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General Introduction

The immune system: a constant interplay of opposing forces
 The ancient Chinese concept of Yin and Yang describes two contrasting forces 
that exist as inseparable and contradictory opposites[1]. This concept was beautifully 
described in the Zhuangzi, (Chuang-tzu), Chapter 21: “When the state of Yin was 
perfect, all was cold and severe; when the state of Yang was perfect, all was turbulent 
and agitated. The coldness and severity came forth from Heaven; the turbulence and 
agitation issued from Earth. The two states communicating together, a harmony ensued 
and things were produced.”[2]. The constant interplay of Yin and Yang is thought to 
underlie many processes in nature, which depend on the balance and stability of various 
biological systems. In fact, everything in nature exhibits some degree of duality, and the 
immune system is no exception. 
 The immune system forms an intricate network of various immune cells 
(leukocytes), which carry out specific functions in response to endogenous and 
exogenous stimuli. The immune system has a crucial role in the defense against outside 
invaders, including viruses and bacteria, but it also plays a vital role in maintaining the 
body’s homeostasis, for example through wound healing[3] and detection of cancer 
cells[4]. Accordingly, immune cells have dual roles, with some cells being poised to 
attack (generally referred to as inflammation), while others display more defensive 
characteristics (generally referred to as tolerance). This duality is critical for the initiation 
and control of immune responses that support the return to health. Responses that are 
too weak result in the failure to resolve infections, whereas responses that are too strong 
or wrongly directed can lead to the development of autoimmune disease. On top of this, 
the immune system displays another layer of duality, namely the balance between innate 
and adaptive immune responses[5]. The innate immune system forms the first line of 
defense against pathogens and comprises non-specific inborn immune mechanisms. 
The adaptive immune system forms the second line of defense and comprises highly 
specific immune mechanisms acquired throughout life. Although these two components 
of the immune system are often studied as separate coexisting entities, the interplay 
between the innate and adaptive immune system is crucial for the timely initiation and 
termination of immune responses. Thus, the immune system walks a fine line, constantly 
being pushed and pulled between an activating and suppressive state, and is controlled 
by checks and balances of immune cells that support so-called peripheral tolerance[6]. 
In fact, it has been proposed that immunological tolerance against self-antigens is far 
from absolute, and specific auto-reactive cells of the adaptive immune system can often 
be found back in circulation[7, 8]. Under healthy conditions, these auto-reactive cells are 
reined in by tolerogenic cells of the innate immune system. However, when these cells 
cross the line towards the activating side, the immune system starts mounting responses 
to healthy tissue, and attacks the very cells that it is meant to protect. This is when 
autoimmunity arises.

Systemic sclerosis: the immune system gone awry
 Systemic sclerosis (SSc) is an example of an autoimmune disease where 
the immune system has crossed the line towards hyper activation. SSc is a complex, 
heterogeneous disease mainly characterized by vascular abnormalities, immune 
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involvement and extensive fibrosis of the skin and internal organs[9]. Based on the extent 
of skin fibrosis, SSc patients can be broadly classified into two major subsets: limited-
cutaneous SSc (lcSSc) and the more severe form, diffuse-cutaneous SSc (dcSSc)[10]. 
Moreover, patients that fulfill the classification criteria for SSc, but do not present with skin 
fibrosis are classified as non-cutaneous (ncSSc) patients. Lastly, individuals who suffer 
from vascular abnormalities, manifesting as Raynaud’s phenomenon, in combination with 
typical SSc features, including vascular abnormalities, or auto-antibodies, are classified 
as early (eaSSc) patients. These patients have a high probability to develop definite SSc 
within 10 years[11]. 
 Since skin fibrosis is the cardinal feature of SSc, the disease was historically 
considered to be a fibrotic disease. In fact, the disease name is derived from the Greek 
terms skleros and derma, literally translating to hard skin. However, over the last decades, 
mounting evidence has pointed towards dysregulation of the immune system as an 
indispensable factor underlying SSc pathogenesis. One of the first lines of evidence for 
the participation of the immune system in SSc pathology was the discovery of specific 
antibodies reactive towards self-antigens (autoantibodies), which are detectable in 
90-95% of SSc patients[12, 13]. Moreover, histology-based studies have shown that 
activated immune cells infiltrate the skin of SSc patients already from very early disease 
stages, before the onset of fibrosis[14]. It is now broadly accepted that the immune 
system plays a prominent part in SSc pathogenesis. Whereas fibroblast activation was 
first thought to be an effect of intrinsic dysregulation of the fibroblasts themselves, it 
is now becoming more and more clear that immune cell activation and inflammation 
induce the differentiation and activation of fibroblasts that deposit excessive amounts 
of extracellular matrix, eventually leading to fibrosis[15]. In turn, activated fibroblasts 
can perpetuate immune cell dysregulation in SSc through the release of cytokines and 
direct interactions with immune cells[16], thereby creating a self-sustaining loop between 
inflammation and fibrosis. 

Contribution of different immune cell types to systemic sclerosis pathogenesis
 Although immune system dysregulation is now recognized as one of the main 
culprits of SSc pathogenesis, the molecular mechanisms that underlie this dysregulation 
are not fully understood. Various types of immune cells display signs of activation and 
are thought to contribute to the immunopathology in one way or another. These include 
innate cell types such as myeloid cells (monocytes, macrophages and dendritic cells) 
as well as adaptive immune cells (B and T lymphocytes). Based on their frequency, 
molecular phenotype and altered functionality, different roles have been described for 
different immune cell types in the pathogenesis of SSc. 

The innate immune system in systemic sclerosis
 The cells of the innate immune system form the first line of defense against 
invading pathogens. They are crucial cells in initiating immune responses, but at the 
same time, they also play indispensable roles in the dampening and resolution of 
immune responses once danger is resolved, and immune cell populations have returned 
to homeostasis. Inflammation through innate immune responses is mainly triggered 
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by circulating as well as tissue resident innate immune cells including monocytes, 
macrophages and dendritic cells (DCs), which can recognize broad molecular patterns 
using specialized surface receptors. 

Toll-like receptors
 The functioning of innate immune cells largely relies on the recognition of 
pathogen associated molecular patterns (PAMPs) and danger associated molecular 
patterns (DAMPs) by pattern recognition receptors (PRRs). Toll-like receptors (TLRs) 
comprise one well-studied family of PRRs that are broadly involved in the recognition of 
viral and bacterial antigens[17], although more such receptor families are now described, 
including RIG-I–like receptors, Nod-like receptors, and C-type lectin receptors[18]. 
TLRs are particularly interesting in the context of SSc as, besides exogenous antigens, 
they also have a well described role in the recognition of various endogenous antigens 
released upon cellular stress or tissue damage[19]. Indeed, endogenous TLR agonists 
including TLR4 binding fibronectin (an extracellular matrix component) and TLR7/8/9 
binding RNA/DNA complexes, are increased in affected tissue and circulation of SSc 
patients[20–22]. TLR engagement by these endogenous DAMPs activates innate immune 
cells and induces the production of inflammatory mediators including the prototypical 
NF‐κB‐dependent cytokines tumor necrosis factor (TNF) and interleukin‐6 (IL‐6), as 
well as type I interferon (IFN), and the pro-fibrotic molecules transforming growth factor 
beta (TGF-β) and C-X-C motif ligand 4 (CXCL4). Notably, many of these factors have 
been described to be increased in the serum and plasma of SSc patients[23–25] and 
contribute to fibrosis[26, 27]. These data support a driving role of immune cell activation 
through TLR signaling in the disease pathogenesis. Moreover, distinct TLR ligands can 
activate distinct signaling pathways in innate immune cells, meaning that they can induce 
context specific immune responses. Thus, TLRs are not only critical in initiating pro-
inflammatory responses but also prime the immune system towards distinct inflammatory 
states. This is critical in the context of SSc, where TLR signaling does not only contribute 
to immune system hyper-activation, but also directs the immune system towards a state 
that facilitates fibrosis. 

Monocytes 
 Monocytes are circulating innate immune cells that constitute around 2-8% of all 
leukocytes in peripheral blood of healthy individuals. Based on the expression of the cell 
surface receptors CD14 and CD16, at least three types of monocytes can be distinguished 
in human circulation[28]. These include classical monocytes (CD14++ CD16–), intermediate 
monocytes (CD14++CD16+) and non-classical monocytes (CD14+CD16++). Monocytes 
are equipped with various TLRs, chemokine receptors and adhesion molecules that 
allow them to promptly respond to danger signals and facilitate their extravasation from 
circulating blood into affected tissues during inflammation. Upon entering the tissue, 
monocytes can differentiate into mononuclear phagocytes including macrophages or 
monocyte derived dendritic cells (moDCs), depending on the differentiation signals 
they receive[29]. Here they can give rise to distinct phenotypes of macrophages which 
can be distinguished on the basis of different surface markers. These constitute the 
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classically activated M1 macrophages, majorly involved in pro-inflammatory responses, 
or alternatively activated M2 macrophages, majorly involved in anti-inflammatory 
responses and wound healing[30, 31]. However, monocytes do not merely constitute a 
reservoir for tissue-resident cells. They also orchestrate immune responses through the 
secretion of pro-inflammatory cytokines and function as antigen-presenting cells without 
requiring the differentiation to downstream cell types[32]. Moreover, they are involved in 
the maintenance of tissue homeostasis through their roles in vascular remodeling[33], 
tissue repair[34], and the production of anti-inflammatory cytokines[35]. Thus, monocytes 
are multifaceted immune cells that are involved in many different processes which makes 
them crucial to consider in autoimmunity related inflammation. 

1
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Figure 1. Monocyte dysregulation in the pathogenesis of SSc. Monocytes are increased in circulation 
of SSc patients and show enhanced expression of activation markers Siglec-1, CD86, CD163, CD204 
and the expression of type I IFN genes (IFN signature). Increased monocyte chemoattractant proteins 
(MCP1, MCP-3) can lead to the increased infiltration of monocytes observed in SSc dermal lesions. Here 
monocytes produce large amounts of pro-inflammatory and pro-fibrotic cytokines, and they differentiate 
into M2 macrophages and myofibroblasts that produce extracellular matrix material.

 Numerous lines of evidence implicate monocytes in the pathogenesis of SSc 
(Figure 1). Firstly, monocytes are increased in frequency in the circulation of SSc 
patients[36, 37], which is already evident at early, pre-fibrotic disease stages[38]. Here, 
their frequencies correlate with clinical manifestations, including the occurrence of 
interstitial lung disease (ILD) and the extent of skin fibrosis[38]. Next to a numerical 
increase of monocytes themselves, monocyte chemoattractant proteins (MCP-1 and 
MCP-3), which are important mediators of monocyte tissue-directed migration, are also 
increased in circulating blood and skin of SSc patients[39, 40]. In line with the increase of 
these chemoattractants, monocytes are amongst the most predominantly infiltrating cells 
in SSc dermal lesions[37, 41], and increased numbers of macrophages in SSc skin have 
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also been reported[14, 37, 42]. Moreover, these cells display an activated and pro-fibrotic 
phenotype evident from the expression of surface markers including activating macrophage 
mannose receptor 1 (MRC1)[43] and M2 markers CD68 and CD204 on macrophages[44], 
as well as CD86, CD163, CD204 and Siglec-1 on circulating monocytes[37, 45]. In 
addition, monocytes of SSc patients are characterized by an increased expression of 
type I IFN-regulated genes[45, 46] (generally referred to as the type I IFN signature), 
further highlighting their increased activation status in the disease process. Lastly, SSc 
monocytes have an increased potential to differentiate into myofibroblasts[47], a special 
type of fibroblast that is associated with SSc pathophysiology[48]. All this evidence 
highlights a major role for monocytes in SSc pathogenesis, and positions them at the 
cross-roads of inflammatory and fibrotic processes in the disease. However, the exact 
molecular mechanisms that initiate and maintain monocyte dysregulation in SSc are yet 
to be elucidated.

Dendritic cells
 Besides monocytes, DCs have been put forth as important innate immune cells 
involved in SSc pathogenesis (Figure 2). DCs, named as such by Ralph Steinman and 
Zanvil Cohn because of their characteristic branching morphology[49], are another type 
of antigen-presenting cells that are a central part of the immune system as they bridge 
innate with adaptive immune responses. They are often referred to as the ‘sentinels’ of 
the immune system, as their main function is to take up and process antigens and present 
these to lymph-node-resident antigen-unexperienced T and B cells, thereby initiating 
adaptive immune responses[50]. Analogous to marker-based monocyte stratification in 
distinct functional groups, DCs can be further classified into distinct subtypes based on 
the expression of several surface markers as well as their morphology. Currently, two 
main groups of DCs have been described: conventional dendritic cells (cDCs, historically 
referred to as myeloid/mDCs, characterized by a typical branching morphology and high 
expression of CD11c) and plasmacytoid dendritic cells (pDCs, characterized by a plasma 
cell-like morphology and high expression of CD123)[51]. Whereas cDCs are most well 
known for their ability to activate T cells, pDCs are known for their ability to produce 
large amounts of IFNα. cDCs can be further subdivided into cDC1s and cDC2s based 
on the surface expression of CD141 or CD1c respectively. To further complicate DC 
classification, recent single-cell RNA sequencing and flow/mass cytometry studies have 
led to the identification further subdivision of DCs populations within the pDC, cDC1 
and cDC2 compartments[52–55], with some having pro-inflammatory properties while 
others exhibit a more regulatory phenotype[56]. Thus, DCs are a rather heterogeneous 
population of bridging immune cells that represent critical regulators of immune 
responses. 
 Several studies have been performed to dissect the role of DCs in SSc 
pathogenesis (Figure 2). pDCs have been extensively investigated for their obvious link 
to the type I IFN signature that characterizes SSc patients. Indeed SSc pDCs have been 
shown to spontaneously secrete IFNα[57], and also produce higher levels of IFNα upon 
TLR stimulation compared to healthy pDCs[25, 57]. Additionally, in line with observations 
in monocytes, pDCs from SSc patients display a consistent upregulation of IFN responsive 
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genes[58]. However, as opposed to monocytes, frequencies of pDCs are decreased in 
SSc circulation[57]. This disease-feature is proposed as a consequence of an increased 
migration of pDCs towards affected tissues of SSc patients. Indeed multiple studies have 
shown that these cells are increased in SSc skin and lung tissue[25, 57, 59]. Similar 
observations have been made for cDCs, which have also been found to be increased in 
dermal lesions in the skin of SSc patients[60]. This increased migration of DCs has been 
hypothesized to be a consequence of increased DC chemoattractants including CCL18, 
CCL19 and CXCL13[61]. In affected tissues, DCs have the potential to regulate other 
immune cells important in SSc pathogenesis, including fibroblasts and cells implicated in 
regulation of vascular remodeling during inflammation[62, 63]. SSc cDCs also produce 
increased levels of pro-fibrotic and pro-inflammatory cytokines including IL-6, IL-8, IL-12 
and TNFα upon TLR stimulation[64, 65], further highlighting their role in the regulation of 
fibrotic and inflammatory processes in SSc. However, further detailed molecular profiling 
of these cells is needed to fully explore their contribution to disease pathogenesis. 

1
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Figure 2. Dendritic cell dysregulation in the pathogenesis of SSc. Dendritic cells (DCs) are decreased 
in numbers in circulation of SSc patients. Increased chemokines (CCL8, CCL9 and CXCL13) can lead 
to the increased infiltration of plasmacytoid dendritic cells (pDCs) and classical dendritic cells (cDCs) 
observed in affected tissue of SSc patients. Here both cell types are capable of producing large amounts 
of pro-inflammatory and pro-fibrotic cytokines, and thereby stimulate macrophages and (myo)fibroblasts 
to deposit excessive amounts of extra cellular matrix material. Moreover, activated cDCs are potent T cell 
activators, putting them at the crossroads of adaptive and innate immune responses in SSc.

The adaptive immune system in systemic sclerosis
 Alterations of functioning of the innate immune system in SSc likely contribute 
to priming of the adaptive immune system towards a state of hyper-activation[66]. 
Accordingly, the cross-talk between innate and adaptive immune cells perpetuates 
inflammation over the disease course. The adaptive arm of the immune system mainly 
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comprises T and B cells that are armed with highly variable and high affinity antigen-
binding receptors. In contrast to PRRs expressed on innate immune cells that are antigen 
non-specific, the antigen-binding receptors of the adaptive immune system are highly 
specific to recognize highly selective antigens[67]. The high diversity of these antigen-
binding receptors arises from the genetic rearrangement of specific DNA segments 
occurring during the early stages of T and B cell maturation, equipping every T cell with a 
highly variable T cell receptor (TCR) and every B cell with a highly variable B cell receptor 
(BCR)[68]. The high variability and specificity of these receptors underlies the breadth 
and potency of the adaptive immune system. 

T cells 
 T cells are a major immune cell subset of the adaptive immune system. CD8+ T 
cells have the capacity to execute direct killing of pathogen-infected host cells, which is 
why they are generally referred to as cytotoxic T cells. CD4+ T cells, at large, have a crucial 
role in shaping the immune response through the activation of other immune cells, which 
is why they are generally referred to as helper T (Th) cells. Like many cells of the immune 
system, Th cells can be further classified into distinct subsets including the major Th1 
and Th2 subsets as well as the more recently described Th17 subset[69]. Th1 generally 
develop in response to viral triggers and produce large amounts of IFNy. Th2 generally 
develop in response to extracellular parasites and bacteria, and facilitate the initiation of 
antibody-mediated immune responses through the secretion of IL-4, IL-5 and IL-13. Th17 
form a subset of pro-inflammatory T cells that are characterized by the production of large 
amounts of IL-17, and are implicated in many autoimmune diseases[70]. Lastly, a subset 
of regulatory T cells (Tregs, characterized by the expression of surface markers CD4 and 
CD25, and the transcription factor FOXP3) have also been distinguished within the Th 
compartment. These cells represent a population of T lymphocytes with a suppressive 
capacity that is crucial for the maintenance of tolerance to auto-antigens[71]. The 
activation and polarization of all T cells relies on the recognition of antigens presented 
on the major histocompatibility complex (MHC) of antigen presenting cells (APCs, 
mostly DCs) through the TCR. Moreover, in order for T cells to become fully activated 
and clonally expand, a secondary signal is needed which is generated through signaling 
of costimulatory molecules present on APCs. Lastly, during activation, the polarization 
of Th subsets is generally induced through the secretion of diverse cocktails of T cell-
polarizing cytokines by APCs, which are largely dependent on the inflammatory milieu 
and the danger signals to be eliminated[72]. This again highlights the importance of the 
communication between innate and adaptive immune cells in shaping a proper immune 
response.
 T cells appear to have a prominent role in the pathogenesis of SSc. First, next 
to monocytes and DCs, skin of SSc patients is also characterized by the infiltration of 
cytotoxic and Th cells[73–75], along with a reduction of regulatory T cells[76]. Notably, 
these infiltrating T cells are characterized by the expression of CD69[77], an early 
activation marker[78], suggesting that infiltrating T cells are actively responding to antigens 
expressed in the skin of SSc patients. In line with these observations, circulating CD4+ 

and CD8+ T cells in peripheral blood of SSc patients exhibit an enhanced expression of 



15

General Introduction

T cell activation markers including IL-2R, HLA-DR, and CD29[79, 80], and secrete large 
amounts of pro-inflammatory and pro-fibrotic cytokines following stimulation[81, 82]. 
Adding to the enhanced activation of SSc T cells, Treg function appears to be impaired 
in SSc patients[83], suggesting that a loss of inhibition also contributes to aberrant T cell 
responses in the disease. Regarding T cell phenotypes, the Th2 polarizing cytokines IL-4 
and IL-13 are increased in circulation[84], and T cells with a predominant Th2 profile have 
been identified in SSc patients[85–88], leading to the proposal that SSc mainly is a Th2 
driven disease. In line with this, Th2 cells are known to directly promote fibrosis through 
the secretion of pro-fibrotic cytokines IL-4, IL-13 and TGFβ, thereby stimulating fibroblasts 
as well as macrophages to produce large amounts of extracellular matrix material[89]. 
One of the most important outstanding questions regarding T cell dysregulation in SSc 
is whether enhanced T cell activation is driven by the direct recognition and response to 
specific (auto)antigens. The skin and circulating immune cell pool of SSc patients contain 
a remarkably oligoclonal TCR repertoire (meaning that an expansion of T cells carrying the 
same TCR has occurred)[90, 91], providing further evidence for an antigen specific T cell 
response. However, little is known about the antigen specificity and temporal dynamics 
of T cells in the disease pathogenesis. Thus, more detailed characterization of the TCR 
repertoire and the dynamics of T cells responses are required to better understand the 
role of antigen specific T cell responses in SSc. 

Omics technologies to further unravel immune dysregulation in systemic sclerosis
 As outlined above, it is clear that immune cell dysregulation plays a pivotal 
role in SSc pathogenesis. However, the molecular processes that drive immune cell 
activation are still incompletely understood. Therefore, a detailed molecular view of 
the factors underlying immune system dysregulation in SSc is needed to unravel the 
interplay between different immune cells in the disease pathogenesis. To accomplish 
this, vast amounts of data from various molecular layers and from different levels of 
cellular organization are required. These data can be obtained by applying different 
omics technologies, which yield detailed information on the genome (genomics), gene 
regulation (epigenomics), gene expression (transcriptomics), proteins (proteomics) and 
metabolites (metabolomics) (Figure 3). The use of these omics technologies to study 
rheumatic autoimmune diseases, including SSc, has rapidly increased over the past 20 
years, especially when looking at transcriptomics and epigenomics studies (Figure 4A).

Figure 3. Core ‘omics’ technologies: genomics, epigenomics, transcriptomics, proteomics and 
metabolomics.

1
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Increasingly, omics datasets are being made publicly available, allowing for re-analysis 
and integration of independent datasets from different patient groups, cell types and 
tissues (Figure 4B). Following recent technological advances, these omics technologies 
can now even be applied on the level of single cells, providing a more detailed insight 
into the contribution of very specific cell populations to disease phenotypes. Application 
of these techniques to study immune cells in SSc should provide detailed molecular 
insights to help us better understand factors driving the dysregulation of these cells. 

Genomics
 Genomics is broadly defined as the systematic study of genetic information 
(the total DNA, or the genome) of an organism. Genetic mutations in intronic, extronic, 
and regulatory genomic regions can affect biological phenotypes and play a critical 
role in disease development. Therefore, assessing the structure and functioning of the 
genome can offer valuable insights into disease pathogenesis. To this end, a wide array 
of next generation sequencing (NGS) platforms are currently available, which can be 
used to gain insight into genomic variation between single individuals or whole patient 
populations[92]. These sequencing platforms come in different flavors, ranging from 
short read sequencing for the identification of single-nucleotide polymorphisms (SNPs), 
to ultra-long sequencing of large genomic regions for the investigation of more complex 
genomic variation (e.g. structural variants, or repeated regions)[93]. Multiple large 
genomic studies have already identified genetic variants associated with SSc. Recently, 
a large genome-wide association study in 9846 Systemic Sclerosis (SSc) patients and 

Figure 4. Number of publications in PubMed mentioning rheumatic autoimmune diseases and 
each omic in its title or abstract since the year 2000. Left: different omics technologies are indicated 
by different colors. Pubmed queries included: “rheumatology”[MeSH Terms] OR “musculoskeletal 
diseases”[MeSH Terms] OR “rheumatic diseases”[MeSH Terms] and -ome OR –omic search terms (e.g. 
genome or genomic), and were filtered for human studies only. Right: number of publicly available datasets 
available on the NCBI GEO database. Query: “rheumatology”[MeSH Terms] OR “musculoskeletal¬ 
diseases”[MeSH Terms] OR “rheumatic diseases”[MeSH Terms] (filtered for human). Datasets were 
categorized according to the type of data as indicated on GEO (indicated on the y-axis, color denotes the 
omics category as indicated in (A)). Retrieved on 18-02-2021.

A B
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1
18333 healthy individuals identified 13 new risk loci for SSc[94]. Notably, a large number 
of the genetic variants identified in this study were linked to regulatory regions. Moreover, 
specific associations could be linked to specific clinical subtypes of SSc, emphasizing the 
potential of genetic associations for classification of disease (sub)phenotypes. However, 
although several studies have identified genomic risk loci for SSc, the concordance rate 
of SSc in monozygotic twins is quite low (4,2%)[95], suggesting that genomics have a 
minimal contribution to the development of SSc. 

Epigenomics
 Since the evidence for genetic dispositions driving SSc is limited, and many 
genetic risk loci for SSc are linked to regulatory elements, epigenomic modifications 
are now being considered as imperative factors in SSc pathogenesis. Epigenomic 
modifications are reversible modifications of DNA or chromatin structures, which affect 
gene expression without altering the primary DNA sequence. The epigenome is defined as 
the complete set of epigenomic modifications of a cell, comprising histone modifications, 
open chromatin regions, DNA methylation and non-coding RNAs. The epigenomic 
landscape exists in a stable state, but it is also dynamic in the sense that changes can 
take place in response to environmental triggers, as is for example observed in immune 
cells in response to infection[96]. 
 A wide range of molecular biology techniques have been developed to study 
different epigenomic modifications in a high throughput manner. Binding sites of DNA-
associated proteins such as transcription factors and histone modifications can be 
studied using ChIP-seq (chromatin immunoprecipitation combined with parallel DNA 
sequencing). Chromatin accessibility can be investigated using ATAC-seq (Assay for 
Transposase-Accessible Chromatin using sequencing), which captures open chromatin 
sites representing actively transcribed genomic regions[97]. DNA methylation, which 
typically acts to repress gene transcription[98], can be studied in a high-throughput 
manner by whole genome bisulfite sequencing (WGBS)[99], or the more recently 
developed Illumina MethylationEPIC BeadChip assay[100]. These high throughput 
techniques can be used to identify epigenomic modifications that potentially underlie 
changes in gene expression in immune cells implicated in SSc. 

Transcriptomics
 Genomic alterations and changes in epigenomic marks together lead to an effect 
on gene expression, or in other words, the production of functional RNA. The production 
of an RNA copy from the DNA strand is referred to as transcription, and the transcriptome 
represents the sum of all RNA transcripts, ranging from mRNA to noncoding RNA. The 
transcriptome provides a snapshot of active/quiescent cellular processes, reflecting the 
effects of genomics and epigenomic alterations on gene expression. Thus, studying the 
transcriptome is important to understand how altered expression of genetic variants 
contributes to the development of complex phenotypes such as SSc. The transcriptome 
can be assessed on a large scale by microarrays or RNA-sequencing (RNA-seq). 
Microarrays work through the quantification of fluorescently labelled cDNA molecules 
that can hybridize with known DNA probes[101]. Because microarrays depend on the 
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hybridization with probes, they require prior knowledge on the genome of interest. Thus, 
specific genetic variants or unknown transcripts/isoforms cannot be detected using this 
method. To overcome this, RNA-seq has been developed, which employs next-generation 
sequencing technology to allow for the detection of unannotated genes and sequence 
level variations[102]. Moreover, RNA-seq data can be used to study long non-coding 
RNA transcripts, which are often not captured on microarrays. These long non-coding 
RNAs are transcripts with a minimal length of 200 nucleotides that do not possess any 
protein-coding capacity, but instead act as critical regulators of gene expression[103]. 
Additionally, specific transcriptomic sequencing methods have been developed to study 
variable TCR sequences at high resolution[104]. Next to studying expression patterns 
of single genes, transcriptomic data can also be used to construct gene co-expression 
networks. Gene co-expression networks consist of genes that display similar expression 
patterns across samples and are therefore thought to be functionally related[105]. Gene 
co-expression networks can thus be employed to describe the molecular state of a cell 
type/tissue using transcriptomic profiling on a broader, systems-level. 

Proteomics
 Although transcriptomics may provide valuable insights into gene-expression 
alterations, changes in transcript levels may not always correspond to analogous changes 
in protein levels due to multiple biological (e.g. mRNA stability, ribosome occupancy, 
protein turnover) as well as technical (e.g. experimental error and noise) factors[106]. 
Therefore, it is also important to study alterations at protein level to get a complete picture 
of the downstream effects of transcriptomic variation. The proteome encompasses 
the complete set of proteins produced in a system, and the large-scale study of these 
proteins using high throughput techniques is referred to as proteomics[107]. The gold 
standard high throughput technique in proteomics is mass spectrometry (MS), which 
can detect proteins using their fundamental biochemical properties such as mass and 
charge. MS is a complex technology that comes in numerous flavors and, besides the 
very specific detection and quantification of proteins, can also be used to study protein 
modifications and protein-protein interactions[108]. Recently, the MS based technique 
“cytometry by time-of-flight (CyToF)” has been developed to study immune cell proteomic 
profiles at a single cell level[109]. Because of its possibility to evaluate the expression 
of a large number of proteins on single cells (much more than traditional flow cytometry 
approaches), CyToF can be used to explore the immune cell landscape in patients with 
autoimmune disease in high resolution. These techniques are very helpful to dissect the 
precise contribution of individual immune cell subsets to disease pathogenesis.

Aims and outline of this thesis
 By applying various high-throughput omics approaches, the studies presented in 
this thesis aim to explore the molecular mechanisms contributing to immune dysregulation 
in SSc. Following the duality-based characterization of the immune system, this thesis is 
split up in two distinct yet complementary parts. In the first part, I focus on the innate immune 
system in SSc, exploring the role of monocytes and DCs in the disease pathogenesis. 
Chapter 2 describes the transcriptomic profiling of healthy as well as SSc monocytes 
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to identify long non-coding RNAs involved in the regulation of TLR4 induced type I IFN 
responses in these cells. The work presented in chapter 3 further characterizes the roles 
of long non-coding RNAs in monocytes of SSc patients. Exploiting transcriptomic data of 
monocytes from SSc and healthy donors, in this work, multiple lncRNAs were identified to 
have a potential role in the regulation of apoptotic pathways, IFN signaling and cytokine 
secretion in SSc monocytes. In chapter 4 I explored histone modifications characterizing 
the epigenomic landscape of monocytes from SSc patients as well as patients suffering 
from two other rheumatic autoimmune diseases: systemic lupus erythematosus (SLE) 
and rheumatoid arthritis (RA). Paired transcriptomic analysis and ChIP-seq allowed 
for the identification of disease specific and shared epigenomic imprinting underlying 
monocyte dysregulation in these three autoimmune diseases. Moving from monocytes 
to DCs, in chapter 5, I performed transcriptomic profiling combined with co-expression 
network analysis and transcription factor ChIP-seq to identify transcriptional regulators of 
pro-inflammatory responses in cDCs from healthy individuals and SSc patients. 
 In the second part of the thesis, I explore the role of the adaptive immune 
system in SSc. In chapter 6, I address the question of repertoire dynamics and antigen 
specificity of T cells in SSc. Herein I present a study of high-throughput sequencing 
of CD4+ and CD8+ TCR repertoires from blood samples obtained longitudinally from 
four SSc patients collected over a minimum of two years. To compare the dynamics of 
T cell responses of SSc to another autoimmune disease that is also characterized by 
local instead of systemic inflammation, in chapter 7 the immune architecture and TCR 
repertoire dynamics of peripheral blood and affected joints of juvenile idiopathic arthritis 
patients is investigated. This study included T cell phenotyping by CyTOF as well as TCR 
sequencing of effector T cells and Tregs, with the aim to get detailed insights into the T 
cell populations involved in local autoimmune responses. 
 Finally, all the findings and insights from the studies presented in this thesis are 
summarized and discussed in chapter 8. 
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ABSTRACT 
 TLR4 activation initiates a signaling cascade leading to the production of type I 
IFNs and of the downstream IFN-stimulated genes (ISGs). Recently, a number of IFN-
induced long non-coding RNAs (lncRNAs) that feed-back regulate the IFN response have 
been identified. Dysregulation of this process, collectively known as the “Interferon (IFN) 
Response,” represents a common molecular basis in the development of autoimmune 
and autoinflammatory disorders. Concurrently, alteration of lncRNA profile has been 
described in several type I IFN-driven autoimmune diseases. In particular, both TLR 
activation and the upregulation of ISGs in peripheral blood mononuclear cells have been 
identified as possible contributors to the pathogenesis of systemic sclerosis (SSc), a 
connective tissue disease characterized by vascular abnormalities, immune activation, 
and fibrosis. However, hitherto, a potential link between specific lncRNA and the presence 
of a type I IFN signature remains unclear in SSc. In this study, we identified, by RNA 
sequencing, a group of lncRNAs related to the IFN and anti-viral response consistently 
modulated in a type I IFN-dependent manner in human monocytes in response to TLR4 
activation by LPS. Remarkably, these lncRNAs were concurrently upregulated in a total 
of 46 SSc patients in different stages of their disease as compared to 18 healthy controls 
enrolled in this study. Among these lncRNAs, Negative Regulator of the IFN Response 
(NRIR) was found significantly upregulated in vivo in SSc monocytes, strongly correlating 
with the IFN score of SSc patients. Weighted Gene Co-expression Network Analysis 
showed that NRIR-specific modules, identified in the two datasets, were enriched in 
“type I IFN” and “viral response” biological processes. Protein coding genes common 
to the two distinct NRIR modules were selected as putative NRIR target genes. Fifteen 
in silico-predicted NRIR target genes were experimentally validated in NRIR-silenced 
monocytes. Remarkably, induction of CXCL10 and CXCL11, two IFN-related chemokines 
associated with SSc pathogenesis, was reduced in NRIR-knockdown monocytes, while 
their plasmatic level was increased in SSc patients. Collectively, our data show that NRIR 
affects the expression of ISGs and that dysregulation of NRIR in SSc monocytes may 
account, at least in part, for the type I IFN signature present in SSc patients.
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INTRODUCTION
 Toll-like receptor 4 (TLR4) is a member of the pattern recognition receptors 
(PRR) family, which detects conserved structures found in a broad range of pathogens 
and triggers innate immune responses. TLR4 signals through two major pathways: (i) the 
MyD88-dependent pathway, that elicits the release of pro-inflammatory cytokines, such as 
TNF-α, IL-6, and IL-12p40; (ii) the TRIF (Toll/IL-1R domain-containing adaptor- inducing 
IFN-beta)-dependent pathway, that contributes to pro-inflammatory cytokine responses 
and, most importantly, induces type I IFN responses, particularly IFN-β[1]. IFNs confer 
their activity by regulating networks of interferon-stimulated genes (ISGs), a process 
that requires de novo transcription and translation of both IFN and downstream ISGs[2]. 
Other than being activated by different exogenous pathogen-associated molecular 
patterns (PAMPs), the IFN pathway is activated also by TLR4 ligation of endogenous 
danger-associated molecular patters (DAMPs) released upon cell damage or stress[3, 
4]. Thus, TLR4-mediated activation of innate immunity plays a key role not only in host 
defense against pathogens but also in numerous autoimmune diseases, including 
systemic sclerosis (SSc)[5]. Indeed, endogenous ligand-induced TLR4 activation has 
been recognized as a key player driving the persistent fibrotic response in SSc[5–7]. 
Different endogenous TLR4 ligands, including fibronectin extra domain A (FnEDA) and 
S100A8/A9, are indeed increased in the circulation of SSc patients and have been 
correlated with fibrotic-related clinical complications[8, 9]. Moreover, activation of TLR4 
response leads to transforming growth factor-β production, a crucial mediator for fibrosis 
development in SSc[10].
 Likewise, production of type I interferon is closely linked to TLR4-mediated 
innate immune signaling in SSc[11–13]. In fact, several lines of evidence suggest that 
both the IFN network and monocytes are implicated in SSc immune-pathogenesis. First, 
the development of SSc has been reported in patients undergoing IFN treatment[14] and 
IFN-α injections worsen SSc-related clinical features[15]. Most importantly, increased 
expression of type I IFN-regulated genes, known as “type I IFN signature,” is a hallmark 
of SSc, and type I IFN signature is present both in the fibrotic skin and in peripheral 
blood cells[11, 13], as well as in monocytes of SSc patients from the earliest phases of 
the disease, even before the skin fibrosis is evident[16]. Moreover, in the fibrotic subsets 
of SSc patients we identified an increase in non-classical monocytes spontaneously 
producing the IFN-responsive CXCL10[17], a chemokine associated with faster 
progression rate from pre-fibrotic SSc to worse disease stages[18].
 The IFN pathway downstream TLR4 activation has been focus of intense 
investigation and a number of known protein-mediated mechanisms that mediate the 
complex signaling pathways and gene expression programs involved in the interferon 
response have been identified[2]. Recent studies point at long non-coding RNAs 
(lncRNAs) as a novel class of IFN pathway regulatory molecules[19]. LncRNAs are 
RNA transcripts longer than 200 nucleotides, characterized by lacking protein coding 
capability, but able to regulate gene expression both at the transcriptional and post-
transcriptional levels[20]. Existing data indicate that lncRNAs are critically involved in 
various biological and immunological processes[21], including several pathways related 
to innate immunity[22–29]. However, with respect to the IFN response, while IFN-induced 
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changes in the expression of protein-coding RNAs and their functional outcome have 
been well-documented, our knowledge of the impact of IFNs on lncRNA genes is highly 
incomplete. Moreover, the involvement of lncRNAs in diseases such as SSc, where both 
TLR4 and type I IFN concur to disease pathogenesis, is still unexplored.
 This study aims to investigate the profile and the role of lncRNAs in the IFN 
response initiated by TLR4 activation of primary human monocytes and their implication 
in the immune dysregulation present in SSc patients.

MATERIALS AND METHODS

Patients
 Patients affected by systemic sclerosis (SSc) and sex- and age-matched healthy 
controls (HC) were obtained from the University Medical Center Utrecht (UMCU), The 
Netherlands, and the Scleroderma Unit of Fondazione IRCCS Policlinico of Milan, Italy. 
Patients fulfilling the ACR/EULAR 2013 criteria[30] were classified in relation to the 
extent of skin fibrosis as limited cutaneous (lcSSc) or diffuse cutaneous SSc (dcSSc)
[31]; patients satisfying the classification criteria without skin fibrosis were referred to as 
non-cutaneous SSc (ncSSc). Additionally, early SSc (eaSSc) subjects were defined as 
patients presenting with Raynaud’s phenomenon and SSc-specific autoantibodies and/
or typical nailfold videocapillaroscopy abnormalities[32]. Three separate cohorts, herein 
named “definite SSc” cohort, “non-fibrotic SSc” cohort, “SSc cohort 3,” were recruited 
for the current study. Demographics and clinical characteristics of the three cohorts are 
reported in Tables 1–3. All patients and healthy donors signed an informed consent 
form approved by the local institutional review boards prior to participation in the study. 
Samples and clinical information were made de-identified immediately after collection.

Patient group (n) HC (9) ncSSc (7) lcSSc (11) dcSSc (7)
Age (yr.) 52 (30–64) 45 (26–63) 59 (45–70) 58 (34–72)

Female (n, %) 5 (56%) 6 (86%) 8 (73%) 3 (43%)

ANA (n pos, %) – 6 (86%) 10 (91%) 7 (100%)
ACA (n pos, %) – 3 (43%) 6* (55%) 1 (14%)

Scl70 (n pos, %) – 2 (29%) 2* (18%) 4 (57%)
mRSS – 0 6 (0–12) 14* (5–36)
ILD – 1 (14%) 2 (18%) 5 (71%)
Disease Duration (yr.) – 4 (1–12) 9 (1–19) 10 (2–27)

Table 1. Demographics and clinical characteristics of the donors included in the definite SSc 
cohort. Values reported indicate the number (n) of patients and the median for each parameter 
[Interquartile Range (IQR)], if not otherwise indicated. ACA, anticentromere antibodies; ANA, antinuclear 
antibodies; dcSSc, diffuse cutaneous SSc; HC, healthy controls; ILD, Interstitial Lung disease; lcSSc, 
limited cutaneous SSc; mRSS, modified Rodman Skin score; ncSSc, non-cutaneous SSc; pos, positivity; 
Scl70, anti-topoisomerase antibodies; Yr., years. *1 patient unknown.
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Patient group (n) HC (9) eaSSc (11) ncSSc (10)
Age (yr.) 38 (28–49) 57 (40–77) 52 (25–70)

Female (n, %) 9 (100%) 11 (100%) 10 (100%)

ANA (n pos, %) – 10 (91%) 10 (100%)
ACA (n pos, %) – 7 (64%) 8 (80%)
Scl70 (n pos, %) – 2 (18%) 1 (10%)
mRSS – 0 0
ILD – 0 0
Disease Duration (yr.) – – Unknown

Table 2. Demographics and clinical characteristics of the donors included in the non-fibrotic 
SSc cohort. Values reported indicate the number (n) of patients and the median for each parameter 
[Interquartile Range (IQR)], if not otherwise indicated. ACA, anticentromere antibodies; ANA, antinuclear 
antibodies; eaSSc, early SSc; HC, healthy controls; ILD, Interstitial Lung disease; mRSS, modified 
Rodman Skin score; ncSSc, non-cutaneous SSc; pos, positivity; Scl70, anti-topoisomerase antibodies; 
Yr., years

Patient group (n) HC (21) eaSSc (15) ncSSc (27) lcSSc (23) dcSSc (19)
Age (yr.) 52 (35–82) 62 (25–81) 59 (29–80) 60 (41–80) 52 (27–80)

Female (n, %) 19 (90%) 15 (100%) 27 (100%) 22 (96%) 15 (79%)

ANA (n pos, %) – 15 (100%) 26 (96%) 22 (96%) 16 (84%)
ACA (n pos, %) – 12 (80%) 20 (74%) 12 (52%) 0 (0%)
Scl70 (n pos, %) – 2 (13%) 1 (4%) 9 (39%) 11 (58%)
mRSS – 0 0 4 (0–8) 12 (2–29)
ILD – 0 2 (7%) 7 (30%) 14 (74%)
Disease Duration (yr.) – N.A. 10* (0–29) 16** (1–38) 10 (1–25)

Table 3. Demographics and clinical characteristics of the donors included in the SSc cohort 3. 
Values reported indicate the number (n) of patients and the median for each parameter [Interquartile 
Range (IQR)], if not otherwise indicated. ACA, anticentromere antibodies; ANA, antinuclear antibodies; 
dcSSc, diffuse cutaneous SSc; eaSSc, early SSc; HC, healthy controls; ILD, Interstitial Lung disease; 
lcSSc, limited cutaneous SSc; mRSS, modified Rodman Skin score; N.A., not assessed; ncSSc, non-
cutaneous SSc; pos, positivity; Scl70, anti-topoisomerase antibodies; Yr., years. *2 patients unknown. 
**3 patients unknown.

Cell Purification and Culture 
 Human CD14+ monocytes and neutrophils (PMNs) were purified from heparinised 
whole blood of SSc patients and matched HC or from buffy coats of healthy donors 
after centrifugation over Ficoll-Paque gradient. Briefly, CD14+ monocytes were purified 
from PBMCs using the anti-CD14 microbeads (Miltenyi Biotec), on the autoMACs Pro 
Separator (Miltenyi Biotec) according to manufacturer’s protocol. Purity of monocyte 
preparations was usually >98%. PMNs were recovered after dextran sedimentation and 
hypotonic lysis of erythrocytes followed by EasySep neutrophil enrichment kit (StemCell 
Technologies, Vancouver, Canada)[33]. Purity of neutrophils preparations was usually 
99.7 ± 0.2%.
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 Monocytes (3 × 106 cells/ml) and PMNs (5 × 106 cells/ml) were cultured in RPMI 
1640 (Gibco) supplemented with 10% FCS (<0.5 EU/ml; Sigma-Aldrich) and 2 mM Glu 
in the presence or absence of 100 ng/ml ultra-pure lipopolysaccharide (LPS, from E. 
coli strain O111:B4, InvivoGen, San Diego, CA, USA), 5 µM R848 (Invivogen), 1,000 
U/ml IFNα CRI003B, Cell Sciences), 100 ng/ml palmitoyl-3-cysteine-serine-lysine-4 
(Pam3CSK4, Invivogen), 50 µg/ml polynosinic:polycytidylic acids [poly(I:C), Invivogen], 
as indicated. In selected experiments, CD14+ monocytes were incubated for 30 min with 
5 µg/ml Brefeldin A (BFA, Sigma-Aldrich) or 5 µg/ml αIFNAR (PBL InterferonSource, 
Piscataway, NJ, USA) or its isotype control antibody (mouse IgG2a), before cell 
stimulation.

Human Monocyte Transfection
 Freshly purified monocytes (8×106) were transfected with 200 pmol NRIR-specific 
Silencer Select siRNA or Silencer Select negative control #2 (both from Ambion, Thermo 
Scientific), using the Human Monocyte Nucleofector Kit and the AMAXA Nucleofector II 
device (both from Lonza), according to the manufacturer’s protocol. Once transfected, 
cells were plated in recovery medium [50% RPMI 1640 + 10% FCS + 2 mM Glu, and 
50% IMDM (Lonza) + 10% FCS + 2 mM Glu], at 3×106 cells/ml overnight. The next day, 
medium was changed to RPMI 1640 + 10% FCS + 2 mM Glu, and cells were stimulated 
as indicated. NRIR specific Silencer Select siRNA sequence[34] is reported in Table S1.

Extraction of Total RNA
 Total RNA was purified with the RNeasy Mini Kit (Qiagen), according to the 
manufacturer’s instructions. DNAse treatment (RNAse Free DNase I set, Qiagen) on 
column was performed. RNA quantification, purity and integrity were assessed at the 
Nanodrop 2000 spectrophotometer (Thermo Scientific) and by capillary electrophoresis 
on an Agilent Bioanalyzer (Agilent Technologies), respectively. Purified RNA was used for 
sequencing analysis or RT-qPCR, as described below.

RNA Sequencing Analysis
 RNA sequencing data of peripheral blood monocytes purified from SSc, together 
with sex- and age-matched healthy controls (HC) enrolled in the “definite SSc” cohort, 
were obtained from the University Medical Center Utrecht (UMCU), The Netherlands[35].
 RNA sequencing libraries were generated from total RNA extracted from CD14+ 

monocytes of SSc patients and matched HC enrolled in the “definite SSc” and “non-
fibrotic SSc” cohorts, or from RNA pools of three different donors of freshly isolated 
and LPS-treated monocytes. RNA-seq library preparation was accomplished using the 
TruSeq RNA Sample Prep Kit v2 (Illumina Inc., San Diego, CA, USA). Libraries were 
sequenced on a HiSeq 2000 system (Illumina) using pair-end sequencing reads (2 × 
90 bp for SSc and matched HC libraries and 2 × 51 bp for resting and LPS-treated 
monocytes libraries); a minimum of 20 million fragments per sample were analyzed. 
After quality filtering according to the Illumina pipeline, reads were firstly aligned to the 
human transcriptome annotated in Ensembl 77 (Homo sapiens gene model annotation) 
and secondly converted to genomic mapping using as reference the human reference 
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genome GrCh38 (Genome Reference Consortium Human build 38) by means of TopHat 
(v 2.0.14)[36]. On average, 23,969,150 (concordant pair alignment rate: 91.84%), 
24,404,133 (concordant pair alignment rate: 89.90%), and 43,071,006 (concordant pair 
alignment rate: 92.67%) paired-reads of the “definite SSc,” “non-fibrotic SSc” and LPS-
treated-monocytes dataset, respectively, mapped to the reference genome.
 Differential expression analysis was performed using the generalized linear 
model (GLM) implemented in DESeq2 (v 1.6.3) on the summed exon reads count 
per gene estimated using HTSeq-count (v 0.6.1p1)[37, 38]. Differentially expressed 
genes were identified from the comparison of each single SSc group and matched HC. 
Significance was tested using the Wald test. Genes with a log2(FC) value ≥0.58 or ≤-0.58 
and a p ≤ 0.05, were considered significantly modulated. Differentially expressed genes 
in LPS-treated monocytes were identified using the Likelihood Ratio Test (LRT). Raw 
p-values from differential expression analyses were adjusted to control the false discovery 
rate (FDR) using the Benjamini–Hochberg method. Genes with adjusted p ≤ 0.05 were 
considered significantly modulated by LPS. Gene expression levels were expressed as 
variance stabilized data (vsd) or FPKM, calculated according to DESeq2 instructions. 
Gene type were associated according to the Ensembl 77 annotation. All genes not 
belonging to the gene type protein coding and pseudogene and with a transcript length 
of at least 200 bp were considered as lncRNAs. Raw and processed sequencing data 
are available from Gene Expression Omnibus under the following accession numbers: 
GSE123532 and GSE124075.

Gene Expression Data of PBMC From SLE Patients and Relative Healthy Controls
 Gene expression profiles of PBMC purified from systemic lupus erythematosus 
(SLE) and relative healthy donors (HC) were downloaded from Gene Expression 
Omnibus Database (GEO number: GSE122459). Gene expression levels and differential 
expression analysis were retrieved from the dataset present in the GEO database.

GO-Term and Pathway Enrichment Analysis
 Protein coding genes (PCGs) were subjected to Gene Ontology (GO) and 
pathway enrichment analysis using ToppFun (https://toppgene.cchmc.org/enrichment.
jsp[39]). p-value was calculated according to the probability density function and 
corrected for the False Discovery Rate (FDR) according to Benjamini-Hochberg method. 
Pathways and GO- terms associated to biological processes (BP) with a FDR ≤ 0.05 
were considered significantly enriched.

Weighted Gene Co-expression Network Analysis
 Co-expression networks were generated using WGCNA R-package[40]. 
Signed weighted adjacency matrix of connection strengths was constructed using the 
soft-threshold approach with a scale-independent topological power β=18 for LPS-
treated and freshly isolated monocytes and β=13 for the definite SSc data. Genes were 
aggregated into modules by hierarchical clustering and refined by the dynamic tree cut 
algorithm. Biological function of each module was evaluated by pathway and BP GO-
terms enrichment analysis using ToppFun[39]. All terms enriched with a FDR ≤ 0.05, 

2
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were considered. Redundancy of significantly enriched BP GO-terms was solved by 
means of REVIGO[41] using the simRel score to assess similarity between two GO-
terms[42]. NRIR-specific modules were visualized using Cytoscape v3.2.1[43].

Gene Expression Analysis by Real-Time PCR
 RNA samples were reverse transcribed using 5 ng/µl random primers, 1 U/µl 
RNase inhibitor (RNAse Out, Invitrogen) and 5 U/µl reverse transcriptase (SuperScript III, 
Invitrogen), according to manufacturer’s instruction. NRIR expression was quantified in 
duplicates by RT-qPCR from 9 ng RNA-equivalent cDNA in the presence of SYBR Select 
Master Mix (ThermoFisher Scientific, Applied Biosystems) and 400 nM specific primers 
(Table S1), on the ViiATM 7 Real-Time PCR System (ThermoFisher Scientific, Applied 
Biosystems) using the standard protocol. PCG expression was quantified in duplicates 
by RT-qPCR from 9 ng RNA-equivalent cDNA in the presence of Fast SYBR Green 
Master mix (ThermoFisher Scientific, Applied Biosystems) and 200 nM of specific primer 
pairs (Table S1), on the ViiATM 7 Real-Time PCR System (ThermoFisher Scientific, 
Applied Biosystems). Primers were designed using the Oligo Explorer software (http://
www.genelink.com/tools/gl-downloads.asp), for only fifty-six out seventy-nine NRIR 
putative target genes was possible to design specific primer pairs. Data were analyzed 
with LinReg PCR 7.0 (http:/LinRegPCR.nl) and Q-Gene software (http://www.gene-
quantification.de/download.html). Gene expression was calculated as mean normalized 
expression (MNE [44]) units after normalization over the stably expressed RPL32 or 
ACTIN B.

Multiplex Immunoassay
 CXCL10, CXCL11, and CCL8 concentrations in cell-free supernatants and/or 
plasma from SSc patients and matched HC enrolled in the “SSc cohort 3” were measured 
using an in-house developed and validated (ISO9001 certified) multiplex immunoassay 
(Laboratory of Translational Immunology, University Medical Center Utrecht) based on 
Luminex technology (xMAP, Luminex Austin TX USA). The assay was performed as 
previously described [45]. Aspecific heterophilic immunoglobulins were pre-absorbed 
from all plasma samples with heteroblock (Omega Biologicals, Bozeman MT, USA). 
All samples were measured with the Biorad FlexMAP3D (Biorad laboratories, Hercules 
USA) in combination with the xPONENT software (v 4.2, Luminex). Data were analyzed 
by a 5-parametric curve fitting using the Bio-Plex Manager software (v 6.1.1, Biorad).

Statistical Analysis
 Data are expressed as mean ± SEM unless otherwise indicated. Statistical 
evaluation was determined using the Mann Whitney test or the two-way analysis of 
variance (ANOVA), followed by Bonferroni post-test, with α set to 0.05. Correlation 
analysis were performed using the rcorr() function in R using the non-parametric 
Spearman method. Correlation with p < 0.05 were considered significant.
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RESULTS

Identification of LPS-Modulated lncRNAs in Primary Human Monocytes
 To identify lncRNAs potentially involved in the responses of peripheral human 
monocytes downstream TLR4 activation, CD14+ monocytes purified from buffy coats of 
healthy donors were cultured in the presence or absence of LPS (100 ng/ml) for 1.5 h 
or 4 h, and subsequently subjected to RNA sequencing. 1,812 transcripts annotated as 
lncRNAs in Ensemble (Figure 1A) were identified as significantly (p-adj ≤ 0.05) modulated 
in response to LPS. Specifically, 1278 lncRNAs (i.e., 70.53%) were up-regulated, while 
534 lncRNAs (i.e., 29.47%) were down-regulated (Figure 1B). Moreover, K-means 
clustering arranged the LPS-modulated lncRNAs in three main groups according to their 
kinetic of expression (Figure 1C): (i) lncRNAs rapidly and consistently modulated by LPS 
within 1.5 h, representing the majority (52.32%) of LPS-modulated lncRNAs (early group, 
Figure 1D); (ii) lncRNAs modulated by LPS within 1.5 h in a transient manner (22.57%) 
(early and transient group, Figure 1E); (iii) lncRNAs modulated by LPS at 4 h (25.11%) 
(late group, Figure 1F).

Identification of Type I IFN Signature-Associated lncRNAs
 LncRNAs possibly involved in the regulation of type I IFN pathway activated 
downstream TLR4 were identified using the strategy depicted in Figure 2. Specifically, 
3,248 PCGs up- regulated in response to LPS (FPKM > 2) were retrieved and subjected 
to GO term enrichment analysis. 469 LPS-induced PCGs associated to significantly 
enriched IFN-response and anti-viral response-related GO-terms were then subjected 
to correlation analysis with the 1,812 LPS-modulated lncRNAs. Finally, based on the 
knowledge that lncRNAs can regulate the transcription of PCGs located in cis[46], only 
the lncRNAs localized in cis (± 150 Kb) to correlated PCGs were retrieved (n = 99) 
(Figure 2 and Table S2). This group of lncRNAs (n = 99) will be referred from now on as 
the “IFN/viral” lncRNAs.
 To verify whether the selected “IFN/viral” lncRNAs were effectively related to the 
IFN signature in an in vivo setting where the IFN pathway is known to play a pathogenetic 
role, the expression level of the 99 selected lncRNAs was then retrieved and analyzed 
from the transcriptomic profile of monocytes purified from the “definite SSc” [35] and 
“non-fibrotic SSc” cohorts of patients and matched healthy donors (Tables 1, 2). The 
patient cohorts included individuals presenting with different SSc phenotypes according 
to clinical features and the extent of skin fibrosis, i.e., early SSc (eaSSc, n = 11), non-
cutaneous SSc (ncSSc, n = 17), limited cutaneous SSc (lcSSc, n = 11), diffuse cutaneous 
SSc (dcSSc, n = 7).

2



38

The lncRNA NRIR drives IFN-response in monocytes: implication for SSc

Figure 1. LPS modulates the expression of long noncoding transcripts in human monocytes. 
CD14+ monocytes were cultured for 1.5 or 4 h with LPS (100 ng/ml) or left untreated (t0). Two pools of 
three donors for each condition were used to create polyA library for RNA-seq. Sequencing data were 
analyzed as described in Materials and Methods. The expression levels of the LPS-modulated (adjusted 
p < 0.05) lncRNAs (A) are shown as row mean-centered z-Score of the variance stabilized data (vsd). (B) 
The percentage of up- and down-regulated lncRNAs modulated by LPS. (C) The percentage (continued)
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of early, early & transient and late lncRNAs modulated by LPS. K-means clustering analysis was applied 
on the significantly modulated lncRNAs. Early modulated (D), early and transiently modulated (E) as well 
as late modulated (F) lncRNAs are shown. The expression of each lncRNA belonging to the three groups 
is shown. LncRNAs up regulated and down regulated by LPS are shown separately. NRIR expression 
is highlighted in red. LncRNA expression is depicted as row mean-centered z-Score of the variance 
stabilized data (vsd), number of lncRNA belonging to each KMC group is shown.

Figure 2. Analysis pipeline to identify IFN/viral-related lncRNAs, modulated by LPS in monocytes. 
Green squares represent the selection of IFN/viral related protein coding genes, while the purple square 
represents the selected lncRNAs modulated by LPS. Black squares represent the workflow for integration 
of protein coding genes and lncRNAs by correlation analysis.

2
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 Four out of 99 lncRNAs, namely NRIR, PSMB8-AS1, RP5-1091N2.9, and 
RP11-24F11.2, were expressed at significantly higher levels in at least two groups of 
SSc patients as compared to their respective healthy donors in the “definite SSc” cohort 
(Figure 3A), whereas only NRIR was significantly up-regulated in ncSSc and showed a 
trend in eaSSc (FC = 1.30, p = 0.104) in the “non-fibrotic” cohort (Figure 3B). Remarkably, 
only the expression of NRIR significantly correlated in both cohorts with the patients’ IFN 
score (Figures 3C, D), calculated on the basis of the expression of IFI27, IFI44L, IFIT1, 
IFIT2, IFIT3, and SERPING1[16].

Figure 3. NRIR expression is increased in monocytes from SSc patients and correlates with the 
IFN-score. RNA sequencing data of CD14+ monocytes from SSc patients and matched healthy controls 
(HC) from both the definite SSc and non-fibrotic SSc cohorts were analyzed as described in Materials and 
Methods. NRIR, PSMB8-AS1, RP5-1091N2.9, and RP11-24F11.2 expression were considered. LncRNAs 
expression in HC and patients with established Systemic Sclerosis (ncSSc, lcSSc, and dcSSc, definite-
SSc cohort) (A) and in patients with early stages of SSc (eaSSc and ncSSc, non-fibrotic SSc cohort) (B) 
is shown. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant, by Wald test. (C) Correlation of NRIR 
expression with the IFN-score of HC (gray), ncSSc (red), lcSSc (green), and dcSSc (blue) patients is 
depicted. (D) Correlation of NRIR expression with the IFN-score of HC (gray), eaSSc (black) and ncSSc 
(red) patients is shown. Spearman’s Rho and p-value are reported. NRIR expression levels are expressed 
as vsd, IFN Score was calculated according to Brkic et al.[16].

 IFNα was demonstrated to be central to the pathogenesis also of other systemic 
autoimmune diseases, with Systemic lupus erythematosus (SLE) being the prototype 
one. To verify whether NRIR is effectively related to the IFN signature in an in vivo setting 
in IFN-related diseases other than SSc, we retrieved from the Gene Expression Omnibus 
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database RNA-seq data from PBMCs of SLE patients and matched healthy controls 
(GSE122459). Seventeen out of ninety-nine lncRNAs were commonly modulated in 
LPS-treated CD14+ transcriptome and SLE PBMCs compared to healthy controls (Figure 
S1A), and only three lncRNAs, namely NRIR, PSMB8-AS1 and RP5-1091N2.9, were 
modulated in all the three datasets (i.e., LPS-treated CD14+ monocytes, SSc CD14+ 

monocytes and PBMCs from SLE patients) (Figure S1B). Remarkably, NRIR was the 
only one lncRNA significantly up-regulated in all the three datasets and the lncRNA most 
differentially expressed (log2FC = 1.90, p = 3.83 × 10−8) in PBMCs from SLE patients as 
compared to healthy controls (Figure S1B).
 Collectively, data from three different biological datasets (i.e., transcriptome of 
monocytes activated in vitro by LPS, transcriptome of circulating monocytes from SSc 
patients and transcriptome of PBMCs from SLE patients) converged in identifying NRIR 
as belonging to the IFN signature. Therefore, we focused our study on the pathways 
underlying NRIR upregulation as well as on the role of this lncRNA in the type I IFN 
signature.

NRIR Is a Type I IFN Dependent lncRNA
 Consistent with KMC analysis of RNA-seq data that classified NRIR as a 
“late” transcript (Figure 1F, red line), kinetic analysis confirmed that NRIR expression is 
slowly induced by LPS stimulation in monocytes, being detectable after 4 h and steadily 
increasing over 16 h (Figure 4A). In addition, monocyte activation with agonists of 
TLR3 [polyinosinic:polycytidylic acid, poly(I:C)] and TLR7/8 (Resiquimod, R848), both 
known to promote type I IFN production, resulted in up-regulation of NRIR (Figure 4B). 
Conversely, a synthetic lipoprotein agonist of TLR2 (Pam3CSK4), unable to induce type 
I IFN transcription and secretion[47], was ineffective (Figure 4B). Consistent with this 
observation, treatment of monocytes with brefeldin A or with IFNα receptor (αIFNAR) 
blocking antibodies before LPS stimulation completely abolished NRIR induction by LPS 
(Figure 4C), indicating that endogenously produced type I IFNs is responsible for the 
upregulation of NRIR. Additionally, NRIR expression is significantly induced by IFNα but 
not by LPS, in human polymorphonuclear neutrophils (PMNs), that do not activate the 
IFN pathway downstream TLR4 (Figure 4D)[48]. Taken together, these data demonstrate 
that type I IFN production is necessary and sufficient to increase NRIR expression in 
response to LPS.
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Figure 4. Induction of NRIR expression is IFN-dependent. (A) CD14+ monocytes were cultured for 
the indicated time point in presence of LPS (100 ng/ml, black line) or left untreated (gray line). NRIR 
expression levels were analyzed by RT-qPCR and expressed as mean normalized expression (MNE). 
Results are shown as mean ± SEM of three experiments. **p < 0.01, ***p < 0.001 by two-way ANOVA. 
(B) CD14+ monocytes were stimulated with Pam3CSK4 (100 ng/ml), poly(I:C) (50 µg/ml), R848 (5 µM) 
or left untreated for the indicated time points. NRIR expression levels were analyzed by RT-qPCR and 
expressed as MNE. One experiment representative of two performed is shown. (C) CD14+ monocytes 
were stimulated with LPS or left untreated for 8 h in presence or absence of brefeldin A (BFA, left) or 
αIFNAR or the control IgG2a antibody (right). NRIR expression levels were analyzed by RT-qPCR and 
expressed as MNE. For BFA experiments results are shown as mean ± SEM of three experiments, *p < 
0.05 by two-way ANOVA, while for αIFNAR experiments one experiment representative of two performed 
is shown. (D) Human neutrophils were stimulated with LPS (100 ng/ml), IFNα (1,000 U/ml) or left untreated 
for 5 and 18 h. NRIR expression levels were analyzed by RT-qPCR and expressed as MNE. Results are 
shown as mean ± SEM of three experiments. *p < 0.05, ***p < 0.001 by two-way ANOVA.

The Type I IFN-Dependent NRIR Plays a Role in the Expression of Several ISGs
 Identification of pathways likely associated to NRIR function was conducted by 
weighted gene co-expression analysis (WGCNA). Two specific co-expression networks 
were created, one composed of 13 modules in the transcriptome of LPS-treated 
monocytes and the second one composed of 26 modules in the “definite SSc” cohort. 
The NRIR-related module was identified in both LPS-treated monocytes (blue module) 
and SSc monocytes (cyan module) co-expression networks. The blue module contained 
2060 PCGs and 548 ncRNAs (Figure S2), while the cyan module was composed of 116 
PCGs and 8 ncRNAs (Figure S3).
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 GO-term and pathway enrichment analysis of the PCGs of each module 
underlined that biological processes related to “response to type I IFN,” “response to 
virus,” and “immune system process” (Figure 5) and related pathways (Tables S3, S4) 
were significantly enriched in both modules. Comparative analysis of the two modules 
identified 83 common transcripts: specifically, 79 PCGs and 4 ncRNAs (Figure 6A), the 
majority (63.3%) of which were associated to IFN, antiviral and immune response (Figure 
6B). The 79 common PCGs were selected as putative NRIR target genes.

Figure 5. NRIR is implicated in biological processes related to immune response and the IFN/
antiviral response. GO-term enrichment analysis was performed to identify biological processes enriched 
in the blue- (A) or the cyan-module (B). Significantly enriched GO terms are represented as circles 
according to their semantic similarities. Circle size represents term specificity (bigger, general terms; 
smaller, specific terms), while circle color represents the log10 (p-value FDR B&H) of the enrichment.

 To investigate the role of NRIR in the regulation of IFN and anti-viral response 
secondary to TLR4 activation, we analyzed the expression of 56 PCGs, that were co- 
expressed with NRIR and common to the both blue and cyan modules (Figure 6), in 
NRIR-silenced monocytes. Monocyte transfection with NRIR siRNA led to an average 
reduction of 60.83 ± 4.81 and 55.47 ± 4.83% of the constitutive and LPS induced NRIR 
expression, respectively (Figure 7A). Under these conditions, the induction of fifteen 
PCGs by LPS was significantly impaired as compared to cells transfected with a scramble 
siRNA (Figures 7B–P). Precisely, decreased induction of CXCL10, CXCL11, APOBEC3A, 
MX1, USP18 mRNA was observed 4 h after LPS stimulation and remained reduced at 8 
h as well; decreased induction of CCL8, EPSTI1, DDX58, IFI44, IFIH1, IFIT2, and OAS2 
was observed at shorter time point (4 h); whereas the ability of LPS to upregulate the 
expression of IFITM3, ISG15 and OAS3 could be detected only at later time point (8 h) 
(Figures 7B–P). The induction of the remaining forty-one PCGs was unaffected by NRIR 
knock- down (Figures S4, S5), Strikingly, all genes modulated by NRIR silencing were 
also significantly upregulated in at least one group of SSc monocytes as compared to 
cells isolated from healthy donors (Figure S3).

2
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Figure 6. PCGs common to the blue and cyan modules are mainly involved in the immune and 
IFN/antiviral response. (A) Representation of the transcripts common to blue and cyan-module. The 
seventy-nine protein coding genes and the four ncRNAs are represented as rectangles and triangles, 
respectively. Transcripts are grouped according to their associated biological process related GO-terms. 
Different colors highlight different group of GO-terms, the most general GO term, summarizing each 
group, is reported. Genes associated to any GO-term are signed as not associated and depicted in gray. 
(B) Protein coding genes found in both modules are associated to their GO terms. Percent of common 
protein coding genes associated to different GO terms is shown.
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Figure 7. NRIR regulates fifteen of its co-expressed genes. CD14+ monocytes were transfected with 
si-NRIR or si-CTR and 18 h later were stimulated with LPS for 4 or 8 h or left untreated. The expression 
of NRIR (A) and its co-expressed genes (B–P) was analyzed by RT-qPCR and expressed as MNE. 
Results are shown as mean ± SEM of at least three different experiments. *p < 0.05, **p < 0.01, ***p < 
0.001 by two-way ANOVA.

2
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 Among the IFN-responsive genes, CXCL10, CXCL11 and CCL8 have been 
shown to be implicated in SSc pathogenesis and/or to correlate with the degree of skin 
fibrosis[18, 49–51]. Analysis of CXCL10, CXCL11 and CCL8 protein level in cell-free 
supernatants of LPS-stimulated monocytes showed a significant reduction of CXCL10 
(mean reduction: 62.48 ± 8.94%, n = 7) and CCL8 (mean reduction: 56.13 ± 7.37%, n = 
7) production in response to LPS (Figures 8A,B), while CXCL11 was below the detection 
levels (not shown). Noticeably, plasma level of CXCL10 and CXCL11 in the SSc subjects 
enrolled in this study was significantly higher as compared to their healthy counterparts 
(Figures 8C,D).
 Collectively, these data substantiate the role of NRIR in the expression of several 
interferon-responsive genes upregulated by LPS in vitro or constitutively increased in 
circulating monocytes from SSc patients.

Figure 8. NRIR regulated proteins CXCL10 and CXCL11 are elevated in plasma of SSc patients. 
CD14+ monocytes from seven different donors were transfected with si-NRIR or si-CTR and 18 h later 
were stimulated with LPS for 8 h. Cell-free supernatants were collected, and the release of CXCL10 
(A) and CCL8 (B) was measured by the multiplex immunoassay. *p < 0.05 by Wilcoxon matched-pairs 
signed rank test. CXCL10 (C) and CXCL11 (D) level in plasma from SSc patients and matched HC was 
measured by the multiplex immunoassay. eaSSc, early SSc; ncSSc, non-cutaneous SSc; lcSSc, limited-
cutaneous SSc; dcSSc, diffuse-cutaneous SSc. *p < 0.05, **p < 0.01, ***p < 0.001 by Mann Whitney test.
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DISCUSSION
 The aim of this study was to investigate the potential role of lncRNAs in the 
type I IFN pathway elicited in human monocytes by TLR4 activation and to explore 
their functional role in vivo, in the IFN signature displayed by SSc monocytes. Several 
studies have shown that lncRNAs are involved in numerous aspects of the innate and 
adaptive immune responses[22], and, more recently, a critical role for a small group of 
lncRNAs in the regulation of the IFN response has been reported[19]. Likewise, evidence 
clearly supports the involvement of lncRNAs in the pathogenesis of autoimmune and 
inflammatory diseases[25, 31], where the physiologic response of immune cells is 
dysregulated. However, no lncRNA has been associated to the immune dysregulation 
present in SSc yet. Characterization of the role of lncRNAs in the regulation of monocytes 
IFN response to TLR4 activating agents is an important aspect to understand both the 
physiologic response and the disease biology of SSc arising from alteration of physiologic 
pathways. In fact, the link between monocytes, TLR4 activation and the downstream IFN 
response with SSc pathogenesis is supported by several observations: (i) circulating 
monocytes have been indicated as one prominent leukocyte subset playing a role in 
the pathogenesis of SSc[52–55]; (ii) circulating SSc monocytes are characterized by 
an increased type I IFN signature[11, 12, 16] (iii) TLR activation may represent the 
connection between immune activation in SSc and tissue fibrosis[7, 10, 52, 56].
 The lncRNA landscape of LPS-activated human monocytes, characterized 
by RNA sequencing, identified 1,278 annotated lncRNAs as upregulated and 534 as 
downregulated. Modulated lncRNAs were further clustered according to their kinetic of 
expression into early, early and transient and late. Correlation with the expression of 
PCGs enriched in the IFN- and anti-viral response related GO-terms allowed us to retrieve 
lncRNAs likely comprised into the type I IFN pathway. Moreover, as some lncRNAs have 
been described to regulate the expression of neighboring genes[46], lncRNAs that may 
have functional relevance in the expression of LPS-induced mRNAs related to the IFN/
anti-viral response were retrieved on the basis of their localization in cis to their respective 
correlated PCGs.
 To validate the relevance of these “IFN/viral” lncRNAs in an in vivo setting 
where the IFN response constitute a major hallmark, we examined the expression level 
of each of the 99 lncRNAs in monocytes from two distinct cohorts of SSc patients as 
compared to the relative healthy control groups. The cohorts comprised patients with 
the full spectrum of SSc phenotypes, from pre-clinical eaSSc, to definite groups either 
presenting with (lcSSc and dcSSc) or without (ncSSc) skin fibrosis. Most importantly 
in both cohorts a remarkable IFN signature had been identified in previous studies[16, 
35]. Remarkably, monocytes from lcSSc and ncSSc patients showed consistently higher 
levels of NRIR expression, that correlated significantly with the IFN signature in both 
cohorts analyzed, strikingly confirming the implication of NRIR in the IFN response also 
in a pathological condition. Consistently, it must be noted that NRIR had the highest 
expression levels in patients with ncSSc, that is the SSc subset presenting with the 
strongest IFN-signature[16]. In addition, it is intriguing to observe that NRIR shows a 
trend of upregulation also in the eaSSc group, characterized by higher levels of ISGs as 
well. Considering that most patients with eaSSc are prompt to progress toward definite 
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SSc[57, 58], one could speculate a potential implication of NRIR in the IFN signature 
intertwined with SSc progression. Remarkably, NRIR was the lncRNA most differentially 
expressed in PBMC from SLE patients as compared to healthy controls, thus further 
supporting that dysregulation of the IFN-dependent NRIR lncRNA represents a hallmark 
of different IFN-driven pathologies.
 Identification of NRIR-related pathways was conducted according to the “guilt-
by-association” method[59], that remains the only approach allowing to characterize 
lncRNAs based on the function of their co-expressed PCGs. NRIR was found in two 
distinct co-expression modules, retrieved from WGCNA analysis of the transcriptome of 
monocyte activated in vitro by LPS or isolated from SSc patients. The majority (63%) of 
the PCGs common to both modules was included in “response to type I IFN,” “response 
to virus,” and “immune system process” biological processes, thus strengthening the 
likelihood that NRIR plays a role in these processes. Experimental validation of the 
in silico analysis demonstrated that NRIR is a type I IFN-responsive gene, induced in 
monocytes upon activation of only those TLRs that can trigger type I IFN production 
(i.e., TLR4, TLR3 and TLR7/8). This is further supported by the demonstration that 
inhibition of LPS-induced release of soluble mediators, and specifically blockade of type 
I IFN receptor abolished the ability of LPS to upregulate NRIR. Moreover, monocyte 
activation with agonists of TLR2 (unable to induce type I IFN transcription and secretion) 
or neutrophil activation of TLR4 (that does not mobilize the TRIF-IFN pathway[48]) failed 
to upregulate NRIR expression.
 Consistently with the NRIR role suggested by the WGCNA approach, data 
shows that NRIR-silencing mainly reduces the LPS-induced expression of type I IFN 
target genes, including, among the others, CXCL10, MX1, IFITM3, and ISG15. Moreover, 
measurements of CXCL10 and CCL8 secretion further endorsed the role of NRIR as a 
positive regulator of a subset of LPS-induced IFN-dependent genes. 
 The inhibition of ISGs upon NRIR-silencing is in sharp contrast with recent reports 
showing that NRIR acts as a negative regulator of specific ISGs (CMPK2, CXCL10, IFIT3, 
IFITM1, ISG15, Viperin, and IFITM3) in hepatocytes[34] or epithelial cells[60]. Overall, 
our findings strengthen the role of NRIR as a regulator of the IFN response, but they 
strongly point out that NRIR function is highly cell-type or stimulus specific. Such behavior 
is not uncommon among lncRNAs implicated in the regulation of immune response; one 
example is IL7-AS, that was described either as a positive regulator of IL-6 expression in 
IL-1β-activate epithelial cells[61] or as negative regulator in LPS-stimulated monocytes/
macrophages as well as in IL-1β activated chondrocytes[62].
 It must be underlined that all the ISGs inhibited by NRIR silencing are also 
upregulated in SSc monocytes, that display concomitantly a prominent IFN signature as 
well as NRIR upregulation. These observations strengthen the relevance of the NRIR-
ISGs axis in both physiological as well as pathological conditions. Among the ISGs 
inhibited upon NRIR silencing, numerous genes have been frequently linked to SSc. 
Increased levels of CXCL10, CXCL11, IFI44, and MX1 correlate with the severity of 
different clinical features in SSc patients[63, 64]. Higher MX1 expression was associated 
with ischemic ulcers and reduced forced vital capacity[64, 65]. The extent of skin fibrosis 
measured by the modified Rodman Skin Score (mRSS) correlates with the expression 
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of IFI44[63]. Most importantly, increased levels of circulating CXCL10 and CXCL11, both 
NRIR targets, highly correlate with the type I IFN signature as well as with a more severe 
clinical phenotype, with lung and kidney involvement[11, 63, 66]. In fact, serum level of 
CXCL10 and CXCL11 has been recently proposed as biomarker for the identification of 
early and non-fibrotic subset of SSc[18]. Conversely, inhibition of type I IFN signature in 
SSc patients with anifrolumab, that blocks IFN receptor signaling, leads to lower levels of 
CXCL10 expression and fibrosis-related transcripts[67].
 Collectively, herein we demonstrate that the IFN-dependent lncRNA NRIR is a 
positive regulator of the LPS-induced IFN response in human monocytes and highlight, 
for the first time, that aberrant expression of NRIR can be involved in the dysregulation 
of immune system intertwined with SSc development.
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SUPPLEMENTARY INFORMATION

The Supplementary Tables for this article can be found online at: https://www.frontier-
sin.org/articles/10.3389/fimmu.2019.00100/full#supplementary-material.

Figure S1. NRIR expression is increased in PBMC from SLE. RNA-seq data of LPS-treated CD14+ 
monocytes, CD14+ monocytes from SSc and matched healthy controls (HC) and PBMC from SLE patients 
and relative HC were analyzed as described in Materials and Methods. A) Venn diagram representing the 
IFN/viral-related lncRNAs modulated by LPS (blue), lncRNAs modulated in at least two SSc groups as 
compared to HC (yellow) and lncRNAs differentially expressed in PBMC from SLE patients as compared 
to relative HC (green). The number of specific or common lncRNAs is reported. B) Expression levels 
of NRIR, PSMB8-AS1 and RP5-1091N2.9 in PBMC from SLE patients as compared to HC is shown. 
Expression levels are reported as normalized count (normCount) according to DESeq2 normalization. * p 
< 0.05, *** p < 0.001 by Wald test.
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Figure S2. Gene co-expression network of the blue-module. Gene co-expression network was built 
starting from the LPS-treated and untreated monocytes transcriptome as described in Materials and 
Methods. The NRIR-associated module (blue-module) is shown. The 2060 protein coding and the 548 
non-coding transcripts are represented as circles and triangles, respectively. Red nodes represent LPS-
upregulated transcripts while green nodes represent down-regulated transcripts. Nodes’ size indicates 
the overlap between blue-module and the NRIR-associated module identified in the SSc network, 
where the small, unlabeled nodes represent transcripts specific of the blue-module. Transcripts are 
grouped according to their associated biological process related GO-terms; the most general GO term, 
summarizing each group is reported.
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Figure S3. Gene co-expression network of the cyan-module. Gene co-expression network was 
built starting from the SSc monocytes transcriptome as described in Materials and Methods. The NRIR-
associated module (cyan-module) is shown. The 116 protein coding and the 8 non-coding transcripts are 
represented as circles and triangles, respectively. Red nodes represent transcripts more expressed in at 
least one SSc subset compared to HC while, green nodes represent less expressed transcripts. Nodes’ 
size indicates the overlap between cyan-module and the NRIR-associated module identified in the LPS-
treated monocytes network, where the small, unlabeled nodes represent transcripts specific of the cyan-
module. Transcripts are grouped according to their associated biological process related GO-terms; the 
most general GO term, summarizing each group is reported.
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Figure S4. Effect of NRIR silencing on the expression of its putative target genes. CD14+ monocytes 
were transfected with si-NRIR or si-CTR and 18h later were stimulated with LPS for 4h or 8h or left 
untreated. The expression of putative NRIR-target genes was analyzed by RT-qPCR and expressed as 
MNE. Results are shown as mean ± SEM of at least three different experiments.
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Figure S5. Effect of NRIR silencing on the expression of its putative target genes. CD14+ monocytes 
were transfected with si-NRIR or si-CTR and 18h later were stimulated with LPS for 4h or 8h or left 
untreated. The expression of putative NRIR-target genes was analyzed by RT-qPCR and expressed as 
MNE. Results are shown as mean ± SEM of at least three different experiments.
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ABSTRACT 
 Systemic sclerosis (SSc) is a chronic autoimmune disease mainly affecting the 
connective tissue. In SSc patients, monocytes are increased in circulation, infiltrate affected 
tissues, and show a pro-inflammatory activation status, including the so-called interferon 
(IFN) signature. We previously demonstrated that the dysregulation of the IFN response 
in SSc monocytes is sustained by altered epigenetic factors as well as by upregulation of 
the long non-coding RNA (lncRNA) NRIR. Considering the enormously diverse molecular 
functions of lncRNAs in immune regulation, the present study investigated the genome-
wide profile of lncRNAs in SSc monocytes, with the aim to further unravel their possible 
role in monocyte dysregulation and disease pathogenesis. Transcriptomic data from two 
independent cohorts of SSc patients identified 886 lncRNAs with an altered expression 
in SSc monocytes. Differentially expressed lncRNAs were correlated with neighboring 
protein coding genes implicated in the regulation of IFN responses and apoptotic 
signaling in SSc monocytes. In parallel, gene co-expression network analysis identified 
the lncRNA PSMB8-AS1 as a top-ranking hub gene in co-expression modules implicated 
in cell activation and response to viral and external stimuli. Functional characterization of 
PSMB8-AS1 in monocytes demonstrated that this lncRNA is involved in the secretion of 
IL-6 and TNFα, two pivotal pro-inflammatory cytokines altered in the circulation of SSc 
patients and associated with fibrosis and disease severity. Collectively, our data showed 
that lncRNAs are linked to monocyte dysregulation in SSc, and highlight their potential 
contribution to disease pathogenesis.
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INTRODUCTION 
 Systemic sclerosis (SSc) is a chronic autoimmune disease with a highly 
heterogeneous clinical phenotype[1]. The disease is characterized by three main 
hallmarks: vascular abnormalities, immune system dysregulation, and fibrosis. Based on 
the extent of skin fibrosis and the presence of vascular and immunological abnormalities, 
SSc patients can be divided into four subsets: early SSc (eaSSc), non-cutaneous 
SSc (ncSSc), limited-cutaneous SSc (lcSSc), and diffuse-cutaneous SSc (dcSSc)[2, 
3]. Vascular abnormalities characterize the pre-clinical stage of SSc, and Raynaud’s 
phenomenon (RP) occurs in 90–98% of patients with SSc, often preceding the disease 
onset by years[4]. However, the exact immunopathogenic mechanisms leading to the 
onset and contributing to the progression of SSc remain to be elucidated. Vascular injury 
and endothelial cell activation appear to be the earliest events in SSc pathogenesis[5]. 
This vascular damage is hypothesized to lead to the recruitment and activation of 
various immune cell types including lymphocytes, dendritic cells, and monocytes, which 
secrete various pro-inflammatory cytokines and growth factors such as IL-6, IL-8, IL-
13, TNFα, TGFβ, and MCP-1[6]. The resulting mix of inflammatory mediators induces 
the differentiation of resident epithelium, endothelium, and fibroblasts into myofibroblasts 
that deposit excessive amounts of extracellular matrix, leading to fibrosis and permanent 
tissue scarring[6].
 Several lines of evidence implicate monocytes as an important cell type in SSc 
pathogenesis. Monocytes are among the predominant infiltrating mononuclear cells in 
SSc skin lesions[7–9], suggesting that these cells are involved in the fibrotic processes 
underlying the disease. In addition, the population of circulating monocytes is increased 
in the peripheral blood of SSc patients, and their frequency is correlated with the extent 
of skin fibrosis and the occurrence of interstitial lung disease (ILD)[10, 11]. Besides their 
increased frequencies, SSc monocytes also display signs of enhanced activation, evident 
from an increased expression of interferon (IFN) responsive genes (referred to as the 
type I IFN signature)[12, 13], and an enhanced production of pro-inflammatory and pro-
fibrotic mediators[14–16]. Together, this evidence suggests a critical role for monocytes 
in the pathogenesis of SSc, linking immune aberrances and fibrosis.
 Epigenetic[17, 18] and miRNA-associated[13] alterations have been proposed 
as potential contributors to monocyte dysregulation in SSc. Next to these, long non-
coding RNAs (lncRNAs) have recently gained widespread attention as critical biological 
regulators of gene expression in immune cells including monocytes[19] and have been 
linked to SSc pathogenesis[20–24]. lncRNAs are broadly defined as RNA transcripts 
longer than 200 nucleotides that lack protein coding capacity. They are involved in virtually 
all levels of gene expression regulation through a variety of biological mechanisms[25]. 
Based on the genomic localization relative to their targets, lncRNAs can be categorized 
as cis- or trans-acting, regulating the expression of neighboring or distal protein coding 
genes[26]. Additionally, the subcellular localization of lncRNAs also underlies their 
function[27]. Chromatin-associated and nuclear lncRNAs are often involved in the 
regulation of transcriptional processes, for example, through chromatin remodeling or 
the recruitment of transcription factors[28], while cytoplasmic lncRNAs most frequently 
act on post-transcriptional levels, for example, through miRNA sponging, the regulation 
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of mRNA translation, or the alteration of protein activity[29].
 We recently demonstrated that the lncRNA NRIR plays an important role in 
the regulation of type I IFN responses in monocytes[20]. NRIR is upregulated in SSc 
monocytes and promotes IFN-related pathways, thereby contributing to the type I IFN 
signature observed in these cells[20]. Because of the broad molecular functions of 
lncRNAs and their involvement in immune system regulation, we hypothesized that more 
lncRNAs may be implicated in the altered molecular processes characterizing monocytes 
of SSc patients. Exploiting transcriptomic data of monocytes obtained from SSc patients 
and matched healthy controls, we identified multiple lncRNAs potentially involved in 
the regulation of apoptotic pathways and IFN signaling in SSc monocytes. In addition, 
combining in silico and in vitro approaches, we identified the lncRNA PSMB8-AS1 as a 
potential regulator of cytokine release in SSc monocytes.

RESULTS

The Expression of lncRNAs Is Altered in SSc Monocytes and Is Correlated with 
Neighboring Protein Coding Genes
 The genome-wide expression profile of lncRNAs in healthy and SSc monocytes 
was initially assessed in the “Definite SSc cohort”, comprising ncSSc (n = 7), lcSSc (n = 
11) and dcSSc (n = 7) patients, and matched healthy controls (HC, n = 9, Table 1). A total 
of 886 lncRNAs were found to be differentially expressed in at least one group of SSc 
patients versus healthy controls (log2(FC) > 0.58 or < 0.58, and p-value < 0.05) (Figure 
S1A, Table S1). Of these, 22 lncRNAs were commonly altered in all SSc subsets (Figure 
S1B). 
 Since lncRNAs often regulate the transcription of neighboring protein coding 
genes (PCGs)[30], in cis correlation analysis was performed to identify putative 
target genes of differentially expressed lncRNAs in the Definite cohort. To this end, 
the expression levels of differentially expressed lncRNAs were correlated with PCGs 
located 5 kb upstream or downstream of each lncRNA gene (Figure 1A). Out of 886 
differentially expressed, 278 lncRNAs were significantly correlated with PCGs localized 
in cis (Spearman’s rho > 0.4 or < 0.4, and p-value 0.05), allowing for the identification 
of 332 lncRNA-PCG pairs. Functional enrichment analysis of the correlated PCGs 
identified pathways associated with IFN response, negative regulation of apoptosis, and 
inflammatory cell apoptotic processes (Figure 1B), indicating that lncRNAs altered in SSc 
monocytes potentially regulate genes involved in these pathways.
 In order to substantiate these results and identify putative lncRNA-PCG pairs 
involved already at the early stages of SSc development, we repeated the cis correlation 
analysis in an additional cohort comprising ncSSc patients and SSc patients at the early 
disease stage (eaSSc), as well as individuals with Raynaud’s Phenomenon (RP) (“Non-
cutaneous cohort”, Table 1). This analysis highlighted that 143 out of 332 correlated 
lncRNA-PCG pairs identified in the Definite cohort were reproduced in the Non-cutaneous 
cohort (Spearman’s rho >0.4 or < 0.4, and p-value 0.05, Figure 1C). GO-term enrichment 
analysis of the PCGs identified in the replicated pairs showed a significant enrichment 
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Definite Cohort HC (9) - - ncSSc (7) lcSSc (11) dcSSc (7)

Non-Cutaneous cohort HC (9) RP (9) eaSSc (11) ncSSc (10) - -

Replication cohort HC (8) - eaSSc (5) ncSSc (6) lcSSc (10) dcSSc (6)

Age (yr.) 52 (30–64) - - 45 (26–63) 59 (45–70) 58 (34–72)

38 (28–49) 47(22–70) 57 (40–77) 52 (25–70) - -

57 (31–64) - 47 (22–61) 41 (36–55) 58 (38–69) 56 (53–72)

Female/Male, n 5/4 - - 6/1 8/3 3/4

9/0 9/0 11/0 10/0 - -

7/1 - 4/1 4/2 8/2 4/2

ANA, n (% pos.) - - - 6 (86%) 10 (91%) 7 (100%)

- 3 (33%) 10 (91%) 10 (100%) - -

- - 4 (80%) 6 (100%) 8 * (80%) 6 (100%)

ACA, n (% pos.) - - - 3 (43%) 6 * (55%) 1 (14%)

- 0 (0%) 7 (64%) 8 (80%) - -

- - 1 (20%) 1 (17%) 4 * (40%) 1 (17%)

Scl70, n (% pos.) - - - 2 (29%) 2* (18%) 4 (57%)

- 0 (0%) 2 (18%) 1 (10%) - -

- - 1 (20%) 2 (33%) 2 * (20%) 4 (67%)

ILD, n (% pos.) - - - 1 (14%) 2 (18%) 5 (71%)

- 0 (0%) 0 (0%) 0 (0%) - -

- - 1 (20%) 2 (33%) 3 * (30%) 3 (50%)

mRSS - - - 0 6 (0–12) 14* (5–36)

- 0 0 0 - -

- - 0 0 4* (2–14) 13 (4–23)

Tel., n (%) - - - 3 * (43%) 4 (36%) 4 (57%)

- 0 (0%) 1 (9%) 4 (40%) - -

- - 1 * (20%) 3 (50%) 6 * (60%) 2 * (33%)

NVC early, n (%) - - - 2 * (29%) 2 ** (18%) 1 ***(14%)

- 0 (0%) 9 (82%) 5 (50%) - -

- - 3 * (60%) 4 (66%) 3 ** (30%) 3 (50%)

NVC late/active, n (%) - - - 4 * (57%) 3 ** (27%) 2 ***(28%)

 - 0 (0%) 0 (0%) 5 (50%) - -

- - 1 * (20%) 2 (33%) 1 ** (10%) 3 (50%)

Steroids, n (%) - - - 0 (0%) 0 (9%) 2 (28%)

- 0 (0%) 0 (0%) 0 (0%) - -

- - 1 * (20%) 0 (0%) 1 * (10%) 1 (17%)

Immunosup., n (%) - - - 0 (0%) 1 (9%) 3 (43%)

- 0 (0%) 1 (9%) 0 (0%) - -

- - 1 (20%) 2 (33%) 1 * (10%) 4 (66%)

Table 1. Demographics and clinical features of subjects enrolled in the study. Values reported 
indicate the number (n) of patients and the median for each parameter (Interquartile Range (IQR)). ACA, 
anticentromere antibodies; ANA, antinuclear antibodies; dcSSc, diffuse cutaneous SSc; eaSSc, early 
SSc; HC, healthy controls; ILD, Interstitial Lung Disease; Immunosupp., immunosuppressive therapy; 
lcSSc, limited cutaneous SSc; mRSS, modified Rodnan Skin Score; ncSSc, non-cutaneous SSc; NVC, 
nailfold videocapillaroscopy; pos, positivity; RP, Raynaud’s Phenomenon; Scl70, anti-topoisomerase 
antibodies; Tel., telangiectasia; yr., years. * = 1 patient, ** = 6 patients, *** = 3 patients unknown.
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for GO terms related to type I IFN and apoptosis (Figure 1D), suggesting that lncRNAs 
altered during SSc development are implicated in these processes. The 15 lncRNA-PCG 
pairs that were annotated in these biological pathways are given in Table 2.

Weighted Gene Co-Expression Network Analysis Identifies Clusters of Tightly 
Correlated RNAs Associated to SSc Clinical Features and Relevant Biological 
Processes
 Next to cis regulatory lncRNAs, trans-acting lncRNAs are also emerging as 
important regulators of gene expression, especially at the post-transcriptional level[31]. 
To explore the regulatory potential of trans-acting lncRNAs in SSc monocytes, genome-

lncRNA PCGPCG

Cis−regulation
5kb downstream

Cis−regulation
5kb upstream

PCG

5’

3’

3’

5’

Replicated p−value <0.05

AA

B

D

C

Figure 1. Differentially expressed lncRNAs are correlated with cis localized protein coding genes 
relevant for SSc pathogenesis. (A) Schematic overview of the cis correlation approach to identify 
neighboring long non-coding RNAs (lncRNA, red) and protein coding genes (PCGs, green). Arrows 
indicate the direction of transcription. (B) GO-term enrichment analysis results of PCGs identified in the 
cis correlation analysis in the Definite SSc cohort. GO terms for significantly enriched biological processes 
are given on the y-axis. Bars depict the number of genes identified within the enriched pathway (N genes, 
bottom x-axis), dashed line indicates B&H corrected p-value of the enrichment (p-value, top x-axis). 
(C) Correlation coefficients (Spearman’s Rho) between lncRNAs and PCGs in the Definite (x-axis) and 
Non-cutaneous (y-axis) cohorts. Each dot represents a lncRNA-PCG pair. Grey dots represent pairs 
significantly correlated in the Definite cohort only, while red dots represent pairs significantly correlated 
in both cohorts (Spearman’s rho >0.4 or <−0.4, and p-value ≤ 0.05). (D) GO-term enrichment analysis 
results of protein coding genes from the in cis correlation analysis replicated the Non-cutaneous cohort.
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wide co-expression network analysis was performed in parallel to the cis correlation 
analysis. Weighted gene co-expression network analysis (WGCNA) generated 18 
distinct co-expression modules of highly correlated genes in the Definite cohort (Table 
S2). Correlation between module eigengenes (MEs) and clinical traits for SSc identified 
10 co-expression modules that were significantly correlated with clinical parameters 
associated with SSc (Figure 2A, Pearson correlation, p-value < 0.05). Comparison of 
the global ME expression across SSc patients and healthy controls showed that the 
honeydew1, brown4, darkturquoise, yellowgreen, darkorange2, and paleviolet modules 
were lower in SSc patients, while the ME expression of the darkgreen module was higher 
in SSc patients (Figure 2B). Since the remaining violet, white, and blue modules did not 
show a distinct ME expression pattern in SSc patients, they were not considered for 
subsequent analysis (Figure 2B). Next, GO-term enrichment analysis was performed to 
annotate the seven modules with a distinct ME expression pattern in SSc patients. The 
darkgreen module was linked to vesicle transport and the regulation of autophagy, while 
the darkorange and yellowgreen modules were linked to IkappaB-NF-kappaB signaling, 
myeloid cell differentiation, and protein modifications (Figure 2C). No significant 
enrichment was identified for the remaining modules that were therefore not considered 
for further investigation (Figure 2D).

Identification of the lncRNA PSMB8-AS1 as a Reproducible Hub Gene Relevant for 
SSc and Monocyte Biology
 The co-expression network analysis was repeated in the Non-cutaneous cohort, 
and the extent of overlap between the modules from the Definite and Non-cutaneous 
cohorts was assessed to identify reproducible co-expression modules (Figure S2, Table 
S3). Thirteen modules from the Non-cutaneous cohort showed a significant overlap 
with the 3 selected modules from the Definite cohort (i.e., darkgreen, darkorange, and 

Table 2. Replicated cis correlating lncRNA-PCG pairs are annotated in biological processes 
relevant for SSc. PCG, protein coding gene; lncRNA, long non-coding RNA; BM, base mean expression 
level; R, Spearman’s rank correlation coefficient; p, p-value.

Definite cohort Non-cutaneous cohort
GO-Term PCG lncRNA BM R p BM R p
Type I interferon response 
(GO:0071357, GO:0060337, 
GO:0034340)

PSMB8 PSMB8-AS1 645.23 0.67 0.000 262.01 0.68 0.000
OAS1 RP1-71H24.6 46.71 0.50 0.003 17.74 0.62 0.000
IRF2 RP11-326I11.3 75.09 0.61 0.000 40.19 0.73 0.000
CACTIN CACTIN-AS1 6.68 0.60 0.000 3.25 0.62 0.000
IFITM3 RP11-326C3.11 14.01 0.58 0.000 9.65 0.68 0.000
IFI6 RP11-288L9.4 16.93 0.41 0.017 7.28 0.50 0.001
MX1 AP001610.5 7.46 0.59 0.000 8.20 0.72 0.000
PAM16 RP11-295D4.3 30.27 0.88 0.000 40.74 0.80 0.000

Negative regulation of 
apoptotic signaling pathway 
(GO:2001234)

FAS RP11-399O19.9 12.26 0.56 0.001 15.18 0.56 0.000
BIRC6 AL133243.2 50.33 0.45 0.008 87.28 0.51 0.001
THBS1 CTD-2033D15.2 40.78 0.76 0.000 76.70 0.87 0.000
SGMS1 RP11-521C22.2 33.86 0.60 0.000 54.93 0.53 0.001
CCAR2 RP11-582J16.5 34.78 0.59 0.000 64.17 0.67 0.000
AATF CTC-268N12.3 0.58 −0.41 0.015 0.56 −0.40 0.011
TNAIP3 RP11-356I2.4 66.03 0.84 0.000 96.56 0.50 0.001
IFI6 RP11-288L9.4 16.93 0.41 0.017 7.28 0.50 0.001

3
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yellowgreen, Fisher’s exact test, p-value < 0.05, Figure 3A), demonstrating that clinically 
relevant modules are reproducible across different cohorts of SSc monocytes, including 
pre-clinical SSc stages.

A C

B

Module Trait ME Enrichment
Honeydew1
Brown4
Darkturquoise
Violet
Yellowgreen
Darkorange2
Palevioletred3
White
Darkgreen
Blue

mRSS/sex
duration
duration
ANA/duration
ANA
ANA/duration
ANA
duration
ANA/duration
duration

down
down
down
ND
down
down
down
ND
up
ND

no
no
no
no
yes
yes
no
yes
yes
no

D

Figure 2. Identification and functional annotation of co-expression modules correlated with clinical 
traits in SSc. (A) Correlation of module eigengenes (MEs) to SSc clinical traits. Rows indicate the clinical 
traits, and columns indicate modules identified in the Definite cohort. Cells of significant correlations 
(Pearson, p-value < 0.05) are color-coded by the degree and direction of the correlation (red = positive; 
blue = negative). Abbreviations: mRSS, modified Rodnan Skin Score; ANA, antinuclear antibodies; ACA, 
anticentromere antibodies; Scl70, anti-topoisomerase I antibodies; ILD, interstitial lung disease. (B) ME 
expression (first principal component, y-axis) of modules significantly correlated with clinical traits. Bars 
represent individual donors grouped according to their disease subset represented by the colors on the 
x-axis (red = HC, light blue = ncSSc, green = lcSSc, dark blue = dcSSc). (C) GO-term enrichment analysis 
of selected modules. Top 10 enriched terms for each module are shown (B&H corrected p-value < 0.05). 
Bars depict the number of module genes associated to enriched GO terms, and dots represent the p-value 
for the enrichment. (D) Table indicating the characteristics for selected modules (Column 1), considering 
correlations to clinical traits (Column 2), distinct ME expression pattern versus heathy controls (Column 
3, up = higher ME in SSc, down = lower ME in SSc, and ND = ME not distinct from healthy subjects), and 
functional enrichment (Column 4). Modules that were selected for subsequent analysis are highlighted 
in bold.
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 Next, by comparing the intramodular connectivity of shared genes across the 
overlapping modules (Figure S3), we identified replicated hub genes with high connectivity 
within modules across both cohorts. While several lncRNAs were present in the replicated 
modules, PSMB8-AS1 was the only lncRNA identified among the top 25% most highly 
connected genes (Figure 3B). Specifically, PSMB8-AS1 was a replicated hub gene in the 
darkgreen and darkmagenta modules from the Definite and Non-cutaneous networks, 
respectively, of which overlapping genes are enriched in genes related to immune cell 
activation and to response to virus and external stimulus (Figure 3C). Overall, these 
results pointed to PSMB8-AS1 as a potential central player in the regulation of these 
molecular pathways that are also relevant processes for monocyte activation in SSc.
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Figure 3. Identification of PSMB8-AS1 as a hub gene in replicated network modules. (A) Overlap 
of selected modules from the Definite (rows) and Non-cutaneous (columns) cohorts. Numbers behind 
module names indicate the total number of genes in the modules. Numbers in the table indicate the 
number of genes overlapping between two modules. Coloring indicates the significance of the overlap 
(Fisher’s exact test, −10log (p-value)). (B) Intramodular connectivity of genes shared across the darkgreen 
module of the Definite cohort (x-axis) and the darkmagenta module of the Non-cutaneous cohort (y-axis). 
Each dot represents one gene, with lncRNAs highlighted in red. The top 25% most connected genes in 
both cohort modules (threshold indicated by black dashed lines) were considered as hub genes. (C) The 
GO-term enrichment of genes replicated across the darkgreen/darkmagenta modules. Bars depict the 
number of genes identified in the enrichment, the dotted line represents the B&H corrected p-value. Top 
15 enriched terms are shown (B&H corrected p-value < 0.05).
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Characterization of PSMB8-AS1 Expression in SSc and Healthy Monocytes
 Both the cis correlation and co-expression network analysis highlighted PSMB8-
AS1 as a putative key regulator of biological processes relevant for SSc pathogenesis and 
monocyte activation. PSMB8-AS1 expression was significantly upregulated in ncSSc and 
dcSSc patients in the Definite cohort (Figure 4A). A trend for PSMB8-AS1 upregulation 
was also observed in the lcSSc patients in the Definite cohort and in eaSSc and ncSSc 
patients of the Non-cutaneous cohort (Figure 4A,B). To confirm the altered expression 
of PSMB8-AS1 across SSc patients, its expression was evaluated by a target specific 
RT-qPCR in an additional, independent cohort of SSc patients (Replication cohort). A 
statistically significant altered expression of PSMB8-AS1 was confirmed in SSc patients 
with the earliest symptoms (eaSSc) and the most severe phenotype (dcSSc patients) 
(p-value < 0.05, Figure 4C). In the other SSc groups, only some individuals displayed 
the upregulation of this lncRNA, but this, however, was not significantly changed when 
considering the whole group.
 To identify the molecular pathways leading to PSMB8-AS1 induction in SSc, 
its expression was assessed in healthy human monocytes cultured for 2, 5, and 18 h in 
the presence of LPS (TLR4 ligand), R848 (TLR7/8 ligand), IFNα, and TGFβ, all stimuli 
linked to monocyte activation and fibrosis in SSc[32–35]. PSMB8-AS1 expression was 
strongly induced by LPS, R848, and IFNα, especially after 18 h of stimulation (Figure 
4D, p-value < 0.05 compared to untreated cells). In contrast, PSMB8-AS1 expression 
was not altered by TGFβ treatment (Figure 4E; control for TGFβ stimulation is given in 
Figure S4). All together, these results demonstrated that PSMB8-AS1 expression can be 
induced by pro-inflammatory stimuli relevant for SSc and possibly indicate its implication 
in the regulation of the downstream pathways, as previously demonstrated for other 
lncRNAs induced by pro-inflammatory stimuli [20].
 Next, as the intracellular localization of lncRNAs partially governs their 
function[36], the specific cellular location of PSMB8-AS1 was determined by subcellular 
fractionation of healthy monocytes (Figure 4F). The percentage of enrichment of IL-8 
Primary Transcript and IL-8 mRNA were used as positive controls to verify the appropriate 
separation of different compartments, as they are expected to be found in the nucleus/
chromatin or cytoplasm, respectively. In agreement with previous findings in epithelial, 
glioma, and pancreatic cells [37–39], PSMB8-AS1 was found to be enriched in monocyte 
cytoplasm (Figure 4F, third panel), suggesting that this lncRNA may regulate expression 
of its target(s) at the post-transcriptional level[29].

Characterization of PSMB8-AS1 Function in Monocytes
 To further investigate the biological relevance of PSMB8-AS1, its expression 
was efficiently silenced in resting and R848 stimulated monocytes using a specific small 
interfering RNA (siRNA) (Figure 5A, p < 0.001). The impact of PSMB8-AS1 silencing on 
monocyte apoptosis was first investigated, as this lncRNA has previously been reported 
as a negative regulator of apoptotic signaling[37–39], and apoptotic signaling pathways 
were also identified by our GO-term enrichment analysis in the cis correlation analysis. 
However, FACS analysis demonstrated that PSMB8-AS1 silencing in monocytes did 
not affect apoptosis, neither in resting nor stimulated conditions (p-value > 0.05, Figure 
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Figure 4. Molecular characterization of PSMB8-AS1 in healthy and SSc monocytes. PSMB8-AS1 
expression in the (A) Definite cohort and (B) Non-cutaneous cohort assessed by RNA-Seq. Data are 
expressed as variance stabilized data (VSD), mean +/− SEM is reported. For each comparison the 
p-value, calculated according to the Wald test, is shown. (C) PSMB8-AS1 expression was analyzed in 
the “Replication cohort” by RT-qPCR. Data are reported as the fold change of each donor versus one 
representative healthy control, and mean +/− SEM is reported. p-values, as determined by the Kruskall–
Wallis test with post-hoc Dunn’s test, are reported. (D) CD14+ monocytes were cultured for the indicated 
time points in the presence of LPS (100 ng/mL, light blue bars), R848 (5 µM, green bars), IFNα-a2 (1000 
U/mL, dark blue bars), or (E) TGFβ (0.01 ng/µL, grey bars), or left untreated (medium control, red bars). 
PSMB8-AS1 expression was analyzed by RT-qPCR and expressed as a fold change over the medium 
control at 2 h. Data are shown as mean +/− SEM of (D) 4 and (E) 2 experiments. For (D), significance 
is indicated as * p < 0.05, ** p < 0.01 according to two-way ANOVA followed by Dunnett’s post-hoc test. 
(F) RNA from cytoplasm (red), nucleoplasm (blue), and chromatin (green) of CD14+ monocytes were 
obtained as described in Materials & Methods. Expression of IL-8 primary transcript (PT-IL8), IL-8 mRNA, 
and PSMB8-AS1 in each fraction was analyzed by RT-qPCR. Data are reported as a percentage of 
transcript in each compartment compared to total cell lysates (2ˆ−∆CT*100, indicated by % Enrichment). 
Mean +/− SEM of 3 different experiments is shown. * p < 0.05, ***p < 0.001 according to one-way ANOVA 
followed by Tukey’s post-hoc test.

S5A,B). Moreover, PSMB8-AS1 silencing also did not affect the expression of its cis 
correlated PCG PSMB8 (Figure S5C), showing that this lncRNA does not function via cis 
regulatory mechanisms, at least in the conditions tested here.
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 As the co-expression network analysis identified PSMB8-AS1 as a potential 
trans-acting hub lncRNA implicated in the regulation of immune cell activation and 
vesicle-related transport, its role in the secretion of pro-inflammatory cytokines was 
subsequently investigated. To this end, the impact of PSMB8-AS1 silencing was assessed 
on IL-6, IL-8, and TNFα secretion, three cytokines released by activated monocytes, 
and at higher levels by stimulated SSc monocytes[15, 16]. ELISA analysis showed a 
significant decrease of IL-6 and TNFα protein concentrations in the cell-free supernatant 
of si-PSMB8-AS1 monocytes stimulated with R848 for 18 h as compared to monocytes 
transfected with scramble siRNA (Figure 5B,C), whereas IL-8 protein levels were not 
affected (Figure 5D). Overall, these results demonstrated that PSMB8-AS1 regulates the 
secretion of specific cytokines in TLR-activated monocytes, and can thereby contribute 
to monocyte activation in SSc.
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Figure 5. PSMB8-AS1 is involved in the regulation of cytokine levels in CD14+ monocytes. (A) 
CD14+ monocytes were transfected with si-PSMB8-AS1 (blue) or scramble siRNA (red), and stimulated 
with R848 for 18 h or left untreated (medium control). The expression of PSMB8-AS1 was analyzed 
by RT-qPCR and expressed as relative expression (FC = fold change) compared to medium scramble 
control. Protein levels of IL-6 (B), TNFα (C), and IL-8 (D) in the cell free supernatants of transfected 
monocytes were determined by ELISA. * = p-value < 0.05, *** = p-value < 0.001, ns = not significant, as 
determined by two-way ANOVA followed by Bonferroni’s post-hoc test.
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DISCUSSION
 lncRNAs have been described as pivotal biological regulators of immune 
responses[19], and previous studies have suggested a role for lncRNAs in SSc[20–24]. 
However, a thorough characterization of the lncRNA profile in specific cell subsets obtained 
from SSc patients is still lacking. The aim of this study was to investigate the potential 
role of lncRNAs in the dysregulation of SSc monocytes, an important cell type implicated 
in SSc pathogenesis. Cis correlation and co-expression network analysis demonstrated 
that numerous lncRNAs are altered in SSc monocytes and are potentially implicated in 
the regulation of various biological processes relevant for SSc pathogenesis.
 We have previously shown that the lncRNA NRIR plays an important role in IFN 
responses of SSc monocytes[20]. The results reported in the present study reinforce the 
concept that, besides NRIR, other lncRNAs might be strongly implicated in the regulation 
of IFN responses in these cells. Indeed, we identified a correlation between RP11-
326I11.3, a lncRNA highly expressed in both the Definite and Non-cutaneous cohort, and 
IRF2, an important regulator of IFN responses[40]. Interestingly, a correlation between 
these two genes has previously been described in brain tissue, where they were linked 
to IFN signaling in central nervous system homeostasis[41]. Currently available clinical 
and molecular data suggest that type I IFN dysregulation is a major contributor to SSc 
pathogenesis[34], and the augmented expression of Type I IFN inducible genes in SSc 
monocytes has been linked to inflammation and the development of fibrosis[12]. Since 
our results showed that multiple lncRNAs are potentially involved in the amplified IFN 
signaling in SSc monocytes, further investigations should address the possible implication 
of these molecules in the disease pathogenesis.
 Next to IFN signaling, cis correlated lncRNA-PCG pairs also linked this class of 
regulators to the negative regulation of apoptosis, a relevant process that, if inhibited, 
can potentially contribute to the increased numbers of circulating monocytes observed 
in SSc patients. RP11-356I2.4, for example, was strongly correlated with TNFAIP3, an 
apoptosis regulator that is induced through NF-κB signaling[42]. A correlation between 
RP11-356I2.4 and TNFAIP3 has also previously been observed in the inflammatory skin 
disorder chronic actinic dermatitis, where both genes were downregulated in comparison 
to healthy controls[43]. As actinic dermatitis, like SSc, is also characterized by inflamed 
and thickened skin, lncRNAs involved in monocyte apoptotic processes could potentially 
contribute to fibrotic processes in the skin.
 Both the cis correlation analysis and co-expression network analysis pointed at 
the lncRNA PSMB8-AS1 as a key regulator of altered gene-expression in SSc monocytes. 
Although this lncRNA has previously been described in the context of influenza infection[44] 
and cancer[37–39], our results link PSMB8-AS1 dysregulation with autoimmunity for 
the first time. The cis correlation analysis predicted PSMB8, the protein coding gene 
located antisense to PSMB8-AS1, as a potential target of this lncRNA; however, the 
two genes were not present in the same co-expression modules, and PSMB8 mRNA 
levels were not altered upon PSMB8-AS1 silencing. These two genes are therefore not 
functionally related within SSc monocytes, while their expression correlation is probably 
the result of a shared transcriptional program given that their promoters share a binding 
site for the IFN inducible transcription factor IRF1[45]. Consistently, the protein PSMB8 
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can be directly regulated by IRF1[46], and treatment of monocytes with IFNα and R848 
(a TLR7/8 ligand activating IFN signaling) induces PSMB8-AS1 expression, an event 
likely mediated by IRF1. These findings demonstrated that IFN-mediated activation is, 
at least partially, responsible for the upregulation of PSMB8-AS1 in SSc monocytes, in 
agreement with previous studies showing that this lncRNA can be induced by influenza 
virus infections (triggering IFN signaling) in other human cells[44].
 In line with previous observations of three other studies in pancreatic epithelial cell 
lines and glioma[37–39], our subcellular localization analysis demonstrated that PSMB8- 
AS1 is present in the cytoplasm of CD14+ monocytes. Given that cytoplasmic lncRNAs 
can regulate secretory and extracellular vesicles[47], and PSMB8-AS1 was present in co- 
expression modules annotated to vesicle related transport, it is possible that this lncRNA 
is involved in the regulation of cytoplasmic vesicles. A more detailed characterization 
by RNA-FISH of the precise subcellular compartments involved in intracellular vesicle 
transport (for example, the endoplasmic reticulum or Golgi)[36, 48] could provide better 
insights into the exact molecular processes related to PSMB8-AS1 activity. In addition, 
since different stimuli can modify the subcellular compartmentalization of lncRNAs[49], it 
would be interesting to verify whether factors relevant for SSc pathogenesis (e.g., TLR- 
agonists, IFNα, and CXCL4) can influence PSMB8-AS1 localization. The evidence that 
IL-6 and TNFα protein secretion was repressed by PSMB8-AS1 silencing in monocytes 
demonstrated that this lncRNA is involved in the positive regulation of these cytokines 
and possibly links its cytoplasmic localization to the control of cytokine secretion. In 
contrast, IL-8 release was unaffected, suggesting a possible cytokine-specific action of 
PSMB8-AS1. This is not surprising, given that specific cytokines can be secreted through 
distinct pathways in macrophages, adapted to suit specific stimulatory conditions[50]. 
Alternatively, the different impact of PSMB8-AS1 silencing on IL-6/TNFα and IL-8 
secretion could be explained by distinct timeframes in the synthesis/expression of these 
factors or could be dependent on the specific stimuli used in our experiments. More 
detailed molecular investigations, exploiting a wide range of pro-inflammatory mediators, 
as well as stimulation times, are required to unravel the exact role of PSMB8-AS1 in 
cytokine release.
 The positive regulation of IL-6 and TNFα secretion by PMSB8-AS1 directly link 
this lncRNA to SSc pathogenesis. Elevated levels of IL-6 and TNFα have indeed been 
reported in the serum of SSc patients in several studies[51, 52], and both cytokines are 
associated with fibrotic processes[53, 54], disease progression, and the occurrence of 
interstitial lung disease[55, 56], especially in dcSSc patients. Most importantly, different 
studies proposed monocytes as the potential source of these cytokines in SSc[15, 16, 57]. 
Interestingly, the highest upregulation of PSMB8-AS1 was observed in monocytes from 
dcSSc patients, where the increase of IL-6 and TNFα levels and the extent of skin fibrosis 
are the most severe. Even if the upregulation of PSMB8-AS1 was fluctuating in other 
disease subsets, possibly due to the extreme clinical heterogeneity of these patients, 
the upregulation of this lncRNA was also confirmed in early and ncSSc patients. Such 
evidence indicates that PSMB8-AS1 might be involved in the regulation of inflammatory 
processes from early stages of the disease onward, affecting the secretion of cytokines 
that eventually contribute to the development and perpetuation of fibrosis.
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 In conclusion, in-depth bioinformatics analysis unraveled numerous lncRNAs 
dysregulated in SSc monocytes and highlighted an important regulatory potential of 
these molecules both in immune activation and disease pathogenesis. Among these, we 
specifically discovered that the upregulation of PSMB8-AS1 can modulate the secretion 
of pro-inflammatory cytokines by monocytes, thereby potentially contributing to the 
increased activation of these cells in SSc. A more detailed understanding of lncRNAs 
and their contribution to disease pathogenesis could provide steppingstones for the 
identification of novel molecular targets for manipulating monocyte activity in SSc, in 
order to contrast disease onset and progression.

MATERIALS AND METHODS

Patient Demographics
 Transcriptomic data from SSc patients and matched healthy controls from the 
Definite and Non-cutaneous cohorts were obtained from the gene expression omnibus 
(GSE124075). For the replication cohort, peripheral blood samples from SSc patients 
and age/sex matched healthy controls were obtained from the University Medical Center 
Utrecht. All participants enrolled in the study signed an informed consent form approved 
by the local institutional review boards prior to inclusion in this study (METC no. 12-466C, 
approved 2 October 2012), adherent of the Declaration of Helsinki Principles. Samples 
and clinical information were treated anonymously immediately after collection. SSc 
patients fulfilled the ACR/EULAR classification criteria[2] and were classified according 
to the extent of their skin fibrosis as lcSSc or dcSSc patients. Patients that fulfilled the 
classification criteria but did not present skin fibrosis are referred to as ncSSc patients 
throughout the manuscript. Finally, we also included eaSSc patients with Raynaud’s 
Phenomenon and positivity for SSc-specific autoantibodies and/or typical nailfold 
capillaroscopy patterns, as defined by LeRoy et al.[3]. The demographics and clinical 
characteristics of the subjects enrolled in these cohorts are reported in Table 1. Ongoing 
treatment regimens are reported in Table S4.

Purification and Culture of CD14+ Monocytes from Healthy Control Blood and 
Buffy Coats
 PBMCs were isolated from whole heparinized blood samples from SSc patients 
and healthy controls or from the buffy coats of healthy controls, by density gradient 
centrifugation using Ficoll-Paque Plus (GE Healthcare, Chicago, IL, USA). CD14+ 
monocytes were purified from PBMCs using the MACS Human Monocyte Isolation Kit II 
(Miltenyi Biotec, Bergisch Gladbach, Germany) on the autoMACs Pro Separator (Miltenyi 
Biotec) according to the manufacturer’s instructions. For subsequent analysis, only cell 
preparations with more than 95% purity (measured by FACS analysis) for CD14+ cells 
were used.
 For selected experiments, CD14+ monocytes purified from buffy coats were 
cultured in RPMI 1640 + 10% FCS (fetal calf serum, <0.5 EU/mL, Sigma-Aldrich, St. 
Louis, MO, USA) + 2 mM Glutamine at a concentration of 2 106 cells/mL. Cultured cells 
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were left untreated (medium control) or treated with one of the following stimuli: 100 ng/
mL ultra-pure E. coli lipopolysaccharide (LPS, strain O111:B4, Invivogen, San Diego, CA, 
USA), 5 µM R848 (Invivogen), 1000 U/mL IFNα-2a (Cell Sciences, Newburyport, MA, 
USA), and TGF-β2 (Bio-Techne, Minneapolis, MN, USA) according to the conditions and 
times indicated for each experiment in the results section.

RNA Purification
 Total RNA was purified using the DNA/RNA/miRNA Universal kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions. DNAse treatment (RNAse Free 
DNase I set, Qiagen) on column was performed. RNA was quantified with the Qubit® 
RNA Assay Kit (Life Technologies, Carlsbad, CA, USA) on the Qubit® Fluorometer 
(Invitrogen, Carlsbad, CA, USA) or on the Nanodrop 2000 spectrophotometer (Thermo 
Scientific, Waltham, MA, USA).

RNA-Sequencing Analysis
 Raw sequencing data was obtained from GSE124075[17]. Sequencing reads 
were aligned to the GrCh38 reference human genome (Genome Reference consortium) 
and the H. sapiens transcriptome (Ensembl, version 77) using TopHat[58]. Summed exon 
read counts per gene were estimated using the HTSeq-count function provided in the 
HTSeq python package[59] (v. 0.6.1p1). Differential expression analysis was performed 
using the negative binomial distribution-based method implemented in DESeq2[60] (v. 
1.6.3), and pair wise comparisons between SSc patients and HC groups were tested 
using the Wald test. Genes with a log2(FC) < -0.58 or > 0.58 and a p-value < 0.05 were 
considered significantly modulated. Normalized gene expression levels were expressed 
as variance stabilized data (VSD), calculated according to DESeq2 instructions. Gene 
types were annotated according to the Ensembl 77 database.

In Cis Correlation Analysis
 Protein-coding genes (PCGs) that were localized within a region of 5 kb upstream 
or 5 kb downstream, regardless of the sense of transcription, for each differentially 
expressed lncRNA were recovered using the Biomart tool available on the Ensembl 
website. A Spearman rank-order correlation analysis of the expression of the lncRNAs 
and associated PCGs was then performed. Correlations with Spearman’s Rho < -0.4 or > 
0.4, and p-value < 0.05 were considered significant. Correlation analysis was performed 
using the rcorr function implemented in the Hmisc package in R[61].

GO-Term Enrichment Analysis
 Gene ontology (GO) enrichment analysis was performed using ToppFun[62]. 
Enrichment of biological process (BP) associated GO-terms was tested using the 
probability density function. p-value was adjusted according to Benjamini–Hochberg/
FDR correction. BP terms significantly enriched (B&H corrected p-value ≤ 0.05) were 
considered.
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Weighted Gene Co-Expression Network Analysis (WGCNA)
 Weighted gene co-expression networks were constructed for the Definite and 
Non-cutaneous cohorts separately using the R package WGCNA[63]. The VSD data of 
all genes with at least 1 count in all samples were used as input. An unsigned network 
with a scale free topology was constructed, using a soft threshold power β = 13 for the 
Definite cohort and a soft threshold power β = 4 for the Non-cutaneous network. Modules 
were identified using the cutreeDynamic function with a minimum module size of 30. 
Closely related modules were merged using the mergeCloseModules function (cutHeight 
= 0.25). Gene expression profiles across the modules were summarized into module 
eigengene (ME) values based on the first principal component of each module. Fisher’s 
exact test was used to calculate the extent of module overlap between the Definite and 
Non-cutaneous networks, as previously described[64]. Intramodular connectivity (i.e., 
the connectivity of a gene to genes nodes within the same module) was obtained using 
the intramodularConnectivity function from the WGCNA package.

Subcellular Fractionation
 CD14+ monocytes were harvested and resuspended in cold RLN1 solution 
(50 mM Tris HCl pH 8.0; 140 mM NaCl; 1.5 mM MgCl2; 0.5% NP-40) supplemented 
with RNAse and protease inhibitors (1 U/µL RNAse Out, 5 µg/mL leupeptin, 5 µg/mL 
pepstatin, 20 µM PAO, 1 mM PMSF, 1 mM Na3VO4, 50 mM NaF, and 10 mM DTT) 
and incubated for 15 min on ice. After centrifugation at 4°C for 2 min at 200×g, the 
supernatant was saved as a “cytoplasmic fraction”. The pellet was washed in cold RLN1 
and resuspended in cold RLN2 solution (50 mM Tris HCl pH 8.0; 500 mM NaCl; 1.5 mM 
MgCl2; 0.5% NP-40) supplemented with RNAse and protease inhibitors (as described for 
RLN1) and incubated for 10 min on ice. After centrifugation at 4°C for 2 min at 500xg, the 
supernatant was saved as a “nuclear fraction”. The remaining pellet was washed in RLN1 
solution and saved as a “chromatin fraction”. All fractions were resuspended in RLT+ 
(Qiagen) plus β-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA) and processed 
for RNA extraction.

Transfection of CD14+ Monocytes Using siRNA
 Purified CD14+ monocytes were transfected by means of electroporation, using 
the Amaxa™ Nucleofector™ II system (Lonza Basel, Switzerland) in combination with the 
Amaxa® Human Monocyte Nucleofector® Kit (Lonza). A minimum amount of 5x106, up to 
a maximum amount of 15x106 CD14+ monocytes were used for transfection, according 
to the manufacturer’s protocol. Monocytes were transfected with 200 pmol of Silencer 
Select Pre-Designed siRNA (assay id n503525, PSMB8-AS1, Ambion, Austin, TX, 
USA) or 200 pmol of Silencer Negative control No.1 siRNA (Ambion). After transfection, 
the cells were plated in 50% RPMI 1640 + 10% FCS + 2 mM Glutamine, and 50% 
Iscove’s Modified Dulbecco’s Medium (IMDM, Lonza) + 10% FCS + 2 mM Glutamine, at 
a concentration of 3x106 cells/mL overnight. The next day, the medium was changed to 
RPMI 1640 + 10% FCS + 2 mM Glutamine, and the cells were stimulated for the times 
indicated for each separate experiment.
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Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)
 Purified RNA (200–1000 ng) was reverse transcribed using the SuperScript® 
III Reverse Transcriptase kit (Invitrogen), according to the manufacturer’s instructions. 
Gene expression was quantified, in duplicate, by RT-qPCR using 9 ng cDNA with 
SYBR Select Master Mix (Applied Biosystems, Foster City, CA, USA), in the presence 
of 400 nM gene- specific primers (Table 3), on the ViiA™ 7 Real-Time PCR System 
(Applied Biosystems). Relative expression of each gene was determined according to 
the comparative CT (∆∆CT) method using RPL32 as an endogenous control (where the 
∆CT equals the CT of the mRNA of interest—the CT of RPL32)[65]. 

Gene Forward Primer Reverse Primer

PSMB8-AS1 CTTCTCTGCTCTCCCGTTATG GTGTGTTACCTCCTTTCCAAG

RPL32 AGGGTTCGTAGAAGATTCAAGG GGAAACATTGTGAGCGATCTC

IL-8 GCTCTGTGTGAAGGTGCAGT CCAGACAGAGCTCTCTTCCA

PT-IL-8 ATTGAGAGTGGACCACACTG ACTACTGTAATCCTAACACCTG

PSMB8 GAGGCGTTGTCAATATGTACC CCTGGGGGAAATGCTTGTTC

MMP2 AGCGAGTGGATGCCGCCTTTAA CATTCCAGGCATCTGCGATGAG

FACS Assessment of Monocyte Viability
 Viability of CD14+ monocytes was studied by FACS analysis. At room temperature, 
200,000 cells were stained for 15 min in an Annexin binding buffer (Invitrogen) using 
the following antibodies: CD14-PE (clone M5E2, cat. 561707, BD Biosciences, Franklin 
Lakes, NJ, USA), CD16-V500 (clone 3G8, cat. 561393, BD Biosciences), 7-AAD (cat. 
559925, BD Biosciences), and Annexin V-APC (cat. 550474, BD Biosciences). Sample 
fluorescence was measured on the LSRFortessa (BD Biosciences). Data were analyzed 
using FlowJo (Version 10, Tree Star Inc., Ashland, OR, USA).

Assessment of Cytokine Levels Using ELISA
 Concentrations of IL-6, TNFα, and IL-8 in cell-free supernatants from cultured 
CD14+ monocytes were measured by the sandwich enzyme linked immunosorbent 
assay (ELISA). IL-6 and IL-8 were quantified using the PeliKine compact human IL-6 
and IL-8 ELISA kits (Sanquin Reagents, Amsterdam, The Netherlands), and TNFα was 
quantified using the Human TNF-α ELISA Set (Diaclone, Besançon, France), according 
to the manufacturer’s instructions.

Statistical Analysis
 Data are expressed as mean SEM unless otherwise indicated. Unless indicated 
otherwise, analysis of differences was performed using the Mann Whitney test. For 
multiple group comparisons, the one- or two-way analysis of variance (ANOVA) was 
used. p-values < 0.05 were considered statistically significant. Figures were produced 
using the R package ggplot2[66] or the GraphPad Prism software (v 8.3, www.graphpad.
com, GraphPad Software, Inc., San Diego, CA, USA).

Table 3. Gene specific primer pairs used for RT-qPCR.
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SUPPLEMENTARY INFORMATION

The Supplementary Tables for this article can be found online at: 
https://www.mdpi.com/article/10.3390/ijms22094365/s1

Figure S1. Expression of lncRNAs is altered in SSc monocytes. (A) Expression heatmap of lncRNAs 
significantly modulated in at least one comparison of SSc patients versus healthy controls (log2(FC) 
>0.58 or <-0.58, and p-value <0.05). lncRNAs expression is shown as row mean-centered Z-Score of the 
variance stabilized data (VSD) obtained from RNA-sequencing analysis. (B) Venn diagram showing the 
number of differentially expressed lncRNAs in each SSc patient subset (depicted by different colors) as 
well as the number of overlapping differential lncRNAs between patient subsets.
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Figure S2. Module overlap between gene co-expression networks identified in the definite and 
non-cutaneous cohorts. Overlap of all modules from the definite (rows) and non-cutaneous cohorts 
(columns). Numbers behind modules names indicate the total number of genes in the modules. Numbers 
in the table indicate the number of genes overlapping between two modules. Coloring indicates the 
significance of the overlap (Fisher’s exact test, − log10(p-value) ).
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Figure S3. Connectivity overlap of selected reproduced co-expression modules. Intramodular 
connectivity of genes shared across the selected modules of the definite cohort (x-axis) and corresponding 
modules of the non-cutaneous cohort (y-axis). Each dot represents one gene, with lncRNAs highlighted 
in red. The top 25% most connected genes in both the definite and non-cutaneous modules (black dotted 
lines) were considered as hub-genes.
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Figure S4. MMP2 expression is induced by TGFβ signaling in monocytes. CD14+ monocytes were 
cultured for the indicated time points in presence TGFβ (grey bars), or left untreated (medium control, red 
bars). PSMB8-AS1 expression was analyzed and expressed as fold change over the medium control at 
2h. Data are shown as mean+/- SEM.

Figure S5. Silencing of PSMB8-AS1 does not affect apoptosis or PSMB8 expression in healthy 
monocytes. (A) Representative FACS plots of viability analysis of monocytes transfected with si-PSMB8-
AS1 (right panel) or scramble siRNA (left panel). The percentage of viable (Q4), early apoptotic (Q3) 
and late apoptotic (Q2) cells, based on Annexin V (x-axis) and 7-AAD (y-axis) staining is indicated in the 
corresponding quadrants. (B) Bar graphs showing the percentage of early apoptotic (left panel) and late 
apoptotic (right panel) within the fraction of CD14+ monocytes. Cells were transfected with si-PSMB8-AS1 
(blue) or scramble siRNA (red) , and either left unstimulated or treated with R848 (N=5). (C) Expression 
of PSMB8 was analyzed by RT-qPCR and expressed as relative expression (y-axis, FC=fold change) 
compared to medium scramble control (N=3).
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ABSTRACT 

Background and objective Systemic sclerosis (SSc), Systemic Lupus Erythematosus 
(SLE) and Rheumatoid arthritis (RA) are rheumatic autoimmune diseases for which 
monocytes have been described to play a major role in disease pathogenesis. Given 
contribution of epigenomic alterations in the immunopathology of these diseases, 
studying the epigenomic landscape of SLE, RA and SSc monocytes should provide 
valuable insights into their roles in disease pathogenesis.

Methods Paired genome-wide transcriptomic profiling and chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) for histone marks H3K4me3 and H3K27me3 was 
performed on monocytes of fifteen healthy controls and sixty patients with SSc, SLE or 
RA. Differential expression analysis and correlation of RNA expression with the levels of 
H3K4me3 and H3K27me3 located nearby their transcription start sites were performed 
to assess the impact of histone modifications on gene expression regulation. 

Results We identified a total of 12,959 differentially expressed genes in SSc, SLE and 
RA patients, which were especially enriched for genes related to interferon (IFN), tumor 
necrosis factor (TNF), transforming growth factor beta (TGFβ) and collagen formation 
pathways. We identified an evident disease specific dysregulation of these signaling 
pathways, as SLE and SSc transcriptomes were marked by a strong dysregulation 
of IFN and TNFα signaling, while RA monocytes lacked the IFN signature and were 
highly enriched for TNF, TGFβ and collagen formation pathways. This was already 
imprinted at the histone level, showing that aberrances in histone marks selectively 
skew autoimmune monocytes towards distinct pro-inflammatory phenotypes. Moreover, 
we identified numerous poised promoters, characterized by the simultaneous presence 
of activating H3K4me3 and repressing H3K27me3, which were potentially involved in 
disease relevant signaling pathways and primed monocytes for enhanced activation in 
SSc and RA. 

Conclusions Alterations in the epigenomic landscape of monocytes from SLE, SSc and 
RA patients correlate with the expression of distinct disease relevant signaling pathways. 
Our results offer new insights into epigenomic mechanisms underlying monocyte 
dysregulation in these autoimmune diseases, offering new avenues for future therapeutic 
targeting. 
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INTRODUCTION 
 Monocytes are circulating white blood cells that play critical roles in inflammation. 
They can initiate and contribute to local and systemic inflammation through the 
secretion of pro-inflammatory mediators[1], and are the precursors of myeloid lineage 
dendritic cells, macrophages, and osteoclasts[2, 3]. Monocytes are well known for 
their multipotency, and their capability to differentiate into distinct cell types is largely 
dependent on environmental cues and pro-inflammatory triggers[4]. These abilities are 
central to monocyte function and make them crucial cells in driving immune-related 
disorders. 
 Monocytes are described to be dysregulated in multiple autoimmune diseases 
including systemic sclerosis (SSc), systemic lupus erythematosus (SLE), and rheumatoid 
arthritis (RA), and are proposed to have an essential role in immunopathology. In 
SSc and RA, the number of circulating monocytes are higher compared to healthy 
individuals[5–7], and an increased infiltration of monocytes into affected tissues has 
been observed. In SSc skin lesions, monocytes are among the predominant infiltrating 
cells[5], while in RA large numbers of infiltrating monocytes and macrophages are 
observed in synovial tissues lining affected joints[8, 9]. Likewise, monocytes have been 
found to infiltrate kidneys of active lupus nephritis patients, where their frequencies are 
associated with disease activity[10]. After infiltration into affected tissues, monocytes can 
differentiate into pro-inflammatory macrophages[11], as well as specific disease relevant 
cell subsets, including bone-resorbing osteoclasts in RA[12], and extra-cellular matrix 
(ECM) producing myofibroblasts in SSc[13]. Moreover, the production of selective pro-
fibrotic and pro-inflammatory cytokines by monocytes in the affected tissues contribute to 
the local and systemic inflammation observed in SLE, SSc and RA patients. Altogether, 
monocytes play a key role in the pathogenesis of the three autoimmune diseases. 
However, hitherto no study has been performed that compares the phenotypic and 
functional characteristics of monocytes in SLE, SSc and RA to study the commonalities 
and differences in mechanisms driving these diseases. 
 Environmental factors altering epigenetic factors such as histone 
modifications[14], non-coding RNA[15] and DNA methylation[16] play an important role 
in the development of SLE, SSc and RA. Thus, studying the epigenomic landscape of 
monocytes obtained from these diseases could provide valuable insights into their roles 
in disease pathogenesis. Previous research has already shown that post-transcriptional 
modifications of histones play a crucial role in monocyte differentiation into dendritic 
cells[17] and macrophages[18]. Moreover, changes in the levels of trimethylation of lysine 
4 of histone 3 (H3K4me3) and acetylation on lysine 27 of histone 3 (H3K27ac) partially 
underlie the aberrant gene expression profiles observed in SSc monocytes[19]. Further 
exploration of the histone modification patterns affecting gene expression in SLE, SSc 
and RA monocytes can help to better characterize the mechanisms underlying monocyte 
dysregulation and identify potential novel therapeutic targets. 
 Here, we integrated paired transcriptomic and epigenomic data to evaluate 
how epigenetic imprinting affects the phenotype of circulating monocytes isolated from 
patients with SSc, SLE and RA. We used chromatin immunoprecipitation followed by 
high-throughput sequencing (ChIP-seq) for the activating histone mark H3K4me3 and 
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the repressing histone mark H3K27me3 in parallel with transcriptome analysis to show 
that distinct epigenetic imprinting results in the dysregulation of disease specific signaling 
pathways in SLE, SSc and RA monocytes. 

MATERIALS AND METHODS

Study participants 
 Peripheral blood was collected from SSc, SLE and RA patients as well as age- 
and sex-matched healthy controls (HC). Informed consent was obtained from all patients 
and healthy donors enrolled in the study at the University Medical Center Utrecht, the 
Maasstad Medical Center Rotterdam and the Gartnavel Hospital Glasgow. All samples 
and clinical information were treated anonymously right after collection. All participants 
enrolled in the study signed a consent form approved by the local institutional review 
boards, in adherence to the Declaration of Helsinki Principles. All patients fulfilled their 
respective classification criteria (ACR/EULAR 2013 criteria for SSc[20], 1997 ACR criteria 
for SLE[21], and 2010 ACR criteria for RA[22]) (Table 1). SSc patients were subdivided 
into limited cutaneous SSc (lcSSc) and diffuse cutaneous (dcSSc) subsets based on the 
extent of skin fibrosis. Early SSc (eaSSc) patients presented with Raynaud’s phenomenon 
(RP) in combination with either typical nailfold videocapillaroscopy (NVC) abnormalities 
or SSc-specific autoantibodies as defined by LeRoy et al.[23].

Monocyte isolation 
 Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood 
samples collected in lithium heparin tubes using Ficoll Paque Plus (GE Healthcare). 
The CD14+ monocytes population was isolated from PBMCs using the MACS Human 
Monocyte Isolation Kit II (Miltenyi Biotech, Germany), according to the manufacturer’s 
instructions, after which a purity of >95% (measured by FACS) was generally observed. 
Freshly isolated monocytes were immediately stored for RNA extraction and ChIP 
analysis performed later.

RNA extraction and RNA sequencing (RNA-seq)
 Total RNA was isolated from monocytes using the AllPrep DNA/RNA/miRNA 
Universal Kit (Qiagen) according to the manufacturer’s instructions. The quantity and 
quality of the obtained RNA was assessed using an Agilent 2100 bioanalyzer prior to 
sequencing. All samples used in the analysis had an RQN score of >8 with an average 
of 9.8. Library prep was performed by GenomeScan (Leiden, the Netherlands) using 
the NEBNext Ultra II Directional RNA Library Prep Kit (Illumina), according to the 
manufacturer’s instructions. The quality and yield after sample preparation was measured 
with the Fragment Analyzer. Clustering and DNA sequencing using the NovaSeq6000 
(Illumina) was performed according to manufacturer’s protocols, generating 20-30 million 
150bp paired ended reads for each sample. 
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RNAseq HC earlySSc lcSSc dcSSc SLE RA

ChIPseq H3K4me3 HC earlySSc lcSSc dcSSc SLE RA

ChIPseq H3K27me3 HC earlySSc lcSSc dcSSc SLE RA

N 15 10 10 10 10 9

15 9 9 9 8 10

14 9 9 9 7 10

Age (yr.) 54 (50-62) 45 (37-50) 57 (49-64) 53 (45-62) 45 (40-54) 68 (63-73

54 (50-62) 45 (37-52) 57 (48-65) 51 (43-59) 44 (33-52) 66 (61-73)

54 (50-60) 44 (37-52) 57 (48-65) 51 (43-59) 43 (30-49) 66 (61-73)

Female (n, %) 11 (73%) 8 (80%) 8 (80%) 6 (60%) 9 (90%) 7 (78%)

11 (73%) 7 (78%) 7 (78%) 5 (56%) 8 (100%) 8 (80%)

11 (78%) 7 (78%) 7 (78%) 5 (56%) 7 (100%) 8 (80%)

ANA (n pos, %) - 8 (80%) 8 (80%) 9 (90%) 10 (100%) -

- 7 (78%) 7 (78%) 8 (89%) 8 (100%) -

- 7 (78%) 7 (78%) 8 (89%) 7 (100%) -

ACA (n pos, %) - 3 (30%) 4 (40%) 2 (20%) - -

- 3 (33%) 4 (44%) 2 (22%) - -

- 3 (33%) 4 (44%) 2 (22%) - -

Scl70 (n pos, %) - 1 (10%) 0 (0%) 6 (60%) - -

- 1 (11%) 0 (0%) 5 (56%) - -

- 1 (11%) 0 (0%) 5 (56%) - -

mRSS - - 6.9 (2-12.5) 14.3 (10.5-
21.5)

- -

- - 7.5 (2-12.75) 14.7 (7-23) - -

- - 7.5 (2-12.75) 14.7 (7-23) - -

ILD n (%) - 0 (0%) 1 (10%) 3 (30%) - -

- 0 (0%) 1 (11%) 2 (22%) - -

- 0 (0%) 1 (11%) 2 (22%) - -

SLEDAI - - - - 4 (0-7) -

- - - - 4 (1-6) -

- - - - 4 (0-6) -

- - - - - 4.2 (3.2-4.9)

DAS28 - - - - - 4.3 (3.5-5.2)

- - - - - 4.3 (3.5-5.2)

PDN (n, %) - 0 (0%) 1 (10%) 2 (20%) 3 (30%) 0 (0%)

- 0 (0%) 0 (0%) 2 (22%) 2 (25%) 0 (0%)

- 0 (0%) 0 (0%) 2 (22%) 2 (29%) 0 (0%)

MTX (n, %) - 1 (10%) 1 (10%) 4 (40%) 0 (0%) 6 (67%)

- 1 (11%) 1 (11%) 3 (33%) 0 (0%) 7 (70%)

- 1 (11%) 1 (11%) 3 (33%) 0 (0%) 7 (70%)

CP (n, %) - 0 (0%) 0 (0%) 1 (10%) 5 (50%) 0 (0%)

- 0 (0%) 0 (0%) 1 (11%) 3 (38%) 0 (0%)

- 0 (0%) 0 (0%) 1 (11%) 3 (43%) 0 (0%)

Table 1. Demographics and clinical characteristics of patients in the study. Values reported indicate 
the number (n) of patients and the mean for each parameter (Interquartile Range (IQR)), if not otherwise 
indicated. White and light and dark grey fields indicate features of patients of the same cohort (continued) 
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analysed either with RNAseq or ChIPseq for H3K4me3 and H3K27me3, respectively. Yr., years; ANA, 
antinuclear antibodies; ACA, anticentromere antibodies; Scl70, antitopoisomerase antibodies; mRSS, 
modified Rodnan Skin score; ILD, Interstitial Lung disease; HC, healthy controls; lcSSc, limited cutaneous 
SSc; dcSSc, diffuse cutaneous SSc; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; 
DAS28, Disease Activity Score-28; PDN, prednisone; MTX, methotrexate; CP, cyclophosphamide.

Chromatin immunoprecipitation and sequencing (ChIP-seq)
 Freshly isolated monocytes for ChIP-seq were fixed using 1% formaldehyde 
(Sigma-Aldrich, Saint Louis, MO, USA) for 10 minutes at room temperature, followed by 
the addition of 0.125M Tris (pH 7.6) and subsequent incubation for 5 minutes at room 
temperature to stop the crosslinking reaction. After centrifugation at 500G the cell pellet 
was washed four times with cold PBS. Samples were stored at -80°C for use at a later 
time point. Cell pellets were lysed in dH2O containing 1M NaBut, 0.5M HEPES and 
10% SDS supplemented with protease inhibitors (ThermoFisher Scientific cat#1862209). 
Sonication of the samples was performed using the Bioruptor Pico sonication device 
(Diagenode), in Bioruptor 0.65ml microtubes (Diagenode) to obtain chromatin fragments 
sized between 200-600bp. Samples were diluted in dH2O with 0.1% SDS, 1% Triton 
x-100 with a final concentration of 1.2mM EDTA, 16.7mM Tris pH 8 and 167 mM NaCl. 
The following antibodies were used in combination with Protein A dynabeads (Invitrogen) 
to perform the immunoprecipitation; H3K4me3 (Merck Millipore) and H3K27me3 (Merck 
Millipore). Nuclear extracts from 1 to 5 million monocytes were immunoprecipitated with 
1.5 μg of antibody incubated with the protein A beads for 1 hour at room temperature. 
Antibody bound beads were added to the diluted chromatin fragments and incubated 
overnight at 4˚C. De-crosslinking of the samples was performed by placing them into a 
thermomixer for 1h at 55˚C followed by overnight at 65˚C. DNA fragments were isolated 
using the MinElute PCR Purification Kit (Qiagen) following manufacturer’s instructions. 
Single ended sequencing of the fragments was performed by Glasgow Polyomics 
(Glasgow UK) using an Illumina NextSeq500 sequencer according to the manufacturer’s 
instructions generating ~30 million 75bp single-end reads for each sample. 

Statistical analysis

RNA-sequencing analysis
 Quality check of the raw sequences was performed using the FastQC tool. 
Sequencing reads were aligned using STAR aligner[24], using annotations from the 
GrCh38 (v79) built from the human genome (http://www.ensembl.org). On average 25 
million uniquely mapped reads were obtained per sample. Summed exon read counts 
per gene were estimated using the HTSeq-count function provided in the HTSeq python 
package[25]. Between lane normalization using the upper quartile normalization was 
performed using the EDAseq Bioconductor/R package[26]. Differential expression 
analysis was performed using the negative binomial distribution-based method 
implemented in DESeq2[27], and pair wise comparisons between patients groups and 
healthy controls were tested using the Wald test. Genes with a nominal p-value < 0.05 
as compared to healthy controls were considered differentially expressed. Variance 
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stabilizing transformation (VST) was calculated according to DESeq2 instructions to 
obtain the normalized read counts (NRC) for further analysis. 

ChIP-sequencing analysis
 Quality check of the raw sequences was performed using the FastQC tool. 
Sequencing reads were mapped against the reference genome GRCh38.p13 built from 
the human genome (NCBI) using bowtie2[28]. Peaks were called using MACS2[29], 
by comparing the IP samples to their matched input samples. Broad-peak mode was 
used to call peaks for both H3K4me3 and H3K27me3 (-g hs --broad --broad-cutoff 0.1). 
After calling, the obtained peaks were filtered based on q-value to only retain the high 
confidence peak regions. Additionally, peaks from ENCODE blacklist regions[30], and 
X- and Y-chromosome peaks were filtered out to reduce noise and exclude sex-specific 
peaks. Peaks were annotated to the nearest genes using the ChIPseeker Bioconductor/R 
package[31]. Peaks were associated with a gene when they were annotated within a 
10kb range (up- or downstream) to the gene transcription start site (TSS).
 For macrophage and osteoclast datasets, enriched regions peak regions 
(bed files) were retrieved from the Blueprint Consortium data access portal (http://dcc.
blueprint-epigenome.eu/#/datasets)[32]. H3K4me3 and H3K27me3 peak sets were 
taken for two biological replicates from human macrophages (EGAD00001002504, 
donors S0022I and S00390), and osteoclasts (EGAD00001002391, donors BC2_0 
and BC2_10). Overlapping peaks for biological replicates were identified using the 
findOverlapsOfPeaks function, implemented in the ChIPpeakAnno Bioconductor/R 
package[33]. Peaks overlapping between two biological replicates where considered for 
downstream analysis, and were further processed in the same way as the ChIP monocyte 
data. 

Gene set enrichment and pathway analysis
 Pre-ranked gene set enrichment analysis (GSEA, ranking based on log2 fold 
change) was performed using the fgsea Bioconductor/R package[34]. Gene sets were 
obtained from the molecular signatures database (MSigDB, https://www.gsea-msigdb.
org/)[35]. The following gene sets were used: TNFα, “HALLMARK_TNFA_SIGNALING_
VIA_NFKB”; IFN, “REACTOME_INTERFERON_SIGNALING”; TGFβ, “HALLMARK_
TGF_BETA_SIGNALING”; collagen, “REACTOME_COLLAGEN_FORMATION”. 
Enrichments with adjusted p-value <0.05 were considered significant. GO-term 
enrichment analysis was performed using enrichGo function from the clusterProfiler R 
package[36]. Biological processes with a B&H correct p-value <0.05 were considered 
significant. 

RNA-ChIP correlation analysis
 Spearman’s rank correlation coefficient was calculated to assess correlations 
between the levels of H3K4me3 and H3K27me3 present within 10KB of a transcription 
start site and the expression level of the corresponding genes. Correlations were plotted 
using the R package ggplot2[37], and regression lines were added using the linear model 
implemented in the geom_smooth function from ggplot2. 
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RESULTS

SLE, SSc and RA monocyte transcriptomes are characterized by disease specific 
patterns in pro-inflammatory and pro-fibrotic signaling pathways 
 To study the gene expression alterations in monocytes in the context of 
autoimmune disease, we performed bulk RNA-sequencing (RNA-seq) of CD14+ 
monocytes isolated from peripheral blood samples obtained from SLE (n=10), SSc 
(n=30) and RA (n=10) patients and matched healthy controls (n=15). We identified a 
total of 12,959 significantly differentially expressed genes (DEGs, nominal p-value <0.05) 
between all groups of autoimmune patients compared to healthy controls, demonstrating 
that the transcriptome of autoimmune monocytes is markedly different from healthy. This 
was confirmed by principal component analysis (PCA), which showed a clear separation 
between patients and HC (Figure 1A). In addition, we observed a strong separation 
between patients with SSc, SLE and especially RA patients. Overlap analysis showed 
that only a small fraction of the DEGs were shared between all disease groups (Figure 
1B), of which the majority were related to interferon (IFN) signaling (Figure 1C). Next, we 
performed gene set enrichment analysis (GSEA) to identify potential signaling pathways 
that could segregate monocyte transcriptomes of SLE, SSc and RA patients (Figure 
1D). While SLE monocytes displayed a strong enrichment of genes implicated in both 
IFN and tumor necrosis factor alpha (TNFα) signaling pathways, RA monocytes lacked 
an enrichment for IFN genes, while showing a strong enrichment for TNFα signaling 
(Figure 1D/E). dcSSc monocytes were enriched for both IFN and TNFα signaling genes, 
although to a lesser extent than SLE and RA monocytes, with the signature being weaker 
in lcSSc and eaSSc (in line with the decreased disease severity in these patient groups). 
Notably, only RA monocytes were significantly enriched in gene signatures related to 
TGFβ signaling and collagen formation, although this signature could also partially 
be observed in dcSSc monocytes, albeit not significant (Figure 1D/E). In line with the 
observation that SLE monocytes were strongly characterized by an increased expression 
of genes related to IFN signaling, SLE monocytes also displayed the strongest type I 
IFN score (Figure 1F). This also matches previous observations in literature, where SLE 
patients are marked by a much stronger type I IFN gene signature compared to SSc and 
RA[38]. Collectively, these results demonstrate that, based on their transcriptome, SLE, 
SSc and RA monocytes display disease specific phenotypes, marked by differences 
in pro-inflammatory (IFN/TNFα), and pro-fibrotic (TGFβ /collagen formation) signaling 
pathways.

Histone modification levels are correlated to gene expression levels in monocytes
 To gain insights into the epigenomic histone landscape of patients with 
autoimmune diseases, and identify how such changes relate to gene expression, we 
performed genome-wide screening of the level of H3K4me3 and H3K27me3 histone 
modifications using ChIP-sequencing of monocytes from almost all individuals included 
in the transcriptomic cohort described above (Table 1). We identified a total of 24,187 
peaks for H3K4me3 and 14,831 peaks for H3K27me3 marks (significantly enriched 
over negative control input samples). In line with previous observations[40], H3K4me3 
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Figure 1. Disease specific patterns in pro-inflammatory and pro-fibrotic signaling pathways 
can be identified in SLE, SSc and RA monocytes. (A) Principal component analysis of the 12,959 
differentially expressed genes identified in SLE, SSc and RA monocytes versus healthy controls (HC). (B) 
Venn diagram depicting the unique and overlapping differentially expressed genes identified in SLE, SSc 
and RA monocytes. (C) GO-term enrichment results of the 90 differentially expressed genes overlapping 
between all disease subsets. Bar graph represents the number of enriched genes, while dots/dashed 
line indicate the corresponding B&H corrected p-value. (D) Results from gene set enrichment analysis 
for the ranked differentially expressed genes from SLE, SSc and RA monocytes against hallmark genes 
signatures from TNFα, TGFβ, IFN and collagen formation pathways. Adjusted p-values for each geneset 
are indicated, with the dashed line representing p-value = 0.05. (E) Gene set enrichment plots of gene sets 
indicated in D. NES = normalized enrichment score. For every disease category, differentially expressed 
genes were ranked based on log2 fold change compared to healthy controls. (F) Type I interferon (IFN) 
gene signature scores, calculated as previously described[39]. Error bars indicate the mean and standard 
error of the mean for each distribution of IFN scores.

exhibited a typical profile with the majority of peaks being tightly localized around the 
transcription start site (TSS), while H3K27me3 profiles exhibited broader peaks around 
the TSS (Figure 2A). The majority of H3K4me3 as well as H3K27me3 peaks were detected 
within gene promoter regions (Figure 2A). In line with the previously described activating 
effects of H3K4me3 and repressing effects of H3K27me3 deposition[41], a positive 
correlation between gene expression levels and the presence of H3K4me3 near the TSS 
was commonly observed, while inverse correlations were observed for gene expression 
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and H3K27me3 marks (Figure 2B). Pathway enrichment analysis showed that genes 
for which the expression was positively correlated to H3K4me3 were generally related 
to IFN signaling, response to stimuli, cell migration and connective tissue development 
(Figure 2C), while genes of which the expression was negatively correlated to H3K27me3 
were generally related to cell adhesion, muscle system processes and extracellular 
matrix (ECM) organization (Figure 2D). These results demonstrate that H3K4me3 and 
H3K27me3 histone modifications in monocytes can be associated to changes in gene 
expression, and regulate distinct functional pathways in these cells. 

Differentially expressed genes in SLE, SSc and RA monocytes are associated with 
promoter levels of H3K4me3 and H3K27me3 
 Combining the results of the genome-wide quantification of H3K4me3 and 
H3K27me3 levels with the transcriptome data allowed us to identify genes for which 
the dysregulated expression in SSc, SLE and RA monocytes is likely to be the result 
of altered histone modifications (Figure 3A). Given the respective activating and 
repressing functions of H3K4me3 and H3K27me3, we focused on genes correlated 
positively with H3K4me3 and negatively with H3K27me3. The expression levels of 
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Figure 2. H3K4me3 and H3K27me3 histone modifications are involved in gene expression 
regulation of distinct functional pathways in monocytes. (A) Left: density profile of H3K4me3 and 
H3K27me3 peaks within a 5kb range around transcription start site (TSS). Right: percentage of peaks 
overlapping six categories of genomic locations, annotated using ChIPseeker. UTR = untranslated region. 
(B) Percentage of peaks that were significantly correlated (Spearman’s rank correlation <0.05) in a positive 
or negative fashion to the level of H3K4me3 (left) or H3K27me3 (right) present near their TSS (<10kb). (C) 
GO-term enrichment results of the genes positively correlated to H3K4me3 or (D) negatively correlated to 
H3K27me3 near their TSS. Bar graph represents the number of enriched genes, while dots/dashed line 
indicate the corresponding B&H corrected p-value. Top 20 most significantly enriched terms are shown. 
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Figure 3. Levels of H3K4me3 and H3K27me3 partially underlie transcriptomic changes observed 
in monocytes SLE, SSc and RA monocytes. (A) Schematic overview of the effects of H3K4me3 and 
H3K27me3 at gene promoters on RNA expression. TSS = transcription start site. (B) Venn diagrams 
depicting overlap of DEGs with genes negatively correlated with H3K27me3 or positively with H3K4me3 
levels at the gene promoter (+/- 10kb from the TSS). (C) Correlation of H3K4me3 (left panel) or H3K27me3 
(middle panel) levels with RNA expression for IFITM3 and (D) KLHDC7B. Correlations were calculated 
using Spearman’s rank correlation coefficient (Rho), Right panels show the expression levels of IFITM3 
and KLHDC7B transcripts in SSc, SLE and RA in comparison to healthy controls (HC). Error bars indicate 
the mean and standard error of the mean. NRC = normalized read counts. P-value: * = <0.05, ** = <0.01, 
*** = <0.001, **** = <0.0001. 
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multiple DEGs in all patient groups were significantly correlated to changes in either 
H3K4me3, H3K27me3 or both marks (Figure 3B), indicating that changes in histone 
modifications at least partially underlie the transcriptomic changes observed in SLE, SSc 
and RA monocytes. GO-term enrichment analysis of upregulated DEGs with positively 
correlated H3K4me3 expression revealed that upregulated genes induced by increased 
H3K4me3 deposition were mostly involved in IFN and other pro-inflammatory signaling 
pathways in SSc and SLE patients (Supplementary Figure 1A-D), while again in RA a 
less strong enrichment for IFN was identified (Supplementary Figure 1E). Notably, RA 
was the only disease group where we also identified a significant enrichment for genes 
that were downregulated and positive correlated with H3K4me3, which were also related 
to IFN signaling as well as IL-1 production (Supplementary Figure 1F).This indicates 
that loss of H3K4me3 at gene promoters to IFN signaling in RA monocytes might also 
contribute to the lack of a clear IFN signature in these patients. For DEGs negatively 
correlated with H3K27me3 deposition, no significant enrichment was observed for any of 
the disease groups. Overlap analysis of the DEGs correlated positively to H3K4me3 and 
negatively to H3K27me3 (Supplementary Figure 2) revealed that there were only two 
genes upregulated in all disease subsets compared to healthy that correlated with both 
histone marks. These were interferon-induced transmembrane protein 3 (IFITM3, Figure 
3C) and Kelch Domain Containing 7B (KDC7B, Figure 3D), which are both involved in 
IFN signaling[42, 43].

Disease specific gene expression patterns in pro-inflammatory signaling pathways 
are marked by altered H3K4me3 deposition at gene promoters
 To see whether the altered expression of distinct signaling pathways in SLE, 
SSc and RA pathways are epigenetically imprinted, we repeated the gene set enrichment 
analysis on DEGs positively correlated with H3K4me3 or negatively correlated with 
H3K27me3. In line with the transcriptome analysis (Figure 1D/E), DEGs positively 
correlated with H3K4me3 from SLE monocytes displayed a strong enrichment for IFN as 
well as TNFα signaling, while DEGs from RA monocytes where exclusively enriched for 
genes involved TNFα signaling pathways (Figure 4A). Again SSc monocytes displayed 
an intermediate phenotype, with dcSSc monocytes being enriched in IFN and TNFα 
related genes (although less strong than SLE and RA), with weaker enrichment in lcSSc 
and eaSSc monocytes. For DEGs negatively correlated with H3K27me3 deposition, 
no enrichment was found. These results indicate that the upregulation of specific pro-
inflammatory signaling pathways in SLE, SSc and RA monocytes is dependent on the 
altered deposition of the activating histone mark H3K4me3 near gene promoters.
 Next, we studied the expression of IFN and TNFα related transcription factors 
present in the gene sets related TNFα and IFN signaling to further delineate the regulatory 
mechanisms underlying the differences in specific pro-inflammatory signaling pathways. 
After filtering for differential expression and positive correlation with H3K4me3, we 
identified a list of 22 human transcription factors (as defined in the human transcription 
factor database HumanTFDB[44]) involved in TNFα and/or IFN signaling pathways 
(Figure 4B). Again, transcription factors related to IFN signaling had a higher expression 
in SLE and SSc monocytes, while TNF related transcription factors were highly expressed 
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in RA monocytes. In more detail, signal transducer and activator of transcription (STAT) 
family members STAT1, STAT2 and SP100 Nuclear Antigen (SP100) were strongly 
upregulated in SLE monocytes and to some extent in SSc. monocytes (Figure 4C-E), 
while early growth response 1 (EGR1), V-Maf avian musculoaponeurotic fibrosarcoma 
oncogene homolog F (MAFF), and lipopolysaccharide induced TNF factor (LITAF), were 
exclusively upregulated in RA monocytes (Figure 4C-E). The expression of all these 
transcription factors was significantly correlated with the levels of H3K4me3 at their gene 
promoters. These results indicate that the increased deposition of the activating histone 
mark H3K4me3 leads to expression of pathway specific transcription factors, selectively 
skewing monocyte transcriptomes towards distinct pro-inflammatory phenotypes.

Increased deposition of H3K4me3 marks at poised promoters for extracellular 
matrix and fibrosis related genes in eaSSc, dcSSc and RA monocytes 
 Besides their respective roles in gene expression and repression, H3K4me3 
and H3K27me3 can also occur simultaneously, marking bivalent gene domains. These 
bivalent domains have the ability to keep the chromatin in a poised state, where the 
chromatin is open due to H3K4me3 deposition, but gene transcription is repressed due 
to the concurrent presence of H3K27me3[45]. Following activation, gene transcription of 
poised promoters can increase rapidly with loss of H3K27me3, thus marking a fast switch 
between repression and expression[46]. 
 To explore the role of bivalent promoters in monocytes, we compared the 
overall RNA expression profile of genes marked by a deposition of H3K4me3 only, 
H3K27me3 only or both (bivalent). In line with their respective activating and repressing 
functions, genes marked exclusively by H3K4me3 exhibited a high RNA expression, 
while genes marked exclusively by H3K27me3 showed a markedly lower expression 
(Figure 5A). Genes with bivalent promoters displayed an intermediate expression profile, 
with most genes being lowly expressed (Figure 5A). Next, we compared the relative 
levels of H3K4me3 and H3K27me3 at bivalent promoters and overlaid them with their 
corresponding RNA expression profiles (Figure 5B). Bivalent genes with high levels of 
H3K4me3, but low levels of H3K27me3 generally displayed a higher RNA expression 
(Figure 5B, genes closest to the x-axis), while, vice versa, genes with high H3K27me3 
and low H3K4me3 displayed lower RNA expression levels (Figure 5B, genes closest 
to the y-axis). We also identified many genes with high levels of both H3K4me3 and 
H3K27me3, but low RNA expression levels, representing poised promoters. We then 
further characterized these poised promoters by taking genes marked by high levels 
of both H3K4me3 and H3K27me3 (Figure 5C, top 50%), which were not positively 
correlated with RNA, and displayed low RNA expression levels (Figure 5C, bottom 50%). 

p-value = 0.05. (B) Heatmap showing the expression of human transcription factors, implicated in IFN 
or TNFα signaling pathways. Differentially expressed (continued) transcription factors of which the 
expression positively correlates to the level of H3K4me3 at their gene promoters (+/- 10kb) are shown. * 
= significantly upregulated compared to healthy. (C-H) Left panels: correlation of H3K4me3 (y-axis) with 
RNA expression (x-axis). Right panels: expression levels of select transcription factors in the different 
disease subsets (SSc, SLE and RA) in comparison to healthy controls (HC). Error bars indicate the mean 
and standard error of the mean. NRC = normalized read counts. P-value: * = <0.05, ** = <0.01, *** = 
<0.001, **** = <0.0001.
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determined by Kruskal–Wallis test by ranks. (B) Scatter plots showing the expression levels of H3K4me3 
(x-axis) and H3K27me3 at bivalent gene promoters. Every dot represents one gene. Colouring indicates 
the associated normalized RNA expression levels, ranging from low (purple) to high (red). (C) Density 
plots showing the distribution of H3K4me3 (top), H3K27me3 (middle) and RNA (bottom) expression of 
bivalent genes. Blue shading indicates the genes with the top 50% highest expression for H3K4me3 
and H3K27me3, and the bottom 50% lowest expression for RNA. (D) Heatmap showing the levels 
of H3K4me3 expression at poised promoters acorss HC, eaSSc, lcSSc, dcSSc, SLE and RA patient 
monocytes. Genes involved in ECM organization and response to fibroblast growth factor have been 
highlighted. (E) GO-term enrichment results of genes with poised promoters. Bars represent the number 
of enriched genes, while dots/dashed line indicate the corresponding B&H corrected p-value. Top 20 most 
significantly enriched terms are shown. (F) Expression levels of H3K4me3 (left) and H3K27me3 (right) 
for selected genes with poised promoters. Error bars indicate the mean and standard error of the mean. 
NRC = normalized read counts. 

This resulted in the selection of 532 genes with poised promoters in monocytes (Figure 
5D). GO-term enrichment analysis revealed that these poised genes are majorly involved 
in regulation of developmental growth/response to growth factors, but also in ECM 
organization, vasculogenesis and ossification (bone formation) (Figure 5E), relevant in 
the context of SSc and RA pathogenesis. 
 Notably, the levels of H3K4me3 for the majority of poised promoters were higher 
in dcSSc, and especially in eaSSc and RA monocytes compared to healthy (Figure 5D), 
indicating that these genes will be induced with a particularly high expression following 
activation. Examples of such genes include the fibrosis related cytokines transforming 
growth factor beta 2 (TGFB2), the zinc-dependent metalloprotease tolloid-like protein 
2 (TTL2), and matrix metalloproteinase 15 (MMP15) (Figure 5F). Thus, dcSSc and 
especially eaSSc and RA monocytes seem to be highly primed to respond strongly to 
activation, implicating genes in pathways relevant for pathogenesis of the respective 
diseases. 

Identification of poised promoters active after monocyte differentiation to 
macrophages and osteoclasts 
 Since poised promoters can become activated in response to environmental 
stimuli or along cell type specific differentiation stages[46], we aimed to investigate whether 
poised promoters that we identified in circulating monocytes are active in differentiated 
macrophages or osteoclasts. To this end, we obtained H3K4me3 and H3K27me3 
peak regions of macrophages and osteoclasts from the BLUEPRINT consortium, 
and overlapped these with poised promoters identified in our monocyte data. For the 
macrophage dataset, we identified 15 genes which had poised promoters in monocytes, 
but exclusively showed H3K4me3 expression in macrophages (Figure 6A), indicating that 
these genes can become activated in macrophages after loss of H3K27me3. Likewise, 
we identified 17 poised genes from monocytes that only showed H3K4me3 and lost 
H3K27me3 expression in osteoclasts (Figure 6B). Tripartite motif containing 47 (TRIM47) 
was active (as defined by the presence of H3K4me3 and absence of H3K27me3) in 
macrophages as well as osteoclasts. Notably, TRIM47 has been described to positively 
regulate pro-inflammatory signaling pathways as well as fibrosis[47, 48], two processes 
important in macrophage and osteoclast biology. Moreover, we identified Rhomboid 5 
Homolog 1 (RHBDF1, also known as iRhom1), which regulates ossification through 
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the ADAM17/TGFα/EGFR signaling pathway[49], and the collagen processing enzyme 
Procollagen C-Endopeptidase Enhancer 2 (PCOLCE2)[50], two poised genes from 
monocytes that are marked by exclusive H3K4me3 deposition in osteoclasts. Altogether 
these results show that genes with poised promoters in monocytes can become activated 
in macrophages and osteoclasts, indicating that epigenetic imprinting, at least partially, 
underlies monocyte differentiation. 

DISCUSSION
 SSc, SLE and RA are rheumatic autoimmune diseases with pressing unmet 
clinical needs and a poorly understood etiology. The study of epigenomic alterations 
in immune cells of these patients may help to gain insights into disease specific 
immunopathology and identify potential novel therapeutic targets. Given the evidence 
of the role of monocytes in the pathogenesis of SSc, SLE and RA[5–10], in this study 
we aimed to identify the transcriptomic and epigenomic alterations characterizing these 
autoimmune monocytes. By performing paired genome-wide RNA- and ChIP-sequencing 
analysis of healthy, SSc, SLE and RA monocytes, we were able to characterize the 
transcriptomic landscape of monocytes in the context of autoimmunity, and directly 
correlate the expression of genes to the level of activating and repressing histone marks, 
H3K4me3 and H3K27me3, at the gene promoters. We identified numerous differentially 
expressed genes in SSc, SLE and RA monocytes for which the level of gene expression 
was highly proportional to the level of H3K4me3 and/or H3K27me3 at the gene promoter, 
confirming that epigenomic changes are directly associated with altered gene expression 
in these patients. 
 Transcriptomic analysis revealed that SSc, SLE and RA monocytes are 
characterized by differential the expression of genes involved in distinct pro-inflammatory 
and pro-fibrotic signaling pathways. Genes upregulated in SSc and particularly SLE 
monocytes were strongly enriched for pathways related to IFN signaling. Indeed, both 
SSc and SLE are considered type I interferon-mediated autoimmune diseases, sharing 

Figure 6. Identification of poised promoters active after monocyte differentiation to macrophages 
and osteoclasts. (A) Venn diagrams depicting overlap of with genes with poised promoters in monocytes 
versus genes with H3K4me3 or H3K27me3 at their promoters in macrophages and (B) osteoclasts. 
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the altered expression of IFN-related genes. Notably, the expression of IFN inducible 
factors have previously been be associated with disease severity in SSc patients[51, 52]. 
This is in line with our observations, as we observed an evidently weaker enrichment for 
IFN related pathways in eaSSc patients compared to lcSSc and dcSSc patients suffering 
from a more established form of the disease.
 RA monocytes lacked an IFN signature but were highly enriched in genes 
related to the TNF signaling pathway, as well as pathways related to TGFβ and 
collagen formation. Previous research has also shown that the IFN inducible gene 
signature in RA is lower than that observed in SLE and SSc[38], and the peripheral 
blood IFN signature is not associated with clinical parameters in established RA[53]. 
We did, however, identify various genes related to IFN signaling that were upregulated 
in all disease groups, including RA. Interestingly, the expression of these IFN inducible 
genes, including IFITM3, has also been shown to be induced by TNFα though NF-κB 
signaling[54], suggesting that the partial IFN signature observed in RA patients is actually 
reflective of enhanced TNFα signaling. In fact, TNFα is widely recognized as a major 
cytokine governing autoimmune responses by activating monocytes to produce many 
pro-inflammatory mediators. This signaling through distinct pro-inflammatory pathways 
indicates a difference in immunopathology, implicating discrete immune pathway 
activation patterns in the dysregulation of monocytes in SSc, SLE and RA. 
 When repeating the gene set enrichment analysis only with those genes that 
showed a significant correlation to the increased amount of H3K4me3 at the promotor, 
we found the same pathways to be enriched, showing that the dysregulation of these 
pathways is already evident at the epigenomic level. Moreover, we identified numerous 
transcription factors implicated in TNF and IFN signaling pathways to be differentially 
expressed and correlated with activating H3K4me3. Transcription factors STAT1, STAT2 
and SP100, crucial for IFN signaling had a higher expression in SLE and SSc monocytes. 
Importantly, besides their well described role in the transcription of IFN dependent genes, 
members of the STAT family have previously been described to promote epigenetic 
changes leading to increased sensitivity to type I IFN stimulation[55, 56]. Interestingly, 
the upregulation of STAT1 in SSc monocytes in our study was already observed in eaSSc 
patients, suggesting that STAT related signaling is involved in the potentiation of IFN 
signaling already from early disease stages onwards. For RA, on the other hand, we found 
very limited expression of transcription factors related to IFN signaling, while TNF related 
transcription factors, including EGR1, MAFF, KLF6 and LITAF, were highly specifically 
upregulated and correlated to H3K4me3 profiles. Thus, whereas SSc and SLE monocyte 
inflammatory response are largely dependent on transcription factor pathways related to 
IFN, RA monocytes are clearly characterized by TNF driven signaling. 
 Parallel ChIP-seq analysis of the repressive histone mark H3K27m3 and the 
activating histone mark H3K27me3 from the same samples allowed us to identify poised 
promoters, characterized by the simultaneous presence of both marks. For poised 
promoters, H3K27me3 represses gene expression while the presence of H3K4me3 
primes the promoter for rapid activation when needed[45, 46]. We identified numerous 
poised promoters in circulating monocytes, of which many were associated with genes 
related to response to fibroblast growth factors ECM organization, vasculogenesis and 
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ossification. These poised promoters showed increased levels of H3K4me3 in eaSSc, RA, 
and to a limited extend dcSSc monocytes, suggesting that these circulating monocytes 
display an enhanced poised status, enabling enhanced expression of disease relevant 
genes rapidly upon stimulation. Such stimuli may include signals from the inflammatory 
microenvironment (i.e. skin in SSc patients and synovium in RA patients), which can 
skew the selective differentiation of monocytes into disease relevant cell types including 
inflammatory macrophages, myofibroblasts and osteoclasts. Poised promoters are also 
highly interesting for eaSSc patients lacking the fibrotic features which typify the most 
severe disease stages of SSc. The presence of primed poised promoters in these early 
patients suggests that monocytes already display a skewed, “pre-fibrotic” phenotype 
before the onset of overt fibrosis, providing new avenues for disease classification and 
early intervention. 
 As monocytes are proposed to form a reservoir for disease relevant cell types 
in SSc[57, 58], and RA[59, 60], we also compared poised promoters from our ChIP-
seq analysis to H3K4me3 and H3K27me3 data obtained from macrophages and 
osteoclasts. Here, we identified a number of poised genes from monocytes, which 
showed a “monovalent” H3K4me3 expression in macrophages or osteoclasts, reflecting 
an activating switch in gene expression. Poised promoters switching to monovalent 
H3K4me3 included some genes relevant for macrophage and osteoclast function including 
TRIM47, RHBDF1 and PCOLCE2[47, 49, 50], implicating monocyte poised promoters 
in the differentiation to downstream cell types. To further delineate the role of poised 
promoters in monocyte differentiation, more in-depth analyses of the dynamics of the 
chromatin landscape during differentiation of monocytes to distinct cell types are needed. 
Additionally, the macrophage and osteoclast data that we used here were obtained from 
healthy individuals, which might be epigenetically distinct from the same cell types in 
autoimmune patients. Nevertheless, our data show that, based on the presence of 
poised promoters with enhanced H3K4me3 expression, RA and SSc monocytes have an 
increased potential to differentiate into disease relevant macrophages and osteoclasts. 
 In conclusion, we observed various differences in the chromatin landscapes 
of monocytes in autoimmune patients and found strong indications that these changes 
have implications for the transcription of genes relevant to disease pathogenesis. Given 
the reversible nature of histone modifications the targeting of histone modifying enzymes 
may proof beneficial in treating or preventing the symptoms of autoimmune disease.
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4

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Pathway enrichment analysis of differentially expressed genes correlated 
with H3K4me3 at their transcription start site. Bar graphs represents the number of enriched 
DEGs, while dots/dashed line indicate the corresponding B&H corrected p-value. For A-E, top 20 most 
significantly enriched terms are shown. For DEGs correlated to H3K27me3 expression, no significant 
enrichments were found. 
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Supplementary Figure 2. Identification of DEG genes overlapping between all disease groups, 
correlated to H3K4me3 or H3K27me3 levels at their promoter (+/- 10kb). Venn diagrams depicting 
the unique and overlapping differentially expressed genes identified in SLE, SSc and RA monocytes, 
either positively correlated to the acting histone mark H3K4me3 or negatively correlated to the repressing 
histone mark H3K27me3. 
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ABSTRACT 

Objectives: To identify key pathways, transcriptional regulators and epigenetic 
mechanisms underlying conventional dendritic cell (cDC) alteration in Systemic Sclerosis 
(SSc).

Methods: Transcriptomic profiling was performed on CD1c+ cDCs isolated from 
peripheral blood samples obtained from 12 healthy donors and 48 SSc patients with all 
major disease subtypes. Differential expression analysis comparing the different SSc 
subtypes and healthy donors was performed to uncover genes dysregulated in SSc. To 
identify biologically relevant pathways, a gene co-expression network was built using the 
Weighted Gene Correlation Network Analysis. ChIP-sequencing and in vitro functional 
assays were performed to independently validate the role of key transcriptional regulators 
identified by network analysis.

Results: We identified 17 modules of co-expressed genes in cDCs that correlated 
with SSc subtypes and key clinical traits. A module of immune regulatory genes was 
markedly down regulated in patients suffering from a highly progressive subtype with 
severe fibrosis. This immune regulatory module was predicted to be controlled by genes 
belonging to the NR4A (nuclear receptor 4A) subfamily (NR4A1, NR4A2, NR4A3), which 
are master transcriptional mediators of inflammation. Indeed, ChIP-sequencing analysis 
of cDCs supported that these NR4A members target numerous differentially expressed 
genes in SSc cDCs. Functional experiments using agonists showed that dysregulation of 
NR4As affects cytokine production by cDCs and modulates T-cells activation. 

Conclusions: We identified NR4A1, NR4A2 and NR4A3 as important regulators of 
immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A 
family represent novel potential targets to restore cDC homeostasis in SSc.
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INTRODUCTION 
 Systemic Sclerosis (SSc) is a complex, chronic autoimmune disease mainly 
characterized by vascular abnormalities, immunological abnormalities, and fibrosis of the 
skin and internal organs[1]. According to the American College of Rheumatology (ACR) 
criteria, and their extent of skin fibrosis, patients can be classified into four subsets: 
early (eaSSc), non-cutanous (ncSSc), limited (lcSSc) and diffuse (dcSSc)[2, 3]. Vascular 
injury appears to be the earliest events in the pathogenesis of SSc[4]. Such vascular 
damage leads to the recruitment and activation of various immune cells, which secrete 
pro-inflammatory cytokines and growth factors[5]. The resulting mix of inflammatory 
molecules induces the differentiation of resident epithelium, endothelium, monocytes 
and fibroblasts into myofibroblast that deposit excessive amounts of extracellular matrix, 
eventually leading to permanent tissue scarring[6, 7].
 Conventional dendritic cells (cDCs) are a heterogeneous population of antigen 
presenting cells that regulate adaptive immune cell responses[8], but also vascular tissue, 
and fibroblasts[9, 10]. Consequently, cDCs have been suggested to play an important role 
in the pathogenesis of SSc. Indeed, in the early phases of the disease cDCs migrate to 
the skin[11, 12] and cDCs from patients display an enhanced pro-inflammatory cytokine 
production upon Toll like receptor (TLR) stimulation[13]. As such, in SSc pathogensis, 
cDCc have been hypothesized to dictate T-cell responses and activate pathways that 
promote fibrosis[14].
 Although data from previous studies supports an important role for cDCs in the 
pathogenesis of SSc, it remains incompletely understood what molecular processes 
drive their dysregulation in the disease. To better understand the role of cDCs in SSc, we 
performed transcriptional profiling of circulating CD1c+ cDCs obtained from peripheral 
blood of SSc patients, and compared these profiles to those from cDCs obtained from 
healthy donors. Using weighted gene correlation network analysis (WGCNA), we show 
that a cluster of immune regulatory genes is down-regulated in cDCs obtained from 
SSc patients. Moreover, using cell culture-based experimentation, we demonstrate that 
manipulation of NR4As, major regulators of the gene cluster, attenuates pro-inflammatory 
responses in cDCs. 

MATERIALS AND METHODS

Patient demographics
 Peripheral blood samples were collected from patients with SSc and age/
sex matched healthy volunteers. Informed consent was obtained from all patients and 
healthy volunteers included in this study at the University Medical Center Utrecht (The 
Netherlands), the Maasstad Medical Center Rotterdam (The Netherlands), and the 
IRCCS Policlinico of Milan (Italy). Samples and clinical information were immediately 
anonymized upon collection. All participants enrolled in the study signed an informed 
consent form approved by the local institutional review boards prior to inclusion in this 
study (METC no. 12-466C, approved 2 October 2012), adherent of the Declaration of 
Helsinki Principles. All SSc patients fulfilled the American College of Rheumatology/
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European League Against Rheumatism (ACR/EULAR) 2013 classification criteria[15]. 
We also included in our studies non-cutaneous (ncSSc) patients who fulfilled the 
classification criteria but did not present skin fibrosis, and early (eaSSc) patients with 
Raynaud’s Phenomenon and positivity for SSc-specific autoantibodies and/or typical 
nailfold capillaroscopy patterns, as defined by LeRoy et al.[3]. The demographics of the 
SSc patients and healthy volunteers included in this study, for RNA-sequencing as well 
as RT-qPCR validation and FACS analysis are provided in Table 1.

RNA-sequencing cohort RT-qPCR validation FACS cohort

HC eaSSc ncSSc lcSSc dcSSc HC dcSSc HC dcSSc

n 12 12 12 12 12 7 6 11 12

Age (years) 53 (49-66) 60 (42-77) 53 (49-60) 61 (52-65) 53 (48-58) 46 (38-51) 45 (37-55) 44 (35-54) 56 (50-64)

Female, n (%) 10 (83) 10 (83) 12 (100) 12 (100) 7 (58) 7 (100) 6 (100) 3 (25) 3 (23)

ANA, n pos (%) - 10 (83) 10 (83) 11 (92) 11 (92) - 5 (83) - 12 (100)

ACA, n pos (%) - 7 (58) 7 (58) 10 (83) 2 (17) - 0 (0) - 1 (8)

Scl70, n pos (%) - 1 (8) 1 (8) 3 (25) 3 (25) - 4 (67) - 5 (42)

mRSS - - - 4 (3-6) 17 (10-22) - 10 (7-11) - 12 (10-13)

Disease duration - - 5 (2-7) 20 (11-30) 7 (2-12) - 10 (2-15) - 5 (2-6)

Table 1. Clinical characteristics of subjects enrolled in the study. Reported values indicate the 
number (n) of individuals, with the (%) for each parameter. For age, mRSS and disease duration, the 
median with (IQCR) is given. ANA, anti-nuclear antibodies; ACA, anti-centromere antibodies; Scl70, anti-
topoisomerase antibodies; mRSS, modified Rodnan skin score; HC, healthy controls; eaSSc, early SSc; 
ncSSc, non-cutaneous SSc; lcSSc, limited cutaneous SSc; dcSSc, diffuse cutaneous SSc; pos, positivity.

CD1c+ cDC purification
 Peripheral blood mononuclear cells (PBMCs) were isolated from whole 
heparinized-blood samples obtained from SSc patients and healthy volunteers, by 
density gradient centrifugation on Ficoll-PlaqueTM Plus (GE Healthcare Life Sciences). 
The CD1c+ cDC population was purified from PBMCs using the MACS human CD1c 
(CD1c+) dendritic cell isolation kit (Miltenyi Biotec) on the autoMACs Pro Separator 
(Miltenyi Biotec) according to the manufacturer’s protocol. For the RNA-sequencing 
cohort as well as the RT-qPCR validation cohort, freshly isolated cDCs were immediately 
lysed in RLTplus buffer (Qiagen) supplemented with β-mercaptoethanol, and stored at 
-20°C until further processing. 

RNA-sequencing and analysis
 Total RNA was purified from RLTplus lysates using the DNA/RNA/miRNA 
Universal Kit (Qiagen), according to manufacturer’s instructions. Purified RNA was 
quantified with the Qubit® RNA Assay Kit (Life Technologies) on the Qubit® Fluorometer 
(Invitrogen). RNA-sequencing was performed at the Beijing Genomics Institute (BGI). 
cDNA libraries were generated from total RNA using the TruSeq RNA sample preparation 
kit (Illumina), specifically selecting for polyadenylated transcripts. The libraries were 
sequenced on the HiSeq 2000 system (Illumina), using 100bp paired-end reads. 
 We obtained at least 20 million raw reads for each sample. After quality filtering 
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according to the BGI pipeline, reads were aligned to the GrCh38 reference human 
genome and the homo sapiens transcriptome (Ensembl, version 79), using the STAR 
aligner[16]. Summed exon read counts per gene were calculated using the Python 
package HTSeq[17], using annotations from the GrCh38 built from the human genome 
(http://www.ensembl.org, version 79). Between lane normalization using the upper quartile 
normalization method was performed using the Bioconductor/R package EDAseq[18]. To 
account for batch effects arising from the inclusion of samples from different geographic 
locations (The Netherlands and Italy), we applied the generalized linear model from 
the Bioconductor/R package RUVseq[19] using the RUVr function for k = 2 factors of 
unwanted variation. Subsequently, differential expression analysis was performed 
using the negative binomial distribution-based method implemented in DESeq2[20] on 
the normalized summed exon read counts per gene. Pair wise comparisons between 
patients and HC groups were tested using the Wald test, and genes with a nominal 
p-value <0.05 were considered to be significantly differential. Gene expression levels are 
given as variance stabilised data (VSD), calculated according to DESeq2 instructions. 

Weighted gene co-expression network analysis
 Weighted gene co-expression networks were constructed using the R package 
WGCNA[21], using the VSD data of all genes with an normalized read count expression 
higher than 5.53 (translates to at least 1 raw count) in all samples as input. We used 
a soft threshold power of 5 to construct an unsigned network with scale free topology. 
Modules were identified using the cutreeDynamic() function with a minimum module size 
of 50 genes. Next, closely related modules were merged using the mergeCloseModules 
function, with a cutHeight of 0.25, according to the WGCNA manual. 

cDC cultures
 For functional experiments, CD1c+ cDCs were purified from healthy donor 
buffy coat blood samples (Sanquin, Amsterdam, The Netherlands), according to the 
cDC purification method described in section 2.2. Freshly isolated cDCs were cultured 
in RPMI 1640 medium with GlutaMAX™ (Life Technologies), supplemented with 10% 
heat inactivated fetal bovine serum (Biowest) and 1% penicillin streptomycin (Life 
Technologies). For stimulation experiments, cDCs were cultured at a concentration of 0.5 
× 105 cells/mL in 100µl in a 96-well round-bottom plate. Cells were either left untreated, or 
treated for 18 hours with one of the following stimuli: TLR7/8 ligand Resiquimod ( R848, 
100ng/mL, Invivogen), GM-CSF (800U/mL, R&D), CXCL4 (10ug/mL, Peprotech), TNFα 
(100ng/mL, Tebu-bio), IFNα-2a (1000U/mL, Cell Sciences), LPS EB Ultrapure (100ng/
mL, Invivogen), IL-6, (50ng/mL, ImmunoTools), IL-15 (200 ng/mL, ImmunoTools) or 
TGFβ-b2 (100ng/ml, R&D). For hypoxia experiments, cells were cultured in atmospheric 
or hypoxic conditions (Rasquinn invivO2 1000 hypoxic chamber, set at 1% O2 and 5% 
CO2) for 24 hours. For experiments using NR4A agonists, cells were pre-treated for one 
hour with either dimethyl sulfoxide (DMSO, Sigma) or NR4A agonists C-DIM5 (Tocris 
Bioscience) or C-DIM12 (Tebu-Bio) prior to stimulation. cDC cultures were incubated at 
37°C in the presence of 5% CO2, for the time points indicated in each single experiment 
in the results section. Supernatants were stored at -80°C until further use, while cDCs 
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were lysed in RLTplus buffer and stored at -20°C until further use. 

PBMC cultures 
 For functional experiments, three batches (individual days) of randomly selected 
dcSSc and healthy control samples of liquid nitrogen stored PBMCs were thawed in 
RPMI 1640 (Thermo Fisher Scientific) supplemented with 20% FCS (Sigma), and 
washed with PBS. Cells were resuspended in RPMI 1640 medium with GlutaMAX™ (Life 
Technologies), supplemented with 10% heat inactived fetal bovine serum (Biowest) and 
1% penicillin streptomycin (Life Technologies), and plated at a concentration of 0,75×106 

cells in 200µl in round-bottom 96-wells plates. PBMCs were pre-treated for one hour 
with 10uM dimethyl sulfoxide (DMSO, Sigma), C-DIM5 (Tocris Bioscience) or C-DIM12 
(Tebu-Bio) prior to stimulation with R848 (100ng/mL, Invivogen) and GolgiStop (1500x, 
BD biosciences), and incubated at 37°C in the presence of 5% CO2, for 4 hours. IL-6 
production by CD1c+ cDCs was measured using intracellular cytokine staining by FACS. 

Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)
 Purified RNA was reverse transcribed using the SuperScript® IV Reverse 
Transcriptase kit (Invitrogen), according to the manufacturer’s instructions. Gene 
expression was quantified, in duplicate, by RT-qPCR using the SYBR Select Master 
Mix (Applied Biosystems), using gene-specific primers (Supplementary Table 1) on 
the QuantStudio 12k flex System (Applied Biosystems). Relative gene expression 
was determined according to the comparative CT (ΔΔCT) method using GUSB as an 
endogenous control (where the ΔCT equals the CT of the mRNA of interest—the CT of 
GUSB). The fold change (FC) of each sample was calculated in relation to the ΔCt of the 
medium control according to the formula FC = 2−ΔΔCt, where ΔΔCt = ΔCt sample—ΔCt 
reference.

Assessment of IL-6 production using ELISA
 Concentrations of IL-6 in cell-free supernatants from cultured CD1c+ cDCs 
were measured by sandwich enzyme linked immunosorbent assay (ELISA). IL-6 was 
quantified using the PeliKine compact human IL-6 (Sanquin Reagents, Amsterdam, The 
Netherlands), according to the manufacturer’s instructions.

cDC / CD4+ T-cell co-cultures
 CD1c+ cDCs and CD4+ T-cells were isolated in parallel from PBMCs obtained 
from healthy donor buffy coats using the MACS human CD1c dendritic cell isolation kit 
and CD4+ T Cell Isolation Kit (Miltenyi Biotec) on the autoMACs Pro Separator (Miltenyi 
Biotec) according to the manufacturer’s instructions. cDCs and T-cells were cultured, in 
parallel, in culture medium (RPMI 1640 medium with GlutaMAX™ (Life Technologies), 
supplemented with 10% heat inactived fetal bovine serum (Biowest) and 1% penicillin 
streptomycin (Life Technologies)). cDCs were pre-treated for one hour with either 
dimethyl sulfoxide (DMSO, Sigma) or specific NR4A agonists C-DIM5 (Tocris Bioscience) 
or C-DIM12 (Tebu-Bio), and were either left untreated or treated with R848 (100ng/
mL, Invivogen). After overnight incubation, cDCs were washed twice with sterile PBS, 
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resuspended in culture medium and added to the CD4+ T-cells in a 1:5 ratio (10.000 
cDCs : 50.000 CD4+ T-cells, in 100µl in a round bottom 96-wells plate). Cells were 
cultured for 3 days at 37°C in the presence of 5% CO2. After 3 days, co-cultures were re-
stimulated with phorbol myristate acetate (PMA, 50ng/ml, Sigma-Aldrich) and ionomycin 
(500ng/ml, Sigma-Aldrich) for 6 hours. During the last 3 hours of incubation, GolgiStop 
(1500x, BD biosciences) was added to block cytokine release. IFNy production by CD4+ 
T-cells was measured using intracellular cytokine staining by FACS.

Flow cytometry
 For cDC/T-cell co-cultures and PBMC cultures, cells were washed with cold 
PBS and incubated with Fixable Viability Dye eF780 (eBioscience) at room temperature 
for 10 minutes. Cells were then transferred to V‐bottomed plates (Greiner Bio‐one), 
washed with PBS and incubated for 30 minutes at 4˚C in the dark with the surface 
staining antibodies provided in Supplementary Table 2. Next, the cells were washed in 
FACS buffer (1% bovine serum albumin and 0.1% sodium azide in phosphate buffered 
saline), and fixed/permeabilized for 30 minutes at 4˚C in the dark with 100 µl Fixation/
Permeabilization Concentrate and Diluent (00-5123-43, 00-5223-56, eBioscience), 
followed by intracellular staining using the antibodies provided in Supplementary Table 
2. After 60 minutes of staining at 4˚C in the dark, the cells were washed and taken up in 
FACS buffer and flow cytometric analyses were performed on the BD LSRFortessa with 
four lasers (405, 488, 561, and 635 nm) using DIVA software version 8.0.1. Analysis of 
FCS files were performed using FlowJo software (TreeStar inc.). 

Chromatin immunoprecipitation sequencing (ChIP-seq) 
 CD1c+ cDCs were isolated from PBMCs obtained from healthy donor buffy coats 
using the MACS human CD1c dendritic cell isolation kit. 1.5×106 freshly isolated cDCs 
were cultured overnight in RPMI 1640 medium with GlutaMAX™ (Life Technologies), 
supplemented with 10% heat inactived fetal bovine serum (Biowest) and 1% penicillin 
streptomycin (Life Technologies), and were either left untreated or treated with TLR7/8 
agonist R848 (Resiquimod, 100ng/mL, Invivogen). After culture, cDCs were washed with 
PBS and crosslinked using the truChIP® Ultra-Low Chromatin Shearing Kit (Covaris), 
according to the manufacturer’s instructions. Chromatin shearing was performed using 
AFA Fiber Pre-Slit Snap-Cap microTUBEs (Covaris) by sonication (peak incident power: 
105, duty factor: 2%, cycles per burst: 200, treatment time: 12 minutes) on the Covaris 
S220 focused ultrasonicator (Woburn, MA, USA). After shearing, the chromatin was 
transferred into pre-chilled microcentrifuge tubes and centrifuged at 10.000 x g, 4˚C 
for 5 minutes to pellet insoluble material, and the chromatin was stored at -20˚C for 
downstream processing. For every condition we obtained three biological replicates, for 
which material from three to four donors was pooled to obtain enough chromatin for 
chromatin immunoprecipitation. Chromatin immunoprecipitation was performed with 3µg 
anti-NR4A1 (NB100-56745, Novusbio), anti-NR4A2 (NB110-40415, Novusbio) or anti-
NR4A3 (NLS2341, Novusbio) antibodies, using the low cell ChIP-seq kit (Active Motif), 
according to the manufacturer’s instructions. For all conditions, 10% of the input chromatin 
was removed prior to addition of the antibodies and used to normalize the amount of 
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immunoprecipitated DNA (input control). Following immunoprecipitation, ChIP DNA was 
de-crosslinked in the presence of NaCl and Proteinase K (Active Motif) in a thermocycler at 
65°C overnight, and DNA was extracted by penol:chloroform:isoamylalcohol precipitation 
and dissolved in Low-EDTA TE buffer (Active Motif). ChIP-seq libraries were generated 
by GenomeScan (Leiden, the Netherlands) with the NEBNext® Ultra II DNA Library Prep 
kit (Illumina), and were sequenced using Illumina NovaSeq6000 generating ~20 million 
150bp paired ended reads for each sample.

ChIP-seq analysis 
 Quality check of the raw sequencing reads was performed using the FastQC tool. 
Sequencing reads were mapped against the reference genome GRCh38.p13 built from 
the human genome (NCBI) using bowtie2[22]. Peaks were called using MACS2[23], by 
comparing the IP samples to their matched input samples in paired end mode (BAMPE). 
After calling, peaks from ENCODE blacklist regions[24], and X- and Y-chromosome peaks 
were filtered out to reduce noise and exclude sex-specific peaks. Peaks were annotated 
to the nearest genes using the ChIPseeker Bioconductor/R package[25]. Peaks were 
considered to be associated to a gene when they were annotated within a 10kb range 
(up- or downstream) to the gene transcription start site (TSS).

Statistical analysis
 The Mann Whitney test was used to compare any combination of two groups. For 
multiple group comparisons, the one- or two-way analysis of variance (ANOVA) was used. 
A p-value < 0.05 was considered statistically significant. Figures were produced using the 
R package ggplot2[26]. GO-term and KEGG enrichment analyses were performed using 
enrichGo and enrichKEGG functions from the clusterProfiler R package[27]. Terms with 
a B&H correct p-value <0.05 were considered significant. Spearman’s rank correlation 
coefficient was calculated to assess correlations. 

RESULTS

SSc cDCs are transcriptionally distinct from healthy
 RNA sequencing of purified blood cDCs from 48 SSc patients and 12 age/sex 
matched healthy individuals was performed to assess differences in their transcriptomic 
profiles. In total, 6,568 genes were found to be differentially expressed in at least one 
SSc subset versus healthy controls (P<0.05), of which 2,931 were down-regulated in 
SSc and 3,663 genes were upregulated (Figure 1A/B). Principal component analysis 
(PCA) revealed that the profile of differentially expressed genes clearly separated 
SSc patients from healthy donors, with eaSSc and dcSSc patients displaying the most 
distinct clustering patterns (Figure 1C). GO-term enrichment analysis showed that 
differentially expressed genes were predominantly enriched in pathways related to 
immune cell activation, interferon (IFN) signaling and translation (Supplementary Figure 
1, Supplementary Table 3). These results demonstrate that SSc patient cDCs have a 
distinct transcriptional profile from healthy cDCs. Accordingly, the identified differentially 
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expressed genes may elude to pathways relevant for SSc pathogenesis. 

Co-expression network analysis identifies NR4As as key regulators of functionally 
relevant pathways altered in SSc cDCs
 In order to clarify the molecular pathways dysregulated in SSc cDCs, we 
conducted genome-wide gene co-expression analysis using Weighted Gene Co-
expression Network Analysis (WGCNA)[21]. Using this approach, we identified 42 modules 
of tightly co-expressed genes in cDCs. Comparison of module gene composition with 
differentially expressed genes, and correlation between module eigengenes and clinical 
traits for SSc allowed us to identify 17 clinically relevant modules significantly enriched 
in differentially expressed genes and correlated with clinical traits (Figure 2A). Functional 
annotation of these modules using pathway enrichment analysis showed that multiple 
modules were associated with molecular pathways relevant in the context of cDC biology 
and SSc pathogenesis. These included the blue module (associated with viral pathways 
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Figure 1. SSc cDCs are transcriptomically distinct from healthy cDCs. a) Number of differentially 
expressed genes (P < 0.05) identified in cDCs from different SSc subsets versus healthy donors. b) 
Volcano plots highlighting transcriptional differences between different SSc subsets and healthy donors. 
Red dots represent significantly down-regulated genes (P < 0.05, log2 fold change < 0), while blue dots 
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and ribosomes), the darkgreen module (associated with immune cell activation) and the 
violet module (associated with antigen presentation and inflammation) (Figure 2B). 
 Closer inspection of the darkgreen module revealed that genes with the highest 
module membership (MM, i.e. best representative of the overall module gene expression 
pattern), were also the most strongly downregulated in dcSSc patients (Figure 2C). This 
observation supports that genes downregulated in dcSSc cDCs are likely driving this 
module. Because transcription factors are key regulators of gene expression, we next 
performed a transcription factor network analysis to see whether transcription factors and 
their targets were enriched within the darkgreen module. Following this approach, we 
identified 13 transcription factors that had target genes present in the darkgreen module 
(Figure 2D). Most notable were members of the NR4A family of nuclear receptors, 
NR4A1 and NR4A2, which have previously been described as important regulators of 
inflammation and fibrosis[30–34]. Out of the 13 transcription factors identified, NR4A1 
displayed the highest module membership (MM = 0.87) and was strongly downregulated 
in dcSSc patients (log2FC = -0.38, P = 0.004, central node in Figure 2D). In addition, 
NR4A3, which was not identified in the transcription factor network analysis but is also 
known to regulate inflammatory pathways[35], also displayed high module membership 
in the darkgreen module (MM = 0.87) and was strongly downregulated in dcSSc patients 
(log2FC = -0.44, P = 0.0006). These, results support that NR4As are important regulatory 
factors in cDCs, and their expression is down-regulated in dcSSc patients.

NR4As are downregulated in cDCs obtained from dcSSc patients, but their 
expression is induced by pro-inflammatory stimuli. 
 To validate the downregulation of the NR4A family members observed in dcSSc 
patients in our RNA-sequencing cohort (Figure 3A), we evaluated their expression by RT-
qPCR in another, independent cohort of 6 dcSSc patients and 7 healthy controls (Table 
1). We found NR4A2 and NR4A3 to be significantly downregulated in dcSSc patients in 
this cohort (P = 0.002 and 0.035 respectively, Figure 3B), while for NR4A1 we observed 
a trend for downregulation, albeit not significant (P = 0.18, Figure 3B). Nonetheless, the 

Figure 2 (Left). Co-expression network analysis identifies NR4A transcription factors of regulatory 
pathways decreased in SSc cDCs. (A) Heatmaps depicting overlap of differentially expressed genes 
with co-expression modules (right) and correlation of module eigengenes (MEs) to SSc clinical traits 
(left). Cells of significant enrichments for differentially expressed genes (Fisher’s exact test p-value 
<0.05) or significant correlations with clinical traits (Pearson, p-value <0.05) are highlighted. N DEGs 
= number of differentially expressed genes. Modules significantly enriched in DEGs and correlated with 
clinical traits are highlighted in bold. (B) KEGG enrichment of relevant modules. Circle size denotes the 
number of module genes associated to enriched pathways. Top 10 pathways are shown (B&H corrected 
p-value < 0.05). (C) Module membership (x-axis) and the Log2FC (fold change) in gene expression 
compared to healthy controls (y-axis) for genes in the darkgreen module in patients with eaSSc, ncSSc, 
lcSSc and dcSSc. Significantly differentially expressed genes are highlighted in green (p-value <0.05). 
(D) Transcription factor network obtained for the darkgreen module. Transcriptional regulators (blue) are 
connected to their targets (grey) based on known interactions from REGNET and TTRUST databases. 
Blue shading of indicate fold change between dcSSc and healthy cDCs for transcriptional regulators. 
Node size denotes module membership in the darkgreen module. (E) Module membership (y-axis) and 
Log2(fold change) (healthy versus dcSSc, colour scale) of transcriptional regulators (x-axis) identified in 
the darkgreen module.
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Figure 3. Characterization of NR4A expression in SSc and healthy cDCs. (A) Violin plots depicting 
NR4A expression in SSc patients and healthy donors from the RNA-sequencing cohort (dashed lines 
indicates mean). For each comparison of SSc patients versus healthy controls, the p-value, calculated 
according to the Wald test implemented in DESeq2, is shown. (B) Violin plots showing NR4A expression in 
the validation cohort measured by target specific RT-qPCR. Data are reported as the fold change of each 
donor versus one representative healthy control. P-values (Kruskall–Wallis with post-hoc Dunn’s test), 
are reported. (C) Scatterplots showing the correlation (regression line) of NR4A expression in the RNA-
sequencing cohort (left) and the validation cohort (right). Correlations were calculated using Spearman’s 
rank correlation coefficient (Rho). (D) NR4A expression in CD1c+ cDCs from healthy donors stimulated 
for 3, 5 or 18 hours with Toll-like receptor ligands and cytokines implicated in dendritic cell biology and 
systemic sclerosis pathogenesis. Data are shown as mean with SEM of 3-4 (continued) experiments. (E) 
NR4A expression in CD1c+ cDCs from healthy donors cultured in normoxic or hypoxic conditions. Data 
are shown as mean with SEM of 3 experiments.
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expression of levels of all NR4A genes in the RNA-sequencing cohort and the RT-qPCR 
validation cohort were strongly correlated to each other (Figure 3C), showing that all 
dcSSc donors display consistent downregulation of all NR4As. 
 Next, we sought to identify factors underlying the downregulation of NR4As 
observed in dcSSc patients. Because dcSSc patients display enhanced levels of pro-
inflammatory cytokines and TLR stimulation[13], we postulated that the downregulation 
of NR4As might be caused by cDC activation through these pro-inflammatory factors. To 
explore this hypothesis, we cultured freshly isolated CD1c+ cDCs obtained from peripheral 
blood of healthy volunteers and stimulated them with various pro-inflammatory factors for 
3, 6, or 18 hours. NR4A expression was either induced (i.e. LPS and R848), or unaffected 
in all culture conditions studied (Figure 3D). For all three NR4As, the strongest induction 
of expression was observed upon stimulation with R848 (TLR7/8 agonist) for 18 hours 
of culture (Figure 3D). Additionally, since hypoxia has been described as an important 
factor underlying immune cell dysregulation in SSc[36, 37], we also investigated the 
effect of hypoxia on NR4A expression in cDCs. Similar to what was observed in the pro-
inflammatory conditions, the expression of NR4A1 and NR4A2 was induced in hypoxia, 
while NR4A3 expression was unaffected (Figure 3E). To explore whether induction of 
NR4A expression by pro-inflammatory stimuli was different between healthy donors and 
SSc patients, we repeated this analysis on 5 dcSSc patients and 5 sex/aged matched 
healthy donors. No significant difference in NR4A expression was observed between 
R848 stimulated cDCs from healthy and SSc donors (Supplementary Figure 2). These 
results support that the activation of cDCs through pro-inflammatory cytokines/TLR 
signaling or hypoxia does not underlie the decreased expression of NR4As observed in 
dcSSc patients.

Genome-wide ChIP-sequencing analysis further implicates NR4As as crucial 
regulators of dendritic cell dysregulation in SSc
 To further investigate the regulatory potential of NR4As in cDCs, we set out to 
characterize the genome-wide binding sites of NR4A1, NR4A2 and NR4A3 by chromatin 
immunoprecipitation followed by parallel DNA sequencing (ChIP-seq). We cultured 
freshly isolated CD1c+ cDCs obtained from healthy donors in the overnight presence 
or absence of R848, and performed ChIP-seq analysis to identify NR4A specific binding 
sites under resting and stimulated conditions. We identified numerous NR4A binding 
sites in the promoter regions of genes in cultured cDCs, of which some were specific 
to resting (medium-treated control) conditions, while others were specific to stimulated 
(R848) conditions (Supplementary Figure 3). In line with their known roles in neuronal 
development[42] and cardiac tissue development[43], pathway analysis of NR4A binding 
sites identified enrichment for numerous genes related to these processes (Figure 
4A). Moreover, we identified NR4A binding in the promoters of genes related to cell 
morphogenesis, and, in R848 stimulated cDCs, we identified an enrichment of NR4A2 
and NR4A3 binding sites for genes related to extracellular matrix organization (Figure 
4A). Overall, these results demonstrate that, besides their role in pro-inflammatory 
processes and T-cell activation by cDCs, NR4As are also involved in the regulation of 
various other processes in cDCs, including morphogenesis and fibrosis, which are highly 
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Figure 4. ChIP-sequencing of transcriptional regulation of cDCs by NR4As. (A) GO-term enrichment 
of genes that show NR4A binding within their promoter region. Circle size denotes the number of genes 
associated to enriched biological processes. Top 20 are shown (B&H corrected P < 0.05). (B) Heatmap of 
differentially expressed genes in dcSSc that also display binding of NR4As at their promoters (continued) 
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in resting cultured cDCs. (C) Pathway enrichment of genes downregulated and (D) upregulated in dcSSc 
with NR4A binding at their gene promoters in resting cultured cDCs. Terms for significantly enriched 
biological processes are given on the y-axis. Bars depict the number of genes identified within the enriched 
pathway (N genes, bottom x-axis), dashed line indicates B&H corrected P-value of the enrichment 
(p-value, top x-axis). (E) Scatterplots showing the correlation of NR4A1-3 expression (x-axis) with SSR1, 
or (F) SLAMF6 expression (y-axis). Correlations were calculated using Spearman’s rank correlation 
coefficient (Rho). VSD = variance stabilized data. (G) Heatmap of differentially expressed genes in dcSSc 
that also display binding of NR4As at their promoters in R848 stimulated cDCs. (H) Scatterplots showing 
the correlation of NR4A1-3 expression (x-axis) with IL18BP, or (I) MYOH1 expression (y-axis). The red 
line on the scatter plot represents the regression line or “line of best fit” for positive correlations, and blue 
for negative correlations.

relevant in the context of SSc pathology.
 We further aimed to identify which transcriptomic changes observed in dcSSc 
cDCs could be directly attributed to transcriptional regulation by NR4As. Overlap analysis 
of NR4A binding sites with differentially expressed genes in dcSSc patients revealed that 
267 genes upregulated and 175 genes downregulated in dcSSc were directly bound 
by NR4As in resting cDCs (Figure 4B). Pathway enrichment analysis demonstrated 
that NR4A bound genes downregulated in dcSSc cDCs are implicated in the regulation 
of biological processes broadly related to transcription, translation and endoplasmic 
reticulum (ER) processing (Figure 4C), while NR4A bound genes upregulated in dcSSc 
cDCs are implicated in immune activation pathways (Figure 4D). Given the significantly 
lower expression of NR4As in dcSSc cDCs compared to healthy cDCs (Figure 3A/B), 
these results suggest that the induction of immune pathways in dcSSc cDCs is a direct 
effect of loss of transcriptional inhibition by NR4As, while the repression of pathways 
related to transcription/translation is a direct effect of loss of transcriptional activation. 
These results were substantiated by the fact that, in the RNA-sequencing cohort, NR4A 
expression was directly correlated with genes associated with ER processing, including 
SSR1 - which encodes a receptor associated with protein translocation across the 
ER membrane[44] (Figure 4E), while NR4A expression was inversely correlated with 
genes related to immune activation, including SLAMF6[45] (Figure 4F). Moreover, we 
observed a strikingly lower overlap of differentially expressed genes with NR4A binding 
sites obtained from R848 stimulated cDCs as compared to resting cDCs (Figure 4G), 
reflecting loss of NR4A binding during cDC activation. Among the genes directly bound 
by NR4As in R848 stimulated cDCs, we identified the anti-inflammatory IL18 binding 
protein (IL18BP)[46], which was downregulated in dcSSc cDCs and displayed a direct 
correlation with NR4As in the RNA-sequencing cohort (Figure 4H). On the other hand, 
Myosin IH (MYO1H), a molecule involved cytokinesis, maintenance of cell shape, and 
cell motility[47], was upregulated in dcSSc cDCs and negatively correlated to NR4A 
expression (Figure 4I). Taken together, these results demonstrate that NR4As are directly 
involved in transcriptional programs limiting cDC activation in vitro, at least in the culture-
based experimental conditions used here. Accordingly, the loss of NR4A expression in 
SSc cDCs leads to an increased activation of these cells.

5
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Activation of NR4As limits pro-inflammatory cytokine production in healthy and 
dcSSc cDCs
 Since NR4As have been described as critical regulators of pro-inflammatory 
responses[30–35], which was also confirmed in our ChIP-seq analysis, we sought to 
identify whether activation of NR4A signaling could attenuate pro-inflammatory cytokine 
production by healthy and dcSSc cDCs. We first treated freshly isolated CD1c+ cDCs 
obtained from peripheral blood of healthy donors with increasing concentrations of 
DMSO (negative control), C-DIM5 (NR4A1 agonist), or C-DIM12 (NR4A2 agonist) and 
measured the gene expression of the housekeeping gene GUSB to evaluate the effect of 
NR4A activation on cDC viability. For C-DIM5 and C-DIM12, concentrations up to 10uM 
and 25uM were well tolerated (Figure 5A), thus for subsequent experiments, treatment 
concentrations of 10uM were used. Pre-incubation of cDCs with 10uM C-DIM5 and 
C-DIM12 before stimulation with R848, led to a significant decrease in IL-6 production, 
both on the mRNA and protein level (Figure 5B), confirming the suppressive role of NR4As 
in pro-inflammatory cytokine production. To substantiate these results, and to evaluate 
the effect of NR4A agonists on dcSSc cDCs, we repeated this experiment using PBMC 
samples obtained from 12 dcSSc patients and 11 matched healthy controls. Intracellular 
FACS staining and gating on CD1c+ cDCs (according to the gating strategy provided in 
Supplementary Figure 4) again showed that NR4A activation led to a significant decrease 
of IL-6 production by cDCs (Figure 5C). Notably, NR4A activation also led to a significant 
decrease of IL-6 production in dcSSc cDCs, demonstrating that NR4A activation can 
effectively attenuate pro-inflammatory cytokine production in these patients.

Activation of NR4As decreases the CD4+ T-cell stimulatory capacity of cDCs 
 Since cDCs are indispensable for CD4+ T-cell activation, and multiple lines of 
evidence imply an important role for CD4+ T-cells in SSc pathogenesis[38–41], we next 
investigated the role of NR4As in cDC priming for CD4+ T-cell activation. We performed 
co-cultures with healthy, autologous CD4+ T-cells and CD1c+ cDCs pretreated with 
C-DIM5 and C-DIM12 and evaluated the production of IFNγ by activated CD4+ T-cells 
by FACS (according to the gating strategy provided in Supplementary figure 5) after 3 
days of co-culture followed by 6 hours PMA/Ionomycin stimulation (Figure 6A). cDCs 
pretreated with C-DIM5 and C-DIM12 were less capable of inducing IFNγ production by 
CD4+ T-cells compared to control cDCs pretreated with DMSO (Figure 6B). These results 
held true for cDCs stimulated with R848, showing that NR4A activation also attenuates 
CD4+ T-cell induction by cDCs under pro-inflammatory conditions (Figure 6C). These 
data show that, beside controlling the expression of pro-inflammatory cytokines, NR4As 
also have the capacity to control T-cell activation by CD1c+ cDCs. 

DISCUSSION
 In this study, we provide detailed transcriptomic profiling of CD1c+ cDCs from 
a cohort of 48 SSc patients and 12 healthy controls, which allowed us to characterize 
the transcriptomic landscape of cDCs in SSc. Using network analysis, we identified 
various clinically relevant modules of tightly co-expressed genes enriched in genes from 
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Figure 5. NR4A activation leads to a decrease in the production of IL-6 in healthy and dcSSc cDCs. 
(A) RT-qPCR of GUSB mRNA expression by freshly isolated cDCs after pre-incubation of increasing 
concentrations of DMSO (negative control), or NR4A agonists C-DIM5 and C-DIM12, followed by 
overnight stimulation with R848. Fold change (FC) in comparison to 1µM DMSO is shown. Data are 
shown as mean with SEM of 3 experiments. (B) IL-6 mRNA (left) and protein expression (right) of cDCs 
pretreated with 10uM DMSO, C-DIM5 or C-DIM12, followed by overnight stimulation with R848. Relative 
mRNA expression levels (FC) shown are normalized to GUSB housekeeping levels. Data are shown as 
mean with SEM of 3 experiments. * = P <0.05, calculated by one-way Anova followed by Friedman test 
for multiple comparisons. (C) Representative FACS plots of the percentage of IL-6 positive cDC within 
the cDC (cDC2) fraction in PBMC cultures pretreated with 10uM DMSO, C-DIM5 or C-DIM12, followed by 
overnight stimulation with R848. Barplots (mean + SEM) depict the quantification of FACS data obtained 
from 12 healthy controls (HC) and 13 dcSSc patients. ** = P <0.01, **** = P <0.001, calculated by two-way 
Anova followed by Dunnett’s test for multiple comparisons. 

pathways highly relevant for SSc and cDC biology, including immune cell activation, 
antigen presentation, anti-viral mechanisms, and ribosomes. Pathways related to viral 
processes mainly included IFN inducible genes, which have previously been described 
to be highly expressed in SSc, referred to as the type I IFN signature[48]. The ribosome 
associated module included many ribosomal genes involved in translation, which were 
strongly downregulated in all subsets of SSc patients. Interestingly, downregulation of 
ribosomal protein mRNAs has previously been described in plasmacytoid DCs (pDCs) 
of primary Sjögren’s syndrome patients[49], as well as in healthy pDCs and monocyte 
derived DCs (moDCs) activated by TLR ligands[49–51]. These data suggest that the 
downregulation of ribosomal protein mRNAs reflects an activated transcriptional 
phenotype of cDCs, highlighting the fact that circulating CD1c+ cDCs from SSc patients 
are transcriptionally primed towards an activated state, already from early stages of the 
disease. 
 We identified a module of immune regulatory genes, that is particularly 
downregulated in cDCs of dcSSc patients. Transcription factor network analysis pointed 

5
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towards the NR4A family of orphan nuclear receptors (NR4A1, NR4A2 and NR4A3) 
as potentially important regulators of this module. NR4As are transcription factors that 
regulate gene expression in a ligand-independent manner, meaning that their activity 
is largely dependent on their expression levels and posttranslational modifications[52, 
53]. These nuclear receptors have previously been shown to play critical roles in 
the regulation of immune cell activation[54–56], and NR4A1 in particular, has been 
established as regulator of pro-inflammatory responses in dendritic cells[33]. In line 
with these observations, we show that activation of NR4As in CD1c+ cDCs by selective 
agonists attenuates release of the pro-inflammatory cytokine IL-6 and downstream 
activation of CD4+ T-cells. Importantly, we show that, although the expression of 
NR4A1-3 is downregulated in cDCs obtained from dcSSc patients, activation of NR4A 
signaling by NR4A agonists C-DIM5 and C-DIM12 inhibits IL-6 production, showing that 
modulation of NR4A activity can attenuate the pro-inflammatory phenotype displayed by 
dcSSc cDCs. Thus, small molecule agonists can overcome the reduced expression of 
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NR4A transcription factors in dcSSc cDCs and may represent very interesting targets for 
immunotherapy in SSc. Given the fact that SSc patients with early diffuse phenotypes 
have also previously been shown to display sign of enhanced dendritic cell activation[13], 
targeting NR4As early in SSc pathogenesis might prevent DC activation at early stages 
and limit disease progression. 
 The factors that underlie the downregulated expression of NR4As in dcSSc cDCs 
remain to be resolved. However, our experiments do provide new insights. In line with the 
roles of NR4As as immediate early response genes[52], stimulation of freshly isolated 
BCA1+ cDCs from healthy donors with TLR ligands R848 and LPS, as well as hypoxia 
largely induced the expression of NR4A1-3. Also, cytokines known to be increased in 
peripheral blood of SSc patients or related to SSc pathogenesis, including CXCL4, 
IFNα, TGFβ, GM-CSF, IL-6 and IL-15 did not reduce NR4A expression, at least for the 
concentrations and time points included here. Moreover, stimulation of freshly isolated 
CD1c+ cDCs from dcSSc patients with TLR7/8 ligand R848 also led to an induction 
of NR4A expression, comparable to the levels in healthy donors, suggesting that the 
upstream transcriptional regulation of NR4As is not defective in dcSSc cDCs. Given the 
well described heterogeneity of the CD1c+ cDC subset[57, 58], one might propose that 
the downregulation of NR4A expression that we observed in bulk CD1c+ cDCs from 
dcSSc patients is actually reflective of a disbalance of distinct cDC populations within the 
CD1c+ subset as compared to healthy controls. Indeed the expression of NR4A2 and 
NR4A3 have previously been shown to be low in CD1c+Tbet- cDC2Bs, an inflammatory 
DC population within the CD1c+ cDC compartment[59]. However, recent analysis 
of the composition of CD1c+ cDC subsets in the blood of SSc patients by Dutertre et 
al., showed that the proportion of distinct CD1c+ cDC subpopulations in SSc was not 
significantly different from healthy[58]. Thus, the downregulation of NR4As that we 
observed in dcSSc CD1c+ cDCs is not likely to be attributed to heterogeneity within the 
DC compartment. Thus, it remains to be investigated what exact molecular mechanisms 
cause NR4A downregulation in dcSSc cDCs. These might include alterations in the 
chromatin landscape or regulation at the post-transcriptional level.
 To unravel exactly how NR4As regulate the transcriptional programs leading to 
cDC activation and dysregulation in SSc, we performed genome-wide ChIP-sequencing 
analysis of NR4A1-3 binding in resting and activated CD1c+ cDCs. We identified 
numerous genes that were characterized by binding of NR4A at their promoters. 
Importantly, a large part of the differentially expressed genes that we found in dcSSc in 
our RNA-sequencing analysis also displayed binding of NR4A at their promoters in our 
ChIP-sequencing analysis, suggesting that NR4As are strongly involved in transcriptional 
programs underlying dendritic cell dysregulation in SSc. Additionally, we identified 
genes involved in dendritic cell morphology and, under stimulated conditions, ECM 
production that were directly bound by NR4As. Given the reduced expression of NR4As 
in circulating CD1c+ cDCs from dcSSc patients, these results suggest that dcSSc cDCs 
might show an enhanced expression of ECM related genes once they get stimulated, for 
example upon migration to the skin. Interestingly, inflammatory DCs have been proposed 
to contribute to fibrosis in SSc through the increased secretion of ECM molecules and 
promotion of myofibroblast differentiation[60], suggesting that besides driving a pro-

5
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inflammatory phenotype, downregulation of NR4As might also drive dcSSc cDCs to a 
pro-fibrotic phenotype. Although more detailed ChIP-sequencing analyses to quantify 
NR4A binding in dcSSc in comparison to healthy donor cDCs are needed to validate 
these results, our analysis points towards NR4As as major transcriptional regulators of 
pathways implicated in cDC dyregulation in SSc. 
 In conclusion, we show that the NR4A transcription factor family members 
NR4A1, NR4A2 and NR4A3 are important regulators underlying DC dysregulation in 
SSc. We propose that pharmacological activation of NR4As is an attractive therapeutic 
option to attenuate pro-inflammatory and pro-fibrotic responses in SSc patients, as such 
or if necessary using DC-targeting based approaches.
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Supplementary Figure 1. Pathway enrichment analysis of differentially expressed genes identified 
in SSc patients versus healthy controls. Circles size denotes the number of differentially expressed 
genes genes associated to enriched pathways. Top 10 pathways are shown (B&H corrected p-value < 
0.05).
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5

Supplementary Figure 2. RT-qPCR of NR4A expression in stimulated CD1c+ cDCs from healthy 
controls and dcSSc patients. NR4A1, NR4A2 and NR4A3 for untreated (medium) or treated (R848) 
cDCs following 18 hours of culture. Relative mRNA expression levels (FC) shown are normalized to 
GUSB housekeeping levels. Bars depict mean, error bars depict SEM. 
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Supplementary Figure 3. Genome-wide identification of NR4A binding sites in resting and activated 
CD1c + cDCs. Venn diagrams depicting the overlap of NR4A1, NR4A2 and NR4A3 transcription factor 
binding sites (within 10kb of the nearest gene promoter region) in resting (blue, medium) and activated 
(red, R848) cDCs. 
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Supplementary Figure 4. Gating strategy for measuring IL-6 production in the CD1c+ cDC fraction 
in PBMC cultures. 
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Gene Forward Reverse 

GUSB CACCAGGGACCATCCAATACC GCAGTCCAGCGTAGTTGAAAAA

NR4A1 ACTGCCCTGTGGACAAGAG CTGTTCGGACAACTTCCTTC

NR4A2 GGACTCCCCATTGCTTTTC AGGCGAGGACCCATACTG

NR4A3 CTGCCCAGTAGACAAGAGAC CTCCTCCCTTTCAGACTATC

IL-6 GGCACTGGCAGAAAACAACC GCAAGTCTCCTCATTGAATCC

Supplementary Table 1. Gene specific primers used for RT-qPCR

Antibody Label Clone Company

PBMC panel Fixable viability APC-ef780 N.A. eBioscience

Surface CD11c PerCP-Cy5.5 3.9 Thermo Scientific

Surface CD1c APC AD5-8E7 Miltenyi

Surface CD19 AF700 HIB19 eBioscience

Surface CD56 AF700 B159 BD

Surface CD3 PE/Cy7 UCHT1 Biolegend

Surface CD4 BV510 RPA-T4 Biolegend

Surface HLA-DR BV605 G46-6 BD

Surface CD14 BV785 M5E2 Biolegend

Intracellular IL-6 PE MQ2-6A3 BD

Co-culture panel Fixable viability APC-ef780 N.A. eBioscience

Surface CD3 AF700 UCHT1 Biolegend

Surface CD4 AF488 RPA-T4 BD

Surface CD1c APC AD5-8E7 Miltenyi

Intracellular IFNy PE 4S.B3 BD

Supplementary Table 2. Antibody panels for used for flow cytometry
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Subset Description GeneRatio p.adjust

Up dcSSc complement activation, classical pathway 34/1134 5.13E-09

Up dcSSc B cell activation 54/1134 5.13E-09

Up dcSSc humoral immune response mediated by circulating immunoglobulin 35/1134 6.14E-09

Up dcSSc phagocytosis 57/1134 6.46E-08

Up dcSSc neutrophil degranulation 68/1134 6.46E-08

Up dcSSc neutrophil activation involved in immune response 68/1134 6.55E-08

Up dcSSc neutrophil mediated immunity 69/1134 6.55E-08

Up dcSSc immune response-activating cell surface receptor signaling pathway 66/1134 9.65E-08

Up dcSSc neutrophil activation 68/1134 1.21E-07

Up dcSSc Golgi vesicle budding 22/1134 4.63E-07

Up dcSSc regulation of B cell activation 35/1134 4.64E-07

Up dcSSc lymphocyte mediated immunity 52/1134 7.43E-07

Up dcSSc vesicle budding from membrane 24/1134 2.13E-06

Up dcSSc vesicle organization 48/1134 2.75E-06

Up dcSSc protein activation cascade 35/1134 2.75E-06

Up dcSSc leukocyte migration 64/1134 2.88E-06

Up dcSSc regulation of complement activation 25/1134 4.73E-06

Up dcSSc regulation of protein activation cascade 25/1134 5.44E-06

Up dcSSc Golgi vesicle transport 50/1134 1.69E-05

Up dcSSc regulation of humoral immune response 26/1134 2.34E-05

Down dcSSc cotranslational protein targeting to membrane 68/859 1.26E-59

Down dcSSc establishment of protein localization to endoplasmic reticulum 68/859 1.79E-55

Down dcSSc nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 67/859 8.72E-55

Down dcSSc translational initiation 81/859 4.95E-54

Down dcSSc viral gene expression 78/859 6.62E-51

Down dcSSc viral transcription 74/859 4.04E-49

Down dcSSc ribosome assembly 20/859 8.46E-10

Down dcSSc ribosomal large subunit biogenesis 20/859 9.42E-09

Down dcSSc ribonucleoprotein complex subunit organization 39/859 4.56E-07

Down dcSSc rRNA processing 30/859 1.10E-05

Down dcSSc positive regulation of release of cytochrome c from mitochondria 9/859 0.000938357

Down dcSSc ciliary basal body-plasma membrane docking 16/859 0.00109231

Down dcSSc regulation of ubiquitin protein ligase activity 7/859 0.006110243

Down dcSSc positive regulation of hemopoiesis 21/859 0.015943419

Down dcSSc myeloid cell homeostasis 18/859 0.017807193

Down dcSSc positive regulation of leukocyte cell-cell adhesion 23/859 0.022355059

Down dcSSc T cell activation 39/859 0.025806037

Down dcSSc regulation of lymphocyte differentiation 19/859 0.033649155

Down dcSSc protein insertion into mitochondrial membrane involved in apoptotic signaling 
pathway

7/859 0.036411064

Down dcSSc cellular response to osmotic stress 8/859 0.041013014

Up eaSSc nuclear division 58/861 4.01E-11

Up eaSSc DNA replication 46/861 4.01E-11

Up eaSSc mitotic nuclear division 45/861 4.01E-11
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Up eaSSc regulation of cell cycle phase transition 62/861 1.82E-10

Up eaSSc cell cycle checkpoint 39/861 1.82E-10

Up eaSSc regulation of mitotic cell cycle phase transition 59/861 1.82E-10

Up eaSSc cell cycle G2/M phase transition 42/861 1.56E-09

Up eaSSc sister chromatid segregation 34/861 3.90E-09

Up eaSSc regulation of chromosome organization 46/861 2.28E-08

Up eaSSc DNA damage checkpoint 27/861 1.39E-07

Up eaSSc covalent chromatin modification 51/861 3.44E-06

Up eaSSc histone modification 49/861 5.33E-06

Up eaSSc negative regulation of mitotic cell cycle 39/861 2.17E-05

Up eaSSc regulation of mitotic nuclear division 25/861 2.17E-05

Up eaSSc mRNA export from nucleus 20/861 2.17E-05

Up eaSSc mRNA-containing ribonucleoprotein complex export from nucleus 20/861 2.17E-05

Up eaSSc regulation of nuclear division 27/861 2.17E-05

Up eaSSc mitotic cell cycle checkpoint 25/861 2.17E-05

Up eaSSc multi-organism transport 16/861 2.17E-05

Up eaSSc multi-organism localization 16/861 2.17E-05

Down eaSSc cotranslational protein targeting to membrane 68/723 3.74E-65

Down eaSSc SRP-dependent cotranslational protein targeting to membrane 67/723 3.74E-65

Down eaSSc establishment of protein localization to endoplasmic reticulum 69/723 3.26E-62

Down eaSSc nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 68/723 1.90E-61

Down eaSSc translational initiation 82/723 2.02E-61

Down eaSSc viral gene expression 74/723 9.60E-52

Down eaSSc viral transcription 70/723 1.20E-49

Down eaSSc ribosome biogenesis 52/723 9.00E-18

Down eaSSc ribonucleoprotein complex assembly 49/723 6.82E-17

Down eaSSc ribonucleoprotein complex subunit organization 50/723 1.00E-16

Down eaSSc mitochondrial ATP synthesis coupled electron transport 28/723 4.96E-15

Down eaSSc respiratory electron transport chain 29/723 1.11E-13

Down eaSSc rRNA processing 33/723 1.53E-09

Down eaSSc purine nucleoside triphosphate metabolic process 38/723 6.21E-07

Down eaSSc mitochondrial gene expression 23/723 6.45E-06

Down eaSSc mitochondrial respiratory chain complex assembly 17/723 1.22E-05

Down eaSSc neutrophil activation 43/723 6.25E-05

Down eaSSc cellular protein complex disassembly 25/723 8.43E-05

Down eaSSc neutrophil activation involved in immune response 41/723 0.000206438

Down eaSSc neutrophil mediated immunity 40/723 0.000807639

Up lcSSc organelle fission 54/824 1.02E-07

Up lcSSc chromosome segregation 41/824 1.53E-06

Up lcSSc mitotic sister chromatid segregation 25/824 1.03E-05

Up lcSSc DNA replication 35/824 1.23E-05

Up lcSSc mitotic nuclear division 34/824 1.26E-05

Up lcSSc RNA localization 29/824 0.00015651

Up lcSSc regulation of chromosome segregation 18/824 0.000211293

Up lcSSc protein-containing complex localization 32/824 0.000338403

5
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Up lcSSc RNA export from nucleus 20/824 0.000657521

Up lcSSc regulation of mitotic cell cycle phase transition 42/824 0.000931009

Up lcSSc spindle organization 22/824 0.001514295

Up lcSSc mRNA-containing ribonucleoprotein complex export from nucleus 17/824 0.001612556

Up lcSSc ribonucleoprotein complex localization 18/824 0.002488175

Up lcSSc meiotic cell cycle 27/824 0.002702056

Up lcSSc regulation of chromosome organization 33/824 0.00366235

Up lcSSc mitotic cell cycle checkpoint 20/824 0.005885022

Up lcSSc DNA damage checkpoint 18/824 0.009383219

Up lcSSc meiotic nuclear division 20/824 0.009383219

Up lcSSc multi-organism transport 12/824 0.009383219

Up lcSSc multi-organism localization 12/824 0.009383219

Down lcSSc viral gene expression 39/655 1.19E-15

Down lcSSc translational initiation 36/655 3.09E-13

Down lcSSc viral transcription 34/655 5.75E-13

Down lcSSc SRP-dependent cotranslational protein targeting to membrane 23/655 1.18E-09

Down lcSSc nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 24/655 1.94E-09

Down lcSSc establishment of protein localization to endoplasmic reticulum 24/655 2.51E-09

Down lcSSc ribosomal large subunit biogenesis 16/655 7.08E-07

Down lcSSc ribosome assembly 14/655 6.35E-06

Down lcSSc ribonucleoprotein complex subunit organization 29/655 9.36E-05

Down lcSSc RNA splicing, via transesterification reactions with bulged adenosine as 
nucleophile

34/655 0.000107062

Down lcSSc mRNA splicing, via spliceosome 34/655 0.000107062

Down lcSSc oxidative phosphorylation 16/655 0.007197812

Down lcSSc pentose-phosphate shunt 5/655 0.015245683

Down lcSSc regulation of cellular amine metabolic process 11/655 0.015245683

Down lcSSc neutrophil activation 34/655 0.019838415

Down lcSSc glucose 6-phosphate metabolic process 6/655 0.019838415

Down lcSSc release of cytochrome c from mitochondria 9/655 0.021155956

Down lcSSc respiratory electron transport chain 13/655 0.024382183

Down lcSSc neutrophil activation involved in immune response 33/655 0.026577717

Down lcSSc mitochondrial translational termination 11/655 0.027366409

Up ncSSc B cell activation 24/517 0.028037426

Up ncSSc multi-organism transport 10/517 0.041913325

Up ncSSc multi-organism localization 10/517 0.041913325

Up ncSSc transport of virus 9/517 0.041913325

Up ncSSc viral life cycle 23/517 0.041913325

Up ncSSc ferric iron transport 7/517 0.044980462

Up ncSSc trivalent inorganic cation transport 7/517 0.044980462

Up ncSSc mitotic sister chromatid segregation 14/517 0.044980462

Up ncSSc regulation of lymphocyte activation 29/517 0.045390335

Up ncSSc NLS-bearing protein import into nucleus 5/517 0.045390335

Down ncSSc viral gene expression 25/421 3.50E-09

Down ncSSc viral transcription 24/421 3.50E-09



141

Network-based multi-omics implicates NR4A signaling as a key disease pathway in SSc cDCs

Down ncSSc protein targeting to ER 19/421 1.99E-08

Down ncSSc SRP-dependent cotranslational protein targeting to membrane 18/421 1.99E-08

Down ncSSc establishment of protein localization to endoplasmic reticulum 19/421 2.10E-08

Down ncSSc translational initiation 23/421 3.73E-08

Down ncSSc nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 18/421 8.78E-08

Down ncSSc platelet activation 15/421 0.000543591

Down ncSSc homotypic cell-cell adhesion 9/421 0.017107301

Down ncSSc negative regulation of viral transcription 5/421 0.03209776

Supplementary Table 3. GO-term enrichment analysis of genes dysregulated in SSc cDCs. 
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ABSTRACT
 The T-cell receptor (TCR) is a highly polymorphic surface receptor that allows 
T-cells to recognize antigenic peptides presented on the major histocompatibility complex 
(MHC). Changes in the TCR repertoire have been observed in several autoimmune 
conditions, and these changes are suggested to predispose autoimmunity. Multiple lines 
of evidence have implied an important role for T-cells in the pathogenesis of Systemic 
Sclerosis (SSc), a complex autoimmune disease. One of the major questions regarding 
the roles of T-cells is whether expansion and activation of T-cells observed in the diseases 
pathogenesis is antigen driven.
 To investigate the temporal TCR repertoire dynamics in SSc, we performed 
high-throughput sequencing of CD4+ and CD8+ TCRβ chains on longitudinal samples 
obtained from four SSc patients collected over a minimum of two years. Repertoire 
overlap analysis revealed that samples taken from the same individual over time shared 
a high number of TCRβ sequences, indicating a clear temporal persistence of the TCRβ 
repertoire in CD4+ as well as CD8+ T-cells. Moreover, the TCRβs that were found with 
a high frequency at one time point were also found with a high frequency at the other 
time points (even after almost four years), showing that frequencies of dominant TCRβs 
are largely consistent over time. We also show that TCRβ generation probability and 
observed TCR frequency are not related in SSc samples, showing that clonal expansion 
and persistence of TCRβs is caused by antigenic selection rather than convergent 
recombination. Moreover, we demonstrate that TCRβ diversity is lower in CD4+ and 
CD8+ T-cells from SSc patients compared with memory T-cells from healthy individuals, 
as SSc TCRβ repertoires are largely dominated by clonally expanded persistent TCRβ 
sequences. Lastly, using “Grouping of Lymphocyte Interactions by Paratope Hotspots” 
(GLIPH2), we identify clusters of TCRβ sequences with homologous sequences that 
potentially recognize the same antigens and contain TCRβs that are persist in SSc 
patients.
 In conclusion, our results show that CD4+ and CD8+ T-cells are highly persistent 
in SSc patients over time, and this persistence is likely a result from antigenic selection. 
Moreover, persistent TCRs form high similarity clusters with other (non-)persistent 
sequences that potentially recognize the same epitopes. These data provide evidence 
for an antigen driven expansion of CD4+/CD8+ T-cells in SSc.
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INTRODUCTION
 Systemic Sclerosis (SSc) is a complex chronic autoimmune disease, 
characterized by vascular abnormalities and widespread fibrosis affecting the skin and 
internal organs[1]. Although the pathogenic mechanisms underlying SSc remain largely 
unknown, multiple lines of evidence imply an important role for CD4+ and CD8+ T-cells 
in the progression of the disease. Activated T-cells infiltrate the skin of SSc patients 
already in the early phase of the disease[2, 3]. These infiltrating T-cells can cross-talk 
with fibroblasts, inducing fibroblast activation and apoptosis through secretion of pro-
inflammatory cytokines and fas/fas ligand engagement[4, 5]. Moreover, T-cells isolated 
from SSc patients undergo clonal expansion when cultured together with autologous 
fibroblasts, suggesting that auto-antigens presented by SSc fibroblasts can induce auto-
reactive T-cell responses[6]. Apart from skin, peripheral blood T-cells from SSc patients 
also exhibit signs of activation and express activation markers, including IL-2R, HLA-DR, 
and CD29 7–9], and secrete pro-inflammatory and pro-fibrotic factors[10–12].
 The T-cell receptor (TCR) is a highly polymorphic surface receptor that allows 
T-cells to recognize antigenic peptides presented on the major histocompatibility complex 
(MHC)[13]. CD4+ T-cells recognize peptides presented on the MHC class II complex, 
while CD8+ T-cells recognize peptides presented on the MHC class I complex. Classical 
TCRs are heterodimers consisting of a paired α- and β-chain. These chains making up 
the TCR are generated through somatic recombination of V (variable), D (diversity) and 
J (joining) gene segments accompanied by pseudorandom insertions and deletions of 
nucleic acids at their joining regions[14], thereby giving rise to an enormously diverse 
TCR repertoire in every individual. By this process of VDJ recombination, the small set of 
genes that encode the TCR can be used to create over 1015 potential TCR clonotypes[13, 
15]. Previous estimates of number of unique T-cells in a human range from 106 to 1011 

[16–18], meaning that every individual only carries a small fraction of the potential 
repertoire.
 High throughput sequencing of TCR repertoires is emerging as a valuable tool to 
unravel the exact role of T-cells in autoimmune diseases. The TCR repertoire has been 
proposed to serve as diagnostic biomarker for various autoimmune diseases, and recent 
studies have identified disease-associated TCR sequences in autoimmune diseases 
including autoimmune encephalomyelitis (AE), systemic lupus erythematosus (SLE), 
and rheumatoid arthritis (RA)[19–21]. Moreover, changes in T-cell repertoire diversity 
have been suggested to predispose the pathological manifestations in RA patients[22]. 
Prior studies examining the TCR repertoire in SSc have shown that there is an oligoclonal 
expansion of T-cells in the skin, lungs and blood of SSc patients[23–25], suggesting that 
expanded T-cells are involved in the disease pathogenesis. However, there are limitations 
to the results of previous studies that have examined the TCR repertoire in SSc patients. 
These include: a) lack of the use of high-throughput techniques; b) consideration of either 
CD4+ or CD8+ or unsorted T-cell populations; and c) the study of T-cells obtained only 
from a single time point thereby providing a static snapshot of the TCR repertoire in SSc.
 Two major hypotheses have been postulated to explain mechanism of the 
expansion of T-cells in the context of autoimmunity[26, 27]. The first hypothesis states 
that T-cells might expand non-specifically or by chance (bystander activation) due to 
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chronic inflammation observed in autoimmune patients[27–29]. In this case, proliferation 
of T-cells is induced through non-specific activation in the presence of TLR ligands and 
cytokines during an immune response. Due to inherent biases in the V(D)J recombination 
process, some TCRβ sequences are more prevalent as they have a high generation 
probability[30]. As a result of this bias, during bystander activation, naïve T-cell clones 
with TCRβs that have high generation probabilities have a larger chance of being at the 
site of action due to their increased prevalence, and therefore have a higher chance to 
expand. In this case, expansion is a result of chance. The second hypothesis states that 
clonal expansion in autoimmunity is driven by chronic, and specific responses to antigens 
that selectively skew the TCR repertoire[26]. Here expansion is driven by antigen specific 
selection rather than chance. It remains to be unraveled which of these two mechanisms 
contributes to the activation and expansion of autoreactive T-cells in SSc.
 To better understand T-cell responses in SSc pathogenesis, here we investigate 
the temporal TCR repertoire dynamics in SSc patients. We performed high-throughput 
sequencing of TCRβ chains of sorted CD4+ and CD8+ non-naive T-cells isolated from 
longitudinal samples from four SSc patients collected over a minimum of two years.

MATERIALS AND METHODS

Sample collection
 Whole heparinized blood samples from SSc patients were obtained from the 
University Medical Center Utrecht. SSc patients were classified according to the ACR/
EULAR criteria[31]. This study was conducted in accordance with the Declaration of 
Helsinki and was performed with approval of the Institutional Review Board of the 
University Medical Centre Utrecht, The Netherlands. The medical ethics committee of 
the UMC Utrecht approved the study (METC nr. 13–697). All participants enrolled in the 
study signed informed consent, and patient samples were anonymized upon collection. 
Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient 
centrifugation on Ficoll-PlaqueTM Plus (GE Healthcare, Uppsala, Sweden). pDCs, 
mDCs, B-cells and monocytes were first depleted by magnetic bead sorting using the 
autoMACs Pro Separator (Miltenyi Biotec, Bergisch Gladbach, Germany) according to 
the manufacturer’s protocol. The remaining peripheral blood lymphocytes (PBLs) were 
resuspended in freezing medium (80% FCS, (Sigma-Aldrich, Saint Louis, Missouri, 
USA)/20% DMSO, (Sigma-Aldrich)) and stored in sterile cryovials in liquid nitrogen 
(-196°C) until further use. From all patients PBLs were collected at baseline (T0), at 
least one year after inclusion (T1, ranging from 12 to 19 months) and at least two years 
after inclusion (T2, ranging from 24 to 46 months) (Fig. 1a, Table 1). High-resolution HLA 
typing was performed on DNA obtained from PBMCs from one time point for each patient 
by next generation sequencing.
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Figure 1. High-throughput TCRβ sequencing of SSc patients over time shows temporal persistence 
of Vβ and Jβ gene segment usage. a) Experimental design of longitudinal sampling. b) Gating strategy 
for FACS sorting of CD4+ non-naïve and CD8+ non-naïve T-cells for PBL samples. c) Heatmap showing 
the frequency of Vβ and Jβ gene usage across different samples. d) Heatmap of Jensen-Shannon 
divergence of Vβ and Jβ gene usage between different samples. Lower divergence indicates similar Vβ/
Jβ gene usage.
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Patient Time Months Subset Age Sex ILD ANA mRSS HLA-A HLA-B HLA-C HLA-
DRB1

HLA-
DQB1

HLA-
DPB1

SSc 1
 
 

T0 0 dcSSc 65 F 1 1 11 *11:01 
*31:01

*55:01 
*56:01

*01:02 
*03:03

*08:03 
*11:01

*03:01 
*03:01

*02:01 
*04:01

T1 19 dcSSc 1 1 11

T2 34 dcSSc 1 1 11

SSc 2
 
 

T0 0 dcSSc 31 M 0 1 16 *23:01 
*33:03

*08:01 
*15:10

*03:04 
*03:04

*08:06 
*13:04

*03:01 
*03:19

*01:01 
*131:01

T1 12 dcSSc 0 1 13

T2 25 dcSSc 0 1 13

SSc 3
 
 

T0 0 lcSSc 46 F 1 1 4 *01:01 
*02:01

*07:02 
*37:01

*06:02 
*07:02

*15:01 
unk

*06:02 
*06:unk

*03:01 
*05:01

T1 18 lcSSc 1 1 4

T2 42 lcSSc 1 1 8

SSc 4
 
 

T0 0 lcSSc 49 F 0 1 2 *01:01 
*24:02

*08:01 
*14:02

*02:02 
*07:01

*01:01 
*03:01

*02:01 
*05:01

*04:01 
*04:02

T1 15 lcSSc 0 1 2

T2 46 lcSSc 0 1 2

Table 1. Clinical characteristics of patients included. Time from T0 is indicated in months after the 
first sample was taken. Abbreviations: dcSSc = diffuse SSc, lcSSc = limited SSc, M = male, F = female, 
ILD = interstitial lung disease (1 = yes, 0 = no), ANA = anti-nuclear antibodies (1 = yes, 0 = no), mRSS = 
modified rodman skin score, unk = unkown.

T-cell sorting
 PBLs were thawed in RPMI 1640 (Gibco, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) supplemented with 20% FCS (Sigma- Aldrich), and washed with 
PBS. Subsequently, the cells were resuspended in FACS buffer (PBS supplemented with 
1% BSA (Sigma-Aldrich) and 0.1% sodium azide (Sigma-Aldrich)) and stained using the 
following antibodies: CD3-AF700 (clone UCHT1, Biolegend, San Diego, California, USA), 
CD4-BV711 (clone OKT4, Sony Biotechnology, San Jose, California, USA), CD8-V500 
(clone RPA-T8, BD Bioscience, San Jose, California, USA), CD56-PE-CF594 (clone 
B159, BD Bioscience), CD16- BV785 (clone 3G8, Sony Biotechnology), CD14-PerCP-
Cy5.5 (clone HCD14, Biolegend), HLADR-BV421 (clone L243, Biolegend), CD45RO-PE-
Cy7 (clone L243, BD Bioscience), CD27-APC-eFluor780 (clone O323, eBioscience, San 
Diego, California, USA). Multiparametric flow cytometry sorting of non-naive CD4+ T-cells 
(CD3+CD4+CD45RO+/-CD27+/-) and non-naive CD8+ T-cells (CD3+CD8+CD45RO+/-
CD27+/-) was performed on the BD FACSAria II (BD Bioscience), according to the gating 
strategy described in Fig. 1b. After sorting, cells were washed in PBS, lysed in TRIzol™ 
Reagent (Invitrogen, Carlsbad, California, USA), and stored at -20°C until RNA isolation.

RNA isolation and TCR sequencing
 RNA was isolated using the RNeasy Mini Kit (Qiagen, Venlo, Netherlands) by 
adding ethanol to the upper aqueous phase of processed TRIzol samples and transferring 
directly to the RNeasy spin columns. TCR amplification was performed according to the 
protocol published by Mamedov et al.[32]. Primer and barcode sequences are provided 
in Supplementary Table 1. Briefly, cDNA was generated by RACE using a primer directed 
to the TCRβ constant region. Thirteen nucleotide long unique molecular identifiers (UMIs) 
were incorporated during cDNA synthesis. Subsequently, two-stage semi-nested PCR 
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amplification was performed including a size selection/agarose gel purification step after 
the first PCR. To minimize cross-sample contamination, 5-nucleotide sample specific 
barcodes were introduced at two steps during the library preparation process[32]. 
Resulting TCR amplicons were subjected to high-throughput sequencing using the 
Ovation Low Complexity Sequencing System kit (NuGEN, San Carlos, California, USA) 
according to the manufacturer’s instructions, and the Illumina MiSeq system (Illumina, 
San Diego, California, USA), using indexed paired-end 300 cycle runs.

TCR repertoire analysis
 Raw paired-end reads were assembled using Paired-End reAd mergeR 
(PEAR)[33]. Sample specific barcode correction was performed using the ‘umi_group_
ec’ command from the Recover T Cell Receptor (RTCR) pipeline[34], allowing zero 
mismatches in the barcode seed sequence for UMI detection (sample specific barcodes 
are provided in Supplementary Table 1). This strict barcode selection resulted in about 
50% loss of reads, but ensured that there was minimal cross-sample contamination. 
Subsequently, barcode sequence reads having the same UMI were collapsed into 
consensus sequences using the RTCR pipeline to accurately recover TCRβ sequences. 
Downstream data analysis of TCRβ repertoires was performed using the tcR R 
package[35].
 Healthy longitudinal sequencing data[36] was obtained from the immuneACCESS 
portal of Adaptive Biotechnologies repository at: https://clients.adaptivebiotech.com/pub/
healthy-adult-time-course-TCRB. Healthy data for validation of the diversity analysis was 
obtained from the immuneACCESS repository for the datasets from Emerson et al.[37], 
Rowe et al.[38], Tourino et al.[39], Lindau et al.[40], Soto et al.[41], Savola et al.[42], and 
De Neuter et al.[43]. The processed healthy data from Wang et al.[44] was obtained from 
the supplementary data provided in their publication.

Statistical analyses
 Statistical analyses were performed using R version 3.4.1[45], and figures were 
produced using the R package ggplot2[46]. Generation probabilities of TCRβ amino 
acid sequences were computed using the generative model of V(D)J recombination 
implemented by OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid 
sequences)[47], using the default parameters. Diversity estimates were calculated 
by sample-size-based rarefaction and extrapolation using the R package iNEXT 
(iNterpolation/EXTrapolation)[48]. Clustering analysis was performed using the GLIPH2 
[49] webtool (http://50.255.35.37:8080/). Significant clusters were considered based on 
the following parameters: number of samples 3, number of CDR3 3, vb_score<0.05, 
length_score<0.05. After filtering for significance, clusters were ordered based on final_
score obtained from GLIPH2. Network graphs of clusters were produced using the R 
package igraph[50]. Unless indicated otherwise, analysis of differences was performed 
using Student t-test. For multiple group comparisons, one-way anova was used. P-values 
<0.05 were considered statistically significant.

6
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Availability of data
 The TCRβ sequencing data presented in this study have been deposited in 
NCBI’s Gene Expression Omnibus (GEO) database under GEO: GSE156980. Both raw 
data and processed data are available.

RESULTS

High-throughput TCR sequencing of SSc patients
 To investigate the TCR repertoire dynamics in SSc, we performed high-
throughput sequencing (HTS) of TCRβ chains on longitudinal samples obtained from 
four SSc patients collected over a minimum of two years. The clinical characteristics and 
HLA haplotypes of the SSc patients are included in Table 1. Among the SSc patients 
included, two were limited SSc (lcSSc), and two were diffuse SSc patients (dcSSc). From 
all patients PBLs were collected at baseline (T0), at least one year after inclusion (T1, 
ranging from 12 to 19 months) and at least two years after inclusion (T2, ranging from 
24 to 46 months) (Fig. 1a). Frozen PBL samples were subjected to FACS sorting and 
sorted non-naive CD4+ T-cells (CD3+CD4+CD45RO+/-CD27+/-) and non-naive CD8+ 
T-cells (CD3+CD8+CD45RO+/-CD27+/-) were used for TCRβ sequencing (Fig. 1b). 
Sample specific barcodes and UMIs to barcode individual mRNA molecules were used 
to accurately recover TCRβ sequences using the RTCR pipeline[34]. We produced a 
total of 906 448 and 125 962 TCRβ UMI corrected amino acid (AA) sequence reads for 
CD4+ and CD8+ T-cells respectively. The number of UMI corrected AA sequence reads 
per sample was on average 75 000 for CD4+ T-cells and on average 10 500 for CD8+ 
T-cells (details see Supplementary Table 2).

Frequency of Vβ and Jβ gene segment usage indicates temporal persistence of 
TCRβ sequences in SSc patients
 We first assessed the frequency of Vβ and Jβ gene segment usage in SSc 
patients over time (Fig. 1c). The most frequently used Vβ segments across all samples 
were V20–1, V5-1 and V7-9, for both CD4+ and CD8+ T-cells. When looking at Jβ 
segment usage, J2-7, J2-1 and J2-3 were most frequently observed. In previous studies, 
these Vβ (V20–1, V5-1 and V7-9) and Jβ genes (J2-7, J2-1 and J2-3) were also identified 
as the most frequently used genes in both healthy and diseased individuals[51, 52], 
reflecting known intrinsic biases in the V-D-J rearrangement process[53]. Additionally, 
Vβ2, which we identified with a relatively high frequency in CD4+ and CD8+ T-cells, was 
previously found to be one of the most frequent Vβ chains in peripheral blood T-cells in 
SSc patients in another study[54], showing that disease specific patterns are also present. 
Furthermore, we also observed individual specific patterns of Vβ and Jβ segments. As an 
example, SSc patient 2 displayed a lower frequency of V-28, V7-2 and J2-5 in both CD4+ 
and CD8+ T-cells across all time points compared to the other patients (Fig. 1c).
 In order to quantify the relative similarity of Vβ and Jβ gene segment usage 
across all samples, we calculated the Jensen-Shannon divergence (JSD) between 
them (Fig. 1d). The JSD ranges from 0 to 1. A JSD of 0 indicates identical Vβ and Jβ 
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segment usage, while a JSD of 1 indicates that the Vβ and Jβ segment usage is distinct 
between two samples. When comparing the JSD between samples taken from the same 
patient, we observed that the use of Vβ and Jβ segments for both CD4+ and CD8+ 
T-cells was rather consistent over time, while samples taken from different patients 
displayed a higher divergence amongst each other (Fig. 1d). Moreover, when comparing 
the differences in JSD between Vβ and Jβ segment usage, we observed that Vβ usage 
(Fig. 1d, right panels) was more variable then Jβ segment usage (Fig. 1d, left panels) 
across different individuals. This difference in variability between Vβ and Jβ usage is to 
be expected since the TCRβ locus has more Vβ than Jβ gene segments (according to 
the ImMunoGeneTics (IMGT) database[55]), resulting in a greater potential variability for 
Vβ segment usage. Overall this analysis shows that, Vβ and Jβ gene segment usage is 
largely persistent within SSc patients over time.

SSc TCRβ repertoires are highly stable over time
 Apart from examining persistence in the use of Vβ and Jβ segments, we wanted 
to further examine the persistence of full CDR3 amino acid sequences within SSc patients 
over time. In order to quantify the overlap in TCRβ repertoire between different samples, 
Morisita’s overlap index was calculated to intersect amino acid CDR3 sequences. This 
index ranges from 0 (no overlapping sequences) to 1 (identical repertoires). Overlap 
analysis revealed that samples taken from the same patient shared a high number of 
sequences, indicating a clear temporal persistence of the repertoire within patients, 
while overlap was extremely limited between samples taken from different patients. This 
pattern was consistent over all time points, for both CD4+ and CD8+ T-cells (Fig. 2a and 
Fig. 2b respectively). These results demonstrate that the TCRβ repertoire in SSc patients 
is highly unique and stable over long periods of time, also at the level of exact CDR3 
amino acid sequences.
 Next we examined whether the frequencies of TCRβ sequences were also 
consistent over time. We observed that TCRβ sequences that were found with a high 
frequency at one time point were also found with a high frequency at the other time 
points collected from the same patient, for both CD4+ and CD8+ T-cells (Fig. 2c and 
d respectively). This shows that the frequencies of highly abundant TCRβs within SSc 
patients are largely consistent over long periods of time, even after almost four years of 
follow-up for SSc patient 4. Persistence of dominant TCRβ sequences was observed for 
all the SSc patients included in our study, for both CD4+ and CD8+ T-cells (Supplementary 
Figure S1). The exact number of TCRβ amino acid sequences overlapping between 
samples taken from the same patient are shown in Fig. 2e. Although the absolute number 
of sequences that are overlapping within patients over time (i.e. persistent sequences) 
are low, they make up a substantial part of the samples in terms of abundance, based 
on UMI corrected reads, as shown in Fig. 2f. These results clearly demonstrate that SSc 
repertoires are largely dominated by persistent sequences.

6
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Figure 2. SSc TCRβ repertoires are highly stable over time and are dominated by persistent TCRβ 
sequences. a) Heatmap showing high overlap (dark blue, morisita index) of TCR sequences within 
individuals and limited overlap (light blue) of TCR clones between individuals for CD4+ T-cells and b) 
CD8+ T-cells. c) Overlap between T-cell sequences within SSc patient 4 over time for CD4+ T-cells and 
d) CD8+ T-cells. Each dot on the scatter plots indicates a single TCR sequence. Axes denote frequency 
of sequences. Persistent sequences are shown in blue and non-persistent sequences in grey. (continued) 
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 In order to investigate whether persistent TCRβ sequences have any known 
antigen specificity, we queried the sequences that were persistently present in all three 
time points for every patient in VDJdb (a curated database of TCR sequences with known 
antigen specificities)[56]. The results of this analysis are shown in Table 2. In this table we 
show the hits for peptides presented on MHC II for CD4+ T-cells and peptides presented 
on MHC I for CD8+ T-cells, matching with the HLA haplotype of the patient from which 
the sequences were obtained.
 For persistent TCRβs from CD8+ T-cells, we mainly found associations with 
peptides related to viral antigens including EBV, CMV, influenza and HIV (Table 2). For 
SSc patient 2, we identified one TCRβ sequence (CASSRLAGGTDTQYF) associated 
with both CMV and HIV-1. This TCRβ sequence most likely represents a hit against CMV 
in patient 2, as all the patients included in our study are known to be HIV-1 negative. 
For persistent TCRβs from CD4+ T-cells, we identified two persistent sequences 
(CASSLEETQYF and CASSLGGEETQYF) associated with CMV. No hits against TCRβ 
sequences associated with human autoantigens where identified in VDJdb. However, the 
vast majority of the records present in VDJdb are based on studies of viral and cancer 
epitopes, while TCRβ sequences associated with autoantigens remain understudied. 
 Overall, these results reveal a clear temporal persistence of clonally expanded 
CD4+ and CD8+ T-cells in SSc patients, and we show that the TCRβ repertoire in SSc 
patients is highly stable over time.

Persistent clones display common features across SSc patients
 Previously, TCRs in the context of autoimmune disease have been associated 
with certain characteristics such as shorter length and a bias in Vβ/Jβ-gene segment 
usage[21, 39, 57]. To further investigate the potential involvement of persistent TCRβs 
identified in SSc patients in autoimmune responses, we computed the distribution of 
lengths of all the TCRβ amino acid sequences and compared the lengths of persistent 
and non-persistent TCRβs. The lengths were calculated based on both incidence (without 
weighing sequences by their abundance) and abundance (also taking into account the 
frequency of the sequences). A Gaussian distribution of lengths was observed for both 
persistent and non-persistent sequences, in CD4+ as well as CD8+ T-cells, when looking 
at incidence (Fig. 3a), and distribution of lengths of sequences was similar between 
persistent and non-persistent sequences in all samples (two sample Kolmogorov-
Smirnov tests >0.05 for all comparisons). When comparing the distribution of CDR3 
lengths of persistent and non-persistent sequences based on abundance, we again 
observed no significant differences in the distributions neither for CD4+ nor CD8+ T-cells 
(two sample Kolmogorov-Smirnov tests >0.05 for all comparisons, Fig. 3b). Although 
the CDR3 length distributions where not significantly different between persistent and 

Frequency was calculated based on the total reads for each sample. Density curves indicate the 
distribution of sequences across the samples. e) Venn diagram showing the exact number of persistent 
and non-persistent TCR sequences within each patient for CD4 and CD8 T-cells. f) Boxplots (continued) 
showing the fraction of total reads per sample (y-axis) across the different samples. Majority of reads is 
coming from sequences persistent across all time points (blue) or occurring in at least two time points 
(red). 
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non-persistent sequences, in SSc patient 1 and 2, more shorter length sequences were 
observed in the persistent TCRβs, while in SSc patient 4, longer sequences were found 
(Fig. 3b). However, this skewness in lengths is mainly caused by the expansion of few 
dominant TCRβ sequences.
 Next to comparing lengths, we also compared the frequencies of Vβ and Jβ 
segment usage between persistent and non-persistent TCR se- quences to see if 
there was any preferential usage (Fig. 3c). Although most differences observed were 
small, we identified various Vβ and Jβ gene segments that had either higher or lower 
frequencies in persistent sequences across all SSc patients. As an example, TRBJ1-2 
had a significantly lower frequency in persistent sequences in CD4+ as well as CD8+ 
T-cells across all SSc patients, while the frequency of TRBV7-2 and TRBV7-3 was higher 
in persistent sequences in CD4+ and CD8+ T-cells respectively (Fig. 3c). This analysis 
demonstrates that, although the number of exact sequences that are shared between 
SSc patients is low, TCRβ sequences that are persistently present in SSc patients over 
time show similarities in terms of Vβ and Jβ usage. Moreover, these are significantly 
different from non-persistent sequences, showing that persistent sequences display 
preferential usage of Vβ and Jβ segments across SSc patients. Given that similar TCR 
sequences are thought to be involved in T-cell responses to similar antigens[58–61], the 
preferential segment Vβ and Jβ segment usage across SSc patients over time might 
reflect chronic immune responses against antigens that are commonly present across 
patients.

CD4 - MHC II

CDR3 MHC A MHC B Epitope Species

SSc 3 CASSLEETQYF HLA-DRA*01:01 HLA-DRB1*15 pp65 CMV

SSc 3 CASSLGGEETQYF HLA-DRA*01:01 HLA-DRB1*15 pp65 CMV

CD8 - MHC I

CDR3 MHC A MHC B Epitope Species

SSc 1 CASSWGQGSNYGYTF HLA-A*11:01 B2M EBNA3B EBV

SSc 2 CASSLGQAYEQYF HLA-B*08:01 B2M EBNA3A EBV

SSc 2 CASSPGQGEGYEQYF HLA-B*08:01 B2M BZLF1 EBV

SSc 2 CASSPGTGEGYEQYF HLA-B*08:01 B2M BZLF1 EBV

SSc 2 CASSRLAGGTDTQYF* HLA-B*08:01 B2M Gag HIV-1

SSc 2 CASSRLAGGTDTQYF* HLA-B*08:01 B2M IE1 CMV

SSc 3 CSARDRTGNGYTF* HLA-A*02:01 B2M BMLF1 EBV

SSc 3 CSARDRTGNGYTF* HLA-A*02:01 B2M M Influenza

SSc 3 CSARDRTGNGYTF* HLA-A*02:01 B2M BMLF1 EBV

SSc 3 CASSPTDTQYF HLA-A*02 B2M pp65 CMV

SSc 4 CASSVGQAYEQYF HLA-B*08:01 B2M EBNA3A EBV

Table 2. Epitope specificity of persistent TCRβs (occurring in all three time points within a patient), 
according to VDJdb. For CD4+ TCRβ sequences, specificities for peptides presented on MHC II are 
given and for CD8+ TCRβ sequences, specificities for peptides presented on MHC I are given. Only 
results for HLA molecules matching the HLA haplotype of the specific patients are given. Sequences 
indicated with an asterisk (*) are identical.
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Figure 3. Comparison of TCRβ characteristics between persistent and non-persistent sequences. 
a) Density plots showing the distribution of lengths of TCR amino acid sequences (x-axis), based on 
incidence. Distribution of lengths of persistent (blue) and non-persistent (grey) TCR sequences (continued)
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are shown. b) Line plots showing the distribution of lengths of TCR amino acid sequences (x-axis), based 
on abundance. c) Bar plot showing the frequency (y-axis) of TCR Vβ and Jβ gene segments (x-axis) of 
persistent sequences (blue) compared to non-persistent (grey) sequences. Every dot represents one 
sample. T-tests were performed to test if the gene usage was significantly different between persistent 
and non-persistent sequences (* = p < 0.05). 

SSc TCRβ repertoires are less diverse than healthy memory repertoires
 The persistence of highly abundant TCRs is not necessarily unique to autoimmune 
repertoires and has in fact previously been observed in healthy individuals[36]. Therefore, 
we also compared our SSc data to a public dataset of longitudinal TCRβ sequences 
from healthy donors[36]. To investigate whether TCRβs in SSc patient repertoires are 
aberrantly expanded compared to healthy repertoires, we compared the Shannon 
diversities of healthy memory repertoires to those of SSc. As the samples differed in their 
sizes, to compare the diversity between samples we performed rarefaction analysis. The 
healthy control dataset from Chu et al. included here did not contain singletons (sequences 
represented by one read). We therefore performed rarefaction analysis and estimated 
Shannon diversity in our SSc patient data by including and excluding singletons. In Fig. 
4a, we show the estimated Shannon diversity based on the rarefied and extrapolated 
data excluding singletons. The estimated species richness and Shannon diversity was 
significantly lower in SSc CD4+ and CD8+ T-cell repertoires as compared to the healthy 
memory repertoire (p-value <0.05, Fig. 4b). To estimate the effect of excluding singletons 
on the diversity, the same analysis was also performed including the SSc singletons. In 
this analysis, the estimated Shannon diversity of TCRβ sequences obtained from SSc 
CD8+ T-cells were still significantly lower than the diversity of healthy memory cells, 
while the significant difference in diversity with the CD4+ T-cells was no longer observed 
(Supplementary Figure S2a-b).

Figure 4. SSc TCRβ repertoires have a decreased diversity compared to healthy memory 
repertoires. a) Sample based rarefaction and extrapolation curves. Solid lines depict observed data, 
dashed line depict extrapolated data. Calculated for all healthy memory samples (blue), SSc CD4 (yellow) 
and SSc CD8 samples (grey). Every line represents one sample. b) Boxplots show median of asymptotic 
diversity estimates calculated from the rarefied and extrapolated data shown in G. ***p < 0.001, ****p < 
0.0001 (one way anova).
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 Additionally, next to the decreased diversity of SSc repertoires versus healthy 
repertoires, we also observed a decreased diversity of the SSc CD8+ repertoire versus 
the SSc CD4+ repertoire. Given the fact that there was a substantial difference in 
sequencing depth between CD4+ and CD8+ T-cells in our analysis (Supplementary 
Table 2), we wanted to confirm the results from the rarefaction analysis in a separate 
subsampling analysis. We repeated the diversity analysis for 100 random subsamples 
obtained from SSc CD4+ T-cells and compared these results to the results obtained 
from SSc CD8+ T-cells. In all subsamples analyzed, CD8+ T-cells had a significantly 
lower diversity than the CD4+ T-cells (Supplementary Figure S2c), corroborating with the 
results from the rarefaction analysis from the original/complete data.
 As the healthy control dataset from Chu et al. contains some technical differences 
from our SSc dataset (e.g. DNA versus RNA, no distinction between CD4+/CD8+ T-cells, 
exclusion of singletons), we compared the diversity observed in SSc repertoires versus 
healthy donors in eight additional datasets. The eight additional datasets included 
TCRβ repertoires from sorted CD4+/CD8+ T-cells isolated from healthy individuals (see 
Supplementary Table 3). We compared Shannon diversity, estimated by rarefaction 
analysis, for all eight datasets with our SSc dataset (Supplementary Figure 3). For 
datasets excluding singletons, we also excluded singletons from the SSc data. We were 
able to validate the decreased diversity observed in SSc patients for both CD4+ and 
CD8+ T-cells for the vast majority of the datasets analyzed. In more detail, in six out of 
seven datasets containing CD4+ T-cells, Shannon diversity was significantly lower in SSc 
as compared to CD4+ T-cells from healthy individuals. For all five datasets containing 
CD8+ T-cells, Shannon diversity was significantly lower in SSc as compared to CD8+ 
T-cells from healthy individuals.
 Overall, these results demonstrate that the TCRβ repertoire diversity is lower 
in SSc patients compared to healthy individuals. This provides evidence for a skewed, 
clonally expanded repertoire in SSc, potentially due to chronic antigen driven T-cell 
responses.

Persistent frequency of dominant TCR sequences is driven by antigenic selection 
rather than bystander activation
 The hypothesis of 1) bystander activation due to chronic inflammation and 2) 
clonal expansion driven by the chronic presence of antigens skewing the TCR repertoire 
have been proposed. To test the hypothesis of bystander activation, we investigated 
whether easy to generate TCRβ sequences (having high generation probabilities) are 
present at high frequencies in SSc patients. To this extend, we calculated the generation 
probabilities (pgens) of the TCRβs identified in SSc patients using OLGA[47]. We then used 
linear regression to model the relationship between TCRβ frequency and pgen. Using this 
analysis, we show that in SSc CD4+ and CD8+ T-cells, TCRβ frequency and pgen are not 
related (p-value >0.05, Fig. 5a and Fig. 5b for CD4+ and CD8+ T-cells respectively). This 
indicates that T-cells persistent in SSc patients have not expanded because of random 
bystander effects.
 For naive T-cells isolated from healthy individuals, we found a significant 
positive correlation between the pgen and abundance of TCRβs (p-value <0.05, Fig. 
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Figure 5. Frequencies of dominant TCRβ sequences are not driven by generation probabilities in 
SSc patients. a) Linear regression plot between frequency (x-axis) and generation probability (y-axis) 
of one representative plot of taken from SSc CD4+ T-cells (patient 4, time point 0). Red line indicates 
the linear regression model fit. b) Linear regression plot between frequency and generation probability 
of one representative plot of taken from SSc CD8+ T-cells (patient 4, time point 0). c) Linear regression 
plot between frequency and generation probability of one representative plot of taken from healthy naïve 
T-cells (donor 1, time point 4). d) Linear regression plot between frequency and generation probability 
of one representative plot of taken from healthy memory T-cells (donor 1, time point 4). e) Histograms 
showing the distribution of p-values (left) and slopes (right) for linear regression between frequency and 
generation probability (computed using OLGA) of subsamples of healthy donor naïve T-cell samples 
(donor 1, time point 4). Distribution over 100 different subsamples is shown. Red bars in the p-value 
histogram indicates p-value ≤ 0.05. Red dashed line in the slope histogram indicates the mean slope 
for the 100 subsamples. f) Distribution of p-values (left) and slopes (right) for linear regression between 
frequency and generation probability of subsamples of healthy donor memory T-cell samples (donor 1, 
time point 4).

5c). For memory T-cells isolated from the same healthy individuals, we also observed 
a significant positive correlation between pgen and abundance of TCRβs (p-value <0.05, 
Fig. 5d). Notably, the slope for memory T-cells was lower than that observed for the 
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naive T-cells (0.00018 versus 0.0165, respectively). From this analysis we show that for 
naïve and memory TCRβs obtained from healthy individuals, pgen and abundance are 
positively correlated, whereas in non-naive SSc T-cells no relationship between pgen and 
abundance is observed. However, as the samples obtained from healthy individuals were 
sequenced more deeply than our SSc samples, this observed difference in correlation 
might be confounded by sequencing depth. Therefore, we repeated the linear regression 
analysis for 100 random subsamples obtained from the healthy dataset and compared 
these results to the results obtained from SSc samples. Upon subsampling of the naïve 
healthy T-cells, 89% of the slopes observed the in linear regression were significantly 
different from zero (linear regression p-value <0.05 and slope >0, as indicated by the 
red bars in Fig. 5e), confirming that indeed there is a positive relationship between pgen 
and abundance for TCRβs obtained from healthy naïve T-cells. However, when looking 
at healthy memory T-cells, we did not confirm the correlation between frequency and 
pgen that was observed in the full sample (p-value <0.05 in 7% of subsamples, Fig. 5f), 
showing that in healthy memory T-cells there is no clear correlation between TCRβ 
pgen and abundance. Thus, subsampling analysis shows that in both healthy memory 
T-cells and SSc non-naïve CD4+ and CD8+ T-cells, TCRβ pgen and abundance are not 
correlated. These results suggest that the more abundant TCRβs in SSc repertoires 
are likely there because of selection, similar to what is observed in healthy memory 
repertoires, rather than bystander activation of naive T-cells that are not antigen specific.

Clusters of similar TCRβ sequences can be identified in SSc patients over time
 In order to identify TCRβs in SSc patients that are potentially involved in chronic 
autoimmune responses, we used “Grouping of Lymphocyte Interactions by Paratope 
Hotspots” (GLIPH2), that employs sequence similarity and motif analysis to group TCR 
sequences that potentially recognize the same epitope[49]. To screen for antigen specific 
TCRβ clusters, we used all sequences obtained from every time point for each individual 
SSc patient as an input for GLIPH2. In order to exclude false positives, for each patient 
we considered the clusters that contained sequences from all time points, had at least 
three unique CDR3s, had similar CDR3 lengths (length score <0.05), and shared similar 
Vβ-gene frequency distributions (Vβ score <0.05). The number of clusters that were 
obtained for every patient for CD4+ and CD8+ T-cells are given in Table 3. 
 Significant clusters were identified in all patients, either based on global similarity 
(CDR3 sequence differing by maximum one amino acid) or local similarity (shared 
motif within CDR3 amino acid region). All clusters identified by GLIPH2 are given in 
Supplementary Table 4. In Fig. 6a, an example network of TCRβ sequences based on 
clustering analysis by GLIPH2 in CD4+ T-cells is given. Red and purple nodes within 
this network represent TCRβs that are persistently present in three or two time points 
respectively, while blue shaded nodes represent sequences are found only in one time 
point. Nodes are connected when they are part of the same cluster as identified by 
GLIPH2. Global and local motifs are indicated in green and orange respectively. A “%” 
sign within the motif indicates a variable amino acid across the sequences in which that 
particular motif is present.
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Cell type Patient Total clusters Significant clusters

CD4 SSc 1 7800 204

SSc 2 50365 3735

SSc 3 34882 554

SSc 4 22674 550

CD8 SSc 1 335 2

SSc 2 534 23

SSc 3 453 22

SSc 4 1500 106

Table 3. Number of clusters identified by GLIPH2 within SSc patients. All sequences from all time 
points from each patient (for the two cell types) were used as input for GLIPH2. The total clusters column 
represents the total number of clusters identified by GLIPH2. The significant clusters column represents 
the number of significant clusters (consisting of sequences from all three time points, at least three unique 
CDR3s, length score <0.05, and Vβ score <0.05).

 Within the network, persistent TCRβs share motifs with other persistent and 
non-persistent TCRβs sequences. This shows that persistent TCRβ sequences cluster 
together with other, similar TCRβ sequences, potentially representing groups of T-cells 
responding to the same antigen. The top 10 clusters, based on final cluster score outputted 
by GLIPH2, and their corresponding motifs for this network are given in Fig. 6b. Some 
clusters also shared TCRβ sequences with other clusters within a patient, showing that 
clusters also display convergence between each other (Fig. 6c, top 3 clusters are shown). 
Similar results were obtained for CD8+ T-cells, where we also identified many clusters of 
persistent and non-persistent TCRβs sharing motifs within the CDR3 region (Fig. 6d–f). 
These results demonstrate that, apart from the presence of individual persistent clonally 
expanded T-cells, clusters of T-cells with potentially similar specificities are present within 
SSc patients over time.
 Lastly, we performed an overlap analysis of all motifs from significant clusters 
identified by GLIPH2 between the different SSc patients (Fig. 6g and h). We did not 
observe any motifs for CD4+ T-cells or for CD8+ T-cells that overlap between all four 
patients. For the CD4+ T-cells, there were 11 motifs that were identified in clusters 
from three out of four SSc patients (Fig. 6g). These represent groups of T-cells that are 
likely to recognize the same or highly similar antigens across SSc patients, which could 
potentially be involved in SSc pathogenesis. We also performed the GLIPH2 analysis on 
the data from memory T-cells for healthy donors obtained from Chu et al.[36]. For this 
analysis, the same parameters as for SSc were used, however, as for healthy donor 1 
and healthy donor 2, memory T-cells were obtained from only two time points, for these 
donors we also considered clusters that had at least two unique CDR3s to be significant. 
The number of significant clusters that were obtained for the memory T-cells obtained 
from healthy donors is given in Supplementary Figure 4a. In order to determine whether 
the 11 motifs that we found overlapping in CD4+ TCRβ clusters between SSc patients 
were specific for SSc, we overlapped them with the motifs obtained from the healthy 
donor memory T-cells. Of the 11 motifs, 2 (S%TTDT and S%DRAYE) were found to 
be uniquely present in SSc patients (Supplementary Figure 4b). In order to investigate 
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Figure 6. Clustering analysis of similar TCRβ sequences in SSc patients over time. a) Network of 
TCRβ clusters identified by GLIPH2 in CD4+ T-cells from SSc patient 4. Every node represents one TCRβ 
sequence. Red nodes represent TCRβs persistent across three time points within a patient, purple nodes 
represent TCRβs persistent across two time points within a patient, and blue shaded nodes (continued) 
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whether these motifs have been associated to known antigens, we queried them against 
the VDJdb motif database, which contains several curated CDR3 motifs specific to 
different epitopes[56]. No hits were identified for these motifs.

DISCUSSION
 Identification of TCR sequences that are associated with the chronic autoimmune 
response in SSc will help to get more insights into the autoimmune pathogenesis of the 
disease, and will help to identify the antigenic triggers that underlie these responses. 
Our analysis reveals that the peripheral blood TCRβ repertoire of SSc patients is highly 
stable over time. Moreover, the TCRβ sequences that were found within a patient with a 
high frequency at one time point were also found with a high frequency at the other time 
points (even after four years), showing that frequencies of dominant TCRβs are largely 
consistent over time. These persistent, clonally expanded CD4+ and CD8+ T-cells 
are potentially involved in the autoimmune responses underlying SSc pathogenesis. 
Furthermore, we have shown that the persistent expansion of these T-cells is likely a 
result of antigenic selection rather than recombination bias, as TCRβ frequencies were 
not related to their respective generation probabilities.
 When we queried the persistent TCRβs found in our SSc patients in VDJdb, 
we obtained several hits for TCRβ sequences that are known to be associated with viral 
antigens from influenza, CMV and EBV, especially in the CD8+ T-cell compartment. SSc 
patient 4 has a CMV and EBV positive status, and TCRβ sequences associated with CMV 
and EBV were identified in this patient. For the other SSc patients included in this study, 
the CMV and EBV status are unknown. Interstingly, EBV and CMV infections have been 
shown to be environmental risk factors for SSc[62–65], and molecular mimicry between 
chronic viral antigens and human autoantigens has been proposed as a potential driver 
for autoimmune disease[66].
 Chu et al. have previously shown that subsets of persistent TCRβs are also 
present within healthy individuals[36]. Thus, persistence of TCR sequences in itself is 
likely not just a characteristic of autoimmune related repertoires. However, the temporal 
dynamics of the TCR repertoire in healthy individuals in the aforementioned study have 
only been investigated over a period of one year, so it remains to be seen whether 
this stability is also maintained in healthy individuals over longer periods of time, as is 
observed in SSc in our study. Moreover, whereas the previous study looked into the total 
pool of memory T-cells, we show that persistent TCRβs can be identified in both the 
CD4+ and CD8+ memory T-cell compartments separately.

represent TCRβs present at a single time point. Nodes are connected if they share a motif or a have 
similar CDR3 region sequence. b) Top ten clusters identified by GLIPH2 in CD4+ T-cells from SSc patient 
4. For each cluster, the motif identified by GLIPH2 is given. (continued) Motifs with global similarity (CDR3 
sequence differing by maximum one amino acid) are indicated in green, while motifs with local similarity 
(shared motif within CDR3 amino acid region) are indicated in orange. c) Top three clusters in CD4+ 
T-cells of SSc 4. For each cluster a sequence logo is given based on the TCRβ sequences present in the 
cluster. d) Network of TCRβ clusters identified by GLIPH2 in CD8+ T-cells from SSc patient 4. e) Top ten 
clusters identified by GLIPH2 in CD8+ T-cells from SSc patient 4. f) Top three clusters in CD8+ T-cells of 
SSc 4. 
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 When further comparing the TCR repertoires of CD4+ and CD8+ T-cells from 
SSc patients to repertoires obtained from healthy memory T-cells, we found that SSc 
repertoires have lower diversity. Indeed, decreased diversities of TCRβ repertoires as 
compared to healthy have been observed in other autoimmune diseases[20, 52, 67], 
and have been proposed as a characteristic of autoimmune repertoires. Interestingly, in 
SSc, differences in the diversity of the TCR repertoire have also been observed between 
responders and non-responders after autologous hematopoietic stem-cell transplantation 
(AHSCT, the only therapy with long-term clinical benefit in SSc), with non-responders 
having a less diverse repertoire[68]. This provides further evidence that decreased TCR 
repertoire diversity contributes to the autoimmune pathogenesis of SSc.
 Determinant spreading has been proposed as a pathogenic event in various 
autoimmune diseases. During determinant spreading, an antigenic epitope can induce 
an immune response against other, distinct epitopes on the same protein or other 
proteins in the same tissue. Those epitopes then become additional targets for the 
immune response. In systemic sclerosis, vascular damage or skin injury could induce an 
autoimmune response against epitopes that are normally sequestered[69]. It has been 
proposed that during determinant spreading, diversification of the TCR repertoire occurs 
as various TCRs would be expected to respond against the novel epitopes. However, 
this response is thought to be dynamic and although diversification of the repertoire may 
occur in early stages of the disease, at later time points the response might become more 
restricted[70]. Following this line of thought, as the SSc patients in our study have more 
established forms of the disease (lcSSc and dcSSc), we expect to see a more skewed 
TCR repertoire. Indeed when comparing the diversity of the TCR repertoire of our SSc 
patients to healthy donors, we observe a decrease in the repertoire diversity in SSc. 
In the context of determinant spreading, it would be interesting to repeat this analysis 
in patients at earlier stages of the disease (for example eaSSc patients) and see if the 
repertoire is more diverse, which could imply that determinant spreading is ongoing and 
contributing to disease pathogenesis.
 In our generation probability analysis, we show that in both healthy memory 
T-cells and SSc non-naïve CD4+ and CD8+ T-cells, TCRβ pgen and abundance are not 
correlated. Therefore it is likely that in SSc patients, similar as to healthy donors, T-cell 
expansion is caused by antigen specific selection rather than bystander effects. Bystander 
activation of T-cells has been demonstrated to be driven by excessive production of 
cytokines including type I IFN, IL-15 and IL-18 for CD8+ T-cells[71], and IL-2 for CD4+ 
T-cells[72] during immunopathology. Interestingly, type I IFNs are implicated in SSc 
pathogenesis[73], and IL-15 and IL-18 have been found to be increased in circulation of 
SSc patients as compared to healthy individuals[74, 75]. This shows that SSc patients 
display a skewed pro-inflammatory milieu that favors bystander activation of T-cells. 
Therefore, one might expect an increased number of bystander expanded T-cells within 
these patients as compared to healthy individuals. However, since we observe no 
difference between SSc and healthy memory T-cells within our generation probability 
analysis, we show that bystander activation does not significantly contribute to the 
skewed clonal expansion of T-cells that we observed in SSc patients.
 Predicting T-cell reactivity towards antigens is one of the major areas currently 
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investigated in the field of TCR research. Since prediction of TCR binding to a specific 
antigen is extremely challenging, current efforts are more focused on identifying groups 
of TCRs that contain certain motifs within their CDR3 region[58–61]. These groups of 
TCRs comprise clones that potentially respond to the same antigen. Apart from exact 
sharing of TCRβ sequences between samples, we also identified clusters of TCRβs that 
share sequence motifs and were persistent within patients. This indicates that antigen 
selection reshapes the TCRβ repertoire in SSc. Potential antigens could include self-
antigens, or chronic infections with pathogens (e.g., CMV or EBV, for which we identified 
associated persistent TCRβs). Interestingly, we also found clusters of TCRβs from CD4+ 
T-cells within patients that shared motifs with other TCRβ clusters between patients, 
even though these patients did not all share common HLA alleles. Notably, two of these 
motifs could not be detected in TCRβ clusters identified from memory T-cells of healthy 
donors. These could represent clusters of similar TCRβs that might contribute to more 
public autoimmune responses underlying SSc pathogenesis. The antigens that these 
clusters of TCRβs are potentially responding to remain to be identified. Although some 
epitope associated TCR CDR3 motifs have recently been identified in VDJdb[56], 
current information on antigen specific motifs is extremely sparse, especially for MHC 
II associated epitopes. Sequencing of larger (longitudinal) cohorts and MHC Class II 
tetramer studies including autoantigens are needed to further identify which TCR motifs 
can be associated with autoimmune disease, and link them to their potential pathogenic 
targets. For CD8+ T-cells, we did not find any clusters overlapping between more than 
two patients. However, in general we obtained less clusters in CD8+ T-cells than we did 
in CD4+ T-cells. This could be due to the fact that we sequenced less CD8+ than CD4+ 
T-cells, and thus this difference might be explained by a difference in sequencing depth 
between the two cell types.
 To validate our findings and further study the potential pathogenic role of antigen 
specific TCRβ clusters in SSc, larger patient cohorts should be studied. In this cohort we 
included a limited number of patients with similar clinical characteristics which makes 
it difficult to account for factors such as age, sex and ethnicity influencing the immune 
system. Thus, studying larger longitudinal cohorts are needed to further define disease 
specific clusters of autoimmune associated TCRβs. Lastly, it would also be interesting 
to perform immune sequencing of SSc skin to see if these TCRβ clusters/motifs can be 
traced back in the skin (the major organ affected by the disease) of SSc patients.
 In conclusion, our data provide evidence for an antigen driven expansion of 
CD4+/CD8+ T-cells in SSc. We have identified clusters of T-cell clones that are highly 
persistent over time, and we have shown that this persistence likely is a result of antigenic 
selection.
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SUPPLEMENTARY INFORMATION

Figure S1 Overlap between frequencies of TCR sequences for a) CD4+ T-cells from SSc patient 1, b) 
CD8+ T-cells from SSc patient 1, c) CD4+ T-cells from SSc patient 2, d) CD8+ T-cells from SSc patient 
2, e) CD4+ T-cells from SSc patient 3, f) CD8+ T-cells from SSc patient 3. Axes denote frequency of 
sequences. Persistent sequences are shown in blue and non-persistent sequences in grey. Frequency 
was calculated based on the total UMI corrected reads for each sample. Density curves indicate the 
distribution of sequences across the samples.



172

Longitudinal TCR analysis reveals persistence of antigen-driven T-cell clusters in SSc

Figure S2 a) Sample based rarefaction and extrapolation curves. SSc samples include singletons, 
healthy samples exclude singletons. Solid lines depict observed data, dashed line depict extrapolated 
data. Calculated for all healthy memory samples (blue), SSc CD4 (yellow) and SSc CD8 samples (grey). 
Every line represents one sample. b) Boxplots show median of asymptotic diversity estimates calculated 
from the rarefied and extrapolated data shown in G. ns: non-significant, **** p < 0.0001 (one way anova). 
c) Histogram showing the distribution of p-values for difference in diversity of subsamples of CD4+ T-cells 
versus CD8+ T-cells Distribution over 100 different subsamples is shown.
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Figure S3 Validation of the decrease in diversity in SSc repertoires versus healthy donors in eight 
additional datasets. a-h) Boxplots show median of asymptotic diversity estimates calculated using 
rarefaction analysis. Colours depict different samples obtained from healthy CD4+ T-cells (blue), healthy 
CD8+ T-cells (yellow), SSc CD4+ T-cells (grey), and SSc CD8+ T-cells (red). Asterisks indicate p-values, 
where NS=not significant, * p<0.05, ** p<0.01, *** p<0.001, **** p < 0.0001 (one way anova).
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Figure S4 a) Number of clusters identified by GLIPH2 within memory T-cells obtained from healthy 
donors. All sequences from all time points from each donor were used as input for GLIPH2. The total 
clusters column represents the total number of clusters identified by GLIPH2. The significant clusters 
column represents the number of significant clusters. b) venn diagram showing the overlap in significant 
motifs obtained by GLIPH2 in healthy donors, as well as motifs identified to be overlapping in 3 out of 4 
SSc patients (indicated by SSc CD4). Motifs overlapping between all comparisons, and motifs that were 
uniquely found in SSc CD4 have been highlighted.
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ABSTRACT

Objective Autoimmune inflammation is characterized by tissue infiltration and expansion 
of antigen-specific T cells. This inflammation is often limited to specific target tissues, 
but within tissues, multiple sites can be affected. However, it remains yet to be explored 
whether distinct affected sites are infiltrated with the same T cell clones and whether 
these clones persist over time. 

Methods Here we performed CyToF analysis and T cell receptor (TCR) sequencing to 
study immune cell composition and (hyper-)expansion of circulating and joint-derived 
Tregs and non-Tregs in Juvenile Idiopathic Arthritis (JIA, N=9). We studied different joints 
affected at the same time, as well as over the course of relapsing remitting disease. 

Results CyToF analysis revealed that the composition and functional characteristics 
of the immune infiltrates are strikingly similar between joints within one patient. 
Furthermore, we observed a strong overlap between dominant T cell clones, especially 
Treg, in inflamed joints affected at the same time, of which some could also be detected 
in circulation. Finally, these dominant T cell clones were found to persist over the course 
of relapsing remitting disease. Moreover, T cell clones found across two distinct joints 
were characterized by a high degree of sequence similarity, indicating the presence of 
TCR clusters responding to the same antigens. 

Conclusions Together, these data suggest that in localized autoimmune disease there 
is auto-antigen driven expansion of both Teffector and Treg clones, that are highly 
persistent and are (re)circulating. These dominant clones might represent interesting 
therapeutic targets.
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INTRODUCTION
 Inflammation, often localized to specific target tissues, is a hallmark of 
autoimmune diseases. Within specific inflamed tissues, multiple sites can be affected, 
however. Examples of this phenomenon include the inflammation of several sites within 
the intestine in Inflammatory Bowel Diseases (IBD), or the inflammation of multiple joints 
in Rheumatoid Arthritis (RA) and Juvenile Idiopathic Arthritis (JIA). Investigation of the 
pathophysiological mechanisms underlying these autoimmune diseases have implicated 
T cells as key players of inflammation in specific target tissues. Firstly, many autoimmune 
diseases are associated with the expression of specific MHC (HLA) class II alleles, 
which is hypothesized to lead to altered antigen presentation and enhanced CD4+ T cell 
activation[1]. Moreover, highly activated CD4+ T cells often accumulate in affected tissue 
sites[2]. Next to the presence of these highly activated CD4+ T cells, increased numbers 
of CD4+CD25+CD127lowFOXP3+ (forkhead box P3) regulatory T cells (Tregs), capable 
of suppressing immune responses and fundamental to immune homeostasis, are also 
present[3, 4]. 
 It is increasingly appreciated that tissue resident T cells display an array of 
distinct trafficking and functional markers compared to circulating T cells[5]. Previous 
flow cytometric studies have already identified a heterogeneous pool of CD4+ T cells and 
Tregs at inflamed sites in human autoimmune diseases, which are phenotypically distinct 
from their circulating counterparts[6–10]. Novel technologies such as mass cytometry 
allow for more detailed, high resolution analysis of the cellular heterogeneity with inflamed 
tissues. This information can be used to reveal potential pathogenic T cell populations 
characterized by unique phenotypes within these tissues. Next to the identification of 
activated T cell subsets using flow cytometry, studies assessing the T cell receptor (TCR) 
repertoire have generated evidence for the presence of clonally expanded T cells in 
specific tissues in a wide spectrum of autoimmune diseases[11–15]. These findings 
suggest that the T cell response at the site of autoimmune inflammation is mounted by 
the presentation of specific local antigens that selectively induces activation, expansion 
and/or migration of antigen-specific T cell clones.
 Similar to conventional T cells, Tregs that leave the thymus typically express 
a unique TCR. While Tregs only represent a small fraction of the total CD4+ T cell pool, 
the TCR repertoire of peripheral Tregs, consisting of both thymus derived and peripheral 
induced Tregs, is as diverse as that of conventional CD4+ T cells[16–18]. Through 
interaction of their TCR with a cognate peptide-MHC complex, Tregs can recognize and 
respond to specific (auto-)antigens, which is central to their thymic development as well as 
their suppressive function once they leave the thymus[19, 20]. Several studies, including 
investigations in transgenic mice, previously showed that a restricted TCR repertoire 
of the Treg compartment can lead to the development of autoimmune disease [21–23], 
for example through a loss of tolerance towards commensal bacteria[24]. However, 
Tregs with a single TCR specificity can also inhibit autoimmune responses, thereby 
also providing some degree of protection against autoimmunity[25]. In humans, hyper-
expanded Treg TCRβ clones can be found at the site of inflammation in JIA[26–28], and 
in refractory JIA patients hyper-expanded Tregs can even be found in circulation[29]. 
This expansion is likely caused by a dominance of specific (auto)antigens present at 
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target tissues. However, the exact antigen specificity and temporal and spatial dynamics 
of hyper-expanded effector T cells and Tregs in chronic inflammation and their relation 
to disease relapses remains to be established. Defining the specific CD4+ T cell subsets 
that are expanding in JIA patients is critical to decipher disease pathogenesis, and 
hyper-expanded T cells may represent novel therapeutic targets. Moreover, insight 
into the antigen specificity of local T cells may aid the discovery of disease-associated 
autoantigens.
 Here, we had the unique opportunity to study autoimmune inflammation 1) 
within different affected sites at one single time point (spatial dynamics), and 2) over time 
(temporal dynamics), to get a detailed understanding of T cell dynamics during human 
autoimmune inflammation. To this end, we profiled the T cell composition of inflammatory 
exudate as well as peripheral blood obtained from JIA patients using mass cytometry. 
In addition, we performed TCRβ repertoire sequencing of Tregs as well as conventional 
CD4+ T cells (non-Tregs) derived from inflamed sites of JIA patients over time and 
space. Hyper-expanded TCRβ clones identified at the site of inflammation were highly 
overlapping between two affected joints that were sampled from the same individual 
at the same time. Moreover, the cellular distribution of two inflamed joints within a 
patient was almost identical, whereas distinct patterns were observed between patients. 
Furthermore, when comparing affected joints during multiple disease relapses, a large 
degree of overlap was observed in the dominant TCRβ clones, in the Treg as well as non-
Treg compartments. Together, these data indicate a presence of re-circulating T(reg)-
cells that very likely react to dominant auto-antigens continuously present in affected 
joints in JIA patients. 

METHODS

Collection of SF and PB Samples
 Patients with Juvenile Idiopathic Arthritis (JIA) were enrolled at the University 
Medical Center of Utrecht (The Netherlands). A total number of 9 JIA patients were 
included in this study. Of the JIA patients included, n = 2 were diagnosed with extended 
oligo JIA, n = 2 with rheumatoid factor negative poly-articular JIA, and n = 5 with oligo 
JIA, according to the revised criteria for JIA[30]. The average age at the time of (first) 
sample inclusion was 13,1 years (range 3,2 – 18,1 years) with a disease duration of 7,3 
years (range 0.4 – 14.2 years). 
 Peripheral blood (PB) of JIA patients was obtained via veni-puncture or 
intravenous drip, while synovial fluid (SF) was obtained by therapeutic joint aspiration 
of affected joints. Informed consent was obtained from all patients either directly or from 
parents/guardians when the patients were younger than 12 years of age. The study was 
conducted in accordance with the Institutional Review Board of the University Medical 
Center Utrecht (approval no. 11-499/C). PB from n = 3 healthy children (average age 15,1 
years with range 14,7 - 15,4 years) was obtained from a cohort of control subjects for a 
case-control clinical study. Samples were collected in compliance with the Declaration of 
Helsinki.
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 For cell isolation, SF was incubated with hyaluronidase (Sigma-Aldrich) for 30 
min at 37°C to break down hyaluronic acid. Synovial fluid mononuclear cells (SFMCs) 
and peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll Isopaque 
density gradient centrifugation (GE Healthcare Bio-Sciences, AB), and were used after 
freezing in Fetal Calf Serum (FCS) (Invitrogen) containing 10% DMSO (Sigma-Aldrich).

Flow cytometry and cell sorting
 For TCR sequencing purposes, CD3+CD4+CD25highCD127low Tregs and 
CD3+CD4+CD25low/intCD127int/high non-Tregs were isolated from frozen PBMC and SFMC, 
using the FACS Aria III (BD). Antibodies used for sorting were: anti human CD3-BV510 
(Biolegend), CD4-FITC (eBioscience), CD25-PE/Cy7 (BD), CD127-AF647 (Biolegend). 
To check for FOXP3 expression of the sorted populations anti human FOXP3-eF450 
(eBioscience) was used.

CyToF
 Frozen PBMCs and SFMCs were thawed and stained with a T cell focused 
panel of 37 heavy metal-conjugated antibodies (Supplemental Table 1), as previously 
described[31], and analyzed by CyToF-Helios. A detailed description of the methods for 
CyToF and analysis are provided in the supplementary material. 

TCR sequencing
 Tregs and non-Tregs were lysed in RLT buffer and frozen at -80°C. Between 
0.15x106 and 1x106 Tregs, and between 0.46x106 and 1x106 non-Tregs were obtained for 
TCR sequencing. A detailed description of the methods for TCR sequencing and analysis 
are provided in the supplementary material

Statistical analyses
 Nonparametric Mann Whitney (two-tailed) statistical test was performed in 
the manual gating of cellular subsets in FlowJo; p-values <0.05 were considered 
statistically significant. The correlation matrix for the node frequency was calculated 
using Spearman’s rank-order correlation. Generation probabilities (Pgens) of TCRβ amino 
acid sequences were computed using OLGA[32]. Figures were produced using the R 
package ggplot2[33]. Venn diagrams were made on: http://bioinformatics.psb.ugent.be/
webtools/Venn/. 

RESULTS

Immune architecture of cellular infiltrates is similar between anatomically distinct 
inflamed sites
 To study the peripheral and tissue specific immune cell composition in autoimmune 
disease, we profiled PBMCs and SFMCs from JIA patients with both knees affected at 
the time of sampling using CyToF. We set up a T cell centric panel (Supplemental Table 1) 
comprising 37 phenotypical and functional markers, as well as CD45 barcoding markers 
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to be able to study matched samples simultaneously. T‐distributed stochastic neighbor 
embedding (t‐SNE) and k-means clustering identified 22 immune cell populations in 
the SF/PB compartments (Figure 1A, p < 1e-21, and Supplemental Figure 1A and B). 
These populations could be broadly segregated into Treg subsets (CD25+/FoxP3+), 
naïve (CD45RA+), effector/memory T cells (CD45RA–), and non T cell populations (CD3–/
CD4–/CD8–). Preliminary clustering of the median marker expression on T cells revealed 
a clear demarcation of SFMCs and PBMCs (Figure 1B), and a strong association of 
immune phenotypes between intra-individual paired knee SFMCs. Furthermore, density 
maps of immune cell populations within the t-SNE indicate strong dichotomy in the 
locations of SFMC and PBMC subsets (Figure 1C), with SFMCs occupying the bottom 
right and the PBMCs occupying the top left regions. Comparison of the node fingerprints 
between SFMC and PBMC samples (Figure 1D) revealed that SMFCs were enriched 
in CD4+CD25+FoxP3+ Tregs (node 2), and CD4+CD45RA– memory T cells (nodes 5, 9, 
10), while PBMCs were enriched in CD45RA+ naïve T cell subsets (nodes 3, 6, 7, 13, 
15). Next to this, a strikingly similar density cellular distribution profile was observed in 
the left and right knee joints of each JIA individual (Figure 1C), characterized by nearly 
identical node fingerprints (Figure 1D). The correlation matrix of the entire spectrum of 
node frequencies demonstrated a strong positive correlation between the SFMCs and 
their left and right joints, and an inverse negative correlation as compared with the PBMC 
populations (Supplemental Figure 1C). These results demonstrate that, while distinct 
differences in T cell signatures can be identified between PB and SF compartments, 
the phenotypic T cell architecture of distinct inflamed sites (left and right knees) are 
remarkably similar, indicating commonality in underlying disease etiology. 

Effector T cells and Tregs are phenotypically similar across distinct inflamed sites
 Next, we further functionally characterized the specific T cell subsets present in 
the inflamed joints. SF CD4+ and CD8+ T cell subsets displayed an increased expression 
of pro-inflammatory cytokines (TNFα, IFNγ and IL-6), indications of chronic TCR 
activation (PD1 and LAG3)[34] and a memory phenotype (CD45RA–), compared to their 
PBMC counterparts (Supplemental Figure 2A and 2B, p <0.05). Remarkably, the cytokine 
diversity of CD4+ memory T cells revealed nearly identical profiles for the left and right 
knee joints for each individual (Figure 2A), with minor inter-individual differences. This 
trend in cytokine profile was also reflected in the CD8+CD45RA- compartment (data 
not shown). The Treg (CD25+FOXP3+) population was significantly enriched in the 
synovial environment (Figure 2B, p<0.05 and Supplemental Figure 2C-D) with enhanced 
expression of T cell memory (CD45RA–) and Treg activation markers (HLA-DR and 
ICOS) compared with PBMC counterparts. Additionally, SF memory Tregs displayed a 
significantly higher proliferation (Ki67 staining) as compared to synovial effector memory 
T cells (Figure 2B, p<0.05), which was further confirmed by flow cytometry analysis 
(Supplemental Figure 2E). This indicates that Tregs belong to the most proliferative T 
cell subset in the inflamed environment. Moreover, memory Tregs showed very similar 
CTLA4/HLA-DR/ICOS/PD1 expression profiles in the left and right knee joints for each 
individual with some inter-individual differences (Figure 2C). Altogether, these data 
demonstrate that within JIA patients, there is an identical T cell phenotypic and functional 
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Figure 1. Overall immune architecture in left and right aff ected joint is very similar but distinct 
from peripheral blood. A Density maps based on T-SNE dimensional reduction and k-means clustering 
analysis on SFMC and PBMC samples, resulting in 22 cellular nodes. B Preliminary hierarchal clustering 
on the median expression of all markers, excluding lineage markers. C Density maps of immune cellular 
populations within the T-SNE maps. D Node frequency fingerprints showing the distribution across the 
nodes of SFMCs an PBMCs.
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Figure 2. T cells display similar phenotypical and functional profiles at distinct inflamed 
locations. A Cytokine production of CD4+ CD45RA- memory cells depicted in radarplots. B Percentage 
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Whitney, * = p <0.05 ). C Expression of functional markers by CD25+ FOXP3+ CD45RA- cells.
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profile present at separated inflamed locations, with increased amounts of activated and 
proliferating Treg populations.

Hyper-expanded T cell clones are shared between left and right joints
 We hypothesized that the similarities in T cell phenotype and functional 
characteristics between two knees can be explained by infiltration and expansion of 
identical T cell clones present in both affected joints. To study whether the same cells 
infiltrate multiple joints, we sorted similar numbers of CD3+CD4+CD25+CD127low Tregs 
and CD3+CD4+CD25–CD127+ non-Tregs from affected joints of JIA patients. The samples 
were derived from the same donors and time points as the ones used for CyToF analysis, 
regarding the first two patients. We examined the TCRβ repertoires of the isolated cells 
subsets by next generation sequencing. As expected, within the inflamed joints, clonally 
expanded cells were detected, which was more pronounced for Tregs compared to non-
Tregs (Figure 3A). In line with the CyToF analysis, the distribution of the T cell clones 
was highly similar between left and right joint, both for Tregs and non-Tregs. Hyper-
expanded T cells were further studied by sequential intersection of the most abundant 
TCRβ clonotypes across samples. Notably, we found a high degree of sharing between 
the two affected joints, while a small fraction of clones was shared between the SF 
compartment and PB (Figure 3B). Moreover, in addition to the increased clonality within 
the Treg compartment, sharing of clones between two locations was also more evident 
for Tregs compared to non-Tregs (Figure 3B). 
 More detailed analysis of dominant TCRs revealed that frequencies of hyper-
expanded T cells were highly conserved between distinct anatomical sites, with the most 
dominant clones also detectable in PB (Figure 3C). To assess whether dominant clones 
were shared as a result of high generation probability (Pgen, convergent recombination[32]), 
or in response to antigen (convergent selection), we calculated the Pgens of shared and non-
shared sequences and correlated these with their respective frequencies. This analysis 
revealed that frequencies of shared sequences were not positively correlated with Pgen 
(Figure 3D), while frequencies of non-shared sequences (i.e. those only appearing in 
the left or right knee joint) showed a significant positive correlation with Pgen (Figure 3E). 
Notably, this correlation was more pronounced for non-Tregs compared to Tregs (Figure 
3E), indicating either bystander activation or non-antigen specific circulation of the non-
shared TCR sequences in the non-Treg compartment. In summary, both non-Treg and 
Treg hyper-expanded T cell clones are shared between inflamed joints. This overlap 
is most pronounced for Treg, with the highly dominant Treg clones in SF also being 
detectable in circulation, likely driven by responses to shared antigens. 

Dominant clones persist over time during relapsing remitting disease
 Next, we questioned whether dominant clones are persistently present in 
inflamed joints over the relapsing-remitting course of JIA. To this end, we profiled the 
Treg and non-Treg TCRβ repertoire of SF as well as PB samples obtained from five JIA 
patients over time (Supplemental Figure 3). Repertoire overlap analysis (Jaccard index) 
showed that TCRβs of Treg samples obtained from SF were highly shared within patients 
over time (Figure 4A). Remarkably, this degree of sharing was also conserved across 
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Figure 3. Highly dominant T cell clones are shared in SF from left and right joint and peripheral 
blood. A Clonal proportions of the TCRβ clones as detected in Treg and non-Treg sorted from PBMC, 
SFMC left joint, SFMC right joint of two different JIA patients. B Sequential intersection of abundant TCRβ 
clonotypes (based on amino acid sequence) across samples. Top clonotypes (ranging from 1-1000) are 
given on the x-axis, with the percentage of sequences overlapping between two given samples on the 
y-axis. C Frequency plots showing the overlapping Treg and non-Treg clones between left joint derived 
SF (x-axis) and right joint derived SF (y-axis), with color coding highlighting the clones that are shared 
with none of the other samples (black circle), shared in two samples (purple) and all three samples (PB, 
SF left, SF right; yellow). D Correlation (linear regression, dashed line) between frequency (x-axis) and 
generation probability (y-axis) of TCR clones shared across SF two samples. E Results of correlation 
between frequency and generation probability across all samples. Pat. = patient, R = Spearman’s Rho, 
p = p-value. 
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different joints over time (Figure 4A/B, Supplemental Figure 4A). In contrast, TCRβs 
from PB did not cluster together over time, and showed much less overlap with their 
synovial counterparts (Figure 4A). More detailed analysis showed that the frequencies 
of shared TCRβs were also consistent over time, with the most dominant T cell clones 
having the highest degree of sharing (Figure 4C). Again, this phenomenon was more 
pronounced in Tregs obtained from SF compared to PB (Figure 4C), although the most 
dominant clones from synovial fluid were also detectable in PB (Supplemental Figure 
5). Moreover, correlation of frequencies and Pgens of persistent sequences showed that 
persistent TCRβs with high abundance were not driven by recombination bias (Figure 
4D), similar to what was observed for T cell clones shared between two knees sampled 
at the same time point (Figure 3D).
 Next, we repeated our analysis on TCRβ sequences of non-Tregs from the 
same samples. Repertoire overlap analysis showed that, although non-Tregs also 
display sharing of TCRβ sequences over time (Figure 5A/B, Supplemental Figure 4B), 
the degree of sharing was less pronounced compared to Tregs (Figure 4A). Frequencies 
of highly shared TCRβs in non-Tregs were also consistent over time (Figure 5C), and 
frequencies and Pgens of persistent non-Treg sequences were not correlated (Figure 5D). 
Collectively, these data show that during relapsing-remitting disease, persistent dominant 
T cell clones are taking part in the local immune response in the inflamed joints of JIA 
patients, and this phenomenon is more pronounced for Tregs than non-Tregs as Tregs 
display a larger degree of repertoire persistence over time.

Patterns in similar TCR sequences are shared between JIA patient knees 
 Recent studies have demonstrated that immune responses against a particular 
antigen, involve T cell clones with similar TCR sequences[35–37]. This has led to the 
hypothesis that the degree of sequence similarity within the TCR repertoire is related to the 
antigen recognition coverage, with a high degree of sequence similarity pointing towards 
repertoire skewing by dominant antigens. Since we observed that the TCR repertoire of 
Tregs from JIA SF is persistent, both spatially (across two knees) and temporally (over 
time), we hypothesized that persistent T cell clones cluster together with other, similar 
T cell clones that are involved in responses against the same antigens. To investigate 
this, we performed TCR similarity analysis, focusing on SF samples obtained from two 
affected knees. Using k-mer overlap analysis, we constructed TCR similarity networks 
for JIA patients and compared these to networks generated from random repertoires with 
the same number of TCRβ sequences (Figure 6A). In line with our expectations, TCR 
networks from JIA patients were highly connected (much more than expected by chance), 
showing that patient repertoires exhibit a high degree of sequence similarity (Figure 
6B). Moreover, clusters within JIA networks were composed of TCR sequences coming 
from distinct knees, as well as overlapping sequences, indicating that non-persistent 
sequences are homologous to persistent sequences and therefore also likely involved in 
the same antigen specific responses. Notably, in the random repertoires, clusters were 
less mixed (as indicated by a high cluster purity) compared to JIA networks (Figure 6C), 
again highlighting that TCRs from JIA samples display higher sequence similarity than 
expected by chance. Overall, these results show that the SF Treg repertoire is highly 
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Figure 4. Persistence of Treg clones over the course of relapse remitting disease. A Heatmap 
showing overlap (Jaccard index, light blue = limited overlap, darkblue = high overlap) of Treg derived 
TCR sequences obtained from SF or PB from JIA patients over time. L = left knee, R = right knee. B Venn 
diagrams displaying the 100 most abundant unique TCRβ clones, defined by amino acid sequence, for 
longitudinal SF samples from all patients. C Frequency plots showing the overlapping Treg clones between 
visits for SF and PB, with color coding and shapes highlighting the number of samples in which unique 
clones are found. R = right, L = left. D Correlation (linear regression, dashed line) between frequency 
(x-axis) and generation probability (y-axis) of TCR clones shared across two visits for SF samples.
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Figure 5. Persistence of non-Treg clones over the course of relapse remitting disease. A Heatmap 
showing overlap (Jaccard index, light blue = limited overlap, darkblue = high overlap) of non-Treg derived 
TCR sequences obtained from SF or PB from JIA patients over time. L = left knee, R = right knee. B Venn 
diagrams displaying the 100 most abundant unique TCRβ clones, defined by amino acid sequence, for 
longitudinal SF samples from all patients. C Frequency plots showing the overlapping non-Treg clones 
between visits for SF and PB, with color coding and shapes highlighting the number of samples in which 
unique clones are found. R = right, L = left. D Correlation (linear regression, dashed line) between 
frequency (x-axis) and generation probability (y-axis) of TCR clones shared across two visits for SF 
samples. 
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green. Nodes are connected if TCRs share at least 8 k-mers. Networks from JIA patient repertoires (right) 
are compared to random repertoires (left), with the same repertoire size. B Number of TCR sequences 
(x-axis) and their connections (y-axis) to other TCR sequences of the top five similarity clusters identified 
in A. Blue density maps depict clusters identified in random repertoires (N=100), while black circles depict 
clusters identified in JIA patients. C Cluster purity (y-axis, %) for the top five clusters identified in random 
repertoires (RC), and JIA patient TCR similarity networks. Numbers indicate p-value of difference between 
RC and JIA (Mann-Whitney). 

skewed by antigenic selection.

DISCUSSION
 In this study, we provide the first CyToF and TCRβ sequencing analysis of 
purified Tregs and non-Tregs, uncovering their spatial and temporal behavior in a human 
autoimmune disease setting. We show that the architecture of T cell responses from 
distinct inflamed joints is remarkably similar, even though inflammation often starts at 
different times in the two joints. This response is characterized by a pro-inflammatory 
cytokine production by effector cells, as well as expanding Tregs with an activated profile. 
Moreover, the local immune response is dominated by a limited number of TCRβ clones, 
of which especially Tregs are locally expanding. During relapsing-remitting disease 
course, hyper-expanded T cell clones are persistently present, a process likely driven by 
chronic antigen exposure. Altogether, these data indicate that there is a strong driving 
force locally in the joint that heavily skews the TCRβ repertoire, which can be explained 
by the presence of dominant (auto-)antigens. 
 Although the antigen(s) driving T cell activation and expansion in JIA remain 
elusive, our data provide strong support for the presence of ubiquitously expressed auto-
antigens given the observed overlap in dominant clones over time and in space. Given 
the tissue restrictive character of the JIA, it is tempting to speculate that the potential 
antigen would be joint-specific, although it has been shown that ubiquitously expressed 
auto-antigens can also induce joint-specific autoimmune disease[38, 39]. We show that 
SF Tregs have high expression of Ki67 (marking proliferation and thus recent antigen 
encounter), suggesting that these cells actively respond to synovial antigens. Moreover, 
we show that the expansion of dominant TCR clones is not driven by convergent 
recombination (i.e. dependent on generation probabilities), further highlighting that 
antigen are driving T cell activation. Further support for the hypothesis that persistent, 
hyper-expanded Tregs found in JIA SF are auto-reactive is provided by a recent study 
performed in mice with type 1 diabetes, where Tregs with a high degree of self-reactivity 
were found to be expanding locally in affected pancreatic islets and displayed a specific 
profile with elevated levels of GITR, CTLA-4, ICOS and Ki67, very similar to our 
observations[40].
 Our data demonstrated that dominant T cell clones in SF can be traced back in 
circulation. Together with observations that similar T cell clones are detected in multiple 
affected joints and the obvious overlap in immune cell composition, this strongly suggests 
that T cells migrate from the joint to peripheral blood and vice versa. This could mean that 
Tregs are either recirculating, or actively being replenished from circulating (precursor) 

7
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T cells. These observations are in line with other recent studies in arthritis showing that 
synovial CD4+ T cells and Treg clones can also be detected in peripheral blood[27, 41], 
where their presence correlates with disease activity and response to therapy[27, 42]. 
Next to that, in refractory JIA and juvenile dermatomyositis (JDM) patients that underwent 
an autologous hematopoietic stem cell transplantation (aHSCT) as a last resort therapy, 
the peripheral T cell compartment was shown to be heavily skewed towards dominant 
T cells clones prior to transplantation, especially in the Treg compartment[29]. After 
transplantation, the TCR repertoire diversified in responders whereas in the only non-
responder a clonal repertoire remained. A renewal of the TCR repertoire of CD4+ T cells 
and an increased diversity of the Treg in peripheral blood has also been observed in 
other autoimmune patients undergoing aHSCT. The latter appears to be important for 
inducing successful remission post-transplantation[42]. This knowledge, combined with 
our findings that the same T cell clones dominate the immune response at different 
sites of inflammation and the persistence of the same clones in the relapsing-remitting 
course of disease, strengthen the possibility to use circulating disease-associated T cell 
clones for disease monitoring or prognostic purposes. However, to accurately monitor 
and predict which T cell clones from peripheral blood are also implicated in active 
immune processes in joints, more detailed phenotyping is needed to fully characterize 
the functional profile and origins of dominant clones. Multi-omic single-cell profiling to link 
TCR antigen specificity with gene expression will give novel and required information to 
bring this closer to the clinic.
 The existence of a temporal and spatially persistent clonal Treg TCR repertoire, 
and its correlation with disease severity as outlined above, raises questions about the 
role of Tregs in (localized) autoimmune responses. An important question that needs to 
be addressed here is to what degree clonally expanded Tregs can modulate inflammation 
over the course of an autoimmune response. Various studies have shown that Tregs in 
JIA maintain their suppressive capacity, but local effector T cells are resistant to this 
suppression[9, 43]. Thus, the clonotypic expansion in SF Treg cells might reflect an 
insufficient attempt to control expanding effector T cells. The importance of a diverse 
Treg repertoire is shown in several mouse models[21–24]. Föhse et al. showed that 
Tregs with a higher diversity are able to expand more efficiently compared to Treg 
with a lower diversity in mice with TCR restricted conventional T cells[22]. It has been 
suggested that this is due to the TCR diverse Tregs having access to more ligands 
and as a result being able to out-compete the TCR-restricted Treg cells[16]. However, 
this applies for circulating Treg, and whether this would also be important for Treg in 
tissues is not known. The finding that tissue Treg residing in healthy tissues also show 
a considerable oligoclonality regarding their TCR repertoire may indicate that this is a 
normal feature[44, 45]. Additionally, it was recently shown that a diverse Treg repertoire 
in mice is especially needed to control Th1 responses, whereas Th2 and Th17 responses 
were still suppressed by single Treg clones[25]. This could be an explanation why the 
Th1 rich SF environment is poorly controlled by the large amount of clonally expanded 
Tregs. Thus, hyper-expanded Tregs alone might not be sufficient to prevent or inhibit 
autoimmune responses, and future Treg centric therapies should take this into account. 
 It should be noted that in this study we sequenced the β-chain of the TCR and 
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not the α-chain. The identified dominant TCRβ clones can pair with several α-chains, 
possibly leading to less overlapping TCR repertoire and a different Ag specificity. Future 
sequencing of both TCR chains will provide insight into the total TCR repertoire. Next to 
that, we are aware of a possible amplification bias because of a difference in efficiency 
of PCR primers. However, in our analysis approach we attempted to control as much as 
possible for such biases. An interesting next step would be to combine single cell RNA-
sequencing with identification of the TCR to directly link the expression profile of a given 
cell to its TCR clonotype and facilitate the identification of the antigenic target and its HLA 
class II restriction. 
 In conclusion, we show that in SF the immune cell architecture is marked by 
inflammatory responses of activated effector T cells as well as activated and highly 
expanding Tregs. The remarkable overlap in immune cell composition as well as the 
dominant clones over time and in space provide indications for a powerful driving force 
that shapes the local T cell response during joint inflammation. The presence of these 
inflammation-associated clones in the circulation provide promising perspectives for 
use in disease monitoring. Moreover, the high degree of sequence similarity observed 
between Treg clones obtained from distinct inflamed joints indicates that antigen selection 
significantly reshapes the local Treg repertoire. Further research is needed to pinpoint 
these driving antigens and to create opportunities to target disease-specific T cells.
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SUPPLEMENTARY INFORMATION

Supplementary Methods

CyToF and CyToF data analysis
 Briefly, PBMCs were stimulated with or without phorbol 12-myristate 13-acetate 
(150 ng/ml, Sigma-Aldrich) and ionomycin (750 ng/ml, Sigma-Aldrich) for 4 hours, 
and blocked with secretory inhibitors, brefeldin A (1:1000, eBioscience) and monensin 
(1:1000, Biolegend) for the last 2 hours. The cells were then washed and stained with cell 
viability dye cisplatin (200 μM, Sigma-Aldrich). Each individual sample was barcoded with 
a unique combination of anti-CD45 conjugated with either heavy metal 89, 115, 141 or 
167, as previously described(Lai et al., 2015). Barcoded cells were washed and stained 
with the surface antibody cocktail for 30 min on ice, and subsequently washed and re-
suspended in fixation/permeabilization buffer (permeabilization buffer, eBioscience) for 45 
min on ice. Permeabilized cells were subsequently stained with an intra-cellular antibody 
cocktail for 45 min on ice, followed by staining with a DNA intercalator Ir-191/193 (1:2000 
in 1.6% w/v paraformaldehyde, Fluidigm) overnight at 4°C or for 20 min on ice. Finally, 
the cells were washed and re-suspended with EQ™ Four Element Calibration beads 
(1:10, Fluidigm) at a concentration of 1x106 cells/ml. The cell mixture was then loaded 
and acquired on a Helios mass cytometer (Fluidigm) calibrated with CyToF Tunning 
solution (Fluidigm). The output FCS files were randomized and normalized with the EQ™ 
Four Element Calibration beads against the entire run, according to the manufacturer’s 
recommendations.
 Normalized CyToF output FCS files were de-barcoded manually into individual 
samples in FlowJo (v.10.2), and down-sampled to equal cell events (5000 cells) for each 
sample. Batch run effects were assessed using an internal biological control (PBMC 
aliquots from the same healthy donor for every run). Normalized cells were then clustered 
with MarVis (Kaever et al., 2009), using Barnes Hut Stochastic Neighbor Embedding 
(SNE) nonlinear dimensionality reduction algorithm and k-means clustering algorithm, 
as previously described (Chew et al., 2019). The default clustering parameters were 
set at perplexity of 30, and p<1e-21. The cells were then mapped on a 2-dimensional 
t-distributed SNE scale based on the similarity score of their respective combination of 
markers, and categorized into nodes (k-means). To ensure that the significant nodes 
obtained from clustering were relevant, we performed back-gating of the clustered 
CSV files and supervised gating of the original FCS files with FlowJo as validation. 
Visualizations (density maps, node frequency fingerprint, node phenotype, radar plots) 
were performed through R scripts and/or Flow Jo (v.10.2). Correlation matrix and node 
heatmaps were generated using MarVis (Kaever et al., 2009) and PRISM (v 7.0).

TCR sequencing and analysis
 Total RNA was isolated using the RNeasy Mini Kit (Qiagen) for cell fractions 
≥0.2x106 cells and the RNeasy Micro Kit (Qiagen) for fractions ≤0.2x106 cells, following 
the manufacturer’s instructions. cDNA was synthesized using the SMARTer RACE cDNA 
Amplification kit (Clontech). Amplification of the TCRβ VDJ region was performed using 
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previously described primers and amplification protocols (Zhou et al., 2006). PCR product 
fragment size was analyzed using the QIAxcel Advanced System (Qiagen). End repair 
and barcode adapter ligation were performed with the NGSgo®-LibrX and NGSgo®-
IndX (GenDx) according to the manufacturer’s instructions. Cleanup of the samples was 
performed after each step using HighPrep PCR beads and following the manufacturer’s 
instructions (GC Biotech). Paired-end next-generation sequencing was performed on 
the Illumina MiSeq system 500 (2 x250 bp) (Illumina). TCR sequencing analysis was 
performed using RTCR as previously described (Gerritsen et al., 2016).

TCR network analysis
 For sequence similarity analysis, we counted the presence of overlapping 
3-mer amino acid segments (defined as k-mers) in the TCRβ (CDR3) sequences. TCR 
sequences were considered similar when they shared at least 8 k-mers, independent 
of the total sequence length. Random repertoires were generated using the generative 
model of V(D)J recombination implemented in OLGA (Sethna et al., 2019). For equal 
comparison to biological samples, random repertoires were down sampled to equal the 
number of TCR sequences. Cluster purity was calculated as the ratio of number of TCR 
sequences from the most abundant sequence within the cluster and the total number of 
TCR sequences in the cluster. 
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Supplemental Figure 1. Preliminary analysis reveals correlation between SFMC from distinct joints. A 
Node frequency showing the distribution of T cell markers across the nodes of SFMCs an PBMCs in the 
CyToF analysis. B Marker expression of t-SNE dimensional reduction and k-means clustering analysis 
on SFMC and PBMC samples C Correlation matrix using spearman correlation of the entire spectrum of 
node frequency given in A. 
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Supplemental Figure 2. SFMC display an activated expression profile. A T-SNE plots showing 
the expression profile of phenotypical and functional markers in SFMC, PBMC from JIA patients and 
PBMC from healthy children. B Bar charts showing the percentage of specific cell populations within 
CD4+CD45RA- and CD8+CD45RA- cells (non-parametric Mann-Whitney, * = p <0.05). C T-SNE plots 
showing the expression profile of phenotypical and functional Treg markers in SFMC, PBMC from JIA 
patients and PBMC from healthy children. D Quantification of CD45RA-ICOS+ and CD45RA-HLA-DR+ 
expression on CD25+ FOXP3+ Treg (non-parametric Mann-Whitney, * = p <0.05). E MFI of Ki67 protein 
expression in Treg and non-Treg as determined by flow cytometry.
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coding and shapes highlighting the number of samples in which unique clones are found.



203

Compartmentalization and persistence of (regulatory) T cells indicates antigen skewing in JIA

7

Supplemental Table 1. Overview of the T cell panel with 37 markers 
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Summary of major findings
 One of the current important outstanding questions in immunology is how the 
immune system can strike the right balance between activation and tolerance, providing 
protection against pathogens while also maintaining body homeostasis. How is this 
balance kept and what molecular mechanisms can cause the immune system to go 
awry, leading to autoimmune disease? To address these questions, high-throughput 
studies of different molecular layers from immune cells in health and disease are needed. 
Therefore, the work presented in this thesis aimed to explore the molecular mechanisms 
contributing to immune cell dysregulation in the autoimmune disease Systemic Sclerosis 
(SSc) using a multi-omics approach. The thesis describes the application of various 
omics techniques to study the epigenomic, transcriptomic and proteomic landscape 
of monocytes, DCs and T cells of SSc patients as well as individuals suffering from 
other rheumatic autoimmune diseases including systemic lupus erythematosus (SLE), 
rheumatoid arthritis (RA), and juvenile idiopathic arthritis (JIA). This chapter summarizes 
the major findings of the research described in this thesis, and discusses the clinical 
implications for SSc, as well as considerations for future studies. 

Molecular alterations priming innate immune cells towards hyper-activation in SSc
 Cells of the innate immune system, including monocytes and DCs, are crucial 
in sensing danger signals and mounting an effective immune response, but also play 
indispensable roles in the dampening and resolution of inflammation. Moreover, the 
formation of adaptive immune responses is largely instructed by co-stimulatory signals 
provided by these innate immune cells, making them a crucial component that partially 
determines the susceptibility to develop autoimmune disease. Given the evidence for the 
involvement of innate immune cells (including increased frequencies, activated profiles 
and infiltration into skin) in the earliest stages of SSc, even before the onset of fibrosis, 
it has been proposed that these cells are driving factors in disease pathogenesis[1–8]. 
However, this causal relationship remains to be established, as alterations in these 
cells might also be driven by chronic activation after autoimmunity has already been 
established. Nonetheless, it is likely that the dysregulation of innate immune cells in SSc 
is likely a result of altered signaling pathways downstream of a triggered danger-sensing 
receptor. Many regulators are potentially involved in keeping these signaling pathways 
from derailing. These include the recently described class of long non-coding RNAs 
(lncRNAs), as well as histone modifications and other complex networks of immune 
activating and immune regulatory transcription factors, which were further investigated in 
this thesis. 

lncRNAs as novel regulators of immune tolerance in SSc
 Research from our group and others previously showed that monocytes 
obtained from SSc patients secrete aberrantly high levels of pro-inflammatory and 
pro-fibrotic cytokines upon TLR stimulation as compared to the same cells obtained 
from healthy individuals[9–11]. The data presented in chapter 2 and chapter 3 of this 
thesis show that lncRNAs are important molecules involved in the regulation of these 
TLR mediated cytokine signaling pathways. We identified the lncRNA NRIR (Negative 
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Regulator of the IFN Response) as regulator of IFN responses downstream of TLR4, and 
the lncRNA PSMB8-AS1 as a regulator of cytokine secretion downstream of TLR7/8 in 
monocytes. Both NRIR and PSMB8-AS1 were reproducibly upregulated in monocytes of 
SSc patients compared to healthy monocytes, highlighting lncRNAs as novel molecular 
factors contributing to monocyte dysregulation in SSc. These results show that lncRNAs 
are actively involved in the establishment of peripheral tolerance and have a critical role 
in priming innate immune cells towards a hyper-activated state in SSc. Indeed, recent 
studies have already revealed that lncRNAs act as critical regulators of immune cell 
function and are involved in the maintenance of immune tolerance. As an example, the 
lncRNAs MALAT1 and NEAT1 are described to be involved in the induction of tolerogenic 
DCs[12, 13], as well as the skewing of monocytes towards distinct pro-inflammatory 
states[14, 15]. These studies further underline the potential for lncRNAs in the priming 
and activation of immune cells, and highlight their roles as novel tolerance regulators. 

Histone modifications: rewiring the immune system to a pro-inflammatory state
 For a long time, the distinct transcriptional programs involved in cellular activation 
and tolerance were thought to be hardwired during differentiation. However, it is becoming 
more and more clear that differentiated immune cells, including monocytes, can be rewired 
through the loss or acquirement of specific histone modifications following exposure to 
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs)[16]. What makes these epigenomic changes especially interesting is 
that, as opposed to other cell signaling transducers such as phosphorylation, they can 
persist long after the initial stimulus is eliminated, and can even be stably transmitted 
throughout cell divisions[17]. This phenomenon is often referred to as ‘trained immunity’, 
and normally confers resistance to secondary infections. In chapter 4 of this thesis we 
observed an increased deposition of activating histone marks at the promoters of genes 
relevant for disease specific pro-inflammatory pathways in monocytes of SSc, SLE and 
RA patients, demonstrating that epigenomic modifications contribute to the rewiring of 
monocytes in these patients. This rewiring, or epigenomically mediated trained immunity, 
might be induced by DAMPs as a result of tissue damage early in disease pathogenesis. 
Indeed, various DAMPs have already been associated with the induction of trained 
immunity in immune related disorders, including oxidized low-density lipoprotein (oxLDL) 
in atherosclerosis[18] and uric acid in gout[19]. In SSc, it would be interesting to study to 
what extent DAMPs released upon vascular damage (one of the earliest events in SSc 
pathogenesis[20]) are capable of inducing epigenomically mediated trained immunity. 
More knowledge on the exact (early) signals inducing epigenomic rewiring in immune 
cells could help to better understand and potentially reverse this process. 

Immune dysregulation in SSc is not merely driven by enhanced activation, but also 
a loss of negative feedback
 To limit inflammation and maintain immune tolerance, endogenous negative 
feedback mechanisms are in place. Characterization of these feedback mechanisms can 
help to identify new targets to prevent or reverse excessive inflammation. Therefore, in 
chapter 5, using transcriptomic data of cDCs from healthy donors and SSc, we applied 
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a co-expression network approach as well as transcription factor ChIP-sequencing to 
identify biologically relevant transcriptional regulators contributing to cDC dysregulation 
in SSc. Following this approach, we identified the NR4A (nuclear receptor 4A) subfamily 
(NR4A1, NR4A2, NR4A3), to be strongly involved in transcriptional programs underlying 
cDC dysregulation in SSc. These NR4A receptors are induced by pro-inflammatory 
stimuli and are involved in negative feedback mechanisms to dampen immune responses 
via transcriptional regulation of various genes. Indeed, our functional experiments using 
agonists targeting NR4As showed that they are involved in cytokine production by and 
modulation of T cells activation by cDCs. These data implicate NR4As as important 
negative regulators of immune pathways in cDCs, and NR4A downregulation potentially 
contributes to the dysregulation of cDCs in SSc patients. This demonstrates that immune 
cell dysregulation in SSc is not merely a consequence of enhanced activation but can 
also be attributed to a loss of negative feedback. 

A loss of innate immune tolerance may lead to T cell receptor repertoire skewing 
in SSc
 In the first part of this thesis, we show that a variety of molecular mechanisms 
may induce a loss of tolerance in the innate immune system in SSc and rewire immune 
cells to a hyper-activated state. The resulting inflammatory milieu may provide a 
perfect niche for the aberrant activation expansion of antigen specific T cell clones that 
perpetuate tissue damage and inflammation, further contributing to the pathogenesis 
of SSc. To further investigate this, in the second part of this thesis, the dynamics of the 
T cell repertoire in SSc were studied to better understand the role of antigen specific T 
cell responses in the disease pathogenesis. To this end, in chapter 6, we performed 
high-throughput sequencing of T cell receptors (TCRs) of circulating CD4+ and CD8+ 
T cells from longitudinal samples obtained from SSc patients. Here we show that the 
TCR repertoire in SSc is highly stable over time, and this persistence is likely a result of 
antigenic selection rather than bystander activation. These observations indeed suggest 
that aberrances in the innate immune compartment facilitate the generation of a highly 
oligo clonal T cell repertoire in SSc. In line with this, we show that SSc TCR repertoires are 
less diverse than T cell memory repertoires from healthy individuals, demonstrating that 
T cells are highly clonally expanded in SSc, potentially due to chronic antigen activation. 
To determine to what extent the longitudinal persistence of circulating CD4+ and CD8+ T 
cells are characteristic of SSc, in chapter 7 we studied the immune cell architecture and 
TCR repertoire dynamics of peripheral blood and affected joints of JIA patients. Because 
unlike SSc patients, which are characterized by systemic inflammation, the JIA patients 
included in this study suffered from localized inflammation in the knee joints, we were 
provided with the unique opportunity to compare the T cell landscape of systemic versus 
localized autoimmune disease. Whereas in SSc patients, circulating CD4+ and CD8+ 
T cells were highly clonally expanded (as shown in chapter 6), only T cells obtained 
from affected joints from JIA patients exhibited an expanded profile while circulating T 
cells did not. These results indicate that tissue specific dominant (auto-)antigens in JIA 
patients heavily skew the TCR repertoire, while in SSc, the potential antigens might be 
more ubiquitously expressed. However, it should be noted that in JIA patients, the T cell 
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clones that were found with the highest frequency in affected joints could also be traced 
back in circulation, and the same T cell clones were present in distinctly affected joints 
within one patient, strongly suggesting that reactive clones are recirculating. Additionally, 
JIA patients were characterized by a strong expansion and persistence of regulatory T 
cells (Tregs) rather than effector T cells, whereas in SSc, effector CD4+ and CD8+ T cells 
were highly expanded over time. Thus, T cell activation and expansion in JIA might be 
a result of a failure to suppress autoreactive T cells by Tregs, while in SSc an aberrant 
activation of effector T cells by innate immune cells is more likely to drive T cell hyper 
expansion. However, more detailed investigations of the functional profiles, origins of 
expanded T cell clones, for example through lineage tracking and single cell sequencing, 
are needed to substantiate this hypothesis. 

Novel approaches to target immune cell activation in SSc
 Considering the importance of innate immune cell activation in SSc 
pathogenesis[21, 22], modulation or inhibition of these cells represents a potential 
therapeutic option to restore immune homeostasis in SSc. However, broad suppression, 
for example through targeting TLRs, may lead to increased infectious disease. Thus, 
the major challenge here is to dampen innate immune signaling pathways to ameliorate 
the immune response just enough, without completely shutting it down. Therefore, the 
modulation of downstream targets regulators that tweak signaling pathways instead of 
abolishing them, represent promising novel therapeutic targets. The studies represented 
in this thesis highlight an important role for novel regulators driving immune cell hyper-
activation in SSc. These include lncRNAs (chapter 2 and 3), histone modifications 
(chapter 4) and immune regulatory transcription factors (chapter 5). Importantly, 
rather than representing binary “on-off” switches, these regulators have subtle immune 
modulatory effects. This makes them potentially relevant clinical targets to help reset 
innate immune cells in SSc towards an immunotolerant state.

lncRNAs: a novel therapeutic option for SSc?
 Given the immune-regulatory potential of lncRNAs, lncRNA-orientated next-
generation drugs might represent a novel therapeutic avenue for SSc. Indeed, their 
ability to fine-tune the expression of immune-related genes, including cytokines and 
inflammation-related transcription factors as shown in chapter 2 and 3, has potential 
therapeutic implications. The use of antisense oligonucleotide drugs that target ncRNAs 
in other diseases have already been approved by the FDA, and there are various ongoing 
studies for the development of ncRNA-based therapeutics, including testing in animal 
models and clinical trials[23]. An advantage of using such synthetic oligonucleotides 
targeting lncRNAs is that they can very specifically modulate single lncRNA activity as a 
result of their precise sequence complementarity. 
 However, lncRNAs are still new kids on the block when it comes to the regulation 
of immune responses, and a lot is still to be discovered about this intricate class of 
molecules. Moreover, lncRNA are known to have cell type specific functions, so overall 
targeting might not be desirable. As an example, in chapter 2, we identified the lncRNA 
NRIR as a positive regulator of IFN responses in monocytes, while NRIR has also been 
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described as a negative regulator of IFN responses in hepatocytes[24]. On the other 
hand, this cell-type specificity could also be exploited to modulate lncRNA activity in a 
very targeted way to avoid unwanted side effects. More detailed studies of lncRNAs and 
their effects in different cell types/phenotypes are required to better understand their 
functions. Single-cell sequencing studies might help to gain more insights into the specific 
expression of lncRNAs in various cell types and tissues. These could also be combined 
with knock-out studies to monitor the effect of lncRNA modulation of specific cell types 
within one system. Next to experimental approaches, future studies can be performed 
using computational biology based approaches including lncRNA function prediction 
based on primary sequence, secondary structure conservation or prediction of binding 
partners[25]. Lastly, RNA hybridization-based approaches can be performed to precisely 
dissect the biological targets and molecular mechanisms through which lncRNAs exert 
their functions[26]. Such studies would provide critical insights into the (cell type) specific 
functions of lncRNAs, and further aid their translation into a clinical setting.

Targeting histone modifying enzymes to rewrite the epigenomic code
 Histone modifying enzymes are critical regulatory proteins that can bind specific 
sites marked by histone acetylation or methylation. They act as writers or erasers 
to increase or decrease the deposition of histone modifications, thereby affecting 
downstream gene expression[27]. Targeting these histone modifying enzymes can help 
to rewrite the epigenomic code and potentially reverse epigenomically mediated trained 
immunity characterizing innate immune cells in SSc. An example of a histone modifying 
enzyme that could hold therapeutic value in SSc is the histone demethylase Jumonji-C 
domain 3 (JMJD3), that specifically removes the inhibiting histone mark H3K27me3[28], 
[29]. Interestingly, a role for JMJD3 in fibroblast activation via the removal of H3K27me3 
at fibrosis related genes has already been described, and pharmacological inhibition of 
this demethylase ameliorates fibrosis in mouse models of SSc[29]. Moreover, JMJD3 
has an important role in monocyte to macrophage differentiation, where it regulates the 
demethylation of H3K27me3 at the promoters of genes important for M2 polarization, 
including IRF4[30]. Next to JMJD3, the methyl transferase enhancer of zeste homologue 
2 (EZH2), which trimethylates H3K27, resulting in transcriptional repression, has been 
shown to be involved in fibroblast activation[31] and metalloprotease activity in monocytes 
from SSc patients[32]. Given their roles in fibrosis, monocytes, and macrophage 
polarization, it would be highly interesting to further delineate the effects of JMJD3 or 
EZH2 modulation in circulating monocytes, especially in the control of bivalent genes. 
Since in chapter 4 we also identified many bivalent promoters primed for high activation 
in monocytes from early SSc patients, it would be highly interesting to study the effect 
of JMJD3 or EZH2 modulation in this patient group to determine whether epigenomic 
targeting can inhibit or delay the onset of fibrosis.  
 Interestingly, histone modifying enzymes have been shown to actively remodel 
transcription factor networks, and are known to regulate NR4A expression[33, 34], which 
we found to be downregulated in cDCs from SSc patients in chapter 5. This suggests 
that the downregulation of NR4As cDCs in SSc might be a consequence of an altered 
epigenomic landscape of these cells, again highlighting a role for epigenomic remodeling 
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and trained immunity in the dysregulation of immune cells in SSc. Thus rewiring the 
epigenomic landscape in SSc by targeting histone modifying enzymes may also help to 
modulate transcriptional networks implicated in SSc pathogenesis. To further investigate 
this, detailed characterizations of the epigenomic landscape of cDCs from SSc patients 
are needed. However, it should be noted that cDCs are a very rare cell population, and 
genome-wide ChIP-sequencing of these cells might prove difficult due to limited amounts 
of material, especially when studying patient samples. Moreover, it should be noted that 
the epigenetic basis of inflammatory responses is extremely complex, involving the 
interplay of multiple histone modifications, DNA methylation, regulation by long non-
coding RNAs, miRNAs and many more. We are just beginning to scratch the surface 
of this intriguingly complex regulatory network and much still remains to be elucidated. 
The application and integration of multiple omics technologies to further uncover the 
dynamics of inflammatory responses is crucial in this. Since epigenetic modifications are 
reversible, a better understanding of the epigenomic dynamics of inflammation in health 
and autoimmune disease should aid in the discovery of new therapeutic targets with the 
ultimate aim to restore immune tolerance. 

Targeting adaptive immunity through generation of tolerogenic DCs
 As highlighted various times in this thesis, innate control of adaptive immunity 
is an important paradigm, and blocking interactions between the innate and adaptive 
immune system might ameliorate downstream adaptive immune responses in SSc 
patients. Indeed, in chapter 5 of this thesis we show that the activation of anti-inflammatory 
transcription factors of the NR4A family in cDCs leads to a decrease in the downstream 
activation of T cells. Thus, the generation of cDCs with a tolerogenic phenotype might 
hold therapeutic value to halt aberrant T cell activation in SSc. Various molecules such 
as anti-inflammatory cytokines (e.g. IL-10), vitamin D3, rapamycin, glucocorticoids and 
many more possess tolerogenic properties that induce the generation of tolerogenic 
DCs. These tolerogenic DCs may either be generated in vitro[35] followed by infusion, or 
in vivo, through the administration of tolerogenic immunotherapy. The in vitro generation 
and infusion of tolerogenic DCs has already been explored in various autoimmune 
diseases, such as RA[36], multiple sclerosis (MS)[37], and type I diabetes (T1D)[38]. In 
these patients, infusion of autologous tolerogenic dendritic cells was shown to be safe 
and well tolerated, highlighting the clinical potential for these approaches. Currently, two 
clinical trials with tolerogenic DC-based vaccines are ongoing for MS (NCT02903537 
and NCT02618902), and one for T1D (NCT04590872). Results from these studies 
should provide further insights into the potential for harnessing DCs in the treatment of 
autoimmune disease. 
 Besides ex vivo generation and infusion of tolerogenic DCs, in vivo induction of 
tolerogenic DCs also forms an attractive therapeutic option. This can be achieved through 
the administration of biologicals or hormones with anti-inflammatory characteristics. One 
such molecule which has recently gained a lot of attention for its ability to induce a 
tolerogenic phenotype in DCs is vitamin D3[39]. Interestingly, vitamin D3 levels have 
been shown to be lower in SSc patients as compared to healthy individuals in various 
studies[40–42], leading to the hypothesis that reduced vitamin D3 is associated with a 

8



212

General discussion

loss of immune tolerance in SSc patients. However, reports on the association of vitamin 
D3 levels and clinical severity of SSc are conflicting, and the exact relation between 
low vitamin D3 and SSc remains unclear. Thus, there is a need for the exploration of 
other therapeutic avenues to induce tolerogenic DCs in SSc. In this context, it would 
be interesting to explore NR4As as novel targets to induce tolerance in DCs from SSc 
patients. In chapter 5, we show that NR4A activity can be modulated using agonists, 
providing initial proof for the potential of NR4A targeting to induce tolerance. Other 
pharmaceutical compounds activating NR4As, including synthetic bisindole-derived 
compounds (C-DIMs), cytosporone B (Csn-B) and mercaptopurine (6-MP), could also 
hold therapeutic potential in SSc. Interestingly, Csn-B has already been shown to 
ameliorate collagen deposition and myofibroblast differentiation in mouse models of 
fibrosis[43], highlighting the therapeutic potential of NR4A targeting and providing a new 
mechanism to exploit the induction of tolerogenic DCs in SSc. 

Stem cell transplantation in SSc: is the innate immune system crucial for a reset 
to tolerance?
 Autologous hematopoietic stem-cell transplantation (AHSCT) currently is the 
only therapy with long-term clinical benefit in rapidly progressive SSc. The main rationale 
for applying AHSCT to SSc is to restore immune homeostasis. This is achieved by 
first applying an intensive immunoablative conditioning regimen, which eliminates the 
pathogenic self-reactive immune cells, followed by the reconstitution of a new immune 
system from reinfused hematopoietic precursors. The success of AHSCT is proposed 
to be largely dependent on the eradication of clonally expanded auto-reactive T cells. 
Indeed, after AHSCT, TCR diversities increase significantly, reflecting the reconstitution 
of a new, more tolerant immune system[44–46]. Notably, differences in the clonality of 
the TCR repertoire have also been observed between responders and non-responders 
to AHSCT, with non-responders having a less diverse repertoire[44, 45]. These data 
further highlight that decreased TCR repertoire diversity contributes to the autoimmune 
pathogenesis of SSc, as also shown in chapter 6 of this thesis. 
 Both adaptive and innate immune responses are modulated after AHSCT in 
SSc and contribute to the generation of a tolerant immune system. Although the adaptive 
immune system has been studied in more detail, the innate immune system also has 
a potential immunosuppressive/modulating role in regulating adaptive responses after 
AHSCT. In support of this theory, CD14+ monocytes have already been shown to be 
capable of regulating T cell responses following AHSCT[47]. One important question 
that remains unanswered is whether the innate immune system, which reconstitutes 
much faster than the adaptive immune system[48], creates a permissive environment 
for the regeneration of a tolerant adaptive immune system after AHSCT. In other words, 
is the reconstitution of innate immune cells such as monocytes, DCs after AHSCT a 
prerequisite for the formation of a more diverse TCR repertoire? In order to answer this 
fundamental question, innate immune cells should be studied in more detail, especially 
at early time-points after AHSCT. Furthermore, it would be interesting to investigate if 
innate immune reconstitution and priming of adaptive responses underlies the efficacy 
of AHSCT and whether this is different in responders versus non-responders. To further 



213

General discussion

investigate to what extent the innate immune system facilitates the expansion of antigen 
specific T cells, it would be interesting to study the TCR repertoire over the course of 
immune system reconstitution after AHSCT. Moreover, it would be interesting to perform 
TCR profiling of T cells co-cultured with monocytes or DCs from SSc patients, before and 
after AHSCT, to see whether these cells indeed display a high potency to induce oligo 
clonal T cell expansion and how this is affected by AHSCT. 
 Thus, further investigation into the exact role of innate immune cells and their 
importance in regulating immune responses after AHSCT is needed. Better insights 
into these responses may help to further improve patient care and predict transplant 
outcomes more accurately, as well as helping to gain a better understanding of SSc 
pathogenesis.

Directly targeting the adaptive immune system through T cell therapy
 Given the evidence for T cells in the pathogenesis of SSc, and the fact that 
the AHSCT is proposed to be largely dependent on the eradication of auto-reactive T 
cells, directly targeting T cells might also hold therapeutic value for SSc. Depletion of T 
cells using alemtuzumab (an antibody targeting CD52, a molecule is highly expressed 
on the surface of B and T cells) has previously been explored in a case report for a 
single dcSSc patient, where treatment with alemtuzumab led to a rapid and sustained 
improvement of skin score[49]. However, although treatment with this antibody is 
approved for patients with relapsing forms of MS, side effects related to the development 
of secondary autoimmunity have been observed[50], putting alemtuzumab in a not very 
desirable position. Moreover, T cell depleting therapies like alemtuzumab are in the 
gray zone between immunosuppression and immunoablation, with a high potential to 
drive the immune system in an undesirable lymphopenic state. Thus, targeting specific 
autoreactive T cell clones might hold better therapeutic potential. Since in chapter 6 
of this thesis we show that specific T cell clones are highly expanded in SSc patients 
over time, specific targeting of these T cells seems plausible. As an example, adoptive 
immunotherapy to transfer genetically engineered-Tregs expressing TCRs against the 
same antigens as autoreactive CD4+ and/or CD8+ T cells could potentially suppress T 
cell mediated autoimmune responses[51]. However, since the (auto)antigens targeted 
by T cells in SSc remain yet to be elucidated, engineering antigen specific Tregs is not 
possible yet. On the other hand, clonally expanded T cells from SSc patients could be 
converted into Tregs through upregulation of the Foxp3 gene, thereby potentially retaining 
their antigen specificity while gaining a suppressive phenotype[52]. Another approach of 
targeting autoreactive T cells is through T cell vaccination (TCV). The concept of TCV is 
based on the finding that inactivated autoreactive T cells can induce inhibition of T cell 
dependent autoimmune responses[53]. Here, the target antigen against which immunity 
is induced is (parts of) the TCR of autoreactive T cells, thereby eliminating them. However, 
the challenge here is to elucidate exactly which TCRs are involved in the response to 
disease related (auto)antigens. 
 Our analyses in chapter 6 as well as chapter 7 show that expanded T cell 
clones in SSc as well as JIA are characterized by a high sequence similarity, indicating 
that pools of highly expanded T cell clones respond to the same (auto)antigens. This 
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knowledge can be used to obtain motifs in antigen specific TCRs that are shared across 
patients and design broad pools of TCVs that can potentially ameliorate autoreactive 
T cell responses. In order to achieve this, studies of large patients cohorts with high-
throughput deep sequencing of a large number of T cells are necessary. The design 
of novel machine learning methods to unravel motifs shared across autoreactive T cell 
clones should also aid in the discovery and classification of autoimmune related TCRs. 
Such efforts are currently underway, by our group as well as others[54, 55], and promise 
to bring exciting new developments to the field of TCR research.

Challenges and considerations for future studies
 The studies presented in this thesis provide new insights into the molecular 
mechanisms underlying aberrant immune cell activation in SSc. From these results, it 
is clear that immune cell dysregulation in SSc pathogenesis is mediated through the 
derailment of various factors at different levels of gene expression regulation, including 
previously unannotated lncRNAs, histone modifications and transcription factor regulatory 
networks. However, exactly how these separate factors interplay with each other and 
to which extent their regulatory modes of action are cell type specific remains to be 
uncovered. Here, potential future studies to answer these questions are proposed.

Multi-omics integration to generate extensive immune regulatory networks
 To obtain a more complete picture of the full spectrum of factors contributing 
to immune cell activation, and loss of immune tolerance, future studies will require the 
integration of individual omics datasets to get a more complete understanding of the 
immunopathology of SSc. In other words: a shift from single-omics to integrated multi-
omics is required. Such multi-omics studies should include the information on DNA 
sequence variation, open chromatin regions, histone modifications and DNA methylation, 
transcription factor binding and activity, RNA expression variation, and post-transcriptional 
and translational regulation. Information from these different omics layers can be used 
to build extensive gene regulatory networks (GRNs)[56]. GRNs provide a map for the 
molecular processes and interactions at different levels of cellular regulation, and have 
the potential to predict the outcomes of immune cell perturbation (for example as a result 
of genomic alterations or stimulation). Therefore, future studies applying multi-omics 
approaches paired with computational modelling and GRN construction should provide 
better insights into the factors that skew the immune system in SSc towards an hyper-
activated status. Such studies should especially focus on the epigenomic landscape, 
novel regulators such as lncRNAs, and transcription factor feedback loops since these 
were demonstrated to be important factors contributing to loss of immune tolerance in 
SSc in this thesis. 
 One way to perform high throughput analyses in a multi-omics approach is to 
simultaneously apply multiple omics techniques to measure a single biological sample. 
In this way, an unbiased view of the complex relationships between genomics, different 
epigenomic markers and their effect on gene-expression measured by transcriptomics can 
be obtained. The usefulness of this approaches has recently been highlighted by Ai et al., 
who combined ATAC-seq, ChIP-seq of six different histone marks, RNA-seq, and WGBS 
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for DNA methylation, to comprehensively study the epigenomic landscape of rheumatoid 
arthritis fibroblast-like synoviocytes (FLS)[57]. Because the authors used FLS from RA 
patients and healthy donors that were grown out for multiple passages, enough material 
could be obtained to perform these multi-omics analyses from material obtained from a 
single sample. In the case of more rare immune cell populations, the limited amounts 
of primary biological material that can be obtained will not suffice. However, multiple 
analyses combining two or three omics approaches for primary immune cells have been 
performed already[58–60] (also in chapter 4 and chapter 5 of this thesis) and these 
provide valuable insights into how multiple omics layers interplay and affect each other. 
Further such studies should provide more data for the construction of immune regulatory 
GRNs and help to get better insights into signaling pathways leading to immune cell 
dysregulation in SSc. 

Single cells approaches to delineate cell type specific dysregulation in SSc
 Using traditional, bulk omics approaches, the contribution of heterogeneous, 
rare cell populations are often not identified because their signal gets drowned out by 
the presence of larger cell pools. To address this, new single-cell technologies have 
recently been developed that can assess the genome, epigenome, transcriptome, 
proteome and metabolome at a single-cell resolution[61]. These single-cell omics can 
help to pinpoint specific immune cell subsets that contribute to disease pathogenesis in 
more detail. Moreover, in addition to obtaining a better understanding of the contribution 
of various cell populations to SSc pathogenesis, single-cell profiling can also help to 
identify specific drug targets uniquely expressed in specific immune cell populations. 
Moreover, single cell approaches can also help to overcome the limited amount of 
material that is available for multi-omics studies, as single cell multi-omics approaches 
only require a small amount of cells as compared to bulk approaches. A few single cell 
studies have recently been performed using material from SSc patients, which have 
helped to uncover pathogenesis associated signatures in distinct cell populations. These 
include the activation of macrophages and pDCs in skin[62], as well as an enrichment of 
SSc-associated single-nucleotide polymorphisms and open chromatin regions in DCs in 
skin lesions[63]. However, thus far, these single cell studies in SSc mainly focus on the 
analysis of single layers of omics data, thereby not capturing the full spectrum of data 
needed to construct cell type specific GRNs. Thus, future single-cell studies should also 
focus on the integration of multiple omics techniques. 

Sample size and reproducibility 
 As SSc is a relatively rare disease, current studies into SSc pathogenesis 
(including the ones presented in this thesis) are often limited by small sample sizes. Given 
the heterogeneity characterizing SSc patients, small sample sizes make it challenging 
to find coherent signatures within or between different cohorts of SSc patients. Ideally, 
for future studies, larger sample sizes are needed to find distinct differences in immune 
cell signatures between SSc patients and healthy donors, as well as between different 
subtypes of SSc. As this might not always be feasible due to limited sample availability, 
the development of collective standardized protocols and computational tools to allow 
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for the integration and comparison of multiple diverse datasets from different research 
groups could offer a potential solution. To this end, thorough benchmarking needs to be 
performed to evaluate the performance of diverse experimental and computational tools. 
In the field of cancer research, gold standard multi-omics datasets such as The Cancer 
Genome Atlas (TCGA)[64] already exist. Comparable initiatives in the field of SSc and 
other (rheumatic) autoimmune diseases could help to standardize the way of performing 
omics studies within this field, and provide a solid base for omics datasets to build upon 
and complement each other. 

Conclusions 
 Using different omics techniques, the work presented in this thesis shows 
that immune dysregulation in SSc can be attributed to aberrances at various levels 
of molecular organization. These include the regulation of TLR signaling by lncRNAs, 
epigenomic imprinting of histone modifications and downregulation of immune regulatory 
transcription factors in monocytes and DCs. Enhanced activation of these innate immune 
cells has the potential to cue the adaptive immune system and orchestrate the generation 
of highly clonal autoreactive T cell repertoire. Future studies using standardized multi-
omics and single cell approaches should help to further unravel the regulatory pathways 
contributing to immune cell dysregulation in SSc.



217

General discussion

REFERENCES
1. N. Higashi-Kuwata, M. Jinnin, T. Makino, et al. Characterization of monocyte/macrophage subsets in 

the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res. Ther. vol. 
12, no. 4, pp. R128. Jul. 2010.

2. N. Higashi-Kuwata, T. Makino, Y. Inoue, et al. Alternatively activated macrophages (M2 macrophages) 
in the skin of patient with localized scleroderma. Exp. Dermatol. vol. 18, no. 8, pp. 727–729. 2009.

3. M. Kroef, L.L. van den Hoogen, J.S. Mertens, et al. Cytometry by time of flight identifies distinct 
signatures in patients with systemic sclerosis, systemic lupus erythematosus and Sjögrens 
syndrome. Eur. J. Immunol. vol. 50, no. 1, pp. 119–129. Jan. 2020.

4. O. Ishikawa, H. Ishikawa. Macrophage infiltration in the skin of patients with systemic sclerosis. J. 
Rheumatol. vol. 19, no. 8, pp. 1202–6. Aug. 1992.

5. B.M. Kräling, G.G. Maul, S. A. Jimenez. Mononuclear cellular infiltrates in clinically involved skin from 
patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages. 
Pathobiology. vol. 63, no. 1, pp. 48–56. 1995.

6. S. Mokuda, T. Miyazaki, Y. Ubara, et al. CD1a+ survivin+ dendritic cell infiltration in dermal lesions of 
systemic sclerosis. Arthritis Res. Ther. vol. 17, no. 1, pp. 275. Dec. 2015.

7. A.L. Mathes, R.B. Christmann, G. Stifano et al. Global chemokine expression in systemic sclerosis 
(SSc): CCL19 expression correlates with vascular inflammation in SSc skin. Ann. Rheum. Dis. vol. 
73, no. 10, pp. 1864–1872. Oct. 2014.

8. L. van Bon, C. Popa, R. Huijbens, et al. Distinct evolution of TLR-mediated dendritic cell cytokine 
secretion in patients with limited and diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. vol. 69, 
no. 8, pp. 1539–1547. Aug. 2010.

9. S.K. Mathai, M. Gulati, X. Peng, et al. Circulating monocytes from systemic sclerosis patients with 
interstitial lung disease show an enhanced profibrotic phenotype. Lab. Investig. vol. 90, no. 6, pp. 
812–823. Jun. 2010.

10. T. Carvalheiro, S. Horta, J.A.G. van Roon, et al. Increased frequencies of circulating CXCL10-, 
CXCL8- and CCL4-producing monocytes and Siglec-3-expressing myeloid dendritic cells in systemic 
sclerosis patients. Inflamm. Res. vol. 67, no. 2, pp. 169–177. Feb. 2018.

11. T. Carvalheiro, A.P. Lopes, M. van der Kroef, et al. Angiopoietin-2 Promotes Inflammatory Activation 
in Monocytes of Systemic Sclerosis Patients. Int. J. Mol. Sci. vol. 21, no. 24, p. 9544. Dec. 2020.

12. J. Wu, H. Zhang, Y. Zheng, et al. The long noncoding RNA MALAT1 induces tolerogenic dendritic 
cells and regulatory T cells via miR155/dendritic cell-specific intercellular adhesion molecule-3 
grabbing nonintegrin/IL10 axis. Front. Immunol. vol. 9, pp. 1847, Aug. 2018.

13. M. Zhang, Y. Zheng, Y. Sun, et al. Knockdown of NEAT1 induces tolerogenic phenotype in dendritic 
cells by inhibiting activation of NLRP3 inflammasome. Theranostics. 2019. vol. 9, no. 12, pp. 3425-
3442. May 2019.

14. F. Zhang, L. Wu, J. Qian, et al. Identification of the long noncoding RNA NEAT1 as a novel 
inflammatory regulator acting through MAPK pathway in human lupus. J. Autoimmun. vol. 75, pp. 
96–104. Dec. 2016.

15. H. Cui, S. Banerjee, S. Guo, et al. Long noncoding RNA Malat1 regulates differential activation of 
macrophages and response to lung injury. JCI insight. vol. 4, no. 4, pp. e124522, Feb. 2019.

16. S. Mehta, K.L. Jeffrey. Beyond receptors and signaling: Epigenetic factors in the regulation of innate 
immunity. Immunol Cell Biol. vol. 93, no. 3, pp. 233–44. Mar. 2015.

17. P. Byvoet, G.R. Shepherd, J.M. Hardin, et al. The distribution and turnover of labeled methyl groups 
in histone fractions of cultured mammalian cells. Arch. Biochem. Biophys. vol. 148, no. 2, pp. 558–
67. Feb. 1972.

18. S. Bekkering, J. Quintin, L. A. B. Joosten, et al. Oxidized low-density lipoprotein induces long-term 
proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of 
monocytes. Arterioscler. Thromb. Vasc. Biol. vol. 34, no. 8, pp. 1731–1738. Jun. 2014.

19. T.O. Crişan, M.C.P. Cleophas, B. Novakovic, et al. Uric acid priming in human monocytes is driven 
by the AKT-PRAS40 autophagy pathway. Proc. Natl. Acad. Sci. U. S. A. vol. 114, no. 21, pp. 5485–
5490. May 2017.

20. P.M. Campbell, E. C. LeRoy. Pathogenesis of systemic sclerosis: A vascular hypothesis. Semin. 
Arthritis Rheum. vol. 4, no. 4, pp. 351–368. May 1975.

21. L. Frasca, R. Lande. Toll‐like receptors in mediating pathogenesis in systemic sclerosis. Clin. Exp. 
Immunol. vol. 201, no. 1, pp. 14–24. Jul. 2020.

8



218

General discussion

22. P. Laurent, V. Sisirak, E. Lazaro, et al. Innate Immunity in Systemic Sclerosis Fibrosis: Recent 
Advances. Front. Immunol. vol. 9, pp. 1702. Jul. 2018.

23. C.K. Huang, S. Kafert-Kasting, T. Thum. Preclinical and Clinical Development of Noncoding RNA 
Therapeutics for Cardiovascular Disease. Circulation Research. vol. 126, no. 5, pp. 663-678. Feb. 
2020.

24. H. Kambara, F. Niazi, L. Kostadinova, et al. Negative regulation of the interferon response by an 
interferon-induced long non-coding RNA. Nucleic Acids Res. vol. 42, no. 16, pp. 10668–10680. Aug. 
2014.

25. J. Li, X. Zhang, C. Liu. The computational approaches of lncRNA identification based on coding 
potential: Status quo and challenges. Comput. Struct. Biotechnol. J. vol. 18, pp. 3666–3677. Nov. 
2020.

26. M. Cao, J. Zhao, G. Hu. Genome-wide methods for investigating long noncoding RNAs. Biomed. 
Pharmacother. vol. 111, pp. 395–401. Mar. 2019.

27. M.A.J. Morgan, A. Shilatifard. Reevaluating the roles of histone-modifying enzymes and their 
associated chromatin modifications in transcriptional regulation. Nat. Genet. vol. 52, no. 12, pp. 
1271–1281. Dec. 2020.

28. F.M. Davis, A. denDekker, A.D. Joshi, et al. Palmitate‐TLR4 signaling regulates the histone 
demethylase, JMJD3, in macrophages and impairs diabetic wound healing. Eur. J. Immunol. vol. 50, 
no. 12, pp. 1929–1940. Dec. 2020.

29. C. Bergmann, A. Brandt, B. Merlevede, et al. The histone demethylase Jumonji domain-containing 
protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann. Rheum. Dis. vol. 77, no. 
1, pp. 150–158. Jan. 2018.

30. T. Satoh, O. Takeuchi, A. Vandenbon, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization 
and host responses against helminth infection. Nat. Immunol. vol. 11, no. 10, pp. 936–944. Oct. 
2010.

31. M. Krämer, C. Dees, J. Huang, et al. Inhibition of H3K27 histone trimethylation activates fibroblasts 
and induces fibrosis. Ann. Rheum. Dis. vol. 72, no. 4, pp. 614–620. Apr. 2013.

32. M. Ciechomska, S. O’Reilly, S. Przyborski. Histone Demethylation and Toll-like Receptor 8-Dependent 
Cross-Talk in Monocytes Promotes Transdifferentiation of Fibroblasts in Systemic Sclerosis Via Fra-
2. Arthritis Rheumatol. vol. 68, no. 6, pp. 1493–1504. Jun. 2016.

33. J.L. Kwapis, Y. Alaghband, A.J. López, et al. HDAC3-mediated repression of the Nr4a family 
contributes to age-related impairments in long-term memory. J. Neurosci. vol. 39, no. 25, pp. 4999–
5009. Jun. 2019.

34. Y. Zhao, T. Nomiyama, H.M. Findeisen, et al. Epigenetic regulation of the NR4A orphan nuclear 
receptor NOR1 by histone acetylation. FEBS Lett. vol. 588, no. 24, pp. 4825–4830. Dec. 2014.

35. S. Yoo, S.-J. Ha. Generation of Tolerogenic Dendritic Cells and Their Therapeutic Applications. 
Immune Netw. vol. 16, no. 1, pp. 52–60. Feb. 2016.

36. G.M. Bell, A.E. Anderson, J. Diboll, et al. Autologous tolerogenic dendritic cells for rheumatoid and 
inflammatory arthritis. Ann. Rheum. Dis. vol. 76, no. 1, pp. 227–234. Jan. 2017.

37. I. Zubizarreta, G. Flórez-Grau, G. Vila, et al. Immune tolerance in multiple sclerosis and neuromyelitis 
optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc. Natl. Acad. Sci. U. S. 
A. vol. 116, no. 7, pp. 8463–8470. Apr. 2019.

38. T. Nikolic, J.J. Zwaginga, B.S. Uitbeijerse, et al. Safety and feasibility of intradermal injection with 
tolerogenic dendritic cells pulsed with proinsulin peptide—for type 1 diabetes. Lancet Diabetes 
Endocrinol. vol. 8, no. 6, pp. 470–472. Jun. 2020.

39. G.B. Ferreira, A.-S. Vanherwegen, G. Eelen, et al. Vitamin D3 induces tolerance in human dendritic 
cells by activation of intracellular metabolic pathways. Cell Rep. vol. 10, no. 5, pp. 711–725. Feb. 
2015.

40. L. Groseanu, V. Bojinca, T. Gudu, et al. Low vitamin D status in systemic sclerosis and the impact on 
disease phenotype. Eur. J. Rheumatol. vol. 3, no. 2, pp. 50–55. Jun. 2016.

41. L. An, M.H. Sun, F. Chen, et al. Vitamin D levels in systemic sclerosis patients: A meta-analysis. Drug 
Des Devel Ther. vol. 11, pp. 3119–3125. Oct. 2017.

42. D. Giuggioli, M. Colaci, G. Cassone, et al. Serum 25-OH vitamin D levels in systemic sclerosis: 
analysis of 140 patients and review of the literature. Clin. Rheumatol. vol. 36, no. 3, pp. 83–590. 
Mar. 2017.

43. K. Palumbo-Zerr, P. Zerr, A. Distler, et al. Orphan nuclear receptor NR4A1 regulates transforming 
growth factor-β signaling and fibrosis. Nat. Med. vol. 21, no. 2, pp. 150–158. Feb. 2015.



219

General discussion

44. D. Farge, C. Henegar, M. Carmagnat, et al. Analysis of immune reconstitution after autologous bone 
marrow transplantation in systemic sclerosis. Arthritis Rheum. vol. 52, no. 5, pp. 1555–1563. May 
2005.

45. L.C.M. Arruda, K.C.R. Malmegrim, J.R. Lima-Júnior, et al. Immune rebound associates with a 
favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Adv. vol. 2, no. 
2, pp. 126–141. Jan. 2018.

46. D. Farge, L.C.M. Arruda, F. Brigant, et al. Long-term immune reconstitution and T cell repertoire 
analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J. 
Hematol. Oncol. vol. 10, no. 1, pp. 21. Jan. 2017.

47. U. Hainz. Monocyte-mediated T-cell suppression and augmented monocyte tryptophan catabolism 
after human hematopoietic stem-cell transplantation. Blood. vol. 105, no. 10, pp. 4127–4134, May 
2005.

48. L. Stern, H. McGuire, S. Avdic, et al. Mass Cytometry for the Assessment of Immune Reconstitution 
After Hematopoietic Stem Cell Transplantation. Front. Immunol. vol. 9, p. 1672. Jul. 2018.

49. J. D. Isaacs, B. L. Hazleman, K. Chakravarty, et al. Monoclonal antibody therapy of diffuse cutaneous 
scleroderma with CAMPATH-1H. J. Rheumatol. vol. 23, no. 6, pp. 1103–1106. Jun. 1996.

50. L. Costelloe, J. Jones, A. Coles. Secondary autoimmune diseases following alemtuzumab therapy 
for multiple sclerosis. Expert Rev Neurother. vol. 12, no. 3, pp. 335-341. Mar. 2012.

51. M. Tenspolde, K. Zimmermann, L.C. Weber, et al. Regulatory T cells engineered with a novel insulin-
specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J. Autoimmun. 
vol. 103, pp. 102289. Sep. 2019.

52. M. Akamatsu, N. Mikami, N. Ohkura, et al. Conversion of antigen-specific effector/memory T cells into 
Foxp3-expressing Tregcells by inhibition of CDK8/19. Sci. Immunol. vol. 4, no. 40, pp. eaaw2707. 
Oct. 2019.

53. A. Ben-nun, H. Wekerle, I.R. Cohen. Vaccination against autoimmune encephalomyelitis with 
T-lymphocite line cells reactive against myelin basic protein. Nature. vol. 292, no. 5818, pp. 60–61. 
Jul. 1981.

54. J.-W. Sidhom, H.B. Larman, D.M. Pardoll, et al. DeepTCR is a deep learning framework for revealing 
sequence concepts within T-cell repertoires. Nat. Commun. vol. 12, no. 1, pp. 1605. Dec. 2021.

55. Z. Zhang, D. Xiong, X. Wang, et al. Mapping the functional landscape of T cell receptor repertoires 
by single-T cell transcriptomics. Nat. Methods. vol. 18, no. 1, pp. 92–99. Jan. 2021.

56. K. Yugi, H. Kubota, A. Hatano, et al. Trans-Omics: How To Reconstruct Biochemical Networks Across 
Multiple ‘Omic’ Layers. Trends Biotechnol. vol. 34, no. 4, pp. 276–290. Apr. 2016.

57. R. Ai, T. Laragione, D. Hammaker, et al. Comprehensive epigenetic landscape of rheumatoid arthritis 
fibroblast-like synoviocytes. Nat. Commun. vol. 9, no. 1, pp. 1921. Dec. 2018.

58. F. Zhang, K. Wei, K. Slowikowski, et al. Defining inflammatory cell states in rheumatoid arthritis joint 
synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. vol. 20, 
no. 7, pp. 928–942. Jul. 2019.

59. M. van der Kroef, M. Castellucci, M. Mokry, et al. Histone modifications underlie monocyte 
dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic 
targeting. Ann. Rheum. Dis. vol. 78, no. 4, pp. 529–538. Apr. 2019.

60. C.M. Lanata, I. Paranjpe, J. Nititham, et al. A phenotypic and genomics approach in a multi-ethnic 
cohort to subtype systemic lupus erythematosus. Nat. Commun. vol. 10, no. 1, pp. 3902. Dec. 2019.

61. D. Wang, S. Bodovitz. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. vol. 28, no. 
6, pp. 281–290. Jun. 2010.

62. D. Xue, T. Tabib, C. Morse, et al. Expansion of FCGR3A + macrophages, FCN1 + mo‐DC, and 
plasmacytoid dendritic cells associated with severe skin disease in systemic sclerosis. Arthritis 
Rheumatol. no. 2, p. art.41813 (online ahead of print). May 2021.

63. Q. Liu, L.C. Zaba, A.T. Satpathy, et al. Chromatin accessibility landscapes of skin cells in systemic 
sclerosis nominate dendritic cells in disease pathogenesis. Nat. Commun. vol. 11, no. 1, pp. 5843. 
Dec. 2020.

64. J.N. Weinstein, E.A. Collisson, G.B. Mills, et al. The Cancer Genome Atlas Pan-Cancer analysis 
project. Nat. Genet. vol. 45, no. 10, pp. 1113–1120. Oct. 2013.

8





221

English Summary
Nederlandse Samenvatting 

Acknowledgments
Curriculum Vitae

List of Publications

A



222

Appendix

ENGLISH SUMMARY

Background and aims of this thesis
 Systemic sclerosis (SSc) is a complex, heterogeneous autoimmune disease 
characterized by vascular abnormalities, immune involvement and extensive fibrosis 
of the skin and internal organs. Immune system dysregulation is recognized as one 
of the main culprits of SSc pathogenesis, however, it remains unclear what molecular 
mechanisms underlie this. By applying various high-throughput omics approaches, the 
studies presented in this thesis aim to uncover the molecular mechanisms contributing to 
immune cell dysregulation in SSc. 

Factors driving innate immune cell dysregulation in SSc
 In chapter 2, we performed transcriptomic profiling of monocytes from healthy 
individuals and SSc patients to identify lncRNAs involved in the regulation of toll-like 
receptor (TLR) induced pro-inflammatory responses in these cells. We found the lncRNA 
NRIR (Negative Regulator of the IFN Response) to be upregulated in SSc as compared 
to healthy monocytes. Characterization of NRIR function by siRNA mediated knockdown 
showed that this lncRNA is involved in the positive regulation of interferon (IFN) inducible 
genes. Notably, we also found NRIR to be upregulated in a publicly available RNA-
sequencing dataset of monocytes from systemic lupus erythematosus (SLE) patients, 
which, like SSc, are also characterized by the presence of an IFN signature. These 
results indicate a role for NRIR in controlling IFN responses in monocytes from SSc 
patients, and potentially other autoimmune diseases. 
 In chapter 3, the lncRNA profile of SSc monocytes was investigated in more 
detail. Here we show that lncRNAs are also implicated in regulation of other pathways 
important for monocyte biology, including monocyte apoptosis and cytokine secretion. We 
identified the lncRNA PSMB8-AS1 as a potential regulator of immune related pathways 
in SSc monocytes. siRNA mediated knockdown of PSMB8-AS1 reduced the secretion of 
the cytokines IL-6, TNFα and IL-8 by stimulated monocytes, further highlighting lncRNAs 
as novel molecular factors contributing to monocyte dysregulation in SSc. 
 In chapter 4, we investigated the epigenomic landscape of monocytes from 
fifteen healthy controls and sixty patients with SSc, SLE or rheumatoid arthritis (RA). 
Whereas SSc and SLE monocytes were marked by a strong dysregulation of IFN and 
TNFα signaling pathways, RA monocytes lacked the IFN signature and were highly 
enriched for TNFα, TGFβ, and collagen formation pathways. The dysregulation of these 
disease specific pathways was already imprinted at the histone level, showing that 
aberrances in histone marks selectively skew SSc, SLE and RA monocytes towards 
distinct pro-inflammatory phenotypes. We also identified numerous bivalent promoters, 
of which many displayed increased levels of H3K4me3 in RA and eaSSc, and to a 
limited extent dcSSc monocytes. Interestingly, a large number of bivalent domains were 
identified in promoters of genes related to response to fibroblast growth factors, ECM 
organization, and vasculogenesis. 
 In chapter 5, we identified the nuclear receptor 4A subfamily (NR4A1, NR4A2, 
NR4A3), as important transcriptional repressors of inflammation in conventional dendritic 
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cells (cDCs) from SSc patients. Characterization of the genome-wide binding sites of 
NR4As in resting and stimulated cDCs by ChIP-sequencing showed that NR4As are 
strongly involved in transcriptional programs underlying cDC dysregulation in SSc. 
Indeed, functional experiments using agonists targeting NR4As showed that these 
receptors are involved in cytokine production and modulation of T cell activation by cDCs. 
Thus, NR4As are important negative regulators of immune pathways in cDCs, and NR4A 
downregulation potentially contributes to the dysregulation of these cells in SSc patients. 

Skewing of the adaptive immune system in SSc
 In the second part of this thesis, the dynamics of the T cell repertoire in SSc 
were studied to better understand the role of antigen specific T cell responses in SSc 
pathogenesis. In chapter 6, we show that the TCR repertoire in SSc patients is highly 
persistent over time, which is likely driven by antigenic selection. Moreover, we identified 
clusters of TCRs with similar specificities in SSc patients over time, representing groups 
of T cells that are likely to recognize the same or highly similar antigens. 
 To determine to what extent the longitudinal persistence of circulating T cells 
are characteristic of SSc, in chapter 7 we studied the immune cell architecture and 
TCR repertoire dynamics of peripheral blood and affected joints of juvenile idiopathic 
arthritis (JIA) patients. Whereas in SSc patients T cells from peripheral blood were highly 
clonally expanded, only T cells obtained from affected joints from JIA patients exhibited 
an expanded profile while circulating T cells did not. These results indicate that tissue 
specific dominant (auto-)antigens in JIA patients heavily skew the TCR repertoire, while 
in SSc, the potential antigens might be more ubiquitously expressed. Additionally, JIA 
patients were characterized by a strong expansion and persistence of regulatory T cells 
(Tregs) rather than effector T cells, whereas in SSc, effector CD4+ and CD8+ T cells 
were highly expanded over time. 

Concluding remarks
 Altogether, the work presented in this thesis shows that immune dysregulation 
in SSc can be attributed to aberrances at various levels of molecular organization. 
These include the regulation of TLR signaling by lncRNAs, epigenomic imprinting of 
histone modifications and downregulation of immune regulatory transcription factors in 
monocytes and DCs. Enhanced activation of these innate immune cells has the potential 
to cue the adaptive immune system and orchestrate the generation of highly clonal 
autoreactive T cell repertoire. These insights offer new avenues for the development of 
novel therapeutics for SSc as well as other autoimmune diseases. 

A
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Achtergrond en doelstelling van dit proefschrift
 Systemische sclerose (SSc) is een complexe, heterogene auto-immuunziekte 
die wordt gekenmerkt door vasculaire afwijkingen, activatie van het immuunsysteem en 
uitgebreide fibrose van de huid en inwendige organen. Ontregeling van het immuunsysteem 
wordt gezien als een van de belangrijkste oorzaken van SSc-pathogenese, maar het blijft 
onduidelijk welke moleculaire mechanismen hieraan ten grondslag liggen. De studies in 
dit proefschrift, waar verschillende omics-technieken worden toegepast, hebben als doel 
de moleculaire mechanismen bloot te leggen die bijdragen aan de ontregeling van het 
immuunsysteem in SSc.

Ontregeling van het aangeboren immuunsysteem in SSc
 In hoofdstuk 2 hebben we het transcriptoom van monocyten van gezonde 
controles en SSc patiënten onderzocht om lange niet-coderende RNAs (lncRNAs) 
te identificeren die betrokken zijn bij de regulatie van door toll-like receptor (TLR) 
geïnduceerde pro-inflammatoire processen. De lncRNA NRIR had een hogere expressie 
in monocyten van SSc patiënten dan gezonde monocyten. Met behulp van knockdown 
experimenten hebben wij aangetoond dat NRIR betrokken is bij de positieve regulatie 
van interferon (IFN) induceerbare genen die belangrijk zijn in de pathogenese van SSc. 
Daarnaast was de expressie van NRIR ook verhoogd in monocyten van patiënten met 
systemische lupus erythematodes (SLE), die, net als SSc patiënten, worden gekenmerkt 
door een verhoogde expressie van IFN induceerbare genen. Deze resultaten wijzen op 
een rol voor NRIR bij het controleren van IFN-responsen in monocyten van SSc patiënten 
en mogelijk ook bij andere auto-immuunziekten.
 In hoofdstuk 3 tonen we aan dat lncRNAs ook betrokken zijn bij de regulatie 
van andere processen die belangrijk zijn voor de biologie van monocyten, waaronder 
apoptose en cytokine secretie. Daarnaast identificeerden we PSMB8-AS1 als een 
potentiële regulator van immuun gerelateerde processen in monocyten van SSc 
patiënten. Verder laten we zien dat knockdown van PSMB8-AS1 in monocyten leidt tot 
een verminderde secretie van de pro-inflammatoire cytokines IL-6, TNFα en IL-8. Deze 
resultaten tonen aan dat lncRNAs nieuwe moleculaire factoren zijn die bijdragen aan 
ontregeling van monocyten in SSc. 
 In hoofdstuk 4 hebben we gekeken naar de correlatie tussen het transcriptoom 
en het epigenoom in monocyten van vijftien gezonde controles en zestig patiënten met 
SSc, SLE of reumatoïde artritis (RA). Terwijl monocyten van SSc en SLE patiënten 
werden gekenmerkt door een sterke ontregeling van IFN en TNFα signalering, misten 
monocyten van RA patiënten de IFN-signatuur en waren sterk verrijkt voor genen 
gerelateerd aan TNFα- en TGFβ signalering en collageenvorming. Deze ontregeling 
was al op het niveau van histonen ingeprent, wat aantoont dat selectieve afwijkingen 
in het epigenoom van SSc-, SLE- en RA-monocyten verschillende pro-inflammatoire 
fenotypes onder ligt. We vonden ook talrijke genen met bivalente promotors, waarvan 
vele verhoogde niveaus van H3K4me3 vertoonden in monocyten van RA en specifieke 
subtypes van SSc patiënten (eaSSc en dcSSc). Een groot aantal van deze bivalente 
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domeinen werden geïdentificeerd in promotors van genen geassocieerd met de respons 
op fibroblast groeifactoren, ECM-organisatie en vasculogenese. 
 In hoofdstuk 5 laten we zien dat de transcriptiefactoren NR4A1, NR4A2, en 
NR4A3 belangrijke remmers zijn van pro-inflammatoire responsen in conventionele 
dendritische cellen (cDCs). Door middel van ChIP-seq tonen we aan dat een groot 
deel van de genen die differentieel tot expressie komen in cDCs van dcSSc patiënten 
direct gereguleerd worden door NR4As. Dit suggereert dat NR4As sterk betrokken zijn 
bij transcriptionele programma’s die ten grondslag liggen aan de ontregeling van cDCs 
in SSc patiënten. Functionele experimenten met agonisten voor NR4As toonden aan 
dat deze transcriptie factoren betrokken zijn bij cytokineproductie en T-cel activatie door 
cDCs. NR4As zijn dus belangrijke negatieve regulatoren van de immuunrespons in cDCs 
en hun verlaagde expressie draagt mogelijk bij aan de ontregeling van deze cellen in 
SSc patiënten.
 
Ontregeling van het adaptieve immuunsysteem in SSc
   In het tweede deel van dit proefschrift hebben we de dynamiek van het T-cel 
repertoire in SSc bestudeerd om de rol van antigeen specifieke T-cel reacties in 
SSc-pathogenese beter te begrijpen. Hiervoor onderzochten we in hoofdstuk 6 het 
T-celreceptor (TCR) repertoire van circulerende T-cellen uit longitudinale monsters 
verkregen van vier SSc-patiënten. Het TCR repertoire in SSc-patiënten is zeer stabiel 
over tijd. Deze stabiliteit wordt waarschijnlijk gedreven door antigene selectie. Verder 
vonden we ook clusters van T-cellen in SSc patiënten die gekenmerkt werden door 
een hoge overeenkomst in hun TCR sequenties. Deze T-cellen herkennen hierdoor 
waarschijnlijk dezelfde of sterk vergelijkbare antigenen.
 Om te bepalen in hoeverre de stabiliteit van circulerende TCR repertoire 
kenmerkend is voor SSc, hebben we in hoofdstuk 7 de immuun cel compositie en TCR 
repertoire dynamiek van perifeer bloed en aangetaste gewrichten van patiënten met 
Juveniele Idiopathische Artritis (JIA) bestudeerd. Terwijl bij SSc-patiënten T-cellen uit 
perifeer bloed sterk klonaal geëxpandeerd waren, vertoonden bij JIA-patiënten alleen 
T-cellen verkregen uit aangetaste gewrichten een geëxpandeerd profiel. Deze resultaten 
geven aan dat weefselspecifieke dominante (auto-)antigenen bij JIA-patiënten T-cellen 
activeren, terwijl in SSc de potentiële antigenen waarschijnlijk door het hele lichaam 
tot expressie worden gebracht. Daarnaast werden JIA-patiënten gekenmerkt door een 
sterke expansie regulatoire T-cellen (Tregs), terwijl in SSc de effector T-cellen sterk 
waren geëxpandeerd. T-cel activering en expansie in JIA kan dus het gevolg zijn van het 
niet onderdrukken van autoreactieve T-cellen door Tregs, terwijl de activatie van effector-
T-cellen in SSc waarschijnlijk wordt gedreven door een disregulatie van aangeboren 
immuun cellen.

Conclusie
 Al met al laat het werk gepresenteerd in dit proefschrift zien dat de disregulatie 
van het immuunsysteem in SSc kan worden toegeschreven aan afwijkingen op 
verschillende niveaus van moleculaire organisatie in immuuncellen. Deze omvatten 
de regulatie van TLR-signalering door lncRNAs, epigenomische imprinting van histon-
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modificaties en verlaagde expressie van immuun regulerende transcriptiefactoren 
in monocyten en DC’s. De ontregeling van het aangeboren immuunsysteem leidt tot 
overactiviteit van het adaptieve immuunsysteem en het ontstaan van een zeer klonaal 
autoreactief T-celrepertoire. Deze inzichten in vormen belovende aangrijpingspunten 
voor het ontwikkelen van nieuwe therapieën voor SSc en andere auto-immuunziekten. 
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