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The brain is one of the most intriguing organs of the body. It consists of billions of nerve cells 
(called neurons), which are communicating through trillions of synaptic connections. The 
communication between neurons and brain regions via their connections is essential for all 
our daily life functions, including reading this thesis. Understanding the organization and 
functioning of the brain has been one of the fundamental questions in Neuroscience and 
forms the basis of this thesis. In this thesis, we aim to “connect the dots”. On the smallest 
level, we connected dots in the brain, by looking at the connectivity between different brain 
regions that are often visualized as circles (or dots). In addition, we aimed to connect dots in 
a more figurative way, by identifying how larger phenomena, like aging across the life span 
or disease processes, affect brain network organization. 
 
The brain as a network 
In the 18th century, Franz Joseph Gall introduced the idea of brain localization, by stating 
that specific functions of the brain could be ascribed to specific brain regions (Zola-Morgan, 
1995). This idea of localized brain functions was later supported by Paul Broca, who identified 
an area in the brain specialized in speech (Broca, 1861; Finger, 2004). The connection 
between cerebral localization and brain organization implies that different regions in the 
brain have specific functions and may therefore be responsible for specific behavior. Another 
famous example of cerebral localization is the case study of Phineas Cage, also known as the 
“American Crowbar Case”, from 1848. Phineas Cage survived an accident in which a large 
iron rod was driven through his left frontal cortex (Barker, 1995; Bigelow, 1850). Surprisingly, 
he recovered without any motor and sensory deficits, but his personality changed, suggesting 
that certain parts of the frontal cortex are important for specific mental and higher cognitive 
functions. 

More recently, a novel view on how complex systems, such as the brain, are 
organized has emerged as network science (Borner et al., 2007). According to network 
science, the connections and interactions between individual components should be 
considered to fully understand the organization and behavior of complex systems. In line 
with this view, researchers have shown that many functions of the brain require distributed 
brain areas, showing the importance of connections and communication between brain 
regions (Tononi et al., 1998). Within network neuroscience, the brain is seen as a network of 
interacting brain regions at the micro-, meso- and macroscopic level. To study these 
multilevel brain networks, the brain is conceptually divided into brain regions (i.e. nodes or 
dots) and connections (i.e. edges) (Bassett and Sporns, 2017). You can look at these 
connections in two ways. First, there are functional connections between brain regions, which 
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are assumed to reflect information transfer between regions (i.e., signals send from one brain 
region to another). Second, there are structural connections, which are the physical 
connections between brain regions or neurons. The concept of structural and functional 
connectivity is also found elsewhere. For example, in the behavior of a railway network. In 
this example, a structural connection is the railway between two stations, whereas the number 
of trains that is using this railway is the functional connection. 

Many studies have characterized features of structural and functional brain 
connectivity in isolation, but there is limited knowledge about the mutual relationship 
between them. Whether and how structural connections constrain, maintain, and restrict 
functional connections in the brain is a fundamental question in Neuroscience. Especially 
also because many disorders have been associated with disturbances in structural and 
functional brain networks (Fornito et al., 2015; van den Heuvel and Sporns, 2019; Van Essen 
and Barch, 2015). Ideally, the network organization of structural and functional brain 
connections is studied non-invasively in vivo using magnetic resonance imaging (MRI).  
 
Structural and functional connectivity in the brain measured with MRI 
MRI offers powerful techniques to study the organization and functioning of the brain and 
connections between brain regions in vivo. The two techniques that are often used to study 
brain connectivity are resting-state functional MRI to study functional connectivity and 
diffusion-weighted MRI to study structural connectivity. 

Functional connectivity 
Functional MRI (fMRI) can be used to map the activity of the brain in response to specific 
stimuli, pharmacological compounds, or tasks. Brain activity measured with fMRI is based 
on the local level of blood oxygenation (BOLD) (Nikos K. Logothetis, 2008; Ogawa et al., 
1990). Resting-state fMRI, which is an fMRI scan without a task or a stimulus, has been used 
to study the organization of the brain during rest. During rest, brain regions exhibit 
spontaneous low frequency fluctuations in their BOLD signal. We know from primate, 
rodent and human studies that these spontaneous BOLD fluctuations match with specific 
patterns of neuronal activity (He et al., 2008; Magri et al., 2012; Pan et al., 2011; Shmuel and 
Leopold, 2008). Hereby, resting-state BOLD fMRI offers a non-invasive way to measure 
resting brain activity non-invasively in vivo. Two brain regions that are involved in similar 
functions, such as the motor cortex in the left and right hemisphere, appear to have correlated 
BOLD signal fluctuations during rest (B. B. Biswal et al., 1995; M D Fox and Raichle, 2007). 
The degree of correlation between spontaneously fluctuating BOLD signal time series in two 
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brain regions is considered as resting-state functional connectivity. Based on functional 
connectivity, several resting-state networks, including the default mode network and the 
sensorimotor network, have been identified in the brain (Damoiseaux et al., 2006; Fox et al., 
2005).  

Often, functional connectivity is determined statically, i.e., the time series of the 
entire resting-state fMRI scan is used to calculate functional connectivity. Recently, 
functional connectivity is demonstrated to fluctuate during a resting-state fMRI scan (Chang 
and Glover, 2010) and dynamic analyses approaches have been developed, such as a sliding 
window approach. With this approach, you take a smaller part of the time series (e.g., 100 
seconds), which is called a window, you move this window along the time series with a 
specific step size and you quantify functional connectivity between brain regions for each 
window separately. The dynamic fluctuations in functional connectivity are assumed to be of 
neuronal origin, and potentially reflective of ongoing mental activity, consciousness or 
daydreaming (Barttfeld et al., 2015; Hutchison et al., 2013; Matsui et al., 2019). 

Structural connectivity 
Diffusion-weighted MRI can be used to map the anatomical connections, or white matter 
fiber bundles, between different brain regions. Diffusion-weighted MRI is sensitive to the 
random diffusion of water molecules (Basser et al., 1994; Le Bihan, 2003). A diffusion-
weighted MRI scan typically includes scans sensitive to different diffusion directions. Based 
on the variation of diffusion along these different directions, you can calculate the fractional 
anisotropy (FA), a scalar value for the degree of directionality-dependent diffusion. The FA 
value is suggested to be reflective of the integrity of the white matter fiber bundle, with a high 
FA value reflecting a better integrity. However, these claims are not yet definitive (Alexander 
et al., 2007).  

The diffusion is restricted (or anisotropic) in areas of the brain with strong natural 
boundaries, such as in white matter fiber bundles. In these areas, water diffusion is higher 
along white matter bundles, compared to perpendicular to white matter bundles. Therefore, 
we consider the main direction of water diffusion in a voxel as the main direction of white 
matter fiber bundles. To map the anatomical connectivity between brain regions, diffusion-
based tractography algorithms follow this main diffusion direction in each voxel of the brain 
to reconstruct streamlines reflecting large white matter fiber bundles (Basser et al., 2000; Mori 
and Van Zijl, 2002). The (number of) reconstructed streamlines, or values of white matter 
integrity such as FA, between brain regions can subsequently be considered as diffusion-
based structural connectivity. 
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Structure-function correlation 
Because functional connectivity is found between brain areas that are close together but also 
further apart from each other, structural connections seem essential. Indeed, functional 
connections are shaped by the presence of underlying structural connections, but functional 
connectivity also exists between regions without direct structural connections (Damoiseaux 
and Greicius, 2009; Honey et al., 2009; O’Reilly et al., 2013; van den Heuvel et al., 2009). In 
addition, in a systematic review, we showed that the stronger a structural connection, in 
general also the stronger the functional connection (Straathof et al., 2019). However, the 
structure-function relationship in the brain varied considerably between studies, indicating 
that the exact structure-function relationship still needs to be elucidated. In addition, 
different network resolutions, brain subsystems and connectivity measures may expose 
distinct structure-function relationships, which emphasizes the need to assess functional and 
structural connectivity at multiple scales. Lastly, how a relatively stable structural network 
supports dynamic functional connectivity remains an unanswered question (Cabral et al., 
2017).  

Graph theory analysis 
Structural and functional connectivity between brain regions can be used to quantify network 
organization and topology with graph theory analyses (Bullmore and Sporns, 2009a). This 
includes measurements of segregation (specialized brain regions, local connections) and 
integration (long, global connections), as well as the optimal balance between those two 
(small-worldness) (Bullmore and Sporns, 2009b). Both structural and functional networks 
are organized as small-world networks, with many local connections for segregation and a 
few global long distance connections for integration (Bullmore and Sporns, 2009a). This 
balance between segregation and integration seems essential for healthy brain functioning 
(Sporns, 2013; Tononi et al., 1994), it changes during development and aging and many 
disorders are assumed to be caused by a shift in this balance (van den Heuvel and Sporns, 
2019).  
 
Changes in structural and functional brain networks during maturation and aging  
The brain develops and ages and structural and functional connections between brain regions 
change over the lifespan. Both resting-state fMRI and diffusion-weighted MRI have been 
successfully used to study these changes in the brain during different age periods, such as 
maturation and aging. The structural and functional changes in these age periods may explain 
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the risk of developing neurodevelopmental or neurodegenerative disorders during these 
periods. 

Maturation 
Functional networks change during the development from childhood, through adolescence 
to adulthood (Grayson and Fair, 2017), although resting-state networks may already be 
present in children (Thomason et al., 2013). Functional connectivity between brain regions 
both decreases and increases during maturation (Wang et al., 2012), mainly characterized by 
decreases in short-distance functional connectivity (less segregation) and increases in long-
distance functional connectivity (more integration) (Dosenbach et al., 2010; Fair et al., 2009; 
Power et al., 2010; Supekar et al., 2009). Most of the structural connections are already present 
at the beginning of this developmental period. However, these structural pathways get refined 
during maturation, by increasing or decreasing myelination and/or axonal density, which 
change white matter integrity values, resulting in increases in FA (Brouwer et al., 2012; 
Hagmann et al., 2010). During late childhood, structural networks become less local but more 
globally efficient, with sensorimotor regions maturing first (Khundrakpam et al., 2013). 
Similar to functional networks, during adolescence, there is in increase in structural network 
integration (Dennis et al., 2013). Finally, the relationship between structural and functional 
connectivity significantly increases with age from 18 months to 18 years old (Hagmann et al., 
2010).  

Because structural and functional networks mature during the development from 
childhood through adolescence, this period is also sensitive to disturbances in the maturation 
of connections, which can result in neurodevelopmental disorders, such as obsessive-
compulsive disorder (OCD). Children and adolescents with OCD are indeed characterized 
by abnormalities in structural and functional networks. For example, children and 
adolescents with OCD have increased fractional anisotropy (i.e. more diffusion along white 
matter fiber bundles) in large white matter tracts (Gruner et al., 2012; Zarei et al., 2011). This 
may be reflective of premature myelination of white matter tracts (Zarei et al., 2011). In 
addition, both decreased and increased functional connectivity in resting-state networks have 
been identified in children and adolescents with OCD (Bernstein et al., 2016; Fitzgerald et al., 
2011a; Weber et al., 2014). Although abnormalities in the structural and functional 
maturation of brain regions and connections that form the frontostriatal system in the brain 
have been associated with OCD, the exact pathophysiological mechanisms remain 
incompletely understood.  
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Aging 
Similar as during maturation, structural and functional connections change during healthy 
aging. In general, studies report lower functional connectivity values within the default mode 
network with aging (Damoiseaux et al., 2008; Ferreira and Busatto, 2013). In addition, 
decreases in FA values, reflective of reduced white matter integrity, have been shown in older 
adults (Burzynska et al., 2010; Damoiseaux et al., 2009). In addition, the network topology of 
both structural and functional connectivity reorganizes during aging (Betzel et al., 2014; 
Meier et al., 2012; Otte et al., 2015a). Functional networks in aged individuals are 
characterized by decreased within-network connectivity, increased between-network 
connectivity and lower segregation (Damoiseaux, 2017; Ferreira et al., 2016; Spreng and 
Schacter, 2012). In addition, functional network efficiency decreases when individuals get 
older (Achard and Bullmore, 2007; Cao et al., 2014). Similar to functional networks, 
structural networks show decreased connectivity, lower efficiency and a more localized 
organization (Gong et al., 2009a; Wu et al., 2012; Zhu et al., 2012). Studies investigating both 
structural and functional networks have demonstrated that both networks change with aging, 
and that changes in structural and functional network during aging may be related (Betzel et 
al., 2014; Fjell et al., 2016; Zimmermann et al., 2016).  

These aging-induced changes in structural and functional connectivity may 
contribute to the vulnerability or resilience to brain disorders and may influence disease 
outcome and response to therapies (Herson and Traystman, 2014; Liang et al., 2016; Liu et 
al., 2009). With aging, the risk of several diseases, including stroke, increases. During 
ischemic stroke, there is a sudden disruption in blood flow to specific areas of the brain. 
However, not only regions close to the stroke lesion site, but also connected brain areas get 
affected (Carter et al., 2012; Grefkes and Fink, 2011; Silasi and Murphy, 2014), suggesting 
that structural and functional connectivity are interesting markers to probe stroke pathology 
and recovery. Experimental studies on how age-induced changes in structural and functional 
connectivity contribute to the vulnerability to brain disorders such as stroke are complicated, 
and lesion simulation studies may provide an alternative valuable strategy. 

 
The above-described studies on (ab)normal changes in structural and functional 

connectivity across maturation and aging in humans are mostly cross-sectional in design and 
longitudinal MRI studies are scarce, due to the obvious time and money investment. 
Longitudinal studies in animal models of healthy development and aging, or diseases 
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associated with these time periods, may be used to answer important remaining questions 
about structural and functional connectivity in the brain.  

 
Animal models  
MRI is equally suitable to study brain function and pathology in animals as it is in humans 
(Dijkhuizen and Nicolay, 2003). Structural and functional connectivity measured with MRI 
in rats provide several unique opportunities to overcome some of the limitations researchers 
face in human research.  
 First of all, rats go through similar developmental and aging phases as humans 
(Semple et al., 2013; Sengupta, 2013), making them suitable for longitudinal studies of 
functional and structural brain connectivity. An additional practical advantage is that rats 
age relatively fast (their lifespan is around 3 years (Quinn, 2005; Sengupta, 2013)), making 
longitudinal study designs during maturation or healthy aging easier in rats than in humans.  
 Second, heterogeneity in human patient populations with regards to comorbidities, 
symptoms, and exposure to treatments complicate drawing conclusions about specific causes 
of abnormal structural and functional connectivity. In comparison, animal experiments are 
often well-controlled with less variability between different individuals (such as age or 
genetics). Animal experiments are therefore suited to test abnormalities in specific 
developmental or aging trajectories or to test the efficacy of novel therapeutic treatments. 
 Thirdly, rodents offer an additional measure of structural brain connectivity, called 
neuronal tract tracers, which are considered to be the golden standard to measure axonal 
connectivity (Heimer and Robards, 1981). Neuronal tract tracers are transported by the 
transport mechanisms within a cell and can thereby visualize individual axonal projections 
between brain regions (Gerfen and Sawchenko, 1984; Lavail and Lavail, 1972). Combining 
structural connectivity measures on different levels (diffusion-weighted MRI at the level of 
large fiber bundles and neuronal tracers at individual axonal projections) may provide 
additional insights into structural connections and their relationship with functional 
connectivity in the brain.  

Although animal models are well-suited to investigate underlying disease 
mechanisms or to investigate novel therapeutic treatments, they do not always accurately 
reflect the clinical population. For example, many animal models of OCD are performed in 
adult rats, whereas the majority of OCD patients experience their first symptoms during 
childhood or adolescence (Taylor, 2011). As a contrast, stroke in experimental models is often 
induced in young adult or adult animals, whereas the clinical incidence of stroke increases 
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with older age. These age discrepancies between clinical and preclinical populations has been 
suggested to potentially explain why therapeutic drugs that seem promising in animal studies 
fail in the clinical human population (Dirnagl, 2016). To further understand structural and 
functional brain organization in health and disease, rodent animal models should be well-
reflective of the clinical population by means of age and developmental stages.  

 
Aim of the thesis: Connecting the dots 
The aim of this thesis is to characterize structural and functional connectivity in the healthy 
and diseased brain. We literally connected dots (i.e., regions) in the brain by characterizing 
MRI-based structural and functional brain organization. In addition, we aimed to identify 
how biological phenomena, including functional connectivity, structural connectivity, 
maturation, OCD, aging and stroke, connect to each other (Figure 1). We characterized the 
relationship between structural and functional connectivity in the healthy brain in Chapter 
2 and 3. In Chapter 4 and 5 we linked structural and functional connectivity to maturation 
and compulsive behavior associated with OCD. Lastly, in Chapter 6 we investigated how 
structural and functional connectivity changes associated with aging affect the impact of 
stroke lesions on brain networks.  
 
Outline of the thesis 
The aim of Chapter 2 was to identify to what extent structural and functional connectivity 
strength are linearly correlated across the rat brain. To this aim, we combined high-field 
resting-state fMRI-based functional connectivity with diffusion- as well as neuronal tracer-
based structural connectivity in the rat brain. We investigated local variations in the 
structure-function relationship, which may explain differences in the functional significance 
of connections and their contribution to network dysfunction in brain disorders.  

Although linear correlation analyses offer a clear and easily interpretable way to determine 
structure-function relationships, it may not completely cover its complex nature. Therefore, 
in Chapter 3, we mapped the relationship between MRI-based structural and functional 
connectivity in the brain by taking non-linearity into account. To that aim, we used a 
generalized additive model to compare the non-linearity of the structure-function 
relationship in the rat and human brain. 
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Figure 1: Overview of the connected dots in this thesis. Literally, connecting the dots in this thesis refers to the 
view of Network Neuroscience, in which the brain is divided into nodes (circles, “dots”) which are connected. In 
addition, we aimed to connect larger phenomena, here represented as circles or dots. First, in chapter 2 and 3, we 
connected structural and functional connectivity in the healthy brain. Second, in chapter 4 till 6, we investigated 
changes in structural and functional connectivity across the lifespan, and how these changes relate to brain disorders 
associated with these life periods. Therefore, we investigated structural and functional connectivity changes 
associated with maturation and compulsive behavior associated with obsessive-compulsive disorder in Chapter 4 
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and 5. Lastly, in Chapter 6 we investigated whether age and associated structural and functional connectivity patterns 
influence the impact of stroke lesion simulations on brain networks.  

 

In Chapter 4, we characterized normal and abnormal developmental changes in structural 
and functional connections of the frontostriatal system in an adolescent rat model of 
compulsive checking behavior. To this aim, we adapted the adult quinpirole-induced 
compulsive checking behavior model, to induce compulsive checking behavior during brain 
maturation and applied serial structural and functional MRI of the brain. In addition, we 
correlated (ab)normal changes in structural and functional connectivity to compulsive 
behavioral measures. 

In Chapter 5, we used the above-described adolescent rat model of compulsive checking 
behavior to determine the therapeutic efficacy of memantine to reduce compulsive behavior. 
In addition, we investigated its possible mode of action on the development of structural and 
functional connectivity, and functional activation within the frontostriatal system. Therefore, 
we applied diffusion-weighted MRI, resting-state fMRI, and pharmacological MRI before 
and after memantine treatment. 

The aim of Chapter 6 was to characterize differences in structural and functional brain 
networks between young adult and aged rats as well as their susceptibility and resilience to 
stroke lesions. Resting-state functional MRI and diffusion MRI were measured 
longitudinally, and lesions were simulated in brain areas that are typically affected in different 
stroke animal models.   

In Chapter 7 the implications of the findings from chapters 2-6 are discussed. Limitations 
and future perspectives are outlined as well. 
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Abstract 

An improved understanding of the structure-function relationship in the brain is necessary 
to know to what degree structural connectivity underpins abnormal functional connectivity 
seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity 
with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based 
structural connectivity, to obtain an accurate depiction of the structure-function relationship 
in the rat brain. Our main goal was to identify to what extent structural and functional 
connectivity strengths are correlated, macro- and meso-scopically, across the cortex. 
Correlation analyses revealed a positive correspondence between functional and macro-scale 
diffusion-based structural connectivity, but no significant correlation between functional 
connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on 
individual connections, we found strong functional connectivity in two well-known resting-
state networks: the sensorimotor and default mode network. Strong functional connectivity 
within these networks coincided with strong short-range intrahemispheric structural 
connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric 
structural connectivity. Our study indicates the importance of combining measures of 
connectivity at distinct hierarchical levels to accurately determine connectivity across 
networks in the healthy and diseased brain. Although characteristics of the applied 
techniques may affect where structural and functional networks (dis)agree, distinct structure-
function relationships across the brain could also have a biological basis.  
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Introduction 

The brain is a complex organ that can be regarded as a structural and functional network of 
interacting regions at the micro-, meso- and macroscopic level. At the macro-scale, whole-
brain functional networks can be non-invasively mapped with resting-state functional MRI 
(resting-state fMRI). In resting-state fMRI data the inter-regional temporal correlations of 
spontaneous low-frequency blood oxygenation level-dependent (BOLD) fluctuations reflect 
functional connectivity (B. Biswal et al., 1995; Michael D. Fox and Raichle, 2007). Based on 
clusters of functionally connected regions, various resting-state networks have been 
identified, such as the default mode network (Greicius et al., 2003). These networks have been 
related to behavioral functioning in health and disease, and abnormalities partially explain 
pathophysiological processes and disease progression (Raichle, 2015; van den Heuvel and 
Hulshoff Pol, 2010; Zhang and Raichle, 2010).  

The exact nature of functional connectivity is nonetheless not yet fully established. 
Since functional connectivity measured with resting-state fMRI relies on synchronous BOLD 
signals, understanding functional connectivity starts with understanding the origin of BOLD 
signals. The BOLD signal captures hemodynamic changes, such as blood flow, in response to 
neural activity. Although it is clear that BOLD signals reflect aspects of neural responses, it is 
still unclear which processes are the main contributors, i.e. excitation or inhibition, local field 
potentials, action potentials or multi-unit activity (Logothetis et al., 2001; Nikos K Logothetis, 
2008; Logothetis and Wandell, 2004). We know from primate and rodent studies that 
spontaneous BOLD fluctuations match with slow fluctuations in neuronal activity (Magri et 
al., 2012; Pan et al., 2011; Shmuel and Leopold, 2008). Moreover, in humans, BOLD signal 
fluctuations are related to slow cortical potentials and gamma band-limited power (He et al., 
2008). Still, the underlying structure of functional connectivity remains largely unknown. 
Since functional connectivity is found between adjacent and remote brain areas, short- and 
long-distance structural connections seem essential. Structural connectivity can be measured 
non-invasively with diffusion MRI and invasively with neuronal tracers. Diffusion-based 
tractography enables reconstruction of whole-brain macro-scale structural networks, by 
indirectly inferring the direction and strength of large white matter tracts from the diffusion 
of water (Basser et al., 1994; Turner et al., 1990). In contrast, neuronal tracers use the 
transport mechanisms of cells to label existing mono- or polysynaptic connections. Tracers 
thus provide a direct and accurate measure of the directionality and strength at the meso-
scale of individual axonal projections (Heimer and Robards, 1981).  
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Functional connectivity strength correlates with both diffusion- and neuronal 
tracer-based structural connectivity strength at the whole-brain level (Honey et al., 2009; 
Miranda-Dominguez et al., 2014); for an overview see (Straathof et al., 2019). However, 
different regions and connections display different structure-function relationships 
(Grandjean et al., 2017; Wang et al., 2012; Zimmermann et al., 2016). Identifying where and 
to what extent structural and functional connectivity strengths correlate will help to 
understand how brain networks are organized, and why functional abnormalities in brain 
disorders are related to characteristic patterns of disconnection or reorganization. So far, 
most studies have compared functional connectivity with structural connectivity measured 
at either the macro-scale or meso-scale, and thereby did not capture all aspects of structural 
connectivity. In addition, studies that applied diffusion MRI are hampered by the fact that a 
diffusion-based structural network is a suboptimal reconstruction of macro-scale axonal 
projections (Maier-Hein et al., 2017; Schilling et al., 2019; Sinke et al., 2018; Thomas et al., 
2014). More accurate assessment of the structure-function relationships requires integration 
of functional connectivity with both macro-scale diffusion- and meso-scale neuronal tracer-
based structural measures. Distinct structure-function relationships may be present at these 
different hierarchical levels (Reid et al., 2016). Rodents are excellent species to study these 
relationships as resting-state fMRI and diffusion MRI-based tractography are feasible in 
rodents (Dijkhuizen and Nicolay, 2003) and comprehensive rodent databases of neuronal 
tracer-based structural connectivity are available as well (Noori et al., 2017; Schmitt and 
Eipert, 2012).  

In this study we combined high-field resting-state fMRI-based functional 
connectivity measurements and diffusion- as well as neuronal tracer-based structural 
connectivity measurements from the rat brain to spatially map the structure-function 
relationship at the macro- and meso-scale. Our main goal was to identify to what extent 
structural and functional connectivity strength are correlated, macro- and meso-scopically, 
across the rat brain, which could explain differences in the functional significance of 
connections and their contribution to network dysfunction in brain disorders. We 
distinguished interhemispheric and intrahemispheric connections, as well as specific 
functional networks (sensorimotor or default mode network).  
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Methods 

Ethics statement 
All experiments were approved by the Committee for Animal Experiments of the University 
Medical Center Utrecht, The Netherlands, and were conducted in agreement with European 
regulations (Guideline 86/609/EEC) and Dutch laws (‘Wet op de Dierproeven’, 1996). 
 
Animals 
In vivo resting-state functional connectivity 
Resting-state functional connectivity was measured in twelve healthy adult male Wistar rats 
with a weight of 479 ± 44 g (mean ± standard deviation (SD)), which were group-housed and 
used for an earlier described study (Roelofs et al., 2017). All animals had ad libitum access to 
food and water and were housed under the same environmental conditions (temperature 22-
24° and 12 h light/dark cycle with lights on at 7:00 AM).  

Post-mortem diffusion-based structural connectivity 
Diffusion-based structural connectivity was measured in ten healthy adult male Wistar rats 
with an age of around twelve weeks. These animals were previously used in another study 
(Sarabdjitsingh et al., 2017) and group-housed under standard environmental conditions 
(12h light/dark cycle with lights on at 7:00 AM). Animals were sacrificed by an 
intraperitoneal pentobarbital injection followed by transcardial perfusion-fixation with 4% 
paraformaldehyde in phosphate-buffered saline, as previously described (Sarabdjitsingh et 
al., 2017). We extracted the brains by removing all extracranial tissue, while leaving them 
inside the skull, and placed these in a proton-free oil (Fomblin®) prior to MR imaging to 
minimize susceptibility artefacts.  
 
MRI acquisition 
All MRI experiments were conducted on a 9.4T horizontal bore Varian MR system (Palo 
Alto, CA, USA), equipped with a 400 mT/m gradient coil (Agilent).  

In vivo resting-state functional connectivity 
Before MRI, the animals were anesthetized (with 4% of isoflurane in air for induction). 
Endotracheal intubation was performed to mechanically ventilate the rats with 1.5% of 
isoflurane in a mixture of air and O2 (4:1). End-tidal CO2 was continuously monitored with a 
capnograph (Microcap, Oridion Medical 1987 Ltd., Jerusalem, Israel). The animals were 
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placed in an animal cradle and immobilized in a specially designed stereotactic holder. 
During MRI, a feed-back controlled heating pad ensured that the body temperature of the 
rats was maintained at 37.0 ± 1.0 °C. Blood oxygen saturation and heart rate were monitored 
with a pulse-oximeter from signals recorded with an infrared sensor attached to the hind paw 
of the animal.  

We used a home-built 90 mm diameter Helmholtz volume coil for radiofrequency 
transmission, and an inductively coupled 25 mm diameter surface coil for signal detection. 
Prior to resting-state fMRI acquisition we acquired an anatomical image for registration 
purposes using 3D balanced steady-state free precession (bSSFP) imaging with four phase-
cycling angles (0°, 90°, 180°, 270°). The acquisition parameters were as follows: repetition 
time (TR) / echo time (TE) = 5/2.5 ms; flip angle = 20°; field-of-view (FOV) = 40×32×24 mm3; 
acquisition matrix = 160×128×96; image resolution = 250 μm isotropic. Total acquisition 
time = 12.5 min. Resting-state fMRI images were acquired with T2

*-weighted blood 
oxygenation level-dependent (BOLD) single shot 3D gradient-echo Echo Planar Imaging 
(EPI). The acquisition parameters were as follows: TR/TE = 26.1/15 ms; flip angle = 13˚; FOV 
= 32.4×32.4×16.8 mm3, Acquisition matrix = 54×54×28; Spatial Resolution = 600 μm 
isotropic. The acquisition time was 730.8 ms per volume, with a total of 800 volumes, 
resulting in a scan time of 9 minutes and 45 seconds.  

Post-mortem diffusion-based structural connectivity 
For diffusion MRI we used a custom-made solenoid coil with an internal diameter of 26 mm. 
High spatial and angular resolution diffusion imaging (HARDI) was performed with an 8-
shot 3D EPI sequence. The acquisition parameters were as follows: TR/TE = 500/32.4 ms, Δ/δ 
= 15/4 ms; b-value = 3842 s/mm2; FOV = 19.2×16.2×33 mm3; Acquisition matrix = 
128×108×220; spatial resolution: 150×150×150 μm3. Diffusion-weighting was executed in 60 
non-collinear directions on a half sphere and included five b0 non-diffusion-weighted images, 
with a total scan time of 8 hours.  
 
MRI processing 
All MRI analyses were performed using FMRIB’s Software Library (FSL) v5.0, unless 
otherwise stated. 

Regions of interest 
To enable the selection of regions of interest, the mean resting-state fMRI image of each 
dataset was first linearly registered (FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 
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2001)) to the anatomical image of the same animal, followed by non-linear registration 
(FNIRT (Andersson et al., 2007a)) to a custom-built 3D model of the Paxinos and Watson 
rat brain atlas (Majka et al., 2012; G. Paxinos and Watson, 2005). For diffusion MRI, the 
average of the non-diffusion-weighted images of each individual rat was non-linearly 
registered to this rat brain atlas. These registrations were used to transform 106 cortical 
bilateral regions into individual diffusion MRI and resting-state fMRI spaces. We only 
included regions of interest with sufficient assurance of spatial alignment, i.e., regions 
consisting of at least 8 voxels in individual resting-state fMRI space. This resulted in 82 
bilateral cortical regions (Supplementary Table S1).  

In vivo resting-state functional connectivity 
The first twenty images of the resting-state fMRI scan were removed to ensure a steady state 
and the remaining images were motion-corrected to the mean volume with MCFLIRT 
(Jenkinson et al., 2002) and brain-extracted with BET (Smith, 2002). The six motion 
correction parameters were used as regressors for the resting-state fMRI signal. No global 
signal regression was performed. Low-frequency BOLD fluctuations were obtained by band-
pass filtering between 0.01 and 0.1 Hz in AFNI (Cox, 1996). We performed an independent 
component analysis (Beckmann and Smith, 2004) with 20 components to identify resting-
state networks in the rat brain (Supplementary Figure S1). To determine functional 
connectivity between brain regions, we calculated Fisher’s Z-transformed full correlation 
coefficients between the time-series for all pairs of regions of interest. These Fisher’s Z-
transformed correlation coefficients were averaged over all rats to obtain a group-level 
measurement of functional connectivity strength between our regions of interest.  

Post-mortem diffusion-based structural connectivity 
We used single shell constrained spherical deconvolution (CSD) to construct a fiber 
orientation distribution (FOD) map for every rat. Next, CSD-based tractography, using the 
iFOD2 algorithm, was performed in MRtrix3® (http://www.mrtrix.org/) (Tournier et al., 
2010; J. D. Tournier et al., 2012). The iFOD2 algorithm uses 2nd order integration over 
adjacent orientation distributions (Tournier et al., 2010). Whole brain tractography was done 
in individual subject space using dynamic seeding, thereby generating 2.5 million streamlines 
with a step size of 75 μm, an angle threshold of 40° and a FOD threshold of 0.2. The generated 
tractograms were filtered by Spherical deconvolution Informed Filtering of Tracts (SIFT) 
(Smith et al., 2015, 2013). Subsequently, the connectomes were constructed by matching the 
whole-brain filtered tractograms with the regions of interest in subject space, by applying the 
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registration procedure described above. Regions of interest were structurally connected if one 
or multiple streamlines had their endpoints in both regions, where the filtered number of 
inter-regional streamlines was indicative of structural connectivity strength. Finally, we 
calculated an average weighted connectome, in which the edge values represent structural 
connectivity strengths, to obtain a group-level measurement of diffusion-based structural 
connectivity strength between our regions of interest. 

Neuronal tracer-based structural connectivity 
Neuronal tracer-based structural connectivity data was extracted from the NeuroVIISAS 
database (Schmitt and Eipert, 2012). This database contains rat nervous system data from 
over 7860 published tract-tracing studies, describing in total 591,435 ipsi- and contralateral 
connections. Many of these connections are described in multiple studies, affirming the 
robustness of the dataset. Studies with anterograde as well as retrograde monosynaptic tracers 
have been included, giving directionality information about the structural connections.  

We used the same regions of interest as described for the functional connectivity 
and diffusion-based structural connectivity analyses to extract neuronal tracer-based 
structural connectivity for all pairs of regions (Supplementary Table S1). The weights of the 
directed connections are assigned in the NeuroVIISAS database as follows: 0: no connection 
or no information available; 1: light/sparse connection; 2: moderate/dense connection; 3: 
strong connection and 4: very strong connection. We averaged these connection weights over 
all studies investigating the same connection, resulting in a scale for neuronal tracer-based 
structural connectivity between 0 and 4. 
 
Experimental design and statistical analysis 
The analysis pipeline is illustrated in Figure 1. All statistical and descriptive analyses were 
performed in R (version 3.2.3) (R Core Team, 2014). 

The network of 82 regions consisted of 6,724 directed connections, of which we 
removed the self-connections, resulting in a total of 6,642 unique connections. For the 
resting-state functional connectivity and diffusion-based structural connectivity networks, 
which did not contain directionality information, the network consisted of 3,321 unique 
connections. Only connections that existed in both the macro- and mesoscale structural 
connectivity datasets, meaning that they had a structural connectivity strength higher than 
zero in both datasets, were included for the analysis. In this way, we excluded connections 
with no information available in the neuronal tracer database, and minimized the amount of 
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false-positives often present in diffusion-based tractography networks (Maier-Hein et al., 
2017). 

Figure 1: Overview of the analysis pipeline. Rat brain images are shown as axial views. Different measures of 
connectivity in the rat brain were assessed (a): meso-scale neuronal tracer-based structural connectivity (left), 
macro-scale diffusion-based structural connectivity (middle) and macro-scale resting-state functional connectivity 
(right). For each measure, we determined the connectivity matrix between 82 cortical regions of interest, with 
exclusion of the self-connections (central diagonal line) (b). We combined all connectivity matrices to determine the 
structure-function connectome of the rat brain (c) (circles representing nodes). The connectomes were 
reconstructed in 3D but are visualized in 2D. The colors in (c) represent two well-described functional resting-state 
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networks in the rat brain: the sensorimotor network (purple) and the default mode network (green). Regions not 
belonging to these networks are shown in gray. The lines represent different regional types of connections: 
homotopic interhemispheric connection (solid line), heterotopic interhemispheric connection (dashed line) or 
intrahemispheric connection (dotted line) (see Methods section for an explanation of these connection types).  

 

Relationship between structural and functional connectivity strength at whole-brain level  
To map the structure-function relationship globally, we performed correlation analyses 
between functional connectivity strength and macro-scale diffusion-based or meso-scale 
neuronal tracer-based structural connectivity separately. We applied a natural logarithmic 
transformation to both structural connectivity weights because they were skewed towards 
smaller connectivity weight values. Since the functional connectivity dataset and 
logarithmically transformed diffusion-based and neuronal tracer-based structural 
connectivity datasets were not normally distributed, we calculated a two-tailed Spearman 
rank correlation coefficient (ρ) between functional connectivity strength and logarithmically 
transformed macro-scale diffusion-based or meso-scale neuronal tracer-based structural 
connectivity strength. In addition, we calculated the correlation between functional and 
diffusion-based and neuronal tracer-based structural connectivity for interhemispheric and 
intrahemispheric connections separately. We determined the 95% confidence intervals of all 
Spearman rank correlation coefficients by means of bootstrapping with 5000 replicates. In 
addition, we determined whether functional connectivity strength was different between 
intrahemispheric and interhemispheric connections with a Wilcoxon rank sum test. 

Relationship between structural and functional connectivity strength at connection level  
To map the level of agreement between structural and functional connectivity at connection 
level, we selected the strongest and weakest structural connections at both the macro- and 
meso-scale. The strongest structural network was defined by connections that belonged to 
the 25% strongest diffusion-based and 25% strongest neuronal tracer-based structural 
connections. The weakest structural network was defined by connections that belonged to 
the 25% weakest diffusion-based and 25% weakest neuronal tracer-based structural 
connections. By combining macro- and meso-scale structural connectivity strengths, we 
selected the structural networks that were strong or weak at the level of individual axonal 
projections as well as at the level of large white matter bundles. This heightened the reliability 
of our assessment of the strength of structural connections and reduced the influence of 
methodological bias for specific connections. We compared functional connectivity strength 
between the strongest and weakest structural networks with a Wilcoxon rank sum test. 
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For both the strongest and weakest structural network, we determined the 25% 
strongest and 25% weakest functional connections, resulting in four sub-groups of 
connections. Two of these sub-groups represent connections where structural and functional 
connectivity strength agree: strong structural and functional connectivity or weak structural 
and functional connectivity. The other two subgroups are connections where structural and 
functional connectivity strength disagree: strong structural connectivity but weak functional 
connectivity or weak structural connectivity but strong functional connectivity.  

To determine whether these subgroups of connections share common 
characteristics, we determined the Euclidian distance and type of connections and regions 
for all connections. 

Between each pair of regions, we calculated the Euclidian distance, which is the 
shortest distance between two points in space (i.e., in a straight line). We determined the 
Euclidian distance for each pair of brain regions, because both structural and functional 
connectivity depend on distance, with in general lower connectivity for longer distances 
(Ercsey-Ravasz et al., 2013; Reveley et al., 2015; Salvador et al., 2005). Therefore, we 
determined the x, y, and z coordinate in mm of the center of gravity of each region in atlas 
space. Subsequently, we calculated the Euclidean distance, between each pair of regions i and 
j, with the following formula: 

𝑑𝑑(𝑖𝑖𝑖 𝑖𝑖) = ��𝑥𝑥� − 𝑥𝑥��� � �𝑦𝑦� − 𝑦𝑦���  � �𝑧𝑧� − 𝑧𝑧���   

We divided the included connections and regions in sub-groups based on two 
different criteria. First, for each connection, we identified whether it was an intrahemispheric 
connection, which runs between two regions in the same hemisphere, or an interhemispheric 
connection, which runs between two regions in different hemispheres. In addition, we 
subdivided the interhemispheric connections into homotopic interhemispheric connections, 
which run between two homologous areas in different hemispheres and heterotopic 
interhemispheric connections, which run between two dissimilar areas in different 
hemispheres (Figure 1C). Second, for each region of interest, we assessed whether it belonged 
to one of two well-described functional networks in the rat brain, which were identified as 
the two networks explaining most of the variance in the independent component analysis of 
the functional connectivity dataset (Supplementary Figure S1): the sensorimotor network or 
the default mode network (Figure 1C). The sensorimotor network was defined as consisting 
of the left and right primary and secondary motor cortex (M1 and M2), subdivisions of the 
primary somatosensory cortex (S1BF, S1DZ, S1FL, S1HL, S1J, S1Tr, S1ULp) and the 
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secondary somatosensory cortex (S2) (Sierakowiak et al., 2015). The default mode network 
was defined as consisting of the left and right medial prefrontal cortex (mPFC), the cingulate 
cortex (Cg1 and Cg2), the orbital cortex (VO, MO and LO), the auditory/temporal 
association cortex (Au1, AuD, AuV and TeA), the posterior parietal cortex (ParPD) and the 
retrosplenial cortex (RSd, RSGb, RSGc) (Lu et al., 2012). For each connection, we determined 
whether the connection was within one of these functional networks, or whether it was 
connecting one of these functional networks with another functional network.  
 

Results 

Of all the possible 6,642 connections between the 82 selected regions of the cortical network, 
1,175 connections (17.7% of the possible 6,642 connections) displayed structural connectivity 
in both the diffusion MRI and the neuronal tracer dataset. The average Euclidean distance 
for all the included connections in this network was 6.08 ± 3.35 mm (mean ± standard 
deviation (SD)).  
 
Global correlation between structural and functional connectivity depends on method 
and scale 
Functional connectivity strength was positively correlated with diffusion-based structural 
connectivity strength in cortical connections (ρ=0.41; p<0.0001; 95% confidence interval: 
0.36 – 0.46; Figure 2a). For the same cortical connections, functional connectivity strength 
did not significantly correlate with neuronal tracer-based structural connectivity strength 
(ρ=0.04, p=0.14; 95% confidence interval: -0.01 – 0.10; Figure 2b). In addition, we determined 
the structure-function correlation for interhemispheric and intrahemispheric connections 
separately. For interhemispheric connections, functional connectivity was significantly 
positively correlated with diffusion-based structural connectivity (ρ=0.41; p<0.0001; 95% 
confidence interval: 0.30 – 0.51) and with neuronal tracer-based structural connectivity 
(ρ=0.25; p<0.0001; 95% confidence interval: 0.14 – 0.35). In intrahemispheric connections, 
functional connectivity was significantly positively correlated with diffusion-based structural 
connectivity (ρ=0.51; p<0.0001; 95% confidence interval: 0.46 – 0.57), but not with neuronal 
tracer-based structural connectivity (ρ=-0.02; p=0.64; 95% confidence interval: -0.08 – 0.05). 
In addition, functional connectivity was slightly higher in interhemispheric compared to 
intrahemispheric connections, although the distribution of functional connectivity values in 
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these structural categories almost completely overlapped (interhemispheric connections: 
Fisher’s Z = 0.85 ± 0.28 (mean ± standard deviation); intrahemispheric connections: Fisher’s 
Z = 0.77 ± 0.25 p=0.0002) (Supplementary Figure S2). 

Figure 2: Whole-brain structure-function relationships at the structural macro-scale (diffusion-based structural 
connectivity) and meso-scale (neuronal tracer-based structural connectivity). Functional connectivity strength is 
plotted as the Fisher’s Z-transformed correlation coefficient versus the natural logarithmically transformed 
diffusion-based (a) or neuronal tracer-based structural connectivity strength (b). Individual connections are plotted 
as green circles. The structure-function relationship is shown as a linear fit, with shading representing the 95% 
confidence intervals of the fit.  
 
Different pathways and brain circuits display distinct structure-function relationships 
The strongest structural network at the macro- and meso-scale consisted of 107 cortical 
connections. These strongest structural connections were mainly intrahemispheric (93% of 
strongest structural network; left: 47%, right: 46 %) with an average Euclidean distance of 
2.54 ± 1.71 mm (see Figure 3). The weakest structural network at the macro- and meso-scale 
consisted of 93 connections. Of these weakest structural connections 31% was 
interhemispheric and 69% was intrahemispheric (left: 32%, right: 37%), with an average 
distance of 9.55 ± 2.42 mm (see Figure 3). Functional connectivity was higher in the strongest 
structural network compared to the weakest structural network (Strong: Fisher’s Z = 0.94 ± 
0.26; Weak: Fisher’s Z = 0.65 ± 0.21; p < 0.0001) (Supplementary Figure S3). 
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Figure 3: Strongest and weakest functional connections within the strongest and weakest structural networks. 
The strongest structural network consists of the connections that belong to both the 25% strongest structural 
connections at the macro-scale and the 25% strongest connections at the meso-scale (a), and the weakest structural 
network consists of the connections belonging to the 25% weakest at both hierarchical scales (b). Functional 
connectivity is orange colored for the 25% strongest (left) and blue colored for the 25% weakest functional 
connections (right). Circles represent the nodes (regions of interest), with numbers representing the regions listed 
in Table 1, and lines represent the edges (connections). The connectomes were reconstructed in 3D but are visualized 
in 2D. The arrowheads reflect directionality information determined from the neuronal tracer-based structural 
connectivity dataset.  
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Within both the strongest and weakest cortical structural networks, we determined the 25% 
strongest and 25% weakest functional connections. These strongest and weakest functional 
connections are depicted in Figure 3. The characteristics of these subcategories of 
connections are summarized in Figure 4 and described below. 

 
Figure 4: Characteristics of connections per subcategory of structural and functional connectivity. Structural 
connectivity is depicted in columns, whereas functional connectivity is depicted in rows. Strong connections belong 
to the 25% strongest connections; structurally based on diffusion MRI and neuronal tracing (i.e., at both the macro- 
and meso-scale) and functionally based on resting-state fMRI. Similarly, weak structural connections belong to the 
25% weakest connections.  

 

Connections with strong structural and functional connectivity are shown in Table 1. The 
average length of the connections was 1.34 ± 0.69 mm. Eighty-eight percent of these strongest 
connections was intrahemispheric (left: 50%; right: 38%). Sixty-two percent of the 
connections was part of the sensorimotor network. The homotopic connection between the 
left and right medial prefrontal cortex, which is part of the default mode network, was also 
one of the identified strongest connections.  

Table 2 shows the connections that we identified as belonging to the 25% weakest 
structural and functional connections. The average length of the weakest structural and 
functional connections was 10.84 ± 2.09 mm. The identified connections included 30% 
heterotopic interhemispheric and 70% intrahemispheric (left: 44%, right: 26 %) connections, 
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and were mainly between frontal cortices, parahippocampal areas and the retrosplenial 
cortex. Sixty-one percent of the connections connected the default mode network with 
another functional network. 

Table 3 shows connections with strong structural but weak functional connectivity. 
All these connections were intrahemispheric (50% right; 50% left), of which the average 
Euclidean distance between regions was 3.23 ± 1.64 mm. Many of these connections were 
between parahippocampal areas and the insular cortex or auditory cortex, and within the 
insular cortex.  

The connections belonging to 25% strongest functional but 25% weakest structural 
connections are shown in Table 4. The average Euclidean length of the connections was 8.67 
± 1.78 mm and 35% were heterotopic interhemispheric, all of which were part of the 
sensorimotor network. Fifty-two percent of the connections resided within the sensorimotor 
network or between the sensorimotor network and another network, of which 42% 
connected the sensorimotor with the default mode network. Forty-three percent of the 
connections was between the default mode network and another functional network. 

 

Discussion  

Our study on the rat brain shows that cortical brain networks are characterized by functional 
connectivity strengths, as measured with resting-state fMRI, that partly associate with macro-
scale diffusion-based structural connectivity strength but not significantly associate with 
meso-scale neuronal tracer-based structural connectivity strength. When examining brain 
areas where structural and functional connectivity agreed or disagreed, we found that strong 
functional connectivity in the sensorimotor and default mode network matched with strong 
structural connectivity of intrahemispheric connections but was accompanied by weak 
structural connectivity of interhemispheric and long-range intrahemispheric connections. 
 
Distinct global structure-function relationships across different hierarchical levels of 
structural connectivity 
The partial positive correspondence between functional connectivity and diffusion-based 
structural connectivity strength in the rat brain is in line with structure-function 
relationships found in humans (Straathof et al., 2019). However, we did not find a significant 
correlation between functional connectivity and meso-scale neuronal tracer-based structural 
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connectivity strength. One previous study investigated this relationship at the meso-scale in 
rats and reported a positive structure-function correlation (r=0.48) (Díaz-Parra et al., 2017). 
However, this study did not include essential interhemispheric connections. 
Interhemispheric connections are known to have lower structure-function relationships 
(Shen et al., 2012), which may be explained by long inter-regional distances, sparser 
interhemispheric connectivity or involvement of polysynaptic or indirect connections 
(O’Reilly et al., 2013). Distinct structure-function relationships at the structural macro- and 
meso-scale have already been demonstrated in a study combining datasets in humans 
(functional and diffusion-based structural connectivity) and macaques (neuronal tracer-
based structural connectivity) (Reid et al., 2016). However, the authors could not disentangle 
whether these distinct relationships were due to species differences or due to different 
measures of structural connectivity. Since we compared all three measures in the same 
species, (dis)agreement between structural and functional connectivity most likely reflects 
topological differences in the structure-function relationship across different hierarchical 
levels.  

Besides being measurements at different hierarchical levels, another important 
difference between macro-scale diffusion-based and meso-scale neuronal tracer-based 
structural connectivity is the directionality information available in the data. Whereas 
diffusion-based structural connectivity does not provide directionality information, meaning 
that all connections are considered to be fully reciprocal, neuronal tracer-based structural 
connectivity does provide this directionality information. Since resting-state functional 
connectivity is also directionless, the correlation of functional connectivity with diffusion-
based structural connectivity may be higher than with neuronal tracer-based structural 
connectivity. In addition, the correlation between functional connectivity and diffusion-
based structural connectivity may also be explained by the fact that both connectivity 
measures are determined with the same measurement tool, i.e., MRI.  

 
Strong functional connectivity in robust resting-state networks is supported by strong 
short-range intrahemispheric connections 
The sensorimotor and default mode network are robustly established resting-state networks 
in the rodent brain (Pawela et al., 2008; Sierakowiak et al., 2015), which was corroborated by 
our finding of strong functional connectivity in or between these networks. We also observed 
strong short-range intrahemispheric structural connections at meso- and macro-scale in 
these networks. Strong reciprocal structural connections have previously been shown 
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between ipsilateral sensorimotor cortices, measured with neuronal tracers (Hoffer et al., 2003; 
Miyashita et al., 1994; Rocco-Donovan et al., 2011), and between default mode network 
regions, measured with diffusion MRI (Greicius et al., 2009; Horn et al., 2014). In 
comparison, in the current study we found that heterotopic interhemispheric structural 
connections in the sensorimotor network and long-range intrahemispheric structural 
connections between the default mode network and other functional networks were weak at 
both the macro- and the meso-scale. Since both connection types were between areas located 
far apart from each other, this observation may reflect the difficulties of diffusion-based 
tractography to reconstruct long-distance connections (Reveley et al., 2015), and the 
distance-dependence of neuronal tracer-based structural connectivity strength (Ercsey-
Ravasz et al., 2013). Hereby, our data point out that the distance-dependence of structural 
connectivity strength, as determined from diffusion MRI or neuronal tracing, influences 
measurements of structure-function relationships. This should be taken into account in 
studies on the relation between structural and functional connectivity. However, weak 
heterotopic interhemispheric connectivity may also reflect the smaller role these connections 
play in functional brain organization as compared to homotopic interhemispheric 
connections (Deco et al., 2014; Messé et al., 2014). Interestingly, strong functional 
connectivity in homotopic interhemispheric connections within the sensorimotor network 
was not accompanied by strong structural connectivity, despite the presence of a large bundle 
of neuronal fibers, i.e., the corpus callosum, connecting the two hemispheres. This may be a 
result of our approach of only including connections that exhibit macro- and meso-scale 
structural connectivity. Homotopic interhemispheric connections in the sensorimotor 
network were included in the 25% strongest meso-scale neuronal tracer-based structural 
network, but not in the 25% strongest macro-scale diffusion-based structural network. 
Therefore, we limit our conclusions to connections with matching macro- and meso-scale 
structural connectivity, while other structure-function relationships may exist in connections 
where macro-, and meso-scale structural connectivity do not match. 

 
Implications of different structure-function relationships across the brain in health and 
disease 
We have shown that distinct structure-function relationships exist in different cortical 
connections of the rat brain, in line with a previous study reporting that 25% of valid 
structural connections are very weak functional connections (Lee and Xue, 2018). Different 
structure-function relationships can have implications for brain functioning and behavior. 
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Healthy brain functioning relies on a balance between segregation and integration of 
neuronal communications (Fox and Friston, 2012; Tononi et al., 1994). Structure-function 
relationships have been shown to be stronger when functional networks are in an integrated 
state, compared to a segregated state (Fukushima et al., 2018). In another study, white matter 
integrity was associated with BOLD signal complexity in local connections (structure-
function agreement) but not in distributed connections (structure-function disagreement) 
(Mcdonough and Siegel, 2018). This suggests that information integration relies on a strong 
structure-function relationship, whereas weak structure-function relationships are implied 
in segregation.  
 Next to the implication of structure-function relationships on healthy brain 
functioning, structure-function relationships may (partly) determine the functional effects of 
structural damage to the brain. Intuitively, it may be deduced that structural damage to 
connections with strong structure-function relationships will have severer functional 
consequences than structural damage to connections with weak structure-function 
relationships. Novel algorithms may enable us to predict the functional effects of specific 
structural damage (Meier et al., 2016). Alterations and preservations of structural and 
functional connectivity in human patients, and in animal models of neurological and 
psychiatric diseases, can provide insights into the impact of structure-function couplings on 
outcome. For example, after stroke significant changes in structural and functional 
connectivity have been measured in the remaining intact sensorimotor network in rodents 
(Schmitt et al., 2017; van Meer et al., 2010a, 2012) and humans (Carter et al., 2010; Grefkes 
and Fink, 2014; Radlinska et al., 2012). Chronically after experimental stroke in rats, 
structural and functional connectivity changes were related intrahemispherically –on the side 
of the stroke lesion– while this was not evident for interhemispheric connections (van Meer 
et al., 2010a). This may be explained by a stronger structure-function agreement in 
intrahemispheric sensorimotor connections as compared to interhemispheric sensorimotor 
connections, as we found in the current study.  

A strength of the current study is the inclusion of three different measures of 
connectivity within a single species. Comparing functional connectivity against macro-scale 
diffusion-based as well as meso-scale neuronal tracer-based structural connectivity in rats 
enabled the investigation of structure-function relationships across hierarchical levels. In 
addition, by including both diffusion- and neuronal tracer-based structural connectivity 
measures, we could avoid inclusion of false positives that are often present in diffusion-based 
structural networks (Evan Calabrese et al., 2015; Chen et al., 2015; Maier-Hein et al., 2017; 
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Sinke et al., 2018). A reliable structural network of the rat brain was created by only selecting 
connections present in both diffusion- and neuronal tracer-based structural networks. The 
relationship between diffusion-based structural connectivity and resting-state functional 
connectivity may have been higher when both measures would have been acquired in the 
same rat. However, neuronal tracer-based structural connectivity was acquired from many 
different groups of rats. Therefore, we also measured diffusion-based structural connectivity 
in a separate group of rats, to prevent inappropriate comparison with potentially higher 
within-subject correlations. A limitation could be the restriction of our assessments to 
monosynaptic connections. In addition, resting-state functional connectivity was determined 
under anesthesia, which influences functional connectivity measures (Paasonen et al., 2018) 
and possibly affects the structure-function relationship.  

In conclusion, we demonstrated a correlation between functional connectivity and 
diffusion-based structural connectivity, but no significant correlation between functional 
connectivity and neuronal tracer-based structural connectivity in the rat cortex. These 
distinct structure-function relationships may be due to different hierarchical levels of 
measurement or directionality information available in the data. In addition, the structure-
function relationship varies across cortical regions in the rat brain. Characteristics of the used 
techniques, such as distance-dependency, affect where structural and functional networks 
(dis)agree. Conclusions about connectivity based on a single technique may therefore be 
biased. This shows the importance of combining different complementary measures of 
connectivity at distinct hierarchical levels to accurately determine connectivity across 
networks in the healthy and diseased brain. 
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Tables 

Table 1: Characteristics of cortical connections in the rat brain with strong meso- and macro-scale structural 
connectivity and strong functional connectivity.  

Seed Target Neuronal 
tracer-based 
structural 
connectivity 
strength 

Diffusion-
based 
structural 
connectivity 
strength  

Functional 
connectivity 
strength (Z’) 

Euclidean 
distance 
(mm) 

Connection type  
(network) 

Connection type 
(regional) 

Left 
mPFC 

Right 
mPFC 

3.00 1790.10 1.58 1.18 Within default mode 
network 

Homotopic 
interhemispheric 

Right 
mPFC 

Left 
mPFC 

3.00 1790.10 1.58 1.18 Within default mode 
network 

Homotopic 
interhemispheric 

Left  
DI 

Left  
GI 

2.96 1046.70 1.30 0.31 No Intrahemispheric 
left 

Left  
GI 

Left  
DI 

2.89 1046.70 1.30 0.31 No Intrahemispheric 
left 

Left 
LPtA 

Left 
S1Tr 

3.00 629.20 1.28 0.97 Sensorimotor network 
to another network 

Intrahemispheric 
left 

Left 
S1Tr 

Left 
LPtA 

3.00 629.20 1.28 0.97 Sensorimotor network 
to another network 

Intrahemispheric 
left 

Left  
V2L 

Left 
V1B 

3.00 1474.60 1.28 1.43 No Intrahemispheric 
left 

Left  
M1 

Left  
M2 

2.96 3787.60 1.28 1.27 Within sensorimotor 
network 

Intrahemispheric 
left 

Left  
M2 

Left  
M1 

3.76 3787.60 1.28 1.27 Within sensorimotor 
network 

Intrahemispheric 
left 

Right 
LPtA 

Right 
S1Tr 

3.00 533.70 1.27 0.98 Sensorimotor network 
to another network 

Intrahemispheric 
right 

Right 
S1Tr 

Right 
LPtA 

3.00 533.70 1.27 0.98 Sensorimotor network 
to another network 

Intrahemispheric 
right 

Left 
 GI 

Left 
S2 

3.72 1075.40 1.25 1.64 Sensorimotor network 
to another network 

Intrahemispheric 
left 

Left 
S2 

Left  
GI 

3.62 1075.40 1.25 1.64 Sensorimotor network 
to another network 

Intrahemispheric 
left 

Right 
M1 

Right 
M2 

2.96 2958.90 1.22 1.27 Within sensorimotor 
network 

Intrahemispheric 
right 

Right 
M2 

Right 
M1 

3.76 2958.90 1.22 1.27 Within sensorimotor 
network 

Intrahemispheric 
right 

Right  
GI 

Right  
S2 

3.72 1261.10 1.22 1.63 Sensorimotor network 
to another network 

Intrahemispheric 
right 

Right  
S2 

Right  
GI 

3.62 1261.10 1.22 1.63 Sensorimotor network 
to another network 

Intrahemispheric 
right 

Right 
DI 

Right  
GI 

2.96 1200.00 1.21 0.31 No Intrahemispheric 
right 

Right  
GI 

Right  
DI 

2.89 1200.00 1.21 0.31 No Intrahemispheric 
right 

Left  
M1 

Left 
S1FL 

2.88 1189.60 1.20 1.90 Within sensorimotor 
network 

Intrahemispheric 
left 
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Left 
S1FL 

Left  
M1 

2.86 1189.60 1.20 1.90 Within sensorimotor 
network 

Intrahemispheric 
left 

Right 
M1 

Right 
S1FL 

2.88 1077.70 1.20 1.91 Within sensorimotor 
network 

Intrahemispheric 
right 

Right 
S1FL 

Right 
M1 

2.86 1077.70 1.20 1.91 Within sensorimotor 
network 

Intrahemispheric 
right 

 Left 
AuD 

Left  
Au1 

3.00 1098.90 1.18 0.78 Within default mode 
network 

Intrahemispheric 
left 

Right 
Cg1 

Left 
mPFC 

3.00 260.00 1.18 2.87 Within default mode 
network 

Heterotopic 
interhemispheric 

Left  
DI 

Left 
AID 

3.00 851.00 1.16 3.05 No Intrahemispheric 
left 

Seed and target regions were determined from the NeuroVIISAS tracer database. AID: agranular insular cortex 
dorsal part; Au1: primary auditory cortex; AuD: secondary auditory cortex dorsal area; Cg1: cingulate cortex area 1; 
DI: dysgranular insular cortex; GI: granular insular cortex; LPtA: lateral parietal association cortex; M1: primary 
motor cortex; M2: secondary motor cortex; mPFC: medial prefrontal cortex; S1FL: primary somatosensory cortex 
forelimb region; S1Tr: primary somatosensory cortex trunk region; S2: secondary somatosensory cortex; V1B: 
primary visual cortex binocular area; V2L: secondary visual cortex lateral area.  

 
Table 2: Characteristics of cortical connections in the rat brain with weak meso- and macro-scale structural 
connectivity and weak functional connectivity.  

Seed Target  Neuronal 
tracer-based 
structural 
connectivity 
strength 

Diffusion-
based 
structural 
connectivity 
strength  

Functional 
connectivity 
strength (Z’) 

Euclidean 
distance 
(mm) 

Connection type 
(network) 

Connection type 
(regional) 

Right 
LO 

Right 
DLEnt 

0.50 0.20 0.19 12.49 Default mode network 
to another network 

Intrahemispheric 
right 

Right 
VO 

Right 
DLEnt 

0.90 0.30 0.23 12.85 Default mode network 
to another network 

Intrahemispheric 
right 

Left 
MO 

Left 
DLEnt 

1.00 0.20 0.25 13.99 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
MO 

Right 
DLEnt 

1.00 0.10 0.26 14.00 Default mode network 
to another network 

Intrahemispheric 
right 

Left 
FrA 

Left  
PRh 

1.05 0.20 0.28 13.11 No Intrahemispheric 
left 

Right 
RSGb 

Right 
FrA 

0.50 0.20 0.33 11.97 Default mode network 
to another network 

Intrahemispheric 
right 

Right 
FrA 

Right 
PRh 

1.05 0.20 0.37 13.10 No Intrahemispheric 
right 

Left 
RSGb 

Left  
FrA 

0.50 0.50 0.39 11.95 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
RSGc 

Right 
FrA 

0.50 0.40 0.40 10.26 Default mode network 
to another network 

Intrahemispheric 
right 

Left 
Cg2 

Left  
AIP 

0.50 0.30 0.41 7.61 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
Cg1 

Left  
AIP 

0.50 0.10 0.43 8.50 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
Cg2 

Left 
PRh 

1.00 0.20 0.44 9.54 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
PRh 

Left  
Cg2 

1.00 0.20 0.44 9.54 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
S1DZ 

Left  
FrA 

1.00 0.10 0.45 8.66 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Right 
FrA 

Left  
AIV 

1.13 0.30 0.45 7.12 No Heterotopic 
interhemispheric 

Left 
AIP 

Right 
M1 

0.74 0.20 0.45 11.15 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 
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Left 
RSGc 

Left  
FrA 

0.50 0.40 0.46 10.24 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
FrA 

Right 
AIV 

1.13 0.10 0.46 7.11 No Heterotopic 
interhemispheric 

Left 
Cg1 

Left  
PRh 

1.00 0.20 0.46 10.58 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
PRh 

Left  
Cg1 

0.75 0.20 0.46 10.58 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
S2 

Left  
AIP 

0.75 0.10 0.47 12.64 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Right 
RSGb 

Left  
MO 

0.50 0.10 0.47 11.36 Within default mode 
network 

Heterotopic 
interhemispheric 

Left 
RSGb 

Right 
VO 

0.50 0.10 0.47 10.90 Within default mode 
network 

Heterotopic 
interhemispheric 

Seed and target regions were determined from the NeuroVIISAS tracer database. AIP: agranular insular cortex 
posterior part; AIV: agranular insular cortex ventral part; Cg1: cingulate cortex area 1; Cg2: cingulate cortex area 2; 
DLEnt: dorsolateral entorhinal cortex; FrA: frontal association cortex; LO: lateral orbital cortex; M1: Primary motor 
cortex; MO: medial orbital cortex; Prh: perirhinal cortex; RSGb: retrosplenial granular cortex b region; RSGc: 
retrosplenial granular cortex c region; S1DZ: primary somatosensory cortex dysgranular region; S2: Secondary 
somatosensory cortex; VO: ventral orbital cortex. 

 
Table 3: Characteristics of cortical connections in the rat brain with strong meso- and macro-scale structural 
connectivity and weak functional connectivity.  

Seed Target  Neuronal 
tracer-based 
structural 
connectivity 
strength 

Diffusion-
based 
structural 
connectivity 
strength  

Functional 
connectivity 
strength (Z’) 

Euclidean 
distance 
(mm) 

Connection type 
(network) 

Connection type 
(regional) 

Left 
AIP 

Left  
PRh 

3.66 317.50 0.42 4.37 No Intrahemispheric 
left 

Left 
PRh 

Left  
AIP 

4.00 317.50 0.42 4.37 No Intrahemispheric 
left 

Right 
TeA 

Right 
PRh 

2.94 250.70 0.46 2.38 Default mode network 
to another network 

Intrahemispheric 
right 

Left 
AuV 

Left  
PRh 

2.75 141.30 0.48 1.49 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
TeA 

Left  
PRh 

2.94 466.60 0.51 2.38 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
M1 

Right 
FrA 

2.93 154.80 0.52 4.17 Sensorimotor network 
to another network 

Intrahemispheric 
right 

Right 
AIP 

Right 
PRh 

3.66 316.30 0.53 4.35 No Intrahemispheric 
right 

Right 
PRh 

Right 
AIP 

4.00 316.30 0.53 4.35 No Intrahemispheric 
right 

Left Ect Left  
PRh 

3.90 1523.80 0.56 1.14 No Intrahemispheric 
left 

Left 
PRh 

Left  
Ect 

3.83 1523.80 0.56 1.14 No Intrahemispheric 
left 

Right 
S2 

Right 
AIP 

3.00 125.00 0.56 2.22 Sensorimotor network 
to another network 

Intrahemispheric 
right 

Left 
AIV 

Left  
AIP 

3.00 301.10 0.59 4.86 No Intrahemispheric 
left 

Left M1 Left  
FrA 

2.93 181.70 0.59 4.18 Sensorimotor network 
to another network 

Intrahemispheric 
left 

Right 
Ect 

Right 
PRh 

3.90 1215.60 0.61 1.12 No Intrahemispheric 
right 

Right 
PRh 

Right 
Ect 

3.83 1215.60 0.61 1.12 No Intrahemispheric 
right 
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Right 
RSd 

Right 
Ect 

3.00 226.80 0.62 6.12 Default mode network 
to another network 

Intrahemispheric 
right 

Left 
AID 

Left  
AIP 

3.00 145.90 0.63 5.20 No Intrahemispheric 
left 

Left 
AIP 

Left 
AID 

2.90 145.90 0.63 5.20 No Intrahemispheric 
left 

Right 
AIV 

Right 
AIP 

3.00 277.30 0.66 4.88 No Intrahemispheric 
right 

Right 
Ect 

Right 
Au1 

3.00 217.30 0.67 1.81 Default mode network 
to another network 

Intrahemispheric 
right 

Left 
AIP 

Left  
GI 

3.69 249.30 0.68 2.21 No Intrahemispheric 
left 

Left GI Left  
AIP 

2.91 249.30 0.68 2.21 No Intrahemispheric 
left 

Left 
RSd 

Left  
Ect 

3.00 152.40 0.71 6.12 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
TeA 

Right 
V2L 

2.86 1078.80 0.71 2.17 Default mode network 
to another network 

Intrahemispheric 
right 

Right 
AIP 

Right  
GI 

3.69 354.00 0.72 2.20 No Intrahemispheric 
right 

Right 
GI 

Right 
AIP 

2.91 354.00 0.72 2.20 No Intrahemispheric 
right 

Seed and target regions were determined from the NeuroVIISAS tracer database. AID: agranular insular cortex 
dorsal part; AIP: agranular insular cortex posterior part; AIV: agranular insular cortex ventral part; Au1: Primary 
auditory cortex; AuV: Secondary auditory cortex ventral area; Ect: ectorhinal cortex; FrA: frontal association cortex; 
GI: granular insular cortex; M1: primary motor cortex; PRh: perirhinal cortex; RSd: Retrosplenial dorsal; S2: 
secondary somatosensory cortex; TeA: temporal association cortex 1; V1B: primary visual cortex binocular area. 

 

Table 4: Characteristics of cortical connections in the rat brain with weak meso- and macro-scale structural 
connectivity and strong functional connectivity.  

Seed Target  Neuronal 
tracer-based 
structural 
connectivity 
strength 

Diffusion-
based 
structural 
connectivity 
strength  

Functional 
connectivity 
strength (Z’) 

Euclidean 
distance 
(mm) 

Connection type 
(network) 

Connection type 
(regional) 

Right  
S2 

Left  
GI 

1.00 0.30 1.14 12.12 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Right  
DI 

Right 
mPFC 

1.44 0.30 1.01 6.70 Default mode network 
to another network 

Intrahemispheric 
right 

Right 
M1 

Right 
Au1 

1.00 0.60 1.00 8.57 Default mode network 
to sensorimotor 
network 

Intrahemispheric 
right 

Right 
Au1 

Right 
M1 

1.00 0.60 1.00 8.57 Default mode network 
to sensorimotor 
network 

Intrahemispheric 
right 

Left  
M1 

Left  
Au1 

1.00 0.40 0.99 8.57 Default mode network 
to sensorimotor 
network 

Intrahemispheric 
left 

Left  
Au1 

Left  
M1 

1.00 0.40 0.99 8.57 Default mode network 
to sensorimotor 
network 

Intrahemispheric 
left 

Left  
DI 

Left 
mPFC 

1.44 0.20 0.98 6.71 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
M1 

Left 
S1BF 

1.00 0.50 0.96 9.20 Within sensorimotor 
network 

Heterotopic 
interhemispheric 

Left  
GI 

Left 
mPFC 

1.43 0.20 0.95 6.84 Default mode network 
to another network 

Intrahemispheric 
left 
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Right  
GI 

Right 
mPFC 

1.43 0.10 0.93 6.83 Default mode network 
to another network 

Intrahemispheric 
right 

Left  
V1 

Right 
M2 

1.00 0.20 0.92 9.63 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Left  
RSd 

Left AID 1.00 0.10 0.90 9.90 Default mode network 
to another network 

Intrahemispheric 
left 

Right 
V1 

Left  
M2 

1.00 0.20 0.90 9.64 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Right 
Cg1 

Right 
AID 

0.50 0.10 0.89 5.28 Default mode network 
to another network 

Intrahemispheric 
right 

Left  
RSd 

Left  
LO 

0.50 0.10 0.89 10.65 Within default mode 
network 

Intrahemispheric 
left 

Right 
Cg1 

Right V1 1.00 0.50 0.88 7.72 Default mode network 
to another network 

Intrahemispheric 
right 

Right  
S2 

Left AID 0.75 0.10 0.87 11.21 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Right 
LO 

Right V1 1.00 0.20 0.86 10.26 Default mode network 
to another network 

Intrahemispheric 
right 

Left  
M1 

Right  
GI 

1.07 0.50 0.85 9.70 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Right  
GI 

Left  
M2 

1.00 0.30 0.84 8.91 Sensorimotor network 
to another network 

Heterotopic 
interhemispheric 

Left  
Cg1 

Left AID 0.50 0.10 0.83 5.28 Default mode network 
to another network 

Intrahemispheric 
left 

Left 
mPFC 

Right 
S2 

0.50 0.20 0.82 8.60 Default mode network 
to sensorimotor 
network 

Heterotopic 
interhemispheric 

Right 
RSd 

Right 
AID 

1.00 0.30 0.81 9.92 Default mode network 
to another network 

Intrahemispheric 
right 

Seed and target regions were determined from the NeuroVIISAS tracer database. AID: agranular insular cortex 
dorsal part; Au1: primary auditory cortex; Cg1: cingulate cortex area 1; DI: dysgranular insular cortex; GI: granular 
insular cortex; LO: lateral orbital cortex; M1: primary motor cortex; M2: secondary motor cortex; mPFC: medial 
prefrontal cortex; RSd: retrosplenial dorsal; S1BF: primary somatosensory cortex barrel field; S2: secondary 
somatosensory cortex; V1: primary visual cortex. 
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Abstract 

Understanding how structural and functional networks are related will help to unravel the 
complex organization of brain networks. These networks are complex because the overall 
topological behavior is difficult to explain by the constituent parts, such as local connectivity. 
The complex, potentially non-linear nature of the structure-function relationship may not be 
adequately assessed with a simple linear correlation analysis between structural and 
functional connectivity. Therefore, we mapped the cortical structure-function relationship 
considering non-linear behavior using an additive model. We determined whole-brain 
structural connectivities with diffusion-weighted MRI and functional connectivities with 
resting-state fMRI. We compared the results obtained from human and rodent brains to 
assess this within a perspective of translational neuroscience. Our results show that structure-
function relationships in both the human and rat cortex are positive but non-linear, with 
stronger correlations at higher connectivity levels. We quantified a structure-function tipping 
point, which is the lowest structural connectivity weight from which onwards structural and 
functional connectivity become strongly associated. This structure-function tipping point 
was lower in the human compared to the rat cortex (human: median = 1.60 (1.36–1.69) 
(interquartile range), range = 0–8.79; rat: median = 5.69 (5.48–5.76), range = 0–8.31; 
p=0.0005). In the human cortex, non-linear structure-function relationships were similar in 
primary and secondary brain regions. However, in the rat cortex, a structure-function 
relationship was less evident in secondary brain regions. Our data highlights the inherent 
non-linear structure-function relationship in the human and rodent cortex and exposes 
organizational differences in functional networks between humans and rodents. 
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Introduction 

In the last decades, neuroscientists have tried to unravel the organization of networks in the 
brain. There are two ways to look at brain networks: from a structural or a functional 
perspective. Structural networks represent the physical connections between brain regions 
(Johansen-Berg and Behrens, 2013). In comparison, functional connectivity represents the 
communication between brain regions, often measured as a statistical correlation between 
activity patterns in two brain regions (Biswal et al., 1995; Fox and Raichle, 2007). Identifying 
how these structural and functional connectivities are interrelated helps to understand how 
brain networks are organized and how disconnection can lead to functional abnormalities 
seen in brain disorders. A general straightforward linear correlation exists between structural 
and functional connectivity across different species, including humans and rodents 
(Damoiseaux and Greicius, 2009; Díaz-Parra et al., 2017; Honey et al., 2009; Stafford et al., 
2014; Straathof et al., 2020b, 2019a). At a close look, the structure-function relationship 
differs across a range of strengths and depends on the type of connection. Consequently, a 
whole-brain linear fit, which ignores these complexities, often results in moderate 
correlations (Straathof et al., 2019a; Suárez et al., 2020). There are brain regions with a 
structural connection but without a measurable functional connection and the other way 
around (Greicius et al., 2009; Honey et al., 2009; van den Heuvel et al., 2009). In addition, 
there are brain regions where strong structural connectivity is accompanied by weak 
functional connectivity and vice versa (Lee and Xue, 2018). As a result, the structure-function 
relationship varies highly across brain regions (Grandjean et al., 2017; Wang et al., 2012; 
Zimmermann et al., 2016). In humans, structural and functional connectivity generally 
correspond in primary unimodal sensory regions, whereas they may essentially differ in 
secondary transmodal nonsensory-specific regions (Vázquez-Rodríguez et al., 2019). 
Correspondingly, an agreement between structural and functional connectivity strength was 
found in the sensorimotor network of the rat brain. In contrast, disagreement was seen in 
higher-order areas, including the insular cortex and parahippocampal regions (Straathof et 
al., 2020b).  

Although correlation analyses or linear model approaches offer a transparent and 
easily interpretable way to determine structure-function relationships, they do not 
completely cover the complex nature of this relationship. We know that structural networks 
constrain but do not strictly determine functional networks. One factor responsible for the 
complex relationship between structural and functional connectivity is the dynamic nature 
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of functional connectivity. Functional connectivity is often characterized as a static property, 
but the underlying signal dynamically changes during seconds and minutes (Chang and 
Glover, 2010; Hutchison et al., 2013). The presence and strength of structural connections 
influence the stability of dynamic functional connectivity (Liao et al., 2015; Shen et al., 2015). 
A recent study suggested that structural and functional connectivity may be non-linearly 
related, mainly depending on direct structural connections and marginally on indirect 
connections (Liang and Wang, 2017). Therefore, models that incorporate non-linear 
components of the relationship between structural and functional connectivity may provide 
a more accurate representation of and offer new insights into the complex organization of 
brain networks.  

In this study, we mapped the relationship between structural and functional 
connectivity in the cerebral cortex by taking non-linearity into account. To that aim, we 
applied a generalized additive model to structural connectivity measured with diffusion-
weighted MRI and functional connectivity with resting-state fMRI. The combination of 
diffusion-weighted MRI and resting-state fMRI offers a unique translational way to study 
brain networks' structural and functional organization non-invasively in animals and 
humans. Therefore, we used this generalized additive model to compare the non-linearity of 
the structure-function relationship in the rat and human cortex, which are both intensively 
studied in the field of (translational) neuroscience. In addition, to understand the basis of the 
non-linear nature of the structure-function relationship, we assessed the impact of two 
factors that affect the linear structure-function relationship in the brain. First, we investigated 
whether our non-linear analyses show differences between primary and secondary brain 
regions. Second, we compared the effect of static and dynamic functional connectivity 
analyses on the non-linear structure-function relationship. Lastly, to validate our findings, 
we compared all non-linear analyses against straightforward linear analyses as a benchmark 
for structure-function relationships in the brain.  

 

Materials & Methods 

Human brain imaging 
Resting-state fMRI 
To determine functional connectivity in the human brain, we obtained resting-state fMRI 
data from the OpenfMRI database (nr. ds000224). This data is part of the Midnight Scan 
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Club, which includes various fMRI measurements from ten healthy right-handed young 
adult individuals (five females; age 24-34 years) (Gordon et al., 2017). Informed consent was 
obtained from all participants. The study was approved by the Washington University School 
of Medicine Human Studies Committee and Institutional Review Board. We used the first 
resting-state fMRI acquisition from each participant. Resting-state fMRI was acquired with a 
2D gradient-echo EPI scan on a Siemens Trio 3T MRI scanner, with the following acquisition 
parameters: TR / TE = 2.2 s / 27 ms; flip angle = 90°; voxel size = 4 × 4 × 4 mm3; 36 slices; 
total acquisition time = 30 min.  

Diffusion-weighted MRI 
To determine structural connectivity in the human brain, we used the “Massive” (Multiple 
Acquisitions for Standardization of Structural Imaging Validation and Evaluation) Brain 
Dataset (Froeling et al., 2017). This dataset was acquired from a healthy subject (female, 25 
years) on a clinical 3 T system (Philips Achieva) with an eight-channel head coil, who gave 
informed consent to participate in this study under a protocol approved by the University 
Medical Center Utrecht ethics board. The subject was scanned on 18 different occasions (total 
acquisition time: 22.5h). Each of the scanning sessions consisted of four diffusion-weighted 
MRI acquisition blocks of 15 minutes, providing a unique subset of the total 8000 diffusion-
weighted volumes. The gradient directions were distributed over five shells and two Cartesian 
grids. The five shells consisted of 125, 250, 250, 250, and 300 gradient orientations on a half-
sphere with b-values of respectively 500, 1000, 2000, 3000, and 4000 s/mm2. The diffusion-
weighted MRI data were acquired at an isotropic resolution of 2.5 mm3. 
 
Rat brain imaging 
Resting-state fMRI 
To determine functional connectivity in the rat brain, we re-used a resting-state fMRI dataset 
previously acquired from thirteen healthy adult male Wistar rats at twelve to thirteen weeks 
of age (see (Straathof et al., 2019b) for details). 

MRI experiments were conducted on a 4.7 T horizontal bore MR system. We used 
a homebuilt Helmholtz volume coil (90 mm diameter) and an inductively coupled surface 
coil (25 mm diameter) for signal excitation and detection, respectively. Rats were 
endotracheally intubated for mechanical ventilation (TOPO, Kent Scientific, Torrington, 
CT) with 1% isoflurane in a mixture of air with 30% O2 (55 breaths per minute). Rats were 
subsequently immobilized in a specially designed MR-compatible stereotactic holder. During 
MRI, end-tidal CO2, blood oxygen saturation, and heart rate were continuously monitored 
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with a capnograph (Multinex 4200, Datascope Corporation, Paramus, NJ) and pulse 
oximeter (8600 V, Nonin Medical, Plymouth, MN), respectively. Body temperature was 
maintained at 37.0 ± 0.5 °C. For resting-state fMRI, T2*-weighted blood oxygenation level-
dependent (BOLD) images were acquired with a ventilation-triggered single-shot 3D 
gradient-echo echo-planar imaging (EPI) sequence with the following parameters: repetition 
time (TR) / echo time (TE) = 32 / 19 ms (effective TR = 1.024 s); 12° pulse angle; field-of-view 
(FOV) = 32 × 24 × 12 mm3; 64 × 48 × 32 acquisition matrix; 0.5 × 0.5 × 0.5 mm3 voxels; 600 
BOLD images in approximately 10 min. 

Diffusion-weighted MRI 
We acquired postmortem diffusion-weighted MRI data from a perfusion-fixed brain of a 
healthy adult male Wistar rat with an age of around twelve weeks to determine structural 
connectivity in the rat cortex. This dataset was part of a previous study (Sarabdjitsingh et al., 
2017). The brain was kept inside the skull, and all extracranial tissue was removed. The 
sample was placed in a proton-free oil (Fomblin®) before MRI to minimize susceptibility 
artifacts. For diffusion-weighted MRI, we used a custom-made solenoid coil with an internal 
diameter of 26 mm. High spatial and angular resolution diffusion imaging (HARDI) was 
performed on a 9.4 T horizontal bore Varian MR system equipped with a 400 mT/m gradient 
coil (Agilent) using an 8-shot 3D EPI sequence. The acquisition parameters were TR / TE = 
500 / 32.4 ms, Δ / δ = 15 / 4 ms; b-value = 3842 s/mm2; FOV = 19.2 × 16.2 × 33 mm3; 
acquisition matrix = 128 × 108 × 220; spatial resolution: 150 × 150 × 150 μm3. Diffusion-
weighting was executed in 60 non-collinear directions on a half sphere and included five non-
diffusion-weighted (b0) images, with a total scan time of 8 hours. 

Data availability 
Rat resting-state fMRI and diffusion-weighted MRI data will be made freely available upon 
publication at the Open Science Framework (Straathof et al., 2020a). 
 
Image processing 
All MRI analyses were performed using FMRIB’s Software Library (FSL) v5.0 unless 
otherwise stated. 

Resting-state fMRI 
The preprocessing of human and rat resting-state fMRI data included excluding the first ten 
images to ensure steady-state; motion-correction with MCFLIRT (Jenkinson et al., 2002); and 
brain extraction with BET (Smith, 2002). Motion-correction parameters, first-order temporal 
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derivatives, and the average ventricular signal were used as regressors for the resting-state 
signal. In addition, average white matter signal regression was applied for human datasets. 
The latter was excluded for rats because of the small white matter volume in rats and possible 
partial volume effects from grey matter signals. Low-frequency BOLD fluctuations were 
obtained by applying temporal filtering between 0.01 and 0.1 Hz and nuisance regression in 
a single regression model using 3dTproject in AFNI (Cox, 1996); the latter to reduce potential 
artifacts due to modular preprocessing (Caballero-Gaudes and Reynolds, 2017; Lindquist et 
al., 2019). We performed an independent component analysis with 20 components to identify 
biologically plausible resting-state networks in the rat cortex under our experimental 
conditions (Supplementary Figure S1). We used Fisher’s Z-transformed correlation 
coefficients to measure inter- and intrahemispheric functional connectivity between regions 
of interest. We used a sliding-window approach for dynamic analyses, with a window size of 
60 s and a step size of one TR. We calculated the Fisher’s Z-transformed correlation 
coefficient between the time series from regions of interest for each window to measure 
dynamic functional connectivity. 

Diffusion-weighted MRI 
The human diffusion-weighted MRI scans were corrected for subject motion, eddy currents, 
and EPI artifacts (Froeling et al., 2017). Correction for eddy currents or bias fields was not 
necessary for the rat dataset because we used a special volume coil and MRI pulse sequence 
(with extra delays after sinus-shaped gradient pulses) that allowed homogenous imaging of 
post mortem brain tissue (Sinke et al., 2018). We used single shell constrained spherical 
deconvolution (CSD) to construct a fiber orientation distribution (FOD) map. Next, CSD-
based tractography, using the iFOD2 algorithm, was performed in MRtrix3® 
(http://www.mrtrix.org/) (Tournier et al., 2012, 2010). Whole-brain tractography was done 
using dynamic seeding, generating 1 million streamlines and a FOD threshold of 0.06 for the 
human dataset. For the rat dataset, whole-brain tractography generated 2.5 million 
streamlines with a step size of 75 μm, an angle threshold of 40°, and a FOD threshold of 0.2 
(Sinke et al., 2018). The generated tractogram was filtered by Spherical deconvolution 
Informed Filtering of Tracts (SIFT) (Smith et al., 2015, 2013). Regions-of-interest were 
considered structurally connected if one or multiple streamlines had their endpoints in both 
regions. The filtered number of inter-regional streamlines was indicative of structural 
connectivity strength. We log-transformed the structural connectivity strengths because they 
were skewed towards smaller weights enabling linear correlation analyses. 



Chapter 3_________________________________________________________________ 

60 
 

Regions-of-interest 
For the rat data, we selected 46 regions covering the rat cortex, divided into left and right 
regions, resulting in a total of 92 cortical regions-of-interest. The 3D atlas rendering, with the 
region specifications and the corresponding MRI reference images, are available online 
(https://github.com/wmotte/rat_brain_atlas). For the human analyses, we used the cortical 
probabilistic Harvard-Oxford atlas, which includes 48 cortical regions across the cerebral 
cortex, divided into left and right cortical regions, resulting in 96 cortical regions. To enable 
the selection of regions-of-interest, mean resting-state fMRI and non-diffusion-weighted 
MRI images were linearly and non-linearly registered to the atlas space (i.e., reference brain 
(rat) or MNI space (human)) using FLIRT (Jenkinson and Smith, 2001) and FNIRT 
(Jenkinson et al., 2012). We used these registrations to transform the regions into individual 
resting-state fMRI and diffusion MRI spaces. We masked the regions with a temporal signal-
to-noise ratio mask of ten for resting-state fMRI analyses. We only included regions 
comprised of seven or more voxels in individual resting-state space to ensure sufficient 
quality of resting-state fMRI signals. As a result, we included 80 cortical regions to analyze 
the rat brain and all 96 cortical regions for the human brain. For a complete list of included 
regions-of-interest, see Table 1. 

In addition, we selected primary unimodal and secondary transmodal regions of 
interest according to a previous study (Vázquez-Rodríguez et al., 2019). In that study, the 
division into primary and secondary regions was based on the gradient of cortical 
organization in the human and macaque brain, with primary regions implicated in acting 
and perceiving at one end and transmodal association regions, such as the default mode 
network, at the other end (Margulies et al., 2016). For the human brain, primary regions 
included the pre- and post-central gyrus and visual processing areas (including occipital and 
temporo-occipital areas). Secondary areas included regions of the default mode and salience 
network (insular, cingulate, and temporal cortex and precuneus). For the rat brain, primary 
areas included primary and secondary visual, motor, and somatosensory cortices, and 
secondary transmodal areas included association, insular, cingulate and retrosplenial 
cortices.  

 
Structure-function relationship 
Generalized additive models 
To determine the structure-function relationship without an a priori determined linear 
model, we fitted generalized additive models using five knots and the restricted maximum 
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Table 1: Included regions-of-interest for analyses of structural and functional connectivity in human and rat 
brains. 

Brain regions in bold are primary unimodal regions, brain regions in italics are secondary transmodal regions. 
 
likelihood approach in R (mgcv package) (Wood, 2017), functional connectivity being 
dependent on structural connectivity. Compared to the often-used generalized linear models, 
which only include linear covariate effects, generalized additive models are composed of a 

Human brain regions-of-interest Rat brain regions-of-interest 
Left and right frontal pole Left and right agranular insular cortex dorsal part 
Left and right insular cortex Left and right agranular insular cortex posterior part 
Left and right superior frontal cortex Left and right agranular insular cortex ventral part 
Left and right middle frontal gyrus Left and right primary auditory cortex 
Left and right inferior frontal gyrus pars triangularis Left and right secondary auditory cortex dorsal area 
Left and right inferior frontal gyrus pars opercularis Left and right secondary auditory cortex ventral area 
Left and right precentral gyrus Left and right cingulate cortex area 1 
Left and right temporal pole Left and right cingulate cortex area 2 
Left and right superior temporal gyrus anterior division Left and right dysgranular insular cortex 
Left and right superior temporal gyrus posterior division Left and right ectorhinal cortex 
Left and right middle temporal gyrus anterior division Left and right frontal cortex area 3 
Left and right middle temporal gyrus posterior division Left and right frontal association cortex 
Left and right middle temporal gyrus temporooccipital part Left and right granular insular cortex 
Left and right inferior temporal gyrus anterior division Left and right lateral orbital cortex 
Left and right inferior temporal gyrus posterior division Left and right lateral parietal association cortex 
Left and right inferior temporal gyrus temporooccipital part Left and right primary motor cortex 
Left and right postcentral gyrus Left and right secondary motor cortex 
Left and right superior parietal lobule Left and right medial orbital cortex 
Left and right supramarginal gyrus anterior division Left and right medial parietal association cortex 
Left and right supramarginal gyrus posterior division Left and right perirhinal cortex 
Left and right angular gyrus Left and right retrosplenial dorsal 
Left and right lateral occipital cortex superior division Left and right retrosplenial granular cortex a region 
Left and right lateral occipital cortex inferior division Left and right retrosplenial granular cortex b region 
Left and right intracalcarine cortex Left and right primary somatosensory cortex 
Left and right frontal medial cortex Left and right primary somatosensory cortex barrel field 
Left and right juxtapositional lobule cortex Left and right primary somatosensory cortex dysgranular region 
Left and right subcallosal cortex Left and right primary somatosensory cortex fore limb region 
Left and right paracingulate gyrus Left and right primary somatosensory cortex hind limb region 
Left and right cingulate gyrus anterior division Left and right primary somatosensory cortex jaw region 
Left and right cingulate gyrus posterior division Left and right primary somatosensory cortex trunk region 
Left and right precuneous cortex Left and right primary somatosensory cortex upper lib region 
Left and right cuneal cortex Left and right secondary somatosensory cortex 
Left and right frontal orbital cortex Left and right temporal association cortex  
Left and right parahippocampal gyrus anterior division Left and right primary visual cortex 
Left and right parahippocampal gyrus posterior division Left and right primary visual cortex binocular area 
Left and right lingual gyrus Left and right primary visual cortex monocular area 
Left and right temporal fusiform cortex anterior division Left and right secondary visual cortex lateral area 
Left and right temporal fusiform cortex posterior division Left and right secondary visual cortex mediolateral area 
Left and right temporal occipital fusiform cortex Left and right secondary visual cortex mediomedial area 
Left and right occipital fusiform gyrus Left and right ventral orbital cortex 
Left and right frontal operculum cortex  
Left and right central opercular cortex  
Left and right parietal operculum cortex  
Left and right planum polare  
Left and right heschls gyrus  
Left and right planum temporale  
Left and right supracalcarine cortex  
Left and right occipital pole  
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sum of smooth or non-linear functions of covariates instead of or in addition to the linear 
effects. Based on these generalized additive models, we proposed a novel measure of 
structure-function correlations, which we named the structure-function tipping point. To 
determine this tipping point, we calculated the first derivative of the generalized additive 
model and its corresponding 95% confidence interval based on 10,000 iterations. This first 
derivative represents the change in functional connectivity for each increasing step of 
structural connectivity. Thus, structure-function tipping points are structural connectivity 
values where the increasing step of structural connectivity is associated with a deviation from 
an equilibrium state, characterized by a change in functional connectivity that is significantly 
higher or lower than zero (i.e., the 95% confidence interval of the first derivative does not 
include zero). The script that we used to determine the non-linear structure-function 
relationship and the associated structure-function tipping point is available online 
(https://github.com/wmotte/tipping-point). Next, we performed generalized additive models 
and calculated corresponding structure-function tipping points for each whole-brain static 
functional connectivity dataset. In addition, we ran similar analyses for primary and 
secondary regions of interest separately. Lastly, we determined the dynamic structure-
function tipping point by calculating the tipping point for each dynamic window in the 
sliding window analyses, at the whole-brain level and for primary and secondary regions 
separately. 
 Tipping points were compared between the rat and human brain using a Mann-
Whitney U test. In contrast, differences in tipping points between primary and secondary 
areas within species were compared with a paired Wilcoxon-signed rank test. 

Linear correlation analysis 
To validate our non-linear analyses, we performed a straightforward linear correlation 
analysis of structural versus functional connectivity as a benchmark for structure-function 
relationships in the brain. We determined the linear structure-function relationship using a 
Pearson correlation between log-transformed structural connectivity and functional 
connectivity per individual human or rat dataset. We performed correlation analyses at the 
whole-brain level and for primary and secondary regions separately for static functional 
connectivity analyses. For the dynamic functional connectivity analyses, we calculated the 
structure-function relationship for each dynamic window, which was averaged over all 
windows to determine a mean dynamic structure-function relationship per individual for the 
whole cortex and primary and secondary regions specifically. 
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Results 

Non-linear relationship between structural and static functional connectivity in the 
human and rat cerebral cortex 
We performed analyses of linear correlation between structural and static functional 
connectivity in each individual rat and human dataset as a benchmark for the structure-
function relationship. Structural and static functional connectivity were significantly and 
positively correlated in the rat (r = 0.26 (0.23 – 0.29) (median (interquartile range (IQR))); all 
individual datasets p < 0.0001) and the human cortex (r = 0.31 (0.27 – 0.35); all individual 
datasets p < 0.0001). 

The generalized additive model revealed a non-linear relationship between 
structural and static functional connectivity in both the rat and human cortex (Figures 1A 
and 1B). There was no or minimal correlation at low connectivity values, which changed to 
a significant positive linear- to an exponential-like relationship at higher values, reflective of 
a tipping point in the structure-function relation. From this tipping point onward, structural, 
and functional connectivity values became significantly positively correlated in both species. 
In the human cortex, structural and functional connectivity became significantly correlated 
at a structural connectivity strength of 1.60 (1.36 – 1.69) [min: 0; max: 8.71], and the 
structure-function relationship was only slightly non-linear. In the rat cortex, the structure-
function relationship fluctuated around zero at low structural connectivity values but showed 
a clear structure-function tipping point at a structural connectivity strength of 5.69 (5.48 – 
5.76) [min: 0; max: 8.31], which was significantly higher than the tipping point in the human 
cortex (Figure 1C; W = 6; p = 5.1 × 10-4). Comparison of the distributions of structural 
connectivity values in human and rat cortex revealed a highly similar pattern with slightly 
lower structural connectivity values in the rat brain (rat: 1.61 (0 – 3.83); human: 2.20 (0.69 – 
3.95) ; U = 2078400, p < 0.0001) (Figure 1D).  

We identified the connections with structure-function relationships beyond the 
structure-function tipping point in more than half of the humans (Figure 1E) and rats (Figure 
1F). In the human brain, this resulted in 1622 connections distributed across the entire cortex 
(Figure 1E). In the rat brain, we identified only 137 cortical connections, of which 96% were 
intrahemispheric, and 95% were symmetrical in the left and right hemispheres (Figure 1F). 
Fifty-eight percent of these connections included at least one primary brain region, while 
thirty-three percent of these connections were between two primary brain regions.  
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Figure 1: Non-linear relationship between structural and static functional connectivity in the human and rat 
cerebral cortex. Regions-of-interest projected as blue circles on a horizontal section outline of the human (A; left) 
and rat brain (B; left). Timeseries of low-frequency bandpass-filtered resting-state fMRI signal in the left motor 
cortex, with an orange window covering the whole-time range for static functional connectivity analyses in the 
human (A; middle) and rat brain (B; middle). Representative example of the generalized additive model fit between 
functional connectivity and structural connectivity (in blue) and the first derivative (in orange), with shades 
representing the 95% confidence interval for the human (A; right) and rat brain (B; right). Structure-function (SC-
FC) tipping point, i.e., the structural connectivity value from which onwards structural and functional connectivities 
were significantly associated, in human and rat cortex (C). Boxplots show median and inter-quartile range (IQR) 
whiskers representing 1.5 times the IQR and dots represent individual results. Density plot of structural connectivity 
strength values in the human and rat cortex, with the dashed line indicating the mean (D). Regions-of-interest 
(circles) including connections belonging to connections above the structure-function tipping point in more than 
50% of the individuals (black lines) on a horizontal section outline of the human (E) and rat brain (F). Yellow circles 
represent primary brain regions, green circles represent secondary brain regions, and blue circles represent other 
brain regions. 
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Differences in structure-function relationships between primary and secondary cortical 
brain regions 
Since linear structure-function relationships may vary across the brain, we also investigated 
possible differences in structure-function relationships for primary and secondary regions in 
the rat and human cortex. In the human brain, structural and functional connectivity were 
significantly positively correlated in primary (r = 0.42 (0.39 – 0.45) (median (IQR)); all p < 
0.0001) and secondary cortical areas (r = 0.27 (0.26 – 0.33); all p < 0.005, except for one 
individual), with a higher structure-function correlation in primary compared to secondary 
regions (U = 45; p = 0.004). Similarly, in the rat brain, we found that structural and functional 
connectivity were significantly positively correlated in primary (r = 0.29 (0.25 – 0.33); all p < 
0.001) and secondary cortical regions (r = 0.41 (0.39 – 0.46); all p < 0.05, except for two rats), 
but the structure-function correlation was higher in secondary compared to primary regions 
(V = 0, p = 0.0001).  

Non-linear generalized additive model analyses demonstrated a more complex 
relationship between structural and functional connectivity in primary compared to 
secondary cortical regions in the rat brain (Figure 2B). In ten out of thirteen rats, we could 
not determine a structure-function tipping point between secondary brain regions, because 
structural and functional connectivity were either significantly correlated at all structural 
connectivity values or not significantly correlated at all. As a result, we only identified a 
structure-function tipping point in three rats (at structural connectivity value 3.66 (3.46 – 
4.55); [min: 0; max: 7.71]). In comparison, primary brain regions showed fluctuations around 
zero at low structural connectivity values but with a clear structure-function tipping point in 
ten out of thirteen rats (at structural connectivity strength value 4.84 (4.02 – 5.80); [min: 0; 
max: 8.31]) (Figure 2C). In the human brain, we could identify a tipping point in seven of the 
ten individuals in primary and eight out of ten individuals in secondary cortical regions 
(Figure 2A). Nevertheless, in some individuals, the structure-function relationship became 
non-significant again at high structural connectivity values due to a large 95% confidence 
interval, making a tipping point less evident. The structure-function tipping point occurred 
at a lower structural connectivity value in primary (2.28 (2.14 – 3.67); [min: 0; max: 8.61]) 
compared to secondary brain regions (3.89 (3.72 – 4.09); [min: 0; max: 8.11]) in the human 
cortex, but this was not statistically significant (V = 2; p = 0.09) (Figure 2C).  
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Figure 2: Structure-function relationships in primary and secondary brain regions in the human and rat cortex. 
Regions of interest projected as circles on a horizontal section outline of the brain (left) (primary regions in yellow, 
secondary regions in green, and other regions in blue), and representative examples of the generalized additive model 
fit in blue and the first derivative in orange, with shades representing the 95% confidence interval, in primary 
(middle) and secondary cortical regions (right) of an individual human (A) and rat brain (B). Structure-function 
(SC-FC) tipping point, i.e., the structural connectivity value from which onwards structural and functional 
connectivities were significantly associated, for primary (yellow) and secondary brain regions (green) in the rat and 
human brain (C). Boxplots show median and inter-quartile range (IQR), whiskers representing 1.5 times the IQR, 
and dots represent individual results.  
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Dynamic functional connectivity analyses reveal similar complex structure-function 
relationships 
To determine whether the dynamic nature of functional connectivity influenced structure-
function tipping points, we also applied generalized additive modeling to dynamic functional 
connectivity data. Similar to the static functional connectivity results, we found a significantly 
lower structural connectivity value as whole-brain structure-function tipping point in the 
human compared to the rat cortex (human: 2.48 (2.33 – 2.68); rat: 3.75 (3.41 – 3.88); W = 1; 
p < 0.0001) (Figure 3A). In separate assessments of primary and secondary brain regions, we 
did not find a difference in structure-function tipping point values between primary and 
secondary brain regions in the human cortex (primary regions: 4.05 (3.43 – 5.43); secondary 
regions: 5.04 (2.87 – 5.18); V = 4; p = 0.75)(Figure 3B), although we could only determine a 
tipping point in secondary brain regions in three out of ten individuals. In the rat cortex, we 
could determine tipping points for all individual rats and found a higher tipping point value 
in primary compared to secondary brain regions, but this was not statistically significant 
(primary regions: 3.38 (2.60 – 3.71); secondary regions: 2.42 (1.89 – 2.73); V = 70; p = 0.09).  
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Figure 3: Tipping points for the relationship between structural connectivity and dynamic functional 
connectivity in the human and rat cortex. Regions-of-interest projected as blue circles on a horizontal section 
outline of the brain, and time series of low frequency bandpass-filtered resting-state fMRI signal in the left motor 
cortex, for human (A) and rat brain (B). The orange window represents the sliding-window approach to dynamically 
calculate functional connectivity and corresponding structure-function tipping point per window. The window 
length was 60 s (27 images for the human and 58 images for the rat brain), which was moved with the repetition time 
(2.2 s for the human and 1.024 s for the rat dataset). Structure-function (SC-FC) tipping points are shown for the 
whole brain (C) and primary (yellow) and secondary regions (green) in the human and rat brain (D). Boxplots show 
median and inter-quartile range (IQR), whiskers representing 1.5 times the IQR, and dots represent individual 
results. 



3

 ___________________Non-linear structure-function relationships in human and rat brain 
 

69 
 

Discussion 

We mapped the relationship between structural and functional connectivity and evaluated 
the possible non-linearity of this relationship. Structure-function relationships in both the 
human and rat cortex were found to have non-linear profiles. Structural and functional 
connectivity were not significantly associated with weak structural connections, but their 
relationship became positive and statistically significant at higher connectivity levels. The 
structural connectivity weight at which this occurred was defined as the structure-function 
tipping point. This structure-function tipping point was lower in the human cortex than in 
the rat cortex. We found non-linear structure-function relationships in primary and 
secondary cortical brain regions, with no clear difference in the structure-function tipping 
point values.  
 
Lower whole-brain structure-function tipping point in human compared to rat cortex 
We confirmed that structural and functional connectivity were moderately correlated in all 
individual rat and human datasets, using frequently applied linear correlation analysis, in line 
with previous reports (Honey et al., 2009; Straathof et al., 2020b, 2019a). Our analyses of non-
linear correlations showed that the relationship between cortical structural and (static and 
dynamic) functional connectivity is more complex, characterized by a significant positive 
structure-function correlation from the structure-function tipping point onwards. This non-
linear relationship and the observed structure-function tipping point may relate to the small-
world organization of structural brain networks (Sporns and Zwi, 2004). Small-world 
networks are characterized by strong structural connections within specialized functional 
modules, which may strongly associate with functional connectivity, and sparse weak 
structural connections between those functional modules, which are less strongly associated 
with functional connectivity. These weak structural connections are believed to be important 
for integrating information in the brain (Markov et al., 2014, 2013). However, they often span 
long distances and may introduce diverse inputs to and outputs from brain regions (Betzel 
and Bassett, 2018), resulting in limited association with functional connectivity. Stronger 
structural connections, particularly intrahemispherically, have a higher correlation with 
functional connectivity.  

This significant and positive relationship, starting at the structure-function tipping 
point, was found to occur at lower structural connectivity strengths in the human compared 
to the rat cortex, despite a largely similar distribution of structural connectivity weights. 
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While the human brain appears to be organized as a small-world network (Liao et al., 2017; 
Sporns and Zwi, 2004), the organization of the rodent brain network may be more in-between 
a small-world and scale-free topology, characterized by less interconnected modules and 
more inter-modular connections (Henriksen et al., 2016; Oh et al., 2014; Sporns and 
Bullmore, 2014). The latter may result in a larger range of structural connections that are 
weakly or not associated with functional connectivity in the rat brain, reflected by 
fluctuations in the structure-function relationship at low structural connectivity values and a 
higher structure-function tipping point value. In the human brain, consistent connections 
with a structural connectivity strength above the tipping point were distributed all over the 
cortex. In comparison, in the rat cortex, we found that stronger structural connections above 
the structure-function tipping point were mostly intrahemispheric and involved primary 
brain regions, which have previously been identified as hub-regions in the structural network 
of the rat brain (van den Heuvel et al., 2016b). Weak structural connections in the rodent 
brain may have a random organization and cover long distances, whereas strong structural 
connections would be more ordered (van den Heuvel et al., 2016b; Ypma and Bullmore, 
2016). This arrangement of strong and weak structural connections could be due to 
developmental processes like pruning, with structurally solid connections being mainly 
activated and functionally strengthened during development. In contrast, the structure-
function relationship in weak structural connections may be more variable (van den Heuvel 
et al., 2016b). Synaptic pruning happens over a much shorter life period in the rat than in the 
human brain (Petanjek et al., 2011; Semple et al., 2013), potentially resulting in more 
“random” structural connections with a weak functional association in the rat brain.  

 
Different structure-function relationships between human and rat cortex in primary and 
secondary regions  
Since linear structure-function relationships vary across the brain (Straathof et al., 2020b; 
Vázquez-Rodríguez et al., 2019), we investigated the non-linear relationship in primary 
unimodal and secondary transmodal regions separately. Primary unimodal sensory regions 
showed higher linear structure-function correlations than transmodal secondary areas in the 
human brain, in line with a previous study that explained this by stronger participation of 
secondary brain regions in dynamic networks (Vázquez-Rodríguez et al., 2019). However, 
despite these differences in linear structure-function relationships, our non-linear correlation 
analyses showed similar non-linear structure-function relationships in primary and 
secondary regions in the human cortex. Speculatively, the large cortical expansion in the 
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human brain may have shifted the importance of primary sensory information processing 
towards the integration of information in secondary regions (Buckner and Krienen, 2013), 
resulting in similar complex structure-function relationships.  

In the rat cortex, the structure-function relationship displayed more non-linearity 
in primary regions than in secondary regions, expressed by a noticeably clear structure-
function tipping point. Since primary sensory cortices can integrate multisensory 
information in the rodent brain (Laramée and Boire, 2015; Stehberg et al., 2014), multimodal 
secondary regions may be less developed. This could explain the lack of non-linearity in the 
structure-function relationship, less dynamical interactions, and a consequently stronger 
linear structure-function correlation. Thus, our results indicate that the functional networks 
across the rat cortex are differently organized, with primary sensory areas showing non-
linearity of the structure-function relationship resembling the organization of the human 
cortex. In contrast, higher-order transmodal areas appear less developed in their structure-
function relationship. 

Another factor that may explain the differences in structure-function correlations 
between rats and humans in primary and secondary regions, which may complicate the 
species comparison, is the anesthesia used in rodent studies. Light anesthesia during resting-
state fMRI may increase the coherence between functional and structural networks (Barttfeld 
et al., 2015). In addition, light anesthesia in rats has been shown to impact signaling in 
secondary brain regions more than in primary brain regions (Liang et al., 2015). Higher-order 
brain regions are more inhibited under light anesthesia. In contrast, primary brain regions 
remain functioning and may continue to be involved in dynamic processes. However, 
another study that compared resting-state fMRI signals in awake humans and anesthetized 
monkeys demonstrated that functional signaling remains present under anesthesia in 
dynamic functional network areas, like associative cortices (Yin et al., 2019). Therefore, how 
anesthesia exactly influences the dynamics of functional networks and its role in the (non-) 
linear structure-function relationship across the brain, remains unclear, which could be a 
topic in future studies.  

 
Different non-linear structure-function relationships in secondary brain regions using 
dynamic functional connectivity analyses 
Our dynamic analyses showed similar non-linear structure-function relationships in our 
whole-brain assessments and in primary cortical regions as we found with the static analyses. 
Although functional connectivity values dynamically changed over the applied temporal 
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windows, the structural connectivity value from which structural and functional connectivity 
became significantly associated was similar. This suggests that the structure-function tipping 
point is inherent to structural brain networks, which may be determined by the topology of 
the network (small-world versus scale-free). However, we found differences in the non-
linearity of structure-function relationships in secondary brain regions between static and 
dynamic functional connectivity analyses. In our static functional connectivity analyses, we 
could determine tipping points in the secondary regions in human but not in rat cortex. In 
contrast, in our dynamic functional connectivity analyses, we could determine tipping points 
in rat but not in human cortex. This difference may reflect dissimilarities in the dynamic 
nature of functional connectivity in secondary brain regions between humans and rats. In the 
human brain, functional connectivity between secondary transmodal regions may be highly 
dynamic. Still, it may not clearly reflect structural connectivity in these dynamic periods, 
resulting in the absence of structure-function tipping points in our dynamic analyses. In 
comparison, while functional connectivity between secondary regions in the rat brain may 
be dynamic, it may still resemble structural connectivity, resulting in clear tipping points in 
the dynamic analyses. These results support our hypothesis that brain networks are 
differently organized in the rat brain, and that secondary brain regions may functionally be 
less dynamic and developed. In addition, the specific differences between static and dynamic 
analysis in human and rat datasets suggest that potentially altered functional connectivity 
dynamics induced by light anesthesia cannot solely explain the observed differences in the 
structure-function relationship between the human and rat brain.  

 
Future perspective 
Our study fits within the field of comparative connectomics, which investigates the 
similarities and differences in brain network organization across species (van den Heuvel et 
al., 2016a). Although there is a large agreement between brain networks across species, 
differences facilitate distinctive behavior. Our non-linear correlation analyses identified clear 
differences in network organization between the rat and human cortex, characterized by less 
non-linearity and more homogeneous non-linear structure-function relationships across the 
human brain, compared to very clear non-linear components in the structure-function 
relationship in the rat brain that differed between primary and secondary brain regions. 
Whether this is simply due to differences in brain size, with more specialization and relatively 
less long-distance connections in the larger human brain, or species differences in the 
development of specific brain regions is currently unknown. Future studies are needed to 
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investigate the potential value of the introduced structure-function tipping point as a network 
marker for aging (Damoiseaux, 2017; Liu et al., 2017; Sala-Llonch et al., 2014; Zimmermann 
et al., 2016) or (risk of) disease (Bullmore and Sporns, 2009; van den Heuvel and Sporns, 
2019).  
 
Limitations 
Our study has some limitations. First, we did not compare structural and functional 
connectivity within the same individuals or animals. This might have led to some 
underestimation of the structure-function relationships due to inter-individual variation. 
However, our ultrahigh-resolution diffusion-weighted data provided high-quality 
information on structural connectivity, necessary for reconstructing structural networks with 
a minimum of false positives (Maier-Hein et al., 2017). Second, as already mentioned above, 
resting-state fMRI in rats was acquired under light anesthesia, which may have influenced 
our functional connectivity analyses (Paasonen et al., 2018) and measures of structure-
function correlation (Barttfeld et al., 2015; Uhrig et al., 2018). However, anesthesia-induced 
changes in functional connectivity have been shown to have no or minimal effects on the 
global organization of functional networks in rodents (Liang et al., 2012). Previous studies 
have demonstrated the reliability of comparisons of structure-function relationships between 
anesthetized rodents and awake humans (Díaz-Parra et al., 2017; Grandjean et al., 2017; 
Straathof et al., 2020b, 2019a). Lastly, since we used publicly available human datasets and 
previously acquired rat datasets, MRI acquisition parameters differed between species. 
Although we cannot rule out the effect of different parameter settings on our outcomes, the 
applied MRI protocols belong to the standards for structural and functional connectivity 
measurement in human and rodent brains.  
 
Conclusion 
Differences in the non-linear structure-function relationship between primary and secondary 
brain regions in the rat cortex, which were not apparent in the human cortex, reflect 
organizational differences in functional networks with a possible evolutionary origin. Thus, 
non-linear correlation analyses provide an original means to assess the complex interaction 
between functional and structural connectivity in neural networks and may reveal unique 
markers of brain development, aging and dysfunction. 
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 Supplementary materials 

Supplementary Figure S1: Group independent component analyses for rat resting-state fMRI dataset. Six 
different functional connectivity strength components are overlaid on a mean resting-state fMRI image. Color-
coding reflects Z-scores. Rat brain images are shown in coronal view with y-slice numbers (left side), axial view with 
z-slice numbers (middle) and in sagittal view with corresponding x-slice numbers (right side). 
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Abstract 

Obsessive-compulsive disorder (OCD) is increasingly considered to be a 
neurodevelopmental disorder. However, despite insights in neural substrates of OCD in 
adults, less is known about mechanisms underlying compulsivity during brain development 
in children and adolescents. Therefore, we developed an adolescent rat model of compulsive 
checking behavior and investigated developmental changes in structural and functional 
measures in the frontostriatal circuitry. Five-weeks old Sprague Dawley rats were 
subcutaneously injected with quinpirole (n=21) or saline (n=20) twice a week for five weeks. 
Each injection was followed by placement in the middle of an open field table, and 
compulsive behavior was quantified as repeated checking behavior. Anatomical, resting-state 
functional and diffusion MRI at 4.7T were conducted before the first and after the last 
quinpirole/saline injection to measure regional volumes, functional connectivity, and 
structural integrity in the brain, respectively. After consecutive quinpirole injections, 
adolescent rats demonstrated clear checking behavior and repeated travelling between two 
open-field zones. MRI measurements revealed an increase of regional volumes within the 
frontostriatal circuits and an increase in fractional anisotropy (FA) in white matter areas 
during maturation in both experimental groups. Quinpirole-injected rats showed a larger 
developmental increase in FA values in the internal capsule and forceps minor compared to 
control rats. Our study points toward a link between development of compulsive behavior 
and altered white matter maturation in quinpirole-injected adolescent rats, in line with 
observations in pediatric patients with compulsive phenotypes. This novel animal model 
provides opportunities to investigate novel treatments and underlying mechanisms for 
patients with early-onset OCD specifically.  
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Introduction 

Obsessive–compulsive disorder (OCD) is a mental illness in which people have recurrent 
thoughts, impulses or images that inflict anxiety, distress, and repetitive behaviors. OCD has 
been recognized as a relatively common psychiatric disorder with a lifetime prevalence of 1-
3% in the general population (Kessler et al., 2005; Veale and Roberts, 2014). Although the key 
symptoms are obsessions and compulsions, people suffering from OCD may experience 
substantial variation in the severity of symptoms, the time of onset and the effect of treatment 
(Butwicka and Gmitrowicz, 2010; Eisen et al., 2013; Leckman et al., 2010; Lochner and Stein, 
2013). These variations in OCD manifestations suggest that there are multiple mechanisms 
that could underlie the development of this disorder. Nevertheless, in recent years a 
consistent picture has emerged that shows that OCD is associated with structural and 
functional changes in brain areas that form the frontostriatal circuitry. Neuroimaging 
modalities, including positron emission tomography, single-photon emission computed 
tomography and MRI, have been used to characterize these changes (Frydman et al., 2016; 
Koch et al., 2014; Piras et al., 2015). Although results are variable, studies in adults with OCD 
point to a decreased grey matter volume in frontal cortical regions such as the orbitofrontal, 
parietal and anterior cingulate cortex, and increased volume in subcortical structures such as 
the putamen, thalamus and caudate nucleus (Boedhoe et al., 2018; Piras et al., 2015; Radua 
and Mataix-Cols, 2009). Structural changes in main white matter tracts have also been 
reported in adults with OCD. Decreased fractional anisotropy (FA) values, potentially 
reflective of reduced white matter integrity, have been measured in several white matter 
tracts, of which the cingulate bundle, corpus callosum and internal capsule appear to be most 
commonly affected (Koch et al., 2014).  

The OCD phenotype may not only be related to the above-mentioned changes in 
brain structures, but also to changes in neural network activation patterns. Functional 
imaging techniques have revealed abnormal activity in specific regions of the frontostriatal 
circuitry (Del Casale et al., 2011). Symptom provocation-induced hyper- and hypo-activity 
have been detected in the orbitofrontal cortex, the caudate nucleus, and the thalamus in 
adults and adolescents (Adler et al., 2000; Gilbert et al., 2009). Studies using resting-state 
functional MRI (rs-fMRI) have shown that functional connectivity between specific areas of 
the frontostriatal circuitry may be increased or decreased in people with OCD (Calzà et al., 
2019; Posner et al., 2014; Sakai et al., 2011).  
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Despite increasing insights in neural substrates of OCD in adults, less is known 
about potential underlying mechanisms during brain development in children and 
adolescents. The first appearance of clinical symptoms divides the OCD population into two 
groups, i.e., early, and late onset OCD patients that experience their first clinical symptoms 
before or after adulthood, respectively. The early onset group is the most prevalent since 
approximately three quarters of patients experience their first symptoms at a young age 
(Taylor, 2011). OCD may therefore be considered a neurodevelopmental disorder for the 
majority of affected persons. 

In recent years a variety of translational animal models has been developed to study 
the pathophysiology of OCD and to test the effects of novel molecules (Albelda and Joel, 
2012a, 2012b; Alonso et al., 2015). A frequently applied and well-defined model involves 
repeated injections of the dopamine D2/D3 receptor agonist quinpirole in adult rats 
(Szechtman et al., 1998). This results in sensitization of the D2/D3 receptor and compulsive 
checking behavior, a specific symptom of OCD. We set out to adapt this model to study the 
development of compulsive behavior during brain maturation in rats from juvenile to 
adolescent stages, with the specific goal to identify abnormal developmental changes in 
structural and functional aspects of the frontostriatal circuitry. To this aim, we applied serial 
structural and functional MRI of the brain, in combination with behavioral testing of 
compulsivity.  
 

Experimental procedures 

Animal model 
All animal procedures were approved by the local Committee for Animal Experiments of the 
University Medical Center Utrecht, The Netherlands (DEC: 2014.I.12.104) and were 
performed in accordance with the guidelines of the European Communities council directive 
(EU Directive 2010/63/EU). All efforts were made to reduce animal suffering.  

To study compulsive behavior in adolescent rats, we modified an established rat 
model for compulsive checking behavior. Forty-one juvenile Sprague Dawley rats (Harlan, 
Zeist) were housed individually and habituated to environmental conditions (temperature 
22-24° and 12 h light/dark cycle with lights on at 7:00 AM) for at least seven days prior to the 
experiment with access to food and water ad libitum. From the age of five weeks (body weight: 
104 ± 24 g (mean ± standard deviation (SD))), we subcutaneously injected rats with 
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quinpirole (Tocris, UK; 0.5 mg/kg; n=21; Quinpirole group) or saline (n=20; Control group), 
twice a week for five weeks (a total of 10 injections). We randomly assigned the treatment 
(quinpirole or saline), but experimenters could not be blinded, due to the obvious behavioral 
effects of quinpirole treatment. Each injection was followed by placement of the rat in the 
middle of a large open field table for 30 minutes. On the open field table (160×160 cm2, 60 
cm above the floor), four objects (two black, two white; 8×8×8 cm3) were placed on fixed 
locations: two near the middle and two near the corners of the open field. Each rat’s activity 
on the open field table was recorded with a camera fixed to the ceiling.  
 
Behavioral analysis 
Ethovision software (Noldus Information Technology B.V., Netherlands) was used to 
automatically trace the trajectories of locomotion for the open field tests after the fifth and 
tenth quinpirole/saline injection. The open field area was virtually divided into 25 rectangles 
of 40×40 cm2 of which the outer zones extended outside the open field. For all analyses, we 
used the last 15 minutes for the quinpirole-injected rats, and the complete 30 minutes for the 
control rats, similar to the original study by Szechtman and colleagues who used the last 30 
of 60 minutes for quinpirole-injected rats and the full 60 minutes for control rats (Szechtman 
et al., 1998). We calculated the frequency of visits for each zone during this observation 
period and defined the home-base as the most frequently visited zone. 
 

Locomotor behavior 
Compulsive checking behavior parameters were characterized relative to the home-base, and 
included frequency of checking (the total number of visits at the home-base), length of checks 
(the average time of a visit at the home-base), recurrence time of checking (the average time 
spent at other areas before returning to the home-base) and stops before returning to the 
home-base (the average number of areas an animal visited before returning to the home-
base) (Szechtman et al., 1998; Tucci et al., 2014a). In addition, we determined the 
predictability of the visited zones as the Lempel-Ziv source entropy (Song et al., 2010) using 
a maximal substring of three zones and only including animals that visited at least nine 
different zones. The higher the source entropy, the less predictable the locomotion. Besides 
the compulsive behavior, we calculated hyperactivity measures, including the total travelled 
distance, average velocity of movement and immobility time (<0.01 cm movement per video 
frame).  
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Behavior during stops 
We manually quantified stereotypic behaviors the rats showed during a stop at their own 
home-base (Szechtman et al., 1998). Like in the adult model, only the first 20 visits during the 
observation period were scored. However, because control rats were less active, all their visits 
were scored if required. First, for each visit we scored the entering or leaving direction to and 
from the home-base, to determine a potential directional preference. Directions were 
determined using a compass divided into eight different directions (per 45 degrees). Second, 
we counted the number of clockwise and anti-clockwise turns as horizontal movements per 
visit and the number of head dips as vertical movements. Third, we scored the interaction of 
the rat with the object by counting the number of sniffs and placement of the forelegs at the 
object per visit. Fourth, we determined the grooming time per visit. These individual 
behavioral scores were combined into a total number of behavioral acts per visit.  
 
Experimental MRI protocol 
MRI experiments were done before the first and after the tenth injection of quinpirole or 
saline. MRI experiments were executed on a 4.7T horizontal bore magnet (Varian, Palo Alto, 
USA) with a homebuilt Helmholtz volume coil for radiofrequency transmission and an 
inductively coupled surface coil for signal detection.  

Animals were anesthetized with isoflurane anesthesia (4% for induction and 2% for 
maintenance) in a mixture of O2 and air (30/70%). Subsequently, the animals were prepared 
for mechanical ventilation by endotracheal intubation. Animals were immobilized in a 
specially designed stereotactic holder and cradle to minimize movement during the MRI 
experiment. During MRI, end-tidal CO2 was continuously monitored, and body temperature 
was maintained at 37.0 ± 1.0 oC. An infrared sensor (Nonin Medical Inc., Plymouth, MN, 
USA) was attached to the hind paw to monitor the heart rate and blood oxygen saturation.  
Anatomical MRI: For volumetric analyses and registration, we performed a 3D balanced 
steady-state free precession scan. Repetition time (TR) = 5 ms; echo time (TE) = 2.5 ms; flip 
angle 20o; three averages; four pulse angle shifts; field-of-view (FOV) = 40×32×24 mm3; 
acquisition matrix = 160×128×96 points; resolution = 250 μm isotropic. Total acquisition 
time was ten minutes. Isoflurane anesthesia level was reduced to 1.5% at the start of the 
anatomical MRI acquisition, to lower the anesthetic depth for the following resting-state 
fMRI acquisition. 
Resting-state functional MRI: For functional connectivity analyses, we acquired T2*-
weighted blood oxygenation level-dependent images using a single shot multi-slice 2D 
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gradient echo-echo planar imaging (EPI) sequence under 1.5% isoflurane anesthesia. TR = 
700 ms; TE = 20 ms; FOV = 32×27.2 mm2; acquisition matrix = 40×34 points; slice thickness 
= 0.80 mm, 17 slices, isotropic resolution of 800 μm, 850 images. The acquisition time was 
ten minutes. Resting-state fMRI acquisition was always started at 90 minutes after quinpirole 
injection, to standardize the effects of quinpirole across animals.  
Diffusion MRI: For structural connectivity analyses we acquired multi-slice diffusion-
weighted spin-echo images using four-shot EPI encoding. Diffusion MRI acquisition was 
performed under 2.0% of isoflurane anesthesia to minimize animal motion. Acquisition 
parameters were as follows: TR = 3000 ms; TE = 26.2 ms; FOV = 32×32 mm2; acquisition 
matrix = 64×128 points; in plane resolution = 500×250 μm2, slice thickness = 500 μm; 25 
slices; δ/Δ = 10.84/4 ms; b-value = 1,335 s/mm2; 60 directions. The acquisition time was 65 
minutes.  
 
Data analyses MRI 
Regions-of-interest 
For the structural connectivity analyses, several white matter tracts, known to be affected in 
adults and children with OCD, were used as regions-of-interest (Figure 1A): the external 
capsule (only the lateral part relative to the cingulum, 2.92 to 1.56 mm from bregma), the 
internal capsule (2.92 to -1.08 mm from bregma), the forceps minor of the corpus callosum 
(2.52 to 2.76 mm from bregma), the genu of the corpus callosum (1.80 to 2.28 mm from 
bregma) and the central part of the corpus callosum (defined as areas posterior to the genu 
of the corpus callosum (1.80 mm from bregma) and anterior to the dorsal part of the third 
ventricle (-0.60 mm from bregma, whereby only areas medial to the cingulum were 
included)).  

Regions of interest for the functional connectivity and volumetric analyses were 
taken from a 3D rendering of the Paxinos and Watson atlas (G. Paxinos and Watson, 2005). 
The 3D atlas rendering, with the region specifications and the corresponding MRI images, 
are available online (https://github.com/wmotte/rat_brain_atlas). We selected regions within 
the frontostriatal circuitry: the caudate putamen (CPu), nucleus accumbens (NAcc: 
accumbens nucleus shell, accumbens nucleus core and lateral accumbens shell), anterior 
cingulate cortex (ACC: cingulate cortex areas 1 and 2), medial prefrontal cortex (mPFC: 
prelimbic and infralimbic cortex) and orbitofrontal cortex (OFC: dorsolateral, lateral, medial, 
and ventral orbital cortex) (Figure 1B).  
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Diffusion MRI 
The diffusion-weighted images were brain-extracted with BET and motion- and eddy 
current-corrected with mutual information-based affine transformations of all images to the 
baseline image (Mangin et al., 2002). The diffusion tensor, the corresponding eigensystem, 
and the subsequently derived fractional anisotropy (FA) was computed for each voxel within 
the brain mask (Basser and Pierpaoli, 1996). Mean FA values, reflecting the degree of 
anisotropy (degree of restricted diffusion along the main directions of the diffusion tensor), 
were calculated for all white matter tracts of interest at each time point as a measure of 
structural connectivity (Koay et al., 2006). 

Figure 1. Grey and white matter regions-of-interest. Regions-of-interest for the structural connectivity analyses 
projected on a fractional anisotropy (FA) map (A), and for the volumetric and functional connectivity analyses, 
projected on an anatomical image (B). For the functional connectivity analyses, frontal and striatal areas were 
combined into two regions-of-interest: the frontal cortex (consisting of the anterior cingulate, medial prefrontal and 
orbitofrontal cortex) and striatum (consisting of the nucleus accumbens and caudate putamen). ACC: anterior 
cingulate cortex; mPFC: medial prefrontal cortex; OFC: orbitofrontal cortex. 
 

Resting-state functional MRI 
Preprocessing steps of the resting-state fMRI scans included removal of the first 20 images to 
reach a steady state; motion-correction with MCFLIRT (Jenkinson et al., 2002); and brain-
extraction with BET (Smith, 2002). Motion-correction parameters were used as regressor for 
the resting-state signal, and low-frequency blood oxygenation level-dependent fluctuations 
were obtained by applying temporal filtering between 0.01 and 0.1 Hz in AFNI (Cox, 1996). 
To verify the ability to measure specific functional connectivity under our experimental 
conditions, we evaluated the functional connectivity of the left anterior cingulate cortex from 
seed-based analyses. We calculated Fisher’s Z-transformed correlation coefficients for inter- 
and intrahemispheric functional connectivity between regions-of-interest. To preserve 
sufficient signal-to-noise ratio for these analyses, we combined the orbitofrontal, anterior 
cingulate and medial prefrontal cortex into one frontal cortical region-of-interest, and the 
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nucleus accumbens and caudate putamen into a striatal region. In addition, we performed 
functional connectivity analyses for the individual sub-regions of interest. The nucleus 
accumbens was excluded from this sub-region analysis, as the volume of this region in young 
rats was considered too small for reliable measurements.  
 

Volumetric MRI 
For the volumetric analyses of the regions of interest in the frontostriatal circuitry, we 
determined their volume in individual anatomical MRI space. For total grey matter and white 
matter volumes, we determined the volume in individual diffusion MRI space. The total 
cerebral white matter and grey matter volumes were calculated between the cerebellum and 
the olfactory bulb. For segmentation of the white matter, we used a minimum FA threshold 
of 0.25, and for segmentation of the grey matter we used a maximum FA threshold of 0.25, 
and a mean diffusivity below 0.001. Total volumes were calculated by multiplying the number 
of voxels with the volume of a voxel in either anatomical or diffusion MRI space. 
 

Matching individual data with atlas coordinates  
Individual anatomical images were non-linearly registered with the atlas rendering using 
FNIRT software (Jenkinson et al., 2012). Individual resting-state fMRI and diffusion MRI 
images were linearly registered to the individual anatomical image using FLIRT software 
(Jenkinson and Smith, 2001), followed by the non-linear registration from the individual 
anatomical space to the atlas as described above. Regions-of-interest were transformed to 
individual anatomical, functional and diffusion MRI space by taking the inverse of these 
registrations. The regions for the functional connectivity analyses were masked with a 
temporal signal-to-noise ratio mask of 10, and the regions for the structural connectivity 
analyses were masked with a white matter mask (FA higher than 0.25 (Giannelli et al., 2010)).  
 
Statistical analyses 
Statistical analyses were performed in R (3.2.3) and R-studio 0.99 (R Core Team, 2014). 
Differences in behavioral metrics (compulsive checking behavior, hyperactivity measures 
and behavior during stops) between control and quinpirole-injected rats after the fifth and 
tenth quinpirole/saline injection were analyzed with a Mann-Whitney U test.  

We performed a mixed design ANOVA for all MRI parameters (regional brain 
volume, functional connectivity, and structural connectivity) separately to assess brain 
development, with the factor time as within-subject variable, and treatment effect, with the 
factor group (Control or Quinpirole) as between-subject variable, followed by post-hoc 
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paired Wilcoxon signed rank tests. In addition, we determined whether MRI parameters 
significantly differed between control and quinpirole-injected rats after the tenth 
quinpirole/saline injection with Mann-Whitney U tests. 

For all MRI-based measures we assessed possible correlation with compulsive 
behavior measures after the tenth quinpirole/saline injection in the quinpirole and control 
group separately, using linear regression. All analyses were corrected for multiple testing 
using the false-discovery rate correction (Benjamini and Hochberg, 1995). Results with a 
corrected p<0.05 were considered statistically significant.  
 

Results 

MRI acquisitions of two control and two quinpirole-injected rats were not complete, and 
behavioral data recording failed for two control rats and one quinpirole-injected rat. 
Therefore, final groups consisted of 18 quinpirole-injected and 16 control rats. 
 
Locomotor, compulsive, and grooming behavior 
Figure 2 shows a representative locomotor trajectory of one quinpirole-injected and one 
control rat after the tenth quinpirole/saline injection and the compulsive checking behavioral 
metrics that were calculated from the motor trajectories after the fifth and tenth 
quinpirole/saline injection. Compared to control rats, quinpirole-injected rats travelled more 
repeatedly between two zones of the open field (Figure 2A and 2B). Both after the fifth and 
after the tenth quinpirole/saline injection, quinpirole-injected rats showed a higher frequency 
of checks (fifth injection: Control: 12.7 ± 6.6 (mean ± standard deviation (SD)); Quinpirole: 
24.1 ± 12.3; p=0.003; tenth injection: Control: 15.9 ± 9.4; Quinpirole: 51.6 ± 33.6; p=0.0004), 
lower recurrence time of checking (fifth injection: Control: 122.4 ± 83.7 s; Quinpirole: 33.6 ± 
29.0 s; p=0.0003; tenth injection: Control: 115.5 ± 69.2 s; Quinpirole: 18.9 ± 10.8 s; p<0.0001) 
and lower number of stops before returning to the home-base (fifth injection: Control: 10.1 
± 3.4; Quinpirole: 5.8 ± 2.0; p<0.0001; tenth injection: Control: 10.6 ± 3.4; Quinpirole: 6.9 ± 
1.7; p=0.0004) than control rats (Figure 2C). The average length of a visit at the home-base 
was not statistically significantly different between quinpirole-injected and control rats after 
the fifth (Control: 71.8 ± 91.1 s; Quinpirole: 25.7 ± 65.5 s; p=0.10) and tenth quinpirole/saline 
injection (Control: 42.6 ± 84.4; Quinpirole: 6.3 ± 10.4; p=0.08) (Figure 2C).  
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Figure 2: Locomotor trajectories and compulsive and hyperactive behavioral metrics for control and quinpirole-
injected adolescent rats during the open field test. Locomotor trajectory of a control (A) and a quinpirole-injected 
adolescent rat (B). The different zones of the open field are numbered, and the locomotor trajectories are colored 
corresponding to these zones. We characterized behavior during the open field test for the last 15 minutes for 
quinpirole-injected rats and the full 30 minutes for control rats. Boxplots of compulsive behavior, including the 
frequency of checking (total number of visits at the home-base during observation), length of checks (average time 
(s) spent at the home-base), recurrence time of checking (average time (s) before returning to the home-base), stops 
before returning to the home-base (average number of zones visited in between two visits at the home-base) and 
entropy (predictability of the visited zones) for control and quinpirole-injected rats after the fifth and tenth injection 
of quinpirole/saline (C). Boxplots of hyperactive behavior, including the mean velocity, immobility time (<0.01 cm 
movement per video frame) and the total distance moved for control and quinpirole-injected rats after the fifth and 
tenth injection of quinpirole/saline (D). Grooming time (average time (s) grooming per visit at the home-base) for 
control and quinpirole-injected rats after the fifth and tenth injection of quinpirole/saline (E). * Corrected p<0.01. 
Error bars represent the interquartile range and dots represent outliers. 

 

The entropy of the visited zones was lower in quinpirole-injected rats compared to control 
rats after both the fifth and tenth injection (fifth injection: Control: 2.2 ± 0.005; Quinpirole: 
2.0 ± 0.2; p=0.002; tenth injection: Control: 2.2 ± 0.006; Quinpirole: 2.1 ± 0.007; p<0.0001). 
This lower entropy in quinpirole-injected rats means that the order of visited zones is less 
random and shows a higher degree of predictability and repeatability. 

Next to compulsive behavior, we characterized hyperactivity measures in control 
and quinpirole-injected rats after the fifth and tenth quinpirole/saline injection (Figure 2D). 
At both time-points, quinpirole-injected rats moved with a higher mean velocity (fifth 
injection: Control: 2.8 ± 1.3 cm/s; Quinpirole: 6.6 ± 3.6 cm/s; p=0.0004; tenth injection: 
Control: 3.3 ± 1.5 cm/s; Quinpirole: 11.7 ± 5.1 cm/s; p=0.002) and had a lower immobility 
time (fifth injection: Control: 495.4 ± 207.8 s; Quinpirole: 47.2 ± 41.4 s; p<0.0001; tenth 
injection: Control: 519.1 ± 236.7 s; Quinpirole: 22.1 ± 18.0 s; p<0.0001). After the tenth 
quinpirole/saline injection, the quinpirole-injected rats moved over a longer distance 
(Control: 5954 ± 2664 cm; Quinpirole: 11112 ± 5454 cm; p=0.002). The total distance moved 
was not significantly different between quinpirole-injected and control rats after the fifth 
quinpirole injection (Control: 4963 ± 2316 cm; Quinpirole: 5899 ± 3178 cm; p=0.34). 

After the fifth injection, control rats groomed significantly more during a visit of the 
home-base than quinpirole-injected rats (Figure 2E; Control: 6.7 ± 8.7 s; Quinpirole: no 
detectable grooming; p=0.004). The average grooming time per visit was not significantly 
different between control and quinpirole-injected rats after the tenth injection, although 
quinpirole-injected rats did not groom at all (Control: 1.21 ± 2.40 s; p=0.21). All other 
behaviors we quantified during home-base visits were not statistically significantly different 
between quinpirole-injected and control rats at both time-points. 
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Structural integrity and functional connectivity 
Figures 3A and 3B show the structural connectivity in the white matter tracts of interest and 
the functional connectivity within the frontostriatal system, respectively, before the first and 
after the tenth quinpirole/saline injection.  

For the structural integrity analyses, the mixed design ANOVA demonstrated a 
significant main effect of time for all included white matter tracts (p<0.0001). 
Correspondingly, the post-hoc analyses revealed an increased FA value in all white matter 
tracts of interest in the control and quinpirole group after the tenth quinpirole/saline 
injection (p<0.0001; Figure 3A). In addition, the mixed design ANOVA showed a significant 
interaction effect of group and time for the internal capsule and the forceps minor, indicating 
that the change in FA over time in these white matter tracts was different between quinpirole-
injected and control rats. The increase in FA over time in these two white matter areas was 
larger in quinpirole-injected rats than in control rats (internal capsule: Control: 0.041 ± 0.019; 
Quinpirole: 0.063 ± 0.019; p=0.007; forceps minor: Control: 0.035 ± 0.016; Quinpirole: 0.053 
± 0.019; p=0.01). After the tenth quinpirole/saline injection, we found trends towards higher 
FA values in quinpirole-injected vs. control rats in the internal capsule (Control: 0.45 ± 0.01; 
Quinpirole: 0.46 ± 0.01; p=0.06), the forceps minor (Control: 0.44 ± 0.008; Quinpirole: 0.45 
± 0.01; p=0.14) and the center of the corpus callosum (Control: 0.52 ± 0.03; Quinpirole: 0.53 
± 0.02; p=0.14).  

Seed-based analysis of functional connectivity of the left anterior cingulate cortex 
showed that our approach enabled measurement of specific and localized functional 
connectivity effects in quinpirole-injected and control rats (Supplementary Figure S1). The 
mixed design ANOVA, with the factor time as within-subject variable, and the factor group 
as between-subject variable, demonstrated a significant main effect of group, irrespective of 
time, for the interhemispheric connection between the two frontal cortices (p=0.01). 
However, post-hoc analyses did not reveal statistically significant differences in 
interhemispheric frontal connectivity between quinpirole-injected and control rats after the 
tenth quinpirole/saline injection. In addition, we did not find any time or interaction effects, 
or differences between quinpirole-injected and control rats after the tenth quinpirole/saline 
injection. Functional connectivity analyses in individual sub-regions, also did not reveal 
significant differences between quinpirole-injected and control rats after the tenth 
quinpirole/saline injection (Supplementary Figure S2). 
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Figure 3: Structural integrity and functional connectivity in control and quinpirole-injected rats before and 
after repeated saline/quinpirole injections. Structural integrity (A; fractional anisotropy (FA)) in white matter 
tracts of interest and functional connectivity (B; Fisher’s Z transformed correlation coefficient) within the 
frontostriatal system for control and quinpirole-injected rats before the first (5-weeks old rats; red) and after the 
tenth (10-weeks old rats; blue) quinpirole/saline injection. le: left; ri: right. Error bars represent 1.5 × the interquartile 
range and dots represent outliers. ** p<0.01; *p<0.05; #p<0.15.  
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Regional brain volumes 
The volumes of regions within the frontostriatal system and the total grey and white matter 
volumes were determined before the first and after the tenth quinpirole/saline injection 
(Figure 4). The mixed design ANOVA, with the within-subject factor time and between-
subject factor group, demonstrated a significant time effect for all volumes of interest 
(p<0.0001). Correspondingly, post-hoc analyses revealed that all the investigated cerebral 
volumes increased between the first (before the first injection) and the final measurement 
(after the tenth injection), in the saline- and quinpirole-injected groups (p<0.0001; Figure 4). 
There was no significant interaction effect between time and group. In addition, after the 
tenth quinpirole/saline injection, there were no significant differences in regional volumes 
between quinpirole-injected and control rats. 
 
Relationship between compulsive behavior and MRI measures 
We checked for possible relationships between MRI-based parameters and compulsive 
behavior measures after the tenth quinpirole/saline injection in the control and quinpirole 
group. None of the regressions demonstrated a significant correlation.  
 

Discussion 

We conducted a multi-parametric MRI examination of the development of compulsive 
behavior in a novel adolescent rat model of quinpirole-induced compulsive checking 
behavior. After five weeks of consecutive quinpirole injections, adolescent rats demonstrated 
clear compulsive checking behavior, repeated travelling between two open-field zones and 
no grooming. Our MRI measurements revealed developmental increases in regional brain 
volumes and white matter integrity in control and quinpirole-injected rats. Quinpirole-
injected rats showed a larger increase in FA values in the internal capsule and forceps minor 
as compared to control rats, and a trend towards higher integrity values in the internal 
capsule, forceps minor and central part of the corpus callosum after five weeks of quinpirole 
treatment as compared to saline treatment.  
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Figure 4: Regional brain volumes before and after repeated quinpirole/saline injections. Boxplots of the volumes 
(mm3) of regions-of-interest in the frontostriatal system, and the total white and grey matter volume for control and 
quinpirole-injected rats before the first (5-weeks old rats; red) and after the tenth injection (10-weeks old rats; blue) 
of quinpirole/saline. Error bars represent 1.5 × interquartile range and dots represent outliers. ACC: anterior 
cingulate cortex; OFC: orbitofrontal cortex; mPFC: medial prefrontal cortex; CPu: caudate putamen; NAcc: nucleus 
accumbens. * Corrected p<0.01. 
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Compulsive-like behavioral phenotype 
While the model of quinpirole-induced compulsive checking in adult rats has shown good 
face validity to OCD (Stuchlik et al., 2016), compulsive behavior and OCD in humans 
generally develops during early adolescence (Boileau, 2011). Therefore, we have adapted the 
quinpirole-induced compulsive checking model in adult rats by starting quinpirole injections 
during early adolescence. Our study shows that quinpirole-injected adolescent rats meet 
three of four reported criteria for compulsive checking behavior after the fifth and tenth 
quinpirole/saline injection (Szechtman et al., 1998; Tucci et al., 2014a). By including the 
measurement after the fifth quinpirole/saline injection (8-9 weeks of age), we assured that the 
compulsive behavior developed during the adolescent phase and was established before 
adulthood. An additional feature that we observed in the quinpirole-injected adolescent rats 
was repeated traveling between two sides of the open field. This is also observable in adult 
rats with an OCD-like phenotype (Eilam, 2017). Next to these compulsive checking 
behaviors, we also characterized hyperactivity measures and specific behavioral acts the rats 
performed during a visit at the home-base. Quinpirole-injected adolescent rats travelled over 
a longer total distance and with higher velocity than control rats, corresponding to 
hyperactivity, which has also been observed in the adult model (Servaes et al., 2019). In 
addition, in contrast to control animals showing clear grooming behavior during a home-
base visit, quinpirole-injected adolescent rats did not groom, similar to what has been 
observed in the adult rat model (Szechtman et al., 1998). However, other behavioral acts, such 
as interaction with objects or preferences for entering or leaving directions, that were 
significantly altered in the adult model, were not significantly different between quinpirole-
injected and control adolescent rats.  

The development of compulsive-like behavior after repeated quinpirole injections is 
believed to reflect modifications in the brain due to the sensitization to the dopamine D2-
receptor agonist quinpirole (Tucci et al., 2014a), such as an increased D2 receptor density 
(Servaes et al., 2019). The reduced expression of compulsive checking behavior in the 
adolescent rat model may be explained by maturational differences in dopaminergic 
receptors in the striatum between day 40 (adolescence) and day 60 (adulthood) (Teicher et 
al., 1995), potentially resulting in reduced sensitivity to dopaminergic agonists in young rats 
(Bolanos et al., 1998; Ulloa et al., 2004). Nevertheless, we feel that the behavioral profile that 
we observed in response to repeated quinpirole injections during adolescence in rats 
effectively reflects a compulsive-like phenotype.  
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Structural and functional brain alterations 
MRI-based measures of regional brain volume and white matter structural integrity revealed 
clear developmental changes in quinpirole-injected and control rats between pre- (early 
adolescence) and post-treatment (late adolescence/adulthood) time-points. The volumes of 
regions within the frontostriatal system, as well as the total grey and white matter volume, 
significantly increased during this developmental phase of adolescence. These findings are in 
line with previous research demonstrating that cortical and subcortical regions increase in 
volume up to at least two months of age in rats (Calabrese et al., 2013; Mengler et al., 2014), 
representing maturation of brain regions. White matter structural integrity also changed 
during this developmental period. We found increasing FA values in white matter tracts, 
between postnatal weeks five and ten. Previous studies also demonstrated an increase in FA 
values of white matter tracts during development in rats (Bockhorst et al., 2008; Calabrese 
and Johnson, 2013), which may continue during (early) adulthood (van Meer et al., 2012). 
Likewise, in humans, developmental increases in FA values of white matter tracts have been 
demonstrated to continue until the end of adolescence or the beginning of adulthood 
(Barnea-Goraly et al., 2005; Chen et al., 2016). These increasing FA values in white matter 
tracts during development may reflect ongoing myelination (Bockhorst et al., 2008). The 
increased FA values at postnatal week 10 may have resulted in more voxel inclusions and 
hence an apparent increase in white matter volume over time. Nevertheless, white matter 
volumes calculated from different MRI scans (not solely based on FA values) have been 
demonstrated to increase up until postnatal week 19 (Otte et al., 2015b). Therefore, we believe 
that the white matter volume increase during development, as observed in the current study, 
is not merely explained by increased FA values over time, but truly reflects an increase in 
white matter volume. 

Regional brain volumes and functional connectivity within the frontostriatal system 
did not differ between quinpirole-injected and control rats after the tenth quinpirole/saline 
injection. In children with OCD, conflicting results have been reported regarding brain 
volume and functional connectivity changes. Increases or decreases, or even no differences, 
in the size of frontal cortical areas have been measured (Boedhoe et al., 2018; Christian et al., 
2008; Lázaro et al., 2009). Furthermore, increased as well as decreased functional connectivity 
between frontostriatal regions has been reported (Bernstein et al., 2016; Fitzgerald et al., 
2011b). These differences may be related to the heterogeneous nature of OCD but could also 
be due to methodological variation between studies. This underscores the need for 
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standardization of neuroimaging protocols and investigations in well-controlled 
experimental designs. 

The developmental rise in FA in the internal capsule and forceps minor was larger 
in quinpirole-injected animals as compared to controls, suggesting differences in white 
matter maturation. As a result, we found a trend towards higher FA values in these white 
matter tracts and in the center of the corpus callosum in quinpirole-injected as compared to 
saline-injected rats after the five weeks treatment period. Elevated FA values in white matter 
tracts, including the corpus callosum and internal capsule, have also been observed in 
children and adolescents with OCD (Gruner et al., 2012; Zarei et al., 2011). The higher FA 
values in children with OCD are suggested to reflect premature myelination of white matter 
tracts (Zarei et al., 2011). In addition, FA values in the internal capsule have been shown to 
be positively correlated to symptom severity in children with OCD (Zarei et al., 2011). 
Together, these findings underline the involvement of white matter structural integrity 
disturbances in disease processes of OCD in children and adolescents. 
The rat model of quinpirole-induced OCD-like behavior offers opportunities for 
standardized and well-controlled investigation of the neural underpinnings of compulsive 
checking behavior. Since approximately three quarters of patients experience their first 
symptoms at a young age (Taylor, 2011), the adolescent quinpirole rat model described in 
this study enables studying the neurodevelopmental processes underlying early-onset OCD 
specifically. For optimal translation, we used similar MR protocols as in human 
neuroimaging studies, including diffusion MRI and resting-state functional MRI. However, 
diffusion-based measures are proxies of the true neuroanatomical features, and the 
(sub)cellular processes underlying changes in FA remain largely unclear (Johansen-Berg and 
Behrens, 2013). In addition, in contrast to human neuroimaging studies, animals in our study 
were anesthetized during MRI acquisitions, which is known to influence functional 
connectivity measurements (Paasonen et al., 2018).  
 
Despite the good face validity of the adult quinpirole-induced compulsivity model, its 
construct and predictive validity have not yet been extensively validated. The adolescent 
quinpirole-induced compulsive checking behavior model introduced in this study 
demonstrated face validity with regards to compulsive checking behavior and construct 
validity from disturbances in white matter integrity. However, despite clear behavioral 
effects, we did not find quinpirole-induced effects on resting-state functional connectivity. 
Quinpirole effects should still be present during the time of resting-state fMRI (90 minutes 
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after injection) as the half-life time of quinpirole in rat plasma is 9.5 hours (Whitaker and 
Lindstrom, 1987) and behavioral effects of quinpirole have been measured up to two hours 
after injection (Eilam et al., 1989). It may be that the use of anesthesia during our MRI 
acquisition has covered the effects of quinpirole on MRI-based measures of functional 
connectivity. Isoflurane anesthesia has been shown to affect the binding of agonistic PET 
tracers to the dopamine D2/D3 receptor (McCormick et al., 2011). Since quinpirole is a 
D2/D3 receptor agonist, the use of isoflurane anesthesia may have influenced the effects of 
quinpirole. Nonetheless, we expect a minimal contribution of this mechanism on the 
functional connectivity measurements in our study, since we administered quinpirole nine 
times without isoflurane anesthesia, and once at 40 minutes before the induction of isoflurane 
anesthesia. The clear behavioral effects in quinpirole-injected rats may be a direct result of 
the preceding quinpirole injection, rather than from a change in the macro-scale functional 
or structural brain connections. Since previous studies have shown abnormalities at the 
neurotransmitter and receptor level in the quinpirole model (Servaes et al., 2019, 2017), 
differences in structural and functional connectivity may be more subtle and at the micro-
scale. Differences that are not detectable with macro-scale MRI-based measures. In addition, 
we cannot completely rule out that motion- and physiological-related noise may have 
obscured model-related changes in structural and functional connectivity. Future studies 
could investigate the predictive validity of the adolescent quinpirole model by assessing the 
effects of pharmacological treatments that are already used for children and adolescents with 
OCD. In addition, the adolescent quinpirole-induced compulsivity model provides unique 
opportunities to study potential novel therapeutic strategies and their working mechanisms 
for this subgroup of OCD patients specifically.  

In conclusion, we found clear development of compulsive-like behavior and altered 
white matter maturation in a novel model of quinpirole-induced compulsivity in adolescent 
rats, which matched with reported substrates of early-onset OCD. Our study shows that MRI 
in animal models of specific symptoms of heterogeneous psychiatric disorders provides 
unique opportunities to assess the neurodevelopmental aspects and neurobiological 
substrates of these symptoms in a well-controlled experimental design.  
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Abstract 

Background: Compulsivity often develops during childhood and is associated with elevated 
glutamate levels within the frontostriatal system. This suggests that anti-glutamatergic drugs, 
like memantine, may be an effective treatment.  
Aim: Our goal was to characterize the acute and chronic effect of memantine treatment on 
compulsive behavior and frontostriatal network structure and function in an adolescent rat 
model of compulsivity.  
Methods: Juvenile Sprague Dawley rats received repeated quinpirole, resulting in compulsive 
checking behavior (n=32; Compulsive), or saline injections (n=32; Control). Eight 
compulsive and control rats received chronic memantine treatment, and eight compulsive 
and control rats received saline treatment, for seven consecutive days between the 10th and 
12th quinpirole/saline injection. Compulsive checking behavior was assessed, and structural 
and functional brain connectivity was measured with diffusion MRI and resting-state fMRI 
before and after treatment. The other rats received an acute single memantine (Compulsive: 
n=12; Control: n=12) or saline injection (Compulsive: n=4; Control: n=4) during 
pharmacological MRI after the 12th quinpirole/saline injection. An additional group of rats 
received a single memantine injection after a single quinpirole injection (n=8).  
Results: Memantine treatment did not affect compulsive checking, nor frontostriatal 
structural and functional connectivity in the quinpirole-induced adolescent rat model. While 
memantine activated the frontal cortex in control rats, no significant activation responses 
were measured after single or repeated quinpirole injections.  
Conclusions: The lack of a memantine treatment effect in quinpirole-induced compulsive 
adolescent rats may be partly explained by the interaction between glutamatergic and 
dopaminergic receptors in the brain, which can be evaluated with functional MRI.  
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Introduction 

Compulsivity is the repetitive, irresistible urge to perform certain behaviors without 
voluntary control, and can be considered to be a cross-disorder trait of psychiatric disorders 
like obsessive compulsive disorder (OCD) and autism spectrum disorder (ASD) (Jacob et al., 
2009). Current treatment strategies for these disorders typically focus on diminishing 
symptoms associated with a specific diagnosis. For people with OCD, medication treatments 
with selective serotonin reuptake inhibitors (SSRIs) or combination treatments with 
cognitive behavioral therapy have been proven effective, but 40-60% of these patients have 
treatment-resistant symptoms (Franklin and Foa, 2011). There are no curative or even 
symptomatic treatments available for the key symptoms of ASD (Accordino et al., 2016), and 
SSRI treatment is not very effective (Williams et al., 2013). This stresses the need for 
alternative treatment approaches, for example by focusing on cross-disorder traits, e.g., 
compulsive behavior, so treatment can be tailored to specific symptom domains.  

Development of treatment approaches that focus on compulsive behavior requires 
knowledge of the underlying neural circuits. Compulsive behavior has been associated with 
structural and functional abnormalities within the frontal cortico-striatal-thalamo-cortical 
circuits in humans, as demonstrated with magnetic resonance imaging (MRI) (Figee et al., 
2016; Montigny et al., 2013). Recent findings have implicated that compulsive behavior may 
involve four frontal cortico-striatal-thalamo-cortical circuits, each consisting of different 
cortical and striatal components (O. A. van den Heuvel et al., 2016). Within these circuits, 
compulsive behavior may either be caused by hyperactivity within the striatal component or 
by a failure of top-down control of the frontal cortical regions over the striatal component 
(Fineberg et al., 2010). It has been theorized that this top-down cortical control is mediated 
by the neurotransmitter glutamate (Sesack et al., 2003). This points towards a relationship 
between compulsive behavior and altered glutamate concentrations, which is further 
supported by the high density of glutamate receptors in the frontostriatal circuits (Monaghan 
et al., 1985) and dysregulation of glutamatergic signaling in individuals with ASD and OCD 
(Naaijen et al., 2015; Pittenger et al., 2011). 

The role of glutamate in patients with OCD and ASD may imply that anti-
glutamatergic drugs could be effective as medication against compulsivity (Mechler et al., 
2017). One potential drug is the N-methyl-D-aspartate (NMDA) receptor antagonist 
memantine, an FDA approved drug used in the clinic for the symptomatic treatment of 
Alzheimer’s disease (see for a systematic review and meta-analysis: Matsunaga et al, 2015). 
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Memantine is an open-channel NMDA receptor blocker with rapid response kinetics (Chen 
et al., 1992), which may protect neurons against glutamate excitotoxicity with limited side 
effects (Rammes et al., 2008). Memantine has shown some initial promise as a successful 
treatment against OCD symptoms in an animal model and in human adults with OCD. 
Memantine decreases marble-burying behavior in mice (Egashira et al., 2008), which is 
thought to reflect anxiety but also compulsive behavior. As an add-on treatment in human 
adults with OCD, memantine was found to reduce the severity of symptoms (Ghaleiha et al., 
2013; Haghighi et al., 2013). Since three-quarters of people with OCD experience their first 
symptoms in mid childhood, OCD is suggested to be a neurodevelopmental disorder 
(Boileau, 2011). Therefore, it is important to assess the treatment potential of memantine in 
this developmental period (Mechler et al., 2017). In addition, mechanistically it remains 
unclear how memantine exerts its therapeutic effects on neural circuits involved in OCD.  

Therefore, the objective of this study was to determine the therapeutic efficacy of 
memantine on the reduction of compulsive behavior during adolescence. To that aim we 
measured the behavioral effects of memantine administration in adolescent rats with 
quinpirole-induced compulsive checking behavior (Straathof et al., 2020a). In addition, we 
aimed to elucidate the possible mode of action of memantine on the development of 
structural and functional connectivity, and functional activation, within the frontostriatal 
system, which we measured with structural and functional MRI methods. 
 

Methods 

All experiments were approved by the Committee for Animal Experiments of the University 
Medical Center Utrecht, The Netherlands (2014.I.12.104), and all efforts were made to reduce 
the number of animals used and to minimize animal suffering. 

 

Animal model 
We used a recently described adolescent rat model of compulsive checking behavior 
(Straathof et al., 2020a), which is adapted from an established adult rat model of compulsive 
checking behavior (Szechtman et al., 1998).  

Sixty-four juvenile Sprague Dawley rats (Harlan, the Netherlands) were housed 
individually and habituated to environmental conditions (temperature 22-24 °C and 12 h 
light/dark cycle with lights on at 7:00 AM) for at least 7 days prior to the experiment, with 
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access to food and water ad libitum. From the age of 5 weeks (body weight: 105 ± 18 grams 
(mean ± standard deviation (SD)), corresponding to puberty (Sengupta, 2013), we 
subcutaneously injected the rats with the selective D2/D3 receptor agonist quinpirole (Tocris, 
UK, 0.5 mg/kg; n=32; Compulsive group) or saline (n=32; Control group), twice per week 
during 6 weeks (total of 12 injections). We randomly assigned the treatment (quinpirole or 
saline) to the animals. The experimenters (CvH, CES, MS and ELAB) could not be blinded 
for the factor group (Compulsive or Control), due to the obvious behavioral effects of 
quinpirole treatment. Nevertheless, the experimenters were blinded for memantine or saline 
treatment. Each injection was immediately followed by placement of the rat in the center of 
a large open field table (160×160 cm, 60 cm above the floor) for 30 minutes. On the open field 
table, four objects (2 black, 2 white; 8×8×8 cm) were placed on fixed locations: two near the 
middle and two near the corners of the table. The combination of repetitive quinpirole 
injections and placement on the open field is essential for the development of compulsive 
checking behavior (Szechtman et al., 1998). 
 
Experimental groups 
The potency of memantine treatment to reduce compulsive behavior and its mode of action 
in the quinpirole-induced adolescent rat model of compulsive checking behavior was 
assessed in two studies.  

In Study I, we measured the effects of a sub-chronic memantine treatment on 
compulsive behavior and structural and functional connectivity in the frontostriatal system 
of adolescent rats. Rats were randomly assigned to memantine or saline treatment, and the 
experimenters were blinded for this treatment assignment. Rats received daily intraperitoneal 
injections of the NMDA receptor antagonist memantine (20 mg/kg/day (Sekar et al., 2013), 
Boehringer Ingelheim Pharma, Germany) (Compulsive + memantine group: n=8, Control + 
memantine group: n=8) or saline (Compulsive + saline group: n=8, Control + saline group: 
n=8) for seven consecutive days, starting the day after the 10th quinpirole or saline injection. 
On days when both injections were given (11th and 12th quinpirole/saline injection), the 
memantine/saline treatment was given 30 minutes before the quinpirole/saline injection. 

In Study II, we measured the acute effects of a single memantine injection on 
functional activation in the frontostriatal system. Rats received an acute intravenous 
memantine (20 mg/kg, Sigma-Aldrich, Germany; Compulsive + memantine: n=12, Control 
+ memantine: n=12) or saline injection (Compulsive + saline: n=4, Control + saline group: 
n=4) 130 minutes after the 12th quinpirole/saline injection during pharmacological MRI. 
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Groups receiving saline during MRI were smaller because our previous study showed no 
significant effects of saline injections on pharmacological MRI (Roelofs et al., 2017). To assess 
the influence of possible pharmacological interactions between memantine and quinpirole, 
we included an extra experimental group of rats. In this group, rats (n=8) received only one 
quinpirole injection, followed by a single memantine injection 130 minutes after quinpirole 
injection during pharmacological MRI.  
 
Behavioral analyses 
Ethovision software (Noldus Information Technology B.V., the Netherlands) was used to 
automatically trace the locomotor trajectories of the rats on the open field table on the days 
of the MRI experiments. The open field area was virtually divided into 25 rectangles of 40×40 
cm2 of which the outer zones extended 20 cm outside the open field. For all analyses, we used 
the last 15 minutes for the compulsive rats, and the complete 30 minutes for the control rats 
(Straathof et al., 2020a). We calculated the frequency of visits for each zone during the 
observation period and defined the home-base as the most frequently visited zone.  

We quantified compulsive-like checking behavior before and after memantine 
treatment in Study I (after the 10th and 12th quinpirole/saline injections), and before the single 
memantine injection in Study II (after the 12th quinpirole/saline injection). Compulsive 
checking behavior parameters were characterized relative to the home-base, and included 
frequency of checking (number of visits of the home-base per minute, observed during the 
observation period), length of checks (average time of a visit at the home-base), recurrence 
time of checking (average time spent in other areas before returning to the home-base) and 
stops before returning to the home-base (average number of other areas the rat visited before 
returning to the home-base) (Szechtman et al., 1998; Tucci et al., 2014b). In addition, we 
determined the predictability of the visited zones as the Lempel-Ziv source entropy (Song et 
al., 2010), using a maximal substring of three zones and only including animals that visited 
at least nine different zones.  

To study the effects of memantine treatment on behavioral measures other than 
compulsive-like checking behavior, we performed additional behavioral measurements on 
the rats in Study I. We calculated hyperactivity measures, including the total travelled 
distance, average velocity of movement and immobility time (<0.01 cm movement per video 
frame). In addition, we manually quantified stereotypic behaviors the rats showed during a 
stop at their home-base (Straathof et al., 2020a; Szechtman et al., 1998), for the first twenty 
visits during the observation period. Because control rats were less active, all visits were 
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included when the total amount of home-base visits was below twenty. First, for each visit we 
scored the entering or leaving direction relative to the home-base, to determine a potential 
directional preference. We used a compass divided into eight different directions (per 45 
degrees) to determine the directions. Second, to quantify the horizontal movements per visit 
we counted the number of anti-clockwise and clockwise turns, and for vertical movements 
we counted the number of head dips per visit. Third, the placement of the forelimbs and 
number of sniffs at the object were counted to score the interaction of the rat with the object 
per visit. Fourth, we determined the grooming time per visit. Lastly, these individual 
behavioral scores were combined into a total number of behavioral acts per visit.  
 
MRI acquisition 
All MRI experiments were conducted on a 9.4T MR system equipped with a 400 mT/m 
gradient coil (Varian, Palo Alto, CA, USA). A homebuilt 90 mm diameter Helmholtz volume 
coil was used for signal excitation and an inductively coupled 25 mm diameter surface coil 
for signal detection. On the days MRI was executed, rats were directly transferred from the 
open field test platform to the MRI scanner. Rats were anesthetized and endotracheally 
intubated for mechanical ventilation with 2% isoflurane in a mixture of air and O2 (70% / 
30%). Rats were subsequently immobilized in a specially designed stereotactic holder and 
placed in an animal cradle. For memantine or saline administration during MRI in Study II, 
one tail vein was cannulated under isoflurane anesthesia before placing the rat in the 
stereotactic holder. During MRI, end-tidal CO2 was continuously monitored with a 
capnograph (Microcap, Oridion Medical 1987 Ltd., Jerusalem, Israel) and body temperature 
was maintained at 37.0 ± 1.0 °C. Heart rate and blood oxygen saturation were monitored with 
an infrared sensor attached to the hind paw. Parameter settings for the MRI acquisitions were 
as followed: 
Anatomical MRI: 3D balanced steady-state free precession (BSSFP) scan with four phase 
cycling angles (0°, 90°, 180°, 270°). Repetition time (TR) / echo time (TE) = 5/2.5 ms; flip 
angle = 20°; field-of-view (FOV) = 40×32×24 mm3; acquisition matrix = 160×128×96; image 
resolution = 250 μm isotropic. Total acquisition time = 12.5 min. Isoflurane anesthesia level 
was reduced to 1.5% at the start of the anatomical MRI acquisition to lower the anesthetic 
depth for the following resting-state fMRI or pharmacological MRI acquisition.  
Resting-state functional MRI: T2

*-weighted blood oxygenation level-dependent (BOLD) 
images were acquired using a single shot 3D gradient echo planar imaging (EPI) sequence. 
TR/TE = 26.1/15 ms; FOV = 32.4×32.4×16.8 mm3; flip angle = 13°; acquisition matrix = 
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54×54×28; image resolution = 600 μm isotropic. Acquisition time = 730.8 ms per scan 
volume, with a total of 800 volumes resulting in a total scan time of 9 minutes and 45 seconds. 
Resting-state fMRI was always started at 90 minutes after quinpirole injection, to standardize 
the effects of quinpirole across animals. 
Diffusion-weighted MRI: 2D 4-shot spin echo EPI sequence: TR/TE = 1700/34 ms; FOV = 
32x32mm2; acquisition matrix = 64×128; 25 slices of 0.5 mm, image resolution = 
500×250×500 μm3, zero-filled to 250×250×500 μm3; b = 1611 s/mm2; δ/Δ = 6.5 / 10.27 ms. 
Five non-diffusion-weighted (b0) and sixty diffusion-weighted images were acquired. 
Diffusion-weighted MRI was performed at 2% isoflurane anesthesia to minimize animal 
motion. 
Pharmacological MRI: 2D gradient echo multi-slice sequence: TR/TE = 500/15 ms; FOV = 
32x32mm2; flip angle = 50°; acquisition matrix = 128×128; 25 slices of 0.5 mm, image 
resolution = 250×250×500 μm3; acquisition time = 128 s per scan volume, with a total of 47 
volumes resulting in a total scan time of 103 minutes. Nine baseline scans were acquired, 
followed by an intravenous memantine or saline injection during the tenth scan and 37 post-
injection scans. 
 
For study I, MRI acquisitions were done after the 10th (pre-treatment measurement) and 12th 
(post-treatment measurement) injection of quinpirole/saline. The MRI session consisted of 
anatomical MRI, followed by resting-state fMRI acquisition and diffusion-weighted MRI. For 
study II, MRI acquisition was done after the 12th injection of quinpirole/saline. The MRI 
session consisted of anatomical MRI, followed by pharmacological MRI.  
 
MRI processing 
Analyses were performed using FMRIB’s Software Library (FSL) v5.0.9, unless otherwise 
stated. 

Regions of interest 
Regions-of-interest were taken from the 3D rendering of the Paxinos and Watson atlas 
(George Paxinos and Watson, 2005). Regions included the frontal cortex (consisting of the 
orbitofrontal cortex (OFC: dorsolateral, lateral, medial, and ventral orbital cortex), the 
anterior cingulate cortex (ACC: Cingulate cortex area 1 and 2) and the medial prefrontal 
cortex (mPFC: prelimbic and infralimbic cortex)) and the striatum (caudate putamen (CPu) 
and nucleus accumbens (NAcc)) for all MR analyses. We measured interhemispheric 
homologous connectivity for these regions as well as frontostriatal intrahemispheric 
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connectivity. Homotopic areas in the left and right hemisphere were combined for the 
pharmacological MRI analyses. In addition, resting-state fMRI and pharmacological MRI 
analyses were also performed for the different sub-regions (OFC, ACC, MPFC, CPu & NAcc) 
separately. 

Registration  
We linearly registered individual anatomical images to a three-dimensional model of the 
Paxinos and Watson atlas (George Paxinos and Watson, 2005) and created a study-specific 
template by taking the mean of these registered images. Individual mean resting-state fMRI 
scans were linearly registered to the individual anatomical scan using FLIRT (Jenkinson et 
al., 2002; Jenkinson and Smith, 2001), followed by non-linear registration to the study specific 
anatomical template using FNIRT (Andersson et al., 2007a). Individual averaged non-
diffusion weighted (b0) images were non-linearly registered to the average b0 image of one 
individual rat (DWI template), followed by linear registration to the study-specific 
anatomical template. Individual pharmacological MR images were directly non-linearly 
registered to the study-specific anatomical template. Regions-of-interest were transformed to 
individual space with the inverse of these registrations. The resting-state fMRI regions-of-
interest were masked with a temporal signal to noise ratio mask of 10 and the regions-of-
interest for DWI-based tractography were masked with a grey matter mask (fractional 
anisotropy (FA) lower than 0.25). 

Diffusion-weighted imaging – Study I 
The diffusion-weighted images were brain-extracted with BET (Smith, 2002), motion- and 
eddy current-corrected with affine transformations in MCFLIRT (Jenkinson et al., 2002) and 
the diffusion tensor was fitted using dtifit within the FMRIB’s Diffusion Toolbox (FDT 
package). Whole-brain tractography was performed using MrTrix3® (www.mrtrix.org) (J.-D. 
Tournier et al., 2012). The response function estimation for single shell constrained spherical 
deconvolution (CSD) tractography was performed on individual datasets with a 
reimplementation of the Tax-method for response function estimation (Tax et al., 2014). 
Subsequently, the individual response functions were averaged to obtain a group response 
function. We performed whole-brain CSD tractography on individual datasets with one 
million streamlines, and streamlines-of-interest were selected by using our regions-of-
interest as start- and endpoints. The median fractional anisotropy (FA), reflecting the degree 
of diffusion anisotropy (degree of restricted diffusion along the main directions of the 
diffusion tensor), was used as a measure of structural connectivity (Koay et al., 2006).  
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Resting-state fMRI – Study I 
Preprocessing steps of the resting-state fMRI scans included removal of the first 20 images to 
reach a steady state, motion-correction, brain-extraction and removal of noise components 
with single-subject independent component analysis (Beckmann and Smith, 2004). 
Moreover, the BOLD signal was normalized, and motion-correction parameters were used 
as regressors for the resting-state signal. Low-frequency BOLD fluctuations were obtained by 
applying temporal filtering between 0.01 and 0.1 Hz in AFNI (Cox, 1996). We calculated 
Fisher’s Z-transformed correlation coefficients for inter- and intrahemispheric functional 
connectivity between regions-of-interest. 

Pharmacological MRI – Study II 
Preprocessing steps of the pharmacological MRI scans included removal of the first baseline 
scan, brain extraction and motion correction. The BOLD response to the memantine/saline 
injection was normalized to the mean baseline signal (mean of the first 8 images). To calculate 
brain activation maps, we used a repeating OFF/ON design as regressor for a voxel-wise 
generalized linear model (GLM) per group, in which “OFF” corresponded with the pre-
injection scans and “ON” with the first 25 post-injection scans. Resulting z activation maps 
per group were false discovery rate (FDR)-corrected, with a threshold at z=3.1 corresponding 
to p < 0.001 after FDR correction The brain activation response to memantine or saline 
injection was calculated as the positive area under the curve (AUC) of the BOLD signal time-
course for each individual rat (negative values were excluded). This AUC represents the 
percentage of BOLD signal change per second.  
 
Statistics 
Statistical analyses were performed in R (3.2.3) and RStudio 0.99.903 (R Core Team, 2014). 
P-values were FDR corrected and considered significant below 0.05 after FDR correction.  

Differences in compulsive behavioral metrics before memantine treatment (Study I 
and II separately) between the Compulsive and Control group were analyzed with a Mann-
Whitney U test, to verify that compulsive-like behavior developed before memantine 
injections.  

For Study I, effects of memantine/saline treatment on various types of behavior 
(compulsive checking behavior, hyperactivity measures and behavior during stops), 
bodyweight, functional connectivity and structural connectivity were determined with 
Wilcoxon signed-rank tests to compare the pre and post measurement for each group 
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separately. In addition, a mixed design ANOVA, with factor “time” as within-subject 
variable, and factors “group” (Control or Compulsive) and “treatment” (saline or 
memantine) as between-subject variables was performed. P-values were FDR-corrected per 
modality in the behavior, functional and structural connectivity analyses. 

For statistical analysis of pharmacological MRI data in Study II, we compared the 
BOLD activation responses (AUC) between groups using a Kruskal-Wallis test, followed by 
post-hoc Dunn’s tests, adjusted for multiple comparisons using the Benjamini Yekutieli 
method for FDR correction (Benjamini and Yekutieli, 2001).  
 

Results 

In Study I, one control rat died during the post-memantine MRI acquisition because of 
respiratory problems caused by excessive mucus. In addition, the behavioral recording of one 
compulsive rat was incomplete and the MRI scans of one control and one compulsive rat 
were affected by artifacts. Therefore, final groups in Study I consisted of fourteen compulsive 
rats (Compulsive + saline treatment: n=7; Compulsive + memantine treatment: n=7) and 
fourteen control rats (Control + saline treatment: n=8; Control + memantine treatment: 
n=6). In Study II, all included animals could be used for analyses, resulting in final group 
sizes of sixteen compulsive rats (Compulsive + saline injection: n=4; Compulsive + 
memantine injection: n=12) and sixteen control rats (Control + saline injection: n=4; Control 
+ memantine injection: n=12). 
 
Study I: Memantine treatment does not reduce compulsive behavior and frontostriatal 
structural and functional connectivity in adolescent rats 
Before memantine treatment in Study I or memantine injection in Study II, compulsive rats 
displayed clear patterns of repeated travelling between two zones of the open field, and 
compulsive-like checking behavior (Supplementary Figure S1).  

As expected, we detected no statistically significant effect of saline treatment on any 
of the measures of compulsive behavior (Figure 1). Similarly, however, behavioral measures, 
exposing compulsivity in quinpirole-injected rats, were not significantly altered after 
memantine treatment in control and compulsive rats. Comparable results were found for the 
additional behavioral measures, which include hyperactivity measures and stereotypic 
behaviors during stops at the home-base (Supplementary Figure S2). Furthermore, no 
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significant interaction effects between factors “time” (pre- or post-treatment), “group” 
(Compulsive or Control) and “treatment” (saline or memantine) were found for any of the 
behavioral measures. Correspondingly, we also did not find a statistically significant effect of 
the memantine treatment on functional or structural connectivity in the frontostriatal system 
(Figure 2). Similarly, functional connectivity analyses on individual sub-regions of the frontal 
cortex and striatum did not reveal statistically significant effects of memantine treatment 
(Supplementary Figure S3). 
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Figure 1: Measures of compulsive checking behavior and body weight, before and after saline/memantine 
treatment in control and compulsive rats. Compulsive behavior measures (frequency of checking (number of visits 
at the home-base per minute (observed during 15 minutes for compulsive rats, and during 30 minutes for controls)), 
length of checks (average time (s) spent at the home-base), recurrence time of checking (average time (s) before 
returning to the home-base), stops before returning to the home-base (average number of zones visited in between 
two visits of the home-base)), entropy (predictability of the visited zones), and body weight (g), before (red) and 
after (blue) seven days of daily saline/memantine treatment (Control + saline: n=8; Control + memantine: n=6; 
Compulsive + saline: n=7; Compulsive + memantine: n=7). Error bars represent 1.5 times the interquartile range, 
and dots represent values that exceeded 1.5 times the interquartile range.  
 
We found a significant interaction effect between factors “time” and “treatment” (saline or 
memantine) on body weight (p=0.0003). Body weight of control and compulsive adolescent 
rats increased in the seven days between pre- and post-treatment with saline (Control: pre: 
330 ± 38 g; post: 355 ± 45 g, p=0.01 before FDR correction; Quinpirole: pre: 351 ± 31 g; post: 
375 ± 34 g, p=0.01 before FDR correction) (Figure 1), but not in rats that were treated with 
memantine.  
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Figure 2: Functional and structural connectivity in the frontostriatal system before and after saline/memantine 
treatment in control and compulsive rats. Bar graphs of functional connectivity (Fisher’s Z-transformed 
correlation coefficient) (A) and structural connectivity (median fractional anisotropy (FA)) (B) of intra- and 
interhemispheric connections within the frontostriatal system before (red) and after (blue) seven days of daily 
saline/memantine treatment (Control + saline: n=8; Control + memantine: n=6; Compulsive + saline: n=7; 
Compulsive + memantine: n=7). Structural connectivity between the left and right frontal cortex could not be 
determined because of unreliable tractography results. Error bars represent 1.5 times the interquartile range and 
dots represent values that exceed 1.5 times the interquartile range.  
 

Study II: Memantine activates the frontal cortex, but not after quinpirole injection in 
adolescent rats  
Figure 3A shows brain activation maps, which display regions where memantine/saline 
injection resulted in a significant activation response. As expected, saline injection did not 
activate brain areas in control nor in compulsive rats, as also illustrated from BOLD signal 
time courses in the frontal cortex and striatum (Figure 3B). However, memantine injection 
induced clear positive brain activation in frontal and occipital cortical areas in control rats, 
but not in compulsive rats.  

In control rats, the AUC of the BOLD response in the frontal cortex was significantly 
higher after memantine injection as compared to saline injection (memantine: AUC = 
0.05±0.02; saline: AUC = 0.01±0.01, p=0.004) (Figure 3C). In compulsive rats, the AUCs were 
similar between memantine- and saline-injected rats for all measured areas. Memantine-
induced BOLD responses in the frontal cortex were statistically significantly higher in control 
than in compulsive rats (Control: AUC=0.05±0.02; Compulsive: AUC=0.02±0.02, p=0.002). 
The AUCs for the striatum after memantine or saline injection were similar between groups. 
We found similar results for analyses of the separate sub-regions of the frontal cortex (ACC, 
OFC, mPFC) and striatum (CPu and NAcc) (Supplementary Figure S4). 

Lastly, to assess the influence of possible pharmacological interaction between 
memantine and quinpirole, we included an additional experimental group, in which each rat 
received only a single quinpirole injection, followed by a single memantine injection. 
Quantitative assessment revealed no statistically significant differences in the AUC of the 
BOLD response in the frontal cortex and striatum between compulsive and single quinpirole-
injected rats (Figure 4).  
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Figure 3: Brain activation directly after memantine/saline injection in control and compulsive rats. Brain 
activation maps, overlaid on anatomical images, show positive BOLD activation responses in yellow/red (z > 3.1) 
and negative responses in blue (z < -3.1) (A). The normalized BOLD signal intensity (SI) time-course is shown as 
averaged time series for the regions-of-interest, with the arrow indicating the time of memantine/saline injection 
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(B). BOLD responses to memantine or saline injection quantified as area under the curve (AUC) (relative positive 
BOLD SI change per second) (C). Control + saline: n=4; Control + memantine: n=12; Compulsive + saline: n=4; 
Compulsive + memantine: n=12. *Corrected p<0.05. Shades in B represent the standard error. Error bars in C 
represent the standard deviation.  

Figure 4: Brain activation directly after memantine injection following a single quinpirole injection. Brain 
activation maps, overlaid on anatomical images, show positive BOLD activation responses in yellow/red (z > 3.1) 
and negative responses in blue (z < -3.1) (A). The normalized BOLD signal intensity (SI) time-course is shown as 
averaged time series for the regions-of-interest, with the arrow indicating the time of memantine injection (B). 
BOLD responses to memantine injection quantified as area under the curve (AUC) (relative positive BOLD SI 
change per second) (C). Acute quinpirole + memantine: n=8. Shades in B represent the standard error. Error bars 
in C represent the standard deviation.  
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Discussion 

In this study we determined the therapeutic efficacy of memantine to reduce compulsive-like 
behavior in adolescent rats and assessed its possible mode of action on the frontostriatal 
system (Study I). We showed that a repeated memantine treatment regimen did not reduce 
compulsive-like behavior in the adolescent rat model of quinpirole-induced compulsive 
checking behavior. Correspondingly, memantine treatment did not induce changes in 
structural and functional connectivity in the frontostriatal system. A single memantine 
injection activated frontal cortical regions in control but not in compulsive adolescent rats or 
rats that received a single quinpirole injection (Study II), which may explain the absence of 
memantine-induced treatment effects in Study I. 

 The main aim of our study was to identify and elucidate possible therapeutic effects 
of the NMDA receptor antagonist memantine in adolescent compulsive behavior (Study I). 
Several glutamatergic antagonists have been shown to be effective in reducing OCD 
symptoms in adults (Pittenger et al., 2011) and ASD-associated behavior in pediatric patients 
(Mechler et al., 2017). Before memantine treatment, quinpirole-injected rats demonstrated 
clear compulsive-like checking behavior, similar to our earlier study in the adolescent model 
(Straathof et al., 2020a) and comparable to the adult model (Szechtman et al., 1998). In line 
with clinical treatment regimes, we started the memantine treatment after the development 
of compulsive checking behavior (i.e., after the 10th quinpirole/saline injection). The 
repetitive quinpirole injections were continued during the memantine treatment period, to 
ensure persistence of quinpirole-induced compulsive behavior (de Haas et al., 2011). The 
applied memantine treatment regimen, however, did not reduce compulsive-like behavior 
and functional or structural connectivity in the frontostriatal circuitry. Similar to findings in 
OCD patients, varying results have been reported with regard to the ability of 
pharmacological agents to reduce compulsive behavior in animal models, including 
quinpirole-injected adult rats (Stuchlik et al., 2016). Since memantine and quinpirole can 
induce similar effects in the brain –for example, memantine and quinpirole both induce long-
term depression in the striatum (Mancini et al., 2016)– treatment effects may have interacted, 
leading to obfuscation of possible behavioral consequences.  

To assess the effect of memantine on brain network activity, we measured direct 
activation responses with pharmacological MRI (Study II). A previous study demonstrated 
that memantine can elicit increased as well as decreased activity in the prelimbic cortex in 
drug-naive rats (Sekar et al., 2013). Micro-dialysis studies have suggested that NMDA-
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receptor antagonists can activate prefrontal areas by increasing the glutamatergic tone 
(López-Gil et al., 2007; Moghaddam et al., 1997), which can activate other glutamatergic 
receptors. We found that memantine injection in control rats not only influences brain 
activity in the frontal cortex, but also resulted in activation of remote brain areas. However, 
this memantine-induced activation was largely absent in quinpirole-induced compulsive rats 
or in rats that received only a single quinpirole injection. This suggests that the absence of 
memantine-induced activation in the compulsive group in Study II was not fundamentally 
associated with the compulsive-like phenotype by sensitization of dopamine D2/D3 
receptors, but more likely a result of interactions between pathways activated by memantine 
and quinpirole. There is a tight interaction between glutamatergic and dopaminergic 
receptors in the brain (Cepeda et al., 2009). Quinpirole has been shown to attenuate the 
excitatory effects of NMDA and AMPA receptors in the prefrontal cortex (Tseng and 
O’Donnell, 2004) and striatum (Cepeda et al., 1993). This attenuating effect of quinpirole on 
glutamatergic neurotransmission may explain the absence of memantine-induced prefrontal 
activation in quinpirole-injected adolescent rats. This suggests that anti-glutamatergic drugs 
may not be effective in individuals with altered dopaminergic neurotransmission. In 
addition, interactions between quinpirole and memantine may have occurred at the 
dopamine D2/D3 receptor level, because both substances are dopamine D2 receptor agonists 
(Mancini et al., 2016; Seeman et al., 2008). Such direct or indirect interactions between 
quinpirole and memantine may have obscured the treatment effects of memantine on 
compulsive behavior in this adolescent rat model in Study I.   
 A possible limitation of the current study is the use of isoflurane anesthesia during 
resting-state fMRI acquisition. It has been shown that anesthesia with a comparable level of 
isoflurane (1.3%) as used in our study (1.5%) leads to enhanced functional connectivity values 
in cortico-striatal connections and diminished functional connectivity values between 
subcortical regions, as compared to awake rats (Paasonen et al., 2018). Thus, isoflurane 
anesthesia-induced changes in cortico-striatal functional connectivity may have obscured 
effects of quinpirole or memantine on functional connectivity in this circuitry. However, 
since all groups were scanned under the same anesthesia conditions, we expect that specific 
group differences in functional connectivity would still have been detectable. 

In conclusion, our study did not reveal beneficial effects of memantine treatment on 
quinpirole-induced compulsive checking behavior in adolescent rats. This absence of a 
treatment effect of memantine may be at least partly explained by model-treatment 
interactions between the dopaminergic and glutamatergic system. Future studies that apply 
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this model should carefully consider possible interactions between quinpirole and 
pharmacological treatments, which may be verified in parallel pharmacological MRI 
experiments. 
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Supplementary Figure S1: Locomotor trajectories and behavioral metrics for control and compulsive adolescent 
rats before saline/memantine treatment. A representative locomotor trajectory of a compulsive (A) and a control 
adolescent rat (B) during the observation period after the 10th quinpirole/saline injection. The different zones on the 
open field are numbered, and locomotor trajectories are colored corresponding to these zones. We characterized 
behavior during the open field test for the last 15 minutes for compulsive rats and the full 30 minutes for control 
rats. Boxplots of the frequency of checking (number of visits at the home-base per minute (observed during 15 
minutes for compulsive rats, and during 30 minutes for controls), length of checks (average time (s) spent at the 
home-base), recurrence time of checking (average time (s) before returning to the home-base), stops before 
returning to the home-base (average number of zones visited in between two visits of the home-base) and entropy 
(predictability of the visited zones) for control and compulsive rats prior to memantine/saline treatment in Study I 
(C, after the 10th quinpirole/saline injection: Compulsive: n=14; Control: n=14) and prior to memantine/saline 
injection in Study II (D, after the 12th quinpirole/saline injection: Compulsive: n=16; Control: n=16). * Corrected 
p<0.05; # corrected p<0.1. Error bars represent 1.5 times the interquartile range, and dots represent values that 
exceeded 1.5 times the interquartile range. 
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Supplementary Figure S2: Measures of hyperactivity and stereotypic behavior before and after 
saline/memantine treatment in control and compulsive rats. Hyperactivity measures (total distance moved, mean 
velocity and total immobility time (<0.01 cm movement per video frame)) (A) and stereotypic behaviors (enter 
preference (percentage of same enter direction of home-base zone), leave preference (percentage of same leave 
direction of home-base zone), average grooming time, number of clockwise turns, number of counter-clockwise 
turns, number of head dips, number of sniffs on block, number of placement of forelimbs on block, and total number 
of behavioral acts per home-base visit) (B) before (red) and after (blue) seven days of memantine/saline treatment. 
Error bars represent 1.5 times the interquartile range, and dots represent values that exceeded 1.5 times the 
interquartile range. 
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Supplementary Figure S3: Functional connectivity between individual brain regions in the frontostriatal system 
before and after saline/memantine treatment in control and compulsive rats. Bar graphs of interhemispheric (A) 
and intrahemispheric (B) functional connectivity (Fisher’s Z-transformed correlation coefficient) between 
individual sub-regions within the frontostriatal system before (red) and after (blue) seven days of daily 
saline/memantine treatment (Control + saline: n=8; Control + memantine: n=6; Compulsive + saline: n=7; 
Compulsive + memantine: n=7). Error bars represent 1.5 times the interquartile range, and dots represent values 
that exceeded 1.5 times the interquartile range.  
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Supplementary Figure S4: Brain activation directly after memantine/saline injection in control and compulsive 
rats in sub-regions of the frontostriatal system. The normalized BOLD signal intensity (SI) time-course is shown 
as averaged time series for the regions-of-interest, with the arrow indicating the time of memantine/saline injection 
(A). BOLD responses to memantine or saline injection quantified as AUC (relative positive BOLD SI change per 
second) (B). * Corrected p<0.05. Shades in A represent the standard error. Error bars in B represent the standard 
deviation. 
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Abstract 

Neural network changes during aging may contribute to vulnerability and resilience to brain 
lesions in age-related neurological disorders, such as stroke. However, the relationship 
between age-related neural network features and stroke outcome is unknown. Therefore, we 
assessed structural and functional network status in young adult and aged rat brain and 
measured the effects of simulated stroke lesions.  

Eleven rats underwent diffusion-weighted MRI and resting-state functional MRI at 
young adult age (post-natal day 88) and old age (between post-natal day 760 and 880). 
Structural and functional brain network features were calculated from graph-based network 
analysis. We performed three lesion simulations based on the brain injury pattern in 
frequently applied rodent stroke models, i.e., a small cortical lesion, a subcortical lesion, or a 
large cortical plus subcortical lesion, for which we computationally removed the involved 
network regions.  

Global network characteristics, i.e., integration and segregation, were not 
significantly different between the two age groups. However, we detected local differences in 
structural and functional networks between young adult and old rats, mainly reflected by 
shifts of hub regions. Stroke lesion simulations induced significant global and local network 
changes, characterized by lower efficiency, and shifts of hub regions in structural and 
functional networks, which was most evident after a large cortical plus subcortical lesion. 
Functional and structural hub region shifts after lesion simulations differed between young 
adult and aged rats.  

Our lesion simulation study demonstrates that age-dependent brain network status 
affects structural and functional network reorganization after stroke, particularly involving 
hub shifts, which may influence functional outcome. Computational lesion studies offer a 
cheap and simple alternative to empirical studies and can complement or guide more 
complicated experimental studies in animal models and patients.  
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Introduction 

Stroke – i.e. a sudden loss of blood flow to the brain – is one of the main causes of long-term 
disability in adults, and affects almost 17 million people worldwide per year (Feigin et al., 
2014). Despite the significant functional consequences, many patients show (partial) recovery 
of sensorimotor and cognitive functions during the weeks and months following stroke, 
which may be related to reorganization of surviving networks in the brain (Cramer, 2008; 
Grefkes and Fink, 2011; Jiang et al., 2013; Jones, 2017; Murphy and Corbett, 2009). Post-
stroke brain remodeling occurs at different levels and locations, i.e. from micro- (e.g. synaptic 
plasticity) to macro-scale (e.g. cortical remapping) (Biernaskie and Corbett, 2001; Jones et al., 
1996; Stroemer et al., 1995) and from peri- to contralesional sites (Cai et al., 2016; Crofts et 
al., 2011; Dacosta-Aguayo et al., 2014; Granziera et al., 2012; Gratton et al., 2012; Johansen-
Berg et al., 2010; Schaechter et al., 2009), respectively. These insights have led to the notion 
that assessment of neural networks at whole-brain level is critical for optimal understanding 
of the functional consequences of stroke (Carter et al., 2012; Grefkes and Fink, 2011; Rehme 
and Grefkes, 2013).  

Brain networks consist of spatially distributed regions that are connected and 
interacting with each other at micro-, meso- and macro-scales (Bassett and Sporns, 2017; 
Bullmore and Sporns, 2009a). Modern network science describes the brain as a collection of 
nodes (e.g., individual neurons, neuronal clusters, or functional brain regions) and edges or 
ties (e.g., structural, or functional connections between nodes). A healthy brain’s network 
topology is described by an optimal balance between integration (i.e. global efficiency) and 
segregation (i.e. local specialization) of neural signaling, characterized by small-world 
organization, modularity and a ‘rich club’ of highly connected hub regions (Bassett and 
Bullmore, 2009; Bassett and Sporns, 2017; Bullmore and Sporns, 2009a; Sporns, 2010). These 
topological characteristics have been found across species (M. P. van den Heuvel et al., 2016a, 
2016b; van den Heuvel et al., 2015) and deviation from optimal organization has been 
observed in relation to aging, brain dysfunction and cerebral injury, including stroke (Bassett 
and Bullmore, 2009; Bullmore and Sporns, 2009a; Sporns, 2010; Stam, 2014; van Meer et al., 
2012). Moreover, network changes during aging may contribute to vulnerability and 
resilience to brain lesions in age-related neurological disorders, such as stroke. However, the 
relationship between age-related neural network features and stroke is largely unknown. 
Systematic studies on this relationship in stroke patients are complicated and may be more 
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straightforwardly conducted in laboratory rodents that age relatively fast and can be scanned 
serially in a fairly short timeframe.  

Experimental animal stroke studies are generally performed in young adult rodents, 
even though the risk and prevalence of human stroke is higher at older age. Recently, this age 
discrepancy between animal stroke models and human stroke patients has been put forward 
as one of the causes of poor bench-to-bedside translation (Dirnagl, 2016). The age at which 
stroke is induced is known to influence stroke outcome and response to therapies in 
experimental models (Liang et al., 2016; Herson and Traystman, 2014; Liu et al., 2009). In the 
current study, we aimed to identify differences in brain networks of young adult and aged 
rats as well as their susceptibility and resilience to stroke lesions. We used data from rats that 
were longitudinally scanned with MRI from early adulthood to old age. The imaging protocol 
included resting-state functional MRI (resting-state fMRI) and diffusion MRI, which allowed 
assessment of large-scale functional and structural neural network status under healthy 
conditions. We simulated lesions in brain areas that are typically affected in different rodent 
stroke models, i.e. cortical photothrombosis (Watson et al., 1985), short transient middle 
cerebral artery occlusion (MCAO), and permanent or long transient MCAO (Garcia et al., 
1995; Li et al., 1995). In addition, we simulated lesions in a single hub region and in a single 
non-hub region to measure their effect on the global network characteristics. We chose 
regions that are normally not affected in the abovementioned stroke models. We 
hypothesized that local and global network characteristics alter in relation to lesion extent, 
and that this relationship differs between young adult and aged rats.  
 

Materials and Methods 

Animals 
Twenty healthy male Wistar rats (Harlan, Horst, The Netherlands) were housed in groups of 
four rats per cage. The rats had ad libitum access to food and water, were housed with a 
light/dark cycle of 12 h (lights on at 7:00 AM), and temperature was controlled between 22 
and 24 °C. All experiments were approved by the committee for Animal Experiments of the 
University Medical Center Utrecht, The Netherlands (protocol number 2010.I.10.228) and 
were performed in accordance with the guidelines of the European Communities council 
directive. 
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MRI was done at multiple time-points during the lifespan of the rats, until their 
natural death. We analyzed data from eleven animals that were scanned during early 
adulthood (postnatal day 88), i.e., comparable to the age of rats in most preclinical stroke 
studies, as well as at old age (postnatal day 760 or 880), i.e., representative of the age during 
which clinical stroke is prevalent. Scans from animals that died before this age were not 
included in the analyses. 

 
MRI acquisition 
MRI experiments were conducted on a 4.7T horizontal bore MR system. We used a 
homebuilt Helmholtz volume coil (90 mm diameter) and an inductively coupled surface coil 
(25 mm diameter) for signal excitation and detection, respectively. Rats were anesthetized 
with 4% isoflurane and endotracheally intubated for mechanical ventilation (TOPO, Kent 
Scientific, Torrington, CT, USA) with 1-2% isoflurane in a mixture of air with 30% O2 (55 
breaths per minute). Rats were subsequently immobilized in a specially designed MR-
compatible stereo-tactic holder, including earplugs and a tooth holder. During MRI, end-
tidal CO2 as well as blood oxygen saturation and heart rate were continuously monitored with 
a capnograph (Multinex 4200, Datascope Corporation, Paramus, NJ, USA) and pulse 
oximeter (8600V, Nonin Medical, Plymouth, MN, USA), respectively. Body temperature was 
maintained at 37.0 ± 0.5 °C.  

For resting-state fMRI, T2*-weighted blood oxygenation level-dependent (BOLD) 
images were acquired under 1.0% isoflurane anesthesia, with a ventilation-triggered single-
shot 3D gradient-echo echo planar imaging (EPI) sequence (repetition time (TR) / echo time 
(TE) = 32 / 19 ms (effective TR = 1.024 s); 12° pulse angle; field-of-view (FOV)= 32 x 24 x 12 
mm3; 64 x 48 x 32 acquisition matrix; 0.5 x 0.5 x 0.5 mm3 voxels; 600 BOLD images in 
approximately 10 minutes). Diffusion MRI was executed under 1.5-2.0% isoflurane with a 
2D 5-shot EPI sequence (TR / TE = 1750 / 28.52 ms; 4 b0 images, 4 b-values (650, 1285, 1919 
and 2518 s/mm2); δ / Δ = 5 / 10 ms; 30 directions per b-value, three averages; 128 x 128 
acquisition matrix; 0.195 x 0.195 mm2 voxels; 19 1.0-mm slices). In addition, anatomical 
images were acquired with a 3D gradient-echo sequence (TR / TE = 6 / 2.25 ms; 40° flip angle; 
4 averages; FOV = 40 x 25 x 20 mm3; 160 x 100 x 80 matrix; 0.25 x 0.25 x 0.25 mm3 voxels).  
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Image processing 
Resting-state functional connectivity 
Resting-state functional MR images were processed with FSL 5.0 (Jenkinson et al., 2012), 
unless otherwise stated. Preprocessing steps of the resting-state fMRI scans included removal 
of the first 10 images to reach a steady state, motion-correction with MCFLIRT (Jenkinson et 
al., 2002) and brain-extraction with BET (Smith, 2002). Motion-correction parameters were 
used as regressors for the resting-state signal (no linear detrending and global mean 
regression were performed). Low-frequency BOLD fluctuations were obtained by applying 
temporal filtering between 0.01 and 0.1 Hz in AFNI (Cox, 1996). We calculated Fisher’s Z-
transformed correlation coefficients to measure inter- and intrahemispheric functional 
connectivity between regions-of-interest (ROIs) (see below). Individual functional 
connectivity matrices were divided by their own mean to correct for individual differences in 
mean functional connectivity strength. This procedure is based on a normalization step in 
the analysis of structural networks described by van den Heuvel et al. (2010). They reported 
normalization by dividing all network edge values by the maximum network edge value. 
However, since many functional connectivity networks in our study were skewed towards 
lower correlation values with high value outliers (see Supplementary Figure 1), we 
normalized functional network values with the mean rather than the maximum value. For 
comparison, we performed a sensitivity analysis with the maximum value as normalization 
factor and data are presented in Supplementary Figure 2-5. Results were highly similar 
between mean and maximum normalization procedures. 

Diffusion-based structural connectivity 
Diffusion-weighted images were preprocessed with FSL 5.0 (Jenkinson et al., 2012) and 
MRtrix3 (J. D. Tournier et al., 2012). Motion and eddy current corrections were done with 
dwipreproc (MRtrix3), which uses FSL tools (Andersson and Sotiropoulos, 2016). Calculation 
of diffusion parameters, i.e., fractional anisotropy (FA), mean diffusivity (MD), axial 
diffusivity (AD) and radial diffusivity (RD), was done with dtifit in FSL.  

Further processing, tractography and connectome reconstruction were done in 
MRtrix3. We first determined multi-shell response functions for white matter (WM), gray 
matter (GM) and cerebral spinal fluid (CSF) using dwi2response and custom-made WM, GM, 
and CSF masks. Multi-shell multi-tissue constrained spherical deconvolution (CSD) 
(Jeurissen et al., 2014) was performed to generate WM, GM and CSF volume fraction maps, 
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and to obtain fiber orientation distribution (FOD) maps for WM, GM and CSF separately, of 
which the WM FOD map was used for tractography.  

We performed CSD tractography using the iFOD2 algorithm (Tournier et al., 2010), 
with dynamic seeding over the WM FOD map, a step-size of 0.1 mm, an angle threshold of 
45° and an FOD amplitude threshold of 0.2, thereby generating 1 million tracts over the entire 
brain. After whole-brain tractography we used Spherical deconvolution Informed Filtering of 
Tractograms (SIFT) to improve the accuracy of the reconstructed whole-brain connectome 
by fitting and optimizing tracts at whole-brain level to the underlying diffusion-weighted 
images, and by removing (i.e. filtering) inappropriate tracts from the connectome (Smith et 
al., 2015, 2013).  

Whole-brain structural networks were constructed by matching the filtered tracts 
with ROIs in subject space. Two regions were considered connected if one or more tracts 
traversed – or had their endpoints in – both regions. The streamline count after SIFT was 
used as measure of structural connectivity strength.  

Regions-of-interest 
After preprocessing, resting-state fMRI and diffusion MRI images were linearly and non-
linearly registered to a reference rat brain using FLIRT and FNIRT (Andersson et al., 2007b; 
Jenkinson and Smith, 2001), respectively. The reference rat brain was aligned with a custom-
built 3D reconstruction of the Paxinos and Watson rat brain atlas (Majka et al., 2012; G. 
Paxinos and Watson, 2005). We included 88 cortical and subcortical regions from the atlas, 
covering most of the rat brain, with sufficient assurance of spatial alignment (i.e., inclusion 
of at least 8 voxels per ROI in the resting-state scans). Subsequently, all ROIs were back 
projected in subject space, where further analyses were performed.  

Graph-based network analysis 
To determine the effects of lesion simulations on global and local network characteristics of 
structural and functional brain networks, we used graph analyses (Bullmore and Sporns, 
2009a). These graph analyses were performed on individual weighted networks, for resting-
state fMRI and diffusion MRI networks separately. A weighted graph G = (V, W) was 
constructed with V as the collection of all included regions N, and W as the collection of all 
edge weights w. Self-connections were excluded, and negative edge weights in the functional 
weighted graphs were set to 0. The Fisher’s Z-transformed correlation coefficient was used as 
functional edge weight, while the SIFT-corrected streamline count was used as structural 
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edge weight. To characterize brain networks, we calculated global as well as local network 
parameters separately. 

Table 1: Included regions-of-interest for resting-state fMRI and diffusion MRI analyses. 
Names (abbreviations) of Paxinos & Watson atlas regions 
Left and Right Agranular insular cortex dorsal part (AID) 
Left and Right Agranular insular cortex posterior part (AIP) 
Left and Right Agranular insular cortex ventral part (AIV) 
Left and Right Primary auditory cortex (Au1) 
Left and Right Secondary auditory cortex dorsal area (AuD) 
Left and Right Secondary auditory cortex ventral area (AuV) 
Left and Right Cingulate cortex area 1 (Cg1) 
Left and Right Cingulate cortex area 2 (Cg2) 
Left and Right Dysgranular insular cortex (DI) 
Left and Right Dorsolateral entorhinal cortex (DLEnt) 
Left and Right Ectorhinal cortex (Ect) 
Left and Right Frontal cortex area 3 (Fr3) 
Left and Right Frontal association cortex (FrA) 
Left and Right Granular insular cortex (GI) 
Left and Right Lateral orbital cortex (LO) 
Left and Right Lateral parietal association cortex (LptA) 
Left and Right Primary motor cortex (M1) 
Left and Right Secondary motor cortex (M2) 
Left and Right Medial parietal association cortex (MptA) 
Left and Right Perirhinal cortex (Prh) 
Left and Right Retrospenial dorsal (RSD) 
Left and Right Retrosplenial granular cortex a region (RSGa) 
Left and Right Retrosplenial granular cortex b region (RSGb) 
Left and Right Primary somatosensory cortex barrel field (S1BF) 
Left and Right Primary somatosensory cortex dysgranular region (S1DZ) 
Left and Right Primary somatosensory cortex forelimb region (S1FL) 
Left and Right Primary somatosensory cortex hindlimb region (S1HL) 
Left and Right Primary somatosensory cortex jaw region (S1J) 
Left and Right Primary somatosensory cortex trunk region (S1Tr) 
Left and Right Primary somatosensory cortex upper lib region (S1ULp) 
Left and Right Secondary somatosensory cortex (S2) 
Left and Right Temporal association cortex 1 (TeA) 
Left and Right Primary visual cortex (V1) 
Left and Right Primary visual cortex binocular area (V1B) 
Left and Right Primary visual cortex monocular area (V1M) 
Left and Right Secondary visual cortex lateral area (V2L) 
Left and Right Secondary visual cortex mediolateral area (V2ML) 
Left and Right Secondary visual cortex mediomedial area (V2MM) 
Left and Right Ventral orbital cortex (VO) 
Left and Right Thalamus (T) 
Left and Right Globus Pallidum (GP) 
Left and Right Caudate putamen (CPu) 
Left and Right Accumbens nucleus (Acc) 
Left and Right Hippocampus (Hipp) 
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Global parameters 
To characterize the network topology we measured several global network parameters: the 
weighted-undirected clustering coefficient (C) (Fagiolo, 2007) as a measure of segregation, 
the weighted shortest path length (L) (Stam et al., 2009), as a measure of global efficiency or 
integration, and the small-worldness (Humphries and Gurney, 2008). All global parameters 
were calculated for structural and resting-state functional networks.  

• Clustering coefficient (C): The weighted clustering coefficient provides a measure of the degree to 
which the nearest neighbors of each node are directly connected to each other. It sums the weights 
of the connections that exist between the nearest neighbors, divided by the potential maximum 
number of connections in triplets of nodes. We first calculated the weighted C for each node i in the 
entire graph:  
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In which di is the number of connections of node i. This equation considers weights of all edges in a 
triplet and excludes weights that are not participating in a triplet. Subsequently, the weighted C was 
determined by taking the mean of the local clustering coefficients over all the nodes in the network:  
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• Weighted shortest path length (L): The weighted shortest path length provides a measure of the 
average minimal distance between a node and all the other nodes in the network. This is measured 
as the inverse of the weights of the connections that have to be crossed to go from one node to 
another. We first calculated the weighted path length (lwij) for each pair of nodes (i and j) in the entire 
graph using Dijkstra’s algorithm for weighted graphs (Dijkstra, 1959), by taking the minimum sum 
of the inverse weights (dij) to travel between node i and j: 

 𝑙𝑙��
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To handle disconnected edges, characterized by an infinite path length, we used the harmonic mean 
(1/∞  0). The harmonic mean takes the reciprocal of the mean of the reciprocals (Newman, 2003):  
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• For each functional and structural network, C and L were normalized based on 10 randomly rewired 
surrogate networks (Maslov and Sneppen, 2002). The normalized weighted clustering (γ) and path 
length (λ) were defined as: 

𝛾𝛾 𝛾 𝐶𝐶
𝐶𝐶������

 𝜆𝜆 𝛾  𝐿𝐿
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• Small-worldness was calculated as a measure of the optimal balance between segregation 
(clustering) and integration (path length), by γ/λ, according to Humphries and Gurney (Humphries 
and Gurney, 2008).  

 
Local parameters 
To investigate local (i.e. nodal) characteristics of the network, we identified most important 
nodes, i.e. the hubs, in the network, by quantifying the strength (weighted version of degree) 
(Barrat et al., 2004) and betweenness centrality (Brandes, 2001; Freeman, 1977) for each node 
separately.  

• Strength (S): The connection strength of a node is the sum of all the edge weights connected to that 
node. This provides a measure of the total nodal connectivity (strength). We calculated the strength 
of each node in the entire graph: 
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• Betweenness centrality (CB): The weighted betweenness centrality of a node provides a measure of 
the importance of the node in network connectivity. It measures the degree to which a node lies on 
the shortest path between two other nodes. We calculated the betweenness centrality for each node 
in the entire graph: 

𝐶𝐶�(𝑣𝑣) 𝛾  � 𝜎𝜎��(𝑣𝑣)
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In this formula, σst(v) is the number of shortest paths from s to t in which node v is partaking. 
• Hub nodes, or hub regions, are regions in the brain with a central position, which play a crucial role 

in network communication. Hub regions can be defined by different metrics. They generally have a 
low clustering coefficient and shortest path length, and a high average strength and betweenness 
centrality (Bullmore and Sporns, 2009a; Sporns et al., 2007). Therefore, we determined the hubs 
based on these four characteristics, as previously described (van den Heuvel et al., 2010). First, we 
averaged these four characteristics for each region over all individual rats at each time-point 
separately. Subsequently, we determined which regions belonged to the top 20% for each of the four 
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characteristics separately (the regions with the 20% lowest clustering coefficients or path lengths, 
and/or the 20% highest strengths or betweenness centralities). When the node belonged to the top 
20% for a category, the hub score for that category was one. Regions could get a hub score between 0 
and 4, and hub regions were identified as regions with a hub score of 2 or higher.  

 
Lesion simulations 
To quantify effects of lesion simulations in young adult and aged rats, we simulated three 
different stroke lesion types that are typically observed in frequently applied rat stroke models 
(Fluri et al., 2015): small cortical lesions, subcortical lesions and large cortical plus subcortical 
lesions (see Figure 1). Lesions were simulated by elimination of edges from the nodes that 
were selected as part of the lesion (i.e., structural, and functional connections were set to 0). 
Subsequently, network parameters were calculated as described above, for each type of 
simulated stroke lesion in young adult and aged rats. 

Small cortical lesion 
A focal cortical lesion is a hallmark of the photothrombotic stroke model, which involves 
systemic injection of a photosensitive dye (Rose-Bengal) followed by focal illumination of the 
cortex through the intact skull (Watson et al., 1985). In the rat photothrombotic stroke 
model, lesion induction is often targeted to the forelimb area of the somatosensory cortex 
(S1FL). Therefore, we modeled photothrombotic stroke by eliminating S1FL nodes in our 
functional and structural networks.  

Subcortical lesion 
Probably the most frequently applied rat stroke model involves unilateral occlusion of the 
middle cerebral artery (MCA) with an intraluminal filament (Longa et al., 1989). Short 
temporary (30-60 min) MCA occlusion usually results in subcortical damage in the caudate 
putamen (CPu), modeled in our study by eliminating the CPu node in functional and 
structural networks.  

Large cortical plus subcortical lesion  
Longer (60-120 min) or permanent MCA occlusion induces extensive cortical and 
subcortical damage. We simulated these large lesions by eliminating the CPu node and nodes 
representing all sub-regions of the primary somatosensory cortex (S1) (i.e., the forelimb 
region (S1FL) and hindlimb region (S1HL), jaw region (S1J), upper lip region (S1ULp), barrel 
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field region (S1BF), trunk region (S1Tr) and the dysgranular zone of S1 (S1DZ)), the 
secondary somatosensory cortex (S2), and the insular cortex (i.e., AID, AIP, AIV, DI and GI).  

 
Figure 1. Lesion simulations. Regions overlaid on a sagittal (left), coronal (middle) and transversal (right) rat brain 
slice indicate typical lesion areas after cortical photothrombotic stroke (A (red)), and short (B (green)) or long (C 
(blue)) middle cerebral artery occlusion. Simulated lesion areas involved multiple slices throughout the brain but 
are here displayed on a single slice in each plane for illustration purposes. 

 

Lesions in a single hub or non-hub region 
We simulated lesions in two additional areas: (1) the right hippocampus, a hub region in both 
structural and functional networks in young adult and aged rats, and (2) the right medial 
parietal association cortex, a non-hub region in all networks.  
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Statistical analyses 
To statistically determine whether global and local network characteristics differed between 
healthy young adult and aged rats, we performed paired t-testing for each global and nodal 
parameter. Because local characteristics were determined for 88 regions-of-interest, we 
corrected the nodal analyses for multiple testing using a false-discovery rate (FDR) correction 
(Benjamini and Hochberg, 1995). Comparisons with p-values lower than 0.05 after FDR 
correction were considered statistically significantly different. To test for homotopic 
symmetrical hubs, i.e. whether homotopic regions in the left and right hemispheres both 
belonged to the hub regions, we calculated the Dice index (Yin and Yasuda, 2006) for 
homotopic hub regions in young adult and aged rats separately. 

To assess the effect of simulated stroke lesions, we calculated the difference value for 
each global or nodal characteristic between the healthy condition and lesion simulation: 
valueΔ = valuelesioned network - valuehealthy network. To measure the effect of a lesion on network 
characteristics, we first tested whether the network parameters changed significantly 
compared to the healthy condition with a one sample t-test for each simulated lesion type at 
each age separately. In addition, we compared the effects of different stroke lesion simulations 
on the network parameters with an ANOVA for each age separately. Secondly, we evaluated 
for each simulated lesion type, whether the lesion-induced change in network parameters 
differed between young adult and aged rats using a paired t-test. In addition, we calculated 
the Dice index for the hub regions in structural and functional networks before (healthy 
condition) and after each type of simulated lesion for young adult and aged rats separately.  

 We constructed 95% confidence intervals for the Dice indices by means of 
bootstrapping. This involves repeated calculation of the Dice indices on 10.000 resampled 
sets, with replacement (Bland and Altman, 2015). Subsequently, we used bootstrapping to 
construct 95% confidence interval of delta Dice indices. To test whether the homotopic 
organization of hubs, as well as hub shifts after the simulated lesions, were significantly 
different between young and old rats we determined p-values from the 95% confidence 
intervals (Altman and Bland, 2011).  
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Results 

Stable global structural and functional network features between young adulthood and 
old age 
Figure 2 shows quantitative results from the graph-based whole-brain network analyses of 
functional connectivity and structural tractography data from young adult and aged rats. For 
structural (Figure 2A) as well as resting-state functional networks (Figure 2B), we found no 
significant differences in global network measures, i.e., clustering coefficient, path length and 
small-worldness, between young adult and aged rats.  
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Figure 2: Global network parameters for whole-brain structural and resting-state functional networks in young 
adult and aged rats. Path length, clustering coefficient and small-worldness in (A) diffusion MRI-based whole-brain 
structural networks and (B) resting-state fMRI-based whole-brain functional networks in young adult (dark blue) 
and aged rats (light blue). Individual values are shown as diamonds with horizontal jitter for visualization purposes. 
Boxplots show median and inter-quartile range (IQR), whiskers representing 1.5 times the IQR, and dots 
representing outliers. Outliers are defined as values exceeding 1.5 times the IQR above the upper and below the lower 
quartile. Clustering = Clustering coefficient. 

 

Higher nodal strength in structural network of aged rats 

To investigate local network features in the rat brain, we calculated the nodal strength and 
betweenness centrality for each region-of-interest in the structural and resting-state 
functional networks. We found statistically significant differences in node strength between 
young adult rats and aged rats for several regions in the structural network, which are listed 
Table 2. In all these regions node strength – and betweenness centrality for the right frontal 
area 3, left cingulum area 2 and left lateral orbital cortex – was increased at old age, except for 
the left dysgranular insular cortex, which showed decreased node strength.  

In contrast, there were no statistically significant differences in strength or 
betweenness centrality of the functional network nodes between young adult and aged rats.  

 

Network hub nodes shift between young adulthood and old age 
Hub nodes, i.e., the nodes with the highest degree of connectivity within the network, 
characterized by a low clustering coefficient and short path length, and a high strength and 
betweenness centrality, were found throughout the rat brain. The distribution of hub nodes 
in the structural brain network is shown in Figure 3A for young adult and aged rats. 
Consistent hub nodes in young adult and aged rats were, for example, the left and right 
caudate putamen and hippocampi. From young adulthood to old age, several regions (e.g., in 
the left somatosensory cortex) appeared to lose their hub status, whereas other regions (e.g., 
the left and right primary and secondary motor cortices) acquired a hub status. In aged rats, 
hubs tended to be more symmetrically distributed in bilateral homotopic areas (e.g., the left 
and right primary and secondary motor cortices, caudate putamen, and dorsolateral 
entorhinal cortices), and were located more medially as compared to young adult rats. The 
overlap in hub nodes in the young adult and aged structural network, expressed by the Dice 
coefficient was 0.29 (95% CI= 0.14-0.44). The Dice coefficient reflecting the overlap between 
hub regions in the left and right hemispheres was 0.61 (95% CI = 0.31 – 0.85) for aged rats, 
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compared to 0.32 (95% CI = 0.11 – 0.53) for young adult rats (ΔDice = 0.30, 95% CI = -0.03 
– 0.62, p = 0.13).  

 
Table 2. Regions with significantly altered nodal network measures in aged rats compared to young adult rats. 

Region of interest Nodal network feature Δ Percentage FDR corrected P-value 
Left Acc Strength 80 < 0.01 
Right Acc Strength 100 < 0.01 
Left AID Strength 111 < 0.01 
Right AID Strength 111 < 0.01 
Right AIP Strength 88 0.02 
Left AIV Strength 167 < 0.001 
Right AIV Strength 184 < 0.001 
Right AuV Strength 75 0.04 
Left Cg1 Strength 119 < 0.001 
Right Cg1 Strength 85 < 0.01 
Left Cg2 Betweenness 237 0.04 
Left Cg2 Strength 65 < 0.01 
Right Cg2 Strength 58 < 0.01 
Left CPu Strength 45 < 0.01 
Right CPu Strength 55 < 0.01 
Left DI Betweenness -33 0.04 
Right DI Strength 88 < 0.01 
Left Fr3 Strength 147 < 0.001 
Right Fr3 Betweenness 84 0.02 
Left FrA Strength 1088 < 0.01 
Left GP Strength 43 0.02 
Right GP Strength 74 < 0.01 
Left LO Betweenness 172 0.03 
Left LO Strength 293 < 0.001 
Right LO Strength 193 < 0.001 
Left M1 Strength 65 < 0.01 
Right M1 Strength 105 < 0.001 
Left M2 Strength 89 < 0.01 
Right M2 Strength 125 < 0.01 
Right MptA Strength 82 0.02 
Right Prh Strength 50 0.02 
Right RSGb Strength 44 0.03 
Right S1BFa Strength 35 < 0.01 
Right S1J Strength 60 0.04 
Left T  Strength 55 < 0.01 
Right T  Strength 78 < 0.01 
Left V1 Strength 60 0.02 
Left V2ML Strength 142 0.04 
Right V2MM Strength 102 0.04 
Left VO Strength 181 < 0.001 
Right VO Strength 170 < 0.001 
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Figure 3: Hub regions in structural and functional whole-brain networks in young adult and aged rats. Hub 
regions in (A) structural networks and (B) resting-state functional networks, overlaid on an axial structural MR 
image of a rat brain slice, are displayed in the 3D network as large blue nodes, whereas the other (non-hub) regions 
are presented as small white nodes. Networks are shown for young adult (left) and aged rats (right). Hub regions are 
listed right from the maps. 
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The distribution of hub nodes in the resting-state functional network (Figure 3B) was 
different from that in the structural network. Nevertheless, consistent with the findings in the 
structural network, the left and right caudate putamen and hippocampi were also hub nodes 
in the functional networks of young adult and aged rats. There was a relatively higher density 
of functional network hub nodes in posterior and temporal regions (such as the temporal 
association area and perirhinal cortex) in aged rats as compared to young adult rats. The 
overlap in hub nodes in the young adult and aged functional network never reached 1 (mean 
Dice: 0.53; 95% CI= 0.37-0.68). Regions that lost their hub status in the resting-state 
functional network in aged rats included the right insular cortex, while other regions, such as 
the bilateral thalamus, acquired hub status. In line with the structural network hubs, 
functional network hub nodes in old rats tended to be more symmetrically distributed in 
homotopic areas in the left and right hemispheres. The Dice coefficient (reflecting the overlap 
between hub regions in the left and right hemisphere) was 0.61 (95% CI = 0.39 – 0.83) for old 
rats, compared to 0.53 (95% CI = 0.32 – 0.74) for young adult rats (ΔDice = 0.08, 95% CI = -
0.14 - 0.32, p = 0.44).  
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Lesion simulations 

To determine the effect of stroke lesions on network parameters in young adult and old rats, 
we simulated the extent of network damage for different frequently applied stroke models 
(cortical photothrombosis, transient MCAO with only subcortical damage, and 
transient/permanent MCAO with cortical and subcortical damage). We calculated a delta-
score for each network parameter as the change in the network parameter after lesion 
simulation as compared to the parameter for the healthy network.  

Unilateral stroke lesion simulations affect global structural and functional network 
features at a whole-brain level 
The effect of stroke lesion simulations on global structural network characteristics are shown 
in Figure 4A. Subtle, but statistically significant changes were measured after cortical (i.e., 
increased clustering (p<0.01)) and subcortical stroke simulations (i.e., increased path length 
and decreased small-worldness (p<0.01)), which were comparable between young adult and 
old aged rats. Subcortical plus cortical damage resulted in considerable increases in path 
length and clustering in both age groups (p<0.01).  

For whole-brain functional networks, stroke lesion simulations resulted in 
significant changes for all measured global network characteristics, i.e., increased path length, 
higher clustering and lower small-worldness (p<0.01; Figure 4B). These changes were 
relatively small for the cortical and subcortical stroke simulations, and substantial for the 
large stroke lesions involving cortical plus subcortical regions. There were no significant 
differences in these global functional network changes between young adult and aged 
animals.  

Additional analyses of lesion simulations in the right hippocampus (hub region) or 
right medial parietal association cortex (non-hub region) revealed subtle but significant 
effects on structural and functional networks, which were highly comparable with the effects 
of cortical stroke and sub-cortical stroke (Suppl. Figure 6).  
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Figure 4: Effects of different stroke lesion simulations on global network measures in young adult and old rats. 
Changes in path length, clustering and small-worldness after stroke lesion simulation, calculated as metric delta 
values between the healthy control network and the network after stroke simulation, for (A) diffusion-based 
structural networks and (B) resting-state fMRI-based functional networks. Delta-scores were determined for 
different stroke lesion simulations, i.e., cort: cortical (photothrombosis), subcort: subcortical (short transient 
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MCAO) and cort + subcort: cortical plus subcortical (long transient or permanent MCAO), for young adult rats 
(dark blue) and aged rats (light blue). Individual values are given as diamonds with horizontal jitter for visualization 
purposes. Boxplots show median and inter-quartile range (IQR), whiskers representing 1.5 times the IQR, and dots 
representing outliers. Outliers are defined as values exceeding 1.5 times the IQR above the upper and below the lower 
quartile.  
 

Hub regions shift after stroke simulations 
In addition to changes in global network features, stroke lesion simulations resulted in shifts 
of hub nodes in young adult and aged rats’ structural and functional networks (Figures 5 and 
6). These shifts were most apparent after simulation of a large cortical plus subcortical lesion. 
In structural networks, some regions acquired a hub status, whereas other regions lost their 
hub status after lesion simulations (Figure 5). In functional networks, regions mainly 
acquired a hub status after lesion simulations (Figure 6). The number of regions with shifted 
hub status was higher in structural networks than in functional networks, which was 
indicated by a lower Dice coefficient for the overlap in hub regions before and after stroke 
simulation (Table 3).  

As can be observed in Figures 5 and 6, there were several local differences between 
young adult and old rats in the pattern of shifts in hub regions in structural and functional 
networks after stroke simulations. For example, in aged rats we found that the left, 
contralesional forelimb region of the primary somatosensory cortex acquired a functional 
network hub status after a unilateral lesion in subcortical or cortical plus subcortical tissue, 
which was not observed in young adult rats.  
 
Table 3: Dice coefficients (95% CI) for the overlap in hub regions before and after stroke simulations, in 
structural and functional brain networks of young adult and old rats. 

 

 
 

Structural network Functional network 

Young adult Aged Young adult Aged 

Cortical stroke  0.78  
(0.61-0.93) 

0.86 
(0.70-1.00) 

0.90 
(0.78-1.00) 

0.93 
(0.83-1.00) 

Subcortical stroke 0.71 
(0.54-0.88) 

0.61 
(0.42-0.79) 

0.84 
(0.70-0.96) 

0.90 
(0.79-1.00) 

Cortical plus subcortical 
stroke 

0.47 
(0.30-0.64) 

0.44 
(0.26-0.62) 

0.55 
(0.39-0.71) 

0.71 
(0.55-0.85) 
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Figure 5: Hub shifts in structural whole-brain networks after unilateral stroke lesion simulations in young adult 
and aged rat brain. Hub shifts are displayed after unilateral (right-sided) stroke lesion simulation in (A) a small 
cortical area, (B) a subcortical area, and (C) a large cortical and subcortical area. Hub nodes, overlaid on an axial 
structural MR image of a rat brain slice, are displayed in the 3D network as large nodes, whereas other (non-hub) 
regions are represented as small (white) nodes. Regions with maintained hub station after stroke lesion simulation 
are shown as large blue nodes, whereas regions that acquired a hub status are presented as large green nodes. Regions 
that lost hub status are presented as small red nodes. Lesioned nodes are presented in dark-grey color. Networks are 
shown for young adult (left) and aged rats (right). Hub regions are listed right from the maps. Regions with acquired 
hub status are shown in green, and regions with lost hub status are crossed-out in red or black (lesioned nodes). 

 

Figure 6: Hub shifts in functional whole-brain networks after unilateral stroke lesion simulations in young adult 
and aged rat brain. Hub shifts are displayed after unilateral (right-sided) stroke lesion simulation in (A) a small 
cortical area, (B) a subcortical area and (C) a large cortical and subcortical area. Hub nodes, overlaid on an axial 
structural MR image of a rat brain slice, are displayed in the 3D network as large nodes, whereas other (non-hub) 
regions are represented as small (white) nodes. Regions with maintained hub status after stroke lesion simulation 
are shown as large blue nodes, whereas regions that acquired a hub status are presented as large green nodes. Regions 
that lost hub status are presented as small red nodes. Lesioned nodes are presented in dark-grey color. Networks are 
shown for young adult (left) and aged rats (right). Hub regions are listed right from the maps. Regions with acquired 
hub status are shown in green, and regions with lost hub status are crossed-out in red or black (lesioned nodes). 
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Discussion 

In this study, we investigated whether the effects of simulated lesions – representing 
topographical profiles of different rodent stroke models – on structural and functional 
network organization in rat brain differed between young adulthood and old age. Overall, 
global network features were largely comparable, however, local differences in structural and 
functional networks were observed between young adult and aged rats, particularly expressed 
by shifts in hub regions in the brain. Unilateral stroke simulations induced global changes in 
whole-brain structural and functional network organization, which was most significant for 
the large stroke simulation, involving cortical and subcortical lesioning. Global network 
changes after stroke simulations were comparable between young adult and aged rats. On the 
other hand, lesion-induced regional changes in hub status, which were more pronounced in 
the structural than in the functional brain network, differed between young adult and aged 
rats. 
 
Whole-brain structural and functional networks – effects of aging 
The measured similarity of global network characteristics between healthy young adult and 
aged rats, as measured from the path length, clustering and small-worldness in the structural 
and functional networks, is in line with human data. Small-world topology has been 
demonstrated in structural brain networks of young and aged adult humans (Gong et al., 
2009b; Zhu et al., 2012), and no aging effect was found for global network efficiency (Gong 
et al., 2009b). However, other studies reported lower global efficiency in younger individuals 
(Wu et al., 2012; Zhu et al., 2012). This discrepancy may be explained by the use of different 
age categories across studies. It has been demonstrated that global efficiency follows an 
inverted u-curve pattern between young and old age (Wu et al., 2012). Because the age groups 
in our study were at the extremities of this curve, we may have missed possible changes in 
global network characteristics that develop between the two time-points.  

In functional networks, human resting-state fMRI studies have shown an increased 
minimum path length and clustering coefficient in older adults (Sala-Llonch et al., 2014). In 
addition, task-fMRI studies during memory encoding and recognition in healthy individuals 
demonstrated a similar increase in path length with aging (Wang et al., 2010). Although we 
did not find statistically significant aging effects on global networks, we did see a trend 
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towards a higher path length and lower small-worldness in the functional network of old rats, 
resembling the described effects of aging in humans.  
 While global network features were largely the same, we identified local differences 
in structural and functional brain networks between young adult and aged rats. Node 
strength increased for many regions, such as the bilateral primary and secondary motor 
cortices and caudate putamen, within the whole-brain structural network, which seems in 
contrast to reductions in structural connectivity during aging as observed in humans (Gong 
et al., 2009b). Loss of structural connectivity may be reflective of white matter degeneration 
in aging brains (Meier-Ruge et al., 1992; Salat et al., 2005). However, white matter 
degeneration may not be similarly prominent in aging rats. In fact, diffusion tensor imaging 
studies have revealed ongoing brain maturation in rats during adulthood (Mengler et al., 
2014) with increasing fractional anisotropy in rodent white matter structures up to old age 
(Blockx et al., 2011). Furthermore, the mean diameter and volume density of myelinated 
fibers in the cortex are higher while the length density is lower, which may be explained by 
specific loss of thinner myelinated fibers, in aged as compared to younger adult rats (Zhang 
et al., 2009). These white matter differences can affect the diffusion-based tractography 
pattern and explain changes in node strengths that we observed between young adults and 
aged rats.  

In addition to node strength differences in structural networks, we found shifts in 
hub regions from young adulthood to old age in structural and functional networks. 
Increased homotopical symmetry of hub regions in aged rats may be reflective of altered 
lateralization, which has also been reported for aged humans (Agcaoglu et al., 2015). Also, 
increasing homotopic connectivity with age, particularly between sensorimotor regions, has 
been found in a human resting-state fMRI study (Zuo et al., 2010). Moreover, similar to 
studies in human subjects, we observed a posterior shift in hub regions in the functional 
network, exemplified by hub status for the bilateral temporal association areas and perirhinal 
cortex in aged rats, although in humans this has been explained by lost hub status of frontal 
brain regions due to decreasing local network efficiency (Achard and Bullmore, 2007; 
Meunier et al., 2009). 

 
Whole-brain structural and functional networks – effects of stroke lesion simulations 
Computational lesion studies, as recently reviewed by Aerts et al. (Aerts et al., 2016), may 
substitute, complement or guide empirical studies in humans or animal models. Lesion 
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simulation studies can be applied to already existing data, and provide a simple, cheap and 
non-invasive alternative to complicated longitudinal in vivo lesion studies, thereby 
contributing to replacement, reduction and refinement of animal research (Balls et al., 1995).  

In the current study we simulated unilateral stroke lesions, based on lesion 
topographies of three popular rat stroke models. Additionally, we simulated focal lesions in 
a single hub (i.e., right hippocampus) or non-hub region (i.e., right medial parietal 
association cortex) region. Significant changes in global network features were measured in 
whole-brain structural and functional networks. Results from our in silico lesion simulation 
study are largely in agreement with our previous in vivo resting-state fMRI study, in which 
we measured changes in the bilateral sensorimotor network after transient MCAO in young 
adult rats (van Meer et al., 2012). In both studies we found a longer path length and higher 
clustering coefficient in functional networks in response to stroke lesions in subcortical, or 
cortical plus subcortical tissue. The effects were considerably smaller when lesions were 
confined to only subcortical or cortical tissue, regardless of whether this was a hub (i.e., 
hippocampus or CPu) or a non-hub region (i.e., medial parietal association cortex), which 
reflects robustness of the functional and structural networks against relatively small focal 
injury. Apparently, this was not affected by age, because the results were similar in young 
adult and aged rats.  

Our stroke lesion simulations also resulted in clear shifts of hub regions in the 
structural and functional networks. Network hub regions are believed to be key players in the 
outcome of brain disorders (Crossley et al., 2014; Stam, 2014). Hub damage may have severe 
consequences for network function, while hub shifts may contribute to network remodeling. 
In our study, the number of hub shifts was higher in structural than in functional networks, 
which we observed in young adult as well as old rats. We speculate that this relates to the 
dependency of functional connectivity on direct as well as indirect structural connections 
(Adachi et al., 2012; Honey et al., 2009), which may facilitate network resilience. Since we 
only removed nodes and their direct connections in our lesion simulations, diffusion-based 
structural networks, which in essence only contain direct connections, would be more 
severely affected.  
 The lesion-induced hub shifts were different between young adult and aged rats. In 
aged rats contralesional somatosensory areas acquired hub status after subcortical or cortical 
plus subcortical stroke lesion simulations, which was not observed in young adult rats. This 
may relate to enhanced neural activity or functional connectivity in the contralesional 
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hemisphere, which has been measured in stroke patients and animal models (Grefkes and 
Fink, 2014; van Meer et al., 2010a, 2010b). Why increased involvement of contralesional 
sensorimotor areas after unilateral stroke appeared more specifically in aged brain in our 
simulation study, and whether it may lead to worsening of functional outcome or contribute 
to functional recovery, remains to be elucidated. The local differences in structural and 
functional brain networks, including hub regions, between healthy young adult and aged rats, 
may have contributed to the different effects of lesion simulations between the two age 
groups. This underlines the critical role of age in the outcome of preclinical stroke studies in 
animal models, which often only involve young adult rodents, thereby limiting bench-to-
bedside translation (Dirnagl, 2016).   

It is important to realize that our computational simulation study only assessed 
direct effects of lesions on network status by elimination of nodes. Dynamic network 
responses, such as subsequent degeneration or regeneration, which can strongly depend on 
age (Betzel et al., 2014; Damoiseaux, 2017; Wang et al., 2015; Burke and Barnes, 2006; Niccoli 
and Partridge, 2012), were not accounted for. Another limitation is the use of anesthesia 
during resting-state fMRI, which is known to affect functional connectivity measurements 
(Paasonen et al., 2018). However, it might be argued that functional connectivity in 
anesthetized animals better reflects ‘resting state’ (i.e., baseline) connectivity than functional 
connectivity under awake conditions, which may be significantly affected by stress and 
motion. We used the same anesthesia protocol for all developmental stages, which enabled 
us to compare age effects under the same conditions. Nevertheless, future studies should look 
into (differences in) effects of anesthesia on network parameters across the lifespan and after 
stroke.  

A limitation of diffusion-based tractography for structural connectivity 
measurement, is that white matter tracts are reconstructed from the underlying diffusion 
profiles, with limited power to resolve complex fiber configurations (e.g., crossing, bending, 
and fanning fibers). This can result in considerable amounts of false positive and false 
negative connections (E. Calabrese et al., 2015; Jeurissen et al., 2017; Sinke et al., 2018; 
Thomas et al., 2014). Nevertheless, diffusion-based tractography is currently the only method 
to map whole-brain structural connections in vivo at the macro-scale. For our study we used 
a state-of-the-art approach, combining CSD-based tractography – which partially accounts 
for crossing fibers – with whole-brain filtering of tracts, which has been shown to yield 
biologically accurate connectomes (Smith et al., 2015, 2013).  
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Future research involving longitudinal in vivo imaging studies and improved 
structural and functional connectivity reconstruction algorithms combined with advanced 
network analysis strategies may provide further insights in the causes and consequences of 
age-related differences in susceptibility and resilience to stroke injury. In the end, knowledge 
of the structural and functional network status of a stroke patient’s brain, could guide 
selection of appropriate recovery-enhancing treatment strategies targeted at optimal 
engagement of a patient’s intact neural circuitry. 

In conclusion, our study showed that global structural and functional network 
features are largely similar in young adult and old aged rat brains and respond comparably 
to different types of stroke simulations. On the other hand, local network differences, 
particularly reflected by shifts in hub nodes, were identified between the brains of young adult 
and aged rats, before and after simulated stroke. These age-dependent neural network 
changes may play a critical role in the vulnerability and resilience to (stroke-induced) brain 
injury. 
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The studies described in this thesis have provided insight into how MRI-based structural and 
functional connectivity are arranged and associated in the healthy and diseased brain. We 
assessed the relationship between structural and functional connectivity in the healthy rat 
brain in Chapters 2 and 3. In Chapters 4, 5 and 6, we investigated how changes in structural 
and functional connectivity during brain maturation and aging relate to the vulnerability to 
develop diseases during these specific periods of the life span. The results from this thesis 
demonstrate that: I) structural and functional connectivity in the brain are related, but 
distinct structure-function relationships exist across brain regions, hierarchical levels and 
non-linear components reflect the complexity of this relationship (Chapters 2 and 3); II) 
structural and functional connectivity in the rat brain change during maturation and aging 
(Chapters 4 and 6); and III) aging-related changes in structural and functional brain 
networks contribute to connectivity abnormalities seen in diseases that develop during 
maturation and aging, such as obsessive-compulsive disorder (OCD) and stroke (Chapters 
4-6).  

In the following paragraphs, I will specifically focus on the implications of these 
findings, possibilities for future research and methodological considerations of the used 
methods.  
 
Structure-function relationship in the mammalian brain 
The first aim of this thesis was to characterize the relationship between structural and 
functional connectivity in the rat brain. Although structural and functional connectivity are 
related, our results support the current view that the structure-function relationship is not 
one-to-one and more complex. The moderate correlation that we found between structural 
and functional connectivity indicates that functional connectivity is not directly explained by 
structural connectivity (Straathof et al., 2019) (Chapters 2 and 3). We showed that the 
moderate correlation may be due to distinct linear and non-linear structure-function 
relationships across the rat brain (Chapters 2 and 3), like in the mouse and human brain 
(Grandjean et al., 2017; Zimmermann et al., 2016), with high correspondence in primary 
unimodal somatosensory and motor regions, and low correspondence in secondary 
transmodal association areas (Vázquez-Rodríguez et al., 2019). This may be caused by 
increasing complexity from unimodal to transmodal regions, including more dynamic 
functional behavior and more parallel and less hierarchical processing in transmodal regions, 
resulting in weaker structure-function relationships.  
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 In addition, the measured moderate linear correlation may also be explained by lack 
of association of weak structural connectivity with functional connectivity, which appears to 
correlate from a specific structural connectivity strength onwards, the structure-function 
tipping point, which we observed in human and rat brain (Chapter 3). I believe that these 
results indicate that simple linear whole-brain correlation analyses are not going to move the 
field much forward anymore. More advanced analyses methods are needed, taking higher 
order and non-linear interactions and indirect and polysynaptic connections between brain 
regions into account. One promising analysis strategy may be multi-layer networks, in which 
different types of connectivity data can be combined (De Domenico, 2017; Lim et al., 2019; 
Vaiana and Muldoon, 2018). 

Since functional connectivity varies considerably across individuals (Gordon et al., 
2017; Mueller et al., 2013), this may also explain part of the moderate correlation between 
structural and functional connectivity that we found in Chapters 2 and 3, in which structural 
and functional connectivity were not measured in the same individual. I do not believe that 
this individual variation fully explains the moderate correlation between structural and 
functional connectivity, since similar correlations have been found in studies comparing 
structural and functional connectivity within the same individual (Straathof et al., 2019). 
Nevertheless, mapping the structure-function relationship within individual brains in future 
studies would allow the characterization of individual differences in the structure-function 
relationship, which may relate to cognitive ability (Medaglia et al., 2018) and behavior.  

I am intrigued by our finding that functional connectivity did not significantly 
correlate with gold-standard neuronal tracer-based structural connectivity, whereas it does 
correlate with diffusion-based structural connectivity (Chapter 2). Why are neuronal tracer-
based structural connectivity and functional connectivity not related? Do MRI-based 
measures of structural and functional connectivity relate because they are both measured at 
the macro-scale or both dependent on a similar MRI signal? To answer these questions, more 
experiments are needed and ideally performed in rodents, since large online databases of 
neuronal tracer-based connectivity are available (Noori et al., 2017; Oh et al., 2014; Schmitt 
and Eipert, 2012). In our study, we focused on connections present in both diffusion-based 
and neuronal tracer-based structural networks. Future studies could determine where these 
structural networks differ and investigate the structure-function relationship in these 
connections specifically.  
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Brain maturation and aging contribute to vulnerability to disease 
The second aim of thesis was to determine whether brain maturation and aging relate to the 
vulnerability to develop diseases during these life periods, for example OCD during 
maturation and stroke during aging. Our data confirmed that structural and functional 
connections change during brain maturation and aging in rats (Chapters 4 and 6). We 
further investigated whether the development of OCD is associated with abnormal 
maturation of structural and functional connections (Chapter 4), and whether aging-
induced changes in structural and functional connections affect the impact of lesions in the 
brain (Chapter 6). 

Since OCD develops during childhood and adolescence in three-quarters of the 
patients (Taylor, 2011), it is increasingly considered to be a neurodevelopmental disorder, 
caused by abnormal brain maturation (Huyser et al., 2009). Since we included a baseline 
measurement before the induction of compulsive behavior in our rat model, we could directly 
relate the development of compulsive behavior to alterations in brain maturation. Our 
findings confirmed the hypothesis that increased FA values in large white matter tracts in 
pediatric OCD reflect premature or increased brain maturation (Chapter 4). To further 
elucidate the pattern of abnormal white matter maturation in children and adolescents with 
OCD, additional time points in longitudinal MRI experiments would be necessary. Since a 
baseline measurement is not possible and longitudinal studies are difficult and costly in the 
human population, our introduced animal model provides a valuable alternative for future 
assessments.  

Aging increases both the risk and the severity of stroke (Herson and Traystman, 
2014; Johnson et al., 2019; Liang et al., 2016; Liu et al., 2009). However, age is an often-
overlooked factor in experimental stroke studies. We showed that the aging rat brain is 
characterized by local changes in structural and functional networks that potentially make 
the brain more vulnerable to damage (Chapter 6). Our computational study also 
demonstrated that simulated lesions induce different local effects on structural and 
functional networks in young adult and aged rat brains. These results contribute to a growing 
body of literature suggesting that stroke has a different effect in young animals compared to 
old animals (Baltan et al., 2019; Liang et al., 2016; Liu et al., 2009). It has even been suggested 
that the age discrepancy between experimental stroke models (young adults) and human 
stroke patients (elderly population) may be one of the causes of poor bench-to-bedside 
translation (Dirnagl, 2016). Our findings further underline that age should be considered in 
experimental stroke studies.  
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Chapters 4-6 demonstrate the value of longitudinal MRI experiments to study 
normal and abnormal patterns of structural and functional connectivity during brain 
maturation and aging in relation to disorders. The relatively fast aging process in rats 
facilitates these longitudinal MRI experiments, which may cover the entire lifespan. Next to 
characterizing age-induced changes in structural and functional networks separately, I 
believe that combining those measurements and studying how the structure-function 
relationship changes with aging would be of added value. The structure-function coupling 
changes during development and correlates with cognitive performance (Baum et al., 2020; 
Zimmermann et al., 2018), and may potentially also relate to the vulnerability of disease. The 
structure-function tipping point that we introduced in Chapter 3 may be a sensitive 
parameter to evaluate these relationships. 
 
Translational value of experimental MRI studies 
In this thesis, we used animal models to increase our understanding of structural and 
functional connectivity patterns associated with aging and disorders, which we could 
compare against human data obtained with similar MRI protocols. We found many 
similarities in structural and functional brain connectivity between humans and rats, 
including similar structure-function relationships (Chapters 2 and 3), similar changes 
during brain maturation (Chapter 4) and healthy aging (Chapter 6), and similar 
abnormalities associated with OCD (Chapters 4 and 5) and stroke (Chapter 6). Since 
experimental studies can be easily performed in homogeneous groups of animals with little 
variation in age, genetic background, and medication history, environmental or genetic 
biases that contribute to interindividual variation in similar studies in humans can be 
excluded. 

To assess the translational value of animal models of mental disorders, three types 
of validity have been introduced (Willner, 1984): face, construct, and predictive validity. 
Whereas face validity describes observed similarity in, for example, symptoms between the 
animal model and clinical population, construct validity describes similar underlying 
mechanisms. Our introduced adolescent animal model of compulsive behavior demonstrated 
clear compulsive checking behavior and similar increases in white matter FA values as 
measured in children and adolescents with OCD (Gruner et al., 2012; Zarei et al., 2011), 
thereby showing face and construct validity (Chapters 4 and 5). We did not investigate its 
predictive validity, which we could have done by testing the effects of a treatment known to 
reduce compulsive behavior in children and adolescents with OCD, such as selective 
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serotonin reuptake inhibitors (SSRIs) (Geller et al., 2003). Instead, we evaluated a novel 
treatment, the anti-glutamatergic drug memantine, which has shown promising effects in 
adults with OCD (Ghaleiha et al., 2013; Haghighi et al., 2013). However, memantine did not 
reduce compulsive behavior in our adolescent rats, possibly because of pharmacological 
interactions with quinpirole, the agent used to induce OCD in rats (Chapter 5). I believe 
pharmacological MRI is a promising tool to study these interactions, which may help to 
identify subgroups of patients who do not benefit from specific treatment regimes. 
Furthermore, assessment of glutamate levels with magnetic resonance spectroscopy 
(Ramadan et al., 2013) could aid in the monitoring of anti-glutamatergic treatment. 

Despite the many similarities we showed between the human and rat brain 
(Chapters 2, 4 and 6), we also detected differences in brain network organization (Chapter 
3). More research is needed to investigate whether these differences relate to distinct brain 
sizes, evolutionary processes or interspecies differences in behavior and cognition (M. P. van 
den Heuvel et al., 2016a). Nevertheless, these differences imply that not all structural and 
functional connectivity measures can directly be translated between the human and rat brain.  
 
Methodological considerations 
All studies described in this thesis included resting-state fMRI measurements in rats under 
light isoflurane anesthesia to reduce stress and minimize motion. However, anesthesia 
influences functional connectivity values (Paasonen et al., 2018) and may change the 
relationship between structural and functional connectivity (Barttfeld et al., 2015), which 
may have affected the results described in this thesis. Nevertheless, anesthesia-induced 
changes in functional connectivity have been shown to have minimal effects on the global 
organization of functional networks in rodents (Liang et al., 2012), and previous studies have 
demonstrated reliability of comparisons of structure-function relationships between 
anesthetized rodents and awake humans (Díaz-Parra et al., 2017; Grandjean et al., 2017; 
Straathof et al., 2020b, 2019). Since we used similar anesthesia protocols for the different 
groups in each study, I am confident that significant group differences were detectable. In 
addition, I believe, especially for the studies described in Chapters 4-6, that motion reduction 
due to the use of light anesthesia is an advantage. Motion-induced fluctuations in the resting-
state BOLD signal are difficult to detect and remove (Maknojia et al., 2019; Power et al., 2012; 
Van Dijk et al., 2012). The populations studied in these Chapters 4-6 included children and 
elderly people, who are known to move more during MRI (Pardoe et al., 2016), introducing 
motion-induced differences in functional connectivity (Satterthwaite et al., 2012). The light 



7

 __________________________________________________________General discussion 

171 
 

anesthesia used in our studies excluded the influence of these motion-induced changes in 
functional connectivity. Nevertheless, based on recently published studies, I would have 
chosen for a different anesthesia protocol, since isoflurane has been shown to affect 
functional connectivity more than other anesthetics, such as a combination of 
dexmedetomidine and low levels of isoflurane (Paasonen et al., 2018). 
 We have used rats in our experimental model for OCD in Chapters 4 and 5. It is 
important to keep in mind that animal models of psychiatric disorders only model parts of 
the disease or specific symptoms. While obsessions are difficult to assess because they rely on 
communication, compulsivity is often expressed behaviorally, and can therefore be modeled 
in experimental animals. The rats described in Chapters 4 and 5 clearly showed altered 
behavior after repeated quinpirole injections. It remains difficult to assess whether rats are 
truly compulsive and how this compulsivity would match with compulsivity seen in patients 
with OCD. However, the methods used to assess compulsive behavior in the quinpirole rat 
model have also been successfully applied to study compulsive behavior in individuals with 
OCD (Eilam, 2017). Therefore, I believe that the quinpirole-induced rat model is valuable to 
study compulsive checking behavior both in adults and adolescents. 
 Lastly, in Chapter 6 we made use of computational lesion simulations to study 
whether age affects the result of stroke lesions on structural and functional networks in the 
brain. Because these lesion simulations can be applied to already existing data, they may 
contribute to the replacement, reduction and refinement of animal research (Balls et al., 
1995). However, it is important to realize that in our lesion simulation study we only 
simulated the direct effect of a lesion on the network, and we did not take secondary changes, 
including subsequent remodeling of networks, into account, which may happen at later time 
points.  
 
Future steps 
The work described in this thesis demonstrates how age-related changes in structural and 
functional connectivity may contribute to the vulnerability to develop diseases during these 
critical periods of our life. In addition, we have increased our understanding of the 
relationship between structural and functional connectivity in the brain and acquired more 
evidence of the complexity of this relationship. Although some future directions have already 
been suggested in the specific paragraphs above, there are a few more general future steps I 
would like to propose:  
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 Future studies investigating functional brain networks may connect brain regions 
through novel, innovative analysis techniques, which may improve the characterization of 
functional networks. In most of the chapters of this thesis I used static functional connectivity 
analyses, a straightforward and often applied approach for resting-state fMRI data. However, 
it does not consider the dynamic nature of resting-state networks (Chang and Glover, 2010; 
Hutchison et al., 2013). We used dynamic analyses in Chapter 3 and demonstrated 
fluctuations in functional connectivity in both the human and rat brain, which may provide 
additional information about functional network organization. Alternatively, effective 
connectivity approaches, which are computationally more complex, can provide information 
on directionality of interacting brain regions (Friston et al., 2013; Friston, 2011).  
 Next to investigating how structural and functional connectivity relate, I think 
future research should also focus on the dissimilarity between structural and functional 
connectivity (Lim et al., 2019). Where structural and functional connectivity are not related 
or even disagree, they may be complementary. In those regions and connections, acquiring 
both diffusion-based structural connectivity and resting-state functional connectivity may 
provide more information than acquiring only a single modality. For example, after corpus 
callosum resection structural connections may be lost, but functional connectivity remained 
when the anterior commissure was still intact (O’Reilly et al., 2013), showing the importance 
of combining structural and functional measures.  

Lastly, I would like to encourage researchers to share their structural and functional 
connectivity datasets. Increased availability of open source structural and functional 
connectivity data will facilitate the intra- and inter-species comparison of network 
organization across the brain. Although the sharing of data is already more common in 
human research, the preclinical MRI community stays behind. Combining datasets acquired 
with different parameters, under different anesthesia protocols and on different scanners may 
really reveal how structural connectivity constrains, maintains, and regulates the functional 
network. The first multicenter fMRI studies in mice and rats have already been initiated 
(Grandjean et al., 2020). 
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Summary 

The brain is a complex system composed of regions that are interacting at the micro-, meso- 
and macrolevel. The communication between those regions is essential for all our daily life 
functions, including reading this thesis. Understanding the organization and functioning of 
the brain has been one of the fundamental goals in neuroscience, forming the basis of this 
thesis. To fully understand the organization of the brain, we have to consider the connections 
and interactions between individual brain regions. To that aim, within network neuroscience, 
the brain is conceptually divided into brain regions (represented by nodes or dots) and 
connections (represented by edges or lines). One can look at these connections in two ways. 
First, there are functional connections between brain regions, which are assumed to reflect 
information transfer between regions (i.e., signals sent from one brain region to another). 
Second, there are structural connections, which are the physical connections between brain 
regions. The network organization of structural and functional brain connections is ideally 
studied non-invasively in vivo, which is feasible with magnetic resonance imaging (MRI).  
 

In this thesis, I aimed to “connect the dots”. First, we connected dots in images of 
the brain, by assessing connectivity between different brain regions, represented by dots. In 
addition, we connected dots in a more figurative way, by identifying how biological or 
pathological phenomena, like aging across the lifespan or disease processes, affect brain 
network organization. The first part of this thesis describes how the structural network 
constrains and restricts the functional network, by characterizing the relationship between 
structural and functional connectivity in the rat and human brain. Identifying how structural 
and functional connectivity relate will help to understand how brain networks are organized, 
and why functional abnormalities in brain disorders are related to characteristic patterns of 
disconnection or reorganization. The exact relationship between structural and functional 
connectivity may vary across brain regions, different levels of connectivity and species. 
Therefore, in this thesis, we characterized the relationship between structural and functional 
connectivity across different scales in the rat and human brain. 
  The second part of this thesis shows how aging across the lifespan affects brain 
network organization and may relate to the vulnerability to diseases. Structural and 
functional connectivity changes during maturation may contribute to developmental 
disorders like obsessive-compulsive disorder (OCD), whereas changes during aging may 
contribute to the higher risk of neurodegenerative and cerebrovascular diseases, like stroke. 
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Therefore, in this thesis, we studied structural and functional brain networks during healthy 
brain maturation and aging in rats, and assessed how abnormal development or aging may 
relate to OCD or stroke pathology, respectively.  
 Chapter 1 provides an overview of this thesis. We describe the applied MRI 
techniques and analysis methods to measure structural and functional connectivity. Besides, 
changes in structural and functional connectivity associated with development and aging, 
with OCD and stroke, are described. 
 
Structure-function mapping in the healthy adult brain 
The aim of Chapter 2 was to identify to what extent structural and functional connectivity 
strengths are linearly correlated across the rat brain. We measured functional connectivity 
with resting-state fMRI, and structural connectivity with diffusion-weighted MRI and 
neuronal tract tracers. We found a moderate linear correlation between whole-brain 
functional connectivity and MRI-based macro-scale structural connectivity in the rat brain. 
However, we did not find a significant correlation between functional connectivity and meso-
scale structural connectivity measured with neuronal tract tracing. In addition, we showed 
distinct structure-function relationships across brain regions in the rat brain. We found 
strong functional connectivity in robust resting-state networks, like the sensorimotor and 
default mode networks. Strong functional connectivity within these networks coincided with 
strong short-range intrahemispheric structural connectivity, but with weak heterotopic 
interhemispheric and long-range intrahemispheric structural connectivity. This study 
indicates the importance of combining measures of connectivity at distinct hierarchical levels 
to accurately determine connectivity across networks in the healthy and diseased brain.  
 Although linear correlation approaches offer a clear and easily interpretable way to 
characterize structure-function relationships in the brain, they may not completely cover the 
complex nature of this relationship. Therefore, in Chapter 3, we mapped the structure-
function relationship in the rat brain by taking non-linear components of this relationship 
into account. These analyses showed that weak structural connectivity was not significantly 
associated with functional connectivity, but structural and functional connectivity correlated 
from a specific structural connectivity strength onwards: the structure-function tipping 
point. We showed that from this tipping-point onwards, whole-brain structural and 
functional connectivities become significantly positively associated. We speculate that this 
structure-function tipping point may relate to the small-world organization of brain 
networks. These networks are characterized by strong structural connections within 
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specialized functional modules, which may strongly associate with functional connectivity, 
and sparse weak structural connections between those functional modules, which are less 
strongly associated with functional connectivity.  
 We directly compared the non-linear structure-function relationship and 
corresponding structure-function tipping point between the rat and human brain in Chapter 
3. Whereas both the human and rat brain showed non-linear structure-function 
relationships, the tipping point occurred at a higher structural connectivity value in the rat 
compared to the human brain. In the human brain we found a non-linear structure-function 
relationship in primary unimodal sensory and motor regions as well as in secondary 
multimodal integration areas, with similar structure-function tipping points. In comparison, 
in the rat brain, the structure-function relationship showed stronger non-linear behavior in 
primary compared to secondary brain regions. Whether these differences between the human 
and rat brain are simply due to differences in brain size, differences in the degree of small-
world organization, or due to species differences in the development of specific brain regions 
remains to be investigated. Our non-linear correlation analyses can aid in the elucidation of 
the complex interaction between functional and structural connectivity in neural networks, 
and may offer unique markers of brain development, aging and dysfunction. 
  
Maturation of the brain in relation to obsessive-compulsive disorder 
To be able to study the association between brain maturation and OCD during childhood 
and adolescence, we modified the established adult rat model of quinpirole-induced 
compulsive checking behavior towards an adolescent model in Chapter 4. In the adult model, 
repeated injections with the dopamine D2/D3 receptor agonist quinpirole in adult rats, in 
combination with placement of the rat on an open field table, results in compulsive checking 
behavior. By starting quinpirole injections during childhood, we showed that the rats 
developed compulsive checking behavior before the age of 10 weeks, which is around young 
adulthood in rats. We applied serial MRI measurements of structural and functional 
connectivity before and after the repetitive quinpirole injections to assess (ab)normal brain 
maturation and its association with compulsive behavior. Rat brain development was 
characterized by increases in diffusion fractional anisotropy (FA) values along large white 
matter fiber bundles. The developmental rise in FA in the internal capsule and forceps minor 
was larger in compulsive rats compared to controls. This study underlines the involvement 
of white matter structural integrity disturbances in disease processes of OCD in children and 
adolescents. 



S

_________________________________________________________________Summary 

181 
 

Because animal models provide a well-controlled setting with little interindividual variation, 
they are well suited to test the efficacy of novel therapeutic treatments. Therefore, the aim of 
Chapter 5 was to test the therapeutic efficacy of the NMDA receptor antagonist memantine 
in reducing compulsive behavior in the above-described adolescent rat model of OCD. In 
addition, we aimed to identify the therapeutic mode of action of memantine, by studying its 
effect on structural and functional connectivities as well as functional activation in the 
frontostriatal circuitry. Memantine did not reduce compulsive behavior in the adolescent rat 
model, and correspondingly also did not influence structural and functional connectivities. 
Pharmacological MRI executed during a single memantine injection showed activation of 
widespread areas in the brain of control rats, which was not observed after repeated or single 
quinpirole injections. This points towards an interaction between the pharmacologically 
induced OCD model (quinpirole: dopamine system) and therapeutic treatment (memantine: 
glutamatergic system). This finding may suggest that the NMDA receptor antagonist 
memantine might not be effective in individuals with a disrupted dopamine system.  
 
Brain aging and vulnerability to stroke-induced brain damage 
In Chapter 6, we investigated whether age-related changes in structural and functional 
networks affect the impact of stroke lesions on the brain. We used graph analyses to 
determine local and global network properties of diffusion MRI-based structural and resting-
state fMRI-based functional connectivity in the young adult and aged rat brain. We did not 
find differences in global network measures, including path length, clustering and small-
worldness, between young adult and aged rats. However, we did find local network 
differences between young adult and aged rats, characterized by a shift in hub regions in both 
structural and functional networks.  

We simulated three different lesion types, based on the lesion topology in popular 
experimental stroke models. Although the effects of these stroke lesions on global network 
measures were similar for young adult and aged rats, we found differences in lesion-induced 
hub shifts between young adult and aged rats. These different lesion-induced hub shifts 
across age may be due to the distinct local organization of structural and functional brain 
networks in young adult and aged rats. These results suggest that structural and functional 
networks change with aging, and that especially local changes like hub shifts contribute to 
stroke induced damage. Hereby, this chapter underscores the importance of considering age 
in experimental stroke studies.  
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In Chapter 7, we discuss the implications of our findings, methodological 
considerations of the used methods and possibilities for future research.  
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Samenvatting 

Onze hersenen bestaan uit verschillende gebieden die met elkaar communiceren op micro-, 
meso- en macro-niveau. Deze communicatie tussen hersengebieden is essentieel voor ons 
dagelijks functioneren, zoals het lezen van dit proefschrift. Een van de fundamentele doelen 
in de neurowetenschappen is het begrijpen van de organisatie en het functioneren van onze 
hersenen. Dit vormt ook de basis van dit proefschrift. Om de hersenen goed te kunnen 
begrijpen, moeten we rekening houden met zowel de verbindingen als de communicatie 
tussen de verschillende hersengebieden. Daarom worden de hersenen binnen “netwerk-
neurowetenschappen” onderverdeeld in gebieden en hun connecties (verbindingen). Je kunt 
op twee manieren naar de connecties kijken. Functionele connecties vertellen iets over de 
communicatie en informatie-uitwisseling tussen hersengebieden (bijvoorbeeld signalen die 
van het ene naar het andere gebied worden gezonden). Daarnaast zijn er structurele 
connecties. Dit zijn de fysieke verbindingen tussen hersengebieden. Het concept van 
structurele en functionele connecties is overal in het dagelijks leven te vinden, zoals 
bijvoorbeeld in het treinnetwerk. In dit voorbeeld vormen de treinrails tussen twee stations 
de structurele verbinding, en is het aantal treinen dat over deze rails rijdt de functionele 
verbinding. Met magnetische resonantie imaging (MRI) technieken kunnen de organisatie 
en het functioneren van de hersenen en de structurele en functionele connecties tussen 
hersengebieden bestudeerd worden.  

In dit proefschrift, heb ik geprobeerd om “punten te verbinden”. Als eerste, hebben 
we punten verbonden aan de hand van MRI-scans van de hersenen. Hersengebieden kunnen 
worden weergegeven als knooppunten. De connecties tussen verschillende hersengebieden 
worden weergegeven door verbinding van deze punten. Daarnaast hebben we meer figuurlijk 
“punten verbonden”, of verbanden gelegd. We hebben onderzocht hoe biologische of 
pathologische fenomenen, zoals ouder worden of ziekteprocessen, invloed hebben op de 
structurele en functionele verbindingen in de hersenen.  
 Het eerste deel van dit proefschrift beschrijft hoe de structurele verbindingen de 
functionele verbindingen in de hersenen beïnvloeden en beperken. Daarvoor hebben we de 
onderlinge relatie tussen structurele en functionele connectiviteit bepaald. Meer inzicht in de 
relatie tussen structurele en functionele connectiviteit helpt om de organisatie van de 
hersenen beter te begrijpen. Daarnaast zou op basis van deze relatie verklaard kunnen worden 
hoe functionele problemen in hersenziektes gekarakteriseerd worden door specifieke 
patronen van disconnecties. De precieze relatie tussen structurele en functionele 
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verbindingen kan variëren over de verschillende gebieden in de hersenen, over verschillende 
niveaus van connectiviteit en tussen species. Daarom hebben we in dit proefschrift de relatie 
tussen verschillende niveaus van structurele en functionele connectiviteit gemeten in 
verschillende delen van de hersenen van ratten en mensen.  
 In het tweede deel van dit proefschrift hebben we onderzocht hoe ouder worden de 
organisatie van de hersenen beïnvloedt en hoe dit bijdraagt aan de kwetsbaarheid om 
hersenziektes te ontwikkelen. Veranderingen in structurele en functionele verbindingen 
tijdens de ontwikkeling van kind naar puber dragen mogelijk bij aan het ontstaan van 
ontwikkelingsstoornissen zoals obsessieve-compulsieve stoornis (OCD). Tijdens het 
verouderingsproces kunnen structurele en functionele hersenveranderingen bijdragen aan 
het hogere risico op neurodegeneratieve en cerebrovasculaire ziektes, zoals een beroerte. In 
dit proefschrift hebben we de gezonde ontwikkeling van structurele en functionele 
verbindingen in de hersenen van ratten bestudeerd, en onderzocht of OCD in jongeren en 
hersenbloedingen in ouderen gerelateerd zijn aan abnormale ontwikkeling van deze 
verbindingen.  

Hoofdstuk 1 geeft een overzicht van de indeling van dit proefschrift. We beschrijven 
de gebruikte MRI-technieken en analysemethoden waarmee we structurele en functionele 
hersenconnectiviteit gemeten hebben. Daarnaast beschrijven we de veranderingen in 
structurele en functionele connecties die geassocieerd zijn met ouder worden, OCD en 
beroerte.  
 
De relatie tussen structurele en functionele verbindingen in de gezonde volwassen 
hersenen 
Het doel van Hoofdstuk 2 was om vast te stellen hoe structurele en functionele connecties 
lineair gecorreleerd zijn in de hersenen van ratten. We hebben functionele connectiviteit 
gemeten met resting-state functionele MRI, en structurele connectiviteit met diffusie-
gewogen MRI en neuronale tract tracers. We maten een matige lineaire correlatie tussen 
functionele connectiviteit en MRI-gebaseerde structurele connectiviteit op macro-niveau in 
de hersenen van de rat. Dit betekent, hoe sterker de structurele verbinding tussen 
hersengebieden, hoe sterker ook de functionele verbinding. Echter, we vonden geen correlatie 
tussen functionele connectiviteit en structurele connectiveit op meso-niveau gemeten met 
neuronale tract tracers. Daarnaast zagen we dat de structuur-functie relatie in de hersenen 
verschillend is in verschillende gebieden. We vonden hoge functionele connectiviteit in 
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bekende resting-state netwerken, zoals het sensorimotorische en het default mode netwerk. 
Sterke functionele connectiviteit in deze netwerken ging gepaard met sterke korte 
intrahemisferische structurele connectiviteit, maar met zwakke heterotope 
interhemisferische en lange intrahemisferische structurele verbindingen. Deze studie 
benadrukt het belang van het combineren van connectiviteitsmetingen op verschillende 
niveaus om nauwkeurig de connectiviteit tussen gebieden te bepalen in gezonde en zieke 
hersenen.  

Hoewel lineaire correlatie methoden een duidelijke en gemakkelijk te interpreteren 
manier zijn om structuur-functie relaties in de hersenen te bepalen, dekken ze niet volledig 
de complexiteit van deze relaties. Daarom hebben we in Hoofdstuk 3 de non-lineaire 
componenten van de structuur-functie relatie in de hersenen van ratten bepaald. Deze 
analyses laten zien dat zwakke structurele connectiviteit niet significant geassocieerd is met 
functionele connectiviteit, maar dat structurele en functionele connectiviteit pas significant 
gecorreleerd zijn vanaf een specifieke structurele connectiviteitswaarde, het zogenaamde 
structuur-functie kantelpunt. Vanaf dit kantelpunt zijn structurele en functionele 
verbindingen significant geassocieerd. We denken dat dit structuur-functie kantelpunt 
gerelateerd is aan de small-world organisatie van de hersenen. Small-world netwerken 
bestaan uit sterke structurele connecties binnen gespecialiseerde functionele modules, die 
sterk correleren met functionele connectiviteit, en zwakke structurele connecties tussen deze 
modules, die minder sterk associëren met functionele connectiviteit.  

We hebben de non-lineaire structuur-functie relatie en kantelpunten direct 
vergeleken tussen de hersenen van ratten en mensen in Hoofdstuk 3. Zowel de hersenen van 
ratten en mensen laten non-lineaire structuur-functie relaties zien, maar het structuur-
functie kantelpunt ligt bij een hogere structurele connectiviteit in de hersenen van ratten dan 
die van mensen. In de hersenen van mensen vonden we vergelijkbare non-lineaire structuur-
functie relaties in de primaire sensorische gebieden en secundaire hogere orde integratie 
gebieden. Echter, in de hersenen van ratten vertoonde de structuur-functie relatie meer non-
lineariteit in primaire dan in secondaire hersengebieden. Of de verschillen tussen de hersenen 
van ratten en mensen komen door een verschil in hersengrootte, verschillen in small-world 
organisatie of door species verschillen in de ontwikkeling van specifieke hersenregio’s moet 
nog worden uitgezocht. Non-lineaire structuur-functie analyse kan helpen om de complexe 
interactie tussen structurele en functionele connectiviteit in neuronale netwerken verder te 
onderzoeken en biedt mogelijke markers voor hersenontwikkeling, hersenveroudering en 
ziekte. 
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Ontwikkeling van de hersenen in relatie tot obsessieve-compulsieve stoornis (OCD) 
Om de link te kunnen leggen tussen hersenontwikkeling en OCD in kinderen en 
adolescenten hebben we een bestaand volwassen rat model van quinpirole-geïnduceerd 
compulsief checkgedrag aangepast naar een adolescent model in Hoofdstuk 4. In het 
volwassen model leiden herhaalde injecties met de dopamine D2/D3 receptor agonist 
quinpirole, tot compulsief checkgedrag bij het plaatsen van het dier op een open veld. Door 
de injecties al tijdens de kindertijd te geven, hebben we in dit hoofdstuk laten zien dat ratten 
compulsief checkgedrag vertonen voordat ze 10 weken oud zijn, wat rond adolescentie is in 
ratten. We hebben MRI metingen van structurele en functionele connectiviteit gedaan, voor 
en na de herhaalde quinpirole injecties, om (ab)normale hersenontwikkeling en de relatie 
daarvan met compulsief gedrag te onderzoeken. Hersenontwikkeling in ratten werd 
gekenmerkt door een toename in de diffusie fractionele anisotropie (FA) in grote structurele 
verbindingen. Deze ontwikkelingstoename in FA in de capsula interna en forceps minor was 
groter in compulsieve ratten dan in gezonde controles. Hiermee onderstreept deze studie de 
betrokkenheid van (veranderingen in) structurele connectiviteit bij OCD in kinderen en 
adolescenten.  

 Omdat diermodellen een gecontroleerde onderzoekssetting bieden met beperkte 
variatie, zijn ze bijzonder geschikt om nieuwe behandelmethoden te testen. In Hoofdstuk 5 
was het doel om de potentie van de NMDA receptor antagonist memantine om compulsief 
gedrag te verminderen te testen in het hierboven beschreven adolescente rat model. 
Daarnaast wilden we het mechanisme van de therapeutische werking van memantine 
ophelderen, waarvoor we het effect op structurele en functionele verbindingen, en 
functionele activatie, in het frontostriatale systeem in de hersenen hebben gemeten. 
Memantine verminderde niet het compulsieve checkgedrag in het adolescente quinpirole rat 
model, en beïnvloedde in lijn hiermee ook niet de structurele en functionele verbindingen. 
Farmacologische MRI, uitgevoerd tijdens een memantine injectie, toonde activatie van 
wijdverspreide hersengebieden in controle ratten aan, wat niet waarneembaar was na 
herhaaldelijke of een enkele quinpirole injectie. Dit wijst op een interactie tussen ons 
farmacologisch geïnduceerde OCD model (quinpirole: dopamine systeem) en de 
behandeling (memantine: glutamaterg systeem). Deze bevinding kan suggereren dat 
memantine mogelijk niet effectief is tegen compulsief gedrag in individuen met een verstoord 
dopamine systeem. 
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Veroudering van de hersenen en gevoeligheid voor hersenschade door een beroerte 
In Hoofdstuk 6 hebben we onderzocht of veranderingen in structurele en functionele 
verbindingen door veroudering invloed hebben op de impact van beroertes. We hebben 
graafanalyses gebruikt om lokale en globale kenmerken te bepalen in structurele en 
functionele netwerken, gemeten met respectievelijk diffusie MRI en resting-state fMRI, in het 
jongvolwassen en oude rattenbrein. We vonden geen verschillen in globale netwerkmaten, 
zoals padlengte, clustering en small-worldness, tussen jongvolwassen en oude ratten. We 
vonden echter wel lokale netwerkverschillen tussen jongvolwassen en oude ratten, 
gekenmerkt door een verplaatsing in hub regio’s in structurele en functionele netwerken. 

 We hebben verschillende typen laesies gesimuleerd, gebaseerd op de laesies in 
populaire experimentele beroerte diermodellen. Hoewel de globale netwerkeffecten van deze 
laesies vergelijkbaar waren in jongvolwassen en oude ratten, vonden we verschillen in laesie-
geïnduceerde hubverplaatsingen tussen jongvolwassen en oude ratten. Deze 
leeftijdsafhankelijke laesie-geïnduceerde hubverplaatsing worden mogelijk veroorzaakt door 
verschillen in lokale structurele en functionele netwerkorganisatie in jongvolwassen en oude 
ratten. Onze resultaten suggereren dat structurele en functionele netwerken veranderen 
tijdens veroudering, en dat lokale veranderingen zoals hubverplaatsing bij kunnen dragen 
aan schade door beroertes. Hierbij onderstreept dit hoofdstuk het belang om leeftijd als factor 
mee te nemen in experimentele onderzoeken naar beroertes.  

In Hoofdstuk 7 bediscussiëren we de implicaties van onze bevindingen, 
methodologische overwegingen over de gebruikte methoden, en mogelijkheden voor 
vervolgonderzoek. 
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Zo’n proefschrift schrijf je zeker niet alleen. Ik wil hierbij graag iedereen bedanken die tijdens 
mijn promotietijd bij het onderzoek betrokken is geweest, geholpen heeft, interesse heeft 
gehad of mij ontspanning heeft gegeven. 

Prof. Dr. Dijkhuizen, beste Rick, dank dat je mij deze promotieplaats aangeboden hebt. 
Ondanks mijn twijfel in het begin ben ik blij dat ik in jouw lab gepromoveerd ben. Dank voor 
je interesse, vertrouwen en steun, zeker ook toen het niet zo goed ging. Jouw uitgebreide 
feedback op geschreven stukken en presentaties heb ik altijd erg gewaardeerd en hebben mijn 
schrijfkwaliteiten sterk verbeterd. Al was het soms slikken om een rood gemarkeerd 
document terug te krijgen. Ik bewonder het dat je, mits af en toe met een kleine herinnering, 
zo goed op de hoogte bent van alle verschillende projecten die in jouw groep draaien. Bedankt 
dat je mij zo vrij gelaten hebt, en zelf mijn richting hebt laten kiezen, al was dat niet altijd de 
eenvoudigste weg. Ik zal onze tafeltennis en airhockey wedstrijdjes op Fuerteventura niet snel 
vergeten. Ondanks dat ik nu de overstap terug naar “the dark side” in Amsterdam maak, 
hoop ik dat we elkaar nog tegen zullen komen! 

Dr. Otte, beste Wim, wat heb ik een hoop van jou geleerd! Al je kennis over programmeren, 
MRI data analyses en statistiek, maar met name ook van jouw kwaliteit om een goede balans 
te vinden tussen werk en privé. Ik bewonder je vele interesses, en je vermogen om zoveel 
zaken met elkaar te combineren. Dank voor de mega snelle feedback, vele rustgevende 
woorden in stressvolle momenten en de boekentips! Succes met je volgende stap, en wie weet 
zien we elkaar nog eens in Amsterdam? 

De leden van de beoordelingscommissie, Prof. Dr. Sarah Durston, Prof. Dr. Jeroen 
Pasterkamp, Dr. Natalia Petridou, Prof. Dr. Nick Ramsey en Prof. Dr. Liesbeth Reneman, wil 
ik bedanken voor het lezen en beoordelen van mijn proefschrift. 

Graag wil ik alle co-auteurs op de artikelen in dit proefschrift bedanken voor de 
samenwerking, input en constructieve feedback. I would like to thank all the co-authors for 
their contribution and collaborations to this thesis. 

Geralda, ondanks dat we officieel niet aan elkaar gelinkt zijn was het fijn om bij jou altijd een 
luisterend oor te vinden. Heel veel dank voor al je stimulerende woorden, het sparren over 
analyses en de lekkere kopjes koffie binnen en buiten het lab. Onze gezamenlijke interesse en 
frustraties over (resting-state) fMRI hebben ons (soms iets te) veel hoofdbreken gegeven. 
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Zebra- en bijenpatronen zullen altijd aan me blijven plakken.. Hopelijk kunnen we samen 
blijven wandelen en skeeleren, en wie weet tot in Houten? ;-) 

Gerard, Annette & Caroline, hartelijk dank voor al jullie ondersteunende en soms 
onzichtbare hulp, zonder jullie was dit proefschrift er niet geweest! Gerard, bedankt voor het 
bouwen van die mooie deuterium spoelen, ook al zijn de DMI experimenten uiteindelijk niet 
in dit proefschrift beland. Ik zal mijn laatste scan dag klussend met jou aan de gradient power 
supply niet snel vergeten.. Ik hoop dat je me snel beter kunt leren zeilen! Annette, die 
zebrapatronen en resting-state fMRI waren niet jouw favoriete onderwerpen om over te 
sparren, maar we zijn er zeker door vooruit gekomen. Dank ook voor je hulp bij de 
spectroscopie experimenten. Caroline, ik herinner mijn eerste momenten beneden bij de 
ratten nog goed; jij hebt mij met bibberende handen geleerd ratten op te pakken en te 
injecteren. Dank voor je hulp bij het uitvoeren van alle MRI experimenten, ook degene die 
niet in dit proefschrift staan. 

Erwin, jij was degene met wie het allemaal begon, met de overname van het TACTICS project. 
Bedankt dat je mij hebt leren scannen! Dear TACTICS Consortium, and especially Jan & 
Jeffrey, thanks for the very sociable meetings at different beautiful and sunny islands, the 
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