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Chapter 1

Introduction
Traditional models of long-term economic development typically consider how ag-

gregate input like labor and capital get translated into aggregate economic output.

This output is often quantified by some measure of size of an economy such as Gross

Domestic Product. The issues pertaining to economic development then become the

accumulation of aggregate inputs, the improvement of efficiency of inputs through

technological innovation, and the optimal proportions of those inputs, all to achieve

an increase in the size of the economy.

Recently, there has been a growing interest in the structure of economies as opposed

to their size, considering the portfolio of specific economic activities in an economy.

Differentiating between different types of activities does not only provide a more accu-

rate description of an economy’s state, but also gives insight in its future development.

The export portfolio of a country, for example, is predictive of its future growth. That

is, it is not how much you export, but what you export that matters (Hausmann et al.,

2007).

Following the shift in focus from the aggregate economy to its structure, one can

also shift the focus from aggregate inputs such as labor and capital to the specific

inputs that are necessary to make each particular product. These inputs, referred to

as capabilities, include not only the physical resources and assets that are required

to make a product, but also the know-how required to make them, along with even

more abstract requirements such as institutions and regulations needed for a produc-

tion process (Hausmann and Hidalgo, 2011; Hidalgo and Hausmann, 2009). In this

view, missing any of the ’ingredients’ to produce a particular product will prevent an

economy from producing that product. And, as capabilities are thought of to consist

for large part of tacit knowledge that is not transferred easily, missing capabilities are

hard to imitate from other countries.

1
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In this view, economic development is a process of collective learning. Individuals

specialize in mastering only one or few capabilities. Production, however, necessi-

tates the coming together of many capabilities. As a consequence, countries need to

coordinate the capabilities that are distributed among people, and they do so typ-

ically within formal organizations like firms. economics development can then be

considered to occur through individuals who acquire new capabilities, and recombine

them with existing ones, allowing an economy to make new products. This view does

not only underlie the capabilities model (Hausmann and Hidalgo, 2011; Hidalgo and

Hausmann, 2009), but is also in line with models of recombinant growth (Weitzman,

1998) and cultural evolution (Muthukrishna and Henrich, 2016). All these theories

emphasize the increasing complexity of societies as they develop over time, due to the

accumulation and recombination of capabilities.

This line of thinking can be thought of as a first step towards a ’theory of economic

complexity’ (Gomez-Lievano, 2018). Such a theory may help explain the diverging

rates of development between rich and poor economies: economies that already have

many capabilities can easily develop many new activities by recombining one new

capability with the many existing ones. Economies with few capabilities face a much

harder challenge, since for such countries a new capability enables only few new

activities, as there are fewer existing capabilities to recombine a new capability with.

Having few capabilities thus implies limited growth opportunities (Hausmann and

Hidalgo, 2011). The capability model further sheds light on the extreme concentration

of economic activities in cities, as they act as the typical places where capabilities

accumulate and get recombined (Gomez-Lievano et al., 2016; Gomez-Lievano and

Patterson-Lomba, 2018). In particular, the more complex -and valuable- products

tend to concentrate in the largest cities (Balland et al., 2020).

Against the background of the capabilities framework, a large body of empirical lit-

erature has emerged that addresses questions of economic development by studying

the structure of economies. These studies build on three central concepts. The first

concept is diversity, where the main interest is to understand to what extent economic

development is accompanied by an increase in the variety of products being produced.

This is to be expected as the accumulation of capabilities over time allows an economy

to produce an increasing variety of products. The second concept is complexity, which

also follows from the recombinant logic of economic development. The acquisition of

new capabilities over time does not only allow an economy to produce a larger variety
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of products but also more complex products, where complexity refers to the number

of capabilities required to produce a product. The final concept is relatedness. As

new products emerge by recombining new capabilities with existing ones, the new

products will be related to the existing ones in the sense that they will rely for large

part on the same set of capabilities as existing products.

1.1 Variety, complexity and relatedness

1.1.1 Variety

A key implication of the capabilities framework is that development is characterized

by diversification as opposed to specialization, since the number of possible recombi-

nations grows exponentially with the number of capabilities (Inoua, 2016). Following

the assumption that countries produce all products that their capabilities allow them

to produce, the variety of products that a country produces increases exponentially

with the acquisition of new capabilities. This predicted pattern is consistent with

the empirical observation that, at least for low-income countries, variety increase as

these countries develop (Imbs and Wacziarg, 2003; Cadot et al., 2011). Moreover, re-

cent evidence suggests that diversification is the main driver of economic development

(Brummitt et al., 2020).

It should be further noted that variety can be seen not only as an outcome of the

diversification process alone, but also as a source of economic growth (Weitzman, 1998;

Saviotti and Frenken, 2008). This goes back to the ideas of Jacobs (1969), who argued

that the higher the variety of economic activities, the more scope for new activities

through recombination, leading to an ever greater variety of activities. While she did

not theorize this endogenous dynamic in terms of underlying capabilities, Jacobs’ early

view can be considered as being consistent with the capabilities framework. Later,

Frenken et al. (2007) qualified the benefits of variety in that recombinant innovation

is more likely if the building blocks are technologically related rather than unrelated,

as the inventors in question will find it easier to combine the underlying knowledge

into useful new products and activities. An optimal portfolio thus consists of a high

variety of activities that are also related, leading to the concept of related variety.

In their study, Frenken et al. (2007) constructed a measure of related variety by infer-

ring relatedness from existing hierarchical Standard Industrial Classification (SIC),
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which translates into discrete levels of relatedness (ranging from related to semi-

related to unrelated). This approach has resulted in a sizeable empirical literature

that studies the effect of related and unrelated variety on economic growth, as re-

viewed by Content and Frenken (2016). However, the measurement of related variety

suffers from taking the industrial classifications for granted. Instead, one would wish

to measure relatedness explicitly, also allowing relatedness to change over time. An

alternative measure for diversity has been proposed by Stirling (2007). His measure

accounts both for variety (number of items), balance (relative frequencies) and dis-

parity (the inverse of relatedness). Though the measure combines all three relevant

aspect of diversity, it suffers from the need to weigh, arbitrarily, the relative contri-

bution of variety and balance on the one hand, and disparity on the other.

1.1.2 Complexity

While the structure of the economy can be described by its (related) variety, it does

not necessarily say much about the number of capabilities that are used as inputs in

a country’s products. Some products are highly sophisticated and will require many

different capabilities (like producing a satellite), while others (like growing cotton)

require only few. The number of capabilities required for a specific economic activity

can be thought of as its complexity. Only countries with many capabilities will be able

to engage in highly complex activities, while economies with few capabilities will be

stuck in producing simple products. Complexity is considered economically relevant

as complex products are thought to contribute to a greater extent to a country’s GDP

than simple products, for example because they have high value-added or because they

are limited in supply since only few economies are able to produce them (Hausmann

and Hidalgo, 2011).

The average complexity of products in a country can in turn be interpreted as a

measure of the ’economic complexity’ of a country. However, it is hard to establish

the complexity of products empirically in terms of their capabilities, as we currently

lack ways to observe and measure capabilities at the level of each individual product.

Instead, Hidalgo and Hausmann (2009) proposed an index of economic complexity

that aims to proxy the complexity of countries by examining their export portfolios.

The authors define the complexity of an economy as the average complexity of the

products it exports. The complexity of a product is in turn defined as the average

complexity of the countries producing it. This leads to an iterative procedure called
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the ’method of reflections’ that assigns to every country and product a score known

as the economic complexity index (ECI), and to every product a score known as

the product complexity index (PCI), respectively. Where the ECI is meant to be

an estimate for the number of capabilities in a country, the PCI is meant to be a

measure of the number of capabilities required for its production. The ECI was shown

to predict differences in GDP per capita across countries, as well as future growth

(Hidalgo and Hausmann, 2009; Hausmann et al., 2011). Subsequent work proposed a

variation of the the original ECI and PCI indices by incorporating a different weighting

in the iterative algorithm, leading to a ’fitness-complexity’ algorithm (Caldarelli et al.,

2012; Tacchella et al., 2012), yielding more accurate growth forecasts (Zaccaria et al.,

2015; Tacchella et al., 2018). These new measures nevertheless continue to rely on an

iterative procedure to infer complexity from export portfolios in an indirect manner,

and lack a theoretical foundation. There have been limited attempts to provide a

theoretical foundation for the complexity indices (noteable exceptions being (Schetter,

2019; Gomez-Lievano and Patterson-Lomba, 2018; Bustos and Yildirim, 2019)).

1.1.3 Relatedness

Relatedness is another central notion that has emerged in research on economic de-

velopment over the past decade. This research has been summarized by Boschma

(2017) and Hidalgo et al. (2018). The relatedness term obviously links to the notion

of related variety, yet goes beyond the standard industrial classifications on which the

related variety measure relies. Instead, authors attempt to measure the relatedness

between each pair of economic activity. The ’relatedness’ literature also differs from

the related-variety literature in that the latter focuses on economic growth, while

the former focuses on economic diversification. Following the capabilities framework,

diversification happens once new capabilities recombined with existing ones, leading

to new products and services in an economy. Thus, new products will be related

to the existing ones to the extent that new products share capabilities with existing

products. This implies that diversification patterns are highly path dependent: the

set of capabilities determines what an economy can make, but also sets the stage for

future development by determining which new capabilities may lead to new economic

activities through recombination. Hence, economies are constrained to develop new

activities that are similar to the ones they were already engaged in, since they build

on mostly on the same set of capabilities (Hidalgo et al., 2007).
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One way to gain insight into the path-dependence of economic development is to

study what activities enter and exit economies. If new activities build on new and

exisiting capabilities, then new activities should be related to those that are already

present, a process known as related diversification. This has been tested empirically

by mapping out the relatedness between products (known as a ’product space’) and

showing that activities that enter the economy are close to existing activities in this

space (Hidalgo et al., 2007; Neffke et al., 2011; Boschma et al., 2013) and activities

that exit an economy are farther away from existing activities (Neffke et al., 2011).

The probability of entry and exit of a new activities can thus be estimated by how

’far’ it is in the product space from the current portfolio of an economy. Using this

approach, many studies have shown related diversification to take place across a wide

range of settings (Boschma, 2017; Hidalgo et al., 2018). The product space approach is

particularly powerful as it, next to testing for related diversification empirically, allows

visualization of the product space as a network, visualizing the relatedness structure

underlying economic development (Hidalgo and Hausmann, 2008). The position of an

economy in the product space determines its diversification opportunities: economies

located in dense parts of the product space with plenty of growth opportunities have

better growth prospects than economies that are ’stuck’ in sparse parts of the network.

It thus matters in which direction diversification takes place for future development,

and the structure of the product space may suggest optimal paths of diversification

(Alshamsi et al., 2018).

Methodologically, however, challenges remain. As for complexity measures, related-

ness measures face the difficulty that the capabilities underlying economic activities

are unobservable. One approach to measure relatedness is to use data that reflect

economically meaningful relations between economic activities, for example through

input-output relations between industries (Essletzbichler, 2015) or inter-industry la-

bor flows (Neffke and Henning, 2013). Another widely applied approach, which is less

demanding in terms of data availability, is to infer relatedness from the co-location

of activities, based on the assumption that activities that often co-occur in countries

or regions, are likely to build on the same set of capabilities (Hidalgo et al., 2007;

Boschma et al., 2013).
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1.2 This thesis

The focus on the structure of the economy has inspired a new and extensive body

of empirical research on related variety, economic complexity and relatedness. Yet,

while empirical research is blossoming in three parallel tracks, one can find very few

attempts to link the concepts of variety, complexity and relatedness – be it theoret-

ically, empirically or methodologically. Accordingly, the motivation underlying this

PhD thesis is to elaborate the variety-complexity-relatedness framework as based on

the capabilities model in ways that render the framework theoretically and method-

ologically more coherent. Having a clear framework is not only essential in order to

drive questions in empirical research, but also to guide in deriving policy implications

from empirical results.

The capabilities model (Hausmann and Hidalgo, 2011; Hidalgo and Hausmann, 2009;

Inoua, 2016) provides an elementary framework to theorise about diversity, complexity

and relatedness jointly, as well as about their interrelations. In this model, economic

development stems from the acquisition of new capabilities. Combined with existing

capabilities, a new capability will lead to a larger variety of products as well as,

on average, more complex products. And, as new products emerge by recombining

new capabilities with existing ones, the new products will be related to the existing

ones. Thus, the capabilities model is capable to integrate all three key concepts in a

relatively simple framework.

Another way of adding coherence to the literature is by proposing a consistent method-

ological framework. While measures of diversity, complexity and relatedness exist,

they are often ad-hoc in nature and developed separately from each other. While

often based on the same data, it is not well understood how these measure relate to

each other methodologically. For example, what is the connection between relatedness

and diversity? And should we expect more complex economies to be inherently more

diverse, based on how we measure these things? Taking a more formal approach in

constructing these measures and being more explicit about the assumptions under-

lying them may lead to a consistent methodological framework that allows a better

understanding of how each of these concepts relate to each other. The objective is

thus not only to obtain better measures, but also to gain better understanding of

the nature of these concepts themselves. On top of that, a principled methodological
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approach may help to better understand the properties and implicit assumptions un-

derlying currently used measures, which in turn may lead to new insights about the

empirical regularities that have been established in the literature.

This thesis is built up in four parts divided into seven chapters. The first part serves

as an introductory study, providing a review on the role of diversity in economic

development and a number of empirical tests. In particular, it explores the subtle dif-

ferences and interrelations in how the conceptualisation and measurement of diversity

in the literature on related variety, economic complexity and related diversification.

The second part is methodological and attempts to advance the mathematical and

statistical foundations of measures of diversity, complexity and relatedness. The third

part extends the basic capabilities model by relaxing the core assumption that coun-

tries produce all products that could be made with a set of capabilities, addressing

the relation between diversification and economic development and providing a model

to study different types of policy within the capabilities framework. The final part

concludes. The following subsections provide a brief review of the contents of each

part of this thesis.

1.2.1 Part 1: Setting the scene

Chapter 2 discusses the role of diversity in relation to economic complexity Hidalgo

and Hausmann (2009), related variety (Frenken et al., 2007), and related diversifi-

cation (Hidalgo et al., 2007; Neffke et al., 2011), and showcases the methodological

approaches in each of these literatures. As explained, the related variety notion re-

gards relatedness as cognitive proximity between an economy’s products or industries,

so that diversity with low disparity (a high relatedness between the activities consid-

ered) is beneficial as this allows for easy recombination. In the capability framework,

however, it is not the diversity of products but of capabilities that is relevant, as

a higher number capabilities implies that an economy can produce more, and more

complex, products. Hence, having diversity with high disparity would be best for

economic development, as it implies having many capabilities. To deal with these

questions, I propose a methodology that attempts to express relevant measures in

terms of diversities. This allows empirically testing the different hypotheses following

from the literature by regressing the various diversity measures on economic growth.
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In doing so, this chapter sets the scene for the following three methodological chapters

that attempt to resolve some of the critical methodological issues that remain in

measuring diversity, complexity and relatedness. Each of the three chapters deals

with one of the three concepts separately and does so from a purely methodological

point of view as to improve the foundations of our measurements.

1.2.2 Part 2: Methodological advances

Chapter 3 deals with the measurement of diversity whilst taking into account its three

dimensions: variety (the number of types), balance (the distribution over types), and

disparity (how dissimilar are the types) (Stirling, 2007). The explicit role of each of

the three dimensions of diversity in economic development is yet to be considered,

in particular in the context of the capabilities framework. Digging deeper into these

questions requires a methodological framework for the measurement of diversity and

that takes into account the relative contributions of variety, balance and disparity in

a principled way.

In this chapter, I address the general issue of measuring diversity of a set of economic

activities that have an overlap in the number of capabilities they require. The mea-

surement of diversity has been discussed extensively, mainly in ecology (Hill, 1973a;

Jost, 2006; Purvis and Hector, 2000; Tuomisto, 2010). This has resulted in a frame-

work for the measurement of diversity based on ’Hill numbers’, which shows the math-

ematical relation between many widely used diversity indices, and provides a formal

way of measuring diversity. Furthermore, it has been extended to include similari-

ties (viz. relatedness) between the elements of the communities under consideration

(Chao et al., 2014; Leinster and Cobbold, 2012). This approach is limited, however,

in that it considers only pairwise relatedness between the elements considered, and

does not distinguish in which way the pairs are different. The main contribution of

the chapter is to extend this framework beyond pairwise relatedness, and to propose a

decomposition of diversity into separate components of variety, balance and disparity.

Chapter 4 engages with the ongoing debate about the measurement of complexity,

and in particular with the complexity indices introduced in (Hidalgo and Hausmann,

2009). Despite the explanatory power and appealing rankings produced by the in-

dices, their exact interpretation has remained a topic of discussion. The complexity

indices were first critiqued by Caldarelli et al. (2012) and Tacchella et al. (2012), who
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proposed an alternative in which they incorporate a different weighting in the iter-

ative algorithm. This lead to the ’fitness-complexity’ algorithm that was argued to

yield better results for growth forecasts (Zaccaria et al., 2015; Tacchella et al., 2018),

but has in turn been confronted with its own methodological issues (Morrison et al.,

2017). The two sets of complexity indices have lead to (heated) debates on how the

measures should be weighted (Albeaik et al., 2017a; Gabrielli et al., 2017; Albeaik

et al., 2017b; Pietronero et al., 2017). These discussions mostly concern different

arguments regarding weighting schemes, and how well the resulting country rankings

align with priors and growth rates. Yet, the debate to date has provided little insight

in what these complexity measures are capturing exactly.

Recently, the meaning of the complexity indices was uncovered by Mealy et al. (2019)

and Gomez-Lievano (2018), who note that the ECI is mathematically equivalent to

methods for clustering and dimensionality reduction. In fact, the ’method of reflec-

tions’ was noted to be an exact reinvention of a method called ’reciprocal averaging’,

which is a way of deriving a statistical method called correspondence analysis (Hill,

1973a). These recent insights suggest that the ECI and PCI are to be interpreted as

measures of similarity rather than complexity. Nonetheless, the empirical relation be-

tween ECI and measures of productivity such as GDP per capita is robust, and found

consistently both on national and sub-national scale (Hidalgo and Hausmann, 2009;

Chávez et al., 2017; Gao and Zhou, 2018; Mealy and Coyle, 2019). This suggests that

there is nevertheless a close relation between the specific activities that take place in

economies and per capita income, going back to the original finding that ’what you

exports matters’ (Hausmann et al., 2007) from which most works originated.

In this chapter, I explore the economic complexity index (ECI) as an application of

correspondence analysis (CA). CA has been widely applied in ecology as a method

of ordination, in which the objective is to rank for example species by some latent

variable, based on their occurrence patterns. The mathematics behind CA provides

a rich set of tools and interpretations that lead to new insights in what the economic

complexity indices actually capture, and provide new avenues for further research.

We describe the different interpretations of CA as a method of identifying latent

variables, clustering, and dimensionality reduction. We explore these interpretations

by applying them to datasets from both ecology and economics, and propose a way

to deal with the challenge of applying these ordination methods to clustered data.
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Chapter 5 concerns the ways in which co-location patterns are used to derive a measure

of relatedness. Following the first study by Hidalgo et al. (2007), relatedness measures

are often derived from the empirical co-location patterns of products, industries or

professions. There are, however, many different ways to devise such measures (Seung-

Seok et al., 2010). Methodological frameworks evaluating different measures of co-

location in the current context are lacking, with one notable exception (van Eck and

Waltman, 2009).

Some of the currently used measure have problematic properties. For example, the

relatedness measure used by Hidalgo et al. (2007) is biased towards ubiquitous prod-

ucts. Since the measures is based on the minimum of two conditional probabilities,

it assigns high relatedness to ubiquitous products (with high marginal probabilities),

even when they are indepdendently distributed (Muneepeerakul et al., 2013). Such

biases may greatly affect further analyses.

Another issue is the binarizing procedure that is often applied using Ballassa’s index

of revealed comparative advantage (Balassa, 1965). It may transform the data in un-

predictable ways and discards potentially relevant information. Alternative measures

of relatedness derived from co-location have made some improvements in this respect,

but, like the original measure by Hidalgo et al. (2007), they are not derived from first

principles. The literature thus lacks a framework that allows analysis of co-location

data in a principled way.

In this chapter, I propose an information-theoretic framework that quantifies the as-

sociation between economic activities and the locations they occur in, as well as the

association between activities pairs. The framework shows the mathematical and con-

ceptual links between widely used indices that describe the distribution of economic

activities, such as Ballassa’s index of revealed comparative advantage (Balassa, 1965),

co-agglomeration measures (Ellison et al., 2010), and measures of localization of eco-

nomic activities (Mori et al., 2005). By estimating these quantities in a Bayesian

framework, we also obtain measures for the uncertainty of the estimates.

1.2.3 Part 3: Extending the capabilities model

While the previous three chapters all focus on the methodological challenges in the

measurement of variety, complexity and relatedness separately, the two chapters that
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make up the third part of the thesis are theoretical, and integrate the three concepts

within an extended capability model (Hausmann and Hidalgo, 2011; Hidalgo and

Hausmann, 2009; Inoua, 2016). The theoretical model that underlies much of the

reasoning is the ’binomial model’ presented in (Hausmann and Hidalgo, 2011). This

model assumes that products have random capability requirements, and that countries

differ in the number of capabilities they have. Under the assumption that countries

then make all products they can given the capabilities they have, the model is able to

replicate the distribution of the variety of products produced in different countries,

as well as the relation between countries’ variety and the average ubiquity of the

products they produce. An extension of the model has been used to study the spatial

distribution of social activities across cities, and successfully explains urban scaling

laws (Gomez-Lievano et al., 2016).

The binomial model explains the distribution of activities across different economies,

but does not model the process of development within a single economy. A model

of the economic development of a single economy based on the capability framework

was proposed by (Inoua, 2016). It assumes that products require a given capabil-

ity with a fixed probability, and shows that acquiring new capabilities then leads

to an exponential increase in the variety of products. This leads to proposing the

logarithm of variety as a measure of the number of capabilities. Since the model is

based on recombination of capabilities, it is also consistent with the idea of related

diversification.

Chapter 6 takes issue with the key assumption that economies will make every pos-

sible product given the capabilities they have. Following that assumption, the ac-

cumulation of capabilities leads to an ever-increasing variety of products. Although

this explains the increase of variety as countries develop, it does not match with the

finding that at some point in the development process, the variety of products may

decrease again, a phenomenon known as ’the hump’ (Imbs and Wacziarg, 2003; Cadot

et al., 2011). That is, the model only considers the entry of new products in a country

portfolio, but does not cover products that exit a portfolio.

The model developed in this chapter poses instead that as countries develop, the

least complex activities are dropped from their portfolio as they can no longer be

competitive due to increased wages. As a consequence, variety starts decreasing

at a certain point in the development process, while the average complexity of the
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products it makes, continues to increase. This leads to the identification of three

stages of development consistent with the ’hump’ phenomenon.

Chapter 7 extends the model presented in the previous chapter and argues that coun-

tries (or regions and cities for that matter) may well be constrained in the complexity

of products that they are able to produce. It argues that putting together many

capabilities into a single, complex product not only requires that all capabilities are

present in a country, but also that all actors involved are able to effectively coordinate

them (be it within or across organizations). Put differently, for a country to be able

to produce complex products, it requires that the actors coordinate their activities

through networks and institutions present in a country. Assuming that countries face

such limits to coordination, policy makers are then faced with a choice to direct their

efforts to obtaining additional capabilities (the only policy option in the original ca-

pabilities model), or to improve the coordination of capabilities in order to be able to

produce more complex products with the capabilities already in place.

In this chapter, I further introduce a policy maker who, in each time step, computes

the return to a capability policy (adding one capability to its capability set) and the

return to a coordination policy (extending the maximum complexity of products it

can make by one capability), and chooses the policy with the highest return. The

contribution of this chapter, then, is to show that low-income countries – countries

preceding the hump – should balance their policy efforts on acquiring new capabilities

and improving their ability to coordinate capabilities, while high-income countries –

going through the hump – should focus their policy on improving their ability to

coordinate the many capabilities they already have. The model thus suggests that

high-income countries should focus their policy on improving their ability to coordi-

nate the (many) capabilities they already have. This latter results questions, albeit

on theoretical grounds only, the rising popularity of industrial policy in European

countries during the last decade (Mazzucato, 2011).

Extending theoretical models to examine the effects of relaxing some of the strong as-

sumptions underlying the capabilities model provides a way forward in understanding

how the key concepts of variety, relatedness and complexity are related, both theo-

retically and in a policy context. Only by dropping the assumption that countries

make every product they could possibly make, one can generate patterns in which va-

riety increases and decreases over time, consistent with the ’hump’-phenomenon. The
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model explains why variety and wealth get decoupled over time, where the original

capabilities framework would predict a monotonic relationship instead (Hausmann

and Hidalgo, 2011; Hidalgo and Hausmann, 2009; Inoua, 2016).

1.2.4 Part 4: Concluding remarks

Chapter 8, as the final chapter of the thesis, concludes and reflects on all chapters in

the thesis. It will particularly focus on the methodological findings and connections

between them. From this reflection, the chapter discusses some of the limitations

encountered in the PhD thesis. It also puts forward open questions and challenges to

the capabilities framework that remain.



Chapter 2

The concept of diversity in economic

geography: related variety, economic

complexity and the product space∗

Abstract

The last fifteen years have witnessed a renewed interest in the role of diversity in local

economies. Here, we discuss three contributions to this literature: the notion of related

and unrelated variety, economic complexity, and the path dependent diversification

patterns described in the work on product and industry spaces. Although these three

different lines of research share many commonalities, we describe how they differ

fundamentally in some of their theoretical starting points. Moreover, we argue that

there is substantial distance between some of the conceptual considerations in these

approaches and their empirical implementation. Finally, building on work in ecology,

we describe how to quantify and decompose diversity into three components: the

variety of industries in a city, the balance of employment across these industries and

the disparity among them. Armed with these tools, we show how more or less equally

defensible modeling approaches yield different answers to the main hypotheses put

forward in the research on diversity, diversification and growth in US cities.

∗This chapter is being prepared for submission as F. Neffke, A. van Dam, C. Bottai, M. Iglesias, S.
Orazbayev, R. Hausmann and K. Frenken. The concept of diversity in economic geography: related
variety, economic complexity and the product space.
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2.1 Introduction

One of the most remarkable features of successful cities is the myriad ways in which

their inhabitants can earn a living. To some urbanists like Jane Jacobs, their diver-

sity is precisely the defining quality of cities. This economic diversification is both

an outcome of and a prerequisite for urban growth: cities grow by diversifying their

economies at the same time that a diversified economy allows cities to grow more

productive and innovate. Recently, this relation between economic growth and di-

versification has been scrutinized in two connected, yet distinct bodies of research:

Evolutionary Economic Geography (EEG) and Complexity Economics. In this pa-

per, we discuss the treatment of economic diversity in these two strands of research.

We focus our discussion on three concepts: related variety, economic complexity and

industrial relatedness. First, we argue that the relation between these concepts and

economic diversity is less straightforward than it may seem. Second, we highlight

some important, yet often overlooked differences in theories on which they are based.

Moreover, in an application to US cities, we show that there is some distance between

the original narratives underpinning these concepts and their empirical measurement.

The notion that urban diversity matters finds widespread support among economic

geographers and urban economists. The latter have stressed, for instance, that eco-

nomic diversity improves production and consumption in a city, as formalized in

“love-of-variety” utility and production functions (Dixit and Stiglitz, 1977; Krugman,

1991a). Accordingly, diversity allows suppliers to specialize and customize products

and services to the needs of specific customers (Duranton and Puga, 2004). A related

argument posits that the wide variety of intermediate products and services offered

in large and diversified cities lowers the barriers for new firms to enter new markets.

Accordingly, diversity offers relevant building blocks – or capabilities – required for

the successful operation of economic activities that are shared across industries. Ja-

cobs’ (1969) iconic New York City brazier maker serves as a colorful illustration of

this logic.

Others have instead stressed that local diversity affords opportunities for learning.

Accordingly, new technologies often emerge as new combinations of existing technolo-

gies. By facilitating the sharing of knowledge and ideas across industries, diverse



Chapter 2 The concept of diversity in economic geography: related variety, economic
complexity and the product space 17

cities spur innovation through Schumpeterian “new combinations”.1

The latter, Schumpeterian, argument was further refined by Frenken et al. (2007).

These authors stress that learning is most effective when the parties involved are at

an optimal cognitive distance (Nooteboom et al., 2007). Frenken et al. therefore

distinguish between related and unrelated variety, each of which play different roles

in a city.

Like Frenken et al. (2007), Hidalgo and Hausmann (2009) argue that diversity spurs

growth. However, like Jacobs (1969), Hidalgo and Hausmann’s reasoning relies not

so much on benefits for learning as for the overall operations of economic activities.

They argue that different products require different capabilities. What matters for

urban growth is therefore not superficial industrial diversity, but rather the diversity

in capabilities that sustain a city’s industry mix (see also Neffke et al. (2018) on this

distinction), or, as the authors refer to this, a city’s complexity. Industrial diversity

is merely an imperfect reflection of this complexity. Ultimately, what determines a

local economy’s development potential is the fundamental breadth (i.e, diversity) of

capabilities it can mobilize.

Finally, diversity is not only an input into, but also an output of, local economic

development. This insight also goes back to Jacobs (1969), who proposed that cities

grow by diversifying into new activities. More recently, Hidalgo et al. (2007) have

provided empirical corroboration for this conjecture at the level of national economies

by showing that the process of diversification is not random but follows predictable

paths. Countries, regions and cities tend to diversify into activities that are closely

related to the ones they already host, where relatedness is expressed in product or

industry spaces. The idea of related diversification has been embraced by evolutionary

economic geography, where it was transferred from a country-level to a region-level

phenomenon (Neffke et al., 2011). Since then, processes of related diversification have

been identified across a wide range of contexts (Hidalgo et al., 2018).

Interestingly, the EEG literature that emerged from Hidalgo et al.’s 2007 pioneering

work seems somewhat agnostic about whether the path dependent nature of related

diversification should be attributed to benefits in local learning or in local production.

1Jane Jacobs is often credited with the notion that diversity in cities facilitates such new combi-
nations. However, Jacobs’ original argument does not refer to technological spillovers, but is based
on the idea that a deeper division of labor allows firms to outsource non-critical elements of their
production processes, which lowers entry barriers for new firms and industries.
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However, whereas Hidalgo et al.’s original contribution emphasized that relatedness

and product spaces should be considered as constraints to the feasibility of growth

paths, the subsequent literature has often embraced related diversification as a de-

sirable growth strategy. This suggests an implicit embrace of the learning model:

if related diversification maximizes knowledge spillovers, such diversification paths

would not just be more feasible, but also dynamically efficient.

A complication in both lines of research is that, in spite of its appearance, diversity

is not a monolithic concept. First, there is the aforementioned difference between

superficial diversity in industries and the more substantive diversity in underlying

capabilities. Economic complexity attempts to capture this latter fundamental diver-

sity in its economic complexity index (ECI). However, recent work has cast doubt on

whether the ECI can indeed be interpreted as a diversity measure. Second, diversity

alludes to the notion that there are some primitive objects that are fundamentally

distinct from one another. For instance, manufacturing cars is obviously different

from running a restaurant. However, things are not always as easy. For instance,

are fast-food chains and family restaurants different activities? Or are they different

instances of the same activity? As definitions of economic activities become more

fine-grained, it becomes harder to decide which activities are fundamentally differ-

ent.2 Third, there are at least three aspects to diversity. Diversity depends on (1)

the number of distinct activities in a city, (2) how spread out employment or output

is across these activities and (3) how dissimilar these activities are to one another

(Stirling, 2007).

We will discuss all of these issues in greater detail. Our aim is to highlight the com-

monalities and differences in theoretical starting points that underlie related variety

on the one hand and economic complexity and the product space on the other hand.

These differences mirror the differences in intellectual antecedents: whereas the liter-

ature on related variety is firmly grounded in innovation theory, economic complexity

and the product space emerged from combining trade theory with concepts of complex

networks and combinatorial growth found in the complexity sciences. Furthermore,

we discuss how the different conceptual starting points lead to different measurement

strategies. To bridge the two frameworks, we build on a decomposition of diversity

2Note that this aggregation problem is precisely what the measurement of relatedness aims to
overcome: relatedness captures the how distinct different activities are.
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that separates the aforementioned aspects of diversity: the variety of different indus-

tries in a city, the balance of employment distribution across these industries and the

disparity or (un)relatedness of the city’s industries.

We illustrate our argument with data on US cities. The goal of this exercise is modest.

We do not aim to provide definitive answers to the question of what role diversity

plays in the growth and development of these cities. Instead, we use these data to

explore how different empirical strategies yield different conclusions on the same core

hypotheses put forward in prior literature.

The main lessons from our analysis are:

1. Related variety and economic complexity are based on fundamentally different

beliefs about why diversity matters.

2. Economic complexity is no measure of generalized diversity and will only reveal

an economy’s complexity under specific circumstances.

3. The effects of related variety are sensitive to ad hoc empirical choices.

4. Path dependent related diversification may not reflect the effects of a large

diversity, but of a large mass of related activities.

In the remainder of the paper, we will elaborate on these lessons. We start by intro-

ducing the concepts of related variety, economic complexity and the industry space,

paying special attention to the implicit stances they take on diversity. In Section 2.3

we describe the empirical implementation of these concepts. Next, we introduce the

data and discuss our empirical exercise in 2.4. Finally, as a companion to this paper,

we provide structured Python Notebooks that allow easy replication of our analyses.

Our hope is that, by providing transparent access to the measures and calculations

in this paper, we allow others to test hypotheses across datasets and applications

and hopefully arrive at a scientific consensus about what roles diversity plays in local

economic development.
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2.2 The role of diversity in local economies

In both evolutionary economic geography and complexity economics, scholars have

studied the role of diversity in local economic development. However both strands of

the literature have done so using different concepts and empirical tools.

2.2.1 Related Variety

Economic geographers have long recognized that cities benefit from having a diversi-

fied economy. Since Glaeser et al. (1992), these benefits are known as Jacobs’ exter-

nalities. Frenken et al. (2007), however, argue that regional diversity affects economic

development in more than one way. First, a greater variety of economic activities

in a city facilitates knowledge spillovers between industries. Second, like diversified

financial portfolios lower investment risks, regional diversity reduces a city’s exposure

to idiosyncratic demand or supply shocks.

The main insight of Frenken and his colleagues is that these two effects build on

different types of diversity. Whereas spillovers associated with Jacobs’ externalities

are most likely to materialize between “complementary sectors” (Frenken et al., 2007,

p. 686), risk diversification is maximized when industries differ in their exposure to

market forces. Therefore, it is not just the variety of industries that a region hosts

that matters, but also the extent to which these industries are related to one another.

Unrelated variety reduces the region’s exposure to adverse shocks, which should trans-

late into less unemployment. Related variety instead benefits a local economy through

the inter-industry learning associated with Jacobs’ externalities. However, learning

is most fruitful when it happens at an optimal cognitive distance (Nooteboom et al.,

2007): to learn from one another, economic actors should neither be too similar nor

too different from one another. By facilitating Schumpeter’s “new combinations”,

related variety should therefore spur innovation and accelerate productivity growth.

2.2.2 Economic Complexity

Scholars in complexity economics have put forward different metrics of diversity to

capture an economy’s latent growth potential. The earliest metric was the Economic

Complexity Index, introduced by Hidalgo and Hausmann (2009) as a measure of an
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economy’s complexity. It builds on Hausmann et al.’s (2007) insight that “what [a

country] export[s] matters.” Accordingly, rich countries are rich because they produce

products that require a broad capability base. Because the full list of factors that

could count as capabilities is unknown – ranging from physical infrastructure and

an educated labor force to efficient institutional arrangements and a capable state

– identifying the precise capability requirements for each product is nigh impossible.

Therefore, Hausmann and colleagues instead propose to infer the implicit productivity

a product requires from the kind of countries that are able to export it. If only high-

productivity countries – proxied as countries with high per-capita incomes – manage

to export a product, the product is likely to require a wider range of capabilities.

The authors thus define a product’s implicit productivity requirement, PRODY, as

the average per-capita Gross Domestic Product (GDP) of countries that export the

product. Next, the implicit productivity of country c, EXPYc, can be calculated as the

(export-value weighted) average productivity implied by the products it exports. This

implicit productivity proves to predict a country’s future income growth remarkably

well.

The so-called method of reflections (Hidalgo and Hausmann, 2009) generalizes this

notion of “implicit productivity” by ranking the complexity of products and countries

without using information on countries’ per-capita incomes. Instead, it defines the

complexity of a country (the Economic Complexity Index, or ECI) and the sophis-

tication of a product (the Product Complexity Index, or PCI) iteratively. In each

iteration, the ECI of a country is the average of the (previous iteration’s) PCI of all

products that the country produces. Similarly, the PCI of a product is the average

ECI of all countries that produce the product, where “producing” refers to exporting a

product with revealed comparative advantage. As the iteration progresses, it updates

its guesses of product and country complexities. To seed the iterations Hidalgo and

Hausmann use the number of products that a country produces as an initial guess of

its complexity and the number of countries that are able to produce a product as the

initial guess of the product’s lack of sophistication (complexity). Iteratively updating

these initial guesses yields an ECI for each country and a PCI for each product.

The authors interpret these indices as measures of the number of capabilities that

a country has or that a product requires. That is, the ECI is supposed to reflect a

fundamental, capability-based notion of diversity.
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In later work, Hausmann and Hidalgo (2011) and Caldarelli et al. (2012) discovered

that the method of reflections simplifies to an eigenanalysis, in which the ECI and PCI

can be expressed as eigenvectors. However, this same insight ultimately cast doubt

on the interpretation of the ECI and PCI as measures of capability endowments and

capability requirements. Mealy et al. (2019) and Gomez-Lievano (2018) describe the

close relation between ECI and spectral clustering3: the ECI splits countries into

two groups such that the export baskets of countries in one group are similar to one

another and different to those of countries in the other group.

The close relation between ECI and graph partitioning helps explain a number of

known conundrums. First, the direction of the ranking of the ECI is undetermined:

it can rank countries in ascending or descending order of complexity. Consequently,

researchers need to determine the right direction in an ad hoc way.4 The reason is

now clear: because the ECI and PCI are eigenvectors, their sign is undetermined.

Second, Hidalgo and Hausmann’s (2009) claim that the ECI is a generalized measure

of diversity has been questioned by Tacchella et al. (2012) and Kemp-Benedict (2014).

The latter showed that the ECI is in fact orthogonal to a country’s export diversity.5

Third and finally, the rankings produced by the ECI and, in particular, by the PCI

can be strikingly counterintuitive. We will show some examples of this in Section

2.4.3.

2.2.3 The Product Space

Like the ECI, Hidalgo et al.’s (2007) product space builds on the notion that products

differ in their underlying capability requirements. However, instead of trying to assess

how many different capabilities one product requires, the product space attempts to

measure to what extent two products share the same capability requirements. Once

again, measurement is indirect: Hausmann and Klinger (2006) and later Hidalgo and

3In fact, the method of reflections is exactly equivalent to an ordination in Ecology called ‘recip-
rocal averaging’ (Hill, 1973b), which is in turn equivalent to the method of Correspondence Analysis,
a technique for analyzing associations in high-dimensional categorical data (Greenacre, 1984). The
complexity indices can thus be seen as the ‘principal component’ in a dimensionality reduction tech-
nique analogous to principal components analysis.

4For instance, the ECI should correlate positively with countries’ GDP per capita, or Germany,
Japan and the U.S. should be ranked as complex economies.

5Note that diversity is here measured as the number of products that are exported with revealed
comparative advantage.
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co-authors posit that two products require similar capabilities if they are often co-

exported by the same countries. By counting co-occurrences of products in countries’

export baskets, the authors build a network that connects co-exported products. This

network is referred to as the Product Space.

The product space has been shown to map a country’s likely diversification paths.

To predict future diversification, Hidalgo et al. (2007) create a variable they call

“density”. Density measures the proximity of a product to a country’s overall export

basket. The higher a product’s density, the more likely it is that the country will start

exporting it. This empirical regularity has been replicated across various data sets

and contexts and was dubbed the Principle of Relatedness by Hidalgo et al. (2018).

In Section 2.3.3, we will see that this density is, in fact, a measure of the variety of

related products.

2.3 Measurement

The research reviewed above has yielded three quantities of interest: related variety,

economic complexity and inter-industry proximity or relatedness. Below, we describe

how each of these quantities can be measured. Herein, we stay close to the original

papers, while simplifying some elements.

2.3.1 Related variety

Related variety as defined by Frenken et al. (2007) is based on the entropy of a city’s

employment distribution across industries. For a given city, the entropy is given by

S(pc) = −
∑
i∈I

pic log pic, (2.1)

where pc is the vector of employment shares pic =
Eic

E.c
of industry i in city c (the “.”

in E.c indicates a summation over the omitted category, in this case industries).

A city has maximum entropy if all of its industries are equally large. In this case

S(pc) = logNc, where Nc is the number of industries with nonzero employment share

in city c. If all employment is concentrated in a single industry, S(pc) reaches its

minimum of S(pc) = 0.
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If industries belong to broader sectors σ ∈ Σ, entropy can be decomposed into two

components:

S(pc) = −pσc
∑
σ∈Σ

log pσc −
∑
σ∈Σ

pσc
∑
i∈σ

pic
pσc

log
pic
pσc

(2.2)

= UVc +RVc, (2.3)

where pσc =
Eσc

E.c
is the sectoral employment share in city c.

The first term is the city’s sectoral employment entropy. It measures how equally

spread out a city’s employment is across sectors. Frenken et al. (2007) refer to this

term as the city’s unrelated variety. The second term is the city’s related variety : a

weighted average of industry-level employment entropies within each sector, where

weights represent a sector’s employment share. Unrelated and related variety thus

quantify a city’s degree of diversification at two different levels of aggregation: across

sectors, and across industries within sectors.

2.3.2 Economic Complexity

To calculate the ECI and PCI, we first need to determine the activity mix of a local

economy. That is, we need to decide whether or not an industry has a substantial

presence in a city. To do so, we calculate a quantity known in economic geography

as the location quotient (LQ).6 Let Eic be the employment of an industry i in a city

c and omitted indices mark a summation over the corresponding dimension. We say

that industry i is present in city c, whenever the industry is overrepresented in the

city:

Pic =

1 if Eic/Ei.

E.c/E..
> 1

0 elsewhere
(2.4)

We collect the industry mixes of all cities in the matrix P . The entries of this matrix

consist of zeros and ones, Pic ∈ {0, 1}, that mark which industries (listed in rows) are

6When applied to export volumes, this quantity is known as revealed comparative advantage
(RCA) in the trade literature.



Chapter 2 The concept of diversity in economic geography: related variety, economic
complexity and the product space 25

present in which cities (listed in columns). Next, we calculate the ECI of each city

and the PCI of each industry using the eigenvector implementation of the method of

reflections. For details, we refer to Hausmann and Hidalgo (2011).

2.3.3 Product Space

Inter-industry relatedness can be measured in a variety of ways (see, for instance,

Neffke and Henning (2013) for an overview). In what follows, we largely follow the

approach in Hidalgo et al. (2007). That is, we infer the relatedness between industries

from how often industry i and i′ co-occur in the same cities:

Cii′ =
∑
c∈C

PicPi′c (2.5)

where C represents the set of cities in the dataset. The number Cii′ is simply a count

of the number of times that i and i′ are present in the same city. The proximity of

activity i to i′, φii′ , is now defined as:7

φii′ =


Cii′/C.i′
Ci./C..

if i 6= i′

0 if i = i′
(2.6)

That is, to calculate proximity, we compare how often i co-occurs with industry i′

to a benchmark that tells us how often we would have expected them to co-occur,

had the industries been randomly distributed across cities.8 Furthermore, we set the

proximity of industry i to itself equal to one. Given that the metric defined in eq. (2.6)

tends to have a highly skewed distribution, we map φii′ onto the interval [0, 1) using:9

φ̃ii′ =
φii′

φii′ + 1
. (2.7)

7Note that this measure is similar to the one proposed by Hidalgo et al. (2007), but, unlike
their metric, φii′ is symmetric. Given that co-occurrences are undirected, we see no advantage in
artificially creating asymmetries in this measure.

8Note that this normalization is essentially the same as in the LQ.
9For a detailed justification of this approach, see Neffke et al. (2017). An alternative, information-

theory based normalization is proposed in van Dam et al. (2020).
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φ̃ii′ defines a network of related industries, the industry space.10 We can use φ̃ii′ to

calculate how close an industry is to a city’s entire portfolio of industries. Following

Hidalgo et al. (2007), we call this measure an industry’s density in the city:

Di
c =

∑
i′ 6=i

φ̃ii′

φ̃i.
Pi′c (2.8)

where the sum is taken over all industries in the classification system, excluding

industry i itself. Di
c counts the weighted number of different industries with LQ > 1

in city c relevant to industry i. The superscript i signals that the weights reflect how

related each industry is to industry i.

In the empirical section, we will also introduce a close cousin of density, namely the

mass of industries in city c relative to industry i:

Ei
c =

∑
i′ 6=i

φ̃ii′

φ̃i.
Ei′c. (2.9)

Whereas density represents a proximity-weighted count of industries in a city – and

is therewith essentially a measure of industrial variety (albeit the variety of industries

with LQ > 1) – mass represents the proximity-weighted size of all industries, in terms

of employment. Hence, mass does not distinguish between the different industries,

but simply considers their total employment weighted by their proximity to the focal

industry. All related industries are thus perfect substitutes for one another, whether

employment is distributed across many or few (equally related) industries.

In Section 2.4.3, we will use several alternative relatedness measures, all but one

of which follow the same measurement approach. First, we estimate the proximity

between cities, φ̃cc′ , to produce a city space that expresses how similar cities are in

terms of their industry mix:

φcc′ =


Ccc′/C.c′
Cc./C..

if c 6= c′

0 if c = c′
(2.10)

10To increase visual clarity, we will require minimum thresholds for these edges when drawing
the networks – but not when calculating densities – using the method laid out in Coscia and Neffke
(2017).
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Second, we estimate an occupation space, φoo′ by looking at how often two occupations

co-occur in the same cities:

φoo′ =


Coo′/C.o′
Co./C..

if o 6= o′

0 if o = o′
(2.11)

In eqs (2.10) and (2.11), Ccc′ and Coo′ are constructed analogously to Cii′ , counting

the number of industries that are co-hosted by cities c and c′ or the number of cities

in which occupations o and o′ co-occur. Furthermore, we map φcc′ and φoo′ onto the

interval [0, 1) to yield φ̃cc′ and φ̃oo′ , using the transformation of eq. (2.7).

Third, we estimate a measure of cognitive proximity between industries:

ψii′ =


Cocc

ii′ /Cocc
.i′

Cocc
i. /Cocc

..
if i 6= i′

0 if i = i′
(2.12)

where Cocc
ii′ counts the number of occupations that are simultaneously present in

industry i and i′, using the definition of “presence” of eq. (2.4). Once again, we map

this metric onto the interval [0, 1), using the transformation in eq. (2.7).

Fourth, we calculate the relatedness, or similarity, of two industries’ growth patterns

as the correlation between the industries’ growth rates:11

ρii′ =

corr
(

Eit+1

Eict
,
Ei′t+1

Ei′t

)
if i 6= i′

0 if i = i′
(2.13)

This metric captures the extent to which industries are exposed to correlated economic

shocks. The higher the correlations in industrial growth rates in a city are, the less

well the city managed to diversify its portfolio risks.

2.3.4 Decomposing diversity: variety, balance and disparity

All three concepts discussed above, related variety, economic complexity and the

product space pertain to the notion of diversity, but they do so in different ways. To

11We check the significance level of the correlations; if p-valueii′ < 0.05 then ρii′ = 0.
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compare these concepts and their relation to diversity, it will be helpful to explore

more carefully what we actually mean by diversity.

Figure 2.1 shows three cities and their employment distribution.12 In principle, each

of these cities could claim to be equally diverse, as each contains two industries.

However, city B has a more evenly distributed employment across these industries,

making it arguably more diverse as its employment is not dominated by one industry.

City C, in turn, has a similar composition as city B, but hosts industries that are

most distinct from one another, making it more diverse than city B.

A

B C

Figure 2.1: Three cities (A, B, and C) with a different employment structure.
City A contains two industries of uneven size. City B contains two equally sized
industries. City C also contains two equally sized industries, but they are more

dissimilar than those in A and B.

Industrial diversity is thus a compound concept that consists of three components

(Stirling, 2007):13

1. How many different industries exist in the city? This is known as a city’s

industrial variety.

2. How equally is employment distributed among these industries? This is known

as the industrial balance in a city.

12The figure is inspired by Figure 1 in Rafols and Meyer (2010).
13Work on incorporating disparity into measures of diversity measures goes back to the 1970s

(Rao, 1982). More recent work applies these ideas in scientometrics (Rafols and Meyer, 2010) and
economics (van Dam, 2019).
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3. How dissimilar are the industries in a city? This is known as a city’s industrial

disparity.

Using this framework, the distinction between related and unrelated variety can be

understood as an interaction between the combination of (1) and (2) with (3). That

is, related variety is high in cities with high industrial variety and/or balance, but low

industrial disparity, whereas unrelated variety is high in cities with high industrial

variety and/or balance, and high industrial disparity. Similarly, the density metric in

Hidalgo et al. (2007) combines elements of (1) with (3): an industry’s density is high

in cities with many different industries that are strongly related to i.

2.3.4.1 Generalized diversity and Hill numbers

We will quantify diversity using the notion of Hill numbers (Hill, 1973a). Unlike

commonly used diversity indices such as the entropy or the Herfindahl-Hirschman

index (HHI), Hill numbers express diversity in units of ‘effective numbers’ (Jost, 2006).

The effective number of industries in a city is the number of equally large industries

that would be needed to obtain the same diversity as the city under consideration.

To be precise, Hill numbers answer the question: If we wanted to find a city with

the same diversity, but where all industries are equally large, how many different

industries would that city need? Hence, for equally sized industries, the Hill number

returns the number of industries in a city. For industries with unequal size, the Hill

number returns the number of industries in the city, discounted for the inequality in

the industry distribution.

The entropy in eq. (2.1), used there as an index for diversity, can be converted to a

Hill number by taking its exponential (Jost, 2006).14 Hill numbers provide a measure

of diversity that takes into account variety and balance, but can be further extended

to incorporate disparity. These generalized Hill numbers measure diversity in units

that answer the question: How many equally large and maximally distinct industries

would a city need to attain the same industrial diversity score as the city at hand? Let

matrix Z represent a measure of industry relatedness. Leinster and Cobbold (2012)

shows that an augmented Hill number of generalized diversity can now be defined as:

14This yields a diversity of e−
∑

i pi log(pi), where pi represents the employment share of indus-
try i in the city. For a city with Nc equally large industries, we then have pi = 1

Nc
, so that

e
−

∑Nc
i=1

1
Nc

log( 1
Nc

)
= Nc.
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DZ(pc) = −e
∑

i pic log((Zpc)ic). (2.14)

This is a measure of diversity that takes into account variety, balance, and disparity,

and can be interpreted in terms of effective numbers. When the proximity matrix is

the identity matrix, Z = I, representing a situation where all industries are maximally

dissimilar, eq (2.14) simplifies to the standard Hill number:

DI(pc) = −e
∑

i pic log(pic).

2.3.4.2 Decomposing diversity

The generalized Hill number of eq. (2.14) can be decomposed into separate compo-

nents that measure variety, balance and disparity (van Dam, 2019). The decomposi-

tion is based on the fact that variety simply counts the number of industries in a city

with nonzero employment share, Nc:

Nc =
∑
i∈I

1(Eic > 0). (2.15)

where 1(.) is an indicator function that evaluates to 1 if its argument is true and 0

otherwise.

Assuming that the standard Hill number is the product of variety and balance, we

can then express balance as

balc =
DI(pc)

Nc
. (2.16)

Likewise, assuming that the generalized Hill numbers is the product of variety, balance

and disparity, we obtain disparity as

dispc =
DZ(pc)

DI(pc)
. (2.17)
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The intuition behind this decomposition is as follows. Balance and disparity are

essentially factors between 0 and 1 that correct variety (the number of different in-

dustries found in a city) for the unevenness of the distribution of employment and

the differential relatedness between industries. We can furthermore normalize variety

itself such that it lies between 0 and 1 as well, by dividing variety by the total number

of industries in the classification |I|, so normalized variety is expressed as:

varc =
Nc

|I|
. (2.18)

2.3.4.3 Relative Hill numbers

So far, we have discussed the aggregate diversity of an entire local economy. However,

in the research on product spaces, the focus is not as much on cities as a whole as

on individual industries within a city. Therefore, it is useful to extend the notion

of general Hill numbers such that they relate to the diversity within a city in the

neighborhood of a specific industry.

We can do so as follows. Imagine standing on a node in the industry space and looking

around at all neighbors. We are interested in the amount of employment observed in

each neighboring node, where we weight related nodes more heavily than unrelated.

We can define a proximity-weighted employment of i′ relative to i as follows:

Ei
i′c =

Zii′∑
i′ 6=i Zii′

Ei′c

Ei
i′c captures an industry’s importance to the focal industry i, assuming that indus-

tries matter more the larger and more related they are. This idea is shown schemat-

ically in Figure 2.2. Note, furthermore, that if we sum Ei
i′c across all neighboring

industries of i, we get the quantity of mass as defined in eq. (2.9).

Let pii′c be the share of each if i’s neighbor’s relative employment to i, pii′c =
Ei

i′c
Ei

.c
.

Using these shares instead of pic in eqs (2.15) to (2.18) yields the amount of generalized

diversity that exists in the immediate neighborhood of industry i. We will call this

quantity the relative Hill number with respect to i. As before, we can decompose this
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relative diversity into its constituent components: relative variety, relative balance

and relative disparity.

n

j k

l
i

.2

.4 .8
.8

m

.5

350
50

250

200
150

Node Ei′c
Zii′∑
i′ Zii′

Ei
i′c

j 350 .15 52.5
k 50 .3 15
l 250 .3 75
m 200 .18 36
n 150 .07 10.5

Figure 2.2: Schematic section of the industry space containing a focal industry
(i) and its neighbors (i′ in general). The size of a node indicates the industry’s em-
ployment level, given by the number next to it and shown in the second column of
the table. The edge labels represent the proximity Zii′ between the nodes, leading
to the weights in the third column of the table. The product of the employment
and the weights give the employment level relative to the focal industry, given in
the fourth column of the table. The diversity relative to the focal industry is com-
puted based on this relative employment. It consists of the relative variety (here
5), relative balance (the evenness of the distribution of the proximity weighted em-
ployment) and the relative disparity (the proximity among the neighbors, indicated

here by grey dashed lines).

2.4 Empirical tests

2.4.1 Data

To illustrate the approaches discussed in the previous sections, we use data on US

cities. The dataset contains information on the industrial composition of the economies

of 369 Metropolitan Statistical Areas (MSAs) between 1990 and 2006. It records em-

ployment and average wages for each city-industry pair, as well as the unemployment

rate for each city. We limit the analysis to 278 non-resource based, private-sector

industries. Furthermore, we add two additional datasets that contain information on

employment and wages for all occupation-city and occupation-industry pairs.15

15Appendix A provides details on the original data sources and our data cleaning. Appendix B
contains an overview of the variables used in this section and their descriptive statistics.
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2.4.2 Related variety

Frenken et al. (2007) test their related variety framework using data on Dutch labor

market areas. Here, we will explore two of their main hypotheses: (a) because related

variety facilitates product innovations through new technological combinations, re-

lated variety spurs employment growth; and (b) because unrelated variety reduces an

urban economy’s exposure to industry-specific, idiosyncratic shocks, unrelated variety

protects a city against unemployment.

Frenken et al. (2007) find empirical support for both hypotheses. Some later studies

replicate these results for different countries, time periods and sectors. Others, how-

ever, fail to corroborate them or report contradictory results (Content and Frenken,

2016).

This divergence in findings may be due to methodological shortcomings in Frenken

et al.’s original study (see also Content and Frenken (2016)). First, it is unclear how

related two industries must be to contribute to related variety instead of to unrelated

variety. In Frenken et al. (2007), this threshold is arbitrarily set to whether or not

two industries belong to the same 2-digit sector.

To illustrate this issue, we explore how the exact delineation between related and

unrelated industries affects the estimated association between related or unrelated

variety and employment growth. To do so, we estimate Ordinary Least Squares

(OLS) regression models of the following kind:

log
(
EcT

/
Ect

)
= β0 + β1 logEct +Xctβ + εct, (2.19)

where Ect is employment in city c in the base year t, and EcT employment in city

c in some later year T . The term logEct captures mean reversion effects, whereas

the vector Xct contains variables that describe an urban economy: its related variety,

unrelated variety and size.16

16One could add further control variables for a city’s human capital, infrastructure and so on.
However, such variables risk being endogenous: they may be a consequence of a city’s industrial
diversity. Note that our aim is not to conclusively determine how diversity affects growth, but rather
to explore whether arbitrary modeling choices affect our findings. We emphatically do not presume
that we chose an optimal regression specification.
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Table 2.1 shows results. The models in each column differ by when two industries are

considered related. In column (1), related industries are industries that belong to the

same 1/̄digit sector, in column (2), the industries must belong to the same 2/̄digit

sector and in column (3) to the same 3/̄digit sector. Unrelated variety is thus taken

over 1- 2-, and 3-digit sectors, respectively.

Table 2.1: Employment growth in cities. Models differ by when two industries
are considered related: column (1) same 1/̄digit sector, column (2): same 2/̄digit

sector, column (3): same 3/̄digit sector.

(1) (2) (3)

RVc 0.0845 -0.0155 0.3147***
(0.0701) (0.0814) (0.1082)

UVc -0.6318*** -0.1214 -0.2417***
(0.1721) (0.1077) (0.0928)

lnEc -0.0954*** -0.0791*** -0.0865***
(0.0163) (0.0164) (0.0161)

Intercept 0.4434*** 0.4434*** 0.4434***
(0.0105) (0.0108) (0.0106)

R2 0.32 0.28 0.30
R2 adj. 0.31 0.27 0.29
N.obs. 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Although the exact relatedness cut-off is arguably an ad hoc choice, it does affect

our findings. Whereas in models (1) and (2), related variety has no statistically

significant effect on employment growth, we find a substantial and positive effect in

model (3). Similarly, the effect of unrelated variety, which is negative in each model,

is numerically unstable. Although these findings are roughly in line with Frenken

et al. (2007), the dispersion of parameter estimates is worrisome.

Results are somewhat more robust if we repeat the analysis using two alternative

dependent variables in Tables 2.2 and 2.3: growth in average wages and end-of-period

unemployment levels.17 Wage growth is positively associated with related variety,

but not significantly associated with unrelated variety.18 Unemployment levels, by

17Frenken et al. (2007) studied the effect on unemployment growth. However, unemployment
rates essentially follow the business cycle. Changes in unemployment rates between 1990 and 2006
therefore are mostly driven by how far these years are from the closest troughs and peaks in the local
business cycle and do not capture some characteristic city-specific unemployment dynamic.

18To capture mean-reversion effects, these analyses also control for the wage level in 1990.
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Table 2.2: Average wage growth in cities. Models differ by when two industries
are considered related: column (1) same 1/̄digit sector, column (2): same 2/̄digit

sector, column (3): same 3/̄digit sector.

(1) (2) (3)

RVc 0.0660** 0.0692** 0.2866***
(0.0281) (0.0308) (0.0540)

UVc -0.0487 0.0084 -0.0713
(0.0615) (0.0422) (0.0435)

lnwc -0.1646*** -0.1694*** -0.1841***
(0.0459) (0.0454) (0.0432)

lnEc 0.0164** 0.0189*** 0.0152**
(0.0069) (0.0068) (0.0065)

Intercept 0.5798*** 0.5798*** 0.5798***
(0.0046) (0.0046) (0.0045)

R2 0.10 0.09 0.16
R2 adj. 0.09 0.08 0.15
N.obs. 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 2.3: Unemployment level in cities. Models differ by when two industries
are considered related: column (1) same 1/̄digit sector, column (2): same 2/̄digit

sector, column (3): same 3/̄digit sector.

(1) (2) (3)

RVc -0.7249*** -0.5645*** -0.4927*
(0.1963) (0.2053) (0.2577)

UVc -1.1732** -1.1563*** -0.9717***
(0.4640) (0.3107) (0.2699)

lnEc 0.9084*** 0.9129*** 0.9120***
(0.0439) (0.0452) (0.0454)

Intercept 8.8857*** 8.8857*** 8.8857***
(0.0222) (0.0220) (0.0222)

R2 0.84 0.85 0.84
R2 adj. 0.84 0.85 0.84
N.obs. 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

contrast, are negatively associated with both related and unrelated variety, but more

so with the latter than with the former.
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A second concern about Frenken et al.’s (2007) approach is that the theoretical con-

siderations put forward for why related and unrelated variety matter implicitly build

on two different notions of relatedness. Whereas the growth benefits associated with

inter-industry learning require that relatedness acts as a measure of cognitive prox-

imity, the unemployment-averting portfolio benefits require a measure of similarities

in exposure to idiosyncratic shocks. Neffke et al. (2017) find that these two concepts

of relatedness are, in fact, close to uncorrelated.

Using the generalized Hill numbers of section 2.3.4, we can resolve both issues at

once. First, we can choose any type of relatedness to measure the degree of disparity

between a city’s industries. Second, because disparity enters the generalized Hill

number, in principle, as a continuous variable, there is no hard dichotomy between

related and unrelated variety. Instead, the related versus unrelated variety hypotheses

can be tested using interactions between continuous variables.

Starting with the latter, we follow Frenken et al. and use the classification hier-

archy to decide how related two industries are. However, instead of distinguishing

between related and unrelated industries, we define classification-based relatedness as

the number of leading digits two industry codes have in common. If we normalize

this relatedness to lie between 0 and 1, for a classification system with four digits,

classification-based relatedness can attain one of five values: {0, 14 ,
1
2 ,

3
4 , 1}. Conse-

quently, industries in, for instance, the same 3-digit sector have a relatedness score of
3
4 .

Table 2.4 runs similar OLS regressions to Table 2.1 above. However, instead of related

and unrelated variety, it uses the generalized Hill-number based diversity metric that

incorporates classification-based relatedness into its disparity component. Column (1)

shows that generalized diversity displays a statistically significant and positive asso-

ciation with employment growth. When we decompose this generalized diversity in

columns (2)–(5), we find that this association is mostly driven by the disparity be-

tween, and, to a lesser extent, the balance in the employment distribution across, a

city’s industries.

Columns (6) and (7) provide an alternative way to test the hypotheses in Frenken et al.

(2007). To do so, we interact a city’s industrial variety (column 6) or balance (column

7) with its industrial disparity. To facilitate the interpretation of these interaction

effects, all variables have been mean-centered.
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Table 2.4: Employment growth in cities (classification-based relatedness).

(1) (2) (3) (4) (5) (6) (7)

lnDZ(pc) 0.3042***
(0.0738)

ln varc -0.1684 0.1167 0.3218***
(0.1122) (0.0829) (0.1009)

ln balc 0.0492 0.3272*** 0.1295
(0.0829) (0.1011) (0.1227)

ln dispc 0.1881*** 0.3358*** 0.0493 0.2425***
(0.0673) (0.0694) (0.0676) (0.0695)

ln varc × ln dispc -0.2996***
(0.0850)

ln balc × ln dispc 0.2795**
(0.1400)

lnEc -0.1627*** -0.0434 -0.0911*** -0.0885*** -0.1055*** -0.1638*** -0.0795***
(0.0234) (0.0292) (0.0106) (0.0087) (0.0245) (0.0281) (0.0093)

Intercept 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.4322*** 0.4486***
(0.0105) (0.0107) (0.0108) (0.0105) (0.0103) (0.0107) (0.0111)

R2 0.32 0.28 0.27 0.31 0.34 0.36 0.34
R2 adj. 0.31 0.28 0.27 0.31 0.33 0.35 0.33
N.obs. 369 369 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

The answer to Frenken et al.’s (2007) question about related and unrelated variety

turns out to depend on whether we think of industrial diversity as the number of

different industries in a city or of how balanced the employment distribution across

these industries is. Disparity moderates the effect of variety downwards, but of balance

upwards. Since disparity is the opposite of relatedness, this means that the effect of

the variety component of diversity increases with increasing relatedness, whereas the

effect of the balance component decreases with increasing relatedness.

The coefficient19 of 0.32 for variety in column (6) of Table 2.4 means that the associ-

ation between variety and employment growth is 0.32 at an average level of disparity,

but varies from 0.44 (at the minimum disparity, or maximum relatedness, in the sam-

ple) to −0.15 (for the maximum disparity in the sample). In contrast, the association

with balance is 0.13 at average disparity levels, but varies from 0.01 to 0.56 between

the minimum and maximum disparity in the sample. The finding of positive effects

19Given that all variables are expressed in natural logs, coefficients should be interpreted as
elasticities.
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of related variety and negative effects of unrelated variety in Table 2.1 are thus driven

mostly by a cities’ variety (i.e. number of industries), and not by the balance of

industries in the city.

What happens if we change our measure of disparity to more closely reflect the the-

oretical considerations behind the hypotheses in Frenken et al. (2007)? To do so, we

repeat the analysis of Table 2.4 twice with some slight modifications. First, Table 2.5

measures disparity using the (transformed) metric ψ̃ii′ proposed in eq. (2.12), based

on the number of occupations that industries share, instead of classification-based

relatedness. This way, the relatedness between industries more accurately measures

the cognitive proximity that would lead to inter-industry spillovers. Second, in Ta-

ble 2.6 we change the dependent variable to the end-of-period unemployment rate in

a city and use the growth-similarity based metric ρii′ of eq. (2.13) to more accurately

capture portfolio diversification effects. Note that ψ̃ii′ and ρii′ define relatedness

as continuous variables. To allow for a fair comparison with Frenken et al. (2007),

we convert ψ̃ii′ and ρii′ into categorical (or better, ordinal) variables in such a way

that each class contains the same number of industry pairs as its counterpart in the

classification-based relatedness matrix.

Table 2.5 shows that results when disparity is based on cognitive proximity are very

similar to the ones when disparity is based on classification-based relatedness. Once

again, results corroborate Frenken et al.’s (2007) hypothesis in the interaction between

disparity and variety, but not in the interaction between disparity and balance. More-

over, the interaction effects are somewhat stronger than when using classification-

based disparity.

Table 2.6 shows that general diversity, and in particular, a more balanced employment

distribution offer some protection against high unemployment rates. Moreover, dis-

parity in growth correlation-based relatedness weakly strengthens the benefits of em-

ployment balance. In line with the theoretical considerations put forward by Frenken

et al. (2007), this suggests that the greater the difference in growth patterns of indus-

tries in a city are, the more a balanced employment distribution across these industries

can shield the city from high unemployment rates. In contrast, a greater variety of

industries is associated with higher unemployment rates, especially if their growth

rates are uncorrelated (or anti-correlated).
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Table 2.5: Employment growth in cities (cognitive-proximity-based relatedness).

(1) (2) (3) (4) (5) (6) (7)

lnDZ(pc) 0.0217
(0.2031)

ln varc -0.1684 0.1120 0.4824***
(0.1122) (0.2286) (0.1320)

ln balc 0.0492 0.3460 -0.1283
(0.0829) (0.2282) (0.1619)

ln dispc 0.0998 0.3734 0.0265 0.1446
(0.0885) (0.2705) (0.0940) (0.1173)

ln varc × ln dispc -0.4517***
(0.0835)

ln balc × ln dispc 0.6796***
(0.2017)

lnEc -0.0955*** -0.0434 -0.0911*** -0.0785*** -0.0566* -0.2116*** -0.0741***
(0.0202) (0.0292) (0.0106) (0.0129) (0.0320) (0.0332) (0.0209)

Intercept 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.4434*** 0.3976*** 0.4490***
(0.0108) (0.0107) (0.0108) (0.0108) (0.0107) (0.0123) (0.0109)

R2 0.27 0.28 0.27 0.28 0.29 0.38 0.32
R2 adj. 0.27 0.28 0.27 0.27 0.28 0.37 0.32
N.obs. 369 369 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

These results show that Frenken et al.’s (2007) theoretical framework can be brought

to the data in a more principled way using the generalized Hill number approach to

measuring diversity. In general, our findings suggest that there is support for benefits

in inter-industry learning at an optimal cognitive distance if we focus on the variety

component of diversity. That is, cities that host many related industries, regardless

of their size, create more opportunities for learning. Similarly, a balanced industrial

portfolio seems to be associated with less unemployment, especially of industries that

exhibit different growth patterns.

2.4.3 Economic complexity

Hidalgo and Hausmann (2009) motivate the ECI as a measure that aims to capture a

city’s fundamental diversity in terms of the number (or variety) of capabilities a city

makes available to its firms. How does the ECI compare to the generalized diversity

described above as a measure of fundamental diversity? Figure 2.3 shows a scatter

plot between the two metrics. ECI and generalized diversity are strongly correlated,



40
Chapter 2 The concept of diversity in economic geography: related variety, economic

complexity and the product space

Table 2.6: Unemployment level in cities (growth-similarity-based relatedness).

(1) (2) (3) (4) (5) (6) (7)

lnDZ(pc) -0.2815**
(0.1332)

ln varc 0.1250 0.0063 0.6108***
(0.0780) (0.1759) (0.1878)

ln balc -0.2406*** -0.3347** -0.5076***
(0.0925) (0.1367) (0.1570)

ln dispc -0.0110 -0.1254 0.2074* -0.1627**
(0.0610) (0.1523) (0.1073) (0.0698)

ln varc × ln dispc -0.1974***
(0.0698)

ln balc × ln dispc 0.3596**
(0.1732)

lnEc 0.0717*** -0.0033 0.0235** 0.0324** 0.0028 -0.1073** -0.0041
(0.0225) (0.0257) (0.0117) (0.0132) (0.0370) (0.0434) (0.0155)

Intercept 0.0032 0.0032 0.0032 0.0032 0.0032 -0.0152 0.0064
(0.0149) (0.0150) (0.0149) (0.0150) (0.0149) (0.0160) (0.0151)

R2 0.04 0.03 0.04 0.02 0.05 0.05 0.06
R2 adj. 0.03 0.02 0.04 0.02 0.04 0.04 0.04
N.obs. 369 369 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

with ρ = 0.47. Table 2.7 documents three additional facts about the relation between

ECI and generalized diversity. First, both ECI and generalized diversity are strong

predictors of a city’s average wage level (columns 1 and 2). Second, however, when

the two variables enter the model jointly, only the ECI is significantly associated

with a city’s wage level, regardless of whether we control for the city’s size or not

(columns 3 and 4). Third, the correlation between ECI and generalized diversity in

Figure 2.3 seems to be fully mediated through both variables’ association with city

size. Controlling for city size, the statistical association between ECI and generalized

diversity disappears (column 5). This suggests that the ECI may indeed measure a

more fundamental complexity of a city than generalized diversity. In the remainder

of this section, we scrutinize this claim by studying three use scenarios of the ECI.

The first scenario is close to the original paper by Hidalgo and Hausmann (2009). It

follows the analysis of Figure 2.3 and Table 2.7 above and quantifies the complexity

of US cities using the economic complexity index based on city-industry employment

information. The second repeats this exercise, but focuses on the occupational mix
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Figure 2.3: Generalized diversity and ECI.
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Table 2.7: ECI, generalized diversity and urban wages. OLS regressions with
dependent variables in the first row.

(1) (2) (3) (4) (5)
dep. var. ln avg. wage ln avg. wage ln avg. wage ln avg. wage lnDZ(pc)

ECIc 3.0234*** 2.8931*** 1.3963*** -0.0046
(0.1741) (0.2003) (0.3942) (0.1288)

lnDZ(pc) 1.1953*** 0.1787 -0.0747
(0.1326) (0.1330) (0.1469)

lnEc 0.0784*** 0.0342***
(0.0190) (0.0055)

Intercept 10.2801*** 7.9397*** 9.9330*** 9.5239*** 1.5497***
(0.0072) (0.2579) (0.2606) (0.2556) (0.0636)

R2 0.55 0.18 0.56 0.60 0.34
R2 adj. 0.55 0.18 0.55 0.60 0.33
N.obs. 369 369 369 369 369

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

of US cities. In analogy to the city-industry application, having many different occu-

pations is assumed to be a sign of a city’s complexity and being found in few cities

(being “non-ubiquitous”) is taken as a sign of the occupation’s sophistication. In the

final application, we turn to data that describe the occupational mix used by different
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industries. Note that, although it is easy to mechanically apply the method of re-

flections in occupation-industry data, the intuition for why this would be meaningful

is less convincing: Although industries that use many different occupations may be

complex, it is hard to see why the using occupations that are not used by many other

industries would make industries sophisticated.

2.4.3.1 City-industry analysis

Figure 2.4 shows the city-space network constructed from city-industry employment

data. The nodes in this network represent US cities. These nodes are connected by

edges that express how similar two cities are in terms of the industries they host. In

the first panel, we color these nodes by a city’s ECI. In the second, colors instead

show the average wage in each city.

Figure 2.4: ECI and wages in the city space (industry-city analysis). The sizes
of the dots reflect total employment.

High-ECI areas in the network (colored dark red in the left panel) tend to coincide

with high-wage areas (right panel). The scatter plot in Figure 2.5 corroborates this

impression: the regression of average wages on ECI has an R2 of 0.554. This offers a

visual confirmation of the relation described in model (1) of Table 2.7. Moreover, if we

regard the average wage level in a city as a reflection of its productivity, these findings

would also offer support for the notion that the ECI captures a city’s complexity.

Table 2.8 lends further credence to this interpretation. It shows the top 10 most

complex cities, which consists exclusively of high-income cities with plausibly complex

economies, such as Los Angeles, San Francisco, Chicago and Boston.
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Figure 2.5: ECI versus average wage in a city (industry-city analysis).

Table 2.8: Top 10 of most complex cities (city-industry analysis)

City ECI Avg. Wage
Los Angeles-Long Beach-Santa Ana, CA 0.207 41400
San Jose-Sunnyvale-Santa Clara, CA 0.192 63500
Chicago-Naperville-Elgin, IL-IN-WI 0.167 42400
New York-Newark-Jersey City, NY-NJ-PA 0.141 52300
New Haven-Milford, CT 0.135 39600
San Francisco-Oakland-Hayward, CA 0.134 50700
Boston-Cambridge-Newton, MA-NH 0.134 47800
San Diego-Carlsbad, CA 0.126 38000
Detroit-Warren-Dearborn, MI 0.118 42600
Bridgeport-Stamford-Norwalk, CT 0.113 58400

However, results become less convincing when we turn to the PCI. Figure 2.6 shows

analogous panels to Figure 2.4, but now using industries as nodes in an industry

space network. There is no clear relation between PCI and average wages, both when

comparing the two network graphs and in terms of the correlation between PCI and

wages in Figure 2.7. With an R2 of 0.21, the PCI has weak predictive power for

industry-level wages. Moreover, some high-PCI industries in Table 2.9, such as urban

transit systems, seem poor examples of complex economic activities.

2.4.3.2 City-occupation analysis

What happens when base the ECI on city-occupation instead of city-industry employ-

ment data? Figures 2.8 and 2.9 show the city space and a scatter plot of log(wage)

against a city’s ECI, using data on occupational employment in cities. Once again,

the ECI is a strong predictor of a city’s wage levels: high-ECI cities tend to exhibit

high average wages. In contrast, the PCI fails to accurately predict occupational



44
Chapter 2 The concept of diversity in economic geography: related variety, economic

complexity and the product space

Figure 2.6: PCI and wages in the industry space (industry-city analysis). The
sizes of the dots reflect total employment.

Figure 2.7: PCI versus average wage in an industry (industry-city analysis)

Table 2.9: Top 10 of most complex industries (city-industry analysis). We limit
this list to industries that employ at least 25,000 workers in the US.

Industry PCI Avg. Wage
Motor vehicle manufacturing 0.191 64,111
Urban transit systems 0.147 43,015
Scheduled air transportation 0.125 54,095
Electric lighting equipment manufacturing 0.117 38,908
Steel product mfg. from purchased steel 0.114 46,611
Iron and steel mills and ferroalloy mfg. 0.109 55,467
Pharmaceutical and medicine manufacturing 0.104 75,532
Motion picture and video industries 0.101 53,333
Junior colleges 0.099 32,752
Other nonferrous metal production 0.097 52,113

wages. Figures 2.10 and 2.11 show that some occupations with high PCI levels pay

very high wages, but others do not. In fact, the list of most complex occupations
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contains a number of high-skill occupations, such as computer software engineers and

financial analysts, as well as low-skill jobs, such as parking lot attendants.

Figure 2.8: ECI and wages in the city space (occupation-city analysis). The sizes
of the dots reflect total employment.

Figure 2.9: ECI versus average wage in a city (occupation-city analysis)

Table 2.10: Top 10 of most complex cities (city-occupation analysis)

City ECI Avg. Wage
Washington, DC-MD-VA-WV 0.134 43200
Boston, MA-NH 0.116 44300
New York, NY 0.115 45100
Chicago, IL 0.114 38100
Philadelphia, PA-NJ 0.113 38100
Los Angeles-Long Beach, CA 0.110 37300
Minneapolis-St. Paul, MN-WI 0.109 39300
Seattle-Bellevue-Everett, WA 0.104 41500
San Francisco, CA 0.093 47900
Dallas, TX 0.089 36500
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Figure 2.10: PCI and wages in the occupation space (occupation-city analysis).
The sizes of the dots reflect total employment.

Figure 2.11: PCI versus average wage in an occupation (occupation-city analysis)

Table 2.11: Top 10 of most complex occupations (occupation-city analysis). We
limit this list to occupations with at least 25,000 across all cities.

Occupation PCI Avg. Wage
Actors 0.079 49,648
Parking Lot Attendants 0.058 17,277
Financial Analysts 0.054 67,811
Musicians and Singers 0.048 53,474
Computer Software Engineers, Systems Software 0.044 76,574
Operations Research Analysts 0.043 61,426
Market Research Analysts 0.043 60,539
Brokerage Clerks 0.041 36,258
Multi-Media Artists and Animators 0.04 52,902
Computer Hardware Engineers 0.039 78,306

This raises an interesting question: Why does the ECI seem a plausible measure

of a city’s complexity, regardless of whether we use cities’ occupational or industrial
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compositions, whereas the PCI fails to provide an equally intuitively appealing ranking

of industries or occupations?

The problem is not necessarily that the method of reflections does not work for indus-

tries and occupations. However, to understand the algorithm’s outcomes, we must

interpret them through a graph partitioning lens: the ECI does not count capabilities.

Instead, it aims to split the city space network into two sets of nodes (Mealy et al.,

2019; Gomez-Lievano, 2018). In each set, cities tend to have similar industries or oc-

cupations. The real question, therefore, is: Why does the ECI still manage to predict

wage-levels in cities, whereas the PCI does not predict wage-levels in industries or

occupations?

A possible answer to this conundrum lies in the fact that not all industries base their

location choices predominantly on the availability of local capabilities. Although in-

dustries will preferably locate where they can access the right mix of skills, specialized

suppliers, infrastructure and institutions, some industries produce goods and services

that need to be consumed where they are produced. Such nontradable goods and ser-

vices, like fresh bread, theater productions or daycare provision, need to be produced

close to consumers. Some of these goods and services will found everywhere. Others

can only be profitable provided in places with a large and affluent population.

A complex city, therefore, attracts two different types of industries and their occu-

pations. First, it attracts complex industries from the tradable sector, which seek

out the city to access its large capability base. These industries typically hire well-

educated workers, who earn high incomes. These incomes, in turn, attract a second

set of industries: industries from the nontradable sector that cater to the needs of a

wealthy population. These industries provide goods and services, such as fine din-

ing and childcare. Moreover, because high-income cities tend to be large, they may

also offer services that can only be sustained in large population centers, like public

transportation. These industries in the nontraded sector may not draw much from

the city’s capability base and, instead, employ low-skill workers with relatively low

wages.

If accurate, the account predicts that the similarities described by the ECI will not

just group cities with similar capability requirements, but also with similar consump-

tion patterns. This dual logic divides cities neatly into high and low income cities,

because income earned in the tradable, capability-seeking sector is spent in the local



48
Chapter 2 The concept of diversity in economic geography: related variety, economic

complexity and the product space

nontradable sector. In contrast, the PCI, which captures which industries locate in

similar cities, would group a mix of two different types of industries. It would first

distinguish between low- and high-complexity industries in the tradable sector. How-

ever, it would then augment the set of high-complexity industries with a set of, often

low-skill, industries that cater to the needs of a wealthy population. As a consequence,

the ECI would be a reliable predictor of wages, but the PCI would not be.20

2.4.3.3 Industry-occupation analysis

To more forcefully show that the ECI and PCI should not be uncritically considered

as indices of economic complexity, we now turn to an application that uses industry-

occupation employment data. Figure 2.12 shows the results from the industry per-

spective, Figure 2.13 from the occupation’s perspective. Unlike the core-periphery

patterns of Figures 2.4 and 2.8, the industry space now consists of various weakly

connected areas. Moreover, the relation between ECI or PCI and wages has vanished

completely: the R2 of both regressions is below R2 = 0.03.

In spite of the fact that the ECI is a better predictor of a city’s productivity (proxied

by its wage level) than generalized diversity, it is unclear to what extent the ECI mea-

sures a city’s fundamental diversity, i.e., the breadth of its capability base. Because of

this, Mealy et al. (2019) conclude that the ECI and PCI offer a dimension-reduction

technique, with no clear link to complexity as fundamental diversity. Providing a

more positive evaluation, Schetter (2019) derives a set of sufficient conditions under

which the ECI reliably ranks economies in terms of their complexity. Overall, how-

ever, the true meaning of the ECI and its role in economic development remains an

active area of research.

2.4.4 The product space

The product space was originally used to predict how countries will diversify their

trade baskets Hidalgo et al. (2007). Since then, many authors have not just predicted

the emergence of new products (or industries) in an economy – so-called growth at

the extensive margin – but also how existing products and industries have grown. In

20Note that this issue does not arise in Hidalgo and Hausmann (2009). Because these authors
base the ECI on a country’s exports, by definition, their data reflect production that is not meant
for local markets.
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Figure 2.12: ECI and wages in the industry space (occupation-industry analysis).
The sizes of the dots reflect total employment.

Figure 2.13: PCI and wages in the occupation space (occupation-industry anal-
ysis). The sizes of the dots reflect total employment.

this section, we will focus on this growth at the intensive margin and estimate models

based on the following regression equation:

log
(
EicT

/
Eict

)
= β0 + β1 logEict + β logXict + logEit + logEct + εict

In other words, our dependent variable is the logarithm of industry i’s growth factor

in city c. As explanatory variables, we include a mean reversion term, logEict, as well
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as the size of the industry (logEit) and of the city (logEct) in the base year. The

main variables of interest are collected in the vector Xict.

Table 2.12 shows the results. In column (1), apart from industry and city size vari-

ables, we only add the mean reversion term and the industry space density, using φ̃ii′

of (2.7), as explanatory variables. As expected, and in line with the literature’s prior

consensus, the mean reversion term shows a negative, and the industry space density

a positive association with employment growth.

Table 2.12: Product space regression. Dependent variable: Employment growth
in city-industry pairs. Regressors use the industry space as defined by φ̃ii′ of

eq. (2.7).

(1) (2) (3) (4) (5) (6) (7) (8)

lnDi
c 0.2705*** 0.1945***

(0.0181) (0.0184)
lnEi

c 0.7910*** 0.6619*** 0.7873*** 0.7934*** 0.7754*** 0.7938*** 0.7982***
(0.0456) (0.0466) (0.0456) (0.0457) (0.0459) (0.0458) (0.0462)

lnDZ(pi
c) -0.3161**

(0.1237)
ln varic 0.1378***

(0.0294)
ln balic -0.0765***

(0.0229)
ln dispic -0.0135 -1.0519***

(0.0156) (0.1822)
lnDI(p

i
c) -0.9886***

(0.1926)
lnDI(p

i
c) × ln dispic -0.1561***

(0.0197)
lnEic -0.3896*** -0.3977*** -0.4020*** -0.3984*** -0.3966*** -0.3968*** -0.3978*** -0.4018***

(0.0054) (0.0055) (0.0056) (0.0055) (0.0055) (0.0055) (0.0055) (0.0056)
lnEc 0.2517*** -0.4784*** -0.3755*** -0.4732*** -0.5158*** -0.4667*** -0.4839*** -0.4905***

(0.0054) (0.0435) (0.0442) (0.0435) (0.0444) (0.0437) (0.0441) (0.0455)
lnEi 0.3141*** 0.3115*** 0.3162*** 0.3121*** 0.3112*** 0.3108*** 0.3116*** 0.3151***

(0.0058) (0.0059) (0.0059) (0.0059) (0.0059) (0.0059) (0.0059) (0.0059)
Intercept 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3450*** 0.3241***

(0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0032) (0.0042)
R2 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
R2 adj. 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
N.obs. 43322 43322 43322 43322 43322 43322 43322 43322

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Hidalgo et al. (2007) interpret this finding as evidence that a large variety (counted

as the number of industries with LQ > 1) of relevant (i.e., related) industries in a

city enhances the focal industry’s growth potential. However, is this really the case?

An alternative explanation is that density is a proxy for having a large quantity of

related activity in the city. In columns (2) and (3), we test this hypothesis by adding
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the relative mass (the total employment in related industries, as defined in eq. (2.9))

to the regression model.

The mass of related activity turns out to be more important than its density: mass

displays a stronger statistical association with employment growth than density does.

Moreover, when adding both variables simultaneously, the association between density

and employment growth weakens substantially.

In the remaining columns, we investigate the relation between the growth of local

industry and the diversity of related industries in more detail. To do so, we replace

density by the relative Hill numbers proposed in Section 2.3.4.3. These variables

offer an alternative, more disaggregated way to look at diversity in a neighborhood

of related industries.

Outcomes are shown in columns (4) to (7). The association of employment growth

with overall relative diversity in column (4) is negative. When decomposing relative

diversity into relative variety, relative balance and relative disparity, this negative

association turns out to be driven by the relative balance component. That is: the

more equally proximity-weighted employment is distributed across related industries,

the more slowly the focal industry grows.

Learning versus producing

Hidalgo et al. (2007) interpret a large number of related industries as a sign that a city

offers many capabilities that are relevant to the focal industry. In the introduction,

we referred to this as a production-based logic: industries can only get established in

places where they can mobilize all capabilities they require. The EEG literature has

typically stressed another reason why diversity of related industries would be bene-

ficial: the existence of opportunities for local learning. Both rationales can explain

why density is positively associated with a local industry’s growth rate. So how can

we decide which of these interpretations is correct?

To answer this question, note that the two narratives differ in their interpretation

of the edges in the industry space. In the EEG literature, such connections are

often interpreted as estimates of how easily knowledge can flow within an economy.

In this reading, a large number of related industries provides greater scope for local

knowledge sharing and local learning. A production-based interpretation, in contrast,



52
Chapter 2 The concept of diversity in economic geography: related variety, economic

complexity and the product space

regards the industry space as a reflection of shared capability requirements. From this

perspective, industry spaces capture economies of scope between industries.

Although both perspectives suggest that a greater variety or balance of related in-

dustries is beneficial, they give different predictions with respect to relative disparity.

In a shared-capability world, related activities would ideally be unrelated to one an-

other. That way, each activity offers non-redundant capabilities to the focal industry.

In contrast, in a learning world, related activities are ideally also related among each

other. This way, all related industries can exchange knowledge, setting in motion a

virtuous cycle of local learning.

Column (8) explores which of the two hypotheses finds most support in the data. It

does so by interacting relative disparity with a compound measure of relative variety

and relative balance. This interaction term is negative: the smaller the disparity

among related industries is – i.e., the more the focal industry’s related industries are

also related to one another – the faster the focal industry will grow. This supports

the local learning hypothesis, not the capability-sharing hypothesis. Note, however,

that although the effect of the relative variety-balance compound variable increases as

relative disparity drops, it remains negative for the entire range of relative disparity

values observed in the sample. Such negative effects contradict both the learning and

the capability-sharing hypothesis. However, this conclusion depends on the economet-

ric specification, relatedness matrix and dependent variable we choose. A definitive

conclusion would thus require a more careful analysis and ideally a replication of these

findings.

2.5 Discussion and conclusion

Recent years have seen a renewed interest in, and debates about, the importance of

diversification in local economies. These debates were fuelled by three different lines

of research: research on related variety, on economic complexity and on product and

industry spaces. Although these lines of research emerged more or less contemporane-

ously and share many commonalities, they trace their origins to different intellectual

traditions. As a consequence, they depart from different theoretical starting points.

Whereas related variety research is rooted in evolutionary economic geography, com-

plexity and product space research is rooted in the economics of trade and growth on

the one hand and the complexity sciences on the other.
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As a result, the role of diversity differs across these approaches. Related variety

research attributes the benefits of a diversified economy first and foremost to greater

opportunities for inter-industry learning. As such, it stresses the dynamic efficiency

of diversified economies – and in particular of economies in which different industries

are related to one another. The complexity approach, in contrast, regards industrial

diversity as a sign of a broad capability base. In the economic complexity framework,

an industry can only emerge in places that offer all the capabilities it requires. This

idea has been illustrated with the metaphor of the game of Scrabble. In Scrabble,

players hold letters that allow them to put together words. However, a word can only

be written once a player owns every single letter it requires. In analogy, cities can only

develop industries if they can offer each and every capability the industry requires.

More diversified economies therefore typically dispose of a wider variety of capabilities

and more complex industries will only be able to locate in few, highly complex cities.

Moreover, diversification will be path-dependent, branching into nearby activities

in the industry space. However, this related diversification is not considered to be

optimal. Rather, industry spaces constrain economies to incremental change and

may prevent them from moving immediately into industries that are most productive

or that pay the highest wages. Unlike the Schumpeterian learning dynamics that

underlie the concept of related variety, the Scrabble logic thus reflects static efficiency:

it explains why certain cities can host industries that other cities cannot.

In the paper, we aimed to describe these and other differences and commonalities be-

tween the different lines of research, as well as critically assess some of the theoretical

and empirical claims they make. Doing so, we pointed out a number of inconsistencies

between the underlying conceptual frameworks and the empirical strategies that have

been developed.

Furthermore, we proposed a measurement methodology that allows bridging the dif-

ferent research lines. This methodology first builds on existing work in ecology to

quantify what we have called generalized diversity. We showed how this generalized

diversity can be decomposed into three components: variety, balance and disparity.

Furthermore, we showed how this generalized diversity can be used to calculate a

relative diversity, i.e., the diversity a local industry finds in a city among a set of

closely related neighbors. Armed with these new tools, we showed how to scrutinize

– in a principled and unified way – some of the main theoretical claims in the newly

emerging literature on the importance of diversity in local economic development.
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This exercise yielded a set of preliminary, yet interesting results. First, we documented

that findings that build on the notions of related and unrelated variety are sensitive

to ad hoc choices about how to measure relatedness and the thresholds to decide at

which two activities are considered to be related or not. Second, we discussed why

the ECI cannot immediately be interpreted as a measure of the fundamental diversity

of a city’s capability base. Yet, we also found that it does correlate fairly well with

generalized diversity and that it is a strong predictor of a city’s average wage level.

Third, we showed how the empirical regularity of related diversification documented

in the product space literature is not necessarily due to a large diversity in related

activities, but due to the importance of the (correlated) mass of related activities in

a region.

There are a number of important caveats to our study. First, the debate on diversity

is both older and larger than what we cover in this paper. However, the limited focus

allowed us to focus on the recent contributions to this debate and to provide some

nuance on the different intellectual positions these contributions assume. Yet, even

within this narrower scope, we had to leave out many contributions. For instance,

several proposals have been made to improve the related and unrelated variety frame-

work (e.g. Kogler et al. (2013)). Similarly, alternatives to the ECI and PCI have been

proposed (e.g. Tacchella et al. (2012)).

Second, although the generalized and relative diversity measures and their decompo-

sition are helpful tools to study different aspects of urban diversity, we do not claim

that they are optimal. Alternatives exist – even within the Hill number approach we

followed – and should be explored. Moreover, the fact that, in spite of the difficul-

ties in interpretation, the ECI outperforms generalized diversity in predicting urban

wage levels suggests that there is still much we do not understand about the relation

between a city’s industry mix and its growth potential.

Third, the aim of our empirical analyses was not to prove or disprove specific hypothe-

ses, but rather to show that empirical findings can depend crucially on modelling

choices. Therefore, we left a number of important issues unexplored. Importantly, we

did not make any attempts to deal with issues of miss-specification or endogeneity in

our statistical models. We also did not explore to what extent findings differ across

contexts. For instance, the relation between diversity and growth may be different in

different sectors or across the urban hierarchy.
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In spite of this, we believe that this paper clarifies some important conceptual distinc-

tions in the literature that have so far remained somewhat implicit. Moreover, we offer

new empirical tools to explore the empirical importance of these distinctions. We hope

that this has created a solid starting point for future research that not only addresses

the aforementioned shortcomings, but also other concerns and research questions.





Chapter 3

Diversity and its decomposition into

variety, balance and disparity∗

Abstract

Diversity is a central concept in many fields. Despite its importance, there is no unified

methodological framework to measure diversity and its three components of variety,

balance and disparity. Current approaches take into account disparity of the types by

considering their pairwise similarities. Pairwise similarities between types may not

adequately capture total disparity, since they do not take into account in which way

pairs are similar. Hence, pairwise similarities do not discriminate between similarities

of types in terms of the same feature and similarities in which all pairs share different

features. This paper presents an alternative approach which is based on the overlap of

features over the whole set of types. This results in a measure of diversity that takes

into account the aspects of variety, balance and disparity. Based on this measure, the

’ABC decomposition’ is introduced, which provides separate measures for the variety,

balance and disparity, allowing them to enter analysis separately. The method is

illustrated by analyzing the industrial diversity from 1850 to present while taking into

account the overlap in occupations they employ. Finally, the framework is extended

to take into account disparity considering multiple features, providing a helpful tool

in analysis of high-dimensional data.

∗This chapter was published as: van Dam, A. Diversity and its decomposition into variety,
balance and disparity. Royal Society Open Science, 6(7):190452, 2019. doi:10.1098/rsos.190452
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3.1 Introduction

Diversity is a central concept in a wide range of scientific fields. In the natural

sciences, it is often associated with the functional properties of a system, like the

stability of ecosystems (MacArthur, 1955; Tilman et al., 2014). In the social sciences,

the concept of diversity is key to theories regarding recombinant innovation (van den

Bergh, 2008; Weitzman, 1998), regional development (Frenken et al., 2007), cultural

evolution (Foley and Mirazon Lahr, 2011), and the science of science (Rafols and

Meyer, 2010; Wang et al., 2015; Zhang et al., 2016). But what exactly is diversity

and how can it be measured? Recent frameworks emphasize that diversity consists

of three dimensions (Daly et al., 2018; Page, 2011; Purvis and Hector, 2000; Stirling,

2007). First, the variety describes the number of different types, species or categories

present.1 The variety is bounded by the total number of types in the classification

or taxonomy that is used. Second, the balance describes how individuals or elements

are distributed across these types. When elements are concentrated in few types the

balance is low, whilst a high balance indicates a more even distribution. Last, the

disparity takes into account to what extent the types considered differ from each other

in terms of some given features or characteristics. If the types considered are very

similar, they have low disparity. An increase along any of these three dimensions

corresponds to an increase in overall diversity. A proper measure of diversity should

therefore take into account all three dimensions.

Despite the importance of diversity as a concept, there is no unified methodological

framework to measure and analyze the three dimensions of diversity. In the past,

the disparity was not even considered by most diversity indices. There have been

multiple attempts to incorporate disparity into a measure of diversity by including

some measure of the pairwise distances or similarities between the types considered.

An example is Rao’s quadratic entropy (Rao, 1982), introduced into the social sciences

in (Stirling, 2007) where it is known as the Rao-Stirling diversity. It expresses diversity

as the average distance between types, weighed by their relative frequencies.

More recently, it has been shown in (Leinster and Cobbold, 2012) that Rao’s quadratic

entropy follows as a special case from a more general framework that generalizes the

1I follow the terminology used in (Stirling, 2007), but these concepts are known by different
names in different fields, for example as ’richness’, ’evenness’ and ’similarity’ in ecology.
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so-called Hill numbers (Hill, 1973a; Jost, 2007) to include pairwise similarities be-

tween types. A similar approach was taken in (Chiu et al., 2014), who generalize Hill

numbers to include phylogenetic or functional similarities. Both approaches compute

diversity in terms of ’effective numbers’ (Jost, 2007), based on a distribution of types

and a given matrix that contains the pairwise similarities between those types. Other

approaches to quantify diversity while taking into account disparity have been to com-

pose a measure of diversity by separately measuring variety, balance, and disparity,

and combining them into a single index of diversity (Leydesdorff et al., 2019). A more

data-driven approach is taken in (Wang et al., 2015), who apply factor analysis to a

range of different diversity indices to infer three variables that correspond to variety,

balance and disparity.

What all approaches described above have in common is that disparity is quantified

using pairwise similarities. The use of pairwise similarities however may lead to both

practical and conceptual problems. One practical problem is that there are many

different ways in which pairwise similarities can be inferred from given data (van Eck

and Waltman, 2009; Yildirim and Coscia, 2014), so any diversity measure based on

pairwise similarities is subject to an ad-hoc choice of a particular similarity measure.

In addition, it is unclear how heavily such an index should weigh disparity versus

variety and balance (Stirling, 2007).

More importantly, considering only pairwise similarities between types may not ad-

equately capture total disparity, since pairwise similarities do not take into account

in which way pairs are similar. Pairwise similarities are typically inferred by using

some measure of how many features two types share from a pre-defined set of fea-

tures. Types in a collection may then all be similar because each pair shares the same

feature, or because each pair shares a different feature. Both situations could have

different diversities, but have an identical similarity structure.

This paper presents a framework to measure diversity that does not rely on pairwise

similarities between types. Instead, disparity is taken into account by looking at the

overlap of features between types over the whole set. This is done by drawing on the

concepts of alpha, beta and gamma diversity from ecology (Whittaker, 1972) and the

corresponding decomposition of diversity as introduced in (Jost, 2007), which is based

on Hill numbers (Hill, 1973a). The result is a measure of diversity that incorporates
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variety, balance and disparity simultaneously, and has a natural interpretation as the

’number of compositional units’ (Tuomisto, 2010).

Building on this measure, I introduce the ’ABC decomposition’ that decomposes di-

versity into separate measures of variety, balance and disparity. This enables the

study of the distinct role each of these dimensions has in different systems2. The pro-

posed framework is closely related to information-theoretic measures of uncertainty,

and the use of multivariate information theory shows how the measure can be ex-

tended to take into account disparity along multiple dimensions. This leads to two

results regarding the diversity of types given multiple feature sets, depending on the

dependence structure of the variables involved. First, diversity considering multiple

feature sets becomes multiplicative when different feature sets are independent. Sec-

ond, additional feature sets may be neglected in measuring diversity when one feature

set is conditionally independent of the types, given another feature set.

I proceed as follows. Section 3.2 starts with an example of a situation where using

pairwise similarities fails to quantify disparity correctly. Subsequently the concepts

of beta diversity are introduced along with the main result, namely a measure of

diversity that takes into disparity as the overlap over a set of features. Section 3.3

then introduces a decomposition of diversity into separate measures of variety, balance

and disparity. As an illustration, I apply the proposed measures to historical data

in order to characterize the change in diversity of industries in the US, taking into

account disparity in terms of the occupations that industries employ. Section 3.4

shows how the framework can be extended to take into account multiple sets of

features. I conclude with a brief discussion of the results.

3.2 Decomposing diversity

3.2.1 An example

Consider a region in which certain economic activities take place in the form of in-

dustries. These industries can be thought of to consist of a certain set of inputs or

features (Hidalgo and Hausmann, 2009). We will represent these features with letters

in a set S, and the industries as words in set S′. For example, one might think of

2For example, the separate effects of variety, balance and disparity on scientific impact was
studied in (Wang et al., 2015).
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the letters as occupations required by a firm to engage in a particular industry, rep-

resented as a word. The diversity of words is determined by the number of different

words (variety), their relative frequency (balance) and their similarity in terms of the

letters they consist of (disparity). Adding words with similar composition of letters

does not affect the diversity much, whereas adding words consisting of many new

letters may greatly increase diversity.

The composition of words and letters in a region can be represented as a bipartite

network as in Figure 3.1. In the three cases shown, the variety equals 3 (there are

three unique words) and the balance is maximal (the relative frequency pi = 1
3 for

each word). The disparity of words is different for each of the three cases, and is

determined by how the words are composed from the letters.

A common approach to quantify diversity whilst taking into account disparity is by

considering the pairwise similarity between types (Chiu et al., 2014; Leinster and

Cobbold, 2012; Rao, 1982; Stirling, 2007). Computing the pairwise similarities can

be interpreted as ’projecting’ the bipartite network onto a weighted network in which

the nodes are the types, and the weighted edges represent the pairwise similarities

in terms of the overlap in features (see Figure 3.1). Here we consider the Jaccard

similarity sij , which gives the similarity as the number of shared features divided by

the total number of features used by both types.

An example of such a measure is the Rao-Stirling diversity, which is computed as3

(Rao, 1982; Stirling, 2007)

∆ =
∑
ij

(1− sij)pipj .

This measure incorporates the variety by summing over all types, and the balance by

taking into account the relative frequencies pi. Disparity is then taken into account

by weighing every pair of types by the distance between the types. This way, pairs

with low similarity contribute more to the diversity than pairs with high similarity.

In the first case in Figure 3.1 the disparity is maximal (there is no overlap of letters

between words), and the Rao-Stirling diversity reduces to ∆ =
∑

ij
1
3
1
3 = 1

3 since

sij = 0 for all pairs. For the other two cases, the Jaccard similarities are given by

31− sij gives the ’Jaccard distance’ or dissimilarity between a pair of words.
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sij = 1
5 for all pairs. Since the pairwise similarities are identical in both cases, any

diversity measure based on these pairwise similarities will give the same diversity

for both cases. Indeed, computation of Rao-Stirling diversity shows a diversity of

∆ =
∑

ij(1−
1
5 )

1
3
1
3 = 4

15 for both cases.

However, note that the underlying network structure in the latter two cases in Figure

3.1 is different. While both have an identical variety and balance of words, the

distribution of letters is different. In the middle case in Figure 3.1, all words share

the same letter so that every word pair is similar in the same way. In the latter

case, every word pair shares a different letter, so they are similar in different ways.

This leads to a different distribution of features in both cases. Out of two collections

of types with the same variety and balance, the collection that represents a higher

diversity of features is arguably more diverse when taking into account the disparity

between types. Hence, we expect the case with a higher diversity of features in Figure

3.1 to have a higher diversity. Since the projected networks for the middle and last

case are identical however, such a difference cannot captured by diversity measures

that are based on those pairwise similarities. This paper proposes a measure that takes

into account the overlap in features over the whole collection of types, as opposed to

pairwise similarities, leading to a measure that reflects the difference in composition

between the two cases.

3.2.2 Hill numbers

In our measurement of diversity, we build on the framework of Hill numbers, which

provides a unifying mathematical framework for the measurement of diversity when

disparity is not taken into account (Hill, 1973a; Jost, 2006). Hill numbers define

diversity as the inverse of a generalized weighted average of the relative frequencies

of the types. In this definition, a collection is diverse if the types are on average rare,

i.e. the average share of the types is low.

Hill numbers satisfy a number of axiomatic requirements for a measure of diversity, in-

cluding symmetry, continuity, and monotonicity in the number of species (Daly et al.,

2018). Another key property is the replication principle, which states that pooling

together two collections that do not share any types but have equal distributions,

should give a new collection with double the diversity of the original collections (Hill,

1973a).
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Figure 3.1: A, B and C show the bipartite networks as discussed in the main
text. One can think of the blue nodes representing three industries (words), and the
green nodes representing nine occupations (letters) that characterize the industries.
D, E and F show the corresponding projected industry networks, in which the edge
weights are given by the Jaccard similarity between industries. In A and D there
is no overlap in occupations, and pairwise similarities between industries are 0, as
shown by the absence of edges in D. The Rao-Stirling diversity is given by ∆ = 1

3
.

B and E show a situation where the industries use a total of seven occupations,
and the similarity between each industry equals sij = 1

5
. C and F show a situation

where only six occupations are present, and where all pairwise similarities are again
1
5
. Although B has a different distribution of occupations than C, their projections

E and F are identical, and therefore any diversity measure based on those pairwise
similarities will assign identical diversities to both cases. The Rao-Stirling diversity

is given by ∆ = 4
15

for both cases.

Hill numbers give rise to a parametric family of diversity measures, in which a param-

eter q determines how heavily one weighs the rarity of types in a measure of diversity.

For q = 1, rare and common species are weighed equally heavy and the Hill number

equals the exponential of the Shannon entropy:

D(S) = eH(X) = e−
∑

i pi log pi . (3.1)

Here, S is a collection of elements with types i and relative frequencies pi, and X is

a random variable that represents the type i of a randomly drawn element from S.
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A more elaborate discussion on Hill numbers and their relation to Shannon entropy

can be found in the supplementary material A. It was shown in (Jost, 2007) that the

Hill number with q = 1, i.e. the exponential of the Shannon entropy, is the unique

measure that satisfies all axiomatic requirements and allows for a decomposition of

independent within- and between components in the presence of groups.

Hill numbers have also been referred to as the ’true diversity’ as opposed to an index,

as many existing diversity indices in ecology and economics that were originally intro-

duced based on heuristics have been shown to be a transformation of a Hill number

(Jost, 2006). In particular, equation (3.1) shows how the Shannon entropy, a popular

index of diversity but which is actually a measure of uncertainty (it has units in ’bits’

or ’nats’), can be transformed into a measure of diversity (Jost, 2006).

Furthermore, the Hill number of a collection has a clear interpretation as the ’effective

number’ of types, meaning that the Hill number of a collection S can be interpreted as

the number of types that would be present in a virtual collection S̃ that has maximal

balance (i.e. a uniform distribution over types) and has the same diversity as S. In

particular, for a uniform distribution, i.e. pi = 1
n for all i, we have D(S) = n so

that the diversity equals the number of types. For any other distribution over types,

the Hill number represents the equivalent number of types in a maximally balanced

collection.

3.2.3 Alpha and beta diversity and the number of composi-

tional units

The Hill number D(S) quantifies both the variety and balance of types but not their

disparity, and thus implicitly assumes that all types i are maximally disparate. Here,

we aim to extend this framework to include the overlap of features between types. To

this end, we build on the concepts of alpha, beta and gamma diversity from ecology.

Hill numbers provide a decomposition of diversity into its α and β components (Jost,

2007), which are used in ecology to describe the average within-sample diversity and

the between-sample diversity, respectively (Whittaker, 1972). For example, consider a

forest in which the distribution of species is sampled in different plots. The diversity

of the collection of species that consists of all plots pooled together is called the

total diversity or γ-diversity. The α-diversity represents the average diversity within
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each plot. The β-diversity represents the diversity between each plot, reflecting the

diversity that is the result of the differences in species composition between each plot.

The γ-diversity of the forest can be multiplicatively decomposed into independent α

and β components, i.e. Dγ = DαDβ (Jost, 2007). In a homogeneous forest, where

all plots have approximately the same species composition, the average within-plot

diversity Dα is close to the diversity of all plots pooled together, Dγ . Hence, the

between-plot diversity Dβ will be close to 1. In a heterogeneous forest on the other

hand, every plot has a very different species composition and contains only a small

part of the total diversity, so Dα is much smaller than Dγ , leading to a higher value of

Dβ . Dβ reflects the number of different plots needed, each with diversityDα, to obtain

a pooled diversity of Dγ . The maximum value of Dβ is given by Dγ , corresponding

to the case where every plot consists of a unique species (Dα = 1). The β-diversity is

thus bound from below by 1 and from above by Dγ .

Note that the situation described above corresponds with the example in Figure 3.1, in

which the plots represent the types of interest (words) and the species represent some

characterizing features of those types (letters). In this setting, the γ-diversity gives

the total diversity of features, and the α-diversity the average diversity of features

within a type. The β-diversity then represents the ’between-type’ diversity based on

the heterogeneity of the composition of types.

The values of each diversity for the example in Figure 3.1 are given in Table 3.1. Since

for every case each of the three words contains three letters, the α-diversity is three

for all cases. The diversity of letters as measured by the Hill number is different for

each case however, as shown by the γ-diversity. The diversity of letters is lowest for

the last example. This is reflected by the β-diversity, which gives a lower number of

compositional units for the case with a lower diversity of features.

The β-diversity gives the number of types with average diversity Dα that are needed

to obtain a total diversity of features Dγ when there would be no overlap of features

between the types. It is obtained by dividing the total diversity of features, as given

by the Hill number of order 1, by the average diversity of features within a type, so

that

Dβ(S
′) =

Dγ(S)

Dα(S)
. (3.2)
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It can be interpreted as a measure of the ’number of compositional units’, giving the

effective number of types that would be present when the types do not share any

features and would be equally abundant (Tuomisto, 2010). Framing beta diversity in

terms of types and features provides a measure of diversity of types that takes into ac-

count variety, balance and disparity as given by the overlap of features between types.

As a measure of diversity, the number of compositional units satisfies all of the math-

ematical properties that were proposed by (Leinster and Cobbold, 2012) that reflect

a ’basic scientific intuition’ about diversity. The nine properties are divided into three

categories: partitioning properties, elementary properties, and similarity properties

(see the supplementary material B). How to compute the number of compositional

units from data will be discussed using an empirical example in the following section.

α-diversity β-diversity γ-diversity eff. number
Dα(S

′) Dβ(S
′) Dγ(S) D(S′)

A 3 3 9 3
B 3 2.08 6.24 3
C 3 1.89 5.67 3

Table 3.1: Values of the α, β and γ diversities for the three examples depicted
in Figure 3.1. The average diversity of occupations within an industry, Dα(S

′) is
equal in all three examples, as every industry employs three different occupations
with equal weight and all industries have an equal share. The total diversity of
features Dγ(S) is given by the effective number of occupations in all industries
pooled together, and differs in each case. This also leads to different values of
Dβ(S

′). For completeness, the effective number of industries D(S′), representing
the diversity of industries when one assumes that they are totally disparate, is also

included.

3.2.4 Measuring diversity of industries

Here, the general application of the proposed diversity measure is presented using

an empirical example. The aim is to quantify industrial diversity in the US, where

the distinguishing features of industries are considered to be the different occupations

they employ. US census data was extracted from IPUMS-USA (Ruggles et al., 2018),

providing a 1% sample4 of total population in the US for every decade from 1850 to

2010. The data contains for every person their occupation i ∈ S and industry j ∈ S′.

The used classifications consist of 269 occupation types and 147 industry types.

4For 1980 and 1990 a 5% sample was given. Note that the analysis presented is for illustrative
purposes, so further data cleaning and consistency issues are not considered here.
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The data is interpreted as a weighted bipartite network as in Figure 3.1, with nodes

i in the occupation layer S and nodes j in the industry layer S′. The edge weight

between nodes i and j is given by the number of people qij working in occupation i

and industry j. The strength of node i is given by qi =
∑

j qij and represents the total

employment in occupation i, and similarly qj denotes total employment in industry j.

Normalizing the quantities qi, qj and qij by the total number of people Q =
∑

ij qij

gives the relative frequencies pij =
qij
Q , pi = qi

Q and pj =
qj
Q respectively. Each of

the relative frequencies may in turn be interpreted as the probability distribution

of a random variable that represents the occupation or industry type of a randomly

sampled person, i.e. pi = P (X = i), pj = P (Y = j) and pij = P (X = i, Y = j).

Using Hill numbers, the effective number of industries and occupations can be ex-

pressed as D(S′) = eH(Y ) and D(S) = eH(X), respectively. To obtain the effective

number of occupations within an industry, consider the relative frequencies pi|j =
qij
qj

of occupation i in industry j. The occupational diversity of an industry j is then

given by

D(Sj) = eH(X|j) = e−
∑

i pi|j log(pi|j).

The average within-industry diversity is then given by (Jost, 2007)

Dα(S) = eH(X|Y ) = e−
∑

j pj
∑

i pi|j log(pi|j),

where H(X|Y ) is the conditional entropy of X given Y . Finally, the within industry

diversity Dβ follows from multiplicatively decomposing the total occupational diver-

sity Dγ(S) into its α and β components, leading to equation 3.2 (Jost, 2007). Dβ(S
′)

can be interpreted as the effective number of industries, discounted for the overlap in

their occupational distributions. Its units correspond to the number of industries that

would be present in the case of equally-distributed, non-overlapping industries, and

where the Dα and Dγ are the same.

Figure 3.2 shows the time evolution of variety, the effective number of industries

D(S′) (taking into account variety and balance) and the number of compositional

units Dβ(S
′) (which takes into account balance, variety and disparity) of industries

in the US. The variety of industries, i.e. the number of different industry types that

have at least one employee, is slightly increasing and then decreasing after 1950, with
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values ranging between 120 and 140 throughout the whole period. The sudden dip in

variety in 1940 is unexplained, and most likely due to data inconsistencies.

The effective number of industries D(S′) starts at a much lower level of an effective

number of around 10 industries, showing that total employment in the 120 industry

types is initially heavily concentrated in a few industries. It shows a more pronounced

hump-shaped pattern, with a period of diversification in 1850 − 1960 in which the

effective number of industries grows to around 80 industries as employment becomes

more equally spread across industries, followed by a period of re-concentration after

1960. These findings are in line with work in economics that shows that countries

first go through a ’diversification phase’ as they develop, and then start specializing

again at a later point in the development process (Imbs and Wacziarg, 2003).

In contrast, the number of compositional units Dβ(S
′) shows a pattern of steady

decline since 1900, with values ranging from 10 to 4 compositional units. This means

that although employment becomes more equally spread over an increasing number

of industries during the diversification phase, industries become increasingly similar

in terms of the occupations they employ, leading to a decreasing disparity between

industries. In other words, using the notion of related variety (Frenken et al., 2007),

these results suggest that variety has become more related over time. This results in

a decreasing number of compositional units.

It becomes clear that taking into account the different dimensions of diversity can

lead to very different representations of the same data. Considering only the variety

for example may lead to an overestimation of diversity, as a the distribution over

industries may be concentrated in only a few industries. Furthermore, when industries

with similar occupational distributions are considered to be the same, the effective

number of industries is an overestimation of the diversity, as some industries may be

almost identical in terms of the occupations they employ.

The effect of taking into account disparity of course depends on which features are

considered. That is, there might have been an increase in diversity when some other

feature of industries was taken into account instead of the occupations they employ.

Hence, application of these measures must be driven by the research question at hand.

The interesting aspect of these measures however is that each dimension of diversity

may show a distinct dynamic, which is not visible when considering diversity as a

whole. As Figure 3.2 shows, the number of compositional units may decrease while
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both the balance and variety increase. Therefore, we consider a decomposition of the

number of compositional units into separate measures of variety, balance and disparity

in the next section.

Figure 3.2: Variety, effective number and effective number of compositional units
for industries. The variety of industries is approximately constant over time. The
effective number of industries takes into account variety and balance and shows
a hump-shaped pattern, where initially the distribution of people over industries
becomes more equal reaching a diversity of 80 effective industries in 1960, where
a re-concentration starts to take place. The number of compositional units takes
into account the occupational overlap between industries. In 1850 the industrial
diversity was equivalent to approximately ten non-overlapping industries, which

declined to approximately four compositional units in 2000.

3.3 The ’ABC’ decomposition

In order investigate the role of variety, balance, and disparity in practice, separate

measures are required for each. To this end, I introduce the ’ABC decomposition’,

which decomposes diversity into its separate dimensions. Since Dβ(S
′) is a measure

of diversity incorporating all three dimensions, a multiplicative decomposition into

the variety (A), balance (B) and disparity (C) may be obtained as:

Dβ(S
′) = DA(S

′) ·DB(S
′) ·DC(S

′). (3.3)

The variety DA is given by a simple count of the number of types in S′, or equivalently

by the Hill number of order q = 0 (see supplementary material A). The balance DB
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is computed by dividing the effective number of types in S′ (which takes into account

both balance and variety) by the variety, leading to (Hill, 1973a)

DB(S
′) =

D(S′)
DA(S′)

=
D(S′)
n

.

DB(S
′) measures the evenness in the distribution of relative frequencies of the types.

It takes values in ( 1n , 1), with a maximum of 1 that is attained when all relative

frequencies are equal, i.e. pi =
1
n for all types i in S. The minimum 1

n is achieved

when the proportion of all but one type is vanishingly small.

Note that the obtained components of variety and balance are not independent, since

a higher variety allows for a lower balance. For example, if nearly all employment is

concentrated in one out of two industries, this gives a higher balance than a situation

in which nearly all employment is concentrated in one out of 100 industries. Hence

DB(S
′) is an ’absolute’ measure of balance, as opposed to a ’relative’ measure that

characterizes the balance given a certain variety (Jost, 2010). An in-depth study

concerning measures of balance and their (in)dependence with variety is given in

(Jost, 2010).

Since Dβ(S
′), DA(S

′) and DB(S
′) are then determined, the disparity DC(S

′) can

be obtained by dividing the number of compositional units Dβ(S
′) (which takes into

account all three dimensions) by the effective number as

DC(S
′) =

Dβ(S
′)

DA(S′)DB(S′)
=
Dβ(S

′)
D(S′)

= e−H(Y |X).

DC(S
′) can be considered as the number of compositional units normalized for variety

and balance, leaving a measure of disparity. It takes values in (0, 1), attaining the

maximum value when none of the types have overlap in their features. The minimum

is attained when all types have identical features.

It is easily verified that (3.3) holds with these definitions of DA(S
′), DB(S

′) and

DC(S
′). The decomposition allows to study the three dimensions of diversity sep-

arately. The diversity Dβ(S
′) can be seen as the variety DA(S

′), corrected by the

factors DB(S
′) and DC(S

′) which are both between 0 and 1. The variety can in turn

be normalized by the total number of types in the classification considered to make it
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have values between 0 and 1 so that it is comparable to the balance and the disparity

as a fraction of its maximum value.

Applying the ABC decomposition to the example in Figure 3.1 leads to the results

given in Table 3.2. The results show, as expected, a decreasing disparity as the

overlap between words increases. The decrease in disparity as the total number of

letters decreases is accurately captured by the proposed measure.

eff. number (β-)diversity variety balance disparity
D(S′) Dβ(S

′) DA(S
′) DB(S

′) DC(S
′)

A 3 3 3 1 1
B 3 2.08 3 1 0.69
C 3 1.89 3 1 0.63

Table 3.2: Values for the effective number of industries, the number of compo-
sitional units and the variety, balance and disparity as given by the ABC decom-
position for the three examples depicted in Figure 3.1. Variety and balance are
equal in all three examples, as every industry employs three different occupations
with equal weight. The disparity differs in all three cases, and is maximal for A,
in which there is no overlap of occupations between industries. For B and C, the
measures show a lower disparity and hence a lower diversity for C, in which the

industries are composed of less occupations.

Figure 3.3 shows the ABC decomposition applied to the empirical example of in-

dustries in the US. It contains the same information as Figure 3.2, but shows the

dynamics of variety, balance and disparity separately. Since all dimensions of diver-

sity may move independently from each other, the ABC decomposition can help in

analyzing the specific role of each dimension in different systems.

3.4 Multivariate extensions

From the framework of Hill numbers, an interesting relation follows between diversity

and the information-theoretic notion of uncertainty. In particular, the beta diversity

is given by

Dβ(S
′) =

Dγ(S)

Dα(S)
= eH(X)−H(X|Y ) = eMI(X,Y ), (3.4)
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Figure 3.3: Variety, balance and disparity for industries given their occupational
distribution. Variety is normalized by the total number of possible industries in the
classification, which equals 147. The variety of industries remains approximately
constant over the whole period, and the balance shows diversification of industries
up to 1960, followed by a period of re-concentration. The disparity shows a decline

over nearly the whole period, with a slight increase since 1980.

where MI(X,Y ) denotes the mutual information between the random variables X

and Y 5. Taking the exponential of the mutual information between random variables

X and Y translates it into a measure of diversity of the corresponding collection S′,

discounted for the overlap in features given by S. Furthermore, the additive decompo-

sition of information-theoretic measures corresponds to a multiplicative decomposition

of diversities.

3.4.1 Taking into account multiple feature sets

Here, we generalize the diversity Dβ to take into account multiple feature sets by

exploiting the additive relations between multivariate information measures. For in-

stance, returning to the example described in Figure 3.1, we could add a feature set

to each word by color coding each letter, so that each word can be distinguished along

two dimensions: its colors and its letters. Describing letters with random variable X,

colors with random variable Y and words with random variable Z, one can consider

5The mutual information is a measure of dependence between two random variables X and Y ,

given by MI(XY ) =
∑

ij pij log
(

pij
pipj

)
. It is nonnegative and symmetric, and can be interpreted

as the average reduction in uncertainty about the outcome of one random variable, given knowledge
about the outcome of the other.
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the joint probabilities pijk = P (X = i, Y = j, Z = k) that a randomly sampled

element is letter i, has color j and is used in word k. In a network representation,

the joint probabilities pijk can be considered as the relative frequencies of hyperlinks

between nodes i, j and k in a hypergraph that connects colors, letters and words to

each other.

Following equation (3.4), the diversity of words given their overlap in letters and

colors is then given by

DXY
β (S′) = eH(XY )−H(XY |Z) = eMI(XY,Z),

where H(XY ) = −
∑

ij pij log(pij) is the Shannon entropy of the joint distribution

pij , and the superscript in DXY (S′) is used to indicate that diversity is taken with

respect to the overlap in feature pairs given by XY . Hence, every color-letter pair is

interpreted as a distinct feature of a word.

The effect of taking into account an additional feature set on the diversity depends

on the information contained by these features. In the current example, taking into

account color as a second feature set will not affect diversity much if colors and

letters are highly correlated. On the other hand, diversity of words may be very high

when colors and letters are independent of each other, thus capturing complementary

information. Words that consist of the same letters may contain very different colors,

and still add to the overall diversity. Mathematically, this can be seen by re-writing

the beta diversity as (see supplementary material C)

DXY
β (S′) = eMI(X,Z)+MI(Y,Z)−MI(X,Y )+MI(XY |Z),

from which it is clear that diversity decreases when the dependence between features,

given by MI(X,Y ), increases. In the extreme case that letters i and colors j are

independent, we have MI(X,Y ) = 0 so that (see supplementary material C)

DXY
β (S′) = eMI(X,Z)+MI(Y,Z) = DX

β (S′)DY
β (S′),

where DX
β (S′) and DY

β (S′) denote the diversity of words with respect to the fea-

tures described by random variables X and Y , respectively. Thus, when feature sets

are independent the diversity that takes into account feature pairs can be obtained
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through multiplication of the diversities that take into account each of the feature

sets separately.

Results like this may be useful and relevant when estimating diversity from high-

dimensional datasets containing multiple feature sets. For example, one could consider

the diversity of industries by not only taking into account the occupation but also the

educational profile of people employed by an industry as a distinguishing characteris-

tic. If educational profiles and occupations are uncorrelated, this diversity equals the

product of the diversities that take into account occupations and educational profiles

separately.

3.4.2 Aggregation

Another interesting interpretation is to consider the types in S′ to be an aggregation

of the features S. In this setting the words are thus considered to be a specific way

of aggregating letters. These words can in turn be further aggregated into sentences,

effectively ’adding a layer’ on top of the bipartite network depicted in Figure 3.1. In

such a setting, it follows from the current framework that the diversity of sentences

depends only on the composition of words, and not on the composition of letters. The

key assumption is that the two steps of aggregation are independent of each other, i.e.

how words are aggregated into sentences is independent of how letter are aggregated

into words.

In the situation described above, the links between letters and words are given by

the joint distribution pij and the links between words and sentences by pjk, where k

is the index for sentences, i is the index for letters and j the index for words. The

probability of a letter-word-sentence triplet is then given by pijk = pijpk|j . In other

words, sentences and letters are conditionally independent on knowing the word, and

their joint probability is given by

pik =
∑
j

pi|jpk|jpj ,

which implies that MI(X,Z|Y ) = 0. The diversity of sentences given the overlap in

words and letters is then equal to the diversity when considering the overlap in words
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only (see supplementary material D):

DZ
β (S

′) = eMI(Z,XY ) = eMI(Z,Y ). (3.5)

Hence, when the composition of types described by Z in terms of features described

by Y is independent of how the features Y themselves are composed of other features

X, the features X are irrelevant for considering diversity of Z.

As an example, consider the diversity of industries in Figure 3.2, where occupations

are taken to be features of the industries. Hence, we can consider the distribution over

industries as a particular way of aggregating over occupations. Similarly, occupations

can be considered to be a collection of particular skills and tasks, and hence industries

are, indirectly, also an aggregation of those skills and tasks. Equation (3.5) shows that

as long as the composition of occupations in terms of skills and tasks is independent

of the industry they are employed in, the diversity of industries is fully captured by

occupations alone, and there is no need to consider skills and tasks.

3.5 Discussion

This paper presented a framework to measure diversity while taking into account

variety, balance and disparity of types. The framework builds on Hill numbers (Hill,

1973a; Jost, 2006) and the corresponding decomposition of diversity into independent

alpha and beta components (Jost, 2007). It has a clear interpretation in terms of

the ’number of compositional units’ (Tuomisto, 2010), and satisfies the a set of basic

intuitive properties for diversity measures as formulated in (Leinster and Cobbold,

2012). Contrary to current approaches (Daly et al., 2018; Leinster and Cobbold, 2012;

Chiu et al., 2014), the measure does not rely on pairwise similarities but instead takes

into account overlap of features between types over the whole set.

I have also proposed the ’ABC’ decomposition of diversity that provides a way to

capture variety, balance and disparity in separate measures. Such measures may help

disentangle the distinct dynamics and functional properties that different dimensions

of diversity may have in different systems. In the context of economics for example,

economic development is often associated with an increase of the diversity of economic

activities (Hidalgo and Hausmann, 2009; Saviotti, 1996; Imbs and Wacziarg, 2003).

It is however an open question what the role of the individual components of diversity
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is in the process of economic development - as the preliminary results in the current

paper show, economic development may actually go hand in hand with decreasing

disparity, when disparity is measured in terms of industries and the occupations they

employ.

The proposed framework reveals close connections between measuring diversity and

information-theoretic measures of uncertainty. The simple additive properties of

information-theoretic measures correspond to multiplicative properties of diversity

measures, and enables derivation of special properties when considering multiple

feature sets. These properties may provide useful tools in the analysis of high-

dimensional datasets. Furthermore, the diversity measures presented here can be

interpreted as centrality measures on bipartite networks, or hypergraphs in the mul-

tivariate case. In this sense, the beta diversity captures structural properties of the

network. Application of these measure may also be extended to directed networks

(e.g. input-output tables in economics (Leontief, 1966)), as any directed network may

be interpreted as a bipartite network.

The current paper also leaves some open challenges that have not been addressed.

First, there is the issue of the estimation of the proposed diversity measures from

data, and finding a measure of precision of this estimate.

A promising way forward is to use a Bayesian framework as in (Wolpert and Wolf,

1995; Hutter and Zaffalon, 2005). These works provide closed-form solutions for

the moments of the posterior distribution of information-theoretic quantities like the

Shannon entropy en mutual information, given the data and a prior distribution for

the probabilities pij . Such an approach should extend in a straightforward way to the

exponentials of those quantities (which are our measures of diversity). In this way, an

estimate can be obtained along with a ’Bayesian error bar’ that shows the precision

of that estimate given the data and a prior distribution, for example showing a lower

precision estimate when the number of observations is low (Wolpert and Wolf, 1995).

A major challenge in applying such an approach for the estimation of diversity is to

find a suitable prior for the joint distribution of types and features in the situation at

hand. Implementing this Bayesian approach in order to provide unbiased estimates

of diversity with their corresponding error bars is a topic for future research.

A second line for future investigation is to further examine the relation between the

two alternative approaches to include disparity into diversity using Hill numbers:
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including pairwise similarities directly into Hill numbers as in (Leinster and Cobbold,

2012; Chiu et al., 2014), or -as in the current paper- using alpha and beta diversity

instead. On the one hand, pairwise similarities between types may not adequately

capture total disparity since they do not take into account in which way pairs are

similar. On the other hand, taking into account the full distribution of features

requires more data in order to estimate the joint distribution of types and features.

Furthermore, it may be challenging to find variables that are readily interpretable

as features of the types of interest. In situations where data is limited, an approach

based on pairwise similarities may be preferable.

It is worth noting however that both approaches are not mutually exclusive. In par-

ticular, Chiu et al. (2014) show that their measure of diversity, which generalizes Hill

numbers to include pairwise similarities, allows for a decomposition into alpha and

beta components. Their beta component then gives the number of compositional units

whilst taking into account a given set of pairwise simlarities. This highlights the fact

that both approaches provide alternative operationalizations of the concept of dis-

parity. In practice, selection of a method to measure diversity requires theory-driven

justification, and should be guided by data availability and the research question at

hand.





Chapter 4

A network view of correspondence

analysis: applications to ecology and

economic complexity∗

Abstract

Research in natural and social sciences often requires the identification of the structure

underlying high dimensional data, which is often represented as a network. We revisit

a statistical method known as Correspondence analysis from a network perspective,

emphasizing its close relation to spectral clustering and graph embedding techniques.

This leads to a number of interpretations of the results generated by the method,

which may guide practitioners in its application. We show how results generated

by CA relate to the structure of the underlying networks through a set of stylized

examples, and discuss two empirical examples from ecology and economics. In the

first example, we analyze the global distribution of Carnivora species and show how

clustering and ordination can be combined to find gradients in clustered data. In

the second example, we revisit the economic complexity index as correspondence

analysis, and we use the different interpretations of the method to shed new light on

the empirical results within this literature.
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4.1 Introduction

Many systems in natural and social sciences are characterized by high dimensional

data sets describing the interactions between the objects of study. Such data can be

analyzed by using statistical methods that reduce their complexity by identifying the

low-dimensional structures that define the systems’ main features. Identifying these

structures enables visualization of the data in two or three dimensions, and can be

used in further analysis to gain insight and understanding of the dynamics underlying

the system.

A frequently used method to describe the interactions between components in a system

starts with collecting data on the joint occurrence of two types of variables in the

system. Such data is commonly represented by a contingency table, reporting the

frequency with which an outcome of certain variable is observed in association with

the outcome of another variable. A contingency table can be represented as a bipartite

network, i.e. a network that connects two sets of nodes (the possible outcomes of

each variable), where the edges represent joint occurrences of the outcomes. A typical

example of such data sets in Ecology are the records of presence (or absence) of species

in sampling sites. In Economics, a representative data set could be the presence of

different types of economic activity (in terms of money or employment) in different

regions.

Data represented in that way can be used to infer the associations (or similarities),

between nodes of the same type, by considering for example how often species occur

together in the same site. In network terms, this entails ‘projecting’ the bipartite

network onto one of its node sets, leading to a similarity network (Fouss et al., 2016,

chapter 9).

The bipartite network and the inferred similarity network hold information on the

underlying dynamics of the system. For example, ecologists have been investigating

the existence of latent variables that determine which species occur in which sites,

a practice known as gradient analysis or ordination. These latent variables can be

related to environmental variations along a gradient, for example due to latitude

or temperature (Whittaker, 1967; Legendre and Legendre, 1998; ter Braak, 1995).

Furthermore, analyzing the similarity networks of species or sites may reveal the

existence of multiple subsystems or clusters, such as distinct communities of species



Chapter 4 A network view of correspondence analysis: applications to ecology and
economic complexity 81

or regions with distinct species compositions (Rueda et al., 2013; Holt et al., 2013;

Daru et al., 2017). More recently, economists have also started to study the latent

structures underlying countries’ economies by leveraging network analysis to infer

measures of economic complexity based on the geographical co-occurrence of products

(Hidalgo and Hausmann, 2009; Hausmann et al., 2011; Mealy et al., 2019).

The analysis of contingency tables is the domain of a statistical method called Cor-

respondence analysis (CA). Dating back to the seminal statistical work of Hirschfeld

in the 1930s (Hirschfeld, 1935a), CA became widespread thanks to a classical paper

by Hill, which promoted its use especially for ecological data (Hill, 1973a), while at

the same time the method was developed in France by Benzécri (Benzécri and Coll.,

1973). CA has been used extensively since the 80’s, being as common in ecological

papers as principal components analysis (PCA). Since then, CA has been reinvented

many times across different fields, leading to a plethora of different names, interpreta-

tions and applications of the method (Hill, 1974; Beh, 2004; Greenacre, 1984). Given

a contingency table, CA returns a set of ‘axes’, which, analogously to the components

in PCA, are used to represent the data in a lower-dimensional space, such that the dis-

tances between the data points represent the associations between them (Greenacre,

1984).

The representation of a contingency table as a bipartite network shows that CA can

also be used for network analysis. In fact, it can be shown that CA is mathematically

equivalent to network methods such as clustering and graph embedding techniques

(Zha et al., 2001; Yen et al., 2011). The equivalence between CA and network methods

is not a simple matter of reinventing the wheel. Since each of the methods is derived

with different underlying motivations (ordination, clustering or dimensionality reduc-

tion), it has the important added value of introducing different interpretations for the

same data set. In this paper, we aim to raise awareness about the fact that the out-

come of CA can be interpreted at the same time as latent variables, as cluster labels

and as coordinates in a low-dimensional Euclidean space. By clarifying the relations

between these three interpretations, we aim to aid practitioners in the interpretation

of both CA and network analysis. We do so by revisiting CA from a network perspec-

tive and by providing guidance and examples to illustrate how these methods can be

applied in practice. We will discuss the three alternative derivations of CA.
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First, we discuss CA as a form of ‘canonical correlation analysis’ (Hotelling, 1936),

motivated here as a way to find latent variables that drive the connections in a bipar-

tite network (Fouss et al., 2016, chapter 9). Second, we discuss the interpretation of

CA as a spectral clustering algorithm applied to the network of similarities derived

from the bipartite network (Shi and Malik, 2000). Third, we discuss CA as a method

of graph embedding applied to the similarity network (Yen et al., 2011). Each ap-

proach leads to a complementary interpretation of the same set of eigenvectors and

eigenvalues that result from applying CA.

We illustrate the different interpretations of CA by applying it to a number of stylized

networks, showing how the eigenvalues and eigenvectors that result from CA relate

to their structure. When the similarity network inferred from a bipartite network

consists of a single cluster, the axes resulting from CA can be interpreted as a gra-

dient underlying the data, leading to an ordination of the nodes. However, when the

network consists of multiple weakly connected clusters, the CA axes hold informa-

tion on the clustering structure of the underlying network, showing for each node to

which cluster it belongs. Based on these examples, we propose to use CA to cluster

the data first before applying it as an ordination method within each cluster, when

performing gradient analysis on data containing multiple clusters. We illustrate these

ideas by analysing two empirical examples, drawn from Ecology and Economics. The

proposed methodological approach is available as an R package which can be retrieved

at https://github.com/UtrechtUniversity/SCCA.

In the first example, we apply CA to an ecological dataset describing the global ge-

ographical distribution of Carnivora species, with the objective of finding gradients

that reflect drivers of the species distributions. Interpretation of CA as a clustering

algorithm motivates dividing the data into subsets, leading to the identification of

meaningful bioregions. Applying CA to each bioregion separately results in identifi-

cation of ecological gradients within those regions.

The second example is drawn from Economics, where CA was recently reinvented as a

way to analyze bipartite networks under the name of the ‘Economic complexity index’

(ECI). The ECI is used to infer a ranking of countries based on the products they

export which is associated to their economic productivity (Hidalgo and Hausmann,

2009; Mealy et al., 2019). Here we review the ECI from the perspective of CA, and

show how the different interpretations of the mathematics behind CA may help in

https://github.com/UtrechtUniversity/SCCA
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interpreting economic complexity. We focus in particular on the interpretation of

higher order eigenvectors and eigenvalues, which were hitherto not considered in the

context of economic complexity.

4.2 Interpreting CA

Let us first describe the setting and introduce some notation. The main object of

analysis is a matrix A (a contingency table with nr rows and nc columns) that contains

the counts of two variables. A common example from Ecology is that Aij contains

some measure of abundance of species i (rows) in sampling site j (columns). The

matrix A can also be a binary incidence matrix, containing the ”presence-absence”

of species in sites. The matrix A can be interpreted as the bi-adjacency matrix of a

bipartite network that connect species to sites. The network contains nr nodes on

one side (the species, given by the rows of A), indexed by i, and nc nodes on the other

side (the sites, given by the columns of A) indexed by j. In general, we will refer

to the two sets of nodes as row nodes and column nodes, respectively. The degree

of a row node i is defined by ri =
∑

j Aij , i.e. it is given by the total abundance

of a species. Likewise, the degree of a column node j is defined as cj =
∑

iAij , i.e.

the total abundance of species in a site. The degrees of the row and column nodes

are given by the vectors r = (r1, r2, . . . , rnr
)T and c = (c1, c2, . . . , cnc

)T . We further

define two square matrices, Dr (nr by nr) and Dc (nc by nc) as the diagonal matrices

that have r and c on the diagonal, respectively. The sum n =
∑

ij Aij gives the total

number of occurrences in the table (in the case of a species-sites example, the total

abundance of species).

4.2.1 CA as canonical correlation analysis

One of the first derivations of CA was obtained by applying canonical correlation

analysis to categorical variables (Hotelling, 1936; Hirschfeld, 1935b; Fisher, 1940).

Here we follow the derivation in Fouss et al. (2016, chapter 9), where CA is derived

as an application of canonical correlation analysis applied to a bipartite network.

For ease of explanation, we will assume the network is defined by a binary presence-

absence matrix (i.e. the network is unweighted), but the result generalizes to any

contingency table (i.e. weighted bipartite networks). The aim is to assign a ‘score’

to each row and column node of the bipartite network described by A, under the
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assumption that edges in the network arise between nodes with similar scores. The

scores can thus be seen as a variable that drives the structure of the network.

The scores can be inferred from the edges of the bipartite network. Recall that for a

presence-absence matrix, the total number of edges in the bipartite network is given

by n =
∑

ij Aij . Let us construct a vector yr of length n that contains, for each

edge, the scores of the row node it connects to, and a vector yc of length n that

contains, again for each edge, the score of the column node it connects to. Given

the assumption that edges connect row nodes and column nodes with similar scores,

the node scores can be found by maximizing the correlation between yr and yc, so

that the row- and column scores for each edge are as similar as possible. Denoting

the vector of length nr containing the row scores by v and the vector of length nc

containing the column scores by u, this leads to the optimization problem

max
v,u

corr(yr,yc). (4.1)

In order to obtain standardized scores, the constraints that yr and yc have zero mean

and unit variance are added. Solving this problem using Lagrangian optimization,

the solution is given by

D−1
r AD−1

c ATv = λv (4.2)

D−1
c ATD−1

r Au = λu.

The score vectors v and u can thus be found by solving an eigenvector problem. Both

matrices on the left-hand side of Eq. (4.2) are row-stochastic and positive definite, and

have identical eigenvalues that are real and take values between 0 and 1. Assuming

that we have a connected network, sorting the eigenvalues in decreasing order leads

to 1 = λ1 > λ2 · · · ≥ 0.

It can be shown that the correlation between yr and yc for a given set of eigenvectors v

and u is given by their corresponding eigenvalue, so that λ = corr2(yr,yc). The node

scores leading to the highest correlation are thus given by the eigenvectors associated

with the largest eigenvalue. However, the eigenvectors corresponding to λ1 have all

constant values and represent the trivial solution in which all row nodes and all column

nodes have equal scores (leading to a perfect correlation). The solution to Eq. (4.1)

is thus given by the eigenvectors v2 and u2, corresponding to the second largest
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eigenvalue λ2, which corresponds to the square root of the (maximized) correlation.

For a full derivation we refer to Fouss et al. (2016, chapter 9).

The second eigenvectors v2 and u2 hold the unique scores such that row- and column

nodes with similar scores connect to each other. The second eigenvalue λ2 indicates

to what extent the row- and column scores can be ‘matched’, where the maximal

value of 1 implies that links only occur between nodes with identical scores. For high

correlations, the obtained scores can be thought of as a latent variable that drive the

formation of links in the network. In ecology, such latent variables are referred to

as gradients (Whittaker, 1967; Legendre and Legendre, 1998). In the case of sites

and species for example, CA can be applied to obtain scores that may reflect some

environmental gradient determining where species locate, such as the temperature of

a site and the temperature preference of a species. Such relations can be investigated

by comparing the obtained gradients with known environmental variables.

The higher order eigenvectors in Eq. (4.2) and their eigenvalues are solutions to

Eq. (4.1) with the additional constraint that yr and yc are orthogonal to the other

solutions. The vectors v3 and u3 for example may represent other gradients that may

drive the formation of links (e.g. precipitation, primary productivity, etc.) on top of

the gradients described by v2 and u2.

4.2.2 CA as a clustering algorithm

A completely different approach shows that the eigenvectors v2 and u2 (i.e. the

second eigenvectors in Eq. (4.2)) can also be interpreted as approximate cluster labels,

obtained when identifying clusters in the network of similarities that is derived from

the bipartite network.

A similarity network can be constructed from a bipartite network by ‘projecting’ the

bipartite network onto one of its layers (either the row nodes or the column nodes)

through stochastic complementation (Yen et al., 2011). Projecting the bipartite net-

work defined by A onto its row layer leads to the similarity matrix Sr = AD−1
c AT .

The entries of Sr represent pairwise similarities between row nodes of A, based on

how many links they share with the same column node, weighted for the degree of

each column node. Similarly, Sc = ATD−1
r A defines the pairwise similarities between

the column nodes of A.
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Identifying clusters in the similarity network can be done by minimizing the so-called

‘normalized cut’ (Shi and Malik, 2000). The normalized cut assigns, for a given

partition of a network into K clusters, a score that represents the strength of the

connections between the clusters for that partition. A partition can be described by

assigning a discrete cluster label to each node. Hence, minimizing the normalized

cut is equivalent to assigning a cluster label to each node in the network in such a

way that the clusters are minimally connected. Finding the discrete cluster labels

that minimize the normalized cut in large networks is in general not possible (Shi

and Malik, 2000). However, a solution of a related problem can be obtained when

the cluster labels are allowed to take continuous values as opposed to discrete values.

Solutions of this ‘relaxed’ problem can be interpreted as continuous approximations

of the discrete cluster labels.

Minimizing the normalized cut in Sr leads to the generalized eigensystem (Shi and

Malik, 2000)

(Dr − Sr)v = λ̃Drv, (4.3)

where the entries of the generalized eigenvector v2 corresponding to the second small-

est eigenvalue λ̃2 of Eq. 4.3 hold the approximate cluster labels of the optimal partition

into two clusters. It is easily shown that generalized eigenvectors in Eq. (4.3) are ex-

actly the eigenvectors of Eq. (4.2), where the eigenvalues are related by λ̃k = 1− λk,

where k = 1, 2, . . . , nr (see Appendix B).

The matrix Dr−Sr is known as the Laplacian matrix of the similarity network defined

by Sr, and is well known in spectral graph theory (Chung, 1997). The number

of eigenvalues λ̃ = 0 (or equivalently λ = 1) denotes the number of disconnected

clusters in the network. The corresponding generalized eigenvectors of these ‘trivial’

eigenvalues will have constant values for nodes in each cluster, indicating cluster

membership.

The situation changes when the clusters are weakly connected. The optimal solution

for partitioning the similarity network into two clusters is given by the eigenvector v2

associated to eigenvalue λ2. The entries of v2 can be interpreted as approximations

to the cluster labels that indicate for each row node to which cluster it belongs. The

corresponding eigenvalue λ2 represents the quality of the partitioning as determined

by the normalized cut criterion. High values indicate nearly disconnected clusters
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(two totally disconnected clusters would yield eigenvalues λ1 = λ2 = 1), whereas

lower values correspond to a partitioning into clusters that less well distinguished

(i.e. they are more interconnected). A discrete partition can be obtained from the

approximate (continuous) cluster labels by discretizing them, for example by assigning

all negative values to one cluster and all positive values to the other (Newman, 2013).

Finding a partitioning into multiple, say K, clusters is more involved. Minimizing the

normalized cut forK clusters yields a trace minimization problem of which the relaxed

solution is given by the first K eigenvectors in (4.2) (Yu and Shi, 2003). The discrete

cluster labels can then be obtained, for example, by running a k-Means algorithm

on the matrix consisting of those K eigenvectors, a technique that is also known as

spectral clustering (Ng et al., 2002; Von Luxburg, 2007). How well the network can

be partitioned into K clusters is given by the average value of the first K eigenvalues,

i.e. 1
K

∑K
k=1 λk (Yu and Shi, 2003).

The clustering approach thus brings an alternative interpretation to CA results. A

key observation is that the eigenvalues and eigenvectors in Eq. (4.2) are directly

related to the generalized eigenvectors of the Laplacian of the similarity matrix Sr,

and thus hold information on the structure of the similarity network. The entries

of the second eigenvector v2 can be interpreted as the approximate cluster labels of

a two-way partitioning of the similarity network defined by Sr. Although at first

sight the interpretation of CA scores as cluster labels may seem different from the

interpretation as a latent variable as described in Section 4.2.1, note that cluster labels

can be seen as latent variables, albeit a discrete rather than a continuous variable.

4.2.3 CA as a graph embedding technique

A third interpretation of the eigenvectors and eigenvalues in Eq. (4.2) arise from a

so-called graph embedding of the similarity matrix Sr (or Sc). A graph embedding

represents the nodes of a graph as node vectors in a Euclidean space, such that nodes

that are ‘close’ in the network are also close in terms of their Euclidean distance in

the embedding. A key feature of these embeddings is that their dimensionality can

be reduced in order to obtain a low-dimensional representation of the data, while

retaining its most important structural properties (see Fouss et al. (2016, chapter 10)

for an overview of graph embedding techniques). This can be used for example for



88
Chapter 4 A network view of correspondence analysis: applications to ecology and

economic complexity

graph drawing, as it provides a way to obtain a two-dimensional representation of a

high-dimensional network.

Several authors have shown the equivalence of CA to graph embedding in the case

of a similarity matrix obtained through stochastic complementation. For example,

computing a 1-step diffusion map of the similarity matrix Sr leads exactly to the

eigenvectors of Eq. (4.2) (Coifman and Lafon, 2006; Yen et al., 2011). Belkin and

Niyogi (2003) show the equivalence between constructing an embedding using the

Laplacian eigenmap and clustering using the normalized cut, which in turn is equiv-

alent to CA.

Embedding the similarity network Sr in a (K−1)-dimensional space yields an ‘embed-

ding matrix’Xr ∈ Rnr×K−1. Each row ofXr represents a node of Sr as a ‘node vector’

in the embedding. The rows of Xr can be seen as components of (K−1)-dimensional

basis vectors that span the embedding, and are identical to what is referred to as the

‘axes’ in CA. Every entry Xi,k represents the coordinate of row node i on the k’th

basis vector, and can be seen as the ‘score’ of i on the k’th CA axis. An embedding

matrix of Sr can defined as Xr = [
√
λ2v2, . . . ,

√
λKvK ], where the vectors vk are

the eigenvectors defined in (4.2), and each of them is weighted by the square root of

their corresponding eigenvalue. We will refer to columns of the embedding matrix as

‘CA-axes’, given by xk =
√
λkvk.

The axes are constructed in such a way that they capture the largest amount of

‘variation’ or ‘inertia’ in the data, which is given by their corresponding eigenvalue

(Greenacre, 1984). The sum of all the eigenvalues gives the total variation in the data

(in CA, this is referred to as the total inertia). CA decomposes the total variation in

such a way that the first axis captures a maximal part of the variation, the second a

maximal part of the remaining variation, and so on. A low-dimensional embedding

that preserves the maximal amount of variation can thus be obtained by discarding

the eigenvectors corresponding to smaller eigenvalues. The ‘quality’ of the embedding

can then be expressed as the share of the total variation that is preserved in the

embedding.

A typical way of presenting CA results is by showing the first two coordinates of

each row (or column) node, i.e. plotting x2 against x3, which is usually referred to

as a biplot (Greenacre, 1984). Since the first two axes capture a maximal amount

of inertia, such a plot is in a way the optimal two-dimensional representation of the
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data that captures the relations between the rows (or columns) of A. The distances

between points in the biplot approximate the similarities between nodes. How well

the biplot represents the similarities is given by the percentage of variation explained

by the first two axes.

Each axis can be interpreted as a latent variable that accounts for part of the total

variation in the data. Since the axes in the embedding are given by a scaled version

of the eigenvectors discussed in Section 4.2.1, the interpretation of the eigenvalues

as the amount of variation explained is complementary to the interpretation as the

correlation between row and column scores which we introduced above in Section

4.2.1. Furthermore, the axes spanning the K-dimensional embedding are exactly the

generalized eigenvectors that follow from minimizing the normalized cut forK clusters

(Belkin and Niyogi, 2003). Indeed, when there are clear clusters in the similarity

network, they will show up in the embedding space as separate groups of points.

Summarizing, we find three interpretations of CA axes and their corresponding eigen-

values: as latent variables that drive the formation of links in the bipartite network,

as approximate clusters labels of a bi-partition of the similarity network, and as co-

ordinates of an embedding of the similarity network. The different derivations of CA

and their interpretations are summarized in Table 4.1.

Name Interpretation
eigenvectors

Interpretation
eigenvalues

canonical correlation
analysis

latent variables strength of correlation
between row an column

scores
graph partitioning using

the normalized cut
approximate cluster

labels
quality of the normalized

cut
graph embedding coordinates in the

embedding space
variation explained

Table 4.1: Different interpretations of the eigenvectors and eigenvalues resulting
from CA.

4.3 Stylized examples

In the following, we illustrate the interpretations found above by applying CA to a

set of simple stylized networks: a random bipartite network (Figure 4.1 a), a network
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with a band-diagonal structure (Figure 4.1 b), networks with two or three weakly

connected clusters (Figure 4.1 c and d), and a network with two clusters that each

have a band-diagonal structure (Figure 4.1 e).

Figure 4.1 shows from left to right the bi-adjacency matrices A of the bipartite net-

works (where the rows and columns are sorted according the their scores in v2 and

u2), the similarity matrices of the row nodes Sr, the spectrum of eigenvalues of the

row-normalized similarity matrices, the (scaled) eigenvector x2 corresponding to the

second largest eigenvalue (the first CA axis) and the biplot, which shows the two-

dimensional embedding spanned by the first two CA axes x2 and x3.

For the random bipartite network (Figure 4.1 a1), the single trivial eigenvalue λ1 = 1

indicates that similarity network S consists of a single connected component (Fig-

ure 4.1 a3). Its corresponding eigenvector has constant values (not shown). The

second eigenvector shows the node scores that maximize the correlation between row

and column nodes (Figure 4.1 a4). Since the network is random, this correlation is low

(
√
λ2 =

√
0.02 = 0.14), indicating the absence of a clear underlying structure to the

network that can be captured in a single variable. Accordingly, the biplot (Figure 4.1

a5) does not show any particular structure, and each axis explains a limited amount

(approximately 2%) of the total variation in the data .

Different patterns are observed in a network with a clear band-diagonal pattern (Fig-

ure 4.1 b1). This pattern is indicative of a gradient underlying the structure of the

bipartite network, since high-score row nodes (on the right-hand side of the matrix)

connect to high-score column nodes (on the bottom of the matrix) and vice versa.

Indeed, the spectrum contains, next to the trivial eigenvalue (λ1 = 1) two eigenvalues

that are larger than the others (Figure 4.1 H). The strength of the correlation between

row nodes and column nodes is given by
√
λ2 =

√
0.7 = 0.84, and the gradient for the

row nodes is given by the axis x2 shown in Figure 4.1 b4). The third eigenvalue λ3

is much smaller than the second, but slightly larger than the subsequent eigenvalues.

The biplot (Figure 4.1 b5) shows that the corresponding axis x3 is approximately a

quadratic function of the first. This is a statistical artefact known as the ‘arch effect’

(these type of axes were referred to as ‘polynomial axes’ by (Hill, 1974)). Such solu-

tions arise because a quadratic function of the ‘true’ gradient also leads to positive

correlation, and is orthogonal to the solution given by x2 (Gauch et al., 1977). The
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solution thus contains little extra information on top of what is already reported by

the second eigenvector and can thus be ignored in practice (ter Braak, 1995).

In the subsequent example, the network is constituted by two weakly connected ran-

dom bipartite networks, so that the similarity network presents two clusters (Fig-

ure 4.1 c1). This represents a slightly perturbed case of the situation in which the

clusters are totally disconnected. Hence, the second eigenvalue (Figure 4.1 c3) is close

to one, and, unlike the situation in Figure 4.1 b4, its corresponding eigenvector shows

a clear separation between two sets of approximately constant values. These entries

may be interpreted as approximation to cluster labels identifying the two clusters.

The subsequent eigenvectors identify axes that show variation within each of the two

clusters. For example, the biplot (Figure 4.1 c5) shows that the second axis x3 only

varies in one of the clusters (as identified by x2) and is approximately constant for

nodes in the other cluster.

A similar situation is found for a network constituted of three weakly connected

random bipartite networks (Figure 4.1 d1). Since there are now three clusters, both

eigenvectors v2 and v3 are associated to eigenvalues that are close to 1 (Figure 4.1

d3). While x2 only identifies a two-way partition, both axes together clearly identify

the three clusters, as shown in the biplot (Figure 4.1 d5).

Finally, we consider what happens when a network consists of two weakly connected

clusters that each have a clear gradient (as in Figure 4.1 F), shown by their band-

diagonal pattern in the bi-adjacency matrix (Figure 4.1 e1). The spectrum shows

four eigenvalues that are significantly nonzero (Figure 4.1 e3). The first two eigenval-

ues correspond to presence of two well-defined clusters, and the second eigenvector

clearly separates the two clusters (Figure 4.1 e4). The third and fourth eigenvalues

correspond to the gradients within each of the clusters. The biplot shows variation in

one of the clusters (Figure 4.1 e5). The gradient of the other cluster is contained in

the fourth axis (not shown).

4.4 Clustering versus ordination

The different interpretations of CA axes and their eigenvalues can help make sense

of results when applying CA to data. In particular, two types of CA axes can be
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Figure 4.1: Stylized examples of five network structures and their corresponding
spectra and eigenvalues. From top to bottom: a random bipartite network (a), a
network with a clear gradient (b), a network consisting of two weakly connected
clusters (c), a network consisting of three weakly connected clusters (d), and a
network consisting of two weakly connected clusters containing a gradient (e).
From left to right: the bi-adjacency matrix of the network, the similarity matrix
Sr describing pairwise similarities between the rows, the spectrum of eigenvalues,
the principal CA axis x2, and the biplot of the first and second CA axes x2 and

x3, respectively, with the variation explained for both axes.

distinguished: those related to ordination and those related to clustering1. Axes

describing a gradient are characterized by smoothly varying values within them, and

are typically used to construct an ordination of the nodes under consideration2. Axes

related to clustering are characterized by groups of approximately constant values

that indicating cluster membership. These values can be discretized, for example by

using k-Means, to obtain a set of discrete clusters. The eigenvalues corresponding

to each axis either indicate the strength of the gradient, or how well the similarity

network can be partitioned.

1Hill (1974) termed these two types of axes as ‘seriation’ axes and ‘nodal’ axes, respectively
2In Shi and Malik (2000) approach, these axes are discarded when finding a discrete partitioning

of the data
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While in the stylized networks presented above the number of clusters and/or the

presence of a gradient was imposed and thus known beforehand, this is typically

not the case in practice. Real data may consist of weakly connected clusters that

may or may not have underlying gradients. This can make results hard to interpret,

especially especially when using noisy data. When the objective of applying CA is

to find gradients underlying the data, the CA axes with their continuously varying

values are the subject of interest. In datasets consisting of multiple clusters, such

gradients will be present only within each cluster, and thus found in the higher order

axes (as in Figure 4.1 e). However, the higher order axes will be increasingly affected

by noise (Shi and Malik, 2000). Therefore, we propose to separate the clusters in

the data prior to finding gradients, so that each cluster can be analyzed separately,

leading to better identification of the within-cluster gradients.

The clusters can be identified with CA by taking the spectral clustering approach,

meaning that the clusters are identified by applying k-Means clustering to the em-

bedding of the similarity network (Ng et al., 2002; Von Luxburg, 2007). This requires

estimating the number of clusters beforehand. Getting this number right is impor-

tant, since imposing too many clusters (i.e. including axes representing gradients)

may lead to artificial cuts in the data.

A common approach for determining the number of clusters K is the ‘eigengap heuris-

tic’ (Von Luxburg, 2007), which is based on the fact that the number of connected

components is given by the number of eigenvalues equal to one. Since the case of

a network with weakly connected clusters is similar that in which the clusters are

disconnected, the spectrum of eigenvalues will also be similar, and the number of

clusters can be estimated by counting the number of eigenvalues that remain close to

one. This can be done by counting the number of eigenvalues that precede the largest

difference between two subsequent eigenvalues (the ‘gap’) in the eigenspectrum. For

example, the eigenspectrum of the example network with two and three clusters (Fig-

ure 4.1 c3 and d3) clearly shows how the position of the eigengap marks the number

of clusters present.

A possible procedure to find gradients in data is then as follows: given a dataset, we

apply CA to it and consider the results. Based on the results, we determine whether

the data contains multiple clusters, and if so how many. This can be done, for example,
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by using the eigengap heuristic. We then separate the clusters, for example by apply-

ing K-means. The procedure can then be repeated for each individual cluster (note

that the clusters themselves may also consist of multiple clusters), until each cluster

represents a ‘homogenous’ similarity network, of which the CA axes represent contin-

uous gradients. The procedure described in this paragraph is built into an R pacakge,

which is available for general use at https://github.com/UtrechtUniversity/SCCA.

In the following, we explore the preceding considerations empirically by applying

CA to two different datasets. The first example consists of an ecological dataset

that contains clear clusters, and we aim to identify gradients within those clusters

applying the procedure described above. We use the eigengap heuristic to obtain

a clustering of the data and subsequently to analyze the clusters using CA. In the

second example, we apply CA to data on international trade, and illustrate how the

alternative interpretations of CA axes and their eigenvalues may help elucidate what

is known in the literature as the economic complexity index (ECI).

4.5 Applying CA

4.5.1 Example I: Carnivore biogeography

To illustrate the application of CA as both a method of both clustering and ordi-

nation, we applied it to a common-use dataset in Macroecology –i.e. the branch of

Ecology studying ecological patterns and processes at broad geographical scales, also

known (sensu lato) as biogeography– referred to as the global geographical distribu-

tions of the species of the mammalian order Carnivora (Diniz-Filho et al., 2009). The

dataset is comprised by an incidence matrix ––i.e. presence-absence matrix–– with 288

extant terrestrial and marine species (rows) and 41,580 non-empty sites (columns).

The sites represent grid-cells rasterized at a resolution of 0.78 latitudinal degrees.

The distributional data were extracted from the mammal range map database Phy-

lacine v1.2 (Faurby et al., 2018), which we downloaded (last accessed in November

2019; https://datadryad.org/stash/dataset/doi:10.5061/dryad.bp26v20) and

pruned to only include extant carnivorans. Data were processed in R (R Core Devel-

opment Team 2014) and mapped in QGIS v2.18.16 (QGIS Development Team 2015).

In this example, we primarily focused analyzing the sites based on their species com-

position. Yet, considering that CA simultaneously uncovers patterns for both the

https://github.com/UtrechtUniversity/SCCA
https://datadryad.org/stash/dataset/doi:10.5061/dryad.bp26v20
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rows and columns of the incidence matrix, we could have as well aimed at analyzing

species based on their geographic distributions by applying the same procedure to

columns instead of rows (see e.g. (Morales-Castilla et al., 2017)). Application of CA

reveals the fact that we are dealing with a dataset consisting of multiple clusters. As

discussed above, we first split the dataset into separate subsets that each consist of a

single cluster. These clusters represent sites with similar species composition, termed

bioregions in biogeography. Once we defined the bioregions, we asked whether the

sites within them showed any distributional gradient, which would be reflected by the

arrangement of sites along “meaningful” CA axes, i.e. axes explaining a considerable

amount of variation as given by the corresponding eigenvalue. If so, it is then possi-

ble to ask whether this gradient would relate to some environmental factor or other

spatially patterned process (e.g. distance to main areas of species interchange with

other regions (Morales-Castilla et al., 2012)). These kind of questions are common

in CA-based ecological investigations and oftentimes are addressed through correla-

tional analyses between meaningful CA-axes and explanatory factors. Since this is

well-known practice among ecologists, we did not include this part in the present

analysis.

Applying CA to the complete dataset yields two eigenvalues equal to 1, showing that

the network consists of two completely disconnected components. The eigenvectors

corresponding to these two trivial eigenvalues indicate the membership of each node

to one of the two disconnected components, which correspond to Madagascar and to

the rest of the world, respectively (see Fig. 4.2 (B-D)). Malagasy carnivorans belong

to the family Eupleplidae, comprised by ten species all endemic to Madagascar (i.e.

they occur nowhere else), which accounts for this primary differentiation.

We proceed by analyzing the spectrum of each of the identified components separately.

Looking at the spectrum of Madagascar, we find the eigengap in the first position,

indicating a network consisting of a single cluster. The spectrum of the rest of the

world, on the other hand, shows the largest decrease in the eigenvalues (the eigengap)

between the 16th and 17th eigenvalue, indicating the existence of at least 16 other

bioregions with faunas overlapping to some extent. To obtain these clusters, we follow

the spectral clustering approach and apply a k-Means clustering on the embedding

matrix defined by the 16 axes corresponding to these eigenvalues.
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Applying CA again to each of the resulting 16 clusters, we found that 15 of them were

recognized as integral bioregions (regions 4 to 20 in Figure 4.2 (A), with the exception

of regions 12-13) and required no further partitioning based on the eigengap heursitic

(i.e. the eigengap was found between the first and second eigenvalue). One of the

clusters was split once more based on its eigenspectrum, yielding regions 12 and 13,

which comprise the North American Pacific (Fig. 4.2 (A)). While the regions resulting

from applying the eigengap heuristic match closely with well-established bioregions

(Rueda et al., 2013), their ordering does not reflect hierarchical structure that can be

linked to biogeographic history. This is probably due to most regions being defined

already by the second iteration.

Although this analysis is only based on the mammalian order Carnivora, and even

though it includes both terrestrial and marine species, the bioregions obtained cor-

respond remarkably well to the bioregions first defined by Wallace and supported by

recent work on bioregionalization (Rueda et al., 2013). Beyond finding the above

described clustering in bioregions, we find informative results on potential gradients

of site distribution within the obtained bioregions. In the Nearctic, for example, the

first CA axis shows a marked north to south gradient (see Fig. 4.2 (E-G)) that would

likely reflect a spatial structuring of species distributions as a response to latitudinal

variation in climate.

The first CA axis has been recurrently used in Ecology (Greenacre, 2010) to conduct

either cluster or gradient analyses, which has allowed ecologists and biogeographers

to identify regions with similar species composition or to understand how species

distributions structure along environmental gradients. However, gradient analyses

may only yield interpretable results when the network considered does not consist of

multiple clusters. A ‘naive’ application of CA as an ordination method in the example

above would have yielded uninterpretable results, as the principle axis would have

been a one-dimensional representation of a high dimensional data set. Recognizing

the clustered nature of the data by considering the whole spectrum and multiple axes

allows for splitting the data into homogeneous subsets using the clustering approach,

before applying CA as a method for gradient analysis.
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Figure 4.2: Results of applying CA to ecological data. Panel (A): Map showing
the spatial distribution of clusters–i.e. bioregions–resulting from application of
our heuristic approach to CA to the Carnivora dataset. The numbers indicate
the resulting clusters: the first split separates Madagascar (2) from the rest of the
world (1) (B). The rest of the world cluster is subsequently split into non-nested
clusters, of which one is further split into clusters 12 and 13. Panel (B): Spatial
distribution of the coefficients in the first CA axis when all data is considered.
Madagascar is colored in red and the rest of the world in blue. Panel (C): Sorted
eigenspectrum for all data showing two eigenvectors with value equal 1, indicating
that there are two fully disconnected clusters. Panel (D): Biplot of first and second
CA axis eigenvector. Colors indicate the first axis, corresponding to colors in panel
(B). The first axis separates the two clusters but does not show variation within
clusters. Panel (E): Spatial distribution of the coefficients in the second eigenvector
for the subcluster 6 corresponding to the Nearctic bioregion. The eigengap is found
between the first and second eigenvalues, suggesting that the network is does not
contain any subclusters (F). Panel (G): The biplot for the first and second CA
axes, colored according to panel (E), showing how the first axis separates sites

along a clear latitudinal gradient.
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4.5.2 Example II: Economic Complexity

In the second example, we apply CA to data on international trade, obtained from

Harvard’s Growth Lab.3 From the data we construct a ‘presence-absence’ matrix with

234 countries (rows) and 1239 products (columns), in which a ‘presence’ indicates that

a country was a significant exporter of a product in the year 2016 (see Appendix A for

an exact description of this procedure). This matrix has been analyzed extensively

in relation to economic development (Hidalgo et al., 2007; Hidalgo and Hausmann,

2009; Hausmann et al., 2011; Tacchella et al., 2012). In the literature on economic

complexity, the first CA axes of countries and products (the row and column nodes)

are known as the economic complexity index (ECI) and product complexity index

(PCI), respectively (Mealy et al., 2019). The ECI has been used as a method of

ranking countries by the complexity of their economy, and has become known for its

ability to predict the cross-country differences and future growth of countries’ GDP

per capita (Hidalgo and Hausmann, 2009; Hausmann et al., 2011). The ECI has since

been applied to a variety of datasets in economics (Balland and Rigby, 2017; Chávez

et al., 2017; Gao et al., 2016), and beyond (Baudena et al., 2015).4

Applying CA to the country-product matrix results in an embedding of the country-

country similarity network, where similarities are based on the countries’ export port-

folios (alternatively, we could have analyzed how products relate to each other in terms

of the countries that export them, leading to a variation of the ‘product space’ intro-

duced in Hidalgo et al. (2007)). Figure 4.3 (A) shows the country-product matrix,

where countries and products are sorted by the first CA axis (the ECI and PCI, re-

spectively). The correlation associated with the country and product scores is given

by
√
λ2 = 0.52. This correlation is an indication to what extent countries with high

ECI export products with high PCI and vice versa. The moderate correlation and the

triangular shape of the matrix however show that this statement is only partially true,

as the lower right side of the matrix shows that typically countries with high ECI also

export products with low PCI. A high correlation would imply a more pronounced

band-diagonal structure of the country-product matrix.

3The Growth Lab at Harvard University. International Trade Data (HS, 92), 2019
4See also https://oec.world/en/resources/library for a collection of work related to economic

complexity.

https://oec.world/en/resources/library
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Moving beyond the principal axes, we examine the spectrum of eigenvalues, of which

the first 25 are shown in Figure 4.3 (B). The spectrum shows no significant gaps in

its decay, suggesting that the country-country similarity network does not consist of

multiple weakly connected clusters according to the eigengap heuristic. Figure 4.3 (B)

shows the biplot of the first and second CA axes for the country-country similarity

network. Expressed as a percentage of total variation, the first axis (the ECI) accounts

for 3.5% of the total variation, and the second axis for 2.5%, so the biplot captures 6%

of the total variation in the country-product matrix. The distances between countries

in the biplot reflect similarities between countries in terms of their export baskets.

As expected from the lack of a clear gap in the spectrum, the biplot shows no clearly

delineated clusters, suggesting an interpretation of each axis as a continuous gradient.

The first axis differentiates between low-income countries that mostly export crude

oil such as Chad, Iraq and South-Sudan on the left-hand side of the plot, and wealthy

countries involved in high-tech manufacturing such as Japan, Taiwan and Switzerland

on the right-hand side. The second axis assigns the highest scores to countries like

Equatorial Guinea, Qatar and Venezuela, which are also major oil producers, and

assigns low score to countries such as Bangladesh, Cambodia and Haiti, which are

specialized in textiles and garments.

The separation of low-income and high-income countries by the first CA axis becomes

clear when used as a predictor of GDP per capita (GDPpc; Figure 4.3 C), with a

linear relationship explaining about 47% of the variance.5 This relation is interpreted

in Hidalgo and Hausmann (2009) as more complex countries being able to achieve

higher levels of GDP per capita. Also, countries that are located below the regression

line are expected to have high growth rates, as they are less rich than expected

given their ‘complexity’, while countries above the regression line are richer than

expected by their ‘complexity’. The typical interpretation of CA however leads to a

more agnostic take on the meaning of ECI and its relationship with GDPpc. The

ECI reflects a gradient that captures the maximal amount of variation in the data

(around 3.5%), which in turn can be intepreted as a one-dimensional embedding of

the country-country similarity network. In particular, ECI is a measure of similarity

rather than ‘complexity’ (Mealy et al., 2019). The fact that ECI is associated with

5The data on GDPpc in 2016 is given in PPP constant 2017 international dollars, and taken
from the World Bank databank https://databank.worldbank.org.

https://databank.worldbank.org
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the GDPpc thus shows that countries with similar export baskets have also similar

wealth.

Finally, we explore what can be learned from the higher order CA axes of the country-

product matrix. Even though the eigengap heuristic does not suggest clearly delin-

eated clusters, the higher order axes may still distinguish (groups of) countries that

differ from the other countries in a particular way. To explore this possibility, we

attempted to identify clusters in a high-dimensional embedding. We thus ran a k-

Means algorithm on the 20-dimensional embedding of the country similarity matrix.

The number of dimensions was motivated by the slight gap between the twenty-first

and twenty-second eigenvalues. Choosing K = 3 (again motivated by a small gap in

the spectrum) leads to the identification of the three clusters shown in color in Figure

4.3 (C and D) (see Appendix C for an overview of the clusters). The clusters clearly

separate: i) countries who’s exports consist almost entirely out of oil, ii) a number of

small island economies, and iii) the rest of the world. The positions of the countries

in each cluster in Figure 4.3 D suggest that the obtained clustering is able to explain

some of the deviations from the relation between GDPpc and the ECI, attributing it

to the presence of natural resources or to their unique geographical locations. In this

sense, identifying clusters defined by higher order axes may provide a way to remove

outliers in the data and reduce noise in the data before identifying a gradient. Recom-

puting the CA axes within the rest-of-the world cluster yields a noticeable increase

of the R2 for the linear relation between GDPpc and the first CA axis up to 0.65 .

The insight that ECI is equal to the first axis of CA questions its interpretation as

a measure of complexity. Rather, analyses involving the ECI can be seen as a form

of gradient analysis, revealing an underlying latent variable that is associated with

GDPpc. The different interpretations presented in this paper may shed new light on

the empirical results found within the literature on economic complexity, for example

by providing an interpretation for the higher order axes and their eigenvalues. Fur-

thermore, the observation that the complexity indices are a one-dimensional embed-

ding of a similarity network unifies the complexity indices with the so-called ‘product

space’ that is well known in the economic complexity literature (Hidalgo et al., 2007).

That is, the product complexity index is simply a one-dimensional representation of

the product space.
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The literature on CA provides a rich set of tools (Greenacre, 2007) that can be used in

the context of economic complexity, including analysis of the contribution of countries

or products to the position of each axis (‘which countries are the main contributors

to ECI?’), measures for how well specific countries or products are represented by

an axis (‘which countries are well represented by ECI’?), and ways to visualize addi-

tional points in the embedding space (‘how will a country move along the complexity

rankings when adding some particular products?’).

4.6 Discussion

In this paper, we provided an overview of different mathematical derivations that

all lead to results that are equivalent to Correspondence analysis (CA). We showed

that CA is closely related to the spectral analysis of the similarity network inferred

from the bipartite network defined by a contingency table, providing a framework in

which ordination, clustering and dimensionality reduction are three sides of the same

coin. Better understanding of these relations and of their interpretation may guide

practitioners in the application of CA to different datasets.

When performing CA, the eigenvalues corresponding to each axis are indicative of the

correlation between row and column scores, as well as the variation explained by each

CA axis. Axes corresponding to large eigenvalues may represent either a gradient

underlying the data, or hold information on clustering structure in the similarity

network. The distribution of the eigenvector components within an axis are suggestive

of the appropriate interpretation: a continuous distribution suggests that an axis

reflects a gradient underlying the data, whereas eigenvectors with a limited number

of approximately constant values suggest that an axis holds information about the

clusters in the similarity network.

The full spectrum of eigenvalues further provides information about the structure of

the data. A spectrum containing multiple eigenvalues close to one, followed by a

clear drop in the eigenvalues, may be indicative of a similarity network that contains

multiple (weakly connected) clusters. In such a case, we propose to cluster the data

prior to performing gradient analysis, and analyze potential gradients within each

cluster separately. In Section 4.5.1 this was done using the eigengap heuristic. In Sec-

tion 4.5.2, we manually determined the number of clusters based on the spectrum of
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eigenvalues, and showed that removing clusters that are weakly connected in the sim-

ilarity network along some higher order axis may lead to clearer gradients, effectively

removing outliers.

However, a formal way of distinguishing axes that represent a continuous gradient

from axes that describe clustering structure is still lacking. This problem is very

closely related to the question of how to determine the number of clusters in the spec-

tral clustering approach. Although use of the eigengap heuristic is common practice,

it is based on intuition, and formalizing approaches like the eigengap heuristic is an

ongoing topic of research (Tibshirani et al., 2001). Another possible way forward is to

take into account the distribution of values within the axes in addition to the eigenval-

ues, to determine whether an axis represents a continuous gradient or approximately

discrete value indicating clustering structure (Zelnik-Manor and Perona, 2004).

Furthermore, we note that the usage of k-Means as a way to cluster the spectral

representation of a network might be problematic, as it determines cluster labels

by assuming spherical cluster shapes. As there is no underlying basis for assuming

any cluster shape given the abstract networks derived from ecological or economic

data, further research is needed to understand the performance of other clustering

algorithms in the context of CA. In particular, density-based clustering techniques

such as DBSCAN (Ester et al., 1996), which emphasize the similarity between nodes

instead of partitioning a network, might be a promising step forward. In addition,

exploring other dimensionality reduction techniques to obtain simplified representa-

tions of a data set different from the spectral embedding discussed here might be a

promising way forward in the applications discussed in this paper.

It must be noticed also that within the framework of CA however, there is no clear-cut

distinction between clustering and gradient analysis. As we have shown, both clus-

tering and ordination can be seen as a way of identifying latent variables underlying

the data. Especially in noisy data, a CA axis may be somewhere at an intermediate

point between identifying clusters and representing a gradient. A principled way of

distinguishing the different functions of CA axes would require an underlying theory

or null model specific to the research question at hand, against which the results can

be compared in order to select relevant axes. Lacking such models, the distinction

between the two remains partly a matter of heuristics.
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Figure 4.3: Results of applying CA to the country-product matrix. Panel (A):
The country-product matrix, where column and rows are sorted by the principal
CA axes, known as te ECI and PCI. The matrix shows a triangular structure.
Panel (B): Sorted eigenspectrum for the country-product matrix. The slow decay
of the spectrum and lack of clear gaps in the spectrum suggests a high-dimensional,
homogeneous dataset. Panel (C): Biplot showing the first and second CA axis for
countries. The first CA axis (horizontal) is known as the ECI, and explains 3.5%
for the total variation. The second axis explains 2.5% of total variation and seems
to distinguish countries specializing in garments and textiles from other countries.
Colors indicate the obtained clusters when running k-Means with K = 3 on the
embedding spanned by the first 20 CA axes. Panel (D): The relation between the
first CA axis (ECI) and GDP per capita. The regression line of GDPpc against
ECI and the corresponding R2 are also shown. Colors again indicate the obtained

clusters.





Chapter 5

An information-theoretic approach to

the analysis of location and co-location

patterns∗

Abstract

We propose a statistical framework to quantify location and co-location associations

of economic activities using information-theoretic measures. We relate the resulting

measures to existing measures of revealed comparative advantage, localization and

specialization and show that they can all be seen as part of the same framework.

Using a Bayesian approach, we provide measures of uncertainty of the estimated

quantities. Furthermore, the information-theoretic approach can be readily extended

to move beyond pairwise co-locations and instead capture multivariate associations.

To illustrate the framework, we apply our measures to the co-location of occupations

in US cities, showing the associations between different groups of occupations.

∗This chapter is available online as a working paper as: van Dam, A., Gomez-Lievano, A., Neffke,
F., and Frenken, K. An information-theoretic approach to the analysis of location and co-location
patterns. arxiv.org/abs/2004.10548, 2020.
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5.1 Introduction

The recognition of differential specialization patterns lies at the heart of economics

since the works of Adam Smith and David Ricardo. Economists studying task as-

signments (Roy, 1951; Sattinger, 1993), urban economies (Ellison and Glaeser, 1997;

Ellison et al., 2010), or international trade (Balassa, 1965; Krugman, 1991b), all stress

the fact that different economic entities specialize in different activities. Scholars in

each of these fields have relied on indices that quantify, for example, the revealed

comparative advantage of exports, the specialization of regions, and the extent of lo-

calization and (co-)agglomeration of industries. However, these indices are often used

ad hoc and lack a clear statistical foundation. In this paper, we propose a statistical

framework from which such measures can be derived. Although the methodology

generalizes immediately to other contexts, to fix ideas, we focus on economic geogra-

phy and derive measures of (co-)location, specialization and localization from a single

statistical framework, revealing the internal connections between these concepts.

We treat (co-)location as the realizations of two categorical random variables: the

location and the type of an economic activity. We use the Pointwise Mutual Informa-

tion (PMI) to express the association between a location and the type of an activity

in terms of the information that the type of a unit of activity (e.g. a person’s oc-

cupation) gives about the unit’s location (e.g. the city where that person works).

Next, we show how the PMI can be used to quantify the association between two

activity types in terms of how much information observing a particular activity type

in a location gives about observing another activity type in the same location. That

is: if we observe a pair of people from the same city, how much information does the

occupation of one of them provide about the likely occupation of the other?

The information-theoretic basis that underlies the PMI ensures that the framework is

explicit about the null models, priors and data-generating processes we assume. This

puts the measurement of location and co-location on a rigorous statistical footing.

Furthermore, we show how the PMI can be estimated from data on the counts of

activities across locations. To do so, we use a Bayesian framework that assumes that

the data on the presence of units of economic activities across locations are gener-

ated from a multinomial distribution. This Bayesian estimation framework resolves

some well-known measurement issues and provides a measure of uncertainty for the

estimated quantities.
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Metrics based on Information Theory such as the PMI have found various applica-

tions in economics (Theil, 1967), and are uniquely derived from axioms about how

information can be gained from probability distributions (Shannon, 2001; Cover and

Thomas, 2005). One of their key properties is that they can be aggregated and

decomposed to form well-defined measures that have an interpretation in terms of in-

formation, by taking expectations. This allows the use of the PMI as a building block

of information-theoretic measures that describe properties at the location, activity,

or even system level.

We show how the resulting measures can be related to well-known existing indices of

localization and specialization. In particular, at the level of location-activity pairs – as

exemplified in country-product or city-industry data – our metric of association, the

PMI, is conceptually similar to the logarithm of the widely used index of revealed com-

parative advantage (RCA) (Balassa, 1965).1 This provides an information-theoretic

motivation for considering the logarithm of the RCA index, which has the practical

advantage that it overcomes the RCA index’s problem of distributional skew. More-

over, the Bayesian estimation procedure ensures that the measure always attains finite

values, and suggests a natural measure of uncertainty for the estimates.

Building on the location-activity PMI, we can furthermore derive a measure for the

localization of economic activities, that is, for the degree to which economic activities

are spatially constrained. We do so by calculating an activity’s expected PMI (i.e.,

the expected association of the activity with a given location) over all locations.

This yields the Kullback-Leibler divergence, which has been proposed as a measure

of localization before (Mori et al., 2005). Likewise, we can calculate the expected

location-activity PMI of a particular location across all activity types. This average

association of a location with given activities provides a measure of specialization that

is conceptually similar to Krugman’s specialization index (Krugman, 1991b).

Finally, we apply the PMI to the distribution of co-located pairs of economic activity,

which gives the probabilities that pairs of activities are located in the same geographic

unit. This provides a measure of spatial association between economic activities.

Such measures may reveal positive or negative co-location forces, and are conceptually

similar to widely used (co-)agglomeration measures (Ellison and Glaeser, 1997; Ellison

1The RCA is also known as the Location Quotient in the regional science literature (Isard, 1960).
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et al., 2010). Here we derive such measures from first principles, which clarifies their

underlying assumptions and statistical properties.

As in the case of location-activity pairs, marginalizing the PMIs of co-located activity-

activity pairs yields meaningful aggregate quantities. Accordingly, the expected spa-

tial association of an activity with all other activities gives a measure of the spatial

‘co-dependence’ of an activity. This measure reveals how ‘picky’ activities are in their

tendencies to co-locate with other activities. This spatial co-dependence is low for ac-

tivities that locate independently of other activities, whereas co-dependence is high for

activities that are preferentially found in the presence of specific other activities. As

an empirical illustration, we calculate the associations between pairs of occupations

groups, along with the aggregate spatial co-dependence of each occupation group,

using US city-occupation employment data. The associations between occupation

groups reveal three clear clusters. The first consists of occupations related to knowl-

edge intensive services, the second to occupations related to non-traded services and

the third to occupations related to manufacturing.

5.2 Information-theoretic measures of (co-)location

5.2.1 Notation

Consider data on the location of economic activities in the form of an Nc×Ni dimen-

sional matrix Q, where Nc and Ni are the number of locations and economic activities

in the classifications of the data, respectively. We call Q the ‘prevalence matrix’ as

its entries qci denote the number of occurrences of activity i in location c. This can

be for example the number of people employed in a particular occupation i in a city

c, the number of establishments of industry i in region c or the number of dollars

of product i exported by country c. The total amount of activity of type i and the

total activity in location c are given by the row sums qc =
∑

i qci and column sums

qi =
∑

c qci, respectively. Total economic activity is given by q =
∑

c,i qci.

We will consider the prevalence matrix Q to be the outcome of a sampling process

from the underlying distribution p with probabilities

pci = P (X = i, C = c) (5.1)
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that a randomly sampled unit (i.e. an employee, an establishment, a dollar) is part

of activity i in location c. Here, the categorical random variables X and C denote

the activity and location of a randomly sampled unit, respectively. Their marginal

probabilities are given by pi =
∑

c pci = P (X = i) and pc =
∑

i pci = P (C = c).

The location-activity probabilities pci will be the main object of interest as they hold

information on the associations between locations and activities (Section 5.2.2). From

these probabilities it is also possible to construct the probabilities pij that a pair of

economic activities i and j are present in the same location, which is used to analyze

the co-location association (Section 5.2.3). Both pci and pij are estimated from Q

using a Bayesian framework as described in Section 5.3.

5.2.2 Location association

As noted, we will use the dependencies hidden in the joint probabilities pci to mea-

sure the association between an activity and a location. Information theory provides

a framework in which these associations can be quantified explicitly in units of in-

formation. The association between the two events X = i and C = c is given by

their pointwise mutual information PMI(pci) (Fano, 1961). Intuitively, it answers

the question ‘how much information does observing c provide about the presence of

i?’ PMI has been used in several fields, including economics (Theil, 1967), adminis-

trative sciences (Theil, 1972), and linguistics (Church and Hanks, 1989). Here, we use

it in the context of economic geography to measure the association between economic

activities and locations (location association) and within pairs of economic activities

(co-location association).

The PMI measures the association between two outcomes by assessing the information

content of the realization (C = c,X = i) given the information content in case of a

null model in which c and i are independent, i.e. pci = pcpi. This is given by the
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logarithm of ratio of both probabilities:2

PMI(pci) = log

(
pci
pcpi

)
. (5.2)

PMI(pci) will be positive when it is more likely to observe c and i together than

expected under independence, i.e. pci > pcpi, whereas PMI(pci) takes negative values

when c and i are less likely to occur together than expected under the null model of

independence, i.e. pci < pcpi. PMI(pci) = 0 if and only if pci = pcpi, indicating that

c and i are independent (i.e., the incidence of an activity is independent of the place).

The maximum value of PMI(pci) is given by max{log
(

1
pi

)
, log

(
1
pc

)
} = log

(
1
pci

)
,

which is attained either when activity i always occurs in location c, or when activity

i is the only activity in location c.3 PMI(pci) is not bounded from below, as it tends

to −∞ as the joint probability pci tends to 0.

5.2.3 Co-location association

We can also use this information-theoretic framework to obtain a measure of associ-

ation between pairs of economic activities. To do so, we expand (5.1) to include two

units of activity:

pcij = P (X1 = i,X2 = j, C = c), (5.3)

where X1 and X2 describe randomly sampled units of activity from the same location

C.

The measure of co-location will come from integrating across places to get the joint

distribution of economic activities

pij = P (X1 = i,X2 = j). (5.4)

2In information theory, the information content or ’surprise’ of an outcome i is defined as log( 1
pi

).

Observing an event that occurs with small probability leads to a high information content or surprise,
whereas highly likely events contain little information. The difference between the information
contents of pci and pcpi gives a measure of the surprise of observing pci while expecting pcpi.
Depending on the base of the logarithm, PMI measures association in units of bits (base 2) or nats
(natural logarithm).

3Notice that then pci = pi or pci = pc respectively.
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The probability pij thus represents the joint probability that two units of economic

activity that are randomly picked from the same (random) location are of type i and

j. It can be obtained by exploiting the fact that, conditional on knowing the location

c, the occurrence of types i and j are independent, i.e. pij|c = pi|cpj|c, since the full

distribution of economic activities for every location is known. By the law of total

probability, one then obtains

pij =
∑
c

pi|cpj|cpc. (5.5)

This defines the probability that two randomly sampled units from the same (random)

location have activity types i and j.

As with the location-activity associations, the association between activity types can

be quantified with the PMI. The association between two activities is then defined as

PMI(pij) = log

(
pij
pipj

)
, (5.6)

where pipj is the null model that describes a situation where i and j are distributed

independently of each other. What PMI(pij) captures is that the presence of some

activities may increase or decrease the probability that other activities are present

in the same location. Hence, observing a particular type of economic activity holds

information about the likelihood of observing other types of activities in the same

location. Economic activities that are more likely to occur together than expected

under independence will have a positive association, whereas activities that are less

likely to occur together than expected under independence will have a negative as-

sociation.4 The PMI(pij) is inherently symmetric, since pij = pji. Computing this

measure for all pairs of activity types thus leads to a symmetric, square matrix that

has as entries the co-location association PMI(pij).

The diagonal entries of this matrix hold ‘self-associations’ PMI(pii). Self-association

is high when observing an activity of type i in a particular region increases the like-

lihood that a second randomly sampled unit in that location is also of type i. This

4Another way of seeing this, is by noting that PMI(pij) is positive when observing type i
increases the probability of observing type j when sampling units of activity from the same location,
i.e. pj|i > pj . Likewise, negative associations indicate that conditional on observing i, the probability
of sampling a unit of activity j in the same location decreases.
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is the case when the probability of observing i is above average in a few locations,

and below average in others. The self-association can thus be interpreted as a mea-

sure of geographical concentration. Note that the self-association is always positive,

i.e. PMI(pii) ≥ 0, since observing a unit of activity of type i can never lower the

probability of finding another unit of activity of type i (we sample with replacement).

The matrix of co-location associations thus provides a joint estimate of geographic

concentration and co-location.

5.3 Bayesian estimation

In order to compute the quantities above, an estimate of the probabilities pci is needed.

A straightforward way to estimate these probabilities is to consider the share of every

location-activity pair, corresponding to the maximum likelihood estimate p̂ci =
qci
q .

Here we estimate pci using a Bayesian framework, which has two major advantages

over the maximum likelihood approach. First, the Bayesian approach always returns

nonzero probability estimates, so that computing the PMI will always return finite

values. Second, the Bayesian framework yields a full posterior distribution for the

estimated probabilities as opposed to a point estimate. The posterior distribution

provides a natural description of the uncertainty in the estimated parameter values,

which can be used to construct a Bayesian error bar for the information-theoretic

quantities based on those estimates (Wolpert and Wolf, 1995).

Assuming that Q is generated by an independent sampling process, the probability

of its realization is given by a multinomial distribution

P (Q|p) = Γ(q + 1)∏
c,i Γ(qci + 1)

∏
c,i

pqcici ,

where p is the matrix containing probabilities pci,
∑

c,i pci = 1.

Applying Bayes’ rule, the posterior distribution for the matrix of probabilities p is

then given by

P (p|Q) ∝ P (Q|p)P (p),
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where P (p) represents the prior distribution. A conjugate prior for the multinomial

distribution is the Dirichlet distribution

P (p|α) ∼ Dir(α) =
Γ(α)∏

c,i Γ(αci)

∏
c,i

pαci−1
ci ,

where α =
∑

c,i αci. This gives the distribution of p given hyperparameter α. The

posterior distribution for p given the data Q and hyperparameter α is then given by

P (p|Q,α) ∼ Dir(Q+α) ∝
∏
ci

pqci+αci−1
ci .

The hyperparameter α can be interpreted as a matrix of ‘pseudocounts’, giving the

assumed number of observed units of activity for every c, i pair prior to seeing the data

Q. The total number of pseudocounts α determines the strength of the prior relative

to the data. An estimate for the parameters pci is then given by the expectation of

the marginals of the posterior distribution, so that

p̂ci = E[pci|Q,α] =
qci + αci

q + α
=
q̃ci
q̃
,

where we write q̃ci = qci+αci and q̃ = α+ q. When the pseudocounts αci are nonzero

for all c, i, then p̂ci > 0 will also be nonzero. This has the practical advantage that

it prevents difficulties when computing logarithms of the estimated probabilities, as

when calculating PMI(pci).
5

A measure for the uncertainty of the estimate p̂ci is given by the variance of the

marginals of the posterior distribution, leading to

Var[pci|Q,α] =
q̃ci(q̃ − q̃ci)

q̃2(q̃ + 1)

=
q̃ci/q̃(1− q̃ci/q̃)

q̃ + 1
.

Note that this implies that the variance is dependent on the granularity of the data

in Q. To see this, suppose we alter the units leading to a new matrix Q′ = kQ, so

5In the context of information retrieval in text analysis, adding the pseudocounts αci to categor-
ical data is known as ‘Laplace smoothing’ or ‘additive smoothing’ (Manning et al., 2008).
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that for large q

Var[pci|Q′,α] =
kq̃ci/kq̃(1− kq̃ci/kq̃)

kq̃ + 1

≈ 1

k
Var[pci|Q,α].

The variance thus decreases as the counts become more fine-grained. The reason is

that the data generating process is assumed to create the data at the level of the

counts, so that more-fine grained units represent more observations. The variance

of the estimates is thus directly related to the units in which the underlying data

generating process is assumed to generate the data.6 However, the variance is affected

by the granularity of the data in the same way across activities and locations, so that

the relative uncertainty of estimates p̂ci is independent of the units of Q.

One could use the estimate p̂ci = E[pci] directly to compute PMI(p̂ci) and PMI(p̂ij).

However, this will induce a systematic bias which comes from Jensen’s inequality

E[PMI(pci)] Q PMI(E[pci]) depending on whether PMI(pci) is concave or convex.7

One needs instead an estimate of PMI(pci), which in itself is a random variable

whose distribution is determined by the posterior distribution of pci. Thus, we use

the uncertainty for the estimates p̂ci to determine the uncertainty of estimates for

PMI(pci) and PMI(pij).

5.3.1 Estimation of the posterior mean and variance of PMI(pc,i)

Here, we approximate the mean and variance of the posterior distribution of PMI(pci),

which will serve as estimates of the posterior distribution of the location-activity asso-

ciation. Our approach is based on Wolpert and Wolf (1995) and Hutter and Zaffalon

(2005), in which the estimation of information-theoretic quantities using a Bayesian

approach is discussed in depth.

To obtain an approximation for the posterior distribution of PMI(pci), we compute

its Taylor expansion around the mean p̂ci. Writing ∆ci = pci − p̂ci, and noting the

6In the context of (co-)agglomeration of industries for example, the relevant unit of analysis is the
one at which location decisions are made, which could be be assumed to be the plant level, suggesting
an analysis of data containing the counts of plants of a specific industry for a given location.

7PMI(pci) is concave when ∂2PMI(pci)/∂p
2
ci = −1/p2ci + 1/p2c + 1/p2i < 0, and convex when

∂2PMI(pci)/∂p
2
ci > 0.
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fact that |∆ci| < 1, this gives

PMI(pci) = PMI(p̂ci) + ∆ci

(
1

p̂ci
− 1

p̂c
− 1

p̂i

)
+

∆2
ci

2

(
− 1

p̂2ci
+

1

p̂2c
+

1

p̂2i

)
+O(∆3

ci).

Note that E[∆ci] = 0 and thus E[∆2
ci] = Var[pci], where expectations are taken with

respect to the posterior distribution of pci. It follows that

E[PMI(pci)] ≈ PMI(p̂ci) +
Var[pci]

2

(
− 1

p̂2ci
+

1

p̂2c
+

1

p̂2i

)
. (5.7)

The second term accounts for systematic bias in the estimate of PMI(pci), in which

the sign of the factor multiplying the variance is indicative of whether PMI(pci) is

concave or convex, and thus determines whether the bias is positive or negative.

Using the Delta method, we then obtain for the variance of PMI(pci):

Var[PMI(pci)] ≈ Var[pci]
∂PMI(pci)

∂pci
|p̂ci

= Var[pci]

(
1

p̂ci
− 1

p̂c
− 1

p̂i

)2

. (5.8)

This is a measure for the uncertainty around the point estimate E[PMI(pci)]. In par-

ticular, it can be used to determine whether the estimate for PMI(pci) is significantly

nonzero, i.e. if there is a significant association between i and c.

5.3.2 Estimation of posterior mean and variance of PMI(pij)

Approximations of E[PMI(pij)] and Var[pij ] are obtained in a similar fashion, replac-

ing pci with pij in equations (5.7) and (5.8), although the computation of Var[pij ] is

more involved. Appendix A provides a discussion of how Var[pij ] is obtained. Ap-

pendix B provides comparisons to numerical simulations to justify the approximations

made.
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5.4 Location and co-location

5.4.1 Revealed Comparative Advantage

One of the most commonly used indices to study location patterns of economic ac-

tivities originates from the trade literature, where it is known as Balassa’s index of

Revealed Comparative Advantage (RCA) (Balassa, 1965). The RCA of a location-

activity pair is given by the ratio of the share of activity i within location c compared

to the share of activity i in the overall economy:

RCA(c, i) =
qci
qc
/
qi
q
. (5.9)

It compares the observed share of activity i within location c in the numerator to

the total share of i as given by the denominator. Since qi and qc are exchangeable

in (5.9), RCA(c, i) can be interpreted in two ways: as a measure of ‘localization’ of

activity i in location c, or as a measure of ‘specialization’ of location c in activity i.

The neutral value is given by RCA(c, i) = 1, where the share of activity i in location

c is equal to the total share of activity i over all locations.

A theoretical derivation of the RCA index is given by Kunimoto (1977), who uses a

probabilistic approach that comes close to the approach presented in this paper. Prop-

erties of the RCA and related indices have since been discussed extensively (Yeats,

1985; Ballance et al., 1987; Vollrath, 1991), some of which are problematic when ap-

plying the index in empirical analysis. One of the issues of the RCA index is that it

is heavily skewed and asymmetric around its neutral value. A possible solution that

has been presented is taking the logarithm of the index, making it symmetric around

a neutral value of 0 (Vollrath, 1991). This, however, leads to the problem that the

index becomes undefined in the cases where qci = 0, since the logarithm of zero is

undefined.

The approach presented in the current paper provides an information-theoretic deriva-

tion of the logarithm of the RCA index. Consider the maximum likelihood estimate
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for the multinomial probabilities p̂ci =
qci
q .8 We then have that

PMI(pci) = log

(
p̂ci
p̂cp̂i

)
= log

(
q̃ci
q̃c

/
q̃i
q̃

)
= log(RCA(c, i)),

showing that conceptually the PMI is equal to the logarithm of the RCA index.

Our approach stands therefore as a generalization of the RCA index. This shows that

there is an information-theoretic notion of association underlying the RCA. Seen in

this light, the practical problem of having to take the logarithm of zero when qci = 0

is in fact a problem related to miss-estimating pci. In our Bayesian approach, the

estimates of probabilities pci are always strictly positive.

5.4.2 Measures of localization

Many questions are better answered at more aggregate levels of analysis than the

level of location-activity pairs. Typical questions at these levels of aggregations rely

on quantifying which activities are most localized in space, or which locations are

most specialized in terms of their economic activities.

Localization of an activity can be defined as the degree of dissimilarity between the

activity’s own geographical distribution and the distribution of the population or of

total economic activity across all locations (Hoover, 1936; Mori et al., 2005). Highly

localized activities will be distributed across locations in a very different way than

what one would expect from locations’ sizes. Activities with a low degree of localiza-

tion will be distributed proportionally to the relative (population) size of locations.

This can be quantified by comparing how much, on average, the probability that a

unit of activity of type i is located in a location differs from the probability that any

unit of activity is located there.

8Note that here we write qci and not q̃ci = qci + αci, since the maximum likelihood estimate
uses directly the observed counts, without adding the pseudocounts that where a consequence of
incorporating a prior distribution of counts in the Bayesian estimate.
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Let pc|i = pci/pi be the probability that a unit of activity is located in c given that its

activity type is i, and recall that the probability that a unit of economic activity is

located in c regardless of its type is given by pc. Considering the average deviations

between pc|i and pc leads to a measure of localization that is given by

KL(pc|i|pc) =
∑
c

pc|i log(pc|i/pc)

=
∑
c

pc|iPMI(pci),

where we used that pc|i/pc = pci/pcpi. Here, KL denotes the Kullback-Leibler diver-

gence (Kullback and Leibler, 1951), and measures the deviation between the distri-

bution across all locations of a specific activity, given by probabilities pc|i, and the

overall distribution of locations, given by the probabilities pc. Hence, the proposed

information-theoretic framework naturally suggests a localization measure by aggre-

gating PMI(pci) to the activity level. The resulting metric can be interpreted as the

activity type’s expected locational dependence.

This measure has the exact same functional form as the measure of industrial localiza-

tion put forward by Mori et al. (2005), although the null model implicit in their metric

is based on a location’s area. That is, they take the probability pc to be proportional

to the area of that location as opposed to its population size.9 Here we show that

their measure can be retrieved as the expected PMI values of a particular industry.10

Ignoring differences in how these distributions are estimated, the functional of this

measure is equal to Epc|i [log(RCA(c, i))], showing that it can be understood as the

expected value of the logarithm of the RCA of an activity over all locations it occurs

in.

5.4.3 Measures of specialization

Similarly, the aggregate level of specialization of a location as a whole can be analyzed

by quantifying the difference of the distribution of activities within the location, pi|c,

9Furthermore, they obtain an error bar for this statistic based on a normal approximation. In
the Bayesian framework, an estimate for the standard deviation of the KL can be obtained in a
similar way as for the PMI, as shown in Appendix C.

10This holds regardless of the ’null model’ considered. Hence, one could follow Mori et al. (2005)
and use their area based null model to define a measure on the location-activity level that is analogous
to the RCA index.
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to the overall distribution of activities pi. Such a measure of specialization is obtained

by aggregating the PMI(pci) to the location level, thus considering the expected

association of the activity with particular locations, leading to

KL(pi|c|pi) =
∑
c

pi|cPMI(pci).

Again, this can be interpreted as the expected value of the logarithm of the RCA, but

now over industries within a given location: Epi|c [log(RCA(c, i))]. The measure is akin

to Krugman’s specialization index (Krugman, 1991b).11 However, in our framework,

the localization of activities and specialization of locations are essentially the same

measures, defined for different units of analysis.

5.4.4 Overall specialization

Aggregating even further, a measure for the overall specialization at the system level

can be obtained by taking the expectation over both locations and activities, leading

to the expected association of a location-activity pair, or equivalently as either the

expected localization of an activity or the expected specialization of a location. The

resulting quantity is known as the Mutual Information (MI) (Cover and Thomas,

2005) and quantifies the dependence between two random variables. In this case, it

measures the dependence between the random variables X and C, which describe the

type and location of a randomly sampled unit of activity. It is given by

MI(C,X) =
∑
c,i

pciPMI(pci) (5.10)

=
∑
i

piKL(pc|i|pc) (5.11)

=
∑
c

pcKL(pi|c|pi). (5.12)

When MI(C,X) = 0, the location of a randomly sampled unit is independent of its

activity type, which implies that all economic activity is distributed proportionally

to location size, or equivalently that every location has an identical distribution of

11The Krugman specialization index is given by K(c) =
∑

i |pi|c − pi|. Like KL(pc|i|pi), it
considers an ’average deviation’ of pi|c to pi, where the measure of deviation is taken to be the
absolute difference.
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unit of analysis measure formula
location-activity association PMI(pci)
activity localization KL(pc|i|pc) = Epc|i[PMI(pci)]
location specialization KL(pi|c|pi) = Epi|c[PMI(pci)]
system overall specialization MI(C,X) = Epci[PMI(pci)]

Table 5.1

activities. In this situation, there is no specialization in the system in the sense that

all locations are identical. The maximum value of MI(C,X) is reached when each

location has its own unique activity, so that each location is maximally specialized and

each activity is maximally localized. In the current context, the mutual information

is a system-level measure of overall specialization that can be used to compare across

different systems (e.g. comparing the degree of overall specialization across countries),

or to track the changes over time (e.g. comparing the degree of overall specialization

before and after the establishment of a trade union). Table 5.1 summarizes each of

the measures derived thus far and the relation between them.

5.5 Co-location

5.5.1 Co-location association

So far, we have studied the matrixQ, which summarizes location patterns of economic

activity. Our framework can however readily be extended to study more complex

patterns. Here we will discuss co-location patterns of pairs of activities, i.e., of the

dependencies between activities that are located in the same region. Such co-location

patterns have received increasing attention in studies on international trade (Hidalgo

et al., 2007) and urban economies (Ellison et al., 2010). In the latter field, authors

have used co-location patterns to test theories on Marshallian externalities (Marshall,

1920). In this literature, the co-agglomeration index of Ellison et al. (2010) has

become a de facto standard (Faggio et al., 2017; Diodato et al., 2018). Here, we show

how information theory can be used to derive an alternative measure based on the

co-location association, PMI(pij).

Before presenting our co-location metrics in detail, it is useful to first discuss how

Ellison et al. (2010) construct their co-agglomeration index. These authors present a
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location choice model for profit-maximizing plants (Ellison and Glaeser, 1997; Ellison

et al., 2010) in which the (combined) effects of natural advantage and spillovers be-

tween activity types determine co-agglomeration patterns. They propose the following

pairwise co-agglomeration index:12

γij =

∑
c(pc|i − pc)(pc|j − pc)

1−
∑

c p
2
c

. (5.13)

The co-agglomeration of all pairs can be collected in a matrix with entries γij , com-

pletely analogous to the PMI(pij) in Section 5.2.3. The diagonal entries γii contain

the agglomeration index of a single activity (Ellison and Glaeser, 1997), when neglect-

ing effects of the plant size distribution.13

Comparing the co-agglomeration index given in Eq. (5.13) to our co-location associ-

ation metric rewritten as

PMI(pij) = log

(∑
c pi|cpj|cpc
pipj

)
= log

(∑
c

(
pc|i
pc

)(
pc|j
pc

)
pc

)
.

clarifies the conceptual similarity between the two. Both capture how different ac-

tivities co-vary in space. In either case, the intensity of spatial co-location may be

generated by a location choice model akin to the one by Ellison and Glaeser (1997).

The difference lies, however, in the functional form used to measure the deviation

from the reference distribution. The co-location association compares probabilities

by taking ratios pi|c/pc, whereas the co-agglomeration index considers differences

12Note that, in our notation, activity shares qci
qi

and qc
q

are replaced by probabilities pc|i and pc.

This makes specific that we regard the former shares as maximum likelihood estimates of the latter
probabilities. For now, however, we leave the issue of estimating these probabilities open.

13Mori et al. (2005) show that the agglomeration index of (Ellison and Glaeser, 1997) can be

written as γi = aiGi − bi ≈
∑

c(pc|i−pc)
2

1−
∑

c p2c
. This approximation is valid when plants are reasonably

uniformly distributed, in which case the plant size effect is negligible. The plant size distribution
determines the size of the chunks in which the counts are generated in the data generating process.
Quantifying the dependencies that arise from such a data generating process is an interesting direction
for future research, but for now we focus on the simpler case in which information on the chunk sizes
(e.g. the plant size distribution) is unavailable. Further note that unlike Mori et al. (2005), we
compare the agglomeration index to the self-association PMI(pii) as opposed to the localization
KL(pc|i|pc).
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pi|c − pc. Furthermore, the co-location association weights each of the differences by

pc.

Although the co-agglomeration index is derived from an economic model, the mea-

sure of concentration that lies at its heart enters the derivation as an assumption.

Our framework provides a principled way to quantify these deviations, by leverag-

ing information theory. The advantage of such an approach is that it gives insight

into the underlying assumptions on the data generating process, the used reference

distribution14, and the estimation procedure with its corresponding uncertainties.

Furthermore, as before, our statistical framework allows constructing measures of co-

dependence at higher levels of aggregation, such as at the level of the activity or of

the economic system as a whole.

5.5.2 Co-dependence

As in Section 5.4.2, the co-location associations can be aggregated by taking the

expectation across all activities j, leading to a measure of the average association of

activity i with all other activities, given by

KL(pj|i|pj) =
∑
j

pj|iPMI(pij). (5.14)

We call this measure the co-dependence of a particular activity. It quantifies the

deviation of the distribution of activity types conditional on having observed activity

type i, pj|i, with respect to the unconditional distribution of probabilities pj . When

activity type i has, on average, strong associations with other activity types it co-

locates with, this deviation will be large. In other words, activity i ‘cares’ about the

type of activity it co-locates with. A low value ofKL(pj|i|pj) on the other hand implies

that the distribution of probabilities pj|i does not differ much from the distribution

of pj , meaning that activity i is uninformative for the type of activities it co-locates

with. This implies that activity i co-locates with the ’average’ distribution of activity

types, suggesting it is indifferent of the other activities in the same location.

14In fact, the literature is not entirely consistent in the choice of the reference distribution that
is used in the (co-)agglomeration indices. In some work the reference distribution is taken to be
the share of total employment in location c, which we denote by pc (Ellison and Glaeser, 1997,
1999; Faggio et al., 2017). In other work, the reference distribution is given by the average share
of employment in industry i in a location, given by p̂c|i = 1

Ni

∑
i pc|i (Ellison et al., 2010; Diodato

et al., 2018).
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unit of analysis measure formula
activity-activity co-location association PMI(pij)
activity-activity geographic concentration PMI(pii)
activity co-dependence KL(pj|i|pj) = Epj|i [PMI(pij)]
system overall co-dependence MI(X1, X2) = Epij

[PMI(pij)]

Table 5.2

Note that activities that are heavily concentrated geographically, have by definition

a high co-dependence, as PMI(pii) is part of the sum in (5.14). In that case, activity

of type i typically co-locates with other activity of type i.

5.5.3 Overall pairwise dependence

Taking the expectation of the co-dependence over all activity types, or equivalently

taking the expectation of the co-location association over all activity pairs leads to

the mutual information

MI(X1, X2) =
∑
i

piKL(pj|i|pj)

=
∑
ij

pijPMI(pij).

This is a measure of dependence between the random variables X1 and X2, which each

describe the activity type of a randomly sampled unit of activity, both sampled from

the same location (see (5.4)). The overall co-dependence is thus a system-level variable

that describes how much two units of activity are on average (spatially) associated.

This may, for instance, help understand how the overall strength of co-agglomeration

externalities differs across economies or changes over time. Table 5.2 gives a summary

of the measures that follow from analysis of the co-location distribution pij . Both

Tables 5.1 and 5.2 construct similar sets of measures. Both sets of measures take

averages across rows, columns, or both, of a matrix that summarizes associations

between two variables. However, whereas the measures in Table 5.1 are based on

the location-activity information of a matrix that collects elements PMI(pci), the

measures in Table 5.2 are based on the spatial co-location information collected in a

matrix with elements PMI(pij).
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5.6 Empirical example

As an example, we apply the PMI to show the co-location associations of occupation

groups in US employment data in 2016 provided by the Bureau of Labor Statistics.15

The data consists of a matrix Q that gives for every city c the number of employees

qci in a particular occupation group i. In this example, we choose a uniform prior,

setting αci = 1 for all c, i. This represents a single observation for every location-

activity pair. Since the total number of pseudocounts α = NrNc << q, the resulting

estimates will be determined much more by the data than by than the prior.

The inferred PMI(i, j) matrix is shown in Figure 5.1, showing the co-location associa-

tions between the occupation groups. The right hand side shows the co-dependence of

each occupation group with respect to all other groups, corresponding to the expected

value of a row in the PMI matrix. The error bars show one standard deviation in the

posterior distribution, as derived in Appendix C. Red indicates positive associations,

and blue negative ones.

The matrix delineates three clusters of occupations groups. The upper left block shows

a cluster of positively associated occupations that seem to be related to knowledge-

intensive services. The positive associations lead to a relatively high co-dependence for

these occupations, suggesting that the presence of these occupations depends largely

on which other occupations are present in the same city.

The lower right block of the matrix shows a smaller cluster of occupations related to

production, transportation and repair. These occupations have a negative association

with the knowledge-intensive occupations, and thus typically co-locate with a different

set of occupations. The ‘Production’ occupations group also has a high co-dependence,

which is mostly driven by a high self-association.

The ’Farming, fishing and forestry’ group is highly isolated, with mostly negative

associations with other groups. The diagonal entry in the matrix shows the self-

association is very high, which is also reflected in a high co-dependence, which is

orders of magnitude larger than that of the other occupations (note the broken axis).

In the middle band of the matrix, occupation groups have a neutral association with

most other occupations, and have a low co-dependence. These groups seem to be

15These data are available at https://www.bls.gov/oes/special.requests/oesm16ma.zip

https://www.bls.gov/oes/special.requests/oesm16ma.zip
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Figure 5.1: Values of the estimated PMI(pij) for major occupations groups. Red
indicates positive associations, blue indicates negative associations, and grey indi-
cates neutral (PMI(ij) = 0) associations. All pairwise associations are between
−0.5 and 0.5 with the exception of the self-association of the ’Farming, fishing
and forestry’ occupations, which has a value of 3.15. The right hand side shows
the co-dependence KL(pj|i|pj) of every occupation group, given by the expected
value of a row of the PMI matrix. The error bars depict one standard deviation
of the posterior distribution as a measure of uncertainty for the estimate. Note the
broken axis, showing the extreme dependence of the ’Farming, fishing and forestry’

occupations.

related to non-traded services, including ’Protective service’, ’Food preparation and

serving’ and ’Personal care and service’. The low co-dependence implies that these

occupations are distributed approximately proportional to the total population, in-

dependently of which other occupation groups are present in a city.

5.7 Discussion

Information theory offers a unified way to estimate location and co-location associa-

tions using PMI. This yields measures that are similar to the well-known RCA index

Balassa (1965) and the co-agglomeration index (Ellison et al., 2010). However, our

metrics based in information theory have important advantages over these existing

measures.
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First, by deriving these metrics from a unified framework, we were able to show the

intrinsic connections between hitherto disparate measures. This is not only satisfying

from a methodological point of view, but allows exploring the relations between con-

cepts like revealed comparative advantage, specialization, localization, concentration

and co-location.

Second, the proposed measures are derived from a formal framework (information the-

ory) in a way that is explicit in the assumed data generating process, the chosen null

models and the estimation procedures. Different choices for these assumptions leads

to different results. However, the afforded transparency allows to construct arguments

against and in favor of such alternatives that take into consideration aspects of the

specific context at hand. Such a discussion can be framed in terms of an underlying

model, rather than of ad hoc specificities of a particular index. For instance, we used

a null model based on the assumption that neutral associations imply a distribution

of location-activity pairs that is proportional to the sizes of locations and activities

(Hoover, 1936). Alternative null models could follow from the assumption that activi-

ties are distributed proportional to the area of a location (Mori et al., 2005). Another

possibility is to determine the expected number of (co-)occurrences on the basis of

external factors that could drive the distribution of activities over locations, using for

instance a regression model (Neffke et al., 2011; Jara-Figueroa et al., 2018).

Third, the framework provides uncertainty estimates for all the information-theoretic

quantities involved. Most currently used indices are applied without any notion of

uncertainty. Using these uncertainties in practice however may present some chal-

lenges. For instance, the Bayesian estimation procedure leaves room for the selection

of different priors. Here, for reasons of practicality, we applied a simple uniform

prior. However, in some contexts, alternative priors may be natural choices. Many

of these priors would still result in Dirichlet priors, but with different uniform values

for αci to adapt the strength of the prior to the data at hand (Hutter and Zaffalon,

2005). In other contexts, non-uniform priors, such as the maximum entropy prior

(Wolpert and Wolf, 1995), may be preferable. Furthermore, the absolute magnitude

of the uncertainty will depend on the granularity of the data. This simply reiterates

that inferences should always be made with an underlying data generating process in

mind. In spite of this, we can still make statements about the relative magnitudes of

uncertainties, which are independent of the granularity of the data generating process.
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Fourth and finally, it is important to note that the information-theoretic approach can

be readily extended to move beyond the analysis of pairwise co-locations, as it also

allows analyzing multivariate associations. For instance, one could analyze associa-

tions between multiple variables (e.g. occupations, cities and industries) or multi-way

co-locations (such as the co-location of triplets instead of pairs of activities).16 Such

higher-order associations could be further analyzed using the information-theoretic

concepts of redundancy and synergy (Finn and Lizier, 2018). This may help disen-

tangle different types of associations, capturing different economic interactions. The

association between a pair of economic activities could be conditional on the presence

of (a specific combination of) other activities, or be driven by the mutual dependence

on a (combination of) other economic activities or on some external variable such as

the presence of a natural resource. Further development of this analytical framework

could reveal such higher-order relations among economic activities.

16The PMI between three economic activities i, j, k is given by PMI(pijk) = log
(

pijk
pipjpk

)
.





Chapter 6

Variety, complexity and economic de-

velopment∗

Abstract

We propose a combinatorial model of economic development. An economy develops

by acquiring new capabilities allowing for the production of an ever greater variety of

products with an increasing complexity. Taking into account that economies abandon

the least complex products as they develop over time, we show that variety first

increases and then decreases in the course of economic development. This is consistent

with the empirical pattern known as ’the hump’. Our results question the common

association of variety with complexity. We further discuss the implications of our

model for future research.
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6.1 Introduction

Our understanding of economic growth has long been guided by the notion of a

production function that specifies how inputs such as capital and labor translate into

the total output of an economy. Theoretical models of economic growth typically

abstracted from the exact products that an economy produces, describing economic

growth instead as an increase in aggregate output. Only recently, more attention has

been given to the specific products an economy produces, in particular, the products

that a country exports (Hausmann et al., 2007).

At the level of products, inputs can be considered to be strictly complementary (Kre-

mer, 1993; Hausmann and Hidalgo, 2011; Brummitt et al., 2017). This assumption

is based on the idea that the production of any product or service requires a partic-

ular combination of complementary inputs. Missing one of those inputs renders the

others useless in the production process. Inputs required to produce a product can

be many, and include physical resources and assets as well as knowledge, skills, and

even regulations. All these inputs are often referred to in an abstract and generic

sense as ’capabilities’ (Hidalgo and Hausmann, 2009; Hausmann and Hidalgo, 2011).

Products can then be represented as strings of capabilities. The ability of an economy

to produce products (including services) then depends on the number of capabilities

present in a country, as well as the ways in which capabilities complement each other.

Developing new products consists of recombining old and new inputs into configura-

tions that have economic value (Inoua, 2016). Since these new recombinations will

consist largely of capabilities that were already present, new products will be similar,

or ’related’, to existing ones. The process of development can thus be described as

one in which a country acquires one new capability at the time, and uses this new

capability in combination with existing capabilities to start producing new products.

This implies that economic development is a highly path-dependent process (Lall,

2000) characterized by a logic of related diversification (Hidalgo et al., 2007).

The acquisition of new capabilities does not only allow an economy to increase its vari-

ety of products, but also more complex products in terms of the number of capabilities

used in products. Combining more capabilities implies a more intricate production

process leading to products that are arguably more sophisticated than products com-

bining only few capabilities. This line of thinking is consistent with the notion of
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economic complexity, i.e., the idea that the most complex products are produced in

well-developed economics with many capabilities (Lall et al., 2006; Hausmann et al.,

2007; Hidalgo and Hausmann, 2009; Sutton and Trefler, 2016).

Two streams of research have followed from this combinatorial framework. First,

empirical studies have investigated the role of relatedness in economic development.

New products will be related to existing products in that new products are produced

using both existing and newly acquired capabilities. Following this reasoning, studies

have analysed the extent to which national and regional economies diversify over time

from existing products into related products (Hidalgo et al., 2007; Neffke et al., 2011).

Second, there have been several attempts to measure the average complexity of prod-

ucts produced by a country. The proposed measures build on methods that infer the

complexity of economies by iteratively weighing the variety of products produced in a

country and the ubiquity of these products in other countries. Such indirect measures

of complexity have been used to explain income differences across countries and their

growth rates over time (Hidalgo and Hausmann, 2009; Tacchella et al., 2012; Cristelli

et al., 2015).

Notwithstanding the explanatory power of aforementioned studies, the economic com-

plexity framework so far neglects a salient and fundamental feature of economic de-

velopment. While new products enter a country’s portfolio as it develops, already

existing products may also exit (Cadot et al., 2011). One reason that countries lose

products from their portfolio holds that wages, over time, become so high that a

country cannot remain competitive in certain products (Sutton and Trefler, 2016).

Products exiting the portfolio may thus be the products with low profit margins

domestically, which can be imported at lower prices from low-wage countries. In ad-

dition, some products may become obsolete once their functionality is substituted by

new products. Either way, understanding economic development will logically have

to take into account both products entering and products exiting at any moment in

time.

Empirically, it has been shown that the variety of products that an economy produces,

is positively related to the income per capita of its workers (Hesse, 2008; Herzer and

Nowak-Lehnmann, 2006; Al-Marhubi, 2000). This relationship, however, only holds

up to a certain level of income per capita, as countries with the highest income per

capita display lower variety. This inverted-U pattern between income per capita and
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variety is known as ’the hump’ (Imbs and Wacziarg, 2003; Cadot et al., 2011). In a

dynamic sense, then, the hump suggests that in the course of development, countries

first diversify and then specialize again. This empirical pattern is inconsistent with the

basic model of economic complexity, which would predict an ever-increasing variety

as more capabilities are acquired over time.

We argue that products exiting a country’s portfolio are likely to be the least com-

plex ones. Such simple products can be imported at lower prices from low-income

countries or substituted by new products entering a country’s portfolio. Below, we

extend the elementary combinatorial model underlying the framework of economic

complexity by imposing a constraint on the range of the complexity of products that

an economy can engage in. As a result, at a certain stage of development, countries

will start losing their least complex products. The introduction of this constraint

results in a theoretical model that i. is consistent with the principle of related diversi-

fication, ii. recovers the stylized fact of ’the hump’, and iii. predicts that the growth

in economic complexity of an economy accelerates as a function of newly acquired

capabilities. From the model, we further derive a number of research questions, in

particular, regarding the nature of products exiting countries’ portfolios and the vari-

ations across countries in terms of the timing of the hump. Finally, we will argue

that, as our model suggests that complexity continues to increase while variety starts

decreasing, empirical measures of complexity that rely on the measurement of variety

are theoretically unsupported.

6.2 A basic combinatorial model

Following Inoua (2016), we start with a simple model in which every product is rep-

resented as a string of capabilities. The product length is given by the number of

capabilities required to produce it and indicates a product’s sophistication or com-

plexity.

The capabilities present in an economy determine the set of products that an econ-

omy can produce. For simplicity, we will assume that every possible combination of

capabilities leads to a viable product (this assumption will be relaxed below where we

introduce a ’recipe book’). A country that has n capabilities can make
(
n
s

)
different

combinations of lengths s. The most complex, sophistcated product it can produce

is the one product that recombines all n capabilities. The total number of products
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that a country can make is given by the total number of strings one can make out of

n capabilities

d(n) =

n∑
s=0

(
n

s

)
= 2n.

The average complexity of products is given by the total length of all products divided

by the total number of products

s̄(n) =

∑n
s=0 s

(
n
s

)
2n

=
n

2
.

This leads to the following basic properties of the model:

1. The product variety is given by d(n) = 2n, so that log(d(n)) ∝ n.

2. The average product length in a country is given by s̄(n) = n
2 , so that s̄(n) ∝ n.

Combining both properties, it follows that the logarithm of product variety is linearly

proportional to the average product length:

log(d) ∝ s̄(n).

Further note that in this basic model both the logarithm of the product variety and

the average product length in an economy could provide a measure of economic com-

plexity, as they are both proportional to the number of capabilities present (Inoua,

2016). Furthermore, the exponential relation between product variety and the number

of capabilities reflects that a country with many capabilities can increase its variety

more by acquiring a new capability compared to a country with only few capabil-

ities, since the former has more capabilities with which the new capability can be

recombined than the latter (Hausmann and Hidalgo, 2011).

6.3 Product exit

We now extend the model to incorporate the possibility of an economy losing products.

We pose that as the average complexity of products in a country keeps on rising as

part of its economic development - and wages rise accordingly - a country cannot
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remain competitive in the simplest products. As a result, a country will see its

simplest products exit from its portfolio. This is modeled by imposing a product

range r, which determines the range of product lengths a country produces. A large

r indicates that a country makes both long and short products, essentially allowing

for a large heterogeneity of product lengths. A small r means that there is little room

for variation in product lengths, and all products produced will be of approximately

the same length. It follows that countries produce products in the range of length

n− r to n, as n is the maximum product length. The product variety given r is thus

given by

d(n, r) =

n∑
s=n−r

(
n

s

)
,

where
(
n
s

)
is the number of products of length s that can be made out of n capabilities.

The average product length given r is given by (see Appendix A.1)

s̄(n, r) = n
d(n− 1, r)

d(n, r)
.

As long as r ≥ n, the product range forms no constraint on the product lengths and no

products are lost. In particular, since d(n, r) = 2n for r > n, we retrieve d(n−1,r)
d(n,r) = 1

2

so that s̄(n) = n
2 as before. When r < n, we find that (see Appendix A.2)

1

2
<
d(n− 1, r)

d(n, r)
< 1.

Assuming that an economy acquires new capabilities one-by-one, the dynamics of

the model can then be represented as in Figure 6.1. Once products start exiting a

country’s portfolio, the rate at which the average product length increases in n goes

up as the number of capabilities increases, but never exceeds 1. At the same time,

the pace of diversification levels off as more products exit, but a country never loses

more products than it gains.
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Figure 6.1: The basic dynamics of the model. The blue dashed line shows the
case where no products are lost (r > n). The orange dots represent the case where
r = 5, so a country only makes products with a length in the range of n − 5 and
n. The top left panel shows the relation between product variety d(n, r) and the
number of capabilities. For the unconstrained case, there is an exponential relation
between the two, showing a linear relationship on a logarithmic scale. Imposing
a constraint of r = 5, the increase in variety slows down as n increases beyond 5.
The top right panel shows average product length s̄(n) as a function of the number
of capabilities. In the unconstrained case there is a linear relation, whereas the
constrained case shows an acceleration in the increase of average product length
once n > 5 and short products are lost. The bottom panel shows the resulting

relation between the product variety and average product length.

6.4 Full model

The assumption that any combination of capabilities leads to a viable product is

arguably too strong. More realistically, one may assume that only a fraction of com-

binations of capabilities result into meaningful products. This can be thought of as

imposing a ’recipe book’, which describes the combinations of capabilities that are

complementary in that they lead to viable products (Hausmann and Hidalgo, 2011;

Inoua, 2016; Fink et al., 2017).
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The basic model can be generalized by assuming that every capability is part of a

viable product with a given probability ρ (Inoua, 2016). Parameter ρ can thus be

thought of as reflecting the difficulty to innovation in the sense that not all combina-

tions of capabilities, or ’recipes’, lead to viable products. The lower the value of ρ, the

harder it is to find useful recipes. A combination of s capabilities has probability ρs

of representing a viable product of length s. Hence, it becomes increasingly unlikely

that a combination of capabilities leads to a viable product as more capabilities are

added, since ρs is decreasing in s when ρ < 1. For ρ = 1, we recover the basic model

described before.

Since there are
(
n
s

)
possible combinations of s components one can make from the

total of n components, and each combination of length s has probability ρs of being

viable, the expected number of products of length s a country with n components can

make is given by d(n, s) =
(
n
s

)
ρs. Summing this quantity over all product lengths s

gives the expected product variety for a given number of components n

d(n) =

n∑
s=0

(
n

s

)
ρs = (1 + ρ)n.

Since the share of products of length s in a country is given by
(ns)ρ

s

d(n) , the expected

product length given n components can be computed as (see Appendix A.3) (Inoua,

2016)

s̄(n) =

n∑
s=0

s

(
n
s

)
ρs

d(n)
=

ρ

1 + ρ
n. (6.1)

Note that, as in the basic model before, the expected product length increases linearly

with n, where the exact rate at which the average product length increases is solely

determined by the difficulty parameter ρ.

Incorporating the product range using parameter r gives

d(n, r) =

n∑
s=n−r

(
n

s

)
ρs,
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and the average product length given r is given by (see Appendix A.4)

s̄(n, r) = ρn
d(n− 1, r)

d(n, r)
.

In Appendix A.5 it is shown that for r < n, the average product length is bounded

from below by

ρ

1 + ρ
n < s̄(n, r).

Thus once a country starts losing products, the increase of average product length

with the number of capabilities starts accelerating. Furthermore, as long as variety

is increasing, the increase in average product length is bounded as s̄(n, r) < ρn.

The model with ρ < 1 shows an important qualitative difference with the basic model

with ρ = 1, in that for ρ < 1 a decrease in variety will occur, which happens when

more products exit than enter. The condition for a decline in product variety, i.e. for

’the hump’ to occur, is given by (see Appendix A.6)

d(n, r) <

(
n

r

)
ρn−r−1.

Once this condition is met, i.e. when a country starts losing more products than it

gains, the average product length grows with a rate larger than ρ

s̄(n, r) = ρn
d(n− 1, r)

d(n, r)
> ρn

The model thus predicts that a decrease in variety is accompanied by further accel-

eration of the increase of the average product length with the number of capabilities

as the shortest products are dropped.

Finally note that the increasing rate of the average product length is bounded from

above by n (see Appendix A.5):

s̄(n, r) < n,
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which describes the limiting case in which only the single longest product of length n

is produced.

In summary, the model exhibits the two ’stages of diversification’ as identified empir-

ically by Imbs and Wacziarg (2003), along with a transitory phase in between, known

as ’the hump’. An overview of the three stages and their conditions is given in Table

6.1. Figure 6.2 further shows the dynamics of the model for the example of ρ = 0.5. In

the model, the first stage of diversification is characterized by an exponential increase

in product variety. During this stage no products are lost since the allowed range of

product complexities exceeds the total number of capabilities. The average product

length increases linearly in n with a rate that is determined by parameter ρ. In the

transition stage, the simplest products are not produced anymore but the economy

is still diversifying, although the rate of diversification slows down. The increases in

average product length on the other hand accelerates as the shortest products exit a

country’s portfolio. In the final stage of diversification, then, more products are lost

than gained, so variety decreases as more capabilities are acquired. During this stage,

the rate of the average product length further increases and approaches the limiting

rate of 1.

stage condition variety avg. product length

developing r > n exponentially increasing s̄(n) = ρ
1+ρn

transitioning r < n, d(n, r) >
(
n
r

)
ρn−r−1 increasing with a decreasing rate ρ

1+ρn ≤ s̄(n) ≤ ρn.

developed r < n, d(n, r) <
(
n
r

)
ρn−r−1 decreasing ρn ≤ s̄(n) ≤ n.

Table 6.1: The conditions for the three stages in the model, with the correspond-
ing values of product variety and average product length.

A final feature of the model hold that the product range r determines at what number

of capabilities a country enters a new stage of diversification. A country with a large

product range r will start losing products at a higher number of capabilities than a

country with a small product range. Thus, a large r causes a country to go through the

hump later than a country with lower r. And, countries with relatively low product

range will experience the hump already at a low number of capabilities. The effect of

r on the onset of the hump is shown in Figure 6.3.
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Figure 6.2: The dynamics for the model including a ’recipe book’, where every
capability is used in a product with probability ρ = 0.5. The dashed blue line
represent the case where there is no constraint by the product range (r > n), and
the orange dots show the case where r = 30. The grey panel’s left border indicates
the point where r = n, and products start to be lost due to the restricted product
range. The right edge of the grey panel indicates the location of the ’hump’, i.e.
when more products exit than products enter. The top left panel shows how the
expected product variety increases and then decreases in n for the constrained case.
The top right panel shows the expected average product length, which shows an
increase in the rate during the transitioning period. The bottom panel shows the
relation between product variety and average product length for the three stages

of development.

6.5 Conclusions

Elaborating on the combinatorial framework of economic development proposed by

Hausmann and Hidalgo (2011) and Inoua (2016), we have modelled an economy as

developing over time by acquiring new capabilities one-by-one. Every new capability

is recombined with existing capabilities to allow for the production of an ever greater

variety of products with increasing complexity. As long as a country produces every

product it can produce given its capabilities, variety increases exponentially with the
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Figure 6.3: The dynamics of the model for different values of product range r.
The wider the product range (the larger r), the later the hump occurs.

number of capabilities present, while the average product complexity as measured

by the required number of capabilities, only increases linearly with the number of

capabilities.

Assuming that there is a maximum range of product complexities that can be made

in a country, one is able to recover ’the hump’ in variety, which refers to the stylized

fact that economies first increase and then decrease their product variety as they

develop (Imbs and Wacziarg, 2003; Cadot et al., 2011). The larger the range of

product complexities that an economy tolerates to be produced, the longer it takes

for the hump to occur. As anticipated by Imbs and Wacziarg (2003), the empirical

question that follows holds what country characteristics affect this range, so as to be

able to explain why some countries experience the hump earlier in their development

than others. For example, the size of a country may be of importance as larger

countries may keep on producing low-complexity products for much longer in their

low-wage regions compared to small countries where such low-wage regions may be

absent. Furthermore, institutional factors including the absence of a minimum wage
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(prolonging the production of simple products) and trade barriers (preventing the

import of simple products from low-wage countries) may further explain a delayed

occurrence of the hump.

One objection to the model presented here may regard the way the recipe book is

modelled. It was assumed that every capability has an equal chance to be part of

any product. This implies that capabilities can be recombined at random to pro-

duce viable products. Alternatively, and more realistically, one may choose to impose

structural features to the recipe book. For example, particular subsets of capabilities

may recombine more easily than other capabilities (’modularity’), and some capabili-

ties may be used more often than other capabilities (’prevalence’) (Fink et al., 2017).

For the present purposes of our model, a more refined notion of the recipe book is

however of minor relevance; for the hump to occur, it only matters whether a recipe

book shows a single-peaked distribution of product complexities because the lower

bound of the range of tolerated product complexities will then inevitably pass this

peak, as the number of capabilities increases.

6.6 Implications

Turning to the burgeoning literature on economic complexity in recent times, our

model bears an important implication. We have argued that the relationship be-

tween product variety (the number of products) and economic complexity (the av-

erage number of capabilities used in products) is highly dependent on the stage of

development. During an economy’s first stage of development, product variety and

economic complexity evolve in tandem with variety increasing exponentially and com-

plexity increasing linearly with the number of capabilities. Hence, one could derive

an economy’s unobservable economic complexity from the logarithm of the observ-

able product variety (Inoua, 2016). This relationship, however, changes in a transition

stage during which the increase in economic complexity accelerates while the increase

in product variety slows down, to eventually reach the final stage of diversification

during which product variety even starts declining after going through the hump. As

the relationship between variety and complexity depends on the stage of an econ-

omy’s development, empirical attempts to derive economic complexity from product

variety are not grounded theoretically by this model. More precisely, following our

model, such attempts may only be meaningful for developing countries being in the
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first stage of diversification. Note that our theoretical argument to fundamentally

distinguish between variety and complexity adds to a recent methodological contri-

bution by Mealy et al. (2019) who disentangle the alleged association between variety

and complexity in empirical studies measuring economic complexity.

One way ahead in empirical research, then, is to collect direct measurements of com-

plexity from observable characteristics of products. For example, and in line with

the notion that more complex products are those that require more capabilities to be

produced, one could measure a product’s complexity from the number of professions

involved in its production. In the context of the model we just presented, a direct

measure of complexity is important for two reasons. First, using such a measure, one

would be able to verify the assertion that economies drop the simplest products from

their portfolio, next to other exit determinants as already investigated (Neffke et al.,

2011; Essletzbichler, 2015). While there is some indirect evidence that countries do

so (Cadot et al., 2011), we should attempt to verify this empirically. Second, a direct

measure of complexity would also be required to further scrutinize the phenomenon

of the hump. While our model can replicate the hump as a stylized fact of economic

development over time, one is in need of a complexity measure to estimate the exact

shape of the hump as a relation between complexity and variety, as predicted by the

model.

The question that remains is how we should understand the relationship between eco-

nomic development (as understood in terms of stages of diversification) and economic

growth (as understood in terms of GDP per capita). The notion of capabilities as

complementary inputs to produce an output, still needs to be integrated in models of

economic growth. Some models that already built from the assumption that output

increases with a larger variety of inputs (Romer, 1987; Kremer, 1993), can serve as a

starting point for future modelling and empirical validation. In our model, the main

focus has been on showing that as countries lose the simplest products from their

portfolio, they will experience faster increases in the average complexity of the prod-

ucts that remain. One may be tempted, then, to associate the economic complexity

of an economy with GDP per capita if one assumes that the average complexity of

products in the economy is reflected in the average wage paid to labour. Following

this reasoning, our model would predict that the average wage has accelerated over

the past decades, while the opposite has been observed. Our model, however, does
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not assume that the average wage increases with the average complexity of prod-

ucts. Instead, we assume that with every new capability acquired, a country starts

producing more complex products and stops producing the simplest products. The

logic of the simplest products existing from a country’s portfolio, then, reflects that

the minimum wage (not the average wage) in a country keeps on increasing as new

capabilities are acquired. Further note that equating the average wage with average

complexity of products confuses the variety of products in an economy (extensive

margin) with their relative shares (intensive margin). To consider average wage as a

proxy for average product complexity would assume that all products have an equal

share in the economy as well as in the workforce.

More fundamentally, while economic development can be understood as stemming

from the acquisition of new capabilities, there is no reason to believe that new capa-

bilities arrive at a constant rate. For developing countries, the challenge to acquire

capabilities may be largely sought in the adoption of capabilities that already exist

in the world through channels like imitation, immigration, cooperation and learning.

By contrast, countries at the frontier of technological development have to rely on the

invention of new capabilities and finding the new combinations with the capabilities

they already have (Klinger and Lederman, 2004). Theoretically, then, it is conceiv-

able that the slowdown of growth in high-income countries over the past decades is

solely the result of a slowdown in the rate at which new capabilities are acquired and

recombined with existing capabilities. This links to observed changes in the return

to R&D, which arguably underlie to an important extent the acquisition of new ca-

pabilities. Indeed, evidence is mounting that the return on R&D has been declining

over the past decades, precisely because of the difficulty to recombine an ever larger

number of knowledge domains into new inventions (Jones, 2009; Gordon, 2016). Yet,

to fully appreciate this recent finding in the light of the framework of economic com-

plexity, we are in need of direct measures of capabilities to understand the evolution

of economic complexity across space and time.





Chapter 7

Vertical vs. horizontal policy in a ca-

pabilities model of economic devel-

opment∗

Abstract

Against the background of renewed interest in vertical support policies targeting spe-

cific industries or technologies, we investigate the effects of vertical vs. horizontal

policies in a combinatorial model of economic development. In the framework we

propose, an economy develops by acquiring new capabilities allowing for the produc-

tion of an ever greater variety of products with an increasing complexity. Innovation

policy can aim to expand the number of capabilities (vertical policy) or the ability

to combine capabilities (horizontal policy). The model shows that for low-income

countries, the two policies are complementary. For high-income countries that are

specialised in the most complex products, focusing on horizontal policy only yields

the highest returns. We reflect on the model results in the light of the contemporary

debate on vertical policy.

∗This chapter is available online as a working paper as: van Dam, A. and Frenken, K. Vertical
vs. Horizontal Policy in a Capabilities Model of Economic Development. arxiv.org/abs/2006.04624,
2020b.
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7.1 Introduction

Vertical policy is back on policy agendas globally (Rodrik, 2004; Cimoli et al., 2009;

Chang and Andreoni, 2020). Regarding low-income countries, vertical policies com-

prise a variety of instruments to allow a country to catch up with the global tech-

nology frontier. One popular strategy historically has been to temporarily protect

’infant industries’ from global competition as to build up knowledge capabilities and

institutions required for developing particular technologies or industries (Freeman,

1987; Chang, 2002). A more recent approach has become known as modern industrial

policy, and attempts to back entrepreneurs who discover new export industries with

complementary public investments (Rodrik, 2004). Evaluation studies confirmed the

positive role that vertical policies policies can play in fostering economic development,

though success depends on the exact policy design and contextual conditions (Lane,

2020). These insights, combined with the spectacular success of China fully embrac-

ing vertical policy, has put vertical policy high on the policy agenda as a strategy for

economic development for low-income countries.

Vertical policy is also experiencing popularity in high-income countries (Aiginger,

2007; Aghion et al., 2011). In the light of disappointing growth rates, the effective-

ness of horizontal policies is increasingly questioned (Mazzucato, 2011; Mazzucato

et al., 2015). In high-income contexts, vertical policy is called for to push the techno-

logical frontier itself rather than to catch-up with technologies already developed in

other countries. Vertical policies come in different versions and with different labels,

including industrial policy, policies for key enabling technologies, smart specialisation,

transformative innovation policy, and mission-oriented innovation policy. Though the

rationales and instruments tend to differ for each of these policies, but they share a

vertical orientation towards supporting only specific industries or technologies (Foray,

2019; Mazzucato, 2018; Bailey et al., 2019).

The renewed interest in vertical innovation policy and the proliferation of new policy

concepts has not been matched with new theoretical frameworks. The lack of theo-

rising is in itself not surprising given that innovation and development are complex

and elusive phenomena. What is more, economic growth models have long neglected

the role of the exact industries or technologies in an economy, and the process of

diversification leading to new industries and technologies. However, with the recent

advent of a new capability theory of economic growth as developed by Hausmann
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and others (Hausmann et al., 2007; Hidalgo and Hausmann, 2009; Hausmann and

Hidalgo, 2011; Inoua, 2016; Sutton and Trefler, 2016; van Dam and Frenken, 2020a),

a new framework has become available to theorise about policy and its effects on eco-

nomic development. This paper sets out to develop a policy framework based on the

capability theory of economic growth as to assess and compare the returns of vertical

and horizontal policies.

The capability theory starts from an explicit representation of specific outputs and the

inputs required to produce each output. Outputs are generally considered (export)

products and inputs as ’capabilities’, which include assets, knowledge and skills, but

also products-specific regulations and institutions (Lall, 2000; Hidalgo and Hausmann,

2009; Hausmann and Hidalgo, 2011). Economic development stems from diversifica-

tion into new products made possible by the acquisition of new capabilities. Once

acquired, firms start recombining the new capability with existing ones, thus increas-

ing both the variety of products (number of products) and complexity of products

(number of capabilities used in each product) in the economy. A vertical policy can

be thought of as any policy that targets the acquisition of a particular capability.

For example, an industrial policy focusing on aircraft production, would lead to the

acquisition of one or more new capabilities, which - combined with already existing

capabilities - enable a country to start producing aircraft. Once a new capability is

acquired, it can also be used in other recombinations of inputs allowing further di-

versification into new products. The practical challenge for any vertical policy, then,

is to target a capability that can be effectively recombined with existing capabilities

as to increase the variety and complexity of an economy (e.g., industrial policy. tar-

geted R&D investment, new teaching programs, selective Foreign Direct Investment,

selective migration policy, etc.).

The capability theory of economic development is, in its current form, still a limited

framework as it stands on two strong assumptions. First, it assumes that that coun-

tries produce every product that their capabilities base would enable them to produce.

This assumption is at odds with the common observation that high-income countries

lose industries to countries with lower wages over the product lifecycle (Vernon, 1966).

If one instead assumes that countries stop producing low-complexity products as the

average complexity of their products continues to increase with the acquisition of new

capabilities, it can be shown that, over time, the trend of increasing variety changes



148
Chapter 7 Vertical vs. horizontal policy in a capabilities model of economic

development

into a trend of decreasing variety, consistent with the empirical phenomenon of the

hump (Cadot et al., 2011; Sutton and Trefler, 2016; van Dam and Frenken, 2020a).

The second strong assumption in capability models is that countries would not face

any limitation in being able to recombine capabilities. Put differently, it views coun-

tries as having unlimited abilities to effectively coordinate any number of capabilities

required for a product. It follows from this assumption that the only objective for

a policy maker would be to acquire new capabilities. If so, the policy question boils

down to selecting which capabilities should be acquired and in what manner. Once

one would relax this assumption and would view countries as facing constraints in the

complexity of products that their firms are able to make, a more fundamental policy

question arises: how much effort should a country put on acquiring a specific new

capability vs. how much effort should it put on learning how to make more complex

products from the capabilities already present. It is the latter policy that we will con-

sider as a horizontal policy, which aims to increase the ability of a country to produce

more complex products. Here, horizontal policy refers all policies that improve the

coordination and integration of capabilities required for the production of products

(e.g., basic research, public research organizations, standardization institutes, pub-

lic consultation schemes, collaboration subsidies, generic social and managerial skills,

laws, and regulations), similar to what has been referred to as a country’s ’national

innovation system’ (Freeman, 1987; Lundvall, 1992).

It follows that policy for economic development can be understood as a combination

of two policies: a vertical policy focusing on acquiring a new capability providing a

country with opportunities to produce a larger variety of products, and a horizontal

policy focusing on improving a country’s ability to recombine capabilities in ever more

complex products. Given these two types of policies, the question then becomes how

to allocate their efforts on one or the other policy. Intuitively, one may expect the

two policies to be complementary: the combinatorial logic of products stemming from

combinations of capabilities implies that the ability to recombine capabilities is most

valuable for countries that already have many capabilities.

Building on previous combinatorial models of economic development (Hausmann and

Hidalgo, 2011; Inoua, 2016; van Dam and Frenken, 2020a), we propose a model in

which we conceive of economic development as the outcome of increases in the number

of capabilities residing in a country and of improvements in the ability to recombine
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capabilities in a country. National government decides, at each time step, whether to

increase the number of capabilities in a country or to improve the ability to recombine

capabilities. This decision depends on the expected increase in the average complex-

ity of products. This basic model set-up will explain the complementarity between

vertical and horizontal policy. We then turn to our extended model by introducing

a minimum wage that bounds the minimum complexity of products produced in a

country. As a country enters more complex products, it increases its minimum wage

and abandons its products with lowest complexity. This extension of the model leads

to three further contributions. First, the resulting model reproduces the stylised fact

of the hump. Second, it explains the growing importance of horizontal policies over

vertical policies as economies develop over time. Third, it can localise the shift in

optimal policy close to the hump, suggesting that high-income countries should focus

on horizontal rather than vertical policies.

7.2 The Model

Our understanding of economic development has long been guided by the notion of a

production function that specifies how inputs such as capital and labor translate into

the total output of an economy. More recently, models are more explicit about the

products produced in an economy. At the level of products, inputs can be considered

to be strictly complementary (Kremer, 1993; Hausmann and Hidalgo, 2011; Brummitt

et al., 2017). This assumption is based on the idea that the production of any product

or service requires a particular combination of complementary inputs.

Inputs required to produce a product have been referred to as ’capabilities’ (Hidalgo

and Hausmann, 2009; Hausmann and Hidalgo, 2011). Following this reasoning, the

ability of an economy to produce a product depends on the capabilities present in a

country. Developing new products consists of recombining old and new inputs into

configurations that have economic value (Inoua, 2016). It also follows that with the

acquisition of a new capability, the variety of products that a country can produce

grows in a non-linear fashion. An elementary model of this kind is that each possi-

ble combination of capabilities results in one unique product. The total number of

products that a country can make is then given by summing the number of possible

combinations of a given length that can be made out of n capabiltiies over all possible
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lengths s:

d(n) =
n∑

s=0

(
n

s

)
= 2n.

The average complexity of products is given by the total length of all products divided

by the total number of products:

s̄(n) =

∑n
s=0 s

(
n
s

)
2n

=
n

2
.

The assumption that any combination of capabilities leads to a viable product is ar-

guably too strong. Instead, one can safely assume that only some combinations of

capabilities lead to meaningful products. The set of combinations of capabilities re-

sulting in meaningful products has been referred to as a ’recipe book’, which describes

the combinations of capabilities that are complementary in that they lead to viable

products (Hausmann and Hidalgo, 2011; Inoua, 2016; Fink et al., 2017).

The model can be generalized by assuming that every capability is part of a viable

product with a given probability ρ (Inoua, 2016; van Dam and Frenken, 2020a). A

combination of s capabilities then has probability ρs of representing a viable product

of length s. Hence, it becomes increasingly unlikely that a combination of capabilities

leads to a viable product as more capabilities are added, since ρs is decreasing in s

when ρ < 1. For ρ = 1, we recover the initial simple model described above.

Since there are
(
n
s

)
possible combinations of s components one can make from the

total of n components, and each combination of length s has probability ρs of being

viable, the expected number of products of length s a country with n components can

make is given by d(n, s) =
(
n
s

)
ρs. Summing this quantity over all product lengths s

gives the expected variety of products that can be made with n components

d(n) =

n∑
s=0

(
n

s

)
ρs = (1 + ρ)n.

Since the share of products of length s in a country is given by
(ns)ρ

s

d(n) , the expected

average complexity given n components can be computed as (Inoua, 2016; van Dam
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and Frenken, 2020a)

s̄(n) =

n∑
s=0

s

(
n
s

)
ρs

d(n)
=

ρ

1 + ρ
n. (7.1)

Note that while variety increases exponentially with n, complexity increases only

linearly with n. The rate of increase in product complexity viz. economic growth is

solely determined by the difficulty parameter ρ.

7.3 Vertical vs. horizontal policy

The key assumption in the combinatorial model, albeit an implicit one, holds that

a country can recombine any number of capabilities. That is, the sole challenge for

a country is to acquire additional capabilities, leading to an increase in n, which

automatically translates into a stable growth path in the form of a linear increase in

average product complexity.

Dropping the assumption that countries can recombine any number of capabilities,

we introduce the parameter l referring to the maximum length of products that a

country is able to produce. The expected product variety and product complexity

are then given by

d(n, l) =

l∑
s=0

(
n

s

)
ρs

s̄(n, l) =

∑l
s=0 s

(
n
s

)
ρs

d(n, l)
,

respectively. Figure 7.1 shows how a constraint on the maximum complexity of prod-

ucts, as expressed by l, hampers economic development as product variety (left) grows

less than exponentially and average product complexity (right) reaches a ceiling con-

verging asymptotically to l with n approaching infinity.

A policy maker now has two options to foster economic development. First, (s)he can

increase the number of capabilities n, to which we refer as vertical policy. We model

the decision to increase the number of capabilities as a unit increase in n. The second

option is to improve the country’s ability to recombine capabilities, to which we refer
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Figure 7.1: Limits to coordination

to as horizontal policy. We model a decision to increase the ability to recombine

capabilities as a unit increase in l.

Note at this point that our model remains agnostic about the specific type of vertical

policy that is being employed. Rather, we model vertical policy as any policy that

leads to some new capability that has random complementarities with already existing

capabilities. In this sense, vertical policies are targeted only in the sense that they

lead to one new capability, but blind with regard to the exact complementarities that

can be exploited between the new capability and the already existing ones.

Starting with the initial condition in a country with n=1 and l=1, the policy maker

alternates between the two policies depending on which policy yields the highest

expected increase in average complexity. For vertical policy, the expected gain in

average product complexity from adding a capability is given by

∆s̄

∆n
= s̄(n+ 1, l)− s̄(n, l)

=

∑l
s=0 s

(
n+1
s

)
ρs

d(n+ 1, l)
−
∑l

s=0 s
(
n
s

)
ρs

d(n, l)
.
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For a horizontal policy, i.e. increasing l, the gain in average product complexity is

given by

∆s̄

∆l
= s̄(n, l + 1)− s̄(n, l)

=

∑l+1
s=0 s

(
n
s

)
ρs

d(n, l + 1)
−
∑l

s=0 s
(
n
s

)
ρs

d(n, l)
.

At any given stage in the development process (characterized by n and l), a poli-

cymaker chooses for vertical policy when ∆s̄
∆n > ∆s̄

∆l , and for horizontal policy when
∆s̄
∆l >

∆s̄
∆n .

Following this policy decision model, we simulated the evolution of product variety

and average product complexity over time (upper left and middle left panel in Figure

7.2) as well as the incidence rates of vertical policy and horizontal policy (lower

left panel in Figure 7.2). The two policies are clearly complementary as vertical

policies (increasing n) are alternated by horizontal policies (increasing l) as to leverage

the increased potential to make more complex products due to the recent rise in

capabilities. We further observe that the exact incidence rates of both policies are

sensitive to ρ (compare lower left panel of Figures 7.2, 7.3 and 7.4).

7.4 Full model

While our model explains the complementarity between vertical policy and horizontal

policy, it falls short in reproducing the the inverted-U shape relationship between

income per capita and product variety commonly known as ’the hump’. In terms of

economic development, this pattern indicates that countries first diversify and then,

at some level of income, start specialising again (Imbs and Wacziarg, 2003; Cadot

et al., 2011).

In our combinatorial framework, the hump can be understood as resulting from low-

complexity products exiting a country’s portfolio as a country continues to diversify

into high-complexity products (van Dam and Frenken, 2020a). Labour involved in

low-complexity products arguably has lower productivity, resulting in lower wages,

than labour involved in high-complexity products. Economic development leading

to products with higher complexity will thus push the highest wages in a country

upwards. Assuming minimum wages to increase with maximum wages, a country
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cannot remain competitive in low-complexity products and will lose these product to

low-wage countries.

Implementing such a mechanism of product exit in our model, we assume that coun-

tries only produce products with a complexity in the range of [l - r, l], where r > 0.

This range is based on the idea that given the minimum and maximum wage in a

country, it can only be competitive in a certain range of product complexities. It fol-

lows that once l > r, a country starts abandoning products with the lowest complexity

from its portfolio.

The second to fifth columns in Figure 7.2 show the results when we re-run the baseline

model (shown in the first column), but now including parameter r = 25, r = 20,

r = 10 and r = 1 respectively. Figures 7.3 and 7.4 show the same results, but now

for ρ = 0.25 and ρ = 0.75.

Figure 7.2: Model results for ρ = .5.
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Figure 7.3: Model results for ρ = .25.

Three observations can be made. First, the model reproduces the hump for non-trivial

values of r (r = 25, r = 20, r = 10), as can be seen in the first row of each figure.

This is consistent with the empirical phenomenon of the ’hump’ (Imbs and Wacziarg,

2003; Cadot et al., 2011), and reproduces the theoretical result of a similar capability

model by van Dam and Frenken (2020a).

The second observation to be made is that product complexity starts accelerating once

the variety of a country starts decreasing. Once l > r, a horizontal policy will then

push complexity upwards in two ways: the policy increases the maximum product

complexity that a country is able to produce (l) by one and it increases the minimum

product complexity that is being produced in a country (l − r) by one.

The final observation to be made holds that during the ’hump-period’, the optimal

policy is to focus solely on horizontal policies, which maximizes the increase in product

complexity. Such policy leverages the high number of capabilities already present
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Figure 7.4: Model results for ρ = ..75.

by improving a country’s ability to recombine its capabilities in ever more complex

products. This process continues until l = n, reflecting a most ’advanced’ economy

producing solely the most complex products within the range [n − r, n]. It is also

at this stage that vertical policy becomes relevant again next to horizontal policy, as

further progress can only be reached by alternating between adding a capability and

increasing maximum complexity. Importantly, the focus on horizontal policy in the

hump-period is robust for different values of parameters ρ and r. And, as the hump

phenomenon historically tends to occur only at a certain levels of income per capita,

our model can pinpoint the countries that, on theoretical grounds, could benefit most

from focusing on horizontal policies (the hump tends to occur at around 24,000 US

Dollar (PPP in constant 2000) (Cadot et al., 2013)).
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7.5 Discussion

Elaborating on the capabilities framework of economic development proposed by

Hausmann and Hidalgo (2011), Inoua (2016) and van Dam and Frenken (2020a),

we have modelled an economy as developing over time by acquiring new capabilities

one-by-one. Every new capability can, with some probability, be recombined with ex-

isting capabilities to allow for the production of an ever greater product variety and

product complexity. Different from previous models, however, we pose that countries

are potentially constrained in the level of product complexity they can handle, due

to an under-investment in basic research, managerial skills and an underdeveloped

’innovation system’.

It follows from our model that public policy can focus on two development strategies:

the addition of a new capability, which we refer to as vertical policy, or an improve-

ment of a country’s generic ability to recombine capabilities, which we refer to as

horizontal policy. The key result that we draw from the model is that for low-income

countries, vertical policy focused on capability acquisition is to be complemented with

horizontal policy so the increasing number of capabilities can be effectively recom-

bined in more valuable products. A second insight holds that once a country starts

abandoning low-complexity products from its portfolio, horizontal policy becomes

even more important. In this stage, a country loses competitiveness in relatively sim-

ple products, and needs to focus on mastering the coordination of the large number

of capabilities required for the production of more complex products.

Our model is flexible in that other policies can be simulated as well. Our choice

for vertical policy as the addition of one new capability and horizontal policy as the

unit improvement of maximum product complexity are ideal-types of vertical and

horizontal policies, respectively. In between the two policies, one can put hybrid

policies. Two such policies follow naturally from our model.

First, rather than viewing vertical policy as the addition of some random capability,

one could further specify a vertical policy as one that specifically targets a capability

that, following our model, can be recombined with already existing capabilities in

ways that would maximize the increase in average product complexity in the economy.

For low-income countries with few capabilities, the targeting of such capabilities may

be relatively easy to gauge as the increase in the number of new recombinations
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resulting from one new capability, is still rather limited. For high-income countries

with many capabilities, such a targeted vertical policy may be harder to determine.

Yet, the underlying idea of targeting capabilities that can be recombined in many and

complex ways clearly speaks to the logic of focusing on ’general purpose technologies’

(as the term suggests) (Bresnahan and Trajtenberg, 1995).

Second, rather than viewing horizontal policy as a unit increase in the maximum

product complexity that an economy can produce, one can imagine a more hybrid

policy in which a government seeks to improve the maximum product complexity

only in a certain broad sector (like healthcare, mobility, agriculture, etc.). In the

model, sectors would correspond to a subset of products that would fall within sectoral

boundaries. This would mean that horizontal policies can be made more specific to

coordination challenges in certain sectoral contexts rather than across the board.

Such policies remain horizontal in nature, but targeted in their scope. In particular,

a policy maker would wish to target those sectors for which many relevant capabilities

are already present, but which fail to leverage those capabilities in complex product

due to present limits to coordination failures. This type of policy has also been

discussed in the innovation policy literature under the heading of ’systemic policy’

(Smits and Kuhlmann, 2004; Wieczorek and Hekkert, 2012).

Finally, turning to the revival of industrial policy as a form of vertical policy, our

model provides both support and a critique to industrial policy as a means to spur

economic development. For low-income countries, there is a strong rationale for in-

dustrial policy as to increase their capability base. For such countries, focusing only

on improving the ability to coordinate many capabilities makes little sense as long

the number of capabilities present is still low. For high-income countries, however,

the rationale for modern vertical policy is less obvious. As such countries can only

compete on complex products with high value-added, the main challenge for these

countries is to improve the ability to produce more complex products from the large

set of capabilities that they already master. Here, horizontal policies alone could

be, theoretically, sufficient to continue economic development. The exact distinction

between policies for low-income countries and high-income countries could be deter-

mined empirically by looking at the inverted-U patterns between average income and

product variety (with maximal variety located around 24,000 US Dollar (PPP in con-

stant 2000) (Cadot et al., 2013)). As countries go through this ‘hump’, they should

start focusing more on horizontal policies.
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In this light, the plea for industrial policy in the context of high-income countries,

and equally for technology missions (Mazzucato, 2011; Mazzucato et al., 2015), needs

more grounding. If such missions are articulated in terms of the alleged need to master

a specific new technology domain or industry, our model would cast doubt about its

effects on growth. While a new technological capability could indeed be beneficial for

growth, it will generate little comparative advantage if actors within the innovation

system are not able to combine and integrate the new capability with the existing set

of capabilities, including complementary technologies, skills and institutions.





Chapter 8

Conclusions

8.1 Overview

The starting point of this thesis was a view of economic development based on capa-

bilities. This framework focuses on the heterogeneous and complementary nature of

economic inputs, and its consequences for economic development. This lead to three

central concepts: diversity, complexity and relatedness.

The thesis was built up in three parts. The first part consisted of Chapter 2, which

provided an overview of the current literature on related variety, economic complexity

and related diversification. It reviewed the role of diversity in each of these literatures,

as well as the methodologies used to capture it. It also proposed new methodology

to test the hypotheses that follow from the theory.

The second part of this thesis focused purely on methodology. Chapter 3 discussed

the measurement of diversity using Hill numbers, and proposed a new measure of

diversity that takes into account disparity. It measures diversity as the ’number of

compositional units’, given by the exponential of mutual information. It differs from

current measures of diversity in that it takes into account disparity based on overlap

of features of the whole set, as opposed to only the pairwise similarities. The chapter

also proposed a decomposition of diversity into its separate components of variety,

balance and disparity.

Chapter 4 reviewed the economic complexity indices (Hidalgo and Hausmann, 2009)

as a statistical technique called correspondence analysis (CA). It showed multiple ways

in which CA can be derived: as a way of ranking nodes in a bipartite network based

on some latent feature (known as ’ordination’ in Ecology), as a clustering algorithm

applied to the network of similarities between nodes, and as a graph embedding

technique, leading to a low-dimensional representation of the similarity network in a

161
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Euclidean space. Each of these derivations leads to a different interpretation of the

complexity indices, and also show how higher order eigenvectors and eigenvalues can

be interpreted. As of yet, these have not been considered in the literature on economic

complexity.

Chapter 5 introduced an information-theoretic framework for the measurement of re-

latedness between economic activities based on co-location. The framework provides

a formal approach of inferring associations between economic activities, and leads

to measures of (co-)location, specialization and localization. A key feature of the

framework is that it is able to relate a number of widely used indices used in the

literature that where hitherto considered unrelated. The framework allows for uncer-

tainty estimates for each of the measures, and can be readily extended to multivariate

analyses.

The third part of the thesis focused on capturing the capabilities framework in a

simple theoretical model, building on the work of Inoua (2016). Chapter 6 extended

the model to include product exit, so as to make it consistent with the stylized fact

known as ’the hump’. This was done by introducing a parameter that represents

the range of product complexities that a country can be competitive in, arguing that

countries with high wages cannot be competitive in low-complexity products.

Chapter 7 further extended the model by introducing a ’coordination constraint’,

arguing that the ability of a country to combine large number of capabilities into

complex products may be constrained. A policy maker can then choose to focus

efforts towards adding capabilities (vertical policy), or enabling the recombination of

larger numbers of capabilities in order to make more complex products (horizontal

policy). While for developing countries the two policies are complementary, the model

shows that developed countries may benefit more from horizontal policies than from

vertical policies.

8.2 A methodological framework - connecting the

dots

The methodological chapters in this thesis share a feature: the object of analysis is an

incidence matrix (or contingency table) describing the frequency or intensity of one

variable with respect to another. Such data can be thought of as a bipartite network,



Chapter 8 Conclusions 163

where the nodes in each layer represent possible values each variable can take. In the

capabilities framework, the main object of study is the incidence matrix of economies

and capabilities. However, since the capabilities are typically unobservable, they have

to be studied indirectly, either by assessing the incidence matrix of economies and the

activities that take place in them (for example the occupation-city matrix in Chapter

5 or the country-product matrix in Chapter 4), or the incidence matrix of economic

activities and some proxy for the capabilities they use (such as the industry-occupation

matrix in Chapter 3).

The study of incidence matrices is common in many fields of science: ecologists study

species occurrences in sites, biologists study the expression of genes in samples, lin-

guists study occurrences of words in documents, and psychologists study the presence

of attributes in people, to name a few. Thus although each of the methodological

chapters in this thesis can be read with a capabilities model in the back of the mind,

the methods discussed are applicable in a much broader context.

Naturally, much can be learned from other disciplines, as exemplified in this thesis:

the pointwise mutual information in Chapter 5 was already used in Linguistics, the

framework of Hill numbers in Chapter 3 originated in Ecology, and the different inter-

pretations of the complexity indices in Chapter 4 are drawn from work in statistics,

spectral graph theory and computer science.

Chapter 5 takes a probabilistic approach to the challenge of extracting information

from incidence matrices. This was done by assuming the data was generated by a

multinomial process, and estimating the underlying probabilities. These probabili-

ties can then be studied using tools from information theory, leading to measures

of association and dependence. This approach has some attractive properties: it

is consistent under aggregation, it naturally extends to multivariate analyses, and

provides uncertainty estimates for each quantity. In the following, I show how the

measures of diversity in Chapter 3 and correspondence analysis discussed in Chapter 4

relate to the information theoretic framework in Chapter 5, with the aim to reconcile

all methodologies within a single encompassing framework. Relating these concepts

methodologically may lead to a better understanding of the conceptual and empirical

relations between them.
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8.2.1 Diversity and entropy

Chapter 3 built on the framework of Hill numbers, which defines diversity as the

inverse of the average ’commonality’ of elements considered. If elements are on average

rare, the diversity is high. Interestingly, there is a close relation between Hill numbers

and information-theoretic measures. In particular, the Hill number (measuring the

effective number of species) is given by the exponential of the Shannon entropy of the

distribution of elements under consideration. Diversity and entropy are thus related

by a simple transformation. Despite this close relation, this does not mean that

entropy and diversity are the same. Their relation is described by Jost as:

”Diversity is not meaningless but has been confounded with the indices

used to measure it; a diversity index is not necessarily itself a ”diversity”.

The radius of a sphere is an index of its volume but is not itself the volume,

and using the radius in place of the volume in engineering equations will

give dangerously misleading results . . . Entropies are reasonable indices

of diversity, but this is no reason to claim that entropy is diversity.” (Jost,

2006, p. 363)

Both entropy and diversity are a function of the multinomial probabilities that can be

estimated for one variable from the incidence matrix. Although they can be inferred

from each other, they each describe a different property.

Chapter 3 shows that taking into account disparity (or relatedness) between the ele-

ments in terms of their overlap with some other variable (representing features) leads

to a measure of diversity in terms of the ’number of compositional units’, given by

the exponential of the mutual information of the two variables under consideration.

Note that this mutual information also appeared in 5 as a measure of overall spe-

cialization. Hence, the number of compositional units and overall specialization as

conceptualized in Chapter 5 are also related by a simple transformation. The number

of compositional units is exactly the exponential of the overall specialization. When

considering activities and their capabiltities, the more specialized each activity is (in

terms of the capabilities it uses), the higher the disparity, leading to a high number

of compositional units.
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Hence, the diversity measures following from Hill numbers relate directly to the pro-

posed information-theoretic framework, and suggest a relation between specialization

and diversity. It also follows that uncertainty estimates for the diversity measures,

although not given explicitely in Chapter 3, can be obtained through the Bayesian

approach taken in Chapter 5.

8.2.2 Correspondence analysis and associations

Chapter 4 discussed correspondence analysis (CA) and its relation to the economic

complexity index (ECI). Although the empirical example in the chapter focused on

the analysis of countries based on the products they export, note that it can equally

well be applied to study the products based on which countries exports them. This

connects the concept of the product space (the product-product similarity network)

to the product complexity index (PCI): the PCI is a one-dimensional representation

of (a slight variation of) the product space. Such interpretations show that the com-

plexity indices are not a measure of complexity or ’generalized diversity’ but rather of

similarity. Despite this deviation from the original narrative behind the complexity

indices, CA is a tool that was developed exactly for the analysis of aforementioned in-

cidence matrices, rendering it a useful tool for studying economic data in the context

of the capabilities framework.

How does CA fit into the information-theoretic framework? To see the connection,

note that CA consists of a particular way of decomposing a particular type of similarity

matrix. Analyzing the rows of an incidence matrix A using CA yields a weighted

eigenvector decomposition of the similarity matrix

S̃ = D−1
r AD−1

c ATD−1
r = V ΛV T ,

where V TDrV = I, and the columns of V contain the CA axes of the rows of A.

Here, Dr and Dc are diagonal matrices with the row and column sums of A on their

diagonal, respectively (see Chapter 4).1 The entries of the matrix S̃r can be rewritten

1Likewise, analyzing the column of A leads to

S̃ = D−1
c ATD−1

r AD−1
c = UΛUT ,

with UTDcU = I.
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using a notation in terms of probabilities (taking maximum likelihood estimates) as:

S̃ii′ =
1∑
j Aij

1∑
j Ai′j

∑
j

AijAi′j∑
iAij

= n
pii′

pipi′
,

where n =
∑

ij Aij , pij =
Aij

n , and pi =
∑

j Aij

n . Hence, CA can be seen as a

decomposition of the matrix containing the ratio’s of joint ‘co-location’ probabilities

pii′ and the marginal probabilities pi and pi′ .

Alternatively, the matrices U and V can be obtained directly from A through a

weighted singular value decomposition of the matrix (Greenacre, 1984)

Ã = D−1
r AD−1

c = V ΣUT ,

where Σ2 = Λ and V TDrV = UTDcU = I. Writing this in terms of probabilities

yields

Ãij =
Aij∑
j Aij

∑
i

Aij = n
pij
pipj

,

which holds exactly the index of revealed comparative advantage (RCA), up to a

factor n, discussed in Chapter 5.

CA can thus be retrieved as a decomposition of either the matrix containing the ratios

between co-location probabilities and their marginals, or directly as a decomposition

of the matrix containing the RCA’s. Note that these matrices are exactly the basis

of the association measures in Chapter 5: normalizing by n and taking the logarithm

yields

log(S̃r/n) = PMI(pii′)

log(Ã/n) = PMI(pij),

A direct connection to the information-theoretic framework can thus be made by

adapting the CA framework to include a logarithmic transformation of these matrices.

Performing CA with log-transformed matrices has been explored in (Greenacre and

Lewi, 2009; Greenacre, 2009) and is known as log-ratio analysis or spectral analy-

sis. These methods provide an opportunity to connect to the proposed measures of
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diversity and (co-)location. An added practical advantage of the logarithmic trans-

formation is that it may be able to deal with the skewed distributions typically found

in economic data, and that it yields results that are consistent under aggregation.

Adapting the CA framework to analyze data within the proposed probabilistic frame-

work may help in exploring and visualizing the structure underlying the associations

obtained through application of PMI.

Interestingly, in the definition of ECI and PCI, the incidence matrix A is taken to

be the matrix that is binarized based on the RCA index, which is justified theoreti-

cally through the concept of comparative advantage (Hidalgo and Hausmann, 2009).

Applying CA to this matrix takes the RCA of these binarized values yet again, so

that the complexity indices essentially analyze a matrix who’s RCA is taken twice.

It is unclear whether this double normalization has a deeper underlying theoretical

meaning. Other ways of pre-processing the data (e.g. by taking logarithms) may

lead to different results, and be better justified from a methodological point of view.

Thorough understanding of which similarities are being decomposed exactly may help

in exploring the empirical relation between economic performance and ECI that has

motivated much of the empirical literature. Up to now, only a very specific combina-

tion of pre-processing of the data, the type of similarities, and type of decomposition

have been considered in these type of analyses.

8.2.3 Multivariate dependencies

The proposed information-theoretic framework has a key advantage over currently

used methods: it provides a principled way to extend analyses to multiple variables,

for example moving from an incidence matrix describing two variables to a multi-way

table descrbing three variables. Information theory then allows to study the multi-

way associations between the three variables. This allows for instance analysis of data

containing the industry, occupation and educational profile of a group of individuals,

and quantifying associations between each variable. Section 3.4 contains a discussion

in this direction in the context of measuring diversity. The diversity measures then

allow to assess the diversity of industries taking into account the disparity in terms

of occupations they employ, the educational profiles they employ, or both.
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A special case of these multivariate extensions emerges when dealing with different

levels of aggregation, such as within hierarchical classifications or along different ge-

ographical scales. Since information theory is built in such a way that it is consistent

under aggregation, it can be a useful tool either to exploit the classification structure

(as in the measurement of related variety), or to find levels of aggregation (either

geographically or classification based) that hold relevant information.

A second example for which multivariate extensions are useful is the analysis of co-

location of multiple activities. Up to now, studies in relatedness have been limited

to quantifying relatedness between pairs of economic activity. For example, Chapter

5 considered the associations between pairs of occupations based on their co-location

in cities. However, one can also consider co-location of triplets or larger sets. Taking

expectation of these associations leads to system-level variables that take the form

of multivariate mutual information. Such measures could for example shed light on

questions regarding the evolution of team sizes and the division of labor.

A final note on multivariate analysis holds that CA also readily extends to multivari-

ate data, which is known as multiple correspondence analysis. Application of these

methods is yet to be considered in the current context.

8.3 Capturing capabilities

I now turn to building blocks underlying the work discussed in this thesis: capabilties.

As we have seen, in the current context the concepts of diversity, complexity and

relatedness all depend crucially on distribution of capabilities underlying economic

activities. Despite their importance however, their exact definition and measurement

remains elusive, as they are generally not observable. There are rougly two ways to

tackle this issue: either analyze data that gives a direct proxy for capabilities, or use

algorithm that infer them from data.

8.3.1 Proxy for capabilites

Several attempts have been done to find suitable proxies for capabilities. An example

is given by the incidence matrix of industries and occupations, where occupations

represent bundles of skills or tacit knowledge that can be considered to be the nec-

essary inputs for any given industry. This can be taken even further by using data
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on the skills and activities that occupations represent, and using these as a proxy for

capabilities.

Such approaches are challenging however as they require both a specific dataset and

a specific definition of a capability, making results hard to generalize. They further

neglect one of the central ideas of the capabilities approach, namely that capabil-

ities represent a heterogeneous set of inputs, ranging from tangible assets to tacit

knowledge and the right institutional conditions.

Altneratively, one can find proxies not for capabilities but for the complexity of eco-

nomic activities (i.e. the number of capabilities embodied in an economic activity).

This can be done, for example, by defining the complexity of a product as the average

income of countries it is produced in (Lall et al., 2006; Hausmann et al., 2007). Other

scholar have used quantities like average team size or the average years of schooling

of people involved in an industry as a proxy for its complexity (Balland et al., 2020).

Other possible proxies for the complexity of products include skill intensity, required

on-the-job-learning, intermediate inputs or non-routine content of jobs involved in

their production (Schetter, 2020).

Use of such proxies allow to establish stylized facts, and may serve as a ’sanity check’

for the implications of the capabilities framework and the concept of complexity it-

self. However, it requires strong assumptions and may give an incomplete picture of

complexity. Moreover, it does not allow for studying how capabilities get recombined

into products, and thus cannot be used for studying the direct connections between

complexity, relatedness and diversity.

8.3.2 Inferring capabilities

An alternative to using proxies is to infer (counts of) capabilities from data, as was

the objective of the complexity indices proposed in (Hidalgo and Hausmann, 2009).

The capabilities can be considered a ’latent layer’ that connects economic activities

to the locations in which they take place. In Chapter 4 however we have seen that

the economic complexity index reflect similarities rather than the diversity of capa-

bilities, leaving us without a measure of complexity. Are there alternatives to infer

the underlying capabilities from economic data? This type of inference is the domain

of computer science, machine learning and network science, in which there are many

methods available to perform latent variable analysis or dimensionality reduction.
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A group of methods that may be particularly promising in this respect is topic mod-

eling (Blei et al., 2003). These algorithms are used in natural language processing to

assign topics to documents according to the words that occur in them. They estimate

for each document a distribution over topics, and for each topic a distribution over

words that it consist of. One can then think of the words in a document as being

generated by the topics that that document is associated with.

Replacing document with economies, and words with economic activities, the esti-

mated topics are readily interpreted as capabilities. The methods estimate directly

the distribution of capabilities in each location, and the capability requirement of

each activity. These distributions can then be analyzed using exactly the type of

information-theoretic measures proposed in this thesis, enabling to quantify related-

ness and diversity based directly on the inferred capabilities. These methods thus

thus fit perfectly in the methodological framework proposed in this thesis.

Recent advancements further extend the original topic modeling algorithms with more

suitable priors, and draws direct connections with stochastic block models and com-

munity detection in bipartite networks (Gerlach et al., 2018). The applicability of

these type of methods to economic data remains to explored, but may provide a

promising way forward for inferring capabilitites using a method that stays close to

the capabilities framework, yielding interpretable results.

8.4 The capabilities framework - extending the model

Turning back from methodology to the capabilities model, I discuss the extensions of

the model proposed in Chapter 6 and Chapter 7. In Chapter 6, we extended the model

to incorporate the exit of low complexity products as countries develop. This yielded

a diversification pattern consistent with the stylized fact known as ’the hump’. Chap-

ter 7 focused on policy, and distinguished vertical from horizontal policies. Vertical

policies aim at adding a specific capability, while horizontal policies aim at increas-

ing the ability to recombine capabilities, increasing the maximum product length.

Here I address some shortcomings of the model, and propose possible alternatives to

extensions of the capabilities framework.
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8.4.1 Modeling product exit

In Chapter 6, we incorporated product exit by arguing that as countries develop, the

average income goes up so that they can no longer be competitive in low complex-

ity products. This relaxes the assumption that countries produce all products they

possibly can given their set of capabilities. It also introduces a new dimension to the

model: the competition between countries and the wage structure within a country.

The model investigated in this thesis is a single country model, neglecting interac-

tions between countries. Exploring what drives the production of certain products in

countries next to or on top of the capabilities structure, and how this is affected by

interactions between countries is an open issue and will require taking into account in-

teractions between countries. This leads to possible connections between more classic

trade models and the economic complexity framework (Schetter, 2019, 2020).

Sticking to the simple model proposed here, a simple question one can ask is what

determines the range of complexities r that a society can produce. It may depend,

for instance, on the type of society in a country. Large, heterogeneous societies or

countries with large inequalities for example may have a larger range, leading to a

more diversified production structure.

8.4.2 Adding structure to the recipe book

The simple capabilities model explains the relation between average product complex-

ity and variety given the number of capabilities in an economy. Due to the underlying

combinatorial logic, it is also consistent with the concept of related diversification.

However, it fails to capture the path-dependent nature of development since the ’recipe

book’ that dictates which capabilities are used by which products has a very simple

structure (i.e. capabilities are used in products at random), and there is little differ-

ence between capabilities in this respect. Incorporating more complex structure into

the model may provide more insight into how the dynamics of development depend

on the structure of the ’recipe book’.

Work by Fink et al. (2017) explicitly studies the consequences of such structure in a

model that is directly applicable to the capabilities framework. By looking at data

on building blocks and outcomes (e.g. ingredients and culinary dishes), it shows how

the order of acquiring capabilities matters in how the number of dishes one can make
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evolves as more ingredients are gained, depending on the usefulness of the ingredients.

In the context of economic development, this translates directly into relevant policy

questions: is there an optimal order in which capabilities should be obtained?

This also relates to the discussion of industrial policy in 7. One could model the

’coordination constraint’ introduced in 7 not as a separate parameter, but as a ca-

pability that is used specifically in products requiring many other capabilities. This

is arguably a more elegant way to model and stays closer to the idea of capabilities

being generic inputs that can include abstract things like institutions and regulations.

Capabilities that are used in many products for example (representing the equivalent

of salt and pepper in the recipe book) can be considered as general purpose tech-

nologies, and may spur diversification either early or late in the development process.

The question of horizontal versus vertical policies then becomes one of at which stage

of development it is better to focus on general purpose capabilities, rather than ca-

pabilities that give the highest short term return. A vertical policy would consist

of aiming at specific capabilities needed for a single new product, while a horizontal

policy would aim at capabilities that are used in many (possibly complex) products.

Again, the biggest constraint here is that we do not have access to the recipe book

mapping capabilities to products. A possible way around this is to not model ex-

plicitly the connections between capabilities and products, but to make assumptions

on the distributions of product complexity and capability usefulness, as in (Fink and

Reeves, 2019). The baseline model studied in this thesis implicitly assumes a bino-

mial distribution of product complexities. However, one can create models with other

distributions of product complexities, that may lead to different diversification pat-

terns. Such extensions may provides a fruitful way forward in studying how much the

development process is constrained by the structure of the underlying recipe book.

8.5 The future of economic complexity

In less than two decades, the idea of studying the structure of economic output and

taking into account the heterogeneity of necessary inputs in the form of capabilities

has led to a new approach to study economic development that goes beyond the

traditional growth models used in economics. It has sparked a wide range of mostly

empirical papers by scholars in economics, geography, physics and complexity science.

Many of the underlying ideas bear close resemblance to work in Ecology. This has
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lead to an interdisciplinary field that is gaining momentum, and has raised interest

in the policy arena.

In this thesis I have attempted to integrate the central concepts in this field by working

towards an encompassing methodological framework, and extending the theoretical

models underlying them. By taking a more formal approach to the methodological

challenges at hand, work in economic complexity can build on state of the art method-

ologies from other rapidly developing fields like network science and computer science.

Theoretical models may help theorizing and deriving policy implications from a rich

body of empirical work.

What remains to be done is to apply the proposed methodological frameworks more

extensively as to test the key hypotheses put forward by complexity economists re-

garding economic development. A first attempt to such an undertaking was made in

Chapter 2, in which we engaged with the framework of Hill numbers (further devel-

oped in Chapter 3) and highlighted the limits of the economic complexity index (as

further elaborated in Chapter 4). Regarding the information-theoretic framework to

measure location and co-location as proposed in Chapter 5, some practical challenges

remain, including the definition of suitable priors for the Bayesian estimation and the

sensitivity of information-theoretic measures to low-frequency data. Also, investigat-

ing higher-order associations would require larger and more detailed datasets than

most that are currently available. Hopefully, this thesis will inspire new empirical

work in the years to come.

What this thesis did not do is to put the proposed methodology to the test empirically.

A first step would be to replicate some of the key studies in the literature using the

methodologies proposed in this thesis. A first attempt to such an undertaking was

made in Chapter 2. Practical issues in this respect remain, such as the definition

of suitable priors for the Bayesian estimation, and dealing with the sensitivity of

information-theoretic measures to low-frequency data. Other challenges lie in the

representation of negative and higher-order associations, as these are no longer easily

represented as a network. Many of the proposed extensions in this thesis further

require large, detailed datasets that span large time scales and geographical scales.
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A Data

The data are taken from the Bureau of Labor Statistics (BLS) and come from three

main sources: the Quarterly Census of Employment and Wages (QCEW) for em-

ployment (E) and wages (w);1 the Local Area Unemployment Statistics (LAUS) for

unemployment (U);2 and the Occupational Employment Statistics (OES) for occupa-

tions.3

A.1 Employment, Unemployment and Wages

The data cover the time window 1990–2006, with 369 Metropolitan Statistical Areas

(MSA) and 278 industries in each year.4

To aggregate the data at the MSA level from data at the County level we use a

crosswalk from the US Census Bureau (2004 MSA definition;5 i.e., the same used by

1https://www.bls.gov/cew/downloadable-data-files.htm
2https://download.bls.gov/pub/time.series/la/la.data.64.County
3https://www.bls.gov/oes/
4The following NAICS codes are excluded: 11 (Agriculture, forestry, fishing and hunting); 21

(Mining, quarrying, and oil and gas extraction); 49 (Postal service, delivery services, warehousing);
92 (Public administration); 99 (Unclassified); 482 (Rail transportation); 814 (Private households);
5211 (Monetary authorities - central bank).

5https://www2.census.gov/programs-surveys/metro-micro/geographies/reference-files/

2003/historical-delineation-files/0312cbsas-csas.xls
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BLS).6 In this way, the MSAs considered in the paper are consistent over time, in

terms of their composition of counties.

The industries are classified according to the NAICS 2002 system.7 We consider

industries at the 4-digit level, so the data consist of 278 industry groups at the 4 digit

level, 78 sub-sectors at the 3-digit level, and 20 sectors at the 2-digit level.8

Wages refer to the average annual wage per-employee. For employment and wages,

“undisclosed” information is dropped; i.e., there are no employees and the variable

avg. wage is zero for these city-industry pairs.9

A.2 Occupations

We further use occupation-MSA and occupation-industry tables for the year 2002,

which cover the same set of 278 industries. However, in the occupation tables, there

are 337 MSAs and there is no exact correspondence to the MSAs used in the industry

tables. Indeed, while for CEW data we use the 2004 MSA definition, the BLS provides

the OES database already aggregated at the MSA level and in accordance with the

1999 MSA definition. Since the latter uses NECTA areas for the New England states

(i.e., an aggregation of towns and not counties), it is impossible to make the two

sources consistent.

To obtain consistent occupation labels, the data have been harmonized by taking

the intersection of occupations across the MSA and industry tables. This resulted in

688 occupations at the 6-digit “detailed” level (SOC 2010 classification) after exclud-

ing the following SOC codes: 11-1031 (Legislators); 11-9131 (Postmasters and mail

superintendents); 13-2081 (Tax examiners, collectors, and revenue agents); 23-1021

(Administrative law judges, adjudicators, and hearing officers); 23-1023 (Judges, mag-

istrate judges, and magistrates); 33-3011 (Bailiffs); 33-3031 (Fish and game wardens);

39-6031 (Flight Attendants); 43-5051 (Postal service clerks); 43-5052 (Postal service

mail carriers); 43-5053 (Postal service mail sorters, processors, and processing machine

6https://www.bls.gov/cew/questions-and-answers.htm
7Data from 1990-2000 were originally coded in the 1987 SIC classification. In a NAICS recon-

struction project, the data had been reclassified to the NAICS 2002 classification.
8https://www.bls.gov/sae/additional-resources/what-is-naics.htm

https://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2002
9https://www.bls.gov/cew/overview.htm#confidentiality

https://www.bls.gov/cew/questions-and-answers.htm
https://www.bls.gov/sae/additional-resources/what-is-naics.htm
https://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2002
https://www.bls.gov/cew/overview.htm#confidentiality
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operators); 47-5061 (Roof bolters, mining); 49-9097 (Signal and Track Switch Repair-

ers); 51-8011 (Nuclear Power Reactor Operators); 53-2011 (Airline Pilots, Copilots,

and Flight Engineers); 53-4011 (Locomotive Engineers); 53-4021 (Railroad Brake,

Signal, and Switch Operators); 53-4031 (Railroad Conductors and Yardmasters); 53-

6011 (Bridge and lock tenders).

B List of variables

Table 9.1: Overview of variables and descriptive statistics

Basic variables
Pic industry-city matrix (LQ > 1)
Eic industry employment matrix
pic employment share of industry i in city c
Ei

i′c proximity-weighted employment of i′ relative to i in city c
pi
i′c proximity-weighted employment share of i′ relative to i in city c

Proximity matrices

φ̃ii′ co-occurrence based industry proximity matrix

ψ̃ii′ occupation based industry proximity matrix
ρ̃ii′ growth correlation based industry proximity matrix

φ̃cc′ industry based city proximity matrix

φ̃oo′ co-occurence based occupation proximity matrix

City level variables
pc vector of industry employment shares
Ec total employment in city c

S(pc) entropy of industry employment in city c
UVc unrelated variety in city c
RVc related variety in city c

DI(pc) ‘effective number’ of industries in city c
DZ(pc) (disparity-weighted) diversity of industries in city c

varc (normalized) variety of industries in city c
balc balance of industries in city c
dispc disparity of industries in city c

City-industry level variables
pi
c vector of industry employment shares relative to i in city c

Di
c density of industries relative to i in city c

Ei
c total employment (mass) of industries relative to i in city c

DI(p
i
c) ‘effective number’ of industries relative to i in city c

DZ(pi
c) (disparity-weighted) diversity of industries relative to i in city c

varic (normalized) variety of industries relative to i in city c
balic balance of industries relative to i in city c
dispic disparity of industries relative to i in city c
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Table 9.2: Descriptive statistics for city level data.

count mean std min 25% 50% 75% max

lnEc 369 10.94 1.36 6.67 9.98 10.67 11.68 15.61
lnwc 369 9.81 0.20 8.88 9.71 9.81 9.93 10.43
lnUc 369 8.88 1.05 6.63 8.14 8.63 9.38 13.03
lnEcT

/
Ect 369 0.44 0.24 -0.08 0.29 0.41 0.57 1.77

lnwcT

/
wct 369 0.58 0.09 0.22 0.52 0.57 0.63 1.21

lnUcT

/
Uct 369 0.00 0.29 -1.34 -0.17 -0.00 0.19 0.89

Related-Unrelated variety
RVc 1-dig. 369 2.35 0.37 0.74 2.14 2.35 2.59 3.13
RVc 2-dig. 369 1.74 0.27 0.54 1.59 1.76 1.94 2.37
RVc 3-dig. 369 0.73 0.17 0.06 0.62 0.74 0.86 1.12
UVc 1-dig. 369 1.73 0.09 1.12 1.70 1.75 1.79 1.87
UVc 2-dig. 369 2.33 0.20 1.13 2.25 2.36 2.46 2.63
UVc 3-dig. 369 3.34 0.27 2.02 3.21 3.35 3.51 3.84

Diversity using the classification-based proximity
lnDZ(pc) 369 1.14 0.35 0.58 0.79 1.12 1.49 1.72
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.93 0.26 -3.35 -3.08 -2.96 -2.83 -1.37

Diversity using the co-occurrence-based proximity
lnDZ(pc) 369 1.51 0.15 0.94 1.40 1.49 1.65 1.79
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.56 0.32 -3.18 -2.75 -2.59 -2.44 -0.88

Diversity using the cognitive-proximity-based proximity
lnDZ(pc) 369 1.38 0.16 0.66 1.27 1.37 1.49 1.70
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.69 0.27 -3.23 -2.88 -2.72 -2.58 -1.42

Diversity using the growth-similarity-based proximity
lnDZ(pc) 369 1.34 0.23 0.76 1.23 1.28 1.35 2.21
ln varc 369 -0.91 0.43 -3.14 -1.16 -0.89 -0.62 -0.04
ln balc 369 -0.64 0.17 -1.84 -0.70 -0.62 -0.54 -0.20
ln dispc 369 -2.73 0.28 -3.18 -2.94 -2.75 -2.61 -1.26

Note: Wherever not necessary, the subscript t is omitted for brevity.
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Table 9.3: Descriptive statistics for city-industry level data, using the
classification-based proximity.

count mean std min 25% 50% 75% max

lnEic 43315 5.90 1.59 0.00 4.79 5.80 6.92 12.43
lnwic 43315 9.79 0.49 7.68 9.44 9.83 10.13 13.14
lnEicT

/
Eict 43315 0.34 0.76 -5.02 -0.06 0.31 0.71 5.84

lnwicT

/
wict 43315 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEi
c 43315 5.91 1.42 0.02 4.82 5.76 6.80 10.35

lnDi
c 43315 -1.34 0.44 -5.25 -1.49 -1.25 -1.06 -0.35

lnDI(p
i
c) 43315 3.71 0.61 0.54 3.55 3.86 4.13 4.54

lnDZ(pi
c) 43315 1.22 0.14 0.70 1.23 1.28 1.30 2.98

ln varic 43315 -1.25 0.65 -4.93 -1.42 -1.06 -0.81 -0.49
ln balic 43315 -0.66 0.19 -2.82 -0.74 -0.65 -0.57 -0.04
ln dispic 43315 -2.49 0.55 -3.24 -2.85 -2.63 -2.32 2.33
lnEc 43315 11.45 1.43 6.58 10.31 11.25 12.42 15.61
lnEi 43315 12.42 1.11 4.79 11.63 12.52 13.23 14.74

Note: Wherever not necessary, the subscript t is omitted for brevity.

Table 9.4: Descriptive statistics for city-industry level data, using the industry
space as defined by φ̃ii′ of eq. (2.7).

count mean std min 25% 50% 75% max

lnEic 43322 5.90 1.59 0.00 4.79 5.79 6.92 12.43
lnwic 43322 9.79 0.49 7.68 9.44 9.83 10.13 13.14
lnEicT

/
Eict 43322 0.34 0.76 -5.02 -0.06 0.31 0.71 5.84

lnwicT

/
wict 43322 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEi
c 43322 5.87 1.40 0.95 4.75 5.69 6.83 10.10

lnDi
c 43322 -1.39 0.28 -3.45 -1.55 -1.39 -1.21 -0.34

lnDI(p
i
c) 43322 4.20 0.36 1.95 3.97 4.24 4.47 4.95

lnDZ(pi
c) 43322 0.72 0.03 0.65 0.71 0.72 0.72 1.19

ln varic 43322 -0.76 0.38 -3.23 -1.04 -0.74 -0.47 -0.05
ln balic 43322 -0.66 0.16 -2.09 -0.72 -0.65 -0.57 -0.16
ln dispic 43322 -3.48 0.37 -4.22 -3.76 -3.53 -3.26 -1.08
lnEc 43322 11.45 1.43 6.58 10.30 11.25 12.42 15.61
lnEi 43322 12.42 1.11 4.79 11.63 12.52 13.23 14.74

Note: Wherever not necessary, the subscript t is omitted for brevity.
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Table 9.5: Descriptive statistics for city-industry level data, using the industry
space as defined by ψ̃ii′ of eq. (2.12).

count mean std min 25% 50% 75% max

lnEic 43322 5.90 1.59 0.00 4.79 5.79 6.92 12.43
lnwic 43322 9.79 0.49 7.68 9.44 9.83 10.13 13.14
lnEicT

/
Eict 43322 0.34 0.76 -5.02 -0.06 0.31 0.71 5.84

lnwicT

/
wict 43322 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEi
c 43322 5.84 1.42 0.61 4.71 5.66 6.80 10.42

lnDi
c 43322 -1.39 0.30 -3.86 -1.56 -1.37 -1.19 -0.51

lnDI(p
i
c) 43322 4.07 0.44 1.29 3.82 4.12 4.39 4.97

lnDZ(pi
c) 43322 0.78 0.07 0.32 0.75 0.78 0.82 1.61

ln varic 43322 -0.85 0.43 -4.02 -1.15 -0.82 -0.54 -0.05
ln balic 43322 -0.70 0.19 -2.51 -0.79 -0.68 -0.58 -0.02
ln dispic 43322 -3.29 0.43 -4.16 -3.60 -3.34 -3.04 0.11
lnEc 43322 11.45 1.43 6.58 10.30 11.25 12.42 15.61
lnEi 43322 12.42 1.11 4.79 11.63 12.52 13.23 14.74

Note: Wherever not necessary, the subscript t is omitted for brevity.

Table 9.6: Descriptive statistics for city-industry level data, using the industry
space as defined by ρii′ of eq. (2.13).

count mean std min 25% 50% 75% max

lnEic 38484 5.92 1.58 0.00 4.83 5.82 6.93 12.43
lnwic 38484 9.79 0.48 7.68 9.46 9.84 10.13 13.05
lnEicT

/
Eict 38484 0.32 0.75 -5.02 -0.07 0.29 0.68 5.84

lnwicT

/
wict 38484 0.57 0.26 -2.53 0.43 0.56 0.70 3.91

lnEi
c 38484 5.97 1.41 0.33 4.91 5.81 6.88 10.76

lnDi
c 38484 -1.23 0.40 -3.93 -1.42 -1.17 -0.98 0.00

lnDI(p
i
c) 38484 3.14 0.73 0.01 2.82 3.33 3.64 4.51

lnDZ(pi
c) 38484 0.84 0.39 0.32 0.61 0.73 0.98 6.75

ln varic 38484 -1.90 0.74 -4.93 -2.19 -1.72 -1.39 -0.60
ln balic 38484 -0.58 0.22 -2.59 -0.65 -0.54 -0.46 -0.00
ln dispic 38484 -2.30 0.98 -3.63 -2.95 -2.60 -1.88 6.74
lnEc 38484 11.34 1.45 3.56 10.16 11.19 12.39 15.45
lnEi 38484 12.37 1.10 4.06 11.59 12.51 13.15 14.71

Note: Wherever not necessary, the subscript t is omitted for brevity.
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A Hill numbers and entropy

In the definition of diversity we rely on the concept of Hill numbers, following (Hill,

1973a) and (Jost, 2006). The Hill number of order q is given by the reciprocal of a

generalized mean of the relative frequencies. The generalized weighted mean of the

relative frequencies of types is given by

q p̄ = q−1

√∑
i

pip
q−1
i , (10.1)

where the weights are given by the relative frequencies pi. The parameter q determines

which mean is considered. For example, 0p̄ denotes the Harmonic mean, 1p̄ the

geometric mean and for 2p̄ the arithmetic mean (Hill, 1973a). The Hill number of

order q measures the diversity of types as the reciprocal of the mean

qD(S) =
1
q p̄

=

(∑
i

pqi

) 1
1−q

.

The parameter q determines how heavily the average weights common or rare species.

Values of q > 1 weigh more heavily types with high relative frequency, and values

of q < 1 weigh more heavily the presence of types with small relative frequency.

The minimal value of q = 0 considers every type to contribute equally to the mean,
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regardless of its relative frequency. For q = 0 the diversity is given by

0D(S) =
∑
i

1 = n

and gives simply a count of the number of types in S. The Hill number of order 0 is

thus a measure of variety, which is also known as species richness in ecology.

For q = 2, one obtains

2D(S) =
∑
i

1

p2i
,

which relates directly to Simpson’s index of concentration and the Gini-index (Jost,

2006).

In general, the Hill numbers are related to the Rényi entropy (Renyi and Rényi, 1961)

by qD(S) = e
qH(X), where

qH(X) =
1

1− q
log

(∑
i

pqi

)
.

The Shannon entropy arises as a special case when taking the limit of q → 1. This

corresponds to the unique Hill number that does not favor either rare or common

types and is given by

D(S) = lim
q→1

qD(S) = e−
∑

i pi log(pi) = eH(X).

The relationship between Hill numbers and entropies described above tell us how to

transform measures of uncertainty, given by entropies in units of bits or nats, into

measures of diversity, given in units of the ’effective number of types’. The more

uncertain one is about the type of a randomly sampled element from S (i.e. the

higher qH(X)), the more diverse the set S in considered to be.

B Properties from Leinster & Cobbold

In their introduction of a diversity measure that takes into account disparity by includ-

ing pairwise similarities between types, Leinster & Cobbold (Leinster and Cobbold,
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2012) show that their measure satisfies nine properties that ’encode basic scientific

intuition’ that every diversity measure should satisfy. The nine properties are divided

into three categories: partitioning properties, elementary properties, and similarity

properties. In this section it is shown that the properties posed in (Leinster and

Cobbold, 2012) also hold for the number of compositional units Dβ(S
′).

We follow the notation as introduced in the main text: a collection of features i ∈ S,

a collection of types j ∈ S′, and their corresponding random variables X, Y and XY

with probabilities pi = P (X = i), pj = P (Y = j), and pij = P (X = i, Y = j)

respectively.

Partitioning

Effective number: the diversity of a community of n equally abundant,

totally dissimilar types is n.

Note that when all types are totally dissimilar, there is no uncertainty about the

type j of an element given that one knows its feature i. That is, for every fea-

ture i we have that pj|i = 1 for one specific type j. This implies that H(Y |X) =

−
∑

i pi
∑

j pj|i log(pj|i) = 0, so that

MI(X,Y ) = H(X) +H(Y )−H(XY )

= H(Y )−H(Y |X)

= H(Y ).

Then

Dβ(S
′) = eMI(X,Y ) = eH(Y ) = D(S′).

Hence for totally dissimilar types the number of compositional units reduces to the

effective number of types. In particular, for equally abundant types we have Dβ(S
′) =

eH(Y ) = n.
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Modularity: if a collection of types consists of multiple non-overlapping

sub-collections of types, for which types in different sub-collections are

totally dissimilar, then the total diversity is entirely determined by the

size and diversity of every sub-collection.

We can implement the sub-collections by adding a third label k to every element,

which denotes the sub-collection k ∈ S′′ it belongs to. Hence, we now have ele-

ments with labels i, j, k, where i denotes a feature, j denotes a type, and k denotes

the sub-collection. Further introducing the corresponding random variable Z, this

defines probabilities pijk = P (X = i, Y = j, Z = k). Since sub-collections are non-

overlapping, there is no uncertainty about the sub-collection k of an element given

that one know its type j, so that H(Z|Y ) = 0. Furthermore, since types from dif-

ferent sub-collections are totally dissimilar, sub-collections do not share any features,

so there is no uncertainty about the sub-collection k of an element given that one

knows its feature i, so H(Z|X) = 0. These properties imply that H(Y Z) = H(Y )

and H(XZ) = H(X). Defining

MI(X,Y |Z) =
∑
k

pk
∑
ij

pij|k log

(
pij|k
pi|kpj|k

)
,

we can then write

MI(X,Y |Z) = H(X|Z) +H(Y |Z)−H(XY |Z)

= H(XZ)−H(Z) +H(Y Z)−H(Z)−H(XY ) +H(Z)

= H(X) +H(Y )−H(XY )−H(Z)

=MI(X,Y )−H(Z)

so that

MI(X,Y ) =MI(X,Y |Z) +H(Z).

Taking the exponential, this shows how the total number of compositional units of

types S′ relates to the number of compositional units in each sub-collection k, their



Chapter 10 Supplementary material to Diversity and its decomposition into variety,
balance and disparity 185

relative size pk, and the effective number of sub-collections D(S′′):

Dβ(S
′) = eMI(X,Y )

= eMI(X,Y |Z)+H(Z)

= e
∑

k pkMI(X,Y |k)+H(Z)

= D(S′′)
∏
k

Dβ(S
′
k)

pk , (10.2)

where D(S′′) = eH(Z) denotes the effective number of sub-collections.

Replication: if m non-overlapping sub-collections are of equal size and

diversity d, the diversity of the whole collection is given by md.

Using (10.2), it is easily seen that if the number of compositional units in every

sub-collection is d, and there are m sub-collections with relative size 1
m , we have

Dβ(S
′) = m

∏
k

d
1
m = md.

Elementary

Symmetry: diversity is independent of the order of the listing of types.

This property follows directly from the properties of the Shannon entropy.

Absent types: diversity is unchanged by adding a type of zero abundance.

This property follows directly from the properties of the Shannon entropy.

Identical types: for two identical types, merging the types leaves diversity

unchanged.

Recall that XY is defined as the random variable with probabilities pij = P (X =

i, Y = j), where i ∈ S and j ∈ S′. For two identical types j′ and j′′, we have that

pi|j′ = pi|j′′ since they have an identical distribution over features.
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Define a random variable XỸ in which j′ and j′′ are merged, i.e. p̃ij′ = P (X = i, Ỹ =

j) = pij′ + pij′′ , p̃ij′′ = 0 and p̃ij = pij for all j 6= j′, j′′. Then

MI(X,Y ) =
∑

ij,j 6=j′,j′′

pij log

(
pi|j
pi

)
+
∑
i

pij′ log

(
pi|j′

pi

)
+
∑
i

pij′′ log

(
pi|j′′

pi

)

=
∑

ij,j 6=j′,j′′

pij log

(
pi|j
pi

)
+
∑
i

(pij′ + pij′′) log

(
pi|j′

pi

)
=MI(X, Ỹ ).

Hence, Dβ(S
′) = Dβ(S̃′), so merging identical types does not affect the number of

compositional units.

Effect of similarity on diversity

Monotonicity: when similarity between types is increased, diversity de-

creases.

Although we do not have an explicit measure of pairwise similarity between types,

similarity in our framework is given by the (average) overlap of features between

types. This overlap may increase in two ways: either the total diversity of features

Dγ(S) decreases while the average within-type diversity Dα(S) remains constant, or

the average within-type diversity Dα(S) increases while the total diversity of features

Dγ(S) remains constant. From the definition of the number of compositional units

Dβ(S
′) =

Dγ(S)
Dα(S) it follows that in both cases the number of compositional units

decreases.

Naive model: when similarities are ignored, diversity is greater or equal

than when similarities are taken into account.

This follows directly from the definitions of Dβ(S
′) (which takes into account dispar-

ity) and D(S′) (which does not take into account disparity), and the known property

that MI(XY ) ≤ H(Y ). This leads to

D(S′) = eH(Y ) ≥ eMI(X,Y ) = Dβ(S
′).
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Range: the diversity of a collection of n types is between 1 and n.

We have that 0 ≤ MI(XY ) ≤ H(Y ) ≤ log(n). Taking exponentials, this gives

1 ≤ Dβ(S
′) ≤ n.

C Multiple feature sets

This section elaborates on the results given in the main text on diversity when taking

into account two feature sets, described by random variables X and Y . The feature

pairs are then described by the joint distribution pij = P (X = i, Y = j). Using the

simple additive properties of information-theoretic quantities, we show some simple

results regarding diversities. The calculations are easily verified by considering the

Venn diagrams in Figure 10.1.

Here, we rewrite the diversity of types corresponding to random variable Z given the

overlap among a pair of features given by random variables X and Y as

DXY
β (S′) = eMI(XY,Z) (10.3)

= eH(XY )−H(XY |Z)

= eH(X)+H(Y )−MI(X,Y )−H(X|Z)−H(Y |Z)+MI(X,Y |Z)

= eMI(X,Z)+MI(Y,Z)−MI(X,Y )+MI(X,Y |Z),

where we used that H(XY ) = H(X)+H(Y )−MI(X,Y ) and H(XY |Z) = H(X|Z)+
H(Y |Z)−MI(X,Y |Z). From this, it becomes clear that the diversity becomes lower

as the features X and Y have a larger dependence, i.e. are more correlated, as

indicated by a large value of MI(X,Y ).

In the special case that features X and Y share no information, i.e. MI(X,Y ) = 0,

we have

DXY
β (S′) = eMI(XY,Z) (10.4)

= eMI(X,Z)+MI(Y,Z)

= DX
β (S′)DY

β (S′).

Hence, for independent feature sets the diversities are multiplicative.
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D Aggregation

Here we consider the types described by random variable Z to be composed of fea-

tures described by random variable Y , and the features Y themselves have features

described by a random variable X (this reflects the situation described in the mod-

ularity property in Section B, where Z denotes the sub-collections, Y denotes the

types, and X denotes the features). Hence the links between types and features are

given by the joint probability distribution pjk, and the links between features and

’sub-features’ by a joint distribution pij . When the joint probabilities pij are inde-

pendent of the joint probabilities pjk, we have pijk = pijpk|j = pi|jpk|jpj . In other

words, the random variables Z and X are conditionally independent given Y , which

means that MI(X,Z|Y ) = 0. The diversity given feature pairs XY can then be

rewritten as

DXY
β (S′) =MI(XY,Z) (10.5)

= eH(Z)−H(Z|XY )

= eH(Z)−(H(ZX|Y )−H(X|Y ))

= eH(Z)−H(Z|Y ) = eMI(Z,Y ),

where we used that MI(X,Z|Y ) = 0 implies that H(XZ|Y ) −H(X|Y ) = H(Z|Y ).

In other words, considering X is superfluous when considering the diversity of Z in

terms of features XY .
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A

X Y

Z

B

X Y

Z

C

X Y

Z

Figure 10.1: The entropies and mutual information can be represented using
Venn diagrams, where each circle corresponds to the entropy H(X) of the associ-
ated random variable X. The intersection of the two circles associated to X and Y
represents the mutual information MI(X,Y ), and their union represents the joint
entropy H(XY ). The conditional entropy H(X|Y ) is given by subtracting the
intersection from the total uncertainty H(X). A shows the mutual information
MI(XY,Z) from equation (10.3). The diversity of variable Z given the overlap in
features XY is given by the exponential of the shaded area. B shows the special
case of (10.4) in which the features X and Y are independent, i.e. MI(X,Y ) = 0.
From the figure it is clear that MI(XY,Z) = MI(X,Z) +MI(Y, Z), such that
associated diversity in this case is multiplicative. C shows the case of (10.5) in
which Z and X are conditionally independent on Y , i.e. MI(Z,X|Y ) = 0. In this
case, taking into account features X becomes irrelevant in computing diversity of

Z given feature pairs XY .
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Supplementary material to

A network view of correspondence

analysis: applications to ecology and

economic complexity

A Constructing the country-product matrix

The data contains for every country how much of each product is has exported in

the year 2016. To obtain a binary ‘presence-absence’ matrix, we consider whether a

country exports a product with ‘revealed comparative advantage’ (RCA). The RCA

index compares the share of a product within a countries’ export portfolio to the

global share of that product in world trade to evaluate whether a country exports

more than expected by the global share. If qij denotes the exports of product j in

country i (given in dollars), the RCA is defined as RCA(i, j) =
qij/

∑
j qij∑

i qij/
∑

i,j qij
. The

matrix A is then defined as

Aij =

{
1 if RCA(i, j) > 1

0 if RCA(i, j) ≤ 1,

B Relation between normalized cut and correlation

analysis

We show that the eigenvalues and eigenvectors of Eq. (4.2) that result from the

correlation analysis are directly related to those that follow from minimizing the

normalized cut (Eq. (4.3)). Recall that minimizing the normalized cut results in the
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generalized eigenproblem

(Dr − Sr)v = λ̃Drv.

Pre-multiplying by D−1
r , this can be rewritten as

(I −D−1
r Sr)v = λ̃v

D−1
r Srv = (1− λ̃)v

D−1
r AD−1

c AT = λv,

which shows that solutions to Eq. (4.2) are solutions to Eq. (4.3) with λ = 1− λ̃.

C Country clusters
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cluster countries
2 Algeria, Angola, Brunei Darussalam, Chad, Congo, Congo (Democratic Republic of

the), Equatorial Guinea, Gabon, Iraq, Kuwait, Libya, Nigeria, Papua New Guinea,
Qatar, South Sudan, Turkmenistan, Venezuela

3 Afghanistan, Albania, American Samoa, Andorra, Anguilla, Antarctica, Antigua
and Barbuda, Argentina, Armenia, Aruba, Australia, Austria, Azerbaijan, Bahrain,
Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bonaire,
Bosnia and Herzegovina, Botswana, Bouvet Island, Brazil, British Indian Ocean Ter-
ritory, Bulgaria, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Canada,
Central African Republic, Chile, China, Christmas Island, Cocos (Keeling) Islands,
Colombia, Comoros, Costa Rica, Croatia, Cuba, Curaçao, Cyprus, Czech Republic,
Côte d’Ivoire, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt,
El Salvador, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gambia,
Georgia, Germany, Ghana, Greece, Grenada, Guam, Guatemala, Guinea, Guinea-
Bissau, Guyana, Haiti, Heard and McDonald Islands, Honduras, Hong Kong, Hun-
gary, India, Indonesia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kaza-
khstan, Kenya, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Lithuania,
Luxembourg, Macao, Madagascar, Malawi, Malaysia, Mali, Malta, Mauritius, Mex-
ico, Moldova, Mongolia, Montenegro, Montserrat, Morocco, Mozambique, Myanmar,
Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Niue, Norfolk
Island, North Korea, North Macedonia, Northern Mariana Islands, Norway, Oman,
Pakistan, Palestine, Panama, Paraguay, Peru, Philippines, Pitcairn, Poland, Portugal,
Romania, Russian Federation, Rwanda, Saint Barthélemy, Saint Helena, Ascension
and Tristan da Cunha, Saint Kitts and Nevis, Saint Lucia, Saint Pierre and Miquelon,
Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Sierra
Leone, Singapore, Slovakia, Slovenia, Somalia, South Africa, South Georgia and South
Sandwich Islds., South Korea, Spain, Sri Lanka, St-Martin / St Maarten, Sudan,
Suriname, Sweden, Switzerland, Syrian Arab Republic, Taiwan, Tajikistan, Tanza-
nia, Thailand, Timor-Leste, Togo, Tokelau, Tonga, Trinidad and Tobago, Tunisia,
Turkey, Turks and Caicos Islands, Uganda, Ukraine, United Arab Emirates, United
Kingdom, United States Minor Outlying Islands, United States of America, Uruguay,
Uzbekistan, Vatican City, Vietnam, Wallis and Futuna, Western Sahara, Yemen,
Zambia, Zimbabwe

4 Bahamas, Bermuda, Cayman Islands, Cook Islands, Falkland Islands, Faroe Islands,
French Polynesia, French Southern and Antarctic Lands, Gibraltar, Greenland, Ice-
land, Kiribati, Maldives, Marshall Islands, Mauritania, Micronesia, New Caledonia,
Palau, Saint Vincent and the Grenadines, Seychelles, Solomon Islands, Tuvalu, Van-
uatu, Virgin Islands (British)
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the analysis of location and co-location

patterns

A Estimation of Var[pij]

Estimates for the expectation and variance of PMI(pij) are obtained in a similar

fashion as (5.7) and (5.8). This requires computation of Var[pij ]. We have

Var[pij ] = Var[
∑
c

pi|cpj|cpc]

=
∑
c

Var[pi|cpj|cpc] +
∑
c 6=c′

Cov[pi|cpj|cpc, pi|c′pj|c′pc′ ]

=
∑
c

(
Var[pi|cpj|c]E[pc]2 +Var[pc]E[pi|cpj|c]2 +Var[pi|cpj|c]Var[pc]

)
+
∑
c 6=c′

E[pi|cpj|c]E[pi|c′

(12.1)

where in the second equality we used that pi|cpj|c is independent of pc, p′c and pi|c′pj|c′ .

Furthermore, we used that

Cov[pi|cpj|cpc, pi|c′pj|c′pc′ ] = E[pi|cpj|cpcpi|c′pj|c′pc′ ]− E[pi|cpj|cpc]E[pi|c′pj|c′pc′ ]

= E[pi|cpj|c]E[pi|c′pj|c′ ](E[pcpc′ ]− E[pc]E[pc′ ])

= E[pi|cpj|c]E[pi|c′pj|c′ ]Cov[pc, pc′ ].

Note that the vector of pc’s follows a Dirichlet distribution, so that pc and pc′ are not

independent.
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Using the product-moment formula (Nadarajah and Kotz, 2004), we know that for

i 6= j

E[pni|cp
n
j|c] =

Γ(q̃ci + n)Γ(q̃cj + n)Γ(q̃c)

Γ(q̃ci)Γ(q̃cj)Γ(q̃c + 2n)
,

so that

Var[pi|cpj|c] = E[p2i|cp
2
j|c]− E[pi|cpj|c]2

=
q̃ci(q̃ci + 1)q̃cj(q̃cj + 1)

q̃c(q̃c + 1)(q̃c + 2)(q̃c + 3)
−
(

q̃ciq̃cj
q̃c(q̃c + 1)

)2

.

The last term of (12.1) consists of

∑
c 6=c′

E[pi|cpj|c]E[pi|c′pj|c′ ]Cov[pc, pc′ ] = −
∑
c 6=c′

q̃ciq̃cj
q̃c(q̃c + 1)

q̃c′iq̃c′j
q̃c(q̃c + 1)

q̃cq̃c′

(q̃ + 1)
.

For i = j we have

Var[pii] =
∑
c

(
Var[p2i|c]E[pc]

2 +Var[pc]E[p2i|c]
2 +Var[p2i|c]Var[pc]

)
+
∑
c 6=c′

E[p2i|c]E[p
2
i|c′ ]Cov[pc, pc′ ].

Since pi|c is beta-distributed, we have

E[p2i|c] =
q̃ci(q̃ci + 1)

q̃c(q̃c + 1)

and

Var[p2i|c] = E[p4i|c]− E[p2i|c]
2

=
q̃ci(q̃ci + 1)(q̃ci + 2)(q̃ci + 3)

q̃c(q̃c + 1)(q̃c + 2)(q̃c + 3)
−
(
q̃ci(q̃ci + 1)

q̃c(q̃c + 1)

)2

The last term consists of∑
c 6=c′

E[p2i|c]E[p
2
i|c′ ]Cov[pc, pc′ ] = −

∑
c 6=c′

q̃ci(q̃ci + 1)

q̃c(q̃c + 1)

q̃c′i(q̃c′i + 1)

q̃c′(q̃c′ + 1)

q̃cq̃c′

q̃2(q̃ + 1)
.
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For larger data sets, the following approximation can be made to keep things tractable

and computationally feasible. We approximate the variance of pij by assuming that

there is no uncertainty about pc, and assume pc = p̂c. We then have

Var[pij ] ≈
∑
c

p̂2cVar[pi|cpj|c].

This gives for i 6= j:

Var[pij ] =
∑
c

p̂2c(E[p2i|cp
2
j|c]− E[pi|cpj|c]2)

=
∑
c

q̃2c
q̃2

(
q̃ciq̃cj(q̃ci + 1)(q̃cj + 1)

q̃c(q̃c + 1)(q̃c + 2)(q̃c + 3)
−

q̃2ciq̃
2
cj

q̃2c (q̃c + 1)

)

and for i = j

Var[pii] =
∑
c

p̂2c(E[p4i|c]− E[p2i|c]
2)

=
∑
c

q̃2c
q̃2

(
q̃ci(q̃ci + 1)(q̃ci + 2)(q̃ci + 3)

q̃c(q̃c + 1)(q̃c + 2)(q̃c + 3)
−
(
q̃ci(q̃ci + 1

q̃c(q̃c + 1)

)2
)

B MCMC simulations for PMI(pci) and PMI(pij)

We implement the estimation procedure in Python using the package pymc3. Figure

12.1 compares the analytical approximations to Markov chain Monte Carlo simlu-

ations. The results show a good fit between simulated results and the analytical

pproximations, except for the standard deviation of the PMI(pij), where the analyt-

ical approximation slightly over-estimates the standard deviation.
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Figure 12.1: Simulated values versus analytical approximations.

C Estimation of Var[KL(pj|i|pj]

We estimate KL(pj|i|pj) in a similar way as the PMI(pij). By computing the Taylor

expansion and taking the expectation we obtain

E[KL(pj|i|pj)] ≈ KL(p̂j|i|p̂j) +
∑
j

Var(pij)
∂2

∂p2ij
pj|i log

(
pij
pipj

)

= KL(p̂j|i|p̂j) +
∑
j

Var(pij)

(
2pij
pip2j

+
pij
p2i pj

+
3pij
pj

3

+
1

pipij
− 4

p2j
− 2

pipj

+

(
2pij
p3j

− 2

p2j

)
log

(
pij
pipj

))
.
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For the variance of KL(pj|i|pj) we obtain, using the delta method,

Var(KL(pj|i|pj) ≈
∑
j

Var(pij)
∂

∂pij
pj|i log

(
pij
pipj

)

= Var(pij)

(
1

pj
+
pij
p2j

)(
log

(
pij
pipj

− 1

)
− pij
pipj

)
.

The standard deviations are given as the square root of this variance. Similar equa-

tions can be derived for KL(pc|i|pc) and KL(pi|c|pi).





Chapter 13
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velopment

A Derivations of full model quantities

A.1 Average product length given r

First, note that the total product length is given by

d(n, r)s̄(n, r) =

n∑
s=n−r

s

(
n

s

)

= n

n∑
s=n−r

(n− 1)!

(s− 1)!(n− s)!

= n

n−1∑
s′=n−r−1

(n− 1)!

s′!(n− s′ − 1)!

= n

n−1∑
s′=n−r−1

(
n− 1

s′

)
= nd(n− 1, r)

so that the average product length is given by

s̄(n, r) = n
d(n− 1, r)

d(n, r)
.
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A.2 Bounds on average product length

We show that

1

2
≤ d(n− 1, r)

d(n, r)
< 1.

First, note that

d(n+ 1, r)− d(n, r) =

n+1∑
s=n+1−r

(
n+ 1

s

)
−

n∑
s=n−r

(
n

s

)

=

n+1∑
s=n+1−r

(
n+ 1

s

)
−

n+1∑
s=n−r

n+ 1− s

n+ 1

(
n+ 1

s

)

=

n+1∑
s=n+1−r

(
n+ 1

s

)
−

n+1∑
s=n+1−r

n+ 1− s

n+ 1

(
n+ 1

s

)
− r + 1

n+ 1

(
n+ 1

n− r

)

=

n+1∑
s=n+1−r

s

n+ 1

(
n+ 1

s

)
−
(
n

r

)
= d(n, r)−

(
n

r

)
,

so that

d(n+ 1, r) = 2d(n, r)−
(
n

r

)
. (13.1)

Now since

d(n− 1, r) =

n−1∑
s=n−1−r

(
n− 1

s

)
=

n−1∑
s=n−r

(
n− 1

s

)
+

(
n− 1

n− 1− r

)
>

(
n− 1

n− 1− r

)
,
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we have that

d(n, r) = 2d(n− 1, r)−
(
n− 1

r

)
= 2d(n− 1, r)−

(
n− 1

n− 1− r

)
> 2d(n− 1, r)− d(n− 1, r)

> d(n− 1, r),

so that d(n−1,r)
d(n,r) < 1.

Furthermore, since
(
n−1
r

)
> 0, (13.1) gives that

d(n, r) < 2d(n− 1, r)

and thus d(n−1,r)
d(n,r) > 1

2 for r < n.

A.3 Average product length including ρ

s̄(n) =

n∑
s=0

s
d(n, s)

d(n)
=

∑n
s=0 s

(
n
s

)
ρs

(1 + ρ)n

= (1 + ρ)−n
n∑

s=1

s
n

s

(
n− 1

s− 1

)
ρs

= ρ(1 + ρ)−nn

n∑
s=1

(
n− 1

s− 1

)
ρs−1

= ρ(1 + ρ)−nn

n−1∑
x=0

(
n− 1

x

)
ρx

= ρ(1 + ρ)−nn(1 + ρ)n−1

=
ρ

1 + ρ
n.
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A.4 Average product length given r including ρ

The total product length is given by

d(n, r)s̄(n, r) =

n∑
s=n−r

s

(
n

s

)
ρs

= nρ

n∑
s=n−r

(n− 1)!

(s− 1)!(n− s)!
ρs−1

= nρ

n−1∑
s′=n−r−1

(n− 1)!

s′!(n− s′ − 1)!
ρs

′

= nρ

n−1∑
s′=n−r−1

(
n− 1

s′

)
ρs

′

= nρd(n− 1, r)

so that the average product length is given by

s̄(n, r) = nρ
d(n− 1, r)

d(n, r)
.

A.5 Bounds on average word length

We show that

ρ

1 + ρ
n < s̄(n, r) < n.
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The growth in product variety is given by

d(n+ 1, r)− d(n, r) =

n+1∑
s=n+1−r

(
n+ 1

s

)
ρs −

n∑
s=n−r

(
n

s

)
ρs

=

n+1∑
s=n+1−r

(
n+ 1

s

)
ρs −

n+1∑
s=n−r

n+ 1− s

n+ 1

(
n+ 1

s

)
ρs

=

n+1∑
s=n+1−r

(
n+ 1

s

)
ρs −

n+1∑
s=n+1−r

n+ 1− s

n+ 1

(
n+ 1

s

)
ρs − r + 1

n+ 1

(
n+ 1

n− r

)
ρn−r

=

n+1∑
s=n+1−r

s

n+ 1

(
n+ 1

s

)
ρs −

(
n

r

)
ρn−r

= ρd(n, r)−
(
n

r

)
ρn−r.

This leads to the identity

d(n, r) = (1 + ρ)d(n− 1, r)−
(
n− 1

r

)
ρn−r−1,

so that

d(n− 1, r)

d(n, r)
=

d(n− 1, r)

(1 + ρ)d(n− 1, r)−
(
n−1
r

)
ρn−r−1

>
d(n− 1, r)

(1 + ρ)d(n− 1, r)
=

1

1 + ρ
.

This means that a lower bound on average word length is given by

s̄(n, r) = nρ
d(n− 1, r)

d(n, r)
> n

ρ

1 + ρ

since
(
n−1
r

)
ρn−r−1 > 0.

To find an upper bound, first note that

(
n− 1

r

)
ρn−r−1 <

n−1∑
s=n−r−1

(
n

s

)
ρs = d(n− 1, r).
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We then find that

d(n, r) = (1 + ρ)d(n− 1, r)−
(
n− 1

r

)
ρn−r−1

= (1 + ρ)d(n− 1, r)−
(

n− 1

n− 1− r

)
ρn−r−1

> (1 + ρ)d(n− 1, r)− d(n− 1, r)

> ρd(n− 1, r),

so that

d(n− 1, r)

d(n, r)
<

1

ρ
,

and

s̄(n, r) = nρ
d(n− 1, r)

d(n, r)
< n.

A.6 Diversification including r

From A.5 we have that

d(n+ 1, r)− d(n, r) = ρd(n, r)−
(
n

r

)
ρn−r.

Hence variety starts decreasing for n, r when

d(n, r) <

(
n

r

)
ρn−r−1.
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Nederlandse samenvatting

Traditionele modellen van economische ontwikkeling gaan typisch uit van een produc-

tiefunctie waarin kapitaal en arbeid leiden tot economische waarde. Die waarde wordt

vaak uitgedrukt in hoe groot een economie is, bijvoorbeeld door middel van het bruto

binnenlands product. Dit proefschrift start met een alternatief model van economis-

che ontwikkeling waarin niet de grootte van een economie centraal staat, maar haar

structuur. Dat wil zeggen dat er niet gekeken wordt naar de totale productie in een

economie, maar naar de specifieke producten en diensten die zij in staat is te leveren.

Dit alternatieve model gaat ervan uit dat er voor het produceren van een specifiek

product of dienst altijd een aantal complementaire competenties nodig is. Deze com-

petenties worden gëınterpreteerd in de breedste zin van het woord: voor het maken

van een bepaald product zijn er bijvoorbeeld bepaalde grondstoffen nodig maar ook

specifieke kennis, technologie, institutionele condities en infrastructuur. Competen-

ties kunnen dus gëınteresseerd worden als de bouwstenen die aanwezig moeten zijn

in een economie om het mogelijke te maken verschillende producten en diensten te

leveren.

Economische ontwikkeling berust dan op het ontwikkelen van de juiste competenties,

en die op een juiste manier met elkaar combineren. Nieuwe competenties kunnen

gerecombineerd worden met de reeds aanwezige competenties, en leiden zo tot nieuwe

producten. Het vergaren van meer competenties maakt het zo mogelijk om steeds

meer verschillende en ook complexe producten te maken, die gebruik maken van meer

competenties. Dit model leidt tot drie begrippen die centraal staan in het beschrijven

van economische ontwikkeling.

Ten eerste is er de notie van diversiteit. Naarmate een economie meer competenties

ontwikkelt, groeit het aantal combinaties dat gemaakt kan worden met deze compe-

tenties exponentieel. Het resultaat is dat economische ontwikkeling gepaard gaat met

een grote toename in het aantal verschillende producten dat gemaakt kan worden.

Ten tweede stelt een toenemend aantal competenties een economie in staat om steeds
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complexere producten te maken, die bestaan uit combinaties van steeds meer verschil-

lende competenties. Tot slot leidt het model tot de notie van gerelateerdheid tussen

producten, waarmee bedoeld wordt dat producten grotendeels berusten op dezelfde

competenties, en dus op elkaar lijken in termen van wat er nodig is om te ze te pro-

duceren. Het ontwikkelen van extra competenties stelt economieën dus in staat om

nieuwe producten te maken, maar deze zullen wel gerelateerd zijn aan de producten

die ze al maakte, aangezien ze grotendeels zullen berusten op dezelfde competenties.

Dit proefschrift draagt op drie manieren bij aan het verder ontwikkelen van compe-

tenties model van economische ontwikkeling. Ten eerste levert het een methodolo-

gische bijdrage, waarin wordt gevraagd hoe variëteit, complexiteit en gerelateerdheid

gemeten kunnen worden. Ten tweede levert het een theoretische bijdrage in de vorm

van simpele theoretische modellen van economische ontwikkeling waarin competen-

ties centraal staan. Zulke modellen kunnen kunnen helpen bij het redeneren over hoe

de verschillende begrippen met elkaar verband houden, en bieden een raamwerk om

na te denken over de beleidsimplicaties van een model van economische ontwikkeling

waarin competenties centraal staan. Ten derde is er een aantal empirische bijdragen

waarin de maten van diversiteit, complexiteit en gerelateerdheid zijn toegepast als

ook een nieuw model waarin het empirisch fenomeen van de “hump” (eerst toe- en

dan afname van diversiteit) uit de handelseconomische literatuur wordt verklaard aan

de hand van een model van competenties en producten.

Hoofdstuk 2 geeft een beknopt overzicht van bestaande onderzoek in disciplines die

aan de basis staan van het competenties model: economische geografie en economische

complexiteit. In beide literaturen staat het begrip variëteit (van zowel producten als

competenties) centraal, zij het op verschillende manieren. Ook worden de method-

ologieën besproken die gangbaar zijn voor het kwantificeren van diversiteit, gerela-

teerdheid en complexiteit. Ten slotte wordt nieuwe methodologie voorgesteld voor het

meten van diversiteit, die het mogelijk maakt de verschillende hypotheses die volgen

uit de literatuur te testen.

Hoofdstuk 3, 4 en 5 bestaan uit methodologische bijdrages. In hoofdstuk 3 bespreek

ik het meten van diversiteit. Hierbij ligt de nadruk op hoe diversiteit gekwantificeerd

kan worden met inachtneming van de gerelateerdheid tussen de elementen die in
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beschouwing genomen worden (zoals bijvoorbeeld economische activiteiten). Hiertoe

bouw ik voort op het begrip van ’Hill numbers’ uit de ecologie, dat een formeel

raamwerk biedt waarin diversiteit gemeten kan worden. Ook stel ik een decompositie

voor die leidt tot afzonderlijke maten van de factoren van diversiteit - te weten variëteit

(het aantal verschillende elementen), balans (de verdeling over die elementen) en

dispariteit (hoe (on)gerelateerd zijn de elementen).

Hoofdstuk 4 gaat over het meten van economische complexiteit. De index van economis-

che complexiteit, voorgesteld door Hidalgo and Hausmann (2009), biedt een manier

om het aantal competenties in een economie (haar ’economische complexiteit’ te kwan-

tificeren op basis van welke producten zij produceert. De economische complexiteit

van landen gebaseerd op export data correleert met het bruto binnenlands product

en blijkt een sterke voorspeller van economische groei. Echter blijven de precieze

interpretatie en de relatie tot de theorie van deze economische complexiteits-index

onduidelijk. Mealy et al. (2019) geven meer duidelijkheid over de wiskundige achter-

grond van deze index. In dit hoofdstuk bespreek ik een aantal statistische methodes

die wiskundig equivalent zijn aan de economische complexiteits index, die elke leiden

tot alternatieve interpretaties van de index. Dit laat zien dat de index van economis-

che complexiteit een her-uitvinding is van manieren om netwerken te clusteren, en

om de dimensionaliteit van data te reduceren. Deze interpretaties gaan in tegen het

idee dan de index van economische complexiteit iets zegt over het aantal competen-

ties dat in een economie aanwezig is, en suggereren dat het eerder een weergave is

van in hoeverre economieën op elkaar lijken. Deze nieuwe inzichten, gepaard met het

sterke verband met economische groei, bieden nieuwe perspectieven voor empirisch

onderzoek in deze richting.

Hoofdstuk 5 is het laatste methodologische hoofdstuk en gaat over het kwantificeren

van gerelateerdheid op basis van co-locatie van economische activiteiten. In de prak-

tijk wordt de gerelateerdheid tussen producten vaak gemeten door te kijken naar de

co-locatie van producten, onder de aanname dat producten die vaak samen gepro-

duceerd worden (in hetzelfde land, stad of regio) waarschijnlijk berusten op dezelfde

competenties. Op deze manier kunnen netwerken worden geconstrueerd die de gere-

lateerdheid tussen producten weergeven, en zo ook de waarschijnlijke groeipaden van
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landen of regio’s weergeven. In dit hoofdstuk stel ik een nieuw methodologisch raamw-

erk dat een meer formele manier biedt om de co-locatie tussen economische activiteiten

te kwantificeren, op basis van informatie theorie en Bayesiaanse statistiek. Uit dit

raamwerk volgen ook maten van lokalisatie en specialisatie, een het legt op deze manier

zowel conceptuele als methodologische verbanden tussen ogenschijnlijk onafhankelijke

concepten uit verschillende delen van de economische literatuur.

Hoofdstukken 6 en 7 zijn theoretisch van aard en beschrijven een simpel model van

economische ontwikkeling waarin competenties gerecombineerd kunnen worden tot

producten. Het model beschrijft hoe een economie die steeds meer competenties

verzamelt, een toenemende variëteit van steeds complexere producten maakt, die

onderling gerelateerd zijn. Het model wordt vervolgens uitgebreid door te stellen dat

naarmate een economie zich ontwikkeld, de simpele producten op den duur niet meer

geproduceerd kunnen worden, bijvoorbeeld omdat ze niet waardevol genoeg zijn en

de lonen te hoog liggen. Dit leidt op een bepaald moment in de ontwikkeling van

een land tot een afname van het aantal producten dat een land kan maken. Dit is

consistent met een empirische regulariteit die bekend staat als de ”hump”, waarin de

meest ontwikkelde landen juist een afname zien van de variëteit aan producten die ze

maken.

Hoofdstuk 7 bouwt voort op het model uit hoofdstuk 6 en breidt het model uit door

te stellen dat een economie naast het ontwikkelen van extra competenties ook in

staat moet zijn om competenties te combineren tot complexe producten, bijvoorbeeld

door middel van instituties, regelgeving en bedrijven. Dit kan gezien worden als een

goed functionerend innovatiesysteem. Het verzamelen van specifieke competenties

daarentegen kan bewerkstelligd worden door industrieel beleid in bepaalde domeinen.

In dit hoofdstuk worden deze twee beleidskeuzes tegen elkaar afgewogen, met de

conclusie dat het voor ontwikkelde economieën meer kan lonen op in te zetten op een

goed functionerend innovatie systeem dan industrieel beleid te voeren.

In de conclusie reflecteer ik op de methodologische hoofdstukken in dit proefschrift

en bespreek ik hoe ze met elkaar in verband staan binnen een informatie-theoretisch

raamwerk, en hoe de maten gegeneraliseerd zouden kunnen worden voor gebruik in



Nederlandse samenvatting 229

multivariate analyses. Ook bespreek ik andere technieken die gebruikt zouden kun-

nen worden bij het kwantificeren van competenties uit economische data. Daarnaast

bespreek ik hoe het simpele model dat in hoofdstuk 6 gepresenteerd is uitgebreid

zou kunnen worden om tot een meer complexere en realistische beschrijving van de

economie te komen, bijvoorbeeld door de structuur op te leggen aan hoe competenties

gecombineerd kunnen worden tot producten.
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