
adsorption of two particles onto an interface and discuss possible improvements to the
polar multipole description.

3.3.1 Adsorption modes

Using the method described in Section 3.2.2; we calculate the adsorption energy E(1, ¢)
as a function of the particle orientation given by the two angles 1) and . Because of the
hexagonal symmetry around the particle’s long axis, we only need to consider ¢ € [0, /6],
while its mirror symmetry perpendicular to its long axis allows us to restrict the ¢o-domain
to ¢ € [0,7/2]. While the interfacial tension v of the air-hexane interface is known, the
particle-air and particle-hexane interfacial tensions 7, and - are unfortunately not, and
hence we do not know the actual contact angle 6 of our system. We therefore repeat our
simulations for multiple contact angles cosf < 0.6. Simulating smaller contact angles
(higher cos®) is difficult, as our current method runs into numerical issues when we
approach the regime of complete wetting cosf — 1.

In Fig. 3.9 we show the adsorption energy F(v,¢) and the (meta)stable adsorption
configurations for the particle shape of Fig. 3.5 for contact angles cosf = 0, 0.2, 0.4
and 0.6. We express the adsorption energy in units of the thermal energy kg7, at room
temperature T, = 293 K. From these figures it can be seen that there are three possible
configurations for a particle to adsorb at the interface: wvertically, largely immersed in
hexane with its long axis perpendicular to the interface; horizontally, mostly in hexane but
with its long axis in the same plane as the interface, and tilted, with its long axis making
an angle of around 63° with the plane of the interface. Each adsorption configuration
deforms the interface in its own way: the vertical mode does not deform the interface
at all apart from the negligible monopolar deformation, while the horizontal and tilted
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Figure 3.9: (Left:) Adsorption energies E (Eq. 3.7) in terms of the thermal energy at room
temperature kg7, as a function of the angles ¢ and v (top middle), for contact angles cos = 0,
0.2, 0.4 and 0.6, corresponding to interfacial tensions v; = 72 + 0 N/m, 0.0036 N/m, 0.0072
N/m and 0.0108 N/m, respectively. The energy E = 0 corresponds to the particle desorbed
from the interface and completely immersed in hexane. (Right:) predicted (meta)stable particle
orientations and the adsorption energies and capillary deformation fields. In the contour plot,
the plane z = 0 corresponds to the air-hexane interface level far away from the particle.
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modes deform the interface with an approximately quadrupolar and hexapolar profile,
respectively. The relative stability of these modes depends strongly on the contact angle,
and only rather weakly on the specific hourglass shape. The tilted mode is preferred
when the waist is thick and the contact angle is high i.e. cosf < 0.2, such that there
is little preference for one of the two fluid phases and the problem essentially reduces to
finding the maximum area of the fluid-fluid interface that can be excluded. On the other
end, the vertical mode is preferred when there is a strong preference for either hexane
i.e. for cosf > 0.6, since there is a large energy cost when exposing the particle surface
to air. In between, for 0.2 < cosf < 0.6, we find the horizontal mode, which provides
a balance between the two. Importantly, the vertical and horizontal configurations are
always separated by a large energy barrier on the order of 10* kgT. Due to this large
barrier, thermal fluctuations will be unable to change the orientation of the particles
once they settle into either of these two (meta-)stable configurations. This may explain
why we see particles in both the horizontal and the vertical configuration in the TEM
images of Figs. 3.2 and 3.3. We note, however, that we would not be able to see the
tilted configuration in the TEM images, as they are of a fully dried system on a solid
substrate, and without a fluid-fluid interface to support the particles they would simply
fall into the horizontal orientation. However, we could still find evidence of the tilted
configuration in the structure of self-assembled aggregates, especially since its capillary
interaction is different from the horizontal adsorption configuration due to its hexapolar
capillary deformation. Regardless, there are two reasons to believe we are in the low
contact angle (high cos @) regime, where the tilted mode is unstable: i) all EM images
show particles in both the vertical and horizontal orientations; ii) string-like assemblies
such as those seen in Fig. 3.3 cannot be formed by the tilted configuration as they would
be energetically unfavorable.

We now perform simulations on the self-assembly of hourglass-shaped particles. We
assume that we are in the low contact angle regime such that there is a mixture of
horizontally and vertically adsorbed particles at the interface. For simplicity we assume
a 50/50 mixture of both orientations. Starting with a dilute system, the system will
increase in density as the hexane evaporates, thereby driving the particles together. We
simulate this process by performing a Monte Carlo simulation of hard hourglass-shaped
particles in both (meta-)stable orientations in an isobaric (NpI') ensemble in which the
pressure is incrementally increased. Fig. 3.10 shows two representative snapshots of such
a simulation for N = 800 hourglass particles following a compression from SpW2 = 2
to BpW2 = 20 over 4 - 105 MC cycles — a relatively rapid compression. At low density
(reduced density p* = NW2/A = 0.41) the system forms a disordered, mixed fluid phase.
At higher density (p* = 0.63) We observe the formation of locally ordered structures, but
find no large-scale ordering or demixing. Most notable is the presence of dense-packed
domains of horizontally oriented particles and the absence of large hexagonally ordered
domains of vertically oriented particles. At no stage do we observe string-like assemblies.
On the whole, the structure we find is quite different from what we observe experimentally.
This should come as no surprise: we have not added any capillary interactions yet, despite
knowing that they play a major role in the self-assembly. We therefore turn to including
those interactions now.
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Figure 3.10: A system of N = 800 hourglass particles without capillary interactions as
obtained from simulations in which the pressure is increased from ppW# = 2 to BpW? = 20
over 4 - 105 MC cycles. Left: at SpW# = 2.6 and NW2/A = 0.41. Right: SpW? = 20 and
NWZ2/A = 0.63. The colour indicates the particle orientation. Locally ordered structures form,
but there is no demixing or long-ranged order.

3.3.2 Capillary pair interactions

Capturing the full capillary interaction in a many-
BJZ + particle simulation is not feasible due to its many-

+  body character. However, it is possible to capture
) the qualitative behaviour by considering a simpli-

the dominant multipole mode of their interfacial de-
formation. As noted in Section 3.1, our hourglass
+ . . . . oo
particles are in the size regime where gravitational
Figure 3.11:  Schematic of coor- effects are negligible. In that case, the potential
dinates for the capillary quadrupole- energy u of the quadrupole-quadrupole interaction
quadrupole interaction of two horizon-  hetween two particles i and j is of the form [116,

7 —
— > fied pairwise interaction between particles based on
— Ty ¢i>/ —
_|_

tally oriented hourglass particles. 146, 147]:
u(Dij, ¢ij) = ecos[?gbij]/ij, (3.22)
where D;; = |r;;| = |r; — r;| is the center-of-mass distance between the particles and

¢ij = ¢i + ¢; is the sum of the angles of the quadrupole moments relative to the center-
of-mass vector r;;, shown schematically in Fig. 3.11. The constant € sets the energy scale
and depends on the height of the interfacial deformation induced by the particles, as well
as on their size.

We now repeat the self-assembly simulations from Fig. 3.10, but additionally let
horizontally aligned particles interact with the quadrupole-quadrupole potential given by
Eq. 3.22. We again initialize the system at a low density in a roughly 50/50 mixture of



CAPILLARY-DRIVEN SELF-ASSEMBLY OF HOURGLASS-SHAPED PARTICLES AT A
FLUID-FLUID INTERFACE 59

horizontal and vertical orientations, and compress by increasing the pressure. Figure 3.12
shows the trajectory of such a simulation where horizontally oriented particles interact
with the quadrupole-quadrupole potential of Eq. 3.22 with € = 20 kgTW;'. This leads to
a fairly strong interaction when compared to the thermal energy: two particles that touch
side-by-side (i.e. D = W, ¢;; = m) are bonded with an energy of 20 k7', and end-to-end
(D = Ly, ¢;; = 0) with roughly 11 kgT. We compressed the system from SpW? = 2 to
BpW2 = 20 over 4 - 10° MC cycles to show the behaviour at both low and high densities.
Again, this constitutes a fairly rapid compression. At low densities, the strong quadrupole-
quadrupole interactions cause the formation of string-like assemblies whereby horizontally
oriented particles attach side-by-side. Over time, these strings assemble into 2D sheets
and the hourglasses with different adsorption configurations demix. Given enough time,
the system will evolve towards two phase-separated domains of horizontally and vertically
aligned particles.

Although this quadrupole-quadrupole interaction captures part of the experimentally
observed behaviour, such as the formation of string-like assemblies at low density, there are
significant discrepancies: 2D ordered sheets of horizontal particles are not observed in the
experiments, and experimentally strings of particles are arranged end-to-end rather than
side-by-side. It appears that Eq. 3.22 fails to capture an anisotropy of the quadrupolar
deformation field that is crucial to the self-assembly. We investigate this discrepancy in
the next section, where we simulate the capillary deformation due to two horizontally
adsorbed particles to determine the pair interaction in detail.

Figure 3.12: A system of N = 200 hourglass particles as obtained from simulations in
which the pressure is increased from SpWZ = 2 to fpWE = 20 over 4 - 105 MC cycles. The
horizontally aligned particles interact with a quadrupole-quadrupole pair interaction (Eq. 3.22)
with € = 20 kgT W in addition to their hard shape. The colour indicates the particle orientation.
(Left:) at low density (p* = 0.28) horizontally adsorbed particles form strings. (Right:) at high
density (NW#/A = 0.56) the horizontal and vertical orientations have demixed.
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3.3.3 Elongation of the quadrupolar mode

The method that we used in Section 3.3.1 to determine the capillary deformation field
h(r,¢) and adsorption energy of the particles can also be applied to multiple particles.
We determine the total adsorption energy FE of two adsorbed particles as a function
of the interparticle distance D, and use this to determine the effective pair potential
u(D) between them. We consider two cases: two particles aligned end-to-end, and two
particles aligned side-by-side. We show the results in the plots shown in the bottom
left of Figs. 3.13 and 3.14. The contour plots show the associated height profiles of the
interface, similar to Fig. 3.9. By fitting the expected quadrupole-quadrupole form of
Eq. 3.22 to the end-to-end and side-by-side energy profiles E(D) separately we obtain
the constants €gge—_sigze = —0.274 kpT.pum®* and €epg—_eng = —2.464 kgT,um*. Note that
numerical quality of the side-by-side energy profile E(D) is lower due to the smaller
energy scale of this interaction. In contrast to the quadrupole-quadrupole interaction of
Eq. 3.22, the end-to-end interaction is roughly a factor of 9 stronger than the side-by-side
interaction. There are a number of ways to include this additional anisotropy. We could
compute and tabulate the pair interaction energy E(D, ¢) for the range of distances D
and relative angles ¢ that we wish to consider in the many-particle simulations. However,
while efficient for use in the many-particle simulations, this would require a significant
number of capillary deformation calculations, and the resulting tabulated potential would
only be applicable for one specific particle shape and contact angle #. Another way
forward might be to include higher-order multipole moments in our description of the
deformation field. Including an octupolar deformation, for instance, could cause the end-
to-end interaction to become stronger than the side-by-side one, as shown for spheres
[145]. However, deriving the resulting pair interaction may be a challenging endeavour,
especially if the quadrupole and octupole modes cannot be decoupled. Furthermore, the
resulting expression may not be cheap to evaluate computationally. A third way may be
to consider a different type of quadrupole that better fits the elongated particle shape.
Literature on the capillary deformations of rodlike particles [30, 33, 122, 124, 126] has
reported some success in describing the height profile and pair interactions by considering
not a polar quadrupole, but instead an elliptical quadrupole i.e. one where the distance
between the “+” charges is not the same as that between the “—” ones [31, 33, 122].
Unfortunately, no closed-form expression for the pair interaction energy was given, nor
is it clear a priori whether an ellipsoidal quadrupole could capture the full anisotropy of
the hourglass shape and correctly describe the near-field capillary interactions.

For an accurate approximation of the capillary interactions one should consider the
methods above. However, a cruder approximation may already suffice to explore the
effect of a stronger end-to-end interaction. Let us consider a minimum modification
to the quadrupole-quadrupole interaction Eq. 3.22 that would include the asymmetry
by introducing an angle dependence to the amplitude constant € such that it captures
correctly the ratio of end-to-end and side-by-side amplitudes:

us(D, ¢s, ¢5) = €a(di, ¢5) cos[2(¢s + ¢;)]/ D" (3.23)
This function es(¢;, ¢;) modifies the pair interaction in such a way that the correct ratio of
energies of the end-to-end and side-by-side configurations is obtained. To obtain a proper
form for this function, we must make sure to retain the proper symmetries:
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Figure 3.13: Total adsorption energy E of two horizontally adsorbed hourglass particles (shape
0, Fig. 3.6a) in the end-to-end configuration, as a function of their center-of-mass distance D
and for a contact angle of cos @ = 0.6. The energy level £ = 0 corresponds to both particles fully
immersed in hexane, and z = 0 to the height of the interface far away from the particle. The
blue points are values computed with the numerical method described in Section 3.2.2, while the
blue line shows a fit to the theoretically expected quadrupole-quadrupole interaction Eq. 3.22.
The contour plots on the right as well as the 3D view show the corresponding height profiles of
the interface at points (a), (b) and (c).
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Figure 3.14: Total adsorption energy E of two horizontally adsorbed hourglass particles (shape
0, Fig. 3.6a) in the side-by-side configuration, as a function of their center-of-mass distance D
and for a contact angle of cosf = 0.6. The energy level E = 0 corresponds to both particles
fully immersed in hexane, and z = 0 to the height of the interface far away from the particle.
The blue points are values computed with the numerical method described in 3.2.2, while the
blue line shows a fit to the theoretically expected quadrupole-quadrupole interaction Eq. 3.22.
Note the smaller energy scale and the comparatively larger numerical noise when compared to
the end-to-end configuration in Fig. 3.13. The contour plots on the right as well as the 3D view
show the corresponding height profiles of the interface at points (a), (b) and (c).
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« Rotating our particles in-plane by 7 results in the same configuration:

UQ(D’(bZ"(bj) = UQ(D,Qbi + 7’L7T,¢j + TTL?T) W n,mec Z
= 62(¢Z’, ¢J) = 62(¢i + nm, ¢j + m7r) Y n,mec 7. (324)

o The two particles are identical, so exchanging them may not change the energy:
u2<D7 ¢i7 ¢J) = U’2(D7 (b]u (bl) = €2<¢i7 (Zsj) = €2<¢j7 Qsl) (325)

o €&(¢;, ¢;) must provide the correct ratio between the side-by-side and end-to-end
configurations such that:

€2 (07 0) €end—end
= ) 3.26
62(71'/2, 7T/2) €side—side ( )

Equation 3.25 is satisfied* if we choose

€2(9i, ¢5) = ecf () f (), (3.27)

as long as f(¢) = f(¢p+nm)Vn € Z, per Eq. 3.24. One such function is f(¢) = c+cos [2¢],
with which Eq. 3.26 is solved for the two solutions

(C+ 1)2 B €end—end . 2.464 ]CBTT[Lm

(c—1)%  €side—size  0.274 kT, pm

=cr2o0rcr1/2. (3.28)

Our approximated capillary pair interaction thus becomes:
EC
up(D, i, ¢5) = (e + cos [26])(c + cos [26;]) cos[2(¢i + ¢;)], (3.29)

for either ¢ &~ 2 or ¢ &~ 1/2. Filling in the condition for the magnitude of the energy scale
yields the two energy constants e

€= €end—en 1
us(D,0,0) = Df (2 + cos0)% = ;)4 4 ey = §Cend—end (3.30)
_ €e=1/2 2 €end—end . 4
uz(D,0,0) = Di (1/2 + cos0)” = Di = =12 = end—end (3.31)

We show contour plots of the angular dependence of this new pair potential with in Fig.
3.15 (b) and (c) for ¢ = 2 and ¢ = 1/2, respectively, as well as that of the quadrupole-
quadrupole pair potential Eq. 3.22 in (a). Since the angular dependence can be decoupled
from the distance dependence, we express the energy in arbitrary units. We show the
corresponding particle orientations for clarity. The behaviour of the two solutions with
¢ =2 and ¢ = 1/2 is qualitatively different. For ¢ = 2, the side-by-side configuration is
a saddle point and thus unstable, while for ¢ = 1/2 it is a local minimum, which, while

*The functions ez(¢i, ¢j) = €.(c+cos[2(¢; = ¢;)]) also qualify, but they cannot fulfill the ratio require-
ment of Eq. 3.26.
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Figure 3.15: Contour plots of the pair interaction energies u as a function of the particle
angles ¢; and ¢;, for (a) the quadrupole-quadrupole pair potential Eq. 3.22, (b) the modified
pair potential Eq. 3.29 with ¢ = 2 and (c) the modified pair potential Eq. 3.29 with ¢ = 1/2.
The energy is given in arbitrary units since the angular dependence is the same for all distances.
Insets show the corresponding orientations of the two particles.

metastable, may be long-lived due to the large energy scale. Additionally, the end-to-
side configuration also becomes a local minimum for ¢ = 1/2 (which is deeper than the
side-by-side configuration), while it is a saddle point for ¢ = 2. It should be stressed at
this point that the modification we make here is very much ad hoc. It is possible that
neither ¢ = 2 nor ¢ = 1/2 case are good approximations of the angular energy landscape.
However, the real landscape must still respect the symmetry requirements of Eqs. 3.24
and 3.25 as well as break the end-to-end / side-by-side symmetry by virtue of Eq. 3.26,
and so we expect the real landscape to have similar properties to our ad hoc modification.

Another way to represent the modification of the pair potential is to fix the in-plane
orientation of the particles and vary their relative positions. Let us fix the position of
particle ¢ at the origin and fix the long axes of particles ¢ and j to be parallel. Note that
this does not imply that ¢; = ¢;, as these angles are defined with respect to the center-
of-mass vector 7;;. In Fig. 3.16 we show the pair interaction energy as a function of the
position (z,y) of the second particle for (a) the original quadrupole-quadrupole expression
(Eq. 3.22) and (b,c) our modified one (Eq. 3.29) with ¢ = 2 and (c) ¢ = 1/2, respectively.
In this representation it is clear that our modification constitutes an amplification of the
end-to-end stacking energy while retaining the overall symmetry. Fig. 3.16 also shows a
second particle in the position corresponding to the densest packing, with its center of
mass indicated by the black dot. This packing is energetically unfavorable, regardless of
our modification. This suggests that the densest packing cannot be formed while capillary
interactions dominate the self-assembly. However, we are making the assumption here that
our pair potential is representative for the interactions at very close distances. This is a
dangerous assumption: it is likely that higher-order multipole terms play a role at these
shorter distances.

To check whether the dense packing is indeed unfavorable, we also calculate the cap-
illary deformation for a configuration close to dense packing. Fig. 3.17 shows the height
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Figure 3.16: Contour plots of the pair interaction energies u as a function of the relative
position for (a) the quadrupole-quadrupole pair potential Eq. 3.22 with € = €¢pg—eng = —2.464 -
10"2kgT,um*, and (b) the modified pair potential Eq. 3.29 with ¢ = 2, €= = (1/9)€cnd—end
and (c) the modified pair potential Eq. 3.29 with ¢ = 1/2, €.—1/2 = (4/9)€cnd—end- Additionally,
a second particle is shown in the position corresponding to the densest packing. Regardless of
the exact pair potential, this dense packing is energetically unfavorable.

profile z(z,y) of the interface deformed by the adsorption of two horizontally aligned
hourglass particles in the dense packing configuration. The total adsorption energy
E = —24 103 kgT, is roughly 10® kT, higher than the energy of the two adsorbed
particles at infinite separation such that u ~ +10% kg7, confirming that the dense
configuration is unfavorable even when taking into account the full deformation of the
interface.
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Figure 3.17: Height profile z(z,y) of the interface and associated total adsorption energy F
for two horizontally aligned hourglass particles in the dense packing configuration.

Let us now investigate what effect the modification of the quadrupole-quadrupole inter-
action has on the self-assembly. We follow again a similar procedure in which we prepare
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a system of hourglass particles at low density in a roughly 50/50 mixture of horizontal
and vertical orientations, and compress it by increasing the pressure. Figs. 3.18(a,b)
and 3.19(a,b) show representative snapshots for these simulations where we increase the
pressure from a low value of BpW2 = 0.01 to a high value of SpW3 = 40. In Fig. 3.18
horizontally adsorbed particles interact with the modified quadrupole-quadrupole inter-
action of Eq. 3.29 with ¢ = 1/2 and €e=1/2 = —20kpT, W} = —0.00685 kgT,um* and in
Fig. 3.19 with ¢ = 2 and €.y = —5kgT, W = —0.0017125 kgT,um*. Note that we do
not use the full value of €.,q_ena/9 = —2.464 kpT,.pum*, as this leads to extremely strong
capillary interactions on the order of 10® kT, and local Monte Carlo sampling becomes
prohibitively inefficient for potentials with wells deeper than several tens of kgT'. Instead,
we choose values of €. as high as possible while still retaining adequate sampling. For
¢ =1/2in Fig. 3.18(b) we can see that the strings combine into sheets of horizontally
adsorbed particles, causing them to demix from the vertically adsorbed ones. For ¢ = 2
in Fig. 3.19(b) we do not see any sheet formation. This is probably because the side-
by-side configuration is unstable for ¢ = 2, while it is metastable for ¢ = 1/2. Finally,
at SpW? = 40 we disable the capillary interactions and further increase the pressure to
SpW2 = 60 to mimic what happens when there is no longer sufficient hexane to main-
tain the air/hexane interface. These results are shown in Figs. 3.18(c) and 3.19(c). In
reality two things will take place: capillary bridging of hexane will occur between nearby
particles, pulling them together, and particles will adsorb onto the interface between air
and the support fluid (diethylene glycol) instead. It should be noted that the final con-
figurations shown in Figs. 3.18(c) and 3.19(c) are quite different: the formation of a
string network appears to trap vertically adsorbed particles, limiting the demixing and
thereby the domain size of aggregates of horizontally and vertically adsorbed particles.
This suggests that the self-assembly depends quite sensitively on the exact shape of the
angular energy landscapes such as those shown in Fig. 3.15. Again: because capillary
interactions are many times the thermal energy, seemingly shallow local minima can be
long-lived and of significant influence. To achieve better control over the self-assembly,
these pair interactions must be established in greater detail. It may be possible to tune
this landscape via a judicious choice of particle shape and contact angle. It may also be
necessary to consider the three-body interactions similar to what was done for spheres in
Ref. [145], especially when one considers the formation of sheets from strings.
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Figure 3.18: Typical simulation configuration of a system of N = 200 hourglass particles
following an isotropic pressure annealing. Horizontally aligned particles interact with a modified
quadrupole-quadrupole pair interaction (Eq. 3.29, with ¢ = 1/2 and €.—; /2 = —2OI<:BT,~W{L =
—0.00685 kpTum?*) in addition to their hard shape. Colors represent the particle orientation.
(a) At low density, particles form end-to-end aligned strings. (b) upon sufficient compression
the strings combine into sheets, but the dense packing is inhibited by the capillary interactions.
(c) upon turning off capillary interactions, the system further compresses and particles enter
their densest packings.
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Figure 3.19: Typical simulation configuration of a system of N = 800 hourglass particles
following an isotropic pressure annealing. Horizontally aligned particles interact with a mod-
ified quadrupole-quadrupole pair interaction (Eq. 3.29, with ¢ = 2 and €.—o = —5kgTW; =
—0.0017125 kT, um?*) in addition to their hard shape. Colors represent the particle orientation.
(a) At low density, particles form end-to-end aligned strings. (b) at higher densities, a network
of strings forms. (c) upon turning off capillary interactions, the system further compresses and
particles enter their densest packings.
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3.4 Conclusions

In this chapter we investigated the self-assembly of hourglass-shaped nanoparticles at
an air-hexane interface. For parameters similar to those of the experimental system
described in Section 3.1 i.e. particles of roughly 200 nm in size, we found that the self-
assembly is dominated by capillary interactions many thousands of times larger than the
thermal energy. There are three (meta)stable orientations for particles to adsorb onto
the interface: horizontal, with their long axis in the interfacial plane; vertical, with their
long axis perpendicular to the plane, and tilted, with the long axis at an angle of around
63° with respect to the plane. Which of these adsorption configurations are preferred
depends on the (unknown) contact angle 6 of the air/hexane/particle system, with our
best estimates suggesting this contact angle is small i.e. cosf > 0.6. In this regime, the
two (meta)stable orientations are the vertical and horizontal ones. For vertically adsorbed
particles, there are no capillary pair interactions and the self-assembly leads to close-
packed 2D hexagonal domains. For horizontally adsorbed particles, there is a quadrupole-
quadrupole capillary pair interaction that causes particles to form end-to-end attached
strings. A polar quadrupole (i.e. where the charges are distributed at equal distances)
is not sufficient to describe this behaviour and leads to side-by-side attached strings. We
recover the preference for end-to-end attachment by modifying the quadrupole-quadrupole
pair potential, taking care to retain the underlying (a)symmetries. We argue that the size
of structurally ordered domains resulting from the self-assembly is limited by two effects.
First, the dense packing of horizontally adsorbed particles is energetically unfavorable due
to the capillary interactions. Second, depending on the exact form of the capillary pair
interaction, 1D strings may be favored over 2D sheets, as is the case for Eq. 3.29 with
¢ = 2. The relative preference of 1D strings versus 2D sheets also affects the demixing of
horizontally and vertically aligned particles. If strings are favored over sheets, a network
of strings is formed which arrests the demixing, limiting the domain size via a caging
effect.

Our results extend the knowledge of self-assembly at fluid-fluid interfaces that has
been established for spheres [116, 145, 146], rods [30, 31, 33, 122, 124, 126, 149] and to
some extent, cubes [32, 128, 129, 131] by considering a more anisotropic, non-convex par-
ticle shape. We establish many similarities to the self-assembly of spheres and rods and
cubes, but also a number of differences. As is the case for spheres, rods and cubes, the
decomposition of capillary deformations into multipole modes is highly effective. Similar
to rods, however, the use of “simple” polar multipoles is insufficient to describe the capil-
lary deformations and interactions, as it fails to capture the stretching of the deformation
field caused by the elongated particle shape. In contrast to spheres and rods, but similar
to cubes [129], (meta)stable configurations play a crucial role in the self-assembly. Both
in the experiments and in our simulations we find particles adsorbed in both the vertical
and horizontal adsorption modes, with substantially different capillary interactions.

How do we proceed from here? Can we, given the tools available, predict the self-
assembly of any arbitrary particle adsorbing onto a fluid-fluid interface? Almost. On the
computational side, current methods can predict the adsorption of non-convex and pat-
terned particles (present work and Ref. [129]) and can be used to compute the associated
two-, three- and many-body interactions. The theoretical frameworks developed over the
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last two decades [146, 147] provide a means to accurately capture the two-body interac-
tions by (possibly elliptical) multipole-multipole interactions. There are still some open
questions, however. A systematic investigation into the three- and four-body effect has to
our knowledge only been done for spheres [145], where it was revealed to be significant.
Whether the same holds for other systems is unknown. Describing the three- and four-
body interactions analytically is likely to be challenging: to our knowledge, no analytical
expression for three-body capillary multipole interactions has been derived. The present
work and recent studies on colloidal rods [30, 31, 33, 122, 124, 126, 149] suggests that an
elliptical multipole expansion may be superior in describing the capillary deformations of
elongated particles. However, analytical expressions for the elliptical multipole-multipole
pair interactions have not yet been derived. This may be a fruitful avenue to pursue.

The sheer strength of capillary interactions for nano- and colloidal-scale particles
makes it a powerful tool for directed self-assembly, but it also makes the self-assembly sus-
ceptible to local minima in adsorption and pair interaction energies. Meanwhile, the strong
many-body nature of capillary interactions complicates a simple description. However, it
does not prohibit it. The tools discussed in this chapter offer a very promising means of
characterizing the capillary interactions and self-assembly of anisotropic particles at fluid-
fluid interfaces, while accurate theoretical descriptions are just a few improvements away.
Tailored capillary interactions are a significantly underused tool to guide the self-assembly
of nano- and microscale particles given the large number of synthesis procedures in which
capillary interactions are used. We suspect that in the next few years, a far greater control
over the self-assembly of particles at fluid-fluid interfaces can be established than what
was previously possible.
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Densest packings and bulk phase
behaviour of rounded tetrahedra

Using simulations we study the phase behavior of a family of hard spherotetrahedra, a
shape that interpolates between tetrahedra and spheres. We identify thirteen close-packed
structures, some with packings that are significantly denser than previously reported.
Twelve of these are crystals with unit cells of N = 2 or N = 4 particles, but in the shape-
regime of slightly rounded tetrahedra we find that the densest structure is a quasicrystal
approximant with a unit cell of N = 82 particles. All thirteen structures are also stable
below close packing, together with an additional fourteenth plastic crystal phase at the
sphere-side of the phase diagram, and upon sufficient dilution to packing fractions below
50-t0-60% all structures melt. Interestingly, however, upon compressing the fluid phase
self-assembly only takes place spontaneously at the tetrahedron- and the sphere-side of
the family but not in an intermediate regime of tetrahedra with rounded edges.

Based on R. van Damme, G.M. Coli, R. van Roij and M. Dijkstra, “Classifying Crystals of Rounded
Tetrahedra and Determining Their Order Parameters Using Dimensionality Reduction”, ACS Nano, 14,
11, 15144-15153 (2020)
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4.1 Introduction

Recent advances in colloid synthesis allow for a plethora of shapes for particles in the
nanometer-to-micrometer scale [15, 114, 150-154]. These particles have a Brownian char-
acter when suspended in a liquid such as water or toluene, which causes self-assembly
into a huge variety of ordered structures at sufficiently high concentrations. These self-
assembled structures can then form materials with useful optical [155], photonic [156], elec-
tronic [157], or catalytic [158] properties. Simulations and experiments on monodisperse
systems of sterically stabilised anisotropic particles exhibit a wealth of densest-packed
structures far beyond the well-known face-centered-cubic (FCC) crystal phase for spheres
and the simple cubic (SC) crystal for cubes [18, 159-163]. The study of such close-packed
structures of rigid hard bodies has a long history with relevance far beyond nanoparti-
cle self-assembly; from Kepler’s stacking of cannonballs in 1611 [164] to the packing of
sand piles in more recent times [165]. During the past years, various simulation meth-
ods have been employed to predict the self-assembled structures and densest packings of
hard-particle systems such as tetrahedra [41, 166-169], Platonic solids [41, 159, 167, 169],
rounded cubes [170-174], cuboctahedra [18, 161, 162, 175], truncated tetrahedra [176]
and even families of shapes without conventional names [167, 169, 177-179].

In this chapter, we will follow a similar path to investigate the phase behaviour of
hard spherotetrahedra, a shape that interpolates between tetrahedra and spheres. Our
motivation for studying this particular system is twofold. The first is a peculiar finding by
Jin. et al. [47], who investigated the dense packings of spherotetrahedra and found their
densest packing for a specific range of shapes to be an 82-particle quasicrystal approxi-
mant, one which was considered earlier by Haji-Akbari et al. [166, 168] as a candidate
for the densest packing of (non-rounded) tetrahedra. This was a remarkable result: the
studies of densest packings mentioned earlier all yielded dense packings that were crystals
with relatively small unit cells of four particles or fewer. An 82-particle unit cell would be
unprecedentedly large. Second is a curious observation made by experimentalists in our
group on the self-assembly of such shaped particles: when nanoscale CdSe particles with
a spherotetrahedral shape (Fig. 4.1a) are allowed to self-assemble via a droplet evapora-
tion procedure, the result of which can be seen in Fig. 4.1b, the resulting supraparticles
(particles of many smaller particles) are crystalline, but their morphology is consistently
nonspherical, often elongated and egg-shaped. This is unexpected: we generally expect
droplet evaporation self-assembly to yield spherical supraparticles, due to the constituent
particles taking on the spherical shape that is preferred by the surface tension of the
droplet solvent. The self-assembly of these supraparticles is a complicated process with
many components: particle anisotropy, ligand interactions, early-stage evaporation in-
ducing spherical confinement for the self-assembly, and late-stage evaporation causing
capillary bridging interactions. To study such a complex process, it makes sense to start
as simple as possible. These two results motivate us to investigate the dense packings
and general phase behaviour of hard spherotetrahedra in greater detail. As it turns out,
the bulk phase behaviour of these particles is already remarkably complex, so much so
that we dedicate this entire chapter to describing it in detail, Chapter 5 to find ways
to automate and simplify characterizing their phase behaviour, and only come back to
the supraparticle self-assembly in Chapter 6. The outline of this chapter is as follows: in
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Section 4.2 we describe the necessary theoretical concepts and computational methods re-
quired and employed to investigate the phase behaviour of these anisotropic particles. In
Section 4.3 we use these methods to predict, identify and characterize the dense packings,
first in general and then focusing specifically on the quasicrystal approximant. Section
4.4 then uses the knowledge of these dense packings to investigate the phase behaviour
at intermediate densities and to find the bulk solid phases as a function of particle shape
and density.

500 nm

Figure 4.1: a) Scanning Transmission Electron Microscopy (STEM) image of spherotetra-
hedral CdSe nanoparticles. b) EM image of supraparticles of spherotetrahedral nanoparticles.
Most supraparticles show clear crystal planes, but their morphology is egg-shaped, often elon-
gated or at least nonspherical.

4.2 Model & Methods

4.2.1 The spherotetrahedron shape

L [s =R/(R
Figure 4.2: A spherotetrahedron is the Minkowski sum of a tetrahedron (edge length L and

circumscribed radius R. = v/6L/4) and a sphere (radius R). The shape is fully described by the
dimensionless shape parameter s.

We define the spherotetrahedron shape in terms of Minkowski sums: a spherotetra-
hedron is the Minkowski sum of a tetrahedron of edge length L with a sphere of radius
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R, both centered around the origin. This is equivalent to the volume within a distance
R from a tetrahedron of edge length L. It is fully characterized by a shape parameter
s=R/(R.+R) €[0,1], with R. = /6L /4 the radius of the circumscribed sphere around
the tetrahedron. The limiting cases describe a tetrahedron (s = 0) and a sphere (s = 1),
so s can also be interpreted as the roundness. For all simulations in this chapter we
consider these particles as hard particles, which is to say that the pair interaction energy
U between two particles ¢ and 7 is given by:

0 if not overlapping

U(’ri,ﬂi,'rj,ﬂj) = { (41)

oo if overlapping
where 7; ; and €2;; are the particle positions and orientations, respectively. To perform
Metropolis Monte Carlo simulations (MC) on these particles, we thus need a method to
evaluate whether the shapes associated with the two particles ¢ and j are overlapping.
Fortunately, the Minkowski sum definition lends itself well to various collision/overlap
detection algorithms currently in use. In our own implementation, we use the Gilbert-
Johnson-Keerthi (GJK) algorithm [43]. We will not describe this algorithm in detail in this
thesis, as there are many excellent resources freely available due to GJK’s popularity as a
collision detection algorithm in computer games. We do mention two alternative collision
detection algorithms for the interested reader: the simpler Separating Axis Theorem
(SAT) [42] or the more modern Minkowski Portal Refinement (MPR) [46].

Aside from the overlap condition, there is one more important property of this shape
that we will need if we are to investigate the dense packings and their packing efficiency:
the volume occupied by the shape. For a tetrahedron, this is quite simple: given its four
arbitrary vertices rg, 71, 2 and r3, the volume is given by

1
V= 6det|fr1 — Ty, T — T, T'3 — T, (4.2)

i.e. it follows from the determinant of the square matrix with the three edges r123 — 7
as its rows. Omne can also use this expression to calculate the volume of any convex
polyhedron, by simply building up said polyhedron from smaller tetrahedra, as we describe
in Appendix A. To get the volume of the corresponding convex spheropolyhedron is a a
fair bit more involved: one needs to calculate the volume contributions of i) triangular
slabs formed by the outwardly moved faces, ii) cylinder segments around all edges and
iii) sphere segments around all vertices. We describe an algorithm to calculate these
contributions for arbitrary convex spheropolyhedra in Appendix A.

4.2.2 Predicting the densest packings

To determine the densest packings of spherotetrahedra as a function of the shape param-
eter s, we use the floppy-box Monte Carlo (FBMC) algorithm described in Ref. [169]. In
short, this algorithm finds densest packings of hard particles by numerically compressing
unit cells of variable shapes with periodic boundary conditions and a small number of
particles to increasingly high pressures. The reported densest packings for each parti-
cle shape (roundness s) are the result of at least 20 independent compression runs, each
of which compressed either an N = 1, 2, 3 or 4-particle unit cell from a dimensionless
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AAAA

Figure 4.3: Schematic representation of contributions to the volume of a spheropolyhedron
with a rounding radius R: (gray) the polyhedron itself, (red) triangular slabs formed by moving
all faces in their outward normal directions by a distance R, (green) segments of cylinders with
radius R around all edges and (blue) segments of spheres with radius R around all vertices.

pressure pt.., = Bpv, = 1 to pi,, = Bpv, = 107, with p the pressure, v, the parti-
cle volume and = 1/kgT with kg Boltzmann’s constant and T the temperature. To
sample different compression routes, we increased the pressure of each MC cycle m as
P = Dhart + (Drnd — Pliare) (M /M) over a total of M = 107 MC cycles. The exponent
v was set randomly within the interval 5.2 < v < 9. These values seemed to provide
the best sampling to reliably reproduce the known dimer crystal packing of tetrahedra,
and we made the assumption that this provides good sampling for other shapes as well.
The space group of the crystal was identified using FindSym [180, 181] on the obtained
primitive unit cell.

4.2.3 Crystallography and bond-orientational order parameters

There are many ways to characterize the structural order of a collection of particles.
For periodic structures i.e. crystals, this is essentially the entire field of crystallography.
Without going into too much detail, the key description of a crystal structure is the unit
cell, which is the repeating unit that can be stacked infinitely to fill all of space and
which gives the crystal structure. Unit cells are composed of two essential elements: the
description of the cell itself (of the lattice) and the description of what it contains (the
basis). The cell description is simple and universal: for three-dimensional space, one
defines three lattice vectors that span a parallelepiped:

a; = (al,xa Qa1,y, al,z)
as; = (a2,m7 a2 4, a2,z) (43)

az = <a3,27 a3y, as,z)-

One can reduce this nine-number description to six numbers by instead considering the
lattice lengths a,b,c and lattice angles «, 3,, which are respectively the lengths of and
angles between the three lattice vectors. The contents of the unit cell can vary based on
what we want to describe: for some crystals we need to consider the atom types of the
particles, their charges, magnetic moments, orientations and so on. In all cases, however,
we must define their positions. For N particles in the unit cell, these are the N basis
vectors {r;} with i € [1, N]. The positions R of all particles in the lattice can now be




76 CHAPTER 4

constructed as:
Ri,j,k,l =17 —|—ja1 + kas + la3 j, ]{?,l & Z, 1 € [1, N] (44)

One can fully describe all possible crystal structures in this way. However, this description
is not without its flaws. One can define multiple unit cells that yield the same crystal
structures. Often one takes the smallest possible unit cell, but occasionally crystal struc-
tures are more easily described by a larger, cubic unit cell. The translational symmetries
of crystal structures allow for multiple choices for the lattice and basis vectors without
changing the described structure. And of course, not all structures are crystals. One sim-
ply cannot describe the structure of aperiodic systems such as gases, liquids, glasses or
quasicrystals by means of a repeating unit cell. So since we know that spherotetrahedra
can form a quasicrystal, it would be advantageous to have a different way to describe
structural order. And as we would at some point like to study how a crystal forms from a
fluid, we would like it to be able to do so locally. Fortunately, such structural descriptors
exist.

In a seminal paper, Steinhardt, Nelson and
Ronchetti [182] described the so-called bond-
orientational order parameters (BOP): a set of
structural descriptors using spherical harmonics to
quantify the local structural order surrounding a
particle. These are defined as follows: consider a
particle ¢ with other particles j in its vicinity (say,
within some cutoff radius R.). For each neighbour
J in its vicinity, we say that particle ¢ has a bond to
this neighbour, 7;;. One can then define a number
Gim Which captures how similar the neighbourhood
of 7 is to the spherical harmonic Y;,,,

Ny (4)
i (§) = Nbl(z') > Yinlf) (4.5)

Figure 4.4: Schematic representa-
tion of 0. The background plot jth Ny (i) the number of bonds and #;; the direction
shows the azimuthal plane of Y, o. The of the bond.

red particle will have a large q40 be-
cause its neighbouring particles, whose
centroids are within the red circled
cutoff radius R., are aligned with the
peaks of Yy .

However, this number is not yet a particularly
useful order parameter as it is both a complex num-
ber and not yet rotationally invariant. We would
like to be able to describe structural order without
having to define a reference orientation. For this
reason we usually use

(i) = szjl > Jam 0 (46)

m=—I

instead, which provides a rotationally invariant real number that quantifies the symmetry
of bonds in the neighbourhood of particle ¢ corresponding to a certain quantum number
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[. For instance, a simple cubic lattice has a high value of ¢4 since the bonds between
particles have a largely cubic symmetry (see Fig. 4.4). One can also define higher-order
moment variants of these order parameters,

VICEND VN SN, PACNCTT) (47

mi1+ma+m3=0
( Il ) (4.8)
my Mo Mg

are the Wigner 37 symbols. By looking at a collection of ¢; and w; of different [ one can
define a “fingerprint” for different structures. In particular g4, gs, w4 and wg can be used
to distinguish between the FCC, HCP, BCC and fluid phases of spheres [183]. Since its
introduction several improvements to this order parameter have been proposed for the
purposes of crystal structure detection. The first improvement pertains to the definition
of the local neighbourhood and is provided by Mickel et al. [184]: while defining the
neighbourhood by means of a distance cutoff is a simple solution, it introduces both a
parameter dependence through the cutoff radius R, and a sensitivity to local fluctuations,
as particles that are just within or just outside of R. contribute either fully or not at all
to the value of the order parameter.

where

Both of these problems can be eliminated by
a different definition of the local neighbourhood.
There are two notable ways to eliminate the param-
eter dependence: one can either define the neigh-
bours of i through a Voronoi diagram [184], or by
means of the solid-angle nearest neighbour (SANN)
algorithm [185]. In the remainder of this thesis we
will use the Voronoi method. Following Ref. [184],
the sensitivity to fluctuations can be reduced by
weighting the Y},,, contributions of neighbours by the
area of the Voronoi their facets

Ny (3)

(i) = 32 i (i), (4.9)

=1

Figure 4.5: Schematic representa-
tion of g4 ¢ with the Voronoi neighbour
definition. The background plot shows
the azimuthal plane of the real part
of Y;0. The contribution from each
neighbouring particle to g4 is now
weighted by the shared facets shown
in red.

where a;; is the area of the Voronoi facet shared by
particle i and j, A; is the total area of the Voronoi
cell of ¢ and the sum is over all Voronoi neighbours
N} of particle 4. In this way, nearby particles con-
tribute more to ¢, and their contribution is reduced
smoothly as they get further away (Fig. 4.5). The
q; use these reweighted ¢,,, but are otherwise the
same as in FEq. 4.6:

20+1 =,

W)zJ kl S Jam (). (4.10)
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We use the suggested term “Minkowski structure metric” from Ref. [184] to indicate
the weighted order parameters when we need to differentiate between weighted and un-
weighted ¢, ¢; and w;, and “order parameter” to refer to either. Defining bonds through
the Voronoi construction makes the method parameter-free, and weighting by the shared
facet area makes the structure metrics less susceptible to fluctuations in the number of
bonds. A second improvement is given by Lechner and Dellago [186], who show that one
can reduce the influence of thermal noise on the order parameters by averaging the ¢,
over the first neighbour shell. Analogous to the averaged Steinhardt bond order param-
eters defined in Ref. [186], we define averaged Minkowski structure metrics by simply
averaging the weighted ¢, (Eq. 4.9) over the (Voronoi) neighbours:

1

Ny (3)
Qm (1) = m ; @m (), (4.11)

where Ng/ (7) denotes the set of Voronoi neighbours of ¢ plus i itself, and g, denotes the
non-averaged structure metrics. The averaged rotationally invariant ¢; are then obtained
by simply replacing g, with qp,:

l

M@')ZJ e > @), (4.12)

2041 =,

In the bulk of our analysis we consider structure metrics ¢; with [ € [2,12]. The structure
metrics o and ¢; are excluded since they are always one and zero, respectively [184].
The ¢; of odd [ are not invariant under inversion and require defining a direction for each
bond [182]; we choose this direction to be “outward” i.e. they point from each particle i
to its neighbours j. The source code for our implementation of the calculation of these
structure metrics is available on Github [187].

4.2.4 Self-assembly and equation of state simulations

To probe the self-assembly behaviour and to calculate the equations of state we performed
simulations using HOOMD-blue’s [188, 189] hard-particle Monte Carlo (HPMC) [190]
module (versions 2.6.0 through 2.9.3). We used MC simulations in the NVT ensemble
using 10® MC cycles to study the self-assembly. A relatively large number of MC cycles is
needed as previous studies showed that the formation of a quasicrystal of hard tetrahedra
is quite slow, requiring on the order of ~ 2107 to occur [166, 168, 191]. Particles were
allowed to translate and rotate with a variable step size such that the acceptance ratio of
such moves was 30%. To calculate the equations of state, we performed MC simulations
of N ~ 400 particles in a constant-pressure ensemble, where in addition to particle moves
and rotations the simulation box was allowed to change its volume and to shear. The step
sizes of these latter moves were tuned to an acceptance ratio of 15%. We used 10” MC
cycles for equilibration and 105 MC cycles for sampling. Initial configurations were either
a low-density fluid, a high-density crystal whose unit cell we obtained from the FBMC
simulations, or the quasicrystal approximant.
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4.3 Dense packings

Before we discuss the densest packings we obtained, it is worthwhile to consider which
densest packings for these shapes are already known. The spherotetrahedral shape reduces
to a sphere for s = 1 and a tetrahedron for s = 0, and the densest packings for these
structures are known. The densest packing of hard spheres is the FCC/HCP crystal with
a well-established maximum packing fraction of ¢u.c = 7/(3v/2) ~ 0.74, with the FCC
crystal being the more thermodynamically stable when not at dense packing [192]. The
best-packed structure of tetrahedra was the subject of a flurry of publications some years
back [41, 159, 166, 168, 193-198], when numerical simulations revealed that a dodecagonal
quasicrystal forms spontaneously from the fluid via a first-order phase transition, and that
a quasicrystal approximant can be compressed to a packing fraction as high as ¢ = 0.8503
[166, 168]. This raised the conjecture that the densest packing of tetrahedra might be
aperiodic, although later work showed that the periodic dimer crystal [195, 197] achieves
a packing fraction of ¢p., = 4000/4671 = 0.856347, which is the established densest
packing of tetrahedra as of now. For slightly rounded spherotetrahedra, Jin et al. [47]
surprisingly found that a quasicrystal approximant packs denser than the dimer crystal
structure. This fascinating result inspired us to re-investigate in more detail the densest
packings of spherotetrahedra over the full shape range of shapes s € [0, 1], as opposed to
the more limited range of shapes that were seen experimentally.

To obtain the densest packings we used the FBMC algorithm method as described in
section 4.2.2. In Fig. 4.6(a) we present the resulting maximum packing fraction ¢p,.x as a
function of the shape parameter s along with those of Jin et al. [47] for comparison. We
reproduce the well-known limiting close-packed densities for s = 0 and s = 1, but obtain
substantially higher maximum packing fractions for intermediate shapes than previously
reported by Jin et al.. A careful analysis of the bond-order parameters ¢; and the lattice
lengths and angles reveals twelve structurally distinct, disconnected dense packings of
spherotetrahedra, which we will henceforth refer to with roman numerals. Some of these
dense packings are extremely similar and we label these with primes, with the non-primed
roman numeral being the structure that is stable over the largest range of s. As an
example, the densest packing for s > 0.3745(5) is a deformed FCC lattice with three
variants, so we refer to these as VII”, VII’ and VII, where the last is non-primed because
it is stable for s € [0.4135(1), 1], which is the largest range of the three.

We shall first discuss how exactly the division into these twelve lattices is made, then
look at the individual lattices in more detail. After that we will investigate the packing
efficiency of the quasicrystal approximant in more detail.

4.3.1 Classification of dense packings

Previous work has distinguished dense crystal structures based on discontinuities in (the
derivatives of) the shape-dependent maximum packing fraction ¢pmax(s) [176, 199] or in the
lengths L; of and the angles #; between the three vectors that span the unit cell [161], which
are shown in Figs. 4.6(a), (b) and (c), respectively. Both these methods have important
drawbacks. Discontinuities in the derivatives of the maximum packing fraction can indeed
be the result of jumps from one crystal structure to another, but can also be the result of
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Figure 4.6: Floppy-box Monte Carlo simulation results of the shape-parameter dependence
of (a) the maximum packing fractions @max, (b) the lengths L; of the lattice vectors, (c) the
lattice cell angles 6;, and (d) the (modified) bond order parameters ¢; for | = 2,4,--- ;12 (see
text), all for the densest structure we have found. Roman numerals denote the different crystal
structures, and vertical solid black lines indicate the transitions between these structures. In
(a) the red and blue backgrounds indicate four- and two-particle unit cells, respectively, and in
(b) different background colors denote the different lattice types also noted in Fig. 4.12. The
dashed lines in (b) and (c) indicate transitions in lattice symmetry.
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a change in continuous deformation of the same lattice, e.g. from a shear along one axis
to shear along another. The lattice parameters also do not uniquely describe a crystal
structure: some crystal structures are degenerate, i.e. multiple unit cells can form that
same structure, as is the case for regions I, I, VII” and VII' in Fig. 4.6(b) and (c). Perhaps
most important, however, is that the analysis of lattice parameters of the unit cell is
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inherently not extendable to aperiodic structures such as quasicrystals, fluids, mesophases,
glasses, etc., because one cannot describe these structures by a single repeating unit cell.
It is for these reasons that we instead define the regions I-VII through discontinuities in
the Minkowski Stucture Metrics (MSM) described in Section 4.2.3. In this way, the set
of all ¢; forms a unique “fingerprint” for each crystal structure. One should note that
since the ¢; are essentially an expansion into spherical harmonics, this fingerprint is not
guaranteed to be mathematically unique unless an infinite number of angular quantum
numbers [ are taken into account. However, in practice one only needs a few ¢;’s in order
to distinguish all dense packings from each other. For the crystals commonly formed by
spherical particles: face-centered cubic (FCC), hexagonal close-packed (HCP) and body-
centered cubic (BCC), one can distinguish between all of them and the disordered fluid
using only ¢4 and gg [186]. However, since the crystals formed by spherotetrahedra may
have very different symmetries than those formed by spheres, there is no guarantee that
qs and g are also good order parameters here. The questions of how many and which ¢
are needed are intriguing, and we consider them in detail in Chapter 5. In Fig. 4.6(d) we
show the subset {q2, qu, ..., q12} for the dense packings of spherotetrahedra as a function
of their shape parameter s. We find a first-order discontinuity in all ¢(s) whenever the
densest packing switches from one structure to another, which we denote with the solid
black vertical lines. Second-order discontinuities also occur. These correspond to changes
in continuous deformation of the lattice e.g. when (with changing shape s) the lattice
first compresses along 2 but switches to extension along &. Focusing on regions I, II,
VII” and VII', it is clear that the ¢ do not suffer from the same degeneracy issues that
the lattice parameters do. However, it is important to note that for larger unit cells such
as the four-particle unit cells of the dimer crystals I and II, the structure metrics ¢; can
be different for different particles in the unit cell, as the local structural environments of
particles within the unit cell can be different.

Some of the discontinuities in the structure metrics are very small and are not visible on
the scale of Fig. 4.6(d). In Figures 4.8 through 4.10 we show zoomed-in graphs for specific
regions of interest where the lattice parameters are discontinuous or where ¢,.x(s) changes
curvature or is discontinuous in its derivative. It is on this scale that the transitions
between the primed lattices become visible. Figure 4.8 shows the transitions between
structures 111”7, III" and III, Figure 4.9 between structures IV’ and IV and Figure 4.10
between structures VII”, VII’ and VII. Additionally, Figure 4.11 shows that a discontinuity
in the first derivative or a change in the second derivative of the maximum packing
fraction @uax(s) does not necessarily indicate a change in structure, as all of our structural
indicators remain continuous in the shown regions.

In these zoomed-in plots we also show an additional property of the dense packings: the
distribution of facet areas in the Voronoi cells around particles. The Voronoi construction
method used to define the neighbourhood of particles can also be used to access topological
and additional geometric information of the local bond network. For instance, one can
calculate the number of neighbours for each structure or the shape of the Voronoi cell,
the latter of which provides an alternative method of characterizing the various crystal
phases. We found that the distribution of the areas of the facets of the Voronoi cells,
shown in Figure 4.7, provides insight into the degree of symmetry that needs to be broken
to achieve the densest packing. For lattices with high symmetry (e.g. IV or VII) the
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facet areas are degenerate i.e. many facets have identical areas, while for lattices with
low symmetry there are many facets with a unique area. In Figure 4.7, values of s where
the degeneracy changes generally correspond to points of interest in the dense packings
where the lattice symmetry changes and/or there are kinks in the packing fraction curve

Pmax($).-

0.20}

0.15F -

0.1()- e —— T ]
L . .l -

0.05 .

Fractional Voronoi facet area

Roundness s

Figure 4.7: Areas spanned by individual facets of the Voronoi cells, as a fraction of the total
area of the cell. Dashed lines indicate values for s for which the facet degeneracy changes.
Three of these dashed lines also correspond to changes in the lattice type (e.g. monoclinic to
orthorhombic). Inset: number of neighbours in the Voronoi tesselation.
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Figure 4.8: A zoomed-in view of a region of interest for the shape-parameter dependence
of (top to bottom) the maximum packing fractions ¢max, the lengths L; of the lattice vectors,
the lattice cell angles 6;, the structure metrics q; for [ = 2,4, --- ;12 and the fractional Voronoi
cell areas Agycet/Acenr Roman numerals denote the different crystal structures, and vertical
solid black lines transitions between these structures. Transitions between structures manifest
themselves as first-order discontinuities in all shown properties except for the maximum packing
fraction ¢max.
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Figure 4.9: A zoomed-in view of a region of interest for the shape-parameter dependence of
(top to bottom) the maximum packing fractions ¢max, the lengths L; of the lattice vectors, the
lattice cell angles 6;, the structure metrics ¢; for [ = 2,4,--- ;12 and the fractional Voronoi cell
areas Afacet/Acell. Roman numerals denote the different crystal structures, vertical solid black
lines transitions between these structures, and dotted lines values of s for which the Voronoi
facets change degeneracy. Transitions between structures manifest as first-order discontinuities
in all shown properties except for the maximum packing fraction ¢max.
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Figure 4.10: A zoomed-in view of a region of interest for the shape-parameter dependence
of (top to bottom) the maximum packing fractions ¢max, the lengths L; of the lattice vectors,
the lattice cell angles 6;, the structure metrics q; for [ = 2,4, --- ;12 and the fractional Voronoi
cell areas Agcet/Acen. Roman numerals denote the different crystal structures, and vertical
solid black lines transitions between these structures. Transitions between structures manifest
as first-order discontinuities in all shown properties except for the maximum packing fraction
Omax- In the top dmazx(s) graph we show both the N = 2 and N = 4 particle variants of the
unit cells of structures VII”, VII’ and VII to highlight the differences. In the other graphs we
show only the properties of the densest variant: N = 4 for VII” and VII' and N = 2 for VIL
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Figure 4.11: A zoomed-in view of a region of interest for the shape-parameter dependence
of (top to bottom) the maximum packing fractions ¢max, the lengths L; of the lattice vectors,
the lattice cell angles 6;, the structure metrics ¢q; for [ = 2,4,--- ,12 and the fractional Voronoi
cell areas Agacet/Acenn. Roman numerals denote the different crystal structures, and vertical
solid black lines transitions between these structures. Transitions between structures manifest
as first-order discontinuities in all shown properties except for the maximum packing fraction

¢max-
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4.3.2 Crystal structures

QA

N=4 N=82 N=4 N=2
Triclinic Triclinic Triclinic Monoclinic/
s € [0,0.040] ) Tetragonal
s € [0.088,0.0965] s € [0.040, 0.088] s € [0.0965,0.1325] s € [0.1325,0.1615]

VI VII

N=2or4
Monoclinic/

Orthorhombic
s €[0.3745,1)

N=2

Tetragonal Triclinic

Trigonal/

Monoclinic
s € [0.3415,0.3745]
Figure 4.12: Cubic supercells (with distinct colors indicating differently oriented particles in
the unit cell) and primitive unit cells of eight of the densest crystal structures, shown with their
lattice type and the shape-parameter s-regime in which they are the densest packing. Roman

numerals denote crystal structures obtained from the floppy-box Monte Carlo simulations, and
“QA” indicates the quasicrystal approximant.

s € [0.1615,0.3185] s € [0.3185,0.3415]

Now that we have established how we divided the obtained dense packings into twelve
structures, let us take a look at the individual structures in a bit more detail. We can
establish a loose grouping of the crystal structures I-VII into deformed dimer (I, II), de-
formed G-tin (IV’, IV), and deformed FCC (VII”, VII', VII), with intermediate structures
(II1”, 11T, TI1, V, VI). Let us go through them in order of increasing roundness, starting
from tetrahedra (s = 0). For s € [0,0.1325(5)], close to tetrahedra, we find two very sim-
ilar dimer crystals I and II: both are triclinic lattices with N = 4 particles in a unit cell
in which the tetrahedra form dimers with almost perfect facet-to-facet alignment. The
difference between the two lattices is a subtle shift in the relative position and orientation
of the two dimers with respect to one another, which is shown in Fig. 4.14. The particles
in the crystal structures II1”-VII do not form perfect facet-to-facet aligned dimers, but
instead align with respect to one another rotated by 60° around a common facet normal.
Each of these crystal structures has its own noteworthy properties. In crystal structures
11”7, III" and III, stable for s € [0.1325(5),0.1615(5)], particles have an unusually high
number of Voronoi neighbours (inset Fig. 4.7). Additionally, at s = 0.1465 its lattice
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type switches from monoclinic to tetragonal. Crystal structures IV’ and IV, stable for
s € [0.1615(5),0.3185(5)], bear a close resemblance to the S-tin lattice found for truncated
tetrahedra in Ref. [176]: they are tetragonal and at a rounding ratio of s = 0.178 crystal
VI packs as efficiently as ¢ = 0.90212, which is the densest of all spherotetrahedra. While
crystal structure IV is stable over a large range of shapes, its packing efficiency decreases
with increasing roundness s, until it is superseded by crystal structure V, a triclinic tran-
sition structure that is only stable over a small range of shapes: s € [0.3185(5), 0.3415(5)].
This is followed by crystal structure VI in the region s € [0.3415(5),0.3745(5)], which is
trigonal for s < 0.36 and monoclinic for s > 0.36. The trigonal region s € [0.3415,0.36]
is the only region for all spherotetrahedra for which a change in the particle shape does
not change the crystal structure significantly. Finally, crystals VII”, VII' and VII are
deformations of an FCC lattice and fill the range s € [0.3745(5), 1). To achieve the dens-
est packing for non-spheres, the lattice must deform from the cubic FCC and become
orthorhombic rather than cubic for s € [0.4135(1),1), and requires two particles in the
aforementioned opposing orientations. For s € [0.3745(5),0.4135(1)] there are additional
changes: here the even denser packings VII” and VII' can be achieved by four-particle
unit cells if the two additional particles are slightly rotated (Fig. 4.13) and the lattice
symmetry is reduced from orthorhombic to monoclinic.

0.840 + Four—particle cells ,“"M\ﬁ
+
0.838 *** x Two-—particle cells ++-+’
X
% "
0.836 *** 7

4 x
< 0.834 (e
0.832 .
0.830 .

x

0.828] VI |VII" oo vIr' | VI
0.37 0.38 0.39 0.40 0.41 0.42
s

Figure 4.13: Unit cells for the four-particle crystal VII” (s = 0.402) and two-particle crystal
VII (s = 0.8) and a graph of their maximum packing fractions. Note that in the four-particle
unit cell, each particle has a unique orientation.

As previous studies report that more centrally symmetric particles tend to pack into
simpler lattices [159, 176], we might expect the densest packings of spherotetrahedra to
become simpler and with fewer particles in the unit cell with increasing shape parameter
s. Interestingly, this trend does not hold here. While the number of particles per unit
cell initially decreases from N = 4 to N = 2 when the shape parameter increases up
to s = 0.3745, this trend is broken in the region s € [0.3745,0.4135], where the crystal
structures VII” and VII' require N = 4 particles to obtain their densest packing. The
densest packing can also become less symmetric as the shape becomes more spherical:
while the crystal structures up to IV indeed become more symmetric, crystal V is again
triclinic. In general, while we could expect that making particles more spherical will yield
more symmetric lattices at intermediate densities due to entropy considerations, it ap-
pears that these symmetries may need to be broken in order to achieve the densest packing.
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Label Shape parameter s N | Voronoi neighbours | Space group
I [0, 0.040(5)] 4 4 %16 P1 Deformed dimer
QA [0.040(5), 0.088(5)] | 82 - P1 Quasicrystal approximant
T | [0.088(5), 0.0965(5)] | 4 | 2x15+2x 17 PI Deformed dimer
II [0.0965(5), 0.1325(5)] | 4 4x16 P1 Deformed dimer
I1” | [0.1325(5), 0.1372(1)] | 2 2 x 20 C2/c Intermediate
I | [0.1372(1),0.1392(1)] | 2 2 % 20 2/c Intermediate
III [0.1392(1),0.1465(5)] | 2 2 x 20 C2/c Intermediate
IIT | [0.1465(5), 0.1615(5)] | 2 2 x 20 14, /amd Intermediate
IV | [0.1615(5), 0.1685(1)] | 2 2 x 18 14, /amd deformed B-tin
IV | [0.1685(1), 0.3185(5)] | 2 2x18 14, Jamd deformed $-tin
\Y% [0.3185(5), 0.3415(5)] | 2 2 x 16 P1 Intermediate
VI [0.3415(5), 0.362(1)] | 2 2% 16 P3ml Intermediate
VI | [0.362(1), 0.3745(5)] | 2 2 % 16 02/m Intermediate
VII” | [0.3745(5), 0.4038(1)] | 4 4% 14 P2, /c deformed FCC
VII" | [0.4038(1), 0.4135(1)] | 4 4x 14 P2;/c deformed FCC
VII [0.0.4135(1), 1) 2 2 x 14 Cmem deformed FCC

Table 4.1: Summary of the properties of the close-packed crystal structures of hard spherote-
trahedra: the label I-VII, the shape parameter s range for which they are the densest packing,
the number of particles per unit cell N, Voronoi neighbours, lattice symmetry space group and
a qualitative descriptor.

Behind

Figure 4.14: Visualization of the difference between dimer crystals I and II. While both crystals
feature virtually identical pairs of dimers, the orientation of the two dimers with respect to one
another is subtly different, here indicated as “In front” and “Behind”.

4.3.3 The maximum packing fraction of the quasicrystal approx-
imant

Using the floppy-box Monte Carlo method, we found a variety of crystal structures of hard
spherotetrahedra with a significantly higher maximum packing fraction than previously
found in former literature [47]. We now investigate whether these densest-packed crystal
structures have a better packing than the quasicrystal approximant found in Ref. [47].
To this end, we first refine our search in the region s € [0.02,0.12] to 200 compression
runs per shape parameter value s. In addition, we increase the total number of MC cy-
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Figure 4.15: Maximum packing fraction of hard spherotetrahedra as a function of the round-
ness s for the densest-packed crystal structures obtained from floppy-box Monte Carlo simula-
tions using unit cells with N < 20 particles (red dots), and for the quasicrystal approximant
reported by Jin et al. [47], where previous and our results are denoted by blue and orange dots,
respectively. In the region s € [0.040,0.088], the quasicrystal approximant is denser than the
dimer crystal.

Packing fraction ¢

cles to M = 10® in our floppy-box Monte Carlo method, and investigate unit cells with
4 < N < 20 particles. Despite these refinements, we find no new crystal structures that
pack denser than the N = 4 dimer crystals I and II for s € [0.02,0.12]. Subsequently,
we determine the maximum packing fraction of the quasicrystal approximant reported in
Ref. [47] by further compressing the unit cell of the quasicrystal approximant of N = 82
particles. In Fig. 4.15, we plot the maximum packing fraction for the quasicrystal approx-
imant obtained in this work and the earlier results from Ref. [47] (large orange and blue
dots, respectively) along with the maximum packing fractions of the crystal structures
with a unit cell of N < 20 particles (small red dots). We make the following observations.
In comparison to Jin et al. [47] we find higher packing fractions for the quasicrystal
approximant for s € [0.065,0.115], but slightly lower for s € [0.02,0.06]. The most in-
teresting part, however, is that the maximum density of the approximant surpasses that
of the smaller unit cells for s € [0.04,0.088]. This is quite unique: all the densest pack-
ings of single-component systems reported in literature up until now (that we are aware
of) have had unit cells with N < 4 [40, 41, 159, 161, 167, 171, 177, 200], making the
N = 82 approximant the largest unit cell for a densest packing of a single-component
hard-particle system to date. It also raises the fascinating question whether the densest
packing of spherotetrahedra in this shape regime may even be a truly aperiodic quasicrys-
tal. Determining whether this is the case is not trivial. One possible means would be
to construct quasicrystal approximants with increasingly larger unit cells and to deter-
mine their density to see whether it increases with the system size. A similar approach
was taken for hard tetrahedra in Ref. [168]. However, it was found that a quasicrystal
approximant of N = 1142 particles does not necessarily correspond to a higher density
than an approximant with N = 82. Thus, it is not clear whether this approach will
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even be able to answer the question definitively. Furthermore, the construction of such
cells necessitates resolving the orientations of the particles such that the approximant is
a non-overlapping configuration of spherotetrahedra, and it is at present not clear to us
how to do so analytically. A brute force generation is also out of the question due to the
rapidly increasing number of particles required to form an approximant prohibiting the
efficient exploration of the available phase space required to find valid dense packings.
Due to the aforementioned difficulties, we will not pursue this question further in this
thesis. However, we consider it a promising and intriguing question to try to answer. Its
possible implication — that the densest packing for some (even convex!) shapes cannot
always be achieved with a periodic structure — seems profound in some ways, and we
would be interested to see it revisited in the future.

4.4 Phase behaviour at intermediate density

In this section we will investigate the full phase behaviour of hard spherotetrahedra as a
function of density. To study the self-assembly, we perform Monte Carlo simulations in the
canonical (NVT') ensemble using the disordered fluid phase as the initial configuration.
We use a relatively large number of Monte Carlo cycles, M ~ 107 — 10%, to study the
self-assembly from the fluid phase as previous simulations showed that the formation of a
quasicrystal of hard tetrahedra is a slow process [166, 168, 191]. Additionally, we measure
the equations of state i.e. the pressure as a function of density, of the fluid and solid
phases by performing Monte Carlo simulations in a constant-pressure (NpT') ensemble in
which the shape of the simulation volume is allowed to deform in order to allow stresses
in the crystal to relax. We determine the phase boundaries by combining information
from the equations of state and the structure metrics ¢;. The former is sufficient when
phase transitions are accompanied by a large jump in density, while the latter allows
us to perceive structural transformations even if the density of the two phases is very
similar. We show the equations of state starting from either the fluid, a dense packing
lattice or the quasicrystal approximant for a selection of shape state points s in Figure
4.16. Additionally, we show in Fig. 4.17 the structure metrics g, versus gg for the crystal
phases I-VII, the quasicrystal QA and the fluid phase. At a glance, most structures are
fairly well separated in this representation, but there is significant overlap between the
distributions of I and VII, I and V, and the fluid and the quasicrystal approximant. Of
course, these structures may only overlap in this particular representation, but perhaps
not in another e.g. ¢y versus ¢io. In Chapter 5 we perform a detailed analysis of the high-
dimensional structure metric space for this system, where we use Principal Component
Analysis to reduce its dimensionality and determine which order parameters are important
for distinguishing the various spherotetrahedron phases.
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Figure 4.16: Packing fraction ¢ versus dimensionless pressure Spv, equations of state for a
selection of shape state points s. The legend marks the different initial configurations, which
were either a disordered fluid, a dense packing lattice, or the quasicrystal approximant. All
dense packing lattice equations of state display a jump at their melting pressure.
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Figure 4.17: Distributions of structure metrics gy versus gg for crystals I (s = 0.04), II
(s =0.12), ITI (s = 0.14), IV (s = 0.22), V (s = 0.34), VI (s = 0.36), VII (s = 0.4 and s = 0.8),
the quasicrystal QA (s € [0.02,0.1]) and the fluid phases for all these rounding ratios. The color

distinguishes the different solid phases, while the brightness of the color indicates the packing
fraction: the darker the color, the lower the packing fraction.
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4.4.1 Quasicrystal self-assembly near s = 0

For shapes close to tetrahedra (s € [0,0.16]), a qua-
sicrystal self-assembles from the fluid phase, as ap-
parent from the twelve-fold symmetry present in the
diffraction pattern in Fig. 4.18. We only found clear
quasicrystal self-assembly during long NV'T ensem-
ble simulations and not in our NpT' ensemble sim-
ulations, probably because the latter were ran for
a shorter duration and for smaller system sizes and
quasicrystalline order is more difficult to detect for
such small systems. For both the dense packing and
the approximant the density and pressure at which
they melt increases as the particle shape becomes
rounder. For s = 0 [168] and s = 0.02 (Fig. 4.16) Figure 4.18: A quasicrystal self-
both the dimer crystal and the approximant melt at 2ssembled from a disordered fluid
a packing fraction of ¢ ~ 0.51. For s = 0.14 thijs Phase of hard spherotetrahedra with a
increases to ¢ ~ 0.61. Since the densest packing for ?hape paframeter s = 0.16 at. a pa_Ck_
s € [0.040,0.088] is the quasicrystal approximant, e fraCt.IOD ¢ = 0.64. The diffraction
it is likely that quasicrystalline order is stable all pattern ' a‘veraged over 100 configura-
: . . tions and display the 12-fold symmetry
the way from the fluid up to the maximum packing. dicative of a dodecagonal quasicrys-
However, the approximant and the quasicrystal are .,
not strictly identical, and there may be a transition
from one to the other at a certain density. Current
evidence suggests that the approximant is the stable phase for tetrahedra (s = 0), but
the difficulty of calculating the free energy of a quasicrystal prevents the confirmation
of that hypothesis [168]. Our equations of state do not display a transition from the
approximant into the quasicrystal, and so we will assume that the equilibrium phase is
the approximant when a) the self-assembled phase shows quasicrystalline order for that
s and b) the approximant can reach that packing fraction ¢.

4.4.2 Plastic crystal pFCC for s > 0.5

For s = 0.6 an additional jump from a packing fraction of ¢ ~ 0.69 to ¢ = 0.64 can be seen
in the equation of state starting from crystal VII. We show in Fig. 4.19 that this higher
density jump corresponds to crystal VII melting into a plastic undeformed face-centered
cubic crystal, which we label pFCC. The inset shows bond order diagrams (BOD) for each
of the three branches of the equation of state. The BODs are histograms of the angu-
lar distribution of bonds between particles: sharp peaks denote bond-orientational order,
and thus translational order. In the diagrams labeled OBCD (Orientation Bond Correla-
tion Diagram), the bonds are additionally rotated by the orientation of the neighbouring
particle, which makes the diagram represent not only positional but also (particle) orien-
tational order. For ¢ > 0.69, both the BOD and the OBCD show sharp peaks, indicating
both positional and orientational order. For 0.53 < ¢ < 0.64 the BOD shows sharp peaks
at the same positions as for ¢ > 0.69, but the OBCD is disordered, indicating positional
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order but no orientational order, ¢.e. a plastic crystal. For ¢ < 0.53 both diagrams
are disordered, corresponding to a fluid phase. The same loss of orientational order but
preservation of positional order can also be seen from the snapshots shown in Fig. 4.19b-e.
A similar inspection for the shape parameter range s € [0.5,1.0] reveals that this VII-
pFCC transition occurs at increasingly higher densities as the shape becomes rounder.
This is to be expected: at s = 1 the particle shape reduces to a sphere, for which the
orientation no longer matters and any crystal must be a plastic crystal. Furthermore, the
deformation of crystal VII reduces with increasing s, and it reduces to the undeformed
FCC at s = 1. Thus, when approaching s = 1 the VII-pFCC transition must approach
the hard sphere close packing density. We find this is exactly what happens.
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Figure 4.19: (a) Pressure Spv, versus packing fraction ¢ equation of state for hard spherote-
trahedra with a shape parameter s = 0.6, starting from either (blue) the dense packing crystal
VII or (red) a disordered fluid. The inset zooms in on the region for which a plastic crystal
is found. For the plastic crystal pFCC, the BOD shows sharp peaks while the OBCD is dis-
ordered, indicating the simultaneous presence of positional order and absence of orientational
order characteristic of a plastic crystal. (b,c) Snapshots of the particles (b) and their centroids
(c) at a pressure of Spv, = 27.42. (d,e) similar snapshots at Spv, = 24.84. There is a clear loss
of orientational order, but the centroids reveal that positional order is preserved.

4.4.3 Absence of crystallization for s € (0.16,0.5)

Despite the aforementioned high number of Monte Carlo cycles, we do not observe any
crystallization whatsoever in the region s € (0.16,0.5). Figure 4.20 shows the structure
metrics (@2), (q4), -, (q12) averaged over the final configurations of a series of self-assembly
simulations at packing fractions ¢ € [0.45,0.68]. For these simulations we rapidly com-
pressed a disordered fluid to the shown packing fraction, then ran a MC simulation in the
NVT ensemble for 10" — 108 MC cycles - enough to observe the early stages of the slow
formation of the tetrahedron (s = 0) quasicrystal, though admittedly not enough for it
to fully relax to a single quasicrystalline equilibrium state. The () for the fluid state are
all consistently in the range (g;) € [0.04,0.12], except for (G), which is usually smaller,
about (g) € [0.01,0.04]. For small rounding ratios s € [0,0.16] we observe a small bump
in the values of (g2) and (g4), which upon inspection of the diffraction pattern coincides
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with the early stages of the formation of a dodecagonal quasicrystal (see Fig. 4.18). We
see no notable change in the other order parameters. The rather small increase in the (g;)
for the quasicrystal in comparison to the fluid suggests that the ¢ are not particularly
good order parameters for capturing quasicrystalline order. In fact, as suggested by Fig.
4.17, the ¢ of the quasicrystal are quite low and very similar to the fluid. We discuss the
quality of the g as order parameters for the quasicrystal in further detail In Chapter 5.
For large rounding ratios s € [0.54, 1] we find a significant increase in (qs), (gs), (gs) and
(G12) accompanying the formation of a plastic FCC crystal. In the intermediate range
s € (0.16,0.5) we observe no significant changes in any of the (), and neither the real-
space visualizations of the final configurations nor their corresponding diffraction patterns
show the self-assembly of any ordered structures. Furthermore, the melting density of the
crystals in this region is relatively high, about ¢ ~ 0.6. This absence of self-assembly was
also found for similarly shaped truncated tetrahedra [176, 178], which was attributed to
the competition of multiple local structural motifs [179]. We investigated the similarity
of the structural composition of the fluid and of the dense packings by comparing their
radial distribution functions ¢(r) near the melting density. These are shown in Fig. 4.21.
Also shown are the coordination numbers CN of the fluid, crystal and quasicrystal phases,
defined as the integral of g(r) up to their first minimum. For the two structures whose
self-assembly we do observe, the quasicrystal QC and plastic crystal pFCC, the corre-
sponding radial distribution functions are quite similar to those of the high density fluid.
Structures III-VII, however, are relatively dissimilar to the high density fluid. Possibly,
the structural dissimilarity between the fluid and solid phases inhibits crystallization in
this region s € (0.16,0.5). There may be both a statistical and a dynamic effect at play
here: the structural dissimilarity may provide a high nucleation barrier, while the high
density slows down the dynamics such that the exploration of phase space required to
surmount the barrier is further inhibited.
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Figure 4.20: Snapshot averages of averaged Minkowski structure factors (g;) as a function of
packing fraction ¢ for a series of self-assembly simulations with a fluid as initial configuration.
For s = 0 and s = 0.16 a bump can be seen in (g2) and (g4) which coincides with the nucleation
of a dodecagonal quasicrystal. For s > 0.54, a similar peak occurs in (qs4), (Gs), (gs) and
(q12) which indicates the nucleation of a face-centered cubic lattice. No peaks are observed for
0.16 < s < 0.54, indicating that no ordered structures have formed in these simulations. The
lack of order when starting from a high packing fraction fluid also suggests a strong slowdown
of dynamics.
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Figure 4.21: Radial distribution functions g(r) taken near the melting transition for various
crystal structures, along with their corresponding coordination numbers, defined as the integral
of g(r) up to its first minimum, which is indicated by the black dots. “F” indicates the fluid, “X”
the crystal and “QC” the quasicrystal, if present. As a general trend, whenever the difference in
g(r) between the crystal and the dense fluid is large, the crystal does not self-assemble (easily).
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4.4.4 Transitions between crystals V, VI and VII

For s € [0.32,0.36] and ¢ ~ 0.62, we find that the structures V and VI do not melt directly
into a fluid, but instead follow the sequence V—VI—VII—Fluid i.e. the less symmetric
crystal structures first transform via solid-solid transitions into more symmetric structures
before fully melting. This is somewhat visible from the equations of state in Fig. 4.16, but
it is most clearly seen in by evaluating the order parameters g, either their distributions as
shown in shown in Fig. 4.22 or their snapshot averages as in Fig. 4.23. Fig. 4.22 shows the
structure metrics gy versus gg with the distributions for s = 0.34 and s = 0.36 highlighted
in purple and teal. For both Figs. 4.22 and 4.23 the order parameters were obtained
from the final configurations of long (10* MC cycles) MC simulations in the isothermal-
isotension ensemble for rounding ratios 0.31 < s < 0.38 and pressures 12 < fSpv, < 45.
The densest packings at these rounding ratios served as the initial configurations for
these simulations, these were structures V and VI for s = 0.34 and s = 0.36 in Fig. 4.22,
respectively. For s = 0.34 there are three clearly separated distributions (plus that of
fluid), corresponding to structures V, VI and VII. For s = 0.36 the two distributions
belonging to structures VI and VII are also clearly separated. By mapping the snapshot
averages ¢; against the density as we do in Fig. 4.23 we can additionally estimate the
coexistence densities from the density gap between the two phases. One should however
note that this estimate requires the phase transition to actually take place in simulation,
which for the solids may require very long simulation times, especially if it should occur
at higher densities. Furthermore, the small system size we employed for these simulations
(N ~ 250-500 particles) introduces finite-size effects that may shift the boundaries. A
more accurate estimate can be obtained by resolving the relative free energies e.g. using
the Frenkel-Ladd method [201, 202] for the solids, but we shall not do so in this chapter.
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Figure 4.22: Structure metric distributions g4 versus gg, highlighting the transitions between
structures V, VI and VII for s = 0.34 (purple) and s = 0.36 (teal). Also shown are snapshots of
a crystal plane where V—VTI is represented by the symmetrization of a hexagon, and VI—VII
by going from a hexagonal projection to a roughly square one.
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To conclude this section we summarize the observed phase behaviour as a function
of the shape s and packing fraction ¢ in the phase diagram shown in Fig. 4.24. We
indicate the estimated phase boundaries between solid phases that were not determined
with reasonable accuracy with dotted lines. These remaining boundaries are all hindered
by the slow dynamics associated with the high density at which they are likely to be
found (I, II, TTI, primed lattices), small structural differences inhibiting a clear distinction
between the two relevant phases (primed lattices), or the inherently slow dynamics of the
quasicrystal (the QA/IV boundary). All these could be much better determined using
free-energy calculations, but we leave this refinement to future work.
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Figure 4.24: Phase diagram of hard spherotetrahedra in the shape parameter s and packing
fraction ¢ representation, with the forbidden region beyond close-packing in dark gray. Solid
lines in the forbidden region denote transitions between densest packings. Symbols (connected
by a solid line to guide the eye) denote the boundaries of the gray shaded coexistence regions.
Dotted lines indicate estimates for phase boundaries of solid phases for which transitions were
not observed.

4.5 Conclusions & Outlook

In this chapter we have investigated the dense packings and phase behaviour of hard
spherotetrahedra, a family of shapes that interpolates between hard tetrahedra and hard
spheres. Our results demonstrate the structural complexity that arises in the solid phases
of these particles due to a competition between directional entropic forces from flat facets,
geometric constraints to achieve the densest packing, and rotational entropy. In the dense-
packing limit, rounding tetrahedra enforces the formation of complex distorted lattices
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where symmetries are broken in order to achieve optimal packing. We have found thirteen
separate close-packed structures, most of which are significantly denser than previously
reported [47]. Most strikingly, we find the N = 82 quasicrystal approximant to be the
densest packing for a shape parameter s € [0.04,0.088], in partial agreement with Jin et
al. [47]. To the best of our knowledge, this is the largest unit cell for the densest packing
of any single-component hard-particle system found thus far [40, 41, 159, 161, 167, 171,
177, 200]. That the densest packing for this system is a quasicrystal approximant again
raises the fascinating possibility of an aperiodic densest packing. We could not determine
whether it is the periodic approximant that is densest or the aperiodic quasicrystal in this
work. A more rigorous study is needed to resolve this question.

At intermediate densities, rounding the edges and vertices of tetrahedra seems to have
a dramatic effect on the crystallization rate and melting density of crystal phases, to the
point where we did not observe any crystallization from the fluid phase for s € (0.16,0.5)
even after 108 Monte Carlo cycles. The lack of self-assembly for similarly shaped trun-
cated tetrahedra [178] was attributed to a competition between several local structural
motifs [179]. Given the many dense packings we observe in this region, a similar mecha-
nism may be at play here as well. It would be interesting to see in which way truncation
and rounding of polyhedra differ in the suppression and enhancement of self-assembling
(quasi)crystal structures. Perhaps even greater control could be achieved by combining
them.
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Determining order parameters for
crystals of rounded tetrahedra
using dimensionality reduction

In this chapter we investigate how to automate the process of finding good order param-
eters to identify and distinguish between various crystals of hard rounded tetrahedra. We
do this by performing a Principal Component Analysis (PCA) on a data set containing
trajectories from all rounded tetrahedron phases that we observed in Chapter 4. The
simplicity of PCA provides us immediate insight into which bond order parameters ¢ are
most important for the classifying the various phases. We perform this PCA on two sets
of candidate order parameters, one containing the local bond order parameters ¢ with
2 <[ <12 and one containing both ¢ and w; with 2 <[ < 24. In both cases we find that
the first principal component yields a general measure for crystallization, while the second
and third principal components serve to distinguish the various crystal phases from one
another.
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5.1 Introduction

Categorizing the behaviour of molecular systems into distinct thermodynamic phases is
an essential part of modern material design. However, for anything beyond trivial model
systems, this cataloguing can be a serious challenge. Take water, for instance. While
most people are only familiar with its liquid and solid ice phases, its phase diagram as we
currently understand it features no fewer than 17 different possible phases of ice [203], and
this number is still growing. Water has been studied in detail for many years, and there is
a large amount of previous literature to use as a starting point when trying to identify new
phases. What if this were not the case? How would we determine a phase diagram for a
molecular or colloidal system for which we lack this luxury of prior knowledge? Roughly
speaking, the process of constructing a phase diagram in such a case can be divided into
three steps: i) the generation of particle trajectories, ii) finding a set of variables that
can distinguish between the various phases and iii) using these variables to classify phases
and construct the phase diagram. The first step can be performed with a large variety
of molecular dynamics (MD) or Monte Carlo (MC) based techniques, and these can be
automated quite effectively already. The latter two steps, however, often involve a fair
amount of trial and error. In the previous chapter we have performed these three steps
manually, and in this chapter we will investigate how to automate the second step. Let
us first frame the problem in the language of equilibrium statistical thermodynamics.
Within this framework, the different phases manifest as distinct probability distributions
P(T") in the phase space I'. This phase space is typically extremely high-dimensional, as
it is spanned by all possible coordinates coordinates of all the particles in the system.

In general, these probability distributions are not

é" 9 A P separable by looking at the raw values of the par-
7 (517 52) ticle coordinates I' that make up the trajectories
/ we obtain from MC/MD. However, they can be

‘ separated by considering specific functions &(T") of

these coordinates, such as the distance between two

specific atoms in DNA [204] or the tetrahedrality

of bonds between water molecules forming ice Ih

‘ [205]. We call these functions collective variables
~ or order parameters. Good order parameters are

P I (f 1, 52) rarely known a priori, but one can often guess de-

> cent candidates. Figure 5.1 shows an example of a
€ 1 close to ideal choice of order parameters & and &;.

In the space spanned by these two variables, the

Figure 5.1:  Schematic representa- probability distributions of two phases P;(&1,&)
tion of the probability distributions and P;;(&;, &) are completely separable. It is find-
Pr(&1,€2) and Prr(&1,€2) of two phases  ing these functions &(I') what constitutes the trial-

that are separable by the order param-  ;q_grror process that we alluded to earlier.
eters &1 and &s.

For the problem of identifying and distinguish-
ing between different crystal structures specifically,
there exist classes of functions that are known to often yield good candidates. One such
class, and the one we will consider in this chapter, are the bond-orientational order pa-
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rameters (BOPs), which describe the symmetry of the bonds* that individual particles
make with other nearby particles. Their origin traces back to the hexatic order parameter
proposed by Nelson, Rubinstein and Spaepen [206], which they used to investigate struc-
tural order in 2D systems of hard disks. Shortly after Steinhardt, Nelson and Rochetti
[182] proposed a three-dimensional variant that describes local structure by expanding
the bond directions between particles into spherical harmonics. These bond-orientational
order parameters (BOPs) have found great success in describing local structure, and have
been used to study nucleation in systems including hard spheres [183, 207-210], Lennard-
Jones systems [211-213], ice [214] and sodium chloride [215], defects in crystals [216],
and links between structure and dynamics in glasses [217-219]. Many improvements and
variations have been proposed since Steinhardt’s seminal work. Auer and Frenkel used
the Steinhardt ¢, to construct a local order parameter for nucleation and used this to
measure the nucleation barrier of hard spheres [208]. Lechner and Dellago improved the
resolving power between FCC, HCP, BCC and fluid phases by averaging the g, over
the second neighbour shell [186]. Parameter-free versions of the bond-orientational order
parameters have been proposed by both Meel et al. [185] and Mickel et al. [184], the
latter of which also proposed a weighting to make these parameters less susceptible to
thermal fluctuations. One key parameter in all variants of the bond order parameters
is the quantum number [ that prescribes the symmetry of bonds to capture. By far the
most popular choice is to look at [ = 4 and [ = 6, for which FCC, HCP, BCC and fluid
phases are usually well-resolved. Most literature on crystal phase identification has been
restricted to a small set of order parameters. Historically, good order parameters are
discovered and subsequently re-used often.

With recent advances in computing power and the growing popularity of machine
learning (ML) methods, however, a different methodology is developing. These new meth-
ods are rapidly being applied to take over the task of human trial and error in finding
good order parameters. Instead, one typically considers a large set of candidate order
parameters, and applies statistical or ML techniques to filter out the good ones. This
process, however, is often opaque. Neural networks are often used as “black box” meth-
ods, in which questions such as “which features are the most important?” can be difficult
to answer.

In this chapter we explore this new methodology by using the hard spherotetrahedron
system as a testbed. In the previous chapter we found that a system of hard spherotetra-
hedra has a diverse set of possible phases, featuring seven crystal phases and additionally
both a quasicrystal and a plastic crystal phase. We found that in the dense packing limit
one can identify crystal-crystal transitions by simultaneous discontinuities in the shape
dependence of the Minkowski structure metrics ¢;. For most of the crystal structures we
found, these structure metrics are non-zero. One thing we did not investigate, however,
is which structure metrics are the most important. Can we capture the nucleation of all
crystal structures with [ = 4 and | = 67 Which order parameters do we need to distin-
guish between the different phases at finite density? How many ¢; do we really need to
do this?

Finding the essential features (g;’s) that distinguish different phases is an example of

*A “bond” in this case does not denote a chemical bond, but rather simply the vector between two
nearby particles, regardless of their chemical or physical interaction.
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a dimensionality reduction problem. The generic problem is to project high-dimensional
data onto a space of much smaller dimension while preserving a notion of similarity:
“close” structures in the high-dimensional space should remain close even in the sub-
space, and likewise for those “far away”. Instead of using an opaque neural-network-based
method to tackle this problem, we use the simple and transparent method of Principal
Component Analysis (PCA), which defines a linear basis transformation in such a way
that the projection of the data onto a hopefully small subset of these so-called “principal
components” carry most of the variance or information of the data. Specifically, PCA
provides two directly interpretable objects: a set of eigenvalues from which the effective
dimensionality of the data set can be inferred, and a set of eigenvectors (particular lin-
ear combinations of ¢;’s) that provides information which features (g,’s) are most relevant.

This chapter is laid out as follows: in section 5.2 we describe how we construct the
data set of trajectories to which we apply PCA. In section 5.3 we apply the PCA to a
data set of all ¢, with [ = 2,3,4,...,12, while in 5.4 we consider a larger data set of all ¢
with [ = 2,3,4,...24 as well as w; with [ = 2,4,6, ..., 24.

5.2 Data set construction

We construct our bond order data set from the NpT Monte Carlo simulations of hard
rounded tetrahedra performed in Chapter 4, with typically 250-256 particles in the sim-
ulation box for crystalline structures and 1968 particles for the quasicrystal approxi-
mant (QA) structure. For 25 equidistantly distributed particles shape parameters s €
{0.02,0.04,...,0.5} and for 5 additional ones s € {0.6,0.7,0.8,0.9}, we calculate for ev-
ery particle in the system the set of eleven bond order parameters |q) = (g2, g3, - - -, q12), for
many configurations at pressures p in the interval 5 < pv,/kgT < 250 with v, the particle
volume and 7" the temperature. Here the ¢ are the Minkowski Structure Metrics (MSM)
proposed by Mickel et al. [184], where the complex ¢;,,, have been averaged over the first
neighbour shell according to the method of Lechner and Dellago [186]. For a more de-
tailed description of these order parameters, see Section 4.2.3. The use of the “ket-vector”
notation for the one-particle state |¢) will become clear below. In the crystalline states for
s > 0.1 we consider 55 pressures p yielding packing fractions ¢ € [0.38,0.88], and in the
QA states for 0.02 < s < 0.1 we consider 58 pressures yielding ¢ € [0.28,0.86]. We thus
consider configurations of all phases in the phase diagram of spherotetrahedra, i.e. the
fluid phase, the quasicrystal approximant phases, and all crystal phases at close-packing
and intermediate densities. This provides us with an 11 x N matrix of input data, where
N = > (s} NN, = 987180 with s the label of the considered shapes and N, and N
the number of particles and the total number of configurations considered for particle
shape s, respectively. This large matrix thus contains all the information on the local
structure of all particles in the various thermodynamic phases and of the various shapes
considered. In fact we also considered an even higher-dimensional set of bond order pa-
rameters in which we included the ¢; structure metrics with as well as their higher-order
invariants w;, both with 2 <[ < 24, for which the corresponding one-particle states were
Q) = (G2, q3, - - -, Go4, Wy, W, - . ., Way) and the input data matrix thus has 35 x A elements.
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5.3 Principal component analysis with ¢; for 2 <[ < 12

We perform a PCA on the 11 x A data matrix, which gives rise to a symmetric 11 x 11 co-
variance matrix, scaled such that its trace (and hence the sum of its 11 eigenvalues) equals
unity. We denote the eigenvalues of the covariant matrix by \; and its 11-dimensional
eigenvectors in “bra-ket” notation by |v;) for ¢ = 1,...,11. Note that all eigenvalues are
real since the covariant matrix is hermitian by construction. Figure 5.2 shows the eigen-
vectors and eigenvalues obtained from this analysis. The three largest eigenvalues are
A1 = 0.66, Ay = 0.25, and A3 = 0.04, such that (loosely speaking) the three-dimensional
linear subspace |v1) @ |va) @ |vs) accounts for a fraction as large as A\; + Ag + A3 = 0.95
of the variance of the data, i.e. 95%, which signifies a substantial dimensionality reduc-
tion. Recalling that we denoted the one-particle state by the 11-dimensional ket-vector
l9) = (q2,Q3,--.,q12), we can define the inner product y; = (v;|q) as the projection of
|g) on the principal components |v;) for ¢ = 1,2,3. In addition to the projections y; of
one-particle states, it also turns out to be convenient to consider its average (y;) over all
particles in the system (for a given shape s at a given state point).

In Fig. 5.3 we show the resulting average projections (y1) (a), (y2) (b), and (ys) (c)
as a function of the packing fraction ¢, in all three cases for eight judiciously chosen
particle shapes s € {0.04,0.12,0.14,0.22,0.34,0.36,0.4,0.8} that exhibit at sufficiently
high ¢ seven of the thirteen close-packed crystal structures or the plastic crystal pFCC.
For the quasicrystal approximant (QA), we show data for s = 0.06. The pie charts in Fig.
5.3 represent the three dominant eigenvectors |vq) (a), |ve) (b), and |vs) (c) also shown in
Fig. 5.2(b,c,d), where the parts of the pie denote the weights of the eleven components
¢ (including the relative sign).

The first eigenvector |v;) with eigenvalue A; = 0.66 is seen to be comprised of all ¢
with [ even in roughly equal measure, except for g, which is virtually absent in |V}). In
other words, up to an overall scaling factor we have y; ~ q4 + @6 + @3 + q10 + G12, Where
we set the five O(1) coefficients exactly equal to unity for illustration purposes. The
projection y; of the state of a particle (or its average (y;) over all particles) can thus be
interpreted as an overall but non-specific measure for the degree of crystallinity of the
particular state. This is confirmed by the ¢-dependence of (y;) in Fig. 5.3(a), which
for all particle shapes is a universal (non-zero) constant in the low-¢ fluid state while
any departure from this constant indicates a crystal structure. In the crystal regime, 1,
captures the increase in structural order with increasing density.

The second eigenvector |vy) is dominated by large positive g9 and ¢ components
and negative @ and ¢;2 components. The corresponding projection is then, again up
to an overall scaling factor and with rough estimates for the coefficients, given by s ~
ds — @6 + 2q10 — G12- The eigenvector |vy), with eigenvalue Ay = 0.25 and hence capturing
25% of the variance of the data, therefore mainly distinguishes four-fold tetrahedron-like
crystals (with large g, and ¢y0) from the hexagonal sphere-like ones (with large gs and ¢12).
Also this interpretation is confirmed by the density dependence of the average projection
(y2) on |vg) in Fig. 5.3(b) for all nine shapes, which clearly shows a positive result for
crystal IV and many of the other tetrahedron-like crystals and (deeply) negative results
for the structures pFCC and VII. Clearly, however, (ys) cannot disentangle many of the
four-fold structures.
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Figure 5.2: (a) Eigenvalues and first three eigenvectors of the PCA using |¢) = (G2, q3, - - -, q12)
as input. The inset shows the eigenvalues on a logarithmic scale and the legend shows the
percentage of the variance captured by each eigenvalue. A mild drop in eigenvalue can be seen
after the second and fourth eigenvector. (b,c,d) The weights associated with each component ¢
for the three largest eigenvectors (b) |v1), (¢) |v2) and (d) |vs).

The disentanglement of many of the tetrahedron-like crystals is accomplished by the
projection (ys) of the data on the third eigenvector |vs) as shown in Fig. 5.3(c). The pie
chart shows that |vs) is dominated by a positive gg component combined with negative g,
and q;o components, such that with rough estimates of the prefactors we have up to an
overall constant that y3 ~ g4 — 2¢s + ¢12. In other words, 8-fold symmetries play a role
that are mot simply higher harmonics of a 4-fold symmetry as their weights in y3 have
opposite signs compared to the weights in y;. Even though the corresponding eigenvalue
is as small as A3 = 0.04 such that the projection ys only captures 4% of the variance, the
density dependence of (y3) shown in Fig. 5.3(c) separates essentially all different crystals
relatively well. We can thus conclude that the largest variance in structure is found be-
tween any of the crystals and the fluid, followed by the dissimilarity of the sphere-like and
tetrahedron-like crystals, followed by the dissimilarity between the tetrahedron-like crys-
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tals. The resolving power of the projections (y,) and (ys) is best exemplified by following
the lines of structures V and VI in Fig. 5.3, both of which display jumps that respec-
tively correspond to the solid-solid transitions V—VI and VI—VII that these structures
undergo before melting into the fluid, as described in chapter 4.

To summarize, we find that y, ~ g4 + @6 + @s + qio + G12, which strongly correlates
with density, separates well the fluid phase and QA from the crystal structures, whereas
specific differences in ¢’s effectively distinguishes the different crystal structures, e.g.
Yo =~ Qs — e + 2q10 — q12 separates well the tetrahedron-like crystals from the sphere-like
crystals, and y3 ~ ¢4 — 2¢s + ¢12 distinguishes the various tetrahedron-like crystals.

To illustrate this further, we study the distributions of the local bond order parameters,
rather than the all-particle-averaged global bond order parameters. Fig. 5.4 shows three
two-dimensional projections of the 11-dimensional |¢) space of all our data, where the
different crystals are color-coded with a brightness that increases with density. In Fig.
5.4(a,b,c) we show the projections onto the principal components. The projection of the
one-particle states onto the two dominant principal axes |v;) and |vg) is shown in Fig.
5.4a, where the fluid and QA are well separated from all crystal structures by the line
y1 =~ 0.4. Moreover, the sphere-like crystals (VII and pFCC) at yo < 0 are well separated
from the tetrahedron-like crystals (I-VI) at yo > 0 with III and IV resolved from the other
four crystal structures. Fig. 5.4 also shows that the QA is in between the fluid and the
crystal phases with a unique ¢ fingerprint, which could for instance be used as an order
parameter in umbrella sampling techniques to aid nucleation of a quasicrystal [220, 221].
We note, however, that the ¢; alone are likely not optimal for detecting quasicrystalline
order due to their limited spatial range. Combining them with a longer-ranged order
parameter e.g. based on the radial distribution function g(r) may yield better results.
Fig. 5.4c illustrates that y, and y3 serve to distinguish between the various crystals,
as most structure occupy different corners of this subspace. The exception to this are
the distributions of crystals I, II, V and VI, which overlap significantly in all of these
projections. However, these four can be resolved by looking at specific combinations of
q; inspired by the principal components. We show these combinations in Fig. 5.5. The
“standard” combination (g4, gs) shown in Fig. 5.5a, resolves nearly all relevant crystal
structures, except for the significantly overlapping distributions of crystals I and VI, and
those of the fluid and the approximant. Taking the combination (g4 — s, ¢i2) in Fig. 5.5b
as suggested by |vs) resolves the overlap of the former, while the combination (g4, ¢10) in
Fig. 5.5¢ as suggested by |vy) partially resolves the latter.

Evidently all crystal structures can be distinguished from one another in this structure
metric space, but for specific combinations such as for crystals I and VI this separation
requires combinations of structure metrics rather than individual ones.
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which I can be distinguished from VI, and (c¢) (G, ¢10), in which we find the greatest separation
between the fluid and the QA. The different phases are color-coded, and the color brightness
indicates the density, with darker shades being lower packing fractions and brighter ones higher.
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5.4 A larger set of possible bond order parameters
with ¢ and w; for 2 <[ <24

Using the Voronoi tesselation method, we found that spherotetrahedra can have up to
20 neighbours. One could argue that this makes our choice for ,,,, = 12 too restrictive,
as symmetries higher than 12-fold may become important. In this section we describe
the effect of including bond order parameters with higher rotational symmetries in our
principal component analysis. Using the same data set as described in Section 5.2, we
now consider the set of bond order parameters |Q) = (¢2, 3, - - - , o4, W2, Wy, . . . Way), Which
includes the structure metrics ¢ with 2 <1 < 24 as well as their higher-order moments
w;. These higher-order moments read:

l { ) . . .
mi+ma+m3=0 (ml mo m3> szl(l)quz (Z)qms (Z>

(£ )

m=—

(5.1)

using the facet-weighted (but not averaged) g, as described in Section 4.2.3. The w,
of odd [ are all zero. We denote the corresponding PCA eigenvectors of this expanded
set as |V;) and the projections of the one-particle state its projections onto the principal
components as Y; = (V;|Q). Fig. 5.6 shows the eigenvalues and eigenvectors obtained
from the PCA of this data set. The effective dimensionality of this data set is somewhat
higher, with the first three eigenvalues being \; = 0.533, Ay = 0.194 and A3 = 0.097 for
a total of 82.4% of the variance being contained in the first three principal components.
To reach the same 95% threshold as before we now require six principal components.
Interestingly, when plotted on a logarithmic scale there is a sharp drop after the sixth
eigenvalue.

Looking at the first few eigenvectors, we find that |V}) and |V5) are similar to |v;) and
|vg) of the smaller set, with the first eigenvector being a roughly equal contribution of all
even ¢; describing crystallinity, and the second eigenvector consisting primarily of ¢4, gs,
G10 and ¢y2. However, |V7) also contains contributions from ¢ of higher [, and |V3) gaining
a large contribution of wy and wy. The third eigenvector |V3), however, is quite different
from its counterpart: where y3 ~ g4 — 2¢s + q12, Y3 >~ —2¢ + Gi0 — G12 — 4wo + wy. It
would thus seem that wy is an important order parameter for this system. However, when
we investigate the distributions of wy for the various phases in the system, we find that
whileits variance is large, it is not a particularly good order parameter. As can be seen
in Fig. 5.7(a): its mean and variance are largely the same for all phases, and so it cannot
be used to distinguish them. Additionally, Fig. 5.7(b) shows that the large contribution
of wsy smears out the distributions of the projections along the first two principal axes,
leading to a worse distinguishability than in the case of l,,,, = 12.

This decrease in distinguishability highlights one of the weaknesses of the PCA method:
a large variance along a specific direction does not necessarily imply distinguishability.
Other dimensionality reduction techniques such as diffusion maps [222] or autoencoders
[219] would most likely fare better as these methods are not inherently built around
maximizing the variance.
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Figure 5.6: (a) Eigenvalues and first three eigenvectors of the PCA using |Q) =
(G2,q3, - - -, Goa, W2, Wy, . .., waq) as input. The inset shows the eigenvalues on a logarithmic scale
and the legend shows the percentage of the variance captured by each eigenvalue. A sudden
drop in eigenvalue can be seen after the sixth eigenvector. (b,c,d) The weights associated with
each component g; for the three largest eigenvectors (b) |V1), (¢) |V2) and (d) |V3).
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Figure 5.7: (a) View along the (g4, w2)-plane. While wy has a large variance, the distributions
of all phases strongly overlap, and thus it cannot be used to distinguish between crystal phases.
(b) 2D distributions of projections Y; versus Y> when using |Q) = (G2, q3, - - -, §24, W2, W4, . . . , Way)
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5.4.1 Excluding w»

To better compare the effect of expanding our set of considered order parameters we now
exclude wq from our input features and apply the PCA again. We show the resulting
eigenvalues and eigenvectors in Fig. 5.6. Without wy the effective dimensionality of the
system is slightly lower, with the first three eigenvalues being \; = 0.609, Ay = 0.184 and
A3 = 0.064 for a total of 85.7% of the variance being contained in the first three principal
components. We still require six principal components to capture 95% of the variance,
but the sudden drop in eigenvalue now occurs after the fifth eigenvalue instead of after
the sixth. The first two eigenvectors |V7) and |V5) are almost entirely unaffected by the
removal of wy. However, |V3) is again quite different, both from the smaller set as well
as from the set including wy. Most strikingly, |V3) has barely any component along gs,
while for |v3) this was the largest component. We also investigated the other eigenvectors
(up to |Vg)), but found them to provide fairly little additional information. Furthermore,
none of the other |V;) resembled the |v;) of the smaller data set. In all eigenvectors |V;)
we found the contribution of the w; to be quite small except for wy.

To further compare the effect of including more candidate order parameters we plot
in Fig. 5.9 the 2D subspaces formed by pairs of the projections y;, Y; onto the first three
principal components |v;), |V;) of the two principal component analyses. Comparing the
subspace (y1,y2) and (Y7, Ys) in Fig. 5.9(a,b), we see that the effect of including wy as well
as the g of higher [ in |V}) is to stretch out the distributions of the various phases along
Y] in a way that exacerbates the effect of density. The reason for this is that the higher
¢, are more sensitive to noise. As the density decreases and particles move more freely,
higher-order bond order is lost before the lower-order one. This makes Y] less effective at
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distinguishing between phases, but more effective at representing the local density. The
addition of wy to |V2) does not seem to have a significant effect, as the various phases
are still arranged in the same order along Y, as along y,. Interestingly, despite |v3) and
|V3) being quite diffent, the projections along y3 and Y3 actually appear to be surprisingly
similar.
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Figure 5.8: (a) Eigenvalues and first three eigenvectors of the PCA using |Q) =
(G2,q3, - - -, G2a, Wy, W, . . . ,waq) as input. The inset shows the eigenvalues on a logarithmic scale
and the legend shows the percentage of the variance captured by each eigenvalue. A sudden
drop in eigenvalue can be seen after the fifth eigenvector. (b,c,d) The weights associated with
each component g; for the three largest eigenvectors (b) |V1), (¢) |V2) and (d) |V3).
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5.5 Conclusions

We conclude that the (reweighted) bond order parameters ¢ provide an excellent means of
distinguishing local structures, even for the rather complex hard-particle systems studied
here. Our PCA on the basis of ¢ for 2 < [ < 12 shows that not only the expected
gs and @g play a key role in the characterisation of the self-assembled structures, but
that a surprisingly large role is also played by ¢y, mainly to distinguish hexagonal from
tetragonal structures, and the QA from the fluid and the crystal phases. Moreover, we
find gg to be crucial for disentangling several of the tetragonal phases, even though the
corresponding eigenvalue in the PCA (A3 in this case) is an order of magnitude smaller
than the largest two eigenvalues. Most, but not all crystal structures can be distinguished
based on individual ¢;. The “standard” combination (g4, gs) works well for this system as
well, resolving most crystals except for crystal structures I and VI, which overlap in this
subspace. Taking the difference g4 — gs, as suggested by the third eigenvector obtained
from PCA, allows one to distinguish between these two structures as well.

When applying PCA to a larger set of bond order parameters which uses ¢ as well
as w; for 2 < | < 24, we found a surprisingly large component of the variance to be
contained in ws. However, upon closer inspection this variance is similar across all phases
of interest and thus cannot be used to distinguish between them. Excluding ws from
the analysis produces principal components very similar to that of smaller set using only
q for 2 <1 < 12. In both cases, the first principal component is a sum of all even ¢
in roughly equal measure, which provides a general measure of overall crystallinity that
may prove useful in nucleation studies, enhanced sampling techniques or inverse-design
methods. The second component in both cases is roughly y; >~ Y] ~ ¢4 —qs+2¢10— q12 and
distinguishes tetrahedron-like crystals (I-VI, QA) from sphere-like crystals (VII, pFCC).
The third component is quantitatively different for the two cases, but in both cases serves
to further distinguish the tetrahedron-like crystals from one another.

In general, we find that to optimally distinguish between many crystal phases, it is
worthwhile to consider ¢ beyond just [ = 4 and [ = 6. Considering all ¢ with [ =
4,6,...,12 seems to be a reasonable choice if one only wishes to include a small number
of them. Of the higher-order moments w; we find w, to be the most important to consider
— wy appears to be extremely noise for most phases of interest, while w; with [ > 4 yield
little variance across the phases considered here.
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Egg-shaped supraparticles of
rounded tetrahedra

In this chapter we investigate why CdSe nanoparticles with a rounded tetrahedral shape

form elongated, egg-shaped supraparticles, as observed in experiments carried out by
Wang et al. in Ref. [223]. We first determine the range of particle shapes encountered
in the experiments, and map this onto the hard spherotetrahedron model we investigated
in Chapter 4. We find that the experimentally synthesized nanoparticles correspond to a
shape parameter s ~ 0.5 + 0.1, and that the crystalline supraparticles have a structure
that corresponds to a slightly deformed face-centered cubic (FCC) lattice that is similar,
but not quite identical to what we would expect on the basis of the hard spherotetra-
hedron model. Using free-energy calculations, we determine the phase coexistence be-
tween the fluid, plastic crystal pFCC and crystal VII phases in the vicinity of their triple
point, which is near the experimental shape parameter s ~ 0.5. We find that the co-
existence densities as well as the supersaturation display a significant sensitivity to the
exact particle shape in this region, which warrants caution for studies into the nucleation
properties. Finally, we perform self-assembly simulations under spherical confinement to
mimic the experimental droplet evaporation self-assembly. We find that supraparticles of
hard spherotetrahedra with a roundness down to s = 0.7 display Mackay/anti-Mackay
order that is similar to what was found for hard spheres. For less rounded tetrahedra
(s < 0.7) we find no bulk ordered structure, but significant order at the boundary, with a
complex pattern reminiscent of dodecagonal quasicrystalline layers arising for s € [0, 0.2],
a simpler triangular lattice for s = 0.3, and orientational alignment with the boundary
but no structural order for s € [0.4,0.5]. Ultimately, we are not yet able to explain the
egg shape of the experimental supraparticles, but our results should provide a useful basis
for further studies, which we discuss in the closing remarks of this chapter.

This chapter is based on a collaboration between the author (under the supervision of Prof. M. Dijkstra
and Prof. R. van Roij), Dr. Da Wang (under the supervision of Prof. A. van Blaaderen) and Dr. Yaoting
Wu (under the supervision of Prof. C.B. Murray).
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6.1 Introduction

In Chapter 3 we introduced the spherotetrahedron system by remarking the peculiar
behaviour of supraparticles composed of rounded tetrahedron CdSe nanoparticles found in
Ref. [223]. Specifically, when such supraparticles are formed in experiments from a droplet
evaporation self-assembly, they attain an elongated, egg-like shape, as shown in Fig. 6.1.
The nanoparticles used in the experiments are composed of a CdSe core of roughly 9
nm in size, capped by oleic acid ligands whose maximum length is roughly 2 nm [224].
They are initially dispersed in cyclohexane (a good solvent), until for the self-assembly
they are emulsified with water (a bad solvent) with a surfactant added to stabilize the
droplets. Self-assembly then occurs in the slowly evaporating cyclohexane droplets. In
Chapter 4 we investigated the bulk phase behaviour of these particles via a hard-particle
model and characterized the many resulting crystal phases. In Chapter 5 we discovered
an order parameter that could reliably distinguish all hard spherotetrahedron crystals
from the fluid. In this chapter we connect back to the experimental system (described in
detail in Ref. [223]) and further investigate the self-assembly of these rounded tetrahedral
nanoparticles.

The observed anisotropy of the supraparticles is too large to be the result of locked-
in thermal fluctuations of the droplet shape. Assuming supraparticles with a diameter
D of roughly D = 100 nm and taking the cyclohexane-water surface tension v to be
approximately 0.05 N/m [225, 226], a back-of-the-envelope estimate for the energy cost of
forming an ellipsoidal droplet of cyclohexane in water with the observed aspect ratio of ~
1.4 instead of a spherical one yields a cost of ~ 10*kgT. This suggests that there is instead
some process that actively drives the supraparticles to become egg-shaped. We have two
hypotheses for such a process. First, the elongation of the crystalline supraparticles
may be the result of a strong preference for crystal growth along certain axes. To test
this, we will need to characterize the nucleation process, for which we need to know
the exact particle shape, which crystal is formed and at what densities. We determine
the particle shape in Section 6.2, the supraparticle crystal structure in Section 6.3, and
phase coexistence properties using free-energy calculations in Section 6.4. Our second
hypothesis is that the egg shape is the result of an interplay between crystal growth and
the geometric confinement. Hence, in Section 6.5 we perform self-assembly simulations
under spherical confinement to investigate the geometric effects induced by the droplet
geometry.

6.2 Mapping the experimental particle shape to the
model

As cyclohexane is a good solvent for the stabilized particles, the ligands on the CdSe
cores will be in a swelled state during most of the self-assembly. We approximate the
particle interactions as a pairwise hard-particle interaction, with the ligands adding an
extra effective roundness to the particle shape. The quality of this approximation depends
on currently unknown factors such as the ligand density: the denser the ligand layer on
the nanoparticles, the steeper the repulsions between them. We estimate the effective
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Figure 6.1: EM image of supraparticles obtained from droplet evaporation with spherotetrahe-
dral particles, as synthesized and imaged by Wang et al. [223]. Most of the supraparticles show
clearly defined crystalline domains, yet many are elongated/egg-shaped rather than spherical or
faceted.
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rounding ratio s by analyzing electron microscopy (EM) images. Obtaining the rounding
ratio s for experimental particles is challenging if one tries to do so by measuring the edge
length L and rounding radius R. The rounding radius R could in principle be measured
from spherical caps at the vertices, but experimentally obtained particles rarely display
perfect spherical caps. Furthermore, the contrast of these caps is quite poor in EM images.
The edge length L is likewise hard to measure as it is difficult to draw a distinction where
the flat edge stops and the spherical cap begins. A less error-prone measure is to instead
measure the center-to-vertex and center-to-edge distances, henceforth denoted by I; and
l. These two distances are easily and reliably measured from EM images. Because
particles tend to align their flat facets with the EM substrate, one can simply measure all
particles with triangular projections to ensure the appropriate 2D projection to measure
[y and l5. We can then calculate the edge length L and rounding radius R from [; and [,
and obtain the corresponding rounding ratio s. This mapping is given by:

L =2V3(ly — ly); R =2l —ly; s=R/(V6L/A+ R). (6.1)

Using measured values of [; and [y from a series of EM images we compute the average
rounding ratio of the CdSe cores to be s = 0.31 £ 0.11. Note that the oleic acid ligands
are not visible in the EM images due to their atomic nuclei being lighter than the atoms
in the CdSe cores. However, we can estimate their effective length by measuring the
distance between two nanoparticles that are aligned edge-to-edge. Using this measure
we obtain an effective ligand length of approximately 1.4 nm, slightly smaller than the
maximum length of the oleic acid ligands of ~ 2 nm when fully stretched. Fig. 6.2a
shows the resulting shape model for the experimental particles, with R; yeqsured and Ry mag
the effective rounding radii when we include the measured and maximum ligand lengths
leading to the effective rounding ratios s = 0.48 £ 0.10 and s = 0.52 + 0.09, respectively.
The hard spherotetrahedron crystals that lie within this region are the crystals IV, V|
VI, VII, and pFCC that we described in Chapter 4. We thus have five candidate crystal
structures.

Figure 6.2: Left: Model of the shape of the ligand-capped spherotetrahedral particles, with
core edge length L, core rounding radius R, and effective rounding radii R meqsured and Ry maz
that include the core radius R plus the measured and maximally stretched ligand lengths, re-
spectively. Right: Model with measured values manually overlaid onto an EM image.
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6.3 Determining the supraparticle crystal structure
from its structure metric fingerprint

We determine which of our candidate crystal structures (if any) is the one formed in the
experiments by calculating the structure metric fingerprints of the experimental supra-
particles and comparing them to those of the candidate structures from Chapter 4. To
compute the structure metric fingerprints of the experimental supraparticles, however,
we must know the experimental particle positions. Since we are interested specifically in
identifying a crystal structure, we can take advantage of the periodicity of the structure
by reconstructing the nanoparticle positions within a supraparticle from the diffraction
pattern that is created by this supraparticle. In brief, we take the 3D diffraction pattern
based on an electron tomography reconstruction and calculate an Inverse (Fast) Fourier
Transform (IFFT) to obtain the particle positions that created it. We perform such an
analysis for two supraparticles, for which we show 3D volume renderings along three or-
thogonal directions and the corresponding IFFT reconstruction in Figs. 6.3 and 6.4. The
reconstructed supraparticles are somewhat smaller, as the IFFT reconstruction procedure
only uses the brightest diffraction peaks, which effectively discards information about the
(typically less ordered) particles at the surface. The IFFT procedure also does not provide
us with the particle orientations, and so we show particles as spheres in the reconstruction.

Figure 6.3: Cross-section views along a,b,c,) zy, z and yz-planes through the supraparticle
designated “Exp. 1”. Especially the cross-section view of the xz-plane reveals that particles in
the core take on two opposing orientations. d) Spheres placed at the positions reconstructed from
the IFF'T, with brighter magenta colors indicating higher values of gg. Particles at the boundary
are lost due to their intensity being too low to be included in the IFFT reconstruction.

We now calculate the structure metrics that correspond to these reconstructed coor-
dinates. Specifically, we calculate ¢, g4, @6, s, G0 and Gi2, which we defined in Section
4.2.3. We compare the fingerprints of the measured supraparticles to the hard spherote-
trahedron crystals IV, V, VI and VII in Fig. 6.5 by looking at their structure metrics in
the spaces (qu4,qs), (4s,q12) and (Ga, G10). The space (g4, @s) is the “conventional” choice
for distinguishing between crystal phases and also resolves the various hard spherotetra-
hedron crystals quite well (see Chapters 4 and 5). We found in Chapter 5 that including
information from ¢g and @5 can aid in further resolving the hard spherotetrahedron crys-
tals. The space (2, ¢10) provides information about geometric frustration due to 10-fold
order via qj9 and general disorder through ¢, [184]. What we observe is that both supra-
particles, denoted by Exp. 1 and Exp 2, closely match the structure metric signature of
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Figure 6.4: a,b,c) Three views along crystal planes through the supraparticle designated “Exp.
27. d) Spheres placed at the positions reconstructed from the IFFT, with brighter magenta colors
indicating higher values of gg. Particles at the boundary are lost due to their intensity being
too low to be included in the IFFT reconstruction.

crystal structure VII in both (g4, s) and (gs, Gi2). Specifically, since crystal VII undergoes
a continuous deformation with the rounding ratio, the supraparticles best match VII,_g,
which is a nearly undeformed FCC crystal. While supraparticle Exp. 1 matches the
(Ga, @s)- and (Gs, q12)-fingerprints of crystal VII,_p9 and matches relatively well in gy, it
does not match in ;9. We speculate that this is due to a higher amount of geometric frus-
tration present in this supraparticle, possibly due to its attachment to the flat substrate
(which can be seen as the flat facet in Fig. 6.3a and 6.3b. Exp. 2 also largely matches the
(G2, G10) signature of crystal VII, but it has a long tail of larger ¢, values. As higher values
of g, were found to correspond to jammed packings for hard spheres [184] (as compared
to a crystal), we hypothesize that this long tail is due to locally jammed regions, possibly
formed during the late stages of droplet evaporation.

As stated before, we cannot extract the orientation of the particles by using the IFFT
method. However, real-space images of the supraparticles such as Figs. 6.3a-c and 6.4a-c
suggest that the spherotetrahedral nanoparticles can have either of two opposing orienta-
tions. We conclude that the supraparticle crystal structure best matches crystal VII, and
is thus a mildly deformed FCC lattice with a unit cell of two spherotetrahedra in oppos-
ing orientations. However, the deformation in the experimental system is less than what
we find for a hard-particle model of the estimated effective roundness. This mismatch
in deformation can be explained in two ways. It could be a result of polydispersity in
the experimental system, which is not taken into account in the perfectly monodisperse
hard-particle model. Alternatively, it could be the result of approximating the ligand
interactions as hard-particle interactions, instead of a softer steric repulsion.

For hard spherotetrahedra, the shape s = 0.5 is very close to the triple point of the
fluid, plastic crystal pFCC and crystal VII phases. Though the experimental supraparti-
cles best match crystal VII, there may be two self-assembly pathways available to reach
this structure: either from the fluid directly to crystal VII for s < 0.5, or from the fluid
to a plastic crystal pFCC, and then from pFCC to crystal VII for s > 0.5. This offers
a third possible hypothesis for the egg shape of the supraparticles: it may be the result
of a (martensitic) transformation from pFCC to VII, possibly with an influence of the
spherical boundary. The same condition holds as for our first two hypotheses: to test it
we must first determine the coexistence densities between these phases in detail, and we
do so in the next section.
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Figure 6.5: Minkowski structure metric distributions for five rounding ratios s displaying the
five candidate hard tetrahedron phases IV, V, VI, VII, and pFCC, as well as for the fluid and
the two reconstructed supraparticles Exp. 1 and Exp. 2. a) (g4, gs), in which the supraparticle
distributions overlap with those of crystal VII;_g g, which is a nearly undeformed FCC crystal.
b) (gs,qi12), in which the supraparticle and VII;— g distributions also overlap. c) (g2, q10), in
which Exp. 2 overlaps with the fluid and both VII crystals and Exp. 1 with a wide range of
phases. ¢ generally increases with disorder [184]. Structure metrics from different rounding
ratios s are color-coded, with brighter colors indicating higher densities.
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6.4 Free-energy calculations

Before we can investigate the nucleation processes of spherotetrahedra in detail, we have
to accurately establish the region of phase space in which nucleation takes place. As ex-
plained in Section 1.8, we can extract the coexistence properties from the free energies of
the fluid and the crystal(s). The structure metric analysis of the experimental supraparti-
cles suggests that their final structure is crystal VII. However, there are two pathways
to reach crystal VII, either by direct crystallization from the fluid, or with pFCC as an
intermediate phase. Thus, we should consider both the fluid-VII and fluid-pFCC as well
as the pFCC-VII transitions. For each of these three phases we require a different method
to calculate its free energy, and we outline these methods below.

6.4.1 Free energy of the fluid

We calculate the free energy of the spherotetrahedron fluid by determining the excess
chemical potential using the Widom test-particle insertion method [9]. This method
determines the excess chemical potential u., by sampling the Boltzmann probabilities of
inserting an (N + 1)-th particle at a random position 7y and orientation gy into a
configuration of N particles:

Blley = — ln/drN+1qu+1 <exp [—B (U(TN+1, g’ - Uy, qN))DN, (6.2)

where the average (- - )y indicates the ensemble average over an N-particle system. For
a hard-particle system, this expression reduces to the particularly simple form:

Bﬂex = - ln<]3insert>> (63)

where (Pj,ser¢) is the probability that one could insert a particle into a system without
creating any overlap with one of the other NV particles, averaged over all possible positions
ry.1 and orientations gy 1. We can then calculate the Helmholtz free energy per particle
by adding the ideal gas chemical potential Su,;q and subsequently using the definitions of
the Gibbs free energy G/N = pand G = F + pV/, such that:

BE
N _Bﬂzd+ﬁﬂex

Bupp

¢ )
where ¢ is the packing fraction, p the pressure and v, is the particle volume which enters
as an additional factor from working in packing fractions instead of densities. We list the

determined excess chemical potentials in Table 6.1. The free energy at different packing
fractions ¢ can then be obtained by integrating the equation of state p(¢):

6F(¢) - BF(gbref) ¢ 5” p(¢/> /
e kA FEad (6:5)

where ¢,.; is the reference packing fraction at which the free energy is determined using
Eq. 6.4.

(6.4)
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Table 6.1: Excess chemical potentials S, and ideal gas chemical potentials Su;q = In ¢ of
a spherotetrahedron fluid of N = 1000 particles at various rounding ratios s, along with the
packing fractions ¢ and pressures Sv,p at which they were determined.

S ¢ Bupp Blria Blhex
0.40 0.244(3) 0.822 -1.412(11) 3.975(15)
0.41 0.205(4) 0.5625 -1.583(19) 3.075(16)
0.42 0.206(4) 0.5625 -1.581(19) 2.915(16)
0.43 0.206(4) 0.5625 -1.579(19) 2.861(14)
0.44 0.207(4) 0.5625 -1.577(19) 2.931(15)
0.45 0.207(4) 0.5625 -1.575(19) 2.974(11)
0.46 0.207(4) 0.5625 -1.573(19) 3.079(11)
0.47 0.208(4) 0.5625 -1.572(19) 3.069(11)
0.48 0.208(4) 0.5625 -1.570(19) 2.902(10)
0.49 0.208(4) 0.5625 -1.668(19) 3.008(15)
0.50 0.201(3) 0.5171 -1.606(14) 2.611(3)
0.51 0.209(4) 0.5625 -1.565(19) 2.965(5)
0.55 0.202(3) 0.5171 -1.600(14) 2.618(4)
0.60 0.204(3) 0.5171 -1.591(14) 2.643(4)
0.65 0.205(3) 0.5171 -1.587(13) 2.594(4)
0.70 0.205(3) 0.5171 -1.583(14) 2.596(4)
0.75 0.206(3) 0.5171 -1.581(14) 2.558(4)
0.80 0.207(3) 0.5171 -1.576(14) 2.601(4)
0.85 0.207(3) 0.5171 -1.574(14) 2.539(4)
0.90 0.207(3) 0.5171 -1.574(14) 2.522(4)
0.95 0.208(3) 0.5171 -1.572(14) 2.466(3)
1.00 0.207(3) 0.5171 -1.573(13) 2.530(6)

6.4.2 Free energy of the plastic crystal pFCC

To compute the free energy of the plastic crystal pFCC, we employ the Frenkel-Ladd
method [201, 202]. In brief, we compute the free energy of the hard spherotetrahedron
crystal by calculating the change in free energy along a reversible path from a reference
state with a known free energy to the crystal of interest. This reference state is a nonin-
teracting Einstein crystal, in which particles are bound to their lattice sites by a harmonic
potential:

N /p o2
BUgin (1Y) =AY (Z - 1,o> ) (6.6)
—\o o
where r; are the particle positions, ;¢ their lattice positions, A a dimensionless coupling
constant, and o the length scale, in our simulations set equal to o = v)/3 = 1 as we
normalize the particle volume. The total energy of the system is then given by the sum
of this lattice energy and the hard particle interactions U = Upgrqg + Ugin. The reversible
path is constructed by varying the coupling constant A\: at A = 0 we recover the hard
spherotetrahedron crystal, while for A\ — oo particles are bound so strongly to their lattice

sites that they never interact, and we recover the noninteracting Einstein crystal. The
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free energy of the hard spherotetrahedron crystal is then computed by integrating the free
energy over this path according to:

F = Foin(Amas) — A | <8>\> d), (6.7)
min A

with A and Aj,.. given respectively appropriately small and large values to reach the
aforementioned limits. The reference free energy Fg;, is given by the analytical expression
BFEm()‘) _ §N —1 In (7‘(‘) (68)
N 2 N A
where the factor (N —1)/N follows from a constraint placed upon the center of mass of the
system[168, 201]. Note that this Einstein crystal potential couples only to the particle
positions and not to their orientations. This is intentional: since pFCC is a plastic
crystal, the particle orientations must remain disordered along the entire reversible path.
However, this freedom of rotation also poses a challenge. When we impose no potential
on the particle orientations, rotations of particles can make them come into contact even
when their positions are tightly bound to their lattice sites (i.e. at A — o0). For an
undeformed FCC lattice, this occurs for all packing fractions ¢ > ¢pee, Where @gee is the
maximum packing fraction for which spherotetrahedra can freely rotate when fixed upon
an FCC lattice. This packing fraction is given by:

ﬂ (6.9)

Qbfree - )
(Lo

with v, the volume of one particle and r, = \/EL/ZL 4+ R the circumscribed radius of a
spherotetrahedron of edge length L and rounding radius R. To reach the noninteracting
Einstein crystal limit, we add an additional step to our calculation in which we integrate
over the equation of state fSpv,(¢) of a system of spherotetrahedra that are bound to
their lattice sites with A\, from a high density to a density low enough that particles
can rotate freely and never come into contact. This density is typically lower than that
for which pFCC is stable without the applied Einstein crystal potential, but adding this
extra potential stabilizes it such that a reversible path can be constructed:

ﬁF(¢ref) o ﬁFEm<)‘max) _/ max < (6U/N)> d\ + Pref ﬂvpp(¢)
Amin sPref

d¢, (6.10)

Amaz

N N N a)\ Pfree ¢2

This method is similar to the lattice-coupling-expansion method [227]. Finally, to obtain
the free energy of pFCC at various densities we can simply integrate over the equation
of state Sv,p(¢) of a hard spherotetrahedron system. The final path to obtain the free
energy of a system of N spherotetrahedra of rounding ratio s at a packing fraction ¢ is
thus:

BF<¢) _ BFEln()\max) . max M
N N /}\mm < I\ >)\¢ref X (6.11)

ret Supp(¢') Bupp(9')
A R of —r

A’rrulz
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Note that the integration from ¢gee t0 ¢rer is only performed when required, which is
when ¢pee < ¢rop. We show the free energies of pFCC obtained in this way in Table 6.2,
along with the values of ¢pe.. As an example, we show the equation of state of s = 0.55
at A = A\ in Fig. 6.6. Note that the phase transition visible in Fig. 6.6 at ¢ ~ 0.63 is
simply the pFCC-VII transition.

Once we have calculated the free energies of the fluid and of the plastic crystal, we can
find the properties of the fluid-pFCC phase coexistence by means of a common tangent
construction, as described in Section 1.8. In Table 6.3 we show the obtained coexistence
densities, pressure and chemical potentials for the fluid-pFCC coexistence of spherotetra-
hedra with various rounding ratios s € [0.5,1.0]. One can observe that the coexistence
densities, pressure and chemical potential increase significantly when approaching the
triple point at s =~ 0.5. We did not find a common tangent at s = 0.5, which could be
either due to it being the triple point or due to the limited accuracy of the computed free
energies. Since we are interested in the nucleation properties of the pFCC crystal, it is
also instructive to consider the supersaturation SAp = Buawa — Buprcc at pressures and
fluid packing fractions above coexistence. This supersaturation describes the free-energy
difference between the bulk fluid and crystal phases that forms the driving force for the
nucleation of the crystal phase. Fig. 6.7 shows the supersaturation A as a function of
the fluid packing fraction (a) and the pressure (b). We can see that the supersaturation
decreases significantly towards s = 0.5, indicating that it becomes more and more difficult
to nucleate the pFCC crystal for these smaller rounding ratios.
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Figure 6.6: Equation of state of N = 864 spherotetrahedra with s = 0.55 in the pFCC phase,
bound to their lattice sites by Eq. 6.6 with A = A\j,4 = 59874.1. To reach the noninteracting
Einstein crystal limit, we integrate over this equation of state from ¢t t0 Gfree.
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Table 6.2: Free energies of the ideal Einstein crystal Fg;, (Eq. 6.8), free-energy differences
along the Einstein integration path AFg;,, packing fraction required for free rotation Qgee,
free-energy differences along the expansion path to free rotation F) ,, and the resulting free
energies of the pFCC crystal F. All integrations were performed using an FCC lattice with
N = 864 particles at a packing fraction of ¢ = 0.59 and with coupling parameters In A,,,;, = —5
and In A\jq = 11, except for s = 0.51 for which we used N = 500, ¢ = 0.59, In A = —3 and
In Ao = 12.

S 6FE'm/N BAFE"m/N ¢free /BAF)\maz/N 6F/N
050 14.7658  9.752(91) 0412794  2.174(2)  7.188(91)

0.51 16.2503 11.171(106) 0.419764  2.047(2)  7.126(106)
0.55 14.7658  9.493(89)  0.447642  1.585(2)  6.857(89)
0.60 14.7658  9.303(88)  0.482404  1.074(2)  6.537(88)
0.65 14.7658  9.111(87) 0.516940  0.584(2)  6.239(87)
0.70 14.7658  8.992(86) 0.551108  0.203(2)  5.976(86)
0.75 14.7658  9.017(36) 0.584767  0.008(2)  5.757(86)
0.80 14.7658  9.180(86)  0.617776 - 5.586(86)
0.85 14.7658  9.306(87)  0.649993 - 5.460(87)
0.90 14.7658  9.391(88)  0.681277 - 5.375(88)
0.95 14.7658  9.438(88)  0.711486 - 5.328(88)
1.00 14.7658  9.455(88)  7/(3v/2) - 5.310(38)

Table 6.3: Fluid-pFCC coexistence data: the rounding ratio s, coexistence densities ¢guid,c
and ¢prco,e, and the coexistence pressure Sv,p. and chemical potential 3.

S ¢ﬂuid,c (prCC,c ﬁvppc ﬂ,uc
0.51 0.576  0.584 14.0  30.9
0.55 0.592 0.600 159 338
0.60 0.549  0.568 10.5 243
0.65 0.535 0.562  9.17 21.7
0.70 0.520 0.554 796 19.3
0.75 0.514  0.556 7.52 184
0.80 0.503 0548 6.75 16.9
0.85 0.504 0554 680 16.9
0.90 0.504 0.555  6.73 16.7
0.95 0.507  0.561 6.91 17.0
1.00 0.501 0555  6.54 16.3
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Figure 6.7: Supersaturation SApu for spherotetrahedra of different rounding ratios s as a func-
tion of a) the fluid packing fraction ¢ and b) the dimensionless pressure Spuv,. For increasingly
less rounded tetrahedra, the coexistence density and pressure increase, and the supersaturation
increases less rapidly with density and pressure.

6.4.3 Free energy of crystal VII

We calculate the free energy of crystal VII with a similar approach as taken for the
plastic crystal pFCC. However, for crystal VII we must also consider that the particles
are orientationally ordered. We again construct a reversible path using the Einstein
crystal as a reference state, but this time we add a potential energy term that couples to
the orientations, which are represented using unit quaternions q:

A ol T Tio)? A A RY
BUMEN, V) =AY ( - ) 4+ ¢\ min (g — Gio)” . (6.12)
i=1 N0 a iz 1Q}

where 7; are the particle positions and their lattice positions 7; as before, g; and g
are the unit quaternions describing the particle and ideal lattice orientations, and c is
a constant that sets the ratio between the translational and orientation coupling, which
we henceforth set to ¢ = 1 for simplicity, such that X\ is the coupling parameter of both
the positions and the orientations. To account for the orientational symmetries that our
particles possess we consider also rotations of ¢; by the quaternions {Q} that produce
equivalent orientations for a particular symmetry, and take the combination of ¢; and
Gio for which (G; — Gi0)® is minimal. For tetrahedra, there are Ny, = [{Q}| = 24 of
such quaterions, formed by the 12 tetrahedral symmetry group elements, times two for
the ¢ <+ —q symmetry inherent to quaternions. The free energy of the corresponding
noninteracting Einstein crystal reference state is given by:

BEgin(N) 3]\7—11 <7T> 31 <7T

N 2 N A 2 cA
where the last term In Ny, = In24 ~ 3.17805 describes the entropy granted by the
orientational symmetry. We derive this expression in Appendix B.4. Including the ori-

entational symmetry at the level of the potential has the additional benefit of preventing
the integrand (OU/OM\) from diverging at intermediate densities and low coupling due

) —In Ny, (6.13)
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to particles hopping between symmetry-equivalent orientations. Without this symmetry,

one can only perform the free-energy calculation at densities high enough for particles

to never switch between symmetry-equivalent orientations. Because the applied Einstein

crystal field also couples to orientations, we can reach the noninteracting limit at high
values of A without any additional steps. The total integration path is thus given by:

BF(¢) _ BFpin(Anaz) _ //\"””” I(BU/N) d)\ + ¢ Buyp(¢)

N N A O\ A ret Gref ¢,2

d¢'.  (6.14)

min

We report the free energies of crystal VII calculated in this way in Table 6.4. To correctly
calculate the fluid-VII coexistence, we also have to consider the rotational free energy of
spherotetrahedra in the fluid phase. Specifically, when we compute the chemical potential
of the ideal gas reference state in Eq. 6.4, we should remember to add the rotational free
energy of an ideal gas of nonsymmetric rotators. As we derive in Appendix B.3, this
free-energy contribution is equal to SFiq,ot/N = —In 21?2 ~ —2.98261. To calculate the
pFCC-VII coexistence, we should also add this contribution to the free energy of the
plastic crystal. We show the fluid-VII and pFCC-VII coexistence data in Tables 6.5 and
6.6, and the resulting part of the (s,¢)-phase diagram in Fig. 6.8. The coexistence
densities of the fluid-pFCC transition are somewhat higher than its melting and freezing
densities, but for the fluid-VII and pFCC-VII transitions this difference is significantly
smaller.
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e S e
[op} (o] ~
(=} [9)] o

e
&)
3

0.501

0.451, . . . . . ]
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Roundness s

Figure 6.8: Phase diagram in the roundness s versus packing fraction ¢ representation for the
high rounding ratios s > 0.375. The empty squares indicate the melting and freezing densities
calculated in Chapter 4, and the lightly shaded region between them the resulting estimate
for the coexistence region. The dark shaded regions between the filled circles indicate the
coexistence densities from Tables 6.5 and 6.6 determined using free-energy calculations, while
the dark shaded region in the top right indicates “forbidden” packing fractions higher than the
established dense packings indicated by the solid black line.
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Having obtained the free energies of all three phases, we can now compare the super-
saturation of the fluid-pFCC transition to those of the fluid-VII and pFCC-VII ones. We
do so in Fig. 6.9, where we can see that the supersaturation of the latter two increases
quite rapidly with packing fraction, more so than the supersaturation of the fluid-pFCC
transition. This is somewhat surprising, given crystal VII does not readily form from
either the fluid or crystal VII in our simulations. However, classical nucleation theory
states that the nucleation barrier is composed of two opposing parts: while the difference
in bulk free energies as described by the supersaturation Ay drives the system towards
nucleation, it is counteracted by the free-energy cost associated with creating an inter-
face between the two phases. This interface has an associated interfacial tension, which
describes the energy cost of creating one unit area of interface. It is quite plausible that
the fluid-VII interface has a higher interfacial tension than the fluid-pFCC interface. To
self-assemble the crystal VII from the fluid, particles must pay an additional entropy cost
in order to attain the orientational order of the crystal VII phase, while no such orienta-
tional cost is required when going from the fluid to the plastic crystal pFCC. It is possible
to determine the interfacial tension or the full nucleation barrier by using e.g. nucleus
size pinning simulations [228] or umbrella sampling [209, 220, 221]. We will not perform
such calculations in this work, but we view it as in an interesting possible follow-up.

Our free-energy calculations reveal that the nucleation process for a bulk system of
spherotetrahedra can be quite different depending on the exact rounding ratio of the
particles, especially in the proximity of the triple point at s ~ 0.5. The data we provide
here should serve as a useful basis for performing more involved studies that investigate
the nucleation of spherotetrahedra in this region.
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Table 6.4: Number of particles N, reference packing fraction ¢, and the coupling constants
In A\jnin and In Ajyq, used in the Einstein integration, alongside the resulting ideal Einstein crystal
free energy Frin (Eq. 6.13), free energy difference along the Einstein integration path AFpg;,
and the free energies F of crystal VII, for varying rounding ratios s.

S N ¢ref In )\min In )\mam BFEm/N BAFEzn/N 6F/N

040 500 0.67 -2 10 233612 14.91(12) 8.45(12)
041 500 0.70 -2 10 233612 13.59(9)  9.77(9)

042 432 070 -2 10 233570 13.60(10)  9.75(10)
043 432 070 -2 10 233570 13.62(10)  9.73(10)
044 432 070 -2 10 233570 13.63(10)  9.72(10)
045 432 070 -2 10 233570 13.64(10)  9.72(10)
046 432 070 -2 10 233570 13.63(10)  9.73(10)
047 432 070 -2 10 233570 13.62(10)  9.73(10)
048 432 070 -2 10 233570 13.61(10)  9.74(10)
049 432 070 -2 10 233570 13.61(10)  9.75(10)
0.50 1458 0.70 -2 10 233786 13.61(5)  9.77(5)

051 500 0.70 -2 10 233612 13.60(9)  9.77(9)

0.55 432 0.74 -2 14 353431  22.66(17) 12.68(17)
060 432 074 -2 14 353431  22.48(17) 12.86(17)
065 432 074 -2 14 353431 22.30(16)  13.04(16)
0.70 432 074 -2 14 353431 22.05(16)  13.29(16)
0.75 432 074 -2 14 353431  21.72(16) 13.62(16)
080 432 0.74 -2 14 353431  21.24(16)  14.10(16)
085 432 074 -2 14 353431 20.56(16) 14.78(16)
090 432 074 -2 14 353431 19.52(15) 15.82(15)

Table 6.6: pFCC-VII coexistence data:
the rounding ratio s, coexistence densities
¢prcc,c and ¢yir ¢, and the coexistence pres-
sure Svpp. and chemical potential 5.

Table 6.5:  Fluid-VII coexistence data:
the rounding ratio s, coexistence densities
Pfuid,c and ¢yir., and the coexistence pres-
sure Sv,p. and chemical potential Sy

6,” S (bﬁuid,c ¢VILC ﬁvppc 5“0
- 0.40 0.588 0.639 16.1 349
0.41 0.604 0.664 18.7 36.3
0.42 0.610 0.671 198 379
0.43 0612 0.673 20.2 38.5
0.44 0.611 0.668 19.8 379
0.45 0.610 0.664 19.6 37.5
0.46 0.607 0.655 18.9 36.5
0.47 0.608 0.653 19.1 36.6
0.48 0.616 0.664 20.6 38.9
0.49 0.612 0.653 198 37.7

S Gprcce  Pvire  BUppe
0.51 0.624 0.661 214 40.0
0.55 0.637 0.674 242 442
0.60 0.650 0.686 279 49.6
0.65 0.663 0.697 32.8 56.4
0.70 0.676 0.706 39.2 65.5
0.75 0.689 0.715 486  78.7
0.80 0.702 0.723 63.0 98.8
0.85 0.714 0.730 88.0 133.5
0.90 0.725 0.735 140.5 205.5
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Figure 6.9:
function of a) the packing fraction of the lower phase ¢ (either fluid or pFCC) and b) the
dimensionless pressure Spv,. The fluid-pFCC coexistence is shown in red, with fluid-VII and

pFCC-VII in blue and yellow, respectively.
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6.5 Hard spherotetrahedra in spherical confinement

In the experimental system of Ref. [223], the self-assembly takes place within the confine-
ment of a slowly evaporating droplet of cyclohexane. The surface tension of the droplets
will drive them towards a spherical geometry. To mimic this self-assembly process, we per-
form MC-NVT simulations of hard spherotetrahedra within a hard spherical confinement
that is compressed at a fixed rate. Specifically, we do so by increasing the packing frac-
tion ¢ by 0.0001 every 10* MC sweeps, compressing the system accordingly, and removing
any overlaps that are created by the compression step. It is also possible to mimic the
shrinking spherical confinement in the NpT ensemble by constantly increasing the pres-
sure p and performing MC moves on the volume of the spherical confinement. However,
it is difficult to define the rate at which the confinement shrinks in such an ensemble, as
this requires knowledge of the pressure-density equation of state p(¢), which is generally
not known in advance. Since this rate is an important parameter for the self-assembly
process, we prefer the MC-NV'T approach. While we have performed these simulations
for the entire range of shapes s € [0, 1], we will focus primarily on the range that is most
relevant for the experimental self-assembly, which is roughly s € [0.4,1]. In this range,
the equilibrium bulk phase at high density is the crystal VII phase, although depending
on the system parameters we may also expect to find the self-assembly process to pass
through the plastic crystal pFCC first.

6.5.1 Mackay/anti-Mackay structural order

Given that in the range s € [0.4,1] the particle shape is quite close to that of hard
spheres, it is instructive to first review their behaviour under spherical confinement. The
self-assembly of hard spheres (s = 1) in spherical confinement has been studied in de-
tail in a number of recent works. De Nijs et al. [26] showed that depending on the
number of particles within the confinement, hard spheres do not self-assemble into the
bulk FCC structure, but rather into structures with icosahedral order corresponding to
a Mackay /anti-Mackay [229, 230] packing. These results were later refined by Wang et
al. [27], who demonstrated that hard spheres in spherical confinement display a “magic
number” effect, in which supraparticles with specific numbers of constituent particles are
more stable than others due to these numbers corresponding to the optimal Mackay /anti-
Mackay clusters.

We note that as demonstrated for spheres, there is a strong system size effect on
the self-assembly of supraparticles. In fact, there are three main factors that govern
the self-assembly of particles under spherical confinement: the shape and interactions
of the particles, the size of the system, and the rate of compression. The former two
determine the equilibrium structure, while the latter determines whether this structure
can be reached. A possible fourth component are the interactions between the particles
and the boundary. For hard spheres, these were shown to be largely insignificant [26],
but they become more important for anisotropic particles such as rounded cubes [174]
or the spherotetrahedra we consider here. To limit the number of variables, we restrict
ourselves to compression rates that are likely to be slow enough to reach the equilibrium
structure. Furthermore, we focus primarily on a single system size of N = 4096 particles,
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which is roughly on the order of the number of nanoparticles in the supraparticles in the
experimental system. The particle/wall interaction is assumed to be a hard interaction
for simplicity.

To investigate whether spherotetrahedra exhibit a similar effect to hard spheres, we
characterize the obtained compressed structures using the bond-order parameter approach
outlined in Ref. [26]. To this end, we define the dot product

.o Z?n:—ﬁ Qf)'m(l)qgm(j)
de(i,j) = 73 3 (6.15)
(S5 D 2) (S5l ()1)

and define solid-like bonds between neighbouring particles as those bonds for which
dg > 0.6 and solid-like particles as those with at least ny,,q = 7 solid-like bonds. We
differentiate between crystal domains by composing clusters of solid-like particles con-
nected by bonds with dg > 0.9.

Fig. 6.11 shows the fraction of crystalline particles as a function of the packing frac-
tion ¢ within the supraparticles. While very rounded spherotetrahedra for s € [0.7,1.0]
crystallize nearly as well as spheres, the total fraction of crystalline particles drops sharply
for less rounded shapes, dropping to nearly zero for s < 0.5. In Fig. 6.10 we show the
self-assembled clusters, where we have colored solid-like particles according to the crystal
domain they belong to. This labeling reveals that the core of the supraparticles is nearly
completely crystalline and ordered in the icosahedral Mackay structure beneath a surface
layer of roughly 3 particles in width. For spheres, this surface layer would eventually order
into a truncated anti-Mackay structure according to Ref. [27]. We can see some hints of
anti-Mackay surface ordering in Fig. 6.10 for s = 0.8, which suggests that the same pro-
cess holds for spherotetrahedra. However, for spherotetrahedra the Mackay /anti-Mackay
structure should eventually be overtaken in packing efficiency by one with orientational
order, likely one resembling crystal VII. For s < 0.6 there is no longer any crystalline
order in the core, and most crystalline particles are located at the surface, instead.
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Figure 6.10: Self-assembled clusters of spherotetrahedra in spherical confinement for s €
[0.4,0.9], with solid-like particles colored according to which cluster they belong to and disor-
dered particles colored in gray. For each supraparticle we also show the cores, for which we
have hidden the roughly three particle wide surface. For s € [0.7,0.9] the cores exhibit Mackay
ordering, while for s € [0.4,0.6] the cores are disordered, with most order being present on the
surface.
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Figure 6.11: Fraction of crystalline particles f as a function of the packing fraction ¢. Crys-
talline particles (according to the criterion also used for hard spheres) are only found in appre-
ciable fractions for s > 0.5.
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6.5.2 Orientational order at the spherical boundary

We speculate that for the rounding ratios s € [0.4,0.6] the sphere packing competes with
the preference for orientational order, which manifests in two ways. The first is that bulk
undeformed FCC ordering becomes less stable and harder to form, as we have shown
with the free-energy calculations in Section 6.4. Second is that this competition is even
stronger at the spherical boundary. Because the spherical boundary in our model is hard,
there is a preference for spherotetrahedra to orient themselves to pack favorably at the
boundary, an effect that becomes stronger for smaller roundness s. To quantify this effect,
we define an order parameter that measures how aligned the spherotetrahedron’s facets
are with the radial direction # of the confining sphere. This order parameter v is given
by:

_3 Aop) Lt 6.16)

1/}—2mlax(nz ) 3 (6.

Here 7i; is the normal of facet ¢ of the spherotetrahedron, and symmetry is accounted
for by taking the maximum value of this dot product over all facets. For tetrahedral
symmetry, this dot product has a range [1/3, 1], which we transform such that ¢ € [0, 1].
The value ¥ = 0 corresponds to a vertex pointing in the radial direction, ¢ = 1/+/3 to the
normal of an edge and ¢ = 1 to the normal of a facet. Fig. 6.13 shows the degree of surface
alignment for the supraparticles that were also shown in Fig. 6.11. For s € [0.7,0.9], there
is almost no orientational ordering at the surface, but there is a small increase for s = 0.6
and a sharp one for s = 0.5 and s = 0.4. Outside the relevant range for the experimental
supraparticle assembly, simulations for s € [0, 0.3] (shown in Fig. 6.14) reveal that surface
orientational order becomes extremely pronounced at lower rounding ratios, though the
exact surface packing pattern is different between s € [0,0.2] and s € [0.3,0.4]. As shown
in Fig. 6.15, we find for s € [0,0.2] a quite complicated lattice with an N = 20-particle
unit cell reminiscent of dodecagonal quasicrystal layers [166, 168] or virus capsids [231].
For s = 0.3 we find a much simpler two-particle triangular lattice.

For spheres in spherical confinement, the crystallization process starts at the surface,
and from there grows into the bulk [26]. We hypothesize that orientational ordering in-
hibits the onset of crystallization into an FCC-like structure for s € [0.4, 0.6]. It should be
noted that this inhibition is likely a dynamic effect rather than an equilibrium one: given
a slow enough compression, even slow homogeneous nucleation could start crystallization,
even when heterogeneous nucleation at the surface is inhibited.
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s =10.5

Figure 6.13: Self-assembled clusters of spherotetrahedra in spherical confinement for s €
[0.4,0.9], with particles colored according to the radial orientation order parameter v (Eq.
6.16). Orientational order at the surface is largely absent for s € [0.7,1.0], but becomes very
pronounced for s = 0.4 and s = 0.5.
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Figure 6.14: Self-assembled clusters of spherotetrahedra in spherical confinement for s €
[0.0,0.3], with particles colored according to the radial orientation order parameter ¢ (Eq.
6.16).

Figure 6.15: Surface structure for s = 0.2. The surface structure is formed by roughly
hexagonal cells. Moving progressively inward, we can see are each cell is composed of a) a
facet-aligned central particle surrounded by six edge-aligned particles, plus two connecting facet-
aligned particles, b) six more particles in a hexagon with orientations between edge and vertex-
aligned and c) a wagon-wheel of five spherotetrahedra.
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6.6 Conclusions

Our goal in this study was to explain why rounded tetrahedral nanoparticles form egg-
shaped supraparticles. Our initial hypotheses were that i) the crystal formed by the
nanoparticles has a strong preference towards growth in certain directions and ii) there
is some kind of interplay between the spherical confinement and crystal growth which
causes elongation along one axis. There were several steps to undertake before we could
test these hypotheses. For either hypothesis, we had to identify the crystal formed in the
experimental system, verify the applicability of the hard spherotetrahedron model, and
establish accurately the density regime in which crystallization takes place.

Approximating the ligands to add effective roundness to a hard-particle model, we
established the shape of the experimental nanoparticles to have an approximate rounding
ratio of s = 0.5+ 0.1, with the CdSe core corresponding to s ~ 0.31+0.11. By comparing
their structure metric fingerprints with those of the hard spherotetrahedron crystals we
identified in Chapter 4, we established the supraparticle crystal structure to be a two-
particle deformed FCC lattice, where the two particles take opposing orientations and the
deformation is a compression along one of the cubic axes of the FCC lattice. This lattice
matches the hard spherotetrahedron crystal VII, but the deformation in the experimental
system is less than in the model system. We suspect that the limited but still present
polydispersity in the experimental system favors a less deformed lattice over the more
specifically deformed lattice found for a perfectly monodisperse model system. A similar
preference may also arise from the softness of the ligand interactions.

Having established that the experimental crystal structure matches the model reason-
ably well, we performed free-energy calculations to establish the coexistence properties
of the three hard spherotetrahedron phases relevant to the experimental self-assembly:
the fluid, the plastic crystal pFCC, and the orientationally ordered crystal VII. The mea-
sured shape of s ~ 0.5 corresponds nearly exactly to the triple point of these three
phases, and so there are two possible paths to crystallization: fluid—VII for s < 0.5, and
fluid—pFCC—VII for s > 0.5. We find that the supersaturation Ay of the fluid-pFCC
transition drops sharply when approaching the triple point at s = 0.5, suggesting that
this transition is highly sensitive to the exact particle shape in this regime.

Finally, we performed self-assembly simulations under a shrinking spherical confine-
ment to investigate the effects of the evaporating droplet geometry in which the supra-
particles are formed. We find that the Mackay/anti-Mackay structure recently found for
confined hard spheres [26, 174] persists down to s = 0.7, but that it is absent for less
rounded tetrahedra. In fact, we find no bulk ordered structures to form for s < 0.7 for the
range of system sizes and shrinking rates we investigated. There is, however, significant
order to be found at the boundaries. For s < 0.6, particles at the boundary have a strong
preference to order with their facets towards the boundary, which in turn induces two
different structures at the boundary: a quite complicated lattice reminiscent of dodecago-
nal quasicrystal layers [166, 168] for s € [0,0.2] and a two-particle triangular lattice for
s = 0.3, respectively. It is debatable whether this surface ordering would also occur in
the experimental self-assembly. The particle-wall interaction in the experiments involves
interactions between the cores and ligands of the particles with the surfactant-covered
cyclohexane-water interface. At this stage, it is largely unknown how well this interac-
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tion can be modeled as a hard wall. Given that we did not observe any bulk ordered
supraparticles for s € [0,0.6] in our simulations, it is possible that a hard-wall model is
insufficient to adequately describe the self-assembly.

6.7 Outlook

The results shown in this chapter are not yet sufficient to truly test the validity of any of
our hypotheses. Further work is still needed to determine why these supraparticles attain
an egg-like shape in the self-assembly experiments of Ref. [223].

It should be possible to investigate the confined crystallization within a soft confine-
ment. In the ideal case, a two-way coupling should be established between the particles
and the wall, enabling the confining wall to deform if the crystallization process yields
significant anisotropy. Such a model would require a more educated guess for the ex-
perimental particle-wall interaction. If these are such that particles do not adsorb to
the interface at all, a relatively simple form of the confining potential could be used. If
particle do adsorb, a boundary layer with particles in fixed orientations could be used
as a confinement. Using such a model, one could investigate whether the fluid—VII or
pFCC—VII transitions are sufficiently anisotropic to deform the confining boundary.

Another avenue one could pursue is to perform umbrella sampling [220, 221] or nucleus-
size pinning simulations [228] to investigate whether the fluid—VII or pFCC—VII tran-
sitions yield any significant anisotropy in bulk. Identifying the size of the crystal nucleus
requires a good order parameter, which may be constructed from the general crystalliza-
tion order parameter ¥ = %(q_4 + @6 + Gs + Gio + q12) that we identified in Chapter 5. As
nucleation events for these transitions seem to be quite rare and the high density may
lead to slow dynamics, it may be useful to employ a seeding approach [232].

We expect the results and methods discussed in this chapter to provide a useful basis
for follow-up studies along these lines.
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An algorithm for calculating the
volume of arbitrary convex
spheropolyhedra

The volume of any convex polyhedron characterized by a set of vertices v = {r;} can be
calculated exactly by a simple algorithm. Take any point 7 inside the polyhedron, and
form a tetrahedron whose vertices are this point 7y and three unique vertices r; 53 from
the polyhedron’s vertices v. The volume V' of this tetrahedron is:

V= 6det|r1—r0,r2—r0,r3—r0|. (A.1)

Choosing ry as the origin simplifies matters. Now simply repeat this procedure for
every three vertices that form a face of the polyhedron, sum up the volumes of the
tetrahedra, and one obtains the volume of the polyhedron. To get the volume of the
corresponding convex spheropolyhedron with rounding radius R one does the following:
first calculate the polyhedron volume, and then add to this the volume of a) triangular
slabs that extend (the triangulation of) the polyhedron’s faces outward by R, b) cylinder
segments of radius R around each of the polyhedron’s edges and c) sphere segments of
radius R around each of the polyhedron’s vertices. For each triangular face composed of
three vertices 712 the volume of the triangular slab is:

1
2
where e 2 = 712 — 79 are two of the edges of this face.

For the cylinder and sphere contributions we must calculate how much of the cylin-
der and sphere contributes to the volume, which depends on the angles between faces
connected by edges and faces meeting at a vertex, respectively. Consider now an edge
e = r; — 1 that connects two triangular faces fy;. The two additional vertices that are
part of the faces fo; but not part of the edge are 734, respectively. We first find the
dihedral angle between the two faces from their surface normals:

Vilab = R\€1 X €2|, (A-2)

e x (r3—rmrp)

0= Telltra— vl i
A — (ra —my) x e (A.4)

L=
lel[(rs = 70)]
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Figure A.1: Two views of a cylinder segment around a spheropolyhedron’s edge. The edge e
is adjacent to two faces with normals 711 and 7is.

Note that depending on the vertex order, these normals are either both facing inward
or both facing outward. As long as the shapes are convex, the angle that provides the
fraction of the cylinder which contributes to the volume is then given by the angle between
the faces:

0 = arccos(f - 1) (A.5)

and the contributing volume of the cylinder segment becomes
0
Veyt = 7TR2|6|§ (A.6)

The vertex segments require some extra attention, because even for convex spheropolyhe-
dra there many be any number of faces meeting at a particular vertex. For each vertex r
we generate a set of new vertices that are moved outward by the rounding radius R into
the normal directions 7i; of vertex r’s adjacent faces:

r— {r + Rt} (A7)

These new vertices are the points where the cylinder segments around edges containing
the vertex r, the outwardly moved facets adjacent to r and the spherical caps around
r all intersect each other simultaneously. To then calculate how much of the volume of
the spherical cap around the vertex contributes to the volume, we construct a set of non-
overlapping tetrahedra from the old vertex r to the new vertices {r + R#fi;} and sum the
solid angles made from 7 to triplets of these new vertices. For each such tetrahedron, the
solid angle €2 subtended from r to three new vertices can be calculated with the following
expression [233]:

a-(bxec)
2 = 2arct A8
arctan (abc—ir la-blc+|b-cla+ \c~a\b> (A.8)

where a, b and c are vectors from r to three of the new vertices and a, b and ¢ are their
lengths. The sum of these solid angles divided by 47 is the fraction of the sphere around
the vertex r that contributes to the volume of the spheropolyhedron.
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Free energies of three-dimensional
ideal rotator systems

B.1 Rotational free energy of an ideal gas of classical
uniaxial rotators

The orientations of particles with a uniaxial symmetry can be fully represented by a unit
vector fi on the unit sphere S%.. The rotational configuration integral of a system of
uniaxial rotators is then given by:

Zoia = /S exp[—BU(R)] di = /S dn. (B.1)

This integral is simply the surface area of the unit sphere S?, which can be computed in
spherical coordinates:

2w
Zoid = / / sin @dfde = 4. (B.2)
o Jo
The corresponding dimensionless free energy per particle then becomes:
BEyiaf/N = —Indn (B.3)

B.2 Rotational free energy of an ideal Einstein crys-
tal of classical uniaxial rotators

Consider the orientational energy of an Einstein crystal of N particles with nematic
symmetry (uniaxial rotators):

BU(ON) = AisinQ 0;, (B.4)
i=1

where 6; is the angle between the particle orientation and the nematic director. The
configuration integral is then:

Zor Bin = </027r do /Oﬂ exp [—)\ sin? 9} sin 9d9>N . (B.5)
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For A > 1, the integrand exp [—Asin?6]sin@ becomes sharply peaked around 6 = 0
and § = w. In this limit, we an approximate the integral in Eq. B.5 as the sum of
two approximations of the integrand around these peaks: respectively using the (Taylor)
expansions of sinf around § = 0 and § = 7 (see Fig. B.1).
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Figure B.1: Approximation of the integrand of Eq. B.5 by the sum of two functions obtained
by Taylor expanding the sin # around # = 0 and 6 = 7, using A = 7.

These two functions are each other’s symmetric counterpart around 7 /2, and so their
integrals over [0, 7] are identical, and we can replace Eq. B.5 by:

or i = (2 /O 7o /0 "exp [-A67] ede)N. (B.6)

Now evaluate the integral over ¢ and substitute z = \0?, dz = 2)\0d0:

Zor pin = <47T /Oﬂz/\ exp [—x] 21)\dx>N = (2>7\T (1 — exp [—WZ)\D>N ~ <2;)N (B.7)

Where in the final step we again applied A > 1. Then the corresponding free energy is:

271

5 (B.8)

2m\ v
For,Ein = _kBT In ()\> = 5For7Ein/N =—In {

which is the expression reported in literature [11].

B.3 Rotational free energy of an ideal gas of classi-
cal rigid body rotators using quaternion orienta-
tions

The rotational free energy of a rotator in R? is given by the volume of the space of the ori-
entation representation. The rods considered in the previous section possessed a uniaxial
symmetry, which allows us to represent their orientations by points on the unit sphere S2.
Without this symmetry, we need a different representation to fully capture all possible
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orientations. There are multiple ways to represent rotations in three-dimensional space,
with the most common being Euler angles, rotation matrices and unit quaternions. In our
own calculations, we use the unit quaternion representation. A unique mapping between
orientations of 3D objects and unit quaternions is given by the set of unit quaternions
g on one half of a four-dimensional unit hypersphere S®. If uniqueness is not required,
a twofold degenerate representation is given by all unit quaternions on S*, with +¢ and
—q representing the same rotation. The volume of this representation is thus the three-
dimensional surface volume S of S?, which is given by (e.g. Ref. [234]):

S = /027r /07r /07r sin(6)?sin(a)dfdadp = 27°. (B.9)
The corresponding partition function of an ideal gas of 3D rotators is then:
Lo = /S g =5 =2r°, (B.10)
and the dimensionless free energy per particle:

BF/N = —In [27%] ~ —2.98261 (B.11)

B.4 Rotational free energy of an ideal Einstein crys-
tal of arbitrarily symmetric objects

One can use unit quaternions to describe the orientations of arbitrarily symmetric objects
in R3. Consider the rotational energy of an Einstein crystal of such objects, which is given
by:

N
ﬁUor =A Z mjn ((jz - Qi,0)2 y (B12)
i=1 @

where g; and §; ¢ are the unit quaternions representing the particle and lattice orientations
and A a coupling constant. To account for the orientational symmetries that our particles
possess we consider also rotations of ¢; by the quaternions {Q} that produce equivalent
orientations for a particular symmetry, and take the combination of g; and ¢, ¢ for which
(q; — q}-}o)2 is minimal. Equivalently, one can consider the minimum to work over the
reference orientations ¢y instead. For such a system, the one-particle configurational
integral Z is given by:

7, = / exp [—)\mjn (G — qo)ﬂ dg (B.13)
S8 Q

When the dimensionless coupling constant A is very large, i.e. A > 1, the orientations g
will remain very close to one of the Ny, = |[{Q}] symmetry-equivalent reference orien-
tations ¢p. Furthermore, the vast majority of the Boltzmann weight will be concentrated
around N, well-separated peaks. This allows the integral to be split up into Ny,
identical integrals:

Z1 ~ Ny /S Cexp[-A(G— )] dd (B.14)
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The integration domain of the remaining integral is over the space of unit quaternions,
which live on the surface of a four-dimensional hypersphere S?. Given that A > 1,
the domain over which the Boltzmann weight is significantly non-zero will be very small
compared to the size of the space. As shown schematically in Fig. B.2, the curvature of S3
as well as its periodicity will then be negligible over this domain, and we can approximate
the integral over the surface volume S* by one over an entire Cartesian three-dimensional

volume R3:
7, ~ Nsym/s exp [\ (2 — 0)?] d€2. (B.15)
R

From here, we can use the same approach as for the positional part of the Einstein
crystal. We substitute w = Q — Q¢ = (z,y, z), expand the 3D integral into its separate
coordinates, and use the Gaussian integral identity:

Z1 = Nsym /R3 exp [—)\wz] dw

= Nsym/ e_mzdx/ e_’\dey/ e dz (B.16)

7\ 3/2
= (3)

With which the free energy becomes:
N 3 s
F=—kpTn|2,"| = BF/N = =In Ny — 5 In H , (B.17)

which is the expression reported in literature [168].

Jrea exp [—A (Q— 90)2} Ry

Figure B.2: Three-dimensional visualization for the approximation going from Eq B.14 to Eq.
B.15: when the domain where the integrand takes on large values is small compared to the full
space S?, its curvature can be ignored and the integral can be approximated as one over a flat
space of one fewer dimensions.
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Summary

In this thesis we study the effects of particle shape and environment geometry on the
self-assembly of colloidal particles. Colloids are particles with a size between roughly
1 nm and 1 pm. At this size, they are large enough to have a meaningful shape, but
small enough to undergo a constant Brownian motion. This Brownian motion causes
them to self-assemble into various thermodynamic phases such as fluids or solids. For
colloids, which phases form and under what conditions is determined by the properties
of the particles and their interactions. At high densities, this is determined in a large
part by their shape. However, it is not only the geometric properties of the particles
that are important, but also those of their environment. The process of self-assembly and
the phases that arise from it can be drastically different depending on whether particles
self-assemble in bulk, near walls, or confined to a smaller region such as within a small
droplet or at the interface between two fluids. In this thesis we use computer simulations
to study these geometric effects in four different settings.

In Chapter 2 we investigate the effect of particle shape on a system of particles that
self-propel, converting some form of ambient energy (“fuel”) into their own movement.
Such self-propulsion is common to biological systems and can describe the movement
of bacteria, schools of fish, flocks of birds, herds of sheep and even that of crowds of
people. For self-propelled systems where a) each particle self-propels along its own slowly
changing “forward” direction, and b) particles are not able to move through one another,
one finds that beyond a certain critical density and self-propulsion strength, the system
spontaneously separates into a dense and a dilute region in a phenomenon known as
Motility-Induced Phase Separation (MIPS). However, this phenomenon is notably absent
from systems of particles with a rod-like shape, such as that of certain kinds of bacteria.
We use computer simulations to show that MIPS is dramatically suppressed when the
shape of particles goes from disk-like/spherical to one that is rod-like. We demonstrate
that this suppression is strong, preventing MIPS almost completely for two-dimensional
systems of particles thrice as long as they are wide. For three-dimensional systems this
suppression is even stronger, and MIPS disappears for any particles only twice as long as
they are wide. We show that this suppression is the result of torques between particles:
when torques between particles act in such a way that the duration of collisions between
two particles in the fluid is decreased, the crucial collision-induced slowdown required for
MIPS is inhibited, and the fluid phase is prevented from undergoing MIPS.

In Chapter 3 we model the self-assembly of a system of hourglass-shaped NaYF,
nanoparticles at an air-hexane interface. These particles, synthesized by Stan Najmr
and Mingyue Zhang in the group of Christopher Murray at the University of Pennsyl-
vania, demonstrate a number of interesting self-assembly phenomena that we show can
all be traced back to the influence of shape on a particle’s adsorption to the air-hexane
interface. We combine self-assembly simulations with interfacial adsorption simulations
performed by Giuseppe Soligno to demonstrate that the hourglass shape causes particles
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to adsorb onto the air-hexane interface in two (meta-)stable orientations: one where their
long axis lies along the interface (“horizontal”) and one where it is perpendicular (“verti-
cal”). Particles adsorbed in the horizontal orientation deform the interface in a way that
can be described as a capillary quadrupole: upward at the ends of the hourglass, and
downward around the middle. As a result, horizontal particles attract each other with
a strong capillary quadrupole-quadrupole interaction, but this same interaction prevents
them from attaining their close-packed configurations. The vertically adsorbed particles
do not significantly deform the interface, and as a result do not have significant capillary
interactions either with each other or with the horizontal particles. We find that this
shape-dependent adsorption and the resulting capillary interactions effectively reproduce
experimental observations, namely that i) particles are found in either the vertical or hor-
izontal adsorption configurations, ii) these two configurations partially demix, iii) vertical
particles form close-packed domains, but horizontal particles do not and iv) horizontal
particles form end-to-end attached strings at low density.

In Chapter 4 we study a system of hard rounded tetrahedra, motivated by two
interesting recent observations. The first is that CdSe nanoparticles of this shape (as
synthesized by Yaoting Wu in the group of Christopher Murray at the University of
Pennsylvania) were observed to form egg-shaped supraparticles in experiments performed
by Da Wang (in the group of Alfons van Blaaderen at Utrecht University). The second is
a recent report in which these particles of this shape were suggested to have a quasicrystal
as their densest packing [47]. We characterize the rounded tetrahedral shape by defining
a roundness shape parameter s, where s = 0 is a tetrahedron and s = 1 a sphere. Using
computer simulations, we determine the densest packings as a function of the roundness
s and the phase diagram as a function of s and the packing fraction ¢. We find that there
are thirteen close-packed structures, most of which are crystals with N = 2 or N = 4
particles in their unit cells. However, for slightly rounded tetrahedra of approximately
s € [0.040,0.088], we find the densest packing to be an N = 82-particle quasicrystal
approximant, corroborating the result of Ref. [47]. All close-packed structures are also
stable below close packing. In addition to the close-packed phases, for very rounded
tetrahedra (s > 0.5) we also find a plastic crystal phase. Some of these structures are
very similar to one another, which can complicate classification. We demonstrate that one
can use Minkowski structure metrics, a variant of the Steinhardt bond-order parameters,
to effectively distinguish and identify the various solid phases both in the close-packing
limit as well as at lower densities.

In Chapter 5 we investigate how to automate the process of finding good order param-
eters to identify and distinguish between various phases, using as a testbed the system
of hard rounded tetrahedra. Specifically, we do so by performing a Principal Compo-
nent Analysis (PCA) on a data set containing trajectories from the fourteen rounded
tetrahedron phases that we observed in Chapter 4. PCA is a simple and transparant
dimensionality reduction technique that gives us immediate insight into which bond order
parameters ¢; are most important for classifying the various phases. We perform this
PCA on two sets of candidate order parameters, one containing the Minkowski structure
metrics ¢ with 2 <[ < 12 and one containing both ¢ and their higher-order invariants
w; with 2 < [ < 24. In both cases we find that the first principal component yields a
general measure for crystallization, while the second and third principal components serve
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to distinguish the various crystal phases from one another.

Finally, in Chapter 6 we return to our original motivation for studying the rounded
tetrahedra, and connect back to the egg-shaped supraparticles self-assembled by CdSe
nanoparticles. We first determine that the experimental system corresponds to hard
rounded tetrahedra with a roundness of roughly s &~ 0.5. Following that, we compare the
order parameter fingerprints of two reconstructed supraparticles to the phases we deter-
mined in Chapter 4, and conclude that the supraparticles have a crystal structure that
corresponds to hard rounded tetrahedron crystal VII — a slighly deformed FCC lattice
with a two-particle unit cell of rounded tetrahedra in opposing orientations. In the model
system, the roundness s = 0.5 corresponds to a triple point of the fluid, the plastic crystal
pFCC and the crystal VII. We calculate the coexistence properties of these three phases
by means of free-energy calculations. We find that the supersaturation of the fluid-pFCC
transition drops sharply in the vicinity of this triple point, while those of the fluid-VII and
pFCC-VII transitions remain comparatively high. This shape-sensitivity could allow for
a highly tunable supraparticle nucleation in this regime, but it also warrants caution re-
garding the limits of applicability of our hard-particle model. By performing self-assembly
simulations under a shrinking spherical confinement, we find that supraparticles of hard
rounded tetrahedra with s € [0.7,1] exhibit Mackay/anti-Mackay ordering similar to
hard spheres. For less rounded tetrahedra there is significant ordering at the spherical
boundary, with two different structures arising depending on the roundness s: a complex
structure similar to the layers of the dodecagonal quasicrystal formed by hard tetrahedra
for s € [0,0.2], and a simpler triangular lattice for s = 0.3. For s € [0.4, 0.6], which covers
the range of shapes found in the experiments, we find no significant structural order either
in bulk or at the boundary. We hypothesize that a competition between the various modes
of ordering inhibits structural order in this range. While we are ultimately not yet able
to answer the question of why supraparticles of rounded tetrahedra become egg-shaped,
we expect the presented results to provide a solid basis usable for further research into
anisotropic supraparticle self-assembly.




Samenvatting

In dit proefschrift bestuderen we de geometrische effecten van deeltjesvorm en omgeving
op de zelforganisatie van colloidale deeltjes. Colloiden zijn deeltjes met afmetingen tussen
de 1 nm en 1 um. Met deze grootte zijn ze groot genoeg om een betekenisvolle vorm aan
ze toe te kennen, maar klein genoeg om een constante Brownse beweging te ondergaan.
Deze Brownse beweging zorgt ervoor dat de deeltjes zichzelf organiseren in verschillende
thermodynamische fasen, zoals vloeistoffen of vaste stoffen. Voor colloiden worden de
fasen die gevormd worden en onder welke omstandigheden bepaald door de eigenschappen
van de deeltjes en hun interacties. Op hoge dichtheden is het vooral de vorm van de deeltjes
die belangrijk is. Echter zijn niet alleen de eigenschappen van de deeltjes belangrijk, maar
ook die van hun omgeving. Het zelforganisatieproces en de resulterende fasen kunnen
drastisch verschillen afhankelijk van of deeltjes zich organiseren in bulk, in de buurt van
een muur, of begrensd tot een klein gebied zoals binnenin een druppel of op het grensvlak
tussen twee vloeistoffen. In dit proefschrift gebruiken we computersimulaties om dit soort
geometrische effecten te bestuderen in vier verschillende kaders.

In Hoofdstuk 2 bestuderen we het effect van deeltjesvorm op een systeem van deeltjes
die zichzelf voortstuwen door energie in hun omgeving (“brandstof”) om te zetten in hun
eigen beweging. Zulke zelfvoortstuwing is normaal voor veel biologische systeem, en kan
de beweging beschrijven van bacterién, scholen vis, zwermen vogels, kuddes schapen en
zelfs van mensenmenigtes. Voor de meeste van deze zogeheten actieve materie waarbij a)
de deeltjes elk zichzelf voorstuwen in een langzaam veranderende “voorwaartse” richting
en b) deze deeltjes niet door of over elkaar heen kunnen bewegen, vind men dat boven
een kritieke dichtheid en zelfvoorstuwingskracht het systeem zichzelf spontaan ontbindt
in een gebied met een hoge en een met een lage dichtheid. Dit fenomeen staat bekend
als Motility-Induced Phase Separation (MIPS). MIPS komt opmerkelijk genoeg niet voor
in systemen van staafvormige deeltjes, zoals die van bepaalde bacterién. We gebruiken
computersimulaties om te laten zien dat MIPS onderdrukt wordt wanneer deeltjes van
schijf/bolvormig naar staafvormig veranderen. We tonen aan dat deze onderdrukking
sterk genoeg is om MIPS volledig te voorkomen in twee dimensies voor deeltjes drie keer
zo lang als dat ze wijd zijn, en in drie dimensies zelfs voor deeltjes twee keer zo lang als dat
ze wijd zijn. We laten zien dat deze onderdrukking het resultaat is van torsies tussen de
deeltjes, en dat de cruciale botsingsgeinduceerde vertraging van deeltjes, die nodig is voor
MIPS, voorkomen wordt wanneer torsies de duur van botsingen tussen deeltjes verkorten.

In Hoofdstuk 3 modelleren wij de zelforganisatie van zandlopervormige NaYF, na-
nodeeltjes aan een lucht-hexaangrensvlak. Deze deeltjes, gemaakt door Stan Najmr en
Mingyue Zhang in de groep van Christopher Murray aan de Universiteit van Pennsyl-
vania, vertonen een aantal interessante zelforganisatiefenomenen waarvan wij aantonen
dat zij allen het gevolg zijn van de invloed van de deeltjesvorm op de adsorptie aan het
lucht-hexaangrensvlak. We combineren zelforganisatiesimulaties met grensvlakadsorp-
tiesimulaties uitgevoerd door Giuseppe Soligno om aan te tonen dat de zandlopervorm
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ervoor zorgt dat deeltjes aan het grensvlak adsorberen in twee verschillende (meta)stabiele
orientaties: een waarbij de lange as in het grensvlak ligt (“horizontaal”) en een waarbij
deze er loodrecht op staat (“verticaal”). Deeltjes geadsorbeerd in de horizontale orienta-
tie vervormen het grensvlak op een manier die beschreven kan worden als een capillaire
quadrupool: omhoog bij de uiteinden van de zandloper en naar beneden rond de mid-
del. Als gevolg van deze vervorming ondervinden de horizontale deeltjes een attractieve
capillaire quadrupool-quadrupool interactie met elkaar. Echter zorgt dezelfde interactie
er ook voor dat ze hun meest efficiente pakking niet kunnen bereiken. De verticaal ge-
adsorbeerde deeltjes vervormen het grensvlak nauwelijks, en hebben als gevolg ook bijna
geen interacties met elkaar of met de horizontaal geadsorbeerde deeltjes. We vinden dat
deze vorm-afhankelijke adsorptie en de resulterende capillaire interacties effectief de ex-
perimentele observaties reproduceren, namelijk dat i) deeltjes op het grensvlak gevonden
kunnen worden in 6f de horizontale 6f de verticale orientatie, ii) dat deze twee orientaties
deels ontmengen, iii) dat verticale deeltjes dicht gepakte domeinen vormen, maar hori-
zontale deeltjes niet, en iv) dat horizontale deeltjes op lage dichtheid strengen vormen
waarbij de uiteinden van de zandlopervormen aan elkaar zitten.

In Hoofdstuk 4 bestuderen we een systeem van harde ronde tetraéders, gemotiveerd
door twee interessante recente observaties. De eerste is dat CdSe nanodeeltjes met deze
form (zoals gemaakt door Yaoting Wu in de groep van Christopher Murray aan de uni-
versiteit van Pennsylvania) ei-vormige supradeeltjes bleken te vormen in experimenten
van Da Wang (in de groep van Alfons van Blaaderen aan de Universiteit Utrecht). De
tweede is een recente publicatie waarin deeltjes met deze vorm een quasikristal als dichtste
pakking lijken te hebben [47]. We beschrijven de ronde tetraédervorm door een rondheids-
vormparameter s te definiéren, waarbij s = 0 overeenkomt met een tetraéder en s = 1
met een bol. Met behulp van computersimulaties bepalen we de dichtste pakkingen als
een functie van de vormparameter s, en het fasediagram als functie van s en de pak-
kingsfractie ¢. We vinden dat er dertien dichtste pakkingen bestaan, waarvan de meeste
kristallen zijn met N = 2 of N = 4 deeltjes in hun eenheidscel. Voor licht ronde tetraé-
ders van s € [0.040, 0.088] vinden we echter dat de dichtste pakking een N = 82-deeltjes
quasikristal-benadering is, in overeenstemming met Ref. [47]. Alle dertien structuren
zijn ook stabiel op lagere dichtheden. Naast de dicht gepakte fasen vinden wij ook een
plastische kristalfase voor zeer ronde tetraéders (s > 0.5). Een aantal van deze structuren
lijken zeer erg op elkaar, wat het lastig kan maken om ze van elkaar te onderscheiden.
We tonen aan we desondanks deze fasen effectief kunnen identificeren en onderscheiden
zowel in de dichtepakkinglimiet als op lagere dichtheden met behulp van de zogeheten
Minkowski structuurmetrieken, een variant op de Steinhardt bondordeparameters.

In Hoofdstuk 5 onderzoeken we hoe we het proces van goede ordeparameters vin-
den om fasen te onderscheiden kunnen automatiseren, waarbij we het systeem van ronde
tetraéders gebruiken als een testomgeving. Hiervoor voeren wij een Principal Component
Analysis (PCA) uit op een dataset met data van de veertien rondetetraéderfasen uit het
vorige hoofdstuk. PCA is een simpele en transparante dimensionaliteitreductietechniek
die ons duidelijk inzicht geeft in welke orderparameters ¢; het meest belangrijk zijn om
de verschillende fasen te classificeren. We voeren deze PCA uit op twee sets kandidaat-
ordeparameters, een met de Minkowski structuurmetrieken ¢ met 2 <[ < 12 en een met
zowel ¢ als hun hogere-orde invarianten w;, beide met 2 < [ < 24. In beide gevallen
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vinden we dat de eerste hoofdcomponent een algemene maat van kristallizatie beschrijft,
terwijl de tweede en derde hoofdcomponenten dienen om de verscheidene kristalfasen van
elkaar te onderscheiden.

Tot slot keren we in Hoofdstuk 6 terug naar onze oorsponkelijke motivatie om de
ronde tetraéders te bestuderen, en gaan we verder met het modelleren de ei-vormige su-
pradeeltjes gevormd door CdSe nanodeeltjes in experimenten. Eerst bepalen we dat de
deeltjes in de experimenten overeen komen met harde tetraéders met een rondheid van
ongeveer s =~ 0.5. Vervolgens vergelijken we de ordeparameter “vingerafdruk” van twee ge-
reconstrueerde supradeeltjes met die van de fasen gevonden in Hoofdstuk 4, en concluderen
we hieruit dat de supradeeltjes een kristalstructuur hebben die overeen komt met het kris-
tal VII van harde ronde tetraéders — een licht vervormd kubisch vlakgecentreerd rooster
(FCC) met een eenheidscel van twee ronde tetraéders in tegenovergestelde orientaties. In
het modelsysteem komt s = 0.5 overeen met het driefasenpunt van de vloeistof, het plas-
tisch kristal pFCC en kristal VII. Met behulp van vrije-energieberekeningen bepalen we
de coéxistentie-eigenschappen van deze drie fasen. We vinden dat de oververzadiging van
de vloeistof /pFCC-overgang scherp afneemt in de buurt van het driefasenpunt, terwijl die
van de vloeistof/VII- en pFCC/VII-overgangen relatief hoog blijven. Deze gevoeligheid
voor de deeltjesvorm zou kunnen dienen als een afstelknop voor de supradeeltjesnucleatie
in dit gebied, maar biedt ook reden tot voorzichtigheid omtrent de grenzen van toepas-
baarheid van ons hardedeeltjesmodel. Door zelforganisatiesimulaties te doen onder een
krimpende bolvormige begrenzing, vinden wij dat supradeeltjes van harde ronde tetraé-
ders met s € [0.7, 1] een Mackay /anti-Mackay orde vertonen vergelijkbaar met het gedrag
van harde bollen. Voor minder ronde tetraéders is er een significante mate van orde aan
het begrenzende oppervlak, met twee verschillende structuren afhankelijk van de rondheid
s. Voor s € [0,0.2] vinden we een complexe structuur die lijkt op de lagen van het do-
decaédrische quasikristal dat gevormd wordt door harde tetraéders. Voor s = 0.3 vinden
we een veel simpeler driehoekig rooster. In het bereik s € [0.4,0.6], wat ook het bereik
van de deeltjes in de experimenten beslaat, vinden we geen enkele significante mate van
structuurordening noch in de bulk noch aan het oppervlak. We veronderstellen dat een
competitie tussen de verschillende ordeningsvormen de structuurordening verhindert in
dit bereik. Hoewel we uiteindelijk nog niet in staat zijn om te beantwoorden waarom ronde
tetraéders ei-vormige supradeeltjes vormen, verwachten we dat onze resultaten een solide
basis vormen voor verder onderzoek naar de zelforganisatie van anisotrope supradeeltjes.
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