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Rule induction happens to us when exposed to language, just like photosynthesis 
happens to a flower in the sunlight. And this is not a metaphor, but a physical and 

real process.  
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This	 dissertation	 is	 a	 collection	 of	 articles	 (published,	 under	 review	 or	 to	 be	
submitted	for	publication),	which	present	the	results	of	a	research	project	that	
investigated	linguistic	rule	induction	from	an	information-theoretic	perspective.	
The	main	goal	of	 this	 research	project	was	 to	propose	and	 test	an	 innovative	
entropy	 model	 for	 rule	 induction	 based	 on	 Shannon’s	 noisy-channel	 coding	
theory	(Shannon,	1948).		
	 Rule	 induction	 (generalization	 or	 regularization)	 is	 an	 essential	
language	acquisition	mechanism	that	empowers	language	learners	to	not	only	
memorize	specific	items	(e.g.	phonemes,	words)	experienced	when	exposed	to	
linguistic	 input	 (language),	but	also	 to	acquire	 relations	between	 these	 items.	
These	relations	range	from	statistical	patterns	between	specific	items	present	in	
the	linguistic	input	(Saffran,	Aslin,	&	Newport,	1996;	Thiessen	&	Saffran,	2007)	
to	more	abstract	category/rule	induction	(Marcus,	Vijayan,	Rao,	&	Vishton,	1999;	
Smith	&	Wonnacott,	2010;	Wonnacott,	2011;	Wonnacott	&	Newport,	2005).	For	
example,	 language	 learners	 not	 only	 memorize	 words	 and	 combinations	 of	
words,	 like	 mom	 walked	 slowly	 and	 dad	 talked	 nicely,	 but	 they	 also	 infer	
generalizations	 (rules)	 like	 ‘add	 -ed’	 or	 ‘add	 -ly’	 to	 specific	 items	 in	 order	 to	
express	a	past	action	or	the	manner	of	carrying	out	an	action.	Moreover,	learners’	
rule	induction	abilities	also	move	away	from	specific	combinations	of	items	to	
abstract	categories	and	generalized	rules:	for	example,	Noun-Verb-Adverb	is	a	
well-formed	sequence,	where	each	category	can	take	a	virtually	infinite	number	
of	 specific	 items.	 This	 research	 project	 addressed	 the	 inductive	 steps	 from	
memorizing	 specific	 items	 and	 combinations	 of	 items,	 to	 inferring	 rules	 (or	
statistical	patterns)	between	these	specific	items,	and	also	to	forming	categories	
and	generalized	rules	that	apply	to	categories	of	items.	
	 Following	 definitions	 from	 previous	 literature	 (Gómez	 and	 Gerken,	
2000),	 we	 distinguish	 between	 two	 forms	 of	 rule	 induction:	 item-bound	
generalizations	 and	 category-based	 generalization.	 Item-bound	 generalizations	
describe	generalizations	(rules)	bound	to	specific	physical	items	present	in	the	
experienced	input	(e.g.	a	relation	based	on	physical	identity,	like	“la	follows	la”	
or	 “add	 a	 specific	 item	 -ed”).	 Conversely,	 category-based	 generalizations	 are	
operations	 beyond	 specific	 items	 from	 the	 input,	 spanning	 over	 a	 virtually	
infinite	 number	 of	 novel	 instances.	 They	 describe	 relations	 between	
categories/variables,	 for	 example,	 “Adverb	 follows	 Verb”	 in	 a	 Verb-Adverb	
pattern,	 where	 Verb	 and	 Adverb	 are	 categories	 (variables)	 taking	 different	
specific	items	as	values,	for	example,	“walk”,	“slowly”,	etc.	
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	 Previously,	two	factors	were	shown	to	modulate	rule	induction:	either	
the	variability	of	items	experienced	by	the	learner	–	i.e.	input	variability	(Gerken,	
2006;	Gómez,	2002;	Reeder,	Newport,	&	Aslin,	2013),	or	certain	limited	cognitive	
capacities	that	support	the	encoding	of	the	input,	e.g.	memory	capacity	(Hudson	
Kam	 &	 Chang,	 2009;	 Hudson	 Kam	&	 Newport,	 2009;	 Newport,	 1990;	 2016).	
However,	the	underlying	mechanism	and	the	exact	dynamics	between	these	two	
factors	 that	 drive	 the	 inductive	 steps	 from	 memorizing	 specific	 items	 and	
statistical	regularities	to	inferring	abstract	rules	remain	largely	underspecified.	
The	articles	presented	in	this	dissertation	aim	at	filling	this	gap.	
	 The	mechanisms	underlying	 rule	 induction	have	been	 the	object	 of	 a	
heated	ongoing	debate	in	psycholinguistics.	On	the	one	hand,	there	is	mounting	
evidence	 that	 an	 item-bound	 mechanism,	 which	 relies	 on	 memorization	 of	
specific	items	and	statistical	computations	about	their	probability	distribution,	
namely	statistical	learning,	would	suffice	for	encoding	the	input	by	item-bound	
generalizations.	 For	 example,	 phonotactic	 information	 (Chambers,	 Onishi,	 &	
Fisher,	2003),	and	word	boundaries	 (Aslin,	Saffran	&	Newport,	1998;	Saffran,	
Aslin	 &	 Newport,	 1996)	 were	 shown	 to	 be	 acquired	 by	 basic	 statistical	
computations,	such	as	transitional	probabilities	(i.e.	the	probability	of	a	specific	
item	occurring	after	another).	On	the	other	hand,	other	researchers	argued	that	
statistical	 learning	 alone	 cannot	 account	 for	 generalizations	 beyond	 specific	
items	evidenced	by	the	input	(Endress	&	Bonatti,	2007;	Marcus,	Vijayan,	Rao,	&	
Vishton,	 1999).	 Thence,	 they	 proposed	 another	 mechanism	 for	 encoding	 the	
input	 as	 category-based	 generalizations,	 namely	 abstract	 (algebraic)	 rule	
learning.	More	recently,	a	single-mechanism	hypothesis	was	put	forth,	according	
to	which	the	same	mechanism	–	statistical	learning	–	underlies	both	item-specific	
and	abstract	learning	(Aslin	&	Newport,	2012;	2014;	Frost	&	Monaghan,	2016).	
While	 supporting	 the	 single-mechanism	 hypothesis,	 this	 dissertation	 aims	 at	
better	specifying	the	nature	of	this	mechanism	and	how	one	single	mechanism	
leads	to	these	two	qualitatively	different	types	of	generalization.	
	 While	 previous	 studies	 used	 this	 terminology	 to	 refer	 both	 to	 the	
processes	 (mechanisms),	 and	 the	 two	 forms	 of	 encoding/generalizations	
(statistical	regularities	vs	abstract	rules),	this	dissertation	takes	a	step	further,	
and	 proposes	 that,	 the	 mechanism(s)	 underlying	 rule	 induction	 should	 be	
conceptualized	separately	from	their	outcomes,	that	is	from	the	resulting	forms	
of	 encoding	 (item-bound	 generalizations	 and	 category-based	 generalizations).	
This	distinction	allows	for	the	main	research	questions	of	this	research	project	
to	be	formulated:	
	 1.	Are	the	two	forms	of	encoding	outcomes	of	two	separate	mechanisms,	
with	 statistical	 learning	 resulting	 into	 the	 lower-level	 item-bound	
generalizations,	and	abstract	rule	learning	outputting	the	higher-order	category-
based	generalizations?	
	 	2.	Or,	are	these	forms	of	encoding	outcomes	of	the	same	mechanism?	
	 2.a.	 If	 this	 is	 the	case,	 is	 it	a	phased	mechanism	that	gradually	moves	
from	one	form	of	encoding	to	the	other?	
	 2.b.	Or	is	it	an	abrupt	shift?	
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	 3.	 What	 drives	 the	 change	 in	 form	 of	 encoding	 from	 item-bound	 to	
category-based	generalization,	be	 it	a	gradual	 transition	or	an	abrupt	shift?	 In	
other	words,	what	are	the	factors	that	drive	rule	induction?	
	 In	order	to	answer	these	research	questions,	this	dissertation	puts	forth	
a	novel	entropy	and	noisy-channel	capacity	model	(in	short,	entropy	model)	for	
rule	 induction,	 which	 is	 based	 on	 Shannon’s	 noisy-channel	 coding	 theory	
(Shannon,	1948).	In	short,	and	simplifying	for	now,	entropy	 is	an	information-
theoretic	 measure	 of	 information,	 while	 channel	 capacity	 is	 the	 amount	 of	
information	 (including	 the	 noise)	 that	 can	 be	 transmitted	 per	 unit	 of	 time.	
Shannon’s	 coding	 theory	 says	 that	 a	 message	 (i.e.	 information)	 can	 only	 be	
transmitted	reliably	(i.e.	with	the	least	loss	of	information),	if	encoded	by	using	
an	efficient	encoding	method.	An	encoding	method	is	efficient	(reliable),	if	and	
only	if	the	rate	of	 information	transmission	(i.e.	entropy	per	second),	plus	the	
noise,	is	below	the	channel’s	capacity.	If	the	rate	of	information	transmission	is	
higher	than	the	channel	capacity,	then	another	more	efficient	encoding	method	
can	be	found,	but	the	channel	capacity	cannot	be	exceeded.	If	the	channel	capacity	
is	 exceeded,	 there	 will	 be	 loss	 of	 information,	 which	 renders	 the	 encoding	
method	inefficient.	
	 The	main	hypothesis	of	the	entropy	model	is	that	rule	induction	is	an	
encoding	mechanism	 gradually	 driven	 by	 the	 dynamics	 between	 an	 external	
factor	–	input	entropy	–	and	an	internal	factor	–	channel	capacity.	Input	entropy	
quantifies	(in	bits	of	information)	the	statistical	properties	of	the	linguistic	input,	
given	by	the	number	of	items	and	their	probability	distribution.	Channel	capacity	
is	 used	 as	 an	 information-theoretic	measure	 of	 the	 encoding	 capacity	 of	 our	
brain,	and	is	determined	by	the	amount	of	entropy	that	can	be	encoded	per	unit	
of	 time.	 In	 other	 words,	 we	 define	 our	 brain’s	 encoding	 capacity	 as	 channel	
capacity	(at	the	computational	level,	in	the	sense	of	Marr	(1982)),	which	is	the	
finite	rate	of	information	encoding	(bits	per	second).	At	the	algorithmic	level,	the	
channel	capacity	might	be	supported	by	several	cognitive	capacities	involved	in	
processing	and	encoding	information,	e.g.	memory	capacity	and	attention.		
	 Among	 other	 studies	 that	 used	 entropy	 measures	 to	 look	 into	
generalization	(or	regularization)	patterns	(Ferdinand,	2015;	Ferdinand,	Kirby,	
&	Smith,	2019;	Perfors,	2012;	2016;	Saldana,	Smith,	Kirby,	&	Culbertson,	2017;	
Samara,	 Smith,	 Brown,	 and	Wonnacott,	 2017),	 this	 dissertation	 takes	 a	 step	
further	 and	 proposes	 an	 information-theoretic	 model	 that	 captures	 the	
dynamics	 between	 the	 input	 entropy	 and	 our	 encoding	 capacity,	 i.e.	 channel	
capacity.	
	 Our	proposal	that	rule	induction	is	driven	not	only	by	external	factors,	
like	 input	 variability,	 but	 also	 by	 internal	 factors,	 like	 the	 relevant	 cognitive	
capacities,	 is	 closely	 related	 to	another	 line	of	 research	–	 the	classical	Less-is-
More	hypothesis	(Newport,	1990;	2016),	which	looks	into	rule	induction	in	terms	
of	cognitive	constraints	on	learning.	According	to	this	hypothesis,	overloading	
our	limited	memory	capacity	leads	to	difficulties	in	storing	and	retrieving	low-
frequency	 items,	 which	 prompts	 overuse	 of	 more	 frequent	 forms	 leading	 to	
generalization.	 These	 limitations	 on	 cognitive	 capacities,	 which	 develop	with	
age,	were	proposed	 to	explain	why	young	 learners	have	a	higher	 tendency	 to	
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generalize	than	adult	learners	(Hudson	Kam	&	Newport,	2005;	Hudson	Kam	&	
Newport,	2009;	Newport,	1990;	2016).	
	 The	entropy	model	proposed	in	this	dissertation	offers	an	extended	and	
more	refined	information-theoretic	approach	to	the	Less-is-More	hypothesis,	by	
bringing	 together	 both	 factors	 (input	 entropy	 and	 cognitive	 capacity)	 in	 one	
formula.	This	model	takes	a	step	further	from	the	algorithmic	level	–	(i.e.	from	
the	 cognitive	 limitations	 of	 the	 memory	 and	 attentional	 resources)	 –	 to	 the	
computational	 level,	 i.e.	 channel	 capacity	 –	 our	 time-dependent	 noisy	
information	processor.		
	 In	 order	 to	 answer	 the	 research	 questions,	 the	 entropy	 and	 noisy-
channel	 model	 presented	 in	 this	 dissertation	 puts	 forth	 the	 following	
hypotheses:	
	 1.	Item-bound	generalization	and	category-based	generalization	are	not	
separate	 mechanisms.	 Rather,	 they	 are	 outcomes	 of	 the	 same	 encoding	
mechanism	 –	 computationally	 –	 which	 is	 statistical	 in	 nature,	 and	 can	 be	
captured	 under	 Shannon’s	 noisy-channel	 coding	 theory	 (Shannon,	 1948),	 as	
follows.	
	 2.	 Rule	 induction	 is	 a	 phased	mechanism	 that	moves	 gradually	 from	
memorizing	specific	items	and	combinations	of	items,	to	a	high-specificity	form	
of	 encoding	 –	 item-bound	 generalization	 –	 and	 to	 a	 high-generality	 form	 of	
encoding	–	category-based	generalization.	
	 3.	 The	 gradual	 transition	 from	 one	 form	 of	 encoding	 to	 the	 other	 is	
driven	by	the	dynamics	between	input	entropy	and	channel	capacity:	
	 a.	Little	input	entropy	–	that	is	below	or	matches	the	channel	capacity	–	
facilitates	memorizing	and	encoding	specific	items,	with	their	physical	features,	
and	relations	between	them,	i.e.	item-bound	generalization.	
	 b.	 An	 input	 entropy	 that	 is	 higher	 than	 the	 channel	 capacity	 drives	
category-based	generalization,	as	a	more	efficient	form	of	encoding.	
	 Specifically,	in	information-theoretic	terms,	if	the	input	entropy	is	below	
or	matches	the	channel	capacity	(i.e.	the	maximum	amount	of	input	entropy	that	
can	be	encoded	per	second),	the	information	about	specific	items	and	relations	
between	them	can	be	encoded	with	a	high-fidelity	item	specificity	by	item-bound	
generalization,	at	the	channel	rate	(i.e.	channel	capacity).	If	the	input	entropy	is	
higher	 than	 the	 channel	 capacity,	 that	 is	 the	 number	 of	 items	 and	 their	
probability	 distribution	 reach	 a	 complexity	 that	 is	 higher	 than	 the	 encoding	
capacity,	then	the	high-specificity	form	of	encoding	–	item-bound	generalization	
–	becomes	prone	to	errors,	due	to	noise	interference.	The	information	cannot	be	
encoded	reliably,	and	so	the	form	of	encoding	becomes	inefficient,	due	to	loss	of	
information.	Thus,	the	form	of	encoding	is	gradually	–	bit	by	bit	–	shaped	into	a	
high-generality	 form	 of	 encoding	 –	 category-based	 generalization,	 in	 order	 to	
avoid	exceeding	the	channel	capacity.	
	 In	 order	 to	 test	 these	 hypotheses	 of	 the	 entropy	 and	 noisy-channel	
model,	 we	 follow	 previous	 research	 on	 rule	 induction	 and	 we	 employ	 the	
artificial	grammar	learning	paradigm	(Gerken,	2006;	Gómez,	2002;	Marcus	et	al.,	
1999;	Reeder,	Newport,	&	Aslin,	2013).	Also,	we	use	a	repetition-based	type	of	
grammar	–	XXY	–	similar	to	previous	related	studies	(Gerken,	2006;	Marcus	et	
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al.,	 1999),	 but	 also	 a	 more	 complex	 non-adjacent	 dependency	 aXb	 grammar	
similar	to	the	one	employed	by	Gómez	(2002).	

The	first	study	of	this	dissertation	(Chapter	1)	lays	the	foundation	for	
this	entire	research	project	by	formulating	the	main	research	questions	and	by	
introducing	the	entropy	and	noisy-channel	model.	Chapter	1	probes	the	effect	of	
the	 first	 factor	of	 the	entropy	model	–	 input	 entropy	 –	on	 rule	 induction	with	
adults	exposed	to	a	repetition-based	XXY	grammar	(e.g.	daː-daː-li).	Specifically,	
rule	learning	is	hypothesized	to	be	a	phased	encoding	mechanism	that	starts	out	
by	memorizing	specific	items	(e.g.	phonemes,	syllables,	words)	and	the	statistical	
regularities	 between	 them	as	 instanced	 in	 the	 input,	which	 lays	 the	 basis	 for	
inferring	generalizations	between	specific	items	from	the	input,	i.e.	item-bound	
generalization.	In	the	case	of	an	XXY	grammar,	item-bound	generalization	means	
inferring	 a	 same-same-different	 rule	 only	 with	 familiar	 syllables	 from	 the	
experienced	 stimuli.	 An	 increase	 in	 entropy	 is	 hypothesized	 to	 drive	 the	
tendency	 towards	 a	more	 abstract	 category-based	 generalization	 (i.e.	 a	 same-
same-different	rule	with	novel	syllables,	as	well).	Thus,	learning	this	type	of	XXY	
grammar	entails	moving	away	from	item-bound	generalization	to	category-based	
generalization,	 which	 is	 predicted	 to	 be	 gradually	driven	 by	 increasing	 input	
entropy.	

In	order	to	test	this	hypothesis,	in	two	artificial	grammar	experiments,	
adults	are	exposed	to	a	3-syllable	repetition-based	XXY	artificial	grammar	(e.g.	
daː-daː-li),	 in	 six	 experimental	 conditions	 with	 increasing	 input	 entropy.	 We	
propose	an	innovative	method	to	calculate	entropy	in	an	artificial	grammar,	by	
applying	 Shannon’s	 entropy	 formula	 (Shannon,	 1948)	 to	 calculate	 a	
bigram/trigram	average	entropy.	This	method	extends	and	fine-tunes	a	similar	
proposal	by	Pothos	(2010).	
	 This	 chapter	 is	 a	 slightly	 modified	 version	 of	 a	 published	 article	 –	
Radulescu,	 Wijnen,	 and	 Avrutin	 (2019),	 which	 shall	 be	 referenced	 as	 such	
henceforth.	
	 In	 Chapter	 2,	 we	 extend	 the	 entropy	 model	 in	 order	 to	 address	 a	
developmental	research	question	that	is	motivated	by	the	interaction	between	
input	entropy	and	channel	capacity,	as	predicted	by	the	entropy	model.	Since	the	
channel	capacity	is	supported	by	cognitive	capacities	that	develop	with	age,	like	
memory,	infants	are	hypothesized	to	have	a	reduced	channel	capacity	compared	
to	 adults.	 Thus,	 infants’	 tendency	 towards	 rule	 induction	 is	 predicted	 to	 be	
driven	by	less	input	entropy	than	the	adults.	Specifically,	we	address	the	question	
of	whether	and	how	infants	process	and	encode	a	repetition	grammar	(ABB)	as	
compared	to	a	non-repetition	grammar	(ABC),	and	weather	input	entropy	has	an	
effect	on	this	process.		
	 To	 this	 end,	we	 test	whether	 and	 how	 six-month-old	 infants	 process	
repetition-based	linguistic	regularities	(ABB,	e.g.	“bu	ra	ra”)	as	compared	to	non-
repetition	 sequences	 (ABC,	 e.g.	 “bu	 fa	 zo”),	 by	 using	 functional	 near-infrared	
spectroscopy	(fNIRS),	and	we	manipulate	the	input	entropy	(low	vs	high).	Infants	
are	predicted	to	be	able	to	process	both	ABB	and	ABC		sequences,	and	also	to	
discriminate	 between	 these	 sequences,	 while	 doing	 so	 more	 readily	 under	
conditions	of	high	entropy.		
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	 	In	 Chapter	 3,	 the	 conceptual	 distinction	 between	 item-bound	
generalization	and	category-based	generalization	is	defined	in	more	detail,	and	
the	transition	from	one	to	the	other,	as	an	effect	of	input	entropy,	is	probed	in	
another	 experiment	 with	 adults.	 The	 main	 goal	 of	 the	 study	 is	 to	 further	
investigate	 the	 gradual	 transition	 from	 rote	 memorization	 to	 item-bound	
generalization	 and	 category-based	 generalization,	 as	 hypothesized	 by	 the	
entropy	model.		
	 Specifically,	we	expose	adults	to	a	low	and	a	medium	entropy	version	of	
the	XXY	grammar	(from	Chapter	1),	and	we	test	the	hypothesis	that	low	input	
entropy	 facilitates	 not	 only	 rote	 memorization	 of	 specific	 items	 and	 their	
probability	 distribution	 evidenced	 by	 the	 input,	 but	 also	 item-bound	
generalization.	We	also	look	at	individual	differences	in	specific	components	of	
cognitive	 capacities	 that	 we	 hypothesize	 to	 underlie	 channel	 capacity,	 i.e.	
explicit/implicit	 memory	 capacity	 and	 a	 general-domain	 pattern	 recognition	
capacity,	which	draws	on	working	memory	resources.	
	 Chapter	 3	 ends	 with	 a	 detailed	 discussion	 of	 our	 findings	 and	 our	
entropy	model	in	terms	of	their	contribution	to	the	ongoing	debate	between	the	
two	prominent	views	on	the	mechanisms	underlying	rule	induction:	the	more-
mechanisms	 hypothesis	 (Endress	&	 Bonatti,	 2007;	Marcus	 et	 al.,	 1999)	 vs	 the	
single-mechanism	hypothesis	(Aslin	&	Newport,	2012;	2014;	Frost	&	Monaghan,	
2016).	
	 In	Chapter	4,	we	further	extend	our	entropy	model	 for	rule	 induction	
from	 the	 repetition-based	 XXY	 grammar	 to	 a	 more	 complex	 non-adjacent	
dependency	 aiXbi	 grammar.	 In	 this	 type	 of	 grammar	 specific	 items	 a	 always	
predict	specific	items	b,	and	create	frozen	ai_bi	frames	over	a	richer	intervening	
category	of	Xs.	We	argue	that	learning	such	a	complex	type	of	grammar	entails	
both	 item-bound	 generalization	 (a	 generalization	 of	 the	 dependency	 between	
specific	 a	 and	 b	 elements	 –	 the	 specific	 ai_bi	 frames),	 and	 category-based	
generalization	 (generalizing	 the	 intervening	 category	 of	 Xs).	 This	 type	 of	
grammar	poses	a	challenge	to	the	entropy	model,	in	that	successful	learners	of	
this	type	of	aiXbi	grammar	move	away	from	an	item-bound	to	a	category-based	
generalization	for	the	intervening	X	category,	while,	crucially,	sticking	to	an	item-
bound	generalization	for	the	specific	ai_bi	dependencies.		
	 We	 hypothesize	 that,	 while	 high	 input	 entropy	 drives	 category-based	
generalization	 for	the	X	category,	it	 impedes	 item-bound	generalization	 for	the	
specific	ai_bi	dependencies	of	an	aiXbi	grammar.	Hence,	the	effect	of	increasing	
entropy	on	learning	this	type	of	grammar	is	not	a	gradually	better	performance	
as	we	 found	 for	 the	XXY	grammar	 (Radulescu	et	 al.,	 2019).	Rather	 a	U-shape	
learning	curve	is	predicted,	with	either	low	or	high	input	entropy	(i.e.	a	lower	and	
an	upper	bound	determined	by	the	channel	capacity)	being	expected	to	facilitate	
detection	 of	 the	 specific	 ai_bi	 dependencies	 and	 generalizing	 them	 over	 the	
category	of	intervening	Xs.		
	 Our	 entropy	model	 takes	 a	 step	 further	 from	 previous	 theories	 that	
claimed	the	set	size	of	the	intervening	Xs	plays	a	crucial	effect	on	non-adjacent	
dependency	learning	(Gómez,	2002;	Gómez	&	Maye,	2005),	namely,	a	large	set	
size	 of	 the	 middle	 X	 elements	 was	 proposed	 to	 support	 better	 learning.	 We	
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hypothesize	that	is	not	mere	set	size,	rather	it	is	 input	entropy	that	modulates	
learning.	Thus,	we	aim	at	teasing	apart	the	effect	of	set	size	from	the	effect	of	
input	entropy,	by	keeping	a	large	set	size	of	intervening	Xs	constant	and	varying	
the	probability	distribution	of	the	items	to	obtain	three	different	input	entropy	
conditions.  
 To	this	end,	we	expose	adults	to	three	entropy	conditions	–	low,	medium	
and	high	–	of	a	non-adjacent	dependency	aiXbi	grammar	similar	to	the	one	by	
Gómez	 (2002).	 If	 indeed	 the	 factor	 at	 stake	 is	 input	 entropy,	 then	 high	 input	
entropy	 is	expected	to	drive	better	 learning	than	 low	and	medium	entropy,	 in	
spite	of	 a	 constantly	 large	 set	 size.	Moreover,	 low	entropy	 is	hypothesized	 to	
facilitate	 remembering	 specific	 items	 and	 relations	 between	 them,	 leading	 to	
detection	of	the	non-adjacent	ai_bi	dependencies,	while	high	entropy	is	expected	
to	 drive	 generalization	 of	 the	 middle	 X	 elements,	 which	 also	 supports	 non-
adjacent	 dependency	 grammar	 learning.	 Conversely,	 medium	 entropy	 is	
predicted	to	create	an	uncertain	environment,	which	tampers	with	item-bound	
generalization	and	does	not	drive	category-based	generalization	either,	such	that	
non-adjacent	dependency	grammar	learning	is	impaired.	
	 This	 chapter	 is	 a	 slightly	 modified	 version	 of	 an	 article	 in	 review	 –	
Radulescu	and	Grama	(2021),	which	shall	be	referenced	as	such	henceforth.	In	
Chapter	 5,	 we	 probe	 the	 effect	 of	 the	 internal	 factor	 of	 the	 entropy	model	 –	
channel	 capacity	 –	 on	 rule	 induction	 with	 adults.	 This	 factor	 adds	 into	 the	
“formula”	for	rule	induction	the	crucial	dimension	of	time.	According	to	Shannon	
(1948),	a	message	(or	information)	can	be	transmitted	reliably	(i.e.	with	the	least	
loss	of	information),	only	if	it	is	encoded	by	a	method	that	is	efficient	enough,	so	
that	the	rate	of	information	transmission	(bits	per	unit	of	time),	including	noise,	
is	 below	 the	 channel’s	 capacity.	 In	 short,	 channel	 capacity	 is	 defined	
mathematically	 as	 the	 maximum	 possible	 rate	 of	 information	 transmission,	
which	can	be	achieved	only	if	the	encoding	method	is	adequate	and	efficient.		

Based	 on	 these	 concepts,	 our	 entropy	 model	 for	 rule	 induction	
hypothesizes	that	what	drives	the	change	in	the	encoding	method	–	from	item-
bound	to	category-based	generalization	–	is	a	regulatory	mechanism	that	moves	
from	an	inefficient	encoding	method	to	a	more	efficient	one,	 in	order	to	avoid	
exceeding	the	channel	capacity.	Efficiency	of	encoding	method	means	the	least	
loss	 of	 information	 caused	 by	 the	 noise	 interference	 during	 transmission	
through	 the	 channel	 in	 time.	 Thus,	 reduction	 of	 time	 increases	 the	 rate	 of	
information	transmission	and	brings	a	higher	inflow	of	noise,	which	interferes	
with	information	transmission	and	causes	an	increased	loss	of	information.	This	
drives	the	change	from	item-bound	to	category-based	generalization.	Hence,	we	
hypothesize	 that	 it	 is	 precisely	 the	 finite	 channel	 capacity	 that	 drives	
restructuring	of	the	information	to	find	a	more	efficient	encoding	method.		

In	 order	 to	 probe	 this	 hypothesis,	 in	 Chapter	 5	 we	 first	 show,	
theoretically,	how	channel	capacity	and	the	rate	of	information	transmission	can	
be	estimated	in	an	artificial	 language	learning	environment	for	rule	induction,	
namely	using	the	results	of	our	experiments	from	Radulescu	et	al.	(2019).	Next,	
we	directly	manipulate	 the	 time	variable	of	 the	channel	capacity	 in	 two	other	
artificial	grammar	experiments	with	adults.		
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To	 this	 end,	 we	 speed	 up	 the	 bit	 rate	 of	 information	 transmission,	
crucially	 not	 by	 simply	 reducing	 the	 time	 between	 stimuli	 by	 an	 arbitrary	
amount,	 but	 by	 a	 factor	 that	we	 calculated	 based	 on	 data	 from	 our	 previous	
experiments	(Radulescu	et	al.,	2019),	by	using	the	channel	capacity	formula.	In	
the	first	experiment,	we	expose	adults	to	the	lowest	entropy	version	of	the	XXY	
grammar	 from	Radulescu	 et	 al.	 (2019),	 either	 in	 a	 slow	 rate	 of	 transmission	
condition	or	a	fast	rate	of	transmission	condition.	In	the	second	experiment,	we	
expose	adults	to	a	low	entropy	condition	of	the	aiXbi	grammar	(from	Chapter	4),	
one	 group	 to	 a	 slow	 rate	 of	 transmission	 and	 another	 group	 to	 a	 fast	 rate	 of	
transmission.		

We	 also	 control	 for	 individual	 differences	 in	 specific	 components	 of	
cognitive	 capacities	 that	 we	 hypothesize	 to	 support	 channel	 capacity	 at	 the	
algorithmic	 level,	 i.e.	 explicit/implicit	memory	 capacity	 and	a	general-domain	
pattern	recognition	capacity,	which	draws	on	working	memory	resources.		
	 This	 chapter	 is	 a	 longer	 version	 of	 an	 article	 in	 review	 –	 Radulescu,	
Kotsolakou,	Wijnen,	Avrutin	 and	Grama	 (2021),	which	 shall	 be	 referenced	 as	
such	henceforth.	

In	Chapter	6,	we	further	test	the	model	by	looking	into	the	effect	of	the	
noisy-channel	capacity	(Shannon,	1948),	by	adding	noise	(i.e.	random	stimulus-
irrelevant	material)	in	the	background	of	the	lowest	entropy	version	of	the	XXY	
grammar	 task	 from	 Radulescu	 et	 al.	 (2019).	 According	 to	 Shannon’s	 noisy-
channel	 coding	 theory,	 in	 a	 communication	 system,	 information	 can	 be	
transmitted	 reliably,	 if	 and	 only	 if	 encoded	 by	 an	 encoding	method	which	 is	
efficient	in	such	a	way	that	the	rate	of	information	transmission,	including	noise,	
is	below	the	channel’s	capacity.	

The	efficiency	of	the	encoding	method	is	defined	by	the	ratio	of	the	rate	
of	transmission	to	the	capacity	of	the	channel.	Thus,	we	hypothesize	that	noise	
adds	sufficient	entropy	per	second,	in	order	to	drive	a	change	towards	a	more	
efficient	 encoding	 method.	 Specifically,	 noise	 inflow	 perturbs	 the	 signal	 and	
increases	the	loss	of	information.	Since	noise	increases	the	loss	of	information,	
which	 in	 turn	 calls	 for	 a	more	 efficient	 encoding	method,	 we	 expect	 that	 an	
increase	 in	noise	 should	 accelerate	 the	 drive	 towards	 a	 reorganization	 of	 the	
information,	 such	 that	 a	 more	 efficient	 encoding	 method	 is	 found.	 Thus,	 we	
predict	that	the	tendency	to	move	from	item-bound	generalization	to	category-
based	 generalization	 is	 driven	 by	 an	 inflow	 of	 noise,	 which	 calls	 for	 a	 more	
efficient	form	of	encoding,	i.e.	with	less	loss	of	information.	

To	this	end,	we	add	background	noise	while	exposing	the	participants	to	
the	XXY	grammar.	The	aim	of	 this	study	 is	 to	disentangle	 the	effect	of	adding	
background	 noise	 from	 the	 effect	 of	 overloading	 working	 memory	 with	
additional	 tasks.	 Although	 limited	 memory	 capacity	 has	 been	 proposed	 to	
promote	generalization	–	under	the	classical	Less-is-More	hypothesis	(Newport,	
1990;	2016),	previous	studies	found	no	effect	of	overloading	working	memory	
with	 additional	 tasks	 on	 generalization	 (Perfors,	 2012).	 According	 to	 our	
entropy	 model,	 we	 hypothesize	 that	 noise	 drives	 generalization,	 rather	 than	
additional	tasks	that	overload	working	memory.	In	order	to	test	this	prediction,	
we	expose	adults	 to	the	 lowest	entropy	version	of	our	XXY	artificial	grammar	
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(Radulescu	 et	 al.,	 2019),	 while	 playing	 random	 digits	 and	 beeps	 in	 the	
background	 to	create	a	noisy	environment.	 In	one	condition	 learners	have	an	
additional	task	besides	listening	to	the	XXY	language,	that	is	to	pay	attention	and	
remember	specific	digits	 from	the	noise	material	 (Dual-Task	condition),	while	
participants	 in	 another	 condition	 are	 not	 given	 any	 additional	 task	 on	 the	
background	noise	material	(Distractor	condition).		

In	 addition	 to	 probing	 the	 direct	 effect	 of	 the	 noise	 variable	 of	 the	
channel	 capacity	 on	 rule	 induction,	 we	 also	 measure	 and	 control	 for	 the	
individual	differences	in	relevant	cognitive	capacities:	explicit/implicit	memory	
capacity	 and	 a	 domain-general	 pattern-recognition	 capacity,	 which	 draws	 on	
working	memory	resources.	

Chapter	7	lays	the	foundation	of	a	new	theoretical	framework	for	rule	
induction	 by	 sketching	 an	 innovative	 research	 direction	 towards	 a	
thermodynamic	 theory	 of	 rule	 induction,	 which	 will	 complement	 the	
information-theoretic	 entropy	 model	 proposed	 in	 this	 dissertation.	 A	
comprehensive	theory	of	rule	induction	requires	the	formulation	of		biologically	
plausible	mechanisms	in	accord	with	the	laws	of	biophysics	and	with	evidence	
from	 neuroscience.	 Entropy-related	 concepts	 from	 information	 theory	 are	
ultimately	linked	to	the	same	concepts	in	biophysics.	This	dissertation	proposes	
an	 entropy	 model	 for	 rule	 induction	 whose	 main	 hypotheses	 posit	 that	 rule	
induction	results	from	the	brain’s	sensitivity	to	changes	in	information	entropy	
interacting	with	channel	capacity.	But	why	is	the	brain	sensitive	to	information	
entropy?	And	how	does	rule	induction	emerge?	Information	entropy	is	to	a	large	
extent	 a	 reflection	 of	 thermodynamic	 entropy	 (Karnani,	 Pääkkönen	&	Annila,	
2009;	Le	Bellac,	Mortessagne,	&	Batrouni,	2004;	Sethna,	2006).	Recent	studies	in	
biosciences	converge	on	a	thermodynamics	view	of	the	brain	as	an	open	system	
operating	 under	 the	 rule	 of	 the	 laws	 of	 physics,	 focusing	 on	 the	 laws	 of	
thermodynamics	 (Annila,	 2016a,	 2016b;	 Collell	 &	 Fauquet,	 2015;	 DeCastro,	
2013;	Varpula,	Annila,	&	Beck,	2013).	

Chapter	7	proposes	 and	 sketches	 the	 first	 joint	 information-theoretic	
and	thermodynamic	model	of	rule	induction.	Specifically,	this	new	perspective	
suggests	that	the	2nd	law	of	thermodynamics	can	answer	the	question	why	rule	
induction	happens,	while	the	constructal	law	of	thermodynamics	can	answer	the	
question	how	rule	induction	happens.	

In	its	first	entropy-related	formulation,	the	2nd	law	of	thermodynamics	
states:	 as	 heat	 always	 flows	 from	 hot	 to	 cold,	 entropy	 always	 increases	
(Feynman,	Leighton,	Sands,	&	Hafner,	1965).	In	modern	phrasing,	the	2nd	law	of	
thermodynamics	 states	 that	 spontaneously,	 energy	 always	 goes	 from	 being	
concentrated	to	being	dispersed	(Annila	&	Beverstock,	2016).	Recent	research	
in	the	physics	of	life	forms	supports	the	idea	that	the	2nd	law	of	thermodynamics	
acts	as	a	natural	selection	criterion	that	chooses	organisms	and	mechanisms	that	
are	better	at	taking	in	and	dispersing	energy	in	the	least	time,	in	order	to	increase	
entropy	(Annila	&	Annila,	2008;	Avery,	2012).	In	other	words,	the	principle	of	
increasing	entropy	of	the	2nd	law	equals	the	imperative	to	consume	free	energy.	
Free	 energy	 is	 the	 energy	 that	 can	 be	 used	 to	 produce	 useful	 work,	 unlike	
entropy	(Schrödinger,	1944).	In	accord	with	the	2nd	law	of	thermodynamics,	we	
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propose	 that	 rule	 induction	 is	 a	 natural	 result	 of	 the	 tendency	 of	 the	 brain’s	
neural	 networks	 (and	 our	 cognitive	 system,	 consequently)	 to	 consume	 free	
energy	(in	the	form	of	information),	in	the	least	time	possible.		

Proposed	 in	 the	 late	20th	 century,	 the	 constructal	 law	 is	 another	 first	
principle	of	thermodynamics	(like	the	2nd	 law),	which	is	argued	to	account	for	
the	evolution	of	structure	of	all	inanimate	and	animate	systems	in	nature	(Bejan,	
1996;	2012).	The	constructal	law	states	that	every	flow	system	evolves	towards	
a	particular	structure	that	facilitates	the	flow	of	energy.	A	flow	system	is	defined	
as	 everything	 that	 moves,	 animate	 or	 inanimate,	 i.e.	 a	 current	 or	 a	 stream	
originating	from	a	point	and	moving	to	other	points.	We	hypothesize	that	rule	
induction,	 just	 like	any	 flow	system	 in	nature,	has	evolved	 for	 the	purpose	of	
facilitating	faster	and	better	flow	(or	transmission)	of	information.	We	propose	
that	the	constructal	law	predicts	a	particular	design	of	the	neural	networks,	and,	
as	 a	 reflection,	 of	 the	 cognitive	 system,	 which	 generates	 the	 hierarchical	
structure	 of	 rule	 induction	 (items	 and	 categories	 of	 items).	 This	 structure	
facilitates	efficient	information	transmission,	as	a	flow	of	energy.
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Chapter	1	

	 	 	

Patterns	bit	by	bit.	An	Entropy	Model	for	Rule	Induction	
Radulescu,	S.,	Wijnen,	F.,	and	Avrutin,	S.1	

 
 
Abstract	
	
From	 limited	 evidence,	 children	 track	 the	 regularities	 of	 their	 language	
impressively	fast	and	they	infer	generalized	rules	that	apply	to	novel	instances.	
This	study	investigates	what	drives	the	inductive	leap	from	memorizing	specific	
items	 and	 statistical	 regularities	 to	 extracting	 abstract	 rules.	We	 propose	 an	
innovative	 entropy	 model	 that	 offers	 one	 consistent	 information-theoretic	
account	for	both	learning	the	statistical	regularities	in	the	input	and	generalizing	
to	novel	input.	The	model	predicts	that	rule	induction	is	an	encoding	mechanism	

 
1	This	chapter	is	a	slightly	modified	version	of	a	published	paper:		
Radulescu,	S.,	Wijnen,	F.,	&	Avrutin,	S.	(2019).	Patterns	bit	by	bit.	An	entropy	
model	for	rule	induction.	Language	Learning	and	Development.	Advance	online	
publication.	https://doi.org/10.1080/15475441.2019.1695620	
OR	
Radulescu,	S.,	Wijnen,	F.,	&	Avrutin,	S.	(2020)	Patterns	Bit	by	Bit.	
An	Entropy	Model	for	Rule	Induction,	Language	Learning	and	Development,	
16:2,	109-140,	DOI:	10.1080/15475441.2019.1695620	
	
The	entropy	model	and	parts	of	the	findings	were	presented	at	the	following	
conferences:	
Architectures	and	Mechanisms	for	Language	Processing	:	Edinburgh,	UK,	2014	
Architectures	and	Mechanisms	for	Language	Processing	:	Valletta,	Malta,	2015	
CUNY	Conference	on	Human	Sentence	Processing	-	University	of	Florida,	
Gainesville,	USA,	2016	
Statistical	Learning	Conference	-	Bilbao,	Spain,	2017	
Architectures	and	Mechanisms	for	Language	Processing	-	Lancaster,	UK,	2017	
Architectures	and	Mechanisms	for	Language	Processing	-	Berlin,	Germany,	2018	
	
The	first	version	of	the	entropy	model	and	the	results	of	the	first	experiment	
were	described	in	Silvia	Radulescu’s	2014	Master’s	Thesis,	which	is	available	
from	the	Utrecht	University	Online	Repository:	
https://dspace.library.uu.nl/handle/1874/294595	
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gradually	driven	as	a	natural	automatic	reaction	by	the	brain’s	sensitivity	to	the	
input	complexity	(input	entropy)	interacting	with	the	finite	encoding	capacity	of	
the	human	brain	(channel	capacity).	In	two	artificial	grammar	experiments	with	
adults	we	probed	the	effect	of	input	entropy	on	rule	induction.	Results	showed	
that	when	input	entropy	increases,	the	tendency	to	infer	abstract	rules	increases	
gradually.	
	
1.	Introduction	
	
1.1	The	induction	problem	for	language	acquisition	

When	acquiring	the	rules	of	their	language	from	a	limited	number	of	examples,	
children	not	only	learn	how	particular	linguistic	items	(sounds,	words,	etc.)	are	
associated,	but	they	also	infer	generalized	rules	that	apply	productively	to	novel	
instances.	 This	 inductive	 leap	 is	 a	 powerful	 phenomenon	 because	 it	 enables	
learners	 to	 create	 and	 understand	 an	 infinite	 number	 of	 sentences.	 From	
memorizing	sequences	like	Dad	walked	slowly	and	Mom	talked	nicely,	to	learning	
generalizations	of	the	type	“add	–ed”	to	express	a	past	action,	and	to	generalizing	
to	abstract	categories	(Noun,	Verb,	Adverb),	and	inducing	a	general	rule	that	the	
sequence	 Noun-Verb-Adverb	 is	 well-formed,	 learners	 take	 a	 qualitative	 step	
from	encoding	exemplars	to	forming	abstract	categories	and	acquiring	relations	
between	 them.	 This	 paper	 addresses	 this	 qualitative	 step	 from	 items	 to	
categories.	

Following	previous	proposals	in	the	literature	(Gómez	&	Gerken,	2000),	
we	 will	 distinguish	 between	 two	 types	 of	 rule	 induction:	 item-bound	
generalizations	 and	 category-based	 generalizations.	 An	 item-bound	
generalization	is	a	relation	between	perceptual	features2	of	items,	e.g.	a	relation	
based	on	physical	 identity,	 like	ba-ba	 (ba	 follows	ba),	 or	 “add	–ed”.	Category-
based	 generalization	 operates	 beyond	 the	 physical	 items;	 it	 abstracts	 over	
categories	 (variables),	 e.g.	 Y	 follows	 X,	 where	 Y	 and	 X	 are	 variables	 taking	
different	 values.	 In	 natural	 language,	 the	 grammatical	 generalization	 that	 a	
sentence	 consists	 of	 a	 Noun-Verb-Noun	 sequence	 is	 based	 on	 recognizing	 an	
identity	 relation	 over	 the	 abstract	 linguistic	 category	 of	 noun	 (which	 can	 be	
construed	 as	 a	 variable	 that	 takes	 specific	 nouns	 as	 values).	 Category-based	
generalization	is	a	very	powerful	phenomenon,	because	it	enables	processing	a	
potentially	 infinite	 number	 of	 sentences,	 making	 it	 crucial	 to	 linguistic	
productivity.	Thus,	a	fundamental	mechanism	that	needs	to	be	investigated	to	
thoroughly	understand	language	acquisition	is	how	learners	converge	on	these	
higher-order	category-based	generalizations.	

 
2	Perceptual	features	are	any	physical	characteristics	specific	to	the	respective	
perception	modality	(auditory,	visual	etc.).	



Chapter	1		

 

27 

 
 

1.2	Statistical	learning	vs.	algebraic	rules	

An	 ongoing	 debate	 in	 psycholinguistics	 revolves	 around	 the	 learning	
mechanisms	underlying	item-bound	and	category-based	generalizations.	Studies	
focusing	 on	 item-bound	 generalization	 argue	 that	 the	 learning	 mechanism	 at	
stake	is	a	lower-level	item-bound	mechanism	that	relies	on	memorization	of	the	
specific	 items	 (i.e.	 their	 physical	 features),	 and	 on	 the	 statistical	 relations	
between	 them.	 For	 example,	 it	 was	 shown	 that	 children	 detect	 patterns	 of	
specific	auditory/visual	items,	e.g.	phonotactic	information	(Chambers,	Onishi,	
&	Fisher,	2003),	and	word	boundaries	(Aslin,	Saffran	&	Newport,	1998;	Saffran,	
Aslin	&	Newport,	1996),	by	statistical	learning.	As	defined	in	Saffran	et	al.	(1996),	
statistical	 learning	 denotes	 statistical	 computation	 about	 probabilistic	
distributions	of	items,	such	as	transitional	probabilities	(e.g.	the	probability	that	
a	certain	item	occurs	after	another).	While	such	basic	statistical	computations	
were	shown	to	suffice	for	item-bound	generalizations,	some	researchers	argued	
(Endress	 &	 Bonatti,	 2007;	 Marcus,	 Vijayan,	 Rao,	 &	 Vishton,	 1999)	 that	 this	
mechanism	alone	cannot	account	for	generalizing	beyond	specific	items.	Marcus	
et	al.	(1999)	showed	that	7-month	olds	recognize	the	AAB	structure	underlying	
strings	such	as	“leledi”,	“kokoba”,	as	they	were	able	to	discriminate	new	strings,	
consisting	of	novel	syllables,	with	 the	same	AAB	structure,	 from	novel	strings	
with	a	different	structure	(e.g.	ABA).	Marcus	et	al.	argue	that	infants	are	equipped	
with	 an	 abstract	 symbolic	 (‘algebraic’)	 system	 that	 comprises	 variables	 and	
relations	 between	 these	 variables.	 Thus,	 they	 proposed	 that	 children	 possess	
two	 separate	 learning	 mechanisms,	 which	 are	 different	 in	 nature:	 statistical	
learning	 for	 tracking	 co-occurrence	 probabilities	 of	 specific	 items,	 and	 an	
abstract	 rule	 learning	 mechanism	 that	 creates	 and	 operates	 on	 variables.	
Although	 an	 algebraic	 system	 might	 enable	 generalizing	 to	 novel	 input,	 the	
authors	do	not	explain	how	 learners	 tune	 into	such	algebraic	 rules,	and	what	
factors	facilitate	or	impede	this	process.	

In	contrast	to	the	proposition	put	forth	by	Marcus	et	al.	and	Endress	and	
Bonatti,	 that	 statistical	 learning	 and	 abstract	 rule	 learning	 are	 separate	 and	
distinct	mechanisms,	 Aslin	&	Newport	 (2012)	 argued	 that	 statistical	 learning	
accounts	for	learning	both	statistical	regularities	of	specific	items	and	abstract	
rules	that	apply	to	novel	 instances.	Recent	computational	models	suggest	that	
learners	might	be	“adding	generalization	to	statistical	learning”	when	inducing	
phonotactic	 knowledge	 (Adriaans	 &	 Kager,	 2010),	 and	 that	 neither	 a	 “pure	
statistics”	position,	nor	a	 “rule-only	position”	would	suffice	 for	explaining	 the	
phenomenon	 of	 generalization,	 but	 rather	 an	 interaction	 between	 the	 two	
mechanisms	 in	 which	 “statistical	 inference	 is	 performed	 over	 rule-based	
representations”	(Frank	&	Tenenbaum,	2011).	

In	the	studies	summarized	above,	the	terminology	was	used	to	refer	to	
both	the	two	types	of	encoding	(statistical	regularities	vs.	abstract	rules),	and	to	
the	 underlying	 learning	 mechanisms,	 i.e.	 statistical	 learning	 vs.	 abstract	 rule	
learning.		But	we	posit	that	the	processes	(i.e.	learning	mechanisms)	should	be	
disentangled	from	their	results	(i.e.	forms	of	encoding).	Drawing	this	distinction	
allows	for	more	specific	questions	to	be	formulated:		
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1. Are	 these	 forms	of	encoding	outcomes	of	 two	separate	mechanisms,	with	
statistical	learning	underlying	item-bound	generalizations,	and	abstract	rule	
learning	accounting	for	the	higher-order	category-based	generalizations?		

2. Or,	 are	 these	 forms	 of	 encoding	 two	 different	 outcomes	 of	 the	 same	
mechanism?		

a. If	they	are	outcomes	of	the	same	mechanism,	are	the	two	types	of	
generalizations	 stages	 of	 a	 phased	 mechanism	 that	 gradually	
transitions	 from	 a	 lower-level	 item-bound	 generalization	 to	 a	
higher-order	abstract	one?	

b. 	Or	 is	 it	 a	 mechanism	 that	 switches	 abruptly	 from	 one	 form	 of	
encoding	to	the	other?		

3. What	triggers	the	change	in	form	of	encoding,	be	it	a	gradual	transition	from	
item-bound	 into	category-based	generalization,	or	a	sudden	 leap	 from	one	
form	of	encoding	to	the	other	one?	

1.3	Rule	induction	in	infants		

Gerken	(2006)	took	a	step	towards	understanding	the	relation	between	the	two	
forms	 of	 encoding	 and	 the	 triggering	 factors,	 by	 showing	 that	 the	 nature	 of	
generalization	that	learners	form	depends	crucially	on	the	statistical	properties	
of	the	input.	Gerken	(2006)	modified	the	design	used	by	Marcus	et	al.	(1999)	and	
reconsidered	their	argument.	She	asked	whether	9-month-olds	presented	with	
two	different	subsets	of	the	strings	used	by	Marcus	et	al.	(1999)	would	make	the	
same	generalization.	To	answer	this	question,	she	presented	one	group	of	infants	
with	 four	 AAB	 strings	 ending	 in	 different	 syllables	 (je/li/di/we)	 and	 another	
group	with	four	AAB	strings	ending	only	in	di.	Gerken	argues	that	infants	in	the	
second	 group	had	 two	 equally	 plausible	 generalizations	 at	 hand:	 the	 broader	
AAB	rule	(a	category-based	generalization,	according	to	our	terminology),	and	
the	 narrower	 “ends	 in	 di”	 generalization	 (an	 item-bound	 generalization).	 The	
results	showed	that	the	second	group	only	generalized	to	novel	AAB	strings	that	
ended	 in	 di	 (so,	 not	 ko_ko_ba,	 etc.),	 while	 the	 first	 group	 made	 the	 broader	
generalization	to	all	AAB	strings.	Gerken	surmises	that	(1)	the	 learners	 in	the	
AAdi	condition	did	not	see	evidence	that	strings	could	end	in	any	other	syllable,	
and,	therefore,	(2)	they	posited	the	only	(minimal)	rule	that	reliably	generated	
the	set	of	AAB	strings	ending	in	the	same	syllable	di,	namely,	the	“ends	in	di”	rule.	
The	implication	of	this	study	is	that	generalization	is	apparently	graded,	and	that	
the	degree	to	which	learners	generalize	depends	on	the	variability	of	the	input.	

However,	this	account	is	incomplete.	Gerken	argues	that	only	the	second	
group	 had	 two	 equally	 plausible	 generalizations	 at	 hand,	 but	 we	 think	 that,	
formally,	both	groups	were	presented	with	input	that	evidenced	both	a	narrower	
generalization	(“ends	in	je/	li/	di/	we”	in	the	first	group;	and	“ends	in	di”	in	the	
second	one),	and	a	broader	AAB	 generalization,	but	 in	one	case	 the	narrower	
item-bound	generalization	was	made,	and	in	the	other	case	the	broader	category-
based	 generalization.	 In	 fact,	 both	 groups	 were	 presented	 with	 input	 that	
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provided	no	direct	evidence	 that	 strings	could	also	end	 in	a	new	syllable	 (i.e.	
none	of	the	strings	in	the	input	ended	in	ba).	However,	learners	in	the	first	group	
accepted	a	new	AAB	string	ending	in	ba	(instead	of	sticking	to	the	narrower	“ends	
in	je/	li/	di/	we”	generalization),	while	the	second	group	stuck	to	“ends	in	di“.	As	
the	authors	argue	that	the	second	group	made	the	narrower	generalization	“ends	
in	di“	because	there	is	no	direct	evidence	from	the	input	that	a	string	could	end	
in	a	new	syllable	(e.g.	ba),	 then	the	other	group	should	be	expected	to	do	the	
same,	i.e.	stick	to	the	narrower	generalization	“ends	in	 je/	li/	di/	we”,	because	
their	 input	 also	 showed	 no	 direct	 evidence	 that	 a	 string	 could	 end	 in	 a	 new	
syllable	 (e.g.	 ba).	 	 Hence	 it	 is	 still	 not	 clear	 from	 these	 results	 what	 exactly	
triggered	a	broader	category-based	generalization	and	what	kind	of	evidence	is	
needed	to	support	it.	Also,	 if	 input	variability	is	a	factor,	as	argued	by	Gerken,	
how	much	variability	is	needed	to	trigger	a	category-based	generalization?		

A	subsequent	study	by	Gerken	(2010)	may	help	finding	answers.	In	this	
study,	she	exposed	9-month-olds	to	the	same	“ends	in	di”	condition	as	in	Gerken	
(2006),	but	–	crucially	–	added	three	strings	ending	in	“je/we/li”	at	the	end	of	the	
familiarization.	 The	 participants	 subsequently	 made	 the	 broader	 AAB	
generalization.	The	author	hypothesizes	that	the	factor	driving	generalization	is	
not	 the	mere	 number	 of	 examples,	 but	 the	 logical	 structure	 of	 the	 input.	 She	
proposes	that	infants	entertain	incremental	learning	models	(by	updating	their	
hypothesis	in	real	time),	and	that	they	use	rational	decision	criteria,	in	a	process	
that	 resembles	 Bayesian	 learning.	 But	 we	 ask:	 would	 they	 make	 a	 broader	
generalization	also	if	these	3	‘divergent’	strings	were	presented	at	the	beginning	
of	the	2-minute	familiarization?	Would	infants	not	‘forget’	those	3	strings,	and	
rather	update	their	model	based	on	the	more	strongly	evidenced	and	recent	“end	
in	di”	input?	As	Gerken	(2010)	did	not	include	this	control	condition,	the	study	
cannot	decisively	show	that	infants	are	incremental	and	“rational”	learners,	as	
there	is	no	online	measure	or	intermediate	checkpoint	into	their	models	before	
and	after	each	batch	of	stimuli.	Nonetheless,	it	clearly	shows	that	little	evidence	
and	variability	is	needed	for	them	to	move	to	a	broader	generalization.	However,	
surprisingly,	 the	 results	 of	 Gerken,	 Dawson,	 Chatila,	 and	 Tenenbaum	 (2015)	
suggest	 that	 variability	 is	 not	 needed.	 An	 input	 consisting	 of	 a	 single	 item	
(“leledi”)	is	enough	for	9-month-olds	to	make	a	broader	generalization	(AAB),	if	
there	is	a	surprising	repetition	pattern	(“lele”)	which	is	very	rare	in	their	prior	
language	 model.	 However,	 when	 the	 single	 item	 was	 (“lelezhi”)	 –	 “zhi”	 is	
considered	 another	 surprising	 feature	 (due	 to	 its	 very	 low	 frequency	 in	 end	
position	in	English)	–	the	infants	did	not	make	the	broader	generalization,	but	
kept	 with	 the	 narrower	 AAzhi	 pattern.	 Gerken	 et	 al.	 argue	 that	 infants	 only	
generalized	if	both	surprising	features	were	present.	However,	the	authors	make	
no	comments	on	what	would	be	the	psychological	reason	or	“rational”	criterion	
that	accounts	 for	 this	behavior.	They	also	do	not	 take	 into	 consideration	as	a	
possible	factor	for	their	results	the	extremely	short	exposure	time	(21	seconds	
vs	2	minutes	 in	 their	previous	studies),	and	 learning	 from	a	much	 longer	 test	
phase	with	a	lot	of	added	variability	(4	different	test	strings	were	added	in	the	
test	 phase).	 	 We	 will	 come	 back	 to	 this	 apparently	 surprising	 finding	 in	 the	
General	Discussion	section.	
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These	studies	and	others	(Gerken	&	Bollt,	2008;	Gómez,	2002)	show	that	
input	variability	is	a	strong	factor	driving	generalization.	However,	it	seems	that	
it	is	not	mere	variability	that	is	critical,	but	a	specific	pattern	of	variable	input.	
How	 can	 this	 specific	 pattern	 be	 captured	 and	 defined	 by	 incorporating	 all	
variables?		

	
	

1.4	Rule	induction	in	adults	
	
In	research	with	adults,	a	study	that	aimed	to	elucidate	the	relation	between	the	
two	 forms	of	encoding	 (item-bound	 and	category-based),	and	 to	 further	show	
that	the	type	of	encoding	learners	make	depends	on	input	properties	is	Reeder,	
Aslin	&	Newport	(2009;	2013).	In	a	series	of	eight	artificial	language	experiments	
(Exp.	 1-4,	 5A-5D),	 adults	were	 familiarized	with	 nonsense	 strings	 having	 the	
underlying	structure:	(Q)AXB	(R)3,	in	order	to	probe	whether	they	can	generalize	
X	as	a	category,	rather	than	just	memorize	the	exact	strings.	Participants	heard	
different	 subsets	 of	 strings	 from	 this	 grammar,	 which	 displayed	 different	
combinations	 of	 items.	 In	 the	 test	 phase,	 participants	 were	 tested	 on	 the	
withheld	(novel)	grammatical	strings,	as	well	as	on	ungrammatical	strings	(AXA	
or	BXB	strings).	In	our	terminology,	participants’	ability	to	recognize	the	novel	
strings	 as	 grammatical	 implies	 that	 they	 made	 the	 correct	 category-based	
generalization	(i.e.	AXB).	Reeder	et	al.	(2013)	found	four	factors	with	different	
effects	on	generalization:	richness	of	contexts	(all	As	and	Bs	concatenated	with	all	
Xs)	drives	generalization	(Exp.	1),	reduced	number	of	exemplars	does	not	impede	
generalization	(Exp.2),	but	incomplete	overlap	of	contexts	(Xs	concatenated	only	
with	2/3	As	and	2/3	Bs	–	in	Exp.3)	and	longer	exposure	time	(increased	frequency	
of	items	–	in	Exp.4)	reduce	the	likelihood	of	generalization.	In	Experiments	5A	–	
5D,	the	input	mirrored	that	of	Experiments	1	–	4,	respectively,	but	they	added	a	
minimally	overlapping	X-word	that	occurred	in	only	a	single	A1_B1	context.	They	
found	a	similar	pattern	of	results	as	in	Experiments	1	–	4,	i.e.	subjects	generalized	
the	novel	minimally	overlapping	X	to	the	full	range	of	the	X	category.	However,	
when	 exposure	 increased	 in	 Experiment	 5D,	 learners	 were	 less	 likely	 to	
generalize,	mirroring	the	results	found	in	Experiment	4.	However,	the	authors	
gave	 no	 consistent	 explanation	 for	 the	 different	 effects	 of	 these	 factors	 on	
generalization.	Are	 they	 independent	 factors?	Why	did	participants	still	make	
category-based	generalizations	when	exposed	to	the	input	in	Experiment	3,	but	
were	significantly	less	inclined	to	do	so	when	they	had	increased	exposure	to	the	
same	input	(with	the	same	statistical	properties;	Experiment	4	and	5D)?	These	
results	 suggest	 that	 statistical	 properties	 of	 the	 input	 interact	with	 degree	 of	
exposure.	 The	 authors	 also	 suggest	 that	 at	 some	 degree	 of	 sparseness	 and	
overlap	of	contexts,	there	must	be	a	threshold	for	shifting	from	word-by-word	
learning	 to	 category	 generalization.	We	 propose	 that	 finding	 an	 approach	 to	

 
3	Each	letter	stands	for	a	category	of	words	and	those	in	brackets	mark	optional	
categories.	Each	category	had	three	words.	
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calculate	 this	 threshold	would	explain	how	the	 item-bound	generalization	and	
the	 category-based	 generalization	 are	 related,	 and	 help	 answer	 the	 question	
whether	the	learning	mechanisms	underlying	these	two	types	of	generalizations	
are	the	same,	or	different.	While	this	study	found	some	factors	that	trigger	or	
impede	 generalization,	 the	 authors	 did	 not	 capture	 the	 specific	 pattern	 of	
variability	and	exposure	that	drives	generalization.		

Aslin	and	Newport	(2012)	argue	that	for	both	Reeder	et	al.	(2009)	and	
Gerken	 (2006)	 the	 key	 point	 is	 the	 reliability	 of	 the	 distributional	 cues:	 the	
consistency/inconsistency	 of	 the	 distribution	 of	 context	 cues	 determines	
whether	a	generalization	is	 formed,	or	specific	 instances	are	 learned.	 In	other	
words,	they	hypothesize	that	statistical	learning	is	the	mechanism	that	underlies	
both	item-bound	generalizations	and	category-based	generalizations.	Their	view	
is	very	much	in	line	with	the	model	we	propose	in	the	next	section.	However,	
they	 do	 not	 give	 an	 account	 as	 to	 how	 the	 same	 mechanism	 outputs	 two	
qualitatively	 different	 forms	 of	 generalization,	 what	 kind	 of	 context	 cue	
distribution	leads	to	one	or	the	other	generalization,	and	why	it	is	the	case	that	
the	same	mechanism	can	have	two	different	outcomes.	Also,	if	the	distribution	of	
the	 context	 cues	 is	 the	 factor	 driving	 generalization,	 why	 does	 increased	
exposure	 to	 the	 same	 statistical	 distribution	negatively	 impact	 generalization	
(Experiments	4	and	5D	in	Reeder	et	al.,	2013)?		

Summarizing,	 while	 these	 studies	 provided	 important	 insights	 into	
generalization,	 showing	 that	 infants	 and	 adults	 can	 tune	 into	 both	 forms	 of	
encoding,	 item-bound	generalizations	 and	category-based	generalizations,	 they	
do	 not	 explain	 how	 learners	 converge	 on	 higher-order	 category-based	
generalizations.	 Are	 the	 two	 forms	 of	 encoding	 outcomes	 of	 two	 separate	
mechanisms?	Or	are	they	two	outcomes	of	the	same	mechanism,	with	either	a	
gradual	 transition	 or	 an	 abrupt	 switch	 from	 a	 lower-level	 item-bound	 to	 a	
higher-order	 abstract	 one?	What	 are	 the	 independent	 factors	 that	 trigger	 the	
transition	from	item-bound	to	category-based	generalizations?	Below	we	sketch	
a	new	model	that	captures	the	specific	pattern	of	variable	input	interacting	with	
cognitive	 constraints,	 to	 give	 a	 clear	 and	 complete	 picture	 of	 the	mechanism	
underlying	 rule	 induction	 and	 to	 unify	 previous	 findings	 in	 one	 consistent	
account.		
	
2.	An	Entropy	Model	for	Linguistic	Generalization	
	
2.1.	Introduction	to	the	Model	
	
We	 present	 a	 new	 approach	 to	 generalization	 from	 an	 information-theoretic	
perspective,	 and	 we	 propose	 a	 new	 entropy	 model	 for	 rule	 induction.	 Our	
entropy	model	is	designed	to	unify	the	findings	of	the	artificial	grammar	studies	
discussed	so	far	under	one	consistent	account.	The	basic	intuition	of	our	model	
is	 that	 the	 factor	 triggering	 the	 transition	 from	 item-bound	 to	 category-based	
generalizations	 is	 input	 complexity,	 as	measured	 by	 the	 information-theoretic	
concept	 of	 entropy.	 Intuitively,	 entropy	 quantifies	 the	 complexity	 of	 a	 set	 of	
items,	and	it	varies	depending	both	on	the	number	of	items	and	their	frequency	
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distribution.	 Entropy	 increases	 if	 the	 number	 of	 items	 increases,	 and	 it	 also	
increases	if	items	have	a	homogeneous	frequency	distribution.	Entropy	can	also	
be	 defined	 as	 uncertainty,	 in	 this	 context	 uncertainty	 (or	 surprise)	 about	 the	
occurrence	of	specific	items	or	configurations	of	items.	Both	factors	(number	and	
frequency	distribution	of	items)	contribute	to	the	uncertainty	of	the	occurrence	
of	specific	items	or	configurations.	

The	 concept	 of	 entropy	 is	 not	 new	 to	 this	 domain.	 Pothos	 (2010)	
proposed	an	information-theoretic	model	to	describe	performance	in	acquiring	
knowledge	 about	 a	 finite-state	 grammar.	 He	 employed	 Shannon’s	 entropy	
(Shannon,	1948)	as	a	measure	of	quantifying	the	ease	of	predicting	if	a	string	of	
items	is	consistent	with	a	trained	language,	i.e.	if	a	string	would	possibly	be	part	
of	the	trained	language.	However,	this	model	tackles	item-bound	generalizations	
only,	as	finite-state	grammars	contain	a	finite	number	of	items,	and	they	define	
regularities	in	terms	of	specific	items	(rather	than	categories).		

Unlike	 Pothos’s	 model,	 the	 entropy	 model	 we	 propose	 gives	 a	
conceptual	 analysis	 that	 encompasses	 both	 item-bound	 generalizations	 and	
category-based	 generalizations.	 In	 addition	 to	 entropy,	 channel	 capacity	
(Shannon,	1948)	is	another	critical	factor,	as	our	model	hypothesizes	that	rule	
induction	 is	 an	 encoding	 mechanism	 gradually	 driven	 as	 a	 natural	 automatic	
reaction	 by	 the	 brain’s	 sensitivity	 to	 the	 input	 complexity	 (entropy)	 interacting	
with	the	finite	encoding	capacity	of	the	human	brain	(channel	capacity).	Thus,	our	
model	is	based	on	the	following	tenets:	

1. Item-bound	 generalization	 and	 category-based	 generalization	 are	 not	
independent;	 they	 are	 outcomes	 of	 the	 same	 encoding	 mechanism	 that	
gradually	 goes	 from	 lower-level	 item-bound	 to	 higher-order	 abstract	
generalizations.	

2. The	independent	factors	that	drive	the	gradual	transition	from	item-bound	
to	category-based	generalization	are	input	complexity	(entropy)	and	the	finite	
encoding	capacity	of	the	human	brain	(channel	capacity).		

This	model	thus	specifies	a	quantitative	measure	for	the	gradual	transition	from	
item-bound	to	category-based	generalization	by	capturing	the	specific	pattern	of	
variable	input	interacting	with	cognitive	mechanisms.	

Entropy,	 as	 an	 information-theoretic	 concept,	 varies	 as	 a	 function	 of	 the	
number	 of	 items	 in	 the	 input	 and	 their	 probability	 of	 occurrence	 (which	 is	 a	
function	of	their	relative	frequency).For	a	random	variable	X,	with	n	values	{x1,	
x2	…	xn},	Shannon’s	entropy	(Shannon,	1948),	denoted	by	H(X),	is	defined	as:	

H(X)	=	–	∑ 𝑝(𝑥!)𝑙𝑜𝑔𝑝(𝑥!)"
!#$ 		

where	 Σ	 denotes	 the	 sum,	 and	 p(xi)	 is	 the	 probability	 that	 xi	 occurs.	
Probability	shows	how	likely	it	is	that	a	value	xi	occurs.	Log	should	be	read	as	log	
to	the	base	2	here	and	throughout	the	paper.	Entropy	is	used	in	our	model	to	
capture	and	describe	a	property	of	the	input	–	a	specific	pattern	of	complexity	(or	
variability),	and	as	a	measure	of	this	property,	i.e.	a	measure	of	input	complexity.	
Entropy	has	the	following	properties:	
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1. For	 a	 given	 set	 of	 n	 items	 from	 the	 input,	 entropy	 (H)	 is	 zero,	 if	 the	
probability	of	one	item	is	1	and	the	probabilities	of	all	the	other	items	are	
zero.	Intuitively,	this	is	a	set	with	the	lowest	complexity,	and	uncertainty.	In	
psychological	 terms,	 an	 event	 with	 only	 one	 outcome	 with	 a	 maximum	
probability	of	occurrence	is	totally	predictable,	 i.e.	the	amount	of	surprise	
when	that	outcome	occurs	is	zero.	

2. For	a	given	set	of	n	items,	the	entropy	is	maximal	if	the	distribution	of	the	
items’	probabilities	is	uniform,	i.e.	when	all	the	probabilities	are	equal	(for	
example,	 for	 n=4	 and	 each	 item	 has	 p=0.25,	 H	 =	 2).	 Due	 to	 the	 equal	
probabilities,	intuitively	this	set	has	the	highest	uncertainty	about	specific	
items’	occurrence.	In	psychological	terms,	an	event	that	has	many	outcomes	
which	 are	 equally	 probable	 to	 happen	 creates	 the	 highest	 amount	 of	
surprise.	

3. If	all	the	probabilities	are	equal,	the	entropy	of	a	set	of	items	increases	as	a	
function	of	the	number	of	discrete	items.	

4. Any	change	to	render	the	probabilities	of	the	items	unequal	(i.e.	some	items	
are	more	probable	than	others)	causes	a	decrease	in	entropy.		

Taken	 together,	 these	 properties	 capture	 the	 unique	 dynamics	 between	 both	
factors	 (number	 and	 probability	 distribution	 of	 items)	 that	 defines	 a	 specific	
pattern	of	variability	that	our	model	proposes	to	be	relevant	for	the	process	of	
rule	induction.	
	 Channel	capacity	(C)	describes	the	amount	of	entropy	that	can	be	sent	
through	the	channel	per	unit	of	time	(Shannon,	1948).	If	H	<	C,	information	can	
be	 sent	 through	 the	 channel	 at	 the	 channel	 rate	 (C)	with	 an	 arbitrarily	 small	
frequency	of	errors	(equivocations)	by	using	a	proper	encoding	method.	If	H	>	C,	
it	is	possible	to	find	an	encoding	method	to	transmit	the	signal	over	the	channel,	
but	 the	 rate	 of	 transmission	 can	 never	 be	 higher	 than	 C.	Channel	 capacity	 is	
employed	here	to	model	the	finite	encoding	capacity	of	the	information	encoding	
system.	Intuitively,	the	capacity	to	encode	specific	items	and	relations	between	
them	is	finite.	Thus,	depending	on	the	degree	of	input	complexity	and	the	finite	
encoding	 capacity	 (i.e.	 channel	 capacity),	 different	 forms	 of	 information	
encoding	are	necessary	to	encode	the	complexity	of	a	given	input.	
	
2.2.	Predictions	of	the	Model	
	
1. Item-bound	 generalization	 and	 category-based	 generalization	 are	 not	

independent	 mechanisms.	 Rather,	 they	 are	 outcomes	 of	 the	 same	
information	 encoding	mechanism	 that	 gradually	 goes	 from	 a	 lower-level	
form	 of	 encoding	 (item-bound	 generalization)	 to	 a	 higher-order	 abstract	
encoding	 (category-based	 generalization),	 as	 triggered	 by	 the	 interaction	
between	input	complexity	and	the	finite	encoding	capacity	of	the	brain.	The	
encoding	mechanism	moves	 gradually	 from	 an	 item-bound	 to	 a	 category-
based	generalization	as	a	function	of	increasing	input	complexity	(entropy),	
as	follows:	
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a. If	the	input	entropy	is	low	–	that	is	below	or	matches	the	channel	capacity,	
then	the	input	can	be	encoded	using	an	encoding	method	that	matches	the	
input	 statistical	 structure,	 i.e.	 the	 probability	 distribution	 of	 the	 specific	
items	 in	 the	 input.	Thus,	 the	 items	with	 their	 specificity	defined	by	 their	
uniquely	 identifying	 features	 (acoustic,	 phonological,	 phonotactic,	
prosodic,	distributional,	etc.)	and	their	specific	probability	distribution	can	
be	 transmitted	 through	 the	 channel	 (i.e.	 encoded)	 at	 the	default	 channel	
rate	 (i.e.	 amount	 of	 entropy	 per	 unit	 of	 time)	 and	 stored	 by	 item-bound	
encoding	(i.e.	probability	matching	to	the	input).	
Examples	of	 item-bound	encoding	would	include	rules	like	“ends	in	di”,	or	
rules	specifying	what	specific	items	would	follow	each	other	(e.g.	ba	or	ge	
follows	wo).	

b. If	the	finite	channel	capacity	of	the	encoding	system	is	exceeded	by	the	input	
entropy,	 it	 is	 possible	 to	 find	 a	 proper	 method	 that	 encodes	 more	
information	(entropy),	but	the	rate	of	encoding	cannot	be	higher	than	the	
default	 channel	 capacity	 (Shannon,	 1948).	 It	 is	 precisely	 this	 essential	
design	 feature	 of	 the	 channel	 capacity	 which	 “forces”	 the	 information	
processing	system	to	re-structure	the	information	to	gradually	–	bit	by	bit	
–	shape	the	item-bound	encoding	into	another	form	of	encoding.	Remember	
the	channel	capacity	 theorem	(Shannon,	1948):	 if	H>C,	another	encoding	
method	can	be	 found	to	 transmit	 the	signal,	but	 the	rate	of	 transmission	
stays	 constant.	 Re-structuring	 the	 information	 entails	 re-observing	 the	
item-specific	features	and	structural	properties	of	the	input	and	identifying	
similarities	and	differences	in	order	to	compress	the	message	by	gradually	
reducing	the	number	of	specific	features	that	individual	items	are	coded	for	
(i.e.	 to	 erase	 or	 “forget”	 statistically	 insignificant	 differences,	 that	 is	 low	
probability	 features).	 As	 a	 result	 of	 reducing	 (“forgetting”)	 the	 specific	
features,	 i.e.	 differences,	 items	 are	 grouped	 in	 “buckets”	 (i.e.	 categories)	
based	 on	 non-specific	 shared	 features,	 thus,	 a	 new	 form	 of	 encoding	 is	
created,	which	allows	for	higher	input	entropy	to	be	encoded	using	the	same	
given	channel	capacity,	thus	yielding	higher-level	category-based	encodings.	
This	would	be	the	case	for	generalizations	made	over	abstract	categories:	
such	 as	 AAB	 or	 AXB	 patterns,	 which	 allow	 for	 more	 novel	 items	 to	 be	
included	 in	 these	 categories.	 Thus,	 the	 channel	 capacity	 promotes	 re-
structuring	 (in	 accord	 with	 Dynamic	 Systems	 Theory	 invoked	 also	 in	
studies	of	other	cognitive	mechanisms	–	e.g.	Stephen,	Dixon,	and	Isenhower,	
2009)	 for	 the	 purpose	 of	 adapting	 to	 noisier	 environments	 (i.e.	 in	 our	
terminology,	increasingly	entropic	environments).		

2. An	increase	of	channel	capacity,	(e.g.	resulting	from	growth/development),	
reduces	the	need,	and	thus	the	tendency	to	move	to	a	higher-order	category-
based	form	of	encoding.	Therefore,	if	infants	and	adults	are	exposed	to	the	
same	input	entropy,	adults	will	have	a	lower	tendency	to	make	a	category-
based	generalization	than	infants,	because	adults’	channel	capacity	is	higher.	

3. Channel	capacity	is	used	to	model	the	finite	encoding	capacity	of	the	human	
mind.	 We	 hypothesize	 that	 it	 is	 modulated	 by	 (unintentional)	 incidental	
memory	capacity,	attention	and	a	general	pattern-recognition	capacity.	
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Therefore,	the	model	hypothesizes	that	there	is	a	gradient	of	generalization,	in	
line	 with	 previous	 suggestions	 (Aslin	 &	 Newport,	 2014),	 but	 it	 refines	 and	
extends	this	proposal,	by	further	explaining	how	and	why	this	gradual	process	
happens.	 Sensitivity	 to	 entropy	 means	 a	 sensitivity	 to	 a	 specific	 pattern	 of	
variability	in	the	input	given	by	the	degree	of	similarity/dissimilarity	between	
items	and	 their	 features	and	also	 their	probability	distribution,	which	assigns	
significance	 to	 specific	 items	 and	 their	 features.	 The	 more	 differences	 are	
encoded	between	specific	items	(i.e.	many	different	specific	features	encoded	for	
each	item	–	measured	in	bits	of	information),	the	higher	the	degree	of	specificity	
of	 the	 encoding	 (i.e.	 item-bound	 specificity).	 Conversely,	 since	 the	 channel	
capacity	places	an	upper	bound	on	the	number	of	bits	encoded	per	unit	of	time,	
a	reduction–	“gradual	forgetting”	–	of	the	encoded	differences	highlights	more	
similarities,	hence	the	lower	the	degree	of	specificity	and	the	higher	the	degree	
of	 generality.	 Entropy	 captures	 this	 dynamics	 of	 specificity	 vs	 generality,	 and	
quantifies	it	in	bits	of	information.	Thus,	a	gradient	of	specificity/generality	on	a	
continuum	 from	 item-bound	 to	 category-based	 encodings	 can	 be	 envisaged	 in	
terms	of	less	or	more	bits	of	information	encoded	in	the	representation.4	
	
2.3.	Application	of	the	Model	to	AGL	
	
Given	 that	 entropy	 is	 defined	 as	 a	 property	 of	 a	 variable5,	 the	 input	must	 be	
organizable	 in	 variables	 that	 can	 take	 certain	 values.	 In	 artificial	 grammar	
studies	 using	 patterns	 like	 AAB,	 AXB,	 each	 position	 of	 the	 patterns	 creates	 a	
variable	(a	category	of	items),	whose	possible	values	are	the	specific	items:	for	
example,	variable	A	in	a	study	on	learning	an	AAB	pattern	(le_le_di)	is	filled	by	le,	
wi,	 ji,	de,	etc.	Each	category	of	bigrams	and	trigrams	creates	a	variable,	whose	
possible	values	are	the	specific	bigrams	and	trigrams:	for	example,	lele	is	a	value	
of	 the	 AA	 category	 of	 bigrams,	 ledi	 is	 a	 possible	 value	 of	 the	 AB	 category	 of	
bigrams,	while	wiwije	is	one	of	the	values	taken	by	the	AAB	category	of	trigrams.	
Similarly,	in	finite-state	grammars,	the	strings	generated	by	the	grammar	can	be	
segmented	 in	 groups	 of	 bigrams	 and	 trigrams,	 which	 can	 be	 construed	 as	
variables	 in	 a	 similar	 way.	 Given	 this	 set	 of	 variables,	 we	 can	 calculate	 the	
entropy	of	the	familiarization	input.	

For	an	entropy	model	to	be	relevant	for	the	encoding	mechanism	under	
scrutiny	 here,	 evidence	 is	 needed	 that	 learners	 acquire	 knowledge	 about	
categories	 of	 items	 that	 can	 be	 construed	 as	 variables:	 there	 is	 extensive	
evidence	 that	 grammaticality	 judgments	 in	 artificial	 grammar	 learning	 are	
shaped	 by	 knowledge	 acquired	 about	 bigrams	 and	 trigrams	 (Knowlton	 and	
Squire,	 1994;	 Perruchet	 and	 Pacteau,	 1990).	 Studies	 also	 showed	 that	

 
4	In	terms	of	strength	of	neural	networks,	this	degree	of	specificity	vs.	
generality	can	be	thought	as	the	degree	of	strength	of	the	memory	pathways	
underlying	the	representations,	i.e.	in	terms	of	stability	vs.	plasticity	of	memory	
networks	(Kumaran,	Hassabis,	&	McClelland,	2016).	
5	A	variable	X	is	a	set	of	x	values,	where	x	ranges	from	{0,	x1,	x2	…	xn}.	
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performance	 is	 predicted	 by	 the	 frequency	 of	 these	 chunks	 (Knowlton	 and	
Squire,	 1994).	 There	 is	 also	 evidence	 for	 transfer	 of	 the	 knowledge	 to	 novel	
chunks,	based	on	abstract	analogy	to	the	specific	familiarization	items	(Brooks	
and	Vokey,	1991;	Vokey	and	Higham,	2005).	

Pothos	 (2010)	 proposed	 an	 implementation	 method	 for	 his	 entropy	
model	by	suggesting	that	 the	entropy	 level	(complexity)	of	each	string	can	be	
calculated	based	on	the	probability	that	specific	items	will	follow	each	other	to	
form	grammatical	strings6.	A	lower	entropy	of	a	sequence	of	items	(given	by	high	
probability	bi-/trigrams	and	a	low	number	of	items)	triggers	a	higher	tendency	
to	endorse	it	as	possible	in	the	familiarization	language.	Pothos’s	conclusions	are	
in	line	with	one	of	the	predictions	of	our	entropy	model:	a	low	entropy	of	the	set	
of	 items	 enables	 item-bound	 generalizations	 (rules	 about	 which	 items	 follow	
each	other).	

	
3.	A	Unified	Account	for	Previous	Studies.	A	Brief	Proof	of	Concept.	
	
A	 reinterpretation	 according	 to	 our	 entropy	model	 can	 be	 given	 to	 Gerken’s	
findings,	to	help	answer	the	unanswered	questions	mentioned	in	the	first	section	
of	this	paper.	Tables	1	and	2	display	the	familiarization	stimulus	sets	for	the	two	
conditions	tested	by	Gerken	(2006),	plus	additional	entropy	calculations	as	per	
the	 entropy	model	 presented	 in	 this	 paper.	 In	 our	 entropy	 calculations,	 each	
string	 contains	 four	 bigrams	 ([begin-A],	 [AA],	 [AB],	 [B-end]),	 to	 include	 the	
crucial	information	carried	by	the	beginning	and	ending	of	a	string	by	modeling	
an	 empty	 slot	 in	 the	 first	 and	 last	 bigram	 of	 the	 string.	 Likewise	 each	 string	
contains	 three	 trigrams	([begin-AA],	 [AAB],	 [AB-end]).	The	entropy	values	of	
the	 stimulus	 set	 include	 the	 bigram	 entropy	 for	 all	 bigram	 sets	 (H[begin-A],	
H[AA],	 H[AB],	 H[B-end])	 and	 the	 trigram	 entropy	 for	 all	 sets	 of	 trigrams	
(H[begin-AA],	 H[AAB],	 H[AB-end]),	 as	 well	 as	 the	 average	 bigram	 entropy	
(H[bigram]=%[𝐛𝐞𝐠𝐢𝐧,-]/	%[--]/	%[-1]/	%[1,𝐞𝐧𝐝]

𝟒
),	 the	 average	 trigram	 entropy	

(H[trigram]=%[𝐛𝐞𝐠𝐢𝐧,--]/	%[--1]/	%[-1,𝐞𝐧𝐝]
𝟑

).	Since	there	is	evidence	that	learning	
of	grammars	is	shaped	by	knowledge	acquired	about	bigrams	and	trigrams,	as	
discussed	 in	 the	 previous	 section,	 and	 also	 because	 some	 learners	 might	 be	
parsing	only	some	parts	of	the	set	of	all	bigrams/trigrams,	while	others	might	be	

 
6	The	author	provides	a	method	for	calculating	entropy	of	every	test	string	
based	on	the	familiarization	items.	We	had	some	difficulty	implementing	his	
model,	given	that	his	method	of	calculating	entropy	of	each	test	string	based	on	
the	familiarization	stimuli	differs	conceptually	from	our	vision	on	how	the	
entropy	of	the	familiarization	set	has	an	effect	on	the	mechanism	of	
generalization.	These	conceptual	differences	might	be	due	to	the	fact	that	his	
model	addresses	only	item-bound	generalizations,	while	our	model	
encompasses	both	item-bound	and	category-based	encoding.	However,	we	will	
not	discuss	these	differences	here,	as	we	think	that	they	do	not	fall	under	the	
scope	of	this	paper.	
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parsing	other	sets	of	bigrams/trigrams,	we	deem	an	average	of	bigram	entropies	
and	an	average	of	trigram	entropies	to	be	the	relevant	measure.	Also,	based	on	
the	 results	 reported	 by	 Pothos	 (2010)	 an	 average	 bigram/trigram	 entropy	
seems	 to	 be	 a	 better	 predictor	 for	 performance	 than	 the	 sum	 of	 all	
bigram/trigram	entropies.	
	 In	 Gerken	 (2006),	 the	 experiment	 condition	 that	 had	 an	 input	
characterized	 by	 a	 higher	 entropy	 (Table	 1)	 yielded	 generalization	 to	 the	
broader	category-based	AAB	generalization,	while	the	one	with	lower	entropy	
(Table	2)	resulted	in	a	narrower	item-bound	generalization	“ends	in	di”.		
	

	
An	 entropy-based	 reinterpretation	of	 the	 results	 by	Reeder,	Aslin	&	Newport	
(2009,	2013)	eliminates	the	need	for	the	four	factors	proposed	by	the	authors,	
which	are	not	independent,	and	they	modulate	generalization	inconsistently	(as	
we	argued	in	the	first	section	of	this	paper).	We	suggest	that	it	is	one	factor	(i.e.	
the	 amount	 of	 entropy	 contained	 by	 each	 set	 of	 stimuli)	 that	 consistently	
accounts	for	the	results	of	all	these	experiments.	Table	3	shows	that	the	two	data	
sets	used	 in	 the	 first	 two	experiments	are	 similar	 in	 terms	of	entropy	values,	
which	explains	the	absence	of	a	significant	difference	 in	 learners’	 tendency	to	
generalize,	even	though	in	Experiment	2	exposure	is	half	as	long	and	only	half	
the	number	of	exemplars	were	presented.	The	factor	proposed	by	the	authors	
(i.e.	 reduced	 number	 of	 exemplars)	 is	 insufficiently	 constrained	 and	 cannot	

Diagonal	condition	

				[A				A				B]	
					le				le				di	
					wi			wi			je	
					ji					ji					li	
					de			de		we	
Entropy	values	
H[begin|A]	=	-	[(p(le)*log2p(le))	+	(p(wi)*log2p(wi))	+	(p(ji)*log2p(ji))	+	
(p(de)*log2p(de))]	=	-	[.25	*	log2(.25)	+	.25	*	log2(.25)+	.25	*	log2(.25)	+	.25	*	
log2(.25)]	=		2	
H[B|end]	=	-	[(p(di)*log2p(di))	+	(p(je)*log2p(je))	+	(p(li)*log2p(li))	+	
(p(we)*log2p(we))]=	2	
H[AA]	=	-	[(p(lele)*log2p(lele))	+	(p(wiwi)*log2p(wiwi))	+	(p(jiji)*log2p(jiji))	+	
(p(dede)*log2p(dede))]=	2	
H[AB]	=	-	[(p(ledi)*log2p(ledi))	+	(p(wije)*log2p(wije))	+	(p(jili)*log2p(jili))	+	
(p(dewe)*log2p(dewe))]=	2	

H[AAB]	=	-	[(p(leledi)*log2p(leledi))	+	(p(wiwije)*log2p(wiwije))	+	
(p(jijili)*log2p(jijili))	+	(p(dedewe)*log2p(dedewe))]=	2	
H[bigram]	=	2				H[trigram]	=	2	
Table	1.	Entropy	values	of	the	input	in	the	Diagonal	Condition	in	Gerken	

(2006)	
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account	 for	 this	 unchanged	 tendency	 in	 generalization.	 Consequently,	 their	
results	are	unexplained	under	their	hypothesis.	Just	as	Gerken	(2010)	suggested,	
it	is	not	the	mere	number	of	exemplars	that	has	an	effect	on	generalization,	but	
a	specific	pattern	of	variability.	As	we	show	in	Table	3,	this	pattern	of	variability	
can	be	captured	by	input	entropy.	Even	though	the	input	was	reduced	to	half	the	
number	of	exemplars,	the	total	entropy	was	only	slightly	reduced,	which	explains	
why	 learners’	 tendency	 to	generalize	remained	almost	 the	same.	The	entropy	
values	of	the	set	of	stimuli	used	in	Experiment	3	were	significantly	reduced	as	
compared	 to	 the	 first	 two	 experiments,	 which	 can	 explain	 learners’	 lower	
likelihood	to	generalize	the	categories.	The	effect	of	increased	exposure	to	the	
same	stimulus	set	in	the	fourth	experiment	cannot	be	explained	by	the	authors’	
hypothesis,	 as	 the	 input	 displayed	 the	 same	 statistical	 properties	 as	 in	
Experiment	 3,	 but	 the	 tendency	 to	 generalize	 was	 significantly	 reduced.	 We	
would	 argue	 that	 increased	 exposure	 leads	 to	 stronger	memory	 traces	 of	 the	
items,	which	 allows	 for	 item-bound	 generalization,	 hence	 to	 a	 suppression	 of	
category-based	 generalization,	 which	 is	 in	 line	 with	 the	 predictions	 of	 our	
entropy	model.	The	entropy	values	 for	Experiment	5	series	(from	A	to	D)	are	
slightly	higher	than	those	for	Experiment	1	–	4,	respectively,	which	explains	the	
slightly	higher	tendencies	to	generalize.	

	
In	 conclusion,	 our	 entropy	 model	 accounts	 for	 all	 the	 findings	 of	 these	
experiments	 and	 gives	 a	 complete	 and	 unifying	 picture	 of	 rule	 induction	 by	
capturing	 the	 specific	 pattern	 of	 input	 variability	 (entropy)	 interacting	 with	

Column	condition	

				[A				A				B]	
					le				le				di	
					wi				wi				di	
					ji				ji				di	
					de				de				di	
Entropy	values	
H[bA]	=	-	[(p(le)*log2p(le))	+	(p(wi)*log2p(wi))	+	(p(ji)*log2p(ji))	+	
(p(de)*log2p(de))=	2	

H[Be]	=	-	[p(di)*log2p(di)]=	0	
H[AA]	=	-	[(p(lele)*log2p(lele))	+	(p(wiwi)*log2p(wiwi))	+	(p(jiji)*log2p(jiji))	+	
(p(dede)*log2p(dede))=	2	
H[AB]	=	-	[(p(ledi)*log2p(ledi))	+	(p(widi)*log2p(widi))	+	(p(jidi)*log2p(jidi))	+	
(p(dedi)*log2p(dedi))=	2	
H[AAB]	=	-	[(p(leledi)*log2p(leledi))	+	(p(wiwidi)*log2p(wiwidi))	+	
(p(jijidi)*log2p(jijidi))	+	(p(dededi)*log2p(dededi))]=	2	

H[bigram]	=	1.5						H[trigram]	=	2				
Table	2.	Entropy	values	of	the	input	in	the	Column	Condition	in	Gerken	

(2006)	
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exposure	time	(which	affects	working	memory	and	therefore	modulates	channel	
capacity7).	The	predictions	made	by	our	entropy	model	are	borne	out:	a	low	input	
complexity	 enables	 item-bound	 generalizations,	while	 a	 high	 input	 complexity	
exceeding	 channel	 capacity	 increases	 the	 tendency	 towards	 category-based	
generalizations.	
	

	
4.	Testing	the	predictions	of	the	entropy	model	
	
In	the	remainder	of	this	paper	we	present	two	AGL	experiments	that	test	specific	
predictions	made	by	our	entropy	model.	To	the	best	of	our	knowledge,	these	are	
the	 first	 AGL	 experiments	 that	 investigate	 the	 role	 of	 input	 complexity	 in	
linguistic	generalization	by	specifically	 testing	entropy-based	predictions.	The	
experiments	 presented	 here	 focus	 on	 the	 effect	 of	 input	 complexity,	without	
specifically	 measuring	 variations	 in	 channel	 capacity	 (i.e.	 individual	
biological/psychological	 capacities),	 which	 were	 assumed	 to	 be	 roughly	

 
7	Recall	channel	capacity	quantifies	the	amount	of	entropy	that	can	be	
processed	per	unit	of	time.	

Experiment_1	 Experiment_2	 Experiment_3	 Experiment_4	

H[AX]	=	3.169	 H[AX]	=	3.169	 H[AX]	=	2.503	 H[AX]	=	2.503	
H[bA]/[Be]	=	
1.584	

H[bA]/[Be]	=	
1.584	

H[bA]/[Be]	=	
1.584	

H[bA]/[Be]	=	
1.584	

H[XB]	=	3.169	 H[XB]	=	3.169	 H[XB]	=	2.503	 H[XB]	=	2.503	
H[AXB]	=	4.169	 H[AXB]	=	3.169	 H[AXB]	=	2.584	 H[AXB]	=	2.584	
H[bigram]	=	
2.376	

H[bigram]	=	
2.376	

H[bigram]	=	
2.043	

H[bigram]	=	
2.043	

H[trigram]	=	
3.502	

H[trigram]	=	
3.169	

H[trigram]	=	
2.530	

H[trigram]	=	
2.530	

Experiment_5A	 Experiment_5B	 Experiment_5C	 Experiment_5D	
H[AX]	=	3.32	
H[bA]/[Be]	=	
1.584	
H[XB]	=	3.32	
H[AXB]	=	4.24	
H[bigram]	=	
2.452	
H[trigram]	=	
3.626	

H[AX]	=	3.32	
H[bA]/[Be]	=	
1.584	
H[XB]	=	3.32	
H[AXB]	=	3.32	
H[bigram]	=	
2.452	
H[trigram]	=	
3.32	

H[AX]	=	2.807	
H[bA]/[Be]	=	
1.584	
H[XB]	=	2.807	
H[AXB]	=	2.807	
H[bigram]	=	
2.193	
H[trigram]	=	
2.807	

H[AX]	=	2.807	
H[bA]/[Be]	=	
1.584	
H[XB]	=	2.807	
H[AXB]	=	2.807	
H[bigram]	=	
2.193	
H[trigram]	=	
2.807	

Table	3.	Entropy	values	for	all	conditions	in	Reeder,	Aslin	&	Newport	
(2013)	
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insignificant	since	we	tested	participants	of	similar	age	and	backgrounds.	The	
following	hypothesis	was	tested:	

Item-bound	 generalization	 and	 category-based	 generalization	 are	 not	
independent	mechanisms.	Rather,	they	are	outcomes	of	the	same	information	
encoding	 mechanism	 that	 gradually	 goes	 from	 a	 lower-level	 item-bound	
encoding	 to	 a	 higher-order	 abstract	 encoding	 (category-based	
generalization),	as	triggered	by	the	input	complexity.	

	
This	hypothesis	allows	for	the	following	two	specific	predictions	to	be	tested:	
i. the	 lower	 the	 input	complexity	 (entropy),	 the	higher	 the	 tendency	 towards	

item-bound	 generalizations,	 and,	 consequently,	 the	 lower	 the	 tendency	 to	
make	a	category-based	generalization;	

ii. the	higher	the	input	complexity	(entropy),	the	higher	the	tendency	to	make	a	
category-based	generalization.	

	
To	 test	 these	 predictions,	we	 designed	 several	 versions	 of	 the	 same	 artificial	
grammar	(3-syllable	XXY	structure8)	in	order	to	expose	participants	to	different	
input	entropies	in	three	groups:	high,	medium	and	low	entropy.	An	ensuing	test	
phase	presented	participants	with	a	grammaticality	judgement	task,	where	they	
were	 asked	 a	 yes/no	 question	 to	 indicate	 if	 they	 accepted	 the	 test	 strings	 as	
possible	 in	 the	 familiarization	 language.	 The	 test	 included	 four	 types	 of	 test	
strings	 that	 were	 designed	 to	 test	 each	 type	 of	 rule	 induction,	 as	 presented	
below.	
	 Familiar-syllable	 XXY	 (XXY	 structure	 with	 familiar	 X-syllables	 and	
familiar	Y-syllables)	–	correct	answer:	yes	-	accept	–	this	is	a	test	case	that	is	
intended	 to	 check	 learning	 of	 the	 familiar	 strings.	 All	 groups	 are	 expected	 to	
accept	these	strings	as	grammatical,	either	due	to	having	encoded	a	category-
based	generalization	in	the	high	and	medium	entropy	conditions,	or	due	to	an	
item-bound	generalization	in	the	low	entropy	condition.	
	 New-syllable	 XYZ	 (XYZ	 structure	 with	 new	 syllables)	 –	 correct	
answer:	no	-	reject	–	this	is	the	complementary	test	case,	which	is	intended	to	
check	learning	of	the	familiar	strings	and	string	pattern.	It	is	designed	to	back	up	
and	complement	results	 for	 the	 familiar-syllable	XXY	strings	as	 follows:	 if	 the	
forms	of	encoding	–	either	ITEM9	or	CATEG	–	trigger	acceptance	of	familiar	XXY	
strings,	 then	 they	 should	 trigger	 rejection	 of	 the	 structurally	 and	 item	 non-
compliant	test	cases	(new	XYZ).	Thus,	all	groups	are	expected	to	reject	this	test	
type,	 with	 no	 between-group	 difference.	 If	 these	 strings	 are	 not	 consistently	
rejected,	the	interpretation	of	the	results	for	familiar	XXY	cannot	be	valid.	
	 New-syllable	 XXY	 (XXY	 structure	 with	 new	 syllables)	 –	 correct	
answer:	yes	-	accept	–	this	is	a	test	case	that	is	intended	to	be	the	TARGET	test	

 
8	An	XXY	pattern	describes	strings	consisting	of	two	identical	syllables	(XX)	
followed	by	another	different	syllable	(Y):	e.g.	xoxoʃi	;	pypydy	
9	For	ease	of	presentation,	item-bound	generalization	is	denoted	ITEM,	and	
category-based	generalization	–	CATEG).	
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string	type	to	check	generalization	of	rule	to	novel	strings	(CATEG).	The	number	
of	correct	answers	is	expected	to	be	a	function	of	entropy	condition:	the	highest	
number	of	acceptances	is	expected	in	the	high	entropy	group,	followed	by	the	
medium,	and	the	low	entropy.		
	 However,	 absolute	 mean	 rates	 (percentages)	 of	 acceptance	 of	 these	
strings	 do	 not	 constitute	 direct	 evidence	 for	 category-based	 vs	 item-bound	
generalization,	unless	they	are	compared	against	the	mean	rates	of	acceptance	
for	the	familiar	XXY	strings.	Thus,	if	learners	have	an	item-bound	encoding	of	the	
set	of	specific	syllables	and/or	their	combinations	in	strings,	they	will	be	able	to	
discriminate	 between	 Familiar-syllable	 XXY	 and	New-syllable	 XXY,	 i.e.	 the	
rates	of	acceptance	of	 these	 test	 types	will	be	 significantly	different.	A	 strong	
discrimination	 between	 these	 test	 types	 (Familiar-syllable	 XXY	 significantly	
more	accepted	than	New-syllable	XXY)	would	show	that	the	encoding	is	highly	
item-bound.	 Conversely,	 similar	 rates	 of	 acceptance	 would	 show	 that	 the	
participants	treat	these	test	items	as	equally	acceptable	in	the	grammar,	which	
means	they	encoded	the	items/strings	as	category-based	generalizations.	Given	
the	 first	 hypothesis	 of	 our	 model	 –	 that	 the	 encoding	 mechanism	 moves	
gradually	from	an	item-bound	to	a	category-based	generalization	as	a	function	of	
increasing	input	entropy	–	a	cross-condition	comparison	is	predicted	to	show	a	
gradually	 decreasing	 discrimination	 between	 these	 two	 test	 items:	 the	 low	
entropy	 group	 is	 expected	 to	 show	 the	 highest	 discrimination,	 followed	 by	
medium	entropy,	while	the	high	entropy	group	is	predicted	to	show	the	slightest	
discrimination.	
	 Familiar-syllable	 XYZ	 (XYZ	 structure	 with	 familiar	 syllables10)	 –	
correct	answer:	no	-	reject	–	this	is	the	complementary	test	case	to	the	New-
syllable	 XXY	 strings:	 if	 New-syllable	 XXY	 strings	 are	 accepted	 in	 a	 different	
proportion	 by	 the	 three	 groups	 due	 to	 hypothesized	 differences	 in	 types	 of	
encoding	developed,	 then	Familiar-syllable	XYZ	strings	should	also	be	 treated	
differently	across	groups.	We	expect	results	for	this	test	type	to	capture	the	two	
types	 of	 encoding	 competing	 against	 each	 other,	 because	 it	 is	 likely	 that	 the	
memory	 trace	 of	 familiar	 syllables	 drives	 acceptance	 of	 these	 ungrammatical	
strings	with	familiar	syllables.	Hence	differences	 in	performance	are	expected	
across	groups,	depending	on	the	extent	to	which	ITEM	and	CATEG	are	developed,	
i.e.	to	the	gradient	of	generalization:	the	low	entropy	group	is	expected	to	yield	
the	highest	proportion	of	correct	rejections,	as	(per	hypothesis)	they	encoded	
the	 strings	 as	 frozen	 item-bound	 generalizations,	 which	 highlight	 clear	
mismatches	between	familiar	and	non-compliant	combinations	of	specific	items.	
In	the	high	entropy	group,	category-based	generalization	will	be	predominant,	
and	thus	XYZ	strings	will	be	rejected	for	being	inconsistent	with	the	XXY	pattern.	
The	medium	entropy	group	is	expected	to	yield	the	lowest	percentage	of	correct	
rejections,	because	it	is	likely	that	the	memory	traces	of	the	individual	familiar	

 
10	A	subset	of	the	syllables	used	in	familiarization	were	concatenated	to	create	
XYZ	test	strings	with	familiar	syllables.	Any	of	the	X-syllables	and	Y-syllables	
were	randomly	assigned	to	the	X,	Y	or	Z	slot	of	the	XYZ	pattern.	
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syllables	work	against	a	rejection,	and	because	ITEM	is	too	weak	to	have	created	
a	 strong	 memory	 trace	 of	 the	 entire	 strings,	 while	 CATEG	 is	 not	 strongly	
developed	to	consistently	reject	the	incorrect	XYZ	pattern:	in	this	case,	the	two	
forms	 of	 encoding	 compete	 against	 each	 other	 with	 almost	 similar	 strength.	
Therefore,	we	 expect	 a	U-shape	 pattern	 of	 correct	 rejections	 as	 a	 function	 of	
increasing	input	entropy.		
	
5.	Experiment	1	
	
5.1.	Method	
	
5.1.1.	Participants		
	
Thirty-five	Dutch	 speaking	 adults	 (26	 females	 and	 9	males,	 age	 range	 19-26,	
mean	22)	participated	in	Experiment	1.	One	additional	participant	was	tested,	
but	excluded	for	being	familiar	with	AGL	setups.	Only	healthy	participants	that	
had	no	known	language,	reading	or	hearing	impairment	or	attention	deficit	were	
included.	They	were	paid	5	EUR	for	participation.	
	
5.1.2.	Familiarization	stimuli	
	
Participants	 were	 exposed	 (aurally)	 to	 3-syllable	 strings	 that	 implemented	 a	
miniature	 artificial	 grammar,	 which	 closely	 resembled	 the	 structural	 pattern	
used	by	Gerken	(2006),	i.e.	the	strings	had	an	underlying	XXY	structure,	where	
each	 letter	represents	a	set	of	syllables.	All	syllables	consisted	of	a	consonant	
followed	by	 a	 long	 vowel,	 to	 resemble	 common	Dutch	 syllable	 structure	 (e.g.	
/xo/,	/∫i:/).		The	subset	of	syllables	used	in	the	two	X	slots	of	the	pattern	–	to	be	
called	X-syllables	–	did	not	overlap	with	the	subset	of	syllables	used	for	the	Y	slot	
of	the	pattern	–	to	be	called	Y-syllables.	The	subset	of	consonants	used	for	the	X-
syllables	did	not	overlap	with	the	subset	of	consonants	used	for	the	Y-syllables.	

A	Perl	script	generated	the	syllables	and	strings,	and	checked	the	CELEX	
database	(Baayen,	Piepenbrock,	&	Gulikers,	1995),	 to	 filter	out	existing	Dutch	
words.	 All	 the	 syllables	were	 recorded	 in	 isolation	 by	 a	 female	 Dutch	 native	
speaker	in	a	sound-proof	booth,	using	a	TASCAM	DA-40	DAT-recorder.	Syllables	
were	recorded	one	by	one,	as	they	were	presented	to	her	on	a	screen,	and	she	
was	 instructed	 to	 use	 the	 same	 intonation	 for	 each	 syllable.	 The	 recorded	
syllables	were	spliced	together	to	form	the	strings	of	the	language	using	Praat	
(Boersma,	2001;	Boersma	&	Weenink,	2014).	

The	experiment	consisted	of	three	exposure	phases	with	intermediate	
test	phases,	followed	by	a	final	test	phase.	In	the	exposure	phases,	a	total	of	72	
XXY	strings	were	presented,	24	per	each	phase.	The	order	of	presentation	was	
randomized	for	each	participant	separately	(complete	stimulus	set	in	Appendix).	
Intermediate	tests	were	included	to	gauge	the	learning	process	as	a	function	of	
exposure.	The	experiment	had	a	between-subjects	design,	and	participants	were	
assigned	 randomly	 to	 one	 of	 the	 three	 conditions:	 High	 Entropy,	 Medium	
Entropy	and	Low	Entropy.	
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5.2.	Entropy	values	of	familiarization	conditions	
	
To	obtain	the	desired	variation	in	input	complexity	(entropy)	across	conditions,	
two	factors	were	manipulated:	(1)	the	number	of	X-syllables	and	Y-syllables;	and	
(2)	 the	 number	 of	 repetitions	 of	 each	 syllable	 (i.e.	 syllable	 frequency).	 By	
applying	Shannon’s	entropy	formula	as	described	in	the	previous	sections,	three	
different	values	for	input	complexity	were	obtained,	as	follows:	
	 1.	Low	Entropy:		6	X-syllables	and	6	Y-syllables	with	each	syllable	used	
4	times	in	each	familiarization	phase.	To	generate	the	XXY	strings,	all	6	XX	pairs	
were	concatenated	with	all	6	Y-syllables,	but	different	subsets	(consisting	of	24	
XX_Y	 combinations)	 were	 used	 for	 each	 familiarization	 phase.	 The	 same	
procedure	was	applied	to	the	other	conditions.	All	three	familiarization	phases	
had	the	same	entropy	values:	the	average	bigram	entropy	(H[bigram])	was	3.08,	
the	 average	 trigram	 entropy	 (H[trigram])	 was	 3.91,	 and	 the	 total	 average	
entropy	 (H[total])	 was	 3.5	 (the	 average	 bigram/trigram	 entropies	 were	
calculated	here	in	the	same	way	as	presented	in	section	3.	above	for	previous	
studies	–	see	Table	4	for	complete	entropy	calculations).	Since	there	is	evidence	
that	learning	of	grammars	is	shaped	by	knowledge	acquired	about	bigrams	and	
trigrams,	as	discussed	in	section	2.3.,	and	also	because	some	learners	might	be	
parsing	the	familiarization	set	mostly	at	the	level	of	bigrams,	while	others	might	
parse	it	mostly	at	the	level	of	trigrams,	we	deem	an	average	between	bigram	and	
trigram	 entropy	 to	 be	 the	 relevant	 measure	 (based	 on	 Pothos	 (2010),	 as	
mentioned	in	section	3	above).	
	
	

	

Low	Entropy	 Medium	Entropy	 High	Entropy	
H[bX]=H[6]=		
-Σ[0.167*log0.167]	=	2.58	
H[XX]	=	H[6]=	2.58	
H[XY]	=	H[24]	=	4.58	
H[Ye]	=	H[6]	=	2.58	
H[bXX]	=	H[6]	=	2.58	
H[XXY]	=	H[XYe]=	H[24]	=	
4.58	
H[bigram]	=	3.08	
H[trigram]	=	3.91	
H[total]	 =	
𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
	=	3.5	

H[bX]=H[12]=		
-Σ[0.083*log0.083]	 =	
3.58	
H[XX]	=	H[12]=	3.58	
H[XY]	=	H[24]	=	4.58	
H[Ye]	=	H[12]	=	3.58	
H[bXX]	=	H[12]	=	3.58	
H[XXY]	 =	 H[XYe]=	
H[24]	=	4.58	
H[bigram]	=	3.83	
H[trigram]	=	4.25	
H[total]	=	4	

H[bX]=H[24]=		
-Σ[0.042*log0.042]	 =	
4.58	
H[XX]	=	H[24]=	4.58	
H[XY]	=	H[24]	=	4.58	
H[Ye]	=	H[24]	=	4.58	
H[bXX]	 =	 H[XXY]	
=H[XYe]=	H[24]	=	4.58	
H[bigram]	=	4.58	
H[trigram]	=	4.58	
H[total]	=	4.58	

Table	4.	Entropy	values	for	Experiment	1	
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2.	Medium	Entropy:	12	X-syllables	and	12	Y-syllables	(6	different	X-syllables	
and	6	different	Y-syllables	were	added	to	those	in	Low	Entropy	(Experiment	1)	
with	 each	 syllable	 used	 2	 times	 in	 each	 familiarization	 phase.	 All	 three	
familiarization	phases	had	the	same	entropy	values:	the	average	bigram	entropy	
(H[bigram])	was	3.83,	the	average	trigram	entropy	(H[trigram])	was	4.25,	and	
the	total	average	entropy	(H[total])	was	4.	
	 3.	High	Entropy:	24	X-syllables	and	24	Y-syllables	(12	X-syllables	and	
12	Y-syllables	were	added	 to	 those	used	 for	Medium	Entropy	(Experiment	1)	
with	each	syllable	used	one	time.	All	three	familiarization	phases	had	the	same	
entropy	values:	the	average	bigram	entropy	(H[bigram])	was	4.58,	the	average	
trigram	entropy	(H[trigram])	was	4.58,	and	the	total	average	entropy	(H[total])	
was	4.58.	
	
5.3.	Procedure	
	
Participants	were	tested	in	a	sound-proof	booth	and	were	told	that	they	would	
listen	to	a	“forgotten	language”	that	would	not	resemble	any	language	that	they	
might	be	familiar	with,	but	which	had	its	own	rules	and	grammar.	They	were	told	
that	the	language	had	its	own	rules	for	the	forms	of	words,	and	that	those	words	
were	not	known	to	them	from	any	other	language	they	might	be	familiar	with.	
The	instructions	were	provided	entirely	in	the	beginning	of	the	experiment.	The	
instructions	explained	that	 the	experiment	had	three	phases,	and	during	each	
phase	several	words	from	the	language	would	be	played.	The	participants	were	
informed	that	the	language	had	more	words	and	syllables	than	what	they	heard	
in	the	familiarization	phases.	After	each	familiarization	phase,	they	would	have	
a	 short	 test,	 and	 at	 the	 end	 there	 would	 be	 a	 final	 test.	 Each	 test	 would	 be	
different	from	the	other	tests,	and	the	tests	were	meant	to	check	what	they	had	
noticed	about	the	language	that	they	listened	to.	They	were	instructed	to	decide,	
by	pressing	a	Yes	or	a	No	button,	if	the	words	that	they	heard	in	the	tests	could	
be	 possible	 in	 the	 language	 that	 they	heard.	 The	 experiment	 lasted	 around	5	
minutes.	
	
5.4.	Test	string	types	
	
All	 test	 items	 were	 3-syllable	 strings	 designed	 as	 four	 different	 types:	
grammatical	 familiar,	 ungrammatical	 novel,	 grammatical	 novel,	 and	
ungrammatical	 familiar	 (as	 presented	 in	 section	 4	 above).	 Each	 of	 the	 three	
intermediate	tests	had	four	test	strings	(one	of	each	type),	and	the	final	test	had	
eight	strings	(two	of	each	type).	Thus,	there	were	(4+4+4+8=)	20	test	strings	in	
total,	and	they	were	used	in	all	three	entropy	conditions	(complete	test	item	set	
in	Appendix).		
	
6.	Experiment	1:	Results			 	 	 	 	 	
	 	 	 	
In	order	to	test	the	effect	of	input	complexity	on	generalization,	the	High	Entropy,	
Medium	Entropy	and	Low	Entropy	conditions	were	compared	in	a	Generalized	
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Linear	Mixed	Model,	with	Accuracy	(correct	acceptance/rejection)	as	dependent	
variable	 and	 Entropy	 condition,	 Test	 String	 Type	 x	 Entropy	 condition	
interaction,	 Test	 phase	 x	 Entropy	 condition	 interaction	 as	 fixed	 factors,	 and	
Subject	 and	 Trial	 as	 random	 factors.	 An	 alpha	 level	 of	 .05	 was	 used	 for	 all	
statistical	 tests.	We	started	fitting	the	data	 from	the	 intercept-only	model	and	
added	the	random	and	fixed	factors	one	by	one.	We	report	here	the	best	fitting	
model,	both	in	terms	of	model’s	accuracy	in	predicting	the	observed	data,	and	in	
terms	of	AICc	(Akaike	Information	Criterion	Corrected).	There	was	a	statistically	
significant	Test	String	Type	x	Entropy	condition	interaction	(F(9,	679)	=	6.363,	p	
<	 .001).	There	was	no	statistically	significant	main	effect	of	Entropy	condition	
(F(2,	 679)	 =	 0.401,	 p	 =	 .67).	 Results	 indicated	 a	 non-significant	 trend	 in	 the	
predicted	direction	for	Test	phase	x	Entropy	condition	interaction	(F(9,	679)	=	
1.243,	p	=	.26).		
	

	
	

Fig.	 1	 presents	 the	 mean	 rate	 of	 acceptance	 (percentage	 of	 acceptances	 per	
group)	across	conditions	 for	Familiar-syllable	XXY	and	New-syllable	XXY.	The	
mean	acceptance	rate	of	New-syllable	XXY	in	High	Entropy	was	80%	(Mean	=	
.80,	SD	=	.403),	in	Medium	Entropy	was	73%	(Mean	=	.73,	SD	=	.446),	and	in	Low	
Entropy	was	65%	(Mean	=	.65,	SD	=	.480).	One-sample	Wilcoxon	Signed-Rank	
tests	indicated	a	statistically	significant	above-chance	mean	acceptance	for	New-
syllable	XXY	in	High	Entropy	(Z	=	4.648,	SE	=	118.12,	p	<	.001;	Cohen’s	effect	size	
d	=	0.6),	in	Medium	Entropy	(Z	=	3.615,	SE	=	118.12,	p	<	.001;	Cohen’s	effect	size	d	
=	0.47),	and	in	Low	Entropy	(Z	=	2.292,	SE	=	103.82,	p	=	.022,	Cohen’s	effect	size	d	
=	0.31).	In	High	Entropy	there	was	a	significant	difference	between	acceptance	
of	Familiar-syllable	XXY	and	acceptance	of	New-syllable	XXY	(M=.167,	SD=.376;	
t(3)	=	2.721,	SE=0.853,	p	=	.007);	in	Medium	Entropy	there	was	also	a	significant	
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difference	between	performance	on	these	tests	(M=.233,	SD=.427;	t(3)	=	3.454,	
SE=0.838,	p	=	.001);	and	in	Low	Entropy	the	difference	between	performance	on	
these	 tests	was	also	significant	 (M=.327,	SD=.511;	 t(3)	=	3.566,	SE=1.158,	p	<	
.001).	Further,	Cohen’s	effect	size	value	(d	=	0.36)	and	the	effect-size	correlation	
(r	=	0.18)	for	the	difference	between	performance	on	these	tests	in	High	Entropy	
vs.	Low	Entropy	were	higher	than	the	same	values	for	High	Entropy	vs.	Medium	
Entropy	 (d	 =	 0.15,	 r	 =	 0.07),	 and	 also	 higher	 than	 the	 same	 values	 for	 Low	
Entropy	vs.	Medium	Entropy	(d	=	0.21,	r	=	0.1).	
	 Fig.	2	 shows	 the	mean	 rate	of	 rejection	 for	Familiar-syllable	XYZ	and	
New-syllable	XYZ.	The	mean	rejection	of	Familiar-syllable	XYZ	in	High	Entropy	
was	82%	(Mean	=	.82,	SD	=	.39),	significantly	different	from	the	mean	acceptance	
of	 Familiar-syllable	 XXY	 (t(3)	 =2.529,	 SE	 =	 0.851,	 p	 =	 .012);	 77%	 in	 Medium	
Entropy	(Mean	=	.77,	SD	=	.427),	significantly	different	from	the	mean	acceptance	
of	 Familiar-syllable	 XXY	 (t(3)	 =3.147,	 SE	 =	 0.837,	 p	 =	 .002);	 and	 91%	 in	 Low	
Entropy	 (Mean	 =	 .91,	 SD	 =	 .290),	 near-significantly	 different	 from	 the	 mean	
acceptance	of	Familiar-syllable	XXY	(t(3)	=1.683,	SE	=	1.185,	p	=	.093).		
	

	
	
7.	Discussion	
	
The	results	of	Experiment	1	show	that	the	mean	acceptance	of	new	XXY	strings	
increases	as	a	function	of	increasing	entropy.	Moreover,	there	were	differences	
between	the	rates	of	acceptance	of	new	XXY	vs.	familiar	XXY	strings	depending	
on	the	entropy	group.	This	shows	differences	between	groups	in	terms	of	how	
learners	 encode	 the	 XXY	 strings:	 if	 the	 participants	 do	 not	 make	 a	 clear	
distinction	between	a	new	XXY	and	a	familiar	XXY,	we	conclude	that	they	formed	
a	category-based	generalization	(XXY)	which	applies	equally	to	both	familiar	and	
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new	XXY	strings.	Thus,	a	smaller	difference	between	the	means	of	acceptance	of	
these	 test	 types	 shows	 a	 higher	 tendency	 to	 make	 category-based	
generalizations.	 The	 results	 showed	 that	 in	 the	 high	 entropy	 group	 this	
difference	is	smaller	than	in	the	medium	entropy	one,	which	is	smaller	than	in	
the	 low	entropy	 group.	Hence	 these	 results	 indicate	 that	 learners	 exposed	 to	
higher	 input	 complexity	 had	 a	 higher	 tendency	 to	 make	 category-based	
generalizations	and	to	generalize	to	novel	strings	displaying	the	underlying	XXY	
pattern,	which	is	in	line	with	the	predictions	of	our	entropy	model.	

The	 rate	of	 correct	 rejection	 for	XYZ	strings	with	 familiar	 syllables	 is	
very	high	in	the	low	entropy	group,	although	the	rate	of	acceptance	for	new	XXY	
strings	 is	 rather	 low	 (Fig.	 3).	 As	 it	 agrees	 with	 our	 predictions,	 this	 result	
suggests	 that	 the	 input	 complexity	did	 not	 exceed	 the	 channel	 capacity	and	 it	
enabled	learners	to	extract	rules	of	specific	sequencing	of	the	memorized	items	
(i.e.	ITEM	is	dominant	and	signals	a	clear	mismatch	between	grammatical	and	
ungrammatical	strings	of	specific	items).	In	the	high	entropy	group,	there	was	
also	a	firm	rejection	of	XYZ	strings	with	familiar	syllables,	but	only	as	high	as	the	
acceptance	of	new	XXY	strings.	This	 indicates	that	CATEG	is	strong	enough	to	
drive	 rejection	 of	 the	 XYZ	 strings.	 As	 predicted,	 the	 medium	 entropy	 group	
yielded	 the	 lowest	 performance	 of	 all	 groups.	 The	 interpretation	 is	 that	
increased	input	complexity	prevents	a	strong	memory	trace	of	the	entire	strings,	
and	thus	ITEM	cannot	support	a	consistent	and	confident	rejection	of	the	XYZ	
strings.	At	the	same	time,	CATEG	is	not	strongly	developed	to	consistently	reject	
the	 incorrect	XYZ	pattern.	To	sum	up,	 the	results	showed	a	roughly	U-shaped	
performance	 on	 XYZ	with	 familiar	 syllables,	 as	 a	 function	 of	 increased	 input	
entropy.	Similar	tendencies	towards	a	U-shaped	curve	of	learning	were	found	in	
previous	 language	acquisition	studies,	and	 they	were	argued	 to	be	due	 to	 the	
dynamics	 reflected	 by	 different	 mechanisms	 working	 simultaneously	 and	
interfering	with	each	other	(Rogers,	Rakinson,	&	McClelland,	2004).	Therefore,	
we	interpret	this	U-shape	pattern	of	results	to	show	the	two	forms	of	encoding	–	
item-bound	and	category-based	generalizations	–	competing	against	each	other	
with	almost	similar	strength,	thus	creating	the	most	uncertain	situation	for	this	
task.11	
	 The	results	showed	that	the	decreasing	trend	of	the	rejection	of	familiar-
syllable	XYZ	changes	into	an	increasing	trend	roughly	at	the	same	entropy	level	
where	it	meets	the	increasing	trend	of	acceptance	of	new	XXY.	We	hypothesize	
that	the	lowest	point	of	the	U-shaped	trend	of	the	rejection	of	familiar-syllable	
XYZ	is	the	intersection	point	of	the	decreasing	trend	of	XYZ	and	the	increasing	
trend	of	XXY.	The	calculated	intersection	point	of	the	two	trends	–	y(New-syllable	
XXY)	=	y(Familiar-syllable	XYZ)	–	is	H	=	4.2	(y	=	0.72),	which	allows	the	prediction	
that	the	rate	of	rejection	of	Familiar-syllable	XYZ	decreases	until	72%,	if	the	input	
complexity	 is	 H=4.2	 bits.	 This	 value	 is	 predicted	 to	 be	 the	 point	 where	 the	

 
11	A	similar	U-shaped	effect	of	stimulus	complexity	(entropy)	on	allocation	of	
visual	attention	was	found	in	infants	–	the	“Goldilocks	effect”	(Kidd,	Piantadosi,	
&	Aslin,	2012).	
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decreasing	 trend	 for	 Familiar-syllable	 XYZ	 reaches	 its	minimum	 and	 changes	
into	an	increasing	function,	given	that	CATEG	outperforms	ITEM.	This	point	is	
hypothesized	to	roughly	mark	the	excess	limit	of	the	channel	capacity.	

	

	
	

A	 subsequent	 re-thinking	of	 the	XYZ	strings	with	 familiar	 syllables	 raised	 the	
question	that	these	strings	should	have	had	an	X1X2Y	pattern	(X1	is	different	from	
X2),	to	ensure	that	the	reason	for	the	rejection	of	these	strings	does	not	involve	
the	 inconsistency	of	 using	X-syllables	 in	 the	 last	 position	of	 the	 strings,	 or	Y-
syllables	in	the	first	or	second	position	of	the	string.	Only	two	out	of	five	Familiar-
syllable	 XYZ	 strings	 did	 not	 have	 an	 X1X2Y	 pattern.	 However,	 this	 confound	
would	have	helped	 rejection	 of	 these	 strings	more	 in	 the	 low	 entropy	 group,	
where	it	was	easier	to	remember	the	specific	familiar	X-syllables	and	Y-syllables.	
An	ANOVA	with	familiarization	group	(High	Entropy,	Medium	Entropy	and	Low	
Entropy	 as	 between-subjects	 variable	 and	 test	 item	 (X1X2Y	 vs.	 non-X1X2Y)	 as	
within-subjects	variable	revealed	no	statistically	significant	difference	between	
the	rejection	rate	of	X1X2Y	strings	and	the	rejection	rate	of	the	non-X1X2Y	strings	
in	any	of	the	conditions	(High	Entropy:	Mean[X1X2Y]	=	.81,	Mean[non-X1X2Y]	=	
.83,	 F(1,58)	 =	 .072,	 p	 =	 .79;	 Medium	 Entropy:	Mean[X1X2Y]	 =	 .79,	Mean[non-
X1X2Y]	=	.73,	F(1,58)	=	.293,	p	=	.59;	Low	Entropy:	Mean[X1X2Y]	=	.91,	Mean[non-
X1X2Y]	=	.91,	F(1,53)	<	.001,	p	=	1.00.	Therefore,	such	a	confound	is	highly	unlikely	
to	explain	the	results.	
	 We	designed	intermediate	tests	to	investigate	the	learning	process	as	an	
interaction	 between	 input	 entropy	 and	 exposure	 time.	 On	 the	 one	 hand,	 we	
predicted	that	longer	exposure	to	the	familiarization	items	would	strengthen	the	
memory	trace	of	the	specific	items,	and	thus	it	would	make	it	easier	to	encode	
the	 specific	 syllables/strings.	 Thus,	 the	 tendency	 to	 make	 category-based	

50%

60%

70%

80%

90%

100%

3 3.5 4 4.5 5

%
co

rr
ec

t a
ns

w
er

s

Entropy (bits)

Fig. 3. Percentage of correct acceptance of New-syllable 
XXY and correct rejection of Familiar-syllable XYZ plotted 

against input entropy. Experiment 1

Familiar-syllable XYZ
New-syllable XXY



Chapter	1		

 

49 

 
 

generalizations	will	decrease	as	a	function	of	increasing	exposure	time,	as	was	
shown	in	Reeder	et	al	(2013).	 	On	the	other	hand,	a	high	input	entropy	would	
make	remembering	the	specific	items	more	difficult	than	a	medium	entropy	and	
a	low	entropy.	Thus,	an	interaction	between	input	entropy	and	exposure	time	
was	predicted	to	show	the	following	results:	the	acceptance	of	new	XXY	strings	
across	the	intermediate	tests	through	the	final	test	is	expected	to	decrease	in	all	
entropy	groups	due	to	exposure	time.	But	at	a	different	rate,	depending	on	the	
input	 entropy,	 as	 follows:	 the	 percentage	 of	 acceptance	 of	 new	 XXY	 strings	
should	 have	 a	 slowly	 decreasing	 trend	 in	 high	 entropy	 (because	 the	 more	
complex	input	prevents	forming	memory	trace	of	specific	items	and	strings),	a	
slightly	 steeper	 decreasing	 trend	 in	 medium	 entropy,	 and	 an	 even	 steeper	
decreasing	 trend	 in	 low	 entropy	 (because	 the	 more	 repetitive	 input	 allows	
remembering	of	specific	items	and	strings).	Although	the	results	did	not	reach	
statistical	significance,	the	trends	match	the	predictions:	in	low	entropy	group	
the	performance	curve	decreases	slightly	steeper	than	in	the	medium	entropy,	
and	steeper	 than	 in	 the	high	entropy	one.	Further	research	would	need	 to	be	
conducted	with	larger	samples	and	longer	exposure	time	to	further	investigate	
the	generalization	curve	as	an	interaction	between	input	entropy	and	exposure	
time.	
	
8.	Experiment	2	
	
In	 Experiment	 2,	 we	 further	 tested	 the	 effect	 of	 input	 complexity	 on	
generalization	when	learners	are	exposed	to	three	other	degrees	of	entropy.	The	
purpose	was	to	replicate	the	pattern	of	results	obtained	in	Experiment	1,	i.e.	to	
find	a	gradually	increasing	tendency	to	make	category-based	generalizations	as	a	
function	 of	 increasing	 input	 entropy.	We	 exposed	 adults	 to	 an	 XXY	 grammar	
similar	 to	 the	 one	 used	 in	 Experiment	 1,	 but	 the	 three	 conditions	 had	 other	
degrees	of	entropy.	For	the	Low	Entropy	(Experiment	2)	condition	we	chose	a	
lower	entropy	value	than	for	Low	Entropy	(Experiment	1)	(2.8	bits	-	4	x	7	Xs	/	4	
x	7	Ys)	to	test	the	prediction	made	by	the	simple	linear	regression	equation	that	
we	 fitted	 for	 the	 new	 XXY	 strings:	 at	 a	 lower	 entropy	 value	 (H=2.8	 bits)	 the	
induction	tendency	will	approach	chance	level	(around	54%).	The	entropy	value	
for	the	Medium	Entropy	(Experiment	2)	condition	(4.25	bits	-	2	x	14	Xs	/	2	x	14	
Ys)	 was	 chosen	 to	 test	 the	 specific	 prediction	 made	 by	 the	 simple	 linear	
regression	equation	that	the	mean	performance	on	X1X2Y	strings	with	familiar	
syllables	will	 decrease	 as	 compared	 to	 the	 performance	 for	Medium	Entropy	
(Experiment	1)	(for	H=4	bits	the	performance	was	77%):	at	H=4.2	bits	the	mean	
performance	predicted	is	72%.	For	the	High	Entropy	(Experiment	2)	condition	
we	chose	a	higher	entropy	(4.8	bits	-	1	x	28	Xs	/	1	x	28	Ys)	than	High	Entropy	
(Experiment	1)	in	order	to	test	if	the	tendency	to	abstract	away	from	the	specific	
input	increases	further	or	it	stabilizes	at	a	certain	ceiling.	The	prediction	is	that	
at	a	certain	degree	of	entropy	the	tendency	to	generalize	will	stabilize	at	a	certain	
ceiling	regardless	of	how	much	the	entropy	increases,	due	to	the	finite	channel	
capacity,	i.e.	there	will	be	no	further	increase	in	the	tendency	towards	category-
based	encoding.		
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8.1.	Method	
	
8.1.1.	Participants	
	
Thirty-six	Dutch	speaking	adults	(30	females	and	6	males,	age	range	18-34,	mean	
22)	participated	in	the	experiment.	Only	healthy	participants	that	had	no	known	
language,	 reading	 or	 hearing	 impairment	 or	 attention	 deficit	 were	 included.	
They	were	paid	5	EUR	for	participation.	
	
8.1.2.	Familiarization	stimuli	
	
As	 in	 Experiment	 1,	 participants	were	 exposed	 to	 3-syllable	 XXY	 strings.	 The	
same	 recorded	 syllables	 from	 Experiment	 1	 were	 used,	 but	 spliced	 together	
using	Praat	 to	 form	other	 strings	 than	 those	 used	 in	Experiment	 1,	 to	 obtain	
different	 degrees	 of	 input	 complexity.	 All	 three	 conditions	 (High	 Entropy,	
Medium	Entropy,	Low	Entropy)	had	equal	number	of	familiarization	strings	–	84	
XXY	strings	in	total	(28	XXY	strings	in	each	familiarization	phase)	–	which	were	
presented	 in	 a	 randomized	 order	 per	 participant	 (complete	 stimulus	 set	 in	
Appendix).	 This	 was	 also	 a	 between-subjects	 design,	 and	 participants	 were	
assigned	randomly	to	one	of	the	three	conditions.		
	
8.2.	Entropy	values	of	familiarization	conditions		
	
The	Shannon	entropy	formula	and	the	entropy	calculations	were	applied	in	the	
same	manner	as	for	Experiment	1	to	obtain	other	three	different	values	for	input	
complexity,	as	follows:	
1.	Low	Entropy:		7	X-syllables	and	7	Y-syllables	(with	each	syllable	used	4	times	
in	each	familiarization	phase).	To	generate	the	XXY	strings	for	the	Low	Entropy	
condition,	the	7	XX	pairs	were	concatenated	with	the	7	Y-syllables	to	obtain	7	
strings,	which	were	repeated	4	times	to	obtain	28	strings	which	were	used	in	all	
familiarization	phases.	The	same	procedure	was	applied	to	the	other	conditions.	
All	three	familiarization	phases	had	the	same	entropy	values:	the	average	bigram	
entropy	(H[bigram])	was	2.8,	the	average	trigram	entropy	(H[trigram])	was	2.8,	
and	 the	 total	 average	 entropy	 (H[total])	 was	 2.8	 (see	 Table	 5	 for	 complete	
entropy	calculations).	
2.	Medium	Entropy:	14	X-syllables	and	14	Y-syllables	(7	different	X-syllables	
and	7	different	Y-syllables	were	added	to	those	used	for	Low	Entropy	with	each	
syllable	 used	 2	 times.	 All	 three	 familiarization	 phases	 had	 the	 same	 entropy	
values:	the	average	bigram	entropy	(H[bigram])	was	4.05,	the	average	trigram	
entropy	(H[trigram])	was	4.46,	and	the	total	average	entropy	(H[total])	was	4.25.	
3.	High	Entropy:	 28	 X-syllables	 and	 28	 Y-syllables	 (14	 X-syllables	 and	 14	 Y-
syllables	were	added	to	those	used	for	Medium	Entropy	with	each	syllable	used	
one	 time.	 All	 three	 familiarization	 phases	 had	 the	 same	 entropy	 values:	 the	
average	 bigram	 entropy	 (H[bigram])	 was	 4.8),	 the	 average	 trigram	 entropy	
(H[trigram])	was	4.8,	and	the	total	average	entropy	(H[total])	was	4.8.	
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These	values	were	different	from	the	values	in	the	entropy	conditions	
used	in	Experiment	1	(repeated	here	for	quick	comparison	H[total]HiEN	=	4.58,	
H[total]MedEN	=	4,	H[total]LowEN	=	3.5).	
	
8.3.	Procedure		
	
The	procedure	was	the	same	as	for	Experiment	1.	

	
Low	Entropy	 Medium	Entropy	 High	Entropy	

H[bX]=H[7]	=	2.8	
H[XX]	=	H[7]=	2.8	
H[XY]	=	H[7]	=	2.8	
H[Ye]	=	H[7]	=	2.8	
H[bXX]	=	H[7]	=	2.8	
H[XXY]	=	H[XYe]=	H[7]	=	
2.8	
H[bigram]	=	2.8	
H[trigram]	=	2.8	
H[total]	=		
𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	2.8	

H[bX]=H[14]	=	3.8	
H[XX]	=	H[14]=	3.8	
H[XY]	=	H[28]	=	4.8	
H[Ye]	=	H[14]	=	3.8	
H[bXX]	=	H[14]	=	3.8	
H[XXY]	=	H[XYe]=	
H[28]	=	4.8	
H[bigram]	=	4.05	
H[trigram]	=	4.46	
H[total]	=	4.25	

H[bX]=H[28]	=	4.8	
H[XX]	=	H[28]=	4.8	
H[XY]	=	H[28]	=	4.8	
H[Ye]	=	H[28]	=	4.8	
H[bXX]	=	H[28]	=	4.8	
H[XXY]	=H[XYe]=	H[28]	=	
4.8	
H[bigram]		=	4.8	
H[trigram]	=	4.8	
H[total]	=	4.8	

Table	5.	Entropy	values	for	Experiment	2	
	
8.4.	Test	string	types	and	performance	predictions		
	
Participants	in	Experiment	2	were	tested	on	the	same	types	of	test	strings	as	for	
Experiment	1.	Each	test	phase	had	the	same	number	of	test	items	as	the	phases	
for	Experiment	1	(4	items	per	test),	and	the	total	number	of	test	items	was	the	
same	–	20	items	in	total	(complete	test	item	set	in	Appendix):	
Familiar-syllable	XXY–	correct	answer:	yes	-	accept	
New-syllable	 X1X2Y	 (three	 different	 new	 syllables)	 –	 correct	 answer:	 no	 -	
reject	
New-syllable	XXY	–	correct	answer:	yes	-	accept	
Familiar-syllable		X1X2Y	(three	different	familiar	syllables)	–	correct	answer:	
no	-	reject	
The	predictions	are	similar	to	the	those	presented	for	Experiment	1	in	section	4.	
	
9.	Experiment	2:	Results			 	 	 	 	 	
	 	 	 	
In	order	to	test	the	effect	of	input	complexity	on	the	process	of	generalizing,	the	
High	Entropy,	Medium	Entropy	and	Low	Entropy	conditions	were	compared	in	
a	Generalized	Linear	Mixed	Model,	with	Accuracy	(correct	acceptance/rejection)	
as	 dependent	 variable	 and	 Entropy	 condition,	 Test	 String	 Type	 x	 Entropy	
condition	interaction,	Test	phase	x	Entropy	condition	interaction	as	fixed	factors,	
and	Subject	and	Trial	as	random	factors.	An	alpha	level	of	 .05	was	used	for	all	
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statistical	 tests.	We	started	fitting	the	data	 from	the	 intercept-only	model	and	
added	the	random	and	fixed	factors	one	by	one.	We	report	here	the	best	fitting	
model,	both	in	terms	of	model’s	accuracy	in	predicting	the	observed	data,	and	in	
terms	of	AICc	(Akaike	Information	Criterion	Corrected).	There	was	a	statistically	
significant	Test	String	Type	x	Entropy	condition	interaction	(F(9,	699)	=	5.038,	p	
<	 .001).	There	was	no	statistically	significant	main	effect	of	Entropy	condition	
(F(2,	699)	=	0.260,	p	=	.77).	Results	indicated	a	non-statistically	significant	trend	
in	the	predicted	direction	for	Test	phase	x	Entropy	Group	interaction	(F(9,	699)	
=	1.163,	p	=	.32).		

Fig.	4	shows	the	mean	acceptance	rates	across	conditions	for	Familiar-
syllable	XXY	and	New-syllable	XXY.	The	mean	rate	of	acceptance	for	New-syllable	
XXY	in	High	Entropy	was	80%	(Mean	=	.80,	SD	=	.403),	for	Medium	Entropy	was	
77%	(Mean	=	.77,	SD	=	.427),	and	for	Low	Entropy	was	57%	(Mean	=	.57,	SD	=	
.5).	One-sample	Wilcoxon	Signed-Rank	tests	indicated	a	statistically	significant	
above-chance	mean	acceptance	for	New-syllable	XXY	in	High	Entropy	(Z	=	4.648,	
SE	=	118.12,	p	<	.001;	Cohen’s	d	=	0.6)	and	in	Medium	Entropy	(Z	=	4.131,	SE	=	
118.12,	 p	<	 .001;	d	=	0.53),	but	 in	Low	Entropy	 the	mean	acceptance	was	not	
significantly	above	chance	(Z	=	1.033,	SE	=	118.12,	p	=	.3,	d	=	0.13).	In	High	Entropy	
there	was	a	significant	difference	between	acceptance	of	Familiar-syllable	XXY	
and	acceptance	of	New-syllable	XXY	(M=.167,	SD=.376;	t(3)	=	2.161,	SE=0.643,	p	
=	 .031);	 in	 Medium	 Entropy	 there	 was	 also	 a	 significant	 difference	 between	
performance	on	these	tests	(M=.233,	SD=.427;	t(3)	=	2.542,	SE=0.624,	p	=	.011);	
and	in	Low	Entropy	the	difference	between	performance	on	these	tests	was	also	
significant	(M=.327,	SD=.511;	t(3)	=	4.335,	SE=0.683,	p	<	.001).	Further,	Cohen’s	
d	(d	=	0.73)	and	the	effect-size	correlation	(r	=	0.34)	for	the	difference	between	
acceptance	of	Familiar-syllable	XXY	and	acceptance	of	New-syllable	XXY	in	High	
Entropy	vs.	Low	Entropy	were	higher	than	the	same	values	for	High	Entropy	vs.	
Medium	Entropy	(d	=	0.09,	r	=	0.04),	and	also	higher	than	the	same	values	for	
Low	Entropy	vs.	Medium	Entropy	(d	=	0.63,	r	=	0.3).	
	 Fig.	5	displays	the	mean	rate	of	rejection	for	Familiar-syllable	X1X2Y	and	
New-syllable	X1X2Y.	The	mean	rejection	rate	for	Familiar-syllable	X1X2Y	was	90%	
for	High	Entropy	 (Mean	=	 .90,	 SD	=	 .303),	not	 significantly	different	 from	 the	
mean	acceptance	of	Familiar-syllable	XXY	(t(3)	=	0.647,	SE	=	0.704,	p	=	.518);	73%	
for	Medium	Entropy	 (Mean	 =	 .73,	 SD	 =	 .446),	 significantly	 different	 from	 the	
mean	acceptance	of	Familiar-syllable	XXY	(t(3)	=2.856,	SE	=	0.619,	p	=	.004);	and	
83%	for	Low	Entropy	(Mean	=	 .83,	SD	=	 .376),	significantly	different	from	the	
mean	acceptance	of	Familiar-syllable	XXY	(t(3)	=2.028,	SE	=	0.711,	p	=	.043).	
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10.	Comparing	Experiment	1	and	Experiment	2	
	
To	 further	 test	 the	 effect	 of	 input	 complexity	 on	 the	 process	 of	 making	
generalizations,	all	 the	conditions	 from	Experiment	1	and	Experiment	2	were	
combined	 in	 an	 omnibus	 Generalized	 Linear	 Mixed	 Model,	 with	 Accuracy	
(correct	 acceptance/rejection)	 as	 dependent	 variable	 and	 Entropy	 condition,	
Test	String	Type	x	Entropy	condition	interaction,	Test	phase	x	Entropy	condition	
interaction	as	fixed	factors,	and	Subject	and	Trial	as	random	factors.	An	alpha	
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level	of	.05	was	used	for	all	statistical	tests.	We	started	fitting	the	data	from	the	
intercept-only	model	and	added	the	random	and	fixed	factors	one	by	one.	We	
report	here	the	best	fitting	model,	both	in	terms	of	model’s	accuracy	in	predicting	
the	 observed	 data,	 and	 in	 terms	 of	 AICc	 (Akaike	 Information	 Criterion	
Corrected).	 There	 was	 a	 statistically	 significant	 Test	 String	 Type	 x	 Entropy	
condition	interaction	(F(18,	1,378)	=	5.782,	p	<	.001).	There	was	no	statistically	
significant	main	effect	of	Entropy	condition	(F(5,	1,378)	=	1.165,	p	=	.32),	and	no	
statistically	significant	Test	phase	X	Entropy	condition	interaction	(F(18,	1,378)	
=	1.150,	p	=	.29).		
	 Fig.	6	shows	the	distribution	of	individual	mean	rates	per	type	of	test	
item	 in	 each	 group,	 namely	 Low	Entropy,	Medium	Entropy,	 High	 Entropy,	 in	
Experiment	1	and	Experiment	2.	
	

	
	
A	 simple	 linear	 regression	 was	 calculated	 (Fig.	 7)	 to	 predict	 the	 rate	 of	
acceptance	 of	 New-syllable	 XXY	 based	 on	 the	 amount	 of	 input	 entropy.	 A	
significant	regression	equation	was	found	(F(1,4)=243.54,	p	<	.001),	with	an	R2	
of	 .98.	 Input	 entropy	was	a	 significant	predictor	 for	 the	 rate	of	 acceptance	of	
New-syllable	XXY.	
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11.	Discussion	
	
The	results	of	Experiment	2	show	that	the	mean	acceptance	of	new	XXY	strings	
as	 grammatical	 increases	 as	 a	 function	 of	 increasing	 entropy.	 These	 results	
reveal	 a	 similar	 pattern	 to	 the	 results	 from	Experiment	 1:	 an	 increase	 in	 the	
tendency	 to	 abstract	 away	 from	 the	memorized	 input	 as	 the	 input	 complexity	
increases.	 The	 different	 degrees	 of	 discrimination	 between	 XXY	 strings	 with	
novel	syllables	and	XXY	strings	with	familiar	syllables	show	differences	between	
groups	in	terms	of	their	tendency	to	generalize	to	new	items:	in	High	Entropy	
this	discrimination	is	lower	than	in	Medium	Entropy,	which	is	lower	than	in	Low	
Entropy.	This	difference	suggests	that	learners	in	the	High	Entropy	group	had	
the	 highest	 tendency	 to	 fully	 generalize	 to	 novel	 XXY	 strings.	 Similar	 to	
Experiment	1,	the	roughly	U-shaped	performance	in	the	case	of	ungrammatical	
Familiar-syllable	X1X2Y	strings	may	point	to	the	competition	between	the	two	
forms	of	encoding	(the	item-bound	and	category-based	generalization).		

When	analyzed	together,	the	results	from	Experiment	1	and	Experiment	
2	show	that	the	rate	of	accepting	XXY	strings	with	new	syllables	as	grammatical	
increases	as	the	entropy	increases.	These	results	suggest	an	increasing	tendency	
to	make	category-based	generalizations	as	the	input	complexity	increases,	which	
is	consistent	with	the	predictions	made	by	our	model.	The	same	tendency	is	also	
shown	by	 the	decrease	 in	 the	discrimination	between	XXY	 strings	with	novel	
syllables	 and	 XXY	 strings	 with	 familiar	 syllables,	 as	 the	 input	 complexity	
increases.	As	predicted,	the	mean	acceptance	of	XXY	strings	with	new	syllables	
decreases	 to	 very	 close	 to	 chance	 level	 (57%)	 when	 the	 input	 complexity	
decreases	to	an	entropy	of	2.8	bits	(Fig.	8).	When	entropy	increases	from	4	bits	
(Medium	Entropy	–	Experiment	1)	to	4.2	bits	(Medium	Entropy	–	Experiment	2),	
the	mean	rejection	rate	for	X1X2Y	with	familiar	syllables	decreases	below	77%	
(the	rejection	rate	at	H=4	bits),	to	reach	73%,	which	is	very	close	to	the	value	

y = 12.2x + 22.81
R² = 0.98, p < .000
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predicted	in	section	8	(72%).	The	results	show	that	when	entropy	increases	from	
4.58	bits	(High	Entropy	–	Experiment	1)	to	4.8	bits	(High	Entropy	–	Experiment	
2),	the	mean	rate	of	acceptance	for	new	XXY	strings	stabilizes	at	the	value	of	80%	
acceptance.	This	result	suggests	that	around	this	amount	of	entropy	(4.5	bits),	
the	tendency	to	abstract	away	from	specific	items	might	stabilize	at	this	ceiling	
regardless	of	how	much	the	entropy	increases.	According	to	our	entropy	model,	
this	ceiling	effect	is	hypothesized	to	be	due	to	the	limitations	in	channel	capacity.	

	

	
	
The	results	of	the	experiments	presented	here	can	be	also	interpreted	in	terms	
of	 the	 degree	 of	 uncertainty	 of	 the	 cognitive	 system	 regarding	 the	 abstract	
structure	of	the	input.	The	percentages	of	acceptance	of	novel	XXY	strings	can	be	
interpreted	as	the	probability	that	a	learner	will	abstract	away	from	the	specific	
items	in	the	input	and	generalize	to	new	XXY	strings	(for	example,	a	probability	
of	0.8	at	an	input	entropy	of	4.8	bits,	a	probability	of	0.57	at	an	input	entropy	of	
2.8,	etc.).	Under	this	interpretation,	we	used	the	information-theoretic	measure	
of	information	load	–	I	=	–	log(p)	–	to	quantify	the	amount	of	uncertainty	about	
input	structure.	A	logarithmic	curve	was	estimated	(Fig.	9)	to	predict	uncertainty	
regarding	the	XXY	structure	of	the	input,	based	on	the	amount	of	input	entropy.	
A	significant	logarithmic	equation	was	found	(F(1,4)=321.63,	p	<	.001),	with	an	
R2	 of	 .98.	 	As	 shown	 in	Fig.	9,	 the	uncertainty	about	 structure	 is	predicted	 to	
decrease	logarithmically	as	the	input	entropy	increases.	
	
12.	General	Discussion	and	Conclusions		
	
This	 study	 contributes	 to	 the	 ongoing	 debate	 on	 the	 learning	 mechanisms	
underlying	 rule	 induction.	 Some	 authors	 argued	 for	 two	 separate	 and	
qualitatively	different	mechanisms:	statistical	learning	and	abstract	rule	learning	
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(Endress	 &	 Bonatti,	 2007;	 Marcus	 et	 al.,	 1999),	 while	 others	 proposed	 that	
statistical	 learning	underlies	 both	 types	 of	 generalizations	 (Aslin	 &	 Newport,	
2012;	 2014;	 Frost	 &	 Monaghan,	 2016;	 Perruchet	 &	 Pacton,	 2006).	 Recent	
computational	models	suggest	that	learners	might	combine	statistical	learning	
and	rule-based	learning	(Adriaans	&	Kager,	2010;	Frank	&	Tenenbaum,	2011).	
However,	these	studies	do	not	explain	how	the	two	mechanisms	relate	to	each	
other,	and	it	has	remained	unclear	if	and	how	two	qualitatively	different	forms	
of	 encoding	 (item-bound	and	category-based	generalizations)	can	arise	 from	a	
single	mechanism.	Our	model	and	 the	 results	of	our	experiments	 support	 the	
view	put	forth	by	Aslin	and	Newport	(2012;	2014).	These	authors	suggested	that	
it	 is	 the	 (in)consistency	 of	 the	 distribution	 of	 contextual	 cues	 that	 triggers	 a	
narrow	 generalization	 (item-bound	 generalization,	 in	 our	 terminology)	 or	 a	
broader	generalization	(category-based	generalization).	However,	they	did	not	
provide	a	precise	description	of	the	pattern	of	such	(in)consistencies,	and	their	
hypothesis	 cannot	 answer	 the	 following	 questions:	 1)	 What	 is	 the	 specific	
pattern	of	(in)consistencies	and	how	much	(in)consistency	 is	needed	to	move	
from	 item-bound	 to	 category-based	 generalization?	 2)	 What	 triggers	 this	
transition?	 3)	 Why	 infants	 (children)	 and	 adults	 need	 different	 degrees	 of	
(in)consistency?	Some	studies	pointed	to	memory	constraints,	under	the	Less-is-
More	 hypothesis,	 but	 without	 clear	 evidence	 or	 explanation	 (Hudson	 Kam	 &	
Chang,	2009;	Hudson	Kam	&	Newport,	2005;	2009;	Newport,	1990;	Newport,	
2016).	 4)	 Why	 does	 increased	 exposure	 to	 the	 same	 distribution	 of	
(in)consistent	cues	reduce	the	tendency	to	make	category-based	generalizations?	
	

	
	

Our	entropy	model	answers	 these	questions	and	 it	accounts	 for	both	types	of	
encoding	by	identifying	two	factors	whose	interplay	is	predicted	to	be	the	source	
of	 both	 types	 of	 generalizations:	 input	 complexity	 (entropy)	 and	 the	 encoding	
capacity	 (channel	 capacity)	of	 the	 brain.	Entropy	 captures	 and	 quantifies	 the	

y = -0.966ln(x) + 1.8083
R² = 0.98, p = .000
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specific	 pattern	 of	 (in)consistencies	 (i.e.	 input	 variability	 and	 surprise)	 that	
triggers	 rule	 induction.	 Thus,	 it	 allows	 for	 precise	 predictions	 on	 the	
generalizations	 that	 are	 made	 by	 learners	 exposed	 to	 any	 degree	 of	 input	
complexity.	According	to	our	model,	learning	starts	out	by	memorizing	specific	
items	and	by	encoding	these	items	and	relations	between	them	as	 item-bound	
generalizations.	If	the	input	entropy	exceeds	the	encoding	capacity	of	the	brain,	a	
higher-order	 form	 of	 encoding	 (category-based	 generalization)	 develops	
gradually.		

Our	model	 is	 in	 line	with	 the	 general	Less-is-More	 hypothesis,	 and	 it	
offers	 an	 extended	 and	 more	 refined	 formal	 approach	 to	 this	 hypothesis.	
Moreover,	 our	model	 is	 in	 line	with	 evidence	 from	 neurobiology	 (Frankland,	
Köhler,	 &	 Josselyn,	 2013;	 Hardt,	 Nader,	 &	 Wang,	 2013;	 Migues	 et.	 al,	 2016;	
Richards	&	 Frankland,	 2017)	 and	 neural	 networks	 research	 (Hawkins,	 2004;	
Kumaran,	Hassabis,	&	McClelland,	2016;	MacKay,	2003)	 that	 converge	on	 the	
findings	 and	 hypothesis	 that	 the	memory	 system	 is	 designed	 to	 remember	 a	
certain	 degree	 of	 specificity	 (i.e.	 of	 entropy,	 in	 our	 terminology)	 in	 order	 to	
prevent	 underfitting	 (missing	 specific	 parameters	 to	 correctly	 capture	 the	
underlying	 structure	 of	 the	 data),	 but	 also	 to	 prevent	 overfitting	 to	 past	
data/events	(inadequately	remembering	and	representing	noise	as	underlying	
structure).	According	to	these	hypotheses	and	findings,	rather	than	being	faithful	
in-detail	 representations	 of	 the	 past	 data/events,	 memories	 are	 models	
optimized	for	future	data	integration,	i.e.	for	better	generalization	and	prediction	
of	 future	 data/events,	 in	 order	 to	 allow	 for	 more	 flexibility	 and	 better	
adaptability	to	noisy	environments.	As	a	refined	information-theoretic	extension	
of	the	Less-is-More	hypothesis	and	in	accord	with	these	current	developments	in	
neurobiology	and	neural	networks	research,	our	entropy	model	offers	a	basis	for	
conceptualization	and	quantification	of	the	specific	pattern	of	variability	(input	
entropy)	that	the	brain	is	naturally	sensitive	to,	and	which	drives	in	a	gradual	
fashion	the	rule	induction	mechanism	in	order	to	prevent	overfitting	to	the	input	
and	 to	 allow	 for	 representations	 of	 novel	 future	 input.	 From	 an	 information-
theoretic	point	of	view,	our	model	proposes	channel	capacity	(amount	of	entropy	
processed	 per	 unit	 of	 time)	 to	 reflect	 and	 quantify	 this	 design	 feature	 of	 the	
memory	 system	proposed	 in	 neurobiology	 and	 neural	 network	 research	 that	
naturally	and	automatically	places	a	lower	and	an	upper	bound	on	the	degree	of	
specificity	(quantified	in	bits	of	information)	represented	in	the	neural	pathways	
when	 encoding	 information,	 i.e.	 creating	memory	 representations	 as	 actively	
predictive	 models	 of	 novel	 data/events.	 Channel	 capacity	 adds	 into	 the	 rule	
induction	“formula”	the	essential	dimension	of	time,	i.e.	a	rate	of	encoding	the	
entropy	in	the	environment,	as	a	natural	physical	system	that	is	sensitive	to	a	
time-dependent	and	noisy	(=	highly	entropic)	inflow	of	information	(Radulescu,	
Murali,	Wijnen,	&	Avrutin,	(2021).	
	 In	 two	 artificial	 grammar	 experiments	 we	 tested	 the	 model	 by	
investigating	the	effect	of	one	factor	of	the	model,	namely	input	entropy,	on	rule	
induction.	The	findings	strongly	support	the	predictions	of	our	entropy	model,	
namely:	 item-bound	 generalization	 and	 category-based	 generalization	 are	 not	
independent	outcomes	of	two	qualitatively	different	mechanisms.	Rather,	they	
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are	 outcomes	 of	 the	 same	 information	 encoding	 mechanism	 that	 gradually	
moves	 from	 a	 lower-level	 item-bound	 encoding	 to	 a	 higher-order	 abstract	
encoding	(category-based	generalization),	as	triggered	by	the	input	entropy:	the	
lower	 the	 input	 entropy,	 the	 higher	 the	 tendency	 towards	 item-bound	
generalizations,	and,	consequently,	the	lower	the	tendency	to	make	a	category-
based	generalization.	The	higher	the	 input	entropy,	 the	higher	the	tendency	to	
make	a	category-based	generalization.	These	findings	support	our	hypotheses,	
and	 bring	 evidence	 in	 favor	 of	 the	 validity	 of	 this	 entropy	 model	 for	 rule	
induction.	

To	 further	 test	 the	predictions	of	 the	entropy	model	proposed	 in	 this	
paper,	the	following	outstanding	questions	should	be	investigated.	
	 What	 is	 the	 effect	 of	 input	 entropy	on	 infant	 rule	 induction?	 Further	
investigation	is	needed	in	order	to	probe	whether	the	same	pattern	of	results	
found	in	adults	is	replicated	in	infants,	i.e.	infants’	tendency	towards	category-
based	 generalization	 increases	 gradually	 as	 a	 function	 of	 increasing	 input	
entropy.	Given	 that	 infants	are	hypothesized	 to	have	an	overall	 lower	channel	
capacity,	 they	 should	 be	 exposed	 to	 a	 lower	 range	 of	 entropy	 than	 adults.	
Previous	research	into	infants’	generalization	mechanisms	have	already	hinted	
at	the	significance	of	surprise	(in	our	terminology,	entropy)	as	a	triggering	factor	
for	 generalization	 (Gerken	 et	 al.,	 2015).	 However,	 the	 necessary	 amount	 and	
nature	of	input	variability	(or	surprise)	remains	unclear:	some	studies	show	that	
at	 least	 three	 or	 four	 examples	 are	 needed	 for	 infants	 to	 generalize	 (Gerken,	
2006;	 2010;	 Gerken	&	Bollt,	 2008;	 Peterson,	 2011),	 but	 Gerken	 et	 al.	 (2015)	
claim	 that	 a	 single	 example	 suffices	 for	 generalization.	 Gerken	 et	 al.	 (2015)	
interpreted	their	results	 to	support	a	Bayesian	account	of	generalization,	also	
suggested	by	Griffiths	&	Tenenbaum	(2007):	when	an	input	is	inconsistent	with	
learners’	 prior	 model,	 hence	 surprising,	 learners	 seek	 a	 new	 hypothesis	 to	
accommodate	the	new	(surprising)	input.	However,	we	think	that	these	results	
raise	 concerns.	 Firstly,	 the	 authors	 used	 a	 very	 reduced	 exposure	 time	 (21	
seconds)	 compared	 to	 previous	 studies	 –	 2	minutes	 in	 Gerken	 (2006;	 2010).	
Reduced	 exposure	 time	 is	 a	 crucial	 component	 in	 the	 mechanisms	 of	 rule	
induction,	as	noted	in	previous	studies	with	adults	(Reeder	et	al.,	2013),	and	as	
explicitly	predicted	by	the	time-dependent	channel	capacity	component	of	our	
entropy	model.	Secondly,	the	authors	claim	that	generalization	occurred	from	a	
single	 example,	which	 is	 surprising	 compared	 to	 their	 prior	model.	 Formally,	
learners’	analysis	encompasses	also	their	prior	model,	not	just	the	one	example	
they	were	exposed	to	in	the	lab.	And	we	think	(although	the	authors	do	not	take	
this	into	account)	that	infants’	analysis	and	learning	extend	also	over	the	very	
long	 test	 phase	 (much	 longer	 than	 the	 familiarization	 phase	 itself),	 which	
includes	 12	 test	 trials	 with	 added	 variability	 (four	 different	 examples).	
Considering	these	concerns,	the	conclusion	that	infants	generalize	only	from	a	
single	example	is	not	decisive,	and	thus	further	research	is	needed	to	capture	the	
nature	 and	 specific	 pattern	 of	 entropy	 (i.e.	 surprise)	 that	 drives	 infant	 rule	
induction.		
	 In	this	paper,	we	proposed	an	original	implementation	of	entropy	as	a	
quantitative	measure	 of	 input	 complexity	 to	 artificial	 grammar	 learning	with	
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adults,	but	testing	our	model	of	a	gradual	transition	from	item-bound	to	category-
based	 generalization	 with	 infants	 will	 require	 a	 different	 approach	 to	
implementation,	in	terms	of	calculations	of	entropy	which	should	be	different	for	
infants,	 given	 that	 their	 cognitive	 system	 is	 still	 under	 development,	 so	 their	
channel	capacity	is	hypothesized	to	be	reduced.	Infants	might	be	more	sensitive	
to	local	statistical	properties	of	the	input,	rather	than	the	entire	set	of	items,	and	
they	might	update	their	memory	representations	in	an	incremental	fashion,	as	
suggested	already	by	evidence	found	in	infant	research	(Gerken,	2010;	Gerken	&	
Quam,	2017).	Thus,	indeed	due	to	a	lower	encoding	capacity	(channel	capacity),	
underpinned	 by	more	 plasticity	 of	 their	 developing	memory	 system,	 infants’	
learning	system	may	not	be	sensitive	to	average	of	bigrams/trigrams	over	the	
entire	set	of	stimuli,	since	their	encoding	“window”	might	be	more	locally	tuned	
(lower	channel	capacity).	Moreover,	since	 infants’	sensitivity	to	similarities	vs	
differences	might	develop	gradually	in	the	first	year	of	life,	given	evidence	that	a	
primitive	similarity	detector	is	in	place	from	birth	(Gervain	et	al.,	2008)	and	a	
detector	for	differences	might	develop	later	around	6-7	month	old,	as	suggested	
by	 our	 recent	 findings	 (Radulescu,	 Wijnen,	 Avrutin,	 &	 Gervain,	 2021	 –	 see	
Chapter	2).	As	hypothesized	by	our	model,	sensitivity	to	entropy	encompasses	
both	 a	 sensitivity	 to	 similar	 (or	 identical)	 features,	 and	 also	 a	 sensitivity	 to	
differences,	thus	these	should	be	developmentally	available	for	the	sensitivity	to	
entropy	to	be	fully	fledged.	
	 The	 natural	 follow-up	 question	 would	 then	 be	 if	 differences	 in	 rule	
induction	 across	 developmental	 stages	 could	 be	 explained	 by	 variations	 in	
channel	 capacity,	 as	 hypothesized	 by	 our	 model.	 Channel	 capacity,	 our	 finite	
time-dependent	 entropy-processor,	 is	 hypothesized	 to	 increase	 with	 age,	 as	
cognitive	capacities	mature,	and	thus	reduce	the	need	to	move	to	a	higher-order	
category-based	form	of	encoding.	Infants	are	expected	to	have	a	higher	tendency	
to	make	category-based	generalizations	compared	to	adults,	when	exposed	to	the	
same	input	entropy,	due	to	their	having	a	lower	channel	capacity	than	the	adults.	
Indeed,	 such	 hypotheses	 have	 long	 been	 put	 forward	 (e.g.	 the	 Less-is-More	
hypothesis)	 in	 order	 to	 suggest	 an	 important	 role	 of	 perceptual	 and	memory	
constraints	 on	 rule	 induction	 (Endress	 &	 Bonatti,	 2007;	 Newport,	 1990).	
Furthermore,	 these	 cognitive	 capacities	 mature	 in	 time,	 so	 there	 should	 be	
differences	between	developmental	stages:	it	 is	an	obvious	truth	that	children	
outperform	 adults	 at	 language	 learning	 even	 though	 their	 non-linguistic	
cognitive	 capacities	 are	 yet	 to	 develop.	 Research	 also	 showed	 that	 adults	 are	
more	likely	to	reproduce	the	statistical	properties	in	their	input,	while	children	
turn	the	statistical	specificity	into	general	rules	(Hudson	Kam	&	Newport,	2005;	
2009).	 The	 same	 authors	 suggest	 that	 it	 is	 an	 interaction	 of	 age	 and	 input	
properties	 that	 leads	 to	 generalization.	 However,	 as	 these	 researchers	 also	
pointed	out,	it	is	not	age	per	se,	but	the	cognitive	abilities	that	mature	with	age,	
and	 therefore	 memory	 was	 proposed	 as	 a	 factor.	 We	 also	 consider	 this	
interaction	to	be	key	to	the	mechanisms	of	generalization,	as	children	are	more	
likely	than	adults	to	“forget”	the	statistical	specificity	of	the	input	and	abstract	
away	 from	 it.	 But	 it	 is	 still	 not	 clear	 if	 it	 is	 both	 perceptual	 and	 memory	
constraints,	and	what	memory	component	is	at	stake.	Our	model	gives	a	more	
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refined	and	formal	approach	to	such	hypotheses	formulated	in	the	psychology	
literature,	and	it	makes	the	connection	in	information-theoretic	terms	between	
behavioral	evidence	found	in	psychological	research	and	current	developments	
and	 hypotheses	 formulated	 in	 neurobiology	 regarding	 the	 essential	 role	 of	
memory	transience	(“forgetting”)	in	overfitting	vs	generalization	design	features	
of	the	memory	system	(Richards	&	Frankland,	2017)	and	converging	views	from	
neural	networks	research	(Kumaran,	Hassabis,	&	McClelland,	2016).	

The	 results	 presented	 in	 this	 paper	 point	 to	 a	 ceiling	 effect	 of	 input	
entropy	 on	 rule	 induction,	 which	 is	 the	 result	 of	 the	 brain’s	 finite	 encoding	
capacity,	captured	by	the	channel	capacity	factor	in	our	model.	We	hypothesize	
that	 the	 encoding	 capacity	 varies	 according	 to	 individual	 differences	 in	
(unintentional)	incidental	memory	and	a	general	pattern-recognition	capacity.	
We	have	already	found	evidence	for	a	negative	effect	of	incidental	memorization	
and	a	positive	effect	of	a	visual	pattern-recognition	capacity	on	rule	induction	
(Radulescu,	Giannopoulou,	Avrutin,	&Wijnen	2021	–	see	Chapter	3).		
	 Further	research	should	be	conducted	to	investigate	the	suitability	and	
feasibility	 of	 entropy	 as	 a	 quantitative	 measure	 of	 input	 complexity	 and	 of	
learners’	 uncertainty	 (i.e.	 surprise)	 in	 rule	 induction,	 and	 also	 to	 assess	 the	
generalizability	 of	 this	 model	 to	 more	 complex	 non-repetition	 grammars.	 As	
suggested	 by	 previous	 studies	 (Endress,	 Dehaene-Lambertz	 &	 Mehler,	 2007;	
Endress,	 Nespor,	 &	 Mehler,	 2009)	 a	 low-level	 perceptual	 identity-detector	
(“repetition	detector”),	which	is	in	place	from	birth	(Gervain,	Berent,	&	Werker,	
2012;	Gervain,	Macagno,	Cogoi,	Peña,	and	Mehler,	2008),	might	aid	learning	of	
repetition-based	 grammars.	 Indeed,	 we	 assume	 that	 our	 entropy	 model	 is	
generalizable	to	all	grammars	and	further	investigations	are	needed	to	probe	its	
implementation	and	feasibility.	In	a	recent	study	on	non-adjacent	dependencies	
learning	that	extends	and	refines	previous	findings	by	Gómez	(2002)	we	found	
that	the	mere	set	size	of	items	was	not	the	only	factor	to	drive	generalization,	but	
it	was	the	specific	pattern	of	variability	captured	by	input	entropy,	as	predicted	
by	our	entropy	model	(Radulescu	and	Grama,	2021).			
	 As	suggested	before	(Gerken,	2010),	the	human	brain	is	not	sensitive	to	
the	mere	number	of	 items	or	 to	 their	 frequencies,	but	 to	a	 specific	pattern	of	
variability.	 	We	have	shown	in	our	experiments	and	in	the	reinterpretation	of	
previous	studies	(section	3)	that	entropy	captures	this	pattern.	This	result	adds	
to	 a	 growing	 body	 of	 evidence	 showing	 that	 human	 language	 processing	 is	
sensitive	 to	 entropy	 (Baayen,	 Feldman	 &	 Schreuder,	 2006;	 Milin,	 Kuperman,	
Kostiç,	 &	 Baayen,	 2009).	Moreover,	 entropy	was	 shown	 to	 have	 an	 effect	 on	
lexical	 access	 in	 unimpaired	 adults	 as	 well	 as	 in	 elderly	 populations	 and	
individuals	 with	 non-fluent	 aphasia	 (Van	 Ewijk,	 2013;	 Van	 Ewijk	 &	 Avrutin,	
2016).	 Entropy	 also	 plays	 an	 important	 role	 in	 other	 cognitive	 mechanisms	
beyond	 language	 learning,	 for	 instance	 in	 decision-making	 (Tversky	 &	
Kahneman,	 1992)	 and	 problem-solving	 (Stephen,	 Dixon	 &	 Isenhower,	 2009).	
Entropy	 was	 used	 to	 quantify	 the	 complexity	 levels	 within	 neural	 systems	
(Pereda,	 Quiroga,	 &	 Bhattacharya,	 2005),	 in	 theories	 on	 the	 emergence	 of	
consciousness	(Tononi,	2008),	and	in	identifying	features	of	brain	organization	
that	 underlie	 the	 emergence	 of	 cognition	 and	 consciousness	 (Guevara	 Erra,	
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Mateos,	Wennberg,	&	Velazquez,	 2016).	Recent	 research	 asks	 the	question	of	
how	encoding	 input	entropy	at	a	 cognitive	 level	 relates	 to	brain	 responses	 to	
uncertainty	at	a	neurobiological	level	(Hasson,	2017).	

The	 phenomena	 investigated	 in	 this	 study	 mark	 a	 qualitative	
developmental	step	in	the	mechanisms	underpinning	language	learning:	moving	
away	from	an	item-bound	learning	that	memorizes	and	produces	constructions	
encountered	 in	 the	 input	 or	 with	 items	 encountered	 in	 the	 input,	 towards	
category-based	 generalization	 that	 applies	 abstract	 rules	 productively.	 By	
showing	that	it	is	the	interaction	between	 input	entropy	and	the	finite	channel	
capacity	 that	drives	 the	gradual	 transition	 to	an	abstract-level	 generalization,	
this	research	fills	in	an	important	gap	in	the	puzzle	about	the	induction	problem	
for	language	acquisition.	
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Appendix	
	
Familiarization	items.	Experiment	1.	
High	Entropy	 Medium	Entropy	 Low	Entropy	
Phase	
1	

Phase	
2	

Phase	
3	

Phase	
1	

Phase	
2	

Phase	
3	

Phase	
1	

Phase	
2	

Phase	
3	

xoxoʃi	
xoxoʋ
u	

xoxoʋ
u	 xoxoʃi	

xoxok
aː	

xoxok
eː	 xoxoʃi	 xoxoʃi	

xoxok
eː	

pypyd
y	

pypyʃ
øː	

pypys
aː	 pypyʃi	

pypyk
aː	

pypys
aː	

pypyʃ
i	

pypys
aː	

pypys
aː	

tøːtøːs
aː	

Tøːtøː
by	

tøːtøːb
y	

tøːtøː
dy	

tøːtøː
my	

tøːtøː
saː	

tøːtøːʃ
i	

tøːtøː
dy	

tøːtøːʃ
i	

veːveː
føː	

veːveː
mo	

veːveː
daː	

veːveː
dy	

veːveː
my	

veːveː
my	

veːveː
ʃi	

veːveː
ʃi	

veːveː
ʃi	

ʋoʋo
mo	

ʋoʋof
aː	

ʋoʋok
eː	

ʋoʋos
aː	

ʋoʋoɣ
o	

ʋoʋoɣ
o	

ʋoʋo
dy	

ʋoʋo
dy	

ʋoʋos
aː	

loloke
ː	

Lolok
o	 lolody	

lolosa
ː	 loloɣo	 loloɣo	

lolod
y	 loloʃi	 loloʃi	

xuxuʃ
u	

xuxu
møː	 xuxuʃi	

xuxuf
øː	 xuxuʃi	 xuxuʃi	

xoxod
y	

xoxos
aː	

xoxod
y	

høːhøː
ʋøː	

høːhø
ːxi	

høːhøː
ko	

høːhøː
føː	

høːhø
ːʃi	

høːhø
ːʃi	

pypy
dy	

pypy
dy	

pypy
dy	

jyjyfi	 jyjyzy	 jyjyʃøː	
jyjym
o	 jyjydy	 jyjydy	

tøːtøː
saː	

tøːtøː
saː	

tøːtøː
dy	

ninika
ː	 ninify	 niniføː	

ninim
o	

ninid
y	

ninifø
ː	

veːveː
saː	

veːveː
dy	

veːveː
dy	

rorom
y	

rorob
o	

rorom
o	

rorok
eː	

roros
aː	

rorof
øː	

ʋoʋos
aː	 ʋoʋoʃi	 ʋoʋoʃi	

vyvyɣ
o	

vyvyh
y	

vyvyfa
ː	

vyvyk
eː	

vyvys
aː	

vyvy
mo	

lolosa
ː	

lolosa
ː	

lolosa
ː	

haːhaː
ʋu	

haːhaː
ʃi	

haːhaː
møː	

xoxoʃ
u	

xoxof
øː	

xoxoʋ
øː	

xoxof
øː	

xoxof
øː	

xoxos
aː	

hihiʃøː	
hihid
y	 hihizy	

pypyʃ
u	

pypyf
øː	

pypyf
i	

pypyf
øː	

pypyk
eː	

pypyk
eː	

jijiby	 jijisaː	 jijixi	
tøːtøː
ʋøː	

tøːtøː
mo	

tøːtøːf
i	

tøːtøːf
øː	

tøːtøː
mo	

tøːtøːf
øː	

jujuda
ː	

jujufø
ː	 jujufy	

veːveː
ʋøː	

veːveː
mo	

veːveː
mo	

veːveː
føː	

veːveː
føː	

veːveː
føː	

jøːjøːf
aː	

jøːjøː
daː	

jøːjøːb
o	 ʋoʋofi	

ʋoʋok
eː	

ʋoʋok
eː	

ʋoʋo
mo	

ʋoʋo
mo	

ʋoʋok
eː	

liliko	 lilikeː	 lilihy	 lolofi	
loloke
ː	

lolod
y	

lolom
o	

lolofø
ː	

lolofø
ː	

lylym
øː	 lylyʃu	 lylyʃu	

xuxuk
aː	

xuxuʃ
u	

xuxuʃ
u	

xoxo
mo	

xoxok
eː	

xoxo
mo	
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nonox
i	

nono
ʋøː	

nonoʋ
øː	

høːhøː
kaː	

høːhø
ːʃu	

høːhø
ːʃu	

pypy
mo	

pypy
mo	

pypy
mo	

nunuz
y	

nunuf
i	 nunufi	

jyjym
y	

jyjyʋø
ː	

jyjyʋø
ː	

tøːtøː
keː	

tøːtøː
keː	

tøːtøː
mo	

ryryfy	
ryryk
aː	

ryryka
ː	

ninim
y	

niniʋ
øː	

ninik
aː	

veːveː
keː	

veːveː
mo	

veːveː
mo	

vivibo	
vivim
y	 vivimy	

roroɣ
o	 rorofi	

rorok
aː	

ʋoʋo
keː	

ʋoʋof
øː	

ʋoʋof
øː	

vøːvøː
hy	

vøːvøː
ɣo	

vøːvøː
ɣo	

vyvyɣ
o	 vyvyfi	

vyvy
my	

lolok
eː	

loloke
ː	

loloke
ː	

	
Test	items.	Experiment	1.	

Test	1	 Test	2	 Test	3	 Final	Test	
Familiar-
syllable	
XXY	

xoxoʃi	 veːveːmo	 ʋoʋokeː	 pypysaː	 lolody	

New-
syllable	
XYZ	

dovaːsøː	 røːluxeː	 mitaːzu	 fuseːbi	 køːsodo	

New-
syllable	
XXY	

pøːpøːdeː	 totosy	 vovofo	 ʋaːʋaːzøː	 xøːxøːki	

Familiar-
syllable	
XYZ	

tøːdysaː	 pyʋoføː	 loxomo	 veːdyʋo	 tøːveːkeː	

	
Familiarization	items.	Experiment	2.	
High	Entropy	
Phase	1/2/3	

Medium	Entropy	
Phase	1/2/3	

Low	Entropy	
Phase	1/2/3	

keːkeːmy	
jujuɣo	
daːdaːli	
pypyveː	
tøːtøːrøː	
hihisaː	
fofoʃu	
nonoʃøː	
nunuvøː	
kykyʋaː	
jøːjøːvi	
totomøː	
haːhaːvy	
fyfyʃi	
dodoɣøː	
bybyro	

keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	nonoʃøː	
	nunuvøː	
	kykyʋaː	
	jøːjøːvi	
	totomøː	
	haːhaːvy	
	fyfyʃi	
	daːdaːmøː	
	pypyvy	

keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
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bibimo	
kikiɣu	
fifizy	
fufuʋøː	
høːhøːʋo	
kaːkaːzøː	
køːkøːlu	
boboɣeː	
deːdeːvaː	
hyhysøː	
faːfaːly	
jyjyxi	

	tøːtøːʃi	
	hihimy	
	fofoɣo	
	nonoli	
	nunuveː	
	kykyrøː	
	jøːjøːsaː	
	totoʃu	
	haːhaːʃøː	
	fyfyvøː	
	keːkeːʋaː	
	jujuvi	
	

	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	

	
Test	items.	Experiment	2.	

Test	1	 Test	2	 Test	3	 Final	Test	
Familiar-
syllable	
XXY	

daːdaːli	 hihisaː	 keːkeːmy	 tøːtøːrøː	 jujuɣo	

New-
syllable	
X1X2Y	

poxaːru	 runyni	 xaːmisy	 syniny	 mininy	

New-
syllable	
XXY	

dydytaː	 zuzuvo	 sosory	 jijiføː	 ʋuʋuseː	

Familiar-
syllable	
X1X2Y	

judaːsaː	 pytøːmy	 keːfoveː	 hidaːrøː	 tøːpyɣo	
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Chapter	2	

	 	 	

Same	Processing	Costs	for	Repetition	and	Non-Repetition	
Grammars	in	6-month-olds:	An	fNIRS	Study	
Radulescu,	S.,	Wijnen,	F.,	Avrutin,	S.,	and	Gervain,	J.12	

	
	
Abstract	
	
How	does	encoding	of	linguistic	regularities	such	as	repetition	regularities	(e.g.	
ABB	“bu-ra-ra”)	develop	in	infancy?	Previous	studies	showed	that	7-month-olds	
can	recognize	and	encode	such	repetition	regularities	as	abstract	rules	(Marcus	
et	al.,	1999),	but	only	when	the	input	showed	some	variability	(Gerken,	2006).	
However,	the	nature,	the	developmental	trajectory	and	the	neural	correlates	of	
these	mechanisms	remain	still	largely	unexplained.	In	an	fNIRS	study,	we	tested	
whether	 and	 how	 6-month-old	 infants	 process	 and	 encode	 repetition-based	
linguistic	regularities	(ABB)	as	compared	to	non-repetition	controls	(ABC,	e.g.	
“bu-fa-zo”),	 and	 also	 the	 effect	 of	 input	 entropy	 on	 encoding	 these	 patterns.	
According	 to	 an	 entropy	 model	 we	 proposed	 for	 rule	 induction	 in	 adults	
(Radulescu	 et	 al.,	 2019),	 we	 hypothesized	 that	 input	 entropy	 would	 have	 a	
positive	effect	on	rule	learning,	such	that	a	higher	input	entropy	would	support	
better	discrimination	between	ABB	and	ABC	patterns.	In	a	channel-by-channel	
analysis,	we	found	significant	activation	compared	to	baseline	for	both	the	ABB	
and	the	ABC	conditions.	In	the	same	analysis,	we	also	found	higher	activation	for	
ABC	 in	 High	 Entropy	 than	 ABC	 in	 Low	 Entropy	 in	 three	 channels,	 higher	
activation	for	ABB	in	High	Entropy	than	ABB	in	Low	Entropy	in	one	channel,	and	
also	higher	activation	 for	ABC	than	ABB	 in	High	Entropy	 in	one	channel.	This	
points	 to	a	 trend	 towards	higher	activation	 for	non-repetition	sequences,	and	
also	 higher	 activation	 for	High	 Entropy.	However,	we	 did	 not	 find	 an	 overall	
difference	between	the	two	grammars	across	channels.	Neither	did	we	find	an	
overall	difference	between	the	low	and	high	entropy	conditions.	These	results	
suggest	that	6-month-olds	are	able	to	process	both	the	repetition	and	the	non-
repetition	patterns,	and	the	processing	costs	are	the	same	for	both	patterns.	Our	
findings	are	the	first	to	reveal	a	developmental	change	in	language	acquisition	

 
12	This	chapter	is	a	modified	version	of	a	manuscript	in	preparation:		
Radulescu,	S.,	Wijnen,	F.,	Avrutin,	S.,	and	Gervain,	J.	(2021)	Same	Processing	
Costs	for	Repetition	and	Non-Repetition	Grammars	in	6-month-olds:	An	fNIRS	
Study	
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between	the	age	of	6	months	and	birth,	when	discrimination	between	repetition	
and	 non-repetition	 patterns	 was	 found	 (Gervain	 et	 al.,	 2008).	 This	 ability	 to	
encode	 a	 sequence	of	 different	 syllables,	may	 support	 6-month-olds’	 growing	
language	skills,	e.g.	the	beginning	of	word	learning.	Thus,	our	study	contributes	
to	a	better	understanding	of	the	developmental	trajectory	and	the	nature	of	the	
sameness/difference	representations,	which	underlie	the	building	blocks	of	rule	
learning	in	language.	
	
1.	Introduction	
	
Infants	can	learn	regularities	from	their	linguistic	input.	In	order	to	account	for	
the	detection	and	encoding	of	simple	repetition-based	grammars	(e.g.	ABB	“bu-
ra-ra”),	 previous	 studies	 with	 infants	 and	 adults	 proposed	 two	 qualitatively	
different	mechanisms:	 abstract	 rule	 learning,	 based	 on	 symbolic	 encoding	 of	
variables	 (Marcus,	Vijayan,	Rao,	&	Vishton,	 1999),	 and	 a	 low-level	 perceptual	
mechanism,	based	on	automatic	sensitivity	to	repetitions	(Endress,	Nespor,	and	
Mehler,	2009).	Exploring	the	development	of	these	mechanisms	is	necessary	for	
a	better	understanding	of	infants’	ability	to	represent	repetition-based	relations	
or	sameness	(ABB)		and	non-repetition	relations	or	difference	(ABC),	given	that	
these	 types	 of	 representations	 contribute	 to	 the	 building	 blocks	 of	 structure	
acquisition.	
	 From	 a	 series	 of	 artificial	 grammar	 studies,	 Marcus	 et	 al.	 (1999)	
concluded	 that	 7-month-olds	 recognize	 and	 generalize	 repetition-based	
structures,	like	AAB	strings	such	as	“le-le-di”,	“ko-ko-ba”,	based	on	the	findings	
that	 infants	 were	 able	 to	 discriminate	 new	 strings	 (which	 had	 not	 been	
presented	 during	 familiarization)	 with	 the	 same	 AAB	 structure	 from	 novel	
strings	with	a	different	structure	(ABB	or	ABA).	This	shows	that	infants	could	not	
simply	rely	on	rote	memorization	or	transitional	probabilities	between	specific	
familiar	 items.	Marcus	et	al.	argue	 that	 the	underlying	mechanism	supporting	
rule	 learning	 is	 an	 innate	 abstract	 symbol-manipulating	 mechanism	 that	
operates	 on	 variables.	 Whether	 the	 ability	 to	 encode	 patterns	 is	 supported	
indeed	 by	 an	 innate	 abstract	mechanism	 remains	 largely	 underspecified	 and,	
thus,	 hotly	 debated	 (Aslin	&	Newport,	 2012;	 2014;	 Frost	&	Monaghan,	 2016;	
Radulescu,	 Wijnen,	 &	 Avrutin,	 2019).	 Nonetheless,	 these	 results	 point	 to	 7-
month-olds’	ability	to	represent	abstract	repetition-based	relations,	since	they	
were	able	to	generalize	the	rule	to	novel	instances.	
	 Gerken	(2006)	 took	a	step	 further	 towards	understanding	the	 factors	
that	 trigger	 rule	 learning	 in	 infants,	 by	 showing	 that	 the	 nature	 of	 the	
representation	 (generalization)	 that	 learners	 form	 depends	 crucially	 on	 the	
statistical	properties	displayed	by	 the	 input.	By	modifying	 the	design	used	by	
Marcus	 et	 al.	 (1999),	 Gerken	 (2006)	 asked	 whether	 9-month-olds	 presented	
with	 two	different	 subsets	 of	 the	 strings	 used	by	Marcus	 et	 al.	 (1999)	would	
generalize	repetition-based	AAB	regularities.	Thus,	she	had	one	group	of	infants	
exposed	 to	 four	 AAB	 strings	 ending	 in	 different	 syllables	 (je/li/di/we)	 and	
another	group	to	four	AAB	strings	ending	only	in	di.	The	second	group	only	made	
a	narrow	generalization	 to	 strings	 that	 ended	 in	 “di”,	 i.e.	AAdi,	while	 the	 first	
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group	made	a	broader	generalization	to	AAB.	Gerken	(2006)	interpreted	these	
results	to	point	to	an	effect	of	stimulus	variability	on	the	type	of	generalization	
that	 learners	make:	 learners	 in	 the	 second	 group	 had	 both	 equally	 plausible	
generalizations	at	hand,	i.e.	the	narrow	“ends	in	di”	and	the	broad	AAB	rule,	but,	
since	 they	 did	 not	 have	 any	 clear	 evidence	 that	 strings	 can	 end	 in	 any	 other	
syllable,	they	inferred	the	maximally	reliable	rule	“ends	in	di”.	In	a	later	study,	
Gerken	 (2010)	 exposed	 9-month-olds	 to	 the	 same	 “ends	 in	 di”	 as	 in	 Gerken	
(2006),	but	at	the	end	of	the	exposure	phase	three	strings	ending	in	“je/we/li”	
were	added.	The	learners	made	the	broader	(AAB)	generalization	in	this	case.	
The	author	interpreted	these	results	to	show	that	it	is	not	the	mere	number	of	
items	in	the	input,	but	the	logical	structure	of	the	input	that	drives	a	“rational”	
decision-making	process,	which	resembles	a	Bayesian	type	of	learning	based	on	
incrementally	 updating	 hypotheses	 as	 supported	 by	 the	 direct	 evidence	
provided	by	the	input.		
	 Radulescu	 et	 al.	 (2019)	 challenge	 this	 interpretation	 and	 argue	 that,	
formally,	none	of	these	groups	of	infants	saw	direct	evidence	that	strings	could	
end	in	a	new	syllable,	except	for	“je/li/di/we”	in	the	higher	variability	group,	and	
“di”	 in	 the	 lower	 one.	Nonetheless,	 learners	 exposed	 to	 the	 higher	 variability	
input	made	a	broader	category-based	generalization	(AAB),	instead	of	sticking	to	
the	narrower	 item-bound	generalization	 (AAdi).	Radulescu	et	al.	 (2019)	argue	
that	the	evidence	proposed	by	Gerken	(2010)	in	favor	of	“rational”	learners	who	
generalized	 based	 on	 the	 logical	 structure	 of	 the	 input	 is	 not	 sufficient	 or	
decisive:	 if	 presented	 with	 the	 three	 strings	 ending	 in	 “je/li/di/we”	 at	 the	
beginning	of	the	2-minute-familiarization,	Radulescu	et	al.	(2019)	suggest	that	
the	learners	might	“forget”	them,	and	only	update	their	model	based	on	the	more	
strongly	evidenced	and	recent	“ends	in	di”	input.	
	 While	these	findings	among	others	(Gómez,	2002)	point	to	an	effect	of	
input	variability	on	rule	induction	in	infants,	the	necessary	amount	and	nature	
of	input	variability	remains	unclear:	some	studies	show	that	at	least	three	or	four	
examples	are	needed	for	 infants	 to	generalize	(Gerken,	2006;	2010;	Gerken	&	
Bollt,	2008;	Peterson,	2011),	but	Gerken	et	al.	(2015)	claim	that	a	single	example	
suffices	for	generalization.	However,	it	seems	that	it	is	not	mere	variability	that	
is	critical,	but	a	specific	pattern	of	variable	input	(Gómez,	2002).	
	 We	proposed	input	entropy	to	quantify	this	specific	pattern	of	variable	
input,	 and	 we	 put	 forth	 a	 new	 information-theoretic	 entropy	 model	 to	 rule	
induction	(Radulescu	et	al.,	2019),	which	employs	the	Shannon’s	noisy-channel	
coding	theory	(Shannon,	1948).	While	in	Radulescu	et	al.	(2019),	we	tested	the	
model	on	repetition-based	grammar	learning	in	adults,	 the	aim	of	the	present	
study	 is	 to	 extend	 the	model	 to	 rule	 induction	 in	 infants.	 In	 Radulescu	 et	 al.	
(2019),	 we	 distinguished	 between	 two	 qualitatively	 different	 types	 of	 rule	
induction	 (generalizations):	 item-bound	 generalization	 and	 category-based	
generalization,	by	following	suggestions	from	previous	conceptualizations	in	the	
literature	 (Gómez	 &	 Gerken,	 2000).	 While	 item-bound	 generalizations	 are	
defined	 as	 generalizations	 bound	 to	 specific	 items	 present	 in	 the	 input	 (e.g.	
“every	 string	 ends	 in	di”	 generalization	made	 by	 the	 low	 variability	 group	 in	
Gerken,	 2006),	 category-based	 generalizations	 are	 operations	 beyond	 specific	
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items	 in	 the	 input,	spanning	over	novel	 instances	(e.g.	 the	AAB	generalization	
made	by	the	high	variability	group	in	the	same	study).		
	 In	short,	and	simplifying	for	now,	the	main	hypothesis	of	our	entropy	
model	 is	 that	 rule	 induction	 is	an	encoding	mechanism	driven	by	an	external	
factor	–	the	statistical	properties	of	the	input,	i.e.	input	entropy,	which	interacts	
with	an	internal	factor	–	the	brain’s	ability	to	encode	the	input	under	conditions	
of	 finite	 encoding	 capacity	 (i.e.	 channel	 capacity).	 The	 encoding	 capacity	 is	
defined	as	channel	capacity,	in	information-theoretic	terms,	that	is	the	finite	rate	
of	information	encoding	(entropy	per	unit	of	time),	which	might	be	supported	by	
various	cognitive	capacities,	e.g.	memory	capacity,	 in	psychological	terms.	Our	
entropy	model	hypothesizes	that	item-bound	generalization	and	category-based	
generalization	are	not	independent	mechanisms.	Rather,	they	are	outcomes	of	
one	phased	mechanism	that	gradually	moves	from	memorized	combinations	of	
items	to	a	high-specificity	encoding	(item-bound	generalization),	and	eventually	
to	 a	 high-generality	 encoding	 (category-based	 generalization).	 Specifically,	 if	
input	 entropy	 is	 lower	 than	 the	 available	 channel	 capacity,	 the	 input	 can	 be	
encoded	using	high-specificity	 item-bound	generalization,	while	an	 increase	 in	
input	 entropy	gradually	 shapes	 item-bound	 generalization	 into	 category-based	
generalization,	in	order	to	avoid	exceeding	the	channel	capacity.	It	follows	that	a	
reduced	 channel	 capacity,	 which	 is	 assumed	 to	 be	 supported	 by	 cognitive	
capacities	that	are	not	yet	fully	matured	in	the	developing	brain,	might	support	
the	transition	to	category-based	generalization	under	conditions	of	relatively	low	
input	entropy,	i.e.	lower	than	the	input	entropy	that	adults	might	need.	
	 Indeed,	learners’	cognitive	capacities	were	previously	proposed	as	the	
internal	 factor	that	drives	rule	 induction:	the	classical	Less-is-More	hypothesis	
(Newport,	1990;	2016)	and	subsequent	related	studies	(Hudson	Kam	&	Chang,	
2009;	Hudson	Kam	&	Newport,	2005;	2009)	propose,	and	show	some	evidence	
for	children’s	higher	tendency	to	move	away	from	the	statistical	specificity	of	the	
input	and	generalize	rules	 from	the	 input	as	compared	to	adults.	Adults	were	
shown	to	learn	and	rather	stick	to	the	probability	distributions	displayed	by	the	
input	(i.e.	probability	matching)	instead	of	generalizing.	However,	when	exposed	
to	a	memory	overloading	and	noisier	input,	i.e.	high	variability	(Hudson	Kam	&	
Newport,	 2009;	 Hudson	 Kam	 &	 Chang,	 2009),	 adults	 were	 also	 shown	 to	
generalize.	 Thus,	 under	 the	 Less-is-More	 hypothesis,	 children’s	 tendency	 to	
generalize	is	assumed	to	be	driven	by	their	incomplete	cognitive	development	
(maturational	constraints	–	Newport	1990,	2016),	more	specifically	by	memory	
constraints	 (children’s	 overall	 lower	 memory	 capacity	 –	 Cowan,	 1997;	
Gathercole,	1998).	
	 However,	 from	a	developmental	perspective,	 the	question	of	when	 in	
infancy	 such	 generalizing	 abilities	 and,	 specifically,	 the	 ability	 to	 represent	
relations	of	repetition	(sameness)	and	non-repetition	(difference)	develop	is	still	
an	open	question.	While	there	is	evidence	for	the	ability	to	learn	repetition-based	
grammars	 from	 birth	 (Gervain,	 Berent,	 &	 Werker,	 2012;	 Gervain,	 Macagno,	
Cogoi,	Peña,	&	Mehler,	2008)	and	throughout	the	first	year	of	life	(Gerken,	2006;	
Marcus	et	al.,	1999),	the	developmental	trajectory	and	the	processing	demands	
of	forming	representations	of	repetition/non-repetition	(sameness/difference)	
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have	yet	 to	be	 thoroughly	 investigated.	Brain	maturation,	which	supports	 the	
development	 of	 memory	 and	 other	 cognitive	 capacities,	 is	 thought	 to	 play	 a	
crucial	role	 in	grammar	learning	mechanisms,	 i.e.	maturational	constraints	on	
rule	learning	(Newport,	1990;	2016).	In	the	current	study,	we	extend	to	infants’	
rule	 induction	 our	 entropy	 model	 proposed	 for	 adults’	 rule	 induction	 in	
Radulescu	et	al.	(2019),	which	puts	together	both	external	factors	(input	entropy)	
and	internal	factors	(channel	capacity)	in	one	consistent	account.	
	
2.	An	entropy	model	for	rule	induction	in	infants	
	
2.1	A	brief	introduction	to	our	entropy	model	and	previous	findings	
	
Radulescu	et	al.	(2019)	propose	a	new	information-theoretic	entropy	model	for	
rule	induction,	which	offers	a	more	refined	formal	approach	to	the	Less-is-More	
hypothesis	(Newport,	1990;	2016).	The	basic	hypothesis	of	this	model	is	that	the	
factors	 triggering	 the	 transition	 from	 item-bound	 to	 category-based	
generalization	are	input	entropy,	and	our	brain’s	finite	encoding	rate,	i.e.	channel	
capacity.	We	use	the	concepts	and	formulas	for	entropy	and	channel	capacity	as	
they	were	introduced	and	mathematically	demonstrated	by	Shannon	(1948).	
	 Entropy	 is	as	a	 function	of	 the	number	of	 items	and	 their	probability	
distribution.	 For	 a	 random	 variable	 X,	 with	 n	 values	 {x1,	 x2	 …	 xn},	 Shannon’s	
entropy	(Shannon,	1948),	denoted	by	H(X),	is	defined	as:	
	

H(X)	=	–	∑ 𝑝(𝑥!)𝑙𝑜𝑔𝑝(𝑥!)"
!#$ 	

where	p(xi)	is	the	probability	that	xi	occurs13.	Entropy	is	used	here	to	capture	
and	describe	a	property	of	the	input	–	a	specific	pattern	of	variability,	and	as	a	
measure	of	this	property,	i.e.	a	measure	of	input	variability.	Entropy	(measured	
in	 bits)	 captures	 the	 unique	 dynamics	 between	 two	 factors	 (number	 and	
probability	 distribution	 of	 items)	 that	 defines	 a	 specific	 pattern	 of	 variability	
proposed	by	Radulescu	et	al.	(2019)	to	be	relevant	for	rule	learning.	
	 The	 other	 factor	 used	 in	 the	 entropy	 model	 is	 another	 information-
theoretic	 concept,	 i.e.	 channel	 capacity,	 which	 is	 defined	 by	 the	 amount	 of	
entropy	that	can	be	transmitted	through	the	channel	per	unit	of	time	(Shannon,	
1948).	 Channel	 capacity	 is	 used	 to	 model	 the	 finite	 encoding	 rate	 of	 the	
information	encoding	system,	i.e.	the	amount	of	entropy	that	can	be	encoded	per	
unit	of	time	(bits/s).	Previous	memory	capacity	studies	showed	that	our	capacity	
to	encode	specific	items	and	relations	between	them	is	finite	(Baddeley,	Eysenck,	
and	Anderson,	2015;	Cowan,	2005).	Thus,	the	dynamics	between	input	entropy	
and	 the	 finite	 channel	 capacity	 are	 hypothesized	 to	 drive	 different	 forms	 of	
information	encoding	employed	 to	encode	 the	complexity	of	a	given	 input,	as	
follows.	

 
13	Log	should	be	read	as	log	to	the	base	2	here	and	throughout	the	paper.	
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	 According	 to	 our	 entropy	 model,	 item-bound	 generalization	 and	
category-based	generalization	are	outcomes	of	the	same	information	encoding	
mechanism	that	gradually	goes	from	a	high-specificity	form	of	encoding	(item-
bound	 generalization)	 to	 a	 high-generality	 encoding	 (category-based	
generalization),	as	 triggered	by	the	 interaction	between	 input	entropy	and	the	
finite	encoding	capacity	of	the	brain.		
	 If	 the	 input	 entropy	 is	 low	 –	 that	 is	 below	 or	 matches	 the	 channel	
capacity,	then	the	input	can	be	encoded	using	an	encoding	method	that	matches	
the	input	statistical	structure,	i.e.	the	probability	distribution	of	the	specific	items	
in	 the	 input.	 Thus,	 the	 items	 with	 their	 specificity	 can	 be	 encoded	 and	
transmitted	 through	 the	 channel	 at	 the	 available	 channel	 rate	 (i.e.	 amount	 of	
entropy	 per	 unit	 of	 time),	 and	 stored	 by	 item-bound	 generalization,	 that	 is	
probability	matching	to	the	input.	If	the	 input	entropy	 is	higher	than	the	finite	
channel	capacity	of	 the	encoding	system,	 the	encoding	rate	cannot	exceed	the	
channel	 capacity	 (Shannon,	 1948).	 As	 a	 consequence,	 this	 essential	 design	
feature	of	the	channel	capacity	“forces”	the	information	processing	system	to	re-
structure	 the	 information	 to	 gradually	 –	 bit	 by	 bit	 –	 shape	 the	 item-bound	
generalization	into	category-based	generalization.		
	 As	we	argued	in	Radulescu	et	al.	(2019),	re-structuring	the	information	
entails	 (unconscious)	 re-observing	 the	 item-specific	 features	 and	 structural	
properties	 of	 the	 input	 and	 identifying	 specific	 features	 that	 are	 the	 same	 or	
different	 across	 items.	 As	 a	 result,	 the	 information	 can	 be	 compressed	 by	
gradually	reducing	the	number	of	specific	different	features	that	individual	items	
are	coded	for	(i.e.	by	erasing	or	“forgetting”	insignificant	differences	between	the	
items,	that	is	low	probability	features).	As	a	result	of	reducing	(“forgetting”)	the	
specific	 features,	 items	are	grouped	in	“buckets”	(i.e.	categories)	based	on	the	
same	non-specific	shared	features	(Radulescu	et	al.,	2019).	This	would	model	the	
step-by-step	birth	of	abstract	 categories:	 such	as	AAB	 or	ABB	 patterns,	which	
allow	for	novel	 items	to	be	 included	in	these	categories,	based	on	relations	of	
sameness	and	difference.	
	 In	developmental	terms,	an	increase	in	channel	capacity,	(e.g.	resulting	
from	 growth/development	 of	 cognitive	 capacities),	 that	 is	 an	 increase	 in	 the	
amount	of	entropy	that	can	be	processed	and	encoded	per	unit	of	time,	reduces	
the	need	 for,	 and	 thus	 the	 tendency	 to	move	 to	 a	 higher-generality	 category-
based	form	of	encoding.	Thus,	infants	are	hypothesized	to	have	a	higher	tendency	
than	adults	to	move	towards	category-based	generalization	from	exposure	to	a	
lower	input	entropy.	
	 As	we	argued	in	Radulescu	et	al.	(2019),	sensitivity	to	entropy	entails	a	
sensitivity	to	a	specific	pattern	of	variability	in	the	input,	which	is	given	by	the	
degree	of	sameness/difference	between	items	and	their	features,	and	also	their	
probability	distribution,	which	assigns	them	significance.	The	more	differences	
are	 encoded	 between	 specific	 items	 (that	 is	 many	 different	 specific	 features	
encoded	for	each	item	–	measured	in	bits	of	information),	the	higher	the	degree	
of	specificity	of	the	encoding	(i.e.	item-bound	specificity).	Conversely,	since	the	
channel	capacity	places	an	upper	bound	on	the	number	of	bits	encoded	per	unit	
of	time,	a	reduction	–	“gradual	forgetting”	–	of	the	encoded	differences	highlights	
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a	higher	degree	of	sameness,	hence	the	lower	the	degree	of	specificity	and	the	
higher	the	degree	of	generality.	Entropy	captures	these	dynamics	of	sameness	vs	
difference,	and	quantifies	it	in	bits	of	information.	
	 This	model	was	first	proposed	and	tested	on	rule	induction	in	adults	in	
Radulescu	 et	 al.	 (2019),	 where	 in	 two	 artificial	 grammar	 experiments	 we	
exposed	adults	to	six	versions	of	a	repetition-based	XXY	grammar	with	different	
entropy	levels.	Results	showed	that	adults’	tendency	to	move	from	item-bound	
to	category-based	generalization	increased	gradually	as	a	function	of	increasing	
input	entropy,	as	predicted	by	our	entropy	model.	In	the	current	study,	we	extend	
the	 entropy	 model	 to	 rule	 induction	 in	 infants,	 based	 on	 the	 rationale	 that	
infants’	reduced	channel	capacity	 is	 the	hypothesized	driving	factor	 for	a	high	
tendency	 to	 move	 towards	 category-based	 generalization	 when	 exposed	 to	
relatively	low	input	entropy,	as	compared	to	adults.	

2.2	 Detecting	 repetition	 (sameness)	 and	 non-repetition	 (difference)	 in	
infancy	

Do	infants	also	move	gradually	from	item-bound	to	category-based	generalization	
as	 a	 factor	 of	 increasing	 input	 entropy,	 as	 previous	 findings	 seem	 to	 indicate	
(Gerken,	2006)?	Since	channel	capacity	 in	 infants	 is	hypothesized	 to	be	 lower	
than	 in	 adults,	 given	 that	 infants’	 cognitive	 capacities	 are	 yet	 to	 be	 fully	
developed,	 the	 empirical	 investigation	 of	 this	 question	 is	 deeply	 relevant	 to	
extending	 our	 entropy	 model	 to	 infants.	 A	 comprehensive	 answer	 to	 this	
question	requires	firstly	a	conceptual	argumentation	of	the	type	of	evidence	that	
can	be	 considered	 to	 show	a	 gradual	 transition	 from	 item-bound	 to	category-
based	generalization	in	infants,	which	is	currently	missing	in	the	literature.	In	the	
present	study	we	start	by	asking	two	closely	related	and	more	specific	questions.	
How	do	infants	process	repetition-based	(ABB)	regularities	as	compared	to	non-
repetition-based	 (ABC)	 regularities?	 Also,	 does	 input	 entropy	 have	 a	 positive	
effect	on	the	processing	costs?	Before	presenting	the	design	and	the	rationale	of	
our	study,	 in	this	section	we	discuss	previous	relevant	studies	that	addressed	
similar	questions.	
	 In	 an	 optical	 imaging	 study,	 Gervain	 et	 al.	 (2008)	 probed	 whether	
neonates	 can	 discriminate	 repetition-based	 grammars	 (ABB:	 “mu-ba-ba”	 and	
ABA:	“ba-mu-ba”)	from	random	controls	(ABC:	“mu-ba-ge”).	The	study	employed	
functional	NIRS	to	measure	the	hemodynamic	response	as	a	proxy	for	the	neural	
activity	 associated	 with	 processing	 ABB	 sequences	 vs	 ABC	 sequences.	 The	
results	showed	significantly	greater	increase	in	oxyHB	for	ABB	than	for	ABC	in	
both	left	and	right	temporal	areas.	However,	 in	the	second	experiment,	which	
tested	 the	 response	 to	 ABA	 vs	 ABC	 sequences	 with	 the	 same	 design	 and	
procedure,	there	was	no	difference	between	the	amplitudes	of	the	response	to	
ABA	vs	ABC	sequences,	although	both	sequences	gave	rise	to	a	response	that	was	
significantly	greater	than	baseline.	The	authors	interpreted	these	results	to	show	
that	 neonates	 possess	 an	 innate	 ability	 to	 detect	 repetition-based	 sequences	
(ABB),	however	not	in	non-adjacent	position	(ABA).	



An	Entropy	and	Noisy-Channel	Model	for	Rule	Induction	

 

74 

 

	 In	three	fNIRS	experiments,	Gervain	et	al.	(2012)	investigated	the	ability	
of	 the	 newborn	 brain	 to	 detect	 identity	 relations	 both	 in	 a	 sequence-initial	
repetition	(AAB)	grammar	and	a	sequence-final	repetition	grammar	(ABB).	 In	
the	first	experiment,	they	found	greater	oxyHB	and	smaller	deoxyHB	responses	
for	AAB	sequences,	compared	to	ABC	sequences,	which	showed	that	newborns	
were	 able	 to	 discriminate	 repetition-based	 (AAB)	 sequences	 from	 random	
controls	(ABC).	The	second	experiment	compared	newborns’	response	to	ABB	
vs	 AAB	 sequences	 in	 an	 alternating/non-alternating	 block	 design	 (ABB	
sequences	alternating	with	AAB	sequences	in	half	of	the	blocks,	while	the	other	
half	of	the	blocks	presented	either	AAB	or	ABB	sequences).	They	found	a	larger	
response	to	the	non-alternating	blocks	in	the	left	frontal	areas,	 indicating	that	
newborns	 could	discriminate	 the	 two	grammars.	 In	 the	 third	experiment,	 the	
authors	 compared	newborns’	 response	 to	ABB	vs	AAB	 sequences	 in	 a	 simple	
block	design,	resembling	the	design	used	by	Gervain	et	al.	(2008),	and	found	no	
difference	 between	 the	 responses	 (i.e.	 they	 found	 similar	 canonical	
hemodynamic	responses	in	the	bilateral	temporal	and	left	frontal	areas).	Since	
NIRS	measures	 the	hemodynamic	 response	 as	 a	 signature	 of	metabolic	 effort	
related	 to	neural	processing,	 the	authors	 interpreted	the	similar	responses	as	
possible	 evidence	 for	 similar	 processing	 costs	 associated	 with	 both	 types	 of	
sequences	 (ABB	 and	 AAB),	 with	 no	 advantage	 or	 preference	 for	 any	 of	 the	
structures.	 	
	 In	a	behavioral	experiment	that	resembled	the	design	by	Marcus	et	al.	
(1999),	 Gervain	 and	Werker	 (2012)	 looked	 at	 the	 ability	 of	 7-month-olds	 to	
discriminate	 adjacent-repetition	 (ABB)	 and	 non-adjacent	 repetition	 (ABA)	
sequences	from	non-repetition	ABC	controls.	One	group	was	familiarized	with	
the	ABB	grammar,	and	another	group	with	 the	ABA	grammar,	and	 in	 the	 test	
phase	 they	 were	 presented	 with	 novel	 sequences	 of	 their	 familiarization	
grammar	and	ABC	sequences.	They	found	significantly	longer	looking	times	to	
the	ABC	controls	than	to	their	respective	familiarization	sequences,	showing	that	
7-month-olds	have	the	ability	to	learn	and	represent	both	adjacent	(ABB)	and	
non-adjacent	 (ABA)	 repetition-based	 grammars.	 In	 a	 follow-up	 experiment,	
Gervain	and	Werker	(2012)	found	that	when	given	no	previous	familiarization	
with	 any	 of	 the	 grammars,	 7-month-olds	 do	 not	 show	 any	 spontaneous	
preference	 for	 the	 repetition-based	or	non-repetition	 controls,	 as	 it	would	be	
predicted	by	an	automatic	perceptual	repetition-detector	theory	(Endress	et	al.,	
2009)	.	This	study	ads	an	important	piece	of	the	puzzle	to	the	study	by	Marcus	et	
al.	 (1999),	 by	 bringing	 evidence	 that	 7-month-olds	 do	 not	 only	 encode	
representations	 of	 sameness	 to	 help	 them	 encode	 position-dependent	 same-
same	relations,	i.e.	AAB	vs	ABB	or	ABA,	but	they	can	also	perceive	such	relations	
as	 different	 from	 non-repetition	 sequences	 (ABC),	 that	 is	 from	 relations	 of	
difference	between	items.	

	 Wagner,	 Fox,	 Tager-Flusberg,	 and	 Nelson	 (2011)	 addressed	 the	
question	of	repetition-based	grammar	learning	from	a	developmental	point	of	
view	 in	 an	 fNIRS	 study	 that	 compared	7-month-olds	 to	9-month-olds	 in	 their	
ability	 to	 discriminate	 ABB	 and	 ABC	 sequences,	 but	 only	 found	 a	marginally	
significant	interaction	between	condition	(ABB,	ABC)	and	age	(7-month-olds,	9-
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month-olds):	there	was	a	larger	negative	deoxyHB	response	for	ABB	sequences	
in	the	younger	group,	while	the	9-month-olds	showed	the	opposite,	i.e.	a	larger	
negative	deoxyHB	response	for	ABC	sequences.	The	authors	interpreted	these	
findings	as	a	possible	shift	in	development	with	regard	to	the	brain’s	response	to	
repetition	and	non-repetition	grammars	during	the	first	year	of	 life.	However,	
the	exact	nature,	the	processing	demands	and	the	stage	in	development	when	a	
shift	emerges	remain	underspecified.	
	 Summarizing,	some	studies	(Gervain	et	al.,	2008;	Gervain	et	al.,	2012)	
show	that	the	neonate	brain	possesses	an	innate	sensitivity	to	repetition-based	
relations,	 evidenced	 by	 higher	 activation	 (i.e.	 higher	 amplitude	 of	 the	
hemodynamic	response)	to	repetition	grammars	(ABB	and	AAB)	compared	to	
non-repetition	grammars	(ABC),	as	well	as	compared	to	baseline.	By	contrast,	no	
cortical	 area	 in	 the	 newborn	 brain	 responds	 to	 sequences	 of	 three	 different	
syllables	 (ABC),	when	 compared	 to	baseline.	 Such	evidence	 could	point	 to	 an	
innate	ability	to	perceive	relations	of	repetition	(sameness),	while	the	ability	to	
detect	 and	 process	 relations	 of	 difference	 (ABC)	 may	 not	 yet	 be	 developed.	
Taking	 this	 evidence	 and	 interpretation	 into	 consideration	 together	with	 the	
above-mentioned	experiments	by	Gervain	and	Werker	(2012),	there	seems	to	be	
a	developmental	change	between	birth	and	the	age	of	seven	months.	Specifically,	
newborns	are	born	with	an	ability	to	perceive	and	represent	repetition-based	
grammars	 (sameness),	 while	 7-month-olds	 show	 (at	 least	 behaviorally,	 by	
longer	 looking	 times)	an	 interest	 for	 relations	of	difference	as	well.	However,	
since	this	does	not	constitute	evidence	that	7-month-olds	can	encode	relations	
of	difference,	further	research	is	needed	in	order	to	specify	how	young	infants	
process	repetition-based	grammars	as	compared	to	non-repetition	grammars.	
	 Another	line	of	research	with	infants	showed	a	positive	effect	of	input	
variability	on	rule	learning	(Gerken,	2006;	Gómez,	2002).	However,	how	exactly	
stimulus	 variability	 plays	 a	 role	 in	 the	 ability	 to	 form	 representations	 of	
sameness/difference	has	yet	to	be	clearly	specified.	Nonetheless,	these	studies	
and	 others	 (Gerken	&	Bollt,	 2008;	 Gómez,	 2002)	 clearly	 show	 that	 there	 is	 a	
gradient	of	generalization	 depending	on	 the	 statistical	properties	of	 the	 input	
(Aslin	and	Newport,	2012;	2014).	 In	addition,	 they	also	show	that	 little	 input	
variation	is	needed	for	infants	to	move	from	narrow	item-bound	generalization	
to	broader	category-based	generalization.	In	fact,	Gerken,	Dawson,	Chatila,	and	
Tenenbaum	(2015)	suggest	that	variability	is	not	needed	for	infants	to	make	a	
broader	 generalization	 (AAB).	 Specifically,	 they	 found	 that	9-month-olds	only	
need	 one	 example	 to	 generalize,	 if	 the	 input	 presents	 them	with	 a	 repetition	
pattern	that	is	“surprising”	(“le-le”),	since		their	prior	language	model	–	English,	
in	this	case	–	does	not	have	such	repetition	patterns	as	a	common	feature.	
	 In	an	fNIRS	study	that	followed	up	on	Gervain	et	al.	(2008),	Bouchon,	
Nazzi,	 &	 Gervain	 (2015)	 investigated	 the	 role	 of	 stimulus	 variability	 in	 the	
newborns’	ability	to	discriminate	repetition-based	ABB	sequences	from	random	
ABC	 controls.	 In	 this	 study	 they	 used	 less	 unique	 trisyllabic	 sequences	 –	 24	
different	 sequences	 –	 as	 compared	 to	 Gervain	 et	 al.	 (2008),	which	 presented	
newborns	 with	 280	 different	 sequences,	 so	 that	 no	 sequence	 was	 repeated	
throughout	 the	 entire	 experiment.	 Unlike	 Gervain	 et	 al.	 (2008)	 who	 found	 a	
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repetition	 enhancement	 effect	 for	 the	 ABB	 sequences,	 Bouchon	 et	 al.	 (2015)	
found	 a	 repetition	 enhancement	 in	 response	 to	 the	 ABC	 controls.	 More	
specifically,	 they	 found	 different	 time-dependent	 dynamics	 of	 the	 newborns’	
responses	to	the	two	different	grammars.	While	the	response	to	the	repetition-
based	 ABB	 remained	 constant	 over	 time	 after	 a	 small	 initial	 increase,	 the	
amplitude	of	the	response	to	ABC	(in	the	left	fronto-temporal	cortex)	increased	
over	 the	 time	 of	 the	 experiment.	 The	 authors	 interpreted	 the	 increased	
amplitude	of	the	response	to	ABC	as	evidence	of	the	effect	of	stimulus	variability,	
i.e.	the	effect	of	less	redundancy	in	the	ABC	controls	(vs	the	more	repetitive	ABB	
stimuli).	 The	 authors	 argue	 that	 less	 redundancy	 might	 have	 encouraged	
learning	based	on	memorization	of	the	material,	thus	eliciting	higher	processing	
costs	indicated	by	an	increased	neural	effort	for	the	non-repetitive	ABC	controls.	

3.	Design	and	rationale	of	the	present	study	with	infants	
	
We	set	out	to	find	the	effect	of	input	entropy	on	infant	rule	learning,	in	order	to	
probe	whether	and	how	 input	entropy	 impacts	 rule	 induction	 in	 infants,	 i.e.	 if	
infants’	tendency	towards	category-based	generalization	increases	as	a	function	
of	increasing	input	entropy.		As	discussed	above,	previous	research	into	infants’	
generalization	mechanisms	 showed	 that	 variability	 plays	 a	 role	 in	 infant	 rule	
learning	 (Bouchon	 et	 al.	 2015;	 Gerken,	 2006;	 Gómez,	 2002).	 However,	 input	
variability	 has	 not	 been	 systematically	 quantified	 by	 using	 entropy	 (or	 other	
information-theoretic	 measures)	 in	 previous	 studies	 with	 infants,	 while	 the	
questions	of	how	and	why	input	variability	should	have	an	effect	are	still	largely	
unanswered.	 The	 goal	 of	 the	 present	 study	 is	 to	 fill	 this	 gap	 and	 to	 offer	 a	
consistent	 information-theoretic	 account	 to	 how	 and	 why	 developmental	
changes	 in	 cognitive	 capacities	 should	 be	 a	 driving	 factor	 for	 rule	 induction,	
previously	formulated	as	maturational	constraints	(Newport,	1990;	2016).	
	 This	study	looks	at	whether	young	infants	process	repetition	grammars	
and	non-repetition	grammars	 in	 a	 similar	way	 to	newborns,	 or	whether	 they	
follow	 a	 different	 developmental	 pattern.	 One	 insufficiently	 explored	 issue	 is	
how	 young	 infants	 process	 repetition-based	 grammars	 as	 compared	 to	 non-
repetition	grammars.	Newborns	seem	to	process	adjacent-repetition	grammars	
(ABB/AAB)	differently	from	a	non-repetition	ABC	grammar	(Gervain	et	al.,	2008;	
Gervain	 et	 al.,	 2012)	 evidenced	 by	 a	 significantly	 higher	 activation	 for	 the	
ABB/AAB	strings	 than	 for	 the	 random	controls	 (ABC).	However,	whether	 and	
how	repetition	vs	non-repetition	relations	are	processed	by	young	infants	is	still	
largely	 underspecified.	 Specifically,	 we	 ask	 whether	 the	 processing	 costs	 of	
repetition	 grammars	 differ	 from	 the	 processing	 costs	 of	 non-repetition	
grammars?	
	 In	order	to	address	our	research	questions,	we	tested	whether	and	how	
6-month-old	 infants	 process	 repetition-based	 linguistic	 regularities	 (ABB,	 e.g.	
“bu	 ra	 ra”)	 as	 compared	 to	 non-repetition	 sequences	 (ABC,	 e.g.	 “bu	 fa	 zo”)	
manipulating	 the	 entropy	 (low	 vs	 high)	 of	 the	 stimuli	 using	 near-infrared	
spectroscopy	 (NIRS).	We	 used	 trisyllabic	 sequences,	 resembling	 the	 stimulus	
material	used	by	Gervain	et	al.	(2008)	and	Bouchon	et	al.	(2015),	but	with	three	
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major	 differences	 in	 1)	 stimulus	 entropy,	 2)	 the	 age	 of	 infants	 and	 3)	 the	
experimental	design.	
	 Firstly,	 in	 order	 to	 further	 the	 investigation	 of	 the	 effect	 of	 input	
variability	 started	 by	 Bouchon	 et	 al.	 (2015),	 we	 created	 two	 different	 input	
entropy	conditions	–	low	entropy	and	high	entropy	–	with	the	low	entropy	level	
below	 the	 low	 complexity,	 and	 the	 high	 one	 above	 the	 entropy	 level	 that	we	
calculated	for	the	stimulus	material	used	in	Bouchon	et	al.	(2015).	However,	we	
chose	both	entropy	levels	to	be	below	the	extremely	high	entropy	we	calculated	
for	the	stimulus	material	used	in	Gervain	et	al.	(2008).	
	 Secondly,	we	decided	to	test	6-month-old	infants	rather	than	newborns	
based	 on	 the	 following	 rationale.	 At	 this	 age,	 infants	 learn	 the	 most	 basic	
grammatical	 properties	 of	 their	 native	 language	 (Gervain	 et	 al.,	 2012).	 In	
addition,	 infants	 start	 learning	 their	 first	words	 and	develop	 a	word-learning	
capacity	that	goes	beyond	specific	associations	to	learning	words	that	refer	to	
categories	 of	 objects	 (Tincoff	 &	 Jusczyk,	 2012;	 Bergelson	 &	 Swingley,	 2012).	
Thus,	this	 is	a	stage	where	it	becomes	crucial	 for	 language	development	to	be	
able	 to	 encode	 both	 relations	 of	 repetition	 (sameness)	 and	 non-repetition	
(difference),	which	are	essential	for	the	ability	to	generalize.	

Thirdly,	 in	 order	 to	 ensure	 that	 the	 experiment	 was	 suitable	 for	 6-
month-olds	in	terms	of	duration	(to	keep	their	attention	for	the	entire	duration	
of	the	experiment),	we	used	a	similar	interleaved	block	design	as	Gervain	et	al.	
(2008),	but	we	had	significantly	reduced	number	of	blocks	per	condition	(i.e.	3	
blocks	vs	14	blocks),	with	a	total	of	six	blocks	(3	ABB	and	3	ABC)	per	entropy	
condition.	Thus,	the	total	testing	time	(8	minutes)	was	much	shorter	than	the	one	
used	with	sleeping	newborns	(20	–	25	min)	in	Gervain	et	al.	(2008)	and	the	one	
(14	–	15	min)	in	Bouchon	et	al.	(2015).	
	 We	predicted	that	we	would	find	higher	activation	(i.e.	higher	amplitude	
of	 the	hemodynamic	 response)	 compared	 to	baseline	 	 for	 both	ABB	and	ABC	
sequences.	 This	 would	 show	 that	 6-month-olds	 are	 able	 to	 process	 both	
repetition	 and	 non-repetition	 grammars.	 In	 addition,	 we	 also	 predicted	 a	
different	 level	 of	 activation	 for	 the	 ABB	 sequences	 compared	 to	 the	 ABC	
sequences,	which	could	constitute	evidence	 for	 infants’	ability	 to	discriminate	
between	 repetition	 and	 non-repetition	 sequences	 as	 a	 possible	 indication	 of	
grammar	learning.	Thirdly,	we	predicted	that	this	difference	in	activation	levels	
for	the	ABB	vs	ABC	sequences	would	be	larger	in	the	high	entropy	condition	than	
in	the	lower	entropy	condition.	Such	a	difference	would	show	an	effect	of	input	
entropy	on	processing,	and	possibly,	learning	the	grammars.		
	
4.	Materials	and	Methods	
	
4.1	Participants	
	
Twenty-one	 full-term,	French-exposed,	healthy	6-7-month-old	 infants	 (M	age:	
6.55	months,	 age	 range:	 6–7	months;	 10	boys,	 11	 girls)	were	 included	 in	 the	
analyses.	 An	 additional	 17	 infants	 were	 tested,	 but	 were	 excluded	 from	 the	
analysis	due	to	fussiness,	failure	to	start/complete	the	procedure,	including	non-
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starter	 babies	 who	 refused	 the	 cap	 to	 be	 placed	 on	 their	 head,	 or	 due	 to	
insufficient	 analyzable	 data	 (see	 below).	 All	 parents	 gave	 informed	 written	
consent	before	the	beginning	of	the	experiment.	The	study	was	approved	by	the	
CERES	ethics	committee	of	the	Université	Paris	Descartes	(Université	de	Paris	as	
of	January	2020)	under	number	2011-13.	
	
4.2	Stimuli	
	
Infants	were	exposed	to	a	repetition-based	ABB	grammar	(e.g.	“bu	ra	ra”)	and	
random	controls	(ABC,	e.g.	“bu	fa	zo”),	similar	to	the	stimuli	used	by	Gervain	et	
al.	 (2008)	 and	 Bouchon	 et	 al.	 (2015).	 Both	 grammars	 generated	 non-sense	
trisyllabic	 sequences	 of	 CV	 syllables	 and	 were	 matched	 for	 their	 phoneme	
repertoire	(i.e.	6	consonants	and	6	vowels	–	Table	1),	prosody	and	transitional	
probabilities	 between	 adjacent	 syllables	 (0.33).	 Sequences	 were	 synthesized	
using	the	MBROLA	diphone	database	with	the	French	fr4	female	voice	(Dutoit,	
Pagel,	Pierret,	Bataille,	and	Vreken,	1996),	in	a	monotonous	pitch	(200Hz)	and	
the	same	duration	of	phonemes	(i.e.	consonants:	120ms,	vowels:	150ms).	
	 Using	 these	 consonants	 and	 vowels,	we	 created	 two	 different	 sets	 of	
stimuli	with	different	 input	entropy:	a	 low	entropy	condition	(3.17bits)	and	a	
high	 entropy	 condition	 (4.17bits).	 The	 overall	 cross-condition	 entropy	 was	
3.67bits.	The	low	entropy	grammar	contained	9	unique	CV	syllables	(Table	1),	
which	were	concatenated	in	9	ABB	sequences	and	9	ABC	sequences,	each	of	them	
occurring	twice	within	the	entire	duration	of	the	experiment.	The	high	entropy	
grammar	contained	18	CV	syllables	(Table	1),	which	were	concatenated	in	18	
ABB	sequences	and	18	ABC	sequences,	each	occurring	once	within	the	duration	
of	the	experiment.	
	

6	Cs	 6	Vs	 Low	Entropy:	
9	syllables	

High	Entropy:	
18	syllables	

b	 i	 bi	 bi	 Zi	
f	 e	 fa	 fa	 pe	
R	 y	 Ry	 Ry	 go	
g	 a	 ge	 ge	 Re	
Z	 u	 Zo	 Zo	 Za	
p	 o	 pu	 pu	 fi		 	

bu	 bu	 by		 	
fy	 fy	 gu		 	
Ra	 Ra	 po	

Table	1.	The	phonemes	and	syllables	used	in	Low	Entropy	and	High	Entropy	
conditions	

	
For	the	entropy	calculations,	we	used	the	same	entropy	calculation	model	as	in	
Radulescu	 et	 al.	 (2019),	which	 is	 a	more	 refined	method	 based	 on	 a	method	
proposed	by	Pothos	(2010)	for	finite-state	grammars	(see	Table	2	for	complete	
calculations).	
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4.3	Procedure	
	
All	participants	were	presented	with	both	ABB	and	ABC	blocks	in	an	interleaved	
design,	and	to	both	low	entropy	and	high	entropy	conditions	sequentially	in	a	
counter-balanced	 order	 (Figure	 1A).	 Each	 block	 contained	 6	 ABB	 or	 ABC	
sequences	separated	by	a	brief	pause	of	either	0.5s	or	1.5s	(duration	was	chosen	
randomly).	Blocks	were	separated	by	a	20s	or	25s	pause	chosen	randomly	 to	
prevent	phase-locked	brain	 responses.	Block	order	 and	 condition	order	were	
pseudo-randomized	and	counter-balanced	across	infants.		
	 Each	entropy	condition	contained	3	ABB	blocks	and	3	ABC	blocks,	with	
a	 total	 duration	 of	 3.6	 minutes	 per	 condition.	 Between	 the	 two	 entropy	
conditions,	infants	listened	to	a	music	track	of	37s,	in	order	to	provide	them	with	
a	short	pause	and	an	auditory	stimulation	of	an	entirely	different	nature	between	
the	two	entropy	conditions.	The	total	testing	time	for	each	infant	was	8	minutes	
(Figure	1A).	
	 Infants	were	tested	with	a	NIRx	NIRScout	8-16	machine	in	a	quiet	dimly	
lit	 testing	booth	at	 the	BabyLab	of	 the	Université	Paris	Descartes.	The	optical	
sensors	were	inserted	into	a	stretchy	cap	and	placed	on	the	infants’	head	using	
surface	landmarks	(nasion,	and	the	preauricular	points),	targeting	the	language	
areas	in	the	bilateral	temporal,	frontal	and	parietal	cortices	(Figure	1B).	These	
areas	 match	 those	 that	 responded	 to	 reduplication	 in	 speech	 in	 newborns	
(Gervain	et	al.	2008).	We	approximated	the	cortical	regions	underlying	our	NIRS	
channels	 following	 Lloyd-Fox	 et	 al.	 (2014)	 and	 Abboub,	 Nazzi,	 and	 Gervain	
(2016),	using	age-appropriate	structural	MRIs	and	stereotaxic	atlases	(Fillmore,	
Richards,	 Phillips-Meek,	 Cryer,	 &	 Stevens,	 2015;	 Kabdebon	 et	 al.,	 2014).	 The	
position	of	optodes	was	measured	with	respect	to	the	nasion	and	tragi	for	each	
participant	and,	together	with	photographs	of	the	optode	positions,	were	used	
to	localize	the	optodes	on	a	structural	whole	head	MRI	image.	The	locations	were	
then	projected	down	onto	the	cortical	surface	to	identify	the	regions	underlying	

Low	Entropy	 High	Entropy	
H[beginA]=H[9]=	 -Σ[0.111*log0.111]	=	
3.169	
H[AB]	=	H[9]=	3.169	
H[BB]	=	H[9]	=	3.169	
H[Bend]	=	H[9]	=	3.169	
H[beginAB]	=	H[9]	=	3.169	
H[ABB]	=	H[BBend]=	H[9]	=	3.169	
H[bigram]	=	3.169	
H[trigram]	=	3.169	
H[total]	=	𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
	=	3.169	

H[beginA]=H[18]=		
-Σ[0.055*log0.055]	=	4.169	
H[AB]	=	H[18]=	4.169	
H[BB]	=	H[18]	=	4.169	
H[Bend]	=	H[18]	=	4.169	
H[beginAB]	=	H[18]	=	4.169	
H[ABB]	=	H[BBend]=	H[18]	=	4.169	
H[bigram]	=	4.169	
H[trigram]	=	4.169	
H[total]	=	𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
	=	

4.169	

Table	2.	Entropy	values	
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the	NIRS	channels	for	each	infant.	A	channel	was	then	labeled	according	to	the	
localization	found	in	the	majority	of	participants.	Accordingly,	channels	1,	2,	4,	5	
and	13-16	query	the	frontal	lobe,	channels	3,	6,	17	and	19	are	positioned	over	
the	 temporal	 lobe,	 channels	 7,	 10,	 12,	 18,	 20	 and	 23	 are	 parietal,	 whereas	
channels	9	and	21	span	the	temporal	and	parietal	lobes.	
	
	

	
Figure	1.	Block	design	(A)	and	probe	placement	(B)	

	
	 	
During	 testing,	 infants	 were	 seated	 on	 a	 caregiver’s	 lap.	 The	 stimuli	 were	
presented	aurally	using	E-Prime	through	speakers	placed	on	the	right	and	left	
side	of	a	computer	screen	located	in	front	of	the	infants	at	approximately	80cm.	
During	 stimulus	 auditory	 presentation,	 a	 cartoon	 was	 playing	 on	 a	 screen.	
Caregivers	were	instructed	not	to	talk	to	their	infant	or	orient	their	behavior.	

	



Chapter	2		

 

81 

 
 

	
	 Figure	2.	Probe	placement	with	channel	labeling.	Grey	circles	represent	

sources	and	black	circles	represent	detectors	of	the	signal.	
	

4.4	Data	analysis	
	
The	NIRS	machine	measured	the	intensity	of	the	transmitted	light,	from	which	
concentration	 changes	 of	 oxygenated	 hemoglobin	 (oxyHb)	 and	 deoxygenated	
hemoglobin	(deoxyHb)	were	calculated	using	the	modified	Beer-Lambert	Law.	
To	eliminate	noise	(e.g.,	heartbeat)	and	overall	trends,	the	data	were	band	pass-
filtered	 between	 0.01-0.7Hz.	 Movement	 artifacts,	 defined	 as	 concentration	
changes	 above	 0.1	 mmol*mm	 over	 two	 samples,	 were	 removed	 by	 rejecting	
block-channel	pairs	in	which	artifacts	occurred.	For	valid,	non-rejected	blocks,	a	
baseline	was	linearly	fitted	between	the	means	of	the	5s	preceding	the	onset	of	
the	block	and	the	5s	starting	15s	after	offset	of	the	block	(in	accord	with	general	
practice	 in	 NIRS	 studies	 –	 Lloyd-Fox,	 Blasi,	 &	 Elwell,	 2010).	 Infants	 were	
videotaped	during	the	experiment.	
	 Statistical	analyses	were	carried	out	on	the	average	of	both	oxyHb	and	
deoxyHb	concentrations	recorded	in	a	time	window	starting	at	9	s	after	stimulus	
onset	and	until	22	s	after	stimulus	onset,	i.e.	containing	the	10-second-relaxation	
period.	
	
5.	Results	
	
The	grand	average	results	are	presented	in	Figure	3.	The	figure	shows	the	oxyHb	
and	deoxyHb	concentration	changes	averaged	across	all	blocks	of	each	condition	
and	across	all	infants.	Figure	4	shows	the	results	for	the	ABB	vs	ABC	comparison	
across	all	blocks	collapsed	over	entropy	conditions,	while	Figure	5	shows	 the	
results	for	the	Low	vs	High	Entropy	comparison	across	all	blocks	collapsed	over	
grammar	conditions.	
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	 Firstly,	we	averaged	the	oxyHb	and	deoxyHb	concentrations	across	all	
blocks	 in	 each	 channel,	 for	 each	 grammar	 in	 each	 entropy	 condition.	 We	
performed	channel-by-channel	t-tests	for	the	mean	oxyHb	and	deoxyHb	changes	
for	 the	 following	comparisons:	ABB	vs	baseline,	ABC	vs	baseline,	ABB	vs	ABC	
across	Entropy	conditions	and	in	each	Entropy	Condition,	ABB	in	Low	Entropy	
vs	High	Entropy,	ABC	in	Low	Entropy	vs	High	Entropy.		
	 Results	revealed	significant	activation	for	ABB	compared	to	baseline	in	
channel	 6	 (ABB,	 oxyHb,	p	=	 .049),	 channel	 17	 (ABB,	 deoxyHb,	p	=	 .026),	 and	
significant	activation	for	ABC	compared	to	baseline	in	channel	2	(ABC,	oxyHb,	p	
=	.020),	channel	17	(ABC,	deoxyHb,	p	=	.018).	
	 Further,	channel-by-channel	t-tests	yielded	a	significant	difference	for	
the	 following	 ABB	 vs	 ABC	 	 comparisons	 collapsed	 over	 Entropy	 conditions:	
channel	2	(ABB	<	ABC,	oxyHb,	p	=	.034),	channel	20	(ABB	>	ABC,	oxyHb,	p	=	.048).	
Also,	results	yielded	a	significant	difference	for	the	following	comparisons	with	
Entropy	 conditions:	 channel	 5	 (ABC	 in	 Low	 Entropy	 <	 ABC	 in	 High	 Entropy,	
deoxyHb,	p	=	 .039),	 channel	10	 (ABC	 in	Low	Entropy	<	ABC	 in	High	Entropy,	
deoxyHb,	p	=	 .028),	 channel	12	 (ABC	 in	Low	Entropy	<	ABC	 in	High	Entropy,	
deoxyHb,	p	=	 .044);	 channel	 3	 (ABB	 in	 Low	Entropy	 <	 ABB	 in	High	 Entropy,	
oxyHb,	p	=	.041),	channel	4	(ABB	in	Low	Entropy	>	ABB	in	High	Entropy,	oxyHb,	
p	=	.033);	channel	2	(ABB	<	ABC	in	High	Entropy,	oxyHb,	p	=	.012).	
	 Given	 that	 overall	 oxyHb	 yielded	 more	 significant	 activation	 than	
deoxyHb,	in	line	with	previous	findings	(Gervain	et	al.,	2008),	and	also	given	that	
oxyHb	 is	most	 commonly	 and	 robustly	 employed	 in	 the	 literature	 for	 infants	
(Aslin,	Shukla,	&	Emberson,	2015),	we	ran	further	analyses	on	oxyHb	as	a	better	
predictor.	
	 As	the	order	of	the	Entropy	conditions	did	not	yield	a	significant	main	
effect	in	preliminary	analyses,	we	collapsed	over	the	order	in	the	analyses.	Next,	
we	 grouped	 the	20	 channels	 according	 to	 hemisphere	 (left	 hemisphere	 –	 LH,	
right	hemisphere	–	RH,	Fig.	2)	and	ROI	(Frontal,	Temporal,	Parietal,	Fig.	2),	and	
averaged	 the	 oxyHb	 across	 all	 blocks	 for	 each	 channel.	 Firstly,	 a	 repeated	
measures	ANOVA	with	the	main	within-subjects	factors	Grammar	(ABB/ABC),	
Entropy	(Low/High),	and	Entropy	*	Grammar	interaction,		Entropy	*	Grammar	*	
Hemisphere	 (Left/Right)	 interaction,	 and	 Grammar	 *	 Hemisphere	 interaction	
was	run	on	average	oxyHb	concentration	across	channels	to	evaluate	whether	
the	two	grammars	are	processed	differently	in	the	two	entropy	conditions	and	
in	 the	 two	 hemispheres.	 No	 significant	 effects	 or	 interactions	 were	 found.	
Secondly,	 another	 repeated	 measures	 ANOVA	 with	 the	 main	 within-subjects	
factors	 Grammar	 (ABB/ABC),	 Entropy	 (Low/High),	 and	 Entropy	 *	 Grammar	
interaction,		Entropy	*	Grammar	*	ROI	(Frontal,	Temporal,	Parietal)	interaction,	
and	Grammar	*	ROI	interaction	was	run	on	average	oxyHb	concentration	across	
channels	to	evaluate	whether	the	two	grammars	are	processed	differently	in	the	
two	 entropy	 conditions	 and	 in	 the	 three	 ROIs.	 No	 significant	 effects	 or	
interactions	were	found.	
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Figure	3.	Grand	average	results.	The	concentration	changes	of	oxy-	and	
deoxyHb	were	averaged	across	all	blocks	for	each	condition	and	for	each	
channel.	The	x-axis	shows	time	(seconds),	the	y-axis	shows	hemoglobin	

concentration	(mmol	x	mm).	The	rectangle	along	the	x-axis	indicates	time	of	
stimulation.	The	continuous	red	and	blue	lines	in	the	graphs	represent	oxyHb	

(O)	and	deoxyHb	(D)	concentrations,	respectively,	in	response	to	the	ABC	
(N=non-repetition)		grammar	in	the	Low	Entropy	(L)	condition.	The	continuous	

magenta	and	cyan	lines	represent	oxyHb	and	deoxyHb	concentrations,	
respectively,	in	response	to	the	ABB	(R=repetition)	grammar	in	the	Low	
Entropy	condition.	The	dashed	red	and	blue	lines	represent	oxyHb	and	
deoxyHb	concentrations,	respectively,	in	response	to	the	ABC	(N=non-

repetition)		grammar	in	the	High	Entropy	(H)	condition.	The	dashed	magenta	
and	cyan	lines	represent	oxyHb	and	deoxyHb	concentrations,	respectively,	in	
response	to	the	ABB	(R=repetition)	grammar	in	the	High	Entropy	condition.	
The	time	line	on	the	x-axis	shows	the	following	sequence	of	events:	5	s	time-

window	before	the	onset	of	the	block,	block	presentation	(12	s),	and	the	
between-block	silences	(20	s	or	25	s),	giving	a	total	duration	of	37–42	s.		
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Figure	4.	Grand	average	results	for	ABB	vs	ABC	grammars.	The	

concentration	changes	of	oxy-	and	deoxyHb	were	averaged	across	all	blocks	for	
each	condition	and	for	each	channel.	The	x-axis	shows	time	(seconds),	the	y-

axis	shows	hemoglobin	concentration	(mmol	x	mm).	The	rectangle	along	the	x-
axis	indicates	time	of	stimulation.	The	continuous	red	and	blue	lines	in	the	

graphs	represent	oxyHb	(O)	and	deoxyHb	(D)	concentrations,	respectively,	in	
response	to	the	ABC	grammar.	The	continuous	magenta	and	cyan	lines	

represent	oxyHb	and	deoxyHb	concentrations,	respectively,	in	response	to	the	
ABB	grammar.	
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Figure	5.	Grand	average	results	for	Low	vs	High	Entropy.	The	concentration	

changes	of	oxy-	and	deoxyHb	were	averaged	across	all	blocks	for	each	
condition	and	for	each	channel.	The	x-axis	shows	time	(seconds),	the	y-axis	

shows	hemoglobin	concentration	(mmol	x	mm).	The	rectangle	along	the	x-axis	
indicates	time	of	stimulation.	The	continuous	red	and	blue	lines	in	the	graphs	

represent	oxyHb	(O)	and	deoxyHb	(D)	concentrations,	respectively,	in	response	
to	Low	Entropy	stimuli.	The	continuous	magenta	and	cyan	lines	represent	

oxyHb	and	deoxyHb	concentrations,	respectively,	in	response	to	High	Entropy	
stimuli.	

	
6.	Discussion	and	Conclusions	
	
In	this	study	we	tested	how	6-month-old	infants	process	repetition-based	(ABB)	
regularities	as	compared	to	non-repetition-based	(ABC)	regularities,	under	low	
and	high	input	entropy.		
	 We	predicted	higher	activation	compared	to	baseline		for	both	ABB	and	
ABC	sequences,	which	would	show	that	6-month-olds	have	the	ability	to	process	
both	 repetition	 and	 non-repetition	 grammars.	 Indeed,	 we	 found	 significant	
activation	compared	to	baseline	for	both	ABB	and	ABC	sequences	collapsed	over	
entropy	conditions,	in	four	channels	(channel	6,	17	for	ABB;	channels	2,	17	for	
ABC).		
	 We	also	predicted	a	different	level	of	activation	for	the	ABB	sequences	
compared	 to	 the	ABC	sequences,	across	entropy	conditions.	This	would	show	
infants’	ability	to	discriminate	between	repetition	and	non-repetition	sequences,	
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which	could	point	to	grammar	learning.	A	channel-by-channel	analysis	yielded	
significantly	different	activation	for	ABB	vs	ABC	only	in	two	channels	(channel	2,	
20).	However,	contrary	to	our	predictions,	the	overall	analysis	showed	similar	
responses	to	ABB	and	ABC	sequences	in	both	entropy	conditions.	These	results	
suggest	 that	 repetition	 and	 non-repetition	 grammars	 are	 processed	 equally,	
namely	 there	 are	 equal	 processing	 costs	 for	 repetition	 and	 non-repetition	
grammars.	In	addition,	we	did	not	find	conclusive	evidence	that	6-month-olds	
discriminate	 between	 repetition	 and	 non-repetition	 grammars,	 at	 least	 not	
under	the	conditions	that	we	tested.		
	 Regarding	the	effect	of	input	entropy	on	processing	repetition	vs	non-
repetition	grammars,	we	predicted	a	larger	difference	in	activation	levels	for	the	
ABB	 vs	 ABC	 sequences	 in	 the	 high	 entropy	 condition	 compared	 to	 the	 lower	
entropy	condition.	However,	no	overall	significant	effect	of	 input	entropy	was	
found	across	grammars,	which	might	be	due	to	the	fact	that	no	overall	difference	
was	 found	 between	 the	 activation	 levels	 for	 ABB	 vs	ABC	 sequences.	 In	 other	
words,	 a	 possible	 effect	 of	 input	 entropy	 might	 not	 be	 visible	 since	 it	 was	
predicted	over	an	ABB	vs	ABC	difference	in	activation,	which	was	not	found.	
	 Notably,	 though,	 a	 channel-by-channel	 analysis	 showed	 higher	
activation	 for	 ABC	 in	 High	 Entropy	 than	 in	 Low	 Entropy	 in	 three	 channels	
(channel	 5,	 10,	 12),	 higher	 activation	 for	 ABB	 in	 High	 Entropy	 than	 in	 Low	
Entropy	 in	 channel	3,	 higher	activation	 for	ABB	 in	Low	Entropy	 than	 in	High	
Entropy	in	channel	4,	and	higher	activation	for	ABC	than	ABB	in	High	Entropy	in	
channel	 2.	 These	 results	 point	 to	 an	 interaction	 trend	between	 grammar	 and	
input	entropy,	namely	higher	activation	 for	 repetition	 (ABB)	grammar	 in	 low	
entropy,	 but	 higher	 activation	 for	 non-repetition	 (ABC)	 grammar	 in	 high	
entropy.	Further	research	is	needed	in	order	to	confirm	this	hypothesis.	
	 Given	that	 the	effect	over	which	we	wanted	to	test	 the	effect	of	 input	
entropy	was	not	found,	i.e.	an	ABB	vs	ABC	difference	in	activation,	we	suggest	
further	research	should	look	into	a	more	sensitive	method	to	capture	differences	
between	 the	 two	 grammars.	 It	might	 be	 the	 case	 that	 the	 simple	 interleaved	
block	design	used	 in	 this	 study	 (i.e.	ABB	blocks	 interleaved	with	ABC	blocks)	
made	it	difficult	to	capture	possible	differences	in	the	processing	of	the	ABB	vs	
ABC	sequences	over	such	a	short	exposure	time.	Specifically,	the	exposure	time	
in	our	study	was	only	8	minutes	compared	to	previous	related	studies	that	used	
a	15–20-minute-exposure	 (Bouchon	et	 al.,	 2015;	Gervain	 et	 al.,	 2008).	 Future	
fNIRS	studies	on	this	topic	with	repetition	vs	non-repetition	grammars	should	
employ	 alternating	 ABB/ABC	 vs	 non-alternating	 block	 designs,	 in	 order	 to	
increase	the	sensitivity	of	the	measurements	to	the	infant	brain	response.	
	 In	conclusion,	at	the	particular	input	entropy	values	that	we	tested,	we	
did	 not	 find	 evidence	 for	 differences	 in	 how	 infants	 process	 ABB	 vs	 ABC	
sequences.	 In	 contrast	 to	 previous	 findings	 that	 showed	different	 patterns	 of	
activation	for	repetition	vs	non-repetition	grammars	in	newborns	(Bouchon	et	
al.,	 2015;	Gervain	 et	 al.,	 2008;	Gervain	 et	 al.,	 2012),	 our	 results	 show	 similar	
responses	 for	 the	 ABB	 and	 ABC	 grammars.	 These	 results	 indicate	 that	 there	
might	be	equal	processing	costs	for	repetition	and	non-repetition	grammars	at	
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the	age	of	6	months,	unlike	at	birth.	This	was	a	surprising	finding	of	our	study,	
and	here	we	discuss	a	few	possible	explanations	for	these	findings.	

In	accord	with	the	interpretation	given	by	Gervain	et	al.	(2012)	to	the	
finding	of	similar	hemodynamic	responses	to	different	grammars,	we	interpret	
these	 results	 to	 show	 similar	metabolic	 (processing)	 costs	 for	 encoding	 both	
repetition	and	non-repetition	relations	 in	6-month-olds.	These	results	are	 the	
first	 evidence	 pointing	 to	 a	 cognitive	 developmental	 change	 in	 linguistic	 rule	
learning	between	birth	and	the	age	of	6	months.	

	This	 change	 corresponds	 to	 the	 developmental	 period	 when	 infants	
take	on	some	of	the	main	learning	tasks	in	their	language	acquisition	endeavor,	
such	as	word	learning	(Tincoff	&	Jusczyk,	2012;	Bergelson	&	Swingley,	2012)	and	
grammar	 acquisition	 (Gervain	 et	 al.,	 2012).	The	 ability	 to	 encode	 relations	of	
non-repetition	(difference),	not	only	relations	of	repetition	(sameness),	is	crucial	
for	these	learning	tasks,	as	syllables	in	most	words	are	typically	different	from	
one	another	and	grammatical	categories/rules	apply	to	various	different	items.	
The	ability	to	encode	sequences	of	different	items	supports	such	learning	tasks.	
	 Independent	evidence	about	the	perception	and	representation	of	the	
sameness/difference	relations	in	infants	in	the	conceptual	domain	(Hochmann,	
Mody,	&	Carey,	2016)	shows	that	14-month-olds	can	complete	match-to-sample	
and	non-match-to-sample	 tasks.	They	are	able	 to	do	so	not	only	with	 familiar	
stimuli,	 but	 also	 with	 novel	 stimuli,	 thus	 showing	 generalization	 abilities.	
Authors	 interpreted	 these	 findings	 as	 possible	 evidence	 for	 infants’	 ability	 to	
encode	 relations	 of	 sameness	 and	 difference.	 However,	 in	 a	 follow-up	
experiment,	Hochmann	et	al.	(2016)	showed	that	at	14	months,	infants	may	still	
not	be	able	to	represent	relations	of	difference	 in	the	conceptual	domain,	and	
instead	 solve	 the	 (non-)match-to-sample	 tasks	 by	 avoiding	 	 the	 sameness	
relation	rather	 than	encoding	 the	relation	of	difference.	Adding	 to	 this	 line	of	
research,	our	study	brings	the	first	evidence	that	at	least	in	the	language	domain	
the	 ability	 to	 perceive	 and	 process	 relations	 of	 difference	 (non-repetition)	
becomes	available	at	the	age	of	6	months.	Thus,	this	study	contributes	to	a	better	
understanding	of	how	speech	processing	develops	in	the	first	year	of	life.		
	 This	evidence	is	in	line	with	previous	proposals	that	a	primitive	identity	
detector	 is	 in	 place	 from	 birth	 (Gervain	 et	 al.,	 2008),	 but	 we	 showed	 in	 the	
present	study	that	infants’	sensitivity	to	difference	develops	later	on,	at	least	by	
the	 age	 of	 6	 months.	 However,	 the	 exact	 nature	 of	 the	 representations	 of	
sameness/difference	 is	 still	 underspecified,	 and	 further	 research	 is	needed	 in	
order	 to	 fully	 understand	 how	 and	why	 infants	 firstly	 develop	 the	 ability	 to	
represent	relations	of	sameness,	and	later	on	in	their	development	the	relations	
of	difference.	
	 Another	possible	logical	explanation	of	these	results,	which	is	accounted	
for	by	our	entropy	model,	would	be	the	following:	the	channel	capacity	of	infants	
and	 the	 exact	 entropy	 threshold	 that	 drives	 category	 formation	 and	 rule	
induction	have	not	yet	been	determined	empirically.	Previous	studies	suggest	
that	 infants	need	little	variability	 for	such	tasks	(Gerken,	2006;	Gerken,	2010;	
Gerken	 &	 Bollt,	 2008;	 Gómez,	 2002),	 but	 exactly	 where	 the	 threshold	 lies	
remains	unknown.	Our	study	is	in	line	with	this	research	by	showing	that	even	
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in	the	low	entropy	condition,	6-month-olds	are	able	to	process	both	ABB	and	ABC	
strings.	The	channel-by-channel	analysis	revealed	sensitivity	to	entropy	–	higher	
activation	for	ABC	in	High	Entropy	vs	Low	Entropy	in	three	channels,	and	higher	
activation	for	ABC	vs	ABB	in	High	Entropy	in	one	channel.	However,	we	did	not	
find	an	overall	significant	effect	of	input	entropy.	Given	these	findings,	it	is	highly	
likely	that	the	low	entropy	condition	provided	the	necessary	entropy	to	process	
both	repetition	and	non-repetition	relations,	and	that	the	higher	entropy	did	not	
have	 a	 significant	 effect,	 due	 to	 the	 ceiling	 effect	 predicted	 by	 the	 channel	
capacity	 (Radulescu	 et	 al.,	 2019).	 According	 to	 our	 entropy	 model,	 channel	
capacity	places	a	lower	and	an	upper	bound	on	the	amount	of	entropy	that	can	
be	encoded	per	unit	of	time.	Thus,	further	research	into	this	topic	should	expose	
6-month-olds	to	even	lower	entropy	in	the	same	exposure	time,	in	order	to	find	
the	 sweet-spot	 between	 input	 entropy	 and	 channel	 capacity,	 where	 the	 input	
entropy	marks	a	difference	in	developing	infants’	sensitivity	to	repetition	vs	non-
repetition	grammars.		
	 In	this	paper	we	implemented	the	same	model	of	quantifying	entropy	as	
we	 did	 to	 artificial	 grammar	 learning	with	 adults	 in	 Radulescu	 et	 al.	 (2019).	
However,	given	that	infants’	cognitive	system	is	still	under	development	(so	their	
channel	capacity	is	reduced)	infants	might	be	more	sensitive	to	local	statistical	
properties	of	the	input	rather	than	the	entire	set	of	items.	Rather,	infants	might	
update	 their	 memory	 representations	 incrementally,	 in	 a	 more	 locally-tuned	
fashion	 (Gerken,	 2010;	 Gerken	 &	 Quam,	 2017).	 Indeed,	 as	 we	 suggested	 in	
Radulescu	et	al.	(2019),	due	to	lower	channel	capacity,	6-month-olds’	encoding	
system	may	not	be	sensitive	to	average	entropy	of	bigrams/trigrams	over	the	
entire	 set	 of	 stimuli.	 Thus,	 our	 findings	 of	 similar	 response	 amplitude	 for	
ABB/ABC	strings	in	both	low	and	high	entropy	conditions	might	be	due	to	the	
particular	way	of	calculating	entropy	as	average	over	the	entire	set	of	stimuli.	
Future	infant	research	on	the	implementation	of	the	entropy	model	by	Radulescu	
et	 al.	 (2019)	 should	 look	 for	 a	method	 to	 calculate	 entropy	on	partial	 sets	 of	
stimuli	in	order	to	reflect	an	incrementally	updating	model.		
	 In	 addition,	 another	 possibility	 would	 be	 that	 infants’	 sensitivity	 to	
entropy	might	not	be	 fully	 fledged	at	 the	age	of	6	moths,	but	only	 in	 its	early	
stages.	As	we	argued	in	Radulescu	et	al.	(2019),	sensitivity	to	entropy	requires	
both	encoding	of	sameness	and	difference	between	items.	Although	infants	are	
sensitive	to	relations	of	sameness	at	birth	(Gervain	et	al.	2008),	their	ability	to	
process	relations	of	difference	seems	to	develop	later	in	their	first	year	of	life,	as	
suggested	by	the	findings	of	our	study.	
	 Indeed,	this	possibility	is	in	line	with	previous	proposals	that	point	to	an	
innate	 advantage	 for	 representations	 of	 sameness,	 unlike	 representations	 of	
difference,	which	might	develop	at	a	later	stage	(Gervain	et	al.	2008;	Endress	et	
al.,	2009).	Not	only	human	infants,	but	also	non-human	animals	were	shown	to	
be	 able	 to	 perceive	 sameness,	 most	 likely	 by	 performing	 simple	 match	
computations	(bees:	Giurfa,	Zhang,	Jenett,	Menzel,	&	Srinivasan,	2001;	dolphins:	
Harley,	Putman,	&	Roitblat,	2003;	rats:	Mumby,	2001).	These	animals	were	also	
shown	to	be	able	to	create	abstract	representations	of	sameness,	since	they	were	
able	 to	 generalize	 the	 rule	 to	 novel	 samples.	 However,	 the	 nature	 and	 the	
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developmental	 trajectory	 of	 human	 infants’	 representations	 of	
sameness/difference	 and	 the	 related	 processing	 demands	 remain	 largely	
unexplored	and	unexplained	for	the	first	year	of	life.	
	 This	study	brings	to	light	the	first	evidence	of	the	shift	in	developmental	
change	 that	 allows	 infants	 to	 represent	 relations	 of	 difference	 alongside	
relations	of	sameness	at	the	age	of	six	months.	Thus,	our	study	contributes	to	the	
a	better	understanding	of	 the	developmental	 trajectory	and	 the	nature	of	 the	
sameness/difference	representations,	which	underlie	the	building	blocks	of	rule	
learning	in	language.		 	
	 The	 underlying	 mechanisms	 driving	 the	 formation	 of	
sameness/difference	 representations	 (which	 underlie	 both	 item-bound	 and	
category-based	generalizations)	have	remained	largely	underspecified,	and	thus	
heatedly	 debated.	 On	 the	 basis	 of	 studies	 with	 infants	 and	 also	 from	 similar	
repetition-based	 grammar	 studies	 with	 adults	 (Endress,	 Scholl,	 and	 Mehler,	
2005;	 Endress,	 Dehaene-Lambertz,	 and	 Mehler,	 2007),	 two	 qualitatively	
different	 mechanisms	 were	 proposed	 to	 underlie	 learning:	 abstract	 rule	
learning,	based	on	symbolic	encoding	of	variables	(Marcus	et	al.,	1999),	and	a	
low-level	 perceptual	 primitive	 (“repetition	 detector”),	 based	 on	 automatic	
sensitivity	to	repetitions	(Endress	et	al.,	2009).	Whichever	the	mechanism,	the	
sensitivity	 to	 repetitions	 seems	 to	 be	 in	 place	 at	 birth	 (Gervain	 et	 al.,	 2008).	
However,	 if	 learning	 repetition-based	 grammars	 is	 only	 supported	 by	 a	
perceptual	primitive,	then	this	automatic	identity	detector	should	readily	enable	
detection	of	repetition	in	novel	input	as	well.	But	this	is	not	the	case	under	any	
conditions,	as	Gerken	(2006)	and	Radulescu	et	al.	(2019)	showed	that	in	specific	
input	conditions,	 i.e.	 less	variability,	6-month-olds	and	adults,	respectively,	do	
not	seem	to	use	such	a	repetition	detector	to	identify	a	same-same-different	rule	
in	novel	 input.	 Indeed,	as	discussed	 in	 the	 Introduction,	Gerken	(2006)	 found	
that	 input	 complexity	 plays	 a	 crucial	 role	 in	 rule	 learning.	Moreover,	 several	
studies	showed	that	older	children	and	adult	learners	need	higher	variability	in	
order	to	successfully	generalize	rules	to	novel	input	(Hudson	Kam	and	Newport,	
2009;	 Radulescu	 et	 al.,	 2019).	 Thus,	 we	 argue	 that	 formation	 of	 such	
representations	 recruit	not	only	 a	perceptually-based	 repetition	detector,	 but	
also	a	more	complex	mechanism	that	factors	in	a	specific	 interaction	between	
input	 entropy	 and	 channel	 capacity,	 supported	 by	 the	 relevant	 cognitive	
capacities	(Radulescu	et	al.,	2019).	
	 The	 next	 interesting	 question	 would	 then	 be	 if	 the	 development	 of	
cognition,	which	 is	 hypothesized	 to	 underlie	 an	 increase	 in	 channel	 capacity,	
would	 explain	 developmental	 changes	 in	 rule	 induction.	 The	 consequential	
increase	 in	 our	 finite	 time-dependent	 entropy-processing	 capacity	 –	 channel	
capacity	–	with	age,	would	reduce	the	drive	to	move	from	a	high-specificity	item-
bound	form	of	encoding	to	a	high-generality	category-based	form	of	encoding.	It	
is	a	generally	accepted	fact	that	children	outperform	adults	at	language	learning	
although	 their	non-linguistic	 cognitive	 capacities	 are	 yet	 to	develop.	Previous	
studies	showed	that	adults	are	more	likely	to	reproduce	the	statistical	properties	
of	 the	 input	 (i.e.	 to	 form	 high-specificity	 item-bound	 generalizations),	 while	
children	have	a	higher	tendency	to	generalize	the	input	properties	(Hudson	Kam	
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&	Newport,	2005;	2009).	In	accord	with	these	researchers,	we	proposed	that	the	
interaction	between	the	statistical	complexity	of	the	input	–	input	entropy	–	and	
variations	 in	 channel	 capacity	 is	 key	 to	 the	 mechanisms	 of	 generalization	
(Radulescu	et	al.,	2019).	As	a	more	 fine-tuned	 formal	approach	 to	 the	Less-is-
More	hypothesis	 (Newport,	1990;	2016),	our	entropy	model	hypothesizes	that	
the	 memory	 components	 underlying	 the	 channel	 capacity	 enable	 children	 to	
more	 readily	 (than	 adults)	 “forget”	 the	 statistical	 specificity	 of	 the	 input	 and	
generalize	to	novel	data.	Further	research	should	investigate	the	exact	memory	
components	that	underlie	channel	capacity	and	the	underlying	mechanism.	Our	
entropy	model	makes	the	connection,	in	information-theoretic	terms,	between	
behavioral	evidence	found	in	psychological	research	and	current	hypotheses	in	
neurobiology	 about	 the	 essential	 role	 of	memory	 transience	 (“forgetting”)	 in	
preventing	 overfitting	 to	 past	 data	 for	 the	 purpose	 of	 generalizing	 to	 novel	
environments	 (Richards	 &	 Frankland,	 2017).	 This	 view	 also	 converges	 with	
views	from	neural	networks	research	(Kumaran,	Hassabis,	&	McClelland,	2016;	
LeCun,	Bengio,	&	Hinton,	2015).	
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Item-bound	and	Category-based	Generalization.		
An	Entropy	Model	

Radulescu,	S.,	Giannopoulou,	E.,	Avrutin,	S.,	and	Wijnen,	F.14	
	

Abstract	
	
Language	acquisition	entails	many	learning	endeavors:	from	segmenting	speech	
into	 words,	 to	 memorizing	 specific	 items	 and	 finding	 statistical	 regularities	
between	them	(item-bound	generalization),	 to	forming	grammatical	categories	
to	which	these	specific	items	belong,	and	working	out	relations	between	these	
categories	 (category-based	 generalizations).	 Previous	 research	 pointed	 to	
different	 learning	mechanisms,	 namely	 a	 powerful	 domain-general	 statistical	
learning	mechanism	 to	 account	 for	 segmenting	 speech	 and	 identifying	words	
with	their	probabilistic	combinations,	and	another	more	abstract	algebraic	rule	
learning	 mechanism	 for	 generalizing	 categories	 and	 relations	 between	
categories	 (Endress	&	Bonatti,	2007;	2016;	Endress,	Nespor,	&	Mehler,	2009;	
Marcus	 et	 al.,	 1999;	 Peña	 et	 al.,	 2002).	 Recent	 views	 converge	 on	 a	 single	
mechanism	 hypothesis	 that	 poses	 statistical	 learning	 as	 a	 powerful	 and	
economical	mechanism	that	can	account	for	learning	both	words	and	rules	(Aslin	
&	Newport,	2012;	2014;	Christiansen	&	Chater,	2008;	Frost	&	Monaghan,	2016).	
While	supporting	the	single-mechanism	hypothesis,	this	article	aims	at	solving	
this	 debate	 by	 further	 extending	 and	 fine-tuning	 our	 information-theoretic	
model	for	rule	induction	(Radulescu	et	al.,	2019).	According	to	our	model,	the	
two	seemingly	different	learning	mechanisms	proposed	previously	are	actually	
outcomes	 of	 the	 same	mechanism	 as	 a	 result	 of	 the	 dynamics	 between	 input	
entropy	 and	 our	 finite	 encoding	 capacity	 (channel	 capacity).	 Specifically,	 low	
input	entropy	facilitates	not	only	rote	memorization	of	the	specific	items	in	the	
input,	 but	 it	 enables	 item-bound	generalization,	while	 an	 input	 entropy	 that	 is	
higher	 than	 the	 available	 encoding	 capacity	 (channel	 capacity)	 drives	 the	
tendency	to	gradually	move	from	a	high-specificity	item-bound	generalization	to	
a	high-generality	 form	of	 encoding,	category-based	generalization.	 In	order	 to	
probe	this	hypothesis,	we	exposed	adults	to	the	same	low	and	medium	entropy	
conditions	of	the	3-syllable	XXY	grammar	from	Radulescu	et	al.	(2019),	and	we	
also	 measured	 individual	 differences	 in	 the	 cognitive	 capacities	 that	 we	
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hypothesize	to	underlie	the	channel	capacity,	namely	 incidental	memorization	
and	 working	 memory	 (specifically,	 a	 domain-general	 pattern	 recognition	
capacity	 that	 draws	 on	 working	memory	 resources).	 Our	 findings	 show	 that	
indeed	 low	 input	 entropy	 facilitates	 item-bound	 generalization,	 not	 only	mere	
memorization	of	specific	items	and	of	the	statistical	regularities	present	in	the	
input.	We	also	found	that	an	increase	in	input	entropy	drives	a	higher	tendency	
towards	 category-based	 generalization.	 Moreover,	 we	 found	 that	 under	
conditions	 of	 medium	 entropy,	 but	 not	 low	 entropy,	 learners	 with	 a	 low	
incidental	 memorization	 capacity,	 but	 a	 high	 domain-general	 pattern	
recognition	 capacity	 show	 a	 higher	 tendency	 towards	 category-based	
generalization	than	learners	with	a	high	incidental	memorization	capacity,	but	a	
low	 domain-general	 pattern	 recognition	 capacity,	 which	 is	 in	 line	 with	 the	
hypotheses	of	our	entropy	model.	
	
1.	Introduction	
	
Besides	 identifying	 and	 memorizing	 specific	 items	 and	 chunks	 of	 items	 (e.g.	
words	and	phrases)	from	the	input	language	learners	need	to	abstract	beyond	
specific	items,	to	pick	up	relations	between	them,	that	is	learn	the	rules	of	the	
language.	From	learning	rules	like	“add	-ed”	to	express	past	actions	or	“add	-ly”	
to	 show	 how	 an	 action	 is	 carried	 out,	 language	 learners	 also	 take	 a	 further	
qualitative	 inductive	step	 to	generalizing	rules	 to	novel	 items,	 that	 is	 forming	
categories	 of	 items	 (e.g.	 noun,	 verb,	 adverb)	 and	 relations	 between	 these	
categories.	 For	 example,	 learners	 will	 not	 only	 memorize	 specific	 items	 like	
“walked”	and	“walked	slowly”,	but	they	would	also	infer	an	item-specific	rule	like	
“add	a	specific	item	–ed	to	express	past	actions”	or	“add	a	specific	item	-ly	to	show	
how	the	action	takes	place”.	Furthermore,	they	will	also	form	categories	of	items,	
like	 verbs,	 and	 they	will	 also	 generalize	 further	 to	 infer	 that	 any	verb	 can	be	
combined	with	an	adverb	and	a	noun,	to	create	a	well-formed	sentence.	While	it	
is	a	clear	and	undebatable	fact	that	this	rich	phenomenon,	named	rule	induction,	
is	essential	in	language	acquisition,	it	is	still	largely	underspecified	how	language	
learners	converge	on	these	generalizations,	and	what	drives	the	inductive	step	
from	memorizing	specific	items	to	rule	induction.	
	 In	this	paper	we	extend	and	fine-tune	an	information-theoretic	model	
for	rule	induction	that	we	proposed	in	Radulescu	et	al.	(2019).	In	addition,	we	
aim	at	further	investigating	the	types	of	generalizations	that	learners	converge	
upon,	and	also	at	probing	the	factors	that	drive	the	transition	from	item-specific	
rules	to	abstracting	generalized	rules	that	apply	to	novel	input.	In	Radulescu	et	
al.	 (2019),	 we	 followed	 suggestions	 from	 previous	 conceptualizations	 of	 the	
types	of	generalizations	(rule	induction)	that	 learners	infer	(Gómez	&	Gerken,	
2000),	 and	 we	 distinguished	 between	 two	 qualitatively	 different	 types	 of	
generalizations:	item-bound	generalization	and	category-based	generalization.	
	 More	 specifically,	 in	 Radulescu	 et	 al.	 (2019)	 we	 defined	 item-bound	
generalization	 as	 a	 relation	 between	 specific	 items	 present	 in	 the	 input,	 and	
identified	by	physical	characteristics	specific	to	a	perception	modality	(auditory,	
visual,	etc.).	For	example,	a	repetition	relation	based	on	physical	identity,	like	da-
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da	(da	is	followed	by	the	same	item	da),	or	an	addition	relation	of	a	specific	item	
like	-ed	or	-ly	(add	-ed	to	the	word	walk	or	add	-ly	to	the	word	nice).	While	item-
bound	generalizations	are	relations	 involving	specific	 items	present	 in	a	 finite	
input	 set,	 category-based	 generalizations	 go	 beyond	 specific	 items	 to	 higher-
order	operations	between	variables	(i.e.	categories).	For	example,	an	XY	relation	
(Y	follows	X),	where	Y	and	X	are	variables	taking	different	items	as	values.	Or	an	
XX	pattern	(X	follows	X),	where	the	identity	relation	is	not	based	on	a	finite	set	of	
specific	 items,	 but	 it	 encompasses	 an	 identity	 relation	 that	 operates	 over	 a	
virtually	infinite	and	non-specific	category	of	items	–	category	X.	For	example,	a	
phonotactic	generalization	that	allows	not	only	for	self-reduplication	of	specific	
items,	e.g.	da-da,	kri-kri,	lo-lo	combinations,	but	it	allows	for	any	syllable	to	be	
followed	 by	 itself.	 Another	 example	 of	 category-based	 generalizations	 from	
natural	 language	 would	 be	 the	 grammatical	 generalization	 that	 Verb-Adverb	
sequences	 go	 beyond	 specific	 combinations	 like	 “walked	 slowly”	 or	 “talked	
loudly”,	 to	 relations	 over	 the	 abstract	 linguistic	 categories,	 which	 can	 be	
construed	as	a	 relation	between	variable	X	 that	 takes	any	verb	as	values	and	
variable	Y	that	takes	any	adverb	as	values.	
	 Both	young	and	adult	learners	were	shown	to	possess	domain-general	
learning	abilities	that	enable	both	finding	statistical	regularities	between	specific	
items	in	the	input	(Aslin,	Saffran,	&	Newport,	1998;	Saffran,	Aslin,	&	Newport,	
1996;	Thiessen	&	Saffran,	2007)	and	abstract	category/rule	induction	(Marcus,	
Vijayan,	 Rao,	 &	 Vishton,	 1999;	 Smith	 &	Wonnacott,	 2010;	 Wonnacott,	 2011;	
Wonnacott	&	Newport,	2005).	An	already	classical	but	still	unresolved	debate	
revolves	around	the	question	of	the	mechanisms	that	drive	rule	induction	with	
its	two	types	of	generalization	–	item-bound	and	category-based	generalizations.	
Some	 early	 studies	 claim	 that	 a	 lower-level	 item-specific	 mechanism,	 which	
relies	 primarily	 on	 memorization	 of	 specific	 items	 with	 their	 physical	
characteristics	and	their	statistical	distribution	in	the	environment	–	statistical	
learning	 –	 would	 suffice	 for	 item-bound	 generalization.	 For	 example,	 infants	
detect	patterns	of	specific	items	like	phonotactic	information	(Chambers,	Onishi,	
&	Fisher,	2003)	and	word	boundaries	(Aslin,	Saffran	&	Newport,	1998;	Saffran	
et	al.,	1996)	by	statistical	computations	(e.g.	transitional	probabilities)	between	
items	they	are	exposed	to.		
	 On	 the	 other	 side,	 other	 researchers	 argued	 that,	while	 sensitivity	 to	
statistical	 distribution	 of	 specific	 items	 in	 the	 input	 might	 account	 for	 item-
specific	learning,	abstracting	away	from	the	input	to	form	generalized	rules	that	
apply	to	novel	 instances	cannot	be	attributed	to	the	same	limited	mechanism,	
but	to	a	higher-order	abstract	learning	which	operates	with	categories	(Endress	
&	Bonatti,	2007;	2016;	Endress	et	al.,	2009;	Marcus	et	al.,	1999;	Peña,	Bonatti,	
Nespor	&	Mehler,	2002).	For	example,	Marcus	et	al.	(1999)	showed	that,	after	
exposure	to	strings	like	“leledi”	and	“dedeli”,	7-month-olds	were	able	to	learn	an	
abstract	 AAB	 structure	 to	 discriminate	 new-syllable	 strings	 with	 the	 same	
structure	(e.g.	“kokoba”)	from	ABA-structured	strings	(e.g.	“kobako”).	Hence,	the	
authors	 argued	 that	 infants	 possess	 an	 abstract	 symbolic	 (‘algebraic’)	 system	
that	operates	over	variables	and	relations	between	them.	Specifically,	Marcus	et	
al.	(1999)	proposed	that	learners	have	two	qualitatively	different	mechanisms	
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at	hand:	statistical	learning	for	tracking	and	computing	statistical	distributions	
of	specific	items	(i.e.	item-bound	generalization	in	our	terminology),	and	abstract	
rule	learning	for	operations	beyond	specific	items	with	variables	(i.e.	category-
based	generalization	in	our	terminology).		
	 More	recent	views	in	computational	models	of	rule	learning	proposed	
that	a	dichotomy	between	the	two	mechanisms	would	not	suffice	to	explain	the	
rich	generalization	phenomena	observed	in	both	young	and	adult	learners,	and	
that	 learners	 might	 actually	 add	 generalization	 to	 statistical	 learning	 in	
phonotactic	 rule	 induction	 (Adriaans	 &	 Kager,	 2010),	 or	 statistical	 inference	
might	 be	 performed	 over	 built-in	 rule-based	 representations	 (Frank	 &	
Tenenbaum,	 2011).	 Another	 view	 suggests	 that	 one	 single	 mechanism	 –	
statistical	learning	–	accounts	for	both	types	of	generalization	(Aslin	&	Newport,	
2012;	2014;	Frost	&	Monaghan,	2016).	Aslin	&	Newport	(2014)	argue	in	favor	of	
a	single-mechanism	hypothesis	based	on	the	finding	and	proposal	that	learners	
show	a	gradient	of	generalization	depending	on	the	statistical	properties	of	the	
input	they	are	exposed	to	(Gerken,	2006;	Reeder,	Newport	&	Aslin,	2013).	More	
specifically,	Reeder	et	al.	(2013)	and	Aslin	&	Newport	(2013;	2014)	claim	that	
learners	show	a	different	pattern	of	 learning	depending	on	the	consistency	of	
contexts	for	the	items	in	the	input	(e.g.	the	preceding	and/or	following	items),	
such	that	learners	either	converge	on	abstract	rule	learning,	when	many	items	
occur	interchangeably	in	the	same	context	(i.e.	contexts	are	largely	shared),	or	
they	withhold	generalization,	 so	 that	 there	 is	only	 surface	 statistical	 learning,	
when	the	contexts	apply	only	to	specific	items	(i.e.	there	are	consistent	gaps	in	
the	 shared	 contexts).	 Nevertheless,	 although	 recent	 views	 converge	 on	 the	
single-mechanism	 hypothesis	 which	 underlies	 an	 apparent	 gradient	 of	
generalization,	how	and	why	this	gradual	mechanism	outputs	two	qualitatively	
different	forms	of	generalization	–	item-bound	and	category-based	generalization	
–	remains	largely	underspecified.	
	 Two	other	lines	of	related	research	investigated	the	factors	that	drive	
rule	 induction	 and	 showed	 that	 both	 item-specific	 learning	 and	 abstract	
generalization	are	modulated	by	either	external	factors	(i.e.	 input	variability	–	
Gerken,	2006;	2010;	Gerken	&	Bollt,	2008;	Gómez,	2002;	Reeder	et	al.,	2013),	or	
internal	 factors	 (i.e.	 young	 learners’	 limited	memory	capacity	as	 compared	 to	
adult	 learners	–	Hudson	Kam	&	Chang,	2009;	Hudson	Kam	&	Newport,	2009;	
Newport,	1990).	In	the	remaining	part	of	this	introduction	we	will	briefly	review	
these	 previous	 findings	 and	 hypotheses	 related	 to	 the	 external	 and	 internal	
factors	that	are	claimed	to	drive	generalization,	with	its	two	types	–	item-bound	
vs	 category-based	 generalization.	 Next,	 we	 will	 introduce	 our	 information-
theoretic	 entropy	model	which	 supports	 the	 single-mechanism	hypothesis	and	
puts	 together	 both	 external	 and	 internal	 factors	 in	 order	 to	 give	 a	 consistent	
account	for	both	forms	of	generalization	(Radulescu	et	al.,	2019).	
	 Regarding	 infant	 rule	 induction,	 Gerken	 (2006)	 initiated	 a	 line	 of	
research	that	looked	into	the	external	factor	of	input	variability,	and	showed	that	
9-month-old	infants	exposed	to	four	AAB	strings	(e.g.	leledi)	ending	in	different	
syllables	(je/li/di/we)	generalized	to	novel	strings	with	an	AAB	structure	(e.g.	
kokoba,	which	was	not	heard	in	the	familiarization),	i.e.	in	our	terminology,	they	
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made	category-based	generalizations.	However,	the	other	group	of	infants,	who	
were	 exposed	 to	 four	 AAB	 strings	 ending	 only	 in	 di,	 did	 not	 make	 a	 broad	
generalization	–	AAB,	but	only	a	narrow	generalization	–	“every	string	ends	in	di”	
–	that	is,	in	our	terminology,	they	only	made	an	item-bound	generalization.	In	a	
subsequent	study	(Gerken,	2010),	9-month-olds	were	presented	with	the	same	
“ends	in	di”	condition	from	Gerken	(2006),	with	the	crucial	difference	that	at	the	
end	of	the	familiarization	with	numerous	strings	ending	in	di	infants	heard	only	
three	strings	ending	 in	 “je/we/li”.	This	 little	 input	variability	was	sufficient	 to	
drive	 the	 broader	 AAB	 generalization.	 These	 studies	 together	 with	 others	
(Gerken	&	Bollt,	2008;	Gómez,	2002)	show	that	infant	rule	induction	is	driven	by	
input	variability,	and	that	 infants	need	 little	variability	 in	order	to	move	from	
item-bound	to	category-based	generalization.	
	 Adult	rule	induction	studies	have	also	shown	that	input	variability	is	the	
main	 factor	 that	 drives	 generalization.	 For	 example,	 Reeder	 et	 al.	 (2013)	
familiarized	adults	with	a	(Q)AXB(R)	grammar	(where	each	letter	stands	for	a	
three-word	category),	and	asked	whether	learners	generalize	X	as	a	category	of	
items	 rather	 than	 just	memorize	 the	exact	 strings,	when	exposed	 to	different	
subsets	of	strings	(i.e.	with	different	number	of	combinations	of	words	from	each	
category)	 generated	 by	 the	 grammar.	 Participants	 were	 asked	 to	 give	
grammaticality	judgements	on	the	novel	(withheld)	grammatical	strings,	as	well	
as	 on	 ungrammatical	 strings	 ((Q)AXA(R)	 or	 (Q)BXB(R)	 strings).	 	 The	 results	
showed	that	rich	combinations	between	words	 from	all	 categories	 (i.e.	a	high	
input	variability,	in	our	terminology)	drove	high	tendency	towards	generalizing	
X	as	a	category	(i.e.	category-based	generalization,	in	our	terminology).		
	 In	 Radulescu	 et	 al.	 (2019),	we	 took	 a	 step	 further	 from	 the	 previous	
studies	by	 showing	 that	 the	driving	 factor	 for	 rule	 induction	 is	not	 just	mere	
input	variability	in	the	sense	of	number	of	items	in	the	input,	but	it	is	a	particular	
pattern	 of	 input	 variability	 captured	by	 input	 entropy	 (as	 a	 function	between	
number	 of	 items	 and	 their	 probability	 distribution	 –	 Shannon	 (1948)).	More	
specifically,	 we	 exposed	 adults	 to	 six	 versions	 of	 a	 3-syllable	 XXY	 artificial	
grammar	(where	each	letter	stands	for	a	category	of	items),	with	different	input	
entropy	 in	each	version.	 In	the	test	phase	 learners	were	asked	grammaticality	
judgements	on	XXY	strings	with	familiar	syllables	and	with	new	syllables.	The	
results	 showed	 that	 the	 tendency	 to	 accept	 new	 XXY	 strings	 as	 grammatical	
increased	gradually	as	a	function	of	increasing	input	entropy,	in	accord	with	the	
information-theoretic	entropy	model	proposed	in	Radulescu	et	al.	(2019).	These	
findings	brought	more	granular	evidence	for	the	previously	proposed	gradient	
of	generalization	(Aslin	&	Newport,	2012;	2014)	and	better	specified	the	positive	
effect	of	input	variability	on	rule	induction	which	was	found	in	previous	studies	
(Gerken,	2006;	2010;	Gerken	&	Bollt,	2008;	Gómez,	2002;	Reeder	et	al.,	2013).	
	 Another	line	of	research	investigated	the	internal	factors	(i.e.	learners’	
cognitive	 capacities)	 that	 drive	 rule	 induction.	 The	 classical	 Less-is-More	
hypothesis	(Newport,	1990;	2016)	and	subsequent	related	studies	(Hudson	Kam	
&	 Chang,	 2009;	 Hudson	 Kam	 &	 Newport,	 2005;	 2009)	 propose	 and	 show	
evidence	 for	 children’s	 higher	 tendency	 to	 move	 away	 from	 the	 statistical	
specificity	of	the	input	and	overregularize	the	input	as	compared	to	adults,	who	
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remember	and	rather	stick	to	the	probability	distributions	specific	to	the	input.	
However,	 adults	 were	 also	 shown	 to	 generalize	 away	 from	 the	 probability	
distribution	of	the	items	in	the	input,	when	exposed	to	a	memory	overloading	
and	noisier	input,	 i.e.	high	variability	(Hudson	Kam	&	Newport,	2009;	Hudson	
Kam	&	Chang,	2009).		
	 Under	 the	 Less-is-More	 hypothesis,	 children’s	 tendency	 to	 generalize	
was	 assumed	 to	 be	 driven	 by	 their	 incomplete	 cognitive	 development	
(maturational	 constraints	 –	 Newport	 1990,	 2016),	 more	 specifically	 by	 their	
limited	memory	capacity	 (children’s	overall	 lower	memory	capacity	–	Cowan,	
1997;	Gathercole,	1998).	Thus,	the	findings	and	claims	of	this	line	of	research	can	
also	be	interpreted	to	bring	evidence	in	favor	of	an	internal	factor,	i.e.	cognitive	
capacities,	that	drives	rule	induction.		
	 However,	 how	 and	 why	 cognitive	 limitations,	 such	 as	 memory	
limitations,	 could	 have	 an	 impact	 on	 generalization	 remains	 largely	
underspecified.	In	fact,	some	studies	(Perfors,	2012)	did	not	find	any	evidence	in	
favor	of	 an	 effect	 on	 generalization	of	 overloading	 the	working	memory	with	
concurrent	tasks,	or	any	evidence	for	an	effect	on	generalization	of	 individual	
differences	 in	working	memory	 (measured	 independently	 in	 a	 complex	 span	
task,	which	is	a	widely	used	task	to	measure	working	memory	capacity	–	Conway	
et	al.,	2005;	Unsworth,	Spillers,	&	Brewer,	2009).	
	 As	discussed	above,	previous	research	found	some	evidence	for	a	link	
between	 the	 capacity	 for	 rote	memorization	 and	 a	gradient	 of	generalization.	
While	supporting	the	previously	proposed	single-mechanism	hypothesis	with	a	
gradient	of	generalization	(Aslin	&	Newport,	2014),	 in	order	to	bridge	the	gap	
between	previous	lines	of	research,	we	aim	at	better	specifying	and	investigating	
this	gradual	mechanism,	and	 the	dynamics	between	 the	 internal	and	external	
factors.	 Specifically,	we	 deem	 rule	 induction	 to	 be	 a	 phased	mechanism,	 that	
starts	out	by	rote	memorization	of	the	items	and	their	probability	distribution	
(or	 statistical	 regularities	 of	 the	 input),	 and	 gradually	 moves	 to	 item-bound	
generalization	and,	eventually,	to	category-based	generalization.	In	Radulescu	et	
al.	 (2019)	 we	 proposed	 that	 the	 underlying	 processes	 (i.e.	 the	 learning	
mechanisms	proposed	 in	previous	 research	–	 statistical	 learning	and	abstract	
rule	learning)	should	be	conceptualized	separately	from	their	outcomes,	that	is	
from	 the	 resulting	 types	 of	 generalization	 (item-bound	 generalizations	 and	
category-based	 generalizations).	 This	 distinction	 allowed	 for	 the	 main	
hypothesis	of	our	 information-theoretic	model	to	be	formulated.	 In	short,	and	
simplifying	 for	 now,	 our	 entropy	 model	 hypothesizes	 that	 item-bound	
generalization	 and	 category-based	 generalization	 are	 not	 independent	
mechanisms,	but	 they	are	outcomes	of	 the	same	phased	encoding	mechanism	
which	gradually	moves	 from	memorized	combinations	of	 items	to	 item-bound	
generalizations,	and,	eventually,	to	category-based	generalizations.	
	 Rule	induction	is	hypothesized	to	be	an	encoding	mechanism	driven	by	
the	 interaction	 between	 an	 external	 factor	 –	 the	 statistical	 properties	 of	 the	
input,	i.e.	input	entropy	–	and	an	internal	factor	–	the	brain’s	ability	to	encode	the	
input	under	conditions	of	finite	encoding	capacity	(i.e.	channel	capacity).	Channel	
capacity	quantifies	 the	maximum	rate	of	 information	encoding,	 i.e.	 amount	of	
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entropy	that	can	be	encoded	per	unit	of	time.	We	define	our	encoding	capacity	
as	channel	 capacity,	 in	 information-theoretic	 terms,	which	 is	 the	 finite	 rate	of	
information	encoding	(entropy	per	unit	of	time).		
	 Specifically,	if	input	entropy	is	lower	than	the	available	channel	capacity,	
the	input	can	be	encoded	using	rote	memorization	and/or	high-specificity	item-
bound	generalization,	while	an	increase	in	input	entropy	gradually	shapes	item-
bound	 generalization	 into	 category-based	 generalization,	 in	 order	 to	 avoid	
exceeding	the	channel	capacity.	We	also	hypothesize	that	the	channel	capacity	
associated	with	rule	induction	is	supported	by	certain	cognitive	capacities,	e.g.	
memory	capacity,	in	psychological	terms.		
	 	As	we	argued	in	Radulescu	et	al.	(2019),	our	entropy	model	specifies	
how	and	why	this	gradient	emerges:	the	gradual	–	bit	by	bit	–	accumulation	of	
entropy	per	unit	of	time	up	to	the	upper	bound	placed	by	the	available	channel	
capacity	drives	a	change	in	encoding	in	order	to	allow	for	higher	input	entropy	to	
be	encoded	more	efficiently	(i.e.	with	the	least	loss	of	information).	In	order	to	
test	the	gradual	transition	from	rote	memorization	to	 item-bound	to	category-
based	 generalization	 hypothesized	 by	 our	 entropy	model,	 in	 Radulescu	 et	 al.	
(2019),	we	exposed	adults	to	six	increasingly	entropic	versions	of	a	3-syllable	
XXY	artificial	grammar.	After	 the	exposure	phase,	participants	were	asked	 for	
grammaticality	judgements	on	XXY	strings	with	experienced	(familiar)	and	new	
syllables.	 As	 a	 test	 for	 gradual	 transition	 from	 item-bound	 generalization	 to	
category-based	generalization,	we	expected	a	gradually	increasing	tendency	to	
accept	 not	 only	 Familiar-syllable	 XXY	 strings	 as	 grammatical,	 but	 also	 New-
syllable	XXY	strings.	Indeed,	as	predicted,	results	showed	gradual	acceptance	of	
New-syllable	XXY	strings	as	grammatical,	with	a	constantly	high	acceptance	of	
Familiar-syllable	XXY	 strings,	 as	 a	 function	of	 increasing	 input	 entropy.	 These	
results	showed	that	learners	had	an	increasing	tendency	to	form	a	same-same-
different	 generalization	 (XXY	 structure)	 not	 only	 with	 specific	 syllables	 (i.e.	
familiar	 syllables	 experienced	 in	 the	 familiarization),	 but	 crucially	 with	 any	
syllables	(i.e.	novel	syllables	never	heard	in	the	familiarization).	However,	since	
low	entropy	allows	for	easy	memorization	of	the	input,	one	might	argue	that	in	
the	 low	entropy	conditions	high	endorsement	of	Familiar-syllable	XXY	strings	
(basically	the	same	strings	from	familiarization)	might	have	been	supported	by	
rote	 memorization	 of	 the	 specific	 strings,	 not	 necessarily	 by	 item-bound	
generalization	 (i.e.	 same-same-different	 structure	 with	 specific	 familiar	
syllables).	
	 Thus,	 in	the	current	study,	we	aim	at	further	investigating	the	type	of	
encoding	 that	 low	 input	 entropy	 facilitates,	 and	 at	 better	 specifying	 the	
conditions	 under	 which	 item-bound	 generalization	 is	 formed	 and	 gradually	
shaped	into	category-based	generalization.	To	this	end,	we	exposed	adults	to	the	
lowest	entropy	condition	and	a	middle	entropy	condition	from	Radulescu	et	al.	
(2019),	but,	 crucially,	we	 swapped	 the	Familiar-syllable	XXY	 test	 strings	with	
Familiar-syllable	YYX	strings.	In	other	words,	instead	of	the	exact	familiarization	
strings	 (e.g.	 daː-daː-li)	 participants	 were	 tested	 on	 strings	 like	 li-li-daː.	 The	
rationale	 was	 that,	 if	 indeed	 low	 input	 entropy	 facilitates	 item-bound	
generalization,	 learners	would	not	just	memorize	the	strings	as	such,	with	the	
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exact	sequence	of	items.	Rather,	they	would	encode	the	input	as	a	same-same-
different	structure	with	familiar	items,	which	would	allow	them	to	accept	strings	
with	the	same-same-different	structure,	but	with	switched	over	syllables	(e.g.	li-
li-daː).		
	 This	kind	of	encoding	is	a	case	of	item-bound	generalization,	as	defined	
above:	item-bound	generalizations	are	relations	involving	specific	items	present	
in	 a	 finite	 input	 set.	 More	 specifically,	 learners	 not	 only	 retain	 by	 rote	
memorization	a	repetition	pattern	based	on	item-specific	positional	information	
(according	to	the	probability	distribution	of	items	in	the	input,	i.e.	a	transitional	
probability	of	1),	that	is	only	those	specific	items	that	reduplicate	themselves	in	
the	 input	 can	 be	 duplicated.	 Learners	 infer	 a	 self-duplication	 rule	 in	 the	 first	
positions	of	the	triplets	also	for	those	specific	items	from	the	input	that	do	not	
show	 a	 reduplication	 pattern	 in	 the	 input.	 For	 example,	 input	 strings	 show	
reduplication	of	daː,	but	not	of	li	(like	daː-daː-li),	however	learners	accept	li-li-daː	
as	grammatical.	So,	if	low	input	entropy	facilitates	item-bound	generalization,	not	
just	 mere	 memorization	 of	 the	 strings,	 learners	 are	 expected	 to	 accept	 YYX	
strings	 with	 familiar	 syllables,	 that	 is	 strings	 with	 a	 same-same-different	
structure	with	switched	over	syllables	heard	 in	 the	 familiarization.	Moreover,	
since	an	increase	in	 input	entropy	is	hypothesized	to	drive	the	transition	from	
item-bound	generalization	to	category-based	generalization,	learners	exposed	to	
the	medium	entropy	version	of	the	XXY	grammar	would	not	only	accept	the	YYX	
strings	(i.e.	a	same-same-different	structure	with	familiar	syllables),	but	crucially	
they	would	show	a	higher	tendency	than	learners	in	the	low	entropy	condition	
to	accept	the	same-same-different	structure	with	new	syllables	as	well	(i.e.	New-
syllable	XXY	strings).		
	 In	 this	 study,	 we	 also	 measured,	 in	 independent	 tests,	 learners’	
individual	cognitive	capacities	that	our	entropy	model	hypothesizes	to	underlie	
channel	 capacity,	 namely	 incidental	 memory	 capacity	 and	 a	 domain-general	
pattern	 recognition	 capacity	 that	 draws	 on	 working	 memory	 resources	
(Radulescu	 et	 al.,	 2019),	 in	 order	 to	 look	 into	 the	 effect	 of	 these	 cognitive	
capacities	on	rule	induction.	
	
2.	An	entropy	model	for	rule	induction	
	
In	Radulescu	et	al.	(2019),	we	proposed	an	information-theoretic	entropy	model	
that	hypothesizes	rule	induction	to	be	driven	by	a	single	encoding	mechanism.	
More	precisely,	 the	model	 predicts	 that	 variations	 in	 the	 ratio	 between	 input	
entropy	and	our	capacity	to	encode	a	finite	amount	of	entropy	per	second		(i.e.	
channel	capacity)	gives	birth	to	rule	induction	with	its	two	flavors	–	item-bound	
generalization	and	category-based	generalization.	 In	 short,	our	entropy	model	
poses	 that	 an	 increase	 in	 input	 entropy	drives	 a	 gradual	 transition	 from	 rote	
memorization	of	specific	configurations	of	items	in	the	input,	to	item-bound	to	
category-based	generalization.	This	transition	happens	as	a	means	to	develop	a	
more	efficient	encoding	method	(i.e.	with	the	least	loss	of	information),	which	
would	avoid	exceeding	the	channel	capacity.	We	use	the	concepts	and	formulas	
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for	entropy	and	channel	capacity	as	they	were	introduced	and	mathematically	
demonstrated	by	Shannon	(1948).		
	 For	a	random	variable	X,	with	n	values	{x1,	x2	…	xn},	Shannon’s	entropy	
(Shannon,	1948),	denoted	by	H(X),	is	defined	as:	

H(X)	=	–	∑ 𝑝(𝑥!)𝑙𝑜𝑔𝑝(𝑥!)"
!#$

15;		
where	 p(xi)	 is	 the	 occurrence	 probability	 of	 xi.	 H	 measures	 the	 entropy	 per	
symbol	 produced	 by	 a	 source	 of	 input,	 relative	 to	 all	 the	 possible	 symbols	
(values)	contained	by	the	set	(Shannon,	1948).		
	 In	 Radulescu	 et	 al.	 (2019),	 we	 proposed	 an	 innovative	 method	 to	
calculate	 entropy	of	 an	 artificial	 grammar	based	 Shannon’s	 formula	 and	on	 a	
similar	calculation	method	proposed	by	Pothos	(2010)	for	finite-state	grammars.	
In	the	experiments	reported	in	Radulescu	et	al.	(2019),	adults	were	exposed	to	a	
3-syllable	XXY	artificial	grammar,	in	six	experimental	conditions	with	increasing	
input	entropy.	Results	showed	that	when	input	entropy	increases,	the	tendency	
to	move	from	item-bound	to	category-based	generalization	increases	gradually.	
	 Here	we	further	extend	and	elaborate	on	the	predictions	related	to	the	
effect	of	the	input	entropy	on	rule	induction,	which	were	proposed	in	Radulescu	
et	al.	(2019):	
1.	 Item-bound	 generalization	 and	 category-based	 generalization	 are	 not	
independent	mechanisms.	Rather,	 they	are	outcomes	of	 the	same	 information	
encoding	mechanism	that	gradually	goes	from	rote	memorization	of	the	specific	
items	 and	 their	 exact	 configuration	 in	 the	 input,	 to	 a	 high-specificity	 form	 of	
encoding	(item-bound	generalization)	 to	a	high-generality	encoding	(category-
based	 generalization).	 This	 gradual	 transition	 is	 driven	 by	 the	 interaction	
between	 input	 entropy	and	 the	 finite	 encoding	 capacity	 of	 the	 brain	 (channel	
capacity),	as	follows:	
a. Low	input	entropy	allows	for	rote	memorization	of	items		and	chunks	of	items	

with	their	probability	distribution	in	the	input	(i.e.	probability	matching16).	
However,	low	input	entropy	–	that	is	below	or	matches	the	channel	capacity	–	
promotes	also	an	encoding	method	 –	 item-bound	generalization	–	 that	not	
only	 matches	 the	 exact	 exposure	 probabilities	 of	 the	 items.	 Rather,	 the	
encoding	is	a	generalization	beyond	the	particular	probability	distribution	or	
the	 transitional	 probabilities	 of	 the	 experienced	 input,	 but,	 crucially,	
restricted	to	specific	items	(e.g.	experienced	stimuli).		
	 The	specific	items	present	in	the	input	are	encoded	with	their	uniquely-
identifying	(acoustic,	phonological,	phonotactic,	prosodic,	etc.)	features,	but	
their	probability	distribution	is	flexible	and	can	be	generalized.	An	example	
of	such	a	generalization	in	natural	language	would	be	an	addition	rule	of		a	
specific	item	-ly	or	-ed	to	words.	For	instance,	a	learner	exposed	to	an	input	

 
15	Log	should	be	read	as	log	to	the	base	2	here	and	throughout	the	paper.	
16	Probability	matching	is	a	term	dubbed	in	the	literature	on	regularization	
patterns	(e.g.	Hudson	Kam	&	Newport,	2009)	and	refers	to	learning	and	
preserving	the	specific	probability	distribution	of	items	in	the	input	rather	than	
systematically	imposing	rules	on	the	variation	of	the	input.	
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sentence	like	“Maria	is	nice	and	speaks	clearly”,	would	find	it	acceptable	to	
say	“Maria	speaks	nicely”;	also	a	learner	exposed	to	“John	asked	Maria	to	call	
him.”	would	accept	“Maria	called	John”.17	
	 This	 form	 of	 encoding	 is	 an	 intermediate	 step	 on	 the	 encoding	
continuum	 from	 specificity	 to	 generality,	 which	 preserves	 the	 input	
structure,	 but,	 crucially,	 only	with	 the	 specific	 items	 present	 in	 the	 input,	
hence	the	name	item-bound	generalization.	
	 Thus,	if	the	input	entropy	is	lower	than	the	channel	capacity,	the	input	
can	be	encoded	by	a	high-fidelity	item-bound	generalization,	and	transmitted	
through	 the	 channel	 at	 the	 available	 channel	 rate	 –	 channel	 capacity	 (i.e.	
amount	of	entropy	per	unit	of	time).	

b. If	the	input	entropy	is	higher	than	the	finite	channel	capacity	of	the	encoding	
system,	that	 is	the	 input	entropy	per	second	supported	by	the	channel,	 it	 is	
possible	to	find	a	proper	method	that	encodes	more	information	(entropy),	
but	 the	 rate	 of	 information	 encoding	 cannot	 exceed	 the	 available	 channel	
capacity	(Theorem	11	–	Shannon,	1948). 	
	 More	precisely,	when	the	input	entropy	per	second	is	higher	than	the	
available	channel	capacity,	the	item-bound	generalization	becomes	inefficient	
and	prone	to	many	errors,	due	to	a	high	number	of	items,	encoded	with	high-
specificity,	and	a	complex	probability	distribution.	Thence,	the	information	
cannot	 be	 encoded	 with	 a	 high-fidelity	 method	 (i.e.	 item-bound	
generalization),	 because	 this	 encoding	 method	 leads	 to	 high	 loss	 of	
information.	As	we	argued	in	Radulescu	et	al.	(2019),	it	is	essentially	the	finite	
channel	capacity	which	“forces”	re-structuring	of	the	information	in	order	to	
gradually	–	bit	by	bit	–	shape	the	item-bound	generalization	into	another	less	
specific,	and	thus	more	general	form	of	encoding.		
	 As	we	argued	in	Radulescu	et	al.	(2019),	information	is	re-structured	by	
(unconsciously)	 re-observing	 the	 item-specific	 features	 and	 their	
configurations,	and	un-binding	items	from	previously	formed	structures,	and	
by	 identifying	 similarities	 and	 differences	 in	 order	 to	 compress	 the	
information.	Information	compression	entails	gradually	reducing	the	number	
of	specific	features	encoded	with	individual	items,	i.e.	erasing	or	“forgetting”	
insignificant	 differences,	 which	 are	 low	 probability	 features.	 Erasing	 –	
“forgetting”	–	the	specific	features,	i.e.	differences,	results	in	more	similarities	
being	highlighted	between	items,	such	that	they	are	grouped	in	variables	(i.e.	
categories)	based	on	non-specific	shared	features.	This	marks	the	birth	of	a	
new	higher-level	form	of	encoding	(i.e.	category-based	generalization),	which	
supports	encoding	of	higher	 input	entropy	using	the	same	available	rate	of	
information	encoding	per	unit	of	time,	i.e.	channel	capacity.		

 
17	The	tendency	to	over-produce	specific	frequent	items	(e.g.	determiners)	
regardless	of	their	probability	distribution	in	the	input,	i.e.	regularization,	
which	was	found	in	previous	studies	(Hudson	Kam	&	Chang,	2009;	Hudson	
Kam	&	Newport,	2005;	2009),	is	an	example	of	item-bound	generalization,	in	
our	terminology.	
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	 Thus,	 the	 increase	 in	 input	entropy	and	the	 interaction	with	the	 finite	
channel	 capacity	 drives	 re-structuring	 of	 the	 information,	 in	 accord	 with	
Dynamic	Systems	Theory	(Prigogine	&	Stengers,	1984;	Schneider	&	Sagan,	
2005)	invoked	also	in	studies	of	other	cognitive	mechanisms	–	e.g.	Stephen,	
Dixon,	 and	 Isenhower,	 2009)	 for	 the	 purpose	 of	 adapting	 to	 noisier	
environments	(i.e.	increasingly	entropic	environments).	

2.	As	outlined	 in	 the	hypotheses	above,	we	use	channel	capacity	 to	model	 the	
finite	encoding	capacity	of	the	learning	system	in	information-theoretic	terms,	
i.e.	at	the	computational	level,	in	the	sense	of	Marr	(1982).	In	order	to	formulate	
a	hypothesis	regarding	the	underlying	cognitive	capacities	(i.e.	at	the	algorithmic	
level),	we	follow	experimental	evidence	from	the	Less-is-More	hypothesis	line	of	
research	 (Hudson	 Kam	 &	 Newport,	 2005;	 Hudson	 Kam	 &	 Newport,	 2009;	
Newport,	1990;	2016)	and	also	classical	and	more	recent	theoretical	models	of	
memory	 and	 attention	 (Baddeley,	 2000,	 2007,	 2012;	 Baddeley,	 Eysenck,	 &	
Anderson,	2015;	Cowan,	1988,	1995,	1999,	2005;	Miller,	1956;	Oberauer	&	Hein,	
2012).	 Thus,	we	hypothesize	 that	 the	 cognitive	 capacities	 underlying	 channel	
capacity,	 hence	 having	 an	 effect	 on	 rule	 induction,	 are	 a	 capacity	 for	 rote	
(unintentional)	memorization	of	specific	items	(Baddeley	et	al.,	2015),	and	also	
the	attentionally-controlled	regions	of	activated	long-term	memory,	i.e.	working	
memory	(Cowan,	1988,	1995,	1999,	2005;	Oberauer	and	Hein,	2012).	
	 The	rote	unintentional	memorization	capacity	(Baddeley	et	al.,	2015)	is	
hypothesized	 to	 have	 a	 negative	 effect	 on	 the	 transition	 from	 item-bound	 to	
category-based	generalization,	since	a	strong	memory	capacity	for	specific	items	
and	their	probability	configuration	would	support	a	higher	input	entropy	to	be	
encoded	per	unit	of	time,	(i.e.	a	higher	channel	capacity,	in	computational	terms).	
The	 rationale	 for	 proposing	 the	 unintentional	 (incidental)	 memorization	
capacity	 would	 be	 that,	 according	 to	 our	 entropy	 model,	 rule	 induction	 is	 a	
natural	automatic	mechanism	driven	by	the	brain’s	sensitivity	to	entropy,	not	a	
rational	mechanism	that	consciously	looks	for	and	remembers	specific	items	and	
probability	distributions	in	the	environment.	
	 Conversely,	the	attentionally-controlled	regions	of	activated	long-term	
memory,	 that	 is	working	memory	 (WM)	 capacity	 (Cowan,	 1988,	 1995,	 1999,	
2005;	Oberauer	and	Hein,	2012)	is	hypothesized	to	have	a	positive	effect	on	the	
transition	 from	 item-bound	 to	category-based	generalization,	 since	 it	 provides	
the	 information	storage	and	online	 time-dependent	processing	resources	 that	
are	needed	 for	 faster	and	efficient	 re-structuring	of	 the	 information	 into	new	
configurations,	 as	 described	 above	 to	 be	 the	 trademark	 of	 shaping	 the	 item-
bound	generalization	into	category-based	generalization.		
	 Generally,	 we	 think	 that	 linguistic	 rule	 induction	 is	 supported	 by	 a	
domain-general	 WM	 capacity,	 rather	 than	 language-specific	 algebraic	 rule	
learning	 as	 proposed	 by	 early	 prominent	 research	 (Marcus	 et	 al.,	 1999).	
However,	in	the	current	study	we	explore	specific	possible	memory	components	
and	WM-correlated	abilities	that	we	deem	to	be	directly	 involved	in	 linguistic	
rule	 induction,	 in	 order	 to	 add	 to	 the	 more	 general	 storage	 and	 retrieval	
components	 tested	 in	 previous	 studies	 under	 the	 Less-is-More	 hypothesis	 –	
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Hudson	Kam	&	Chang,	2009;	Perfors,	2012).	Thus,	we	predict	 that	one	of	 the	
components	underlying	channel	capacity	in	linguistic	rule	induction	is	a	domain-
general	pattern	recognition	capacity.	This	hypothesis	is	based	on	the	rationale	
that	 a	 rule	 induction	 task	 can	 be	 intuitively	 envisaged	 as	 a	 task	 of	 finding	
patterns/rules	in	the	input.	
	 A	candidate	test	for	a	domain-general	pattern	recognition	capacity	is	the	
Raven’s	Standard	Progressive	Matrices	(RAVENS	test	–	Raven,	Raven,	&	Court,	
2000),	since	it	was	shown	to	be	based	on	rule	induction	(Carpenter,	Just	&	Shell,	
1990;	Little,	Lewandowsky,	&	Griffiths,	2012).	Even	though	there	is	no	identity	
(Conway,	Kane,	&	Engle,	2003)	or	causality	relationship	(Burgoyne,	Hambrick,	&	
Altmann,	 2019)	 between	 the	 ability	 measured	 by	 RAVENS	 test	 and	 the	WM	
capacity,	 high	 positive	 correlations	 were	 found	 between	 measures	 of	 WM	
capacity	 and	 tests	 for	 this	 domain-general	 pattern-recognition	 capacity	 (like	
RAVENS	 –	 e.g.	 Conway,	 Cowan,	 Bunting,	 Therriault,	 &	 Minkoff,	 2002;	 Little,	
Lewandowsky	and	Craig,	2014;	Dehn,	2017).	
	 To	 summarize,	 our	 entropy	 model	 predicts	 a	 single	 mechanism	 (of	
statistical	nature),	which	outputs	a	gradual	transition	from	rote	memorization	
(of	 items	 and	 chunks)	 to	 item-bound	 generalization	 to	 category-based	
generalization,	 in	 accord	 with	 the	 previously	 suggested	 gradient	 of	
generalization	(Aslin	&	Newport,	2014).	Furthermore,	it	refines	and	extends	this	
proposal,	 by	 explaining	 how	 and	why	 this	 gradual	 process	 happens.	 Entropy	
captures	the	continuum	from	specificity	to	generality,	and	quantifies	it	in	bits	of	
information.	 As	 we	 argued	 in	 Radulescu	 et	 al.	 (2019),	 sensitivity	 to	 entropy	
under	 conditions	 of	 finite	 channel	 capacity	 entails	 a	 sensitivity	 to	 a	 specific	
pattern	of	variability	 in	 the	 input	given	by	 the	degree	of	sameness/difference	
between	items	and	also	their	probability	distribution,	which	assigns	significance	
(or	stability)	to	specific	combinations	of	items.		
	 The	number	of	differences	encoded	with	each	item	gives	the	degree	of	
specificity	 of	 the	 encoding	 (i.e.	 item-bound	 specificity).	 High	 number	 of	
differences,	which	is	quantified	by	entropy,	defines	a	high-fidelity	encoding	(i.e.	
item-bound	generalization).	If	the	upper	bound	placed	by	the	channel	capacity	on	
the	 number	 of	 bits	 encoded	 per	 second	 is	 reached,	 a	 reduction	 (or	 “gradual	
forgetting”)	of	the	differences	is	triggered.	As	a	result,	the	similarities	between	
items	gain	a	higher	weight,	which	drives	an	automatic	gradual	grouping	of	items	
under	the	same	category.	Gradually,	the	specificity	decreases,	while	the	degree	
of	generality	increases	with	each	bit	of	information	reencoded.	

	
3.	Experiment:	Design	and	Rationale	
	
The	 goal	 of	 this	 study	 is	 to	 further	 probe	 the	 effect	 of	 input	 entropy	 on	 rule	
induction	as	hypothesized	by	our	entropy	model,	by	specifically	looking	at	the	
kind	of	encoding	method	that	low	entropy	facilitates,	and	at	the	transition	from	
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item-bound	to	category-based	generalization	from	low	to	medium	entropy	in	an	
XXY	grammar.	In	our	previous	experiments	reported	in	Radulescu	et	al.	(2019),	
we	 exposed	 adults	 to	 six	 increasingly	 entropic	 versions	 of	 a	 3-syllable	 XXY	
grammar	 (e.g.	keːkeːmy,	 daːdaːli),	 namely	 in	 six	 experimental	 conditions	with	
increasing	 input	 entropy	 –	 2.8,	 3.5,	 4,	 4.2,	 4.58,	 4.8	 bits	 –	 and	 in	 all	 entropy	
conditions	we	 found	 the	 same	 high	 tendency	 to	 accept	 Familiar-syllable	 XXY	
strings	 (i.e.	 the	 same	 XXY	 strings	 they	 were	 familiarized	 with).	 However,	
participants	showed	a	gradually	increasing	percentage	of	correct	acceptance	of	
New-syllable	 XXY	 test	 strings	 (i.e.	 same-same-different	 structure	 with	 new	
syllables,	e.g.	dy-dy-taː),	with	a	very	low	at-chance	acceptance	rate	in	the	lowest	
entropy	 condition,	 and	 increasing	 gradually	 in	 the	 medium	 to	 high	 entropy	
conditions.	 Altogether,	 we	 interpreted	 these	 results	 to	 show	 an	 increasing	
tendency	 to	 move	 from	 item-bound	 generalization	 towards	 category-based	
generalization	as	a	function	of	increasing	input	entropy	(Radulescu	et	al.,	2019).	
	 	However,	those	results	did	not	show	very	clearly	what	type	of	encoding	
was	 actually	 formed	 in	 the	 low	 entropy	 conditions	 and	 the	medium	 entropy	
conditions.	Since	low-to-medium	entropy	allows	for	easy	rote	memorization	of	
the	 specific	 XXY	 strings	 from	 familiarization,	 the	 high	 tendency	 to	 accept	
Familiar-syllable	XXY	strings	might	have	been	supported	by	a	strong	memory	
trace	of	the	exact	XXY	strings	from	the	familiarization,	and	not	necessarily	by	an	
item-bound	generalization	(i.e.	same-same-different	rule	with	familiar	syllables).	
Also,	in	the	low	entropy	condition,	category-based	generalization	did	not	support	
this	performance	either	since	it	was	not	developed	(i.e.	at-chance	acceptance	of	
New-syllable	XXY	strings).		
	 Hence,	 the	 question	 that	 we	 address	 in	 this	 paper	 is	 whether	 in	
conditions	 of	 low-to-medium	 entropy	 learners	 make	 use	 of	 plain	 rote	
memorization,	or	they	actually	form	item-bound	generalizations	as	hypothesized	
by	 our	 model.	 In	 other	 words,	 does	 low	 entropy	 facilitate	 item-bound	
generalization	and	not	 just	rote	memorization?	Also	does	an	 increase	 in	 input	
entropy	 from	 low	 to	 medium	 entropy	 drive	 the	 transition	 from	 item-bound	
generalization	to	category-based	generalization?		
	 In	order	to	answer	these	questions,	we	exposed	participants	to	the	same	
low	 and	 medium	 entropy	 conditions	 from	 Experiment	 2	 in	 Radulescu	 et	 al.	
(2019),	but	crucially	we	changed	one	type	of	test	items	in	order	to	have	a	more	
in-depth	understanding	of	the	encoding	developed	in	a	low	entropy	environment	
as	compared	to	a	medium	entropy	environment.	
	 More	precisely,	participants	were	exposed	(aurally)	to	an	artificial	XXY	
grammar	using	the	same	stimuli	as	those	used	in	Radulescu	et	al.	(2019)	in	the	
lowest	entropy	condition	(here	Low	Entropy	condition	–	2.8	bits)	and	one	of	the	
medium	entropy	conditions	(here	Medium	Entropy	condition	–	4.25	bits).	In	the	
test	phase,	just	as	in	the	design	by	Radulescu	et	al.	(2019),	participants	in	both	
conditions	were	presented	with	the	same	grammaticality	judgement	task,	where	
they	had	to	answer	a	yes/no	question	to	indicate	whether	the	test	strings	could	
be	possible	in	the	familiarization	language.	Crucially,	in	this	study,	we	changed	
one	 of	 the	 four	 types	 of	 test	 strings	 from	 Radulescu	 et	 al.	 (2019).	 While	 in	
Radulescu	et	al.	(2019),	one	of	the	test	types	was	Familiar-syllable	XXY	strings,	
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which	were	the	exact	same	XXY	strings	heard	in	the	familiarization	(e.g.	keː-keː-
my,	 daː-daː-li),	 in	 this	 study,	we	 replaced	 the	Familiar-syllable	XXY	 test	 items	
with	Familiar-syllable	YYX	test	items,	that	is	participants	were	familiarized	with	
XXY	strings	like	keː-keː-my,	daː-daː-li,	but	were	tested	on	strings	like	my-my-keː,	
li-li-daː.	 Therefore,	 we	 tested	 the	 learners	 on	 the	 four	 types	 of	 test	 strings	
presented	below,	and	we	had	the	following	predictions	for	the	performance	in	
the	Low	Entropy	condition	vs	Medium	Entropy	condition.	
	 Familiar-syllable	YYX	(same-same-different	structure	with	familiar	but	
switched	 over	 X-syllables	 and	 Y-syllables)	 –	 correct	 answer:	 yes	 –	 accept.	
According	to	the	hypotheses	of	the	entropy	model,	low	entropy	facilitates	item-
bound	generalization,	thus	we	expect	learners	in	the	Low	Entropy	condition	to	
accept	 this	 type	 of	 test	 strings	 as	 possible	 in	 their	 familiarization	 language.	
Similarly,	participants	in	the	Medium	Entropy	condition	are	expected	to	accept	
this	type	of	test	items,	either	by	having	encoded	the	input	as	same-same-different	
structure	with	familiar	syllables	(item-bound	generalization),	or	as	same-same-
different	structure	with	any	syllables	(category-based	generalization).	
	 New-syllable	XXY	(same-same-different	structure	with	new	X-syllables	
and	Y-syllables)	–	correct	answer:	yes	–	accept.	This	test	type	probes	whether	
learners’	 item-bound	 generalization	 was	 shaped	 into	 category-based	
generalization,	which	would	allow	them	to	accept	XXY	strings	with	new	syllables	
(i.e.	 same-same-different	 structure	 regardless	 of	 familiar	 or	 new	 syllables).	
According	 to	 the	 hypotheses	 of	 the	 entropy	 model,	 we	 expect	 differences	
between	the	entropy	groups,	since	low	entropy	is	assumed	to	not	be	higher	than	
the	channel	capacity,	while	medium	entropy	would	drive	a	higher	tendency	to	
move	 from	 item-bound	 to	 category-based	 generalization.	 Thus,	 we	 expect	
significantly	 higher	 acceptance	 rates	 of	 these	 strings	 in	 the	Medium	 Entropy	
condition	as	compared	to	the	Low	Entropy	condition.	However,	as	we	argued	in	
Radulescu	et	al.	 (2019),	absolute	mean	acceptance	rate	of	 this	 type	of	 strings	
should	not	be	interpreted	as	direct	evidence	for	category-based	generalization.	
This	mean	should	be	compared	to	the	mean	acceptance	rate	of	Familiar-syllable	
YYX	strings:	the	smaller	the	difference	of	the	mean	acceptance	rate	(i.e.	the	effect	
size)	between	New-syllable	XXY	strings	and	Familiar-syllable	YYX	strings	is,	the	
more	likely	it	is	that	learners	encoded	the	input	as	having	a	same-same-different	
structure	regardless	of	new	or	familiar	syllables.	Having	encoded	the	 input	as	
same-same-different	 structure	with	 any	 items	means	 that	 learners	would	 not	
make	a	distinction	between	the	New-syllable	XXY	strings	and	Familiar-syllable	
YYX,	so	they	have	moved	from	item-bound	to	category-based	generalization.	
	 Familiar-syllable	 X1X2Y	 (structure	 of	 three	 different	 but	 familiar	
syllables)	 –	 correct	 answer:	 no	 –	 reject.	 According	 to	 the	 entropy	 model,	
participants	are	expected	to	reject	this	type	of	strings,	either	by	having	encoded	
the	 input	 as	 item-bound	 or	 category-based	 generalizations.	 Specifically,	
participants	 in	 the	 Low	Entropy	 condition	 are	 expected	 to	 reject	 this	 type	 of	
strings,	 since	 they	 are	 expected	 to	 encode	 the	 input	 as	 item-bound	
generalizations,	 that	 is	 same-same-different	 structure	 with	 familiar	 syllables,	
which	would	highlight	mismatches	with	a	different-different-different	structure	
with	 familiar	 syllables.	 Learners	 in	 the	 Medium	 Entropy	 condition	 are	 also	
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expected	to	reject	these	strings,	due	to	a	higher	tendency	towards	encoding	the	
input	as	category-based	generalization,	which	would	highlight	a	violation	of	the	
same-same-different	structure	with	any	syllable.	
	 New-syllable	X1X2Y	(structure	of	three	different	and	new	syllables)	–	
correct	answer:	no	–	reject.	In	both	conditions,	participants	are	expected	to	reject	
this	 type	 of	 strings,	 either	 by	 having	 encoded	 the	 input	 as	 item-bound	 or	
category-based	generalizations.	
	 In	addition	to	probing	the	effect	of	input	entropy	on	the	transition	from	
item-bound	to	category-based	generalization,	as	presented	above,	this	study	also	
looked	 into	 the	effect	of	 the	cognitive	capacities	hypothesized	by	our	entropy	
model	 to	underlie	 the	channel	 capacity:	unintentional	memory	capacity	and	a	
domain-general	pattern-recognition	capacity,	as	argued	in	the	previous	section.	
	 Thus,	we	tested	each	participant	on	 three	 individual	 tests:	a	Forward	
Digit	Span	task,	which	is	a	measure	of	explicit	short-term	memory	(Baddeley	et	
al.,	2015),	an	incidental	memorization	task,	which	measures	implicit	short-term	
memory	 capacity	 (Baddeley	 et	 al.,	 2015),	 and	 Raven’s	 Standard	 Progressive	
Matrices	 (Raven	 et	 al.,	 2000),	 a	 standardized	 test	 based	 on	 visual	 pattern-
recognition	 (Caroll,	 1993;	 Conway	 et	 al.,	 2002).	 Thus,	 according	 to	 the	
hypotheses	of	our	entropy	model,	we	predicted	a	positive	effect	of	RAVENS	test	
on	the	tendency	to	move	from	an	item-bound	to	a	category-based	generalization,	
and	 a	 negative	 effect	 of	 the	 explicit/incidental	 memory	 tests	 on	 the	 same	
transition	from	one	type	of	encoding	to	the	other.	
	 Moreover,	in	order	to	further	probe	the	effect	of	individual	differences	
in	the	cognitive	capacities	that	we	hypothesize	to	play	a	role	in	rule	induction,	
we	 planned	 an	 analysis	 based	 on	 a	 post-hoc	 split	 of	 the	 participants	 in	 four	
groups,	 depending	 on	 their	 scores	 on	 the	 incidental	 memory	 test	 and	 the	
RAVENS	 test.	 Specifically,	 we	 planned	 to	 group	 the	 participants	 based	 on	 a	
median	split	of	the	scores	on	the	incidental	memory	test	into	Low	Memory	and	
High	Memory	groups,	and	based	on	a	median	split	of	the	scores	on	the	RAVENS	
test	into	Low	RAVENS	and	High	RAVENS	groups.	Then,	each	participant	would	
be	assigned	to	one	of	the	four	possible	resulting	Incidental	Memorization	Task	-	
RAVENS	groups	(ImtRAV	groups):	1.	Low	Memory	–	Low	RAVENS	(participants	
with	lower	than	median	score	on	Incidental	Memorization	test,	but	lower	than	
median	 score	on	RAVENS	 test),	2.	 Low	Memory	–	High	RAVENS	 (participants	
with	lower	than	median	score	on	Incidental	Memorization	test,	but	higher	than	
median	 score	on	RAVENS	 test),	3.	High	Memory	–	Low	RAVENS	 (participants	
with	higher	than	median	score	on	Incidental	Memorization	test,	but	lower	than	
median	score	on	RAVENS	test),	4.	High	Memory	–	High	RAVENS	(participants	
with	higher	than	median	score	on	Incidental	Memorization	test,	but	higher	than	
median	 score	 on	 RAVENS	 test).	 According	 to	 the	 hypotheses	 of	 our	 entropy	
model,	we	predicted	that	participants	with	low	incidental	memory	capacity,	but	
high	visual	pattern-recognition	capacity	(Group	2.	Low	Memory	–	High	RAVENS)	
would	 show	 the	 highest	 tendency	 towards	 category-based	 generalization.	
Conversely,	participants	with	high	 incidental	memory	capacity,	but	 low	visual	
pattern-recognition	 capacity	 (Group	 3.	 High	 Memory	 –	 Low	 RAVENS)	 would	
show	the	lowest	tendency	towards	category-based	generalization.	
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4.	Methods	
	
4.1	Participants	
	
97	healthy,	non-dyslexic	Dutch	speaking	participants	(74	females,	23	males,	age	
18-46,	 M=23.7)	 were	 assigned	 to	 either	 the	 Low	 Entropy	 condition	 (46	
participants)	 or	 the	Medium	 Entropy	 condition	 (51	 participants).	 Four	more	
participants	were	tested	in	the	Low	Entropy	condition,	but	excluded	because	of	
self-reported	general	knowledge	about	artificial	grammar	research.	Only	healthy	
participants	 that	 had	 no	 known	 language,	 reading	 or	 hearing	 impairment	 or	
attention	deficit	were	included.	They	all	signed	a	form	of	consent	and	were	paid	
for	their	participation.	
	
4.2	Tasks	and	materials	
	
Task	1:	XXY	grammar	
	
Familiarization	stimuli.	In	the	Low	Entropy	condition,	participants	listened	to	the	
same	XXY	artificial	grammar	(X	and	Y	stand	for	non-overlapping	sets	of	syllables)	
used	in	the	low	entropy	condition	of	Experiment	2	from	Radulescu	et	al.	(2019),	
while	in	the	Medium	Entropy	condition,	participants	listened	to	the	XXY	stimuli	
used	 in	 the	medium	entropy	condition	of	Experiment	2	 from	Radulescu	et	al.	
(2019).	All	strings	of	the	grammar	in	both	conditions	are	three-syllable	strings	
of	 the	 language	 with	 a	 same-same-different	 structure:	 each	 string	 has	 two	
identical	syllables	(XX)	followed	by	another	different	syllable	(Y),	e.g.	keːkeːmy,	
daːdaːli.	All	syllables	are	natural	Dutch	syllables	having	the	same	structure,	i.e.	a	
consonant	followed	by	a	long	vowel.	For	the	Low	Entropy	condition,	7	X-syllables	
and	 7	 Y-syllables	 were	 used	 to	 generate	 seven	 strings	 (see	 Appendix	 A	 for	
complete	stimulus	set).	All	seven	strings	were	repeated	four	times	(7	strings	*	4	
=	 28	 strings)	 in	 each	 familiarization	 phase	 (there	 were	 three	 familiarization	
phases,	each	consisted	of	the	same	28	strings),	so	that	the	entropy	was	the	same	
in	each	familiarization	phase		–	2.8	bits.	For	the	Medium	Entropy	condition,	we	
used	14	X-syllables	and	14	Y-syllables	(we	added	another	set	of	7	different	X-
syllables	and	7	different	Y-syllables	to	those	used	in	the	Low	Entropy	condition),	
and	each	 syllable	was	 repeated	2	 times.	We	spliced	 the	 syllables	 into	28	XXY	
strings,	which	were	used	in	each	of	the	three	familiarization	phases,	so	that	the	
entropy	was	 the	 same	 in	 each	 familiarization	phase	 –	 4.25	bits.	 The	 order	 of	
presentation	of	the	strings	was	randomized	for	every	participant.	We	used	the	
same	method	for	the	entropy	calculations	as	in	Radulescu	et	al.	(2019),	which	is	
a	 fine-tuned	 extension	 of	 a	 related	 entropy	 calculation	 method	 proposed	 by	
Pothos	(2010)	for	finite	state	grammars	(see	Table	1	below	for	complete	entropy	
calculations).		
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Medium	Entropy	 Low	Entropy	
H[bX]=H[14]	=	3.8	
H[XX]	=	H[14]=	2.8	
H[XY]	=	H[28]	=	4.8	
H[Ye]	=	H[14]	=	3.8	
H[bXX]	=	H[14]	=	3.8	
H[XXY]	=	H[XYe]=	H[28]	=	4.8	
H[bigram]	=	4.05	
H[trigram]	=	4.46	
H[total]	=		𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	4.25	

H[bX]=H[7]	=	-Σ[0.143*log0.143]	=	
2.8	
H[XX]	=	H[7]=	2.8	
H[XY]	=	H[7]	=	2.8	
H[Ye]	=	H[7]	=	2.8	
H[bXX]	=	H[7]	=	2.8	
H[XXY]	=	H[XYe]=	H[7]	=	2.8	
H[bigram]	=	2.8	
H[trigram]	=	2.8	
H[total]	=		𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	2.8	

Table	1.	Entropy	values	for	Low	Entropy	and	Medium	Entropy	
conditions.	Taken	from	Experiment	2,	Radulescu	et	al.	(2019)	

	
Test	stimuli.	
The	 three	 familiarization	 phases	 were	 interleaved	 with	 three	 (quick)	
intermediate	test	phases	and	a	final	(longer)	test	phase.	Each	intermediate	test	
phase	included	four	test	strings,	one	of	each	of	the	four	types	presented	in	the	
previous	section.	The	final	test	had	eight	test	strings	(two	of	each	type).	Thus,	in	
total,	there	were	(4+4+4+8=)	20	test	strings	(see	Appendix	A	for	the	complete	
set	of	test	stimuli).	Accuracy	scores	for	the	learning	of	the	XXY	grammar	were	
measured	 as	 correct	 acceptance	 of	 strings	 with	 the	 same-same-different	
structure	 (Familiar-syllable	 YYX	 and	 New-syllable	 XXY	 strings),	 and	 correct	
rejection	 of	 strings	 that	 deviate	 from	 the	 same-same-different	 structure	
(Familiar-syllable	X1X2Y	and	New-syllable	X1X2Y	strings).	
	
Task	2:	Forward	Digit	Span	
	
Participants	were	instructed	to	listen	to	series	of	digits	presented	aurally,	and	
they	were	told	in	advance	that	it	was	a	memory	test.	Participants	had	a	short	trial	
phase	 to	 become	 familiar	 with	 the	 task,	 and	 then	 the	 actual	 test	 began:	
participants	 listened	 to	 the	 digits	 (audio	 files	 of	 auditory	 recordings	 of	 the	
digits),	and	they	were	asked	to	enter	the	digits	they	heard	in	the	same	order.	We	
modified	 the	 design	 of	 the	 classical	 Forward	 Digit	 Span	 task,	 such	 that	
participants	did	not	have	any	physical	keyboard,	but	a	row	with	buttons	for	each	
digit	was	displayed	in	a	line	on	the	screen	only	in	the	moment	when	they	were	
asked	to	enter	the	digits,	and	disappeared	during	the	listening	phases.	In	order	
to	enter	the	digits,	the	participants	had	to	click	on	the	buttons	displayed	on	the	
screen,	 not	 to	 use	 a	 physical	 keypad	 on	 a	 keyboard.	 This	 modification	 was	
intended	to	prevent	participants	from	creating	a	visual	pattern	on	the	physical	
keypad	 of	 the	 keyboard	 while	 listening	 to	 the	 digits.	 The	 row	 of	 digits	
disappeared	 from	 the	 screen	 when	 the	 next	 series	 of	 digits	 was	 presented	
aurally.	The	task	was	progressively	difficult,	starting	out	with	a	series	of	3	digits	
and	ending	with	a	series	of	12	digits	(in	total	24	trials	–	2	for	each	series	of	digits).	
After	2	consecutive	mistakes	 the	task	ended	automatically.	The	score	was	the	
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highest	span	achieved	by	the	participant,	 i.e.	 the	 largest	series	 for	which	both	
trials	were	correctly	completed.	
	
Task	3:	Incidental	Memorization	Test	
	
In	this	task,	participants	were	not	told	in	advance	that	this	was	a	memory	test.	
Instead,	 they	 were	 only	 told	 that	 they	 would	 listen	 to	 words	 from	 another	
forgotten	 language.	 Participants	 listened	 to	 30	 bisyllabic	 nonsense	 words	
resembling	Dutch	phonology	and	phonotactics.	They	were	instructed	to	imagine	
what	the	word	might	have	meant	in	the	forgotten	language	and	to	pick	a	category	
(flower,	 animal,	 or	 tool)	 for	 each	word	 they	 heard,	 based	 on	what	 the	word	
sounded	like	to	them.	They	had	3	seconds	to	choose	a	category	for	each	word,	by	
pressing	the	button	for	flowers,	animals,	or	tools.		
	 After	the	listening/categorization	phase	was	over,	a	surprise	instruction	
appeared	on	the	screen,	informing	the	participants	that	they	would	be	given	a	
memory	 test,	 which	would	 check	whether	 they	 remembered	 the	words	 they	
categorized	during	the	previous	phase.	They	were	instructed	to	indicate	whether	
they	heard	the	word	previously,	by	clicking	a	yes/no	button	on	the	screen.	The	
memorization	test	consisted	of	13	targets	and	13	foils.	
	
Task	4:	RAVENS	
	
Participants	were	administered	5	sets	of	matrices,	with	12	matrices	per	set	to	
resolve.	Each	matrix	consisted	of	nine	visual	patterns	(of	which	one	pattern	is	
missing)	 arranged	 in	 a	 particular	 order	 in	 accordance	with	 some	 underlying	
rules.	Participants	have	to	find	the	missing	pattern	for	each	of	the	sixty	matrices	
in	a	multiple-choice	task.	
	
4.3	Procedure	
	
Participants	were	tested	in	a	sound-proof	booth,	and	they	completed	the	tasks	in	
the	order	presented	above.			
	 For	Task	1	–	XXY	grammar,	the	participants	were	told	that	they	would	
listen	to	a	“forgotten	language”	that	would	not	resemble	any	language	they	might	
be	 familiar	with,	 but	which	had	 its	 own	 rules	 and	grammar.	The	 instructions	
informed	participants	that	the	language	had	more	words	than	the	ones	played	in	
the	familiarization	phases.	They	were	also	explained	that	there	would	be	three	
familiarization	 phases	 interleaved	 with	 three	 intermediate	 tests	 and	 a	 final	
(longer)	test	phase,	which	were	meant	to	check	what	they	had	noticed	about	the	
language.	They	were	asked	to	judge,	whether	the	test	words	could	be	possible	in	
the	language	that	they	listened	to,	by	pressing	a	Yes/No	button.	This	task	lasted	
around	5	minutes.	
	 After	 the	 first	 task,	 participants	 were	 given	 the	 instructions	 for	 the	
Forward	Digit	Span,	namely	they	were	explicitly	instructed	that	it	was	a	memory	
test.	They	were	asked	to	listen	attentively	to	streams	of	digits,	which	they	would	
have	to	recall	in	the	same	order.	This	task	lasted	around	5	minutes.	
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	 The	 third	 task	 was	 the	 Incidental	 Memorization	 task,	 for	 which	
participants	were	told	in	advance	that	they	would	have	to	listen	to	words	from	
another	“forgotten	 language”.	Their	task	would	be	to	 imagine	what	the	words	
might	have	meant	in	the	forgotten	language,	based	on	how	the	words	sounded	
like	to	them.	Importantly,	participants	were	not	told	in	advance	that	a	memory	
test	would	follow.	This	task	lasted	about	7	minutes.	
	 Lastly,	participants	were	asked	to	perform	the	RAVENS	matrices	test,	as	
a	paper-and-pen	task.	The	standard	RAVENS	task	allows	participants	to	spend	
50	minutes	 in	 total,	but,	after	running	a	pilot	 testing,	we	modified	 the	 task	 to	
allow	participants	only	a	shorter	amount	of	time	(35	minutes)	to	complete	the	
task,	in	order	to	avoid	an	overall	time-consuming	and	exhausting	experimental	
session.	The	experimenter	would	walk	in	20	and	30	minutes	after	participants	
started	 the	 session,	 to	 announce	 the	 remaining	 time.	 The	 entire	 experiment	
lasted	about	one	hour.	
	
4.4	Data	scoring	and	analysis	
	
We	recorded	all	 the	yes/no	answers	 for	Task	1	and	coded	them	as	correct	or	
incorrect	as	per	the	criteria	presented	for	each	type	of	strings	in	Section	3	above.	
From	all	the	20	correct/incorrect	answers	for	each	participant,	a	proportion	of	
correct	 answers	was	 calculated	per	each	 type	of	 test	 item.	 Instead	of	directly	
analyzing	proportions,	we	performed	an	empirical	logarithmic	transformation,	
in	order	to	analyze	the	data	using	a	linear	regression	model.		
	 For	the	Forward	Digit	Span	task,	the	standard	scoring	method	was	used,	
that	is	the	measured	highest	span	of	each	participant	was	recorded	as	one	data	
point	per	participant.	In	the	Incidental	Memorization	Task,	all	correct/incorrect	
answers	were	recoded	into	hits	and	false	alarms,	which	were	used	to	calculate	a	
d’	value	for	each	participant.	For	the	RAVENS	test,	we	used	the	standard	scoring	
method,	that	is	all	correct	answers	to	all	sets	of	matrices	were	counted,	and	the	
count	was	 transformed	 into	 age-corrected	percentiles	 using	 the	 standardized	
RAVENS	tables.		
	
5.	Results	
	
Figure	 1	 presents	 the	 mean	 correct	 acceptance	 rate	 (proportion	 of	 correct	
acceptances	per	group)	for	Familiar-syllable	YYX	strings	and	New-syllable	XXY	
strings,	 across	 the	 two	 conditions	 (Medium	 Entropy	 and	 Low	 Entropy).	 The	
mean	 correct	 acceptance	 rate	 in	 the	Medium	Entropy	 condition	 for	 Familiar-
syllable	YYX	strings	was	M	=	.9	(SD	=	.15),	and	for	New-syllable	XXY	strings	it	was	
M	=	.82	(SD	=	.21).	The	mean	rate	of	correct	acceptance	in	Low	Entropy	condition	
for	Familiar-syllable	YYX	strings	was	M	=	.96	(SD	=	.11),	and	for	New-syllable	XXY	
strings	it	was	M	=	.62	(SD	=	.32).	
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Similarly,		Figure	2	shows	the	mean	correct	rejection	rate	(proportion	of	correct	
rejections	per	group)	for	Familiar-syllable	X1X2Y	strings	and	New-syllable	X1X2Y	
strings,	across	the	Low	Entropy	and	Medium	Entropy	conditions.	In	the	Medium	
Entropy	condition,	 the	mean	correct	 rejection	rate	 for	Familiar-syllable	X1X2Y	
strings	was	M	=	.84	(SD	=	.3)	and	for	New-syllable	X1X2Y	strings	it	was	M	=	.9	(SD	
=	.17).	In	the	Low	Entropy	condition,	the	mean	correct	rejection	rate	for	Familiar-
syllable	X1X2Y	strings	was	M	=	.75	(SD	=	.37),	and	for	New-syllable	X1X2Y	strings	
it	was	M	=	.91	(SD	=	.16).	
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Figure	3	shows	the	distribution	of	 individual	mean	rates	 for	each	 test	 type	 in	
each	experimental	condition,	Low	Entropy	and	Medium	Entropy.	
	 In	 order	 to	 probe	 the	 effect	 of	 input	 entropy	 on	 rule	 induction,	 we	
compared	 the	 performance	 in	 the	 two	 conditions	 (Medium	Entropy	 and	 Low	
Entropy	groups)	 in	 a	 general	 linear	mixed	 effects	 analysis	 of	 the	 relationship	
between	Accuracy	(correct	acceptance	of	the	grammatical	test	items	and	correct	
rejection	of	 the	ungrammatical	ones)	and	Type	of	Test	(Familiar-syllable	YYX,	
New-Syllable	 XXY,	 Familiar-syllable	 X1X2Y,	 New-Syllable	 X1X2Y),	 Group	
(Medium	Entropy	and	Low	Entropy),	as	well	as	Group	x	Type	of	Test	interaction.	
Therefore,	 as	dependent	variable	we	entered	 log-transformed	Accuracy	 score	
into	the	model.	As	fixed	effects	we	entered	Type	of	Test,	Group	and	Group	x	Type	
of	Test	interaction.	The	scores	for	Forward	Digit	Span,	Incidental	Memorization	
Task	and	RAVENS	tests	were	entered	one	by	one	as	covariates	in	the	model,	and	
their	 interactions	with	 Group	was	 also	 entered	 one	 by	 one	 in	 the	model.	 As	
random	effect	we	had	an	intercept	for	subjects.	An	alpha	level	of	.05	was	used	for	
all	statistical	tests.	We	started	fitting	the	data	from	the	intercept-only	model	and	
added	the	random	and	fixed	factors	one	by	one.	The	model	reported	here	is	the	
best	 fitting	 model,	 both	 in	 terms	 of	 the	 model’s	 accuracy	 in	 predicting	 the	
observed	data,	and	in	terms	of	AIC	(Akaike	Information	Criterion).	
	 We	found	a	significant	Group	x	Type	interaction	(F(7,	377)	=	8.761,	p	<	
.001),	a	non-significant	Group	x	Incidental	Memorization	Task	interaction	(F(2,	
377)	=	1.498,	p	=	 .225),	 and	a	 significant	main	effect	of	RAVENS	 (F(1,	377)	=	
3.890,	p	=	.049).18	

 
18	None	of	the	other	factors,	interactions	between	factors	or	covariates	had	a	
significant	effect,	and	since	they	did	not	improve	the	model	they	were	removed	
from	the	final	model	reported	here.	
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	 Pairwise	comparisons	of	the	Estimated	Marginal	Means	(adjusted	to	the	
mean	values	of	the	covariates	in	the	model,	i.e.	Incidental	Memorization	Task	=	
1.575,	RAVENS	=	75)	revealed	a	significant	difference	between	Groups	(Medium	
Entropy	and	Low	Entropy	groups)	for	the	Familiar-syllable	X1X2Y	(M	=	.168,	SE	
=	.066,	F(1,	377)	=	6.412,	p	=	.012)	and	the	New-syllable	XXY	(M	=	.21,	SE	=	.066,	
F(1,	 377)	 =	 10.037,	 p	 =	 .002).	 For	 the	 other	 two	 Types	 of	 test,	 pairwise	
comparisons	of	the	Estimated	Marginal	Means	adjusted	for	the	same	level	of	the	
covariates	 revealed	 a	 non-significant	 difference	 between	 Groups	 (Medium	
Entropy	and	Low	Entropy	groups):	Familiar-syllable	YYX	(M	=	-	.036,	SE	=	.066,	
F(1,	377)	=	.300,	p	=	.584)	and	New-syllable	X1X2Y	(M	=	-	.007,	SE	=	.066,	F(1,	
377)	=	.013,	p	=	.911).	
	 Further,	 Cohen’s	 effect	 size	 value	 for	 the	 mean	 difference	 in	 correct	
answers	between	the	Medium	Entropy	and	the	Low	Entropy	groups	was	d	=	-	
.45,	with	an	effect	size	correlation	r	=	-	.22	(Familiar-syllable	YYX),	d	=	.27,	r	=	.13	
(Familiar-syllable	X1X2Y),	d	=	.74,	r	=	.35	(New-syllable	XXY)	and	d	=	-	.06,	r	=	-	
.03		(New-syllable	X1X2Y).	The	effect	size	for	the	difference	between	acceptance	
of	 Familiar-syllable	YYX	vs.	New-syllable	XXY	was	higher	 in	 the	Low	Entropy	
group	(Diff	of	Means	=	.34,	d	=	1.42,	r	=	.58)	compared	to	the	same	difference	in	
the	Medium	Entropy	group	(Diff	of	Means	=	.08,	d	=	.44,	r	=	.21).	
	 In	 order	 to	 further	 look	 into	 the	 effect	 of	 individual	 differences	 in	
Incidental	Memorization	(Imt)	and	RAVENS	scores,	we	grouped	the	participants	
post-hoc,	 separately	 in	 each	 Entropy	 Condition,	 into	 four	 groups	 (ImtRAV	
groups)	 based	 on	 a	median	 split	 of	 their	 individual	 scores	 on	 these	 tests,	 as	
follows:	1.	Low	Memory	–	Low	RAVENS	(participants	with	lower	than	median	
score	on	Incidental	Memorization	test,	but	lower	than	median	score	on	RAVENS	
test),	2.	Low	Memory	–	High	RAVENS	(participants	with	lower	than	median	score	
on	Incidental	Memorization	test,	but	higher	than	median	score	on	RAVENS	test),	
3.	High	Memory	–	Low	RAVENS	(participants	with	higher	than	median	score	on	
Incidental	Memorization	test,	but	lower	than	median	score	on	RAVENS	test),	4.	
High	Memory	–	High	RAVENS	(participants	with	higher	than	median	score	on	
Incidental	Memorization	test,	but	higher	than	median	score	on	RAVENS	test).	In	
order	 to	probe	 the	effect	of	 individual	differences	 in	 Incidental	Memorization	
and	RAVENS	scores	on	rule	induction,	we	compared	the	performance	between	
the	four	post-hoc	ImtRAV	groups	(Low	Memory	–	Low	RAVENS,	Low	Memory	–	
High	RAVENS,	High	Memory	–	Low	RAVENS,	High	Memory	–	High	RAVENS),	in	
each	 Entropy	 Condition	 separately,	 in	 planned	 ANOVAs	 of	 the	 relationship	
between	Accuracy	(correct	acceptance	of	the	grammatical	test	items	and	correct	
rejection	of	 the	ungrammatical	 ones)	 and	 ImtRAV	Group.	Thus,	 as	dependent	
variable	we	entered	log-transformed	Accuracy	scores	into	the	analysis.		
	 In	the	Medium	Entropy	condition,	we	found	a	significant	effect	of	ImtRav	
group	(F(3,	200)	=	7.110,	p	<	.001)	on	the	Accuracy	scores	across	all	test	types.	
Multiple	Bonferroni-corrected	post-hoc	comparisons	showed	that	Group	1.	Low	
Memory	–	Low	RAVENS	had	significantly	higher	accuracy	scores	than	Group	3.	
High	Memory	–	Low	RAVENS	(M	=	.15,	SE	=	.05,	p	=	.04),	Group	2.	Low	Memory	
–	 High	 RAVENS	 had	 significantly	 higher	 accuracy	 scores	 than	 Group	 3.	 High	
Memory	–	Low	RAVENS	(M	=	.22,	SE	=	.05,	p	<	.001),	and	Group	4.	High	Memory	
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–	 High	 RAVENS	 had	 significantly	 higher	 accuracy	 scores	 than	 Group	 3.	 High	
Memory	–	Low	RAVENS	(M	=	.2,	SE	=	.05,	p	<	.001).	Specifically,	by	Test	Type,	we	
found	a	significant	difference	between	ImtRAV	groups	on	Accuracy	scores	on	the	
Familiar-syllable	X1X2Y	test	strings	(F(3,	47)	=	2.929,	p	=	.043),	with	Group	4.	
High	Memory	–	High	RAVENS	performing	significantly	better	than	Group	3.	High	
Memory	–	Low	RAVENS	(M	=	.46,	SE	=	.17,	p	=	.05).	We	also	found	a	significant	
difference	between	ImtRAV	groups	on	Accuracy	scores	on	the	New-syllable	XXY	
strings	(F(3,	47)	=	6.033,	p	=	.001),	with	Group	1.	Low	Memory	–	Low	RAVENS	
performing	significantly	better	than	Group	3.	High	Memory	–	Low	RAVENS	(M	=	
.2,	 SE	 =	 .06,	 p	 =	 .017),	 Group	 2.	 Low	 Memory	 –	 High	 RAVENS	 performing	
significantly	better	than	Group	3.	High	Memory	–	Low	RAVENS	(M	=	.25,	SE	=	.06,	
p	=	 .001)	and	Group	4.	High	Memory	–	High	RAVENS	performing	significantly	
better	than	Group	3.	High	Memory	–	Low	RAVENS	(M	=	.18,	SE	=	.06,	p	=	.013).	
We	did	not	find	a	significant	effect	of	ImtRAV	group	on	Accuracy	scores	for	the	
Familiar-syllable	 YYX	 test	 strings	 (F(3,	 47)	 =	 2.038,	p	=	 .12)	 or	 for	 the	New-
syllable	X1X2Y	test	strings	(F(3,	47)	=	1.259,	p	=	.29).	
	 In	 the	 Low	 Entropy	 condition,	 we	 did	 not	 find	 a	 significant	 effect	 of	
ImtRav	group	(F(3,	180)	=	.338,	p	=	.79)	on	the	Accuracy	scores	across	all	test	
types.	
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Figures	4	and	5	show	the	distribution	of	individual	mean	accuracy	rates	for	the	
test	types19	in	each	ImtRAV	group,	for	each	experimental	condition,	Low	Entropy	
and	Medium	Entropy.	
	
6.	Discussion	
	
The	 goal	 of	 this	 experiment	 was	 to	 probe	 the	 effect	 of	 input	 entropy	 on	 the	
transition	 from	 item-bound	 to	 category-based	 generalization,	 and	 to	 further	
investigate	 the	 type	 of	 generalization	 that	 low	 input	 entropy	 facilitates.	 The	
results	showed	that	when	exposed	to	a	3-syllable	XXY	grammar,	with	strings	like	
keː-keː-my,	 daː-daː-li,	 in	 both	 a	 low	entropy	 and	 a	medium	entropy	 condition,	
adults	 have	 a	 similar	 high	 tendency	 in	 both	 entropy	 conditions	 to	 accept	 as	
grammatical	 familiar-syllable	 YYX	 strings,	 that	 is	 strings	 with	 familiar	 but	
switched	over	syllables,	e.g.	my-my-keː,	li-li-daː.	These	results	show	that	learners	
in	both	 low	and	medium	entropy	conditions	did	not	only	encode	the	 input	by	
rote	memorization	of	the	familiarization	strings,	but	they	took	a	step	further	and	
encoded	the	input	strings	as	having	a	same-same-different	structure	with	familiar	
syllables.	We	interpret	these	results	as	evidence	in	favor	of	our	entropy	model,	
which	hypothesizes	that	low	input	entropy	facilitates	item-bound	generalization,	
not	only	rote	memorization	of	the	items	and	of	the	surface	statistical	regularities	
(e.g.	transitional	probabilities)	between	the	items	displayed	in	the	input.	

 
19	For	conciseness,	we	only	show	boxplots	for	the	test	types	where	we	found	
significant	differences	in	the	Medium	Entropy	condition,	i.e.	Familiar-syllable	
X1X2Y	and	New-syllable	XXY.	For	visual	comparison	reasons,	we	show	boxplots	
for	the	same	test	types	in	the	Low	Entropy	condition,	although	we	did	not	find	
significant	differences	in	this	condition.	
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	 Moreover,	 we	 found	 that	 learners	 exposed	 to	 the	 medium	 entropy	
version	of	the	language	showed	a	higher	tendency	to	accept	new	XXY	strings	as	
grammatical	 than	 learners	 in	 the	 low	 entropy	 condition.	 In	 addition,	 the	
difference	 between	 acceptance	 of	 Familiar-syllable	 YYX	 strings	 compared	 to	
New-syllable	XXY	(i.e.	the	effect	size)	was	higher	in	the	low	entropy	group	than	
the	same	difference	in	the	medium	entropy	group.	This	shows	that	learners	in	
the	medium	 entropy	 condition	 had	 a	 higher	 tendency	 than	 those	 in	 the	 low	
entropy	condition	to	encode	the	input	as	having	a	same-same-different	structure	
regardless	of	familiar	or	new	syllables,	which	means	they	abstracted	away	from	
the	specific	items	in	the	input	and	their	configuration	(i.e.	probability	matching),	
and	 encoded	 the	 input	 as	 relations	 over	 variables.	 This	 finding	 supports	 the	
hypothesis	 of	 our	 entropy	 model:	 an	 increase	 in	 input	 entropy	 from	 low	 to	
medium	 entropy	 drives	 the	 transition	 from	 item-bound	 to	 category-based	
generalization.	
	 Furthermore,	 we	 found	 a	 higher	 tendency	 to	 correctly	 reject	 the	
ungrammatical	Familiar-syllable	X1X2Y	strings	in	the	medium	entropy	condition	
than	 in	 the	 low	 entropy	 condition.	 This	 type	 of	 strings	 consisting	 of	 three	
different	but	familiar	syllables	poses	a	challenge	to	the	learner,	in	that	a	strong	
memory	trace	of	 the	 familiar	syllables	might	 incorrectly	 lead	to	acceptance	of	
these	strings,	if	a	same-same-different	structure	is	not	strongly	encoded,	which	
could	 trigger	 rejection	 as	 an	XXY-rule	 violation.	 Since	medium	entropy	drove	
strong	 development	 of	 a	 same-same-different	 structure	with	 any	 syllable,	 not	
only	the	familiar	ones,	i.e.	category-based	generalization,	this	form	of	encoding	
supports	rejection	of	the	Familiar-syllable	X1X2Y	more	strongly	than	the	item-
bound	generalization	driven	by	the	low	entropy	language	version.	These	results	
are	 in	 line	with	our	 findings	 in	Radulescu	et	al.	 (2019),	where	 in	 the	medium	
entropy	 condition	 correct	 rejection	 of	 Familiar-syllable	 X1X2Y	 strings	 was	
supported	by	category-based	generalization,	since	the	rejection	rate	of	Familiar-
syllable	X1X2Y	was	just	as	high	as	the	acceptance	rate	of	New-syllable	XXY.	
	 Regarding	the	effect	of	individual	differences	in	the	cognitive	capacities	
hypothesized	 to	underlie	 the	channel	capacity,	we	found	a	significant	positive	
effect	 of	 the	 individual	 scores	 in	 the	 domain-general	 pattern-recognition	
RAVENS	test,	in	both	entropy	conditions.	This	result	is	in	line	with	the	hypothesis	
of	 our	 entropy	 model	 regarding	 a	 positive	 effect	 of	 working	 memory,	 in	
particular	of	a	domain-general	pattern	recognition	ability	(RAVENS	test).	These	
findings	support	the	hypothesis	that	rule	induction	in	language	is	supported	by	
a	domain-general	pattern-recognition	capacity,	which	was	shown	to	be	highly	
correlated	 with	 working	 memory	 capacity	 (Little,	 Lewandowsky	 and	 Craig,	
2014;	Conway	et	al.,	2002),	based	on	the	fact	that	it	draws	on	the	attentionally-
modulated	 storage	 and	 processing	 resources	 that	 help	 keeping	 goal-relevant	
information	 active	 in	 the	 face	 of	 concurrent	 processing	 (i.e.	 the	 trademark	of	
working	memory	–	Baddeley	et	al.,	2015;	Conway	et	al.,	2002).	Therefore,	a	high	
domain-general	 pattern	 recognition	 capacity	 supports	 a	 higher	 tendency	 to	
move	from	item-bound	to	category-based	generalization	under	conditions	of	low-
to-medium	input	entropy.		
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	 Moreover,	in	the	medium	entropy	condition,	but	not	in	the	low	entropy	
condition,	we	found	significant	differences	in	overall	accuracy	scores	(i.e.	correct	
acceptance	 of	 same-same-different	 strings,	 and	 correct	 rejection	 of	 X1X2Y	
strings)	 between	 post-hoc	 groups	 of	 learners	 with	 low	 or	 high	 incidental	
memorization	 and	 low	 or	 high	 domain-general	 pattern	 recognition	 capacity.	
Specifically,	these	group	differences	were	significant	in	the	correct	acceptance	of	
the	new	XXY	strings:	the	Low	Memory	–	Low	RAVENS	group	had	higher	accuracy	
scores	than	the	High	Memory	–	Low	RAVENS	group,	which	shows	that	when	it	
comes	 to	 rule	 induction,	 individuals	 with	 a	 low	 domain-general	 pattern	
recognition	 capacity	 might	 benefit	 from	 a	 lower	 incidental	 memorization	
capacity.	 Moreover,	 the	 Low	 Memory	 –	 High	 RAVENS	 showed	 significantly	
higher	accuracy	scores	than	the	High	Memory	–	Low	RAVENS	group,	and	also	the	
highest	accuracy	scores	among	all	the	groups,	which	shows	that	individuals	with	
a	 low	 incidental	 memorization	 capacity,	 but	 a	 high	 domain-general	 pattern	
recognition	 capacity	 have	 a	 higher	 tendency	 towards	 category-based	
generalization	than	the	individuals	with	high	incidental	memorization	capacity	
and	high	domain-general	pattern	recognition	capacity.	Finally,	the	High	Memory	
–	High	RAVENS	group	had	 significantly	 higher	 accuracy	 scores	 than	 the	High	
Memory	 –	 Low	 RAVENS	 group,	 which	 shows	 that	 individuals	 with	 high	
memorization	 capacity	 might	 benefit	 from	 a	 high	 domain-general	 pattern	
recognition	capacity	in	their	tendency	towards	category-based	generalization.	In	
short,	 a	 high	 domain-general	 pattern-recognition	 capacity	 drives	 better	 rule	
induction,	 however,	 when	 the	 pattern-recognition	 capacity	 is	 low,	 a	 low	
incidental	 memory	 capacity	 drives	 higher	 tendency	 towards	 category-based	
generalization	than	a	high	incidental	memory	capacity.	This	shows	that,	in	line	
with	our	 entropy	model	 hypothesis	 regarding	 cognitive	 capacities	underlying	
channel	 capacity,	 generally	 a	 combination	 of	 low	 incidental	 memorization	
capacity	and	a	high	working	memory	capacity,	specifically	a	high	domain-general	
pattern-recognition	 capacity,	 drive	 the	 tendency	 to	move	 from	 item-bound	 to	
category-based	generalization,	under	conditions	of	medium	input	entropy.		
	 The	 fact	 that	 in	 the	 low	 input	 entropy	 condition	 we	 did	 not	 find	
significant	differences	between	 the	combinations	of	 these	cognitive	capacities	
could	have	a	possible	logical	explanation,	under	the	hypotheses	of	our	entropy	
model.	The	low	entropy	we	employed	was	so	low	that	individual	differences	in	
incidental	 memorization	 would	 not	 make	 a	 difference.	 Specifically,	 even	 low	
memory	learners	could	easily	remember	the	seven	strings	(repeated	four	times)	
so	 that	 their	 low	 incidental	 memorization	 capacity	 would	 not	 give	 them	 an	
advantage	towards	category-based	generalization.	However,	the	domain-general	
pattern-recognition	capacity	as	a	main	effect	played	a	positive	 role	 in	driving	
category-based	generalization	regardless	of	input	entropy.		
	 Our	findings	together	with	our	entropy	model	contribute	to	the	hotly-
debated	topic	of	the	learning	mechanisms	underlying	statistical	regularities	and	
rule	induction.	Here	we	will	briefly	revive	and	discuss	the	previous	arguments	in	
order	 to	 integrate	 our	 entropy	model	 and	 findings	 in	 the	 general	 debate	 on	
statistical	learning	vs	rule	induction.	Previously,	it	was	claimed	that	computing	
statistical	 regularities	 displayed	 by	 the	 input,	 e.g.	 transitional	 probabilities	
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between	experienced	items,	and	abstracting	away	from	the	specific	items	in	the	
input	 to	 make	 higher-order	 generalizations,	 e.g.	 category	 formation	 and	
syntactic	 structure,	 are	 qualitatively	 distinct	mechanisms	 (Endress	&	Bonatti,	
2007;	2016;	Endress	et	al.,	2009;	Marcus	et	al.,	1999;	Peña	et	al.,	2002).	While	it	
is	widely	accepted	and	established	by	mounting	evidence	that	statistical	learning	
underlies	learning	tasks	based	on	computations	of	probabilistic	distributions	of	
specific	items,	such	as	phonotactic	information	(Chambers	et	al.,	2003),	speech	
segmentation	(Aslin	et	al.	1998;	Saffran	et	al.,	1996)	and	learning	co-occurrence	
dependencies	between	items	in	sequences	(Gómez,	2002;	Lany	&	Gómez,	2008;	
Lany,	Gómez	&	Gerken,	2007),	the	sophisticated	rule	induction	mechanism	that	
enables	 category	 formation	 and	 generalization	 to	 novel	 instances	 remains	
largely	underspecified,	and	hence	hotly	debated	(Aslin	&	Newport,	2012;	2014;	
Christiansen	&	Chater,	2008;	Christiansen	&	Curtin,	1999;	Frost	&	Monaghan,	
2016;	Radulescu	et	al.,	2019).		
	 Generally	 the	 arguments	 in	 favor	 of	 different	 mechanisms	 are	 built	
around	 two	 main	 assumptions:	 one	 related	 to	 a	 very	 basic	 (narrow)	
interpretation	of	sensitivity	to	statistical	learning,	i.e.	probabilistic	computations	
that	can	only	apply	to	experienced	(familiar)	stimuli,	but	not	to	unexperienced	
(novel)	 ones,	 and	 another	 assumption	 related	 to	 an	 apparent	 temporal	
distinction	between	the	two	mechanisms,	i.e.	lack	of	simultaneity.	
	 Having	initiated	the	first	argument,	Marcus	et	al.	(1999)	claimed	that	a	
basic	 statistical	 learning	 mechanism	 which	 relies	 on	 computations	 of	
probabilities	 between	 experienced	 stimuli	 cannot	 account	 for	 generalizing	 to	
novel	instances,	for	which	another	abstract	algebraic-rule	mechanism	would	be	
necessary.	 A	 myriad	 of	 neural	 network	 studies	 followed	 the	 algebraic-rule	
proposal	suggesting	mainly	 the	 following	counterargument:	 if	neural	network	
models,	which	are	seen	as	an	implementation	of	statistical	learning,	lacking	any	
symbolic	(algebraic)	representations	of	rules,	can	capture	the	regularities	in	the	
input	(i.e.	repetition-based	structure	in	the	case	of	Marcus	et	al.’s	stimuli),	thus	
mirroring	 the	 human	performance,	 then	 this	 could	 be	 taken	 as	 evidence	 that	
symbolic/algebraic	representations	might	not	be	necessary	and	that	a	statistical	
mechanism	can	in	principle	account	for	rule	learning	in	humans	(Altmann,	2002;	
Altmann	&	Dienes,	1999;	Christiansen	&	Curtin,	1999;	Gasser	&	Colunga,	2000;	
Seidenberg	&	Elman,	1999;	Sirois	et	al.,	2000;	for	a	recent	review	of	such	neural	
networks	and	symbolic	models,	see	Alhama	&	Zuidema,	2019).	
	 While	having	thoroughly	informed	the	field	on	the	type	of	computations	
that	might	 theoretically	 be	 involved	 in	 rule	 induction,	 neural	 network	 based	
approaches	 cannot	 be	 considered	 direct	 evidence	 regarding	 the	mechanisms	
employed	by	the	human	brain.	Also,	concrete	empirical	evidence	that	the	living	
brain	uses	these	mechanisms,	however	biologically	plausible,	remains	elusive.	
Moreover,	 neural	 networks	might	have	 to	 at	 least	 be	 combined	with	 symbol-
manipulation	mechanisms	in	order	to	reach	human-level	productivity	(Marcus,	
2001;	 2013).	 Even	 the	 latest	 state-of-the-art	 deep	 learning	 algorithms,	 while	
showing	 generalization	 capabilities,	 are	 still	 far	 less	 efficient	 than	 humans	 in	
learning	complex	rules	(Lake,	Salakhutdinov,	&	Tenenbaum,	2015;	Lake,	Ullman,	
Tenenbaum,	&	Gershman,	2017;	Marcus,	2018).	In	their	defense,	neural	network	
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model	 studies	 (Christiansen	 &	 Curtin,	 1999;	 Christiansen,	 Conway,	 &	 Curtin,	
2000;	 Seidenberg	 &	 Elman,	 1999;	 Sirois	 et	 al.,	 2000)	 argue	 that	 even	 earlier	
models	of	simple	recurrent	networks	were	able	to	replicate	the	generalization	
behavior	 from	Marcus	 el	 al’s	 study	 (1999).	 The	 same	 was	 argued	 regarding	
abstract	recurrent	networks,	which	have	a	built-in	short-memory	and	an	identity	
detector	as	a	prior	mechanism	(Dominey	&	Ramus,	2000).	More	advanced	deep	
learning	 neural	 networks	 (e.g.	 convolutional	 neural	 networks	 –	 LeCun,	 1989;	
LeCun,	Bengio,	&	Hinton,	2015)	are	built	on	a	simplicity	principle,	such	that	prior	
built-in	knowledge	is	purposefully	minimized	in	order	to	create	simple	models	
of	the	data.	This	is	achieved	by	constraining	the	bits	of	information	represented	
by	 the	 synaptic	 weights,	 which	 in	 turn	 leads	 to	 better	 generalization	 ability	
(LeCun,	Denker,	&	Solla,	1989;	MacKay,	2003).	Thus,	we	think	that	the	latest	deep	
learning	 neural	 networks	 harness	 the	 strengths	 of	 a	 property	 that	mirrors	 a	
similar	design	feature	of	the	biological	memory	system:	preventing	overfitting	to	
past	data	enables	better	generalization	(Moscovitch,	Cabeza,	Winocur,	&	Nadel,	
2016;	Richards	&	Frankland,	2017).	
	 In	 light	 of	 the	 findings	 of	 the	 present	 study	 (and	 of	 Radulescu	 et	 al.,	
2019),	 we	 challenge	 the	 proposal	 that	 our	mind	 is	 innately	 endowed	with	 a	
symbol-manipulation	mechanism	(Marcus,	2001):	why	is	it	that	the	use	of	such	
a	mechanism	depends	on	other	factors,	namely,	the	input	entropy	and	certain	
cognitive	capacities?	As	shown	in	previous	studies	discussed	in	the	Introduction	
of	this	article,	and	as	per	the	findings	of	this	study,	learners	do	not	employ	the	
abstract	rule	mechanism	unless	the	input	entropy	reaches	a	certain	threshold	or	
unless	 the	 learner’s	 incidental	 memorization	 and	 domain-general	 pattern	
recognition	have	a	certain	capacity.	Theoretically,	it	might	be	the	case	that	only	
under	certain	conditions	will	the	abstract	mechanism	be	triggered,	that	is	only	
when	necessary	 for	efficiency	purposes	(i.e.	extracting	abstract	rules	requires	
usage	of	extra	resources,	such	that	it	is	triggered	only	when	extracting	rules	is	
computationally	 more	 efficient	 than	 memorizing	 all	 the	 items	 and	 their	
statistical	 regularities).	 Nevertheless,	 the	 findings	 of	 a	 gradual	 tendency	 to	
generalize	as	a	function	of	increasing	input	entropy	(as	shown	in	this	study	and	
in	Radulescu	et	al.,	2019)	would	be	quite	difficult	 to	account	 for	by	a	built-in	
symbol-manipulation	mechanism	theory,	and	they	challenge	the	plausibility	of	
multiple	mechanisms	coexisting.	
	 Assuming	 the	 other	 argument	 –	 the	 temporally	 distinct	 mechanisms	
argument	–	Endress	and	Bonatti	(2007)	proposed	a	More-than-One-Mechanism	
hypothesis	to	account	for	what	they	claimed	to	be	two	different	types	of	learning	
mechanisms,	namely,	a	statistically-driven	mechanism	that	accounts	for	learning	
co-occurrences	(by	computing	transitional	probabilities)	between	specific	items	
in	 the	 input,	 and	 another	 mechanism	 capable	 of	 extracting	 structural	
regularities,	like	classes	of	words	and	rules.	Their	hypothesis	assumes	that	the	
structure-extracting	mechanism	outputs	the	structural	information	faster	than	
the	 statistical	 mechanism,	 which	 needs	 time	 (i.e.	 exposure	 to	 repeated	
exemplars)	in	order	to	strengthen	the	memory	traces	of	the	specific	items.		
	 Thus,	they	suggest	speed	of	representation	formation	to	be	a	test	for	the	
type	of	mechanism,	and	they	claim	that	learning	classes	of	items	(i.e.	category-
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based	 generalization,	 in	 our	 terminology)	 and	 learning	 associations	 between	
items	 (i.e.	 item-bound	 generalization,	 in	 our	 terminology)	 are	 different	
mechanisms	 specifically	 because	 they	 are	 temporally	 distinct	 processes.	
Specifically,	Endress	and	Bonatti	(2007)	exposed	adults	to	streams	of	nine	three-
syllable	AiXCi	words	that	followed	a	non-adjacent	dependency	pattern,	where	Ai	
always	paired	with	Ci.	They	 found	participants’	 tendency	 to	make	class-based	
generalization	decreased	linearly	with	longer	exposure	(i.e.	tendency	to	accept	
AiX’Cj	class-words,	where	any	A	syllable	could	be	paired	with	any	C	syllable,	not	
a	strict	item-based	relation	between	a	particular	Ai	syllable	and	a	particular	Ci	
syllable;	the	middle	syllable	X’	had	never	occurred	in	the	middle	position	in	the	
familiarization,	 but	was	 one	 of	 the	A	or	C	 familiarization	 syllables).	 Based	on	
these	 results,	 the	 authors	 conclude	 that	 learners	 possess	 two	 qualitatively	
different	 mechanisms:	 statistical	 mechanisms	 for	 computing	 statistical	
regularities	 (e.g.	 transitional	 probabilities	 in	 speech	 segmentation)	 and	
generalization	 mechanisms,	 which	 are	 responsible	 for	 grammatical	
generalizations	 (Endress	 &	 Bonatti,	 2007;	 2016).	 The	 temporally	 distinct	
mechanisms	argument	(Endress	&	Bonatti,	2007;	2016;	Peña	et	al.,	2002)	was	
subsequently	challenged	by	Frost	&	Monaghan	(2016),	who	showed	that	speech	
segmentation	 and	 generalization	 of	 non-adjacencies	 from	 continuous	 speech	
occur	 simultaneously,	 and	 thus	 they	 proposed	 a	 single	 statistical	 learning	
mechanism	 to	 account	 for	 both	 processes	 in	 the	 absence	 of	 evidence	 to	 the	
contrary.		
	 In	any	case,	we	think	that	in	principle	a	temporal	distinction	argument	
does	not	necessarily	hold	to	support	a	multiple-mechanism	hypothesis,	because	
what	 researchers	 conceptualize	 as	 two	 qualitatively	 different	 types	 of	
generalization	might	be	outcomes	of	a	single	phased	mechanism,	under	different	
conditions	(Radulescu	et	al.,	2019).	Just	like	physically	different	and	temporally	
successive	states	of	water	in	nature	as	iced	water,	liquid	water	and	evaporated	
water	do	not	imply	different	mechanisms	underlying	the	phase	transition,	in	this	
case	 heating	 is	 the	 single	 mechanism	 that	 underlies	 the	 time-dependent	
qualitative	change	in	state	(which	is	driven,	neither	accidentally	nor	randomly,	
by	increasing	entropy).	
	 Specifically	 about	 certain	 grammars,	 e.g.	 repetition-based	 grammars	
like	the	XXY	grammar	used	in	this	study	or	the	ABB	grammar	used	by	Marcus	et	
al.	 (1999),	 the	multiple-mechanism	 hypothesis	 takes	 yet	 another	 assumption	
into	 account.	 Endress	 and	 colleagues	 (Endress,	Dehaene-Lambertz,	&	Mehler,	
2007;	 Endress	 et	 al.,	 2009)	 challenge	 Marcus	 et	 al.’s	 (1999)	 proposal	 that	
repetition-based	 grammars	 are	 learned	 by	 extracting	 variables	 and	 relations	
between	them,	and	they	argue	that	in	order	to	learn	a	repetition-based	grammar	
of	the	ABB	type	a	low-level	perceptual	primitive,	a	“repetition	detector”,	would	
suffice.	Indeed	a	low-level	perceptual	identity	detector	(“repetition	detector”)	is	
in	place	from	birth	(Gervain,	Berent,	&	Werker,	2012;	Gervain	et	al.,	2008)	and	it	
might	aid	 learning	of	 repetition-based	grammars.	Such	a	perceptual	primitive	
would	 supposedly	 suffice	 to	 find	 identity	 of	 items	 in	 the	 input,	 regardless	 of	
familiar	or	new	stimuli:	just	as	le-le-di	can	be	recognized	by	a	repetition-detector	
primitive	as	an	instance	of	a	same-same-different	pattern	with	familiar	syllables,	
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the	new	ko-ko-ba	can	be	recognized	as	an	instance	of	the	same	pattern,	without	
the	need	for	abstract	variables	to	be	extracted.		
	 However,	if	learning	of	a	repetition-based	XXY	grammar	only	requires	a	
repetition	detector,	why	do	learners	in	low	entropy	conditions	do	not	apply	the	
repetition-detector	to	new	XXY	strings	(as	we	found	in	the	present	study	and	in	
Radulescu	et	 al.,	 2019)?	Also,	why	do	 learners	exposed	 to	a	 low	entropy	XXY	
grammar	do	not	equally	apply	the	same	repetition-detection	mechanism	to	both	
Familiar-syllable	YYX	strings	and	New-syllable	XXY	strings?	The	findings	of	the	
present	study	showed	that	in	the	low	entropy	condition	learners	show	higher	
tendency	to	accept	Familiar-syllable	YYX	strings	than	they	do	with	New-syllable	
XXY	 strings,	 although	 both	 types	 of	 strings	 display	 the	 same-same-different	
pattern	immediately	recognizable	by	a	repetition-detector.		
	 Based	on	our	findings,	it	seems	plausible	to	conclude	that	learners	of	an	
XXY	grammar	not	only	apply	a	perceptual	identity	primitive	on	the	surface	item-
specific	features.	Rather,	they	encode	the	actual	items	themselves	(as	hinted	at	
by	Aslin	&	Newport	(2014))	and	they	keep	track	(in	the	working	memory)	of	the	
familiar	items	(experienced	syllables	in	the	familiarization).	Depending	on	the	
entropy	 of	 the	 set	 of	 items	 tracked,	 they	 either	 encode	 relations	 (rules)	 only	
between	 familiar	 syllables	 (that	 is	 item-bound	 generalization,	 in	 our	
terminology),	or	they	generalize	these	rules	also	to	novel	syllables,	under	higher	
input	 entropy	 (category-based	 generalization).	 Moreover,	 learners	 not	 only	
retain	 an	 identity	 pattern	 based	 on	 item-specific	 positional	 information	
(according	to	the	probability	distribution	of	the	items	in	the	input),	that	is	only	
those	 specific	 items	 that	 replicate	 themselves	 in	 the	 input	 can	 be	 duplicated.	
Learners	infer	a	self-duplication	rule	in	the	first	positions	of	the	triplets	also	for	
those	 items	 that	 do	 not	 show	 a	 reduplication	 pattern	 in	 the	 input.	 This	
acceptance	shows	they	encoded	the	input	by	item-bound	generalization,	that	is	a	
same-same-different	 generalization,	 but	 only	 with	 the	 familiar	 items,	 not	
generalized	to	novel	items.	When	the	input	entropy	is	higher	though,	 learners	
not	 only	detect	 the	 same-same-different	pattern	between	 experienced	 stimuli,	
but	show	also	a	higher	tendency	then	in	the	low	entropy	to	generalize	the	rule	to	
novel	items,	showing	thus	category-based	generalization.	
	
7.	Conclusion	
	
In	this	study	we	further	examined	the	effect	of	input	entropy	on	rule	induction	as	
hypothesized	 by	 our	 information-theoretic	 entropy	 model	 (Radulescu	 et	 al.,	
2019).	According	to	our	model,	an	input	entropy	that	is	lower	than	the	available	
channel	capacity	facilitates	high-specificity	 item-bound	generalizations,	while	a	
higher	 input	 entropy	 than	 the	 channel	 capacity	drives	 a	gradual	 transition	 to	
high-generality	 category-based	 generalization.	 While	 our	 previous	 results	
showed	 the	 gradual	 transition	 towards	 category-based	 generalization	 as	 a	
function	of	 increasing	 input	 entropy	 (Radulescu	 et	 al.,	 2019),	 here	we	 further	
investigated	 and	 better	 specified	 the	 type	 of	 generalization	 that	 low	 entropy	
facilitates.	To	this	end,	we	further	probed	the	kind	of	regularities	that	learners	
infer	under	low	input	entropy	as	compared	to	medium	entropy.		
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	 Specifically,	we	exposed	adults	to	the	lowest	and	the	medium	entropy	
versions	of	the	3-syllable	XXY	grammar	from	Radulescu	et	al.	(2019).	We	asked	
whether	low	input	entropy	indeed	facilitates	item-bound	generalization,	not	only	
mere	memorization	of	the	familiarized	strings	and	the	statistical	regularities	in	
the	input.	We	also	asked	whether	an	increase	up	to	a	medium	entropy	drives	a	
higher	 tendency	 towards	 category-based	 generalization.	 To	 address	 the	 first	
question,	we	exposed	adults	to	3-syllable	XXY	strings	(e.g.	daː-daː-li),	and	asked	
them	for	grammaticality	judgements	on	YYX	strings	with	familiar	syllables	(i.e.	
strings	with	 a	 same-same-different	 structure	with	 familiar,	 but	 switched	 over	
syllables	 –	 e.g.	 li-li-daː).	 To	 address	 the	 second	 question,	 we	 asked	 for	
grammaticality	 judgements	 on	 XXY	 strings	with	 new	 syllables,	 that	 is	 strings	
with	a	same-same-different	structure,	but	with	syllables	that	never	occurred	in	
the	familiarization.		
	 We	hypothesized	that,	if	learners	accept	familiar-syllable	YYX	strings,	it	
means	 they	 encoded	 the	 input	 as	 item-bound	 generalizations,	 while	 a	 higher	
tendency	towards	accepting	new-syllable	XXY	strings	also,	besides	the	familiar-
syllable	YYX	strings,	shows	they	moved	towards	category-based	generalization.	
Indeed,	as	expected,	 the	results	 showed	a	high	acceptance	of	 familiar-syllable	
YYX	 strings	 both	 in	 the	 low	 entropy	 condition	 and	 in	 the	 medium	 entropy	
condition.	 However,	 in	 the	 medium	 entropy	 condition	 there	 was	 a	 higher	
acceptance	rate	of	the	new-syllable	XXY	strings	as	compared	to	the	low	entropy	
condition.	Taken	together,	these	results	bring	further	evidence	in	favor	of	our	
entropy	model,	 which	 hypothesizes	 that	 low	 entropy	 indeed	 facilitates	 item-
bound	 generalization,	 not	 only	 rote	 memorization	 of	 the	 items	 and	 of	 their	
statistical	regularities	present	in	the	input	(e.g.	transitional	probabilities),	while	
an	increase	in	input	entropy	drives	the	transition	from	item-bound	to	category-
based	 generalization.	 In	 terms	 of	 cognitive	 capacities	 underlying	 channel	
capacity,	we	found	evidence	that,	generally,	learners	with	a	high	domain-general	
pattern-recognition	capacity	and	a	low	incidental	memorization	capacity	have	a	
higher	 tendency	 to	 move	 from	 item-bound	 to	 category-based	 generalization	
compared	to	 learners	with	a	 low	domain-general	pattern-recognition	capacity	
and	a	high	incidental	memorization	capacity.	
	 Given	 the	 hypothesis	 of	 a	 gradual	 transition	 from	 item-bound	 to	
category-based	 generalization	made	 by	 our	 entropy	model,	 supported	 by	 our	
previous	 findings	 (Radulescu	 et	 al.,	 2019)	 and	 the	 findings	 of	 this	 study,	 one	
might	ask	about	the	nature	of	representations	as	a	continuum	from	item-bound	
to	 category-based	 generalization.	 More	 specifically,	 how	 could	 the	
representations	be	envisaged	as	graded	on	the	continuum	from	 item-bound	to	
category-based	 generalization?	 Previous	 studies	 that	 proposed	 a	 gradient	 of	
generalization	 (Aslin	 &	Newport,	 2012;	 2014)	 left	 this	 question	 unanswered,	
mainly	because	their	proposal,	although	dubbed	gradient	of	generalization,	only	
focused	on	two	categorical	outcomes:	learners	either	restrict	generalization	or	
they	generalize,	depending	on	the	consistency	of	distributional	contexts	for	the	
items	in	the	input.		Unlike	previous	proposals,	we	conceptualize	the	two	flavors	
of	 rule	 induction	 –	 item-bound	 and	 category-based	 generalization	 –	 as	 two	
qualitatively	different	outcomes	of	a	gradual	encoding	mechanism,	however	we	
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do	not	think	that	there	is	a	dichotomy	clearly	represented	with	a	clear	shift	from	
one	to	another.		
	 As	we	showed	 in	Radulescu	et	al.	 (2019)	and	 further	extended	 in	 the	
current	study,	learners	gradually	accept	the	grammatical	strings	as	a	function	of	
increasing	 input	 entropy,	 moving	 from	 acceptance	 of	 the	 same-same-different	
structure	with	familiar	syllables	only,	but	not	with	new	syllables,	 to	gradually	
higher	acceptance	of	 this	structure	both	with	 familiar	and	new	syllables.	This	
behavioral	tendency	could	be	interpreted	in	at	least	two	ways:	either	it	reflects	
learners’	gradually	increasing	levels	of	confidence	in	their	hypothesis	about	the	
structure	 of	 the	 input,	 or	 it	 might	 reflect	 a	 sort	 of	 a	 dynamic	 and	 fuzzy	
representation	of	the	input	structure,	which	is	updated	gradually	–	bit	by	bit	–	as	
the	 learner’s	 environment	 becomes	 increasingly	 entropic.	 Although	 from	 the	
kind	of	evidence	we	bring	in	the	current	study	and	in	Radulescu	et	al.	(2019),	it	
is	 not	 possible	 to	 establish	 with	 certainty	 which	 interpretation	 fits	 the	 data	
better,	 we	 suggest	 that	 it	 might	 not	 be	 needed	 to	 choose	 between	 the	 two.	
Specifically,	 the	 latter	 interpretation	 reflects	 the	nature	of	 rule	 induction	as	a	
gradual	encoding	which	moves	on	the	continuum	from	specificity	to	generality	
depending	on	the	input	entropy	and	the	available	rate	of	information	encoding	
(i.e.	bits/second	–	channel	capacity).	As	a	natural	result	of	the	fuzzy	nature	of	the	
representation	on	the	specificity-to-generality	continuum,	learner’s	confidence	
in	their	hypothesis	about	the	input	structure	gradually	changes,	as	well.	
	 Another	question	which	logically	follows	from	the	previous	one	would	
be:	 what	 exactly	 is	 the	 mechanism	 that	 drives	 the	 dynamics	 of	 this	 fuzzy	
representation?	 In	other	words,	what	 is	 the	 exact	gradual	mechanism	of	 rule	
induction	 under	 conditions	 of	 increasing	 input	 entropy	 and	 our	 cognitive	
capacities?	While	unraveling	the	sophisticated	mechanism	of	rule	induction	is	no	
trivial	question	and	it	will	need	a	lot	more	further	research,	our	entropy	model	
supported	 by	 the	 findings	 of	 the	 current	 study	 and	 our	 previous	 findings	
(Radulescu	et	al.,	2019)	allow	for	the	following	informed	general	hypothesis	to	
be	formulated	about	the	mechanics	and	the	nature	of	this	gradual	mechanism.	
Firstly,	if	the	input	entropy	is	low,	memorization	of	the	specific	items	and	their	
probability	distribution	allows	for	the	input	to	be	encoded	by	memorization	and	
probability	matching	to	the	input.	Not	only	can	the	specific	items	and	chunks	of	
items	 be	memorized	 and	 encoded	 as	 per	 their	 probability	 distribution	 in	 the	
input,	 but	 the	 low	 input	 entropy	 allows	 for	 item-bound	 generalization	 as	 an	
encoding	method,	as	we	have	shown	in	this	study.	An	increase	in	input	entropy	
places	a	challenge	on	the	(incidental)	memorization	of	the	exact	items	and	their	
surface	statistical	regularities	(i.e.	probability	distribution),	so	that	the	finite	rate	
of	information	encoding	(entropy	per	second)	increases	towards	its	maximum.	
The	 higher	 the	 individual	 incidental	 memorization	 capacity,	 the	 more	 input	
entropy	can	be	encoded	until	the	finite	channel	capacity	is	reached.		At	this	point,	
since	 the	 channel	 capacity	 cannot	 be	 exceeded,	 a	 change	 in	 the	 encoding	
mechanism	is	required	in	order	to	enable	more	input	entropy	to	be	encoded,	but	
avoiding	 exceeding	 the	 channel	 capacity.	 Thus,	 the	 domain-general	 pattern	
recognition	capacity	 (a	 component	of	 the	working	memory)	 re-structures	 the	
information	and	groups	items	into	categories	in	order	to	reduce	the	number	of	
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bits	that	each	item	is	coded	for,	thus	compressing	the	information	and	encoding	
it	 as	 category-based	 generalization.	The	better	 this	 individual	 domain-general	
pattern	 recognition	 capacity	 is,	 the	 sooner	 in	 the	 process	 it	 can	 begin	 to	 re-
structure	and	compress	the	information.	
	 In	conclusion,	we	suggest	that	at	the	computational	level	(in	the	sense	
of	Marr,	1982),	there	is	one	single	mechanism	–	processing	and	encoding	input	
entropy	by	a	finite	time-dependent	entropy	processor.	However,	it	is	conceivable	
that,	 at	 the	 algorithmic	 and	 implementational	 levels,	 different	 cognitive	
representations	and	capacities,	and	different	brain	areas	take	over	the	details	of	
processing	and	encoding	the	bits	of	information,	which	needs	further	research	
to	 pinpoint.	 Thus,	 while	 we	 agree	 with	 Marcus	 and	 colleagues	 (1999,	 2001,	
2012)	that	the	mind	shows	a	symbol-manipulation	ability	to	represent	abstract	
relationships	 between	 variables,	 and	 to	 distinguish	 between	 mental	
representations	of	types	and	tokens	(Marcus,	2001),	we	think	though	that	this	
might	 rather	 be	 a	mechanistic	 description	 of	 the	 outcomes	 of	 the	 underlying	
encoding	mechanism.		
	 Furthermore,	as	we	mentioned	in	the	description	of	our	entropy	model,	
sensitivity	 to	 entropy	 entails	 sensitivity	 to	 similarities	 and	differences,	which	
means	 that	 our	model	 assumes	 certain	 perceptual	 primitives	 to	 be	 available,	
though	not	sufficient,	for	rule	induction,	and	possibly	innate	(Endress	&	Bonatti,	
2007;	Endress	et	al.,	2009;	Marcus,	2001).	Moreover,	in	terms	of	a	biologically	
plausible	efficiency	principle,	while	it	can	be	envisaged	that	nature	endowed	the	
human	 species	with	multiple	 specialized	mechanisms	 (statistical	 learning	 for	
some	 learning	 tasks	 and	 an	 innate	 abstract	mechanism	 that	 is	 triggered	 only	
when	 computationally	 more	 efficient),	 we	 deem	 a	 single	 time-dependent	
entropy	 processing	 mechanism	 with	 different	 outcomes	 more	 efficient	 and	
plausible.	 This	 view	 is	 compatible	 with	 recent	 evidence	 from	 neurobiology,	
which	converge	on	the	hypothesis	that	depending	on	the	amount	of	particular	
events/data	 stored	 or	 forgotten,	 the	 memory	 system	 either	 creates	
representations	that	are	highly	specific	to	past	data	–	overfitted	models	–	or	the	
memory	transience	allows	for	storing	less	specific	past	data	for	the	purpose	of	
driving	 generalization	 to	 new	 and	 noisy	 environments	 (Frankland,	 Köhler,	 &	
Josselyn,	 2013;	Hardt,	 Nader,	 &	Wang,	 2013;	Migues	 et	 al.,	 2016;	 Richards	&	
Frankland,	 2017).	 Corroborating	 evidence	 from	 neural	 networks	 research	
(Hawkins,	 2004;	 Kumaran	 et	 al.,	 2016;	 MacKay,	 2003)	 converges	 on	 a	 very	
similar	view:	the	memory	system	(and	the	neural	networks	as	a	model)	is	not	
only	 designed	 for	 remembering	 specific	 data,	 but	 also	 for	 optimized	
generalization,	by	having	the	capacity	to	encode	a	finite	degree	of	specificity	or	
prior	 knowledge	 (i.e.	 entropy,	 in	 information-theoretic	 terms),	 in	 order	 to	
prevent	overfitting	to	past	data	for	the	purpose	of	allowing	for	flexibility	in	noisy	
environments.	
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Chapter	4	

	 	 	

Size	Does	Not	Matter.	Entropy	Drives	Rule	Induction	in	Non-
Adjacent	Dependency	Learning	

Radulescu,	S.	and	Grama,	I.20	
	
	
	
	
Abstract	
	
In	this	study,	we	examined	adults’	ability	to	detect	and	generalize	non-adjacent	
dependencies	in	an	aXb	grammar	under	different	input	entropy	conditions.	We	
further	 extend	 and	 test	 an	 information-theoretic	 entropy	 model	 for	 rule	
induction	that	we	proposed	in	Radulescu	et	al.	(2019).	Specifically,	our	entropy	
model	hypothesizes	that	an	increase	in	input	entropy	per	unit	of	time	gradually	
adds	 up	 to	 the	maximum	 rate	 of	 information	 encoding	 (bits/second),	 i.e.	 the	
finite	channel	capacity	of	the	learning	system,	and	causes	a	change	in	encoding	
method	in	order	to	avoid	exceeding	the	channel	capacity.	Thus,	in	this	study,	we	
give	an	extended	and	more	refined	information-theoretic	approach	to	a	previous	
variability	hypothesis	 that	suggested	a	high	number	of	middle	elements	(the	X	
elements	positioned	in	the	middle	of	the	aXb	strings)	is	crucial	to	non-adjacent	
dependency	learning	(Gómez,	2002),	by	showing	that	it	is	not	the	mere	set	size	
of	the	items	which	drives	rule	induction	in	non-adjacent	dependency	learning,	
but	it	is	a	particular	pattern	of	input	variability,	i.e.	input	entropy.	To	this	end,	we	
kept	the	set	size	constant,	and	we	varied	the	input	entropy	by	manipulating	the	
probability	 distribution	 of	 the	 items.	More	 precisely,	 since	 a	 large	 set	 size	 of	
intervening	Xs	was	deemed	to	be	a	crucial	 factor	 in	non-adjacent	dependency	
learning,	 we	 kept	 a	 relatively	 large	 set	 (18	Xs)	 and	 varied	 the	 combinatorial	
possibilities	with	three	ai_bi	frames,	so	that	we	obtained	three	different	entropy	
versions	 of	 an	 aiXbi	 grammar.	 We	 found	 that	 although	 the	 set	 size	 of	 the	
intervening	 Xs	 was	 equally	 large	 in	 all	 entropy	 conditions,	 participants	
successfully	 learned	 the	 non-adjacent	 dependencies	 and	 generalized	 them	 to	
novel	instances	better	in	the	highest	entropy	condition	than	in	the	medium	and	
low	entropy	conditions.	Moreover,	we	found	a	U-shape	pattern	of	non-adjacent	
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dependency	learning	as	a	function	of	increasing	input	entropy,	with	no	evidence	
of	learning	in	the	medium	entropy	condition,	consistent	with	previous	findings	
(Onnis	et	al.,	2003;	2004).	
	
1.	Introduction	
	
Non-adjacent	 dependencies	 are	 formally	 defined	 as	ai_bi	 frames	 consisting	 of	
frozen	 cooccurrences	 between	 specific	 a	 and	 b	 items	 (or	 words),	 which	 are	
generalizable	over	a	richer	intervening	category	of	X	elements	(or	words),	such	
that	aiXbi	 triplets	are	well-formed,	while	aiXbj	 (where	 i¹	 j)	are	 ill-formed	 	For	
example,	in	natural	languages,	such	non-adjacent	dependencies	are	deemed	to	
model	the	mechanism	needed	for	learners	to	acquire	rules	like	is	go-ing,	is	learn-
ing,	where	be	always	predicts	-ing	over	a	richer	intervening	category	of	verbs.	
	 Previous	 research	 has	 investigated	 the	 learning	 mechanism	 that	
supports	non-adjacent	dependency	learning	(Frost	&	Monaghan,	2016;	Gómez,	
2002;	Grama,	Kerkhoff,	&	Wijnen,	2016;	Newport	&	Aslin,	2004;	Peña,	Bonatti,	
Nespor,	&	Mehler,	2002;	Romberg	&	Saffran,	2013;	Pacton	&	Perruchet,	2008;	
Wang,	Zevin	&	Mintz,	2016;	2019),	and	proposed	several	factors	to	be	relevant	
both	 to	 learning	 the	 specific	 non-adjacencies	 in	 the	 input	 and	 to	 generalizing	
them	to	novel	examples	(Wilson	et	al.	(2020),	for	an	extensive	review).	Peña	et	
al.	(2002)	suggested	that	brief	pauses	are	necessary	to	mark	the	beginning	and	
the	end	of	the	dependencies,	as	in	“word	boundaries”,	in	order	for	learning	to	be	
successful,	while	 Endress,	Nespor	 and	Mehler	 (2009)	 proposed	 that	 the	 non-
adjacent	 a	 and	 b	 elements	 must	 be	 at	 the	 edge	 of	 the	 specific	 sequence	 for	
successful	learning.	Thus,	while	one	of	the	early	proposed	factors	was	the	role	of	
shorter	 within-word	 pauses	 (100–200ms)	 and	 longer	 between-word	 pauses	
(800ms)	that	would	signal	the	aiXbi	triplets	in	the	input	stream	(Gómez,	2002;	
Gómez	&	Maye,	2005;	Gómez,	Bootzin,	&	Nadel,	2006;	Romberg	&	Saffran,	2013),	
however,	more	 recent	 findings	 show	 that	 such	pauses	may	not	 be	necessary,	
since	 learners	were	 also	 able	 to	 learn	 the	non-adjacencies	 from	a	 continuous	
stream	 (Onnis,	 Monaghan,	 Christiansen,	 &	 Chater,	 2004;	 Frost	 &	 Monaghan,	
2016;	Wang	et	al.,	2016;	2019).		
	 Another	proposed	factor	was	the	effect	of	adjacent	dependencies,	in	that	
“weaker”	 adjacent	 (aX	 and	 Xb)	 probabilities	 point	 the	 learner	 towards	 the	
“stronger”	non-adjacent	dependencies,	thus	prompting	learning	of	specific	ai_bi	
frames	 over	 a	 high-variability	 intervening	X	 category:	 Gómez	 (2002)	 showed	
that	 learning	was	successful	only	when	 the	set	 size	of	 the	 intervening	Xs	was	
relatively	large	(i.e.	24	Xs),	but	not	when	the	set	size	was	2,	and	the	results	were	
inconclusive	 for	 set	 sizes	 of	 6	 and	 12.	 These	 findings	 led	 to	 a	 prominent	
variability	 hypothesis	 on	 learning	 of	 non-adjacencies	 (Gómez,	 2002;	 Gómez	&	
Maye,	 2005):	 a	 large	 set	 of	 Xs,	which	 renders	 low	 transitional	 probabilities	
between	 adjacent	 elements	 (aX	 and	 Xb),	 highlights	 the	 ai_bi	 frames	 as	 very	
predictable	 dependencies	 (i.e.	 higher	 non-adjacent	 transitional	 probabilities	
between	ai	and	bi)	which	facilitates	learning	of	the	specific	ai_bi	frames.	Thus,	the	
increased	 variability	 of	 the	 intervening	 X	 elements,	 which	 was	 quantified	 in	
terms	of	 the	size	of	 the	set	of	 specific	X	 items,	was	 interpreted	as	 the	driving	
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factor	to	render	adjacent	probabilities	unpredictable	such	that	learners	would	
disregard	 the	middle	 items	and	 their	attention	would	be	 steered	 towards	 the	
more	predictable	non-adjacent	dependencies.	Although,	crucially	only	a	critical	
mass	of	middle	elements	–	24,	not	6	or	12	–	i.e.	a	critical	amount	of	variability	
was	deemed	to	be	a	driving	factor.	
	 However,	more	recent	findings	challenge	this	account	as	well,	showing	
that,	 adjacent	 and	 non-adjacent	 dependencies	 do	 not	 need	 to	 compete	 for	
learner’s	attention,	and	they	can	be	learned	simultaneously	(Romberg	&	Saffran,	
2013)	 and,	 under	 specific	 conditions,	 learning	 of	 the	 non-adjacencies	 occurs	
even	with	a	small	set	size	of	the	intervening	X	elements	–	9	Xs	(Wang	et	al.,	2019)	
and	even	3	Xs	 (Frost	&	Monaghan,	2016;	Wang	et	 al.,	 2019).	Mostly,	 in	 these	
studies	learning	occurred	with	a	small	set	size	under	conditions	of	continuous	
speech	stream,	where	 learners	were	simultaneously	solving	 the	segmentation	
task	 and	 the	 non-adjacent	 dependency	 learning	 task.	 Nonetheless,	 in	 a	
systematic	attempt	to	further	investigate	and	specify	the	variability	hypothesis,	
Onnis	and	colleagues	found	evidence	for	an	interesting	U-shape	pattern	of	non-
adjacent	dependency	learning	as	a	function	of	increasing	variability	of	the	X-set	
size;	 in	 that	 robust	 learning	 of	 the	 non-adjacencies	 was	 found	 either	 under	
conditions	of	null	variability	(i.e.	one	 	 intervening	X	combined	with	three	ai_bi	
frames),	or	under	a	considerably	 larger	set	size	of	24	Xs	 (Onnis,	Christiansen,	
Chater,	&	Gómez,	2003,	Onnis	et	al.,	2004).	This	pattern	of	results	was	found	both	
for	detecting	non-adjacencies	in	the	exposure	language,	that	is	learners	exposed	
to	aiXbi	triplets	reject	aiXbj	triplets	as	ill-formed	(Onnis	et	al.,	2003),	and	also	for	
generalizing	them	to	novel	sequences,	i.e.	learners	exposed	to	aiXbi	triplets	reject	
aiXbj	triplets	as	ill-formed,	but	also	generalize	ai_bi	dependencies	to	novel		aiNbi	
triplets,	where	N	stands	for	new	middle	items	never	heard	in	the	familiarization	
(Onnis	et	al.,	2004).	
	 In	order	to	tease	apart	the	effect	of	the	set	size	of	the	intervening	Xs	from	
the	 effect	 of	 adjacent	 dependencies	 (claimed	 by	 Gómez,	 2002),	 	 Wang	 et	 al.	
(2019)	used	a	constant	set	size	of	intervening	Xs,	i.e.	9	words,	but	varied	the	way	
the	ai_bi	frames	combined	with	them,	such	that	in	one	condition	each	of	the	three	
the	ai_bi	frames	combined	restrictively	with	only	a	limited	set	of	3	Xs,	while	in	the	
other	condition	all	 the	 three	ai_bi	 frames	combined	exhaustively	with	all	9	Xs.	
Hence,	two	conditions	were	created:	in	the	Categorical	Condition,	learners	were	
exposed	to	3	ai_bi	*	3	Xs	–	9	different	triplets,	while	in	the	Distributed	Condition	
they	 listened	 to	 3	ai_bi	 *	 9	 Xs	 –	 27	 different	 triplets.	 As	 per	 the	 authors,	 this	
manipulation	holds	 set	 size	of	 intervening	Xs	constant	 (9),	while	 the	adjacent	
transitional	probabilities	were	higher	in	the	Categorical	Condition	(1/3	=	0.33),	
than	in	the	Distributed	Condition	(1/9	=	0.11).	In	the	test	phase,	learners	were	
exposed	to	aiNbi	strings,	with	new	middle	words	unheard	in	the	familiarization,	
in	 order	 to	 test	 the	 hypothesis	 that	 the	 knowledge	 about	 non-adjacencies	 is	
acquired	by	generalization	of	the	ai_bi	frames	over	a	category	of	middle	elements,	
rather	than	by	chunk-memorization	of	the	specific	triplets.	If	the	theory	that	low	
transitional	 probabilities	 between	 adjacent	 elements	 facilitate	 non-adjacent	
dependency	 learning	 (Gómez,	 2002)	 holds	 true,	 the	 Distributed	 Condition	
should	yield	better	learning	than	the	Categorical	Condition.	The	results	showed	
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learning	 in	 both	 conditions,	 but	 no	 difference	 between	 the	 conditions.	 The	
authors	 concluded	 that	while	 learners	 indeed	 generalized	 the	ai_bi	 frames	 to	
novel	sequences	in	both	conditions,	there	was	no	evidence	for	the	low	adjacent	
transition	probabilities	being	a	facilitating	factor	for	non-adjacent	dependency	
learning.	 However,	 the	 authors	 did	 not	 clearly	 specify	 what	 was	 in	 fact	 the	
driving	factor	for	non-adjacent	dependency	learning,	since	it	is	not	set	size	of	the	
intermediate	Xs	and	not	“weaker”	transitional	probabilities.	
	 In	any	case,	since	the	set	size	used	by	Wang	et	al.	(2019)	is	rather	small	
–	 9	Xs	 –	 one	might	 argue	 that	 a	 large	 set	 size	 of	 intervening	Xs	might	 not	 be	
necessary	for	non-adjacent	dependency	learning,	but	it	might	actually	help,	as	it	
was	the	case	in	Gómez	(2002)	and	in	the	studies	by	Onnis	and	colleagues	(Onnis	
et	al.,	2003;	Onnis	et	al.,	2004)	
	 Another	 important	 research	 question	 regarding	 learning	 non-
adjacencies	in	previous	research	was	whether	learners’	representations	in	such	
studies	 are	 actually	 chunk-like	 representations,	 i.e.	 aiXbi	 sequences	 of	 three	
words	memorized	 as	 a	 chunk	 (Christiansen	 &	 Arnon,	 2017),	 or	 the	 learning	
mechanism	 actually	 involves	 generalization	 of	 the	 fixed	ai_bi	 	 frames	 over	 an	
intervening	 X	 category.	 In	 the	 latter	 case,	 generalization	 over	 a	 category	 of	
intervening	items	means	that	learners	familiarized	to	aiXbi	sequences	would	also	
accept	as	grammatical	aiNbi	strings,	where	the	ai_bi	frames	are	generalized	over	
a	new	intervening	word	(N),	which	was	not	heard	in	the	familiarization.	Indeed,	
several	 studies	 have	 shown	 that	 learning	 non-adjacencies	 does	 not	 rely	 on	 a	
chunk-based	 memorization	 of	 the	 familiarization	 stimuli,	 but	 it	 involves	
generalization	 to	novel	 sequences,	 i.e.	aiNbi	strings	 (Frost	&	Monaghan,	2016;	
Grama	et	al.,	2016;	Wang	et	al.,	2019).	
	 In	this	article,	we	further	investigate	the	topic	of	generalization	in	non-
adjacent	 dependency	 learning	 together	with	 the	 effect	 of	 input	 variability	 on	
non-adjacent	 dependency	 learning,	 by	 going	 into	 a	 deeper	 theoretical	
understanding	of	the	mechanism	of	generalization	and	of	the	particular	pattern	
of	variability.	In	Radulescu,	Wijnen	and	Avrutin	(2019),	we	proposed	a	general	
information-theoretic	 model	 for	 rule	 induction	 (generalization)	 in	 order	 to	
investigate	 the	underlying	mechanism	and	 factors	 that	drive	both	 item-bound	
generalization	 and	 category-based	 generalization,	 and	 we	 applied	 it	 to	 a	
repetition-based	 XXY	 type	 of	 grammar	 (e.g.	 strings	 like	da_da_li).	 Item-bound	
generalization	 describes	 relations	 that	 repeatedly	 occur	 between	 specific	
physical	items,	i.e.	li	always	follows	da	and	da	is	always	repeated	in	a	sequence,	
while	category-based	generalization	is	an	operation	beyond	specific	items	which	
describes	relations	that	involve	categories	(variables),	e.g.	Y	always	follows	X,	or	
X	always	follows	da	(where	X	and	Y	are	categories	taking	different	several	values,	
and	da	is	one	specific	item).		These	qualitatively	different	types	of	generalization	
(dubbed	 in	 accord	 with	 previous	 suggestions	 –	 Gómez	 &	 Gerken,	 2000)	 had	
previously	been	proposed	to	reflect	two	different	types	of	learning	mechanisms,	
with	statistical	 learning	underlying	 item-bound	generalization,	while	a	higher-
order	 abstract	 learning	 mechanism	 being	 responsible	 for	 the	 more	 abstract	
category-based	learning	(Marcus	et	al.,	1999).	However,	in	accord	with	a	more	
recent	 single-mechanism	 hypothesis	 (Aslin	 &	 Newport,	 2012;	 2014;	 Frost	 &	
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Monaghan,	 2016),	 in	 Radulescu	 et	 al.	 (2019)	 we	 proposed	 that	 a	 single	
mechanism	drives	both	types	of	generalization,	as	a	result	of	a	very	particular	
interaction	between	two	factors:	the	statistical	properties	of	the	input,	i.e.	input	
entropy,	and	the	brain’s	sensitivity	and	finite	capacity	to	encode	the	entropy	in	
the	environment,	 i.e.	channel	capacity.	More	precisely,	Radulescu	et	al.	 (2019)	
proposed	 that	an	 increase	 in	 input	entropy	which	 is	higher	 than	 the	available	
channel	capacity	drives	the	tendency	to	move	from	a	high-specificity	item-bound	
generalization	 (i.e.,	 in	 this	 case,	 a	 same-same-different	 rule	 only	with	 familiar	
syllables)	 to	 a	more	 abstract	 category-based	 generalization	 (i.e.	 a	 same-same-
different	 rule	 with	 novel	 syllables	 as	 well).	 Indeed,	 Radulescu	 et	 al.	 (2019)	
exposed	adults	to	a	3-syllable	XXY	grammar	(e.g.	strings	like	da_da_li,	mu_mu_sa)	
in	 six	 experimental	 conditions	 with	 increasing	 input	 entropy,	 and	 found	 that	
adults’	tendency	to	move	from	an	item-bound	generalization	to	a	category-based	
generalization	increased	gradually	as	a	function	of	increasing	entropy.	
	 In	this	article,	we	further	extend	our	entropy	model	for	rule	induction	
from	a	repetition-based	XXY	grammar	(Radulescu	et	al.,	2019)	to	a	more	complex	
aiXbi	grammar,	where	specific	items	a	always	predict	specific	items	b	to	create	
frozen	ai_bi	 frames	 over	 a	 richer	 intervening	 category	 of	Xs.	We	 suggest	 that	
learning	 of	 such	 a	 complex	 type	 of	 grammar	 entails	 both	 item-bound	
generalization	 (the	 dependency	 between	 specific	 a	 and	 b	 elements),	 and	
category-based	 generalization	 (generalizing	 the	 specific	 ai_bi	 frames	 over	 the	
intervening	category	of	Xs).	According	to	our	model,	a	lower	input	entropy	allows	
for	 item-bound	 generalizations,	 while	 a	 higher	 input	 entropy	 than	 the	 finite	
channel	capacity	drives	category-based	generalization.	
	 Moreover,	another	goal	of	this	study	is	to	further	test	the	feasibility	of	
entropy	 as	 a	 quantitative	 measure	 of	 input	 variability.	 In	 our	 previous	
experiments	 (Radulescu	 et	 al.,	 2019)	 we	 used	 Shannon’s	 entropy	 formula	
(Shannon,	1948),	which	is	a	particular	function	between	the	number	of	items	and	
their	probability	distribution.	We	created	six	different	entropy	versions	of	the	
XXY	 grammar	 by	 increasing	 the	 number	 of	 items,	 but	 crucially	 keeping	 their	
probability	 distribution	 homogeneous.	 It	 might	 be	 argued	 that	 such	 a	
manipulation	relies	mostly	on	 the	 increased	set	 size	of	 the	 items,	and	 less	on	
their	probability	distribution	or	the	particular	relation	between	the	number	and	
the	probabilities	described	by	entropy.	Therefore,	here	we	manipulate	entropy	
in	 the	 opposite	way,	 namely,	we	 keep	 the	 set	 size	 constant,	 and	we	 vary	 the	
probability	distribution.	More	precisely,	since	a	large	set	size	of	intervening	Xs	
was	deemed	to	be	a	crucial	factor	in	non-adjacent	dependency	learning,	we	kept	
a	relatively	 large	set	 (18	Xs)	and	varied	 the	combinatorial	possibilities	with	a	
classical	number	of	three	ai_bi	frames,	in	order	to	obtain	three	different	entropy	
versions	 of	 an	 aiXbi	 grammar.	 We	 found	 that	 although	 the	 set	 size	 of	 the	
intervening	 Xs	 was	 constantly	 large	 (18)	 in	 all	 conditions,	 participants	
successfully	 learned	 the	 non-adjacent	 dependencies	 and	 generalized	 them	 to	
novel	instances	better	in	the	highest	entropy	condition	than	in	the	medium	and	
low	entropy	conditions.	Thus,	in	the	following	section	of	the	paper	we	elaborate	
on	our	entropy	model	and	we	 formulate	specific	hypotheses	 for	non-adjacent	
dependency	learning.	Next,	we	present	a	non-adjacent	dependency	experiment	
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in	which	we	varied	input	entropy	in	three	conditions,	in	order	to	test	the	specific	
hypothesis	made	by	our	entropy	model,	and	to	disentangle	the	effect	of	a	large	
set	size	from	the	effect	of	input	entropy	on	non-adjacent	dependencies.	Finally,	
we	conclude	the	study	with	the	discussion	and	conclusions	sections,	where	we	
compare	 our	 results	 with	 similar	 results	 from	 previous	 studies,	 in	 order	 to	
propose	a	unified	account	for	the	underlying	mechanism	and	factors	that	drive	
learning	and	generalization	of	non-adjacencies.	
	
2.	 An	 entropy	 model	 for	 rule	 induction	 in	 non-adjacent	 dependency	
grammars	
	
2.1	Brief	introduction	of	the	model	and	previous	findings	
	
In	Radulescu	et	al.	(2019),	we	proposed	an	entropy	model	which	hypothesizes	
that	rule	 induction	 is	driven	by	the	brain’s	sensitivity	 to	 input	entropy	and	 its	
finite	encoding	capacity,	i.e.	channel	capacity.	In	short	(and	simplifying	for	now),	
less	 input	 entropy	 facilitates	 detecting	 regularities	 between	 specific	 items,	 i.e.	
item-bound	generalization,	while	an	input	entropy	which	is	higher	than	the	finite	
channel	 capacity	 drives	 the	 tendency	 towards	 category-based	 generalization.	
Thus,	in	accord	with	the	single-mechanism	hypothesis	(Aslin	&	Newport,	2012;	
2014;	Frost	&	Monaghan,	2016),	the	main	tenet	of	our	entropy	model	is	that	item-
bound	and	category-based	generalizations	are	outcomes	of	 the	same	encoding	
mechanism,	as	a	reflection	of	the	dynamics	between	the	statistical	properties	of	
the	input,	input	entropy,	and	our	finite	encoding	capacity,	i.e.	channel	capacity.	
We	define	our	encoding	capacity	as	channel	capacity,	 in	 information-theoretic	
terms,	which	means	the	finite	rate	of	information	encoding	(entropy	per	unit	of	
time),	which	might	be	 supported	by	 certain	 cognitive	 capacities,	 e.g.	memory	
capacity,	in	psychological	terms.	
	 Taking	a	step	further	from	other	studies	that	looked	into	generalization	
by	using	similar	entropy	measures	(Ferdinand,	2015;	Ferdinand,	Kirby,	&	Smith,	
2019;	Perfors,	2012;	Perfors,	2016;	Saldana,	Smith,	Kirby,	&	Culbertson,	2017;	
Samara,	Smith,	Brown,	and	Wonnacott,	2017),	in	Radulescu	et	al.	(2019)	and	in	
this	 study	 we	 propose	 an	 information-theoretic	 model	 that	 captures	 the	
dynamics	of	the	interaction	between	the	input	entropy	and	the	relevant	encoding	
capacity	 (i.e.	 channel	 capacity).	 Inspired	 by	 Shannon’s	 entropy	 and	 noisy-
channel	 coding	 theory	 (Shannon,	 1948),	 this	 model	 specifies	 a	 quantitative	
measure	for	the	 likelihood	of	moving	away	from	encoding	specific	probability	
distributions	of	 items	to	forming	more	abstract	general	representations.	More	
precisely,	our	model	hypothesizes	that	a	bit	by	bit	increase	in	input	entropy	per	
unit	 of	 time	gradually	 adds	up	 to	 the	maximum	rate	of	 information	encoding	
(bits/second),	i.e.	the	finite	channel	capacity	of	the	learning	system.	According	to	
Shannon’s	noisy-channel	coding	theory,	in	a	communication	system,	a	message	
(information)	is	transmitted	reliably	(that	is	with	the	least	loss	of	information	to	
the	receiver),	if	and	only	if	it	is	encoded	by	using	an	encoding	method	which	is	
efficient	 enough	 to	 keep	 the	 rate	 of	 information	 transmission	 (including	 the	
inevitable	noise)	below	the	channel	capacity.	 	Since	the	finite	channel	capacity	
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acts	as	an	upper	bound	on	the	input	entropy	which	can	be	encoded	per	unit	of	
time,	 if	 the	 input	entropy	 is	higher	 than	 the	channel	capacity	and	as	such	 the	
message	cannot	be	transmitted	reliably	using	the	current	encoding	method,	the	
need	for	another	more	efficient	encoding	method	is	created.	Thus,	it	follows	that	
an	 increase	 in	 input	entropy	which	 is	higher	 than	 the	channel	capacity	should	
drive	the	need	for	another	more	efficient	encoding	method.	Based	on	this	theory,	
our	entropy	model	hypothesizes	that	an	increase	in	 input	entropy	renders	the	
encoding	method	 inefficient	 (that	 is	 creating	high	uncertainty	when	receiving	
the	 message),	 and	 drives	 the	 transition	 from	 item-bound	 generalization	 to	
category-based	generalization.	
	 In	Radulescu	et	al.	(2019),	we	found	that	increasing	the	 input	entropy	
gradually	in	six	experimental	conditions	(i.e.	from	2.8,	3.5,	4,	4.2,	4.58,	to	4.8	bits),	
drives	 a	 gradual	 tendency	 to	 move	 from	 item-bound	 to	 category-based	
generalization	in	an	XXY	grammar	(Radulescu	et	al.,	2019).	Learning	this	type	of	
XXY	grammar	involves	abstracting	away	from	specific	items,	that	is	from	a	same-
same-different	rule	with	specific	syllables	occurring	in	the	X	and	Y	slots	(i.e.	item-
bound	generalization),	and	moving	to	a	category-based	generalization,	that	is	a	
same-same-different	rule	between	the	X	and	Y	categories,	regardless	of	specific	
items	included	in	these	categories.	More	specifically,	successful	generalization	
involves	being	 familiarized	with	a	particular	 set	of	3-syllable	XXY	strings,	 e.g.	
da_da_li,	and	accepting	XXY	strings	with	completely	novel	syllables,	which	were	
not	present	in	the	familiarization,	e.g.	ba_ba_gu.	
	
2.2	 Predictions	 of	 the	 entropy	 model	 for	 non-adjacent	 dependency	
learning	
	
While	in	Radulescu	et	al.	(2019)	we	probed	the	effect	of	 input	entropy	on	rule	
induction	in	a	3-syllable	XXY	grammar,	in	this	study	we	further	develop	and	test	
the	model	by	probing	the	effect	of	the	input	entropy	on	rule	induction	in	a	more	
complex	aXb	grammar.	This	type	of	grammar	poses	a	challenge	in	that	successful	
learners	 of	 this	 type	 of	aXb	grammar	 abstract	 away	 from	 an	 item-bound	 to	 a	
category-based	generalization	for	the	intervening	X	category	(Frost	&	Monaghan,	
2016;	Grama	et	al.,	2016;	Wang	et	al.,	2019),	while,	crucially,	sticking	to	an	item-
bound	generalization	 for	 the	 specific	a_b	dependencies.	 It	 can	be	 argued	 that,	
while	high	input	entropy	drives	category-based	generalization	for	the	X	category,	
it	might	impede	item-bound	generalization	for	the	specific	a_b	dependencies	of	
such	an	aXb	grammar.	Therefore	we	hypothesize,	 that	 the	effect	of	 increasing	
entropy	on	learning	this	type	of	grammar	is	not	a	gradually	better	performance	
as	we	found	for	an	XXY	grammar	(Radulescu	et	al.,	2019),	but	there	might	be	a	
particular	(critical)	amount	of	input	entropy,	that	is	a	lower	and	an	upper	bound	
on	 the	 input	 entropy	 (which	 we	 hypothesize	 is	 determined	 by	 the	 channel	
capacity),	such	that	an	interaction	between	input	entropy	and	channel	capacity	
facilitates	detection	of	the	specific	a_b	dependencies	and	generalizing	them	over	
the	category	of	intervening	Xs.	
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	 More	specifically,	here	are	the	main	hypotheses	of	our	entropy	model,	
as	we	stated	them	generally	 in	Radulescu	et	al.	 (2019),	 to	which	we	add	here	
more	specifications	relevant	for	non-adjacent	dependency	learning:	
	 1.	Lower	input	entropy	than	the	channel	capacity	facilitates	encoding	
the	information	by	a	method	which	matches	the	probability	distribution	of	the	
specific	items.	Thus,	if	the	input	entropy	is	lower	than	the	channel	capacity,	the	
information	 about	 specific	 items	 and	 their	 configuration	 (i.e.	 entropy	 of	 the	
input)	can	be	reliably	transmitted	through	the	channel	(i.e.	with	the	least	loss	of	
information	 at	 receiver’s	 end)	 at	 the	 available	 channel	 capacity	 (i.e.	 the	
maximum	 rate	 of	 information	 encoding),	 and	 encoded	 by	 item-bound	
generalization.	 This	 hypothesis	 predicts	 that	 in	 the	 case	 of	 non-adjacent	
dependencies,	a	low	input	entropy	allows	for	specific	relations	between	a	and	b	
elements	to	be	readily	detected	and	encoded	by	matching	their	configuration.	
That	means	the	exact	ai_bi	frames	can	be	detected	and	encoded	by	item-bound	
generalization,	i.e.	specific	a	items	(ai,	aj)	always	pair	with	specific	b	items	(bi,	bj).	
	 2.	Higher	input	entropy	than	the	channel	capacity	drives	a	change	in	
the	 encoding	 method,	 such	 that	 the	 information	 can	 be	 reliably	 transmitted	
through	the	channel	at	the	available	channel	capacity.	This	hypothesis	is	based	
on	the	noisy-channel	coding	theory	(Shannon,	1948),	according	to	which,	if	the	
input	 entropy	 is	 higher	 than	 the	 channel	 capacity,	 another	 more	 efficient	
encoding	method	can	be	found,	but	the	rate	of	transmission	(input	entropy	per	
second)	cannot	exceed	the	channel	capacity.	Thus,	based	on	these	concepts,	if	the	
input	entropy	increases,	the	item-bound	generalization	becomes	inefficient	and	
prone	 to	errors	 (i.e.	 causes	high	 loss	of	 information)	due	 to	 the	upper	bound	
placed	by	 the	channel	 capacity,	which	cannot	be	exceeded.	As	a	 consequence,	
another	more	efficient	encoding	method	needs	 to	be	 found,	 in	order	 to	avoid	
exceeding	the	channel	capacity,	which	would	cause	great	loss	of	information.	As	
we	argued	in	Radulescu	et	al.	(2019),	it	 is	this	essential	feature	of	the	channel	
capacity	which	precipitates	restructuring	of	the	information,	such	that	the	item-
specific	 features	 and	 their	 configuration	 are	 (unconsciously)	 reobserved	 by	
identifying	similarities/differences	in	order	to	compress	the	message	by	a	more	
efficient	encoding	method.	As	a	result,	 insignificant	differences	between	items	
(i.e.	specific	 low-probability	 features)	are	erased	or	“forgotten”,	which	 in	turn	
flashes	out	non-specific	shared	features	between	items	and	facilitates	grouping	
them	in	categories	based	on	these	shared	features	(Radulescu	et	al.,	2019).	This	
hypothesis	predicts	 that	 in	 the	 case	of	non-adjacent	dependencies,	high	 input	
entropy	 drives	 restructuring	 of	 the	 information	 and	 shapes	 item-bound	
generalization	into	category-based	generalization,	such	that	the	intervening	rich	
set	of	Xs	is	encoded	as	a	category,	and	the	ai_bi	frames	can	be	generalized	over	
the	intervening	X	category.	Fast	and	reliable	(i.e.	with	least	loss	of	information)	
encoding	of	 the	 intervening	elements	as	a	category	X,	 that	 is	as	a	compressed	
message	which	reduces	the	amount	of	bits/s	needed	to	encode	the	intervening	
elements,	provides	enough	capacity	(i.e.	channel	capacity	in	bits/s)	to	encode	the	
ai_bi	frames	reliably	as	item-bound	generalizations.	
	 3.	 Since	 our	 entropy	 model	 predicts	 a	 gradual	 transition	 from	 item-
bound	to	category-based	generalization,	as	a	function	of	increasing	input	entropy,	
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medium	entropy	creates	an	environment	which	does	not	facilitate	item-bound	
generalization,	 thus	 there	 is	high	uncertainty	due	to	 loss	of	 information	when	
encoding	specific	items	and	their	configuration.	Also,	medium	entropy	is	not	high	
enough	to	drive	category-based	generalization,	such	that	category	formation	is	
also	incomplete	and	creates	uncertainty.	In	Radulescu	et	al.	(2019)	we	argued	
and	 showed	 that	 a	 medium	 entropy	 environment,	 where	 none	 of	 the	 two	
encoding	methods	is	strongly	developed,	i.e.	not	highly	efficient	at	encoding	the	
input,	will	result	in	the	most	uncertain	situation	for	the	learners,	creating	thus	
an	overall	drop	in	the	learning	curve.	Thus,	also	in	the	case	of	an	aXb	grammar,	
which	requires	both	item-bound	and	category-based	generalization,	we	expect	a	
medium	entropy	environment	 to	create	 the	most	uncertain	situation,	because	
item-bound	generalization	would	be	 too	weak	 to	clearly	highlight	mismatches	
between	the	specific	ai	and	bi	items,	and	category-based	generalization	is	not	fully	
developed	to	facilitate	category	formation	of	the	intervening	Xs.	Thus,	we	expect	
a	 drop	 in	 performance	 in	 medium	 entropy,	 compared	 to	 the	 high	 entropy	
environment,	since	medium	entropy	is	not	high	enough	to	drive	category-based	
generalization,	but	it	is	high	enough	to	interfere	with	item-bound	generalization.	
	 This	 prediction	 was	 borne	 out	 in	 the	medium	 entropy	 conditions	 of	
Radulescu	et	al.	(2019),	where	we	found	a	moderate	tendency	towards	category-
based	generalization,	that	is	to	generalize	the	same-same-different	rule	to	novel	
XXY	strings	with	unfamiliar	syllables.	We	also	found	a	U-shape	pattern	of	results	
for	 the	 Familiar-syllable	 X1X2Y	 test	 items	 as	 a	 function	 of	 increasing	 input	
entropy	(Radulescu	et	al.,	2019):	more	explicitly,	successful	correct	rejection	of	
the	 Familiar-syllable	 X1X2Y	 test	 items	 was	 supported	 either	 by	 a	 strongly	
developed	 item-bound	 generalization	 in	 low	 entropy	 conditions,	 which	
highlights	mismatches	with	the	same-same-different	rule	with	familiar	syllables,	
or	 by	 a	 strongly	 developed	 category-based	 generalization	 in	 high	 entropy	
conditions,	which	highlights	violation	of	the	same-same-different	rule	regardless	
of	familiar	or	new	syllables.	However,	under	medium	entropy	conditions,	where	
none	of	the	two	encodings	was	fully	developed,	we	found	the	lowest	tendency	to	
correctly	reject	the	Familiar-syllable	X1X2Y	strings	as	ungrammatical.	Hence,	we	
found	a	U-shape	pattern	of	results	as	a	function	of	increasing	input	entropy	for	
the	testing	condition	that	is	theoretically	supported	by	a	strong	development	of	
either	 one	 or	 the	 other	 encoding	 method.	 Based	 on	 those	 findings	 and	 the	
hypotheses	 of	 our	 entropy	 model,	 we	 predict	 that	 a	 medium	 entropy	
environment	for	non-adjacent	dependency	learning	in	an	aXb	grammar	would	
create	an	uncertain	situation	which	would	lead	to	inefficiency	of	both	encoding	
methods,	such	that	confident	detection	and	generalization	of	the	non-adjacency	
would	be	impeded.	
	 Our	 entropy	model	 takes	 a	 step	 further	 from	 previous	 theories	 that	
claimed	the	set	size	of	the	intervening	Xs	plays	a	crucial	effect	on	non-adjacent	
dependency	learning	(Gómez,	2002;	Gómez	&	Maye,	2005),	such	that	a	large	set	
size	 of	 intervening	 Xs	 lowers	 the	 adjacent	 transitional	 probabilities	 and	
highlights	the	more	predictable	dependencies	between	the	less	variable	a	and	b	
elements.	 Intuitively,	a	 large	set	size	creates	more	entropy,	 since	entropy	 is	a	
function	 between	 the	 number	 of	 items	 and	 their	 probability	 distribution.	 In	
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Gómez	(2002),	the	set	size	of	the	intervening	Xs	was	also	paired	with	a	uniform	
probability	distribution	of	the	items,	such	that	all	a_b	frames	were	exhaustively	
combined	with	all	the	Xs	rendering	a	uniform	probability	distribution	of	the	a_b	
frames	and	Xs.	Thus,	we	suspect	that	the	actual	factor	that	drove	better	learning	
in	 the	 large	 set	 size	 condition	 in	 Gómez	 (2002)	 was	 input	 entropy,	 as	
hypothesized	by	our	model,	but	it	was	not	immediately	evident,	since	learning	
could	be	interpreted	as	an	effect	of	set	size	of	intervening	Xs.	Our	entropy	model	
makes	the	prediction	that	the	opposite	manipulation	of	entropy,	i.e.	a	uniformly	
large	 set	 size,	 but	 with	 a	 skewed	 probability	 distribution	 (not	 uniform	
probability	distribution)	lowers	the	entropy.	If	indeed	the	factor	at	stake	is	input	
entropy,	we	 expect	 that	 high	 input	 entropy	drives	 better	 learning	 than	 lower	
entropy,	 in	spite	of	a	uniformly	large	set	size.	Thus,	 in	this	study	we	aimed	to	
tease	apart	 the	effect	of	 set	 size	of	 the	 intervening	Xs	 from	the	effect	of	 input	
entropy,	 by	 keeping	 a	 large	 set	 size	 of	 Xs	 (18)	 constant	 and	 varying	 the	
probability	distribution	to	obtain	three	different	entropy	conditions.	
	
3.	Experiment:	design	and	rationale	
	
The	goal	of	this	study	is	two-fold:	
	 1.	On	the	one	hand	we	aimed	to	assess	the	generalizability	of	our	model	
to	more	complex	non-repetition	grammars.	To	 this	end,	we	employed	an	aXb	
grammar,	which	 is	based	on	 learning	 the	specific	ai_bi	 frames	 (i.e.	 item-bound	
generalization),	and	generalizing	them	over	a	richer	 intervening	category	of	X	
elements	(i.e.	category-based	generalization).	
	 2.	The	second	goal	was	to	further	address	and	investigate	the	suitability	
and	feasibility	of	entropy	as	a	quantitative	measure	of	input	complexity,	which	
has	an	effect	of	rule	induction.	In	our	previous	study	(Radulescu	et	al.,	2019),	we	
used	 Shannon’s	 entropy,	 in	 order	 to	 capture	 a	 specific	 pattern	 of	 variability,	
which	entails	a	particular	relation	between	the	number	of	items	in	a	set	and	their	
probability	distribution.	In	our	previous	study,	we	created	six	different	entropic	
levels	 by	 increasing	 the	 number	 of	 items	 of	 each	 set,	 but	 keeping	 a	 uniform	
probability	 distribution.	 Readers	 might	 argue	 that	 such	 a	 manipulation	 of	
entropy	relies	mostly	on	the	mere	number	of	 items	in	the	set,	and	less	on	the	
probability	 distribution	 or	 the	 particular	 relation	 between	 number	 and	
probability	distribution	described	by	the	entropy	formula.	Thus,	in	this	study,	we	
created	three	entropy	versions	of	the	aXb	grammar	by	manipulating	entropy	in	
the	opposite	way:	we	kept	the	number	of	 items	constant,	and	we	varied	their	
probability	distribution.	
	 Firstly,	to	address	our	first	goal,	we	aimed	at	further	investigating	the	
variability	 hypothesis,	 by	 seeking	 a	 better	 understanding	 of	 the	 effect	 of	
variability	on	rule	induction	in	non-adjacent	dependencies,	specifically	by	using	
input	entropy	as	a	measure	of	input	variability.	To	the	best	of	our	knowledge,	this	
is	the	first	study	that	specifically	applies	and	tests	entropy-based	hypotheses	on	
rule	 induction	 in	non-adjacent	dependencies.	Onnis	et	al.	 (2003)	argued	 for	a	
very	specific	effect	of	variability	on	non-adjacent	dependency	learning,	namely	
that	either	null	variability	or	very	high	variability	of	the	intervening	X	elements	
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would	 facilitate	detection	of	non-adjacencies,	while	medium	variability	would	
lead	 to	 the	 worst	 performance	 (i.e.	 the	 authors	 argue	 in	 favor	 of	 a	 U-shape	
pattern	as	a	function	of	increasing	variability).	This	prediction	was	based	on	the	
rationale	that	learners	are	actively	(though,	unconsciously)	looking	for	sources	
of	reduction	in	uncertainty,	such	that	they	would	entertain	the	most	predictable	
and	 invariant	 structure	 in	 the	 input:	when	 the	 large	 intervening	X-set	 is	 very	
unpredictable,	 the	more	predictable	ai_bi	 frames	 “flash	out”	 and	can	be	easily	
learned.	 Or,	 conversely,	 the	 authors	 argue	 that	 null	 variability	 in	 the	middle	
elements	make	the	aiXbi	frames	stand	out	because	of	their	variability.	In	any	case,	
small	-to	medium-sized	sets	of	Xs	(2	–	6)	might	confuse	learners	because	both	
the	middle	elements	and	the	outer	frames	vary,	but	none	of	them	significantly	
more	than	the	other	(Onnis	et	al.,	2003).	
	 However	intuitive	and	logical	this	account	in	favor	of	a	U-shape	pattern	
might	sound,	nevertheless,	there	is	a	theoretical	weakness	that	we	would	like	to	
help	strengthen,	and	also	an	experimental	weakness	in	the	findings	reported	by	
the	authors,	that	we	would	like	to	also	further	address.	Firstly,	the	account	seems	
to	 inconsistently	 suggest	 that	 learners	 are	 either	 (unconsciously)	 looking	
towards	a	source	of	less	variability	(more	predictable	ai_bi	frames	compared	to	
middle	Xs)	when	X-set	 is	 large,	or	 towards	a	source	of	more	variability	(more	
variable	ai_bi	frames	compared	to	the	single	X)	when	X-set	is	only	one.	This	would	
actually	suggest	an	inconsistent	behavior,	if	we	see	unpredictability	in	the	X-set	
we	look	for	predictability	in	the	ai_bi	frames,	but	if	we	find	predictability	in	the	
X-set	we	look	for	unpredictability	in	the	ai_bi	frames.	Secondly,	robust	learning	
under	 null	 variability	 was	 found	 for	 detecting	 non-adjacencies	 in	 the	
familiarization	 stimuli,	 but	 not	 for	 generalizing	 them	 to	 novel	 items,	 that	 is	
learners	exposed	 to	aiXbi	 triplets	 reject	aiXbj	 triplets	as	 ill-formed,	exclusively	
with	familiar	Xs	(Onnis	et	al.,	2003),	which	is	highly	likely	to	have	been	supported	
by	 plain	 rote	 memorization	 of	 the	 3	 aiXbi	 triplets	 repeated	 144	 times	
(Experiment	 1,	 in	 Onnis	 et	 al.,	 2003)	 and	 not	 by	 actual	 learning	 	 of	 a	 non-
adjacency	 rule	 (i.e.	 item-bound	 generalization	 in	 our	 terminology).	 In	 their	
subsequent	study,	Onnis	et	al.	(2004)	address	this	confound	by	also	adding	a	test	
for	generalization	of	the	non-adjacencies	to	novel	sequences,	i.e.	to	test	whether	
learners	exposed	to	aiXbi	triplets	also	generalize	ai_bi	dependencies	to	novel	aiNbi	
triplets.	However,	we	think	that	this	test	was	not	particularly	convincing	since	9	
out	 of	 12	 test	 items	 could	 have	 been	 correctly	 answered	 based	 only	 on	 a	
mismatch	with	the	memorized	aiXbi	triplets	(the	test	consisted	of	3	aiXbi	triplets,	
3	 aiXbj	 triplets,	 3	 aiNbi	 triplets,	 and	 3	 aiNbj	 triplets),	 such	 that	 the	 observed	
learning	effect	might	be	mostly	carried	by	those	75%	of	(mis)matched	strings	(3	
aiXbi	 triplets,	3	aiXbj	 triplets	and	3	aiNbj	 triplets)	against	 the	memorized	ones	
from	 familiarization	 (i.e.	 3	aiXbi	 triplets).	Hence,	we	 think	 further	 evidence	 is	
needed	in	order	to	clearly	investigate	the	null	variability	effect	of	the	intervening	
Xs.	
	 Therefore,	in	this	study	we	aim	at	further	extending	and	fine-tuning	the	
variability	 hypothesis	by	 offering	 a	more	 refined	 information-theoretic	model	
which	 gives	 a	 consistent	 theoretical	 account	 for	 the	 variability	 effect	 and	 the	
previously	observed	U-shape	pattern	of	performance.	
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	 In	order	to	address	the	second	goal	of	this	study,	we	used	monosyllabic	
Dutch-like	nonsense	words	for	the	a	and	b	elements,	and	bisyllabic	Dutch-like	
nonsense	words	 for	 the	 intervening	X	 elements.	The	aXb	 grammar	 generated	
three	entropy	versions	by	splicing	the	syllables	into	aXb	strings	according	to	the	
following	combinatorial	rules.	Unlike	Gómez	(2002),	we	kept	X	set	size	constant	
(18	 Xs)	 and	 varied	 entropy	 by	 combining	 each	 of	 the	 three	 a_b	 frames	 with	
different	(sub)sets	of	Xs,	as	follows.	In	order	to	obtain	the	low	entropy	version,	
each	of	the	three	a_b	frames	was	combined	with	a	distinct	subset	of	6	Xs	(3	a_b	*	
6	Xs),	such	that	the	subsets	of	Xs	did	not	overlap,	which	generated	a	rather	low	
entropy	 version	 (HL	=	 3.52	 bits).	 For	 the	medium	 entropy,	 the	 aXb	 grammar	
combined	the	three	a_b	frames	with	partially	overlapping	subsets	of	12	Xs	(3	a_b	
*	12	Xs),	which	generated	a	medium	entropy	version	(HM	=	4.27	bits).	In	order	to	
generate	the	high	entropy	version,	the	aXb	grammar	combined	exhaustively	each	
of	the	three	a_b	frames	with	the	entire	set	of	intervening	Xs	(3	a_b	*	18	Xs),	which	
yielded	 a	 rather	 high	 entropy	 (HH	 =	 4.7	 bits).	 Since	 such	 evaluations	 of	
low/medium/high	 entropy	 could	 be	 deemed	 as	 relative,	 depending	 on	 the	
grammar/language,	we	based	our	estimates	of	the	set	size	and	variability	of	such	
an	 aXb	 grammar	 on	 previous	 studies	 on	 non-adjacent	 dependency	 learning	
(Gómez,	2002;	Grama	et	al.,	2016).	For	the	entropy	calculations,	we	employed	
the	same	implementation	model	as	in	Radulescu	et	al.	(2019)	–	see	Table	1	below	
for	complete	entropy	calculations.	
	

High	Entropy	 Medium	Entropy	 Low	Entropy	
H[begin-a]=H[3]	=		
-Σ[0.333*log0.333]	=		1.58	
H[aX]	=	H[54]	=	5.75	
H[Xb]	=	H[54]	=	5.75	
H[b-end]	=	H[3]	=	1.58	
H[begin-aX]	=	H[54]	=	5.75	
H[aXb]	 =	 H[Xb-end]	 =	
H[54]	=	5.75	
H[bigram]	=	3.67	
H[trigram]	=	5.75	
H[total]	 =		
𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	4.71	

H[begin-a]=H[3]	=		
-Σ[0.333*log0.333]	 =	
1.58	
H[aX]	=	H[36]	=	5.17	
H[Xb]	=	H[36]	=	5.17	
H[b-end]	=	H[3]	=	1.58	
H[begin-aX]	=	H[36]	=	
5.17	
H[aXb]	=	H[Xb-end]	=	
H[36]	=	5.17	
H[bigram]	=	3.36	
H[trigram]	=	5.17	
H[total]	 =		
𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
	 	 =	

4.27	

H[begin-a]=H[3]	=		
-Σ[0.333*log0.333]	 =	
1.58	
H[aX]	=	H[18]	=	4.17	
H[Xb]	=	H[18]	=	4.17	
H[b-end]	=	H[3]	=	1.58	
H[begin-aX]	 =	 H[18]	 =	
4.17	
H[aXb]	 =	 H[Xb-end]	 =	
H[18]	=	4.17	
H[bigram]	=	2.86	
H[trigram]	=	4.17	
H[total]	 =		
𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
	 	 =	

3.52	
	

Table	1.	Entropy	values	for	the	three	entropy	versions	of	the	aXb	
grammar	

(TP	=	1/6	=	0.16	in	Low	Entropy,	TP	=	1/12	=0.083	in	Medium	Entropy,	TP	=	
1/18	=0.055	in	High	Entropy)	
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In	the	test	phase,	participants	were	asked	to	provide	grammaticality	judgements	
on	aXb	strings	with	either	correct	(familiar)	or	incorrect	(unfamiliar)	a_b	frames.	
Importantly,	 all	 (correct	 and	 incorrect)	 test	 strings	 included	 new	 middle	 X	
elements.	If	learners	correctly	accept	aXb	strings	with	the	correct	a_b	frames	and	
new	 X	 elements,	 it	 shows	 they	 were	 both	 able	 to	 encode	 item-bound	
generalizations	(i.e.	the	a_b	frames)	and	to	generalize	them	over	a	category	of	X	
elements,	i.e.	category-based	generalization.	
	
4.	Methods	
	
4.1	Participants	
	
76	healthy,	non-dyslexic	Dutch	speaking	participants	(53	females,	age	18	–	51,	M	
=	22)	were	assigned	to	either	the	High,	Medium	or	Low	condition.	Four	more	
participants	 were	 tested	 in	 the	 High	 Entropy	 condition,	 but	 subsequently	
excluded	due	 to	self-reported	prior	 familiarity	with	non-adjacent	dependency	
learning	 experiments.	Only	healthy	participants	 that	had	no	known	 language,	
reading	or	hearing	impairment	or	attention	deficit	were	included.	They	all	signed	
a	consent	form	and	were	paid	for	their	participation.	
	
4.2	Materials	
	
Familiarization	stimuli.	All	a	and	b	elements	were	monosyllabic	nonsense	words	
resembling	Dutch	phonotactics	(e.g.,	tɛp,	jɪk),	while	all	X	elements	were	bisyllabic	
Dutch-like	 nonsense	 words	 (e.g.,	 nɑspu,	 dyfoː).	 All	 a	 and	 b	 elements	 were	
recorded	in	aXb	strings,	read	out	in	a	lively,	child-friendly	intonation.	The	X	
elements	were	recorded	as	direct	object	nouns	in	Dutch	carrier	sentences	(“Ik	
zie	de	_	in	de	 tuin”,	 “I	 see	 the	_	in	 the	garden”).	This	 resulted	 in	aXb	 strings	
where	the	a	and	b	elements	were	very	salient	in	terms	of	pitch	(see	Grama,	
Kerkhof	&	Wijnen,	2016,	Emphasized	250ms	Condition).	
	 In	order	to	obtain	three	entropy	versions	with	low,	medium	and	high	
entropy,	 the	 aXb	 grammar	 spliced	 each	 a_b	 frame	 with	 a	 (sub)set	 of	 the	 X	
elements	(see	Appendix	A	for	the	complete	list	of	the	familiarization	X	elements),	
such	that	the	set	of	Xs	was	constant	(18	Xs)	in	all	versions,	but	entropy	varied	as	
follows.	For	the	low	entropy,	each	of	the	three	a_b	 frames	was	combined	with	
one	subset	of	6	Xs	(3	a_b	*	6	Xs),	and	each	of	these	strings	was	repeated	18	times	
(i.e.	 324	 strings	 in	 total).	 For	 the	medium	entropy	 version,	 the	aXb	 grammar	
combined	the	three	a_b	frames	with	partially	overlapping	subsets	of	12	Xs	(3	a_b	
*	12	Xs),	and	each	of	 the	strings	was	repeated	9	 times	 to	yield	 the	same	total	
number	 of	 strings.	 In	 order	 to	 generate	 the	 high	 entropy	 version,	 the	 aXb	
grammar	combined	exhaustively	each	of	the	three	a_b	frames	with	the	entire	set	
of	intervening	Xs	(3	a_b	*	18	Xs),	with	6	repetitions	of	each	string.		
	 In	 all	 entropy	 conditions,	we	used	 two	versions	 of	 the	aXb	 language:	
Language	1	(L1)	and	Language	2	(L2).	The	only	difference	between	L1	and	L2	
was	the	specific	legit	combination	of	the	three	a	and	b	elements	into	frames:	in	
L1	 the	 grammatical	 frames	were	 tɛp	 _lyt,	 sɔt_	 jɪk	and	 rɑk_tuf,	while	 in	 L2	 the	
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grammatical	frames	were	tɛp	_	jɪk,	sɔt_tuf	and	rɑk_lyt.	Therefore,	every	ai	_bi	pair	
in	L1	was	ill-formed	(ai_bj)	in	L2	and	vice	versa.	The	reason	for	using	these	two	
different	 versions	 of	 the	 aXb	 grammar	 was	 to	 exclude	 a	 possible	 effect	 of	
idiosyncrasies	 of	 particular	 a_b	 combinations	 (L1	 or	 L2)	 on	 learning.	 Each	
participant	 was	 randomly	 assigned	 to	 only	 one	 version	 of	 the	 aXb	 grammar	
(either	L1	or	L2),	and	randomly	assigned	to	only	one	entropy	condition	(either	
Low	or	Medium	or	High	Entropy),	 such	 that	we	obtained	 a	 between-subjects	
experimental	design.	We	employed	a	within-string	pause	of	250ms	between	the	
elements	of	a	string	(a,	X,	b)	as	well	as	a	between-string	pause	of	750ms. 
	
Test	stimuli.	For	the	test	stimuli,	the	aXb	grammar	spliced	each	a_b	frame	of	each	
language	(L1,	L2)	with	two	novel	X	elements	to	yield	(6	a_b	*	2	X	=)	12	new	test	
items	(see	Appendix	A	for	the	test	X	elements).	Thus,	the	six	new	aXb	strings	with	
the	a_b	 frames	of	 L1	were	ungrammatical	 for	 the	participants	 exposed	 to	L2,	
while	the	six	new	aXb	strings	with	the	a_b	frames	of	L2	were	ungrammatical	for	
the	participants	exposed	to	L1.	As	such,	each	participant	was	exposed	to	12	new	
aXb	 strings,	 six	 of	which	were	 grammatical	 and	 six	 ungrammatical.	 Accuracy	
score	for	the	learning	of	the	aXb	grammar	was	calculated	as	the	mean	correct	
answers,	 i.e.	 correct	 acceptance	 of	 the	 grammatical	 test	 strings	 and	 correct	
rejection	of	the	ungrammatical	test	strings.	
	
4.3	Procedure	
	
Participants	 were	 seated	 in	 a	 sound-proof	 booth.	 Before	 the	 familiarization	
phase	 they	were	 instructed	 that	 they	would	 listen	 to	an	 “alien	 language”	 that	
does	not	resemble	any	language	that	they	might	be	familiar	with,	and	which	has	
its	 own	 words	 and	 grammar.	 To	 avoid	 any	 motivation	 to	 explicitly	 look	 for	
patterns	 in	the	stimuli,	participants	were	not	 informed	of	 the	subsequent	test	
phase	 until	 after	 the	 end	 of	 the	 familiarization	 phase.	 Participants	were	 also	
given	the	simultaneous	task	of	coloring	a	mandala	while	listening	to	the	“alien	
language”,	in	order	to	promote	implicit	learning	and	to	prevent	explicit	attention	
directed	to	the	structure	of	the	input.	Before	the	test	phase,	participants	were	
instructed	that	they	would	listen	to	new	sentences	in	the	same	“alien	language”,	
none	of	which	would	be	identical	to	the	sentences	they	had	heard	before.	They	
were	 then	 asked	 to	 decide	 for	 each	 sentence	 whether	 it	 was	 correct	 or	 not,	
according	 to	 the	grammar	of	 the	 language	 they	had	 just	heard,	by	clicking	on	
“Yes”	 or	 “No”.	 They	 were	 instructed	 to	 answer	 quickly	 and	 intuitively.	 The	
experiment	lasted	around	15	minutes.	
	
4.4	Results	
	
Figure	1	presents	the	mean	accuracy,	that	is	percentage	of	acceptances	of	correct	
aXb	strings	and	rejections	of	 incorrect	aXb	strings	per	group,	across	the	three	
conditions	 (Low	 Entropy,	 Medium	 Entropy	 and	 High	 Entropy).	 The	 mean	
accuracy	in	the	High	Entropy	condition	was	M	=	.65	(SD	=	.24),	in	the	Medium	
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Entropy	condition	it	was	M	=	.49	(SD	=	.13),	while	in	the	Low	Entropy	condition	
it	was	M	=	.54	(SD	=	.14).	
	

	
	
Figure	2	shows	the	distribution	of	individual	mean	rates	in	each	experimental	
condition,	High	Entropy,	Medium	Entropy	and	Low	Entropy.	
	

	
	
In	the	High	Entropy	Condition	a	One-Sample	Kolmogorov-Smirnov	Test	showed	
that	the	accuracy	rates	were	not	normally	distributed	(p	=	.022),	so	we	ran	a	One-
Sample	 Wilcoxon	 Signed-Rank	 Test,	 which	 showed	 significant	 above-chance	
performance	(Median	=	58%,	SE	=	15.839,	Z	=	2.336,	p	=.	019).	In	the	Medium	
Entropy	 Condition	a	One-Sample	Kolmogorov-Smirnov	Test	 showed	normally	
distributed	data	(p	=	 .07),	so	we	ran	a	One-Sample	T-Test,	which	showed	that	
accuracy	 rates	were	not	 significantly	different	 from	chance	 (Mean	49%,	 SD	=	
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13.21,	p	=	 .631).	 In	 the	 Low	 Entropy	 Condition	a	 One-Sample	 Kolmogorov-
Smirnov	Test	revealed	that	data	was	not	normally	distributed	(p	<.001),	so	we	
ran	 a	 One-Sample	 Wilcoxon	 Signed-Rank	 Test	 which	 showed	 a	 marginally-
significant	 above-chance	 performance	 (Median	 =.50%,	 SE	 =	 22.553,	 Z	 =	
1.709,	p	=	.088).	
	 In	 order	 to	 probe	 the	 effect	 of	 input	 entropy	 on	 rule	 induction,	 we	
compared	 the	 performance	 in	 the	 three	 conditions	 (High,	 Medium	 and	 Low	
Entropy	 groups)	 in	 a	 general	 linear	 mixed	 effects	 analysis	 (using	 IBM	 SPSS	
version	 26)	 of	 the	 relationship	 between	 Accuracy	 (correct	 acceptance	 of	 the	
grammatical	 test	 items	and	 correct	 rejection	of	 the	ungrammatical	 ones)	 and	
Entropy	 Condition	 (High,	 Medium	 and	 Low	 Entropy	 groups).	 Therefore,	 as	
dependent	 (binomial)	 variable	we	 entered	Accuracy	 score	 into	 the	model.	 As	
fixed	effects	we	entered	Entropy	Condition	(High,	Medium	and	Low	Entropy),	
Language	(L1,	L2)	and	an	Entropy	Condition	x	Language	interaction.	As	random	
effect	 we	 had	 an	 intercept	 for	 subjects.	 Because	 Language	 (L1,	 L2)	 did	 not	
improve	the	model	and	it	did	not	show	a	significant	effect	or	 interaction	with	
Entropy	Condition,	we	excluded	it	from	the	final	analysis.	An	alpha	level	of	.05	
was	used	for	all	statistical	tests.	We	started	fitting	the	data	from	the	intercept-
only	model	 and	 added	 the	 random	 and	 fixed	 factors	 one	 by	 one.	 The	model	
reported	here	is	the	best	fitting	model,	both	in	terms	of	the	model’s	accuracy	in	
predicting	the	observed	data,	and	in	terms	of	AIC	(Akaike	Information	Criterion).	
	 We	found	a	significant	main	effect	of	Entropy	Condition	(	F	(2,	909)	=	
5.441,	p	=	 .004),	 and	 planned	 Bonferroni	 comparisons	 yielded	 a	 significant	
difference	between	High	and	Medium	Entropy	(	t	(1)	=	3.279,	p	=	.001,	95%	CI	
[0.279	;	1.111]),	a	significant	difference	between	High	and	Low	Entropy	(	t	(1)	=	
2.261,	p	=	 .024,	95%	CI	[0.062	;	0.883]),	and	no	significant	difference	between	
Medium	and	Low	Entropy	(p	=	.238).	
	 Moreover,	performance	across	the	different	entropy	conditions	resulted	
in	a	U-shaped	function,	with	a	polynomial	trend	analysis	showing	a	significant	
quadratic	effect	(F(2,	73)	=	5.366,	p	=	.007.	
	 Further,	 Cohen’s	 effect	 size	 value	 for	 the	 mean	 difference	 in	 correct	
answers	between	the	High	and	Medium	Entropy	was	d	=	.83	(large	effect	size)	
with	an	effect	size	correlation	r	=	.38,	between	the	High	and	Low	Entropy	it	was	
d	=	.56	(medium	effect	size),	r	=	.27,	while	between	the	Low	and	Medium	Entropy	
it	was	d	=	.37	(small	effect	size),	r	=	.18.	
	
5.	Discussion	and	Conclusions	
	
In	this	study,	we	probed	adults’	ability	to	learn	non-adjacent	dependencies	when	
exposed	to	an	aiXbi	grammar	under	different	input	entropy	conditions,	in	order	
to	 assess	 the	 generalizability	 of	 our	 entropy	 model	 to	 more	 complex	 non-
repetition	grammars	(Radulescu	et	al.,	2019;	2020).	More	precisely,	we	aimed	at	
giving	 a	 more	 fine-tuned	 and	 refined	 information-theoretic	 approach	 to	 a	
previous	 prominent	 hypothesis	 that	 suggested	 a	 certain	 pattern	 of	 input	
variability	 to	 be	 a	 driving	 factor	 in	 learning	 non-adjacencies	 (Gómez,	 2002;	
Gómez	&	Maye,	2005).	Previously	it	was	suggested	that	the	set	size	of	the	aiXbi	
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grammar,	particularly	a	 large	set	size	of	 the	 intervening	X	elements	 facilitates	
learning	of	the	ai_bi	dependencies,	due	to	low	adjacent	transitional	probabilities	
which	highlight	and	shift	attention	to	the	“stronger”	dependencies	between	the	
non-adjacent	a	and	b	elements.		
	 To	 this	 end,	 we	 manipulated	 the	 input	 entropy	 of	 a	 non-adjacent	
dependency	aiXbi	grammar	by	keeping	the	set	size	equally	large,	but	varying	the	
probability	distribution	of	the	items.	More	specifically,	since	a	large	set	size	of	
intervening	Xs	was	deemed	to	be	a	crucial	 factor	 in	non-adjacent	dependency	
learning	(Gómez,	2002;	Gómez	&	Maye,	2005),	we	kept	a	relatively	large	set	(18	
Xs)	 and	 varied	 the	 combinatorial	 possibilities	 with	 three	 ai_bi	 frames.	 We	
obtained	 three	different	entropy	versions	of	an	aiXbi	 grammar:	a	 low	entropy	
version,	a	medium	entropy	version	and	a	high	entropy	version.	We	found	that	
although	 the	 set	 size	 of	 the	 intervening	 Xs	 was	 equally	 large	 in	 all	 entropy	
conditions,	 participants	 successfully	 detected	 the	 non-adjacent	 dependencies	
and	generalized	them	to	novel	instances	better	in	the	highest	entropy	condition	
than	in	the	medium	and	low	entropy	conditions.	We	interpret	these	findings	to	
be	 in	 line	with	 the	 hypothesis	 of	 our	 entropy	model,	 namely	 that	 high	 input	
entropy	drives	restructuring	of	the	information	and,	thus,	reliable	encoding	(i.e.	
with	 least	 loss	 of	 information)	 of	 the	 middle	 elements	 as	 a	 category	 X.	 This	
category-based	generalization	 is	 in	fact	a	compressed	form	of	encoding,	which	
reduces	the	amount	of	bits/s	needed	to	encode	the	intervening	elements,	thus	
providing	enough	remaining	capacity	(i.e.	channel	capacity	in	bits/s)	to	encode	
the	ai_bi	frames	reliably	as	item-bound	generalizations.		
	 Next,	according	to	our	entropy	model,	an	input	entropy	which	is	below	
the	 channel	 capacity	 allows	 for	 encoding	 the	 information	 by	 matching	 the	
probability	distribution	of	the	specific	items	in	the	input,	namely	the	specific	ai_bi	
frames	can	be	detected	and	encoded	by	item-bound	generalization,	i.e.	specific	a	
items	(ai,	aj)	always	pair	with	specific	b	items	(bi,	bj).	Although	we	did	not	find	
robust	learning	in	the	low	entropy	condition,	we	think	this	was	the	case	because	
although	we	dubbed	it	as	the	lowest	entropy	condition	compared	to	the	other	
two	 entropy	 versions	 we	 investigated,	 it	 actually	 falls	 in	 a	 rather	 medium	
entropy	range	(3.52	bits).	
	 Moreover,	 in	 the	medium	entropy	condition	we	 found	no	evidence	of	
learning	the	non-adjacencies,	although	the	set	size	was	equally	large	in	all	the	
entropy	 conditions.	 These	 findings	 bring	 further	 evidence	 in	 favor	 of	 the	
hypothesis	 of	 our	 entropy	 model	 which	 predicts	 that	 a	 medium	 entropy	
environment,	 where	 none	 of	 the	 two	 encoding	methods	 is	 highly	 efficient	 at	
encoding	 the	 input	 (causing	 high	 loss	 of	 information),	 results	 in	 the	 most	
uncertain	situation	for	the	learners	(Radulescu	et	al.,	2019).	Similarly,	in	the	case	
of	 an	 aXb	 grammar,	 which	 requires	 both	 item-bound	 and	 category-based	
generalization,	 we	 interpret	 our	 findings	 of	 the	 lowest	 performance	 in	 the	
medium	entropy	condition	to	be	in	line	with	our	hypothesis:	a	medium	entropy	
environment	 causes	 a	 drop	 in	 the	 learning	 curve,	 because	 item-bound	
generalization	is	too	weak	to	clearly	highlight	mismatches	between	the	specific	
ai	 and	 bi	 items,	 and	 category-based	 generalization	 is	 not	 fully	 developed	 to	
facilitate	 category	 formation	 of	 the	 intervening	 Xs.	 Further	 evidence	 for	 this	



An	Entropy	and	Noisy-Channel	Model	for	Rule	Induction	

 

142 

 

hypothesis	 was	 brought	 by	 our	 finding	 of	 a	 U-shape	 pattern	 of	 results	 as	 a	
function	of	 increasing	 input	entropy.	Further	 research	should	 look	 into	 the	U-
shape	 curve	 of	 learning,	 in	 order	 to	 confirm	 these	 results,	 if	 better	 accuracy	
would	be	found	with	a	much	lower	input	entropy.	
	 To	summarize,	all	these	findings	are	in	line	with	the	main	hypotheses	of	
our	 entropy	 model	 regarding	 rule	 induction	 in	 a	 non-adjacent	 dependency	
grammar.	Specifically,	these	results	bring	strong	evidence	to	the	hypothesis	that	
it	is	not	the	mere	set	size	of	the	intervening	X	elements,	but	rather	variations	in	
input	 entropy	 that	 drive	 rule	 induction	 in	 non-adjacent	 dependency	 learning.	
Also,	 these	 results	 bring	 further	 evidence	 in	 favor	 of	 the	previously	 found	U-
shaped	curve	of	learning	(Onnis	et	al.,	2003,	2004,	2015).	The	main	contribution	
of	this	study	is	showing	that	the	U-shape	pattern	of	learning	is	not	an	effect	of	
mere	set	size	of	items,	but	an	effect	of	the	input	entropy.	
	 Another	goal	of	this	study	was	to	manipulate	entropy	in	a	different	way	
from	the	one	we	employed	in	Radulescu	et	al.	(2019),	in	order	to	further	probe	
the	feasibility	of	entropy	as	a	measure	of	input	variability.	Specifically,	instead	of	
keeping	a	uniform	probability	distribution	of	items	and	increasing	their	number,	
in	the	present	study	we	did	the	opposite:	we	kept	a	constantly	large	number	of	
the	intervening	Xs	and	we	varied	the	probability	distribution,	in	order	to	obtain	
different	levels	of	input	entropy.	Results	showed	that	even	when	having	a	large	
set	 size,	 if	 entropy	 is	 not	 high	 enough,	 rule	 induction	 is	 impaired.	 Thus,	 we	
interpret	 these	 results	 to	 show	 that	 indeed	 entropy	 is	 a	 suitable	 quantifying	
method	for	assessing	the	effect	of	input	variability	on	rule	induction,	and	thus,	
input	entropy,	not	the	mere	set	size,	is	the	driving	factor	in	rule	induction	in	non-
adjacent	dependency	learning.	
	 Our	 findings	 add	 to	 and	 take	 a	 step	 further	 from	 another	 study	 that	
aimed	at	giving	a	more	in-depth	analysis	of	the	input	variability	as	a	 factor	 in	
learning	non-adjacencies:	Wang	et	al.	 (2019)	 found	evidence	 for	non-adjacent	
dependency	 learning	even	under	conditions	of	small	set	size	(9	Xs).	However,	
they	did	not	find	better	learning	when	adjacent	transitional	probabilities	were	
lower	rather	than	higher,	which	was	previously	claimed	to	be	the	case	(Gómez,	
2002;	Gómez	&	Maye,	2005).	In	any	case,	since	the	set	size	used	by	Wang	et	al.	
(2019)	is	rather	small	–	9	Xs	–	one	possible	hypothesis	could	be	that	a	large	set	
size	 of	 intervening	 Xs	might	 not	 be	 necessary	 for	 non-adjacent	 dependency	
learning,	but	it	might	boost	non-adjacent	dependency	learning,	as	it	was	the	case	
in	 Gómez	 (2002),	 Onnis	 et	 al.	 (2003)	 and	 Onnis	 et	 al.	 (2004).	 Thus,	 we	
investigated	that	possibility	in	this	study	by	employing	a	larger	set	(18	Xs)	and	
found	input	entropy	to	be	a	driving	factor	rather	than	large	set	size.	We	suggest	
an	alternative	interpretation	to	Wang	et	al.’s	findings,	according	to	our	entropy	
model:	 even	 though	 adjacent	 transitional	 probabilities	 were	 lower	 in	 the	
Distributed	Condition,	the	increase	in	input	entropy	was	not	sufficient	to	drive	a	
significantly	higher	tendency	to	generalize	the	ai_bi	frames	to	novel	sequences	in	
the	Distributed	Condition	(4.35	bits)	as	compared	to	the	Categorical	Condition	
(3.17	bits	–	 see	Appendix	B	 for	 the	entropy	calculations	 for	 the	experimental	
condition	 in	Wang	 et	 al.	 (2019)	 according	 to	 the	 implementation	method	we	
proposed	in	Radulescu	et	al.	(2019)).	This	finding	is	consistent	with	our	findings	
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reported	in	this	article:	learning	in	the	medium	entropy	condition	(4.27	bits)	was	
not	 better	 than	 it	was	 in	 the	 low	 entropy	 condition	 (3.52	 bits),	 but	 a	 further	
increase	in	input	entropy	up	to	4.71	bits	lead	to	significantly	better	learning	than	
in	both	medium	and	low	entropy	conditions.	In	any	case,		based	on	these	findings,	
we	 suggest	 that	 the	 effect	 of	 input	 entropy	on	 rule	 induction	 in	 non-adjacent	
dependency	might	not	be	linear	or	gradual,	but	 in	stages,	precisely	due	to	the	
nature	 of	 such	 a	 complex	 aiXbi	 grammar,	 which	 requires	 a	 certain	 balance	
between	 item-bound	generalization	and	category-based	generalization.	Further	
research	is	needed	in	order	to	specify	more	precisely	this	hypothesis,	and	the	
amount	of	predicted	increase	in	input	entropy	which	is	necessary	for	significantly	
better	learning.	
	 When	comparing	the	results	we	obtained	in	the	low	entropy	condition	
of	 this	 study	with	 the	 results	 of	 Radulescu,	 Kotsolakou,	Wijnen,	 Avrutin	 and	
Grama	(2021),	where	we	employed	a	low	entropy	version	of	the	same	grammar	
with	the	same	input	entropy	as	the	low	entropy	version	used	in	this	study	–	3.52	
bits,	we	find	an	interesting	pattern	of	results.	While	in	this	study	we	did	not	find	
robust	learning	of	the	non-adjacent	dependencies	in	the	3.52-bit	version	(M	=	
.54,	 SD	=	 .14,	p	=	 .088),	 in	 the	Radulescu	et	 al.	 (2021)	we	did	 find	 significant	
learning	in	the	3.52-bit	version	(M	=	.69,	SD	=	.46,	p	=	.001).	The	two	experiments	
had	 the	 same	 design,	 stimuli	 and	 combinatorics	 to	 obtain	 the	 same	 input	
entropy,	but	the	only	crucial	difference	was	the	number	of	repetitions	of	each	
aXb	string:	in	the	present	study,	each	of	the	three	a_b	frames	was	combined	with	
one	subset	of	6	Xs	(3	a_b	*	6	Xs)	to	obtain	18	different	strings	(X	set	size	=	18),	
and	each	of	these	strings	was	repeated	18	times	(i.e.	324	strings	in	total),	while	
in	Radulescu	et	al.	(2021),	each	of	the	three	a_b	frames	was	also	combined	with	
one	subset	of	6	Xs	(3	a_b	*	6	Xs)	to	obtain	18	different	strings	(X	set	size	=	18),	
but	crucially	they	were	repeated	only	12	times,	resulting	in	a	total	of	216	strings.	
In	 information-theoretic	 terms,	 this	 makes	 a	 difference	 in	 the	 inflow	 of	
information	per	unit	of	time	(bits/s),	which	may	or	not	reach	the	maximum	rate	
of	information	transmission	(i.e.	channel	capacity).	
	 Specifically,	we	interpret	the	difference	in	these	results	to	point	to	the	
essential	 role	played	by	 the	channel	 capacity	 in	 rule	 induction.	 In	 the	present	
study	 the	 inflow	of	 information	was	3.52	bits/symbol	 in	15	minutes,	while	 in	
Radulescu	et	al.	 (2021)	 the	 inflow	of	 information	was	3.52	bits/symbol	 in	10	
minutes.	 Thus,	 in	 the	 present	 study,	 one	 minute	 of	 familiarization	 with	 this	
grammar	 version	 carries	 on	 average	 3.52/15	 =	 0.234	 bits/symbol	 of	
information,	while	in	Radulescu	et	al.	(2021),	one	minute	of	familiarization	with	
the	same	grammar	version	carries	on	average	3.52/10	=	0.352	bits/symbol	of	
information.	In	simple	words,	in	this	study,	the	information	is	more	diluted,	more	
dispersed	over	symbols	in	time,	which	makes	it	more	likely	to	remain	below	the	
available	 channel	 capacity.	On	 the	 other	 hand,	 in	Radulescu	 et	 al.	 (2021),	 the	
information	 is	 more	 compressed,	 more	 concentrated	 in	 symbols	 over	 time,	
which	makes	it	more	likely	to	be	higher	than	the	available	channel	capacity,	and	
as	a	result	to	drive	better	generalization	of	the	non-adjacent	dependencies.	This	
is,	of	course,	only	a	possible	logical	explanation,	but	which	deserves	more	future	
research	 in	order	 to	 further	 specify	 the	hypothesis	of	 an	 interaction	between	
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input	 entropy	 and	 our	 time-dependent	 channel	 capacity	 in	 non-adjacent	
dependency	learning.	
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Appendix	A	
	
		 							a/b	 IPA	
a1	 tep	 [tεp]	
a2	 sot	 [sɔt]	
a3	 rak	 [rɑk]	
b1	 lut	 [lyt]	
b2	 jik	 [jik]	
b3	 toef	 [tuf]	
		 											X	 		
No.	 Familiarization	 IPA	

1	 blieker	 [blikər]	

2	 dufo	 [dyfo]	

3	 fidang	 [fidɑŋ]	

4	 gopem	 [xopəm]	

5	 kengel	 [kεŋəl]	

6	 kijbog	 [kεibɔx]	

7	 loga	 [loxa]	

8	 malon	 [malɔn]	

9	 movig	 [movix]	

10	 naspu	 [nɑspu]	

11	 nijfoe	 [nεifu]	

12	 noeba	 [nuba]	

13	 plizet	 [plizεt]	

14	 rajee	 [raje]	

15	 rogges	 [rɔxəs]	

16	 seeta	 [seta]	

17	 snigger	 [snixər]	

18	 wabo	 [vɑbo]	
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Test	(novel	Xs)	
		

		

19	 nilbo	 [nilbo]	

20	 pergon	 [perxɔn]	

	
Appendix	B	
	

Categorical	Condition	 Distributed	Condition	

H[b-a]=H[9]	=	3.17	
H[aX]	=	H[9]	=	3.17	
H[Xb]	=	H[9]	=	3.17	
H[b-a]	=	H[9]	=	3.17	
H[begin-aX]	=	H[9]	=	3.17	
H[aXb]	=	H[Xb-end]	=	H[9]	=	3.17	
H[bigram]	=	3.17	
H[trigram]	=	3.17	
H[total]	=		%[;<=>?@]/%[A><=>?@]

B
		=	3.17	

H[b-a]=H[9]	=		3.17	
H[aX]	=	H[27]	=	4.75	
H[Xb]	=	H[27]	=	4.75	
H[b-a]	=	H[9]	=	3.17	
H[begin-aX]	=	H[27]	=	4.75	
H[aXb]	=	H[Xb-end]	=	H[27]	=	4.75	
H[bigram]	=	3.96	
H[trigram]	=	4.75	
H[total]	=		%[;<=>?@]/%[A><=>?@]

B
		=	4.35	

Entropy	calculations	for	the	two	conditions	of	the	aXb	grammar	
employed	by	Wang	et	al.	(2019)	in	Experiment	4.	Since	the	aXb	strings	
were	played	in	a	continuous	stream,	i.e.	without	pauses	between	triplets,	
there	are	no	cues	as	to	the	beginning	and	ending	of	the	triplets,	thus	the	
first	bigram	consists	of	the	b	element	of	the	previous	triplet	and	the	a	

element	of	the	current	triple,	and	the	last	bigram	consists	of	the	b	element	
of	the	current	bigram	and	the	a	element	(similar	to	the	calculations	for	

transitional	probabilities	in	continuous	streams).		
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Fast	But	Not	Furious.	When	Sped	Up	Bit	Rate	of	Information	
Drives	Rule	Induction	

Radulescu,	S.,	Kotsolakou,	A.,	Wijnen,	F.,	Avrutin,	S.	and	Grama,	I.21	
	
Abstract	
	
Young	 and	 adult	 learners’	 abilities	 range	 from	 memorizing	 specific	 items	 to	
finding	 statistical	 regularities	 between	 them	 (item-bound	 generalization)	 and	
abstracting	 away	 from	 the	 input	 to	 apply	 general	 rules	 to	 novel	 instances	
(category-based	generalization).	Both	external	factors,	like	input	variability,	and	
internal	factors,	like	cognitive	limitations,	have	been	shown	to	be	driving	factors	
of	learners’	ability	to	form	general	representations	from	exposure	to	a	limited	
set	 of	 examples.	 Yet	 the	 exact	 dynamics	 between	 these	 factors	 and	 the	
circumstances	 under	 which	 rule	 induction	 emerges	 remain	 largely	
underspecified.	 In	 this	 article	 we	 further	 extend	 our	 information-theoretic	
model	 (Radulescu	 et	 al.,	 2019)	 –	 based	 on	 Shannon’s	 noisy-channel	 coding	
theory	(Shannon,	1948)	–	which	adds	into	the	“formula”	for	rule	induction	the	
crucial	dimension	of	time	and	rate	of	 information	transmission,	 i.e.	the	rate	of	
encoding	information	by	a	time-sensitive	encoding	mechanism.	Specifically,	our	
model	 hypothesizes	 that,	 if	 the	 input	 entropy	 per	 second	 is	 higher	 than	 the	
maximum	rate	of	information	transmission	(bits/second),	which	is	determined	
by	the	channel	capacity,	the	encoding	method	moves	gradually	from	item-bound	
generalization	to	a	more	efficient	category-based	generalization,	so	as	to	avoid	
exceeding	the	channel	capacity.	Thus,	the	goal	of	this	study	is	two-fold.	The	first	
goal	is	theoretical,	since	to	the	best	of	our	knowledge,	this	is	the	first	study	that	
specifically	 tests	 a	 hypothesis	 based	 on	 Shannon’s	 channel	 capacity	 and	 the	
noisy-channel	coding	theory	in	artificial	grammar	learning.	To	this	end,	we	first	
define	 and	give	 a	 concrete	 example/proposal	 of	 how	channel	 capacity	can	be	
estimated	in	an	artificial	grammar	learning	experiment	(our	experiments	from	
Radulescu	 et	 al.,	 2019).	 More	 precisely,	 we	 show	 evidence	 that	 the	 rate	 of	
information	 transmission	 reached	 the	 channel	 capacity	 in	 Radulescu	 et	 al.’s	
study	 (2019)	 and	 that,	 as	 predicted	 by	 our	 model,	 the	 transition	 from	 one	
encoding	method	 to	 another	more	 efficient	 encoding	method	 (category-based	
generalization)	is	signaled	by	an	initial	increase	followed	by	a	decrease	in	rate	of	

 
21	This	chapter	is	a	longer	version	of	a	manuscript	under	review:	
Radulescu,	S.,	Kotsolakou,	A.,	Wijnen,	F.,	Avrutin,	S.	&	Grama,	I.	(2021)	Fast	But	
Not	Furious.	When	Sped	Up	Bit	Rate	of	Information	Drives	Rule	Induction	
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equivocation	 (i.e.	 loss	of	 information),	 calculated	 from	 learners’	 performance.	
The	 second	 goal	 of	 this	 study	 is	 to	 take	 the	 next	 logical	 step	 of	 directly	
manipulating	 the	 time	 variable	 of	 the	 channel	 capacity.	 To	 this	 end,	 in	 two	
artificial	 grammar	 experiments	 with	 adults	 we	 sped	 up	 the	 bit	 rate	 of	
information	 transmission,	 crucially	 not	 by	 simply	 reducing	 the	 time	 between	
stimuli	by	an	arbitrary	amount,	but	by	a	factor	that	we	calculated	based	on	data	
from	our	previous	experiments,	by	using	the	channel	capacity	formula.	We	found	
that	when	we	increased	the	bit	rate	of	information	transmission	in	a	repetition-
based	XXY	grammar,	learners’	tendency	towards	category-based	generalization	
increased,	as	predicted	by	our	model.	Conversely,	we	found	that	 increased	bit	
rate	of	information	transmission	in	a	more	complex	non-adjacent	dependency	
aXb	grammar	led	to	poorer	learning	in	general,	at	least	judging	by	our	specific	
way	of	assessing	accuracy.	This	finding	could	be	accounted	by	our	model,	since	
speeding	up	the	bit	rate	of	the	inflow	of	information	precipitates	a	change	from	
item-bound	 generalization	 into	 a	 category-based	 generalization,	which	 means	
that	 it	 impedes	 item-bound	 generalization	 of	 the	 specific	 a_b	 frames,	 but	 it	
facilitates	 category-based	 generalization	 for	 the	 intervening	 X	 category	 of	
elements,	 and	 possibly	 categories	 of	 a	 and	 b	 elements,	 instead	 of	 specific	
dependencies	between	specific	a	and	b	elements.	
	
1.	Introduction	
	
An	increasing	body	of	evidence	has	showed	that	both	young	and	adult	learners	
possess	a	domain-general	distributional	learning	mechanism	that	enables	them	
to	find	statistical	patterns	in	the	input	(Saffran,	Aslin,	&	Newport,	1996;	Thiessen	
&	Saffran,	2007),	and	also	a	learning	mechanism	that	allows	for	category	(rule)	
learning	 (Marcus	 et	 al,	 1999;	 Smith	 &	 Wonnacott,	 2010;	 Wonnacott,	 2011;	
Wonnacott	&	Newport,	2005).	Rule	induction	(generalization	or	regularization)	
has	been	often	explained	as	resulting	from	processing	the	variability	in	the	input	
(quantifiable	amount	of	statistical	variation),	both	in	young	and	adult	language	
learners	(Gerken,	2006;	Hudson	Kam	&	Newport,	2009;	Hudson	Kam	&	Chang,	
2009;	Reeder,	Newport,	&	Aslin,	2013).		
	 This	 study	 looks	 into	 the	 factors	 that	 drive	 the	 inductive	 step	 from	
memorizing	items	and	statistical	regularities	to	inferring	abstract	rules.	While	
previously	 cognitive	 psychology	 theories	 claimed	 that	 there	 are	 two	
qualitatively	 different	 mechanisms,	 with	 rule	 learning	 relying	 on	 encoding	
linguistic	 items	 as	 abstract	 categories	 (Marcus	 et	 al,	 1999),	 as	 opposed	 to	
learning	 statistical	 regularities	 between	 specific	 items	 (Safran	 et	 al.,	 1996),	
recent	 views	 converge	 on	 the	 hypothesis	 that	 one	 mechanism	 –	 statistical	
learning	 –	 underlies	 both	 item-bound	 learning	 and	 rule	 induction	 (Aslin	 &	
Newport,	2012;	2014;	Frost	&	Monaghan,	2016;	Radulescu,	Wijnen	&	Avrutin,	
2019).	 	 Aslin	 &	 Newport	 (2014),	 in	 particular,	 argue	 that	 the	 evidence	 from	
relevant	studies	(Gerken,	2006;	Reeder	et	al.,	2013)	supports	a	single-mechanism	
hypothesis	 with	 the	 finding	 of	 a	 gradient	 of	 generalization.	 According	 to	 the	
authors	of	these	studies,	learners	show	a	different	pattern	of	learning,	depending	
on	the	input	variability:	they	either	generalize	(“abstract	rule	learning”)	or	they	
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withhold	generalization,	such	that	it	apparently	leads	to	only	“surface	statistical	
learning”	(Aslin	&	Newport;	2012;	2014).	
	 While	supporting	the	single-mechanism	hypothesis	proposed	previously,	
in	Radulescu	et	al.	(2019)	we	took	a	step	further	in	understanding	the	underlying	
mechanism	and	the	gradient	of	generalization.	This	study	investigates	the	two	
qualitatively	 different	 forms	 of	 learning	 discussed	 by	 previous	 research	
mentioned	 above,	 which	 were	 dubbed,	 in	 accord	 with	 previous	 suggestions	
(Gómez	 and	 Gerken,	 2000),	 item-bound	 generalizations	 and	 category-based	
generalizations.	 Specifically,	 Radulescu	 et	 al.	 (2019)	 suggest	 that,	 unlike	 in	
previous	 studies,	 the	underlying	processes	 should	be	disentangled	 from	 their	
outcomes,	that	is	the	learning	mechanisms	(statistical	learning	and	abstract	rule	
learning)	 should	 be	 conceptualized	 separately	 from	 the	 resulting	 forms	 of	
encoding	(item-bound	generalizations	and	category-based	generalizations).		
	 While	 item-bound	 generalizations	describe	 relations	 between	 specific	
physical	 items,	 e.g.	 a	 relation	based	on	physical	 identity,	 like	 “ba	 follows	ba”,	
category-based	 generalizations	 are	 operations	 beyond	 specific	 items	 that	
describe	relations	between	categories	(variables),	e.g.	“Y	follows	X”,	where	Y	and	
X	are	variables	taking	different	values.	In	order	to	explain	how	and	why	a	single	
mechanism	 outputs	 these	 two	 qualitatively	 different	 forms	 of	 encoding,	
Radulescu	 et	 al.	 (2019)	 proposed	 an	 information-theoretic	 model	 of	 rule	
induction	as	an	encoding	mechanism.	 In	this	model,	we	put	 together	both	the	
statistical	properties	of	the	input,	i.e.	input	entropy,	and	also	the	brain’s	capacity	
to	encode	the	input	under	conditions	of	finite	cognitive	capacities.	We	define	our	
encoding	 capacity	 as	 channel	 capacity,	 in	 information-theoretic	 terms,	 which	
means	the	finite	rate	of	information	encoding	(entropy	per	unit	of	time),	which	
might	 be	 supported	 by	 certain	 cognitive	 capacities,	 e.g.	 memory	 capacity,	 in	
psychological	terms.	
	 Indeed,	previous	research	hinted	at	potential	cognitive	constraints,	i.e.	
memory	 limitations,	 on	 rule	 learning:	 the	 Less-is-More	 hypothesis	 (Newport,	
1990;	2016)	proposed	that	 the	differences	 in	 tendency	to	generalize	between	
young	 and	 adult	 learners	 stem	 from	 the	maturational	 differences	 in	memory	
development.	 Specifically,	 limited	 memory	 capacity	 leads	 to	 difficulties	 in	
storing	 and	 retrieving	 low-frequency	 items,	 which	 prompts	 overuse	 of	 more	
frequent	 forms	 leading	 to	 overgeneralization.	 Consequently,	 a	 few	 studies	
investigated	 the	 exact	 nature	 of	 these	 cognitive	 constraints	 and	 the	 exact	
mechanisms	by	which	they	operate	and	affect	rule	induction.	They	showed	that,	
while	 there	 is	 some	 evidence	 for	 the	 Less-is-More	 hypothesis	 on	 memory	
constraints	modulating	 rule	 induction	 (Hudson	 Kam	&	 Chang,	 2009;	 Hudson	
Kam	&	Newport,	2005;	Hudson	Kam	&	Newport,	2009;	Wonnacott,	2011),	it	is	
not	yet	 clear	under	what	 specific	 circumstances	and	why	memory	constraints	
should	have	a	certain	effect	on	rule	 learning	(Perfors,	2012).	The	Less-is-More	
hypothesis	was	also	investigated	in	terms	of	its	domain-generality,	and	studies	
found	that	cognitive	constraints	are	also	reflected	in	the	regularization	behavior	
in	non-linguistic	domains	(Kareev,	Lieberman,	and	Lev,	1997;	Ferdinand,	Kirby,	
and	Smith,	2018),	while	other	studies	found	that	the	regularization	tendencies	
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and	patterns	are	very	similar	across	domains	and	language	levels	–	morphology	
vs	word	order	(Saldana,	Smith,	Kirby,	&	Culbertson,	2017).		
	 Nevertheless,	the	exact	cognitive	load	and	mechanisms	at	stake	in	rule	
induction	 have	 yet	 to	 be	 thoroughly	 specified	 and	 understood.	 To	 this	 end,	
Radulescu	 et	 al.	 (2019)	 offer	 an	 extended	 and	 more	 refined	 information-
theoretic	 approach	 to	 the	 Less-is-More	 hypothesis,	 by	 proposing	 an	 entropy	
model	 for	 rule	 induction,	 which	 quantifies	 the	 specific	 pattern	 of	 statistical	
variability	in	the	input	(i.e.	input	entropy	–	measured	in	bits	of	information)	to	
which	the	brain	is	sensitive.	Our	model	hypothesizes	that	rule	induction	is	driven	
by	the	interaction	between	the	input	entropy	and	the	finite	encoding	capacity	of	
the	brain	(i.e.	channel	capacity).	Crucially,	the	model	proposes	that	rule	induction	
is	an	automatic	process	that	moves	gradually	–	bit	by	bit	–	from	a	high-fidelity	
item-specific	encoding	(item-bound	generalization)	 to	a	more	general	abstract	
encoding	(category-based	generalization),	as	a	result	of	the	input	entropy	being	
higher	than	the	channel	capacity,	i.e.	the	maximum	rate	of	information	encoding	
(bits/s).		
	 The	model	is	based	on	Shannon’s	entropy	and	channel	capacity	concepts	
(Shannon,	 1948),	 and	 Shannon’s	 noisy-channel	 coding	 theory,	 which	 says,	 in	
short,	 that	 in	 a	 communication	 system,	 a	 message	 (or	 information)	 can	 be	
transmitted	reliably	(i.e.	with	the	least	loss	of	information),	if	an	only	if	encoded	
by	 using	 an	 encoding	 method	 that	 is	 efficient	 enough	 so	 that	 the	 rate	 of	
information	 transmission	 (i.e.	 per	 unit	 of	 time),	 including	 noise,	 is	 below	 the	
channel’s	 capacity.	 If	 the	 rate	of	 information	 transmission	 (bit	 rate)	 is	 higher	
than	the	channel	capacity,	then	another	more	efficient	encoding	method	can	be	
found,	but	the	channel	capacity	cannot	be	exceeded.		
	 Based	on	these	concepts,	our	entropy	model	 for	rule	 induction	posits	
that	 the	 change	 in	 the	encoding	method	–	 from	 item-bound	 to	category-based	
generalization	 –	 is	driven	by	a	kind	of	 a	 regulatory	mechanism,	which	moves	
from	an	inefficient	encoding	method	(i.e.	with	high	loss	of	information),	to	a	more	
efficient	encoding	method,	which	allows	for	higher	input	entropy	to	be	encoded	
reliably	(with	the	least	loss	of	information	possible)	per	unit	of	time,	but	crucially	
below	 the	 channel’s	 capacity.	 Loss	of	 information	 (or	uncertainty	 at	 learner’s	
end,	in	information-theoretic	terms)	should	be	understood	as	the	missing	bits	of	
information	caused	by	the	noise	interference	during	transmission	through	the	
channel	 in	 time.	 Thus,	 this	model	 adds	 into	 the	 rule	 induction	 “formula”	 the	
crucial	 dimension	 of	 time,	 i.e.	 the	 rate	 of	 encoding	 information	 by	 a	 time-
sensitive	encoding	mechanism,	and	consequently	the	decrease	of	system’s	loss	
of	information	in	time	by	moving	to	a	more	efficient	encoding.	
	 Indeed,	 previously	 a	 few	 studies	 used	 different	 (not	 information-
theoretic)	ways	of	quantifying	and	manipulating	a	time-dependent	variable,	in	
order	to	investigate	the	role	it	plays	in	category	learning	(longer	exposure	time	
–	 Endress	 &	 Bonatti,	 2007; Reeder,	 Newport,	 &	 Aslin,	 2009;	 2013),	 in	 non-
adjacent	dependency	learning	(faster	speech	rate	–	Wang,	Zevin	&	Mintz,	2016;	
2019)	and	in	auditory	statistical	learning	(temporal	distance	between	successive	
stimuli	–	Emberson,	Conway	&	Christiansen,	2011).	Even	though	all	these	studies	
used	different	designs,	different	stimulus	material,	and	different	approaches	to	
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the	temporal	variable	they	manipulated,	nevertheless,	a	clear	pattern	stands	out,	
namely	 that	 generally	 a	 shorter	 time	 is	 beneficial	 to	 auditory	 rule	 (category)	
learning.	However,	the	exact	amount	of	time,	the	mechanism	and	the	reasons	for	
it	having	a	positive	effect	on	rule	learning	are	still	to	be	fully	investigated	and	
understood.		
	 In	 order	 to	 answer	 these	 questions,	 this	 study	 further	 extends	 the	
entropy	 model	 we	 proposed	 in	 Radulescu	 et	 al.	 (2019),	 and	 puts	 forth	 an	
innovative	information-theoretic	approach	to	the	time-dependent	variable,	that	
is	not	by	an	arbitrary	manipulation	of	 the	amount	of	 time	between	stimuli	or	
exposure	time,	but	by	employing	the	information-theoretic	concept	of	channel	
capacity	and	Shannon’s	noisy-channel	coding	theory.		
	 To	sum	up,	the	goal	of	this	study	is	two-fold:	theoretical,	since	to	the	best	
of	our	knowledge	this	is	the	first	study	that	applies	Shannon’s	concept	of	channel	
capacity	 and	 his	 noisy-channel	 coding	 theory	 to	 artificial	 grammar	 learning.	
Specifically,	 we	 will	 further	 extend	 our	 entropy	 model	 by	 defining	 channel	
capacity,	 and	 giving	 a	 concrete	 example	 of	 how	 we	 can	 apply	 and	 estimate	
Shannon’s	channel	capacity	in	artificial	grammar	learning	(e.g.	our	experiments	
from	 Radulescu	 et	 al.,	 2019).	 The	 second	 goal	 of	 our	 study	 is	 experimental,	
namely	 we	 will	 take	 the	 next	 logical	 step	 of	 directly	 manipulating	 the	 time-
dependent	 variable	 of	 the	 channel	 capacity	 in	 two	 other	 artificial	 grammar	
experiments,	which	specifically	test	channel	capacity	hypotheses	posed	by	our	
entropy	model.		
	 Therefore,	we	will	first	briefly	introduce	our	entropy	model	supported	
by	 our	 previous	 findings,	 then	 we	 will	 present	 the	 channel	 capacity	 and	
Shannon’s	noisy-channel	coding	theory.	Next,	we	will	give	an	example	and	a	brief	
proof	of	concept,	by	showing	how	channel	capacity	and	the	rate	of	information	
transmission	 can	 be	 applied	 and	 quantified	 in	 an	 artificial	 language	 learning	
environment	 for	 rule	 induction,	 i.e.	 our	 previous	 experiments	 reported	 in	
Radulescu	et	al.	(2019).	These	quantifications	enable	an	estimation	of	channel	
capacity,	which	we	will	use	in	the	second	part	of	the	current	study	in	order	to	
manipulate	experimentally	an	increase	in	source	rate	of	entropy	per	second	that	
we	can	safely	assume	to	be	higher	than	the	estimated	rate	of	the	channel	capacity.	
Specifically,	we	will	present	 two	artificial	 grammar	experiments,	 in	which	we	
speed	up	the	bit	rate	of	information	transmission	by	a	factor	that	we	calculated	
from	 data	 obtained	 in	 our	 previous	 experiments,	 by	 using	 the	 information-
theoretic	concepts	of	channel	capacity	and	rate	of	information	transmission.	
	
2.	An	Entropy	Model	for	Rule	Induction	
	
Among	 other	 studies	 that	 used	 entropy	measures	 to	 look	 into	 regularization	
patterns	 (Ferdinand,	 2015;	 Ferdinand,	 Kirby,	 &	 Smith,	 2019;	 Perfors,	 2012;	
Perfors,	2016;	Saldana,	Smith,	Kirby,	&	Culbertson,	2017;	Samara,	Smith,	Brown,	
and	Wonnacott,	2017),	Radulescu	et	al.	(2019)	and	the	present	study	take	a	step	
further	and	propose	an	information-theoretic	model	that	captures	the	dynamics	
of	the	interaction	between	the	input	entropy	and	the	encoding	capacity	(channel	
capacity).	 This	 model	 specifies	 a	 quantitative	 measure	 for	 the	 likelihood	 of	
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transitioning	 from	 encoding	 specific	 probability	 distributions	 to	 category	
formation.	 Specifically,	 our	 model	 hypothesizes	 that	 the	 gradient	 of	
generalization	(Aslin	&	Newport,	2012)	results	from	a	bit	by	bit	increase	in	input	
entropy	 per	 unit	 of	 time,	which	 gradually	 adds	 up	 to	 the	 maximum	 rate	 of	
information	transmission	(bits/s),	i.e.	channel	capacity	of	the	learning	system.	

Given	a	random	variable	X,	with	n	values	{x1,	x2	…	xn},	Shannon’s	entropy	
(Shannon,	1948),	denoted	by	H(X),	is	defined	as:	

H(X)	=	–	∑ 𝑝(𝑥!)𝑙𝑜𝑔𝑝(𝑥!)"
!#$

22;		
where	p(xi)	 is	the	occurrence	probability	of	xi.	This	quantity	(H)	measures	the	
information	per	symbol	produced	by	a	source	of	input,	i.e.	it	is	a	measure	of	the	
average	 uncertainty	 (or	 surprise)	 carried	 by	 a	 symbol	produced	 by	 a	 source,	
relative	 to	 all	 the	 possible	 symbols	 (values)	 contained	 by	 the	 set	 (Shannon,	
1948).	

In	Radulescu	et	al.	 (2019),	 in	 two	artificial	grammar	experiments,	we	
exposed	 adults	 to	 a	 3-syllable	 XXY	 artificial	 grammar.	 We	 designed	 six	
experimental	conditions	with	increasing	input	entropy	(2.8,	3.5,	4,	4.2,	4.58,	4.8	
bits).	Results	showed	that	an	increase	in	input	entropy	gradually	shaped	item-
bound	generalization	into	category-based	generalization	(Radulescu	et	al.,	2019).	
Thus,	we	obtained	a	precise	measure	of	learner’s	sensitivity	to	the	input	entropy:	
learner’s	 information	 load	 (=surprise)	 about	 the	 XXY	 structure	 decreases	
logarithmically	 as	 the	 input	 entropy	 increases	 (Fig.	 1).	 These	 findings	 bring	
strong	evidence	for	the	gradient	of	generalization	depending	on	the	probabilistic	
properties	of	the	input,	as	proposed	by	Aslin	&	Newport	(2014).	

While	in	Radulescu	et	al.	(2019)	we	probed	the	effect	of	the	first	factor	
(input	entropy),	in	this	study	we	further	develop	and	test	the	model	by	probing	
the	effect	of	the	second	factor	–	channel	capacity	–	on	rule	induction.	

	

	

 
22	Log	should	be	read	as	log	to	the	base	2	here	and	throughout	the	paper.	
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Figure	1.	Information	load	of	the	learner	regarding	XXY	rule	per	input	entropy.	
Taken	from	(Radulescu	et	al.,	2019)	

	
2.2	Channel	capacity	in	information-theoretic	terms	
	
This	section	elaborates	on	the	other	factor	of	our	entropy	model,	namely	channel	
capacity,	 which	 is	 another	 information-theoretic	 concept	 closely	 related	 to	
entropy	 in	Shannon’s	noisy	channel	coding	theory	of	a	communication	system.	
Shannon	 (1948)	 defines	 a	 communication	 system	 as	 having	 five	 main	
components:	an	information	source	(which	produces	a	message),	a	transmitter	
(which	 encodes	 the	 message	 into	 a	 signal),	 a	 channel	 (the	 medium	 used	 to	
transmit	 the	 signal),	 a	 receiver	 (which	 does	 the	 inverse	 operation	 of	 the	
transmitter,	 that	 is	 decodes	 the	 signal	 to	 reconstruct	 the	 message),	 and	 a	
destination	(the	person	or	thing	for	which	the	message	is	intended).	In	simple	
words,	 an	 information	 source	 produces	 a	 message,	 which	 is	 encoded	 by	 a	
transmitter	 into	 a	 signal	 to	 be	 transmitted	 to	 a	 destination.	 The	 information	
transmission	occurs	via	a	medium,	i.e.	a	channel	of	transmission,	and	it	reaches	
a	 receiver,	 which	 performs	 the	 decoding	 operation	 on	 the	 signal	 in	 order	 to	
reconstruct	 the	message	 to	 deliver	 to	 the	 destination.	 The	main	 factor	 under	
investigation	here	is	the	medium	used	for	the	transmission	of	the	information,	
i.e.	the	channel,	and	its	capacity	for	information	transmission.	It	follows,	and	it	
must	be	specified	that	the	process	of	information	transmission	encompasses	all	
processes	 starting	with	 the	 information	 transmission	 from	 the	 source	 to	 the	
destination,	that	is	all	the	transmission	and	encoding	–	decoding	processes.	
	 Now,	having	briefly	described	the	process	of	information	transmission,	
we	can	move	on	to	define	the	channel	capacity.	In	order	to	do	so,	we	first	have	to	
define	the	two	main	factors	that	are	relevant	for	the	channel	capacity:	the	source	
rate	of	information	transmission	and	the	noise.	Since	the	process	of	information	
transmission	 occurs	 in	 time,	 Shannon	 defined	 the	 concept	 of	 source	 rate	 of	
information	 transmission,	 which	 is	 the	 amount	 of	 information	 that	 a	 source	
transmits	per	unit	of	time.	Since	information	is	measured	by	using	entropy,	the	
source	 rate	of	 information	 transmission	 (H’)	 is	 the	amount	of	entropy	 that	 the	
source	 produces	 per	 unit	 of	 time	 (bits/s),	 or	 the	 source	 rate	 of	 information	
production.	
	 Another	important	aspect	in	Shannon’s	theory	was	the	fact	that	the	ideal	
case	of	a	noiseless	transmission	 is	nearly	 impossible	to	achieve	under	normal	
real-life	conditions.	Thus,	when	defining	the	communication	channel,	Shannon	
also	 took	 into	 account	 another	 variable,	 i.e.	 the	 noise.	 In	 Shannon’s	
communication	 theory,	 noise	 is	 defined	 as	 any	 random	 perturbations	 that	
interfere	with	the	signal,	thus	rendering	a	noisy	channel.	The	noise	might	perturb	
the	signal	during	transmission	through	the	channel	or	at	either	terminal	end,	i.e.	
transmitter	and	receiver’s	end.	As	a	result,	there	is	uncertainty	when	decoding	
the	sent	signal	and	reconstructing	the	message,	which	results	from	the	missing	
bits	 of	 information	due	 to	 a	noisy	 transmission.	 Shannon	 (1948)	defined	 this	
uncertainty,	which	is	in	fact	a	loss	of	information,	as	rate	of	equivocation	(E).	The	
rate	 of	 equivocation	 (i.e.	 missing	 bits	 of	 information)	 can	 be	 minimized	 by	
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certain	methods,	but	it	cannot	be	reduced	to	zero	by	any	operation	performed	
on	 the	 received	 signal,	 thus	 it	 is	 not	 possible	 in	 general	 to	 reconstruct	 the	
transmitted	signal	with	total	certainty	(Shannon,	1948).		
	 After	having	defined	all	 these	concepts,	 the	actual	rate	of	 information	
transmission	(R)	in	a	noisy	environment	can	be	obtained	by	subtracting	the	rate	
of	 equivocation	 (E)	 from	 the	 source	 rate	 of	 information	 transmission	 –	 H’	
(Shannon,	1948):	
	 	R	=	H’	–	E.	
	 Note	that	the	actual	rate	of	information	transmission	(R)	is	different	from	
the	source	rate	of	information	transmission	(H’),	since	it	takes	into	account	the	
information	 loss	 due	 to	 noise	 (E),	 which	 occurs	 in	 the	 transmission	 of	
information	from	the	source	to	the	destination.	The	source	rate	of	 information	
transmission	 (H’)	 is	 the	 rate	 at	 which	 the	 source	 produces	 and	 transmits	
information	(i.e.	the	source	rate	of	information	production),	while	the	actual	rate	
of	 information	transmission	 (R)	 is	quantified	at	the	other	terminal	end,	 i.e.	 the	
receiver,	after	the	noise	had	caused	a	loss	in	information	(E).	
	 Having	 described	 and	 defined	 the	 communication	 channel	 and	 the	
process	of	information	transmission,	we	can	go	on	to	define	the	factor	at	stake	in	
our	entropy	model,	namely	channel	 capacity	 (C).	 Shannon	 (1948)	argued	and	
demonstrated	mathematically	that	the	capacity	of	a	noisy	channel	should	be	the	
maximum	possible	rate	of	information	transmission	(R),	which	can	be	obtained	
if	and	only	if	the	encoding	method	is	adequate	and	efficient:	
	 C	=	Max	(R)	=	Max	(H’	–	E).	
	 In	other	words,	the	maximum	rate	of	information	transmission,	i.e.	the	
channel	 capacity,	 can	 be	 achieved	 by	 employing	 an	 adequate	 and	 efficient	
method	of	encoding,	such	that	the	rate	of	equivocation	(E)	is	kept	at	a	minimum,	
so	that	the	rate	of	information	transmission	is	as	close	as	possible	to	the	source	
rate	 of	 production.	 That	 means	 that	 the	 received	 signal	 will	 be	 as	 close	 as	
possible	to	the	sent	signal,	and	consequently	the	message	will	be	received	with	
the	least	uncertainty	(i.e.	the	least	loss	of	information).	
	 According	 to	Theorem	11	by	 Shannon	 (1948),	 given	 a	 certain	 source	
with	a	 rate	of	 information	production	H’	 (entropy	per	unit	of	 time),	 if	H’	<	C,	
information	can	be	sent	through	a	noisy	channel	at	the	rate	C	with	an	arbitrarily	
small	 frequency	 of	 errors	 by	 using	 a	 proper	 encoding	method.	 If	 H’	 >	 C,	 it	 is	
possible	to	find	an	encoding	method	to	transmit	the	signal	over	the	channel,	such	
that	the	rate	of	equivocation	is	minimum,	as	specified	by	Shannon	–	less	than	H’	
–	C	+	e	(e	stands	for	errors),	but	the	rate	of	transmission	can	never	exceed	C.	If	
there	is	an	attempt	to	transmit	a	message	at	a	higher	rate	than	C,	by	using	the	
same	encoding	method,	then	there	will	be	an	equivocation	rate	at	least	equal	to	
the	excess	rate	of	transmission.	In	other	words,	this	means	that	a	message	can	
only	be	communicated	reliably	if	it	is	encoded	in	such	a	way,	i.e.	using	an	efficient	
encoding	method,	so	that	the	rate	of	information	transmission,	including	noise,	
is	below	the	capacity	of	the	channel.		
	 It	follows	that,	the	efficiency	of	the	encoding	method	is	defined	by	the	
ratio	 of	 the	 actual	 rate	 of	 transmission	 to	 the	 capacity	 of	 the	 channel.	 If	 the	
encoding	method	is	maximally	efficient,	the	equivocation	rate	(E)	is	minimum,	
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so	the	actual	rate	of	transmission	(R)	approaches	its	maximum,	which	is	the	
channel	capacity:	C	=	Max(H'	-	E)	=	Max(R).	In	the	ideal	noiseless	case	(where	
E	=	0),	R/C	=	1,	because	R	=	C.	If	the	encoding	method	is	less	than	maximally	
efficient,	the	equivocation	rate	is	higher	than	0	(E	>	0),	so	R	is	lower	than	C,	
thus,	R/C	<	1.	In	other	words,	an	encoding	method	is	efficient	if	the	equivocation	
rate	is	minimum	in	order	for	the	rate	of	transmission	to	achieve	its	maximum	to	
match	 the	 channel	 capacity.	 If	 the	 rate	 of	 equivocation	 increases,	 the	 rate	 of	
transmission	 decreases,	 which	 drives	 the	 need	 for	 finding	 a	 more	 efficient	
encoding	method,	in	order	to	achieve	a	lower	rate	of	equivocation.	
	 It	 follows	 that	 the	 birth	 of	 a	 new	more	 efficient	 encoding	method	 is	
signaled	by	an	initial	increase	of	the	rate	of	equivocation,	followed	by	a	decrease	
in	 the	 rate	 of	 equivocation,	 which	 shows	 the	 system	 has	 found	 an	 encoding	
method	which	allows	for	the	maximum	rate	of	information	transmission	to	be	
reached.	 We	 will	 come	 back	 to	 show	 how	 this	 prediction	 can	 be	 probed	
experimentally	 in	 an	 artificial	 grammar	 learning	 environment,	 in	 section	 2.4,	
where	we	give	a	brief	proof	of	 the	 concept	of	channel	 capacity,	 and	we	 show	
information-theoretic	evidence	 for	 the	 transition	 to	a	more	efficient	encoding	
method,	based	on	our	previous	experiments	from	Radulescu	et	al.	(2019).	
	
2.3	Main	hypotheses	of	the	model	about	the	effect	of	channel	capacity	on	
rule	induction		
	
Before	going	into	more	details	about	channel	capacity	in	information-theoretic	
terms,	 here	 are	 the	main	 general	 hypotheses	of	 the	 entropy	model	 about	 the	
effect	of	channel	capacity	on	rule	induction:	
	 1.	 Item-bound	 generalization	 and	 category-based	 generalization	 are	
outcomes	of	the	same	information	encoding	mechanism	that	gradually	goes	from	
a	high-specificity	form	of	encoding	(item-bound	generalization)	to	a	more	general	
abstract	 encoding	 (category-based	 generalization),	 as	 triggered	 by	 the	
interaction	 between	 input	 entropy	 and	 the	 finite	 encoding	 capacity	 of	 the	
learning	 system.	 The	 encoding	 mechanism	 moves	 from	 an	 item-bound	 to	 a	
category-based	generalization	as	the	input	entropy	per	unit	of	time	increases	and	
becomes	 higher	 than	 the	maximum	 rate	 of	 information	 transmission,	 i.e.	 the	
channel	capacity,	as	follows:	
	 a.	If	the	source	rate	of	information	transmission	(H’	–	that	is	the	average	
entropy	produced	by	the	source	per	second	–	input	entropy	per	second)	is	below	
or	matches	the	channel	capacity,	then	the	information	can	be	encoded	using	an	
encoding	method	which	matches	 the	 statistical	 structure	 of	 the	 input,	 i.e.	 the	
probability	 distribution	 of	 the	 specific	 items	 in	 the	 input.	 Thus,	 if	 H’≤C,	 the	
information	 about	 specific	 items	 with	 their	 uniquely-identifying	 (acoustic,	
phonological,	 phonotactic,	 prosodic,	 distributional,	 etc.)	 features	 and	 their	
probability	distribution	(i.e.	input	entropy)	can	be	encoded	with	a	high-fidelity	
item	 specificity,	 and	 transmitted	 through	 the	 channel,	 with	 little	 loss	 of	
information,	at	the	channel	rate	–	the	maximum	rate	of	information	transmission	
–	and	encoded	by	item-bound	generalization.	If	H’>C,	item-bound	generalization	
is	impeded.	
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	 b.	 If	 an	 attempt	 is	made	 to	 exceed	 the	 finite	 channel	 capacity	 of	 the	
encoding	system,	that	is	the	source	rate	of	information	transmission	(H’	–	input	
entropy	per	second)	does	not	match	the	channel	capacity,	but	it	is	higher	than	the	
channel	 capacity,	 it	 is	 possible	 to	 find	 a	 proper	 method	 that	 encodes	 more	
information	(entropy),	but	the	rate	of	information	transmission	cannot	exceed	
the	 available	 channel	 capacity.	 According	 to	 Theorem	 11	 (Shannon,	 1948),	 if	
there	is	an	attempt	to	transmit	information	at	a	higher	rate	than	C,	by	using	the	
same	encoding	method,	then	there	will	be	an	equivocation	rate	at	least	equal	to	
the	 excess	 rate	 of	 transmission.	 In	 other	words,	 the	 increased	 source	 rate	 of	
information	(H’>C)	brings	higher	inflow	of	noise,	which	interferes	with	the	signal	
and	 causes	 an	 increased	 equivocation	 rate	 or	 information	 loss	 (as	 explained	
above).	Thus,	we	hypothesize	that	it	is	precisely	the	finite	channel	capacity	which	
drives	restructuring	of	the	information,	in	order	to	find	another	more	efficient	
encoding	method.	A	more	efficient	encoding	allows	for	higher	input	entropy	per	
second	to	be	encoded	reliably	(with	the	least	information	loss	possible).		
	 As	we	argued	in	Radulescu	et	al.	(2019),	information	is	re-structured	by	
(unconsciously)	 re-observing	 the	 item-specific	 features	 and	 the	 structural	
properties	of	 the	 input.	Noise	 introduces	random	perturbations	 that	 interfere	
with	 the	 signal	 and	 the	 feature	 configuration.	 This	 leads	 to	 instability,	which	
unbinds	 features	and	sets	 them	free	 to	 interact	and	bind	 into	new	structures.	
Thence,	similarities	(shared	features)	which	have	a	higher	significance	(i.e.	are	
‘stronger’	due	to	their	higher	probability)	are	kept	in	the	new	encoding,	while	
differences	between	items	(unshared	features),	which	are	insignificant	features	
(e.g.	 low	probability	 ‘noisy’	 features)	are	erased	or	 ‘forgotten’.	This	 leads	 to	a	
compression	of	the	signal	by	reducing	the	number	of	unshared	‘noisy’	features	
encoded	with	 individual	 items	 (i.e.	bits	of	 information)	and	grouping	 them	 in	
‘buckets’	 (categories).	 As	 a	 result,	 a	 new	 form	 of	 encoding	 is	 created,	 which	
allows	 for	 higher	 input	 entropy	 to	 be	 encoded	 using	 the	 available	 channel	
capacity,	 thus	yielding	a	more	general	 (less	 specific)	category-based	encoding	
method.	Thus,	the	finite	channel	capacity	is	designed	to	drive	re-structuring	of	
the	information	for	the	purpose	of	adapting	to	noisier	(=increasingly	entropic)	
environments,	by	the	principle	of	self-organization	in	line	with	Dynamic	Systems	
Theory	invoked	in	studies	of	other	cognitive	mechanisms,	e.g.	Stephen,	Dixon,	
and	Isenhower	(2009).	
	 2.	Channel	capacity	is	used	here	to	model	the	encoding	capacity	used	in	
linguistic	 rule	 induction,	 in	 information-theoretic	 terms	 (i.e.	 at	 the	
computational	level,	in	the	sense	of	Marr	(1982))23.	In	psychological	terms	(at	
the	algorithmic	 level),	we	 follow	experimental	evidence	 from	the	Less-is-More	
hypothesis	 line	 of	 research,	 which	 suggests	 that	 memory	 constraints	 drive	

 
23	 Although	 with	 different	 definitions	 and	 applications,	 channel	 capacity	 has	
previously	been	used	in	early	work	on	capacity	in	memory	studies	in	psychology	
(Miller,	 1956)	 and	 in	 more	 recent	 mathematical	 modelling	 for	 inferring	
workload	capacity	using	response	time	hazard	functions	(Townsend	&	Ashby,	
1978;Townsend	&	Eidels,	2011).	
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linguistic	 rule	 induction	 (Hudson	 Kam	 &	 Newport,	 2005;	 Hudson	 Kam	 &	
Newport,	2009),	and	we	embed	this	in	classical	and	recent	models	of	memory	
and	 attention	 (Baddeley,	 Eysenck,	 and	 Anderson,	 2015;	 Cowan,	 2005;	Miller,	
1956;	 Oberauer	 &	 Hein,	 2012).	 Hence,	 we	 hypothesize	 that	 the	 cognitive	
capacities	that	underlie	channel	capacity,	specifically	in	linguistic	rule	induction	
(and,	implicitly,	in	category	formation),	are	the	attentionally-controlled	regions	
of	 activated	 long-term	memory,	 in	other	words	working	memory	 (WM).	Rule	
induction	 can	 be	 argued	 to	 rely	 on	 the	 storage	 and	 online	 time-dependent	
processing	capacities	 that	 support	 the	ability	 to	maintain	active	goal-relevant	
information	 (the	 rule)	 while	 concurrent	 processing	 (of	 other	 possible	
hypotheses,	 and	 of	 noise)	 takes	 place	 (which	 is	 what	 defines	 WM	 as	 well	 –	
Conway	et	al.,	2002).	Corroborating	evidence	comes	from	positive	correlations	
found	 between	WM	 and	 domain-general	 categorization	 tasks	 (Lewandowsky,	
2011).		
	 Thus,	while	we	generally	deem	linguistic	rule	induction	to	be	supported	
by	a	domain-general	WM	capacity,	rather	than	language-specific	algebraic	rule	
learning	as	proposed	by	early	prominent	research	(Marcus	et	al.,	1999),	in	the	
current	 study	 we	 are	 exploring	 specific	 possible	 WM	 components	 directly	
involved	in	linguistic	rule	induction,	besides	more	general	storage	and	retrieval	
components	 tested	 in	 previous	 studies	 under	 the	 Less-is-More	 hypothesis	
(Hudson	Kam	&	Chang,	2009;	Perfors,	2012).	Hence,	we	specifically	predict	that	
one	of	the	components	underlying	channel	capacity	in	linguistic	rule	induction	is	
a	domain-general	pattern	recognition	capacity,	given	that	a	rule	induction	task	
can	be	intuitively	envisaged	as	a	task	of	finding	patterns/rules	in	the	input.		
	 A	possible	candidate	test	of	domain-general	pattern	recognition	is	the	
Raven’s	Standard	Progressive	Matrices	(RAVENS	–	Raven,	Raven,	&	Court,	2000),	
which	was	shown	to	be	based	on	rule	induction	(Carpenter,	Just	&	Shell,	1990;	
Little,	Lewandowsky,	&	Griffiths,	2012)	and	to	rely	on	similar	storage	and	online	
time-dependent	 processing	 capacities	 to	 maintain	 active	 goal-relevant	
information	(the	rule)	while	concurrent	processing	takes	place	(Conway	et	al.,	
2002).	Although	this	pattern	recognition	test	and	WM	capacity	are	not	identical	
(Conway	 et	 al.,	 2003),	 and	 apparently	WM	 is	 not	 a	 causal	 factor	 for	 pattern	
recognition	 either	 (Burgoyne,	 Hambrick,	 &	 Altmann,	 2019),	 high	 positive	
correlations	were	 found	between	measures	of	WM	capacity	and	 tests	 for	 this	
domain-general	pattern-recognition	capacity	(like	RAVENS	–	e.g.	Conway	et	al.,	
2002;	Little,	Lewandowsky	and	Craig,	2014;	Dehn,	2017).	
	 3.	 A	 developmental	 increase	 of	 channel	 capacity,	 (e.g.	 resulting	 from	
growth/development	 of	 the	 underlying	 cognitive	 capacities)	 entails	 higher	
amount	of	entropy	that	can	be	encoded	per	unit	of	time,	and	thus	it	reduces	the	
need	 and	 the	 tendency	 to	 move	 to	 a	 higher-order	 category-based	 form	 of	
encoding.	 Thus,	 if	 young	 and	 adult	 learners	 are	 exposed	 to	 the	 same	 input	
entropy,	 young	 learners	 will	 have	 a	 higher	 tendency	 to	 encode	 the	 input	 as	
category-based	generalization	than	adults,	because	young	learners’	channel	has	
a	lower	information	encoding	rate.	There	is	experimental	evidence	from	the	Less-
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is-More	hypothesis	line	of	research	in	favor	of	our	hypothesis,	according	to	which	
limited	memory	capacity	in	young	learners	might	lead	to	difficulties	in	storing	
and	 retrieving	 low-frequency	 items,	 therefore	 prompting	 overuse	 of	 more	
frequent	 forms,	 which	 leads	 to	 overgeneralization	 (Hudson	 Kam	&	 Newport,	
2005;	Hudson	Kam	&	Newport,	2009).	

2.4.	Channel	capacity	and	rate	of	transmission	in	an	artificial	grammar	
experiment.	A	Brief	Proof	of	Concept	
	
After	having	briefly	presented	a	communication	system	in	Shannon’s	terms	and	
having	 defined	 the	 key	 concepts	 and	 potential	 psychological	 mechanisms	
implementing	key	notions,	let	us	next	describe	the	process	of	artificial	grammar	
learning	as	such	a	system,	in	order	to	offer	a	brief	proof	of	concept	regarding	the	
effect	of	channel	capacity	on	rule	induction.	In	this	section,	we	first	describe	the	
experiments	 by	 Radulescu	 et	 al.	 (2019)	 in	 Shannon’s	 information-theoretic	
terms	of	a	communication	system,	then	we	show	how	the	rate	of	equivocation	
and	the	maximum	rate	of	information	transmission,	i.e.	channel	capacity,	can	be	
estimated	 in	 these	 experiments.	 Finally,	 we	 show	 how	 we	 can	 probe	
experimentally	a	specific	prediction	(which	we	briefly	formulated	in	section	2.2)	
that	 follows	 from	 the	noisy	 channel	 capacity	hypothesis	 (1.b).	This	prediction	
specifies	what	exactly	signals	a	change	into	a	more	efficient	encoding	method,	
such	that	we	can	conclude	that	the	item-bound	generalization	transitioned	to	the	
category-based	 generalization,	 due	 to	 a	 higher	 source	 rate	 of	 information	
transmission	 than	 the	 available	 channel	 capacity.	 Namely,	 in	 accord	 with	
Shannon’s	definition	of	channel	capacity	and	Theorem	11,	we	predict	 that	 the	
birth	of	a	new	more	efficient	encoding	method	(as	defined	previously	in	section	
2.2)	is	signaled	by	an	initial	increase	of	the	rate	of	equivocation,	followed	by	a	
decrease	of	the	rate	of	equivocation.	
	 Prediction:	when	increasing	source	rate	of	 information	transmission,	 if	
we	obtain	an	increase	followed	by	a	decrease	of	rate	of	equivocation,	it	means	there	
was	indeed	a	change	in	encoding	method	which	was	caused	by	a	higher	source	
rate	of	information	transmission	than	the	available	channel	capacity.	
	 In	other	words,	the	initial	increase	of	the	rate	of	equivocation	caused	by	
an	increase	in	the	source	rate	of	information	transmission	(H’)	shows	that	the	
old	encoding	method	is	no	longer	efficient	for	reliable	information	transmission,	
(i.e.	the	loss	of	information	due	to	noise	is	very	high).	The	subsequent	decrease	
in	 the	 rate	 of	 equivocation,	 shows	 that	 in	 order	 to	 cope	with	 a	 higher	 input	
entropy	per	second	than	the	available	channel	capacity,	the	system	found	a	new	
encoding	 method	 which	 allows	 for	 the	 maximum	 rate	 of	 information	
transmission	to	be	reached.	Here	we	show	an	innovative	way	to	calculate	and	
measure	experimentally	the	 increase	and	decrease	of	the	rate	of	equivocation	
(i.e.	the	loss	in	bits	of	information	against	the	sent	signal,	which	creates	learner’s	
uncertainty	about	the	message)	in	order	to	estimate	the	channel	capacity,	and	to	
show	 (in	 information-theoretic	 terms)	 the	 transition	 from	 item-bound	
generalization	to	category-based	generalization	in	artificial	grammar	learning.	
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	 It	 is	 important	 to	disambiguate	 the	meaning	of	 the	word	uncertainty:	
this	 should	 not	 be	 understood	 in	 psychological	 terms,	 i.e.	 as	 the	 condition	 of	
being	 in	doubt.	The	meaning	of	 this	 term	in	 this	chapter,	and	throughout	 this	
dissertation,	 is	 the	 information-theoretic	 meaning	 of	 entropy,	 as	 defined	 by	
Shannon	(1948).		
	 To	 this	 end,	 let	 us	 first	 describe	 an	 artificial	 grammar	 experiment	 in	
Shannon’s	 information-theoretic	 terms	of	 a	 communication	 system,	 by	 taking	
the	 example	 of	 our	 experiments	 from	 Radulescu	 et	 al.	 (2019):	 an	 artificial	
grammar	(the	source)	produces	a	miniature	XXY	language	(the	message).	The	
message	 is	 a	 stream	 of	 clusters	 of	 acoustic	 frequency	 patterns	 perceived	 as	
syllables,	with	 a	 syllable	 structure	 that	 observes	Dutch	 phonotactics,	 and	 the	
stream	 is	 structured	 consistently	 in	 3-syllable	 strings	 with	 very	 specific	
combinatorial	properties	for	the	bigrams	and	trigrams	of	syllables:	[XX]	–	first	
bigram	 has	 a	 syllable	 and	 its	 duplicate,	 [XY]	 –	 the	 second	 bigram	 has	 two	
different	 syllables,	 [XXY]	–	 the	 trigram	has	 a	 same-same-different	 structure	of	
syllables.		
	 A	 pseudo-artificial24	 language	 system	 (the	 transmitter)	 encodes	 this	
message	into	a	signal	(signal	=	the	set	of	all	possible	XXY	strings	that	could	belong	
to	the	language).	In	Radulescu	et	al.	(2019),	we	used	six	signal	versions	(signal	
version	=	a	particular	set	out	of	the	possible	XXY	strings):	S	=	{S1,	S2,	…	S6}.	All	
six	 signal	 versions	 have	 the	 same-same-different	 structure,	 but	 a	 different	
entropy	at	the	level	of	bigram/trigram	combinatorics	(HS	=	{H1,	H2,	…	H6}	=	{2.8,	
3.5,	4,	4.2,	4.58,	4.8	bits}).	In	terms	of	experimental	design,	each	signal	version	(S	
=	{S1,	S2,	…	S6})	corresponds	to	one	of	the	six	sets	of	stimuli	presented	in	each	
experimental	condition	in	Radulescu	et	al.	(2019).	The	signal	entropy	increases	
from	 S1	 to	 S6,	 depending	 on	 the	 number	 of	 bigrams/trigrams	 and	 their	
probability	 distribution.	 More	 specifically,	 the	 probability	 of	 each	 particular	
bigram/trigram	 decreases	 across	 signal	 versions,	 since	 the	 set	 of	 discrete	
symbols	 (i.e.	 particular	 bigrams/trigrams)	 is	 an	 increasingly	 large	 set.	 As	 a	
result,	 each	 particular	 bigram/trigram	 becomes	 less	 significant	 in	 the	
transmission	of	the	message.	Thus,	the	encoding	method	becomes	increasingly	
efficient	from	S1	to	S6,	as	it	transmits	the	message	(i.e.	XXY	language)	using	an	
increasing	 number	 of	 discrete	 symbols,	 which	 highlights	 the	 fact	 that	 the	
message	is	an	abstract	same-same-different	language,	regardless	which	discrete	
symbols	are	employed	by	the	signal.	
	 The	signal	is	sent	through	the	channel	(learner’s	learning	system)	which	
can	be	envisaged	as	a	system	of	several	channels	as	follows:	the	acoustic	signal	
made	 of	 structured	 clusters	 of	 frequency	 patterns	 is	 transmitted	 via	 the	
perception	system	(the	perception	channel)	and	decoded	(by	the	receiver	of	the	
perception	system,	say	the	“phonological	channel”)	into	a	stream	of	phonemes	
structured	 in	 syllables	with	particular	 combinatorial	properties	 (as	described	

 
24	We	are	dubbing	it	“pseudo-artificial	 language	system”,	since	it	 is	not	purely	
artificial,	as	it	imitates	some	properties	of	natural	languages	and	it	was	created	
manually	by	the	authors/experimenters,	not	by	a	machine.	
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above),	 which	 is	 the	 received	 signal	 (with	 some	 amount	 of	 noise	 from	 the	
transmitter	 –	 receiver	 path).	 This	 output	 signal	 of	 the	 phonological	 channel	
becomes	the	input	signal	to	the	cognitive	system,	where	another	communication	
system	takes	over	the	signal	and	the	function	of	information	transmission.	In	this	
communication	 system	 the	 information	 source	 is	 the	 phonological	 system	
sending	a	signal	to	the	cognitive	system,	and	so	the	process	repeats.	The	signal	
is	received	by	the	receiver	of	the	cognitive	system,	which	decodes	the	signal	in	
order	to	reconstruct	the	message,	i.e.	to	create	representations.	
	 After	 having	 modeled	 the	 artificial	 grammar	 learning	 as	 a	
communication	system	in	Shannon’s	information-theoretic	terms,	we	can	now	
turn	to	estimating	the	rate	of	equivocation	and	the	maximum	rate	of	information	
transmission,	 i.e.	 channel	 capacity,	 in	 these	 experiments.	 By	 employing	
Shannon’s	formula	presented	in	section	2.2	above	(C	=	Max	(H’	–	E)),	the	rate	of	
transmission	of	the	signal	in	these	experiments	can	be	calculated	from	the	source	
rate	of	information	transmission	(H’)	and	the	rate	of	equivocation	(E)	associated	
with	the	received	signal.	
	 Firstly,	 we	 show	 how	 to	 calculate	 the	 source	 rate	 of	 information	
transmission	 (H’)	 for	 each	 of	 the	 six	 signal	 versions.	 The	 input	 entropy	 was	
transmitted	at	a	relatively	slow	rate	 (compared	 to	natural	speech	rate),	but	a	
commonly	used	rate	in	artificial	grammar	experiments	(i.e.	50ms	within-string	
pause	and	750ms	between-string	pause,	which	yielded	a	total	presentation	time	
of	 approximately	 70s	 per	 each	 exposure	 phase	 –	 there	 were	 three	 exposure	
phases	 for	 each	 version	 of	 the	 grammar).	 In	 information-theoretic	 terms,	 the	
source	was	transmitting	approximatively	0.6	bigrams/s	and	0.4	trigrams/s,	so	
on	average	0.5	symbols/s,	where	‘symbol’	stands	for	an	abstract	unit	(variable)	
of	statistical	information	relevant	for	the	learner	in	this	case	(i.e.	an	average	of	
bigrams/trigrams	per	second).	By	multiplying	this	source	rate	(0.5	symbols/s)	
by	the	entropy	per	symbol	(H),	we	can	calculate	the	entropy	per	second	which	
was	transmitted	in	each	condition	of	the	experiments,	using	Shannon’s	formula	
for	the	source	rate	of	information	production	(H’),	i.e.	the	source	bit	rate:	
	 H’	=	mH,		
	 where	m	stands	for	the	average	rate	of	symbols	sent	by	the	source	per	
second,	and	H	is	the	entropy	per	symbol.	
	 Since	m	=	0.5	was	the	same	in	all	six	versions	of	the	signal,	for	HS	=	{H1,	
H2,	 …	 H6}	 =	 {2.8,	 3.5,	 4,	 4.2,	 4.58,	 4.8	 bits},	 the	 source	 rate	 of	 information	
transmission	is	H’S	=	{mH1,	mH2,	…	mH6}	=	{1.4,	1.75,	2,	2.13,	2.29,	2.4	bits}.	
	 Secondly,	 the	equivocation	rate	 (E)	 is	 the	uncertainty	when	receiving	
the	signal	and	decoding	it	in	order	to	reconstruct	the	message.	The	entropy	of	
the	sent	signal	or	input	to	the	channel	–	H(x)	–	and	the	entropy	of	the	received	
signal	–	H(y)	–	are	equal	only	if	the	transmission	through	the	channel	is	noiseless.	
If	the	channel	is	noisy,	as	it	is	the	case	in	nearly	all	real-life	cases,	there	is	a	loss	
of	 information	 so	 that	 the	 entropy	 of	 the	 received	 signal	 is	 not	 equal	 to	 the	
entropy	of	the	sent	signal,	which	leads	to	uncertainty	when	decoding	the	signal.	
Shannon	 (1948)	 argued	 and	 demonstrated	mathematically	 that	 the	 only	 and	
proper	way	to	quantify	this	uncertainty	is	by	calculating	the	conditional	entropy	
of	the	message	–	Hy(x)	–	that	is	the	average	ambiguity	of	the	received	signal	or	
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the	equivocation	when	receiving	the	signal	with	H(y),	when	in	fact	a	signal	with	
H(x)	was	sent.	
	 Next,	given	a	source	with	a	rate	of	transmission	H’,	and	an	equivocation	
rate	of	Hy(x)	per	symbol	(or	per	second,	mHy(x)),	the	actual	rate	of	information	
transmission	(R)	can	be	calculated	by	subtracting	the	rate	of	equivocation	from	
the	rate	of	production	of	the	source	(Shannon,	1948):	
	 R	=	H’	–	E		=	H’	–	mHy(x).	
	 In	simple	words,	since	the	rate	of	equivocation	actually	quantifies	the	
missing	 information	 in	 the	 received	 signal,	 the	 actual	 rate	 of	 information	
transmission	(R)	is	the	entropy	per	second	sent	by	the	source	minus	the	missing	
bits	of	information	due	to	a	noisy	channel.	
	 So	the	formula	for	the	channel	capacity	of	a	noisy	channel,	which	is	the	
maximum	possible	rate	of	information	transmission,	can	be	re-written	as:	
	 C	=	Max	(H’	–	mHy(x)).	
	 The	calculations	for	the	source	rate	of	transmission	were	shown	above	
(H’S	=	{mH1,	mH2,	…	mH6}),	and	now	we	make	a	proposal	about	how	to	estimate	
the	rate	of	equivocation,	i.e.	the	conditional	entropy	of	the	received	signal	by	the	
learners	of	the	XXY	language,	when	each	signal	version	(S	=	{S1,	S2,	…	S6})	was	
sent.	
	 In	order	to	obtain	an	estimation	of	the	received	signal,	we	probed	the	
knowledge	acquired	by	the	learners.	Specifically,	after	the	exposure	phase	of	the	
experiments	(Radulescu	et	al.,	2019),	in	the	test	phase,	participants	were	asked	
for	grammaticality	judgements	(yes/no	answers)	on	four	types	of	test	strings:	
Familiar-syllable	XXY,	New-syllable	XXY,	Familiar-syllable	X1X2Y	(i.e.	strings	of	
three	 different	 but	 familiar	 syllables)	 and	 New-syllable	 X1X2Y	 (i.e.	 strings	 of	
three	different	and	new	syllables).	These	test	strings	were	used	as	questions	to	
probe	 the	received	message,	as	 it	was	reconstructed	by	 the	 learner’s	 receiver	
after	decoding	the	received	signal.		
	 Since,	 as	 defined	 above,	 the	 message	 sent	 was	 an	 XXY	 rule-based	
language,	i.e.	strings	of	3	syllables	with	a	same-same-different	pattern,	regardless	
of	whether	they	were	familiar	or	new	syllables,	correct	answers	were	acceptance	
of	XXY	strings,	with	familiar	or	new	syllables,	as	possible	in	the	familiarization	
language,	and	rejections	of	X1X2Y	strings,	with	familiar	or	new	syllables.	Results	
showed	 that	 the	 correct	 acceptance	 of	 New-syllable	 XXY	 strings	 increased	
gradually	as	the	input	entropy	increased	from	signal	version	S1	up	to	S6,	while	
the	correct	rejection	of	Familiar-syllable	X1X2Y	showed	a	U-shape	pattern.	The	
correct	acceptance	of	Familiar-syllable	XXY	and	correct	rejection	of	New-syllable	
X1X2Y	 were	 consistently	 high	 across	 signal	 versions.	 Taken	 together,	 these	
results	 were	 interpreted	 to	 show	 that,	 according	 to	 our	 entropy	 model,	 an	
increase	 in	 input	entropy	drives	a	gradual	 tendency	 to	move	 from	 item-bound	
generalization	to	category-based	generalization,	since	learners	were	increasingly	
more	likely	to	accept	strings	with	a	same-same-different	structure,	not	only	with	
familiar	 syllables	 (item-bound	 generalization),	 but	 also	 with	 new	 syllables	
(category-based	generalization).	
	 From	the	percentage	of	correct	and	incorrect	answers	to	the	test	items	
(as	a	group	mean),	we	can	calculate	the	probability	that	a	signal	(y)	was	received	
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when	 a	 signal	 (x)	was	 sent,	 i.e.	 the	 conditional	 entropy	 –	Hy(x)	 –	 defined	 by	
Shannon	 (1948),	 as	 presented	 above.	 For	 example,	 73%	 mean	 correct	
acceptance	(averaged	over	the	group	of	participants)	of	a	type	of	test	strings	can	
be	interpreted	in	information-theoretic	terms	as	a	p1	=	0.73	probability	that	the	
intended	 signal	 (x)	was	 correctly	 received,	while	p2	 =	 (1	 –	 p1	 )	 =	 0.27	 is	 the	
probability	that	the	incorrect	signal	(y)	was	received:	
For	p1	≥	p2:	
	 Hy(x)	=	–	[p1*logp1	+	p2*logp2]	=	–	[0.73	log(0.73)	+	0.27	log(0.27)]	=	0.84	
b/symbol	
	 Intuitively,	 this	 can	 be	 interpreted	 as	 the	 internal	 entropy	 of	 the	
learner’s	decision-making	system	when	answering	the	yes/no	question	on	a	type	
of	test	strings.		
	 It	 is	 important	 to	 mention	 that,	 since	 this	 entropy	 is	 based	 on	 a	
behavioral	 response	 (i.e.	 a	 yes/no	 answer),	 it	 does	 not	 constitute	 a	 direct	
measure	of	the	entropy	of	the	received	signal.	However,	it	can	be	envisaged	as	a	
coefficient	of	equivocation	of	the	learner	when	they	have	to	answer	the	yes/no	
question	 based	 on	 the	 signal	 they	 received.	 Recall	 that	 rate	 of	 equivocation	
constitutes	the	bits	of	information	(per	second)	that	are	missing	in	the	received	
signal	against	the	signal	sent.	Given	that	an	answer	to	a	yes/no	question	conveys	
1	bit	of	information,	this	coefficient	of	equivocation	gives	an	estimation	of	how	
much	information	the	learners	are	missing	per	each	bit	of	information	sent	by	
the	 source	 every	 second.	 Thus,	 in	 order	 to	 estimate	 the	 missing	 bits	 of	
information	per	 second	at	 the	 receiver’s	 end,	 i.e.	 the	 rate	of	 equivocation,	we	
propose	that	the	entropy	per	second	of	the	signal	sent	should	be	weighted	by	
this	 coefficient	 of	 equivocation.	 For	 example,	 at	 a	 source	 rate	 of	 information	
transmission	H’	=	1.4	bits/s,	if	the	coefficient	of	equivocation	is	0.84,	the	rate	of	
equivocation	is	estimated	at	E	=	0.84*1.4	=	1.176	missing	bits	of	information	per	
second.	
	 In	 order	 to	 better	 understand	 this	 coefficient	 of	 equivocation,	 let	 us	
consider	 the	 extreme	 case	of	 nearly	 total	 correct	 acceptance	of	 a	 type	of	 test	
strings,	 that	 is	 the	 nearly	 perfect	 case	 of	 an	 ideal	 rule	 learner,	who	 correctly	
accepts	a	type	of	test	strings	in	99%	of	the	cases	and	only	rejects	them	in	1%	of	
the	cases	(assuming	that	the	perfect	rule	learner	who	accepts	these	strings	100%	
of	the	times	can	reasonably	be	considered	impossible).	In	this	case,	the	message	
is	received	almost	entirely	correctly.	The	coefficient	of	equivocation	in	this	case	
is	Hy(x)	=	–	[0.99	log(0.99)	+	0.01	log(0.01)]	=	0.07	b/symbol,	and	thus	at	the	same	
source	rate	of	transmission	of	H’	=	1.4	b/s,	the	rate	of	equivocation	E	=	0.07*1.4	
b/s	=	0.1	b/s.	Therefore,	the	actual	rate	of	transmission	(R)	is	the	source	rate	of	
transmission	(1.4	b/s)	minus	the	equivocation	rate	(0.1	b/s),	i.e.	the	missing	bits	
of	 information:	 R	 =	 1.4	 –	 0.1	 =	 1.3	 b/s,	 which	 is	 a	 highly	 efficient	 rate	 of	
transmission,	 since	 the	missing	 information	 from	 the	message	 sent	 is	 nearly	
zero.	
	 Let	 us	 consider	 now	 the	 extreme	 case	 of	 50%	 –	 50%	 acceptance	 vs	
rejection	of	a	type	of	test	strings	(which	is	considered	to	be	the	chance	level	in	
behavioral	 experiments).	 This	means	 that	 the	message	 is	 equally	 likely	 to	 be	
received	 as	 correct	 or	 incorrect.	 The	coefficient	 of	 equivocation	 in	 this	 case	 is	
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Hy(x)	 =	–	 [0.50	 log(0.50)	+	0.50	 log(0.50)]	=	1	b/symbol,	 and	 thus	at	 the	 same	
source	rate	of	transmission	of	H’	=	1.4	b/s,	the	rate	of	equivocation	E	=	1*1.4	b/s	
=	1.4	b/s.	Thus,	the	actual	rate	of	information	transmission	is	R	=	H’	–	E	=	1.4	–	
1.4	 =	 0	 b/s,	 so	 we	 can	 say	 that	 in	 this	 case,	 in	 information-theoretic	 terms,	
actually	no	information	was	transmitted	at	all:	we	can	obtain	the	same	results	by	
dispensing	with	the	channel	completely	and	just	flipping	a	coin	at	the	receiver’s	
end.	
	 In	this	way	we	can	calculate	the	equivocation	separately	for	all	test	types	
(Familiar-syllable	 XXY,	 New-syllable	 XXY,	 Familiar-syllable	 X1X2Y,	 and	 New-
syllable	 X1X2Y),	 and	 together	 they	will	 be	 a	 reflection	 of	 the	 total	 estimated	
equivocation	of	the	learner	when	receiving	the	original	signal	sent	by	the	source,	
i.e.	for	each	of	the	six	different	versions	of	the	signal	(S	=	{S1,	S2,	…	S6}),	to	which	
the	learners	were	exposed	in	the	familiarization.		
	 In	 the	 remainder	 of	 this	 section,	 we	 will	 thus	 show	 how	 the	 total	
equivocation	can	be	estimated	and	we	will	calculate	the	rate	of	transmission	for	
all	six	versions	of	the	signal	in	the	experiments	by	Radulescu	et	al.	(2019).	It	must	
be	specified	from	the	beginning	that	the	estimation	method	used	here	is	not	in	
any	case	ideal,	however	it	aims	at	showing	in	principle	how	such	estimations	of	
rate	of	equivocation	and	rate	of	transmission	might	be	obtained	from	artificial	
grammar	 learning	 experiments	 with	 testing	 designs	 based	 on	 forced-choice	
questions.	If	the	testing	design	includes	a	production	task	where	participants	are	
asked	to	produce	a	list	of	possible	strings	in	the	language	(which	would	be	a	more	
natural	estimation	of	the	use	of	a	language),	the	entropy	of	the	produced	strings	
could	be	directly	calculated,	and	that	would	be	a	more	straightforward	way	of	
estimating	 the	 entropy	 of	 the	 received	 signal,	 given	 the	 sent	 signal,	 without	
having	to	use	a	coefficient	of	equivocation.25	
	 Since	the	experiments	tested	two	XXY	test	types	–	Familiar-syllable	XXY	
and	New-syllable	XXY	–	and	two	X1X2Y	test	types	–	Familiar-syllable	X1X2Y	and	
New-syllable	X1X2Y	–	we	can	calculate	a	total	coefficient	of	equivocation	for	XXY	
strings	–	H(XXY)	–	and	a	total	coefficient	of	equivocation	for	X1X2Y	–	H(X1X2Y).	
It	makes	sense	to	estimate	a	total	coefficient	of	equivocation	for	XXY	strings	and	
a	total	coefficient	of	equivocation	for	X1X2Y	strings,	since	they	are	closely	related	
in	terms	of	pattern,	and	thus	learners’	answers	to	these	types	would	be	highly	
correlated.	 In	 other	 words,	 when	 giving	 their	 answers	 on	 New-syllable	 XXY	
strings	and	Familiar-syllable	XXY	strings,	the	learner	would	presumably	notice	
the	 perceptual-identity	 same-same-different	 pattern,	 but	 they	 would	 have	 to	
decide	on	the	acceptance	of	familiar	and/or	new	syllables.	Similarly,	when	giving	
their	 answers	 on	 New-syllable	 X1X2Y	 strings	 and	 Familiar-syllable	 X1X2Y	

 
25	Although	in	a	different	type	of	task,	Ferdinand	et	al.	(2018)	employ	a	
production	task	after	familiarization,	in	order	to	calculate	the	reduction	in	
entropy	of	the	produced	set	of	items	as	compared	to	the	familiarization	set.	We	
suggest	a	similar	production	task	should	be	used	in	future	research,	in	order	to	
calculate	the	conditional	entropy	between	the	sent	signal	and	the	received	
signal	and,	thus,	obtain	a	more	direct	measure	of	the	rate	of	equivocation.	
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strings,	 learners	 would	 presumably	 notice	 the	 perceptual	 different-different-
different	pattern.	
	 It	follows	that,	for	H(XXY),	in	the	ideal	case,	if	the	sent	message	can	be	
reconstructed	with	the	least	errors	from	the	received	signal,	there	will	be	equal	
rates	of	equivocation	for	the	learner	when	receiving	an	XXY	string,	either	with	
familiar	or	new	symbols,	and	they	will	both	be	as	close	to	zero	as	possible:	
	 H(XXY)	=	H(New-syllable	XXY)	–	H(Familiar-syllable	XXY)	=	0.	
For	any	case	which	is	less	than	ideal,	the	received	signal	will	be	XXY	with	more	
certainty	about	the	Familiar-syllable	XXY	strings	compared	to	New-syllable	XXY	
strings,	since	the	learner	will	be	able	to	make	a	difference	between	the	two	types	
of	strings,	and	this	difference	will	be	the	total	equivocation	regarding	the	XXY	
strings.	More	specifically,	there	will	be	higher	equivocation	when	receiving	New-
syllable	XXY	strings	than	when	receiving	Familiar-syllable	XXY	strings,	since	the	
latter	strings	actually	match	the	strings	heard	in	the	familiarization.	Following	
this	 idea,	 the	 equivocation	 regarding	 XXY	 strings	 would	 be	 obtained	 by	
subtracting	the	equivocation	for	Familiar-syllable	XXY	from	the	equivocation	for	
New-syllable	XXY.	Thus,	in	these	less	ideal	cases,	when	the	received	signal	does	
not	match	the	transmitted	signal,	the	equivocation	would	be:	
	 H(XXY)	=	H(New-syllable	XXY)	–	H(Familiar-syllable	XXY)	>	0.	
In	any	other	case,	if	there	is	any	other	extraneous	equivocation,	it	would	be	due	
to	external	factors,	that	would	impact	both	H(New-syllable	XXY)	and	H(Familiar-
syllable	XXY)	equally,	such	as	task	challenges,	auditory	challenges,	etc.	
	 Similarly,	 for	H(X1X2Y)	 in	 the	 ideal	 case,	 if	 the	 sent	message	 can	 be	
reconstructed	with	the	least	errors	from	the	received	signal,	there	will	be	equal	
equivocation	 when	 receiving	 an	 X1X2Y	 string,	 regardless	 of	 familiar	 or	 new	
symbols,	and	they	will	both	be	as	close	to	zero	as	possible,	with	a	minimal	rate	
of	errors:	
	 H(X1X2Y)	=	H(Familiar-syllable	X1X2Y)	–	H(New-syllable	X1X2Y)	=	0.	
In	 the	 less	 ideal	 cases,	 there	will	be	 less	equivocation	 regarding	New-syllable	
X1X2Y,	since	this	type	of	strings	does	not	match	the	familiarized	strings	in	any	
dimension:	 unfamiliar	 syllables	 and	 unfamiliar	 pattern.	 On	 the	 other	 hand,	
Familiar-syllable	X1X2Y	will	pose	higher	uncertainty,	since	the	familiar	syllables	
will	match	the	familiarized	strings,	but	the	pattern	will	not.	A	less	ideal	learner,	
who	did	not	receive	the	equivocation-free	signal,	 i.e.	XXY	strings	regardless	of	
familiar	 or	 new	 syllables,	 will	 make	 a	 difference	 between	 Familiar-syllable	
X1X2Y	strings	and	New-syllable	X1X2Y	strings.	Thus,	in	these	less	ideal	cases,	the	
coefficient	of	equivocation	for	X1X2Y	strings	would	be:	
	 H(X1X2Y)	=	H(Familiar-syllable	X1X2Y)	–	H(New-syllable	X1X2Y)		>	0.		
	 Since	information	regarding	both	XXY	and	X1X2Y	strings	is	encoded	in	
the	same	signal	(i.e.	only	XXY	strings	are	present	in	the	familiarization,	indirectly	
implying	that	X1X2Y	are	not	possible),	and	there	is	intercorrelation	among	the	
answers	for	all	four	test	types,	because	in	learner’s	rationale	the	answers	for	XXY	
would	also	indirectly	be	related	to	the	answers	for	X1X2Y,	and	vice	versa,	the	
average	equivocation	regarding	the	received	signal	can	be	obtained	by	averaging	
over	the	two	coefficients	of	equivocation:	Hy(x)	=	avg{	H(XXY);	H(X1X2Y)}.		
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	 This	average	conditional	entropy	(coefficient	of	equivocation),	quantifies	
the	average	equivocation	per	one	bit	of	received	signal,	and	it	can	be	envisaged	
to	 reflect	 the	 internal	 entropy	 of	 the	 learner’s	 decision-making	 system	when	
answering	the	yes/no	questions	based	on	their	received	signal.	
	 Using	 this	 coefficient	 of	 equivocation,	 we	 can	 estimate	 the	 rate	 of	
equivocation.	Recall	that	rate	of	equivocation	constitutes	the	bits	of	information	
that	are	missing	in	the	received	signal	(per	second)	compared	to	the	sent	signal.	
Thus,	 since	 the	coefficient	of	 equivocation	 quantifies	 the	average	equivocation	
per	 one	 bit	 of	 received	 signal,	 in	 order	 to	 estimate	 the	 rate	 of	 equivocation	
associated	with	the	received	signal,	the	source	rate	of	transmission	of	the	signal	
sent	should	be	weighted	by	the	coefficient	of	equivocation:	E	=	Hy(x)*H’.	Thus,	the	
obtained	rate	of	equivocation	constitutes	the	total	number	of	bits	of	information	
(per	second)	missing	from	the	received	signal,	namely,	the	loss	of	information	
caused	by	noise	during	transmission	through	the	channel.	
	

H	
H'=m
*H	
		

p1	 p2	 p3	 p4	 H(XXY	
new)	 =	
–	
(p1*lo
gp1+	
p2*log
p2)	

H(XXY	
fam)	 =	 –
(p3*logp
3+	
p4*logp
4)	

H(XX
Y)	(corr	

XXY	
new)	

(inc
orr	
XXY	
new
)	

(cor
r	
XXY	
fam
)	

(incorr	
XXY	
fam)	

2.8	 1.40	 0.57	 0.43	 0.95	 0.05	 0.99	 0.29	 0.70	
3.5	 1.75	 0.65	 0.35	 0.98	 0.02	 0.93	 0.14	 0.79	
4	 2.00	 0.73	 0.27	 0.97	 0.03	 0.84	 0.19	 0.65	
4.2
5	 2.13	 0.76	 0.24	 0.93	 0.07	 0.80	 0.37	 0.43	
4.5
8	 2.29	 0.80	 0.20	 0.97	 0.03	 0.72	 0.19	 0.53	
4.8	 2.40	 0.80	 0.20	 0.93	 0.07	 0.72	 0.37	 0.36	
Table	1.	Calculations	of	coefficient	of	equivocation	for	XXY	strings.	Each	

probability	value	p	=	{p1,…p4}	was	calculated	from	the	percentage	of	
acceptance	of	the	respective	test	items:	e.g.	in	the	experimental	condition	

where	participants	were	exposed	to	the	signal	version	with	H	=	4,	there	was	
73%	mean	correct	acceptance	(averaged	over	the	group	of	participants)	of	

New-syllable	XXY	strings.	This	percentage	can	be	interpreted	in	information-
theoretic	terms	as	a	p1	=	0.73	probability	that	the	intended	signal	was	
correctly	received,	while	p2	=	(1	–	p1	)	=	0.27	is	the	probability	that	an	

incorrect	signal	was	received.	
	
Next,	the	actual	rate	of	transmission	(R	=	{R1,	R2,	…	R6})	of	the	message	in	our	
experiments	from	Radulescu	et	al.	(2019)	for	each	signal	version	(S	=	{S1,	S2,	…	
S6})	would	be	obtained	by	subtracting	from	the	source	rate	of	transmission	(H’S	
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=	 {mH1,	mH2,	…	mH6})	 the	 total	 rate	 of	 equivocation	 (E)	measured	 for	 each	
group	of	learners	exposed	to	each	signal	(E	=	{S1,	S2,	…	S6}).		
	

H	
H'=m
*H	
		

p5	 p6	 p7	 p8	 H(X1X2Y	
fam)	 =	 –	
(p5*logp
5+	
p6*logp6
)	

H(X1X2Y	
new)	 =	 –	
(p7*logp
7+	
p8*logp8
)	

H(X1
X2Y)	

(cor
r	
X1X
2Y	
fam)	

(inco
rr	
X1X2
Y	
fam)	

(cor
r	
X1X
2Y	
new
)	

(inco
rr	
X1X2
Y	
new)	

2.
8	 1.40	 0.83	 0.17	 0.92	 0.08	 0.66	 0.40	 0.26	
3.
5	 1.75	 0.91	 0.09	 0.98	 0.02	 0.44	 0.14	 0.30	
4	 2.00	 0.77	 0.23	 0.97	 0.03	 0.78	 0.19	 0.58	
4.
25	 2.13	 0.73	 0.27	 0.82	 0.18	 0.84	 0.68	 0.16	
4.
58	 2.29	 0.82	 0.18	 0.93	 0.07	 0.68	 0.37	 0.31	
4.
8	 2.40	 0.9	 0.1	 0.83	 0.17	 0.47	 0.66	 -0.19	
Table	2.	Calculations	of	coefficient	of	equivocation	for	X1X2Y	strings.	
Each	probability	value	p	=	{p5,…p8}	was	calculated	from	the	percentage	of	
acceptance	of	the	respective	test	items:	e.g.	in	the	experimental	condition	
where	participants	were	exposed	to	the	signal	version	with	H	=	2.8,	there	
was	83%	mean	correct	rejection	(averaged	over	the	group	of	participants)	
of	Familiar-syllable	X1X2Y	strings.	This	percentage	can	be	interpreted	in	
information-theoretic	terms	as	a	p5	=	0.83	probability	that	the	intended	

signal	was	correctly	received,	while	p6	=	(1	–	p5	)	=	0.17	is	the	probability	
that	an	incorrect	signal	was	received.	

	
Tables	1,	2,	3	show	the	detailed	calculations	for	all	the	six	versions	of	the	signal,	
and	the	source	rates	of	transmission.	
	 As	can	be	seen	in	Fig.	2,	the	actual	rate	of	transmission	(R)	increases	as	
a	 polynomial	 function	 (with	 a	 polynomial	 trend	 analysis	 showing	 a	 nearly-
significant	quadratic	effect	(F(2,	3)	=	7.881,	p	=	.06,	R2	=	0.84)	compared	to	the	
linearly	increasing	source	rate	of	transmission	(H’).	
	 Moreover,	the	predicted	trend	in	the	rate	of	equivocation	(E),	 i.e.	first	
increasing	 and	 then	 decreasing,	 is	 shown	 in	 Fig.	 3:	 as	 the	 source	 rate	 of	
transmission	increases	from	1.4	bits/s	up	to	2	bits/s,	 the	rate	of	equivocation	
also	increases,	but	it	changes	direction	into	a	decreasing	trend	at	a	source	rate	of	
transmission	of	2	bits/s.	We	deem	this	change	in	direction	from	an	increasing	to	
a	decreasing	trend	to	indicate	that	there	was	indeed	an	attempt	at	exceeding	the	
channel	capacity,	which	caused	an	increase	in	the	rate	of	equivocation.	This	led	
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to	a	change	in	the	encoding	method,	such	that	a	more	efficient	encoding	method	
was	found:	the	item-bound	generalization	moved	gradually	to	the	category-based	
generalization,	which	allows	for	more	and	more	entropy	to	be	encoded	per	unit	
of	time	with	less	and	less	equivocation,	that	is	loss	of	information,	down	to	an	
arbitrarily	small	rate	of	equivocation	–	0.20	bits.	With	the	new	encoding	method	
in	place	(category-based	generalization),	more	data	(bits)	are	being	transmitted	
per	unit	of	time,	while	the	rate	of	equivocation	decreased	to	a	very	low	rate.	This	
means	that	the	encoding	–	decoding	method	is	increasingly	efficient,	such	that	
more	bits	of	information	can	be	transmitted	over	the	channel,	while	there	is	less	
loss	of	information	at	receiver’s	end.	
	

H	 H'=m*H	
		 H(XXY)	 H(X1X2Y)	

Hy(x)=	
avg{H(XXY);	
H(X1X2Y)}	

E	

R	=	H'	–	E	

2.8	 1.40	 0.70	 0.26	 0.48	 0.67	 0.73	
3.5	 1.75	 0.79	 0.30	 0.54	 0.95	 0.80	
4	 2.00	 0.65	 0.58	 0.62	 1.23	 0.77	
4.25	 2.13	 0.43	 0.16	 0.30	 0.63	 1.50	
4.58	 2.29	 0.53	 0.31	 0.42	 0.96	 1.33	
4.8	 2.40	 0.36	 -0.19	 0.08	 0.20	 2.20	

Table	3.	Rate	of	information	transmission	in	XXY	grammar	learning	
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	 Our	channel-capacity-based	prediction	that	the	change	in	the	encoding	
method	is	signaled	by	an	increasing	trend	followed	by	a	decreasing	trend	of	the	
rate	of	equivocation,	i.e.	internal	entropy	of	the	learning	system,	is	very	much	in	
line	with	the	main	tenets	of	self-organization	in	the	Dynamic	Systems	Theory:	an	
increase	followed	by	a	decrease	in	system’s	internal	entropy	predicts	the	birth	
of	 a	 new	 structure	 (Prigogine	 &	 Stengers,	 1984;	 Schneider	 &	 Sagan,	 2005,	
Stephen	et	al.,	2009).	
	 To	 sum	 up,	 in	 this	 section	 we	 gave	 a	 brief	 proof	 of	 concept	 for	 the	
channel	 capacity	 factor	 in	 our	 model,	 and	 we	 proposed	 an	 innovative	
information-theoretical	 estimation	 of	 the	 rate	 of	 transmission	 and	 rate	 of	
equivocation	in	an	artificial	grammar	learning	task.	In	addition	to	the	usual	data	
analysis	 of	 the	 group	 means,	 the	 information-theoretical	 estimations	 offer	 a	
more	 fine-grained	 and	 aggregated	 insight	 into	 the	 signal	 received	 by	 the	
learners,	i.e.	the	amount	of	information	received	per	unit	of	time	and	the	loss	of	
information	per	unit	of	 time	against	 the	sent	signal.	We	observed	an	 increase	
followed	by	a	decrease	in	the	rate	of	equivocation	(i.e.	missing	bits	of	information	
per	second),	caused	by	an	increase	in	the	source	rate	of	information	transmission	
(i.e.	an	excess	of	input	entropy	per	second),	which	is	in	line	with	our	prediction	
that	there	was	indeed	a	change	in	encoding	method	which	was	caused	by	a	higher	
source	rate	of	information	transmission	than	the	available	channel	capacity.	
Future	 research	 should	 employ	 a	 production	 task	 instead	 of	 the	 grammatical	
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judgment	test	we	used	in	Radulescu	et	al.	(2019),	in	order	to	have	a	more	precise	
and	direct	quantification	of	the	rate	of	equivocation,	to	eliminate	the	need	for	a	
coefficient	of	equivocation.	
	 The	 findings	 of	 this	 reinterpretation	 of	 the	 Radulescu	 et	 al.’s	 (2019)	
results	bring	strong	evidence	that	indeed	the	input	entropy	per	second	was	higher	
than	the	channel	capacity	in	the	high	entropy	versions	of	the	signal	(e.g.	S6).		The	
next	logical	step	would	be	to	directly	speed	up	the	amount	of	entropy	entering	
the	channel	per	second,	i.e.	the	source	rate	of	transmission	(H’),	up	to	the	rate	
from	the	highest	entropy	version	of	the	signal	(i.e.	S6	with	H’6	=	2.4	b/s),	while	
keeping	the	entropy	per	symbol	at	the	level	of	the	lowest	entropy	version	of	the	
signal	 (i.e.	 S1	with	H	 =	 2.8	 bits).	 A	 bit	 rate	which	 is	 higher	 than	 the	 channel	
capacity	 would	 drive	 a	 transition	 to	 a	 more	 efficient	 encoding	 method,	 i.e.	
category-based	generalization.		
	 In	 the	 second	part	 of	 this	 chapter	we	present	 two	 artificial	 grammar	
experiments	in	which	we	sped	up	the	source	bit	rate	of	information	transmission	
(H’),	in	order	to	probe	the	effect	of	the	time-dependent	variable	of	the	channel	
capacity	on	rule	induction.		
	 To	 the	best	 of	 our	 knowledge,	 these	 are	 the	 first	model	 and	 the	 first	
estimations	of	rate	of	information	transmission,	equivocation	rate,	and	channel	
capacity	 in	 an	 artificial	 grammar	 learning	 task,	 based	 on	 Shannon’s	 noisy-
channel	theory.	
	
3.	 Testing	 the	 prediction	 of	 speeding	 up	 the	 bit	 rate	 of	 information	
transmission	
	
The	second	goal	of	this	study	is	to	probe	the	effect	of	the	time-dependent	variable	
of	 the	 second	main	 factor	 of	 our	 entropy	model	 –	 channel	 capacity	 –	 on	 rule	
induction,	by	directly	increasing	the	source	rate	of	transmission	(H’),	in	order	to	
attempt	to	exceed	the	channel	capacity.	Theoretically,	following	the	definition	of	
channel	capacity	and	Shannon’s	Theorem	11	(Shannon,	1948),	this	attempt	can	
be	achieved	in	two	ways:	either	by	increasing	the	amount	of	entropy	(bits)	at	a	
constant	rate,	or	by	speeding	up	the	rate	of	feeding	information	(at	constant	bit	
value)	 into	 the	 channel.	 It	 follows	 that,	 practically,	 there	 are	 two	methods	 to	
attempt	to	exceed	the	channel	capacity:	
	 1.	 Add	 stimulus-unrelated	 entropy	 (noise)	 in	 the	 input	 to	 render	 a	
noisier	channel,	while	keeping	the	time	variable	constant.	This	method	aims	at	
exceeding	the	channel	capacity	by	specifically	modulating	the	noise	variable	of	
the	channel	capacity.	
	 2.	 Increase	 the	 source	 rate	 of	 information	 production,	 to	 directly	
modulate	the	time-dependent	variable	of	the	channel	capacity.	Specifically,	this	
method	 aims	 at	 reducing	 the	 time	 that	 the	 same	 amount	 of	 entropy	 is	 sent	
through	the	channel,	i.e.	speeding	up	the	bit	rate	of	information	transmission.	
	 We	employed	the	first	method	in	another	study	(Radulescu,	S.,	Murali,	
M.,	Wijnen,	F.,	Avrutin,	S.,	2021),	and	we	found	that	added	stimulus-irrelevant	
entropy	 (background	 noise),	 which	 led	 to	 a	 noisier	 channel,	 drove	 as	 a	
consequence	 a	 higher	 tendency	 towards	 category-based	 generalization.	
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Therefore,	in	this	study	we	employed	the	second	method,	i.e.	we	increased	the	
source	rate	of	information	transmission	(input	entropy	per	second),	in	order	to	
directly	modulate	the	time-dependent	variable	of	the	channel	by	speeding	up	its	
encoding	rate.	According	to	the	hypothesis	of	the	entropy	model,	speeding	up	the	
source	rate	of	transmission	(i.e.	to	a	higher	rate	than	the	channel	capacity)	leads	
to	a	change	in	method	of	encoding,	so	as	to	avoid	increased	rate	of	equivocation.	
Why?	 Because	 increased	 rate	 of	 equivocation	 is	 in	 fact	 a	 loss	 of	 information.	
Thus,	 the	method	 of	 encoding	 transitions	 to	 another	method	 of	 encoding,	 in	
order	to	achieve	more	efficient	transmission	of	information:	that	is	faster	rate	of	
encoding	with	the	least	equivocation	rate	possible.	Specifically,	we	hypothesize	
that	 increasing	 the	 source	 rate	 of	 information	 transmission	 leads	 to	 higher	
tendency	 to	 move	 from	 item-bound	 to	 category-based	 generalization	 for	 the	
purpose	of	achieving	a	more	efficient	method	of	encoding,	with	the	least	loss	of	
information	(equivocation)	possible.		
	 We	 tested	 the	 effect	 of	 speeding	 up	 the	 source	 rate	 of	 information	
transmission	on	both	the	repetition-based	XXY	grammar	from	Radulescu	et	al.	
(2019)	 study	 and	 a	 more	 complex	 grammar	 –	 non-adjacent-dependency	
grammar	(aXb).	In	this	type	of	non-adjacent	dependency	grammar,	specific	items	
a	always	predict	specific	items	b	over	a	richer	intervening	category	of	X	items.	
Learning	of	such	a	complex	grammar	entails	both	item-bound	generalization	(of	
the	 specific	 items	a	 and	b,	 and	 their	 co-dependency)	 and	 also	 category-based	
generalization	 of	 the	 rich	 category	 of	 intervening	 Xs	 (Gómez,	 2002;	 Grama,	
Kerkhoff,	 &	 Wijnen,	 2016;	 Frost	 &	 Monaghan,	 2016;	 Onnis,	 Monaghan,	
Christiansen,	&	Chater,	2004;	Wang	et	al.,	2019).	This	type	of	artificial	grammar	
learning	models	the	mechanisms	needed	in	language	acquisition	to	acquire	rules	
like	 is	go-ing,	 is	 learn-ing.	According	to	our	entropy	model,	a	channel	capacity	
which	is	higher	than	the	source	rate	of	information	transmission	allows	for	item-
bound	generalization,	but,	in	order	to	move	to	a	category-based	generalization,	
the	source	rate	of	information	transmission	needs	to	be	higher	than	the	channel	
capacity.	So	how	does	the	model	perform	when	tested	on	such	a	complex	type	of	
grammar?	
	 As	shown	in	section	2.4	above,	given	an	entropy	(H)	of	a	source	and	an	
average	 number	 of	 symbols	 produced	 by	 the	 source	 per	 second	 (m),	we	 can	
calculate	the	amount	of	information	produced	by	the	source	per	second	–	H’	=	
mH	 –	 i.e.	 the	 source	 rate	 of	 information	 transmission.	 According	 to	 Shannon	
(1948),	this	amount	of	entropy	determines	the	channel	capacity	required	with	
the	most	efficient	encoding	method,	but	this	entropy	cannot	exceed	the	channel	
capacity.	 Using	 this	 formula,	 we	 estimated	 a	 source	 rate	 of	 transmission	 of	
information	in	the	experiments	carried	out	by	Radulescu	et	al.	(2019),	as	shown	
in	section	2.4	above.	Then,	we	specifically	predicted	that,	 if	we	keep	the	same	
information	content	(input	entropy)	of	the	lowest	entropy	signal	version	from	
Radulescu	 et	 al.	 (2019)	 –	 where	 there	 was	 no	 evidence	 of	 category-based	
generalization,	but	we	increase	the	source	rate	of	transmission	up	to	the	source	
rate	of	transmission	of	the	highest	entropy	signal	version	from	the	same	study	–	
where	 that	 study	 found	 very	 high	 tendency	 towards	 category-based	
generalization,	 then	we	should	 see	a	higher	 tendency	 to	make	category-based	
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generalizations,	 even	 though	 the	 actual	 statistical	 properties	 (entropy)	 of	 the	
input	are	the	same.	Moreover,	as	we	showed	in	section	2.4,	in	the	highest	entropy	
version	 of	 that	 study	 we	 found	 evidence	 that	 indeed	 the	 source	 rate	 of	
information	 transmission	 was	 higher	 than	 the	 available	 channel	 capacity,	
therefore	we	wanted	to	aim	for	that	specific	source	rate	of	information.	
	 Specifically,	let	us	denote	the	source	rate	of	information	transmission	in	
the	signal	version	with	the	highest	entropy	as	H’H	=	m1HH	(1),	and	the	source	rate	
of	information	transmission	in	the	lowest	entropy	version	as	H’L	=	m1HL	(2).	Note	
that	the	average	rate	of	symbols	per	second	(m1)	was	the	same	in	both	versions.		
For	the	purpose	of	the	manipulation	we	are	aiming	for,	we	would	like	to	obtain	
H’H	 =	 	 H’L	 but	 by	 keeping	 HL	 constant	 and	 increasing	 the	 average	 rate	 of	
symbols/s	to	obtain	m2,	such	that	m2	>	m1.	
	 Thus,	in	the	XXY	grammar	from	Radulescu	et	al.	(2019),	for	a	constant	
m1	(symbols/s):		
	 HL=	2.8b/symbol:	HL’	=	m1	HL	

HH=	4.8b/symbol:	HH’	=	m1	HH	
For	the	purpose	of	 increasing	the	source	rate	of	transmission	up	to	HH’,	while	
keeping	entropy	constant	(HL),	and	by	increasing	the	average	rate	of	symbols/s,	
we	calculated	the	necessary	m2,	as	follows:	
	 m2	HL	=	HH’	
	 m2	HL	=	m1	HH	
	 m2/	m1	=	HH	/	HL	
	 m2	=	(4.8/2.8)	m1	
	 m2	=	1.71	m1	
Thus,	we	obtained	m2	=	1.71m1,	and	translated	it	into	duration	of	syllables	and	
within-	and	between-string	pauses,	such	that	we	sped	up	all	elements	(syllables	
and	 pauses)	 proportionally	 by	 a	 coefficient	 of	 1.71.	 As	 a	 result,	we	 created	 a	
faster	source	rate	of	information	transmission,	i.e.	entropy	per	second	(HL’	=	HH’),	
but	we	kept	the	entropy	per	symbol	constant	HL=	2.8b/symbol.	
	 Next,	for	the	aXb	grammar,	we	created	two	versions	of	the	signal	with	
different	entropy	levels	(HL;	HH),	but	the	same	average	rate	of	symbols/s	(m3):	
	 HL=	3.52b/symbol:	HL’	=	m3	HL	

HH=	4.71b/symbol:	HH’	=	m3	HH	
For	the	purpose	of	increasing	the	source	rate	of	information	transmission	up	to	
HH’,	while	keeping	entropy	constant	(HL),	and	by	increasing	the	average	rate	of	
symbols/s,	we	calculated	the	necessary	m4,	as	follows:	
	 m4	HL	=	HH’	
	 m4	HL	=	m3	HH	
	 m4/	m3	=	HH	/	HL	
	 m4	=	(4.71/3.52)	m3	
	 m4	=	1.34	m3	
Thus,	we	obtained	m4	=	1.34m3,	and	translated	it	into	duration	of	syllables	and	
within-	and	between-string	pauses,	such	that	we	sped	up	all	elements	(syllables	
and	 pauses)	 proportionally	 by	 a	 coefficient	 of	 1.34.	 As	 a	 result,	we	 created	 a	
faster	source	rate	of	information	transmission,	i.e.	entropy	per	second	(HL’	=	HH’),	
but	we	kept	the	entropy	per	symbol	constant	HL=	3.52b/symbol.	
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	 In	addition	to	probing	the	direct	effect	of	the	time	variable	of	channel	
capacity,	as	presented	above,	this	study	also	looked	into	the	effect	of	individual	
differences	in	cognitive	capacities	on	rule	induction,	namely	the	effect	of	those	
capacities	hypothesized	by	our	entropy	model	to	underlie	the	channel	capacity:	
memory	 capacity	 and	 a	 domain-general	 pattern-recognition	 capacity.	 To	 this	
end,	we	tested	each	participant	on	three	independent	tests:	a	Forward	Digit	Span	
task,	which	is	a	measure	of	explicit	short-term	memory	(Baddeley	et	al.,	2015),	
an	 incidental	 memorization	 task,	 which	 measures	 implicit	 memory	 capacity	
(Baddeley	et	al.,	2015),	and	Raven’s	Standard	Progressive	Matrices	(RAVENS	–	
Raven	et	al.,	2000),	which	 is	a	standardized	test	of	 fluid	 intelligence	based	on	
visual	 pattern-recognition	 (Carpenter	 et	 al.	 1990,	 Little	 et	 al.	 2014).	 Thus,	
according	to	the	hypotheses	of	our	entropy	model,	we	predicted	a	positive	effect	
of	RAVENS	on	 the	 tendency	 to	move	 from	an	 item-bound	 to	 a	 category-based	
generalization,	and	a	negative	effect	of	the	explicit/incidental	memory	tests	on	
the	same	transition	from	one	type	of	encoding	to	the	other.	
	 Therefore,	we	designed	and	carried	out	two	experiments,	one	to	test	the	
effect	of	sped	up	rate	of	information	on	rule	induction	in	an	XXY	grammar,	and	
the	other	one	to	test	the	same	effect	in	an	aXb	non-adjacent	dependency	(NAD)	
grammar.	To	 the	best	of	our	knowledge,	 these	are	 the	 first	 language	 learning	
experiments	 that	 investigate	 the	 effect	 of	 the	 time-dependent	 variable	 of	 the	
channel	capacity	in	rule	induction,	by	specifically	testing	information-theoretic	
predictions	made	by	an	entropy	model.	
	
4.	Experiment	1	
	
In	Experiment	1,	participants	carried	out	three	tasks.	The	first	task	presented	the	
XXY	 grammar	 in	 two	 different	 conditions:	 a	 slow	 source	 rate	 of	 information	
transmission	 (Slow	 Rate	 condition)	 and	 a	 fast	 source	 rate	 of	 information	
transmission	(Fast	Rate	condition).	In	the	Slow	Rate	condition,	we	used	the	exact	
stimuli	 and	 source	 rate	 of	 information	 transmission	 (HL’)	 as	 in	 the	 lowest	
entropy	 condition	 from	 Radulescu	 et	 al.	 (2019)	 –	 2.8	 bits.	 In	 the	 Fast	 Rate	
condition,	 the	 same	 stimuli	 were	 used	 (HL	 =	 2.8),	 but	 the	 source	 rate	 of	
information	transmission	was	sped	up	by	a	factor	of	(HH/HL=)	1.71	(as	per	the	
calculations	presented	in	section	3	above).	In	the	test	phases	participants	were	
presented	 with	 four	 different	 types	 of	 test	 strings,	 just	 as	 in	 the	 design	 by	
Radulescu	et	al.	(2019),	which	we	briefly	presented	in	section	2.4	above,	and	on	
which	 we	 will	 elaborate	 here	 for	 further	 clarification	 and	 to	 formulate	 our	
predictions.	Participants	were	presented	with	a	grammaticality	judgement	task,	
where	they	had	to	answer	a	yes/no	question	to	indicate	whether	the	test	strings	
could	be	possible	in	the	familiarization	language.	The	test	included	four	types	of	
test	 strings,	 in	 order	 to	 test	 how	 the	participants	 encoded	 the	 familiarization	
stimuli,	as	presented	below.	
	 Familiar-syllable	XXY	(XXY	structure	with	familiar	X-syllables	and	Y-
syllables)	–	correct	answer	–	yes	–	accept.	This	type	of	test	strings	was	used	to	
test	 learning	of	 the	 familiar	strings.	Both	groups	were	expected	to	accept	 this	
type	of	strings	as	grammatical,	either	due	to	having	encoded	them	as	item-bound	
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generalizations	(in	the	Slow	Rate	condition),	or	as	category-based	generalizations	
(in	the	Fast	Rate	condition).	
	 New-syllable	XXY	(XXY	structure	with	new	X-syllables	and	Y-syllables)	
–	 correct	 answer	–	yes	–	accept.	This	 type	was	used	 to	 test	whether	 learners	
moved	from	 item-bound	generalization	 to	category-based	generalization	which	
enables	them	to	accept	XXY	strings	with	new	syllables.	Therefore,	we	expected	
that	 the	 Fast	 Rate	 group	 was	 more	 likely	 to	 accept	 this	 type	 of	 strings	 as	
grammatical,	 as	 compared	 to	 the	 Slow	 Rate	 group.	 However,	 absolute	 mean	
acceptance	 rate	 of	 this	 type	 of	 strings	does	not	 represent	 direct	 evidence	 for	
category-based	 generalization.	 As	 we	 argued	 in	 Radulescu	 et	 al.	 (2019),	 this	
mean	should	be	compared	to	the	mean	acceptance	rate	of	Familiar-syllable	XXY	
strings:	if	the	difference	of	the	mean	acceptance	rate	between	New-syllable	XXY	
strings	and	Familiar-syllable	XXY	strings	is	significantly	smaller	in	the	Fast	Rate	
condition	as	compared	to	 the	Slow	Rate	condition	(i.e.	effect	size),	 this	would	
suggest	 that	 learners	 were	 more	 likely	 to	 have	 formed	 category-based	
generalization	in	the	Fast	Rate	condition	than	in	the	Slow	Rate	condition.	
	 Familiar-syllable	 X1X2Y	 (X1X2Y	 structure	 with	 familiar	 syllables)	 –	
correct	answer	–	no	–	reject.	Participants	are	expected	to	confidently	reject	this	
type	of	strings,	either	by	having	encoded	the	input	as	item-bound	generalizations	
(as	we	expect	the	Slow	Rate	group)	or	category-based	generalizations	(the	Fast	
Rate	group).	Specifically,	participants	in	the	Slow	Rate	condition	are	expected	to	
confidently	 reject	 this	 type	 of	 strings,	 as	 their	memory	 trace	 of	 the	 Familiar-
syllable	 XXY	 strings	 is	 expected	 to	 be	 strong	 enough	 to	 highlight	 a	mismatch	
between	these	strings	and	the	Familiar-syllable	X1X2Y	strings.	Participants	in	the	
Fast	Rate	condition	are	expected	to	form	strong	category-based	generalizations,	
thus	they	should	confidently	reject	the	Familiar-syllable	X1X2Y	strings	as	deviant	
from	the	same-same-different	rule.	
	 New-syllable	 X1X2Y	 (X1X2Y	 structure	 with	 new	 syllables)	 –	 correct	
answer	–	no	–	reject.	Participants	are	expected	to	confidently	reject	this	type	of	
strings,	either	by	having	encoded	the	input	as	item-bound	generalizations	(as	we	
expect	 the	 Slow	Rate	 group)	 or	 category-based	 generalizations	 (the	 Fast	Rate	
group).	
	 The	second	task	was	a	Forward	Digit	Span,	which	is	a	standard	measure	
of	short-term	memory	capacity	(Baddeley	et	al.,	2015).	The	third	 task	was	an	
incidental	 memorization	 task,	 which	 measures	 the	 ability	 to	 memorize	
information	without	being	explicitly	instructed	to	do	so	(Baddeley	et	al.,	2015).	
According	to	the	hypotheses	of	our	entropy	model,	we	predicted	a	negative	effect	
of	the	explicit/incidental	memory	capacities	on	learners’	tendency	to	move	from	
an	item-bound	encoding	to	a	category-based	encoding.	
	 Importantly,	 we	 tested	 the	 same	 participants	 in	 both	 experiments,	
which	were	conducted	in	two	separate	sessions,	on	two	different	days	(at	least	
three	days	passed	between	sessions).	For	practical	reasons,	all	participants	took	
part	first	in	the	aXb	grammar	experiment	(Experiment	2)	and	then	in	the	XXY	
grammar	experiment	(Experiment	1).	For	theoretical	presentation	reasons,	that	
have	to	do	with	the	logic	and	theoretical	development	of	the	entropy	model	and	
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its	hypotheses,	here	we	present	the	XXY	experiment	first,	followed	by	the	aXb	
experiment.	
	
4.1	Participants	
	
Fifty-six	adults,	Dutch	native-speakers	(10	male,	age	range	18-72,	Mage	=	26.39,	
SDage	 =	 11.06)	 participated.	 All	 participants	 were	 naïve	 to	 the	 aim	 of	 the	
experiment	 and	 had	 no	 known	 language,	 reading	 or	 hearing	 impairment	 or	
attention	 deficit.	 Participants	 received	 5	 euros	 for	 their	 participation	 in	
Experiment	1.	One	additional	participant	was	tested,	but	excluded	after	having	
reported	to	suffer	from	Attention	Deficit	Disorder.	
	
4.2	Materials	
	
Task	1:	XXY	grammar	
	
Familiarization	stimuli.	Participants	listened	in	both	the	Slow	Rate	and	the	Fast	
Rate	 conditions,	 to	 the	 same	XXY	 artificial	 grammar	 used	 in	 the	 low	 entropy	
condition	of	Experiment	2	 in	 the	study	by	Radulescu	et	al.	 (2019).	The	 three-
syllable	strings	of	the	language	display	an	XXY	structure	(each	letter	stands	for	a	
set	of	syllables).	Each	string	consists	of	two	identical	syllables	(XX)	followed	by	
another	 different	 syllable	 (Y):	 e.g.	 keːkeːmy,	 daːdaːli.	 All	 syllables	 consist	 of	 a	
consonant	 followed	 by	 a	 long	 vowel,	 to	 resemble	 common	 Dutch	 syllable	
structure.	 The	 subset	 of	 X-syllables	 does	 not	 overlap	 with	 the	 subset	 of	 Y-
syllables.	Overall,	seven	X-syllables	and	seven	Y-syllables	were	used	to	generate	
seven	 strings	 (see	 Appendix	 A	 for	 complete	 stimulus	 set).	 Each	 string	 was	
repeated	four	times	in	each	familiarization	phase	(7	strings	x	4	repetitions	=	28	
strings	in	each	familiarization	phase).		
	 The	same	28	strings	were	used	for	all	three	familiarization	phases,	such	
that	the	entropy	was	the	same	in	all	 familiarization	phases	 	–	2.8	bits.	For	the	
entropy	 calculations,	 we	 employed	 the	 same	 method	 as	 in	 Radulescu	 et	 al.	
(2019),	which	is	a	fine-tuned	extension	of	a	related	entropy	calculation	method	
proposed	 by	 Pothos	 (2010)	 for	 finite	 state	 grammars	 (see	 Table	 4	 below	 for	
complete	entropy	calculations).		
	 The	 order	 of	 presentation	 of	 the	 strings	 was	 randomized	 for	 every	
participant,	and	each	participant	was	randomly	assigned	to	either	the	Slow	Rate	
or	the	Fast	Rate	condition,	in	order	to	obtain	a	between-subjects	experimental	
design.	 In	 the	 Slow	 Rate	 condition	 there	was	 a	 pause	 of	 50	ms	 between	 the	
syllables	within	strings,	and	a	pause	of	750	ms	between	the	strings.	In	the	Fast	
Rate	condition	all	X	and	Y	syllables,	 as	well	as	 the	within-and	between-string	
pauses	were	sped	up	separately	by	a	factor	of	1.71,	using	Praat	6.0.49	(64-bit	
Edition	for	Windows;	Boersma	&	Weenick,	2005).	
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Low	Entropy	

H[bX]=H[7]	=	-Σ[0.143*log0.143]	=	2.8	
H[XX]	=	H[7]=	2.8	
H[XY]	=	H[7]	=	2.8	
H[Ye]	=	H[7]	=	2.8	
H[bXX]	=	H[7]	=	2.8	
H[XXY]	=	H[XYe]=	H[7]	=	2.8	
H[bigram]	=	2.8	
H[trigram]	=	2.8	
H[total]	=		𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	2.8	

Table	4.	Entropy	value	for	Experiment	1.	Taken	from	
Radulescu	et	al.	(2019)	

	
Test	 stimuli.	 In	 total	 there	were	 three	 familiarization	phases,	 interleaved	with	
three	 (quick)	 intermediate	 test	 phases	 and	 a	 final	 (longer)	 test	 phase.	 Each	
intermediate	test	phase	included	four	test	strings,	one	of	each	type.	The	final	test	
had	eight	test	strings	(two	of	each	type).	Thus,	in	total,	there	were	(4+4+4+8=)	
20	test	strings	(see	Appendix	A	for	the	complete	set	of	stimuli).	Accuracy	score	
for	 the	 learning	 of	 the	 XXY	 grammar	was	measured	 as	 correct	 acceptance	 of	
Familiar-syllable	 XXY	 and	 New-syllable	 XXY	 strings	 and	 correct	 rejection	 of	
Familiar-syllable	X1X2Y	and	New-syllable	X1X2Y	strings.		
	 We	 recorded	 all	 the	 yes/no	 answers	 and	 coded	 them	 as	 correct	
acceptance	of	Familiar-syllable	XXY	and	New-syllable	XXY	strings	and	correct	
rejection	of	Familiar-syllable	X1X2Y	and	New-syllable	X1X2Y	strings.	From	all	the	
20	correct/incorrect	answers	for	each	participant	we	calculated	a	proportion	of	
correct	answers	per	each	type	of	 test	 item.	Next,	 instead	of	directly	analyzing	
proportions,	we	performed	an	empirical	logarithmic	transformation,	in	order	to	
analyze	the	data	using	a	linear	model.	
	
Task	2:	Forward	Digit	Span	
	
Participants	were	 explicitly	 told	 that	 this	was	 a	memory	 test,	 during	which	 a	
series	of	digits	would	be	presented	aurally,	and	they	would	have	to	recall	them	
in	the	same	order.	To	prevent	participants	from	creating	a	visual	pattern	on	the	
keypad	while	 listening	 to	 the	 digits,	we	modified	 the	 standard	 Forward	Digit	
Span	task	such	that	no	physical	keyboard	was	made	available	to	the	participants,	
rather	a	row	with	buttons	for	each	digit	was	displayed	in	a	line	on	the	screen	only	
in	the	moment	when	they	were	asked	to	enter	the	digits	by	clicking	the	buttons,	
and	 disappeared	 during	 the	 listening	 phases.	 We	 used	 the	 standard	 scoring	
method:	we	measured	the	highest	span	of	each	participant	and	recorded	it	as	one	
data	point	per	participant.	
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Task	3:	Incidental	Memorization	Test	
	
Participants	 listened	 to	 30	 bisyllabic	 nonsense	 words	 resembling	 Dutch	
phonology.	Crucially,	participants	were	not	told	in	advance	that	a	memory	test	
would	be	administered.	They	were	only	told	that	 they	were	about	to	 listen	to	
words	from	another	forgotten	language.	They	were	instructed	to	imagine	what	
the	word	might	have	meant	 in	 the	 forgotten	 language	 and	 to	pick	 a	 category	
(flower,	animal,	or	tool),	based	on	what	the	word	sounded	like	to	them.	They	had	
3	seconds	to	choose	a	category	for	each	word,	by	pressing	the	button	for	flowers,	
animals,	or	tools.	
	 After	this	phase,	a	message	informed	the	participants	that	they	would	
be	 given	 a	 memory	 test,	 which	 would	 check	 whether	 they	 remembered	 the	
words	they	categorized	during	the	previous	phase.	They	were	instructed	to	press	
a	 yes/no	 button	 on	 the	 screen,	 depending	 on	 whether	 they	 heard	 the	 word	
previously	 or	 not.	 In	 the	memorization	 test	 participants	 gave	 answers	 on	 13	
targets	and	13	foils.	We	recoded	all	correct/incorrect	answers	into	a	d’	value	for	
each	participant.	
	
4.4	Procedure	
	
Participants	completed	the	tasks	in	the	order	presented	above.	For	Task	1,	they	
were	 told	 that	 they	 would	 listen	 to	 a	 “forgotten	 language”	 that	 would	 not	
resemble	any	language	they	might	know,	which	had	its	own	rules	and	grammar.	
Participants	were	informed	that	the	language	had	more	words	than	what	they	
heard	in	the	familiarization	phases.	They	were	told	that	each	intermediate	test	
would	be	different	from	the	other	tests,	and	the	tests	were	meant	to	check	what	
they	had	noticed	about	the	language.	They	had	to	decide,	by	pressing	a	Yes	or	a	
No	button,	if	the	words	they	heard	in	the	tests	could	be	possible	in	the	language.	
This	task	 lasted	around	5	minutes.	For	Task	2,	 they	were	explicitly	 instructed	
that	it	was	a	memory	test.	For	Task	3,	they	were	not	told	in	advance	about	the	
memory	test.	The	entire	experiment	lasted	about	20	minutes.	
	
4.5	Experiment1:	Results	
	
Figure	 4	 presents	 the	 mean	 correct	 acceptance	 rate	 (proportion	 of	 correct	
acceptances	per	group)	for	Familiar-syllable	XXY	strings	and	New-syllable	XXY	
strings,	 across	 the	 two	 conditions	 (Slow	 Rate,	 Fast	 Rate).	 The	 mean	 correct	
acceptance	rate	in	the	Slow	Rate	condition	for	Familiar-syllable	XXY	strings	was	
M	=	.96	(SD	=	.1),	and	for	New-syllable	XXY	strings	it	was	M	=	.75	(SD	=	.27).	The	
mean	rate	of	correct	acceptance	in	Fast	Rate	condition	for	Familiar-syllable	XXY	
strings	was	M	=	.99	(SD	=	.04),	and	for	New-syllable	XXY	strings	it	was	M	=	.9	(SD	
=	.18).	
	 Similarly,	Figure	5	shows	the	mean	correct	rejection	rate	(proportion	of	
correct	 rejections	 per	 group)	 for	 Familiar-syllable	 X1X2Y	 strings	 and	 New-
syllable	X1X2Y	strings,	across	the	Slow	Rate	and	Fast	Rate	conditions.	In	the	Slow	
Rate	 condition,	 the	 mean	 correct	 rejection	 rate	 for	 Familiar-syllable	 X1X2Y	
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strings	was	M	=	.93	(SD	=	.24)	and	for	New-syllable	X1X2Y	strings	was	M	=	.99	(SD	
=	.04).	In	the	Fast	Rate	condition,	the	mean	correct	rejection	rate	for	Familiar-
syllable	X1X2Y	strings	was	M	=	.99	(SD	=	.05),	and	for	New-syllable	X1X2Y	strings	
was	M	=	.99	(SD	=	.08).	
	

	
	 	
In	order	to	probe	the	effect	of	channel	capacity	on	rule	induction,	we	compared	
the	performance	 in	 the	 two	conditions	 (Slow	Rate	and	Fast	Rate	groups)	 in	a	
general	 linear	 mixed	 effects	 analysis	 of	 the	 relationship	 between	 Accuracy	
(correct	acceptance	of	 the	grammatical	 test	 items	and	correct	rejection	of	 the	
ungrammatical	ones)	and	the	Rate	of	Transmission	(Slow	Rate,	Fast	Rate)	as	well	
as	the	Type	of	Test	Strings	(Familiar-syllable	XXY,	New-Syllable	XXY,	Familiar-
syllable	 X1X2Y,	 New-Syllable	 X1X2Y).	 Therefore,	 as	 dependent	 variable	 we	
entered	 Accuracy	 score	 into	 the	 model.	 As	 fixed	 effects	 we	 entered	 Rate	 of	
Transmission,	 Type	 of	 Test	 Strings	 and	 Rate	 of	 Transmission	 x	 Type	 of	 Test	
Strings	interaction.	As	random	effect	we	had	intercepts	for	subjects.	The	scores	
for	Forward	Digit	Span,	Incidental	Memorization	Task	and	RAVENS	tests26	were	
entered	one	by	one	as	covariates	in	the	model.	An	alpha	level	of	.05	was	used	for	
all	statistical	tests.	We	started	fitting	the	data	from	the	intercept-only	model	and	
added	the	random	and	fixed	factors	one	by	one.	The	model	reported	here	is	the	
best	 fitting	 model,	 both	 in	 terms	 of	 the	 model’s	 accuracy	 in	 predicting	 the	
observed	data,	and	in	terms	of	AIC	(Akaike	Information	Criterion).	
	

 
26	RAVENS	scores	were	obtained	for	the	participants	during	the	second	
experiment	presented	in	this	paper,	since	the	same	participants	participated	in	
both	experiments	(see	section	5	below).	
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We	found	a	significant	main	effect	of	Type	of	test	strings	(F(3,	213)	=	5.742,	p	=	
.001),	a	marginally	significant	Rate	of	Transmission	x	Type	interaction	(F(4,	213)	
=	2.039,	p	=	.090),	a	non-significant	Forward	Digit	Span	effect	(F(1,	213)	=	.069,	
p	=	.793),	a	non-significant	Incidental	Memorization	Task	effect	(F(1,	213)	=.880,	
p	=	.349)	and	a	non-significant	RAVENS	effect	(F(1,	213)	=	2.326,	p	=	.129).27	
	 Pairwise	comparisons	of	the	Estimated	Marginal	Means	(adjusted	to	the	
mean	 values	 of	 the	 covariates	 in	 the	 model,	 i.e.	 Forward	 Digit	 Span	 =	 6.68,	
Incidental	Memorization	Task	=	1.968,	RAVENS	=	71.54)	revealed	a	significant	
difference	 between	 the	 Rate	 of	 Transmission	 conditions	 (Fast	 Rate	 and	 Slow	
Rate	groups)	for	the	New-syllable	XXY	(M	=	.101,	SE	=	.045,	F(1,	213)	=	4.936,	p	
=	.027),	and	a	nearly-significant	difference	for	the	Familiar-syllable	X1X2Y	(M	=	
.085,	SE	=	 .045,	F(1,	213)	=	3.522,	p	=	 .062).	For	 the	other	 two	Types	of	 test,	
pairwise	comparisons	of	the	Estimated	Marginal	Means	adjusted	for	the	same	
level	of	the	covariates	revealed	a	non-significant	difference	between	the	Rate	of	
Transmission	 conditions	 (Fast	 Rate	 and	 Slow	 Rate	 groups):	 Familiar-syllable	
XXY	(M	=	.010,	SE	=	.045,	F(1,	213)	=	.051,	p	=	.822)	and	New-syllable	X1X2Y	(M	
=	.012,	SE	=	.045,	F(1,	213)	=.069,	p	=	.793).	
	 Furthermore,	Cohen’s	effect	size	value	(d)	and	the	effect-size	correlation	
(r)	 for	 the	 difference	 in	 acceptance	 between	 Familiar-syllable	 XXY	 and	 New-
syllable	XXY	was	higher	in	the	Slow	Rate	condition	(d	=	1.03,	r	=	0.45;	large	effect	
size),	than	in	the	Fast	Rate	condition	(d=	.69,	r	=	.32;	medium	effect	size).	

 
27	We	also	checked	the	main	effect	of	Rate	of	Transmission,	and	since	it	was	
non-significant	(F(1,	213)	=	2.558,	p	=	.111),	it	did	not	improve	the	model,	and	
it	created	effects	of	an	overfitted	model,	we	excluded	it	from	the	final	model	
presented	here.	
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	 In	 information-theoretic	 terms,	 the	 rate	 of	 equivocation	 (E)	 dropped	
from	0.60	bits/s	down	to	0.46	bits/s	in	the	Fast	Rate	group,	i.e.	when	the	source	
rate	of	transmission	(H’)	was	sped	up	from	1.40	bits/s	up	to	2.39	bits/s,	while	
the	input	entropy	was	kept	constant	at	2.8	bits/symbol.	As	a	consequence,	the	
actual	rate	of	transmission	(R)	increased	significantly	from	0.8	bits/s	up	to	1.93	
bits/s	 (Table	 5	 shows	 the	 relevant	 calculations	 based	 on	 the	 formulas	 from	
section	2.4).	
	

	
4.6	Discussion	
	
The	results	of	Experiment	1	show	that	the	mean	acceptance	of	new	XXY	strings	
as	 grammatical	 in	 the	 familiarization	 language	 was	 higher	 in	 the	 Fast	 Rate	
condition	than	in	the	Slow	Rate	condition,	as	predicted	by	our	model.	Moreover,	
there	was	a	difference	between	the	rates	of	acceptance	of	new	XXY	strings	vs.	
familiar	XXY	strings	depending	on	the	rate	of	transmission	group:	there	was	a	
smaller	 difference	 between	 the	 mean	 acceptance	 of	 the	 new	 XXY	 strings	 vs.	
familiar	 XXY	 strings	 in	 the	 Fast	 Rate	 condition	 compared	 to	 the	 Slow	 Rate	
condition.	This	shows	differences	between	groups	in	terms	of	how	they	encoded	
the	input:	if	learners	do	not	make	a	clear	distinction	between	a	new	XXY	string	
and	a	familiar	XXY	string,	we	conclude	that	they	encoded	the	input	as	category-
based	generalization,	which	allows	them	to	accept	both	a	new	and	a	familiar	XXY	
string	 based	 on	 a	 same-same-different	 rule	 regardless	 of	 new	 or	 familiar	
syllables.	Hence,	a	smaller	difference	between	the	means	of	acceptance	of	these	
test	types	in	the	Fast	Rate	condition	shows	a	higher	tendency	towards	category-
based	generalization	than	in	the	Slow	Rate	condition.	Thus,	these	results	together	
show	that	there	was	a	higher	tendency	towards	category-based	generalization	
when	 the	 source	 rate	 of	 transmission	was	 sped	 up	 to	 a	 higher	 rate	 than	 the	
channel	capacity,	even	though	the	input	entropy	was	the	same	in	both	conditions,	
which	supports	the	predictions	of	our	entropy	model	regarding	the	effect	of	the	
time-dependent	variable	of	the	channel	capacity	on	rule	induction.	
	 The	rate	of	correct	rejection	of	X1X2Y	strings	with	familiar	syllables	was	
also	higher	 in	 the	Fast	Rate	 condition	 than	 in	 the	Slow	Rate	 condition,	which	
supports	 the	 same	 hypothesis	 of	 our	 model:	 when	 the	 source	 rate	 of	
transmission	 was	 sped	 up,	 learners	 formed	 category-based	 generalizations	

H	

Source	
rate	
(H’)	 H(XXY)	 H(X1X2Y)	

Hy(x)=	
avg{H(XXY);	
H(X1X2Y)}	

E	

R	=	H'	–	
E	

(m*H)	

2.8	 1.40	 0.57	 0.29	 0.43	 0.60	 0.80	
2.8	 2.39	 0.39	 0.00	 0.19	 0.46	 1.93	

Table	5.	Rate	of	information	transmission	and	rate	of	equivocation	in	the	
Slow	Rate	condition	(H’	=	1.40)	vs.	Fast	Rate	condition	(H’	=	2.39)	
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which	helped	them	reject	strings	that	were	deviant	from	the	same-same-different	
rule,	although	they	had	familiar	syllables.	
	 In	information-theoretic	terms,	the	results	of	this	experiment	show	that	
speeding	up	the	source	rate	of	information	transmission	caused	the	transition	to	
a	more	efficient	encoding	method,	which	is	signaled	by	the	significant	drop	in	the	
rate	of	equivocation:	while	the	source	rate	of	 transmission	increases	from	1.4	
bits/s	up	to	2.39	bits/s,	the	rate	of	equivocation	drops	from	0.60	bits/s	down	to	
0.46	 bits/s.	 This	 shows	 that	 there	 was	 indeed	 an	 attempt	 at	 exceeding	 the	
channel	 capacity,	which	 caused	a	 change	 in	 the	encoding	method,	 such	 that	 a	
more	 efficient	 encoding	 method	 was	 found:	 the	 item-bound	 generalization	
transitioned	to	the	category-based	generalization,	which	allows	for	more	entropy	
to	 be	 encoded	 per	 unit	 of	 time	 with	 less	 equivocation,	 that	 is	 less	 loss	 of	
information	at	receiver’s	end.		With	the	new	encoding	method	in	place,	more	data	
(bits)	are	being	transmitted	per	unit	of	time,	while	the	rate	of	equivocation	(i.e.	
loss	of	information)	decreases	to	a	very	low	rate.	This	indicates	that	the	encoding	
–	decoding	method	is	more	efficient,	such	that	more	bits	of	information	can	be	
reliably	transmitted	over	the	channel,	that	is	a	higher	actual	rate	of	information	
transmission	is	attained,	while	there	is	less	loss	of	information	when	receiving	
the	message	(i.e.	the	XXY	language).	
	 When	comparing	the	results	of	this	experiment	with	the	results	of	the	
experiments	in	Radulescu	et	al.	(2019),	the	actual	rate	of	transmission	from	the	
Fast	Rate	group	of	this	experiment	(R	=	1.93	bits/s)	is	almost	as	high	as	the	actual	
rate	of	transmission	from	the	highest	entropy	condition	(H	=	4.8	bits/symbol)	
from	Radulescu	et	al.	(2019):	R	=	2.20	bits/s),	although	in	the	experiment	of	the	
present		study	the	input	entropy	was	just	as	low	as	the	lowest	entropy	condition	
from	Radulescu	et	al.	(2019),	i.e.	H	=	2.8	bits/symbol.	This	shows	that,	even	at	a	
low	 input	 entropy,	 speeding	 up	 the	 source	 rate	 of	 information	 transmission	
drives	 a	 change	 of	 the	 encoding	 method	 towards	 a	 more	 efficient	 encoding,	
which	allows	for	higher	rate	of	information	transmission	with	less	equivocation	
rate.	In	other	words,	the	same	transition	to	a	more	efficient	encoding	method	–	
category-based	 generalization	 –	 was	 obtained	 either	 by	 increasing	 the	 input	
entropy	 (H)	 in	Radulescu	et	al.	 (2019)	or	by	 reducing	 the	 time	 that	 the	same	
input	entropy	is	fed	into	the	channel,	i.e.	by	speeding	up	the	source	bit	rate	of	
information	transmission.	
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5.	Experiment	2	
	
In	 Experiment	 2,	 participants	 carried	 out	 three	 tasks.	 In	 Task	 1,	 adults	were	
exposed	to	an	aXb	language	where	they	had	to	learn	item-bound	dependencies	
between	 a	 and	 b	 (item-bound	 generalization),	 while	 also	 generalizing	 a_b	
dependencies	over	a	category	of	X	words	 (category-based	generalization).	For	
example,	they	had	to	learn	the	item-bound	dependency	tɛp_jɪk,	and	generalize	it	
over	new	X	elements	(like	nilbo,	perxɔn):	tɛp_nilbo_jɪk,	tɛp_perxɔn_jɪk,	etc.		
	 We	 designed	 two	 experimental	 conditions:	 a	 slow	 source	 rate	 of	
information	 transmission	 (Slow	 Rate	 condition)	 and	 a	 fast	 source	 rate	 of	
information	transmission	(Fast	Rate	condition).	As	presented	 in	section	3,	we	
first	created	two	entropy	versions	of	the	grammar,	but	the	same	average	rate	of	
symbols/s	(m3),	then	we	increased	the	average	rate	of		symbols/s	(m4),	in	order	
to	reach	the	same	source	rate	of	information	transmission	of	the	high	entropy	
version,	but,	crucially,	keeping	the	input	entropy	low.	
	 Unlike	 Gómez	 (2002),	 we	 kept	 X	 set	 size	 constant	 (18	 Xs)	 and	
manipulated	entropy	by	combining	each	of	the	three	a_b	frames	with	different	
subsets	of	6	Xs	(3	a_b	*	6	Xs)	which	generated	a	rather	low	entropy	signal	(HL	=	
3.52	 bits/symbol).	 For	 the	 high	 entropy	 signal,	 the	 aXb	 grammar	 combined	
exhaustively	each	of	the	three	a_b	frames	with	all	intervening	Xs	(3	a_b	*	18	Xs),	
which	 resulted	 in	 a	 rather	 high	 entropy	 (HH	 =	 4.7	 bits/symbol).	 Since	 such	
evaluations	 of	 low/high	 entropy	 could	 be	 seen	 as	 relative,	 depending	 on	 the	
grammar/language,	 we	 took	 into	 account	 previous	 studies	 on	 non-adjacent	
dependency	 learning	 (Gómez,	 2002;	 Grama,	 Kerkhoff,	 &	 Wijnen,	 2016;	
Radulescu	&	Grama,	2020),	 in	order	to	estimate	the	set	size	and	variability	of	
such	an	aXb	language	that	would	be	necessary	to	achieve	a	low	entropy	version	
and	a	high	entropy	version.	For	the	entropy	calculations,	we	employed	the	same	
implementation	model	 as	 in	 Radulescu	 et	 al.	 (2019)	 –	 see	 Table	 6	 below	 for	
complete	entropy	calculations.	
	 Thus,	we	obtained	the	following:	
	 HL=	3.52	b/symbol:	HL’	=	m3	HL	

HH=	4.71	b/symbol:	HH’	=	m3	HH	
In	the	Slow	Rate	condition,	we	used	the	low	entropy	version	as	presented	above	
HL=	3.52b/symbol:	HL’	=	m3	HL.	In	the	Fast	Rate	condition,	the	same	stimuli	were	
used	(HL=	3.52b/symbol),	but	the	source	rate	of	information	was	sped	up	by	a	
factor	of	(HH/HL	=	4.71/3.52	=)	1.34	(as	per	the	calculations	presented	in	section	
3	above).	
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Low	Entropy	 	 	 High	Entropy	

H[begin-a]=H[3]	=		
-Σ[0.333*log0.333]	=	1.58	
H[aX]	=	H[18]	=	4.17	
H[Xb]	=	H[18]	=	4.17	
H[b-end]	=	H[3]	=	1.58	
H[begin-aX]	=	H[18]	=	4.17	
H[aXb]	=	H[Xb-end]	=	H[18]	=	4.17	
H[bigram]	=	2.86	
H[trigram]	=	4.17	
H[total]	=		𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	3.52	

H[begin-a]=H[3]	=		
-Σ[0.333*log0.333]	=		1.58	
H[aX]	=	H[54]	=	5.75	
H[Xb]	=	H[54]	=	5.75	
H[b-end]	=	H[3]	=	1.58	
H[begin-aX]	=	H[54]	=	5.75	
H[aXb]	=	H[Xb-end]	=	H[54]	=	5.75	
H[bigram]	=	3.67	
H[trigram]	=	5.75	
H[total]	=		𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	4.71	

Table	6.	Entropy	values	for	the	two	entropy	versions	of	the	aXb	
grammar	

	
In	the	test	phase,	participants	were	asked	to	give	grammaticality	judgements	on	
aXb	strings	with	either	correct	(familiar)	or	incorrect	(unfamiliar)	a_b	 frames.	
Importantly,	 all	 (correct	 and	 incorrect)	 test	 strings	 included	 new	 X	 elements	
which	were	not	present	 in	the	familiarization.	 If	 learners	correctly	accept	aXb	
strings	with	the	correct	a_b	frames	and	new	X	elements,	it	shows	they	were	both	
able	to	encode	item-bound	generalizations	(i.e.	the	a_b	frames)	and	to	generalize	
them	over	a	category	of	X	elements,	i.e.	category-based	generalization.		
	 Recall	 that,	 according	 to	 our	 entropy	 model,	 rule	 induction	 is	 an	
encoding	 mechanism	 that	 gradually	 goes	 from	 item-bound	 generalization	 to	
category-based	generalization	as	a	function	of	the	interaction	between	the	input	
entropy	(and	more	specifically,	the	source	rate	of	information	transmission)	and	
the	 channel	 capacity.	 In	 other	 words,	 this	 is	 a	 phased	 mechanism	 that	 goes	
gradually	 from	 the	 first	 phase	 of	 item-bound	 generalization	 to	 the	 next-level	
phase	of	category-based	generalization.		
	 Learning	of	aXb	strings	requires	both	item-bound	generalization	of	the	
a_b	 frames	simultaneously	with	category-based	generalization	of	 these	 frames	
over	a	category	of	X	elements.	In	such	a	case	a	sped	up	source	rate	of	information	
transmission	attempts	to	exceed	the	channel	capacity	and	drives	the	transition	
to	 category-based	 generalization	 faster,	 such	 that	 the	 item-bound	 encoding	
mechanism	for	the	a_b	frames	might	be	phased	out,	and	the	encoding	method	
might	move	to	category-based	generalization	for	the	a_b	frames	as	well,	not	only	
for	 the	 X	 category	 of	 intervening	 elements.	 Specifically,	 this	 means	 learners	
might	encode	the	a	and	b	elements,	as	categories,	which	does	not	restrict	 the	
dependencies	to	only	between	a	specific	a	element	and	a	specific	b	element.	That	
is	learners	might	not	encode	an	ai_bi	relationship,	but	a	relationship	between	a	
category	of	a	elements	and	a	category	of	b	elements,	which	allows	also	for	an	ai_bj	
dependency	to	be	legit	(“class-words”	–	Endress	&	Bonatti,	2007).	To	sum	up,	the	
predictions	for	the	outcome	of	this	task	could	be	actually	opposites	for	the	two	
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types	of	relationships	encoded	in	such	an	aXb	grammar:	speeding	up	the	source	
rate	of	information	transmission	attempting	to	exceed	channel	capacity	impedes	
item-bound	 generalization	 (of	 the	 specific	 ai_bi	 relationship),	 but	 it	 facilitates	
category-based	generalization	(i.e.	generalizing	a	relationship	between	a	and	b	
categories	over	a	category	of	Xs).	
	 The	 second	 task	participants	 had	 to	 complete	was	RAVENS	 Standard	
Progressive	Matrices,	(Raven	et	al.,	2000).	According	to	the	hypotheses	of	our	
entropy	model,	we	 predicted	 a	 positive	 effect	 of	 RAVENS	 on	 the	 tendency	 to	
move	from	item-bound	to	category-based	generalization.		
	 In	the	third	task,	participants	completed	a	word-recall	task,	designed	to	
test	item	memorization,	i.e.	detailed	phonological	representations	of	the	a,	b	and	
X	elements,	in	order	to	test	for	a	correlation	between	learners’	representations	
of	specific	items	and	their	accuracy	scores.	We	expected	accurate	memorization	
of	the	a/b	elements	to	support	better	learning	of	the	a_b	dependencies,	and	thus	
better	 accuracy	 scores.	 Conversely,	 failing	 to	 recall	 Xs	 would	 indicate	 better	
generalization	of	the	X	category,	hence	better	scores.	
	
5.1	Participants	
	
The	same	56	participants	from	Experiment	1	participated	in	Experiment	2.	We	
tested	one	more	participant	in	Experiment	2	(as	Experiment	2	was	conducted	
prior	 to	 Experiment	 1,	 one	 participant	 did	 not	 return	 to	 participate	 in	
Experiment	1),	so	this	participant	was	excluded	from	the	analysis.	Therefore,	in	
total	57	participants	took	part	in	Experiment	2	(10	male,	age	range	18-72,	Mage	=	
26.28,	SDage	=	11),	and	received	10	euros	for	their	participation.	
	
5.2	Materials	
	
Task	1:	aXb	grammar	learning	
	
Familiarization	stimuli.	All	a	and	b	elements	were	monosyllabic	nonsense	words	
(e.g.,	tɛp,	jɪk),	while	all	X	elements	were	bisyllabic	nonsense	words	(e.g.,	nɑspu,	
dyfoː).	Each	a_b	pair	was	combined	with	a	different,	non-overlapping	set	of	6	X	
elements	(see	Appendix	B	for	the	complete	stimuli	set).	In	both	Slow	Rate	and	
Fast	Rate	conditions,	two	versions	of	the	aXb	language	were	used:	Language	1	
(L1)	 and	 Language	 2	 (L2).	 The	 only	 difference	 between	 L1	 and	 L2	 was	 the	
specific	legit	combination	of	the	three	a	and	b	elements	into	pairs:	tɛp	_lyt,	sɔt_	
jɪk	and	rɑk_tuf	(L1),	and	tɛp	_	jɪk,	sɔt_tuf	and	rɑk_lyt	(L2).	Therefore,	every	ai	_bi	
pair	in	L1	was	ungrammatical	(ai_bj)	in	L2,	and	vice	versa.	The	reason	for	two	
different	 versions	was	 to	prevent	 an	 effect	 of	 idiosyncrasies	 of	 particular	a_b	
combinations	(L1	or	L2).	Therefore,	each	version	of	the	aXb	grammar	(L1,	L2)	
consisted	 of	 (3	ai_bi	 *	 6	 Xi	 =)	 18	 different	aiXibi	 strings.	 Each	 participant	was	
exposed	to	only	one	version	of	the	aXb	grammar	(either	L1	or	L2),	and	to	only	
one	source	rate	of	transmission	condition	(either	Slow	Rate	or	Fast	Rate).	
	 The	18	different	aiXibi	 strings	were	presented	12	times,	resulting	 in	a	
total	of	216	strings,	in	a	randomized	order	for	each	participant.	In	the	Slow	Rate	
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condition	there	was	a	100ms	within-string	pause,	and	a	750ms	between-string	
pause.	In	the	Fast	Rate	condition	all	the	a,	b	and	X	elements,	as	well	as	the	within-
string	and	between-string	pauses	for	each	aXb	string	were	sped	up	by	a	factor	of	
1.34	(as	per	calculations	in	section	3).	To	this	goal,	we	used	Praat	6.0.49	(64-bit	
Edition	 for	Windows,	 Boersma	 and	Weenick,	 2005).	 As	 in	 Experiment	 1,	 the	
duration	of	each	a,	b	and	X	word	was	shortened	separately	by	the	1.34	factor,	
using	 the	 “Duration	Factor”	 argument	 of	 the	 “Change	Gender”	 command,	 and	
then	the	elements	were	spliced	into	the	specific	aXb	strings.		
	 Test	 stimuli.	Each	a_b	 frame	of	 each	 language	 (L1,	 L2)	was	 combined	
with	two	novel	X	elements	to	yield	(6	a_b	*	2	X	=)	12	new	test	items	(see	Appendix	
B	for	the	test	X	elements).	Hence,	each	participant	was	exposed	to	12	new	aXb	
strings,	six	of	which	were	grammatical	and	six	ungrammatical.	The	six	new	aXb	
strings	which	contained	the	L1	a_b	pairs	were	counted	as	ungrammatical	for	the	
L2	 learners,	 while	 the	 six	 new	 aXb	 strings	 with	 the	 L2	 a_b	 pairs	 were	
ungrammatical	 for	 the	 L1	 learners.	 Accuracy	 scores	 for	 learning	 the	 aXb	
grammar	were	calculated	as	correct	acceptances	of	the	grammatical	test	strings	
and	correct	rejections	of	the	ungrammatical	test	strings.	
	
Task	2:	RAVENS	
	
The	second	task	was	Raven’s	Standard	Progressive	Matrices	(Raven	et	al.,	2000),	
for	which	participants	had	to	solve	60	matrices,	by	identifying	which	pattern	is	
missing	in	a	multiple-choice	task.	Each	matrix	consists	of	a	set	of	nine	patterns	
arranged	in	a	particular	order	according	to	some	underlying	rules,	of	which	one	
pattern	is	missing.	The	standard	RAVENS	allows	50	minutes	for	completion,	but,	
after	a	pilot,	we	allowed	participants	only	35	minutes,	to	avoid	a	time-consuming	
and	exhausting	experiment	session.	We	used	the	standard	scoring	method:	we	
counted	all	correct	answers,	and	then	we	used	the	standard	tables	to	transform	
them	into	age-corrected	percentiles.	
	
Task:	3:	Word-recall	task	
	
The	Word	Recall	task	had	two	tests.	In	the	first	test,	participants	were	presented	
visually	with	12	familiar	2-syllable	X	words	from	the	aXb	language,	and	12	new	
bisyllabic	foils,	similar	to	the	familiar	ones,	which	overlapped	in	one	syllable	with	
the	 target	 words.	 The	 second	 test	 presented	 participants	 visually	 with	 6	
monosyllabic	familiar	a	or	b	elements	of	the	aXb	language,	and	6	new	nonsense	
word	foils,	which	differed	from	the	target	words	only	by	one	letter	(see	Appendix	
C	for	stimulus	set).	Participants	had	to	indicate	for	each	word,	whether	they	had	
heard	 it	 during	 the	 first	 task.	 Accuracy	 scores	 were	 measured	 as	 correct	
acceptances	of	the	familiar	items		and	correct	rejections	of	the	foils.	
	
5.3	Procedure	
	
Before	the	familiarization	phase	of	Task	1	participants	were	instructed	that	they	
would	listen	to	an	“alien	language”	that	does	not	resemble	any	language	that	they	
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might	be	familiar	with,	and	which	has	its	own	rules	and	grammar.	To	avoid	any	
motivation	 to	explicitly	 look	 for	patterns	 in	 the	stimuli,	participants	were	not	
informed	of	the	subsequent	test	phase	until	after	the	end	of	the	familiarization	
phase.	Before	the	test	phase,	participants	were	instructed	that	they	would	listen	
to	new	sentences	in	the	same	“alien	language”,	none	of	which	would	be	identical	
to	the	sentences	they	had	heard	before.	They	were	then	asked	to	decide	for	each	
sentence	whether	it	was	correct	or	not,	according	to	the	grammar	of	the	language	
they	had	just	heard,	by	clicking	on	“Yes”	or	“No”.	They	were	instructed	to	answer	
quickly	 and	 intuitively.	 Afterwards,	 the	 other	 tasks	were	 administered	 in	 the	
order	from	above.	Experiment	2	lasted	approximately	one	hour.	
	
5.4	Results	
	 	
Table	7	shows	the	means	and	standard	deviations	of	accuracy	scores	(proportion	
correct	responses)	for	both	conditions	(Slow	Rate	vs	Fast	Rate).		
	

Condition	 M	 SD	 n	 SE	 95%	 CI	 for	 Mean	
Difference	

Slow	Rate	 0.69	 0.46	 29	 0.09		 0.51,	0.87	

Fast	Rate	 0.55	 0.50	 28	 0.09	 0.37,	0.74	

Table	7.	Descriptive	statistics	of	mean	correct	score	in	two	conditions	of	
exposure.	Experiment	2		

	
Figure	6	shows	boxplots	of	 the	distribution	of	 individual	mean	accuracy	rates	
(correct	acceptances/rejections)	in	each	condition,	i.e.	Slow	Rate	and	Fast	Rate.	
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Figures	7	and	8	show	the	histograms	of	individual	mean	accuracy	scores	(correct	
acceptance/rejection)	 in	 Slow	 Rate	 condition	 and	 in	 Fast	 Rate	 condition,	
respectively.	 Specifically,	 Figure	 7	 shows	 a	 bimodal	 distribution	 of	 individual	
accuracy	scores	 in	 the	Slow	Rate	condition:	 this	shows	that	most	participants	
either	performed	around	chance	level	or	achieved	a	very	high	accuracy	score.	
Figure	8	shows	most	participants	in	the	Fast	Rate	condition	performed	between	
40%	and	60%.	
	

	
	 	

	
	
Because	the	data	was	not	normally	distributed,	a	non-parametric	statistical	test	
was	used	 to	assess	whether	 learning	performance	 in	Fast	Rate	condition	was	
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significantly	different	 from	chance	 level.	To	 this	end,	a	 two-tailed	one-sample	
Wilcoxon	signed-rank	test	was	performed.	Accuracy	score	of	participants	in	the	
Fast	Rate	condition	(M	=	 .55,	SD	=	 .50)	was	 found	to	be	significantly	different	
from	chance	level	at	the	.05	level	of	significance,	with	a	moderate	effect	size	(p	=	
.017,	95%	CI	for	mean	difference	.5	to	.63,	r	=	.45).	Accuracy	score	of	participants	
in	 the	 Slow	 Rate	 condition	 (M	 =	 .69,	 SD	 =	 .46)	was	 found	 to	 be	 significantly	
different	from	chance	level	at	the	.05	level	of	significance,	with	a	large	effect	size	
(p	<	.001,	95%	CI	for	mean	difference	.67	to	.83,	r	=	.73).	
	 To	compare	performance	across	the	two	conditions	we	used	R	(R	Core	
Team,	 2017)	 and	 the	 glmer	 function	 of	 the	 lmerTest	 package	 (Kuznetsova,	
Brockhoff,	 &	 Christensen,	 2017)	 to	 perform	 a	 general	 linear	 mixed	 effects	
analysis	 of	 the	 relationship	 between	 Accuracy	 (correct	 acceptance	 of	
grammatical	test	strings	and	correct	rejection	of	ungrammatical	test	strings)	and	
the	 Rate	 of	 Transmission	 (Slow	 Rate,	 Fast	 Rate).	 As	 dependent	 variable	 we	
entered	 Accuracy	 in	 the	 model,	 and	 as	 fixed	 effects	 we	 entered	 Rate	 of	
Transmission	(Slow	Rate,	Fast	Rate)	and	Language	(L1,	L2),	without	interaction	
term.	As	random	effects	we	had	intercepts	for	subjects	and	items.	An	alpha	level	
of	 .05	 was	 used	 for	 all	 statistical	 tests.	 We	 started	 fitting	 the	 data	 from	 the	
intercept-only	model	and	added	the	random	and	fixed	factors	one	by	one.	The	
model	reported	here	is	the	best	fitting	model,	both	in	terms	of	model’s	accuracy	
in	 predicting	 the	 observed	 data,	 and	 in	 terms	 of	 AIC	 (Akaike	 Information	
Criterion).	 Likelihood	 Ratio	 Tests	 were	 performed	 separately	 as	 a	 means	 to	
attain	p-value	for	the	effect	of	each	predictor	(Rate	of	Transmission,	Language).	
	 A	significant	main	effect	of	Rate	of	Transmission	(χ2(1)	=	8.64,	p	=	0.003,	
conditional	 R2	 =	 .13)	 on	 Accuracy	 was	 found.	 These	 results	 show	 that	
participants	 who	 were	 exposed	 to	 the	 Fast	 Rate	 of	 transmission	 of	 the	 aXb	
grammar	had	significantly	 lower	Accuracy	scores	as	compared	to	participants	
who	were	exposed	to	the	Slow	Rate	of	transmission	of	the	same	aXb	grammar.	
Language	was	not	a	significant	predictor	(χ2(1)	=	3.2,	p	=	0.07,	conditional	R2	=	
.13.	 Finally,	 no	 significant	 interaction	 effect	 was	 found	 between	 Rate	 of	
Transmission	and	Language	(χ2(1)	=	.29,	p	=	0.6,	conditional	R2	=	.13).	The	scores	
of	 individual	 differences	 tests	 (Forward	 Digit	 Span,	 Incidental	 Memorization	
Test,	Raven’s	Progressive	Matrices,	Word	Recall	Test)	were	added	to	this	model	
as	fixed	factors,	one	by	one.	None	of	the	individual	differences	tests	significantly	
improved	 the	 model	 when	 added	 as	 fixed	 factors	 one	 by	 one	 in	 the	 model,	
however	only	the	accuracy	score	in	the	Word	Recall	Test	for	a	/	b	(but	not	X)	
elements	of	the	aXb	grammar	had	a	significant	positive	effect	on	the	Accuracy	
scores	(χ2(1)	=	3.8,	p	=	.05,	conditional	R2	=	.1).	
	
5.5	Discussion	
	
In	 Experiment	 2	 we	 tested	 the	 effect	 of	 speeding	 up	 the	 source	 rate	 of	
transmission	on	 learning	 a	 complex	aXb	 grammar,	which	 requires	 both	 item-
bound	 generalization	 of	 the	 specific	 a_b	 dependencies,	 and	 category-based	
generalization	 in	 order	 to	 generalize	 those	 dependencies	 over	 a	 category	 of	
intervening	X	elements.	According	to	our	entropy	model,	our	predictions	for	this	



An	Entropy	and	Noisy-Channel	Model	for	Rule	Induction	

 

188 

 

experiment	were	opposite	for	the	two	types	of	relationships	encoded	in	an	aiXbi	
grammar:	increasing	the	source	rate	of	information	transmission	impedes	item-
bound	generalization	(of	the	specific	ai_bi	relationship),	but	it	facilitates	category-
based	generalization	(i.e.	generalizing	a	relationship	between	a	and	b	categories	
over	a	category	of	Xs).		
	 The	 results	 showed	 that	 there	 was	 indeed	 a	 significant	 effect	 of	
increasing	the	source	rate	of	transmission	on	learning	the	aXb	grammar,	such	
that	the	Fast	Rate	group	scored	lower	than	the	Slow	Rate	group.	This	shows	that	
increasing	the	source	rate	of	transmission	by	a	factor	of	1.34	in	this	particular	
aiXbi	grammar	with	an	entropy	of	3.52	bits/symbol	makes	learning	of	the	specific	
ai_bi	 frames	 and	 generalizing	 them	 over	 novel	 intervening	 X	 elements	 more	
difficult	than	a	slower	rate	of	transmission.	Moreover,	participants	who	recalled	
the	a/b	elements	better	across	conditions	learned	the	specific	ai_bi	frames	better.	
Thus,	learning	of	aiXbi	grammar	is	correlated	with	item-specific	encoding	of	a/b	
elements.	These	results	support	the	predictions	of	our	entropy	model,	namely	
that	an	increased	source	rate	of	information	transmission	impedes	item-bound	
generalization	(of	the	specific	ai_bi	relationship).	
	 As	we	argued	above,	if	learners	correctly	accept	new	aXb	strings	with	the	
specific	familiar	ai_bi	dependencies	and	new	X	elements,	it	shows	they	were	both	
able	to	encode	item-bound	generalizations	(ai_bi	frames),	and	to	generalize	them	
over	 a	 category	of	X	 elements,	 i.e.	category-based	generalization.	 This	 is	what	
happened	both	in	the	Slow	Rate	and	the	Fast	Rate	condition.	However,	the	Fast	
Rate	group	had	a	 lower	 tendency	 to	do	 so	 compared	 to	 the	Slow	Rate	group.	
There	could	be	several	logical	interpretations:	either	Fast-Rate	learners	failed	at	
category-based	 generalization	 of	 the	 Xs,	 or	 they	 failed	 at	 item-bound	
generalization	of	the	ai_bi	frames,	or	they	were	simply	confused.	Therefore,	we	
looked	into	the	acceptance/rejection	ratios.	If	the	first	case	was	true,	rejection	
rates	should	be	higher	than	acceptance	rates,	since	all	test	items	had	new	Xs.	This	
was	not	 the	 case.	Actually,	 Fast-Rate	 learners	 show	similarly	high	acceptance	
rates	for	both	language-specific	aiXbi	strings	(specific	to	the	exposure	language,	
e.g.	L1)	and	language-deviant	aiXbj	strings	(specific	to	the	other	language,	e.g.	L2),	
with	 a	 rather	 high	 acceptance	 rate	 for	 the	 language-deviant	 aiXbj	 strings	
(Median=.58)	compared	to	the	Slow-Rate	learners	(Median=.33)	(Figures	9	and	
10).	
	 This	 points	 to	 the	 fact	 that	 the	 Fast-Rate	 learners	 failed	 to	 learn	 the	
specific	ai_bi	dependencies,	that	is	item-bound	generalization	was	impaired	in	the	
Fast	Rate	group.	If	this	was	the	case,	this	result	can	be	accounted	by	our	entropy	
model,	 as	 we	 argued	 in	 section	 5,	 a	 sped	 up	 source	 rate	 of	 information	
transmission	precipitates	the	transition	to	category-based	generalization	faster,	
such	that	the	item-bound	encoding	mechanism	for	the	specific	ai_bi	frames	might	
be	phased	out,	and	the	encoding	method	moves	to	category-based	generalization	
for	the	ai_bi	frames	as	well.	This	would	be	a	case	of	overgeneralization:	categories	
of	a/b	elements	would	be	inferred	(i.e.	category-based	generalization),	not	just	
the	item-bound	specific	ai_bi	frames,	so	any	a	could	freely	combine	with	any	b,	
such	that	ai_bj	frames	would	also	be	accepted	(“class-words”).	Since	all	test	items	
show	new	combinations	with	X	elements,	the	learner	might	find	it	highly		
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probable	that	the	a/b	elements	could	yield	new	combinations,	as	 long	as	they	
preserve	 the	 main	 aXb	 order	 and	 word	 characteristics	 (i.e.	 monosyllabic	 a	
followed	by	a	bisyllabic	X	and	then	a	monosyllabic	b).	
	

	

	
	
Following	 this	 logic,	 if	 Fast-Rate	 learners	 actually	 overgeneralized,	 they	must	
have	started	the	test	by	accepting	both	language-specific	and	language-deviant	
aXb	strings,	and	after	the	first	acceptances	they	would	question	why	all	the	test	
items	 seem	 to	 be	 acceptable,	 which	 might	 have	 led	 to	 an	 increased	 rate	 of	
rejections	in	the	last	part	of	the	test.	Alternatively,	if	Fast-Rate	learners	were	just	
confused,	the	acceptances	should	be	randomly	scattered	over	test	trials.	
	 An	 inspection	 of	 the	 acceptance	 rate	 of	 both	 language-specific	 and	
language-deviant	 aXb	 strings,	 in	 the	 Fast	 Rate	 condition,	 showed	 a	 higher	
tendency	to	accept	all	the	test	strings	in	the	first	three	trials	of	the	test	(t(11)	=			
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-1.951,	p	=	 .05),	regardless	of	exposure	 language,	than	in	the	 last	trials.	These	
results	might	point	to	a	case	of	overgeneralization	in	the	Fast	Rate	condition.	
	 Thus,	it	is	possible	that	the	source	rate	of	information	transmission	was	
increased	to	a	higher	extent	than	required	to	actually	learn	the	aiXbi	grammar	
and	 it	 led	 to	 overgeneralization.	 Further	 research	 should	 specifically	 test	 the	
overgeneralization	hypothesis,	and	further	look	into	the	effect	of	sped	up	source	
rate	of	information	transmission	at	a	lower	rate,	i.e.	a	speeding	up	factor	m	<	1.34,	
to	 find	 the	 adequate	 source	 rate	 of	 transmission	 for	 learning	 this	 complex	
grammar.	
	
6.	General	Discussion	and	Conclusions	
	
Understanding	the	cognitive	mechanisms	involved	in	learning	not	only	the	item-
bound	regularities	in	the	input,	but	also	in	the	emergence	of	new	categories	and	
structures	has	been	a	major	 topic	of	research	 in	cognitive	science.	This	paper	
contributes	to	the	ongoing	research	and	debate	on	the	underlying	mechanisms	
and	the	factors	that	drive	both	item-bound	and	category-based	generalization,	by	
further	 extending	 the	 entropy	model	 for	 rule	 induction	 that	 we	 proposed	 in	
Radulescu	 et	 al.	 (2019),	 which	 offers	 a	more	 refined	 formal	 approach	 to	 the	
classical	 Less-is-More	 hypothesis	 (Newport,	 1990;	 2016).	 According	 to	 this	
hypothesis	and	other	related	studies	(Gerken,	2006;	Gómez,	2002;	Hudson	Kam	
and	Newport,	2005,	2009;	Hudson	Kam	and	Chang,	2009;	Reeder	et	al.,	2013),	
rule	 induction	was	either	deemed	to	be	driven	by	statistical	properties	of	 the	
exposure	 language,	 i.e.	 input	 variability,	 or	 by	 limitations	 of	 the	 cognitive	
capacities	 involved	 in	 this	process,	 i.e.	memory	 capacities.	However,	how	and	
why	these	two	factors	should	play	a	role	in	rule	induction,	and	the	exact	cognitive	
capacities	and	mechanisms	that	lead	to	the	emergence	of	new	structures	remain	
largely	unexplained.		
	 Our	 entropy	 model	 (Radulescu	 et	 al.,	 2019)	 took	 a	 step	 further	 by	
bringing	together	these	two	factors	in	one	information-theoretic	account	based	
on	Shannon’s	noisy-channel	coding	theory	(Shannon,	1948),	and	proposed	that	
rule	induction	is	an	encoding	mechanism	resulting	from	the	interaction	between	
the	 variability	 of	 the	 input,	 i.e.	 input	 entropy,	 and	 the	 finite	 time-sensitive	
encoding	capacity	of	our	brain,	which	we	envisage	as	 the	channel	 capacity,	 in	
information-theoretic	 terms.	 Specifically,	 our	 model	 hypothesizes	 that	 an	
increase	 in	 the	 input	 entropy	 per	 second	which	 attempts	 to	 exceed	 the	 finite	
channel	 capacity	 drives	 the	 transition	 from	 item-bound	 generalization	 to	
category-based	 generalization.	 In	 Radulescu	 et	 al.	 (2019),	 in	 two	 artificial	
grammar	experiments	that	tested	the	effect	of	the	first	factor,	input	entropy,	we	
found	 evidence	 that	 supports	 our	 model,	 namely	 that	 when	 input	 entropy	
increases,	 the	 tendency	 to	move	 from	 item-bound	 generalization	 to	 category-
based	generalization	increases	gradually.		
	 However,	our	model	specifically	predicts	that	it	is	not	high	entropy	in	
absolute	terms	which	is	the	factor	at	stake	in	this	mechanism,	but	it	is	our	time-
sensitive	entropy-processor	–	channel	capacity	–	which	places	an	upper	bound	
on	the	amount	of	entropy	that	is	needed	per	unit	of	time	in	order	for	the	encoding	
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mechanism	to	move	from	a	method	of	encoding	to	another.	Therefore,	this	study	
had	two	goals:	theoretical,	to	further	specify	and	refine	our	entropy	model	for	
rule	 induction	 that	 we	 proposed	 in	 Radulescu	 et	 al.	 (2019),	 by	 showing	 a	
concrete	example	of	how	we	can	apply	Shannon’s	channel	capacity	and	his	noisy-
channel	coding	theory	(Shannon,	1948)	to	rule	induction	in	an	artificial	grammar	
learning;	and	experimental,	namely	we	directly	manipulated	the	time-dependent	
variable	of	the	channel	capacity	in	two	other	artificial	grammar	experiments,	in	
order	 to	 specifically	 probe	 the	 essential	 effect	 of	 channel	 capacity	 on	 rule	
induction	as	hypothesized	by	our	entropy	model.	
	 Firstly,	we	showed	how	the	encoding	mechanism	of	rule	induction	in	an	
artificial	grammar	learning	environment	can	be	modeled	in	terms	of	Shannon’s	
communication	system	theory,	and	we	offered	a	brief	proof	of	concept	regarding	
the	 effect	 of	 channel	 capacity	 on	 rule	 induction	 based	 on	 the	 results	 of	 our	
previous	experiments	reported	in	Radulescu	et	al.	(2019).	Specifically,	based	on	
the	experimental	data	we	obtained	in	that	study,	in	this	study	we	showed	how	
we	 can	 calculate	 and	 estimate	 the	 following	 information-theoretic	measures,	
which	are	key	to	rule	induction,	according	to	our	entropy	model:	the	source	rate	
of	information	transmission,	the	rate	of	equivocation	and	the	maximum	rate	of	
information	transmission,	i.e.	channel	capacity.		
	 More	 precisely,	 we	 showed	 how	 we	 can	 probe	 experimentally	 the	
specific	prediction	we	derived	from	Shannon’s	theory:	if	indeed	the	source	rate	
of	 information	 transmission	 (input	 entropy	 per	 unit	 of	 time)	 is	 higher	 than	
learners’	 available	 channel	 capacity,	 then	 the	 transition	 from	 one	 encoding	
method	to	a	more	efficient	encoding	method	as	hypothesized	by	our	model,	i.e.	
from	 item-bound	 to	 category-based	 generalization,	 should	 be	 signaled	 by	 an	
initial	 increase	followed	by	a	decrease	of	the	rate	of	equivocation	(i.e.	missing	
bits	of	information).	And	indeed	results	showed	that	an	increase	in	the	source	
rate	 of	 information	 transmission	 caused	 an	 initial	 increase	 followed	 by	 a	
decrease	of	 the	 rate	of	 equivocation.	This	 shows	 that	 in	order	 to	 cope	with	a	
higher	 inflow	 of	 entropy	 per	 unit	 of	 time,	 the	 encoding	 system	 found	 a	 new	
encoding	 method	 which	 allows	 for	 its	 maximum	 rate	 of	 information	
transmission	to	be	reached:	it	moved	from	an	inefficient	encoding	method	(i.e.	
with	 high	 loss	 of	 information	 at	 receiver’s	 end),	 to	 a	more	 efficient	 encoding	
method,	which	allows	for	higher	input	entropy	to	be	encoded	reliably	(with	the	
least	loss	of	information	possible)	per	unit	of	time.	This	finding	is	in	accord	with	
the	main	 tenets	 of	 Dynamic	 Systems	 Theory,	 according	 to	which	 an	 increase	
followed	by	a	decrease	in	system’s	internal	entropy	predicts	the	birth	of	a	new	
structure	(Prigogine	&	Stengers,	1984;	Schneider	&	Sagan,	2005,	Stephen	et	al.,	
2009).		
	 In	conclusion	and	to	the	best	of	our	knowledge,	this	is	the	first	study	that	
shows	an	innovative	way	to	calculate	and	measure	experimentally	the	increase	
and	decrease	of	the	equivocation	rate	(i.e.	loss	of	information	at	receiver’s	end)	
in	order	to	estimate	the	channel	capacity,	and	to	show	(in	information-theoretic	
terms)	 the	 transition	 from	 item-bound	 generalization	 to	 category-based	
generalization	in	artificial	grammar	learning.	
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	 As	 to	 the	 second	 goal	 of	 our	 study,	 in	 two	 artificial	 grammar	
experiments,	 we	 probed	 the	 effect	 of	 channel	 capacity	 on	 rule	 induction	 by	
directly	manipulating	the	time-dependent	variable	of	 the	channel	capacity,	 i.e.	
we	 sped	 up	 the	 source	 rate	 of	 information	 transmission.	 According	 to	 the	
entropy	model,	an	increase	in	the	source	rate	of	information	transmission	which	
is	higher	than	the	channel	capacity,	drives	a	higher	tendency	to	move	from	an	
item-bound	 generalization	 to	 a	 category-based	 generalization.	We	 probed	 this	
hypothesized	effect	on	rule	induction	in	two	types	of	artificial	grammars:	an	XXY	
grammar,	and	a	more	complex	aXb	grammar.	
	 Learning	of	the	XXY	grammar	requires	learners	to	abstract	away	from	
specific	 items	 of	 the	 X	 and	 Y	 categories,	 and	 to	 move	 from	 an	 item-bound	
generalization	to	a	category-based	generalization,	that	is	to	learn	a	same-same-
different	rule	between	categories,	regardless	of	specific	items	included	in	these	
categories.	Results	showed	that	this	transition	from	one	encoding	method	to	the	
other	was	driven	by	an	increase	of	the	source	rate	of	information	transmission,	
i.e.	the	input	entropy	per	unit	of	time,	while	the	statistical	properties	of	the	input,	
i.e.	input	entropy	per	symbol,	remained	constant	at	a	very	low	level.	This	result	
showed	that	indeed,	as	hypothesized	by	our	entropy	model,	rule	induction	is	an	
encoding	mechanism	 that	moves	 from	 item-bound	 generalization	 to	 category-
based	generalization	as	a	result	of	the	interaction	between	the	input	entropy	and	
our	time-sensitive	entropy-processor	channel	capacity.	
	 Next,	we	employed	a	more	 complex	aXb	grammar	 in	order	 to	pose	 a	
challenge	to	the	model:	learning	of	this	type	of	aXb	grammar	requires	learners	
to	move	from	an	item-bound	to	a	category-based	generalization	for	the	X	category	
of	middle	elements,	while,	crucially,	to	stick	to	an	item-bound	generalization	for	
the	 specific	 a_b	 dependencies.	 If	 increased	 source	 rate	 of	 information	
transmission	drives	category-based	generalization	for	the	X	category,	it	follows	
that	 it	 should	 impede	 item-bound	 generalization	 for	 the	 specific	 a_b	
dependencies	of	such	an	aXb	grammar.	 Indeed,	 the	results	showed	that	 faster	
source	rate	of	information	caused	a	lower	accuracy	than	slower	source	rate	of	
information	on	this	type	of	grammar,	that	is	when	exposed	to	a	faster	rate	of	the	
aXb	grammar,	 learners	failed	to	generalize	the	specific	a_b	dependencies	over	
new	 intervening	 X	 elements.	 In	 accord	 with	 our	 model,	 one	 possible	
interpretation	of	these	results	would	be	that	the	source	rate	of	transmission	was	
too	high	for	this	type	of	grammar	with	the	specific	input	entropy	that	we	tested	
(3.52	 bits),	 and	 thus	 it	 precipitated	 the	 transition	 to	 category-based	
generalization	for	the	specific	a_b	dependencies	as	well,	not	only	for	the	middle	
X	elements.	This	points	to	a	case	of	possible	overgeneralization,	where	learners	
might	have	learned	an	AXB	grammar,	where	A	and	B	also	stand	for	categories,	
instead	 of	 item-bound	 relations	 between	 specific	 a	 and	 b	 elements	 over	 a	
category	of	X	elements.	Indeed,	it	is	possible	that	for	this	type	of	grammar	fast,	
but	not	furious,	might	yield	better	learning.	Future	research	should	look	into	a	
slower	rate	of	information	transmission	for	an	aXb	grammar	with	this	specific	
entropy	(3.52	bits).	
	 The	effect	of	time	on	generalization	behavior	has	only	been	marginally	
investigated	 in	 cognitive	 sciences:	 a	 few	 studies	 used	 other	 ways	 than	
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information-theoretic	 approaches	 in	 order	 to	 investigate	 the	 effect	 of	 a	 time-
dependent	 variable	on	 category	 learning	 (Reeder,	 et	 al.,	 2009;	2013),	 in	non-
adjacent	 dependency	 learning	 (Endress	 &	 Bonatti,	 2007;	 Wang	 et	 al.,	 2016;	
2019)	and	in	auditory	statistical	 learning	(Emberson	et	al.,	2011).	Converging	
evidence	 from	 all	 these	 studies,	 despite	 using	 different	 approaches	 to	 the	
temporal	 variable	 (exposure	 time,	 speech	 rate,	 temporal	 distance	 between	
stimuli),	 highlights	 a	 clear	 pattern:	 generally	 a	 shorter	 time	 is	 beneficial	 to	
auditory	rule	(category)	learning.	There	is	also	some	converging	evidence	from	
neural	networks	research	that	reduced	training	time	results	 in	model’s	better	
generalization,	or	lower	generalization	error	(Hardt,	Recht,	&	Singer,	2016).	Our	
study	contributes	to	this	research	topic	by	taking	a	step	further	and	applies	a	
purely	 information-theoretic	measure	 directly	 derived	 from	Shannon’s	 noisy-
channel	coding	theory	and	based	on	the	quantified	amount	of	input	entropy	per	
second	(bits/s)	of	the	signal.	In	this	sense,	our	model	and	findings	offer	a	more	
principled	 and	 fine-tuned	 approach	 to	 our	 time-sensitive	 entropy	 processor	
involved	in	rule	induction.	
	 Although	 in	 a	 different	 domain	 of	 application,	 our	 model	 is	 also	
compatible	 with	 another	 information-theoretic	 hypothesis	 derived	 from	
Shannon’s	 noisy-channel	 coding	 theory	 –	 namely,	 the	 hypothesis	 of	 Uniform	
Information	Density	(Jaeger,	2006;	Levy	&	Jaeger,	2007;	Jaeger,	2010)	–	which	
proposes	 that	 in	 language	 production	 speakers	 prefer	 (intuitively)	 to	 encode	
their	message	by	a	uniform	distribution	of	information	across	the	signal,	with	a	
rate	of	information	transfer	close	to	the	channel	capacity,	but	without	exceeding	
it.	In	other	words,	language	production	is	inherently	a	mechanism	designed	for	
efficient	communication,	in	that	it	balances	the	amount	of	information	per	time	
or	per	signal	(dubbed	“information	density”),	in	such	a	way	that	the	channel	is	
never	 under-	 or	 overutilized	 (Jaeger,	 2010).	 According	 to	 this	 hypothesis,	
underutilization	means	a	waste	of	channel,	while	overutilization	brings	the	risk	
of	information	loss,	as	per	Shannon’s	noisy-channel	coding	theory,	and	therefore	
according	 to	 the	 Uniform	 Information	 Density.	 By	 posing	 the	 noisy-channel	
capacity	 as	 an	 upper	 bound	 of	 the	 rate	 of	 information	 transmission	 for	 the	
purpose	 of	 efficient	 transmission	 without	 loss	 of	 information,	 our	 model	
accounts	 for	 the	 Uniform	 Information	 Density	 hypothesis,	 and	 takes	 a	 step	
further	 by	 offering	 a	 more	 general	 domain	 of	 application	 (i.e.	 learning	 and	
generalization),	 and	 a	 more	 refined	 way	 to	 quantify	 the	 rate	 of	 information	
transmission	and	estimate	channel	capacity.	
	 At	the	algorithmic	level	(in	the	sense	of	Marr,	1982),	our	entropy	and	
channel	 capacity	model	 for	 rule	 induction	 in	 artificial	 grammar	 is	 compatible	
with	recent	models	of	recognition	memory	(Cox	&	Shiffrin,	2017)	and	exemplar	
models	 applied	 to	 artificial	 grammar	 learning	 (Jamieson	 &	 Mewhort,	 2010).	
Future	research	should	look	into	the	link	between	our	entropy	model	and	these	
formal	 approaches	 based	 on	 encoding	 instances	 as	 vectors	 of	 features,	 with	
generalization	being	triggered	by	vector	similarity	(Chubala	&	Jamieson,	2013).	
Indeed,	as	we	argued	in	Radulescu	et	al.	(2019),	by	refining	the	feature	similarity	
approach	to	category	formation	proposed	by	Aslin	&	Newport	(2012;	2014),	our	
entropy	model	 suggests	 that	 information	 is	 re-structured	 from	 item-bound	 to	
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category-based	 generalization	 by	 (unconsciously)	 re-observing	 the	 structural	
properties	of	the	input	and	identifying	similarities	(shared	features)	and	specific	
differences	(unshared	 features)	between	 items.	Crucially,	our	model	proposes	
the	 channel	 capacity	 as	 the	 upper	 bound	 on	 the	 amount	 of	
similarities/differences	encoded.	The	degree	of	specificity	of	the	encoding	(i.e.	
item-bound	 specificity)	 is	 given	 by	 the	 amount	 of	 differences	 encoded	 with	
specific	items,	which	results	from	a	lower	or	higher	input	entropy	(measured	in	
bits	of	 information):	 the	more	differences	are	encoded	(higher	 input	entropy),	
the	 higher	 the	 degree	 of	 specificity	 of	 the	 encoding	 (i.e.	 item-bound	
generalization).	 Conversely,	 when	 the	 degree	 of	 specificity	 of	 the	 encoding	
reaches	the	upper	bound	placed	by	the	channel	capacity	on	the	number	of	bits	
encoded	 per	 second,	 a	 reduction	 or	 “gradual	 forgetting”	 of	 the	 encoded	
differences	 is	 triggered,	 in	 order	 to	 avoid	 an	 inefficient,	 i.e.	 noisy,	 encoding	
(Radulescu	et	al.,	2019).	Hence,	more	and	more	similarities	between	items	are	
highlighted,	 which	 drives	 an	 automatic	 gradual	 grouping	 of	 items	 under	 the	
same	 “bucket”.	 Hence,	 the	 degree	 of	 specificity	 decreases	 and	 the	 degree	 of	
generality	increases	gradually	with	each	bit	of	information.	Thus,	a	gradient	of	
specificity/generality	 on	 a	 continuum	 from	 item-bound	 to	 category-based	
generalizations	 can	 be	 envisaged	 in	 terms	 of	 number	 of	 bits	 of	 information	
encoded	in	the	representation	(analogous	to	the	degree	of	stability/plasticity	in	
terms	of	strength	of	memory	pathways	in	neural	networks	–	Abraham	&	Robins,	
2005).	
	 A	follow-up	research	question	would	be	to	better	define	and	specify	the	
channel,	whether	it	is	a	communication	channel	between	speakers,	or	an	abstract	
channel	as	we	mostly	hinted	in	this	study,	i.e.	an	abstract	channel	between	an	
abstract	 source	–	 a	 grammar	–	 and	a	 learner.	However,	 in	 this	 study	we	also	
briefly	suggested	a	more	 in-depth	and	granular	understanding	of	 the	abstract	
concept	of	channel	as	a	system	of	channels:	intuitively,	and	oversimplifying	here,	
the	signal	from	the	environment	enters	learner’s	acoustic	channel,	which	has	a	
specific	 rate	 of	 information	 transmission,	 then	 the	 output	 of	 this	 channel	
becomes	the	input	to	the	perception	channel,	whose	output	becomes	the	input	
to	the	cognitive	channel.	Estimates	of	the	bit	rate	of	information	processing	by	
applying	information	theory	were	proposed	in	some	perception	and	cognitive	
domains,	 e.g.	 in	 visual	 attention	 (Vergese	&	 Pelli,	 1992),	 in	 visual	 processing	
(Koch	 et	 al.,	 2006),	 unconscious	 vs	 conscious	 processing	 (Dijksterhuis	 &	
Nordgren;	2006),	cognitive	control	(Wu	et	al.,	2016).		 However,	 we	
suggest	 that	 the	 concept	 of	channel	should	be	 first	 and	 foremost	defined	 and	
specified	in	physical	and	biological	terms	(i.e.	at	the	level	of	brain	structure	and	
neural	networks),	and	further	investigated	in	terms	of	its	link	to	the	cognitive	
capacities	(at	the	algorithmic	level).	That	would	mean	further	investigating	and	
applying	 Shannon’s	 channel	 and	 noisy-channel	 coding	 theory	 to	 recent	
developments	 in	 neurobiology,	 where	 it	 was	 shown	 that	 artificially-induced	
forgetting	 at	 the	 cellular	 level	 drives	 generalization	 (Migues	 et.	 al,	 2016).	
Moreover,	 since	 information	 is	physical	 (Karnani,	Pääkkönen,	&	Annila,	2009;	
Laughlin,	de	Ruyter	van	Steveninck,	&	Anderson,	1998,	Machta,	1999),	further	
research	should	look	into	the	information-theoretic	concept	of	channel	and	rate	
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of	information	transmission	at	the	level	of	neural	pathways.	The	neural	pathways	
are	 the	 physical/biological	 medium	 (i.e.	 channel)	 transmitting	 one	 form	 of	
information	 (acoustic	 energy)	 to	 the	 brain,	 i.e.	 encoded	 and	 decoded,	 into	
another	form	of	information	(i.e.	neuronal	energy	–	patterns	of	electric	activity	
at	the	neuronal	level).	The	physical	bioprocesses	of	energy	transformation	from	
acoustic	 information	 into	 electric	 signal	 and	 transmission	 through	 neural	
networks	 have	 been	 proposed	 to	 underlie	 abstract	 memory	 representations	
(Collell	&	Fauquet,	2015;	La	Cerra,	2003;	Varpula,	Annila,	&	Beck,	2013).	
	 Before	concluding,	it	is	imperative	to	clarify	one	aspect.	A	model	of	finite	
and	noisy-channel	capacity	might	lead	the	reader	to	assume	a	kind	of	a	cognitive	
limitation	as	in	a	flaw	of	the	cognitive	system,	which	is	definitely	not	the	case.	
We	do	not	propose	a	model	in	which	the	emergence	of	rules	and	categories,	i.e.	
structure,	 is	merely	 the	 side	 effect	 of	 some	 constraints	 of	 a	 limited	biological	
system.	 In	 accord	 with	 innovative	 theories	 and	 findings	 in	 neurobiology	
(Frankland,	Köhler,	&	Josselyn,	2013;	Hardt,	Nader,	&	Wang,	2013;	Migues	et.	al,	
2016;	 Richards	 &	 Frankland,	 2017),	 we	 deem	 our	 finite	 and	 noisy-channel	
capacity	to	be	a	design	feature	of	our	biological	system	for	adaptive	purposes.	
More	 precisely,	 neurobiological	 evidence	 shows	 that	 our	 memory	 system	 is	
designed	to	encode	memories	not	as	in-detail	representations	of	the	past,	but	as	
simplified	models	better	suited	for	future	generalization	in	noisy	environments	
(Richards	 &	 Frankland,	 2017).	 The	 brain	 employs	 several	 strategies	 to	
undermine	faithful	in-detail	representations	to	prevent	overfitting	to	past	events	
(in	 accord	 with	 neural	 networks	 research	 –	 Hawkins,	 2004;	 MacKay,	 2003),	
which	 promotes	 better	 generalization	 (among	 which,	 noise	 injection	 –	 a	
neurobiological	mechanism	 that	 increases	 random	 variability	 in	 the	 synaptic	
connections	–	Villarreal	et	al.,	2002).	
	 Fast	 but	 not	 furious,	 reads	 the	 title	 of	 this	 article.	 Speed	 up,	 but	 not	
wildly	 and	 in	 an	 unrestrained	 fashion.	 The	 channel	 capacity	 acts	 as	 the	
speedometer,	 and	determines	 the	maximum	rate	of	 information	 transmission	
with	the	adequate	encoding.	In	this	study,	we	proposed	an	innovative	method	to	
increase	the	rate	of	information	to	tax	channel	capacity.	We	found	that	increasing	
the	 rate	of	 transmission	by	a	 specific	 factor	 calculated	by	applying	Shannon’s	
formula	to	experimentally	obtained	data	indeed	has	the	hypothesized	effect	on	
rule	learning:	it	drives	category-based	generalization,	and	it	interferes	with	item-
bound	generalization.	Thus,	we	deem	necessary	to	specify	that	by	sped	up	bit	rate	
we	do	not	mean	that	an	unrestrained	increased	bit	rate,	in	absolute	terms,	up	to	
very	high	bit	 rates	drives	rule	 induction	 in	any	context,	or	grammar.	 In	other	
words,	the	very	specific	dynamics	between	the	input	entropy	and	the	maximum	
rate	of	 information	 transmission	drive	rule	 induction.	Further	research	should	
investigate	 this	 sweet-spot	 and	 find	 the	mathematical	 relation	between	 these	
two	factors.	
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Appendix	A	
	
Familiarization	strings	
keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
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Test	strings	
	

Test	1	 Test	2	 Test	3	 Final	Test	

Familiar-
syllable	
XXY	

daːdaːli	 hihisaː	 keːkeːmy	 tøːtøːrøː	 jujuɣo	

New-
syllable	
X1X2Y	

poxaːru	 runyni	 xaːmisy	 syniny	 mininy	

New-
syllable	
XXY	

dydytaː	 zuzuvo	 sosory	 jijiføː	 ʋuʋuseː	

Familiar-
syllable	
X1X2Y	 judaːsaː	 pytøːmy	 keːfoveː	 hidaːrøː	 tøːpyɣo	

	
Appendix	B	
	
		 							a/b	 IPA	
a1	 tep	 [tεp]	
a2	 sot	 [sɔt]	
a3	 rak	 [rɑk]	
b1	 lut	 [lyt]	
b2	 jik	 [jik]	
b3	 toef	 [tuf]	
		 											X	 		
No.	 Familiarization	 IPA	

1	 blieker	 [blikər]	

2	 dufo	 [dyfo]	

3	 fidang	 [fidɑŋ]	

4	 gopem	 [xopəm]	

5	 kengel	 [kεŋəl]	

6	 kijbog	 [kεibɔx]	

7	 loga	 [loxa]	
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8	 malon	 [malɔn]	

9	 movig	 [movix]	

10	 naspu	 [nɑspu]	

11	 nijfoe	 [nεifu]	

12	 noeba	 [nuba]	

13	 plizet	 [plizεt]	

14	 rajee	 [raje]	

15	 rogges	 [rɔxəs]	

16	 seeta	 [seta]	

17	 snigger	 [snixər]	

18	 wabo	 [vɑbo]	

		 Test	(novel	Xs)	 		
19	 nilbo	 [nilbo]	

20	 pergon	 [perxɔn]	

	
Appendix	C	–	Word	Recall	X	
	

Target	 X	
word	used	

X	word	 not	
used	

Foil	
	Word	 Recall	
a/b	

	

Target	 Foil	

[movix]	 [nɑspu]	 [nɑsfu]	 	 [tεp]	 [fεp]	

[vɑbo]	 		 [lεipu]	 	 [sɔt]	 [sɔs]	

[nεifu]	 [xopəm]	 [xobər]	 	 [rɑk]	 [rɑuk]	

[seta]	 		 [vapəm]	 	 [lyt]	 [lym]	

[kεŋəl]	 [raje]	 [rafo]	 	 [jik]	 [juk]	

[rɔxəs]	 		 [poje]	 	 [tuf]	 [xuf]	
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[dyfo]	 [blikər]	 [blifot]	 	 	 	

[nuba]	 		 [prukər]	 	 	 	

[kεibɔx]	 [loxa]	 [lopεi]	 	 	 	

[snixər]	 		 [pixa]	 	 	 	

[fidɑŋ]	 [malɔn]	 [mazət]	 	 	 	

[plizεt]	 		 [silɔn]	 	 	 	
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Chapter	6	

	 	 	

Turn	That	Noise	On.	Noisy	Backgrounds	Drive	Rule	Induction	
Radulescu,	S.,	Murali,	M.,	Wijnen,	F.,	and	Avrutin,	S.28	

	
	
Abstract	
	
Forming	 general	 representations	 from	 exposure	 to	 a	 limited	 set	 of	 specific	
examples,	in	other	words,	the	emergence	of	structure,	has	been	a	long-standing	
hot	topic	for	research	in	cognitive	sciences.	However,	the	underlying	mechanism	
and	the	necessary	environment	for	these	abilities	to	take	shape	remain	largely	
underspecified.	 Here	 we	 further	 extend	 and	 test	 our	 information-theoretic	
model	 (Radulescu	et	al.,	2019;	2021)	 for	 rule	 induction,	according	 to	which	a	
higher	 input	 entropy	 than	 the	 available	 encoding	 capacity	 (channel	 capacity)	
drives	the	tendency	to	move	from	a	high-specificity	item-bound	generalization	to	
another	more	general	 form	of	encoding,	category-based	generalization.	 In	 this	
study,	we	further	tested	the	model	by	looking	into	the	effect	of	a	noisy-channel	
capacity	 (as	 defined	 by	 Shannon,	 1948),	 to	 attempt	 to	 exceed	 the	 encoding	
capacity	 (channel	 capacity)	 by	 adding	 noise	 (i.e.	 random	 stimulus-irrelevant	
material)	in	the	background	of	an	artificial	language	learning	task.	Specifically,	
while	exposing	adults	to	an	XXY	artificial	grammar,	we	played	random	digits	and	
beeps	in	the	background,	in	order	to	create	a	noisy	environment.	In	one	condition	
learners	 had	 to	 pay	 attention	 and	 remember	 specific	 digits	 from	 the	 noise	
material,	while	participants	in	another	condition	were	not	given	any	additional	
task	on	the	background	noise	material.	We	found	that	added	signal-irrelevant	
entropy	 (noise)	 drives	 the	 tendency	 towards	 category-based	 encoding,	
regardless	 of	 the	 low	 target-intrinsic	 entropy	 in	 the	 input,	 but	 crucially	 only	
when	no	additional	task	was	required	on	the	noise	material.	The	noisy-channel	
capacity	 at	 the	 computational	 level	 maps	 onto	 what	 can	 be	 envisaged	 as	 an	
attentionally-taxed	 and	 error-prone	 encoding	 system	 with	 time-dependent	
limitations	at	the	algorithmic	level,	and	not	to	an	overloaded	task-handler.	To	the	
best	 of	 our	 knowledge	 this	 is	 the	 first	 artificial	 grammar	 experiment	 that	
investigates	the	effect	of	noisy-channel	capacity	on	rule	induction,	by	specifically	
testing	information-theoretic	predictions	made	by	an	entropy	model	in	order	to	
disentangle	the	effect	of	noisy-channel	capacity	from	the	effect	of	overloading	the	

 
28	This	chapter	is	a	modified	version	of	a	manuscript	in	preparation:	
Radulescu,	S.,	Murali,	M.,	Wijnen,	F.,	&	Avrutin,	S.	(2021)	Turn	That	Noise	On.	
Noisy	Backgrounds	Drive	Rule	Induction	
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underlying	 cognitive	 capacities	with	 additional	 tasks.	 Our	 findings	 show	 that	
specific	 noisy	 environments	 drive	 rule	 induction,	 in	 accordance	 with	 the	
information-theoretic	 approach	 on	 noisy-channel	 capacity,	 and	 with	 dynamic	
systems	theory,	where	noise	is	a	catalyst	for	self-organizing	into	new	structures	
(Stephen	et	al.,	2009).	
	
1.	Introduction	
	
Rule	induction	(generalization	or	regularization)	was	hypothesized	and	shown	
to	 result	 either	 from	 processing	 and	 encoding	 the	 variability	 in	 the	 input	
(Gerken,	 2006;	Reeder,	Newport,	&	Aslin,	 2013),	 or	 from	overloading	 certain	
limited	cognitive	capacities,	e.g.	memory	capacity	(Hudson	Kam	&	Chang,	2009;	
Hudson	Kam	&	Newport,	2009;	Newport,	1990).	This	ability	ranges	from	finding	
statistical	 patterns	 between	 specific	 items	 in	 the	 input	 (Saffran,	 Aslin,	 &	
Newport,	1996;	Thiessen	&	Saffran,	2007)	to	a	more	abstract	learning	that	allows	
for	 category/rule	 induction	 (Marcus	 et	 al,	 1999;	 Smith	 &	 Wonnacott,	 2010;	
Wonnacott,	 2011;	 Wonnacott	 &	 Newport,	 2005).	 However,	 the	 underlying	
mechanism	 and	 the	 exact	 dynamics	 between	 these	 triggering	 factors	 for	 the	
inductive	 step	 from	 memorizing	 specific	 items	 and	 statistical	 regularities	 to	
inferring	abstract	categories/rules	remain	largely	underspecified.	
	 While	supporting	a	single-mechanism	hypothesis,	which	was	previously	
proposed	to	underlie	both	item-specific	and	abstract	learning	(Aslin	&	Newport,	
2012;	 2014;	 Frost	 &	 Monaghan,	 2016),	 in	 a	 couple	 of	 previous	 studies	 –	
Radulescu,	 Wijnen,	 &	 Avrutin	 (2019)	 and	 Radulescu,	 Kotsolakou,	 Wijnen,	
Avrutin,	and	Grama	(2021)	–	we	took	a	step	further	in	answering	the	remaining	
questions.	 Unlike	 earlier	 studies,	 Radulescu	 et	 al.	 (2019)	 suggest	 that,	 the	
underlying	 processes	 (i.e.	 the	 learning	mechanisms	 –	 statistical	 learning	 and	
abstract	rule	learning)	should	be	conceptualized	separately	from	their	outcomes,	
that	 is	 from	 the	 resulting	 forms	 of	 encoding	 (item-bound	 generalizations	 and	
category-based	 generalizations).	 While	 item-bound	 generalizations	 describe	
relations	 between	 specific	 physical	 items,	 e.g.	 a	 relation	 based	 on	 physical	
identity,	 like	 “ba	 follows	 ba”,	 category-based	 generalizations	 are	 operations	
beyond	specific	items	that	describe	relations	between	categories	(variables),	e.g.	
“Y	follows	X”,	where	Y	and	X	are	variables	taking	different	values	(for	example,	
“ba”,	“mi”,	etc.).		
	 In	order	to	explain	how	and	why	a	single	mechanism	outputs	these	two	
qualitatively	different	forms	of	generalization,	Radulescu	et	al.	(2019)	proposed	
an	 entropy	model	 that	 specifies	 the	 dynamics	 between	 the	 two	main	 factors	
hypothesized	 by	 the	 authors	 to	 drive	 both	 item-bound	 generalizations	 and	
category-based	generalizations:	 the	statistical	properties	of	the	input,	 i.e.	 input	
entropy,	 and	 the	brain’s	 ability	 to	 encode	 the	 input	under	 conditions	of	 finite	
encoding	 capacity	 (i.e.	 channel	 capacity).	 More	 specifically,	 we	 proposed	 an	
entropy	 model	 with	 the	 main	 hypothesis	 that	 rule	 induction	 is	 an	 encoding	
mechanism	 driven	 as	 a	 natural	 automatic	 reaction	 of	 the	 brain	 due	 to	 its	
sensitivity	 to	 the	 input	 entropy	 and	 its	 finite	 encoding	 capacity	 (channel	
capacity).	We	define	our	encoding	capacity	as	channel	capacity,	in	information-
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theoretic	terms,	which	means	the	finite	rate	of	information	encoding	(entropy	
per	unit	of	time),	which	might	be	supported	by	certain	cognitive	capacities,	e.g.	
memory	capacity,	in	psychological	terms.		
	 In	 this	model,	 external	 factors	 (properties	 of	 the	 input)	 and	 internal	
factors	 (information	 encoding	 capacity)	 interact	 to	 drive	 rule	 induction:	 little	
input	 entropy	 facilitates	 finding	 rules	 between	 specific	 items,	 i.e.	 item-bound	
generalization,	while	an	input	entropy	which	is	higher	than	the	channel	capacity	
drives	 category-based	 generalization.	 In	 two	 artificial	 grammar	 experiments	
designed	to	test	the	first	factor,	i.e.	input	entropy	–	quantified	using	the	formula	
proposed	 by	 Shannon	 (1948),	 Radulescu	 et	 al.	 (2019)	 found	 evidence	 that	
supports	 the	 entropy	model:	 when	 input	 entropy	 increases,	 the	 tendency	 to	
move	from	item-bound	generalization	to	category-based	generalization	increases	
gradually.	 These	 findings	 bring	 more	 granular	 evidence	 for	 the	 gradient	 of	
generalization	proposed	before	by	Aslin	&	Newport	(2014).		
	 In	Radulescu	et	al.	(2021),	we	probed	the	effect	of	the	other	factor	of	the	
model,	i.e.	the	finite	channel	capacity,	which	is	the	maximum	rate	of	information	
encoding	 (bits/second).	 Specifically,	 we	manipulated	 the	 time	 variable	 of	 the	
channel	capacity	by	increasing	the	speed	of	 information	transmission	(bits/s).	
This	 increase	 in	 speed	was	 shown	 to	be	higher	 than	 the	 learners’	 capacity	 to	
encode	 information	 (channel	 capacity),	 while	 keeping	 input	 entropy	 at	 a	 low	
level,	i.e.	the	lowest	entropy	level	from	Radulescu	et	al.	(2019),	where	we	found	
no	 evidence	 for	 category-based	 generalization.	 Results	 showed	 an	 increased	
tendency	 towards	 category-based	 generalization	 under	 conditions	 of	 sped	 up	
inflow	of	information,	even	though	the	input	entropy	was	very	low.		
	 Taken	together,	the	findings	of	these	two	studies	(Radulescu	et	al.,	2019;	
2021)	 bring	 strong	 evidence	 to	 our	 entropy	 model,	 which	 specifies	 the	
quantifiable	dynamics	between	statistical	properties	of	the	input	(input	entropy)	
and	properties	of	the	brain’s	encoding	capacity	(channel	capacity):	rule	induction	
is	 driven	 either	 by	 an	 increase	 in	 input	 entropy	which	 is	 higher	 than	 channel	
capacity,	or	by	increasing	the	speed	of	the	inflow	of	information	up	to	a	higher	
rate	than	the	channel	capacity.		
	 In	 information-theoretic	 terms,	 the	 channel	 capacity	was	 defined	 in	
Shannon’s	 noisy-channel	 coding	 theory	 (Shannon,	 1948),	 for	 communication	
systems.	 In	 simple	 words,	 this	 coding	 theory	 says	 that	 a	 message	 (i.e.	
information)	 can	 only	 be	 transmitted	 reliably	 (i.e.	 with	 the	 least	 uncertainty	
when	receiving	the	message),	if	encoded	by	using	an	efficient	encoding	method	
such	that	the	rate	of	information	transmission	(bits/second),	plus	the	noise,	 is	
below	the	channel’s	capacity.	 If	 the	rate	of	 information	transmission	 is	higher	
than	the	channel	capacity,	then	another	more	efficient	encoding	method	can	be	
found,	but	the	channel	capacity	cannot	be	exceeded.	Since	the	channel	capacity	is	
conceptualized	as	an	upper	bound	on	the	rate	of	information	transmission,	plus	
the	noise,	it	follows	that	an	increase	in	noise	should	boost	the	transmission	up	to	
the	maximum	rate,	i.e.	channel	capacity,	which	in	turn	precipitates	a	change	in	
encoding	 method.	 Based	 on	 these	 concepts,	 our	 model	 adds	 into	 the	 rule	
induction	 “formula”	 the	 crucial	 dimension	 of	noise,	 i.e.	 random	perturbations	
that	interfere	with	the	signal,	thus	rendering	a	noisy	channel.	Hence,	our	model	
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hypothesizes	that	a	noisy	environment	drives	rule	induction,	that	is	a	change	in	
encoding	 method,	 from	 item-bound	 to	 a	 more	 efficient	 encoding	 method,	
category-based	generalization.	In	this	study,	we	further	investigate	the	channel	
capacity,	by	looking	into	its	noise	variable	and	its	link	to	the	underlying	cognitive	
capacities	involved	in	rule	induction.	 	
	 Our	proposal	that	rule	induction	is	driven	not	only	by	external	factors,	
like	 input	 variability,	 but	 also	 by	 internal	 factors,	 like	 the	 relevant	 cognitive	
capacities	involved	in	processing	and	encoding	information	is	closely	related	to	
another	line	of	research	–	the	classical	Less-is-More	hypothesis	(Newport,	1990),	
which	 looks	 into	 rule	 induction	 in	 terms	of	 cognitive	 constraints	 on	 learning.	
According	to	this	hypothesis,	overloading	our	limited	memory	capacity	leads	to	
difficulties	 in	 storing	 and	 retrieving	 low-frequency	 items,	 which	 prompts	
overuse	 of	 more	 frequent	 forms	 leading	 to	 overgeneralization.	 These	
maturational	 limitations	on	cognitive	capacities	were	proposed	 to	explain	 the	
differences	in	tendency	to	generalize	between	young	and	adult	learners	(Hudson	
Kam	&	Newport,	 2005;	Hudson	Kam	&	Newport,	 2009;	Newport,	 1990).	 The	
findings	of	this	line	of	research	are	relevant	from	a	developmental	point	of	view,	
i.e.	the	developmental	differences	between	young	and	adult	 learners,	but	they	
are	also	 relevant	 to	 the	 research	 topic	of	 this	paper,	 in	 that	 they	point	 to	 the	
mechanism	 and	 the	 cognitive	 capacities	 underlying	 the	 channel	 capacity	
involved	in	rule	induction.	Therefore,	in	the	remaining	part	of	this	introduction	
we	briefly	review	previous	studies	from	this	line	of	research	with	the	purpose	of	
identifying	possible	cognitive	capacities	underlying	channel	capacity,	and	in	the	
next	section	we	present	in	detail	our	entropy	model	which	addresses	the	same	
research	topic	from	an	information-theoretic	point	of	view.	
	 Previous	research	shows	evidence	for	behavioral	differences	between	
children	 and	 adults	 in	 terms	 of	 their	 tendency	 to	 learn	 the	 probability	
distributions	specific	to	the	input	or	to	move	away	from	the	statistical	specificity	
of	the	input	and	regularize	the	input	by	rule	induction	(Hudson	Kam	&	Newport,	
2005;	Hudson	Kam	&	Newport,	 2009).	 Children’s	 tendency	 to	 generalize	was	
explained	 by	 their	 incomplete	 cognitive	 development	 (maturational	
constraints),	more	specifically	by	memory	constraints	(children’s	overall	lower	
working	 memory	 capacity	 –	 Cowan,	 1997;	 Gathercole,	 1998).	 For	 example,	
Hudson	Kam	&	Newport	(2005)	found	that	adults	exposed	to	an	input	where	a	
determiner	occurred	only	60%	of	 the	 times	with	nouns	 tended	 to	probability	
match	 (or	 reproduce)	 the	 occurrences	 in	 their	 subsequent	 productions,	 i.e.	
produced	determiners	about	60%	of	the	times,	whereas	children	exposed	to	the	
same	 input	 tended	 to	 impose	 consistency	 on	 the	 language	 and	 produced	 the	
determiners	more	often	and	highly	consistently.	The	authors	suggested	that	due	
to	 their	 overall	 encoding	 limitations	 and	 lower	 working	 memory	 capacity,	
children	are	more	likely	than	adults	to	forget	the	specific	statistical	properties	
(probability	distributions)	of	the	input,	and	thus	to	generalize.	

However,	adults	were	also	found	to	regularize	the	input	under	specific	
circumstances	 (Hudson	Kam	&	Newport,	2009;	Hudson	Kam	&	Chang,	2009).	
Hudson	Kam	&	Newport	(2009)	found	that,	when	exposed	to	a	noisier	input,	as	
dubbed	by	the	authors,	i.e.	2	main	determiners	(consistently	determining	2	noun	
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classes)	and	up	to	16	noise	determiners	(which	could	randomly	occur	with	any	
noun),	 adults	 produced	 the	main	determiners	with	 nearly	 90%	of	 the	 nouns,	
indicating	they	generalized	when	the	input	was	more	complex	or	noisier.	Thus,	
Hudson	Kam	&	Newport	(2009)	showed	that	adults	can	overregularize,	just	like	
children,	but	crucially	only	when	exposed	to	an	overloading	noisier	input,	i.e.	a	
highly	inconsistent	input	with	many	low	frequency	items	occurring	randomly,	
which	might	have	taxed	their	storing	and	retrieval	capacities	enough	to	cause	
failures	in	retrieving	the	specific	forms	to	probability	match	their	input.	These	
findings	are	in	line	with	results	from	studies	that	employed	a	different	type	of	
generalization	 task	 (Reeder	 et	 al.,	 2009;	 2013),	 which	 showed	 adults	 have	 a	
higher	tendency	to	generalize	X	as	a	category	in	an	AXB	grammar	(rather	than	
just	memorize	the	exact	strings),	when	the	input	contains	increased	variability	
and	a	heterogeneous	distributional	structure,	in	other	words	a	noisier	input.	

Taken	together,	all	 these	 findings	of	different	generalization	behavior	
among	young	and	adult	learners	were	interpreted	to	bring	evidence	for	the	Less-
is-More	hypothesis,	namely	that	children	fail	to	retrieve	low-frequency	forms	and	
will	 overuse	 the	more	 frequent	 items,	while	 adults	 having	 better	 storing	 and	
retrieval	capacities	are	able	to	produce	most	of	the	items	in	their	received	input.	
We	reinterpret	 these	 findings	 to	be	preliminary	evidence	 to	an	approach	that	
links	generalization	to	a	particular	type	of	randomly	variable	–	noisy	–	input	and	
cognitive	limitations	of	the	learners.	However,	the	noisy	circumstances	and	the	
extent	to	which	limitations	on	cognitive	capacities	account	for	rule	induction	are	
still	 underspecified.	 Is	 better	 generalization	 (regularization)	 helped	 by	
limitations	on	retrieving	only	or	do	limitations	on	encoding	also	have	the	same	
effect?		

In	 a	 systematic	 attempt	 to	 clarify	 and	 better	 specify	 how	 and	 why	
memory	 limitations	 could	 have	 an	 impact	 on	 generalization,	 Perfors	 (2012)	
further	 investigated	 the	 effect	 of	 memory	 limitations	 on	 regularization,	 but,	
crucially,	during	the	encoding	stage.	The	author	manipulated	working	memory	
load	during	encoding	of	a	simple	artificial	grammar	(noun	–	determiner	pairs)	in	
seven	different	experimental	conditions	and	found	no	effect	of	working	memory	
load	 on	 regularization	 behavior	 during	 encoding.	 In	 these	 experiments,	
participants’	generalization	behavior	was	assessed	using	a	word-learning	task	
based	 on	 Hudson	 Kam	 and	 Newport	 (2009),	 in	 which	 participants	 were	
presented	with	10	bisyllabic	non-sense	words	(called	“nouns”,	since	they	were	
simultaneously	associated	with	a	visual	object)	paired	with	a	monosyllabic	non-
sense	word	60%	of	the	times	(dubbed	“main	determiner”),	and	with	other	four	
monosyllabic	words,	each	of	them	10%	of	the	times	(called	“noise	determiners”).	
Besides	the	target	material	to	be	learned	(i.e.	the	“noun-determiner”	pairs),	there	
was	also	non-target	(stimulus-irrelevant)	material	added	in	the	experiment,	to	
obtain	different	levels	of	cognitive	load.	Namely,	there	was	a	(control)	No-load	
condition,	where	participants	performed	the	word-learning	 task	as	described,	
and	six	Load	conditions,	in	which	the	word	learning	task	was	either	interleaved	
with	another	verbal	or	operational	 task,	or	 simultaneously	carried	out	with	a	
verbal	or	operational	 task,	 taxing	the	working	memory	either	with	a	 low	or	a	
high	 load.	 There	 was	 no	 evidence	 of	 an	 effect	 of	 working	 memory	 load	 on	
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regularization	 in	 none	 of	 these	 conditions.	 Perfors	 (2012)	 also	 measured	
participants’	working	memory	 in	 a	 complex	 span	 task	 (such	 tasks	 are	widely	
used	 to	measure	working	memory	 capacity	 –	Conway	et	 al.,	 2005;	Unsworth,	
Spillers,	 &	 Brewer,	 2009)	 and	 found	 that	 individual	 differences	 in	 working	
memory	did	not	predict	the	generalization	behavior.	
	 Other	 studies	 investigated	 the	 domain-generality	 of	 the	 Less-is-More	
hypothesis,	 and	 found	 that	 cognitive	 constraints	 are	 reflected	 in	 the	
regularization	behavior	in	non-linguistic	domains	(Kareev,	Lieberman,	and	Lev,	
1997;	 Ferdinand,	 Kirby,	 and	 Smith,	 2019),	 while	 other	 studies	 	 found	 that	
regularization	 tendencies	 and	 patterns	 are	 very	 similar	 across	 domains	 and	
language	 levels	 –	 morphology	 vs	 word	 order	 (Saldana,	 Smith,	 Kirby,	 &	
Culbertson,	2017).	
	 Summarizing	 previous	 findings,	 qualitatively	 different	 types	 of	
generalization	 (item-bound	 and	 category-based	 generalization)	 have	 been	
investigated	 in	 different	 types	 of	 tasks	 (word-learning,	 category-based	
grammars	 like	AXB,	object-naming,	etc.)	 	and	under	several	 types	of	cognitive	
load:	 either	 increasing	 the	 complexity	 of	 the	 target	 material	 (i.e.	 for	
regularization),	or	by	adding	non-target	material	in	concurrent	load	tasks.	These	
different	 concurrent	 tasks	 taxed	 the	 different	 cognitive	 capacities	 –	 working	
memory,	attention	or	 sub-components	of	 these	capacities	–	 in	different	ways,	
either	 sequentially	 or	 simultaneously.	 Overall	 some	 of	 these	 findings	 show	
evidence	for	a	gradient	of	generalization	which	results	from	input	variability,	and	
also	from	a	specific	kind	of	cognitive	load	under	specific	noisy	environments	in	
adults.	On	the	other	side,	other	ways	of	taxing	the	relevant	cognitive	capacities	
at	the	time	of	encoding	in	noisy	environments	did	not	yield	the	same	outcome.	
So,	what	is	going	on	here?	
	 These	studies	show	that,	while	there	is	some	evidence	for	the	Less-is-
More	hypothesis	on	memory	constraints	modulating	rule	induction,	it	is	not	yet	
clear	 under	what	 specific	 circumstances	 and	why	memory	 constraints	 should	
have	a	certain	effect	on	rule	learning.	Based	on	previous	work	briefly	reviewed	
above,	two	main	factors	were	proposed	to	be	a	driving	force	in	rule	induction:	
probability	distribution	of	the	exposure	language	(input	entropy)	and	cognitive	
constraints	 on	 the	 learning	 process.	 However,	 it	 is	 still	 underspecified	what	
pattern	 of	 input	 variability	 (i.e.	 what	 kind	 of	 noisy	 input)	 and	 what	 specific	
cognitive	load	drive	rule	induction,	since	findings	seem	to	be	conflicting	(in	some	
studies	or	experimental	conditions	these	factors	lead	to	better	generalization	–	
Hudson	Kam	&	Newport	(2009),	in	others	not	–	(Hudson	Kam	&	Newport,	2005;	
Perfors,	2012).	
	 In	order	to	answer	these	questions,	here	we	employ	and	further	extend	
the	entropy	model	that	we	proposed	in	Radulescu	et	al.	(2019;	2020).	This	model	
offers	an	extended	and	more	refined	information-theoretic	approach	to	the	Less-
is-More	 hypothesis,	 by	 bringing	 together	 both	 factors	 (input	 entropy	 and	
cognitive	capacity)	 in	one	 formula.	 In	our	 information-theoretic	approach,	we	
take	a	 step	 further	 from	 the	algorithmic	 level	 (i.e.	 cognitive	 limitations	of	 the	
memory	 and	 attentional	 resources)	 to	 the	 computational	 level	 (as	 per	
terminology	by	Marr	(1982)),	i.e.	channel	capacity	–	our	time-dependent	noisy	
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information	processor.	While	in	Radulescu	et	al.	(2021)	we	looked	at	the	time	
variable	of	the	channel	capacity,	in	this	study,	we	focus	on	the	effect	of	the	noise	
variable	which	renders	a	noisy-channel	capacity,	in	information-theoretic	terms	
(Shannon,	1984;	Radulescu	et	al.,	2021).	Specifically,	we	propose	that	the	effect	
of	noisy-channel	capacity,	in	information-theoretic	terms,	should	be	disentangled	
from	the	effect	of	overloading	the	relevant	cognitive	capacities	with	additional	
concurrent	 tasks.	 In	 this	 proposal,	 we	 hypothesize	 that	 noise	 (i.e.	 random	
stimulus-irrelevant	 material)	 adds	 sufficient	 entropy	 in	 the	 environment	 in	
order	to	drive	a	change	in	the	encoding	mechanism	to	move	from	an	item-bound	
generalization	to	a	category-based	generalization.	In	the	following	sections,	we	
first	briefly	 introduce	 the	entropy	model	 supported	by	our	previous	 findings,	
then	we	 focus	on	defining	 the	noise	variable	of	 the	channel	 capacity.	Next	we	
formulate	 the	 hypotheses	 of	 the	 model	 about	 the	 effect	 of	 the	 noisy-channel	
capacity	on	 rule	 induction,	 and	we	 specifically	 disentangle	 this	 hypothesis	 in	
information-theoretic	 terms	 from	previous	hypotheses	 regarding	 the	effect	of	
overloading	 the	 limited	 cognitive	 capacities	 assumed	 to	 be	 involved	 in	 rule	
induction.	In	the	remaining	sections,	we	present	an	artificial	grammar	learning	
experiment	based	on	the	lowest	entropy	version	of	the	XXY	grammar	employed	
in	our	previous	studies	(Radulescu	et	al.,	2019;	2020).	In	this	experiment,	while	
exposing	 adults	 to	 this	 grammar,	 we	 played	 random	 digits	 and	 beeps	 in	 the	
background,	in	order	to	create	a	noisy	environment,	that	would	render	a	noisy-
channel	capacity.	Although	the	input	entropy	was	low,	we	found	higher	tendency	
towards	category-based	generalization	when	there	was	noise	in	the	background,	
but	crucially	only	when	no	simultaneous	operational	task	was	required	on	the	
noise	material.	
	
2.	An	entropy	model	for	rule	induction	
	
2.1	Brief	introduction	to	the	model	and	previous	findings	
	
In	Radulescu	et	al.	(2019),	we	proposed	an	information-theoretic	model	with	the	
main	 hypothesis	 that	 rule	 induction	 is	 driven	 by	 a	 single	 mechanism,	 as	 a	
consequence	of	 the	dynamics	between	 input	properties	and	 the	design	of	 the	
encoding	system.	More	specifically,	rule	induction,	with	its	two	flavors	–	 item-
bound	and	category-based	generalizations	–	is	an	encoding	mechanism	resulting	
from	the	interaction	between	two	main	factors:	 input	entropy	and	the	channel	
capacity	of	the	encoding	system	(i.e.	the	amount	of	entropy	that	can	be	encoded	
per	unit	of	time).	
	 In	our	model,	we	use	the	concepts	and	formulas	for	entropy	and	channel	
capacity	as	they	were	introduced	and	mathematically	demonstrated	by	Shannon	
(1948),	and	we	propose	a	method	of	calculating	input	entropy	of	an	XXY	artificial	
language	(Radulescu	et	al.,	2019)	and	a	method	to	estimate	the	maximum	rate	of	
information	transmission,	i.e.	channel	capacity,	of	the	learner	of	such	an	artificial	
language	(Radulescu	et	al.,	2021).		

In	 Radulescu	 et	 al.	 (2019),	 we	 exposed	 adults	 to	 a	 3-syllable	 XXY	
artificial	 grammar,	 where	 we	 designed	 six	 experimental	 conditions	 with	
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different	input	entropy	–	2.8,	3.5,	4,	4.2,	4.58,	4.8	bits	–	which	we	calculated	using	
Shannon’s	entropy	formula.	For	a	random	variable	X,	with	n	values	{x1,	x2	…	xn},	
Shannon’s	entropy	(Shannon,	1948),	denoted	by	H(X),	is	defined	as:	

H(X)	=	–	∑ 𝑝(𝑥!)𝑙𝑜𝑔𝑝(𝑥!)"
!#$

29;		
where	p(xi)	 is	the	occurrence	probability	of	xi.	This	quantity	(H)	measures	the	
information	per	symbol	produced	by	a	source	of	input,	relative	to	all	the	possible	
symbols	 (values)	 contained	 by	 the	 set	 (Shannon,	 1948).	 Results	 showed	 that	
when	 input	 entropy	 increases,	 the	 tendency	 to	 move	 from	 item-bound	 to	
category-based	generalization	increases	gradually	(Radulescu	et	al.,	2019).		
	 While	 previous	 studies	 used	 several	 entropy	 measures	 in	 order	 to	
investigate	 regularization	 patterns	 (Ferdinand,	 2015;	 Ferdinand	 et	 al.,	 2019;	
Perfors,	2012;	Perfors,	2016;	Saldana	et	al.,	2017;	Samara,	Smith,	Brown,	and	
Wonnacott,	2017),	our	model	takes	a	step	further	and	proposes	a	quantifiable	
information-theoretic	approach	that	captures	not	only	the	effect	of	entropy	on	
generalization,	 but	 the	 dynamics	 between	 the	 input	 entropy	 and	 the	 relevant	
encoding	capacity	(i.e.	channel	capacity).	Thus,	in	order	to	address	this	specific	
dynamics,	 in	Radulescu	et	al.	 (2021),	we	 further	 tested	our	entropy	model	by	
probing	the	effect	of	channel	capacity	on	rule	induction.	According	to	Shannon	
(1948),	channel	capacity	(C)	determines	the	maximum	amount	of	entropy	that	
can	be	transmitted	reliably	through	a	communication	channel	per	unit	of	time,	
by	using	an	adequate	encoding	method.	Hence,	our	entropy	model	hypothesizes	
that	our	finite	encoding	capacity,	i.e.	channel	capacity,	places	an	upper	bound	on	
the	amount	of	entropy	that	can	be	encoded	per	unit	of	time	by	using	an	adequate	
encoding	method.	An	amount	of	entropy	higher	than	channel	capacity	supports,	
drives	the	transition	from	an	encoding	method	–	item-bound	generalization	–	to	
another	 encoding	 method	 –	 category-based	 generalization	 –	 which	 is	 more	
adequate	 to	 encode	 higher	 entropy.	 Thus,	 we	 probed	 the	 effect	 of	 the	 time	
variable	 of	 channel	 capacity.	 Specifically,	 we	 sped	 up	 the	 source	 rate	 of	
information	 transmission	 (H’),	 that	 is	 the	 average	 amount	 of	 entropy	 (bits)	
produced	by	 the	XXY	grammar	per	 second,	 in	order	 to	attempt	 to	exceed	 the	
channel	capacity	of	the	learners	who	were	being	familiarized	with	the	grammar.	
Results	 showed	 an	 increase	 in	 the	 tendency	 towards	 category-based	
generalization	when	 the	 inflow	 of	 information	 per	 second	 was	 higher,	 even	
though	the	statistical	properties	of	the	language	showed	low	input	entropy.	
	
2.2	The	noise	variable	of	the	channel	capacity	
	
In	this	study,	we	further	develop	the	concept	of	noisy-channel	capacity,	in	order	
to	extend	our	model	to	capture	rule	induction	as	an	encoding	mechanism	that	
develops	 in	 accord	 with	 Dynamic	 Systems	 Theories,	 as	 a	 natural	 automatic	
means	of	adapting	to	noisy	(=	increasingly	entropic)	environments.	Specifically,	
we	 further	 develop	 and	 extend	 the	 entropy	model	 by	 investigating	 the	 noise	
variable	of	the	channel	capacity.	

 
29	Log	should	be	read	as	log	to	the	base	2	here	and	throughout	the	paper.	
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	 Since	 information	 transmission	 in	 a	 noiseless	 environment	 is	 nearly	
impossible	to	obtain	in	real	life	conditions,	when	defining	the	channel	capacity,	
Shannon	 (1948)	 took	 into	 account	 the	 fact	 that	 information	 transmission	
happens	 in	 noisy	 environments.	 In	 short,	 Shannon	 describes	 the	 process	 of	
information	transmission	as	follows:	an	information	source	produces	a	message,	
which	 is	 encoded	 by	 a	 transmitter	 into	 a	 signal	 (=	 the	 sent	 signal)	 to	 be	
transmitted	 to	a	destination.	The	encoding	method	needs	 to	be	adequate	and	
efficient	for	the	transmission	of	the	information	through	a	medium,	i.e.	a	channel	
of	transmission.	The	source	transmits	the	signal	at	a	certain	rate	per	unit	of	time	
–	source	rate	of	information	transmission,	i.e.	input	entropy	per	second	(H’).	The	
signal	 reaches	 a	 receiver,	 which	 performs	 the	 decoding	 operation	 on	 the	
received	signal	in	order	to	reconstruct	the	message	to	deliver	to	the	destination.	
In	 time,	 the	 noise	 perturbs	 the	 signal,	 such	 that	 the	 received	 signal	 does	 not	
match	the	signal	sent	out	by	the	source.	The	received	signal	is	actually	a	function	
of	the	transmitted	signal	(S)	and	the	noise	(N),	i.e.	f(S,	N).	The	information	content	
of	the	signal	and	the	noise,	as	well	as	that	of	the	noise-affected	received	signal	
can	be	quantified	using	entropy	(H).	In	the	ideal	noise-free	case,	the	amount	of	
information	sent	by	the	source	equals	the	amount	of	received	information,	i.e.	
the	 entropy	 of	 the	 source	 signal	 equals	 the	 entropy	 of	 the	 received	 signal.	
However,	 if	 the	 transmission	 medium	 is	 noisy,	 for	 example,	 a	 noisy	 channel,	
during	 transmission	 the	 noise	 introduces	 errors,	 which	 leads	 to	 a	 loss	 in	
information,	i.e.	missing	bits	of	information.	As	a	result,	the	received	signal	does	
not	always	match	the	sent	signal,	and	thus	there	is	uncertainty	when	decoding	
the	sent	signal	and	reconstructing	the	message.	This	uncertainty	 is	defined	as	
rate	of	equivocation	(E)	(Shannon,	1948),	and	it	basically	quantifies	the	missing	
bits	of	information	in	the	received	message	due	to	a	noisy	transmission.	It	must	
be	 specified	 that	 the	 process	 of	 information	 transmission	 encompasses	 all	
processes	of	information	transmission	from	the	source	to	the	destination,	that	is	
all	the	transmission	and	encoding	–	decoding	processes.	
	 Shannon	 (1948)	 argued	 and	 demonstrated	 that	 the	 noisy-channel	
capacity	 (C)	 is	 the	 maximum	 actual	 rate	 of	 transmission	 (R)	 of	 information,	
which	can	be	obtained,	but	crucially	only	if	the	encoding	method	is	adequate	and	
efficient:	
	 C	=	Max	(R)	=	Max	(H’	–	E),	
	 where	H’	is	the	source	rate	of	information	transmission,	and	E	is	the	rate	
of	equivocation.	
	 In	 simple	words,	 the	maximum	 rate	 of	 transmission,	 i.e.	 the	 channel	
capacity,	 can	 be	 achieved	 by	 employing	 an	 adequate	 and	 efficient	method	 of	
encoding,	such	that	the	rate	of	equivocation	(E)	is	kept	at	a	minimum,	so	that	the	
actual	rate	of	information	transmission	is	as	close	as	possible	to	the	source	rate	
of	transmission.	That	means	that	the	received	signal	will	be	as	close	as	possible	
to	the	sent	signal.	One	aspect	needs	clarification	here,	namely	that	the	actual	rate	
of	information	transmission	(R)	is	different	from	the	source	rate	of	information	
transmission	(H’),	as	it	takes	into	account	the	loss	of	information	due	to	noise	(E),	
which	happens	in	the	course	of	transmission	of	the	information	from	the	source	
to	the	destination.	The	source	rate	of	information	transmission	(H’)	is	the	rate	at	



An	Entropy	and	Noisy-Channel	Model	for	Rule	Induction	

 

210 

 

which	 the	 source	 produces	 and	 transmits	 information	 (i.e.	 the	 source	 rate	 of	
information	production),	while	the	actual	rate	of	information	transmission	(R)	is	
quantified	at	the	other	terminal	end,	i.e.	the	receiver,	after	the	noise	had	caused	
a	loss	in	information	(E).	
	 According	to	Theorem	11	of	the	noisy	channel	transmission	(Shannon,	
1948),	given	a	certain	source	with	a	rate	of	information	production	(H’),	when	H’	
is	less	than	C,	information	can	be	sent	through	a	noisy	channel	at	the	rate	C	(i.e.	
channel	 capacity),	with	 a	 very	 small	 rate	 of	 equivocation	 (E),	 if	 and	 only	 if	 a	
proper	encoding	method	is	used.	If	H’	is	higher	than	C,	it	is	possible	to	find	an	
adequate	encoding	method	for	the	signal,	such	that	the	rate	of	equivocation	is	
minimum,	but	the	rate	of	transmission	can	never	be	higher	than	C.	If	there	is	an	
attempt	to	exceed	the	rate	C,	by	using	the	same	encoding	method,	then	there	will	
be	an	equivocation	rate	at	least	equal	to	the	excess	rate	of	transmission.	
	 It	follows	that,	the	efficiency	of	the	encoding	method	is	defined	by	the	
ratio	 of	 the	 actual	 rate	 of	 transmission	 to	 the	 capacity	 of	 the	 channel.	 If	 the	
encoding	method	is	maximally	efficient,	the	equivocation	rate	(E)	is	minimum,	
so	the	actual	rate	of	transmission	(R)	approaches	its	maximum,	which	is	the	
channel	capacity:	C	=	Max(H'	-	E)	=	Max(R).	In	the	ideal	noiseless	case	(where	
E	=	0),	R/C	=	1,	because	R	=	C.	If	the	encoding	method	is	less	than	maximally	
efficient,	the	equivocation	rate	is	higher	than	0	(E	>	0),	so	R	is	lower	than	C,	
thus,	R/C	<	1.	In	other	words,	an	encoding	method	is	efficient	if	the	equivocation	
rate	is	minimum	in	order	for	the	rate	of	transmission	to	achieve	its	maximum	to	
match	 the	 channel	 capacity.	 If	 the	 rate	 of	 equivocation	 increases,	 the	 rate	 of	
transmission	 decreases,	 which	 drives	 the	 need	 for	 a	more	 efficient	 encoding	
method,	 in	 order	 to	 achieve	 a	 better	match	 to	 the	 channel	 capacity.	 In	 noisy	
environments,	noise	perturbs	the	transmission	of	the	signal,	which	increases	the	
rate	 of	 equivocation,	 as	 described	 above.	 Thus,	 the	 rate	 of	 transmission	
decreases,	which	calls	for	a	more	efficient	encoding	method.	
	
2.3	Predictions	of	the	model	about	the	effect	of	noisy-channel	capacity	on	
rule	induction	
	
After	having	defined	and	described	the	concepts,	we	can	continue	by	stating	and	
elaborating	 on	 the	 main	 predictions	 of	 the	 model	 about	 the	 effect	 of	 noisy-
channel	capacity	on	rule	induction.	We	employ	channel	capacity	in	our	study	to	
model	 the	 information	 transmission	 system,	 i.e.	 the	 maximum	 finite	 rate	 of	
information	transmission	of	the	learning	system.	Recall:	transmission	involves	
the	 entire	 process	 of	 information	 transmission	 from	 the	 source	 to	 the	
destination,	that	is	all	the	transmission	and	encoding	–	decoding	processes.	
	 As	proposed	in	our	previous	studies	(Radulescu	et	al.,	2019;	Radulescu	
et	 al.,	 2021),	 item-bound	generalization	and	 category-based	 generalization	 are	
outcomes	of	the	same	information	encoding	mechanism,	as	a	gradual	transition	
from	 a	 high-fidelity	 form	 of	 encoding	 (item-bound	 generalization)	 to	 a	 high-
generality	encoding	(category-based	generalization).	This	transition	is	driven	by	
the	 interaction	between	 input	 entropy	and	 the	 finite	 encoding	 capacity	 of	 the	
learning	system,	i.e.	channel	capacity.	Here	we	further	extend	and	elaborate	on	
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the	predictions	related	to	the	effect	of	 the	 finite	channel	capacity,	which	were	
proposed	and	probed	in	Radulescu	et	al.	(2021),	and	we	also	further	investigate	
and	 add	 into	 the	 formula	 the	 effect	 of	 the	 noisy-channel	 capacity	 on	 rule	
induction.		
	 a.	 As	 proposed	 in	 Radulescu	 et	 al.	 (2021),	 if	 the	 channel	 capacity	 is	
higher	than	or	matches	the	source	rate	of	information	transmission	(H’	–	that	is	
the	 average	 number	 of	 symbols	 produced	by	 the	XXY	 grammar	per	 second	–	
input	entropy	per	second),	then	the	information	(message)	can	be	encoded	by	
using	an	encoding	method	which	matches	the	statistical	structure	of	the	input,	
i.e.	 the	 probability	 distribution	 of	 the	 specific	 items	 in	 the	 input.	 Thus,	 the	
information	about	specific	items	and	their	configuration	(i.e.	input	entropy)	can	
be	encoded	with	a	high-fidelity	symbol	specificity	(i.e.	probability	matching	to	
the	input),	and	can	be	transmitted	through	the	channel	at	the	channel	rate	(i.e.	
entropy	per	unit	of	time)	and	stored	by	item-bound	generalization.	

	 b.	Conversely,	 if	 the	channel	 capacity	 is	 lower	 than	 the	source	rate	of	
information	 production	 (H’),	 that	 is	 an	 attempt	 is	 made	 to	 exceed	 the	 finite	
channel	capacity	of	the	encoding	system,	it	is	possible	to	find	a	proper	method	
that	encodes	more	 information	(entropy),	but	the	rate	of	 transmission	cannot	
exceed	the	available	channel	capacity.	As	per	Theorem	11	(Shannon,	1948):	 if	
H’>C,	another	encoding	method	can	be	found	to	transmit	the	signal,	but	the	rate	
of	 transmission	 cannot	 be	 higher	 than	 C.	 If	 there	 is	 an	 attempt	 to	 transmit	
information	at	a	higher	rate	than	C,	by	using	the	same	encoding	method,	then	
there	 will	 be	 an	 equivocation	 rate	 at	 least	 equal	 to	 the	 excess	 rate	 of	
transmission.	 Thus,	 if	 the	 inflow	 of	 entropy	 creates	 an	 excess	 source	 rate	 of	
information,	 which	 is	 higher	 than	 the	 available	 channel	 (H’	 >	 C),	 the	 rate	 of	
equivocation	 (E)	 increases,	 if	 the	 encoding	method	 is	 not	 suitable.	 Since	 the	
channel	 capacity	 cannot	 be	 exceeded,	 this	 calls	 for	 a	more	 efficient	 encoding	
method	such	that	the	rate	of	equivocation	is	minimized	in	order	for	the	actual	
rate	of	transmission	(R)	to	achieve	its	maximum,	to	match	the	channel	capacity.	
Specifically,	when	 the	 source	 entropy	per	 second	 is	 higher	 than	 the	 available	
channel	 capacity,	 the	 high-specificity	 item-bound	 generalization	 becomes	
inefficient	 and	 prone	 to	 many	 errors.	 Therefore,	 the	 information	 cannot	 be	
encoded	 with	 a	 high-fidelity	 method	 (i.e.	 probability	 matching	 to	 the	 input),	
because	 this	 encoding	 method	 gives	 rise	 to	 a	 high	 rate	 of	 equivocation.	 As	
explained	 before,	 a	 high	 rate	 of	 equivocation	 calls	 for	 another	more	 efficient	
method	of	encoding.	Thus,	we	hypothesize	that	the	excess	of	entropy	entering	
the	channel	results	into	breaking	bindings	between	items,	and	reorganizing	the	
redundant	(shared)	and	non-redundant	(specific)	features	of	discrete	symbols	
in	order	to	erase	or	“forget”	insignificant	features.	This	leads	to	a	compression	of	
the	signal	by	reducing	the	specific	features	encoded	with	individual	items	and	
re-grouping	them	in	categories.	As	a	result,	a	new	form	of	encoding	is	created,	
which	allows	for	higher	input	entropy	to	be	encoded	at	the	same	channel	capacity,	
but	by	yielding	a	more	general	(less	specific)	category-based	encoding.	
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	 In	Radulescu	et	al.	(2021)	we	hypothesized	that	it	is	precisely	the	finite	
channel	 capacity	 that	drives	 restructuring	of	 the	 information,	 in	order	 to	 find	
another	 form	 of	 encoding,	 i.e.	 category-based	 generalization,	 which	 is	 more	
efficient	at	maximizing	the	rate	of	transmission,	that	is	by	minimizing	the	rate	of	
equivocation.	Here	we	further	extend	the	finite	channel	capacity	hypothesis	and	
we	formulate	a	specific	hypothesis	by	emphasizing	on	the	effect	of	noise:	
	 c.	As	explained	 in	 the	previous	section,	 the	efficiency	of	 the	encoding	
method	is	defined	by	the	ratio	of	the	actual	rate	of	transmission	to	the	capacity	
of	 the	 channel.	 Thus,	 we	 hypothesize	 that	 noise	 adds	 sufficient	 entropy	 per	
second	which	 enters	 the	 channel,	 in	 order	 to	 drive	 a	 change	 in	 the	 encoding	
mechanism	 to	 find	a	more	efficient	encoding	method.	More	 specifically,	noise	
inflow	perturbs	the	signal	and	increases	the	rate	of	equivocation	(as	explained	
above).	Since	noise	increases	the	rate	of	equivocation,	and	an	increased	rate	of	
equivocation	 calls	 for	 a	 more	 efficient	 encoding	 method,	 we	 expect	 that	 an	
increase	 in	noise	 should	 accelerate	 the	drive	 towards	 a	 reorganization	of	 the	
information,	 such	 that	 a	 more	 efficient	 encoding	 method	 is	 found.	 This	
hypothesis	 is	 in	 line	with	Dynamic	Systems	Theory	(DST),	according	to	which	
random	perturbations	in	the	environment	(i.e.	noise)	add	to	the	input	entropy	
and	 accelerate	 self-organization	 into	 a	 new	 structure	 (Stephen,	 Dixon,	 &	
Isenhower;	2009).	
	 As	explained	above,	channel	 capacity	 is	used	here	 to	model	 the	 finite	
encoding	capacity	of	the	learning	system	in	information-theoretic	terms	(i.e.	at	
the	computational	level,	in	the	sense	of	Marr	(1982)).	In	psychological	terms	(at	
the	algorithmic	 level),	we	 follow	experimental	evidence	 from	the	Less-is-More	
hypothesis	line	of	research,	which	suggests	that	memory	constraints	drive	rule	
induction	(Hudson	Kam	&	Newport,	2005;	Hudson	Kam	&	Newport,	2009),	and	
embed	 this	 in	 classical	 and	 more	 recent	 models	 of	 memory	 and	 attention	
(Baddeley,	 Eysenck,	 and	 Anderson,	 2015;	 Cowan,	 2005;	 Oberauer	 and	 Hein,	
2012).	Hence,	we	hypothesize	that	the	cognitive	capacities	that	underlie	channel	
capacity,	 specifically	 in	 linguistic	 rule	 induction	 (and,	 implicitly,	 in	 category	
formation),	 are	 the	 attentionally-controlled	 regions	 of	 activated	 long-term	
memory,	in	other	words	working	memory	(WM).	Rule	induction	can	be	argued	
to	 rely	 on	 the	 storage	 and	 online	 time-dependent	 processing	 capacities	 that	
support	the	ability	to	maintain	active	goal-relevant	information	(the	rule)	while	
concurrent	processing	(of	other	possible	hypotheses,	and	of	noise)	takes	place	
(which	 is	 what	 defines	 WM	 as	 well	 –	 Conway	 et	 al.,	 2002).	 Corroborating	
evidence	 comes	 from	 positive	 correlations	 found	 between	WM	 and	 domain-
general	categorization	tasks	(Lewandowsky,	2011).	
	 As	we	argued	 in	Radulescu	et	al.	 (2021)	and	Chapter	3,	we	generally	
deem	 linguistic	 rule	 induction	 to	 be	 supported	 by	 a	 domain-general	 WM	
capacity,	 rather	 than	 language-specific	algebraic	 rule	 learning	as	proposed	by	
early	prominent	research	(Marcus	et	al.,	1999).	In	the	current	study	we	further	
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explore	 the	 effect	 of	 one	 of	 the	 components	 underlying	 channel	 capacity	 in	
linguistic	rule	induction,	namely	what	we	dubbed	as	a	domain-general	pattern	
recognition	capacity.	The	rationale	is	that	a	rule	induction	task	can	be	intuitively	
envisaged	as	a	task	of	finding	patterns/rules	in	the	input.		
	 As	proposed	in	our	previous	studies	(Radulescu	et	al.,	2021,	and	Chapter	
3)	a	possible	candidate	test	of	domain-general	pattern	recognition	is	the	Raven’s	
Standard	Progressive	Matrices	 (RAVENS	 test	 –	Raven,	Raven,	&	Court,	 2000),	
which	was	shown	to	be	based	on	rule	induction	(Carpenter,	Just	&	Shell,	1990;	
Little,	Lewandowsky,	&	Griffiths,	2012)	and	to	rely	on	similar	storage	and	online	
time-dependent	 processing	 capacities	 to	 maintain	 active	 goal-relevant	
information	(the	rule)	while	concurrent	processing	takes	place	(Conway	et	al.,	
2002).	 Importantly,	 this	 pattern	 recognition	 test	 and	 WM	 capacity	 are	 not	
identical	 (Conway	 et	 al.,	 2003),	 and	 WM	 is	 not	 a	 causal	 factor	 for	 pattern	
recognition	 (Burgoyne,	 Hambrick,	 &	 Altmann,	 2019).	 However,	 high	 positive	
correlations	were	 found	between	measures	of	WM	capacity	and	 tests	 for	 this	
domain-general	pattern-recognition	capacity	(like	RAVENS	–	e.g.	Conway	et	al.,	
2002;	Little,	Lewandowsky	and	Craig,	2014;	Dehn,	2017).	 		
	 In	the	Conclusion	section,	we	will	come	back	to	this	topic	for	a	discussion	
of	 the	 compatibility	 between	 current	 memory	 and	 attention	 models	 (at	 the	
algorithmic	level)	and	our	entropy	model	(at	the	computational	level).	
	 Development	 of	 these	 hypothesized	 underlying	 cognitive	 capacities	
entails	as	an	effect	a	developmental	increase	in	channel	capacity,	which	leads	to	
a	higher	amount	of	entropy	that	can	be	encoded	per	unit	of	time.	It	follows	from	
the	previous	predictions	of	the	model	that	a	developmental	increase	in	channel	
capacity	reduces	the	need	and	the	tendency	to	move	to	a	more	general	category-
based	 form	 of	 encoding.	 This	 prediction	 of	 the	 model	 would	 explain	 the	
differences	 in	 regularization	 behavior	 observed	 between	 young	 and	 adult	
learners	 who	 are	 exposed	 to	 the	 same	 input	 entropy:	 adults	 have	 a	 lower	
tendency	to	encode	the	input	as	category-based	encoding	than	young	learners,	
because	adults’	channel	has	a	higher	information	encoding	rate.	
	
3.	 Effect	 of	 noisy	 channel	 in	 information-theoretic	 terms	 vs.	 previous	
hypotheses	regarding	cognitive	constraints	on	rule	induction	
	
Noisy-channel	 capacity	 according	 to	 our	 model	 differs	 from	 the	 previous	
hypotheses	of	cognitive	constraints	on	rule	induction,	as	they	were	proposed	and	
investigated	in	previous	studies	mentioned	above	(e.g.	Less-is-More	hypothesis	
with	its	versions	and	follow-up	studies).	Next,	a	specific	prediction	will	be	made	
on	the	effect	of	an	attempt	to	exceed	the	noisy-channel	capacity	on	rule	induction,	
as	we	propose	it	should	be	disentangled	from	the	effect	of	overloaded	working	
memory	capacity	with	additional	tasks.	
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	 Theoretically,	 following	 the	 above-mentioned	 definition	 of	 channel	
capacity	(i.e.	the	amount	of	entropy,	including	noise,	that	can	be	transmitted	per	
unit	 of	 time),	 and	 Shannon’s	 Theorem	 11,	 an	 attempt	 to	 exceed	 the	 channel	
capacity	 in	 an	 artificial	 grammar	 experiment	 can	 be	 obtained	 in	 two	
straightforward	ways:	either	by	increasing	the	amount	of	entropy	that	enters	the	
channel,	or	by	speeding	up	 the	rate	of	 feeding	 information	 (entropy)	 into	 the	
channel.	When	quantifying	the	entropy	in	an	artificial	grammar	learning	task,	in	
general	there	are	two	main	sources	of	entropy	that	should	be	factored	in:	input	
entropy	 that	 is	 the	 target-intrinsic	 (or	 signal-specific)	 entropy	 layers	 (namely	
acoustic,	 prosodic,	 phonological,	 morphological,	 semantic,	 distributional,	 etc.,	
entropy	of	 the	 target	signal),	and	also	 target-extrinsic	(or	stimulus-unrelated)	
entropy	 (or	 background	 noise).	 Thus,	 there	 are	 various	 possible	 sources	 for	
obtaining	a	noisy	channel	in	an	artificial	grammar	learning	environment	like	the	
one	 simulated	 in	 the	 experiments	 carried	 out	 by	 Radulescu	 et	 al.	 (2019).	
Specifically,	the	noise,	that	is	perturbations	that	interfere	with	the	signal,	could	
stem	from	individual	cognitive	capacities	(e.g.	working	memory),	from	different	
learning	 strategies	 that	 learners	 employ	 in	 order	 to	 cope	 with	 these	 finite	
cognitive	 capacities,	 from	general	biases	 regarding	 language	 composition	and	
structure,	 from	 knowledge	 regarding	 the	 discrete	 symbols	 (i.e.	 particular	
bigrams/trigrams	 of	 syllables),	 etc.,	 but	 also	 from	 external	 sources,	 such	 as	
stimulus-irrelevant	noise	in	the	background.	According	to	our	model,	all	these	
sources	of	noise	interfere	with	the	actual	signal	sent,	so	that	the	received	signal	
becomes	a	function	of	the	sent	signal	and	the	noise	variable.	
	 Since	in	the	formulation	of	the	specific	predictions	of	our	entropy	model	
we	 disentangled	 between	 the	 effect	 of	 the	 input	 entropy	 (i.e.	 target-intrinsic	
entropy)	and	that	of	channel	capacity,	it	follows	that,	practically,	there	are	two	
methods	 to	 try	 and	 exceed	 the	 channel	 capacity,	 while	 keeping	 constant	 the	
target-intrinsic	entropy:	
	 1.	Increase	the	source	rate	of	production,	to	directly	modulate	the	time	
variable	of	 the	channel	 capacity.	This	method	reduces	 the	 time	 that	 the	same	
amount	 of	 input	 entropy	 passes	 through	 the	 channel.	 We	 employed	 it	 in	
Radulescu	 et	 al.	 (2021)	 and	 found	 that	 a	 sped	 up	 rate	 of	 information	
transmission,	which	was	higher	than	the	channel	capacity,	drove	category-based	
generalization	in	the	same	XXY	grammar	employed	by	Radulescu	et	al.	(2019).	
	 2.	Add	stimulus-unrelated	entropy	(noise)	in	the	input	to	modulate	the	
total	amount	of	entropy	that	enters	the	channel	while	keeping	the	time	variable	
constant,	in	order	to	render	a	noisier	channel.	In	this	study	we	used	this	method,	
that	 is	we	added	 stimulus-irrelevant	 entropy	 (noise)	 in	 the	 input,	 in	order	 to	
attempt	 and	 exceed	 the	 channel	 capacity	 of	 the	 learners	 while	 they	 were	
performing	 a	 rule	 induction	 task	 on	 the	 same	 XXY	 grammar	 employed	 by	
Radulescu	et	al.	(2019).	
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	 Background	 noise	 entropy	 was	 shown	 in	 a	 wide	 range	 of	 studies	 to	
facilitate	 learning,	 in	 general.	 More	 specifically,	 in	 the	 adult	 problem-solving	
paradigm,	Stephen	et	al.	(2009)	presented	adults	with	a	series	of	gear	system	
problems	on	a	 computer	 screen.	One	group	of	participants	 saw	 the	problems	
appear	in	a	consistent	spatial	location,	while	the	other	group	saw	the	problems	
in	 random	 locations,	 i.e.	 non-target	 entropy	 (noise)	 was	 added	 to	 the	 task.	
Although	 both	 groups	 eventually	 abstracted	 a	 short-cut	 to	 solve	 the	 gear	
problems,	the	group	exposed	to	a	noisy	environment	did	so	the	fastest.	Stephen	
et	 al.	 (2009)	 explained	 these	 findings	 as	 an	 instance	 of	 dynamic	 systems	 of	
cognition	 where	 non-target,	 extraneous	 entropy	 (i.e.	 noise)	 during	 learning	
speeds	up	early	learning	by	helping	new	cognitive	structure	emerge	via	a	shift	
from	one	stable	state	to	another.	
	 In	 a	 word	 learning	 paradigm,	 Twomey,	 Ma	 and	Westermann	 (2018)	
exposed	2-year-olds	in	a	referent	selection	task	to	either	objects	on	a	uniform	
white	background,	or	on	differently	colored	backgrounds.	At	test,	only	children	
in	the	variable	background	condition	showed	evidence	of	learning	label-object	
associations.	 Authors	 suggested	 that	 these	 findings	 fit	 the	 dynamic	 systems	
theory,	which	suggests	that	extraneous	entropy	(here	in	the	form	of	background	
variability)	 adds	 sufficient	noise	 to	 the	 system	 to	 cause	 a	 change	 in	behavior	
which	supports	learning.		
	 Additionally,	in	a	computational	model,	which	simulates	word	learning	
from	multiple	intrinsic	and	extrinsic	cues,	Monaghan	(2017)	showed	that	noise	
in	 the	 environment,	 i.e.	 less	 than	 perfect	 reliability	 of	 such	 cues	 or	 source	 of	
information	 is	 noisy,	 supports	 robustness	 of	 learning,	 even	 though	 there	 is	 a	
trade-off	 with	 speed	 of	 initial	 learning.	 Similar	 beneficial	 effects	 of	 noise	 on	
learning	were	also	found	in	studies	on	generalization	of	learned	information	to	
a	new	context	(Gartman	&	Johnson,	1972;	Godden	&	Baddeley,	1980),	and	in	face	
recognition	studies	(Smith	&	Handy,	2014).	
	 In	psychological	terms	(at	the	algorithmic	level),	as	mentioned	above,	
following	 suggestions	 from	 classical	 and	more	 recent	models	 of	memory	 and	
attention	(Baddeley,	Eysenck,	and	Anderson,	2015;	Cowan,	2005;	Oberauer	and	
Hein,	 2012),	 we	 hypothesize	 that	 the	 underlying	 cognitive	 mechanisms	 that	
modulate	channel	capacity	are	the	attentionally-controlled	regions	of	activated	
long-term	 memory,	 i.e.	 the	 working	 memory.	 In	 this	 study,	 we	 did	 not	 only	
measure	individual	differences	in	cognitive	capacities	that	were	hypothesized	to	
underlie	the	individual	channel	capacity	of	the	participants,	but	we	also	looked	
at	 the	 effect	 of	 channel	 capacity	 on	 rule	 induction	 from	 the	 following	
perspectives:	
	 1.	Firstly,	by	taxing	the	relevant	cognitive	capacities	in	real	time,	at	the	
moment	of	the	actual	process	of	information	encoding.	
	 2.	 Secondly,	 by	 teasing	 apart	 the	 effect	 of	 taxing	 the	 actual	 cognitive	
capacity	with	 additional	 tasks	 (i.e.	 taxing	what	we	 shall	 dub	 the	 “operational	
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processor”,	 at	 the	 computation	 level),	 and	 the	 effect	 of	 an	 attempt	 to	 exceed	
channel	 capacity	 (i.e.,	 the	 actual	 rate	 of	 information	 transmission),	 in	 purely	
information-theoretic	 terms,	 in	 real	 time,	 by	 introducing	 additional	 signal-
irrelevant	entropy	(noise)	per	unit	of	time,	to	achieve	a	noisier	channel.	 	
	 Previous	 hypotheses	 regarding	 cognitive	 constraints	 did	 not	 clearly	
specify	whether	such	constraints	should	be	thought	of	in	terms	of	overloading	
the	capacity	with	secondary	tasks,	or	in	terms	of	the	amount	of	information	fed	
into	 the	 relevant	 operating	 capacities.	 Therefore,	 previous	 studies	 regarding	
cognitive	constraints	on	rule	learning	tested	these	hypotheses	either	by	adding	
more	information	(i.e.	more	target-intrinsic	variability)	in	the	learning	material	
(Hudson	Kam	&	Newport,	 2009),	 or	 by	overloading	 the	processing	 capacities	
with	additional	tasks	at	the	time	of	learning	(Perfors,	2012).	Therefore,	mixed	
results	and	conclusions	were	obtained,	as	discussed	in	the	introduction	of	this	
paper,	 and	 as	 a	 consequence	 the	 hypothesis	 of	 cognitive	 constraints	 on	 rule	
learning	remains	largely	underspecified.	 	
	 We	 propose	 that	 a	 clear	 distinction	 should	 be	 made	 between	 the	
“operational	processor”,	which	 carries	out	a	 certain	number	of	 tasks,	 and	 the	
inflow	of	information	fed	into	it	for	the	purpose	of	carrying	out	those	tasks,	i.e.	
the	 rate	 of	 information	 transmission,	 which	 is	 determined	 by	 the	 channel	
capacity.	More	specifically,	the	“operational	processor”	could	be	thought	of	as	the	
central	executive	component	in	Baddeley’s	model	–	Baddeley	et	al.	(2015)	or	as	
one	of	 the	 functions	of	 the	 attentionally-controlled	working	memory	 (Cowan,	
2005;	Oberauer	and	Hein,	2012).	The	input	of	information	to	this	task-handler	
(“operational	processor”)	is	determined	by	the	available	channel	capacity.	
	 As	 presented	 in	 the	 previous	 section,	 our	 entropy	 model	 poses	 the	
hypothesis	that	an	attempt	at	exceeding	the	channel	capacity	results	in	the	need	
to	 find	 a	 more	 efficient	 encoding	 method,	 i.e.	 that	 enables	 a	 higher	 rate	 of	
information	transmission	with	less	equivocation.	The	outcome	of	the	need	for	a	
more	 efficient	 encoding	 is	 a	 higher	 tendency	 towards	 category-based	
generalization.	 Therefore,	 in	 information-theoretic	 terms,	 our	 model	 poses	 a	
specific	prediction:	the	transition	to	a	category-based	encoding	method	is	driven	
by	 the	 attempt	 at	 exceeding	 the	 channel	 capacity	 with	 additional	 signal-
irrelevant	entropy	(noise)	per	unit	of	time,	to	achieve	a	noisier	channel.	Indeed,	
also	at	the	algorithmic	level,	there	is	evidence	that	random	material	added	in	the	
background	of	learning	tasks	leaves	a	traceable	footprint	on	the	memory	of	the	
participants	 (Conway,	 Cowan,	 &	 Bunting,	 2001;	 Cowan,	 Nugent,	 Elliott,	
Ponomarev,	&	Saults,	1999;	Cowan,	Nugent,	Elliott,	&	Saults,	2000;	Oberauer	&	
Lewandowsky,	2016).	
	 To	conclude	this	section,	channel	capacity	quantifies	the	actual	rate	of	
information	transmission	in	noisy	environments,	namely	by	taking	into	account	
the	rate	of	equivocation	due	to	the	effect	of	noise	on	the	sent	signal.	If	an	attempt	
is	 made	 to	 exceed	 the	 finite	 channel	 capacity	 by	 increasing	 the	 noise	 in	 the	



Chapter	6		

 

217 

 
 

channel,	the	encoding	method	changes	into	a	more	abstract	encoding	in	order	to	
allow	 a	 higher	 rate	 of	 information	 transmission	 with	 a	 lower	 rate	 of	
equivocation.	Thus,	in	line	with	dynamic	systems	theory	deemed	to	explain	the	
generalization	behavior	in	problem-solving	tasks	(e.g.	Stephen	et	al.;	2009),	our	
model	 hypothesizes	 that	 the	 finite	 channel	 capacity	 is	 designed	 to	 drive	 re-
structuring	of	the	information	in	order	to	shape	the	encoding	into	a	more	general	
abstract	form	of	encoding,	for	the	purpose	of	adapting	to	noisier	(=increasingly	
entropic)	environments.	In	the	next	section,	we	propose	an	experiment	to	test	
this	 prediction,	 while	 teasing	 it	 apart	 from	 the	 effect	 of	 overloading	 the	
“operational	processor”	with	additional	tasks.	

4.	Experiment:	design	and	rationale	
	
The	 goal	 of	 this	 study	 is	 to	 probe	 the	 effect	 of	 the	 second	main	 factor	 of	 the	
entropy	model,	i.e.	channel	capacity,	by	adding	stimulus-irrelevant	entropy	(i.e.	
noise)	 in	 the	 background	 while	 participants	 are	 exposed	 to	 the	 same	 XXY	
grammar	from	Radulescu	et	al.	(2019).	The	added	noise	is	hypothesized	to	inject	
sufficient	extraneous	entropy	 in	order	 to	drive	a	 change	 in	encoding	method,	
thus	yielding	a	higher	tendency	towards	category-based	encoding.	
	 We	 tested	 the	 effect	 of	 channel	 capacity	on	 rule	 induction	 by	 adding	
noise	to	render	a	noisier	channel,	while	disentangling	this	effect	from	the	effect	
of	overloading	the	underlying	cognitive	capacities	with	an	additional	task	in	real	
time.	To	this	end,	we	designed	and	ran	an	experiment,	in	which	we	employed	the	
lowest	entropy	version	(i.e.	2.8	bits)	of	the	XXY	grammar	we	used	in	Radulescu	
et	al.	(2019),	for	which	we	found	no	evidence	of	category-based	encoding,	thus	
we	shall	use	it	as	the	control	experiment.	In	the	two	experimental	conditions	of	
this	study,	we	attempted	to	exceed	the	channel	capacity	in	the	following	way:	we	
exposed	adults	to	the	XXY	language	(i.e.	 the	signal),	while	playing	a	stream	of	
digits	 simultaneously	 (i.e.	 the	noise,	 or	 the	unpredictable	material	which	was	
irrelevant	 to	 the	 XXY	 language	 learning).	 Participants	 in	 one	 experimental	
condition	were	given	two	tasks:	one	task	to	be	performed	on	the	signal	(i.e.	on	
the	XXY	language)	and	an	additional	simultaneous	task	on	the	stream	of	digits,	
that	is	to	perform	a	memorization	operation	on	the	stimulus-irrelevant	material.	
In	 the	 other	 condition,	 the	 same	 noise	 was	 played	 in	 the	 background,	 but	
crucially	there	was	no	additional	task	required	on	the	noise.	The	rationale	of	this	
design	is	to	tease	apart	the	effect	of	simply	injecting	noise	in	the	environment	to	
render	 a	 noisier	 channel	 from	 the	 effect	 of	 overloading	 the	 “operational	
processor”	with	another	simultaneous	task.	
	 More	 specifically,	 participants	were	 exposed	 (aurally)	 to	 an	 artificial	
XXY	 grammar	 using	 the	 same	 stimuli	 as	 those	 used	 in	 the	 lowest	 entropy	
condition	in	Radulescu	et	al.	(2019)	–	2.8	bits.	While	presenting	them	with	the	
artificial	grammar	(the	signal),	a	stream	of	digits	and	random	beeps	(the	noise)	
played	 in	 the	 background.	 In	 one	 condition	 (Dual-Task	 Condition),	 the	
participants	were	asked	to	remember	only	the	digits	played	right	before	every	
beep	 in	 the	 stream	 and	 report	 them	 in	 the	 same	 order	 at	 the	 end	 of	 the	
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familiarization	phase.	Participants	in	the	other	condition	(Distractor	Condition)	
were	exposed	to	the	exact	same	signal	and	noise	streams,	but	crucially	they	were	
not	 assigned	 any	 task	 on	 the	 noise	 stream.	 Next,	 just	 as	 in	 the	 design	 by	
Radulescu	et	al.	(2019),	in	the	test	phase	participants	in	both	conditions	were	
presented	 with	 the	 same	 grammaticality	 judgement	 task,	 where	 they	 had	 to	
answer	a	yes/no	question	to	indicate	whether	the	test	strings	could	be	possible	
in	the	familiarization	language.	There	were	four	types	of	test	strings	designed	to	
probe	 how	 the	 participants	 encoded	 the	 familiarization	 stimuli,	 as	 presented	
below.	
	 Familiar-syllable	XXY	(XXY	structure	with	familiar	X-syllables	and	Y-
syllables)	–	correct	answer:	yes	–	accept.	This	type	of	test	strings	was	used	to	test	
learning	 of	 the	 familiar	 strings.	 According	 to	 the	 hypotheses	 of	 the	 entropy	
model,	as	the	noise	was	hypothesized	to	pose	an	excess	on	the	channel	capacity,	
the	Distractor	group	was	expected	to	accept	this	type	of	strings	as	grammatical,	
either	 by	 item-bound	 generalization	 (i.e.	 same-same-different	 structure	 with	
familiar	syllables),	or	by	category-based	generalization	(i.e.	same-same-different	
structure	with	any	syllables).	The	Dual-Task	group	was	also	expected	to	accept	
these	 strings	 as	 grammatical	 either	 by	 item-bound	 or	 by	 category-based	
generalization	driven	by	the	background	noise.	Based	on	evidence	from	previous	
studies	with	 dual	 tasks	 (Cocchini,	 Logie,	 Della	 Sala,	MacPherson,	&	Baddeley,	
2002;	Morey	&	Mall,	2012;	Perfors,	2012;	Saults	&	Cowan,	2007),	the	Dual-Task	
group	is	expected	to	have	an	overall	worse	performance,	due	to	the	task-specific	
challenges,	in	our	terminology,	that	is	the	“operational	processor”	is	overloaded	
with	two	different	tasks,	and	therefore	less	storing	and	processing	resources	are	
available	since	they	have	to	be	split	between	two	different	tasks.	
	 New-syllable	XXY	(XXY	structure	with	new	X-syllables	and	Y-syllables)	
–	correct	answer:	yes	–	accept.	This	type	was	used	to	test	whether	learners’	item-
bound	 generalization	 was	 shaped	 into	 category-based	 generalization	 which	
enables	them	to	accept	XXY	strings	with	new	syllables	(i.e.	same-same-different	
structure	 with	 regardless	 of	 familiar	 or	 new	 syllables).	 According	 to	 the	
hypotheses	of	the	entropy	model,	both	groups	were	expected	to	accept	this	type	
of	strings	as	grammatical,	as	the	noise	was	hypothesized	to	pose	an	excess	on	
their	channel	capacity.	However,	based	on	evidence	from	previous	studies	with	
dual	 tasks,	 again	 the	 Dual-Task	 group	 is	 expected	 to	 have	 an	 overall	 poorer	
performance	 than	 the	 Distractor	 group	 due	 to	 an	 overtaxed	 “operational	
processor”.	However,	absolute	mean	acceptance	rate	of	this	type	of	strings	does	
not	represent	direct	evidence	for	category-based	generalization.	As	we	argued	in	
Radulescu	et	al.	(2019),	this	mean	should	be	compared	to	the	mean	acceptance	
rate	 of	 Familiar-syllable	 XXY	 strings:	 the	 smaller	 the	 difference	 of	 the	 mean	
acceptance	 rate	 (i.e.	 the	 effect	 size)	 between	 New-syllable	 XXY	 strings	 and	
Familiar-syllable	XXY	strings	is,	the	more	likely	it	is	that	learners	have	formed	
category-based	generalization.	
	 Familiar-syllable	 X1X2Y	 (X1X2Y	 structure	 with	 familiar	 syllables)	 –	
correct	 answer:	 no	 –	 reject.	According	 to	 the	 entropy	model,	 participants	 are	
expected	to	confidently	reject	this	type	of	strings,	either	by	having	encoded	the	
input	as	item-bound	or	category-based	generalizations.	Specifically,	participants	
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in	the	Distractor	condition	are	expected	to	confidently	reject	this	type	of	strings,	
as	their	tendency	towards	category-based	generalization	 is	hypothesized	to	be	
driven	by	the	effect	of	the	noisy	channel.	However,	based	on	previous	evidence	
from	 the	 dual-task	 literature,	 participants	 in	 the	 Dual-Task	 condition	 are	
expected	 to	 have	 difficulties	 to	 confidently	 reject	 the	 Familiar-syllable	 X1X2Y	
strings	as	deviant	from	the	XXY	language,	since	their	“operational	processor”	is	
overloaded	 with	 a	 simultaneous	 memorization	 task,	 which	 impairs	 the	
formation	of	item-bound	generalization	(i.e.	same-same-different	structure	with	
familiar	syllables).	
	 New-syllable	X1X2Y	 (X1X2Y	 structure	with	 new	 syllables)	 )	 –	 correct	
answer:	no	–	reject.	In	both	conditions,	participants	are	expected	to	confidently	
reject	this	type	of	strings,	either	by	having	encoded	the	input	as	item-bound	or	
category-based	generalizations.	
	 In	addition	to	probing	the	direct	effect	of	the	attempt	to	exceed	channel	
capacity	 in	 real	 time,	 as	 presented	 above,	 we	 also	 measured	 the	 individual	
differences	in	relevant	cognitive	capacities	on	rule	induction:	memory	capacity	
and	a	domain-general	pattern-recognition	capacity.	To	this	end,	we	tested	each	
participant	on	 three	 independent	 tests:	a	Forward	Digit	Span	 task,	which	 is	a	
measure	 of	 explicit	 short-term	memory	 (Baddeley	 et	 al.,	 2015),	 an	 incidental	
memorization	task,	which	measures	implicit	memory	capacity	(Baddeley	et	al.,	
2015),	and	RAVENS	Standard	Progressive	Matrices	(Raven	et	al.,	2000),	which	is	
a	standardized	test	based	on	visual	pattern-recognition	(Carpenter	et	al.	1990,	
Little	 et	 al.	 2014).	 According	 to	 the	 hypotheses	 of	 our	 entropy	 model,	 we	
predicted	a	positive	effect	of	RAVENS	on	the	 tendency	to	move	 from	an	 item-
bound	 to	 a	 category-based	 generalization,	 and	 a	 negative	 effect	 of	 the	
explicit/incidental	 memory	 tests	 on	 the	 same	 transition	 from	 one	 type	 of	
encoding	to	the	other.	
	 To	 the	 best	 of	 our	 knowledge	 this	 is	 the	 first	 artificial	 grammar	
experiment	 that	 investigates	 the	 effect	 of	 noisy-channel	 capacity	 in	 rule	
induction,	by	specifically	testing	information-theoretic	predictions	made	by	the	
entropy	model	in	order	to	disentangle	the	effect	of	noisy-channel	capacity	from	
the	 effect	 of	 overloading	 the	 underlying	 cognitive	 capacities	 with	 additional	
tasks.	
	
5.	Methods	
	
5.1	Participants	
	
60	healthy,	non-dyslexic	Dutch	speaking	participants	(42	females,	18	males,	age	
19-42,	M=22.75)	were	randomly	assigned	to	either	the	Dual-Task	condition	or	
the	Distractor	condition.	Only	healthy	participants	that	had	no	known	language,	
reading	or	hearing	impairment	or	attention	deficit	were	included.	They	all	signed	
a	form	of	consent	and	were	paid	for	their	participation.	
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5.2	Tasks	and	materials	
	
Task	1:	XXY	grammar	
	
Familiarization	 stimuli.	 In	 both	 the	 Dual-Task	 and	 the	 Distractor	 conditions,	
participants	listened	to	the	same	XXY	artificial	grammar	used	in	the	low	entropy	
condition	 of	 Experiment	 2	 from	 Radulescu	 et	 al.	 (2019).	 The	 three-syllable	
strings	of	the	language	display	an	XXY	structure	(each	letter	stands	for	a	set	of	
syllables),	 namely	 each	 string	 has	 two	 identical	 syllables	 (XX)	 followed	 by	
another	different	 syllable	 (Y):	 e.g.	keːkeːmy,	daːdaːli	 .	All	 syllables	are	natural	
Dutch	syllables	having	the	same	structure,	 i.e.	a	consonant	 followed	by	a	 long	
vowel.	Seven	X-syllables	and	seven	Y-syllables	(the	subset	of	X-syllables	does	not	
overlap	with	the	subset	of	Y-syllables)	were	used	to	generate	seven	strings	(see	
Appendix	 A	 for	 complete	 stimulus	 set).	 All	 seven	 strings	were	 repeated	 four	
times	(7	strings	*	4	=	28	strings)	in	each	familiarization	phase	(there	were	three	
familiarization	phases,	each	consisted	of	the	same	28	strings).	Thus,	the	entropy	
was	 the	same	 in	all	 familiarization	phases	 	 –	2.8	bits.	We	employed	 the	same	
method	for	the	entropy	calculations	as	in	Radulescu	et	al.	(2019),	which	is	a	fine-
tuned	 extension	 of	 a	 related	 entropy	 calculation	method	proposed	by	Pothos	
(2010)	 for	 finite	 state	 grammars	 (see	 Table	 1	 below	 for	 complete	 entropy	
calculations).	The	order	of	presentation	of	the	strings	was	randomized	for	every	
participant.	
	 The	 stream	 of	 digits	 and	 beeps.	 For	 each	 familiarization	 phase,	 we	
created	a	stream	of	digits	interleaved	with	random	beeps	(i.e.,	three	such	audio	
streams).	For	example,	8-2-3-BEEP	-6-5-7-8-BEEP	-9-5-8-BEEP	-6-9-2-4-BEEP	-
7-3-6-7-0-BEEP	-6.		
	

Low	Entropy	

H[bX]=H[7]	=	-Σ[0.143*log0.143]	=	2.8	
H[XX]	=	H[7]=	2.8	
H[XY]	=	H[7]	=	2.8	
H[Ye]	=	H[7]	=	2.8	
H[bXX]	=	H[7]	=	2.8	
H[XXY]	=	H[XYe]=	H[7]	=	2.8	
H[bigram]	=	2.8	
H[trigram]	=	2.8	
H[total]	=		𝐇[𝐛𝐢𝐠𝐫𝐚𝐦]/𝐇[𝐭𝐫𝐢𝐠𝐫𝐚𝐦]

𝟐
		=	2.8	

Table	1.	Entropy	value.	Taken	from	Radulescu	et	al.	
(2019)	

	
Test	stimuli.	The	three	familiarization	phases	were	interleaved	with	three	(quick)	
intermediate	test	phases	and	a	final	(longer)	test	phase.	Each	intermediate	test	
phase	included	four	test	strings,	one	of	each	of	the	four	types	presented	in	the	
previous	section.	The	final	test	had	eight	test	strings	(two	of	each	type).	Thus,	in	
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total,	there	were	(4+4+4+8=)	20	test	strings	(see	Appendix	B	for	the	complete	
set	 of	 stimuli).	 Accuracy	 score	 for	 the	 learning	 of	 the	 XXY	 grammar	 was	
measured	as	correct	acceptance	of	Familiar-syllable	XXY	and	New-syllable	XXY	
strings,	and	correct	rejection	of	Familiar-syllable	X1X2Y	and	New-syllable	X1X2Y	
strings.	
	
Task	2:	Forward	Digit	Span	
	
Participants	were	 explicitly	 told	 that	 this	was	 a	memory	 test,	 during	which	 a	
series	of	digits	would	be	presented	aurally,	and	they	would	have	to	recall	them	
in	the	same	order.	To	prevent	participants	from	creating	a	visual	pattern	on	the	
keypad	while	 listening	 to	 the	 digits,	we	modified	 the	 standard	 Forward	Digit	
Span	task	such	that	no	physical	keyboard	was	made	available	to	the	participants,	
rather	a	row	with	buttons	for	each	digit	was	displayed	in	a	line	on	the	screen	only	
in	the	moment	when	they	were	asked	to	enter	the	digits	by	clicking	the	buttons,	
and	 disappeared	 during	 the	 listening	 phases.	 We	 used	 the	 standard	 scoring	
method:	we	measured	the	highest	span	of	each	participant	and	recorded	it	as	one	
data	point	per	participant.	
	
Task	3:	Incidental	Memorization	Test	
	
Participants	 listened	 to	 30	 bisyllabic	 nonsense	 words	 resembling	 Dutch	
phonology	and	phonotactics.	Crucially,	participants	were	not	told	in	advance	that	
a	memory	test	would	be	administered.	They	were	only	told	that	they	were	about	
to	listen	to	words	from	a	forgotten	language.	They	were	instructed	to	imagine	
what	the	word	might	have	meant	in	the	forgotten	language	and	to	pick	a	category	
(flower,	 animal,	 or	 tool)	 for	 each	word	 they	 heard,	 based	 on	what	 the	word	
sounded	like	to	them.	They	had	3	seconds	to	choose	a	category	for	each	word,	by	
pressing	the	button	for	flowers,	animals,	or	tools.		
	 After	this	phase	was	over,	a	surprise	message	appeared	on	the	screen,	
informing	the	participants	that	they	would	be	given	a	memory	test,	which	would	
check	 whether	 they	 remembered	 the	 words	 they	 categorized	 during	 the	
previous	phase.	They	were	instructed	to	indicate	whether	they	heard	the	word	
previously,	 by	 clicking	a	 yes/no	button	on	 the	 screen.	The	memorization	 test	
consisted	of	13	targets	and	13	foils.	
	
Task	4:	RAVENS	
	
Participants	had	to	solve	5	sets	of	matrices,	with	12	matrices	per	set.		Each	matrix	
consists	of	a	nine	visual	patterns	arranged	in	a	particular	order	in	accordance	
with	some	underlying	rules,	of	which	one	pattern	is	missing.	Participants	have	
to	solve	the	matrices	by	finding	the	missing	pattern	in	a	multiple-choice	task.	
	
	
	
	



An	Entropy	and	Noisy-Channel	Model	for	Rule	Induction	

 

222 

 

5.3	Procedure	
	
Participants	were	tested	in	a	sound-proof	booth,	and	they	completed	the	tasks	in	
the	order	presented	above.			
	 For	Task	1	–	XXY	grammar,	the	participants	were	instructed	to	listen	a	
“forgotten	language”	that	would	not	resemble	any	language	that	they	might	be	
familiar	 with,	 but	 which	 had	 its	 own	 rules	 and	 grammar.	 The	 instructions	
informed	participants	that	the	language	had	more	words	than	the	ones	played	in	
the	 familiarization	 phases.	 They	 were	 also	 told	 that	 there	 would	 be	 three	
familiarization	 phases	 interleaved	 with	 three	 intermediate	 tests	 and	 a	 final	
(longer)	 test	phase.	Participants	were	explained	 that	 the	 tests	were	meant	 to	
check	what	they	had	noticed	about	the	language.	They	were	asked	to	judge,	by	
pressing	 a	 Yes/No	 button,	 whether	 the	 test	 words	 could	 be	 possible	 in	 the	
language	 that	 they	 listened	 to.	Participants	were	also	 told	 that	 another	 audio	
stream	would	play	simultaneously	with	the	“forgotten	language”,	and	specifically	
a	stream	of	digits	interleaved	with	beeps.	Crucially,	here	the	instructions	were	
different	for	the	two	experimental	groups,	as	follows.	Participants	assigned	to	
the	Dual-Task	Condition	were	instructed	to	remember	all	the	digits	right	before	
every	 beep,	 and	 report	 these	 digits,	 in	 the	 same	 order,	 at	 the	 end	 of	 each	
familiarization	phase.	For	the	example	stream	presented	above	(8-2-3-BEEP	-6-
5-7-8-BEEP	-9-5-8-BEEP	-6-9-2-4-BEEP	-7-3-6-7-0-BEEP	-6),	they	would	have	
to	 report:	 38840.	 Participants	 were	 instructed	 that	 immediately	 after	 each	
familiarization	phase	they	would	have	to	report	the	digits	(by	manually	entering	
them	in	a	field	on	the	computer	screen).	They	were	also	warned	in	advance	that	
in	each	phase	a	different	stream	of	digits	would	be	played,	so	after	reporting	each	
set	of	digits	they	could	forget	it.	Participants	assigned	to	the	Distractor	condition	
were	 only	 informed	 that	 they	 would	 hear	 a	 stream	 of	 digits	 and	 beeps	
simultaneously	with	the	“forgotten	language”,	but	crucially	they	were	not	given	
any	task	to	perform	on	them.	In	order	to	match	the	design	in	terms	of	time	and	
requirements,	 participants	 in	 the	 Distractor	 condition	were	 asked	 to	 enter	 a	
random	set	of	five	digits	after	each	familiarization	phase.	After	entering	the	set	
of	 digits,	 either	 remembered	 from	 the	 simultaneous	 stream	 or	 random,	 both	
groups	 of	 participants	would	 go	 ahead	with	 each	 intermediate	 test,	 and	 then	
continue	with	the	next	familiarization	phase.	This	would	continue	until	the	end	
of	the	task,		which	lasted	around	5	minutes.		
	 Next,	 they	 were	 given	 the	 instructions	 for	 the	 Forward	 Digit	 Span,	
namely	 they	were	 explicitly	 instructed	 that	 it	was	 a	memory	 test	where	 they	
would	listen	to	streams	of	digits,	which	they	would	have	to	recall	 in	the	same	
order.	This	task	lasted	around	5	minutes.	
	 The	 third	 task	was	 the	 Incidental	Memorization	 task,	 for	which	 they	
were	instructed	to	listen	to	the	words	from	another	“forgotten	language”	and	to	
imagine	 what	 their	 meaning	 was,	 based	 on	 how	 the	 words	 sounded	 like.	
Importantly,	they	were	not	told	in	advance	that	a	memory	test	would	follow.	This	
task	lasted	about	7	minutes.	
	 Next,	 participants	were	 asked	 to	 perform	 the	 RAVENS	matrices	 test,	
which	was	a	paper-and-pen	task	that	they	had	to	solve	while	seated	at	the	desk.	
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The	standard	RAVENS	task	allows	participants	to	spend	50	minutes	in	total,	but,	
after	running	a	pilot	testing,	we	modified	the	task	to	allow	participants	only	a	
shorter	amount	of	time	(35	minutes)	to	complete	the	task,	in	order	to	avoid	an	
overall	time-consuming	and	exhausting	experimental	session.	The	experimenter	
would	 walk	 in	 20	 and	 30	 minutes	 after	 participants	 started	 the	 session,	 to	
announce	the	remaining	time.	The	entire	experiment	lasted	about	one	hour.	
	
5.4	Data	scoring	and	analysis	
	
For	Task	1,	we	recorded	all	the	yes/no	answers	and	coded	them	as	correct	or	
incorrect	according	to	the	criteria	presented	for	each	type	of	strings	in	Section	4	
above.	 From	 all	 the	 20	 correct/incorrect	 answers	 for	 each	 participant	 we	
calculated	 a	 proportion	 of	 correct	 answers	 per	 each	 type	 of	 test	 item.	 Next,	
instead	of	directly	analyzing	proportions	we	performed	an	empirical	logarithmic	
transformation,	in	order	to	analyze	the	data	using	a	linear	regression	model.		
In	the	Forward	Digit	Span	task,	we	used	the	standard	scoring	method,	that	is	we	
measured	the	highest	span	of	each	participant	and	recorded	it	as	one	data	point	
per	 participant.	 In	 the	 Incidental	 Memorization	 Task,	 we	 recoded	 all	
correct/incorrect	answers	into	hits	and	false	alarms,	and	we	calculated	a	d’	value	
for	each	participant.	For	the	RAVENS	test,	we	used	the	standard	scoring	method,	
that	is	we	counted	all	correct	answers	to	all	sets	of	questions,	and	then	we	used	
the	standard	RAVENS	tables	to	transform	them	into	age-corrected	percentiles.	
		
6.	Results	
	
Figure	2	shows	the	mean	accuracy	rate	(proportion	of	correct	acceptance	of	the	
grammatical	test	items	and	correct	rejection	of	the	ungrammatical	ones)	for	all	
test	string	types,	across	the	two	experimental	conditions	(Groups)	–	Dual-Task	
and	 Distractor.	 The	 mean	 correct	 acceptance	 rate	 for	 Familiar-syllable	 XXY	
strings	is	M	=	.87	(SD	=	.33)	in	the	Dual-Task	group,	while	in	the	Distractor	group	
it	 is	M	 =	 .94	 (SD	 =	 .23).	 The	mean	 correct	 rejection	 rate	 for	 Familiar-syllable	
X1X2Y	strings	in	the	Dual-Task	group	is	M	=	.59	(SD	=	.49),	while	in	the	Distractor	
group	it	is	M	=	.89	(SD	=	.31).	The	mean	correct	acceptance	rate	for	New-syllable	
XXY	strings	is	M	=	.59	(SD	=	.49)	in	the	Dual-Task	group,	while	in	the	Distractor	
group	it	is	M	=	.75	(SD	=	.43).	The	mean	correct	rejection	rate	for	New-syllable	
X1X2Y	strings	in	the	Dual-Task	group	is	M	=	.81	(SD	=	.39),	while	in	the	Distractor	
group	it	is	M	=	.95	(SD	=	.22).		
	 Figure	3	shows	the	distribution	of	individual	mean	rates	per	test	type	in	
each	experimental	condition,	Dual-Task	and	Distractor.	
	 In	order	to	probe	the	effect	of	noisy-channel	capacity	on	rule	induction,	
we	compared	the	performance	in	the	two	conditions	(Dual-Task	and	Distractor	
groups)	 in	a	general	 linear	mixed	effects	analysis	of	 the	relationship	between	
Accuracy	(correct	acceptance	of	the	grammatical	test	items	and	correct	rejection	
of	 the	 ungrammatical	 ones)	 and	 Type	 of	 Test	 (Familiar-syllable	 XXY,	 New-
Syllable	XXY,	Familiar-syllable	X1X2Y,	New-Syllable	X1X2Y),	Group	(Dual-Task,	
Distractor),	as	well	as	Group	x	Type	of	Test	interaction.	Therefore,	as	dependent	
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variable	we	entered	Accuracy	score	into	the	model.	As	fixed	effects	we	entered	
Type	of	Test,	Group	and	Group	x	Type	of	Test	interaction.	The	scores	for	Forward	
Digit	Span,	Incidental	Memorization	Task	and	RAVENS	tests	were	entered	one	
by	 one	 as	 covariates	 in	 the	model.	 As	 random	 effect	we	 had	 an	 intercept	 for	
subjects.	An	alpha	level	of	.05	was	used	for	all	statistical	tests.	We	started	fitting	
the	data	from	the	intercept-only	model	and	added	the	random	and	fixed	factors	
one	by	one.	The	model	reported	here	is	the	best	fitting	model,	both	in	terms	of	
the	model’s	accuracy	in	predicting	the	observed	data,	and	in	terms	of	AIC	(Akaike	
Information	Criterion).	
	

	
	 	

	
	
We	found	a	significant	main	effect	of	Type	of	test	strings	(F(3,	180.000)	=	13.910,	
p	<	.001),	a	significant	Group	x	Type	interaction	(F(4,	119.318)	=	5.542,	p	<	.001),	
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a	significant	Group	x	Incidental	Memorization	Task	interaction	(F(2,	60)	=	3.035,	
p	=	.05),	and	a	non-significant	Group	x	RAVENS	interaction	(F(2,	60)	=	.275,	p	=	
.76).30	
	 Pairwise	comparisons	of	the	Estimated	Marginal	Means	(adjusted	to	the	
mean	values	of	the	covariates	in	the	model,	i.e.	Incidental	Memorization	Task	=	
1.547,	RAVENS	=	67.5)	revealed	a	significant	difference	between	Groups	(Dual-
Task	and	Distractor	groups)	for	the	Familiar-syllable	X1X2Y	(M	=	.35,	SE	=	.067,	
F(1,	185.452)	=	27.178,	p	<	.001)	and	the	New-syllable	XXY	(M	=	.14,	SE	=	.067,	
F(1,	 185.452)	 =	 4.592,	 p	 =	 .033).	 For	 the	 other	 two	 Types	 of	 test,	 pairwise	
comparisons	of	the	Estimated	Marginal	Means	adjusted	for	the	same	level	of	the	
covariates	revealed	a	non-significant	difference	between	Groups	(Dual-Task	and	
Distractor	group):	Familiar-syllable	XXY	(M	=	 .026,	SE	=	 .067,	F(1,	185.452)	=	
.147,	p	=	 .702)	and	New-syllable	X1X2Y	(M	=	 .077,	SE	=	 .067,	F(1,	185.452)	=	
1.300,	p	=	.256).	
	 The	 Incidental	Memorization	Task	had	a	 significant	positive	effect	on	
the	overall	Accuracy	scores	(across	Test	Type	strings)	 in	the	Dual-Task	group	
(t(60)	=	2.452,	p	=	 .017,	R2	=	0.04),	but	a	non-significant	effect	on	 the	overall	
accuracy	scores	in	the	Distractor	group	t(60)	=	-.238,	p	=	.81.	
	 Further,	 Cohen’s	 effect	 size	 value	 for	 the	 mean	 difference	 in	 correct	
answers	between	the	Dual-Task	and	the	Distractor	groups	was	d	=	.24	(Familiar-
syllable	XXY),	d	=	.73	(Familiar-syllable	X1X2Y),	d	=	.34	(New-syllable	XXY)	and	
d	 =	 .44	 (New-syllable	 X1X2Y).	 The	 effect	 size	 for	 the	 difference	 between	
acceptance	of	Familiar-syllable	XXY	vs.	New-syllable	XXY	was	higher	in	the	Dual-
Task	group	(Diff	of	Means	=	0.28,	d	=	0.67)	compared	to	the	same	difference	in	
the	Distractor	group	(Diff	of	Means	=	0.19,	d	=	0.55).	
	
7.	Comparing	 this	 experiment	with	 the	 single-task	noiseless	 experiment	
from	Radulescu	et	al.	(2019)	
	
Although	 the	 present	 experiment	 was	 carried	 out	 at	 a	 later	 stage	 than	 the	
experiments	reported	in	Radulescu	et	al.	(2019),	and	employed	additional	tasks	
to	 control	 for	 the	 individual	 differences	 of	 participants	 (i.e.	 Incidental	
Memorization	 Task,	 RAVENS),	 and	 the	 number	 of	 participants	 was	 double	
compared	 to	 the	 experiments	 in	 Radulescu	 et	 al.	 (2019),	 we	 think	 that	 a	
comparison	with	the	lowest	entropy	condition	(2.8	bits)	from	that	study	would	
be	in	order.	The	reason	is	that	the	first	task	of	this	experiment	was	basically	a	
follow-up	task	based	on	the	exact	artificial	grammar,	stimuli	and	procedure	from	
that	study,	with	only	an	additional	stream	of	noise	played	in	the	background,	and	
an	additional	task	in	the	Dual-Task	condition	only.	Thus,	we	compared	the	Dual-
Task	condition	with	the	lowest	entropy	condition	from	Radulescu	et	al.	(2019),	

 
30	None	of	the	other	factors	or	covariates	had	a	significant	effect,	and	since	they	
did	not	improve	the	model	they	were	removed	from	the	final	model	reported	
here.	
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which	we	will	name	here	the	Single-Task	condition,	and	we	also	compared	the	
Distractor	condition	with	the	Single-Task	condition.	
	 For	 comparison	 reasons	 and	 for	 convenience,	we	will	 briefly	 present	
here	 the	 descriptive	 statistics	 for	 the	 Single-Task	 condition:	 Familiar-syllable	
XXY	(M	=	.95,	SD	=	.22),	New-Syllable	XXY	(M	=	.57,	SD	=	.5),	Familiar-syllable	
X1X2Y	(M	=	.83,	SD	=	.37),	New-Syllable	X1X2Y	(M	=	.92,	SD	=	.27)	(Radulescu	et	
al.,	 2019).	 Figure	 4	 shows	 the	 mean	 accuracy	 rate	 (proportion	 of	 correct	
acceptance	 of	 the	 grammatical	 test	 items	 and	 correct	 rejection	 of	 the	
ungrammatical	 ones)	 for	 all	 test	 string	 types,	 across	 the	 three	 experimental	
conditions	(Groups)	–	Dual-Task,	Distractor	and	Single-Task.	
	 In	 order	 to	probe	 the	 effect	 of	an	additional	 overloading	 task	on	 rule	
induction,	we	compared	the	performance	in	the	two	conditions	(Dual-Task	and	
Single-Task)	 in	 a	 general	 linear	 mixed	 effects	 analysis	 of	 the	 relationship	
between	Accuracy	(correct	acceptance	of	the	grammatical	test	items	and	correct	
rejection	of	 the	ungrammatical	ones)	and	Type	of	Test	(Familiar-syllable	XXY,	
New-Syllable	XXY,	Familiar-syllable	X1X2Y,	New-Syllable	X1X2Y),	Group	(Dual-
Task,	 Single-Task),	 as	well	 as	Group	 x	Type	of	 Test	 interaction.	 Therefore,	 as	
dependent	variable	we	entered	Accuracy	score	into	the	model.	As	fixed	effects	
we	entered	Type	of	Test,	Group	and	Type	of	Test	x	Group	interaction.	As	random	
effects	we	had	intercepts	for	subjects	and	items.	An	alpha	level	of	.05	was	used	
for	all	statistical	tests.	We	started	fitting	the	data	from	the	intercept-only	model	
and	added	the	random	and	fixed	factors	one	by	one.	The	model	reported	here	is	
the	best	 fitting	model,	both	in	terms	of	the	model’s	accuracy	in	predicting	the	
observed	data,	and	in	terms	of	AIC	(Akaike	Information	Criterion).	
	 We	found	a	significant	main	effect	of	Type	of	test	strings	(F(3,	126.000)	
=	8.890,	p	<	.001),	a	non-significant	main	effect	of	Group	(F(1,	42)	=	1.034,	p	=	
.315),	and	a	non-significant	Type	x	Group	interaction	(F(3,	126.000)	=	.736,	p	=	
.533).	
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The	effect	size	for	the	difference	between	acceptance	of	Familiar-syllable	XXY	vs.	
New-syllable	XXY	was	higher	in	the	Single-Task	group	(Diff	of	Means	=	0.38,	d	=	
0.98)	compared	to	the	same	difference	in	the	Dual-Task	group	(Diff	of	Means	=	
0.28,	d	=	0.67).	
	 Next,	 in	 order	 to	 probe	 the	 effect	 of	 noisy-channel	 capacity	 on	 rule	
induction,	but	crucially	without	an	additionally	overloading	task,	we	compared	
the	performance	in	the	two	conditions	(Distractor	and	Single-Task)	in	a	general	
linear	 mixed	 effects	 analysis	 of	 the	 relationship	 between	 Accuracy	 (correct	
acceptance	 of	 the	 grammatical	 test	 items	 and	 correct	 rejection	 of	 the	
ungrammatical	ones)	and	Type	of	Test	(Familiar-syllable	XXY,	New-Syllable	XXY,	
Familiar-syllable	X1X2Y,	New-Syllable	X1X2Y),	Group	(Distractor,	Single-Task),	
as	well	as	Group	x	Type	of	Test	interaction.	Therefore,	as	dependent	variable	we	
entered	Accuracy	score	into	the	model.	As	fixed	effects	we	entered	Type	of	Test,	
Group	and	Type	of	Test	x	Group	interaction.	As	random	effects	we	had	intercepts	
for	subjects	and	items.	An	alpha	level	of	.05	was	used	for	all	statistical	tests.	We	
started	fitting	the	data	from	the	intercept-only	model	and	added	the	random	and	
fixed	factors	one	by	one.	The	model	reported	here	is	the	best	fitting	model,	both	
in	terms	of	the	model’s	accuracy	in	predicting	the	observed	data,	and	in	terms	of	
AIC	(Akaike	Information	Criterion).	
	 We	found	a	significant	main	effect	of	Type	of	test	strings	(F(3,	126)	=	
10.200,	p	 <	 .001),	 and	 a	 significant	 Type	 x	 Group	 interaction	 (F(4,	 83.311)	 =	
2.517,	p	=	.04).	Although	there	was	also	a	significant	main	effect	of	Group	(F(1,	
42)	=	4.395,	p	=	.04),	we	excluded	it	from	the	model	because	it	did	not	improve	
it	and	it	lead	to	an	overfitted	model.	
	 Further	analysis	of	the	estimates	of	the	main	fixed	effect	of	Type	of	test	
showed	significant	differences	 in	 the	Accuracy	scores	 (across	both	Distractor,	
Single-Task	groups)	for	the	Familiar-syllable	X1X2Y	(t(126)	=	-2.304,	SE	=	.072,	
p	=	.02)	and	New-syllable	XXY	(t(126)	=	-3.528,	SE	=	.072,	p	=	.001)	compared	to	
the	other	types.	The	analysis	of	the	estimates	for	the	interaction	effect	Type	x	
Group	 revealed	a	 significant	mean	difference	 in	 the	Accuracy	 scores	between	
Groups	(Distractor,	Single-Task)	for	the	Familiar-syllable	X1X2Y	(M	=	.159,	SE	=	
.065,	F(1,	160.499)	=	6.076,	p	=	.01)	and	the	New-syllable	XXY	(M	=	.141,	SE	=	
.065,	F(1,	160.499)	=	4.802,	p	=	.03).	
	 The	 effect	 size	 for	 the	 difference	 between	 acceptance	 of	 Familiar-
syllable	XXY	vs.	New-syllable	XXY	was	higher	in	the	Single-Task	group	(Diff	of	
Means	=	0.38,	d	=	0.98)	compared	to	the	same	difference	in	the	Distractor	group	
(Diff	of	Means	=	0.19,	d	=	0.55).	
	
8.	Discussion	
	
The	results	of	this	experiment	show	that	correct	acceptance	of	the	New-syllable	
XXY	 strings	was	 higher	when	 there	was	 signal-irrelevant	 entropy	 (i.e.	 noise)	
added	 in	 the	 background,	 as	 compared	 to	 the	 Dual-Task	 condition,	 when	
participants	were	overloaded	with	an	additional	active	task.	Also,	 there	was	a	
difference	 between	 the	 rates	 of	 acceptance	 of	 New-	 vs.	 Familiar-syllable	 XXY	
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depending	on	the	experimental	condition,	which	shows	a	difference	between	the	
groups	in	terms	of	how	the	XXY	strings	were	encoded:	the	smaller	the	distinction	
learners	make	between	a	new	and	a	familiar	XXY,	the	more	likely	they	are	to	have	
made	the	grammaticality	judgement	based	on	the	same-same-different	structure	
regardless	 of	 new/familiar	 syllable,	 i.e.	 category-based	 generalization.	 Thus,	
when	comparing	the	correct	acceptance	of	the	New-syllable	XXY	strings	to	the	
correct	acceptance	of	Familiar-syllable	XXY	strings,	we	found	this	difference	to	
be	smaller	in	the	Distractor	group	as	compared	to	the	Dual-Task	group	(that	is	a	
smaller	effect	size	of	the	difference	in	means	between	the	groups).		
	 Moreover,	the	correct	rejection	of	Familiar-syllable	X1X2Y	strings	was	
also	higher	when	there	was	noise	added	in	the	background	compared	to	when	
participants	 were	 overloaded	 with	 an	 additional	 task.	 The	 very	 low	 rate	 of	
correct	rejection	of	Familiar-syllable	X1X2Y	in	the	Dual-Task	group	points	to	an	
impaired	 item-bound	generalization	 due	 to	 the	 fact	 that	participants’	working	
memory	was	overloaded,	thus	it	cannot	flash	out	mismatches	in	combinations	of	
specific	items	(i.e.	familiar	syllables)	to	help	them	reject	these	strings.	Also,	their	
category-based	generalization	 is	not	 strong	enough	 to	drive	 rejection	of	 these	
strings	 based	 on	 a	 mismatch	 with	 a	 category-based	 XXY	 rule.	 Therefore,	
overloading	working	memory	capacity	with	an	additional	task,	which	requires	
active	 switching	 of	 attention	 between	 two	 different	 tasks,	 results	 in	 the	
impossibility	to	keep	in	the	focus	of	attention	several	familiar	syllables	and	to	
bind	them	into	regularities	between	specific	familiar	 items,	 i.e.	 impaired	 item-
bound	 generalization,	 or	 to	 bind	 them	 into	 categories,	 i.e.	 impaired	 category-
based	generalization.	
	 Hence,	 taking	 all	 these	 findings	 into	 account,	we	 conclude	 that	when	
signal-irrelevant	entropy	(i.e.	noise)	was	added	 in	the	background	without	an	
additional	 task,	 learners	 showed	 a	 higher	 tendency	 towards	 category-based	
generalization,	than	they	did	when	they	were	overloaded	with	an	additional	task.	
These	results	support	the	hypothesis	made	by	our	model	regarding	the	effect	of	
a	noisy-channel	 capacity:	when	disentangling	 the	 effect	 of	 taxing	 the	working	
memory	with	 an	 additional	 task	 from	 the	 effect	 of	 an	 attempt	 to	 exceed	 the	
channel	capacity	in	purely	information-theoretic	terms	(i.e.	by	introducing	noise	
in	 the	 background),	 we	 found	 the	 tendency	 towards	 category-based	
generalization	was	higher.	
	 When	compared	to	the	previous	single-task	experiment	from	Radulescu	
et	al.	(2019),	in	which	there	was	no	background	noise,	the	correct	acceptance	of	
the	 New-syllable	 XXY	 strings	 was	 higher	 when	 there	 was	 signal-irrelevant	
entropy	 (i.e.	noise)	 added	 in	 the	background,	 as	 compared	 to	 the	Single-Task	
condition	 (i.e.	 no	 added	 background	 noise,	 and	 no	 additional	 task	 overload).	
Also,	when	comparing	the	correct	acceptance	of	the	New-syllable	XXY	strings	to	
the	correct	acceptance	of	Familiar-syllable	XXY	strings,	we	found	this	difference	
to	be	smaller	in	the	Distractor	group	as	compared	to	the	Single-Task	group	(that	
is	 a	 smaller	 effect	 size	 of	 the	 difference	 in	means	 between	 the	 groups).	 This	
difference	shows	that	when	signal-irrelevant	entropy	(i.e.	noise)	was	added	in	
the	background	without	an	additional	task,	learners	showed	a	higher	tendency	
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towards	category-based	generalization,	than	they	did	when	no	noise	was	added	
in	the	background.		
	 Moreover,	the	correct	rejection	of	Familiar-syllable	X1X2Y	strings	was	
also	 higher	when	 there	was	 noise	 added	 in	 the	 background	 compared	 to	 the	
Single-Task	condition.	These	results	support	the	hypothesis	made	by	our	model	
regarding	the	effect	of	a	noisy-channel	capacity:	added	signal-irrelevant	entropy	
(noise)	drives	the	tendency	towards	category-based	encoding,	regardless	of	the	
low	target-intrinsic	entropy	in	the	input.	However,	in	order	to	confirm	this	result,	
further	research	is	needed	with	a	larger	sample	and	with	control	for	participants’	
individual	 differences	 in	 memory	 capacity	 and	 visual	 pattern-recognition	
(RAVENS)	in	the	single	task	also.	
	 Although	 very	 weak,	 there	 was	 also	 a	 positive	 effect	 of	 Incidental	
Memory	Task	 in	 the	Dual-Task	group,	which	 showed	 that	participants	with	a	
higher	incidental	memory	capacity	tended	to	have	higher	mean	accuracy	scores	
across	Types	of	test	strings,	especially	higher	accuracy	in	the	correct	rejection	of	
the	Familiar-syllable	X1X2Y.	This	finding	shows	that	participants	with	a	better	
incidental	memory	capacity	were	better	able	to	incidentally	remember	the	exact	
familiarization	 strings	 in	 order	 to	 confidently	 reject	 strings	 containing	 the	
familiar	syllables	but	with	a	different	structure.	
	
9.	General	Discussion	and	Conclusions	
	
The	goal	of	this	study	was	to	probe	the	effect	of	the	second	main	factor	of	our	
entropy	model	on	rule	induction,	namely	the	effect	of	noisy-channel	capacity	on	
rule	 induction,	 by	 teasing	 apart	 the	 effect	 of	 overloading	 the	 “operational	
processor”	with	 additional	 tasks	 from	 the	 effect	 of	 a	 noisy	 channel	 in	
information-theoretic	terms.	In	order	to	do	so,	we	employed	the	lowest	entropy	
version	(2.8	bits)	of	 the	XXY	grammar	we	used	 in	Radulescu	et	al.	 (2019),	 for	
which	we	found	no	evidence	of	category-based	generalization	(i.e.	the	acceptance	
rate	 for	 New-syllable	 XXY	was	 at	 chance	 level,	 while	 the	 acceptance	 rate	 for	
Familiar-syllable	XXY	was	at	95%).	In	this	experiment,	we	presented	adults	with	
the	 same	 rule	 induction	 task	on	 the	 same	XXY	 language	 (i.e.	 the	 signal),	 thus	
keeping	the	low	target-intrinsic	input	entropy,	but	we	added	stimulus-irrelevant	
entropy	(i.e.	noise)	in	the	background.	In	one	condition	–	the	dual-task	condition	
–	 we	 asked	 the	 participants	 to	 perform	 an	 additional	 memory	 task	 on	 the	
background	 noise	material,	 while	 listening	 to	 the	 XXY	 language.	 In	 the	 other	
condition	 participants	 were	 exposed	 to	 the	 same	 XXY	 language	 with	 added	
background	noise,	but	crucially	they	were	not	assigned	an	additional	task	on	the	
background	noise	material.	
	 The	 findings	 showed	 that	 learners’	 tendency	 towards	 category-based	
generalization	 is	higher	when	exposed	to	a	noisy	environment,	 than	 it	 is	when	
they	 are	 overloaded	 with	 an	 additional	 memory	 task	 simultaneously.	
Furthermore,	when	compared	to	our	previous	single-task	“no	noise”	experiment	
from	Radulescu	et	al.	(2019),	we	found	that	a	noisy	environment	drove	category-
based	generalization	despite	the	 low	language	entropy,	which	did	not	support	
generalization	 in	 a	 noiseless	 environment.	 We	 interpret	 these	 findings	 to	
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support	 the	 hypothesis	 of	 our	 entropy	 model	 regarding	 the	 effect	 of	 noisy-
channel	 capacity	on	 rule	 induction,	namely	 that	noise	adds	 sufficient	 entropy,	
which	increases	the	rate	of	equivocation	and	calls	for	a	more	efficient	encoding	
method.	 This	 mechanism	 drives	 the	 need	 for	 a	 move	 to	 category-based	
generalization.	 Our	 findings	 are	 in	 line	 with	 the	 dynamic	 systems	 theory,	
according	to	which	noise	is	a	well-known	catalyst	for	self-organizing	into	new	
structures	(Prigogine	&	Stengers,	1984;	Schneider	&	Sagan,	2005).	
		 The	first	follow-up	question	for	this	model	and	findings	about	the	noisy-
channel	capacity	would	be	to	define	more	precisely	the	noise	variable	in	terms	of	
the	kind	of	noise	that	the	model	predicts	to	have	a	positive	effect	on	the	drive	
towards	rule	induction.	More	specifically,	what	kind	of	noise	is	predicted	to	have	
an	effect	on	rule	induction?	Previous	studies	looked	at	the	effect	of	noise	from	
different	points	of	view,	for	example,	in	terms	of	a	specific	kind	of	target-intrinsic	
entropy,	 e.g.	 noise	 determiners	 as	 opposed	 to	 main	 determiners	 in	 the	
determiner-noun	pairs	of	an	artificial	grammar	to	be	 learned	(Hudson	Kam	&	
Newport,	2009;	Hudson	Kam	&	Chang,	2009),	or	a	noisy	environment,	 that	 is	
added	 target-irrelevant	 noise,	 in	 the	 form	 of	 noisy	 location	 of	 stimuli	 or	
differently	 colored	 background	 in	 visual	 object-naming	 tasks	 (Stephen	 et	 al.,	
2009;	Twomey	et	al.,	2018),	or	a	noisy	source	of	information,	i.e.	less	than	perfect	
reliability	of	multiple	intrinsic	and	extrinsic	cues	in	a	word-learning	simulated	
task	in	a	computational	model	(Monaghan,	2017).	In	our	entropy	model,	based	
on	the	information-theoretic	definition	of	noise	(Shannon,	1948),	we	define	the	
noise	as	any	source	of	interference	with	the	signal	at	either	terminal	ends	of	the	
communication	system	(i.e.	either	at	the	transmitter	end,	during	the	process	of	
encoding	the	message	into	the	signal,	or	at	the	receiver’s	end,	during	decoding	
the	signal)	or	the	interference	in	the	channel,	that	is	sources	of	noise	that	cause	
interference	 during	 transmission	 through	 the	 channel.	 Thus,	 at	 the	
computational	 level,	any	source	 that	causes	 interference	with	 the	signal,	 such	
that	it	results	in	increased	uncertainty	(i.e.	rate	of	equivocation)	when	decoding	
the	signal	at	the	receiver’s	end,	is	considered	to	be	a	source	of	noise.		
	 More	specifically,	in	the	case	of	artificial	grammar	learning,	sources	of	
noise	at	the	transmitter	end	could	be	envisaged	as	inconsistencies	of	the	pseudo-
artificial	 language	 system	 (i.e.	 the	 transmitter,	 according	 to	 the	 model	 we	
proposed	in	Radulescu	et	al.,	2021),	which	encodes	the	message	into	the	signal,	
i.e.	the	statistical	properties	of	the	signal	that	could	be	described	as	random	(e.g.	
noise	 determiners,	 i.e.	 randomly	 occurring	 with	 any	 noun	 –	 Hudson	 Kam	 &	
Newport,	2009;	Hudson	Kam	&	Chang,	2009)	or	unreliable	cues/features	(e.g.	
less	than	perfect	reliability	of	cues	–	Monaghan,	2017).	Sources	of	noise	during	
transmission	 through	 the	 channel	 are	 considered	 to	 be	 both	 internal,	 that	 is	
channel-intrinsic	 (e.g.	 properties	 and	 biases	 of	 the	 underlying	 cognitive	
capacities),	 and	 external,	 coming	 from	 the	 environment	 during	 transmission	
through	the	channel	(e.g.	stimulus-irrelevant	background	noise	–	Stephen	et	al.,	
2009;	Twomey	et	al.,	2018).	Finally,	sources	of	noise	at	the	receiver’s	end	which	
interfere	with	 the	process	 of	 decoding	 the	 signal	 to	 reconstruct	 the	message,	
could	be	properties	and	biases	of	the	underlying	cognitive	capacities	involved	in	
the	 decoding	 processes	 (e.g.	 working	 memory,	 interference	 from	 prior	
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knowledge	stored	in	the	long-term	memory),	properties	of	the	decision-making	
process,	different	learning	strategies	that	learners	employ	in	order	to	cope	with	
the	limited	cognitive	capacities,	general	biases	regarding	language	composition	
and	structure,	etc.	
	 At	 the	algorithmic	 level,	 in	order	 for	 the	noise	 to	 create	 interference,	
according	to	the	existent	models	of	memory/attention	(Baddeley,	2000,	2007,	
2012;	Baddeley	et	al.,	2015;	Cowan,	1988,	1995,	1999,	2005;	2016;	Oberauer	&	
Hein,	2012)	and	taking	into	account	evidence	from	experiments	with	concurrent	
(interfering)	tasks	(Cocchini	et	al.,	2002;	Morey	&	Mall,	2012;	Saults	&	Cowan,	
2007),	 the	 noise	 material	 has	 to	 share	 physical	 properties	 with	 the	 target	
material	to	be	learned,	or	the	noise	has	to	be	somehow	in	the	same	domain	as	
the	target	material.	
	 The	 next	 question	 one	 might	 ask	 concerns	 the	 underlying	 cognitive	
capacities	that	would	support	an	information	encoding	mechanism	operating	at	
the	 interaction	between	 the	 input	 entropy	 and	 a	 finite	noisy-channel	 capacity.	
Based	on	the	description	of	processes	and	the	findings	of	this	paper,	next	we	will	
briefly	look	into	the	assumed	link	between	channel	capacity	and	the	underlying	
cognitive	 capacities	 hypothesized	 to	 be	 involved	 in	 rule	 induction.	 The	 finite	
encoding	capacity	(channel	capacity)	proposed	by	our	model	does	not	model	in	
information-theoretic	 terms	 the	 limited	 cognitive	 resources,	 as	 modelled	 in	
classic	resource-sharing	models,	thus	a	general	resource-sharing	ACT-R	model	
(Anderson,	 1993)	 will	 not	 be	 discussed	 or	 employed	 to	 account	 for	 the	
phenomenon	 under	 investigation.	 In	 ACT	 theory,	 the	 concept	 of	 capacity	
limitation	is	carried	by	the	concept	of	activation	levels,	hence	resource	sharing	
in	working	memory	is	roughly	defined	as	two	concurrent	tasks	competing	for	
the	limited	activation	levels	of	elements	in	the	declarative	memory	(Anderson,	
Reder	&	Lebiere,	1996).	
	 The	model	 proposed	by	Baddeley,	with	 all	 its	 versions	 and	 additions	
starting	from	Baddeley	and	Hitch	(1974)	until	Baddeley	(2000,	2007,	2012)	and	
Baddeley	et	al.(2015)	 focuses	on	 the	multi-component	aspect	of	memory	and	
looks	 at	 the	 interference	 between	 several	 components	 of	memory.	We	 deem	
compatible	with	 our	model	 some	 of	 Baddeley’s	 concepts,	 namely,	 the	 central	
executive	component	which	is	defined	as	an	attentional	controller,	rather	than	a	
memory	component,	responsible	for	attentional	focus	(i.e.	directing	attention	to	
a	 specific	 task)	 and	 for	 dividing	 attention	 between	 several	 tasks.	 The	 central	
executive	 component	 could	 be	 envisaged	 to	 underlie	 what	 we	 dubbed	 the	
“operational	processor”	at	the	computational	level.	Moreover,	the	episodic	buffer,	
added	to	the	model	to	explain	the	link	with	long-term	memory	(Baddeley,	2000),	
with	a	proposed	capacity	of	four	chunks	of	information	(Baddeley	et	al.,	2015),	
seems	also	relevant	as	the	component	that	allows	linking	and	binding	physical	
features	of	specific	items,	events	into	coherent	episodes,	which	could	be	argued	
to	underlie	the	channel	capacity,	in	terms	of	the	time-dependent	finite	amount	of	
information	that	can	be	processed	and	encoded.	
	 From	a	 somewhat	different	perspective,	 Cowan’s	embedded	processes	
model	(Cowan,	1988,	1995,	1999,	2005)	proposes	a	more	attentionally-focused	
view	on	working	memory	(WM),	by	distinguishing	between	two	components	of	
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WM:	(1)	activated	elements	from	long-term	memory	(LTM)	and	(2)	the	focus	of	
attention,	which	contains	a	subset	of	the	activated	LTM.	In	this	model,	it	is	only	
the	focus	of	attention	which	is	actually	limited	to	a	number	of	separate	chunks	of	
information	 to	be	held	 in	 scope	 at	 one	 time,	with	Cowan	 (2005)	 arguing	 and	
showing	 that	 the	 working	 memory	 capacity	 is	 restricted	 to	 four	 chunks	 of	
information,	rather	than	seven	originally	proposed	by	Miller	(1956).	So,	in	short,	
Cowan’s	approach	to	WM	reflects	an	attentional	capacity	focused	on	a	limited	set	
of	 activated	 representations	 from	 LTM	 (these	 representations	 could	 be	
restricted	 by	 interference	 from	 other	 incoming	 items	 with	 similarities,	 and	
possibly	by	time-dependent	decay).	Our	model	seems	to	be	very	compatible	with	
Cowan’s	model	in	that	the	limited	focus	of	attention	and	the	interference	from	
similar	 items	posed	by	Cowan’s	model	 could	be	 envisaged	 to	underlie,	 at	 the	
algorithmic	level,	the	finite	rate	of	information	transmission	(channel	capacity)	
and	noise	interference	of	our	entropy	model.	
	 A	similar	model,	an	extension	of	Cowan’s	embedded	processes	model,	is	
the	 concentric	model	 proposed	 by	Oberauer	 (2002)	 and	 further	 developed	 in	
Oberauer	and	Hein	(2012).		The	model	proposes	a	concentric	structure	of	three	
components	with	 functionally	separate	regions:	 (1)	 the	activated	part	of	LTM,	
which	might	also	serve	for	the	retention	of	information	in	the	short	term,	(2)	the	
direct	access	which	is	hypothesized	to	hold	four	chunks	of	information	available	
at	a	time,	and	to	bind	them	into	new	structures,	and	(3)	the	 focus	of	attention	
which	singles	out	only	one	chunk	to	be	used	in	the	upcoming	cognitive	operation.	
The	first	two	components	are	very	similar	to	Cowan’s	model,	and	the	limits	of	
WM,	 as	measured	by	 several	 tasks	 (Cowan,	 2001;	Oberauer	 et	 al.,	 2000),	 are	
hypothesized	to	be	restricted	by	the	number	of	chunks	of	information	that	can	
be	held	in	the	direct	access	region,	which	corresponds	directly	to	Cowan’s	focus	
of	attention.	Oberauer	(2002)	proposes	that	the	capacity	limitations	are	caused	
not	by	sharing	 limited	resources,	but	by	the	challenge	of	selectively	accessing	
several	items	that	must	be	held	available	for	cognitive	operations	in	the	direct	
access	region.	Therefore,	Oberauer’s	model	could	also	be	compatible	with	our	
channel	 capacity	 model,	 with	 the	 direct	 access	 region	 being	 very	 similar	
functionally	 to	 our	 concept	 of	 channel	 capacity,	 and	 the	 focus	 of	 attention	
underlying	what	we	dubbed	the	“operational	processor”,	at	the	computational	
level.	Moreover,	in	this	model,	increasing	the	amount	of	information	in	the	direct	
access	region	leads	to	a	slow-down	of	access	to	the	particular	items	caused	by	
interference	between	similar	items,	which	relates	to	the	hypothesis	of	our	model	
that	increased	input	entropy	and/or	noise	drive	the	tendency	to	forget	particular	
items	and	move	to	a	more	general	category-based	generalization.	
	 By	disentangling	the	effect	of	overloading	the	“operational	processor”	
with	 an	 additional	 task	 from	 the	 effect	 of	 attempting	 to	 exceed	 the	 channel	
capacity	 with	 added	 entropy,	 our	 information-theoretic	 approach	 offers	 an	
explanation	for	previous	apparently	opposing	findings.	Hudson	Kam	&	Newport	
(2009)	 found	 better	 generalization	 by	 overloading	 the	 memory	 with	 more	
target-intrinsic	 entropy	 in	 the	 learning	 material,	 which	 is	 in	 line	 with	 the	
prediction	 of	 our	 model	 that	 increased	 input	 entropy	 drives	 category-based	
generalization.	Conversely,	Perfors	(2012)	found	no	effect	of	working	memory	
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load	on	regularization	during	encoding	by	overloading	the	processing	capacities	
with	additional	tasks	at	the	time	of	learning,	which	is	in	line	with	the	findings	of	
this	study.	The	noisy-channel	capacity	at	the	computational	level	maps	onto	what	
can	 be	 envisaged	 as	 an	 attentionally-taxed	 and	 error-prone	 encoding	 system	
with	 time-dependent	 limitations	 at	 the	 algorithmic	 level,	 and	 not	 to	 an	
overloaded	task-handler.	
	 Thus,	at	the	algorithmic	level,	in	accord	with	the	Less-is-More	hypothesis,	
we	hypothesize	that	entropy	(either	input	entropy	or	background	noise)	brings	
an	inflow	of	information	per	unit	of	time	in	the	working	memory	and	distracts	
attention	from	the	message	(the	signal).	This	distraction	from	the	signal	drives	
forgetting	of	the	insignificant	details,	in	order	to	prevent	overfitting	to	existing	
past	data	for	better	generalization	to	future	data.	On	the	other	side,	additional	
tasks	withdraw	operational	resources	which	are	needed	to	be	in	place	to	bind	
the	inflow	of	information	into	new	structures.	Thus,	we	hypothesized	that	the	
operational	 resources	 (which	we	dubbed	 the	 “operational	processor”)	 should	
not	be	overloaded	with	additional	tasks.	This	was	the	rationale	for	designing	two	
different	conditions,	in	order	to	disentangle	between	the	effect	of	the	inflow	of	
bits	 of	 information	 per	 unit	 of	 time,	 i.e.	 the	 source	 rate	 of	 information	
transmission,	 and	 the	 operational	 processor	 of	 WM	 that	 operates	 on	 the	
incoming	bits	of	 information.	Our	 findings	 support	 this	hypothesis,	 and	 show	
that	 switching	between	 two	active	 tasks	places	high	demands	on	 the	 focus	 of	
attention	 (Cowan’s	model)	 or	 on	 the	direct	 access	 region	 (Oberauer’s	model),	
thus	performance	is	overall	worse	in	the	dual	task,	than	in	the	single	task	and	the	
noise-added	task.	
	 To	sum	up,	 following	suggestions	 from	these	models,	we	hypothesize	
that	 the	 cognitive	 capacities	 that	underlie	channel	 capacity	 at	 the	 algorithmic	
level	 are	 the	 attentionally-controlled	 regions	 of	 activated	 LTM	 (or	 working	
memory).	It	is	important	to	mention	that	while	all	the	current	memory/attention	
models	focus	and	account	for	several	types	of	interference	between	capacities	of	
memory	 components,	 and	predict	different	 levels	of	 impairment	of	particular	
tasks	(if	there	is	interference	from	another	task),	none	of	these	models	predicts	
a	better	performance	on	a	processing	task	as	a	result	of	another	concurrent	task	
or	of	additional	incoming	information	into	the	focus	of	attention.	In	particular,	
our	entropy	model	predicts	better	generalization,	that	is	a	transition	from	item-
bound	generalization	towards	category-based	generalization,	when	an	inflow	of	
entropy	 (either	 target-intrinsic	 or	 background	 noise)	 attempts	 to	 exceed	 the	
channel	capacity.	This	is	a	crucial	part	of	our	model	which	remains	temporarily	
unaccounted	 for	by	 the	present	models	of	memory/attention	 for	encoding,	 in	
cognitive	sciences.	
	 This	gap	could	be	due	 to	 the	particular	 focus	of	general	memory	and	
attention	 models	 on	 the	 faithfulness	 of	 memory	 representations	 (i.e.	 the	
persistence	function	of	memory	–	Richards	&	Frankland,	2017),	rather	than	on	
the	property	of	the	memories	as	models	for	future	data/event	integration	and	
better	 generalization	 for	 the	 purpose	 of	 better	 adaptability	 to	 noisy	
environments	(that	is	the	transience	function	of	the	memory).	Our	model	based	
on	 the	 noisy-channel	 capacity	 is	 very	 much	 in	 line	 with	 models	 from	
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neurobiology,	 which	 propose	 an	 interaction	 between	 the	 persistence	 and	
transience	 functions	 of	memory	 (Frankland,	 Köhler,	 &	 Josselyn,	 2013;	 Hardt,	
Nader,	&	Wang,	2013;	Migues	et.	al,	2016;	Richards	&	Frankland,	2017),	and	also	
with	 neural	 networks	 research	 (Hawkins,	 2004;	 Kumaran,	 Hassabis,	 &	
McClelland,	2016;	MacKay,	2003).	Specifically,	these	lines	of	research	converge	
on	 the	 hypothesis	 that	 the	 memory	 system	 is	 designed	 with	 the	 goal	 of	
optimizing	 the	 method	 of	 encoding	 (or	 creating	 representations)	 such	 that	
future	events/data	can	be	more	efficiently	integrated	in	the	representations,	i.e.	
for	better	generalization	and	prediction	of	future	data/events,	in	order	to	allow	
for	 more	 flexibility	 and	 better	 adaptability	 to	 noisy	 environments.	 More	
precisely,	 the	 above-mentioned	 converging	 views	 and	 evidence	 from	
neurobiology	 and	 neural	 networks	 show	 that	 our	 memory	 system	 encodes	
representations	 in	 such	 a	 way	 to	 prevent	 both	 underfitting	 (i.e.	 to	 prevent	
forgetting	relevant	parameters	which	help	correctly	capture	the	underlying	data	
structure),	 and	 overfitting	 to	 past	 data/events	 (that	 is	 to	 prevent	 incorrectly	
remembering	and	encoding	noise	as	underlying	structure).	Both	in	neurobiology	
and	in	neural	networks	research,	noise	injection	(i.e.	adding	random	variability	
to	 synaptic	 connections	 –	 Hinton	 &	 van	 Camp,	 1993)	 is	 used,	 among	 other	
techniques,	 as	 a	 means	 to	 prevent	 overfitting	 to	 past	 data,	 which	 in	 turn	
promotes	better	generalization	to	novel	input	in	noisy	environments	(Richards	
&	Frankland,	2017).	In	accord	with	these	current	developments	in	neurobiology	
and	neural	networks	research,	our	model	proposes	the	noisy-channel	capacity	to	
reflect	 and	 quantify,	 at	 the	 computational	 level,	 this	 design	 feature	 of	 the	
memory	 system	proposed	 in	 neurobiology	 and	 neural	 network	 research	 that	
naturally	and	automatically	acts	as	a	sweet	spot	between	under-	and	overfitting	
to	 past	 data,	 i.e.	 creating	 memory	 representations	 as	 efficiently	 predictive	
models	of	novel	data.	As	per	our	model,	we	argue	that	the	mechanism	at	stake,	
from	 an	 information-theoretic	 point	 of	 view,	 is	 that	 noise	 adds	 enough	
randomness	(=bits	of	entropy)	in	the	data	which	is	higher	than	the	upper	bound	
of	the	degree	of	details	allowed	by	the	channel	capacity,	and	results	into	a	high	
rate	of	equivocation,	which	in	turn	creates	the	need	for	another	more	efficient	
encoding	method,	in	order	to	avoid	exceeding	the	channel	capacity.	This	is	the	
main	 contribution	 that	 our	 information-theoretic	 model	 adds	 to	 this	 line	 of	
research.	
	 Another	 relevant	 question	 that	 one	might	 ask	 would	 be	 why	 should	
added	entropy	(be	it	input	entropy	or	stimulus-irrelevant	noise)	drive	a	need	to	
find	a	more	efficient	encoding	method,	 at	 the	 computational	 level?	Shannon’s	
channel	 capacity	 theory	 posits	 that	 an	 increase	 of	 the	 rate	 of	 equivocation	
renders	the	encoding	method	inefficient,	and	that	“it	is	possible	to	find	another	
encoding	method”,	but	it	is	not	possible	to	exceed	the	actual	rate	of	transmission	
of	information,	i.e.	channel	capacity.	Since	information	theory	is	about	electrical	
communication	systems,	not	about	biological	systems	per	se,	one	might	raise	the	
point	that	it	does	not	offer	a	direct	explanation	as	to	what	drives	the	need	to	find	
another	encoding	method	for	our	biological	encoding	system.	Therefore,	in	order	
to	answer	this	question,	we	extend	the	entropy	model	further	by	linking	it	with	
the	dynamic	 systems	hypothesis	which	 is	 relevant	 to	 self-organizing	 systems,	
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where	entropy	(and	noise)	is	a	driving	force	towards	new	structures.	This	link	
was	suggested	in	other	studies	in	cognitive	science	(Stephen	et	al.,	2009)	and	it	
makes	sense	theoretically	as	well,	since	although	Shannon’s	entropy	formula	was	
devised	 in	order	 to	quantify	 the	amount	of	 information	when	transmitting	an	
electrical	 system,	 it	 is	 basically	 the	 same	 as	 Boltzmann’s	 formula	 for	
thermodynamic	entropy	(Karnani,	Pääkkönen	&	Annila,	2009;	Plenio	&	Vitelli,	
2001;	Trambouze,	2006),	which	applies	 to	all	biological	systems	(Prigogine	&	
Stengers,	 1984).	 In	 dynamic	 systems	 theory,	 self-organization,	 as	 a	 natural	
property	of	complex	systems,	was	offered	as	an	account	 for	the	emergence	of	
new	 structures	 (Prigogine	 &	 Stengers,	 1984;	 Schneider	 &	 Sagan,	 2005):	 the	
configuration	 of	 the	 constituents	 of	 a	 system	will	 remain	 unchanged	 until	 an	
increase	 in	 entropy	 overwhelms	 its	 internal	 boundaries	 and	 the	 system	
approaches	a	 critical	 instability	where	 the	 constraints	between	 internal	parts	
dissolve,	 thus	 setting	 them	 free	 to	 interact	and	bind	 into	a	new	configuration	
spontaneously.	Hence,	in	self-organization,	new	structures	are	predicted	by	an	
increase	in	entropy.	However	spontaneous	self-organization	is,	this	should	not	
be	 confused	 with	 a	 random	 re-structuring	 of	 the	 constituent	 parts.	 Self-
organization	 occurs	with	 the	 precise	 purpose	 of	 rendering	 the	 system	 into	 a	
better	dissipative	structure	for	entropy,	that	is	a	structure	which	is	better	fitted	
to	dissipate	more	entropy	more	efficiently.	Here	lies	the	link	with	our	entropy	
model,	in	terms	of	the	need	for	a	more	efficient	encoding	method,	that	is	a	new	
structure	 that	will	 allow	 the	 rate	 of	 transmission	 of	 information	 to	 reach	 its	
maximum,	 that	 is	 to	 reach	 the	 maximum	 amount	 of	 entropy	 that	 can	 be	
transmitted	 per	 unit	 of	 time	 with	 the	 least	 rate	 of	 equivocation	 (i.e.	 highly	
efficient).	 	
	 Our	 entropy	model	 offers	 an	 extended	 and	 fine-grained	 information-
theoretic	 approach	 to	 the	 Less-is-More	 hypothesis	 (Newport,	 1990)	 at	 the	
computational	level,	and	agrees	with	findings	from	neurobiology	(Frankland	et	
al.,	2013;	Hardt,	Nader,	&	Wang,	2013;	Migues	et	al.,	2016;	Richards	&	Frankland,	
2017),	 and	 from	 neural	 networks	 research	 (Hawkins,	 2004;	 Kumaran	 et	 al.,	
2016;	 MacKay,	 2003),	 which	 converge	 on	 the	 hypothesis	 that	 the	 memory	
system	 (and	 thus	 the	 neural	 network	 modelling)	 is	 designed	 for	 optimized	
generalization	and	decision-making,	 by	having	 the	 capacity	 to	 encode	a	 finite	
degree	of	 specificity	 (i.e.	 entropy,	 in	 information-theoretic	 terms),	 in	order	 to	
prevent	 overfitting	 to	 past	 data	 and	 to	 allow	 for	 future	 adaptability	 to	 noisy	
environments.	Our	 findings	and	model	also	agree	with	 the	 theory	of	dynamic	
systems	(Prigogine	&	Stengers,	1984;	Schneider	&	Sagan,	2005),	which	suggests	
that	self-organizing,	complex	systems	remain	unchanged	until	entropy	(or	noise)	
overwhelms	 the	 order	 of	 their	 internal	 constituents,	 such	 that	 old	 bindings	
dissolve	and	free	up	the	constituents	causing	them	to	interact	and	re-bind	into	
new	 structures.	Our	model	 and	 findings	 tap	 into	 the	 interaction	 between	 the	
inflow	of	entropy	(and	noise)	and	the	design	features	of	our	encoding	system,	
and	thus,	they	add	to	the	research	on	the	dynamical	processes	that	drive	self-
organization	for	higher-order	cognitive	phenomena	(Stephen	et	al.,	2009).	
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Appendix	A	
	
Familiarization	strings	
keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
	keːkeːmy	
	jujuɣo	
	daːdaːli	
	pypyveː	
	tøːtøːrøː	
	hihisaː	
	fofoʃu	
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Appendix	B	-	Test	strings	
	

Test	1	 Test	2	 Test	3	 Final	Test	
Familiar-
syllable	
XXY	

daːdaːli	 hihisaː	 keːkeːmy	 tøːtøːrøː	 jujuɣo	

New-
syllable	
X1X2Y	

poxaːru	 runyni	 xaːmisy	 syniny	 mininy	

New-
syllable	
XXY	

dydytaː	 zuzuvo	 sosory	 jijiføː	 ʋuʋuseː	

Familiar-
syllable	
X1X2Y	

judaːsaː	 pytøːmy	 keːfoveː	 hidaːrøː	 tøːpyɣo	
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Chapter	7	

	 	 	

Directions	for	Future	Research:	
Towards	a	Thermodynamic	Theory	of	Rule	Induction	

Radulescu,	S.	and	Avrutin,	S.31	
	
The	 aim	 of	 this	 chapter	 is	 to	 suggest	 directions	 for	 future	 research	 on	 rule	
induction	by	laying	the	foundations	of	a	new	theoretical	framework	based	on	an	
innovative	 thermodynamic	 model	 of	 rule	 induction.	 We	 think	 that	 a	
comprehensive	theory	of	rule	induction	should	be	built	on	biologically	plausible	
mechanisms,	 and	 formulated	 in	 accord	 with	 the	 laws	 of	 biophysics	 and	
neuroscience.	 Information	 theory	 provides	 a	 straightforward	 bridge	 between	
these	fields	of	study,	by	employing	entropy-related	concepts	that	are	ultimately	
linked	to	the	same	concepts	in	biophysics.	In	this	dissertation,	we	proposed	an	
information-theoretic	entropy	model,	and	showed	in	several	artificial	grammar	
studies	that	rule	induction	in	language	is	an	information	encoding	mechanism	
resulting	 from	 the	 brain’s	 sensitivity	 to	 increasing	 information	 entropy	
interacting	with	the	channel	capacity,	that	is	the	brain’s	finite	rate	of	encoding	
information.	But	why	is	the	brain	sensitive	to	information	entropy?	Further,	why	
and	 how	 does	 rule	 induction	 emerge?	 Information	 entropy	 is	 a	 reflection	 of	
thermodynamic	 entropy,	 and	 they	 are	 to	 a	 large	 extent	 equivalent	 (Karnani,	
Pääkkönen	&	Annila,	2009;	Le	Bellac,	Mortessagne,	&	Batrouni,	2004;	Sethna,	
2006).	Recent	studies	in	biophysics,	and	biosciences	in	general,	converge	on	a	
thermodynamics	view	on	the	brain	as	an	open	dissipative	system	that	operates	
under	the	rule	of	the	laws	of	physics,	focusing	on	cognition	and	consciousness	as	
being	affected	and	driven	by	the	laws	of	thermodynamics	(Annila,	2016a,	2016b;	
Collell	 &	 Fauquet,	 2015;	 DeCastro,	 2013;	 Del	 Castillo	 &	 Vera-Cruz,	 2011;	 La	
Cerra,	2003;	Sharma	&	Annila,	2007;	Varpula,	Annila,	&	Beck,	2013;	Yufik,	2013).	
Here	 we	 propose	 a	 framework	 (and	 briefly	 sketch	 a	 model)	 that	 connects	 a	
thermodynamic	cognitive	scientific	view	on	rule	induction	with	the	information-
theoretic	model	proposed	 in	 this	dissertation	and	other	 information-theoretic	
cognitive	models	(Friston,	2010).	
	 Firstly,	 this	 section	 reviews	 the	 previously	 proposed	 thermodynamic	
models	of	cognition	together	with	information-theoretic	perspectives	on	brain	
activity,	in	order	to	explain	the	link	between	information-theoretic	concepts,	like	
information,	 information	 entropy,	 and	 thermodynamics	 concepts,	 like	
thermodynamic	entropy	and	free	energy,	as	well	as	their	relevance	for	cognitive	

 
31 This	chapter	is	a	modified	version	of	a	manuscript	in	preparation:	Radulescu,	
S.,	&	Avrutin,	A.	(2021).	Towards	a	Thermodynamic	Theory	of	Rule	Induction 
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processes.	 This	 link	 is	 crucial	 to	 understanding	 a	 thermodynamic	 theory	 of	
cognition,	 in	 general,	 which	 was	 already	 proposed	 by	 some	 early	 studies	
(Kirkaldy,	1965),	and	coined	as	“cognitive	thermodynamics”	(Yufik,	2013)	or	as	
a	 “general	 thermodynamic	 theory	of	 cognition”	 (Annila,	2016a;	Varpula	et	al.,	
2013),	 or	 as	 a	 “simple	 general	 principle	 of	 brain	 organization”	 (Velazquez,	
Mateos,	&	Guevara	Erra,	2019).	The	review	lays	the	foundations	for	proposing	a	
specific	 thermodynamic	 and	 information-theoretic	 model	 of	 the	 cognitive	
system	with	a	particular	focus	on	the	process	of	linguistic	(as	well	as,	general)	
rule	induction.	
	 The	review	of	the	above-mentioned	studies	will	be	organized	based	on	
the	following	four	questions/problems	that	we	have	identified	as	relevant	to	a	
thermodynamic	 theory	 of	 cognition	 in	 general,	 and	 of	 rule	 induction,	 in	
particular.	 A	 legitimate	 first	 question	 about	 a	 possible	 link	 between	
thermodynamics	and	cognitive	(information-processing)	mechanisms	would	be	
related	to	what	appears	to	be	a	counter-intuitive	idea	in	psycholinguistics	and	
cognitive	 sciences	 in	 general:	 information,	 which	 is	 regarded	 as	 something	
“abstract”,	as	well	as	cognitive	processes,	would	have	to	be	“concrete”	or	physical	
in	nature	in	order	to	be	shown	as	governed	by	the	laws	of	thermodynamics.	Thus,	
firstly	 we	 will	 show	 the	 physical	 nature	 of	 information,	 which	 is	 a	 widely	
accepted	and	already	basic	concept	 in	physics	and	biophysics	 (Annila,	2016a;	
Brillouin,	 1953;	 Karnani	 et	 al.,	 2009;	 Landauer,	 1961;	 1991;	 Plenio	 &	 Vitelli,	
2001).		
	 Secondly,	another	myth	had	to	be	debunked	in	biosciences	in	order	to	
understand	how	the	laws	of	thermodynamics,	especially	the	2nd	law,	should	be	
applied	 to	 open	 systems,	 like	 the	 brain	 (i.e.	 which	 interacts	 with	 the	
environment).	Bejan	(2017)	explains	that	the	misconception	was	related	to	the	
fact	 that	 the	 2nd	 law	 was	 traditionally	 explained	 and	 taught	 by	 physicists	 in	
relation	to	heat	engines	and	as	a	law	that	applies	to	isolated	systems	(i.e.	which	
do	 not	 interact	with	 the	 surroundings).	 Recent	 increasing	 attention	 has	 been	
given	to	the	application	of	the	2nd	law	of	thermodynamics	to	non-isolated	(open)	
systems,	 among	which	biological	 systems	 (Annila	&	Beverstock,	 2016;	Avery,	
2012;	England,	2013;	2015;	Sharma	&	Annila,	2007). 
	 Thirdly,	regarding	a	specific	entropy-related	formulation	of	the	2nd	law	
of	 thermodynamics,	 there	 has	 been	 considerable	 misunderstanding	 within	
cognitive	sciences,	biology	and	even	physics,	which	was	caused	by	a	description	
of	entropy	as	“disorder	of	the	system”.	Hence,	a	particular	formulation	of	the	2nd	
law	as	a	natural	tendency	of	all	things	to	flow	from	order	(i.e.	less	entropy)	to	
disorder	(more	entropy)	has	created	a	misleading	view.	“The	entire	universe	is	
collapsing	into	disorder,”	has	been	the	gloomy	prediction	ever	since.	This	overly	
simplified	 formulation	 contravenes	 the	 general	 obvious	 tendency	 of	 life	 and	
things	towards	patterns	and	structure,	which	is	the	opposite	of	disorder.	As	a	
result,	 there	 was	 an	 apparent	 dissonance	 between	 views	 in	 biology	 and	
biophysics	(Schrödinger,	1944),	which	argue	that	life	tends	towards	structured	
forms	 (i.e.	 less	 entropy),	 as	 opposed	 to	 the	 standard	 views	 of	 physics	 and	
geophysics,	 which	 hold	 the	 universal	 tendency	 towards	 higher	 entropy,	 as	 a	
more	probable	state,	as	per	the	2nd	law.	As	a	consequence,	since	open	dissipative	
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systems	 were	 described	 as	 spontaneously	 creating	 entropy-dissipative	
structures	 (i.e.	 reduced-entropy	 structures),	 seemingly	 in	 violation	 of	 the	 2nd	
law,	 researchers	 advanced	 proposals	 regarding	 open	 systems	 (Nicolis	 &	
Prigogine,	 1989;	 Prigogine,	 1978).	 Specifically,	 it	 was	 proposed	 that	 system-
internal	 entropy	 should	 be	 reduced	 at	 the	 expense	 of	 increasing	 the	 entropy	
dissipated	across	the	boundaries	of	the	open	system.	While	this	was	a	legitimate	
problem,	 the	 tendency	of	open	systems	 to	evolve	 towards	structure	has	been	
recently	shown	not	to	be	an	actual	violation	of	the	2nd	law	(Annila	&	Baverstock,	
2016;	Avery,	 2012;	Bejan,	 2017;	Bejan	&	Marden,	 2009;	Bejan	&	Zane,	 2012;	
Sharma	&	Annila,	2007).		
	 And	finally,	a	recent	ongoing	debate	among	physicists,	which	is	relevant	
for	 this	 discussion,	 concerns	 the	 question	 whether	 the	 tendency	 towards	
structure,	and	the	evolution	of	life	in	general,	can	be	fully	explained	and	derived	
from	 the	 2nd	 law	 of	 thermodynamics.	 In	 particular,	 recent	 developments	 in	
thermodynamics,	that	is	in	the	late	20th	century,	proposed	and	showed	evidence	
for	yet	another	law	of	thermodynamics,	namely	the	constructal	law.	This	law	is	
argued	 to	account	 for	 the	evolution	of	 structure	 (i.e.	 configuration,	design)	of	
everything	in	nature,	 from	inanimate	to	animate	systems,	and	from	natural	to	
man-made	 structures	 (Bejan,	 1996,	 1997a	 –	 d,	 2012;	 Bejan	&	 Lorente,	 2004;	
2010).	
	 Thus,	 in	accord	with	 the	 latest	developments	 in	 thermodynamics,	we	
propose	that	thermodynamic	models	of	the	brain	and	cognition,	in	general,	as	
well	 as	our	 specific	 thermodynamic	model	of	 rule	 induction,	 should	 take	 into	
account	 both	 the	 2nd	 law	 of	 thermodynamics	 and	 the	 constructal	 law.	 The	
constructal	 law	predicts	and	explains	several	other	descriptive	principles	and	
empirical	laws	that	were	previously	posed	both	in	biology	and	cognitive	sciences	
(e.g.	the	principle	of	entropy	reduction	and	the	maximum	entropy	hypothesis	–	
Bejan	&	Zane,	2012)	and	in	linguistics	and	psycholinguistics,	e.g.	the	principle	of	
least	effort	(Zipf,	1949)	–	Zipf’s	 law	(Bejan	&	Zane,	2012).	Further,	our	model	
based	on	the	thermodynamics	laws	could	predict	and	explain	several	entropy-
related	empirical	principles	that	were	proposed	in	psycholinguistics:	entropy-
reduction	 based	models	 of	 language	 comprehension	 and	 sentence	 processing	
(Hale,	2006;	Levy,	2008;	Linzen	&	Jaeger,	2016;	Venhuizen,	Crocker,	&	Brouwer,	
2019a;	 2019b)	 and	 entropy-reduction	 based	 accounts	 of	 rule	 learning	 and	
regularization	 (Ferdinand,	 Kirby,	 &	 Smith,	 2018).	 So	 far,	 to	 the	 best	 of	 our	
knowledge,	entropy-based	accounts	in	psycholinguistics	have	only	adopted	an	
information-theoretic	 perspective	 on	 entropy,	 but	 not	 a	 thermodynamics	
perspective. 
	 The	thermodynamic	model	of	rule	induction	proposed	(briefly)	in	this	
chapter	aims	at	explaining	the	mechanisms	of	information	encoding	underlying	
rule	 induction	as	natural	automatic	processes	 sustained	by	 the	brain’s	neural	
networks.	The	neural	networks	underlying	information	encoding	are	designed	
by	the	natural	laws	of	thermodynamics	for	the	ultimate	purpose	of	facilitating	
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the	flow	of	energy	or	consumption	of	free	energy32	in	the	most	efficient	way,	i.e.	
in	the	least	possible	time	(Varpula	et	al.,	2013).	According	to	the	thermodynamic	
model	proposed	here,	rule	induction	is	a	natural	reaction	of	the	neural	networks	
to	 consume	 free	 energy,	 and	 consequently	 dissipate33	 entropy	 in	 the	
environment,	 by	 creating	 structure	 under	 the	 governance	 of	 the	 laws	 of	
thermodynamics.		
	 Rule	induction	happens	to	us	when	exposed	to	language	(or	an	influx	of	
information,	 in	 general),	 just	 like	 photosynthesis	 happens	 to	 a	 flower	 in	 the	
sunlight.	And	this	is	not	a	metaphor,	but	a	physical	and	real	process.	It	should	be	
clarified	 from	 the	 beginning	 that	 our	 intention	 is	 not	 to	 propose	 a	 specific	
mathematical	thermodynamic	model	of	neural	networks,	but	rather	a	theoretical	
framework	to	inspire	an	innovative	account	on	rule	induction,	as	an	information	
processing	 and	 encoding	 mechanism	 under	 the	 governance	 of	 the	 laws	 of	
physics.	 We	 suggest	 that	 this	 research	 direction	 should	 be	 named	
thermodynamic	psycholinguistics.	
	 We	propose	the	first	 joint	 information-theoretic	and	thermodynamics	
perspective	on	rule	induction.	This	new	perspective	suggests	that	the	2nd	law	of	
thermodynamics	can	answer	the	question	why	rule	induction	happens,	while	the	
constructal	law	of	thermodynamics	can	answer	the	question	how	rule	induction	
happens.	Specifically,	according	to	the	2nd	law	of	thermodynamics,	we	propose	
that	 rule	 induction	happens	as	a	natural	 result	of	 the	 tendency	of	our	brain’s	
neural	 networks	 (and	 consequently,	 our	 cognitive	 system)	 to	 consume	 free	
energy	(in	the	form	of	information)	in	the	least	time	possible.	The	constructal	
law	 predicts	 the	 generation	 of	 particular	 evolving	 structures	 (design,	
configurations)	 that	 facilitate	 the	 flow	 of	 energy	 (which	 drives	 efficient	
consumption	of	free	energy	or	efficient	information	transmission).		
	 Using	 the	 constructal	 law,	 we	 suggest	 that	 rule	 induction	 is	 a	 flow	
system,	as	part	of	the	bigger	flow	system	which	is	 language.	As	defined	in	the	
constructal	law,	everything	that	moves	–	animate	or	inanimate	–	is	a	flow	system.	
Flow	is	defined	as	the	movement	of	an	entity	relative	to	another,	i.e.	a	current	or	
a	 stream	originating	 from	a	point	 and	moving	 to	other	points	 (Bejan	&	Zane,	
2012).	We	hypothesize	that,	just	like	all	the	other	flow	systems	in	nature,	rule	
induction	has	evolved	for	the	purpose	of	facilitating	faster	and	better	flow	(or	
transmission)	of	information.	Thus,	we	suggest	that	the	constructal	law	predicts	
the	tree-like	hierarchical	structure	of	 language,	 just	as	it	predicts	the	tree-like	
hierarchical	structure	of	other	flow	systems	(Bejan	&	Zane,	2012).	Further,	the	
constructal	 law	 predicts	 the	 design	 of	 rule	 induction	 (and	 categorization)	
according	to	the	constructal	principle	of	few	large	channels	of	energy	dispersal	
and	 many	 small	 channels	 (Bejan	 &	 Zane,	 2012):	 a	 few	 large	 channels	 for	
information	 flow	–	 few	general	 categories	 (via	 category-based	 generalization)	
and	many	small	channels	–	many	specific	items	and	item-bound	relations	(item-

 
32	Free	energy	is	the	amount	of	energy	that	can	be	used	to	produce	useful	work,	
as	opposed	to	entropy	(Schrödinger,	1944).	
33	Dissipate	means	to	lose	(energy,	such	as	heat)	irreversibly.	



Chapter	7		

 

243 

 
 

bound	generalization),	because	this	is	the	most	efficient	way	for	information	to	
flow,	i.e.	to	be	transmitted,	in	information-theoretic	terms.	This	particular	design	
feature	of	rule	induction	cannot	be	predicted	by	an	information-theoretic	model	
alone.	Thus,	we	propose	that	further	research	into	rule	induction	should	follow	
this	joint	information-theoretic	and	thermodynamic	framework/model	in	order	
to	 test	 these	 hypotheses	 and	 predictions.	 This	 framework/model	 renders	
unnecessary	 the	 ad-hoc	 postulation	 of	 psycholinguistic	 mechanisms	 and	
cognitive	 scientific	 principles,	 which	 lack	 a	 plausible	 biophysical	 foundation	
and/or	neurobiological	evidence.	
	
1.1	Information	is	physical	
	
What	 is	 information?	 Although	 many	 scientists	 agree	 that	 information	 is	 a	
fundamental	property	of	nature,	and	cognitive	sciences	describe	the	brain	as	an	
information	 processing	 machinery,	 definitions	 of	 information	 are	 vague	 or	
intuitive,	 at	 large,	 and	 they	 differ	 depending	 on	 the	 field	 of	 application	
(Pepperell,	 2018).	 Colloquially	 and	 by	 the	 dictionary	 definitions,	 information	
means	knowledge,	data	or	facts	learned,	or	intelligence	(news)	acquired	about	
something.		
	 Mathematically,	the	first	precise	definition	of	information	was	given	by	
Shannon	(1948)	in	his	theory	of	communication:	
	 I(𝑥!) = −	logB 𝑝(𝑥!),	
	 where	 (𝑥!)	 is	 a	 symbol	 in	 a	 transmitted	 message	 and	 𝑝(𝑥!)	 is	 the	
probability	of	occurrence	of	that	symbol.	Base	2	of	the	logarithm	defines	the	bit	
as	the	unit	of	measurement	for	information.	It	is	obvious	then	that	information	
is	 defined	 in	 information-theoretic	 terms	 as	 a	 function	 of	 probability	 of	
occurrence	of	something,	and	does	not	have	to	do	with	the	meaning	attached	to	
symbols.	Shannon	(1948)	defined	the	average	information	content	of	a	message	
containing	n	symbols,	each	with	its	probability	of	occurrence	𝑝(𝑥!)	as	entropy	
(H):	
	 H(X) = 	−4 𝑝(𝑥!) log 𝑝(𝑥!)

"
!#$ .	

	 Intuitively,	 Shannon’s	 entropy,	 which	 became	 known	 as	 information	
entropy,	quantifies	the	average	uncertainty	per	symbol	carried	by	a	message,	or	
the	average	variability	of	the	message,	as	it	varies	both	depending	on	the	number	
of	symbols	and	their	probability	distribution.	
	 By	 these	 definitions,	 concepts	 of	 information	 content	 and	 average	
uncertainty	 per	 symbol	 in	 information-theoretic	 terms	 sound	 quite	 abstract.	
However,	 the	 physical	 nature	 of	 information	might	 not	 necessary	 come	 as	 a	
surprise	 in	 the	 age	 of	 computers	 and	 digitalization,	 when	 it	 is	 common	
knowledge	 that	 information	 is	 stored,	 processed	 and	 transmitted	 by	 physical	
means,	such	as	hard	drives,	processor	chips	and	optical	fibers.	All	these	devices,	
their	 functionality	and	efficiency,	 are	governed,	 empowered	or	 limited	by	 the	
laws	of	physics	(Plenio	&	Vitelli,	2001).		
	 In	 order	 to	 specify	 the	 link	 between	 information	 and	 informational	
entropy	and	concepts	that	are	commonly	regarded	as	“physical”,	not	“abstract”,	
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like	energy	and	thermodynamic	entropy,	which	will	eventually	shed	light	on	how	
the	mind	and	cognition	are	intrinsically	energy	consumption	processes,	we	will	
briefly	 introduce	 a	 long-standing	 and	 thought-provoking	 physics	 puzzle	 –	
Maxwell’s	demon.	The	solution	to	this	problem	brought	the	first	intuitive	insight	
into	the	close	relation	between	information,	energy	used	for	work	and	the	laws	
of	thermodynamics.	
	 Maxwell’s	 demon	 is	 a	 thought	 experiment	 proposed	 in	 1867	 by	 the	
physicist	 James	 Clerk	 Maxwell,	 which	 was	 conceived	 to	 pose	 a	 question	 in	
relation	 to	 the	 2nd	 law	 of	 thermodynamics.	 In	 short,	 the	 2nd	 law	 of	
thermodynamics	states	that,	left	alone,	heat	always	flows	from	hot	objects	to	cold	
objects,	pressure	falls	from	high	to	low.	The	most	obvious	example	is	the	hot	cup	
of	tea	left	on	the	kitchen	table	which	becomes	cold	in	a	couple	of	hours,	while	a	
glass	 of	 cold	 coffee	 does	 not	 become	 iced	 coffee	 after	 being	 left	 on	 the	 same	
kitchen	table.	Both	liquids	will	reach	what	we	know	to	be	the	room	temperature.	
In	time,	nature	tends	towards	uniformity.	If	we	want	to	reverse	the	process	we	
have	to	put	some	effort,	that	is	to	do	some	work	and	spend	some	energy	to	either	
warm	up	the	cup	of	tea	or	to	ice-cool	the	coffee.	This	is	a	law	of	nature:	we	have	
to	pay	the	energy	bill,	if	we	want	to	go	against	the	natural	flow	of	heat	from	hot	
to	cold.	
	 Now,	going	back	to	Maxwell’s	thought	experiment,	imagine	a	situation	
where	we	would	want	to	build	an	oven	next	to	a	fridge	in	the	kitchen	to	keep	the	
cup	of	 tea	hot	next	 to	 the	 iced	coffee,	without	paying	 the	energy	bill.	 In	other	
words,	imagine	a	transparent	container	divided	by	a	wall	in	two	chambers,	A	and	
B,	 both	 having	 the	 same	 air	 temperature	 in	 the	 beginning	 of	 the	 experiment.	
Temperature	 in	 physics	 is	 given	 by	 the	 kinetic	 energy	 or	 velocity	 of	 the	 air	
molecules	(i.e.	the	speed	and	direction	of	the	molecules	movement).		
	 A	 demon,	 who	 stands	 guard	 on	 top	 of	 the	 container,	 monitors	 the	
system,	namely	the	speed	and	direction	of	each	molecule.	He	must	probably	be	
equipped	with	 a	 laser	 or	 electron	 device	 to	 bounce	 light	 or	 electrons	 off	 the	
moving	molecules	in	order	to	measure	the	speed	and	observe	the	positions	of	
the	molecules.	His	goal	is	to	use	the	information	about	the	speed	and	direction	of	
the	air	molecules,	 in	order	to	obtain	a	 fridge	 in	chamber	A	next	to	an	oven	 in	
chamber	B,	without	paying	the	energy	bill,	 i.e.	without	using	any	energy,	only	
information.	So,	he	uses	the	information	for	his	purpose	as	follows:	he	opens	a	
trapdoor	 in	 the	 wall	 when	 he	 sees	 a	 fast-moving	 (=hot)	 molecule	 heading	
towards	the	right	chamber	(B)	to	let	the	fast	molecule	travel	to	B.	But	when	he	
sees	a	slow-moving	(=cold)	molecule	traveling	towards	the	left	chamber	(A),	he	
opens	the	trapdoor	to	let	the	slow	molecule	go	to	A.	In	time,	the	demon	creates	a	
cold	chamber	(A)	next	to	a	hot	chamber	(B):	A	has	an	average	lower	molecular	
speed	 than	 B.	 And	 this	 was	 obtained	 only	 by	 observing	 the	 molecules,	 i.e.	
acquiring	 information	about	 the	molecules	(fast-	or	slow-moving):	apparently	
without	paying	 the	energy	bill,	 the	demon	 laughs	 in	 the	 face	of	 the	2nd	 law	of	
thermodynamics.		
	 The	demon	managed	to	tamper	with	the	natural	flow	of	heat	(i.e.	energy)	
towards	 uniformity,	without	 spending	 any	 energy,	 only	 by	 using	 information	
about	 the	 system.	Before	presenting	 the	 final	 solution	 to	 this	problem,	which	
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actually	came	after	a	century	of	heated	debates,	and	without	having	any	insight	
into	the	concepts	of	thermodynamics,	the	reader	can	intuitively	understand	from	
this	clever	thought	experiment,	that	information	can	somehow	be	transformed	
into	useful	work.	This	was	the	beginning	of	understanding	the	physical	nature	of	
information.	
	 Szilard	 (1929)	 provided	 a	 first	 solution	 to	 the	 problem,	 and	 hence	
brought	the	first	insight	and	proof	of	the	intrinsic	relation	between	information	
and	 energy,	 by	 showing	 that	 obtaining	 information	 from	 a	 system	 always	
involves	an	energetic	cost	of	kTln2	J34	per	bit	of	information,	and	thus	an	increase	
in	 the	 heat	 (energy)	 irreversibly	 released	 in	 the	world	 of	 kln2	 J/K	per	 bit	 of	
information.	This	 irreversible	dissipation	of	 energy	 in	 the	environment	 is	 the	
increase	of	thermodynamic	entropy	in	the	world,	which	is	a	consequence	also	
covered	 by	 the	 2nd	 law,	 and	 it	 will	 be	 further	 addressed	 in	 the	 next	 section.	
Further,	Landauer	(1961)	demonstrated	that	when	information	is	erased,	there	
is	always	a	minimal	energy	cost	of	kTln2	J	per	bit	of	information,	hence	always	a	
minimal	 amount	 of	 heat	 (energy)	 irreversibly	 dumped	 in	 the	 environment,	
which	equals	kTln2	per	bit	of	information.		
	 Going	 back	 to	Maxwell’s	 puzzle,	 intuitively,	 the	 demon	 has	 a	 limited	
memory	system	where	he	stores	information	about	the	speed	and	direction	of	
movement	of	 the	millions	of	molecules	 in	order	 to	be	able	 to	 track	 them	and	
perform	 the	 informed	 decision	 when	 to	 open	 the	 trapdoor.	 The	 information	
derived	from	observing	the	positions	and	movements	of	the	molecules	has	to	be	
stored	 in	 the	 demon’s	 memory	 system,	 and	 the	 information	 (measured	 by	
Shannon’s	entropy)	in	the	mind	of	the	demon	is	a	reflection	of	the	entropy	of	the	
container’s	 state,	 given	 by	 all	 the	 possible	 positions	 and	 velocities	 of	 the	
molecules	(as	per	Boltzmann’s	definition35).	As	such	the	entropy	in	the	mind	of	
the	demon	has	increased	to	a	higher	extent	than	the	entropy	of	the	container	has	
decreased	by	forcing	each	molecule	into	one	of	the	container	sides.	Also,	in	the	
process,	 old	 recordings	 of	 information	 have	 to	 be	 erased	 from	 his	 limited	
memory	 in	order	 to	make	 room	 for	new	 recordings	of	 information	about	 the	
molecules.	 In	 order	 for	 the	 demon’s	 memory	 system	 to	 perform	 all	 the	
measurements	and	erase	old	 information	 in	a	 timely	and	ordered	manner,	he	
needs	 quite	 some	 computation	 power,	 which	 cannot	 come	 for	 free	 without	
paying	the	energy	bill.	Per	Landauer’s	principle	(Landauer,	1961),	for	every	bit	
of	 erased	 information	 there	 is	 an	 energy	 cost	 associated	 with	 dissipation	 of	
energy	 in	 the	 environment	 and	 increasing	 entropy	 in	 the	 environment.	
According	 to	 calculations,	 at	 the	 end	 of	 the	 process,	 the	whole	 system	of	 the	

 
34	k	is	the	Boltzmann	constant,	approximately	1.38	×	10−23	J/K	(Boltzmann;	
1877).	
35	Boltzmann	(1877)	defined	thermodynamic	entropy	as	a	state	of	the	physical	
system	given	by	the	number	of	possible	positions	and	velocities	of	gas	
molecules:	in	short,	low	possible	positions	and	velocities	describe	low	entropy	
states,	while	high	possible	positions	and	velocities	describe	high	entropic	
states.	
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demon’s	computation	and	memory	system	together	with	the	container	will	have	
dissipated	more	entropy	in	the	environment	than	the	entropy	that	was	reduced	
inside	the	container	by	the	demon’s	sorting.	
	 Later,	Bennet	(1982)	looked	at	the	same	problem	in	computation	and	
showed	that	measuring	 information	can	 in	principle	be	performed	reversibly,	
that	 is	 without	 an	 increase	 in	 the	 energy	 dissipated	 in	 the	 environment,	 but	
erasing	the	previous	measurements	to	make	room	for	the	next	measurements	
cannot	avoid	the	energetic	cost,	thus	the	generation	of	entropy.		Bennet	(1982)	
made	the	argument	that	the	processed	information	has	to	be	stored	and	encoded	
in	 a	 physical	 medium	which	must	 obey	 the	 laws	 of	 physics,	 in	 this	 case	 the	
demon’s	memory,	and	thus	there	is	also	a	minimal	energetic	cost	that	must	be	
paid	for	encoding	one	bit	of	information,	which	is	also	equal	to	kTln2	J.	
	 The	solution	to	Maxwell’s	demon	shows	that	information	is	physical,	not	
“abstract”	or	a	purely	mathematical	concept,	and	that	 in	order	to	process	and	
encode	information,	in	this	case	specifically	observing	(fast	vs	slow	molecules),	
encoding	the	information	(on	speed	and	position	of	molecules)	and	erasing	of	
information	 (from	 the	 memory	 of	 the	 demon	 to	 make	 space	 for	 the	 next	
measurement),	energy	must	be	spent,	and	as	a	consequence	the	processing	and	
encoding	 of	 information	 causes	 generation	 of	 entropy	 in	 the	 environment.	
Roughly	speaking,	the	demon	spends	kTln2	J	to	measure	if	one	molecule	is	fast	
or	slow,	and	encodes	this	as	one	bit	of	information,	which	subsequently	has	to	be	
erased	by	spending	another	kTln2	J.	Finally,	Maxwell’s	demon	puzzle	was	solved,	
at	 least	 theoretically,	 and	 the	 2nd	 law	 of	 thermodynamics	 was	 reinstated	 as	
ubiquitous.	 Since	 recent	 technology	 allows	 for	 experiments	 with	 atoms	 and	
particles,	 Maxwell’s	 demon	 and	 its	 proposed	 solution	 were	 probed	 and	
demonstrated	in	laboratory	experiments	(Price,	Bannerman,	Viering,	Narevicius,	
&	 Raizen,	 2008;	 Raizen,	 2009),	 as	 well	 as	 Landauer’s	 principle	 (Bérut	 et	 al.,	
2012).	
	 In	conclusion,	the	apparent	violation	of	the	2nd	law	of	thermodynamics	
by	Maxwell’s	 demon	was	 solved	 by	 the	 remarkable	 insight	 into	 the	 intrinsic	
relation	between	information	and	energy.	This	insight	shows	that	information	is	
physical	 and	 thence,	 any	way	 of	 processing	 and	 encoding	 information	 comes	
with	 an	 energy	 cost	 and,	 consequently,	 an	 increase	 of	 entropy	 in	 the	 world.	
Having	shown	that	information	processing	and	encoding	has	a	minimal	energetic	
cost	in	natural	systems	and	in	computation	alike	creates	the	necessary	premises	
to	state	that	information	processing	and	encoding	by	the	brain	during	cognitive	
processes,	 like	 learning,	reasoning,	etc.,	must	be	accompanied	by	an	energetic	
cost	and,	thus	an	increase	of	the	thermodynamic	entropy	in	the	world	(Karnani	
et	al.,	2009).	The	exact	energetic	costs	involved	in	cognitive	processes,	and	in	fact	
any	brain	processes,	have	yet	to	be	thoroughly	investigated,	although	there	are	
some	studies	in	this	direction	in	some	areas,	e.g.	in	cellular	computation	(Mehta	
&	Schwab,	2012),	in	vision	of	blowflies	(Laughlin,	van	Steveninck,	&	Anderson,	
1998).		
	 Summarizing,	 based	 on	 these	 premises	 and	 the	 illustrative	 case	 of	
Maxwell’s	 demon,	 any	 way	 of	 processing,	 erasing	 and	 encoding	 information	
involves	energy	consumption,	and	as	a	result	an	increase	of	entropy.	Hence,	since	
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rule	 induction	 –	 which	 draws	 on	 memory	 resources	 –	 involves	 processing,	
erasing	and	encoding	information,	we	conclude	that	(linguistic	or	general)	rule	
induction	 is	 an	 energy-consuming	 mechanism	 governed	 by	 the	 2nd	 law	 of	
thermodynamics,	which	generates	an	increase	of	thermodynamic	entropy	in	the	
world.	
	
1.2	Second	law	of	thermodynamics	for	open	systems	
	
The	earliest	formulation	of	the	second	law	of	thermodynamics	was	given	by	Sadi	
Carnot	in	the	early	19th	century,	but	this	formulation	did	not	include	the	concept	
of	entropy	explicitly.	It	was	used	in	the	formulation	of	the	maximum	efficiency		
of	heat	engines,	by	describing	how	heat	can	be	transformed	into	work.	In	1856,	
Clausius	noticed	a	universal	principle	built	into	everything	in	the	universe:	heat	
always	 flows	 into	one	direction,	 from	hot	 to	cold	objects.	As	heat	 (or	energy)	
always	flows	from	hot	to	cold,	entropy	(S)	always	increases:	
	 	CD

CE
	≥ 0.	

This	is	the	first	entropy-related	formulation	of	the	2nd	law	of	thermodynamics36,	
and	 it	 was	 formulated	 in	 relation	 to	 heat	 engines	 and	 stated	 about	 isolated	
systems,	 i.e.	 systems	 that	 do	 not	 exchange	 heat	 (energy)	 or	 mass	 with	 the	
environment.	This	 is	the	reason	why	a	short	easy-to-memorize	formulation	of	
the	 2nd	 law	 has	 commonly	 been	 used	 since	 then:	 the	 entropy	 of	 an	 isolated	
system	will	always	increase	(Collell	and	Fauquet,	2015;	Prigogine,	1978).	
	 However,	 although	 correct	 about	 the	 isolated	 systems,	 this	 is	not	 the	
most	accurate	formulation	of	the	law	(Bejan,	2017;	Feynman,	Leighton,	Sands,	&	
Hafner,	1965).	The	2nd	law	of	thermodynamics	states	that	if	work	is	done	against	
friction,	the	work	done	is	equal	to	the	heat	produced,	and	that	the	heat	produced	
cannot	be	changed	back	into	work	(hence,	the	irreversibility	of	the	process)	with	
no	other	change	in	the	system	or	its	surroundings.	In	other	words,	in	irreversible	
changes,	the	entropy	of	the	system	and	of	the	whole	world	always	increases.	Only	
in	reversible	processes,	does	the	entropy	stay	constant,	and	since	no	process	is	
truly	reversible,	there	is	always	at	least	a	small	increase	in	entropy	in	the	world	
(Feynman	et	al.,	1965). 
	 The	application	of	the	2nd	law	of	thermodynamics	to	non-isolated	(open)	
systems,	 among	 which	 biological	 systems,	 has	 received	 increasing	 attention	
recently	(Annila	&	Beverstock,	2016;	Avery,	2012;	England,	2013;	2015;	Sharma	
&	Annila,	2007).	Rephrasing	the	2nd	 law	of	thermodynamics	in	modern	terms:	

 
36	Since	the	reader	might	want	to	be	reminded	of	the	1st	law	of	thermodynamics,	
although	not	immediately	relevant	to	the	topic	of	this	chapter,	here	it	is:	the	1st	
law	of	thermodynamics	is	the	principle	of		conservation	of	energy,	and	it	states	
that	 the	 energy	 of	 the	 universe	 is	 always	 constant.	 In	 its	 most	 accurate	
formulation:	if	one	has	a	system	and	puts	heat	into	it,	and	does	work	on	it,	then	
its	energy	 is	 increased	by	the	heat	put	 in	and	the	work	done	(Feynman	et	al.,	
1965).		
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spontaneously,	energy	always	goes	from	being	concentrated	to	being	spread	out	
or	dispersed.		
	 Recent	 research	 in	 the	 physics	 of	 animate	 and	 inanimate	 life	 forms	
converge	on	the	idea	that,	as	per	the	thermodynamics	of	the	open	systems,	the	
CD
CE
		 rate	 acts	 as	 a	 natural	 selection	 criterion	 that	 chooses	 mechanisms	 and	

structures	(organisms)	that	are	better	and	faster	at	 taking	 in	energy	from	the	
surroundings	and	facilitating	the	energetic	flow	in	order	to	increase	entropy,	i.e.	
to	diminish	the	amount	of	energy	available	for	doing	work	–	free	energy	(Annila	
&	Annila,	2008;	Avery,	2012;	Bejan,	1997;	Bejan	&	Zane,	2012;	England,	2013,	
2015).	Rephrasing	the	2nd	 law	of	thermodynamics	in	terms	of	the	tendency	to	
consume	free	energy,	or	in	other	words,	level	off	the	gradients	of	energy	between	
the	organism	and	 its	surroundings	by	energy	 transduction	(transformation	of	
one	 form	 of	 energy	 into	 another	 form	 of	 energy)	 could	 inform	 the	
thermodynamic	 models	 of	 the	 brain,	 and	 consequently	 of	 the	 information	
processing	mechanisms.		
	 Thus,	adding	to	the	conclusion	of	the	previous	subsection,	rule	induction	
(linguistic	 or	 general)	 can	 be	 envisaged	 as	 an	 energy-consuming	mechanism	
governed	by	the	2nd	law	of	thermodynamics	as	it	applies	to	open	systems:	as	a	
reflection	 of	 nature’s	 evolution	 towards	 a	 dissipation-driven	mechanism	 that	
facilitates	leveling	off	the	gradients	of	energy	(in	this	case,	driven	by	information	
processing	and	encoding).	
	
1.3.	Thermodynamic	entropy	and	information	entropy	
	
The	laws	of	 thermodynamics	 govern	 the	amount	of	available	energy	and	 they	
involve	 the	 concept	 of	 entropy	 for	 irreversible	 thermodynamic	 processes.	
Although	routinely	defined	as	the	quantification	of	the	degree	of	disorder	of	a	
system,	entropy,	as	per	its	precise	thermodynamic	definition,	 is	the	amount	of	
energy	dissipated	as	molecular	vibration	that	cannot	be	used	to	produce	work	
(Feynman	et	al.,	1965).	
	 The	 first	 definition	 of	 thermodynamic	 entropy	 was	 formulated	 by	
Clausius	in	1856	as:	
	 Δ𝑆 = FG

H
,	

	 where	Δ𝑆	stands	for	the	change	in	entropy,	Δ𝑄	stands	for	the	change	in	
heat	and	T	for	the	absolute	temperature	of	the	system,	and	thus	physical	entropy	
is	measured	in	Joules/Kelvin	(Feynman	et	al.,	1965).	
	 While	Clausius	gave	a	macroscopic	definition	of	entropy	in	terms	of	heat	
change,	 Boltzmann	 (1877)	 gave	 a	microscopic	 definition	 of	 physical	 entropy,	
from	the	perspective	of	statistical	mechanics:	
	 S	=	kln(W),	where	k	is	the	Boltzmann	constant	(approx.	1.38	x	10-23	J/K),	
and	 W	 represents	 the	 number	 of	 equiprobable	 microstates	 of	 a	 system.	 In	
detailed	form,	if	counting	the	number	and	different	probabilities	of	microstates,	
Boltzmann’s	 formula	 for	 entropy	 (S)	 differs	 only	 by	 a	 constant	 (kln2)	 from	
Shannon’s	entropy	formula:	
	 S = 	−𝑘ln2∑ 𝑝!(log 𝑝!)"

!#$ .	
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	 Also	Gibbs	formula	for	entropy	has	a	similar	form	to	Shannon’s	entropy,	
with	the	same	difference	of	a	change	in	units	given	by	Boltzmann’s	constant	k:	
	 S = 	−𝑘∑ 𝑝!(ln 𝑝!)"

!#$ 	
	 Based	on	this	formula	equality,	it	was	shown	that	theoretically	in	order	
to	convert	a	bit	of	information	entropy	in	units	of	thermodynamic	entropy	one	
has	to	multiply	the	information	entropy	by	the	constant	kln2	(Plenio	&	Vitelli,	
2001).	As	per	 Landauer’s	 principle	 (Landauer,	 1961),	 this	 is	 theoretically	 the	
thermodynamical	entropy	generated	by	erasing	one	bit	of	information.	Also,	it	
was	shown	that	any	operation	of	processing	information,	e.g.	erasing	or	encoding	
one	bit	of	information,	making	a	yes/no	decision,	and	in	principle	any	logically	
irreversible	 computation	 (Lutz	 &	 Ciliberto,	 2015),	 results	 in	 the	 same	
thermodynamical	entropy	generated	per	bit	of	information	in	the	world	(Bennet,	
1982).	
	 Based	 on	 these	 considerations,	 among	 others,	 and	 on	 shared	
mathematical	 properties	 (Karnani	 et	 al.,	 2009),	 information	 entropy	 can	 be	
regarded	as	a	reflection	of	thermodynamic	entropy,	given	that	they	are	to	a	large	
extent	equivalent	(Karnani	et	al.,	2009;	Le	Bellac	et	al.,	2004;	Sethna,	2006).	
	 Entropy	has	often	been	regarded	as	the	disorder	of	a	system,	however	
nature’s	tendency	towards	highly	organized	structures	seems	to	point	towards	
a	 resistance	 to	 increasing	 disorder.	 According	 to	 recent	 views	 (Annila	 &	
Beverstock,	2016;	Bejan	&	Zane,	2012),	the	misconception	of	entropy	as	being	
equal	to	the	disorder	of	a	system,	and	of	the	2nd	law	of	thermodynamics	as	being	
a	gloomy	prediction	of	 the	collapse	of	 the	world	 into	disorder	stemmed	 from	
simplistic	erroneous	formulations	of	Boltzmann’s	entropy,	and	it	has	created	a	
lot	of	unnecessary	confusion	(Sagan,	2008).		
	 Boltzmann	 (1877)	described	 a	 low	number	 of	 possible	 positions	 and	
velocities	of	gas	molecules,	i.e.	low	entropy,	as	reflecting	an	orderly	arrangement	
of	 gas	 molecules,	 while	 increasing	 the	 number	 of	 possible	 positions	 and	
velocities	of	molecules,	 i.e.	high	entropy,	as	describing	a	disorderly	state.	As	a	
result,	 conceptualizations	 of	 entropy	 as	 disorder	 of	 a	 system,	 and	 increasing	
entropy	as	increasing	disorder	led	to	a	need	to	postulate	solutions	to	account	for	
life’s	obvious	tendency	towards	order	and	organization	(Avery,	2012;	Annila	&	
Beverstock,	2016;	Prigogine,	1978).		
	 Among	 these	 solutions,	Prigogine	 and	 colleagues’	 proposal	 (Nicolis	&	
Prigogine,	 1989;	 Prigogine,	 1978)	 for	 nature’s	 tendency	 to	 evolve	 towards	
ordered	dissipative	structures	has	been	of	great	influence	both	in	biophysics	and	
in	cognitive	sciences:	they	propose	that	the	entire	entropy	of	a	system	should	be	
seen	as	two	terms,	an	internal	entropy	(dSi/dt)	generated	inside	the	system	and	
an	 external	 entropy	 (dSe/dt)	 exchanged	 through	 the	 boundaries	 of	 the	 open	
system.	When	there	is	an	increase	of	internal	entropy	(dSi/dt)	beyond	the	limit	
that	the	current	organization	or	structure	of	the	system	can	dissipate,	this	gain	
in	entropy	must	be	 immediately	released	through	the	boundaries	of	 the	open	
system	into	the	environment.	This	need	was	proposed	to	drive	self-organization	
of	 natural	 open	 systems	 into	 new	 structures,	 which	 are	 better	 dissipative	
structures	 (Prigogine,	 1978).	 This	 approach	 was	 adopted	 in	 thermodynamic	
models	of	brain	activity,	which	regard	the	brain	as	an	evolving	structure	towards	
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better	dissipation	of	entropy	through	its	boundaries	(Del	Castillo	&	Vera-Cruz,	
2011;	 La	 Cerra,	 2003),	 and	 in	 cognitive	 processes	 such	 as	 cognitive	
reorganization	during	a	problem-solving	task	by	an	initial	increase	followed	by	
a	drop	in	internal	entropy	(Stephen	et	al.,	2009).		
	 To	summarize,	 thermodynamic	models	of	brain	activity	and	cognitive	
processes	have	mainly	proposed	that	the	brain	tends	towards	reducing	entropy,	
by	creating	new	structures	better	adapted	for	entropy	dissipation.	In	line	with	
this	 approach,	 although	 not	 directly	 inspired	 by	 it,	 but	 based	 on	 information	
entropy,	similar	views	from	psycholinguistics	and	cognitive	sciences	proposed	
entropy-reduction	 based	 models	 of	 language	 comprehension	 and	 sentence	
processing	 (Hale,	 2006;	 Levy,	 2008;	 Linzen	 &	 Jaeger,	 2016;	 Venhuizen	 et	 al.,	
2019a;	 2019b)	 and	 entropy-reduction	 based	 accounts	 of	 rule	 learning	 and	
regularization	(Ferdinand	et	al.,	2018).	
	 However,	another	view	on	the	2nd	law	of	thermodynamics	and	especially	
on	 entropy	 from	 its	more	 accurate	 definition	 from	 the	 perspective	 of	 energy	
dispersal	 (Feynman	 et	 al.,	 1965)	 derives	 entropy	 from	 the	 physics	 of	 open	
systems	and	formulates	it	in	terms	of	consumption	of	free	energy:	the	principle	
of	increasing	entropy	of	the	2nd	law	equals	the	imperative	to	decrease	free	energy	
(Annila,	2016a;	2016b;	Annila	&	Beverstock,	2016;	England,	2013,	2015;	Sharma	
&	Annila,	2007;	Varpula	et	al.,	2013).	Thus,	living	organisms	and	the	brain	are	
proposed	 as	 energy-consuming	 structures	 governed	 by	 the	 2nd	 law	 of	
thermodynamics,	such	that	they	evolve	towards	consuming	free	energy	in	the	
least	 possible	 time,	 which	 in	 turn	 drives	 increasing	 entropy	 dissipation.	
Mounting	 proposals	 have	 been	 advanced	 in	 this	 direction	 of	 the	 free	 energy	
principle	as	the	underlying	first	principle	of	living	organisms	(Colombo	&	Wright,	
2018;	Friston	2009;	Friston	&	Stephan,	2007).	
	 Therefore,	another	concept	that	becomes	relevant	to	this	discussion	is	
the	 concept	 of	 free	 energy	 (or	 negentropy).	 The	 concept	 was	 introduced	 by	
Schrödinger	 (1944)	 in	 relation	 to	 a	 thermodynamic	 perspective	 on	 living	
organisms,	 and	 dubbed	 negative	 entropy,	 because	 it	 is	 the	 energy	 that	 is	
available	to	produce	work,	as	opposed	to	entropy.	Free	energy	can	be	described	
either	by	Helmholtz	free	energy	formula:	F	=	U	–	TS,	or	by	the	standard	Gibbs	free	
energy	equation	𝐺 = 𝑈 − 𝑇𝑆,	where	U	is	the	internal	energy	of	the	system,	T	the	
temperature	and	S	the	entropy	(Feynman	et	al.,	1965).	According	to	Gibbs	free	
energy	formula,	when	a	chemical	process	takes	place,	heat	is	exchanged	with	the	
environment,	and	a	process	is	spontaneous	if	it	entails	a	decrease	of	the	Gibbs	
free	energy.		
	 Moreover,	 it	 was	 shown	 that	 Gibbs	 free	 energy	 is	 a	 measure	 of	 the	
“thermodynamic	 information”	 contained	 by	 a	 system	 (Avery,	 2012).	 In	 fact,	
information	 and	 negentropy	 (or	 free	 energy)	 were	 first	 shown	 to	 be	
interchangeable	 thermodynamic	 quantities	 by	 Brillouin	 (1953).	 Brillouin	
showed	that	information	corresponds	to	a	negative	term	in	the	final	entropy	of	
a	physical	system:		
	 𝑆$ =	𝑆I − 𝐼,	
	 where	S0	is	the	initial	entropy	of	a	physical	system,	I	is	the	information	
about	the	system	or	negentropy	term,	S1	is	the	final	entropy	of	the	system	with	
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the	information.	Brillouin	(1953)	showed	that	whenever	information	is	obtained	
about	a	physical	system	there	is	an	increase	of	entropy	in	the	system	or	in	its	
surroundings.	 Therefore,	 a	 generalized	 definition	 of	 thermodynamic	 entropy	
was	proposed	to	be	 the	difference	of	 thermodynamical	entropy	of	 the	system	
(Δ𝑆)	minus	 the	 information	 (I)	 possessed	 by	 an	 external	 observer	 about	 the	
system	(Brillouin,	1953;	Plenio	&	Vitelli,	2001).		
	 Karnani	et	al.	(2009)	set	out	to	show	that	information	is	physical,	and	
that	 the	 2nd	 law	 of	 thermodynamics,	 although	 customarily	 formulated	 as	 the	
principle	 of	 increasing	 disorder	 in	 the	 world,	 it	 actually	 dictates	 a	 universal	
tendency	 of	 creating	 hierarchical	 structures	 that	 develop	 towards	 better	
structures	 for	energy	dispersal	 (or,	 equivalently,	 for	 the	 increase	of	 entropy).	
Starting	 from	 a	 generally	 accepted	 principle	 that	 all	 forms	 of	 information	
processing,	 i.e.	 observing,	 encoding,	 transmission,	 decoding,	 are	 natural	
processes	governed	by	the	 laws	of	physics	(Brillouin,	1953;	Sharma	&	Annila,	
2007;	 Prigogine,	 1978),	 Karnani	 et	 al.	 (2009)	 show	 mathematically	 that	
thermodynamic	entropy	can	be	used	as	a	measure	for	information	and	that	it	is	
impossible	to	create	or	destroy	information	without	a	change	in	free	energy.	The	
rate	 of	 change	 in	 thermodynamical	 entropy,	 under	 the	 2nd	 law	 of	
thermodynamics,	was	shown	to	explain	the	emergence	of	natural	hierarchical	
structures	 in	 the	 organization	 of	 information	 and	 of	 communication	 systems	
(Annila	 &	 Kuismanen,	 2009;	 Hartonen	&	 Annila,	 2012;	 Karnani	 et	 al.,	 2009):	
energy	disperses	 according	 to	 the	principle	 of	maximum	entropy	production,	
which	means	 that	energy	 is	most	efficiently	dispersed	when	 the	 largest	 flows	
move	 from	high	density	 to	 low	density	 to	 increase	entropy	most	 rapidly.	The	
authors	 conclude	 that	 it	 is	 rather	 the	 thermodynamics	 principles	 and	
thermodynamic	entropy	that	explain	information	processing/transmission	and	
communication,	than	information	theory	(Karnani	et	al.,	2009).	
	 According	 to	 this	 view,	 brain	 activity	 and	 cognitive	 processes,	 as	 a	
reflection	of	brain	activity,	were	hypothesized	to	be	governed	by	the	quest	 to	
consume	 free	energy	 in	 the	 least	 time	possible,	which	means	a	drive	 towards	
increasing	entropy	dissipation,	 in	accord	with	 the	2nd	 law	of	 thermodynamics	
(Varpula	et	al.,	2013).	
	 In	other	words,	brain	activity	and	cognitive	processes	are	not	driven	by	
an	 entropy-reduction	 principle,	 but	 by	 a	 principle	 of	 increasing	 entropy	
dissipation,	which	is	a	natural	result	of	the	quest	to	consume	free	energy	in	the	
least	time.	Taking	this	view	into	account,	we	propose	that	a	specific	information-
encoding	cognitive	mechanism	such	as	(linguistic	or	general)	rule	induction	is	a	
natural	 free-energy	 consuming	 mechanism	 that	 generates	 increasing	
thermodynamic	 entropy	 in	 the	 environment,	 under	 the	 rule	 of	 the	 2nd	 law	of	
thermodynamics.	
	
1.4	Natural	tendency	towards	structure	and	the	laws	of	thermodynamics	
	
After	having	 reformulated	 the	2nd	 law	of	 thermodynamics	 and	 the	 concept	of	
entropy	 so	 that	 the	 misconception	 of	 flow	 from	 order	 towards	 disorder	 is	
removed	from	the	discussion,	the	obvious	tendency	of	life	and	nature	towards	
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structure	 can	 be	 understood	 under	 the	 laws	 of	 thermodynamics.	 In	 fact,	 one	
thermodynamic	view	has	proposed	that	hierarchical	structure	in	nature	emerges	
as	a	result	of	the	2nd	law	of	thermodynamics:	the	quest	to	consume	free	energy	
in	the	least	time	leads	to	structures	that	are	better	and	faster	at	doing	it	(Annila	
&	 Kuismanen,	 2009;	 Annila	 &	 Annila,	 2008;	 Varpula	 et	 al.,	 2013).	 Thus,	 the	
spontaneous	organization	into	structures	tends	towards	functional	complexity	
in	order	to	reach	high	entropy	(Annila	&	Annila,	2008).	As	one	of	the	numerous	
spontaneous	structures,	the	neural	networks	of	the	brain	have	developed,	like	
any	other	natural	networks,	as	pathways	 to	 facilitate	energy	 transduction,	 i.e.	
transformation	into	other	forms	of	energy,	from	sensory	signals	to	neural	signals	
(Hartonen	&	Annila,	2012;	Varpula	et	 al.,	 2013).	Hence,	 the	view	of	 cognition	
under	 the	 governance	 of	 the	 laws	 of	 thermodynamics	 takes	 concrete	 shape:	
information	as	a	flow	of	energy	enters	brain’s	neural	network,	as	in	the	case	of	
any	 open	 system	 interacting	 with	 its	 surroundings,	 and	 it	 gets	 transmitted	
through	 the	 pathways	 of	 energy	 transduction,	 by	 consuming	 the	 free	 energy	
associated	with	the	physical	representations	of	the	signals	(Varpula	et	al.,	2013).	
The	 flow	 of	 energy	 searches	 for	 those	 structures	 of	 pathways	 or	 patterns	 of	
energy	 transduction	 that	 allow	 for	 faster	 spread	 of	 energy,	 thus	 increasing	
entropy	 dissipation,	 as	 per	 the	 2nd	 law	 (Annila	 &	 Annila,	 2008;	 Hartonen	 &	
Annila,	2012;	Varpula	et	al.,	2013).	
	 Another	thermodynamic	view	has	taken	one	step	further	and	suggested	
that	the	2nd	law	might	not	be	sufficient	to	explain	the	entire	design	and	structures	
of	nature,	animate	and	inanimate	systems	alike,	but	it	needs	to	be	accompanied	
by	the	constructal	law	(Bejan,	1997;	Bejan	&	Zane,	2012).	The	constructal	law	is	
another	law	of	thermodynamics,	another	first	principle	in	physics,	just	like	the	
2nd	 law	of	 thermodynamics.	According	 to	 this	 law,	 the	world	 is	a	 flow	system	
made	of	an	 immense	collection	of	many	flow	systems.	Everything	that	moves,	
animate	or	inanimate,	is	a	flow	system.	In	short,	a	flow	system	can	be	described	
as	follows:	something	that	flows,	a	current	(e.g.	heat,	mass,	fluid,	information),	
the	rate	at	which	the	current	flows,	and	the	structure	that	hosts	the	current	and	
facilitates	it	(the	background).		
	 The	 movement	 of	 the	 current	 encounters	 resistance	 created	 by	 the	
background,	such	as	friction,	which	acts	as	a	brake	on	the	engine	(the	structure)	
that	 carries	 the	 current.	 Resistance	 opposes	movement	 and	 it	 creates	 loss	 of	
energy	 on	 the	 way.	 For	 example,	 a	 heat	 current	 must	 face	 a	 temperature	
difference	in	order	to	flow,	and	an	electric	current	must	overcome	a	difference	
in	potential	in	order	to	flow.	However,	the	brakes	should	not	be	understood	as	
limitations	 in	 the	 design	 because	 they	 cause	 loss	 of	 energy,	 in	 fact	 they	 are	
necessary	 in	 the	 structure,	 because	 otherwise	 the	 currents	 will	 accelerate	
incessantly	 until	 they	 spin	 out	 of	 control,	without	 being	 able	 to	 create	 useful	
work	(Bejan	&	Zane,	2012).	For	example,	a	river’s	basin	is	the	structure	(design)	
that	enables	the	current	of	water	to	flow	from	an	area	to	a	point	(a	river’s	mouth),	
while	 overcoming	 the	 resistance	 of	 the	 land.	 Similar	 examples	 of	 tree-like	
structures	are	ubiquitous	in	nature,	and	they	facilitate	the	flow	of	other	currents:	
oxygen	 through	 the	 air	 passages	of	 lungs,	 electricity	 through	a	 lightning	bolt,	
electrical	signals	through	the	dendrites	of	neurons	in	the	brain,	etc.	Other	more	
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complex	designs	than	tree-like	structures	include	animal	and	human	design	that	
evolve	in	such	a	way	that	they	move	mass	more	efficiently	across	the	landscape:	
they	develop	body	mass	and	shapes	with	a	better	ratio	of	distance	covered	by	
unit	of	useful	energy	used	(Bejan	&	Zane,	2012).	
	 The	constructal	law	says	that	the	movement	enables	the	emergence	in	
time	of	very	particular	designs	and	structures	that	facilitate	better	flow	through	
a	 resistant	 landscape.	 Thus,	 every	 flow	 system	 in	 nature	 did	 not	 emerge	 and	
evolve	randomly,	but	it	is	structured	according	to	an	engine-and-brake	design	
containing	many	engine-and-brake	systems,	e.g.	winds,	ocean	currents,	rivers,	
animals,	 humans,	 man-made	 machinery,	 science,	 information,	 etc.	 All	 these	
systems	evolve	towards	better-flowing	engines,	on	one	side	(i.e.	more	efficiency	
in	producing	work	from	the	fixed	energy	input,	hence	less	loss	of	energy)	and	
towards	more	effective	brakes,	on	the	other	side	(i.e.	more	dissipation	of	energy	
into	 the	 environment,	 hence	 higher	 rates	 of	 entropy	 generation).	 This	 design	
emerges	because	it	facilitates	the	flow	of	energy	(Bejan	&	Zane,	2012).	
	
2.	Towards	a	thermodynamic	model	of	rule	induction	
	
In	biosciences,	the	memory	of	biological	systems	was	proposed	to	have	evolved	
and	to	have	been	designed	 in	accordance	with	the	thermodynamic	principles:	
the	neural	network	is	an	energy	transduction	system,	where	the	external	signals	
(energy)	from	the	environment	enter	the	perception	system	as	visual,	auditory,	
etc.	signals	and	are	transformed	in	neural	signals,	which	are	dispersed	as	flows	
of	energy,	along	the	neural	pathways	(Annila,	2016a;	Varpula	et	al.,	2013).	The	
neural	signals	search	for	and	flow	through	the	pathways	that	facilitate	energy	
dispersal	in	the	least	time:	neural	networks	are	viewed	as	yet	another	natural	
network	 designed	 according	 to	 the	 2nd	 law	 of	 thermodynamics,	 as	 an	 energy	
transduction	system	that	has	evolved	towards	efficient	least-time	consumption	
of	free	energy	(Annila,	2016;	Hartonen	&	Annila,	2012;	Sharma	&	Annila,	2007).	
	 Natural	 networks	 and	 structure	 emergence	 in	 natural	 biological	
systems	were	proposed	to	be	governed	and	driven	by	the	quest	to	consume	free	
energy	in	the	least	time	(Hartonen	&	Annila,	2012;	Sharma	&	Annila,	2007).	The	
constructal	law	(Bejan,	1997,	Bejan	&	Zane,	2012)	would	predict	that	the	neural	
signals	do	not	actually	“search”	for	the	pathways	that	facilitate	energy	dispersal.	
Rather,	information	transmission	as	a	flow	system	(i.e.	the	propagation	of	neural	
signals)	 creates	 those	pathways	 into	 a	 structure	 that	 facilitates	better	 energy	
dispersal	(just	like	a	river	creates	its	basin	to	facilitate	its	flow).	Thus,	the	self-
organization	 of	 the	 neural	 network,	 just	 like	 any	 other	 natural	 (biological)	
network,	is	governed	by	the	laws	of	thermodynamics.		
	 In	 accord	 with	 these	 views,	 we	 propose	 that	 rule	 induction	 –	 as	 an	
information	 encoding	mechanism	 that	 draws	 on	memory	 resources	 –	 can	 be	
envisaged	as	a	reflection,	at	the	cognitive	level,	of	a	constructal	design	of	neural	
networks	or	self-organization,	that	evolved	for	the	purpose	of	facilitating	better	
information	 flow.	 Thus,	 rule	 induction	 can	 be	 formulated	 according	 to	 a	
thermodynamics	framework.	
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	 Similarly,	 regarding	 another	 information-theoretic	 approach	 to	
linguistics	–	Zipf’s	law	–	Bejan	&	Zane	(2012)	suggest	that	the	constructal	law	
predicts	Zipf’s	empirical	law	(Zipf,	1949).	This	is	a	word	frequency	law	thought	
to	be	one	of	the	few	truly	universal	in	language	(Montemurro	&	Zanette,	2011;	
van	Egmond,	2018; for	a	relevant	review,	see	Piantadosi,	2014).	The	prediction	
made	 by	 Bejan	 &	 Zane	 (2012)	 is	 based	 on	 the	 claim	 that	 the	 Zipfian	 log-log	
frequency-rank	distribution	found	in	language	can	be	directly	derived	from	the	
mathematical	 formulation	of	 the	 constructal	 law	 (just	 like	 the	 log-log	 size-to-
rank	distribution	of	settlements	in	Europe	from	1600	to	1980	–	Bejan	&	Zane,	
2012).	 Explained	 constructally,	 for	 the	 purpose	 of	 facilitating	 the	 flow	 of	
information,	 in	 written	 and	 spoken	 communication,	 the	 frequency-rank	
distribution	of	words	creates	the	hierarchy	of	channels	that	evolved	under	the	
constructal	law:	few	large	channels	(the	most	frequent	words	–	e.g.	“the”,	“to”,	
“of”)	 and	 many	 small	 channels	 (low	 frequency	 words	 	 –	 e.g.	 “egregious”,	
“ameliorate”)	 (Bejan	 &	 Zane,	 2012).	 We	 suggest	 future	 research	 should	
investigate	the	derivation	of	the	Zipfian	word	frequency	distribution	specific	to	
language	 from	 the	mathematical	 formulation	 of	 the	 constructal	 law	 (Bejan	&	
Lorente,	 2010),	 which	 brings	 a	 more	 refined	 and	 biophysically	 plausible	
alternative	to	the	Zipfian	distribution.	
	 Based	on	the	views	and	evidence	revealed	in	this	review,	we	propose	an	
innovative	 thermodynamic	 model	 for	 rule	 induction.	 We	 propose	 that	 rule	
induction	as	an	information	encoding	mechanism	is	a	reflection	at	the	cognitive	
level	 of	 an	 evolutionary	 consequence	 that	 follows	 from	 the	 laws	 of	
thermodynamics:	 evolving	 towards	 structures	 (or	 rules)	 that	 facilitate	 more	
efficient	energy	transduction	–	flow	of	information	(Bejan,	1997;	Bejan	&	Zane,	
2012),	that	is	consuming	more	free	energy	in	the	least	time,	with	an	increase	in	
entropy	 as	 a	 consequence.	 Our	 proposal	 is	 not	 only	 in	 accord	 with	 recent	
theoretical	 advances	 in	 physics	 and	 biophysics,	 as	 reviewed	 above	 (Annila	&	
Kuismanen,	2009;	Annila	&	Annila,	2008;	Bejan,	1977;	Varpula	et	al.,	2013),	but	
also	 consistent	 with	 recent	 neuroscientific	 findings	 (Guevara	 Erra,	 Mateos,	
Wennberg,	 &	 Velazquez,	 2016;	 McIntosh,	 Kovacevic,	 &	 Itier,	 2008;	 Protzner,	
Valiante,	Kovacevic,	McCormick,	&	McAndrews,	2010;	Velazquez	et	 al.,	 2019).	
According	to	these	findings	the	healthy	brain	tends	towards	increased	entropy	
as	opposed	to	unhealthy	brain	states,	which	are	characterized	by	lower	levels	of	
brain	signal	entropy.		
	 Specifically,	we	propose	 that	 rule	 induction	 is	a	 cognitive	mechanism	
whose	purpose	is	to	create	structure	by	the	same	design	principles	dictated	by	
the	 constructal	 law,	 as	 all	 the	 other	 natural	 structure	developing	phenomena	
(Bejan	&	Zane,	2012;	Bejan	&	Lorente,	2010),	 in	order	to	facilitate	the	flow	of	
information	(i.e.	 to	consume	free	energy	 in	 the	 least	 time).	Facilitation	of	 free	
energy	consumption	 increases	 the	entropy	 in	 the	world,	as	per	 the	2nd	 law	of	
thermodynamics.	 In	 other	 words,	 rule	 induction	 happens	 as	 a	 result	 of	 the	
brain’s	tendency	to	consume	more	free	energy	more	efficiently	(i.e.	with	the	least	
loss	and	in	the	least	time),	and	consequently,	to	dissipate	more	entropy	into	the	
environment,	under	the	governance	of	the	2nd	law	of	thermodynamics.		
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	 How	does	rule	 induction	 facilitate	more	efficient	consumption	of	 free	
energy	 in	 the	brain?	As	 it	was	 theorized	and	 shown	by	 all	 the	 studies	 in	 this	
dissertation,	 from	an	 information-theoretic	point	of	 view	based	on	Shannon’s	
noisy-channel	 coding	 theory	 (Shannon,	 1948),	 rule	 induction	 is	 a	 phased	
mechanism	driven	by	an	increase	of	input	entropy	within	the	bounds	set	by	the	
finite	 channel	 capacity,	 i.e.	 the	 maximum	 rate	 of	 information	 transmission	
(bits/s).	 This	 enables	 the	 gradual	 transition	 from	 high-specificity	 item-bound	
encoding	 to	 high-generality	 category-based	 encoding.	 Based	 on	 these	
information-theoretic	concepts,	our	entropy	and	noisy-channel	model	 for	rule	
induction	posits	that	the	change	in	encoding	method,	i.e.	from	a	high-specificity	
item-bound	encoding	to	a	high-generality	category-based	encoding,	is	driven	by	a	
kind	 of	 a	 regulatory	mechanism.	 This	 regulatory	mechanism	moves	 from	 an	
inefficient	encoding	method	(with	loss	of	information),	to	a	better,	more	efficient	
encoding	 method,	 which	 allows	 for	 higher	 input	 entropy	 to	 be	 transmitted	
reliably	(with	the	least	loss	of	information)	and	faster	(at	the	maximum	rate	of	
information	per	second,	i.e.	at	channel	capacity).	Reliability	of	encoding	should	
be	 understood	 as	 given	 by	 the	 least	 loss	 of	 information	 (caused	 by	 noise	
interference).	
	 However,	as	we	pointed	out	in	Chapter	6	(Radulescu,	Murali,	Wijnen,	&	
Avrutin,	2021),	 the	 information-theoretic	model	and	Shannon’s	noisy-channel	
coding	 theory	 alone	 cannot	 explain	why	and	how	 the	 change	happens	 from	a	
high-specificity	 item-bound	 encoding	 to	 a	 high-generality	 category-based	
encoding.	Shannon’s	channel	capacity	theory	posits	that	an	increase	of	the	rate	
of	 equivocation	 (i.e.	 loss	 of	 information)	 renders	 the	 encoding	 method	
inefficient,	and	that	“it	is	possible	to	find	another	encoding	method”,	but	it	does	
not	specify	how	this	encoding	emerges	and	how	it	is	designed.	Also	Shannon’s	
coding	 theory,	 and	 an	 information-theoretic	model	based	on	 it	 do	not	 offer	 a	
direct	explanation	as	to	what	drives	the	need	to	find	another	encoding	method	
for	 our	 biological	 encoding	 system.	 In	 other	 words,	why	 does	 rule	 induction	
happen?	 Hence,	 in	 Chapter	 6	 we	 proposed	 an	 extension	 of	 our	 information-
theoretic	model	by	linking	it	with	the	dynamic	systems	hypothesis	which	applies	
to	self-organizing	systems.	In	self-organization,	entropy	and	noise	are	a	driving	
force	towards	new	structures	(Prigogine	&	Stengers,	1984;	Schneider	&	Sagan,	
2005).	Here,	we	further	propose	for	future	research	a	joint	information-theoretic	
and	thermodynamic	model	based	on	the	constructal	law,	which	accounts	for	and	
predicts	self-organization	(Bejan	&	Zane,	2012;	Bejan	&	Lorente,	2010).	
	 We	suggest	that	this	joint	model	could	offer	an	answer	to	the	questions	
why	and	how	 rule	 induction	 –	with	 its	 two	 flavors:	 item-bound	and	 category-
based	 generalization	 –	 happens.	 More	 specifically,	 under	 the	 thermodynamic	
framework	 proposed	 in	 this	 chapter,	 rule	 induction	 is	 hypothesized	 to	 be	 an	
information	 processing	 and	 encoding	mechanism	by	which	 structures	 (rules)	
emerge	to	allow	better	and	faster	flow	of	energy	(in	the	form	of	 information).	
Better	 flow	 is	meant	 in	 the	 sense	of	more	efficient	 flow	of	energy	or	efficient	
consumption	of	free	energy,	and	faster	flow	in	the	sense	of	consumption	of	free	
energy	in	the	least	time	possible.	This	proposal	is	in	line	with	the	information-
theoretic	hypotheses	of	 the	model,	as	summarized	 in	 the	previous	paragraph:	
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the	regulatory	mechanism	shapes	the	inefficient	item-bound	encoding	(with	loss	
of	information)	that	can	only	allow	for	low	entropy	to	flow	(to	be	transmitted),	
into	a	better,	more	efficient	category-based	encoding,	that	allows	higher	entropy	
to	flow	at	a	faster	rate,	i.e.	maximum	rate	of	information	transmission	(channel	
capacity).	 In	 other	words,	 the	 form	 of	 encoding	 transitions	 from	 a	 form	 that	
allows	 for	 less	 information	 to	 flow	 –	 or	 less	 free	 energy	 transduction	 (less	
entropy	dissipation),	to	a	form	of	encoding	that	allows	for	more	information	to	
flow,	 i.e.	 with	 less	 loss	 of	 information	 –	 or	 more	 efficient	 free	 energy	
consumption,	in	order	to	facilitate	higher	entropy	dissipation.	
	 How	can	we	envisage	category-based	 encoding	 as	 a	 form	of	 encoding	
that	 facilitates	more	 efficient	 consumption	 of	 free	 energy	 (information)	 than	
item-bound	 encoding?	 As	 we	 argued	 in	 Chapter	 5	 (Radulescu,	 Kotsolakou,	
Wijnen,	Avrutin	&	Grama,	2021),	when	the	inflow	of	information	increases	(i.e.	
high	input	entropy	per	second),	since	the	channel	capacity	cannot	be	exceeded,	
this	 calls	 for	 a	 more	 efficient	 encoding	 method	 such	 that	 the	 actual	 rate	 of	
transmission	achieves	its	maximum,	to	match	the	channel	capacity.	Specifically,	
when	 the	 source	 entropy	 per	 second	 is	 higher	 than	 the	 available	 channel	
capacity,	the	high-specificity	item-bound	generalization	becomes	inefficient	and	
prone	to	many	errors.	Therefore,	the	information	cannot	be	encoded	with	a	high-
fidelity	method	(i.e.	probability	matching	 to	 the	 input),	because	 this	encoding	
method	gives	rise	to	high	loss	of	information	(i.e.	increased	rate	of	equivocation).		
	 Thus,	 the	 excess	 of	 entropy	 entering	 the	 channel	 results	 into	 erasing	
bindings	 between	 items,	 and	 reorganizing	 the	 redundant	 (shared)	 and	 non-
redundant	(specific)	features	of	items	in	order	to	erase	or	“forget”	insignificant	
features.	This	leads	to	re-grouping	the	items	in	categories,	that	would	allow	for	
an	 infinite	 number	 of	 other	 novel	 items	 to	 be	 processed	 and	 encoded	 in	 the	
category,	i.e.	it	would	allow	for	better	and	faster	flow	of	information	with	higher	
entropy.	As	a	 result,	by	yielding	a	more	general	 (less	 specific)	category-based	
encoding,	 higher	 input	 entropy	 can	 be	 processed	 and	 encoded	 at	 the	 same	
channel	 capacity,	 with	 less	 loss	 of	 information,	 so	 more	 efficiently.	 In	
thermodynamic	 terms,	 the	 higher	 amount	 of	 information	 (higher	 entropy)	
means	larger	amounts	of	energy	are	consumed,	consequently	higher	entropy	is	
dispersed	(as	predicted	by	the	quest	to	consume	free	energy	in	the	least	time	–	
Hartonen	 &	 Annila,	 2012;	 Sharma	 &	 Annila,	 2007).	 Also,	 regrouping	 into	
categories	calls	for	higher	rates	of	information	erasure	(of	specific	non-shared	
features),	 which	 entails	 higher	 energy	 consumption,	 thus	 higher	 entropy	
dissipation,	as	per	Landauer’s	principle	(Landauer,	1961).	
	 Furthermore,	noise	creates	 loss	of	 information	 just	 like	 imperfections	
(“brakes”)	 in	 thermodynamic	 systems	 cause	 heat	 leaks	 (Bejan	&	 Zane,	 2012;	
Bejan	&	Lorente,	 2010).	According	 to	 the	 constructal	 law,	 the	 “brakes”	 in	 the	
engine-and-brake	configuration	of	any	flow	system	are	not	a	limitation,	but	they	
are	 necessary.	 In	 accord	 with	 the	 constructal	 law,	 we	 suggest	 that	 noise	 is	
necessary	in	rule	induction.	As	we	hypothesized	in	Chapter	6,	noise	creates	loss	
of	information,	which	leads	to	the	need	for	re-structuring	the	information	in	such	
a	way	that	information	is	more	efficiently	transmitted,	i.e.	with	the	least	loss	of	
information.	 This	 hypothesis	 is	 in	 line	 with	 Shannon’s	 noisy-channel	 coding	
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theory	(Shannon,	1948)	as	we	showed	in	Chapter	6,	but	is	not	directly	predicted	
or	explained	by	 it.	However,	 it	 is	predicted	by	 the	 constructal	 law,	under	our	
proposed	thermodynamic	model	for	rule	induction.	This	hypothesis	is	supported	
by	 recent	 findings	 in	neurosciences	 (discussed	below),	which	 show	a	healthy	
brain	is	a	‘noisy	brain’	(McIntosh	et	al.,	2008;	Protzner	et	al.,	2010).	
	 Further,	 this	 model	 predicts	 the	 design	 of	 rule	 induction	 –	 how	 the	
encoding	forms	are	designed	–	according	to	the	constructal	design	of	a	few	large	
channels	 of	 energy	 dispersal	 and	many	 small	 channels	 (Bejan	 &	 Zane,	 2012;	
Lorente	 &	 Bejan,	 2010):	 a	 few	 large	 channels	 for	 information	 flow	 –	 few	
categories	(via	category-based	generalization)	and	many	small	channels	–	many	
specific	 items	 and	 item-bound	 relations	 (item-bound	 generalization).	 This	
configuration	 (design)	 emerges	 because	 this	 is	 the	 most	 efficient	 way	 for	
information	 to	 flow,	 i.e.	 to	 be	 transmitted.	 Further	 research	 should	 probe	
whether	 the	 distribution	 of	 this	 hierarchy	 of	 channels	 (few	 grammatical	
categories	and	many	lexical/semantic	specific	items)	directly	follows	from	the	
mathematical	formulation	of	the	constructal	law	(Bejan	&	Lorente,	2004;	2010).	
Preliminary	 evidence	 from	 recent	 proposals	 on	 unzipping	 the	 Zipf’s	 law	 in	
language	(Lestrade,	2017)	seems	to	point	into	this	direction,	namely	that	only	
when	considering	an	interaction	of	syntactic	criteria	(grammatical	categories)	
and	semantic	criteria	(item	specificity	within	the	class)	does	Zipf’s	law	hold,	with	
its	 frequency-rank	distribution	and	line	curvature.	As	mentioned	above,	Zipf’s	
law	could	be	predicted	by	the	constructal	law	(as	per	the	proposal	of	the	author	
of	the	constructal	law	himself	–	Bejan	&	Zane,	2012).	If	proven	to	be	the	case,	the	
elusive	origins	of	Zipf’s	 law	together	with	 the	mechanism	of	rule	 induction	 in	
language	might	be	finally	unveiled.	
	 In	 conclusion,	 according	 to	 the	 2nd	 law	 of	 thermodynamics,	 rule	
induction	 happens	 as	 a	 natural	 result	 of	 	 the	 tendency	 of	 the	 brain’s	 neural	
networks	(and,	as	a	reflection,	the	cognitive	system)	to	consume	free	energy	(in	
the	form	of	information)	in	the	least	time	possible,	which	in	turn	increases	the	
entropy	dissipation.	The	constructal	law	predicts	the	generation	of	the	particular	
hierarchical	 structure	 (items	 and	 categories)	 that	 facilitates	 the	 efficient	
information	transmission,	as	a	flow	of	energy.	
	 While	we	have	proposed	some	theoretical	grounds	for	a	thermodynamic	
framework	 to	 account	 for	 rule	 induction,	 it	 remains	 a	 more	 intricate	 and	
challenging	task	to	devise	a	practical	and	experimental	framework	to	test	this	
theoretic	framework/model.	Notably,	some	studies	used	a	method	proposed	by	
Costa,	Goldberger,	&	Peng	(2005)	–	Multiscale	Entropy	Estimation	of	temporal	
signal	 complexity37	 –	 in	order	 to	 estimate	 the	 complexity	of	 the	physiological	
signal	 measured	 with	 EEG	 (McIntosh	 et	 al.,	 2008)	 and	 iEEG	 (Protzner	 et	 al.,	
2010).	Also,	a	handful	of	recent	studies	focusing	on	a	thermodynamic	view	on	
the	 emergence	 of	 cognition	 and	 consciousness	 (Guevara	 Erra	 et	 al.,	 2016;	

 
37	Explained	briefly	at	https://sapienlabs.org/understanding-multiscale-
entropy/	and	at	
https://archive.physionet.org/physiotools/mse/tutorial/tutorial.pdf	
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Velazquez	et	al.,	2019)	made	a	step	forward	in	this	sense,	by	making	a	concrete	
proposal	on	an	estimation	of	the	Gibs	free	energy	and	the	dispersal	of	entropy	
content	in	the	brain,	by	using	physiological	signals	from	MEG,	iEEG	and	scalp	EEG	
recordings.		
	 Although	 the	 scope	 of	 these	 studies	 and	 their	 methodologies	 are	
different,	they	converge	on	similar	hypotheses	and	findings	about	the	brain	and	
its	 energy	 consumption	 and	 entropy.	 They	 propose	 methods	 of	 estimating	
(quantifying)	energy	in	the	brain	in	probabilistic	terms	with	direct	applications	
to	neuroscientific	research	(Velazquez	et	al.,	2019).	Guevarra	Erra	et	al.	(2016)	
found	increasing	entropy	in	the	brain	in	conscious	awareness	states,	which	is	in	
accord	 with	 thermodynamics-based	 proposals	 that	 the	 brain,	 as	 a	
thermodynamic	system,	naturally	tends	towards	better	and	faster	consumption	
of	free	energy,	hence	increasing	entropy	dissipation	(Annila,	2016).	Conversely,	
Guevarra	 et	 al.	 (2016)	 found	 lower	 entropy	 to	 be	 a	 characteristic	 of	 the	
unconscious	or	altered	states	of	alertness	(eyes	closed).	
	 Another	line	of	research	that	we	consider	to	bring	preliminary	evidence	
for	our	proposed	thermodynamic	model	are	the	studies	by	Protzner	et	al.	(2010)	
and	 McIntosh	 et	 al.	 (2008).	 Protzner	 et	 al.	 (2010)	 recorded	 iEEG	 from	 the	
hippocampi	 of	 participants	 while	 they	 were	 performing	 a	 memory	 task,	 and	
found	higher	signal	entropy	(measured	using	Multiscale	Entropy	Estimation)	in	
the	healthy	hippocampus	as	compared	to	the	epileptogenic	hippocampus.	They	
concluded	that	brain	signal	entropy	is	a	biomarker	of	neuronal	system	integrity.	
	 McIntosh	et	al.	(2008)	measured	brain	signal	variability,	in	children	and	
adults,	 using	 EEG	 (and	 quantified	 entropy	 with	 the	 Multiscale	 Entropy	
Estimation	method),	while	participants	were	performing	a	face	recognition	task.	
They	found	that	brain	signal	entropy	increases	in	children	from	8	to	15	years	old,	
and	even	to	a	higher	extent	in	adults.	Further,	when	compared	with	participants’	
performance	on	the	face	recognition	task,	results	showed	that	higher	brain	signal	
entropy	 correlates	 with	 reduced	 behavioral	 inconsistency	 in	 the	 task	
performance,	 and	 thus	 with	 better	 performance	 at	 information	 processing.	
Authors	concluded	that	brain	signal	entropy	or	in	other	words	“brain	noise”	is	a	
marker	of	healthy	brain	functioning	–	a	noisy	brain	is	a	healthy	brain	(McIntosh	
et	al.,	2008). 
	 Therefore,	 we	 propose	 that	 further	 research	 into	 the	 rule	 induction	
phenomenon	 should	 employ	 EEG	 methods	 to	 measure	 the	 physiological	
response	 of	 the	 brain	 as	 a	 composite	 energy	 consumption	 signature,	 while	
engaged	in	rule	induction	tasks,	such	as	the	artificial	grammar	tasks	employed	
by	 the	 studies	 of	 this	 dissertation.	 Either	 the	 Multiscale	 Entropy	 Estimation	
method	(McIntosh	et	al.,	2008;	Protzner	et	al.,	2010)	or	the	method	proposed	by	
Guevara	Erra	et	al.	(2016)	and	further	developed	in	Velazquez	et	al.	(2019),	or	
both	 methods	 simultaneously	 could	 be	 used.	 The	 aim	 should	 be	 to	 obtain	
estimations	of	entropy	and	energy	dispersal	in	the	relevant	brain	areas	that	can	
be	associated	with	rule	induction,	and	more	specifically	with	a	transition	from	
item-bound	encoding	to	category-based	encoding.	The	research	question	would	
be	to	probe	whether	brain	signal	entropy	increases	as	a	function	of	increasing	
input	entropy,	in	line	with	the	predictions	of	our	proposed	information-theoretic	
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and	 thermodynamic	 model.	 And	 if	 such	 an	 increase	 in	 brain	 signal	 entropy	
correlates	positively	with	the	behavioral	tendency	to	move	from	item-bound	to	
category-based	generalization.	
	 Such	experiments	designed	to	test	our	joint	information-theoretic	and	
thermodynamic	model	of	rule	induction	would	be	insightful	for	shedding	light	
on	previous	entropy-based	hypotheses	on	language	learning	and	processing.	The	
entropy-reduction	 hypothesis	 was	 proposed	 –	 as	 an	 essential	 survival	
mechanism	of	open	systems	–	to	underlie	self-organization	in	many	studies	in	
biology	(Nicolis	&	Prigogine,	1989;	Prigogine,	1978).	Entropy	reduction	was	also	
proposed	as	a	trademark	of	self-organization	into	new	and	better	structures	for	
problem	 solving	 in	 cognitive	 sciences	 (Stephen	 et	 al.,	 2009).	 Similarly,	 in	
information-theoretic	psycholinguistic	studies,	entropy	reduction	was	proposed	
as	 the	 underlying	 principle	 for	 language	 comprehension	 and	 sentence	
processing	 (Hale,	 2006;	 Levy,	 2008;	 Linzen	 &	 Jaeger,	 2016;	 Venhuizen	 et	 al.,	
2019a;	2019b),	and	also	for	rule	learning	and	regularization	(Ferdinand	et	al.,	
2019).	The	findings	of	EEG	experiments	with	a	thermodynamic	interpretation,	
under	the	model	we	propose	here,	would	shed	some	light	on	what	might	look	
like	an	apparent	contradiction,	or	at	least	a	slight	glitch	in	the	governance	of	the	
2nd	 law	 of	 thermodynamics.	 Does	 the	 cognitive	 system	 (as	 a	 reflection	 of	 a	
natural	open	 living	system)	strive	 towards	a	 reduction	of	entropy	 in	order	 to	
preserve	its	internal	structure	and	functionality	(Schrödinger,	1944;	Prigogine,	
1978)?	Or	does	 the	 cognitive	 system	develop	 structure	 as	 a	 result	 of	 striving	
towards	more	consumption	of	free	energy,	thus	as	a	tendency	towards	entropy,	
not	against	it	(Annila,	2016;	Sharma	&	Anilla,	2007)?	
	 If	 the	 findings	 support	 the	 latter	 view,	 as	 predicted	 by	 our	 proposed	
thermodynamic	model,	there	would	be	no	need	to	employ	ad-hoc	assumptions	
about	 reducing	 entropy,	 or	 about	 increasing	 entropy	 somewhere	 in	 order	 to	
reduce	it	elsewhere	(Prigogine,	1978).	The	same	principle	of	increasing	entropy	
as	per	the	2nd	law	of	thermodynamics,	which	is	valid	for	any	chemical	reaction,	
would	be	shown	to	apply	to	life	processes	and,	therefore,	to	neural	networks	and	
cognition.	A	 similar	 view	 in	 thermodynamics	 (Bejan,	 2007;	 2017;	Reis,	 2014;	
2016)	holds	the	“ad-hoc	principles”	of	reducing	and/or	maximizing	entropy	as	
being	divisive,	and	making	sense	only	if	taken	together	with	the	constructal	law,	
which	unifies	these	approaches	and	adds	to	the	2nd	law’s	“one	way”	irreversible	
flow,	the	tendency	of	nature	to	generate	a	certain	kind	of	structures	(design)	to	
facilitate	that	flow	(Bejan	&	Zane,	2012).	
	 In	 conclusion,	 the	 joint	 information-theoretic	 and	 thermodynamic	
model	proposed	here,	together	with	measures	of	the	thermodynamic	entropy	of	
the	physiological	signal	associated	with	rule	 induction	tasks,	might	help	unify	
apparently	opposing	hypotheses	of	entropy-reduction	in	cognitive	sciences	and	
psycholinguistics,	 with	 principles	 of	 nature’s	 tendency	 towards	 increasing	
entropy	 from	 physics	 and	 biosciences,	 as	 well	 as	 with	 recent	 neuroscientific	
findings	of	high	entropy	brain	signal	as	a	trademark	of	healthy	brain	states.		
	 Our	 proposed	 joint	 information-theoretic	 and	 thermodynamic	model	
for	estimations	of	brain	information	content	and	energy	consumption	lays	the	
foundation	for	a	thermodynamics	theory	on	rule	induction.	This	proposal	aims	
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at	offering	a	framework	and	a	model	to	inspire	a	future	research	direction	based	
on	estimating	the	thermodynamic	costs	of	information	processing,	erasing	and	
encoding.	We	hope	that	the	findings	of	this	research	direction	will	show	that	rule	
induction	is	an	encoding	mechanism	that	happens	automatically	as	a	direct	effect	
of	the	laws	of	thermodynamics,	just	like	photosynthesis	happens	to	a	flower	in	
the	sunlight.	And	this	is	not	a	metaphor.	
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Samenvatting	(Summary	in	Dutch)	

	 	 	

	
Dit	proefschrift	is	een	verzameling	artikelen	die	de	resultaten	presenteren	van	
een	 onderzoeksproject	 waarin	 het	 leren	 van	 taalregels	 vanuit	 een	
informatietheoretisch	perspectief	is	onderzocht.	Het	belangrijkste	doel	van	dit	
onderzoeksproject	 was	 om	 een	 innovatief	 entropiemodel	 voor	 regelinductie	
voor	te	stellen	en	te	testen,	gebaseerd	op	Shannon's	‘noisy-channel’	(ruiskanaal)	
coderingstheorie	(Shannon,	1948).	

Regelinductie	(generalisatie	of	regularisatie	van	regels)	is	een	essentieel	
mechanisme	 voor	 taalverwerving	 dat	 taalleerders	 in	 staat	 stelt	 niet	 alleen	
specifieke	 items	 (bijv.	 fonemen,	woorden)	 te	 onthouden	wanneer	 ze	worden	
blootgesteld	 aan	 linguïstische	 input	 (taal),	maar	 ook	 om	 relaties	 tussen	 deze	
items	te	leren.	Deze	relaties	variëren	van	statistische	patronen	tussen	specifieke	
items	die	aanwezig	zijn	in	de	linguïstische	input	(Saffran,	Aslin,	&	Newport,	1996;	
Thiessen	&	Saffran,	2007)	tot	meer	abstracte	categorie-/regelinductie	(Marcus,	
Vijayan,	 Rao,	 &	 Vishton,	 1999;	 Smith	 &	Wonnacott,	 2010;	 Wonnacott,	 2011;	
Wonnacott	&	Newport,	2005).	Taalleerders	onthouden	bijvoorbeeld	niet	alleen	
woorden	 en	 combinaties	 van	woorden,	 zoals	moeder	 liep	 langzaam	 en	 vader	
praatte	vriendelijk,	maar	ze	leiden	ook	generalisaties	(regels)	af	zoals	‘lach	-te	of	
lach	-end’	aan	specifieke	items	om	uit	te	drukken	een	handeling	uit	het	verleden	
of	de	manier	waarop	een	handeling	wordt	uitgevoerd.	Bovendien	zijn	leerders	in	
staat	 af	 te	 wijken	 van	 specifieke	 combinaties	 van	 items	 en	 vormen	 ze	 zo	
categorieën	 en	 algemene	 regels:	 bijvoorbeeld,	 Zelfstandig	 Naamwoord-
Werkwoord-Bijwoord	is	een	goed	gevormde	reeks,	waarbij	elke	categorie	een	
vrijwel	 oneindig	 aantal	 specifieke	 items	 kan	 bevatten.	 Dit	 onderzoeksproject	
richtte	zich	op	de	inductieve	stappen	van	het	onthouden	van	specifieke	items,	
naar	 het	 afleiden	 van	 regels	 (of	 statistische	 patronen)	 tussen	 deze	 specifieke	
items	 (in	 onze	 terminologie:	 itemgebonden	 generalisaties),	 en	 ook	 naar	 het	
vormen	 van	 regels	 die	 van	 toepassing	 zijn	 op	 categorieën	 van	 items	
(categoriegebaseerde	generalisatie).	

De	belangrijkste	onderzoeksvragen	van	dit	onderzoeksproject	 zijn	de	
volgende:	

1.	 Zijn	 de	 twee	 vormen	 van	 generalisatie	 de	 uitkomst	 van	 twee	
afzonderlijke	mechanismen,	waarbij	statistisch	leren	resulteert	in	itemgebonden	
generalisaties	op	een	lager	niveau,	en	het	abstract	leren	van	regels	leidt	tot	de	op	
categorie	gebaseerde	generalisaties	van	hogere	orde?	Of	zijn	het	uitkomsten	van	
hetzelfde	mechanisme?	Als	het	maar	één	mechanisme	is,	is	het	dan	een	gefaseerd	
mechanisme	dat	geleidelijk	overgaat	van	de	ene	vorm	van	generalisatie	naar	de	
andere?	Of	is	het	een	abrupte	verschuiving?	
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2.	 Wat	 zijn	 de	 factoren	 die	 de	 verandering	 van	 itemgebonden	 naar	
categoriegebaseerde	generalisatie	sturen?	

Om	 deze	 vragen	 te	 beantwoorden,	 presenteert	 dit	 proefschrift	 een	
nieuw	entropie-	 en	 ruiskanaalcapaciteitsmodel	 (kortom,	 entropiemodel)	 voor	
regelinductie,	 dat	 is	 gebaseerd	 op	 Shannons	 ruiskanaalcoderingstheorie	
(Shannon,	 1948).	 Entropie	 is	 een	 informatietheoretische	 maatstaf	 voor	 de	
hoeveelheid	 en	 complexiteit	 van	 informatie,	 terwijl	 kanaalcapaciteit	 de	
hoeveelheid	 informatie	 (inclusief	 ruis)	 is	 die	 per	 tijdseenheid	 kan	 worden	
overgebracht.	

De	belangrijkste	hypothese	van	het	entropiemodel	is	dat	regelinductie	
een	 coderingsmechanisme	 is	 dat	 geleidelijk	 wordt	 aangedreven	 door	 de	
dynamiek	tussen	een	externe	factor	–	invoer-entropie	–	en	een	interne	factor	–	
kanaalcapaciteit.	We	definiëren	de	 coderingscapaciteit	 van	onze	hersenen	 als	
kanaalcapaciteit	op	computationeel	niveau,	 in	de	zin	van	Marr	(1982),	wat	de	
eindige	snelheid	is	van	informatiecodering	(bits	per	seconde).	Op	algoritmisch	
niveau	 kan	 de	 kanaalcapaciteit	 worden	 ondersteund	 door	 cognitieve	
capaciteiten	 die	 betrokken	 zijn	 bij	 het	 verwerken	 en	 coderen	 van	 informatie,	
zoals	geheugen	en	aandacht.	

Hoofdstuk	 1	 onderzocht	 het	 effect	 van	 de	 eerste	 factor	 van	 het	
entropiemodel	–	inputentropie	–	op	regelinductie.	In	twee	artificiële	grammatica-
experimenten	 werden	 volwassenen	 blootgesteld	 aan	 een	 op	 herhaling	
gebaseerde	 XXY-grammatica	 van	 drie	 lettergrepen	 (bijv.	 daː-daː-li),	 in	 zes	
experimentele	 condities	met	 toenemende	 input-entropie.	 In	het	 geval	 van	een	
XXY-grammatica	 betekent	 itemgebonden	 generalisatie	 het	 afleiden	 van	 een	
gelijk-gelijk-verschillende	 regel	 alleen	 met	 bekende	 lettergrepen	 uit	 de	
aangeboden	 stimuli.	 Er	 werd	 verondersteld	 dat	 een	 toename	 in	 entropie	 de	
tendens	 naar	 een	 meer	 abstracte,	 op	 categorieën	 gebaseerde	 generalisatie	
versterkt	 (d.w.z.	 een	 gelijk-gelijk-verschillende	 regel	 met	 ook	 onbekende	
lettergrepen).	De	resultaten	toonden	aan	dat	wanneer	inputentropie	toeneemt,	
de	 neiging	 om	 naar	 categoriegebaseerde	 generalisatie	 te	 gaan	 geleidelijk	
toeneemt,	wat	bewijs	levert	in	het	voordeel	van	ons	entropiemodel.	

In	 Hoofdstuk	 2	 hebben	 we	 een	 onderzoeksvraag	 behandeld	 in	 de	
context	van	vroege	 taalontwikkeling	zoals	voorspeld	door	het	entropiemodel.	
Omdat	 de	 kanaalcapaciteit	 wordt	 ondersteund	 door	 cognitieve	 capaciteiten,	
zoals	geheugen,	die	zich	ontwikkelen	met	leeftijd,	wordt	aangenomen	dat	baby's	
een	verminderde	kanaalcapaciteit	hebben	in	vergelijking	met	volwassenen.	Zo	
wordt	 voorspeld	 dat	 de	 neiging	 van	 baby’s	 tot	 regelinductie	wordt	 gedreven	
door	minder	inputentropie	dan	de	volwassenen.	

We	 hebben	 met	 behulp	 van	 functionele	 ‘near-infrared	 spectroscopy’	
(fNIRS)	 getest	 of,	 én	 hoe	 zes	maanden	 oude	 baby's	 op	 herhaling	 gebaseerde,	
taalkundige	regelmatigheden	(ABB,	bijv.	"bu	ra	ra")	verwerken	in	vergelijking	
met	 niet-herhalende	 sequenties	 (ABC,	 bijv.	 "bu	 fa	 zo"),	 waarbij	 we	 de	
invoerentropie	(laag	versus	hoog)	manipuleerden.	Er	werd	voorspeld	dat	baby's	
in	staat	zouden	zijn	om	zowel	ABB-	als	ABC-sequenties	te	verwerken,	en	ook	om	
onderscheid	 te	maken	 tussen	deze	 sequenties,	maar	 dat	 ze	 dit	 gemakkelijker	
zouden	doen	onder	omstandigheden	met	hoge	entropie.	
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We	vonden	een	trend	naar	hogere	hersenactivatie	voor	niet-herhalende	
sequenties,	en	ook	hogere	activatie	bij	hoge	entropie.	We	vonden	echter	geen	
verschil	tussen	de	twee	grammatica's,	noch	vonden	we	een	verschil	tussen	de	
lage	en	hoge	entropiecondities.	Deze	resultaten	suggereren	dat	baby’s	van	zes	
maanden	in	staat	zijn	om	zowel	de	herhalende	als	de	niet-herhalende	patronen	
te	verwerken,	waarbij	de	verwerkingskosten	hetzelfde	zijn	voor	beide	patronen.	
Onze	 bevindingen	 zijn	 de	 eerste	 die	 een	 ontwikkelingsverandering	 in	
taalverwerving	onthullen	 tussen	de	 leeftijd	 van	 zes	maanden	en	de	 geboorte,	
waarvoor	eerder	discriminatie	tussen	herhalende	en	niet-herhalende	patronen	
werd	gevonden	(Gervain	et	al.,	2008).	

Hoofdstuk	 3	 onderzocht	 de	 geleidelijke	 overgang	 van	 ‘uit	 het	 hoofd	
leren’	 naar	 itemgebonden	 generalisatie	 en	 categoriegebaseerde	 generalisatie,	
zoals	verondersteld	door	het	entropiemodel.	Om	dit	te	onderzoeken,	hebben	we	
volwassenen	blootgesteld	aan	een	lage	en	een	gemiddelde	entropieversie	van	de	
XXY-grammatica	(uit	hoofdstuk	1),	en	hebben	we	de	hypothese	getest	dat	lage	
inputentropie	 niet	 alleen	het	 uit	 het	 hoofd	 leren	 van	 specifieke	 items	 en	hun	
waarschijnlijkheidsverdeling,	zoals	aanwezig	in	de	input,	vergemakkelijkt,	maar	
ook	 itemgebonden	 generalisatie.	 Ook	 hebben	 we	 gekeken	 naar	 individuele	
verschillen	in	specifieke	componenten	van	de	cognitieve	capaciteiten	waarvan	
we	veronderstelden	dat	 ze	 ten	 grondslag	 liggen	 aan	kanaalcapaciteit,	 oftewel	
expliciete/impliciete	 geheugencapaciteit	 en	 domeinbrede	
patroonherkenningsvaardigheid,	die	op	de	werkgeheugencapaciteit	berust.	

Onze	bevindingen	tonen	aan	dat	een	lage	inputentropie	item-gebonden	
generalisatie	 inderdaad	vergemakkelijkt	en	niet	enkel	het	 leren	van	specifieke	
items.	We	vonden	ook	dat	een	toename	van	de	input-entropie	leidt	tot	een	meer	
categoriegebaseerde	generalisatie.	Bovendien	vonden	we	dat	in	de	conditie	met	
gemiddelde	entropie,	maar	niet	 in	de	conditie	met	lage	entropie,	 leerders	met	
een	 lage	 incidentele	 geheugencapaciteit,	 maar	 met	 een	 hoge	 domeinbrede	
patroonherkenningsvaardigheid	 een	 grotere	 neiging	 vertonen	 tot	
categoriegebaseerde	 generalisatie	 dan	 leerders	 met	 een	 hoge	 incidentele	
memorisatiecapaciteit,	 maar	 met	 een	 lage	 domeinbrede	
patroonherkenningsvaardigheid.	 Deze	 bevindingen	 ondersteunen	 ons	
entropiemodel.	

In	Hoofdstuk	4	hebben	we	ons	entropiemodel	voor	regelinductie	verder	
uitgebreid	 van	 een	 op	 herhaling	 gebaseerde	 XXY-grammatica	 naar	 een	
complexere	aiXbi-grammatica	met	niet-aangrenzende	(gerelateerde)	elementen	
(bijv.	rɑk_nɑspu_tuf).	In	dit	type	grammatica	voorspelt	een	specifiek	item	a	(bijv.	
rɑk)	altijd	een	specifiek	item	b	(bijv.	tuf),	en	vormen	een	vast	ai_bi-frame	met	een	
tussenliggend	 element	 uit	 de	 categorie	 van	 een	 grote	 variatie	 aan	 X'en.	 We	
veronderstelden	 dat,	 hoewel	 hoge	 input-entropie	 categoriegebaseerde	
generalisatie	voor	de	X-categorie	bevordert,	het	de	itemgebonden	generalisatie	
voor	de	specifieke	ai_bi-afhankelijkheden	hindert.	Het	effect	van	een	toename	in	
de	entropie	op	het	leren	van	dit	type	grammatica	is	dus	niet	een	geleidelijk	betere	
prestatie	 zoals	we	 vonden	 voor	 de	 XXY-grammatica	 (Hoofdstuk	 1	 en	 3).	 Ons	
entropiemodel	 verfijnt	 eerdere	 theorieën	 die	 beweerden	 dat	 een	 grote	
setgrootte	 van	 de	 tussenliggende	 X'en	 tot	 het	 beter	 leren	 van	 dit	 soort	 niet-
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aangrenzende	afhankelijkheden	zou	leiden	(Gómez,	2002;	Gómez	&	Maye,	2005).	
We	veronderstelden	dat	niet	alleen	de	setgrootte	is,	maar	de	inputentropie	het	
leren	moduleert.	

We	hebben	volwassenen	blootgesteld	aan	drie	entropiecondities	–	laag,	
gemiddeld	 en	 hoog	 –	 van	 een	 niet-aangrenzende	 afhankelijkheid	 aiXbi-
grammatica	vergelijkbaar	met	die	van	Gómez	(2002),	terwijl	de	setgrootte	van	
tussenliggende	 X'en	 gelijk	 werd	 gehouden.	 Zoals	 voorspeld,	 zagen	 we	 dat	
deelnemers	 niet-aangrenzende	 afhankelijkheden	 beter	 leerden	 en	
generaliseerden	 in	 omstandigheden	 met	 de	 hoogste	 entropie	 dan	 in	
omstandigheden	met	gemiddelde	en	lage	entropie.	Bovendien	vonden	we	een	U-
vormig	patroon	in	het	leren	van	niet-aangrenzende	afhankelijkheden	als	functie	
van	toenemende	inputentropie,	zonder	dat	we	bewijs	zagen	voor	het	succesvol	
leren	 in	 de	medium-entropieconditie,	 wat	 in	 lijn	 is	met	 eerdere	 bevindingen	
(Onnis	et	al.,	2003;	2004).	

In	 Hoofdstuk	 5	 hebben	 we	 eerst	 theoretisch	 uiteengezet	 hoe	
kanaalcapaciteit	en	snelheid	van	informatieoverdracht	kunnen	worden	geschat	
in	een	kunstmatige	taalleeromgeving	voor	regelinductie.	Daarna	hebben	we	de	
tijdsvariabele	 van	 de	 kanaalcapaciteit	 direct	 gemanipuleerd	 in	 twee	 andere	
artificiële	grammatica-experimenten	met	volwassenen.	

In	 het	 bijzonder	 hebben	we	 de	 bitsnelheid	 van	 informatieoverdracht	
verhoogd	 niet	 door	 simpelweg	 de	 tijd	 tussen	 stimuli	 met	 een	 willekeurige	
hoeveelheid	te	verminderen,	maar	met	een	factor	die	we	hebben	berekend	op	
basis	van	gegevens	uit	onze	eerdere	experimenten	(hoofdstuk	1),	door	gebruik	
te	maken	van	de	kanaalcapaciteit	formule.	In	het	eerste	experiment	stelden	we	
volwassenen	 bloot	 aan	 de	 laagste	 entropieversie	 van	 de	 XXY-grammatica	 uit	
hoofdstuk	1,	ofwel	in	een	conditie	met	lage	transmissiesnelheid	of	een	met	hoge	
transmissiesnelheid.	 In	het	 tweede	experiment	 stelden	we	volwassenen	bloot	
aan	een	lage	entropieconditie	van	de	aiXbi-grammatica	(uit	hoofdstuk	4),	de	ene	
groep	 met	 een	 lage	 transmissiesnelheid	 en	 een	 andere	 groep	 met	 hoge	
transmissiesnelheid.	

We	vonden	dat	wanneer	we	de	bitsnelheid	van	informatieoverdracht	in	
een	 op	 herhaling	 gebaseerde	 XXY-grammatica	 verhoogden,	 de	 neiging	 van	
leerders	tot	categoriegebaseerde	generalisatie	toenam,	zoals	voorspeld	door	ons	
model.	 Omgekeerd	 vonden	 we	 dat	 een	 verhoogde	 bitsnelheid	 van	
informatieoverdracht	 in	 een	 complexere	 aXb-grammatica	 met	 niet-
aangrenzende	 afhankelijkheden	 in	 het	 algemeen	 leidde	 tot	 slechtere	
leerresultaten.	 Deze	 uitkomsten	 zijn	 in	 lijn	 met	 de	 voorspellingen	 van	 ons	
entropiemodel.	

In	 Hoofdstuk	 6	 hebben	 we	 gekeken	 naar	 het	 effect	 van	 de	 ruis-
kanaalcapaciteit	 (Shannon,	 1948),	 door	 ruis	 (d.w.z.	 willekeurig	 stimulus-
irrelevant	materiaal)	op	de	achtergrond	toe	te	voegen,	terwijl	we	de	deelnemers	
blootstelden	 aan	 de	 laagste	 entropieversie	 van	 de	 XXY-grammatica	 uit	
Hoofdstuk	 1.	 In	 de	 ene	 conditie	 hadden	 de	 leerders	 een	 extra	 taak	 naast	 het	
luisteren	naar	de	XXY-taal,	namelijk	het	letten	op	en	onthouden	van	specifieke	
items	 uit	 het	 geluidsmateriaal	 (simultaantaakconditie),	 terwijl	 deelnemers	 in	
een	andere	conditie	geen	extra	taak	kregen	tijdens	de	ruis	(afleidingsconditie).	
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We	 ontdekten	 dat	 toegevoegde	 signaal-irrelevante	 entropie	 (ruis)	 de	
neiging	 naar	 categoriegebaseerde	 generalisatie	 bevordert,	 ongeacht	 de	 lage	
entropie	van	het	signaal	in	de	input,	maar	cruciaal	enkel	wanneer	er	geen	extra	
taak	volbracht	hoefde	te	worden	tijdens	het	ruismateriaal.	
	 Hoofdstuk	7	schetst	het	eerste	gezamenlijke	informatietheoretische	en	
thermodynamische	model	van	regelinductie.	Concreet	suggereerden	we	met	dit	
innovatieve	perspectief	dat	de	tweede	wet	van	de	thermodynamica	de	vraag	kan	
beantwoorden	waarom	regelinductie	plaatsvindt,	 terwijl	de	constructieve	wet	
van	 de	 thermodynamica	 de	 vraag	 kan	 beantwoorden	 hoe	 regelinductie	
plaatsvindt.	 	



An	Entropy	and	Noisy-Channel	Model	for	Rule	Induction	

 

290 

 

	



	 291 

	

About	the	author	

	 	 	

Silvia	Radulescu	was	born	 in	Ploiești,	Romania.	Between	1999	and	2003,	 she	
studied	Philology	at	the	University	of	Letters	in	Bucharest	and	graduated	with	a	
Major	in	Romanian	Language	and	Literature,	and	a	Minor	in	English	Language	
and	Literature.	In	2011,	she	started	a	2-year	Research	Master	program	at	Utrecht	
University,	entitled	Linguistics	–	the	Study	of	the	Language	Faculty.	She	graduated	
with	a	Major	in	Psycholinguistics	and	obtained	a	Master’s	Degree	cum	laude	in	
Linguistics	(Research).	After	graduating,	she	started	her	own	scientific	research	
on	the	entropy	model	presented	in	this	dissertation	as	a	guest	PhD	candidate	at	
the	Utrecht	University.	In	2016,	she	was	awarded	a	4-year	research	grant	by	the	
Netherlands	 Organization	 for	 Scientific	 Research	 (NWO)	 to	 continue	 her	
research	as	a	PhD	candidate	at	Utrecht	University.	The	results	of	this	research	
program	are	presented	in	this	dissertation.	


