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1

Introduction

In this introductory Chapter we describe all the key concepts that will be further explored in
the course of this thesis. We begin by defining what is meant by colloidal systems, what char-
acterises them, and the reasons behind the feverish scientific efforts by the scientific community
in order to study their behaviour. We introduce the concept of nucleation, providing not only
examples from common everyday experience, but also the theoretical framework within which
this thesis is placed. Finally, we take the opportunity to mention other recurrent concepts
in the present work and inherent to nucleation, such as fivefold symmetry and inverse design
methods. Through this Chapter, we provide the reader with all the conceptual tools needed to
tackle the subsequent chapters, which are more technical in nature.
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1.1 Colloidal systems
When one presents a scientific work that refers to some branch of physics, both at a popular
and technical level, usually even non-expert readers have at least a vague idea of what they are
dealing with. This happens with a very large set of topics, ranging from gravity to semicon-
ductors. On the contrary, when presenting a thesis on colloids, it is strictly necessary to start
this long journey from the mere definition of the system under investigation. This is by the
way a rather peculiar phenomenon, as each of us has to deal with colloids in everyday life. So,
what are colloids?

One possibility is to call a colloid any particle whose size varies between about 1 nm and 1
µm [1]. This term comes from the Greek word κoλλα, which means glue, as it was coined to
describe sticky particles on a semipermeable membrane in 1860, by Thomas Graham [2]. Other
more familiar examples of colloids include the toothpaste, paints, milk, and various creams.

All of the above-mentioned examples involve not only colloids, but more precisely insoluble
colloids dispersed in a medium composed of particles that are much smaller than the colloids
themselves. This is the most interesting kind of colloidal system (as well as the one on which
this thesis focuses), because it gives rise to the other fundamental characteristic of colloids,
which also serves as an alternative definition for them. What distinguishes colloids from other
systems in fact, more than their spatial dimensions, is their dynamics. Colloids perform trajec-
tories which are random, but still possess very precise characteristics. This dynamics is called
Brownian motion, as a tribute to Robert Brown, the botanist who first described the movement
of grains of pollen in water in 1827 [3]. At the dawn of the twentieth century, Einstein and
Sutherland [4,5] gave an explanation to the random movement of colloidal particles suspended
in a medium. They understood that the numerous molecules of the solvent are in constant mo-
tion due to their thermal energy, and collide continuously onto the surfaces of the colloids. The
result of these interactions is a stochastic force that acts on the colloids themselves. Returning
to the first attempt to give a definition of a colloid, based on spatial dimensions, we realise
that both lower and upper limits (respectively 1 nm and 1 µm) are imposed by the dynamical
characteristics just described. In other words, colloids are particles that are large enough not
to be affected by quantum effects, but small enough to experience Brownian motion.

In a colloidal system, colloids interact not only with the solvent particles, but also with each
other. The resulting collective behaviour is surprisingly rich and diverse. Indeed, thanks to the
Brownian motion, a colloidal system effectively explores phase space in search of the minimum
free energy. This exploration brings different systems into a multitude of different phases –
ranging from the fluid phase to crystalline states, to liquid crystals and even to quasicrystals –
through the process of self-assembly [6]. The phase behaviour of colloidal systems is therefore
strikingly analogous to that of atoms and molecules, but on larger scales.

This similarity of the collective behaviour of colloidal systems to atomic systems suggests
to us one of the main motivations behind the study of their self-assembly processes. Some
phase transitions such as nucleation in fact are extremely complicated to study for atomic
and molecular systems, because the constituent particles are extremely small and these events
happen rather quickly. Conversely, colloids are large enough and slow enough to be observed
by conventional optical techniques such as light microscopes, or to be modelled in numerical
simulations avoiding the inclusion of quantum effects, which typically slows down simulations
by order of magnitudes.

Another aspect that makes the study of colloidal self-assembly relevant, is the possibility
of creating new functional materials with optical properties out of the ordinary [7, 8]. Among
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the best known examples are photonic crystals, ordered and periodic colloidal structures in
which the lattice spacing is comparable to the wavelengths of visible light. These materials
can create photonic band gaps, in complete analogy with the electronic band gaps formed by
semiconductor crystals, which prevent the propagation of light with a specific wavelength in
certain directions [9,10]. Nature offers us numerous examples of similar structures, such as gem
opals with their wonderful colours, caused by their regular arrangements of silica spheres on a
colloidal scale [11, 12]. Other examples come from the plant and animal world, where we find
examples of photonic crystals in marble berries or in the wings of Morpho butterflies.

Before moving on to the next sections, it is interesting – or simply beautiful – to note
that the study of colloidal systems is an effort that involves researchers and scientists from very
different backgrounds. It is a field where collaborations between physicists, chemists, biologists,
mathematicians and engineers are frequent, bringing theoretical analysis, numerical simulations,
and experimental techniques together, in order to achieve an ever increasing understanding of
these systems.

1.2 Nucleation
Among the many self-assembly processes displayed by colloidal systems, one of the most com-
mon and certainly one of paramount importance is nucleation. Nucleation is the process through
which a first-order phase transition happens, namely with the birth of a microscopic nucleus of
the embryo phase inside the parent phase, which in some conditions is able to grow out and be-
come macroscopic [13]. When we talk about first order, we refer to the Ehrenfest classification,
for which a first-order phase transition is one where the first derivative of the free energy with
respect to a variable is discontinuous. In the case of the vapour-liquid phase transition, as well
as the vapour-solid or liquid-solid transitions and many other, the density, which is the inverse
of the derivative of the Gibbs free energy per particle with respect to pressure and performed
at constant number of particles and temperature, shows a discontinuity at the transition.

Temporarily setting aside technical definitions, it is important to note that all of us deal
with nucleation phenomena in our everyday life. It is widely known, for instance, that water
boils at 100◦C and freezes at 0◦C. What is less known though, is that, with the appropriate
instrumentation, it is possible to keep distilled water in the liquid state even at negative tem-
peratures like −10◦C or even −20◦C. Eventually, water freezes, and it does so sooner when the
temperature is lower. This behaviour is common to all liquids and not only for water and, in
general, it also holds for other examples of first-order phase transitions. From this phenomenon
we can understand that nucleation is an activated process, where a free-energy barrier must be
overcome in order to complete the transition. An obvious consequence is that the waiting time
for a nucleation event to happen can be orders of magnitude longer than the event itself. This
is why nucleation is referred to as a rare event. The fact that nucleation is such a common
event in nature makes understanding its mechanism of crucial importance in very diverse areas
of science. For instance, ice crystals in the clouds are considered to be key in building a bet-
ter climate model with more accurate radiative effects. Understanding the multiple pathways
through which ice nucleates would therefore considerably help us fighting the current climate
crisis. Taking an example from the medical field, many diseases for which we have no cure are
initiated by a nucleation phenomenon. One example is sickle cell anemia, which is caused by
nucleation of a hemoglobine mutant in the blood. Finally, concluding with an example in the
pharmaceutical field, it is a phase transition between a metastable phase and another stable
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Figure 1.1: On the left, system I is shown, where only the metastable phase A (light blue) is present.
Conversely, on the right, system II is shown, where a cluster of the stable child phase B (dark blue)
has formed within the metastable parent phase A.

phase that can cause a change in the lattice structure of a specific drug, making it ineffec-
tive. This is what happened in 1998 with a AIDS-treating drug called Ritonavir, which was
subsequently removed from the market.

The history of nucleation is a few centuries old, and starts with the first experiments of
Fahrenheit on crystallisation of water in 1714 [14] – just like the above example – and with
analogous experiments on different liquids performed by Gay Lussac [15]. In 1878, Josiah
Willard Gibbs made a fundamental contribution to the understanding we still have today of
the nucleation process [16]. In fact he was the first to interpret the experiments mentioned
above in terms of new concepts such as stability, metastability and instability of phases. He
understood, for example, that the system, in the metastable phase, had to do a positive work
to form a droplet of the child phase within the parent phase. It is standing on the shoulders
of giants then, that Volmer and Weber in 1926 formulated the theoretical framework within
which we still interpret the phenomena of nucleation: Classical Nucleation Theory (CNT) [17].

In the following subsections we proceed with a detailed mathematical derivation of all the
relevant equations of CNT, as well as the basic assumptions it involves.

1.2.1 Classical Nucleation Theory - Thermodynamics
Let us start by considering a system in the metastable phase A, and a second system where a
small cluster of the stable phase B has formed inside the parent phase A. As an example, we
can think of phase A as liquid water and phase B as ice, provided that the ice is the stable
phase at these thermodynamic conditions (for instance, with an external pressure of 1 atm and
a temperature below 0◦C). A sketch of these two systems is represented in Fig. 1.1. The goal
of this derivation is to find the reversible work performed by system I in order to form the
cluster of the stable phase B in system II.

First of all, we compute the internal energy of system I which is given by

U I
A = T ISI − P I

AV + µIAN (1.1)

where T I , SI , P I
A, V , µIA, and N are, respectively, the temperature, entropy, pressure, volume,

chemical potential, and number of particles of system I. Conversely, for system II we find

U II
A+B = T IISIIA + T IISB − P II

A V
II
A − PBVB + µIIAN

II
A + µBNB + Aγ (1.2)
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where A is the area of the interface between phase A and phase B, and γ is the free-energy
cost per unit of area associated with the formation of this interface. We now assume that
the temperature and the pressure are constant during the transformation, namely that T I =
T II = T , and that P I

A = P II
A = P . Additionally, we also assume that N = N II

A + NB and
V = V II

A + VB. Note that these two conditions on N and V are only valid if we assume that
the interface between phases A and B is sharp, contains no particles and has no volume. The
latter statement represents a crucial assumption of CNT and is known as Gibbs capillarity
approximation. With this further assumptions we can then write

U II
A+B = TSIIA + TSB − PV + (P − PB)VB + µIIAN + (µB − µIIA )NB + Aγ (1.3)

Considering that NA � NB, we also have that µIIA = µIA = µA. Operating in the NPT
ensemble, the reversible work to form a nucleus of phase B within phase A is expressed in terms
of the Gibbs free-energy difference between the two systems, namely

∆G = GII
A+B −GI

A = (P − PB)VB + (µB − µA)NB + Aγ, (1.4)

where µB = µB(PB) and µA = µA(P ).
In order to derive the final expression for ∆G, there are a few crucial assumptions to make,

which we list here:

• the interfacial free energy γ does not depend on the curvature of the cluster and is instead
equal to its value for a flat interface, γ = γ∞;

• the properties of the cluster are the same as the bulk phase B;

• the cluster is incompressible, so its density does not change with pressure.

In particular, as a consequence of the incompressibility of the growing cluster, we can re-write
the Gibbs-Duhem equation and obtain

µB(PB) = µB(P ) + PB − P
ρB

. (1.5)

If we insert Eq. 1.5 in Eq. 1.4, we finally obtain the reversible work needed to form a cluster
of NB particles of the new phase

∆G(NB) = A(NB)γ − |∆µ|NB (1.6)

where |∆µ(P )| = |µB(P )− µA(P )| is the driving force for nucleation. This equation can be re-
written, assuming a spherical shape of the growing cluster. With this assumption, ∆G becomes
a function of the radius R of the cluster itself

∆G(R) = 4πR2γ − |∆µ|43πρBR
3 (1.7)

Eq. 1.7 is likely to be the most common and known equation from CNT, and expresses the
change in the free energy as a competition between two terms:

1. the first term is the surface term, which is the free-energy cost to pay due to the formation
of an interface between the two phases. Being always positive, this term acts against
nucleation;
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Figure 1.2: Typical profile of the Gibbs free-energy barrier ∆G as a function of the radius R of the
nucleus. The dark blue point denotes the critical size of the nucleus (Rc) and the height of the barrier
(∆Gc)

2. the second term is the bulk term, which, under the conditions where the parent phase
is metastable with respect to the child phase, as we assumed at the beginning of the
derivation, represents the free-energy gain due to the formation of a cluster of the new
phase. This term is always negative, and therefore is also referred to as the driving force
for nucleation.

The competition between these two terms gives birth to a free-energy barrier, with a typical
profile as sketched in Fig. 1.2. In order for a nucleation event to happen, a cluster of at least
the critical size has to form by means of spontaneous thermal fluctuations. These fluctuations
temporarily bring the system in a state of higher free energy, and are therefore rare. However,
once a nucleus of at least the critical size has formed, the system is able to lower its free energy
by making the cluster grow indefinitely. It is important to note that, when the supersaturation
is low, the height of the barrier is high, and nucleation becomes extremely difficult to witness
within reasonable time scales. Differently, for higher supersaturation levels, the height becomes
lower and lower, until it reaches approximately zero at the spinodal point.

We close this subsection noting that from Eq. 1.7 it is straightforward to derive the critical
radius of the nucleus Rc which reads

Rc = 2γ
ρB|∆µ|

(1.8)

and the height of the Gibbs free energy ∆Gc reads

∆Gc = 16π
3

γ3

(ρB|∆µ|)2 (1.9)
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The height of the Gibbs free energy plays a crucial role, but is not the only variable to take
into account when making predictions on how frequent a nucleation event should be. In the
next subsection, we will see why.

1.2.2 Classical Nucleation Theory - Kinetics
In addition to providing an expression for the free-energy barrier for nucleation, CNT also
offers a description of the kinetics of the process. In fact, in this framework, we assume that
the cluster of the new phase B grows (shrinks) through the attachment (detachment) of one
particle at a time. We can then write

Bn−1 +B1
k+,n−1



k−,n

Bn

Bn +B1
k+,n



k−,n+1
Bn+1

(1.10)

where Bn is a cluster with n particles (and therefore B1 is a monomer), while k+,n (k−,n) is the
attachment (detachment) rate of a monomer to (from) a cluster with n particles.

In general, it is possible to find the time-dependent distribution for a cluster with n particles
Nn(t) by solving the Master equation [18] of the underlying Markov process

dNn(t)
dt

= Nn−1(t)k+,n−1 −Nn(t)k−,n −Nn(t)k+,n +Nn+1(t)k−,n+1 (1.11)

On the other hand, the net nucleation rate for a cluster of n particles is given by

Jn,t = Nn(t)k+,n −Nn+1(t)k−,n+1 (1.12)

which corresponds to the net flux of clusters with the same size n. If we assume that the
system is in a steady state [19] with constant cluster size distributions and nucleation rate, we
can write

J = N s
nk+,n −N s

n+1k−,n+1 (1.13)
This equation can be solved by recurrence, as in Ref. 20

J = N s
1

[ ∞∑
n=1

1
k+,nξn

]−1

(1.14)

where
ξn =

n−1∏
i=1

k+,i

k−,i+1
(1.15)

which only holds for n > 1. Here, we make a crucial assumption, namely that for clusters which
are smaller than the critical size, because the small steady state flux, the cluster distribution is
the equilibrium one, assuming therefore a kind of quasi-equilibrium in the system. We further
assume that clusters of size n are in equilibrium with respect to monomers, and since the
interaction between n-sized clusters and monomers is the only one we are considering, we find

nN1
K

 Nn (1.16)

where N1 and Nn are respectively the equilibrium distributions of clusters of size 1 and n.
Conversely, K is the equilibrium constant. With this assumption, the term on the right of Eq.
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1.15 is exactly K, which is also the equilibrium probability of forming a cluster of size n. In
mathematical terms, we have

ξn = K = e−β∆G(n) (1.17)
We can then re-write Eq. 1.14 as

J = N s
1

[ ∞∑
n=1

1
k+,ne−β∆G(n)

]−1

(1.18)

To finally calculate J , there are a few more approximations to do:

1. the sum is dominated by the terms corresponding to the top of the barrier;

2. we can expand ∆G(n) on top of the barrier up to the quadratic term of its Taylor
expansion, i.e. ∆G(n) = ∆G(nc) + 1

2∆G′′(nc)(n− nc)2;

3. we can replace k+,n with k+,nc ;

4. the sum is replaced by an integral with respect to a new variable n∗ = n− nc which goes
from −∞ to ∞;

We are now able to write the final expression for the nucleation rate, which reads

J = N1k+,ncZe
−β∆G(nc) (1.19)

where Z is known as the Zeldovitch factor [21] and is equal to

Z =
(
|∆G′′(nc)|

2πkBT

)1/2

=
(
|∆µ|

6πkBTnc

)1/2

(1.20)

Note that the last equality follows from the assumption that the nuclei are spherical, and
therefore does not hold in all cases.

1.3 Inhibiting and promoting nucleation
In the previous sections we have described the phenomenon of nucleation and especially outlined
how important it is to have a full understanding of it. We have also already mentioned a
recurring concept, in the context of nucleation, namely that it is a so-called rare event. It is
not surprising, therefore, that over the past decades much attention has been paid to what
the inhibitory factors of nucleation are, and at the same time to how it is possible to find
optimal conditions for it to occur. In the current Section, we will elucidate the main aspects of
both topics, whose histories date back to very different periods of scientific research, but which
certainly find common ground in the nucleation of colloidal systems.

1.3.1 Fivefold symmetry
In 1952, Sir Charles Frank published a seminal paper that contributed significantly to the
understanding of the behaviour of many-body systems [22]. In this paper, the author starts
considering that if one had the task of arranging 12 spheres around a thirteenth sphere, the
most efficient packing would be represented by the scenario in which these 12 spheres are
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positioned at the vertices of a regular icosahedron whose centre coincides with the central
particle. This reasoning, despite being purely geometric and apparently harmless, calls for
two key considerations. The first is that the regular icosahedron has nothing to do with the
typical local environment of a hard sphere in a face-centred-cubic (fcc) crystal, which is the
thermodynamically stable structure when dealing with a system of hard spheres at sufficiently
high pressures (or densities). The second consideration, possibly even more disruptive, is that
the regular icosahedron does not get along with the concept of periodicity, and hence of a
crystal lattice [23].

A crystalline structure is in fact by definition periodic, and therefore must necessarily be
characterised by precise symmetries. The characteristic of these selected symmetries is that the
corresponding spatial patterns have the property of being able to repeat themselves in space
without creating gaps. As well as, in two dimensions, it is possible to realise a tessellation of
a flat surface using squares or hexagons, but not with pentagons, in the same way in nature
there are crystals which display fourfold or sixfold symmetries, but not fivefold symmetry. In
other words, fivefold symmetry is incommensurate with Euclidean space. For this reason, the
regular icosahedron, which is the most iconic representative of the fivefold symmetry clusters
(from the vertices of a regular icosahedron it is possible to obtain a total of 12 pentagons!),
cannot give rise to periodic, and therefore crystalline, structures.

In a supersaturated fluid, due to the thermal noise that allows the system to explore phase
space, regular or defective icosahedra form continuously in the system. However, in order to
initiate the nucleation process and thus form a periodic structure, it is necessary for these local
clusters to break up and rearrange into a new spatial pattern. All of this obviously comes at a
cost, which is paid in terms of free energy. From this perspective, colloidal nucleation can be
seen as a competition between different symmetries [24–26].

The consequences of Frank’s studies have been enormous. The propensity of some systems
to form fivefold symmetry clusters in the disordered phase has been studied closely, as have the
relationships between this behaviour and the nucleation of the same systems [27–29].

At the same time, local environment classification algorithms have been developed that are
increasingly attentive to these structures. An example is provided by the Common Neighbour
Analysis (CNA) which is able to recognise an icosahedral arrangement around a particle [30].
However, the most decisive contribution in this class of algorithms is certainly represented by
the Topological Cluster Classification (TCC) [31]. Unlike other algorithms (such as CNA) TCC
does not aim to classify each particle in a system based on its local environment, instead it
detects a whole zoo of topological clusters without relying on a single reference particle. Among
the clusters recognised by TCC, many have five-membered rings, and for this reason they can
be called fivefold symmetry clusters (see Fig. 1.3). The possibility of following the behaviour
of these clusters during simulations or experiments where nucleation phenomena are present,
has contributed significantly to our understanding of the nucleation mechanism itself, in the
light of that competition between the above-mentioned symmetries.

An exemplary case of how the classification of fivefold symmetry clusters has allowed to
attribute to these clusters the role of nucleation inhibitors is represented by Ref. 29. In this
work, Taffs and Royall simulated hard-sphere systems with a bias that favoured or penalised
the formation of a specific fivefold symmetry cluster, namely the pentagonal bipyramid. It was
observed that by favouring the formation of this cluster, the nucleation rate of the system was
significantly lowered, making nucleation an increasingly rarer event. On the contrary, penalising
the formation of the same cluster and therefore lowering its concentration, the nucleation was
found to be more frequent compared to the unbiased system.
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Figure 1.3: Examples of clusters detected by the TCC. In the upper panel, we show three fourfold
symmetry clusters, where we highlight particles arranged in a four-membered ring pattern. In the
lower panel, we show examples of fivefold symmetry clusters, where we highlight particles arranged in
a five-membered ring pattern.

1.3.2 Inverse Design

Unlike what we have just discussed, where the focus was on the nucleation process, nucleation
is often not interesting in itself as a mechanism, but on the contrary one is more interested in
obtaining its products. As we have already discussed in Section 1.1, colloidal self-assembly –
the spontaneous organisation of matter into ordered arrangements – has been considered key to
producing the next generation of materials. It is in this context of research that inverse design
methods (IDMs), in which the optimal thermodynamic conditions and interaction potentials
are determined for a structure to form, were born.

Since its formulation, statistical mechanics has gained enormous success due to its ability
to predict the properties of a material from the knowledge of the interactions between the
constituent particles. In general, the assumption that the characteristics of a material are
intimately related to the properties of its elementary constituents has always guided materials
discovery in soft matter, through the process we call forward design: shape and interaction
potential of the system are pre-determined (or in other words, the starting building blocks are
characterised), and then the properties which result from this choice are investigated [32,33].

Nowadays, thanks to a continuous and exponential improvement of synthesis techniques, the
range of available building blocks to build new functional materials is so wide to be difficult to
process [34–38]. In other words, with the enlargement of the pool of possible building blocks,
also the time and resources required for a systematic investigation of the parameter space
have grown enormously. An approach that is therefore more natural and effective is based on
a different and opposite logic to that just described. IDMs have their starting point in the
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Figure 1.4: Sketch of the opposite logics that characterise the forward design methods from the
inverse design methods. In the first case, we start from the building blocks, use free-energy calculations
to find the stable structures that are obtained from the selected building blocks, and derive the physical
properties that derive from these structures. On the other hand, within the inverse design framework,
the starting point is the target properties that you want to obtain from your system. The optimal
interaction and thermodynamic parameters of the system in order to reach the target properties are
obtained through parameter optimisation techniques.

desired properties of the final material and, through a process of parameters optimisation, the
characteristics of the constituent building blocks which permit the self-assembly of the target
phase are obtained.

In the past few years, many different IDMs have emerged with the goal of finding the optimal
interaction and thermodynamic parameters, so that the building blocks can spontaneously self-
assemble into the target structure [39–42]. Among the cases we can find in literature, IDMs have
been successfully employed for finding regions of stability of crystal structures with exceptional
photonic properties [43], for predicting crystal and protein structures [44–46], and for tuning
the mechanical and transport properties of materials [47].

In order to set up an IDM to reverse engineer different phases, from crystals to liquid
crystals, and even quasicrystals, two separate ingredients are needed. First of all, it is crucial
to define an order parameter which is able to distinguish the phase we want to target from
the competing ones. Specifically, this order parameter will be translated into a fitness function
which indicates how “close" our system is with respect to the desired phase. Secondly, one has
to devise a mathematical scheme to update the design parameters based on the chosen fitness
function.

The latter requirement can be easily satisfied by choosing among several techniques, either
borrowed from classical optimisation algorithms (like Particle Swarm Optimisation or Covari-
ance Matrix Adaption Evolutionary Strategy) or inspired by statistical physics [48–51].

Conversely, the choice of an effective fitness function represents the real bottleneck for
any IDM to succeed. In the last decade, a plethora of order parameters has been used to
define fitness functions for all kinds of phases. For instance, free-energy or chemical-potential
differences with respect to the competing structures have been employed to reverse engineer 3D
crystal lattices starting from (non)spherical colloids [52,53]. Often, full knowledge of the target
crystal has been translated into a fitness function by computing the mean square displacements
of the particles with respect to their target lattice points [39], or through the radial distribution
function [54–56]. The sometimes unrealistic resulting potentials have been explicitly filtered
by Adorf et al. in order to obtain smooth and short-range interactions [57]. All these fitness
functions have different advantages and disadvantages and are usually tailored on specific classes
of materials. The search of a general fitness function which makes the IDM more robust and
versatile is still on the go.
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We stress here that we have just discussed a general overview of IDMs, touching only
those points which are relevant for the understanding of this thesis. The topic is much wider
though, and we invite the interested reader to consult Ref. 42 and 58 for a more comprehensive
perspective of the role of inverse methods for materials design.

1.4 Scope of the thesis
Nucleation in soft matter systems is an extremely broad topic, with many open, challenging,
and fascinating questions. With the current thesis, we aim to address some of these questions,
trying to understand its underlying mechanisms for several systems, and particularly paying
attention to the inhibitory factors, as well as the optimal conditions for nucleation to happen.

In Chapter 2, we study the nucleation of the Laves Phases (LPs) from a binary mixture of
nearly hard spheres. We focus on the role of the softness in the interparticle potential, and its
influence on the high-order spatial correlations of the particles, analysing several fivefold sym-
metry clusters. We then study the effect these clusters have on the dynamics and, ultimately,
on the interplay between crystallisation and the glass transition.

In Chapter 3 we focus on another binary crystal, and certainly the most bizarre one, namely
the AB13 crystal. Due to the icosahedral arrangement of the small spheres, a satisfying dis-
tinction between these particles and the fluid phase is extremely challenging. We resort to an
artificial neural network, which reaches unprecedented classification accuracy, and allows for
an extraordinary spatial resolution.

In Chapter 4 we turn our attention on hard-sphere nucleation, and on the polymorph selec-
tion mechanism which leads to a predominance of face-centred-cubic-like particles, with respect
to hexagonal-closed-packed-like ones. We use two different classification schemes, one that is
sensitive to symmetries shown by the local environment of each particle, and another which
detects topological clusters. The combination of the two techniques reveals the geometric mech-
anism which shows how fivefold symmetry clusters break up and attach to the crystal phase
during nucleation. The specific rearrangement of the particles ultimately sheds light on the
polymorph selection.

In Chapter 5 we keep our attention on the same system, and define an unsupervised learning
procedure to better classify the different polymorphs appearing during hard-sphere nucleation.
This is done including a huge amount of information about each particle’s local environment,
and using this information to find new interpretable order parameters.

In Chapter 6 we turn to IDMs, in order to study the optimal conditions for a body-centred-
crystal to form, using repulsive Yukawa particles. We achieve the goal in two separate ways,
testing two algorithms of different nature – the first based on the statistical fluctuations of the
system and the second derived from classical optimisation techniques.

Finally, in Chapter 7, building on the knowledge we acquire in Chapter 6, we develop a
new IDM, based on the use of a convolutional neural network (CNN) as an order parameter.
This IDM not only manages to reverse-engineer a large number of phases, including phases
notoriously difficult to classify, as for instance quasicrystals, but is equally applicable to two-
dimensional and three-dimensional cases, and enables us to find a quasicrystal not yet reported
in the literature for a given model.
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Tuning the glass transition:
Enhanced crystallisation of Laves
Phases in nearly hard spheres

In this Chapter we study the nucleation process of the colloidal Laves phase by means of
numerical simulations. Although Laves phases have been proven to be stable in a binary hard-
sphere system, they have never been observed to spontaneously crystallise in a binary fluid in
simulations nor in experiments of micron-sized hard spheres due to slow dynamics. Here we
demonstrate, using computer simulations, that softness in the interparticle potential suppresses
the degree of fivefold symmetry in the binary fluid phase and enhances crystallisation of Laves
phases in nearly hard spheres.

Based on: T. Dasgupta / G. M. Coli, and M. Dijkstra, Tuning the glass transition: Enhanced crystallisation
of Laves Phases in nearly hard spheres, ACS Nano, 14, 3957-3968 (2020)
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2.1 Introduction
Photonic crystals (PCs) are periodic dielectric structures that possess a photonic bandgap that
forbids the propagation of light at certain frequency ranges. The ability to control the flow of
light is attractive for numerous applications, ranging from lossless dielectric mirrors, bending
of light around sharp corners in optical waveguides, telecommunications, to optical transistors
in optical computers.

A highly promising route to fabricate photonic crystals is via self-assembly of optical wave-
length sized colloidal building blocks. PCs that display a wide omnidirectional photonic
bandgap at low refractive index contrasts are related to the family of either the diamond
or the pyrochlore structure. However, these low-coordinated crystals are notoriously difficult
to self-assemble from colloids with simple isotropic pair interactions.

One strategy to form open lattices is by employing long-range Coulomb interactions with a
range that exceeds multiple times the particle size [59,60]. The range of the screened Coulomb
interaction is set by the Debye screening length of the solvent, like water or other polar solvents,
which is why this approach will fail for particle sizes that are required for opening up a photonic
bandgap in the visible region.

To circumvent these problems associated with the self-assembly of low-coordinated crystal
structures, one can also employ a different route in which both the diamond and pyrochlore
structure are self-assembled in a single close-packed MgCu2 crystal structure from a binary
colloidal dispersion. By selectively removing one of the species, one can obtain either the
diamond (Mg, large spheres) or the pyrochlore (Cu, small spheres) structure. MgCu2 is one of
the three binary LS2 crystal structures (L = large species, S = small species), also known as
Laves phases (LPs), as first found in intermetallic compounds. The three structural prototypes
of the LPs are the hexagonal MgZn2, cubic MgCu2 and hexagonal MgNi2 structures, which can
be distinguished by the stacking of the large-sphere dimers in the crystal structures (Fig. 2.1).
Experimentally, LPs have been observed in binary nanoparticle suspensions [61, 62], and in
submicron-sized spheres interacting via soft repulsive potentials [63–68].
Although free-energy calculations in Monte Carlo (MC) simulations have demonstrated that
the LPs are thermodynamically stable for a binary hard-sphere (BHS) mixture with a diameter
ratio of 0.76 ≤ q = σS/σL ≤ 0.84 [9], LPs have never been observed to spontaneously crystallise
via nucleation in such a binary fluid mixture in computer simulations, but only through spinodal
decomposition, in conditions where the fluid phase is unstable with respect to the competing
crystal structure [69]. There are numerous possible reasons. First of all, the freezing transition
of the LPs in a BHS fluid is located at very high densities. Nucleation can thus only occur
when the system is sufficiently dense. At these high concentrations, nucleation is severely
hampered by slow dynamics. Binary mixtures with a diameter ratio of q ∼ 0.8, identical
to the range where the LPs are stable, are known to be excellent glass formers [70]. This,
in conjunction with the above factor makes the self-assembly of LPs in BHS mixtures an
extremely rare event. Furthermore, due to small free-energy differences, the three LPs are
strongly competing during the crystallisation process, leading to numerous stacking faults in
the final crystal structure [71–74].

The suppression of crystallisation due to glassy behaviour is often rationalised by the preva-
lence of icosahedral clusters of spheres whose short-range fivefold symmetry is incompatible
with the long-range translational order as exhibited by crystals [22]. The icosahedral order
arises when one maximises the density of a packing of 12 identical spheres in contact with a
central sphere of the same size. The densest packing is obtained by arranging the outer spheres
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Figure 2.1: Structure of the three types of Laves phases, showing the different stacking sequences of
the large-sphere dimers, marked as "aa", "bb" and "cc", when viewed along specific projection planes.
The stacking of the large-sphere dimers is (i) “...aa-bb-cc...” for MgCu2, (ii) “...aa-bb...” for MgZn2,
and (iii) “...aa-bb-cc-bb...” for MgNi2.

on the vertices of an icosahedron, rather than by using 13-sphere subunits of face-centred cubic
and hexagonal close-packed bulk crystals.

Here we demonstrate that spontaneous crystallisation of the LPs is strongly suppressed by
the presence of fivefold symmetry structures in a binary fluid of hard spheres. Interestingly,
we show that softness of the interaction potential reduces the degree of fivefold symmetry in
the binary fluid phase. We systematically study the role of softness in the interaction potential
on the structure, phase behaviour, and nucleation of the LPs. By carefully tuning the particle
softness, we observe for the first time spontaneous nucleation of the LPs in a nearly hard-sphere
system in computer simulations, thereby providing evidence that the LPs are stable in a binary
hard-sphere system. The key result of this study is that soft repulsive spheres can be mapped
onto a hard-sphere system in such a way that the structure and thermodynamics are invariant,
but that the dynamics and therefore the kinetic glass transition are strongly affected by higher-
body correlations, i.e. fivefold symmetry clusters, which can be tuned both in simulations and
in experiments by the softness of the particle interactions. In this way, softness suppresses
fivefold symmetry and enhances crystallisation of the LPs.

2.2 Freezing transition and fivefold symmetry

2.2.1 The model
We first study the effect of particle softness on the freezing transition of the LPs in a binary
fluid of soft repulsive spheres. To vary the softness of the pair interaction, we consider a binary
mixture of NL large (L) and NS small (S) spheres in a volume V interacting with a Weeks-
Chandler-Andersen (WCA) potential uαβ(rij) between species α = L, S and β = L, S [75]

uαβ (rij) =

4ε
[(

σαβ
rij

)12
−
(
σαβ
rij

)6
+ 1

4

]
, rij < 2 1

6σαβ

0, rij ≥ 2 1
6σαβ

(2.1)
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Figure 2.2: The WCA potential at T ∗ = kBT/ε = 0.2, 0.025 and 0.005 along with the pair po-
tentials of the experimental systems (dashed lines) for which the Laves phase has been reported in
literature, which are binary nanoparticle suspensions of Evers et al. [62] and Shevchenko et al. [61],
and polystyrene spheres of Hasaka et al. [64].

where rij = |ri−rj| denotes the centre-of-mass distance between particle i and j, ri the position
of particle i, and ε the interaction strength. For a BHS mixture, LPs are thermodynamically
stable for a diameter ratio q ∈ [0.76, 0.84] [9]. In this Chapter, we set the diameter ratio
q = σS/σL = 0.78, which is close to the value of a recent experimental study [76]. Here σα
denotes the diameter of species α and σαβ = (σα + σβ) /2. The softness of the potential can
be tuned by changing the reduced temperature T ∗ = kBT/ε with kB Boltzmann’s constant and
T the temperature. The WCA potential has been previously used to mimic the interactions
between hard spheres as it reduces to the hard-sphere potential in the limit of T ∗ → 0 [77–80].
In Fig. 2.2, we plot the WCA potential for T ∗ = 0.005, 0.025 and 0.2 along with the pair
potentials of some notable experimental systems for which the Laves phases have been reported
in literature, which are polystyrene latex spheres [64], and binary nanoparticle suspensions
[61, 62]. Fig. 2.2 shows that the WCA potential at T ∗ = 0.025 agrees well with that of the
nanoparticle systems of Evers et al. [62] and Shevchenko et al. [61], whereas the WCA potential
at T ∗ = 0.2 is slightly softer. The pair potential of the polystyrene latex spheres of Hasaka et
al. [64] is considerably softer and more long ranged than the WCA pair interactions used in the
present study.

2.2.2 Free-energy calculations

The equilibrium phase diagram of the WCA mixture is calculated by determining the free
energies of the binary fluid at composition xL = 1/3 and the three LPs - MgCu2, MgZn2, and
MgNi2. The Helmholtz free energy per particle f = F/N as a function of density ρ for all these
phases is calculated using thermodynamic integration of the equations of state

βf (ρ) = βf (ρ0) +
∫ ρ

ρ0
dρ′

βP (ρ′)
ρ′ 2 , (2.2)
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where ρ = N/V is the density with N the number of particles and V the volume of the system,
f (ρ0) denotes the Helmholtz free energy per particle for the reference density ρ0, β = 1/kBT is
the inverse temperature, and P is the pressure. Generally, the Helmholtz free energy can be split
in two contributions, the one of the ideal gas (βfid), and the excess part (βfex). The equations
of state for the binary fluid and the binary LPs are calculated using MC simulations in the NPT
ensemble. Isotropic volume change moves are used for the fluid phase and the cubic MgCu2
phase while anisotropic volume change moves are used for the hexagonal MgZn2 and MgNi2
phases. We use the ideal gas as a reference state for the binary fluid phase. For the LPs, we
employ the Frenkel-Ladd method to calculate the Helmholtz free energy at a reference density
ρ0 using MC simulations in the NV T ensemble. In the Frenkel-Ladd method, we start from
an Einstein crystal, where the particles are coupled via harmonic springs with a dimensionless
spring constant λ to the ideal positions of the crystal structure under consideration. We then
construct a reversible path from the crystal of interest to the Einstein crystal using the auxiliary
potential energy function

βUEin(rN ;λ) = βU(rN0 ) + (1− λ

λmax
)[βU(rN)− βU(rN0 )] + λ

N∑
i=1

(ri − r0,i)2

σ2
L

, (2.3)

where U(rN) = ∑N
i<j u(rij) is the potential energy of the system due to the interparticle inter-

actions, r0,i represents the ideal lattice position of particle i, and λ is the dimensionless spring
constant, which ranges from 0 to a value λmax. At λmax, the particles are so strongly tied to
their respective lattice sites, that the system reduces to an Einstein crystal of non-interacting
particles, whereas λ = 0 corresponds to the interacting system of interest for which we want
to compute the free energy [81, 82]. The Helmholtz free energy of the crystal βf(ρ) can be
approximated to that of the Einstein crystal using [83]:

βf(ρ) = βfEin(λmax)−
1
N

λmax∫
λ=0

dλ

〈
∂βUEin(rN ;λ)

∂λ

〉CM
λ

(2.4)

where 〈· · · 〉CMλ denotes that the ensemble average is sampled for a solid with a fixed centre of
mass using the Boltzmann factor exp[−βUEin(rN ;λ)], and fEin(λmax) denotes the free energy
per particle of an ideal Einstein crystal given by

βfEin(λmax) = βU(rN0 )
N

+ 3(N − 1)
2N ln

(
λmax
π

)
+ 1
N

ln
(
N

V
Λ3
)
− 3

2N ln(N), (2.5)

where Λ is the thermal wavelength. We note that it is convenient to rewrite the integral in
Eq. 2.4 as

1
N

ln(λmax+c)∫
ln c

(λ+ c)
〈

N∑
i=1

(ri − r0,i)2

σ2
L

− 1
λmax

[βU(rN)− βU(rN0 )]
〉CM
λ

d [ln (λ+ c)] , (2.6)

with
c = 1〈∑N

i=1 (ri − r0,i)2 /σ2
L − 1

λmax
[βU(rN)− βU(rN0 )]

〉CM
λ=0

. (2.7)

The integral in Eq. 2.6 is calculated numerically using a 40 or 60 point Gauss-Legendre quadra-
ture, yielding the LP free energy at the reference density. We calculate the free energy for
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the three LPs for varying system sizes. In Fig. 2.3 we plot the excess Helmoltz free energy
βFex/N + ln(N)/N as a function of 1/N in order to investigate the finite-size scaling. We
find that the MgCu2 and MgNi2 LPs are metastable with respect to the MgZn2 LP in the
thermodynamic limit, i.e. 1/N → 0 (see Fig. 2.3 and Table 2.1).

Figure 2.3: Finite-size scaling of the excess Helmholtz free energy Fex/NkBT +ln(N)/N versus 1/N
of the three Laves phases MgCu2, MgZn2, and MgNi2 of a binary mixture of WCA spheres with a
size ratio q = 0.78, at the melting density ρσ3

L = 1.4668 and temperature kBT/ε = 0.2. MgZn2 is the
Laves phase structure with the lowest free energy. The lines are linear fits to the data points.

Subsequently, by employing a common-tangent construction on the free-energy curves in the
βfρ – ρ plane, we obtain the fluid-LP coexistence for different temperatures T ∗, which is plotted
in Fig. 2.4 in the temperature kBT/ε - reduced density ρσ3

L plane, where ρ = (NL + NS)/V
denotes the density. We find that the freezing transition shifts to higher ρσ3

L with increasing
temperature or softness of the particle interaction.

The bulk densities of the fluid-LP coexistence for a BHS mixture with a diameter ratio
q = 0.78 correspond to packing fractions η(f)

BHS = 0.5356 and η(LP )
BHS = 0.5943 for the fluid and

LP, respectively. As the freezing transition of the LPs is located at relatively high densities,
crystallisation is likely suppressed by slow dynamics.

2.2.3 High-coordination clusters
In the case of monodisperse spheres, glassy dynamics and suppression of crystallisation are often
linked to the presence of icosahedral clusters with fivefold symmetry in the supersaturated fluid,
which is incompatible with the long-range periodic order of a crystal. To investigate whether or
not fivefold symmetry structures suppress crystallisation of the LPs in a binary fluid mixture
at composition xL = NL/N = 1/3, we perform MC simulations with N = NL + NS = 1200
particles (WCA spheres and BHS) in the NV T ensemble.

We then measure the number fraction of three significant representatives of the fivefold sym-
metry structures, i.e. the pentagonal bipyramids, defective icosahedra, and regular icosahedral
clusters as depicted in Fig. 2.5, using the topological cluster classification (TCC) [31] for vary-
ing softness of the interparticle potential. The algorithm is used regardless of the species of the
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Phase N neq × 103 nprod × 103 βFex/N ±
MgCu2 192 100 1000 7.25715 0.00051
MgCu2 648 100 1000 7.30665 0.00022
MgCu2 1536 100 1000 7.31999 0.00006
MgCu2 5184 100 1000 7.32760 0.00006
MgZn2 384 100 1000 7.28680 0.00027
MgZn2 1536 100 1000 7.31516 0.00002
MgZn2 1728 100 1000 7.31722 0.00006
MgZn2 5184 100 1000 7.32348 0.00004
MgNi2 384 100 1000 7.28900 0.00027
MgNi2 1536 100 1000 7.31713 0.00011
MgNi2 1728 100 1000 7.31902 0.00003
MgNi2 5184 100 1000 7.32545 0.00006

Table 2.1: The excess Helmholtz free energies per particle βFex/N for different system sizes for
a binary mixture of WCA particles with size ratio σS/σL = 0.78 at density ρσ3av = 0.953, and
dimensionless temperature kBT/ε = 0.2. neq and nprod are the number of Monte Carlo cycles in
the equilibration and production (sampling) runs, respectively, and the error estimate is given by the
standard deviation of three independent simulations.

Figure 2.4: Fluid-Laves Phase (LP) coexistence as denoted by the grey region of a binary mixture
of WCA spheres with a diameter ratio q = 0.78 at a fixed composition xL = NL/(NL +NS) = 1/3 in
the reduced temperature kBT/ε - reduced density ρσ3

L plane. In the limit of kBT/ε → 0, the system
reduces to a binary mixture of hard spheres.

particles forming the clusters and the bonds between particles are detected using a modified
Voronoi construction method. The free parameter fc, controlling the amount of asymmetry
that a four-membered ring can show before being identified as two three-membered rings, is
set to 0.82. The cluster concentrations are averaged over 100 independent snapshots in each
simulation.

The effect of the presence of these clusters on the kinetics and nucleation of monodisperse
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Figure 2.5: Number fraction of particles NCL/N belonging to three different fivefold symmetry
clusters as a function of the supersaturation β∆µ of the fluid phase of a binary mixture of WCA
spheres at varying temperatures corresponding to different degrees of particle softness, and for a
binary hard-sphere mixture. The three data sets correspond to pentagonal bipyramids (diamonds),
defective icosahedra (bullets) and icosahedra (squares). The error bars determined from 5 independent
simulation runs are smaller than the symbols. Sketches of these clusters are shown on the right. We
highlight (one of the) pentagons in the respective clusters.

hard-sphere systems has already been investigated [29,84]. In order to investigate the effect of
particle softness, we compare the number fraction of these clusters at fixed supersaturation β∆µ
for varying temperatures T ∗. The supersaturation β∆µ = βµfluid(P )− βµLP(P ) is defined as
the chemical potential difference between the supersaturated fluid and the stable LP at pressure
P , and is determined by employing the Gibbs-Duhem relation

∫ µ(P )
µ(Pcoex) dµ

′ =
∫ P
Pcoex

1
ρ(P ′)dP

′ with
Pcoex and µcoex the bulk pressure and chemical potential at the fluid-LP coexistence.

In Fig. 2.5, we plot the number fraction NCL/N of the three investigated clusters in a binary
fluid mixture at composition xL = 1/3 versus β∆µ for varying T ∗ corresponding to different
particle softness. We clearly see that the number fraction of fivefold symmetry clusters increases
with β∆µ, but more significantly, it decreases substantially with a small increase in particle
softness. Notably, the five-membered rings as observed in the clusters highlighted in Fig. 2.5
are also present in the three LP crystal structures. It is thus not immediately clear whether
these pentagons in the supersaturated fluid act as nucleation precursors or are responsible for
the slow dynamics.

We therefore analyse the five-membered rings further in the BHS fluid phase as well as in
the three ideal LPs, and classify them according to their large/small sphere composition and
topology. In particular, to ensure that the systems at high supersaturation (β∆µ = 0.53) are
well-equilibrated, we run the simulations for a very long time (> 107 MC cycles). We distin-
guish 8 topologies (indexed N ) in Fig. 2.6b, and measure the probability to observe a specific
topology P (N ) in the ideal LPs and the metastable BHS fluid at a high supersaturation β∆µ
' 0.53. We reason that if these five-membered rings are formed randomly in a fluid mixture,
P (N ) should follow a binomial distribution where the probability to observe a large sphere in
a pentagonal cluster is determined by the composition xL. We present the probability distri-
butions P (N ) for the LPs, the metastable fluid, and binomial distribution all at a composition
xL = 1/3 in Fig. 2.6a. We find that the probability distribution P (N ) of the pentagons in
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Figure 2.6: a) Probability distribution to observe a specific cluster topology P (N ) for the five-
membered rings for the three ideal LPs, a supersaturated binary hard-sphere (BHS) fluid (β∆µ '
0.533), and a binomial distribution, all at composition xL = 1/3. The 8 distinct cluster topologies are
shown in b) with their index label N . The error bars determined from 5 independent simulation runs
are smaller than the symbols.

the BHS fluid mixture (black line in Fig. 2.6a) and in the WCA mixtures follows reasonably
well the binomial distribution (pink line in Fig. 2.6a) for all topologies, demonstrating that
the pentagons are formed randomly in the fluid. Furthermore, the pentagons with a topology
N = 1 are predominant in the supersaturated BHS fluid phase, whereas pentagons with a
topology N = 3 and 4 are prevalent in the ideal LPs. We therefore conclude that the fivefold
symmetry clusters in the supersaturated fluid do not act as precursors for crystallisation, but
are responsible for the slowing down of the dynamics and the kinetic arrest.

For future studies, it may be interesting to investigate whether a slightly different compo-
sition of the mixture - namely one that increases the probability of finding pentagonal clusters
with a topology that is found in LPs - may enhance LP crystallisation [85]. More importantly,
we find that the presence of these fivefold symmetry clusters can be reduced significantly by
particle softness. This unexpected finding raises the immediate question whether or not crystal
nucleation of the LPs can be enhanced or suppressed by tuning the softness of the interparticle
potential.

2.3 Identification of Laves phases

In order to study the nucleation of the Laves phases, we require a criterion that distinguishes
crystalline clusters with the Laves phase (LP) symmetry from the binary fluid phase. To
this end, we first make a distinction between particles that have a solid-like environment with
an LP-like symmetry and a fluid-like environment. We use the local bond orientational order
parameters qαl,m(i) to determine the symmetry of the local environment of particle i with identity
α(i) = L or S [86]

qαl,m(i) = 1
Nb(i)

Nb(i)∑
j=1

Yl,m (θi,j, φi,j) , (2.8)
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where Nb(i) represents the number of all neighbours of particle i irrespective of its identity β(j)
(with β(j) = L or S), Yl,m(θ, φ) are the spherical harmonics for m ranging from [−l, l], and θi,j
and φi,j are the polar and azimuthal angles of the centre-of-mass distance vector rij = rj − ri
with ri the position of particle i. The neighbours of particle i with identity α(i) include all
particles j that lie within a radial distance rc of particle i, and we set rc equal to the distance
corresponding to the first minimum of the respective radial distribution function. Subsequently,
we calculate the dot product dαβl (i, j) for each particle pair i with identity α(i) and j with
identity β(j)

dl,αβ(i, j) =

l∑
m=−l

qαl,m(i)∗qβl,m(j)(∑l
m=−l |qαl,m(i)|2

)1/2 (∑l
m=−l |q

β
l,m(j)|2

)1/2 . (2.9)

We note that the dot product is symmetric in α and β, i.e., dl,αβ(i, j) = dl,βα(i, j). We choose
a symmetry index l = 6. Only in the case α = β = L, we employ the average bond order
parameter qαl,m(i) as introduced in Ref. 87

qLl,m(i) = 1
Nb(i) + 1

Nb(i)∑
k=0

ql,m(k), (2.10)

where Nb(i) denotes the number of neighbours of particle i (with identity α(i) = L) and
k = 0 represents the particle i itself. We use this average bond order parameter in the dot-
product expression of Eq. 2.9. The bond between particle i and j is classified as a solid bond
if the dot product dl,ij lies in between a lower and a upper threshold value denoted by d↓αβ
and d↑αβ. In order to discriminate crystalline clusters with the Laves phase symmetry from
the fluid phase, we use the following cut-off values for the three different species correlations:
For the (i) large-large correlation, we employ d6,LL > d↓LL = 0.88, (ii) small-small correlation
d↓SS = −0.25 < d6,SS < d↑SS = −0.02 and (iii) small-large d↓LS = −0.49 < d6,LS < d↑LS = −0.1
(see Fig. 2.7). Using these threshold values, we define a particle i with identity α as crystalline
if the number of solid bonds satisfies ξα(i) > ξαc where

ξα(i) =
Nb(i)∑
j=1

H(dl,αβ(i, j)− d↓αβ)−H(dl,αβ(i, j)− d↑αβ) (2.11)

and H is the Heaviside step function. We employ the threshold values ξLc = 10 and ξSc = 9
for the large and small species, respectively. The above criteria are sufficient to distinguish the
crystalline particles with LP-like symmetry from the surrounding fluid.

2.4 Nucleation behaviour
To investigate the effect of particle softness on the nucleation of the LPs, we determine the
nucleation barrier height, critical nucleus size, and nucleation rate for a binary mixture of
WCA spheres at composition xL = 1/3, size ratio q = 0.78, and varying temperature T ∗,
using the seeding approach [88, 89]. This technique involves inserting a crystalline seed of a
pre-determined shape and size into a metastable fluid. The configuration is subjected to a two-
step equilibration process in the NPT ensemble where (i) the interface between the crystalline
cluster and surrounding fluid is equilibrated by keeping the cluster fixed and then (ii) the
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Figure 2.7: Probability distribution functions of the dot-product values d6,LL, d6,LL, d6,SS , and
d6,LS for the large-large, averaged large-large, small-small and large-small correlations, respectively,
of the fluid phase and the three Laves phases of a binary mixture of WCA spheres with a size ratio
q = 0.78, temperature T ∗ = 0.2, and at bulk coexistence. The threshold values that we use in our LP
crystal criterion are denoted by the vertical dashed lines. We specify that the hump in the probability
distributions in a) and b) represents a very little number of bonds which are not considered to be
solid-like, even if they are. However, this does not mean that particles will be wrongly classified, as a
particle needs a certain number of solid bonds ξ in order to be classified as crystalline.

constraint on the cluster is relaxed and the system is equilibrated further. Subsequently, the
equilibrated configuration is simulated for a range of pressures in order to determine the critical
pressure βPcσ3

L at which the critical cluster size ofNCL particles stabilises. We note that seeding
simulations in the NV T ensemble have a strong dependence on system size due to a progressive
depletion of particles in the supersaturated fluid phase when a crystal nucleus starts to grow
and due to a drop in pressure when the fluid starts to crystallize. In order to avoid finite-size
effects, we perform simulations in the NPT ensemble, where the system is subject to a fixed
pressure [79]. An illustration is shown in Fig. 2.8, where a MgZn2 LP seed melts, stabilises and
grows out, as can be observed from the evolution of the size of the largest cluster NCL as a
function of time t/τMD, at βPσ3

L = 22.6 (red curve), 23 (green) and 25 (orange), respectively.
The two equilibration phases (i) and (ii) were performed using MC simulations in the NPT
ensemble involving isotropic volume scale moves in addition to the particle translation moves.
The final step of the seeding is carried out with MD simulations performed using HOOMD-blue
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Figure 2.8: (a) The largest cluster size NCL with LP symmetry as a function of time t/τMD using
the seeding approach in MD simulations of a binary mixture of WCA spheres in the NPT ensemble
at temperature T ∗ = 0.2, composition xL = 1/3 and a diameter ratio q = 0.78 for varying pressures
βPσ3

L with corresponding supersaturations β∆µ between brackets in order to estimate the critical
pressure βPcσ3

L. The initial seed size is 2205 particles of the MgZn2 Laves phase. The snapshots in
(b) show the melting of the seed at βPσ3

L = 22.6 (red box), growth of the seed at βPσ3
L = 25 (orange

box), and a stable seed at the critical pressure βPcσ3
L = 23 (green box). The large (small) spheres are

coloured blue (red). Fluid particles (particles with a disordered neighbourhood, see S.I.) are reduced
in size for visual clarity.

(Highly Optimised Object-oriented Many-particle Dynamics) [90, 91] in the NPT ensemble.
The temperature T and isotropic pressure P are kept constant via the Martyna-Tobias-Klein
(MTK) [92] integrator, with the thermostat and barostat coupling constants τT = 1.0 τMD and
τP = 1.0 τMD respectively, where τMD = σL

√
m/ε is the MD time unit. The time step is set

to ∆t = 0.004τMD and the simulations are run for 109τMD time steps. The simulation box is
cubic and periodic boundary conditions are applied in all directions.

In order to discriminate crystalline clusters with LP-like symmetry from the fluid phase, we
use the local bond-orientational order parameter described in Section 4.3.1.

The height of the Gibbs free-energy barrier ∆Gc for a critical nucleus size NCL can subse-
quently be obtained from Classical Nucleation Theory

β∆Gc(NCL) = NCL β∆µ/2. (2.12)

By using different critical cluster sizes NCL in the seeding approach, we obtain ∆Gc for varying
critical pressures, corresponding to different supersaturations β∆µ. We repeat these calcula-
tions for the three distinct LPs – MgZn2, MgCu2 and MgNi2 – as crystalline seeds in the seeding
approach. In Fig. 2.9(a), we present ∆Gc as a function of β∆µ for the three LPs and for tem-
peratures kBT/ε = 0.005, 0.025, 0.1 and 0.2, corresponding to varying particle softness. We
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observe that for all temperatures and the three LP types, ∆Gc goes to infinity upon approaching
bulk coexistence at β∆µ = 0, decreases with increasing supersaturation β∆µ, and approaches
zero at sufficiently high β∆µ. We find that all our ∆Gc data coincides within statistical error
bars for all the three LPs, which is to be expected as the free-energy differences between the
three bulk LPs are extremely small. More interestingly, we observe that the ∆Gc data collapses
onto a master curve for all four temperatures, yielding an intriguing thermodynamic invariance
for the different degrees of softness in the WCA interaction potential.

In addition, we calculate the nucleation rate J , which is determined by a thermodynamic
term related to the Gibbs free-energy barrier β∆Gc and a kinetic pre-factor

Jσ5
L

DL

=
√

β∆µ
6πNCL

f+σ2
L

DL

ρfσ
3
L exp(−β∆Gc), (2.13)

where f+ = 〈(N(t)−NCL)2〉/t is the attachment rate of particles to the critical cluster, t
the time, ρf (βPcσ3

L) is the critical density of the fluid at the critical pressure, and DL is the
long-time diffusion coefficient at the same ρf . The attachment rate f+ is measured from 10
independent simulation trajectories at the critical density ρf . We present the nucleation rates
as a function of β∆µ in Fig. 2.9b, and find that they collapse for all four temperatures and
three LPs onto a master curve - in a similar way as we observed for the nucleation barriers in
Fig. 2.9a. This finding can be rationalised by the fact that the nucleation rate is predominantly
determined by the thermodynamic term and simply echoes the thermodynamic invariance as
observed for β∆Gc for the three LPs and the four temperatures.

The data points on the free-energy barrier height and nucleation rate profiles are obtained
from simulations with five different seed sizes (Nseed): (i) Nseed = 96 (all three LPs) and total
system size N = 4140, (ii) Nseed = 192 (MgCu2), 384 (MgZn2, MgNi2) and N = 4160, (iii)
Nseed = 648 (MgCu2), 1080 (MgZn2), 720 (MgNi2) and N = 8100, (iv) Nseed = 1536 (MgCu2),
1728 (MgZn2), 1440 (MgNi2) and N = 12500, and (v) Nseed = 3000 (MgCu2), 2688 (MgZn2,
MgNi2) and N = 17000 particles, respectively. The critical pressures and attachment rates for
the different seed sizes were obtained from MD simulations in the NPT ensemble, where the
simulations were initialised with the MC-equilibrated configurations. The details of the MD
simulations are described above.

To summarise, we find by employing the seeding approach that both the nucleation barriers
and nucleation rates collapse onto a master curve for the different degrees of particle softness
and for the three different types of LPs. This finding is in contrast to a previous simulation
study that showed that the enhanced crystal nucleation rate for softer spheres is caused by a
lower nucleation barrier [93]. Moreover, we find not only that the nucleation barrier decreases
with supersaturation β∆µ, but more importantly this method also allows us to pinpoint the
supersaturation range, where the nucleation barrier of the LP becomes so low (less than several
kBT ) that spontaneous nucleation should occur.

2.5 Spontaneous nucleation
Guided by the seeding approach results, we perform MD simulations in the NPT ensemble (see
Section 3.4 for the simulations settings) using 1536 WCA spheres, and search for spontaneous
nucleation of the LP in a highly supersaturated binary fluid phase of soft repulsive spheres,
which has hitherto never been observed in previous simulation studies. In Fig. 2.10, we deter-
mine the size of the largest cluster NCL with LP symmetry as a function of time t/τMD for a
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Figure 2.9: a) The height of the Gibbs free-energy barrier β∆Gc and b) the nucleation rate Jσ5
L/DL

as a function of the chemical potential difference β∆µ between the fluid and the LP for a binary WCA
mixture for the three different LPs and for temperatures kBT/ε = 0.005, 0.025, 0.1, and 0.2.

range of pressures beyond coexistence, for kBT/ε = 0.2, where the coexistence pressure βPσ3
L

= 21.32. The results yield some interesting observations. At pressure βPσ3
L = 29, no crys-

tallisation is observed within our long simulation times. At a slightly higher pressure, βPσ3
L =

29.5 (β∆µ = 0.524), we observe that the system stays in a metastable fluid phase for a certain
induction time until a nucleation event occurs, i.e. a crystalline nucleus of the MgZn2 phase
forms that subsequently grows out and transforms into the MgCu2 phase as soon as the cluster
spans the whole simulation box. Upon increasing the pressure further βPσ3

L ≥ 30, the crystalli-
sation exhibits features of spinodal-like behaviour as the supersaturated fluid is unstable with
respect to the crystal phase and small crystalline nuclei appear immediately throughout the
system. We later refer to this spinodal-like behaviour as the instability line, which we define
as the lowest pressure βPσ3

L (or supersaturation β∆µ) where crystallisation sets in immedi-
ately as soon as the simulation is started. For still higher pressures, we again see immediate
crystallisation, but the clusters grow less, which we attribute to glassy behaviour.

More importantly, we also investigate whether or not the nucleation of the LP proceeds via
a classical pathway by analysing different particle configurations of a spontaneous nucleation
event in time. We observe in the initial stage of the simulation the formation and dissolution
of small crystalline nuclei in the binary fluid phase until a crystal nucleus of the LP exceeds its
critical size at an intermediate time and subsequently grows out. We thus show that crystal
nucleation of the LP follows a classical pathway. This finding is important as our approach for
estimating the Gibbs free-energy barrier heights and nucleation rates from seeding simulations
and classical nucleation theory is only valid in the case that nucleation proceeds via a classical
nucleation pathway. We hereby validate our method used in the previous section for measuring
the nucleation barriers and nucleation rates.

To study the effect of temperature or particle softness on the spontaneous nucleation of the
LP in a binary mixture of WCA spheres, we perform MD simulations in the NPT ensemble
for T ∗ = 0.1 and 0.025 and pressures higher than the coexistence pressures βPσ3

L = 20.03 for
T ∗ = 0.1, and βPσ3

L = 18.35 for T ∗ = 0.025, respectively. We find a similar pressure-dependence
(not shown) as described above for T ∗ = 0.2: absence of crystallisation at low pressures,
nucleation in a tiny intermediate pressure regime, and immediate spinodal-like crystallisation
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Figure 2.10: a) Size of the largest crystalline cluster NCL for a binary mixture of WCA spheres with
a diameter ratio q = 0.78 and temperature T ∗ = 0.2 as a function of time t/τMD for varying pressures
βPσ3

L with corresponding supersaturations β∆µ between brackets using MD simulations in the NPT
ensemble. b) Final configuration of a spontaneous nucleation event at βPσ3

L = 29.5 (β∆µ = 0.524),
initiated by the formation of a crystalline nucleus of the MgZn2 phase that subsequently grows out
and transforms into the MgCu2 phase as the cluster spans the simulation box.

at βPσ3
L ' 27.5 at T ∗ = 0.1, and βPσ3

L ' 25.5 for T ∗ = 0.025. Surprisingly, the values of the
thermodynamic driving force β∆µ corresponding to the pressures at which the fluid is unstable
are given by β∆µ = 0.53 ± 0.02 for all three temperatures, which yields again an intriguing
“universality" for the onset of spinodal-like behaviour.

2.6 Invariance with hard spheres
Perturbation and integral equation theories of simple liquids are based on the premise that the
structure of monatomic fluids at high densities resembles that of hard spheres [75,94,95]. Hence,
a system of hard spheres serves as a natural reference system for determining the properties of
more realistic systems. On this basis one expects invariance of the structure along the melting
and freezing line of simple fluids, and of thermodynamic properties such as the relative density
change upon freezing and melting [96,97].

Here, we observe an invariance of the Gibbs free-energy barriers, nucleation rates, and the
onset of spinodal-like behaviour as a function of β∆µ for binary WCA mixtures at different
temperatures. Inspired by this significant observation, we investigate whether other thermo-
dynamic quantities, and structural properties are invariant along the freezing line of our WCA
systems. Such an invariance is very interesting as it allows us to map the WCA mixture onto
a simple binary hard-sphere system. A BHS mixture with a fixed composition depends on
only one thermodynamic variable, the overall packing fraction, thereby yielding a simple one-
dimensional phase diagram with a singular freezing and melting transition. In addition, the
invariance may enable us to make predictions on the nucleation of the LP in a binary hard-
sphere mixture, and may shed light on why LP nucleation is observed in a binary mixture of
soft repulsive spheres and not in a system of hard spheres.
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Figure 2.11: a) The reduced pressure βPσ∗3L and b) the supersaturation β∆µ versus effective packing
fraction η∗ for a binary hard-sphere mixture and a binary WCA mixture for varying temperatures with
a diameter ratio q = 0.78 and composition xL = 1/3. The error bars in (a) and (b) are ≤ 0.1% and
invisible with respect to the line thickness. c) The phase diagram of this binary WCA mixture in the
reduced temperature kBT/ε - η∗ plane. The blue circles connected by a vertical dashed line denote the
instability line where the fluid is unstable with respect to freezing. The kinetic MCT glass transition
points are denoted by the red circles. For kBT/ε = 0.005, we find that kinetic glass transition precedes
the spinodal-like instability, similar to hard spheres. Therefore, the instability point is not marked
for this temperature as we do not observe crystallisation within reasonable timescales. d) The pair
correlation function gLL(r) for the large spheres as a function of the scaled radial distance r/σ∗L for
a binary mixture of WCA spheres at three different temperatures and for a BHS mixture using MC
simulations along the freezing line (β∆µ = 0) and along the instability line (β∆µ ' 0.53).

2.6.1 Thermodynamic invariance

To investigate the thermodynamic invariance of our WCA systems, we relate the thermody-
namic properties of the WCA systems to those of a reference hard-sphere system. For this
purpose, we scale the freezing number density of the binary WCA system for q = 0.78 at
temperature T ∗ to the binary hard-sphere freezing packing fraction η

(f)
BHS, which allows us to

determine an effective diameter σ∗L as well as an effective packing fraction η∗ at each tempera-
ture, in a similar way as in Refs. 78 and 98. For a BHS mixture with a diameter ratio q = 0.78,
the freezing packing fraction is η(f)

BHS = 0.5356. In Fig. 2.11c, we present the phase diagram
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in the temperature kBT/ε - effective packing fraction η∗ plane. As the freezing density for all
temperatures of the WCA system is scaled to the freezing density of hard spheres, the freezing
line becomes a vertical line in this representation. In addition, we find that the softness of the
interactions has only a minor effect on the melting line and the width of the coexistence region.
We find that the melting line shifts slightly to lower packing fractions and that the width of
the coexistence region decreases marginally upon increasing the softness of the potential, i.e.
increasing the reduced temperature T ∗. In addition, we also plot the effective packing fractions
corresponding to the state points where the fluid becomes unstable with respect to freezing,
i.e. β∆µ ' 0.53. This instability line lies well inside the two-phase coexistence region.

Subsequently, we use the same effective diameter σ∗L to scale the equations of state, βPσ∗3L
versus η∗ for our WCA systems at different temperatures, and compare them with the equation
of state for a BHS mixture with a diameter ratio q = 0.78. As seen in Fig. 2.11a, we find a
perfect collapse of the equations of state, demonstrating a thermodynamic invariance for the
equations of state for the WCA systems with temperature.

Finally, we plot the chemical potential difference β∆µ = βµfluid(P ) − βµLP(P ) between
the fluid and the Laves phase as a function of the effective packing fraction η∗ in Fig. 2.11b
for both the WCA systems at varying temperatures and the BHS mixture. The deviation of
the BHS system from the WCA systems at very high packing fractions η∗ ' 0.575 is due to
equilibration issues beyond the kinetic glass transition.
The collapse of the chemical potential difference for the WCA systems with different temper-
atures and the BHS system yields a fascinating “universality" in the thermodynamic driving
force for nucleation of the LPs, explaining our observation of the thermodynamic invariance of
the Gibbs free-energy barriers, nucleation rates, and the onset of spinodal-like behaviour as a
function of β∆µ for different temperatures as described above.

We note that relating the properties of a system with realistic pair interactions to those of
a hard-sphere system forms the basis of perturbation theories. The method that we use here
to determine the effective diameter of an equivalent hard-sphere system is the simplest one and
resembles the expression given by Barker and Henderson [99]. A more accurate prescription
is given by the Weeks-Chandler-Andersen (WCA) theory, which equates the free energy of the
reference system to that of a hard-sphere system at the same density and temperature, yielding
a density- and temperature-dependent effective diameter [100]. In lowest order, WCA theory
reduces to the Barker-Henderson expression, which is accurate for the WCA systems in the
temperature and density range considered here, i.e. T ∗ ≤ 0.2 and η∗ ≤ 0.575.

2.6.2 Structural invariance
In order to investigate whether the structure is also invariant along lines in the phase diagrams
identified by equal β∆µ values, we measure the pair correlation function gLL(r) for the large
spheres as a function of the radial distance expressed in terms of the effective diameter of the
large spheres for the WCA systems at the three different temperatures and for the BHS mixture
along the (i) freezing line β∆µ = 0 and (ii) instability line β∆µ ' 0.53, where we made sure
that the system remained in the fluid state during our sampling. The results are presented in
Fig. 2.11d. We find a good collapse of both sets of gLL(r)’s as the peak positions coincide,
showing a structural invariance of the two-body correlation functions along the freezing and
instability lines. Additionally, one observes that the height of the first peak of the gLL(r)
increases and the peak becomes narrower, and thus the gLL(r) becomes more hard-sphere-like
upon lowering the temperature.
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The collapse of the phase diagram, equations of state, and pair correlation functions demon-
strate an invariance of the binary WCA mixtures for varying temperatures along lines of equal
β∆µ, i.e. thermodynamic driving force, in the phase diagram. We thus find that a binary
mixture of soft repulsive spheres can be mapped onto a hard-sphere system in such a way that
the two-body structure and thermodynamics are invariant. However, this invariance does not
yet explain why nucleation of LPs is observed in the case of WCA systems and not for a binary
hard-sphere mixture.

2.7 Kinetic glass transition
To shed light on this counterintuitive result, we investigate the kinetics of the WCA systems as a
function of temperature. We already demonstrated above that the degree of fivefold symmetry
clusters can be tuned by the softness of the interaction potential. To investigate the effect of
fivefold clusters on the kinetics of the system further, we determine the kinetic glass transition
of the WCA systems at varying temperatures. To this end, we calculate the self-intermediate
scattering function Fs(q, t) = 1/NL

∑NL
j=1 〈exp {iq. [rj(0)− rj(t)]}〉 at the wave vector q = |q|

= 2π/σL as a function of time tD0/σ
2
L using MC simulations. The summation runs over all

large particles NL and the short-time diffusion coefficient of the large spheres D0 is computed
in separate MC simulations. We repeat this calculation for a binary mixture of WCA spheres
at temperatures T ∗ = 0.2, 0.1 and 0.025, and for a binary mixture of hard spheres, all at a
diameter ratio of q = 0.78, using MC simulations at varying effective packing fractions η∗.
Exemplarily, we plot Fs(q, t) for a WCA mixture at T ∗ = 0.2 in Fig. 2.12a for varying η∗. The
dynamics slows down dramatically with increasing η∗. We plot the structural relaxation time
τα in reduced units, defined by Fs(q, τα) = e−1, as a function of |η∗−η∗c |/η∗c in Fig. 2.12b for our
WCA systems at T ∗ = 0.025, 0.1, and 0.2 and the BHS mixture. At sufficiently high densities,
the structural relaxation time τα diverges algebraically, and we find a perfect collapse of all the
data. We employ the prediction from mode coupling theory (MCT) [101], τα ∼ |η∗ − η∗c |−γ,
to fit the structural relaxation times τα as a function of η∗ using η∗c and γ as fit parameters.
Here, η∗c denotes the critical packing fraction corresponding to the kinetic glass transition as
described by MCT. We note that η∗c serves solely as a proxy for a qualitative change in the
dynamics and mention that for η > η∗c the relaxation time diverges exponentially as shown for
both active and passive hard-sphere systems [102, 103]. The structural relaxation τα is well
described by an exponential divergence at a packing fraction corresponding to the ideal glass
transition as described by the Vogel-Fulcher-Tammann law. We also stress that the structural
relaxation times are determined here from simulations, thereby incorporating all many-body
correlations in the binary fluid phase in contrast to theoretical predictions from MCT that uses
the structure factor (two-body correlation) as input.

We list the critical MCT packing fractions η∗c with the corresponding supersaturation β∆µ,
critical exponents γ, and the effective diameters σ∗L in Table 2.2 for the WCA systems at
varying temperatures, i.e. softness of the interaction potential and the BHS mixture. The
statistical error on γ (< 3%) and η∗c (< 0.2%) are determined by the fit, and on τα (< 0.1%)
by the real part of the Fs(q, t)). We also plot the critical MCT packing fractions η∗c in Fig.
2.11c. We clearly observe that the critical MCT effective packing fraction η∗c and corresponding
supersaturation β∆µ decreases with decreasing softness of the interaction potential. In fact,
in the BHS case, the kinetic glass transition, as predicted by MCT, precedes the state point
where the fluid becomes unstable with respect to freezing.



Tuning the glass transition: Enhanced crystallisation of Laves Phases in
nearly hard spheres 31

Figure 2.12: a) The self-intermediate scattering function Fs(q, t) for the large spheres as a function
of time tD0/σ

2
L for a binary WCA mixture with a diameter ratio q = 0.78 at T ∗ = 0.2 for varying

effective packing fractions η∗ as obtained from MC simulations. b) The structural relaxation time τα
as a function of | η∗ − η∗c | /η∗c for a binary mixture of WCA spheres at T ∗ = 0.025, 0.1, and 0.2 and
a binary hard-sphere mixture. Note that in c) and d) the same colour coding is used as in b). c)
The self-intermediate scattering function Fs(q∗, t) for the large spheres for a binary mixture of WCA
spheres at three different temperatures and for a BHS mixture using MC simulations along the freezing
line and along the instability line. The four curves on the left correspond to β∆µ = 0, and the four
curves on the right correspond to β∆µ = 0.533. d) Exponential relation between the relaxation time
τα at three different levels of supercooling (β∆µ = 0, β∆µ = 0.2 and β∆µ ' 0.53) and the number
fraction of particles NCL/N belonging to a defective icosahedron.

In order to make a further comparison between the investigated systems, we compare
Fs(q∗, t) at the wave vector q∗ = |q∗| = 2π/σ∗L, for state points along the freezing line β∆µ = 0
and along the instability line β∆µ ' 0.53 for a BHS system and WCA systems at T ∗ = 0.025,
0.1 and 0.2, in Fig. 2.12c. Not only do we observe a different dynamical behaviour for varying
softness, but we also note a strong correlation between the relaxation times τα and the number
fraction of fivefold symmetry defective icosahedron clusters. We display this correlation in Fig.
2.12d, where we find an exponential relation between the structural relaxation times in the
fluid phase for varying particle softness and different supersaturations β∆µ, and the fraction
of particles belonging to a defective icosahedron. Such a correlation between the defective
icosahedron and the structural relaxation times was also found for weakly polydisperse hard
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System η∗c β∆µ γ σ∗L
kBT/ε = 0.2 0.5837 0.673 1.3545 1.0583
kBT/ε = 0.1 0.5816 0.620 1.3984 1.0764
kBT/ε = 0.025 0.5792 0.604 1.3993 1.1009

BHS 0.5681 0.452 1.3140 1.0000

Table 2.2: The critical MCT effective packing fraction η∗c corresponding to the kinetic glass transition
for a binary mixture of WCA spheres at varying temperatures and for a BHS mixture, all at a diameter
ratio q = 0.78, the corresponding supersaturation level β∆µ, the critical exponents γ of the MCT fits,
and the effective large-sphere diameters σ∗L.

spheres [104].
To summarise, we find that a BHS mixture gets kinetically arrested at a lower packing

fraction than the packing fraction where we expect to find spontaneous nucleation of the LP.
However, for a slightly softer interaction potential, a binary WCA mixture at T ∗ = 0.025, we
find the reverse situation, and hence spontaneous nucleation is observed at a packing fraction
that is lower than that of the kinetic glass transition. This finding may explain why LP
nucleation is never observed in a binary mixture of hard spheres, and is observed here for a
binary WCA system.

2.8 Conclusions
In 2007, a novel self-assembly route towards a photonic bandgap material was proposed in which
the diamond and pyrochlore structure are self-assembled from a binary mixture of colloidal hard
spheres into a closely packed MgCu2 Laves phase [9]. Despite numerous efforts, spontaneous
nucleation of the LPs has never been observed in simulations of BHS mixtures or in experiments
on micron-sized colloidal hard spheres, casting doubts on the thermodynamic stability of these
crystal structures in binary hard spheres. Recent MC simulations have shown, however, that
by introducing size polydispersity, either in a static or dynamic way, and by using unphysical
particle swap moves, LPs may be nucleated from a dense hard-sphere fluid [105,106].

Alternatively, to alleviate problems with the degeneracy of the three competing LPs and
with the metastability of the MgCu2 with respect to the MgZn2 phase, one may resort to
another self-assembly route in which the MgCu2 phase, stable in the present system, is formed
from a binary mixture of colloidal spheres and preassembled tetrahedral clusters of spheres as
shown both in simulations [107] and experiments using DNA-mediated interactions [108].

To better understand why the nucleation of LP is severely hampered in a binary fluid of
hard spheres, we investigated the degree of fivefold symmetry in the binary fluid phase as the
presence of fivefold symmetry structures may suppress nucleation. In order to study the effect
of softness of the interaction potential, we measured the number fraction of three significant
representatives of the fivefold symmetry structures in a binary fluid of WCA spheres at varying
temperatures kBT/ε thereby altering the softness of the interaction potential. In the limit of
kBT/ε→ 0, this system reduces to the binary hard-sphere system. Surprisingly, we found that
particle softness significantly reduces the degree of fivefold symmetry in the binary fluid phase.

To investigate the repercussions of this finding on LP nucleation, we subsequently performed
simulations with a crystalline seed to measure the nucleation barrier and nucleation rate for the
three LP types and for varying temperatures, i.e. degrees of particle softness. These results
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enabled us to study, for the first time, spontaneous nucleation of the LPs in simulations of
nearly hard spheres. We thus find that the seeding approach is versatile and robust [88, 89]
– it not only enables one to determine the nucleation barrier and nucleation rate, but also
locate the regime in the phase diagram where spontaneous nucleation may occur and provides
information on how a crystal nucleus grows and melts.

Our observation of spontaneous nucleation of the LP in a system of soft spheres is important
and intriguing for two reasons. On the one hand, our simulations provide evidence that the
LP is stable in the phase diagram of such a binary mixture, as predicted theoretically more
than a decade ago [9]. On the other hand, it immediately begs the question why LP nucleation
has never been seen in simulations of BHS mixtures or in experiments on micron-sized col-
loidal hard spheres despite numerous attempts by many research groups, whereas it nucleates
spontaneously with a tiny degree of particle softness.

To address this question, we studied the role of softness in the interaction potential on the
structure, phase behaviour, and dynamics of the LPs, and found that a system of soft repulsive
spheres can be mapped onto a binary hard-sphere system in such a way that the structure and
thermodynamics are invariant in reduced units for varying softness of the interaction potential.
However, the invariance of the nucleation barrier and nucleation rate as a function of super-
saturation for varying softness of the potential seems to be at odds with the observation of LP
nucleation in WCA systems for T ∗ ≥ 0.025 and the absence of it in binary hard spheres.

In order to shed light on this counterintuitive result, we determined the kinetic glass transi-
tion by fitting the structural relaxation times as obtained from the self-intermediate scattering
functions with an MCT fit for the various WCA systems. Surprisingly, we found that the pack-
ing fraction corresponding to the kinetic glass transition strongly depends on the softness of
the particle interactions, which in turn affects the presence of fivefold symmetry clusters in the
supersaturated fluid phase. It will be interesting to investigate in future work whether or not
there is a connection with previous studies that show that the fragility of a glass can be tuned
by particle softness [109–112]. We thus find that crystallisation can be enhanced by tuning the
softness of the particle interactions, either by charge, ligands, or a stabiliser, in simulations or
experiments. This finding is indeed consistent with the experimental observations of the LPs as
they all seem to involve particles interacting with (slightly) soft repulsive interactions [61–68].
Moreover, introducing a small degree of softness in the particle interactions can be exploited in
a wealth of other crystallisation studies. For instance, there are still many open questions on
how and why binary crystal phases nucleate. A systematic study of binary nucleation has been
hampered so far by either slow dynamics or by finding the right regime in the phase diagram
where nucleation may occur.

Finally, we note that the structure as characterised by the two-body correlation functions as
well as the thermodynamics which is predominantly determined by also two-body correlations
is invariant in reduced units for varying softness of the pair potential. However, the structural
relaxation time and the kinetics depend strongly on the presence of fivefold structures, and
thus on higher-body correlations. We hope that this finding will inspire the development of
new theories for predicting the kinetic glass transition that take into account higher-body
correlations.
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An artificial neural network reveals
the nucleation mechanism of a binary

colloidal AB13 crystal

In this Chapter we investigate binary nucleation of the AB13 crystal from a binary fluid phase
of nearly-hard spheres. We calculate the nucleation barrier and nucleation rate as a function of
supersaturation and draw a comparison with nucleation of single component and other binary
crystals. To follow the nucleation process, we employ a neural network to identify the AB13
phase from the binary fluid phase and the competing fcc crystal with single-particle resolution
and significant accuracy in the case of bulk phases. We show that AB13 crystal nucleation
proceeds via a co-assembly process where large spheres and icosahedral small-sphere clusters
simultaneously attach to the nucleus. Our results lend strong support for a classical pathway
that is well-described by classical nucleation theory, even though the binary fluid phase is highly
structured and exhibit local regions of high bond orientational order.

Based on: G. M. Coli and M. Dijkstra, An artificial neural network reveals the nucleation mechanism of a
binary colloidal AB13 crystal, ACS Nano, 15 (3), 4335-4346 (2021)
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3.1 Introduction
Understanding crystallisation is important in many research fields such as protein crystallisation
for resolving the molecular structure, drugs design in the pharmaceutical industry, ice crystal
formation in clouds for weather forecasts, and crystallisation of colloidal and nanoparticle sus-
pensions with application perspectives in catalysis, opto-electronics, and plasmonics. Hence,
it is not surprising that over the past decades many experimental and simulation studies have
been devoted to studying crystal nucleation in a fluid of hard spheres, which is indisputably
one of the simplest possible model systems to describe colloidal and nanoparticle systems, and
serves as a reference for systems with more complicated interactions, e.g. depletion interactions,
or electrostatic interactions.

Nucleation describes the process, in which a crystal nucleus spontaneously forms due to a
statistical fluctuation in the metastable fluid phase. Despite the significant amount of work
spent on understanding crystal nucleation in hard spheres, the mechanism by which a hard-
sphere fluid transforms into a crystal phase remains to be settled. Several scenarios such as
a classical one-step crystallisation process, a non-classical two-step crystallisation mechanism
with precursors consisting of local regions with either high density, high bond-orientational
order or competing orders, or a spinodal-like process have been proposed, but all of these
crystallisation mechanisms are still heavily debated [77,113–121].

To enhance the structural diversity and functional composition of the self-assembled struc-
tures, one may resort to binary mixtures of large and small colloidal hard spheres with di-
ameters σL and σS, respectively. Although the number of distinct binary crystal structures
is relatively small, we wish to remark here that the structural diversity can be enhanced sig-
nificantly by taking into account varying interaction potentials, e.g. suspensions consisting of
two types of particles with opposite charges can form a dazzling variety of binary superlattice
structures [122, 123]. In this Chapter, we focus on binary mixtures of particles interacting
with hard-sphere like potentials as they serve as a reference for a wider class of soft repulsive
interaction potentials, mimicking the interactions of many nanoparticle systems.

The phase behaviour of binary hard-sphere mixtures is well studied by now, and display
a wide variety of behaviours ranging from a spindle-type to azeotropic and eutectic phase
diagram, wide coexistence regions between phases with different compositions, pure single-
component crystals, substitutionally disordered crystalline phases, interstitial solid solutions,
and various binary crystal structures with different stoichiometries xL = NL/(NL + NS), with
NL (NS) denoting the number of large (small) particles [124]. Depending on the diameter
ratio q = σS/σL, binary hard-sphere systems exhibit entropically-stabilised binary superlattice
structures analogous to their atomic counterparts NaCl (0.2 ≤ q ≤ 0.42), AlB2 (0.42 ≤ q ≤
0.59), NaZn13 (0.48 ≤ q ≤ 0.62), and the Laves phases (0.74 ≤ q ≤ 0.84) [124].

The most intriguing structure of the above-mentioned binary crystals is without any doubt
the NaZn13, also termed the icosahedral AB13 structure in order to distinguish it from the
cuboctahedral AB13 structure [125], which has been found to be metastable due to a less
efficient packing of the small spheres in the case of binary hard-sphere mixtures [126,127]. The
stability of the AB13 structure has gained much attention because of its bizarre lattice. The
large spheres are remarkably distant from each other as shown in Fig. 3.1, and are arranged on
a simple cubic lattice, which is an unusual crystal structure in the case of plain hard spheres.
Furthermore, each unit cell of this simple cubic lattice of large spheres contains an icosahedral
cluster of 13 small spheres, which are all rotated by 90◦ with respect to their neighbouring
icosahedral clusters. Hence, the full unit cell of an icosahedral AB13 structure consists of 8 unit
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cells of this simple cubic lattice of large spheres with 8 icosahedral clusters of 13 small spheres
in their centres, resulting in 112 particles in total.

The colloidal analog of the NaZn13 was for the first time observed by Sanders et al. in natural
gem opals consisting of two sizes of silica spheres in 1987 [12,128]. The same AB13 structure was
later observed in systems of charged-stabilised colloids or PMMA particles [63,129–132], and in
various nanoparticle systems, e.g. mixtures of semiconductor, metaloxide, magnetic, silica, and
polymer-grafted nanoparticles, as well as polyoxometalate clusters [61,62,123,125,133–142].

In contrast to the considerable amount of work that has been devoted to studying crys-
tal nucleation in single-component hard-sphere fluids, only a few studies have been focused on
crystal nucleation in binary mixtures. Crystallisation in fluid mixtures is generally much harder
than in single-component systems. Spindle-, azeotropic-, eutectic-like phase transitions in bi-
nary systems usually involve fractionation as the composition of the solid phase deviates from
that of the supersaturated phase. Fractionation is known to slow down the rate of crystalli-
sation [70, 143]. Additionally, the surface tension of the solid-fluid interface will increase when
the compositions of the fluid and solid phase deviate substantially, leading to higher nucleation
barriers and lower nucleation rates [144, 145]. Moreover, nucleation of a binary (compound)
crystal is believed to be orders of magnitude slower than that of pure crystals or substitutionally
disordered crystalline phases due to a loss of mixing entropy, making binary crystal nucleation
an extremely rare event [143]. This is one of the reasons that the number of simulation and
experimental nucleation studies on binary colloidal crystals is very limited.

Yet, the few simulation studies on binary crystal nucleation revealed several interesting
observations. For instance, simulations on homogeneous nucleation of a binary AB2 crystal in
a mixture of hard spheres revealed that in the case of multiple competing crystal structures,
the phase that nucleates is the one whose composition is closest to that of the fluid phase
even when it is metastable [143, 145]. In addition, it was found by simulations that kinetic
barriers also play an important role in determining which crystal phase nucleates. In the
case of oppositely charged colloids it was found that the disordered face-centred-cubic (fcc)
phase that nucleates is metastable and has a higher free-energy barrier for nucleation than
the thermodynamically stable binary CsCl crystal [146]. In this case the disordered fcc phase
was favoured by non-equilibrium nucleation. These results greatly challenge the commonly
held assumption that subcritical clusters are always in quasi-equilibrium with the fluid phase
[147]. Another simulation study showed that homogeneous nucleation of an interstitial solid
solution in a binary mixture of hard spheres is driven by the nucleation of large spheres into
an fcc crystal while maintaining chemical equilibrium of the small spheres throughout the
system. Additionally, as shown in Chapter 2, nucleation of Laves phases is severely suppressed
by the presence of icosahedral clusters in a binary hard-sphere mixture, but softness of the
interaction potential reduces the degree of fivefold symmetry in the binary fluid and enhances
crystallisation [148]. Finally, we also mention for completeness that spontaneous spinodal-
like crystallisation of structures isostructural to AlB2, NaZn13, and the Laves phases has been
observed in simulations on highly supersaturated binary hard-sphere fluids with and without
unphysical moves that swap the identities of large and small spheres [149].

All nucleation studies share a common challenge: being able to recognise different phases
starting from the raw particle coordinates of the system. In particular, one requires a criterion
that is able to distinguish on a single-particle level particles belonging to the growing phase
from those of the metastable parent phase. Most crystal nucleation studies are based on de-
scribing the local environment of each particle in terms of the so-called bond orientational order
parameters, i.e. rotational invariant combinations of the spherical harmonics of degree l, as
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Figure 3.1: The icosahedral-AB13 structure consists of a simple cubic lattice of large (A) spheres
and icosahedral clusters of 13 small (B) spheres denoted in blue and red, respectively. The icosahedral
clusters of 13 small spheres are rotated by 90◦ with respect to their neighbouring clusters as indicated
by the differently coloured circles. The zoom-in displays the icosahedral cluster formed by the small
spheres inside a simple cubic subunit cell of large spheres.

introduced by Steinhardt et al. in 1983 [86]. Specifically, the fourfold and sixfold bond order
parameters, q4 and q6, suffice to distinguish the crystalline particles from the fluid-like particles
as most crystals exhibit either cubic and/or hexagonal symmetry. In the case of binary crys-
tals, the local environment of each particle of each species can deviate substantially from cubic
and hexagonal symmetry, and other symmetries should be taken into account in identifying
the different crystal phases. Here, we describe the local environment of a particle by using a
full expansion in spherical harmonics, and we train an artificial neural network to identify the
different phases on a single-particle level using a set of bond order parameters up to degree
l = 12 as input. We demonstrate the effectiveness of this method by studying nucleation of the
AB13 crystal structure in binary mixtures of nearly hard spheres using simulations. We show
that standard techniques fail in identifying the different phases and that machine learning is
useful in achieving this goal.

Employing the trained neural network as an order parameter, we investigate how an AB13
crystal nucleates and grows and we shed light on the formation mechanism during the early
stages. In addition, we study how icosahedral clusters of small spheres arrange themselves
inside this simple cubic lattice and whether the growth of the binary nucleus proceeds via the
attachment of individual small spheres, small clusters, or via perfect or defective icosahedral
clusters of small spheres. Specifically, the role of the icosahedral clusters on the AB13 nucleation
is intriguing as the presence of fivefold clusters is often attributed to glassy dynamics and
suppression of crystallisation [22]. However, in Ref. 126, it was conjectured that the abundance
of icosahedral clusters in both the fluid and AB13 crystal and thus the structural similarity of
these two phases may result in an ultra-low surface tension and hence a low nucleation barrier
and high nucleation rate. To investigate this, we determine the nucleation barrier height and the
nucleation rate using the seeding approach and we compare our results with crystal nucleation
in pure hard spheres and with nucleation of the Laves phases. Finally, we analyse the kinetic
pathways of the spontaneous crystallisation events of the AB13 phase in binary mixtures of
hard spheres using brute force Molecular Dynamics (MD) simulations.
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Figure 3.2: Pair correlation functions gij(r/σL) of a) the AB13 crystal phase and b) the binary fluid
phase at composition xL = 1/14 with i, j ∈ {L, S} denoting the large (L) and small (S) species,
for a mixture of WCA spheres at kBT/ε = 0.025 to mimic hard spheres and at coexistence pressure
βPcoexσ

3
L = 45.35. The large-large pair correlation function gLL(r) of the AB13 shows that the large

spheres are unusually distant from each other in comparison with the binary fluid phase. The small-
small pair correlation function gSS(r) of the AB13 phase demonstrates that the small spheres exhibit
fluid-like behaviour, making it difficult to distinguish the binary fluid phase and the AB13 crystal on
the basis of the small spheres.

3.2 The Model
We consider a binary mixture of NL large (L) hard spheres with a diameter σL and NS small
(S) hard spheres with a diameter σS. For a binary hard-sphere (BHS) mixture, the AB13 phase
is thermodynamically stable for a diameter ratio q = σS/σL ∈ [0.54, 0.61] [124]. In this work,
we set q = 0.55. The particles interact via a Weeks-Chandler-Andersen (WCA) pair potential,
which can straightforwardly be employed in Molecular Dynamics (MD) simulations and which
reduces to the hard-sphere potential in the limit that the temperature T → 0. The WCA
potential uαβ(rij) between species α, β ∈ {L, S} reads [75]

uαβ (rij) =

4ε
[(

σαβ
rij

)12
−
(
σαβ
rij

)6
+ 1

4

]
, rij < 2 1

6σαβ

0, rij ≥ 2 1
6σαβ

(3.1)

with rij = |ri−rj| the centre-of-mass distance between particle i and j, ri the position of particle
i, ε the interaction strength, and σαβ = (σα + σβ) /2. The steepness of the repulsion between
the particles can be controlled by tuning the temperature kBT/ε. We set kBT/ε = 0.025, which
has been used extensively in previous simulation studies to mimic hard spheres [77–80].

3.2.1 Free-energy calculations
Using free-energy calculations in Monte Carlo (MC) simulations, we determine phase coexis-
tence between the AB13 crystal and the binary fluid phase with the same composition as that of
the AB13 crystal, by computing the Helmholtz free energy per particle f = F/N as a function
of density ρ = N/V for both phases with N the number of particles and V the volume of the
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system. We calculate f using thermodynamic integration of the equations of state

βf (ρ) = βf (ρ0) +
∫ ρ

ρ0
dρ′

βP (ρ′)
ρ′ 2 , (3.2)

where f (ρ0) denotes the Helmholtz free energy per particle for a reference density ρ0, β = 1/kBT
is the inverse temperature, and P is the pressure. We use the ideal gas as a reference state
for the binary fluid phase, and we employ the Frenkel-Ladd method to calculate the Helmholtz
free energy at a reference density ρ0 using MC simulations in the NV T ensemble [83].

Subsequently, we calculate for both the AB13 crystal and the binary fluid phase, the chemical
potential βµ at pressure P :

βµ = βG

N
= βf + βP

ρ
, (3.3)

with βG the dimensionless Gibbs free energy. The chemical potential difference or supersat-
uration is obtained via β∆µ = βµfluid − βµAB13 , whereas two-phase coexistence between the
AB13 and fluid phase is determined by imposing β∆µ = 0, resulting in

β∆f
∆(1/ρ) = −βP, (3.4)

which is equivalent to the common tangent construction on the free-energy curves in the βf−1/ρ
plane with ∆f = ffluid− fAB13 and ∆(1/ρ) = (1/ρfluid)− (1/ρAB13). The pressure at which the
crystal and fluid are at coexistence reads βPcoexσ3

L = 45.35. To study nucleation of the AB13
crystal, we perform simulations at pressures P > Pcoex, which determine the regime where the
fluid phase is metastable with respect to the crystal phase.

3.3 Local structure detection

3.3.1 Bond Order Parameters
In order to follow the nucleation process of the AB13 phase, we need to find a way to detect
an embryo of the stable AB13 crystal structure in the supersaturated binary fluid phase with
single-particle resolution. In many simulation studies, local bond orientational order parameters
have been used to study crystal nucleation [86, 150, 151]. To calculate these local bond order
parameters, we first have to define the local environment of particle i by determining a list
of neighbours using, for instance, a distance criterion based on the first minimum of the pair
correlation function or by employing a Voronoi construction. We then define the complex vector
qlm(i) for each particle i

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Ylm(θ(rij), φ(rij)), (3.5)

where Nb(i) is the number of neighbours of particle i, Ylm(θ(rij), φ(rij)) denotes the spherical
harmonics,m ∈ [−l, l], θ(rij) and φ(rij) are the polar and azimuthal angles of the distance vector
rij = rj − ri, and ri denotes the position of particle i. Subsequently, we define rotationally
invariant quadratic and cubic order parameters as

ql(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|qlm(i)|2 (3.6)
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and

wl(i) =

∑
m1+m2+m3

(
l l l
m1 m2 m3

)
qlm1(i)qlm2(i)qlm3(i)

(
l∑

m=−l
|qlm(i)|)3/2

. (3.7)

Additionally, we also use the averaged bond-orientational order parameters. The averaged
q̄lm(i) is defined as

q̄lm(i) = 1
Ñb(i)

Ñb(i)∑
j=1

qlm(j), (3.8)

where Ñb(i) is the number of neighbours including particle i itself. The rotationally invariant
quadratic and cubic averaged bond order parameters are defined as

q̄l(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|q̄lm(i)|2 (3.9)

and

w̄l(i) =

∑
m1+m2+m3

(
l l l
m1 m2 m3

)
q̄lm1(i)q̄lm2(i)q̄lm3(i)

(
l∑

m=−l
|q̄lm(i)|)3/2

. (3.10)

Due to the cubic or hexagonal symmetry of most crystals, the fourfold and sixfold bond order
parameters, q4 and q6, have been extensively employed in literature to study crystal nucleation.
We first study whether the fourfold and sixfold bond order parameters can be used to distinguish
the AB13 crystal from the binary fluid phase with a composition xL = NL/(NL + NS) = 1/14
and from the pure fcc phase. For this purpose, we use the averaged bond order parameters q̄l,
thereby taking into account also the second shell of neighbours of a particle [87]. We perform
MC simulations in the isobaric-isothermal ensemble, i.e. we fix the pressure P , the temperature
T , and the number of particles N = NL+NS. We carry out bulk simulations of the AB13 crystal
and the binary fluid at coexistence pressure βPcoexσ3

L = 45.35, and of the pure fcc crystal at
βPcoexσ

3 = 8.87 corresponding to the pressure at bulk coexistence with the single-component
fluid phase.

In Fig. 3.2, we plot the pair correlation functions gij(r) of the AB13 crystal and the binary
fluid phase with i, j ∈ {L, S} denoting the large (L) and small (S) species. We first observe
from the small-small pair correlation function gSS(r) of the AB13 phase that the small spheres
exhibit fluid-like behaviour even though they are in a solid state. The structural similarity of
the small spheres in the binary fluid and the AB13 phase makes it difficult to distinguish the
two phases on the basis of the local symmetry of the small spheres. Additionally, we observe
that the main peak of the large-large pair correlation function gLL(r) of the AB13 crystal is
at an unusually large distance in comparison with that of the binary fluid phase. In order to
nucleate the AB13 phase in the binary fluid phase, the large spheres have to be pushed away
from each other to much larger distances to make room for the icosahedral clusters of small
spheres. In addition, the huge difference in the position of the main peak of the gLL(r) of the
binary fluid and the AB13 phase complicates the identification of neighbouring particles on the
basis of a simple cut-off distance.
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Figure 3.3: Scatter plot in the averaged bond order parameter q̄4 - q̄6 plane for the four local particle
environments we wish to distinguish: large species (light blue) and small species (red) of the AB13
phase, binary fluid phase (light purple) and the pure fcc phase (dark blue). (a) Averaged bond order
parameters calculated using the solid-angle based nearest-neighbour criterion irrespective of particle
species, showing significant overlap of 3 of the 4 local structures thereby making the classification
impossible. (b) Averaged bond order parameters calculated by taking into account only the neighbours
belonging to the same species. The distribution of the small species of the AB13 phase still overlaps
with that of the binary fluid phase.

To circumvent this problem, we use the parameter-free solid-angle based nearest-neighbour
(SANN) algorithm to identify the neighbours of each particle [152]. Using the SANN algorithm,
we measure the fourfold and sixfold averaged bond order parameters, q̄4 and q̄6, and we show
scatter plots in the q̄4 − q̄6 plane for the large and small species of the AB13 phase, the binary
fluid phase, and the fcc phase in Fig. 3.3. We observe from Fig. 3.3a that the distributions for
the large and small species of the AB13 phase and the binary fluid phase overlap, making the
distinction between the different phases very hard. To improve the separation of the bond order
parameter distributions, we calculate q̄ss4 and q̄ss6 , where the superscript ss means that bond
order parameters are calculated by considering only particles of the same species as particle
i. We plot the results in Fig. 3.3b, and observe that the distribution of the large species in
the AB13 is well separated from the other structures. However, the distribution of the small
species of the AB13 phase still overlaps with that of the binary fluid phase. We thus find that
it remains a major challenge to correctly classify the small species of the AB13 phase which can
be misidentified as fluid particles due to their icosahedral arrangement.

3.3.2 Feed forward neural network

In order to overcome this problem, we describe the local environment of a particle using a
full expansion in spherical harmonics, and we train an artificial neural network (ANN) to
identify distinct structures on a single-particle level, thereby extending the approach of Ref.
153. The main goal of the ANN here is to detect the birth of a crystal nucleus of the AB13
structure in a binary fluid phase, which presents additional difficulties with respect to the
identification of bulk phases due to the solid-fluid interfaces of the crystal nuclei [153]. Moreover,
the identification of crystalline particles and estimating the number of crystalline particles are
crucial for determining the barrier height and the nucleation rate using the seeding approach
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[88,154]. To minimise the effect of interfaces, we employ the standard, instead of the averaged
coarse-grained, bond order parameters thereby increasing the spatial resolution at the expense
of the accuracy in the local structure detection. The idea behind the choice of non-averaged
bond order parameters is as follows: given the great predictive capacity of neural networks,
due to the extremely effective way of combining information from many features and using
non-linear functions, we can use less precise but more local descriptors. A high accuracy can be
reached thanks to the versatility of the neural network, and in this way it is possible to obtain,
for each particle, an estimate of the class based only on the first shell of neighbours.
We employ the bulk simulations of the AB13 phase, the pure fcc phase, and the binary fluid
as described in Section 4.3.1, and build a training set of 105 training samples for each of the
local particle environments we wish to distinguish: large particles of the AB13 phase, small
species in the AB13 phase, particles in a pure fcc phase, and particles irrespective of species
in a binary fluid. In order to build such a data set, we perform MC simulations in the NPT
ensemble of the AB13 crystal and the binary fluid phase with a composition xL = 1/14, both
at coexistence pressure βPcoexσ3

L = 45.35, and of the pure fcc phase at bulk coexistence with
the fluid phase at pressure βPcoexσ3 = 8.87. We describe the local environment of each particle
i by a 36− dimensional input vector of bond order parameters

I(i) = ({ql(i)}, {wl′(i)}, {qssl (i)}, {wssl′ (i)}), (3.11)
where l ∈ [1, 12] and l′ varies in the same range but only assumes even values.

In Ref. 153, a single-layer ANN, i.e. only an input and output layer and no hidden layers,
was employed to successfully classify the AB13 phase from a binary fluid phase with a com-
position xL = 1/3 using the averaged bond order parameters as input. However, this network
architecture with the averaged bond order parameters as input vector is not accurate enough
to distinguish the AB13 phase from the binary fluid with a composition xL = 1/14 equal to the
stoichiometry of the AB13 phase, which is mostly due to the structural similarity of the small
spheres in the AB13 and the fluid phase, both exhibiting an abundance of (defective) icosahedral
clusters. In addition, the standard non-averaged bond order parameters that we employ offer
a poorer characterisation of the bulk phases with respect to their averaged counterparts. In
order to improve the accuracy of the classification, we add hidden layers to our neural network.

To be more specific, we employ a fully connected neural network with two hidden layers
consisting of 72 neurons. Each neuron uses a rectified linear unit (ReLU) activation function
to guarantee fast convergence and good generalisation. The output layer has 4 neurons, corre-
sponding to the four distinct local particle environments (classes) we wish to distinguish, and
is activated with a Softmax function (Fig. 3.4). The training of the network was done using
the Keras package, enabled by Tensorflow backend. Specifically, we trained the network min-
imising the categorical cross-entropy loss function with the addition of a L2 regularisation term
using a weight decay pre-factor of 10−4. The minimisation was carried out using minibatch
stochastic gradient descent with momentum [155–157], and we set the learning rate to 10−2.
We employ 20% of the samples as validation data to predict the accuracies for each output
node corresponding to the 4 different particle environments. The accuracies related to each
specific class are shown in Table 8.1.

3.4 Seeding approach
Numerical simulations have helped elucidating nucleation for a plethora of model systems, but
despite the possibility of following each single particle during the crystallisation process, they
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Figure 3.4: Architecture of our fully connected artificial neural network (ANN). The input layer has
36 units, as described by Eq. 5.5, while both hidden layers contain 72 neurons. The output layer
consist of four neurons, yielding the probability that a particle corresponds to a certain class.

Class Accuracy
AB13 - Large 100.0%
AB13 - Small 98.1%

Fluid 97.8%
fcc 99.4%

Table 3.1: Accuracies of the ANNs on the validation set calculated for all four classes.

suffer from an important drawback. In fact, the accessible time scales in MC or MD simula-
tions are typically much shorter than in experiments. This is particularly disadvantageous for
nucleation studies as the birth of a crystalline nucleus in a metastable fluid is a rare event.

For this reason, it is often necessary to use special sampling schemes in simulations like
umbrella sampling (US) [158–161], forward flux sampling (FFS) [160,162], metadynamics [163,
164], or transition path sampling [165–167]. These techniques are mainly employed to enhance
or bias the sampling of the system in order to observe rare events like nucleation. However, these
simulation techniques are extremely expensive from a computational point of view, restricting
nucleation studies to highly metastable conditions.

Recently, another technique has been proposed to study nucleation, known as the seeding
approach [88, 154]. The great merit of this technique is that it enables the determination
of all relevant physical quantities to describe nucleation, e.g. barrier height and nucleation
rate, and that it divides the simulation study into short simulations with a standard and
unbiased sampling of phase space. Moreover, the computational cost of these simulations is
moderate, which allows studying nucleation under weakly metastable conditions where the
critical nucleus consists of several thousands of particles. The seeding technique involves the
following steps: 1) inserting a seed of the crystal structure of interest in a metastable fluid, and
running simulations to equilibrate the interface while keeping the crystalline particles fixed, 2)
releasing this constraint and equilibrating the full system at a sufficiently high pressure that the
seed does not melt, and finally 3) running simulations of this carefully equilibrated system for
a wide range of pressures in order to determine the critical pressure Pc at which the probability
that the seed will grow or melt will be equal, while for P < Pc the seeds will predominately
melt, or grow for P > Pc.
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Figure 3.5: a) Largest cluster size NCL of the AB13 phase as recognised by the ANN as a function
of time t/τMD using the seeding approach in 10 independent MD simulations of a binary mixture of
WCA spheres at temperature kBT/ε = 0.025 with a diameter ratio q = 0.55 in the NPT ensemble,
composition xL = 1/14, and at a pressure a) βPσ3

L = 51.1, where the cluster melts and grows with
equal probability, indicating that this pressure value corresponds to the critical pressure for this cluster
size, b) βPσ3

L = 51.3, where the cluster grows in the majority of the simulations, and c) βPσ3
L = 50.9,

at which the cluster melts in most of the simulations. Typical configurations of the growth and melting
of the cluster are shown on the right in b) and c), respectively. Note that the size of fluid-like and
fcc-like particles are reduced in size for visual clarity.

In order to avoid finite-size effects, we perform simulations in the NPT ensemble. Specifi-
cally, both equilibration parts of the seeding approach have been carried out using MC simula-
tions in the NPT ensemble, using pressure βPσ3

L = 56.0 and a total number of MC cycles equal
to 103. Differently, for our investigations on the seeded growth, we perform MD simulations
using HOOMD-blue (Highly Optimised Object-oriented Many-particle Dynamics) [168,169] in
the NPT ensemble. The temperature T and pressure P are kept constant via the Martyna-
Tobias-Klein (MTK) integrator [92], with the thermostat and barostat coupling constants τT
= 1.0 τMD and τP = 1.0 τMD, respectively, and τMD = σL

√
m/ε is the MD time unit. The time

step is set to ∆t = 0.004τMD, which is small enough to ensure stability of the simulations. The
simulation box is cubic and periodic boundary conditions are applied in all directions.

An illustration of the last step of the seeding approach is shown in Fig. 3.5, where we plot
the size of the largest cluster NCL as a function of time t/τMD, for 10 independent simulations,
at pressure βPσ3

L = 50.9, 51.1, and 51.3. Here, τMD = σL
√
m/kBT denotes the MD time unit

and m the mass of the particles. In Fig. 3.5b (3.5d) the majority of the simulations show a
growing (melting) cluster, which means that the pressure βPσ3

L = 51.3 (50.9) is higher (lower)
than the critical one. In Fig. 3.5a, we observe that at βPσ3

L = 51.1 the cluster melts and
grows with equal probability, indicating that this value corresponds to the critical pressure
for a critical cluster size NCL = 770. The number of particles belonging to the main cluster
is determined using the neural network-based order parameter as described in Section 3.3.2
together with a clustering algorithm to identify clusters of mutually bonded solid particles.

Subsequently, several physical quantities can be calculated using classical nucleation theory
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(CNT), such as the height of the Gibbs free-energy barrier ∆Gc using

∆Gc(NCL) = NCL∆µ/2, (3.12)

and the nucleation rate J

Jσ5
L

DL

=
√

β∆µ
6πNCL

f+σ2
L

DL

ρfσ3
L exp(−β∆Gc), (3.13)

where NCL denotes the critical nucleus size, β∆µ the supersaturation, i.e. the difference
in chemical potential between the supersaturated fluid and the stable crystal phase, f+ =
〈(N(t)−NCL)2〉/t is the attachment rate of particles to the critical cluster, t the time, ρf (βPcσ3

L)
is the critical density of the fluid at the critical pressure Pc, and DL is the long-time diffusion
coefficient at the same ρf [88, 154]. The attachment rate f+ is measured from 10 independent
simulation trajectories at density ρf . Assuming an on average spherical cluster shape, the
crystal-fluid interfacial free energy γ can be calculated from

NCL = 32πγ3

3ρ2
s∆µ3 (3.14)

with ρs the density of the solid phase. We note that these equations rely on the validity of CNT,
which will be checked and proven in Section 3.5. We emphasise that all variables computed
through the seeding approach using Eqs. 3.12, 3.13, and 3.14, are sensitive to the numerical
value of NCL, and thus to an estimate of the nucleus interface. This particular estimate is
problematic for all classification algorithms and can, in principle, lead to systematic errors
when evaluating the aforementioned variables. In Section 3.4.1 we show a detailed analysis of
the performance of the ANN with respect to the interface detection.

Using different seed sizes in the seeding approach, we determine ∆Gc, J , γ and ρs for
different critical pressures corresponding to different supersaturations ∆µ. We plot our results
as a function of ∆µ in Fig. 3.6, and present the numerical data in Table 3.2. For comparison, we
also plot the results from Chapter 2 on the nucleation of the Laves phase in a binary hard-sphere
mixture and of the fcc phase in a fluid of pure hard spheres [79, 80].

Comparing the nucleation barrier ∆Gc for the three different phases at the same thermo-
dynamic driving force ∆µ, we clearly observe from Fig. 3.6a that ∆Gc is consistently higher
for the fcc phase than for the AB13 crystal and the Laves phases. This is in contradiction with
the assumption that the nucleation barrier for binary nucleation should be higher due to a loss
of mixing entropy. As the nucleation rate J is predominantly determined by ∆Gc, we find a
similar behaviour for J , where J of the fcc phase seems to be smaller compared to that of the
binary crystals [80]. In addition, we plot the interfacial free energy γ for the three phases in Fig.
3.6c. We wish to remark here that we express the surface tensions in units of kBT/σ2

L, which is
an arbitrary choice, and hence a direct comparison of the three systems cannot be made as the
dimensions of the spheres and the compositions are very different for the fcc, Laves and AB13
phase. Hence, the conjecture of Ref. 126 that the surface tension of the AB13-fluid interface
may be low due to the structural similarity of these phases is difficult to verify. Moreover, one
might expect that the much higher dimensionless interfacial tension βγσ2

L of the AB13 phase
may give rise to a much higher ∆Gc, but this is counterbalanced by a higher reduced crystal
density ρsσ3

L in Eq. 3.14. On the other hand, by comparing nucleation of the fcc phase with
that of the Laves phase, we find that although the dimensionless interfacial free energies βγσ2

L

are comparable, the difference in crystal density ρsσ
3
L can yield a difference in ∆Gc. Thus,
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NCL N β∆µ βPcσ
3
L ρfσ

3
L ρsσ

3
L β∆Gc βγσ2

L log10(Jσ5
L/DL)

2706 40334 0.095 48.40 3.383 3.778 128.3 0.994 -55.66
1977 29204 0.110 48.90 3.390 3.786 108.9 1.042 -47.47
1290 19376 0.141 49.90 3.405 3.802 91.01 1.161 -39.72
770 13692 0.178 51.10 3.423 3.820 68.38 1.234 -29.37
488 8988 0.214 52.30 3.440 3.838 52.22 1.281 -22.10
176 4746 0.344 56.70 3.499 3.897 30.29 1.482 -12.08

Table 3.2: Values of the most significant variables involved in the seeding approach calculations.
Each row corresponds to a different critical nucleus size NCL. See the main text for the meaning of
each variable.

in order to compare the effect of interfacial tension and crystal density on the nucleation of
different crystal structures, one should compare the ratio γ3/ρ2

s for the various systems as this
ratio is directly related to the barrier height and critical nucleus size via Eq. 3.12 and Eq. 3.14,
and is independent of an arbitrary choice of length scale.

Finally, we observe not only much higher reduced surface tensions βγσ2
L for the AB13 phase

with respect to the other examined crystals, but also a much stronger increase of γ with
supersaturation. This steep rise in surface tension with ∆µ is responsible for the flattening of
the nucleation barrier and nucleation rate at high supersaturation in Fig. 3.6a and Fig. 3.6b,
indicating that spontaneous nucleation, i.e. where the nucleation barrier is sufficiently low,
may be at surprisingly high driving forces ∆µ, with respect to what we found in Chapter 2.

3.4.1 Interface detection
One of the main difficulties common to all nucleation studies is to correctly identify the location
of the interface between the solid nucleus and the surrounding fluid phase. In this section we
show the performance of the ANN in carrying out this task.

A common approach to classify particles according to the different thermodynamic phases
is to determine the typical BOP values of all the reference phases and to select by hand a
threshold value, called a decision boundary. Subsequently, the BOP values can be measured
for each particle in the system, and classified according to these thresholds. In the case of a
two-phase coexistence, the particles at the interface of the two coexisting phases will have BOP
values which are close to these decision boundaries. Hence, the choice of these thresholds is
fundamental from a quantitative point of view.

In the case of an ANN, the classification is again performed through a decision boundary.
The main difference is that in this case the decision boundary is not selected manually but
by the machine learning algorithm through the minimisation of a loss function evaluated for a
training set.

To verify the performance of the ANN in identifying the interface, we consider a system
with an approximately spherical nucleus of an AB13 crystal surrounded by a metastable fluid as
obtained from a seeding simulation at a pressure where the crystalline seed has grown out and
almost doubled its original size. For each particle, we determine the probability of belonging to
the AB13 crystal phase or the probability of belonging to the fluid phase. These probabilities
are calculated through the trained ANN. In Fig. 3.7b, we show a cut-through image of the
grown crystal nucleus along with the ANN output for 5 exemplary particles, i.e. the probability
that a particle belongs to the AB13-Large, AB13-Small, fluid, and fcc phase. From the image,
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Figure 3.6: (a) Height of the Gibbs free-energy barrier β∆Gc, (b) nucleation rate Jσ5
L/DL, (c)

interfacial free energy βγσ2
L, and (d) the crystal number density ρsσ3

L as a function of the chemical
potential difference β∆µ between the fluid and the AB13 phase of a binary WCA mixture at kBT/ε =
0.025, with a diameter ratio q = 0.55 and composition xL = 1/14 as obtained from the seeding
approach. For comparison, we also plot the results on nucleation of the Laves phase in a binary WCA
mixture from Chapter 2 and of the fcc phase in a fluid of WCA spheres from Refs. 79 and 80.

we observe that particles well-inside the crystalline nucleus are correctly classified with great
certainty (probabilities around 99.9%) as belonging to the AB13 crystal, while particles at the
interface, i.e. where the crystal transforms into the disordered fluid phase, the ANN gives
similar scores to the probabilities of being crystalline or fluid-like. In the fluid phase, the ANN
correctly identifies the fluid particles with again probabilities around 99.9%.

Subsequently, we calculate the radial distance of each particle i with respect to the centre-of-
mass of the nucleus, dCM = |ri− rCM |/σL, where ri is the position of particle i, and rCM is the
centre-of-mass position of the nucleus. In Figure 3.7a, we plot the radial averaged probability
that a particle belongs to one of the two classes of the AB13 crystal (dark blue curve) or to
the fluid phase (light purple curve) as a function of the radial distance dCM = |ri − rCM |/σL
from the centre-of-mass position of the nucleus. Figure 3.7a shows that particles with a radial
distance dCM < 3, which corresponds to the solid bulk of the nucleus, are indeed classified by
the ANN as particles belonging to one of the two classes of the AB13 phase with a probability
close to 1. The probability that these particles belong to the fluid phase is nearly zero. Upon
approaching the interface at dCM ' 4.3, the probability that a particle belongs to the AB13
phase gradually decreases, while the probability that a particle belongs to the fluid phase
increases. The probability that a particle belongs to the fluid phase is about equal to the
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Figure 3.7: a) Probability that a particle belongs to one of the two classes of the AB13 crystal
(dark blue curve) or to the fluid phase (light purple curve) as a function of the radial distance dCM =
|ri − rCM |/σL from the centre-of-mass position of the nucleus as predicted by the ANN. The analysis
has been carried out on a single snapshot of a seeding simulation performed at βPσ3

L = 51.3. In b),
we show a cut-through image of the grown nucleus along with the ANN output, i.e. the probability
to belong to the AB13-Large, AB13-Small, fluid, and fcc phase, for 5 exemplary particles.

probability that a particle belongs to the AB13 phase at dCM ' 4.3, and exceeds the probability
of the AB13 phase for dCM > 4.3. Almost all particles are identified as fluid-like for dCM > 6,
which corresponds to the surrounding fluid phase.

In conclusion, the ANN effectively recognises the solid core of the AB13 phase and the
surrounding fluid, as well as the interface between the two bulk phases present in the system.
The interfacial width is about 2σL as expected. We remark that the non-averaged BOPs enable
us to locate the interface much more accurately than the averaged BOPS as the non-averaged
BOPs only take into account the first shell of neighbouring particles. Hence, we used the
non-averaged BOPs in our nucleation study.

3.5 Spontaneous nucleation
Fig. 3.6a shows that the nucleation barrier β∆Gc decreases with supersaturation β∆µ. When
β∆Gc is sufficiently low, we expect to observe spontaneous nucleation of the AB13 phase using
brute force MD simulations, i.e. without any non-physical biasing of the sampling of phase
space.

In order to observe spontaneous AB13 nucleation, we initialise a system of 3024 particles
with stoichiometry xL = 1/14 in a highly supersaturated binary fluid phase, and perform
MD simulations for a wide range of pressures in the NPT ensemble. All simulations in this
section are performed using HOOMD-blue software, retaining the same settings as in Section
3.4. Using our trained ANN to identify the AB13 particles, we monitor and plot the size of the
largest cluster NCL of the AB13 phase as a function of time t/τMD in Fig. 3.8a. We distinguish
three different regimes. At pressure βPσ3

L = 71.0, the metastable fluid does not show any
sign of crystallisation within our simulation times, and hence, the supersaturation β∆µ ' 0.74
is too low to observe spontaneous nucleation. At a slightly higher pressure βPσ3 = 71.4
(β∆µ ' 0.75), we find a critical nucleus appearing after some waiting time, which subsequently
grows out in time, showing a spontaneous crystallisation event of the AB13 structure proceeding
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Figure 3.8: (a) Size of the largest AB13 cluster NCL as recognised by the ANN for a binary mixture
of WCA spheres at kBT/ε = 0.025, with a diameter ratio q = 0.55 and composition xL = 1/14
as a function of time t/τMD for five different pressures βPσ3

L using MD simulations in the NPT
ensemble. (b) Four configurations of a spontaneous nucleation event at βPσ3

L = 72.2, showing a time
sequence of the early stages of AB13 nucleation with time increasing from the upper-left corner and
then proceeding clockwise. Particles that do not belong to the main crystalline cluster have been
reduced in size for visual clarity.

via nucleation. Increasing the pressure even further, we enter the third regime, where as soon
as the simulation is started, multiple nuclei form immediately throughout the fluid. In this
regime, the supersaturated fluid phase is mechanically unstable, and hence, crystallisation sets
in immediately and exhibits spinodal-like behaviour. We thus confirm that the instability
regime of the binary fluid phase with respect to AB13 crystallisation is at much higher driving
forces β∆µ > 0.75 than in the case of the Laves phases for which, as shown in Chapter 2, we
found β∆µ > 0.53. The significant increase of interfacial tension with supersaturation of the
AB13 phase (Fig. 3.6c) implies a relatively slow decrease (increase) of the nucleation barrier
β∆Gc (nucleation rate J). Hence, spontaneous nucleation of the AB13 is found at surprisingly
high β∆µ with respect to the Laves phases or the fcc phase. Moreover, the validation of our
estimate of β∆µ where we should expect spontaneous nucleation based on the results from the
seeding approach support our assumption that AB13 nucleation is well-described by classical
nucleation theory.

In Fig. 3.8b we show a time sequence of the early stages of the spontaneous AB13 nucleation
from the metastable binary fluid phase at βPσ3

L = 72.2 with time increasing from the upper-
left corner and then proceeding clockwise. We make two remarks here. First, we observe
that the ANN classification, combined with the clustering algorithm, is capable of following
the nucleation process from the early stages, thereby revealing the kinetic pathways towards
the formation of an embryo. Second, we find that the nucleation starts with a (defective)
icosahedral cluster of small spheres around which large spheres start to order themselves on
a simple cubic lattice. We thus show that the local bond orientational order of small spheres
into clusters with icosahedral symmetry plays a crucial role in the kinetic pathway of the
fluid-to-solid transition. This immediately begs the question whether nucleation of the AB13
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phase proceeds via a classical pathway or a non-classical two-step crystallisation scenario where
relatively dense or bond orientational ordered structures in the fluid phase act as precursors for
nucleation. The nucleation kinetics is of paramount importance, as the seeding approach for
estimating the Gibbs free-energy barrier heights and nucleation rates is only valid in the case
that nucleation proceeds via a classical nucleation pathway. To this end, we analyse particle
configurations of spontaneous nucleation events in time. We observe that the system remains
in the metastable binary fluid phase in which small crystalline nuclei appear and dissolve until
a crystal nucleus of the AB13 phase exceeds its critical size at intermediate times and grows out.
The induction time and the growth of a crystal nucleus when its size is larger than the critical
nucleus size demonstrate that binary nucleation of the AB13 phase proceeds via a classical
nucleation pathway. In Fig. 3.8b, we observe the spontaneous formation of a crystalline nucleus
in the metastable fluid phase, which grows further when its size is larger than the critical size.
This observation, together with the video that we include in the Appendix, shows that AB13
formation occurs via classical nucleation.

3.5.1 Analysis of local motifs
In order to shed light on the early stages of the AB13 crystal nucleation, we employ a re-
cently developed method called topological cluster classification (TCC) algorithm to detect
pre-determined particle arrangements in particle configurations [31]. The algorithm is used
separately on both species, i.e. we take into account one species at a time. Bonds between
particles are detected using a modified Voronoi construction method. The free parameter fc,
controlling the amount of asymmetry that a four-membered ring can show before being identi-
fied as two three-membered rings, is set to 0.82.

Using the TCC, we focus on two topological clusters, the square four-membered ring (sp4a)
and the regular icosahedral cluster of 13 particles (13A), which are relevant particle clusters of
the large and small species, respectively, in the AB13 crystal (see Fig. 3.9b). The fraction of
particles belonging to these two clusters has on average a non-zero value in the fluid phase, and
reaches one as crystallisation proceeds.

In Fig. 3.9a we plot the evolution of the fraction of large and small particles belonging to
the square and the icosahedral clusters, respectively, during a spontaneous nucleation event.
In order to facilitate the comparison between the two clusters, we subtract the corresponding
averaged particle fraction observed in the fluid phase. Hence, the curves fluctuate around zero
until nucleation occurs. interestingly, the fraction of square and icosahedral clusters increases
both at the same time when nucleation occurs, and the growth behaviour of both particle
clusters is similar. Hence, we conclude that the nucleation of the AB13 phase proceeds via a
co-assembly process, in which the large spheres form a simple cubic lattice and the small species
form the icosahedral clusters.

3.6 Conclusions
In conclusion, we have investigated homogeneous nucleation of an AB13 crystal in a binary
fluid of hard spheres with a size ratio of q = 0.55 and a composition corresponding to the
stoichiometry of the AB13 phase. To achieve this, we have trained a neural network using a
large set of non-averaged bond order parameters as input to distinguish the AB13 phase from all
competing phases, i.e. the binary fluid and the fcc phase, with significant accuracy in the case
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Figure 3.9: a) Normalised number of large Ñsp4a/NL (small Ñ13A/NS) particles belonging to a
sp4a (13A) cluster as a function of time t/τMD in a spontaneous nucleation event, corrected for the
averaged number observed in the fluid phase. The large statistical fluctuations in Ñsp4a/NL is due to
a much lower number of large species in the system. b) A sketch of the square four-membered ring
sp4a (blue) and the 13A (red) icosahedral cluster.

of bulk phases. We showed that using two (averaged) bond order parameters is not sufficient
to identify the different phases of interest on a single-particle level, while an artificial neural
network with two hidden layers provides an elegant and powerful way of combining a high
number of bond order parameters and to successfully distinguish the different phases with high
accuracy.

Using the trained neural network as an order parameter in our nucleation study, we were
able to follow crystal nucleation of the AB13 phase in a supersaturated binary fluid phase. We
used the seeding approach to calculate Gibbs free-energy barriers and nucleation rates without
prior knowledge about the system. Subsequently, we made a comparison of the nucleation of
the AB13 phase with another binary hard-sphere crystal, the Laves phase, and with a single-
component fcc phase of pure hard spheres. Our key findings are that 1) the assumption that the
nucleation barrier for binary nucleation is higher due to a loss of mixing entropy is incorrect,
e.g. the barrier for the pure fcc phase is higher than for the AB13 and the Laves phases in the
case of hard spheres at the same thermodynamic driving force ∆µ, and that 2) the assumption
that the nucleation barrier is high due to a high interfacial free energy is not always valid as it
also depends on the number density of the solid phase, e.g. the reduced surface tensions βγσ2

L

for the fcc and the Laves phase are very similar, but fcc has a higher barrier height due to a
lower reduced solid density ρsσ3

L. Hence, in order to compare the effect of interfacial tension
and crystal density on the nucleation of different crystal structures, one should compare the
ratio γ3/ρ2

s for the various systems as this ratio is directly related to the barrier height and
critical nucleus size via Eq. 3.12 and Eq. 3.14, and is independent of an arbitrary choice of
length scale.

Subsequently, we used the dependence of the nucleation barrier height β∆Gc on supersat-
uration ∆µ to obtain an estimate of ∆µ where spontaneous nucleation should occur. In this
way, we were able to observe spontaneous nucleation of the AB13 phase using brute force MD
simulations. To shed light on the nucleation mechanism, we analysed the spontaneous nucle-
ation events by measuring the fraction of large particles belonging to a square shortest-path
four-membered ring (sp4a) and the fraction of small particles belonging to an icosahedral (13A)
cluster. We observed a similar growth behaviour of both clusters, demonstrating that the AB13
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nucleation proceeds via a co-assembly process. This finding is corroborated by our analysis of
the early stages of nucleation when the first embryo forms using the trained neural network as
an order parameter. Fig. 3.8b shows clearly that the embryo grows by the attachment of both
large particles and icosahedral clusters of small particles. Our results show that AB13 crystal
nucleation proceeds via a classical pathway that can be well-described by CNT, even though
the binary fluid is highly structured. Due to thermal fluctuations, the local regions of high
bond orientational order and many-body correlations appear and disappear in the metastable
fluid phase. The crystal only forms when also the large species are coordinated in the right
way around the icosahedral clusters, thereby making AB13 nucleation possible.

Finally, our method for the identification of local structures using a neural network can
straightforwardly be extended to other crystal structures, liquid crystal phases, and glasses,
and can be employed for future nucleation studies, analysing not only numerical, but also
experimental data stacks.

Acknowledgements
I would like to thank Jayden Savage for a preliminary study of the AB13 crystal nucleation.



54 Chapter 3

3.7 Appendix

3.7.1 Multiple bond order parameters: the Shape Matching algo-
rithm

The exemplary 2D projection of the (averaged) bond order parameters in Fig. 3.3 reveals
that two bond order parameters are not sufficient to achieve a satisfactory classification. An
artificial neural network (ANN) is an efficient and optimised way of using multiple descriptors
in the classification. In order to provide a more local description of a particle, we employed
36 non-averaged bond order parameters (BOP) as descriptors, even though they offer a poorer
characterisation of the particles with respect to their averaged counterparts. An ANN combines
these parameters by giving them different weights in the classification and adding non-linearity
if one or more hidden layers are present in the chosen ANN architecture. However, there are
also other techniques, outside the realm of machine learning, that are based on more than
2 descriptors in the classification. One of these methods is the shape matching technique
(SM) [170].

The SM technique requires a set of shape descriptors or order parameters that can identify
on a single-particle level the different phases we wish to classify. For each particle i in the
system, we build a vector ~Si consisting of all the values of the shape descriptors for particle
i. Subsequently, we determine the reference vector ~SA of all the shape descriptors for the
respective phases, e.g. phase A, we want to identify. By employing a similarity metrics, we
find the reference vector that is most similar to the one determined for particle i, and particle
i will be classified accordingly.

In order to compare the performance of the SM algorithm with the ANN used in this work,
we define the shape descriptor vector to be the same as the input vector of the ANN, which is
an array of 36 non-averaged BOPs (Eq. 5.5).

Subsequently, we determine the reference vectors for the four classes that we wish to identify.
Instead of using the values of the shape descriptors for the perfect crystalline structures, we
take the average values of the BOPs for each class. This approach corresponds to selecting the
central point of the cloud in the 36-dimensional BOP space of each phase. We find that this
choice leads to better results in the classification of particles than using the perfect crystalline
structures. Moreover, it can be straightforwardly be extended to non-crystalline structures—the
fluid phase in this case.

Finally, a similarity metrics has to be defined that quantifies the similarity of the shape
descriptor vector ~Si of particle i and the reference vector ~SA of phase A, M(~Si, ~SA). The most
common metrics is the Euclidean distance

Mdist(~Si, ~SA) = 1− [(~Si − ~SA)/(|~Si|+ |~SA|)]. (3.15)

Another choice is based on the projection of vector ~Si onto the reference vector ~SA

Mproj(~Si, ~SA) = 1/2[1 + (~Si · ~SA)/(|~Si||~SA|)] (3.16)

We find that Mproj gives the best results. The accuracy of the SM method based on Mproj is
reported in Table 3.3 along with the accuracy of the ANN used in this work.

Although the accuracy is high for e.g. the large species of the AB13 crystal, the overall
accuracy is not satisfactory enough for the purpose of this work. The reason is that in the SM
technique each BOP is equally important as the classification is simply based on a dot-product.
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Class SM ANN
AB13 - Large 100.0% 100.0%
AB13 - Small 89.8% 98.1%

Fluid 91.8% 97.8%
fcc 93.2% 99.4%

Table 3.3: Accuracies of the SM technique and the ANN for all four classes.

Class Nhidden = 0 Nhidden = 1 Nhidden = 2 Nhidden = 3
AB13 - Large 100.0% 100.0% 100.0% 100.0%
AB13 - Small 95.9% 97.4% 98.1% 99.2%

Fluid 94.1% 96.3% 97.8% 96.9%
fcc 97.9% 99.1% 99.4% 99.6%

Table 3.4: Accuracies for all four classes of the ANNs with varying number of hidden layers Nhidden.

Consequently, if a BOP is very noisy in the training set, it will obfuscate the classification.
The remedy for this problem is to employ different weights for different BOPs, based on their
importance. This is exactly what the ANN learns during the training phase, when the weights
are tuned.

3.7.2 Details on the artificial neural network
Choice of architecture

In this Chapter, we employ an ANN composed of two hidden layers, in addition to the input
and output layer. In principle, multiple architectures are possible and the choice of the number
of hidden layers requires a trial-and-error tuning [155,171]. In particular, adding hidden layers
to the neural network means that more hyperparameters (namely weights and biases) have to
be tuned during the training phase, which allow for a better total score on the training set, but
may also result in a higher chance of overfitting the data. The latter is signaled by the score
on the validation set, which is not as high as the score on the training set.

In order to select the architecture of the ANN, we trained multiple ANNs, differing from
each other solely by the number of hidden layers. In Table 3.4 we show the accuracy of each of
these ANNs on the test set, while in Fig. 3.10 we display the total accuracy as a function of
the number of hidden layers Nhidden.

We observe from Fig. 3.10 that, even though the total accuracy of the ANN increases
with the addition of up to 3 hidden layers, the third layer does not constitute a significant
improvement in the performance of the ANN. We therefore decided to employ an ANN with 2
hidden layers as a compromise between efficiency and accuracy.

Fluid particles

When building the training and validation sets to train the ANN, one of the first questions to
ask is how many classes the ANN should identify. This choice depends also on the features that
are used in the input layer, as they must be able to distinguish the different classes in order to
achieve a successful score at the end of the training phase.
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Figure 3.10: Total accuracy of the ANNs as a function of the number of hidden layers Nhidden. The
total accuracy increases significantly up to 3 hidden layers, but the addition of the third hidden layer
does not constitute a significant improvement in the performance of the ANN.

Class ANN
AB13 - Large 100.0%
AB13 - Small 98.3%
Fluid - Large 99.9%
Fluid - Small 97.3%

fcc 99.3%

Table 3.5: Accuracies of the ANN trained to distinguish the small-species and large-species binary
fluid particles.

In this work, we have selected 4 target classes: large species of the AB13 crystal, small
species of the AB13 crystal, fcc particles and fluid particles. Regarding the fluid particles, one
can make a further distinction based on species. This choice would split the fluid particles into
large-species and small-species fluid particles, leading to a total of 5 different classes.

This different choice is valid based on the assumption that in the binary fluid with stoichiom-
etry xL = 1/14, large and small species have different local environments. This assumption
is indeed correct, as can be seen from Fig. 3.11, where we plot the probability distribution
functions of 4 exemplary BOPs, namely q4, q6, w4 and w6 for the large and small species of
the binary fluid phase separately. We clearly see from Fig. 3.11 that almost all probability
distribution functions overlap considerably, hampering the distinction of the two classes. Nev-
ertheless, the two q6 distribution functions are well separated for the large and small species,
allowing for the possibility of selecting an output layer with 5 different classes.

To this end, we build a second training set with 105 large-species and 105 small-species
fluid samples. We note that in the previous training set, the ratio between large-species fluid
samples and small-species fluid samples was approximately equal to the stoichiometry of the
system under investigation, and hence the number of large-species fluid samples was much lower
than for the small-species counterpart. In Table 3.5 we show the accuracy of the ANN when
the fluid particles are distinguished in large and small species.

We observe from Table 3.5 that the ANN correctly classifies almost all the large species of
the fluid phase, whereas the accuracy of the large species of the AB13 crystal and of the fcc
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Figure 3.11: Probability distribution functions of 4 representative BOPs for large species of the fluid
phase (light blue curves) and small species of the fluid phase (red curves). In particular, we plot a)
P (q4), b) P (q6), c) P (w4), and d) P (w6). The majority of the BOPs show overlapping distributions
(in the case of w4 they are hardly distinguishable), but the fact that there is at least one parameter
(q6) for which the distributions are well separated guarantees that the distinction of small-species and
large-species fluid particles is possible.

crystal remains unchanged. The similarity of the local environments of the small species of
AB13 crystal and of the small species of the fluid phase is still signaled by the relatively low
score of the ANN, and hence a correct classification of the small species remains a challenge.

In conclusion, we have shown that an ANN with five target classes involving a further
distinction of the fluid particles is equally accurate as the ANN with four classes as employed
in the present study, and represents a suitable alternative choice.

Information provided by the network

As shown by our previous analysis, we clearly observe that our trained ANN constitutes a
useful tool to distinguish with high accuracy the AB13, binary fluid, and fcc phase on a single-
particle level by using input vectors composed of 36 (non-averaged) BOPs. Hence, the ANN
can straightforwardly be used as an order parameter in nucleation studies. However, such a
black box implementation of the ANN can be unsatisfactory in terms of understanding how it
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Figure 3.12: a) The relative importance RI(k) of feature k of our input vector (Eq. 5.5 in the main
text) describing the local particle environment as determined by the improved stepwise technique
and the input perturbation method using Gaussian white noise with a 10% and 50% variance. b)
Application of the improved stepwise method on the original data set (grey) and a normalised data
set (blue) such that each feature has a distribution with zero mean and unit variance. c) Application
of the improved stepwise method of the original ANN (grey) and a second one trained on all the
features with the exception of the top 3 most important ones (red).

makes decisions. We therefore investigate in more detail which features the ANN prioritises to
distinguish the different classes. To this end, we apply the improved stepwise [172,173] and the
input perturbation [174, 175] techniques in order to determine the relative importance (RI) of
all features.

In the improved stepwise technique, we determine the relative importance (RI) of a feature
by replacing each value in the data set with its arithmetic mean, while keeping the remaining
35 features unchanged. Subsequently, we calculate the accuracy of the ANN on this data set.
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If the change in the accuracy is large, the relative importance of this feature is high in making
a prediction.

The input perturbation method works in a similar manner. Instead of replacing each value
of a particular feature with its mean, we add a fixed amount of white noise, and then again
assess the change in the total accuracy. The noise is sampled from a uniform distribution,
centred in zero and whose interval is equal to twice a fixed percentage of the input value. We
test this method twice, selecting the above percentage to be equal first to 10% and then to 50%
of the input value.

In both methods, we repeat this process for all 36 input features, and calculate the relative
importance of the kth feature RI(k) using

RI(k) = ∆Acc(k)
36∑
k=1

∆Acc(k)
, (3.17)

where ∆Acc(k) is the difference in accuracy after applying one of the two methods to the kth
feature.

In Fig. 3.12a, we show our results as obtained by applying the two methods on the entire
data set. It is interesting to note that the ANN does not solely prioritise even symmetries, which
often play a decisive role in crystal structure recognition. In fact, odd symmetries - fivefold,
sevenfold and ninefold - heavily determine the learning process of the neural network, as shown
by the high RI values of the corresponding order parameters. We attribute this behaviour to
the unique crystal structure of the AB13 phase consisting of icosahedral small-sphere clusters.

However, due to the different nature of the two algorithms, the RI(k)’s vary - sometimes
considerably - for the two methods. This analysis is therefore useful solely to understand which
features the ANN relies the most on. As further proof, we train another ANN with the same
architecture but such that the probability distribution of each feature has zero mean and unit
standard deviation. Usually, this pre-processing is applied in cases where the input vector is
composed of features that vary by orders of magnitude, facilitating in this way the training of
the model [171]. In this work, this pre-processing has not been applied because all the BOPs
vary approximately within the same range. We again apply the improved stepwise method and
compare the results with the improved stepwise method applied on the original features in Fig.
3.12b. We clearly observe that the values of the relative importance vary due to differences in
the numerical values of the normalised and unnormalised features, but the features that ANN
recognises as the most important for the classification remain the same.

Finally, one may ask the question whether a smaller set of BOPs can also provide a sat-
isfactory classification. We therefore trained two additional ANNs, one for which we use only
the top three features picked up by the improved stepwise method as the most relevant ones,
namely w6, qss7 , and qss9 , as input vector, and one ANN for which we employ all the other
features apart from these top three features as input.

In the first case using only the top 3 features we get a total accuracy of about 93%. This
result demonstrates the importance of these 3 BOPs in order to obtain a satisfactory classifi-
cation, even though it cannot replace the ANN trained on all 36 features.

In the second case using the remaining 33 features, the trained ANN achieves an accuracy
almost identical to that of the original ANN (98.7% instead of 98.8%). This result shows that
there are several ways to obtain a satisfactory classification of the different phases. By removing
the top three relevant features, the ANN will give priority to other features, equally valid, as
shown in Fig. 3.12c. This different set of relevant features can sometimes be highly correlated
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Class RF ANN
AB13 - Large 100.0% 100.0%
AB13 - Small 96.6% 98.1%

Fluid 97.4% 97.8%
fcc 98.1% 99.4%

Table 3.6: Accuracies of the RF and the ANN for all four classes.

with the removed ones, as in the case of wss6 , which has a Pearson correlation value with w6
equal to 0.87.

3.7.3 Comparison with Random Forest
In the previous sections we have demonstrated that an ANN successfully classifies particles
according to the different thermodynamic phases in the system. We have also compared the
performance of the ANN with a technique outside the realm of machine learning, namely the
SM technique. The performance of the ANN is superior to that of the SM technique. However,
the variety of machine learning techniques is vast, and the ANN is only one of them. We
therefore also compare the performance of the ANN with another machine learning method.

In this section we study a second state-of-the-art machine learning algorithm, namely Ran-
dom Forest (RF), and evaluate its accuracy on the same data set used for the ANN. This allows
us to determine which technique works best for the purpose of this work.

RF is a machine learning algorithm with a philosophy that is very different from that of
an ANN. RF, in its classification setting, consists of an ensemble of smaller classifiers called
Decision Trees (DTs) [171]. Each of these DTs takes a given input, and applies a series of
if-else conditions based on the value of the input vector features. These conditions allow the
tree to branch out and finally return a result, the predicted class of the sample. In an RF,
multiple DTs are trained using different parts of the training set and of the different features.
For each sample to be classified, each DT votes for a certain class based on its prediction. The
RF returns the class that receives the most votes. RF often succeeds not only in providing
satisfactory accuracy results, but also on shedding light on the predictive ability of individual
features.

To offer a comparison with the ANN used in this study, we train a RF model using 100
independent DTs. An important parameter that must be tuned is the depth of each tree, i.e.
the number of consecutive if-else statements prior to a classification outcome. In fact, if this
parameter is too high, RF is likely to overfit the data. We find that the maximum depth of the
model for which we do not overfit the training set is equal to 9. Below we show the accuracy
for each class obtained using RF, together with the results of the ANN used in this work.

Table 3.6 shows that the RF produces excellent results, although slightly lower than the
ANN, particularly in the classification of fluid particles and small species of the AB13 crystal.

Depending on the specific application, RF may be preferred when accuracy is not the only
parameter to take into account, e.g. with RF it is possible to obtain a very fast training of the
model and a better interpretability of the classification. In this work, we require a method that
is as accurate as possible as the number of solid particles in the crystal nucleus as predicted by
the machine learning method determines the thermodynamics of the nucleation process. We
therefore decided to employ the ANN in our nucleation study.
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Hidden in the fluid: fivefold
symmetry and polymorph selection in

hard spheres

In this Chapter, we study the crystal nucleation of hard spheres for which, despite numerous
experimental and theoretical studies, many aspects are far from being understood. We show
that the excess of face-centred-cubic (fcc)-like particles with respect to hexagonal-close-packed
(hcp)-like particles in a crystal nucleus of hard spheres as observed in simulations and exper-
iments can be explained by the higher order structure in the fluid phase. We show that, in
the metastable fluid phase, fivefold symmetry clusters – pentagonal bipyramids (PBs) – known
to be inhibitors of crystal nucleation, transform into a different cluster – Siamese dodecahedra
(SDs). These clusters, because of their geometric arrangement, form a bridge between the five-
fold symmetric fluid and the fcc crystal, thus lowering its interfacial free energy with respect
to the hcp crystal, and shedding light on the polymorph selection mechanism.

Based on: G. M. Coli, R. van Damme, C. P. Royall, and M. Dijkstra, Hidden in the fluid: fivefold symmetry
and polymorph selection in hard spheres, Manuscript submitted (2021)
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4.1 Introduction

Understanding nucleation is important in many research fields such as determining the molec-
ular structure of proteins through crystallisation, drug design in the pharmaceutical industry,
ice crystal formation in clouds — the largest unknown in the earth’s radiative balance and thus
crucial in the context of climate change and weather forecasts — and crystallisation of colloidal
and nanoparticle suspensions with application perspectives in catalysis, opto-electronics, and
plasmonics [176,177].

However, nucleation is extremely challenging to study in molecular systems as it is a stochas-
tic and rare process, the sizes of the crystal nuclei are often rather small, and the nuclei grow
out extremely fast when they exceed their critical size. An additional obstacle is that, for most
substances, different crystal polymorphs may compete during nucleation. This phenomenon
is of key importance as the crystallisation of the “undesired” polymorph may for instance
lead to neurodegenerative disorders such as Alzheimer’s disease or eye cataract, or to reduced
solubility/efficacy and even toxicity of certain drug compounds [178,179].

Recently, impressive strides have been made in the experimental observation of early-stage
crystal nucleation by using atomic-resolution in situ electron microscopy, showing the obser-
vation of different nucleation pathways to different crystal polymorphs of proteins [180], pre-
nucleation clusters in metal organic frameworks [181], early-stage nucleation pathways of FePt
nanocrystals that go beyond classical nucleation theory and current non-classical scenarios [182],
amorphous precursors in protein crystallisation [183], featureless and semi-ordered clusters of
NaCl nanocrystals [184], and reversible disorder-order transitions of gold crystals [185]. These
recent observations differ from the current nucleation models and call for a better theoretical
insight in the crystallisation pathways at the earliest stages of nucleation, when particles start
to order from the metastable fluid phase and select the emerging crystal polymorphs.

Colloidal suspensions are suitable experimental systems to probe locally heterogeneous phe-
nomena such as early-stage nucleation: the larger sizes and slower time scales of colloidal parti-
cles enable direct observation of the nucleation mechanisms [24,186]. However, even for colloidal
hard spheres (HSs), undoubtedly one of the simplest colloidal model systems, the polymorph
selection mechanism is yet to be revealed. In a HS system, the hcp crystal is metastable with
respect to the fcc, but the free-energy difference between the two structures is tiny (' 10−3kBT
per particle) [187, 188]. One therefore might expect to find an approximately 50% occurrence
of fcc- and hcp-like particles in the crystal nucleus of hard spheres. This prediction is, however,
not confirmed either in experiments [24, 186, 189, 190] nor in simulations [117, 191–194], which
both show a hitherto unexplained predominance of fcc particles in the final crystal phase.

In this Chapter, we investigate, using Molecular Dynamics (MD) simulations and particle-
resolved studies of colloids, the early stages of nucleation of hard spheres in order to shed light
on the selection mechanism of the crystal polymorph. We study the structural transformations
in the supersaturated fluid phase that finally lead to crystal nucleation. We find that the
crystal embryo shows a preference towards fcc-like stacking, because of the striking similarity
with local clusters present in the fluid phase. We also demonstrate that this purely geometric
argument for a higher propensity to nucleate fcc is incorporated in thermodynamics by a lower
interfacial free energy of fcc with respect to hcp crystals.
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4.2 Simulation details
In order to generate trajectories in which we observe spontaneous nucleation, we conduct MD
simulations in the isothermal-isobaric (NPT) ensemble with a constant number N = 13500
of nearly-hard spheres. The particles interact via a Weeks-Chandler-Andersen (WCA) pair
potential, which can straightforwardly be employed in Molecular Dynamics (MD) simulations
and which reduces to the hard-sphere potential in the limit that the temperature T → 0. The
WCA potential u(rij) reads [75]

u (rij) =

4ε
[(

σ
rij

)12
−
(
σ
rij

)6
+ 1

4

]
rij < 2 1

6σ

0 rij ≥ 2 1
6σ,

(4.1)

with rij = |ri − rj| the center-of-mass distance between particle i and j, ri the position of
particle i, ε the interaction strength, and σ the diameter of each sphere. The steepness of the
repulsion between the particles can be tuned by the temperature kBT/ε. We set kBT/ε = 0.025,
which has been used extensively in previous simulation studies to mimic hard spheres [77–80].

The temperature T and pressure P are kept constant via the Martyna-Tobias-Klein (MTK)
integrator [92], with the thermostat and barostat coupling constants τT = 1.0 τMD and τP

= 1.0 τMD, respectively, and τMD = σL
√
m/ε is the MD time unit. The time step is set to

∆t = 0.004τMD, which is small enough to ensure stability of the simulations. We ran the
simulations for 109τMD time steps, unless specified otherwise. The simulation box is cubic and
periodic boundary conditions are applied in all directions.

We select the pressure values in a region of metastability that allow us to observe nucleation
phenomena on reasonable time scales. Specifically, the reduced pressure varies in the range
βPσ3 ∈ [13.40, 16.00], which results in numerous spontaneous crystallisation events. All MD
simulations are performed using the HOOMD-blue (Highly Optimised Object-oriented Many-
particle Dynamics) software [195].

4.3 Classification scheme: A synergetic combination
In this Chapter, it is necessary not only to distinguish fluid-like particles from crystal-like one,
but it is also crucial to monitor the behaviour of local clusters and their relationship with the
crystal nucleus. In order to do so, we make use of two separate classification algorithms, which
we describe in this Section.

4.3.1 Bond Order Parameters
To describe the local environment of a particle, we employ the standard bond-orientational
order parameters (BOPs) introduced by Steinhardt et al. [86]. We first define the complex
vector qlm(i) for each particle i

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Ylm(θ(rij), φ(rij)), (4.2)

where Nb(i) is the number of neighbours of particle i, Ylm(θ(rij), φ(rij)) denotes the spherical
harmonics, m ∈ [−l, l], θ(rij) and φ(rij) are the polar and azimuthal angles of the distance
vector rij = rj − ri, and ri denotes the position of particle i.
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The averaged q̄lm(i) as introduced by Lechner and Dellago is defined as

q̄lm(i) = 1
Ñb(i)

Ñb(i)∑
j=1

qlm(j), (4.3)

where Ñb(i) is the number of neighbours including particle i itself [87]. The rotationally invari-
ant quadratic and cubic averaged bond order parameters are defined as

q̄l(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|q̄lm(i)|2, (4.4)

and

w̄l(i) =

∑
m1+m2+m3

(
l l l
m1 m2 m3

)
q̄lm1(i)q̄lm2(i)q̄lm3(i)

(
l∑

m=−l
|q̄lm(i)|)3/2

. (4.5)

To identify the neighbours of particle i we employ the parameter-free solid-angle-based nearest-
neighbour (SANN) algorithm of Van Meel [152]. This algorithm assigns a solid angle to every
potential neighbour j of i, and defines the neighbourhood of particle i to consist of the Nb(i)
particles nearest to i for which the sum of solid angles equals 4π.

4.3.2 Topological Cluster Classification
Differently from BOPs, in order to perform an analysis which is not solely based on local
symmetries, we require an algorithm that is capable of successfully finding different topological
clusters in a metastable fluid. To this end, we employ the Topological Cluster Classification
(TCC) algorithm [31]. The bonds between particles are detected using a modified Voronoi
construction method. The free parameter fc, controlling the amount of asymmetry that a
four-membered ring can show before being identified as two three-membered rings, is set to
0.82.

4.4 Results

4.4.1 Siamese Dodecahedra and Pentagonal Bipyramids
We perform MD simulations to study crystal nucleation in a supersaturated fluid of hard
spheres. We generate many nucleation events and analyse the trajectories using two different
methodologies. To follow the nucleation process, we first identify the solid-like particles, i.e.
particles with a local solid-like (ordered) environment, by calculating the averaged bond order
parameters [87] that are based on spherical harmonics Ylm, measuring the arrangement of the
neighbours around a particle, as described in Section 4.3.1. In particular, we identify particle
i as solid-like if the sixfold rotational invariant q̄6(i) ≥ 0.31, and we colour them blue in Fig.
4.1c-f. We note that this classification scheme acts on a single-particle level.

To investigate the structure of the fluid, we determine the topologies of various particle
clusters present in the system using the Topological Cluster Classification (TCC) algorithm [31],
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Figure 4.1: Typical configuration of a crystal nucleation event of hard spheres. (a-b) Topological
arrangement of particles in (a) a Siamese Dodecahedron (SD) and (b) Pentagonal Bipyramid (PB)
cluster. The colour coding is explained in the text. (c-d) Cut-through image of an early-stage nu-
cleation event generated by MD simulations. Crystal-like particles are coloured blue, while fluid-like
particles are coloured following the scale bar on the left (c) or right (d) depending on the number of
SD (c) or PB (d) clusters each particle belongs to. The same colour coding of (c) and (d) is used in (e)
and (f), respectively, where we analyse an experimental configuration of PMMA spheres at packing
fraction φ = π

6ρσ
3 = 0.51, where ρ is the number density of the system, while σ is the measured

diameter of the particles.
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as described in Section 4.3.2. We identify local clusters of 3 up to 13 particles consisting of not
only rings of three, four, and five particles with and without additional neighbouring particles,
but also compounds of these basic clusters. In total, we distinguish 41 topological clusters.

We focus our attention on a specific cluster type, the Siamese Dodecahedron (SD) due to its
unique behaviour in the early stages of nucleation. In addition, we also focus our attention on
the Pentagonal Bipyrimid (PB) because of its abundance in the fluid phase and its geometric
similarity with the SD cluster. The SD cluster consists of particles that occupy four out of
the five vertices of a pentagonal planar ring which we refer to as ring particles (as denoted
by the red particles in Fig. 4.1a). The missing particle of the pentagonal ring is replaced by
two particles (denoted by the blue particles in Fig. 4.1a), which are shifted up and down with
respect to the pentagonal planar ring. We refer to these particles as shifted particles. Finally,
two spindle particles (gold particles in Fig. 4.1a) are placed on top and below the pentagonal
ring. The PB cluster is composed of ring particles (red particles in Fig. 4.1b), which form a
pentagonal ring with two spindle particles (gold particles in Fig. 4.1b) similar to the Siamese
dodecahedron.

For each particle in the system, we calculate the number of SD (PB) clusters that a particle
belongs to. In Fig. 4.1c and 4.1d, we colour the fluid-like particles with different shades of pink
(purple), depending on the number of SD (PB) clusters they are part of, according to the scale
bar on the left (right). Even though the density of SD (PB) clusters is high throughout the
fluid, Fig. 4.1c and 4.1d show that the density of SD (PB) clusters is spatially heterogeneous.
Specifically, we observe that the crystal nucleus is surrounded by a high density of SD clusters,
whereas the opposite trend is found for the PB clusters as the PB clusters are depleted near
the surface of the crystal nucleus. More remarkably, the density of PB clusters seems to be
anti-correlated with the density of SD clusters.

In Fig. 4.1e and 4.1f we perform the same analysis on a experimental sample, showing a
heterogeneous structure consisting of high- and low-density regions of SD and PB clusters in
the fluid phase, and a crystal nucleus that is surrounded by a high density of SD clusters and
a low density of PB clusters, in excellent agreement with our simulations.

The incompatibility of the fivefold clusters with crystalline order rationalises the depletion
of PB clusters near the surface of the crystal nucleus. It is tempting to speculate that the SD
clusters surrounding the crystal nucleus play a transient role in the formation of the crystal
phase, which will be investigated in more detail below.

To better understand the role of the PB and SD clusters in the crystallisation mechanism
of hard spheres, we plot in Fig. 4.2a the fraction of particles belonging to SD (pink line) and
PB (purple line) clusters as a function of time during an exemplary spontaneous nucleation
event along with the fraction of crystalline particles (blue line) for comparison. Fig. 4.2a shows
that the fraction of crystalline particles is approximately zero in the metastable fluid phase
at the beginning of this trajectory until it starts to rise when crystallisation sets in. We also
observe that the populations of particles in both the SD and PB clusters are already high before
crystallisation sets in, showing that the metastable fluid exhibits strong spatial correlations due
to packing constraints. More surprisingly, we find an increase in the number of SD clusters
during the early stages of crystallisation, which decreases to a lower value at the end of the
crystallisation process since SD clusters are not present in the fcc structure. In addition, the
fraction of PB clusters decreases at the onset of crystallisation.

To investigate the anti-correlation between SD and PB clusters, we also measure the com-
bined fraction of particles belonging to either SD or PB clusters as a function of time (red
line in Fig. 4.2a). The combined fraction is not only constant in the metastable fluid phase,
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Figure 4.2: Behaviour of Siamese Dodecahedron (SD) and Pentagonal Bipyramid (PB) clusters
during nucleation. (a) Fraction of particles belonging to SD (pink), PB (purple), and combined SD or
PB (red) clusters along with the fraction of solid-like particles (blue) as a function of time during an
exemplary spontaneous nucleation event. Note that a particle can be part of an SD cluster and a PB
cluster at the same time, and therefore the corresponding fractions add up to a value which is higher
than one. Also, a particle can be classified as crystal-like independently from whether it is also part
of an SD cluster or not. The average values in the metastable fluid are shown by dashed lines. (b)
Probability that a given PB cluster transforms into a SD cluster within a time interval of ∆t∗ = 10
during this nucleation event, calculated in a subcell of the system, which is centred around the center-
of-mass of the biggest crystalline cluster. We set this probability to zero when the denominator, i.e.
the number of PB clusters in the considered subcell of the system, is lower than 10 units, for poor
statistics. A sketch of this conversion is shown as an inset in (b).

but also shows lesser fluctuations than the individual fractions of SD and PB clusters. More
surprisingly, we observe that the combined fraction remains constant during the early stages
of crystallisation, thereby demonstrating that the increase in SD clusters is a consequence of a
decrease of PB clusters. The constant combined fraction of SD and PB clusters and the much
smaller fluctuations suggest that there is a reversible conversion between PB and SD clusters.
To this end, we calculate the probability that a PB cluster transforms into an SD cluster within
a time interval ∆t∗ = 10 by only taking into account the subcell of the system where the first
nucleus appeared. In Fig. 4.2b, we plot the conversion rate as a function of time. We find
that the rate of PB into SD clusters is constant in the metastable fluid, and increases when
crystallisation sets in.

We thus observe that the supersaturated fluid exhibits a heterogeneous structure of high-
and low-density regions of PB and SD clusters with a continuous conversion between the two
clusters. In addition, we find that the early stages of crystallisation is signaled by a higher
conversion rate of PB into SD clusters, resulting in an increased fraction of SDs as shown in
Fig. 4.2a. Subsequently, the number of SDs decreases when the crystal nucleus grows further,
thereby demonstrating that the SD clusters represent an intermediate stage in the attachment
of fluid-like particles to the crystal nucleus.

4.4.2 The nucleation mechanism
To understand the role of SD clusters in the fluid-solid transformation, we note that the four
particles of the pentagonal ring of an SD cluster form a trapezoidal arrangement with two



68 Chapter 4

Figure 4.3: Transition from a Siamese Dodecahedron (SD) cluster to an fcc subunit. (a) Arrangement
of the particles in an fcc unit cell. Red, blue and golden particles correspond to an SD cluster, while
the remaining particles are coloured in lilac. (b) Probability distribution of the four angles θ of the
trapezoidal arrangement of the 4 particles (red) in the pentagonal ring of all SD clusters in the system
as computed at four different times during the crystallisation process. The typical arrangements of
particles in SD clusters after and before nucleation are shown in (c) and (d), respectively, where the
black lines connecting the centres of the ring particles help to better understand the transition.

acute and two obtuse angles, see Fig. 4.3d. Interestingly, in the case that these particles form
a square arrangement (Fig. 4.3c), the SD cluster can be identified as a subunit of an fcc crystal
as illustrated in Fig. 4.3a where the particles are denoted with the same colours to facilitate
the comparison. Given this topological similarity, we speculate that the attachment of fluid-like
particles to the solid nucleus proceeds via SD clusters where the four particles in the pentagonal
ring transform from a trapezoidal to a square arrangement such that it becomes part of the fcc
cluster.

To investigate this conjecture, we measure the distribution of the four angles of the trape-
zoidal arrangement of the 4 particles in the pentagonal ring of the SD clusters, at four different
times during the crystallisation process. Fig. 4.3b shows that, in the fluid phase (t∗ = 100),
the distribution is bimodal with a peak at an angle smaller and larger than 90◦, representing
the trapezoidal arrangement. As crystallisation progresses, the distribution becomes unimodal
with a single peak around 90◦, indicating a square pattern.

Our results provide strong support that the trapezoidal arrangement of the four particles in
the pentagonal ring of the SD cluster transforms into a square arrangement corresponding to a
subunit of the fcc crystal. This transition is also illustrated in Fig. 4.3c and 4.3d, showing two
representative SD clusters after and before the transformation, respectively. The key finding
of our study is that the fivefold PB clusters – known to be inhibitors of crystal nucleation and
abundant in the fluid phase – transform into SD clusters, and that the SD cluster-mediated
attachment of particles to the growing nucleus proceeds via a simple rearrangement of particles
into fcc subunits. Differently, the rearrangement of SD clusters into hcp is less straightforward
and involves an additional displacement by one of the shifted particles (see Section 4.6.4).
Hence, the propensity to grow fcc is higher than hcp, revealing that the polymorph selection
mechanism in hard spheres is already hidden in the higher order structure of the fluid phase.
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Figure 4.4: Thermodynamic propensity towards fcc-like particles in the early stages of crystal nu-
cleation of hard spheres. (a) Gibbs free-energy barrier as a function of the number of fcc and hcp
particles in the crystal nucleus. (b) A typical configuration of a nearly pure fcc crystal nucleus and
of (c) a nearly pure hcp crystal nucleus as obtained from US simulations, where fcc-like particles are
coloured blue, hcp-particles are red, and fluid-like particles are lilac.

4.4.3 The minimum free-energy pathway for nucleation
This finding begs the crucial question whether the polymorph selection mechanism as identified
here has a kinetic or thermodynamic origin. In other words, does an fcc crystal have a lower
interfacial free energy – and hence a lower Gibbs free-energy barrier – than an hcp crystal
in a metastable fluid phase? To answer this question, we calculate the Gibbs free energy
β∆G(nfcc, nhcp) for the formation of a crystal cluster consisting of nfcc fcc-like particles and
nhcp hcp-like particles using the Umbrella Sampling (US) technique, see the Methods section
for the technical details.

To investigate the thermodynamic propensity towards fcc-like or hcp-like ordering during
the nucleation process, we use Umbrella Sampling [196] to calculate the the nucleation barrier of
a system of hard spheres at a pressure of βPσ3 = 17.0. Similar to previous literature [193,197]
we identify the nucleus by using the dot product

dl(i, j) =
∑l
m=−l qlm(i)q∗lm(j)(∑l

m=−l |qlm(i)|2
)1/2 (∑l

m=−l |qlm(j)|2
)1/2 , (4.6)

with l = 6 to define solid-like bonds as those bonds between particle pairs (i, j) for which
d6(i, j) > 0.7, and define solid-like particles as those that have at least 7 of such solid-like
bonds. Particle neighbours are defined using a distance cutoff of rc = 1.4σ. The nucleus is
then the largest set of solid-like particles that are connected by solid-like bonds. To disentangle
fcc-like and hcp-like order, we subsequently classify solid-like particles as fcc-like and hcp-like
based on their value of the Steinhardt bond order parameter w4: particles with w4 < 0 are
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fcc-like and those with w4 ≥ 0 are hcp-like [87]. The number of such particles are nfcc and nhcp,
respectively, and we use these to define the US biasing potential:

Ub = 1
2λfcc

(
nfcc − nfcc0

)2
+ 1

2λhcp
(
nhcp − nhcp0

)2
, (4.7)

where both coupling constants λfcc and λhcp are set to an equal value of βλfcc = βλhcp = 0.05.
This allows us to sample the two-dimensional Gibbs free-energy difference β∆G(nfcc, nhcp) that
is the nucleation barrier as a function of the number of fcc-like and hcp-like ordered particles. We
initialise each US window (nfcc0 , nhcp0 ) from a configuration with a nucleus with approximately
nfcc ≈ nfcc0 and nhcp ≈ nhcp0 . For very small nuclei up to n = nfcc + nhcp ∼ 20 we measure the
full cluster size distribution instead of only the size of the largest cluster, as the probability
of multiple small nuclei appearing simultaneously can be significant. We implement the US
scheme by adding additional Monte Carlo bias moves that accept or reject trajectories based
on the bias potential of Eq. 4.7 on top of a hard-particle Monte Carlo (HPMC) simulation
implemented using HOOMD-blue’s HPMC module [195,198]. Bias moves are performed every
MC cycle in order to also sample regions of the free-energy landscape where the gradient is
large. Finally, we reconstruct the nucleation barrier by using the Weighted Histogram Analysis
Method (WHAM) [199], specifically by using the algorithm provided by Ref. 200.

In Fig. 4.4a, we plot β∆G between a metastable fluid and a system with a crystalline core
composed of nfcc fcc-like particles and nhcp hcp-like particles. The lowest free-energy path on
this surface shows that the crystal nucleus has an excess of fcc-like particles in the early stages
of nucleation and that the critical nucleus consists of about 70% fcc-like particles. We show
two exemplary configurations of a nearly fcc-like and hcp-like cluster in Fig. 4.4b and 4.4c,
respectively, demonstrating the effectiveness of our umbrella sampling method to bias towards
nuclei with a certain composition.

4.5 Conclusions
In conclusion, we unveal the crystallisation and polymorph selection mechanism in a fluid of
hard spheres by analysing the early stages of nucleation in MD simulations. We show that
the supersaturated fluid is highly dynamic as there is a reversible conversion between fivefold
Pentagonal Bipyramid and Siamese Dodecahedron clusters. The Siamese Dodecahedra have
a stunning similarity with an fcc subunit, thereby explaining the as-of-yet unexplained higher
propensity of fcc compared to hcp in hard spheres. Finally, we show that the polymorph
selection mechanism has not only a geometric origin which is hidden in the higher-order corre-
lations of the fluid phase, but also a thermodynamic one as the lowest free-energy path proceeds
via a higher number of fcc-like particles with respect to hcp-like particles in the early stages
of nucleation. This insight suggest ways to control the nucleation pathways and the crystal
polymorphs.
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4.6 Appendix

4.6.1 Crystal growth
During the early stages of nucleation of hard spheres, we observe that both in simulations and
experiments the crystal nucleus is surrounded by a high density of Siamese Dodecahedron (SD)
clusters and a low density of Pentagonal Bipyramid (PB) clusters.

In this Section, we show that this scenario persists even during crystal growth when the size
of the nucleus is post-critical. In Fig. 4.5a and 4.5b, we show a post-critical nucleus as obtained
from MD simulations. The solid-like particles are coloured blue. The fluid-like particles are
coloured with different shades of pink (purple), depending on the number of SD (PB) clusters
they are part of, according to the scale bar on the left (right).

The fact that the number of SD clusters around the crystal nucleus is particularly high
throughout the crystal growth process is further evidence that these clusters play a transient
role in the transformation of the disordered fluid to the ordered crystal phase.

Figure 4.5: Typical configuration in the crystal growth regime of hard spheres. (a-b) Cut-through
image during crystal growth as obtained from MD simulations. Crystal-like particles are coloured blue,
while fluid-like particles are coloured according to the scale bar on the left (a) or right (b) depending
on the number of SD (a) or PB (b) clusters each particle belongs to.

4.6.2 Subcell analysis
To obtain a better resolution on the behaviour of SD clusters during nucleation, we divide the
simulation box into 64 cubic subcells of equal volume. For each subcell we compute the fraction
of solid-like particles nx, as well as the fraction of particles belonging to SD clusters nSD, and to
PB clusters nPB. Subsequently, we measure the correlation between these number fractions by
computing the Pearson correlation coefficient during the entire crystallisation trajectory. The
Pearson correlation coefficient r(x, y) between variables x and y reads

r(x, y) =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (4.8)

where x̄ and ȳ represent the average values of variable x and y, respectively.
In Fig. 4.6a we plot r(nSD, nx) as a function of time. We observe two distinct and noteworthy

features. First, at the start of the nucleation process, nx and nSD reach a positive maximum
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Figure 4.6: (a) Pearson correlation r(nSD, nx) as a function of time t∗. (b) Fraction of crystal-
like particles nx as a function of the fraction of particles belonging to at least one SD cluster nSD,
calculated for each subcell in the system. The data points are from three snapshots obtained from
independent MD simulations, which correspond to the maximum of the Pearson correlation function
r(nSD, nx). The vertical (horizontal) line indicates the average value of nSD (nx).

correlation value, demonstrating that a subcell with a high fraction of crystal-like particles
also shows a high fraction of SD clusters. This feature is made explicit in Fig. 4.6b, where
each point correspond to a specific subcell of the system at the peak of the Pearson correlation
between nSD and nx. The second observation we make, is that during the crystal growth stage,
the correlation suddenly drops to negative values, indicating that the crystal structure formed
in the nucleus is incompatible with the presence of SD clusters.

4.6.3 More on Bond Order Parameters
Distinction between ring, shifted, and spindle particles

The analysis conducted in this Chapter demonstrates that SD clusters play a transient role in
the attachment of fluid particles to a crystal nucleus. To investigate this transformation further,
we calculate the bond order parameters (BOPs) for the particles belonging to SD clusters. In
Fig. 4.7a we show the BOP values for the particles composing the SD clusters in the q̄4 − q̄6
plane for a typical configuration in the early stage of nucleation along with the BOPs of a
typical fluid and crystal configuration for comparison. Even though a large fraction of the
SD particles (bright pink points) shows a higher than average degree of fourfold and sixfold
symmetry, the large spread in q̄4 and q̄6 values show that there is no clear correlation between
the SD clusters and their BOP values in the fluid phase.

In order to clarify the transition process from a PB cluster to an SD cluster, in Section
4.4.1 we divided the particles composing an SD cluster into several categories – ring, shifted,
and spindle particles. This classification is not only useful in describing the topology of the
SD clusters, but also reveals additional information regarding the nucleation mechanism. By
computing the probability distribution of q̄6 for the three different particle types of the SD
clusters at the onset of crystallisation, we find that the shifted particles show slightly higher q̄6
values (blue curve in Fig. 4.7b), suggesting that the crystallisation process is largely initiated
by the shifted particles.
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Figure 4.7: Correlation between bond order parameters (BOPs) and Siamese Dodecahedron (SD)
clusters. (a) Projection of the BOP values of particles belonging to SD clusters in the early stages of
nucleation on the q̄4 − q̄6 plane. Particles belonging to SD clusters show BOP values that are very
similar to the ones of the fluid phase, which are therefore not useful in describing the behaviour of the
SD particles. (b) Probability distribution P (q̄6) of the ring, shifted, and spindle particles using the
same configuration as in (a). The inset shows that the shifted particles show slightly higher q̄6 values,
revealing that the nucleation process is largely initiated by the shifted particles.

In Section 4.4.1 we described how the particles re-arrange during the transformation of PB
clusters into SD clusters. To be more specific, we showed that the transformation is initiated
by the appearance of two shifted particles. Recalling that the disappearance of PB clusters and
the subsequent excess of SD clusters enables the start of the crystallisation phenomenon, it is
to be expected that the shifted particles of the SD cluster are indeed the first to crystallise.

Polymorph detection with different classification schemes

The results presented in this Chapter are all based on a combined use of bond order param-
eters (BOPs) and a Topological Cluster Classification (TCC) analysis. In particular, when
using BOPs there are several choices to make, which affect the classification of the particles.
These choices are related to the identification of the local neighbourhood of a particle, to the
distinction of fluid-like and solid-like particles, and to the further distinction of the different
crystal polymorphs. In this section, we select different criteria for all these subtasks, and check
the robustness of the classification outcome. Specifically, we check that all methods record a
predominance of fcc-like with respect to hcp-like ordering in the growing nucleus.

To this end, we start by using a total of three different techniques to find the local neighbour-
hood of a particle. The first two are based on a simple cutoff radius equal to 1.4σ and 1.5σ with
σ the diameter of the particles, while the third is based on the solid-angle nearest-neighbour
(SANN) algorithm.

Furthermore, in order to classify particles as solid-like or fluid-like, we use two different
criteria. One is implemented via the criterion q̄6 > 0.31, as in Section 4.4.1, where we used a
loose criterion, capable of detecting particles that are slightly more ordered than in the fluid
phase. The second method we use here is based on dot-products of the q6m, as implemented in
the Umbrella Sampling calculations (see Section 4.4.3).

Finally, in order to distinguish the different crystal polymorphs, we again use different
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Figure 4.8: Crystal polymorphs in the growing crystalline cluster. Fraction of (a) fcc-like nfcc/N
and (b) hcp-like nhcp/N particles in the growing nucleus consisting of N particles as identified by 12
different classification schemes described in the text.

strategies. In the first method, we employ the w4 value, following the scheme proposed in our
Umbrella Sampling calculations (see Section 4.4.3). Alternatively, we can also use the averaged
bond order parameter w̄4.

Using all possible combinations for detecting the local environment, distinguishing between
solid-like and fluid-like particles, and classifying different polymorphs, we obtain a total of 12
classification schemes. We use all of these to analyse a spontaneous nucleation trajectory and
compute the fraction of fcc-like and hcp-like particles in the largest crystal nucleus during a
nucleation trajectory. In Fig. 4.8a (Fig. 4.8b), we show the ratio of fcc-like (hcp-like) particles
computed via each classification scheme. We note that the first part of the nucleation event is
noisy as the denominator, i.e. the number of particles belonging to the main cluster, is very
small.

We clearly observe that our results are robust with respect to the choice of classification
scheme, thereby providing confidence that crystal nuclei are predominately composed of (60%-
80%) fcc-like particles.

4.6.4 From Siamese Dodecahedra to hcp
In Fig. 4.3 we show that particles arranged in an SD cluster have a high propensity to transform
to fcc due to the topological similarity between the SD cluster and a subunit of fcc. In particular,
the transition between the SD cluster into an fcc subunit proceeds by changing the trapezoidal
arrangement of the four ring particles into a square arrangement. Here, we show that such a
simple transformation does not hold for the transition from an SD cluster to hcp, which involves
an additional displacement by one of the shifted particles.

This transformation is sketched in Fig. 4.9. In Fig. 4.9a, we show the unit cell of an hcp
crystal, with an additional particle on the right belonging to an imaginary adjacent unit cell.
By including the latter particle, it is possible to find a pattern that resembles the SD cluster
described in the text. We therefore colour the particles with the usual colour coding, thus ring
particles are coloured red, spindle particles are coloured gold, and shifted particles are coloured
blue. As one of the shifted particles of this cluster is displaced with respect to an actual SD
cluster, we denote this cluster as a defective SD. Note that particles have been reduced in size
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Figure 4.9: Geometrical relationship between an SD cluster and the hcp unit cell. (a) Unit cell of
the hcp crystal with an additional particle belonging to the adjacent unit cell. An defective SD cluster
is identified in the unit cell of an hcp phase and the particles belonging to this defective SD cluster
are coloured following the colour coding explained in the text. This SD cluster is termed defective
as one of the shifted particles (in blue) is displaced with respect to an actual SD cluster. (b) The
defective SD cluster resulting from the pattern in (a). From this viewpoint, it can be seen that one
of the shifted (blue) particles is displaced, as a result of the “a-b-a-b" stacking of hcp, differently from
what is observed in the fcc case, where the stacking of the hexagonal planes follows the “a-b-c-a-b-c"
pattern.

so that the whole unit cell is visible.
In Fig. 4.9b, we isolate only the particles belonging to this defective SD cluster and picture

them with the actual colloid size. From the view point shown in this figure – and comparing
it with Fig. 4.3c and 4.3d – it is evident that one of the shifted (blue) particles is displaced
with respect to its position in the SD cluster. Hence, the transition from an SD cluster to a
defective SD cluster, which resembles a subunit of hcp, involves an additional displacement of
one of the shifted particles. We therefore conclude that this additional displacement makes the
propensity of fluid-like particles to crystallise into hcp lower than that of fcc.
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Through the order parameter filter:
polymorph detection with an

unsupervised learning procedure

In this Chapter we analyse the problem of finding an order parameter for classifying the poly-
morphs appearing during a crystal nucleation event of hard spheres. We discuss the limita-
tions and shortcomings of many approaches in the literature, and propose a new unsupervised
learning-based algorithm that combines speed of execution and interpretability, and contains a
large amount of information. We finally demonstrate the effectiveness of this new order param-
eter by analysing hard-sphere nucleation trajectories and recognising the different polymorphs,
as well as particles at the interface between the supersaturated fluid phase and the crystalline
embryo.

Based on: G. M. Coli, B. Verhoef, and M. Dijkstra, Through the order parameter filter: polymorph detection
with an unsupervised learning technique, Manuscript in preparation



78 Chapter 5

5.1 Introduction
One of the problems in soft matter studies is the ability to recognise spatial patterns within a
particle system. The search for an order parameter is fundamental not only to recognise, for
example, a nucleation event when it occurs, but above all to be able to describe it quantitatively
[24, 201, 202]. In fact, the main quantities involved in the description of a nucleation event
strongly depend on the size of the nucleus, its shape, and the behaviour of the particles around
it, as described in Chapters 1, 2, and 3.

In recent decades this task has been tackled through a multitude of different avenues. Order
parameters based on the Common Neighbour Analysis (CNA) algorithm, which characterises
the local environment of a particle through the graph constructed from its neighbours, have
been proposed [30,203]. Many other works have used Bond Order Parameters (BOPs) or their
averaged counterparts, which instead expand the local environment of a particle in terms of
spherical harmonics, to construct parameters that are sensitive to different spatial symmetries
[86,87,150,151].

In particular, in the context of BOPs, hexagonal symmetry has often been used in order to
construct order parameters that distinguish a fluid and thus disordered phase from a crystalline
one. However, partial information such as that obtained by looking only at sixfold symmetry
can result in misclassifications, which are artefacts of the technique used.

An example is the so-called hcp-coating during hard-sphere nucleation, which consists of
a dominant presence of hcp-like particles at the interface of a crystalline hard-sphere nucleus.
It has been demonstrated that this purely depends on the fact that the typical values of the
q̄4 and q̄6 order parameters for the hcp crystal are in between those of the fluid and the fcc
crystal [204–206], as we show in Fig. 5.1.

Similarly, a classification which is based solely on the sixfold and the fourfold symmetries
cannot satisfactorily classify the various single-component crystals such as fcc, hcp and bcc. One
evidence is that the presence of the bcc crystal at the early stages of nucleation, as predicted
by the theory of Alexander and McTague, is still heavily debated [207]. Depending on how
one uses the same information, the bcc crystal can be detected or not detected during the
classification procedure [24,77,121,150,167,208,209].

Recently – as well as in Chapter 3 of this thesis – it has been shown that unconventional
symmetries possess a degree of information that can be useful, if not crucial, when combined
with the sixfold and fourfold symmetries already employed, in order to distinguish between
several competing phases [153,210,211]. For instance, in Chapter 3 we showed that an artificial
neural network gives large weights to odd-symmetry BOPs like q7 and q9 in order to correctly
distinguish the small spheres of an icosahedral AB13 crystal from the binary fluid phase. Alter-
natively, in Ref. 211 it has been shown that other BOPs like q̄8 and q̄10 are useful to correctly
label the rich variety of phases formed by a system of hard spherotetrahedra.

In general, it would be useful to have an algorithm capable of processing autonomously a
large amount of information, in order to find order parameters capable of distinguishing the
phases under analysis. Recently, unsupervised learning algorithms of different nature have
been proposed which aim to find order parameters for a wide range of phenomena, including
self-assembly events and dynamic propensity [212–214].

In this Chapter, we use Principal Component Analysis (PCA) [215,216] – an unsupervised
learning dimensionality reduction technique – to find order parameters that can correctly clas-
sify the phases of interest during a hard-sphere nucleation event, on a single particle level.
Thus, our focus is on the fcc, hcp, and bcc crystals, as well as the single-component fluid phase.
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Figure 5.1: Distributions of (a) q̄4 and (b) q̄6 for the four bulk phases considered – fcc, hcp, bcc,
and fluid. For both bond order parameters, the distributions of the bcc and hcp crystals lie between
those of the fluid and the fcc.

This technique has the advantage of finding order parameters that contain a very high degree
of information, being a linear combination of several features. Furthermore, due to the intrinsic
linearity of the technique, the order parameters obtained are highly interpretable. We demon-
strate the effectiveness and robustness of the algorithm by analysing nucleation trajectories
obtained from numerical simulations.

Finally, we employ the Gaussian Mixture Model (GMM) to perform a clustering of the data
in the new parameter space found by PCA [217–219]. In particular, depending on how the
algorithm is used, this process can allow the identification of particles with local environments
corresponding not only to the bulk, but also to the interface of the above phases.

5.2 Model and simulation methods

5.2.1 Simulation details
In order to build a data set where all the relevant phases are present, we simulate a single-
component system where the individual particles interact via a Weeks-Chandler-Andersen
(WCA) pair potential [75]. The interaction u(rij) between particles i and j at distance rij
is defined as

u (rij) =

4ε
[(

σ
rij

)12
−
(
σ
rij

)6
+ 1

4

]
rij < 2 1

6σ

0 rij ≥ 2 1
6σ,

(5.1)

where σ is the particle diameter, and ε the interaction strength. This pair potential can be
straightforwardly employed in Molecular Dynamics (MD) simulations, and the softness of the
repulsion can be tuned via the reduced temperature kBT/ε. In particular, for T → 0 the
WCA potential reduces to the HS interaction. In this work, like in Chapters 3 and 4, we set
kBT/ε = 0.025, which has been used extensively in previous simulation studies to mimic hard
spheres [77–80].
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The temperature T and pressure P are kept constant via the Martyna-Tobias-Klein (MTK)
integrator [92], with the thermostat and barostat coupling constants τT = 1.0 τMD and τP

= 1.0 τMD, respectively, and τMD = σL
√
m/ε is the MD time unit. The time step is set to

∆t = 0.004τMD, which is small enough to ensure stability of the simulations. We ran the
simulations for 109τMD time steps, unless specified otherwise. The simulation box is cubic and
periodic boundary conditions are applied in all directions.

As in Chapter 4, we select the pressure values in a region of metastability that allow us to
observe crystal nucleation on a reasonable time scale. Specifically, the reduced pressure varies in
the range βPσ3 ∈ [13.40, 16.00], which results in numerous spontaneous crystallisation events.
All MD simulations are performed using the HOOMD-blue (Highly Optimised Object-oriented
Many-particle Dynamics) software [195].

In addition to MD simulations, and in order to get data of the equilibrium phases studied in
this work (fcc, hcp, bcc, and single-component fluid), we carry out Monte Carlo simulations in
the canonical (NV T ) ensemble, with periodic boundary conditions applied in all three spatial
directions. The three crystals have a number density ρσ3 = Nσ3/V ' 0.86 (where N is the
number of particles and V the volume of the simulation box), while for the fluid phase we
choose ρσ3 ' 0.78.

5.2.2 Bond Order Parameters
We characterise the local environment of each particle in the data set we built using BOPs
[86,87]. We first define the complex vector qlm(i) for each particle i

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Ylm(θ(rij), φ(rij)), (5.2)

where Nb(i) is the number of neighbours of particle i, Ylm(θ(rij), φ(rij)) denotes the spherical
harmonics, m ∈ [−l, l], θ(rij) and φ(rij) are the polar and azimuthal angles of the distance
vector rij = rj − ri, and ri denotes the position of particle i.

The averaged q̄lm(i) is defined as

q̄lm(i) = 1
Ñb(i)

Ñb(i)∑
j=1

qlm(j), (5.3)

where Ñb(i) is the number of neighbours including particle i itself. The rotationally invariant
quadratic averaged bond order parameter is defined as

q̄l(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|q̄lm(i)|2. (5.4)

As in Chapter 3, to identify the neighbours of particle i we employ the parameter-free
solid-angle-based nearest-neighbour (SANN) algorithm of Van Meel and co-workers [152]. This
algorithm assigns a solid angle to every potential neighbour j of i, and defines the neighbourhood
of particle i to consist of the Nb(i) particles nearest to i for which the sum of solid angles equals
4π.

In principle, the more BOPs we use to characterise a particle, the greater the information
about its local environment is. Therefore, we describe the local environment of each particle i
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Figure 5.2: Mean value of the BOPs q̄l with l ∈ [1, 12] as a function of time t∗ = t/τMD · 106, during
a spontaneous nucleation trajectory performed by a system of nearly-hard spheres. In particular, in
(a) we show only the BOPs with odd symmetries, while in (b) we repeat the same calculation with
even symmetries BOPs.

by a 12-dimensional input vector q of bond order parameters defined as

q(i) = {q̄l(i)}, (5.5)

where l ∈ [1, 12]. All of these 12 BOPs contain information which can be used to distinguish
between different polymorphs. As a proof of that, we calculate, as a function of time, the mean
value of each BOP in a WCA system during a spontaneous nucleation trajectory. The results
are reported in Fig. 5.2. Usually, only q̄4 and q̄6 are used, but also the other parameters show a
change in the mean value at the onset of crystallisation, and thus demonstrate their sensitivity
to the phase transition.

5.3 Feature extraction
Principal Component Analysis (PCA) belongs to the family of dimensionality reduction tech-
niques. These techniques aim to find a space of smaller dimensionality than that in which
the original data live, but at the same time they aim at preserving most of the information
contained in the data [215,216].

Generally, there are two ways in which these techniques succeed in reducing dimensionality
while preserving much of the information. The first is to eliminate redundancy in the input
features. In fact, some features may be highly correlated with each other, and therefore may
not add extra information. The second way is to remove features that do not contain relevant
information about the phenomenon one wishes to characterise, or have a negligible amount of
it.

PCA is the simplest dimensionality reduction technique, as the new output features which
define the new basis are a linear combination of the input features. This aspect penalises PCA
in cases where inherently non-linear transformations are required to reduce the dimensionality,
but at the same time gives PCA great speed of execution, and a significant interpretability of
the algorithm.
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Figure 5.3: (a) The 12 eigenvalues λi and (b) the first three eigenvectors obtained from the application
of PCA on the data set, composed by the vector q(i) of the four bulk phases – fcc, hcp, bcc, and fluid.

But how does PCA actually work? Suppose we have a data set with dimensionality N . PCA
finds a new space with the same dimension N , defined by a new set of mutually orthogonal
unit vectors ψ1, ψ2, ..., ψN – eigenvectors of the transformation performed by PCA – which are
defined as those on which the projection of the data is maximised. The eigenvectors ψi, also
called principal components, are ranked in descending order of expressed variance, such that ψ1
accounts for the largest variance of the data, and so on. The associated expressed fractional
variance of each eigenvector is equal to the corresponding eigenvalue λi. By choosing a subspace
of lower dimensionality M < N spanned by the first M eigenvectors, we can retain most of the
information of the original data while working in a lower dimensionality.

The data set on which we apply PCA is made of a total of 4 · 103 samples, where each
sample corresponds to the vector q(i) defined in Eq. 5.5, computed for particle i in a specific
phase. In particular, we collect 103 samples for each of the phases we want to classify, which
are the fcc, hcp, and bcc crystals, with the addition of the fluid phase, as described in Section
5.2.1. The eigenvalues and eigenvectors resulting from the application of PCA on the data set
are shown in Fig. 5.3.

In Fig. 5.3a, we show the 12 eigenvalues λi – which correspond to the fractional variance
expressed by the corresponding eigenvector, in descending order. Interestingly, with only one
eigenvector – or feature – we can already express a large fraction of the total variance of the
data (more than 87%). In this work, we set the effective dimensionality of our data set to 3.
In other words, we take into account only the first 3 eigenvectors, which together express more
than 98% of the total variance present in the data.

Each of the 12 eigenvectors ψi is a linear combination of the averaged BOP q̄l with l ∈ [1, 12],
and thus

ψi =
N∑
l=1

cil q̄l (5.6)

The coefficients cil for the first three eigenvectors ψ1, ψ2, and ψ3 are shown in Fig. 5.3b
and reported in Table 5.1. If a eigenvector has a high coefficient for a specific q̄l, then the
corresponding feature is prioritised by PCA and it contributes to a high variance of the data.
Conversely, if the same coefficient is close to zero, then the corresponding q̄l is essentially ignored
by PCA. From Fig. 5.3b and Table 5.1 we see that the three-dimensional subspace found by
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ψi ci1 ci2 ci3 ci4 ci5 ci6 ci7 ci8 ci9 ci10 ci11 ci12
ψ1 -0.02 -0.02 -0.03 0.19 -0.07 0.58 -0.09 0.40 -0.03 -0.06 -0.03 0.66
ψ2 -0.01 0.00 -0.01 -0.02 -0.05 0.55 -0.08 0.33 -0.05 0.37 -0.02 -0.66
ψ3 0.04 0.02 0.03 0.93 -0.08 -0.11 0.14 0.10 0.10 -0.18 0.08 -0.21

Table 5.1: Coefficients cil (defined in Eq. 5.6) of the first three eigenvectors – ψ1, ψ2, and ψ3.

Figure 5.4: Projection of q(i) of the four bulk phases – fcc, hcp, bcc, and fluid – (a) onto the
three-dimensional space spanned by ψ1, ψ2, and ψ3, (b) onto the two-dimensional space spanned by
ψ1 and ψ2, and (c) onto the two-dimensional space spanned by ψ2 and ψ3.

PCA almost completely ignores the odd symmetries. Another surprising result is that q̄4 is
only relevant in the third eigenvector, while q̄8, q̄10, and q̄12, which are barely mentioned in the
literature, are found to be highly prioritised for expressing the variance in the data set.

Given the new space spanned by the three selected eigenvectors, it is possible to project
the data for the four bulk phases onto the new space. The results of the projection are shown
in Fig 5.4. Specifically, in Fig. 5.4a we show the projection of the entire data set in the full
three-dimensional space described by ψ1, ψ2, and ψ3. Due to the convenience of working with
2D plots, we also show two alternative projections. The first, in Fig. 5.4b shows the data in
the ψ1−ψ2 space, while the second, in Fig. 5.4c, shows the same data in the ψ2−ψ3 space. In
the rest of the work we will analyse a spontaneous nucleation trajectory in these subspaces in
order to extract information about each particles’s local environment.
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5.4 Results

5.4.1 Simple thresholds-based classification
Now that we have set up the new space found by PCA which enables us to distinguish the
phases under investigation, we start analysing the nucleation phenomenon in this new space.
We therefore consider a spontaneous nucleation trajectory at a pressure equal to βPσ3 = 13.80
(the same as that analysed in Chapter 4). We then select three different configurations, the first
at the very early stages of crystallisation, the second during the crystal growth phase, and the
third when the crystal has almost completely spanned the whole simulation box. We calculate
the vector q(i) for each particle i and project the results onto the PCA space. This analysis
is displayed in Fig. 5.5. In particular, the time instants we take into account correspond to
t∗ = 200, t∗ = 250, and t∗ = 300.

In Fig. 5.5a the projection of the trajectory for these three time steps are shown on the
space spanned by ψ1 and ψ2. The data corresponding to the particles start from the fluid
phase, at the beginning of the crystallisation, and make a path in the PCA space towards the
zone of the space where the clouds corresponding to the fcc and hcp crystals are present. In
contrast, only a few particles intercept the bcc region, which does not seem to be involved in
the crystallisation process. Finally, especially in Fig. 5.5c it is evident that the final location
of many points is in a third cloud, in between the ones corresponding to the fcc and the hcp
crystals. This is due to the stacking faults between these two structures which are present in
the grown crystal, as we shall see in a successive analysis. In Fig. 5.5b we show the same
analysis, but the data is projected onto the space defined by ψ2 and ψ3.

Given the projection of the data, it becomes crucial to establish a classification scheme
to obtain quantitative results about the number of particles in the crystal nucleus, and the
composition of the nucleus. To outline this algorithm, we first construct the distributions
of the projection values on each of the three eigenvectors from each individual phase. The
distributions of ψ1, ψ2, and ψ3 of the four phases are shown in Fig. 5.6.

The outcome of these projections gives us a straightforward option in order to construct
a classification algorithm, as each eigenvector alone is able to distinguish one phase from the
others. In particular, ψ1 distinguishes the fluid phase from all the three crystal phases (see Fig.
5.6a), ψ2 separates well the bcc crystal of the rest of the phases (see Fig. 5.6b), while the final
distinction between fcc and hcp is carried out through ψ3 (see Fig. 5.6c). The vertical dashed
black lines in the plots indicate the thresholds we selected in order to classify each particle.

Using the scheme described above, we analyse the same trajectory whose projections are
shown in Fig. 5.5. At each snapshot, we construct the vector q for each particle. We then
project the same vector onto ψ1, ψ2, and ψ3, and based on the values of the three projection
we assign a class to the particle. We repeat the process for the whole trajectory and we show
the results in Fig. 5.7.

The total number of particles belonging to the main nucleus – together with the total
number of fcc-like, hcp-like, and bcc-like particles – is shown in Fig. 5.7a. From the plot, it can
already be seen that fcc-like particles are predominant according to this classification scheme,
as also found in Chapter 4. This is confirmed in Fig. 5.7b, where we plot the composition of
the nucleus as a function of time, during the crystal growth phase. We find that the fraction of
fcc-like, hcp-like, and bcc-like particles in the nucleus are respectively close to 65%, 25%, and
10%.

Finally, in Fig. 5.7c, Fig. 5.7d, and Fig. 5.7e, we show three consecutive snapshots of



Through the order parameter filter: polymorph detection with an
unsupervised learning procedure 85

Figure 5.5: Projection of q(i) of the four bulk phases – fcc, hcp, bcc, and fluid – and the spontaneous
nucleation trajectory of nearly hard spheres at t∗ = 200, t∗ = 250, and t∗ = 300 (a,b,c) onto the two-
dimensional space spanned by ψ1, ψ2, and (d,e,f) onto the two-dimensional space spanned by ψ2 and
ψ3.
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Figure 5.6: Distributions of the projection of the data of the bulk phases on top of the first three
eigenvectors. The distribution of ψ1 for each phase is shown in (a), and shows that this feature
separates well the fluid phase (lilac curve) from the three crystal phases. Conversely, in (b) we show
the distribution of ψ2 for each phase, which allows us to distinguish the bcc crystal (green curve)
from the other phases. Finally, the distribution of ψ3, which helps separating the fcc-like (dark purple
curve) from the hcp-like (blue curve) particles, is shown in (c).

the growing nucleus, where the colouring of the particles follow the PCA-based classification
algorithm. These snapshots show that the algorithm is capable of detecting the embryo even in
its very early stages, it then follows the crystallisation process during the crystal growth phase,
and detects stacking faults between the fcc-like and the hcp-like stackings in the crystal.

5.4.2 Gaussian Mixture Model
In the previous Section we showed how the BOP distributions can be employed, once pro-
jected onto the first three eigenvectors, to establish a classification scheme for the phases under
investigation. Obviously, this is not the only choice, and many alternatives are available.

One choice is to resort again to unsupervised learning techniques and to build a model
capable of clustering the points automatically. In this Section, we use Gaussian Mixture Model
(GMM) to achieve this goal. GMM is a technique that assumes that the data set is distributed
according to a finite number of multivariate Gaussian distributions [217–219]. Once the model
is trained on the data set and the optimal parameters of the Gaussian distributions are found,
posterior probabilities can be assigned to each new data point, describing the probability of that
data point being generated from each of the Gaussians in the model. Once these probabilities
are computed, the simplest way to assign a class based on the output of the GMM is to choose
the class which corresponds to the multivariate Gaussian distribution for which the posterior
probability is the highest.

This procedure works well especially in cases where the data are actually distributed accord-
ing to a discrete number of multivariate Gaussians. During a spontaneous nucleation event,
however, there are time instants in which the particles do not have environments that can be
easily attributed to the fluid phase, nor to a typical crystalline phase. To detect these parti-
cles – which especially in the initial instants of nucleation correspond to most of the particles
composing the nucleus – we adopt a different strategy. For each particle, we first check the
highest posterior probability. However, the corresponding class is actually assigned only if the
data point is not further away than five times the covariance matrices from the centre of the
Gaussian itself. If this criterion is not fulfilled, the particles are assigned a new label, which
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Figure 5.7: Results from the classification scheme using the first three eigenvectors given by PCA.
(a) The fraction of crystalline particles, and of each crystal polymorph as a function of time, during a
spontaneous nucleation trajectory. The prevalent polymorph as detected by this classification scheme
is the fcc crystal. (b) The composition of the growing nucleus during the growth phase as a function
of time. The fraction of fcc-like, hcp-like, and bcc-like particles in the nucleus is about 65%, 25%, and
10%, respectively. (c,d,e) Three snapshots of the system where the particles are coloured according to
the colour coding in (a) and (b).
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Figure 5.8: Data of a snapshot during a spontaneous nucleation event, with each particle being
classified using GMM and coloured accordingly. The colour coding for the four different classes is the
same as in the previous figures, while the interface particles – particles whose local environment do
not correspond to one of the known bulk phases – are coloured orange. Differently from the previous
figures, where also the bulk reference phases were displayed, only the data points coming from MD
simulations are shown.

indicates that they are interface particles. The results of this procedure on a snapshot during
a spontaneous nucleation path is shown in Fig. 5.8.

Classification strategies which do not include interface particles are often forced to assign a
class even in cases where particles do not show the same local environment of the bulk phase
it is assigned to. However, using the current strategy, this does not happen. Furthermore,
the study of the interface of a growing nucleus is filled with open questions, and we believe
that a correct identification of such particles is the first step towards a better comprehension
of the crystallisation mechanism. As a proof of the ability of this technique to locate interface
particles, we show in Fig. 5.9 three consecutive snapshots of the growing nucleus, where the
colouring of the particles follow the GMM-based classification algorithm, as in Fig. 5.8.

In Fig. 5.8a the embryo in its very early stages is detected, and is composed of only interface
particles. When the nucleus grows, we see that the orange-coloured interface particles form a
coating around the bulk phase. Finally, when the crystal has formed and spanned the simulation
box, most of the particles are either fcc-like or hcp-like, but interestingly the stacking faults
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Figure 5.9: Results of the GMM-based classification scheme. In (a), (b), and (c) we plot three
snapshots of the system as a result of the classification described. The colouring of the particles follow
the colour coding in Fig. 5.8.

between fcc and hcp are also recognised as interface. This is a proof that this strategy not only
detects fluid-crystal interfaces, but also interfaces between two crystals.

In this section we have shown that, once the dimensionality has been reduced via PCA,
a clustering algorithm like GMM can autonomously label the particles based on their local
environments, in an interpretable way. Interestingly, this technique can be implemented with
the possibility of detecting the interface particles, in addition to the four bulk phases. De-
spite being a useful feature for a classification algorithm, in the context of the task shown
in this Chapter, we note that the GMM-based classification has a disadvantage with respect
to the threshold-based classification described in Section 5.4.1. In fact, using GMM, all the
eigenvectors influence the classification for each particle, as the clustering takes place in three
dimensions. This is not the ideal scenario, as some eigenvectors may be not particularly good
to perform specific distinctions, and might therefore lead to wrong classifications. Conversely,
in the scheme described in Section 5.4.1, every phase is recognised using an eigenvector which
is designed for that specific task. For instance, ψ1 works well for distinguishing fluid-like from
solid-like particles, and therefore the classification of fluid particles is solely based on ψ1. The
same happens with ψ2, which is particularly good for distinguishing bcc-like particles from
fcc-like or hcp-like ones, and with ψ3, which separates nicely fcc and hcp.

5.4.3 Incomplete data set
In this Chapter, we have seen how PCA finds a lower-dimensional linearly transformed subspace
of the higher-dimensional space of the original data set, in which it is possible to distinguish
well all the phases that are given to PCA as input. It is legitimate to wonder what kind of
projection is obtained, if one or more phases are omitted from the initial data set.

We therefore construct an alternative data set, including the three crystal structures anal-
ysed above – fcc, hcp and bcc – but excluding the fluid phase. In this way PCA will find a
new subspace that does not have to deal with finding eigenvectors that maximise the variance
when considering also the BOPs of the fluid phase.

We repeat the procedure described in Section 5.3, and as a result PCA finds a new space,
identified by new eigenvectors. Also here, in order to analyse a spontaneous nucleation trajec-
tory in the new space found by PCA, we calculate the vector q for each particle at each time
step and project the results on ψ1 and ψ2. The results obtained in three consecutive time steps
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Figure 5.10: Projection of q(i) of the three bulk phases – fcc, hcp, and bcc – and the spontaneous
nucleation trajectory of nearly hard spheres at t∗ = 200, t∗ = 250, and t∗ = 300 (a,b,c) onto the two-
dimensional space spanned by ψ1 and ψ2. Note that the subspace spanned by ψ1 and ψ2 is different
from the one in Fig. 5.5, as the present subspace was found using PCA on a data set in which the
fluid data was removed.
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– t∗ = 200, t∗ = 250, and t∗ = 300 – are shown in Fig. 5.10. Despite having projected the same
trajectory at the same time steps, the projection in Fig. 5.10 exhibits a peculiar and different
behaviour with respect to Fig. 5.5. In this space, which is not optimised for the distinction
of the crystals from the fluid phase, the particles of the fluid phase seem to strongly intercept
the area corresponding to the bcc crystal, before making a further transition to the hcp or
the fcc crystals. This phenomenon did not happen by looking at Fig. 5.5, where the cloud
corresponding to the bcc crystal was mainly avoided by the path made by the particles in the
PCA subspace.

This is further evidence of the ease with which erroneous conclusions can be drawn by looking
at nucleation events through order parameter filters that are either lacking information, or are
not optimised to describe the phenomenon under investigation. Also, when applying PCA, it
is crucial to build a data set where all the phases we wish to distinguish are present.

5.5 Conclusions
To conclude, in this Chapter we have studied the problem of a single particle-based classification
of a system of nearly hard spheres during a nucleation event. We then devised a novel PCA-
based classification scheme which shows a number of advantages over standard techniques
which involve the use of a small number of features. First of all, PCA is able to find an optimal
linear combination of several order parameters. This results in more information about the
local environment of each particle being considered in the classification process. Secondly, the
method is optimised for the system in question, since the subspace found by PCA is the result
of applying the technique to a data set where only the phases we want to monitor are present.
Finally, besides being fast and robust, the method allows us to perform a real feature extraction
operation. By looking at the components of the eigenvectors, it is in fact possible to gain new
insights into which features are useful to describe the nucleation phenomenon. We can, in other
words, learn something ourselves from using this technique.

In general, we expect that unsupervised learning techniques can play an increasingly leading
role in the identification of key features of physical phenomena, and not only of nucleation. On
the other hand, in the field of soft matter, we expect that other phenomena of self-assembly or
even of the glass transition can be better understood and described, starting from these kind
of approaches, for both systems coming from simulations and experiments.
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Inverse design of charged colloidal
particle interactions for self assembly

into specified crystal structures

In this Chapter we study the inverse problem of tuning interaction parameters between charged
colloidal particles interacting with a hard-core repulsive Yukawa potential, so that they assemble
into specified crystal structures. Here, we target the body-centred-cubic (bcc) structure which
is only stable in a small region in the phase diagram of charged colloids and is, therefore,
challenging to find. In order to achieve this goal, we use the statistical fluctuations in the bond
orientational order parameters to tune the interaction parameters for the bcc structure, while
initialising the system in the fluid phase, using the Statistical Physics-inspired Inverse Design
(SP-ID) algorithm. We also find that this optimisation algorithm correctly senses the fluid-
solid phase boundaries for charged colloids. Finally, we repeat the procedure employing the
Covariance Matrix Adaptation - Evolution Strategy (CMA-ES), a cutting edge optimisation
technique, and compare the relative efficacy of the two methods.

Based on: R. Kumar, G. M. Coli, M. Dijkstra, and S. Sastry, Inverse design of charged colloidal particle
interactions for self assembly into specified crystal structures, The Journal of Chemical Physics, 151 (8), 084109
(2019)
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6.1 Introduction
In the past few years, several inverse methods have emerged that design optimal interactions in
such a way that the system spontaneously assembles into a targeted structure [220–222]. These
methods have received considerable attention in materials science [223–225], and have been
successively used to find crystal structures for photonic band-gap applications [43], to predict
crystals [44] and protein structures [45, 46], materials with optimal mechanical and transport
properties [47], and for optimising the interactions for self assembly [226–230]. Though many of
the methods developed are either based on black-box techniques, in which the algorithm tunes
the interaction parameters without taking the statistical nature of the system into account, or
are designed ad hoc for a particular class of systems, systematic approaches based on a statistical
mechanical formulation, which are general, and allow for application tailored to specific systems
of interest, have also been investigated. Recently, several methods have been proposed which
take into account the statistical nature of the system in updating the inter-particle interaction
parameters [231–233]. Lindquist et al. [231] proposed a relative entropy based inverse design
approach which tunes the inter-particle interaction parameters for the self assembly of crystal
structures by exploiting the statistical nature of the system. Later, Adorf et al. [233] modified
this method by carrying out relative entropy minimisation directly in Fourier space to target the
complex crystal structure. These methods have been successfully employed to design isotropic
potentials to assemble a wide range of crystal structures.

In the present Chapter, we investigate the efficacy of one such method, the Statistical
Physics-inspired Inverse Design (SP-ID) method developed by Miskin et al [234]. This method
considers statistical fluctuations present in the microscopic configurations of the system for
tuning the interactions between the particles. Apart from tuning the inter-particle interac-
tion parameters, system parameters like temperature and pressure can also be tuned using
this method. In order to design these interactions, we have used a quality function based on
bond order parameters [235, 236] to rank the generated configurations. The same task can
be faced employing numerous optimisation techniques like relative entropy based inverse de-
sign [231–233], (Adaptive) Simulated Annealing [237–239], Particle Swarm Optimisation [240],
and several genetic algorithms [241]. To evaluate the effectiveness of the SP-ID algorithm, we
compare it with the Covariance Matrix Adaption - Evolutionary Strategy (CMA-ES) [242–244],
which we regard as a state-of-the-art optimisation technique for evolutionary computation.

We have chosen a system of colloidal particles as the model for which we wish to design
the interactions in order to target a specific crystal structure. The interparticle potential of
colloids offers a wide variety of functional forms. It can contain a hard-core term, a dipole-
dipole term, a charge dispersion term, a screened-Coulomb (Yukawa) term and a short-ranged
attractive depletion term. More specific designed colloidal particles such as patchy colloids and
DNA-functionalised colloids offer even greater diversity of interactions. For all of these, the
interaction parameters can be tuned. In the case of Yukawa interactions, the Debye screening
length can be adjusted by changing the salt concentration, and the contact value can be tuned
by altering the surface charge of the particles.

Previous studies have employed what may be termed a forward method in which, starting
from the microscopic interaction parameters and specified thermodynamic parameters such as
temperature and density, one computes the equilibrium properties and finds the stable phase of
the system [245–247]. In the present work, our purpose is to employ an inverse method, where
the target structure and equilibrium properties are the input from which we wish to design
the interparticle interactions for which the particles spontaneously self assemble into the target
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structure.
In this study, we considered a charged colloidal system in which particles interact with

a hard-core repulsive Yukawa potential. The complete phase diagram of hard-core Yukawa
particles is known from earlier studies [245–247]. Because of the purely repulsive nature of the
potential, this system displays only a fluid phase which can freeze into a face-centred-cubic
(fcc) or a body-centred-cubic (bcc) crystal phase. The phase diagram of hard-core Yukawa
particles shows one or two triple points where fcc, bcc, and fluid phases coexist. The bcc phase
is only stable in a very small region in the phase diagram and, for this reason, constitutes a
good test case for the reverse-engineering process. In this work, we optimise the thermodynamic
conditions and the interparticle interactions which favour the crystallisation of the bcc structure.
Here we show three different cases, in which we respectively tune one, two, or three parameters.
In all cases, we show that both SP-ID and CMA-ES find the thermodynamic conditions and
the interparticle interaction parameters that lead to the targeted bcc structure formation.

The Chapter is organised as follows: In Sec. 6.2, we define the model system studied in this
work and the corresponding phase diagram and bond order parameters to identify the different
phases. In Sec. 6.3, we describe the inverse design methods and the form of the quality function
used in this study. Results for tuning the interactions to target the bcc structure for all three
cases are discussed in Sec. 6.4. Finally, we summarise our results in Sec. 6.5.

6.2 Model and simulation methods

6.2.1 Interaction potential
We consider a hard-core repulsive Yukawa system which represents a standard model for charged
colloids. The form of the potential is given by

βU(r) =
βε

exp[−κσ(r/σ−1)]
r/σ

for r > σ

∞ for r ≤ σ,
(6.1)

where βε is the contact value of the pair potential expressed in units of kBT = 1/β, kB is
the Boltzmann constant, κ is the inverse of the Debye screening length, and σ is the hard-core
diameter. In Fig. 6.1, we show the phase diagram for such a system with βε = 8 in the (1/κσ, η)
representation and the (1/κσ, βPσ3) plane [247]. The phase diagram exhibits a stable fluid,
bcc, and fcc region, as well as two triple points at which the three phases coexist. Note that we
always use scaled variables, a reduced temperature kBT/ε, reduced pressure βPσ3 and inverse
screening length 1/κσ, each of which can be treated as tuning parameter for obtaining the
desired behaviour.

6.2.2 Bond Order Parameters
Every optimisation algorithm, including SP-ID and CMA-ES, works on the basis of minimising
a user-defined fitness function. Here, we have used the averaged bond order parameters (BOP)
q̄l and w̄l (l = 6). The first is computed as follows: [235,236],

q̄
(i)
l =

 4π
2l + 1

l∑
m=−l

|q̄(i)
lm|2

1/2

, (6.2)
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where

q̄
(i)
lm = 1

Ñb(i)

Ñb(i)∑
j=0

q
(j)
lm

q
(i)
lm = 1

Nb(i)

Nb(i)∑
j=1

Ylm(θ(rij), φ(rij)).

Here, Nb(i) is the number of neighbours of particle i, Ñb(i) is the number of neighbours including
particle i itself, Ylm(θ(rij), φ(rij)) denotes the spherical harmonics with rij the distance vector
from particle i to particle j. The second bond order parameter we used is defined as

w̄
(i)
l =

∑
m1+m2+m3

(
l l l
m1 m2 m3

)
q̄

(i)
lm1 q̄

(i)
lm2 q̄

(i)
lm3

(
l∑

m=−l
|q̄(i)
lm|)3/2

Figure 6.1: Phase diagram of a system in which the particles interact via a hard-core repulsive
Yukawa pair potential with βε = 8 in a) the (1/κσ, βPσ3) plane and b) the (1/κσ, η) representation.
The phase diagram displays a stable fluid, bcc, and fcc phase [246,247].

In order to calculate the radius of the first coordination shell for each particle, we employ
the solid angle based nearest-neighbour (SANN) algorithm [248], where a nearest neighbour of
a particle is identified by attributing a solid angle to each possible neighbour such that the sum
of solid angles equals at least 4π.

In Fig. 6.2, we show the scatter plots of q̄6 versus w̄6 for the fluid, bcc, and fcc phases of
a system of Yukawa particles with βε = 8 at the high-density triple point conditions. We find
distinct clouds of points corresponding to the fluid, bcc, and fcc phases, and hence, q̄6 and w̄6
can be used to distinguish the three phases.

6.3 Inverse design methods

6.3.1 Statistical Physics-inspired Inverse Design method
In the SP-ID method, microscopic parameters such as the interparticle pair potential parameters
are tuned by exploiting statistical fluctuations in such a way that the system will evolve to
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those states which correspond to the targeted macroscopic response of that system [234]. In this
method, the time evolution of the probability distribution of finding the system in configuration
x is written as

ρ̇(x|λi) = ρ(x|λi) [f(x)− 〈f(x)〉] , (6.3)

where ρ denotes the probability of finding a system in some configuration, λ′is are the ad-
justable parameters and f(x) is a quality function which gives a weight/fitness value to each
configuration based on a targeted macroscopic property. Time t is an artificial time that in-
dexes the optimisation steps and 〈f(x)〉 is the ensemble average over all the configurations.
With straightforward manipulation, the above equation can be recast as equations of motion
for λi [234]:

λ̇i(t) = 〈∂λilog (ρ) ∂λj log (ρ)〉−1

×〈[f(x)− 〈f(x)〉] ∂λj log (ρ)〉, (6.4)

where < .. > denotes an ensemble average at a given set of values of λi. To integrate Eq. 6.4,
we have used a modified Euler method with a fixed time step of 4.0.

We have built our quality function f(x) in the following way:

f(x) =
∫
dx′Θ(g(x′) ≥ g(x))ρ(x′|λ) (6.5)

where Θ(a ≥ b) is equal to 1 whenever the inequality in the argument is fulfilled and zero
otherwise, and g(x) denotes the fitness function,

g(x) = (q̄6(x)− q̄target6 )2 + (w̄6(x)− w̄target6 )2 (6.6)

with q̄6(x) = ∑N
i q̄

(i)
6 /N and w̄6(x) = ∑N

i w̄
(i)
6 /N the averages of the bond order parameters

over all the particles in the system, and q̄target6 and w̄target6 are the corresponding quantities in
the target structure (bcc). Here, the integral over x′ represents a sum over a series of n different
configurations as obtained from a simulation for a fixed set of parameters (κσ, βPσ3, βε). The
quality function f(x) will have higher values for those configurations whose q̄6 and w̄6 values are
closer to the target values. More precisely, f(x) equals the probability of having a lower value
of g(x) than any other configuration drawn randomly from the equilibrium distribution. To
target the bcc structure, we have chosen q̄target6 = 0.395 and w̄target6 = 0.011830 (average values
of q̄6, w̄6 for the bcc structure obtained from the scatter plot shown in Fig. 6.2). For a perfect
bcc structure, these values are, q̄6 = 0.5107 and w̄6 = 0.013161, but here we have targeted the
bond order parameter values for a finite-temperature bcc structure. This choice of the fitness
function denotes a focus in the crystal symmetry only. Generally, it strongly depends on what
the user is interested in, and might include other quantities, like the lattice spacing.

6.3.2 Covariance Matrix Adaptation-Evolutionary Strategy
In order to implement CMA-ES, we draw n samples from a multivariate Gaussian distribution
for each generation whose dimension D corresponds to the number of parameters we wish to
tune. Subsequently, we evaluate the fitness function g(x) on the generated samples, and we
pick the best k samples. Using the following equations, we estimate the multivariate Gaussian
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distribution with mean ~µ (a D-dimensional vector) and Σ = σ2C the covariance matrix of the
Gaussian distribution for the next generation using:

µi
′ = µi +

∑
x

w(x)(λi(x)− µi)

qi
′ = (1− c1)qi + c2

(√
Σ−1

)
ij

(µj ′ − µj)

pi
′ = (1− c3)pi + c4(µi′ − µi)

Cij
′ = (1− c5 − c6)Cij+

+ c5
∑
x

w(x)(λi(x)− µi
σ

λj(x)− µj
σ

− Cij) + c6pi
′pj
′

σ′ = σ exp [c7( ‖ ~q′ ‖
〈‖ N(0, I) ‖〉 − 1)]

(6.7)

where {x} denotes the n samples consisting of multiple configurations calculated for n different
parameter sets (κσ, βPσ3, βε) (denoted by λi(x) above) in CMA-ES, w(x) is the normalised
distribution of weights based on the fitness of the samples. We choose w(x) ∝ log(k+1)− log(i)
where i is the rank index of sample x (i = 1 for the configuration with the smallest g(x)
value) for the best k samples, and set w(x) = 0 for the rest. ~q and ~p are additional D-
dimensional vectors which determine, respectively, the changes in amplitude and directionality
of the covariance matrix, and finally 〈‖ N(0, I) ‖〉 is the average length of a vector drawn from
a multivariate Gaussian distribution centred in the origin and where the covariance matrix is
the identity matrix. In the present work we use n = 20 and k = 5. For the first generation we
initialise ~q and ~p as null vectors. Moreover, since we do not assume any a priori correlation
between the different tuning parameters, the initial form of the covariance matrix Σ is diagonal.
Finally, all the free parameters ci of the CMA-ES are selected following the recipe in Ref. 244.
It is important to note that in CMA-ES, since the samples are randomly extracted at each
generation, there are often situations in which different crystal structures are simulated during
the same generation. Therefore we have to make sure that the bcc crystal is always the one
with the lowest fitness, and that no BOP fluctuations can reverse this order. For this reason,
we found that a slightly lower value q̄target6 = 0.377 makes CMA-ES more effective in reaching
the goal of targeting the bcc structure. This is due to the typical low values assumed by w̄6 in
the phases considered here, which weigh less in the fitness function.

Finally, we would like to stress that there is a substantial difference in the use of the fitness
function between the two methods. In SP-ID we rank different configurations, so q̄6(x) and
w̄6(x) are bond order parameters computed in a single configuration. The SP-ID method is
thus based on the statistical fluctuations in the bond order parameters (Fig. 6.2) in a simulation
at a single set of interaction parameters in order to optimise these values for the desired bcc
structure. When using the CMA-ES, we rank samples, so q̄6(x) and w̄6(x) are computed as
ensemble averages of these bond order parameters over multiple configurations for distinct sets
of parameters. The CMA-ES method is thus based on a ranking of the different samples as
obtained for different interaction parameter sets in order to optimise the parameter values.

6.3.3 Simulation details
In order to evaluate the ensemble averages and to generate distinct configurations for the
SP-ID method, we perform constant pressure and constant temperature (NPT ) Monte Carlo
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Figure 6.2: Scatter plot of the averaged bond order parameters q̄6 versus w̄6 for the fluid, bcc, and
fcc phase of a system of Yukawa particles with contact value βε = 8 at the high-density triple point.
Each point corresponds to a single particle. In total 2000 points were chosen randomly from each
structure.

(MC) simulations on systems consisting of N = 250 hard-core repulsive Yukawa particles.
We initialise the simulations by placing the particles randomly in a cubic simulation box.
We equilibrate the system up to 105 MC cycles. One Monte Carlo cycle corresponds to N
particle moves and one volume move. The particle and volume moves are adjusted in such
a way that 45% of the particle moves and 20% of the volume moves are accepted. We save
103 uncorrelated samples and evaluate the ensemble averages in Eq. 6.4. These uncorrelated
samples are used to calculate the new parameters. Once the parameters have been changed, we
repeat the whole procedure starting the simulation from the last configuration generated with
the previous parameters. We repeat this process until the target structure is reached.

In the CMA-ES algorithm, we evaluate the ensemble averages by performing simulations
at different parameter sets at each generation. At every next generation, we take the last
configuration of the fittest sample as the starting point for all the new samples.

6.4 Results

6.4.1 Tuning parameters with the SP-ID method
We start from the case in which we tune only one inter-particle interaction parameter, the
inverse Debye screening length 1/κσ of the interaction potential (Eq. 6.1) to target the bcc
structure. At this stage, reduced pressure βPσ3 and the contact value βε are kept constant at
βPσ3 = 33 and βε = 8. The initial value of 1/κσ is 0.4, to make sure the system starts from
a fluid configuration. Given the form discussed in Sec. 6.3, the quality function gives higher
weights to those configurations whose q̄6 and w̄6 values are closer to the target values. The
probability of finding the system in some configuration x, in the NPT ensemble is given by,
ρ(x|λi) ∝ exp(−βH(x)). When only one parameter is tuned (1D case), the equation of motion
(Eq. 6.4) becomes,
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Figure 6.3: Evolution of the parameters in a) the (1/κσ, βPσ3) plane and b) the (1/κσ, η) plane when
the system is initialised in the fluid phase at reduced pressure βPσ3 = 33, inverse Debye screening
length 1/κσ = 0.4 and contact value βε = 8. βPσ3 and βε are kept fixed, and only 1/κσ is tuned. In
c) we show an enlarged view of the data near the fluid-bcc coexistence region. In a) and b), for visual
clarity, we draw only 1 every 20 points, while in c) all points are displayed.

d

dt
(κσ) = −Cov[∂(βH)

∂(κσ) ,
∂(βH)
∂(κσ) ]−1Cov[∂(βH)

∂(κσ) , f ], (6.8)

where H = U + PV is the Hamiltonian of the system.

Figure 6.4: Evolution of 〈q̄6〉 and 〈w̄6〉 as a function of simulation time during the optimisation
using the SP-ID algorithm for the 1D case in a) and b), the 2D case in c) and d), and for the
3D case in e) and f), respectively. The system is initialised in the fluid phase at reduced pressure
βPσ3 = 33, inverse screening length 1/κσ = 0.4 and contact value βε = 8. For the 3D case, blue
coloured symbols represent the 〈q̄6〉 and 〈w̄6〉 values when the system is initialised at (i) 1/κσ = 0.4,
βPσ3 = 33, βε = 8, while red coloured symbols represent bond order parameter values for the case (ii)
1/κσ = 0.4, βPσ3 = 25, βε = 6. The simulation time indicates the number of simulations performed
at distinct sets of interaction parameters.
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By solving Eq. 6.8, a new value of 1/κσ is obtained and the algorithm keeps on optimising
this interaction parameter until the goal is reached, i.e., q̄6 = q̄target6 and w̄6 = w̄target6 . The
path of the parameters is shown in Fig. 6.3a and Fig. 6.3b in the (1/κσ, βPσ3) and (1/κσ, η)
planes. In both, the optimiser correctly tunes 1/κσ to reach the bcc structure which can also be
verified by examining the evolution of the average q̄6 and w̄6 values as the simulation proceeds.
In Fig. 6.4a and Fig. 6.4b, we plot the average q̄6 and w̄6 values as a function of the simulation
time. At the very beginning of the simulation, q̄6 and w̄6 values show that the system is in
the fluid phase and as the algorithm optimises the interactions, there is a sharp transition in
both of these values which exactly happens at the fluid-bcc phase boundary. Once the system
reaches the bcc phase, it remains in the bcc phase. We also find that as the system reaches the
phase boundaries, there is a sudden change in the slope of the parameter’s trajectory as shown
in Fig. 6.3c. In other words, the optimiser (Eq. 6.4) correctly recognises the phase boundaries
present in the phase diagram.

Figure 6.5: Evolution of the parameters in a) the (1/κσ, βPσ3) plane and b) the (1/κσ, η) plane when
the system is initialised in the fluid phase at reduced pressure βPσ3 = 33, inverse Debye screening
length 1/κσ = 0.4 and contact value βε = 8. βε is kept fixed, and two parameters 1/κσ and βPσ3 are
tuned. In c) we show an enlarged view of the data near the fluid-bcc coexistence region. In a) and b),
for visual clarity, we draw only 1 every 20 points, while in c) all points are displayed.

We now analyse the case in which we tune two parameters simultaneously (2D case), one
inter-particle interaction parameter, the inverse Debye screening length 1/κσ and one system
parameter, reduced pressure βPσ3 while βε = 8 is kept constant. Note that we use σ and kBT
as our unit of length and energy, respectively, which we keep fixed and hence βε and βPσ3

can be varied independently from each other. Here, we initialise the system again in the fluid
phase at 1/κσ = 0.4 and βPσ3 = 33. The equations of motion (Eq. 6.4) for the two parameters
become

d

dt

[
βPσ3

κσ

]
= −

 Cov[ ∂(βH)
∂(βPσ3) ,

∂(βH)
∂(βPσ3) ] Cov[ ∂(βH)

∂(βPσ3) ,
∂(βH)
∂(κσ) ]

Cov[ ∂(βH)
∂(βPσ3) ,

∂(βH)
∂(κσ) ] Cov[∂(βH)

∂(κσ) ,
∂(βH)
∂(κσ) ]

−1  Cov[ ∂(βH)
∂(βPσ3) , f ]

Cov[∂(βH)
∂(κσ) , f ]

 . (6.9)

In Fig. 6.5a and Fig. 6.5b, we show the path of the parameters in the (1/κσ, βPσ3) and
(1/κσ, η) planes. As the simulation time proceeds, SP-ID successfully optimises both the inter-
action parameters in such a way that the final structure formed is the bcc crystal. The form
of the quality function is the same as we have used for the one parameter case. Variations of
q̄6 and w̄6 values also verify the formation of the bcc structure from the fluid phase (Fig. 6.4c
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Figure 6.6: Evolution of a) 1/κσ, b) βPσ3, and c) βε as a function of simulation time when the
system is initialised in the fluid phase at (i) βPσ3 = 33, 1/κσ = 0.4 βε = 8 (blu line), and (ii)
βPσ3 = 25, 1/κσ = 0.4 βε = 6 (red line). Three parameters are tuned to target the bcc structure,
namely βPσ3, 1/κσ and βε.

and Fig. 6.4d). We find from Fig. 6.5c that the optimiser recognises the phase boundaries very
well as also found for the one parameter case.

Finally, we investigate the case in which we tune three parameters simultaneously (3D
case), two inter-particle interaction parameters, the inverse Debye screening length 1/κσ and
the contact value βε, and one system parameter, reduced pressure βPσ3. We perform two
independent simulations by initialising the system at two different state points in the fluid
phase at (i) 1/κσ = 0.4, βPσ3 = 33 and βε = 8, (ii) 1/κσ = 0.4, βPσ3 = 25 and βε = 6 and
optimise all three parameters, κσ, βPσ3 and βε for the bcc phase. The equations of motion
(Eq. 6.4) when three parameters are tuned become

d

dt

 βPσ3

κσ
βε

 =−


Cov[ ∂(βH)

∂(βPσ3) ,
∂(βH)
∂(βPσ3) ] Cov[ ∂(βH)

∂(βPσ3) ,
∂(βH)
∂(κσ) ] Cov[ ∂(βH)

∂(βPσ3) ,
∂(βH)
∂(βε) ]

Cov[∂(βH)
∂(κσ) ,

∂(βH)
∂(βPσ3) ] Cov[∂(βH)

∂(κσ) ,
∂(βH)
∂(κσ) ] Cov[∂(βH)

∂(κσ) ,
∂(βH)
∂(βε) ]

Cov[∂(βH)
∂(βε) ,

∂(βH)
∂(βPσ3) ] Cov[∂(βH)

∂(βε) ,
∂(βH)
∂(κσ) ] Cov[∂(βH)

∂(βε) ,
∂(βH)
∂(βε) ]


−1

×

×


Cov[ ∂(βH)

∂(βPσ3) , f ]
Cov[∂(βH)

∂(κσ) , f ]
Cov[∂(βH)

∂(βε) , f ]

 .
(6.10)

In Fig. 6.6, we plot the path of the tuned parameter trajectories as a function of simulation
time when the system is initialised in the fluid phase and the desired goal is to reach the
targeted bcc structure. Initially, all three parameter values decrease while the system is in
the fluid phase and once it crosses the phase boundary between the fluid and bcc phase, they
start to saturate. As the simulation time proceeds, the optimiser successfully optimises the
parameters in such a way that the final structure becomes the bcc phase. Here we also use the
same form of the quality function as we have used earlier for the one and two parameter cases.

To confirm that the final structure is a bcc phase, we also plot the evolution of 〈q̄6〉 and
〈w̄6〉 as a function of the simulation time in Fig. 6.4e and Fig. 6.4f, which indeed confirms that
the simulation reaches the optimal bond order parameter values for the bcc phase.
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6.4.2 Tuning parameters with the CMA-ES method
We now employ the CMA-ES algorithm to analyse all the cases already studied using the SP-ID
method, i.e. the tuning of one, two and three parameters, highlighting the differences between
the two inverse design optimisers. We use the parameters corresponding to the initial state
point employed in the SP-ID algorithm as the initial mean vectors of the multivariate Gaussian
distribution in the CMA-ES algorithm. In addition, we start the CMA-ES algorithm with a
diagonal covariance matrix with a standard deviation of 10% around its mean value for each
parameter. Finally, the initial values of each component of the vectors ~q and ~p are set to zero.

Figure 6.7: a) Evolution of the mean value of the Gaussian distribution for 1/κσ in the (1/κσ, βPσ3)
plane when the system is initialised in the fluid phase at reduced pressure βPσ3 = 33, inverse Debye
screening length 1/κσ = 0.4 and contact value βε = 8. The parameters βε and βPσ3 are kept fixed,
and 1/κσ is tuned using the CMA-ES method. b) The variance of the Gaussian distribution for 1/κσ
at each generation.

In Fig. 6.7 we show the results for the one parameter case. The points displayed in Fig 6.7a
represent the mean value of the Gaussian distribution in each generation. At the beginning, the
algorithm tries to decrease the fitness function value by decreasing the inverse Debye screening
length 1/κσ. Since all the steps point in the same direction, the variance of the Gaussian
distribution increases (Fig 6.7b) and the mean value is found inside the bcc region for the first
time at the 5th generation. After this, the algorithm learns to perform much smaller steps
in order to explore the vicinity of the phase diagram and, at the same time, the covariance
starts to shrink. From this generation onwards the updates are in random directions inside
the bcc region, leading to a further exponential decrease of the covariance of the Gaussian
distribution. At the 12th generation, all the 20 simulations have a kσ value for which the
structure corresponds to the stable bcc phase.

The cases in which we tune two or three parameters do not present significantly different
behaviour of the CMA-ES algorithm with respect to the one parameter case. In the two
parameter case, ~µ enters the bcc region for the first time at the 6th generation, while at the 20th
generation all the samples have entered the bcc region. The results for the 2D case are shown
in Fig 6.8. We note that the probability of performing big jumps in the parameters space is
lower when more of these parameters are varied at the same time, since they all contribute
to the increase or decrease of the quality function, and the updates of the mean values of
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Figure 6.8: Evolution of the the mean value of the multivariate Gaussian distribution for 1/κσ and
βPσ3 in the (1/κσ, βPσ3) plane when the system is initialised in the fluid phase at reduced pressure
βPσ3 = 33, inverse Debye screening length 1/κσ = 0.4 and contact value βε = 8. The parameter βε
is kept fixed, and 1/κσ and βPσ3 are tuned using the CMA-ES method.

Figure 6.9: Evolution of the the mean value of the multivariate Gaussian distribution for inverse De-
bye screening length 1/κσ, reduced pressure βPσ3 and contact value βε when the system is initialised
in the fluid phase at (i) βPσ3 = 33, 1/κσ = 0.4 βε = 8 (blue line), and (ii) βPσ3 = 25, 1/κσ = 0.4
βε = 6 (red line). Three parameters are tuned to target the bcc structure, namely βPσ3, 1/κσ and
βε using the CMA-ES method.
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Figure 6.10: Evolution of a) 〈q̄6〉 and b) 〈w̄6〉 of the sample with the highest value of the fitness at
each generation during the 3D optimisation with the CMA-ES method for both the investigated cases.
We observe a jump of q̄6 and w̄6 when, for the first time, at least one of the generated samples is in the
bcc region, even if the mean value of the multivariate Gaussian distribution at the same generation
does not lie in the same region.

the multivariate Gaussian distribution may therefore not always be in the same direction.
This prevents the covariance matrix from growing too fast. Finally, the results for both the
investigated 3D cases are shown in Fig 6.9. To confirm that the final structure is a bcc phase,
we plot the evolution of 〈q̄6〉 and 〈w̄6〉 as a function of the simulation time in Fig. 6.10.

These analyses provide benchmarks for how fast the CMS-ES algorithm converges in finding
the target structure, as compared to the SP-ID algorithm. Since each generation of the CMA-
ES requires n times (20 in this work) the computational effort of SP-ID, a comparison of
run lengths reveals that SP-ID performs better than CMA-ES. Although their efficiencies are
still comparable, the difference becomes more marked when the dimensionality of the problem
increases. Moreover, in SP-ID, one has information on when the phase boundary is crossed. In
CMA-ES the size of the steps from one generation to the other varies, depending on the current
form of the covariance matrix. This makes the algorithm explore the landscape in an optimal
way, sacrificing information about the phase boundaries. Tuning the free parameters of CMA-
ES (ci) one can force the algorithm to perform small steps and gain the same information on
the phase boundaries, but this would result in a huge rise of the computational effort required,
which would make CMA-ES an algorithm of poor efficiency and use. Finally, it should be noted
that in CMA-ES all the simulations belonging to the same generation can be run simultaneously,
which can be a great advantage, depending on the computational resources of the user.

6.5 Conclusions
We studied the inverse problem of tuning interaction parameters between charged colloids
interacting via a hard-core repulsive Yukawa potential, so that they self-assemble into a tar-
geted crystal structure. We targeted the bcc structure which occupies a narrow region in the
phase diagram of the above system and is therefore challenging to find. We showed a com-
parison between two different optimisation algorithms in order to achieve our goal: Statistical
Physics-inspired Inverse Design (SP-ID) and Covariance Matrix Adaption - Evolutionary Strat-
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egy (CMA-ES). The first makes use of the statistical fluctuations in the bond order parameters
to iteratively change the interaction parameters of the system. In addition to effectively tuning
the interaction parameters for obtaining the target structure, the SP-ID method correctly iden-
tifies the fluid-solid phase boundaries present in the phase diagram. The CMA-ES algorithm
generates samples from a multivariate Gaussian distribution at each generation and evaluates
the fitness of these samples in order to evolve the interaction parameters of the distribution.
The number of generations needed to reach the goal is on average lower in the case of the
CMA-ES, and the steps in parameter space are usually larger. This advantage is offset by the
need to simulate multiple samples, and we find that the computational effort required in the
two methods is comparable. On the other hand, because of the larger step sizes of the param-
eters, probing phase equilibrium with CMA-ES can be less straightforward than with SP-ID.
Most importantly, we showed that both of these inverse design methods lead to the targeted
bcc structure by tuning the interactions between the particles. Thus, our results demonstrate
both methods to be effective search algorithms that may be employed in other design tasks.
Although the quality function used here is strictly structural, one may in principle also include
quantifiers of dynamics, which may be useful in optimising the kinetic self-assembly pathways,
for example, to account for and exclude glassy dynamics, as well as other kinetic factors of self
assembly. Finally, we stress how exploiting thermal fluctuations of a statistical system results
in a more effective search in the fitness function space. In the future, it would be useful and
fascinating to compare SP-ID to other related inverse design methods [231–233].

Acknowledgements
I would like to thank Dr. Rajneesh Kumar, who implemented the SP-ID method, and Prof.
Srikanth Sastry for the uncountable inputs and ideas provided during the project.



7

Inverse design of soft materials via a
deep-learning-based evolutionary

strategy

In this Chapter, we introduce a generic inverse design method to efficiently reverse-engineer
crystals, quasicrystals, and liquid crystals by targeting their diffraction patterns. Our algorithm
relies on the synergetic use of an evolutionary strategy for parameter optimisation, and a
convolutional neural network as an order parameter, and provides a new way forward for the
inverse design of experimentally feasible colloidal interactions, specifically optimised to stabilise
the desired structure.

Based on: G. M. Coli / E. Boattini, L. Filion, and M. Dijkstra, Inverse design of soft materials via a
deep-learning-based evolutionary strategy, Manuscript submitted (2021)
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7.1 Introduction
Self-assembly of colloidal particles is ubiquitous in nature and is considered to be of paramount
importance for the design of novel functional materials. For example, viruses, lipid bilayers,
tissues, atomic and molecular crystals, liquid crystals, and nanoparticle superlattices are all
self-assembled from smaller components in a highly intricate way. The structure of such an
assembly is determined by the interactions of the building blocks and by the thermodynamic
conditions, e.g. pressure, temperature, or composition. Understanding the relation between
building blocks and self-assembled arrangements is essential for materials design as the physical
properties of materials are intimately related to the structure.

On the other hand, huge progress has been made over the past decades in the synthesis and
fabrication of colloidal particles, resulting in a spectacular variety of novel colloidal building
blocks to the point where particles with any shape and interaction potential can be made on
demand [34–38]. Traditionally, tremendous efforts have been devoted to the “forward design”
problem: Which structures with what properties are formed for a given colloidal building block
under what circumstances? A major drawback of this approach is that the number of possible
building blocks and thermodynamic conditions is limitless, making a systematic exploration of
these design spaces intractable.

The true challenge in materials science is to develop a robust, versatile algorithm for solving
the “inverse design” problem and to design building blocks that self-assemble into a target
structure. The lack of such an inverse design method (IDM) forms a significant obstacle for the
full exploitation of colloidal self-assembly in the development of tomorrow’s materials [39–42].

In this work, we present a general inverse design method based on deep-learning techniques
to reverse engineer a multitude of thermodynamic phases, ranging from crystals, to liquid
crystals and even quasicrystals. A novel machine-learning-based order parameter is combined
with an evolutionary strategy which searches the multi-dimensional parameter space to optimise
the colloidal interactions and thermodynamic conditions (density, temperature, etc.) for the
self-assembly of a target phase.

Designing an IDM to reverse engineer phases, from crystals, to liquid crystals, and qua-
sicrystals, generally requires two ingredients. First, one should define an order parameter that
is sensitive to the global structure of a multitude of phases and can be exploited as a fitness
function indicating how “close” one is to the desired outcome. Secondly, one has to devise a
mathematical scheme to update the design parameters based on the chosen fitness function.

The latter requirement can be easily satisfied by choosing among several techniques, ei-
ther borrowed from classical optimisation algorithms [48, 49, 249] or inspired by statistical
physics [50, 51, 249]. Our inverse design method (IDM) uses the Covariance Matrix Adap-
tation (CMA) evolutionary strategy for parameter optimisation [249, 250]. Conversely, the
choice of an effective fitness function represents the real bottleneck for any IDM to succeed. In
the last decade, a plethora of order parameters has been used to define fitness functions for all
kinds of phases. For instance, free-energy or chemical-potential differences with respect to the
competing structures have been employed to reverse engineer 3D crystal lattices starting from
(non)spherical colloids [52, 53]. Often, full knowledge of the target crystal has been translated
into a fitness function by computing the mean square displacements of the particles with re-
spect to their target lattice points [39], or through the radial distribution function [54–56]. The
sometimes unrealistic resulting potentials have been explicitly filtered by Adorf et al. in order
to obtain smooth and short-range interactions [57].

Although all these fitness function definitions brilliantly achieve their goals, they often lack
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generality, and most importantly, they are not able to simultaneously and equally penalise
competing phases. In other words, they do not have the ability to create an approximately
flat fitness landscape, where the design engine can move smoothly, with only one preferred
region corresponding to the target phase. Moreover, in the case of quasicrystals, in spite of
the certified need of two inherent length scales in the system [251,252], the actual positions of
the constituent particles remain unknown, therefore representing a significant challenge to the
above strategies.

Inspired by the highly successful history of identifying phases by their scattering patterns
in combination with advances in machine learning (ML), we attack the problem from a new
avenue and directly use an encoding of the structure factor as the order parameter. To this
end, we train a convolutional neural network (CNN) to classify different phases from their
diffraction pattern, and use the result to construct a fitness function, such that configurations
with a higher likelihood of being classified as the target phase, will be scored with a higher
fitness. A sketch of the final algorithm is shown in Fig. 7.1.

This algorithm turns out to be extremely robust and versatile, facilitating the inverse design
of, not only crystal and liquid crystalline phases, but also quasicrystals – which due to their
non-periodicity are notoriously difficult to inverse design.

7.2 Inverse Design Method

7.2.1 General framework
Our IDM combines the CMA evolutionary strategy for parameters optimisation, and a CNN
for the fitness evaluation, which are both described in detail in the following subsections. The
goal is to optimise the free parameters of a given model in order to favour the formation of a
target phase.

The method proceeds in generations, or iterations, consisting of essentially three steps: a)
sampling, b) fitness evaluation, and c) update. In the following, we give a general overview of
these three steps, which are sketched in Fig. 7.1.

In the first step (Fig. 7.1a), we draw a fixed number of candidate sets of parameters from a
multivariate Gaussian distribution. The dimension of this multivariate Gaussian distribution is
determined by the number of design parameters that we wish to tune. For each candidate set
of parameters, we then perform a simulation of the system and save a number of representative
configurations. In the second step (Fig. 7.1b), we score and rank the samples based on their
fitness f . In general, the fitness is a measure of similarity between a sample and a specific target,
and it is maximised when the target is reached. Here, we introduce a new fitness function based
on CNNs that are trained to classify different phases based on their diffraction patterns. We
use this CNN to process the configurations saved during each simulation, and assign a larger
fitness to samples with a higher probability of being classified as the target phase. Finally, based
on this score, the mean and the covariance matrix of the multivariate Gaussian distribution
are updated using the CMA equations, which are designed to facilitate an efficient exploration
of parameter space. As sketched in Fig. 7.1c, the update not only allows the mean of the
distribution to move towards regions with a higher fitness, but it also speeds up sampling by
stretching the distribution when several updates are in the same direction, and then shrinking
it once the fitness is maximised. This whole procedure is repeated multiple times until the
fitness is maximised and/or a predetermined convergence criterion is met.
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Figure 7.1: Schematic representation of the three steps performed at each generation. (a) In the
first step, we draw candidate sets of parameters (p1 and p2 in the figure) from a multivariate Gaussian
distribution. For each set, or sample, we then perform a simulation. (b) In the second step, samples
are ranked and scored based on their fitness f , which is evaluated using a convolutional neural network
trained to classify phases according to their diffraction patterns. Samples with a higher likelihood of
being classified as the target phase will be scored with a higher fitness. (c) In the third and final step,
the Gaussian distribution is updated in order to move towards regions of the parameter space where
the fittest samples have been encountered.
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7.2.2 Convolutional neural networks as a fitness function
CNNs are a particular type of deep neural networks specifically designed to handle tensorial
inputs, such as images. For a detailed description of CNNs see e.g. Ref. ?. In this work,
we train a CNN to classify different phases from their diffraction patterns, which are either
2D or 3D images. The output of the CNN is then used to define a fitness function f for the
evolutionary strategy.

More specifically, the CNN takes as input the diffraction pattern of a given configuration,
and outputs a vector of real numbers with as many components as the number of phases to
distinguish. Each number in the output is indicative of the probability that the given input
corresponds to one of the phases. We use this CNN to process the configurations saved during
each simulation, and define the fitness of a given sample as

f = P̄target (7.1)
where Ptarget is the probability that the diffraction pattern of a given configuration is classified
as the target phase by the CNN, and the bar indicates an average taken over representative
configurations saved during the simulation of that sample.

7.2.3 Training the convolutional neural networks
To train the convolutional neural networks to recognise different phases, we need to perform
a number of different steps. Specifically, we first generate a number of real space equilibrium
configurations for each phase, and then generate the associated diffraction patterns. In order
to reduce computational time and memory usage, these diffraction patterns are preprocessed
before being used to train the convolutional neural networks. Each of these steps is described
in detail in the remainder of this section.

Generating the training configurations

The configurations for training the CNNs are generated by performing MC simulations of the
2D HCSS model [252–255] and the softened-core-shoulder model of spherocylinders in three
dimensions (3D) [256].

In 2D, simulations are performed in the isobaric-isothermal ensemble (NPT ) of a system of
N = 256 particles in a square box of side-length L with periodic boundary conditions. For each
of the six phases considered (fluid, hexagonal (HEX) and square (SQ) crystals, dodecagonal
(QC12), decagonal (QC10), and octadecagonal (QC18) quasicrystals), we run simulations at
different state points and collect 104 independent configurations.

In 3D, simulations are performed in the canonical ensemble (NV T ) of a system of N = 432
particles in a rectangular box elongated in the z direction (i.e., Lx = Ly = L and Lz > L), and
with periodic boundary conditions. For each of the five phases considered (isotropic (I), smectic
(SM), 3D hexagonal (3DHEX) and 3D square (3DSQ) crystals, and 3D twelvefold (3DQC12)
quasicrystal), we run simulations at different state points and collect 5 · 103 independent con-
figurations.

Generating the diffraction patterns

Diffraction patterns for each configuration are evaluated using

S(k) = 1
N
ρ(k)ρ(−k), (7.2)
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where ρ(k) = ∑N
j=1 e

−ik·rj is the Fourier transform of the density, rj is the position of particle
j, and k is a wave vector. In 2D, the k vectors are chosen by k = 2π

L
(nx, ny), where nx and ny

are two integers in the interval [−64, 64]. As a result, the 2D diffraction patterns considered in
this work are built on a 129× 129 grid. In 3D, the k vectors are chosen by k = 2π(nx

L
, ny
L
, nz
Lz

),
with nx, ny, nx ∈ [−32, 32], resulting in a 65× 65× 65 grid.

Figure 7.2: Data transformation. (a) Snapshot along with its Voronoi tessellation and diffraction
pattern of a square crystal in its original orientation. (b) Same snapshot along with its Voronoi
tessellation and diffraction pattern as in (a) after a rotation by a π/6 angle. Note that the rotation is
performed in real space.

While diffraction patterns are by definition translationally invariant, they are not invariant
to rotations. However, we must ensure that the CNNs are able to classify the desired phases
regardless of their orientation. To this end, each training configuration is rotated by a random
angle before evaluating its diffraction pattern. A representation of this transformation in the
2D case is shown in Fig. 7.2. In the 3D case, given the inherent symmetry of the model of
spherocylinders considered, we randomly rotate each configuration around the z axis (which
always corresponds to the elongated axis of the box). In a more general case, one could perform
random rotations around a randomly selected axis. Note that, to rotate a configuration, we
first create a larger copy of the system by copying the original simulation box in all directions.
We then rotate this larger copy of the system, and finally take a portion of it of the same size
as the original simulation box.

The sets of diffraction patterns obtained after having rotated each configuration are finally
used to build the data sets for training the CNNs.

Preprocessing

In order to increase the overall efficiency, the diffraction patterns undergo a final preprocessing
step before being used as the input of the CNNs. In particular, each diffraction pattern passes
through a MaxPooling filter, that effectively reduces the input size by a factor 4 in each dimen-
sion. The effect of this transformation is shown in Fig. 7.3 for both the (a) 2D, and (b) 3D
cases. Note that this is not a necessary step of the algorithm and its only purpose is to increase
the efficiency of the method in terms of computational time and memory usage. With such a
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Figure 7.3: Preprocessing. The size of the diffraction pattern of a QC12 in (a) 2D and (b) 3D is
reduced through a MaxPooling filter.

preprocessing, the CNNs used here can be trained within one hour on the CPU of a modern
laptop.

Neural network architecture

The CNNs used in this work are composed of two convolutional layers for feature extraction,
and a fully-connected part with one hidden layer for the final classification. The architecture
of the 2D CNN is shown in Fig. 7.4. As shown in the figure, each convolutional layer performs
three operations on the input: a convolution, a non-linear transformation through a ReLU
activation function, and a downsampling operation through a 2 × 2 MaxPooling layer. In the
following, we give all the details about the network parameters.

The first convolutional layer has one input channel (i.e., the diffraction pattern to process)
and nine output channels (i.e., the extracted features). As indicated in Fig. 7.4, the kernels used
in this layer have a size s = 4× 4, padding p = 1, and stride s = 1. The second convolutional
layer has nine input channels and four output channels, and the kernels of this layer have a
size s = 3 × 3, padding p = 1, and stride s = 1. The output of the second convolutional
layer is stacked and flattened, in order to be used as the input of the fully-connected part of
the network. The latter consists of a hidden layer of dimension 20 with a ReLU activation
function, and an output layer with a SoftMax activation function. The size of the output layer
is equal to the number of phases we wish to distinguish, which is 6 in the 2D case.

The 3D CNN has almost the same structure as the 2D one, with the only exception being
that the convolutional kernels are extended to three dimensions (e.g. a 3 × 3 kernel in 2D
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Figure 7.4: Representation of the 2D convolutional neural network. The network is composed of
two convolutional layers for feature extraction, and a fully-connected part with one hidden layer for
the final classification. All details about kernels, layer size, and activation functions are also shown.

becomes a 3 × 3 × 3 kernel in 3D), and the output layer has a dimension of 5 (we consider 5
phases in the 3D system).

Training

The parameters of the CNNs are optimised by minimising the cross-entropy loss with the
addition of a weight decay regularisation term [257, 258]. Specifically, the loss is minimised
with the Adam optimiser [259], a learning rate of 10−4, and a PyTorch implementation [260].
Early stopping is also applied in order to prevent overfitting.

7.2.4 Workflow of the CMA evolutionary strategy
The CMA evolutionary strategy optimises iteratively the design parameters across successive
generations. At each generation, we draw n samples from a multivariate Gaussian distribution,
whose dimension D corresponds to the number of parameters we wish to optimise. Subse-
quently, we evaluate the fitness function f of the generated samples, we order the samples in
ascending order based on their fitness, and we pick the k best samples. Finally, the mean ~µ
(a D-dimensional vector) and the covariance matrix Σ = σ2C of the Gaussian distribution are
updated using the following equations:

µi
′ = µi +

∑
x∈X

w(x)(λi(x)− µi)

qi
′ = (1− c1)qi + c2

(√
Σ−1

)
ij

(µj ′ − µj)

pi
′ = (1− c3)pi + c4(µi′ − µi)

Cij
′ = (1− c5 − c6)Cij + c6pi

′pj
′

+ c5
∑
x∈X

w(x)
(
λi(x)− µi

σ

λj(x)− µj
σ

− Cij
)

σ′ = σ exp [c7( ‖ ~q′ ‖
〈‖ N(0, I) ‖〉 − 1)]

(7.3)

where X denotes the set of the k best samples consisting of multiple configurations obtained for k
different parameter sets (denoted by λi(x)), w(x) is the normalised distribution of weights based
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on the fitness of the samples, and ci’s are free parameters. We choose w(x) ∝ log(k+1)−log(m),
where m is the rank index of sample x (m = 1 for the configuration with the largest f value). ~q
and ~p are additional D-dimensional vectors that control, respectively, the changes in amplitude
and directionality of the covariance matrix. Additionally, 〈‖ N(0, I) ‖〉 is the average length of
a vector drawn from a multivariate Gaussian distribution centred in the origin and where the
covariance matrix is the identity matrix. In the present work, we use n = 10 and k = 5 for
all cases where we optimise two parameters, i.e. D = 2. When optimising three parameters
(D = 3), we use instead n = 20 and k = 8 in order to guarantee a faster exploration of the
phase space. For the first generation, we initialise ~q and ~p as null vectors. Moreover, since
we do not assume any a priori correlation between the different tuning parameters, the initial
form of the covariance matrix Σ is diagonal. Finally, all the free parameters ci of the CMA-ES
are set equal to 0.2, as proposed in Ref. 250.

7.3 Results

7.3.1 Setting up the IDM in two dimensions
The first model we consider is a two-dimensional system in which the particles interact with a
hard-core square-shoulder (HCSS) potential:

βu(r) =


∞, r < σ

βε, σ ≤ r ≤ δ

0, r > δ,

(7.4)

with r the centre-of-mass distance between two particles, ε the interaction strength, σ the core
diameter, δ the interaction range, and β = 1/kBT with kB Boltzmann’s constant and T the
temperature. This model has been shown to self-assemble into a variety of phases [252–255],
including several crystal structures and various quasicrystals (QCs), which makes it an ideal
playground for setting up and testing our IDM. The three QCs we consider here, which are
the dodecagonal (QC12), the decagonal (QC10), and the octadecagonal (QC18) quasicrystals,
are found to be stable for different values of the interaction range δ, and only in a tiny range
of densities ρ and temperatures T . In all cases we explore the competing stable phases, which
include the fluid, the hexagonal (HEX) crystal, and the square (SQ) crystal phase.

To set up our IDM we trained a CNN to classify the aforementioned phases based on their
two-dimensional diffraction patterns, as described above. Specifically, the CNN takes as input
the diffraction pattern of a given configuration, and outputs a vector of real numbers with
as many components as the number of phases to distinguish. Each number in the output is
indicative of the likelihood that the given input corresponds to one of the phases. This output
is then used to define the fitness function to target a specific phase.

The data set for training the CNN is built by performing MC simulations of the HCSS
model in the NPT ensemble. For each phase, we perform simulations at different state points,
and collect a large number of independent configurations. The set of diffraction patterns gen-
erated from these configurations constitutes the data set on which the CNN is trained and
validated. Overall, we find the CNN to be highly effective and able to classify all phases with
100% accuracy.
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Figure 7.5: Reverse engineering of the QC12 in the HCSS model. (a) Evolution of the Gaussian
distribution in the kBT/ε − βPσ2 plane. Points and ellipses represent the mean and the covariance
matrix (within one standard deviation) of the distribution. The phase diagram in the background is
adapted from Ref. 253. (b) Representative snapshot of the QC12 obtained during the last generation.
The hard cores are shown in a dark colour, while lines show their Voronoi tessellation. (c) Diffraction
pattern of the snapshot in (b). (d) Evolution of the mean fitness and the determinant of the covariance
matrix.

7.3.2 Reverse engineering of the QC12 in the HCSS model

We start our investigation by considering the HCSS model with a fixed value of the shoulder
width δ = 1.4σ, at which the QC12 phase has been shown to be stable [253, 254]. The phase
diagram as a function of temperature and pressure (adapted from Ref. 253) is reported in Fig.
7.5a.

The goal here is to reverse engineer the QC12 phase by letting the evolutionary strategy
find the narrow region in the phase diagram where the QC12 phase is stable by tuning the
system parameters pressure P and temperature T . In other words, we keep the interaction
parameters fixed, while trying to optimise the thermodynamics variables to favour the formation
of the QC12. Our knowledge of the phase diagram allows us to easily asses and monitor the
performance of the reverse engineering process.

To explicitly target the QC12, we use the output of the trained CNN to define the fitness
function f for the evolutionary strategy. In particular, for any sample, i.e. for any simulation,
we define the fitness as f = P̄QC12, where PQC12 is the probability that the diffraction pattern
of a given configuration is classified as a QC12 by the CNN, and the bar indicates an average
taken over representative configurations visited during the simulation.

The results of the reverse engineering process are summarised in Fig. 7.5. Starting the re-
verse engineering process with a Gaussian centred in the region of stability of the fluid phase, the
algorithm reaches the region where the target QC12 is stable in approximately 25 generations.
Fig. 7.5a shows the evolution of the multivariate Gaussian distribution in the temperature
kBT/ε-pressure βPσ2 plane across successive generations. A representative snapshot obtained
in the last (100th) generation is shown in Fig. 7.5b, while the corresponding diffraction pattern,
characterised by twelvefold rotational symmetry, is shown in Fig.7.5c.
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The success of the algorithm heavily relies on the ability of the CNN to spot even small
structural variations in the system. At the early stages of the reverse engineering process,
when the system is in the fluid phase, the algorithm already finds it convenient to increase
the pressure, and hence the density, in order to increase the overall structural order. This can
clearly be seen in Fig. 7.5d, where we plot the evolution of the mean fitness averaged over all
samples. Although the variations of the fitness in the early generations are very tiny, they are
sufficient to guide the evolutionary strategy in the right direction.

An efficient exploration of phase space is then made possible by the CMA equations, which
evolve the Gaussian distribution at each generation. This not only allows the mean of the
distribution to move towards regions with a higher fitness, but it also allows the covariance
to stretch when several updates are in the same direction, and then shrink once the fitness is
maximised. This is shown in Fig. 7.5d, where we plot the evolution of both the mean fitness
and the determinant of the covariance matrix. The determinant becomes larger when the fitness
improves, and it decays exponentially once the fitness is maximised.

Note that here we initialised the mean of the Gaussian distribution at a specific state point
within the region of stability of the fluid phase, but we find the algorithm to be largely robust to
changes in the initial conditions. In the Appendix, we show additional trajectories of the reverse
engineering of the QC12 obtained by starting with a Gaussian distribution centred at different
state points, i.e. in the fluid phase, the SQ phase, the HEX phase at relatively high temperature
and low pressure, and the HEX phase at relatively low temperature and high pressure. In all
cases, the mean of the parameters distribution converges to the region of stability of the target
QC12, clearly showing that the performance is not affected by the particular choice made for
the initial conditions.

Furthermore, we would like to stress a crucial aspect that demonstrates the versatility of
the algorithm. In fact, the same method, and the exact same CNN, can be used to target
any phase that was included in the training data set, simply by changing the definition of the
fitness. For instance, to reverse engineer the hexagonal crystal phase, it is sufficient to impose
f = P̄HEX. A trajectory of the reverse engineering of the hexagonal crystal is shown in the
Appendix.

7.3.3 Reverse engineering of QC12, QC10, and QC18 in the HCSS
model

As already discussed, in addition to the QC12, the HCSS model exhibits two other quasicrys-
talline structures, which are stabilised for different values of the shoulder width δ. As a natural
next test, we now explore whether we can reverse engineer all the three stable quasicrystals
(QC12, QC10, and QC12) considered in this work. To this end, we fix the temperature to
kBT/ε = 0.17, a temperature for which all three QCs are stable, and let the evolutionary strat-
egy optimise the shoulder width δ and the pressure P for each specific QC. In all three cases,
we start the reverse engineering process from the same state point in the fluid phase (δ = 1.5σ
and βPσ2 = 30), and choose the fitness function appropriate for the target phase. The results
of the reverse engineering process are summarised in Fig. 7.6. In particular, Figs. 7.6a-c show
the evolution of the multivariate Gaussian distribution when targeting (a) the QC12, (b) the
QC10, and (c) the QC18. Depending on the QC to be found, the distribution evolves in differ-
ent directions, and eventually converges to different state points. In all cases, the final values of
pressure and shoulder width obtained are in excellent agreement with those at which the three
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Figure 7.6: Reverse engineering of QC12, QC10, and QC18 in the HCSS model. (a-c) Evolution of
the Gaussian distribution in the βPσ2 − δ/σ plane during the reverse engineering of (a) the QC12,
(b) the QC10, and (c) the QC18 phases. Points and ellipses represent the mean and the covariance
matrix (within one standard deviation) of the distribution. (d-f) Representative snapshots of the (d)
QC12, (e) QC10, and (f) QC18 obtained in the last generation, along with their diffraction patterns
and Voronoi tessellations.

QCs have been shown to be stable [252–255]. Representative snapshots of the QCs obtained
and their diffraction patterns are shown in Fig. 7.6d-f. Each diffraction pattern immediately
confirms the presence of the correct quasicrystalline structure.

7.3.4 Application to a new model interaction
Thus far we have only addressed the model that was used for training the CNN. A natural next
question is whether the method is general enough to work on other model systems, without
having to retrain the CNN for the specific model under consideration. To answer this question,
we now consider a two-dimensional softened-core-shoulder (SCS) model with an interaction
potential given by:

u(r)/ε =
(
σ

r

)14
+ 1− tanh[k(r − δ)]

2 , (7.5)

where ε is the energy scale, σ represents the typical core diameter, and k and δ are two param-
eters that, respectively, control the steepness and the characteristic interaction range. Similar
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to the HCSS, the QC12 has been shown to be stable in a limited range of densities and tem-
peratures with a shoulder width of δ = 1.35σ and kσ = 10 [261,262].

To test the ability of our method to be effective on new types of interactions, we use the
same CNN that was trained on the HCSS model in order to reverse engineer the QC12 in the
SCS model. Similar to the HCSS case, we keep the interaction parameters fixed, i.e. δ = 1.35σ
and kσ = 10, and let the evolutionary strategy find the region of densities and temperatures
in which the QC12 is stable. The phase diagram in Fig. 7.7a is used as a reference to asses
and monitor the performance of the method. Note that, since this phase diagram is in terms of
density and temperature, simulations are now performed in the canonical ensemble. Moreover,
in contrast to the HCSS case, there are now stable coexistence regions between multiple phases
(indicated with a grey background in Fig. 7.7a). As the CNN was not trained on configurations
with a phase coexistence, this represents a further robustness test for our method.

Figure 7.7: Reverse engineering of the QC12 in the SCS model. (a) Evolution of the Gaussian
distribution in the ρσ2 − kBT/ε plane. Points and ellipses represent the mean and the covariance
matrix (within one standard deviation) of the distribution. The phase diagram in the background is
adapted from Ref. 262. Coexistence regions are indicated in light grey. (b) Representative snapshot
of the QC12 obtained during the last generation and its Voronoi tessellation. (c) Diffraction pattern
of the snapshot in (b). (d) Evolution of the square root of the covariance matrix’s diagonal elements,
which correspond to the standard deviations along the temperature (σT ) and density (σρ) directions.
(e) Evolution of the mean fitness and the mean temperature in (a).
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The results of the reverse engineering process are summarised in Fig. 7.7. Specifically, Fig
7.7a shows the evolution of the multivariate Gaussian distribution in the temperature-density
plane. Starting with a distribution centred in the fluid region, the algorithm immediately
starts to increase the density and lower the temperature in order to increase the overall order.
Impressively, after only 5 generations, the mean of the distribution is already inside the region of
stability of the QC12, demonstrating the robustness of the CNN to changes in the interaction
potential. In the remaining generations, the covariance of the distribution shrinks, and the
mean moves towards lower temperatures in the phase diagram. A representative snapshot of
the QC12 obtained during the last generation and its diffraction pattern are shown in Figs.
7.7b and 7.7c, respectively.

Looking more closely at the evolution of the model parameters, it is interesting to observe the
different behaviour of the temperature and density components. After the first 5 iterations, the
density simply oscillates in the tiny range of stability of the QC12, while a large exploration
keeps happening in temperature. This can be seen also by looking at the evolution of the
standard deviations of temperature (σT ) and density (σρ) in Fig. 7.7d. While σρ decays almost
monotonously from the very beginning, σT oscillates for about 20 generations before starting
its decay.

We would also like to stress that the reason why the algorithm seems to prefer lower tem-
peratures, despite being already in the stability region of the target phase, is mainly related
to a decrease in the thermal fluctuations. With a lower amount of thermal noise, the CNN is
presented with cleaner configurations, which, on average, are scored with a higher fitness. This
can be seen in Fig. 7.7e, where we plot the evolution of both the mean fitness and the mean
temperature. As the temperature goes down, the fluctuations of the fitness become smaller.

7.3.5 Phase discovery
The fundamental ability of the algorithm to generalise to different interaction potentials opens
up the possibility of discovering quasicrystals in new model systems. For instance, given the
similarities between the SCS and the HCSS models, we might ask whether also the SCS model
stabilises different quasicrystals for different values of the shoulder width δ. We note that,
compared to the HCSS model, much less is known about the phase behaviour of the two-
dimensional SCS system.

Here, we explore the possibility of the SCS model to form a QC10. To this end, we fix
kσ = 10 as in the previous case, and let the evolutionary strategy optimise three parameters:
shoulder width δ, temperature T , and pressure P . Note that, by varying these three parameters
simultaneously, the algorithm might encounter phases that were not included in the data set for
training the CNN. We do not expect this to be a problem, as long as no phase is misclassified as
the target phase. This could possibly cause the algorithm to get stuck and eventually converge
to the wrong phase. While this problem did not occur in our test, a simple solution would be
to include the newly found phase in the training data set, and retrain the CNN.

The results of the reverse engineering process are summarised in Fig. 7.8. Starting from
a fluid phase, the evolutionary strategy decreases the temperature, and increases both the
pressure and shoulder width in order to maximise the fitness (see Fig. 7.8c-f), discovering the
not-yet-predicted QC10 phase for this system. As a further confirmation that the algorithm
has indeed found a QC10, Fig. 7.8b shows a representative snapshot obtained during the last
generation, along with the corresponding diffraction pattern. Hence, our algorithm has suc-



Inverse design of soft materials via a deep-learning-based evolutionary
strategy 121

Figure 7.8: Discovery of the QC10 in the SCS model. (a) Evolution of the Gaussian distribution
in kBT/ε − βPσ2 − δ/σ space. Points and ellipsoids represent the mean and the covariance matrix
(within one standard deviation) of the distribution. (b) Representative snapshot of the QC10 obtained
during the last generation, along with its diffraction pattern and Voronoi tessellation. (c) Evolution of
the mean fitness. (d-f) Evolution of the three parameters in (a) optimised in the reverse engineering
process: (d) temperature kBT/ε, (e) pressure βPσ2, and (f) shoulder width δ/σ.
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Figure 7.9: Reverse engineering of the QC12 in a three-dimensional model of soft spherocylinders.
(a) Evolution of the Gaussian distribution in the ρσ3 − kBT/ε plane. Points and ellipses represent
the mean and the covariance matrix (within one standard deviation) of the distribution. The phase
diagram in the background is adapted from Ref. 256. Coexistence regions are indicated in light grey.
(b) Representative snapshot of the 3DQC12 obtained during the last generation, and (c) its three-
dimensional diffraction pattern. (d) Top view of the snapshot in (b). The centres of mass and the
corresponding Voronoi tessellation are highlighted in a light colour. (e) In-layer diffraction pattern of
the top view in (d).

cessfully located a new phase in the SCS model.

7.3.6 Extension to three-dimensional systems
Up to this point, we have shown the efficacy of our method for two-dimensional systems where
the scattering pattern is simply a 2D image. Finally, we extend and test our approach on
3D systems. To do so, we consider a 3D system of rod-like particles, modelled as hard-core
spherocylinders with a soft deformable corona. We consider spherocylinders with a length-to-
diameter ratio L/σ = 5, interacting via the pair potential in Eq. 7.5, where the centre-of-mass
distance r is replaced by the minimum distance between two rods dm, which depends on both
the centre-of-mass distance and the relative orientation of the two rods. Note that this model
underestimates the repulsive force in the case of parallel rods.

The phase behaviour of this system with kσ = 10 and δ = 1.35σ has been recently studied in
Ref. 256. In addition to the standard isotropic (I) and smectic (SM) phases, this model has been
shown to stabilise phases consisting of quasi-two-dimensional layers with unconventional sym-
metries, including square (3DSQ) and hexagonal (3DHEX) crystals, and a three-dimensional
twelvefold quasicrystal (3DQC12). The phase diagram in terms of density and temperature is
reported in Fig. 7.9a.

As done in the 2D case, in order to set up our IDM, we train a CNN to classify all the stable
phases of this system. Note, however, that the inputs of the CNN are now three-dimensional
diffraction patterns. Again, we find the CNN to be highly effective and able to classify all
phases with 100% accuracy. The output of the trained CNN is then used to define the fitness
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for the evolutionary strategy where we target the 3DQC12 phase.
The results of the reverse engineering process are summarised in Fig. 7.9. In particular, Fig.

7.9a shows the evolution of the multivariate Gaussian distribution in the density-temperature
plane. Starting with a distribution centred in the SM phase, the mean of the distribution
evolves via the coexistence region of the SM and 3DHEX phase, to the 3DSQ-3DQC12 phase
coexistence region, until it converges in the stability region of the 3DQC12 phase. We note
that, although the shortest path in parameter space requires the distribution to cross the
3DSQ region, the algorithm actually avoids it, preferring to enter the coexistence region at
high temperature and then move downwards in temperature, where samples with higher fitness
are encountered. Surprisingly, this pathway for the formation of QC12 phases was also identified
in Ref. 255.

A representative snapshot of the 3DQC12 obtained during the last generation along with its
3D diffraction pattern is shown in Figs. 7.9a and 7.9b, respectively. As a further confirmation
of the in-layer QC12 arrangement, Figs. 7.9c and 7.9d show a top view of the same snapshot
and the corresponding in-layer 2D diffraction pattern.

The extension of our method to the 3D case is of particular interest from a practical point
of view. While a 2D diffraction pattern immediately provides structural information that is
easy to read even by eye, the 3D counterpart is much harder to interpret. For this reason, in
order to deal with 3D systems, it is often necessary to project the particles coordinates onto
the planes with the relevant symmetries. This aspect becomes irrelevant when using a CNN
that naturally processes the full 3D information thanks to its inherent architecture.

7.4 Conclusions
Diffraction patterns are used across a multitude of areas in materials science, to understand
what structure one is dealing with. In general, this information constitutes a unique signature
of each structure, whether it is a crystal, a fluid, a liquid crystal, or a quasicrystal, and shows
significant robustness to changes in density and interaction potentials. This can efficiently
incorporate all the relevant information of a target phase, and therefore provides a natural
order parameter for IDMs.

With the present work we have shown how the use of CNNs as diffraction patterns classifiers,
can provide a useful order parameter for the reverse engineering of a multitude of phases. For
the above reason, an IDM built on such an order parameter, is not restricted to a specific
class of materials, but is instead naturally tailored to reverse engineer multiple colloidal phases,
ranging from crystals and quasicrystals, to liquid crystals.

Our results pave the way to structure optimisation and discovery, especially with binary and
ternary systems, where the design space becomes even larger due to new system parameters
such as size ratio and composition. In these cases, where the present knowledge of phase
diagrams and emerging phases is limited, IDMs can prove extremely precious and efficient.
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7.5 Appendix

7.5.1 Reverse engineering of the QC12 starting from different initial
conditions

In the main text, we have shown a trajectory of the reverse engineering of the QC12 in the
HCSS model, starting from a specific state point in the region of stability of the fluid phase.
Here, we explore whether the performance of the method is affected by a different choice of the
initial conditions. To this end, we perform additional trajectories of the reverse engineering of
the QC12, starting with a Gaussian distribution centred at different state points, i.e. in the
fluid phase, the SQ phase, the HEX phase at relatively high temperature and low pressure, and
the HEX phase at relatively low temperature and high pressure.

Figure 7.10: Reverse engineering of the QC12 starting from different initial conditions. Four different
trajectories showing the evolution of the Gaussian distribution in the kBT/ε − βPσ2 plane. Each
trajectory, is initialised with the Gaussian centred at different state points, i.e. in the fluid phase
(left top), the SQ phase (right top), the HEX phase at relatively high temperature and low pressure
(left bottom), and the HEX phase at relatively low temperature and high pressure (right bottom).
Points and ellipses represent the mean and the covariance matrix (within one standard deviation) of
the distribution. The phase diagram in the background is adapted from Ref. 253.

Figure 7.10 shows the results of the reverse engineering process obtained from four, distinct,
initial state points. In all cases, the mean of the parameters distribution converges within the
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region of stability of the target QC12, clearly showing that the performance is not affected by
the particular choice made for the initial conditions.

7.5.2 Reverse engineering of the hexagonal crystal in the HCSS
model

In the main text, we focused on reverse engineering QCs. However, in principle, the exact same
method can be used to reverse engineer any phase that was included in the data set for training
the CNN, simply by changing the definition of the fitness. As an example, in Figure 7.11 we
report the results of the reverse engineering of the HEX phase in the HCSS model.

Figure 7.11: Reverse engineering of the HEX phase in the HCSS model. (a) Evolution of the
Gaussian distribution in the kBT/ε − βPσ2 plane. Points and ellipses represent the mean and the
covariance matrix (within one standard deviation) of the distribution. The phase diagram in the
background is adapted from Ref. 253. (b) Representative snapshot of the HEX crystal obtained
during the last generation, and (c) its diffraction pattern.
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Towards a full photonic bandgap
colloidal crystal: inverse design
techniques leading the way

In this concluding Chapter we build on what has been described in this thesis, and show how
machine learning-based inverse design methods (IDMs) can be used to solve problems related
to the realisation of a colloidal crystal with a bandgap in the visible region.
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8.1 Overview
In this thesis, we investigated crystal nucleation for various colloidal systems. This is an
extremely large field of research with many open questions. Attempts to answer some of these
problems, which have been presented in the current work, may sometimes seem unrelated. It
is the aim of this Chapter to try to link these findings together, and highlight some potential
outlets for the work presented in this thesis.

In Chapters 2 and 3 we investigated the nucleation process for several colloidal binary
crystals – the three types of Laves Phases (LPs) and the icosahedral AB13 phase – with the
goal of finding for the first time spontaneous nucleation events for such systems using brute
force numerical simulations. In both cases the seeding approach was used (see Sections 2.4
and 3.4). The results of this technique are important for two distinct reasons. The first is
that it provides valuable information about the thermodynamic quantities involved, such as
the Gibbs free-energy barrier, the interfacial free energy and the nucleation rate, useful also for
potential experimental investigations. Secondly, the seeding technique tells us in what range
of supersaturation – and therefore pressure or density – the free-energy barrier to overcome
is low enough to observe spontaneous nucleation. Despite a similar motivation behind the
study, Chapters 2 and 3 then evolved independently and differently. In Chapter 2 we studied
how, through particle softness, it is possible to influence the concentration of fivefold symmetry
clusters, which in turn dictate the onset of kinetic arrest of the system. On the other hand,
in Chapter 3 we showed how the use of machine learning techniques helped considerably the
classification of the particles in the system, and allowed us to use more local descriptors, even
if intrinsically less accurate, thanks to the large model capacity of neural networks.

In Chapters 4 and 5, we turned to single-component systems, for which much more is known
about their nucleation process, but for which crucial questions are still open. In particular, in
Chapter 4 we dived into the hard-sphere nucleation mechanism, with the goal of explaining the
polymorph selection that takes place when witnessing a nucleation event. We found, thanks to a
combined use of Bond Order Parameters (BOP) and Topological Cluster Classification (TCC),
that in the highly heterogeneous and structured fluid phase, local clusters whose concentration
is very high determine a preference towards fcc crystal nucleation for purely geometric reasons.
All this leads to a lower interfacial free energy of fcc compared to hcp and therefore to the
above-mentioned phenomenon of polymorph selection. Conversely, in Chapter 5, we address
the problem of a proper classification of multiple single-component crystals (fcc, hcp, and bcc).
We analyse how some classification schemes which have already been used in the past can
lead to misclassification, and we propose a new way to perform the same classification based on
unsupervised learning. In fact, we use Principal Component Analysis (PCA) on a large data set
composed of multiple BOPs – and therefore containing a lot of information about the reference
structures – finding a new space where the different polymorphs are easily identifiable, using
a few eigenvectors, which in turn are linear combinations of the BOPs used. This keeps the
classification easily interpretable.

In Chapters 6 and 7 we focused our attention on inverse design methods (IDMs) as a way to
find the optimal conditions at which the desired colloidal crystal, quasicrystal, or liquid crystal,
can form. In Chapter 6, we reverse engineered a bcc crystal that, in a repulsive Yukawa particle
system, is only stable in a narrow region of the phase diagram. This task allowed us to test
two algorithms of different nature – the first based on the statistical fluctuations of the system
under investigation and the second derived from classical optimisation techniques. Building
upon the knowledge acquired in Chapter 6, in Chapter 7 we develop a new IDM, based on the
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Figure 8.1: The three typical stacking patterns of the Friauf polyhedra, or truncated tetrahedra,
which determine the resulting LP. Each Friauf polyhedron describes the environment of a large sphere
in a LP, which is placed at the centre of the polyhedron. The 4 large neighbours sit at the centre
of the four facets, in a tetrahedral pattern, while the 12 small neighbours sit at the vertices of the
polyhedron. Note that the MgNi2 stacking is a combination of the other two.

use of a convolutional neural network (CNN) as an order parameter and showing extremely
interesting and promising results for future work. In fact, this IDM not only manages to
reverse engineer a large number of phases, including phases notoriously difficult to classify, as
for instance quasicrystals, but is equally applicable to two-dimensional and three-dimensional
cases, and enabled us to find a quasicrystal not yet reported in the literature for a given model.

Finally, in this Chapter, we build on what we learned about Laves Phase nucleation in
Chapter 2, and investigate the possibility of finding a self-assembly route to obtain a crystal
with a photonic bandgap, through the IDM described in Chapter 7.

8.2 Photonic crystals and Laves Phases
At the beginning of this thesis, in Chapter 1, we discussed various reasons to study colloidal
systems. Specifically, we mentioned that these systems are particularly suitable for the fabri-
cation of photonic crystals, i.e., crystals with a bandgap in the visible region. These materials
can control the propagation of visible light due to their periodic modulations of the dielectric
constant which define the photonic crystal.

So why are we interested in the Laves Phase? The main reason behind this interest lies in
the extraordinary optical properties of the sublattices of these crystal structures. The lattice
of all LPs is composed of large and small spheres, but in the case of MgCu2 the respective
sublattices correspond to the diamond and the pyrochlore structures, which, if realised with
colloidal particles, would both enable a bandgap in the visible region. In other words, the
colloidal MgCu2 Laves Phase is an ideal precursor for a photonic crystal [9].

LPs have been shown to be thermodynamically stable for a binary mixture of hard spheres
over a specific range of density, stoichiometry and size ratio. Unfortunately though, as shown
in Chapter 2, using a short range, isotropic and purely repulsive interaction, the LP with the
lowest bulk free energy and therefore the one that is thermodynamically stable with respect to
the others is MgZn2, and not MgCu2. Any brute force simulation or experiment performed in
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Figure 8.2: (a) Projection on the q4-q6 plane of the large and small particles which compose the four
phases we wish to distinguish, i.e. MgCu2, MgZn2, MgNi2, and the binary fluid [86]. In (b) we show
the same analysis, using the averaged q̄4 and q̄6 instead [87]. For each particle, the neighbours have
been identified using the SANN algorithm and are considered irrespective of their species [152]. In
both cases, LPs can be distinguished from the binary fluid, but not among themselves.

bulk, and using particles interacting as described above, will form an LP that does not have
the desired optical properties.

One strategy to overcome this problem is to use a system which is different from a binary
hard-sphere mixture. In particular, one may include anisotropy in the interaction potential, so
that some predefined stacking of the Friauf polyhedra – which geometrically describe the local
environment of a large particle in the three LPs, and whose stacking determines the resulting
LP, see Fig. 8.1 – can be preferred over the others, resulting in the MgCu2 structure.

At this point two main problems arise. The first is that, using a model for which we do
not have phase diagrams, it is extremely difficult to guess the optimal interaction parameters,
as well as the optimal thermodynamic conditions to give rise to a self-assembly process that
leads to the formation of the MgCu2 crystal. It is precisely to solve these problems that IDMs
were born. However, in the context of an IDM, we saw in Chapters 6 and 7 that an essential
requirement for the successful implementation of such methods is a suitable order parameter.
In other words, it is necessary to be able to distinguish not only the LPs from the (binary) fluid
phase, but it is also crucial to be able to distinguish the different LPs from each other.

Most of the LP classification algorithms developed so far are indeed able to distinguish the
crystalline phase from the fluid phase, but fail in their intent to recognise individual LPs. An
example was given in Chapter 2, where LPs were classified via an algorithm based on dot-
products dij between q6m of the different particles in the system, similar to what has already
been done for single component crystals [160,197]. In particular, the distributions of dij between
two large spheres, two small spheres, and between a large and a small sphere, are different in
the case of LPs than in the distributions computed for a binary fluid. This analysis is shown in
Fig. 2.7. A similar result was obtained by Bommineni and co-workers, who classified particles
as belonging to LPs based on the values of the q4 and q6 BOPs [86,149]. With these techniques,
it is relatively straightforward to distinguish between crystal-like particles belonging to LPs,
and fluid-like particles, as shown in Fig. 8.2.

The attempt which is certainly closer to the need of classifying individual LPs independently,
was made by Boattini and co-workers [153]. Here, the authors, using a neural network without
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hidden layers and therefore without any source of non-linearity, distinguished a total of 7
local environments, of which 6 belong to the different particles in the LPs, plus one local
environment corresponding to the fluid-like particles. In particular, in the MgCu2 crystal, the
authors distinguished 2 local environments, in the MgZn2 crystal 3 local environments, and
in the MgNi2 crystal even 5. Although this classification represents an obvious step forward
with respect to the algorithms described previously, the fact that some local environments are
shared by more than one LP, makes it more complex to target a single crystal structure – the
MgCu2 in our case.

In the following Section, we show a deep learning-based classification scheme which cor-
rectly classifies the three LPs with great accuracy. This, on its turn, allows a true inverse
design strategy to be implemented and thus opens the door to a wide variety of self-assembly
opportunities.

8.3 Convolutional neural network-based order parame-
ter

In order to correctly recognise the MgCu2, MgZn2, MgNi2, and the binary fluid phase, we face
the problem from a different perspective with respect to the methods mentioned above. In
fact, instead of making a prediction for each particle in the system, we classify the system as
a whole. This choice has a clear advantage: such a classification scheme is not deceived by the
fact that the same local environment is present in multiple LPs.

As in Chapter 7, we encode the structure factor of these phases in a 3-dimensional diffraction
pattern and use a convolutional neural network (CNN) to correctly classify the corresponding
systems. More specifically, the CNN takes a 3-dimensional diffraction pattern as input, and
gives as output an array of real numbers, corresponding to the probability that the input
diffraction pattern corresponds to each of the phases to be distinguished.

The reason behind the choice of such an architecture is to be found in the great capacity of
a CNN to handle tensorial inputs, like images [263].

The configurations for training the CNN are generated by performing MC simulations of
a binary hard-sphere mixture in the canonical ensemble (NV T ). The stoichiometry has been
selected to be equal to the one of the Laves Phase (xL = NL/(NL + NS) = 1/3), while the
size ratio σS/σL has been set to 0.78. The number of particles was set to N = 576 for all
phases, and periodic boundary conditions were applied in all three dimensions. We then run
simulations and collect 103 independent configurations for each phase.

The architecture we selected for the CNN, apart from the dimension of the output layer,
which corresponds to the number of phases to classify, is exactly the same as in Chapter 7.
Also, the generation of the diffraction patterns, the preprocessing applied to the input data,
as well as all the training parameters, can all be found in Section 7.2.3. Examples of typical
three-dimensional diffraction patterns are given in Fig. 8.3.

Training the CNN for a total of 200 epochs, we find that the loss function stabilises, showing
a plateau, and assumes approximately the same values for both the training and the test sets,
indicating that the model did not overfit the training data (see Fig. 8.4). More importantly,
the accuracy of the model on the 4 classes – calculated on the test set – is equal to 100% for
each of them (Table 8.1). This fundamental result shows how, thanks to a technique belonging
to the class of deep learning algorithms, it is possible to distinguish with extreme precision even
similar phases, such as the three LP crystals, in addition to the binary fluid.
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Figure 8.3: Examples of the preprocessed three-dimensional diffraction patterns generated by the
four phases we wish to classify. Note that the symmetry planes of the MgZn2 and of the MgNi2 do
not coincide with the x-, y- and z-axis. For this reason, while the MgCu2 crystal displays a diffraction
pattern with clear peaks, as expected for a crystal structure, the other two LPs would need a precise
rotation in order to be interpretable as a crystal structure by eye. However, here lies the great
capabilities of a CNN, which is able to correctly classify the three LPs regardless their orientation,
even when it becomes extremely challenging to do that through human-engineered features.

Class Accuracy
MgCu2 100%
MgZn2 100%
MgNi2 100%
Fluid 100%

Table 8.1: Accuracies of the CNN on the test set calculated for all four classes.

However, the importance of this result lies mainly in the possibilities it opens up. The
existence of an order parameter that can distinguish LPs from each other is in fact a fundamental
ingredient for the set up of an inverse design strategy, able to efficiently explore the parameter
space with the aim to find the optimal region where the MgCu2 is the stable phase.

In the next section, we list some potential models to achieve this goal.

8.4 Candidate models
We have seen that a binary mixture of isotropic spheres tends to stabilise the MgZn2 structure,
and that including a degree of directionality in the interaction potential is likely to be a crucial
ingredient in order to make the MgCu2 crystal stable.

In order to understand what might be a system that has the capability to stabilise a MgCu2
phase, we take inspiration from a work which has been recently published by He and co-workers,
in which they show that a colloidal diamond structure may be obtained by using nanoparticles
with attractive tetrahedral patches [38]. Since the large spheres of the MgCu2 crystal are
arranged in such a pattern, one possibility is to use a patchy model for the large spheres, like
the Kern-Frenkel model [264].

For the small spheres there are two possibilities. It is obviously possible to think of a patchy
particle model for the small spheres as well, with a non-tetrahedral arrangement of patches,
in order to stabilise the pyrochlore structure, which corresponds to the pattern generated by
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Figure 8.4: Loss function as a function of the epochs for both the training set (gold curve) and the
test set (blue curve). The two curves are nearly identical, which shows that the CNN is not overfitting
the training data, and is therefore able to predict the four classes reliably on new unseen samples.

small spheres in the MgCu2 crystal. However, a simpler choice would be to use an isotropic
and repulsive interaction potential, such as a hard-sphere potential, for the small spheres. It
may be possibile that, if the large spheres self-assemble, due to the attractive patches, into a
diamond structure, the small spheres could position themselves according to the lattice sites
of a pyrochlore crystal simply by maximising the packing of the system. Obviously, in such a
model, many parameters are at stake, and this is why a CNN-based IDM would be fundamental.
Parameters such as the opening angle of the patches, as well as the ideal stoichiometry and
size ratio, and of course temperature and pressure (or density), are all fundamental parameters
capable of altering the stability relationships between all the phases involved.

We close this section by adding that, of course, there are other particle models that seem
promising for self-assembling into such crystals, such as a system of dumbbells [265], or diblock
polymer-homopolymer blends [266]. Again, the actual ability of these models to make the
MgCu2 stable could be tested through the CNN-based IDM we have shown, however an accurate
description of these models goes beyond the scope of this thesis.

8.5 Conclusions
All the chapters covered in this thesis revolve around the concept of nucleation in soft matter
systems. As already explained in Chapter 1, the importance of the study of nucleation in soft
matter systems is twofold.

First, it is crucial to understand the mechanisms of nucleation in such systems, because of
the strong analogy that colloids share with atomic and molecular systems.

Chapters 2, 3, 4, and 5 go into this direction. In fact, in binary systems, the relationship
between crystallisation and glass transition has been thoroughly studied, highlighting the role
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of fivefold symmetry clusters and of softness degree in the particles interaction. Still in binary
systems the relationship between particles of very different sizes during nucleation has been
analysed. For single component systems, the mechanism of nucleation for hard spheres has
been studied in the light of the behaviour of several smaller topological clusters but whose
concentration in the fluid is very high. The classification algorithm proposed in Chapter 5
inherently contains a high degree of information about the system, and could therefore inspire
future work.

Secondly, the study of nucleation in soft matter systems is also important because it is the
formation mechanism of many structures with advanced functional properties, which may form
the basis of new technologies.

In this case, Chapters 2, 3, 6, and 7 may be of interest to the reader. Here we have studied
the physical conditions necessary for the formation of several binary crystals, including the
MgCu2 Laves Phase, known for its extraordinary optical properties. Finally, we have addressed
inverse design methods, which constitute a family of remarkably promising techniques in order
to optimise the self-assembly conditions for a given system, or even in order to discover new
phases not yet reported in the literature. An example of the power and versatility of such
systems is given in this very last Chapter.

Being an extremely broad topic, obviously many questions regarding nucleation remain
open. As a matter of fact, the biggest problem in soft matter is related to nucleation, which is
the gigantic discrepancy between the nucleation rates of hard spheres as measured by experi-
ments with respect to simulations [78, 160,197,267,268].

More specifically, some questions arise directly from the research work presented in this
thesis. For example, the nucleation mechanism presented for hard spheres is based on the
presence of specific particle clusters that exist as the system is very dense. How does the
mechanism change when studying the nucleation of Yukawa particles, which are often employed
as a model for real-world colloids, and which show crystallisation phenomena also at lower
densities? Are there other clusters which act as transient clusters during nucleation? More
in general, is it possible to combine a large set of topological descriptors, and use a machine
learning-based – and therefore automated – technique to find these clusters for several different
systems? Differently, taking inspiration from the last chapters, is our IDM effective on lower
density structure, such as open crystals? And what can we achieve for 3D quasicrystals which
are not layered, as the one presented in Chapter 7? Can we use IDMs to also deduce something
about quasicrystal formation?

These are obviously challenging questions, but also fascinating ones. We hope that some of
the conclusions drawn by the work presented in this thesis, as well as some of the analysis and
methods we developed, can help future researchers to answer some of these questions, in order
to broaden the knowledge we already have about this exciting field of research.
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Summary

This thesis has undisputed protagonists that are discussed from the first to the last page:
colloidal systems, i.e. colloidal particles dispersed in a solvent. What distinguishes colloids
from other particles such as atoms and molecules? Although a very common definition of
colloids, and also the most intuitive one, concerns their typical size range, which goes from tens
of nanometres to micrometers, the key to understand what we are dealing with lies in their
dynamics. Colloids, in fact, due to the continuous interaction with small solvent particles, show
a random dynamics that goes by the name of Brownian motion. The most important feature of
Brownian motion is that it allows the colloidal system to efficiently explore a very large number
of configurations of positions and velocities, i.e. the phase space. This way, colloids are able
to spatially organise themselves spontaneously, through a process called self-assembly, and to
form the thermodynamically stable phase.

In a very large number of cases, the process of self-assembly occurs through the phenomenon
of nucleation. This process begins with the random formation of a nucleus of the so-called child
phase in a small region of the system. This phenomenon has a cost in terms of free energy, due
to the creation of an interface between the nucleus and the surrounding parent phase. If the
nucleus of the child phase is smaller than a certain threshold, then it will have even greater
difficulty in growing, and will therefore melt back. Conversely, if the nucleus is larger than a
certain threshold, the system will gain a thermodynamic advantage from the indefinite growth
of the new phase, which therefore becomes the macroscopic phase of the system. Nucleation
in colloidal systems is the major theme whose study pervades every Chapter of this thesis.
Why are we so interested in it? There are mainly two reasons. The first, more intuitive, lies
in the extraordinary properties of the products of nucleation. Through this phenomenon it is
possible to create new materials, such as photonic crystals, which are considered to be key in
the development of new generation technologies. The second reason of interest is more subtle,
and concerns the analogy that colloidal systems have with atomic and molecular systems. In
fact, nucleation phenomena can also be observed in the latter systems during phase transitions.
However, these occur at too small length scales and too high speeds to be studied in detail.
Conversely, colloids are large enough and slow enough to be observed by conventional optical
techniques such as light microscopes, or to be modelled in numerical simulations without the
inclusion of quantum effects, which typically slow down simulations by order of magnitudes.

We begin our investigation by studying the nucleation of the colloidal analogue of three
binary crystal structures called Laves Phases (LPs). In particular, the three crystals under
investigation are the MgCu2, MgZn2, and MgNi2 crystals. Through free-energy calculations, it
was found in 2007 that LPs can be self-assembled from a binary mixture of hard spheres with a
specific size ratio range. In other words, under certain thermodynamic conditions, they are the
stable phase for the described particle system. Despite this, LPs have never been observed to
spontaneously crystallise from such a fluid mixture in simulations nor in experiments of micron-
sized colloids. To understand why, we study LP nucleation in Chapter 2, using various particle
systems in which we tune the softness of the particles. We use the seeding technique to find
all the essential variables to describe nucleation, and to find the range of supersaturation for
observing spontaneous nucleation events. Although thermodynamics is found to be invariant
with respect to the softness of the particles, these events occur only with the softest particles.
Analysing both the higher order spatial correlations in the fluid, and the dynamics of such
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systems, we finally find that harder systems correspond to a higher concentration of fivefold
symmetry clusters, known to be inhibitors of crystal nucleation. These clusters in turn cause
a critical slowdown in the dynamics, which inhibits crystal nucleation. This study not only
addresses the difficulties in finding spontaneous nucleation events of LPs with systems of hard
spheres, but provides detailed indications of the interaction required to form these structures
in simulations and, most importantly, in experiments.

We continue our journey studying the nucleation phenomenon of another binary crystal, and
undoubtedly the most curious one, which is the colloidal analogue of NaZn13 (to which we refer
as AB13 crystal). This crystal was experimentally observed for the first time by Sanders and co-
workers in 1987 in natural gem opals. Many numerical studies followed, starting from Eldridge,
Madden and Frenkel in 1993, which demonstrated the stability of the AB13 crystal, and provided
a bulk phase diagram of this highly exotic crystal. In spite of its proven thermodynamic
stability, just like the LPs, the AB13 has never been observed to spontaneously nucleate in
numerical simulations. Thus, in Chapter 3, we study crystal nucleation of the AB13 phase in
a binary mixture of colloidal hard spheres. To follow the nucleation process, we employ an
artificial neural network to identify the AB13 phase from the binary fluid phase and competing
crystal structures at a single-particle level with unprecedented accuracy. We show that standard
techniques fail in identifying the different phases and that machine learning is indispensable
in achieving this task. Moreover, investigating in more detail how the neural network makes
decisions enables us to learn from the machine learning algorithm which features and symmetries
are the most important ones for the classification. Employing the trained neural network as an
order parameter, we investigate the nucleation process of the AB13 crystal, clarifying the role
of local structures in the supersaturated fluid, and shedding light on the relationship between
large and small spheres during the very first stages of the cryatallisation event. First, we use
the seeding approach, which enables us to calculate all relevant physical observables regarding
nucleation, and permits to draw a quantitative comparison with nucleation of other hard-sphere
crystals, namely the face-centred-cubic structure and the colloidal LPs. Secondly, we conduct
brute force Molecular Dynamics (MD) simulations, which constitute the first events of AB13
spontaneous nucleation reported in the literature. Finally, we use a different classification
algorithm based on the recognition of local motifs, and demonstrate that binary nucleation of
the AB13 phase proceeds via a co-assembly process of large spheres and icosahedral small-sphere
clusters attaching to the nucleus, and is well-described by a classical nucleation process.

In Chapter 4, we turn our attention to the simplest and most studied system in soft matter:
the hard-sphere system. Despite numerous experimental and theoretical studies, many aspects
of the nucleation process such as the polymorph selection mechanism in the early stages of
nucleation are far from being understood. A clear example is the giant discrepancy between
nucleation rates obtained from simulations or measured in experiments, which differ by several
orders of magnitude. In this Chapter, we focus on the excess of face-centred-cubic (fcc)-like
particles with respect to hexagonal-close-packed (hcp)-like particles in a crystal nucleus of hard
spheres as observed in simulations and experiments. To explain this phenomenon, we simulate
a large number of spontaneous nucleation events using nearly hard spheres. In addition to
following the formation and growth of a crystal nucleus, we also focus on the behaviour of
specific topological clusters, which are characterised by a large concentration in the fluid phase,
which is thus shown to be structurally heterogeneous. We show that, in the metastable fluid
phase, fivefold symmetry clusters - pentagonal bipyramids - known to be inhibitors of crystal
nucleation, transform into a different cluster - Siamese dodecahedra. These clusters, because
of their geometric arrangement, form a bridge between the fivefold symmetric fluid and the fcc
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crystal, thus lowering its interfacial free energy with respect to the hcp crystal, and shedding
light on the polymorph selection mechanism. This mechanism is analysed in simulations and
experiments, which show analogous behaviour.

In Chapter 5 we keep our focus on the same system as in Chapter 4, but with the task of
finding a classification algorithm for the different crystal polymorphs which intrinsically contains
a large amount of information about the local environment of each particle. In order to achieve
this, we resort to the use of a technique belonging to the family of unsupervised learning
algorithms: Principal Component Analysis (PCA). In particular, for each of the phases of
interest – fcc, hcp, and body-centred-crystal (bcc) crystals, and the monodisperse fluid phase
– we simulate the equilibrium bulk structures and compute a large number of features to
describe the local neighbourhood of each particle. These are chosen so that different features
are sensitive to different symmetries shown by the local environment. Using PCA on the entire
data set transforms the parameter space, autonomously finding new order parameters along
which the projection of the original data is maximised. In this way, even using a small number
of new order parameters, it is possible to maintain a very high level of information about each
particle. PCA offers several advantages, all related to the fact that the new order parameters are
a linear combination of the original features. In particular, PCA has a high speed of execution,
and provides easily interpretable results, from which it is possible to gain new insights on which
features are useful to distinguish the different polymorphs. Once PCA is used, it is possible
to project data from nucleation events onto the new space and construct classifiers directly on
the new space. In Chapter 5 we define two of them. The first is based on simple thresholds
on the new order parameters, while the second involves the use of an additional unsupervised
learning technique, Gaussian Mixture Model (GMM). In particular, by clustering the data with
GMM it is possible to label particles not only as belonging to the known phases, but also as
belonging to the interface between two phases. This study shows how dimensionality reduction
and clustering algorithms can play a decisive role in classification tasks. In general, we expect
that unsupervised learning techniques will play an increasingly leading role in the identification
of key features of physical phenomena, and not only of nucleation. On the other hand, in
the field of soft matter, we expect that other phenomena of self-assembly or even of the glass
transition can be better understood and described, starting from these kinds of approaches, for
systems coming both from simulations and experiments.

Unlike what we have just discussed, in many cases one is not interested in the nucleation
mechanism itself, but only in the nucleation products. It is for this reason that, in Chapters 6,
7, and 8, we focus our attention on Inverse Design Methods (IDMs). IDMs are considered to
be the holy grail of materials design via colloid self-assembly. The question we try to answer
is: given a desired material structure (e.g. s specific crystalline phase), how can we tune the
colloidal building blocks to obtain the desired self-assembly product? On the synthesis side,
chemists have made incredible strides to the point where colloidal building blocks can nearly
be made with interactions defined on demand. However, while state-of-the-art computational
and theoretical statistical mechanics methods are extremely capable of solving the so-called
“forward” design problem, where we predict the structures formed by an a priori defined set of
colloidal building blocks, a robust, versatile algorithm for solving the inverse problem remains
a significant challenge. The lack of such an IDM forms a significant obstacle for the full
exploitation of colloidal self-assembly in the development of the next generation of materials.

As a first approach, in Chapter 6, we reverse-engineer a bcc crystal that, in a repulsive
Yukawa particle system, is only stable in a narrow region of the phase diagram. This task allows
us to test two algorithms of different nature – the first based on the statistical fluctuations of the
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system under investigation and the second derived from classical optimisation techniques – and
to evaluate their similarities and differences. Building on the knowledge acquired in Chapter
6, in Chapter 7 we introduce a general IDM to efficiently reverse-engineer desired crystals,
quasicrystals, and liquid crystals by targeting their diffraction patterns. Our algorithm relies on
the synergetic use of an evolutionary strategy for parameter optimisation, and a convolutional
neural network that classifies phases from their diffraction patterns as an order parameter. The
robustness and versatility of this new order parameter allowed us to successfully reverse-engineer
various crystal, quasicrystal and liquid crystal structures in two- and three-dimensional model
systems, thus providing a new way forward for the inverse design of experimentally feasible
colloidal interactions, specifically optimised to stabilise a desired structure. Finally, in Chapter
8, we build on what we learned about LP nucleation in Chapter 2, and investigate the possibility
of finding a self-assembly route to obtain a crystal with a photonic bandgap through the IDM
described in Chapter 7.

Being an extremely broad topic, obviously many questions regarding nucleation still remain
open. Most of them are obviously challenging questions, but also fascinating ones. We hope
that some of the conclusions drawn by the work presented in this thesis, as well as some of
the analysis and methods we developed, can help future researchers to answer some of these
questions, in order to broaden the knowledge we already have about this exciting field of
research.
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Dit proefschrift heeft onbetwiste hoofdrolspelers die van de eerste tot de laatste bladzijde worden
besproken: colloïdale systemen, d.w.z. colloïdale deeltjes gedispergeerd in een oplosmiddel.
Wat onderscheidt colloïden van andere deeltjes zoals atomen en moleculen? Hoewel een zeer
gebruikelijke definitie van colloïden, en ook de meest intuïtieve, betrekking heeft op hun typische
grootte, die gaat van tientallen nanometers tot micrometers, ligt de sleutel om te begrijpen
waar we mee te maken hebben in hun dynamica. Colloïden vertonen namelijk, als gevolg
van de voortdurende interactie met kleine deeltjes van het oplosmiddel, schijnbaar willekeurige
dynamica die Brownse beweging wordt genoemd. Het belangrijkste kenmerk van de Brownse
beweging is dat het colloïdale systeem door zijn willekeurigheid op efficiënte wijze een zeer groot
aantal configuraties van posities en snelheden, de faseruimte, kan verkennen. Op deze manier
kunnen colloïden zich spontaan ruimtelijk organiseren, via een proces dat zelforganisatie wordt
genoemd, en zo de thermodynamisch stabiele fase vormen.

In een zeer groot aantal gevallen verloopt het proces van zelforganisatie via het verschijnsel
nucleatie. Dit proces begint met de willekeurige vorming van een kern van de zogenaamde
kindfase in een klein gebied van het systeem. Dit verschijnsel heeft een prijs in termen van vrije
energie, door het ontstaan van een grensvlak tussen de kern en de omringende moederfase. Als
de kern van de kindfase kleiner is dan een bepaalde drempelwaarde, zal deze nog moeilijker
kunnen groeien, en dus weer gaan smelten. Omgekeerd, als de kern groter is dan een bepaalde
drempelwaarde, zal het systeem thermodynamisch voordeel behalen door onbeperkte groei van
de nieuwe fase, die daardoor de macroscopische fase van het systeem wordt. Nucleatie in
colloïdale systemen is het hoofdthema dat in elk hoofdstuk van dit proefschrift een rol speelt.
Waarom zijn we er zo in geïnteresseerd? Er zijn hoofdzakelijk twee redenen. De eerste, meer
intuïtieve, reden ligt in de buitengewone eigenschappen van de producten van nucleatie. Door
dit verschijnsel is het mogelijk nieuwe materialen te creëren, zoals fotonische kristallen, die
worden gezien als de sleutel tot de ontwikkeling van nieuwe technologieën. De tweede reden
is subtieler en betreft de analogie die colloïdale systemen hebben met atomaire en moleculaire
systemen. In feite kunnen nucleatieverschijnselen ook in de laatstgenoemde systemen worden
waargenomen tijdens faseovergangen. Deze doen zich echter voor op te kleine lengteschalen
en bij te hoge snelheden om in detail te kunnen worden bestudeerd. Omgekeerd zijn colloïden
groot en langzaam genoeg om te worden waargenomen met conventionele optische technieken
zoals lichtmicroscopen, of om te worden gemodelleerd in numerieke simulaties waarbij geen
rekening wordt gehouden met kwantumeffecten, die simulaties gewoonlijk met ordes van grootte
vertragen.

We beginnen ons onderzoek met de nucleatie van de colloïdale analoog van drie binaire
kristalstructuren, de zogenaamde Laves-fasen (LP’s). De drie onderzochte kristallen zijn in
het bijzonder MgCu2, MgZn2 en MgNi2. Door middel van vrije-energieberekeningen werd in
2007 vastgesteld dat LP’s zich kunnen vormen uit een binair mengsel van harde bollen met
specifieke grootteverhoudingen. Met andere woorden, onder bepaalde thermodynamische con-
dities zijn ze thermodynamisch stabiel voor dit desbetreffende systeem. Desondanks is nog nooit
waargenomen dat LPs spontaan kristalliseren uit zo’n vloeistofmengsel, noch in simulaties, noch
in experimenten met harde bolletjes van micron-grootte. Om te begrijpen waarom, bestuderen
we in Hoofdstuk 2 LP nucleatie in een variëteit systemen waarin we de zachtheid van de deeltjes
variëren. We gebruiken de seeding techniek om alle essentiële variabelen te vinden om nucleatie
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te beschrijven, en om uit te vinden welk bereik van oververzadiging geschikt is om spontane
nucleatie waar te nemen. Hoewel de zachtheid van de deeltjes de thermodynamica niet blijkt te
veranderen, treedt nucleatie enkel op bij de zachtste deeltjes. Door analyse van zowel de hogere
orde ruimtelijke correlaties in de vloeistof, als de dynamica van dergelijke systemen, vinden
we uiteindelijk dat hardere systemen overeenkomen met een hogere concentratie van vijfvoudig
symmetrische clusters, waarvan bekend is dat ze de kristallisatie belemmeren. Deze clusters
veroorzaken op hun beurt een kritieke vertraging in de dynamica, die de nucleatie verhindert.
Dit onderzoek behandelt niet alleen de moeilijkheden bij het vinden van spontane nucleatie
van LPs met systemen van harde bollen, maar geeft ook gedetailleerde aanwijzingen over de
interacties die nodig zijn om deze structuren te reproduceren in simulaties en, het belangrijkst,
in experimenten.

We zetten onze reis voort met het bestuderen van de nucleatie van een ander, ongetwijfeld
het meest merkwaardige, binair kristal, namelijk het colloïdale analoog van NaZn13 (waar-
naar we verwijzen als AB13). Dit kristal werd voor het eerst experimenteel waargenomen door
Sanders en zijn medewerkers in 1987 in natuurlijk opaal. Talrijke numerieke studies volgden,
te beginnen met Eldridge, Madden en Frenkel in 1993, die de stabiliteit van het AB13 kristal
aantoonden en bulk fasediagrammen van dit zeer exotische kristal leverden. Ondanks de be-
wezen thermodynamische stabiliteit van AB13 is het nog nooit waargenomen dat AB13 spontaan
nucleëert in een numerieke simulatie (net zoals bij de LP’s). Daarom bestuderen we in Hoofd-
stuk 3 de nucleatie van de AB13 fase in een binair mengsel van colloïdale harde bollen. Om
het nucleatieproces te volgen, gebruiken we een neuraal netwerk om de AB13 fase te onder-
scheiden van de binaire vloeistoffase en concurrerende kristalstructuren, op het niveau van één
deeltje en met een ongekende nauwkeurigheid. We tonen aan dat standaardtechnieken falen in
het onderscheiden van de verschillende fasen en dat machine learning onontbeerlijk is om deze
taak te volbrengen. Door in meer detail te onderzoeken hoe het netwerk beslissingen neemt,
kunnen we bovendien van het machine-learning algoritme leren welke eigenschappen en sym-
metrieën het belangrijkst zijn voor de classificatie. Met het geoptimaliseerde neurale netwerk
als ordeparameter onderzoeken we het nucleatieproces van AB13, verduidelijken we de rol van
lokale structuren in de oververzadigde vloeistof en werpen we licht op de relatie tussen grote
en kleine bollen tijdens de allereerste stadia van het nucleatie proces. Eerst gebruiken we de
seeding-benadering, die ons in staat stelt om alle relevante fysische variabelen met betrekking
tot de nucleatie te berekenen en een kwantitatieve vergelijking te maken met de nucleatie van
andere harde-bolkristallen, namelijk de face-centred-cubic structuur en de colloïdale LP’s. Ten
tweede voeren we brute-force Moleculaire Dynamica (MD) simulaties uit, die de eerste spontane
nucleatiekernen van AB13 vormen die in de literatuur worden vermeld. Ten slotte gebruiken we
een ander classificatiealgoritme gebaseerd op de herkenning van lokale motieven en tonen we
aan dat de binaire nucleatie van de AB13 fase verloopt via een co-organisatieproces van grote
bollen en icosaëdrische kleine bolclusters die zich vasthechten aan de kern, en dat het goed
wordt beschreven door het klassieke nucleatieproces.

In Hoofdstuk 4 richten wij ons op het eenvoudigste en meest bestudeerde systeem in de
zachte materie: het system van harde bollen. Ondanks talrijke experimentele en theoretische
studies zijn vele aspecten van het nucleatieproces, zoals het selectiemechanisme van polymorfen
in de vroege stadia van nucleatie, nog lang niet begrepen. Een duidelijk voorbeeld is de enorme
discrepantie tussen de nucleatiesnelheden berekend uit simulaties en gemeten in experimenten,
die meerdere ordes van grootte van elkaar verschillen. In dit hoofdstuk richten we ons op het
overschot aan face-centered-cubic (fcc)-achtige deeltjes ten opzichte van hexagonal-close-packed
(hcp)-achtige deeltjes in een kristalkern van harde bollen, zoals waargenomen in simulaties en
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experimenten. Om dit fenomeen te verklaren, simuleren we een groot aantal spontane nucleatie
gebeurtenissen van harde bollen. Naast het volgen van de vorming en groei van kristalkernen
gedurende nucleatie, richten we ons ook op het gedrag van specifieke topologische clusters,
welke al in grote concentratie aanwezig zijn in de vloeistof en structureel heterogeen blijkt te
zijn. Wij tonen aan dat, in de metastabiele vloeistoffase, vijfvoudig symmetrische clusters -
vijfhoekige bipyramiden - waarvan bekend is dat zij remmers zijn van nucleatie, transformeren
in een andere cluster - Siamese dodecaëders. Deze clusters vormen door hun geometrische
rangschikking een brug tussen de vijfvoudig symmetrische vloeistof en het fcc-kristal, waardoor
de oppervlakte-energie verlaagd wordt ten opzichte van het hcp-kristal, en licht geworpen wordt
op het selectiemechanisme van de polymorf. Dit mechanisme wordt geanalyseerd in simulaties
en experimenten, die een analoog gedrag laten zien.

In Hoofdstuk 5 richten we ons op hetzelfde systeem als in Hoofdstuk 4, en zelfs op dezelfde
nucleatie gebeurtenissen, maar met de taak om een classificatie algoritme te vinden voor de
verschillende polymorfen dat intrinsiek een grote hoeveelheid informatie bevat over de lokale
omgeving van elk deeltje. Om dit te bereiken, maken wij gebruik van een techniek die be-
hoort tot het gebied van unsupervised learning: Principal Component Analysis (PCA). In het
bijzonder simuleren wij voor elk van de interessante fasen - fcc-, hcp- en bcc-kristallen (body-
centred-crystal) en de monodisperse vloeistoffase - de evenwichtsstructuren en berekenen wij
een groot aantal kenmerken om de omgeving voor elk deeltje te beschrijven. Deze worden zo
gekozen dat verschillende kenmerken gevoelig zijn voor verschillende symmetrieën, en daarom
verhoogt het gebruik van vele kenmerken de mate van informatie over de lokale omgeving van
elk deeltje dat we gebruiken als input voor PCA. Het gebruik van PCA op de volledige dataset
transformeert de parameterruimte, waarbij automatisch nieuwe ordeparameters worden gevon-
den waarlangs de projectie van de oorspronkelijke gegevens is gemaximaliseerd. Op deze manier
is het mogelijk, zelfs met gebruikmaking van een klein aantal nieuwe ordeparameters, een zeer
hoog niveau van informatie over elk deeltje te behouden. PCA biedt verschillende voordelen,
die alle verband houden met het feit dat de nieuwe ordeparameters een lineaire combinatie zijn
van de oorspronkelijke kenmerken. PCA heeft met name een hoge uitvoeringssnelheid en levert
gemakkelijk interpreteerbare resultaten op, waaruit nieuwe inzichten kunnen worden verkregen
over welke kenmerken nuttig zijn om de verschillende polymorfen van elkaar te onderscheiden.
Als PCA eenmaal gebruikt is, is het mogelijk om de gegevens van nucleatiekernen te projecteren
op de nieuwe ruimte en direct te classificeren in de nieuwe ruimte. In Hoofdstuk 5 definiëren we
er twee. De eerste is gebaseerd op eenvoudige drempelwaardes voor de nieuwe ordeparameters,
terwijl de tweede een aanvullende techniek voor unsupervised learning gebruikt, het Gaussian
Mixture Model (GMM). In het bijzonder is het door het clusteren van de gegevens met GMM
niet alleen mogelijk om deeltjes te labelen als behorend tot de bekende fasen, maar ook als
behorend tot het grensvlak tussen twee fasen. Deze studie toont aan hoe dimensiereductie en
clusteringalgoritmen een beslissende rol kunnen spelen bij classificatietaken. In het algemeen
verwachten we dat unsupervised learning technieken een steeds grotere rol kunnen spelen bij
de identificatie van belangrijke kenmerken van fysische verschijnselen, en niet alleen van nucle-
atie. Anderzijds verwachten we dat op het gebied van de zachte materie andere fenomenen van
zelforganisatie of zelfs de glasovergang beter begrepen en beschreven kunnen worden, uitgaande
van deze benadering, voor zowel systemen afkomstig van simulaties als van experimenten.

In tegenstelling tot wat we zojuist besproken hebben, waar de nadruk volledig lag op het
nucleatieproces, is nucleatie op zichzelf vaak niet interessant als mechanisme, maar is men meer
geïnteresseerd in het verkrijgen van de producten ervan. Het is om deze reden dat wij in de
Hoofdstukken 6, 7 en 8 onze aandacht richten op Inverse Design Methods (IDMs). IDMs wor-
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den beschouwd als de heilige graal van materiaalontwerp via colloïde zelforganisatie. De vraag
die we proberen te beantwoorden is: gegeven een gewenste materiaalstructuur (bv. een spec-
ifieke kristallijne fase), hoe kunnen we de colloïdale bouwstenen aanpassen om het gewenste
product te verkrijgen? Wat de synthese betreft, hebben chemici ongelooflijk veel vooruit-
gang geboekt tot op het punt waar colloïdale bouwstenen bijna kunnen worden gemaakt met
op verzoek gedefinieerde interacties. Hoewel de modernste computationele en theoretische
statistisch-mechanische methodes uitermate geschikt zijn om het zogenaamde "Forward De-
sign” probleem op te lossen, waarbij we de structuren voorspellen die gevormd worden door
een a priori gedefinieerde set van colloïdale bouwstenen, blijft een robuust, veelzijdig algoritme
om het “Inverse Design” probleem op te lossen een belangrijke uitdaging. Het ontbreken van
een dergelijk IDM vormt een belangrijke hindernis voor de volledige benutting van colloïdale
zelforganisatie bij de ontwikkeling van de volgende generatie materialen.

Als eerste benadering, in Hoofdstuk 6, reverse-engineeren we een bcc kristal dat, in een re-
pulsief Yukawa deeltjes systeem, alleen stabiel is in een klein gebied van het fasediagram. Deze
taak stelt ons in staat twee algoritmen van verschillende aard te testen - de eerste gebaseerd op
de statistische fluctuaties van het onderzochte systeem en de tweede afgeleid van klassieke opti-
malisatietechnieken - en hun overeenkomsten en verschillen te evalueren. Voortbouwend op de
kennis die in Hoofdstuk 6 is opgedaan, introduceren we in Hoofdstuk 7 een algemeen IDM om op
efficiënte wijze gewenste kristallen, quasikristallen en vloeibare kristallen te reverse-engineeren
door ons te richten op hun diffractiepatronen. Ons algoritme berust op het synergetische ge-
bruik van een evolutionaire strategie voor parameteroptimalisatie, en een convolutioneel neuraal
netwerk dat fasen classificeert op basis van hun diffractiepatronen als ordeparameter. De robu-
ustheid en veelzijdigheid van deze nieuwe ordeparameter stelde ons in staat om met succes
verschillende kristal-, quasikristal- en vloeibare kristalstructuren in twee- en driedimensionale
modelsystemen te reverse-engineeren, en zo een nieuwe weg in te slaan voor het inverse design
van experimenteel haalbare colloïdale interacties, specifiek geoptimaliseerd om een gewenste
structuur te stabiliseren.

Tenslotte, in Hoofdstuk 8, bouwen we voort op wat we geleerd hebben over LP nucleatie
in Hoofdstuk 2, en onderzoeken we de mogelijkheid om een zelforganisatie route te vinden om
een kristal met een fotonische band gap te verkrijgen door middel van de IDM beschreven in
Hoofdstuk 7.

Aangezien dit een zeer breed onderwerp is, blijven er uiteraard nog vele vragen over nucle-
atie open. De meeste van deze vragen zijn natuurlijk uitdagend, maar ook fascinerend. Wij
hopen en geloven dat een aantal van de conclusies die getrokken zijn uit het werk dat in dit
proefschrift gepresenteerd is, en een aantal van de analyses en methoden die we ontwikkeld
hebben, onderzoekers kunnen helpen om een aantal van deze vragen te beantwoorden, om zo
de kennis die we al hebben over dit spannende onderzoeksgebied te verbreden.
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