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Introduction

Parts of this thesis are based on joint work; Chapter 2 is joint with F. Presas, and
Chapter 3 is joint with A. del Pino.

Differentiable manifolds are topological spaces which can be studied using the tools
of calculus. We can derive/integrate functions and consider objects such as distri-
butions, allowing us to define and study differential equations. The notions used to
define differential equations are infinitesimal in nature, making them relatively easy
to manipulate using algebraic methods. On the other hand their solutions usually
reflect the global properties of the manifolds. Exploiting this interaction between
local (infinitesimal) and global (topological) turns out to be extremely fruitful.

We apply this philosophy to the study of geometric structures, and in particular their
topological properties. There are many interesting questions one usually poses in this
setting. Some of the most fundamental ones are:

• Which manifolds admit a geometric structure of a given type?

• Can we classify all geometric structures of a given type on a fixed manifold?

• Does the existence of a structure of type A imply the existence of a structure
of type B?

More often than not, such questions are surprisingly hard to answer. And, more
importantly, trying to answer them provides many interesting insights.

In this thesis we restrict ourselves to two particular types of geometric structures:
contact structures and codimension-one symplectic foliations (a very special kind of
Poisson structure). The motivating question is:

What is the interaction between contact structures
and codimension-one symplectic foliations?

Before examining what makes this question interesting, let us briefly discuss the
definition of these structures. A hyperplane distribution ξ on a manifold M is a
collection of codimension-one subspaces of the tangent space

ξp Ă TpM, p PM,

v
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depending smoothly on p. The class of all distributions is too large to study at once.
To select smaller classes we impose additional conditions in terms of the curvature of
the distribution. To be precise, the curvature is a map cξ : ξˆ ξ Ñ TM{ξ, which is
defined in terms of the Lie bracket by the formula:

pX,Y q ÞÑ rX,Y smod ξ, @X,Y P Γpξq.

We can think of it as the derivative of the distribution. There are two conditions on
the curvature (or “differential relations”) whose solutions are particularly interesting:

• A (codimension-one) foliation is a hyperplane distribution whose curvature is
zero. A famous theorem of Frobenius states that a foliation induces a partition
of M into (smooth, immersed, codimension-one) submanifolds, called the leaves
of the foliation. Moreover, the decomposition locally looks like the decomposi-
tion

Rn “
ď

zPR
Rn´1 ˆ tzu,

where each copy of Rn´1 is a leaf.

Since the leaves are manifolds they can be endowed with additional structure.
A symplectic structure on a manifold M is a differential form ω P Ω2pMq
which is closed and non-degenerate. That is, it satisfies:

dω “ 0, ωn :“ ω ^ ¨ ¨ ¨ ^ ω ‰ 0,

where dω denotes the de Rham differential, and the dimension of M equals 2n.
A symplectic foliation (or SF-structure for short) is a pair pF , ωq. It consists
of a foliation F , together with a leafwise symplectic form ω P Ω2pFq. Note that
a symplectic structure on a surface is the same thing as an area form. Hence,
for (oriented) 3-manifolds any orientable foliation is automatically symplectic.

• A contact structure is a hyperplane distribution ξ for which the curvature
is maximally non-degenerate. This means that it is “as far away from zero as
possible”. If TM{ξ is trivial (which we usually assume) then the curvature
can be interpreted as a differential form cξ P Ω2pξq and the non-degeneracy
condition is equivalent to:

(1) cnξ ‰ 0,

where the dimension of M is 2n` 1.

Equation 1 is one of the reasons why we consider foliations with leafwise symplectic
structures. It implies that if a distribution ξ is contact, then the curvature defines a
non-degenerate 2-form ω P Ω2pξq. On the other hand, for a foliation the curvature
vanishes. So, to save the analogy with the contact case we impose the existence of a
leafwise non-degenerate form.

Thus, in some sense contact structures and (symplectic) foliations are complete op-
posites. However, they turn out to be more similar than their definition suggests.
For example:
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• They have the same underlying “algebraic structure”. For simplicity (although
it is not necessary) let us only consider distributions ξ for which TM{ξ is
trivializable. For any such distribution there exists a nowhere vanishing form
α P Ω1pMq such that ξ “ kerα.

With this, an SF-structure can be encoded in a pair pα, ωq P Ω1pMq ˆ Ω2pMq
satisfying:

α^ ωn ‰ 0, α^ dα “ 0, α^ dω “ 0.

Similary, a contact structure may be interpreted as a pair pα, ωq P Ω1pMq ˆ
Ω2pMq satisfying:

α^ ωn ‰ 0, dα “ ω.

Although the equations involving the de Rham differential are different, in both
cases we have a pair pα, ωq satisfying the equation:

(2) α^ ωn ‰ 0.

Thus, the underlying algebraic equations (i.e. the ones not involving the differ-
ential) are identical. As a consequence, both structures have the same “formal
obstructions” to their existence.

• Both structures have no local invariants. Let px1, y1, . . . , xn, yn, zq denote Eu-
clidean coordinates on R2n`1. Any contact manifold is locally isomorphic to

´

R2n`1, α :“ dz `
ÿ

xidyi

¯

,

while any SF-manifold locally looks like
´

R2n`1, α :“ dz, ω :“
ÿ

dxi ^ dyi

¯

.

On the other hand, non-isomorphic contact (and SF) structures on the same
manifold do exist. So, they have global properties distinguishing them.

The local models above demonstrate another interesting phenomenon. On
R2n`1 consider the 1-parameter family of pairs:

(3) αt :“ dz ` t
ÿ

xidyi, ωt :“
ÿ

dxi ^ dyi, t P r0, 1s.

Observe that pαt, ωtq satisfies Equation 2 for all t P r0, 1s. Furthermore, α1

coincides with the local model for contact structures (and ω1 “ dα1) while
pα0, ω0q equals the one for SF-structures. Hence, the local models can be de-
formed into each other. Moreover, the deformation is contained in the space of
pairs satisfying Equation 2.

• Many interesting manifolds that admit an SF-structure also admit a contact
structure, and vice versa. Even more, constructions which are almost immediate
on one side often become highly non-trivial on the other side.

For example, given an SF-manifold pM,F , ωq we can take the product:

´

M ˆ S2, rF :“ F ˆ S2, rω :“ ω ` ωS2
¯

,
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where ωS2 denotes the area form on S2. To be precise, rF is the product foliation,
whose leaves are Lˆ S2 with L a leaf of F . On the other hand, given a contact
manifold pM, ξq it is highly non-trivial to show that M ˆ S2 admits a contact
structure. The proof can be found in a paper by Bowden, Crowley and Stipsicz
[19].

An example in the other direction is given by the (odd-dimensional) spheres.
Let px1, y1, . . . , xn, ynq denote Euclidean coordinates on R2n. The restriction of
the form

(4) α :“
ÿ

xidyi

to the unit sphere S2n´1 Ă R2n defines a contact form. Thus, all spheres are
contact manifolds. The analogous question for SF-structures is still (mostly)
open. The only spheres which are known to have SF-structures are S3 as shown
by Reeb [100], and S5 as shown by Mitsumatsu [89].

Another interesting parallel is that when constructing symplectic foliations,
there is often a natural contact structure around. For example, the contact
structure from Equation 4 plays an important role in Mitsumatsu’s construction
on S5. An example in the opposite direction is given by the main result of [54].
It states that for any 4-manifold M the product M ˆ S1 is contact. The key
obsevation is that the product can be obtained as a gluing:

M ˆ S1 “ pW1 ˆ S1q Y pW2 ˆ S1q,

where pWi, ωiq, i “ 1, 2 is a symplectic manifold with boundary. Thus each of
the pieces is naturally a SF-manifold, whose foliation equals

Fi :“
ď

zPS1
Wi ˆ tzu,

and with leafwise symplectic form ωi.

In conclusion, although their definitions are “opposite” there exist many parallels
between contact structures and symplectic foliations. This interaction/duality is an
interesting subject of study on its own. Furthermore, it provides, at least on an
intuitive level, a dictionary to translate between the two worlds. We expect this can
be used as a tool to answer questions on one side using results from the other.

The thesis is divided into three chapters, each approaching the main question from a
different perspective. Below we briefly illustrate these approaches.

I. Constructions

Arguably the most fundamental question to answer about any geometric structure is
that of its existence. A classical theorem by Martinet [82] states that any 3-manifold
admits a contact structure. The proof is based on a result by Lickorish [76] saying
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that any 3-manifold can be obtained from S3 (which is contact) by surgery along a
codimension-2 submanifold B. That is, any 3-manifold M can be decomposed as:

(5) M “ pB ˆ D2q Y pS3zBq.

Each of the components is a contact manifold and they can be glued (in a non-trivial
way) to obtain a contact structure on M .

This motivates the definition of an open book decomposition of a manifold M . It
consists of two pieces of data:

• A codimension-2 submanifold B ĂM , called the binding.

• A fibration on the complement of B, π : MzB Ñ S1, whose fibers are called the
pages.

The picture to have in mind is that of a book “opened so far that the front and back
cover touch”. This data satisfies certain compatibility conditions (precise details are
given in Definition 1.9.2) that allow us to recover M as a gluing

M “
`

B ˆ D2
˘

Y pMzBq.

Improving on Marinet’s result, Giroux showed that there is a 1-1 correspondence
between open books and contact structures:

Classic Result 1 ([57]). Let M be a compact oriented 3-manifold. Then there is a
1-1 correspondence between contact structures on M (up to isotopy) and open book
decompositions of M (up to positive stabilization).

Even though this result is 3-dimensional in nature, it has had a marked influence on
the study of higher dimensional manifolds. For example, open books have been used
to obtain contact structures on circle bundles [32] and simply connected 5-manifolds
[107]. Later, using a different set of techniques called h-principles, the existence (and
part of the classification) question has been answered in all dimensions [36, 15].

On the side of SF-structures much less is known. The first non-trivial example was
given by Reeb [100] who showed that S3 admits a (symplectic) foliation. His argument
uses that the sphere is the union of two solid tori

S3 “ pS1 ˆ D2q Y pD2 ˆ S1q.

Each solid torus has an obvious foliation by disks, however they do not match along
the common boundary. Hence, we apply a trick to glue them; we change each folia-
tion by ”spinning the leaves along the S1-direction” so they become tangent to the
boundary. This procedure is called turbulization. The upshot is that both foliations
have the boundary torus as a leaf and thus can be glued. The resulting foliation on
S3 is called the Reeb foliation.

Following these ideas, Lawson constructed foliations on S5 and S2k`3 for k ą 1.
Later, Thurston showed that a compact manifold admits a foliation if and only if
its Euler characteristic vanishes. Unlike the 3-dimensional case these foliations are
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S1

D2

Turbulize

Figure 1: The foliation by disks on the solid torus S1 ˆ D2, before and after turbu-
lization.

not automatically symplectic. Constructing leafwise symplectic forms is an intricate
problem, depending heavily on the topology of the leaves. The main issue is that
constructing symplectic structures (in the non-foliated case) is already difficult. In
[89] Mitsumatsu proved that the Lawson foliation on S5 admits a leafwise symplectic

form. However, it can be shown that the Lawson foliations on S2k`3, k ą 1, can-
not be made symplectic. Thus the existence question remains open for the higher
dimensional spheres.

In Chapter 1 we focus on the construction of symplectic foliations and contact struc-
tures. Motivated by the above ideas we try to construct them by decomposing man-
ifolds into smaller pieces. This approach requires a good understanding of gluing
constructions for contact/SF- manifolds with boundary.

To this end we start by studying the behaviour of these structures near the bound-
ary. We distinguish several special types of boundaries, analogous to the well-known
contact/cosymplectic boundaries of symplectic manifolds. Furthermore, we obtain
explicit normal forms and use them to describe general gluing constructions. Let us
elaborate; consider a SF-structure pF , ωq on a manifold M with boundary. If F is
transverse to the boundary then the restriction

FB :“ F X TBM, ωB :“ ω|FB ,

is again a foliation, called a B-SF structure. Note that the leafwise 2-form ωB is still
closed, but now has 1-dimensional kernel since the leaves of FB are odd-dimensional.
This is equivalent to the existence of a foliated form β P Ω1pFBq such that β^ωn ‰ 0
on the leaves of FB. We call β an admissible form for the B-SF structure pFB, ωBq.
This data defines an SF -manifold called the local model associated to pFB, ωB, βq:

`

p´ε, 0s ˆ BM, p´ε, 0s ˆ FB, ωB ` dptβq
˘

,

where t P p´ε, 0s denotes the interval coordinate.
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Theorem (1.5.12). Let pM,F , ωq be a symplectic foliation transverse to the (com-
pact) boundary BM . For any choice of admissible form β there is a neighborhood of the
boundary on which pF , ωq is isomorphic to the local model associated to pFB, ωB, βq.

The analogous statement for contact structures in given in Theorem 1.3.26.

On the other hand we have symplectic foliations which are tame at the boundary; this
means that the boundary BM is a leaf of F , and that both F and ω are “constant
around the boundary”. Such SF-structures are particularly convenient for gluing
constructions. We adapt the classical turbulization construction to the setting of
symplectic foliations. This allows us to change transverse boundaries into tame ones.

Theorem (1.7.32). Let pF , ωq be an SF-structure on M , transverse to the boundary
and with induced B-SF structure pFB, ωBq. Suppose that FB can be defined by a closed
1-form (i.e. is unimodular). Then, given any symplectic extension rωB P Ω2pBMq of

ωB, there exists an SF-structure p rF , rωq on M satisfying:

(i) p rF , rωq is tame at the boundary, and the induced symplectic form on the boundary
leaf equals rωB;

(ii) p rF , rωq agrees with pF , ωq away from the boundary.

Putting the normal forms and turbulization procedure together we build contact and
SF-structures on open book decompositions. In both cases the arguments are ex-
tremely similar. In fact, we show that under suitable conditions both structures can
be constructed simultaneously, and even “deformed” (as in Equation 3) into each
other.
We provide a general statement (Theorem 1.8.14) which applies to any (closed, ori-
ented) 3-manifold and S5. This recovers the (existence) result of Mitsumatsu [89], as
well as (deformation) results by Mori [92] and Etnyre [48].

Theorem (1.9.1). The Lawson foliation on S5 admits a leafwise symplectic form, and
the resulting symplectic folation can be deformed (in the sense of Definition 1.8.1) into
a contact structure.

II. Convergence of contact structures

We have seen in Equation 3 that the local models for contact and SF-structures can
be deformed into each other. To give another example of this phenomenon let px, y, zq
denote angular coordinates on the torus T3 and define:

αt :“ dz ` t psinpzqdx` cospzqdyq , ωt :“ dx^ dy, t P r0, 1s.

This pair satisfies Equation 2 for all t, and α1 is a contact form while pα0, ω0q defines
a symplectic foliation.

The existence of such deformations is no coincidence. It turns out that, at least
in dimension 3, almost any foliation can be approximated by contact structures. A
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hyperplane distribution ξ :“ kerα on an oriented 3-manifold is called a confolation
if it satisfies

(6) α^ dα ě 0,

where, the sign is defined with respect to the orientation on M . This notion was
first introduced by Eliashberg and Thurston [47], and provides a natural framework
to compare contact structures (α ^ dα ą 0) and symplectic foliations (α ^ dα “ 0).
Their main theorem states the following:

Classic Result 2 ([47]). Any (symplectic) foliation on a closed oriented 3-manifold,
different from the foliation by spheres:

F :“
ď

zPS1
tzu ˆ S2

on S1 ˆ S2, can be (C0-) approximated (Definition 2.2.17) by contact structures.

Usually the limit foliation and the approximating sequence of contact structures are
closely related. For example, sometimes the approximating contact structure is unique
up to some suitable notion of equivalence [111], or the topological properties of the
limit foliation are reflected in those of the sequence [110].

It is clear from the definition (Equation 6) that the theory of confoliations is purely
3-dimensional. In Chapter 2 we follow the same philosophy to study the relationship
between contact structures and (symplectic) foliations in higher dimensions. This
chapter is based on joint work with F. Presas. We define several notions of defor-
mation, and study their relationship through explicit examples. For instance, we
consider linear deformations ξt, t P r0, 1s, of a foliation F . By this we mean that
ξ0 “ F , ξt is contact for t ą 0 and d

dtξt, does not depend on t.

One interesting aspect of our discussion is that conformal symplectic foliations natu-
rally show up in several places. To illustrate this, recall that a symplectic structure
consists of a differential form ω P Ω2pMq satisfying

ωn ‰ 0, dω “ 0.

A conformal symplectic structure is a mild generalization of this, replacing the
second condition by

dω ` ν ^ ω “ 0,

where ν P Ω1pMq is some closed 1-form. We have:

Theorem (2.2.13). A (co-oriented) foliation F can be linearly deformed (Definition
2.2.5) into a contact structure if and only if it admits an exact leafwise conformal
symplectic structure.

Another focus of the chapter is the search for foliations that cannot be approximated
(or deformed into) contact structures. By Classic Result 2 only one such foliation
exists in dimension-3. It turns out that in higher dimensions there are many foliations
with this property. This can be seen using a special kind of submanifold:



xiii

Definition (2.4.4). Let pM,F , ωq be a symplectic foliation. A submanifold N Ă M
is called an almost CS-submanifold if the restriction

pF |N , ω|N q ,

defines a symplectic foliation on N .

The definition implies that if ξ approximates pF , ωq, then the restriction ξ|N approx-
imates pF |N , ω|N q. Thus, if the SF-structure pF |N , ω|N q cannot be approximated
then the same holds for pF , ωq. Together with Classical Result 2 this implies:

Theorem (2.4.9). If a (conformal) symplectic foliation pF , ωq on M contains S1ˆS2

(foliated by spheres) as an almost CS-submanifold, then it cannot be approximated by
contact structures.

For instance, given a symplectic manifold pM,ωM q, the symplectic foliation on S1 ˆ

S2 ˆM defined by:
˜

F :“
ď

zPS1
tzu ˆ S2 ˆM, ω :“ ωS2 ` ωM

¸

,

cannot be approximated by contact structures. We also show that (in dimension at
least 7) the existence of a “formal” almost CS-submanifold S1 ˆ S2 is an obstruction
to approximate by contact structures.

In light of these examples one may ask if the presence of S1ˆS2 is the only obstruction
to approximation. A substantial part of the chapter is devoted to answering this
question. Our result is stated as follows:

Theorem (2.5.38). There exists a conformal symplectic foliation on S3 ˆ T2 which
does not contain an almost CS-submanifold isomorphic to S1 ˆ S2 and cannot be
approximated by contact structures.

The proof is based on the clutching construction for contact fibrations. Consider a
fibration π : M Ñ S2, with fiber F . We can decompose the base as the gluing of
two disks, the north and south hemisphere. The restriction of the fibration to each
of the disks is trivial (since D2 is contractible). Therefore, the fibration is completely
encoded in the transition function

φ : S1 Ñ DiffpF q.

The classical clutching construction states that this procedure yields a 1-1 correspon-
dence between fibrations π : M Ñ S2 with fiber F (up to isomorphism) and loops of
diffeomorphisms φ : S1 Ñ DiffpF q (up to homotopy).

Taking this idea to the contact setting, contact structures on the total space of a
fibration correspond to loops of contactomorphisms satisfying a certain condition
called positivity. On one hand it is known that there are contact manifolds which do
not admit any positive loops. On the other hand we show that for some foliations,
any approximating contact structures would induce a positive loop. Combining these
facts we obtain the desired family of (conformal sympletic) foliations on S3ˆT2 that
cannot be approximated by contact structures.
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III. Wrinkling h-principles

Let us go back to the similarities between contact and SF-structures. We have seen
in Equation 2 that both structures have the same “formal structure”. This statement
can be made precise using the framework of h-principles.

The h-principle (short for homotopy principle) is a collection of techniques to study
the solution space of a given (partial) differential equation. More precisely, we are
interested in describing the homotopy type of the space of solutions, thus explaining
the name. The idea is that a differential equation defines an underlying algebraic
equation. Any solution of the former must in particular satisfy the latter. As a
concrete example, consider the equation

(7) m
d2f

dt2
` kf “ 0,

where f : R Ñ R is a function, and m, k P R are fixed constants. By replacing d2f
dt2

by an independent function g : RÑ R we obtain

(8) mg ` kf “ 0.

This equation is purely algebraic, i.e. it does not involve taking derivatives. Secondly,
any solution of Equation 7 induces a solution of Equation 8 (which we call a formal

solution) by setting g “ d2f
dt2 .

Rather surprisingly there are quite general conditions under which the existence of
formal solutions implies the existence of genuine solutions. More abstractly, given a
(partial) differential relation R, there is an inclusion:

ι : SolpRq ãÑ Solf pRq,

where Solf pRq denotes the space of formal solutions of R. Note that Solf pRq is just
the space of sections whose image lies in R. We say that R satisfies the (full) h-
principle if the above inclusion is a homotopy equivalence (and thus, in particular,
induces an isomorphism on homotopy groups). For instance, surjectivity in π0 means
that any formal solution is homotopic to a genuine solution.

This perspective was first described by Gromov [60], and popularized by Eliashberg
and Mishachev in [43]. One of the main classical tools to establish h-principles is the
“holonomic approximation theorem”, which can be found in [60, 43]. It implies that
if both the differential relation R, and the manifold M (on which we want to solve R)
are open then the h-principle holds. The idea of the proof is to exploit the fact that
solutions always exist locally. Moreover, being open implies that the manifold has a
large region without any topology. By utilizing this “extra space” we can turn local
solutions into global ones, establishing an h-principle. Using holonomic approxima-
tion it follows almost immediately that the h-principle for contact structures holds
on open manifolds. The same techniques have been used for symplectic foliations on
open manifolds [12, 49].

On closed manifolds these techniques break down and one needs a different approach.
The so called wrinkling technique, introduced by Eliashberg and Mishashev in [40,
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42, 41], is particularly suitable in this setting. The idea is that solutions become more
flexible once allowed to have mild singularities. In other words, singularities allow
us to “create the extra space” which is already present on open manifolds. A good
analogy to have in mind is that if one wants to store a large piece of fabric (a solution)
in a small box (a closed manifold) one needs to fold it (introduce singularities).

To turn wrinkled solutions into honest ones the singularities have to be resolved.
Whether this is possible or not depends on the properties of R, and in general only
part of the solutions can be obtained this way. This gives a division of SolpRq into
two classes, a “flexible” one satisfying the h-principle, and a “rigid one”, closely re-
flecting the topology of the underlying manifold. The prototypical example is the
dichotomy between tight and overtwisted contact structures; a contact structure is
called overtwisted if it contains a certain local model (around a disk) and tight oth-
erwise. The latter are usually classified on a case by case basis, while overtwisted
contact structures have been shown [36, 15] to satisfy the h-principle also on closed
manifolds.

The third chapter is based on work in progress with A. del Pino. We study the h-
principle technique of wrinkling in the setting of jet spaces. Given a (fiber) bundle
over a manifold π : X Ñ M , the r-th jet bundle JrpXq Ñ M is the space of r-th
order derivatives of sections of X. For a more concrete description consider a function
f : R Ñ R (i.e a section of the trivial bundle π : R2 Ñ R). Its r-order jet at a point
t P R, denoted by jrt f , is the tuple

ˆ

t, fptq,
df

dt
ptq, . . . ,

drf

dtr
ptq

˙

.

The space of all such tuples, where we think of the derivatives as independent vari-
ables, is precisely the jet space JrpR2q.

In general, given a section σ of JrpXq there does not exist a section s P ΓpXq such
that σ “ jrs. When such an s exists, σ is called holonomic. This can be detected
using the Cartan distribution ξcan on JrpXq. It is uniquely defined by the property
that a section is holonomic if and only if it its image is tangent to ξcan.

Our aim is to apply wrinkling techniques to prove an h-principle for integral sub-
manifolds of the Cartan distribution. To describe the formal data of an integral
submanifold we introduce the integral Grassmannian of jet spaces Grintegralpξcan, lq.
It is the space of l-dimensional subspaces of ξcan. Given an integral submanifold
f : N Ñ JrpXq there is an associated Gauss map:

Grpfq : N Ñ Grintegralpξcanq,

mapping a point x P N to the integral element pdfqxpTxNq Ă ξcan,fpxq. Understand-
ing this space and its homotopy type is crucial in the study of integral submanifolds.
Although a full description is still out of reach, we describe the homotopy type of
part (the so called Σ2-free part) of this space in Section 3.5.

Roughly speaking, an r-times differentiable multi-section (Definition 3.6.2) is a
smooth map f : N Ñ JrpX Ñ Mq which is graphical over M on an open and dense
set, and whose non-graphical part consists of mild singularities with respect to the
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projection π : JrpXq Ñ M . Thus, images of holonomic multi-sections are special
examples of integral submanifolds of the Cartan distribution. As a first step towards
a general h-principle, we prove an analogue of the holonomic approximation theorem:

Theorem (3.8.2). Let σ : M Ñ JrpX ÑMq be an arbitrary section. Then, for any
ε ą 0, there exists a map f : M Ñ JrpX ÑMq satisfying:

• f is a holonomic multi-section with fold singularities (in zig-zag position);

• |f ´ σ|C0 ă ε.

An immediate consequence is that singular (i.e. folded) solutions always exist if R
is open (even if M is closed). Although the above result only states existence, an
inspection of the proof should convince the reader experienced in h-principles that a
parametric and relative (both in domain and parameter) version also hold.

Our proof exploits the fact that, just like functions, multi-sections can in some sense
be differentiated/integrated. As such they can be manipulated through their images
under certain projections. A familiar example is given by pJ1pR2 Ñ Rq, ξcanq, which
is isomorphic to R3 endowed with the standard contact structure. Under this identi-
fication integral submanifolds correspond to Legendrian knots. In contact geometry
one usually studies these knots through their Lagrangian projection. In particular, it
is well-known that a knot can be recovered from its image.

In Section 3.6 we define the analogue of the Lagrangian projection in the setting of jet
spaces, and show that it provides a convenient way of manipulating multi-sections.
For instance we show (Proposition 3.6.28) that any (Σ2-free) integral map can be
recovered from its image under this projection.
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1.1 Overview

In this chapter we consider constructions of contact structures and symplectic fo-
liations. The constructions we have in mind consist of breaking a manifold into
(simpler) pieces, building a geometric structure on each of these pieces, and finally
glueing them back together. The main example to have in mind is that of an open
book decomposition (whose definition we recall in Appendix 1.9).

We start by studying boundaries of manifolds with a geometric structure. Then we
use this understanding to obtain gluing constructions. The prototypical example is
that of a symplectic manifold with boundary, which we discuss in the Section 1.2. It is
well known that symplectic manifolds satisfy a normal form around their boundaries.
Moreover, this local model depends only on the induced structure on the boundary.
Hence, two symplectic manifolds can be glued if their boundaries (together with
the induced structure) matches. Furthermore, there are special types of boundaries
(contact type and cosymplectic type) with interesting properties, and for which the
local model becomes particularly simple. Using the symplectic case as inspiration,
Section 1.3 though Section 1.5, contains the analogous discussion in the setting of
contact structures and symplectic foliations.

The main difference with symplectic structures is that there is a difference between
a contact structure (resp. symplectic foliation) and the choice of contact form repre-
senting it. Given a nowhere vanishing form α P Ω1pMq its kernel defines a distribution

ξ :“ kerα Ă TM,

in which case we say that ξ is represented by α. There are many forms representing
the same distribution, and their properties can differ a lot. Although working on
the level of structures is conceptually cleaner, many of the constructions depend on
particular choices of forms. Hence, we treat both viewpoints separately; In Section
1.3 (resp. Section 1.5) we consider contact structures (resp. symplectic foliations),
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and in Section 1.4 (resp. Section 1.6) we consider contact forms (resp. symplectic
foliation pairs). The main results in these sections are Theorem 1.3.26 and Theorem
1.5.12 giving explicit normal forms for contact structures and (transverse) symplectic
foliations around the boundary.

In general, the position of a (symplectic) foliation relative to the boundary is too
wild to obtain normal forms. Hence we restrict ourselves to foliations which are
everywhere transverse to the boundary, or are “tame” and have the boundary as a
leaf. In Section 1.7 we study the classical turbulization construction in the setting of
symplectic foliations. This procedure changes a foliation transverse to the boundary
into one which is tame at the boundary. The precise statement is given in Theorem
1.7.31.

As remarked before, boundaries of contact and symplectically foliated manifolds, as
well as their respective gluing constructions, display many similarities. In fact, we
discuss in Section 1.8 that sometimes it is possible to construct both structures at
the same time. We show that given a suitable open book decomposition the manifold
carries both a contact structure and a symplectic foliation. Moreover, these struc-
tures can be deformed into each other. The precise statement is given in Theorem
1.8.6. The hypotheses of the theorem are always satisfied for 3-dimensional manifolds
(Corollary 1.8.11). Moreover, in Section 1.9 we apply our construction to S5 (The-
orem 1.9.1). In particular, we recover the symplectic foliation on S5 constructed by
Mitsumatsu [89].

1.1.1 Conventions

Throughout the text we will always assume all manifolds are oriented, unless explicitly
stated otherwise. Given an oriented manifold M , we denote by M the same (smooth)
manifold endowed with the opposite orientation. Furthermore, we use the following
orientation convention:

For any (geometric) structure that induces an orientation,
the induced orientation is assumed to match that of the un-
derlying manifold.

For example, if ω is a symplectic form on M , as in Definition 1.2.1, then we require
the induced volume form to be positive with respect to the orientation on M , that is:

ωn ą 0.

Similarly, for a contact form α P Ω1pMq, as in Definition 1.3.6, we require:

α^ dαn ą 0.

Following the same philosophy, the product of two oriented manifolds is endowed with
the product orientation. More precisely, if ΩM and ΩN are positive volume forms on
M and N respectively, then we declare

ΩMˆN :“ ΩM ^ ΩN ą 0,



4 CHAPTER 1. CONSTRUCTIONS

to be a positive volume form on M ˆ N . Furthermore, the boundary BM of an
oriented manifold M is oriented using the ”outward normal first” convention. That
is, if ΩM is a positive volume form, and X P XpMq a vector field pointing outwards
along the boundary then we declare

pιXΩM q |BM ą 0,

to be a positive volume form on the boundary. Even more explicitly this means that
a manifold with boundary has coordinate charts modeled on the left half space

tpx1, . . . , xnq P Rn | x1 ď 0u Ă Rn,

so that given an oriented boundary chart pU, x1, . . . , xnq on M , an oriented chart on
BM is given by pU X BM,x2, . . . , xnq.
For example, the products r0, 1qˆBM and p´1, 0sˆBM , which model a collar neigh-
borhood of the boundary, are both oriented using the (positive) volume form dt^ΩBM ,
where ΩBM is a positive volume form on BM . In the first case an outward normal is
given by ´Bt, so its boundary equals BM , oriented by ´ΩBM . In the second case an
outward normal is given by Bt so the boundary equals BM , oriented by ΩBM . Unless
stated otherwise we will parametrize a collar neighborhood of the boundary as:

U » p´1, 0s ˆ BM.

1.2 A source of inspiration: Symplectic structures
and their boundaries.

In this section we consider symplectic manifolds and their boundaries. We describe
the structure induced on the boundary of a symplectic manifold. A neighborhood
of the boundary is completely determined by this structure, giving rise to a normal
form. In turn this normal form allows us to glue symplectic manifolds along their
boundaries. These results are well known, see for instance [86], but we recall them for
completeness and as a source of inspiration for the discussion in subsequent sections.

1.2.1 Boundaries of symplectic manifolds

Let us start by recalling the definition and basic examples of symplectic manifolds.

Definition 1.2.1. A symplectic structure on a manifold M2n is a 2-form ω P
Ω2pMq satisfying

dω “ 0, ωn ą 0.

The existence of a symplectic form imposes strong topological restrictions on M . The
non-degeneracy of ω implies that M is even dimensional. Furthermore, if M is closed
all its cohomology groups of even degree must be non-zero. Indeed, since ω is closed it
defines a cohomology class rωs P H2pMq. If this, or any of its wedge powers, vanishes
we obtain an exact volume form. For closed symplectic manifolds this cannot happen.
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Example 1.2.2. Some of the basic examples of symplectic manifolds are:

• Euclidean space: Let px1, y1, . . . , xn, ynq denote the standard coordinates on
R2n. The 2-form

(1.2.1.1) ω :“
n
ÿ

i“1

dxi ^ dyi,

is called the standard symplectic structure. By the famous Darboux theorem
any symplectic structure locally looks like the standard one. In particular this
means that there are no local invariants, and the properties of symplectic struc-
tures are closely related to the topology of the underlying manifold.

• Orientable surfaces: For dimensional reasons any 2-form on a surface is
automatically closed. Thus any choice of volume form defines a symplectic
structure. In particular this means that the sphere S2 is a symplectic manifold.
Note that by the discussion above the spheres S2n for n ‰ 1, do not admit a
symplectic structure since their second cohomology groups are trivial.

• Tori: Let px1, y1, . . . , xn, ynq denote the standard angular coordinates on the
2n-dimensional torus T 2n. Then the same formula as in Equation 1.2.1.1 defines
a symplectic form. Observe that the standard symplectic structure on Euclidean
space is exact, which is possible since R2n is an open manifold. On the other
hand the standard symplectic structure on T2n is not exact as the torus is
closed.

• Cotangent bundles: Given any smooth manifold M , the cotangent bundle
T˚M caries a canonical exact symplectic structure whose primitive is the so
called tautological form λ P Ω1pT˚Mq. It is defined by the rule

(1.2.1.2) λα :“ α ˝ dπ, @α P T˚M,

where π : T˚M ÑM denotes the projection. In local coordinates pq, pq P T˚M ,
where q denotes the base, and p the fiber coordinates, we have:

λ “
n
ÿ

i“1

pidqi,

where dimM “ n. Cotangent bundles together with their symplectic structure
play an important role in the description of classical mechanics where they serve
as a model for the phase space of a particle.

• Products: The simplest way of producing new symplectic manifolds out of
old ones is by taking their product. Let pM1, ω1q and pM2, ω2q be symplectic
manifolds then

pM :“M1 ˆM2, ω :“ ω1 ` ω2q

is again a symplectic manifold.

4
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Given a symplectic manifold pM,ωq with boundary, the restriction ω|BM is still closed
but has a one dimensional kernel. This gives rise to the following definition:

Definition 1.2.3. A B-symplectic structure on a manifold N2n`1 is a 2-form
η P Ω2pNq satisfying

dη “ 0, dim ker η “ 1.

For the boundary of a symplectic manifold, the kernel of the B-symplectic form gets
paired nondegenerately with a line transverse to the boundary. More precisely, there
exists X P pMq, X&BM and Y P XpBMq such that

ωppX,Y q ą 0, @p P BM.

The line spanned by X is not determined by η but can be chosen. This corresponds
to the choice of a 1-form on N .

Definition 1.2.4. An admissible form for a B-symplectic manifold pN2n`1, ηq is
a 1-form θ P Ω1pNq satisfying

θ ^ ηn ą 0.

By a B-symplectic pair (or just B-pair) pθ, ηq we mean a B-symplectic structure
together with a fixed choice of admissible form.

Lemma 1.2.5. If pN2n`1, ηq is a B-symplectic manifold then the following hold:

(i) There exist admissible forms for η;

(ii) Given a fixed admissible form β there is a 1-1 correspondence between admissible
forms θ and pairs pf,Xq, with f P C8pNq strictly positive, and X P XpNq
satisfying X P kerβ, given by the formula:

θ “ fβ ` ιXη;

(iii) If N :“ BM and η :“ ω|BM for a symplectic manifold pM,ωq, then for any
X P XpMq such that X&BM pointing outwards,

θ :“ ιXω|BM

is an admissible form. Conversely, any admissible form is obtained this way.

Proof. (i) Locally, on an oriented coordinate chart pU, x1, . . . , x2n`1q we have

ηn “
ÿ

i

fidx1 ^ ¨ ¨ ¨ ^ xdxi ^ . . . dx2n`1,

where fi P C
8pUq are such that at each point of U at least one of them is

non-zero. Now, define

θU :“
ÿ

i

p´1qi`1fidxi,
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then
ηn ^ θU “

ÿ

i

f2
i dx1 ^ ¨ ¨ ¨ ^ dx2n`1 ą 0.

Next, choose an atlas U “ tUjujPJ on M , and tρjujPJ a partition of unity
subordinate to it. Construct θj as above on each Uj . Then the form

θ :“
ÿ

j

ρjθj ,

satisfies θ ^ ηn ą 0 globally on M .

(ii) It is easy to check that if β is admissible so is fβ ` ιXη. Conversely, assume θ
and β are both admissible forms, then there exists a strictly positive f P C8pNq
such that

ηn ^ θ “ fηn ^ β.

Let R P XpNq be in the kernel of η. By contracting the above equation with R
we find θpRq “ fβpRq. Therefore, θ ´ fβ vanishes on R, so there is a unique
X P kerβ (note that η|ker β is non-degenerate) such that

ιXη “ θ ´ fβ.

(iii) By assumption ωn ą 0 which implies ιXω
n|BM ą 0 if X P XpMq is pointing

outwards along the boundary. Hence θ :“ ιXω|BM is an admissible form for η
since:

θ ^ ηn “
1

n
ιXω

n|BM ą 0.

The second part of the statement follows immediately from part (ii).

Thinking of ker η as a subbundle of TN , we can consider the quotient bundle TN{ ker η,
which has a symplectic vector bundle structure induced by η. The choice of admissible
form corresponds to a splitting

TN “ ker η ‘ pTN{ ker ηq .

Observe that the orientations on N and TN{ ker η (induced by η) induce an orienta-
tion on ker η, and any choice of admissible form is compatible with this orientation.

Conversely, associated to each admissible form we have a special vector field spanning
ker η and compatible with the orientation:

Definition 1.2.6. The Reeb vector field associated to the admissible form θ is the
(unique) vector field R P XpNq satisfying

θpRq “ 1, ιRη “ 0.

Through the Reeb vector field the admissible form θ gives a decomposition of the
tangent bundle,

TN “ xRy ‘ ker θ,

into the kernel of η and a distribution on which η is non-degenerate.
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Definition 1.2.7. An admissible decomposition of a B-symplectic manifold pN, ηq
is a pair pR,Dq where R P XpNq spans the kernel of η, the subbundle D Ă TN defines
a splitting:

TN “ xRy ‘D,

and η|D is non-degenerate.

In fact, such a decomposition is equivalent to the choice of admissible form:

Lemma 1.2.8. Given an B-symplectic manifold pN, ηq there is a 1-1 correspondence
between admissible forms θ and admissible decompositions pR,Dq given by

θ ÞÑ pR, ker θq.

Proof. Given an admissible form θ, its Reeb vector field R and kernel D define an ad-
missible decomposition. Conversely, given an admissible decomposition pR,Dq there
is a unique differential form θ satisfying

ker θ “ D, θpRq “ 1.

It follows that θ is an admissible form for η.

1.2.2 Special types of B-symplectic manifolds

In many cases, the symplectic form has special behavior around the boundary, which
for the B-symplectic structure translates into the existence of an admissible form with
extra properties. The most important examples are:

Definition 1.2.9. A B-symplectic pair pθ, ηq on N2n`1 (Definition 1.2.3) is said to
be of:

• contact type if
dθ “ η;

• cosymplectic type if
dθ “ 0;

If a B-symplectic manifold pN, ηq has an admissible form θ of contact type, then
ξ :“ ker θ defines a contact structures on N . Similarly, if θ is of cosymplectic type
then pθ, ηq defines a cosymplectic structure, see Example 1.5.5.
Of course, there are more types of boundaries than the two above, which could be
called special. For example, we have a boundary of foliation type if

θ ^ dθ “ 0.

In this case, η is a globally closed 2-form which is non-degenerate on the leaves of the
foliation. In dimension 3 such foliations are called taut, while in higher dimensions
they are also called 2-calibrated, see [83].
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Definition 1.2.10. We say that a symplectic manifold pM,ωq has boundary of right
S-type (resp. left S-type), for S in the above list, if in some collar neighborhood
U » p´ε, 0s ˆ BM (resp. r0, εq ˆ BM) we have

ω “ η ` dptθq,

where pθ, ηq is a B-symplectic pair of S-type.

When we talk about boundary of S-type without specifying the side, we always
mean right S-type. The above names are meant to emphasize that we think of these
boundaries as the left and right boundaries of a cobordism as in Section 1.2.4.
By our conventions, the boundary of a collar of right S-type is oriented as BM , while
a collar of left S-type has oriented boundary BM . Since we require these orientations
to match the ones induced by the symplectic structure, the two types of boundaries
are usually not equivalent. For example, if the boundary is of contact type then our
definition of left/right boundaries coincides with the usual notions of concave/convex
boundary.

Remark 1.2.11. Below, see Theorem 1.2.16, we prove a normal form for boundaries
of symplectic manifolds. A consequence of this theorem is that the existence of an
admissible form of S-type automatically implies the boundary is of S-type. That is,
if pM,ωq is a symplectic manifold and the induced B-symplectic manifold pBM,ωBq
admits an admissible form θ of S-type, then Theorem 1.2.16 implies there is a collar
neighborhood of S-type conform definition 1.2.10. This makes precise our claim that
the admissible form encodes the behavior of ω on a neighborhood of the boundary. 4

Example 1.2.12. Let pM,ωq be a symplectic manifold endowed with a free Hamil-
tonian (left) S1-action and corresponding moment map µ : M Ñ R. For any c P R,
the symplectic manifold Měc :“ µ´1 prc,8qq has a smooth boundary Mc :“ µ´1pcq.
Moreover, the usual symplectic reduction, see [86], implies that the quotient manifold
inherits a symplectic structure

´

ĂMc :“Mc{S1, rω
¯

.

Since the action restricts to Mc, the quotient map defines (after changing to a right

action) a principal S1-bundle π : Mc Ñ ĂMc. It turns out that the topology of this
bundle determines the behavior of ω around the hypersurface Mc.

To see this, recall that for a principal S1-bundle π : P Ñ B, any connection form
θ P Ω1pP q satisfies

dθ “ π˚pσq,

for some σ P Ω2pBq called the curvature of θ. Moreover, the cohomology class
c1pP q :“ rσs P H2pB;Rq depends only on (the isomorphism class) of P , and is
referred to as the (real) Chern class of P .

Going back to our example, the infinitesimal vector field of the S1-action on Mc spans
the kernel of ω|Mc . Thus, any connection form θ P Ω1pMcq, is an admissible form for
the B-symplectic boundary of Mě0. It follows that the boundary of Měc is of:

• Cosymplectic type if the Chern class of Mc is zero;
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• Contact type if the reduced symplectic structure rω represents the Chern class
of Mc.

In Example 1.2.21 below we continue this example and use the above setup to describe
the symplectic cut construction. 4

Example 1.2.13. Let pM,ωq be a symplectic submanifold and pB,ωBq a codimension-
2 symplectic submanifold. The ω-orthogonal of TB provides a model for the normal
bundle

ν :“ TBω Ă TM |B ,

which inherits a fiberwise symplectic form ων . Hence, ν becomes a rank-2 symplectic
vector bundle and we can talk about its first Chern class, as explained below. Similar
to the previous example, we claim that B admits a neighborhood with a boundary
of:

• Cosymplectic type if the Chern class of pν, ωνq vanishes;

• Contact type if ωB represents the Chern class of pν, ωνq.

We recall the following facts:

(i) Any symplectic vector bundle admits a compatible fiberwise complex structure
J , and the space of such complex structures is contractible.

(ii) We define the first Chern class of a symplectic vector bundle pE,ωq as that
of pE, Jq where J is any choice of complex structure compatible with ω. For
any such choice, two symplectic vector bundles are isomorphic if and only if
they are isomorphic as complex vector bundles. Hence, the first Chern class of
pE,ωq is well-defined, and for rank-2 bundles it determines the bundle up to
isomorphism.

(iii) A neighborhood of a symplectic submanifold pB,ωBq in a symplectic manifold
pM,ωq is determined (up to isomorphism) by the symplectic form ωB and the
symplectic normal bundle pνB , ωνq.

(iv) There is a 1-1 correspondence between principal S1-bundles and complex line
bundle over B, by sending P to

P ˆS1 C :“ pP ˆ Cq{S1,

where the (right) S1-action on the product is defined by

(1.2.2.1) pp, zq ¨ λ :“ pp ¨ λ, λ´1zq, @p P P, z P C, λ P S1.

Moreover, if rσs P H2pBq is the Chern class of P ˆS1 C, then there exists a
connection form θ P Ω1pP q such that

dθ “ π˚σ.

In conclusion, we also have a 1-1 correspondence between rank-2 symplectic
vector bundles and principal S1-bundles.
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Going back to the example, let π : P Ñ B the principal S1-bundle corresponding
to the symplectic normal bundle of B. Furthermore, let θ P Ω1pP q be a connection
form satisfying dθ “ π˚σ, where rσs P H2pB,Rq is the Chern class of the symplectic
normal bundle. On P ˆ C we define the 2-form

(1.2.2.2) Ω :“ π˚pωB ´ σq ` d
`

p1` r2qθ ` r2dφ
˘

,

where pr, φq P C denote polar coordinates. Observe that Ω is basic with respect to the
S1-action from Equation 1.2.2.1 and descends to a symplectic form on the quotient

(1.2.2.3)
´

P ˆS1 C, rΩ
¯

.

Observe that the submanifold P ˆ t0u Ă P ˆ C is invariant under the S1-action and
hence defines a submanifold of the quotient PˆS1C Ă PˆS1C which can be identified
with B. Moreover, under this identification we have

rΩ|PˆS1C “ ωB ,

so that P ˆS1 C is a symplectic submanifold. To describe the induced symplectic
normal bundle observe that

νpBq “ νpP ˆ t0uq{S1 “ pP ˆ Cq{S1 “ P ˆS1 C,

since the induced S1-action on νpP ˆ t0uq is just the one from Equation 1.2.2.1.
Furthermore, the restriction

Ω|νpPˆt0uq “ 2rdr ^ dφ,

is invariant under the S1-action. Hence, the symplectic normal bundle to B equals:

pP ˆS1 C, 2rdr ^ dφq ,

which is compatible with the standard complex structure. This implies that its Chern
class is equal to that of P , which in turn equals that of the symplectic normal bundle
of pB,ωBq Ă pM,ωq. We conclude that a neighborhood of B in M , is isomorphic to
normal form of Equation 1.2.2.3.

A tubular neighborhood of B can be identified with P ˆS1 D2, which has boundary
P ˆS1 S1 » P , with the B-symplectic form

rΩB “ π˚pωB ´ σq,

for which θ is an admissible form. Thus, the boundary is of cosymplectic type if
rσs “ 0 and of contact type if rσs “ rωBs. In Example 1.2.22 below, we continue this
discussion to describe the Gompf connected sum for symplectic manifolds. 4

Going back to the main story, we observed in Remark 1.2.11 that the admissible
form encodes the behavior of the symplectic form around the boundary. In general
we need to invoke the normal form, Theorem 1.2.16, but for boundaries of contact
and cosymplectic type (Definition 1.2.9) this can be proven by elementary means.
Furthermore, in this cases the existence of special admissible forms can be detected
using vector fields.
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Lemma 1.2.14. Let pM,ωq be a symplectic manifold with boundary, and let ωB :“
ω|BM denote the induced B-symplectic form on BM . Then the following are equivalent:

(i) The symplectic form ω has boundary of right contact type (Definition 1.2.10);

(ii) The B-symplectic form ωB has an admissible form of contact type (Definition
1.2.9);

(iii) There exists a vector field X P XpMq, pointing outwards along the boundary and
satisfying

pLXωq |BM “ ω|BM ;

(iv) There exists a vector field X P XpMq, pointing outwards along the boundary and
a neighborhood U of BM satisfying

LXω|U “ ω|U .

Proof. Assuming that piq holds there exists a collar neighborhood U » p´ε, 0s ˆ BM
on which

ω “ d pp1` tqθq ,

for θ P Ω1pBMq satisfying dθ “ ωB. Since θ is admissible this immediately implies
piiq, and piiiq follows from taking X “ Bt. For pivq we take X “ p1` tqBt.

Next, assume that piiq holds, so there exists an admissible form θ of contact type. By
Lemma 1.2.5 it is of the form θ “ ιXω|BM for some vector field X P XpMq pointing
outwards along the boundary. Hence,

LXω|BM “ dιXω|BM “ dθ “ ω|BM ,

proving piiiq.

If piiiq is true, then we can use the vector field X to define a collar neighborhood
U » p´ε, 0s ˆ BM , and define

θ :“ ιXω|U P Ω1pUq.

Then both dθ and ω are closed forms on U whose restrictions to BM agree. This
implies they differ by an exact form which vanishes on the boundary, that is:

ω ´ dθ “ dβ,

for some β P Ω1pUq satisfying β|BM “ 0.
To see this, let µ P Ω2pUq be a closed form satisfying µ|BM “ 0. Then on the collar
neighborhood we can write

µ “ µt ` dt^ νt,

with µt P Ω2pBMq and νt P Ω1pBMq for t P p´ε, 0s. Since dµ “ 0 (and µ0 “ 0) it
follows that

µt “

ż t

0

dνs ds.
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In turn this implies that µ “ d
´

şt

0
νsds

¯

and the primitive vanishes on BM , proving

the claim. Using the non-degeneracy of ω there is a unique Y P XpMq

ιY ω “ θ ` β.

It is easy to check that LY ω|U “ ω|U and that it points outwards along the boundary.
proving pivq.

Finally assume pivq holds. We can use X to define a collar neighborhood U »

p´ε, 0s ˆ BM on which we identify X “ Bt and write:

(1.2.2.4) ω “ ηt ` θt ^ dt.

The condition LXω “ ω implies:

ηt “ etη, θt “ etθ,

for some η P Ω2pBMq and θ P Ω1pBMq. Together with dω “ 0 this means that

ηt “ 9ηt “ dθt “ dθ.

Finally, substituting these identities in Equation 1.2.2.4 and changing coordinates
s “ et ´ 1 around t “ 0 we obtain:

ω “ d pp1` sqβq ,

proving piq.

The analogous statement for boundaries of cosymplectic type is:

Lemma 1.2.15. Let pM,ωq be a symplectic manifold with boundary, and let ωB :“
ω|BM denote the induced B-symplectic form. Then the following are equivalent:

(i) The symplectic form ω has boundary of right cosymplectic type (Definition 1.2.10);

(ii) The B-symplectic form ωB has an admissible form of cosymplectic type(Definition
1.2.9);

(iii) There exists a vector field X P XpMq, pointing outwards along the boundary and
satisfying

pLXωq |BM “ 0;

(iv) There exists a vector field X P XpMq, pointing outwards along the boundary and
a neighborhood U of BM satisfying

pLXωq |U “ 0.

Proof. Assuming that piq is true, there exists a collar neighborhood U » p´ε, 0sˆBM
on which

ω “ η ` dt^ θ,
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for some θ P BM satisfying dθ “ 0. This immediately implies piiq, piiiq, and pivq hold.

Next, if piiq holds then there exists an admissible form θ of cosymplectic type and by
Lemma 1.2.5 it can be written as θ “ pιXωq |BM , for X P XpMq a vector field pointing
outwards along the boundary. Hence,

pLXωq |BM “ dιXω|BM “ dθ “ 0,

proving piiiq.

If piiiq holds then θ :“ ιXω|BM is a closed form on BM . Extend it to a closed form
on a collar neighborhood U (still denoted by θ), and define Y P XpUq by

ιY ω “ θ.

Then LY ω “ dθ “ 0, proving pivq.

Finally, if pivq is true, then we can identify X “ Bt on a collar neighborhood U »
p´ε, 0s ˆ BM and write

(1.2.2.5) ω “ ηt ` θt ^ dt,

with ηt P Ω2pBMq, θt P Ω1pBMq for t P p´ε, 0s. Then, LXω “ 0 implies 9ηt “ 0

and 9θt “ 0, so that ηt “ η and θt “ θ are independent of t. Thus, Equation 1.2.2.5
becomes:

ω “ η ` θ ^ dθ,

from which it is easily seen that θ is a closed admissible for ωB, proving piq.

1.2.3 Normal form around the boundary of symplectic mani-
folds

To prove normal forms around the boundary (or other types of submanifolds), we will
use the following general strategy. Let M be a manifold with boundary BM , endowed
with some geometric structure S . In this section S will be a symplectic structure,
and in the sections below a contact structure respectively a symplectic foliation.

Constructing a normal form for S breaks down in the following steps:

• Induced structure on BM : The first step is to identify what structure is
induced on the boundary by considering the restriction S |BM . The induced
structure is there canonically, without any choices, but forgets about the ”in-
formation in the direction transverse to BM”.

• Local model: Starting from pBM,S |BM q we build a local model pMloc,Slocq.
Since, in passing from S to S |BM we forgot some information, the construction
of Sloc usually involves some choices.

• Normal form: The final step is to prove a result saying that locally around
BM , there is an isomorphism

pM,S q » pMloc,Slocq,

and that, up to isomorphism, pMloc,Slocq is independent of the choices made
in the previous step.
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For a symplectic manifold pM,ωq the first step amounts to passing to the B-symplectic
manifold pBM,ω|BM q, as in Definition 1.2.3. The extra data needed for the second
step consists of a choice of admissible form as in Definition 1.2.4.

The local model can be defined for any B-symplectic manifold, not only the boundary
of a symplectic manifold. Given a B-symplectic manifold pN, ηq and an admissible
form θ, the local model is defined by:

`

p´ε, 0s ˆN, η ` dptθq
˘

,

which is symplectic for ε ą 0 small enough. Finally, in the symplectic case the normal
form is well known, see e.g. [86]. We recall the proof for completeness and as a source
of inspiration.

Theorem 1.2.16. For any symplectic manifold pM,ωq a neighborhood of its boundary
is isomorphic to the local model associated to pBM,ω|BM q.

In particular, up to isomorphism the local model does not depend on the choice of
admissible form. The proof of the theorem is a direct consequence of the following
more technical lemma:

Lemma 1.2.17. Let pM,ωq be a symplectic manifold with boundary and write η :“
ω|BM . Let θ P Ω1pBMq be any admissible form then there exists a collar neighborhood
of the boundary U » p´ε, 0s ˆ BM on which

ω “ η ` dptθq.

Proof. On a collar neighborhood U » p´ε, 0s ˆ BM of the boundary we can write

ω0 :“ ω “ ηt ` βt ^ dt, ω1 :“ η ` dptθq,

for ηt P Ω2pBMq, βt P Ω1pBMq and t P p´ε, 0s. Define a path of closed forms joining
ω0 and ω1 by:

ωs :“ p1´ sqω0 ` sω1.

Following the standard Moser trick, we look for an isotopy such that

φ˚sωs “ ω0,

so that φ1 provides the desired change of coordinates.

Since, ωs is closed and ω0|BM “ ω1|BM , it follows that

ω1 ´ ω0 “ dλ,

for some λ P Ω1pUq (see the proof of Lemma 1.2.14). Differentiating the above
equation we find

0 “
d

ds
φ˚s pωsq “ φ˚s pLXsωs ` 9ωsq “ φ˚sd pιXsωs ` λq ,

so it suffices to solve

(1.2.3.1) ιXsω “ ´λ.
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At points in the boundary we have

ωns “ np1´ sqdt^ β0 ^ η
n´1 ` nsdt^ θ ^ ηn´1 ą 0,

since both summands are positive volume forms. Hence, ωs is symplectic for all
s P r0, 1s on a neighborhood of BM . Therefore there is a unique solution to Equation
1.2.3.1, completing the proof.

1.2.4 Gluing symplectic manifolds

Gluing operations are extremely useful for constructing geometric structures on a
given manifold. They allow us to reduce the problem by cutting a manifold into
smaller pieces. It is usually much simpler to show existence on these pieces and
gluing them back together solving the original problem.
There are many flavors of such gluing operations, but the most elementary is gluing
two manifolds along their boundaries. That is, given two manifolds M1 and M2,
together with a diffeomorphism φ : BM1 Ñ BM2, identifying their boundaries, we
define

(1.2.4.1) M1 YφM2 :“ pM1 \M2q{px „ φpxqq x P BM1.

It is clear that M1 Yφ M2 canonically is a topological space. However, endowing it
with a smooth or symplectic structure is slightly more subtle. To make things more
transparent we first recall some of the basics for gluing oriented manifolds, and then
consider the symplectic case.

1.2.4.1 Gluing oriented manifolds

Recall that given an oriented manifold M , the boundary is oriented according to the
”outward normal first” convention. Thus, if we have a collar neighborhood of the
form

U :“ p´ε, 0s ˆ BM,

then these conventions imply BU “ BM as oriented manifolds.

To obtain collar neighborhoods we use the following construction. Let M be a man-
ifold with boundary and X P XpMq be a vector field pointing outwards along the
boundary. Denote its flow by φt and define an embedding

φ : p´ε, 0s ˆ BM ÑM, pt, xq ÞÑ φtpxq.

Since dφpBtq “ X points outwards, φ is orientation preserving.
Similarly, using a vector field W P XpMq pointing inwards with flow ψt we obtain an
(orientation preserving) embedding

ψ : r0, εq ˆ BM ÑM, pt, xq ÞÑ ψtpxq.
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Remark 1.2.18. Note that the diffeomorphism

F : p´ε, 0s ˆ BM Ñ r0, εq ˆ BM, pt, xq ÞÑ p´t, xq

is orientation preserving and satisfies F ˝φ “ ψ. Hence we can identify the two types
of collar neighborhoods defined above. 4

Let M1 and M2 be oriented manifolds whose boundaries are non-empty and diffeo-
morphic by an (orientation preserving) diffeomorphism

φ : BM1
„
ÝÑ BM2,

and define, as before,

M1 YφM2 :“ pM1 \M2q{px „ φpxqq x P BM1.

To define a smooth structure, choose collar neighborhoods

(1.2.4.2) k1 : p´1, 0s ˆ BM1 ÑM1, k2 : r0, 1q ˆ BM2 ÑM2,

as above. We use the parametrization r0, εq instead of p´ε, 0s for M2 to avoid unnec-
essary signs and to indicate we picture M1 on the left and M2 on the right.

The two collar neighborhoods k1 and k2 define a map

(1.2.4.3) k1 Yφ k2 : BM1 ˆ p´1, 1q ÑM1 YφM2, px, tq ÞÑ

#

k1px, tq t ď 0

k2pφpxq, tq t ě 0

and we obtain a unique smooth structure on M1 YφM2 by requiring this map to be
smooth. The following lemma is immediate:

Lemma 1.2.19. The space M :“ M1 YφM2 admits a unique smooth structure and
orientation, with the property that the inclusions Mi ãÑ M are oriented embeddings
and k1 Yφ k2 is smooth and orientation preserving.
The resulting structure depends on k1, k2 and on φ but its diffeomorphism class does
not.

1.2.4.2 Gluing symplectic manifolds

Using the normal form from Theorem 1.2.16 we now adapt the gluing operation above
to symplectic manifolds. The precise statement is:

Proposition 1.2.20. Let pMi, ωiq, i “ 1, 2 be symplectic manifolds with boundary
and induced B-symplectic forms ηi :“ ωi|BMi , as in Definition 1.2.3. Given an orien-
tation reversing diffeomorphism φ : BM2 Ñ BM1 satisfying

φ˚η1 “ η2.

Then, M1 YφM2 admits a symplectic structure ω which restricts to ωi on Mi.
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Proof. Choose an admissible form θ1 P Ω1pBM1q for η1, as in Definition 1.2.4. By
Lemma 1.2.17 we know that locally around the boundary pM1, ω1q is isomorphic to

(1.2.4.4) pp´ε, 0s ˆ BM1, η1 ` dptθ1qq .

Define θ2 :“ φ˚pθ1q and note that ´θ2 is an admissible form on BM2. Thus, locally
around the boundary pM2, ω2q is isomorphic to

pp´ε, 0s ˆ BM2, η2 ´ dptθ2qq .

Now, sending t ÞÑ ´t, and using φ to identify pBM1, η1, θ1q » pBM2, η2, θ2q, the above
collar is isomorphic to

pr0, εq ˆ BM1, η1 ` dptθ1qq ,

which glues smoothly to the collar from Equation 1.2.4.4.

Example 1.2.21. Recall the setup from Example 1.2.12, where we showed that the
boundary of the symplectic manifold pMěc, ωq is a principial S1-bundle. We use
it to describe the standard symplectic cut construction from [74, 86], which is a
generalization of the symplectic blowup.

Thus, consider a (left) S1-action ρ : S1ˆM ÑM on a symplectic manifold pM2n, ωq,
with moment map µ : M Ñ R. As in Example 1.2.12, suppose that c P R is a regular
value of µ and that the S1-action on the submanifold Mc :“ µ´1pcq Ă M is free.

Then π : Mc Ñ ĂMc is a principal S1-bundle, where the right action is defined by:

x ¨ λ :“ ρλ´1pxq, @x PMc, λ P S1.

Thus if θ P Ω1pMcq is a connection 1-form and ωc :“ ω|Mc “ π˚rω then the orientation
on Mc is defined by declaring

θ ^ ωn´1
c ą 0.

We claim that with our usual orientation conventions, the boundary ofMěc is oriented
as Mc. To see this note that the infinitesimal generator X P XpMcq of the (right)
action satisfies

ιXωc “ ´dµ.

Choose a vector field Y P XpMq satisfying

dµpY q|Mc
“ 1,

which in particular implies that Y is pointing inwards along the boundary of Měc.
Define θ :“ ιY ω|Mc

P Ω1pMcq and observe that

θpXq “ ωpY,Xq “ dµpY q “ 1.

Hence, θ is a connection 1-form and

ιY ω
n|Mc

ą 0.

Since Y is pointing inwards, this means that the induced B-symplectic boundary of
pMěc, ωq equals

`

M c, ωc “ π˚rω
˘

.



1.2. SYMPLECTIC STRUCTURES AND THEIR BOUNDARIES 19

Since π : Mc Ñ ĂMc is a principal S1-bundle, we can consider the symplectic manifold
´

Mc ˆS1 D2, rΩ
¯

,

defined similarly to the manifold from Equation 1.2.2.3 in Example 1.2.12, using the
formula from Equation 1.2.2.2 with σ “ 0. Then the induced B-symplectic boundary
is

pMc, π
˚
rωq .

Hence, Proposition 1.2.20 applies and we can glue pMěc, ω|Mc
q to pMc ˆS1 D2, rΩq,

and the resulting symplectic manifold is, by definition, the symplectic cut of pM,ω, µq
along c. 4

Example 1.2.22. Using the above gluing construction together and the discus-
sion from Example 1.2.13, we describe the standard Gompf connected sum, from
[59]. Let pMi, ωiq, i “ 1, 2 be symplectic manifold with codimension-2 submanifolds
pBi, ωBiq and φ : B1

„
ÝÑ B2 an orientation preserving diffeomorphism. Moreover,

suppose that

(i) ωB1
“ φ˚ωB2

;

(ii) φ˚c1pνB2q “ ´c1pνB1q P H
2pB1;Zq;

where c1pνBiq denotes the first Chern class of the symplectic normal bundle as in
Example 1.2.13. The condition on the Chern class implies that P2 is isomorphic to
P 1. As before, a neighborhood of Bi is isomorphic to

pPi ˆS1 C,Ωiq,

following Equation 1.2.2.3.

The above conditions imply that the B-symplectic boundary of the neighborhood of
B2 is given by

pP2, π
˚ωB2

q »
`

P 1, π
˚ωB1

˘

.

Thus, the symplectic manifolds MizPi ˆS1 D2, i “ 1, 2, satisfy the conditions of
Proposition 1.2.20 and can be glued along their boundaries. Hence, we conclude that
the Gompf connected sum,

pM1, B1q#pM2, B2q :“
`

M1zP1 ˆS1 D2
˘

Yψ
`

M2zP2 ˆS1 D2
˘

,

where ψ : P1
„
ÝÑ P2 is induced by φ, carries a symplectic form ω which restricts to ωi

on each of the pieces. 4

Remark 1.2.23. The above condition on the Chern classes can be slightly weakened,
as it suffices that

φ˚c1pνB2q “ ´nc1pνB1q,

for some n P N. In this case we consider Lbn :“ P ˆS1 C, where now the S1-action
on C is given by

λ ¨ z :“ λnz.

Then c1pL
bnq “ nc1pP q, and the rest of the construction goes through as before. 4
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1.3 Contact structures and their boundaries

1.3.1 Contact structures

In this section we recall the basic definitions from contact geometry. We take some
care in separating the notions of ”contact form” and ”contact structure” in our dis-
cussion. This is convenient for studying boundaries of contact manifold and gluing
constructions, since the extra freedom of working with structures allows us to prove
more general results. Secondly, since we always work with oriented manifolds, we
point out in which cases a contact structure canonically induces an orientation on the
underlying manifold.

Definition 1.3.1. A contact structure on M2n`1 is a codimension one distribution
ξ Ă TM such that the associated curvature map cξ : Λ2ξ Ñ TM{ξ, which on sections
is given by

(1.3.1.1) X ^ Y ÞÑ rX,Y s mod ξ, X, Y P Γpξq,

is non-degenerate.

In general, even though M is always assumed to be oriented, we do not make any
assumptions about the (co-)orientability of ξ.

Definition 1.3.2. A contact structure ξ Ă TM is said to be coorientable/cooriented
if TM{ξ is orientable/oriented.

By a coorientation we mean a trivialization of pTM{ξq˚, i.e. a nowhere vanishing
section. This is equivalent to a choice of orientation σ on TM{ξ.

Lemma 1.3.3. Given a contact structure ξ on M2n`1, the curvature map cξ : Λ2ξ Ñ
TM{ξ induces an isomorphism of vector bundles

Λ2nξ
„
ÝÑ bnpTM{ξq.

Proof. Given vector bundles E,F over M denote by PkpE,F q the vector bundle with
fiber

PkpE,F qx “ PkpEx, Fxq,

the space of homogeneous polynomial maps of order k. That is, the space of maps
f : Ex Ñ Fx satisfying fptvq “ tkfpvq, for all v P Ex and t P R.
Since the curvature cξ : Λ2ξ Ñ TM{ξ is non-degenerate it induces a bundle map
pTM{ξq˚ Ñ pΛ2nξq˚ given by

σ ÞÑ Λnpσ ˝ cξq P pΛ
2nξq˚, @σ P pTM{ξq˚.

This map is homogeneous of degree n and a fiberwise isomorphism so it corresponds
to a nowhere vanishing section of PnppTM{ξq˚,Λ2nξ˚q. In turn this bundle is canon-
ically isomorphic to the bundle bnpTM{ξqbΛ2nξ˚ » HompΛ2nξ,bnTM{ξq, proving
the claim.
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Using this lemma we obtain the following:

Corollary 1.3.4. Let ξ be a coorientable contact structure on a manifold M2n`1

then:

• If n is even:

(i) ξ has a canonical orientation;

(ii) There is a canonical correspondence between coorientations of ξ and ori-
entations on M .

• If n is odd:

(iii) TM has a canonical orientation;

(iv) There is a canonical correspondence between coorientations of ξ and ori-
entations of ξ.

Proof. Recall that given a vector bundle E we have the associated determinant bundle
detpEq :“ ΛtopE, so that orientations of E correspond to nowhere vanishing sections
of detpEq up to scaling by a positive conformal factor.
Choosing a splitting TM “ ξ ‘ TM{ξ, we have an isomorphism

detpξq b TM{ξ
„
ÝÑ detpTMq, pX1 ^ ¨ ¨ ¨ ^Xnq b Y ÞÑ X1 ^ ¨ ¨ ¨ ^Xn ^ Y.

Observe that this isomorphism does not depend on the choice of splitting. Indeed,
any two right splittings of

0 Ñ ξ Ñ TM Ñ TM{ξ Ñ 0,

differ by a section of ξ. This contribution gets killed under the above map since it
corresponds to an element in Λn`1ξ “ 0. Together with the isomorphism

detpξq » bnTM{ξ,

from Lemma 1.3.3 this yields a canonical isomorphism

(1.3.1.2) detpTMq » bn`1TM{ξ.

Any nowhere vanishing section X P ΓpTM{ξq gives a nowhere vanishing section
rX :“ bnX P ΓpbnTM{ξq » Λ2nξ, satisfying

Ą´X “ p´1qn rX.

Hence, if n is even any coorientation of ξ induces the same orientation on ξ while
opposite coorientations of ξ induce opposite orientations on TM . The proof is similar
when n is odd.

Remark 1.3.5. Recall from Section 1.1.1 that we always assume M to be oriented,
and that its orientation agrees with the one induced by ξ. By Corollary 1.3.4 this
means that on a manifold M of dimension 2n` 1 we have:
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• If n is odd and ξ is a contact structure on M , then M does not admit any
contact structure (conform the orientation conventions above). Furthermore if ξ
is coorientable, we are free to choose the coorientation, since both choices induce
the same orientation on M . Therefore, if we want to be precise, a cooriented
contact structure is denoted by a pair pξ, σq, where σ is an orientation on TM{ξ.

• If n is even ξ only induces an orientation on M after we choose an orientation
on TM{ξ. Thus, there is only one possible choice of coorientation so that the
induces orientation matches that of M . This also implies that pξ, σq is a contact
structure on M if and only if pξ,´σq is a contact structure on M .

4

The definition of a contact structure can be rephrased in terms of differential forms
which are often easier to handle than distributions. For a general contact structure
ξ the projection map

TM
π
ÝÑ TM{ξ,

can be interpreted as a bundle valued differential form π P Ω1pM,TM{ξq satisfying
ξ “ kerπ. If ξ is coorientable then there exists a nowhere vanishing section s P
ΓpTM{ξq˚ and the composition

TM
π
ÝÑ TM{ξ

s
ÝÑM ˆ R,

defines a form α P Ω1pMq satisfying ξ “ kerα. Conversely, observe that any such
form defines a trivialization TM{ξ

„
ÝÑM ˆ R by:

(1.3.1.3) X ÞÑ αpXq, @X P ΓpTM{ξq.

If ξ is cooriented, we will always assume that α is chosen so that the map above is
an oriented isomorphism, where M ˆ R has the standard orientation.

For X,Y P Γpξq we have

dαpX,Y q “ ´αprX,Y sq “ cξpX,Y q,

using the above trivialization of TM{ξ. Hence, the condition that cξ is non-degenerate
translates into

α^ dαn ‰ 0.

Moreover, if ξ is cooriented, then the trivialization from Equation 1.3.1.3 is oriented
if and only if

α^ dαn ą 0.

The sign in the above equation makes sense since α^ dαn is a volume form and can
be compared to any positive volume form on M .

Definition 1.3.6. A contact form for a (coorientable) contact structure ξ on M
is a form α P Ω1pMq satisfying

ξ “ kerα.

If we talk about a contact form α, without reference to any contact structure, then it
is understood that we consider ξ :“ kerα together with the coorientation induced by
α.
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Remark 1.3.7. If the contact structure ξ comes with a fixed coorientation, and α is
a contact form for ξ, then we always assume the coorientation of ξ matches the one
induced by α as in Equation 1.3.1.3. Note that with these conventions a contact form
for a cooriented contact structure (or a contact form without reference to a contact
structure) always satisfies

α^ dαn ą 0.

4

Example 1.3.8. Some of the basic examples of contact manifolds are:

• Euclidean space: Let px1, y1, . . . , xn, yn, zq denote the standard coordinates
on R2n`1. The form

α :“ dz `
n
ÿ

i“1

xidyi,

is called the standard contact form. The contact analogue of Darboux’s theo-
rem, as stated for example in [8], says that any contact form locally looks like
the standard one. Thus, contact structures have no local invariants.

• Tori: Let px, y, zq denote the standard angular coordinates on T3. Then, for
each k P N the form

αk :“ dz ` sinpkzqdx` cospkzqdy,

defines a contact structure. The naive generalization of this formula to higher
dimensional tori does not define a contact form. Nevertheless, it was shown by
Bourgeois, see [16], that all odd dimensional tori admit a contact structure. His
result states that given a contact manifold pM, ξq with dimM ě 3, the product
M ˆ Σg admits a contact structure, for any surface Σg of genus at least one.

• Products: For dimensional reasons the product of two contact manifolds can-
not be contact again. Instead, let pM,αq be a contact manifold and pW, dλq an
exact symplectic manifold. Then,

pM ˆW, rα :“ α` λq ,

is again contact. For example, interpreting pS1,dzq as a contact manifold, it
follows that for any exact symplectic manifold pW, dλq, the product S1 ˆW is
contact.

• Spheres: Let pM,ωq be a symplectic manifold and Σ Ă M a hypersurface.
Assume there exists a vector field X P XpMq which is transverse to Σ and
satisfies LXω “ ω. Then, the form

(1.3.1.4) α :“ pιXωq |Σ,

defines a contact structure on Σ. In this case we say that Σ is a hypersurface
of contact type.
In particular this applies to the spheres S2n`1 Ă R2n. Indeed, let ω be the
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standard symplectic form on R2nas in Equation 1.2.1.1, and observe that the
Euler vector field

X :“
ÿ

i

xiBxi ` yiByi ,

is transverse to S2n´1 and satisfies LXω “ ω.
In fact, any contact manifold can obtained as a hypersurface of contact type;
given a contact form α on M , consider the symplectic manifold

`

RˆM,ω :“ dpetαq
˘

,

where t denotes the coordinate on R, called the symplectization of pM,αq.
Then, Bt is transverse to t0u ˆM , satisfies LBtω “ ω and the induced contact
form is α.

• Contact elements: A contact element on a manifold M is a hyperplane ξp P
TpM for some p P M . Any contact element can be written as the kernel of
a non-zero covector αp P T

˚
pM , which is unique up to scaling by a non-zero

constant. Thus the space of all contact elements can be identified with PT˚M ,
the projectivized cotangent bundle. It comes equipped with a canonical contact
structure defined by the rule

ξrαs :“ kerpα ˝ dπq Ă TrαsPT˚M,

where π : T˚M ÑM denotes the projection.
The above formula resembles that of the tautological form λ from Equation
1.2.1.2. Viewing the unit sphere bundle ST˚M as a hypersurface in the sym-
plectic manifold pT˚M,dλq, the argument from the previous example shows
that λ|ST˚M defines a contact structure. Moreover, this contact structure de-
scends to the quotient PT˚M and equals the one from the previous equation.

4

The choice of contact form α for a given contact structure ξ is not unique. Indeed,
let f P C8pMq be nowhere vanishing, then ker fα “ kerα and

pfαq ^ dpfαqn “ fn`1α^ dαn ‰ 0.

Thus, a contact form is unique up to multiplication by a nowhere vanishing function,
or a strictly positive function if we want to preserve the coorientation. Given a
differential form α P Ω1pMq we denote by rαs the equivalence class of the equivalence
relation

α „ α1 ðñ α1 “ fα,

for a nowhere vanishing function f : M Ñ Rzt0u. Similarly, we denote by rαs` the
equivalence class where we only allow multiplication by positive functions. Then the
above discussion implies:

Corollary 1.3.9. Given a manifold M there are a one-to-one correspondences be-
tween:
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(i) Coorientable contact structures ξ and equivalence classes rαs where α is a con-
tact form for ξ;

(ii) Cooriented contact structures ξ and equivalence classes rαs` where α is a coori-
ented contact form for ξ. Under this correspondence changing the coorientation
of ξ is the same thing as changing rαs` to r´αs`.

Although equivalent contact forms induce the same contact structure, they can have
very different properties. For example, any contact form has a distinguished vector
field associated to it, spanning the kernel of dα, and which is not preserved under
equivalence.

Definition 1.3.10. The Reeb vector field of a contact form α P Ω1pMq is the
unique vector field satisfying

αpRq “ 1, ιRdα “ 0.

As claimed above the Reeb vector field is not preserved under equivalence, and the
change can be computed as follows. If α1 “ fα for a function f : M Ñ Rzt0u then

(1.3.1.5) Rα1 “
1

f
Rα ` V,

where V P XpMq is the unique vector field satisfying

αpV q “ 0, ιV dα “
df ´ pLRαfqα

f2
.

1.3.2 Contact structures with transverse boundaries

Let ξ be a contact structure on a manifold M with boundary, and consider the
intersection with the tangent space of the boundary

ζ :“ ξ X T pBMq.

In general ζ is a singular distribution in the sense that it does not have constant rank.

Definition 1.3.11. We say that a contact manifold pM, ξq has transverse bound-
ary if ξ&BM .

In the transverse case, ζ is an honest codimension-1 distribution on BM . The associ-
ated curvature cζ : Λ2ζ Ñ T pBMq{ζ, is defined as in Equation 1.3.1.1. Since ξ&BM
there is short exact sequence

0 Ñ ζ Ñ TBM Ñ pTM{ξq|BM Ñ 0,

giving a canonical isomorphism

(1.3.2.1) T pBMq{ζ » pTM{ξq|BM ,

and, under this identification, cζ is just the restriction of cξ to ζ. This implies that cζ
has one-dimensional kernel so that the induced structure on the transverse boundary
of contact manifold is the following:
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Definition 1.3.12. A B-contact structure on N2n is a codimension one distribu-
tion ζ Ă TN for which the curvature cζ is maximally non-degenerate.

Because ζ is odd dimensional, this is equivalent to cζ having 1-dimensional kernel.
As for contact structures, we make no a priori assumptions on the orientability of
TN{ζ.

Definition 1.3.13. An B-contact structure ζ Ă TN is said to be coorientable
(resp.cooriented) if TN{ζ is orientable (resp. oriented).

Note that, by Equation 1.3.2.1, the B-contact structure on the boundary of a contact
manifold inherits a coorientation from ξ.

For an abstract B-contact structure pN, ζq, a coorientation can be defined using a
differential form, analogous to the discussion of the previous section. That is, if
TN{ζ is orientable then so is its dual, and any nowhere vanishing section of pTN{ζq˚

defines a form β P Ω1pNq satisfying ζ “ kerβ. As in Equation 1.3.1.3, such a form
induces a coorientation on ζ by requiring the isomorphism

(1.3.2.2) TN{ζ
„
ÝÑ N ˆ R,

to be orientation preserving, where N ˆ R has the standard orientation.

Definition 1.3.14. A B-contact form for a (coorientable) B-contact structure ζ on
N is a (nowhere vanishing) form β P Ω1pNq satisfying

ζ “ kerβ, dim ker dβ|ζ “ 1.

If we talk about a B-contact form β, without reference to any B-contact structure, then
it is understood that we consider ζ :“ kerβ together with the coorientation induced
by β.

Remark 1.3.15. As in Remark 1.3.7, if the B-contact structure ζ is cooriented, and
β is a B-contact form for ζ, then we assume the coorientation of ζ matches the one
induced by β, as in Equation 1.3.2.2. 4

The above condition allows both for dβn “ 0 and dβn ‰ 0 to happen. Recall that
the Reeb vector field of a contact form α, as defined in Defintion 1.3.10 spans the
1-dimensional kernel of dα. Hence, if pM, ξ :“ kerαq is a contact manifold with
boundary, then the induced B-contact form β :“ α|BM satisfies dβn “ 0 if and only
if the Reeb vector field is tangent to the boundary. If the contact structure ξ is
transverse to the boundary such contact forms always exist, as shown in the following
lemma. This is very convenient since many computations simplify if the top power
of dβ vanishes.

Lemma 1.3.16. Let pM, ξq be a (cooriented) contact manifold with ξ&BM . Then
there exists a contact form α such that ξ “ kerα and Rα is tangent to BM .

Proof. Since ξ&BM , there exists X P XpMq, in the kernel of α and pointing outwards
along the boundary.
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Define αB :“ α|BM and θ :“ ιXdα|BM , then

θ ^ αB ^ dα
n´1
B “

1

n
ιXpα^ dα

nq|BM ą 0.

Hence, we can apply Theorem 1.3.19 (to the B-contact manifold pBM,αBq with ad-
missible form θ) to find a collar neighborhood U » p´ε, 0s ˆ BM of the boundary on
which

α “ fpαB ` tθq,

for f P C8pUq a smooth strictly positive function.

Then, choosing a positive function f P C8pMq satisfying

g :“

#

f on BM ˆ r0, ε3 q

1 on MzpBM ˆ r0, 2ε
3 q

,

we have

α̃ :“
1

g
α “ β ` tθ,

near the boundary. Moreover, at points in the boundary, dα̃ “ dβ ` dt^ θ implying
ker dα̃ “ ker dβ which is tangent to BM .

As before, multiplying a B-contact form by a nowhere vanishing function does not
change the induced B-contact structure. In the notation of Corollary 1.3.9 we have:

Lemma 1.3.17. Given a manifold N there are one-to-one correspondences between:

(i) B-contact structures ζ and equivalence classes rβs where β is a B-contact form
for ζ;

(ii) Cooriented B-contact structures ζ and equivalence classes rβs` where β is a
cooriented B-contact form for ζ.

In contrast with contact structures, a cooriented even contact structure does not
induce an orientation on N , so that the analogue of Corollary 1.3.4 does not hold.
The reason for this is that cζ has a 1-dimensional kernel, which does not have a
canonical orientation. This is reflected in the fact that an B-contact form does not
induce a volume form; instead we need to choose an extra piece of data:

Definition 1.3.18. An admissible form for an B-contact form β on N , is a form
θ P Ω1pNq satisfying

θ ^ β ^ dβn´1 ą 0.

Admissible forms will be studied more closely in Section 1.4.1. For now, it suffices to
think of them as an auxillary piece of data needed to define the local model associated
to the B-contact manifold.
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1.3.2.1 Statement of the normal form

Let pM, ξq be a contact structure with transverse boundary, α P Ω1pMq a contact
form representing ξ and denote by αB :“ α|BM the induced B-contact form. For any
choice of admissible form θ P Ω1pBMq consider the local model

(1.3.2.3) pp´ε, 0s ˆ BM,α :“ αB ` tθq ,

which defines a contact structure for ε ą 0 small enough.

Theorem 1.3.19. Any contact structure with transverse boundary (Definition 1.3.11)
is isomorphic (as a contact structure) to its local model on a neighborhood of the
boundary.

In particular, up to isomorphism of contact structures, the local model is independent
of the choice of the contact form α and the admissible form.

Remark 1.3.20. The previous local model around the transverse boundary of a
contact manifold pM, ξ :“ kerαq, with induced B-contact structure ξB :“ ξ X T pBMq,
can be defined more invariantly as follows. The restriction of the curvature cξ from
Defintition 1.3.1 to ξB has a 1-dimensional kernel

L :“ ker cξ|ξB “ ker dαB|ξB Ă TBM.

Viewing L as a subbundle of TBM , it comes with a projection π : LÑ BM , making
it into a rank 1 vector bundle. Thus, L defines a 1-dimensional foliation L on BM ,
and the dual bundle L˚, can be viewed as the leafwise cotangent bundle. The total
space of π : L˚ Ñ BM carries a canonical contact structure defined by

α :“ π˚αB ` λcan,

where λcan P Ω1pT˚Lq denotes the tautological form.

Furthermore, L has a canonical orientation, for which V P Lp, p P BM , is positive if
and only if

pdαBqppX,V q ą 0,

where X P TpM is any outward pointing vector. Hence, L and L˚ are trivializable.
A choice of vector field X P XpMq transverse to the boundary corresponds to a
trivialization of T˚L, that is, a nowhere vanishing section β P ΓpT˚Lq defined by

βpxq :“ pιXdαq|TxL, x P BM.

In this trivialization T˚L » R ˆ BM , the contact structure ξ is represented by the
local model from Equation 1.3.2.3. 4

The proof of the theorem follows immediately from the following, more technical,
proposition.

Proposition 1.3.21. Let pM, ξq be a contact manifold with transverse boundary
(Definition 1.3.11), and α P Ω1pMq a contact form representing it. Let αB :“ α|BM
be the induced B-contact form (Definition 1.3.14) and θ P Ω1pBMq and admissible
form (Definition 1.3.18). Then there exists a collar neighborhood U » p´ε, 0s ˆ BM
on which

α “ fpαB ` tθq,

for f P C8pUq strictly positive and satisfying f |BM “ 1.
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1.3.2.2 Proof of the normal form

The key ingredient in the proof is the following analogue of Giroux’s theorem for 3-
dimensional contact manifolds from [56]. The proof in higher dimensions given below
is essentially the same as that for the 3-dimensional case from [53]. We have included
it here for the sake of completeness.

Theorem 1.3.22. For i “ 0, 1, let Si be a closed hypersurface in a contact manifold
pMi, ξi :“ kerαiq and φ : S0 Ñ S1 a diffeomorphism satisfying

φ˚pα1|S1
q “ α0|S0

.

Then there exists a contactomorphism ψ : U0 Ñ U1 of suitable open neighborhoods of
the hypersurfaces, such that ψ|S0 “ φ.

Proof. Following our usual convention we assume that Mi and the hypersurfaces are
oriented. This implies that a neighborhood of Si can be identified with p´ε, εq ˆ Si
where Si corresponds to t0u ˆ Si. Extend φ to a diffeomorphism (still denoted by
φ) between these open neighborhoods of Si, and consider the contact forms α0 and
φ˚α1. In the above coordinates any contact form can be written as

α “ βt ` utdt,

where βt P Ω1pS0q, ut P C
8pS0q and t P p´ε, εq. The contact condition then becomes:

(1.3.2.4) α^ pdαqn “
´

´nβt ^ 9βt ` nβt ^ dut ` utdβr

¯

^ pdβrq
n´1 ^ dr ą 0.

Note that this equation is linear in 9βt and ut. Hence, convex linear combinations of
solutions of Equation 1.3.2.4 with the same β0 (and dβ0) will again be solutions for
small |t|. Hence taking ε small enough,

αs :“ p1´ sqα0 ` sφ
˚α1, s P r0, 1s,

is a solution for all s. We now use Moser’s trick to find an isotopy ψs such that
ψ˚s αs “ λsα0. Differentiating the above equation and setting µs :“ p d

ds log λsq ˝ ψ
´1
s

we see that we have to find a vector field Xs satisfying

(1.3.2.5) 9αs ` LXsαs “ µsαs.

Furthermore, we want Xs|S0 “ 0 which ensures both that Xs can be integrated up
to time one around S0 and that ψ|S0 “ φ. Write

Xs “ HsRs ` Ys,

with Rs the Reeb vector field of αs, Ys P kerαs and Hs a family of smooth functions.
Then, Equation 1.3.2.5 becomes

9αs ` dHs ` ιYsdαs “ µtαs.

For a fixed Hs this equation is solved by first applying it to Rs, giving µs, and then
noting that we find a unique Ys P kerαs by non-degeneracy of dαs|kerαs .
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We want to choose Hs in such a way that so that Xs|S0 “ 0. This condition translates
into Hs|S0 “ 0 and Ys|S0 “ 0. The latter can be satisfied by requiring

9αs ` dHs “ 0, on S0

which is automatically satisfied if Hs|S0
“ 0 since 9αs|TS0

“ 0. Therefore it is possible
to find a suitable Hs and we get a solution Xs which by compactness of S0 can be
integrated up to time one on a neighborhood of S0. The desired map is given by
ψ :“ φ ˝ ψ1.

The proof of the normal form now follows almost immediately.

Proof of Proposition 1.3.21. Observe that α̃ :“ αB ` tβ is contact since

α̃^ dα̃n “ ndt^ β ^ αB ^ pdαB ` tdβq
n´1 ą 0,

and α̃|BM “ αB. Thus we can apply Theorem 1.3.22 with ψ “ id, to obtain the
required collar neighborhood.

1.3.3 Contact structures with singular boundaries

Let ξ be a contact structure on M , and denote the intersection with the boundary by

ζ :“ ξ X T pBMq.

In the previous section we assumed the boundary was regular so that ζ defines a
codimension-1 distribution on BM . However, in general ξ can have points where it is
tangent to BM . If this happens we say that ξ has singular boundary, to distinguish
it from the previous situation.

For a singular boundary, ζ does not define a distribution in the classical sense. How-
ever, if α is a contact form representing ξ, then the restriction αB :“ α|BM makes
sense both in the regular and singular case. Thus, for singular boundaries we work
only with differential forms, and make the following definition:

Definition 1.3.23. A (singular) B-contact form on N2n is a one form β P Ω1pNq
such that dβ|ker β is maximally nondegenerate.

Note that, in case β is nowhere vanishing this recovers Definition 1.3.14. On the other
hand, in the above definition β is allowed to vanish, so if p P N then:

(i) if βp “ 0 then pdβqp is nondegerate on TpN or equivalently pdβqnp ‰ 0. In
particular

dim ker dβ|ker β “ 0;

(ii) if βp ‰ 0 then βp ^ dβn´1
p ‰ 0 or equivalently

dim ker dβ|ker β “ 1.
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This means that we have inclusions:

 

p P N | βp ^ dβn´1
p “ 0

(

Ă tp P N | βp “ 0u Ă
 

p P N | dβnp ‰ 0
(

In order to write down a local model we need to make some choices, analogous to the
choice of admissible form for a regular B-contact form.

Definition 1.3.24. Given a singular even contact form β on a manifold N2n an
admissible pair pθ, uq for β consists of :

(i) A form θ P Ω1pNq satisfying

θ ^ β ^ dβn´1 ě 0, pθ ^ β ^ dβn´1qp ą 0 ðñ βp ‰ 0.

(ii) A function u P C8pNq satisfying

udβn ě 0, βp “ 0 ùñ pudβnqp ą 0.

Just as for non-singular even contact forms admissible pairs always exist:

Lemma 1.3.25. For any singular even contact manifold pN, βq there exists an ad-
missible pair pθ, uq.

Proof. Fix a volume form Ω on N , compatible with the orientation on N , giving
an isomorphism XpNq

„
ÝÑ Ω2n´1pNq by X ÞÑ ιXΩ. Hence, we can find V P XpNq

satisfying

ιV Ω “ β ^ dβn´1.

Pick a metric x¨, ¨y on N and define θ P Ω1pNq by

θ :“ xV, ¨y.

Then θpV q ě 0 and θpV q ą 0 at points where βp^dβ
n´1
p ‰ 0. In particular at points

where βp ‰ 0. This implies that

θ ^ β ^ dβn´1 “ θ ^ ιV Ω “ ´ιV pθ ^ Ωq ` θpV qΩ “ θpV qΩ ě 0,

and θ ^ β ^ dβn´1 ą 0 at points where βp ‰ 0.

For the second part define u P C8pNq by

uΩ “ pdβqn.

Then

(1.3.3.1) udβn “ u2Ω ě 0,

and udβn ą 0 at points where u ‰ 0 or equivalently at points where dβn ‰ 0.
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1.3.3.1 Statement of the normal form

Let β be a singular even contact form on N . Then, for any admissible pair pu, βq
consider the local model,

pp´ε, 0s ˆN,α :“ β ` tθ ` dptuqq ,

which is a contact for ε small enough. Indeed:

α^ dαn|t“0 “ pβ ` udtq ^ pdβ ` dt^ θqn

“ pβ ` udtq ^ pdβn ` ndβn´1 ^ dt^ θq

“ ndt^ θ ^ β ^ dβn´1 ` udt^ dβn

“ dt^
`

nθ ^ β ^ dβn´1 ` u2Ω
˘

ě 0,(1.3.3.2)

where we used Equation 1.3.3.1. Hence, Equation 1.3.3.2 is zero if both θ ^ β ^
dβn´1 “ 0 and u “ 0. However, these conditions are equivalent to dβp being non-
degenerate, and βp being zero respectively, which cannot happen at the same time.
Thus, α^ dαn ą 0 adt t “ 0 and hence also for t P p´ε, 0s if ε ą 0 is small enough.

Theorem 1.3.26. Any contact structure with (singular) boundary is isomorphic to
its local model on a neighborhood of the boundary.

Of course, this theorem also covers regular boundaries. In this case we can choose
any function u for the admissible pair pθ, uq, in particular u “ 0 which recovers the
regular local model. The proof is a direct consequence of the following.

Lemma 1.3.27. Let α be a contact form on a manifold with boundary M , and
αB :“ α|BM the induced (singular) B-contact form. Then, for any choice of admissible
pair pu, θq there exists a collar neighborhood of the boundary U » p´ε, 0s ˆ BM , on
which

α “ f pαB ` tθ ` dptuqq ,

for a positive function f P C8pUq satisfying f |BM “ 1.

Proof. We checked in Equation 1.3.3.2 that α̃ :“ αB ` tθ ` dptuq defines a contact
structure and by definition α̃|BM “ αB. Hence, the proof follows by applying Theorem
1.3.22 with ψ “ id.

1.3.4 Gluing contact structures

Using the normal form for boundaries of contact manifolds we can glue contact
manifolds along their (possibly singular) boundaries. Recall from Section 1.2.4.1
that, given manifolds Mi, i “ 1, 2, and an orientation reversing diffeomorphism
φ : BM1 Ñ BM2, we obtain a manifold

M1 YφM2 :“ pM1 \M2q {x „ φpxq, @x P BM1.
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The resulting smooth structure on the gluing depends on φ and the choice of collar
neighborhoods ki : p´ε, 0s ˆ BMi Ñ Mi. Note that in the statement below we have
surpressed these choices from the notation.

Proposition 1.3.28. Let pMi, ξiq, i “ 1, 2, be a contact manifold with non-empty
boundary, and induced B-contact structure ξB,i :“ ξiX TBMi, as in Definition 1.3.12.
Assume there exists an orientation reversing diffeomorphism φ : BM1 Ñ BM2, such
that

φ˚ξB,1 “ ξB,2.

Then there exists a contact structure ξ on

M1 YφM2 :“ pM1 \M2q {x „ φpxq, x P BM1,

which restricts to ξi on Mi.

Proof. Choose contact forms αi for ξi, and denote βi :“ αi|BMi . Then, because φ
preserves the B-contact structures, we have

φ˚β2 “ fβ1,

for some positive function f P C8pBM1q. By Lemma 1.3.27 and rescaling α2, we can
find an admissible pair pθ2, u2q and a collar neighborhood isomorphic to

`

p´ε, 0s ˆ BM2, β2 ` tθ2 ` dptu2q
˘

.

Under the map t ÞÑ ´t this is isomorphic to

(1.3.4.1)
`

r0, εq ˆ BM2, β2 ` tp´θ2q ` dptp´u2qq
˘

.

More precisely, a computation similar to Equation 1.3.3.2 shows that for α̃ :“ β2 ´

tθ2 ´ dptu2q we have

α̃^ dα̃n “ ´dt^ pnθ2 ^ β2 ^ dβn´1
2 ` u2

2Ωq,

where Ω is a volume form on BM2 and thus a negative volume form on BM2. Together
with the fact that θ2 ^ β2 ^ dβ

n´1
2 ď 0 on BM2 and all intervals in R are oriented by

Bt, we see that α̃^ dα̃n ą 0 on r0, εq ˆ BM2.

Rescaling α1, and thus β1, we can assume that φ˚pβ2q “ β1. If we denote

pθ1 :“ φ˚p´θ2q, u1 :“ φ˚p´u2qq,

then using φ we can identify the neighborhood in Equation 1.3.4.1 with

`

r0, εq ˆ BM1, αr :“ β1 ` tθ1 ` dptu1q
˘

.

It follows directly from Definition 1.3.24 that if pθ, uq is an admissible pair for a
singular B-contact form β on N then p´θ,´uq is an admissible pair for β on N . Hence,
since p´θ2,´u2q is admissible for β2 on BM2, it follows that pθ1, u1q is admissible for
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β1 on BM1. By Lemma 1.3.27, and possibly rescaling α1, we find an isomorphism
between an open neighborhood of the boundary of BM1 and

`

p´ε, 0s ˆ BM1, αl :“ β1 ` tθ1 ` dptu1q
˘

.

We glue the collar neighborhoods and define a cooriented contact structure on it by
´

p´ε, εq ˆ BM1, α :“ β1 ` tθ1 ` dptu1q

¯

.

1.4 Contact forms and their boundaries

In this section we consider boundaries of manifolds endowed with a contact form,
and gluing such manifolds. Unlike for symplectic and contact structures, for contact
forms a neighborhood of the boundary is not determined only by the data induced
on the boundary. Thus, there is no general normal form, and instead we distinguish
several special kind of boundaries. For every type the structure on the boundary can
be encoded in a pair of differential forms, and can therefore be treated in a uniform
manner.

The lack of a normal form makes gluing contact forms much harder. We need to
impose that their boundaries are of the special types mentioned before, and the types
need to match. However, the analogy with the symplectic case can be partially saved.
We define a notion of contact cobordism and show that by gluing topologically trivial
cobordisms we can pass from one type of boundary to another.

Lastly, these observations are used to construct contact forms on abstract open book
decompositions. The reader unfamiliar with open book decompositions is refered to
Appendix 1.9 for the definition and their basic properties.

1.4.1 Contact forms with regular boundaries

Consider a contact form α on a manifold with boundary and assume that kerα&BM .
Using a vector field X P XpMq in the kernel of α and transverse to BM we define
a collar neighborhood p´ε, 0s ˆ BM (on which X is identified with Bt). Using these
coordinates we can write down the Taylor expension of α in the interval coordinate
t P p´ε, 0s at t “ 0. This gives:

(1.4.1.1) α “ v ` tu`Opt2q,

for some v, u P Ω1pBMq and f P C8pBMq. Note that there are no terms containing
dt since X P kerα. In terms of this expansion the contact condition for α becomes:

0 ă α^ dαn “ ndt^ u^ v ^ dvn´1 `Optq.

From this perspective, the simplest possible contact forms are those with a linear
Taylor expansion. Indeed, all the terms except the constant term u are zero, in the
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expansion of Equation 1.4.1.1, then α cannot satisfy the contact condition. Further-
more, close to the boundary the first summand in the above equation dominates the
terms of order Optq, so that the contact condition can be satisfied.

Definition 1.4.1. A contact form α on M is regular at the boundary, if there exists
a collar neighborhood U » p´ε, 0s ˆ BM on which we have:

(1.4.1.2) α “ tu` v,

for some u, v P Ω1pBMq, and where s denotes the coordinate on p´ε, 0s.

As observed above, the contact condition for a regular contact form implies:

α^ dαn “ ndt^ u^ v ^ ptdu` dvqn´1 ą 0.

Since this is an open condition it suffices to require it at points in the boundary, where
t “ 0. Then, by shrinking the collar neighborhood, it holds everywhere. Therefore,
the conditions on u and v can be packed into the following definition, which does not
make reference to a boundary:

Definition 1.4.2. A B-contact pair pu, vq on a manifold N2n is a pair of forms
u, v P Ω1pNq satisfying

u^ v ^ dvn´1 ą 0.

Remark 1.4.3. A B-contact pair is similar to the data induced on the boundary of a
(regular) symplectic foliated manifolds, see Definition 1.6.2. In both cases, the data
can be encoded in a triple pu, v, ηq, with u, v P Ω1pNq and η P Ω2pNq, satisfying

u^ v ^ ηn´1 ą 0.

Depending on the situation the forms can be closed, exact or have various other
relations between them. However, the essential structure is that of a codimension-2
almost symplectic distribution pξ, ωq defined by

ξ :“ keruX ker v, ω :“ η|ξ.

4

Remark 1.4.4. For later reference we compute explicitely the Reeb vector field, as
in Definition 1.3.10, of a regular contact form. Let pu, vq be a B-contact pair on N2n,
and consider M :“ p´ε, 0s ˆN with the contact form

α “ tu` v.

Let Ru, Rv P XpNq be defined by:

ιRuu “ 1, ιRuv “ 0, ιRudv “ 0, and ιRvu “ 0, ιRvv “ 1, ιRudv “ 0.

The Reeb vector field R of α can be computed explicitely in the following cases.
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(i) If dvn “ 0 then
R “ Rv `Xt ` ftBt,

where Xt P keruX ker v is uniquely defined by

ιXtpdv ` tduq “ tιRvdu, on keruX ker v,

and
ft :“ tdupRu, Rv `Xtq.

(ii) If dvn ą 0 then

R “
1

f
pXt ´ Btq ,

where f P C8pNq and Xt P XpNq are uniquely defined by

ιXt pdv ` tduq “ u, f :“ vpXtq.

Observe that the Reeb vector field is tangent to the boundary if and only if pdvqn “
pdα|BM q

n “ 0. 4

Note that v is a B-contact form as in Definition 1.3.14, and that u is an admissible
form as in Definition 1.3.18. Given a fixed B-contact form, there are many admissible
forms completing it to a B-contact pair. The following is analogous to Lemma 1.2.5
for symplectic structures.

Lemma 1.4.5. If v is a B-contact form on N2n, then:

(i) There exists an admissible form u;

(ii) Given a fixed admissible form u, there is a 1-1 correspondence between admissible
forms and triples pf, g,Xq, where f, g P C8pNq with g ą 0, and X P XpNq with
X P keruX ker v, given by the formula:

θ “ fv ` gu` ιXdv.

Proof. The proof is analogous to that of Lemma 1.2.5 and Lemma 1.6.3.

For regular contact forms Equation 1.4.1.2 implies that the admissible form is ”the
variation of α transverse to the boundary”, that is,

u “ LBtα|BM .

In most of the cases we consider, this property also holds for non-regular boundaries.

Lemma 1.4.6. Let α be a contact form on M2n`1 such that kerα&BM , and v :“ αB
the induced B-contact form. Then, for any vector field X P XpMq satisfying X P kerα
and transverse to the boundary,

u :“ ιXdα|BM ,

is an admissible form for v.

Conversely, assuming that the Reeb vector field R of α is everywhere tangent to BM ,
for any admissible form u there exists a vector field X P XpMq such that:

u “ ιXdα|BM , X&BM.
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Proof. The proof of Lemma 1.6.6 is purely linear algebra for a triple pu, v, wq satisfying
u^ v ^ wn´1 ą 0. Thus, taking w “ dv, it carries over to the contact case.

To phrase the regularity condition (Definition 1.4.1) in a coordinate invariant way,
recall that a choice of collar neighborhood U » p´ε, 0sˆBM is equivalent to a choice
of vector field X P XpMq transverse to the boundary. In the collar neighborhood
coordinates X is identified with Bt. It follows directly from Equation 1.4.1.2 that if
pM,αq has regular boundary, then there exists a vector field X P XpMq, transverse
to the boundary, and satisfying

(1.4.1.3) ιXα “ 0, LXLXα “ 0.

By the following lemma the converse is also true, and thus this equation characterizes
regular contact boundaries. Since the proof does not use the contact conditions we
state the lemma for general 1-forms.

Lemma 1.4.7. Let M be a manifold with boundary, and α P Ω1pMq nowhere van-
ishing. Then, there exists a collar neighborhood U » p´ε, 0sˆBM and u, v P Ω1pBMq
nowhere vanishing, for which

α “ tu` v, t P p´ε, 0s,

if and only if there exists a vector field X P XpMq, transverse to the boundary and
satisfying

ιXα “ 0, LXLXα “ 0,

on an open neighborhood of the boundary. Moreover, in the collar neighborhood X is
identified with Bt.

Note that using a bump function, the above conditions on the vector field only needs
to be satisfies locally around the boundary. One way of interpreting the conditions
in the above lemma, is that there exists a direction, transverse to BM and tangent to
kerα, in which the contact form is linear, i.e. has no second order information.

Proof. By Equation 1.4.1.3 above, it suffices to prove the if implication. Thus as-
sume that X is a vector field satisfying the above conditions. In the induced collar
neighborhood p´ε, 0s ˆ BM , we can write

α “ αt ` ftdt, t P p´ε, 0s

for αt P Ω1pBMq and ft P C
8pBMq, and identify X with Bt. The first condition on

X implies
ιBtα “ ft “ 0,

and therefore the second condition gives

(1.4.1.4) :αt “ 0,

by which we mean that the second derivative in the parameter t is zero. Observe
that,

αt “ α0 `

ż 1

0

d

ds
αst ds “ α0 ` t

ż 1

0

9αst ds “ α0 ` tβt.
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where we defined

βt :“

ż 1

0

9αst ds.

Now observe that by Equation 1.4.1.4 we have

9βt “

ż 1

0

s:αst ds “ 0,

so that βt does in fact not depend on t. Putting this together we conclude

α “ α0 ` tβ,

as desired.

1.4.2 Special boundaries of contact forms

As a consequence of the normal form of Theorem 1.3.19, the contact structure around
the boundary is, up to equivalence, completely determined by the induced B-contact
structure on the boundary. In particular, the choice of admissible form (or admissible
pair) is of little importance since, up to isomorphism, the local model does not depend
on it.

On the level of forms there is no general normal form, and instead we have to impose
it, as in Definition 1.4.1. As a consequence, we are not free to choose the admissible
form anymore, and it is part of the definition of a B-contact pair, see Definition
1.4.2. In fact, the behaviour of the contact form around the boundary is mostly
determined by the admissible form. Understanding their properties makes several
gluing constructions from the literature more transparent.

A B-contact pair pN2n, u, vq is said to be of:

• Liouville type if
du “ dv;

• Unimodular type if
du “ 0;

• Foliation type if
u^ du “ 0;

• Principal type if
u^ v ^ duk ^ dvn´k´1 ě 0,

for all k “ 0, . . . , n´ 1.

The above list is ordered from strong to weak. More precisely, N admits a B-contact
structure of Liouville type if and only if it admits one of Unimodular type, and that
the latter is a special case of Foliation type. Indeed, if pu, vq is of Liouville type then
pu1 :“ u´ v, v1 :“ vq is of unimodular type. Moreover, they all satisfy the conditions
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of principal type.
The existence of a special pair puts restrictions on the topology of N . For example,
if pN, u, vq is of unimodular type then it follows from a theorem of Tischler [106] that
N is the total space of a fibration π : N Ñ S1. In fact, denoting by θ the angle
coordinate of S1, this theorem shows that π˚pdθq can be chosen arbitrarily close to
u. Since the contact condition is open v defines a contact structures on the fibers of
π. Thus, if pN, u, vq is of Unimodular type, N must admit a contact fibration over
S1.

The following is analogous to Definition 1.2.10.

Definition 1.4.8. We say that a contact manifold pM,αq has boundary of right
S-type (resp. left S-type), for S in the above list, if in some collar neighborhood
U » p´ε, 0s ˆ BM (resp. U » r0, εq ˆ BM) we have

α “ tu` v,

where pu, vq is a B-contact pair of S-type.

The left and right versions of each type only differ in the orientations induced on
the boundary. In line with our orientation conventions, the boundary of a manifold
with the standard orientation is always a right boundary. However, these names are
particularly useful when considering cobordisms, where we think of these models as
the left or right side of a cobordism as in Section 1.4.3.

Example 1.4.9. Let pΣ,dλq be an exact symplectic manifold with boundary of
contact type pB :“ BΣ, λB :“ λ|BΣq. The product Σˆ S1 admits a contact form

α :“ λ` dz,

which has regular boundary. More precisely, as in Definition 1.2.9 and Definition
1.2.10, there is a collar neighborhood p´ε, 0s ˆ BΣ in Σ on which

λ “ p1` tqλB .

In turn, this gives a collar neighborhood p´ε, 0s ˆB ˆ S1 such that

α “ tλB ` λB ` dz.

Hence, the induced B-contact boundary
`

B ˆ S1, u :“ λB , v :“ λB ` dz
˘

is of Liou-
ville type.

Similarly, the product BˆD2
δ , where D2

δ denotes the disk of radius δ, admits a contact
form

α :“ λB ` r
2dθ.

Reparametrizing the r-coordinate yields a collar neighborhood p´ε, 0s ˆ B ˆ S1 on
which

α “ sdθ ` λB ` δ
2dθ.

Thus the induced B-contact boundary pB ˆ S1, u :“ dθ, v :“ λ` δ2dθq, is of unimod-
ular type.
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These two pieces form the inside and outside component of an abstract open book
(with trivial monodromy), and we will see how they can be glued in Section 1.4.3
below.

Both examples above are products of an exact symplectic manifold and a contact
manifold. As explained in Example 1.3.8, such products always admit a contact
structure. Let pN, βq be a closed contact manifold and pW, dλq an exact symplectic
manifold then the product manifold M :“ N ˆW admits a contact form

α :“ β ` λ.

If W has boundary BW , then pM,αq has regular boundary, and the induced strict
B-contact structure is given by

u :“ γ, v :“ β ` λ|BW ,

where γ P Ω1pBW q is an admissible form for dλ|BW , see Definition 1.2.4. As usual, the
behaviour of dλ on the boundary BW , encoded in γ, determines the type of pu, vq. 4

Example 1.4.10. The following situation is considered in [33, 54] to construct and
classify invariant contact structures on principal circle bundles. Let π : M Ñ W be
a principal S1-bundle, and denote by Bθ P XpMq the infinitesimal generator of the
S1-action. Recall that a connection on M is a form γ P Ω1pMq satisfying

LBθγ “ 0, ιBθγ “ 1.

These conditions imply that dγ “ π˚ω for some closed form ω P Ω2pW q, called the
curvature. The class rωs P H2pW q is called the Chern class of M . In the case that
M and W have boundary, we assume that BM “ π´1pBW q and write

γB :“ γ|BM , ωB :“ ω|BW .

Now, let β P Ω1pBW q be a contact form, and assume that the curvature ω P Ω2pW q
is a symplectic form satisfying

β ^ dβk ^ ωn´k´1
B ą 0, k “ 0, . . . , n.

Then, the conclusion of Lemma 4.2 and Lemma 4.5 in [33] is that M admits an S1-
invariant contact form α, and a collar neighborhood U » p´ε, 0s ˆ BM on which we
have

α “ sπ˚pβq ` γB ` π
˚β.

That is, it has boundary of right principal type with

pu, vq “ pπ˚β, π˚β ` γBq.

4

Example 1.4.11. Here we consider the contact analogue of Example 1.2.13, where
we considered the normal form around a codimension-2 symplectic submanifold. We
will use the facts about complex line bundles stated there. Let pM2n`1, ξ :“ kerαq be
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a contact manifold and pB2n´1, ξB :“ kerαBq a codimension-2 contact submanifold.
That is,

ξB :“ TB X ξ|B ,

is a contact structure on B, defined by αB :“ α|B . Hence, the dα-orthogonal of ξB
provides a model for the normal bundle of B in M :

ν :“ pTB X ξqdα Ă TM |B .

The restriction of dα to ν makes it into a symplectic vector bundle pν, dα|νq, and we
note that the conformal class of dα|ν , only depends on ξ. As in Example 1.2.13, we
can talk the first Chern class of pν, dα|νq. We claim that there exists a neighborhood
of B, endowed with a contact form representing ξ, which has boundary of:

• Liouville type if the Chern class of pν, dα|νq vanishes;

• Unimodular type if the Chern class of pν, dα|νq vanishes;

• Principal type if the Chern class pν, dα|νq has a representative σ P Ω2pBq sat-
isfying

αB ^ σ
k ^ dαn´k´1

B ě 0, @k “ 0, . . . , n´ 1.

To construct the local model aroundB, let rσs P H2pBq be the Chern class of pν, dα|νq.
Furthermore, let π : P Ñ B be the associated principal S1-bundle, endowed with a
connection form θ P Ω1pP q (satisfying dθ “ π˚σ). On P ˆ C, we define a 1-form

A :“ π˚pαBq ` r
2pdφ` θq,

where pr, φq P C denote polar coordinates.

Observe that A is basic with respect to the (right) S1-action from Equation 1.2.2.1,
and descends to the quotient

(1.4.2.1)
´

P ˆS1 C, rA
¯

.

Furthermore, the form θ ´ dφ P Ω1pP ˆ Cq is dual to the infinitesimal generator of
the S1-action and a straightforward computation shows:

pθ ´ dφq ^A^ dAn`1 “ 4pn` 1qθ ^ π˚
`

αB ^ pdαB ` r
2σqn

˘

^ rdr ^ dφ

Hence, rA defines a contact form on a neighborhood of B “ P ˆS1 t0u Ă P ˆS1 C, for
which pB,αBq is a contact submanifold. Furthermore, if the Chern class of pν,dα|νq

is of principal type then rA is contact on the whole of P ˆS1 C.

The same argument as in Example 1.2.13 shows that the induced symplectic normal
bundle of B Ă P ˆS1 C equals

pB ˆ C, 2rdr ^ dφq ,

so that its Chern class equals that of P , which in turn equals that of pB,αBq Ă pM,αq.
Thus, by the standard normal form theorem for contact submanifolds, see for example
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[53], we conclude that a neighborhood of B in M is contact isomorphic to the model
of Equation 1.4.2.1.

A tubular neighborhood of B can be identified with P ˆS1 D2 with boundary P »

P ˆS1 S1. Observe that

ι 1
r Br

rA “ 0, L 1
r Br
L 1
r Br

rA “ 0,

so that by Lemma 1.4.7 the boundary is regular. The restriction

AB :“ A|PˆS1 “ π˚pαBq ` dφ` θ,

is again basic with respect to the S1-action. Its reduction rAB equals the B-contact
form induced by rA on PˆS1S1. Moreover, under the identification with P the induced
B-contact form equals:

rAB “ π˚pαBq ` θ.

Hence:

• if the Chern class vanishes we can choose σ “ 0, implying dθ “ 0. Then, θ is
an admissible form for which the boundary is of Unimodular type;

• if the Chern class vanishes we can choose σ “ 0, implying dθ “ 0. Then, αB`2θ
is an admissible form for which the boundary is of Liouville type;

• if the Chern class satisfief αB ^dαkB ^σ
n´k´1 ě 0 then θ is an admissible form

for which the boundary is of Principal type.

4

Example 1.4.12. Combining the gluing construction from Section 1.3.4 with the
local model from the previous example, we can move the Gompf connected sum from
Example 1.2.22 to the contact setting.

Let pMi, ξiq, i “ 1, 2, be contact manifolds with codimension-2 contact submani-
folds pBi, ξBiq as in Example 1.4.11. Suppose there exists an orientation preserving
diffeomorphism φ : B1 Ñ B2 satisfying:

(i) φ˚pξB2
q “ ξB1

;

(ii) φ˚c1pνB2
q “ ´c1pνB1

q P H2pB1q;

where c1pνBiq is the Chern class of the symplectic normal bundle as in Example
1.4.11. As before, a neighborhood of Bi is contact isomorphic to

´

Pi ˆS1 C, rAi
¯

,

as in Equation 1.4.2.1. The above conditions imply that the induced B-contact struc-
tures on the boundaries of these neighborhoods satisfy the conditions of Proposition
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1.3.28, so that they can be glued along their boundaries. Hence we conclude that the
Gompf connected sum,

pM1, B1q#pM2, B2q :“
`

M1zP1 ˆS1 D2
˘

Yψ
`

M2zP2 ˆS1 D2
˘

,

where ψ : P1
„
ÝÑ P2 is induced by φ, carries a contact structure which restricts to ξi

on each of the pieces. 4

Just as for boundaries of symplectic manifolds, the Liouville and unimodular types
can be easily recognized in terms of existence of a special vector field.

Lemma 1.4.13. Let pM,αq be a contact manifold boundary. Then then the boundary
is of:

(i) Liouville type if and only if there exists a vector field X P XpMq, pointing out
along BM , and satisfying

ιXα “ 0, LXdα “ dα,

on a neighborhood of the boundary.

(ii) Unimodular type if and only if there exists a vector field X P XpMq, transverse
to BM , and satisfying

ιXα “ 0, LXdα “ 0,

on a neighborhood of the boundary.

Moreover, if X satisfies LXLXα “ 0 then in each of the cases above it suffices to
require the conditions only at points in the boundary of M .

Proof. (i) Assume that the boundary is of Liouville type so that the associated B-
contact structure pu, vq satisfies du “ dv. On the collar neighborhood p´ε, 0s ˆ
BM the vector field X :“ p1` tqBt is in the kernel of α and satisfies:

LXdα “ dιp1`tqBtdptu` vq

“ dt^ u` p1` tqdu “ dα.

Conversely, assume a vector field X satisfying the above conditions exists, and
let p´ε, 0sˆBM the resulting collar neighborhood on which we identify X “ Bt.
Then define Y :“ e´tBt, which is in the kernel of α and satisfies:

LY LY α “ ιY dιY dα

“ ιY dpe´tιXdαq

“ ιY p´e
´tdt^ ιXdα` e´tdαq

“ ´e´2tιXdα` e´2tιXdα “ 0.

Hence, by Lemma 1.4.7, we have

α “ tu` v,
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in the collar neighborhood induced by Y . Observe that

LY dα|BM “ e´tLXdα|BM “ dα|BM ,

and since in the above collar we have

dα|B “ dv, pLBtdαq |B “ du,

the boundary is of Liouville type. Finally, if the vector field X already satisfies
LXLXα “ 0, then the above argument shows it suffices to ask LXdα|BM “

dα|BM .

(ii) If α is of unimodular type we simply check that the above conditions hold for
X :“ Bt. Conversely, if such an X exists then it also satisfies

LXLXdα “ 0.

In the collar neighborhood of Lemma 1.4.7 the condition LXdα “ 0 is equivalent
to du “ 0.

1.4.3 Cobordisms between B-contact manifolds

We now consider gluing contact manifolds with fixed contact forms, where we ask
that the gluing preserves the chosen forms. This might seem superfluous in light of
the gluing construction of Section 1.3.4. However, it allows us to phrase the technical
arguments needed in Section 1.8 in a more conceptual way.

The following glueing construction for contact forms regular at the boundary, follows
directly from the definitions:

Lemma 1.4.14. Let αi be a contact manifold with regular boundary, as in Definition
1.4.1, on a manifold Mi, i “ 1, 2, and denote by pui, viq the induced B-contact pair on
BMi, as in Definition 1.4.2. If there exists an orientation reversing diffeomorphism
φ : BM1 Ñ BM2, satisfying

φ˚u2 “ ´u1, φ˚v2 “ v1,

then the manifold M1 YφM2, admits a contact form α which restricts to αi on Mi.

Proof. By Definition 1.4.1 there exist collar neighborhoods p´ε, 0s ˆ BMi on which

αi “ tui ` vi, i “ 1, 2.

Observe that p´ε, 0s ˆ BM2 » r0εq ˆ BM2 by sending t ÞÑ ´t. Hence under this
isomorphism

α2 “ tp´u2q ` v2.

Using φ to identify BM2 » BM1, ´u2 “ u1, and v2 “ v1 the two collars can be
matched along their boundary.
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Of course, in most situations the difficulty comes from the search for the required
diffeomorphism. Even more, since we want to preserve the contact forms on each
of the manifolds we want to glue, we have no freedom to change the contact forms,
in order to make them match along the boundaries. To solve this problem we can,
instead of gluing the manifolds directly to each other glue an extra piece, called a
cobordism, in between. In many cases it suffices to consider topologically trivial
cobordisms r0, 1s ˆ BM , so that the topology of the gluing is not affected. However,
for completeness we introduce the general notion of cobordism, both on the level of
structures and forms.

Definition 1.4.15. Let pNi, ζiq, i “ 1, 2, be B-contact manifolds as in Definition
1.3.12. A contact cobordism pN1, ζ1q ăpM,ξq pN2, ζ2q is a contact manifold pM, ξq
with

BM “ N1 \N2,

and inducing ζi on the boundary. In the cooriented case we additionally require the
coorientations to match.

Remark 1.4.16. Strictly speaking the identification of the boundary BM with N1

and N2, is only up to diffeomorphism. That is, we have BM “ BM1 \ BM2, where
BMi, i “ 1, 2, denotes a (collection) of connected components of BM . Then, we
require there exists an orientation reversing diffeomorphism φ1 : N1 Ñ BM1, and an
orientation preserving diffeomorphism φ2 : N2 Ñ BM2. The choice of diffeomorphisms
is usually clear from the context, so we suppress them in the notation for the sake of
readability. 4

Example 1.4.17. The notion of contact cobordism is very convenient to keep track
of gluings, since it automatically takes care of the conventions for left and right
boundaries. That is, a contact manifold pM, ξq with non-empty right boundary, is
the same thing as a cobordism

H ăpM,ξq pBM, ξB :“ ξ X TBMq.

Similarly, a contact manifold with left boundary is the same thing as a contact cobor-
dism

pBM, ξBq ăpM,ξq H.

The gluing construction from Section 1.3.4 implies that cobordisms can be composed.
That is, given pN1, ζq1 ăpM,ξq pN2, ζ2q, and pN2, ζ2q ă

pĂM,rξq
pN3, ζ3q, the composition

gives a cobordism
pN1, ζ2q ă

pMYĂM,ξYrξq
pN3, ζ3q.

In particular, gluing contact manifolds pMi, ξiq, i “ 1, 2, with isomorphic B-contact
boundaries gives a cobordism from the emptyset to itself:

H ăpM1,ξ1q pBM1, ξ1,Bq ăpM2,ξ2qă H,

where, as in Remark 1.4.16, the isomorphism of B-contact manifolds φ : pBM1, ξ1,Bq Ñ
pBM2, ξ2,Bq is implicit in the notation. 4

For B-contact pairs we consider the following notion of cobordism:
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Definition 1.4.18. Let pui, viq be a B-contact pair on Ni, for i “ 1, 2, as in Definition
1.4.2. A regular contact cobordism pN1, u1, v1q ăpM,αq pN2, u2, v2q, consists of a
contact manifold pM,αq with

BM “ N1 \N2,

and such that, in the notation of Definition 1.4.8, α has:

(i) Regular left boundary N1, with induced B-contact pair pu1, v1q;

(ii) Regular right boundary N2, with induced B-contact pair pu2, v2q.

Of course, any regular contact cobordism induces a contact cobordism as above. As
stated before, regular contact cobordisms allow us to change the type of boundary,
as in Definition 1.4.8, of a contact form. The precise conditions under which this is
possible are as follows:

Lemma 1.4.19. Let pN2n, u, vq be a B-contact manifold and a, b, c, d P R satisfying
ad´ bc ą 0. Then

u1 :“ au` bv, v1 :“ cu` dv,

defines a B-contact structure in any of the following cases:

(i) pu, vq is of Liouville type and pc` dqn´1 ą 0;

(ii) pu, vq is of Foliation type and dn´1 ą 0;

(iii) pu, vq is of Principal type, c ą 0, d ą 0, and not both equal to zero.

In these cases there exists a contact form on r0, 1s ˆ N giving a regular contact
cobordism from pN, u, vq to pN, u1, v1q.

Proof. Consider the trivial cobordims r0, 1s ˆN , endowed with the 1-form

α :“ fpsqu` gpsqv,

for f, g : r0, 1s Ñ R suitable functions to be chosen later. The contact condition for
α reads

(1.4.3.1) α^ dαn “ np 9fg ´ f 9gqds^ u^ v ^ pfdu` gdvqn´1.

Thus, under the assumption that pu, vq is of principal type, α will be contact if

(1.4.3.2) 9fg ´ f 9g ą 0, g ą 0, f ě 0.

In case pu, vq is of Liouville or foliation type the above conditions can be slightly
relaxed, giving the other statements in the lemma.

Observe that

ps´ 1qu1 ` v1 “ psa´ a` cqu` psb´ b` dqv.
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Hence, if we want α to induce pu, vq on the left boundary, and pu1, v1q on the right
boundary then we additionally need to require that
(1.4.3.3)
ˆ

f 9f
g 9g

˙

“

ˆ

s 1
1 0

˙

, s P r0, εq, and

ˆ

f 9f
g 9g

˙

“

ˆ

ps´ 1qa` c a
ps´ 1qb` d b

˙

, s P p1´ε, 1s.

In order for Equation 1.4.3.2 to be satisfied at the right boundary we need

(1.4.3.4) ad´ bc ą 0, c ě 0, d ą 0.

An extension of the functions f and g satisfying Equation 1.4.3.2, can be viewed as
a path

λ : r0, 1s Ñ R2(1.4.3.5)

t ÞÑ pfptq, gptqq,

into the upper right quadrant of R2, and such that p 9λptq, λptqq defines an oriented
frame. Such a path exists, see Figure 1.1, provided the conditions in Equation 1.4.3.4
and c ą 0 are satisfied.

1

g

fc

d

p1, 0q

pa, bq

p 9f, 9gq

0

Figure 1.1: Functions f and g satisfying the conditions in Equation 1.4.3.2 and Equa-
tion 1.4.3.3.

Remark 1.4.20. The conditions on the coefficients pa, b, c, dq are necessary in the
most general case. However, they can be relaxed in many specific examples, where
u and v are explicitly given. For example, if n “ 1 then Equation 1.4.3.1 simplifies,
and the only remaining condition is ac´ bd ą 0. This gives extra freedom, since the
path λ from Equation 1.4.3.5 is now allowed to make a loop around the origin. In
fact, in this case any two points can be connected, see Figure 1.2. 4
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1

g

f0c

d
t “ 1

t “ 0

Figure 1.2: Functions f and g satisfying the conditions in Equation 1.4.3.2 and Equa-
tion 1.4.3.3, in the case n “ 1.

1.4.4 Contact open books

An open book decomposition of a manifold M consist of a codimension-2 submanifold
B whose normal bundle is trivial, and a fibration on the complement π : MzB Ñ S1.
The definition and basic properties of open books are discussed in Appendix 1.9.
As discussed there we consider two points of view; as a way to decompose a given
manifold into simpler pieces, called geometric open book, and as way of constructing
new manifolds out of simpler data, called an abstract open book.

In this section we consider open book decompositions for contact manifolds. Impos-
ing compatibility conditions between the contact structure and the open book ensures
that both pieces of the decomposition inherit natural contact structures. These con-
ditions translate into conditions on the associated abstract open book, and we show
that the contact manifold can be recovered from this data.

Definition 1.4.21. A contact form α on M is said to be adapted to a (geometric)
open book pB, πq if:

(i) The binding pB,αB :“ α|Bq is a contact submanifold;

(ii) Away from the binding Reeb vector field R is positively transverse to the (open)
pages, that is:

π˚pdθqpRq ą 0.

In turn, a contact structure ξ on M is adapted to pB, πq if there exist an adapted
contact form α representing it.

Remark 1.4.22. Recall that a symplectic fibration is defined to be fibration
π : M Ñ B together with a symplectic form on each fiber. That is, a leafwise
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symplectic form ω P Ω2pFq on the foliation Fπ :“ ker dπ Ă TM induced by the
fibration. An extension η P Ω2pMq of ω defines a connection by

(1.4.4.1) H :“ pker dπqKη Ă TM.

Indeed, since η|Fπ is non-degenerate, H is a horizontal distribution. Moreover if η is
closed, then the parallel transport of H preserves the fiberwise symplectic form, see
[86].

Now if α is a contact form on M adapted to an open book pB, πq, then the condition
that the Reeb vector field is positively transverse to the page is equivalent to requiring

dαn ^ π˚dθ ą 0,

where θ P S1 denotes the usual angle coordinate. In turn this means that π : MzB Ñ
S1, becomes a symplectic fibration with induced symplectic foliation pFπ,dα|Fπ q. 4

The above conditions depend on the Reeb vector field, and thus on the choice of con-
tact form. Hence, even if ξ is adapted to pB, πq there exist contact forms representing
ξ which are not adapted.

Example 1.4.23. Let pr, θ, zq P R3 denote the standard cylindrical coordinates.
Then, the standard open book decomposition is given by B :“ tr “ 0u and

π : R3zB Ñ S1, pr, θ, zq ÞÑ θ.

The standard contact form α :“ dz`r2dθ is not adapted to pB, πq. Indeed, although
B is a contact submanifold for α, its Reeb vector field equals Bz which is tangent to
the fibers of π. However, the contact form e´r

2

α has Reeb vector field

R “ p1´ r2qer
2

Bz ` e
r2Bθ,

which is positively transverse to the pages. Hence, the standard contact structure
ξ :“ kerα is adapted to pB, πq.

This example generalizes to B ˆR2, with the obvious open book decomposition and
the contact structure ξ :“ ker

`

αB ` r
2dθ

˘

, for αB P Ω1pBq a contact form on B. As
shown in Equation 1.4.4.2 in the proof of Theorem 1.4.26 below, a contact structure
adapted to an open book looks like this one. Hence, any contact structure adapted
to an open book has representing contact forms which are not adapted. 4

Although the definition of a contact form adapted to a geometric open book looks
quite restrictive we have the following:

Theorem 1.4.24 ([57][99]). Let pM, ξq be a contact manifold. There exists a (geo-
metric) open book decomposition pB, πq of M to which ξ is adapted as in Definition
1.4.21.

Recall that any geometric open book decomposition pB, πq has an associated abstract
open book pΣ, φq, as in Lemma 1.9.6. If α is a contact form adapted to pB, πq then
the restriction of dα to the page P is non-degenerate, since the Reeb vector field is
transverse to the page. Moreover, as we will see below, in this case the monodromy
of the fibration π : MzB Ñ S1 can be chosen to preserve dα|P . Thus we arrive at
the following definition.
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Definition 1.4.25. An (abstract) contact open book consists of an exact symplectic
manifold pΣ,dλq with boundary of Liouville type, as in Definition 1.2.10, together with
a symplectomorphism φ : pΣ,dλq Ñ pΣ,dλq which is the identity on a neighborhood
of the boundary.

As claimed above, Definition 1.4.21 and Definition 1.4.25 correspond to each other
under the identifcations of Lemma 1.9.6 and Lemma 1.9.5. We first show that a
geometric contact open book induces an abstract contact open book. The non-trivial
part is finding the required monodromy. Let α P Ω1pMq and pB, πq are as in Definition
1.4.21. Then the rescaling of the Reeb vector field;

X :“
1

π˚pdθqpRq
R P XpMzBq,

satisfies LXdα “ 0, so its time one flow is a symplectomorphism φ of the page
pP,dα|P q. However, φ need not be equal to the identify on a neighborhood of the
boundary BP . The proof of the following lemma shows that, by modifying X close
to the binding, this additional condition can be satisfied.

Theorem 1.4.26. Let ξ be a contact structure on M adapted to an open book decom-
position pB, πq. Then there exists an adapted contact form α P Ω2pMq for ξ, and a
symplectomorphism φ on pP,dα|P q such that pP,dα|P , φq is an abstract contact open
book.

Proof. Fix an adapted contact form α for ξ, and denote by αB the induced contact
form on the binding B. Since the normal bundle of B is trivial, the normal form from
Example 1.4.11 implies there exists a neighborhood B ˆ D2 of the binding on which

(1.4.4.2) α “ fpαB ` r
2dθq,

where pr, θq P D2, and f P C8pB ˆ D2q is a positive function satisfying f |Bˆt0u “ 1.

Furthermore, the codnition that α is adapted implies that

dαn ^ dθ “ ´nfn´1BrfαB ^ dαn´1
B ^ dr ^ dθ ą 0.

Thus Brf ă 0 for r ą 0, in fact since f is smooth it is of the form

f “ 1´ r2g,

for some smooth function g. We can choose a function rf P C8pB ˆ D2q satisfying

(i) rf |Bˆt0u “ 1 and Br rf ă 0;

(ii) rf agrees with f on a neighborhood of the boundary BpB ˆ D2q;

(iii) d rf |B “ 0 and on a neighborhood of the binding B ˆ t0u we have

Bθ rf “ 0.
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Then,
rα :“ rfpαB ` r

2dθq,

is again an adapted contact form for ξ, and agrees with α away from the binding. A
straightforward computation shows that its Reeb vector field equals

R
rα “

˜

1

f̃
`
rBrf̃

2f̃2

¸

RαB ´
Brf̃

2r
˜̃
f2
Bθ.

Choose a bump function λ : r0, 1s Ñ r0, 1s which is constant equal to 0 around zero
and constant equals to 1 around one. Then, the vector field

X :“ λprq

ˆ

1

f
`
rBrf

2f2

˙

RαB ´
Brf

2rf2
Bθ P XpB ˆ D2q,

agrees with R
rα away from the binding and is a multiple of Bθ near the boundary.

Observe that X is everywhere positively transverse to the pages. That is, the function

g :“ π˚dθpXq P C8pMzBq,

is strictly positive. Hence, the time one flow of 1
gX defines the monodromy φ P DiffpP q

of the open book, and we claim it preserves drα|P . Away from the binding the follows
since X equals the Reeb vector field of rα so that

L 1
gX

dα “ 0.

On the collar neighborhood it follows from the normal form above since there 1
gX is

of the form aprqRB ` bprqBθ for functions a, b P C8pB ˆ D2q. Hence, we have

LaRB`bBθdα “ dιaRB`bBθdα

“ ´d
`

aBrfdr ` bpr2Brf ` 2rfqdr
˘

“ 0,

since all the functions depend only on r. Lastly, since 1
gX is a multiple of Bθ near the

binding, the monodromy is the identity near the boundary BP .

Conversely, using Lemma 1.9.5, we can construct a manifold MpΣ, φq out of an ab-
stract open book pΣ, φq. Given a contact open book pΣ, φ,dλq then pM,Σ, φq carries
a contact structure adapted to the induced geometric open book.

Lemma 1.4.27. Given an abstract contact open book pΣ, φ,dλq with compact Σ,
the manifold MpΣ, φq with its canonical open book decomposition admits an adapted
contact form.

Proof. The main technicality of the proof is constructing the contact form on the
outside component of the open book. We first consider the case that φ “ id, implying
that the outside component is just the product Σˆ S1. From Example 1.4.9 we have
the contact manifold

`

B ˆ D2
δ , λ` r

2dθ
˘

,
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for 0 ă δ ă 1, with induced B-contact boundary pB ˆ S1, u “ dθ, v “ λB ` δdθq. We
also have the contact manifold

`

Σˆ S1, λB ` dz
˘

,

with induced B-contact boundary pB ˆ S1, u1 “ λB , v
1 “ λB ` dzq. Observe that

ˆ

´u1

v1

˙

“

ˆ

δ ´1
1´ δ 1

˙ˆ

u
v

˙

and this matrix has determinant 1. Hence, the conditions of Lemma 1.4.19 are satis-
fied and we find a contact form on rδ, 1s ˆB ˆ S1 which can be glued in between the
two pieces. Together constructs a contact form on the filled mapping cylinder

(1.4.4.3) MpΣ, φq “ B ˆ D2 YBˆS1 Σˆ S1.

If the monodromy φ is non-trivial the construction on the outside component changes
as follows. The monodromy is isotopic through symplectomorphisms equal to the
identity near BΣ, to an exact symplectomorphism φ̃(see for example Lemma 7.3.4 in
[52]). The mapping cylinders MpΣ, φq and MpΣ, φ̃q are isomorphic (see for example
Lemma 7.3.1 in [52]) so that we can assume that φ is an exact symplectomorphism
of pΣ,dλq. Hence there exists a function f P C8pΣq satisfying

φ˚λ “ λ` df.

Note that adding a constant to f does not change the above equation. Hence, by
compactness of Σ we can assume f is strictly positive. Then, we form the ”scaled
mapping cylinder” given by:

M ˆZ,f R :“M ˆ R{px, zq „ Φpx, zq,

the quotient of M ˆ R under the Z-action generated by:

Φ : M ˆ RÑM ˆ R, px, zq ÞÑ pφpxq, z ´ fpxqq.

Observe that the scaled mapping cylinder is diffeomorphic to the usual (non-scaled)
one. The map

Ψ : M ˆZ R „
ÝÑM ˆZ,f R, rpx, zqs ÞÑ rpx, fpxqzqs,

gives a diffeomorphism since f is strictly positive. The contact form α :“ dz ` λ, is
preserved under the action, and hence descends to the quotient. Furthermore, around
the boundary φ “ id so the outside component can be glued to the inside component
as in the trivial case.

1.5 Symplectic foliations and their boundaries

1.5.1 Codimension one symplectic foliations

Recall that a codimension-k foliation F on an n-dimensional manifold M is a decom-
position

M “
ď

xPM

Lx,
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into a disjoint union of connected immersed submanifolds of codimension-k, called
the leaves of F , such that around each point there exists a local coordinate chart
U » Rn in which the decomposition equals:

Rn :“
ď

xPRk
Rn´k ˆ txu.

By the famous Frobenius theorem, this is equivalent to a distribution TF Ă TM , of
corank-k, which is involutive in the sense that

rX,Y s P ΓpTFq, @X,Y P ΓpTFq.

From now on we will only consider foliations of codimension-1, unless explicitly stated
otherwise.

Since the leaves of F are submanifolds, the complex of leafwise differential forms

Ω‚pFq :“ ΓpΛ‚T˚Fq.

admits a differential dF (usually denoted by d if there is not risk of confusion), which
is just the leafwise deRham differential. The usual Koszul formula gives an explicit
description of dF given by:

pdFαqpX1, . . . , Xk`1q “

k`1
ÿ

i“1

p´1qi`1LXipαpX1, . . . , pXi, . . . , Xk`1q

`
ÿ

iăj

p´1qi`jαprXi, Xjs, X1, . . . , pXi, . . . , pXj , . . . , Xk`1q,

for α P ΩkpFq. In this language a symplectic foliation is defined as follows:

Definition 1.5.1. A symplectic foliation pF , ωq on a manifold M is a (codimension-
1) foliation F endowed with a leafwise form ω P Ω2pFq that is (leafwise) closed and
non-degenerate.

To highlight the analogy between contact structures and symplectic foliations in the
notation, we will often abbreviate symplectic foliation by SF. That is, we talk about
SF-structures and SF-manifolds, and similarly for the notions of SF-pair, B-SF
structure, etc, introduced below.

Since a symplectic foliation is in particular a codimension-1 distribution, much of
the discussion for contact structures from Section 1.3.1, also applies here. As there,
although M is always assumed to be oriented, we do not necessarily require F to be
(co-) oriented.

Definition 1.5.2. A foliation F is said to be coorientable/cooriented if TM{F
is orientable/oriented.

On an oriented manifold M endowed with a foliation F we have a one-to-one corre-
spondence between orientations of the leaves of F and coorientation (i.e. orientations
of TM{F) of F . Hence, as a consequence of our convention, that unless explicitly
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stated otherwise all manifolds are oriented, any symplectic foliation pF , ωq has a
canonical coorientation by declaring ωn ą 0 along the leaves of F .

For various constructions it is useful to rephrase the above definition in terms of
global forms on M . This motivatives the following definition, whose terminology is
inspired by that for contact structures from Definition 1.3.6.

Definition 1.5.3. A symplectic foliation pair (SF -pair for short) on M2n`1 is
a pair pγ, ηq P Ω1pMq ˆ Ω2pMq satisfying

γ ^ dγ “ 0, γ ^ ηn ą 0, γ ^ dη “ 0.

Note that any SF -pair induces a symplectic foliation by pF :“ ker γ, ω :“ η|TF q.
When we study SF -pairs the emphasis is on the specific choice pγ, ηq, and we do
not consider the induced symplectic foliation. On the other hand, when we study
symplectic foliations it is often convenient to represent them by a pair pγ, ηq as above.
To stress the difference, in this situation we will refer to pγ, ηq as a symplectic
foliation pair representing pF , ωq. As observed above, such representing pairs always
exist. However, the choice of representative is only unique up to an element of

G :“ tpf, βq P C8pMq ˆ Ω1pMq | f ą 0u.

Indeed, it is not hard to see that two SF-pairs induce the same symplectic foliation
they are equivalent in the following sense:

Definition 1.5.4. Two SF-pairs pγ, ηq and prγ, rηq, as in Definition 1.5.3, are equiv-
alent if

rγ “ fγ, rη “ η ` β ^ γ,

for some pf, βq P G. In this case we write pγ, ηq „ prγ, rηq.

In fact, G is a group under the multiplication

pf, αq ¨ pg, βq :“ pfg, β ` gαq,

and the above equivalence classes are precisely the orbits of the induced G action.
In case the manifold M has a non-empty boundary BM we talk about equivalence
adapted to the boundary, denoted by pγ, ηq „B pγ

1, η1q if the extra conditions

(1.5.1.1) f |BM “ 1, βp “ 0, @p P BM

are satisfied.

Example 1.5.5. The following are some of the basic examples of SF-manifolds. Its
interesting to compare this list with the one from Example 1.3.8 for contact structures.

• Euclidean space: Let px1, y1, . . . , xn, yn, zq denote the standard coordinates
in R2n`1. The forms

γ :“ dz, η :“
n
ÿ

i“1

dxi ^ dyi,
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are called the standard SF-pair. The analogue of Darboux’s theorem, which
follows for example from Weinstein’s splitting theorem [112], stated that locally
any symplectic foliation looks like the standard one. Hence, similar to contact
and symplectic structures, SF-manifolds have no local invariants.

• Tori: Let px1, y1, . . . , xn, yn, zq denote the standard angular coordinates on
T2n`1. Then, the forms

γ :“ dz, η :“
n
ÿ

i“1

dxi ^ dyi,

define an SF-pair. Comparing with Example 1.3.8, we see that the tori T2n`1,
both admit a contact structure and a symplectic foliation. On the symplectic
foliation side this is immediate, whereas on the contact side it is a rather non-
trivial result.

• Products: For dimensional reasons, the product of two SF-manifolds cannot
admit an SF-structure. Instead let pM,F , ωq be an SF-manifold and pW,ωq a
symplectic manifold. Then, the product M ˆW admits a foliation, called the
product foliation, defined by:

F ˆW :“
ď

xPM

Lx ˆW,

where Lx denotes the leaf of F through x. Thus, the corresponding distribution
equals:

T pF ˆW q “ TF ‘ TW Ă T pM ˆW q,

endowed with the leafwise symplectic form

η1 :“ η ` ω.

In particular given any symplectic manifold pW,ωq, the product
˜

S1 ˆW,F :“
ď

zPS1
tzu ˆW,ω

¸

,

is an SF-manifold. Similarly, given any SF manifold pM,F , ωq, the product

pM ˆ Σg,F ˆ Σg, η ` ωq ,

is an SF-manifold, where ω is any volume form on Σg, the surface of genus g.

• Cosymplectic structures: A cosymplectic structure on a manifold M2n`1 is
a pair pγ, ηq P Ω1pMq ˆ Ω2pMq satisfying

dγ “ 0, dη “ 0, γ ^ ηn ą 0.

In this case pF :“ ker γ, ω|F q is a symplectic foliation. Such foliations behave
a lot like the products from the previous example, in the sense that both the
foliation and the leafwise symplectic form are ”constant”. That is the forms
being (globally) closed implies they do not vary, in a sense we will make precise
later in Definition 1.7.16 and Definition 1.7.22.
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• Spheres: The so called Reeb foliation on S3 [100] played an important role in
the development of foliation theory. Recall that the sphere S3 can be decom-
posed as two solid tori intersecting along their boundary:

(1.5.1.2) S3 “ S1 ˆ D2 YT2 D2 ˆ S1.

On the interior of the solid torus, intpS1ˆD2q consider the image of the product
foliation

Ť

zPS1tzu ˆ D2, under the diffeomorphism

φ : intpS1 ˆ D2q Ñ intpS1 ˆ D2q, pz, r, θq ÞÑ pz `
1

1´ r2
, r, θq.

This foliation can be smoothly extended to the solid torus, by taking the bound-
ary T2 “ BpS1 ˆ D2q as a leaf. Since each leaf is an orientated surface FReeb
is in fact a symplectic foliation. The resulting SF-manifold pS1 ˆ D2,FReebq is
called a Reeb component. Endowing each of the pieces of the decomposition
in Equation 1.5.1.2 with this foliation gives the Reeb foliation on S3.

Reeb components are a special example of the more general turbulization con-
struction which we will discuss in detail in Section 1.6.2 below. We use it to
give a general construction for symplectic foliations on manifolds that admit a
suitable open book decomposition. This is the SF version of the construction
from Section 1.4.4. In particular, in Theorem 1.9.1 we use this to recover a
result by Mitsumatsu [89] showing that the Lawson foliation [72] on S5 is part
of a SF-structure.

The existence question for SF-structures on the higher dimensional spheres is
still open. The techniques of Lawson can be used to show that all the odd
dimensional spheres admit a codimension-1 foliation. However, the compact
leaves do not admit a symplectic structure. Again, compare this with Example
1.3.8, showing that all odd-dimensional spheres admit a contact structure.

4

1.5.2 Symplectic foliations with transverse boundaries

Let pF , ωq be a symplectic foliation on a manifold with boundary M . In general, the
intersection of the foliation with the tangent space to the boundary can be extremely
complicated, and impossible to put into a normal form. However, there are two situa-
tions which are relatively easy to understand: when F is transverse to the boundary,
and when BM is a leaf. In this section we consider the first case, and show that both
the foliation and the leafwise symplectic form can be put in normal form.

Definition 1.5.6. The boundary of a symplectically foliated manifold pM,F , ωq is
called transverse if F&BM .

In this case, the boundary inherits a foliation with a leafwise 2-form:

FB :“ F X T pBMq, ωB :“ ω|FB .

Although ωB is still closed, it is degenerate and has a 1-dimensional kernel.
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Definition 1.5.7. A B-symplectic foliation (or B-SF structure for short) pF , ωq
on a manifold N2n is a (codimension-1) foliation F endowed with a leafwise form ω P
Ω2pFq that is closed and maximally non-degenerate, i.e. has 1-dimensional kernel.

As before, this structure can be represented by global differential forms, and the
representatives are unique up to the same equivalence relation as in Definition 1.5.4.

Definition 1.5.8. A B-symplectic foliation pair pγ, ηq on a manifold N2n is a
pair pγ, ηq P Ω1pNq ˆ Ω2pNq satisfying

(1.5.2.1) γ ^ dγ “ 0, γ ^ dη “ 0, dim
`

ker γ ^ ηn´1
˘

“ 1.

As for symplectic foliations, a B-SF pair pγ, ηq induces a B-SF structure by

F :“ ker γ, ω :“ η|F ,

in which case we say that pγ, ηq represents pF , ωq. The choice of representing pair
is not unique and induces an equivalence relation, analogous to Definition 1.5.4. We
say two pairs are equivalent, denoted pγ, ηq „ pγ̃, η̃q, if

γ̃ “ fγ, η̃ “ η ` α^ γ,

for some α P Ω1pNq and f P C8pNq strictly positive.

Note that the conditions in Equation 1.5.2.1 do not say wether or not ηn is non-zero.
In fact, by Lemma 1.7.11 below, both can happen in the same equivalence class.
Hence, unlike an SF-pair, in general a B-SF pair does not induce a canonical volume
form. However, γ^ηn´1 can always completed to a volume form by making an extra
choice:

Definition 1.5.9. An admissible form for a B-symplectic foliation pair pγ, ηq, is
a 1-form β P Ω1pNq such that

β ^ γ ^ ηn´1 ą 0.

By the following lemma it makes sense to call β an admissible form for a B-SF struc-
ture.

Lemma 1.5.10. Let pγ, ηq and pγ̃, η̃q be two B-SF pairs, representing the same B-SF
structure pF , ωq on N . Then β P Ω1pNq is admissible for pγ, ηq if and only if it is
admissible for pγ̃, η̃q.

Proof. Since pγ, ηq „ pγ̃, η̃q, there exist α P Ω1pNq and f P C8pNq strictly positive
so that

γ̃ “ fγ, η̃ “ η ` α^ γ.

Hence, assuming that β ^ γ ^ ηn´1 ą 0 we have:

β ^ γ̃ ^ η̃n´1 “ fβ ^ γ ^ pηn´1 ` pn´ 1qηn´2 ^ α^ γq “ fβ ^ γ ^ ηn´1 ą 0.
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As stated above, given a B-SF pair pγ, ηq representing pF , ωq on N2n, the form ηn

does not contain any information about pF , ωq. In fact, up to equivalence, it can
equal any top-degree form, as shown in the following lemma.

Lemma 1.5.11. Let pF , ωq be a B-SF structure on N2n. Let Ω P Ω2npNq be a volume
form and f P C8pNq a function. Then there exists a B-SF pair pγ, ηq representing
pF , ωq such that

ηn “ fΩ.

In particular, there exist B-SF pairs pγi, ηiq, i “ 1, 2, representing pF , ωq and such
that

ηn1 “ 0, ηn2 ą 0.

Proof. Let pη, γq be any B-SF pair representing pF , ωq and β an admissible form.
Since, β ^ γ ^ ηn´1 is a positive volume form, there exists a functions g, h P C8pNq,
with h strictly positive, so that

ηn “ gΩ, β ^ γ ^ ηn´1 “ hΩ.

Then, pγ, ηq is equivalent to

γ̃ “ γ, η̃ “ η `
f ´ g

hn
β ^ γ,

and it follows that

η̃n “ ηn `
f ´ g

h
β ^ γ ^ ηn´1 “ gΩ` pf ´ gqΩ “ fΩ.

Admissible forms will be important for understanding special boundaries of strict
symplectic foliations, later in Section 1.6.1. For now we consider them as an auxilliary
piece of data that is handy for writing down the normal form of transverse symplectic
foliations.

1.5.2.1 Statement of the normal form

Let pM,F , ωq be a symplectic foliation with transverse boundary, pγ, ηq any repre-
senting pair and

γB :“ γ|BM , ηB :“ η|BM

the induced B-symplectic foliation pair on the boundary. For any choice of admissible
form β P Ω1pBMq, consider

(1.5.2.2) pp´ε, 0s ˆ BM,γ :“ γB, η :“ ηB ` dptβqq ,

which defines a symplectic foliation for ε ą 0 small enough. We call this the local
model for pF , ωq.
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Theorem 1.5.12. Any symplectic foliation with transverse boundary, as in Defini-
tion 1.5.6, is isomorphic, as SF-structures, to its local model on a neighborhood of
the boundary.

In particular, up to isomorphism the local model is independent of the choice of
admissible form and the representing SF-pair pγ, ηq. This theorem is an immediate
consequence of the more technical statement in Proposition 1.5.14 below.

Remark 1.5.13. Analogous to Remark 1.3.20, the above local model for a symplectic
foliation pF , ωq can be stated more invariantly as follows. The leaves of the induced
foliation FB on the boundary, are odd-dimensional. Hence the restriction of the 2-form
ω to FB has a 1-dimensional kernel:

L :“ kerωB Ă TFB.

We view L as a subbundle of TBM , making it into a rank-1 vector bundle π : LÑ BM .
In particular, since every rank-1 distribution is involutive, it defines a foliation L with
1-dimensional leaves on BM , such that

L “ TL.

Hence, the dual bundle L˚ can be identified with the leafwise cotangent bundle

π : T˚LÑ BM.

The total space carries a canonical symplectic foliation defined by:

F :“ π˚FB, ω :“ π˚ωB ` dλcan,

where λcan P Ω1pT˚Lq denotes the tautological form.

Moreover, L has a canonical orientation, for which V P Lp, p P BM is positive if and
only if

ωppX,V q ą 0,

where X P TpF is any outward pointing vector. In particular, TL and T˚L are triv-
ializable. A choice of vector field X P XpMq transverse to the boundary corresponds
to a trivialization of T˚L, that is, a nowhere vanishing section β P ΓpT˚Lq defined
by

βpxq :“ pιXωq|TxL, x P BM.

In this trivialization T˚L » R ˆ BM , the symplectic foliation pF , ωq is represented
by pγ, ηq as in Equation 1.5.2.2. 4

The following proposition is the technical version of Theorem 1.5.12.

Proposition 1.5.14. Suppose pM2n`1,F , ωq is a symplectic foliation transverse
to the boundary, represented by pγ, ηq. Let pγB, ηBq be the induced B-SF pair, and
β P Ω1pBMq an admissible form, as in Definition 1.5.9. Then there exists a collar
neighborhood U » p´ε, 0s ˆ BM on which pγ, ηq is equivalent to the local model, as in
Definition 1.5.4;

pγ, ηq „ pγB, ηB ` dptβqq.
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Moreover, if additionally
β “ ιXη|B,

for a vector field X P XpMq transverse to the boundary and tangent to F , then the
equivalence can be made adapted to the boundary, as in Equation 1.5.1.1.

Note that, admissible forms β satisfying the addition hypothesis always exist. More-
over, if the SF-pair pγ, ηq representing pF , ωq is chosen carefully, any admissible form
satisfies the additional hypothesis, see Lemma 1.6.6.

Proof of Proposition 1.5.14. Since the foliation is assumed to be transverse to the
boundary, we can use Proposition 1.6.14 to find a collar neighborhood U » p´ε, 0s ˆ
BM on which we have:

γ “ fγB,

for some f P C8pUq with f |BM “ 1. Furthermore, in these coordinates we also have

η “ ηt ` dt^ νt,

for some ηt P Ω2pBMq, and νt P Ω1pBMq. That is, the foliation locally looks like a
product foliation and we only need to put the leafwise symplectic structure in normal
form. We apply a leafwise Moser argument to obtain the normal form for η. That is,
we define the linear path

ηs :“ p1´ sq pηB ` dptβqq ` s pηt ` dt^ νtq , s P r0, 1s

and look for a time dependent vector field Xs P XpUq in the kernel of γ and such that
its flow φs satisfies

(1.5.2.3) φ˚s η
s “ η0, φspBMq “ BM.

By Lemma 1.6.15 the flow of Xs preserves the normal form of the foliation, and by
definition φ1 defines a changes of coordinate on U giving the desired normal form for
η.

Differentiating the above equation we see that Xs should satisfy

φ˚s pLXsηs ` 9ηsq “ 0.

We will solve this equation restricted to ker γ, where η is closed so it suffices to solve

(1.5.2.4) dιXsη
s ` 9ηs “ 0.

We claim that 9ηs is an exact form, and a primitive is defined by

λt :“

ż 1

0

tνst ds` tβ.

To see this denote by d̄ the deRham differential on BM . Then, since η is closed on
ker γ,

0 “ d pηt ` dt^ νtq “ dt^ 9ηt ` d̄ηt ` dt^ d̄νt,
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implying 9ηt “ d̄νt. Hence,

dλ “ d̄

ˆ
ż 1

0

tνst ds

˙

` dt^
d

dt

ˆ
ż 1

0

tνst ds

˙

` dptβq

“

ż 1

0

td̄νst ds` dt^

ˆ
ż 1

0

νst ds`

ż 1

0

ts 9νstds

˙

` dptβq

“

ż 1

0

t 9ηst ds` dt^

ˆ
ż 1

0

νst ds`

ż 1

0

s
d

ds
νst ds

˙

` dptβq

“

ż 1

0

d

ds
ηst ds` dt^

ˆ
ż 1

0

νst ds` sνst|
s“1
s“0 ´

ż 1

0

νst ds

˙

` dptβq

“ ηt ´ η0 ` dt^ νt ` dptβq “ 9ηs,

proving the claim. As a consequence, Equation 1.5.2.4 further simplifies to

ιXsη
s ` λ “ 0.

Because ηs is non-degenerate on ker γ the above equation has a unique solution for
Xs. Furthermore, since λ “ 0 at points in the boundary, we have Xs|BM “ 0, so its
flow φs fixes the boundary pointwise.

Now recall that we only solved Equation 1.5.2.4 restricted to ker γ so that

(1.5.2.5) φ˚1η “ η̃ ` ρ^ γB,

for some ρ P Ω1pUq.

Moreover, if we have

(1.5.2.6) β “ ιXη|B,

for a vector field X P XpMq transverse to the boundary and tangent to F , then, in
the beginning of the proof, we could have applied Proposition 1.6.14 with this vector
field. Thus in our collar neighborhood X can be identified with Bt. Using the collar
neighborhood, write ρ “ ρt ` gtdt, t P p´ε, 0s, so that at points in the boundary
Equation 1.5.2.5 becomes

ηB ` dt^ ν0 “ ηB ` dt^ β ` pρ0 ` g0dtq ^ γB,

so that ρ0 “ 0 and ν0 “ β ` g0γB. By Equation 1.5.2.6, β “ ν0 from which it follows
that g0 “ 0.

1.6 Symplectic foliation pairs and their boundaries

Suppose we are given a SF-pair pγ, ηq, representing a symplectic foliation pF , ωq, as
in Definition 1.5.3. Sometimes we are interested in the SF-pair and not only in the
induced foliation. In particular, we want understand its properties on a neighborhood
of the boundary BM , and be able to glue such manifolds.
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The normal form from the previous section describes pF , ωq near the boundary in
terms of the structure induced on the boundary. However, the representing pair is
only recovered up to equivalence, see Proposition 1.5.14, and so does not provide a
normal form on the level of SF-pairs. As for contact forms, see Section 1.4.1, we deal
with this by restricting to a smaller class of SF-pairs which satisfy a normal form by
definition.

Similar to Definition 1.4.1, the class we consider is motivated by looking at the Taylor
expansion of the 2-form in a SF-pair. That is, let pγ, ηq be a SF-pair, and assume
there exists a collar neighborhood p´ε, 0s ˆ BM on which

γ “ γ|BM .

We interpret this equation as a Taylor polynomial with only the constant term non-
zero. Furthermore, using the collar neighborhood we can write

η “ wt ` dt^ vt,

for some wt P Ω1pBMq and vt P Ω1pBMq, and where t denotes the coordinate on
p´ε, 0s. The Taylor expansion in the t-coordinate equals:

η “ w0 ` t 9w0 `Opt2q ` dt^
`

v0 ` t 9v0 `Opt2q
˘

,

where we use the shorthand notation

9w0 :“
d

dt

ˇ

ˇ

ˇ

t“0
wt.

In terms of this expansion the condition that pγ, ηq is an SF-pair, as in Definition
1.5.3, reads:

(1.6.0.1) 0 “ γ ^ dη “ γB ^ pdw0 ` td 9w0 ´ dt^ dv0 ´ tdt^ d 9v0q `Opt2q,

and

(1.6.0.2) 0 ă γ ^ ηn “ nγ ^ pw0 ` t 9w0q
n´1 ^ dt^ pv0 ` t 9v0q `Opt2q.

The two simplest cases of interest are:

• If the only non-zero terms are w0 and v0, then the above conditions are satisfied
if and only if

v0 ^ γB ^ w
n´1
0 ą 0, dw0 “ 0, dv0 “ 0.

In this case we have that
η “ w0 ` dptv0q.

• In the previous case η is globally closed. Requiring that a foliation admits a
globally closed 2-form which is leafwise nondegenerate is very restrictive and
we also want to consider SF-pairs for which this is not the case. Firstly, note
that allowing higher order terms in the Taylor expansion to be non-zero does
not change the condition from Equation 1.6.0.2 above, since we only consider
it for small t. Secondly, allowing 9v0 ‰ 0, does not change any of the conditions
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following from Equation 1.6.0.1 since it shows up in the only term containing
tdt.
Hence, the next simplest case to consider is 9v0 “ 0, but with v0, w0 and 9w0

non-zero. In this case, the first equation is satisfied provided that

9w0 “ d 9v0,

so that we have
η “ w0 ` dptv0q.

Motivated by the above discussion we make the following definition:

Definition 1.6.1. A SF-pair pγ, ηq on M is said to be regular at the boundary if
there exists a collar neighborhood U » p´ε, 0s ˆ BM on which we have:

γ “ u, η “ w ` dptvq,

for some u, v P Ω1pBMq and w P Ω2pBMq, and where t denotes the coordinate on
p´ε, 0s.

As observed above, the conditions that pγ, ηq is a SF-pair translates into the following
conditions on u, v, and w.

u^ du “ 0, u^ dw “ 0, v ^ u^ pwn´1 ` tdvqn´1 ą 0.

Since the non-degeneracy condition is open, it suffices to require it at points in the
boundary, where t “ 0. Then, by choosing ε small enough it holds everywhere. Thus
the conditions of pu, v, wq can be packed into the following definition, which does not
make reference to a boundary.

Definition 1.6.2. A B-symplectic foliation triple pu, v, wq on a manifold N2n

consists of forms u, v P Ω1pNq and w P Ω2pNq satisfying:

u^ du “ 0, u^ dw “ 0, v ^ u^ wn´1 ą 0.

Thus for any SF-pair pγ, ηq on M which is regular at the boundary, we have an
induced B-SF triple pu, v, wq on the boundary BM . Note that the above definition
puts no condition on wn, in particular w can be non-degenerate.

Given a B-SF triple pu, v, wq, observe that pu,wq is a B-symplectic foliation pair as in
Definition 1.5.7 and v is an admissible form for pu,wq, conform Definition 1.5.9. For
a B-SF pair there are many admissible forms completing it to a B-triple.

Lemma 1.6.3. If pu,wq is a B-symplectic foliation pair on N2n then:

(i) There exists an admissible form v;

(ii) Given a fixed admissible form v, there is a 1-1 correspondence between admissible
forms and triples pf, g,Xq, where f, g P C8pNq with g ą 0 and X P XpNq with
X P keru^ v, by sending:

pf, g,Xq ÞÑ fu` gv ` ιXw.
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Proof. (i) Since dim keru^wn´1 “ 1, on any oriented coordinate chart pU, x1, . . . , x2nq

we have
u^ wn´1 “

ÿ

i

fidx1 ^ ¨ ¨ ¨ ^ydxi ^ . . . dx2n,

where fi P C
8pNq are such that at each point at least one of the fi is non-zero.

So, define v :“
ř

ip´1qifidxi then

v ^ u^ wn´1 “
ÿ

i

f2
i dx1 ^ ¨ ¨ ¨ ^ dx2n ą 0.

Next, choose an atlas U “ tUjujPJ on M and tρjujPJ a partition of unity
subordinate to it. Construct vj on each Uj as above. Then,

v :“
ÿ

j

ρjvj ,

satisfies v ^ u^ wn´1 ą 0 globally on M .

(ii) For any fu ` gv ` ιXw as above defines an admissible form. Conversely, let ṽ
be any admissible form. Observe that v induces a splitting

TN “ keru^ v ‘ xRuy ‘ xRvy,

where the vector field Ru and Rv are uniquely defined by the equations:

upRuq “ 1, vpRuq “ 0, ιRuw|ker v “ 0,

and
upRvq “ 0, vpRvq “ 1, , ιRvw|keru “ 0.

Define functions
f :“ ṽpRuq, g “ ṽpRvq.

Then, ṽ ´ fu´ gv descends to keru^ v, on which w is non-degenerate. Hence
we find a unique X P Γpkeru^ vq such that

ṽ “ fu` gv ` ιXw.

Given a B-SF manifold pN, u,wq, we can define the associated local model from Equa-
tion 1.5.2.2 for any choice of admissible form v. The model has the property that the
admissible form can be recovered from the 2-form η since

v “ ιBtη|BM .

When pN, u,wq is the boundary of an (not necessarily regular) SF-pair pγ, ηq on a
manifoldM , this property is still true, provided ker η is compatible with the boundary,
as we show in Lemma 1.6.6 below. To give the precise statement we first define the
Reeb vector field of a SF-pair, analogous to Definition 1.3.10 for contact forms.
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Definition 1.6.4. The Reeb vector field of an SF-pair pγ, ηq, as in Definition
1.5.3, on M is the unique vector field R P XpMq satisfying:

γpRq “ 1, ιRη “ 0.

Example 1.6.5. We compute here the Reeb vector field on the local model pε, 0sˆN
with

γ :“ u, η :“ w ` dptvq,

associated to a B-triple pu, v, wq on N , as in Equation 1.5.2.2. First, note that the
B-triple induces a splitting

T˚N “ xuy ‘ xvy ‘ pkeruX ker vq˚.

In turn this induces a dual splitting:

TN “ xRuy ‘ xRvy ‘ pkeruX ker vq,

which we use as the definition of the vector fields Ru, Rv P XpNq. That is, Ru satisfies

upRuq “ 1, vpRuq “ 0, βpRuq “ 0, @β P pkeruX ker vq˚,

and similarly for Rv.

The Reeb vector field R of pγ, ηq can be explicitly computed in the following cases.

(i) If wn “ 0 then ιRuw “ 0, ιRvw “ 0, and the Reeb vector field is given by

R “ Ru `Xt ` ftBt,

where Xt P keruX ker v is uniquely defined by

ιXtpw ` tdvq “ t ιRudv, on keruX ker v,

and
ft :“ tdvpRv, Ru `Xtq.

In particular, at points in the boundary R “ Ru, which is tangent to the
boundary as expected.

(ii) If wn ą 0 then

R “
1

f
pXt ´ Btq ,

where f P C8pNq and Xt P XpNq are uniquely defined by

ιXtpw ` tdvq “ v, f :“ upXvq.

To see that R is well-defined note that w ` tdv is non-degenerate for t small
enough. Furthermore, assume upXvq “ 0 at some point, then

(1.6.0.3) ιXv
`

v ^ u^ wn´1
˘

“ 0,

contradicting that v ^ u^ wn´1 ą 0.
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4

Continuing the discussion from before Definition 1.6.4, since R spans the kernel of
η, the compatibility condition mentioned before requires the Reeb vector field to be
everywhere tangent or everywhere transverse to BM . Note that this is equivalent
to wn “ 0 or wn ą 0 everywhere on the boundary. In this case, the following
lemma shows that any admissible form is obtained by contracting η with a vector
field transverse to the boundary. Recall that this property allowed us to obtain the
normal form up to equivalence adapted to the boundary, as stated in Proposition
1.5.14.

Lemma 1.6.6. Let pγ, ηq be a symplectic foliation pair on a manifold M2n`1, and
pBM,u :“ γB, w :“ ηBq the induced B-pair. Then, for any vector field X P XpMq
satisfying X P ker γ and transverse to the boundary,

v :“ ιXη|BM ,

is an admissible form for pu,wq.

Conversely, assuming that the Reeb vector field R is everywhere transverse or tangent
to BM . Then, for any admissible form v, there exists a vector field X P XpMq such
that

X P keru, v “ pιXηq|BM , X&BM.

Proof. For the first implication note that since γ ^ ηn ą 0 we have

0 ă ιXpγ ^ η
nq|BM “ nv ^ u^ wn´1,

proving that v is admissible.

For the converse, first assume R is everywhere tangent to BM . As remarked in
Example 1.6.5, this implies that R “ Ru, at the boundary. Extend v to a form on
a neighborhood of the boundary. Then, v ´ vpRqu descends to keru on which η is
non-degenerate. Hence, we find a unique X P keru such that

v “ vpRqu` ιXη.

We claim that X points outwards along the boundary. To see this, assume that X is
tangent to the boundary, then the above equation can be restricted to and we obtain

v “ vpRuqu` ιXw.

Evaluating on Rv, gives 1 “ wpX,Rvq which is a contradiction, since as we have
seen in Example 1.6.5 that wn “ 0 implies ιRvw “ 0. Hence, X is transverse to the
boundary. To see it points outwards observe that

(1.6.0.4) v ^ u^ ηn´1 “
1

n
ιXpγ ^ η

nq|BM .

Since v^u^wn´1 and γ^ηn are positive volume forms (on BM and M respectively)
it follows that X is pointing outwards.
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Secondly, assume that R is everywhere transverse to BM . Then, wn ą 0 and there
exists a unique Y P XpBMq such that

ιY w “ v.

Extend Y to a vector field on a neighborhood of the boundary and define f :“ γpY q.
Then

X :“ Y ´ fR,

satisfies γpXq “ 0, and ιXη|BM “ v. Again, we claim that X is pointing outwards
along the boundary. If we assume that X is tangent to the boundary then

0 ă v ^ u^ wn´1 “
1

n
ιXpu^ w

nq,

which is a contradiction since u^ wn “ 0. Hence X transverse to the boundary and
the same argument as in Equation 1.6.0.4 shows its pointing outwards.

We finish this section with another property of the Reeb vector field that will be
useful later. Recall that for a contact form α P Ω1pMq, the flow of the Reeb vector
field preserves α. That is,

LRα “ 0, and LRdα “ 0.

For a SF-pair a similar phenomenon happens if and only if pγ, ηq is a cosymplectic
structure:

Lemma 1.6.7. Let pγ, ηq be a symplectic foliation pair on M , and R the associated
Reeb vector field. Then,

(i) LRγ “ 0 if and only if dγ “ 0;

(ii) LRη “ 0 if and only if dη “ 0.

Proof. We prove the second statement; the proof of the first one is analogous. The
condition γ ^ dη “ 0 is equivalent to

dη “ µ^ γ,

where µ P Ω2pMq. By taking µ̃ :“ µ` pιRµq ^ γ we can assume that ιRµ “ 0. Since
ιRη “ 0 we thus find

LRη “ ιRdη “ µ,

which vanishes if and only if η is closed (since ιRµ “ 0).
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1.6.1 Special boundaries of symplectic foliation pairs

In many cases, a symplectic foliation pair has a boundary which is even more special
than being regular. In these cases, the admissible forms for the induced B-symplectic
foliation pair have extra properties. The following discussion is analogous to that in
Section 1.4.2 for the contact case.

Recall from Definition 1.6.2, that a B-SF triple pu, v, wq on a manifold N2n consists
of differential forms u, v P Ω1pNq, and w P Ω2pNq satisfying:

u^ du “ 0, u^ dw “ 0, v ^ u^ wn´1 ą 0.

Definition 1.6.8. A B-SF triple pu, v, wq is said to be of:

• Liouville type if
w “ dv;

• Unimodular type if
dv “ 0.

• Cosymplectic type if

du “ 0, dv “ 0, dw “ 0.

• Tameable if
du “ 0, , wn ě 0, dw ` u^ dv “ 0.

Definition 1.6.9. We say that a symplectic foliation pair pγ, ηq on M , has bound-
ary of right S-type (resp. left S-type), for S in the above list, if in some collar
neighborhood U » p´ε, 0s ˆ BM (resp. U » r0, εq ˆ BM) we have

γ “ u, η “ w ` dptvq.

where pu, v, wq is a B-symplectic foliation triple of S-type.

The left and right versions of each type only differ in the orientations induced on the
boundary. In line with our conventions, see Section 1.1.1, the boundary of a manifold
with the standard orientation is always a right boundary. However, these names are
particularly useful when considering cobordisms, where we can think of these models
as the left or right side of a cobordism as in Section 1.6.2.

The following two examples are the SF-analogue of Example 1.4.9 for contact struc-
tures.

Example 1.6.10. Let pΣ, ωq be a symplectic manifold. Then the product Σ ˆ S1

admits a symplectic foliation pair

γ “ dθ, η “ ω.

In fact since both forms are closed they define a cosymplectic structure.
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If the symplectic manifold pΣ, ωq has cosymplectic type boundary pBΣ, ωB, βq, in the
sense of Definition 1.2.10, then the SF-pair pγ, ηq has regular boundary of cosymplectic
type. To see this note that there exists a collar neighborhood p´ε, 0s ˆ BΣ Ă Σ on
which

ω “ ωB ` dt^ β.

In turn, this provides a collar p´ε, 0s ˆB ˆ S1 Ă Σˆ S1 on which

γ “ dθ, η “ ωB ` dt^ β.

Similarly, one sees that if pΣ, ωq has contact boundary then the symplectic foliation
has boundary of Liouville type. 4

Example 1.6.11. Let pγB , ηBq be a symplectic foliation pair on a closed manifold B.
Then the product BˆD2

δ , where D2
δ denotes the disk of radius δ, admits a symplectic

foliation pair

γ :“ γB , η :“ ηB ` d
`

r2dθ
˘

.

Reparametrizing the r-coordinate we obtain a collar neighborhood p´ε, 0s ˆ B ˆ S1

on which

γ “ γB , η “ ηB ` dptδdθq.

The the induced B-symplectic foliation boundary equals

´

B ˆ S1, u :“ γB , v “ δdθ, w “ ηB

¯

,

which is of Unimodular type. 4

The special boundary types above can be phrased in terms of vector fields. If pγ, ηq
has regular boundary of Liouville type or cosymplectic type, then η is a closed on a
neighborhood of the boundary, which by Lemma 1.6.7 is equivalent to LRη “ 0.

Lemma 1.6.12. Let pγ, ηq be a symplectic foliation on a manifold with boundary M .
Then the boundary is of:

(i) Liouville type if and only if LRη “ 0 and there exists a vector field X P XpMq
transverse to the boundary and satisfying

LXγ “ 0, LXη “ η,

on a neighborhood of the boundary.

(ii) Unimodular type if and only if there exists a vector field X P XpMq, transverse
to the boundary and satisfying

LXγ “ 0, LXη “ 0,

on a neighborhood of the boundary.
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Proof. In both, cases use X to define a collar neighborhood U » p´ε, 0s ˆ BM on
which we identify X “ Bt and

γ “ ut, η “ wt ` dt^ vt,

for ft P C8pBMq, ut, vt P Ω1pBMq and wt P Ω2pBMq. Then, the condition LXγ “ 0
translates into 9ut “ 0, so that γ “ u.

(i) If LXη “ η then 9wt “ wt and 9vt “ vt, so

wt “ etw, vt “ etv.

Together with dη “ 0, this implies

wt “ 9wt “ dvt “ etdv.

Change coordinates s “ et ´ 1 around t “ 0 gives

η “ d pp1` sqvq “ dv ` dpsvq,

so pγ, ηq is of Liouville type.

(ii) If LXη “ 0 then 9wt “ 0 and 9vt “ 0, so that

η “ w ` dt^ v.

Using Cartan’s formula for the Lie derivative we see

LXη “ 2dv “ 0,

meaning pγ, ηq is of unimodular type.

Example 1.6.13. The construction from Example 1.4.11 and Example 1.2.13, also
applies to symplectic foliations. Let pM,F , ωq be a SF-manifold, and pB,FB , ωBq a
codimension-2 SF-submanifold, by which we mean that B&F and

FB :“ F X TB, ωB :“ ω|FB ,

defines a SF-structure on B. As before, the ω-orthogonal defines a model for the
normal bundle

ν :“ FωB Ă F ,

and the restriction ων :“ ω|ν , makes it into a symplectic vector bundle.

Let π : P Ñ B be the principal S1-bundle associated to the symplectic normal
bundle pν, ωνq, and let θ P Ω1pP q be a connection form satisfying dθ “ π˚σ where
rσs P H2pB;Rq is the Chern class of the symplectic normal bundle. Fix a SF-pair
pγ, ηq representing pF , ωq and consider

Γ :“ π˚pγBq, Ω :“ π˚pηBq ` d
`

r2pdφ` θq
˘
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on P ˆ C.

Using arguments similar to that of Example 1.2.13 (including a normal form as in
(iii) there) is possible to show that these forms induce a SF-manifold

(1.6.1.1)
´

P ˆS1 C, rΓ, rΩ
¯

,

isomorphic as SF-manifolds to a neighborhood of pB,FB , ωBq Ă pM,F , ωq.

The boundary of this neighborhood is isomorphic to P , and the induced B-symplectic
folation pair (Definition 1.5.8) equals:

´

P, rΓB “ π˚pγBq, rΩB “ π˚pωB ` ε
2σ

¯

.

Thus, θ is an admissible form and using Lemma 1.6.12 we conclude that the neigh-
borhood has regular boundary of:

• Unimodular type, if σ “ 0, which happens if the Chern class of pν, ωνq vanishes.
Furthermore, if additionally FB is unimodular, so that we can assume dγB “ 0,
the boundary is of cosymplectic type;

• Liouville type if σ “ ηB . This happens if ωB admits a closed extension repre-
senting the Chern class of pν, ωνq;

4

1.6.2 Gluing and cobordisms of symplectic foliations

Gluing manifolds with symplectic foliations along their boundaries in particular en-
tails gluing the underlying foliations. Therefore, we start this section by recalling
how to glue foliated manifolds with boundary. We will consider two types of folia-
tions, those which are everywhere transverse to the boundary, and those for which
the boundary is a leaf. Next, we adapt the above story to the case of symplectic
foliations. Again we consider two types of boundaries, transverse and tangent, and
give gluing constructions for each of them.

1.6.2.1 Gluing foliated manifolds

Recall from Section 1.2.4 that to glue manifolds with geometric structures, one usually
needs a normal form on a collar neighborhood around the boundary. These collar
neighborhoods can then be matched, as in the smooth case above, and the normal
form ensures that the structures glue.

1.6.2.2 Foliations transverse to the boundary

As stated above, the key ingredient in gluing manifolds with extra structure is the
existence of a normal form around the boundary. Let pM,Fq be a foliated manifold



72 CHAPTER 1. CONSTRUCTIONS

such that F is everywhere transverse to the boundary. Then the intersection

FB :“ F X T pBMq,

is a foliation on the boundary BM . The normal form states that locally around the
boundary pM,Fq looks like the product foliation

pp´ε, 0s ˆ BM, p´ε, 0s ˆ FBq .

More precisely, we have:

Proposition 1.6.14. Let γ P Ω1pMq defines a foliation on M transverse to the
boundary BM . If X P XpMq is a vector field satisfying X P ker γ and X&BM , then,
there exists a collar neighborhood U » p´ε, 0s ˆ BM on which

γ “ fγB, X “ Bs,

for a positive function f P C8pUq satisfying f |BM “ 1.

If we define a collar neighborhood using the flow of X, then the proof follows from
applying the following lemma.

Lemma 1.6.15. Let γ P Ω1pMq and X P XpMq a vector field with flow φt, t P r0, 1s.
Then the following are equivalent:

(i) There exists strictly positive functions ft P C
8pMq, f0 “ 1, satisfying:

φ˚t γ “ ftγ;

(ii) There exists a function g P C8pMq such that

LXγ “ gγ.

If the above is satisfied then g “ 9f0.

Proof. Differentiating the first equation at time t “ 0, gives the second equation with
g “ 9f0. Moreover,

9ftγ “
d

dt
ftγ “

d

dt
φ˚t γ “ φ˚t pLXγq “ φ˚t pgγq “ pg ˝ φtqftγ.

This defines a differential equation

9ft “ pg ˝ φtqft, f0 “ 1

whose solution is given by

ft “ e
şt
0
pg˝φsqfs ds.

Hence, provided the second equation holds, ft can be recovered from g and φt alone,
proving the first condition holds.
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Let pM1,F1q and pM2,F2q be foliated manifolds with transverse boundary, and as-
sume there exists an orientation reversing isomorphism of foliated manifolds

φ : pBM1,F1,Bq Ñ pBM2,F2,Bq.

Using the above proposition we find collar neighborhoods

k1 : pp´ε, 0s ˆ BM1, p´ε, 0s ˆ F1,Bq Ñ pM1,F1q,

and

k2 :
`

r0, εq ˆ BM2, r0, εq ˆ F2,B

˘

Ñ pM2,F2q.

Together these two collar neighborhoods define a map

k1 Yφ k2 : p´ε, εq ˆ BM ÑM1 YφM2,

as in Equation 1.2.4.3 and we obtain:

Lemma 1.6.16. The space M1YφM2 admits a foliation, denoted by F1YφF2, which
is the unique foliation with the properties that its restriction to Mi equals Fi, and the
map

k1 Yφ k2 : p´ε, εq ˆ BM ÑM1 YφM2,

is a foliated embedding. The resulting structure (of a foliated smooth manifold) de-
pends on k1, k2 and φ, but its isomorphism class does not.

1.6.2.3 Foliations tangent to the boundary

Unlike the case of transverse boundaries, the condition of having the boundary as
a leaf does not control the behavior of the foliation in the direction normal to the
boundary. As a consequence there does not exist a normal form depending only on
the induced structure on the boundary. Instead we have to impose an extra condition.

Let pM,Fq be a foliated manifold whose boundary is a leaf. For any collar neighbor-
hood k : p´ε, 0s ˆ BM ÑM , we define the foliated manifold

(1.6.2.1)
`

Mk,8 :“M YBM r0,8q ˆ BM, Fk,8 :“ F YBM Fr0,8q
˘

,

where we glue using k, and the foliation on the semi-infinite cylinder is defined by

Fr0,8q :“
ď

tPr0,8q

ttu ˆ BM.

Although the manifold M8 is always smooth, F8 is in general only continuous at
the hypersurface BM Ă M8. The collar neighborhood is said to be adapted if
pMk,8,Fk,8q defines a smooth extension of pM,Fq.

Definition 1.6.17. A foliation F on M is said to be tame at the boundary if
there exists an adapted collar neighborhood k as above.
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Remark 1.6.18. To check the tameness condition in practice, write F “ ker θ for
θ P Ω1pMq, choose a collar neighborhood p´ε, 0s ˆ BM , and write

(1.6.2.2) θ “ θt ` ftdt,

for some θt P Ω1pBMq and ft P C
8pBMq. Rescaling θ we can assume ft “ 1, so that

F is tame if and only if θt vanishes up to infinite order at the boundary. 4

The gluing construction follows the same pattern as befores. Let Fi be a foliation
tangent to the boundary on Mi, i “ 1, 2, and assume there exists an orientation
reversing diffeomorphism

φ : BM1 Ñ BM2.

Choose adapted collar neighborhoods

k1 : p´ε, 0s ˆ BM1 ÑM1, k2 : r0, εq ˆ BM2 ÑM2.

The tameness condition ensures that, putting these collars together, the foliations
glue smoothly.

Lemma 1.6.19. Let Fi be a foliation tame at the boundary on Mi, i “ 1, 2. Then
M1 YφM2 admits a unique foliation, denoted by F1 Yφ F2, whose restriction to Mi

equals Fi, and such that

k1 Yφ k2 : p´ε, εq ˆ BM1 ÑM1 YφM2,

is a (foliated) embedding. The resulting structure depends on k1, k2 and φ, but its
isomorphism class does not.

1.6.2.4 Gluing symplectic foliations tangent to the boundary

To state the analogue of Lemma 1.6.19 above for symplectic foliations, we need to
impose the following condition:

Definition 1.6.20. Let pF , ωq be a symplectic foliation on M whose boundary BM
is a leaf. Choose a collar neighborhood of the boundary k : p´ε, 0s ˆ BM Ñ M , and
use it to define the manifold

M8 :“M YBM r0,8q ˆ BM.

On r0,8q ˆ BM define an extension of pF , ωq by

F8 :“
ď

tPr0,8q

ttu ˆ BM, ω8 :“ ωB,

where ωB :“ ω|BM . If this extension is smooth we say that the collar neighborhood
is adapted. The symplectic foliation pF , ωq is said to be tame at the boundary if
there exists an adapted collar.
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Symplectic foliations with tame boundaries can be glued essentially by definition. In-
deed, choose collar neighborhoods as in Definition 1.6.20, then the tameness condition
implies that the foliations on each collar neighborhood together with their leafwise
symplectic form match smoothly along the boundary leaf. Thus we have:

Proposition 1.6.21. Let pFi, ωiq be a symplectic foliation on Mi, i “ 1, 2, tame at
the boundary, and denote ωi,B :“ ωi|BMi . Assume there exists an orientation reversing
diffeomorphism φ : BM1 Ñ BM2, such that

φ˚ω2,B “ ω1,B.

Then, there exists a symplectic foliation pF , ωq on

M1 YφM2 :“ pM1 \M2q {x „ φpxq, x P BM1,

which restricts to pFi, ωiq on Mi.

1.6.2.5 Gluing symplectic foliations transverse to the boundary

Let pF , ωq be a symplectic foliation on a manifold with boundary M . Recall that if
the foliation is transverse to the boundary, it inherits a B-symplectic foliation pFB, ωBq
as in Definition 1.5.7.

Proposition 1.6.22. Let pFi, ωiq be a symplectic foliation transverse to the boundary
on Mi, i “ 1, 2. Assume there exists a orientation reversing diffeomorphism φ :
BM1 Ñ BM2, such that

pF1,B, ω1,Bq “ pφ
˚pF2,Bq, φ

˚pω2,Bqq .

Then the manifold

M1 YφM2 :“ pM1 \M2q{x „ φpxq, x P BM1,

admits a symplectic foliation pF , ωq that restricts to pFi, ωiq on Mi.

Proof. The proof follows the same pattern as that of Lemma 1.6.16, but now using
the normal form for symplectic foliations from Theorem 1.5.12. Let pγB, ηBq be a
B-symplectic foliation pair representing pF1,B, ω1,Bq and β P Ω1pBMq any admissible
form. Using φ to identify BM1 and BM2, we see that p´β, γB, ηBq is a representing
B-SF-triple for pF2,B, ω2,Bq.

Applying Theorem 1.5.12 we find a collar neighborhood on which pF1, ω1q looks like
its local model

p´ε, 0s ˆ BM1, F1 “ ker γB, ω1 “ ηB ` dptβq.

Similarly, again using φ to identify BM1 and BM2, we find a collar neighborhood in
M2, on which pF2, ω2q looks like its local model

p´ε, 0s ˆ BM1, F2 “ ker γB, ω2 “ ηB ´ dptβq,
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which is isomorphic to

r0, εq ˆ BM1, F2 “ ker γB, ω2 “ ηB ` dptβq.

Putting these neighborhoods together we obtain a symplectic foliation,

p´ε, εq ˆ BM1, F :“ ker γB, ω “ ηB ` dptβq.

By construction pF , ωq satisfies the required properties.

Example 1.6.23. The Gompf connected sum construction from Example 1.2.22 also
works for SF-manifolds. Let pMi,Fi, ωiq, i “ 1, 2, be SF-manifolds with codimension-
2 SF-submanifolds pBi,FBi , ωBiq, as in Example 1.6.13. Suppose there exists an
orientation preserving diffeomorphism φ : B1 Ñ B2 satisfying:

(i) φ˚pFB1
, ωB1

q “ pFB2
, ωB2

q;

(ii) φ˚c1pνB2q “ ´c1pνB1q P H
2pB1q,

where c1pνBiq denotes the Chern class of the symplectic normal bundle as in Example
1.6.13. Recall that a neighborhood of Bi is isomorphic to

´

Pi ˆS1 C, rΓi, rΩi
¯

,

as in Equation 1.6.1.1 By the conditions above, the induced B-SF structures satisfy
the hypothesis of Proposition 1.6.22, so that the complement of these neighborhoods
can be glued along their boundary. Hence, the Gompf connected sum

pM1, B1q#pM2, B2q :“
`

M1zP1 ˆS1 D2
˘

Yψ
`

M2zP2 ˆS1 D2
˘

,

where ψ : P1 Ñ P2 is induced by φ, admits a symplectic foliation which restricts to
pFi, ωiq on each of the pieces. 4

As in Section 1.4.3, it is convenient to phrase gluing of SF-manifolds in terms of
cobordisms. This automatically takes care of the induced orientations, and gives us
more freedom to change the symplectic foliations to make them match.

Definition 1.6.24. Let pNi,Fi, ωiq, i “ 1, 2, be B-SF manifolds as in Definition
1.5.7. A SF-cobordism pN1,F1, ω1q ăpM,F,ωq pN2,F2, ω2q is an SF-manifold pM,F , ωq
with

BM “ N1 \N2,

and inducing pFi, ωiq on the boundary.

In particular, the foliation pF , ωq on the cobordism M , is transverse to the boundary.
Thus, Proposition 1.6.22 says that SF-cobordisms can be composed. Analogous to
Example 1.4.17, any SF-manifold pM,F , ωq can be interpreted as a cobordism

H ăpM,F,ωq pBM,FB :“ F X TBM,ωB :“ ω|FBq.
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Furthermore, gluing two SF-manifolds pMi,Fi, ωiq, i “ 1, 2, using Proposition 1.6.22,
is equivalent to a composition of cobordisms:

H ăpM1,Fi,ω1q pBM1,F1,B, ω1,Bq ăpM2,F2,ω2q H.

Note that here we implicitly use that there exists an isomorphism of B-SF manifold
φ : pBM1,F1,B, ω1,Bq Ñ pBM2,F2,B, ω2,Bq, see Remark 1.4.16.

We also consider the following (stronger) type of cobordism for B-SF triples:

Definition 1.6.25. Let pui, vi, wiq, i “ 1, 2, be B-SF triples on a manifold Ni as in
Definition 1.6.2. A regular SF-cobordism pN1, u1, v1, w1q ăpM,γ,ηq pN2, u2, v2, w2q,
is a manifold M endowed with a SF-pair pγ, ηq satisfying

BM “ N1 \N2,

and, in the notation of Definition 1.6.9, pγ, ηq has:

(i) Regular left boundary N1, for the B-SF triple pu1, v1, w1q;

(ii) Regular right boundary N2, for the B-SF triple pu2, v2, w2q.

It is not always possible to glue two SF-manifolds pMi,Fi, ωiq, i “ 1, 2, to each other
directly, or equivalently, to compose them as cobordisms. In this case, we can use
an intermediate cobordism pM,F , ωq to interpolate between the B-SF structures on
BMi, and form the composition:

H ăpM1,F1,ω1q pBM1,F1,B, ω1,Bq ăpM,F,ωq pBM2,F2,B, ω2,Bq ă H.

Often the cobordism is topologically just the trivial cobordism r0, 1s ˆ BM , in which
case the manifold obtained in the above decomposition is diffeomorphic to the gluing
of M1 and M2.

Following this strategy, we give below another type of gluing for symplectic foliations
transverse to the boundary, which is often more useful than Proposition 1.6.22. The
reason for this is that, although the previous result works in general, its main downside
is that the diffeomorphism used to identify the boundaries needs to be an isomorphism
of B-symplectic foliations. This poses a problem in practical situations, as usually
there is no freedom in choosing the gluing diffeomorphism φ. The construction below
imposes more conditions on the symplectic foliation, but as a tradeof weakens the
requirements on φ.

The symplectic version of the turbulization construction, discussed in the next section,
allows such foliations to be changed close to the boundary so that they become tame
the boundary and can be glued. This gives a way of gluing manifolds with symplectic
foliations transverse to the boundary:

Theorem 1.6.26. Let pFi, ωiq, i “ 1, 2, be SF-structures on Mi, transverse to the
boundary, and denote by pFBi , ωB,iq the induced B-SF structures on the boundary,
conform Definition 1.5.7. Assume that FB,i is unimodular, and that there exists:

(i) An orientation reversing diffeomorphism φ : BM1 Ñ BM2;
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(ii) Symplectic extensions rωi of ωB,i on BMi;

(iii) A family of symplectic forms ωt, t P r0, 1s on BM1 satisfying:

ω0 “ rω0, ω1 “ φ˚prω1q.

Then, there exists a symplectic foliation pF , ωq on

M1 YφM2 :“M1 \M2{x „ φpxq, x P BM1,

whose restriction to Mi agrees with pFi, ωiq away from the boundary.

The main ingredient in the proof is the turbulization construction for symplectic
foliations given in Theorem 1.7.31 which is proved in the next section. We also
need the following cobordism, which allows for the interpolation ωt between rω0 and
φ˚prω1q. Note, that if such an interpolation is necessary, the resulting SF-structure
on M1 YφM2 has a family of compact leaves.

Lemma 1.6.27. Let ωt, t P r0, 1s be a family of symplectic forms on N2n. Then,
there exists a SF-structure pF , ωq on the trivial cobordism r0, 1s ˆN which is:

(i) Tame at the left boundary, and the induced symplectic form on the boundary
leaf is ω0;

(ii) Tame at the right boundary, and the induced symplectic form on the boundary
leaf is ω1.

Proof. Let λ : r0, 1s Ñ r0, 1s be a bump function, satisfying

λptq “

#

0 for t near 0

1 for t near 1
.

Then, the required SF-structure is given by:

´

F :“
ď

tPr0,1s

ttu ˆN, ω :“ ωλptq

¯

.

Proof of Theorem 1.6.26. Using Theorem 1.7.31 we change the SF -structures on Mi

so that it is tame at the boundary and has a symplectic leaf

pBMi, rωiq.

Then, using Proposition 1.6.21, we can connect the two pieces by glueing a cobordism
as in Lemma 1.6.27 in between.
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1.7 Turbulization

In certain cases, a foliation with transverse boundary can be changed, locally around
the boundary, so it becomes tangent to the boundary. This construction is called
turbulization, and the resulting foliation generalizes the Reeb components used to
obtain the Reeb foliation on S3 from Example 1.5.5. The main focus of this section
is to adapt this construction to the setting of symplectic foliations.

We start by recalling the classical turbulization for foliations. Next, we give two
versions of turbulization for SF-pairs with regular boundary. The first one, stated in
Lemma 1.7.3, requires slightly stronger hypothesis, but suffices for most applications.
The second one, stated in Lemma 1.7.14, requires minimal hypothesis but the proof
becomes more involved.
Then, we consider turbulization on the level of symplectic foliations (without a pref-
ered SF-pair). The main result is Theorem 1.7.31, which is based on Lemma 1.7.14.
Finally,in Section 1.7.1, we apply turbulization to construct symplectic foliations on
manifolds which admit an open book decomposition.

1.7.0.1 Turbulizing foliations

When we try to construct a symplectic foliation on a given manifold M , the gluing
construction for foliations with transverse boundaries is often less useful than the one
for foliations tame at the boundary. The reason is that when we cut the manifold M
into pieces, we have to remember how to glue them back together recover M . In this
case we have no freedom in choosing the diffeomorphism φ : BM1 Ñ BM2. Hence, we
need to construct the foliations on each of the pieces so that the given φ preserves
the induced structures on the boundary. Therefore, the constructions on each of the
pieces depend on each other, and we are essentially doing a global construction.
The gluing construction for tame boundaries does not have this problem, since any
φ automatically preserves the boundary leaf. Therefore, the foliations on each of the
pieces can be constructed independently of each other, reducing the global construc-
tion problem to several local ones.

The turbulization construction allows us to change a foliation that is transverse to
the boundary into one that is tame at the boundary.

Proposition 1.7.1. Let F be a foliation on M transverse to the boundary, and
denote by FB :“ FXTBM the induced foliation on the boundary. If FB can be defined
by a closed form (i.e. is unimodular), then there exists a foliation rF on M such that

(i) rF is tame at the boundary;

(ii) rF agrees with F away from the boundary.

Proof. Let θB P Ω1pBMq be a closed form so that FB “ ker θB. By Lemma 1.6.14 we
can find a collar neighborhood U » p´ε, 0s ˆ BM on which F “ ker θB. On the collar
we define a new foliation by

θ :“ fprqθB ` gprqdr,
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where f, g : p´ε, 0s Ñ R. If we want ker θ to be tame at the boundary and agree with
F away from the boundary we choose the functions to satisfy

(1.7.0.1) f “

#

1 for r near ´ε

0 for r near 0
, g “

#

0 for r near ´ε

1 for r near 0
, f2 ` g2 ą 0.

See Figure 1.3 for an example of functions satisfying these conditions.

1

0´ε

f g

Figure 1.3: Functions f and g satisfying the conditions in Equation 1.7.0.1.

Instead of changing the foliation close to the boundary, we can change the foliation
by gluing a trivial cobordism. This does not change the diffeomorphism type of the
manifold, so that the resulting foliation is isomorphic to the one above.

Lemma 1.7.2. Let θ be a closed, nowhere vanishing 1-form on a N2n and denote
by FN :“ ker θ the induced foliation. Then, there exists a foliation F on the trivial
cobordism r0, 1s ˆN such that:

(i) F is transverse to the left boundary and F X T pt0u ˆNq “ FN ;

(ii) F is tame at the right boundary.

Proof. The proof is exactly the same as that of Proposition 1.7.1.

1.7.0.2 Turbulization for B-SF triples of Cosymplectic type

The following Lemma is the SF-analogue of construction for foliations from Lemma
1.7.2. We use it, in Proposition 1.7.5 below, to obtain the SF-analogue of the turbu-
lization construction from Proposition 1.7.1.



1.7. TURBULIZATION 81

Lemma 1.7.3. Let pu, v, wq be a B-SF triple of cosymplectic type on N2n, as in
Definition 1.6.8. Then, there exists a symplectic foliation pair pγ, ηq on the trivial
cobordism r0, 1s ˆN which has:

(i) Regular left boundary of cosymplectic type (Definition 1.6.9) for the B-SF triple
pu, v, wq;

(ii) Tame right boundary (Definition 1.6.20) with symplectic leaf pN,w ` Cv ^ uq
for a constant C ą 0 large enough;

Moreover, if wn ě 0, then we can take C “ 1.

Remark 1.7.4. The proof is symmetric in the interval coordinate of r0, 1sˆN . That
is, the same argument shows that we can obtain a cobordism r0, 1s ˆN which has

(i) Tame left boundary with symplectic leaf pN,w ` Cu^ vq for a constant C ą 0
large enough;

(ii) Regular right boundary of cosymplectic type for the B-SF triple pu, v, wq.

Note that here the symplectic form on the boundary leaf differs from the one in
Lemma 1.7.3 by changing the order of u and v. This is necessary to take into account
the change in orientation between the left and right boundary of the cobordism r0, 1sˆ
N . 4

Proof. First note that the non-degeneracy condition for w ` Cv ^ u is given by

(1.7.0.2) pw ` Cv ^ uqn “ wn ` nCwn´1 ^ v ^ u.

This will always be positive for C ą 0 large enough, and when wn ě 0 it suffices to
take C “ 1.

Choose functions f, g : r0, 1s Ñ Rě0 satisfying

(i) f “ 1 near t “ 1 and f “ 0 near t “ 0;

(ii) g “ 0 near t “ 1 and g “ 1 near t “ 0;

(iii) f2 ` Cg2 " g, for some constant C " 0 as in Equation 1.7.0.2

Note this can always be achieved by letting f and g having graphs as in Figure 1.4.
The differential forms

γ :“ fu` gdt, η :“ w ` fdt^ v ` gCv ^ u,

define a symplectic foliation since:

γ ^ dη “ pdw ´ 9gCdt^ u^ vq ^ pfu` gdtq “ 0

γ ^ dγ “ pfu` gdtq ^ p 9fdt^ uq “ 0

γ ^ ηn “
`

wn ` npfdt´ gCuq ^ v ^ wn´1
˘

^ pfu` gdtq

“ gdt^ wn ` npf2 ` g2Cqdt^ v ^ u^ wn´1 ą 0.
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1

0´ε

f g

Cg2
C

Figure 1.4: Functions f and g satisfying the conditions in the proof of Lemma 1.7.3.

For the last computation we use that the second summand dominates the first by
condition (iii) above. Furthermore, conditions (i) and (ii) above imply that pγ, ηq has
the correct type of boundary. Indeed, around the left boundary we have

γ “ u, η “ w ` dt^ v,

which is regular of cosymplectic type, while for points in the right boundary we have

γ “ dt, η “ w ` Cv ^ u,

inducing the desired symplectic leaf.

Let pM,γ, ηq be a symplectic foliation air with regular boundary of cosymplectic type
conform Definition 1.6.9. By the previous result, the manifold

ĂM :“M Yt0uˆBM r0, 1s ˆ BM,

admits a symplectic foliation pair pγ̃, η̃q such that the boundary is a symplectic leaf

pBM,w ` Cu^ vq .

Observe that ĂM » M , and in fact it is not hard to see that the construction in
Lemma 1.7.3 above can be realized inside a collar neighborhood of the boundary of
M . Thus we conclude:

Proposition 1.7.5. Let pγ, ηq be a SF-pair on a manifold M with regular boundary
of cosymplectic type (Definition 1.6.9) for the B-SF triple pu, v, wq. Then, there exists
a symplectic foliation pair pγ̃, η̃q on M such that:

(i) pγ̃, η̃q agrees with pγ, ηq away from the boundary BM ;
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(ii) pγ̃, η̃q has tame boundary (Definition 1.6.20) with symplectic leaf pBM,w`Cu^
vq for a sufficiently large constant C ą 0.

Note that strictly speaking the above lemma does not produce an SF-cobordism
as in Definition 1.6.24, since the foliation is not transverse to the boundary. The
transversality condition in Definition 1.6.24 ensures that cobordisms can be composed.
However, using the gluing construction from Proposition 1.6.21 ”cobordisms” as in
Proposition 1.7.5 can also be composed. Hence, at least intuitively we still think of
them as SF-cobordisms. In fact, as the following lemma shows that by applying the
above construction twice we obtain an honest SF-cobordism.

Lemma 1.7.6. For i “ 0, 1 let pui, vi, wiq be a B-SF triple of cosymplectic type
on N2n (Definition 1.6.8) and assume in addition that wni ě 0. If there exists an
orientation reversing diffeomorphism φ : N Ñ N , such that

φ˚pw1 ` u1 ^ v1q “ w0 ` v0 ^ u0,

then there exists a regular SF-cobordism:

pN, u0, v0, w0q ăpr0,1sˆN,γ,ηq pN, u1, v1, w1q.

Moreover, the SF-cobordism has a single compact leaf diffeomorphic to N , and with
leafwise symplectic form w0 ` v0 ^ u0.

Proof. By Lemma 1.7.3 and Remark 1.7.4, we find two trivial cobordisms, both dif-
feomorphic to r0, 1s ˆN , endowed with SF-pairs pγi, ηiq, i,“ 0, 1, respectively. The
proof of Lemma 1.7.3 shows that the first cobordism contains a collar neighborhood
isomorphic to

pp´ε, 0s ˆN, γ0 “ dt, η0 “ w0 ` v0 ^ u0q ,

while the second contains a collar

`

r0, εq ˆN, γ1 “ dt, η1 “ w1 ` u1 ^ v1

˘

.

Under the identifications made by φ these collars can be matched smoothly giving the
desired gluing. The resulting SF-cobordism pr0, 1s ˆ N, γ, ηq is regular, and induces
the required B-SF triples on the boundary.

Remark 1.7.7. The hypothesis in the lemma above are chosen to obtain the simplest
statement which suffices for our later applications. However, there are several ways
in which they can be changed obtaining a slightly stronger statement:

• The condition that wi ě 0, is not necessary. As in Lemma 1.7.3, it can be
removed if we require instead that there exists Ci ą 0 sufficiently large, and an
orientation reversing diffeomorphism φ : N Ñ N

(1.7.0.3) φ˚pw1 ` C1v1 ^ u1q “ w0 ` C0v0 ^ u0.
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• The condition that φ preserves the symplectic forms, as in Equation 1.7.0.3, can
be weakened as follows. It suffices to ask there exists an orientation reversing
diffeomorphism φ and a 1-parameter family of symplectic forms ωt, t P r0, 1s on
N such that

ω0 “ w0 ` v0 ^ u0, ω1 “ w1 ` v1 ^ u1.

Then, the single compact leaf of the SF -pair on r0, 1s ˆN can be replaced by
the product foliation

¨

˝

ď

tPr0,1s

ttu ˆN,ωt

˛

‚.

• Instead of requiring the B-SF triples pui, vi, wiq to be of cosymplectic type, the
same proof goes through when we require them to be Tameable, see Definition
1.6.8. In this case, the proof uses Lemma 1.7.14, instead of Lemma 1.7.3.

4

The following is a simple application of Lemma 1.7.6.

Example 1.7.8. Consider a fibration π : N Ñ T2, and a closed 2-form ω P Ω2pNq
which is non-degenerate on the fibers of π. Denote the standard angular coordinates
on T2 by pθ1, θ2q and define γi :“ π˚dθi P Ω1pNq, i “ 1, 2. This induces two B-SF
structures on N , as in Definition 1.5.7:

pFi :“ ker γi, ωi :“ ω|Fiq , i “ 1, 2.

We want to construct a symplectic foliation on r0, 1s ˆN which is transverse to the
boundary, and induces the above B-SF structures on its boundary components. Note
that the naive approach, of ”interpolating” between the foliations above does not
work. Indeed, choose functions f, g : r0, 1s Ñ R and consider

γ :“ fptqγ1 ` gptqγ2.

Then the condition that γ defines a foliation reads:

0 “ γ ^ dγ “ p 9fg ´ f 9gqdt^ γ1 ^ γ2.

Furthermore, we want γ to be nowhere vanishing, and agree with γ1 near the left
boundary and with γ2 near the right boundary. Thus, we obtain additional conditions
on f and g:

9fg ´ f 9g “ 0, f2 ` g2 ą 0, f “

#

1 t near 0

0 t near 1
g “

#

0 t near 0

1 t near 1
,

and it is not hard to see that these conditions cannot be simultaneously satisfied.

Instead, we observe that the triples pγ1, γ2, ωq and pγ2, γ1, ωq are B-SF triples of
cosymplectic type as in Definition 1.6.8. Thus applying the following corollary, which
follows directly from Lemma 1.7.6, we obtain the desired cobordism.
Finally, observe that the ”naive approach” (which does not work) would produce a
foliation without any closed leaves, while using the turbulization construction does
produce a closed leaf.
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Corollary 1.7.9. Let pu, v, wq be a B-SF triple on N2n satisfing du “ 0 and dv “ 0.
Then there exists a regular SF-cobordism pr0, 1s ˆN, γ, ηq which has:

(i) Regular left boundary with induced B-SF triple pu, v, wq;

(ii) Regular right boundary with induced B-SF triple pv, u, wq;

(iii) A single closed leaf diffeomorphism to N , with leafwise symplectic form w `
Cv ^ u for some C ą 0 large enough.

4

1.7.0.3 B-SF triples of Tameable type

Let pγ, ηq be a SF-pair on M with regular boundary (Definition 1.6.1) and denote
the induced B-SF triple by pu, v, wq (Definition 1.6.2). Recall that Lemma 1.7.3 says
that pγ, ηq can be turbulized provided pu, v, wq is of cosymplectic type. It turns out
that this condition can be weakened, and the minimal conditions the triple needs to
satisfy in order to turbulize are as follows.

Firstly, forgetting the leafwise symplectic structure, we need du “ 0 to turbulize the
foliation as in Proposition 1.7.1. Secondly, provided that wn “ 0, the form

η :“ w ` v ^ u,

is non-degenerate, so it defines a symplectic form if it is closed, i.e.

(1.7.0.4) dw ` dv ^ u “ 0.

These necessary conditions precisely mean that pu, v, wq is of Tameable type as in
Definition 1.6.8, and it turns out they are also sufficient. That is, we have following
result analogous to Proposition 1.7.5.

Proposition 1.7.10. Let pγ, ηq be a SF-pair on M with regular boundary of Tameable
type (Definition 1.6.9) and denote the induced B-SF triple by pu, v, wq. Then, there
exists an SF-pair pγ̃, η̃q on M such that:

(i) pγ̃, η̃q agrees with pγ, ηq away from the boundary BM ;

(ii) pγ̃, η̃q has tame boundary with symplectic leaf pBM,w ` v ^ uq.

The proof follows from Lemma 1.7.14 below, since the cobordism constructed there
can be realized in a collar neighborhood of the boundary. The remainder of this
section is devoted to proving this lemma.

Comparing with Lemma 1.7.3, being Tameable includes the condition wn “ 0 while
the former only requires wn ě 0. However, as we now explain, by adding a trivial
cobordism to the manifold this condition can always be satisfied.
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Lemma 1.7.11. Let pF , ωq be a symplectic foliation transverse to the boundary on
M2n`1, representing by SF-pair pγ, ηq. Then there exists equivalent pairs pγi, ηiq „
pγ, ηq, i “ 1, 2, as in Definition 1.5.4, satisfying:

(i) The forms ηi and η agree away from the boundary, and γi “ γ everywhere;

(ii) The Reeb vector field R1 of pη1, γ1q is tangent to the boundary, i.e. ηn1 “ 0;

(iii) The Reeb vector field R2 of pη2, γ2q is everywhere transverse to the boundary
pointing outwards, i.e. ηn2 ą 0.

Proof. We denote the induced B-SF pair by

γB :“ γ|BM , ηB :“ η|BM ,

and and choose an admissible form β P Ω1pBMq (Definition 1.5.9). By Proposition
1.5.14 there exists a collar neighborhood U » p´ε, 0s ˆ BM on which

(1.7.0.5) γ “ fγB, η “ ηB ` dptβq ` ρ^ γB,

for a function f P C8pUq and an admissible form β P Ω1pBMq.

Since β and γB are linearly independent, we can find a vector field X P XpBMq for
which

γBpXq “ 1, βpXq “ 0.

Use this to define a form ρ1 :“ ιXηB P Ω1pBMq and note that, at points in the
boundary,

γ1 :“ γB, η1 :“ ηB ` dptβq ` ρ1 ^ γ,

has Reeb vector field X. Indeed,

ιXγB “ 1, ιX pηB ` dt^ β ` pιXηBq ^ γBq “ 0.

Furthermore, pγ, ηq and pγ1, η1q are equivalent so we can interpolate from one to the
other as explained in Lemma 1.7.13 below.

By the above argument, we can assume that we have a collar neighborhood as in
Equation 1.7.0.5 for which ηnB “ 0. Hence, we can find a vector field Rγ P XpBMq
satisfying

γpRγq “ 1, βpRγq “ 0, ιRγηB “ 0.

Define ρ2 :“ β P Ω1pBMq and

γ2 :“ γB, η2 :“ ηB ` dptβq ` ρ2 ^ γB.

At points in the boundary, the Reeb vector field of pγ2, η2q equals R2 “ Bt`Rγ which
points outwards along the boundary. Indeed, we have

γpR2q “ γBpRγq “ 1, ιR2η2 “ ιR2pηB ` dt^ β ` ρ2 ^ γBq “ β ´ β “ 0.

Again, the proof concludes by applying Lemma 1.7.13 below.
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Remark 1.7.12. Note that the proof below actually shows which vector fields can
be obtained as the Reeb vector field by replacing the SF-pair by an equivalent one,
as in Definition 1.5.4. Indeed defining γB “ ιV ηB works for any vector field V P

XpBMq. We only need to make sure that V already satisfies the conditions θBpV q “ 1
and βpV q “ 0. Fixing such a vector field V any other vector field satisfying these
conditions is of the form

V 1 “ V `X,

where X P BpMq satisfies X P kerβ X ker θB. 4

To complete the proof of the lemma above, we need the following result, stating that
close to a hypersurface any SF-pair representing a symplectic foliation can be changed
to an equivalent pair.

Lemma 1.7.13. Let pF , ωq be symplectic foliation on M , and pγi, ηiq, i “ 0, 1, two
SF-pairs representing pF , ωq. Then, there exists an SF-pair pγ, ηq representing pF , ωq
such that:

(i) The pair pγ, ηq agrees with pγ1, η1q on a neighborhood of the boundary;

(ii) The pair pγ, ηq agrees with pγ0, η0q away from the boundary.

Proof. Let U » p´ε, 0s ˆ BM be a collar neighborhood of the boundary. Since
pγ1, η1q „ pγ0, η0q we have:

γ1 “ fγ0, η1 “ η0 ` β ^ γ0,

for a function f : U Ñ Rą0 and β P Ω1pUq. Choose a bump function ρ : p´ε, 0s Ñ
Rě0, satisfying

ρptq “

#

0 for t near ´ε

1 for t near 0
.

Then,
γ :“ p1` ρptqfq γ0, η :“ η0 ` ρptqβ ^ γ,

is a SF-pair representing pF , ωq, which agrees with pγ1, η1q on a neighborhood of the
boundary, and with pγ0, η0q away from the boundary.

Now that we have proved the preparatory lemmas we return to the proof of Propo-
sition 1.7.10. As stated before it follows immediately from the following lemma since
the cobordism can be realized in a tubular neighborhood of the boundary.

Lemma 1.7.14. Let pu, v, wq be a B-SF triple of Tameable type on N2n, see Definition
1.6.8. Then, there exists a SF-pair pγ, ηq on the trivial cobordism r0, 1s ˆ N which
has:

(i) Regular left boundary of Tameable type with induced B-triple pu, v, wq;

(ii) Tame right boundary with symplectic leaf pBM,w ` v ^ uq.
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Proof. Consider the pair pγ, ηq P Ω1pr0, 1s ˆNq ˆ Ω2pr0, 1s ˆNq, given by:

γ :“ fu` gdt, η :“ w ` fdt^ v ` gv ^ u` hdv,

for functions f, g, h : r0, 1s Ñ R which will be defined later.

First we want that γ describes the turbulization foliation from Lemma 1.7.2. This
means that we have to choose f, g : r0, 1s Ñ R satisfying:

(i) f “ 1 near t “ 0 and f “ 0 near t “ 1;

(ii) g “ 0 near t “ 0 and g “ 1 near t “ 1;

(iii) f2 ` g2 ą 0.

It remains to choose h such that pγ, ηq becomes the required SF-pair. If we choose h
to satisfy

(1.7.0.6) hptq “

#

t t near 0

0 t near 0
,

then pγ, ηq has regular left boundary of tameable type, and tame right boundary.
Furthermore, if |h| is so small that it can be treated as zero in the computation, then
the conditions for pγ, ηq to define a SF-pair become:

γ ^ dγ “ pfu` gdtq ^ p 9fdt^ uq “ 0

dη “ w ´ fdt^ dv ` 9gdt^ v ^ u` gdv ^ u` 9hdt^ dv

γ ^ η “
`

hndvn ` pfdt´ guq ^ v ^ pw ` hdvqn´1
˘

^ pfu` gdtq

“ hndvn ^ pfu` gdtq ` pf2 ` g2qdt^ v ^ u^ pw ` hdvqn´1 ą 0,

γ ^ dη “ gdt^ dw `´f2u^ dt^ dv ` g2dt^ dv ^ u` f 9hu^ dt^ dv

“ pf2 ` g2 ´ g ´ f 9hqdt^ dv ^ u

Hence, we want h to satisfy ´g` f2 ` g2 ´ f 9h “ 0. We use this equation to define h
as follows:

h :“

ż t

0

f2 ` g2 ´ g

f
dx.

If we assume that the (closed) set tt P r0, 1s | fptq “ 0u is strictly contained in the
(closed) set tt P r0, 1s | gptq “ 1u then the integral is well-defined. It remains to check
that with this definition h can be chosen satisfying Equation 1.7.0.6 and such that
|h| is sufficiently small.

Observe that for t near 0 we have fptq “ 1 and gptq “ 0 implying:

hptq “

ż t

0

1dx “ t,
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Figure 1.5: Functions f and g satisfying the conditions in the proof of Lemma 1.7.14.

as desired. Furthermore, for t near 1, the integrand is zero so that hptq is constant.
Now we describe how to choose the functions f and g so that hp1q “ 0 and |h| is
arbitrarily small, see also Figure 1.5.

Let 0 ă δ1 be a small constant and choose f such that

fptq “

$

’

&

’

%

1 t P r0, δ1s

δ1 ă fptq ă 2δ1 t P r2δ1, 1´ 2δ1s

0 t P r1´ δ1, 1s

.

Then, the integral
ż 1

0

fpxqdx,

is a positive constant C1pδ1q ą 0 which can be made arbitrarily small by choosing δ1
small. Next, let 0 ă δ1 ă δ2 ă 1{2 be another constant and choose g such that

gptq “

#

0 t P r0, δ2s

1 t P r1´ δ2, 1s
.

With these choices the integral
ż 1

0

g2 ´ g

f
dx,

is well-defined and equal to a negative constant (since g2 ´ g ă 1 for 0 ă g ă 1)
C2pδ1, δ2q ă 0. Given a fixed δ1, we can choose δ2 so that C1 “ ´C2 implying that
hp1q “ 0 as desired. Moreover, if we choose δ1 sufficiently small and δ2 sufficiently
large then |h| can be made arbitrarily small.
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1.7.0.4 Turbulization for symplectic foliations

If we work with symplectic foliations pF , ωF q and do not fix an SF-pair representing it,
the necessary conditions to apply turbulization live in cohomology. To describe these
cohomology classes we start by recalling the definition of the foliated cohomology,
HkpFq and the foliated cohomology with coefficients in the conormal bundle, denoted
by HkpF , ν˚q.

Given a foliation F on M , the inclusion ι : TF Ñ TM , induces a short exact sequence

0 Ñ TF ι
ÝÑ TM Ñ ν :“ TM{TF Ñ 0,

where ν is the normal bundle of F . Dually, this induces a short exact sequence of
complexes:

(1.7.0.7) 0 Ñ Ω‚F pMq Ñ Ω‚pMq
r
ÝÑ Ω‚pFq Ñ 0,

where:

• Ω‚pMq :“ ΓpΛ‚T˚Mq is the usual complex of differential forms on M ;

• Ω‚pFq :“ ΓpΛ‚T˚Fq, is the complex of foliated forms;

• Ω‚F pMq :“ ΓpΛ‚pTM{TFq˚, is the complex of F-relative forms. Since,
Ω‚F pMq is the kernel of the restriction map r, we have an identification:

Ω‚F pMq “ tα P Ω‚pMq | α|F “ 0u.

Since TF is involutive, Ω‚pFq comes with a differential dF (which is just the leafwise
deRham differential) defining the foliated cohomology

H‚pFq :“ HpΩ‚pFq,dF q.

The involutivity condition also implies that the usual deRham differential d on Ω‚pMq
preserves the subcomplex Ω‚F pMq, definining the F-relative cohomology

H‚F pMq :“ HpΩ‚F pMq,dq.

Remark 1.7.15. By Equation 1.7.0.7 these cohomology groups fit in a short exact
sequence

0 Ñ H‚F pMq Ñ H‚pMq Ñ H‚pFq Ñ 0,

which in turn induces a long exact sequence in cohomology:

(1.7.0.8) ¨ ¨ ¨ Ñ Hk
F pMq Ñ HkpMq Ñ HkpFq δ

ÝÑ Hk`1
F pMq Ñ Hk`1pMq Ñ . . . .

The connecting homomorphism δ : H‚pFq Ñ H‚`1
F pMq, can be explicitly described

by

(1.7.0.9) δprαsq “ rdα̃s,

where α P ΩkpFq is a closed foliated form and α̃ P ΩkpMq any extension of α. 4
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We can now define the modular class of a (coorientable) foliation F on M . Let
γ P Ω1pMq be any differential form satisfying F “ ker γ. Recall that the integrability
condition on F translates into the differential condition

γ ^ dγ “ 0.

In turn, this is equivalent to

(1.7.0.10) dγ “ γ ^ µ,

for some µ P Ω1pMq. It is not hard to see that pdFµ|F q “ 0, and that the cohomology
class rµ|F s P H

1pFq is independent of the choice of γ and µ.

Definition 1.7.16. The modular class of a (coorientable) foliation F is the coho-
mology class

modF :“ rµ|F s P H
1pFq.

The modular class measures if F is unimodular, i.e. if it can be defined by a closed
1-form.

Lemma 1.7.17. The foliation F is unimodular (i.e. can be defined by a closed form)
if and only if modF “ 0.

Proof. If F can be defined by a closed 1-form γ, then it is clear that µ “ 0 satisfies
dγ “ γ ^ µ. Conversely, if modF “ 0, choose any γ P Ω1pMq such that F “ ker γ.
Then there exists µ P Ω1pMq and f P C8pMq, such that

dγ “ γ ^ µ, µ^ γ “ df ^ γ.

Then, F “ kerpefγq and

dpefγq “ efdf ^ γ ´ efµ^ γ “ 0.

Before we define the foliated cohomology with values in the conormal bundle, let us
recall the definition of differential forms with values in a (real) line bundle. Given a
line bundle π : L Ñ M , consider the complex of L-valued differential forms on
M

Ω‚pM,Lq :“ ΓppΛ‚T˚Mq b Lq.

Given a flat connection ∇ : XpMq ˆ ΓpLq Ñ ΓpLq on L, the usual Koszul formula
defines a differential d∇ on Ω‚pM,Lq; for α P ΩkpM,Lq and X1, . . . , Xk P XpMq we
have:

pd∇αqpX1, . . . , Xk`1q :“
k`1
ÿ

i“1

p´1qi`1∇XipαpX1, . . . , X̂i, . . . , Xk`1qq

`
ÿ

iăj

p´1qi`jαprXi, Xjs, X1, . . . , X̂i, . . . , X̂j , . . . , Xk`1q.
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Observe that since d∇ satisfies the Leibniz identity, it is uniquely determined by what
it does on Ω0pM,Lq “ ΓpLq, where it is defined as

(1.7.0.11) pd∇σqpXq “ ∇Xσ, @σ P ΓpLq, X P XpMq.

The connection being flat is equivalent to d2
∇ “ 0, giving rise to the cohomology

groups:
H‚pM,Lq :“ HpΩ‚pM,Lq,d∇q.

If the line bundle L is trivializable, then the L-valued differential forms can be related
to the usual real valued differential forms on M . In this case there exists a nowhere
vanishing section s P ΓpLq, and ∇ is completely determined by the differential form
β P Ω1pMq defined by

(1.7.0.12) ∇Xs “ βpXqs, @X P XpMq.

Note that under this identification, d2
∇ “ 0 if and only if dβ “ 0. Clearly, β depends

on the section s, used to trivialize L, and if s̃ :“ fs, f P C8pMq, is any other nowhere
vanishing section, then

β̃ “ β ` df.

Hence, the class rβs P H1pMq, depends only on ∇, and we have:

Lemma 1.7.18. Given an orientable line bundle π : L Ñ M there is a one-to-one
correspondence between flat connections ∇ on L, and cohomology classes in H1pMq,
sending ∇ to rβs as Equation 1.7.0.12.

Given a differential form β P Ω1pMq we define the twisted differential dβ : Ω‚pMq Ñ
Ω‚`1pMq, by:

(1.7.0.13) dβα :“ dα` β ^ α, @α P Ω‚pMq.

It is easily checked that d2
β “ 0 if and only if dβ “ 0, giving rise to the twisted

cohomology groups
H‚βpMq :“ HpΩ‚pMq,dβq.

Any nowhere vanishing section s P ΓpLq induces an isomorphism of differential com-
plexes

(1.7.0.14) φs : pΩ‚,dβq
„
ÝÑ pΩ‚pM,Lq,d∇q , α ÞÑ αb s,

where β is as in Equation 1.7.0.12. In particular φs induces an isomorphism in
cohomology

φs : H‚βpMq
„
ÝÑ H‚pM,Lq.

The above discussion applies to the (co)normal bundle of a foliation F on M . Recall
that the normal bundle ν of a foliation F , is canonically equipped with a flat TF-
connection called the Bott connection. It is defined by

∇ : ΓpTFq ˆ Γpνq Ñ Γpνq, ∇XN :“ rX,Y s, @N P XpMq, X P ΓpTFq,
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where N :“ N modTF . Dually, it induces a connection ∇˚ : ΓpTFqˆΓpν˚q Ñ Γpν˚q
on ν˚, defined uniquely by the formula:

p∇˚XαqpNq “ LXpαpNqq ´ αp∇XNq,

for any α P Γpν˚q, N P XpMq, and X P ΓpTFq. As above, this connection defines a
differential

(1.7.0.15) dF : Ω‚pF , ν˚q Ñ Ω‚`1pF , ν˚q,

on the complex Ω‚pF , ν˚q and associated cohomology

H‚pF , ν˚q :“ HpΩ‚pF , ν˚q,dF q.

If F is coorientable, a nowhere vanishing section of ν˚ is the same thing as a form
γ P Ω1pMq for which F “ ker γ. As before, this induces an isomorhism Ω‚pF , ν˚q »
Ω‚pFq, and under this identification dF is described as follows.

Lemma 1.7.19. Let pF ,Mq be a foliated manifold and γ P Ω1pMq such that F “
ker γ. Recall from Equation 1.7.0.10 that

dγ “ γ ^ µ

for some µ P Ω1pMq. Then the following statements hold:

(i) Under the identification Ω‚pF , ν˚q » Ω‚pFq induced by γ, the differential dF
from Equation 1.7.0.15 corresponds to dµ, as in Equation 2.2.2.4;

(ii) Under the correspondence from Lemma 1.7.18, the Bott connection on ν˚ cor-
responds to modF P H

1pFq as in Definition 1.7.16.

Proof. It follows directly from the definitions that

pdF γqpXq “ βpXqγ, @X P XpMq

Hence, let N P XpMq be such that γpNq “ 1, and compute:

pdFγqpXqpNq “ p∇˚XγqpNq
“ LXpγpNqq ´ γp∇XpNqq
“ ´γprX,N sq

“ ´dγpX,Nq

“ ´γ ^ βpX,Nq “ βpXq.

The foliated cohomology allows us to give a rigorous definition of the ”the variation of
a foliated form in the direction transverse to the leaves”. Before giving the definition,
observe that there is a map:

(1.7.0.16) p : Ωk`1
F pMq Ñ ΩkpF , ν˚q, ppαqpX1, . . . , XkqpNq :“ αpX1, . . . , Xk, Nq.
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Suppose that F “ ker γ for γ P Ω1pMq. Then, similar to Equation 1.7.0.10, any
α P Ωk`1pMq satisfies α|F “ 0 if and only if

α “ γ ^ µ,

for some µ P ΩkpMq. This gives an isomorphism of differential complexes

ψγ :
`

ΩkpFq,dβ
˘ „
ÝÑ

`

Ωk`1
F pMq,d

˘

, α ÞÑ α̃^ γ,

where α̃ P Ω‚pMq is any extension of α. Together with the isomorphism φγ from
Equation 1.7.0.14 this gives a commutative diagram:

`

Ω‚`1
F pMq,d

˘

pΩ‚pF , ν˚q,dF q

pΩ‚pFq,dβq pΩ‚pFq,dβq

p

ψγ

id

φγ

In particular, p induces an isomorphism in cohomology.

Definition 1.7.20. The transverse differential dν : H‚pFq Ñ H‚pF , ν˚q is the
defined as the composition

H‚pFq δ
ÝÑ H‚`1

F pMq
p
ÝÑ H‚pF , ν˚q,

where p is defined in Equation 1.7.0.16 and δ is the connecting homomorphism from
Equation 1.7.0.8.

Note that, using the description of the connection homomorphism in Equation 1.7.0.9,
we have

dνrαs “ rppdα̃qs,

for any foliated form α P ΩkpFq, and any extension α̃ P Ω1pMq of α.

Remark 1.7.21. Given a nowhere vanishing section γ P ν˚, we can use φγ from
Equation 1.7.0.14, to interpret the transverse differential as a map

dν : H‚pFq Ñ H‚βpFq.

Explicitely, given α P ΩkpFq, and any extension α̃ P ΩkpMq, we have that dα̃|F “ 0
so that

dα̃ “ ρ^ γ,

for some ρ P Ωk´1pMq. Then it follows that dβρ “ 0, and

dνrαs “ rρs P H
k
β pFq.

4

For a symplectic foliation the transverse differential allows us to measure the variation
of the leafwise symplectic form.
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Definition 1.7.22. Let pF , ωq be a symplectic foliation on M . The variation of ω
is the cohomology class

varω :“ dνrωs P H
2pF , ν˚q.

Moreover, pF , ωq is called tame if varω “ 0.

The variation plays the same role for the leafwise symplectic form, as the modular
class from Definition 1.7.16 does for the foliation. That is, it measures if ω can be
extended to a globally closed form. First note that from the long exact sequence in
Equation 1.7.0.8, and the definition of dν we have an exact sequence

¨ ¨ ¨ Ñ H2pMq
r
ÝÑ H2pFq dν

ÝÑ H2pF , ν˚q Ñ . . . .

Hence, if varω “ 0 then in cohomology rωs comes from a class in H2pMq. By the
following lemma this also holds for any representative.

Lemma 1.7.23. A (coorientable) symplectic foliation pF , ωq is tame if and only if
the leafwise symplectic form admits a closed extension rω P Ω2pMq.

Proof. Let γ P Γpν˚q be a nowhere vanishing section, and use it to interpret the
transverse variation as a map dν : H‚pFq Ñ H‚βpFq, as explained in Remark 1.7.21.

Then, the assumption that varω “ 0, means that given any extension η P Ω2pMq of
ω, we can write

dη “ µ^ γ,

where µ “ dβρ for some ρ P Ω1pMq. Define rω :“ η ´ ρ^ γ, and note that rω|F “ ω,
and

drω “ dη ´ dρ^ γ ` ρ^ dγ “ dβρ^ γ ´ pdρ` β ^ ρq ^ γ “ 0.

Example 1.7.24. Recall that given a contact structure ξ on a manifold M , and α a
contact form for ξ, we can define the symplectic manifold

`

RˆM,ω :“ dpetαq
˘

.

The definition of ω requires us to choose a contact form α, however for any choice of
contact form the above formula defines a symplectic structure.

The analogous construction for symplectic foliations does not work in general. Let
pγ, ηq be an SF-pair representing a symplectic foliation pF , ωq on M . Then, consider

pRˆM,ω :“ η ` dt^ γq .

Although, ω is always non-degenerate, it is closed if and only if pγ, ηq is a cosymplectic
structure. Such a representing pair exists if and only if pF , ωq is tame and unimodular.

4

The above discussion also applies to B-SF manifolds, and thus in particular, to trans-
verse boundaries of SF-manifolds.
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Definition 1.7.25. Let pF , ωq be a B-SF structure on N2n, as in Definition 1.5.7.
The variation of ω is the cohomology class

varω :“ dνrωs P H
2pF , ν˚q.

Moreover, pF , ωq is called tame if varω “ 0.

Consider a B-SF structure pF , ωq on a manifold N2n (Definition 1.5.7). We want
to characterize the set of symplectic forms on N which extend the leafwise form
ω P Ω2pFq. We start by observing that not every manifold with a B-SF structure is
symplectic.

Example 1.7.26. Consider the sphere S3 Ă pR4, ωcanq where ωcan is the standard
symplectic structure. The product D4 ˆ S1 has a symplectic foliation:

˜

F :“
ď

zPS1
D4 ˆ tzu, ω :“ ωcan

¸

.

It is transverse to the boundary, and the induced B-SF manifolds equals S3ˆ S1 with
B-SF structure

˜

FB “
ď

zPS1
S3 ˆ tzu, ωB “ ωcan|S3

¸

.

However, since H2pS3 ˆ S1q “ 0, it does not admit a symplectic structure. 4

Lemma 1.7.27. Let pF , ωq be a B-SF structure on N (Definition 1.5.7), then the
following are equivalent:

(i) There exists a symplectic form rω P Ω2pNq such that

rω|F “ ω;

(ii) There exists a B-SF pair pγ, ηq (Definition 1.5.8) representing pF , ωq and an
admissible form β P Ω1pNq satisfying

ηn “ 0, dη “ ´dµβ ^ γ,

where µ P Ω1pNq is the modular form of γ as in Equation 1.7.0.10.

Moreover, if either of the above holds, then pF , ωq is tame conform definition 1.7.25.
In this case, if F is also unimodular, then pγ, β, ηq can be chosen so they form a B-SF
triple of tameable type (Definition 1.6.8).

Proof. By Lemma 1.5.11 we can find a B-SF pair pγ, ηq representing pF , ωq such that
ηn “ 0. If rω is a symplectic extension of ω, then rω|F “ η|F . Hence, there exists
β P Ω1pNq such that

rω “ η ` β ^ γ.

Then, the non-degeneracy of rω implies:

rωn “ nβ ^ γ ^ ηn´1 ą 0,
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so that β is an admissible form for pγ, ηq. Furthermore, since rω is closed we have:

drω “ dη ` dβ ^ γ ´ β ^ dγ “ dη ` pdβ ` µ^ βq ^ γ “ dη ` dµβ ^ γ “ 0,

proving the first implication. For the converse, let pγ, ηq and β be such that ηn “ 0
and dη “ ´dµβ ^ γ, then it follows immediately that

(1.7.0.17) rω :“ η ` β ^ γ,

is a symplectic extension of ω. By Remark 1.7.21, the condition dη “ ´dµβ ^ γ, is
precisely saying that varω “ 0 P H2pF , ν˚q so that pF , ωq is tame. Furthermore, if
F is unimodular then γ can be chosen closed. In this case Equation 1.7.0.17 implies
that pγ, β, ηq is a B-SF triple of tameable type.

The following discussion characterizes all possible symplectic extensions, if they exist.
Thus suppose that rω P Ω2pNq is symplectic and satisfies

rω|F “ ω.

This implies that ω is closed, and has 1-dimensional kernel. Choose a leafwise vector
field X P XpFq which is nowhere vanishing, and spans the kernel of ω. Furthermore,
let Y P XpNq be nowhere vanishing, and transverse to F . This induces a splitting

TN “ TF ‘ xXy ‘ xY y.

Since, ω is determined on TF , the extension is completely determined by the function

f :“ rωpX,Y q P C8pNq.

Hence, if a symplectic extension exists, it is unique up to a function. The integral

vol
rω :“

ż

N

f P R,

defines an invariant of rω. The following lemma says this constant determines the ex-
tension, up to symplectomorphism. In particular, the space of symplectic extensions
of ω is either empty or one-dimensional.

Lemma 1.7.28. Let pF , ωq be a B-SF structure on (a compact manifold) N2n. Given
two symplectic extensions ω0, ω1 P Ω2pNq of ω, the following are equivalent:

(i) The extensions are in the same cohomology class, rω1s “ rω0s P H
2pNq;

(ii) The extensions induce the same volume

ż

N

ωn1 “

ż

N

ωn0 ;

(iii) There exists a isotopy φ : N Ñ N such that

φ˚ω1 “ ω0.
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Moreover, if H1pF , ν˚q “ 0, then any two extensions satisfy the above conditions, so
that (if it exists) the extension is unique up to symplectomorphism.

Proof. The implications piq ùñ piiq and piiiq ùñ piq are immediate, so we only
prove piiq ùñ piiiq. Fix γ P Ω1pNq such that F “ ker γ, and let µ P Ω2pNq be its
modular form as in Equation 1.7.0.10. Now assume we have two symplectic forms
ω0, ω1 P Ω2pNq satisfying

ω1|F “ ω0|F “ ω.

Then there exists β P Ω1pMq so that

ω1 “ ω0 ` β ^ γ.

Since, dω1 “ dω0 “ 0, we have

dpβ ^ γq “ pdµβq ^ γ “ 0.

Furthermore, since ω0 and ω1 have the same volume we find:

(1.7.0.18)

ż

N

ωn1 “

ż

N

ωn0 ` n

ż

N

ωn´1
0 ^ β ^ γ.

Recall that deRham’s theorem states that the intersection pairing x¨, ¨y : HkpNq ˆ
H2n´kpNq Ñ R, is nondegenerate. By the equation above,

xrωn´1
0 s, rβ ^ γsy “ 0,

implying that β ^ γ is exact. Define the 1-parameter family

ωt :“ ω0 ` tβ ^ γ, t P r0, 1s.

To check non-degeneracy, let Ω P Ω2npMq be a positive volume form. Then

ωnt “ ωn0 ` tnω
n´1
0 ^ β ^ γ “ ptf ` p1´ tqpf ` gqqΩ,

for some functions f, g P C8pNq. Since ω0 and ω1 are symplectic, it follows that f
and f ` g are strictly positive, but then so is tf ` p1 ´ tqpf ` gq for all t P r0, 1s.
Therefore, ωt is a path of symplectic forms, constant in cohomology. A standard
Moser argument then gives the required isotopy.

Next we prove the second statement that if H1pF , ν˚q “ 0 then the symplectic ex-
tension is unique (if it exists). Note that if ω0 and ω1 are two non-symplectomorphic,
then in particular they must have different volumes. Then, it follows from Equation
1.7.0.18 that

ż

N

ωn´1
0 β ^ γ “ xrω0s

n´1, rβ ^ γsy ą 0.

Therefore, β ^ γ is closed but not exact. Since,

dpβ ^ γq “ pdµβq ^ γ,

this implies that rβs P H1
µpFq is non-zero. Conversely, if H1pF , ν˚q » H1

µpFq “
0, then any two symplectic extensions must have the same volume, and thus be
symplectomorphic.
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By the above lemma, a B-SF structure pF , ωq, with H1pF , ν˚q “ 0 admits at most one
symplectic extension. The following example shows that conversely if H1pF , ν˚q ‰ 0,
then there exist many such extensions.

Example 1.7.29. Let pF , ωq be a B-SF structure on N2n and suppose it can be
represented by a B-SF triple of cosymplectic type pu, v, wq, as in Definition 1.6.8.
Then, for any positive constant C there exists a symplectic extension of ω, with

ż

N

ωnC “ C.

Indeed, the required extension is given by

ωC :“ w ` Cv ^ u.

Note that by Lemma 1.7.28 any symplectic extension is symplectomorphic to one of
the above. 4

Remark 1.7.30. A priori, the situation in the previous example seems to give some
extra freedom in using turbulization to glue SF-manifolds. It shows that (for cosym-
plectic B-SF triples) we can define symplectic extensions with any volume. Hence
by Lemma 1.7.28 this should increase the chances of finding a gluing diffeomorphism
φ : BM1 Ñ BM2.

However, for any two symplectic extensions ωC0
and ωC1

, there is a path of symplectic
forms connecting them:

ωt :“ w ` ptC1 ` p1´ tqC0qv ^ u.

It turns out, that to glue two SF-manifolds with transverse boundary, it suffices that
the symplectic extensions on the boundary of each pieces can be connected by a path
of symplectic forms. Hence, the symplectic volumes never forms an obstruction to
gluing 4

The turbulization construction for symplectic foliations is stated as follows:

Theorem 1.7.31. Let pM,F , ωq be an SF-manifold such that F is transverse to the
boundary, and denote by pFB, ωBq the induced B-SF structure (Definition 1.5.6). If
FB is unimodular (i.e. can be defined by a closed form), then given any symplectic

extension rωB P Ω2pBMq of ωB, there exists an SF-structure p rF , rωq on M satisfying:

(i) p rF , rωq is tame at the boundary, and the induced symplectic form on the boundary
is rωB;

(ii) p rF , rωq agrees with pF , ωq away from the boundary.

The main ingredient of the proof, given below, is the following cobordism, based on
the turbulization construction for B-SF triples of tameable type, see Lemma 1.7.14.

Lemma 1.7.32. Let pN,FN , ωN q be a unimodular B-SF manifold and rω P Ω2pNq a
symplectic extension of ωN . Then there exists an SF-structure pF , ωq on the trivial
cobordism r0, 1s ˆN such that:
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(i) F is transverse to the left boundary, and the induced B-SF structure is pFN , ωN q;

(ii) pF , ωq has tame right boundary, and the induced symplectic form on the bound-
ary leaf is rω.

Proof. By Lemma 1.7.27, there exists a B-SF triple of tameable type pu, v, wq such
that

rω “ w ` v ^ u.

Then, applying Lemma 1.7.14 gives the required SF-structure.

Proof of Theorem 1.7.31. By assumption the boundary of pM,F , ωq with its induced
B-SF structure pFB, ωBq satisfies the hypotheses of Lemma 1.7.32. Thus we obtain
a cobordism r0, 1s ˆ BM that can be glued to M using Proposition 1.6.22. The
resulting SF -manifold is isomorphic to M and has tame boundary with symplectic
leaf pBM, rωq.

1.7.1 Symplectic foliated open books

Open book decompositions, as discussed in Appendix 1.9 and Section 1.4.4, can
also be used to construct symplectic foliations. The construction is based on the
symplectic turbulization from the previous section. As we have seen, turbulization
requries rather strong conditions on the symplectic foliations under consideration.
Thus, the notion of an open book decomposition adapted to a SF-structure is much
more restrictive than Definition 1.4.21, in the contact setting. The following definition
is the SF-analogue of Remark 1.4.22.

Definition 1.7.33. An SF-pair pγ, ηq in M is adapted to an open book pB, πq if

(i) The binding B is a cosymplectic submanifold, i.e. the restriction pγ, ηq|B is a
cosymplectic structure (in particular B&F);

(ii) The pair pFπ, η|Fπ q is a symplectic foliation, where Fπ :“ ker dπ is the foliation
induced by π : MzB Ñ S1 and furthermore

ιv1ιv2pdηq “ 0, @v1, v2 P ker dπ.

An SF-structure pF , ωq is adapted to pB, πq if there is an adapted SF-pair representing
it.

As in the contact case, there is an analogous notion of adapted abstract open book:

Definition 1.7.34. An abstract SF open book consists of a symplectic manifold
pΣ, ωq with boundary of cosymplectic type, as in Definion 1.2.10, together with a
symplectomorphism φ : pΣ, ωq Ñ pΣ, ωq which is the identity on a neighborhood of the
boundary.
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Given a SF-structure pF , ωq adapted to pB, πq, any η (that is part of an adapter SF-
pair) defines a symplectic connection on the symplectic fibration π : MzB Ñ S1, see
Equation 1.4.4.1. The associated parallel transport induces a symplectomorphism φ
of the symplectic page pP, η|P q. By the following lemma φ can be assumed to equal
the identity near the boundary BP .

Lemma 1.7.35. Let pF , ωq be a SF-structure on M adapted to an open book de-
composition pB, πq. Then there exists an SF-pair pγ, ηq representing pF , ωq, and a
symplectomorphism φ on pP, η|P q, so that pP, η, φq is an abstract SF open book.

Proof. Since pF , ωq is adapted to the open book, there exists an adapted SF-pair
pγ, ηq. By definition this implies that η defines a symplectic connection H on the
symplectic fibration π : MzB Ñ S1 (conform [62]). Observe that, for dimensional
reasons, H is spanned by the kernel of η.

By Example 1.6.13, on a neighborhood of the binding, pF , ωq is isomorphic to the
normal form. Recall that the normal bundle of the binding is trivial. Hence, passing
to forms and using equivalences (cf. Definition 1.5.4), it means that pγ, ηq is equivalent
to the normal form. That is,

γ “ γB , η “ ηB ` rdr ^ dθ ` ρ^ γB ,

for some form ρ P Ω1pB ˆ D2q, satisfying ρ|Bˆt0u “ 0. Moreover, for any function
g P C8pB ˆ D2q we have that

η ` gdθ ^ γ,

is equivalent to η, conform Definition 1.5.4. Hence, we can assume without loss of
generality that ρpBθq “ 0.

Since pγ, ηq is adapted, we have

ηn ^ dθ “ nηn´1
B ^ ρ^ γB ^ dθ ą 0, dη ^ dθ “ dρ^ γ ^ dθ “ 0

implying that ρpBrq ą 0. Since pγB , ηB ` ρ^ γBq defines an SF-pair on B, it has an
associated Reeb vector field R P XpBq. It follows from the above equation that the
Reeb vector field of pγ, ηq also equals R, interpreted as a vector field on B ˆ D2. In
particular,

(1.7.1.1) drpRq “ 0, dθpRq “ 0.

Choose a non-negative function g : r0, 1s Ñ R satisfying

gprq :“

#

r2 r near 0

0 r near 1
.

Then
rγ :“ γB , rη :“ η ` gdr ^ γB “ ηB ` rdr ^ dθ ` gprqdr ^ γB ,

defines an SF-pair on B ˆD2 representing pF , ωq, and which agrees with pγ, ηq away
from the binding. Hence, it extends to an SF-pair representing pF , ωq on M . Using
Equation 1.7.1.1, it follows that the Reeb vector field of prγ, rηq equals

rR “ R`
g

r
Bθ.
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Hence, if h : r0, 1s Ñ R is a non-negative function satisfying:

hprq :“

#

0 r near 0

1 r near 1
,

then the vector field

X :“ hprqR`
gprq

r
Bθ P XpB ˆ D2q,

agrees with the Reeb vector field rR away from the binding, and is a multiple of Bθ
near the binding. Furthermore,

pLXηq ^ dθ “ pdιXrηqdθ “ dphdrq ^ dθ “ 0.

Therefore, the flow of X, preserves the restriction of η to the fibers of π. Thus, the
time one flow φ of a suitable rescaling of X defines a symplectomorphism of pP, η|P q,
which equals the identity near the boundary.

Conversely, starting from an abstract SF-open book pΣ, ω, φq, we can construct an
adapted SF-structure on the manifold MpΣ, φq. The construction uses symplectic
turbulization defined in the previous section. Therefore, starting from an SF-structure
pF , ωq on M and applying Lemma 1.7.35 and Lemma 1.7.36 successively, (in general)
we do not recover the original SF-structure, see Example 1.7.37 below.

Lemma 1.7.36. Let pΣ, ω, φq be an abstract SF-open book. Then the manifold
MpΣ, φq, constructed in Lemma 1.9.5, with its canonical open book decomposition
pB, πq, admits an SF-structure pF , ωq.

Note that the above lemma does not say that the SF-structure is adapted as in
Definition 1.7.33.

Proof. Let pΣ, ω, φq be an abstract SF-open book. Thus, ω has boundary B :“ BΣ
of cosymplectic type, as in Definition 1.2.10, and we denote the induced B-symplectic
pair by pγB , ηBq. The SF-pair

γ :“ dθ, η :“ ω,

on Σˆ R, descends to the mapping cylinder

ΣˆZ R :“ Σˆ R{pφpxq, θq „ px, θ ` 1q.

The boundary BΣ ˆ S1 is of cosymplectic type, as in Definition 1.6.9, with induced
B-SF triple

u “ dz, v “ γB , w “ ηB .

As in Example 1.6.11, the manifold B ˆ D2 admits an SF-pair defined by

γ :“ γB , η :“ ηB ` dpr2dθq,
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which has boundary of cosymplectic type with B-SF triple

u “ γB , v “ dθ, w “ ηB .

By Corollary 1.7.9 the above pieces can be connected by a regular SF-cobordism
diffeomorphic to r0, 1s ˆBˆ S1, Hence, we obtain a symplectic foliation on MpΣ, φq.

Example 1.7.37. Consider the manifold S1 ˆ S2, endowed with the SF-structure

F :“
ď

zPS1
tzu ˆ S2, ω :“ ωS2 ,

where ωS2 P Ω2pS2q denotes the standard area form on S2. Clearly, all the leaves of
F are isomorphic to S2. The standard embedding S1 ˆ S2 Ă S1 ˆ R3 is transverse
to the natural open book decomposition of S1 ˆ R3, and thus induces an open book
decomposition on S1 ˆ S2, as in Example 1.9.3. Explicitly, the binding equals

B :“
`

S1 ˆ S2
˘

X
`

S1 ˆ tp0, 0, zq | z P Ru
˘

Ă S1 ˆ S2,

and in the coordinates pz, φ, θq P S1 ˆ S2, where pφ, θq P S2 denote spherical coordi-
nates, the fibration is given by

π : S1 ˆ S2zB Ñ S1, pz, φ, θq ÞÑ θ.

The SF-pair
γ :“ dz, η “ sinφdθ ^ dφ` sinφdz ^ dφ,

represents pF , ωq and is adapted to pB, πq. Indeed,

η ^ dθ “ sinφdz ^ dθ ^ dφ ą 0, dη ^ dθ “ 0.

The resulting abstract open book is diffeomorphic to Σ :“ S1 ˆ r0, 1s. Turbulizing
at the boundary of the mapping cylinder Σ ˆ S1, as in the proof of Lemma 1.7.36,
produces two torus leaves. Hence, the resulting SF-structure is not isomorphic to
pF , ωq above. 4

1.8 Deformations

In an oriented 3-dimensional manifold M , any cooriented hyperplane distribution is
automatically oriented. Hence, a symplectic foliation is essentially the same as a
(nowhere vanishing) form θ P Ω1pMq satisfying θ ^ dθ “ 0. On the other hand a
contact form α satisfies α ^ dα ą 0. Combining these conditions gives rise to the
notion of a confoliation, a form α P Ω1pMq satisfying

α^ dα ě 0,

as introduced and studied in [47]. Hence, in dimension 3, the natural type of defor-
mations to study are given by a path of confoliations αt P Ω1pMq, t P r0, 1s satisfying

(1.8.0.1) α0 ^ dα0 “ 0, αt ^ dαt ą 0, t P p0, 1s.
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In higher dimensions, we have to handle the leafwise symplectic form making the
situation more involved. On the level of structures, the natural generalization of
confoliations is not so clear. We investigate several notions in Chapter 2. Here we
consider following type of deformation on the level of differential forms.

Definition 1.8.1. A SF-deformation on a manifold M2n`1 consists of a pair
pαt, ωtq P Ω1pMq ˆ Ω2pMq, t P r0, 1s satisfying

(i) pα0, ω0q is a symplectic foliation pair as in Definition 1.5.3;

(ii) αt is a contact form for all t ą 0 and ω1 “ dα1;

(iii) αt ^ ω
n
t ą 0 for all t P r0, 1s.

By the third condition we can think of ωt as a path of symplectic forms on kerαt
interpolating between dα1 and ω0. Note that if n “ 1, we recover the notion from
Equation 1.8.0.1

Example 1.8.2. Several of the basic examples of contact structures and symplec-
tic foliations from Example 1.3.8 and Example 1.5.5, can be connected by an SF-
deformation:

• Euclidean space: Let px1, y1, . . . , xn, yn, zq denote the standard Euclidean
coordinates on R2n`1. Then,

αt :“ dz ` t
n
ÿ

i“1

xidyi, ωt “
n
ÿ

i“1

dxi ^ dyi,

defines a SF-deformation from the standard SF-pair to the standard contact
form.

• Tori: Let px, y, zq be standard angular coordinates on T3. Then, for each k P N
the pair

αt :“ dz ` t psinptkzqdx` cosptkzqdyq , ω :“ dx^ dy,

defines a SF-deformation. Recall that although the higher dimensional tori are
easily seen to have symplectic foliations, the analogous statement for contact
structures depends on a construction by Bourgeois [96]. Hence, it is not imme-
diate that the above deformation extends to higher dimensions. We consider
this construction in more detail in Section 2.6.4.

• Products: Let M be endowed with a SF-deformation pαt, ωtq, t P r0, 1s and
pW, dλq be an exact symplectic manifold. Then, the product M ˆW admits
a SF-deformation interpolating between the product contact and SF-structures
from Example 1.3.8 and Example 1.5.5, given by:

α̃t :“ αt ` tλ, ωt “ ωt ` dλ.

4
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In all the examples above the deformations are given by affine paths. The following
definition gives sufficient conditions for such a deformation to exist.

Definition 1.8.3. Given a manifold M endowed with a

(i) symplectic foliation pair pγ, ηq, as in Definition 1.5.3;

(ii) contact form α;

we say that pγ, ηq is friendly to α if:

(i) α^ dαk ^ ηn´k ě 0 for all k “ 0, . . . , n;

(ii) γ ^ dαk ^ ηn´k ě 0 for all k “ 0, . . . , n;

(iii) α^ dαn´1 ^ dγ ě 0.

The proof of the following lemma is a straightforward computation.

Lemma 1.8.4. Let pγ, ηq be a symplectic folation pair friendly to a contact form α
on M . Then, the affine path joining them;

γt :“ p1´ tqγ ` tα, ηt :“ p1´ tqη ` tdα,

defines a SF-deformation.

Proof. By definition pγ0, η0q defines a symplectic foliation pair, and η1 “ dγ1. To see
that γt is contact form t ą 0, note that, since γ defines a foliation, dγ ^ dγ “ 0 and
compute:

γt ^ dγnt “ pp1´ tqγ ` tαq ^ pp1´ tqdγ ` tdαq
n

“ pp1´ tqγ ` tαq ^
`

tndαn ` ntn´1p1´ tqdαn´1 ^ dγ
˘

“ tnp1´ tqγ ^ dαn ` tn`1α^ dαn ` ntnp1´ tqα^ dαn´1 ^ dγ,

which is positive for all t ą 0. The condition γt ^ ηnt ą 0 is checked by a similar
computation:

γt ^ η
n
t “ pp1´ tqγ ` tαq ^ pp1´ tqη ` tdαq

n

“ pp1´ tqγ ` tαq ^

˜

n
ÿ

k“0

ˆ

n

k

˙

p1´ tqktn´kηk ^ dαn´k

¸

“

n
ÿ

k“0

ˆ

n

k

˙

p1´ tqk`1tn´kγ ^ ηk ^ dαn´k ` p1´ tqktn´k`1α^ ηk ^ dαn´k`1.

Since pγ, ηq and α are friendly, all the summands are non-negative. Moreover, if t ‰ 0,
the sum contains the strictly positive term α^ dαn, while if p1´ tq ‰ 0, there is the
term γ ^ ηn. Hence, γt ^ η

n
t ą 0 for all t P r0, 1s.
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1.8.0.1 Deformations on open book decompositions

Consider an abstract open book decomposition pΣ, φq of a manifold M . In Section
1.4.4 and Section 1.7.1 we have seen that if the page carries some additional structure
we can construct a contact structure and a symplectic foliation on M . It turns out
that under extra compatibility conditions, analogous to those in Definition 1.8.3,
these two structures can be deformed into each other through an affine deformation.
The precise statement is as follows:

Definition 1.8.5. Let pΣ, φq be an abstract open book, and denote the boundary of
the page by B :“ BΣ. If Σ is endowed with a

(i) symplectic form ω with cosymplectic boundary pB, γB , ηBq, as in Definition
1.2.10, and φ˚ω “ ω;

(ii) exact symplectic form dλ with contact boundary pB, λBq, as in Definition 1.2.10,
and φ˚λ “ λ;

we say that ω is friendly to dλ if:

(i) ωk ^ dλn´k ě 0 for all k “ 0, . . . , n;

(ii) pγB , ηBq is friendly to λB on B.

(iii) There exists a collar neighborhood p´ε, 0s ˆ BΣ Ă Σ on which

ω “ ηB ` dt^ γB , λ “ p1` tqλB .

Observe that it is a direct consequence of Definition 1.2.10 that each of the formulas
in condition piiiq above can be achieved in some collar neighborhood. However, in
general these neighborhoods need not be the same. Condition (iii) requires that there
is a single collar neighborhood realizing both formulas.

The main result is:

Theorem 1.8.6. Let pΣ, φq be an abstract open book, and ω,dλ P Ω2pΣq symplectic
forms which are friendly to each other (Definition 1.8.5). Then, the resulting manifold
MpΣ, φq, admits a symplectic foliation pair pγ, ηq and a contact form α which are
friendly to each other (Definition 1.8.3).
Moreover, the binding B is both a contact and a symplectic foliation submanifold, and
the induced pair pγB , ηBq is friendly to αB.

The proof follows the usual strategy of defining the required structure on each of
the pieces that make up the open book manifold MpΣ, φq and then gluing them
together. Since the pieces are interesting on their own, we state them separately
before combining them in the proof.
More precisely, the following two lemma’s put together the contact structures and
symplectic foliations from Example 1.4.9 and Example 1.6.11, saying that they are
friendly, as in Definition 1.8.3. For the inside component we have:
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Lemma 1.8.7. Let B2n`1 be a closed manifold, and 0 ă δ ă 1 a constant.

(i) If αB is a contact form on B, then B ˆ D2
δ admits a contact form

α :“ αB ` r
2dθ.

It has regular boundary of unimodular type with induced B-contact pair

pu “ dθ, v “ αB ` δdθq.

(ii) If pγB , ηBq is a symplectic foliation pair on B, then BˆD2
δ admits a symplectic

foliation pair
γ :“ γB , η :“ ηB ` 2rdr ^ dθ.

It has regular boundary of Cosymplectic type with induced B-symplectic foliation
triple

pu “ γB , v “ dθ, w “ ηBq.

Moreover, if pγB , ηBq is friendly to αB, then so are pγ, ηq and α.

Proof. The existence of the contact and symplectic foliation forms follows from Ex-
ample 1.4.9 and Example 1.6.11. The boundary types are also discussed there. It
remains to check that pγ, ηq is friendly to α as in Definition 1.8.3.

The first condition clearly holds for k “ n, and for k “ 0 becomes:

α^ ηn “
`

αB ` r
2dθ

˘

^
`

ηnB ` 2nηn´1
B ^ rdr ^ dθ

˘

“ 2nαB ^ η
n´1
B ^ rdr ^ dθ ě 0,

while for 1 ď k ď n´ 1 we have:

α^ dαk ^ ηn´k “ αB ^
`

2pn´ kqdαkB ^ η
n´k´1
B ` 2kdαk´1

B ^ ηn´kB

˘

^ rdr ^ dθ ě 0.

Similarly, the second condition clearly holds for k “ 0, and for k “ n becomes:

γ ^ dαn “ γB ^
`

dαnB ` 2ndαn´1
B ^ rdr ^ dθ

˘

“ 2nγB ^ dαn´1
B ^ rdr ^ dθ ě 0,

α^ dαn´1 ^ dγ “ pαB ` r
2dθq ^

`

dαn´1
B ` 2pn´ 1qdαn´2

B ^ rdr ^ dθ
˘

^ dγB

“ 2pn´ 1qαB ^ dαn´2
B ^ dγB ^ rdr ^ dθ ě 0

while for 1 ď k ď n´ 1 the computation becomes:

γ ^ dαk ^ ηn´k “ γB ^
`

2pn´ kqdαkB ^ η
n´k´1
B ` 2kdαk´1

B ^ ηn´k
˘

^ rdr ^ dθ ě 0.
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For the outside component we have:

Lemma 1.8.8. Let pΣ2n, φq be an abstract open book.

(i) Let ω be a symplectic form on Σ with cosymplectic type boundary pB, γB , ηBq
and for which φ is a symplectomorphism. Then the mapping cyclinder Σˆφ R,
admits a symplectic foliation pair (actually cosymplectic structure) induced by

γ :“ dz, η :“ ω.

It has regular boundary of cosymplectic type with induced B-symplectic foliation
triple

pu “ dθ, v “ γB , w “ ηBq.

(ii) Let dλ be a symplectic form on Σ with contact type boundary pB, λBq and such
that φ˚λ “ λ. Then the mapping cylinder ΣˆφR, admits a contact form induced
by

α :“ dz ` λ.

It has regular boundary of Liouville type with induced B-contact pair

pu “ λb, v “ λB ` dzq.

Moreover, if
ωk ^ dλn´k ě 0, for all k “ 0, . . . , n,

then pγ, ηq is friendly to α.

Proof. The existence of the contact and symplectic foliation forms follows from Ex-
ample 1.4.9 and Example 1.6.10. The boundary types are also discussed there. It
remains to show that pγ, ηq is friendly to α as in Definition 1.8.3. This follows by
observing that

α^ dαk ^ ηn´k “ dz ^ dλk ^ ωn´k ě 0

γ ^ dαk ^ ηn´k “ dz ^ dλk ^ ωn´k ě 0

α^ dαn´1 ^ dγ “ 0

The middle component allows us to glue the pieces of the two lemmas above.

Lemma 1.8.9. Let B2n´1 be a closed manifold.

(i) If αB is a contact form on B, then the trivial cobordism r0, 1s ˆB ˆ S1 admits
a contact form α which has:

• Regular left boundary of Unimodualar type with induced B-contact pair

pu “ dθ, v “ αB ` δdθq

for any 0 ă δ ă 1;
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• Regular right boundary of Liouville type with induced B-contact pair

pu “ αB , v “ αB ` dθq.

(ii) If pγB , ηBq is a cosymplectic pair on B, then the trivial cobordism r0, 1sˆB ˆ S1

admits a symplectic foliation pair pγ, ηq which has:

• Regular left boundary of cosymplectic type with induced B-symplectic folia-
tion triple

pu “ γB , v “ dθ, w “ ηBq;

• Regular right boundary of cosymplectic type with induced B-symplectic fo-
liation triple

pu “ dθ,´γB , w “ ηBq.

• A single closed leaf
´

B ˆ S1, ηB ` dθ ^ γB

¯

.

Moreover, if pγB , ηBq and αB are friendly, then so are pγ, ηq and α.

Proof. The existence of the contact form follows from Lemma 1.4.19. There the
contact form is described in terms of the B-contact pair pu, vq. Here, we have an
explicit description in terms of dθ and αB , and for the computations at hand it is
convenient to describe the contact form in terms of these forms. Thus we consider

α :“ φptqαB ` ψptqdθ,

for φ, ψ : r0, 1s Ñ R satisfying

9ψ ě 0, φ ą 0, φ 9ψ ´ 9φψ ą 0,

and

9φ “

#

ě 0 for t ď 1{2

ď 0 for t ě 1{2
, φ “

#

1 for t near 0

2´ t for t near 1
, ψ “

#

t` δ for t near 0

1 for t near 1
.

The value t “ 1{2 is special, because the symplectic foliation defined below has
t1{2u ˆB ˆ S1 as its compact leaf.

The existence of the symplectic foliation pair follows from Lemma 1.7.6,. That is, we
have

γ :“ fptqγB ` gptqdt` hptqdθ, η :“ ηB ` fptqdt^ dθ ` gptqdθ ^ γB ` hptqγB ^ dt,

for functions f, g, h : r0, 1s Ñ R as in Figure 1.6.

The boundary types can be checked directly from the definitions, so it remains to
show that pγ, ηq is friendly to α. We split the cobordism into two pieces and check
the conditions from on each of the pieces.
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1

0

f g h

1{2 1

Figure 1.6: Functions f ,g and h satisfying the required conditions for the proof of
Lemma 1.8.9.

First we consider the part tt ď 1{2u where h “ 0. We have the following identities:

ηk “ ηkB ` kη
k´1
B ^ pfdt` gγBq ^ dθ

dαk “φkdαkB ` kφ
k´1dαk´1

B dt^
´

9φαB ` 9ψdθ
¯

.

The first condition of Definitions 1.8.3 clearly holds for k “ n and for k “ 0 becomes:

α^ ηn “ pφαB ` ψdθq ^
`

ηnB ` nη
n´1
B ^ pfdt` gγBq ^ dθ

˘

“ ´ nφfdt^ αB ^ η
n´1
B ^ dθ ě 0,

while for 1 ď k ď n´ 1 we have:

α^ dαk ^ ηn´k “ pφαB ` ψdθq ^
´

pn´ kqφn´k´1ηkB ^ dαn´k´1
B ^ dt^

´

9φαB ` 9ψdθ
¯

` kφn´kdαn´kB ^ ηk´1
B ^ pfdt` gγBq ^ dθ

¯

“ ´ pn´ kq
´

φ 9ψ ´ 9φψ
¯

φn´k´1dt^ αB ^ η
k
B ^ dαn´k´1

B ^ dθ

´ kφn´k`1fdt^ αB ^ dαn´kB ^ ηk´1
B ^ dθ ě 0.

The second condition clearly holds for k “ 0 and for k “ n becomes:

γ ^ dαn “pfγB ` gdtq ^
´

φndαnB ` nφ
n´1dαn´1

B ^ dt^
´

9φαB ` 9ψdθ
¯¯

“ ´ nfφn´1 9ψdt^ γB ^ dαn´1
B ^ dθ ě 0.
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while for 1 ď k ď n´ 1 we have:

γ ^ dαk ^ ηn´k “pfγB ` gdtq ^
`

ηn´kB ` pn´ kqηn´k´1
B ^ pfdt` gγBq ^ dθ

˘

^

´

φkdαkB ` kφ
k´1dαk´1

B ^ dt^
´

9φαB ` 9ψdθ
¯¯

“ ´ pn´ kqf2φkdt^ γB ^ dαkB ^ η
n´k´1
B ^ dθ

´ kfφk´1 9ψdt^ γB ^ dαk´1
B ^ ηn´kB ^ dθ ě 0.

Lastly we check:

α^ dαn´1 ^ dγ “ pφαB ` ψdθq ^ φn´1dαn´1
B ^ 9fdt^ γB

` pφαB ` ψdθq ^ pn´ 1qdαn´2
B ^ dt^

´

9φαB ` 9ψdθ
¯

^ 9fdt^ γB

“ 9ψ 9fφn´1dt^ γB ^ dαn´1
B ^ dθ ě 0.

Next we consider the part tt ě 1{2u where f “ 0. We have the following identities:

ηk “ ηkB ` kη
k´1
B ^ pgdθ ´ hdtq ^ γB ,

while dαk is the same as above. The first condition clearly holds for k “ n and for
k “ 0 it becomes:

α^ ηn “pφαB ` ψdθq ^
`

ηnB ` nη
n´1
B ^ pgdθ ´ hdtq ^ γB

˘

“ ´ nhψ dt^ γB ^ η
n´1
B ^ dθ ě 0

while for 1 ď k ď n´ 1 we have:

α^ dαk ^ ηn´k “pφαB ` ψdθq ^
´

φk ^ dαkB ` kφ
k´1dαk´1

B ^ dθ ^
´

9φαB ` 9ψdθ
¯¯

^
`

ηn´kB ` pn´ kqηn´k´1
B ^ pgdθ ´ hdtq ^ γB

˘

“ ´ pn´ kqψφkh^ dt^ γB ^ η
n´k´1
B ^ dαkB ^ dθ

´ kφk´1
´

φ 9ψ ´ 9φψ
¯

dt^ αB ^ dαk´1
B ^ ηn´kB ^ dθ ě 0.

The second condition clearly holds for k “ 0 and for k “ n it becomes:

γ ^ dαn “pgdt` hdθq ^
´

φndαnB ` nφ
n´1dαn´1

B ^ dt^
´

9φαB ` 9ψdθ
¯¯

“n 9φhφn´1dt^ αB ^ dαB ^ dθ ě 0.

while for 1 ď k ď n´ 1 we have:

γ ^ dαk ^ ηn´k´1 “ ´ pn´ kqφkpg2 ` h2qdt^ γB ^ dαkB ^ η
n´k´1
B ^ dθ

` khφk´1 9φdt^ αB ^ dαk´1
B ^ ηn´kB ^ dθ ě 0.
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Lastly we check:

α^ dαn´1 ^ dγ “pφαB ` ψdθq ^
`

φn´1 ^ dαn´1
B ` pn´ 1qφn´2 ^ dαn´2

B

˘

^ dt^
´

9φαB ` 9ψdθ
¯

^ 9hdt^ dθ

“ ´ φn 9hdt^ αB ^ dαn´1
B ^ dθ ě 0.

Proof of Theorem 1.8.6. Choose 0 ă δ ă 1, write B :“ BΣ, and decompose the filled
mapping cylinder into three pieces:

MpΣ, φq “
`

B ˆ D2
δ

˘

Y

´

rδ, 1s ˆB ˆ S1
¯

Y
`

Σˆ S1
˘

.

Applying Lemma 1.8.7, Lemma 1.8.9, and Lemma 1.8.8 each of the pieces admits a
symplectic foliation pair and a contact form friendly to each other. Hence, it follows
from Lemma 1.8.4 that each of the pieces admits an affine deformation.

It remains to show that the pieces can be glued. Since the boundary types of the
contact form match, it is possible to glue the contact forms on each piece to one on
MpΣ, φq. The same holds for the symplectic foliation pair. However, recall that the
gluing depends on a choice of collar neighborhood putting the contact form (resp. the
symplectic foliation pair) in the required normal form. Therefore, we need to ensure
that we can find a single collar on which both the structures are in normal form. For
the common boundary of B ˆ D2

B and rδ, 1s ˆ B ˆ S1 this follows directly from the

definitions. For the common boundary of r0, 1s ˆB ˆ S1 and Σˆ S1, it is ensured by
the last condition in Definition 1.8.5.

Example 1.8.10. Recall Giroux correspondence stating that given a closed 3-manifold,
there is a 1-1 correspondence between (cooriented) contact structures up to isotopy
and open books up to stabilization. In particular, any contact 3-manifold admits an
abstract contact open book pΣ,dλq.

Since the binding, B :“ BΣ, is 1-dimensional the boundary is simultaneously of
contact and cosymplectic type. In fact, the conditions of Definition 1.8.3 are trivially
satisfied, and applying Theorem 1.8.6 we obtain:

Corollary 1.8.11. Any contact structure on a closed 3-manifold can be (affinely)
deformed into a symplectic foliation.

4

As in the 3-dimensional case, any contact structure in higher dimensions admits an
adapted open book decomposition. Suppose that we start with an abstract open book
pΣ, φq that admits an exact symplectic form dλ with boundary of contact type. A
necessary condition for Σ to also admit a symplectic structure ω with cosymplectic
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type boundary, is that B :“ BΣ admits a cosymplectic structure pγB , ηBq for which
ηB is in the image of the restriction map

ι˚ : H2
φpΣq Ñ H2pBΣq.

Here we denote by H2
φpΣq Ă H2pΣq those cohomology classes which can be repre-

sented by a closed 2-form that is invariant under pullback by φ. Note that in general
this is not the same as a cohomology class that is invariant under pullback by φ.

Remark 1.8.12. Suppose that the monodromy satisfies φk “ id for some k P N.
Given any class rωs P H2pΣq define

ω̃ :“
1

k

k
ÿ

i“0

pφiq˚ω.

Then, rω̃s P H2
φpΣq and ι˚rω̃s “ ι˚rωs since the monodromy equals the identity on

a neighborhood of the boundary. Therefore, it suffices in this case that ηB is in the
image of the restriction map

ι˚ : H2pΣq Ñ H2pBΣq.

4

An (affine) deformation between the resulting structures will induce a deformation on
the boundary B. Hence, for such a deformation to exist we necessarily need pγB , ηBq
and λB to be friendly.

Definition 1.8.13. An abstract open book pΣ, φq with boundary B :“ BΣ, is said to
be of deformation type if:

(i) There exists an exact symplectic form dλ on Σ, of contact type at the boundary,
and such that φ˚dλ “ dλ;

(ii) There exists a cosymplectic structure pγB , ηBq on B such that rηBs is in the
image of the restriction map

ι˚ : H2
φpΣq Ñ H2pBq;

(iii) The contact form λB is friendly to pγB , ηBq.

In this situation we can use the following specialization of Theorem 1.8.14, to obtain
a contact structure and symplectic foliation on MpΣ, φq and a deformation between
them.

Theorem 1.8.14. Let pΣ, φq be an abstract open book decomposition of deformation
type. Then the resulting manifold MpΣ, φq admits a contact form α and a symplectic
foliation pair pγ, ηq which are friendly to each other (Definition 1.8.3).

The proof follows immediately from combining Theorem 1.8.6 with Lemma 1.8.18
below. We start by showing that the restriction map in cohomology can be lifted to
the level of forms.
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Lemma 1.8.15. Let ι : N ãÑ M be a submanifold. If η P ΩkpNq is a closed form
whose cohomology class is in the image of the restriction map ι˚ : HkpMq Ñ HkpNq.
Then there exists ω P ΩkpMq such that

dω “ 0, ω|N “ η.

Proof. Let ω̃ P ΩkpMq be such that ι˚rω̃s “ rωs, and U a tubular neighborhood of
N . Then, using that U retracts onto N we have

ω̃ ´ η “ dγ,

for some γ P Ωk´1pUq. Hence, the required form is defined by

ω :“ ω̃ ` dpργq,

where ρ P C8pUq is a suitable bump function.

Remark 1.8.16. In the above proof, we can choose the bump function ρ to be zero on
a neighborhood of N . Hence, if the collar neighborhood is a product U “ N ˆDm´n
then in these coordinates we have ω “ η on a neighborhood of N “ N ˆ t0u. 4

For a suitable open book decomposition, the above trick allows us to extend a cosym-
plectic structure on the binding to a symplectic form on the page, which has cosym-
plectic boundary.

Lemma 1.8.17. Let pΣ2n, σq be symplectic manifold with boundary, φ P SymppΣ, σq
a symplectomorphism equal to the identity on a neighborhood of BΣ, and pγ, ηq a
cosymplectic structure on BΣ satisfying:

(i) The class rηs is in the image of the restriction map ι˚ : H2
φpΣq Ñ H2pBΣq;

(ii) For σB :“ σ|BΣ we have γ ^ σkB ^ η
n´k ě 0 for all k “ 1, . . . , n´ 1.

Then, for ε ą 0 small enough, there exists a symplectic form ω P Ω2pΣq, for which φ
is a symplectomorphism and with regular boundary of cosymplectic type and induced
B-symplectic pair

pγ, σ ` εηq.

Proof. By the previous lemma we find a closed extension η̃ P Ω2pΣq of η, which is
invariant under pullback by φ. Hence, for ε ą 0 small enough

ω :“ σ ` εη̃,

is symplectic, and invariant under pullback by φ. To see that γ is admissible for
ωB :“ ω|BΣ observe:

γ ^ ωn´1
B “ γ ^ pσB ` εηq

n´1

“

n´1
ÿ

k“0

ˆ

n´ 1

k

˙

εn´k´1γ ^ σkB ^ η
n´k´1 ą 0,

since all summands are non-negative and strictly positive for k “ 0.
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Going back to the proof of Theorem 1.8.14; to prove Theorem 1.8.14, we want to
apply Theorem 1.8.6. The symplectic form constructed in the lemma above satisfies
all but one of the conditions of Definition 1.8.5. More precisely, we still need to show
that there exist a collar neighborhood on which both the symplectic forms are in
the required normal form. We show this in the following lemma, by modifying the
construction above close to the boundary of the page.

Lemma 1.8.18. Let pΣ,dλ, φq be an abstract contact open book, and assume the
boundary B :“ BΣ admits a cosymplectic structure pγB , ηBq satisfying:

(i) The class rηBs is in the image of the restriction map ι˚ : H2pΣq Ñ H2pBΣq;

(ii) The cosymplectic pair pγB , ηBq is friendly to αB.

Then, for ε ą 0 small enough, there exists:

(i) A symplectic structure ω P Ω2pΣq with boundary of cosymplectic type and in-
duced B-symplectic pair

pγB ,dαB ` εηBq .

(ii) A collar neighborhood U » p´ε, 0s ˆB on which

α “ p1` tqαB , ω “ pdαB ` εηBq ` dt^ αB .

Proof. Since dλ has boundary of contact type we can find a collar neighborhood
U » p´ε, 0s ˆB Ă Σ on which

α “ p1` tqαB .

We fix this collar neighborhood for the rest of the proof. Following Lemma 1.8.17,
we can consider the symplectic form

εη ` dα,

for ε ą 0 small enough, and η P Ω2pΣq a closed extension of ηB . By Remark 1.8.16
we can assume that η “ ηB on U .

By slightly altering the symplectic form above we can ensure that it has the desired
normal form near the boundary. More precisely, define the closed form

ω :“ εηB ` dpfαBq ` dpgγBq,

for suitable functions f, g : p´ε, 0s Ñ R to be chosen later. To have the required
normal form, close to the boundary we want

ω “ εηB ` dαB ` dt^ γB “ εηB ` dαB ` dptγBq,

while away from the boundary we want

ω “ εη ` dα “ εηB ` d pp1` tqαBq .
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Hence, the first conditions on the functions are:

(1.8.0.2) f “

#

1 for t near 0

1` t for t near ´ε
, g “

#

t for t near 0

0 for t near ´ε
.

The non-degeneracy condition for ω reads:

ωn “ pfdαB ` εηBq
n
` n pfdαB ` εηBq

n´1
^ dt^

´

9fαB ` 9gγB

¯

“ n
n
ÿ

k“0

fkεn´k´1

ˆ

n´ 1

k

˙

dt^ dαkB ^ η
n´k´1
B ^

´

9fαB ` 9gγB

¯

.

Hence, ω will be symplectic if

(1.8.0.3) 9f2 ` 9g2 ą 0, 9f " 0 whenever 9g ď 0.

The last condition means that at points t P p´ε, 0s where 9g ď 0, we have that 9f is
much larger than 0, so that the positive summand in the equation above dominates.
It is not hard to see that functions f and g satisfying these conditions exist as shown
in Figure 1.7.

1

0´ε

f

g

Figure 1.7: Functions f and g satisfying the conditions in Equation 1.8.0.2 and Equa-
tion 1.8.0.3.

1.9 An application: Mitsumatsu’s construction on
S5

It was shown by Lawson[72] that the spheres S2k`3, k “ 1, 2, . . . admit (codimension-
1) foliations. For S5 Mitsumatsu[89] proved that the foliation resulting from Lawsons
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construction carries a leafwise symplectic form. Using the right openbook decomposi-
tion, this symplectic foliation can be obtained using Lemma 1.7.36. Moreover, using
the results of the previous section we show that it is part of a SF-deformation as in
Definition 1.8.1.

Theorem 1.9.1. The Lawson foliation on S5 admits a leafwise symplectic form and
the resulting symplectic foliation can be deformed to a contact structure, as in Defi-
nition 1.8.1.

Proof. Consider the Hopf fibration h : S5 Ñ CP2, which is an principal S1 bundle.
The map f : S5 Ñ C defined by restricting

fpz0, z1, z2q :“ z3
0 ` z

3
1 ` z

3
2 , pz0, z1, z2q P C3,

satisfies

(1.9.0.1) fpλ ¨ zq “ λ3fpzq, z P C3, λ P S1,

so that by the genus-degree formula its zero-locus in CP2 is diffeomorphic to the torus.
The infinitesimal vector field of the S1-action is the Reeb vector field of the standard
contact form α on S5. Therefore, f defines an adapted open book decomposition by
Lemma 1.9.8, whose binding is an S1-bundle hB : B Ñ T2. Note that αB defines a
principal S1-connection on this bundle since by definition of the Reeb vector field we
have

αBpRq “ 1, LRα “ 0.

By definition of an adapted open book, we obtain an exact symplectic page pΣ,dαq
with boundary of contact type pB,αBq. Pulling back the standard (oriented) coframe
on T2 we obtain closed forms θ1, θ2 P Ω1pBq. It is straightforward to check that

γB :“ θ1, ηB :“ θ2 ^ αB ,

defines a cosymplectic structure friendly to αB (Definition 1.8.3). Finally, a standard
Mayer-Vietoris argument shows that the restriction map ι˚ : H2pΣq Ñ H2pBq is
surjective, see for example Lemma 5.3 in [89] or Lemma 6.4.7 in [96].
The monodromy φ of the open book is induced by the S1-action, so that it follows
from Equation 1.9.0.1 that φ3 “ id. As explained in Remark 1.8.12 this means that
it suffices to ask the restriction map ι˚ : H2pΣq Ñ H2pBq to be surjective when
applying Theorem 1.8.14. So, there exists a symplectic foliation pair and a contact
structure on S5 that are friendly to each other.

Observe, that Equation 1.9.0.1 actually shows that f descends to a function f̃ on
the quotient S5{Z3, where the Z3 action is induced by φ. Moreover, the standard
contact form also descends, and f̃ defines an adapted open book decomposition with
trivial monodromy. The same argument as above then shows that S5{Z3 admits a
symplectic foliation pair and a contact form that are friendly to each other. Pulling
back, these structures under the quotient map S5 Ñ S5{Z3 recovers the ones from
before.
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Appendix A: Open book decompositions

We recall here the definition and basic properties of open book decompositions.
Morally speaking an open book decomposition of a manifold M tries to fiber the
manifold over S1. Of course not every manifold, globally admits such a fibration, and
so we divide the manifold into two pieces. The first one fibers over S1 and the fibers
are called the pages of the open book. The fibration is extended over the other piece,
called the binding, using a local model. This model ”glues the pages to the binding”,
so that the resulting picture is that of a ”book opened so that the front touches the
back”.

Definition 1.9.2. An (geometric) open book decomposition of a manifold M ,
is a pair pB, πq consisting of:

(i) A codimension-2 submanifold B ĂM , with trivial normal bundle νB;

(ii) A fibration π : MzB Ñ S1, such that there exists a neighborhood B ˆ D2 Ă M
of B on which:

(1.9.0.2) πpb, xq “
x

||x||
.

We refer to B as the binding and to P :“ π´1p1q as the (closed) page of the open
book.

The normal form in Equation 1.9.0.2 implies that P is a submanifold with boundary
BP “ B. The choice of 1 P S1, in the definition of the page is not important. For any
φ P S1 we define the corresponding page

Pφ :“ π´1pφq,

and these are all diffeomorphic.

Example 1.9.3. The following are some basic examples of open book decomposi-
tions:

• Euclidean space: Let pr, φ, zq denote the cylindrical coordinates on R3. The
standard open book decomposition of R3 is defined by taking B :“ tr “ 0u,
and

π : R3zB Ñ S1, pr, φ, zq ÞÑ φ.

Note that open books can be ”pulled back” in the sense that if pB, πq is an open

book decomposition of M and f : ĂM ÑM is a submersion then,

rB :“ f´1pBq, rπ :“ π ˝ f,

defines an open book decomposition on ĂM . Since for any n ě 2 the projection
pr : Rn Ñ R2 is a submersion, we obtain an open book decomposition on any
Euclidean space.
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• Submanifolds: Open books can also be ”restricted” to submanifolds, in the
sense that if pB, πq is an open book decomposition of M and ĂM Ă M is a
submanifold transverse to B and the fibers of π, then

(1.9.0.3) rB :“ ĂM XB, rπ :“ π|
ĂMz rB

,

is an open book decomposition of ĂM .
For example, the standard embedding of the sphere Sn Ă Rn`1 is transverse to
the binding and the pages of the standard open book decomposition on Rn`1.
Thus we obtain an open book decomposition of Sn with binding Sn´2 and page
Dn´1.

• Singularities: Let f : Cn Ñ C be a polynomial with an isolated singuarity
at the origin 0 P Cn. Then for ε ą 0 small enough, the sphere S2n`1 Ă Cn of
radius ε consists of regular points of f . We obtain an open book decomposition
of S2n`1 by setting

B :“ f´1p0q X S2n`1, πpzq :“
fpzq

||z||
,

whose projection is called the Milnor fibration of the hypersurface singularity,
see [87]. For example taking

f : C2 Ñ C, pz1, z2q ÞÑ z1 ` z2,

recovers the open book decomposition on S3 given above. Note that this con-
struction is a combination of the pullback and restriction in the previous exam-
ples.

• Circle bundles: Recall from Example 1.2.13 that there is a one-to-one cor-
respondence between complex line bundles L Ñ M and principles S1 bundles
P ÑM , by

P ÞÑ L :“ P ˆS1 C.

Under this identification sections σ P ΓpLq correspond to S1-equivariant func-
tions f P C8pP,Cq. Explicitly, given f we can define a section by:

σ : M Ñ P ˆS1 C, x ÞÑ rp, fppqs, x PM,p P Px.

Note that since f is S1-equivariant the above formula does not depend on the
choice of p, and hence σ is well-defined.

Consider a principal S1-bundle π : P Ñ M and let σ P ΓpLq be a section
of the associated complex line bundle L, transverse to the zero section. The
transversality condition implies that

B :“ π´1pσ´1p0qq Ă P,

is a codimension-2 submanifold with trivial normal bundle. Furthermore, if
f P C8S1pP ˆCq denotes the corresponding function then we obtain a fibration:

π : P zB Ñ S1, p ÞÑ
fppq

||fppq||
.
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In fact, the map f : P Ñ C is an open book map as in Definition 1.9.7 below.

As an example of this construction recall that the tautological bundle over CP1,
is the complex line bundle defined by

Op1q :“ tpz, `q P C2 ˆ CP1
| z P `u.

The associated principal bundle can be identified with those points pz, `q such
that ||z|| “ 1. That is, it is just the usual Hopf fibration h : S3 Ñ CP1. The
S1-invariant map

f : S3 Ñ C, pz1, z2q ÞÑ z1 ` z2,

has 0 P C as a regular value and thus defines an open book decomposition of
S3. Note that this open book is isomorphic to the one obtained by viewing S3

as a submanifold of R4 as in Equation 1.9.0.3 above, under the diffeomorphism

ψ : C2 Ñ C2, pz1, z1q ÞÑ

ˆ

1

2
pz1 ` z2q,

1

2
pz1 ´ z2q

˙

.

Similarly, the principal S1-bundle associated to the tautological line bundle over
CP2, is the Hopf fibration h : S5 Ñ CP2. The S1-equivariant function

f : S5 Ñ C, pz1, z2, z2q ÞÑ z3
1 ` z

3
2 ` z

3
3 ,

defines an open book decomposition on S5, see also Theorem 1.9.1.

4

The above definition emphasizes that the manifold M is decomposed into pieces.
Alternatively, we can think of M as constructed out of the open book decomposition.
That is, we think of open books as a method of constructing new manifolds out of old
ones. From this perspective, the above definition contains redundant information, for
example we only need to know a single page since all the others are diffeomorphic.
The minimal amount of information is given in the following definition:

Definition 1.9.4. An (abstract) open book is a pair pΣ, φq consisting of :

(i) A (compact) manifold with boundary Σ, called the page;

(ii) A diffeomorphism φ P DiffpΣq, called the monodromy, which equals the identity
near the boundary.

The two notions above are equivalent in the sense that out of an abstract open book
we can construct a manifold with a geometric open book decomposition, and the vice
versa. However, different abstract (resp. geometric) open books can give rise to the
isomorphic geometric (resp. abstract open book). Thus we consider the following
equivalences:

• An isomorphism of geometric open book decompositions pM,B, πq and pĂM, rB, rπq

is a diffeomorphism φ : M Ñ ĂM satisfying:

φpBq “ rB, rπ “ π ˝ φ.
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• An isomorphism of abstract open books pΣ, φq and prΣ, rφq is a diffeomorphism

ψ : Σ Ñ rΣ satisfying:
ψ ˝ φ ˝ ψ´1 “ rφ.

Lemma 1.9.5. Given an abstract open book pΣ, φq there exists a manifold MpΣ, φq
endowed with a geometric open book decomposition pB, πq whose page is Σ. Moreover,
isomorphic abstract open books give isomorphic geometric open books.

Proof. Out of the abstract open book decomposition we construct the mapping torus

ΣˆZ R :“ Σˆ R{px, tq „ pφpxq, t´ 1q,

Since φ is the identity near BΣ the above mapping torus has boundary BΣˆS1. Thus
we can glue it to BΣˆ D2, using the identity map. This gives a smooth manifold:

MpΣ, φq :“
`

BΣˆ D2
˘

Yid pΣˆZ Rq

The binding of the induced geometric open book B :“ BΣ ˆ t0u Ă BΣ ˆ D2 is
isomorphic to BΣ. Furthermore, the map pr2 : Σ ˆZ R Ñ S1 smoothly extends to
MpΣ, φqzB, by defining it to be

pb, xq ÞÑ
x

||x||
, @pb, xq P B ˆ D2.

Hence, we obtain a fibration π : MpΣ, φqzB Ñ S1, by definition satisfies the required
normal form around the binding. Finally, the page equals BΣˆ p0, 1s Yid Σ » Σ.

To pass from geometric to abstract open books, we need to produce the monodromy
map φ. For this let us recall the following facts about connections on manifolds with
boundary.

• Associated to any fibration f : M Ñ N , (i.e. a surjective submersion) we have
the vertical bundle

V :“ ker df Ă TM,

which fits inside the short exact sequence

0 Ñ V Ñ TM
df
ÝÑ TN Ñ 0.

An (Ehresmann) connection on M is a right splitting of the above sequence,
that is, a subbundle H Ă TM such that

TM “ V ‘H.

• A connection is said to be complete if for any path γ : I Ñ N , and x P M
there exists path rγx : I ÑM satisfying

f ˝ rγx “ γ, rγxp0q “ x, 9γxptq P Hγptq, @t P I.

Note that in general, paths can only be lifted locally. However, if f : M Ñ N
is a proper map then it admits a complete connection.
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• Given a complete connection on a fibration f : M Ñ N , any path γ : I Ñ N
induces a diffeomorphism

Tγ : Mγp0q
„
ÝÑMγp1q, x ÞÑ rγxp1q,

called the parallel transport along γ.

• In particular, any connection H, on a fibration f : M Ñ S1 gives rise to a
diffeomorphism φ : M1

„
ÝÑM1, called the monodromy, by lifting the generator

of π1pS1q. In turn this gives an isomorphism between M and the suspension

M »M1 ˆZ R :“ pM ˆ Rq {pφpxq, tq „ px, t´ 1q.

If rH is another connection on f , with monodromy rφ, then there exists a diffeo-
morphism ψ : M1 ÑM1 satisfying

ψ ˝ rφ ˝ ψ´1 “ φ.

Hence, the resulting suspensions are isomorphic.

• By a fibration of a manifold with boundary M into a manifold N (without
boundary), we mean a fibration f : M Ñ N such that

f´1pyq&BM, @y P N.

In this case a connection H is said to be compatible if in addiction to the
conditions above it satisfies

Hx Ă TxpBMq, @x P BM.

• If f : M Ñ N is a fibration of a manifold with boundary, then the restriction
fB :“ f |BMBM Ñ N , is again a fibration. Moreover, any connection on fB can
be extended to a compatible connection on f . In particular, given a fibration
f : M Ñ S1 of a manifold with boundary, such that fB is the trivial fibration

pr2 : BM1 ˆ S1 Ñ S1,

there exists a connection on f , whose monodromy φ is the identity in a neigh-
borhood of BM .

Going back to the main story, the following lemma shows how to pass from a geometric
open book to an abstract one.

Lemma 1.9.6. Let pB, πq be a geometric open book decomposition of a manifold M .
Then there exists an abstract open book pΣ, φq such that M »MpΣ, φq, as in Lemma
1.9.5, and Σ equals the page of pB, πq. Moreover, isomorphic geometric open books
give rise to isomorphic abstract open books.

Proof. The restriction of π to the complement of an open neighborhood of the binding
gives a fibration of a manifold with boundary

rπ : MzintpB ˆ D2q Ñ S1.
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We define Σ :“ rπ´1p1q, which is isomorphic to the page of pB, πq. Furthermore, the
boundary of MzintpBˆD2q is trivial, so we can take the trivial connection and extend
it to a compatible connection. Then, the monodromy φ P DiffpΣq equals the identity
near the boundary, so that pΣ, φq is the required abstract open book decomposition.
In fact, we have

MzintpB ˆ D2q » ΣˆZ R,

from which it follows that M »MpΣ, φq.

The two definitions above both involve dividing the manifold into two pieces, a neigh-
borhood of the binding BˆD2, and the complement which is isomorphic to a mapping
torus P ˆZR. The following definition aims to avoid this decomposition and describe
the open book in a global way. It emphasizes that we can think of the binding as a
sort of ”singularity” of a fibration.

Definition 1.9.7. An open book (map) on a manifold M , is a map f : M Ñ R2,
onto a neighborhood of the origin and transverse to the Euler vector field

E :“ xBx ` yBy P XpR2q.

Observe that E vanishes at the origin. Hence, the transversality condition in particular
means that 0 P R2 is a regular value.

This definition is equivalent to the ones above. To obtain a one-to-one correspondence
we have the following notion of isomorphism. Two open book maps f : M Ñ R2,
rf : ĂM Ñ R2 are isomorphic if there exists a diffeomoprhism ψ : M Ñ ĂM such that

rf ˝ ψ “ f.

Lemma 1.9.8. Given an open book map f : M Ñ R2 there exists a geometric open
book decomposition pBf , πf q on M , whose binding equals Bf :“ f´1p0q. Moreover,
isomorphic open book maps give rise to isomorphic geometric open books.

Proof. As remarked above, the origin 0 P R2 is a regular value of f : M Ñ R2.
Hence, Bf :“ f´1p0q is a codimension-2 submanifold in M whose normal bundle is
isomorphic to the pullback of the rank-2 vector bundle over a point R2 Ñ t0u and
hence is trivial. On the complement of the binding we define

π : MzB Ñ S1, x ÞÑ
fpxq

||fpxq||
.

Since f&E this map defines a submersion.

The converse implication is as follows.

Lemma 1.9.9. Given a geometric open book decomposition pB, πq on M , there exists
an open book map f : M Ñ R2 such that pB, πq “ pBf , πf q as in Lemma 1.9.8.
Moreover, isomorphic geometric open books give rise to isomorphic open book maps.
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Proof. Using a Riemannian metric, we can define a distance function ρ : M Ñ Rě0

to the binding B. Then we define

f : M Ñ R2, x ÞÑ

#

0 if ρpxq “ 0

pρpxq, πpxqq if ρpxq ą 0
,

where we use polar coordinates pr, φq on R2. The normal form of π ensures that
0 P R2 is a regular value of f , and transverse to the Euler vector field away from the
binding.
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2.1 Overview

This chapter is based on joint work with F. Presas. The theory of confoliations, intro-
duced by Eliashberg and Thurston [47], unites contact structures and codimension-
one foliations on 3-manifolds in a single framework. Following the same philosophy
we investigate the relationship between contact structures and (symplectic) foliations
in higher dimensions.

An essential property of the space of confoliations is that it contains the closure of
the space of contact structures. In Section 2.2 we generalize confoliations to higher
dimensions preserving this property. In more detail, given a contact structure ξ on
M2n`1, the curvature

cξ : Λ2ξ Ñ TM{ξ, pX,Y q ÞÑ rX,Y smod ξ, @X,Y P Γpξq,

is non-degenerate. Thus, any contact distribution carries a non-degenerate (bundle
valued) form cξ P Ω2pξ;TM{ξq. It turns out, see Lemma 2.4.1, that if a distribution
is a limit of contact structures then it also admits such a non-degenerate form.

In light of this we consider “almost conformal symplectic hyerplane fields” (almost CS-
hyperplane fields for short). These are pairs pξ, ωq where ξ Ă TM is a hyperplane
field and ω P Ω2pξ, TM{ξq is non-degenerate. They are the generalization of confolia-
tions to higher dimensions. As expected, this notion includes contact structures and
(conformal) symplectic foliations.

In Section 2.2 and Section 2.3, we define almost CS-hyperplane fields as sections of the
“symplectic Grassmannian” bundle. This induces a natural topology on the space of
all almost CS-hyperplane fields. This topology allows us to talk about deformations
(using paths) and approximations (using sequences).

We define several types of deformations (for example “linear deformations”) and
translate the definitions in terms of (real valued) differential forms, which are easier
to work with. One conclusion following almost directly from these definitions is that
a foliation F admits a linear (Type I) deformation into contact structures if and only
if it admits a leafwise exact conformal symplectic structure, see Theorem 2.2.13 .
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In Section 2.4 we show that all the types of convergence are distinct. We also provide
explicit examples for each of them. The most important concept introduced in this
section is that of an almost CS-submanifold (Definition 2.4.4). A submanifold N of
an almost CS-manifold pM, ξ, ωq is an almost CS-submanifold if the restriction

pξ|N , ω|N q

defines an almost CS-structure on N . Using Donaldson techniques we show that
almost CS-foliations which can be linearly deformed always admit such submanifolds
(Theorem 2.4.16).

In dimension-3 it is known [47] that any foliation except the product foliation on
S1 ˆ S2 can be approximated by contact structures. The key property of almost CS-
subamanifolds (Lemma 2.4.5) is that a deformation on the ambient manifold induces
a deformation on the submanifold. Therefore there is a strong interaction between the
3-dimensional case and higher dimensional one. In particular, any symplectic foliation
containing S1 ˆ S2 (endowed with the product foliation) cannot be approximated by
contact structures.

It turns out that there are many foliations that cannot be approximated because
they contain S1 ˆ S2. The aim of Section 2.5 is to find different obstructions to the
existence of approximations. The classical clutching construction relates fibrations
over S2 with loops of diffeomorphisms on the fiber. After discussing the clutching
construction in the setting of contact fibrations we use it to produce examples of
(conformal) symplectic foliations on S3 ˆ T2 which cannot be deformed into contact
structures, see Theorem 2.5.38. As desired, these examples do not contain almost CS-
submanifolds isomorphic to S1 ˆ S2.

In Section 2.6 we give more examples, both of foliations which can and cannot be
approximated by contact structures. We highlight the following two results.

The first one is based on the h-principle for isosymplectic embeddings. We use
it to show that in dimension ě 7, any symplectic foliation containing a “formal”
almost CS-submanifold S1 ˆ S2 cannot be approximated by contact structures. The
precise statement is given in Theorem 2.6.6. The second result is based on a construc-
tion by Bourgeois [16]. He showed that the product of a contact manifold with T2 is
again contact. Under certain conditions this construction goes through for deforma-
tions. That is, if a almost CS-foliation on M can be deformed into contact structures
then so can the product foliation on MˆT2. The details are given in Theorem 2.6.25.

Lastly, in Section 2.7 we briefly investigate fillability of almost CS-foliations. The
main result is Theorem 2.7.8 stating that there exist almost CS-foliations which are
not weakly fillable in the sense of [85].

2.2 Hyperplane fields

In this section we look at the problem of approximating foliations (without leafwise
symplectic forms on them) by contact structures. This is possible by viewing them
as part of a single space, that of hyperplane distributions:

HyperpMq :“ tξ Ă TM : ξ is a hyperplane distribution in TMu.



128 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

There are various topologies one can consider on this space (some of which are dis-
cussed in the last part of this section), and one can even make sense of it as an infinite
dimensional manifold. However, all that can be avoided when discussing deforma-
tions, because given a path

r0, εq Q t ÞÑ ξt P HyperpMq

one can make sense of its smoothness right away, by interpreting ξt as a sub-bundle
of the pull-back pr˚TM via the projection pr : R ˆM Ñ M . Or interpret ξ as a
section of the pullback via pr of the Grassmannian bundle of M (recalled below). Of
course, one can also weaken the smoothness condition or, thinking of ξ as a function
of pt, pq P R ˆM , one can even consider different orders of differentiability in t and
p; we will be making some remarks in that direction (e.g. Remark 2.2.18) but, for
simplicity, smoothness will be the overall assumption.

Definition 2.2.1. We say that a foliation F can be deformed into contact struc-
tures if one can find a smooth path pξtqtPr0,εq of hyperplane distributions such that

ξ0 “ F , ξt-contact for all t ą 0.

In this case we also say that ξt is a contact deformation of F .

It is handy to represent hyperplanes by 1-forms; this can be achieved smoothly in t:

Lemma 2.2.2. For any smooth path pξtqtPr0,εq of hyperplane distributions, with ξ0
co-orientable, one can write

ξt “ kerpαtq

for some smooth path of 1-forms αt P Ω1pMq.

Proof. Let rξ be the sub-bundle of pr˚TM corresponding to ξt and consider the re-
sulting quotient

τ :“ pr˚TM{rξ.

This is a line bundle over Mˆr0, εq, hence it is isomorphic to the pull-back of τ |Mˆt0u;
by the co-orientability condition, it follows that τ is trivializable. A trivialization
precisely means a family αt as above.

With the previous lemma at hand, we find ourselves in the following setting: a
foliation F represented by some 1-form α, and then a deformation of α into contact
forms.

Definition 2.2.3. A contact deformation of a 1-form α P Ω1pMq is a smooth
path αt of 1-forms, defined for t in some interval r0, εq such that

α0 “ α, αt-contact for all t ą 0.

The contact deformation is called linear of it is of type

αt “ α` tβ.

We say that a foliation F can be linearly deformed (into contact structures) if
some 1-form α inducing F admits a linear contact deformation.
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Starting with an arbitrary deformation αt one can define its linearization

(2.2.0.1) αlin
t :“ α` tβ, where α “ α0, β :“

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

αt.

2.2.1 Type I and type II contact deformations

With the notation from Definition 2.2.3, while we are interested in the case when
ξ0 “ kerpα0q is a foliation and ξt “ kerpαtq are contact structures, it is interesting to
measure the ”order” at which αt are contact. More precisely, while being contact is
encoded in the corresponding volume form

Ωt :“ αt ^ pdαtq
n,

which at the limit t “ 0 gives Ω0 “ 0 (since F is a foliation), the question is: what is

the order k at which one can write Ωt “ tkrΩt with rΩ0 ‰ 0.

Lemma 2.2.4. If pαtq is contact deformation of an integrable 1-form α, then the
corresponding volume forms Ωt satisfy

Ωt “ Optnq.

In other words, if one fixes a volume form Ω on M , then

αt ^ pdαtq
n “ tnftΩ

for some smooth family of functions ft P C
8pMq.

Although this can be proven by a simple trick, it is interesting to interpret it via the
Taylor expansion of αt around t “ 0:

(2.2.1.1) αt “ α` tβ ` t2γ `Opt3q.

The foliation condition α^ dα “ 0 implies that dαk “ 0 for k ě 2. Hence, if we only
take into account the quadratic part of the expansion, the contact condition for αt,
t ą 0, is :

0 ă αt ^ dαnt “ tn
´

α^ dβ ` nβ ^ dα
¯

^ dβn´1

` tn`1
´

nα^ dβ ^ dγ ` β ^ dβ2 ` nγ ^ dα^ dβ(2.2.1.2)

` npn´ 1qβ ^ dα^ dγ
¯

^ dβn´2 `Optn`2q.

This discussion is particularly interesting when one starts with a foliation F , repre-
sented by some 1-form α, and then one tries to realise it as the limit of a sequence of
contact structures/forms. We see that the best scenario is when the coefficient of tn

in the previous formula is already strictly positive.
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Definition 2.2.5. Given an integrable form α P Ω1pMq, a type I (contact) deforma-
tion of α is a contact deformation αt of α (as in Definition 2.2.3) with the property
that, writing

αt ^ dαnt “ tnftΩ

as in the previous lemma, one has f0 ą 0.

A contact deformation ξt of a foliation F is said to be a deformation of type I if
it can be represented by a smooth path of 1-forms αt (with α0 inducing F), which is
of type I.

Written more compactly (and without having to choose a volume form Ω) the type I
condition reads

lim
tÑ0

1

tn
αt ^ dαnt ą 0.

On the other hand, it can also be further expanded and written as a condition up to
order n` 1:
(2.2.1.3)
type I: αt^dαnt “ tnfΩ`Optn`1q for some strictly positive function f P C8pMq.

Note that the discussion leading to the definition of ”type I” was based on the Taylor
expansion (2.2.1.1) where we concentrated on the first non-zero term (involving tn);
that part clearly only depends on the linearization of αt, as defined in (2.2.0.1). We
deduce that if a foliation F admits a type I deformation (by contact structures),
then it can also be linearly deformed. Actually, here are the interesting interactions
between type I and linearity.

Lemma 2.2.6. If αt is a smooth path of 1-forms with α0 inducing a foliation F ,
then one has

αt “ type I deformationKS

��

+3 αt “ contact deformation

αlin
t “ type I deformation +3 αlin

t “ contact deformation

KS

Example 2.2.7. One should be aware that the horizontal implications are not equiv-
alence even in the case of linear case. That is, there are linear contact deformations
which are not of type I. For example, on T3 the linear path

αt :“ dz ` t psinpzqdx` cospzqdyq .

has

αt ^ dαt “ t2dx^ dy ^ dz,

implying that αt is not of type I (the relevant coefficient f0 actually vanishes!). We
will see (Proposition 2.4.14) that there does not exist any α̃t of type I representing
ξt :“ kerαt. 4



2.2. HYPERPLANE FIELDS 131

Remark 2.2.8. Although αt is a type I deformation if and only if αlin
t is, in general

these paths induce different contact structures. The parametric Moser trick shows
that there exists an isotopy φt P DiffpMq such that

φ˚t pα
lin
t q “ ftαt,

for positive functions ft P C
8pMq. Thus, up to isotopy, the two paths of contact

structures agree. 4

With the previous example in mind, let us return to the Taylor expansion 2.2.1.2 and
see what can happen beyond the type I case, i.e. when the tn-term is not strictly
positive. The next simplest case is when the the linear part (in t) of the function in
front of tn is strictly positive. Having in mind the characterization (2.2.1.3) for type
I, type II appears as the next step:

Definition 2.2.9. Given an integrable form α P Ω1pMq, a type II (contact) defor-
mation of α is a contact deformation αt of α (as in Definition 2.2.3) with the property
that

(2.2.1.4) αt ^ pdαtq
n “ tnfΩ` tn`1gΩ`Optn`2q,

for a volume form Ω, f, g P C8pMq such that f ` tg is strictly positive for all t ą 0
close to 0.

And then, similar to Definition 2.2.5, one talks about type II deformation ξt of a
foliation F .

Example 2.2.10. Of course, type I implies type II. But note that, unlike for type
I, the type II condition does not imply that the linearization αlin

t is made of contact
forms. E.g., already on R3, the path

αt :“ dz ` t2xdy

has
αt ^ dαt “ t2dx^ dy ^ dz,

so αt is type II. On the other hand the linearization equals αlin
t “ dz which is never

contact. 4

Remark 2.2.11. As we have already pointed out, and is seen also in the last
example, if we start with a contact deformation αt and we linearize it, in general αlin

t

may fail to be contact; and the type I case removed this ”problem”. However, since

αt ^ pdαtq
n ´ αlin

t ^ pdαlin
t q

n “ Optn`1q,

we see that

αt is of type I ùñ αlin
t is a contact deformation ùñ αt is of type II

In particular, the type II condition is actually necessary for achieving the the lin-
earization is contact. 4



132 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

However, there is some analogy with the type I and type II conditions, just that one
has to look a bit closer. E.g., looking again at the Taylor expansion (2.2.1.2), we
see that the type II condition is a condition involving just α, β and γ; i.e. only the
”quadratization” αquadr

t of αt (defined completely similar to the linearization). One
then obtains the analogue of the diagram from Lemma 2.2.6:

αt “ type II deformationKS

��

+3 αt “ contact deformation

αquadr
t “ type II deformation +3 αquadr

t “ contact deformation

KS

Actually, the two diagrams can be nicely merged together by making use also of the
Remark 2.2.11 (while also getting more insight into the remark itself):

αt “ type IKS

��

+3 αt “ type IIKS

��

+3 αt “ contact

αquadr
t “ type II +3 αquadr

t “ contact

KS

αlin
t “ type I +3 αlin

t “ contact

KS

2.2.2 Relationship with conformally symplectic structures

We know that a contact form gives rise to a rich geometry, starting already with the
basic concepts such as the induced Reeb vector fields or the induced non-degenerate
2-forms along the hyperplane distributions. How much of that is seen in the limit of
a sequence of contact forms, or at t “ 0 for a contact deformation αt? It seems that
the answer is: not so much in general.

Example 2.2.12. On R3px, y, zq consider the symplectic foliation

pF :“ ker dz, ω :“ dx^ dyq

and the following contact deformation:

αt :“ ey pdz ´ tydxq .

Computing its Reeb vector field one finds

Rt “ e´y
ˆ

1

t

B

Bx
` py ` 1q

B

Bz

˙

.

We see that, although αt is smooth also around t “ 0, the Reeb vector fields (defined
for t ‰ 0) do not have a limit as t Ñ 0. One can try to fix this by looking at the
induced Reeb directions

τt “ SpanpRtq,
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which go to τ0 “ Spanpe´yBxq. But note that, while in this example τ0 is tangent to
F , for other simple contact deformations of F the limit is transverse to F (e.g. even
βt :“ e´yαt “ dz ´ tydx, with constant Reeb vector field Rt “ Bz).

And similar (negative) remarks hold also for the induced non-degenerated 2-forms
along the hyperplane distributions. In our example we have

dαt “ ey ptp1` yqdx^ dy ` dy ^ dzq

which goes, as t Ñ 0, to η “ eydy ^ dz. And this is no longer nondegenerate on F .
And for the other example mentioned above, βt :“ dz ´ tydx, dβt “ tdx ^ dy even
goes to zero. However, rescaling βt by 1

t , the resulting 2-form in the limit is dx^ dy
which is nondegenerate on F . 4

In this section we would like to point out one conclusion that can be drawn in the
limit, i.e. about the foliations F : that it admits a conformally symplectic structure.
Before we recall the necessary definitions, here is the precise statement we will be
discussing:

Theorem 2.2.13. A co-oriented foliation F admits a type I contact deformation
(Definition 2.2.5) if and only if it admits an exact leafwise CS-structure (Definition
2.2.16) with coefficients in the normal bundle of F .

In particular, if F is unimodular, the condition is that F admits an exact leafwise
symplectic structure.

Note that, in this case, Lemma 2.2.6 implies that the contact deformation can be
chosen to be linear (and that is what we will do in the proof anyway). To explain the
previous theorem, we start by recalling the notion of conformal symplectic structures.
Very briefly, they are generalizations of symplectic structures obtained by allowing
more general line bundles as coefficients. Furthermore by Corollary 2.4.17 the second
statement can only applies to non-compact manifolds.

Definition 2.2.14. A conformal symplectic structure (CS-structure for short)
on M is a triple pL,∇, ωq where π : L Ñ M is a line bundle, ∇ is a flat connection
on L, and ω P Ω2pM,Lq is non-degenerate and d∇-closed.

Here we denote by Ω‚pM,Lq the space of L-valued differential forms and we use that
any connection ∇ : XpMq ˆ ΓpLq Ñ ΓpLq gives rise to a DeRham differential d∇ on
Ω‚pM,Lq; it can be described e.g. using the usual Koszul formula:

pd∇αqpX1, . . . , Xk`1q :“
k`1
ÿ

i“1

p´1qi`1∇Xi
´

αpX1, . . . , X̂i, . . . , Xk`1q

¯

(2.2.2.1)

`
ÿ

iăj

p´1qi`jαprXi, Xjs, X1, . . . , X̂i, . . . , X̂j , . . . , Xk`1q,

for any α P ΩkpM,Lq and X1, . . . , Xk`1 P XpMq. Note that the connection ∇ is flat
if and only if d2

∇ “ 0, and that by the Leibniz identity d∇ is uniquely determined by
how it acts on sections. That is, it can be equivalently defined setting

(2.2.2.2) pd∇σqpXq “ ∇Xσ, X P XpMq, σ P ΓpLq.
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Note that if L “ M ˆ R, and ∇ is the flat connection induced by the usual Lie
derivative, then the above definition reduces to the usual definition of a symplectic
structure.

If L is oriented, the notion of conformal symplectic structure can be entirely unravelled
in terms of real valued differential forms. First of all, choosing a trivialization L »
M ˆ R, the connection itself can be identified with a 1-form

ν P Ω1pMq

via the equation ∇Xf “ νpXqf . And ∇ being flat is equivalent to η being closed.

With this, d∇ is identified with

(2.2.2.3) dν : Ω‚pMq Ñ Ω‚`1pMq, dνα :“ dα` ν ^ α.

Therefore, ω will become a non-degenerate 2-form ω P Ω2pMq, which is dν-closed. Of
course, one should think of pω, νq as representing the original conformal symplectic
structure. Note that if one changes the trivialization of L, the pair will be changed to
pefω, ν´dfq, for some f P C8pMq. In particular, the cohomology class rνs P H1pMq
is independent of the choices (and is associated to the flat line bundle L), while the
non-degenerate 2-form is unique up to a ”conformal factor”.

Example 2.2.15. Let pM, ξq be a contact manifold, then M ˆ S1 admits a CS-
structure called the conformal symplectization of ξ, defined as follows. For the
line bundle we take

L :“ pr˚1 pTM{ξq,

using the projection pr :1: M ˆ R Ñ M . A section σ of L can be identified with
1-parameter family of sections σθ, θ P S1, of TM{ξ. Then we define a flat connection
on L by

∇Xσ :“ dθpXq
d

dθ

ˇ

ˇ

ˇ

θ“0
σθ, X P XpMq.

The composition

T pM ˆ S1q
dpr1
ÝÝÝÑ TM Ñ TM{ξ,

can be interpreted as a differential form α P Ω1pM ˆ S1, Lq. It follows that

ω :“ d∇α P Ω2pM ˆ S1, Lq,

is non-degenerate, and it is clearly d∇-closed, so defines a CS-structure. Observe that
if TM{ξ can be trivialized, so that αM P Ω1pMq is a contact form for ξ. Then,

pd´dθαM ,´dθq ,

is a CS-pair representing ω. Lastly, if π : M Ñ R Ñ M ˆ S1 denotes the usual
covering map, and t P R, then the pullback of the above CS-pair is given by

pd´dtαM ,´dtq .

This is again a CS-pair, equivalent to the pair pdpetαM q, 0q, defining the usual sym-
plectization of pM,αM q. 4
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We now move to the foliated version of the previous discussion. Let F be a foliation
on M . Recall that by an F-connection on a line bundle L Ñ M , we mean a map
∇ : ΓpFq b ΓpLq Ñ ΓpLq satisfying the usual conditions for a connection. Since
F is a foliation we can consider the complex of L-valued, leafwise differential forms
Ω‚pF , Lq together with the differential d∇ defined as in Equation 2.2.2.1. Then the
foliated version of Definition 2.2.14 is:

Definition 2.2.16. A conformal symplectic foliation (CS-foliation for short) on
a manifold M is a triple pF , ω, Lq, consisting of a foliation F , a line bundle LÑM
endowed with a flat F-connection ∇, and a differential form ω P Ω2pF , Lq which is
non-degenerate and d∇-closed.

The same discussion as for CS-structures applies; if L is oriented then choosing a
trivialization identifies ∇ with a leafwise form ν P Ω1pFq (via the same formula
∇Xf “ νpXqf as above) and then d∇ with dν given by the formula similar to
(2.2.2.4):

(2.2.2.4) dν : Ω‚pFq Ñ Ω‚`1pFq, dνα :“ dFα` ν ^ α,

where dF is the leafwise DeRham differential. Again, ∇ being flat is equivalent
to d2

∇ “ 0, and to ν being leafwise closed. We see that, as before, the conformal
symplectic foliation will be encoded in a pair pω, µq of two leafwise forms

ω P Ω2pFq, ν P Ω1pFq,

with ν leafwise closed and dνω “ 0.

We will be particularly interested in the case when L is the normal bundle

L :“ TM{F ,

endowed with the canonical flat F-connection (the Bott connection)

∇XpV q “ rX,V s.

Note that the resulting cohomology class rνs is precisely the modular class of F :

modpFq P H1pFq.

Working out the previous description of the representative ν, we see that we need
to start with a 1-form α inducing F and then choose any ν so that dα “ α ^ ν.
One deduces that modpFq “ 0 if and only if one can choose a closed 1-form α
representing F , i.e. F is unimodular. With this, the statement of Theorem 2.2.13
has been explained, and we can now turn to the actual proof.

Proof of Theorem 2.2.13. Write as above F “ kerα, and dα “ α ^ ν, so that the
coefficients L “ TM{F (with the Bott connection, of course) is identified with the
trivial line bundle endowed with dν . In particular, we are looking for non-degenerate
foliated forms

ω P Ω2pFq
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which are dν-closed, and exactness means that ω “ dνpβq “ dFβ ` ν ^ β for some
β P Ω1pFq. We see that when this is the case then, choosing any extension of β to
M , still denoted by β,

αt :“ α` tβ

has the desired properties. Indeed, choosing also an arbitrary extension of ν to M
(just to be able to write the formulas below), one has:

αt ^ pdαtq
n “ pα` tβq ^

`

tnpdβqn ` ntn´1pdβqn´1 ^ dα
˘

“ tnα^
`

pdβqn ` n ν ^ β ^ pdβqn´1
˘

` tn`1β ^ pdβqn

“ tnα^ pdνβq
n ` tn`1β ^ pdβqn,

and then (for small t) the dominating term is α ^ pdνβq
n “ α ^ ωn ą 0. Hence,

indeed, this is a contact deformation of type I.

For the converse, we start with any type I contact deformation αt and we look at its
Taylor expansion as in (2.2.1.1) (giving rise to α and β as in that equation) and we
read the type I condition from the resulting expansion (2.2.1.2):

pα^ dβ ` β ^ dαq ^ pdβqn´1 ą 0.

But writing dα “ α^ ν as before, this term is

α^ pdβ ` ν ^ βq ^ pdβqn´1 “ α^ pdνβq
n

hence the leafwise restriction of β, and its leafwise differential, gives us the foliated
exact symplectic structure we were looking for.

2.2.3 Using sequences instead of paths

While a deformation of a foliation F into contact structures ξt can be thought of
as approximating F by contact structures (F “ limtÑ0 ξt), it is sometime useful to
allow non-continuous approximations, i.e. by sequences:

(2.2.3.1) F “ lim
kÑ8

ζk pζk P HyperpMqq.

Of course, when drawing the analogy between sequences ζk and paths ξt, one should
think that

(2.2.3.2) ζk “ ξ 1
k
, F “ ξ0.

This actually shows how to pass from paths to sequences, but the point is that
not every sequence arises in this way (and sometimes it may be easier to produce
sequences instead of paths).

However, this time, to make sense of such limits (2.2.3.1), we face the problem of
being precise about the topology one uses on HyperpMq. This comes with some
technicalities and, for simplicity of the statements, we will often assume M to be
compact.
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To make sense of HyperpMq as a topological space, we start with the finite dimen-
sional picture. Recall that, for any 2n`1-dimensional vector space V and any integer
d we have the Grassmannian of d-planes:

GrdpV q :“ tξ Ă V | dim ξ “ du,

which is a smooth manifold as follows. To describe the a chart around a ”point”
ξ0 P GrdpV q (fixed now for the construction of the chart), one chooses a vector sub-
space τ0 Ă V that is complementary to ξ0; the subspaces transverse to τ0 define an
open in the Grassmannian,

(2.2.3.3) Uτ0 :“ tξ P GrdpV q : ξ is transverse to τ0u Ă GrdpV q,

which serves as the domain of a chart χ, with

(2.2.3.4) χ´1 : Hompξ0, τ0q Ñ Uτ , φ ÞÑ Graphpφq “ tv ` φpvq : v P ξ0u.

(or, a bit more conceptually: Uτ0 is an affine space (modelled on HompRd,R) and,
once a point ξ0 P Uτ0 is chosen, one uses it as origin to identify the affine space with
the underlying vector space).

Moving to an 2n` 1-dimensional manifold M one defines

GrdpMq :“
ď

pPM

GrdpTpMq

and then, combining the previous discussion with the charts of M one sees that
GrdpMq inherits a canonical smooth structure that makes it into a smooth fiber
bundle over M . Of course, we will be using this for d “ 2n, when contact hyperplanes
and foliations can be both interpreted as sections of this bundle:

HyperpMq “ ΓpGr2npMqq.

The simplest topology one can consider on such spaces of sections is the C0- compact-
open topology, with respect to which convergence means uniform C0-convergence on
compacts. Actually, let us replace for the moment Gr2npMq by an arbitrary fiber
bundle P Ñ M so that the generality of the discussion is clearer. For convergences
that take into account also derivatives it is useful to use jets. For any section ξ of R
one can talk about its l-jet at any point p PM ,

jlp P J
l
ppP q

and, varying p, the l-jet of ξ makes sense as a section of the l-th jet bundle J lpP q ÑM :

jlpξq P ΓpJ lpP qq.

The map ξ ÞÑ jlpξq allows one to induce a topology on ΓpP q from the C0-compact-
open topology on ΓpJ lpP qq. That is the so called Cl-compact-open topology on ΓpP q-
simply called from now on the Cl-topology on the space of sections. Finally, one
defines the C8-topology on ΓpP q as the union of the previous topologies for all l.
This is the topology that we will be using by default.
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Definition 2.2.17. We say that a sequence of contact structures pξkqkě0 converges
to a foliation F if it converges (for k Ñ8) in HyperpMq with respect to the topology
we just described.

We say that a foliation F can be approximated by contact structures if one can
find such a sequence of contact structures converging to F .

Remark 2.2.18. Of course, using the Cl-topologies one can talk about Cl-convergence
and approximations. In the analogy (2.2.3.2) with paths ξt “ ξpt, pq, this corresponds
to being of class Cl in p (but still smooth in t)- called Cl-deformations by smooth
paths. A slightly different notion is obtained if one requires only continuity in t. One
ends up, for each l, with three related notions for a foliation F :

• to be Cl- approximated by contact structures as in Definition 2.2.17,

• to be Cl- deformed into contact structures by smooth paths as in the last
definition,

• to be Cl- deformed into contact structures by continuous paths.

Are these equivalent? We did not spend much time on this question but, at a first
glance, even for l “ 0, the situation does not appear to be have an ”obvious answer”.

The main reason to use the C8-topology is to simplify the terminology and to avoid
the search for ”the best l” in each argument (which may obscure the discussion).
The choice that would probably be most natural would be l “ 1. The case l “ 0 is
too weak since it disregards the derivatives. More precisely, since we are interested
mainly on co-orientable hyperplanes and we will represent the ξk above by contact
forms αk, the problem is that convergence αk Ñ α in the C0-topology does not imply
that dαk Ñ dα; and the C1-topology takes care precisely of that. 4

Here is the analogue of Lemma 2.2.2. Note that we are applying the previous discus-
sion also to the bundle P :“ T˚M to make sense of convergence of 1-forms (again
using the C8-topology).

Lemma 2.2.19. Assume that M is compact. Then, for a sequence pξkqk of co-
oriented hyperplane distributions, and another hyperplane distribution ξ, the following
are equivalent:

1. limk ξk “ ξ.

2. limk αk “ α for some 1-forms αk representing ξk and α representing ξ.

3. for any 1-forms αk and α representing ξk and ξ, and any vector field R trans-
verse to ξ,

lim
k

1

αkpRq
αk “

1

αpRq
α.

Proof. Let R be a vector field that is transverse to ξ and let α the corresponding
1-form inducing ξ. We use the line-field τ “ R ¨ R, and consider Uτ Ă ΓpRq defined
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by applying the construction (2.2.3.3) at each point. This is open in ΓpP q, hence it
must contain all the ξk for k large enough. On the other hand, this open is identified
with the space of sections of

P0 :“ ξ˚

(with its topology as it follows from the previous discussion applied to the bundle
P0). Explicitly, the identification is obtained by applying (2.2.3.4) and identifying τ
with R via α; one finds:

φ : Γpξ˚q Ñ Uτ , θ ÞÑ ξθ :“ tv ` θpvq ¨R : v P ξu.

Denoting by rθ the unique extension of θ to TM which is 1 on R, one finds that ξθ is
represented by the 1-form

αθ :“ rθ P Ω1pMq.

Applying this to each ξk we find the corresponding θk and then the desired αk.
Since the entire argument is based on passing from one fiber bundle to another, by
operations that are clearly continuous, the equivalence follows.

2.2.4 The 3-dimensional case; confoliations

The case of 3-dimensional manifolds M is rather special. Indeed, the situation is, in
principle, pretty simple: if ξ is induced by a 1-form α

ξ is a foliation, or contact structure ðñ α^dα “ 0, or α^dα ‰ 0, respectively.

That is, the form α^dα controls ξ being a foliation (and that is not only in dimension
3), as well as being contact (only in dimension 3) when one obtains a volume form
(again only in dimension 3).

With the convention of working on oriented manifolds and the subsequent compati-
bility conditions, the discussion is whether α^ dα is zero or strictly positive. This is
not an honest dichotomy, as the conditions are required globally and not pointwise;
however, it clearly indicates the space in which the two structures naturally interact
each other- and that brings us to the notion of confoliation.

Definition 2.2.20. A confoliation on a 3-dimensional manifold M , is a cooriented
hyperplane distribution ξ “ kerα, for some α P Ω1pMq inducing the coorientation on
ξ, and satisfying

(2.2.4.1) α^ dα ě 0.

A confoliation ξ on a manifold M gives a decomposition into two regions, an open
set where ξ :“ kerα is contact and closed set where ξ is a foliation:

M “ Contpξq :“ tx PM | pα^ dαqx ą 0u \ Folpξq :“ tx PM | pα^ dαqx “ 0u.

The space of confoliations is closed as a subset of HyperpMq. Its interior consists of
contact structures, and the boundary consists of ξ for which Folpξq ‰ H. Indeed,
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if a confoliation ξ “ kerα admits a point x P M where pα ^ dαqx “ 0, then there
exists a distribution ζ :“ kerβ arbitrarily close to ξ in HyperpMq and satisfying
pβ ^ dβqx ă 0.

The interesting question (addressed already by Eliashberg-Thurston [47]) is when a
foliation can be deformed into, or approximated by, contact structures, through the
space of confoliations. Note that the linearity of deformations, or the type I condition

(2.2.4.2)
d

dt

ˇ

ˇ

ˇ

t“0
pαt ^ dαtq ą 0,

agree with the discussion from [47].

The main findings of [47] (at least for our discussion) can be summarized into the
following:

Theorem 2.2.21. In dimension 3, looking for approximations of foliations by contact
structures:

(i) The trivial foliation of S1 ˆ S2 by spheres,

˜

S1 ˆ S2,F :“
ď

zPS1
tzu ˆ S2

¸

,

cannot be approximated.

(ii) Any other foliation of any other 3-dimensional manifold can be C0-approximated.

However, a similar theory (and similar results) in higher dimensions is missing. The
reason is, we believe, that finding the correct higher dimensional analogues is more
subtle than it may seem at first. Already in part (i) of the previous theorem, if one
looks at the trivial foliation by spheres:

(2.2.4.3)

˜

S1 ˆ S2n,F :“
ď

zPS1
tzu ˆ S2n

¸

, n ‰ 2, 6,

this cannot be deformed into contact structures for much more obvious reasons: con-
tact hyperplanes carry non-degenerate two forms and, therefore (see Remark 2.3.2),
the sphere S2n would then carry such forms- which is well-known not to be the case
for n ‰ 2, 6.

As already clear from this example, the non-degenerate two-forms on the hyperplanes
should enter the story, and we should be looking at symplectic foliations (or variations
of them) in the limit. And the reasons those two-forms are not taken into account in
dimension 3 is very simple: they are there anyway, implicitly. More precisely, fixing
a volume form Ω P Ω3pMq, one sees that any hyperplane field ξ Ă TM carries an
induced non-degenerate 2-form Ωξ: while Ω|ξ “ 0 for dimensional reasons, pv, wq ÞÑ
Ωpv, w, ¨q becomes a 2-forms with coefficients in the conormal direction:

(2.2.4.4) Ωξ P Ω2pξ, ν˚ξ q.
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2.3 Going conformal: almost CS-hyperplane fields

2.3.1 Various symplectic Grassmannians

The previous section was basically about approximating foliations, with no reference
to symplectic foliations. I.e. we concentrated on the hyperplane distributions, dis-
regarding the induced non-degenerate 2-forms that they carry (both in the case of
contact structures as well as in that of symplectic foliations!). We now start includ-
ing those two-forms into the discussion. The need for doing so was already clearly
indicated at the end of the last section, in the 3-dimensional discussion; see also the
next remark.

Definition 2.3.1. An almost conformal symplectic hyperplane field on a man-
ifold M is a triple pξ, ω, Lq consisting of

• a hyperplane distribution ξ Ă TM

• a non-degenerate 2-form ω P Ω2pξ, Lq along ξ with coefficients in a line bundle
LÑM .

We also use the acronym ACS- hyperplane field, or we even omit the reference to
L and talk about the ACS-hyperplane field pξ, ωq. Furthermore, we say that a pair

pα, ηq P Ω1pMq ˆ Ω2pMq

represents pξ, ωq, or that it is a representing pair for pξ, ωq, if there exists an trivi-
alization φ : L

„
Ñ R of the coefficients L of ω such that

ξ “ kerpαq, φ ˝ ω “ η|ξ.

Remark 2.3.2. The remark from the end of the previous section (when discussing
the obvious foliation by the spheres S2n) is of a more general nature and clearly shows
the need for ACS-structures in higher dimensions; the remark is:

ξk Ñ ξ with ξk “contact ùñ ξ can be made into an ACS-hyperplane field

(on compact manifolds) and the similar statement for deformations (on arbitrary
manifolds).

Indeed, choosing a complement τ of ξ in TM and using the corresponding projection
pr : TM Ñ ξ, if ξk is close to ξ then it will still be transverse to τ for some k large
enough- hence

pr|ξk : ξk Ñ ξ

is an isomorphism; therefor ξ will admit an ACS-structure as well. 4

Remark 2.3.3. In a first attempt to add the 2-forms in the picture and compare
contact structures to symplectic foliations ”on the nose”, one has to face some mess
due to the fact that the various 2-forms floating around take values in different line
bundles. Of course, in principle there is not much of a loss of generality to assume
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that those line bundles are trivializable but (as we shall see) those trivializations
may affect the resulting notion of convergence and serious problems may arise. Any
way, here are some types of pairs pξ, ωq that arise, with special attention to the line
bundles:

• symplectic foliations pF , ωF q for which the line bundle is always R. And simi-
larly contact forms α, with corresponding pair pkerpαq,dα|kerpαqq.

• the conformal symplectic foliations that started showing up (e.g. in Theorem
2.2.13), where the coefficients can be any flat line bundle.

• the contact structures ξ Ă TM which, by their very definition, carry a non-
degenerate two-form, the curvature cξ of ξ, with coefficients in the normal
bundle νξ :“ TM{ξ:

cξ P Ω2pξ, νξq, cξpX,Y q :“ rX,Y smod ξ.

• on three-dimensional manifolds M , fixing a volume form Ω, any ξ carries an
induced non-degenerate 2-form Ωξ P Ω2pξ, ν˚ξ q as discussed at the end of the
previous section (see (2.2.4.4)). Hence, in this case, L “ ν˚ξ .

Each such class lives naturally in a certain ”symplectic Grassmannian manifold”,
respectively:

ACSHyperpM,Rq, ACSHyperpM,νq, ACSHyperpM,ν˚q, ACSHyperpM,Lq.

4

To explain these spaces, we start with the linear discussion, for an arbitrary vector
space V of dimension 2n ` 1; then, according to the list above, there are four types
of ”sympectic Grassmannians” to consider,

SGrpV q, SGrpV,Lq, SGrpV, νq, SGrpV, ν˚q

(to be explained). Or, to treat them at once, just think that one has a functor l
going from 1-dimensional vector spaces (with isomorphisms) to itself. For the four
Grassmannians we mentioned, one may actually just think that l is just the d-th
power functor

(2.3.1.1) lpV {ξq “ pV {ξqbd,

and we are mainly interested in the cases d “ 0, 1 and´1. At this level (and important
later when describing the resulting convergences), the main difference between the
different l’s is that when applied to the multiplication mλ by λ ‰ 0 (viewed as a
linear automorphism on a/any vector space),

(2.3.1.2) lpmλq “ mλd .

Once we fix l, it gives rise to
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• to a version of the Grassmannian with l-coefficients:

SGrpV, lq :“ tpξ, ωq | ξ P Gr2npV q, ω P Λ2ξ˚ b lpV {ξq nondegenerateu

which has a smooth structure by arguments completely similar to those for
GrpV q: for pξ0, ω0q P SGrpV q, one considers the analogue of (2.2.3.3),

rUτ0 :“ tpξ, ωq P SGrpV, lq : ξ is transverse to τ0u

which, as in (2.2.3.4) (and actually using that chart plus the and the naturality
of l) is identified with

Hompξ0, τ0q ˆ
`

Λ2ξ˚0 b lpτ0q
˘nondeg

.

• Then, moving from V to 2n ` 1 dimensional manifolds M and applying the
previous discussion to the tangent spaces TpM one obtains a fiber-bundle over
M

SGrpM, lq “
ď

pPM

SGrpTpM, lq ÑM.

• And then, looking at sections of this bundle, one obtains the space of l-valued
symplectic hyperplanes

ACSHyperpM, lq.

Since it is a space of sections it comes with various topologies but, as before,
we will be looking only at the Cl-compact open topologies, where we assume
l “ 8 if not otherwise specified.

Morally, ACSHyperpM, lq is an infinite dimensional manifold (and this can even
be made precise using various frameworks) and one may think of it sitting over
HyperpMq via the obvious projection

(2.3.1.3) pr : ACSHyperpM, lq Ñ HyperpMq,

making it into an (infinite dimensional) bundle with the fiber above ξ P HyperpM, lq
given by

ACSHyperpM, lqξ “
`

Ω2pξ, lξq
˘nondeg

, with lξ “ lpTM, ξq.

Note also that the constructions of the curvature cξ of hyperplanes,

ξ ÞÑ cξ,

can now be interpreted as a section of a related bundle: the slightly larger version of
ACSHyperpM,ν˚q where the non-degeneracy is ignored. Of course, this is a contin-
uous (and even smooth in the appropriate sense) map.
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2.3.2 Convergence in the various symplectic Grassmannians

We would like to emphasise: even if one is interested (like us) in hyperplane distri-
butions which are coorientable (for which the various line bundles showing up can
be trivialised), one still has to pay attention to those line bundles (as, in each of the
spaces we discussed, the resulting notion of convergences depends essentially on the
actual trivializations of those bundles). Here are some details. As before, to handle
the various spaces at once, we work in the context of a general l as above.

First of all, let us be precise about the passing to trivial bundles. For notational
simplicity let us just assume that lpRq “ R. We use the terminology l-symplectic
hyperplane field pξ, ωq for the ACS-hyperplane fields with ω having as coefficients
lpTM{ξq, i.e. the points in ACSHyperpM, lq. Given pξ, ωq, we say that a pair

pα, ηq P Ω1pMq ˆ Ω2pMq

l-represents pξ, ωq if
ξ “ kerpαq, lα ˝ ω “ η|ξ.

(compare with the similar notion from Definition 2.3.1). In the last equation we
interpret α as a trivialization α : TM{ξ – R and we apply the functor l to α to
obtain lα : lpTM{ξq Ñ R; this allows us to move to one single type of coefficients.

Remark 2.3.4. Given an l-symplectic hyperplane field pξ, ωq, any l-representative
pα, ηq comes with an induced Reeb vector field R, uniquely characterized by

αpRq “ 1, iRη “ 0.

It is immediate to see that this actually gives a 1-1 correspondence between

• l-representatives pα, ηq of pξ, ωq,

• vector fields R P XpMq which are transverse to ξ and such that iRpωq “ 0,

Given pα, ηq, R is the associated Reeb vector field, defined by the condition

αpRq “ 1, iRη “ 0.

4

We now work out convergence in ACSHyperpM, lq in terms of representatives.

Lemma 2.3.5. Consider a l-symplectic hyperplane field pξ, ωq, with some chosen
l-representative pα, ηq, with corresponding Reeb vector field denoted by R. For nota-
tional simplicity we assume that l is the d-th power (2.3.1.1) and that M is compact.

Then for an arbitrary sequence pξk, ωkq of l-symplectic hyperplane fields, the following
are equivalent:

1. pξk, ωkq Ñ pξ, ωq in ACSHyperpM, lq.
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2. for a/any l-representatives pαk, ηkq for the sequence one has

1

αkpRq
αk Ñ α in Ω1pMq,

1

αkpRqd`1
¨ iRpαk ^ ηkq Ñ η in Ω2pMq.

3. ξk Ñ ξ as hyperplanes and, for a/any l-representatives pαk, ηkq for the sequence
one has

1

αkpRqd`1
¨ iRpαk ^ ηkq Ñ η in Ω2pMq.

4. ξk Ñ ξ as hyperplanes and, for a/any l-representatives pαk, ηkq for the sequence
so that αk Ñ α, one has

iRpαk ^ ηkq Ñ η pin Ω2pMqq.

5. ξk Ñ ξ as hyperplanes and, for a/any l-representatives pαk, ηkq for the sequence
so that αk Ñ α, one has

αk ^ ηk Ñ α^ η pin Ω3pMqq.

6. there exist l-representatives pαk, ηkq for the sequence such that

αk Ñ α in Ω1pMq, ηk Ñ η in Ω2pMq.

Remark 2.3.6. When M is not compact the statement of the result is, in principle,
the same- just that one has to be careful when interpreting it. The problem is that, if
αk Ñ α (in the compact-open topology), αkpRq will be non-zero outside any compact
C only for large enough k ě kC , with the kC depending on the compact. Hence,
strictly speaking, dividing by αkpRq as a global function, is problematic. However,
this enters a limit in the compact-open topology, hence it is something to be checked
on each compact C and then ”the problem” becomes irrelevant. 4

Remark 2.3.7. In the characterizations from 4, 5 and 6 the apparent independence
of d is misleading. Indeed, it is actually hidden in the notion of l-representative: if
pα, ηq is an l-representative of pξ, ωq and we change α to f ¨α, then η must be changed
to fd ¨ η to get the new l-representative pf ¨ α, fd ¨ ηq.

On the other hand, while condition 5 is nicer, 2 (and often 4 and 5 as well) is handier
since it can be checked on whatever representatives one may have at hand. For
instance, in the contact case, once one has chosen αk, one would like to use ηk “ dαk
(which may not be the one ensured by 6!).

Finally, it is good to have in mind that the expressions of type α ^ η encode η|kerα.
Hence, in some sense, the condition from 5 can be thought of as saying that ”ηk|ξk Ñ
η|ξ”. Note the related possible condition ηk|ξ Ñ η|ξ which makes sense without
quotes; it can be expressed algebraically as follows, giving rise to the following vari-
ation of condition 5:

5’. ξk Ñ ξ as hyperplanes and, for some l-representatives pαk, ηkq for the sequence so
that αk Ñ α, one has α^ ηk Ñ α^ η in Ω3pMq.
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While 6 clearly implies 5’, the converse is not true: there may exist pαk, ωkq, repre-
sented by some pαk, ηkq, with

ξk Ñ ξ, ηk|ξ Ñ ηk|ξ BUT pξk, ωkq Û pξ, ωq.

The problem is that the Reeb vector fields Rk may behave pretty wildly; when there is
some condition on the l-representatives, then condition 5’ on those representative does
imply convergence. For example, one extreme situation would be to require that all
the resulting Reeb vector fields Rk coincide with R (but note that, starting with ξk Ñ
ξ, and with l-representative pα, ηq with corresponding R, then such representatives
pαk, ηkq can be arranged). 4

Proof. The first part of the last remark immediately implies the equivalence of 2 and
3. Looking at 3 and using the fact that αk Ñ α can be arranged (cf. Lemma 2.2.19)
allows rewriting the condition from 3 as the condition from 4 (since αkpRq will go to
1).

iRpαk ^ ηkq Ñ η in Ω2pMq.

That 5 implies 4 is obvious, while for the converse note that

αk ^ ηk “
1

αkpRq
αk ^ iR pαk ^ ηkq .

Next, if the condition from 4 is satisfied, we use the same trick and we change to

η
1

k “
1

αkpRq
¨ iRpαk ^ ηkq “ ηk ´

1

αkpRq
¨ αk ^ iRpηkq;

Then pαk, η
1

kq is still representing pξk, ωkq, but now has the property required in 6.
Conversely, 6 implies 4 because the condition from 4 is independent of the choice of
ηk in 4.

Hence we are left with proving that 1 is equivalent to 2. For that one starts with
arbitrary l-representatives pαk, ηkq, pα, ηq (as in 2), and write the limit condition from
1 out, by looking at the topology that was explained above; the outcome is precisely
the limit condition from 2.

Of course, when looking at contact structures, the most natural choice of l is the
identity, so that the 2-forms on the hyperplane fields ξ are with values in TM{ξ-
precisely as the curvature cξ of ξ. Therefore we obtain a natural inclusion of the
space CHyperpMq of contact structures.

Proposition 2.3.8. For l “ id one obtains an embedding of the space of contact
structures:

(2.3.2.1) I : CHyperpMq ãÑ ACSHyperpM, idq, ξ ÞÑ pξ, cξq.

Moreover, the closure of its image contains no pξ, ωq P ACSHyperpM, idq with ξ a
co-orientable foliation.
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Proof. Let us look at the last part (the first one is similar): when does pξk, cξkq
converge to pξ, ωq? We apply the previous lemma and we see that we can write
represent pξ, ωq by some pα, ηq and we find contact forms αk Ñ α such that αk^dαk Ñ
α^η. But, if ξ was a foliation, then αk^dαk Ñ α^dα “ 0 giving a contradiction.

Remark 2.3.9. In the previous proof we used that αk Ñ α implies dαk Ñ dα. This
would break down if we use the C0-topology. Hence, in principle, the situation may
not be so negative as in the previous proposition if we use C0-convergence. 4

The presence of other l’s allow for new perspectives on contact forms (in a manner in
which the tempting sloppiness on identifying the coefficients right away is avoided):
for each l one can look inside the corresponding space ACSHyperpM, lq for elements
that correspond to contact forms.

Definition 2.3.10. We say that pξ, ωq P ACSHyperpM, lq is of contact type if it
admits an l-representative of type pα,dαq for some contact form:

(2.3.2.2) ξ “ kerpαq, lα ˝ dα “ η|ξ for some contact form α.

Looking the other way around, we obtain for each l an inclusion

(2.3.2.3) Il : Ω1
contpMq ãÑ ACSHyperpM, lq

which associates to a contact form α the hyperplane ξ “ kerα with the 2-form
l´1
α ˝dα|ξ. And this allows one, in principle, to approximate various ACS-hyperplane

fields by contact structures. Note that the case l “ id is pretty special:

• it is the only case when Il is not injective (instead it factors through CHyperpMq
giving rise to the embedding from the previous proposition),

• despite being the most natural choice of l for handling contact structures, it is
the only bad choice when trying to approximate symplectic foliations.

Note that the first point is due to the remark that, if pα, ηq is an l-representative for
an element pξ, ωq, and we want to replace α by f ¨α to have another l-representative,
then one has to multiply η by fd. For the second item, let us work out the resulting
convergence.

Lemma 2.3.11. Given pω, ξq P ACSHyperpM, lq with some chosen l-representative
pα, ηq, then pω, ξq is the limit of a sequence of elements in ACSHyperpM, lq of contact
type, i.e. it is in the closure of the inclusion (2.3.2.3), if and only if there exists a
sequence of contact forms αk and a sequence of smooth nowhere vanishing functions
fk such that

αk Ñ α, fd´1
k ¨ αk ^ dαk Ñ α^ η.

(where d is associated to l as in ( (2.3.1.2))).

We see why the truly special case is when l “ id (i.e. d “ 1); all the other cases can
be brought to the condition

αk Ñ α, gk ¨ αk ^ dαk Ñ α^ η
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for some sequence of nowhere zero smooth functions gk, required to be positive if d
is odd.

Proof. The hypothesis is that there are contact forms βk such that the element in
ACSHyperpM, lq that is l-represented by pβk,dβkq converges to pω, ξq. We apply the
characterization 2. form Lemma 2.3.5 and we find that

αk :“
1

βkpRq
βk Ñ α in Ω1pMq,

1

βkpRqd`1
¨ iRpβk ^ dβkq Ñ η in Ω2pMq.

(where, as in the Lemma, R is the Reeb vector field corresponding to pα, ηq). Denoting
βk by αkpRq ¨ αk in the last limit we find that

fd´1
k ¨ iRpαk ^ dαkq Ñ η, where fk “

1

βkpRq

(and conversely, since we can just set βk “
1
fk
¨αk). Moreover, using again the identity

αk ^ dαk “ αk ^ iRpαk ^ dαkq,

we find the condition as written in the statement.

Example 2.3.12. In R3 consider the symplectic foliation

pF :“ ker dz, ω :“ dx^ dyq.

One can then take the sequence of contact forms

αk “ dz ´
1

k
ydx

which has
k ¨ αk ^ dαk “ dx^ dy ^ dz “ α^ ω,

hence the criterion from the previous lemma is satisfied choosing each fk to be a
constant function (d ´ 1-th rooth of k). Note that, for each d ‰ 1 (or l) , the se-
quence βk of contact forms with Ilpβkq converging to the element in ACSHyperpM, lq
represented by pF , ωq depends on l- it is:

βk “ k´
1
d´1 ¨ αk.

4

Note that, as in the previous sections, there is a similar (and simpler) discussion
which, instead of sequences one uses smooth paths

r0, εq Q t ÞÑ pξt, ωtq P ACSHyperpM, lq.

To talk about smoothness one can, as mentioned above, make ACSHyperpM, lq into
an infinite dimensional manifold. Or, as in the previous section, just adopt the obvious
ad-hoc definition obtained by interpreting paths ξt as sub-bundles rξ of the pull-back
of TM by the projection pr : RˆM Ñ M and ωt as a 2-form rω on rξ. Representing
pξt, ωtq by pairs pαt, ηtq as discussed above, the analogue of Lemma 2.3.5 gives various
charaterizations of the smoothness of pαt, ωtq for instance the analogue of condition
(2) would be a version of Lemma 2.2.2 that takes into account the 2-forms as well.
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Lemma 2.3.13. For any smooth path pξt, ωtqtPr0,εq of l-sympectic hyperplanes, with
ξ0 co-orientable, one can find l-representatives pαt, ηtq such that both αt and ηt are
smooth paths (in Ω1pMq and Ω2pMq, respectively).

Of course, one has also a characterization similar to 4 from Lemma 2.3.5: if pαt, ωtq
are arbitrary l-representatives of pξt, ωtq, with corresponding Reeb vector field R0 at
t “ 0, then

t ÞÑ
1

αtpR0q
αt, t ÞÑ

1

αtpR0q
d`1

¨ iRpαt ^ ηtq

is smooth in t.

2.3.3 Going conformal; conformal convergence

With the rather negative conclusions from Proposition 2.3.8 in mind, let us start by
looking back at some of the positive results that we mentioned, on approximations of
foliations by contact structures.

Remark 2.3.14 (A brief look at the 3-dimensional case again). Let us briefly return
to the discussion of the 3-dimensional case from the end of the previous section
(subsection 2.2.4). First of all, the remark that each hyperplane field ξ comes endowed
with a canonical non-degenerate 2-form Ωξ (see (2.2.4.4)) shows that, in this case,
there is yet another inclusion

IΩ : HyperpMq ãÑ ACSHyperpM,ν˚q, ξ ÞÑ pξ,Ωξq

(for all hyperplane fields, not only contact ones!). Unlike the other canonical inclusion
(2.3.2.1), and in contrast with what happens in Proposition 2.3.8, the closure of the
image of this inclusion can give rise to foliations. Indeed, since the inclusion is defined
on all hyperplanes, and it is a topological embedding, the second component does not
bring anything new, i.e. we are simply looking at convergence of contact hyperplanes
to foliations.

In fact under the above inclusion convergence in HyperpMq corresponds to conver-
gence in ACSHyperpM,ν˚q, or more precisely:

Lemma 2.3.15. Given hyperplane fields ξk, ξ P HyperpMq we have:

ξk Ñ ξ, if and only if IΩpξkq Ñ IΩpξq.

Proof. In this case l is the d-th power functor with d “ ´1, see Equation 2.3.1.1. Write
ξ “ kerα and let R be any vector fields such that αpRq “ 1. Then pα, η :“ ιRΩq is
an l-representative for IΩpξq. Similarly, we find l-representatives pαk, ηkq for IΩpξkq,
and observe that

αk ^ ωk “ αk ^ ιRkΩ “ Ω,

from which it follows (using Lemma 2.3.5) that IΩpξkq Ñ IΩpξq. 4
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We see that the way to ”fix” the negative phenomenon from Proposition 2.3.8 is very
”cheap”: for contact structures ξ “ kerα, instead of considering the obvious/most
natural non-degenerate 2-form dα|ξ (and, in higher dimensions, the only available
one!), pick up a volume form and consider Ωξ. How different are they? Well, being
in dimension 3, i.e. with ξ being 2-dimensional, we can certainly write

Ωξ “ fξ ¨ dα|ξ

for some nowhere vanishing (or even strictly positive, under the appropriate orien-
tation conventions) smooth function fξ. Therefore, one may say that the negative
phenomena from Corollary 2.3.8 can actually be fixed by working ”conformally”, i.e.
allowing to change dα by multiplying by functions. And this is something that makes
a lot of sense in higher dimensions as well. 4

Apart from the last remark we can also say that, by now, we have already seen
several manifestation of ”conformal factors”. Already the notion of representing pair
from Definition 2.3.1 is of a conformal nature. And similarly for the convergence
that was worked out in Lemma 2.3.11 (when l ‰ id). And, even when looking at
the convergence of just hyperplane fields, Theorem 2.2.13 already pointed out the
importance of the ”conformal factor”. All together, it should be clear now (in case
it wasn’t clear earlier!) what is the notion of convergence that is ”correct” (or at
least ”most appropriate”) for our discussion on deforming contact structures into
symplectic foliations.

Definition 2.3.16. Given an ACS-hyperplane field pξ, ωq with ω P Ω2pξ, Lq, and a
sequence pξk, ωkq of ACS-hyperplane fields (with line bundles Lk), one say that

pξk, ωkq ù pξ, ωq (and one reads: conformally converges)

if there exist line bundle isomorphisms φk : Lk
„
Ñ L such that

pξk, φk ˝ ωkq Ñ pξ, ωq

as ACS-hyperplane fields with fixed coefficients L (i.e. in ACSHyperpM,Lq).

Of course, this is a discussion that takes place at the level of ”conformal classes”. Let
us formalise this.

Definition 2.3.17. Two ACS-hyperplane fields pξi, ωiq, i “ 1, 2, are said to be con-
formally equivalent, and write

pξ1, ω1q „ pξ2, ω2q,

if there exists an isomorphism φ : L1
„
Ñ L2 between their coefficients such that

ω2 “ φ ˝ ω1. We denote by rξ, ωs the resulting equivalence classes.

An equivalence class with respect to this equivalence relation is called an ACS-
structure on M , and the set of such structures is denoted ACSpMq. Hence

ACSpMq “

˜

ď

L

ACSHyperpM,Lq

¸O

„ .
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With this, ù makes sense as a convergence defined on ACSpMq (still called confor-
mal convergence).

Remark 2.3.18. Although we do not find it particularly enlightening, it is nice
to know that ACSpMq admits a topology for which the corresponding convergence
is precisely conformal convergence. The basic opens are constructed out of opens
U Ă ACSHyperpM,Lq (for each line bundle L), by defining

rU s :“ trξ, ωs P ACSpMq : pξ, ωq P Uu.

One should be aware that, if one has an element u P ACSpMq, written as u “ rξ0, ω0s,
for u to belong to rU s it is not necessary that pω0, ξ0q P U (it may even happen that
ω0 has coefficients L0 ‰ L).

Putting all the ”opens” rU s together one obtains a topology basis, and then the
desired topology on ACSpMq. 4

Note that all the types of structures that we discussed in Remark 2.3.3 (all giving
rise to ACS-hyperplane fields) can now be seen inside ACSpMq. Most notably, one
obtains:

• ContpMq ãÑ ACSpMq, ξ ÞÑ rξ, cξs, with the remark that in dimension 3:

rξ, cξs “ rξ,Ωξs.

• symplectic foliations or, more generally, conformal symplectic foliations (cf.
Definition 2.2.16) can be seen as ACS-structures on M .

In particular, this allows us to make sense of conformal approximation by contact:

Definition 2.3.19. We say that a (conformal) symplectic foliation pF , ωF q can be
conformally approximated by contact structures if there is a sequence of contact
structures ξk conformally converging to pF , ωF q, i.e.

pξk, cξkq ù pF , ωF q.

Returning to general conformal classes and their convergence, it is clear that (at least
in the co-orientable case) one can pass to trivial coefficients, i.e. use representing
pairs (cf. Definition 2.3.1). Note also that, in the new terminology, given an ACS-
hyperplane field pξ, ωq, with ω P Ω2pξ, Lq, a representing pair in the sense of Definition
2.3.1 is a pair

pα, ηq P Ω1pMq ˆ Ω2pMq

with the property that
pξ, ωq „ pα, η|kerαq.

Hence, in principle, one can just use invoke Lemma 2.3.5 for d “ 0 to check con-
vergence. Let us be a bit more explicit about the outcome in the case of contact
sequences.
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Lemma 2.3.20. Consider an ACS-hyperplane field pξ, ωq represented by a pair pα, ηq
as above, with corresponding R P XpMq. Given a sequence of contact structures ξk,
the following are equivalent:

1. ξk conformally converges to pξ, ωq (or pξk, cξkq ù pξ, ωq).

2. there exists a (or, equivalently, for any) sequence αk Ñ α with ξk “ kerαk, and
a sequence of nowhere vanishing smooth functions fk such that

fk ¨ iR pαk ^ dαkq Ñ η (in Ω2pMq).

3. there exists a (or, equivalently, for any) sequence αk Ñ α with ξk “ kerαk, and
a sequence of nowhere vanishing smooth functions fk such that

fk ¨ αk ^ dαk Ñ α^ η (in Ω3pMq).

Proof. As we mentioned, in principle we just apply Lemma 2.3.5 (for d “ 0 and l
constant R); the convenient items are 4 and 5 since they allow for arbitrary choice of
ηk. For each pξk, cξkq we choose a representative pair of type pβk,dβkq; the problem
is that the βk may not be the αk that will eventually converge to α (actually the βk
may even ”explode”). Then items 4 and 5 of the lemma become:

4: there exists a (or, equivalently, for any) sequence αk Ñ α with ξk “ kerαk,
such that

iR pαk ^ dβkq Ñ η (in Ω2pMq).

5: there exists a (or, equivalently, for any) sequence αk Ñ α with ξk “ kerαk,
such that

αk ^ dβk Ñ α^ η (in Ω3pMq).

Writing now βk “ fkαk, we obtain the conditions from the statement.

Working out the definition, from the previous discussions we deduce:

Corollary 2.3.21. A symplectic foliation pF , ωF q, represented by pα, ηq (hence F “
kerα, ωF “ η|F), can be conformally approximated by contact structures if and only
if there exists a sequence of contact forms αk and nowhere vanishing smooth functions
fk such that

αk Ñ α, fk ¨ αk ^ dαk Ñ α^ η

(as 1-forms, and 2-forms, respectively).

Example 2.3.22. Again (as in Remark 2.3.7), while a condition of type α^ηk Ñ α^η
is equivalent to ηk|ξ Ñ η|ξ (ξ “ kerα), the condition fk ¨ αk ^ dαk Ñ α ^ η should
be thought of (morally) as saying that

”dαk|ξk ù η|ξ”.

However (and again), this is not directly related to dαk|ξ ù η|ξ, or more precisely,

gk ¨ α^ dαk Ñ α^ η
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for some sequence of nonzero functions gk. For an example consider

pF :“ ker dz, ω :“ dx^ dyq,

(hence α “ dz, η “ dx^ dy) and the sequence

αk “
1

k
dx` eydz.

One has
fk ¨ αk ^ dαk “ dx^ dy ^ dz “ α^ dη, with fk “ ke´y

hence conformal convergence holds, but α ^ dαk “ 0, hence no multiple dαk|F can
converge to η|F . 4

Definition 2.3.23. We say that a (conformal) symplectic foliation pF , ωF q, repre-
sented by pα, ηq, can be naively approximated if there exists a sequence of contact
forms αk, and a sequence of nowhere vanishing smooth functions fk such that:

αk Ñ α, fkα^ dαk Ñ α^ η pin Ω3pMqq.

The conformal factors fk are essential, since by Proposition 2.3.8 the definition be-
comes vacuous if we additionally require fk “ 1. Furthermore, the above condition
depends on the choice of contact forms, i.e. replacing αk by α̃k :“ gkαk does not
preserve it.

Example 2.3.24. In R3 consider (again) the symplectic foliation pF :“ ker dz, ω :“
dx^ dyq. The sequence of contact forms

αk :“ dz `
1

k
xdy,

and the sequence of functions fk :“ k satisfy:

fk ¨ α^ dαk “ α^ η,

hence pF , ωq can be naively approximated by contact forms. This example might give
the wrong impression that the Reeb vector fields Rk of αk (or the induced linefields
xRky) must converge to a vector field transverse to F . This is not true in general (see
Proposition 2.4.31), although it is true that for all k sufficiently large Rk is transverse
both to F and kerαk. 4

This type of approximations are very special and impose severe restrictions on F .
Indeed, observe that for k sufficiently large dαk|F is non-degenerate (since ω is) and
hence defines an exact symplectic form on F that can be extended to a globally closed
(even exact) form on M . In particular F is a taut foliation ( as in Definition 2.4.21).

Finally, note also that the discussion we had so far in this section has a rather obvious
version in which sequences are replaced by paths/deformations. For instance, a path
pξt, ωtq of ACS-hyperplane fields is said to be conformally smooth if, for each t,
there exists an isomorphism φt : Lt

„
Ñ L, such that t ÞÑ pξt, φt ˝ ωtq is smooth.

Then, for a conformal symplectic foliation pF , ωF q, with some coefficients L, we say
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that pF , ωF q can be conformally deformed into contact structures if one can find
a contact deformation ξt of F (smooth, as in Definition 2.2.1) and isomorphisms
φ:TM{ξt

„
Ñ L such that

t ÞÑ pξt, φt ˝ cξtq

is smooth in SGrpM,Lq. Again, this can be further simplified (similar to the last
Lemma) when the coefficients are all R.

And here it is worth having a look back at Theorem 2.2.13 and its proof: one remarks
right away that the argument there tells us something a bit more:

Corollary 2.3.25. If a foliation F admits a type I contact deformation (Definition
2.2.5) then there exists ωF P Ω2pM,TM{Fq leafwise exact, making F into a confor-
mal symplectic foliation with the property that pF , ωF q can be conformally deformed
into contact structures.

For the rest of this chapter we work with differential forms, and we use the following
convention:

From now on, unless explicitly stated otherwise,
when talking about almost CS-hyperplane fields,

convergence ” conformal convergence

approximation ” conformal approximation

as in Definition 2.3.19.

2.4 Comparison of the approximation types

In the previous section we introduced a generalization of confoliations, together with
several types of convergences and approximations. The aim of this section is to
provide ”isolating examples” for each type of approximation. That is, foliations
which can be approximated in the sense of one definition but not another.

2.4.1 Hyperplane fields and almost CS-hyperplane fields

We first compare the convergence (and approximation) of almost CS-hyperplane fields
(as elements of ACSHyperpM, lq) to convergence of the underlying distributions (i.e.
as elements of HyperpMq). Clearly, as was pointed out in Equation 2.3.1.3, con-
vergence as almost CS-hyperplane fields implies (by definition) convergence of the
underlying hyperplane fields. By Lemma 2.3.15 the converse also holds in dimension-
3, provided we consider ν˚-coefficients. If we pass to conformal convergence then the
claim holds with coefficients in any line bundle.

Going to higher dimensions, the situation is quite different. The first remark is that,
as was observed in the examples of Equation 2.2.4.3, there are many hyperplane fields,
in particular foliations, which do not admit any almost CS-structure. Thus (for these



2.4. COMPARISON OF THE APPROXIMATION TYPES 155

foliations) we cannot talk about being approximated by contact structures in the
space of almost CS-hyperplane fields.

The situation is not as bad as it looks however, we can still consider approximations in
HyperpMq, as in Definition 2.2.17. In fact, as observed in Remark 2.3.2, if a sequence
of contact structures ξk converges (in HyperpMq) to ξ, then the latter can be made
into an almost CS-hyperplane field. Clearly, the same argument holds for sequences
of almost CS-hyperplane fields pξk, ωkq, but we repeat it here for later reference:

Lemma 2.4.1. Let ξ be a hyperplane field and pξk, ωkq a sequence of almost CS-
hyperplane fields such that ξk Ñ ξ (in HyperpMq). Then ξ admits an almost CS-
structure.

Proof. Let pξk, ωkq be a sequence of almost CS-hyperplane fields topologically con-
verging to a distribution ξ. Then, for k sufficiently large, there exists a line field
τ Ă TM , which is transverse to ξ and ξk. This induces, isomorphisms

ξ ‘ τ » TM » ξk ‘ τ,

which in turn gives an isomorphism πτ : ξ Ñ ξk, which we think of as ”the projection
of ξ onto ξk along τ”. Then, the pullback

ω :“ π˚ωk P Ω2pξ, Lq,

defines an almost CS-structure on ξ. Observe that if ωτ is the (unique) extension of
ωk whose kernel is τ , then

(2.4.1.1) ω “ ωτ |ξ.

Remark 2.4.2. The proof actually shows the hypothesis of the lemma can be
weakened. Indeed, given a hyperplane field ζ it suffices there exists an almost CS-
hyperplane field pξ, ωq and a line field τ transverse both to ζ and ξ. Thus a distri-
bution ζ which does not admit an almost CS-structure is ”far away” from the space
of almost CS-distributions. In the case of Example 2.2.4.3, being ”far away” means
that any contact structure on S1 ˆ S2n must, at some point, contain the line field
spanned by Bz. 4

Remark 2.4.3. The above lemma does not say that a sequence of contact structures
ξk on M , converging in HyperpMq to a foliation F , also (conformally) converges
in ACSHyperpMq to some almost CS-structure ω on F . In Proposition 2.6.22, we
will see an example this situation. Moreover, the sequence of contact structures ξk
considered there, is C0-close to another sequence of contact structure ζk, which does
converge to an almost CS-structure on F . 4

In light of this lemma, we can wonder if any distribution that can be approximated
by contact structures in HyperpMq can be approximated by contact structures in
ACSHyperpM, lq. The following discussion shows that the answer to this question
is negative in general. We introduce a class of submanifolds of manifolds endowed
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with an almost CS-hyperplane field, with the property that a sequence of almost CS-
hyperplane fields pξk, ωq converging on the ambient manifold induces a converging
sequence on the submanifold. Therefore, the existence of such a submanifold en-
dowed with an almost CS-hyperplane field which cannot be approximated, gives an
obstruction to approximating the almost CS-hyperplane field on the ambient mani-
fold.

Definition 2.4.4. Let pξ, ωq be an almost CS-hyperplane field on M . A submanifold
N ĂM is called a almost CS-submanifold if the restriction

pξN :“ ξ X TN, ωN :“ ω|ξN q ,

defines an almost CS-hyperplane field on N .

We often consider a submanifold N ĂM that is already endowed with an almost CS-
hyperplane field prξ, rωq. In this case, when we say that N is an almost CS-submanifold,

we mean that prξ, rωq “ pξN , ωN q where pξN , ωN q is as in the definition above.

One way of thinking about this definition is that given a manifold M , we have a
”map”

t submanifold N ĂM uˆ

"

almost CS-hyperplane
fields pξ, ωq on M

*

Ñ

"

distributions ξN on N , with
a 2-form ωN P Ω2pξN , Lq

*

.

Of course, this is only well-defined if N is transverse to ξ. Fixing an almost CS-
hyperplane field pξ, ωq on M , a submanifold N is an almost CS-submanifold if the
resulting ωN is nondegenerate.

The property of being an almost CS-submanifold is ”stable” in both arguments of
the above assignment. More precisely, if N Ă pM, ξ, ωq is an almost CS-submanifold,
then in particular it is transverse to ξ. But this is an open condition; if

rN :“ φpNq,

for a C1-small diffeomorphism φ : M ÑM , then rN is also transverse to ξ. Moreover,
the induced distribution and 2-form pξ

ĂN
, ω

ĂN
q are such that

`

φ˚pξ
ĂN
q, φ˚ω

ĂN

˘

, and, pξN , ωN q ,

are close in the compact-open topology on ACSHyperpM, lq. Hence, pξ
ĂN
, ω

ĂN
q is an

almost CS-distribution.

Stability in the second argument follows from the following lemma, which says that
if we fix an almost CS-submanifold in the first argument, the above ”map” is sequen-
tially continuous in the second argument (with respect to the compact-open topology
on ACSHyperpM, lq).

Lemma 2.4.5. Consider an almost CS-submanifold N Ă pM, ξ, ωq with induced
almost CS-hyperplane field pξN , ωN q. Let pξk, ωkq, k P N, be a sequence of almost CS-
hyperplane fields converging to pξ, ωq. Then, for k sufficiently large,

`

ξN,k :“ ξk X TN, ωN,k :“ ωk|ξN,k
˘

,

defines a sequence of almost CS-hyperplane fields on N , converging to pξN , ωN q.
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Proof. Choose representatives pα, ηq for pξ, ωq. Then, applying Lemma 2.3.5 to find
l-representatives pαk, ηkq for pξk, ωkq satisfying

αk Ñ α, ηk Ñ η.

The restriction pαN :“ α|TN , ηN :“ η|TN q represents pξN , ωN q. Therefore, restricting
the above equation to N we find a sequence pαN,k, ηN,kq representing pξN,k, ωN,kq and
satisfying the condition of Lemma 2.3.5, proving convergence.

Remark 2.4.6. Observe that the above lemma also holds for paths of almost CS-
hyperplane fields pξt, ωtq, t P p0, 1s instead of sequences. Furthermore, if the path
is of type I or type II, then so is the induced path on the almost CS-submanifold
N . Similarly, if the sequence on M is conformally/naively converging then so is the
sequence on N . This can be used, for example, to show that almost CS-submanifolds
can form an obstruction to type I approximation by contact structures, see Corollary
2.4.8 below. 4

Remark 2.4.7. Usually it is understood that by submanifold we mean embedded
submanifold. However, Definition 2.4.4 and Lemma 2.4.5 also make sense for im-
mersed submanifold, or even submanifolds with self-intersections. In fact, given an
almost CS-hyperplane field pξ, ωq on M , all we need to obstruct the existence of
approximations, is a map f : N Ñ M such that pf˚ξ, f˚ωq defines an almost CS-
hyperplane field on N . In this case, suppose that pξk, ωkq is a sequence of almost CS-
hyperplane fields on M converging to pξ,ωq. Then, essentially the same proof as that
of Lemma 2.4.5, shows that for k sufficiently large, pf˚ξk, f

˚ωkq , defines a sequence
of almost CS-hyperplane fields on N converging to pf˚ξ, f˚ωq.

Analogous to Corollary 2.4.8 below, this implies that the existence of such a map for
which pf˚ξ, f˚ωq cannot be approximated by contact structures, is an obstruction
for pξ, ωq to be approximated.

4

As stated before, the main use of Lemma 2.4.5, is that it provides obstructions for
an almost CS-foliation pF , ωq to be approximable by contact structures.

Proposition 2.4.8. Consider an almost CS-submanifold pN, ξN , ωN q Ă pM, ξ, ωq. If
pξN , ωN q cannot be approximated by contact structures, then pξ, ωq cannot be approx-
imated by contact structures.

Combining this proposition with Theorem 2.2.21 we obtain the following corollary:

Corollary 2.4.9. If an almost CS-hyperplane field pξ, ωq contains

˜

S1 ˆ S2,F :“
ď

zPS1
tzu ˆ S2, ω :“ ωS2

¸

,

as an almost CS-submanifold, then it cannot be approximated by contact structures.
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Foliations for which this corollary applies are plentiful. In fact, we will see in Section
2.5 that it takes quite a bit of work to find examples for which there exist different
obstructions to being approximable. For now we give some basic examples, more
elaborate constructions are given in Section 2.6.1.

Example 2.4.10. Let pM,ωM q be a symplectic manifold. Then the symplectic
foliation

˜

S1 ˆ S2 ˆM, F :“
ď

zPS1
tzu ˆM ˆ S2, ω :“ ωM ` ωS2

¸

,

cannot be approximated by contact structures. 4

Slightly more generaly, let pM,FM , ωM q be any almost CS-foliation. In this case, the
almost CS-foliation

`

M ˆ S2,F :“ FM ˆ S2, ω :“ ωM ` ωS2
˘

,

cannot be approximated by contact structures. To see this recall the following lemma
from foliation theory:

Lemma 2.4.11. Let F be a coorientable foliation on a (closed) manifold M . Then
there exists a closed embedded loop S1 ĂM transverse to F .

Proof. Choose a nowhere vanishing vector field X P XpMq transverse to F . The
flowlines of X define a 1-dimensional foliation FX on M , whose leaves are transverse
to the leaves of F . If FX has a leaf diffeomorphic to S1 (i.e. when X has a periodic
orbit) we are done. If not all the leaves are non-compact and we proceed as follows.

Using the flow of X and compactness of M we can find a finite covering tUiuiPI of
M such that each Ui is a foliated chart for FX isomorphic to Dn´1 ˆ p´1, 1q (where
dimM “ n) and Dn´1 ˆ t0u is contained in a single leaf of F .

Fix a leaf of FX , since it is non-compact it must intersect some chart Ui0 at least
twice. Thus we obtain an arc J transverse to F , whose endpoints are contained in
Dn´1 ˆ t0u Ă Ui0 . In particular BJ is contained in a single leaf of F . This arc can
be completed inside Ui0 to obtain a closed transverse loop (see for example Lemma
3.3.7 in [23]).

Choosing a closed transversal for FM , it follows immediately that pF , ωq admits
S1ˆ S2, with the usual foliation, as an almost CS-submanifold. Thus Corollary 2.4.8
applies. It is not hard to see that the above arguments also work if, instead of S1ˆS2,
we use any any manifold M for which S1 ˆM , with the obvious foliation, cannot be
approximated by contact structures. For example, we can use S1ˆS2n, for any n ‰ 3,
as in Example 2.2.4.3.

Consider a distribution ξ on a manifold M , and ξk a sequence of contact structures
converging to ξ in HyperpMq. Analogous to Lemma 2.4.5, we observe that if N ĂM
is an (odd dimesnional) submanifold transverse to ξ, then for all k sufficiently large,

ξN, :“ ξk X TN,
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defines a sequence of distributions on N converging to ξN :“ ξ X TN . However,
unlike the situation in Lemma 2.4.5, in general the ξN,k are not contact structures.
Hence almost CS-submanifolds do not necessarily obstruct convergence inHyperpMq.
We exploit this observation to show that approximation by contact structures in
HyperpMq and ACSHyperpMq are not equivalent in higher dimensions:

Proposition 2.4.12. There exist almost CS-foliations which can be approximated by
contact structures in HyperpMq but not in ACSHyperpMq.

Proof. Let F be a foliation on M , with dimM “ 2n` 1 ě 7, which can be topologi-
cally approximated by contact structures. By Lemma 2.4.1 there exists an almost CS-
structure ω on F . As explained in Lemma 2.4.13 below, it is possible change ω to
another almost CS-structure rω on F , so that pF , rωq admits S1 ˆ S2, with the usual
symplectic foliation, as an almost CS-submanifold. Hence, by Proposition 2.4.8 and
Theorem 2.2.21, pF , rωq cannot be approximated by contact structures. However, since
we did not change the foliation F , it can still be topologically approximated.

Lemma 2.4.13. Let pF , ωq be an almost CS-foliation on a manifold M of dimen-
sion 2n ` 1 ě 7. Then there exists an almost CS-structure ω1 on F which admits
an almost CS-submanifold S1 ˆ S2. Moreover, ω1 is homotopic (through almost CS-
structures on F) to ω and agrees with ω outside a small neighborhood of S1 ˆ S2.

Proof. Fix an embedded S1 transverse to F , as in Lemma 2.4.11. There exists a
tubular neighborhood S1 ˆD2n ĂM on which

F “
ď

zPS1
tzu ˆD2n,

since the restriction TF |S1 is the trivial bundle. We start by making ω symplectic on
a small neighborhood of S1ˆt0u. By a (linear) change of coordinates we can assume
that ω agrees with the standard symplectic form

ωst :“
n
ÿ

i“1

dxi ^ dyi P Ω2pD2q,

at points pz, 0q P S1 ˆD2n. For ε ą 0 let D2
ε :“ tx P R2n | ||x|| ď εu, denote the disk

of radius ε. Choose a function ρε : R2n Ñ r0, 1s satisfying:

supppρεq Ă D2
ε , ρε|D2

ε{2
“ 1.

For ε ą 0 small enough,

ω1 :“ p1´ ρqω ` ρωst P Ω2pS1 ˆD2nq,

is a leafwise symplectic form around S1ˆt0u and homotopic through almost CS-forms
to ω. From now on we assume, without loss of generality, that ω “ ωst on the entire
S1 ˆD2n.

Next, we construct a suitable embedding of S1 ˆ S2. Since 2n ` 1 ě 7 we have an
embedding:

S2 :“ tx2
1 ` x

2
2 ` x

2
3 “ 1, y1 “ y2 “ y3 “ 0u Ă D2n.
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Note that the restriction ω|S2 “ 0 and that the normal bundle νS2 » S2 ˆ R2n´2 is
trivial. Denote by ωS2 the standard area form on S2 and let ρε : R2n´2 Ñ r0, 1s as
above. Then for ε small enough

rω :“ ω ` ερωS2 ,

is an almost CS-form which is leafwise symplectic when restricted to S1 ˆ S2 Ă S1 ˆ

D2n and homotopic to ω through almost CS-forms.

Consider a foliation F on a manifold M with dimM “ 2n ` 1 ě 7 which can
be approximated by contact structures in HyperpMq. Then, by the result above,
there exists at least one almost CS-structure ω on F for which pF , ωq cannot be
approximated by contact structures in ACSHyperpMq. However, it is still possible
that pF , rωq is approximable for a different choice of almost CS-structure rω.

In Proposition 2.6.22 below, we given an example of the dual situation, i.e. we give
a sequence of contact structures converging to a foliation F (in HyperpMq), but not
converging to any almost CS-structure on F .

2.4.2 Almost CS-hyperplane fields and Type I

Next, we compare approximation in ACSHyperpM, lq to approximation of type I in
HyperpMq. Recall from Theorem 2.2.13 that a foliation F has a type I deformation
into contact structures if and only if it admits an exact leafwise CS-structure. Further-
more, by Corollary 2.3.25, if this happens then the CS-structure can be conformally
deformed (in ACSHyperpM, pTM{Fqq) to contact structures.

In dimension-3 there is another characterization of type I deformations:

Proposition 2.4.14 ([47]). If F is a foliation on a (compact) 3-manifold M for
which either of the following hold:

(i) F has a closed leaf with trivial linear holonomy;

(ii) F can be defined by a closed 1-form;

(iii) F has no holonomy.

Then, F does not admit a type I deformation (Definition 2.2.5) into contact struc-
tures.

Thus, not any foliation which can be deformed into contact structures in HyperpMq
admits a type I deformation. For example, consider the foliation

˜

S1 ˆ T2,F :“
ď

zPS1
tzu ˆ T2

¸

.

By Theorem 2.2.21, F can be approximated by contact structures. However, F
satisfies all the hypothesis of the proposition above, so it does not admit a type
I approximation. It turns out that these conditions are, in dimension 3, the only
obstructions to being type I approximable.
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Theorem 2.4.15 ([47]). Let F be a foliation on a 3-manifold M such that F has
holonomy, and each of its closed leaves has a curve with non-trivial linear holonomy.
Then F can be linearly approximated by contact structures.

Using Theorem 2.2.13, the obstructions from Proposition 2.4.14 can be translated to
higher dimensions. Roughly speaking, the idea is that if F can be type I approxi-
mated by contact structures, we can construct an almost CS-submanifold of the exact
leafwise CS-structure given by Theorem 2.2.13. By Remark 2.4.6 this means we ob-
tain a type I deformation on the almost CS-submanifold. Repeatedly applying this
procedure, relates the high-dimensional approximation to the 3-dimensional case.

The construction of the required almost CS-submanifold is based on Donaldson tech-
niques from [34, 67]. If αt, t P p0, 1s is a type I path of contact forms converging
to F , then we can produce an almost CS-submanifold for each αt. Using that αt
converges, we can show that these almost CS-submanifolds, for t sufficiently small,
are also almost CS-submanifolds for the exact leafwise CS-structure on F given by
Theorem 2.2.13. The precise statement is as follows:

Theorem 2.4.16. Let F be a foliation on M with modular class rνs P H1pFq, as
in Definition 1.7.16, and dνβ any exact leafwise CS-structure, as in Theorem 2.2.13.
Then, there exists a codimension-2 closed almost CS-submanifold, as in Definition
2.4.4 intersecting all the leaves of F .

Proof. Let dνβ for β P Ω1pMq be the leafwise CS-structure on F which we assume
to exists. By Theorem 2.2.13 there exists a type I path of contact forms αt, t P p0, 1s
conformally converging (in ACSHyperpMq) to pF ,dνβq. The idea of the proof is
to apply the theorem for existence of codimension-2 contact submanifolds from [67],
to the sequence αn :“ αtn where tn P r0, 1s, n P N is such that tn Ñ 0 for n Ñ
8. We briefly recall the argument. First, we first fix a compatible almost complex
structure Jn for the symplectic vector bundle pξn :“ kerαn,dαnq. This defines a
global Riemannian metric gn :“ dαp¨, J ¨q`αnbαn. Then we define the topologically
trivial bundle L :“ M ˆ C with non-trivial connection form ∇ :“ d ´ iα. Define
αk,n :“ kαn, k P N, gk,n :“ kgn and pLk :“ Lbk,∇k,n :“ d ´ iαk,nq. Observe that
there is a splitting ∇k,n “ B ` B̄ into complex linear and complex anti-linear part,
since for any section s P ΓpLkq the map ∇k,ns is a linear map between complex
vector spaces. We have a notion of assymptotic holomorphic sequence of sections
sk,n P ΓpLkq defined by the following set of conditions:

||sk,n|| ď C, ||∇rk,nsk,n|| ď C, ||∇r´1
k,n B̄sk,n|| ă k´1{2C, r “ 1, 2, 3.

Here, C ą 0 is a constant that is independent of k. However note that in principle
C could depend on n. In the previous expression the norms of the higher order
derivatives are measured with respect to the norm associated to gk,n in the source.
Furthermore there is a notion of ε-transversality that reads as follows. A section
s P ΓpLkq is said to be ε-transverse to zero along ξn at p P M if at least one of the
following two conditions is fulfilled:

||sppq|| ą ε, ||p∇k,n|ξqsppq|| ą ε.
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The main result in [67] states that there is a assympotic holomorphic sequence of
sections sk,n that are ε-transverse to ξn over the whole manifold. Moreover, ε does
not depend on k. This immediately implies that the zero set Zpsk,nq is smooth,
transverse to ξn with a minimum angle θk,n depending only on ε and C, and such
that ξn X TZpsk,nq is a contact distribution on Zpsk,nq.

What we want to show is that Zpsk,nq is transverse to the limit foliation F with a

minimum angle θ̃k,n that does not depend on k and n. Observe that θ̃k,n ě θk,n{2

for n large enough. This is because by the triangle inequality θ̃k,n ě θk,n ´ ηn where
ηn is the angle between ξn and F and ηn Ñ 0 for n Ñ 8. Hence it suffices to show
that θk,n ą θ for some θ ą 0. Observe that the angle θk,n at a given point depends
linearly on ||∇ξsk,n|| and ||∇Rksk,n||´1 where Rk,n is the Reeb vector field of αk,n.
Furthermore we have ||∇Rk,n || ď ||∇k,n|| ď C. Hence,

θk,n “ c
||∇ξsk,n||
||∇Rk,nsk,n||

ě c
ε

C
,

for a universal constant c. The standard arguments in [34, 67] show that ε and C are
independent of k. From a careful reading of the proofs it is clear that ε and C are
bounded by the following:

(i) The topology of M . In particular, the minimum number of Darboux charts
needed to cover the manifold.

(ii) The amount of integrability of the distribution ξn, measured by ||αn ^ dαmn ||.
The smaller this quantity the better.

(iii) The natural extension J̃n of Jn to the symplectization RˆM by the formula:

J̃npλ0 ` λ1Rn ` V q :“ λ1Bt ´ λ0Rn ` JnV,

where λ0, λ1 P C
8pRˆMq and V P TM . In particular, it depends continuously

on the choice of Jn.

We now check that these properties are independent of n. By Gray stability all
the contact structures ξn are contactomorphic, so the minimum number of Darboux
charts needed to cover M is independent of n. The second property is clearly satisfied
since ξn converges to a foliation for nÑ8.

To check the third property recall that by Theorem 2.2.13 convergence of αt “ α` tβ
to F “ kerα is equivalent to conformal convergence of pξt,dαtq to pF ,dηβq. This just
means that there exist extensions ωt of dαt|ξt conformally converging to dηβ along F .
Compatibility of J does not depends on the choice of representative of the conformal
class. Hence, we find a family Jt, t P r0, 1s of compatible complex structures and
in particular Jn :“ Jtn is a sequence inside a compact set and so converges to J8.
Similarly, the Reeb vector field Rt of αt is linearly interpolating between the Reeb
vector field of α1 and ker dηβ. Hence, by the same argument as before Rn converges

to R8. This means that J̃n converges so that (for n big enough) the contribution
of the third property is independent of n. Therefore, the divisor is transverse to the
limit foliation F .
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Consider a foliation F on M that can be type I approximated by contact structures.
Combining Theorem 2.2.13 and Theorem 2.4.16 we find an almost CS-submanifold
N for F with the induced CS-structure. In particular N is transverse to F , and we
denote the resulting foliation by

FN :“ F X TN.

Together with Lemma 2.4.5 and Remark 2.4.6, it follows that FN admits a type I
deformation into contact structures.

On the other hand, observe that if F can be defined by a closed 1-form, or has
no holonomy, then so does FN . Similarly, if F has a closed leaf with trivial linear
holonomy then so does FN , provided that N intersects all the leaves of F . We
conclude that if F satisfies any of the conditions in Proposition 2.4.14, but can be type
I approximated, then we find a foliation on a 3-manifold contradicting Proposition
2.4.14.

Corollary 2.4.17. The statement of Proposition 2.4.14 holds in any dimension.

Example 2.4.18. Recall from Chapter 1 that there exists a SF-deformation pαt, ωtq,
t P r0, 1s, as in Definition 1.8.1, between the standard contact structure on S5 and
the symplectic foliation pF , ωq constructed in Theorem 1.9.1. Moreover, the path of
1-forms αt is of type I as in Definition 2.2.5). However, the compact leaf of F has
trivial linear holonomy since it is obtained by gluing two foliated manifolds with tame
boundaries. Therefore, Corollary 2.4.17 that pF , ωq cannot be type I approximated
by contact structures. 4

Using Theorem 2.2.13, the above discussion also implies:

Corollary 2.4.19. If a foliation F , with modular class rνs P H1pFq, satisfies any of
the conditions of Proposition 2.4.14 (in particular M is compact), then it does not
admit admit a dν-exact leafwise CS-structure.

Recall that an almost CS-hyperplane field is a ”formal CS-foliation” in the sense that
it forgets about the ”differential conditions” in the Definition 2.2.16. This makes sense
more generally for any geometric structure that can be defined as the solution of a
(partial) differential equation, see Chapter 3. Clearly, in this situation, the existence
of the formal data is a necessary condition for the existence of an honest solution. If
the converse holds, i.e. if out of the formal data we can build the structure, we say
that the structure satisfies the h-principle. As a consequence of Theorem 2.2.13, the
h-principle for CS-foliations does not hold in full generality:

Corollary 2.4.20. The h-principle for CSfoliations does not hold.

Proof. Analogously to the h-principle for symplectic structures [43], a formal CS-
foliation consists of an almost CS-foliation pF , ωq together with a cohomology class
c P H2

ν pFq. Given this data there should exist a leafwise CS-structure rω on F such
that rrωs “ c P H2

η pFq. However, if F does not admit a type I deformation into contact
structures, then, by Theorem 2.2.13, the class 0 P H2pηpFqq cannot be represented by
CS-structures. Hence, any foliation which cannot be type I approximated by contact
structures does not satisfy the h-principle.
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2.4.3 Type I and naive approximation

Recall from Corollary 2.3.25 that if a foliation F admits a type I deformation into
contact structures, then it can be conformally approximated (for some carefully cho-
sen 2-form on the leaves). In this section we consider the relationship between naive
and type I approximations. We will see that the former implies the latter, but not
conversely.

Recall that a foliation F on M is called taut, if there exist an embedded loop S1 ĂM
transverse to F and intersecting all the leaves. As shown by Sullivan [102], this is
equivalent to the following definition:

Definition 2.4.21. A foliation F on M2n`1 is taut if there exists a globally closed
form Ω P Ω2npMq which restricts to a volume form on the leaves of F .

Taut foliations are mostly studied in dimension-3 where the above definition says there
should exist a globally closed 2-form ω P Ω2pMq which is symplectic on the leaves
of F . Hence, in higher dimensions we also consider the following more restrictive
notion.

Definition 2.4.22. A foliation F on M2n`1 is said to be strong symplectic if there
exists a globally closed form ω P Ω2pMq which restricts to a symplectic form on the
leaves of F .

Clearly strong symplectic foliations are taut but the converse need not be true. Fur-
thermore, by Lemma 1.7.23, a strong symplectic foliation together with a globally
closed 2-form pF, ωq is a tame symplectic foliation in the sense of Definition 1.7.22.

Lemma 2.4.23. If an almost CS-foliation pF , ωq can be naively approximated by
contact structures, as in Definition 2.3.23. Then F is a strong exact symplectic
foliation.

Proof. Choose a representing pair pα, ηq for pF , ωq, and let αk be a sequence of contact
forms satisfying (as in Definition 2.3.23)

αk Ñ α, fkα^ dαk Ñ α^ η,

for a sequence of positive functions fk. Being non-degenerate on F , is an open
condition in the space of leafwise 2-forms Ω2pFq. Hence, the convergence in the
above equation implies that, for k sufficiently large, dαk|F defines an exact leafwise
symplectic form.

Clearly, these necessary conditions are extremely restrictive. By the following propo-
sition, they imply that F admits a type I deformation into contact structures. Hence,
together with Example 2.2.12 this means that being naively approximable is strictly
stronger condition than being type I approximable.

Proposition 2.4.24. If a conformal symplectic foliation pF , ωq can be naively ap-
proximated as in Definition 2.3.23, then it can be type I approximated by contact
structures, as in Definition 2.2.5.
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The proof follows directly from the following lemma:

Lemma 2.4.25. Let αk be a sequence of contact forms naively approximating a
conformal symplectic foliation pF “ ker γ, ωq as in Definition 2.3.23. Then, for any
k sufficiently large,

αt :“ γ ` tαk,

is a type I deformation (Definition 2.2.5) of F into contact structures.

Proof. We choose a representing pair pγ, ηq for pF , ωq, and denote the associated
Reeb vector field by R. Since αk naively approximates pF , ωq, it follows that for all k
sufficiently large the associated Reeb vector field Rk is transverse to F , and can thus
be expressed as:

Rk :“ fkR` Vk,

for positive functions fk and Vk P kerαk. Note that

αkpRkq “
1

fk
.

If we multiply αk by positive constants ck, the resulting sequence still naively approx-
imates pF , ωq. Hence, since M is compact, we can assume that fk ą ε for a universal
ε ą 0. Now consider the path

αt :“ γ ` tαk, t P r0, 1s,

for which the contact condition equals

αt ^ dαnt “ tn
`

γ ^ dαnk ` nα^ dγ ^ dαn´1
k

˘

` tn`1αk ^ dαnk .

For t small enough the first term dominates, provided it is nonzero. By assumption
γ ^ dαnk ą 0 for large k. Hence, to show that αt is contact it suffices to show that
γ ^ dαnk dominates nαk ^ dγ ^ dαn´1

k . This condition can be checked pointwise,
and at points where dγ “ 0 it clearly holds. Hence, we can assume dγ ‰ 0 so that
rank dγ “ 2. Choose a basis R,X1,k, Y1,k, . . . , Xn,k, Yn,k satisfying

(i) γpRq “ 1;

(ii) X1,k, Y1,k, . . . , Xn,k, Yn,k P F are a sympletic basis for dαk|F ;

(iii) dγpR,X1,kq “ 1 and ker dγ “ xX2,k, . . . , Yn,ky.

Furthermore there exist εi,k, δi,k P R, i “ 1, . . . , n such that rXi,k :“ Xi,k ` εi,kR and
rYi,k :“ Yi,k ` δi,kR form a basis of ξk. Then we have

γ ^ dαnk pR,X1,k, . . . , Yn,kq “ 1.

On the other hand

αk ^ dγ ^ dαn´1
k pR,X1,k, . . . , Y1,kq “ αk ^ dγ ^ dαn´1

k pR, rX1, . . . , rYnq

“ αkpRqdγp rX1,k, rY1,kqdα
n´1
k p rX2, . . . , rYnq

“
δ1,k
fk

.
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Since ξk converges to F in HyperpMq, we must have δ1,k Ñ 0 for k Ñ 8. Further-
more, fk ą 0 so that for k large enough γ ^ dαnk " αk ^ dαn´1

k ^ dβ, showing that
αt is contact.

2.4.3.1 Examples of naive convergence

To construct examples of foliations that can be naively approximated by contact
structures, we need to consider manifolds that admit both a taut foliation and a
contact structure. A class of manifolds which meet these criteria are those that
admit a conformally Anosov flow, see [47, 88], and satisfy an additional symmetry
condition.

Definition 2.4.26. Let pM, gq be a 3-dimensional Riemannian manifold and φt,
t P R, the flow of a vector field X P XpMq. Then φt is said to be:

(i) Anosov if there exists a splitting

TM “ E` ‘ E´ ‘ xXy,

and a constant C ą 0 satisfying:

||dφtpv`q|| ě eCt||v`||, ||dφtpv´q|| ď e´Ct||v´||,

for all v˘ P E˘.

(ii) Conformally Anosov if there exists a splitting as above, and a constant C ą 0
satisfying:

(2.4.3.1)
||dφtpv`q||

||dφtpv´q||
ě eCt

||v`||

||v´||
,

for any non-zero vectors v˘ P E˘.

The definition of an Anosov flow means that flowing along X contracts the E´ and
expands E` direction. A conformally Anosov flow generalizes this definition by re-
quiring the flow to contract E´ and expand E` only after it has been normalized to
have determinant 1 (with respect to the Riemannian metric).

In both cases, the splitting defines two foliations,

F˘ :“ xX,E˘y Ă TM,

called the stable and unstable foliations. The following proposition shows that a
conformally Anosov flow is completely determined by these foliations. Hence, such
flows can be equivalently described by a pair of differential forms:

Proposition 2.4.27 ([47]). Let X be a vector fields on M3 whose flow is conformally
Anosov, with stable and unstable foliations F˘. Then there exist differential forms
α˘ P Ω1pMq such that F˘ “ kerα˘ and

α` ^ dα´ ` α´ ^ dα` ą 0.
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Conversely, suppose α˘ satisfy the above condition, and define foliations F˘ :“
kerα˘. Then, any non-vanishing vector field X P F` X F´ defines a conformally
Anosov flow.

For the application we have in mind we are interested in such pairs satisfying an
additional symmetry property:

Definition 2.4.28. A conformally Anosov pair on M3, consists of 1-forms α`
and α´, such that F˘ :“ kerα˘ are foliations and

(2.4.3.2) α` ^ dα´ ` α´ ^ dα` ą 0.

A conformally Anosov pair pα`, α´q is called symmetric if (in addition to the above
conditions)

α` ^ dα´ ą 0, α´ ^ dα` ą 0.

Observe that associated to any symmetric Anosov pair pα`, α´q we have a positive
function f P C8pMq defined by

α` ^ dα´ “ fα´ ^ dα`.

Given a conformally Anosov pair, both the induced foliations F˘ :“ kerα˘ admit a
type I deformation into contact structures. In fact, they can be connected through a
path contact structures:

Proposition 2.4.29 ([47]). If pα, βq is a conformally Anosov pair, then F and G are
transversal and for all t P p0, πq different from π{2 the form

αt :“ cosptqα` sinptqβ,

defines a contact structure which is positive for t P p0, π{2q and negative for t P
pπ{2, πq.

In general the above family does not produce a naive approximation of F˘. For
example, consider T3px, y, zq endowed with the conformally Anosov pair

α` :“ dz ` cospzqdx, α´ :“ dz ` sinpzqdy.

Then, neither F` nor F´ can be naively approximated, by Lemma 2.4.23. Indeed,
both foliations contain a leaf T2 which does not admit an exact symplectic form.

Observe that starting with a symmetric Anosov pair, both foliations F` and F´ are
taut and admit leafwise exact symplectic forms. Hence there is no obstruction to
naive approximation, in fact we have:

Proposition 2.4.30. Let pα`, α´q be a symmetric Anosov pair, then the symplectic
foliations

`

F` :“ kerα`, ω` :“ dα´|F`
˘

and
`

F´ :“ kerα´, ω´ :“ dα`|F´
˘

,

can be naively approximated by contact structures (as in Definition 2.3.23).
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Proof. We prove the statement for pF`, ω`q. Since pα`, α´q is symmetric there exists
a positive function f P C8pMq be such that

α` ^ dα´ “ fα´ ^ dα`.

Then, the linear path of contact forms αt :“ α` ` tα´ satisfies

αt ^ dαt “ tp1`
1

f
qα` ^ dα´,

showing that Definition 2.3.23 is satisfied.

As an application of this proposition the following family of foliations can be naively
approximated.

Proposition 2.4.31. Let Σg be a Riemann surface of genus g ě 2. Then, the unit
cotangent bundle ST˚Σg admits a symmetric Anosov pair.

Proof. The Lie algebra p2,Rq of the projective special linear group PSLp2,Rq :“
SLp2,Rq{t˘Iu, has an (oriented) basis

X1 :“

ˆ

0 0
´1 0

˙

, X2 :“

ˆ

0 1
0 0

˙

, R :“

ˆ

1 0
0 ´1

˙

satisfying the relations rX1, X2s “ R, rR,X1s “ ´2X1 and rR,X2s “ 2X2. Identi-
fying elements of the dual p2,Rq˚ with left invariant forms on PSLp2,Rq the above
relations imply that the dual basis θ1, θ2, α, satisfy

dθ1 “ 2α^ θ1, dθ2 “ ´2α^ θ2, dα “ θ1 ^ θ2.

Therefore, α is a contact form with Reeb vector field R and θ1 and θ2 define foliations.
In fact,

θ1 ^ dθ2 “ θ2 ^ dθ1 “ 2θ1 ^ θ2 ^ α,

so pθ1, θ2q is a symmetric Anosov pair.

We claim that PSLp2,Rq is the total space of the unit cotangent bundle ST˚Σg
for g ě 2. Consider the uppper half plane H :“ tx ` iy | y ąu with the standard
hyperbolic metric. The action of PSLp2,Rq on H given by

˘

ˆ

a b
c d

˙

¨ z “
az ` b

cz ` d
.

identifies PSLp2,Rq with the group of isometries of H. Since, ˘

ˆ?
y x{

?
y

0 1{
?
y

˙

¨ i “

x` iy, the action is transitive and the stabilizer of i is given by

K :“

"

˘

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

| θ P S1

*

.
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Hence, H can be identified with the left coset space PSLp2,Rq{K and the action
by isometries on H corresponds to left multiplication on PSLp2,Rq{K. Note that
setting

A :“

"

˘

ˆ

a b
0 1{a

˙

| a ą 0

*

,

this is just the Iwasawa decomposition PSLp2, Rq » K ˆ A, stating that any g P
PSLp2,Rq can be uniquely written as g “ ka with k P K and a P A. By the

uniformization theorem the universal cover rΣg is isomorphic to H and Γ :“ π1pΣgq
act by isometries of H so can be identified with a subgroup of PSLp2,Rq. Hence,
Σg “ ΓzH and since H » PSLp2, Rq{K we have

Hence, the quotient map

π : ΓzPSLp2,Rq Ñ ΓzPSLp2,Rq{K “ Σg,

is a circle bundle over Σg. Since the forms θ1, θ2, α P Ω1pPSLp2,Rqq are left invariant
they descend to a symmetric Anosov pair and a contact form on ΓzPSLp2,Rq. It
remains to be shown that this bundle is the unit cotangent bundle ST˚Σg. Note that
the Reeb vector field R of α is tangent to K and so the bundle has Legendrian fibers.
As shown by Lutz [77] this implies that π : ΓzPSLp2,Rq Ñ Σg is the unit cotangent
bundle.

2.5 An obstruction to conformal approximation

In this section we consider obstructions for a (conformal) symplectic foliation to
be approximated by contact structures in ACSHyperpMq. We have seen that in
dimension three, by Theorem 2.2.21, only S1 ˆ S2 with the product foliation can-
not be approximated in this sense. As shown in Proposition 2.4.8 and Corollary
2.4.9, this obstruction propagates to higher dimensions using the notion of almost CS-
submanifold from Definition 2.4.4. In fact, as illustrated by the examples in Section
2.6.1, in higher dimensions are many (conformal) symplectic foliations containing an
almost CS-submanifold isomorphic to S1 ˆ S2.

In light of these examples we ask if almost CS-submanifolds form the only obstruction
to approximation. That is, if a CS-foliation cannot be approximated by contact
structures, does it contain an almost CS-submanifold whose induced foliation cannot
be approximated? The goal of this section is to proof the following result, showing
that the answer to this question is negative:

Theorem. There exists a CS-foliation (Definition 2.2.16) pF , ωq on S3 ˆ T2 that
does not contain any almost CS-submanifolds isomorphic to S1 ˆ S2, and cannot be
conformally approximated by contact structures in ACSHyperpMq.

The proof combines two results about loops of contactomorphisms. In Section 2.5.1
we recall the definition of a contact fibration, i.e. fibrations whose fibers consists of
contact manifolds. Analogous to the usual clutching construction for fibrations over
spheres, contact fibrations over S2 correspond to loops in the space of contactomor-
phisms of the fiber. We will see that the total space of the fibration admits a contact
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structure if and only if the corresponding loop is ”positive” ( Definition 2.5.12). As
shown in [46] contact structures which do not admit (contractible) positive loops are
special in the sense that the associated group of contactomorphisms amits a partial
order.
In Section 2.5.2 we show (closely following the arguments from [29]) that some con-
tact manifolds do not admit any positive loop. Hence, there exist contact fibrations
whose total space does not admit any contact structure.
Then, in Section 2.5.3 we construct a CS-foliation pF , ωq on T2 ˆ S3, with the prop-
erty that any contact structure close to it, in the space of almost CS-hyperplane fields
with the compact-open topology, would induce a contact fibration over S2, whose to-
tal space is (automatically) contact. However, we show that the (contact) fiber of
this contact fibration does not admit any positive loop, implying that pF , ωq cannot
be approximated.

2.5.1 Contact fibrations

We recall here the definition and some of the basic properties of contact fibrations,
as introduced in [75]. Given a smooth fibration, π : M Ñ B we denote by

T νM :“ ker dπ Ă TM,

the associated vertical bundle. Note that this is just the leafwise tangent bundle
TF of the foliation F of M by the fibers of π. If each of the leaves is endowed with
a contact structure, smoothly varying in the base coordinate, then π is a contact
fibration.

Definition 2.5.1. A contact fibration consists of a locally trivial fibration π : M Ñ

B and a (codimension-1) distribution ξν Ă T νM of the vertical bundle such that, for
each b P B,

ξb :“ ξν |Mb
Ă TMb,

defines a contact structure on the fiber Mb.

As usual, we say that π : pM, ξνq Ñ B, is orientable/oriented if each ξb is orientable
on Mb, or equivalently, if the line bundle T νM{ξnu is orientable/oriented. Note that
if π : M Ñ B is a fibration with oriented total space and base, then there is a
canonical orientation induced on the fibers. Indeed, this is the orientation making
the local trivializations φU : M |U

„
ÝÑ UˆF orientation preserving with respect to the

product orientation. For an oriented contact fibration we assume that this orientation
agrees with the one induced by ξb.

The notion of isomorphism for such fibrations is the obvious one:

Definition 2.5.2. An isomorphism of contact fibrations φ : pM, ξνq Ñ pN, ζνq
is a diffeomorphism φ : M

„
ÝÑ N , preserving the fibers and sending ξν to ζν . If the

contact fibrations are oriented, then we assume φ to be orientation preserving.

It is always possible to extend ξν to a (codimension-1) distribution ξ Ă TM . This
extension is not unique and does not necessarily define a contact structure on M .
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Definition 2.5.3. A full contact fibration π : pM, ξq Ñ B, consists of a fibration
π : M Ñ B together with a (codimension-1) distribution ξ Ă TM , such that

ξν :“ ξ X T νM,

defines a contact fibration in the sense of Definition 2.5.1. Moreover, we say π :
pM, ξq Ñ B is:

• non-negative: if ξ is cooriented, and for any α P Ω1pMq such that ξ “ kerα,
and inducing the correct orientation on TM{ξ, we have

α^ dαn ě 0.

• positive: if ξ is a cooriented contact structure on M . That is, for α P Ω1pMq
as above, we have

α^ dαn ą 0.

Note that given an extension ξ of ξν , there is a canonical isomorphism of line bundles
TM{ξ » T νM{ξν . Hence, the underlying contact fibration of a positive/non-negative
contact fibration is always oriented.

Definition 2.5.4. An isomorphism of full contact fibrations φ : pM, ξq Ñ
pN, ζq is an isomorphism φ as in Definition 2.5.2, which additionally sends ξ to ζ,
preserving the coorientations.

If ξ is part of a full contact fibration, then the usual curvature form cξ P Ω2pξ, TM{ξq,
defined on sections by

cξpX,Y q :“ rX,Y smod ξ, X, Y P Γpξq,

is non-degenerate when restricted to ξν . Therefore,

H :“ pξνqKcξ Ă ξ,

is a horizontal distribution, so that it defines a canonical connection on π : M Ñ B.

Proposition 2.5.5 ([75, 98]). Let π : pM, ξq Ñ B be a full contact fibration. Then,

H “ pξνqKKξ Ă ξ,

defines an (Ehresmann) connection whose parallel transport is by contactomorphisms.
Moreover, if ξν is co-oriented the parallel transport is coorientation preserving.

Proof. Since the construction is local, we can assume without loss of generality that
ξ “ kerα for some α P Ω1pMq. Since α is unique up to a (positive) conformal factor,
so is dα|ξ implying that

H :“ pξνqKdα Ă ξ,

depends only on ξ. Since ξν defines contact structures on the fibers of π, it follows
that dα|ξν is non-degenerate, so we have

ξ “ ξν ‘H.
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Furthermore, since ξν “ ξ X T νM , we have that H is horizontal, and defines a
connection.

To see that parallel transport is by contactomorphism let X# P XpMq denote the
horizontal lift of a vector field X P XpBq and ξν “ kerαν , where αν :“ α|T νM . Then
for any Y P Γpξνq we have

pLX#ανqpY q “ ιY pιX#dαν ` dpανpX#qqq “ dανpX#, Y q “ 0,

using that X# P H and H “ pξνqdα. This implies that LX#αν “ fαν for a nowhere
vanishing function f : M Ñ R. Since parallel transport depends continuously on the
endpoint of the path in the base, it follows that it preserves coorientation.

Let π : pM, ξq Ñ B be a full contact fibration. The parallel transport of the canonical
connection H, allows us to find local trivializations of π : M Ñ B which put ξ in
normal form. To define the local model let pF 2n´1, ξF :“ kerαF q be a (cooriented)
contact manifold, playing the role of the fiber. Furthermore, let H P C8pFˆD2q be a
smooth function which is of order r2 at r “ 0, where pr, θq. denote polar coordinates
on D2. More precisely, this means there exists a smooth function g P C8pF ˆ D2q

such that
H “ r2g.

Using this data define the contact manifold

(2.5.1.1) MpF,αF ,Hq :“
`

F ˆ D2, ξ :“ kerpα :“ αF `Hdθq
˘

,

which together with the obvious projection π : F ˆ D2 Ñ D2, defines a full contact
fibration referred to as the local model associated to pF, αF , Hq. Observe that the
contact condition for α equals:

α^ dαn :“ BrH αF ^ dαn´1
F ^ dr ^ dθ.

Hence, MpF, αF , Hq is a positive/non-negative contact fibration, as in Definition
2.5.3, if BrH is positive/non-negative.

Lemma 2.5.6. Let π : pM, ξq Ñ D2 be a full contact fibration. Denote by pF0, ξ0 :“
kerα0q the fiber of over 0 P D2. Then, there exists an isomorphism of full contact
fibrations

φ : pM, ξq ÑMpF0,α0,Hq,

where H P C8pD2 ˆ F0q is uniquely determined by ξ. Moreover, if ξ is non-negative
or positive, then so is BrH.

Proof. Choose a contact form α for ξ. Let α P Ω1pMq be a contact form representing
ξ, and let F0 :“ π´1p0q denote the fiber over 0 P D2. Using the canonical contact
connection H from Proposition 2.5.5, we obtain a trivialization of F ,

Using the parallel transport over radial paths in D2, of the canonical contact connec-
tion H from Proposition 2.5.5, we obtain a trivialization Φ : D2 ˆ F

„
ÝÑ M . More

precisely, let φpθ,rq : M0
„
ÝÑMpr,θq be the parallel transport of H, over the path

γθ : I Ñ D2, t ÞÑ pt, θq.
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Then, the trivialization is defined by:

Φ : D2 ˆ F ÑM, pr, θ, xq ÞÑ φθ,rpxq.

The parallel transport of H is coorientation preserving. It follows that in this trivi-
alization we can write:

α “ efα0 ` gdr ` hr
2dθ,

for some functions f, g, h P C8pD2 ˆ F0q. Furthermore, since the velocity vector of
γθ is equal to Br, the parallel transport φpθ,rq equals the flow of the horizontal lift of
Br. Hence, since H is contained in the kernel of α, in the trivialization Br must be in
the kernel of α, implying that g “ 0. If we define, H :“ e´fhr2, then we have

α “ ef pα0 `Hdθq,

concluding the proof.

Recall that given a contact manifold pM, ξq and a choice of contact form α P Ω1pMq
for ξ, there is a one-to-one correspondence between (time dependent) contact vector
fields Xt P XpMq, and 1-parameter families of function Ht P C

8pMq.

Lemma 2.5.7. [52] Let α P Ω1pMq be a contact form representing a contact structure
ξ, and R P XpMq the associated Reeb vector field. Then, for (time dependent) contact
vector fields Xt P XpMq and 1-parameter families of functions Ht P C

8pMq, the
assignments

• Xt ÞÑ Ht :“ αpXtq;

• Ht ÞÑ Xt uniquely defined by:

αpXtq “ Ht, ιXtdα “ dHtpRqα´ dHt,

define a one-to-one correspondence. We say that Xt is the Hamiltonian vector
field of Ht.

The local model also provides an explicit description of the parallel transport of the
contact connection in terms of the triple pF, αF , Hq.

Lemma 2.5.8. Consider π :MpF, αF , Hq Ñ D2 and the associated contact connec-
tion H from Proposition 2.5.5. Then:

(i) The parallel transport along radial paths is equal to the identity;

(ii) For a point pr0, θ0q P D2zt0u, define a path

γ : S1 Ñ D2, t ÞÑ pr0, θ0 ´ tq,

and a 1-parameter family of functions

Ht :“ H|π´1pγptq P C
8pF0q.

Then, the parallel transport along γ is given by the flow of the Hamiltonian
vector field Xt P XpF q, of Ht, as in Lemma 2.5.7.
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Proof. By definition, the parallel transport over a path γ, equals the flow of the
(unique) horizontal lift of the velocity vector of γ. Hence, it suffices to compute
the horizontal lifts of Bt and ´Bθ for the model MpF, αF , Hq as defined in Equation
2.5.1.1. Since, the extension ξ of αF is defined as the kernel of

α “ αF `Hdθ,

it follows immediately that Br, viewed as a vector field on F ˆ D2, is the horizontal
lift of Br, proving the first claim. Similarly, observe that

αpXHt ´ Bθq “ Ht ´Ht “ 0,

implying that the horizontal lift of ´Bθ is given by XHt ´ Bθ, proving the second
claim.

Before stating the clutching construction for contact fibrations, let us recall the
classical construction for smooth fiber bundles. Let F be a smooth manifold playing
the role of the fiber, and φ : Sn´1 Ñ DiffpF q a family of diffeomorphisms. We use
the notation φx :“ φpxq P DiffpF q, decompose the sphere into the upper and lower
hemisphere

(2.5.1.2) Sn :“ Dn YSn´1 Dn.

Then, we can define a fiber bundle over Sn by

M :“ Dn ˆ F \ Dn ˆ F {px, yq „ px, φxpyqq @px, yq P BDn ˆ F,

endowed with the obvious projection π : M Ñ Sn. Conversely, given a fibration
π : M Ñ Sn, with fiber F , we can restrict it to each of the pieces in the decomposition
from Equation 2.5.1.2. Thus, we obtain two fibrations over the disk Dn, which can
be trivialized. Therefore, the transition functions yield a family of diffeomoprhisms
φ : Sn´1 Ñ DiffpF q, parametrized by the boundary BDn. It can be shown, see for
example [66], that these constructions induce a bijection between πn´1pDiffpF qq and
isomorphism classes of fiber bundles over Sn with fiber F .

The same proof works for contact fibrations, replacing F by a contact manifold
pF, ξF q and the group of diffeomorphisms DiffpF q by the group of contactomorphisms
ContpF, ξF q of pF, ξF q. The precise statement is as follows:

Proposition 2.5.9. Let pF, ξF q be a contact manifold, and ContpF, ξF q its group of
contactomorphisms. Then there are one-to-one correspondences

πn´1pContpF, ξF qq » π0

˜

contact fibrations over
Sn with fiber pF, ξF q

¸

»

#

contact fibrations over
Sn with fiber pF, ξF q

+

M

„,

where the equivalence is up to fiber preserving diffeomorphism.

A similar result holds for positive contact fibrations, as defined in Definition 2.5.3.
Observe, that on a cooriented contact manifold pM, ξq the tangent space at each point,
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is divided into a positive and negative region seperated by the contact hyperplane.
That is, if (locally) ξ “ kerα, for a positive contact form α, then

TxM “ tX P TxM | αpXq ą 0u Y ξx Y tX P TxM | αpXq ă 0u.

This allows us to define positive vector fields, and isotopies.

Definition 2.5.10. Let pM, ξq be a cooriented contact manifold. Then X P XpMq is
said to be positive vector field if

X mod ξ P ΓpTM{ξq,

is a strictly positive section of the oriented line bundle TM{ξ.

Similarly, we can define non-negative, and negative vector fields. For example Lemma
2.5.7 implies that a contact vector field is positive if and only if its associated Hamil-
tonian function is. Integrating positive vector fields, we obtain positive diffeomor-
phisms.

Definition 2.5.11. Let pM, ξq be a cooriented contact manifold. Then, φt P DiffpMq,
t P r0, 1s is said to be a positive isotopy, if its infinitesimal generator Xt P XpMq,
defined by

d

dt
φt “ Xt ˝ φt,

is a positive vector field as in Definition 2.5.10.

Again, non-negative, and negative isotopies are defined similarly. Furthermore, this
definition also makes sense for loops of diffeomorphisms and contactomorphisms.

Definition 2.5.12. A positive loop of contactomorphisms φ : S1 Ñ ContpM, ξq
is positive if its infinitesimal generator is a positive contact vector field as in Definition
2.5.10.

It follows from Lemma 2.5.8 that the parallel transport around the boundary of the
local model MpF, αF , Hq from Equation 2.5.1.1 is a positive loop of contactomor-
phisms if and only if ξ is a contact structure. As shown in the proof below, the
transition functions in the clutching construction can be expressed in terms of this
parallel transport. Hence, we obtain the following specialization of Proposition 2.5.9.

Proposition 2.5.13. Let pF, ξF q be a co-oriented contact manifold. Then there are
one-to-one correspondences

π0

˜ Positive loops of
contactomorphisms

of pF, ξF q

¸

» π0

˜ Positive contact
fibrations over Sn
with fiber pF, ξF q

¸

»

# Positive contact
fibrations over Sn
with fiber pF, ξF q

+

M

„,

where the equivalence is up to fiber preserving diffeomorphisms. Moreover, the same
result holds when we consider non-negative loops and contact fibrations.
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Proof. Let D˘ denote the disk D2 with the standard and opposite orientation respec-
tively. Then the identification of their boundaries S1 “ BD` » BD´ is by orientation
reversing diffeomorphism and we have

S2 “ D` YS1 D´,

as an oriented manifold. Let pM, ξq Ñ S2 be a positive contact fibration with fiber
pF, ξF q. We fix a co-oriented contact form αF P Ω1pF q for ξF and a basepoint θ0 P S

1

viewed as the equator of S2. By choosing identifications pF˘, ξ˘q » pF, ξF q, where
F˘ denote the fibers over the north south pole, and applying Lemma 2.5.6 we find
(oriented) trivializations

Φ˘ : M |D˘
„
ÝÑ D˘ ˆ F.

We can identify ξ “ kerpαF ` H˘dθq, with H˘ P C
8pD˘ ˆ F q as in Lemma 2.5.6.

Note that Φ˘ are orientation preserving diffeomorphisms with respect to the product
orientation on D˘ ˆ F . In particular, by the positivity condition this implies that
BrH` ą 0 and BrH´ ă 0.

The composition Φ´ ˝ pΦ`q
´1 gives a loop φ : S1 Ñ ContpF, ξF q and we can assume

that the identifications F˘
„
ÝÑ F are chosen in such a way that φpθ0q “ id. We have

to show that φ defines a positive loop. Let γ˘ : R Ñ BD˘ be defined by t ÞÑ p1, tq.
Observe that for θ P S1 we have

φpθq “ Pθ0,θγ´ ˝ pPθ0,θγ` q´1,

where Pθ0,θγ´ denotes parallel transport over the path γ´ from time θ0 to time θ using
the contact connection. By Lemma 2.5.8 this is just the composition of the flows of
XH` and ´XH´ which are both positive paths. Since the composition of two positive
paths is a positive path we conclude that φ : S1 Ñ Cont`pF, ξF q is a positive loop.

Conversely, let φθ P ContpF, ξF q be a positive loop and denote by φtReeb the flow of
the Reeb vector field R P XpF q. The loop can be written as the composition of two
positive paths

φθ “ pφθ ˝ φ
´εθ
Reebq ˝ φ

εθ
Reeb.

Indeed, for ε small enough the composition θ ÞÑ φθ ˝ φ
´εθ
Reebq is still a positive path.

The associated time dependent Hamiltonians are periodic and so define functions
H˘ : F ˆS1 Ñ R`. Gluing the associated local models from Lemma 2.5.6, we obtain
a positive contact fibration over S2.

Both constructions can be done parametrically, giving the first equivalence between
positive loops up to homotopy and positive contact fibrations up to homotopy. For
the second correspondence note that for a contact fibration π : M ˆ r0, 1s Ñ S2 ˆ

r0, 1s parallel transport gives a fiber preserving diffeomorphism between M ˆt0u and
M ˆ t1u.

Positive loops of contactomorphisms play an important role in the study of contac-
tomorphism groups. In [46] it is shown that there exists a partial order on the group
of contactomorphism ContpM, ξq provided that there does not exist a positive loop
of contactomorphisms.
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Definition 2.5.14. A contact manifold pM, ξq is called orderable if there does not
exist a contractible positive loop of contactomorphism.

Note that in the above definition we mean contractible within the space of all con-
tamorphisms ContpM, ξq, not contractible within the space of positive loops of con-
tactomorphisms. The existence of a single contractible positive loops implies the
existence of many positive loops.

Lemma 2.5.15. Let pM, ξq be a closed contact manifold, then the following are true:

(i) If there exists a contractible positive loop of contactomorphism, then any class
in π1pContpM, ξqq can be represented by a positive loop.

(ii) If there exists a class c P π1pContpM, ξqq for which both c and c´1 can be repre-
sented by a positive loop, then there exists a contractible positive loop.

Hence, M is orderable if and only if there exists a class in π1pContpM, ξqq which
cannot be represented by a positive loop.

Proof. Let rφts P π1pContpM, ξqq be a loop of contactomorphism, and rψts “ r0s P
π1pContpM, ξqq a positive contractible loop of contactomorphisms. For k P N, con-
sider the loop of contactomorphisms

(2.5.1.3) Φt,k :“ ψt ˝ ¨ ¨ ¨ ˝ ψt ˝ φt P ContpM, ξq, t P S1,

where ˝ denotes composition of contactomorphisms, not concatenation of loops, and
the composition is taken k-times. Recall that a loop of contactomorphisms is pos-
itive if and only if the Hamiltonian function of the infinitesimal generator, as in
Lemma 2.5.7 is a positive function. Furthermore, given positive loops φt, and ψt, with
Hamiltonian functions Hpφtq and Hpψtq, and such that φ˚t α “ eftα, for functions
ft P C

8pMq, then the composition φt ˝ψt is again a positive loop, with Hamiltonian
function

Hpφt ˝ ψtqpx, tq “ Hpφtqpx, tq ` e
´ftHpψtqpφtpxq, tq.

Hence, if Hpψtq is positive, and k is sufficiently large, then Φt,k, as defined in Equation
2.5.1.3 defines a positive loop, since the associated Hamiltonian is positive. Since, ψt
is contractible, we have rΦt,ks “ rφts, which proves the first claim.

For the second claim, observe that the concatenation of two positive loops is again
a positive loop. Indeed, on the infinitesimal level this amounts to concatenating the
paths of positive vector fields, which yields again a path of positive vector fields.
Hence, suppose given a loop of contactomorphism φt P ContpM, ξq both rφts and
rφts

´1, (where the latter denotes the opposite path) can be represented by positive
loops. Then, the concatination rφts ¨ rφts

´1 “ rφt ¨ pφtq
´1s “ r0s can be represented

by a positive loop which is contractible.

Combining the lemma above with Proposition 2.5.13, we obtain contact fibrations
π : M Ñ S2, whose fiberwise contact structure cannot be extended to a contact
structure on M .
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Corollary 2.5.16. Let pF, ξF q be an orderable contact manifold, as in Definition
2.5.14. Then, there exists a contact fibration π : pM, ξνq Ñ S2 with fiber pF, ξF q
which cannot be extended to a positive contact fibration as in Definition 2.5.3.

Proof. By Lemma 2.5.15 there exists a class rφs P π1pF, ξF q which cannot be repre-
sented by a positive loop of contactomorphisms. Let π : pM, ξνq Ñ S2 be the contact
fibration associated to rπs under the correspondence of Proposition 2.5.9. If ξν can
be extended to a contact structure on M , then by Proposition 2.5.13, rφs can be
represented by a positive loop, giving a contradiction.

Of course, if a manifold admits no contact structures, then there exist no sequences
of contact structures converging to a foliation. Thus, we can use the above idea to
construct foliations which cannot be approximated by contact structures. However,
observe that Corollary 2.5.16 does not state that M admits no contact structures,
only that there exists no contact structures extending ξν . Hence, we need a compat-
ibility condition on the foliation ensuring that any contact structure close to it, is an
extension of ξν .

Definition 2.5.17. Let π : pM, ξνq Ñ B be a fibration. An almost CS-folation pF , ωq
on M is said the be fibered by π, if for all b P B, the fiber Mb is an almost CS-
submanifold as in Definition 2.4.4.

Furthermore, the condition that there exist no contact structures on M can be weak-
ened. It suffices to require that there exist no contact structures close to pF , ωq in
ACSHyperpMq. To make this precise, recall that given a contact manifold pM, ξq,
the forgetful map ContpM, ξq Ñ DiffpMq induces an injection in homotopy

π1pContpM, ξqq Ñ π1pDiffpMqq.

Definition 2.5.18. Let pF , ωq be an almost CS-foliation on M , ξ a contact structure
on M , and rφs P π1pDiffpMqq. We say that:

• rφs and ξ are incompatible, if rφs is not in the image under the above inclusion
of a class in π1pContpM, ξqq that can be represented by a positive loop.

• rφs and pF , ωq are incompatible, there is a neighborhood U of pF , ωq in the
compact-open topology on on ACSHyperpMq, such that φ and ξ are incompatible
for any contact structure ξ P U .

The notions of a contact structure/almost CS-foliation compatible with a loop rφs P
π1pDiffpMqq are defined analogously.

Remark 2.5.19. The above definitions make use of the compact-open topology on
ACSHyperpMq. The reason for this is that the proof of Theorem 2.5.20 depends on
Lemma 2.4.5. That is, a contact structure sufficiently close to a fibered almost CS-
foliation induces a contact structure on each of the fibers. Recall from Remark 2.4.6,
that this result also holds for conformal convergence, and type I/type II deformations.
Hence, the above definition and Theorem 2.5.20 can be restated using these the
relevant topologies for these type of approximations
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Furthermore, here we only consider approximating almost CS-foliations by contact
structures. However, in principle, the whole discussion goes through also when
considering approximations of general almost CS-hyperplane fields by contact struc-
tures. 4

With these definitions, we can generalize the observation from Corollary 2.5.16.

Theorem 2.5.20. Assume we have the following data:

(i) A fibration π : M Ñ S2, with fiber F , corresponding to the class rφs P π1pDiffpF qq;

(ii) A fibered almost CS-foliation pF , ωq on M , as in Definition 2.5.17, with induced
almost CS-foliation pFF , ωF q on the fiber F .

If rφs and pFF , ωF q are incompatible, then pF , ωq cannot be (conformally) approxi-
mated by contact structures.

Remark 2.5.21. Note that the converse of this theorem is not true. Suppose that we
have the same data as in piq and piiq of the above theorem. Furthermore, assume that
there is a sequence of contact structures ξF,k, k P N on F , converging to pFF , ωF q,
and such that there exist positive loops ψk : S1 Ñ ContpF, ξF,kq satisfying

rψks “ rφs P π1pDiffpF qq.

Then it follows from Proposition 2.5.13, that there is a sequence of contact structures
ξk on M . By construction the restriction of ξk to the fibers of π, converge to pFF , ωF q,
but in general the ξk do not need to converge to pF , ωq. 4

Proof. UsingLemma 2.4.5 any contact structure sufficiently close to pF , ωq inside
ACSHyperpMq, induces a contact structure ξb :“ ξ X TNb on Nb for each b P S2.
That is, it induces the structure of a positive contact fibration on π : M Ñ S2, see
Definition 2.5.3. This structure is equivalent to a positive loop of contactomorphisms
on N by Proposition 2.5.13 and since the underlying fibration must be isomorphic
to π : M Ñ S2 this loop represents the class rφs. That is, pFF , ωF q and rφs are
compatible, so we arrive at a contradiction.

We emphasize that even though both the proofs of Proposition 2.4.8 and Theorem
2.5.20 make use of Lemma 2.4.5, they are giving different obstructions. The condition
that pFF , ωF q and rφs on the fiber of a fibration are incompatible, as in Definition
2.5.18, or even that pFF , ωF q is completely incompatible as in Definition 2.5.22 below,
does not imply that pFF , ωF q cannot be approximated by contact structures. In fact,
in our main example constructed in Section 2.5.3, the foliation on the fiber has many
contact structures approximating it.

Of course, if there does not exist any contact structure on N which is sufficiently
close to pFN , ωN q and a positive loop, then the hypothesis of the above theorem are
satisfied.
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Definition 2.5.22. An almost CS-hyperplane field pF , ωq on a manifold M is said
to be completely incompatible, if there exist a neighborhood U of pF , ωq in the
compact-open topology on ACSHyperpMq, such that any contact structure ξ P U
admits no positive loops.

Equivalently, this means that any contact structure on M sufficiently close to pF , ωq
is incompatible with every loop of diffeomorphism rφs P DiffpMq, as in Definition
2.5.18.

Corollary 2.5.23. Let π : M Ñ S2 be a fibration, and pF , ωq a fibered almost CS-
foliation on M , as in Definition 2.5.17. If the induced almost CS-foliation on the fiber
pFF , ωF q is completely incompatible, then pF , ωq cannot be approximated by contact
structures.

2.5.2 Orderability of T3

Although Theorem 2.5.20 is very useful from a theoretical perspective, in practice the
main difficulty is finding examples where the hypothesis of the theorem are satisfied.
The reason for this is twofold. Firstly, as we saw in Lemma 2.5.15, Definition 2.5.18
is closely related to the notion of orderability. It is not known in general when a
contact manifold is orderable, so we have a limited number of possible examples to
look at. Secondly, both Definition 2.5.18 and Definition 2.5.22, are a condition on
all contact structures (in a neighborhood of the foliation). Thus, in order to check
this condition is satisfied, we want to consider foliations which only admit a limited
number of contact structures close to it.

The rest of this section is devoted to proving the following result, which provides the
fiber manifold for the examples of Theorem 2.5.20 constructed in Section 2.5.3.

Theorem 2.5.24. Any Reebless foliation endowed with any leafwise symplectic form
(Definition 2.5.25) on T3 is completely incompatible (Definition 2.5.22).

Let us start by recalling the definition of a Reebless foliation. As in Chapter 1, that
by a 3-dimensional Reeb component we mean the foliation FReeb on S1ˆD2 obtained
by turbulizing the product foliation

F “
ď

zPS1
tzu ˆ D2,

so that the boundary S1 ˆ S2 becomes a leaf, see also Equation 2.6.4.1.

Definition 2.5.25. We say that a foliation F on M is Reebless if it does not contain
pS1 ˆ D2,FReebq as a foliated submanifold.

Observe that a foliation F with a Reeb component does not admit any transverse
loops. Indeed, the coorientation of the boundary leaf S1ˆS1 implies that a transverse
loop has to be contained in the Reeb component, or completely disjoint from it. Thus,
the above definition is a generalization of taut foliations as in Definition 2.4.21, since
any taut foliation must be Reebless.
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Roughly speaking, the reason for requiring the foliation to be Reebless is that such
foliations have very few contact structures close to them. To make this more precise,
recall that there is a dichotomy of the space of all contact structures into tight and
overtwisted ones. In dimension-3 these are defined as follows. On R3 with Cylindrical
coordinates pr, θ, zq the standard overtwisted contact structure ξot is defined as
the kernel of the contact form

(2.5.2.1) αot :“ cosprπqdz ` r sinprπqdθ.

Then, the disk

Dot :“ tr ď π, z “
a

1´ r2u Ă pR3, ξotq

is called the standard overtwisted disk.

Definition 2.5.26. A 3-dimensional contact manifold pM, ξq is said to be over-
twisted if it contains Dot as an almost CS-submanifold, and tight if it does not.

It is possible, see [83], that given a tight contact manifold pM, ξq the pullback of ξ

to the universal cover π : xM ÑM , becomes overtwisted. Hence, we say that a tight
contact structure is universally tight if its pullback to the universal cover remains
tight.

The definitions of overtwisted/tight contact structures and foliations with/without
Reeb foliations are very similar, in the sense that they both require the existence/absence
of a certain local behaviour. This analogy is made precise by the following result of
Bowden, which is a generalization of Proposition 2.7.1 from [47], saying that any
contact structure C0-close to a taut foliation is tight.

Theorem 2.5.27 ([17]). Any contact structure C0-close to a Reebless foliation is
(universally) tight.

Moreover, tight contact structures on T3 have been completely classified by Kanda,
so that the problem reduces to checking there exists no positive loops of contacto-
morphisms for any of the following contact structures:

Theorem 2.5.28 ([69]). Any tight contact structure on the 3-torus T 3px, y, zq is
contactomorphic to one of the following

(2.5.2.2) ξk :“ ker
´

αk :“ cospkzqdx` sinpkzqdy
¯

,

where k P N is a positive integer. Moreover, ξk and ξ` are contactomorphic if and
only if k “ `.

Observe that pT3, ξ1q is contactomorphic to pST˚T2, ξstq, the unit cotangent bundle
of the torus. For k ą 1, define the map

πk : T3 Ñ T3, px, y, zq ÞÑ px, y, kzq.

Then, it follows that any tight contact structure on T3 is the pullback of pT3, ξstq
under one of the covering maps πk.
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By the preceding discussion, in order to complete the proof of Theorem 2.5.24 it
remains to be shown that the contact manifolds pT3, ξkq, k P N , do not admit positive
loops. To see this, we first relate the existence of positive loops of contactomorphisms
to the existence of certain families of Legendrian submanifolds. Then, we use results
from the theory of generating functions to show the existence of such Legendrian
submanifolds is obstructed on pT3, ξkq.

Recall that given a contact manifold pM2n`1, ξq we say that L is a Legendrian sub-
manifold if

dimL “ n, TL Ă ξ|L.

That is, L is an integral submanifold of ξ of the maximal possible dimension.

Definition 2.5.29. A path of Legendrian submanifolds in a contact manifold
pM, ξq is a family Lt Ă M , t P r0, 1s, such that Lt is an (embedded) Legendrian
submanifold of ξ.

A parametrization of Lt is a map φ : L0 ˆ r0, 1s Ñ M such that φtpL0q “ Lt. Any
such parametrization defines a section of the normal bundle Xt P ΓpνpLtqq by

Xtpφtpxqq “

„

d

dt

ˇ

ˇ

ˇ

t“0
φtpxq



, x P L0,

called the velocity vector of Lt. Note that given a fixed path Lt, any two parametriza-
tions differ by an isotopy of L0, implying that the velocity vector is independent of
the choice of parametrization.

If α is a contact form for ξ, and L Ă pM, ξq a Legendrian, then it follows that
TL Ă kerα. Hence, for any section of the normal bundle, X P ΓpνpLqq the function
αpXq P C8pMq is well-defined.

Definition 2.5.30. A path of Legendrian submanifolds Lt, t P r0, 1s, in a cooriented
contact manifold pM, ξ :“ kerαq is said to be positive if its velocity vector Xt P

ΓpνpLtqq satisfies

αpXtq ą 0.

As claimed above the existence of a positive loop of contactomorphisms, as in Defi-
nition 2.5.12 implies that each Legendrian can be displaced from itself by a positive
path as in Definition 2.5.30.

Lemma 2.5.31. Let π : M Ñ B be a fibration, and ξ :“ kerα a cooriented con-
tact structure on a compact manifold M such that the fibers of π are Legendrian
submanifolds. If φ : S1 Ñ ContpM, ξq is a positive loop of contactomorphisms, then:

(i) There exists a positive loop of embedded Legendrians ψ : Lˆ S1 Ñ pM, ξq;

(ii) There exists a positive path of embedded Legendrians between different fibers of
π.
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Proof. Assume that there exists a positive loop of contactomorphisms φt P ContpM, ξq,
t P S1. Since a contactomorphism sends Legendrians to Legendrians, the map

ψ : Lˆ S1 ÑM, px, tq ÞÑ φtpxq,

defines a parametrization for the loop of Legendrians Lt :“ φtpLq. Furthermore, it
is positive since the velocity vector of ψ is equal to the Hamiltonian vector field of φ
which is positive.

For the second statement, observe that by the compactness of M we can assume that
the Hamiltonian function of φt satisfies Ht ą ε for a constant ε ą 0. Furthermore,
we can assume

φ˚t α “ eftα,

with eft ă C for a constant C ą 0.

Now, choose a path of Legendrian submanifolds Ft, t P r0, 1s, consisting of fibers
of π, between two distinct fibers F0 and F1. By the isotopy extension theorem for
isotropic submanifolds, see for example [53], there exists a path of contactomorphisms
ψt P ContpM, ξq such that Ft “ ψtpF0q. In general ψt is not a positive path of
contactomorphisms, however by choosing b0 and b1 close enough we can assume that
the Hamiltonian function Gt of ψt satisfies

Gt ą
´ε

C
.

Hence, the composition ψt ˝ φt is a path of contactomorphisms, and its Hamiltonian
function given by

Gt ` e
´ftHt ˝ ψ

´1
t ,

is strictly positive. Thus ψt ˝ φtpF0q parametrizes a positive path of Legendrian
embeddings connecting two distinct fibers of π.

It follows directly from Equation 2.5.2.2 that for each tight contact structure ξk on
T3, the fibration

π : T3 Ñ T2, px, y, zq ÞÑ px, yq,

has Legendrian fibers. Note that under the identification T3 » ST˚T2, this fibration
is just the usual projection onto T2. Thus, the above lemma applies to pT3, ξkq, and
in combination with the following result completes the proof of Theorem 2.5.24.

Theorem 2.5.32. There exists no positive path of Legendrian embeddings between
different fibers of π : pT3, ξkq Ñ T2, for any k P N.

For k “ 1, we have that pT3, ξ1q is isomorphic to pST˚T2, ξcanq the unit cotangent
bundle of the torus, with the standard contact structure. Thus, in this case the result
follows from:

Theorem 2.5.33 ( [29]). There exists no positive path of Legendrian embeddings
between two different fibers of π : ST˚M Ñ M provided the universal cover of M is
Rn.
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One of the main ingredients in the proof of this theorem is the so called ”hodo-
graph transformation” which is a contactomorphism between the first jet bundle
pJ1pS1q, ξcanq and pST˚R2, ξ1q. For the proof Theorem 2.5.32, we show that this
isomorphism can be generalized to obtain contactomorphisms between pJ1pS1q, ξcanq

and pST˚R2, ξkq. Other than this the proofs are essentially the same.

To define the hodograph transformation, we need explicit coordinates on J1pS1q and
ST˚R2. Let x¨, ¨y denote the standard inner product on R2, and identify the tangent
space of the circle with

TqS1 “ tv P R2 | xq, vy “ 0u.

Under the identification J1pS1q » T˚S1 ˆ R, the standard contact structure corre-
sponds to

αst :“ dz ´ λcan,

where λcan P Ω1pT˚S1q is the tautological 1-form. Thus, in coordinates we have:
`

T˚S1 ˆ R, αst
˘

“
`

tpq, p, zq P R2 ˆ R2 ˆ R | xq, qy “ 1, xq, py “ 0u, αst “ dz ´ pdq
˘

.

That is, the point pq, pq corresponds to the covector xp, ¨y P T˚q S1 explicitly defined
by

xp, ¨y : TqS1 Ñ R, v ÞÑ xp, vy.

Similarly, we have a coordinate description of the unit cotangent bundle
`

ST˚R2, αk
˘

“
`

tpq, pq P R2 ˆ R2 | xp, py “ 1u, αk “ ρkppqdq
˘

,

where ρk : R2 Ñ R2 is as in Definition 2.5.34. As before, we identify pq, pq with
xp, ¨y P ST˚q R2.

Definition 2.5.34. For any k P N the k-Hodograph transformation is defined to
be the map

hk : pJ1pS1q, αstq Ñ pST˚R2, αkq, pq, p, zq ÞÑ pzρkpqq `
ρkppq

k
, qq,

where ρk : R2 Ñ R2 is defined in polar coordinates by pr, θq ÞÑ pr, kθq.

For k “ 1, this is the usual hodograph transform defined by

(2.5.2.3) h1 : J1pS1q Ñ ST˚R2, pq, p, zq ÞÑ pzq ` p, qq.

The base of J1pS1q and the fiber over the origin of ST˚R2 are both Legendrian circles
which the hodograph transformation maps to each other. The other fibers of ST˚R2

get mapped identified with the graphs of the following functions. For x P R2, define
the function

(2.5.2.4) `x,k : S1 Ñ R, q ÞÑ xqk, xy.

Then, the hodograph transformation hk has the following properties:

Proposition 2.5.35. For any k P N, the map hk : pJ1pS1q, αstq Ñ pST˚R2, αkq, as
in Definition 2.5.34, is a contactomorphism sending the graph Γpj1hx,kq Ă J1pS1q

diffeomorphically to the fiber π´1pxq Ă ST˚R2.
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Proof. It is easily seen that hk is a diffeomorphism and to check that it preserves the
contact forms we parametrize the circle by q “ pcospθq, sinpθq, θ P r0, 2πs. In these
coordinates the map becomes:

hkpq, p, zq “ hkpcospθq, sinpθq,´p sinpθq, p cospθq, zq

“ pz cospkθq ´
p

k
sinpkθq, z sinpkθq `

p

k
cospkθq, cospθq, sinpθqq.

We compute that the contact form is preserved:

h˚kpαkq “ cospkθqd
´

z cospkθq ´
p

k
sinpkθq

¯

` sinpkθqd
´

z sinpkθq `
p

k
cospkθq

¯

“ dz ´ pdθ “ αst.

To check that hk maps the graph of j1`x,k diffeomorphically onto the fiber over x
note that in the above coordinates j1`x,k : S1 Ñ J1pS1q is given by

j1`x,kpcospθq, sinpθqq “ pcospθq, sinpθq, kx sinpkθq sinpθq ´ yk cospkθq sinpθq,

´ kx sinpkθq cospθq ` yk cospkθq cospθq, x cospkθq ` y sinpkθqq.

Hence, the composition hk ˝ j
1lx,k is equal to:

hk ˝ j
1`x,kpqq “

´

px cospkθq ` y sinpkθqq cospkθq `
xk sinpkθqyk cospkθq sinpkθq

k
,

px cospkθq`y sinpkθqq sinpkθq ` p´xk sinpkθq ` yk cospkθqq cospkθq, cospθq, sinpθq
¯

“

´

x
`

cos2pkθq ` sin2
pkθq

˘

, y
`

cos2pkθq ` sin2
pkθq

˘

, cospθq, sinpθq
¯

“ px, y, cospθq, sinpθqq.

Proof of Theorem 2.5.32. The proof follows exactly the same strategy as that of The-
orem 2.5.33 from [29]. The only difference is that for Theorem 2.5.32 the hodograph
transform from Equation 2.5.2.3 has to be replaced by the one from Definition 2.5.34,
for the case k ą 1.

We give a sketch of the proof. Assume that the statement is false, and let Lt Ă ST˚T2,
t P r0, 1s, be a path of Legendrian embeddings between distinct fibers. Using the
projection of the universal cover π : R2 Ñ T2, this path can be lifted to a path of
Legendrian embeddings in pST˚R2, αkq. Since αk is translation invariant in the base
coordinates, we can assume without loss of generality that L0 is the fiber over 0 P R2,
and L1 is the fiber over some x ‰ 0 P R2.

By Proposition 2.5.35, using the hodograph transform, this path corresponds to a
path of Legendrian embeddings between the graph of j1`0,k, which is just the image
of the zero section, and the graph of j1`x,k. Note that lx,k is a Morse function with
2k critical points with critical values ˘||x||, so that at the end of the path all Viterbo
numbers must be ˘||x||. On the other hand l0 is constant equal to zero, so that at the
start of the path all Viterbo numbers (see [29]) must be 0. This contradicts the fact
that along a positive path of Legendrian embeddings (given by a generating family
quadratic at infinity) the Viterbo numbers are strictly increasing.
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2.5.3 An example

With the results of the previous two sections, we now return to the question posed at
the beginning of the chapter; Is there an obstruction for an almost CS-foliation pF , ωq
to be approximated by contact structures, different than the one from Proposition
2.4.8? As we have seen in Theorem 2.5.20, there is another obstruction based on
the non-existence of positive loops of contactomorphisms. We now show that these
obstructions are different, by providing explicit examples.

We first observe that there exist symplectic foliations which are obstructed by Propo-
sition 2.4.8, but not by Theorem 2.5.20.

Proposition 2.5.36. The product of the Reeb foliation with the sphere,

`

S3 ˆ S2,F :“ FReeb ˆ S2
˘

,

contains an almost CS-submanifold S1 ˆ S2, but does not satisfy the conditions of
Theorem 2.5.20.

Proof. Since the leaves are products of surfaces, it is clear that F carries a leafwise
symplectic structure, denoted by ω P Ω2pFq. Furthermore, it follows directly from
Corollary 2.4.9 that pF , ωq cannot be approximated by contact structures.

On the other hand, the obvious projection π : S3ˆS2 Ñ S2 is part of a contact fibra-
tion, as in Definition 2.5.1, with fiber the standard contact sphere pS3, ξstq. Clearly,
pF , ωq is fibred by π as in Definition 2.5.17. Since we are considering the trivial fi-
bration, the associated loop of diffeomorphisms is the trivial loop rids P π1pDiffpS3qq.
By the following lemma, this loop is compatible with pF , ωq, so that the conditions
of Theorem 2.5.20 are not satisfied.

Lemma 2.5.37. Every open neighborhood of the symplectic foliation pS3,FReeb, ωq,
in the compact-open topology on ACSHyperpMq, contains a contact structure which
is compatible with the trivial loop rids P π1pDiffpS3qq, conform Definition 2.5.18.

Proof. As shown in [39], the standard contact spheres pS2n`1, ξstq are not orderable,
i.e. they admit a contractible, positive loop of contactomorphisms, as in Definition
2.5.12. Hence, the trivial loop rids P π1pDiffpS3qq is compatible with ξst as in Defini-
tion 2.5.18. As shown in Chapter 1, ξst can be deformed into FReeb. More precisely,
there exists a path of contact structures ξt, t P p0, 1s, such that ξ0 “ ξst, and ξt
converges to FReeb. By Gray stability, ξt is contactomorphic to ξst for any t ą 0, and
hence non-orderable. Since, the path converges to FReeb this means that every open
neighborhood of FReeb contains a non-orderable contact structure.

The following theorem shows that the converse also holds: there exists a CS-foliation
obstructed by Theorem 2.5.20 but not by Proposition 2.4.8.

Theorem 2.5.38. There exists a CS-foliation, as in Definition 2.2.16, pF , ωq on
S3ˆT2 that does not contain any almost CS-submanifolds isomorphic to S1ˆS2, and
cannot be approximated by contact structures.
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The remainder of this section consists of the proof of this theorem. We first construct
the CS-foliation. Let h : S3 Ñ S2 denote the Hopf fibration, and consider the fibration

π : S3 ˆ S2 Ñ S2, πpx, yq :“ hpxq,

which has fiber T3. For any (oriented, codimension-1) foliation by lines L on T2

consider the product foliation

(2.5.3.1)
`

S3 ˆ T2,FL :“ S3 ˆ L
˘

,

whose basic properties are listed in the following lemma.

Lemma 2.5.39. Let FL on the total space of π : S3 ˆ T2 Ñ S2 be as above then:

(i) There is a leafwise CS-form defined by

ω :“ dθαst “ dαst ´ θ ^ αst.

Here, θ P Ω1pLq is a nowhere vanishing 1-form, and αst P Ω1pS3q is the standard
contact form.

(ii) Each fiber of π is an almost CS-submanifold for pFL, ωq and the induced CS-
foliation on the fiber T3px, y, zq is given by the product foliation

pS1 ˆ L,dx^ θq.

(iii) There does not exist any almost CS-submanifold S1 ˆ S2 in pFL, ωq.

Proof. (i) Since L is a 1-dimensional oriented foliation on T2 there exists θ P Ω1pT2q

which restricted to the leaves of L is nowhere vanishing, positive, and closed for
dimensional reasons. Note that any two such forms are related by a positive
conformal factor. As in Example 2.2.15 it is immediate that dθαst defines a
leafwise CS-structure.

(ii) The fiber of π is equal to S1 ˆ T2 where S1 Ă S3 is the fiber of the Hopf
fibration. Hence, FL is transverse to the fibers and the induced foliation on T3

is the product S1 ˆ L. Lastly, the fibers of of the Hopf fibration are precisely
the Reeb orbits of αst so that in our coordinates on T3 we identify αst with dx.

(iii) Any leaf of L is diffeomorphic to either S1 or R, so that any leaf of FL is
diffeomorphic to either S3 ˆ S1 or S3 ˆR. Hence, π2pLq “ 0 for any leaf L and
by the following lemma there does not exist any leaf containing pS2, ωstq as a
CS-submanifold.

Lemma 2.5.40. Let pM,ω, ηq be a conformal symplectic manifold and N a manifold
with H1pNq “ 0. Then there exist no contractible, conformal symplectic embedding
φ : N ÑM .



188 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

Proof. Suppose there exists a smooth map Φ : Nˆr0, 1s ÑM , such that Φ|Nˆt1u “ φ
and Φ|Nˆt0u is a constant map. Pulling back the conformal symplectic structure we
obtain forms:

ωN :“ Φ˚pωq, ηN :“ Φ˚η.

Note that dηNωN “ 0 and since H1pN ˆ Iq “ 0 there exists a positive function
f P C8pN ˆ Iq such that dpfωN q “ 0. By Stokes theorem this implies

0 “

ż

Nˆt0u

fωN “

ż

Nˆt1u

fωN .

However, since φ is a conformal symplectic embedding, the last integral must be
strictly positive and we arrive at a contradiction.

Remark 2.5.41. Let L on T2 be as above and consider the product foliation S1ˆL
on T3px, y, zq. Define a loop of diffeomorphism φt P DiffpT3q by

φtpx, y, zq “ px` t, y, zq.

The fibration over S2 resulting from this loop is precisely π : S3 ˆT2 Ñ S2 and since
φt preserves each leaf of the foliation on T3 the total space of the fibration carries a
foliation, which is just FL as above. In particular, taking multiples of the loop φt,
the same construction allows us to produce non-approximable CS-foliations on the
lens spaces Lpp, 1q for p ą 1. 4

Lemma 2.5.42. The CS-foliation pFL, ωq on S3 ˆ T2 constructed above cannot be
approximated by contact structures. Moreover, the approximation is not obstructed
by Proposition 2.4.8.

Proof. By Theorem 2.2.21 we know that the only CS-foliation in dimension three
which cannot be approximated by contact structures is S1ˆS2. Since dimS3ˆT2 “ 5,
this means that the only possible almost CS-submanifold that can obstruct pF , ωq
being approximated is S1 ˆ S2. By Lemma 2.5.39 we know that such an almost CS-
submanifold does not exist.

We show that the conditions in Corollary 2.5.23 are satisfied, i.e. pF , ωq is completely
incompatible as in Definition 2.5.22. Using Theorem 2.5.24 it suffices to show that the
induced foliation on the fiber of π is Reebless as in Definition 2.5.25. By Lemma 2.5.39
the foliation on the fiber equals S1ˆL, and hence contains no Reeb components.

2.6 More examples

2.6.1 Isosymplectic embedding h-principle

Using the h-principle for isosymplectic embeddings, which we recall below, we show
that in high dimensions it is common for a symplectic foliation to contain S1ˆS2 as an
almost CS-submanifold. Hence, by Proposition 2.4.8, they cannot be approximated
by contact structures.
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Our strategy is to construct the almost CS-submanifold S1 ˆ S2 of pM,F , ωq out
of a suitable S2 embedded in a single leaf of F . For example, consider a foliation F
induced by a fibration π : M Ñ S1. Suppose we have an embedded sphere ι : S2 ãÑM
contained in a leaf Mt0 :“ π´1pt0q of F . If we choose a connection on π, then the
associate parallel transport Tt : Mt0

„
ÝÑMt defined a family of embedded spheres

σt :“ S2 ÑM, σt :“ Tt ˝ ι, t P r0, 1s,

each contained in a leaf Mt of F . Thus, σ1pS2q is the image of σ0pS2q under the
monodromy map.

Definition 2.6.1. Let pM,Fq be a foliated manifold and ι : S2 Ñ M an embedded
sphere contained in a leaf L of F . By a transverse loop of spheres, we mean an
embedding

σ : S2 ˆ r0, 1s ÑM,

defining a family of embedded 2-spheres σt : S2 ÑM , each inside a leaf Lt of F , with
L0 “ L1 “ L and σ0 “ ι.

Remark 2.6.2. Although for our purposes it suffices to consider transverse loops
of spheres, analogous to the above definition we can define transverse loops of any
manifold N . In fact, the following discussion only uses that S2 is closed and simply
connected. 4

So, we can think of σ1 as some kind of ”monodromy” map associated to the foliation,
for the starting sphere ιpS2q. Recall that by a foliated map between foliated manifolds,
f : pM,Fq Ñ pN,Gq, we mean a (smooth) map sending each leaf of F into a leaf of
G. Hence, viewing S2 ˆ r0, 1s as foliated by 2-spheres, a transverse loop of spheres is
precisely a foliated embedding mapping the boundary spheres into the same leaf.

For symplectic foliations we consider the following compatibility conditions:

Definition 2.6.3. Let pM,F , ωq be a symplectic foliation. A transverse loop of
spheres σt : S2 ÑM is said to be

(i) Positive if
ż

S2
σ˚t ω ą 0,

for all t P r0, 1s.

(ii) Symplectic if σ˚t ω is non-degenerate for each t P r0, 1s.

Consider a symplectic foliation pF , ωq on a manifold M of dimension 2n` 1 ě 5. As
shown in Lemma 2.4.11 we can find a closed embedded loop S1 Ă M transverse to
F . This curve has a tubular neighborhood isomorphic to

˜

S1 ˆ D2n,
ď

zPS1
tzu ˆ D2n

¸

.

Hence, by choosing an embedded sphere S2 Ă D2n, we obtain a transverse loop of
spheres with image S1ˆS2 ĂM . However, loops constructed in this way can never be
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positive. Indeed, each 2-sphere is contractible so by Stokes theorem must have zero
area with respect to ω. The following lemma produces loops with non-contractible
spheres.

Lemma 2.6.4. Let F be a foliation on a (closed) manifold M of dimension ě 4.
Then, there always exists a transverse loop of spheres. Moreover:

(i) Any leafwise sphere S2 Ă L inside a non-embedded leaf L can be extended to a
transverse loop of spheres;

(ii) If the foliation F is induced by a fibration π : M Ñ S1, then any leafwise sphere
S2 Ă L, can be extended to a transverse loop of spheres.

Proof. The above discussion shows that, using Lemma 2.4.11, a transverse loop of
spheres always exists.

If F is induced by a fibration π : M Ñ S1 then, as explained prior to Definition
2.6.1, taking an embedded sphere in any of the fibers, we can use parallel transport
to obtain a transverse loop of spheres.

For the other case assume that L ĂM is a non-embedded leaf of M , and S2 ĂM an
embedded sphere. Let Σ be a transverse section of F , such that L X Σ ‰ H. Then
recall that if L is not embedded, Σ X L is not discrete, see for example [22]. In our
case this means that L must intersect Σ at least twice, and we obtain a transverse
loop of spheres as in Definition 2.6.1.

The previous constructions do not necessarily produce positive loops of spheres. How-
ever, as shown in the following lemma, it is often enough if the initial sphere is positive.

Lemma 2.6.5. Let pM,F , ωq be a symplectic foliation and σ : S2 ˆ r0, 1s Ñ M a
transverse loop of spheres starting at a positive sphere S2 Ă L, i.e.

ż

S2
ω ą 0.

Then the following hold:

(i) If L is non-embedded, then there exists a positive transverse loop of spheres
starting at S2;

(ii) If ω is tame (Definition 1.7.22) then σ is positive.

Proof. Observe that the function

µ : r0, 1s Ñ R, t ÞÑ

ż

S2
σ˚t ω

is smooth in t. We also have µp0q ą 0 so that there exists t̃ P p0, 1s such that µptq ą 0
for all t P r0, t̃s. As in the proof of Lemma 2.6.4 the non-embeddedness of L implies
that L intersects the image of σpS2 ˆ r0, t̃sq at least twice. So by restricting σ we
obtain a positive transverse loop of spheres.
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For the second case, let rω be a closed extension of ω. In the coordinates defined by
the foliated embedding σ : S2 ˆ r0, 1s ÑM we can write

ω “ ωt ` ftdt,

for ωt P Ω2pS2q and ft P C
8pS2q. The condition that ω is closed becomes

0 “ dω “ 9ωt ^ dt` dft ^ dt,

implying

ωt :“ ω0 ` d

ˆ
ż t

0

ftdt

˙

.

Integrating an exact form over S2 gives zero, so that µptq “ µp0q for all t.

The main result of this section is the following, and states that the existence of a
positive transverse loop of spheres implies that the foliation cannot be approximated
by contact structures.

Theorem 2.6.6. Let pM,F , ωq be a symplectic foliation with dimM ě 7. If there
exists a positive transverse loop of spheres, as in Definition 2.6.3, then there exists an
almost CS-submanifold isomorphic to S1 ˆ S2, as in Definition 2.4.4. In particular,
pF , ωq cannot be approximated by contact structures.

Combining this theorem with the preceding discussion we conclude that the following
classes of symplectic foliations cannot be approximated by contact structures.

Corollary 2.6.7. Let pM,F , ωq be a symplectic foliation with dimM ě 7. If either
of the following is satisfied then pF , ωq cannot be approximated by contact structures:

1. F is induced by a fibration π : M Ñ S1, ω is tame (Definition 1.7.22), and
pF , ωq admits a positive 2-sphere in one of its leaves;

2. pF , ωq has a non-embedded leaf containing a positive 2-sphere.

Proof. Combining Lemma 2.6.4 and Lemma 2.6.5 there exists a positive transverse
loop of spheres. Hence, Theorem 2.6.6 applies.

The idea of the proof of Theorem 2.6.6 is to use the h-principle for symplectic em-
beddings from [43], to homotope the positive transverse loop into a symplectic trans-
verse loop. We also use it to ”close up the loop” so that we obtain an almost CS-
submanifold isomorphic to S1ˆS2, which we know obstructs approximation by contact
structures. Let us start by recalling the h-principle for isosymplectic embeddings.

Definition 2.6.8. Let pM,ωM q and pN,ωN q be symplectic manifolds. An isosym-
plectic embedding f : pM,ωM q Ñ pN,ωN q is a smooth embedding satisfying

f˚ωN “ ωM .
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The word ”iso” is meant to emphasize that the symplectic structure on the source
manifold is fixed. In other words, we do not only require f˚ωN to be symplectic on
M , but also to equal ωM . Following the h-principle philosophy we can forget about
the integrability conditions in the definition of an isosymplectic embedding. That is,
we consider an ”almost isosymplectic embedding”, which are usually referred to as
isosymplectic homomorphisms.

Definition 2.6.9. Let pM,ωM q and pN,ωN q be two symplectic manifold. A isosym-
plectic homomorphism from pM,ωM q to pN,ωN q consists of fiberwise injective
bundle map F : TM Ñ TN covering a map f , such that F˚pωN q “ ωM and
f˚rωN s “ rωN s P H

2pMq.

Observe that an isosymplectic embedding is the same thing as an isosymplectic ho-
momoprhism satisfying F “ df . As expected, the h-principle states that

Theorem 2.6.10 ([43]). Let pM,ωM q and pN,ωN q be symplectic manifolds such that
dimM ď dimN ´ 4. Assume there exists an injective bundle map F : TM Ñ TN
covering a map f : M Ñ N satisfying:

(i) The map f is an embedding, and satisfies f˚rωN s “ rωM s P H
2pMq;

(ii) The map F is an isosymplectic homomorphism, as in Definition 2.6.9, and there
exists a homotopy of injective bundle maps Ft : TM Ñ TN , t P r0, 1s such that
F0 “ df and F1 “ F .

Then, there exists a C0-small isotopy ft : M Ñ N , from f0 “ f to an isosymplectic
embedding f1, and the differential df1 is homotopic to F1 through isomosymplectic
homomorphisms. Moreover, the same statement holds parametrically.

The first consequence of this theorem is that we can homotope a positive transverse
loop of spheres into a symplectic one.

Lemma 2.6.11. Let pM,F , ωq be symplectic foliation with dimM ě 7, and σ :
S2 ˆ r0, 1s Ñ M a positive transverse loop of spheres. Then, σ is homotopic to a
symplectic transverse loop of spheres, see Definition 2.6.3.

Proof. We want to apply Theorem 2.6.10 parametrically. In the notation of the
theorem we define fs “ σs, interpreting σ as a 1-parameter family of maps σs : S2 Ñ

M . The first condition in the theorem is trivially satisfied if we define the symplectic
forms on S2 to be

(2.6.1.1) ωs :“

ˆ
ż

S2
σ˚s ω

˙

ωS2 ,

where ωS2 is the standard form on S2.

Next, we construct the required map Ft,s and show it satisfies the conditions in
the theorem. The existence of such a map is purely obstruction theoretic. Denote
n :“ dimM . Standard obstruction theory and a careful (but rather straightforward)
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computation shows that the obstruction to the existence of a one parameter family
of isosymplectic homomorphisms F1,s : TS2 Ñ TF , lives in the relative cohomology
groups

HipS2 ˆ r0, 1s, πi´1pSn´2q;Rq, i ď 3.

Hence, since n ě 7 (actually n ě 5 suffices here), these obstructions vanish and F1,t

always exists. Similarly, the obstruction to the existence of a 1-parameter family of
homotopies Fs,t : TS2 Ñ TF through injective bundle maps, connecting dft and Ft,
lives in

HipS2 ˆ I, πipV2,n´1qq;Rq, and, πipV2,n´1q “ 0, i ď n´ 3,

where V2,n´1 denotes the Stiefel manifold of orthonormal 2-frames in Rn´1. Again,
since n ě 7 these obstructions vanish. Hence, Theorem 2.6.10 applies, giving a
foliated isosymplectic embedding

f :
´

S2 ˆ r0, 1s,
ď

tPr0,1s

S2 ˆ ttu, ωt

¯

Ñ pM,F , ωq.

Finally, since a symplectic form on S2 is the same as an area form, and the intergrals
ż

S2
σ˚t ω,

are strictly positive, it follows from Equation 2.6.1.1 that f is still a foliated isosym-
plectic embedding if we replace ωt by ωS2 .

The second consequence of Theorem 2.6.10 is that two homotopic, positive 2-spheres
in the same leaf, can be connected by an family of symplectic embeddings.

Lemma 2.6.12. Let pM,ωq be a symplectic manifold with dimM ě 6, and fi :
pS2, ωS2q Ñ pM,ωq, i “ 0, 1 be isosymplectic embedded spheres satisfying rf0s “ rf1s P

π2pMq. Then, there exists an isotopy of isosymplectic embeddings ft : pS2, ωS2q Ñ
pM,ωq, connecting f0 and f1.

Proof. Let f : S2 ˆ I Ñ M be any homotopy connecting f0 and f1. Since dimL ą
2 dimS2 ` 1, we can apply the Whitney embedding theorem to perturb f into a
homotopy f̃ : S2ˆ I ÑM satisfying f̃i “ fi, i “ 0, 1 and each map f̃ : S2ˆttu ÑM
is an embedding. Then, the result follows by applying Lemma 2.6.11.

Proof of Theorem 2.6.6. By Lemma 2.6.11 we the positive transverse loop of spheres
σ : S2 ˆ r0, 1s Ñ M can be made symplectic, as in Definition 2.6.3. Then, applying
Lemma 2.6.12 to σ0 and σ1, we find an isotopy of symplectic embeddings ft : S2 Ñ L
such that f0 “ σ0 and f1 “ σ1.

To finish the proof we need to slightly modify ft, so for each t its image is contained
in a different leaf of F . Since the image of f : S2 ˆ r0, 1s Ñ L is contained in a
simply connected region V Ă L, there exists a foliated chart U » V ˆr0, εs, such that
V “ V ˆ t0u. Let ρ : r0, 1s Ñ r0, 1s be a smooth bump function satisfying

ρ|r0,1´εs “ 0, ρ|r1´ε{2,1s “ 1.
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We define
rσ : S2 ˆ r0, 1s ÑM, rσt :“ f´1

ρptq ˝ σt.

For ε ą 0 small enough, this defines a foliated symplectic embedding of S1 ˆ S2 into
M . By Corollary 2.4.9 this means that pM,F , ωq cannot be approximated by contact
structures.

2.6.2 Milnor-Wood foliation on ST ˚Σg

We give here a family of symplectic foliations which cannot be approximated by
contact structures as a consequence of Theorem 2.5.20. These examples are also
easily seen to contain S1 ˆ S2 as an almost CS-submanifold, so that we could apply
Proposition 2.4.8 instead. However, they still illustrate the general strategy for finding
applications of Theorem 2.5.20.

Given a principal S1-bundle π : P Ñ Σg, over a closed surface Σg of genus g, denote
by epP q P H2pΣ;Zq the Euler class of P and by χpΣq “ 2´ 2g the Euler characteris-
tic. The classical Milnor-Wood inequality tells us exactly when P admits a foliation
transverse to the fibers:

Theorem 2.6.13 ([114]). Let P Ñ Σ be a principal S1-bundle over a Riemann
surface of genus g ě 1. Then there is a foliation H on P transverse to the fibers if
and only if

|epP qrΣs| ď ´χpΣq “ 2g ´ 2.

As an immediate consequence we obtain that the unit cotangent bundle of a closed
surface Σg for g ě 1 admits a foliation H transverse to the fibers. Since all the leaves
of H are oriented surfaces, this foliation carries a leafwise symplectic form.

Proposition 2.6.14. The product foliation pST˚Σg ˆ S2,Hˆ S2, ωH ` ωS2q cannot
be approximated by contact structures.

Proof. Since ST˚Σg contains an embedded S1 transverse to H, the product foliation
contains S1 ˆ S2 as an almost CS-transversal and so cannot be approximated by
Proposition 2.4.8.

The following is a (sketch of the) proof using Theorem 2.5.20 instead. The product
foliation is taut and so any contact structure approximating it is tight. The tight
contact structures on circle bundles are classified, see [63, 64]. The arguments given
there show that they are all contactomorphic (through not isotopic to the identity
contactomorphisms) to the standard contact structure on the unit cotangent bundle.
Therefore, all the tight contact structures on ST˚Σg are orderable, as in Definition
2.5.14, and the conditions of Corollary 2.5.23 are satisfied.

2.6.3 Open book decompositions

In this section we show that given a foliated manifold pM,Fq and an almost CS-
submanifold pB,FBq, an approximation of FB by contact structures can sometimes be
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extended to an approximation of F . More precisely, if the binding B of a (geometric)
open book decomposition of M admits a type II path of contact structures converging
to a foliation, then so does M .

Theorem 2.6.15. Let pB, πq be a (geometric) open book decomposition adapted to
pM,αq, as in Definition 1.4.21, and FB a unimodular foliation on B. Assume

(2.6.3.1) αB,t :“ γB ` tαB P Ω1pBq

is a type II deformation of FB into contact structures, as in Definition 2.2.9. Then
there exists a foliation F on M and a path of contact forms αt P Ω1pMq, t P p0, 1s,
such that

(i) α1 “ α, and αt is a type II deformation of F into contact structures;

(ii) F has a single closed leaf diffeomorphic to B ˆ S1, and coincides with kerπ
except on a small neighborhood of the binding;

(iii) pB, πq is adapted to αt for all t ą 0, as in Definition 1.4.21.

Remark 2.6.16. The proof of the theorem shows that if αB,t is a deformation of
type I, then αt can be chosen to be of type I, except on a small neighborhood of the
compact leaf Bˆ S1. Since the compact leaf has trivial linear holonomy, this is to be
expected in light of Corollary 2.4.17. 4

Proof. By Example 1.4.11 we can find a tubular neighborhood of the binding isomor-
phic to B ˆ D2, on which α equals

α “ f
`

αB ` r
2dθ

˘

,

for f P C8pB ˆ D2q satisfying f |Bˆt0u “ 1 and Brf ă 0 for r ą 0. We fix such a
neighborhood for the rest of the proof.

By assumption FB is unimodular so there exists a positive function g P C8pBq such
that gγB is closed. Hence, multiplying αB,t by g we can assume that γB as in Equa-
tion 2.6.3.1 is closed. Of course, if we multiply αB,t then we are also required to
multiply α P Ω1pMq. However, the changed contact form still satisfies the compati-
bility conditions of Definition 1.4.21. Furthermore, since we will only need γB to be
closed on the interior of the tubular neighborhood BˆD2, we can leave α unchanged
on MzpB ˆ D2q.

If γB is closed, the contact condition for αB,t “ γB ` tαB equals:

αB,t ^ α
n´1
B,t “ tn´1γB ^ dαn´1

B ` tnαB ^ dαn´1
B .

Thus, αB,t is of type II if γB ^ dαn´1
B ě 0 (since αB is contact), while it is of type I

if and only if γB ^ dαn´1
B ą 0.

Next we construct the foliation F on M . Choose functions ρ, φ, ψ : r0, 1s Ñ Rě0

satisfying

(i) φprq ą 0 for r P Opp1{2q, and φprq “ 0 for r P Opp0q and r P Opp1q;
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(ii) ρprq ą 0 for r ă 1{2, Brρ ď 0 and ρprq “

#

1 r P Opp0q
0 r ě 1{2

;

(iii) ψprq ą 0 for r ą 1{2, Brψ ě 0 and ψprq “

#

0 r ď 1{2

1 r P Opp1q
,

see Figure 2.1.

1

0

ρ φ ψ

1{2 1

Figure 2.1: Functions ρ, φ and ψ, satisfying the properties needed in the proof of
Theorem 2.6.15.

We define F :“ ker γ where

γ :“ ρprqγB ` φprqdr ` ψprqdθ, P Ω1pB ˆD2q,

which is easily seen to satisfy γ ^ dγ “ 0. We have ρp1{2q “ ψp1{2q “ 0 while
φp1{2q ą 0 (and r “ 1{2 is the only value with these properties), so that F has a
single compact leaf diffeomorphic to B ˆ S1. Near the boundary of B ˆD2 we have
γ “ dθ so γ can smoothly extended to a global form on M by setting γ :“ π˚pdθq,
where by slight abuse of notation we also denote by θ P S1 the angle coordinate.

Hence, both γ and α are global forms on M and we define

αt :“ γ ` tα, t P r0, 1s,

for which the contact condition equals:

(2.6.3.2) αt ^ dαnt “ tnγ ^ dαn ` tn`1α^ dαn ` ntnα^ dαn´1 ^ dγ.

First note that on MzB ˆD2 we have γ “ dθ, so the above equation becomes:

αt ^ dαnt “ tnp1´ tqdθ ^ dαn ` tn`1α^ dαn.
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The compatibility conditions of the open book imply dθ ^ dαn ą 0, so αt is of type
I on MzpB ˆD2q.

On B ˆD2 we compute each summand of Equation 2.6.3.2 separately. As observed
at the beginning of the proof, we can assume that in this region

α “ fpαB ` r
2dθq,

for a strictly positive function f P C8pB ˆ D2q. Furthermore, f can be chosen to

satisfy Brf ă 0 and 2f ` 9fr ą 0.

The first summand of Equation 2.6.3.2 equals:

γ^dαn “ nfn´1ρ
´

2f ` 9fr
¯

γB^dαn´1
B ^prdrq^dθ´nfn´1 9fψαB^dαn´1

B ^dr^dθ.

The properties of f imply that the first term is non-negative (or strictly positive on
r ă 1{2 if αB,t converges linearly ) and the second term is strictly positive. The
second summand of 2.6.3.2 is strictly positive since α is a contact form. For the third
summand we have:

α^ dαn´1 ^ dγ “ ´fn 9ρr2γB ^ dαn´1
B dr ^ dθ ` fn 9ψαB ^ dαn´1

B ^ dr ^ dθ.

Since 9ρ ď 0, 9ψ ě 0 and f ą 0 both terms are non-negative (or strictly positive on
r ą 1{2 if αB,t converges linearly).

It follows that αt is a deformation of type II. Moreover, if αB,t is of type I then so is
αt away from r “ 1{2.

Lastly, we compute the compatibility condition for αt. We have:

(2.6.3.3) dαnt |Σθ “ ´nt
n´1p1´tqfn´1 9ργB^dαn´1

B ^dr´ntnfn´1 9fαB^dαn´1
B ^dr.

Since 9ρ ď 0 and 9g ă 0 for r ą 0, it follows that dαt|Σθ is an exact symplectic form
for all t ą 0.

In dimension-3 the binding of an open book decomposition is a closed 1-dimensional
manifold, i.e. a union of circles. Hence, in this case the hypotheses of the above
theorem are automatically satisfied.

Corollary 2.6.17. Let ξ be a contact structure on a closed 3-manifold M . Then there
exists a foliation F on M admitting a type II deformation into contact structures
(Definition 2.2.9).

2.6.4 Products with T2

As shown by Bourgeois, see [16], the product of a contact manifold pM, ξq with a
genus-g surface Σg, is again a contact manifold. In this section we use Bourgeois’ proof
to show that if M admits a foliation which can be deformed into a contact structures
then so does the product M ˆ Σg. We first consider the example S1 ˆ S2 ˆ T2 in
Proposition 2.6.21, making the construction as explicit as possible. Then, we consider
the general case in Theorem 2.6.25.
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2.6.4.1 An explicit example

To describe the path of contact structures on S1 ˆ S2, we fix coordinates pz, r, θq P
S1 ˆ S2 which are defined as follows. Let D2 :“ D2pπq Ă R2 be the disk of radius π,
endowed with polar coordinates pr, θq. We view the sphere S2 as the quotient D2{BD2

with induced coordinates pr, θq in which p0, θq corresponds to the northpole and pπ, θq
corresponds to the southpole. Furthermore let z P S1 :“ R{2πZ denote the standard
coordinate on the circle.

The Reeb component pS1ˆD2,FReebq (as in Example 1.5.5) can be explicitly described
as the kernel of

α :“ cosprqdz ` r sinprqdr P Ω1
`

S1 ˆ D2pπ{2q
˘

.

Indeed, not that at r “ π{2 we have α “ π{2dr so that the boundary is a compact
leaf. Similarly for r ă π{2 we have cosprq ą 0, so all the leaves on the interior are
open and diffeomorphic to S1ˆR2. Recall that by gluing two Reeb components ”with
a twist” one obtains the Reeb foliation on S3. Similarly, gluing two Reeb components
using the identity we obtain a foliation F on S1 ˆ S2, explicitely described as the
kernel of:

(2.6.4.1) γ :“ cosprqdz ` rpπ ´ rq sinprqdr P Ω1pS1 ˆ S2q.

Furthermore, the standard overtwisted contact structure from Equation 2.5.2.1, in-
duces an (overtwisted) contact structure on S1 ˆ S2 defined by the contact form:

(2.6.4.2) α :“ cosprqdz ` rpπ ´ rq sinprqdθ P Ω1pS1 ˆ S2q.

As shown in the following lemma these forms produce a linear path of contact forms
on S1 ˆ S2 converging to F .

Lemma 2.6.18. The foliation F on S1 ˆ S2 from Equation 2.6.4.1, admits a type
I deformation (Definition 2.2.5) into contact structures. More precisely, the path of
contact forms defined by:

αt :“ cosprqdz ` rpπ ´ rq sinprq pdr ` tdθq , t P r0, 1s,

defines a type I deformation of F .

Remark 2.6.19. Observe that even though F has a compact leaf diffeomorphic
T2, the linear holonomy is non-zero so that the above result does not contradict
Proposition 2.4.14. 4

Proof. First observe that around r “ 0 and r “ π we have that rpπ ´ rq sinprq is
of order r2 and pπ ´ rq2 respectively, so that αt is well-defined. Furthermore, αt is
essentially of the form γ ` tα, for which the contact condition equals:

pγ ` tαq ^ pdγ ` tdαq “ tpγ ^ dα` α^ dγq ` t2α^ dα.

Hence, to show αt it is of type I it suffices to show that γ ^ dα ` α ^ dγ ą 0. A
straight forward computation gives:

γ ^ dα` α^ dγ “
`

pπ ´ 2rq sinprq cosprq ` rpπ ´ rq
˘

dz ^ dr ^ dθ ą 0.
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The contact structure on the product M ˆ Σg constructed in [16], depends on the
choice of an open book decomposition of M adapted to the contact structure. Hence,
to extend the path αt P Ω1pMq defined above to the product, we need a single open
book decomposition of M , adapted to αt for each t ą 0.

Lemma 2.6.20. The open book decomposition of S1 ˆ S2 defined by

B :“ S1 ˆ tr “ 0, πu, πpz, r, θq :“ θ,

is adapted to αt for all t ą 0, as in Definition 1.4.21.

Proof. The Reeb vector field of αt is given by:

Rt “
´t

`

π ´ 2rq sinprq ` rpπ ´ rq cosprq
˘

Bz ´ sinprqBθq

t
`

pπ ´ 2rq sinprq cosprq ` rpπ ´ rq
˘

Which is seen to be tangent to B and satisfy dθpRtq ą 0.

Since the open book decomposition is the same for all t we can apply Bourgeois
construction [16], to obtain a 1–parameter family of contact structures on S1ˆS2ˆT2.
As above denote by F the Reeb foliation on S1 ˆ S2 from Equation 2.6.4.1.

Proposition 2.6.21. The product foliation F ˆ T2 on S1 ˆ S2 ˆ T2 admits a type
I deformation into contact structures. More precisely, for any constant c ‰ 0 the
family of 1-forms

βt :“ αt ` ctrpπ ´ rq psinpθqdx` cospθqdyq , t P p0, 1s,

defines a type I deformation of F ˆ T2.

Proof. The proof is the same as that in [16], using the open book decomposition given
by Lemma 2.6.20. The contact condition equals

βt^pdβtq
2 “ 2c2t2

`

r2pπ ´ rq2 sinprq ` rpπ ´ rqpπ ´ 2rq cosprq
˘

dz^dr^dt^dx^dy,

which is positive for all t ą 0.

Observe that the product foliation has a leaf T2 ˆ T2 which does not admit an
exact symplectic structure. Hence, by Lemma 2.4.23 this foliation cannot be naively
approximated by contact structures.

Recall from Lemma 2.4.1, that a foliation which can be approximated by contact
structures (in HyperpMqq must admit a leafwise almost CS-structure. The following
example, based on the previous lemma, shows that there are sequences of contact
structures converging in HyperpMq, but not converging in ACSHyperpMq to any
almost CS-structure on the limit foliation.

Proposition 2.6.22. On the manifold S1ˆS2ˆT2 there exists an almost CS-foliation
pF , ωq together with two sequences of contact structures ξk, ζk, k P N satisfying:
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(i) pξk, cξkq conformally converges to pF , ωq;

(ii) ζk converges to F in HyperpMq but does not (conformally) converge to any
almost CS-structure on F ;

(iii) ζk can be chosen arbitrary close ξk as elements in HyperpMq.

Note that even though this example contains an almost CS-submanifold S1 ˆ S2, the
proof does not depend on Corollary 2.4.9.

Proof. Consider the foliation F from Proposition 2.6.21 which for c “ 1 gives a type
I deformation of F into contact structures. Hence, by Corollary 2.3.25 F admits an
(exact) leafwise CS-structure ω which can be conformally approximated by contact
structures.

Observe that if the constant c is chosen to be a function depending to t which is
C0-close to 1, then ζt :“ kerβt is C0-close to ξt and converges to F in HyperpMq.
However, if cptq does not converge for t Ñ 0, then neither does βt ^ dβt. In fact,
observe that

dβt “ dα0 ` tcptqd
`

rpπ ´ rq psinpθqdx` cospθqdyq ,

and since only one of the summands depend on cptq, the conditions of Lemma 2.3.20
cannot be satisfied if cptq is chosen correctly.

Remark 2.6.23. Observe that the proof above shows there exist `i :“ xXi, Yiy,
i “ 1, 2 tangent to F , such that

dβkpX1, Y1q

dβkpX2, Y2q
,

does not converge. Indeed, we can select the vector fields Xi, Yi such that

dβtpX1, Y1q ą 0, dβtpX2, Y2q ą 0,

so that `1 and `2 can be thought of as ”symplectic lines” for dβt. Furthermore we can
choose these lines such that `1 is tangent to S1ˆS2 and `2 is tangent to T2. Then their
ratio depends on c. As before, the proof follows by choosing cptq non-converging. 4

2.6.4.2 The general case

To state the general version of Proposition 2.6.21 we need the notion of a path of
contact forms adapted to an open book decomposition. The following definition looks
rather technical, since we need to require different properties depending on the type
of the path of contact forms. However, the conditions are completely analogous to
those in Definition 2.2.5 and Definition 2.2.9.

Definition 2.6.24. Let pB, πq be a (geometric) open book decomposition of M2n`1

and denote by dθ P Ω1pMzBq the pullback under π of the angular form on S1. A
path of contact forms αt P Ω1pMq, t P p0, 1s is said to be adapted to the open book if
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for all t, we have that B is an almost CS-submanifold of pξt :“ kerαt,dαt|ξtq, as in
Definition 2.4.4, and

dαnt ^ dθ ą 0,

on MzB. Moreover, if αt is:

(i) type I, as in Definition 2.2.5, then we additionally require

dαnt ^ dθ “ tn´1ftΩ,

for a volume form Ω on MzB and a path of functions ft P C
8pMzBq such that

f0 is strictly positive.

(ii) type II, as in Definition 2.2.9, then we additionally require

dαnt ^ dθ “ tn´1fΩ` tngtΩ,

for a volume form Ω, a non-negative function f P C8pMzBq, and a path of
functions gt P C

8pMzBq such that g0 is strictly positive.

Observe that if kerαt converges (in HyperpMq) to a foliation F on M , then the above
conditions imply that F is transverse to B and hence induces a foliation FB :“ FXTB
on the binding.

Theorem 2.6.25. Let pB, πq be an open book decomposition of M and αt, t P p0, 1s
an adapted path of contact forms of type I (resp. type II), as in Definition 2.6.24.
Then M ˆ Σg, g ě 1, admits a path of contact forms of type I (resp. type II)
converging to the product foliation

F ˆ Σg.

Proof. We first prove the case Σg “ T2. Denote by φ “ pφ1, φ2q : M Ñ R2 the smooth
map constructed out of pB, πq as in [16]. Recall that this map has the property that

φ2dφ1 ´ φ1dφ2 “ r̃2dθ, dφ1 ^ dφ2 “ ρ^ dr̃ ^ dθ,

where r̃ : R2 Ñ R is the radial coordinate multiplied with a suitable bump function,
such that r̃ “ r near 0 and r̃ “ 0 for r ě ε for some small ε ą 0. Furthermore,
θ : R2 Ñ S1 is the usual angle coordinate. If αt is type I and adapted as in Definition
2.6.24, then we find:
(2.6.4.3)

βt ^ dβnt “ c2tnft
`

nr̃2Ω^ dx^ dy ` npn´ 1qΩB ^ pr̃dr̃q ^ dθ ^ dx^ dy
˘

,

for a volume form Ω on MzB, a volume form ΩB on B and a path ft P C
8pMq such

that f0 is strictly positive. Hence, it suffices to show that

nr̃2Ω^ dx^ dy ` npn´ 1qΩBω ^ pr̃dr̃q ^ dθ ^ dx^ dy,

defines a positive volume form on M . To see this, observe that the first summand is
non-negative and vanishes only at points in B, while the second summand is positive



202 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

at points in B and vanishes away from B. The computation for the case that αt is
type II is completely analogous.

Note that, the contact forms βt are T2-invariant and eachMˆtpx0, y0qu, px0, y0q P T2q

is an almost CS-submanifold, as in Definition 2.4.4. The general case follows from
Proposition 2.6.28 below, since Σg for g ą 1 can be expressed as a branched cover of
T2 with downstairs branching locus a finite set of points.

Corollary 2.6.26. Let pB, πq be an open book decomposition of M , and α an adapted
contact form, as in Definition 1.4.21, and FB :“ ker γB a unimodular foliation on
B. Assume that

αB,t :“ γB ` tαB P Ω1pBq,

is a type II deformation of FB into contact structures, as in Definition 2.2.9. Then,
the product foliation

F ˆ Σg,

on M ˆ Σg (where F is the foliation on M from Theorem 2.6.15) admits a type II
deformation into contact structures.

Proof. The proof is the same as that of Theorem 2.6.25, using the family of contact
forms αt, t P r0, 1s on M , as constructed in Theorem 2.6.15. In this case, Equation
2.6.4.3 becomes:

βt^dβnt “ nc2t2dαn´1
t ^pr̃2dθq^dx^dy`npn´1qc2t2αt^dαn´2

t ^pr̃dr̃q^dθ^dx^dy.

We compute both summands separately. The first summand equals:

´npn´ 1qc2fn´2r̃2
´

tn 9ργB ` t
n`1 9fαB

¯

^ dαn´2
B ^ dr ^ dθ ^ dx^ dy.

As in the proof of Theorem 2.6.15, the path αB,t being of type II implies that γB ^

dαn´2
B ě 0. Furthermore, we have 9ρ ď 0 and 9f ď 0 by definition. Hence, βt is of type

II away from B ˆ T2 and is of type I precisely when αB,t is.

The second summand equals:

npn´ 1qc2tn
`

p1´ tqfn´2ργB ` tf
n´1αB

˘

^ dαn´2
B ^ r̃dr̃ ^ dθ ^ dx^ dy.

Reasoning as before, we see that if γB ^ dαn´2
B ą 0 then βt defines a path of contact

forms of type I on B ˆ T2. If we only have γB ^ dαn´2
B ě 0 then the path is of type

II provided that αB dominates γB , which can easily be arranged by rescaling by a
constant.

2.6.5 Branched covers

To complete the proof of Theorem 2.6.25, we show that a type I/type II deformation
can be lifted along branched covers. Recall that a branched cover is a smooth map
f : M Ñ N between manifolds of the same dimension which is locally equivalent to
the map

(2.6.5.1) pk : D2 ˆ r´1, 1sm´2 Ñ D2 ˆ r´1, 1sm´2, pz, tq ÞÑ pzk, tq,
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for some k P N. More precisely, each y P N has a neighborhood V such that for each
connected component U Ă f´1pV q there exists k P N and a commutative diagram:

D2 ˆ r´1, 1sm´2 U

D2 ˆ r´1, 1sm´2 V

pk f |U

„

„

It follows that the sets N0 :“ ty P N | kpyq ą 1u and M0 :“ f´1pN0q are codimension-
2 submanifolds which we call the downstairs and the upstairs branching set
respectively.

Theorem 2.6.27 ( [52]). Let pN, ξq be a contact manifold and f : M Ñ N a branched
cover for which the downstairs branching set N0 Ă N is a contact submanifold. Then
M admits a contact form αM whose kernel agrees with f˚ξ outside a neighborhood
of the upstairs branching set M0.

We recall from [52] the construction of the contact form on M . If ξ “ kerαN then
α :“ f˚αN is a contact form on MzM0 and α|TM0

is a contact form on M0. Let r
be a fiberwise radial coordinate on νpM0q and identify the disk-bundle νpδq :“ tr ď
δu Ă νpM0q with a tubular neighborhood of M0 of radius δ. Let γ be a connection
1–form on the S1–bundle associated to the normal bundle νpM0q Ñ M0 and ρprq a
smooth bump function satisfying ρprq “ 1 near 0 and ρprq “ 0 for r ě δ. Then

αM :“ Cα` ρprqr2γ,

for C ą 0 large enough, defines a contact form on M . From this description the proof
of the following is almost immediate.

Proposition 2.6.28. Let F :“ kerβN be a foliation on N with modular form µN P
Ω1pNq, and

αN,t :“ βN ` tαN , t P r0, 1s,

a type I deformation of F into contact forms. If f : M Ñ N is a branched cover for
which the downstairs branching set is an almost CS-submanifold of pF ,dµNαN q, as in
Theorem 2.2.13, then the pullback foliation FM :“ f˚F admits a type I deformation
into contact structures. Moreover, αt “ f˚pαN,tq outside a neighborhood of M0.

Proof. Note that if the downstairs branching set N0 is an almost CS-submanifold of
pF ,dµNαN q, then it is in particular a foliated submanifold of pN,Fq. Hence, from
Equation 2.6.5.1 it is clear that f&F and so the pullback foliation FM is well-defined.
Denote β :“ f˚βN , µ :“ f˚µN , α :“ f˚αN and let ρ and γ be as above. For a large
constant C ą 0 define

(2.6.5.2) αt :“ β ` tCα` tρprqr2γ, t P r0, 1s.

A direct computation shows that

(2.6.5.3) αt^dαnt “ tnCnβ^dµα`t
nCn´1pr 9ρ`2ρqβ^dµα

n´1^rdr^γ`Opr2, tn`1q,
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where Opr2, tn`1q consists of all terms containing either r2 or tn`1. Observe that β^
dµα

n is a positive volume form on MzM0 and non-negative on M0. Furthermore, β^
dµα

n´1^rdr^γ is a positive volume form on TM |M0
and zero outside a neighborhood

of M0. Hence, for C ą 0 large enough αt ^ dαnt “ tn vol`Optn`1q showing αt is of
type I.

Remark 2.6.29. Although the above result is stated for type I deformations, the
same proof also works for paths of type II with the following changes.

If αN,t is a type II path of contact forms on N then there is no induced almost CS-
structure on FN . Instead of requiring that N0 is an almost CS-submanifold of
pF ,dµNαN q, we require that N0 is an almost CS-submanifold of αN,t for all t ą 0.
Then, a similar computation as in the above proof shows that αt, defined as in Equa-
tion 2.6.5.2 is a type II deformation of F :“ f˚FN into contact structures.

4

2.6.6 Mapping tori

In this section we give a construction that produces type I deformations in any di-
mension. The construction is based on [54] where it is shown that any product MˆS1

with dimM “ 4 admits a contact structure. In fact, we use exactly the same contact
structure constructed there and show it is part of a type I deformation.

Recall from Section 1.4.4 and Section 1.7.1, that the outside component of an adapted
(geometric) open book decomposition pB, πq of a manifold M , comes with a fibration
π : MzB Ñ S1, and admits both a contact structure and a symplectic foliation. As
in Section 1.8 we can try to extend these structures to the whole of M and deform
them into each other.

Here, we consider two outside components and glue them along their boundaries,
forgetting about the binding of the open book. This produces a fibration (or map-
ping torus) over S1, whose total space admits a CS-foliation together with a type I
deformation into contact structures.

Definition 2.6.30. A Liouville domain pW,λq consists of an exact symplectic
manifold such that λ|BW defines a contact form on BW .

The Liouville manifold plays the role of the page of an (abstract) open book decom-
position as in Definition 1.4.25.

Theorem 2.6.31. Let pWi, λiq, i “ 1, 2 be Liouville domains with the same con-
tact boundary pB :“ BW,β :“ λi|BWi

q. Furthermore, let fi : Wi Ñ Wi be exact
symplectomorphisms which are the identity near the boundary, and define

M :“W1 YB B ˆ r´1, 1s YB W2, f :“ f1 Y idY f2 : M
„
ÝÑM.

Then the resulting mapping torus

X :“M ˆ r0, 1s{px, 1q „ pfpxq, 0q

admits a foliation F together with a type I deformation into contact structures. More-
over, F has one compact leaf diffeomorphic to B ˆ S1.
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There are plenty manifolds which admit a decomposition as in the theorem. In
particular, examples exist in any dimension, and the argument in [54] shows that any
manifold M ˆ S1 with dimM “ 4 is of this form.

Proof. The mapping torus X1 :“W1ˆr0, 1s{ „ with return map fi, admits a contact
structure using the standard construction for open books. That is, we let ρ : r0, 1s Ñ
r0, 1s be a smooth bump function such that ρ|r0,εs “ 1 and ρ|r1´ε,1s “ 0. Then,

λ1,θ :“ ρpθqf˚i pλ1q ` p1´ ρpθqqλ1,

makes each fiber of π1 : X1 Ñ S1 into a Liouville domain with boundary pB, βq. For
C ą 0 big enough,

α1 :“ λ1,θ ` Cdθ,

defines a positive contact form on X1. Similarly, we use W 2 to define a mapping
torus X2 with the contact form

α2 :“ λ2,θ ´ Cdθ.

Since fi is assumed to be the identity near the boundary, we can find collar neigh-
borhoods p1 ´ ε,´1s ˆ B of BWi on which λi “ er`1β. Choose smooth functions
f, g, h, ` : p´1´ ε, 1` εs Ñ R satisfying:

(i) f is an even function with fprq “ er`1 near p1´ ε,´1s;

(ii) h, g is are odd functions with hprq “ 1 near p´1´ ε,´1s;

(iii) f 9h´ 9fh ą 0;

(iv) `p0q ą 0 when h “ 0,

see Figure 2.2. Note that there is a lot of freedom in choosing g. Indeed, since for
linear convergence, the choice of g does not matter, and is only needed to ensure that
the formula for α given below, is smooth However, it is still useful to keep precise
track of g as it in turn allows us freedom in choosing h, see Corollary 2.6.32 below.

We now define a contact structure by

α :“

$

’

&

’

%

λ1,θ ` Cdθ on X1

fβ ` gCdθ on p´1´ ε, 1` εq ˆB ˆ S1

λ2,θ ´ Cdθ on X2

We also define a foliation by

τ :“

$

’

&

’

%

dθ on X1

hprqdθ ` `prqdr on p´1´ ε, 1` εq ˆB ˆ S1

´dθ on X2
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1

´1 1

g

f “ `

h

Figure 2.2: Functions f,g,h, and ` satisfying the properties needed in the proof of
Theorem 2.6.31.

and consider αt :“ τ ` tα. Computing the contact condition for αt we find:

αt ^ dαnt :“

$

’

’

&

’

’

%

tnpt` h´ 9hqdθ ^ dλn1,θ on X1

tnnfn´1
´

fpt 9g ` 9hq ´ 9fptg ` hq
¯

dr ^ β ^ dβn´1 ^ dθ on rX

tnp´t` h´ 9hqdθ ^ dλn2,θ on X2

where rX :“ p´1 ´ ε, 1 ` εq ˆ B ˆ S1. To check that αt is of type I only the terms
containing tn matter, and with the functions f, g, h satisfying the above conditions
each such term is strictly positive for t ą 0.

Observe that the condition f 9h ´ 9fh ą 0 in the proof of the above theorem implies
that h has a single zero at the origin. This means that the foliation F :“ ker τ has a
single compact leaf given by B ˆ S1. Choose g to be an odd function with gprq “ 1

near p´1´ ε,´1s and also satisfying f 9g ´ 9fg ą 0. Then, αt “ τ ` tα is still contact

for all t ą 0 even if f 9h ´ 9fh “ 0. In particular, we can choose h|r´δ,δs “ 0,for some
small δ ą 0. This implies that on r´δ, δs ˆB ˆ S1 Ă X we have

F “
ď

rPr´δ,δs

tru ˆB ˆ S1.

These leaves are compact and have no linear holonomy so that Corollary 2.4.17 implies
that the deformation cannot be of type I. This can also be seen directly from the
formulas in the above proof since f 9h ´ 9fh “ 0 implies that only terms with tn`1

survive.

On the other hand, it can be checked that pξt :“ kerαt,dαt|ξtq still conformally
converges. Define λ P Ω1pXq by λXi “ λi,θ, i “ 1, 2, and λ|p1´ε,1`εqˆBˆS1 “ fβ. It
is clear that ddθλ defines a leafwise CS-structure on Xi and on p1´ ε, 1` εqˆBˆS1
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this follows from:

τ ^ ddθpfβq
n “ nfn´1p 9fh` f`qdrβ ^ dβn´1 ^ dθ ą 0.

A straightforward computation shows that

τ ^ ddθαt “ tτ ^ ddθλ, t P r0, 1s

showing that Definition 2.3.23 is satisfied. Although, ddθλ is an exact CS-form, dθ
does not represent the modular class of F so that Theorem 2.2.13 does not apply.

Corollary 2.6.32. In every dimension there exist exact CS-foliations which can be
conformally approximated but whose underlying foliation does not admit a type I
deformation into contact structures.

2.7 Preservation of structures in the limit

2.7.1 Taut versus tight.

The goal of this section is to show that with the right definitions the proof of the
following 3–dimensional statement goes through in higher dimensions:

Proposition 2.7.1 ([47]). In dimension 3, any contact structure C0-close to a taut
foliation, see Definition 2.4.21, is tight, as in Definition 2.5.26.

Recall from Definition 2.4.22 that a foliation F on M2n`1 is called strong symplectic
if there exists a globally closed form ω P Ω2pMq which is symplectic on the leaves of
F . This generalizes the notion of a taut foliation in dimension 3. As we have seen in
Chapter 1, contact structures and (symplectic) foliations often show up as boundaries
of symplectic manifolds. For confoliations we have the following:

Definition 2.7.2. A confoliation ξ on a 3-dimensional manifold M is said to be:

(i) Weakly fillable if there exist a compact symplectic manifold pW 4, ωq such that
M “ BW , and the restriction ωB :“ ω|M satisfies:

ωB|ξ ą 0.

(ii) Weakly semi-fillable if it is the connected component of fillable confoliated
manifold.

In particular, if ξ is a contact structure then these definitions coincide with the usual
notions of weakly (semi-)fillability.

Remark 2.7.3. To avoid confusion about the terminology, recall that for a (3-
dimensional) contact manifold one usually considers two types of fillings by a sym-
plectic manifold. The notion of a weak symplectic filling is as in the above definition,
while we say that pW,ωq is a strong symplectic filling if M “ BW , and there
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exists a Liouville vectorfield X P XpW q, transverse to the boundary (and pointing
outwards) such that

ξ “ ker ιXω|M .

This also implies that ξ is dominated by ω by which we mean that

ωB|ξ ą 0.

Note that by Lemma 1.2.14 this just means that pM,ωq has contact type boundary
as in Definition 1.2.9, and the induced contact structure is ξ. 4

The notion of weak fillability of contact structures was generalized to higher dimen-
sions in [85] and also makes sense for almost CS distributions whose coefficient line
bundle is trivial. That is, for the rest of this section we work with ACSHyperpM,Rq
which denotes ACSHyperpM,Lq with L “ M ˆ R. We also assume, for the rest of
this section, that M is compact.

Definition 2.7.4. An almost CS-hyperplane field pξ, µq P ACSHyperpM,Rq on a
manifold M2n´1 is said to be:

(i) Weakly fillable if there exists a symplectic manifold pW 2n, ωq such that M “

BW and the restriction ωB :“ ω|M satisfies

(2.7.1.1) pωB|ξ ` tµq
n´1

ą 0,

for all t ą 0;

(ii) Weakly semi-fillable when it is a connected component of a weakly fillable
almost CS-manifold.

Theorem 2.7.5. Any contact structure sufficiently close to a strong symplectic fo-
liation, in the compact-open topology on ACSHyperpM,Rq, is tight (as in Definition
2.5.26).

Proof. By Lemma 2.7.6 below, any strong symplectic foliation is weakly semi-fillable.
Observe that this is an open condition in the space of almost CS-hyperplane fields.
That is if Equation 2.7.1.1 is satisfied for some pξ, µq and ω, then it is also satisfied

for prξ, rµq and ω, provided that the almost CS-hyperplane fields are sufficiently close
in the compact-open topology.

Thus, if a contact structure is sufficiently close to a strong symplectic foliation then
it is weakly semi-fillable. It is shown in [85] that, analogous to the 3-dimensional
case, any weakly fillable contact manifold is tight. Hence, the same holds for weakly
semi-fillable contact manifolds, completing the proof.

Lemma 2.7.6. Let pF , ωq be a strong symplectic foliation on M , then it is weakly
semi-fillable.

Proof. Let F “ kerα be such that α^ωn ą 0 on M . Then consider W :“M ˆr0, 1s
endowed with the closed 2–form rω :“ dptαq ` εω. For ε ą 0 small enough this is a
symplectic manifold. We have BW “M ˆt1uYM ˆt0u as oriented boundaries. We
extend F by F “ ker´α on M ˆ t0u. Then, since dα|F “ 0 we have rω|F “ ω and
the condition of weak semi-fillability is satisfied.
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From the above observations the following is immediate:

Proposition 2.7.7. Any contact structure sufficiently close to a strong symplectic
foliation (in the compact-open topology on ACSHyperpM,Rq) is tight.

Proof. The weak filling condition is open in ACSHyperpMq (with the compact-open
topology). Hence, by Lemma 2.7.6, any contact structure sufficiently close to a strong
sympletic foliation is weakly semi-fillable. As remarked above this implies the contact
structure is tight.

2.7.2 Non weakly fillable CS-foliations

Consider a CS-foliation pF , µq on M2n´1, and pW,ωq a symplectic manifold. Anal-
ogous to the 3-dimensional case from Remark 2.7.3, if pW,ωq is a strong filling of
pF , µq then it follows that ω dominates F , meaning that

ωn´1|F ą 0.

Hence, in this case pF , ωq is a tame symplectic foliation as in Definition 2.4.22. Such
foliations are quite rare, so that there are many CS-foliations which are not strongly
fillable. For example, the product foliation of the Reeb foliation with T2,

`

S3 ˆ T2,F :“ FReeb ˆ T2
˘

,

is not taut and hence not strong symplectically fillable.

If we consider instead weak symplectic fillability, as in Definition 2.7.4, then these
obvious obstructions vanish. Nevertheless we have the following:

Theorem 2.7.8. There exist almost CS-foliations (in dimension ě 5) which are not
weakly fillable.

The idea is to use the result from [85] saying that weakly fillable contact structures
are tight as in Definition 2.5.26. As observed in the previous section, weak fillability is
an open condition in ACSHyperpM,Rq. Hence, it suffices to construct a almost CS-
foliation which can be approximated by overtwisted contact structures. To construct
the required contact structures, we use that for a branched cover with high enough
branching degree the total space admits an overtwisted contact structure. The precise
proof is as follows:

Proof. Consider the type I deformation αN,t, t P p0, 1s, on N :“ S1 ˆ S2 ˆ T2 from
Proposition 2.6.21. As shown there αt converges to the product foliation FN :“ FˆT2

with F as in Equation 2.6.4.1. Furthermore, for each x P T2, we have that

Nx :“ S1 ˆ S2 ˆ txu

is an almost CS-submanifold of αN,t. Using Gray stability we see that the induced
contact forms, denoted by αNx,t, are contactomorphic to the one in Equation 2.6.4.2
and hence overtwisted.
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Let f : M Ñ NˆT2 be a branched cover with branching locus Nx, for a fixed x P T2,
and branching degree k. By Proposition 2.6.28, the pullback foliation f˚pF ˆT2q on
M admits a type I deformation αt.

The normal bundle νpM0q of the upstairs branching set is a fiberwise k–fold covering
of the trivial normal bundle of Mx :“ f´1pNxq ĂMˆT2. Hence, in fiber coordinates
pr, θq P R2, the form γ :“ kdθ is a connection 1-form on νpM0q.

For ε ą 0 we define the ε-neighborhood of the upstairs branching set:

νεpM0q :“ tr ď εu Ă νpM0q.

Furthermore, in the notation of Proposition 2.6.28, assume FN :“ kerβN , and denote
β :“ f˚pβN q and α :“ f˚pαN,1q. Then, for ε small enough, the explicit description
of the family of contact forms from Equation 2.6.5.2 becomes:

αt :“ β ` tCα` tkr2dθ.

Note that the constant C ą 0 is independent of ε and k. Define

αt,s “ spβ ` tCαq ` p1´ sqpβ ` tCαq|M0 ` tkr
2dθ, t, s P r0, 1s.

The computation of the contact condition in Equation 2.6.5.3 shows that αt,s is
contact for all pt, sq P p0, 1sˆr0, 1s on a neighborhood of M0. Hence by Gray stability
αt “ αt,1 is contactomorphic to αt,0.

Since pβ` tCαq|M0
is contactomorphic to αNx,t on the almost CS-submanifold down-

stairs branching setNx, which is overtwisted, there exist an embedding φ : pR3, αotq Ñ
pM0, αt,1|M0q whose image we denote by U :“ φpR3q. Restricting the normal bundle
to U we have νεpM0q|U » U0 ˆD

2pεq, with coordinates px, r, θq. The map

Φ : R3 ˆD2p
?
kεq Ñ νεpM0q|U , px, r, θq ÞÑ pφpxq,

r
?
k
, θq,

satisfies Φ˚pαt,1q “ αot ` r2dθ. Since, the choice of ε is independent of k, we can
pick k " ε as large as we want. Then, the main theorem in [26] shows that αt,1 is
overtwisted concluding the proof.

Remark 2.7.9. Although we used the concrete example S1ˆS2ˆT2 from Proposition
2.6.21, the above proof holds more generally. Indeed, as observed in Remark 2.6.29,
the result of Proposition 2.6.28 holds also for type II deformations and paths in
ACSHyperpM,Rq. To run the above argument for these types of approximations
we need a path of contact structures ξt on a manifold N converging to a foliation
F , together with an almost CS-submanifold N0 Ă N of ξt, for which the induced
contact structure ξN0,t :“ ξt|N0

is overtwisted. Then we can use N0 as the downstairs
branching locus of a branched cover f : M Ñ N with sufficiently high branching
degree. Such examples can be constructed for example using Theorem 2.6.31. 4
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3.1 Overview

This chapter is based on work in progress with A. del Pino. We study the h-principle
technique of wrinkling in the setting of jet spaces. Recall that given a (fiber) bundle
over a manifold π : X Ñ M , the r-th jet bundle JrpXq Ñ M is the space of r-order
derivatives of sections of X. For a more concrete description consider a function
f : R Ñ R (i.e a section of the trivial bundle π : R2 Ñ R). Its r-order jet, denoted
by jrf , is the tuple

ˆ

t, fptq,
df

dt
, . . . ,

drf

dtr

˙

, t P R.

The space of all such tuples, where we think of the derivatives as independent vari-
ables, is precisely the jet space JrpR2q.

In general, given a section σ of JrpXq there is no σ P ΓpXq such that σ “ jrs. When
such an s exists, σ is called holonomic. We can detect if a section is holonomic using
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the Cartan distribution ξcan on JrpXq. It is uniquely defined by the property that a
section is holonomic if and only if it its image is tangent to ξcan.

This provides a natural framework to study (partial) differential equations. Indeed,
a differential equation R is a subset of JrpXq. Its space of solutions SolpRq (resp.
formal solutions Solf pRq) equals the space of holonomic sections (resp. sections) of
JrpXq whose image lies in R. Furthermore, there is a natural inclusion map

ι : SolpRq ãÑ Solf pRqq.

The theory of h-principles aims to study this map on the level of homotopy. In
particular we say that R satisfies the h-principle if ι induces an isomorphism on
homotopy groups.

Proving h-principles on open and closed manifolds requires different techniques. For
open manifolds, many h-principle results are based on the holonomic approximation
theorem, [60, 43]. On closed manifolds the so called wrinkling technique, introduced
by Eliashberg and Mishashev in [40, 42, 41], is particularly useful. Our aim is to
apply wrinkling to the study of submanifolds of jet spaces tangent to the Cartan
distribution.Note that (images of) sections are examples of such submanifolds.

In the first three sections we discuss the necessary background material on jet spaces
and the h-principle. More precisely, in Section 3.2 we recall some basic properties of
(bracket generating) distributions. Most notably, we discuss in detail the coordinate
description of the Cartan distribution, and the linear algebra necessary to manipulate
integral submanifolds. In Section 3.3 we review the Thom-Boardman stratification
of jet spaces and the notion of stability for singularities. We then introduce several
classes of singularities we want to work with, including wrinkles. In Section 3.4
we give a brief overview of the h-principle. In particular we review the holonomic
approximation theorem and the wrinkling method.

In Section 3.5 we introduce the integral Grassmannian of jet spaces Grintegralpξcan, lq.
It is the space of l-dimensional subspaces of ξcan. Given an integral immersion of a
submanifold f : N Ñ JrpXq there is an associated Gauss map:

Grpfq : N Ñ Grintegralpξcanq,

sending a point x P N to the integral element pdfqxpTxNq Ă ξcan,fpxq. Such maps can
be interpeted as “formal integral submanifolds”. Hence, understanding Grintegralpξcanq

and its homotopy type is key. Note that most of the arguments in this section are
somewhat sketchy, and a precise discussion of the material is left for future work.

The last three sections form the central part of the chapter. In Section 3.6 we define
multi-sections of jet bundles. Roughly speaking an (r-times differentiable) multi-
section is a smooth map f : N Ñ JrpXq which is graphical over M on an open
dense set, and whose non-graphical part consists of mild singularities. Multi-sections
of jet spaces can (in some sense) be integrated and differentiated. Hence they can
be recovered from their image under certain projections (which remember only some
of the derivatives). This is similar to the way Legendrian knots can be recovered
from their Lagrangian projection. We describe the analogue of this projection in the
setting of general jet spaces, and show it provides a convenient way of manipulating
multi-sections.
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In Section 3.7 we discuss the singularities needed for our applications. We give explicit
descriptions of the singularities in coordinates, as well as their images under the
various projections mentioned before. Next, we recall Givental’s theorem (Theorem
3.7.5) and use it to conclude that our singularities are stable.

Lastly, Section 3.8 contains the proof of our main result:

Theorem (3.8.2). Let σ : M Ñ JrpX ÑMq be an arbitrary section. Then, for any
ε ą 0, there exists a map f : M Ñ JrpX ÑMq satisfying:

• f is a holonomic multi-section with fold singularities (in zig-zag position);

• |f ´ σ|C0 ă ε.

This is the analogue of holonomic approximation for multi-sections on closed man-
ifolds. Since multi-sections are in particular (singular) integral submanifolds of the
Cartan distribution, this theorem is a first step towards a general h-principle for
integral submanifolds of jet space.

3.2 Overview: Distributions and jet spaces

In this section we review some standard material from the theory of distributions
(Subsection 3.2.1), focusing on the particular case of jet spaces (Subsection 3.2.2). A
lot of what we do is needed simply to set up notation.

Throughout this chapter, we work in the smooth category. Given a subset K of a
topological space M , we denote by OppKq an unspecified neighbourhood of K, whose
size is not important as long as it is sufficiently small.

3.2.1 Basics of distributions

The main objects of interest in this chapter are distributions. However, unlike
the previous chapters, here we also consider distributions which are not necessar-
ily codimension-1. Recall that by a distribution we mean:

Definition 3.2.1. Let M be a manifold. A (tangent) distribution ξ of rank k is a
section of the Grassmann bundle of k-planes GrpTM, kq ÑM .

We will look at differential invariants of distributions and at the submanifolds tangent
to them. The reader may want to further refer to standard references [90, Chapters
2 and 4],[21], and [55].

3.2.1.1 The Lie flag

The vector fields Γpξq tangent to ξ are a C8-submodule of the space of all vector
fields of M . Therefore, it is natural to analyse to what extent this subspace fails
to be a Lie subalgebra (with respect to the Lie bracket of vector fields), as we now
describe.
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Definition 3.2.2. Define a sequence of C8-modules of vector fields using the induc-
tive formula:

Γpξpi`1qq :“ rΓpξq,Γpξpiqqs.

The rightmost expression denotes taking the C8-span of all Lie brackets with entries
in Γpξq and Γpξpiqq.

The Lie flag associated to ξ is the sequence

ξp0q :“ ξ Ă ξp1q Ă ξp2q Ă . . .

where ξpiq is the pointwise span of Γpξpiqq.

Remark 3.2.3. In general Γpξpi`1qq as defined above is only a C8-module of vector
fields, and not necessarily the module of sections of a distribution as the notation
suggests. In particular, unlike ξ the rank of ξpiq may depend on the basepoint, so it
may fail to be a distribution. The precise condition for this to happen is given by the
Serre-Swan theorem; On a connected manifold M a C8-submodule Γ Ă XpMq is the
space of sections of a distribution ξ Ă TM if and only if it is finitely generated and
projective. 4

Unless explicitly stated otherwise, we will always assume that all the entries in the
Lie flag are distributions. Under this assumption the Lie flag stabilizes after finitely
many steps since the rankξpiq ď dimM . That is, ξpr`1q “ ξprq for some smallest r
and thus for all subsequent integers. We can then define:

Definition 3.2.4. The growth vector of ξ is the sequence of integers

prankpξp0qq, . . . , rankpξprqqq.

When writing a growth vector or a Lie flag, we just write the terms until it stabilizes.

Example 3.2.5. On R3 with coordinates px, y, zq, consider the standard contact
structure

ξst :“ kerpdz ´ ydxq “ xBy, yBz ` Bxy.

Since
rBy, yBz ` Bys “ Bz,

it follows that ξp1q “ TM . This is true for any contact structure, since the curvature
cξ : Λ2ξ Ñ TM{ξ being non-degenerate implies that ξp1q “ TM . Note however that
the converse is not true. 4

Example 3.2.6. On R3 with coordinates px, y, zq, the Martinet distribution is
defined by

ξ :“ kerpdz ´ y2dxq “ xBy, y
2Bz ` Bxy.

Observe that
rBy, y

2Bz ` Bxs “ yBz, rBy, rBy, y
2Bz ` Bxss “ Bz.

It follows that away from the hypersurface ty “ 0u, this distribution is contact and
ξp1q “ TM . At points in the hypersurface we need to take two brackets to span
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TM , and we growth vector equals p2, 2, 3q. Thus, in this case ξp1q does not define a
distribution (of constant rank). Analogously, for any k P N we can define

ξk :“ kerpdz ´ ykdxq,

which defines a contact structure away from the hypersurface ty “ 0u, and stabilizer
after k steps at points in the hypersurface. 4

Example 3.2.7. On R4 with coordinates px, y, z, wq, the standard Engel structure
is defined as

E :“ kerpdz ´ ydxq X kerpdy ´ wdxq “ xBw, Bx ` yBz ` wByy.

Thus E is a (smooth) rank-2 distribution, and its Lie flag equals:

ξp1q “ xBw, Bx ` yBz, Byy, ξp2q “ xBw, Bx, By, Bzy “ TM,

so that the growth vector equals p2, 3, 4q. 4

3.2.1.2 Involutive vs. bracket-generating

By definition, Γpξq is a Lie subalgebra if and only if Γpξp1qq “ rΓpξq,Γpξqs “ Γpξq.
That is, if and only if the associated Lie flag (or, identically, the growth vector) is
constant. Such a ξ is said to be involutive. A related notion is that of integrability:
there exists a partition of the ambient manifold M into submanifolds of dimension
k “ rankpξq all of which are integral, that is, everywhere tangent to ξ. Recall
that Frobenius theorem states that involutivity of a distribution is equivalent to
integrability. The growth vector is, therefore, a measure of the non-integrability of ξ.

For us, the more interesting case is the complete opposite: ξ is said to be bracket-
generating if, for some integer r, it holds that ξprq “ TM ; i.e. Γpξq generates, as
an algebra, the space of all vector fields. In particular, all the examples given above
are bracket-generating. A well-known theorem of Chow states that any two points in
M can be connected by a path tangent to ξ if ξ is bracket-generating. This can be
regarded as the first result showing that submanifolds tangent to bracket-generating
distributions behave flexibly. The present chapter goes also in this direction following
an h-principle approach.

3.2.1.3 Curvature and nilpotentisation

We can define additional invariants of ξ that measure its non-integrability in a more
refined manner. They are defined as follows: by construction, there is a map between
sections

Γpξpiqq ˆ Γpξpjqq Ñ Γpξpi`j`1q{ξpi`jqq

induced by Lie bracket. It can be checked that this map is C8-linear, letting us write:

Definition 3.2.8. The (i,j)-curvature of ξ is the tensor:

Ωi,jpξq : ξpiq{ξpi´1q ˆ ξpjq{ξpj´1q Ñ ξpi`j`1q{ξpi`jq.
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Explicitly, the curvature Ω0,0pξq : Λ2ξ Ñ TM{ξ is defined on section by

Ω0,0pξq : Γpξq ˆ Γpxq Ñ ΓpTM{ξq, pX,Y q ÞÑ rX,Y smod ξ.

If ξ is corank-1, this is just the curvature cξ P Ω2pξ, TM{ξq. By Koszul’s formula this
map is uniquely defined by the formula:

α ˝ Ω0,0 “ dα|ξ, @α P α P ΓppTM{ξq˚q.

Equivalently, the dual map is defined by:

Ω˚0,0 : ΓpqpTM{ξq˚q Ñ ΓpΛ2ξ˚q, α ÞÑ dα|ξ.

Again, it can be checked that these maps are C8-linear, and induce maps on the level
of vector bundles.

To put all the curvatures together in a more algebraic fashion we recall the notion of
a bundle of Lie algebras:

Definition 3.2.9. A bundle of Lie algebras is a pair pE, r¨, ¨sq consisting of a
vector bundle π : E Ñ M together with a section r¨, ¨s P ΓpΛ2E˚ b Eq, such that for
each x PM the restriction

r¨, ¨sx : Ex ˆ Ex Ñ Ex,

defines a Lie bracket on the vector space Ex.

Remark 3.2.10. The above definition should not be confused with the more restric-
tive Lie algebra bundle. In the latter case on additionally requires that for each
x PM there exists an isomorphism of bundles of Lie algebras

φ : pE, r¨, ¨sq|Oppxq
„
ÝÑ pOppxq ˆ L, r¨, ¨sLq ,

for a fixed Lie algebra pL, r¨, ¨sLq. Hence, every Lie algebra bundles is a bundle of Lie
algebras but not conversely. 4

We can endow the graded vector bundle

Lpξq :“ ‘ri“0Lpξqi :“ ‘ri“0pξ
piq{ξpi´1qq “ ξ ‘ pξp1q{ξq ‘ ¨ ¨ ¨ ‘ pξprq{ξpr´1qq

with a fibrewise graded Lie bracket Ωpξq “ ‘i,jΩi,jpξq.

Definition 3.2.11. The pair pLpξq,Ωpξqq is a bundle of fibrewise graded Lie algebras
called the nilpotentisation of ξ.

Note that the graded Lie algebras on each fibre may not be pairwise isomorphic (but
they will be in the cases we care about). The nilpotentisation should be thought as
a linearisation of ξ: it packages the infinitesimal behaviour of ξ under Lie bracket at
each point of the manifold.
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3.2.1.4 Integral elements and submanifolds

Fix a manifold pM, ξq endowed with a distribution (the precise nature of the distri-
butions ξ we want to consider will be explained in the next Subsection).

We are interested in maps and submanifolds tangent to ξ:

Definition 3.2.12. Let M be a manifold endowed with a distribution ξ. We say that:

• A map f : N ÑM is integral if dfpTNq Ă ξ;

• A submanifold N ĂM is integral if TN Ă ξ.

It is immediate that the first curvature Ω0,0pξq vanishes when restricted to an integral
submanifold. This leads us to consider the subspaces of TM that might potentially
be tangent to one of them:

Definition 3.2.13. An integral element is an l-dimensional linear subspace W Ă

ξp Ă TpM , for some p PM , such that:

Ω0,0pξqp|W “ 0.

The collection Grintegralpξp, lq of all of them, which is a subset of the usual Grassman-
nian of l-planes Grpξp, lq Ă GrpTpM, lq, is called the integral Grassmannian. The
union of all these subsets for every point p PM is denoted by Grintegralpξ, lq; we call
it the integral Grassmannian bundle. This name might be misleading: the fibres
Grintegralpξp, lq are algebraic subvarieties of GrpTpM, lq which often are not smooth.
We shall study this in depth in Section 3.5.

For our purposes, it will be necessary to see how integral Grassmannians relate to
one another. More precisely, given an integral element W Ă ξp of dimension l1, we
may consider the subset of Grintegralpξp, lq consisting of those l-dimensional integral
elements that contain it. We denote this by Grintegralpξp, l;W q. Related to this we
have:

Definition 3.2.14. The polar space of an integral element W Ă ξp is

W ξ :“ tv P ξp | Ω0,0pξqppw, vq “ 0, @w PW u Ă ξp.

That is, the linear subspace of all those vectors in ξp which yield zero when paired
with W using the curvature. Since W is integral, W ξ contains W . Tautologically,
extensions of W to an integral element of dimension dimpW q`1 are in correspondence
with lines in the quotient W ξ{W .

An element is said to be maximal if W “ W ξ, i.e. if it is not contained in a
larger integral element. Similarly, an integral submanifold N Ă pM, ξq is (locally)
maximal if the germ of N at any of its points cannot be extended to an integral
submanifold of greater dimension. It is immediate that if TpN is a maximal integral
element, N itself is maximal at p. The converse is not necessarily true, as shown by
Example 3.2.6
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Definition 3.2.15. A vector w satisfying xwyξ “ ξp is called a Cauchy character-
istic.

The linear subspace spanned by all the Cauchy characteristics is an integral element
denoted by kerpξpq.

If the dimension of kerpξpq does not vary with p PM , then their union is a distribution
kerpξq Ă ξ that we call the characteristic foliation of ξ. As the name suggests,
a simple computation using the Jacobi identity shows that kerpξq is involutive. Its
leaves are integral submanifolds.

It is immediate that any local diffeomorphism preserving ξ must preserve kerpξq.
Similarly, its differential can identify two vectors tangent to ξ only if their polar
spaces have the same dimension. We will exploit these facts in the next subsection.

Example 3.2.16. Let pM, ξq be a contact manifold. Then the curvature Ω0,0pξq
is a nondegenerate form on ξ with values on TM{ξ. Indeed, as in Chapter 2, if α
represents ξ, then we have α ˝ Ω0,0pξq “ ´dα.

For a subspace W Ă ξp to be isotropic is the same as being integral i.e. W ĂW ξ. The
polar space W ξ is the usual symplectic orthogonal. The integral Grassmannians
are thus the same as the Grassmannians of isotropic subspaces. In particular, for
maximal integral elements we look at the Lagrangian Grassmannian. 4

3.2.2 Basics of jet spaces

We now recall some elementary notions about jet spaces, putting particular emphasis
on their tautological distribution, which is bracket-generating. All of the results in
this chapter have to do with integral submanifolds of this tautological distribution.
A standard reference in the Geometry of PDEs literature is [70, Chapter IV], but we
also recommend [109, Section 2]. The two standard h-principle references also treat
jet spaces, namely [60, Section 1.1] and [43, Chapter 1]. Lastly, the reader may want
to look at [61, Section 4.1], whose ideas have certainly inspired parts of this work.

One of our goals in this subsection is to stress the metasymplectic viewpoint; see
subsections 3.2.2.6, 3.2.2.7, and 3.2.2.8. This will be important later on when we
study integral elements in Section 3.5.

3.2.2.1 Jet spaces of sections

Let X be an n-dimensional manifold and let π : Y Ñ X be a smooth fibre bundle
with k-dimensional fibres.

Definition 3.2.17. Two sections f0, f1 : X Ñ Y define the same r-jet at a point
x P X if, in any trivialisation, their Taylor polynomials of order r at x agree.

An r-jet is thus an equivalence class of sections. It is a consequence of the chain
rule that this is a well-defined notion across different choices of charts for X and Y .
Hence, we can write JrpY Ñ Xq for the space of all r-jets of sections X Ñ Y , i.e.
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the space of equivalence classes for the above equivalence relation. When Y is the
trivial Rk-bundle over X we often write JrpX,Rkq :“ JrpY Ñ Xq.

We can collect the r-order differential information of a section in the following object:

Definition 3.2.18. Let f : X Ñ Y be a section. Its holonomic lift is the section

jrf : X Ñ JrpY Ñ Xq

mapping each x P X to the r-jet of f at x. A section of JrpY Ñ Xq is holonomic
if it is such a holonomic lift.

It follows from this definition that the spaces of r-jets, for varying r, fit in a tower

(3.2.2.1) JrpY Ñ Xq Jr´1pY Ñ Xq . . . J0pY Ñ Xq “ Y
πr,r´1 πr´1,r´2 π1,0

where each projection forgets the differential information of top order. Each projec-
tion maps holonomic sections to holonomic sections. For notational convenience, we
single out two of them:

Definition 3.2.19. The front projection and the base projection are, respec-
tively, the forgetful maps:

πf :“ πr,0 : JrpY Ñ Xq Ñ Y, πb : JrpY Ñ Xq Ñ X.

In the literature these maps are sometimes also called the target and source map
respectively. We will see below that JrpY Ñ Xq is a smooth manifold and that the
πr,r1 are affine bundles.

3.2.2.2 The Cartan distribution

The notion of holonomicity suggests the following construction:

Definition 3.2.20. The tautological distribution ξcan in JrpY Ñ Xq is uniquely
defined by the following universal property: a section of JrpY Ñ Xq is tangent to
ξcan if and only if it is holonomic.

The subbundle Vcan :“ kerpdπr,r´1q Ă ξcan is called the vertical distribution and
its vector subspaces are said to be vertical.

The subbundle ξcan is also called the Cartan distribution. The inclusion Vcan Ă ξcan

will be immediate once we introduce local coordinates in Section 3.2.2.3. Moreover,
these coordinates give a more explicit definition of ξcan as the simultaneous kernel of
a collection of differential forms, see Corollary 3.2.28.

Remark 3.2.21. Observe that the notation ξcan does not contain any reference to
the specific r-jet space. We have opted to do so to avoid cluttering our notation with
indices. 4

The very definition of ξcan implies that images of holonomic sections are integral
submanifolds that are everywhere transverse to the vertical distribution. We define:
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Definition 3.2.22. Integral manifolds and integral elements in pJrpY Ñ Xq, ξcanq

transverse to Vcan are said to be horizontal.

We will show that any integral manifold which is both horizontal and maximal is
necessarily the image of a holonomic section (locally).

The collection of all horizontal elements of rank l is denoted by

GrΣ0pξcan, lq Ă Grintegralpξcan, lq,

and we call it the horizontal Grassmannian bundle. The subscript Σ0 is inspired
by the Thom-Boardman notation introduced in Subsection 3.3.1. If we restrict to
a point p P JrpY Ñ Xq, we write GrΣ0ppξcanqp, lq for the corresponding horizontal
Grassmannian at p.

Example 3.2.23. If the fibres Yx are 1-dimensional, then pJ1pY Ñ Xq, ξcanq is a
contact manifold and its maximal integral submanifolds are legendrians. Similarly,
if Yx and X are 1-dimensional, pJ2pY Ñ Xq, ξcanq is an Engel manifold. Holonomic
sections are then curves tangent to the canonical Engel structure and it can be shown
that no higher dimensional integral manifolds exist 4

3.2.2.3 Local coordinates

We now provide a more explicit description of ξcan, by in terms of local coordinates.
By working locally we may assume that X is a n-dimensional vector space, denoted
by B, and that the fibre of Y is a k-dimensional vector space, denoted by F . In this
local setting the jet space JrpY Ñ Xq can be identified with JrpB,F q. To be explicit
we choose coordinates x :“ px1, ¨ ¨ ¨ , xnq in B and coordinates y :“ py1, ¨ ¨ ¨ , ykq in F .
We may then use px, yq to endow JrpB,F q with coordinates, as we now explain.

Two maps f0, f1 : B Ñ K have the same r-jet at x P B if and only if their Taylor
expansions at x are the same. Equivalently: a point p P JrpB,F q is uniquely repre-
sented by an r-order Taylor polynomial based at πbppq P X. Now, the r-order Taylor
polynomial of a map f : B Ñ F at x reads:

fpx` hq –
ÿ

0ď|I|ďr

pBIfpxqq
dxdI

I!
ph, . . . , hq,

where I “ pi1, . . . , inq ranges over all multi-indices of length at most r. Here d
denotes the symmetric tensor product and we use the notation

dxdI :“ dxi1 d ¨ ¨ ¨ d dxin , I “ pi1, . . . , inq.

This tells us that JrpB,F q Ñ B is a vector bundle and that, formally, we can use
the monomials

dxdI

I!
b ej , 0 ď |I| ď r1 1 ď j ď k

as a framing; here teju1ďjďk is the standard basis of F in the pyq-coordinates.

The monomials above with |I| “ r1 form a basis of Symr1
pB˚, F q, the space of a

symmetric tensors with r1 entries in B and values in F . This leads us to write, in
more conceptual terms:
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Lemma 3.2.24. JrpB,F q “ BˆFˆHompB,F qˆSym2
pB˚, F qˆ¨ ¨ ¨ˆSymr

pB˚, F q.

Corollary 3.2.25. πr,r´1 : JrpY Ñ Xq Ñ Jr´1pY Ñ Xq is an affine bundle with
fibres modelled on Symr

pB˚, F q.

Proof. We cannot speak, intrinsically, of a section having vanishing derivatives of
order exactly r. I.e. there is no natural choice of zero section in πr,r´1. However,
once a reference section f : X Ñ Y is chosen, the space of r-jets tjrg | jr´1g “ jr´1fu
is isomorphic to Symr

pB˚, F q.

Once we fix a trivialisation B ˆ F Ñ B of Y Ñ X we can take this a step further.
The zero section of JrpB,F q over Jr´1pB,F q is the space of polynomials of degree
r ´ 1.

In particular, the fibres of πr,r´1 are k
`

n`r´1
n´1

˘

-dimensional.

We can now write z
pIq
j for the coordinate dual to the vector dxdI

I! bej P Sym|I|pB˚, F q.
This definition depends only on the choice of coordinates px, yq : Y Ñ B ˆ F . We
give these coordinates a name:

Definition 3.2.26. The coordinates

px, y, zq :“ px, y “ z0, z1, . . . , zrq, zr
1

:“ tz
pIq
j | |I| “ r1, 1 ď j ď ku,

in JrpY Ñ Xq are said to be holonomic.

3.2.2.4 The Cartan distribution in coordinates

We continue using the notation from the previous subsection. It is immediate from
the expression of the Taylor expansion shown above that:

Lemma 3.2.27. In terms of the holonomic coordinates px, y, zq P JrpB,F q, the
holonomic lift of a map f : B Ñ F reads:

jrf : B Ñ JrpB,F q “ B ˆ F ˆHompB,F q ˆ Sym2
pB˚, F q ˆ ¨ ¨ ¨ ˆ Symr

pB˚, F q,

x Ñ jrfpxq “ px, y “ fpxq, z1 “ pBfqpxq, z2 “ pB2fqpxq, . . . , zr “ pBrfqpxqq.

That is, a holonomic section satisfies the relations

z
pIq
j pxq “ pBIyjqpxq, I “ pi1, . . . , inq, 0 ď |I| ď r, 1 ď j ď k.

In other words:

Corollary 3.2.28. The tautological distribution ξcan is the simultaneous kernel of
the Cartan 1-forms:
(3.2.2.2)

αIj “ dz
pIq
j ´

n
ÿ

a“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j dxa, I “ pi1, . . . , inq, 0 ď |I| ă r, 1 ď j ď k.
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Looking at the Cartan 1-forms we deduce that n-dimensional horizontal elements are
maximal (because all the directions in Vcan pair non-trivially, through the curvature,
with them). The same argument shows that Vcan is maximal as well. Note that these
are, in general, integral elements of different dimensions.

Using the dual viewpoint allows us to write ξcan as the span of n` k
`

n`r´1
n´1

˘

linearly
independent vector fields:
(3.2.2.3)

ξcanpx, y, zq “
à

1ďaďn

xBxa `
ÿ

0ď|I|ăr

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j B

z
pIq
j
y ‘

à

|I1|“r,1ďj1ďk

xB
z
pI1q

j1

y,

where the first n vectors lift TX and the others span Vcan. The distribution deter-
mined by the first n vectors is not canonically defined and depends on the framing
chosen (and thus on our choice of coordinates).

3.2.2.5 The bracket-generating property

From Equation 3.2.2.3 we readily compute the Lie flag:

Corollary 3.2.29. The Lie flag associated to pJrpY Ñ Xq, ξcanq is given by the
expression:

ξpiqcan “ dπ´1
r,r´ipξcanq,

where the right hand side is the preimage of the Cartan distribution on Jr´ipY Ñ Xq.

In particular, ξcan bracket-generates in r steps, i.e. ξ
prq
can “ TJrpY Ñ Xq.

We can additionally observe that rξ
p1q
can, Vcans Ă ξ

p1q
can. I.e. the curvature Ω0,0pξ

p1q
canq

pairs trivially with the vertical space of ξcan. This is true for trivial reasons if r “ 1

(because then ξ
p1q
can is the whole tangent space) but, in general:

Corollary 3.2.30. The following statements hold for r ą 1:

• The vertical distribution Vcan is the characteristic foliation kerpξ
p1q
canq of ξ

p1q
can on

JrpY Ñ Xq.

• Inductively, kerpξ
piq
canq “ kerpdπr,r´iq for every 0 ă i ă r.

We will say that kerpξ
piq
canq is the ith characteristic foliation.

If we regard pJrpY Ñ Xq, ξcanq as an abstract manifold endowed with a distribution,
i.e. forgetting that projections πr,r1 , the Corollary tells us that we can recover the
fibres of πr,r1 intrinsically, as long as r1 ą 0. In fact, even the front projection πf
(Definition 3.2.19) can be recovered as long as k “ dimpYxq ą 1. This follows by
observing that the polar space of a horizontal vector is always smaller in dimension
than the polar space of a vertical one. In this case, we say that the fibre of πf is the
polar foliation associated to ξcan.

The one case in which the fibres are not defined intrinsically is when we look at
the front projection with k “ 1. This is related to the fact that pJ1pX,Rq, ξcanq,
as a contact manifold, has many more symmetries than those appearing as lifts of
symmetries of the front; see below.
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3.2.2.6 Standard metasymplectic space

Let us revisit subsection 3.2.2.4, particularly the Cartan 1-forms (as defined in Equa-
tion 3.2.2.3). We work locally in jet space, so we may write JrpB,F q with holonomic
coordinates px, y, zq.

Consider the collection of Cartan 1-forms of the form:

αIj “ dz
pIq
j ´

n
ÿ

a“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j dxa, I “ pi1, . . . , inq, |I| “ r ´ 1, 1 ď j ď k,

which only depend on the coordinates zr. Their differentials are the 2-forms:

ΩIj “
n
ÿ

a“1

dxa ^ z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j , I “ pi1, . . . , inq, |I| “ r ´ 1, 1 ď j ď k,

which, by construction, are pullbacks of forms in the product B‘Symr
pB˚, F q (which

have the same coordinate expression, so we abuse notation and denote them the
same). We can package them in the following intrinsic manner:

Definition 3.2.31. The canonical metasymplectic structure in B‘Symr
pB˚, F q

is the 2-form:

Ωcan :“ pΩIj q|I|“r´1, 1ďjďk : ^2pB ‘ Symr
pB˚, F qq Ñ Symr´1

pB˚, F q.

The pair pB ‘ Symr
pB˚, F q,Ωcanq is called standard metasymplectic space.

We remark that we can regard standard metasymplectic space as a vector space
endowed with a linear 2-form, or as a manifold endowed with a smooth 2-form. The
tangent fibres of the latter are, of course, isomorphic to the former.

A more manageable way of expressing Ωcan is provided by the following tautological
lemma:

Lemma 3.2.32. Given a point p P B ‘ Symr
pB˚, F q and vectors vi ` Ai P TppB ‘

Symr
pB˚, F qq – B ‘ Symr

pB˚, F q:

Ωcanpv0 `A0, v1 `A1q “ ιv0A1 ´ ιv1A0.

I.e. the canonical metasymplectic structure is precisely the contraction map of tensors
with vectors.

Example 3.2.33. When r “ k “ 1, the standard metasymplectic space pB ‘

B˚,Ωcanq is the standard 2n-dimensional symplectic space. 4

3.2.2.7 The metasymplectic projection

Let us consider the map:
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Definition 3.2.34. The metasymplectic projection is the map

πL : JrpB,F q Ñ B ‘ Symr
pB˚, F q

px, y, zq Ñ πLpx, y, zq :“ px, zrq.

In the contact setting this is usually called the Lagrangian projection, because
it maps legendrians to lagrangians. A similar situation holds in general, as we now
explain.

Observe first that, by construction, the differential

dpπL : TpJ
rpB,F q Ñ TπLppqpB ‘ Symr

pB˚, F qq

is an epimorphism that restricts to an isomorphism pξcanqp Ñ TπLppqpB‘Symr
pB˚, F qq.

Furthermore, using the duality between distributions and their annihilators it readily
follows that:

Lemma 3.2.35. The differential is an isomorphism of metasymplectic linear spaces:

dpπL : ppξcanqp,Ωpξcanqq Ñ pTπLppqpB ‘ Symr
pB˚, F qq,Ωcanq,

where Ωpξcanq is the curvature of ξcan.

We can use this to study integral submanifolds of ξcan.

Definition 3.2.36. A vector subspace V of the standard metasymplectic (linear)
space is said to be an isotropic element if

V Ωcan Ă V.

An isotropic element is maximal if it is not contained in a larger isotropic subspace.

A submanifold of standard metasymplectic space is isotropic if all its tangent sub-
spaces are isotropic elements.

It immediately follows from the previous Lemma (and the comments preceding it)
that:

Corollary 3.2.37. Let f : N Ñ JrpB,F q be a map. Then:

• f is integral if and only if πL ˝ f is isotropic.

• If f is integral then f is an immersion if and only if πL ˝ f is an immersion.

In subsection 3.6.4.1 we will prove a converse: any isotropic map has a unique integral
lift up to choice of basepoint.
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3.2.2.8 The nilpotentisation

According to the computations in the previous subsections, the nilpotentisation of
ξcan at any point is isomorphic to the following graded Lie algebra:

Definition 3.2.38. Let B and F be real vector spaces of dimensions n and k, re-
spectively.

The jet Lie algebra (depending on n, r, and k) is:

• The graded vector space g :“
Àr

i“0 gi with

g0 :“ B ‘ Symr
pB˚, F q, gi :“ Symr´i

pB˚, F q.

• Endowed with the Lie bracket defined by the contraction of vectors with tensors

rv, βs “ ιvβ, v P B, β P Symj
pB˚, F q.

All other brackets are either defined by the antisymmetry or zero.

We will often abuse notation and use g to denote the graded Lie algebra as a whole
(instead of just the underlying vector space). Note that the bracket and the grading
are compatible, making the jet Lie algebra a graded Lie algebra. This Lie algebra is
nilpotent ; in particular, the composition of r ` 1 brackets is zero. Disclaimer: the
grading we use is shifted by one with respect to the usual conventions for graded Lie
algebras found in the literature.

The degree zero part g0 is the direct sum B‘Symr
pB˚, F q. When identified with ξcan

at a point p, the first part corresponds to a lift of TpX (in a canonical manner once we
choose local coordinates). The second term corresponds to the vertical distribution.
We will henceforth say that B is the horizontal component and Symr

pB˚, F q is
the vertical component. We write πb : g0 Ñ B for the projection to the horizontal
factor.

As claimed:

Proposition 3.2.39. The nilpotentisation of pJrpY Ñ Xq, ξcanq, at any point, is
isomorphic to the jet Lie algebra g with parameters n “ dimpXq, r, and k “ dimpYxq.
In particular, the zeroeth order part g0 corresponds to pξcanqp.

Proof. The last claim is simply a consequence of the definition of nilpotentisation.
That the underlying vector space is g follows from the discussion in subsection 3.2.2.1.
The form of the Lie bracket is immediate from the local presentation of ξcan given in
subsection 3.2.2.4, together with Lemmas 3.2.32 and 3.2.35.

It readily follows from the Proposition that:

Corollary 3.2.40. Integral elements of ξcan correspond to vector subspaces W Ă g0

which are, additionally, Lie subalgebras.

Horizontal elements of ξcan correspond to Lie subalgebras W Ă g0 transverse to the
vertical component.



3.2. OVERVIEW: DISTRIBUTIONS AND JET SPACES 227

Hence, a Lie subalgebra contained in g0 is said to be an integral element. Similarly,
an integral element transverse to Symr

pB˚, F q is called a horizontal element.

For fixed l, the collection Grintegralpg, lq of all integral elements is called the integral
Grassmannian. It is isomorphic to Grintegralppξcanqp, lq, for any p P JrpB,F q. The
collection of all horizontal elements of dimension l is the horizontal Grassmannian,
which we denote by GrΣ0pg, lq Ă Grintegralpg, lq.

Corollary 3.2.41. The space Grintegralpg, lq is an algebraic subvariety of the standard
Grassmannian of l-planes Grpg, lq.

Proof. Being a Lie subalgebra and lying in zero degree are both algebraic conditions.

We will study the integral Grassmannian in more detail in Section 3.5.

3.2.2.9 Closing remarks

We have observed that the fibre of JrpY Ñ Xq Ñ Jr´1pY Ñ Xq is an exceptional
integral submanifold: its dimension k

`

r`n´1
n´1

˘

is larger than n (i.e. the dimension of
a maximal horizontal submanifold) unless k “ 1 and r “ 1 (i.e the contact setting)
or if k “ 1 and n “ 1 (the Goursat setting).

In the contact case, the fibre is locally isomorphic to any other legendrian, according
to Weinstein’s legendrian neighbourhood theorem. In particular, up to a C8-small
perturbation, it can be assumed to be in generic position with respect to the front
projection. This is related to the fact that the front projection

πf : J1pRn,Rq – T˚Rn ˆ RÑ Rn ˆ R

is not canonical.That is, if a legendrian is not horizontal, we can find some other front
projection (locally) in which it is.

In the Goursat case with r ą 1, the fibre has a special local model. It can be
put in generic position (through integral manifolds) if we allow the ends not to be
constrained, but it was proven in [20] that it admits no compactly-supported deforma-
tions. This phenomenon is called rigidity. A related notion is that of singularity:
an integral manifold is singular if it has less compactly-supported deformations than
expected. Many works [65, 73, 1] study these ideas for the case of curves but, to
our knowledge, this has not been studied in depth for higher dimensional integral
submanifolds in general bracket-generating distributions.

The upshot is that, for general jet spaces, the fibre is rather exceptional. In par-
ticular, there are marked differences between horizontal submanifolds and general
integral submanifolds. In particular, one cannot expect a full analogue of the Legen-
dre transform to hold. Despite of this, we will introduce some tools in Section 3.6 to
deal with the general case.
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3.2.3 Distributions modelled on jet spaces

Much like contact manifolds look locally like the 1-jet space of functions, we can,
more generally, consider manifolds with distributions locally modelled on some other
jet space.

Definition 3.2.42. Let pM, ξq be a manifold endowed with a distribution. We say
that ξ is modelled on the tautological distribution pJrpB,F q, ξcanq if, for each p PM ,
there are local coordinates px, y, zq around p, with domain a subset of JrpB,F q, so
that ξ “ ξcan.

In particular, the numbers n “ dimpBq, k “ dimpF q, and r are invariants of ξ.

According to Corollary 3.2.29 from subsection 3.2.2.5, ξ bracket-generates in r steps.
Furthermore, according to Corollary 3.2.30, M is endowed with a flag tkerpξpiqqui“1,...,r´1

of characteristic foliations. Indeed: in each local model these are simply the suc-
cessive fibres of the projections πr,r1 , r

1 ą 0. When k ą 1, we also have a well-defined
polar foliation, defined locally to the fibres of πf .

Our constructions of integral submanifolds will be (semi-)local in nature. Therefore,
they will apply too to integral submanifolds of distributions modelled on jet spaces.
Note that one can still talk about horizontal submanifolds in this setting (as long as
r ą 1 or k ą 1), as those that are transverse to the first characteristic/polar foliation.

3.2.3.1 Automorphisms

In Section 3.7 we will study local models of integral submanifolds of ξcan. Under-
standing their locus of tangency with Vcan will take us into Singularity Theory (see
Section 3.3 for an overview of the concepts we need). One of our goals then will be to
show that certain models of tangency are stable (defined in Subsection 3.3.2). How-
ever, in order to discuss stability, we must fix the allowed space of automorphisms
(i.e. the left-right equivalences). To this end, we look at the symmetries of ξcan.

Definition 3.2.43. Let pM, ξq be a distribution modelled on a jet space. A (contact)
transformation of pM, ξq is a ξ-preserving diffeomorphism.

A more restrictive notion of symmetry (which only makes sense for jet spaces) is the
following:

Definition 3.2.44. Let Y Ñ X be a fibre bundle. Let Ψ : Y Ñ Y be a fibre-preserving
diffeomorphism lifting a diffeomorphism ψ : X Ñ X.

The point symmetry lifting Ψ is defined as:

jrΨ : pJrpY Ñ Xq, ξcanq Ñ pJrpY Ñ Xq, ξcanq

jrfpxq Ñ pjrΨqpjrfpxqq :“ jrpΨ ˝ f ˝ ψ´1qpψpxqq.

Point symmetries form a subgroup of the group of contact transformations. It is well-
known in Contact Geometry that the space of contact transformations of J1pX,Rq is
strictly larger than the space of point symmetries. However:
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Lemma 3.2.45. Assume r ą 1 or dimpYxq ą 1. Any contact transformation of
JrpY Ñ Xq is the lift of a contact transformation of Jr´1pY Ñ Xq.

Proof. Suppose that r ą 1 and let Ψ be a contact transformation of JrpY Ñ Xq.
Then Ψ preserves the vertical distribution. Therefore, Ψ induces a well-defined map
Ψ̃ in the quotient

JrpY Ñ Xq{Vcan – Jr´1pY Ñ Xq.

Furthermore, since Ψ preserves ξcan, it preserves ξ
p1q
can. From this we deduce that Ψ̃

preserves the Cartan distribution in Jr´1pY Ñ Xq. Hence Ψ is a lift of Ψ̃ (we will
not explain that this lift is, in fact, unique).

The same argument applies to the polar foliation if r “ 1 and dimpYxq ą 1.

3.2.3.2 Jet spaces of submanifolds

Let us provide an example of distribution pM, ξq locally modelled on a jet space.

Definition 3.2.46. Let Y be a smooth manifold and fix an integer n ă dimpY q. We
say that two n-submanifolds have the same r-jet at p P Y if they are tangent at p
with multiplicity r.

More precisely, two submanifolds N1, N2 Ă Y have the same r-jet at x P N1 XN2 if,
N2 is graphical in a neighborhood of x, and the induced section vanishes up to order
r at x.

An r-jet is therefore an equivalence class of (germs of) embedded submanifolds. We
denote the space of r-jets of n-submanifolds as JrpY, nq. We have, just like in the
case of sections, a sequence of forgetful projections

πr,r1 : JrpY, nq Ñ Jr
1

pY, nq,

with πf :“ πr,0 being called the front projection.

Definition 3.2.47. The holonomic lift of an n-submanifold N Ă Y is the subman-
ifold jrN Ă JrpY, nq consisting of all the r-jets of N at each of its points.

The Cartan distribution ξcan in JrpY, nq is the smallest distribution which is tan-
gent to every holonomic lift.

JrpY Ñ Xq was defined (when Y fibres over some base n-manifold X) using exactly
the same equivalence relation as JrpY, nq: two sections have the same r-order Taylor
polynomial at a point if and only if their images have an r-tangency. Therefore:

Lemma 3.2.48. There is a distribution preserving embedding with open and dense
image:

pJrpY Ñ Xq, ξcanq Ñ pJrpY, nq, ξcanq.

The jets of submanifolds having non-trivial tangencies with the fibres of Y Ñ X are
not in the image of this inclusion.
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Remark 3.2.49. If n “ dimpY q ´ 1 and r “ 1, the structure we just constructed is
precisely the space of contact elements. In general, if r “ 1, the space J1pY, nq is
precisely the Grassmannian of n-planes GrpTY, nq.

Given an immersion f : N Ñ Y , we often talk of its Gauss map

Grpfq :“ j1f : N Ñ GrpTY, nq

which at every point assigns the corresponding tangent plane. 4

3.2.4 The foliated setting

Due to the parametric nature of the statements we want to prove, we will need to
phrase our constructions in a foliated setting. An alternate (seemingly weaker but
ultimately equivalent way) would be to use the fibered setting [43, 6.2.E].

Let Y Ñ pM,Fq be a smooth fiber bundle over a foliated manifold. We write k for
the dimension of the fibres and n for the dimension of the leaves. We define the
bundle of foliated r-jets JrpY Ñ pM,Fqq to be the space of equivalence classes of
leafwise sections that are r-tangent to one another. The fibres of JrpY Ñ pM,Fqq Ñ
M are again modelled on r-order Taylor polynomials of k functions in n variables.
Given a global section f : M Ñ Y , we can consider its corresponding leafwise r-jet
jrFf : M Ñ JrpY Ñ pM,Fqq. Such a section of the space of foliated jets is said to be
holonomic. Note that jrFf encodes no information about the derivatives of f along
the normal bundle of F .

Given manifolds X and K, where the latter is thought of as a parameter space, we
may consider the foliated manifold

pM “ X ˆK,F “
ź

aPK

X ˆ tauq.

If Y Ñ X is a fibre bundle, we can pull it back to XˆK using the obvious projection.
The corresponding space of foliated r-jets JrpY Ñ pM,Fqq is the natural place to
carry out parametric arguments for K-families of sections of Y Ñ X.

3.3 Overview: Singularity theory

We are interested in integral submanifolds of jet spaces. Often, we will look at them
using their front projections (see Definition 3.2.19), which we would like to regard as
”multiply-valued sections”. We will define precisely what this means in Subsection
3.6.1, but it is clear that for any approach to work one should assume that the
singularities of the front are manageable. At the very least, they should form a set
of positive codimension, so the submanifold is graphical over the zero section in an
open dense set.

As we mentioned in subsection 3.2.2.9, it is not always possible to study integral
submanifolds through their fronts. For instance, some integral submanifolds tangent
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to the vertical distribution have no homotopies making them somewhere transverse
to it. That is, no homotopy allows us to assume that the front is not a point,
which is a seemingly very degenerate situation. This tells us that the integrality
condition constrains the submanifolds heavily, and certain behaviours that are generic
for unconstrained manifolds (like being able to move them to put them in general
position with respect to a fibration) cannot be achieved. The general case contrasts
with the contact case, where one may always assume that the front singularities are
generic.

Even when one can obtain generic singularities, these might be terribly complicated.
In this Section we will review the Thom-Boardman hierarchy (Subsection 3.3.1) and
the notion of stability for singularities (Subsection 3.3.2), both of which quantify how
complicated a singularity is. Then, in Subsections 3.3.4, 3.3.5, and 3.3.6, we will
describe some of the singularities appearing later, called wrinkles and double folds.

3.3.1 The Thom-Boardman stratification theorem

Our goal in this Subsection is to state the Thom-Boardman Theorem 3.3.6. For this
we need to set up some notation first. We refer the reader to the original papers
[103, 14] and to the more modern reference [43, Chapter 2].

3.3.1.1 Types of singularities

We will look at two different notions of singularity. The first one being:

Definition 3.3.1. Let M and N be smooth manifolds of dimensions m and n. Fix
a map f : N ÑM .

A point p P N is said to be a singularity of mapping of f if

rankpdpfq ă minpm,nq.

Suppose instead that f has no singularities of mapping:

Definition 3.3.2. Let M be endowed with a foliation F of rank k, and f : N Ñ M
a smooth map.

A point p P N is a singularity of tangency with F if dpfpTNq and Ffppq are not
transverse to one another.

In particular, for inclusions ι : N ÑM of submanifolds, a point p P N is a singularity
of tangency if TpN and Fp are not transverse.

We can be more precise about the structure of the loci of singular points, as we now
explain.

3.3.1.2 The stratification I

Let us focus on singularities of tangency for N Ă pM,Fq.
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Definition 3.3.3. The locus of singularities of corank j is denoted by:

ΣjpN,Fq :“ tp P N | dimpTpN X Fpq ´maxpk ` n´m, 0q ě ju.

That is, the set of points where the dimension of the intersection TpN XFp surpasses
the transverse case by j.

Assuming that the set ΣjpN ;Fq is a submanifold, and the restriction F |ΣjpN ;Fq is a
foliation, one can recursively define:

Definition 3.3.4. The higher tangency locus of corank J “ j0, . . . , jl is:

Σj0¨¨¨jlpN,Fq :“ ΣjlpΣj0j1¨¨¨jl´1 ,Fq.

Remarkable work of Thom [103] and Boardman [14] (see below) shows that one may
perturb N so that all the ΣJpN,Fq are well-defined smooth submanifolds. It can
further be assumed that they form a stratification: i.e. Σj0j1¨¨¨jljl`1pN,Fq lies in
the closure of Σj0j1,¨¨¨jlpjl`1´1qpN,Fq.

One can phrase this in more homotopical terms. Consider the Grassmannian fibra-
tions GrpTM,nq ÑM , for varying n. The presence of F defines:

Definition 3.3.5. The Schubert decomposition of GrpTpM,nq is the partition into
smooth algebraic submanifolds:

Σj “ tH P GrpTpM,nq | dimpH X Fpq ´maxpk ` n´m, 0q “ ju.

The stratification of the Grassmannian they provide varies smoothly with the point,
defining submanifolds Σjpn,Fq Ă GrpTM,nq. The Poincaré duals of the Σjpn,Fq
define cohomology classes in GrpTM,nq that may be pulled back to N using the
tangent map of the inclusion. These classes are dual to the intersections TN X

Σjpn,Fq: they represent obstructions to removing the singularities of N with F by
homotoping N .

3.3.1.3 The stratification II

Instead of looking at singularities of tangency, one may look at singularities of map-
ping. This works in a completely analogous way: given a map f : N ÑM we define
the loci of singularity:

Σjpfq “ tp P N | minpm,nq ´ rankpTfq ě ju.

And higher loci may be defined by iterating the process:

Σj0j1¨¨¨jljl`1pfq “ Σjl`1pf |Σj0j1¨¨¨jl pfqq.
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3.3.1.4 The Thom-Boardman theorem

The two cases we have explained are examples of the same phenomenon: we look at
the 1-jet of a submanifold/map and we study how it interacts with a certain subspace
of 1-jet space. The Thom-Boardman theorem tells us, in much more generality, that
the r-jet of a submanifold/map can be assumed to intersect a stratified submanifold
of r-jet space in a transverse manner.

Theorem 3.3.6. Let A be a stratified subset of JrpM,nq and let f : N ÑM be a n-
submanifold with holonomic lift jrf : N Ñ JrpM,nq. After a C8-small perturbation
of f , it may be assumed that jrf is transverse to each stratum of A.

In particular, the stratification of A induces a stratification of N by pullback pjrfq˚.
The codimension of a stratum jrf˚pAjq Ă N is the codimension of Aj Ă A.

3.3.2 Stability

We will introduce later the singularities we want to work with. We will be able
to define many of them by simply saying that they are given by a particular local
model, up to reparametrisation in domain and target. In the smooth setting, this
reparametrisation process has a name:

Definition 3.3.7. Two maps f, g : N Ñ M are (left-right) equivalent if there
exists a pair pψ, φq P DiffpNq ˆDiffpMq such that

f “ φ ˝ g ˝ ψ.

That is, we define a natural action of the group DiffpNq ˆ DiffpMq on the space
C8pN,Mq and two maps are equivalent if they lie in the same orbit.

One can consider the same definition where instead of maps and diffeomorphisms we
look at germs of both. Furthermore, one can restrict the notion of equivalence by
restricting the allowed diffeomorphisms in the domain or the target. This is important
when the manifolds N and M are endowed with geometric structures that should be
preserved by these automorphisms. See below.

As we deform a map, its equivalence class may change. If this is not the case we say
that:

Definition 3.3.8. A map f : N Ñ M is stable if its orbit under the action of
DiffpNq ˆDiffpMq is open. Equivalently, if it has no non-trivial deformations.

A property P for maps in C8pN,Mq is called generic if it is natural (i.e it is preserved
by the DiffpNq ˆDiffpMq action) and the set

tf P C8pN,Mq | f has property Pu Ă C8pN,Mq,

is dense. Therefore, stable maps are generic in the sense that they satisfy every
generic property.
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3.3.2.1 Stability under constraints

One can study families of maps, defined as subsets A Ă C8pN,Mq. In the presence
of a geometric structure, one might consider classes A of maps that interact with the
structure in a meaningful manner (preserving it most likely).

It then makes sense to restrict the groups by which we reparametrise so that they
preserve A. In our setting, where we look at integral maps (Definition 3.2.12) of a
manifold N into the r-jet space M “ JrpY Ñ Xq, the transformations from the right
will still be DiffpNq, but the transformations on the left will be the contact transfor-
mations of the Cartan distribution (or, more restrictively, the point symmetries).

When we look at the orbit Opaq of an element a P A using this restricted group of
symmetries, we have that OpaqXA might be open in A, even if a was not stable as an
element of C8pN,Mq; such an a is then stable as an element of A. This tells us that
generic phenomena for maps in A might be quite different than for general maps.

For instance: any contact transformation of JrpY Ñ Xq preserves the characteristic
and polar foliations. Hence, singularities of tangency of N with any of them cannot be
removed by applying a symmetry. In the contact case, where none of these foliations
exist, a contact transformation is instead capable of removing all the singularities of
tangency of a legendrian with a given front projection.

3.3.2.2 Unfoldings

Even if a map f P C8pN,Mq is not stable, it can be part of a finite dimensional
family of maps which is stable. This happens precisely when orbit of f has finite
codimension in C8pN,Mq. Let us elaborate.

Definition 3.3.9. Fix a map f : N ÑM . A d-parametric unfolding of f is a map
F : N ˆ Rd ÑM ˆ Rd fibered over Rd and satisfying:

F px, 0q “ pfpxq, 0q, x P N

Additionally:

• Two unfoldings are said to be equivalent if they are left-right equivalent as
smooth fibered maps.

• An unfolding F is trivial if it is equivalent to the trivial unfolding F px, tq “
fpxq.

In this language, f is stable if and only if every unfolding is trivial.

Given a fibered map F : N ˆ Rd ÑM ˆ Rd such that

F px, uq “ pf̃px, uq, uq,

and a map φ : Re Ñ Rd, we define the pullback of F along φ by:

φ˚F px, uq :“ pf̃px, φpuqq, uq,

yielding a new unfolding.



3.3. OVERVIEW: SINGULARITY THEORY 235

Definition 3.3.10. F is said to be a versal unfolding of f if any other unfolding is
fibered left-right equivalent to a pullback of F .

This means that F contains all the possible deformations of f .

We can look at the infinitesimal action of DiffpNq ˆDiffpMq on C8pN,Mq. Given a
map f , we may compute the quotient

T 1pfq :“
t ddt |t“0ft | f0 “ fu

t d
dt pφt ˝ f ˝ ψtq | φ0 “ id, ψ0 “ idu

.

Here pftqtPR is a 1-parametric deformation of f and pψt, φtqtPR P DiffpNq ˆ DiffpMq
is a 1-parametric deformation of the identity diffeomorphisms. This quotient com-
putes the difference between the deformations of f and the deformations arising from
reparametrisation.

In general, T 1pfq is a vector space. It corresponds to the normal bundle of the
DiffpNq ˆ DiffpMq-orbit of f . Its dimension measures the failure of f to be stable.
However, if it is finite-dimensional, we can integrate representatives of the elements
T 1pfq to yield a dimpT 1pfqq-parameter versal unfolding F of f .

3.3.3 Whitney singularities

The Thom-Boardman invariants (Definition 3.3.4) are not sufficient to classify sin-
gularities of maps between manifolds of arbitrary dimension. In most cases, such a
classification is not possible due to the existence of moduli (i.e. a singularity may not
be stable even after we fix its Thom-Boardman class).

For maps between manifolds of equal dimension there is a particular countable fam-
ily of singularities, called the Whitney singularities, which are completely classified
in terms of the Thom-Boardman stratification. Let us describe them in a slightly
roundabout way.

3.3.3.1 Spaces of polynomials

Endow Rn`1 with coordinates pq1, . . . , qn´1, qn, xq “ pq̃, qn, xq “ pq, xq. Consider the
function

Fn : Rn`1 Ñ R
pq, xq Ñ xn`1 ` q1x

n´1 ` ¨ ¨ ¨ ` qn´1x` qn.

Here the q–variables function as parameters. As they vary, they parametrise the
space of all polynomials of degree n` 1 in one variable x. That is, Fn is an unfolding
of the map xÑ xn`1 with n parameters. This unfolding is, in fact, versal.

The roots of the family of polynomials pxÑ Fnpq, xqqqPRn can be obtained by solving
for qn:
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Lemma 3.3.11. The locus of roots

Γn :“ tpq, xq P Rn`1 | Fnpq, xq “ 0u,

can be explicitly parametrised as the graph of:

sn : Rn Ñ Γn Ă Rn`1

pq̃, xq Ñ pq̃, Qnpq̃, xq “ ´x
n`1 ´ q1x

n´1 ´ ¨ ¨ ¨ ´ qn´1x, xq.

We regard Γn as the graph of a multiply-valued function over the q coordinates.
Indeed, for each q, the corresponding polynomial xÑ Fnpq, xq has at most n` 1 real
roots, so Γn may be thought of as a function of q with finitely many values.

The locus of roots Γn has a stratification given by the multiplicity of the root. By
definition, the locus Γjn Ă Γn of roots of multiplicity at least j is the common zero of
the functions

Fn,
BF

Bx
, . . . ,

Bj´1F

Bj´1x
.

3.3.3.2 The definition

We can project down the locus of roots Γn to the q-coordinates, yielding:

Definition 3.3.12. The n-th Whitney singularity is the germ at the origin of the
map:

Whitn : Rn Ñ Rn

pq̃, xq Ñ pq̃, Qnpq̃, xq “ ´x
n`1 ´ q1x

n´1 ´ ¨ ¨ ¨ ´ qn´1xq.
(3.3.3.1)

The number n is called the index of Whitn. For n “ 1, 2, these maps are referred to
as the fold and the pleat, respectively.

The maps Whitn, just like their parametrizations sn, are fibered over Rn´1. I.e. we
think of Whitn as an Rn´1-family of maps RÑ R. Note that the higher singularity
locus Σ2pWhitnq are empty.

We also need to introduce:

Definition 3.3.13. The i-fold stabilisation of Whitn is the map:

Rn`i Ñ Rn`i

pq0, q̃, xq Ñ pq0,Whitnpq̃, xqq, .

H. Whitney proved in [113] that Whitn is a stable map, which corresponds to the
fact that Fn is a versal unfolding. In [93], Morin proved a converse:

Theorem 3.3.14. The germ at p P Σ1pfq of a stable map f : M Ñ N , between
manifolds of the same dimension, is left-right equivalent to the germ at the origin of
a stabilisation of a Whitney map.

Let us remark that the left and right actions on germs are allowed not to fix the
origin; otherwise, the orbit of the Whitney map of index l would have codimension l
in the space of all germs.
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3.3.3.3 Some properties

We claim that the singularity locus

ΣpWhitnq “ tpq̃, xq |
BQn
Bx

pq̃, xq “ 0u

coincides with the locus of roots:

Lemma 3.3.15. For each positive integer j:

Σ1j pWhitnq “ Σ1j psn, xBxyq “ Γj`1
n Ă Rn`1.

Proof. The first identity follows by definition, so we focus on the second one. We work
inductively on j. The induction hypothesis is that the claim holds. I.e. Σ1j psn, xBxyq
is the locus of common zeroes of

Fn,
BF

Bx
, . . . ,

Bj´1F

Bj´1x
.

Σ1j`1

psn, xBxyq is the locus of tangency of Σ1j psn, xBxyq with the x-directions. There-
fore, the 1-forms

dFn, d
BF

Bx
, . . . , d

Bj´1F

Bj´1x

vanish precisely when restricted to Σ1j`1

psn, xBxyq and evaluated on Bx. But precisely:

d
BlF

Blx
pBxq “

Bl`1F

Bl`1x
.

Invoking Theorem 3.3.14 we see that the Whitney singularities are adjacent to one
another:

Lemma 3.3.16. At each point in Σ1j0pWhitnq, the map Whitn is equivalent to the
pn´ lq-fold stabilisation of Whitj.

For instance, a pleat consists of two folds coming together in a birth/death phe-
nomenon.

3.3.4 The equidimensional wrinkle

The fold and its stabilisations are the simplest (non-trivial) singularities of equidi-
mensional maps. Ideally, we would work in the category of folded maps. However,
this is not possible when we consider families of maps: we must, at the very least,
allow folds to appear and disappear in birth/death events, i.e. pleats. We will want
the pleat locus itself to be a closed submanifold. This leads to the definition:
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Definition 3.3.17. The (equidimensional) wrinkle is the map

Wrinn : OppDnq Ñ Rn

pq, xq ÞÑ

ˆ

q, wpq, xq “
x3

3
` p|q|2 ´ 1qx

˙

.
(3.3.4.1)

The region bounded by the singular locus, i.e. the interior of the disc Dn in the
domain, is called the membrane of the wrinkle.

In Subsection 3.4.4 we will introduce wrinkled submersions, which will be maps locally
modelled on the wrinkle. All these notions were introduced by Y. Eliashberg and N.
Mishachev in [40] to prove Theorem 3.4.18, which computes the homotopy type of
the space of wrinkled submersions.

3.3.4.1 Singularity locus

We see that Wrinn is a map fibered over Rn´1. Its singularities (which are of corank 1)
correspond to the vanishing of Bw

Bx “ x2`|q|2´1, i.e. the unit sphere ΣpWrinnq “ Sn´1

bounding the membrane. If we further restrict Wrinn to ΣpWrinnq we observe that
its singularities live in tx “ 0u, i.e. the equator Σ11pWrinnq “ Sn´2. The map
Wrinn|Σ11pWrinnq is non-singular so

ΣpWrinnq “ Σ10pWrinnq Y Σ11pWrinnq.

Thus, the equator is a codimension-2 sphere of pleats and the two open hemispheres
consist of folds. Each two points in Σ10pWrinnq sharing the same q–coordinate are a

local maximum and a local minimum of the corresponding function xÑ x3

3 ` p|q|
2 ´

1qx. As we move in q towards the equator Σ11pWrinnq, these two points collapse in a
birth/death event. Hence, the singularities of the wrinkle are seemingly in cancelling
position, but not really: the domain of definition of Wrinn is not the whole of Rn (in
which the cancellation is possible) but a small neighbourhood of the unit ball Dn.

3.3.4.2 Formal desingularisation

Nonetheless, the singularities of the wrinkle are homotopically inessential from the
point of view of obstruction theory: consider the homotopy of functions

Wspq, xq “ px
2 ` |q|2 ´ 1q ` sρpq, xq, s P r0, 1s,

where ρ : OppDnq Ñ r0,8q is a non-negative function which is greater than 1 over Dn
and identically zero in a neighbourhood of the boundary of its domain. It provides
a compactly-supported homotopy between W0 “

Bw
Bx and a strictly positive function.

We can use Ws to construct a compactly-supported homotopy between the differential
TWrinn and a bundle monomorphism. Indeed, we keep the formal derivatives of
Wrinn with respect to the q-coordinates fixed, and we homotope the formal derivative
with respect to x using Ws. We call this the formal desingularisation. Its existence
implies that the wrinkle, as a singularity, represents a trivial class (relative to the
boundary of the model).
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3.3.4.3 The fibered nature of a wrinkle

Let us regard the wrinkle Wrinn`k as a fibered over Rk map. Explicitly, we write
pq0q for the coordinates in Rk and pq1, xq for the coordinates in Rn. The restriction
of Wrinn`k to the fibre over a fixed q0 is left-right equivalent to Wrinn if |q0| ă 1,
non-singular if |q0| ą 1, and left-right equivalent to:

Oppt0uq Ñ Rn

pq1, xq ÞÑ pq1,
x3

3
` |q1|

2xq,
(3.3.4.2)

if |q0| “ 1. This singularity is called the embryo. It is precisely the event in which a
wrinkle Wrinn is born. It follows from the previous subsection that the embryo can
be formally desingularised in a unique manner up to homotopy.

3.3.5 Double folds, wrinkles, and surgery

A wrinkle has non-empty Σ11-locus. Sometimes, it is useful to work with maps whose
singularity locus is just Σ10; we call such maps, folded. A key idea in wrinkling is that
one may produce a folded map out of a wrinkled map using surgery of singularities
[35, 44]. Conversely, one can pass from a map having double folds, defined below, to a
wrinkled map by a procedure called wrinkle chopping (but we will not explore this).
Hence, wrinkles and double folds are essentially equivalent.

3.3.5.1 The definition

Definition 3.3.18. We define the double fold to be the map:

f : OppSn´1 ˆ r´1, 1sq Ñ Rn

pq, xq ÞÑ pq,
x3

3
´ xq.

(3.3.5.1)

The region bounded by the singular locus, i.e. the open annulus Sm´1ˆp´1, 1q in the
domain, is called the membrane of f .

The singularity locus Σpfq “ Σ10pfq is the union of the spheres bounding the mem-
brane

"

Bf

Bx
“ x2 ´ 1

*

“ pSn´1 ˆ t´1uq Y pSn´1 ˆ t`1uq.

At each sphere the singularity is modelled on (a stabilisation of) the usual fold. Like
the wrinkle, the two fold points sharing the same q-coordinate seem to be in cancelling
position, but they are not due to the size of the domain.

We often speak of the spheres Sn´1 ˆ t˘1u as being the double fold, leaving the
existence of the membrane bounding them implicit. We could also define the folds
to take place along hypersurfaces other than spheres, but for our purposes this is
unnecessary.
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3.3.5.2 Embryos

Just like wrinkles are born in an embryo event, we may define the analogous birth/death
singularity for double folds. It is given by the following expression:

f : OppSn´1 ˆ t0uq Ñ Rn

pq, xq ÞÑ pq, x3q,
(3.3.5.2)

which we call the (double fold) embryo. It is simply a parametric version of the
1-dimensional birth/death critical point.

3.3.5.3 Surgery: opening a wrinkle

Consider the wrinkle Wrinn, whose domain of definition is OppDnq. We may find an
pn´ 1q-disc D Ă OppDnq satisfying:

• BD is the equator Sn´2 (consisting of pleats),

• D intersects the unit sphere Sn´1 transversally at its boundary,

• the interior of D is disjoint from the unit ball.

One may picture D running very closely along the northern/southern hemisphere.

We want to modify the map Wrinn inOppDq to yield instead a double fold. Indeed, we
can find coordinates pq, xq in a neighbourhood of OppDq, with values in Dn´1

1`δˆr´δ, δ],
such that:

• Dn´1
1 ˆ t0u “ D,

• the map Wrinn reads

pq, xq Ñ pq,
x3

3
` p1´ |q|2qxq

I.e. at the boundary of D, which was the equator of the wrinkle, a pair of folds
appears in a birth-death event.

Consider the piecewise smooth family of functions

xÑ
x3

3
` p1´ |q|2qx, if |q|2 ą 1` δ2{2

xÑ
x3

3
´ δ2x{2, otherwise.

It may be smooothed at |q|2 “ 1 ` δ2{2 to yield a smooth family fq with a double
fold. Replacing Wrinn in OppDq by the map pq, xq Ñ pq, fqpxqq yields a map with a
double fold. Each fold is a smoothing of the union of a slight push-off of D and one
of the hemispheres of the original wrinkle.
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3.3.6 The (first order) wrinkle in positive codimension

The main result in this chapter (see Section 3.8) says that one can control the r-
jet of an embedding/submanifold as long as one is allowed to introduce (simple)
singularities. The case of 1-jets was studied by Y. Eliashberg and N. Mishachev in
[44], and it relies on a particular model of singularity, which we now review.

3.3.6.1 The definition

Definition 3.3.19. We define the wrinkle (of dimension m into n ą m, and of
order 1) to be the map

Wrinm,n : OppSm´1q Ñ Rn

pq, xq Ñ pq, x3 ` 3p|q|2 ´ 1qx,

ż x

0

ps2 ` |q|2 ´ 1q2ds, 0, . . . , 0q.

Its projection to Rm is (the germ along the unit sphere of) the wrinkle Wrinm between
equidimensional manifolds.

Observe that Wrinm,n is not defined in the interior of the disc Dm. The reason for
this is that, in our constructions, wrinkles will be nested inside one another. We
will assume that the wrinkles bound a disc (which we still call the membrane)
in whatever manifold we are working in, but the membrane might contain further
wrinkles.

In Subsection 3.4.4 we will introduce (first order) wrinkled embeddings, which will
be locally modelled on Wrinm,n.

3.3.6.2 Singularity locus

The pm` 1qth coordinate of Wrinm,n is a function that has exactly the same singu-
larity locus as Wrinm. Therefore, the singularity locus ΣpWrinm,nq is the unit sphere
Σ1pWrinm,nq “ Sm´1. It is the union of the equator Σ11pWrinm,nq “ Sm´2 and its
complement Σ10pWrinm,nq. The singularity along Σ10pWrinm,nq is a stabilisation of
the usual planar semicubic cusp. The families of cusps in each hemisphere approach
each other at the equator Σ11pWrinm,nq, cancelling in a sphere of open semicubic
swallowtails.

3.3.6.3 Regularisation

Unlike Wrinn, the wrinkle Wrinm,n is not stable as soon as m ă n. Indeed, the small
perturbation:

pq, xq Ñ pq, x3 ` 3p|q|2 ´ 1qx, εx`

ż x

0

ps2 ` |q|2 ´ 1q2ds, 0, . . . , 0q

is a smooth embedding. A cut-off may be applied to make this perturbation compactly
supported. This smoothing process is unique up to isotopy (which may also be
assumed to be compactly supported); we call it the regularisation.
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3.3.6.4 The Gauss map

Despite being singular, Wrinm,n has a well-defined Gauss map GrpWrinm,nq, i.e. a
lift to the space of 1-jets of submanifolds; see subsection 3.2.3.2. This is clear along
the cusp locus Σ10pWrinm,nq, because the planar cusp has a well-defined tangent
line at every point. We claim that the same is true along the swallowtail region
Σ11pWrinm,nq. This is a simple computation, but we will justify it, in the setting of
integral submanifolds of general jet spaces, in Subsection 3.7.1.

3.3.6.5 Embryos

Just as in the equidimensional setting, we may think of the wrinkle Wrink`m,k`n as a
fibered over Rk map. We write pq0q for the coordinates in Rk and pq1, xq for those in
Rm. For |q0| ă 1 given, the restriction of Wrink`m,k`n to the fibre over q0 is left-right
equivalent to Wrinm,n. For |q0| ą 1, it has no singularities. Lastly, for |q0| “ 1 the
map is equivalent to:

pq1, xq Ñ pq1, x
3 ` 3|q1|

2x,

ż x

0

ps2 ` |q1|
2q2ds, 0, . . . , 0q.

whose only singularity is the origin. This is exactly the birth/death phenomenon for
Wrinm,n, which we also call embryo. It can be regularised as above.

3.4 Overview: The h-principle

The h-principle is a collection of techniques and heuristic approaches whose purpose
is to describe the space of solutions of a partial differential relation/equation. The
main results of this chapter (see Section 3.8) are of this type.

In this Section we provide a quick overview of some of the h-principle techniques that
we will need. We first review some of the necessary language (Subsection 3.4.1). Then
we go over some classic techniques: holonomic approximation in Subsection 3.4.2,
triangulations in general position in Subsection 3.4.3, and wrinkling in Subsection
3.4.4.

For a panoramic view of h-principles we refer the reader to the two standard texts
[43] and [60] (which we do suggest to check in that order). Wrinkling techniques were
introduced first in the wrinkling saga [40, 42, 41, 45, 44].

3.4.1 Differential relations

Having looked at jet spaces in Section 3.2, let us explain how they fit in the geometric
formalism of PDEs: given smooth bundles Y Ñ X and Y 1 Ñ X, a local partial
differential operator is a map taking sections ΓpY q to sections ΓpY 1q which, in
local coordinates, may be written as a function of the section and its derivatives up



3.4. OVERVIEW: THE H-PRINCIPLE 243

to a given order. Given a section g P ΓpY 1q, we can define a PDE whose solutions are
the sections f P ΓpY q that are mapped to g.

Now, there exists a local differential operator of order r which is universal. Namely,
the map

jr : ΓpY q Ñ ΓpJrpY Ñ Xqq

collects all the derivatives up to order r, so any other local order-r differential operator
ΓpY q Ñ ΓpY 1q can be decomposed as A ˝ jr; here A is the lift of a bundle map
JrpY Ñ Xq Ñ Y 1, which we also denote by A. Given g as above, we can simply look
at the subset A´1pgq Ă JrpY Ñ Xq. A section f of Y such that jrf is contained in
A´1pgq is a solution of our PDE.

In more formal terms:

Definition 3.4.1. Let Y Ñ X be a smooth fibre bundle.

• A partial differential relation (PDR) of order r is a subset R Ă JrpY Ñ Xq.

• The PDR R is said to be open if it is open as a subset.

• A section F : X Ñ R is said to be a formal solution of R.

• A section f : X Ñ Y is a solution if jrf is a formal solution.

We have presented the framework of PDRs of sections, but we could do the same for
PDRs of n-submanifolds by looking at subsets of JrpY, nq, with Y a manifold and
n ă dimpY q.

3.4.1.1 The h-principle

The goal of the h-principle is to determine the homotopy type of the space of solutions
of a given PDR R. For this, we need to fix topologies on the spaces ΓpJrpY Ñ Xqq
and ΓpY q: on ΓpJrpY Ñ Xqq we consider the C0-topology. Using the map jr, this
induces the Whitney Cr-topology on ΓpY q. This choice makes jr continuous.

We write Solf pRq for the subspace of sections in ΓpJrpY Ñ Xqq whose image lies
in R, i.e. the space of formal solutions. Similarly, we write SolpRq for the space of
solutions, which is a subspace of ΓpY q. Then, we may look at the forgetful map:

ιR : SolpRq Ñ Solf pRq
f Ñ ιRpfq :“ jrf.

Definition 3.4.2. We say that the (complete) h-principle holds for R if ιR is a
weak homotopy equivalence.

In particular, if Solf pRq is non-empty and the h-principle holds, solutions of R do
exist.
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3.4.1.2 The space of solutions

By construction PDRs are local so, given open sets U Ă V Ă X, we have restriction
maps SolpRq Ñ SolpR|V q Ñ SolpR|U q. Hence, SolpRq is the space of global sections
of the sheaf of topological spaces which assigns to each open subset in X the
space of solutions SolpR|U q.

We may then pass to the étale space viewpoint, regarding SolpRq as the space
of germs of solutions of R. It has the structure of a (non-second-countable, non-
Hausdorff) manifold such that the projection π : SolpRq Ñ X is a local diffeomor-
phism. Local sections of SolpRq Ñ X correspond to local solutions of R. Using this
point of view, the Whitney topology on the space of solutions is forgotten.

Instead, we can endow the étale space SolpRq (as a set) with the structure of a
Cr-diffeological space [68]. That is, given any smooth manifold K, we have a
distinguished subset CrpK,SolpRqq of MapsSetpK,SolpRqq; a map in this subset is
said to be a pCr´qplot. In this case, a map is a plot if it can be extended to a K-family
of local solutions of R which is Cr in the parameter. Observe that precomposing a
Cr-plot by an actual Cr-map is still a Cr-plot. In this manner we encode the Cr-
topology, but we forget the étale one.

This discussion applies as well to the étale space associated to Solf pRq. It is endowed
with the C0-diffeology and the étale topology.

Remark 3.4.3. The subtlety here is that, even though SolpRq and Solf pRq are
sheaves of topological spaces, their stalks are not topological spaces themselves be-
cause we are taking a direct limit. We are forced to look at diffeological or quasi-
topological spaces to work with germs of sections [60, Sections 1.4 and 2.2]. 4

When we think of SolpRq and Solf pRq as sheaves of topological spaces, the map ιR
becomes a sheaf morphism. Hence, it is a continuous map, for the étale topology,
between the corresponding étale spaces. It also takes plots to plots, so we can say
that it is continuous with respect to the diffeological structures.

In this text we will work with all these different structures on SolpRq and Solf pRq.
Usually, unless stated otherwise, they just denote the spaces of (global) sections and
not their sheaf or étale space structures.

3.4.1.3 Flavours of h-principle

Often, one is unable to prove that ιR is a weak homotopy equivalence, but partial
results hold. For instance, if ιR is surjective at the level of connected components, we
say that the existence h-principle holds. Similarly, if ιR is a bijection of connected
components, we may say that the h-principle holds in π0; analogous statements hold
for higher homotopy groups.

Furthermore, we may ask whether the h-principle holds over each open set U Ă X
in a way that is coherent with respect to the sheaf structure. This can be phrased
as follows. The h-principle is relative in the domain when: any family of formal
solutions ofR|U , which are already honest solutions in a neighbourhood of a closed set



3.4. OVERVIEW: THE H-PRINCIPLE 245

A Ă U , can be homotoped to become solutions over the whole of U while remaining
unchanged over OppAq. I.e. the homotopy equivalences between solutions and formal
solutions can be assumed to respect closed subsets where they already hold.

Similarly, the h-principle is relative in the parameter when: any family of formal
solutions tFkukPK , parametrised by a closed manifold K, and with Fk1 holonomic for
every k1 in an open neighbourhood of a fixed closed subset K 1 Ă K, can be homotoped
to be holonomic relative to OppK 1q.

Lastly, we say that the h-principle is C0-close if the zeroeth order part of any formal
solution can be approximated by a genuine solution.

3.4.1.4 Local integrability

We momentarily forget the étale topology on the étale space SolpRq; we are only
interested in the diffeological structure of the germs. We look at the forgetful map
SolpRq Ñ JrpY Ñ Xq which evaluates a germ to the corresponding r-jet at the point
in which it is defined. This map then necessarily takes values in R.

Definition 3.4.4. A PDR R is locally integrable if SolpRq Ñ R is a Serre fibration
with weakly contractible fibres.

In particular, SolpRq is weak homotopy equivalent to R itself.

One can equivalently rephrase this as follows: any finite dimensional family of point-
wise formal solutions can be extended, relative in the parameter, to a family of
solution germs. This extension is unique up to homotopy.

3.4.1.5 Flexibility, microflexiblity

Local integrability takes into account only the stalks of the sheaf SolpRq, i.e. germs
at individual points. One would like to look at germs along higher dimensional
submanifolds of X. We denote Θl for the pair

pA “ r´1, 1sn, B “ BpAq Y pr´1, 1sl ˆ t0uqq.

Definition 3.4.5. A PDR R is microflexible if, for any:

• ball U and integer m,

• embeddings phpqpPr0,1sm : Θl Ñ U ,

• holonomic sections pFpqpPr0,1sm : OpphppAqq Ñ R

• homotopy of holonomic sections

pF̃p,sqpPr0,1sm,sPr0,1s : OpphppBqq Ñ R

satisfying F̃p,s “ Fp for s “ 0 or p P Oppr0, 1smq.
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There exists s0 P p0, 1s and a family of holonomic sections

pFp,sqpPr0,1sm,sPr0,s0s : OpphppAqq Ñ R

satisfying:

• Fp,s “ F̃p,s in OppBq.

• Fp,s “ Fp for every p P Oppr0, 1smq.

We say that R is flexible if s0 can taken to be 1.

That is, a PDR is microflexible if any local deformation of a solution can be extended
to a global deformation, at least for small times. Note that PDRs that are open are
immediately microflexible and locally integrable.

3.4.1.6 Natural bundles and PDRs

Some PDRs can be intrinsically formulated, without referring to the particular man-
ifold in which they live. Identically, they are invariant under diffeomorphisms, so
the corresponding spaces of solutions are naturally endowed with an action by the
diffeomorphism group. PDRs of this type are ubiquitous in geometry and they will
play a role later on. Let us formalise this idea; we refer to [97].

Definition 3.4.6. A natural fibre bundle is a functor F from the category of n-
manifolds (where we take morphisms to be embeddings) to the category of fibre bundles
(with morphisms being fibrewise diffeomorphisms lifting embeddings), satisfying:

• F pXq is a fibre bundle over X.

• F pf : X Ñ X 1q covers f .

We sometimes abuse notation and say that a particular F pXq is a natural fibre
bundle (but we implicitly remember the rest of the data). Observe then that the
pseudogroup Diff locpXq acts on F pXq. The bundles associated to the tangent bundle
(frame bundles, the cotangent bundle, wedge products, symmetric products) are all
examples.

Given F , we can take r-jets, yielding a new functor jrF which is still natural. The
map F Ñ jrF is itself a natural transformation; a fibrewise diffeomorphism f is
mapped to the corresponding point transformation jrf .

Definition 3.4.7. A Diff-invariant PDR (of order r and for n-manifolds) is a
natural fibre bundle R together with a natural transformation RÑ jrF , for some F ,
which realises RpXq as a subbundle of jrF pXq, for any n-manifold X.

In particular, RpXq is preserved by the action of Diff locpXq. This naturality allows
us to abstract the relation from the particular manifold in which it lives.
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3.4.2 Holonomic approximation

One of the cornerstones of the classical theory of h-principles is the holonomic approxi-
mation theorem. It states that any formal section of a jet bundle can be approximated
by a holonomic one in a neighbourhood of a perturbed CW-complex of codimension
at least 1. The precise statement reads as follows:

Theorem 3.4.8 ([43]). Let Y Ñ X be a fiber bundle, K a compact manifold, A ĂM
a polyhedron of positive codimension, and pFk,0qkPK : X Ñ JrpY Ñ Xq a family of
formal sections. Then, for any ε ą 0 there exists

• a family of isotopies pφk,tqtPr0,1s : X Ñ X,

• a homotopy of formal sections pFk,tqkPK,tPr0,1s : X Ñ Y ,

satisfying:

• Fk,1 is holonomic in Oppφk,1pAqq,

• |φk,t ´ id|C0 ă ε and is supported in a ε-neighbourhood of A,

• |Fk,t ´ Fk,0|C0 ă ε.

Moreover the following hold:

• If V P XpOppAqq is a vector field transverse to A, then we can arrange that
φk,tpAq is transverse to V for all t and k.

• If the Fk,t are already holonomic in a neighborhood of a subcomplex B Ă A,
then we can take Fk,t “ Fk,0 and φk,t “ id on OppBq, for all k.

• If Fk,t is everywhere holonomic for every k in a neighbourhood of a CW-complex
K 1 Ă K, then we can take Fk,t “ Fk,0 and φk,t “ id for k P OppK 1q.

Remark 3.4.9. Note that in the above statement, the equations

|φk,t ´ id|C0 ă ε, |Fk,t ´ Fk,0|C0 ă ε,

depend on a choice of Riemannian metric on X and Y . Alternatively, these conditions
can be phrased using the C0-Whitney topology. 4

For the proof and a much longer account of its history, we refer the reader to [43].
Essentially, this theorem recasts the method of flexible sheaves due to M. Gromov
(itself a generalisation of the methods used by S. Smale in his proof of the sphere
eversion and the general h-principle for immersions) in a different light. Let us go
over the statement.

The starting point is the family of formal sections Fk,0, which we want to homotope
until they become holonomic. This is not possible, but the theorem tells us that at
least we can achieve holonomicity in a neighbourhood of a set of positive codimension.
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We are not allowed to fix this set. Instead, we begin with a polyhedron A, which
we deform in a C0 small way to yield an isotopic polyhedron φk,1pAq. This isotopy
occurs in the normal directions of A (which we may prefix by taking a transverse
vector field V ), and essentially produces a copy φk,1pAq of A of greater length. This
process is called, descriptively, wiggling. The space we gain by wiggling is what
allows us to achieve holonomicity: the main idea is that, at each point p P A, we
approximate Fk,0 by the corresponding Taylor polynomial Fk,0ppq and then we use
the directions normal to A to interpolate between these polynomials keeping control
of the derivatives. Hence, we can take the Fk,t to be arbitrarily close to our initial
data, and the wiggling to be C0-small. However, if we desire better C0-bounds, we
will be forced to wiggle more aggressively, i.e. the isotopies φk,t will become C1-large.

It is additionally possible to achieve a relative statement both in parameter and
domain: if all the formal sections Fk,t are already holonomic over some region OppBq,
we do not have to perturb them nor wiggle there. Similarly, we can leave the Fk,t
untouched close to a subset K 1 of the parameter space as long as the tFk,tuOppK1q are
holonomic (everywhere in M).

3.4.3 Thurston’s triangulations

An important step in the application of many h-principles (including ours), is the
reduction of the global statement (global in the manifold M), to a local statement
taking place in a small ball. These reductions allow us not to worry about (global)
topological considerations, making the geometric nature of the arguments involved
more transparent. Working on small balls (i.e. “zooming-in”) usually has the added
advantage of making the geometric structures we consider seem “almost constant”;
this will play a role later on.

A possible approach to achieve this is to triangulate the ambient manifold M and then
work locally simplex by simplex. A small neighbourhood of a simplex is a smooth
ball which can be assumed to be arbitrarily small if the subdivision is sufficiently fine;
thus, this achieves our intended goal. When we deal with parametric results (phrased
using the foliated setup, see subsection 3.2.4), we want to zoom-in in the parameter
space too. This requires us to triangulate in parameter directions as well. For us,
this means that we must triangulate a foliated manifold in a manner that is nicely
adapted to the foliation.

Let pM,Fq be a manifold of dimension n endowed with a foliated of rank k . Given a
triangulation T , we write T piq for the collection of i-simplices, where i “ 0, . . . ,dimpMq “
n. We think of each i-simplex σ P T piq as being parametrised σ : ∆i Ñ M , where
the domain is the standard simplex in Ri. The parametrisation σ allows us to pull-
back data from M to ∆i. In particular, if σ is a top-dimensional simplex, it is a
diffeomorphism with its image and we may assume that σ extends to an embedding
Opp∆nq ÑM of a ball.

If the image of σ is sufficiently small, we would expect that the parametrisation σ
can be chosen to be reasonable enough so that σ˚F is almost constant. This can be
phrased as follows:



3.4. OVERVIEW: THE H-PRINCIPLE 249

Definition 3.4.10. A top-dimensional simplex σ is in general position with respect
to the foliation F if the linear projection (identifying TpRn “ Rn)

∆n{pσ˚Fqp Ñ Rn´k

restricts to a map of maximal rank over each subsimplex of σ. In particular, σ˚F is
transverse to each subsimplex.

The triangulation T is in general position with respect to F if all of its top-simplices
are in general position.

We may then state:

Theorem 3.4.11. Let pM,Fq be a foliated manifold. Then, there exists a triangu-
lation T of M which is in general position with respect to F .

This statement was first stated and proven by W. Thurston in [104, 105], playing a
central role in his h-principles for foliations. His statement is slightly more general
and works for general distributions, but this is not needed in our setting.

Given a submanifold N Ă pM,Fq, we cannot expect it to be transverse to F . How-
ever, after a C8-perturbation, we can assume that the singularities of tangency be-
tween N and F are generic: i.e. they form a smooth manifold whose singularities of
tangency are themselves generic. Recursively, this provides a stratification of N in
the sense of Thom-Boardman, as described in Subsection 3.3.1. The singular strata
may represent non-trivial homology classes in N , which are invariants of N and F
up to homotopy. Non-triviality of these invariants tells us that we cannot homotope
N to make it transverse to F .

Suppose now thatN is just a piecewise-smooth submanifold. Then, its tangent bundle
is not defined everywhere: it has discontinuities and the singularities of tangency are
not defined there. One is able, by introducing additional discontinuities, to remove all
singularities of tangency. In homotopical terms, there is a classifying map associated
to the locus of tangency and one can make the map into classifying space discontin-
uous by passing to the piecewise category. Discontinuities allow us to “jump” over
the homology classes of the classifying space. This is called an h-principle without
homotopical assumptions [4].

Theorem 3.4.11 was one of the first statements along these lines, where instead of a
submanifold we have a triangulation. The argument goes roughly as follows: we start
with a triangulation T 1. We then subdivide it (in a controlled fashion called crystalline
subdivision, which ensures that angles remain controlled and that the cardinality of
the star of a vertex is uniformly bounded). As we subdivide, the foliation seems
progressively flatter from the perspective of each simplex. In particular, the measure
of the set of planes that intersect the foliation non-transversally goes to zero. This
allows us to apply Thurston’s jiggling : we tilt slightly the vertices, yielding simplices
that are transverse to F .
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3.4.4 Wrinkling

Wrinkling is an h-principle method to construct mildly singular solutions of partial
differential relations. It has been used by Y. Eliashberg and M. Mishachev to prove
flexibility results for submersions [40], equidimensional immersions with prescribed
folds [45], foliations [41], and fibrations [38]. It entered the world of Contact Topol-
ogy with [44], which would then lead to the works of E. Murphy on loose legendrians
[94] and D. Álvarez-Gavela on the simplification of front singularities of legendrians
[3, 2]. It is also one of the central ingredients in the construction and classification of
overtwisted contact structures in all dimensions [15] due to M.S. Borman, Y. Eliash-
berg, and E. Murphy. More recently, it has been used in Engel Geometry to classify
overtwisted Engel structures [31] and integral knots in Engel manifolds [25].

We want to phrase some of these results in a coherent light. In Section 3.8 we will
reprove and improve on some of the aforementioned works (namely [44]) to produce
and classify embedded integral manifolds in higher jet spaces.

Our approach is more general and, hopefully, more transparent/streamlined than
previous iterations in the literature. Despite having a different flavour in implemen-
tation, we present no fundamentally new geometric ingredients. Our work owes a lot
to the papers cited above.

For the reader to have a somewhat complete picture, let us provide a list of sample
theorems on wrinkling. We will refer back to them later on.

3.4.4.1 Wrinkled submersions

Let M and N be n-dimensional manifolds (we assume equidimensionality for simplic-
ity).

Definition 3.4.12. A formal submersion is a bundle map F : TM Ñ TN which
is a fibrewise epimorphism (no assumptions on the underlying map M Ñ N).

It is well-known that the space of submersions M Ñ N is not homotopy equivalent
to the space of formal submersions if M is closed. Indeed, any map M Ñ Rn with
M closed must have critical points, so it cannot be submersive.

The first wrinkling result of Y. Eliashberg and M. Mishachev [40] says that one may
salvage the h-principle by relaxing the submersion condition. They do so by allowing
mild singularities, as introduced in Subsection 3.3.4:

Definition 3.4.13. A wrinkled submersion is:

• a map f : N ÑM between n-dimensional manifolds,

• a finite collection of disjoint open balls tBiu,

such that:

• f is a submersion in the complement of the Bi.
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• f |Bi is left-right equivalent to Wrinn (Definition 3.3.17).

A wrinkled submersion with embryos has an additional collection of balls in
which f is modelled by the embryo (Equation 3.3.4.2).

As explained in subsection 3.3.4.2, the wrinkle and the embryo possess a formal
desingularisation: i.e. a homotopy of the formal derivative to a monomorphism. This
implies that there is a (well-defined up to homotopy) map from the space of wrinkled
submersions with embryos to the space of formal submersions. Then:

Theorem 3.4.14 (Eliashberg and Mishachev [40]). The space of wrinkled submer-
sions with embryos is homotopy equivalent to the space of formal submersions. This
h-principle is, additionally, C0-close.

We can similarly define submersions with double folds to be maps which are
submersions in the complement of a finite collection of disjoint annuli in which they
are modelled by a double fold. They may additionally have finitely many spheres
in which they are modelled by a double fold embryo. Then, using the surgery of
singularities from subsection 3.3.5.3 and the previous theorem, one can deduce:

Corollary 3.4.15. The space of submersions with double folds and embryos is homo-
topy equivalent to the space of formal submersions. This h-principle is, additionally,
C0-close.

3.4.4.2 Wrinkled embeddings

Let M Ă N be smooth manifolds with dimpMq ă dimpNq.

Definition 3.4.16. A tangential homotopy M Ñ N is a family of bundle monomor-
phisms

pGsqsPr0,1s : TM Ñ TN |M , G0 “ id.

In [44], Y. Eliashberg and M. Mishachev study the problem of isotoping M , as an
embedded submanifold of N , to approximate a given tangential homotopy (in a holo-
nomic manner). This problem is, in general, obstructed. However, it is solvable if we
relax the embedding condition to allow for wrinkle singularities.

We take the local model of a first order, positive codimension wrinkle (from Subsection
3.3.6) and we globalise it as follows:

Definition 3.4.17. A smooth map f : M Ñ N is a wrinkled embedding if:

• it is a topological embedding,

• it is a smooth embedding away from a collection of disjoint embedded codimension-
1 spheres Si,

• f |OppSiq is left-right equivalent to WrindimpMq,dimpNq.



252 CHAPTER 3. WRINKLING H-PRINCIPLES

A map f : M Ñ N is a wrinkled embedding with embryos if it is a wrinkled
embedding in the complement of a finite collection tpiu of points and it is left-right
equivalent to an embryo in each neighbourhood Opppiq.

Wrinkles provide enough flexibility to yield the following approximation result, which
is both parametric and relative in the parameter and in the domain:

Theorem 3.4.18 (Eliashberg and Mishachev [44]). Let N and K be smooth mani-
folds. Let pMkqkPK Ă N be a K-family of submanifolds of N . Assume that there is
a family of tangential homotopies pνk,sqkPK,sPr0,1s starting at νk,0 “ TMk.

Then, there is a Kˆr0, 1s-family of wrinkled submanifolds with embryos pMk,sqkPK,sPr0,1s,
starting at Mk,0 “Mk, such that TMk,s is C0-close to νk,s.

Furthermore:

• Assume there is a closed submanifold K 1 Ă K such that νk,s “ TMk for every
k P K 1. Then, we may assume that Mk,s “Mk for all k P K 1.

• Assume there are closed submanifolds M 1
k Ă Mk such that νk,spxq “ TxMk for

all x PM 1
k. Then we may assume that Mk,s agrees with Mk in OppM 1

kq.

This should be understood as an analogue of the holonomic approximation Theorem
3.4.8. A minor difference is that it is stated for submanifolds as opposed to sections.
More importantly, it applies to closed manifolds, and the price paid is that singular-
ities must be introduced. Lastly, it applies only for 1-jets. We extend it to general
r-jets; see Section 3.8.

3.5 The integral Grassmannian

Let B and F be vector spaces of dimensions n “ dimpBq and k “ dimpF q. We
are interested in l-dimensional integral submanifolds of pJrpB,F q, ξcanq. Our goal in
this Section is to understand their linear counterpart, i.e. the corresponding integral
elements.

We will do this step by step, looking first at the horizontal elements (Subsection 3.5.2),
then at the elements that intersect the vertical distribution in a given dimension
(Subsection 3.5.3), and finally at how these different pieces glue together (Subsections
3.5.4 and 3.5.5).

Let us provide some context about integral manifolds and integral elements: the first
to regard general integral submanifolds of jet space as “generalised solutions” seems
to have been R. Thom in [24], where he sketched the proof of his famous “homological
h-principle”. Later, A.M. Vinogradov brought attention to them, in the context of
Geometry of PDEs, in [108]. Several works have followed in this direction [9, 10, 109].

It is within the Geometry of PDEs literature [70, 71] that the integral Grassmannian
has been studied. As far as the we are aware, the majority of what is currently known
can be found in the works of V. Lychagin [79, 78, 80, 81]. Despite containing beautiful
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results, these articles follow an announcement format and proofs are often missing
or just outlined. One of our goals in this Section is to provide a detailed account of
Lychagin’s work.

We note that our homotopy type computations for the integral Grassmannian in
Subsection 3.5.5 seem to be new.

3.5.1 Decomposing the integral Grassmannian

Following subsection 3.2.2.3, we identify the tangent space of JrpB,F q at any point
with the vector space

g “ B ‘ F ‘HompB,F q ‘ Sym2
pB˚, F q ‘ ¨ ¨ ¨ ‘ Symr

pB˚, F q.

In Definition 3.2.38 we endowed g with a natural graded Lie algebra structure given
by the contraction of vectors with tensors. We called this the jet Lie algebra with
parameters n, k, and r. It was then proven in Proposition 3.2.39 that g models
the nilpotentisation of ξcan. Under this isomorphism, integral elements (of a given
dimension l) correspond to Lie subalgebras lying in the zero degree part

g0 “ B ‘ Symr
pB˚, F q.

The space of integral elements is denoted by Grintegralpg, lq. It decomposes into several
pieces, depending on how integral elements intersect the vertical component. We
define:

GrΣipg, lq :“ tW P Grintegralpg, lq | dimpW X Symr
pB˚, F qq “ iu,

where the subscript Σi is inspired by the Thom-Boardman notation.

The piece GrΣ0
pg, lq is precisely the horizontal Grassmannian, as introduced in sub-

section 3.2.2.8. We also call it the regular cell even though it is, in general, not
dense in Grintegralpg, lq. This is shown in subsection 3.5.3.3 below. We will describe
the spaces GrΣipg, lq in Subsections 3.5.2 and 3.5.3.

3.5.1.1 The grassmannian of multi-sections

In Section 3.6 we will introduce multi-sections, i.e. integral submanifolds that are
horizontal in a dense set. These are submanifolds that one can manipulate through
their front projection. Any integral element tangent to a multi-section must be in the
closure GrΣ0pg, nq of the horizontal elements; we call this space the Grassmannian
of multi-section elements.

Furthermore, we are interested in multi-sections with mild singularities of tangency,
which will be, in particular, of corank 1. Therefore, we content ourselves with de-
scribing how the two strata GrΣ0pg, nq and GrΣ1pg, nq glue together.

Definition 3.5.1. The Σ2-free integral Grassmannian, is the union

GrΣ2´freepg, nq :“ GrΣ0pg, nq YGrΣ1pg, nq.
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We will study its topology in Subsection 3.5.5.

We will study Grintegralpg, lq as a whole in the future. In particular, in the present

work we do not look at the closures GrΣipg, nq with i ą 1.

3.5.2 Horizontal elements

We now prove Lemma 3.5.3: the Grassmannians of horizontal elements are vector
bundles with (standard) Grassmannian base. This description appeared already in
the recent work [10].

3.5.2.1 Maximal horizontal elements

A maximal horizontal element W is graphical over B. We can represent it (uniquely)
as the graph of a homomorphism A P HompB, Symr

pB˚, F qq. Then:

Lemma 3.5.2. Let W “ graphpAq be a n-dimensional subspace of g0 graphical over
B. Then, W is integral if and only if A P Symr`1

pB˚, F q.

Proof. The Lie subalgebra condition for W means that for any pair w0`Apw0q, w1`

Apw1q PW we have:

0 “ rw0 `Apw0q, w1 `Apw1qs “ ιw0
Apw1q ´ ιw1

Apw0q

which implies that A is symmetric with respect to the first variable as well. The
claim follows.

This Lemma realises the correspondence between horizontal elements at a point p P
JrpY Ñ Xq and points in the fibre of Jr`1pY Ñ Xq over p.

3.5.2.2 General dimension

More generally, if W is horizontal and of dimension l ď n, it projects down to some
l-dimensional subspace H Ă B, defining a map

πb : GrΣ0pg, lq Ñ GrpB, lq

to the l-Grassmannian of the base. We claim that this is a vector bundle which can
be explicitly described in terms of the tautological bundle γ over GrpB, lq.

Lemma 3.5.3. There is a canonical isomorphism of vector bundles over GrpB, lq:

GrΣ0pg, lq –
Symr`1

pB˚, F q

Symr`1
pγK, F q

,

where γK is the annihilator of the tautological bundle γ.
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Proof. We look at all the graphical l-subspaces in g0, not necessarily integral: given
H Ă B, its possible lifts correspond to the elements of HompH,Symr

pB˚, F qq. Pack-
aged all together, for varying H, they are elements of the total space of the vector
bundle:

Hompγ,Symr
pB˚, F qq Ñ GrpB, lq.

We want to determine which of these are horizontal.

To do so, we use the auxiliary trivial vector bundle Symr`1
pB˚, F q Ñ GrpB, lq. We

look at the bundle map given by evaluation on each l-subspace:

evγ : Symr`1
pB˚, F q Ă HompV,Symr

pB˚, F qq ÞÑ Hompγ,Symr
pB˚, F qq.

The image of this map is necessarily contained in GrΣ0pg, lq. We claim that the map
is an epimorphism: this follows from the fact that any horizontal W , projecting to
H Ă B, may be extended to a maximal horizontal element by direct summing with
the complement of H in B.

The kernel of evγ is, by definition, the subspace of those elements of Symr`1
pB˚, F q

which vanish when a vector in γ is plugged in. By symmetry, we deduce that there
is a exact sequence

0 Ñ Symr`1
pγK, F q Ñ Symr`1

pB˚, F q Ñ GrΣ0pg, lq Ñ 0

of vector bundles, proving the claim.

3.5.2.3 The subspace filtration

Let H Ă B be a linear subspace. In the proof above we looked at those elements in
Symr`1

pB˚, F q which vanish when an element of H is plugged in. One can, more
generally, consider those tensors that vanish when a collection of elements in H is
used. This leads us to define the following filtration:

Symr`1
pB˚, F qpH,jq :“ tA P Symr`1

pB˚, F q | ιvj ¨ ¨ ¨ ιv1A “ 0, for any vi P Hu,

¨ ¨ ¨ Ă Symr`1
pB˚, F qpH,jq Ă Symr`1

pB˚, F qpH,j`1q Ă . . .

By the discussion in the previous subsection, we have that

Symr`1
pB˚, F qpH,1q “ Symr`1

pHK, F q.

In general, by choosing a direct summand of H, we can identify:

Symr`1
pB˚, F qpH,jq

Symr`1
pB˚, F qpH,j´1q

– Symj´1
pH˚, F q b Symr`2´j

pHK, F q.

yielding the dimension formula:

dim

ˆ

Symr`1
pB˚, F qpH,jq

Symr`1
pB˚, F qpH,j´1q

˙

“ k

ˆ

n` j ´ 2

n´ 1

˙ˆ

n` r ` 1´ j

n´ 1

˙

.

In Subsection 3.5.4 we will study the principal cone in Symr`1
pB˚, F q, i.e. the space

of tensors A of the form A P Symr`1
pHK, F q, for some H Ă B.



256 CHAPTER 3. WRINKLING H-PRINCIPLES

3.5.2.4 Aside: the conormal

We finish this Subsection presenting the conormal construction. Given a horizontal
submanifold of JrpY Ñ Xq, it produces a maximal integral submanifold containing
it. This will not be needed later on, but it helps us emphasise that maximal integral
submanifolds are often exotic looking (compared to those integral submanifolds that
are almost everywhere horizontal).

We first present the linear analogue of this phenomenon:

Definition 3.5.4. Let W Ă g0 be l-dimensional and horizontal. Denoting its projec-
tion to B by H, we define the conormal of W to be the subspace:

conormalpW q :“W ‘ Symr
pHK, F q Ă g0.

The space Symr
pHK, F q is the intersection of the polar space of H with the vertical

component. Hence, the conormal is a maximal integral element.

In the contact case, conormalpW q is middle-dimensional and therefore a lagrangian

subspace of ξcan. In the general case, Symr
pHK, F q has dimension k

`

pn´lq`r´1
n´l´1

˘

which
is often (much) larger than n´ l. For instance:

• If l “ n´ 1, we have dimpSymr
pHK, F qq “ k.

• If l “ n´ 2, we have dimpSymr
pHK, F qq “ kpr ` 1q.

• If l “ n´ 3, we have dimpSymr
pHK, F qq “ k pr`2qpr`1q

2 .

Therefore, the conormal construction produces integral elements which are tangent
to the fibre along a large subspace, and whose dimension is often much larger than
n.

Now for the manifold version:

Definition 3.5.5. Let N Ă JrpY Ñ Xq be a l-dimensional, integral submanifold
with immersed projection πbpNq Ă X. We define its conormal to be the manifold:

conormalpNq :“ tp P JrpY Ñ Xq | πr,r´1ppq P πr,r´1pNq, p Ą Tπpr,r´1ppqπr,r´1pNqu.

In the last inclusion we think of p P JrpY Ñ Xq as a maximal horizontal element in
πr,r´1ppq P J

r´1pY Ñ Xq.

To see how this corresponds to the linear version, we choose a trivialisation so we
may work with JrpB,F q, where B and F are vector spaces. Then the conormal is
precisely the space

tp P JrpB,F q | πr,r´1ppq P πr,r´1pNq, p P conormalpTπr,r´1ppqπr,r´1pNqqu.

Here we use the fact that both the base B and the fibre F are vector spaces to
canonically identify the fibre of r-jet space with Symr

pB˚, F q and therefore invoke
the linear definition.
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3.5.3 Integral elements of given corank

Having understood the horizontal case (which we will have to invoke repeatedly),
we may look now at more general integral elements. Namely, those intersecting the
vertical component in a subspace of dimension i.

3.5.3.1 The setup

The space GrΣipg, lq is endowed with two canonical maps. The first is simply the
restriction of the base projection; we denote it by:

πb : GrΣipg, lq ÞÑ GrpB, l ´ iq.

The second one intersects an integral element with the vertical component. We write:

XSymr
pB˚, F q : GrΣipg, lq Ñ GrpSymr

pB˚, F q, iq.

Given W P GrΣipg, lq, the subspaces H “ πbpW q and Wv “ W X Symr
pB˚, F q must

be orthogonal with respect to the curvature/Lie bracket. This means that Wv must
be, in fact, an element of GrpSymr

pHK, F q, iq. Reasoning in this fashion for all W
simultaneously leads us to look at the total space of the bundle GrpSymr

pγK, F q, iq Ñ
GrpB, l ´ iq. We write ν for the tautological bundle over it.

The two canonical maps defined above yield a projection π : GrΣipg, lq Ñ GrpSymr
pγK, F q, iq.

It is immediate that π is a vector bundle in which a natural choice of zero section is:

(3.5.3.1) pH,Wvq Ñ H ‘Wv,

where H P GrpB, l ´ iq and Wv P GrpSymr
pHK, F q, iq.

3.5.3.2 The result

We may describe GrΣipg, lq explicitly:

Lemma 3.5.6. There is a canonical isomorphism of vector bundles:

GrΣipg, lq –
Symr`1

pB˚, F q

Symr`1
pγK, F q ‘Hompγ, νq

over the total space of GrpSymr
pγK, F q, iq Ñ GrpB, l ´ iq.

Proof. As before denote by Symr`1
pB˚, F q Ñ GrpSymr

pγK, F q, iq the trivial vector-

bundle, with fiber Symr`1
pB˚, F q. We define a vector bundle epimorphism

‘ : Symr`1
pB˚, F q ÞÑ GrΣipg, lq

which, at a point Wv P GrpSymr
pHK, F q, iq, is given by

A ÞÑ ‘H,Wv
pAq :“ graphpA|Hq ‘Wv.
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The tensor A is in the kernel of ‘H,Wv (i.e. gets mapped to the zero section from
Equation 3.5.3.1) if and only if the associated quotient map

Ã : H ÞÑ Symr
pB˚, F q{Wv

is zero. I.e. ιvA P Wv for every v P H. Therefore, after choosing a direct summand
for H, we can identify:

kerp‘H,Wv q – Symr`1
pHK, F q ‘HompH,Wvq,

which is a vector subspace of Symr`1
pB˚, F qpH,2q – Symr`1

pHK, F q‘HompH,Symr
pHK, F qq.

3.5.3.3 Dimension counting

From the previous proof, we deduce that:

Corollary 3.5.7. The fibre of GrΣipg, lq, as a vector bundle over GrpSymr
pγK, F q, iq,

has dimension
„ˆ

n` r

n´ 1

˙

´

ˆ

n´ l ` i` r

n´ l ` i´ 1

˙

k ´ ipl ´ iq.

Similarly, we deduce:

Corollary 3.5.8. The manifold GrΣipg, lq has dimension

dimpGrΣipg, lqq “ pl ´ iqpn´ l ` iq`
„ˆ

r ` pn´ l ` iq ´ 1

n´ l ` i´ 1

˙

k ´ i



i`

„ˆ

n` r

n´ 1

˙

´

ˆ

n´ l ` i` r

n´ l ` i´ 1

˙

k ´ ipl ´ iq.

Proof. The space GrpB, l´iq has dimension pl´iqpn´l`iq. The fibre of Symr
pγK, F q

has dimension
`

r`pn´l`iq´1
n´l`i´1

˘

, so it follows that the fibre of GrpSymr
pγK, F q, iq has

dimension:
„ˆ

r ` pn´ l ` iq ´ 1

n´ l ` i´ 1

˙

k ´ i



i.

Putting all these computations together, we deduce the claim.

We are particularly interested in comparing GrΣipg, lq with the regular cell GrΣ0pg, lq,
which we want to regard as the “generic” ones. To do so with define a number, which
we call the codimension, as follows:

codimpr, n, k, l, iq :“ dimpGrΣ0pg, lqq ´ dimpGrΣipg, lqq.
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We particularise to the case n “ l and we compute:

codimpr, n, k, n, iq “ i2 ` kr
1´ i

1` r

ˆ

r ` i´ 1

i´ 1

˙

,

codimpr, n, k, n, 1q “ 1,

codimpr, n, k, n, 2q “ 4´ kr,

codimpr, n, k, n, 3q “ 9´ krpr ` 2q.

So we deduce:

Corollary 3.5.9. The space GrΣ1pg, nq has codimension 1 in GrΣ0pg, nq.

In the contact setting k “ r “ 1, the space GrΣipg, nq has codimension ipi`1q
2 in

GrΣ0pg, nq.

That is: with the exception of a few cases in which r and k are small, the strata
GrΣipg, nq, i ą 1, are often larger than the regular cell.

The most interesting component, from a PDE perspective, is the closure GrΣ0pg, lq
of the horizontal cell. We will not attempt to look at it in depth. As pointed out in
the introduction, it is enough that we understand how GrΣ2´freepg, lq sits inside; we
will do so in Subsection 3.5.5.

3.5.4 Principal subspaces

It is convenient that we introduce some auxiliary concepts before we look at GrΣ2´freepg, lq Ă

GrΣ0pg, lq. The main definition of interest in this Subsection is:

Definition 3.5.10. A horizontal element A P GrΣ0pg, nq – Symr`1
pB˚, F q is prin-

cipal if
A “ fr`1 b α,

for some (unique) f P B˚ and α P F . The span of a principal element is said to be
a principal subspace.

Any non-zero principal element defines a kernel subspace kerpAq :“ kerpfq Ă B which
is of codimension 1, and an image subspace ImagepAq Ă Symr

pB˚, F q which is by
definition the 1-dimensional space spanned by fr b α.

Remark 3.5.11. As points in pr ` 1q-jet space, principal elements correspond pre-
cisely to pure derivatives (i.e. derivatives of order r`1 along a single direction in the
base). 4

3.5.4.1 The principal cone

We claim that the set of all principal subspaces in Symr`1
pB˚, F q is the cone of

an algebraic subvariety in the projectivisation. Let us recall two constructions from
classic algebraic geometry.
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Let V and W be vector spaces. We define the Veronese mapping:

PpV q ÞÑ PpSymr`1
pV qq,

rvs ÞÑ rvr`1s.

Similarly, the Segre mapping is defined by the expression:

PpV q ˆ PpW q ÞÑ PpV bW q,
prvs, rwsq ÞÑ rv b ws.

Both of them are algebraic maps.

In our setting, we can put them together to define the principal mapping:

PpB˚q ˆ PpF q ÞÑ PpSymr`1
pB˚, F qq,

prf s, rαsq ÞÑ rfr`1 b αs.

We are interested in the cone it defines. It is given by the image of the map:

B˚ ˆ F ÞÑ Symr`1
pB˚, F q,

pf, αq ÞÑ fr`1 b α.

We will abuse notation and still call this map the principal mapping, as long as no
confusion may arise. Its image, which we denote by V0 and we call the principal
cone, is an algebraic subvariety. By construction, a horizontal element is principal if
and only if it is contained in V0.

3.5.4.2 The closure of the principal cone

Fix A0, A1 P Symr`1
pB˚, F q, with A1 principal, and consider the linear combinations

pA0 ` sA1qsPR. We can see that

pA0 ` sA1q|kerpA1q “ A0|kerpA1q,

i.e. the graph over kerpA1q does not depend on s. However, A0 ` sA1 explodes in
the complement of kerpA1q as s goes to infinity. This implies that the sequence of
horizontal elements pA0 ` sA1qsPR has well-defined limit in GrΣ1pg, nq: the integral
element

graphpA0|kerpA1qq ‘ ImagepA1q.

In terms of r-jet space, this phenomenon corresponds to an explosion of a pure deriva-
tive of order r ` 1. Any element in GrΣ1pg, nq may be written as such a limit, so we
deduce:

Lemma 3.5.12. GrΣ1pg, nq is contained in the closure of GrΣ0pg, nq.

Applying this reasoning with A0 “ 0, we are effectively looking at the closure V :“ V0

in GrΣ0pg, nq of the principal cone:
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Lemma 3.5.13. The principal subvariety V is the union of two pieces V0 and V1.
The latter piece is the zero section of GrΣ1pg, nq as a bundle over GrpSymr

pγK, F q, 1q Ñ
GrpB,n´ 1q.

Proof. Any element in the closure of V0 can be realised as the limit of a path psAqsPR,
with A principal. As reasoned above, its limit is then the direct sum kerpAq ‘
ImagepAq, where the first term is a hyperplane in B and the second one is a line in
Symr

pkerpAqK, F q. This concludes the claim.

Lastly, we remark that V1 “ GrpSymr
pγK, F q, 1q, as a bundle over GrpB,n ´ 1q, is

trivial. Indeed, an element in the fibre is a line in Symr
pγK, F q, which can be uniquely

identified with its image in F , which is again a line. This shows that:

Corollary 3.5.14. There is an identification

V1 “ GrpB,n´ 1q ˆGrpF, 1q “ PpB˚q ˆ PpF q.

3.5.4.3 The topology of the principal subvariety

We want to determine the homotopy type of V by putting its pieces together. This
is relevant because, as we will see in Subsection 3.5.5.2, V is homotopy equivalent to
GrΣ2´freepg, nq.

Let us make a preliminary remark. We write rV for be the blow-up of V at the origin.
We denote the tautological bundles over PpB˚q and PpF q by γB˚ and γF , respectively.
We then look at the forgetful map

rV Ñ PpB˚q ˆ PpF q.

One can check that it is a fibration with RP1 fibres and, in fact, it is the fibrewise
compactification of the real line bundle γbr`1

B˚ bγF . From this expression we see that
there is a certain asymmetry depending on the parity of r, so we must tackle each
case separately.

Write xB˚ – RPn for the compactification of B˚ by adding PpB˚q at infinity. Denote
by SpF q the unit sphere (with respect to some scalar product). Then:

Lemma 3.5.15. Let r be even. Then, there is a fibration

Z2 Ñ xB˚ ˆ SpF q Ñ V.

In particular, if k “ dimpF q “ 1, we have that V is homotopy equivalent to xB˚ – RPn.

Proof. We define maps

B˚ ˆ SpF q ÞÑ V0,

pf, αq ÞÑ fr`1 b α;

PpB˚q ˆ SpF q ÞÑ V1,

prf s, αq ÞÑ prf s, rαsq.
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Their composition defines a continuous map xB˚ ˆ SpF q ÞÑ V, as claimed. For the
second claim we note that the bundle is trivial because SpF q “ Z2.

Similarly:

Lemma 3.5.16. Let r be odd. Then V is homotopy equivalent to the quotient

PpB˚q ˆ pF

PpB˚q ˆ 0
.

Proof. Regard PpB˚q as the quotient of the unit sphere (for some scalar product)
under the antipodal map. Consider the map:

PpB˚q ˆ F ÞÑ V0,

prf s, αq ÞÑ fr`1 b α,

which is well-defined because r is odd. Together with the identity map PpB˚q ˆ
PpF q ÞÑ V1, this defines a mapping

PpB˚q ˆ pF ÞÑ V

which is surjective, maps PpB˚qˆ t0u to the origin in V, and is a homeomorphism in
the complement; quotienting we deduce the claim.

3.5.4.4 The tangent variety of the principal cone

Lastly, being a subvariety of a vector space, we can look at the tangent variety
TV0 Ă Symr`1

pB˚, F q associated to V0.

To determine TV0, we look at the map ψpf, αq “ fr`1 b α. Its differential at a
covector f P B˚ and a vector α P F is readily computed:

df,αψ : B˚ ˆ F Ñ Symr`1
pB˚, F q,

df,αψpg, βq “ fr`1 b pα` βq ` pr ` 1qg ¨ fr b α.

Equivalently, if we set H “ kerpfq Ă B, we see that the tangent space to V0 at
fr`1 b α ‰ 0 is the subspace:

Symr`1
pHK, F q ‘H˚ b Symr

pHK, xαyq Ă Symr`1
pB˚, F qpH,2q.

This identifies the normal fibre to V0 at pf, αq with the quotient

Symr`1
pB˚, F q

Symr`1
pHK, F q ‘H˚ b Symr

pHK, xαyq
,

as we would expect from our description of GrΣ1pg, nq as a bundle over V1.
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3.5.5 The Σ2-free integral Grassmannian

In this last subsection we state some structural results about GrΣ2´freepg, nq and we
provide sketches of proofs. A more comprehensive account will appear in future work.

3.5.5.1 Smoothness

According to Subsections 3.5.2 and 3.5.3, the pieces GrΣ0pg, nq and GrΣ1pg, nq are
smooth manifolds. The first is a vector space. The second one is a vector bundle over
a smooth bundle with grassmannian base and fibre. The computations in subsection
3.5.3.3 show that the later has dimension one less than the former. One can put
together these facts to show:

Proposition 3.5.17. GrΣ2´freepg, nq is a smooth open manifold, embedded in Grpg0, nq.
Furthermore, GrΣ1pg, nq sits inside as a smooth hypersurface.

Proof. It is sufficient to describe, at each point W P GrΣ1pg, nq, a chart that is simul-
taneously a submanifold chart of GrΣ2´freepg, nq inside of Grpg0, nq and a submanifold
chart of GrΣ1pg, nq inside GrΣ2´freepg, nq. We will just provide the latter.

Let W be presented as limsÑ˘8 graphpA0` sA1q, with A0, A1 P Symr`1
pB˚, F q and

A1 principal. We write L for a neighbourhood of A0 within the normal fibre to the
principal cone at A0. Additionally, we fix a pn`k´1q-dimensional family U of rank-1
maps whose projectivisations are a neighbourhood of rA1s in the space of principal
subspaces.

Then, the map
Φ : Lˆ U ˆ p´δ, δq Ñ Grpg, nq

pA,A1, sq Ñ A`
1

s
A1

is a smooth embedding with image a neighbourhood of W in GrΣ2´freepg, nq. Further,
the map Φ|UˆLˆt0u parametrises the hypersurface GrΣ1pg, nq.

We remark that we do not know whether GrΣ0pg, nq is smooth in general. In the
contact case it is known that it is.

3.5.5.2 Homotopy type

We can put together Proposition 3.5.17 with the work we did in the previous Sub-
section about the principal subvariety to show that:

Proposition 3.5.18. The Σ2-free Grassmannian GrΣ2´freepg, nq is homotopy equiv-
alent to the principal subvariety V.

Proof. We just provide a sketch of proof.

Let us fix a metric in g0 making the horizontal and vertical components orthogonal.
This immediately defines a distance function > between lines in g0, given as the sine
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squared of the angle they make. We can readily extend this function to Grpg0, nq as
follows:

>pA,A1q :“ max
LĂA,L1ĂA1

>pL,L1q.

We restrict > to GrΣ0pg, nq.

Note that the horizontal cell GrΣ0pg, nq is the set of points at distance strictly less
that 1 from the zero map. Similarly, GrΣ2´freepg, nq is the set at distance strictly less
than 1 from V. We may then define the distance function

d : GrΣ2´freepg, nq Ñ r0, 1q

dpAq :“ inf
BPV

>pA,Bq,

whose zero set is V.

The function d is smooth. It can be seen that its restriction to GrΣ1pg, nq is Morse-
Bott and its critical set is precisely V1. The situation in GrΣ0pg, nq is more delicate
because d is not Morse-Bott: its zero locus is the principal cone, which is singular,
and the additional critical points (corresponding to the cut locus of d) form a conical
algebraic subvariety S.

We may then proceed as follows: we modify d by adding a perturbation hpAq “
|A|2ρ; here ρ : GrΣ0pg, nq Ñ R is a bump function supported in the intersection of
a neighbourhood of S and the complement of a ball around zero. In particular, this
perturbation is zero in the hypersurface GrΣ1pg, nq. The effect of this is that minus
the gradient flow of d ` h retracts everything to a neighbourhood of V, which itself
retracts onto V.

3.5.5.3 The Maslov hypersurface

In the Lagrangian Grassmannian, the complement of the regular cell is usually called
the Maslov cycle. As studied by V. Maslov and V. Arnol’d [84, 5], it is a two-sided
(i.e. cooriented) and non-separating hypersurface and, it defines a first homology
class through the intersection pairing. Let us study this phenomenon in general jet
spaces. We will henceforth denote:

Definition 3.5.19. GrΣ1pg, nq Ă GrΣ2´freepg, nq is called the Maslov hypersur-
face.

The Maslov hypersurface is non-separating in general. Furthermore:

Proposition 3.5.20. The Maslov hypersurface is two-sided if and only if one of the
following conditions holds:

• dimpF q “ 1 and r is odd, or

• dimpBq “ dimpF q “ 1.

These are not mutually exclusive.
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Proof. According to Proposition 3.5.18, it is sufficient that we prove that V1 is coori-
entable within V. Then, we refer back to subsection 3.5.4.3, where it was explained
that rV (the blow-up at the origin of V) is the fibrewise compactification of the tauto-
logical bundle γbr`1

B˚ b γF over PpB˚q ˆ PpF q. Here the zero section corresponds to
the blow-up of the origin and the infinity section is precisely V1, but their roles are
symmetric.

Now we observe that γbr`1
B˚ b γF is isomorphic to the normal bundle of V1 in rV, and

therefore isomorphic to the normal bundle of V1 in V. Furthermore, this bundle is
trivial if and only if the terms γF and γbr`1

B˚ are individually trivial. This proves the
claim.

Furthermore:

Corollary 3.5.21. Let dimpF q “ 1 and r be odd. Then a choice of orientation for
F determines a coorientation for the Maslov hypersurface.

Proof. Indeed, as computed in the proof of Proposition 3.5.20, the normal bundle to
GrΣ1pg, nq is precisely γF , which is canonically identified with F .

Similarly:

Corollary 3.5.22. Let dimpBq “ dimpF q “ 1 with r even. Then, a choice of
orientation for B˚ ‘ F determines a coorientation for the Maslov hypersurface.

Proof. The normal bundle to GrΣ1pg, nq is γB˚bγF , which is identified with detpB˚‘
F q.

In both cases, once we have oriented either F or B˚ ‘ F , we will call the resulting
coorientation the Maslov coorientation.

3.5.5.4 The Maslov class

Under the assumptions of Proposition 3.5.20, the Maslov hypersurface is non-separating,
cooriented, and closed as a subset. This is enough to have a well-defined cohomology
class using the intersection pairing:

Definition 3.5.23. Suppose one of the following conditions holds:

• dimpF q “ 1 and r is odd, or

• dimpBq “ dimpF q “ 1,

and that a Maslov coorientation has been fixed.

Then, the Maslov index or Maslov class is the non-zero, non-torsion element

Ind P H1pGrΣ2´freepg, nq,Zq
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defined by:

Indprγsq :“ |γ XGrΣ1pg, nq| P Z ,

where γ is a curve representative intersecting the Maslov hypersurface transversally.
The count of intersection points takes into account signs, comparing the orientation
of γ with the Maslov coorientation.

3.5.5.5 The local Maslov class

Even if the Maslov hypersurface is not two-sided, it still makes sense to talk about
a local Maslov coorientation: indeed, let W P GrΣ1pg, nq and consider a ball
U Ă GrΣ2´freepg, nq containing W . In U , the intersection UXGrΣ1pg, nq is two-sided,
so a coorientation can be chosen.

Given a local Maslov coorientation for U X GrΣ1pg, nq, we can reason as before to
define a local Maslov class for oriented curves

pr0, 1s, t0, 1uq Ñ pU, pBUqzpU XGrΣ1pg, nqqq

using the intersection pairing. It can only take the values t0, 1,´1u.

This will play a role in Subsection 3.7.2.

3.6 Multi-sections: Definition and elementary prop-
erties

Having looked at the linear situation in Section 3.5, we turn our attention back to
integral submanifolds of r-jet space JrpY Ñ Xq. We always denote dimpXq “ n and
dimpY q “ k. When we pass to local coordinates we replace X by a vector space B
and the fibres of Y by a vector space F .

In Subsection 3.6.1 we set up the language of multi-sections, i.e. integral submani-
folds that are horizontal almost everywhere. In Subsection 3.6.2 we focus on Σ2-free
multi-sections and we explain what it means for their singularities to be in Thom-
Boardman form. We then introduce two techniques that will allow us to manipulate
Σ2-free multi-sections: generating functions (Subsection 3.6.3) and metasymplectic
lifts (Subsection 3.6.4). Using these ideas we prove some structure results (Subsec-
tion 3.6.5).

3.6.1 Multi-sections

Multi-sections are defined in subsection 3.6.1.3. Before we get there, we need to
introduce some notation.
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3.6.1.1 Grassmannian bundles

In Subsection 3.5.1 we singled out several subsets of the integral Grassmannian of g.
According to Proposition 3.2.39 we can identify g with any tangent fibre TpJ

rpY Ñ
Xq (uniquely up to point symmetries). In doing so we define bundle analogues of
these subsets.

Namely: the bundle of horizontal elements will be denoted by

GrΣ0pξcan, lq Ă Grintegralpξcan, lq.

Similarly, we use the notation

GrΣipξcan, lq :“ tW P Grintegralpξcan, lq | dimpW X Vcanq “ iu.

For us it is of particular importance the union

GrΣ2´freepξcan, lq :“ GrΣ0pξcan, lq YGrΣ1pξcan, lq,

which we call the Σ2-free Grassmannian bundle. It is a submanifold of the bundle
of multi-section elements GrΣ0pξcan, lq.

3.6.1.2 Singularities of integral maps

Let N be a n-dimensional manifold, and consider an integral map f : N Ñ JrpY Ñ
Xq (Definition 3.2.12), possibly with singularities. We will denote: Σpfq for its locus
of singularities of mapping, Σpπf ˝fq for the locus of singularities (Definition 3.3.1) of
its front projection, and Σpf, Vcanq for the locus of singularities of tangency (Definition
3.3.2) with the vertical distribution Vcan.

Lemma 3.6.1. The following statements hold:

• The sets Σpf, Vcanq and Σpfq are not necessarily disjoint.

• Σpπf ˝ fq “ Σpfq Y Σpf, Vcanq.

• In particular, if f is an immersion, then Σpπf ˝ fq “ Σpf, Vcanq.

3.6.1.3 Multi-sections

At a point in the complement of Σpπf ˝ fq, fpNq is a submanifold graphical over X;
i.e. it can be expressed as the graph of the r-jet of a locally defined section X Ñ Y .
Motivated by this, we introduce the following definition:

Definition 3.6.2. Let N be an n-dimensional manifold.

A (parametrised, r-times differentiable) multi-section is a smooth map f : N Ñ

JrpY Ñ Xq which:

a. is tangent to ξcan,
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b. is transverse to Vcan on an open dense set,

c. has a well-defined Gauss map Grpfq : N Ñ Grintegralpξcan, nq with Imagepdfq Ă
ImageGrpfq.

Each component of the complement of Σpπf ˝ fq is called a branch.

Property (b) implies that f is an immersion in an open dense set, and its Gauss
map Grpfq takes values in the Grassmannian of multi-section elements GrΣ0pξcan, nq,
justifying its name.

The key property of multi-sections is that they are uniquely recovered from their front
projection: indeed, this holds for each of the branches and the global claim follows
by density. Thus, we can go back and forth between the multi-section f and its front
projection πf ˝ f . For this reason, we will sometimes be sloppy about this back and
forth and we will say that πf ˝ f is a multi-section (and, in fact, this agrees with the
usual picture of what a multi-section should be).

Sometimes the parametrisation itself is not important so:

Definition 3.6.3. An unparametrised multi-section is a subset of JrpY Ñ Xq
which is the image of a parametrised multi-section.

3.6.1.4 The space of multi-sections

The space of all parametrised, r-times differentiable multi-sections with domain N is
denoted by CrmultipN,Y q. We can then observe:

Lemma 3.6.4. The projection πr,r1 : JrpY Ñ Xq Ñ Jr´1pY Ñ Xq maps CrmultipN,Y q
to Cr´1

multipN,Y q.

Proof. The projection πr,r1 preserves Properties (a) and (b) in Definition 3.6.2. It is
enough that we prove that Property (c) holds as well.

Let f P CrmultipN,Y q. We then observe that, tautologically, πr,r1 ˝ f must be tangent,
at a point p, to the horizontal element represented by fppq. Hence, under the corre-
spondence between horizontal elements and points in the fibre in one jet space higher,
f itself is the Gauss map of πr,r1 ˝ f . In particular, the Gauss map of a projection
always takes values in the horizontal Grassmannian.

In our definition of multi-sections we allow maps not to be immersed. In view of
its proof, dropping the immersion condition is necessary for the Lemma to hold.
Furthermore, even though we are mostly interested in embedded multi-sections, we
will need to consider multi-sections with mild singularities of mapping in the course
of our arguments.
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3.6.1.5 Scaling

We finish this Subsection with a trivial remark:

Lemma 3.6.5. Let B and F be vector spaces and let N be a smooth manifold. Fix
an integral mapping f : N Ñ JrpB,F q (Definition 3.2.12) and a constant δ ą 0. The
following statements hold:

• JrpB,F q is a vector bundle over B.

• The Cartan 1-forms are invariant under scaling of the fibres of JrpB,F q Ñ B.

• In particular, δf is integral.

Proof. This is immediate from the description of the Cartan 1-forms in holonomic
coordinates given in subsection 3.2.2.4, Equation 3.2.2.2.

Despite being trivial, this Lemma plays an important role in the construction of
multi-sections with arbitrarily small derivatives that we shall need in Section 3.8.

3.6.2 Σ2-free multi-sections

We further narrow the scope of our work to:

Definition 3.6.6. A multi-section f is Σ2-free if Σipπf ˝ fq “ H for every i ě 2.

Hence, the Gauss map of a Σ2-free multi-section takes values in GrΣ2´freepξcan, nq.

Despite having no singularities of higher rank, the locus Σ1pπf ˝ fq may be compli-
cated, involving both singularities of tangency and of mapping. We would like to
say that, if f is generic, the singularities are nicely stratified. However, the Thom
transversality Theorem 3.3.6 does not apply because the class of integral maps is not
generic. Still, in subsection 3.6.2.2 we discuss how the singularities of an integral Σ2-
free immersion would look if they resembled those arising from Thom transversality.
Before we do so, let us introduce a couple of auxiliary definitions.

3.6.2.1 Kernel and image

Let f : N Ñ JrpY Ñ Xq be an integral Σ2-free map (not necessarily a multi-section).
At every singular point we can single out the direction in which the rank is dropping:

Definition 3.6.7. The kernel line field of f is defined as:

kerpfq :“ tkerpdqpπf ˝ fqq Ă TqN | q P Nu Ă TN.

Note that it is not defined over the whole of N , only over Σ1pπf ˝ fq.

Conversely, we have a partially defined (and possibly multiply-defined) hyperplane
distribution along the image of the singularities:
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Definition 3.6.8. The singular hyperplanes of f are defined as:

tdfpTqNq Ă TfpqqJ
rpY Ñ Xq | q P Σ1pπf ˝ fqu.

It is immediate that:

Lemma 3.6.9. The singular hyperplanes of f provide a well-defined Gauss map for
the restriction f |Σ1pπf˝fq.

Proof. Indeed, at a point q P Σ1pπf ˝ fq we set

Grpf |Σ1pπf˝fqqpqq “ dfpTqNq.

This is well-defined even if the set Σ1pπf ˝ fq is not smooth.

3.6.2.2 Σ2-free singularities in Thom-Boardman form

In Subsection 3.3.3, Theorem 3.3.14 we recalled Morin’s result: a Σ2-free generic
mapping between equidimensional manifolds has only singularities of Whitney-type.
This leads us to the following definition:

Definition 3.6.10. Let N be a smooth n-dimensional manifold. An integral Σ2-free
immersion f : N Ñ JrpY Ñ Xq is in Thom-Boardman form if the singularities
of the base projection πb ˝ f are of Whitney-type.

In particular, a Σ2-free immersed multi-section F in Thom-Boardman form contains
a sequence of smooth submanifolds

Σ1lpf, Vcanq “ Σ1pf |
Σ1l´1 , Vcanq,

each of which is a hypersurface in the previous one. The locus Σ1lpf, Vcanq is precisely

the tangency locus of Σ1l´1

pf, Vcanq with the kernel line field of f . Similarly, df maps
TΣ1pf, Vcanq to the singular hyperplanes, as in Definition 3.6.8, of f .

Our h-principle statements are parametric in nature. For this we must generalise
Definition 3.6.10 to families:

Definition 3.6.11. Let N be a smooth n-dimensional manifold. Fix a smooth man-
ifold K, which we regard as a parameter space. Write F for the foliation in K ˆN
by fibres of K ˆN Ñ K.

A K-family of Σ2-free immersions pfsqsPK is in Thom-Boardman form if:

• The singularities Σpfs, Vcanq of the fibered map ps, pq Ñ ps, πb ˝ fsppqq are of
Whitney type.

• The stratified locus Σpfs, Vcanq has generic tangencies with respect to F .
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The second item deserves some comment. The projection map Σ1lpfs, Vcanq Ñ K of
each stratum is endowed with a Thom-Boardman stratification in terms of the rank.
The dimensions of these new strata can be computed using the Thom transversality
Theorem 3.3.6, depending only on l and dimpKq. For our purposes it is not important
what these numbers are.

Remark 3.6.12. For most jet spaces, the dimension computations from subsection
3.5.3.3 show that most vertical curves are not tangent to principal directions and,
therefore, their only deformations are other vertical curves. Additionally, in subsec-
tion 3.2.2.9 we stated the following result of R. Bryant and L. Hsu [20]: under fairly
weak hypotheses on a bracket-generating distribution, there exist integral curves that
do not admit any compactly supported deformations. For jet spaces JrpR,Rq, r ą 1,
these are the curves tangent to the vertical distribution.

That is to say, any transversality statement must bypass these two issues. The
first one is avoided by requiring integral submanifolds to have tangent spaces in
GrΣ2´freepξcan, nq. The second one can be ignored for curves as long as our curves
are somewhere not tangent to the vertical. The case of higher dimensional manifolds
will be discussed in subsection 3.6.5.3. 4

3.6.3 Generating functions

V. Arnold proved in [6, 7] that front singularities of embedded legendrians/lagrangians
can always be (locally) described by generating functions. This is not true for arbi-
trary integral submanifolds of jet spaces [101, p. 14] [115], but it nonetheless holds
that front singularities are rather special compared to the singularities of a general
map. This was first explored by V. Lychagin [78] for 1-jet spaces in more than one
variable, and later by A. Givental [58] for general jet spaces.

Our goal in this Section is to define what a generating function is for a general jet
space. We do this in a possibly novel way: the key ingredient is the concept of reduc-
tion, which we introduce in subsection 3.6.3.1. This allows us, in subsection 3.6.3.4,
to provide a recipe for corank-1 front singularities admitting a generating function
description. We will see in subsection 3.7.1.2 that this recipe can be particularised to
recover Givental’s description of integral submanifolds that have Whitney type front
singularities.

3.6.3.1 Reduction

The main idea behind generating functions is that we can follow a two step process
when constructing non-horizontal integral submanifolds: first, we produce a hori-
zontal submanifold over a base of greater dimension. Then, we use a “reduction”
procedure to go down to the actual jet space we want to work in. It is in this latter
step in which the horizontality condition is lost.

The “enlarged base” will be the foliated manifold pX,Fq. The actual base manifold
will be the quotient space X{F , which we assume is smooth (even though part of the
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construction goes through without this assumption). We denote the quotient map by
π : X Ñ X{F .

Let Y be another smooth manifold. We denote by C8pX,Y q the space of smooth
functions X Ñ Y . Using the pullback of the quotient map π, we have a natural
inclusion π˚ : C8pX{F , Y q Ñ C8pX,Y q, whose image we denote by C8F pX,Y q. A
function in C8F pX,Y q is said to be basic. We collect all the r-jets of basic functions
to yield:

Definition 3.6.13. The space of basic r-jets is defined as:

JrF pX,Y q :“ tjrxf P J
rpX,Y q | x P X, f P C8F pX,Y qu.

The canonical projection map

π̃ : JrF pX,Y q ÞÑ JrpX{F , Y q
jrxpf ˝ πq ÞÑ jrπpxqf,

is called the reduction map.

In this general setting, the familiar properties of the contact reduction process still
hold. We leave the proof to the reader:

Lemma 3.6.14. The following statements hold:

• JrF pX,Y q is a smooth submanifold of JrpX,Y q.

• The restriction
ξFcan :“ ξcan X TJ

r
F pX,Y q

has a rankpFq-dimensional characteristic foliation kerpξFcanq which is a lift of
F .

• The reduction map π̃ preserves the Cartan distribution.

• Leaves of the characteristic foliation kerpξFcanq correspond to fibres of π̃.

So we can legitimately say that JrpX{F , Y q is the reduction of JrpX,Y q with respect
to kerpξFcanq.

We may study next how integral submanifolds interact with the reduction process:

Definition 3.6.15. Let L Ă JrpX,Y q be an integral submanifold. Its reduction is
the set

L{F :“ π̃pLX JrF pX,Y qq Ă JrpX{F , Y q.

We say that f : X Ñ Y is the generating function of

Lf :“ Imagepjrfq{F .

As suggested by the definition, even if the intersection L X JrF pX,Y q is a smooth
submanifold, it may have singularities of tangency with kerpξFcanq. Therefore, the
reduction L{F is often not smooth. However, it is integral (in the sense that it is the
image of an integral map).
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3.6.3.2 Reduction in concrete terms

Take local coordinates pq, xq in X with values in Rn ˆRm; the x–coordinates denote
the foliation directions. Take also local coordinates in Y with values in Rk. In this
manner, the reduced space is JrpRn,Rkq.

Lemma 3.6.16. A function G : Rn ˆ Rm Ñ Rk generates the subset:
(3.6.3.1)
LG “ tpq,Gpq, xq, BqGpq, xq, ¨ ¨ ¨ , B

r
qGpq, xqq | @pq, xq s.t. Baq B

b
xGpx, qq “ 0 @b ‰ 0, au.

Proof. The lift of G is given by the expression:

jrGpq, xq “ pq, x,Gpq, xq, BqGpq, xq, BxGpq, xq, B
2
qGpq, xq, BqBxGpq, xq, . . . , B

r
xGpq, xqq.

The intersection of jrG with the space of basic r-jets is the subset of jrG in which
all derivatives of G involving x at least once are zero. I.e. the set of points in which
the derivatives of G take place purely in the q-directions. In particular, this set is
contained in the locus of leafwise critical points of G and the two agree if r “ 1.

3.6.3.3 Remark: dimension counting

In the contact case (i.e. r “ 1 and m “ 1) the collection of leafwise critical points
on a given leaf q ˆ Rm is, generically, a finite collection of points and, for most
leaves, the points will be Morse. In particular, the reduction LG is an n-dimensional
submanifold (a legendrian), which can be regarded as the 1-jet of a multiply-valued
function Rn Ñ R.

For mr ą 1, having derivative purely in the q-directions is an overdetermined condi-
tion. The expected dimension of LG may be computed to be:

pn`mq ´ k
r
ÿ

l“1

ˆˆ

n`m` l ´ 1

l

˙

´

ˆ

n` l ´ 1

l

˙˙

.

The expected dimension is n only in the contact setting, and it is non-negative only
if r “ 1 and n ě pk ´ 1qm. Otherwise, and in particular for all higher jet spaces, the
expected dimension is negative.

This tells us that any generating function theory for higher jet spaces would not rely
on generic functions, but rather on a subclass of functions (of positive codimension
given by the formula above) with prescribed singularities. We will look at one par-
ticularly manageable example next. Developing a general theory is left as an open
question. It is worth remarking that this has been explored already in connection
with the theory of legendrian/lagrangian singularities [101], which deals with the local
existence of generating functions. In light of the extreme global flexibility results, it
is unclear whether generating functions in higher jet spaces may be useful from a
topological perspective.
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3.6.3.4 Integral expressions

Let M be an n-dimensional manifold. We set X “M ˆR and we endow it with the
foliation F by fibres of X Ñ M . We restrict to the case in which the target space
is Y “ Rk. In this Subsection we explain how to use generating functions on X to
obtain integral manifolds in the reduction JrpM,Rkq. Since X is a rank-1 bundle
over M , any integral manifold we produce will have front tangencies of rank at most
1.

Let F : X Ñ R be submersion whose zero set has generic singularities of tangency
(in the sense of Thom-Boardman; see Subsection 3.3.1) with respect to F . For di-
mensional reasons, this singularity locus is thus Σ2-free. We then define a function:

G : M ˆ R Ñ Rk

pq, xq Ñ

ˆ

G1pq, xq :“

ż x

0

F pq, sqrds, 0, . . . , 0

˙

.

The only relevant entry is G1, since the other pk ´ 1q entries are zero and therefore
singular everywhere.

We see that BxG1pq, xq “ F pq, xqr. Furthermore, using induction we can prove:

Lemma 3.6.17. Let a ě 0 and b ą 0 be integers. Then, there are functions Ψl :
M ˆ RÑ R such that

Baq B
b
xG1pq, xq “

a`b´1
ÿ

l“0

F r´lpq, xqΨlpq, xq.

That is, all the derivatives (up to order r) involving x at least once vanish at the
fibrewise critical points of G. Therefore, according to subsection 3.6.3.2:

Corollary 3.6.18. The reduction LG is parametrised by the locus of zeroes of F :

LG “ tpq,Gpq, xq, BqGpq, xq, ¨ ¨ ¨ , B
r
qGpq, xqq | @pq, xq s.t. F pq, xq “ 0u.

According to the Corollary, LG is parametrised by a smooth manifold. Furthermore:

Lemma 3.6.19. LG is an embedded Σ2-free multi-section. Its singularities of tan-
gency with the vertical distribution correspond to the singularities of tangency of
F´1p0q with F .

Proof. The locus of zeroes F´1p0q is a smooth hypersurface in X which is in general
position with respect to F . In particular, its locus of tangencies ΣpF´1p0q,Fq with
F is of codimension 1. In each branch of F´1p0q, the variable x can be regarded as
a function of q. Hence, branches of F´1p0q are mapped to branches of LG simply by
taking the graph jrpGpq, xpqqq. Conversely, the locus ΣpF´1p0q,Fq maps to the sin-
gularity locus of LG. The singularities of LG may be front tangencies or singularities
of mapping. We claim that they are always tangencies.
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Fix pq̃, x̃q P ΣpF´1p0q,Fq. Since F is a submersion, we have that BqiF pq̃, x̃q ‰ 0, for
some i. We may then compute:

BxB
r
qiG1pq̃, x̃q “ r!rBqiF pq̃, x̃qs

r ‰ 0

because all other terms involve F and are zero. Therefore, the map xÑ BrqiG1pq, xq
is a local diffeomorphism of R to itself. This implies that pq1, . . . , qi´1, qi`1, . . . , qn, xq
locally parametrises LG as a smooth embedded manifold, concluding the proof.

We can define additional Σ2-free multi-sections, for every 0 ď l ă r, as follows:

πr,lpLGq “ tpq,Gpq, xq, BqGpq, xq, ¨ ¨ ¨ , B
l
qGpq, xqq | @pq, xq s.t. BxGpx, qq “ 0u Ă J lpM,Rkq,

which are none other than the usual projections of LG to lower jet spaces. All of them
are generated by G and have a well-defined Gauss map into the horizontal Grassman-
nian. They have singularities of mapping corresponding to the front tangencies of LG.

3.6.4 Metasymplectic projections and lifts

In Contact Topology it is fruitful to manipulate legendrian knots using their la-
grangian projection. In this Subsection we present the analogue of this process for
general jet spaces. We work locally in JrpB,F q, with B and F vector spaces. We fix
holonomic coordinates px, y, zq.

In subsections 3.2.2.6 and 3.2.2.7 we introduced the notion of metasymplectic space

pB ‘ Symr
pB˚, F q,Ωcanq.

The terms B and Symr
pB˚, F q were called the horizontal and vertical component,

respectively. The projection onto B was denoted by πb. Furthermore, we defined the
metasymplectic projection:

πL : JrpB,F q Ñ B ‘ Symr
pB˚, F q,

which is the natural generalisation of the lagrangian projection. The coordinates of
JrpB,F q induce coordinates px, zrq in B ‘ Symr

pB˚, F q.

In subsection 3.6.4.1 we prove Theorem 3.6.22: isotropic submanifolds ofB‘Symr
pB˚, F q

can always be lifted to JrpB,F q. This is sufficient to manipulate multi-sections when
B is 1-dimensional: the theory of general integral curves is then very similar to the
theory of immersed legendrian curves; see subsection 3.6.4.2.

For higher-dimensional integral submanifolds the story is more complicated, because
it is non-trivial to manipulate their metasymplectic projections directly. To address
this, we work “one direction at a time”, effectively thinking about them as parametric
families of curves. This is done in subsection 3.6.4.3.
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3.6.4.1 Integral lift of an isotropic

We want to prove that any isotropic submanifold can be lifted to an integral one.
First we need an auxiliary concept:

Definition 3.6.20. The Liouville form

λcan P Ω1pB ‘ Symr
pB˚, F q; Symr´1

pB˚, F qq

is defined, at a point pv,Aq, by the following tautological expression:

λcanpv,Aqpw,Bq :“ ´ιwA.

The computations in subsection 3.2.2.6 imply that:

Lemma 3.6.21. Then following statements hold:

• The Liouville form can be explicitly written as:

λcanpx, z
rq “

˜

´

n
ÿ

a“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j dxa

¸

|pi1,¨¨¨ ,ia,¨¨¨ ,inq|“r´1

.

• The Cartan 1-forms αr P Ω1pJrpB,F q; Symr´1
pB˚, F qq are given by the ex-

pression
αrpx, y, zq “ dzr´1 ` λcanpx, z

rq.

• In particular, dλcan “ Ωcan.

That is, the familiar properties for the Liouville form in the symplectic/contact setting
hold as well in more general jet spaces. Then:

Theorem 3.6.22. Let N be a smooth, connected, contractible manifold. Given an
isotropic map

g : N Ñ pB ‘ Symr
pB˚, F q,Ωcanq

there exists an integral map (Definition 3.2.12)

Liftpgq : N Ñ JrpB,F q

satisfying πL ˝ Liftpgq “ g.

The lift Liftpgq is unique once we fix Liftpgqpxq for some x P N .

Proof. Write gppq “ pxppq, zrppqq. By construction, g˚Ωcan “ 0. Hence, g˚λcan is
closed. Using the contractibility of N , we deduce that each component of g˚λcan

is exact. We choose primitives, which we denote suggestively by zr´1 : N Ñ

Symr´1
pB˚, F q. These functions are unique up to a shift by an element of Symr´1

pB˚, F q.

We put together g with the chosen primitives to produce a map

h :“ px, zr, zr´1q : N Ñ B ‘ Symr
pB˚, F q ‘ Symr´1

pB˚, F q.
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We can readily check, using Lemma 3.6.21, that

h˚αr “ dzr´1 ` g˚λcan “ 0.

Furthermore, consider the 2-form with values in Symr´2
pB˚, F q:

Ωr´1
can “

˜

n
ÿ

a“1

dxa ^ dz
pi1,¨¨¨ ,ia`1,¨¨¨ ,inq
j

¸

|pi1,¨¨¨ ,ia,¨¨¨ ,inq|“r´2

.

It corresponds to the curvature of ξ
p1q
can, which depends only on the coordinates

px, zr´1q. We can compute:

h˚Ωr´1
can “ h˚

˜

´

n
ÿ

a,b“1

z
pi1,¨¨¨ ,ia`1,¨¨¨ ,ib`1,¨¨¨ ,inq
j dxa ^ dxb

¸

“ p0q.

In the last step we get zero because cross derivatives agree. This computation tells
us that the map

px, zr´1q : N Ñ B ‘ Symr´1
pB˚, F q

is isotropic. Therefore, the argument can be iterated for decreasing r to produce a
lift.

From the proof we see that the contractibility assumption on N is used to ensure
that the restriction of the Liouville form at each step is exact. More in general, we
could define:

Definition 3.6.23. An isotropic submanifold N of pB ‘ Symr
pB˚, F q,Ωcanq is said

to be exact if it admits an integral lift to pJrpB,F q, ξcanq.

Corollary 3.6.24. N is exact if and only if:

• λcan|N is exact.

• Its isotropic lift to pB ‘ Symr´1
pB˚, F q,Ωcanq is exact.

Observe that by recursion N is exact if and only if all of its lifts are exact.

3.6.4.2 Lifting curves

Let us particularise now to the case dimpBq “ 1. Then, in holonomic coordinates
px, y “ z0, zq the Cartan 1-forms read

αl “ dzl ´ zl`1dx, l “ 0, . . . , r ´ 1.

The particular flexibility of curves (compared to higher dimensional integral subman-
ifolds) stems from the fact that any

gptq “ pxptq, zrptqq : r0, 1s Ñ B ‘ Symr
pB˚, F q
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is automatically isotropic. Then, following the recipe outlined in the proof of Theorem
3.6.22, we solve for the zr´1 coordinates using αr:

g˚αr “ zr´1ptqdt´ zrptqx
1ptqdt

leading to the integral expression

zr´1ptq “ zr´1p0q `

ż t

0

zrpsqx
1psqds

which uniquely recovers zr´1 up to the choice of lift zr´1p0q. Proceeding decreasingly
in l we can solve for all the zlptq, effectively lifting g to an integral curve Liftpgq :
r0, 1s Ñ JrpB,F q.

According to Lemma 3.2.37, the lift Liftpgq is immersed if and only if g was immersed.
Assuming g is immersed, the front tangencies ΣpLiftpgq, πf q correspond precisely to
the singularities of tangency Σpg, πbq. This implies that to control the singularities
of an integral curve it is sufficient to control the singularities of its metasymplectic
projection, which is a smooth curve with no constraints.

3.6.4.3 Restricted metasymplectic projection

Unlike curves, higher-dimensional isotropic/integral submanifolds cannot be deformed
freely. To get rid of differential constraints we consider instead:

Definition 3.6.25. The principal metasymplectic projection with respect to the
principal direction determined by the coordinate xn is the map:

πnL : JrpB,F q Ñ B ‘ Symr
pR˚, F q

px, y, zq Ñ px, zp0,...,0,rqq.

That is, we only remember the pure r-order derivatives associated to xn. We then
work with Σ2-free maps whose rank drops along the xn-directions. We think of them
as pn´ 1q-families of curves, allowing us to prove:

Lemma 3.6.26. Given a smooth map:

g : B Ñ B ‘ Symr
pR˚, F q

ptq “ pt̃, tnq “ pt1, . . . , tnq Ñ pt̃, xnptq, z
p0,...,0,rqptqq,

there exists an integral map Liftpgq : B Ñ JrpB,F q satisfying πnL ˝ Liftpgq “ g.

The map Liftpgq is unique up to the choice of Liftpgq|ttn“0u.



3.6. MULTI-SECTIONS: DEFINITION AND ELEMENTARY PROPERTIES 279

Proof. The integral lift Liftpgq is given by the formula:

ptq ÞÑ pt̃, xn;

y “ zp0,...,0,0q;

Bt̃y, z
p0,...,0,1q;

B2
t̃ y, Bt̃z

p0,...,0,1q, zp0,...,0,2q;

. . . ;

Brt̃ y, . . . , Bt̃z
p0,...,0,r´1q, zp0,...,0,rqq.

All the terms on the right hand side depend only on t. Let us explain how the other
functions are obtained from t, xn and zp0,...,0,rq.

The term zp0,...,0,lq is the (formal) pure derivative of order l in the direction of xn and
it is defined (for decreasing l) by the integral expression:

zp0,...,0,lqptq :“ zp0,...,0,lqpt̃, 0q `

ż tn

0

zp0,...,0,l`1qpt̃, sqx1npỹ, sqds,

following what we did in the previous subsection for curves. In particular, the coor-
dinate y “ zp0,...,0,0q is recovered by integrating r times. At every step we can choose
the value of zp0,...,0,lqpt̃, 0q.

All other functions are derivatives of the form Bi
t̃
zp0,...,0,jq, for some integers i and j.

Hence, we obtain them, uniquely, by differentiation.

Recall from Section 3.5 that the polar space of a pn ´ 1q-dimensional horizontal
element is pn`kq-dimensional and intersects the vertical fibre exactly in the associated
principal direction. This implies that any construction of Σ2-free integral maps by
fixing n ´ 1 base directions and a (formal) derivative must necessarily use a pure
derivative. This indicates that the method presented is general.

Most of the key properties of the lift can be read from the original map:

Corollary 3.6.27. Let g be a map into a principal metasymplectic projection. Then:

• The map Liftpgq is well-defined, smooth, integral and Σ2-free.

• ΣpLiftpgqq is in correspondence with Σpgq.

• ΣpLiftpgq, Vcanq is in correspondence with Σpg, Vcanq. In the second term, Vcan

denotes the component Symr
pR˚, F q of B ‘ Symr

pR˚, F q.

3.6.5 Structure results about Σ2-free multi-sections

In this Subsection we exploit the ideas introduced in Subsection 3.6.4 to prove three
results about Σ2-free integral maps. Under some mild assumptions, they are lifts of
maps into a principal metasymplectic projection (subsection 3.6.5.1), they admit a
generating function description (subsection 3.6.5.2), and they can be put in Thom-
Boardman form (subsection 3.6.5.3).
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3.6.5.1 Σ2-free multi-sections are lifts

The statement we want to prove is:

Proposition 3.6.28. Let N be a smooth n-manifold. Let f : N Ñ JrpY Ñ Xq be a
Σ2-free integral map.

Then, given p P N , there exists g mapping into a principal metasymplectic projection
such that f |Opppq “ Liftpgq.

Proof. If p is non singular the claim is immediate. Suppose then that p is a singular
point. Choose a locally defined hyperplane L Q p such that f |L has maximal rank.
Its image fpLq is then an pn´ 1q-dimensional horizontal submanifold of JrpY Ñ Xq.
Hence, there is a trivialisation JrpB,F q of Oppfppqq Ă JrpY Ñ Xq with holonomic
coordinates px, y, zq such that: fpLq is contained in the zero section B and, further,
is spanned by the first n´ 1 coordinates px̃q.

Consider the foliation F in Oppπb ˝ fppqq by lines parallel to the xn-axis in X. The
foliation by lines pπb ˝ fq

˚F extends the kernel line field of f (Definition 3.6.7) to a
smooth line field defined everywhere in Opppq Ă N . We pullback the px̃q–coordinates
on fpLq to L, where we denote them by pt̃q. Then we use the flow of a vector field
spanning pπb ˝ fq

˚F to produce coordinates ptq around p.

Consider the principal metasymplectic projection π associated to xn (Definition
3.6.25). The composition g :“ π ˝ f is fibered over the t̃ “ x̃ coordinates and,
by construction, its integral lift is f (where the choice of initial values is zero).

3.6.5.2 Σ2-free multi-sections admit generating functions

The following is a modest generalisation to higher jets of Arnold’s result stating that
any embedded legendrian can locally be given by a generating function [6]. Note
that our result does not apply to singularities of rank greater than 1. However, we
do allow arbitrary Σ2-free singularities, generalising the case of Whitney singularities
studied by Givental [58].

Proposition 3.6.29. Let B and F be vector spaces with dimpF q “ 1. Then, any
germ f of Σ2-free integral embedding into JrpB,F q admits a generating function.

It is unclear whether the assumption dimpF q “ 1 can be dropped. That would require
studying more general generating functions in Subsection 3.6.3.4.

Proof. Outside of its singularity locus, f is (up to reparametrisation) a holonomic
section and it therefore admits a generating function. Consider then a singular point
p P N . Since f is embedded, the point p is a singularity of tangency. According to our
description of integral elements of corank 1 (Subsection 3.5.3), the integral element
dfpTpNq intersects the vertical distribution in a principal direction: a pure r-order
derivative associated to the singular hyperplane dpπb˝fqpTpNq, as in Definition 3.6.8.

We can then use Proposition 3.6.28 to produce:



3.6. MULTI-SECTIONS: DEFINITION AND ELEMENTARY PROPERTIES 281

• holonomic coordinates px, y, zq in JrpB,F q; we write pxq “ px̃, xnq,

• coordinates ptq “ pt̃, tnq in Opppq Ă N ,

• a principal metasymplectic projection π such that: f is a lifting of π ˝ f and its
projection π ˝ f is graphical over the zp0,...,0,rq derivative.

In these coordinates we may write explicitly:

pπ ˝ fqptq “ px̃ptq “ t̃;xnptq; z
p0,...,0,rqptq “ tnq.

For clarity of notation we denote gptq for the function xnptq.

We follow the method presented in Subsection 3.6.3.4. We claim that f is generated
by a function of the form:

G : B ˆ R Ñ F

Gpx, sq “

ˆ

Hpx̃q `
1

r!

ż s

0

pxn ´ gpx̃, sqq
rds

˙

,

where H is a function (to be specified now) which depends only of the x̃–coordinates.

Indeed: let Γ be the fibrewise singularity locus txn “ gpx̃, squ of G. It parametrises
the integral submanifold LG. Since Γ is graphical over the px̃, sq coordinates, it is
a smooth manifold. Applying Lemma 3.6.19 we deduce that so is LG. From the

computation BrxnG “ s it follows that s parametrises the z
p0,...,0,rq
k -coordinate of LG.

That is, both LG and f are lifts of the same principal metasymplectic projection π˝f .
Hence, they differ only on the initial conditions as we lift. Choosing H amounts to
choosing these initial conditions. Indeed, H specifies the front of G at tn “ 0, so we
set it to be Hpt̃q “ y ˝ fpt̃, 0q, concluding the proof.

3.6.5.3 Thom-Boardman for Σ2-free multi-sections

Before stating the result let us define:

Definition 3.6.30. Let f : N Ñ JrpY Ñ Xq be an integral map (Definition 3.2.12).
A curve γ : I Ñ N is said to be vertical if f ˝γ is tangent to Vcan (Definition 3.2.20).

Due to the rigidity phenomenon pointed out in Remark 3.6.12, vertical curves may
represent an obstruction to achieving transversality. Constraining them allows us to
prove the following genericity statement:

Proposition 3.6.31. Let N be an n-dimensional manifold. Let f : N Ñ JrpY Ñ Xq
be a Σ2-free integral immersion satisfying:

• Every vertical curve in f can be extended to a curve that is somewhere not
vertical.

Then, up to a C8-small perturbation, f can be assumed to be in Thom-Boardman
form.
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Proof. We provide a sketch. For each singular point p P N :

• We take the maximal vertical curve γ containing it.

• We choose a principal metasymplectic projection π (Definition 3.6.25) such that
fpγq is contained in the domain of π.

• As in the proof of Proposition 3.6.28 we can extend the kernel linefield of f to a
foliation by lines F everywhere on N . Let U be a neighborhood of γ saturated
by integral leaves of F .

According to the last item, U can be identified with the cube r´1, 1sn so that the
last coordinate corresponds to F . We write U˘ – r´1, 1sn´1 ˆ t˘1u under this
identification. By assumption, γ can be slightly enlarged to a curve that is not vertical
at its endpoint. This allows us to assume that the points in U` are non-singular.

We can now cover N by a finite collection tUiu of such neighbourhoods. We denote the
corresponding curve, kernel line field, and projection by γi, Fi, and πi, respectively.
We also write U˘i .

Inductively on i, we regard πi ˝ f |Ui as a fibered over r´1, 1sn´1 family of maps of
r´1, 1s into R‘ Symr

pR˚, F q. We apply the standard Thom transversality Theorem
3.3.6 to them so that the singularities are in Thom-Boardman form. We then apply
Lemma 3.6.26 to lift this to a perturbation of f |Ui itself. In order to work inductively
in i:

• We observe that, due to the lack of singularities, f |OppU`i q
is graphical over the

zero section. Thus, it is a reparametrisation of a holonomic section. This allows
us to interpolate freely between the original value of f |OppU`i q

and whatever

perturbation we choose (since the two are very close).

• Along the other end U´i we leave πi ˝ f untouched. Further, we choose f |U´i
as

the initial value for the lifting Lemma 3.6.26.

• Additionally, we do not perturb πi ˝ f close to the rest of the boundary of Ui.

These requirements imply that the perturbation we construct is relative to the bound-
ary of OppUiq, allowing us to iterate the argument.

3.7 Multi-sections: Models of singularities

In this Section we present some simple singularities for Σ2-free multi-sections. In
Subsection 3.7.1 we describe singularities of tangency of Whitney type. In Subsection
3.7.2 we use Whitney singularities to define models of singularities of tangency along
submanifolds (as opposed to germs at points). Lastly, in Subsection 3.7.3 we look at
singularities of mapping.
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Remark 3.7.1. Our naming conventions for singularities reflect the behaviour of the
integral maps themselves, not their front projections. In particular, the names we
use often refer to their singularities of tangency with the vertical distribution. When
singularities of mapping are present, we point it out explicitly. 4

3.7.1 Whitney singularities in jet spaces

In Definition 3.3.12 we introduced smooth Whitney singularities. In this Subsection
we study their analogues for integral submanifolds in jet space JrpB,F q.

In subsection 3.7.1.2 we use the generating function method presented in subsection
3.6.3.4 to provide explicit models of Whitney singularities. We then state Givental’s
Theorem 3.7.5: Whitney singularities are stable when dimpF q “ 1 [58], generalising
the theorem of Morin [93] to jet spaces. In subsection 3.7.1.4 we use Theorem 3.7.5 to
prove a global stability result for embedded multi-sections with Whitney singularities.
Lastly, in subsections 3.7.1.5 and 3.7.1.6 we describe the fold and the pleat in detail.
They will play a role in Subsections 3.7.2 and 3.7.3.

3.7.1.1 The definition

Definition 3.7.2. Let f : N Ñ JrpB,F q be a Σ2-free integral mapping. The germ
of f at a point p is a Whitney singularity if:

• f is an immersion at p, and

• the base map πb ˝ f has a Whitney singularity at p.

The index of f at p is the index of πb ˝ f . The Whitney singularities of indices 1
and 2 are called the fold and the pleat, respectively.

Sometimes, in order to stress that we are referring to Whitney singularities in jet
space, we call them r-times differentiable Whitney singularities.

Lemma 3.3.16 implies:

Corollary 3.7.3. A germ of Whitney singularity f : Oppt0uq Ñ JrpB,F q has index-j

Whitney singularities along Σ1j0pf, Vcanq.

3.7.1.2 Generating functions

Recall the notation from Subsection 3.3.3: endow Rn`1 with coordinates pq1, . . . , qn, xq
and denote q “ pq1, . . . , qnq and q̃l “ pq1, . . . , pql, . . . , qnq. Consider the fibration
π : Rn`1 Ñ Rn defined by pq, xq ÞÑ q. We set

Flpq, xq “ xl`1 ` q1x
l´1 ` ¨ ¨ ¨ ` ql,
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and we let Γl :“ F´1
l p0q be the locus of roots of xÑ Flpq, xq. The coordinates pq̃`, xq

parametrise Γl; we denote sl : Rnpq̃l, xq Ñ Γl. Finally, Γjl Ă Γl denotes the locus of
roots of multiplicity at least j.

Define the generating functions:

(3.7.1.1)

Gr,l : Rn`1 Ñ Rk

pq, xq ÞÑ

ˆ
ż x

0

pFlpq, sqq
rds, 0, . . . , 0

˙

,

where r is the order of the jet space and l ď n.

The function Fl is of the form prescribed in the subsection 3.6.3.4: a submersion whose
zero locus is smooth with generic tangencies. Therefore, the loci LGr,l are smooth
integral manifolds which are parametrised by the locus of roots Γl – Rnpq̃, xq. This
is shown as the dashed diagonal arrow in the following diagram:

Rnpq̃, xq Γl Ă Rn`1pq, xq JrpRn`1,Rkq

Rnpqq LGr,l Ă JrpRn,Rkq

sl

π

jrGr,l

πb

The composition of the parametrisation with the base projection πb : JrpRn,Rkq Ñ
Rn is precisely the pn´ lq-fold stabilisation of the l-th Whitney map. It follows that:

Lemma 3.7.4. The germ at the origin of LGr,l is a pn ´ lq-fold stabilization of
Whitney singularity of index l.

The main result in [58] says that the models just constructed are in fact unique up
to equivalence if k “ 1. The left equivalences we consider are point symmetries (as
defined in subsection 3.2.3.1).

Theorem 3.7.5 (A. Givental). Any r-times differentiable Whitney singularity of
index l in JrpB,Rq is equivalent to LGr,l .

For k ą 1 the same result holds as long as l ď k, due to general position arguments.
However, the general case seems not to be addressed in [81, 58] and we do not know
whether the uniqueness statement fails. We leave this as an open question.

3.7.1.3 Remark: Whitney singularities as discriminants

In [58], Givental interpreted the r-times differentiable Whitney singularities as dis-
criminants in certain spaces of polynomials. For completeness, let us review this
construction. Consider the space:

Pr,n :“

#

Polynomials of degree rpn` 1q ` 1 in one
variable x, whose derivative has n` 1

roots of multiplicity r

+

.
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We explicitly parametrise Pr,n as the space of polynomials of the form:

fpxq “

ż x

0

psn`1 ` q1s
n´1 ` ¨ ¨ ¨ ` qnq

rds´ y “ Gr,npq, xq ´ y

with coefficients pq, yq P Rn`1.

We let ∆r,n Ă Pr,n be the subset consisting of polynomials with multiple roots. Now,
f has a multiple root at x if and only if fpxq “ 0 and f 1pxq “ 0. By construction,
any multiple root of f has multiplicity at least r` 1, since all the roots of f 1pxq have
multiplicity r. Then, the polynomials with multiple roots can be parametrised by

∆r,n “ tpq, yq P Rn`1 | Dx P R, such that Fnpq, xq “ 0, y “ Gr,npq, xqu,

which is precisely the front projection of LGr,n .

3.7.1.4 Global stability

The main result in this Subsection is the global counterpart of Theorem 3.7.5:

Proposition 3.7.6. Let f : N Ñ JrpB,Rq be a multi-section with Whitney singu-
larities and such that πb ˝ f : N Ñ B is an embedding. Then f is stable (Definition
3.3.8), up to point symmetries (Definition 3.2.44), among integral maps (Definition
3.2.12).

Proof. Let pfsqsPr0,1s : N Ñ JrpB,Rq be a deformation of f0 :“ f . Since πb ˝ f is
topologically embedded and has Whitney singularities, it is stable. We can therefore
assume that the deformation pπb ˝ fsqsPr0,1s is trivial, so that all the fs lift the same
base map. In particular, all of them have the same singularity locus.

Now we proceed by induction, decreasingly on the index l of the Whitney singu-
larities of fs. We assume, by induction hypothesis, that pfsqsPOpp0q is trivial in a

neighbourhood of Σ1l`1

pfq. Then, for each point p P Σ1l0pfq we apply Theorem
3.7.5 to produce a fibrewise isotopy ψps : Y Ñ Y , supported on a neighbourhood of
πf ˝ fppq, so that

pjrψps q ˝ fs|Opppq “ f |Opppq.

We choose a finite collection pi P Σ1l0 such that the domains of the corresponding

ψpis cover Σ1l0pfqzOppΣ1l`1

pfqq. Then we define a semi-local isotopy pψsqsPOpp0q

on OppΣ1lpfqq by interpolating between the ψpis using a partition of unity. Note
that, indeed, we can simply interpolate linearly between the different diffeomorphisms
because, for small s, all of them are graphical over the identity.

The isotopy ψs makes all the pfsqsPOpp0q agree in OppΣ1lpfqq. This completes the
inductive step.

Using the Proposition we can prove a (rather weak) version of the Weinstein neigh-
bourhood theorem in jet spaces:
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Corollary 3.7.7. Let f : N Ñ JrpB,Rq be an embedded multi-section with Whitney
singularities. Then f is stable, up to germs of contact transformations, among integral
maps.

Proof. Let pfsqsPr0,1s : N Ñ JrpB,Rq be a deformation of f0 :“ f . We claim that
there is a germ of isotopy pψsqsPr0,1s in OppImagepfqq satisfying:

• ψs ˝ fs “ f ,

• ψ˚s ξcan “ ξcan.

The key claim is the following: since f is embedded, we may assume that its front
projection πf ˝ f is a topological embedding. To see this first note that the claim is
true locally for any germ of Whitney singularity. We then globalise as follows: We
consider OppImagepfqq and we quotient it by the connected components of the fibres
of the base projection. This yields a new front manifold in which the claim holds.

Now we apply the Proposition 3.7.6 to produce the family ψs.

Arguing similarly, one should be able to prove the following stronger version: the germ
of ξcan along an integral embedding with Whitney singularities f : N Ñ JrpB,Rq is
fully encoded in its singularity locus, together with Maslov coorientation data (see
subsection 3.5.5.3).

3.7.1.5 Folds

We use the same notation as in subsection 3.7.1.2.

Definition 3.7.8. The A2r-cusp is the germ at the origin of the map:

A2r : Rn Ñ Rn`k

pq̃, xq Ñ pq̃, x2, x2r`1, 0, . . . , 0q.(3.7.1.2)

We see that its singularity locus is the hyperplane

ΣpA2rq “ Σ10pA2rq “ tx “ 0u.

In subsection 3.7.1.2 we showed that the A2r-cusp is the front projection of an r-times
differentiable fold.

3.7.1.6 Pleats

We continue using the same notation.

Definition 3.7.9. The A2r-swallowtail is the germ at the origin of the mapping:

Sw2r : Rn Ñ Rn`k

pq̃, xq Ñ pq̃,´x3 ´ q1x,

ż x

0

ps3 ` q1s´ x
3 ´ q1xq

rds, 0, . . . , 0q.(3.7.1.3)
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This is the front projection of the (r-times differentiable) pleat. Its singularity locus
reads:

Σ1pSw2rq “ t3x
2 ` q1 “ 0u, Σ11pSw2rq “ tx, q1 “ 0u.

The A2r-swallowtail has a fibered nature: We may split the q-coordinates into two
groups q0 “ pq1, . . . , qlq and q1 “ pql`1, . . . , qn´1q. The first we regard as parameters
and the second as base variables. We write

Swq0

2r : Rn´l Ñ Rn´l`k

for the map obtained by fixing the q0-variables.

If q1 ą 0, the map Swq0

2r has no singularities and is graphical over the base. If q1 ă 0,

Swq0

2r has a pair of A2r-cusps. At q1 “ 0 a birth/death phenomenon takes place:

Definition 3.7.10. The lift to r-jet space of the front:

pq1, xq ÞÑ pq1, x3, x3r`1, 0, . . . , 0q

is called the first Reidemeister move.

It is an embedded integral manifold whose singularity locus is not of Whitney type.

3.7.2 Semi-local singularities of tangency

We now describe several models of singularities of tangency for Σ2-free integral em-
beddings. These models rely on the lifting techniques for submanifolds in a principal
metasymplectic projection (Definition 3.6.25); see Lemma 3.6.26 in subsection 3.6.4.3.
The singularities we present are semi-local in the sense that they are not germs at
points but around higher dimensional submanifolds.

The singularities we go through are: the double fold (subsection 3.7.2.3), the regu-
larised wrinkle (subsection 3.7.2.4) and the stabilisation (subsection 3.7.2.6). We also
discuss their birth/death phenomena.

3.7.2.1 Semi-local Maslov coorientation

To describe our singularities intrinsically (instead of through a local model), we
want to prescribe how they intersect the Maslov hypersurface GrΣ1pg, nq (Definition
3.5.19). We need a notion of coorientation to do so but, as seen in subsection 3.5.5.3,
GrΣ1pg, nq is not always coorientable. Coorientability was the necessary ingredient
for defining a global Maslov class (Definition 3.5.23).

Despite of this, in subsection 3.5.5.5 we pointed out that, in a neighbourhood of an
integral element W P GrΣ1pg, nq, it is always possible to define a local Maslov class.
We now explain a global analogue of this; it will allow us to talk about Maslov class
and coorientation.

Our singularities will be fibered over some base manifold D, which will be either Sn´1

or Rn´1. We set X “ DˆR with pxq coordinates and we let xn be the coordinate in
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the R factor. Similarly, we let F be a vector space with coordinates py1, . . . , ykq. We
work in JrpX,F q. Inside of GrΣ1pξcan, nq we define the submanifold:

GrD :“

"

W P GrΣ1pξcan, nq |
dπbpW q is transverse to Bxn

dy1pW q ‰ 0

*

.

I.e. GrD is the submanifold of integral planes whose projection to the base is graphical
over TD and whose principal direction is graphical over the y1 coordinate. It follows
that:

Lemma 3.7.11. GrD Ă GrΣ1pξcan, nq is open, contractible, and dense.

Contractibility of GrD implies coorientability. Then, just like in Proposition 3.5.20:

Corollary 3.7.12. Fix a Maslov coorientation along GrD.

There non-zero, non-torsion element:

Indprγsq :“ |γ XGrD| P H
1pGrΣ0pξcan, nq YGrD,Zq,

where γ is a curve representative intersecting GrD transversally. The count of in-
tersection points takes into account signs, comparing the orientation of γ with the
Maslov coorientation.

3.7.2.2 Preferred principal metasymplectic projections

We will construct explicit models of our singularites using the lifting Lemma 3.6.26.
We single out a preferred principal metasymplectic projection (subsection 3.6.4.3) to
do so.

Using the coordinates px, yq in X ˆ F we define holonomic coordinates px, y, zq in
JrpX,F q and we look at the projection:

πnLpx, y, zq :“ px, zp0,...,rqq.

Of particular interest is the term z
p0,...,rq
1 , i.e. the projection onto the pure r-derivative

of y1 with respect to xn.

3.7.2.3 The double fold

The reader should compare the following definition to its smooth analogue Definition
3.3.18:

Definition 3.7.13. Set D “ Sn´1. An integral embedding fibered over D

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a double fold if
Σpf, Vcanq “ D ˆ t0u YD ˆ t1u

and these are folds of opposite Maslov coorientations. The image fpD ˆ p0, 1qq is
called the membrane of the double fold.
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A particular model can be provided using the lifting procedure of subsection 3.6.4.3.
We define a map into the domain of the principal metasymplectic projection πnL:

σ : D ˆOppr0, 1sq Ñ X ‘ Symr
pR˚, F q

px̃, xnq Ñ px̃, x3
n{3´ xn; z

p0,...,rq
1 “ xn, 0, . . . 0q.

I.e. all the functions z
p0,...,rq
i are zero for i ‰ 1. Using Corollary 3.6.27 we see that

Liftrpσq is a double fold. Its front projection reads:

(3.7.2.1) pxq Ñ

˜

x̃, x3
n ´ xn;

ż xn

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ´ 1qdsr . . . ds1, 0 . . . , 0

¸

.

Its singularity locus is comprised of two spheres t|xn| “ 1u of A2r-singularities.

Lemma 3.7.14. Suppose dimpF q “ 1. Then any double fold f is equivalent to Liftpσq
(using point symmetries in the target, and diffeomorphisms in the domain).

Proof. The first observation is that we may assume πb ˝f “ πb ˝Liftpσq because both
maps are the usual smooth double fold. We take the identification to preserve the
fibered structure of the maps.

Denote the singular spheres of f by S0 and S1. S0 is horizontal, so we can find a point
symmetry identifying f |S0

with Liftpσq|Dˆt0u; the analogous statement holds for S1.
Since dimpF q “ 1, we have that the Maslov coorientation along S0 induced by f can
be extended over the membrane to be compared with the Maslov coorientation over
S1. The same can be done with Liftpσq. By assumption, in both cases we obtain the
opposite Maslov coorientation.

We can then reason as in Proposition 3.7.6 (invoking Givental’s stability Theorem
3.7.5 pointwise and then glueing), to show that f along S0 (resp. S1) is equivalent
to Liftpσq along D ˆ t0u (resp. D ˆ t1u). Since any two holonomic sections are
equivalent (and the membrane is the graph of a holonomic section) we can extend
these identifications to the interior, concluding the claim. Note that we must use
the condition on the Maslov coorientation hypothesis when invoking Givental: this
allows us to restrict to point symmetries that preserve the coorientation.

3.7.2.4 The regularised wrinkle

Compare the following notion to the smooth wrinkle (Definition 3.3.17):

Definition 3.7.15. Set D “ Rn´1. A fibered over D integral embedding

f : OppSn´1q Ă X Ñ JrpX,F q

is a regularised wrinkle if its singularities are:

• Σ110pf, Vcanq “ Sn´2 pleat locus,

• Σ10pf, Vcanq “ Sn´1zSn´2 fold locus.
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If f extends to a horizontal embedding of the open disc, we say that fp
˝

Dnq is the
membrane of the wrinkle.

Observe that, close to the pleat locus, the two hemispheres have opposite Maslov
coorientations, so the same is true semi-locally in the whole regularised wrinkle (note
that this statement uses the fibered nature of the map).

A particular model can be produced from the following map into the domain of πnL:

σ : OppSn´1q Ñ X ‘ Symr
pR˚, F q(3.7.2.2)

px̃, xnq Ñ px̃, x3
n{3` p|x̃|

2 ´ 1qxn; z
p0,...,rq
1 “ xn, 0, . . . 0q.

Its lift Liftrpσq is a regularised wrinkle. Its front projection reads:

px̃, xnq ÞÑ

˜

x̃, x3
n{3` p|x̃|

2 ´ 1qxn;

ż xn

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ` |x̃|

2 ` 1qdsr . . . s1, 0, . . . , 0

¸

.

Reasoning as in Lemma 3.7.14:

Lemma 3.7.16. Suppose dimpF q “ 1. Then any regularised wrinkle f is equivalent
to Liftpσq (using point symmetries in the target, and diffeomorphisms in the domain).

3.7.2.5 Fibered regularised wrinkles

Usual smooth wrinkles are fibered, as explained in subsection 3.3.4.3. The same is
true for the regularised wrinkle in r-jet space. We let D “ Rm`n´1, where the first
m-coordinates pqq are regarded as parameters and the last pn´1q-coordinates px̃q are
domain coordinates. We fix X “ Rn, with coordinates pxq “ px̃, xnq.

Definition 3.7.17. A fibered over Rm regularised wrinkle is a map

f : OppSm`n´1q Ñ Rm ˆ JrpX,F q

which we regard as a m-parameter family of integral embeddings fqpxq “ fpq, xq whose
singularities are:

• Σ110pfq, Vcanq “ Sm`n´2,

• Σ10pfq, Vcanq “ Sm`n´1zSm`n´2.

We see from the description of the singularities and the embedding and integrality
conditions that fq is a regularised wrinkle for every |q| ă 1. Similarly, if |q| ą 1, the
map fq has no singularities. We denote:

Definition 3.7.18. The integral embeddings

fq : Opp0q Ñ JrpX,F q

with |q| “ 1 are called (regularised wrinkle) embryos.

A particular incarnation of the embryo is given by lifting the map:

pxq ÞÑ px̃, x3
n{3` |x̃|

2xn, ; z
p0,...,rq
1 “ xn, 0, . . . 0q.

Lemma 3.7.16 implies that this model is unique if dimpF q “ 1.
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3.7.2.6 The stabilisation

Definition 3.7.19. Set D “ Sn´1. A fibered over D integral embedding

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a stabilisation if
Σpf, Vcanq “ D ˆ t0u YD ˆ t1u

and these are folds with the same Maslov coorientation. The image fpD ˆ p0, 1qq is
called the membrane of the stabilisation.

For a model we may consider the lift Liftrpσq of the map:

σ : D ˆOppr0, 1sq Ñ X ‘ Symr
pR˚, F q(3.7.2.3)

px̃, xnq Ñ px̃, x3
n{3´ xn; z

p0,...,rq
1 “ x2

n, 0, . . . 0q.

As before:

Lemma 3.7.20. Suppose dimpF q “ 1. Then any stabilisation is equivalent to Liftpσq
(using point symmetries in the target, and diffeomorphisms in the domain).

However, unlike previous singularities:

Lemma 3.7.21. Suppose dimpF q “ 1. Then there is no generating function G :
X ˆ RÑ F such that LG is a stabilisation.

Proof. This fact is well-known in the contact case and we will mimick the usual proof.

We assume that a generating function G does exist. Due to the fibered nature of the
stabilisation we may assume that we are looking at a curve γ : Oppr0, 1sq Ñ JrpR,Rq,
with principal metasymplectic projection x ÞÑ px3{3 ´ x, x2q. This curve must be
parametrised by the fibrewise singularity locus Γ of G.

The singularity locus tx “ ˘1u of γ consists of two folds. The corresponding fronts are
A2r-swallowtails: i.e. birth-death events of two A2r-singularities. In particular, if r is
even, one of them is a maximum and the other is a minimum (these are degenerate if
r ą 1, but it does not matter). The maximum must be the one with greater value, i.e.
it lies above in the front projection. Reasoning in this manner at both folding points, it
follows that the only possible configuration in the front projection is that πf ˝γpp0, 1qq
lies above (or below) both branches of the complement πf ˝ γpOppr0, 1szp0, 1qq. This
implies that the fold loci have opposite Maslov coorientations; a contradiction.

For r even the critical points of G meeting at the birth-death are both increasing
(or both decreasing). This implies, similarly, that the three consecutive branches
πf ˝ γptx ă 0uq, πf ˝ γpp0, 1qq, and πf ˝ γptx ą 0uq have increasing (resp. decreas-
ing) y-coordinates. Yet again this implies that the fold loci have opposite Maslov
coorientations.

In the next subsection 3.7.2.7 we provide some additional details about this proof.
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3.7.2.7 Zig-zags

In the proof of Lemma 3.7.21 we see one of the incarnations of a phenomenon we call
open/closed switching. It was first observed by A. Givental in [58]. Let us explain
what it is.

Let us recall Equation 3.7.2.1, which defines the front projection of a double fold:

fpx̃, tq “

˜

x̃, xn “ t3{3´ t; y1 “

ż t

0

ż s1

0

. . .

ż sr´1

0

sr
ź

j

ps2
j ´ 1qdsr . . . ds1, 0 . . . , 0

¸

.

The term y1 is defined by an iterated integral, as explained in Lemma 3.6.26. The
way in which we obtained it was as follows: let jrfpx̃, tq be the holonomic lift of f to
a multi-section. Consider one of its components, the odd function

pz
p0,...,0,rq
1 ˝ jrfqpx̃, tq “ t.

We then multiply it by t2 ´ 1, so it remains odd, and then we integrate it once to
yield the even function

pz
p0,...,0,r´1q
1 ˝ jrfqpx̃, tq “

ż t

0

srps
2
r ´ 1qdsr.

Inductively we see that:

Lemma 3.7.22. The function z
p0,...,0,r´lq
1 ˝ jrf is:

• odd if l is even,

• even if l is odd.

This alternation between even and odd is precisely what we call open/closed switch-
ing. It can be rephrased using Maslov coorientations in each pr´ lq-jet space, but we
leave this for the reader. We can interpret it geometrically:

Lemma 3.7.23. The following statements hold:

• If r is even, the function y1 increases at a fold point if and only if it increases
at the other.

• If r is odd, the function y1 increases at a fold point if and only if decreases at
the other.

Proof. Being critical points, when we say increase/decrease we mean as continuous
functions, without considerations on the derivative. Note that the model at each fold
point tells us that y1 must be either increasing or decreasing.

If r is even, the function y1 is odd. This is equivalent to the first statement. Similarly,
if r is odd, the function y1 is even, so the second statement follows.



3.7. MULTI-SECTIONS: MODELS OF SINGULARITIES 293

We can reason in exactly the same manner for the stabilisation and prove that the
situation is exactly the opposite.

Lemma 3.7.24. Let g be a stabilisation:

• If r is odd, the function y1 ˝g increases at a fold point if and only if it increases
at the other.

• If r is even, the function y1 ˝ g increases at a fold point if and only if decreases
at the other.

What this means is that if we want to have two A2r-singularities in the front projection
forming a “zig-zag” shape, we must use a double fold if r is even and a stabilisation
if r is odd. We define:

Definition 3.7.25. Set D “ Sn´1. A fibered over D integral embedding

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a zig-zag if:

• r is even and f is a double fold,

• r is odd and f is a stabilisation.

The front of the zig-zag is what we would call an open shape, and the other two
situations (double fold with r odd, stabilisation with r even) we would call them
closed. The importance of zig-zags is that they can be stacked on top of each other
keeping the front projection embedded. This will be central in our h-principle in
Section 3.8.

3.7.3 Singularities of mapping

The singularities we have presented so far are all of tangency, i.e. the integral maps
themselves are non-singular. We will now look at singularities of mapping having
well-defined Gauss map taking values in GrΣ2´freepξcan, nq.

The main source of examples of singularities of mapping are projections of singular-
ities of tangency (from a higher jet space). We make some remarks in this direction
in subsection 3.7.3.1. We then define several germs: the cusp in its two incarnations
(subsections 3.7.3.2 and 3.7.3.3) and the swallowtail (subsection 3.7.3.4). These are
the pieces we need to then define some semi-local singularities: the wrinkly stabil-
isation (subsection 3.7.3.5), the double cusp (subsection 3.7.3.6), and the wrinkle
(subsection 3.7.3.7).

We continue using the notation from the previous Subsection 3.7.2.
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3.7.3.1 Projecting singularities

Let f : N Ñ JrpB,F q be an integral map. Then the projection πr,r´1 ˝ f : N Ñ

Jr´1pB,F q is integral as well. In Lemma 3.6.4 we additionally showed that if f
is a multi-section then πr,r´1 ˝ f is a multi-section with a well-defined Gauss map
Grpπr,r´1 ˝ fq “ f into the horizontal elements (where we use the identification
between horizontal elements and lifts to JrpB,F q). Hence, when we project, singu-
larities of tangency become singularities of mapping.

Some of the singularities we will describe below are obtained by projecting an r-times
differentiable Whitney singularity. For instance, in subsections 3.7.1.5 and 3.7.1.6 we
already saw that the front projection of the fold and the pleat are the A2r cusp and
swallowtail, respectively.

One important observation is:

Lemma 3.7.26. Assume dimpF q “ 1. Let f : N Ñ JrpB,F q be a topologically
embedded multi-section of the form f “ πr`l,r ˝ g, with

g : N Ñ Jr`lpB,F q

an embedded multi-section with Whitney singularities.

Then f is stable among multi-sections lifting to Jr`lpB,F q.

Proof. Let pfsqsPr0,1s be a deformation of f0 :“ f and let pgsqsPr0,1s be the corre-
sponding deformation of g0 :“ g lifting it. Observe that the lifts, when they exist,
are uniquely defined (by lifting on each branch).

According to Corollary 3.7.7, the map g is stable up to contact transformation
germs. Higher contact transformations are lifts of contact transformations in JrpB,F q
(Lemma 3.2.45). This implies that the isotopy of contact transformations identifying
gs with g is a lift of an isotopy taking fs to f , proving the claim.

Remark 3.7.27. We will encounter below singularities of mapping that have a well-
defined Gauss map taking values in GrΣ1pξcan, nq. Therefore, none of those singular-
ities can admit a lift to Jr`1pB,F q. However, one may instead look the total space
of

GrΣ2´freepξcan, nq Ñ JrpB,F q

and endow it with its tautological distribution. This partially compactifies Jr`1pB,F q
and, by definition, the singularities we describe admit a lift to GrΣ2´freepξcan, nq.

For dimpBq “ dimpF q, iterating this construction yields the Monster tower, as in-
troduced by R. Montgomery and M. Zhitomirskii in the treatise [91]. They show
that there is a correspondence between points in the tower and singularities of fronts.
Their results should partly translate to our context of Σ2-free singularities, but we
point out some difficulties in Remark 3.7.34 below.

An intriguing question is whether the whole Grassmannian of multi-section elements
GrΣ0pξcan, nq is smooth. If this were true, the natural next step would be to construct
the analogue of the Monster tower. 4
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3.7.3.2 The horizontal cusp

As we prove below, projecting a fold down one level yields:

Definition 3.7.28. An integral map (Definition 3.2.12)

f : Oppt0uq Ñ JrpX,F q

is a horizontal cusp if:

• The singularities of πnL ˝ f form a hypersurface of semicubic cusps.

• Grpfq takes values in GrΣ0pξcan, nq.

A explicit fibered model can be obtained by lifting

px̃, xnq ÞÑ px̃, x2
n; z

p0,...,0,rq
1 “ x3

n, 0, . . . , 0q.

Lemma 3.7.29. Let dimpF q “ 1. Then any horizontal cusp is equivalent to the
model (using point symmetries in the target, and diffeomorphisms in the domain).

Proof. By assumption f can be lifted to an integral map Grpfq : N Ñ Jr`1pX,F q.
Since its metasymplectic projection has semicubic cusps, this lift is an embedding.
The singularities of mapping of f correspond to fold singularities of tangency of Grpfq.
The claim follows from Lemma 3.7.26.

In particular, a horizontal cusp f is a topological embedding, even if it is not an
immersion. Its front singularities are A2r`2-cusps.

3.7.3.3 The vertical cusp

We can instead consider:

Definition 3.7.30. An integral map (Definition 3.2.12)

f : Oppt0uq Ñ JrpX,F q

is a vertical cusp if:

• The singularities of πnL ˝ f form a hypersurface of semicubic cusps.

• Grpfq takes values in GrΣ1pξcan, nq along the locus Σpfq.

It is a topological embedding as well. Note that the singularities are both of tangency
and mapping.

A model can be obtained by lifting

px̃, xnq ÞÑ px̃, x3
n; z

p0,...,0,rq
1 “ x2

n, 0, . . . , 0q.

However, it is unclear whether a vertical cusp has a unique local model even if we as-
sume dimpF q “ 1 (but the answer may be in [91]). Additionally, one could define cusp
loci that are horizontal almost everywhere but become vertical over a submanifold of
the singularity locus.
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3.7.3.4 The swallowtail

In subsection 3.3.6.2 we defined the smooth the open semicubic swallowtail within
the context of the wrinkle in positive codimension (Subsection 3.3.6). Now we define
its jet space analogue:

Definition 3.7.31. An integral map (Definition 3.2.12)

f : Oppt0uq Ñ JrpX,F q

is a horizontal swallowtail if:

• πnL ˝ f has a open semi-cubic swallowtail at the origin.

• Grpfq takes values in GrΣ0pξcan, nq.

It is yet again a topological embedding because that is the case for πnL ˝ f .

We can produce a model by lifting the following map into a principal metasymplectic
projection:

px̃, xnq ÞÑ px̃,

ż xn

0

ps2 ´ x1qds; z
p0,...,0,rq
1 “

ż xn

0

ps2 ´ x1q
2ds, 0, . . . , 0q.

Its singularity locus Γ consists of the parabola tx2
n “ x1u, which is tangent to the

xn-lines along the codimension-2 linear subspace A “ txn “ x1 “ 0u. A is the locus
of swallowtails, and its complement in Γ consists of horizontal cusps. Hence, the
swallowtail serves as a birth/death of cusps (as is the case in the smooth setting).

Lemma 3.7.32. Let dimpF q “ 1. Then any horizontal swallowtail is equivalent
(using point symmetries in the target, and diffeomorphisms in the domain) to the
model.

Proof. We lift f to Grpfq : Oppt0uq Ñ Jr`1pX,F q, which is smooth, embedded, and
has a pleat at the origin. Lemma 3.7.26 applies.

One can also consider vertical swallowtails or swallowtails with singularity locus be-
coming vertical over a submanifold. We will not study this.

3.7.3.5 The wrinkly stabilisation

We explained in subsection 3.3.5.3 that there is a correspondence between smooth
wrinkles and double folds by performing surgeries. We will not provide a justification
of this, but the same is true in jet spaces. For instance, the double fold (subsection
3.7.2.3) and the regularised wrinkle (subsection 3.7.2.4) are, up to surgery, equivalent.
Similarly, there is a “wrinkle” analogue of the stabilisation, and one can pass between
them through surgeries. It is defined as follows:
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Definition 3.7.33. Set D “ Rn´1. An integral map (Definition 3.2.12) fibered over
D

f : OppSn´1q Ñ JrpX,F q

is a wrinkly stabilisation if:

• Σ10pfq “ Sn´2 is a locus of vertical cusps,

• Σ10pf, Vcanq “ Sn´1,

• The hemispheres Sn´1zSn´2 are folds with the same Maslov coorientation.

• It is a topological embeddeding and has no other singularities.

Note that along Sn´2 there is discontinuity in the Gauss map. Hence, the wrinkly
stabilisation is not a multi-section in the sense of Definition 3.6.2.

Remark 3.7.34. This is a continuation of Remark 3.7.27 above. The wrinkly stabil-
isation shows the first difficulty with the Monster tower approach for higher dimen-
sional manifolds: some singularities do not admit a continuous Gauss map.

If we look at the maps induced by f on each fibre, we see that if |x̃| ă 1 then they are
curves with two folds, if |x̃| ą 1 they are curves graphical over the zero section, and if
|x̃| “ 1, they are vertical cusps. That is, it corresponds to the standard unfolding of
the cusp. Thus, not admitting a continuous Gauss map corresponds to a phenomenon
already observed in [91, Section 9.1]: the lifting procedure to the Monster tower is not
continuous in the unfolding parameter. This is something to be explored in future
work. 4

Lemma 3.7.35. The topological embedding condition is implied, in the vicinity of its
cusp locus, from the first three items.

Proof. For |x̃| smaller than but close to one, the curve πnL ˝fptx̃uˆRq is an unfolding

of the cusp. It describes a little loop when projected to pxn, z
p0,...,0,rq
1 q. In particular,

it has a self-intersection point. However, according to the subsection 3.6.4.2, the two
intersection points have different lifts by integration.

A model we may consider is the lift of

px̃, xq ÞÑ px̃, x3
n{3` p|x̃|

2 ´ 1qxn; z
p0,...,0,rq
1 “ x2

n, 0, . . . , 0q.

The principal metasymplectic projection of any wrinkly stabilisation is equivalent, as
a smooth map, to this model. However, it is unclear whether the model is unique up
to point symmetries.

3.7.3.6 The double (horizontal) cusp

Now we consider two spheres of horizontal cusps bounding an annulus:
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Definition 3.7.36. Set D “ Sn´1. A fibered over D integral map (Definition 3.2.12)

f : D ˆOppr0, 1sq Ñ JrpX,F q

is a double cusp if

• f is a topological embedding.

• Grpfq : D ˆOppr0, 1sq Ñ Jr`1pX,F q is a stabilisation.

The image fpD ˆ p0, 1qq is called the membrane of f .

In particular, we are requiring that

Σpfq “ D ˆ t0u YD ˆ t1u

are horizontal cusps. If that is the case, the lift Grpfq exists and is an immersion
with two folds. Hence, it may be a double fold or a stabilisation. We require that it
is the latter.

The key property here is:

Lemma 3.7.37. The front singularities of the double cusp are two A2r`2-cusps in
an open configuration (i.e. a zig-zag).

This follows from the open/closed switching from Lemma 3.7.24, see subsection
3.7.2.7.

3.7.3.7 The wrinkle

The “wrinkly” analogue of the double cusp is precisely:

Definition 3.7.38. Set D “ Rn´1. An integral map (Definition 3.2.12), fibered over
D,

f : OppSn´1q Ñ JrpX,F q

is a wrinkle if

• Grpfq : D ˆ Oppr0, 1sq Ñ Jr`1pX,F q is a wrinkly stabilisation (Definition
3.7.33).

• f is a topological embedding.

The image fpD ˆ p0, 1qq is called the membrane.

A possible model is the lift of the wrinkled map of positive codimension (see Subsec-
tion 3.3.6):

F px̃, xnq “ px̃,

ż xn

0

ps2 ` |x̃|2 ´ 1qds; z
p0,...,0,rq
1 “

ż x

0

ps2 ` |x̃|2 ´ 1q2ds, 0, . . . , 0q.

We do not know if LiftpF q is the only possible model. However, the principal meta-
symplectic projection of a wrinkle is equivalent to F if we let left equivalences be
diffeomorphisms preserving the base projection. From this we deduce:
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Lemma 3.7.39. Equivalently, a wrinkle is an integral topological embedding

f : OppSn´1q Ñ JrpX,F q

with singularity locus Σpfq “ Sn´1 satisfying:

• The equator Sn´2 consists of semicubic swallowtails.

• The hemispheres are horizontal cusps.

Remark 3.7.40. The wrinkle is unique for smooth maps (i.e. r “ 0). Uniqueness
for r ą 0, as we stated, is unknown. In the contact case (i.e. r “ 1 and dimpF q “ 1),
wrinkles for legendrians were defined by D. Álvarez-Gavela in [2], providing a explicit
model. Although not stated explicitly in his paper, it seems like uniqueness follows
from the constructions he provides. 4

3.7.3.8 Fibered wrinkles

Let us present the fibered version. We fix coordinates pqq in Rm and pxq in X “ Rn.

Definition 3.7.41. A fibered over Rm wrinkle is a map

f : OppSm`n´1q Ñ Rm ˆ JrpX,F q,

which we regard as a m-parameter family of integral topological embeddings fqpxq “
fpq, xq with singularity locus Sm`n´1 satisfying:

• Σ110pπnL ˝ fqq “ Sm`n´2 are open semicubic swallowtails,

• Σ10pπnL ˝ fqq “ Sm`n´1zSm`n´2 are horizontal cusps.

The maps with |q| “ 1 are called (wrinkle) embryos.

A possible model for the principal metasymplectic projection of an embryo reads:

px̃, xnq Ñ px̃,

ż xn

0

ps2 ` |x̃|2qds; z
p0,...,0,rq
1 “

ż x

0

ps2 ` |x̃|2q2ds, 0, . . . , 0q.

However, we do not know whether this model is unique.

3.8 Holonomic approximation by multi-sections

The main result of this chapter is an h-principle with PDE flavour. It states that the
holonomic approximation Theorem 3.4.8 applies to closed manifolds as long as we are
willing to be flexible and allow for multi-sections. A particular consequence is that
any open partial differential relation admits a solution in the class of multi-sections.

The interesting part of the result is that it is sufficient to work with multi-sections
with simple singularities. Namely, they will satisfy that:



300 CHAPTER 3. WRINKLING H-PRINCIPLES

• Their only singularities are folds in a zig-zag configuration.

• Their front projection is topologically embedded.

In Subsection 3.8.1 we formulate this formally. In Subsection 3.8.2 we present the key
geometric insight needed for our arguments. Lastly, in Subsection 3.8.3 we provide
the proof.

As in previous Sections, we fix a smooth fibre bundle Y Ñ X, with X compact. We
work on the jet space JrpY Ñ Xq. In order to quantify how close two sections of
JrpY Ñ Xq are, we fix a metric.

3.8.1 Statement of the result

Recall the notion of zig-zag from subsection 3.7.2.7. We are interested in multi-
sections of the form:

Definition 3.8.1. A section with zig-zags is:

• an embedded multi-section f : X Ñ JrpY Ñ Xq,

• a finite collection of disjoint annuli tAj Ă Xu,

satisfying:

• πf ˝ f is a topological embedding,

• f |XzpYjAjq is horizontal,

• f |Aj is a zig-zag.

Our main result is the obvious multi-section version of the holonomic approximation
Theorem 3.4.8:

Theorem 3.8.2. Let σ : X Ñ JrpY Ñ Xq an arbitrary section. Then, for any
ε ą 0, there exists a map f : X Ñ JrpY Ñ Xq satisfying:

• f is a section with zig-zags;

• |f ´ σ|C0 ă ε.

We want to stress that this statement is a proof of concept: it should be immediate to
the reader experienced in h-principles, after inspecting the proof, that a parametric
and relative (in the domain and the parameter) version also holds. Furthermore, the
theorem is the graphical case of the analogous result about approximating r-jets of
submanifolds through submanifolds with zig-zags (that is, the generalisation to higher
jets of the wrinkled embeddings Theorem 3.4.18). Lastly, it is the first step towards
a general h-principle for Σ2-free integral submanifolds of distributions modelled on
jet spaces.

The additional ingredient needed for these more general statements is a careful de-
scription of the birth/death of zig-zags. To avoid additional technical difficulties we
have chosen to leave this to future work.
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3.8.2 The key ingredient of the proof

We now present the simple observation that constitutes the basis of our work:

Definition 3.8.3. Let I “ ra, bs be an interval. An asymptotically flat sequence
of zig-zag bump functions is a sequence of maps

pρN qNPN : ra, bs Ñ J0pra, bs,Rq

satisfying

• their holonomic lifts jrρN : ra, bs Ñ Jrpra, bs,Rq are sections with zig-zags,

• ρN |Oppaqptq “ px “ t, y “ 0q,

• ρN |Oppbqptq “ px “ t, y “ 1q,

• |zpr1q ˝ ρN | ă 1
N for all r1 ą 0.

The name follows from the fact that an element ρN , withN sufficiently large, allows us
to interpolate between two given sections without introducing big derivatives (unlike
a normal bump function).

Proposition 3.8.4. An asymptotically flat sequence of zig-zag bump functions exists
on any interval.

Before we provide a proof, let us explain a Corollary that showcases this.

Corollary 3.8.5. Let ε, δ ą 0 be given. Consider sections s0, s1 : Dn Ñ Rk satisfying
|s0 ´ s1|Cr ă ε.

Then, there exists a section with zig-zags f : Dn Ñ JrpDn,Rkq satisfying:

• pπf ˝ fq|Dn1´δ “ s0,

• pπf ˝ fq|OppBDnq “ s1,

• |jrs0 ´ f |C0 ă 4ε.

Proof. We write py1, . . . , ykq for the coordinates in the fibre Rk and pxq for the coor-
dinates in the base. We break down the proof into elementary steps.

The pushing trick. Since |s0 ´ s1|C0 ă ε, we can shift s0 by adding a constant in Rk:

s̃0pxq :“ s0pxq ` p2ε, 0, . . . , 0q.

Replacing s0 by s̃0 guarantees that:

s̃0pxq ‰ s1pxq, for every x P Sn´1 ˆ r1´ δ, 1s,

while retaining a bound |s̃0 ´ s1|Cr ă 3ε. We henceforth restrict the domain of s̃0

and s1 to the region of interest Sn´1 ˆ r1´ δ, 1s.
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First simplification. We can simplify the setup by applying the fibrewise translation:

J0pSn´1 ˆ r1´ δ, 1s,Rkq Ñ J0pSn´1 ˆ r1´ δ, 1s,Rkq
p Ñ p´ s̃0pπbppqq,

It preserves the Cr–distance and maps s̃0 to the zero section. The section s1 is mapped
to s :“ s1´ s̃0. Consequently, we just need to explain how to interpolate between the
zero section and some arbitrary section s satisfying |s|Cr ă 3ε and spxq ‰ 0 for all x.

Second simplification. A second symmetry allows us to put s in normal form. Due to
the nature of the shift we performed, we have that

ε ă |y1 ˝ spxq| ă 3ε

for all x. This allows us to define a framing

A : Sn´1 ˆ r1´ δ, 1s Ñ GLpRkq
Apxq “ ps, e2, e3, . . . , ekq,

where tejuj“1,...,k is the framing dual to the coordinates yi in Rk. The framing A
defines a fibre-preserving transformation of the Rk-bundle by left multiplication. By
construction Ae1 “ s.

Main construction. Apply Proposition 3.8.4 to produce an asymptotically flat se-
quence of zig-zag bump functions

pρN qNPN : r1´ δ, 1s Ñ J0pr1´ δ, 1s,Rq.

We use it to define a sequence of front projections:

ZN : Sn´1 ˆ r1´ δ, 1s Ñ J0pSn´1 ˆ r1´ δ, 1s,Rkq
px̃, tq Ñ ArρN ptqe1s.

We claim that, for N large enough, the holonomic lift fN :“ jrZN satisfies the
properties prescribed.

Checking the claimed properties. We first observe that fN is a section with zigzags.
This follows from the fact that jrpρNe1q is a section with zigzags and fN is obtained
from it by applying the point symmetry jrA. In particular, the singularities of fN
are codimension-1 spheres of folds, corresponding to the values of t in which ρN has
an A2r-singularity.

The second and final claim is that |fN |C0 ă 4ε if N is large enough. Equivalently,
we have to bound the Cr-size of:

ApρNe1q “ ρNs.

Note that we can pretend that ρN is an actual function, because this is true over a
dense set. Therefore, for each multi-index I with |I| ď r we compute:

|BIpρNsq|
2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

I1`I2“I

pBI
1

ρN qpB
I2sq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
ÿ

I1`I2“I

|BI
1

ρN |
2|BI

2

s|2
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Now, each derivative |BI
1

ρN | is smaller than 1{N , with the exception of |ρN | “ 1.
Similarly, |BI

2

s| ă 3ε for all I2.

Let K1 be the maximum number of decompositions I 1 ` I2 “ I that a multi-index
|I| ď r in n variables and k outputs may have. Let K2 be the number of multi-indices
|I| ď r. Then:

|BIpρNsq|
2 ă |BIs|2 `

9K1

N2
ε2

|ρNs|
2
Cr ă

ÿ

I

ˆ

|BIs|2 `
9K1

N2
ε2

˙

ă |s|2Cr `
9K1K2

N2
ε2.

Therefore, by setting N2 ą 9K1K2, we conclude:

|fN |C0 “ |ρNs|Cr ă |s|Cr ` ε ă 4ε.

Remark 3.8.6. An interesting feature of the proof is that the sections with zig-zags
we construct are obtained from the “standard” sections with zig-zags jrpρNe1q by
applying a point symmetry. The same argument would work if instead of jrρN we
used a particular model of wrinkle (subsection 3.7.3.7). Hence, we can bypass the
potential uniqueness issues for wrinkles pointed out in Remark 3.7.40. 4

Now we construct the zig-zag bump functions:

Proof of Proposition 3.8.4. Observe that it is sufficient to prove the claim for I “
r0, 1s, since any two intervals are diffeomorphic by a scaling and a translation. The
scaling dilates the fibres of jet space in a homogeneous manner, so any asymptotically
flat sequence is mapped to an asymptotically flat sequence.

Fix N . We will construct ρN as the holonomic lift ρN “ jrpπf ˝ ρN q of its front
projection πf ˝ ρN .

The infinite zig-zag. We first define:

Z : R Ñ J0pr0, 1s,Rq,

ptq Ñ

ˆ

xptq “
1

2

ż t

0

sinpsqds, yptq “

ż t

0

sinpsq2rds

˙

.

We claim that, at each of its critical points tt “ 0, π, 2π, . . . u, the map Z is modelled
on the A2r-singularity. To prove this we compute the Taylor expansion at each of
these points:

sinplπ ` hq “
h

2
`Oph3q, sinplπ ` hq2r “ h2r `Oph2r`2q,

xplπ ` hq “
h2

4
`Oph4q, yplπ ` hq “

h2r`1

2r ` 1
`Oph2r`3q.

Which proves the claim because the A2r singularity is stable.
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From this computation we deduce that the lift

jrZ : RÑ Jrpr0, 1s,Rq

is an integral mapping with fold singularities. Since its front is topologically embed-
ded, jrZ is embedded. Lastly, according to the definition in Subsubection 3.7.2.7,
the germ jrZ|Opprp2l´1qπ,2lπsq is a zig-zag. The section with zig-zags jrZ has infinitely
many of them stacked.

A piece of the infinite zig-zag. Next, observe that Z is graphical over r0, 1s in the
intervals p2lπ, p2l ` 1qπq. In particular, we can flatten Z in Opp0q so that it is
identically 0, without introducing self-intersections of the front. Similarly, for any l,
we can flatten Z in the region Oppp2l ` 1qπq so that it is identically Zpp2l ` 1qπq.
Lastly, we can scale this modification of Z, dividing by the constant Zpp2l` 1qπq. In
this manner we obtain a front that is identically 0 and 1 in Opp0q and Oppp2l` 1qπq,
respectively. We denote it by ZN .

We claim that, if l is large enough, then |zpaq ˝ jrZN | ă ε for all a ą 0. This
follows immediately from the scaling we just did: Z was 2π-periodic, so the quantities
zpaq ˝ jrZ were bounded. The quantity Zpp2l ` 1qπq goes to infinity as l does, so a
sufficiently large choice guarantees that the derivatives of jrZN are smaller than 1{N .

Lastly, we simply reparametrise

πf ˝ ρN ptq “ ZN ˝ φptq,

where φ : r0, 1s Ñ r0, p2l ` 1qπs is a suitable diffeomorphism.

3.8.3 The proof

The proof of Theorem 3.8.2 follows the standard structure of an h-principle.

In subsection 3.8.3.2 we prove the reduction step. Its output is a holonomic section g,
defined along the codimension-1 skeleton of X and approximating the given formal
section σ.

In subsection 3.8.3.3 we provide the extension argument : we extend g to the interior
of the top dimensional cells. In order to obtain a good approximation of σ, the
extension to the interior must be a multi-section, as presented in Corollary 3.8.5.

3.8.3.1 Preliminaries

We must fix some auxiliary data first. Depending on the constant ε ą 0 we fix a
finite collection of pairs tpUi, fiqu such that

• tUiu is a covering of X by balls,

• fi : Ui Ñ JrpY |Ui Ñ Uiq is a holonomic section satisfying |fi ´ σ|Ui | ă ε.
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The existence of such a collection follows from the standard holonomic approximation
Theorem 3.4.8 applied to each point in X. By compactness of X we get a finite
refinement.

We then triangulate X, yielding a triangulation T . We assume that this triangulation
is fine enough to guarantee that each simplex is contained in one of the Ui. Given a
top-simplex ∆ P T , we choose a preferred Ui and we denote the corresponding section
fi by f∆.

We remark that Y |Ui is trivial, so we can make the identification JrpY |Ui Ñ Uiq –
JrpDn,Rkq. We can then relate the C0-norm in the former with the standard C0-
norm in the latter. By finiteness of the cover there is a constant bounding one in
terms of the other. We assume this constant is 1 to avoid cluttering the notation.

3.8.3.2 Reduction

The codimension-1 skeleton of X is a CW-complex of positive codimension. Thus,
according to Theorem 3.4.8, there exists:

• a wiggled version T̃ of T ,

• a holonomic section g : OppT̃ q Ñ Y satisfying |σ ´ jrg| ă ε.

The wiggling can be assumed to be C0-small, so each top-simplex ∆ P T̃ is contained
in the same Ui as the original simplex. I.e., we have sections g (defined over OppB∆q)
and f∆ (defined over the whole of ∆), both of them approximating σ.

3.8.3.3 Extension

We focus on a single top-simplex ∆ P T̃ because the argument is the same for all of
them. We simply observe that Corollary 3.8.5 applies to g and f∆ over the annulus
OppB∆q, producing the desired multi-section extension f of jrg to the interior of ∆.
The Corollary guarantees that:

|f ´ σ| ă |f ´ jrf∆| ` |j
rf∆ ´ σ| ă 5ε.

This concludes the proof of Theorem 3.8.2. l

We close with an extremely biased remark about the proof: the idea presented (zig-zag
bump functions together with the pushing trick) seems simpler than the path followed
in [44] (reducing to simple tangential homotopies and approximating them with a
model zig-zag). Additionally, it has a more transparent connection with holonomic
approximation. Therefore, Theorem 3.8.2 provides a new understanding even in the
classic case r “ 1.
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Samenvatting

Het onderwerp van deze scriptie is de interactie tussen contact structuren en (symplec-
tische) foliaties van codimensie-één. Beiden zijn speciale gevallen van (codimensie-
één) distributies. Voor een foliatie eisen we dat deze distributie integreerbaar is,
terwijl we voor een contact structuur eisen dat hij ”maximaal niet-integreerbaar” is.
Deze definities zijn dus in zekere zin tegenovergesteld aan elkaar. Desalniettemin
vertonen deze structuren meer overeenkomsten dan hun definitie doet vermoeden.
Ze hebben bijvoorbeeld dezelfde onderliggende ”algebraische structuur”; een paar
differentiaalvormen pα, ηq P Ω1pMq ˆ Ω2pMq die voldoen aan de vergelijking:

(3.8.3.1) α^ ηn ‰ 0.

Ook is het veel gevallen mogelijk om beide structuren in elkaar te ”vervormen”.

In Hoofdstuk 1 behandelen we constructies van symplectische foliaties en contact
structuren. Onze aanpak is als volgt; we splitsen de ruimte op in (simpelere) stukken,
daarna construeren we op elk van deze stukken de gewenste structuur, en als laatste
lijmen we de stukken weer aan elkaar zodat we de originele ruimte terugkrijgen.

Voor deze aanpak is het belangrijk om te begrijpen hoe symplectische foliaties en con-
tact structuren zich gedragen op wiskundige ruimtes met een rand. We onderscheiden
verschillende type randen (analoog aan de definities van contact/cosymplectische ran-
den van symplectische ruimtes) en bewijzen expliciete normaalvormen.

We merken op dat de resultaten (en bewijzen) voor beide structuren zo goed als
hetzelfde zijn. Dit stelt ons instaat om de constructies tegelijkertijd uit te voeren
en de resulterende structuren in elkaar te vervormen. We bewijzen een algemene
stelling die in het bijzonder toepasbaar is voor de 5-dimensionale bol (dit geeft ons
een resultaat van Mitsumatsu [89]), en elke (gesloten, georienteerde) 3-dimensionale
ruimte.

Hoofdstuk 2 is gebaseerd op gezamelijk werk met F. Presas. Hier bestuderen we
de convergentie van contact structuren naar symplectische foliaties in hoger dimen-
sionale ruimten. In dimensie-3 beschouwt men gewoonlijk convergentie als secties
van de Grasmanniaanse bundel van codimensie-een distributies, zoals in de theorie
van confoliaties. In hogere dimensies merken we op dat de (formele) symplectische
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vorm (η in Vergelijking 3.8.3.1) een belangrijke rol speelt. We definieren verschillende
soorten convergentie en bestuderen hun relatie doormiddel van voorbeelden.

Een belangrijk resultaat in de 3-dimensionale theorie, zie [47], is dat elke foliatie
behalve die op S1 ˆ S2 (doormiddel van bollen) benaderd kan worden door contact
structuren. We bewijzen dat er in hogere dimensies veel meer voorbeelden van dit
soort foliaties bestaan. Een van onze argumenten is gebaseerd op de theorie van
contact fibraties over de 2-dimensionale bol. Dit levert voorbeelden op van foliaties
die niet benadert kunnen worden om redenen die essentieel verschillen van het 3-
dimensionale geval.

Zoals we opgemerkt hebben in Vergelijking 3.8.3.1 heeft elke differentieerbare struc-
tuur een onderliggende algebraische vergelijking. Voor verscheidene structuren is het
altijd mogelijk om een oplossing van de algebraische vergelijking te vervormen in een
echte oplossing. In dit geval zeggen we dat de structuur voldoet aan het ”h-principe”.
In Hoofdstuk 3 bestuderen we een specifieke techniek, de zogenoemde ”plooi tech-
niek” in de setting van jet bundels. De inhoud van dit hoofdstuk maakt deel uit van
een lopend project met A. del Pino. Ons doel is om deze technieken toe te passen op
de vraagstukken uit de voorgaande hoofdstukken. Voor nu is ons belangrijkste resul-
taat een generalizatie van de klassieke holonome benadering stelling uit [43], die stelt
dat (onder gepaste voorwaarden) elke formele snede van een jet bundel benaderd kan
woorden door een holonome snede. We bewijzen dat als we toestaan dat de snedes
milde singulariteiten hebben dit resultaat ook op gesloten ruimtes geldt.
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Libre de Bruxelles, in the research group of M. Bertelson.

319


	Title page
	Introduction
	I.  Constructions
	II.  Convergence of contact structures
	III.  Wrinkling h-principles

	Constructions
	Overview
	Symplectic structures and their boundaries
	Contact structures and their boundaries
	Contact forms and their boundaries
	Symplectic foliations and their boundaries
	Symplectic foliation pairs and their boundaries
	Turbulization
	Deformations
	An application: Mitsumatsu's construction on S5
	Appendix A: Open book decompositions

	Convergence of contact structures
	Overview
	Hyperplane fields
	Going conformal: almost CS-hyperplane fields
	Comparison of the approximation types
	An obstruction to conformal approximation
	More examples
	Preservation of structures in the limit

	Wrinkling h-principles
	Overview
	Overview: Distributions and jet spaces
	Overview: Singularity theory
	Overview: The h-principle
	The integral Grassmannian
	Multi-sections: Definition and elementary properties
	Multi-sections: Models of singularities
	Holonomic approximation by multi-sections

	Bibliography
	Samenvatting

