Antimicrobial resistance monitoring

in Escherichia coli from livestock

Evaluation & interpretation

Ayla Hesp






Antimicrobial resistance monitoring

in Escherichia coli from livestock

Evaluation & interpretation

Ayla Hesp

2021



ISBN: 978-94-6423-504-3

Ayla Hesp, DVM
PhD thesis, Utrecht University, Utrecht, the Netherlands (2021)

Cover, photos and design: Jelle de Boer and Ayla Hesp
Lay-out: ProefschriftMaken || www.proefschriftmaken.nl



Antimicrobial resistance monitoring

1in Escherichia coli from livestock

Evaluation & interpretation

Monitoring van antimicrobiéle resistentie
in Escherichia coli uit landbouwhuisdieren

Evaluatie & interpretatie

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht
op gezag van de
rector magnificus, prof.dr. H.R.B.M. Kummeling,
ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op
donderdag 11 november 2021 des middags te 12.15 uur

door

Ayla Hesp

geboren op 7 december 1986
te Amsterdam



Promotoren:
Prof. dr. D.J. Mevius
Prof. dr. ir. G. van Schaik

Copromotor:
Dr. K.T. Veldman

Dit proefschrift werd mogelijk gemaakt met financiéle steun van Wageningen
Bioveterinary Research en Infection & Immunity Utrecht



Contents

Chapter 1 General introduction 7

PartI: Evaluation of antimicrobial resistance monitoring 15
in livestock

Chapter 2 Monitoring antimicrobial resistance trends in 17

commensal Escherichia coli from livestock, the
Netherlands, 1998 to 2016
Chapter 3 Assessment of evaluation tools for integrated 45
surveillance of antimicrobial use and resistance
through selected case studies

PartII: Interpretation of antimicrobial resistance 75
monitoring data

Chapter 4 Antimicrobial resistance clusters in commensal 77
Escherichia coli from livestock

Chapter 5 Antimicrobial resistance prevalence in commensal 99

Escherichia coli from broilers, fattening turkeys,
fattening pigs and veal calves in European countries
and association with antimicrobial use at country level
Chapter 6 Antimicrobial resistance monitoring in commensal 123
and clinical Escherichia coli from broiler chickens:
differences and similarities

Partlll:  The use of whole-genome sequencing to monitor 145
antimicrobial resistance
Chapter 7 Latent class analysis to assess whole-genome 147

sequencing versus broth microdilution for monitoring
antimicrobial resistance in livestock

Chapter 8 Whole-genome phylogeny, resistance genes and 165
plasmids in commensal Escherichia coli from livestock

Chapter 9 General discussion 183
Summary 197
Samenvatting in het Nederlands 203
Dankwoord 211

About the author 217






Chapter 1

General introduction




Chapter 1

General introduction

Effective antimicrobials are essential for adequate healthcare (WHO, 2015).
Unfortunately, worldwide antimicrobial resistance (AMR) threatens this
effectiveness (Walsh, 2003; Lai et al., 2014; Ventola, 2015), caused by the use
of antimicrobials in humans, animals and in other applications (Walker et al.,
2009; Changetal,, 2015; Hoelzer et al., 2017). The possibilities for development
of antimicrobials are limited, and new antimicrobials will not become widely
available (Blaskovich et al., 2017; Hutchings et al,, 2019). This leaves prudent
antimicrobial use (AMU) and other interventions to limit existing AMR as an
important strategy (WHO, 2015). Therefore, AMR is monitored as a public
health hazard, to enable the development of interventions by policy makers.
Production animals are arelevant reservoir of AMR, because of AMU in livestock,
and because AMR may be transmitted to humans directly, or indirectly via the
food chain or the environment (Michael et al., 2014; Chang et al., 2015; Hoelzer
et al., 2017). This thesis is about the monitoring of AMR in livestock as public
health hazard in indicator organism Escherichia coli.

Definitions of monitoring and surveillance

Monitoring provides animal- or public health data from defined populations
by systemic collection, analysis, interpretation and dissemination of results
(Hoinville et al.,, 2013). Surveillance is defined as ‘continuous or repeated
measurement, providing descriptive information that is linked with action to
mitigate risk’ (Hoinville et al., 2013). The main difference with monitoring is that
surveillance results are linked to interventions; there is a defined action plan
in advance (Hoinville et al., 2013). Another relevant classification is active and
passive surveillance. In ‘active surveillance’ investigators are actively collecting
samples or data (Bisdorff et al., 2017), in ‘passive surveillance’ information
comes to organisations by other means than active collection (Hoinville et
al,, 2013), for example the submissions of clinical samples from which data is
analysed for surveillance purposes.

Inthe Netherlands, AMR monitoringresults arereported yearly in Monitoring
of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands
(MARAN)(Figure 1)(MARAN, 2021) and by the European Food Safety Authority
(EFSA) at European level (EFSA, 2018).
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— ampicillin — cefotaxime —— gentamicin

—— tetracycline —— sulfamethoxazole trimethoprim

—— ciprofloxacin —— chloramphenicol colistin

Figure 1. Trends in proportion of resistance (%) in Escherichia coli isolated from broilers,
slaughter pigs, veal calves and dairy cattle in the Netherlands, 1998-2020

Adapted from MARAN, 2021. Veldman KT, Wit B, Franz E, Heederik D, 2021. Monitoring of
Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2020.

This monitoring program started in 1998, following recommendations of the
Invitational European Union Conference ‘The Microbial Threat, with the aim
‘to monitor evolution and effects of interventions, through establishment of
accurate surveillance systems on antimicrobial resistance in the human and
veterinary sector’ (Frimodt-Moller, 2004). E. coli was chosen as the indicator
organism for gut microbiota in order to monitor the effects of antimicrobials
with Gram-negative spectra. This program has long been ‘monitoring’: no
intervening actions were defined based on the program. However, the rising
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Chapter 1

AMR trends found by this monitoring have initiated interventions (Mevius
and Heederik, 2014), and the consequences of observing AMR in livestock
have changed. Monitoring has (partly) shifted to surveillance. MARAN can
be considered active surveillance, because samples are actively collected
(Bisdorff et al., 2017). Some surveillance components of the current program
can be defined as hazard-specific surveillance: specific resistance is actively
screened for such as Extended-Spectrum Beta Lactamase (ESBL)- or AmpC- or
carbapenemase-producing Enterobacteriaceae. Risk-based surveillance takes
into account the probability of occurrence and magnitude of the biological
and economic consequence of health hazards, to plan, design and interpret
the results obtained from surveillance systems (Hoinville, 2013; Alban et al,,
2016). For AMR, this is applicable when diseased animals instead of healthy
animals are sampled to monitor resistance. In the rest of the thesis, we will
use ‘monitoring’ as the most appropriate definition for the activities described,
unless otherwise indicated.

Current AMR monitoring activities & gaps of knowledge

In the European Union, monitoring of AMR in animals as a public health hazard
is performed under the Directive 2003 /99/EC, and decisions 2013/652/EU and
2020/1729/EU. The directive obliges member states of the EU to monitor AMR
in commensal E. coli and food-borne pathogens Salmonella and Campylobacter
isolated from poultry, pigs and cattle. Guidelines on sample design, laboratory
analytical methods for antimicrobial susceptibility testing (AST) and how
to report data are provided in EU legislation 2013/652/EU and prescribed
by the European Food Safety Authority (EFSA, 2019). The international
legislation has helped to define the basic requirements for harmonisation and
standardisation of AMR monitoring. Elements such as the sampling strategy
and the microbiological methods are prescribed by legislation; they are ‘input-
based’. The trend is that the design of surveillance is left to experts, but output
has to meet minimum requirements (Cameron, 2012). This ‘output-based
surveillance’ creates room for improvement of prescribed (‘input-based’)
surveillance (Cameron, 2012).

The evaluation and quantitative interpretation of AMR monitoring results is
not prescribed by legislation but is challenging and will become more complex
when more data is available. The updated EU legislation in 2020 has allowed
whole-genome sequencing (WGS) as alternative method to culture-based AST
in AMR monitoring (2020/1729/EU). So far, relevant statistical methods to
validate the results of WGS-based AST versus culture-based AST were lacking.
Ideally, the effects of interventions such as (reductions in) AMU are reflected in
AMR monitoring data. The analyses so far have not allowed optimal evaluation
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and interpretation of these effects. Also, evaluation of AMR monitoring itself can
be optimized. Existing evaluation tools for monitoring of animal health could be
applied to evaluate AMR monitoring, but to do so scientific expertise needs to be
built. Active surveillance of AMR in healthy animals versus passive surveillance
of AMR in diseased animals has not been evaluated. The relation between AMR
in commensal and clinical bacterial isolates from the same animal population is
mostly unknown.

Objective and outline of this thesis

The first aim of this thesis is to evaluate results of AMR monitoring commensal
E. coli, with statistical methods and by assessing evaluation tools. Chapter 2
quantifies AMR trends in data from the Netherlands, 1998 to 2016, in broilers,
slaughter pigs, and veal calves. Chapter 3 assesses different tools which can be
used to evaluate AMR monitoring in different countries.

The second aim is to optimize the interpretation of AMR monitoring
outcome. In Chapter 4, a multivariate cluster analysis was applied to AMR
monitoring data from the Netherlands, 2007 to 2018, in broilers, slaughter
pigs, veal calves, and dairy cows. This chapter aims to summarise AMR over
multiple antimicrobial classes, as arguments for development of objective AMR
monitoring outcome indicators. In Chapter 5, AMR is described in commensal
E. coli from livestock in several European countries and the relationship with
AMU and the EFSA outcome indicators was evaluated. Chapter 6 compares the
active monitoring of non-wildtype susceptibility in commensal E. coli isolated
from healthy animals with passive monitoring of clinical resistant E. coli from
diseased broilers in the Netherlands, 2014 to 2019.

The third aim of this thesis to assess the value and test validity of WGS
(Illumina high-throughput sequencing) to monitor AMR in livestock. In Chapter
7 Bayesian latent class analysis is used to evaluate the accuracy of WGS-based
AST versus culture-based AST without a gold standard. In Chapter 8 we describe
the benefits of WGS for monitoring purposes (apart from detection of resistance
genes) in the same commensal E. coli isolates from livestock. Finally, the General
discussion (Chapter 9) discusses the meaning of the findings in this thesis for
future evaluation and interpretation of AMR monitoring in livestock.

11

i
=
Q
o
Q
3]
<=
o




Chapter 1

References

Alban, L., Rugbjerg, H., Petersen, ].V, Nielsen, L.R., 2016. Comparison of risk-based versus random
sampling in the monitoring of antimicrobial residues in Danish finishing pigs. Preventive
veterinary medicine 128, 87-94.

Bisdorff, B., Schauer, B., Taylor, N., Rodriguez-Prieto, V., Comin, A., Brouwer, A, Dérea, F, Drewe, .,
Hoinville, L., Lindberg, A., Martinez Avilés, M., Martinez-Lopez, B., Peyre, M., Pinto Ferreira,
]., Rushton, J., G, V.AN.S,, Stirk, K.D., Staubach, C., Vicente-Rubiano, M., Witteveen, G.,
Pfeiffer, D., Hasler, B., 2017. Active animal health surveillance in European Union Member
States: gaps and opportunities. Epidemiol Infect 145, 802-817.

Blaskovich, M.A,, Butler, M.S., Cooper, M.A.,, 2017. Polishing the tarnished silver bullet: the quest
for new antibiotics. Essays Biochem 61, 103-114.

Cameron, A.R, 2012. The consequences of risk-based surveillance: Developing output-based
standards for surveillance to demonstrate freedom from disease. Preventive veterinary
medicine 105, 280-286.

Chang, Q., Wang, W,, Regev-Yochay, G., Lipsitch, M., Hanage, W.P, 2015. Antibiotics in agriculture
and the risk to human health: how worried should we be? Evol Appl 8, 240-247.

EFSA, 2018.European Food Safety Authority and European Centre for DiseasePrevention and
Control. The European Union summary report on antimicrobial resistance inzoonotic and
indicator bacteria from humans, animals and food in 2016. EFSA Journal 2018;16(2):5182,
270pp. https://doi.org/10.2903 /j.efsa.2018.5182.

EFSA, 2019. Aerts, M., Battisti, A., Hendriksen, R., Kempf, I, Teale, C., Tenhagen, B.-A., Veldman,
K, Wasyl, D., Guerra, B., Liébana, E., Thomas-Lépez, D., Belceil, P-A., 2019. Technical
specifications on harmonised monitoring of antimicrobial resistance in zoonotic and
indicator bacteria from food-producing animals and food. EFSA Journal 17, e05709.

Frimodt-Moller, N., 2004. Microbial Threat--The Copenhagen Recommendations initiative of the
EU. ] Vet Med B Infect Dis Vet Public Health 51, 400-402.

Hoelzer, K., Wong, N., Thomas, ]., Talkington, K., Jungman, E., Coukell, A, 2017. Antimicrobial drug
use in food-producing animals and associated human health risks: what, and how strong,
is the evidence? BMC Vet Res 13, 211.

Hoinville, L.J., 2013. Animal Health Surveillance Terminology Final Report from Pre-ICAHS
Workshop. http://www.fp7-risksur.eu/sites/default/files/partner_logos/icahs
workshop-2011_surveillance_tewrminology_report V1.2.pdf.

Hoinville, L.J., Alban, L., Drewe, ]J.A., Gibbens, ].C., Gustafson, L., Hasler, B., Saegerman, C., Salman,
M., Stérk, K.D., 2013. Proposed terms and concepts for describing and evaluating animal-
health surveillance systems. Preventive veterinary medicine 112, 1-12.

Hutchings, M.I,, Truman, A.W., Wilkinson, B., 2019. Antibiotics: past, present and future. Current
Opinion in Microbiology 51, 72-80.

12



General introduction

Lai, C.C, Lee, K, Xiao, Y, Ahmad, N., Veeraraghavan, B., Thamlikitkul, V., Tambyah, P.A., Nelwan,
R.H., Shibl, AM., W, ].]., Seto, W.H., Hsueh, PR., 2014. High burden of antimicrobial drug

Chapter 1

resistance in Asia. ] Glob Antimicrob Resist 2, 141-147.
MARAN, 2021. Veldman KT, Wit B, Franz E, Heederik D, 2021. Monitoring of Antimicrobial
Resistance and Antibiotic Usage in Animals in the Netherlands in 2020.

Mevius, D., Heederik, D., 2014. Reduction of antibiotic use in animals “let’s go Dutch”. Journal fiir

Verbraucherschutz und Lebensmittelsicherheit 9, 177-181.

Michael, C.A.,, Dominey-Howes, D., Labbate, M., 2014. The antimicrobial resistance crisis: causes,
consequences, and management. Front Public Health 2, 145.

Ventola, C.L., 2015. The antibiotic resistance crisis: part 1: causes and threats. P t 40, 277-283.

Walker, B., Barrett, S., Polasky, S. Galaz, V. Folke, C., Engstréom, G. Ackerman, F, Arrow, K,
Carpenter, S., Chopra, K., Daily, G., Ehrlich, P, Hughes, T, Kautsky, N., Levin, S., Maler, K.-G.,
Shogren, ]., Vincent, ., Xepapadeas, T., de Zeeuw, A., 2009. Looming Global-Scale Failures
and Missing Institutions. Science 325, 1345-1346.

Walsh, C., 2003. Where will new antibiotics come from? Nat Rev Microbiol 1, 65-70.

WHO, 2015. Global action plan on antimicrobial resistance. Retrieved from https://www.who.

int/antimicrobial-resistance/publications/global-action-plan/en/

13






Part I

Evaluation of antimicrobial resistance
monitoring in livestock






Chapter 2

Monitoring antimicrobial resistance
trends in commensal Escherichia

coli from livestock, the Netherlands,
1998 to 2016

\ Hesp A, Veldman K, van der Goot ], Mevius D, van Schaik G.

Monitoring antimicrobial resistance trends in commensal

\ Escherichia coli from livestock, the Netherlands, 1998 to 2016.
Euro Surveill. 2019 Jun;24(25):1800438. doi: 10.2807/1560-
7917.ES.2019.24.25.1800438. PMID: 31241037; PMCID:
PMC6593905.

- https://doi.org/10.2807/1560-7917.E5.2019.24.25.1800438
. " -



Chapter 2

Abstract

Background: Monitoring of antimicrobial resistance (AMR) in animals is
essential for public health surveillance. To enhance interpretation of monitoring
data, evaluation and optimisation of AMR trend analysis is needed.

Aims: To quantify and evaluate trends in AMR in commensal Escherichia coli,
using data from the Dutch national AMR monitoring programme in livestock
(1998-2016).

Methods: Faecal samples were collected at slaughter from broilers, pigs and
veal calves. Minimum inhibitory concentration values were obtained by broth
microdilution for E. coli for 15 antimicrobials of eight antimicrobial classes.
A Poisson regression model was applied to resistant isolate counts, with
explanatory variables representing time before and after 2009 (reference
year); for veal calves, sampling changed from 2012 represented by an extra
explanatory variable.

Results: Resistant counts increased significantly from 1998-2009 in broilers
and pigs, except for tetracyclines and sulfamethoxazole in broilers and
chloramphenicol and aminoglycosides in pigs. Since 2009, resistant counts
decreased for all antimicrobials in broilers and for all but the phenicols in pigs.
In veal calves, for most antimicrobials no significant decrease in resistant counts
could be determined for 2009-16, except for sulfamethoxazole and nalidixic
acid. Within animal species, antimicrobial-specific trends were similar.
Conclusions: Using Dutch monitoring data from 1998-2016, this study
quantified AMR trends in broilers and slaughter pigs and showed significant
trend changes in the reference year 2009. We showed that monitoring in
commensal E. coli is useful to quantify trends and detect trend changes in AMR.
This model is applicable to similar data from other European countries.
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Monitoring antimicrobial resistance trends in Dutch livestock, 1998-2016

Introduction

Antimicrobial resistance (AMR) is recognised as one of the most urgent health
issues worldwide [1-3]. Resistant bacteria emerge, evolve, persist and spread
in livestock as animal reservoirs [4] selected by antimicrobial use (AMU) [5].
AMR can be transferred from animals to humans by direct contact or via the
food chain and environment [4]. Therefore, monitoring of AMR in animals is an
essential aspect of public health surveillance.

In 1998, a monitoring programme of AMR in livestock started in the
Netherlands (NL). The programme was initiated following recommendations
given at the Invitational European Union (EU) Conference ‘The Microbial
Threat’ hosted by the Danish Government in Copenhagen in 1998 [6]. The
recommendations were ‘to monitor evolution and effects of interventions,
through establishment of accurate surveillance systems on antimicrobial
resistance in the human and veterinary sector’ [7]; Escherichia coli was chosen
as the indicator organism for gut microbiota in order to monitor the effects
of antimicrobials with Gram-negative spectra. Since then, results have been
reported annually in the report of the Monitoring programme of antimicrobial
resistance and antibiotic usage in animals in the Netherlands (MARAN) [8].
From 1998 to 2009, increasing proportions of resistant isolates were observed
for several antimicrobial classes, including third generation cephalosporins
and fluoroquinolones, as well as high prevalence of multidrug-resistant isolates
(resistant to three or more antimicrobial classes) in broilers, slaughter pigs and
veal calves [9].

These findings together with high AMU in livestock compared with other
European countries resulted in drastic policy changes [9]. In 2010, the Dutch
government ordered the veterinary sector to reduce overall AMU sales with
50% within 4 years. A series of mandatory targets was set, starting with a 20%
AMU reduction for livestock by 2011. By 2013, an additional reduction of 30%
should be observed. In 2012, this target was renewed to 70% reduction by 2015
for total livestock production. The government set 2009 as reference year for
this reduction target [10]. The first two targets were achieved in 2013 through
a joint effort between livestock sectors, farmers and veterinarians but the 70%
target has not been fully achieved in 2018. In 2016, total antimicrobial sales for
veterinary use in NL had decreased by 64% compared with 2009, as reported by
the Netherlands Veterinary Medicines Institute (SDa) [11]. During this period,
trends in AMR and potential effects of AMU-interventions were monitored and
reported in MARAN.

So far, no formal statistical methods have been applied for trend analysis
of Dutch monitoring data from livestock. Trends were typically evaluated by
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Chapter 2

visual inspection of resistant proportions with confidence intervals (CIs). And
to our knowledge, only a limited number of studies have been conducted to
quantify trends in AMR monitoring data from livestock. For example, in 2015,
a study by Hanon et al. reported resistance trends in commensal E. coli in the
Belgium monitoring programme between 2011-14 [12]. In 2018, a descriptive
trend analysis was performed by Boireau et al. to look at resistance in animal
pathogens between 2002-15 [13].

Evaluation is needed of current statistical methods to optimise AMR
monitoring in animals and enhance interpretation of monitoring data. The
aim of this study, therefore, was to evaluate whether AMR trends could be
quantified and changes detected in Dutch monitoring data from 1998 to 2016.
We developed a model to quantify AMR trends over time relative to a chosen
reference year in which a trend change may have occurred. Here, we describe
the results of our evaluation and provide recommendations for quantitative
trend analysis of AMR monitoring data.

Methods

Animal sampling and monitoring activities
In the Dutch monitoring programme, individual caecal samples are collected
annually by the Netherlands Food and Consumer Product Safety Authority
(NVWA) from broilers, pigs and veal calves in slaughterhouses. Broilers and
pigs have been sampled since 1998, veal calves since 2005. Between 2005 and
2011, sampling in veal calves started with pooled faecal samples taken at farms,
but from 2012 calves were sampled individually at slaughter. Since 2014, when
AMR monitoring in commensal E. coli from livestock became mandatory by EU
legislation, caecal samples have been taken from all prescribed animal species.
In the NL, ca 300 E. coli isolates are collected per animal species annually,
which is more than the EU prescribed yearly sampling of 170 isolates per
animal species. A two-stage random sampling procedure is followed to ensure
that one animal per batch from one herd/flock is sampled and to minimise
the risk of clustering as result of multiple samples from the same herd. First,
all slaughter batches within a slaughterhouse are stratified (proportional to
annual throughput of slaughtered animals) and one slaughter batch is randomly
selected. Second, one animal is randomly selected from this slaughter batch for
sampling.

Bacterial isolation and susceptibility testing
The terms ‘resistant’ and ‘resistance’ in this study refer to non-wild type
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susceptibility, based on epidemiological cut-off (ECOFF) values as defined
by The European Committee on Antimicrobial Susceptibility Testing [14]. No
selective media were used to enhance detection of resistant isolates in this
study. From each faecal sample, E. coli was isolated on MacConkey agar and one
colony was randomly selected and identified as E. coli (biochemically by Indole
test before 2012 and by matrix-assisted laser desorption/ionisation time-of-
flight after 2012). Minimum inhibitory concentrations (MICs) were determined
with broth microdilution, according to ISO 20776-1:2006, by commercially
available microtitre plates (Sensititre EUVSEC by Thermo Scientific, East
Grinstead, United Kingdom). Before antimicrobial panels were prescribed by
European Food Safety Authority (EFSA) in 2008 [15] and EU-legislation in 2013,
panels were periodically adjusted to improve efficiency; 10 different panels
were used from 1998 to 2016. Some antimicrobials were replaced by others
and MIC ranges were changed. Nevertheless, antimicrobials of relevant groups
were continuously present. Amoxicillin and ampicillin were representatives
of aminopenicillins; Cefotaxime and ceftazidime were representatives of
cephalosporins. Gentamicin, neomycin and kanamycin were representatives
of aminoglycosides. Tetracyclines were represented by doxycycline and
tetracycline. Sulfamethoxazole and trimethoprim were representatives of
folate pathway inhibitors. Amphenicols were represented by chloramphenicol
and florfenicol. Ciprofloxacin represented the fluoroquinolones, nalidixic acid
represented the quinolones.

An exception is colistin; before 2010, colistin was not in antimicrobial
panels, or without sufficient MIC ranges to detect phenotypic colistin-resistance.
Supplement S1, Table S1 gives an overview of panels and MIC ranges.

Between 1998 and 2016, the 12,491 isolates included in this study were
collected and analysed at the Dutch National Reference Laboratory (NRL) for
monitoring AMR in animals, at Wageningen Bioveterinary Research (WBVR,
Lelystad, NL). Of which, 5,021 isolates were from broilers (1998-2016), 4,809
from slaughter pigs (1998-2016) and 2,651 from veal calves (2005-16). In the
year 2000 no isolates were collected for any species.

Statistical analysis of trends in resistant counts

All statistical analyses in this study were performed in R version 3.3.3 (R
Foundation, Vienna, Austria). Yearly resistant isolate counts (n) were aggregated
separately for each antimicrobial per species (Supplement S1, Tables S2, S3 and
S4), and exact 95% confidence intervals (Cls) for the counts were calculated,
using yearly total numbers of isolates tested (N). Regression models were
applied using the glm() function in R and models were selected by comparison
of Akaike’s Information Criterion (AIC).
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The best fitting model for our purpose was a generalised linear model with
Poisson distribution and a log link function (Poisson regression) for yearly
resistance counts (n), with the log of the total number of strains per year (N) as
offset. In our model, trends in AMR were modelled relative to a reference year
for all animal species, to specifically test whether a trend change was observed.
Two explanatory numerical variables were used: ‘time in years 1998-2009 until
start of AMU interventions’ (x1) and ‘time in years 2009-2016 since start of
AMU interventions’ (x2). The notation of the x-variables were:

x1 Time in years until reference year: -11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0, 0,0, 0, 0,0, 0, 0
x2 Time in years since reference year: 0, 0,0, 0,0,0,0,0,0,0,0,0,1, 2,3,4,5,6,7

The chosen reference year in the model was ‘0’ in both explanatory variables,
making this year the model intercept and the estimate for the mean resistant
proportion in the year 2009. Estimates for x1 and x2 indicated whether a
significant trend change occurred. The exponent of the estimates gave incidence
rate ratios (IRRs), which quantified the mean increase or decrease per year,
an IRR of 1 indicating the mean change of the resistant proportion per year is
zero (no trend), an IRR > 1 indicating a mean increase over time and an IRR< 1
a mean decrease over time. This specific notation made the model flexible to
analyse trend changes. By varying x1 and x2 and comparing model fit, we could
also assess in which year a trend change had most likely taken place. Only results
with 2009 as reference year are presented here, because this was set as index
year by the government and to measure AMU reduction by the Netherlands
Veterinary Medicines Institute [11] and was sufficient to illustrate our method.
The 95% Cls for IRRs were calculated as were Cls for predicted values, using the
inverse link-function.

To verify our method, we compared it with a generalised linear model with
binomial distribution, using the same notation for x1 and x2. The Poisson model
had lower AICs for most data. Goodness-of-fit was tested using the deviance chi-
squared goodness-of-fit test, and assessing scaled deviances (with a dispersion
parameter of 1; a scaled deviance of > 2 indicated overdispersion and a scaled
deviance of < 0.5 indicated underdispersion). With overdispersion, the variance
of the count is much larger than the mean, a common problem with count
data. For a few antimicrobial-species combinations model fit was suboptimal
i.e. Poisson’s assumptions were not met. For cases with over/underdispersed
data, a negative binomial or binomial distribution was applied, respectively, to
improve model fit.

As the sampling of veal calves changed in 2011, an extra variable was added
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to the model to detect possible effects of this sampling change. This variable x3
was ‘0’ until 2011 and ‘1’ from 2012.

Colistin resistance data was only available since 2010 (Supplement S1,
Table S1), and was analysed with Poisson regression for 2010-16 for broilers
and slaughter pigs, with x’ representing time in years.

The following antimicrobials from the same class for which E. coli is
considered to be cross-resistant: amoxicillin/ampicillin and doxycycline/
tetracycline and neomycin/kanamycin [16] were modelled as if being equal.

Results

Broilers

Between 1998 and 2009 (x1), there were statistically significant increasing
resistance trends for all antimicrobials (range IRR: 1.04-1.30), except for
tetracyclines (IRR: 1.0; 95% CI: 0.99-1.02; p = 0.56) and sulfamethoxazole
(IRR:1.0; 95% CI: 0.98-1.03; p = 0.69). Between 2009 and 2016 (x2), significant
decreasing resistance trends were observed for all antimicrobials in broilers
(range IRR: 0.66-0.95) (Table 1 Figure 1).

TABLE 1. Estimates for antimicrobial resistance trends in yearly resistant counts of
Escherichia coli from broilers, for time in years before (1998-2009)* and after (2009-
2016)" antimicrobial use interventions, the Netherlands, 1998-2016

Antimicrobial Variable Estimate | P value* IRR? Scaled
(95% CI) deviance®
(0.5<>2)
Amoxicillin/ Intercept -0.27 0.00 0.76 (0.71-0.81) 1.21
ampicillin x1 0.06? 0.00 1.06 (1.05-1.07)
X2 -0.06° 0.00 0.94 (0.93-0.96)
Cefotaxime Intercept -1.53 0.00 0.22 (0.19-0.25) 2.68
x1 0.21 0.00 1.24 (1.19-1.29)
x2 -0.42 0.00 0.66 (0.61-0.71)
Ceftazidimef Intercept -1.59 0.00 0.20 (0.17-0.24) 1.55
x1 0.24 0.00 1.27 (1.20-1.35)
x2 -0.39 0.00 0.67 (0.63-0.72)
Gentamicin Intercept -2.20 0.00 0.11 (0.09-0.13) 1.93
x1 0.12 0.00 1.13 (1.08-1.17)
x2 -0.13 0.00 0.88 (0.83-0.92)
Doxycycline/ Intercept -0.48 0.00 0.62 (0.57-0.66) 0.63
tetracycline x1 0.00 0.56 1.00 (0.99-1.02)
X2 -0.09 0.00 0.91 (0.90-0.93)
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Sulfamethoxazolef Intercept -0.31 0.00 0.73 (0.68-0.79) 0.39
x1 0.01 0.69 1.01 (0.98-1.03)
X2 -0.08 0.00 0.93 (0.91-0.95)
Trimethoprim Intercept -0.42 0.00 0.66 (0.61-0.70) 1.41
x1 0.04 0.00 1.04 (1.02-1.05)
X2 -0.08 0.00 0.92 (0.90-0.94)
Chloramphenicol Intercept -1.24 0.00 0.29 (0.26-0.32) 1.52
x1 0.12 0.00 1.13 (1.10-1.16)
X2 -0.17 0.00 0.84 (0.81-0.87)
Florfenicolf Intercept -3.02 0.00 0.05 (0.03-0.07) 1.49
x1 0.27 0.00 1.30 (1.19-1.45)
X2 -0.31 0.00 0.73 (0.60-0.89)
Ciprofloxacin Intercept -0.49 0.00 0.61(0.57-0.66) 0.69
x1 0.05 0.00 1.05 (1.04-1.07)
x2 -0.05 0.00 0.95 (0.93-0.97)
Nalidixic acid’ Intercept -0.46 0.00 0.63 (0.58-0.69) 0.59
x1 0.06 0.00 1.06 (1.03-1.10)
X2 -0.07 0.00 0.94 (0.92-0.96)
Neomycin/ Intercept -1.85 0.00 0.16 (0.13-0.19) 1.25
kanamycin' x1 0.05 0.01 1.05 (1.01-1.10)
X2 -0.21 0.00 0.81 (0.73-0.89)

E. coli: Escherichia coli; Cl: confidence interval; IRR: incidence rate ratio.

2 Estimate for antimicrobial resistance trends in years 1998-2009.

b Estimate for antimicrobial resistance trends in years 2009-16.

¢ P values < 0.05 indicate significant trends for variables x1 (1998-2009) and x2 (2009-16).

4TRR with 95% CI: for the intercept this number indicates the estimated resistant proportion for
reference year 2009. For variables x1 and x2 this is the mean increase or decrease per year.

¢ Scaled deviance of>2 indicates overdispersion of data, scaled deviance of<0.5 indicates
underdispersion of data.

fData were not collected during whole length of testing period, see Supplement S1, Table S1.
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FIGURE 1. Resistant proportions in isolates from broilers, modelled as resistant counts with
Poisson regression and time in years befo re?® and after® 2009, the Netherlands, 1998-2016

2 Time in years 1998-2009 (x1).

b Time in years 2009-16 (x2).

Vertical error bars indicate 95% confidence intervals (CIs) per yearly observation. Model predicted
values are visualised in the grey line with their 95% Cls (grey dotted lines). A: Amoxicillin/
ampicillin; B: Cefotaxime; C: Doxycycline/tetracycline; D: Gentamicin; E: Chloramphenicol; F:
Ciprofloxacin in broilers.
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Additional analyses with the same modelling approach but using 2010 as
reference year instead of 2009 showed that for most antimicrobials the
decreasing trend started after 2010; the model with 2010 as reference year
had a better fit (data not shown). However, overall, the model fit with 2009 as
reference year was good reflected by the scaled deviances in Table 1 and Cls
in Figure 1. The cefotaxime data was overdispersed (scaled deviance 2.68); a
negative binomial distribution was applied, which better fit the data (scaled
deviance 1.32) and gave similar estimates.

Slaughter pigs

The observed resistant counts were generally lower than in broilers, except for
tetracyclines; the estimated resistant proportion for 2009 was 0.72 (0.67-0.77)
(Table 2).

Between 1998 and 2009 (x1), there were statistically significant increasing
resistance trends for all antimicrobials (range IRR: 1.03-1.43), except for
chloramphenicol (IRR: 1.03; 95% CI: 1.00-1.06; p = 0.07). Between 2009
and 2016 (x2), significant decreasing resistance trends were observed for all
antimicrobialsinpigs (range IRR: 0.66-0.95), with exception of chloramphenicol-
(IRR: 1.00; 95% CI: 0.96-1.05; p = 0.97) and florfenicol resistance (IRR: 1.09;
95% CI: 0.81-1.46; p = 0.56) (Table 2).

For quinolones and gentamicin, model fit was suboptimal, data were
overdispersed. A model with a negative binomial distribution resulted in
different estimates for quinolones and similar estimates for gentamicin
(Supplement S1, Tables S5).

TABLE 2. Estimates for antimicrobial resistance trends in yearly resistant counts of
Escherichia coli from slaughter pigs, for time in years before (1998-2009)* and after
(2009-2016)" antimicrobial use interventions, the Netherlands, 1998-2016

Antimicrobial Variable Estimate | P value® IRR! Scaled
(95% CI) deviance®
(0.5<>2)
Amoxicillin/ Intercept -0.91 0.00 0.40 (0.37-0.44) 1.17
ampicillin x1 0.09? 0.00 1.09 (1.07-1.11)
x2 -0.09° 0.00 0.91 (0.89-0.94)
Cefotaxime Intercept -3.98 0.00 0.02 (0.01-0.03) 1.39
x1 0.15 0.01 1.16 (1.05-1.30)
x2 -0.23 0.01 0.79 (0.66-0.93)
Ceftazidime’ Intercept -3.83 0.00 0.02 (0.01-0.03) 1.92
x1 0.17 0.01 1.18 (1.05-1.39)
x2 -0.23 0.00 0.80 (0.67-0.93)
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Gentamicin Intercept -3.49 0.00 0.03 (0.02-0.04) 2.57

x1 0.13 0.00 1.14 (1.06-1.24)

X2 -0.16 0.01 0.85 (0.76-0.95)
Doxycycline/ Intercept -0.33 0.00 0.72 (0.67-0.77) 0.72
tetracycline x1 0.03 0.00 1.04 (1.02-1.05)

X2 -0.08 0.00 0.93 (0.91-0.95)
Sulfamethoxazolef Intercept -0.51 0.00 0.60 (0.55-0.66) 0.20

x1 0.03 0.04 1.03 (1.00-1.07)

X2 -0.08 0.00 0.93 (0.91-0.95)
Trimethoprim Intercept - 0.65 0.00 0.52 (0.48-0.57) 0.71

x1 0.04 0.00 1.04 (1.02-1.05)

X2 -0.08 0.00 0.92 (0.90-0.95)
Chloramphenicol Intercept -2.18 0.00 0.11 (0.10-0.13) 1.12

x1 0.03 0.07 1.03 (1.00-1.06)

X2 0.00 0.97 1.00 (0.96-1.05)
Florfenicolf Intercept -4.61 0.00 0.01 (0.004-0.02) 1.15

x1 0.22 0.02 1.25 (1.05-1.54)

X2 0.09 0.56 1.09 (0.81-1.46)
Ciprofloxacin Intercept -3.39 0.00 0.03 (0.02-0.05) 3.48

x1 0.15 0.00 1.16 (1.07-1.27)

X2 -0.43 0.00 0.65 (0.54-0.77)
Nalidixic acid’ Intercept -3.25 0.00 0.04 (0.02-0.06) 3.29

x1 0.36 0.00 1.43 (1.16-1.82)

X2 -0.46 0.00 0.63 (0.52-0.76)
Neomycin/ Intercept -3.33 0.00 0.04 (0.02-0.05) 1.08
kanamycin' x1 0.04 0.37 1.04 (0.95-1.14)

X2 -0.47 0.00 0.62 (0.46-0.81)

E. coli: Escherichia coli; CI: confidence interval; IRR: incidence rate ratio.

2 Estimate for antimicrobial resistance trends in years 1998-2009.

b Estimate for antimicrobial resistance trends in years 2009-16.

¢ P values < 0.05 indicate significant trends for variables x1 (1998-2009) and x2 (2009-16).

4IRR with 95% CI: for the intercept this number indicates the estimated resistant proportion for
reference year 2009. For variables x1 and x2 this is the mean increase or decrease per year.

¢ Scaled deviance of>2 indicates overdispersion of data, scaled deviance of<0.5 indicates
underdispersion of data.

fData were not collected during whole length of testing period, see Supplement S1, Table S1.

Veal calves

Results showed that trends between 2005 and 2009 (x1), and between 2009
and 2016 (x2), could not be analysed without taking into account variable x3, a
binary variable representing the sampling change from 2012 (Table 3). When
variable x3 was added, the fit increased significantly for all antimicrobials
(Table 3). AICs improved and overdispersion was reduced for gentamicin,
trimethoprim and quinolones (Table 3). Collinearity between x2 and x3 was
not considered a problem; standard errors of explanatory variables were not
greatly influenced by adding x3, and Variance Inflation Factors of x-variables
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were acceptable.

When taking into account the sampling change from 2012, no significant
decreasing trend could be estimated in the monitoring data from 2009 to 2016
in veal calves for all antimicrobials except sulfamethoxazole and naladixic acid
(Table 3). In 2012, a sharp decrease in resistant counts was observed, due to
the change in sampling strategy, explained by x3, illustrated for ciprofloxacin
in Figure 2. For nalidixic acid, florfenicol and aminoglycosides, data were
overdispersed (Table 3). A model with negative binomial distribution better fit
these data, resulting in similar estimates as the Poisson model (data not shown).
Modelling a subset of the veal calves data from 2012 to 2016, only resulted in
significant decreases for sulfamethoxazole, trimethoprim, ciprofloxacin and
nalidixic acid with IRRs of 0.90, 0.91, 0.85 and 0.76, respectively (data not
shown).
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FIGURE 2. Resistant proportions per year for ciprofloxacin in isolates from veal calves,
modelled as resistant isolate counts with Poisson regression and time in years before® and
after 2009°, with and without including the variable for the sampling change from 2012
onwards¢, the Netherlands, 2005-2016

2 Time in years 1998-2009 (x1).

b Time in years 2009-16 (x2).

©0/1 variable for the change in sampling from 2012 onwards (x3).

Vertical error bars indicate 95% confidence intervals (CIs) per yearly observation. The black bold
line presents predicted values for the model including the variable for sampling change (x3), with
the model’s 95% Cls (black thin lines). The grey line in the background presents predicted values
for the model without the variable for sampling change (x3), with the model’s 95% Cls (grey
dotted lines).
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Colistin resistance

Colistin-resistant isolates were detected sporadically in Dutch monitoring
programme data since 2010. Time trends for colistin can be seen in Table 4.
No significant decrease was detected for slaughter pigs, however for broilers a
significant decreasing trend was observed. For veal calves, a decreasing trend
could not be distinguished reliably from the effect of the sampling change (data
not shown).

Discussion

This study aimed to optimiseinterpretation of AMR monitoring databy modelling
resistance trends in commensal E. coli from livestock and to evaluate if any
trends (and trend changes) were observed from 1998 to 2016. We developed a
model that optimised the quantification of resistance trends and the detection
of trend changes as a likely effect of interventions in indicator commensal E.
coli from livestock. We conclude that monitoring in indicator commensal E.coli
is valuable to evaluate resistance trends in livestock on animal population
level. For nearly all antimicrobials in broilers and slaughter pigs, significant
and quantifiable changes were observed in NL monitoring from 1998 to 2016.
Significant decreases since 2009 were mostly preceded by significant increases
from 1998 to 2009 and there was high similarity in trends for all antimicrobials
within animal species.

Broilers
An increasing veterinary therapeutic AMU was measured in NL between 1998
and 2009 [11], corresponding to the AMR trends we found in the broiler data
over this time period. For most antimicrobials resistant proportions started
to decrease from 2010, confirmed in an additional analysis by the better fit of
broiler data in models with 2010 as reference year (data not shown). In 2010,
the illegal prophylactic use of ceftiofur on day-old chicks in hatcheries ended
following intensified control measures implemented by the Dutch Food Safety
Authority. This may have resulted in the abrupt and significant decreases of
cefotaxime- and ceftazidime resistant counts after 2010. Interestingly, however,
the observed resistant proportions for ciprofloxacin in broilers remained high
and although these proportions decreased significantly since 2009, it is at a
slower rate than expected.

Fluoroquinolone-use has decreased considerably in broilers since 2009
[17]. As part of the intervention measures, fluoroquinolone-use in livestock
was legally restricted as was the use of third generation cephalosporins.
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Since January 2014, these antimicrobials are only allowed to be used after
veterinarians have confirmed by antibiogram that no alternative antibiotics
are available (with exception of ceftiofur, which was never licensed in poultry)
[9]. The relative persistence of ciprofloxacin-resistant E. coli in broilers may
be explained by chromosomal mutations, which have a low bacterial fitness
cost [18]; ciprofloxacin-resistance is mostly not encoded on plasmids like
cefotaxime-resistance is. It is speculated that ciprofloxacin-resistance may be
transmitted between broiler flocks, or be introduced from parent stocks, from
the farm environment or from hatcheries but it is currently unclear so further
investigations are needed. Persistence of quinolone-resistance in livestock
is very relevant since fluoroquinolones are marked as critically important
antimicrobials by WHO [19].

Slaughter pigs

From 1998 to 2009, resistant counts increased in slaughter pigs, except for
chloramphenicol and for the aminoglycosides. Resistant proportions of E.
coli isolates decreased significantly since 2009 for all antimicrobials, except
chloramphenicol and florfenicol; corresponding to data from the Netherlands
Veterinary Medicines Institute who also observed an AMU decrease since 2009
[11]. In general, resistant proportions were lower in isolates from slaughter
pigs than in broilers, with exception of tetracycline-resistance. Despite the fact
that chloramphenicol has not been used in pigs since its ban in the early 1990s,
resistance remained and has not decreased since 2009; the frequent use of
florfenicol in pigs may be the cause of this as florfenicol selects for the presence
of floR genes, which confers resistance to both chloramphenicol and florfenicol
[16]. Furthermore, co-selection of cat-genes in Class 1 integrons by other
substances (tetracyclines, aminoglycosides, sulfonamides or trimethoprim) as
described by Wu et al. may explain this phenomenon [20]. Tetracycline use in
pigs has decreased since 2009, but is still relatively high [11].

For gentamicin and quinolones, overdispersion of data in the Poisson model
hampered trend analysis. For antimicrobials of which resistant proportions are
nearly zero and when the data has many zero counts, determining aberrations
in trends can be difficult. In general, with a negative binomial distribution these
trends could still be assessed reliably in this study.

Veal calves

Changing from pooled samples from farms to individual animals at slaughter
had alarge impact on observed resistant counts in veal calves. Trends could not
be assessed without including this sampling change in the model. We conclude
that in spite of a substantial decrease in total AMU in veal calves from 2007
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to 2015 (as reported by the SDa [11]) for most antimicrobials no significant
decrease in resistant proportions of E. coli could be determined with the
current monitoring system from 2009 to 2016, except for sulfamethoxazole and
nalidixic acid. Looking specifically at the trend from 2012 to 2016, after the
sampling change, a significant decreasing trend was observed for quinolones,
sulfamethoxazole and trimethoprim, but not for other antimicrobials. Between
2005 and 2009, for most antimicrobials in veal calves no significant trend was
observed.

Colistin as example of trend analysis in rare resistance

Quantifying trends in resistant isolates from livestock is needed to support
treatment guidelines and AMR policy. When resistance is non-existent or rare,
monitoring with alimited number of samples may not be able to detect emerging
resistance, or resistance with alow prevalence. The statistical model used in this
study was appropriate with a yearly sample of 300 isolates. Although we did
not test it explicitly, this result for colistin may indicate that yearly sampling of
170 isolates, as currently prescribed by EFSA [15], may not be sensitive enough
to detect changes in rare resistance traits especially when changes are small.
The effect of different sampling strategies in the monitoring on both detecting
emerging resistance and trend changes should be further investigated.

Commensal Escherichia coli as sentinel organism

Often, resistant proportions in sentinel organism E. coli are referred to as
‘prevalence’ of resistance. However, E. coli is only a minor fraction of gut
microbiota and detected resistant proportions cannot be translated directly
to AMR prevalence in livestock in general [21]. Nonetheless, commensal E. coli
can be used as an indicator organism to study AMR-trends in Gram-negative
bacteria in livestock, which are intrinsically susceptible to the antimicrobials
used in the panel. Because E. coli is present in all faecal samples, randomisation
of sampling is possible. Furthermore, the wildtype is susceptible to all of the
tested antimicrobials and isolation methods for E. coli from animal faeces
can be standardised. These are the characteristics which make E. coli a useful
indicator. This study stresses that when standardised AMR monitoring in E. coli
is performed continuously, time-trends can be analysed reliably. These trends
indicate if AMU interventions are necessary and when measures are taken their
effect on monitored resistant counts is reflected in the monitoring data.

Changes of antimicrobial panel

In the analysis, resistant proportions for amoxicillin/ampicillin, doxycycline/
tetracycline and neomycin/kanamycin were modelled as if being one. This
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enabled trend analysis for these antimicrobials and significant decreasing trends
were shown in both broilers and slaughter pigs. For amoxicillin and ampicillin,
resistance in E. coli is encoded by the same genes and the same resistance
mechanisms are involved [16]. Doxycycline and tetracycline have different
antibacterial potencies, but resistance genes and mechanisms are identical
[16]. For these two pairs of antimicrobials, ECOFFs will identify identical non-
wildtype susceptible populations. For the aminoglycosides neomycin and
kanamycin, a variety of aminoglycoside-modifying enzymes can be involved
[16]. In our experience, E.coli from animals are phenotypically mostly cross-
resistant to these antimicrobials, but confirmation of absolute cross-resistance
by typing of resistance genes is lacking.

Since 2008, the antimicrobial panel is decided by EFSA and included in EU
legislation. In general, all antimicrobial classes of public health interest are
represented in the panel. However, one of the disadvantages of using phenotypic
methods is that the choice of specific antimicrobials is confined by the limited
amount of wells in the Sensititre plates, to provide wide enough ranges for the
tested substances. In the near future, phenotypic susceptibility testing for AMR
surveillance in animals may be replaced by whole-genome sequencing, then
any known resistance genes will be found.

Statistical analysis
We considered several modellingmethods fortime-series data. An autoregressive
integrated moving average (ARIMA) model was explored, which best fit data
with high density of observations in short time-periods. The generalised additive
model (GAM) with spline-functions applied by Boireau et al. is useful to correct
for recurring trends such as seasonality [13]. In our study, monitoring data
came from a standardised random sampling procedure with a relatively small
yearly sample. This standardisation is one of the qualities of the programme,
resulting in very little noise in the data. We therefore decided to use generalised
linear models that allow for different distributions and chose not to use splines.
Although splines are useful to form hypotheses about when and how many
trend changes occurred [13], splines are not helpful in quantification of trends.
A Poisson distribution was preferred over binomial distribution, giving
priority to trend assessment in emerging and rare resistances. Poisson has
a high accuracy for low counts. In general, the Poisson distribution fitted the
data better than the binomial distribution; AICs were lower. In the Poisson
distribution the mean is equal to the variance. As can be seen from over or
underdispersion, this assumption is not met for all antimicrobials. In these
cases, data can be remodelled with other distributions, such as binomial (for
high counts) or negative binomial distributions (for very low counts). The use
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of alternative distributions for over or underdispersion improved model fit for
this data. However, estimates were similar, thus conclusions based on Poisson
regression seem robust.

Poisson regression seems well suited for quantifying resistance time-trends
over the past 20 years and to show trend changes as a result of interventions.
However, when the aim is to compare recent monitoring data (a new year) with
the previous years, this method may not be the most informative. Adding a new
year of data to a time-series of multiple years will not affect estimates for time-
trends of x1 and x2. Aberrations in new data can be detected by applying ‘year’
as a factor instead of a numerical in this Poisson regression model, showing
separate estimates of each year relative to one reference year (data not shown).

In this study, we have investigated the best modelling approach to quantify
trends over time and detect the effects of interventions within the current
Dutch sampling frame. In the Technical specifications 2012 [22], EFSA has given
recommendations (based on simulations) on how sampling strategy affects the
power of detecting increases or decreases over time. Additional to the work
in this study, it should be further investigated how different sample sizes or
sampling intervals (every other year instead of a yearly sample) affect the
ability of the monitoring programme to detect emerging resistances and trend
changes.

Relating AMR trends to AMU

AMR trends were independently quantified and effects of AMU regulations
were reflected by the choice of the reference year in the model (2009). The EU
monitoring programme in commensal E. coli from livestock aims to monitor the
effects of AMU-interventions. Relating AMR trends to AMU at a national level is
challenging in the first place, because not all member states have detailed data
of veterinary AMU. Although there is an ecological correlation between resistant
proportions of E. coli from animals at slaughter and AMU in livestock, as shown
earlier by Dorado Garcia et al. [10], this correlation does not refer to individual
animals. Only with extensive sampling at farm level, AMR trends from isolates in
faecal samples from livestock can be directly correlated with AMU.

Conclusion

This analysis of the standardised commensal E. coli dataset from the Dutch NRL
for monitoring AMR in livestock, shows that monitoring in commensal E. coli
is a useful tool to detect trends in phenotypic resistance in livestock relevant
to public health (as defined by EFSA and EU legislation). We showed effective
methods to quantify resistance trends in different antimicrobials and detect
trend changes. The results of this study concern Dutch data, but this modelling
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approach is applicable to similar data acquired in other EU countries. The
method can be applied to a dataset of any size, although the method will perform
better when there is more data available.
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Abstract

Regular evaluation of integrated surveillance for antimicrobial use (AMU)
and resistance (AMR) in animals, humans and the environment is needed to
ensure system effectiveness, but the question is how. In this study, six different
evaluation tools were assessed after being applied to AMU and AMR surveillance
in eight countries: 1) ATLASS: the Assessment Tool for Laboratories and AMR
Surveillance Systems developed by the Food and Agriculture Organization (FAO)
of United Nations, 2) ECoSur: Evaluation of Collaboration for Surveillance
tool, 3) ISSEP: Integrated surveillance system evaluation project 4) NEOH:
developed by the EU COST Action ‘Network for Evaluation of One Health’ 5)
PMP-AMR: The Progressive Management Pathway tool on AMR developed
FAO, 5) and 6) SURVTOOLS: developed in the FP7-EU project ‘RISKSUR’. Each
tool was scored using i) 11 pre-defined functional aspects (e.g., workability
concerning the need for data, time and people), ii) a SWOT-like approach of
user experiences (e.g., things that I liked, or that the tool covered well), and iii)
eight predefined content themes related to scope (e.g., development purpose,
collaboration). PMP-AMR, ATLASS, ECoSur and NEOH are evaluation tools that
provide a scoring system to obtain semi-quantitative results, whereas ISSEP and
SURVTOOLS will result in a plan for how to conduct evaluation(s). ISSEP, ECoSur,
NEOH and SURVTOOLS allow for in-depth analyses and therefore require more
complex data, information and specific training of evaluator(s). PMP-AMR,
ATLASS and ISSEP were developed specifically for AMR-related activities — only
ISSEP included production of a direct measure for “integration” and “impact
on decision-making”. NEOH and ISSEP were perceived as the best tools for
evaluation of OH aspects, and ECoSur as best for evaluation of the quality of
collaboration. PMP-AMR and ATLASS seemed to be the most user-friendly tools,
particularly designed for risk managers. ATLASS was the only tool focusing
specifically on laboratory activities. Our experience is that adequate resources
are needed to perform evaluation(s). In most cases, evaluation would require
involvement of several assessors and/or stakeholders, taking from weeks to
months to complete. This study can help direct future evaluators of integrated
AMU and AMR surveillance towards the most adequate tool for their specific
evaluation purpose.
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Introduction

The importance of combatting antimicrobial resistance (AMR) was highlighted
in the Global Action Plan (GAP) released by the World Health Organisation
(WHO) in 2015 (1). It was further adopted by the Tripartite Collaboration
consisting of the members of the WHO, Food and Agriculture Organization of the
United Nations (FAO) and the World Organisation for Animal Health (OIE) and
endorsed by political leaders and the United Nations (UN) General Assembly
(2). The Tripartite Collaboration acknowledges that the AMR challenge needs to
be addressed using a One Health (OH) approach to reflect that the development
and spread of AMR does not respect boundaries between sectors and, therefore,
requires cross-sectoral collaboration and prevention activities. One of the
main objectives of the GAP is to initiate and maintain cost-effective integrated
surveillance of antimicrobial use (AMU) and AMR at the global and national
levels (1).

Ideally, combatting AMR requires engagement from actors within all sectors of
animal health, food safety, environmental protection, plant health and human
health (3). All sectors need to be involved in surveillance to identify emerging
resistance, understand the AMR epidemiology and develop effective policies for
AMU and AMR reduction. In short, the integration of sector activities and robust
collaboration are essential for successful surveillance and control of AMU and
AMR. According to Stark et al,, (4), OH surveillance describes the systematic
collection, validation, analysis, interpretation of data and dissemination of
information collected in humans, animals and the environment to inform
decisions for more effective, evidence-based interventions. AMR genes are
present in bacteria and spread amongst humans, animals and the environment.
A programme of integrated surveillance of AMR in foodborne bacteria includes
coordinated sampling and testing of antimicrobial susceptibility of bacteria from
food-producing animals, food and humans using epidemiological (including
sampling) and microbiological methods that enable comparisons of results. The
use of comparable methods is necessary to allow comparison of antimicrobial
susceptibility results between different areas, countries and regions (5, 6).
Currently, integrated, OH AMU and AMR surveillance and monitoring systems
exist or are under development in many countries (4). However, the surveillance
programmes do not always address all necessary sectors and they are rarely
fully integrated (7). An integrated approach provides a better understanding
of the epidemiology of AMR, an easier identification of the best intervention
points and enhance the timeliness of surveillance by providing early warning
of emergence of new resistant strains from one sector to another. Furthermore,
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cross-sectoral collaboration may lead to knowledge/resource sharing, expertise
exchange and capacity building (8), which may result in cost savings and create
more efficient and effective systems (9). Full integration might not be necessary
to achieve the wanted outputs and integration and collaboration in itself can
be costly without always improving outputs (7, 10). A surveillance approach
implies planning, data collection, analysis, interpretation and dissemination of
a given activity. It is useful to apply collaboration across different surveillance
activities and integration in all or some of the activities. Identification of the
optimal levels of integration to obtain the information needed for decision-
making is an important task in OH surveillance systems (7, 10).

Aenishaenslin et al. (7) suggested that the value of OH surveillance for AMR
can be conceptualised and measured across a selection of different outcomes
that can be classified in three dimensions (i) immediate; (ii) intermediate; or
(iii) ultimate. Immediate outcomes include increased understanding of the
AMR epidemiology at the human, animal and environment health interface and
the value would lie in the intellectual or social capital generated. Intermediate
outcomes include changes in policy or behaviours, and the expected value is the
reduction in AMU and AMR that results from these changes. Ultimate outcomes
include tangible benefits such as improved animal, human and environmental
health and associated socioeconomic benefits.

Apart from appropriate planning and designing, surveillance programmes
also need regular evaluation to remain operational, efficient and cost-effective.
Moreover, evaluation is needed to ensure that the goal is underpinned by the
on-going activities and shared with the essential stakeholders (11). Evaluation
is complex and requires agreement on an evaluation objective, a process usually
led by food safety/health authorities in consultation with other stakeholders.
Secondly, an appropriate evaluation tool should be selected, which requires
expertise and knowledge of surveillance evaluation.

Existing tools for evaluation of surveillance (e.g. 12, 13) are not necessarily
appropriate for integrated surveillance as they might not address aspects such
as collaboration across sectors (12, 14). Characteristics of OH surveillance
programmes have been described, and recently, tools to evaluate integrated
surveillance systems have emerged, targeting different aspects of the OH or
other integrated surveillance activities (7, 11, 15, 16, 17, 18, 19). A tool may
have been made for evaluation of a particular type of surveillance system,
such as animal health surveillance. Still, it might also be used to assess other
types of surveillance systems such as AMR surveillance, covering aspects such
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as sampling-strategies and sample-sizes of surveillance protocols. The latter
may not be covered in details by the tools developed specifically for AMR
surveillance evaluation. The different tools vary in their approaches, layouts and
user-friendliness, comprehensiveness, terminology, aspects covered, capacity,
training and resources required to use them, as well as their specific usefulness
for the evaluation of AMU and AMR surveillance. Hence, a characterisation
and meta-evaluation of the existing evaluation tools is called for to provide
guidance on how to identify the best match between the evaluation objective,
the resources available, and the selected evaluation tool.

During 2019-2020, an international network of scientists in the project “Co-
Eval-AMR - Convergence in evaluation frameworks for integrated surveillance
of AMR” (20) developed guidance for choosing an assessment approach from an
inventory of tools suitable for evaluating integrated AMU and AMR surveillance
systems, according to the needs of the users. The results presented here
originate from the Co-Eval-AMR network aiming to guide assessors in their
future selection of evaluation tools. A pilot version of the present study, using
one surveillance-system-case and the first version of the assessment criteria,
was published by Nielsen et al. in 2020 (21). The objective of the present study
was to describe and assess the characteristics, functionalities and suitability of
tools that might be used for evaluation of integrated AMU and AMR surveillance.

Materials and methods

Overview of the evaluation tools
In the following section, the six tools used are presented in brief.

2.1.1 ATLASS (Assessment Tool for Laboratories and AMR Surveillance
Systems)

The Assessment Tool for Laboratories and AMR Surveillance Systems (ATLASS) is
atool designed by FAO for assessing and defining targets to improve national AMR
surveillance systems in the food and agriculture sectors (18). Itis composed of two
modules: a surveillance module and a laboratory module. Each module includes
two standardised questionnaires, which are to be completed by the assessors.
The assessments generate a baseline and classify a “stage” for AMR laboratory
capacity detection, AMR surveillance, and dissemination of information.

2.1.2 ECoSur (Evaluation of Collaboration for Surveillance)
The Evaluation of Collaboration for Surveillance tool (ECoSur) aims at evaluating
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the organisation, functioning and functionalities of collaboration taking place
in a multi-sectoral surveillance system (11). The final purpose is to assess
whether collaboration as planned and implemented is relevant and functional
to produce the expected collaborative outputs. The tool relies on the scoring of
22 attributes and three indexes characterising the organisation of collaboration
at the governance and operation level and nine attributes referring to core
functions of collaboration to ensure the sustainable operation of an effective
multi-sectoral surveillance system. Three automatically generated outputs
display the evaluation results for attributes and indexes and support the
identification of strengths and weaknesses of collaboration and the formulation
of recommendations for its amelioration.

2.1.3 ISSEP (Integrated surveillance system evaluation project)

The AMR Integrated Surveillance Systems tool (ISSEP) is a conceptual tool
developed in Canada with the aim to structure an evaluation of the added value
of integrated surveillance systems for AMR (7). It comprises five evaluation
levels that target the evaluation of OH integration in the surveillance system,
its capacity to produce integrated information and expertise, to generate
actionable knowledge, to influence decision-making, and health and economic
impacts. For each level, a set of evaluation questions are defined, and links are
made with existing evaluation tools. A semi-quantitative scale is applied to
show the level of integration of the surveillance system (19).

2.1.4 NEOH (Network for Evaluation of One Health)

The Network for Evaluation of One Health (NEOH) tool is part of a framework
resulting from the EU COST Action “Network for Evaluation of One Health” to
provide science-based guidance for the evaluation of One Health and other
integrated approaches to health (16, 20, 21). There are four elements namely
“System definition and description of OH initiative within the system”, “Theory
of Change” (ToC), “Assessment of OH-ness” and “Outcome evaluation”. Qualitative
assessment as well as semi-quantitative scorings are used for the evaluation
of the degree and of the “OH-ness” (OH-index and OH-ratio) and metrics for
different outcomes. Illustrative web-diagrams of the distribution of scores for
gap-identification are presented in the Excel-tool for assessment of OH-ness (20).

2.1.5 PMP-AMR (Progressive Management Pathway tool for AMR)

The Progressive Management Pathway tool for AMR tool (PMP-AMR) is a
self-assessment tool designed by FAO to provide guidance to countries for
implementation of their National Action Plans (NAP) for AMU and AMR (17, 21).
It includes four focus areas for evaluation: Awareness, Evidence, Governance
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and Practices. For each focus area, specific activities, achievements and key
performance indicators (KPI) are listed. The tool provides a dashboard, showing
the progress made for each focus area towards an optimal and sustainable use
of antimicrobials.

2.1.6 SURVTOOLS

SURVTOOLS was developed as a part of the EU FP7 funded project RISKSUR:
Risk-based Animal health Surveillance Systems. The evaluation tool (EVA-
TOOL) is a support tool for the evaluation of animal health surveillance systems,
developed to provide guidance for evaluation of animal health surveillance
including economic evaluation (12, 21). When planning an evaluation, the user
is guided through three main steps: defining the evaluation context; defining
the evaluation question; selecting the evaluation attributes and the economic
criteria. Furthermore, the tool provides additional information and guidance on
how to use the evaluation plan to perform the evaluation, and how to report on
the evaluation outputs. An online web version of the EVA tool is available (12).

The case study approach

A total of eight country-based case studies of AMU and AMR surveillance
systems were included in the study (Table 1). Each country-based case study
was undertaken by individuals or a group of individuals with expertise on the
respective national cases (hereafter called the assessors), making a total of 20
assessors. The choice of case was the National Action Plan on AMR or parts of it
in the respective assessor’s country. To collect the information needed to carry
out the assessment, the assessors reached out to additional experts and other
sources.

The assessors, metregularly and initially there was developed an assessment
methodology in collaboration with selected members of the Co-Eval-AMR
network group. The methodology included two standardised scoring schemes,
a SWOT-like analysis scheme and templates for reporting and instructions. The
evaluation tools were applied on the country-based case studies using one
or more tools on each case. Overall, the outcome was the users’ experience
regarding applicability of the tool. A total of six tools were assessed, and each
tool was assessed between one and four times.

Methodology used to assess the tools

The details of the scoring scheme for functional aspects, the SWOT-like approach
and the scoring scheme for the themes describing the scope of the tools are
presented below.
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2.3.1 Scoring functional aspects

A scoring scheme aiming at assessing 11 functional aspects was developed and
answers were scored numerically; where 1 = not covered, 2 = not well covered,
3 = more or less covered, 4 = well covered. With each score, a comment was
requested explaining the score. The 11 aspects were: 1) User friendliness, 2)
Compliance with evaluation objectives 3) Efficiency (number of people, time
taken vs what the evaluation should be used for), 4) Use of a step-wise approach
to the evaluation, 5) Overall appearance, 6) Generation of actionable evaluation
outputs, 7) Evaluation of OH aspects, 8) Workability in terms of required data,
9) Workability in terms of required people to include, 10) Workability in terms
of analysis to be done, 11) Time taken for application of the tool.

The combined scores for each tool were presented in a heat map. In the case
one assessor/assessor group scored over a range of numbers, averaging was
used followed by rounding up if necessary to obtain a whole number for the
total score. A crude summary score for each tool was calculated and presented
in heat maps. The scores should only be interpreted relatively within this study
material. The justification for each score, provided by the individual assessors,
was condensed by the first author and checked for correctness by the other
authors, and the “condensed results” were then presented.

2.3.2 A SWOT-like approach

A SWOT-like scheme was developed asking the assessors to answer four
questions: 1) Things that I liked, or that the tool covered well; 2) Things that I
struggled with when using this tool; 3) Things people should be aware of when
using this tool; and 4) Things that this tool covers insufficiently. A qualitative
synthesis of the result was done in two steps. First, all individual phrases were
captured. In a second step, phrases with the similar meaning were reduced into
one, implying that a phrase was simplified or made into one word, if possible. It
also implied that no phrase or word was repeated for each of the SWOT analyses
and tools. The first synthesis was carried out by the assessors for the tools they
had applied. The second synthesis was condensed by two of the authors and
the condensed results were checked for correctness by the other authors and
subsequently presented.

2.3.3 Scoring themes for the scopes

A second scoring scheme consisted of eight themes to describe the scope of the
tool: Developed specifically for AMU and AMR, Collaboration, Resources, Output
and use of information, Integration, Governance, Adaptivity and Technical
operations. Seven of the themes included in the scheme were developed in the
Co-Eval-AMR project (22). Additionally in this study, the theme Governance
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was added. The objective was to score how well each theme was covered by the
specific evaluation tool. A more detailed description of the individual themes
scope is given in Table 2. The same scoring scale as in Section 2.3.1 was used.
The combined scores for each tool were presented in a heat map, based on a
similar way for estimation as described in 2.3.1. A crude summary score for
each tool was calculated, but this should only be interpreted relatively within
this study material. Again, the free text justifications behind the scores provided
by the assessors were synthesized by the first author, checked for correctness
by the other authors and subsequently presented.

Results

All detailed answers and justifications from the scoring of the functional
aspects and the themes and from using the SWOT-like approach are published
on the Co-Eval-AMR project webpage (https://coevalamr.fp7-risksur.eu/) and
in Nielsen et al., 2019 (21).

Scoring of the functional aspects of the tool
The results from the scoring of the case studies according to the 11 functional
aspects of AMU and AMR surveillance systems are shown in Table 3. A summary
of the justifications behind the scores is shown in Table 4. A crude summary
of the scores showed that ISSEP and NEOH had the lowest scores, 25 and 30
respectively, of the total 44 that could have been achieved. ATLASS and PMP-
AMR had the highest, 39 of the 44 possible

For OH aspects, ATLASS and NEOH scored the highest. PMP-AMR, ATLASS,
EcoSur and NEOH provide semi-quantitative scores for the aspects evaluated,
whereas ISSEP and SURVTOOLS will result in a plan for how to conduct
evaluation(s). ISSEP, ECoSur, NEOH and SURVTOOLS allow for in-depth
analyses and, therefore, require more complex data, information and specific
training of the evaluator(s). PMP-AMR and ATLASS seemed to be the most user-
friendly tools, particularly designed for food safety authorities managing the
surveillance system.

The SWOT-like approach

The results of the SWOT-like approach applied to assess the tools is shown
in Table 5. The variation in answers to the four SWOT-like questions was low
among the assessors of each tool, indicating consistency regarding the general
impression of the tools. The PMP-AMR and ATLASS were liked for the semi-
quantitative scorings which could be made directly and that the tools were
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particularly made for evaluation of AMR surveillance systems. What is not
covered in these two tools, is the environmental-, plant- and human part of
surveillance.

The ECoSur was liked because it allowed evaluation of collaboration in
detail; however, the level of abstraction in the language in the existing version
of the tool was a struggle. ISSEP was liked because it described the relationship
between the integrated surveillance activities for AMU and AMR, OH outputs
produced and the different expected outcomes very well.

NEOH was liked for being comprehensive, multi-facetted and fit for a
transversal analysis of OH initiatives. The main struggle related to NEOH was
that it was cumbersome and time-consuming to use. Similarly SURVTOOLS was
liked because information for evaluation of all aspects of a surveillance system
including the epidemiological part is provided as scientific references. Further
an epidemiological calculator is provided. However, SURVTOOLS is one of the
tools that only provide an evaluation plan.

Scoring of the themes describing the scope of the tool

The results from the scoring of each tool for the eight themes describing the
scope of the tool in relation to surveillance are shown in Table 6. A summary of
the justifications behind the scores are shown in Table 7. A crude summary of
the scores for the tools, regarding which themes they covered, showed limited
variation. ATLASS had the highest crude summary scores of 28 followed by
ISSEP and ECoSur both with 25.

PMP-AMR, ATLASS and ISSEP have been developed specifically for
AMR-related activities. NEOH and ISSEP were perceived as the best tools
for evaluation of all OH aspects, and ECoSur and ISSEP for evaluation of the
quality of collaboration. ATLASS is the only tool evaluating laboratory activities
specifically. Only ISSEP produced a direct measure of the “integration” and
“impact on decision-making”. SURVTOOLS has an epi-sample size calculator and
is, hence, the only tool providing a quantitatively assessment of the technical
operations in surveillance.

Discussion

4.1 Tools developed specifically for evaluating AMU and AMR
surveillance

Only PMP-AMR, ATLASS and ISSEP have been developed especially for evaluating
AMU and AMR surveillance. Generally speaking, ISSEP was the only tool
assessed that addressed AMU and integration aspects. The strengths of PMP-
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AMR and ATLASS are governance, hence, strategic implementation of NAPs.
PMP-AMR neither addresses evaluation of design of surveillance nor integration
or collaboration. ATLASS is structured in such a way that detailed information
about the sectors involved and the laboratories in the surveillance system can be
captured. Hereby it addresses the gaps in a laboratory’s capacity to implement
surveillance testing. A quantitative evaluation of the epidemiological designs
is impossible in ATLASS. Moreover, ATLASS does not provide an output of the
level of integration - but all data collated could provide the evaluator with an
impression of the level of integration in the system evaluated.

However, the other evaluation tools were also considered suitable for evaluation
of AMU and AMR surveillance programmes. In fact, several of the tools showed a
high degree of flexibility and were applicable to different surveillance evaluation
objectives. Still, the most accurate evaluations originated from the tools that
match the specific evaluation questions. Generally speaking, evaluation of
integrated AMU and AMR surveillance systems will benefit from using tools
developed specifically for evaluating AMR surveillance and OH aspects since
specific characteristics are encountered.

4.2 User friendliness and potential value

The PMP-AMR and ATLASS tools are to a high extent self-instructive and the
questions were, therefore, easy to answer. The structure of PMP-AMR was very
easy to understand, whereas ATLASS was more complicated to fill in, since
it comprises of many questions at all levels of organisation. The handbook/
guidance/surveillance evaluation wiki to SURVTOOLS was, perceived by some
of the assessors, as very clear and easy to read. It also provides advice on how
to cover many of the required aspects of evaluation. The online evaluation tool
itself looks very aesthetic but covers less information than the handbook and is
not fully self-instructive for all evaluation objectives. NEOH requires knowledge
of both the relevant context (in the NEOH framework denoted ‘the underlying
system and its system boundaries’) and the integrated surveillance activities
(‘the initiative under evaluation’) in question, because the assessor must define
all components that form part of the underlying system (the context) included
in or affected by the surveillance. NEOH allows the assessor to identify and
assess expected outcomes based on the ToC of the initiative. ToC is a specific
type of methodology for planning, participation and evaluation that is used in
companies, philanthropy, not for-profit and government sectors to promote
social change. Further, it defines long-term goals and then maps backward in
time to identify the necessary preconditions and actions to be taken. The ToC
focus willlead to learning and perhaps a better understanding of the surveillance
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and its potential societal impacts. It is easy to get lost in the extensive handbook
published to assist in using NEOH, and a quick guide is currently missing. The
many detailed questions aboutintegration such as OH implementation including
systemic organisation and level of sharing (infrastructure aspects) and learning
(operational aspects) allows for nuances in the answers, and hereby, a better
quality of the results. However, the evaluator should be aware that applying
this tool requires time investment and training, including specific training in
“systems thinking”.

ISSEP, ECoSur, and SURVTOOLS also allow for an in-depth analysis requiring
collection of more complex data and information. For SURVTOOLS, specific
training in design of epidemiological studies and a wide spectrum of analytical
methods is needed before a full exploitation of the tool can be expected. Many
of the tools could also be used to guide the design of AMU and AMR surveillance
systems in addition to evaluation of existing systems.

Many of the tools, especially ATLASS, produce intermediate outputs of how well
the different parts of the programme are integrated and how well the partners
collaborate. In contrast, the interpretation of evaluation results of ECoSur
supports the identification of strengths and weaknesses of collaboration and
the formulation of recommendations. Among the six tools investigated, this tool
allows for addressing collaboration in most detail and in different dimensions.

Itbecame clear during this study that adequate resources are needed to perform
a full evaluation, sometimes requiring involvement of many assessors and/or
stakeholders, and it might take weeks to months to finalise. For all tools, training
and instructions would be required to understand the tools sufficiently well to
work effectively. Further, the assessor should preferably have a moderate level
of understanding of surveillance processes. Moreover, it is important to balance
the degree of complexity of the evaluation tool with the available resources in
terms of number of people, data, and time.

4.3 Output and use of information (impact)

The ISSEP and partly SURVTOOLs approaches provide a conceptual basis for
structuring the evaluation of different surveillance outcomes, from the level
of integration to the evaluation of the decisions as well as economic efficiency.
The outputs of an evaluation may consist of first-level outputs, such as
epidemiological performance measures, as well as intermediate output, such
as how well the system is integrated. For successful AMU and AMR surveillance,
the final impact would be that there are antibiotics available to treat future
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generations of humans and animals against infections. PMP-AMR and ATLASS
only produces intermediate outputs through the theme collaboration. It remains
unknown whether this and similar themes really reflect what is necessary to
implement to reach the final desired impact in the AMU and AMR surveillance.
ATLASS and PMP-AMR s contributing to this final impact by providing evaluation
of the governance, strategic support and budgets for surveillance. Evaluation of
impact of surveillance will be further addressed in a Phase 2 of the Co-Eval-AMR,
just initiated, as a follow-up project funded by Joint Programming Initiative for
AMR (JPIAMR) https://www.jpiamr.eu/project/coeval-amr-phase-2/.

4.4 The limitations of the study

We have presented the experiences of eight country-based case study groups
in using six evaluation tools. Due to resource constraints, some tools were only
assessed in a limited number of case studies. Some of the tools were only scored
by two assessors, by two assessor groups, or by the creator(s) of the tool. For
NEOH, ECoSur, ISSEP, PMP-AMR co-developers of the tools were involved in the
assessment, but the tools were also assessed by other case study groups. The
assessments were done by different persons and the scores were perceived as
crude and subjective. The assessors had varying levels of understanding of the
evaluation tools; some were involved in the development of one of the tools,
whereas others were trained in using a specific tool. The first group of assessors
may have had greater insights into the tool(s) that they assessed and may have
been biased in some aspects of the assessment e.g. user friendliness. During
the assessment process, there was some convergence in the scoring done by
the assessors due to the development of a common understanding of the words
and sentences used in the tools. Therefore, the results of the scoring of the
functional criteria had a higher variation than the results of the scoring of the
attributes that was done later in the process. The qualitative assessments are
probably more informative for the pros and cons of each tool than the actual
scores. SURVTOOLS and ATLASS were assessed by “non-developers”.

Monitoring and stewardship of AMU as part of AMR surveillance was not
addressed in the assessment. In the second phase of the Co-Eval-AMR, additional
assessments using other tools are planned. Moreover, focus will be on how to
assess the impact of integrated surveillance systems for AMU and AMR as well
as on how to evaluate governance. The online assessment system made by the
Co-Eval-AMR project group can also be used by other scientist for doing similar
comparisons and hence more experiences will be collected (https://coevalamr.
fp7-risksur.eu/). Most of the participants in the case study groups were
veterinarians or professionals working within veterinary public health. Persons
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in human health only participated indirectly when being interviewed, and there
was no focus on the environment. In Phase 2 of the project, collaboration among
others, with social scientists will broaden the scope and the way of looking at
surveillance and evaluations.

4.5 Development of assessment methodology and reporting the
results to capture the variation in the underlying reasoning

In the Co-Eval-AMR project, the methodology was developed to capture the
usability of the tools for evaluation of AMU and AMR surveillance activities in a
systematic way, allowing for comparisons between assessors. The assessment
methodologies covered aspects known as contributing to controlling AMR e.g.,
evaluation of OH aspects, mentioned by for instance Holmes et al. (3). The 11
functional aspects included elements such as user-friendliness and whether
the tool meet evaluation needs/produces actionable outputs and the resource
needed related to data, manpower, and time. In the second phase of the Co-Eval-
AMR-project improvements in assessment criteria will be considered.

As opposed to the other tools, ISSEP and SURVTOOLS generated only a plan for
how to conduct the actual evaluation based on the chosen evaluation questions.
Hence, scoring these for some of the 11 functional aspects and the eight themes
was difficult. The PMP-AMR, ATLASS, ECoSur and NEOH tools provide semi-
quantitative evaluation outputs. PMP-AMR and ATLASS measure the progress
over time and can be used repeatedly. Moreover, PMP-AMR and ATLASS seemed
suitable for non-scientists too, since they do not require specific knowledge
of epidemiology and surveillance for their application. The tools are not
interchangeable - they do not have common scopes and objectives; therefore,
one cannot choose a tool only based on the appreciation as assessed only by
these case studies. Some lack of consistency exists between the work done in
the different working groups of the Co-Eval-AMR project, because some of the
development of methodologies was undertaken simultaneously in all working
groups, e.g., governance was therefore only assessed by “country case study
groups” with a few exceptions. The latter reflected in the missing data given as
a footnote in Table 3.

4.6 Establishing a data capture-system for generation of assessment
experiences

The developed reporting template enables other assessors to report their
experiences using the tools in a comparable way. The template consists of four
sections; 1. General information, 2. Scoring of ten functional aspects, 3. SWOT-
like approach, 4. Scoring of eight themes describing the scope of the tool. The
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idea was to develop a kind of user experience scoring overview similar to many
internet applications such as TripAdvisor and Google reviews providing the
readers with quick, yet detailed, insights of the tools. The template is placed in
an online platform on the homepage of Co-Eval-AMR (https://coevalamr.fp7-
risksur.eu/). We encourage users of the tools to provide their inputs and expect
that over time a growing collection of experiences will help users in choosing
more easily among the existing tools.

4.7 Conclusion

Evaluation of integrated surveillance is needed at regular intervals using robust
tools. It is important to choose a tool that adequately addresses the specific
evaluation objectives. We provided a portfolio of the experiences of 20 users
representing eight country-based case studies in which six different tools were
applied, to highlight their attributes, pros and cons and requirements.

Only PMP-AMR, ATLASS and ISSEP have been developed especially for evaluating
AMU and AMR surveillance - with ISSEP being the only tool providing a semi-
quantitative score of AMU and AMR integration. All six tools demonstrate a high
degree of complementarity. Depending on the evaluation questions selected,
assessors may choose among the different tools to conduct the evaluation
as such, namely ECoSur for addressing collaboration, NEOH for the OH-ness
and the relationship between ToC and expected outcomes of the surveillance,
ATLASS for the laboratory capacities, and SURVTOOL for epidemiological and
economic performance.

An online platform for reporting of users’ experiences will help users interested
in conducting an evaluation of AMU and AMR surveillance in choosing the most
adequate tools for their specific evaluation needs: https://guidance.fp7-risksur.
eu/. Furthermore, this platform could help to further extend general user
experience of AMU and AMR surveillance evaluation tools.
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Chapter 4

Abstract

To combat antimicrobial resistance (AMR), policymakers need an overview
of evolution and trends of AMR in relevant animal reservoirs, and livestock is
monitored by susceptibility testing of sentinel organisms such as commensal
E. coli. Such monitoring data is often vast and complex and generates a need
for outcome indicators that summarize AMR for multiple antimicrobial classes.
Model-based clustering is a data driven approach that can help to objectively
summarize AMR in animal reservoirs. In this study, a model-based cluster
analysis was carried out on a dataset of minimum inhibitory concentrations
(MIC), recoded to binary variables, for 10 antimicrobials of commensal E.
coli isolates (N=12 986) derived from four animal species (broilers, pigs, veal
calves, and dairy cows) in Dutch AMR monitoring, 2007-2018. This analysis
revealed four clusters in commensal E. coli in livestock containing 201 unique
resistance combinations. The prevalence of these combinations and clusters
differs between animal species. Our results indicate that to monitor different
animal populations, more than one indicator for multidrug resistance seems
necessary. We show how these clusters summarize multidrug resistance, and
have potential as monitoring outcome indicators to benchmark and prioritise
AMR problems in livestock.
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Antimicrobial resistance clusters in commensal Escherichia coli from livestock

Introduction

Antimicrobial resistance (AMR) threatens the core of modern medicine, since
effective antimicrobials are prerequisites not only for curing infectious diseases,
but are also part of routine surgery procedures to prevent bacterial infections
(World Health Organization, 2015). Action plans have been developed by
international healthcare organisations and governments to restrict AMR in
both human- and veterinary medicine, and avoid possible transmission of AMR
from animal- or environmental reservoirs to healthcare settings (World Health
Organization, 2015; O’Neill, 2016). One crucial aspect of these action plans is
monitoring of AMR in relevant reservoirs (O’Neill, 2016).

In food animals in the EU, AMR monitoring is performed following EU
legislation (European Commission, 2013), by annually performing standardised
antimicrobial susceptibility testing of a fixed number of indicator organisms
like commensal Escherichia coli, and food borne pathogens such as Salmonella
and Campylobacter species from animals and food thereof. Such monitoring
programs result in complex data, which are only interpretable by experts.
However, policymakers need a clear overview of development of AMR in
reservoirs to further develop, adjust, and validate implemented policies timely.
Policy informing organs like European Food Safety Authority (EFSA) have
expressed the need for outcome indicators of AMR in tested microorganisms
such as commensal E. coli (European Food Safety Authority, 2017). These
outcome indicators should summarize AMR for multiple antimicrobial classes
in a bacterial population, to allow an overall assessment of AMR in samples
from relevant reservoirs, such as food animals.

Candidates for such AMR indicators have been tested on datasets of commensal
indicator E. coli from food animals by EFSA, European Centre for Disease
Prevention and Control (ECDC) and European Medicines Agency (EMA)
(European Food Safety Authority, 2017). Suggestions were for example the
pan-susceptible proportion, and multi-drug resistance proportion (resistant
to three or more antimicrobial classes) (European Food Safety Authority,
2017). In this joint scientific opinion it was concluded that the pan-susceptible
proportion is the most suitable summary indicator, because a high negative
correlation was found with overall AMU. Resistance to three or more
antimicrobials was suggested as secondary outcome indicator when very few
isolates in an animal population were fully susceptible, and the proportion
of fluoroquinolone resistant isolates and the prevalence of ESBL-producing
E. coli were suggested as other secondary indicators. However, as mentioned
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in that joint scientific opinion, the pan-susceptible proportion or resistance
to three or more antimicrobials may not be specific enough to adjust AMU
policy, especially for sector-specific measures (European Food Safety Authority,
2017). Other suggestions in literature have been to weigh antimicrobial classes,
ranked by their relevance for public health as performed by a panel of experts
in Havelaar et al.(2017), or to weigh observed AMR for antimicrobial classes by
antimicrobial use (AMU) of that same class in an animal population; examples
are Dorado Garcia et al.(2016), Laxminarayan et al.(2011). The downside of
applying weights to such calculations is that subjective choices have to be made,
which may bias the results.

Currently, objective arguments for suitable AMR monitoring outcome
indicators are lacking. Few studies have succeeded in reducing complexity of
AMR monitoring data over antimicrobial classes in understandable output
parameters. To develop specific and applicable outcome indicators of AMR
monitoring, we performed a model-based cluster analysis on a dataset of
minimum inhibitory concentrations (MIC) for 10 antimicrobials of commensal
E. coli isolates derived from four animal species (broilers, pigs, veal calves, and
dairy cows) in Dutch AMR monitoring, 2007-2018. Here, we show how model-
based clustering can be used as a data driven method to summarize resistance
patterns, resulting in four clusters that have potential as monitoring outcome
indicators to follow AMR trends and effects of AMU (-interventions) in livestock.

Methods

The data used for this analysis were MIC of 12 986 bacterial isolates, all being
randomly isolated commensal indicator E. coli isolates from faecal or caecal
samples of livestock as prescribed by EU-legislation(3): 3 602 from broiler
chickens, 2 958 from dairy cows, 3 491 from slaughter pigs, and 2 935 from veal
calves. All isolates were collected in the Dutch national monitoring program for
AMR in livestock, from 2007 to 2018. Details of data collection and antimicrobial
susceptibility testing in this monitoring program were described extensively by
Hesp et al.(2019).

We used as definition for antimicrobial resistance: non-wildtype susceptibility,
based on epidemiological cut-off (ECOFF) values as defined by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST) (European
Committee on Antimicrobial Susceptibility Testing, 2019). The MIC of all 12
986 isolates were recoded to binary variables (0 for susceptible, 1 for resistant)
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using the EUCAST ECOFF values, for ten different antibiotics: gentamicin (GEN),
ceftazidime (TAZ), cefotaxime (FOT), chloramphenicol (CHL), trimethoprim
(TMP), sulfamethoxazole (SMX), ampicillin (AMP), tetracycline (TET), nalidixic
acid (NAL) and ciprofloxacin (CIP). These antimicrobials were included in
the analysis because they were continuously tested in the susceptibility
panel from 2007 to 2018. They represent the following antimicrobial
classes: aminoglycosides (GEN); 3™ generation cephalosporins (FOT/TAZ);
amphenicols (CHL); folate pathway inhibitors (TMP/SUL); aminopenicillins
(AMP); tetracyclines (TET) and (fluoro)quinolones (NAL/CIP).

After recoding the MIC to binary variables, the data were explored with
multivariate analyses, using the 12 986 isolates as (statistical) units with their
resistance for the 10 antimicrobials as binary outcome variables (accordingly,
10 variables). Dimension reduction techniques were explored to describe the
multidrug resistance patterns. Principal component analysis and multiple
correspondence analysis were considered but rejected, because these methods
summarize pairwise correlations and associations (i.e. joint resistance
patterns) only, thus largely neglecting multiple resistance of higher order, and
the interpretation of their output is complicated. Instead, we chose for model-
based cluster analysis (Vermunt et al., 2002) also known as latent class analysis,
which derives clusters from data based on a statistical model, without the need
to choose heuristically a similarity coefficient as in hierarchical clustering. For
binary variables, the model has four key assumptions: (i) each unit belongs to
one of K clusters (although the posterior membership is a probability, i.e. fuzzy),
(ii) the resistance probability of each outcome variable (probability that the
outcome is 1) depends on the cluster, (iii) for each cluster, the joint probability
of the outcome variables is the product of the individual resistance probabilities
(i.e. the outcome variables within a cluster are independent) and (iv) the overall
joint distribution is a mixture of the joint probabilities of the clusters with mixing
proportions equal to the relative cluster sizes. The Flexmix package (Leisch et
al, 2004) in R (R Core Team, 2017) was used for fit this model for K = 10, with
1000 random restarts in the stepFlexmix function. The most likely number of
clusters was chosen by the model based on an information criterion, specifically
the integrated completed likelihood criterion (ICL), because ICL gives more
parsimonious solutions than Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC) (Biernacki et al., 2000). Finally, isolates are assigned
to the cluster on the basis of maximum posterior membership probability
according to the model described in Appendix S1. Other resistantisolates thanin
this dataset can be predicted similarly (Supplementary Appendix S1). Note that
if the outcome variables would be independent in the full data set, the method
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would not subdivide the isolates in clusters (the result would be one cluster).
In other words, model-based cluster analysis uses the associations between the
outcome variables to subdivide the isolates in clusters so that these variables
lack association within clusters.

The composition of the clusters was further investigated by analyzing the
occurrence of combinations of resistance phenotypes within the clusters and
how they differed between animal species. The clusters from this analysis were
compared with the outcome indicators suggested by ECDC, EFSA and EMA to
show how the clusters relate to those indicators, and to investigate the potential
of model-based clustering to quantitatively summarize monitoring outcomes.

Results

Model-based clustering showed that four clusters best described the data
(illustration in figure S1). The composition of the four clusters, i.e. the mean
probability of resistance per antimicrobial per cluster, is presented in Table 1
and a graphical representation can be found in Figure 1. Out of the 1024 possible
combinations of resistance within individual isolates, 201 unique combinations
were found. An overview of the overall frequency from high to low of the 201
resistance combinations is presented in supplementary material (Table S1) with
the cluster they were assigned to and their posterior membership probabilities,
and Tables S2-S5 present resistance combinations per cluster, per species. A
graphical representation of the yearly proportions of isolates in the clusters
over time for the different animal species can be found in Figure 2.

Cluster 1

Cluster 2 --
Cluster 3 I N

Cluster 4 I

GEN* TAZ FOT CHL TMP SMX AMP TET NAL CIP

Figure 1. Heatmap showing the resistance probability for the ten tested antimicrobials®
per cluster in the four clusters from model-based clustering, in commensal E. coli isolates
(N=12 986) from broilers, dairy cows, slaughter pigs and veal calves from the Netherlands,
2007-2018

3GEN = gentamicin, TAZ = ceftazidime, FOT = cefotaxime, CHL = chloramphenicol, TMP
trimethoprim, SMX = sulfamethoxazole, TET, AMP = ampicillin, NAL = nalidixic acid, CIP
ciprofloxacin
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Cluster 1 (n=7 566 isolates) is the cluster which is mostly pan-susceptible,
besides (mostly) single resistance against TET, AMP, AMP TET, SMX, TMP, GEN,
GEN TET and CHL with low probability (<0.16) (Table 1, Table S2). The single
resistance phenotype with only TET resistance is almost exclusively present in
pigs (Table S2). Cluster 2 (n=698) is mostly susceptible, but carrying only CIP
and NAL resistance, sometimes in combination with other resistance traits, of
which AMP and TET have the highest resistance probabilities (0.33 and 0.18,
respectively). Cluster 2 is almost exclusively present in broilers and not in other
animal species (Table 2, S3). Cluster 3 (n=3 289) mostly consists of multidrug-
resistant isolates, with high probability of resistance against SMX, TET, TMP and
AMP (proportions of 0.94, 0,81, 0.77, and 0.66 of the isolates respectively, Table
1), and against CHL with moderate probability (0.26) but with low probability
(<0.05) against 3rd generation cephalosporins FOT and TAZ (Table 1, Table
S4). Cluster 4 (n=1 433) contains the most multidrug resistant isolates: almost
all (0.99) are resistant against CIP NAL (Table 1, S5), and to SMX, TET, TMP,
AMP and CHL with even higher probability than in cluster 3, and with some
probability (0.12 and 0.13 respectively) to 3rd generation cephalosporins (TAZ,
FOT). To summarize the clusters:

Cluster 1:Isolates thatare mostly susceptible againstall tested antimicrobials

Cluster2:Isolatesthatare mostly susceptible againstall tested antimicrobials,
except the (fluoro)quinolones

Cluster 3: Multidrug-resistantisolates thatare (fluoro)quinolone susceptible

Cluster 4: Multidrug-resistant isolates that are also (fluoro)quinolone
resistant

Note that the clusters are numbered in such a way that the resistance increases
in probability with cluster number for each antimicrobial, except for (fluoro)
quinolones (CIP and NAL). Clusters 1 and 3 are (fluoro)quinolone susceptible,
whereas clusters 2 and 4 are highly (fluoro)quinolone resistant.

Table 2 shows how the isolates from the different animal species are divided over
the four clusters and Table 3 presents the comparison between the four clusters
and the outcome indicators defined by ECDC, EFSA and EMA. All isolates with
pan-susceptibility (the primary outcome indicator defined by ECDC, EFSA and
EMA) from the total of isolates tested (n=12 986) belong to cluster 1 (bottom
of Table 3, Table S2). Isolates belonging to the secondary outcome indicator (as
defined by ECDC, EFSA and EMA) multidrug-resistant (>=3) are divided over
three clusters: 2, 3 and 4. The highest proportion of multidrug resistance is
found in cluster 3 (0.21), followed by cluster 4 (0.11), and lastly 0.05 of the
multidrug resistant isolates belongs to cluster 2 (Table 3).
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Table 1. Resistance probability per cluster (rows) of a commensal E. coli isolate against an

antimicrobial (columns). Isolates (N=12 986) are from broilers, dairy cows, slaughter pigs
and veal calves in the Netherlands, 2007-2018

GEN*| TAZ| FOT| CHL| TMP| SMX| AMP| TET| NAL| CIP
Cluster 1 (n=7566) 0.01 0 0 0] 0.01] 0.01] 0.05| 0.16 0 0
Cluster 2 (n=698) 0.08] 0.02] 0.02| 0.06] 0.05] 0.12] 0.33| 0.18] 0.96] 0.99
Cluster 3 (n=3289) 0.04| 0.04| 0.04| 0.26] 0.77| 0.94| 0.66| 0.81 0 0
Cluster 4 (n=1433) 0.16| 0.12| 0.13| 0.41| 090| 098 0.88] 0.80| 0.97| 0.99
Overall® 0.04| 0.02] 0.03| 0.12| 0.30] 0.36] 0.31] 0.39] 0.16] 0.16

3GEN=gentamicin, TAZ=ceftazidime, FOT=cefotaxime,CHL=chloramphenicol, TMP=trimethoprim,
SMX-=sulfamethoxazole, AMP=ampicillin, TET =tetracycline, NAL=nalidixicacid, CIP=ciprofloxacin.
bQverall probability of resistance, i.e. the fraction, out of all isolates (N=12 986), resistant against

an antimicrobial.

Table 2. Distribution of the clusters per animal species (with the overall distribution in the

last row)
Cluster
N? 1 2 3

Broilers 3602 0.28° 0.18 0.22 0.31
Dairy cows 2958 0.96 0.00 0.03 0.01
Slaughter pigs 3491 0.53 0.00 0.46 0.01
Veal calves 2935 0.62 0.01 0.28 0.08
Overall 12 986 0.58¢ 0.05 0.25 0.11

2Number of isolates tested per animal species, from 2007-2018
b Proportion, out of all isolates tested for this animal species, that belong to this cluster
¢ Relative cluster size, i.e. the proportion of all 12 986 isolates that belong to this cluster
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Table 3A-B. Relation between the four clusters from model-based clustering and outcome in-
dicators as proposed by ECDC, EFSA and EMA (4): pan-susceptibility (Pan-S), resistant to three
or more classes (>=3), and ciprofloxacin resistance (CIP-R), shown as proportions of com-
mensal E. coli isolates (N=12 986), of broilers, dairy cows, slaughter pigs and veal calves, the
Netherlands, 2007-2018, for the dataset overall (Table 3A) and per animal species (Table 3B)

Table 3A
Total Indicator |Overall Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4
(n=12 986) proportion®
Pan-S® 0.46 0.46 0.00 0.00 0.00
>=3¢ 0.33 0.00 0.01 0.21 0.11
CIP-R¢ 0.16 0.00 0.05 0.00 0.11
Table 3B

Animal species |Indicator |Proportion per | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4
animal species®

Broilers Pan-Sf 0.20 0.20 0.00 0.00 0.00
(n=3602) >=38 0.55 0.00 0.05 0.19 0.31
CIP-R" 0.49 0.00 0.18 0.00 0.31
Dairy cows Pan-S 0.95 0.95 0.00 0.00 0.00
(n=2958) >=3 0.02 0.00 0.00 0.02 0.01
CIP-R 0.01 0.00 0.00 0.00 0.01
Slaughter pigs |Pan-S 0.33 0.33 0.00 0.00 0.00
(n=3 491) >=3 0.38 0.00 0.00 0.36 0.01
CIP-R 0.01 0.00 0.00 0.00 0.01
Veal calves Pan-S 0.46 0.46 0.00 0.00 0.00
(n=2935) >=3 0.33 0.00 0.01 0.24 0.08
CIP-R 0.09 0.00 0.01 0.00 0.08

2Qverall proportion of isolates from the total number of isolates (N= 12 986), belonging to this
outcome indicator by ECDC, EFSA and EMA(4). Note: these indicators are not mutually exclusive
b Proportion of pan-susceptible isolates per cluster

“Proportion of isolates resistant to three or more classes per cluster

4 Proportion of ciprofloxacin resistant isolates per cluster

¢ Total proportion per animal species belonging to this outcome indicator

fProportion of pan-susceptible isolates per animal species per cluster

¢Proportion of isolates resistant to three or more classes per animal species per cluster

" Proportion of ciprofloxacin resistant isolates per animal species per cluster

Discussion

The purpose of this study was to use a data-driven method, model-based
clustering, to summarize AMR in bacterial isolates over antimicrobial classes,
in order to develop suitable outcome indicators of AMR monitoring based
on objective arguments. Model-based clustering delivered four clusters as
a dimension reduction of the complex data of 12 986 isolates tested with a
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panel of 10 antimicrobials of eight antimicrobial classes. These four identified
clusters have potential to serve as AMR monitoring outcome indicators.
We show a proof-of-principle of how model-based clustering can be used to
develop data-driven summary indicators to assess AMR monitoring outcome.
In addition, this analysis resulted in a deeper understanding of the patterns
in co-occurrence of resistance to more than one antimicrobial per isolate, as
expressed phenotypically in commensal E. coli. These patterns were identified
by 201 unique resistance combinations in this dataset, divided over the four
clusters (Supplementary Tables S1-S5). The prevalence of these combinations
are different for the animal populations tested. It goes beyond the extend of
this study to investigate all multidrug resistance patterns individually. Here, we
discuss our main results and remarkable findings: the method creates clusters
that differentiate levels of multidrug resistance, with or without resistance to
(fluoro)quinolones and 3™ generation cephalosporins.

Quinolone resistance splits the clusters: cluster 1 and 3 without CIP NAL and
cluster 2 and 4 with CIP NAL resistance (Table 1, Figure 1). Furthermore, 3™
generation cephalosporin resistance also differs between clusters: cluster 3 and
4 contain isolates with resistance against FOT TAZ, but cluster 1 and 2 contain
hardly any. Hence, this cluster analysis divides multidrug resistant isolates over
three different categories: relatively susceptible but with the fluoro(quinolones)
CIP NAL (cluster 2), multidrug resistant mostly without resistance to these
critically important antimicrobials for human medicine (World Health
Organization, 2019) (cluster 3), and multidrug resistance including resistance
to critically important antimicrobials (cluster 4). Most isolates were assigned to
a cluster with high certainty, but not all, as can be seen from a few examples of
less certain posterior memberships in Supplementary Table S1.

We conclude from this analysis that the isolates of the four animal species are
differently distributed over the resistance clusters, Table 2. As an example:
almost all isolates of dairy cows are in cluster 1, whereas broiler isolates are
distributed over all clusters. This is in line with AMU in dairy cows, which
has for many years been much lower than in broilers (SDa, 2018). Regarding
the broilers, most isolates belong to the multidrug resistant cluster 4 (0.31),
corresponding with the relatively high level of resistance against critically
important antimicrobials in these animals. In pigs, the proportion of isolates in
the multidrug resistant cluster 3 (without resistance against critically important
antimicrobials) is high (0.46), and in contrast, is low in cluster 4 (0.01). Veal
calves have multidrug resistant isolates mainly belonging to cluster 3 (0.28) and
to a lesser extend to cluster 4 (0.08).
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We illustrate time trends of the four clusters in different animal reservoirs
in Figure 2. Interestingly, the susceptible cluster 1 increases over time in all
animal species. And in pigs, multidrug resistant cluster 3 decreases over time.
In broilers, the highly multidrug resistant cluster 4 decreases over time. These
findings are in line with the overall reduction in AMU in all animal species in the
Netherlands since 2009 (Dorado-Garcia et al., 2016; SDa, 2018; MARAN, 2019),
and more specifically a stop of 3" generations cephalosporin use in broilers
(SDa, 2018; Mevius et al., 2014).

The four clusters we found can be used as indicators to benchmark AMR: over
time, over several countries or between animal sectors, either as a reflection
of AMU or to assess the overall AMR situation. For benchmarking it is crucial
to create transparency by robust metrics, preferably developed by quantitative
methods (Bos et al,, 2015). These clusters lead to transparency of AMR present
in different reservoirs and this method is flexible for policy makers to make
choices. Suggestions for benchmarking methods are for example to set an AMR
benchmark threshold for the proportion of isolates in ‘susceptible’ cluster 1.
Also the cluster 3 versus cluster 4 proportion could be of interest to benchmark
over different reservoirs (Table 2, Figure 2).

Ourresultsindicate that more than one indicatoris needed to describe multidrug
resistance, as shown in the comparison between the four clusters from this
analysis and the indicators proposed by EFSA, ECDC and EMA(European
Food Safety Authority, 2017), Table 3. For example, the proportion of
multidrug resistant isolates in slaughter pigs versus veal calves (0.38 and 0.33
respectively, Table 3). In pigs, almost all of these isolates belong to the non-
critical multidrug-resistant cluster 3, but in contrast a higher proportion of
the multidrug-resistant isolates from veal calves belong to the more critical
multidrug resistant cluster 4 compared to slaughter pigs (0.08 versus 0.01).
Ciprofloxacin resistance, a separate outcome indicator for EFSA, is represented
in cluster 2 and 4, differentiating ciprofloxacin resistance as part of multidrug
resistance (cluster 4) or mostly without other resistances (cluster 2). Cluster
2 with the phenotype containing just CIP NAL resistance is almost exclusively
present in broilers (Table 2, Table 3, Table S3). (Fluoro)quinolone resistance
seems to persist in broiler flocks, as also described by other studies (Roth et al.,
2019; Chantziaras et al., 2019; Taylor et al., 2016; Vieira et al., 2011).

Model-based clustering summarizes the data without loss of relevant

information. As ECDC, EFSA and EMA mentioned in their recent report, for a
more detailed analysis of causes for AMR in the agricultural sector, an in-depth
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breakdown to the level of individual drug-microbe combinations by animal
species and production sectorisneeded (European Food Safety Authority, 2017).
Furthermore, Buyle et al.(2013) mentioned an unavoidable loss of information
to occur when indicators are used to summarize large datasets. Using model-
based clustering may tackle both of these problems, providing a solution to
balance between reducing complexity and loss of information. The clusters
reduce complexity, but can be broken down by composition to look up specific
information (see the examples of the resistance combinations in Supplementary
tables). Another advantage over the EFSA indicators is that these clusters are
mutually exclusive, while the EFSA indicators are not mutually exclusive and
therefore cannot give an overview of the whole dataset. This is illustrated in
Table 3.

In comparison with the work of Havelaar et al.(2017), Dorado Garcia et
al.(2016) and Laxmariyan et al. (2011) another important advantage of
model-based clustering is that it avoids the making of arbitrary choices, i.e.
on what basis groups are made, because this method is data-driven. Although
the antimicrobial susceptibility panel included in the analysis will influence
results, this probabilistic approach avoids weighing or prioritising with lack of
quantitative arguments. And in the model no heuristic choices such as similarity
coefficients have to be made, as explained in Methods.

So far, few studies have investigated multi-drug resistance patterns with a
quantitative approach to summarize the data and reduce complexity. Most
studies on clusters in AMR data describe hierarchical clustering of genetic data
from the bacterial genome from which their genetic relatedness can be inferred.
Kappell etal. (2015) applied a principal component analysis to both genetic and
phenotypic AMR data of multidrug resistant strains, but describe only ordination
to visualise patterns, not quantify them (i.e. leading to an output that can be
interpreted, for ranking and prioritising specific AMR patterns). Multivariate
analyses to quantify multidrug resistance in either genetic or phenotypic AMR
data have hardly been performed. Now that whole genome sequencing is
becoming available for routine diagnostics and surveillance activities, methods
to reduce complexity in genetic AMR data are needed. We used phenotypic data,
but this approach could also be interesting to apply on genetic data.

This study concerns ecological data: commensal E. coli is a sentinel organism
from samples of healthy animals at slaughter, and multidrug resistance in a
commensal organism from healthy animals is not directly a public health threat.
However, the patterns we found reflect either direct selection or co-selection of

89

<
=
<]
-
="
(o]
=
O




Chapter 4

AMR by AMU, or other driving mechanisms in the animal populations. These
patterns can consequently be subjected to further investigating the biological
mechanisms behind. For example, besides AMU also an increased use of
disinfectants (biocides, i.e. quaternary ammonium compounds) were positively
associated with increased abundance of AMR genes on pig farms (Van Gompel
etal, 2019).

The cluster output of this analysis is, apart from the variability in the data
itself, dependent of the selected panel of antimicrobials. Two antimicrobials
of the critically important classes 3™ generation cephalosporins and (fluoro)
quinolones were included as variables in the analysis. Both FOT and TAZ are
included in the EUVSEC susceptibility testing panel because that increases
the sensitivity for ESBL-screening, and both CIP and NAL are included in that
panel to monitor different types of quinolone resistance (European Food Safety
Authority, 2012). In this analysis, these two classes partly determine the way
the data is divided in these four clusters. For those classes, the isolates resistant
to one of these antimicrobials are nearly always resistant to both antimicrobials
(because of cross-resistance), therefore the model considers them to be a
cluster. We checked for the influence of modelling only one antimicrobial per
antimicrobial class (without TAZ and NAL, which are additional in the classes
of 3" generation cephalosporins and quinolones to FOT and CIP, respectively).
This resulted in a solution of only two clusters: one with all almost completely
susceptible isolates, and the other being all the multidrug resistant isolates
(data not shown). Apparently, in this data, once an isolate is resistant to
one antimicrobial, it has a high probability of being resistant to multiple
antimicrobials. We considered the two cluster solution less informative and
decided to include all 10 antimicrobials from the susceptibility testing panel. As
a result of the characteristics of this data, the four clusters in our results have
an intrinsic focus on (fluoro)quinolones and 3™ generation cephalosporins.
This could be of practical use, since these antimicrobial classes are of specific
interest to policy. However, this clustering method should be re-evaluated after
analyzing a more diverse international dataset.

These clusters may be interesting benchmark indicators for EU member states,
that monitor with the susceptibility panel as prescribed by EU legislation. This
analysis was performed on Dutch data, so the question is whether the clusters
would also be applicable for data from other countries. It could be dependent of
specific AMR patterns, which may vary between ecologies of microbes, different
animal sectors, and between regions and countries. To further develop this
method, this analysis should be repeated for several other countries, such as
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the monitoring data yearly reported by all EU member states to EFSA.

In this study, isolates from all animal species were included in one analysis
instead of analyzing all animal species separately, this enables comparing
the cluster outcomes for benchmarking purposes. However, the effect of this
methodology on the cluster outcome should be further investigated. In addition,
it could be interesting to use this model to investigate associations within
one animal species over different European countries. Countries often have
differences in food animal producing sectors, and other clusters may be found
with different input data. However, in principle the method should perform the
same: summarizing resistance data in a more easily understandable output
than achieved so far.

In conclusion, model-based clustering identifies clusters that summarize
resistance over antimicrobials or antimicrobial classes. The four clusters
we found have potential to be used by policy makers as monitoring outcome
indicators, as we showed for Dutch AMR monitoring data from livestock, 2007-
2018. The composition of the clusters was determined by the co-occurrence of
resistance to more than one antimicrobial per isolate, and these reflect selection
and co-selection patterns by AMU or other determinants. This study concerns
ecological data from a commensal microorganism from Dutch livestock
reservoirs, but this analytical method has potential value to identify clusters as
outcome indicators for data from other microorganisms (for example foodborne
pathogens such as Salmonella, Campylobacter), or data from other reservoirs.
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Supplementary data

Table S1-S5: See supplementary xlsx.file, available online.
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Figure S1. Model selection was based on the mean ICL? for all Flexmix models generated in
the stepFlexmix model (1000 iterations) showing four clusters as ideal number to describe

the data

2The number of components (clusters) is shown on the x-axis and the information criterion (for
AIC, BIC and ICL) on the y-axis.

Appendix S1: Posterior membership of a resistance pattern
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Appendix S1: Posterior membership of a resistance
pattern

To assign an isolate to a cluster we need the resistance pattern of the isolate and
the parameters of the cluster solution, namely

e the probability of resistance against each of the ten antimicrobials for

each of the four clusters; these probabilities are given in Table 1 of the
main text.

o the relative cluster sizes, given as last row in Table 2 of the main text.
Notation. Let ¥ = (vy,...,V,,) be the resistance pattern of an isolate,
with y;=1 for resistance against the j* antimicrobial (j = 1,.,m) with m =
10, p = (Pyqs s Pyy) the probability vector containing the resistance
probabilities against each of the ten antimicrobials, thus, p, ; is the resistance
probability against the j* antimicrobial for the k* cluster (k = 1,.., K) with K = 4,
and w = (w,, ..., Wy ) are the relative cluster sizes with w,, the relative size of
the k* cluster, with X, w, = 1.

The unnormalized posterior membership probability (g;) that a resistance
pattern v ¥ belongs to cluster k is

£ "y 1-y;
O = Wy 1_[ lpﬂi (1 —P}-;{) ’
i=

The isolate is assigned to the cluster with the largest value of g, (k= 1.., K). The
posterior membership probability is obtained by normalization:

q. = qp/ Zi=1 a5 -
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Abstract

The aim of this article is to report on antimicrobial resistance (AMR) in
commensal Escherichia coli from livestock from several European countries. The
relationships with antimicrobial usage (AMU) at country level and harmonized
indicators to cover the most relevant AMR aspects for human health in animal
production were also investigated.

Escherichia coli were isolated in faeces from broilers and fattening pigs (from
nine countries), and fattening turkeys and veal calves (from three countries)
and screened against a fixed antimicrobial panel. AMU data were collected at
farm and average treatment incidences stratified by antimicrobial class, country
and livestock species were calculated. Associations between AMR and AMU at
country level were analysed.

Independent of animal species, the highest resistance was observed for
ampicillin, sulphamethoxazole, tetracycline and trimethoprim. E. coli from
broilers showed the highest resistance level for (fluoro)quinolones, and
multidrug resistance peaked in broilers and fattening turkeys. Colistin resistance
was observed at very low levels with the exception of fattening turkeys. High
resistance to 3rd- and 4th- generation cephalosporins was detected in broilers
and fattening turkeys. The lowest levels of resistance were for meropenem,
azithromycin and tigecycline (<1%).

Significant correlations between resistance and usage at country level were
detected in broilers for fluoroquinolones, polymyxins and aminoglycosides,
and in fattening pigs for cephalosporins, amphenicols, fluoroquinolones and
polymyxins. None of the correlations observed between AMR and AMU were
statistically significant for fattening turkey and veal calves. The strength of the
analysis performed here is the correlation of aggregated data from the same
farms at country level for both AMU and AMR within antimicrobial classes.
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Introduction

Antimicrobial resistance (AMR) has emerged globally in food-producing
animals during the last decades, with consequent concerns for both veterinary
and human medicine [1]. The AMR reservoir in bacteria from livestock has
been increasingly investigated for its potential to transfer AMR to humans via
direct contact, the environment or the food-chain [2-3]. AMR is not an issue
only for pathogenic bacteria but also for commensal intestinal microbiota.
Escherichia coli is commonly used as an indicator of the Gram-negative gut
microbiota [4]. Most livestock carry E. coli as a commensal in their intestine
and thus it can be regarded as a reservoir of acquired resistance determinants.
Phenotypic assessment of E. coli is used as a proxy of AMR in the intestinal
tract of healthy animals, including resistance determinants mediated by mobile
genetic elements. This approach is crucial in monitoring activities in Europe as
recommended by EFSA [5].

In the EU FP7 EFFORT project (http://www.effort-against-amr.eu/), a cross
sectional analysis of antimicrobial resistance and antimicrobial usage (AMU)
was conducted in a selection of broilers and fattening pigs farms in nine EU
countries. In three countries, the occurrence and characteristics of AMR and
AMU was also analysed in a selection of veal calf and fattening turkey farms.
The strength of the EFFORT project relies on the fact that both AMR and AMU
datasets were gathered from the same farms, making this data explicitly
suitable to analyse overall correlations between AMR and AMU. Conversely,
in monitoring activities, this is more difficult since AMR data are collected at
slaughterhouse, while AMU data are available from different farms, therefore,
not from the same epidemiological units. The data was also analysed considering
harmonized indicators in food-producing animals proposed by EFSA and ECDC
to estimate the progress made towards a reduction in bacterial resistance to
key antimicrobials in livestock within the European Union [5]. One primary
indicator (full susceptibility) and three secondary indicators (resistance to
3rd- and 4%-generation cephalosporins, multidrug resistance and ciprofloxacin
resistance) can be used to provide a general assessment of the overall AMR
situation in each nation and information on specific issues of a more restrict
scope, respectively [5].

The aim of this paper is to report on antimicrobial resistance prevalence
in indicator E. coli, as well as on the overall correlation between resistant
proportions of isolates and mean AMU per country from farms sampled within
the EFFORT project. Furthermore, the correlation of mean AMU per country with
national harmonized indicators per animal species to cover the most relevant
AMR aspects for human health in animal production at national level is analysed.
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Methods

Farm selection and animal sampling

Farm selection and sampling has been previously described [6]. Briefly, for
each of the participating countries (Belgium, Bulgaria, Denmark, France,
Germany, Italy, the Netherlands, Poland and Spain) 20 conventional integrated
farrow-to-finisher pig farms and 20 conventional broiler farms were included.
Countries were anonymized (A to I) to ensure that results could not be traced
back and because farm selections cannot be considered representative of an
entire country. However, the sample size of species at country level does allow
showing an approximation of the problem, including differences at species level
and trends at country level when it comes to AMR and AMU. Furthermore, 20
conventional turkey farms with an all-in-all out system (countries B, E, and H)
and 20 non-mixed white or rosé veal calf farms with an all-in all-out system at
the compartment level (countries B, E and F) were included. These two datasets
were incorporated in the original EFFORT project based on the relevance of
these specific livestock production from a national point of view, and because
of the scarse data available on AMU and AMR in veal calves and fattening
turkeys, especially in a multi-country setting. In order to standardize methods
and techniques during a pilot study, one additional farm for both fattening pigs
and broilers (30 instead of 10 animals per farm, country A,) and veal calves
(10 animals, country B) were included. All farms included in the study were
epidemiologically unrelated, as the farms were required not to have contact
with each other through trade and each farm had only one owner.

Faecal samples from ten animals per farm (1830 broilers, 1830 fattening
pigs, 600 fattening turkeys and 610 calves) were collected within the last week
before slaughter. To prevent seasonal influences farm sampling was distributed
over the year, sampling 5 farms per season. Overall sampling in all countries was
conducted between April 2014 and October 2016. Deviations from sampling
protocol are described in detail by Munk and colleagues [6]. For each farm,
faecal samples were suspended in Buffered Peptone Water (BPW) [1:10 (w/v)]
with 20% glycerol and from each sample a volume of 2 g was stored in duplicate
at -80 °C.

E. coli isolation and susceptibility testing

Faecal samples were individually inoculated on MacConkey agar without
antibiotic selection at 37 °C. After overnight incubation, one randomly picked
presumptive E. coli colony per faecal sample, per farm, was pure cultured
and stored individually in BPW with 20% glycerol at -80 °C pending analysis.
Colonies were confirmed as E. coli biochemically or alternatively by MALDI-TOF
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MS (Microflex LT MALDI Biotyper; Bruker Biosciences) or sub-culturing onto
CHROMagar (CHROMagarTM).

Minimum inhibitory concentrations (MIC) with broth microdilution were
determined for a fixed panel of antimicrobials by commercially available
microtitre plates (EUVSEC, Thermo Fisher Scientific). Quality assurance among
laboratories was ensured by distribution of a Standard Operating Procedure
according to ISO standard 20776-1-2006 [7], use of ATCC strains as control,
and standardization of methodologies during a mandatory training organized
before sample collection. Within EFFORT, no External Quality Assurance
Services (EQAS) was organized because the majority of laboratories involved
are National Reference Laboratories that already take part in the annual EQAS
organized by the EU Reference Laboratory - Antimicrobial, hosted at DTU-Food
(DK), also one of the participating laboratories in EFFORT.

EUCAST epidemiological cut-off values were used to differentiate between
wild-type and non-wild-type susceptibility (henceforward referred to as
resistant isolates). The epidemiological cut-off values (ECOFFs) used were:
ampicillin (AMP) <8 mg/L, cefotaxime (FOT) <0.25 mg/L, ceftazidime (TAZ)
<0.5 mg/L, meropenem (MERO) <0.125 mg/L, ciprofloxacin (CIP) <0.064 mg/L,
nalidixic acid (NAL) €16 mg/L, azithromycin (AZI) <16 mg/L, chloramphenicol
(CHL) <16mg/L, colistin (COL) <2 mg/L, gentamicin (GEN) <2 mg/L,
sulphamethoxazole (SMX) <64 mg/L, trimethoprim (TMP) <2 mg/L, tetracycline
(TET) <8 mg/L, and tigecycline (TGC) <0.5 mg/L [8]. Misinterpretation of
sulphamethoxazole MIC-endpoints (overestimation of resistance) for country
B led to the exclusion of these data from the analysis (Table S1, Supplementary
data).

Antimicrobial usage data

Antimicrobial usage data for the following antimicrobial classes were obtained
for all livestock (unless otherwise specified): aminoglycosides, aminopenicillins,
amphenicols (fattening turkeys excluded); cephalosporins (fattening pigs
and veal calves); fluoroquinolones, lincomycin-spectinomycin, lincosamides
(fattening pigs and broilers only); macrolides, other quinolones, paromomycin
(fattening pigs only); penicillin, pleuromutilins (fattening pigs only);
polymyxins; tetracycline; sulphonamides (fattening pigs and veal calves only)
and different combinations of trimethoprim-sulphonamides. Group treatment
data were collected at farm level using specific questionnaires per animal
species (questionnaire for broiler farms is provided as an example in (Table
S2, Supplementary data) and were quantified with the treatment incidence (TI)
indicator. Briefly, TI was calculated as the antimicrobial dose per defined daily
animal doses (DDDvet) per 1000 animals at risk. As TI is expressed per 1000
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animals at risk, this number, when divided by 10, represents the percentage
of their lifetime that the animals received a daily dose of antimicrobials. TI
results are described in more detail per 100 animals at risk elsewhere [9-10].
The TI formula adjusts the total amount of active substance administered for
the average duration of one production cycle on country level, in case of the
broiler farms [9], and on farm level in case of the veal calf and turkey farms. For
pig farms, duration of a production cycle was age category-specific (sucklers,
weaners and finishers). The TI of sucklers, weaned piglets and finishers were
combined and recalculated into a standardised lifespan of 200 days to express
AMU from birth to slaughter (TI200) [10]. In addition, TI takes into account
a standardized dose and the number of animals at risk for being treated. The
latter was derived from the questionnaire where we recorded the group size of
the animals. Corrections for a standardized dose were made by using DDDvet
values from ESVAC (European Surveillance of Antimicrobial Consumption)
for quantification in broilers, pigs and veal calves. Whenever DDDvet was not
available for a product, dosage mentioned in the SPC (summary of product
characteristics) of that product was used. DDD, ., was defined for all
antimicrobials used on the participating turkey farms, using a similar approach
as previously described [11]. In this study average TIs on participating farmes,
stratified by antimicrobial class, country and livestock species were used.

Statistical analysis

For all livestock species, MIC data were aggregated at country level in resistance
proportions. AMU data were aggregated as mean treatment incidence on
participating farms. The aggregated MIC data were correlated to the mean
treatment incidence per country, over countries, giving insight in the overall
correlations of AMU and AMR within antimicrobial classes.

The correlation between AMR proportions and mean AMU per country was
tested using the Spearman rank correlation test (rho) in RStudio, version 1.1.423.
Each antibiotic resistance proportion was tested against up to three different
antimicrobial treatments (T1, T2, T3) depending on the available AMU data per
animal species: AMP, FOT, TAZ: penicillins, aminopenicillins, cephalosporins
(only fattening pigs); AZI: macrolides, lincomycin-spectinomycin, lincosamides;
CHL: amphenicols; CIP, NAL: fluoroquinolones, other quinolones; COL:
polymyxins; GEN: aminoglycosides, lincomycin-spectinomycin, paromomycin
(only fattening pigs); SMX: trimethoprim-sulphonamides, sulphonamides;
TET: tetracyclines; TGC: tigecyclines; TMP: trimethoprim-sulphonamides. All
statistical analyses were performed in R version 3.4.3 [12] under the integrated
development of R-studio.

104



Antimicrobial resistance in E. coli and antimicrobial use in European countries

S Jeydey)

"auIA298n :nn [, eurphoensy ;1L ‘wrdoyawn (L ojozexoyiaweydns :X NS ‘UnIweIuad :Ngo Uunsijod 1) odrusydureso[yd
YTHD ‘upAwoayiize :[Zy ‘ploe JIXIpieu (TyN ‘upexopoldn :d[) ‘wauadotowl QYHN QUWIPIZEYDD :[ZVI ‘QWIXeiojad 104 ‘uioidwe Wy

‘A13unod 1ad saafed [eaa pue sAax.an) Suruane] ‘sSid Surualyej ‘saa[10.1q wo.ay pajejosi 1702 7 Jo (%) suoniodoad ouelsisal [eiqo.orunuy f 3ansig

InHe Om dw 3u Gnw Om G Vn

oL JEn AL XS N3D 100 Ho izv N do o3l
-~ = - ~g==g - -ug = L -

i I | 11

| |

.
¢ ]
siopoig
In He Om 4u 3m Q= Om n Va
091 X 100

r - Mire-rr - gy

x

NS N3D HO 1zv N dio
_—7 _—-l-u—- -l = u _—_-— -nm =1 ‘—-w-.-ml _7_"-- =
i L

131 dAL

sbid Buluapey

N dAY

zZvL 104
- l—-l-ui-— l—--u.—— ——_—_——

vl 104 dINY
= gueE =gt g ————=—=
=z

O¥3N

%0

%01

105



Chapter 5
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Figure 1. Antimicrobial resistance proportions (%) of E. coli isolated from broilers, fattening
pigs, fattening turkeys and veal calves per country. (continue)
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Average treatment incidence (TI)

w

f
n

~

e
n

-

e
n

w I @ L

Average treatment incidence (T1)

~

1

0

Veal calves
_I.II||I|4| | l||.||
Aminogly Aminopen  Amph Ceph Fluorog Linco_Spect Macro  OtherQ Pen Sulpho. Tetra  Trim_Sulph

WB NE NF

Fattening turkeys

i II I.‘..III 1 ||| T
Per

Aminogly ~ Aminopen  Fluoroq  Linco_Spect  Macro OtherQ n Polymyx Tetra Trim_Sulph

WB WE WH

Figure 2. Average antimicrobial usage (TI/1000) in sampled farms for broilers, fattening
pigs, fattening turkeys and veal calves per country. (continue)
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Results and Discussion

E. coli isolation was successful for all but 34 out of 4860 faecal samples. MIC
values for 4826 E. coli from broilers (n=1811), fattening pigs (n=1809), fattening
turkeys (n=596) and veal calves (n=610) were included in this study (Table S1).
A large variation in resistance proportions between antimicrobials, countries
and animal species was observed (Figure 1). Substantial differences between
countries were also observed in AMU (Figure 2).

Independent of the animal species, the highest levels of resistance were
observed for ampicillin, sulphamethoxazole, tetracycline and trimethoprim,
which is in line with previous studies [13-15]. Resistance to ampicillin in
broilers varied between 39.5% and 92% (Figure 1) and strongly correlated
(Spearman’s rho= 0.917, p=0.001) with aminopenicillins usage over countries,
but not with penicillin (Table 1). Resistance to ampicillin in fattening pigs (17.5-
73.8%) did not correlate with either penicillins or aminopenicillins (Table 1).
Because penicillin as such does not select for ampicillin resistance in E. coli it
is not surprising that penicillin treatment (T1) does not correlate to ampicillin
resistance in either animal species. As for the difference observed in correlation
between ampicillin resistance and aminopenicillins use in broilers and fattening
pigs, time could be the most likely explanation. The interval between amoxicillin
use in young broilers and their slaughter age (6 weeks) is very short compared
to the relatively long interval in pig production, with amoxicillin use in sows at
delivery and in piglets to control bacterial infections (i.e. Streptococcus suis), and
the slaughter age of pigs. Surprisingly, resistance to ampicillin in fattening pigs
correlated significantly (Spearman’s rho=0.729, p=0.026) with cephalosporins
usage over countries. This association might be an artefact, since cephalosporins
only select for resistance to extended spectrum cephalosporins and not to
ampicillin (as for example in the case of TEM-1 beta-lactamases).

For simplicity, resistance to 3™ - and 4" -generation cephalosporins and
ciprofloxacin are discussed later in the article in correlation with the harmonised
indicators proposed by EFSA to assess the most relevant aspects of AMR of
public health concern in food-producing animals.

Resistance proportions for sulphamethoxazole were highest in poultry (82%,
country D) and fattening pigs (77.7%, country I). Tetracycline resistance recorded
the highest proportions in broilers (89.6%, country I) and fattening turkeys (92.3%,
country H). No significant correlations were observed between sulphamethoxazole
and tetracycline resistance and their respective treatment incidents data over
countries (Table 1). Despite the high resistance levels, tetracycline did not belong to
the three most used antimicrobials neither in broilers nor in fattening pigs [9, 10].
However, part of the resistance could be explained by a historical built-up, due to
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heavy use in the past [16], and/or the common occurrence of tet and sul resistance
genes in E. coli, independently on antibiotic usage.

Trimethoprim resistance was highest in broilers (76.5%, country D) and
significantly correlated (Spearman’s rho=0.809, p=0.008) with trimethoprim-
sulphamethoxazole usage over countries (Table 1). Although nalidixic acid
resistance against the use of fluoroquinolones and/or quinolones reached its
highest levels in broilers (86%, country I), no correlation was observed with
fluoroquinolone usage. Conversely, fluoroquinolone usage significantly correlated
(Spearman’s rh0=0.698, p=0.037) with resistance in fattening pigs (Table 1).

In spite of a ban on the use of chloramphenicol in animals used for food

production since the early 1990s [17], resistance was high in fattening turkeys
(up to 56.1%, country H) and fattening pigs (up to 44.5%, country I), with
lower proportions in broilers (up to 34.5%, country D) and veal calves (up to
22.4%, country B) (Figure 1). In fattening pigs, chloramphenicol resistance
significantly correlated (Spearman’s rho=0.807, p=0.009) with phenicols usage
over countries (Table 1). Gentamicin resistance in broilers was <10% in all
countries, except for country H (45.3%) (Figure 1). This significantly correlated
(Spearman’s rho=0.713, p=0.031) to no or very low aminoglycosides usage at
sampled farms over countries (Table 1). Very low resistance to tigecycline was
observed, a drug not used in veterinary medicine, whose resistance mechanism
is mostly due to efflux pump over-expression [18]. Azithromycin resistance was
very low or absent in E. coli (Figure 1).
The highest prevalence (3.8%, country E) was observed in veal calves, where
metaphylaxis with macrolides is commonly used to control bovine respiratory
diseases, which may exert selective pressure on commensal intestinal
microbiota [19]. A high negative correlation (Spearman’s rho=-0.818, p=0.007)
between azithromycin resistance and usage of lincomycin-spectinomycin in
fattening pigs was observed, a phenomenon for which a biological explanation
is not currently available.
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Table 1. Correlation between antimicrobial usage (average treatment incidence on farm
level stratified per country, species and antimicrobial class) and resistance (MIC data
aggregated at country level in resistance proportions).

Animal Antimicrobial T1# T2# T3*
rho$ p rho )4 rho )4
Broilers AMP 0.548 0.127 0.917 0.001
AZIl 0.173 0.656 0.019 0.961 0.217 0.576
CHL 0.000 1.000
CIP 0.778 0.014 -0.138 0.724
COL 0.718 0.029
FOT -0.279 0468 0.424 0.256
GEN 0.713 0.031 -0.359 0.343
NAL 0.667 0.059 -0.137 0.725
SMX 0.574 0.106
TAZ -0.138 0.723  0.588 0.096
TET -0.153 0.695
TGC -0.471 0.200
TMP 0.809 0.008
Fattening pigs AMP 0.271 0.480 0.417 0.270 0.729 0.026 LQ
AZIl -0.145 0.709 -0.818 0.007 0.638 0.064 g
CHL 0.807 0.009 =
CIP 0.806 0.009 0.279 0.468 =
COL 0.789 0.011
FOT 0.260 0.500 0.128 0.743 0.329  0.387
GEN -0.035 0928 -0.315 0.408
NAL 0.698 0.037 0.276 0.472
SMX 0.151 0.699 0.274 0.476
TAZ -0.035 0928 -0.147 0.705 0.282 0.462
TET -0.126  0.748
TGC -0.594  0.092
TMP 0.494 0.177

$Spearman’s rho

In bold, p< 0.05

#T1, T2 and T3 treatments correspond to the following classes per antimicrobial, respectively:
AMBP, FOT, TAZ: Penicillins, Aminopenicillins, Cephalosporins*;

AZI: Macrolides (T1), Lincomycin-Spectinomycin (T2), Lincosamides (T3);

CHL: Amphenicols (T1);

CIP, NAL: Fluoroquinolones (T1), Other quinolones (T2);

COL: Polymyxins (T1);

GEN: Aminoglycosides (T1), Lincomycin-Spectinomycin (T2), Paromomycin* (T3);
SMX: Trimethoprim-Sulphamethoxazole (T1), Sulphonamides (T2);

TET, TGC: tetracyclines (T1);

TMP: Trimethoprim-Sulphamethoxazole (T1).

*only fattening pigs.
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Low proportions were observed for colistin resistance in broilers, fattening
pigs and veal calves (0-6.5%), conversely to fattening turkeys (8.5-17.5%).
Although sales of polymyxin dropped in Europe between 2010 and 2016 [20],
colistin was still substantially used in some of the countries involved in this
study. In both broilers and fattening pigs, polymyxin usage corresponded
significantly (Spearman’s rho=0.718, p=0.029 and Spearman’s rho=0.789,
0.011, respectively) with the mean resistant proportion of isolates over
countries (Table 1). Meropenem resistance was absent in veal calves and only
sporadically detected in other animal species (<1.5%) (Figure 1). Meropenem
resistant E. coli isolates were confirmed to be negative for carbapenemase
genes bla,, ,., bla, , bla,,, bla, and bla,,(data not shown). As carbapenems
are not licensed for use in livestock, correlation between meropenem resistance
and aminopenicillins and/or cephalosporin usage was tested. No significant
correlation between antimicrobial usage and resistance was observed for
broilers and fattening pigs (data not shown).

For fattening turkeys and veal calves no statistically significant correlation
was observed between AMR and AMU; this is most probably due to the small
sample size of only 3 countries.

Four harmonised indicators are proposed by EFSA to assess the most
relevant aspects of AMR of public health concern in food-producing animals:
1) resistance to 3™- and 4™-generation cephalosporins, 2) resistance to
ciprofloxacin, 3) full susceptibility, and 4) multidrug resistance (Table 2) [5]. The
proportion of indicator E. coli resistant to 37- and 4"- generation cephalosporins
is prioritized since these antimicrobials are classified as the highest prioritized
critically important for human medicine [21].

In general, the proportion of E. coli displaying non-wild type susceptibility to
cefotaxime and/or ceftazidime varied by animal species and country (Figure 1).
It was low in fattening pigs and veal calves (0.5-2.1%), but reached higher levels
in fattening turkeys (23.5%, country H) and broilers (16.6%, country H) (Table
2). Occurrence and prevalence of extended spectrum (-lactamase-producing E.
coli that may enter the food chain varies greatly by animal species and country:.
No significant correlation between resistance to cefotaxime and/or ceftazidime
and cephalosporins use was observed in broilers and fattening pigs (Table 1),
contrarily to what is reported in other countries [22]. Although specific selection
for ESBL detection was not included in the EFFORT sampling and data collection
(as for any other antibiotic), cefotaxime and ceftazidime resistant E. coli were used
as a proxy for ESBL-producing E. coli proportion. However, the proportion of these
isolates observed in the dataset does not resemble the proportion of samples or
animals containing ESBL/AmpC producing E. coli, as indicated by EFSA, and this
may explain why no significant associations with usage were observed.
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Resistance to ciprofloxacin is used as a proxy for resistance to (fluoro)
quinolones, included in the list of the highest prioritized critically important
antimicrobials for human medicine [21,23]. Reduced susceptibility to
ciprofloxacin in broilers varied by country between 11.5% and 91.5% (Table
2) and correlated significantly (Spearman’s rho=0.778, p=0.014) with
fluoroquinolone usage over countries. Reduced susceptibility to ciprofloxacin
in pigs occurred less frequently and varied by country between 1% and 34.4%
(Table 2). It also correlated significantly (Spearman’s rho=0.778, p=0.014)
with fluoroquinolone usage over countries. No correlation was observed
with other quinolones for both broilers and fattening pigs. Fluoroquinolone
resistance has been documented in commensal E. coli in livestock in Europe
[24-25], and throughout turkey breeding and meat flocks in the UK [26], where
biosecurity and responsible AMU were recognized as contributors to restrict
AMR occurrence and spread [27].

The proportion of indicator E. coli fully wild-type susceptible to the entire
panel of antimicrobials tested is used as a proxy of the overall selective pressure
exerted by agricultural usage of antimicrobials [28]. In general, E. coli isolates
from fattening pigs were more susceptible than from other livestock (Table
2). The highest prevalence of fully susceptible E. coli was observed in country
C in both broilers and fattening pigs (49-50.5%, respectively). There was no
significant correlation between the proportion of fully susceptible E. coli and
AMU for broilers or pigs (Figure S1). Several speculations could be made for
this correlation not being significant. Although the quality of the dataset is
undisputable, this was not designed to prove an association between overall
AMU and fully susceptible E. coli. Additionally, the proportion of fully susceptible
E. coli is not a specific indicator for overall AMU. When applied to a very large
dataset, as done by EFSA, this correlation will likely be very high. However, in a
study like EFFORT with more diversity relative to the number of samples taken,
this correlation is expected to be lower, a reason why also EFSA is re-evaluating
how specific these composite indicators are. Finally, as previously reported
in another publication by the EFFORT consortium [9], for some countries
data collection on AMU was challenging, as the sample period was not always
consistent over the year, and this may also influence this correlation.

The lastindicator considered was multidrug resistance (MDR), i.e. resistance
to three or more antimicrobials classes [29]. This indicator is informative in
situations with high levels of resistance with very few isolates displaying full
susceptibility [5]. MDR was observed in most of the countries, especially in
broilers (58.5-90.5%) and fattening turkeys (54-88.3%) (Table 2). High MDR
level in poultry is a well-known phenomenon, partially related to frequent use
of antimicrobials as oral group treatments in fattening periods as short as six
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weeks for broilers [30]. No significant correlation between AMU at country level
and MDR in broilers and fattening pigs was observed (Figure S1). As for the fully
susceptible E. coli indicator, the MDR indicator might better apply to very large
datasets, in relation to the number of farms sampled here relative to the diversity
in the dataset. However, correlations between high MDR levels and other AMU
parameters as well as specific farm characteristics might be significant, as
investigated in more in depth studies from the EFFORT consortium [6, 31-32].
At strain level, the most resistant E. coli of the entire collection was recovered
from a fattening turkey of country H resistant to eleven antibiotics (AMP, FOT,
TAZ, CIP, NAL, CHL, COL, GEN, SMX, TET, TGC) spanning eight different classes
(Table S1). MDR profiles to seven different classes were sporadically observed
in E. coli from fattening pigs (country I), broilers (countries H and I), and veal
calves (country E), (see Table S1).

Conclusions

A wide collection of E. coli isolates and related MIC profiles from different
animal reservoirs was produced and analysed in relation with harmonized AMR
indicators and AMU at country level. Resistance proportions varied between
antimicrobials and animal species, and correlation with usage was not always
significant. Where possible the results gathered here were compared cautiously
with AMR and AMU data from other studies, keeping in mind the use of different
methodologies to describe the data.

The strength of the EFFORT projectrelieson AMR and AMU datasets gathered
from the same farms. The analysis performed here correlates aggregated data
from the same farms at country level for both AMU and AMR within antimicrobial
classes. To the best of our knowledge, this was not performed before with data
gathered from the same epidemiological unit, i.e. the farm, on such a scale. Even
though the data is aggregated and was not analysed at farm level, there is still a
stronger correlation than when correlating AMR monitoring data to AMU data at
farm level, as regularly done in numerous reports and studies [33, 34]. Although
it is accepted generally that AMU will cause AMR [34, 35], the extent to which
this happens differs enormously per antimicrobial class, as is clearly shown
by these results, also depending on other factors like farm management and
characteristics. Since Spearman’s rank correlation is a quantitative association
test, we get a feeling of the extent of the correlations per antimicrobial class.
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Chapter 6

Abstract

Background: In the Netherlands, antimicrobial resistance (AMR) is monitored
in commensal indicator Escherichia coli from healthy broilers at slaughter as
part of a European monitoring programme. [n a separate programme for poultry
health, AMR is monitored in veterinary pathogens from diseased broilers. The
differences and similarities of the information obtained in the two monitoring
approaches are unknown.

Aims: This study compares non-wildtype susceptibility in commensal E. coli
isolated from healthy broilers with clinical resistance in E. coli isolated from
diseased broilers.

Methods: Data acquired by broth microdilution was analysed for commensal
indicator E. coli and clinical E. coli from the Netherlands, 2014-2019. An additive
generalised linear model (Poisson regression) was used to determine time
trends and identify differences in mean resistant proportions.

Results: Despite the differences in the monitoring approach, mean resistant
proportions were similar in commensal indicator E. coli and clinical E. coli for
most antimicrobials. The random sample of commensal E. coli isolated from
healthy animals was more suitable for monitoring time trends in AMR. The
selected sample of clinical isolates resulted in a higher chance to detect low-
prevalent resistance: i.e. cefotaxime and colistin. The clinical E. coli data showed
more fluctuation over time, and more data is needed to quantify the association
between the two types of monitoring data over time.

Conclusions: We concludethatthetwomonitoringstrategiesare complementary
and that it is therefore necessary to monitor AMR both in commensal E. coli
from healthy broilers and in clinical E. coli from diseased broilers.
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Introduction

Antimicrobial resistance (AMR) in livestock as public health hazard is
monitored in commensal indicator organism Escherichia coli (E. coli), and
food-borne pathogens (Salmonella, Campylobacter). In the European Union, it
is mandatory to sample food producing animals in slaughterhouses, isolate E.
coli and determine their susceptibility for antimicrobials with a standardized
susceptibility panel, as prescribed by EU legislation (1). Results are reported
yearly in Monitoring of Antimicrobial Resistance and Antibiotic Usage in
Animals (MARAN) (2) in the Netherlands and by the European Food Safety
Authority (EFSA) on European level (3).

Several studies have shown that monitoring of AMR in commensal indicator
organism E. coli is useful to determine AMR occurrence or trends as a potential
public health threat in food producing animals (4-6). Veterinary prescription
guidelines are based on AMR trends in commensal E. coli as well as on AMR
trends in clinical isolates. Commensal E. coli are no direct health threat, but
considered a potential source of resistance genes for pathogenic bacteria.
Currently, the association between resistance in commensal (non-clinical) E.
coli isolates and clinical isolates in livestock is mostly unknown.

In the Netherlands, next to the national AMR monitoring in commensal E.
coliisolates from slaughter animals, AMR monitoring in veterinary pathogens
from clinical submissions and post-mortem examinations of livestock is
performed by Royal GD (GD) in Deventer (7, 8), The Netherlands. These
results are reported as part of the national farm animal health surveillance
system, by order of the Dutch government and the animal industry. In broiler
chickens, among other bacterial species, E. coli isolated from diseased broilers
is tested for susceptibility.

To optimize the interpretation of AMR monitoring data, the similarities
and differences need to be determined between the two types of monitoring:
in commensal and clinical bacteria. This study aims to compare the results of
monitoring of non-wildtype (NWT) susceptibility in commensal E. coli isolated
from healthy animals at slaughter with clinical resistance in E. coli isolated
from diseased broilers. For that purpose, resistance data acquired by broth
microdilution were analyzed of commensal indicator E. coli from MARAN and
clinical E. coli from GD monitoring, the Netherlands, 2014-2019.
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Methods

Sample collection

Sample collection in MARAN was equal to described in Hesp et al (4). This
consisted of a stratified random sampling strategy of caecal samples, each
originating from a unique flock, collected at slaughterhouses. As defined by
EFSA, this stratified sampling of caecal samples ‘accounted for slaughterhouses
processing at least 60% of the domestic annual production of the broiler
population, with proportionate allocation to the slaughterhouse production’
(Commission Implementing Decision (EU) 2013/652, Annex Technical
Requirements 2.3).

In GD monitoring, clinical E. coli isolates were obtained from lesions of
diseased broilers submitted for pathology to GD, as well as a random selection
ofisolates cultured in private practice laboratories, also obtained from lesions of
diseased broilers. For the clinical E. coli, most isolates (88%) were considered to
be sampled in animals before treatment was applied, as part of good veterinary
practice when performing bacteriology. From the clinical isolates, 12% were
known to come from treated animals and marked as such by the veterinarian. A
comparison was made between resistant proportions in all clinical E. coli versus
only the isolates marked as ‘no treatment’, indicating no differences of resistant
proportions as confidence intervals overlapped (results not shown). Hence, all
clinical E. coli data were included in the analysis.

Bacterial isolation and susceptibility testing

Isolation of E. coli in MARAN is described in Hesp et al (4). Commensal E. coli
were isolated on MacConkey agar. Clinical E. coli isolates were isolated on sheep
blood agar.

Susceptibility testing in MARAN was performed by broth microdilution,
determining minimum inhibitory concentrations (MIC) according to ISO 20776-
1 using commercially available microtiter plates (Sensititre EUVSEC by Thermo
Scientific, East Grinsted, United Kingdom). GD performed broth microdilution
with customized microtiter plates (Merlin Diagnostics, Bornheim-Hersel,
Germany). In both monitoring programs, matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF)(Bruker Daltonik
GmbH, Bremen, Germany) was used to confirm that the isolates were E. coli (in
MARAN this method was introduced in 2015, in the year 2014 isolates were
biochemically identified).

MIC distributions were scrutinized of the antimicrobials present in both
susceptibility testing panels (Supplementary Figures S1-S7). This was to detect
any methodological differences and to determine which antimicrobial classes
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could be compared. These concerned: ampicillin representing aminopenicillins,
gentamicin representing aminoglycosides, cefotaxime as representative of
cephalosporins, tetracycline representing tetracyclines, colistin representing
polymyxins, ciprofloxacin and enrofloxacin representing fluoroquinolones.
Ciprofloxacin resistance in commensal isolates was compared to enrofloxacin
resistance in clinical isolates. For the folate pathway inhibitors trimethoprim
and sulfamethoxazole, the proportion of isolates resistant to both of these
antimicrobials in commensal E. coli was compared to resistance to the
combination trimethoprim/sulfamethoxazole in the clinical E. coli isolates.
Susceptibility testing panels and concentrations ranges used in the two
monitoring programs are summarized in Supplementary Table S1. MIC data
from both Dutch monitoring programs were available from 2014-2019, for
commensal E. coli isolates in MARAN (N=1,992) and clinical E. coli isolates in
GD (N=1,253). The terms ‘commensal’ and ‘clinical’ are used in the rest of the
paper to indicate the isolates from the two monitoring programs.

Breakpoints

Table 1 presents the breakpoints used to calculate resistant proportions
of the two populations. To determine proportions of NWT susceptibility in
commensal indicator E. coli, internationally standardized epidemiological
cut-off values (ECOFFs) were used (9). These were compared with resistant
proportions determined with clinical breakpoints (CBP) used for clinical E. coli
(10, 11). ECOFFs and CBPs defined by EUCAST were used, wherever available.
For fluoroquinolones, the CBP for ciprofloxacin was applied in commensal E.
coli in addition to the ECOFF to show the difference in resistance proportion
between NWT susceptibility and clinical resistance for that specific example.
For enrofloxacin no EUCAST CBP was available, hence a CLSI breakpoint for
poultry was used (11). For tetracycline the ECOFF was used for the clinical
isolates in absence of a CBP (Table 1).

Statistical analysis

Trends were evaluated by plotting the observed resistant proportions with 95%
confidence intervals (CI) of the two monitoring datasets, as well as with Poisson
regression models. Using the MIC data and selected breakpoints, yearly resistant
isolate proportions were calculated for each antimicrobial, and exact 95% Cls
were calculated, using yearly resistant proportions and the total numbers of
isolates tested (N). All statistical analyses were performed in R version 3.3.3
(R Foundation, Vienna, Austria) (12). Regression models were selected by
comparison of lowest values for Akaike’s Information Criterion (AIC), model fit
was assessed by the scaled deviance.
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Table 1. Breakpoints used to determine non-wildtype susceptibility (NWT) in commensal

E. coli and resistance (R) in clinical E. coli *

Antimicrobial Testing Testing ECOFF Clinical Clinical
range range (mg/L) | Breakpoint Breakpoint
commensal | clinical EUCAST CLSI
E. coli E. coli GD (mg/L) (mg/L)
MARAN (mg/L)
(mg/L)
NWT (>) R (>) R(>)
Ampicillin 1-64 0.25-32 8 8 -
Gentamicin 0.5-32 2-8 2 2 -
Cefotaxime 0.25-4 1-4 0.25 2 -
Tetracycline 2-64 0.25-16 8 - -
Colistin 1-16 0.5-16 2 2 -
Trimethoprim 0.25-32 0.5-16 4 4 -
Sulfamethoxazole 8-1024 64 - 256 64 - -
Ciprofloxacin 0.015-8 0.25 - 2* 0.064 0.5 1
(commensal) (ciprofloxacin) | (enrofloxacin)
and enrofloxacin
(clinical)

2 Breakpoints in bold italic show criteria used for determining resistance in the clinical E. coli
isolates

In the analysis, an additive generalised linear model was used with Poisson
distribution and a log link function (Poisson regression) for yearly resistance counts
(n), with the log of the total number of strains per year (N) as offset. Two explanatory
variables were used: the first for the years one to six (2014-2019), the second was a
binary variable for the monitoring program (0 for commensal E. coli, 1 for clinical
E. coli). By using these explanatory variables in the additive model, time trends for
both monitoring datasets were determined and quantified by the incidence rate ratio
(IRR). Next to that, the model indicated whether the level of resistance differed
between the two monitoring programs.

Results

In this study, resistant counts were modelled of commensal E. coli from
healthy broilers and of clinical E. coli isolated from diseased broilers. An
overview of resistant counts and totals per year of both datasets is presented
in Supplementary Table S2. MIC distributions showed that there were no
methodological differences as a potential hurdle for analytical comparison
(Figures S1-S7). Observed resistant proportions of the commensal E. coli and
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clinical E. coli were similar with overlapping CI for many of the time points for
ampicillin, gentamicin, cefotaxime, tetracycline, colistin and trimethoprim/
sulfonamide (Figure 1).

1-A. AMPICILLIN 1-B. GENTAMICIN
1,00 1,00
0,80 0,80
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0,20 0,20
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Figure 1. Proportions with 95% confidence intervals of antimicrobial resistance® in
commensal E. coli from healthy broilers at slaughter versus in clinical E. coli from diseased
broilers for ampicillin, gentamicin, cefotaxime, tetracycline, colistin and trimethoprim/
sulfonamide from broilers, the Netherlands, 2014-2019

2 Observed resistant proportions in commensal E. coli (dots) and clinical E. coli (triangles)

Model results for ampicillin resistance showed a decrease over time in the
commensal E. coli: IRR per year was 0.91 (CI 0.87-0.94) (Table 2). In contrast,
clinical E. coli showed stable resistant proportions over time (Figure 1-A) with
no trend observed (Table 2).
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The means of ampicillin resistance were similar in both datasets (Table 2),
also reflected by overlapping CI for most of the observed resistant proportions
(Figure 1-A).

Gentamicin resistance prevalence was low in both commensal and clinical
E. coli (Figure 1-B, Supplementary Table S2). In both programs, no time trends
were observed and the means of the data did not differ (Table 2).

A decrease over time of already low prevalent cefotaxime resistance was
observed in both commensal and clinical E. coli (Figure 1-C, Table 2). However,
the mean cefotaxime resistance in the clinical E. coli was estimated to be higher
than in commensal E. coli, indicated by the IRR of 1.94 (CI 1.21-3.11, clinical
relative to commensal E. coli, Table 2).

Resistance to tetracycline decreased over time in commensal E. coli but
fluctuated in clinical E. coli (Table 2, Figure 1-D). The clinical data had a slightly
higher mean (IRR 1.14, CI 1.01-1.29, relative to commensal E. coli, Table 2).

Colistin resistance was not detected in commensal indicator E. coli but few
resistant isolates were detected in clinical E. coli (Figure 1-E, Supplementary
Table S2). The model estimated a decrease over time for the clinical data (IRR
0.67,CI 0.50-0.82, Table 2).

Findings for trimethoprim/sulfonamide resistance were similar to those for
ampicillin. In commensal E. coli a decrease over time was detected, but not in
clinical E. coli, and the means of both datasets were not different (Table 2). This
was also observed in overlapping CI for resistant proportions per year (Figure
1-F).

For fluoroquinolones, application of the EUCAST CBP instead of the ECOFF
resulted in lower ciprofloxacin resistant proportions in commensal E. coli,
which were comparable to enrofloxacin in clinical E. coli (Table 2, Figure 2). For
these related antimicrobials, a decrease of resistance over time was observed
for ciprofloxacin in the commensal E. coli, but not for enrofloxacin in clinical E.
coli isolates.

Discussion

Methodology is different in the two monitoring systems as they have different
aims. To begin with, the sampling strategies differ. For the commensal isolates, a
stratified random sample (active surveillance) from healthy animals at slaughter
versus a selected sample from diseased animals (enhanced passive surveillance)
from the same broiler population. The genetic background of the sampled E. coli
populations is unknown and possible relatedness was not determined. Despite
the differences in the monitoring, mean resistant proportions are similar for

131

e}
=
Q
o
Q,
(3]
=
o




Chapter 6

most antimicrobials in this study.

The test panel for monitoring in commensal E. coli includes antimicrobials
relevant to human healthcare, with long concentration ranges to determine
NWT susceptibility. The panel for monitoring in clinical E. coli consists of
antimicrobials relevant for veterinary use in livestock species, with shorter
ranges to determine clinical resistance (Table S1).

The breakpoints used also differ between the two monitoring systems. In
monitoring in commensal indicator E. coli, ECOFFs are used to early detect
evolution of NWT susceptibility in gut bacteria (13). In the monitoring in
clinical E. coli isolates, CBP are used, which are generally higher, and indicate
clinical resistance for treatment strategy in veterinary practice. ECOFFs are
internationally standardized (9), whereas CBP are not available for all veterinary
antimicrobials (14)(Table 1). This did not harm our analysis, since the MIC
distributions showed that the available internationally standardized CBP could
be applied to the MIC of the clinical isolates (Supplementary Figure S1-S7). For
fluoroquinolones and tetracyclines, standardized EUCAST veterinary CBP were
absent, this was solved by using the CLSI CBP and ECOFF for the clinical isolates
for these classes, respectively (Table 1).

Similarities in AMR proportions
Themeanresistantproportionsweresimilarforthemajorityoftheantimicrobials.
Except for cefotaxime and tetracycline, for which the mean resistant proportion
was higher in clinical isolates (Table 2, Figure 1). Mesa-Varona et al. also found
higher resistance to cefotaxime in clinical compared to commensal E. coli in
German broilers 2014-2017 (15). Contrarily to expectations, Mesa-Varona et
al. (16) found for ampicillin and tetracycline lower resistance levels for clinical
isolates compared to non-clinical isolates in France and Germany. This does
not correspond to our findings. This may be due to differences in sampling of
clinical versus non-clinical isolates, or differences in antimicrobial use between
countries (17, 18).

Monitored resistant proportions are influenced by the breakpoints used
(19). Especially when there is a gap between the CBP and the ECOFF, as shown
in the example of fluoroquinolones in these data. The ECOFF (0.064 mg/L)
aims at detecting NWT susceptibility to monitor acquired resistance, these
strains do not have to be clinically resistant. When the CBP for ciprofloxacin
(0.5 mg/L) is applied to commensal E. coli, the resistant proportion is similar
to the proportion for enrofloxacin in clinical E. coli (Figure 2). Therefore, data
from different AMR monitoring programs have to be interpreted with care. To
enhance standardization of AMR monitoring, it is worth considering to include
both the ECOFF and the CBP in the concentration range of the susceptibility
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panel, for a complete view on the AMR situation.
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Figure 2. Proportions with 95% confidence intervals of antimicrobial resistance in
commensal E. coli from healthy broilers at slaughter for ciprofloxacin® versus for
enrofloxacin in clinical E. coli from diseased broilers, the Netherlands, 2014-2019

2 Observed resistant proportions calculated with the EUCAST clinical breakpoint for ciprofloxacin
of 0.5 mg/L to determine resistance (squares) and calculated with the epidemiological cut-off
value of 0.064 mg/L (dots). To the GD data, the CLSI clinical breakpoint for enrofloxacin was
applied of 1.0 mg/L (triangles).

AMR trend analysis

In commensal E. coli, decreasing trends in time are detected for the majority
of antimicrobials (Table 2). Since 2009, resistant proportions in Dutch animals
have decreased for many antimicrobial classes as a result of antimicrobial use
interventions (2, 5, 20) as was observed in commensal E. coli in the present
study (Table 2).

In contrast, the observed resistant proportions in clinical isolates fluctuate
more and no time trends are statistically significant for the majority of
antimicrobials (Figure 1, Table 2). However, in clinical isolates resistant E.
coli were detected for two low prevalent and relevant antimicrobials: colistin
and cefotaxime. Colistin resistance decreased over time in the clinical E. coli
and was not detected in commensal E. coli (Table 2, Supplementary Table S2).
The decrease over time for colistin resistance in the clinical isolates should be
interpreted with care, since it concerns a limited number of resistant isolates
(Supplementary Table S2) and selection bias cannot be excluded. For cefotaxime
decreasing trends were observed in both commensal and clinical E. coli (Table
2).
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Apparently, the stratified sample of commensal E. coli isolated from healthy
animals at slaughter is more suitable to monitor time trends in AMR in this
animal population. Randomization of a sample in active surveillance helps to
detect trends (21). The selected sample of clinical isolates can be considered
risk-based. Risk-based surveillance results in a higher chance to detect low
prevalent incidents (22). Since the clinical E. coli data have shown to fluctuate
over time (Table 2, Figure 1), more data is needed to quantify the association
with commensal E. coli. Especially, because the observed decrease over time was
small (Figure 1). Regarding the added value of both monitoring strategies, we
conclude that it is necessary to monitor both in commensal E. coli from healthy
broilers as well as in clinical E. coli from diseased broilers.
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Table S1. Susceptibility testing panels and testing ranges used in antimicrobial resistance
monitoring in commensal E. coli (MARAN) and in clinical E. coli® (GD)

Antimicrobial MARAN (mg/L) GD (mg/L)
Azithromycin 2-64 X
Amoxicillin / clavulanic acid X 0.25/0.125-32/16
Ampicillin 1-64 0.25-32
Apramycin X 8-16
Cefepime X 1-32
Cefotaxime 0.25-4 1-4
Ceftazidime 0.5-8 X
Chloramphenicol 8-128 X
Colistin 1-16 0.5-16
Enrofloxacin X 0.25-2
Ciprofloxacin 0.015-8 X
Nalidixic acid 4-128 X
Florfenicol X 2-8
Flumequine X 2-16
Gentamicin 0.5-32 2-8
Neomycin X 4-16
Spectinomycin X 8-128
Streptomycin X 2-64
Sulfamethoxazole 8-1024 64-256
Tetracycline 2-64 0.25-16
Tiamulin X 8-32
Tilmicosin X 2-32
Trimethoprim 0.25-32 0.5-16
Trimethoprim/Sulfamethoxazole X 0.25/4.75-4/76
Tylosin X 0.25-4
Tigecycline 0.25-8 X
Meropenem 0.03-16 X

2 In the susceptibility panel of clinical E. coli (GD), antimicrobials for veterinary use in other
animal species than broilers are included
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Table S2. Resistant counts in commensal E. coli (MARAN) and clinical E. coli (GD) monitoring

in broilers, the Netherlands, 2014-2019

Antimicrobial Year |Resistant |Total Resistant |Total Remarks
count count GD
MARAN MARAN GD
Ampicillin 2014 234 377 18 45
2015 213 400 151 322
2016 141 300 114 245
2017 109 301 89 202
2018 131 299 126 279
2019 121 315 88 160
Gentamicin 2014 24 377 2 45
2015 16 400 18 322
2016 13 300 21 245
2017 17 301 10 202
2018 14 299 10 279
2019 16 315 6 160
Cefotaxime 2014 11 377 3 45
2015 10 400 16 322
2016 3 300 12 245
2017 5 301 2 202
2018 3 299 5 279
2019 0 315 1 160
Tetracycline 2014 160 377 15 45
2015 143 400 110 322
2016 91 300 114 245
2017 75 301 81 202
2018 85 299 77 279
2019 86 315 63 160
Colistin 2014 0 377 0 45
2015 0 400 5 322
2016 0 300 8 245
2017 0 301 1 202
2018 0 299 1 279
2019 0 315 0 160
Trimethoprim/ [2014 159 377 11 45
sulfonamide* 2015 159 400 117 322
2016 100 300 71 245
2017 77 301 55 202
2018 78 299 81 279
2019 79 315 58 160
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Data compared**
Ciprofloxacin and |2014 175 377 2 45 38
enrofloxacin 2015 176 400 31 322 26
2016 123 300 14 245 13
2017 101 301 19 202 18
2018 97 299 11 279 15
2019 108 315 20 160 18

*Resistant count of MARAN are isolates non-wildtype susceptible to both trimethoprim and
sulfonamide
**Resistant count of MARAN isolates when applying the CBP instead of the ECOFF

e}
—
Q
o
Q.
(3]
=
(&}

139



Chapter 6

Figure S1-S7. Distributions of minimum inhibitory concentrations (MIC) of commensal E.
coliisolates (MARAN) and clinical E. coliisolates (GD) tested for antimicrobial susceptibility,
the Netherlands, 2014-2019
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S3. MIC distribution cefotaxime
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S5. MIC distribution colistin
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S7. MIC distribution ciprofloxacin/enrofloxacin
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Abstract

Antimicrobial resistance (AMR) monitoring in animals is performed in
commensal Escherichia coli, and other microorganisms relevant for human or
veterinary health. Due to advances in the field and major reductions in cost,
it is expected that whole-genome sequencing (WGS)-based antimicrobial
susceptibility testing (AST) will (partly) replace culture-based AST. So far, no
studies have been performed without using culture-based AST as the gold
standard. Our aim was to use Bayesian latent class analysis to evaluate the
accuracy of susceptibility testing of commensal E. coli by WGS-based AST versus
culture-based AST as this test does not assume a gold standard. OpenBUGS was
used to model two independent tests in three animal populations (N=150, 50
bacterial isolates per population): veal calves, pigs, and broilers. This resulted
in the first estimation of sensitivity and specificity of WGS-based AST versus
culture-based AST to detect AMR without a gold standard. Both methods had
high sensitivity (>0.92, lowest limit probability interval: 0.76) and specificity
was generally high for both methods for all antimicrobial classes except for
aminoglycosides and macrolides. We compared WGS results for different length
and identity settings (%) of gene alignment and found few differences between
the 60/90, 90/90 and 95/95 settings. We recommend to further investigate
sensitivity and specificity of WGS-based AST by means of latent class analysis,
especially for low-prevalent resistance.
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Introduction

As part of global efforts to control antimicrobial resistance (AMR)(O’Neill,
2016), monitoring AMR in animals is performed in sentinel organisms such
as commensal Escherichia coli (Frimodt-Moller, 2004; EFSA, 2019). Currently,
this is mostly done with culture-based antimicrobial susceptibility testing
(AST) methods such as broth microdilution, determining minimum inhibitory
concentrations (MIC) for pre-defined panels of antimicrobials. Epidemiological
cut-off values (ECOFFs) or clinical breakpoints are used to determine if bacterial
isolates have non-wildtype susceptibility or resistance, respectively. Recently,
whole-genome sequencing (WGS) is becoming more widely available for routine
AMR monitoring, and it is the expectation that WGS will mostly replace culture-
based phenotypic typing in the future (Ellington et al., 2017). This paper aims to
determine the validity of WGS for AMR monitoring purposes in the commensal
indicator organism E. coli.

In the European Union, AMR monitoring in food-borne pathogens and
indicatororganismsfromfoodanimalsismandatorybyEUlegislation(2013/652/
EU), and prescribed by guidelines of the European Food Safety Authority (EFSA,
2012). As part of the recently revised EFSA guidelines (EFSA, 2019), WGS is
implemented for monitoring of Extended Spectrum Beta-Lactamase producing
E. coli in European member states from 2021 onwards as a first step towards
the transfer to WGS-based AMR monitoring. Many studies have shown that WGS
performs well in identifying acquired resistance genes and point mutations that
lead to phenotypic resistance (McDermott et al., 2016; Shelburne et al,, 2017;
Hendriksen et al., 2019; Bortolaia et al., 2020; Mahfouz et al., 2020). Next to
information on AMR genes, WGS provides additional information, which is
considered to enhance AMR monitoring (McDermott et al., 2016; Hendriksen et
al,, 2019). WGS elucidates the genetic relatedness of resistant strains, as well as
information on virulence factors, and potentially the genetic link between AMR
genes and mobile genetic elements. When these are linked, resistance genes
can spread among bacteria, for example from commensal organism E. coli to
veterinary pathogens. Therefore, information on virulence and genetic links
with mobile genetic elements is relevant from a public health perspective, for
zoonotic potential, and for (veterinary) clinical interest. Furthermore, WGS has
other advantages over culture-based antimicrobial susceptibility typing: the
potential to store sequence data indefinitely, data is easier to share with other
laboratories and stakeholders, and it solves the lack of reproducibility across
different laboratories described for broth microdilution (Bortolaia et al., 2020).

So far, no studies have been performed without culture-based susceptibility
testing as the gold standard (Mahfouz et al, 2020). Most existing studies
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focus on estimating the concordance of WGS-based AST to culture-based AST
(Hendriksen et al., 2019), in which an objectivity bias may exist when comparing
sensitivity and specificity of WGS-based AST to these other methods. Bayesian
latent class analysis enables the estimation of sensitivity and specificity of
diagnostic tests without a gold standard (Johnson et al., 2019). The purpose of
this work is to use Bayesian latent class analysis to evaluate the sensitivity and
specificity of WGS-based AST and culture-based AST to test commensal E. coli.

Methods

Sample collection

Included in the analysis were 150 commensal E. coli isolates collected on broiler,
pig, and veal calf farms in the Netherlands in the EFFORT project (EFFORT,
2020) from October 2014 to December 2015, 10 isolates from five farms for
each animal population (Ceccarelli et al., 2020). To include the diversity of
the Dutch livestock sector in the sample, the farms in EFFORT were selected
by different levels of antimicrobial use on farms (low to high). Faecal isolates
from individual animals were randomly collected on these farms. It was part
of the EFFORT sampling protocols that all animals should be sampled as close
to slaughter age as possible. The EFFORT sampling protocols are described
extensively in the Supplementary material of Munk et al. (2018).

Antimicrobial susceptibility testing: WGS-based

From the 150 randomly isolated E. coli strains, bacterial DNA was isolated
using the Qiagen Pure Gene kit, sequencing libraries were prepared using the
[llumina TruSeq kit and sequenced with Illumina HiSeq. The average genome
coverage resulted between 48.4 to 301 times coverage. Raw sequence data have
been deposited at ENA, a list of accession numbers (EFFORT ID) is available
in Supplementary Table S2. High-quality trimmed reads (BBmap, version
38.87 (2020)) were assembled using Unicycler (version 0.4.5) and screened
for resistance genes using ResFinder 3.0 and PointFinder (Bortolaia et al.,
2020) on a local Linux server (databases downloaded April 2020). Isolates
were considered resistant by WGS-based AST conform the ResFinder 3.0 and
Pointfinder definitions of resistance genes that encode resistance to specific
antimicrobial classes (Bortolaia et al., 2020). Results were compared between
all resistance genes belonging to the class aminoglycosides as positive for
WGS-based AST, versus only the two genes that encode gentamicin resistance
(aac(3’)-1ld and aac(3’)-1V), to show the effect on sensitivity and specificity.
Similarly, phenotypical azithromycin resistance was compared to detection
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of only azithromycin resistance genes (mph(A)) versus the complete class of
resistance genes for macrolides.

WGS-based AST results were compared for different settings of gene
alignment to the ResFinder 3.0 database of length and identity of the resistance
genes: length 60% and identity 90%, length 90% and identity 90%, length
95% and identity 95%, length 99% and identity 99%, and length 100% and
identity 100% (Table 2). For the latent class analysis, test results of ResFinder
default settings for length/identity 60/90 were used, and cross-classified with
the culture-based AST results, since the aim was to evaluate WGS-based AST
for routine AMR monitoring purposes. To further investigate discordant results,
the WGS-based AST results of the other length/identity settings summarized in
Table 2 were scrutinized.

Antimicrobial susceptibility testing: Culture-based

Culture-based AST for AMR monitoring in E. coli was performed using the broth
micro-dilution reference method according to ISO standards (ISO 20776-1) with
a fixed panel of antimicrobials relevant to human healthcare according to EU
legislation and European Food Safety Authority (EFSA) guidelines (Sensititre,
EUVSEC antimicrobial panel). This was performed within the EFFORT project
(Ceccarelli et al., 2020). The terms ‘resistant’ and ‘resistance’ in this study refer
to non-wild type susceptibility, based on epidemiological cut-off (ECOFF) values
as defined by the European Committee on Antimicrobial Susceptibility Testing
(EUCAST, 2019). Singular culture-based AST results were used in this latent
class analysis. For a set of isolates with discordant results between culture-
based AST and WGS-based AST, culture-based AST was repeated to verify the
results, and identify possible explanations for discordance of the WGS-based
AST results.

Bayesian latent class analysis

Counts of positive and negative isolates for resistance by WGS-based AST
and culture-based AST were cross-classified in tables, per antimicrobial class
(Supplementary Table S1). Latent class analysis was performed in OpenBUGS
software (version 3.2.3, download September 2020). Based on the difference
between the two test methodologies, it was assumed the two tests were
conditionally independent. Culture-based AST detects expression of resistance
genes by culturing in broth while WGS detects resistance genes in the bacterial
genome. A model was used comparing two independent tests in three animal
populations (50 isolates for each animal population) that differed in expected
prevalence of AMR. Code for the OpenBUGS model was adapted from a previous
publication (Johnson et al., 2019). In all models, 1000 iterations were used as
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burn-in and discarded, and summary statistics were based on the next 10,000
iterations. Convergence of each model was assessed by standard diagnostic
procedure for latent class analysis (Benedict et al., 2014).

Prior probability distributions

The prior probability distributions of resistance prevalence in the three animal
populations were based on data from the Dutch National monitoring program
(MARAN) in which culture-based AST is performed (MARAN, 2016). The dataset
of MARAN is large (300 commensal E. coli isolates per animal species/year)
and consists of isolates from random samples of animals at slaughter. Given
that sample selection differed for MARAN (random representative) and our
samples (10 random animals in five selected herds), weak-informative priors
for resistance prevalence were used similar to the methodology of Benedict et
al. (2014). The priors were based on the MARAN data of 2015 (MARAN, 2016)
for each antimicrobial class in broilers, veal calves, and pigs. Beta distributions
(Table 1) were calculated with Betabuster 1.0 freely available software
(Betabuster 1.0, accessed September 2020). For sensitivity and specificity of
both tests, weak-informative priors for culture-based AST in E. coli (Table 1)
were used from Benedict et al. (2014). In a sensitivity analysis, model results
were compared with a non-informative, uniform prior distributions (Beta(1,1))
for sensitivity and specificity.

Results

In this study a latent class model was used to determine the sensitivity
and specificity of WGS-based AST versus culture-based AST without a gold
standard. Convergence of the latent class model was good, based on history and
auto-correlation plots (examples for gentamicin, beta-lactams and phenicols
presented in Supplementary Figure S1). Model results showed that, in this
data, the sensitivity and specificity of WGS-based AST and culture-based AST
were similar. This corresponded to the cross-classified test outcomes of WGS-
based AST and culture-based AST, in which relatively few differences were
found (Supplementary Table S1). For tetracyclines, test results were identical
for WGS-based AST and culture-based AST. For the other antimicrobial classes,
only a small number of isolates (n=13) were found to be discordant between
the two tests (Table 4, Table S1). Discordance was much higher for the complete
classes of aminoglycosides and macrolides if all genes which encode resistance
to any aminoglycoside or macrolide were considered as positive for resistance
(Table S1).
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Table 1. Prior probability distributions for prevalence of antimicrobial resistance and for
sensitivity and specificity of culture-based antimicrobial susceptibility testing by broth
microdilution (culture-based AST) and whole-genome sequenced based AST to detect an-
timicrobial resistance in livestock

Beta distribution

Antimicrobial parameters
class (a,b) Mode (%) 95% PI*
Gentamicin / Veal calves (1.2,25.7) 1.0 0.2-15
Aminoglycosides Pigs (1.2,25.7) 1.0 0.2-15
Broilers (3.0,50.1) 4.0 1.2-13
Beta-lactams Veal calves (14.0, 60.0) 19.0 11-30
(ampicillin) Pigs (22.6, 53.8) 29.0 20-40
Broilers (28,2.6) 53.0 15-88
Phenicols Veal calves (5.9,38.4) 11.5 5-24.5
Pigs (3.7,26.6) 9.4 3-26
Broilers (5.2,349) 11.0 4.6-25
Trimethoprim Veal calves (3.4,17.7) 12.7 4-34
Pigs (5.4, 8.9) 35.9 16-63
Broilers (3.5,4.5) 41.5 14-76
Azithromycin / Veal calves (1.0,21.85) 0.0 0-15
Macrolides Pigs (1.25,25.7) 1.0 0.2-15
Broilers (1.85,34.5) 2.5 0.5-14
Quinolones Veal calves (2.9,27.8) 6.7 2-22
Pigs (1.1, 13.0) 0.7 0.3-25
Broilers (47.3,60.0) 44.0 34-54
Sulfonamides Veal calves (19.0, 60.2) 233 15-34
Pigs (8.0,11.3) 40.3 21-63
Broilers (4.5,4.9) 47.0 19-77 a
Tetracyclines Veal calves (10.2, 14.2) 41.0 23-61 ‘q;;
Pigs (6.4,7.5) 453 22-71 —5
Broilers (27.4,48.4) 35.8 26-47
Culture-based
AST (broth Sensitivity (4.8,1.2) 83.3 43.1-99.0
microdilution) Specificity (4.8,1.2) 83.3 43.1-99.0
Whole-genome
sequenced based Sensitivity (4.8,1.2) 83.3 43.1-99.0
AST Specificity (4.8,1.2) 83.3 43.1-99.0
2 Probability interval

Results of the comparison of WGS-AST methodology regarding different
settings for the gene alignment are presented in Table 2. The differences
between the settings 60/90, 90/90, and 95/95 were few (Table 2). The highest
number of resistant isolates (both with culture-based AST and WGS-based AST
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with length/ID: 60/90 respectively) were found for tetracyclines (n=94, n=94),
sulfonamides (n=74, n=75), trimethoprim (n= 64, n=67) and beta-lactams
(n=76,n=77) (Table 2). Lower numbers of resistant isolates were identified for
quinolones (n=22, n=23) (Table 2). Resistance for gentamicin (n=2, n=1) and
azithromycin (n=3, n=3) was rarely detected (Table 2). Overall, the difference
between culture-based AST and WGS-based AST (length/ID: 60/90) was
small (Table 2). The difference remained small with more strict settings, but
substantially increased when using the 100/100 settings (Table 2).

Table 2. Results of culture-based antimicrobial susceptibility testing (AST) by broth
microdilution versus different gene alignment settings for whole-genome sequenced
based AST to detect antimicrobial resistance in livestock (N=150)

Antimicrobial class MIC? 60/90° 90/90¢ 95/954 99/99¢ 100/100°
Gentamicin 2 1 0 0 0 0
Beta-lactams 76 71 76 76 75 66
Phenicols 22 22 21 21 14 0
Trimethoprim 64 67 67 67 67 18
Azithromycin 3 3 3 3 3

Quinolones 22 23 23 23 19 2
Sulfonamides 74 75 75 75 73 70
Tetracyclines 94 94 94 94 94 79

2 Number of isolates found resistant by broth microdilution (MIC) out of a total of 150 isolates

> Number of isolates found resistant by WGS (N=150) with length/identity setting 60/90 % for
the alignment

¢ Number of isolates found resistant by WGS (N=150) with length/identity setting 90/90 %

4 Number of isolates found resistant by WGS (N=150) with length/identity setting 95/95 %

¢ Number of isolates found resistant by WGS (N=150) with length/identity setting 99/99 %
fNumber of isolates found resistant by WGS (N=150) with length/identity setting 100/100 %

Regarding the latent class analysis results as shown in Table 3, estimated
prevalence was low for gentamicin with 1%, 2% and 2% in veal calves, pigs,
and broilers, respectively. Azithromycin resistance amounted 5%, 2% and
2% in veal calves, pigs, and broilers, respectively (Table 3). For sulfonamides,
prevalence was moderate in veal calves (26%) and low in pigs (6%) and broilers
(4%) (Table 3). For both culture-based AST and WGS-based AST, the sensitivity
and specificity for most antimicrobial classes was high, with the exception
of sensitivity of the complete class of aminoglycosides and gentamicin, and
the complete class of macrolides and azithromycin (Table 3). For all other
antimicrobial classes, the sensitivity was >0.92 (lowest probability interval
limit: 0.76) and the specificity was generally high for both WGS-based AST and
culture-based AST (Table 3).
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Table 3. Latent class analysis estimates (median and 95% probability interval) for
sensitivity and specificity of culture-based antimicrobial susceptibility testing (AST)
versus whole-genome sequenced based AST to detect antimicrobial resistance in veal
calves (n=50), pigs (n=50) and broilers (n=50)

Antimicrobial
class Prevalence® Sensitivity® Specificity®
WGS-
Veal Culture- based Culture-  WGS- based
calves Pigs Broilers  based AST AST based AST AST
.. 0.77 (0.36- 0.76 (0.35- 0.98 (0.95-  0.99 (0.97-
Gentamicin 0.01 0.02 0.03 0.98) 1.00) 1.00) 1.00)

. . 0.73 (0.29- 0.79 (0.40- 0.99 (0.96-  0.46 (0.38-
Aminoglycosides 0.02 0.03 0.03 0.98) 0.98) 1.00) 0.54)
Beta-lactams 0.99 (0.94- 0.99 (0.95- 0.99 (0.95- 0.98 (0.93-

0.34 0.29 0.67
(ampicillin) 1.00) 1.00) 1.00) 1.00)
. 0.92 (0.76- 0.92 (0.76- 0.99 (0.95- 0.99 (0.95-
Ph 1 0.45 0.24 0.53
enieos 0.99) 0.99) 1.00) 1.00)
. . 0.97 (0.90- 0.99 (0.94- 0.99 (0.95- 0.97 (0.92-
Ti th . .0 41
rumethoprim 008 003 0 1.00) 1.00) 1.00) 1.00)
. . 0.84 (0.43- 0.83 (0.44- 0.83 (0.43- 0.83 (0.43-
Azith . .04 .04
zithromycin 0.03 0.0 0.0: 0.99) 0.99) 0.99) 1.00)
. 0.77 (0.36- 0.88 (0.54- 0.99 (0.95- 0.07 (0.04-
M 1 X .02 .02
acrolides 0.03 0.0 0.0 0.99) 0.99) 1.00) 0.12)

. 0.96 (0.84- 0.97 (0.86- 0.99 (0.97-  0.99 (0.96-

Quinolones 0.38 0.34 0.55 1.00) 1.00) 1.00) 1.00)
. 0.98 (0.94-  0.99(0.95-  0.99(0.95-  0.99 (0.94-
Sulfonamides 0.25 0.08 0.08 1.00) 1.00) 0.99) 1.00)
. 0.99 (0.96-  0.99(0.96-  0.98(0.93-  0.98 (0.93-
Tetr: 1 . . A
etracyclines 0.70 055 0-40 1.00) 1.00) 1.00) 1.00)

2 Median for estimated prevalence
" Median for sensitivity, the 95% probability intervals are listed in parenthesis.
¢ Median for specificity, the 95% probability intervals are listed in parenthesis.

In case of discordant results, culture-based AST was repeated (Table 4).
For most isolates (n=10), resistance found was identical to the first test, with
exception of three isolates. Isolates initially tested resistant for gentamicin
(n=2) or azithromycin (n=1) were found susceptible after repeating the test
(Table 4). These results were then concordant with WGS-based AST.

Scrutinizing the other length/identity settings of the WGS-based AST results
clarified more discordant results (Table 2, Table 4). For phenicols, for example,,
one catA1 gene was not detected with higher length/identity setting i.e. 90/90
(Table 2). Another discordant isolate with a floR gene was still found positive for
this gene with a setting of 95/95, but not anymore with settings of 99/99. For
trimethoprim resistance, resistance genes in the three discordant isolates were
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not found with length/identity of 100/100, corresponding with the repeated
culture-based AST (Table 2). The isolate with a aac(3’)Ild gene was detected
with 60/90 but not detected with the 90/90 alignment setting (Table 2, Table
4).

Table 4. Discordant isolates (n=13) in results of broth microdilution (culture-based AST)

versus whole-genome sequenced based AST to detect antimicrobial resistance in livestock

Antimicrobial Repeated
class Antimicrobial Isolate ID MIC? MIC ECOFF Resistance gene
Aminoglycosides ~ Gentamicin 100302010 4 1 2 None for gentamicin
101702014 8 2 None for gentamicin
103003004 1 0.5 aac(3)-11d
Beta-lactams Ampicillin 110704022 2 2 8 blatem-ic
Phenicols Chloramphenicol 110004010 32 32 16 None for phenicols
110004014 32 32 None for phenicols
110504004 8 8 catAl
111604014 8 8 floR
Trimethoprim Trimethoprim 110504004 0.5 0.5 2 dfrdl
111604014 0.25 0.25 dfrAl
111804010 0.25 0.25 dfird7
Macrolides Azithromycin 110504020 8 8 16 mph(A), mph(B)
102702012 128 8 None for
azithromycin
Quinolones Ciprofloxacin 102302012 0.015 0.015 2 parC p.AS6T
Sulfonamides Sulfamethoxazole 111604014 8 8 16 sull, sul2

2 Minimum inhibitory concentration (MIC) determined by broth microdilution (culture-based
AST)

Discussion

The purpose of this study was to evaluate the sensitivity and specificity of
WGS-based AST versus culture-based AST to monitor AMR in livestock, without
a gold standard, by means of latent class analysis. The estimated sensitivity
and specificity across antimicrobial classes are similar for WGS-based AST
and culture-based AST. The latent class analysis allowed the test validity of
both tests to be determined relative to the latent class, the true resistance for
antimicrobials.

Test validity

For some antimicrobial classes, the sensitivity of WGS-based AST is slightly
higher than of culture-based AST, although probability intervals overlap (Table
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3). Also, there is some indication that the overall specificity of WGS-based AST
is lower than of culture-based AST, but these probability intervals also overlap,
indicating that the specificity of both methods is similar. Few differences were
found in the outcomes between the two methods, resulting in low numbers of
discordant isolates. The finding that WGS-based AST performs at least as well
as culture-based AST is in line with previous studies using WGS-based AST as
the gold standard. The review paper of Hendriksen et al. (2019) includes an
overview of WGS-based AST versus culture-based AST comparisons, showing
that many studies report high concordance of WGS-based AST and culture-based
AST. A study by McDermott et al. (2016) in Salmonella from retail meat reached
similar conclusions as this study, reporting high sensitivity and specificity for
WGS-based AST.

Advantages and disadvantages of culture-based AST and WGS-based
AST

The advantage of culture-based AST is that the phenotype is measured
(Ellington et al., 2017) as a cumulative result of all resistance mechanisms
present in a bacterial cell. For example, less specific resistance mechanisms like
efflux pumps leading to resistance to multiple antimicrobial classes (Swick et
al, 2011). A limitation of broth microdilution is the lack of reproducibility of
end-point-reading (Bortolaia et al., 2020; Mahfouz et al., 2020).

In WGS-based AST, the database used determines the outcomes, and defines
strains resistant versus susceptible. The choice of database may influence the
sensitivity and specificity of WGS-based AST (Mahfouz et al., 2020). We used
ResFinder 3.0, considering it is well curated and performs well compared to
other resistance databases (Hendriksen et al., 2019; Mahfouz et al., 2020). The
results presented here and previously by McDermott et al. (2016) show that
sensitivity and specificity of WGS-based AST versus culture-based AST is mostly
antimicrobial class specific and not so much database specific. Therefore, we
expect that re-analysis using for instance ResFinder 4.0 or CARD will not result
in major differences in the estimated sensitivity and specificity of WGS-based
AST.

The comparison of the aminoglycoside and macrolide antimicrobial classes
illustrates the importance of the definition of specific resistance phenotypes
of AMR genes in the interpretation of WGS-based AST. Aminoglycosides are
represented in culture-based AST by gentamicin but many aminoglycoside
resistance genes do not lead to gentamicin resistance, potentially leading
to a high number of false-positive results when this distinction is not made
(specificity of WGS: 0.46, Table 3). Similarly for macrolides, the efflux pump
encoding gene, mdfA (Edgar and Bibi, 1997) does not always lead to phenotypic

157

D~
=
<]
2
Q.
(1]
=
O




Chapter 7

azithromycin resistance, resulting in a high number of false positives (specificity
of WGS: 0.07, Table 3).

Explanation of discordant results

For almost all discordant results, we identified the cause of the mismatch. Some
isolates were found resistant to culture-based AST, without detection of specific
resistance mechanisms by WGS-based AST (Table 4). In three cases the causes
were ‘skips’ or other issues with reproducibility of MICs, resulting in a match
between culture-based and WGS-based AST after repeating the MIC. The test
results repetitively susceptible to culture-based AST despite being resistant
by WGS-based AST (Table 4, Table S1) are partly explained by the relatively
low length/ID settings of 60/90 used for ResFinder (Table 2). Genes could
have mutations, and may therefore not be expressed as phenotypic resistance
(Bortolaia et al.,, 2019). In a systematic review, Mahfouz et al. (2020) discuss
that it may be advisable to revise the default settings for ResFinder of 60/90
length/identity. In our data, only minor differences were found between the
60/90,90/90 and 95/95 settings (Table 2). In general, the 60/90 setting seems
well suited for routine AMR monitoring, although in some cases resistance
genes are identified which do not lead to phenotypic expression (Table 2). Using
higher-length settings then prevents a false-negative result. AMR genes can also
be detected in raw sequence data instead of assemblies, it is expected this will
not influence the estimated sensitivity and specificity.

For some discordant isolates we found a very low sequence depth as the
cause, possibly due to contamination or spill-over between multiplexed samples.
The standard depth-filter of Unicycler is 25% sequence depth compared to the
chromosomal sequence depth, but this was turned off for these assemblies, as
some plasmid encoded resistance genes were previously missed due to this
depth-filter. For routine AMR monitoring, a setting between 10 and 25% is
advisable, to prevent false-positive findings.

Two phenicol resistant isolates in veal calves are rare examples for which
we did not find an explanation for the difference in test outcomes (Table 4).
This may be the rare situation where the detected phenotype concerns new
(variations of) resistance genes, or results could be different using a different
database.

Assumptions of latent class analysis

Thelatent class model estimates the true resistance prevalence by combining the
data with the prior information and estimating how both tests identify the true
resistance prevalence in the different animal populations (Johnson et. al 2019).
Consequently, the prevalence of resistance in the data will influence the precision
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of the estimated sensitivity and specificity. Gentamicin and azithromycin
resistance both have a low prevalence in all three animal populations (Table
S1) and in the prior information (Table 1). This results in lower estimates of
sensitivity (with wider probability intervals) for those two antimicrobial
classes of both culture-based and WGS-based AST (Table 3). Interestingly, in
another study with culture-based AST as the gold standard for WGS-based AST,
also a lower sensitivity of WGS-based AST for gentamicin resistance (0.93) than
for other antimicrobial classes was found (McDermott et al., 2016). To evaluate
our findings, this analysis should be repeated in populations where resistance
prevalence is higher (although this will be difficult due to the general low
prevalence of these resistance mechanisms in E. coli) or with more data, should
these become available.

In this latent class model, it was assumed that resistance prevalence differs
in the different animal populations. However, for some antimicrobials, the
prevalence was almost equal in the three populations, which potentially affects
the accuracy of the sensitivity and specificity estimates. Others investigated the
impact of breaching the prevalence assumption and found that for tests with
high sensitivity or specificity this was of little influence (Toft et al., 2005).

The sample size in our study was relatively small (10 isolates from five farms)
and resistance prevalence was low for some antimicrobial classes. Latent class
analyses can deal with such limitations as long as there are sufficient degrees
of freedom to estimate the posterior distributions of the parameters (Johnson
et al, 2019). The models for the different antimicrobials all converged fairly
rapidly (Supplementary Figure S1). This is presumably because an important
requirement for test validation was met: all results were generated in the
same laboratory with experienced staff and a high level of standardization. To
improve external validity, it is advised to repeat this analysis with more, and
preferably less clustered data.

Conclusions for AMR monitoring purposes

From the results of this Bayesian latent class analysis, we conclude that WGS-
based AST is just as suitable for monitoring AMR in livestock as culture-based
AST. Our findings highlighted some genetic variation of resistance genes and their
phenotypic expression, compared to traditional AMR monitoring generated by
culture-based AST. This can be of aid in future interpretation, when WGS will be
further implemented to monitor AMR in livestock.
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Supplementary Table S1. Cross-classified test results of culture-based antimicrobial
susceptibility testing by broth microdilution determining minimum inhibitory
concentrations (MIC) versus whole-genome sequenced based antimicrobial susceptibility
testing (WGS) to detect antimicrobial resistance in livestock (N=150)

Antimicrobial class Veal calves (n=50) Pigs (n=50) Broilers (n=50)
WGS+ WGS- WGS+ WGS- WGS+  WGS-
Gentamicin MIC+ 0 0 0 2 0 0
MIC- 0 50 0 48 1 49
Aminoglycosides MIC+ 0 0 1 1 0 0
MIC- 36 14 32 16 14 36
Beta-lactams (ampicillin) MIC+ 28 0 14 0 34 0
MIC- 1 21 0 36 0 16
Phenicols MIC+ 15 2 3 0 2 0
MIC- 2 31 0 47 0 48
Trimethoprim MIC+ 27 0 10 0 27 0
MIC- 3 20 0 40 0 23
Azithromycin MIC+ 2 0 0 1 0 0
MIC- 1 47 0 49 0 50
Macrolides MIC+ 2 0 1 0 0 0
MIC- 46 2 46 3 49 1
Quinolones MIC+ 4 0 1 0 17 0
MIC- 0 46 1 48 0 33
Sulfonamides MIC+ 30 0 16 0 28 0
MIC- 1 19 0 34 0 22
Tetracyclines MIC+ 42 0 29 0 23 0
MIC- 0 8 0 21 0 27
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Supplementary Figure S1 (available online):

https://ars.els-cdn.com/content/image/1-s2.0-S0167587721001501-mmc3.pdf
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Abstract

The purpose of this study is to explore the benefits of [llumina whole genome
sequencing (WGS) for AMR monitoring in commensal E. coli and show examples
of how the results can be interpreted. We analysed the genetic relatedness and
presence of plasmids and resistance genes in 150 E. coli isolates of veal calves
(n=50), pigs (n=50) and broilers (n=50) collected from farms in the Netherlands
in 2014-2015. In general, there is no spread of specific resistant bacterial clones
in these three animal species. On some farms, genetically identical strains were
found in multiple animals, showing resistance to the same antimicrobial classes
and plasmids of the same replicon types. This indicates that sampling not
more than one animal per farm ensures the representativeness of the isolate
collection monitored. As a consequence of the method (short read sequencing),
plasmid location could only be confirmed for few resistance genes. However,
significantly elevated levels of plasmid replicon types in animal populations
could warrant further investigation by long-read sequencing: in veal calves
IncHIZ (36%), and in poultry: IncI1 (46%) Incl2 (22%) and p0111 (46%). Col
plasmids were more frequent in poultry (44%) and pigs (34%), compared to
veal calves (12%). Combining advantages of short read sequencing with long
read sequencing is advised to apply WGS in AMR monitoring.
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Introduction

In the monitoring of antimicrobial resistance (AMR) in animals as a public
health hazard, molecular methods are constantly scrutinised and updated.
Whole genome sequencing (WGS) of bacteria has become available for AMR
monitoring programs (Ellington et al.,, 2017; Oniciuc et al., 2018; Collineau et
al, 2019). As part of the new European legislation, since 2021, WGS is allowed
as alternative method to broth micro dilution for the specific monitoring of
Extended-Spectrum Beta Lactamase (ESBL)- or AmpC- or carbapenemase-
producingE. coli (2020/1729/EU). By sequencing the whole genome of bacteria,
similar information on AMR prevalence can be acquired as by culture-based
susceptibility testing (McDermott et al., 2016; Shelburne et al,, 2017; Bortolaia
et al, 2020; Mahfouz et al.,, 2020). Next to detecting resistance genes, WGS
delivers data with characteristics of these genes and their genetic environment
(for example location on mobile genetic elements), valuable to antimicrobial
resistance monitoring (Hendriksen et al., 2019). In addition, WGS reveals the
genetic relatedness of bacteria carrying resistance genes: crucial information by
which the spreading potential of resistance genes is determined. For zoonotic
pathogens such as Salmonella, Campylobacter and Escherichia coli 0157 it may
also reveal information on virulence characteristics.

In a previous study, we have shown by latent class analysis in a set of 150
bacterial isolates (E. coli) that AMR monitoring by WGS is just as sensitive
and specific as by the culture-based method broth microdilution (Hesp et al.,
2021b). The purpose of the present study is to explore the added value of WGS
to monitor AMR in these E. coli, show how it can be used and interpreted, and
discuss how this compares to AMR monitoring by previously used methods. In
this paper, we focus on the genetic relatedness and the combined presence of
resistance genes and plasmids, of 150 E. coli isolates of veal calves, pigs and
broilers from farms in the Netherlands (2014-2015).

Methods

The sampling and isolation of the analysed E. coli isolates was previously
described (Ceccarelli et al., 2020). In summary, the study included a total set
of 150 commensal indicator E. coli which consisted of 10 isolates per farm,
isolated from individual faecal samples from each of five veal calf, slaughter pig
and broiler farms (n=50 for each animal population). Randomly selected fresh
faecal samples were collected at (or close to) slaughter age from which E. coli
strains (one per sample) were isolated on MacConkey agar. Bacterial DNA was
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isolated using the Qiagen Pure Gene kit, sequencing libraries were prepared
using the Illumina TruSeq kit and sequenced with Illumina HiSeq, the average
read length of the run was 150 bp. The average genome coverage resulted
between 48.4 to 301 times coverage. Raw sequence data have been deposited
at ENA, a list of accession numbers (EFFORT ID) is available in Table S4.

High quality filtered reads were assembled using Unicycler (version 0.4.5)
and screened in silico for resistance genes using ResFinder 3.0 and PointFinder
(Bortolaia et al., 2020) on a local Unix server (databases downloaded April
2020). In this study, we used as length/identity settings the ResFinder default
60% length and 90% identity for detecting resistance genes. Plasmids were
detected with PlasmidFinder (CGE, 2020) to determine plasmid replicons. Links
between resistance genes and plasmids could be inferred in approximately
5-10% of the cases, due to presence on the same contig.

A custom core genome phylogeny scheme was used, based on the core
genome of the sequences using cano-wgMLST_BacCompare (Liu et al,, 2019).
A phylogenetic tree was visualised in interactive Tree Of Life (iTOL, 2020),
presenting the metadata (animal species, farms), resistance- and plasmid data
grouped per antimicrobial class and replicon type, respectively.

Plasmid data per replicon type were cross-classified per animal species
to indicate occurrence in the different subpopulations of all whole-genome
sequenced E. coli. Differences between proportions of plasmid replicon type
presence in different animal species were determined using logistic regression
with a random farm effect to correct for possible clustering of data from the
same farm. The overall correlation between the number of resistance genes
present in the data (the absolute number and the number of classes) and the
number of plasmids per replicon type present in these isolates was determined
with a regression model. Models were selected by comparison of lowest
values for Akaike’s Information Criterion (AIC), model fit was assessed by the
scaled deviance. All statistical analyses were performed in R version 3.3.3 (R
Foundation, Vienna, Austria).

Results and discussion

This study presents examples of how plasmid data and phylogeny of strains
acquired by high throughput WGS can be used to monitor antimicrobial
resistance in livestock. In the interpretation, a few challenges have to be
addressed. These are the characteristics of short read sequencing, and how to
translate the data in AMR monitoring output.

Genetic clustering of bacterial strains is visualized in a phylogram (Figure 1).
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This shows that in general, there is no spread of specific resistant bacterial
clones in the three animal species (Figure 1). However, in some occasions,
genetically identical strains were found in multiple animals on the same farm
(Figure 1). These isolates show resistance to the same antimicrobial classes and
contain plasmids of the same replicon types (Figure 1). Two examples concern
E. coli which are resistant to three or more antimicrobial classes (Figure 1).
One such case in poultry consists of three genetically identical strains (based
on their bacterial core genome MLST) of the same farm with resistance by
the same genes encoding resistance to beta-lactams (bla,,, ,.), sulfonamide
(sul2), trimethoprim (dfrA1) and quinolones (parC mutation) and furthermore
contained aph(3)-1b and aph(6)-1d genes (Table S5). These strains harbour the
same plasmid types: Incl1(Gamma), Incl2, Col156 and p0111 plasmids (Table
S6). The other example concerns E. coli in veal calves, also three identical
strains from the same farm with the same resistance genes to tetracyclines
(tet(B)), beta-lactams (bla,,, ,,), sulfonamides (sul2) and trimethoprim (dfrA7),
also contained aph(3)-Ib and aph(6)-1d and mdf{A) genes (Table S5), and all
contain IncHI2 plasmids (Table S6). In the previous publication, we found that
phenotypical resistance was identical to genotypical resistance for these strains
(Hesp et al,, 2021b)

In the current monitoring system by EU legislation (2013), one randomly
isolated E. coliis derived from a caecal sample of an animal collected at slaughter
from a unique farm (for veal calves and slaughter pigs) or flock (for broilers).
In the present study, multiple animals were sampled on farms, resulting in
inclusion of genetically identical isolates on several farms. These data show that
a sample of one animal per farm is indeed representative for multiple animals
in the farm. When the aim is to monitor AMR trends in the general animal
population, it is therefore better to sample just one animal per farm.
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Figure 1. Whole-genome sequenced E. coli from livestock (N=150), based on whole-genome
MLST, presenting the metadata (animal species, farms) and resistance genes and plasmids
per antimicrobial class and replicon type

170



Whole-genome phylogeny, resistance genes and plasmids in E. coli from livestock

Hl

—

I
rsvooz0rz0r—————

©1S0207050TT
e1SYT0Z0800T
e1sgT0z0s00T
©1S9TOE0YTOT——
©1580080PTOT—]

Species
Farm levels
Tetracyclines
Beta-lactams
Sulfonamides
Trimethoprim
(O Quinolones

Q) Phenicols
Aminoglycosides
(O Macrolides

O Fosfomycin

9000 Q
0000 . | 0000000000000060006 006000000,
.OOOOOOOO..0.0.0000000000000..OO. @ Q0@
[0,0,9.000/0/00, 1000000000 0000600000000 00000000006000600000060606000000000000e).
0.0000000000000000000000000000000000000.00.000.0000000000000.000000 neBI0KiZ
(0,0.0.0/0.0/0/0/0,0000000000000 | 000000006006060000000000060000 9,.9.000.00000000LL.
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO Inc1
(0,0.0.0/0.0/0/0/0.000000000000606060000000000600000000000060000 9,9.0000000600600LLI
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO IncR
0,0.0.0/00/0/00.000000000000060060000 0,9.0000000000000000000000oL
.0.0000000.000.000..O..OOOOOOOOO0.00.000.00000...OOO....O0.000000 @ co
[ 00/0/000.0,00000000000000000000000000000000 000 | 00000000000 __ 0000000 1]

Species: animal species,
green for veal calves, pink
for slaughter pigs, yellow
for broiler chickens.

Farm levels: a different
shade of the same color for

[oe}
=
Q
o
=
(3]
<=
O

each farm.

171



Chapter 8

The advantage of WGS by Illumina sequencing compared to long read
sequencing techniques like PacBio or Nanopore, is that the accuracy is high and
that the method is suitable for high-throughput application, as in monitoring
activities. However, by the nature of this method, the reads are relatively short
compared to genomic repeats and due to contig breaks it is often impossible to
determine if a resistance gene is located on a certain plasmid. As a consequence,
plasmid location could only be confirmed for a minority of the resistance genes
and plasmids (only for 12 out of 70 genes, in 47 isolates) (Table S3). But because
the presence of replicon types can be detected reliably with PlasmidFinder
in data from Illumina sequencing (Carattoli et al., 2014), detection of trends
in the plasmid replicon type distributions could be an indication to further
investigate such isolates with long-read sequencing (acquired with PacBio or
Nanopore). Long-read sequencing has lower accuracy but enables to determine
if a resistance gene is located on a certain plasmid or on the chromosome.
Combining the two methods, by hybrid assembly (Chen et al., 2020), forms a
potential solution for future application of WGS in AMR monitoring.

In Table 1 we illustrate findings of significantly elevated levels of plasmid
replicon types compared to the other animal populations, which could warrant
further investigation. The IncHI2 replicon type was most abundant in veal
calves compared to the other animal species (36%)(Table 1). In poultry Incl1
was frequent (46%), as was Incl2 (22%), compared to the other two animal
populations (Table 1). Col plasmids were present often in poultry (44%) and
relatively often in pigs (34%), compared to veal calves (12%). The p0111
plasmids were often present in poultry (46%)(Table 1). Next to these patterns
for specific sub populations, an overall positive correlation was found between
the resistance genes present in the data and the number of plasmid replicon
types present in all 150 isolates (0.44 for the absolute number of resistance
genes and 0.46 per antimicrobial class).

The challenge of relating data in the present study is that most plasmid
typing in literature concerns bacterial isolates typed to determine the location
of a specific target resistance gene (hazard-specific surveillance). The data in
the present study are randomly isolated commensal E. coli. The finding that IncF
is the most common plasmid replicon type in all animal species corresponds to
several other studies (Yang et al.,, 2015; Madec and Haenni, 2018). The frequent
finding of Incl1 plasmids in poultry (Table 1) corresponds to findings in hazard-
specific surveillance for Extended Spectrum Beta-Lactamases (ESBL)(Ceccarelli
et al.,, 2019), although ESBL-genes were not detected in the isolate collection
used for this study.

The cross-classified results of presence of resistance genes per antimicrobial
class and plasmids per replicon type show patterns in resistance and presence
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of plasmids for a number of classes and replicon types (Table S2), also visualised
in the phylogenetic tree (Figure 1). However, in the interpretation it must
be considered that the genetic link between resistance gene and plasmid is
unknown in most isolates and not necessarily present. An example of this is the
finding of high co-occurrence of quinolone resistance in broilers with Col and
p0111 plasmids (Figure 1, Table S2). This finding is unlikely to be related, since
all findings of quinolone resistance in this data concern chromosomal point

mutations (Table S5).
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In this study, we used cross-classified tables next to a phylogenetic tree
presenting metadata, resistance- and plasmid data. Alternatively, multivariate
analyses could be used like principal component analysis (Dorado-Garcia et al.,
2018) or other methods as in previous studies (Hesp et al., 2021a). Multivariate
analysis are useful in large datasets with many observations so that significant
correlations can be based on the data, but results are complex to interpret and
translate into practical knowledge. In general, this is a challenge for the use
of WGS in monitoring, since it results in a large amount of data per resistance
observation. However, the advantage of WGS is that the genetic data can be
stored indefinitely: when future questions arise, or new methods for analysis,
data is already available (Bortolaia et al., 2020).

To conclude, this study shows the challenges, but also the potential of WGS
to monitor AMR in livestock, especially when more data to compare will become
available and the analytical methods for WGS data will increase.
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Table S1. Presence (n, p) of resistance genes to different antimicrobial classes, per animal

species in whole-genome sequenced E. coli from Dutch veal calves (n=50), pigs (n=50) and

broilers (n=50)
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Total (N=150) 94 77 75 67 23 22 83 144 2 2
Veal calves (n) 42 29 31 30 4 17 36 46 1 0
Pigs (n) 29 14 16 10 2 3 32 46 1 0
Broilers (n) 23 34 28 27 17 2 14 49 0 2
Veal calves (p) 0.84 0.58 0.62 0.60 0.08 034 0.00 0.06 0.02 0.00
Pigs (p) 0.58 0.28 032 0.20 0.04 0.06 0.00 0.00 0.02 0.00
Broilers (p) 0.46 0.68 0.56 0.54 034 0.04 0.02 0.00 0.00 0.04
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Chapter 9

General discussion

Antimicrobial resistance (AMR) is an urgent global health threat that needs to
be monitored (Walker et al., 2009; Ventola, 2015; WHO, 2015; O’Neill, 2016).
Production animals are a relevant reservoir to monitor, because antimicrobial
use (AMU) in livestock causes selective pressure, and AMR may be transmitted to
humans directly, or indirectly via food or the environment (Michael et al., 2014;
Chang et al,, 2015; Hoelzer et al., 2017). This thesis is about the evaluation and
interpretation of AMR monitoring in livestock in indicator organism Escherichia
coli.

Commensal E. coli is used as sentinel organism to monitor AMR (Frimodt-
Moller, 2004). It belongs to the order of Enterobacterales including Salmonella
and Klebsiella (Adeolu et al., 2016). Commensal E. coli is a minor fraction of the
gut microbiota (Munk et al,, 2017), but is selected as indicator because of its
characteristics. E. coli is present in all faecal samples from animals, enabling
randomisation of sampling. The wildtype is susceptible to the antimicrobials
which should be monitored, relevant to human healthcare. Isolation and
antimicrobial susceptibility testing (AST) methods for E. coli can be easily
standardised.

The international legislation in the European Union (2013/652/EU)
has led to harmonisation and standardisation of AMR monitoring. Elements
such as sampling protocol and AST methods are prescribed. To achieve
international standardisation, proficiency tests are performed by the EU
Reference Laboratory for Antimicrobials (EURL-AR, 2021), and audits by the
EU. Elements not prescribed create room for improvement. The evaluation and
quantitative interpretation of AMR monitoring results is not prescribed but is
challenging and will be more complex when data increase. So far, no methods
were described to statistically assess whole-genome sequencing (WGS) as
alternative method to culture-based AST in AMR monitoring (2020/1729/
EU). Ideally, the effects of interventions such as reductions in antimicrobial use
are reflected in AMR monitoring data. Analyses can be improved for optimal
evaluation of these effects. Therefore, the first aim of this thesis is to evaluate
AMR monitoring results with statistical methods. The second aim is to enhance
the interpretation of AMR monitoring outcome in commensal E. coli. The third
aim is to assess WGS versus culture-based AST to monitor AMR.

Evaluation of antimicrobial resistance monitoring

In Chapter 2, AMR trends are quantified in commensal E. coli data from
broiler chickens, slaughter pigs, and veal calves in the Netherlands, 1998
to 2016. This study aims to model these time trends, and to evaluate if any
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trends and trend changes as effect of interventions were observed. The rates
of increase or decrease of AMR over time are captured in a log-linear model
(Poisson regression). Since 2009, as a likely effect of AMU interventions (Mevius
and Heederik, 2014), a decrease over time for most antimicrobials is found in
broilers and pigs, but some decrease faster than others. Based on these findings,
hypotheses can be formed on the evolution of AMR in these reservoirs, such asthe
relatively slow decrease of ciprofloxacin resistance in broilers not corresponding
to the decrease of AMU (Netherlands Veterinary Medicines Institute, 2018).
Furthermore, the model allows one to assess in which year the trend change
occurred. This shows that in broilers, the effect of the interventions is visible in
the monitoring data from 2010 onwards, corresponding to the timing of AMU
interventions (Mevius and Heederik, 2014). From this evaluation, we conclude
that monitoring data from E. coli is suitable to quantify AMR trends over time,
to follow AMR in animal populations and measure the effects of interventions.

Chapter 3 covers an entirely different perspective of AMR monitoring evaluation.
Tools are assessed which can be used to evaluate AMR monitoring, by applying
these tools to case studies in different countries. Regular evaluation is necessary
of integrated surveillance systems for AMR and AMU in animals, humans and the
environment (WHO, 2015), but there is a gap of knowledge on the evaluation
of integrated surveillance systems (Aenishaenslin et al,, 2019; Bennani et al,,
2020). An integrated, ‘One Health’ approach provides a better understanding
of the epidemiology of AMR and enhances intervention strategies. However,
current programmes do not all address the necessary sectors and are rarely
fully integrated (Johnson et al.,, 2018; Aenishaenslin et al., 2019; Aenishaenslin
et al., 2021). Existing evaluation tools may not cover required aspects or have
different focus and terminology. For example, tools designed to evaluate animal
health surveillance focus on the aim ‘detection of disease outbreaks’ while AMR
monitoring focuses on the aim ‘detection of AMR trends’ in healthy animals. In
the present study, the applicability was assessed of six different evaluation tools
for evaluation of integrated surveillance systems, by performing case studies in
eight countries. Although some tools cover relevant aspects better than others,
there is not one best tool: the suitability of the tool depends on the evaluation
objective. We advise to start with formulating evaluation objectives and to
consequently select the most fitting tool. In general, more scientific expertise
on evaluation of AMR monitoring from an integrated perspective is needed.
To do so, the Co-Eval-AMR network launched a platform to develop and share
evaluators experience (https://guidance.fp7-risksur.eu/).
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Interpretation of antimicrobial resistance monitoring data

AMR monitoring results in complex data, which are only interpretable by
experts. Policymakers need a clear overview of the development of AMR in
relevant reservoirs. Policy informing agencies such as the European Food
Safety Authority (EFSA) have expressed the need for outcome indicators
of AMR monitoring (EFSA, 2017). These outcome indicators are meant to
summarize AMR for multiple antimicrobial classes in the population sampled.
So far, objective (i.e. quantitative) arguments for how to compose suitable AMR
monitoring outcome indicators were lacking.

To develop these, in Chapter 4 we performed a model-based cluster analysis
on a dataset of minimum inhibitory concentrations (MIC) recoded to binary
variables for 10 antimicrobials of commensal E. coli isolates (N=12,986)
derived from four animal species (broilers, pigs, veal calves, and dairy cows) in
AMR monitoring, the Netherlands, 2007-2018. Model-based cluster analysis is a
data-driven method that summarizes resistance, based on the co-occurrence of
resistance to more than one antimicrobial per isolate. Four clusters were found
containing 201 resistance combinations, reflecting selection and co-selection
patterns by AMU or other determinants. These clusters are potential monitoring
outcome indicators, because they differentiate multidrug resistance: with or
without resistance to (fluoro)quinolones and third- generation cephalosporins.
Multidrug resistant (i.e. resistant to three or more antimicrobial classes) isolates
are divided over three different categories: resistant to fluoro(quinolones) but
with few other resistance (cluster 2), multidrug resistant but mostly without
resistance to critically important antimicrobials for human medicine (WHO,
2019) (cluster 3), and multidrug resistance including resistance to critically
important antimicrobials (cluster 4). The rest of the isolates, in cluster 1, are
either pan-susceptible or with resistance to a single antimicrobial class that
is common. The prevalence of these clusters and combinations are different
for the animal populations tested, and over time. This makes them suitable as
benchmarks of AMR in animal populations for risk managers, to design policy
and assess effects of interventions. Compared to the indicators by EFSA, ECDC
and EMA (EFSA, 2017), model-based cluster analysis may be a preferable
method, because the outcome clusters are mutually exclusive. Other advantages
are that no arbitrary choices have to be made, i.e. on what basis groups are
made. The clusters reduce data complexity but can be broken down to search for
specific details, avoiding loss of information. Like the model results in Chapter
2, trends observed in these outcome clusters could initiate other research
to better understand AMR developments in animal populations. However,

186



General discussion

compared to that model, this method gives insight in the co-occurrence of AMR
within animal species, and in the similarity of resistance trends observed in
Chapter 2. Outcome indicators for other AMR data than analysed here could
also be identified with this approach. Since the method is data-driven, the AMR
in the data determines the outcome clusters. To use them for benchmarking, the
clusters should therefore be verified over a more diverse population, with data
from other countries and animal sectors.

In Chapter 5, the relation between AMR prevalence and the EFSA indicators
(EFSA, 2017) was investigated, and the correlation between AMR and AMU
in several European countries. E. coli was isolated in faeces collected at farms
from broilers and fattening pigs (from nine countries), and fattening turkeys
and veal calves (from three countries). AMU data were collected at these farms
and average treatment incidences were calculated. A large variation between
countries in resistant proportions for antimicrobials and AMU was observed.
Applying the EFSA outcome indicators (EFSA, 2017) showed that the proportion
of multidrug resistant isolates (as indicator) was high in broilers. This study
indicates that this indicator is not specific, since it overlaps with resistance to
ciprofloxacin and cefotaxime, and no correlation between multidrug resistance
and overall AMU was found in broilers and pigs. Likewise, no correlation was
found between the proportion fully susceptible E. coli (the primary indicator by
EFSA) (EFSA, 2017) and AMU for broilers or pigs. A few interesting correlations
between AMR and AMU for specific antimicrobials were found, for example
between use of fluoroquinolones and ciprofloxacin resistance in broilers and
pigs. For broilers this correlation (Spearman’s rho=0.778, p=0.014) seems
remarkably high next to findings in Chapter 2 and 4. In Chapter 2, we found
a relatively high persistence of fluoroquinolone resistance in broilers, not
corresponding to AMU, worrisome because fluoroquinolones are critically
important antimicrobials for human medicine (WHO, 2019). This persistence
was attributed to (fluoro)quinolone resistance being mainly encoded in the
bacterial chromosome and not in plasmids, the latter can be lost by bacteria due
to fitness cost (Machuca et al., 2014). Fluoroquinolone resistance was found
persistent in broilers in other studies (Vieira et al,, 2011; Taylor et al.,, 2016;
Chantziarasetal., 2018; Roth etal.,, 2019). In the cluster analysis in Chapter 4, we
found that part of the isolates in broilers (cluster 2, only present in broilers) are
only resistant to ciprofloxacin and nalidixic acid, and not to other antimicrobials.
Apparently, for (fluoro)quinolone resistance this persistence, independent
of AMU, exists next to a strong correlation between AMR and AMU. This is in
contrast to sulfamethoxazole and tetracycline resistance, found persistent in
broilers and pigs from different countries, for which no correlations between
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AMR and AMU were found. Correlations found between AMR and AMU are not
always easy to explain. Although it is generally accepted that AMU selects for
AMR (Chantziaras et al.,, 2014) the extent to which this happens differs. This
analysis over countries gives a rough estimate, but indicates the extent of the
association per antimicrobial class (i.e. the extent of the selective pressure). The
strength of this study is that commensal E. coli were collected from the same
epidemiological units, i.e. the farms, in different countries. With regular AMR
monitoring data (by EU legislation collected at slaughter) AMR and AMU cannot
be correlated at farm level, although associations exist between AMR in E. coli
from animals at slaughter and AMU at animal population level (Dorado-Garcia
etal, 2016).

In Chapter 6, we compared monitoring in commensal E. coli isolated from
healthy broilers with E. coli isolates of clinical submissions and post-mortem
examinations of diseased broilers, the Netherlands, 2014-2019. Results
of culture-based AST by broth microdilution were analysed. Monitoring
methodology in the two programs is different as they have different aims.
For the commensal isolates, a stratified random sample from healthy animals
at slaughter is taken (active surveillance) versus a convenience sample from
submissions of diseased animals from the same broiler population (passive
surveillance). The test panels also differ: for commensal E. coli it includes
antimicrobials relevant to human healthcare to detect early evolution of non-
wildtype susceptibility, using epidemiological cut-off values (ECOFF). The
test panel for clinical E. coli consists of antimicrobials for veterinary use, and
clinical breakpoints instead of ECOFF are used to determine clinical resistance.
Remarkably, despite these differences, mean resistant proportions are similar
for most antimicrobials. Resistant proportions of clinical E. coli data fluctuate
over time, therefore more data is needed to quantify the association. The
random sample of commensal E. coli from healthy animals seems more suitable
to monitor time trends in AMR. The selected sample of clinical isolates results in
a higher chance to detect low prevalent resistance: i.e. cefotaxime and colistin.
The two surveillance systems have complementary advantages, it is therefore
advisable to monitor AMR both in commensal E. coli from healthy broilers and
in clinical E. coli from diseased broilers.

The use of whole-genome sequencing to monitor antimicrobial
resistance

By sequencing the whole genome of bacteria, similar information on AMR
prevalence can be acquired as by culture-based AST (McDermott et al,
2016; Shelburne et al., 2017; Mahfouz et al., 2020). In addition, WGS reveals
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characteristics of resistance genes and their genetic environment (for example
location on mobile genetic elements), as well as genetic relatedness of bacteria:
crucial information by which the spreading potential of resistance genes is
determined. These aspects are valuable to AMR monitoring (Hendriksen et al.,
2019), but to make the best use of WGS, some challenges have to be addressed.
The first challenge is to determine test validity of WGS without using culture-
based AST as the gold standard, Chapter 7. The other challenge is how the
benefits of WGS (apart from detection of resistance genes) can be used for AMR
monitoring, investigated in Chapter 8.

In Chapter 7, we used Bayesian latent class analysis to evaluate the accuracy
of WGS (Illumina sequencing) versus culture-based AST, without assuming
one test as the gold standard. The model assessed the two independent tests
in three animal populations (N=150, 50 bacterial isolates per population): veal
calves, pigs, and broilers from fresh faeces collected at farms in the Netherlands
in 2014-2015. Resistance genes were identified with ResFinder 3.0 (Bortolaia
et al,, 2020) and compared with broth microdilution. This analysis showed
that WGS-based AST is just as suitable to monitor AMR in E. coli from livestock
as culture-based AST: both methods have high sensitivity and specificity. The
latent class model estimates the true resistance prevalence by combining
the data with prior information, showing how well tests identify this true
prevalence (Johnson et. al 2019). Gentamicin and azithromycin resistance are
low prevalent in the animal populations and in the prior information, resulting
in wide probability intervals for the sensitivity. Therefore, sensitivity for low
prevalent resistance should be further investigated with latent class analysis.
Furthermore, we compared WGS results for differentlength and identity settings
of gene alignment. Few differences were found between (length/identity %)
settings 60/90, 90/90 and 95/95. The default setting of 60/90 of ResFinder
seemed suited to monitor AMR in livestock.

In Chapter 8, we analysed the genetic relatedness and presence of plasmids and
resistance genes in the same 150 E. coli isolates and showed how WGS (Illumina)
can be used to monitor AMR. In general, no spread of specific resistant bacterial
clones in animal species was found. On some farms, genetically identical strains
were found in multiple animals, with resistance to the same antimicrobial
classes and plasmids of the same replicon types. This indicates that sampling
one animal per farm instead of multiple animals leads to a representative isolate
collection, and thereby prevents bias in trends monitored in the whole animal
population. As a consequence of the method (short read sequencing), plasmid
location could be confirmed for few resistance genes. However, significantly
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elevated levels of specific plasmid replicon types warrant further investigation
by long-read sequencing: in veal calves IncHI2 was frequent (36%), and in
broilers: Incl1 (46%) Incl2 (22%) and p0111 (46%). Col plasmids were more
frequentin broilers (44%) and pigs (34%), compared to veal calves (12%). Short
read sequencing (by Illumina) should be combined with long read sequencing
(by Nanopore or PacBio) for optimal insight in the genetic environment of
resistance genes.

Future evaluation and interpretation of AMR monitoring

Effective monitoring of AMR requires standardization and international
harmonization, to enable comparison of outcome data. As we show, the
randomized sample in commensal E. coli from healthy animals is suitable to
analyse AMR trends, as we have seen and in Chapter 2, 4 and 6. Part of the
findings in the thesis can be extrapolated to AMR monitoring in Salmonella,
Campylobacter, or other pathogens, but sampling in pathogens is hard to
randomize (illustrated in Chapter 6 for clinical E. coli) as they cannot be isolated
from each animal.

To further enhance interpretation of AMR monitoring data, quantitative analyses
should be incorporatedinroutine monitoring. In this thesis we developed models
and the R code necessary to process large amounts of data. Implementing these
statistical analyses in AMR monitoring requires dedicated time and means. This
is advised, because in future the amount of data and data complexity will further
increase, illustrated in Chapter 7 and 8. To further improve AMR monitoring, we
promote evaluation of AMR surveillance systems, as discussed in Chapter 3. It
would also help to harmonize the interpretation objectives of AMR monitoring
over countries, next to harmonization of laboratory methods, and to determine
validity of the statistical methods used over countries (i.e. in data with more
variation, from different countries and animal sectors).

The random sample used in AMR monitoring in commensal E. coli is by design
a yearly sample, and not ‘real-time’ monitoring. To increase the sensitivity for
trend changes, to detect for example a sudden increase of resistance, sentinel
farms could be followed over time (longitudinally). However, this would
introduce bias compared to the current random sample, which as we show
generates objective, comparable outcome data. Next to optimal AMR trend
analysis, a surveillance system should ideally have early detection of hazards.
For that purpose, complementary sampling strategies should be applied, by
taking a risk-based sample (for example from treated animals, i.e. diseased,
or young) next to a random sample. Risk-based sampling can increase early
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detection of emerging resistance and low prevalent resistance. For hazard-
specific surveillance (increasing the detection of specific micro-organisms,
for example by enriched culture media), the system should be as ‘real-time’ as
possible. To conclude, E. coli is a useful indicator to monitor AMR, provided that
bias in the sampling is prevented, and that proper statistical methods are used
for the evaluation and interpretation.
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Summary

Summary

Effective antimicrobials are essential for adequate healthcare, but unfortunately,
worldwide antimicrobial resistance (AMR) threatens this effectiveness, caused
by antimicrobial use (AMU). The possibilities for development of antimicrobials
are limited, and new antimicrobials will not become widely available. This
leaves prudent AMU and other interventions to limit existing AMR as an
important strategy and therefore, AMR must be monitored. Production animals
are a relevant reservoir to monitor, because AMR may be transmitted to
humans directly, or indirectly via food or the environment. This thesis is about
monitoring of AMR in livestock as public health hazard in indicator organism
Escherichia coli.

In the European Union, monitoring of AMR in animals as public health hazard
is performed by European legislation in commensal E. coli and food-borne
pathogens Salmonella and Campylobacter. The international legislation has led
to harmonisation and standardisation of the sampling and the microbiological
methods. Elements not prescribed create room for improvement. The evaluation
and interpretation by statistical analysis of AMR monitoring results is not
prescribed, but is challenging and will be more complex when the amount of
data increases. The updated EU legislation in 2020 has allowed whole-genome
sequencing (WGS) as alternative method to culture-based antimicrobial
susceptibility testing in AMR monitoring. So far, no statistical approaches were
described to evaluate WGS versus culture-based methods. Analyses can be
improved for optimal evaluation and interpretation of AMR monitoring data.
Therefore, the first aim of this thesis is to evaluate AMR monitoring results with
statistical methods. The second aim is to improve the interpretation of AMR
monitoring in commensal E. coli. The third aim is to assess WGS versus culture-
based methods to monitor AMR.

Chapter 2 aims to model the time trends in AMR monitoring data in commensal
E. coli from the Netherlands, 1998 to 2016, in broilers, slaughter pigs, veal
calves, to evaluate if trends and trend changes as a result of interventions were
observed. The rates of increase or decrease of AMR over time are captured in a
model (Poisson regression). Since 2009, as a likely effect of AMU interventions,
a decrease over time for most antimicrobials is found in broilers and pigs, for
some antimicrobials this decrease is faster than in others. From this evaluation,
we conclude that monitoring data from E. coli is suitable to quantify trends
over time, to follow AMR in animal populations and measure the effects of
interventions.
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In Chapter 3 tools are assessed which can be used to evaluate AMR monitoring.
The applicability of six different evaluation tools for integrated surveillance
was assessed by case studies in eight countries. Results show that although
some tools cover relevant aspects better than others, there is not one best
tool for evaluation of integrated AMR surveillance: the suitability of the tool
depends on the evaluation objective. In general, more scientific expertise on
evaluation of AMR monitoring from an integrated perspective is needed. An
online platform was created in this consortium to further develop and share
evaluators experience.

In Chapter 4, a need of policy makers is addressed for a clear overview of
AMR monitoring outcome, to develop and adjust policy timely. This chapter
aims to summarise AMR over multiple antimicrobial classes, to develop AMR
monitoring outcome indicators. A multivariate cluster analysis was applied to
AMR monitoring data from the Netherlands, 2007 to 2018, in broilers, slaughter
pigs, veal calves, and dairy cows. This resulted in four clusters containing
combinations of resistance to multiple antimicrobial classes. These clusters
are useful as monitoring outcome indicators, because they distinguish different
levels of multidrug resistance (i.e. resistant to three or more antimicrobial
classes) and indicate development of AMR over time and in the different animal
sectors. The clusters were compared with outcome indicators reported by the
European Food Safety Authority (EFSA), and were found more specific and
potentially more practical. In order to apply them for benchmarking of AMR,
we recommend to verify this cluster methodology with data from different
countries.

In Chapter 5, AMR is described in commensal E. coli from livestock in several
European countries, and the correlation between AMR and AMU in several
European countries. The relationship with AMU and the outcome indicators
reported by EFSA was evaluated. From this analysis, it could be concluded
that there was a large variation of AMR and AMU between different countries.
Based on the correlations, AMR for some antimicrobial classes was prevalent
independent of AMU. The strength of correlations differed per antimicrobial
class. The indicators used by EFSA did not correlate to overall AMU, indicating
they are not specific.

Chapter 6 compares AMR monitoring in commensal E. coli isolated from healthy
animals with clinical resistant E. coli from diseased broilers in the Netherlands,
2014 to 2019. Differences and similarities in the two types of AMR monitoring
are described. Monitoring methodology in the two programs is different as they
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have different aims. The sample is different, the test panels of antibiotics are
different (focused on human versus animal health) and the criteria (breakpoints)
to determine resistance differ. Despite these differences, resistant percentages
are similar for most antimicrobials. The random sample of commensal E. coli
from healthy broilers seems more suitable to monitor time trends in AMR. The
selected sample from diseased broilers results in a higher chance to detect low
prevalent resistance. The two surveillance systems are complementary, so it is
advisable to monitor AMR both in commensal E. coli from healthy broilers and
in clinical E. coli from diseased broilers.

In Chapter 7, we used Bayesian latent class analysis to evaluate the accuracy of
WGS (Illumina sequencing) versus culture-based AST to monitor AMR, without
assuming one test as the gold standard. This was analysed in three animal
populations (N=150, 50 bacterial isolates per population): veal calves, pigs, and
broilers, from fresh faeces collected at farms in the Netherlands in 2014-2015.
Resistance genes (identified with the ResFinder 3.0 database) were compared
with broth microdilution. This showed that WGS is just as suitable to monitor
AMR in E. coli from livestock as culture-based AST: both methods have high
sensitivity and specificity.

Chapter 8 describes the additional benefits of WGS, in the same 150 commensal
E. coliisolates from livestock. WGS reveals characteristics of resistance genes and
their genetic environment (for example location on mobile genetic elements:
plasmids), and relatedness of bacteria: crucial information determining the
spread of resistance. In this data, no spread of genetically related bacteria was
found in animal species. On some farms, identical strains were found in multiple
animals, with resistance to the same antimicrobial classes and plasmids of the
same replicon types. Consequently, sampling one animal per farm instead of
multiple animals leads to a representative bacterial isolate collection. This
indicates that the current methodology in AMR monitoring prevents bias in
monitored AMR trends. As a consequence of the sequencing method (short read
sequencing), plasmid location could be confirmed for few resistance genes. To
improve the quality of WGS as tool for AMR monitoring, short read sequencing
should be combined with long read sequencing for optimal AMR monitoring.

The conclusions from this thesis are that E. coli is a useful indicator to monitor
AMR in livestock, provided that bias in the sampling is prevented, and that
proper statistical methods are used for the evaluation and interpretation. As
we show, the randomized sample from healthy animals is well suited to analyse
AMR trends over time. Other types of samples such as risk-based sampling (for
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example from diseased animals) are useful to detect rare or emerging resistance,
but should be used next to arandom sample to ensure representativeness for the
whole animal population. To improve interpretation of AMR monitoring data,
quantitative analyses should be incorporated in routine monitoring, because in
the future the amount and complexity of data will further increase. The validity
of the statistical approaches in this thesis should be further investigated in data
with more variation, from different countries. We promote further evaluation
of AMR surveillance systems, and the analysis of AMR monitoring outcomes
should be harmonized, next to already existing harmonization of laboratory
methods.
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Effectieve antibiotica zijn essentieel voor een goede gezondheidszorg. Helaas
wordt de effectiviteit van antibiotica bedreigd door antimicrobiéle resistentie
(AMR), een urgent wereldwijd probleem. De mogelijkheden om nieuwe
antibiotica te ontwikkelen zijn beperkt. Als ze al ontwikkeld worden, zullen deze
nieuwe middelen spaarzaam worden ingezet, om nog meer resistentievorming
te voorkomen. Het behouden van de effectiviteit van bestaande antibiotica is dan
ook een belangrijke strategie om AMR tegen te gaan. Om die reden dient AMR
te worden gemonitord in reservoirs waarin resistentie zich kan ontwikkelen.
Voedselproducerende dieren zijn zo'n relevant reservoir, omdat het gebruik
van antibiotica bacterién selecteert die resistent zijn (oftewel selectiedruk).
Vervolgens kan AMR worden overgedragen van dier op mens, door direct
contact, of indirect via voedsel of via het milieu. Dit proefschrift gaat over de
monitoring van AMR in voedselproducerende dieren in de indicatorbacterie
Escherichia coli.

In de Europese Unie wordt AMR als volksgezondheidrisico gemonitord in E. coli,
Salmonella en Campylobacter. Dit is verplicht volgens Europese regelgeving. De
internationale regelgeving heeft geleid tot harmonisering en standaardisatie
van protocollen voor onder andere het nemen van steekproeven en de gebruikte
laboratoriummethoden. De analysemethode voor evaluatie en interpretatie
van de AMR monitoring uitkomsten is echter niet voorgeschreven, maar wordt
steeds complexer doordat de hoeveelheid uitkomstdata toeneemt. In 2020 is
de Europese regelgeving vernieuwd en wordt nu ‘Whole Genome Sequencing’
(WGS) ook toegestaan als monitoringsmethode, in plaats van het bepalen van
de gevoeligheid door middel van kweekplaten met antibiotica erin. Tot zover
waren er geen methoden gepubliceerd of voorgeschreven om WGS statistisch
te evalueren ten opzichte van de huidige gouden standaard: de traditionele
kweek met gevoeligheidsbepaling. Ook in meer algemene zin kunnen
analysemethoden van AMR monitoringsdata worden verbeterd. Het eerste doel
van dit proefschrift is daarom: het evalueren van AMR monitoring door middel
van statistische analyses van AMR monitoring data. Het tweede doel is het
verbeteren van de interpretatie van AMR monitoring met behulp van analyses.
De derde doelstelling is om de accuraatheid van WGS statistisch te evalueren
ten opzichte van de traditionele gevoeligheidsbepaling.

In Hoofdstuk 2 worden AMR monitoring data uit Nederlandse

landbouwhuisdieren van 1998-2016 gemodelleerd om trends in de tijd of
een trendbreuk te detecteren, die mogelijk een gevolg zijn van veranderingen
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of interventies in antibioticumgebruik. De mate van toename of afname van
AMR over de tijd wordt gekwantificeerd met een statistisch regressiemodel
(Poisson regressie). Sinds 2009 werd een afname van resistentie over de tijd
waargenomen voor vrijwel alle antibiotica in vleeskuikendata en varkens,
volgend op interventies in het antibioticumgebruik in deze dieren. Voor
sommige antibiotica is deze afname van resistentie in de tijd sneller dan
voor anderen. De conclusie uit deze evaluatie is dat de AMR monitoring data
uit E. coli geschikt zijn om trends over de tijd te kwantificeren, om daarmee
in dierpopulaties AMR te kunnen volgen evenals mogelijke effecten van
interventies.

In Hoofdstuk 3 worden verschillende tools getest om AMR monitoring te
evalueren. De toepasbaarheid van zes verschillende tools (bedoeld om
geintegreerde monitoring te evalueren) werden bestudeerd door middel van
casestudies in acht verschillende landen. De resultaten laten zien dat sommige
tools de relevante aspecten beter behandelen dan andere, maar dat er niet één
toolhetbesteis om geintegreerd AMR monitoring te evalueren. De bruikbaarheid
van de tools hangt af van het specifieke evaluatiedoel. In algemene zin is er veel
meer wetenschappelijke kennis nodig over de evaluatie van AMR monitoring
vanuit een geintegreerd perspectief. Er is een online platform gestart om
evaluatie-ervaringen te delen en verder te ontwikkelen.

In Hoofdstuk 4 wordt ingegaan op een behoefte van beleidsmakers om een
duidelijk overzicht te hebben van AMR monitoringuitkomsten, om beleid tijdig
te ontwikkelen en aan te passen. In deze studie wordt AMR van verschillende
antibioticaklassen samengevat, om daarmee AMR uitkomstindicatoren te
ontwikkelen. Daartoe is een multivariate clusteranalyse toegepast op AMR
monitoring data uit Nederland van 2007-2018 in vleeskuikens, varkens,
vleeskalveren en melkkoeien. Dit leverde vier clusters op met daarin 201
combinaties van resistentie tegen verschillende antibioticaklassen. Deze
clusters zijn bruikbaar als uitkomstindicatoren van AMR monitoring, omdat ze
onderscheid kunnen maken tussen verschillende niveaus van multiresistentie
(dat wil zeggen: resistent tegen drie of meer antibioticaklassen). Ook geven
de clusters een indicatie van hoe AMR zich ontwikkelt over de tijd in de
verschillende dierpopulaties. Deze clusters zijn vervolgens vergeleken met
uitkomstindicatoren opgesteld door de European Food Safety Authority (EFSA).
Deindicatoren uit deze studie werden specifieker en potentieel beter toepasbaar
bevonden dan die van EFSA. Om ze echt toe te passen als benchmark voor AMR
raden we aan deze clusterindeling eerst te verifiéren met data uit verschillende
landen.
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In Hoofdstuk 5 beschrijven we AMR in commensale E. coli uit
landbouwhuisdieren in verschillende Europese landen en wordt de correlatie
met antibioticumgebruik in deze landen berekend. Daarnaast is de relatie
met de uitkomstindicatoren door EFSA geévalueerd. De conclusie was dat
er grote variatie is van AMR en antibioticumgebruik in verschillende landen.
De correlaties van AMR met het antibioticumgebruik gaven aan dat AMR
voor sommige antibioticaklassen onafhankelijk van het antibioticumgebruik
aanwezig is (d.w.z. de correlatie met antibioticumgebruik verschilde sterk
per antibioticumklasse). De indicatoren door EFSA correleerden niet met het
algehele antibioticumgebruik, dit benadrukte dat die indicatoren inderdaad
niet specifiek zijn.

In Hoofdstuk 6 wordt AMR monitoring in commensale E. coli uit gezonde
vleeskuikens vergeleken met AMR monitoring in klinische E. coli-isolaten,
verzameld uit zieke vleeskuikens uit Nederland, 2014-2019. Deze twee
monitoringssystemen hebben verschillende doelstellingen en zijn daarom ook
verschillend ingericht. De beoogde steekproef verschilt en de testpanels van
antibiotica zijn verschillend. De AMR monitoring in gezonde dieren richt zich
meer op antibiotica die voor de volksgezondheid belangrijk zijn, terwijl het
testpanel voor zieke dieren vooral bestaat uit antibiotica die voor gebruik in de
veterinaire praktijk belangrijk zijn. Ook verschillen de criteria om resistentie
te definiéren, oftewel de gebruikte breekpunten. Ondanks deze verschillen
zijn overeenkomstige resistentiepercentages gevonden voor de meeste
antibiotica in deze studie. De gerandomiseerde steekproef in commensale E.
coli van gezonde dieren lijkt beter geschikt om AMR trends in de tijd waar te
nemen. Het geselecteerde sample in zieke dieren leidt tot een hogere kans om
laagprevalente resistenties te detecteren. De twee monitoringssystemen zijn
dus complementair aan elkaar. Voor een volledig overzicht van AMR raden we
aan zowel in commensale als in klinische E. coli-bacterién te blijven monitoren.

In Hoofdstuk 7 is Bayesiaanse statistiek gebruikt om de accuraatheid van
WGS als testmethode te vergelijken met gevoeligheidsbepalingen door middel
van kweek, zonder dat één van beide tests als de gouden standaard wordt
beschouwd. Dit is gedaan door een ‘latent class’ analyse in drie dierpopulaties
(N=150, 50 bacteriéle isolaten per populatie): vleeskalveren, vleesvarkens en
vleeskuikens, waarvan verse faeces verzameld is op bedrijven in Nederland in
2014-2015. De uitkomst voor resistentiegenen in deze isolaten (aangetoond
met de ResFinder 3.0 database voor resistentiegenen) werd vergeleken met
uitkomst van de kweek met gevoeligheidsbepaling. Dit liet zien dat WGS net zo
geschikt is om AMR te monitoren in E. coli uit landbouwhuisdieren als de kweek
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met gevoeligheidsbepalingen: beide methoden hebben een hoge sensitiviteit en
specificiteit.

In Hoofdstuk 8 worden de additionele voordelen van WGS als
monitoringsmethode beschreven aan de hand van de data uit dezelfde 150
E. coli-isolaten. WGS levert allerlei informatie over de resistentiegenen en
hun genetische achtergrond. Bijvoorbeeld waar ze gelokaliseerd zijn in het
bacteriéle genoom, of dat ze op bepaalde mobiele genetische elementen
liggen, plasmiden genoemd. Ook laat WGS zien of en hoe sterk bacterién
aan elkaar verwant zijn, dit is cruciale informatie om de verspreiding van
resistentiegenen in kaart te kunnen brengen. In deze studie bleek binnen de
diersoorten geen verwantschap van de geteste stammen voor te komen, maar
op sommige bedrijven werden wél genetisch identieke bacteriestammen
gevonden uit meerdere dieren. Deze waren resistent tegen dezelfde antibiotica
en droegen dezelfde typen plasmiden bij zich. Dit betekent dat het raadzaam
is om per bedrijf maar één dier te bemonsteren in plaats van meerdere dieren,
om te voorkomen dat er oververtegenwoordiging optreedt in de steekproef
van de AMR monitoring, die de waargenomen trends zou kunnen beinvloeden.
Als gevolg van de gebruikte methode (WGS met korte genetische fragmenten,
oftewel ‘short reads’) werd maar voor enkele resistentiegenen een verband
aangetoond tussen resistentiegenen en hun specifieke genetische locatie op
plasmiden. Bij toepassen van WGS voor AMR monitoring bevelen we daarom
aan ‘short read’ sequencing te combineren met ‘long read’ sequencing, zodat
dat verband vaker kan worden aangetoond.

In dit proefschrift concluderen we dat het monitoren in E. coli een bruikbare
indicatie oplevert van AMR in een dierpopulatie, vooropgesteld dat de
steekproeven representatief zijn voor de gemonitorde populatie en dat de juiste
statistische methoden worden gebruikt voor de evaluatie en interpretatie. Zoals
we laten zien helpt het randomiseren van een steekproef om trends te kunnen
monitoren over de tijd. Andere steekproeven, zoals een risico-gebaseerde
steekproef(bijvoorbeeld vanziekedieren),zijnnuttigomzeldzame ofopkomende
resistentievormen te monitoren. Deze dienen wel naast een gerandomiseerde
steekproef te worden gebruikt om te zorgen dat gemonitorde trends in AMR
representatief zijn voor de gehele dierpopulatie. Om de interpretatie van AMR
monitoring data verder te verbeteren moeten de kwantitatieve analyses zoals
hier toegepast, worden ingebed in routinemonitoring. Des te meer omdat in de
toekomstde hoeveelheid data en de complexiteitervan nogverder toe zal nemen.
De statistische benaderingen in dit proefschrift kunnen worden gevalideerd
door ze te testen op AMR data van andere landen. Verder bevelen we aan om in
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de toekomst AMR monitoring meer te evalueren en om analysemethoden voor
uitkomsten van AMR monitoring ook te harmoniseren, zoals dat al gedaan is
voor de gebruikte laboratoriummethoden.
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Effective antimicrobials are essential for adequate
healthcare, but unfortunately, worldwide antimicrobial
resistance (AMR) threatens this effectiveness. The
possibilities for development of new antimicrobials are
limited. This leaves prudent antimicrobial use and other
interventions to limit existing AMR as an important
strategy. Therefore, AMR must be monitored in the
relevant reservoirs, such as livestock. The interpretation
by statistical analysis and evaluation of AMR monitoring
is not prescribed by legislation, but is challenging and will
be even more complex when the amount of data increases.
This PhD thesis provides insight in how to optimize
evaluation and interpretation of AMR monitoring in
livestock in the indicator organism FEscherichia coli.
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