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Introduction

Parts of this thesis are based on joint work; Chapter 2 is joint with F. Presas, and
Chapter 3 is joint with A. del Pino.

Differentiable manifolds are topological spaces which can be studied using the tools
of calculus. We can derive/integrate functions and consider objects such as distri-
butions, allowing us to define and study differential equations. The notions used to
define differential equations are infinitesimal in nature, making them relatively easy
to manipulate using algebraic methods. On the other hand their solutions usually
reflect the global properties of the manifolds. Exploiting this interaction between
local (infinitesimal) and global (topological) turns out to be extremely fruitful.

We apply this philosophy to the study of geometric structures, and in particular their
topological properties. There are many interesting questions one usually poses in this
setting. Some of the most fundamental ones are:

e Which manifolds admit a geometric structure of a given type?
e Can we classify all geometric structures of a given type on a fixed manifold?

e Does the existence of a structure of type A imply the existence of a structure
of type B?

More often than not, such questions are surprisingly hard to answer. And, more
importantly, trying to answer them provides many interesting insights.

In this thesis we restrict ourselves to two particular types of geometric structures:
contact structures and codimension-one symplectic foliations (a very special kind of
Poisson structure). The motivating question is:

What is the interaction between contact structures
and codimension-one symplectic foliations?

Before examining what makes this question interesting, let us briefly discuss the
definition of these structures. A hyperplane distribution £ on a manifold M is a
collection of codimension-one subspaces of the tangent space

& TpyM, pelM,
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depending smoothly on p. The class of all distributions is too large to study at once.
To select smaller classes we impose additional conditions in terms of the curvature of
the distribution. To be precise, the curvature is a map ¢¢ : £ x { - T'M /€, which is
defined in terms of the Lie bracket by the formula:

(X,Y) > [X,Y]mod¢, VX,Y eT(€).

We can think of it as the derivative of the distribution. There are two conditions on
the curvature (or “differential relations”) whose solutions are particularly interesting:

e A (codimension-one) foliation is a hyperplane distribution whose curvature is
zero. A famous theorem of Frobenius states that a foliation induces a partition
of M into (smooth, immersed, codimension-one) submanifolds, called the leaves
of the foliation. Moreover, the decomposition locally looks like the decomposi-

tion
R" = | JR" x {2},

zeR
where each copy of R"! is a leaf.

Since the leaves are manifolds they can be endowed with additional structure.
A symplectic structure on a manifold M is a differential form w e Q?(M)
which is closed and non-degenerate. That is, it satisfies:

do=0, W':=wA---Aw#0,

where dw denotes the de Rham differential, and the dimension of M equals 2n.
A symplectic foliation (or SF-structure for short) is a pair (F,w). It consists
of a foliation F, together with a leafwise symplectic form w € Q2(F). Note that
a symplectic structure on a surface is the same thing as an area form. Hence,
for (oriented) 3-manifolds any orientable foliation is automatically symplectic.

e A contact structure is a hyperplane distribution ¢ for which the curvature
is maximally non-degenerate. This means that it is “as far away from zero as
possible”. If TM/¢ is trivial (which we usually assume) then the curvature
can be interpreted as a differential form c¢ € Q%(¢) and the non-degeneracy
condition is equivalent to:

(1) cg #0,

where the dimension of M is 2n + 1.

Equation 1 is one of the reasons why we consider foliations with leafwise symplectic
structures. It implies that if a distribution £ is contact, then the curvature defines a
non-degenerate 2-form w € Q2(¢). On the other hand, for a foliation the curvature
vanishes. So, to save the analogy with the contact case we impose the existence of a
leafwise non-degenerate form.

Thus, in some sense contact structures and (symplectic) foliations are complete op-
posites. However, they turn out to be more similar than their definition suggests.
For example:
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e They have the same underlying “algebraic structure”. For simplicity (although
it is not necessary) let us only consider distributions £ for which TM/¢ is
trivializable. For any such distribution there exists a nowhere vanishing form
a € QY(M) such that & = ker a.

With this, an SF-structure can be encoded in a pair (a,w) € Q'(M) x Q?(M)
satisfying:
arnw”#0, arda=0, asrndw=0.
Similary, a contact structure may be interpreted as a pair (a,w) € QY(M) x
O?(M) satisfying:
anw”#0, da=w.

Although the equations involving the de Rham differential are different, in both
cases we have a pair (o, w) satisfying the equation:

(2) aAw” #0.

Thus, the underlying algebraic equations (i.e. the ones not involving the differ-
ential) are identical. As a consequence, both structures have the same “formal
obstructions” to their existence.

e Both structures have no local invariants. Let (z1,y1,...,Zn, Yn,2) denote Eu-
clidean coordinates on R?"*1. Any contact manifold is locally isomorphic to

(RQ"“, a:=dz+ ledyz) ,

while any SF-manifold locally looks like
(R2"+1, a:=dz, w:= dei A dyi) .

On the other hand, non-isomorphic contact (and SF) structures on the same
manifold do exist. So, they have global properties distinguishing them.

The local models above demonstrate another interesting phenomenon. On
R27*+1 consider the 1-parameter family of pairs:

(3) o = dz + thidyi, Wy 1= dei Ady;, tel0,1].

Observe that (ay,w:) satisfies Equation 2 for all ¢ € [0,1]. Furthermore, a;
coincides with the local model for contact structures (and w; = day) while
(a0, wp) equals the one for SF-structures. Hence, the local models can be de-
formed into each other. Moreover, the deformation is contained in the space of
pairs satisfying Equation 2.

e Many interesting manifolds that admit an SF-structure also admit a contact
structure, and vice versa. Even more, constructions which are almost immediate
on one side often become highly non-trivial on the other side.

For example, given an SF-manifold (M, F,w) we can take the product:

<M><S2, Fi=Fxs2 C)::w-i-wgz),
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where wg2 denotes the area form on S2. To be precise, Fis the product foliation,
whose leaves are L x S? with L a leaf of 7. On the other hand, given a contact
manifold (M, ¢) it is highly non-trivial to show that M x S? admits a contact
structure. The proof can be found in a paper by Bowden, Crowley and Stipsicz

[19]-

An example in the other direction is given by the (odd-dimensional) spheres.
Let (21,91, .., Tn,Yn) denote Euclidean coordinates on R?". The restriction of
the form

(4) Q= indyi

to the unit sphere S?*~! — R?" defines a contact form. Thus, all spheres are
contact manifolds. The analogous question for SF-structures is still (mostly)
open. The only spheres which are known to have SF-structures are S* as shown
by Reeb [100], and S® as shown by Mitsumatsu [39].

Another interesting parallel is that when constructing symplectic foliations,
there is often a natural contact structure around. For example, the contact
structure from Equation 4 plays an important role in Mitsumatsu’s construction
on S°. An example in the opposite direction is given by the main result of [54].
It states that for any 4-manifold M the product M x S! is contact. The key
obsevation is that the product can be obtained as a gluing:

M xS' = (W xSY) u (W, x §Y),

where (W;,w;), @ = 1,2 is a symplectic manifold with boundary. Thus each of
the pieces is naturally a SF-manifold, whose foliation equals

Fi = U W; x {z},

zeSt

and with leafwise symplectic form w;.

In conclusion, although their definitions are “opposite” there exist many parallels
between contact structures and symplectic foliations. This interaction/duality is an
interesting subject of study on its own. Furthermore, it provides, at least on an
intuitive level, a dictionary to translate between the two worlds. We expect this can
be used as a tool to answer questions on one side using results from the other.

The thesis is divided into three chapters, each approaching the main question from a
different perspective. Below we briefly illustrate these approaches.

I. Constructions

Arguably the most fundamental question to answer about any geometric structure is
that of its existence. A classical theorem by Martinet [32] states that any 3-manifold
admits a contact structure. The proof is based on a result by Lickorish [76] saying
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that any 3-manifold can be obtained from S® (which is contact) by surgery along a
codimension-2 submanifold B. That is, any 3-manifold M can be decomposed as:

(5) M = (B x D?) u (S*\B).

Each of the components is a contact manifold and they can be glued (in a non-trivial
way) to obtain a contact structure on M.

This motivates the definition of an open book decomposition of a manifold M. It
consists of two pieces of data:

e A codimension-2 submanifold B « M, called the binding.

e A fibration on the complement of B, 7 : M\ B — S!, whose fibers are called the
pages.

The picture to have in mind is that of a book “opened so far that the front and back
cover touch”. This data satisfies certain compatibility conditions (precise details are
given in Definition 1.9.2) that allow us to recover M as a gluing

M = (B x D*) u (M\B).

Improving on Marinet’s result, Giroux showed that there is a 1-1 correspondence
between open books and contact structures:

Classic Result 1 ([57]). Let M be a compact oriented 3-manifold. Then there is a
1-1 correspondence between contact structures on M (up to isotopy) and open book
decompositions of M (up to positive stabilization).

Even though this result is 3-dimensional in nature, it has had a marked influence on
the study of higher dimensional manifolds. For example, open books have been used
to obtain contact structures on circle bundles [32] and simply connected 5-manifolds
[107]. Later, using a different set of techniques called h-principles, the existence (and
part of the classification) question has been answered in all dimensions [36, 15].

On the side of SF-structures much less is known. The first non-trivial example was
given by Reeb [100] who showed that S? admits a (symplectic) foliation. His argument
uses that the sphere is the union of two solid tori

S? = (S* x D?) U (D? x SY).

Each solid torus has an obvious foliation by disks, however they do not match along
the common boundary. Hence, we apply a trick to glue them; we change each folia-
tion by ”spinning the leaves along the S'-direction” so they become tangent to the
boundary. This procedure is called turbulization. The upshot is that both foliations
have the boundary torus as a leaf and thus can be glued. The resulting foliation on
S? is called the Reeb foliation.

Following these ideas, Lawson constructed foliations on S° and S2"+3 for k > 1.
Later, Thurston showed that a compact manifold admits a foliation if and only if
its Euler characteristic vanishes. Unlike the 3-dimensional case these foliations are
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Figure 1: The foliation by disks on the solid torus S* x D?, before and after turbu-
lization.

not automatically symplectic. Constructing leafwise symplectic forms is an intricate
problem, depending heavily on the topology of the leaves. The main issue is that
constructing symplectic structures (in the non-foliated case) is already difficult. In
[89] Mitsumatsu proved that the Lawson foliation on S® admits a leafwise symplectic
form. However, it can be shown that the Lawson foliations on S2k+3, k > 1, can-
not be made symplectic. Thus the existence question remains open for the higher
dimensional spheres.

In Chapter 1 we focus on the construction of symplectic foliations and contact struc-
tures. Motivated by the above ideas we try to construct them by decomposing man-
ifolds into smaller pieces. This approach requires a good understanding of gluing
constructions for contact/SF- manifolds with boundary.

To this end we start by studying the behaviour of these structures near the bound-
ary. We distinguish several special types of boundaries, analogous to the well-known
contact /cosymplectic boundaries of symplectic manifolds. Furthermore, we obtain
explicit normal forms and use them to describe general gluing constructions. Let us
elaborate; consider a SF-structure (F,w) on a manifold M with boundary. If F is
transverse to the boundary then the restriction

Foi=FnToM, wy:=w

Foo

is again a foliation, called a 0-SF structure. Note that the leafwise 2-form wj is still
closed, but now has 1-dimensional kernel since the leaves of F, are odd-dimensional.
This is equivalent to the existence of a foliated form 3 € Q' (F5) such that 8 A w™ # 0
on the leaves of Fy. We call 8 an admissible form for the J-SF structure (Fp,ws).
This data defines an SF-manifold called the local model associated to (Fa,ws, 3):

((—&,0] x OM, (—¢,0] x Fa,wa + d(t5)),

where ¢ € (—¢,0] denotes the interval coordinate.
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Theorem (1.5.12). Let (M,F,w) be a symplectic foliation transverse to the (com-
pact) boundary OM . For any choice of admissible form ( there is a neighborhood of the
boundary on which (F,w) is isomorphic to the local model associated to (Fz,wa, ().

The analogous statement for contact structures in given in Theorem 1.3.26.

On the other hand we have symplectic foliations which are tame at the boundary; this
means that the boundary 0M is a leaf of F, and that both F and w are “constant
around the boundary”. Such SF-structures are particularly convenient for gluing
constructions. We adapt the classical turbulization construction to the setting of
symplectic foliations. This allows us to change transverse boundaries into tame ones.

Theorem (1.7.32). Let (F,w) be an SF-structure on M, transverse to the boundary
and with induced 0-SF structure (Fa,ws). Suppose that Fs can be defined by a closed
1-form (i.e. is unimodular). Then, given any symplectic extension &y € Q?(0OM) of
wp, there exists an SF-structure (.}N',UNJ) on M satisfying:

(i) (F,®) is tame at the boundary, and the induced symplectic form on the boundary
leaf equals @y

(ii) (F,®) agrees with (F,w) away from the boundary.

Putting the normal forms and turbulization procedure together we build contact and
SF-structures on open book decompositions. In both cases the arguments are ex-
tremely similar. In fact, we show that under suitable conditions both structures can
be constructed simultaneously, and even “deformed” (as in Equation 3) into each
other.

We provide a general statement (Theorem 1.8.14) which applies to any (closed, ori-
ented) 3-manifold and S®. This recovers the (existence) result of Mitsumatsu [39], as
well as (deformation) results by Mori [92] and Etnyre [48].

Theorem (1.9.1). The Lawson foliation on S admits a leafwise symplectic form, and
the resulting symplectic folation can be deformed (in the sense of Definition 1.8.1) into
a contact structure.

II. Convergence of contact structures

We have seen in Equation 3 that the local models for contact and SF-structures can
be deformed into each other. To give another example of this phenomenon let (z,y, 2)
denote angular coordinates on the torus T% and define:

oy = dz + ¢ (sin(z)dz + cos(z)dy), w:=dzady, te]0,1].

This pair satisfies Equation 2 for all ¢, and ay is a contact form while (g, wp) defines
a symplectic foliation.

The existence of such deformations is no coincidence. It turns out that, at least
in dimension 3, almost any foliation can be approximated by contact structures. A
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hyperplane distribution £ := ker @ on an oriented 3-manifold is called a confolation
if it satisfies

(6) aAda >0,

where, the sign is defined with respect to the orientation on M. This notion was
first introduced by Eliashberg and Thurston [417], and provides a natural framework
to compare contact structures (a A da > 0) and symplectic foliations (o A da = 0).
Their main theorem states the following:

Classic Result 2 ([17]). Any (symplectic) foliation on a closed oriented 3-manifold,
different from the foliation by spheres:

Fi=|]J{z} x8

zeSt

on St x S2, can be (C°-) approzimated (Definition 2.2.17) by contact structures.

Usually the limit foliation and the approximating sequence of contact structures are
closely related. For example, sometimes the approximating contact structure is unique
up to some suitable notion of equivalence [111], or the topological properties of the
limit foliation are reflected in those of the sequence [110].

It is clear from the definition (Equation 6) that the theory of confoliations is purely
3-dimensional. In Chapter 2 we follow the same philosophy to study the relationship
between contact structures and (symplectic) foliations in higher dimensions. This
chapter is based on joint work with F. Presas. We define several notions of defor-
mation, and study their relationship through explicit examples. For instance, we
consider linear deformations &, t € [0, 1], of a foliation F. By this we mean that
&o = F, & is contact for ¢ > 0 and %ﬁt, does not depend on t.

One interesting aspect of our discussion is that conformal symplectic foliations natu-
rally show up in several places. To illustrate this, recall that a symplectic structure
consists of a differential form w € Q?(M) satisfying

w" #0, dw=0.

A conformal symplectic structure is a mild generalization of this, replacing the
second condition by
dw+vAw=0,

where v € Q(M) is some closed 1-form. We have:

Theorem (2.2.13). A (co-oriented) foliation F can be linearly deformed (Definition
2.2.5) into a contact structure if and only if it admits an exact leafwise conformal
symplectic structure.

Another focus of the chapter is the search for foliations that cannot be approximated
(or deformed into) contact structures. By Classic Result 2 only one such foliation
exists in dimension-3. It turns out that in higher dimensions there are many foliations
with this property. This can be seen using a special kind of submanifold:
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Definition (2.4.4). Let (M, F,w) be a symplectic foliation. A submanifold N < M
is called an almost CS-submanifold if the restriction

(‘F|N7W|N)7

defines a symplectic foliation on N.

The definition implies that if £ approximates (F,w), then the restriction £|y approx-
imates (F|n,w|n). Thus, if the SF-structure (F|n,w|ny) cannot be approximated
then the same holds for (F,w). Together with Classical Result 2 this implies:

Theorem (2.4.9). If a (conformal) symplectic foliation (F,w) on M contains S' x S
(foliated by spheres) as an almost CS-submanifold, then it cannot be approximated by
contact structures.

For instance, given a symplectic manifold (M,wys), the symplectic foliation on S* x
S? x M defined by:

(]—':_ U{Z}XSQXM7WZ:LU§2 +wM>,

z€eSt

cannot be approximated by contact structures. We also show that (in dimension at
least 7) the existence of a “formal” almost CS-submanifold S! x S? is an obstruction
to approximate by contact structures.

In light of these examples one may ask if the presence of S! x S? is the only obstruction
to approximation. A substantial part of the chapter is devoted to answering this
question. Our result is stated as follows:

Theorem (2.5.38). There exists a conformal symplectic foliation on S* x T? which
does not contain an almost CS-submanifold isomorphic to S' x S? and cannot be
approzimated by contact structures.

The proof is based on the clutching construction for contact fibrations. Consider a
fibration 7 : M — S?, with fiber F. We can decompose the base as the gluing of
two disks, the north and south hemisphere. The restriction of the fibration to each
of the disks is trivial (since D? is contractible). Therefore, the fibration is completely
encoded in the transition function

¢ : S — Diff(F).

The classical clutching construction states that this procedure yields a 1-1 correspon-
dence between fibrations 7 : M — S§? with fiber F (up to isomorphism) and loops of
diffeomorphisms ¢ : S' — Diff(F) (up to homotopy).

Taking this idea to the contact setting, contact structures on the total space of a
fibration correspond to loops of contactomorphisms satisfying a certain condition
called positivity. On one hand it is known that there are contact manifolds which do
not admit any positive loops. On the other hand we show that for some foliations,
any approximating contact structures would induce a positive loop. Combining these
facts we obtain the desired family of (conformal sympletic) foliations on S* x T? that
cannot be approximated by contact structures.
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ITI. Wrinkling h-principles

Let us go back to the similarities between contact and SF-structures. We have seen
in Equation 2 that both structures have the same “formal structure”. This statement
can be made precise using the framework of h-principles.

The h-principle (short for homotopy principle) is a collection of techniques to study
the solution space of a given (partial) differential equation. More precisely, we are
interested in describing the homotopy type of the space of solutions, thus explaining
the name. The idea is that a differential equation defines an underlying algebraic
equation. Any solution of the former must in particular satisfy the latter. As a
concrete example, consider the equation

a*f
(7) M +kf=0,

2
where f : R — R is a function, and m, k € R are fixed constants. By replacing %

by an independent function g : R — R we obtain
(8) mg+kf =0.

This equation is purely algebraic, i.e. it does not involve taking derivatives. Secondly,
any solution of Equation 7 induces a solution of Equation 8 (which we call a formal
solution) by setting g = ‘};T{.

Rather surprisingly there are quite general conditions under which the existence of
formal solutions implies the existence of genuine solutions. More abstractly, given a
(partial) differential relation R, there is an inclusion:

¢ : Sol(R) < Sol/ (R),

where Sol/ (R) denotes the space of formal solutions of R. Note that Sol/ (R) is just
the space of sections whose image lies in R. We say that R satisfies the (full) h-
principle if the above inclusion is a homotopy equivalence (and thus, in particular,
induces an isomorphism on homotopy groups). For instance, surjectivity in o means
that any formal solution is homotopic to a genuine solution.

This perspective was first described by Gromov [60], and popularized by Eliashberg
and Mishachev in [13]. One of the main classical tools to establish h-principles is the
“holonomic approximation theorem”, which can be found in [60, 43]. It implies that
if both the differential relation R, and the manifold M (on which we want to solve R)
are open then the h-principle holds. The idea of the proof is to exploit the fact that
solutions always exist locally. Moreover, being open implies that the manifold has a
large region without any topology. By utilizing this “extra space” we can turn local
solutions into global ones, establishing an h-principle. Using holonomic approxima-
tion it follows almost immediately that the h-principle for contact structures holds
on open manifolds. The same techniques have been used for symplectic foliations on
open manifolds [12, 19].

On closed manifolds these techniques break down and one needs a different approach.
The so called wrinkling technique, introduced by Eliashberg and Mishashev in [40,
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, 41], is particularly suitable in this setting. The idea is that solutions become more
flexible once allowed to have mild singularities. In other words, singularities allow
us to “create the extra space” which is already present on open manifolds. A good
analogy to have in mind is that if one wants to store a large piece of fabric (a solution)
in a small box (a closed manifold) one needs to fold it (introduce singularities).

To turn wrinkled solutions into honest ones the singularities have to be resolved.
Whether this is possible or not depends on the properties of R, and in general only
part of the solutions can be obtained this way. This gives a division of Sol(R) into
two classes, a “flexible” one satisfying the h-principle, and a “rigid one”, closely re-
flecting the topology of the underlying manifold. The prototypical example is the
dichotomy between tight and overtwisted contact structures; a contact structure is
called overtwisted if it contains a certain local model (around a disk) and tight oth-
erwise. The latter are usually classified on a case by case basis, while overtwisted
contact structures have been shown [36, 15] to satisfy the h-principle also on closed
manifolds.

The third chapter is based on work in progress with A. del Pino. We study the h-
principle technique of wrinkling in the setting of jet spaces. Given a (fiber) bundle
over a manifold 7 : X — M, the r-th jet bundle J"(X) — M is the space of r-th
order derivatives of sections of X. For a more concrete description consider a function
f:R — R (i.e a section of the trivial bundle 7 : R?> — R). Its r-order jet at a point
t € R, denoted by j; f, is the tuple

(10, 0 G 0).

The space of all such tuples, where we think of the derivatives as independent vari-
ables, is precisely the jet space J"(R?).

In general, given a section o of J"(X) there does not exist a section s € I'(X) such
that ¢ = j”s. When such an s exists, o is called holonomic. This can be detected
using the Cartan distribution .., on J"(X). It is uniquely defined by the property
that a section is holonomic if and only if it its image is tangent to &eqp.

Our aim is to apply wrinkling techniques to prove an h-principle for integral sub-
manifolds of the Cartan distribution. To describe the formal data of an integral
submanifold we introduce the integral Grassmannian of jet spaces Grintegral(§can, )
It is the space of [-dimensional subspaces of &..,. Given an integral submanifold
f: N — J"(X) there is an associated Gauss map:

Gr(f) N — Grintegral(fean)a

mapping a point 2 € N to the integral element (df). (T, N) € &can,f(z)- Understand-
ing this space and its homotopy type is crucial in the study of integral submanifolds.
Although a full description is still out of reach, we describe the homotopy type of
part (the so called ¥2-free part) of this space in Section 3.5.

Roughly speaking, an r-times differentiable multi-section (Definition 3.6.2) is a
smooth map f: N — J"(X — M) which is graphical over M on an open and dense
set, and whose non-graphical part consists of mild singularities with respect to the
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projection 7 : J"(X) — M. Thus, images of holonomic multi-sections are special
examples of integral submanifolds of the Cartan distribution. As a first step towards
a general h-principle, we prove an analogue of the holonomic approximation theorem:

Theorem (3.8.2). Let 0 : M — J"(X — M) be an arbitrary section. Then, for any
e > 0, there exists a map f: M — J" (X — M) satisfying:

e f is a holonomic multi-section with fold singularities (in zig-zag position);

o ‘f—O’lco <e.

An immediate consequence is that singular (i.e. folded) solutions always exist if R
is open (even if M is closed). Although the above result only states existence, an
inspection of the proof should convince the reader experienced in h-principles that a
parametric and relative (both in domain and parameter) version also hold.

Our proof exploits the fact that, just like functions, multi-sections can in some sense
be differentiated/integrated. As such they can be manipulated through their images
under certain projections. A familiar example is given by (J!(R? — R),&can), which
is isomorphic to R® endowed with the standard contact structure. Under this identi-
fication integral submanifolds correspond to Legendrian knots. In contact geometry
one usually studies these knots through their Lagrangian projection. In particular, it
is well-known that a knot can be recovered from its image.

In Section 3.6 we define the analogue of the Lagrangian projection in the setting of jet
spaces, and show that it provides a convenient way of manipulating multi-sections.
For instance we show (Proposition 3.6.28) that any (X?-free) integral map can be
recovered from its image under this projection.
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1.1 Overview

In this chapter we consider constructions of contact structures and symplectic fo-
liations. The constructions we have in mind consist of breaking a manifold into
(simpler) pieces, building a geometric structure on each of these pieces, and finally
glueing them back together. The main example to have in mind is that of an open
book decomposition (whose definition we recall in Appendix 1.9).

We start by studying boundaries of manifolds with a geometric structure. Then we
use this understanding to obtain gluing constructions. The prototypical example is
that of a symplectic manifold with boundary, which we discuss in the Section 1.2. It is
well known that symplectic manifolds satisfy a normal form around their boundaries.
Moreover, this local model depends only on the induced structure on the boundary.
Hence, two symplectic manifolds can be glued if their boundaries (together with
the induced structure) matches. Furthermore, there are special types of boundaries
(contact type and cosymplectic type) with interesting properties, and for which the
local model becomes particularly simple. Using the symplectic case as inspiration,
Section 1.3 though Section 1.5, contains the analogous discussion in the setting of
contact structures and symplectic foliations.

The main difference with symplectic structures is that there is a difference between
a contact structure (resp. symplectic foliation) and the choice of contact form repre-
senting it. Given a nowhere vanishing form o € Q! (M) its kernel defines a distribution

Ei=keracTM,

in which case we say that £ is represented by «. There are many forms representing
the same distribution, and their properties can differ a lot. Although working on
the level of structures is conceptually cleaner, many of the constructions depend on
particular choices of forms. Hence, we treat both viewpoints separately; In Section
1.3 (resp. Section 1.5) we consider contact structures (resp. symplectic foliations),
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and in Section 1.4 (resp. Section 1.6) we consider contact forms (resp. symplectic
foliation pairs). The main results in these sections are Theorem 1.3.26 and Theorem
1.5.12 giving explicit normal forms for contact structures and (transverse) symplectic
foliations around the boundary.

In general, the position of a (symplectic) foliation relative to the boundary is too
wild to obtain normal forms. Hence we restrict ourselves to foliations which are
everywhere transverse to the boundary, or are “tame” and have the boundary as a
leaf. In Section 1.7 we study the classical turbulization construction in the setting of
symplectic foliations. This procedure changes a foliation transverse to the boundary
into one which is tame at the boundary. The precise statement is given in Theorem
1.7.31.

As remarked before, boundaries of contact and symplectically foliated manifolds, as
well as their respective gluing constructions, display many similarities. In fact, we
discuss in Section 1.8 that sometimes it is possible to construct both structures at
the same time. We show that given a suitable open book decomposition the manifold
carries both a contact structure and a symplectic foliation. Moreover, these struc-
tures can be deformed into each other. The precise statement is given in Theorem
1.8.6. The hypotheses of the theorem are always satisfied for 3-dimensional manifolds
(Corollary 1.8.11). Moreover, in Section 1.9 we apply our construction to S° (The-
orem 1.9.1). In particular, we recover the symplectic foliation on S® constructed by
Mitsumatsu [39].

1.1.1 Conventions

Throughout the text we will always assume all manifolds are oriented, unless explicitly
stated otherwise. Given an oriented manifold M, we denote by M the same (smooth)
manifold endowed with the opposite orientation. Furthermore, we use the following
orientation convention:

For any (geometric) structure that induces an orientation,
the induced orientation is assumed to match that of the un-
derlying manifold.

For example, if w is a symplectic form on M, as in Definition 1.2.1, then we require
the induced volume form to be positive with respect to the orientation on M, that is:

w™ > 0.
Similarly, for a contact form a € Q'(M), as in Definition 1.3.6, we require:

a A da™ > 0.

Following the same philosophy, the product of two oriented manifolds is endowed with
the product orientation. More precisely, if 23, and 25 are positive volume forms on
M and N respectively, then we declare

QMXN = QM /\QN >0,
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to be a positive volume form on M x N. Furthermore, the boundary dM of an
oriented manifold M is oriented using the ”outward normal first” convention. That
is, if Q) is a positive volume form, and X € X(M) a vector field pointing outwards
along the boundary then we declare

(exQar) lomr > 0,

to be a positive volume form on the boundary. Even more explicitly this means that
a manifold with boundary has coordinate charts modeled on the left half space

{(z1,...,2,) e R" | 21 <0} c R",

so that given an oriented boundary chart (U,z1,...,x,) on M, an oriented chart on
0M is given by (U n oM, xa,...,xy).

For example, the products [0,1) x dM and (—1,0] x dM, which model a collar neigh-
borhood of the boundary, are both oriented using the (positive) volume form d¢t AQza,
where Qp)s is a positive volume form on dM. In the first case an outward normal is
given by —0;, so its boundary equals 0M, oriented by —Q,57. In the second case an
outward normal is given by d; so the boundary equals dM, oriented by Qa5s. Unless
stated otherwise we will parametrize a collar neighborhood of the boundary as:

U~ (-1,0] x M.

1.2 A source of inspiration: Symplectic structures
and their boundaries.

In this section we consider symplectic manifolds and their boundaries. We describe
the structure induced on the boundary of a symplectic manifold. A neighborhood
of the boundary is completely determined by this structure, giving rise to a normal
form. In turn this normal form allows us to glue symplectic manifolds along their
boundaries. These results are well known, see for instance [36], but we recall them for
completeness and as a source of inspiration for the discussion in subsequent sections.

1.2.1 Boundaries of symplectic manifolds

Let us start by recalling the definition and basic examples of symplectic manifolds.

Definition 1.2.1. A symplectic structure on a manifold M?" is a 2-form w €
O2(M) satisfying
do=0, w">0.

The existence of a symplectic form imposes strong topological restrictions on M. The
non-degeneracy of w implies that M is even dimensional. Furthermore, if M is closed
all its cohomology groups of even degree must be non-zero. Indeed, since w is closed it
defines a cohomology class [w] € H2(M). If this, or any of its wedge powers, vanishes
we obtain an exact volume form. For closed symplectic manifolds this cannot happen.
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Example 1.2.2. Some of the basic examples of symplectic manifolds are:

e Euclidean space: Let (1,y1,...,%n,yn) denote the standard coordinates on
R?". The 2-form

(1.2.1.1) wi= Y dw; A dy;,
i=1

is called the standard symplectic structure. By the famous Darboux theorem
any symplectic structure locally looks like the standard one. In particular this
means that there are no local invariants, and the properties of symplectic struc-
tures are closely related to the topology of the underlying manifold.

e Orientable surfaces: For dimensional reasons any 2-form on a surface is
automatically closed. Thus any choice of volume form defines a symplectic
structure. In particular this means that the sphere S? is a symplectic manifold.
Note that by the discussion above the spheres S?" for n # 1, do not admit a
symplectic structure since their second cohomology groups are trivial.

e Tori: Let (z1,y1,...,%n,yn) denote the standard angular coordinates on the
2n-dimensional torus 72". Then the same formula as in Equation 1.2.1.1 defines
a symplectic form. Observe that the standard symplectic structure on Euclidean
space is exact, which is possible since R?" is an open manifold. On the other
hand the standard symplectic structure on T2?" is not exact as the torus is
closed.

e Cotangent bundles: Given any smooth manifold M, the cotangent bundle
T*M caries a canonical exact symplectic structure whose primitive is the so
called tautological form A € QY (T*M). It is defined by the rule

(1.2.1.2) Ao :=caodmr, VYaeT*M,

where 7 : T* M — M denotes the projection. In local coordinates (¢,p) € T*M,
where ¢ denotes the base, and p the fiber coordinates, we have:

A=Y pida;,
i=1

where dim M = n. Cotangent bundles together with their symplectic structure
play an important role in the description of classical mechanics where they serve
as a model for the phase space of a particle.

e Products: The simplest way of producing new symplectic manifolds out of
old ones is by taking their product. Let (M;,wq) and (Ms,w2) be symplectic
manifolds then

(M := M; x Ma,w := w; + wa)

is again a symplectic manifold.
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Given a symplectic manifold (M, w) with boundary, the restriction w|gps is still closed
but has a one dimensional kernel. This gives rise to the following definition:

Definition 1.2.3. A 0-symplectic structure on a manifold N**t1 s a 2-form
ne Q*(N) satisfying
dn =0, dimkern=1.

For the boundary of a symplectic manifold, the kernel of the d-symplectic form gets
paired nondegenerately with a line transverse to the boundary. More precisely, there
exists X € (M), XhoM and Y € X(0M) such that

wy(X,Y) >0, VpedM.

The line spanned by X is not determined by 7 but can be chosen. This corresponds
to the choice of a 1-form on N.

Definition 1.2.4. An admissible form for a 0-symplectic manifold (N?"*1,n) is
a 1-form 0 € QY (N) satisfying
0 An">0.

By a 0-symplectic pair (or just d-pair) (6,7) we mean a J-symplectic structure
together with a fixed choice of admissible form.

Lemma 1.2.5. If (N?"*1 n) is a 0-symplectic manifold then the following hold:

(i) There exist admissible forms for n;

(i) Given a fized admissible form [ there is a 1-1 correspondence between admissible
forms 0 and pairs (f,X), with f € C®(N) strictly positive, and X € X(N)
satisfying X € ker B, given by the formula:

0= fB+ixm;

(ii) If N := OM and n := w|sp for a symplectic manifold (M,w), then for any
X € X(M) such that X hNOM pointing outwards,

0= 1xwlom

s an admissible form. Conversely, any admissible form is obtained this way.

Proof. (i) Locally, on an oriented coordinate chart (U, z1,...,Z2,+1) we have

n"szidxl/\---/\c?;iA...dxMH,
i

where f; € C*®(U) are such that at each point of U at least one of them is
non-zero. Now, define

9U = Z(—l)i+1fid$i,

%
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then
n" A Oy =fodz1 A A dTonst > 0.

Next, choose an atlas U = {U;}je; on M, and {p,}jc; a partition of unity
subordinate to it. Construct 6; as above on each U;. Then the form

0 := ijej,
J

satisfies # A n™ > 0 globally on M.

(ii) It is easy to check that if S is admissible so is f8 + txn. Conversely, assume 6
and (3 are both admissible forms, then there exists a strictly positive f € C®(N)
such that

" Al=fn" AB.
Let R € X(N) be in the kernel of . By contracting the above equation with R
we find 0(R) = fB(R). Therefore, § — ff vanishes on R, so there is a unique
X € ker 8 (note that n|ker 3 is non-degenerate) such that

txn =0 — fB.

(iii) By assumption w” > 0 which implies txw™|opr > 0 if X € X(M) is pointing
outwards along the boundary. Hence 6 := txw|ops is an admissible form for n
since:

1
O An™=—1xw"onm > 0.
n
The second part of the statement follows immediately from part (ii).

O

Thinking of ker 7 as a subbundle of TN, we can consider the quotient bundle TN/ ker 7,
which has a symplectic vector bundle structure induced by 7. The choice of admissible
form corresponds to a splitting

TN =kern@® (TN/kern).

Observe that the orientations on N and T'N/kern (induced by 7) induce an orienta-
tion on kern, and any choice of admissible form is compatible with this orientation.

Conversely, associated to each admissible form we have a special vector field spanning
kern and compatible with the orientation:

Definition 1.2.6. The Reeb vector field associated to the admissible form 0 is the
(unique) vector field R € X(N) satisfying

0(R)=1, wgn=0.
Through the Reeb vector field the admissible form 6 gives a decomposition of the

tangent bundle,
TN = (R)®ker,

into the kernel of 17 and a distribution on which 7 is non-degenerate.



8 CHAPTER 1. CONSTRUCTIONS

Definition 1.2.7. An admissible decomposition of a 0-symplectic manifold (N, n)
is a pair (R, D) where R € X(N) spans the kernel of ), the subbundle D c TN defines
a splitting:

TN ={(R)®D,

and n|p is non-degenerate.

In fact, such a decomposition is equivalent to the choice of admissible form:

Lemma 1.2.8. Given an 0-symplectic manifold (N,n) there is a 1-1 correspondence
between admissible forms 6 and admissible decompositions (R, D) given by

0 — (R, ker0).

Proof. Given an admissible form 6, its Reeb vector field R and kernel D define an ad-
missible decomposition. Conversely, given an admissible decomposition (R, D) there
is a unique differential form 6 satisfying

ker =D, 6(R)=1.

It follows that € is an admissible form for 7. O

1.2.2 Special types of J-symplectic manifolds

In many cases, the symplectic form has special behavior around the boundary, which
for the d-symplectic structure translates into the existence of an admissible form with
extra properties. The most important examples are:

Definition 1.2.9. A 0-symplectic pair (0,m) on N*"*1 (Definition 1.2.3) is said to
be of:

e contact type if
df = n;

e cosymplectic type if
dé = 0;

If a d-symplectic manifold (N,7n) has an admissible form 6 of contact type, then
¢ := ker 0 defines a contact structures on N. Similarly, if 6 is of cosymplectic type
then (0,7n) defines a cosymplectic structure, see Example 1.5.5.

Of course, there are more types of boundaries than the two above, which could be
called special. For example, we have a boundary of foliation type if

0 Adf=0.

In this case, 7 is a globally closed 2-form which is non-degenerate on the leaves of the
foliation. In dimension 3 such foliations are called taut, while in higher dimensions
they are also called 2-calibrated, see [33].
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Definition 1.2.10. We say that a symplectic manifold (M,w) has boundary of right
S-type (resp. left S-type), for S in the above list, if in some collar neighborhood
U~ (—,0] x IM (resp. [0,e) x OM ) we have

w=n+d(t0),

where (6,m) is a 0-symplectic pair of S-type.

When we talk about boundary of S-type without specifying the side, we always
mean right S-type. The above names are meant to emphasize that we think of these
boundaries as the left and right boundaries of a cobordism as in Section 1.2.4.

By our conventions, the boundary of a collar of right S-type is oriented as 0M, while
a collar of left S-type has oriented boundary 0M. Since we require these orientations
to match the ones induced by the symplectic structure, the two types of boundaries
are usually not equivalent. For example, if the boundary is of contact type then our
definition of left /right boundaries coincides with the usual notions of concave/convex
boundary.

Remark 1.2.11. Below, see Theorem 1.2.16, we prove a normal form for boundaries
of symplectic manifolds. A consequence of this theorem is that the existence of an
admissible form of S-type automatically implies the boundary is of S-type. That is,
if (M,w) is a symplectic manifold and the induced 0-symplectic manifold (0M,ws)
admits an admissible form 6 of S-type, then Theorem 1.2.16 implies there is a collar
neighborhood of S-type conform definition 1.2.10. This makes precise our claim that
the admissible form encodes the behavior of w on a neighborhood of the boundary. A

Example 1.2.12. Let (M,w) be a symplectic manifold endowed with a free Hamil-
tonian (left) S'-action and corresponding moment map p : M — R. For any c € R,
the symplectic manifold M. := ! ([c,0)) has a smooth boundary M, := u=!(c).
Moreover, the usual symplectic reduction, see [36], implies that the quotient manifold
inherits a symplectic structure

(]\f\jc = Mc/Sl,cD) )

Since the action restricts to M., the quotient map defines (after changing to a right

action) a principal S!'-bundle 7 : M, — M,.. It turns out that the topology of this
bundle determines the behavior of w around the hypersurface M..

To see this, recall that for a principal S'-bundle 7 : P — B, any connection form
0 € Q'(P) satisfies

df = 7* (o),
for some o € Q%(B) called the curvature of §. Moreover, the cohomology class
c1(P) = [o] € H?*(B;R) depends only on (the isomorphism class) of P, and is
referred to as the (real) Chern class of P.
Going back to our example, the infinitesimal vector field of the S'-action on M, spans

the kernel of w|ys.. Thus, any connection form 6 € Q!(M,), is an admissible form for
the J-symplectic boundary of Mx. It follows that the boundary of M. is of:

e Cosymplectic type if the Chern class of M, is zero;
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e Contact type if the reduced symplectic structure & represents the Chern class
of M,.

In Example 1.2.21 below we continue this example and use the above setup to describe
the symplectic cut construction. A

Example 1.2.13. Let (M, w) be a symplectic submanifold and (B, wg) a codimension-
2 symplectic submanifold. The w-orthogonal of T'B provides a model for the normal
bundle

v:=TB* c TM|p,

which inherits a fiberwise symplectic form w,. Hence, v becomes a rank-2 symplectic
vector bundle and we can talk about its first Chern class, as explained below. Similar
to the previous example, we claim that B admits a neighborhood with a boundary
of:

e Cosymplectic type if the Chern class of (v,w,) vanishes;
e Contact type if wp represents the Chern class of (v,w,).
We recall the following facts:
(i) Any symplectic vector bundle admits a compatible fiberwise complex structure
J, and the space of such complex structures is contractible.

(ii) We define the first Chern class of a symplectic vector bundle (F,w) as that
of (E,J) where J is any choice of complex structure compatible with w. For
any such choice, two symplectic vector bundles are isomorphic if and only if
they are isomorphic as complex vector bundles. Hence, the first Chern class of
(E,w) is well-defined, and for rank-2 bundles it determines the bundle up to
isomorphism.

(iii) A neighborhood of a symplectic submanifold (B,wg) in a symplectic manifold
(M,w) is determined (up to isomorphism) by the symplectic form wg and the
symplectic normal bundle (vp,w,).

(iv) There is a 1-1 correspondence between principal S'-bundles and complex line
bundle over B, by sending P to

P xg1 C:= (P xC)/S,
where the (right) S'-action on the product is defined by
(1.2.2.1) (p,2)-X:=(p-\A"'2), VpeP,zeC,AeSh

Moreover, if [0] € H?(B) is the Chern class of P xg C, then there exists a
connection form 6 € Q*(P) such that

df = n*o.

In conclusion, we also have a 1-1 correspondence between rank-2 symplectic
vector bundles and principal S'-bundles.
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Going back to the example, let 7 : P — B the principal S'-bundle corresponding
to the symplectic normal bundle of B. Furthermore, let § € Q'(P) be a connection
form satisfying d = 7%, where [0] € H?(B,R) is the Chern class of the symplectic
normal bundle. On P x C we define the 2-form

(1.2.2.2) =1 (wp — o) +d((1+r°)0 +r*de),

where (r, ¢) € C denote polar coordinates. Observe that 2 is basic with respect to the
S'-action from Equation 1.2.2.1 and descends to a symplectic form on the quotient

(1.2.2.3) (P g1 QQ) .

Observe that the submanifold P x {0} = P x C is invariant under the S'-action and
hence defines a submanifold of the quotient P xg1 C < P xg: C which can be identified
with B. Moreover, under this identification we have

Qlpxgc = ws,

so that P xg1 C is a symplectic submanifold. To describe the induced symplectic
normal bundle observe that

v(B) = v(P x {0})/S' = (P x C)/S! = P x&1 C,

since the induced S'-action on v(P x {0}) is just the one from Equation 1.2.2.1.
Furthermore, the restriction

Q|V(P><{O}) = 2rdr A dd),
is invariant under the S'-action. Hence, the symplectic normal bundle to B equals:
(P xg C,2rdr A d¢),

which is compatible with the standard complex structure. This implies that its Chern
class is equal to that of P, which in turn equals that of the symplectic normal bundle
of (B,wp) c (M,w). We conclude that a neighborhood of B in M, is isomorphic to
normal form of Equation 1.2.2.3.

A tubular neighborhood of B can be identified with P xg D?, which has boundary
P xg S' ~ P, with the 0-symplectic form

Qo = 7*(wp — 0),
for which 6 is an admissible form. Thus, the boundary is of cosymplectic type if
[0] = 0 and of contact type if [0] = [wp]. In Example 1.2.22 below, we continue this
discussion to describe the Gompf connected sum for symplectic manifolds. A

Going back to the main story, we observed in Remark 1.2.11 that the admissible
form encodes the behavior of the symplectic form around the boundary. In general
we need to invoke the normal form, Theorem 1.2.16, but for boundaries of contact
and cosymplectic type (Definition 1.2.9) this can be proven by elementary means.
Furthermore, in this cases the existence of special admissible forms can be detected
using vector fields.
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Lemma 1.2.14. Let (M,w) be a symplectic manifold with boundary, and let wy :=
wlon denote the induced 0-symplectic form on M. Then the following are equivalent:

(i) The symplectic form w has boundary of right contact type (Definition 1.2.10);

(ii) The 0-symplectic form wp has an admissible form of contact type (Definition
1.2.9);

(iii) There exists a vector field X € X(M), pointing outwards along the boundary and
satisfying
(Lxw) lom = wlom;

(iv) There exists a vector field X € X(M), pointing outwards along the boundary and
a neighborhood U of OM satisfying

/.ZXw|U = w|U.

Proof. Assuming that (i) holds there exists a collar neighborhood U ~ (—¢,0] x 0M

on which

w=d((1+1t)0),
for 0 € QY(0M) satisfying df = wp. Since @ is admissible this immediately implies
(49), and (7i7) follows from taking X = ¢;. For (iv) we take X = (1 +¢)0;.

Next, assume that (¢) holds, so there exists an admissible form 8 of contact type. By
Lemma 1.2.5 it is of the form 6 = ¢ xw|aps for some vector field X € X(M) pointing
outwards along the boundary. Hence,

Lxwlom = dexw|onr = db = wlam,

proving (447).
If (ii4) is true, then we can use the vector field X to define a collar neighborhood
U ~ (—&,0] x M, and define

0 = Lxw|y € QHU).

Then both df and w are closed forms on U whose restrictions to dM agree. This
implies they differ by an exact form which vanishes on the boundary, that is:

w—df =dg,

for some 3 € QY (U) satisfying S| = 0.
To see this, let p € Q2(U) be a closed form satisfying p|sas = 0. Then on the collar
neighborhood we can write

w=p +dt A vy,

with p; € Q2(0M) and vy € QY(0M) for t € (—¢,0]. Since du = 0 (and po = 0) it
follows that

t
e = J dvg ds.
0



1.2. SYMPLECTIC STRUCTURES AND THEIR BOUNDARIES 13

In turn this implies that = d (Sé l/st) and the primitive vanishes on dM, proving

the claim. Using the non-degeneracy of w there is a unique Y € X(M)
tyw =0+ .

Tt is easy to check that £y w|y = wly and that it points outwards along the boundary.
proving (iv).

Finally assume (iv) holds. We can use X to define a collar neighborhood U ~
(—¢,0] x 0M on which we identify X = d; and write:

(1.2.2.4) w=mn+ 0 Adt

The condition £xw = w implies:
e = €t77, 0, = e'0,

for some 7 € Q%(0M) and 0 € Q' (0M). Together with dw = 0 this means that
=1, = df, = db.

Finally, substituting these identities in Equation 1.2.2.4 and changing coordinates
s = et —1 around t = 0 we obtain:

w=d((1+s5)8),

proving (). O

The analogous statement for boundaries of cosymplectic type is:

Lemma 1.2.15. Let (M,w) be a symplectic manifold with boundary, and let wy :=
wlan denote the induced 0-symplectic form. Then the following are equivalent:

(i) The symplectic form w has boundary of right cosymplectic type (Definition 1.2.10);

(i) The d-symplectic form ws has an admissible form of cosymplectic type(Definition
1.2.9);

(#ii) There exists a vector field X € X(M), pointing outwards along the boundary and
satisfying
(Lxw) lonr = 0;

(iv) There exists a vector field X € X(M), pointing outwards along the boundary and
a neighborhood U of OM satisfying

(Lxw)|v = 0.

Proof. Assuming that () is true, there exists a collar neighborhood U ~ (—¢, 0] x 0M
on which
w=n+dt b,
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for some 0 € 0M satisfying df = 0. This immediately implies (i7), (i7), and (iv) hold.
Next, if (#¢) holds then there exists an admissible form € of cosymplectic type and by
Lemma 1.2.5 it can be written as § = (1xw) |onr, for X € X(M) a vector field pointing
outwards along the boundary. Hence,

(EXw) |6’M = dLXw|aM =df = 0,
proving (ii1).
If (4i7) holds then 6 := txw|sps is a closed form on dM. Extend it to a closed form
on a collar neighborhood U (still denoted by ), and define Y € X(U) by

tyw = 0.

Then Lyw = df = 0, proving (iv).
Finally, if (év) is true, then we can identify X = J; on a collar neighborhood U ~
(—¢,0] x ¢M and write
(1.2.2.5) w=mn + 0, ndt,

with n, € Q2(0M), 0, € Q1 (6M) for t € (—¢,0]. Then, Lxw = 0 implies 7, = 0
and 9t = 0, so that n; = n and 6, = 6 are independent of ¢. Thus, Equation 1.2.2.5
becomes:

w=mn+0Adb,

from which it is easily seen that 6 is a closed admissible for ws, proving (7). O

1.2.3 Normal form around the boundary of symplectic mani-
folds

To prove normal forms around the boundary (or other types of submanifolds), we will
use the following general strategy. Let M be a manifold with boundary ¢ M, endowed
with some geometric structure .. In this section . will be a symplectic structure,
and in the sections below a contact structure respectively a symplectic foliation.

Constructing a normal form for . breaks down in the following steps:

e Induced structure on 0M: The first step is to identify what structure is
induced on the boundary by considering the restriction .#|sps. The induced
structure is there canonically, without any choices, but forgets about the ”in-
formation in the direction transverse to dM”.

e Local model: Starting from (0M,.%|spr) we build a local model (Mjoc, Soc)-
Since, in passing from % to .|aar we forgot some information, the construction
of ¥ usually involves some choices.

e Normal form: The final step is to prove a result saying that locally around
OM, there is an isomorphism

(M7 y) = (Mlocatgﬂloc)y

and that, up to isomorphism, (M., %) is independent of the choices made
in the previous step.
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For a symplectic manifold (M, w) the first step amounts to passing to the d-symplectic
manifold (0M,w|snr), as in Definition 1.2.3. The extra data needed for the second
step consists of a choice of admissible form as in Definition 1.2.4.

The local model can be defined for any ¢-symplectic manifold, not only the boundary
of a symplectic manifold. Given a d-symplectic manifold (N,n) and an admissible
form 6, the local model is defined by:

((—&,0] x N,n+ d(t0)),

which is symplectic for € > 0 small enough. Finally, in the symplectic case the normal
form is well known, see e.g. [36]. We recall the proof for completeness and as a source
of inspiration.

Theorem 1.2.16. For any symplectic manifold (M, w) a neighborhood of its boundary
is isomorphic to the local model associated to (OM,w|anr).

In particular, up to isomorphism the local model does not depend on the choice of
admissible form. The proof of the theorem is a direct consequence of the following
more technical lemma:

Lemma 1.2.17. Let (M,w) be a symplectic manifold with boundary and write n :=
Wlonr. Let 6 € QY (OM) be any admissible form then there exists a collar neighborhood
of the boundary U ~ (—¢,0] x M on which

w =1+ d(t0).

Proof. On a collar neighborhood U ~ (—&,0] x M of the boundary we can write
woi=w=mn+ 0 Adt, wy:=n+d(t),

for n; € Q2(0M), B € Q1 (0M) and t € (—¢,0]. Define a path of closed forms joining
wp and wy by:
ws = (1 — s)wg + sw.

Following the standard Moser trick, we look for an isotopy such that
Piws = wo,
so that ¢, provides the desired change of coordinates.
Since, ws is closed and wo|aonr = wilonm, it follows that
w1 —wo = dA,
for some A\ € Q' (U) (see the proof of Lemma 1.2.14). Differentiating the above

equation we find

d
0= EQS:(WS) = (b: (Lx,ws +ws) = ¢;kd (tx,ws +A),

so it suffices to solve

(1.2.3.1) Lx,w = —A.
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At points in the boundary we have

Wr=n(l—s)dt A Bo ANt +nsdt A0 AT >0,
since both summands are positive volume forms. Hence, w, is symplectic for all
s €[0,1] on a neighborhood of dM. Therefore there is a unique solution to Equation
1.2.3.1, completing the proof. O

1.2.4 Gluing symplectic manifolds

Gluing operations are extremely useful for constructing geometric structures on a
given manifold. They allow us to reduce the problem by cutting a manifold into
smaller pieces. It is usually much simpler to show existence on these pieces and
gluing them back together solving the original problem.

There are many flavors of such gluing operations, but the most elementary is gluing
two manifolds along their boundaries. That is, given two manifolds M; and Mo,
together with a diffeomorphism ¢ : 0M; — 0Ms, identifying their boundaries, we
define

(1.2.4.1) My vy My := (M7 u M) /(z ~ ¢(x)) =€ M.

It is clear that M; Uy My canonically is a topological space. However, endowing it
with a smooth or symplectic structure is slightly more subtle. To make things more
transparent we first recall some of the basics for gluing oriented manifolds, and then
consider the symplectic case.

1.2.4.1 Gluing oriented manifolds

Recall that given an oriented manifold M, the boundary is oriented according to the
”outward normal first” convention. Thus, if we have a collar neighborhood of the
form

U :=(—&,0] x oM,
then these conventions imply o/ = dM as oriented manifolds.

To obtain collar neighborhoods we use the following construction. Let M be a man-
ifold with boundary and X € X(M) be a vector field pointing outwards along the
boundary. Denote its flow by ¢! and define an embedding

6 (~,0] x OM — M, (t,2) > ¢'(2).
Since d¢(d;) = X points outwards, ¢ is orientation preserving.
Similarly, using a vector field W € X(M) pointing inwards with flow 1! we obtain an

(orientation preserving) embedding

Y :[0,6) x OM — M, (t,z) — ¥'(x).
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Remark 1.2.18. Note that the diffeomorphism
F:(—¢,0] x OM — [0,¢) x M, (t,z)— (—t,z)

is orientation preserving and satisfies F'o ¢ = 1). Hence we can identify the two types
of collar neighborhoods defined above. A

Let M7 and M be oriented manifolds whose boundaries are non-empty and diffeo-
morphic by an (orientation preserving) diffeomorphism

¢ 0M, = 57]\/[2,
and define, as before,
My Uy My := (My u Ms)/(x ~ ¢(x)) x € M.
To define a smooth structure, choose collar neighborhoods
(1.2.4.2) ki :(=1,0] x 0My — My, ko :[0,1) x My — Mo,

as above. We use the parametrization [0, €) instead of (—¢, 0] for M» to avoid unnec-
essary signs and to indicate we picture M7 on the left and Ms on the right.

The two collar neighborhoods k; and ks define a map

k1($7t)

t
1.2.4.3) ki Ug ke : OM; x (—=1,1) — My Uy Mo,  (2,t) —
( ) k1 ug ke 1% ( ) 1Up Mo, (z,1) {kg(¢($),t> .

VoA

0
0
and we obtain a unique smooth structure on M; ug My by requiring this map to be
smooth. The following lemma is immediate:

Lemma 1.2.19. The space M := My ug My admits a unique smooth structure and
orientation, with the property that the inclusions M; — M are oriented embeddings
and ki Uy ko is smooth and orientation preserving.

The resulting structure depends on ki,ks and on ¢ but its diffeomorphism class does
not.

1.2.4.2 Gluing symplectic manifolds

Using the normal form from Theorem 1.2.16 we now adapt the gluing operation above
to symplectic manifolds. The precise statement is:

Proposition 1.2.20. Let (M;,w;), i = 1,2 be symplectic manifolds with boundary
and induced 0-symplectic forms n; = w;lom,, as in Definition 1.2.5. Given an orien-
tation reversing diffeomorphism ¢ : 0My — 0M; satisfying

¢*n = 2.

Then, My ug My admits a symplectic structure w which restricts to w; on M;.
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Proof. Choose an admissible form 6; € Q!'(0M;) for n1, as in Definition 1.2.4. By
Lemma 1.2.17 we know that locally around the boundary (Mj,w) is isomorphic to

(1244) ((—6, 0] X 6M1,771 + d(tﬂl)) .

Define 65 := ¢*(01) and note that —65 is an admissible form on dMs. Thus, locally
around the boundary (M, ws) is isomorphic to

((=€,0] x OM3,m2 — d(ths)) .

Now, sending ¢t — —t, and using ¢ to identify (0Mi,n1,01) ~ (0Ma,n2,0), the above
collar is isomorphic to
([0,€) x OMy,m + d(t01)),

which glues smoothly to the collar from Equation 1.2.4.4. O

Example 1.2.21. Recall the setup from Example 1.2.12, where we showed that the
boundary of the symplectic manifold (Ms.,w) is a principial S'-bundle. We use
it to describe the standard symplectic cut construction from [74, 86], which is a
generalization of the symplectic blowup.

Thus, consider a (left) St-action p : St x M — M on a symplectic manifold (M?",w),
with moment map p: M — R. As in Example 1.2.12, suppose that ¢ € R is a regular
value of p and that the S'-action on the submanifold M, := p=!(c) = M is free.

Then 7 : M, — ]\76 is a principal S'-bundle, where the right action is defined by:
z-X:=pya(z), VreM,\eS.

Thus if § € Q(M,) is a connection 1-form and w,. := w|ys, = 7*& then the orientation
on M, is defined by declaring

0 Awlt>0.

We claim that with our usual orientation conventions, the boundary of M. is oriented
as M,.. To see this note that the infinitesimal generator X € X(M.) of the (right)
action satisfies

Lxwe = —dp.
Choose a vector field Y € X(M) satisfying
du(Y)lar, =1,

which in particular implies that Y is pointing inwards along the boundary of Ms..
Define 0 := tyw|y;, € Q*(M,) and observe that

0(X) = w(Y, X) = du(Y) = 1.

Hence, # is a connection 1-form and
Lywn‘Mc > 0.

Since Y is pointing inwards, this means that the induced d-symplectic boundary of
(Mx.,w) equals o
(Mc,wc = W*G)) .
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Since 7 : M, — ]\Z is a principal S'-bundle, we can consider the symplectic manifold
(Mc Xs1 D2,Q) s

defined similarly to the manifold from Equation 1.2.2.3 in Example 1.2.12, using the
formula from Equation 1.2.2.2 with ¢ = 0. Then the induced d-symplectic boundary
is

(M., 7).

Hence, Proposition 1.2.20 applies and we can glue (Msc,w|as.) to (M, xgi D2, €),
and the resulting symplectic manifold is, by definition, the symplectic cut of (M, w, p)
along c. A

Example 1.2.22. Using the above gluing construction together and the discus-
sion from Example 1.2.13, we describe the standard Gompf connected sum, from
[59]. Let (M;,w;), i = 1,2 be symplectic manifold with codimension-2 submanifolds
(Bi,wp,) and ¢ : By — By an orientation preserving diffeomorphism. Moreover,
suppose that

(i) wp, = ¢*wa,;
(i) ¢*ci(vp,) = —c1(vp,) € H*(By; Z);

where ¢;(vp,) denotes the first Chern class of the symplectic normal bundle as in
Example 1.2.13. The condition on the Chern class implies that P is isomorphic to
P1. As before, a neighborhood of B; is isomorphic to

(Pi Xg1 (C,ﬁi),
following Equation 1.2.2.3.

The above conditions imply that the d-symplectic boundary of the neighborhood of
By is given by -
(P, m*wp,) ~ (Pl,ﬂ*wgl) .

Thus, the symplectic manifolds M;\P; xg1 D?, i = 1,2, satisfy the conditions of
Proposition 1.2.20 and can be glued along their boundaries. Hence, we conclude that
the Gompf connected sum,

(MhBl)#(MQ,Bg) = (Ml\Pl X1 ]D)Q) Uy (MQ\PQ Xst DQ) s

where 1) : P, = P, is induced by ¢, carries a symplectic form w which restricts to w;
on each of the pieces. A

Remark 1.2.23. The above condition on the Chern classes can be slightly weakened,
as it suffices that
¢*c1(vp,) = —ne1(va,),
for some n € N. In this case we consider L& := P xg C, where now the S'-action
on C is given by
Az:i=N"z.

Then ¢1 (L&) = ney (P), and the rest of the construction goes through as before. A
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1.3 Contact structures and their boundaries

1.3.1 Contact structures

In this section we recall the basic definitions from contact geometry. We take some
care in separating the notions of ”contact form” and ”contact structure” in our dis-
cussion. This is convenient for studying boundaries of contact manifold and gluing
constructions, since the extra freedom of working with structures allows us to prove
more general results. Secondly, since we always work with oriented manifolds, we
point out in which cases a contact structure canonically induces an orientation on the
underlying manifold.

Definition 1.3.1. A contact structure on M?"*! is a codimension one distribution
& < TM such that the associated curvature map cg : A°¢ — TM /€, which on sections
is given by

(1.3.1.1) XAY > [X,Y]mod & X,YeT(6),

is non-degenerate.

In general, even though M is always assumed to be oriented, we do not make any
assumptions about the (co-)orientability of &.

Definition 1.3.2. A contact structure £ < TM is said to be coorientable/cooriented
if TM /€ is orientable/oriented.

By a coorientation we mean a trivialization of (T'M/£)*, i.e. a nowhere vanishing
section. This is equivalent to a choice of orientation o on TM /€.

Lemma 1.3.3. Given a contact structure & on M?*"*+1, the curvature map ce A% —
TM /¢ induces an isomorphism of vector bundles

A?E S @U(TM /).

Proof. Given vector bundles E, F' over M denote by Py (E, F') the vector bundle with
fiber
Pk(E, F)w = Pk(E:m F:r);

the space of homogeneous polynomial maps of order k. That is, the space of maps
f: E, — F, satisfying f(tv) = t*f(v), for all v e E, and t € R,

Since the curvature c¢ : A%2¢ — TM/¢ is non-degenerate it induces a bundle map
(TM/€)* — (A*"€)* given by

o N"(0oce) e (A*E)*, VYoe (TM/E)*.

This map is homogeneous of degree n and a fiberwise isomorphism so it corresponds
to a nowhere vanishing section of P,,((T'M /£)*, A?"¢*). In turn this bundle is canon-
ically isomorphic to the bundle @™ (T M /£) ® A?"£* ~ Hom(A?"E, @ T M /€), proving
the claim. O
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Using this lemma we obtain the following:

Corollary 1.3.4. Let ¢ be a coorientable contact structure on a manifold M?"+!
then:

o Ifn is even:

(i) € has a canonical orientation;

(ii) There is a canonical correspondence between coorientations of & and ori-
entations on M.

e Ifn is odd:

(11i) TM has a canonical orientation;

(iv) There is a canonical correspondence between coorientations of £ and ori-
entations of €.

Proof. Recall that given a vector bundle E we have the associated determinant bundle
det(FE) := A'PE, so that orientations of F correspond to nowhere vanishing sections
of det(E) up to scaling by a positive conformal factor.

Choosing a splitting TM = £ @ TM /¢, we have an isomorphism

det(§) @ TM /¢ = det(TM), (X1 A AX) QY > X1 Ao A X, AY.

Observe that this isomorphism does not depend on the choice of splitting. Indeed,
any two right splittings of

0—¢&—TM— TM/E—0,

differ by a section of £&. This contribution gets killed under the above map since it
corresponds to an element in A"*1¢ = 0. Together with the isomorphism

det(§) ~ @"TMYS,

from Lemma 1.3.3 this yields a canonical isomorphism

(1.3.1.2) det(TM) ~ " TM/E.

Any nowhere vanishing section X € T'(T'M/£) gives a nowhere vanishing section
X :=@"X e [(Q"TM/£) ~ A?"¢, satisfying

X = (-1)"X.

Hence, if n is even any coorientation of ¢ induces the same orientation on £ while
opposite coorientations of £ induce opposite orientations on T'M. The proof is similar
when n is odd. O

Remark 1.3.5. Recall from Section 1.1.1 that we always assume M to be oriented,
and that its orientation agrees with the one induced by £. By Corollary 1.3.4 this
means that on a manifold M of dimension 2n + 1 we have:
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e If n is odd and ¢ is a contact structure on M, then M does not admit any
contact structure (conform the orientation conventions above). Furthermore if £
is coorientable, we are free to choose the coorientation, since both choices induce
the same orientation on M. Therefore, if we want to be precise, a cooriented
contact structure is denoted by a pair (£, o), where ¢ is an orientation on TM /€.

e If n is even £ only induces an orientation on M after we choose an orientation
on TM/E. Thus, there is only one possible choice of coorientation so that the
induces orientation matches that of M. This also implies that (£, o) is a contact
structure on M if and only if (£, —0) is a contact structure on M.

A

The definition of a contact structure can be rephrased in terms of differential forms
which are often easier to handle than distributions. For a general contact structure
& the projection map

TM 5 TMJE,

can be interpreted as a bundle valued differential form 7 € Q(M,TM /€) satisfying
¢ = kermw. If £ is coorientable then there exists a nowhere vanishing section s €
D(TM/£)* and the composition

TM > TM/¢ 5 M x R,

defines a form a € Q'(M) satisfying & = kera. Conversely, observe that any such
form defines a trivialization TM /¢ — M x R by:

(1.3.1.3) X > o(X), VX eD(TMJE).

If £ is cooriented, we will always assume that « is chosen so that the map above is
an oriented isomorphism, where M x R has the standard orientation.

For X,Y € T'(¢) we have
da(X7 Y) = _a([X7 Y]) = Cf(Xa Y)a

using the above trivialization of TM /¢. Hence, the condition that c¢ is non-degenerate
translates into
a A da™ #0.

Moreover, if £ is cooriented, then the trivialization from Equation 1.3.1.3 is oriented
if and only if
a A da™ > 0.

The sign in the above equation makes sense since a A da™ is a volume form and can
be compared to any positive volume form on M.

Definition 1.3.6. A contact form for a (coorientable) contact structure & on M
is a form a € QY (M) satisfying
& =kera.

If we talk about a contact form o, without reference to any contact structure, then it
is understood that we consider £ := ker a together with the coorientation induced by
a.
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Remark 1.3.7. If the contact structure £ comes with a fixed coorientation, and « is
a contact form for £, then we always assume the coorientation of ¢ matches the one
induced by « as in Equation 1.3.1.3. Note that with these conventions a contact form
for a cooriented contact structure (or a contact form without reference to a contact
structure) always satisfies

a A da™ > 0.

Example 1.3.8. Some of the basic examples of contact manifolds are:

e Euclidean space: Let (z1,¥y1,-..,%n,Yn, 2) denote the standard coordinates
on R?"*1, The form

n
a:=dz + Z x;dy;,
i=1
is called the standard contact form. The contact analogue of Darboux’s theo-
rem, as stated for example in [8], says that any contact form locally looks like
the standard one. Thus, contact structures have no local invariants.

e Tori: Let (r,y,2) denote the standard angular coordinates on T3. Then, for
each k € N the form

ay := dz + sin(kz)dx + cos(kz)dy,

defines a contact structure. The naive generalization of this formula to higher
dimensional tori does not define a contact form. Nevertheless, it was shown by
Bourgeois, see [16], that all odd dimensional tori admit a contact structure. His
result states that given a contact manifold (M, §) with dim M > 3, the product
M x ¥4 admits a contact structure, for any surface 3, of genus at least one.

e Products: For dimensional reasons the product of two contact manifolds can-
not be contact again. Instead, let (M, «) be a contact manifold and (W, d\) an
exact symplectic manifold. Then,

(M xW,a:=a+ ),

is again contact. For example, interpreting (S',dz) as a contact manifold, it
follows that for any exact symplectic manifold (W, d\), the product S! x W is
contact.

e Spheres: Let (M,w) be a symplectic manifold and ¥ < M a hypersurface.
Assume there exists a vector field X € X(M) which is transverse to ¥ and
satisfies Lxw = w. Then, the form

(1.3.1.4) a:= (1xw) s,

defines a contact structure on . In this case we say that X is a hypersurface
of contact type.
In particular this applies to the spheres S?*+! < R2". Indeed, let w be the
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standard symplectic form on R?"as in Equation 1.2.1.1, and observe that the
Euler vector field

X i= Y 20, + yidy,,
i
is transverse to S?"~1 and satisfies £Lxw = w.
In fact, any contact manifold can obtained as a hypersurface of contact type;
given a contact form a on M, consider the symplectic manifold

(R x M,w := d(eta)) ,

where ¢ denotes the coordinate on R, called the symplectization of (M, «).
Then, 0; is transverse to {0} x M, satisfies L5,w = w and the induced contact
form is a.

e Contact elements: A contact element on a manifold M is a hyperplane &, €
T,M for some p € M. Any contact element can be written as the kernel of
a non-zero covector o, € T];“M , which is unique up to scaling by a non-zero
constant. Thus the space of all contact elements can be identified with PT* M,
the projectivized cotangent bundle. It comes equipped with a canonical contact
structure defined by the rule

g[a] = ker(a o dﬂ') c T[Q]PT*M,

where 7 : T* M — M denotes the projection.

The above formula resembles that of the tautological form A\ from Equation
1.2.1.2. Viewing the unit sphere bundle ST*M as a hypersurface in the sym-
plectic manifold (T*M,d)), the argument from the previous example shows
that A|sp#as defines a contact structure. Moreover, this contact structure de-
scends to the quotient PT* M and equals the one from the previous equation.

A

The choice of contact form « for a given contact structure £ is not unique. Indeed,
let f e C*(M) be nowhere vanishing, then ker fa = ker a and

(fa) Ad(fa)" = f"la A da™ # 0.

Thus, a contact form is unique up to multiplication by a nowhere vanishing function,
or a strictly positive function if we want to preserve the coorientation. Given a
differential form o € Q!(M) we denote by [a] the equivalence class of the equivalence
relation

a~ad = o = fa,

for a nowhere vanishing function f : M — R\{0}. Similarly, we denote by [a]; the
equivalence class where we only allow multiplication by positive functions. Then the
above discussion implies:

Corollary 1.3.9. Given a manifold M there are a one-to-one correspondences be-
tween:



1.3. CONTACT STRUCTURES AND THEIR BOUNDARIES 25

(i) Coorientable contact structures & and equivalence classes [a] where a is a con-
tact form for &;

(i1) Cooriented contact structures & and equivalence classes [a]+ where o is a coori-
ented contact form for €. Under this correspondence changing the coorientation
of & is the same thing as changing [a]4+ to [—a]4.

Although equivalent contact forms induce the same contact structure, they can have
very different properties. For example, any contact form has a distinguished vector
field associated to it, spanning the kernel of da, and which is not preserved under
equivalence.

Definition 1.3.10. The Reeb vector field of a contact form o € QY (M) is the
unique vector field satisfying

a(R)=1, trda=0.

As claimed above the Reeb vector field is not preserved under equivalence, and the
change can be computed as follows. If o/ = fa for a function f: M — R\{0} then

1
(1.3.1.5) Ry — ?Ra +V,
where V € X(M) is the unique vector field satisfying
df — (L a
a(V)=0, yda= & = Lrof)a (sz“f) .

1.3.2 Contact structures with transverse boundaries

Let £ be a contact structure on a manifold M with boundary, and consider the
intersection with the tangent space of the boundary

C:=&EnT(OM).
In general ( is a singular distribution in the sense that it does not have constant rank.
Definition 1.3.11. We say that a contact manifold (M, &) has transverse bound-
ary if EMOM.

In the transverse case, € is an honest codimension-1 distribution on dM. The associ-
ated curvature c¢ : A2 — T(0M)/(, is defined as in Equation 1.3.1.1. Since £éMOM
there is short exact sequence

0—¢—>ToM — (TM/¢)|onr — 0,
giving a canonical isomorphism
(1.3.2.1) T(OM)/¢ ~ (TM/E)|ont,

and, under this identification, c¢ is just the restriction of c¢ to ¢. This implies that c¢
has one-dimensional kernel so that the induced structure on the transverse boundary
of contact manifold is the following:
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Definition 1.3.12. A 0-contact structure on N?" is a codimension one distribu-
tion ¢ € T'N for which the curvature c¢ is mazimally non-degenerate.

Because ¢ is odd dimensional, this is equivalent to c¢ having 1-dimensional kernel.

As for contact structures, we make no a priori assumptions on the orientability of
TN/C.

Definition 1.3.13. An 0-contact structure { < TN 1is said to be coorientable
(resp.cooriented) if TN /C is orientable (resp. oriented).

Note that, by Equation 1.3.2.1, the d-contact structure on the boundary of a contact
manifold inherits a coorientation from &.

For an abstract d-contact structure (N,(), a coorientation can be defined using a
differential form, analogous to the discussion of the previous section. That is, if
TN /( is orientable then so is its dual, and any nowhere vanishing section of (TN /{)*
defines a form B € QY(N) satisfying ¢ = ker 8. As in Equation 1.3.1.3, such a form
induces a coorientation on ( by requiring the isomorphism

(1.3.2.2) TN/¢ = N x R,

to be orientation preserving, where N x R has the standard orientation.

Definition 1.3.14. A 0-contact form for a (coorientable) 0-contact structure ¢ on
N is a (nowhere vanishing) form 3 € QY(N) satisfying

¢ =kerp, dimkerdg|. =1

If we talk about a 0-contact form B, without reference to any 0-contact structure, then
it is understood that we consider  := ker 8 together with the coorientation induced

by 5.

Remark 1.3.15. As in Remark 1.3.7, if the 0-contact structure ¢ is cooriented, and
[ is a 0-contact form for {, then we assume the coorientation of { matches the one
induced by S, as in Equation 1.3.2.2. A

The above condition allows both for d3™ = 0 and dS™ # 0 to happen. Recall that
the Reeb vector field of a contact form «, as defined in Defintion 1.3.10 spans the
1-dimensional kernel of da. Hence, if (M,{ := kera) is a contact manifold with
boundary, then the induced o0-contact form 8 := a|spns satisfies df™ = 0 if and only
if the Reeb vector field is tangent to the boundary. If the contact structure & is
transverse to the boundary such contact forms always exist, as shown in the following
lemma. This is very convenient since many computations simplify if the top power
of df vanishes.

Lemma 1.3.16. Let (M,&) be a (cooriented) contact manifold with EhM. Then

there exists a contact form « such that £ = ker o and R, is tangent to OM.

Proof. Since EMOM, there exists X € X(M), in the kernel of o and pointing outwards
along the boundary.
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Define ay := alapr and 6 := txdalsps, then
n—1 1 n
O Aoy nday ™ = EL)((O( A da™)|anm > 0.

Hence, we can apply Theorem 1.3.19 (to the d-contact manifold (0M, ap) with ad-
missible form ) to find a collar neighborhood U ~ (—¢,0] x dM of the boundary on
which

a = f(as +t0),
for f e C*(U) a smooth strictly positive function.

Then, choosing a positive function f € C®(M) satisfying

Y on 0M x [0, §)
P71 on M\(OM x [0,%)”

we have

1
a:=-a=0+10,
g

near the boundary. Moreover, at points in the boundary, d& = d8 + dt A € implying
ker da = ker d8 which is tangent to dM. O

As before, multiplying a 0-contact form by a nowhere vanishing function does not
change the induced 0-contact structure. In the notation of Corollary 1.3.9 we have:

Lemma 1.3.17. Given a manifold N there are one-to-one correspondences between:

(i) d-contact structures ¢ and equivalence classes [B] where § is a 0-contact form

for ¢;

(ii) Cooriented 0-contact structures ¢ and equivalence classes [f]+ where B is a
cooriented 0-contact form for (.

In contrast with contact structures, a cooriented even contact structure does not
induce an orientation on IV, so that the analogue of Corollary 1.3.4 does not hold.
The reason for this is that ¢, has a 1-dimensional kernel, which does not have a
canonical orientation. This is reflected in the fact that an J-contact form does not
induce a volume form; instead we need to choose an extra piece of data:

Definition 1.3.18. An admissible form for an 0-contact form g on N, is a form
0 e QY(N) satisfying
OABAdSL>0.

Admissible forms will be studied more closely in Section 1.4.1. For now, it suffices to
think of them as an auxillary piece of data needed to define the local model associated
to the d-contact manifold.
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1.3.2.1 Statement of the normal form

Let (M,€) be a contact structure with transverse boundary, a € Q!(M) a contact
form representing ¢ and denote by ap := alsps the induced d-contact form. For any
choice of admissible form 6 € Q!(0M) consider the local model

(1.3.2.3) ((—&,0] x OM, o := g + 1),
which defines a contact structure for € > 0 small enough.

Theorem 1.3.19. Any contact structure with transverse boundary (Definition 1.3.11)
is isomorphic (as a contact structure) to its local model on a neighborhood of the
boundary.

In particular, up to isomorphism of contact structures, the local model is independent
of the choice of the contact form a and the admissible form.

Remark 1.3.20. The previous local model around the transverse boundary of a
contact manifold (M, := ker «), with induced d-contact structure & := & nT(OM),
can be defined more invariantly as follows. The restriction of the curvature c¢ from
Defintition 1.3.1 to £, has a 1-dimensional kernel

L :=Xkercele, = kerdagle, € TOM.

Viewing L as a subbundle of TOM, it comes with a projection 7 : L — M, making
it into a rank 1 vector bundle. Thus, L defines a 1-dimensional foliation £ on 0M,
and the dual bundle L*, can be viewed as the leafwise cotangent bundle. The total
space of w: L* — 0M carries a canonical contact structure defined by

o= 150 + Aean,
where A.qn, € QY(T*L) denotes the tautological form.

Furthermore, L has a canonical orientation, for which V' € L,, p € 0M, is positive if
and only if

(das)p(X,V) >0,
where X e T, M is any outward pointing vector. Hence, L and L* are trivializable.
A choice of vector field X e X(M) transverse to the boundary corresponds to a
trivialization of T* L, that is, a nowhere vanishing section § € T'(T*L) defined by

B(z) := (txda)|n,, xe€dM.

In this trivialization T*L ~ R x dM, the contact structure £ is represented by the
local model from Equation 1.3.2.3. A

The proof of the theorem follows immediately from the following, more technical,
proposition.

Proposition 1.3.21. Let (M,£) be a contact manifold with transverse boundary
(Definition 1.5.11), and o € QY (M) a contact form representing it. Let ag = |ans
be the induced 0-contact form (Definition 1.5.14) and 6 € Q*(OM) and admissible
form (Definition 1.3.18). Then there ezists a collar neighborhood U ~ (—¢,0] x OM
on which

a = flag +t0),

for f e C®(U) strictly positive and satisfying flom = 1.
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1.3.2.2 Proof of the normal form

The key ingredient in the proof is the following analogue of Giroux’s theorem for 3-
dimensional contact manifolds from [56]. The proof in higher dimensions given below
is essentially the same as that for the 3-dimensional case from [53]. We have included
it here for the sake of completeness.

Theorem 1.3.22. Fori= 0,1, let S; be a closed hypersurface in a contact manifold
(M;, & :=ker ;) and ¢ : So — S1 a diffeomorphism satisfying

¢*(aals,) = aols,-

Then there exists a contactomorphism ¢ : Uy — Uy of suitable open neighborhoods of
the hypersurfaces, such that |s, = ¢.

Proof. Following our usual convention we assume that M; and the hypersurfaces are
oriented. This implies that a neighborhood of S; can be identified with (—¢,¢) x S;
where S; corresponds to {0} x S;. Extend ¢ to a diffeomorphism (still denoted by
@) between these open neighborhoods of S;, and consider the contact forms «g and
¢*ay. In the above coordinates any contact form can be written as

a = B + udt,

where f; € Q'(Sp), us € C*(Sp) and t € (—¢,¢). The contact condition then becomes:

(1.3.2.4) an (da)” = (—nﬁt A Bt +nb A dug + utdﬂr) A (dﬁr)"*1 Adr > 0.

Note that this equation is linear in Bt and u;. Hence, convex linear combinations of
solutions of Equation 1.3.2.4 with the same Sy (and dfy) will again be solutions for
small |¢|. Hence taking e small enough,

as = (1—8)ag + s¢p*a1, s€]0,1],

is a solution for all s. We now use Moser’s trick to find an isotopy s such that
Y¥a, = A\saqp. Differentiating the above equation and setting u, := (% log \) o ¢t
we see that we have to find a vector field X, satisfying

(1325) ds + EXSO[s = HsQs.

Furthermore, we want X;|s, = 0 which ensures both that X can be integrated up
to time one around Sy and that ¢|s, = ¢. Write

Xs = HsRs + Ysa

with R4 the Reeb vector field of ay, Yy € ker oy and Hy a family of smooth functions.
Then, Equation 1.3.2.5 becomes

0s +dH; + ty.das = pros.

For a fixed H, this equation is solved by first applying it to R, giving us, and then
noting that we find a unique Y € ker ag by non-degeneracy of da|ker a, -



30 CHAPTER 1. CONSTRUCTIONS

We want to choose Hy in such a way that so that X|g, = 0. This condition translates
into Hs|s, = 0 and Ys|s, = 0. The latter can be satisfied by requiring

as +dH, =0, on Sy

which is automatically satisfied if Hg|g, = 0 since és|rs, = 0. Therefore it is possible
to find a suitable Hg and we get a solution X which by compactness of Sy can be
integrated up to time one on a neighborhood of Sy. The desired map is given by

Y= ¢poy. O
The proof of the normal form now follows almost immediately.

Proof of Proposition 1.5.21. Observe that & := ay + ¢ is contact since
anda™ =ndt A B Aas A (dag +tdB) 1 >0,

and alop = ap. Thus we can apply Theorem 1.3.22 with ¢ = id, to obtain the
required collar neighborhood. O

1.3.3 Contact structures with singular boundaries

Let & be a contact structure on M, and denote the intersection with the boundary by
C:=&nT(0OM).

In the previous section we assumed the boundary was regular so that  defines a
codimension-1 distribution on dM. However, in general £ can have points where it is
tangent to M. If this happens we say that & has singular boundary, to distinguish
it from the previous situation.

For a singular boundary, ¢ does not define a distribution in the classical sense. How-
ever, if a is a contact form representing &, then the restriction ap := «|sps makes
sense both in the regular and singular case. Thus, for singular boundaries we work
only with differential forms, and make the following definition:

Definition 1.3.23. A (singular) 0-contact form on N*" is a one form 3 € QY(N)
such that dB|ker g 18 mazimally nondegenerate.

Note that, in case § is nowhere vanishing this recovers Definition 1.3.14. On the other
hand, in the above definition § is allowed to vanish, so if p € N then:

(i) if B, = 0 then (dB), is nondegerate on T;, N or equivalently (d3); # 0. In
particular
dim ker dS|ker g = 0;

(ii) if B, # 0 then S5, A dﬁ;"l # 0 or equivalently

dim ker df|ker g = 1.
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This means that we have inclusions:

{peN|[B,~ndBy ' =0} c{peN|B,=0}c{peN|dB) # 0}

In order to write down a local model we need to make some choices, analogous to the
choice of admissible form for a regular 0-contact form.

Definition 1.3.24. Given a singular even contact form B on a manifold N°" an
admissible pair (0,u) for B consists of :

(i) A form 0 € QY(N) satisfying

OABAdB™ 20, (OABAdB"™),>0 « B, 0.

(ii) A function ue C®(N) satisfying

udf” =0, B,=0 = (udf"), > 0.

Just as for non-singular even contact forms admissible pairs always exist:

Lemma 1.3.25. For any singular even contact manifold (N, 3) there exists an ad-
missible pair (0,u).

Proof. Fix a volume form 2 on N, compatible with the orientation on N, giving
an isomorphism X(N) = Q?""1(N) by X — 1xQ. Hence, we can find V € X(N)
satisfying

Q=B Adsm

Pick a metric (-,-) on N and define § € Q'(N) by
0 :=<V,).

Then (V) = 0 and §(V) > 0 at points where 3, A dﬁgil # 0. In particular at points
where 8, # 0. This implies that

OABAAB"™™ =0 Ay Q=—1y(0AQ)+0V)Q=0(V)Q =0,

and 6 A B A dB"! > 0 at points where 3, # 0.
For the second part define uw € C*(N) by

uf) = (dp)".
Then
(1.3.3.1) udfB™ = u*Q =0,

and udB™ > 0 at points where u # 0 or equivalently at points where dg" # 0. O
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1.3.3.1 Statement of the normal form

Let 8 be a singular even contact form on N. Then, for any admissible pair (u, )
consider the local model,

((—&,0] x N, := B+ t0 + d(tu)),

which is a contact for € small enough. Indeed:

anda™i—o = (B +udt) A (dB+dt A0O)"
= (B +udt) A (dB™ +ndB"' A dt A 6)
=ndt A0 ABAdBY ! +udt A dB™
(1.3.3.2) =dt A (nh A B A gt + u2Q) >0,

where we used Equation 1.3.3.1. Hence, Equation 1.3.3.2 is zero if both 8 A 6 A
dB™"~! = 0 and u = 0. However, these conditions are equivalent to dj3, being non-
degenerate, and /3, being zero respectively, which cannot happen at the same time.
Thus, a A da™ > 0 adt ¢t = 0 and hence also for ¢t € (—¢,0] if € > 0 is small enough.

Theorem 1.3.26. Any contact structure with (singular) boundary is isomorphic to
its local model on a neighborhood of the boundary.

Of course, this theorem also covers regular boundaries. In this case we can choose
any function u for the admissible pair (6, u), in particular v = 0 which recovers the
regular local model. The proof is a direct consequence of the following.

Lemma 1.3.27. Let a be a contact form on a manifold with boundary M, and
ap = a|an the induced (singular) 0-contact form. Then, for any choice of admissible
pair (u, ) there exists a collar neighborhood of the boundary U ~ (—¢,0] x 0M, on
which

a = f(ag+t0 + d(tu)),

for a positive function f € C*(U) satisfying flop = 1.
Proof. We checked in Equation 1.3.3.2 that & := «ap + t0 + d(tu) defines a contact

structure and by definition &|sps = «. Hence, the proof follows by applying Theorem
1.3.22 with ¢ = id. O

1.3.4 Gluing contact structures

Using the normal form for boundaries of contact manifolds we can glue contact
manifolds along their (possibly singular) boundaries. Recall from Section 1.2.4.1
that, given manifolds M;, ¢ = 1,2, and an orientation reversing diffeomorphism
¢ : OMy; — 0M,, we obtain a manifold

Ml Ug M2 = (Ml [ MQ) /I‘ ~ ¢($), Vo € (7M1
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The resulting smooth structure on the gluing depends on ¢ and the choice of collar
neighborhoods k; : (—¢,0] x 0M; — M;. Note that in the statement below we have
surpressed these choices from the notation.

Proposition 1.3.28. Let (M;,&;), i = 1,2, be a contact manifold with non-empty
boundary, and induced 0-contact structure £5; 1= & N T'OM;, as in Definition 1.3.12.
Assume there exists an orientation reversing diffeomorphism ¢ : 0My; — 0My, such
that

¢*§a,1 = fa,2~

Then there exists a contact structure & on
My vy My := (M;y u M) /z ~ ¢(x), xe€dM,

which restricts to & on M;.

Proof. Choose contact forms «; for &, and denote 5; := «;|aar,. Then, because ¢
preserves the 0-contact structures, we have

¢*/B2 = fﬂlv

for some positive function f € C*(0M;). By Lemma 1.3.27 and rescaling as, we can
find an admissible pair (62, us) and a collar neighborhood isomorphic to

((—E,O] x 0Ms, s + tls + d(tuz)).
Under the map t — —t this is isomorphic to
(1.34.1) ([0,€) x OMa, Ba + t(—62) + d(t(—u2))).

More precisely, a computation similar to Equation 1.3.3.2 shows that for & := [y —
t0s — d(tuz) we have

a A da™ = —dt A (nfy A Bo A dBET! +42Q),

where €2 is a volume form on 0M> and thus a negative volume form on ¢M;. Together
with the fact that 3 A By A dﬂg_l < 0 on dM5 and all intervals in R are oriented by
Ot, we see that @ A d@™ > 0 on [0,g) x OM,.

Rescaling a1, and thus 1, we can assume that ¢*(52) = 51. If we denote
(01 := ¢*(—02),u1 := ¢*(~u2)),
then using ¢ we can identify the neighborhood in Equation 1.3.4.1 with

([0,8) X 0M1,cvr = [31 + t01 + d(tul))

It follows directly from Definition 1.3.24 that if (¢,u) is an admissible pair for a
singular d-contact form 8 on N then (—6, —u) is an admissible pair for 8 on N. Hence,
since (—6a, —us) is admissible for 8y on dMa, it follows that (61, u;) is admissible for
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By on 0M;. By Lemma 1.3.27, and possibly rescaling «;, we find an isomorphism
between an open neighborhood of the boundary of 0M; and

((—E,O] x OMy,aq := (1 + 01 + d(tul)).

We glue the collar neighborhoods and define a cooriented contact structure on it by

((—5,5) x OMy,«:= 31 + 01 + d(tul)).

1.4 Contact forms and their boundaries

In this section we consider boundaries of manifolds endowed with a contact form,
and gluing such manifolds. Unlike for symplectic and contact structures, for contact
forms a neighborhood of the boundary is not determined only by the data induced
on the boundary. Thus, there is no general normal form, and instead we distinguish
several special kind of boundaries. For every type the structure on the boundary can
be encoded in a pair of differential forms, and can therefore be treated in a uniform
manner.

The lack of a normal form makes gluing contact forms much harder. We need to
impose that their boundaries are of the special types mentioned before, and the types
need to match. However, the analogy with the symplectic case can be partially saved.
We define a notion of contact cobordism and show that by gluing topologically trivial
cobordisms we can pass from one type of boundary to another.

Lastly, these observations are used to construct contact forms on abstract open book
decompositions. The reader unfamiliar with open book decompositions is refered to
Appendix 1.9 for the definition and their basic properties.

1.4.1 Contact forms with regular boundaries

Consider a contact form a on a manifold with boundary and assume that ker ahoM.
Using a vector field X € X(M) in the kernel of « and transverse to 0M we define
a collar neighborhood (—¢,0] x dM (on which X is identified with ;). Using these
coordinates we can write down the Taylor expension of « in the interval coordinate
t € (—e,0] at ¢ = 0. This gives:

(1.4.1.1) a=v+tu+ O(t?),

for some v,u € Q*(OM) and f € C®(0M). Note that there are no terms containing
dt since X € ker a. In terms of this expansion the contact condition for o becomes:

0<anda™=ndt Aunvad”™t+0O().

From this perspective, the simplest possible contact forms are those with a linear
Taylor expansion. Indeed, all the terms except the constant term u are zero, in the



1.4. CONTACT FORMS AND THEIR BOUNDARIES 35

expansion of Equation 1.4.1.1, then a cannot satisfy the contact condition. Further-
more, close to the boundary the first summand in the above equation dominates the
terms of order O(t), so that the contact condition can be satisfied.

Definition 1.4.1. A contact form o on M is regular at the boundary, if there exists
a collar neighborhood U ~ (—&,0] x M on which we have:

(1.4.1.2) o =tu+ v,

for some u,v € QY (OM), and where s denotes the coordinate on (—¢,0].

As observed above, the contact condition for a regular contact form implies:
aAda™ =ndt Aunv A (tdu+do)" ! > 0.

Since this is an open condition it suffices to require it at points in the boundary, where
t = 0. Then, by shrinking the collar neighborhood, it holds everywhere. Therefore,
the conditions on v and v can be packed into the following definition, which does not
make reference to a boundary:

Definition 1.4.2. A 0-contact pair (u,v) on a manifold N?" is a pair of forms
u,v € QY(N) satisfying
unvAde" >0,

Remark 1.4.3. A O-contact pair is similar to the data induced on the boundary of a
(regular) symplectic foliated manifolds, see Definition 1.6.2. In both cases, the data
can be encoded in a triple (u,v,n), with u,v € Q'(N) and n € Q?(N), satisfying

1

uAvANTT > 0.

Depending on the situation the forms can be closed, exact or have various other
relations between them. However, the essential structure is that of a codimension-2
almost symplectic distribution (£, w) defined by

E:=kerunkerv, w:=n|.

A

Remark 1.4.4. For later reference we compute explicitely the Reeb vector field, as
in Definition 1.3.10, of a regular contact form. Let (u,v) be a d-contact pair on N27,
and consider M := (—&,0] x N with the contact form

a=tu+v.

Let Ry, R, € X(IN) be defined by:

tpy,u=1, tp,v=0, g, dv=0, and (p,u=0, tp,v=1 (g,dv=0.

The Reeb vector field R of o can be computed explicitely in the following cases.
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(i) If dv™ = 0 then
R =R, + X; + fi0y,

where X; € ker u m ker v is uniquely defined by
tx,(dv + tdu) = teg,du, on keru n kerw,

and
ft = td’U,(Ru7RU + Xt)
(ii) If do™ > 0 then
1

R=?(Xt—8t),

where f e C®(N) and X; € X(N) are uniquely defined by
tx, (dv +tdu) =u, f:=v(Xy).

Observe that the Reeb vector field is tangent to the boundary if and only if (dv)™ =
(da|aM)" = 0. A

Note that v is a d-contact form as in Definition 1.3.14, and that « is an admissible
form as in Definition 1.3.18. Given a fixed 0-contact form, there are many admissible
forms completing it to a d-contact pair. The following is analogous to Lemma 1.2.5
for symplectic structures.

Lemma 1.4.5. If v is a 0-contact form on N?", then:

(i) There exists an admissible form u;

(ii) Given a fized admissible form u, there is a 1-1 correspondence between admissible
forms and triples (f,g,X), where f,g € C®(N) with g > 0, and X € X(N) with
X € keru n kerv, given by the formula:

0 = fv+ gu+txdv.
Proof. The proof is analogous to that of Lemma 1.2.5 and Lemma 1.6.3. O
For regular contact forms Equation 1.4.1.2 implies that the admissible form is ”the
variation of « transverse to the boundary”, that is,

u= Ly alonm.

In most of the cases we consider, this property also holds for non-regular boundaries.

Lemma 1.4.6. Let a be a contact form on M?"*1 such that ker ahoM, and v := a;
the induced 0-contact form. Then, for any vector field X € X(M) satisfying X € ker «
and transverse to the boundary,

u = 1xda|an,
is an admissible form for v.

Conversely, assuming that the Reeb vector field R of « is everywhere tangent to 0M
for any admissible form u there exists a vector field X € X(M) such that:

UZLxda|aM, XAoM.
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Proof. The proof of Lemma 1.6.6 is purely linear algebra for a triple (u, v, w) satisfying
uAvAw' !t >0. Thus, taking w = duv, it carries over to the contact case. O

To phrase the regularity condition (Definition 1.4.1) in a coordinate invariant way,
recall that a choice of collar neighborhood U ~ (—¢,0] x 0M is equivalent to a choice
of vector field X € X(M) transverse to the boundary. In the collar neighborhood
coordinates X is identified with ¢,. It follows directly from Equation 1.4.1.2 that if
(M, @) has regular boundary, then there exists a vector field X € X(M), transverse
to the boundary, and satisfying

(1.4.1.3) LxQx = 0, ﬁxﬁxa =0.

By the following lemma the converse is also true, and thus this equation characterizes
regular contact boundaries. Since the proof does not use the contact conditions we
state the lemma for general 1-forms.

Lemma 1.4.7. Let M be a manifold with boundary, and o € QY(M) nowhere van-
ishing. Then, there exists a collar neighborhood U ~ (—¢,0] x M and u,v € Q(0M)
nowhere vanishing, for which

a=tut+wv, te(—e0],
if and only if there exists a vector field X € X(M), transverse to the boundary and
satisfying

LXa:0, ﬁxﬁxaza

on an open neighborhood of the boundary. Moreover, in the collar neighborhood X is
identified with 0;.

Note that using a bump function, the above conditions on the vector field only needs
to be satisfies locally around the boundary. One way of interpreting the conditions
in the above lemma, is that there exists a direction, transverse to ¢ M and tangent to
ker o, in which the contact form is linear, i.e. has no second order information.

Proof. By Equation 1.4.1.3 above, it suffices to prove the if implication. Thus as-
sume that X is a vector field satisfying the above conditions. In the induced collar
neighborhood (—¢,0] x dM, we can write

o= Q¢ + ftdt7 te (—E,O]

for a; € Q1 (OM) and f; € C*(0M), and identify X with ;. The first condition on
X implies
o, o0 = fr =0,

and therefore the second condition gives
(1.4.1.4) ay =0,

by which we mean that the second derivative in the parameter ¢ is zero. Observe
that,

1 1

d )

atzao—f—J —astds=ao+tf Qg ds = ag + t5;.
o ds 0
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where we defined .
ﬁt = J dst ds.
0
Now observe that by Equation 1.4.1.4 we have

1
8, :f séigyds = 0,

0

so that 8; does in fact not depend on ¢. Putting this together we conclude
a = qq + tf,

as desired. 0

1.4.2 Special boundaries of contact forms

As a consequence of the normal form of Theorem 1.3.19, the contact structure around
the boundary is, up to equivalence, completely determined by the induced 0-contact
structure on the boundary. In particular, the choice of admissible form (or admissible
pair) is of little importance since, up to isomorphism, the local model does not depend
on it.

On the level of forms there is no general normal form, and instead we have to impose
it, as in Definition 1.4.1. As a consequence, we are not free to choose the admissible
form anymore, and it is part of the definition of a d-contact pair, see Definition
1.4.2. In fact, the behaviour of the contact form around the boundary is mostly
determined by the admissible form. Understanding their properties makes several
gluing constructions from the literature more transparent.

A O-contact pair (N?" u,v) is said to be of:

e Liouville type if

du = dv;
e Unimodular type if
du = 0;
e Foliation type if
u A du = 0;
e Principal type if
unvAdu® Ado™ R >0,

forall k =0,...,n—1.

The above list is ordered from strong to weak. More precisely, N admits a ¢-contact
structure of Liouville type if and only if it admits one of Unimodular type, and that
the latter is a special case of Foliation type. Indeed, if (u,v) is of Liouville type then
(u' :=u—v,v" :=v) is of unimodular type. Moreover, they all satisfy the conditions
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of principal type.

The existence of a special pair puts restrictions on the topology of N. For example,
if (N, u,v) is of unimodular type then it follows from a theorem of Tischler [106] that
N is the total space of a fibration 7 : N — S!'. In fact, denoting by 6 the angle
coordinate of S!, this theorem shows that 7*(df) can be chosen arbitrarily close to
u. Since the contact condition is open v defines a contact structures on the fibers of
m. Thus, if (N, u,v) is of Unimodular type, N must admit a contact fibration over
St.

The following is analogous to Definition 1.2.10.

Definition 1.4.8. We say that a contact manifold (M,«) has boundary of right
S-type (resp. left S-type), for S in the above list, if in some collar neighborhood
U~ (—¢,0] x 0M (resp. U ~ [0,e) x OM ) we have

a=1tu+v,

where (u,v) s a d-contact pair of S-type.

The left and right versions of each type only differ in the orientations induced on
the boundary. In line with our orientation conventions, the boundary of a manifold
with the standard orientation is always a right boundary. However, these names are
particularly useful when considering cobordisms, where we think of these models as
the left or right side of a cobordism as in Section 1.4.3.

Example 1.4.9. Let (X,d)\) be an exact symplectic manifold with boundary of
contact type (B := 0%, A\ := Ass). The product X x St admits a contact form

a:=\+dz,

which has regular boundary. More precisely, as in Definition 1.2.9 and Definition
1.2.10, there is a collar neighborhood (—¢,0] x 0% in ¥ on which

A= (1+t)AB.
In turn, this gives a collar neighborhood (—¢,0] x B x S! such that
a=t\p + A +dz.
Hence, the induced 0-contact boundary (B x St u = Ap,v:i=Ag + dz) is of Liou-

ville type.

Similarly, the product B x ]D)(Q;, where ]D)g denotes the disk of radius §, admits a contact
form
o= Ag + r’do.

Reparametrizing the r-coordinate yields a collar neighborhood (—¢,0] x B x S! on
which
a = sdf + \g + 62d6.

Thus the induced d-contact boundary (B x S, u := df,v := X + §2d), is of unimod-
ular type.
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These two pieces form the inside and outside component of an abstract open book
(with trivial monodromy), and we will see how they can be glued in Section 1.4.3
below.

Both examples above are products of an exact symplectic manifold and a contact
manifold. As explained in Example 1.3.8, such products always admit a contact
structure. Let (N, 3) be a closed contact manifold and (W, d\) an exact symplectic
manifold then the product manifold M := N x W admits a contact form

a:=p0+ A

If W has boundary dW, then (M, «) has regular boundary, and the induced strict
O-contact structure is given by

wim, vi= B+ Aow,

where v € Q' (0W) is an admissible form for d\|ay, see Definition 1.2.4. As usual, the
behaviour of dA on the boundary W, encoded in 7, determines the type of (u,v). A

Example 1.4.10. The following situation is considered in [33, 54] to construct and
classify invariant contact structures on principal circle bundles. Let 7 : M — W be
a principal S'-bundle, and denote by dy € X(M) the infinitesimal generator of the
Sl-action. Recall that a connection on M is a form v € Q' (M) satisfying

Loy =0, toy=1.

These conditions imply that dy = 7*w for some closed form w € Q2(W), called the
curvature. The class [w] € H?(W) is called the Chern class of M. In the case that
M and W have boundary, we assume that 0M = 7=1(dW) and write

Yo = "Ylom, wo = wlow.
Now, let 8 € Q1(0W) be a contact form, and assume that the curvature w € Q(W)
is a symplectic form satisfying
BAdBEF AWl >0, k=0,...,n.

Then, the conclusion of Lemma 4.2 and Lemma 4.5 in [33] is that M admits an S'-
invariant contact form «a, and a collar neighborhood U ~ (—¢,0] x ¢ M on which we
have

a=st*(8) + s + 7*p.

That is, it has boundary of right principal type with
(u,v) = (7*B,7*B + v5).
A

Example 1.4.11. Here we consider the contact analogue of Example 1.2.13, where
we considered the normal form around a codimension-2 symplectic submanifold. We
will use the facts about complex line bundles stated there. Let (M?2"+! ¢ := ker a) be
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a contact manifold and (BQ"_l, ¢p := ker ap) a codimension-2 contact submanifold.
That is,
fB = TB N f‘B,

is a contact structure on B, defined by ap := a|p. Hence, the da-orthogonal of &5
provides a model for the normal bundle of B in M:

vi=(TBn&cTM|p.

The restriction of da to v makes it into a symplectic vector bundle (v,d«l,), and we
note that the conformal class of da/|,, only depends on £. As in Example 1.2.13, we
can talk the first Chern class of (v,da|,). We claim that there exists a neighborhood
of B, endowed with a contact form representing &, which has boundary of:

e Liouville type if the Chern class of (v,d«|,) vanishes;
e Unimodular type if the Chern class of (v,da|,) vanishes;

e Principal type if the Chern class (v,da/,) has a representative o € Q?(B) sat-
isfying
ag A oF /\da’[{kfl >0, Vk=0,...,n—1.

To construct the local model around B, let [¢] € H?(B) be the Chern class of (v, da|, ).
Furthermore, let 7 : P — B be the associated principal S'-bundle, endowed with a
connection form § € Q!(P) (satisfying df = n*5). On P x C, we define a 1-form

A:=1*(ap) +r*(dg +0),

where (1, ¢) € C denote polar coordinates.
Observe that A is basic with respect to the (right) S'-action from Equation 1.2.2.1,
and descends to the quotient

(1.4.2.1) (P X1 C,A) .

Furthermore, the form § — d¢ € Q'(P x C) is dual to the infinitesimal generator of
the S'-action and a straightforward computation shows:

(0 —do) A AndA™ =4(n+1)0 A 7* (ap A (dap +1°0)") Ardr A d

Hence, A defines a contact form on a neighborhood of B = P xg {0} € P xg C, for
which (B, ap) is a contact submanifold. Furthermore, if the Chern class of (v,da|,)
is of principal type then A is contact on the whole of P xg C.

The same argument as in Example 1.2.13 shows that the induced symplectic normal
bundle of B ¢ P xg1 C equals

(B x C,2rdr A d¢),

so that its Chern class equals that of P, which in turn equals that of (B, ap) < (M, ).
Thus, by the standard normal form theorem for contact submanifolds, see for example
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[53], we conclude that a neighborhood of B in M is contact isomorphic to the model
of Equation 1.4.2.1.

A tubular neighborhood of B can be identified with P xg D? with boundary P ~
P xg1 S'. Observe that

Llarg = O7 L TLLOTA = 0,

so that by Lemma 1.4.7 the boundary is regular. The restriction
Ay = A|p><51 = 7T*(OéB) +do¢ + 6,

is again basic with respect to the S'-action. Its reduction ga equals the O-contact
form induced by A on P xg1 S'. Moreover, under the identification with P the induced
O-contact form equals:

Aa = 7T*<OzB) + 6.

Hence:

e if the Chern class vanishes we can choose o0 = 0, implying df = 0. Then, 6 is
an admissible form for which the boundary is of Unimodular type;

e if the Chern class vanishes we can choose ¢ = 0, implying df = 0. Then, ap+26
is an admissible form for which the boundary is of Liouville type;
e if the Chern class satisfief ap A daf; A 0™ 7%~1 > 0 then 6 is an admissible form

for which the boundary is of Principal type.

A

Example 1.4.12. Combining the gluing construction from Section 1.3.4 with the
local model from the previous example, we can move the Gompf connected sum from
Example 1.2.22 to the contact setting.

Let (M;,&), i = 1,2, be contact manifolds with codimension-2 contact submani-
folds (B;,&p,) as in Example 1.4.11. Suppose there exists an orientation preserving
diffeomorphism ¢ : By — B, satisfying:

(1) ¢*(§B,) = &Bis
(ii) ¢*c1(vB,) = —c1(vs,) € H*(By);

where ¢;(vp,) is the Chern class of the symplectic normal bundle as in Example
1.4.11. As before, a neighborhood of B; is contact isomorphic to

(Pi Xgt Cw&) ;

as in Equation 1.4.2.1. The above conditions imply that the induced ¢-contact struc-
tures on the boundaries of these neighborhoods satisfy the conditions of Proposition
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1.3.28, so that they can be glued along their boundaries. Hence we conclude that the
Gompf connected sum,

(M17B1)#(M2,BQ) = (Ml\Pl Xg1 DQ) U (MQ\PQ Xg1 DQ) 5

where 1 : P, = P, is induced by ¢, carries a contact structure which restricts to &;
on each of the pieces. A

Just as for boundaries of symplectic manifolds, the Liouville and unimodular types
can be easily recognized in terms of existence of a special vector field.

Lemma 1.4.13. Let (M, «) be a contact manifold boundary. Then then the boundary
is of:

(i) Liouville type if and only if there exists a vector field X € X(M), pointing out
along OM , and satisfying

txa =0, Lxda=da,
on a neighborhood of the boundary.

(i1) Unimodular type if and only if there exists a vector field X € X(M), transverse
to OM, and satisfying
LXa:(), ,dea:(),

on a neighborhood of the boundary.

Moreover, if X satisfies LxLxa = 0 then in each of the cases above it suffices to
require the conditions only at points in the boundary of M.

Proof. (i) Assume that the boundary is of Liouville type so that the associated 0-
contact structure (u,v) satisfies du = dv. On the collar neighborhood (—¢, 0] x
OM the vector field X := (1 + ¢)0J; is in the kernel of « and satisfies:

Lxda = digype,d(tu +v)
=dt Au+ (1+t)du = da.
Conversely, assume a vector field X satisfying the above conditions exists, and
let (—¢,0] x 0M the resulting collar neighborhood on which we identify X = 0;.
Then define Y := e~t0;, which is in the kernel of o and satisfies:
ﬁyﬁya = Lydbyda
= 1yd(e fixda)
=1y (—e'dt A txda + e 'da)

= —e Zxda+ e ?ixda = 0.
Hence, by Lemma 1.4.7, we have

a=1tu-+wv,
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in the collar neighborhood induced by Y. Observe that

—t
ﬁyda|aM =€ ,deoé|aM = da« OM s

and since in the above collar we have
dalpg =dv, (L,da)|s = du,

the boundary is of Liouville type. Finally, if the vector field X already satisfies
LxLxa = 0, then the above argument shows it suffices to ask Lxdalon =
da‘aM.

(ii) If « is of unimodular type we simply check that the above conditions hold for
X := 0;. Conversely, if such an X exists then it also satisfies

ﬂX ﬁX da = 0.
In the collar neighborhood of Lemma, 1.4.7 the condition £xda = 0 is equivalent
to du = 0.
O

1.4.3 Cobordisms between 0-contact manifolds

We now consider gluing contact manifolds with fixed contact forms, where we ask
that the gluing preserves the chosen forms. This might seem superfluous in light of
the gluing construction of Section 1.3.4. However, it allows us to phrase the technical
arguments needed in Section 1.8 in a more conceptual way.

The following glueing construction for contact forms regular at the boundary, follows
directly from the definitions:

Lemma 1.4.14. Let «; be a contact manifold with reqular boundary, as in Definition
1.4.1, on a manifold M;, i = 1,2, and denote by (u;,v;) the induced 0-contact pair on
0M;, as in Definition 1.4.2. If there exists an orientation reversing diffeomorphism
¢ : OMy — OMs, satisfying

P us = —uq,  P*vg = vy,

then the manifold My Uy M, admits a contact form o which restricts to o; on M;.

Proof. By Definition 1.4.1 there exist collar neighborhoods (—e¢,0] x dM; on which
a; =tu; +v;, =12

Observe that (—e,0] x dMs ~ [0g) x dM;y by sending ¢ — —t. Hence under this
isomorphism
ag = t(—ugz) + va.

Using ¢ to identify 0My ~ OM;, —us = wuy, and ve = vy the two collars can be
matched along their boundary. O
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Of course, in most situations the difficulty comes from the search for the required
diffeomorphism. Even more, since we want to preserve the contact forms on each
of the manifolds we want to glue, we have no freedom to change the contact forms,
in order to make them match along the boundaries. To solve this problem we can,
instead of gluing the manifolds directly to each other glue an extra piece, called a
cobordism, in between. In many cases it suffices to consider topologically trivial
cobordisms [0, 1] x M, so that the topology of the gluing is not affected. However,
for completeness we introduce the general notion of cobordism, both on the level of
structures and forms.

Definition 1.4.15. Let (N;,(;), ¢ = 1,2, be 0-contact manifolds as in Definition
1.3.12. A contact cobordism (N1,(1) <(are) (N2, (2) is a contact manifold (M, &)
with

oM = Vl [ NQ,

and inducing ¢; on the boundary. In the cooriented case we additionally require the
coorientations to match.

Remark 1.4.16. Strictly speaking the identification of the boundary ¢M with Ny
and N, is only up to diffeomorphism. That is, we have M = 0M; u 0M,y, where
0M;, i = 1,2, denotes a (collection) of connected components of M. Then, we
require there exists an orientation reversing diffeomorphism ¢ : Ny — 0M;, and an
orientation preserving diffeomorphism ¢ : No — 0Ms5. The choice of diffeomorphisms
is usually clear from the context, so we suppress them in the notation for the sake of
readability. A

Example 1.4.17. The notion of contact cobordism is very convenient to keep track
of gluings, since it automatically takes care of the conventions for left and right
boundaries. That is, a contact manifold (M,¢) with non-empty right boundary, is
the same thing as a cobordism

& <@g (OM, & =€ nTOM).

Similarly, a contact manifold with left boundary is the same thing as a contact cobor-
dism

(OM, &) <(ame) D-
The gluing construction from Section 1.3.4 implies that cobordisms can be composed.
That is, given (N1,()1 <(ar,e) (N2,C2), and (N2, (2) <(RL.3) (N3, (3), the composition
gives a cobordism

(Nh C2) <(Mu1\7,§u§~) (N37 C3)

In particular, gluing contact manifolds (M;,&;), ¢ = 1,2, with isomorphic J-contact
boundaries gives a cobordism from the emptyset to itself:

D < er) (OM1,61.0) <(My,e0)< D

where, as in Remark 1.4.16, the isomorphism of d-contact manifolds ¢ : (0M7,& 5) —
(0M3, &2 5) is implicit in the notation. A

For 0-contact pairs we consider the following notion of cobordism:
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Definition 1.4.18. Let (u;, v;) be a 0-contact pair on N;, fori = 1,2, as in Definition
1.4.2. A regular contact cobordism (Ni,u1,v1) <(a,q) (N2, u2,v2), consists of a
contact manifold (M, ) with

oM = Fl (] NQ,

and such that, in the notation of Definition 1.4.8, « has:

(i) Regular left boundary Ny, with induced 0-contact pair (ui,vi);

(i) Regular right boundary Ns, with induced 0-contact pair (us,vs).

Of course, any regular contact cobordism induces a contact cobordism as above. As
stated before, regular contact cobordisms allow us to change the type of boundary,
as in Definition 1.4.8, of a contact form. The precise conditions under which this is
possible are as follows:

Lemma 1.4.19. Let (N?" u,v) be a 0-contact manifold and a,b,c,d € R satisfying
ad —bc > 0. Then

W i=au+bv, v :=cu+dv,
defines a 0-contact structure in any of the following cases:
(i) (u,v) is of Liouville type and (c + d)"~* > 0;
(ii) (u,v) is of Foliation type and d"~! > 0;

(111) (u,v) is of Principal type, ¢ > 0, d > 0, and not both equal to zero.

In these cases there exists a contact form on [0,1] x N giving a regular contact
cobordism from (N,u,v) to (N,u',v).

Proof. Consider the trivial cobordims [0,1] x N, endowed with the 1-form

o= f(s)u+g(s),

for f,g : [0,1] — R suitable functions to be chosen later. The contact condition for
o reads

(1.4.3.1) anda” =n(fg— fi)ds Aunvna (fdu+ gdv)" L.
Thus, under the assumption that (u,v) is of principal type, o will be contact if

(1.4.3.2) fg—fg>0, ¢g>0, f=0.
In case (u,v) is of Liouville or foliation type the above conditions can be slightly
relaxed, giving the other statements in the lemma.

Observe that
(s—1u' +v = (sa—a+c)u+ (sb—b+d)v.
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Hence, if we want « to induce (u,v) on the left boundary, and (u’,v") on the right
boundary then we additionally need to require that
(1.4.3.3)

(-6 ma o @iz ) e

In order for Equation 1.4.3.2 to be satisfied at the right boundary we need

(1.4.3.4) ad—bc>0, ¢=0, d>0.

An extension of the functions f and g satisfying Equation 1.4.3.2, can be viewed as
a path

(1.4.3.5) A:[0,1] — R?
t— (f(t),9(t)),

into the upper right quadrant of R2, and such that (A(t), A(£)) defines an oriented
frame. Such a path exists, see Figure 1.1, provided the conditions in Equation 1.4.3.4
and ¢ > 0 are satisfied. O

Figure 1.1: Functions f and g satisfying the conditions in Equation 1.4.3.2 and Equa-
tion 1.4.3.3.

Remark 1.4.20. The conditions on the coefficients (a, b, ¢,d) are necessary in the
most general case. However, they can be relaxed in many specific examples, where
u and v are explicitly given. For example, if n = 1 then Equation 1.4.3.1 simplifies,
and the only remaining condition is ac — bd > 0. This gives extra freedom, since the
path A\ from Equation 1.4.3.5 is now allowed to make a loop around the origin. In
fact, in this case any two points can be connected, see Figure 1.2. A
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1t =0
t=1
f ————— d
¢ 0 7

Figure 1.2: Functions f and g satisfying the conditions in Equation 1.4.3.2 and Equa-
tion 1.4.3.3, in the case n = 1.

1.4.4 Contact open books

An open book decomposition of a manifold M consist of a codimension-2 submanifold
B whose normal bundle is trivial, and a fibration on the complement 7 : M\B — S!.
The definition and basic properties of open books are discussed in Appendix 1.9.
As discussed there we consider two points of view; as a way to decompose a given
manifold into simpler pieces, called geometric open book, and as way of constructing
new manifolds out of simpler data, called an abstract open book.

In this section we consider open book decompositions for contact manifolds. Impos-
ing compatibility conditions between the contact structure and the open book ensures
that both pieces of the decomposition inherit natural contact structures. These con-
ditions translate into conditions on the associated abstract open book, and we show
that the contact manifold can be recovered from this data.

Definition 1.4.21. A contact form o on M is said to be adapted to a (geometric)
open book (B, ) if:
(i) The binding (B,ap := «|p) is a contact submanifold;

(i) Away from the binding Reeb vector field R is positively transverse to the (open)
pages, that is:
7*(d9)(R) > 0.

In turn, a contact structure & on M is adapted to (B, ) if there exist an adapted
contact form « representing it.

Remark 1.4.22. Recall that a symplectic fibration is defined to be fibration
m : M — B together with a symplectic form on each fiber. That is, a leafwise
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symplectic form w € Q2?(F) on the foliation F; := kerdmr < TM induced by the
fibration. An extension 7 € Q?(M) of w defines a connection by

(1.4.4.1) H := (kerdm)t" < TM.

Indeed, since 7|z, is non-degenerate, H is a horizontal distribution. Moreover if 7 is
closed, then the parallel transport of H preserves the fiberwise symplectic form, see

[56].

Now if « is a contact form on M adapted to an open book (B, ), then the condition
that the Reeb vector field is positively transverse to the page is equivalent to requiring

da™ A 7*df > 0,

where 6 € S denotes the usual angle coordinate. In turn this means that 7 : M\B —
S', becomes a symplectic fibration with induced symplectic foliation (F,da|z,). A

The above conditions depend on the Reeb vector field, and thus on the choice of con-
tact form. Hence, even if £ is adapted to (B, ) there exist contact forms representing
& which are not adapted.

Example 1.4.23. Let (r,0,2) € R denote the standard cylindrical coordinates.
Then, the standard open book decomposition is given by B := {r = 0} and

7:RN\B - S  (r,0,2)— 0.

The standard contact form « := dz +72df is not adapted to (B, 7). Indeed, although
B is a contact submanifold for «, its Reeb VeC;DOI‘ field equals 0, which is tangent to
the fibers of w. However, the contact form e~" a has Reeb vector field

R=(1- r2)erzc9z +e" 00,

which is positively transverse to the pages. Hence, the standard contact structure
& := ker « is adapted to (B, ).

This example generalizes to B x R?, with the obvious open book decomposition and
the contact structure £ := ker (ap + r?d), for ap € Q'(B) a contact form on B. As
shown in Equation 1.4.4.2 in the proof of Theorem 1.4.26 below, a contact structure
adapted to an open book looks like this one. Hence, any contact structure adapted
to an open book has representing contact forms which are not adapted. A

Although the definition of a contact form adapted to a geometric open book looks
quite restrictive we have the following;:

Theorem 1.4.24 ([57][99]). Let (M,&) be a contact manifold. There exists a (geo-
metric) open book decomposition (B, ) of M to which £ is adapted as in Definition
1.4.21.

Recall that any geometric open book decomposition (B, 7) has an associated abstract
open book (3, ¢), as in Lemma 1.9.6. If « is a contact form adapted to (B, ) then
the restriction of da to the page P is non-degenerate, since the Reeb vector field is
transverse to the page. Moreover, as we will see below, in this case the monodromy
of the fibration 7 : M\B — S! can be chosen to preserve da|p. Thus we arrive at
the following definition.
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Definition 1.4.25. An (abstract) contact open book consists of an exact symplectic
manifold (3, d\) with boundary of Liouville type, as in Definition 1.2.10, together with
a symplectomorphism ¢ : (X,d\) — (3,d\) which is the identity on a neighborhood
of the boundary.

As claimed above, Definition 1.4.21 and Definition 1.4.25 correspond to each other
under the identifcations of Lemma 1.9.6 and Lemma 1.9.5. We first show that a
geometric contact open book induces an abstract contact open book. The non-trivial
part is finding the required monodromy. Let o € Q'(M) and (B, 7) are as in Definition
1.4.21. Then the rescaling of the Reeb vector field;

X .

1
.:;qaﬁﬁgRexwﬂB%

satisfies Lxda = 0, so its time one flow is a symplectomorphism ¢ of the page
(P,da|p). However, ¢ need not be equal to the identify on a neighborhood of the
boundary dP. The proof of the following lemma shows that, by modifying X close
to the binding, this additional condition can be satisfied.

Theorem 1.4.26. Let £ be a contact structure on M adapted to an open book decom-
position (B, ). Then there exists an adapted contact form o € Q?(M) for &, and a
symplectomorphism ¢ on (P,da|p) such that (P,da|p, @) is an abstract contact open
book.

Proof. Fix an adapted contact form « for &, and denote by ap the induced contact
form on the binding B. Since the normal bundle of B is trivial, the normal form from
Example 1.4.11 implies there exists a neighborhood B x D? of the binding on which

(1.4.4.2) a = flap +rdf),

where (r,0) € D?, and f € C®(B x D?) is a positive function satisfying flexqoy = 1.

Furthermore, the codnition that « is adapted implies that
da™ A df = —nf" 10, fap A daly ™t Adr A dd > 0.
Thus 0, f < 0 for r > 0, in fact since f is smooth it is of the form
f=1-r%,

for some smooth function g. We can choose a function f~ e C°(B x D?) satisfying

(i) J?‘Bx{()} =1 and 57-J?< 0;

(ii) f agrees with f on a neighborhood of the boundary d(B x D?);

(iii) df|p = 0 and on a neighborhood of the binding B x {0} we have

opf = 0.
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Then, N
a:= f(ap +r%df),

is again an adapted contact form for £, and agrees with « away from the binding. A
straightforward computation shows that its Reeb vector field equals

1 ro.f O
Ry=|=+_ 2f Ra, — I
fo2f 2rf 2
Choose a bump function A : [0,1] — [0, 1] which is constant equal to 0 around zero
and constant equals to 1 around one. Then, the vector field

1 Oy f orf
F ) R 5

agrees with Ry away from the binding and is a multiple of dyp near the boundary.
Observe that X is everywhere positively transverse to the pages. That is, the function

O € }:(B X ]D)z),

X = A(r) <

g :=7n*df(X) e C*(M\B),

is strictly positive. Hence, the time one flow of %X defines the monodromy ¢ € Diff(P)
of the open book, and we claim it preserves d&|p. Away from the binding the follows
since X equals the Reeb vector field of & so that

£lxda = 0

On the collar neighborhood it follows from the normal form above since there éX is
of the form a(r)Rp + b(r)dp for functions a,be C*(B x D?). Hence, we have

EaRB+b53 da = dLaRB +bde dO[
= —d (ad, fdr + b(r*d, f + 2rf)dr) =0,

since all the functions depend only on r. Lastly, since 2 X is a multiple of dy near the
binding, the monodromy is the identity near the boundary oP. O

Conversely, using Lemma 1.9.5, we can construct a manifold M (X%, ¢) out of an ab-
stract open book (X, ¢). Given a contact open book (X, ¢, d\) then (M, X, ¢) carries
a contact structure adapted to the induced geometric open book.

Lemma 1.4.27. Given an abstract contact open book (X, $,dN\) with compact ¥,
the manifold M (3, ¢) with its canonical open book decomposition admits an adapted
contact form.

Proof. The main technicality of the proof is constructing the contact form on the
outside component of the open book. We first consider the case that ¢ = id, implying
that the outside component is just the product ¥ x S!. From Example 1.4.9 we have
the contact manifold

(B x D3, X\ +r%d),
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for 0 < ¢ < 1, with induced ¢-contact boundary (B x St,u = df,v = A\ + §dF). We
also have the contact manifold

(ExSYAp +d2),
with induced d-contact boundary (B x S*,u’ = Ag,v’ = Ap + dz). Observe that

() -5 ) C)

and this matrix has determinant 1. Hence, the conditions of Lemma 1.4.19 are satis-
fied and we find a contact form on [d,1] x B x S! which can be glued in between the
two pieces. Together constructs a contact form on the filled mapping cylinder

(1.4.4.3) M(Z,$) = BxD? Ugyg X x S

If the monodromy ¢ is non-trivial the construction on the outside component changes
as follows. The monodromy is isotopic through symplectomorphisms equal to the
identity near 0%, to an exact symplectomorphism q{)(see for example Lemma 7.3.4 in
[52]). The mapping cylinders M (%, ¢) and M(, ¢) are isomorphic (see for example

Lemma 7.3.1 in [52]) so that we can assume that ¢ is an exact symplectomorphism
of (X,d)). Hence there exists a function f € C®(X) satisfying
PN =X+df.

Note that adding a constant to f does not change the above equation. Hence, by
compactness of ¥ we can assume f is strictly positive. Then, we form the ”scaled
mapping cylinder” given by:

M xz;R:=M xR/(z,2) ~ ®(z, 2),
the quotient of M x R under the Z-action generated by:
O MxR—->MxR, (z,2)— (¢(x),z— f(x)).

Observe that the scaled mapping cylinder is diffeomorphic to the usual (non-scaled)
one. The map

U:MxzR—=Mxzs R, [(z,2)] = [(z, f(z)2)],

gives a diffeomorphism since f is strictly positive. The contact form « := dz + A, is
preserved under the action, and hence descends to the quotient. Furthermore, around
the boundary ¢ = id so the outside component can be glued to the inside component
as in the trivial case. O

1.5 Symplectic foliations and their boundaries

1.5.1 Codimension one symplectic foliations

Recall that a codimension-k foliation F on an n-dimensional manifold M is a decom-

position
M= |J L.,
xeM
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into a disjoint union of connected immersed submanifolds of codimension-k, called
the leaves of F, such that around each point there exists a local coordinate chart
U ~ R" in which the decomposition equals:

R"™ := U R x {x}.

zeRF

By the famous Frobenius theorem, this is equivalent to a distribution TF < T M, of
corank-k, which is involutive in the sense that

[X,Y]eT(TF), V¥X,Yel(TF).

From now on we will only consider foliations of codimension-1, unless explicitly stated
otherwise.

Since the leaves of F are submanifolds, the complex of leafwise differential forms
QN (F) :=T(AT*F).

admits a differential dz (usually denoted by d if there is not risk of confusion), which
is just the leafwise deRham differential. The usual Koszul formula gives an explicit
description of dx given by:

k+1
(d]:O[)(Xl, . ,Xk+1) = Z (—1)Z+1£Xi(04(X17 ey XZ', . 7Xk+1)

i=1
+ 2(—1)i+j()é([Xi,Xj],X1, e a)?iv N ,XJ‘, . ,XkJrl),

i<j
for oo € QF(F). In this language a symplectic foliation is defined as follows:

Definition 1.5.1. A symplectic foliation (F,w) on a manifold M is a (codimension-
1) foliation F endowed with a leafwise form w € Q?(F) that is (leafwise) closed and
non-degenerate.

To highlight the analogy between contact structures and symplectic foliations in the
notation, we will often abbreviate symplectic foliation by SF. That is, we talk about
SF-structures and SF-manifolds, and similarly for the notions of SF-pair, 0-SF
structure, etc, introduced below.

Since a symplectic foliation is in particular a codimension-1 distribution, much of
the discussion for contact structures from Section 1.3.1, also applies here. As there,
although M is always assumed to be oriented, we do not necessarily require F to be
(co-) oriented.

Definition 1.5.2. A foliation F is said to be coorientable/cooriented if TM/F
is orientable/oriented.

On an oriented manifold M endowed with a foliation F we have a one-to-one corre-
spondence between orientations of the leaves of F and coorientation (i.e. orientations
of TM/F) of F. Hence, as a consequence of our convention, that unless explicitly
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stated otherwise all manifolds are oriented, any symplectic foliation (F,w) has a
canonical coorientation by declaring w™ > 0 along the leaves of F.

For various constructions it is useful to rephrase the above definition in terms of
global forms on M. This motivatives the following definition, whose terminology is
inspired by that for contact structures from Definition 1.3.6.

Definition 1.5.3. A symplectic foliation pair (SF-pair for short) on M?"*! is
a pair (v,m) € QL(M) x Q2(M) satisfying

YyAdy=0, vAn">0, vaAdn=0.

Note that any SF-pair induces a symplectic foliation by (F := kery,w := n|rr).
When we study SF-pairs the emphasis is on the specific choice (v,7), and we do
not consider the induced symplectic foliation. On the other hand, when we study
symplectic foliations it is often convenient to represent them by a pair (y,7) as above.
To stress the difference, in this situation we will refer to (v,7) as a symplectic
foliation pair representing (F,w). As observed above, such representing pairs always
exist. However, the choice of representative is only unique up to an element of

G:={(f,8) e C™(M) x Q" (M) | f > 0}.
Indeed, it is not hard to see that two SF-pairs induce the same symplectic foliation
they are equivalent in the following sense:

Definition 1.5.4. Two SF-pairs (v,n) and (3,17), as in Definition 1.5.3, are equiv-
alent if
Y=/ v, n=n+pBnrn,

for some (f, ) € G. In this case we write (y,n) ~ (7,7).

In fact, G is a group under the multiplication

(fia)-(9,8) := (fg, B + ga),

and the above equivalence classes are precisely the orbits of the induced G action.
In case the manifold M has a non-empty boundary 0M we talk about equivalence
adapted to the boundary, denoted by (v,7) ~5 (7/,7) if the extra conditions

(1.5.1.1) flosr =1, B, =0, V¥YpedM
are satisfied.

Example 1.5.5. The following are some of the basic examples of SF-manifolds. Its
interesting to compare this list with the one from Example 1.3.8 for contact structures.

e Euclidean space: Let (21,%1,...,%n,Yn, 2) denote the standard coordinates
in R?%*1. The forms

vi=dz, n:= Z dz; A dy;,

i=1
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are called the standard SF-pair. The analogue of Darboux’s theorem, which
follows for example from Weinstein’s splitting theorem [112], stated that locally
any symplectic foliation looks like the standard one. Hence, similar to contact
and symplectic structures, SF-manifolds have no local invariants.

e Tori: Let (z1,y1,...,%n,Yn,2) denote the standard angular coordinates on
T27+1. Then, the forms

vy:=dz, n:= Z dz; A dy;,

i=1

define an SF-pair. Comparing with Example 1.3.8, we see that the tori T?"+!,
both admit a contact structure and a symplectic foliation. On the symplectic
foliation side this is immediate, whereas on the contact side it is a rather non-
trivial result.

e Products: For dimensional reasons, the product of two SF-manifolds cannot
admit an SF-structure. Instead let (M, F,w) be an SF-manifold and (W,w) a
symplectic manifold. Then, the product M x W admits a foliation, called the
product foliation, defined by:

FxW:= UmeW,

zeM

where L, denotes the leaf of F through z. Thus, the corresponding distribution
equals:
T(FxW)=TF@TW cT(M x W),

endowed with the leafwise symplectic form
ni=n+w.
In particular given any symplectic manifold (W, w), the product

(Sl x W, F := U{z} X W,w),

z€eSt

is an SF-manifold. Similarly, given any SF manifold (M, F,w), the product
(M xXg, FxEg,n+w),
is an SF-manifold, where w is any volume form on X, the surface of genus g.

e Cosymplectic structures: A cosymplectic structure on a manifold M2"+1 is
a pair (v,n) € QL(M) x Q2(M) satisfying

dy=0, dnp=0, ~yAn*>0.

In this case (F := ker~v,w|r) is a symplectic foliation. Such foliations behave
a lot like the products from the previous example, in the sense that both the
foliation and the leafwise symplectic form are ”constant”. That is the forms
being (globally) closed implies they do not vary, in a sense we will make precise
later in Definition 1.7.16 and Definition 1.7.22.
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e Spheres: The so called Reeb foliation on S* [100] played an important role in
the development of foliation theory. Recall that the sphere S® can be decom-
posed as two solid tori intersecting along their boundary:

(1.5.1.2) S = S! x D? U D? x St

On the interior of the solid torus, int(S! x D?) consider the image of the product
foliation | J, .1 {z} x D?, under the diffeomorphism

1

¢ :int(S* x D?) - int(S* x D?), (2,7,0) — (2 + T2
—r

r,0).

This foliation can be smoothly extended to the solid torus, by taking the bound-
ary T? = 0(S! x D?) as a leaf. Since each leaf is an orientated surface Freep
is in fact a symplectic foliation. The resulting SF-manifold (S! x D2, Freep) is
called a Reeb component. Endowing each of the pieces of the decomposition
in Equation 1.5.1.2 with this foliation gives the Reeb foliation on S3.

Reeb components are a special example of the more general turbulization con-
struction which we will discuss in detail in Section 1.6.2 below. We use it to
give a general construction for symplectic foliations on manifolds that admit a
suitable open book decomposition. This is the SF version of the construction
from Section 1.4.4. In particular, in Theorem 1.9.1 we use this to recover a
result by Mitsumatsu [39] showing that the Lawson foliation [72] on S® is part
of a SF-structure.

The existence question for SF-structures on the higher dimensional spheres is
still open. The techniques of Lawson can be used to show that all the odd
dimensional spheres admit a codimension-1 foliation. However, the compact
leaves do not admit a symplectic structure. Again, compare this with Example
1.3.8, showing that all odd-dimensional spheres admit a contact structure.

A

1.5.2 Symplectic foliations with transverse boundaries

Let (F,w) be a symplectic foliation on a manifold with boundary M. In general, the
intersection of the foliation with the tangent space to the boundary can be extremely
complicated, and impossible to put into a normal form. However, there are two situa-
tions which are relatively easy to understand: when F is transverse to the boundary,
and when 0M is a leaf. In this section we consider the first case, and show that both
the foliation and the leafwise symplectic form can be put in normal form.

Definition 1.5.6. The boundary of a symplectically foliated manifold (M, F,w) is
called transverse if FhOM.

In this case, the boundary inherits a foliation with a leafwise 2-form:

Fo:=FnT(@M), wsi=w

Fo-

Although w; is still closed, it is degenerate and has a 1-dimensional kernel.
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Definition 1.5.7. A 0-symplectic foliation (or 0-SF structure for short) (F,w)
on a manifold N*" is a (codimension-1) foliation F endowed with a leafwise form w €
O2(F) that is closed and mazimally non-degenerate, i.e. has 1-dimensional kernel.

As before, this structure can be represented by global differential forms, and the
representatives are unique up to the same equivalence relation as in Definition 1.5.4.

Definition 1.5.8. A 0-symplectic foliation pair (v,n) on a manifold N*" is a
pair (7,m) € QL(N) x Q2(N) satisfying

(1.5.2.1) yAady=0, yadyp=0, dim(keryrn* ") =1.

As for symplectic foliations, a 0-SF pair (v, 7) induces a 0-SF structure by
F:=kery, w:=n|r,

in which case we say that (v, 7) represents (F,w). The choice of representing pair
is not unique and induces an equivalence relation, analogous to Definition 1.5.4. We
say two pairs are equivalent, denoted (v,7n) ~ (%,7), if

y=rfv n=n+tany,
for some a € QY(N) and f € C®(N) strictly positive.

Note that the conditions in Equation 1.5.2.1 do not say wether or not n™ is non-zero.
In fact, by Lemma 1.7.11 below, both can happen in the same equivalence class.
Hence, unlike an SF-pair, in general a 0-SF pair does not induce a canonical volume
form. However, vy A n”~! can always completed to a volume form by making an extra
choice:

Definition 1.5.9. An admissible form for a 0-symplectic foliation pair (v,n), is
a 1-form B € Q*(N) such that

L~ 0.

Bayan
By the following lemma it makes sense to call § an admissible form for a 0-SF struc-
ture.

Lemma 1.5.10. Let (v,n) and (7,7
structure (F,w) on N. Then 8 € Q
admissible for (3,7).

) be two 0-SF pairs, representing the same 0-SF
Y(N) is admissible for (v,n) if and only if it is

Proof. Since (v,n) ~ (%,7), there exist a € Q1(N) and f € C®(N) strictly positive
so that

Y=fy n=ntanny.
Hence, assuming that 8 A v A 7"~ > 0 we have:

BAFag ™t =fBayam ™+ n=1n" nany) =fBAyanT! >0
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As stated above, given a 0-SF pair (v,7) representing (F,w) on N?", the form 7"
does not contain any information about (F,w). In fact, up to equivalence, it can
equal any top-degree form, as shown in the following lemma.

Lemma 1.5.11. Let (F,w) be a 0-SF structure on N*". Let Q € Q?"(N) be a volume
form and f € C*(N) a function. Then there exists a 0-SE' pair (v,n) representing
(F,w) such that

n" = f.
(

In particular, there exist 0-SF pairs (vi,m;), ¢ = 1,2, representing (F,w) and such
that

ny =0, ny>0.

Proof. Let (n,v) be any ¢-SF pair representing (F,w) and § an admissible form.
Since, B A v A 0"~ ! is a positive volume form, there exists a functions g, h € C*(N),
with h strictly positive, so that

N =9 BAyan"T!=hQ
Then, (vy,n) is equivalent to

_ f—g
Y= =0t s B A,
n

and it follows that

f—yg

ﬁ”=n”+TﬂA7An”’1=gQ+(ffg)Q=fQ~

O

Admissible forms will be important for understanding special boundaries of strict
symplectic foliations, later in Section 1.6.1. For now we consider them as an auxilliary
piece of data that is handy for writing down the normal form of transverse symplectic
foliations.

1.5.2.1 Statement of the normal form

Let (M, F,w) be a symplectic foliation with transverse boundary, (y,n) any repre-
senting pair and

Yo :=Ylom,  Ma :=nlom
the induced 0-symplectic foliation pair on the boundary. For any choice of admissible
form B € QY (0M), consider

(1.5.2.2) ((=&,0] x OM, 1= va,m 1= na + d(t8))

which defines a symplectic foliation for € > 0 small enough. We call this the local
model for (F,w).
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Theorem 1.5.12. Any symplectic foliation with transverse boundary, as in Defini-
tion 1.5.6, is isomorphic, as SF-structures, to its local model on a neighborhood of
the boundary.

In particular, up to isomorphism the local model is independent of the choice of
admissible form and the representing SF-pair (v,7n). This theorem is an immediate
consequence of the more technical statement in Proposition 1.5.14 below.

Remark 1.5.13. Analogous to Remark 1.3.20, the above local model for a symplectic
foliation (F,w) can be stated more invariantly as follows. The leaves of the induced
foliation F5 on the boundary, are odd-dimensional. Hence the restriction of the 2-form
w to Fp has a 1-dimensional kernel:

L :=kerwy c TF;.

We view L as a subbundle of T0M , making it into a rank-1 vector bundle 7 : L — M.
In particular, since every rank-1 distribution is involutive, it defines a foliation £ with
1-dimensional leaves on d M, such that

L=TL.
Hence, the dual bundle L* can be identified with the leafwise cotangent bundle
m:T*L — oM.
The total space carries a canonical symplectic foliation defined by:
Fi=1%F,;, w:=7n"ws+ d\an,

where Aean € QY (T*L) denotes the tautological form.

Moreover, L has a canonical orientation, for which V € L, p € dM is positive if and
only if
wp(X,V) >0,

where X € T, F is any outward pointing vector. In particular, 7L and T*L are triv-
ializable. A choice of vector field X € X(M) transverse to the boundary corresponds
to a trivialization of T*L, that is, a nowhere vanishing section 8 € I'(T*L) defined
by

5(.’17) = (LXw>|TxL, x € OM.

In this trivialization T*L ~ R x dM, the symplectic foliation (F,w) is represented
by (v,7n) as in Equation 1.5.2.2. A

The following proposition is the technical version of Theorem 1.5.12.

Proposition 1.5.14. Suppose (M?"*1 F . w) is a symplectic foliation transverse
to the boundary, represented by (v,n). Let (vs,ms) be the induced 0-SF pair, and
B e QYOM) an admissible form, as in Definition 1.5.9. Then there exists a collar
neighborhood U ~ (—&,0] x M on which (y,n) is equivalent to the local model, as in
Definition 1.5.4;

(v,m) ~ (va,me + d(tp)).
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Moreover, if additionally
6 = LXn|é’7

for a vector field X € X(M) transverse to the boundary and tangent to F, then the
equivalence can be made adapted to the boundary, as in Equation 1.5.1.1.

Note that, admissible forms g satisfying the addition hypothesis always exist. More-
over, if the SF-pair (v, 7) representing (F,w) is chosen carefully, any admissible form
satisfies the additional hypothesis, see Lemma 1.6.6.

Proof of Proposition 1.5.14. Since the foliation is assumed to be transverse to the
boundary, we can use Proposition 1.6.14 to find a collar neighborhood U ~ (—¢,0] x
0M on which we have:

fYfoYﬁa

for some f € C*®(U) with f|spr = 1. Furthermore, in these coordinates we also have
n =m0 +dt A vy,

for some 1; € Q?(0M), and vy € QY (0M). That is, the foliation locally looks like a
product foliation and we only need to put the leafwise symplectic structure in normal
form. We apply a leafwise Moser argument to obtain the normal form for n. That is,
we define the linear path

N’ i=(1—=5)(ns +d(t8)) +s(m +dt Avy), s€e]0,1]

and look for a time dependent vector field X € X(U) in the kernel of  and such that
its flow ¢, satisfies

(1.5.2.3) o¥n* =n°,  ¢s(OM) = oM.

By Lemma 1.6.15 the flow of X, preserves the normal form of the foliation, and by
definition ¢; defines a changes of coordinate on U giving the desired normal form for

n.

Differentiating the above equation we see that X should satisfy
¢ (Lx,n®+1°) = 0.

We will solve this equation restricted to ker~y, where 7 is closed so it suffices to solve

(1.5.2.4) dex,n® +n° =0.

We claim that 7° is an exact form, and a primitive is defined by

1
At 1= f tvg ds + tf.
0
To see this denote by d the deRham differential on dM. Then, since 7 is closed on
ker, - B
O0=d(m +dt Avy) =dt A +dn + dE A duy,
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implying 7j; = dv;. Hence,
1
J tUst ds) +d(tB)

_/rt d
dA_d(L tustds)—&-dt/\dt<0

1 1 1
= J tdvg ds + dt A (J v ds + f tsz)stds> +d(tB)

0 0 0

1 1 1
= J tne ds + dt A (J Vg ds + f siust ds) +d(tpB)
0 0 o ds

1 1 1
- J %Ust ds +dt A (J Vet ds + sug|S55 — J- Vgt ds) +d(t8)
0

0 0
=n—no +dt A vy +d(t8) =77,

proving the claim. As a consequence, Equation 1.5.2.4 further simplifies to
Lx, 778 +A=0.

Because n° is non-degenerate on ker~y the above equation has a unique solution for
X;. Furthermore, since A = 0 at points in the boundary, we have X,|ap = 0, so its
flow ¢, fixes the boundary pointwise.

Now recall that we only solved Equation 1.5.2.4 restricted to ker~ so that

(1525) Sin=ii+ A,
for some p € QY(U).

Moreover, if we have

(1.5.2.6) B =xnle,

for a vector field X € X(M) transverse to the boundary and tangent to F, then, in
the beginning of the proof, we could have applied Proposition 1.6.14 with this vector
field. Thus in our collar neighborhood X can be identified with ;. Using the collar
neighborhood, write p = p; + gidt, t € (—&,0], so that at points in the boundary
Equation 1.5.2.5 becomes

no +dt Avg =mno 4+ dt A B+ (po + godt) A 7a,

so that pg = 0 and vy = B + goys- By Equation 1.5.2.6, # = vy from which it follows
that gog = 0. O

1.6 Symplectic foliation pairs and their boundaries

Suppose we are given a SF-pair (v,7), representing a symplectic foliation (F,w), as
in Definition 1.5.3. Sometimes we are interested in the SF-pair and not only in the
induced foliation. In particular, we want understand its properties on a neighborhood
of the boundary dM, and be able to glue such manifolds.
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The normal form from the previous section describes (F,w) near the boundary in
terms of the structure induced on the boundary. However, the representing pair is
only recovered up to equivalence, see Proposition 1.5.14, and so does not provide a
normal form on the level of SF-pairs. As for contact forms, see Section 1.4.1, we deal
with this by restricting to a smaller class of SF-pairs which satisfy a normal form by
definition.

Similar to Definition 1.4.1, the class we consider is motivated by looking at the Taylor
expansion of the 2-form in a SF-pair. That is, let (,7n) be a SF-pair, and assume
there exists a collar neighborhood (—¢, 0] x ¢M on which

v =om-

We interpret this equation as a Taylor polynomial with only the constant term non-
zero. Furthermore, using the collar neighborhood we can write

N =ws +dt A vy,

for some w; € QY(OM) and v, € Q1(0M), and where t denotes the coordinate on
(—¢,0]. The Taylor expansion in the t-coordinate equals:

n = wp + twg + O(tz) +dt A (’Uo + tvg + O(tQ)) ,

where we use the shorthand notation

. d
wo ‘= |

dt ‘t=0wt'

In terms of this expansion the condition that (vy,7) is an SF-pair, as in Definition
1.5.3, reads:

(1.6.0.1) 0= Adn="s A (dwy + tdig — dt A dvg — tdt A dig) + O(t?),
and
(1.6.0.2) 0<yAn"”=mnyA (wy+ tig)" " Adt A (v + ti) + O(t?).

The two simplest cases of interest are:

e If the only non-zero terms are wy and vy, then the above conditions are satisfied
if and only if
vy A Yo A w(’)“l >0, dwg=0, dvy=0.

In this case we have that
n=wy+ d(tl}o).

e In the previous case 7 is globally closed. Requiring that a foliation admits a
globally closed 2-form which is leafwise nondegenerate is very restrictive and
we also want to consider SF-pairs for which this is not the case. Firstly, note
that allowing higher order terms in the Taylor expansion to be non-zero does
not change the condition from Equation 1.6.0.2 above, since we only consider
it for small ¢. Secondly, allowing vy # 0, does not change any of the conditions
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following from Equation 1.6.0.1 since it shows up in the only term containing
tdt.

Hence, the next simplest case to consider is vg = 0, but with vy, wg and wy
non-zero. In this case, the first equation is satisfied provided that

wo = dy,
so that we have

1 = wo + d(tvg).

Motivated by the above discussion we make the following definition:

Definition 1.6.1. A SF-pair (v,n) on M is said to be regular at the boundary if
there exists a collar neighborhood U ~ (—&,0] x OM on which we have:

y=u, 1n=w+d(tv),

for some u,v € QY(OM) and w € Q?(0M), and where t denotes the coordinate on
(—e&,0].

As observed above, the conditions that (v, 7n) is a SF-pair translates into the following
conditions on u, v, and w.

undu=0, urdw=0, vAruns W +tdv)""">0.

Since the non-degeneracy condition is open, it suffices to require it at points in the
boundary, where ¢ = 0. Then, by choosing € small enough it holds everywhere. Thus
the conditions of (u,v,w) can be packed into the following definition, which does not
make reference to a boundary.

Definition 1.6.2. A 0-symplectic foliation triple (u,v,w) on a manifold N?"
consists of forms u,v € QY (N) and w € Q*(N) satisfying:

1

undu=0, uadw=0 vAauaAaw" " >0.

Thus for any SF-pair (y,n7) on M which is regular at the boundary, we have an
induced 0-SF triple (u,v,w) on the boundary 0M. Note that the above definition
puts no condition on w™, in particular w can be non-degenerate.

Given a 0-SF triple (u,v,w), observe that (u,w) is a 0-symplectic foliation pair as in
Definition 1.5.7 and v is an admissible form for (u,w), conform Definition 1.5.9. For
a 0-SF pair there are many admissible forms completing it to a ¢-triple.

Lemma 1.6.3. If (u,w) is a 0-symplectic foliation pair on N>" then:

(i) There exists an admissible form v;

(i1) Given a fized admissible form v, there is a 1-1 correspondence between admissible
forms and triples (f,g,X), where f,ge C*(N) with g > 0 and X € X(N) with
X € keru A v, by sending:

(fagvX) ’_)fu+gv+LXw~
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Proof. (i) Since dimker unw™! = 1, on any oriented coordinate chart (U, x1,. .., T2,)
we have /\
wAwr ! =Zfl-dx1 Aconde AL daog,
i

where f; € C®(N) are such that at each point at least one of the f; is non-zero.
So, define v := >, (—1)* fidz; then

v/\u/\w”_1=2fi2dx1/\---/\dmgn>0.
i

Next, choose an atlas U = {U;}je; on M and {p;};e; a partition of unity
subordinate to it. Construct v; on each U; as above. Then,

v i= ijvj7
J

satisfies v A u A w1 > 0 globally on M.

(ii) For any fu + gv + txw as above defines an admissible form. Conversely, let ©
be any admissible form. Observe that v induces a splitting

TN =keru A v@®(Ry) ®{(Ry),
where the vector field R, and R, are uniquely defined by the equations:
u(Ru) = 1; U(Ru) = 07 LRuw|ker'u = Oa

and
U(RU) = 07 U(Rv) = 137 LR1,w|keru =0.

Define functions
f = 'D<Ru)7 g = f)(Rv)

Then, o — fu — gv descends to ker u A v, on which w is non-degenerate. Hence
we find a unique X € T'(ker u A v) such that

U= fu+gv+ixw.
O

Given a 0-SF manifold (N, u,w), we can define the associated local model from Equa-
tion 1.5.2.2 for any choice of admissible form v. The model has the property that the
admissible form can be recovered from the 2-form 7 since

v = tan|om-

When (N,u,w) is the boundary of an (not necessarily regular) SF-pair (y,7) on a
manifold M, this property is still true, provided ker 7 is compatible with the boundary,
as we show in Lemma 1.6.6 below. To give the precise statement we first define the
Reeb vector field of a SF-pair, analogous to Definition 1.3.10 for contact forms.
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Definition 1.6.4. The Reeb vector field of an SF-pair (v,m), as in Definition
1.5.8, on M is the unique vector field R € X(M) satisfying:

Y(R) =1, wrn=0.

Example 1.6.5. We compute here the Reeb vector field on the local model (g, 0] x N
with
vi=u, n:=w+d(tv),

associated to a O-triple (u,v,w) on N, as in Equation 1.5.2.2. First, note that the
O-triple induces a splitting

T*N = (uy ® (v)® (keru N ker v)*.
In turn this induces a dual splitting:
TN ={(R,)®{(R,)® (keru m ker v),
which we use as the definition of the vector fields R,,, R, € X(N). That is, R, satisfies
uw(Ry,) =1, v(R,) =0, B(R.) =0, VBe (kerun kerv)*,
and similarly for R,.
The Reeb vector field R of (,7n) can be explicitly computed in the following cases.
(i) If w™ = 0 then tg,w =0, tg,w = 0, and the Reeb vector field is given by
R=R,+X;+ fi0,
where X; € ker u n ker v is uniquely defined by
tx, (w+tdv) =tig,dv, on keru n kerv,

and
ft = td'[}(Rv, Ru + Xt)

In particular, at points in the boundary R = R,, which is tangent to the
boundary as expected.
(ii) If w™ > 0 then
1

R:?(Xt_at)y

where f € C*(N) and X; € X(NV) are uniquely defined by
tx,(w+tdv) = v, fi=u(Xy).

To see that R is well-defined note that w + tdv is non-degenerate for ¢ small
enough. Furthermore, assume u(X,) = 0 at some point, then

(1.6.0.3) Lx, (v AU A w"il) =0,

contradicting that v A u A w™™! > 0.
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A

Continuing the discussion from before Definition 1.6.4, since R spans the kernel of
7, the compatibility condition mentioned before requires the Reeb vector field to be
everywhere tangent or everywhere transverse to 0M. Note that this is equivalent
to w™ = 0 or w™ > 0 everywhere on the boundary. In this case, the following
lemma shows that any admissible form is obtained by contracting n with a vector
field transverse to the boundary. Recall that this property allowed us to obtain the
normal form up to equivalence adapted to the boundary, as stated in Proposition
1.5.14.

Lemma 1.6.6. Let (v,m) be a symplectic foliation pair on a manifold M*"*1, and
(OM,u = ~p,w := 1) the induced 0-pair. Then, for any vector field X € X(M)
satisfying X € kery and transverse to the boundary,

vi=xn|om,

is an admissible form for (u,w).

Conversely, assuming that the Reeb vector field R is everywhere transverse or tangent
to 0M. Then, for any admissible form v, there exists a vector field X € X(M) such
that

X ekeru, v=(txn)om, XhOM.

Proof. For the first implication note that since v A ™ > 0 we have

0<ix(yAn™)|om =nvAunw,

proving that v is admissible.

For the converse, first assume R is everywhere tangent to dM. As remarked in
Example 1.6.5, this implies that R = R,, at the boundary. Extend v to a form on
a neighborhood of the boundary. Then, v — v(R)u descends to keru on which 7 is
non-degenerate. Hence, we find a unique X € ker u such that

v =v(R)u+ txn.

We claim that X points outwards along the boundary. To see this, assume that X is
tangent to the boundary, then the above equation can be restricted to and we obtain

v =v(Ry,)u+ txw.

Evaluating on R,, gives 1 = w(X, R,) which is a contradiction, since as we have
seen in Example 1.6.5 that w™ = 0 implies tg,w = 0. Hence, X is transverse to the
boundary. To see it points outwards observe that

1
(1.6.0.4) vAuA T = —ux(y Ao

Since v Au A w™ ! and 4 A p™ are positive volume forms (on M and M respectively)
it follows that X is pointing outwards.
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Secondly, assume that R is everywhere transverse to 0M. Then, w™ > 0 and there
exists a unique Y € X(0M) such that

Lyw = 0.

Extend Y to a vector field on a neighborhood of the boundary and define f := v(Y).
Then

X =Y - fR,

satisfies y(X) = 0, and txn|op = v. Again, we claim that X is pointing outwards
along the boundary. If we assume that X is tangent to the boundary then

1

_ 1
O<vAuAw'™ =—ix(unwh),
n

which is a contradiction since u A w™ = 0. Hence X transverse to the boundary and
the same argument as in Equation 1.6.0.4 shows its pointing outwards.

O

We finish this section with another property of the Reeb vector field that will be
useful later. Recall that for a contact form a € Q'(M), the flow of the Reeb vector
field preserves a. That is,

Lra =0, and Lrda=0.

For a SF-pair a similar phenomenon happens if and only if (v,7) is a cosymplectic
structure:

Lemma 1.6.7. Let (v,n) be a symplectic foliation pair on M, and R the associated
Reeb vector field. Then,

(i) Lrvy =0 if and only if dy = 0;

(i) Lrn =0 if and only if dn = 0.
Proof. We prove the second statement; the proof of the first one is analogous. The
condition v A dn = 0 is equivalent to

dn =p A7,

where 1 € Q2(M). By taking fi := p + (trt) A ¥ we can assume that tgpu = 0. Since
trn = 0 we thus find

Lrn = trdn = p,

which vanishes if and only if n is closed (since trp = 0). O
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1.6.1 Special boundaries of symplectic foliation pairs

In many cases, a symplectic foliation pair has a boundary which is even more special
than being regular. In these cases, the admissible forms for the induced J-symplectic
foliation pair have extra properties. The following discussion is analogous to that in
Section 1.4.2 for the contact case.

Recall from Definition 1.6.2, that a 0-SF triple (u,v,w) on a manifold N?" consists
of differential forms u,v € Q' (N), and w € Q?(N) satisfying:

1

undu=0, uadw=0, vAauaAaw'" " >0.
Definition 1.6.8. A 0-SF triple (u,v,w) is said to be of:
e Liouville type if
w = dv;
e Unimodular type if
dv = 0.
e Cosymplectic type if
du=0, dv=0, dw=0
e Tameable if
du=0, , w'>0, dw+unsdv=0.

Definition 1.6.9. We say that a symplectic foliation pair (v,n) on M, has bound-
ary of right S-type (resp. left S-type), for S in the above list, if in some collar
neighborhood U ~ (—&,0] x M (resp. U ~ [0,¢) x 0M ) we have

vy=u, n=w+d(tv).

where (u,v,w) is a 0-symplectic foliation triple of S-type.

The left and right versions of each type only differ in the orientations induced on the
boundary. In line with our conventions, see Section 1.1.1, the boundary of a manifold
with the standard orientation is always a right boundary. However, these names are
particularly useful when considering cobordisms, where we can think of these models
as the left or right side of a cobordism as in Section 1.6.2.

The following two examples are the SF-analogue of Example 1.4.9 for contact struc-
tures.

Example 1.6.10. Let (X,w) be a symplectic manifold. Then the product ¥ x S*
admits a symplectic foliation pair

vy=d6, n=w.

In fact since both forms are closed they define a cosymplectic structure.
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If the symplectic manifold (X, w) has cosymplectic type boundary (0%, wy, 8), in the
sense of Definition 1.2.10, then the SF-pair (v, n) has regular boundary of cosymplectic
type. To see this note that there exists a collar neighborhood (—¢,0] x d¥ < ¥ on
which

w=wy+dt A S.
In turn, this provides a collar (—¢,0] x B x S' « ¥ x S! on which
y=d0, n=ws+dtAp.

Similarly, one sees that if (3, w) has contact boundary then the symplectic foliation
has boundary of Liouville type. A

Example 1.6.11. Let (yg,np) be a symplectic foliation pair on a closed manifold B.
Then the product B x D%, where D? denotes the disk of radius §, admits a symplectic
foliation pair

y:i=7vB, n:=np+d (T2d9) .

Reparametrizing the r-coordinate we obtain a collar neighborhood (—¢,0] x B x St
on which

Y =198, 0 =np+d(tédd).

The the induced J-symplectic foliation boundary equals
(B x St u :=vyp,v=40d0,w = 773) )
which is of Unimodular type. A

The special boundary types above can be phrased in terms of vector fields. If (v, n)
has regular boundary of Liouville type or cosymplectic type, then 7 is a closed on a
neighborhood of the boundary, which by Lemma 1.6.7 is equivalent to Lzn = 0.

Lemma 1.6.12. Let (vy,n) be a symplectic foliation on a manifold with boundary M.
Then the boundary is of:

(i) Liouwville type if and only if Lrn = 0 and there exists a vector field X € X(M)
transverse to the boundary and satisfying

‘CX’Y = 07 EXTI =1,
on a neighborhood of the boundary.

(ii) Unimodular type if and only if there exists a vector field X € X(M), transverse
to the boundary and satisfying

EX'y:Oa ['XT]:07

on a neighborhood of the boundary.
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Proof. In both, cases use X to define a collar neighborhood U ~ (—&,0] x éM on
which we identify X = d; and

y=u, n=wy+dtA v,

for f; € C*(OM), us, v, € Q1 (OM) and w, € Q?(0M). Then, the condition Lxv = 0
translates into u; = 0, so that v = w.

(i) If Lxn = n then w; = wy and v; = vy, SO
wy = e'w, v, = e'v.
Together with dn = 0, this implies
wy = Wy = doy = etdo.
Change coordinates s = ¢! — 1 around ¢ = 0 gives
n=d((1+s)v) =dv+d(sv),
so (v,m) is of Liouville type.
(ii) If Lxn = 0 then wy = 0 and ©; = 0, so that
n=w+dt Av.
Using Cartan’s formula for the Lie derivative we see
Lxn=2dv =0,

meaning (y,n) is of unimodular type.

O

Example 1.6.13. The construction from Example 1.4.11 and Example 1.2.13, also
applies to symplectic foliations. Let (M, F,w) be a SF-manifold, and (B, Fp,wp) a
codimension-2 SF-submanifold, by which we mean that BAhJF and

Fp:=FnTB, wp:=w|r,,

defines a SF-structure on B. As before, the w-orthogonal defines a model for the
normal bundle
v:=FpCF,

and the restriction w, := w|,, makes it into a symplectic vector bundle.

Let 7 : P — B be the principal S!-bundle associated to the symplectic normal
bundle (v,w,), and let # € Q'(P) be a connection form satisfying df = 7*o where
[c] € H?(B;R) is the Chern class of the symplectic normal bundle. Fix a SF-pair
(v,m) representing (F,w) and consider

[i=7*(yg), Q:=n*np)+d(r’(de+90))



1.6. SYMPLECTIC FOLIATION PAIRS AND THEIR BOUNDARIES 71

on P x C.

Using arguments similar to that of Example 1.2.13 (including a normal form as in
(iii) there) is possible to show that these forms induce a SF-manifold

(1.6.1.1) (P X5 C,f,ﬁ),

isomorphic as SF-manifolds to a neighborhood of (B, Fg,wp) c (M, F,w).

The boundary of this neighborhood is isomorphic to P, and the induced J-symplectic
folation pair (Definition 1.5.8) equals:

(P,fa = W*(’YB),Qa = W*(WB +€20) .

Thus, 0 is an admissible form and using Lemma 1.6.12 we conclude that the neigh-
borhood has regular boundary of:

e Unimodular type, if o = 0, which happens if the Chern class of (v,w, ) vanishes.
Furthermore, if additionally Fp is unimodular, so that we can assume dyg = 0,
the boundary is of cosymplectic type;

e Liouville type if 0 = np. This happens if wp admits a closed extension repre-
senting the Chern class of (v,w,);

A

1.6.2 Gluing and cobordisms of symplectic foliations

Gluing manifolds with symplectic foliations along their boundaries in particular en-
tails gluing the underlying foliations. Therefore, we start this section by recalling
how to glue foliated manifolds with boundary. We will consider two types of folia-
tions, those which are everywhere transverse to the boundary, and those for which
the boundary is a leaf. Next, we adapt the above story to the case of symplectic
foliations. Again we consider two types of boundaries, transverse and tangent, and
give gluing constructions for each of them.

1.6.2.1 Gluing foliated manifolds

Recall from Section 1.2.4 that to glue manifolds with geometric structures, one usually
needs a normal form on a collar neighborhood around the boundary. These collar
neighborhoods can then be matched, as in the smooth case above, and the normal
form ensures that the structures glue.

1.6.2.2 Foliations transverse to the boundary

As stated above, the key ingredient in gluing manifolds with extra structure is the
existence of a normal form around the boundary. Let (M, F) be a foliated manifold
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such that F is everywhere transverse to the boundary. Then the intersection
Fo:=F nT(0M),

is a foliation on the boundary dM. The normal form states that locally around the
boundary (M, F) looks like the product foliation

((—e,0] x M, (—¢,0] x Fa) .
More precisely, we have:

Proposition 1.6.14. Let v € QY (M) defines a foliation on M transverse to the
boundary 0M. If X € X(M) is a vector field satisfying X € kery and X hdM, then,
there exists a collar neighborhood U ~ (—e,0] x OM on which

’Y:f’yaa X:asv

for a positive function f € C*(U) satisfying flom = 1.

If we define a collar neighborhood using the flow of X, then the proof follows from
applying the following lemma.

Lemma 1.6.15. Let v € QY(M) and X € X(M) a vector field with flow ¢, t € [0,1].
Then the following are equivalent:

(i) There exists strictly positive functions fy € C*(M), fo =1, satisfying:
oy = frv;
(ii) There exists a function g€ C*(M) such that
Lxy =gy
If the above is satisfied then g = fo.

Proof. Differentiating the first equation at time ¢ = 0, gives the second equation with
g = fo. Moreover,

. d d
fiv = &fﬂ = a@k’y = ¢f(£X7) = ¢;k(9’7) = (go o) fi.

This defines a differential equation
ft =(goge)ft, fo=1

whose solution is given by
£, = elolgode)fads

Hence, provided the second equation holds, f; can be recovered from g and ¢; alone,
proving the first condition holds. O
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Let (My,F1) and (Ma, F2) be foliated manifolds with transverse boundary, and as-
sume there exists an orientation reversing isomorphism of foliated manifolds

(b . ((?thl’a) - (aMQ,fg’a).
Using the above proposition we find collar neighborhoods
k1 : ((—e,0] x My, (—¢,0] x F1,0) — (M1, F1),

and
kQ : ([0,6) X mg, [0,8) X ]:2’9) g (MQ,]:Q).

Together these two collar neighborhoods define a map
k‘l Ug k‘g : (—E,E) x OM — M1 Ug MQ,
as in Equation 1.2.4.3 and we obtain:

Lemma 1.6.16. The space My Uy Mo admits a foliation, denoted by F1 Uy Fa, which
is the unique foliation with the properties that its restriction to M; equals F;, and the
map

kl Ue kg : (78,8) x OM — M1 Ue MQ,

is a foliated embedding. The resulting structure (of a foliated smooth manifold) de-
pends on ki, ko and ¢, but its isomorphism class does not.

1.6.2.3 Foliations tangent to the boundary

Unlike the case of transverse boundaries, the condition of having the boundary as
a leaf does not control the behavior of the foliation in the direction normal to the
boundary. As a consequence there does not exist a normal form depending only on
the induced structure on the boundary. Instead we have to impose an extra condition.

Let (M, F) be a foliated manifold whose boundary is a leaf. For any collar neighbor-
hood k : (—¢,0] x 0M — M, we define the foliated manifold

(1.6.2.1) (Moo := M Uang [0,00) X OM, Fi oo := F Uons Flo,e0)) »
where we glue using k, and the foliation on the semi-infinite cylinder is defined by

Flo,w) = U {t} x oM.

te[0,00)

Although the manifold M, is always smooth, F, is in general only continuous at
the hypersurface 0M < M,,. The collar neighborhood is said to be adapted if
(Mg, 0, Fi,0) defines a smooth extension of (M, F).

Definition 1.6.17. A foliation F on M is said to be tame at the boundary if
there exists an adapted collar neighborhood k as above.



74 CHAPTER 1. CONSTRUCTIONS

Remark 1.6.18. To check the tameness condition in practice, write F = ker 6 for
6 € QY(M), choose a collar neighborhood (—¢,0] x 0M, and write

(1.6.2.2) 0 =0, + fdt,

for some 6; € Q*(0M) and f, € C*(0M). Rescaling 6 we can assume f; = 1, so that
F is tame if and only if 6, vanishes up to infinite order at the boundary. A

The gluing construction follows the same pattern as befores. Let F; be a foliation
tangent to the boundary on M,;, ¢+ = 1,2, and assume there exists an orientation
reversing diffeomorphism

¢ : 8M1 i aMQ
Choose adapted collar neighborhoods
kl : (—870] X 6M1 - Ml, kQ : [0,6) X 6M2 — Mg.

The tameness condition ensures that, putting these collars together, the foliations
glue smoothly.

Lemma 1.6.19. Let F; be a foliation tame at the boundary on M;, i = 1,2. Then
My vy My admits a unique foliation, denoted by F1 Uy Fa, whose restriction to M;
equals F;, and such that

kl Ue kg : (—E,E) X aMl - M1 Ue Mg,

is a (foliated) embedding. The resulting structure depends on ki, ko and ¢, but its
isomorphism class does not.

1.6.2.4 Gluing symplectic foliations tangent to the boundary

To state the analogue of Lemma 1.6.19 above for symplectic foliations, we need to
impose the following condition:

Definition 1.6.20. Let (F,w) be a symplectic foliation on M whose boundary oM
is a leaf. Choose a collar neighborhood of the boundary k : (—e,0] x M — M, and
use it to define the manifold

Moy := M Ugny [0,00) x @M.
On [0,00) x M define an extension of (F,w) by

Foo i= U {t} x OM, wq = wa,
te[0,00)

where wy = w|anr- If this extension is smooth we say that the collar neighborhood
is adapted. The symplectic foliation (F,w) is said to be tame at the boundary if
there exists an adapted collar.
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Symplectic foliations with tame boundaries can be glued essentially by definition. In-
deed, choose collar neighborhoods as in Definition 1.6.20, then the tameness condition
implies that the foliations on each collar neighborhood together with their leafwise
symplectic form match smoothly along the boundary leaf. Thus we have:

Proposition 1.6.21. Let (F;,w;) be a symplectic foliation on M;, i = 1,2, tame at
the boundary, and denote w; o := w;|on, . Assume there exists an orientation reversing

diffeomorphism ¢ : 0My; — 0M s, such that
P*wae = wie.
Then, there exists a symplectic foliation (F,w) on
My vy My := (M1 u M) /z ~ ¢(x), xedM,

which restricts to (Fy;,w;) on M.

1.6.2.5 Gluing symplectic foliations transverse to the boundary

Let (F,w) be a symplectic foliation on a manifold with boundary M. Recall that if
the foliation is transverse to the boundary, it inherits a d-symplectic foliation (Fz,ws)
as in Definition 1.5.7.

Proposition 1.6.22. Let (F;,w;) be a symplectic foliation transverse to the boundary
on M;, i = 1,2. Assume there exists a orientation reversing diffeomorphism ¢ :
oM, — 0M,, such that

(F1,0,w1,0) = (¢*(F2,0), 0™ (w2,0)) -
Then the manifold
M1 ) Mg = (M1 I_JMQ)/I'~¢(1')7 xe(?Ml,

admits a symplectic foliation (F,w) that restricts to (F;,w;) on M;.

Proof. The proof follows the same pattern as that of Lemma 1.6.16, but now using
the normal form for symplectic foliations from Theorem 1.5.12. Let (ys,ms) be a
d-symplectic foliation pair representing (Fi o,w1,0) and 8 € Q'(dM) any admissible
form. Using ¢ to identify 0M; and 0Ms, we see that (—f,7s,7s) is a representing
0-SF-triple for (F2,0,ws,0).

Applying Theorem 1.5.12 we find a collar neighborhood on which (Fj,w;) looks like
its local model

(—€,0] x OMy, Fi =kervyy, wi=mn+d(th).

Similarly, again using ¢ to identify 0M; and dM,, we find a collar neighborhood in
My, on which (F,ws) looks like its local model

(—€,0] x OMy, JFo=kervys, wo=mns—d(tB),
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which is isomorphic to
[0,€) x OMy, Fo =kervs, ws=mns+d(B).
Putting these neighborhoods together we obtain a symplectic foliation,
(—e,e) x OMy, F:=kervs, w=mns+d(tB).
By construction (F,w) satisfies the required properties. O

Example 1.6.23. The Gompf connected sum construction from Example 1.2.22 also
works for SF-manifolds. Let (M;, Fi,w;), i = 1,2, be SF-manifolds with codimension-
2 SF-submanifolds (B;, Fp,,ws,), as in Example 1.6.13. Suppose there exists an
orientation preserving diffeomorphism ¢ : By — Bj satisfying:

(1) ¢*(‘FBl’wBl) = (]:Bmsz);
(i) ¢*c1(vp,) = —c1(vB,) € H*(By),

where ¢ (vp,) denotes the Chern class of the symplectic normal bundle as in Example
1.6.13. Recall that a neighborhood of B; is isomorphic to

(P’L X st Caf‘iaﬁi) )

as in Equation 1.6.1.1 By the conditions above, the induced 0-SF structures satisfy
the hypothesis of Proposition 1.6.22, so that the complement of these neighborhoods
can be glued along their boundary. Hence, the Gompf connected sum

(Ml,Bl)#(MQ,BQ) = (M]_\Pl Xg1 ]D)Z) Ud} (MQ\PQ Xg1 DQ) y

where ¢ : P, — P5 is induced by ¢, admits a symplectic foliation which restricts to
(Fi,w;) on each of the pieces. A

As in Section 1.4.3, it is convenient to phrase gluing of SF-manifolds in terms of
cobordisms. This automatically takes care of the induced orientations, and gives us
more freedom to change the symplectic foliations to make them match.

Definition 1.6.24. Let (N;, Fi,w;), ¢ = 1,2, be 0-SF manifolds as in Definition
1.5.7. A SF-cobordism (N1, Fi,w1) <m,rw) (N2, F2,w2) is an SF-manifold (M, F,w)
with

oM = Fl (] Ng,

and inducing (F;,w;) on the boundary.

In particular, the foliation (F,w) on the cobordism M, is transverse to the boundary.
Thus, Proposition 1.6.22 says that SF-cobordisms can be composed. Analogous to
Example 1.4.17, any SF-manifold (M, F,w) can be interpreted as a cobordism

(%] <(M,Fw) (5M,fa =FnToM,ws = w

-7:0)'
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Furthermore, gluing two SF-manifolds (M;, F;,w;), i = 1,2, using Proposition 1.6.22,
is equivalent to a composition of cobordisms:

B <My, Fiwor) (OM1, F1,0,W1,0) <(My, Fawz) D-

Note that here we implicitly use that there exists an isomorphism of 0-SF manifold
¢ (OMy, F19,w1,0) = (OMa, Fa5,w2,0), see Remark 1.4.16.

We also consider the following (stronger) type of cobordism for ¢-SF triples:

Definition 1.6.25. Let (u;,v;,w;), i = 1,2, be 0-SF triples on a manifold N; as in
Definition 1.6.2. A regular SF-cobordism (N1, u1,v1,w1) <(a,,y) (N2, uz, v, w2),
is a manifold M endowed with a SF-pair (y,n) satisfying

6M=V1I_JN2,

and, in the notation of Definition 1.6.9, (v,n) has:

(i) Regular left boundary Ny, for the 0-SF triple (uy,vi,ws);

(ii) Regular right boundary Na, for the 0-SF triple (us, v, ws).

It is not always possible to glue two SF-manifolds (M;, F;,w;), ¢ = 1,2, to each other
directly, or equivalently, to compose them as cobordisms. In this case, we can use
an intermediate cobordism (M, F,w) to interpolate between the J-SF structures on
0M;, and form the composition:

@ <(M1,.7-'1,w1) (6M17‘F1,57w1,(7) <(M,J—',w) (aM27f2,07w2,6) < @

Often the cobordism is topologically just the trivial cobordism [0, 1] x M, in which
case the manifold obtained in the above decomposition is diffeomorphic to the gluing
of My and M.

Following this strategy, we give below another type of gluing for symplectic foliations
transverse to the boundary, which is often more useful than Proposition 1.6.22. The
reason for this is that, although the previous result works in general, its main downside
is that the diffeomorphism used to identify the boundaries needs to be an isomorphism
of d-symplectic foliations. This poses a problem in practical situations, as usually
there is no freedom in choosing the gluing diffeomorphism ¢. The construction below
imposes more conditions on the symplectic foliation, but as a tradeof weakens the
requirements on ¢.

The symplectic version of the turbulization construction, discussed in the next section,
allows such foliations to be changed close to the boundary so that they become tame
the boundary and can be glued. This gives a way of gluing manifolds with symplectic
foliations transverse to the boundary:

Theorem 1.6.26. Let (F;,w;), i = 1,2, be SF-structures on M;, transverse to the
boundary, and denote by (Fa,,ws,;) the induced 0-SF structures on the boundary,
conform Definition 1.5.7. Assume that Fp; is unimodular, and that there exists:

(i) An orientation reversing diffeomorphism ¢ : 0My; — OMo;
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(i1) Symplectic extensions @; of wa,; on OM;;

(i1i) A family of symplectic forms we, t € [0,1] on My satisfying:

wo =g, w1 = ¢*(W1).
Then, there exists a symplectic foliation (F,w) on

M1 U¢M2 = MluM2/$~¢(CL'), LL‘E&Mh

whose restriction to M; agrees with (F;,w;) away from the boundary.

The main ingredient in the proof is the turbulization construction for symplectic
foliations given in Theorem 1.7.31 which is proved in the next section. We also
need the following cobordism, which allows for the interpolation w; between &y and
¢*(@1). Note, that if such an interpolation is necessary, the resulting SF-structure
on My ug M has a family of compact leaves.

Lemma 1.6.27. Let wy, t € [0,1] be a family of symplectic forms on N*". Then,
there exists a SF-structure (F,w) on the trivial cobordism [0,1] x N which is:

(i) Tame at the left boundary, and the induced symplectic form on the boundary
leaf is wo;

(i) Tame at the right boundary, and the induced symplectic form on the boundary
leaf is wy.

Proof. Let A:[0,1] — [0,1] be a bump function, satisfying

) — 0 for ¢t near 0 .
1 for ¢ near 1

Then, the required SF-structure is given by:

(]: = U {t} x N, w:= wA(t)).

te[0,1]

O

Proof of Theorem 1.6.26. Using Theorem 1.7.31 we change the SF-structures on M;
so that it is tame at the boundary and has a symplectic leaf

(OM;, &;).

Then, using Proposition 1.6.21, we can connect the two pieces by glueing a cobordism
as in Lemma 1.6.27 in between. O
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1.7 Turbulization

In certain cases, a foliation with transverse boundary can be changed, locally around
the boundary, so it becomes tangent to the boundary. This construction is called
turbulization, and the resulting foliation generalizes the Reeb components used to
obtain the Reeb foliation on S? from Example 1.5.5. The main focus of this section
is to adapt this construction to the setting of symplectic foliations.

We start by recalling the classical turbulization for foliations. Next, we give two
versions of turbulization for SF-pairs with regular boundary. The first one, stated in
Lemma 1.7.3, requires slightly stronger hypothesis, but suffices for most applications.
The second one, stated in Lemma 1.7.14, requires minimal hypothesis but the proof
becomes more involved.

Then, we consider turbulization on the level of symplectic foliations (without a pref-
ered SF-pair). The main result is Theorem 1.7.31, which is based on Lemma 1.7.14.
Finally,in Section 1.7.1, we apply turbulization to construct symplectic foliations on
manifolds which admit an open book decomposition.

1.7.0.1 Turbulizing foliations

When we try to construct a symplectic foliation on a given manifold M, the gluing
construction for foliations with transverse boundaries is often less useful than the one
for foliations tame at the boundary. The reason is that when we cut the manifold M
into pieces, we have to remember how to glue them back together recover M. In this
case we have no freedom in choosing the diffeomorphism ¢ : 0M; — dM 5. Hence, we
need to construct the foliations on each of the pieces so that the given ¢ preserves
the induced structures on the boundary. Therefore, the constructions on each of the
pieces depend on each other, and we are essentially doing a global construction.
The gluing construction for tame boundaries does not have this problem, since any
¢ automatically preserves the boundary leaf. Therefore, the foliations on each of the
pieces can be constructed independently of each other, reducing the global construc-
tion problem to several local ones.

The turbulization construction allows us to change a foliation that is transverse to
the boundary into one that is tame at the boundary.

Proposition 1.7.1. Let F be a foliation on M transverse to the boundary, and
denote by Fo := FnTOM the induced foliation on the boundary. If F5 can be defined
by a closed form (i.e. is unimodular), then there exists a foliation F on M such that

(i) F is tame at the boundary;

(ii) F agrees with F away from the boundary.

Proof. Let 6 € Q'(0M) be a closed form so that F, = ker ;. By Lemma 1.6.14 we
can find a collar neighborhood U ~ (—¢,0] x dM on which F = ker 5. On the collar
we define a new foliation by

0= f(r)0o + g(r)dr,
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where f,g: (—¢,0] — R. If we want ker 6 to be tame at the boundary and agree with
F away from the boundary we choose the functions to satisfy

1 for r near —e¢ 0 for r near —¢
1.7.0.1 = = . fPrgi>o.
( ) / {0 for 7 near 0 g {1 for r near 0 U
See Figure 1.3 for an example of functions satisfying these conditions. O

Figure 1.3: Functions f and g satisfying the conditions in Equation 1.7.0.1.

Instead of changing the foliation close to the boundary, we can change the foliation
by gluing a trivial cobordism. This does not change the diffeomorphism type of the
manifold, so that the resulting foliation is isomorphic to the one above.

Lemma 1.7.2. Let 0 be a closed, nowhere vanishing 1-form on a N*" and denote
by Fn := ker@ the induced foliation. Then, there exists a foliation F on the trivial
cobordism [0,1] x N such that:

(i) F is transverse to the left boundary and F n T({0} x N) = Fy;

(i) F is tame at the right boundary.

Proof. The proof is exactly the same as that of Proposition 1.7.1. O

1.7.0.2 Turbulization for 0-SF triples of Cosymplectic type

The following Lemma is the SF-analogue of construction for foliations from Lemma
1.7.2. We use it, in Proposition 1.7.5 below, to obtain the SF-analogue of the turbu-
lization construction from Proposition 1.7.1.
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Lemma 1.7.3. Let (u,v,w) be a 0-SF triple of cosymplectic type on N?", as in
Definition 1.6.8. Then, there exists a symplectic foliation pair (v,n) on the trivial
cobordism [0,1] x N which has:

(i) Regular left boundary of cosymplectic type (Definition 1.6.9) for the 0-SF triple
(u7 U7 w);

(i) Tame right boundary (Definition 1.6.20) with symplectic leaf (N,w + Cv A u)
for a constant C > 0 large enough;

Moreover, if w™ = 0, then we can take C' = 1.

Remark 1.7.4. The proof is symmetric in the interval coordinate of [0,1] x N. That
is, the same argument shows that we can obtain a cobordism [0,1] x N which has

(i) Tame left boundary with symplectic leaf (N, w + Cu A v) for a constant C > 0
large enough;

(ii) Regular right boundary of cosymplectic type for the J-SF triple (u,v,w).

Note that here the symplectic form on the boundary leaf differs from the one in
Lemma 1.7.3 by changing the order of v and v. This is necessary to take into account
the change in orientation between the left and right boundary of the cobordism [0, 1] x
N. A
Proof. First note that the non-degeneracy condition for w + Cv A u is given by

(1.7.0.2) (w+ Cv Au)" =w™ +nCuw" Av A u.

This will always be positive for C > 0 large enough, and when w™ > 0 it suffices to
take C' = 1.

Choose functions f, g : [0,1] — Rs¢ satisfying
(i) f=1neart=1and f =0 near t = 0;
(iil) g =0near t = 1 and g = 1 near t = 0;

(iii) f2 + Cg? » g, for some constant C » 0 as in Equation 1.7.0.2

Note this can always be achieved by letting f and g having graphs as in Figure 1.4.
The differential forms

vi=fu+gdt, n:=w+ fdt Av+gCv A u,
define a symplectic foliation since:
yady=(dw—gCdt Aunv) A (fu+gdt) =0
v ady = (fu+gdt) A (fdt A u) =0
yAan® = (w" +n(fdt — gCu) Av A w"™ ") A (fu+ gdt)
=gdt A w" +n(f2+g?C)dt Av AuAw™ ! >0.
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| C
Cg?
-1
f 9
—€ 0

Figure 1.4: Functions f and g satisfying the conditions in the proof of Lemma 1.7.3.

For the last computation we use that the second summand dominates the first by
condition (iii) above. Furthermore, conditions (i) and (ii) above imply that (y,n) has
the correct type of boundary. Indeed, around the left boundary we have

y=u, n=w+dtAwv,
which is regular of cosymplectic type, while for points in the right boundary we have
y=dt, n=w+Cv A u,

inducing the desired symplectic leaf. O

Let (M,~,n) be a symplectic foliation air with regular boundary of cosymplectic type
conform Definition 1.6.9. By the previous result, the manifold

~

M:=M Y{0}xoM [O, 1] X 6M,
admits a symplectic foliation pair (9, 7)) such that the boundary is a symplectic leaf
(OM,w+ Cu nv).

Observe that M ~ M , and in fact it is not hard to see that the construction in
Lemma 1.7.3 above can be realized inside a collar neighborhood of the boundary of
M. Thus we conclude:

Proposition 1.7.5. Let (v,n) be a SF-pair on a manifold M with regular boundary
of cosymplectic type (Definition 1.6.9) for the 0-SF triple (u,v,w). Then, there exists
a symplectic foliation pair (3,7) on M such that:

(i) (7,m) agrees with (v,n) away from the boundary OM ;
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(i1) (7,7) has tame boundary (Definition 1.6.20) with symplectic leaf (OM, w+ Cu A
v) for a sufficiently large constant C > 0.

Note that strictly speaking the above lemma does not produce an SF-cobordism
as in Definition 1.6.24, since the foliation is not transverse to the boundary. The
transversality condition in Definition 1.6.24 ensures that cobordisms can be composed.
However, using the gluing construction from Proposition 1.6.21 ”cobordisms” as in
Proposition 1.7.5 can also be composed. Hence, at least intuitively we still think of
them as SF-cobordisms. In fact, as the following lemma shows that by applying the
above construction twice we obtain an honest SF-cobordism.

Lemma 1.7.6. For i = 0,1 let (u;,v;,w;) be a 0-SF triple of cosymplectic type
on N (Definition 1.6.8) and assume in addition that w? > 0. If there exists an
orientation reversing diffeomorphism ¢ : N — N, such that

¢ (w1 +u1 A v1) = wo + Vo A U,
then there exists a regular SF-cobordism:
(N7 Uo, Yo, wo) <([0,1]x N,v,n) (N7 U1, V1, wl)'

Moreover, the SF-cobordism has a single compact leaf diffeomorphic to N, and with
leafwise symplectic form wgy + v A ug.

Proof. By Lemma 1.7.3 and Remark 1.7.4, we find two trivial cobordisms, both dif-
feomorphic to [0,1] x N, endowed with SF-pairs (v;,7;), ¢,= 0,1, respectively. The
proof of Lemma 1.7.3 shows that the first cobordism contains a collar neighborhood
isomorphic to

((—=€,0] x N,y = dt, 1m0 = wo + vo A uo),

while the second contains a collar
([0,¢) x N,yp = dt,m1 = wy +ug Avy).

Under the identifications made by ¢ these collars can be matched smoothly giving the
desired gluing. The resulting SF-cobordism ([0, 1] x N,~,n) is regular, and induces
the required 0-SF triples on the boundary. O

Remark 1.7.7. The hypothesis in the lemma above are chosen to obtain the simplest
statement which suffices for our later applications. However, there are several ways
in which they can be changed obtaining a slightly stronger statement:

e The condition that w; > 0, is not necessary. As in Lemma 1.7.3, it can be
removed if we require instead that there exists C; > 0 sufficiently large, and an
orientation reversing diffeomorphism ¢ : N — N

(1703) gb*(wl + Civ1 A ul) = wy + Covg A ug.
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e The condition that ¢ preserves the symplectic forms, as in Equation 1.7.0.3, can
be weakened as follows. It suffices to ask there exists an orientation reversing
diffeomorphism ¢ and a 1-parameter family of symplectic forms wy, t € [0,1] on
N such that

wo = wWo + Vg AUy, W1 =W+ AU.

Then, the single compact leaf of the SF-pair on [0,1] x N can be replaced by
the product foliation

U {t} x N,w;

te[0,1]

e Instead of requiring the 0-SF triples (u;,v;, w;) to be of cosymplectic type, the
same proof goes through when we require them to be Tameable, see Definition
1.6.8. In this case, the proof uses Lemma 1.7.14, instead of Lemma 1.7.3.

A

The following is a simple application of Lemma 1.7.6.

Example 1.7.8. Consider a fibration 7 : N — T2, and a closed 2-form w € Q?(N)
which is non-degenerate on the fibers of 7. Denote the standard angular coordinates
on T? by (61,602) and define «; := 7*df; € Q'(N), i = 1,2. This induces two 0-SF
structures on IV, as in Definition 1.5.7:

(Fii=kery,w; :==w|x), i=1,2.

We want to construct a symplectic foliation on [0, 1] x N which is transverse to the
boundary, and induces the above 0-SF structures on its boundary components. Note
that the naive approach, of ”interpolating” between the foliations above does not
work. Indeed, choose functions f, g : [0,1] — R and consider

vi=f(On +9t)r2.

Then the condition that + defines a foliation reads:

0=vndy=(fg— f@)dt A7 A 7.

Furthermore, we want v to be nowhere vanishing, and agree with v; near the left
boundary and with 5 near the right boundary. Thus, we obtain additional conditions
on f and g:

. 1 t¢near 0 0 tmnear0
—fg=0, fP+4¢>>0, f= = :
f9=179 / g / {O t near 1 g {1 t near 1

and it is not hard to see that these conditions cannot be simultaneously satisfied.

Instead, we observe that the triples (v1,72,w) and (7y2,7v1,w) are 0-SF triples of
cosymplectic type as in Definition 1.6.8. Thus applying the following corollary, which
follows directly from Lemma 1.7.6, we obtain the desired cobordism.

Finally, observe that the "naive approach” (which does not work) would produce a
foliation without any closed leaves, while using the turbulization construction does
produce a closed leaf.
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Corollary 1.7.9. Let (u,v,w) be a 0-SF triple on N*" satisfing du = 0 and dv = 0.
Then there exists a regular SF-cobordism ([0,1] x N,~,n) which has:

(i) Regular left boundary with induced 0-SF triple (u,v,w);
(ii) Regular right boundary with induced 0-SF triple (v, u,w);

(iii) A single closed leaf diffeomorphism to N, with leafwise symplectic form w +
Cv A u for some C' > 0 large enough.

A

1.7.0.3 0-SF triples of Tameable type

Let (vy,7n) be a SF-pair on M with regular boundary (Definition 1.6.1) and denote
the induced -SF triple by (u,v,w) (Definition 1.6.2). Recall that Lemma 1.7.3 says
that (v,n) can be turbulized provided (u,v,w) is of cosymplectic type. It turns out
that this condition can be weakened, and the minimal conditions the triple needs to
satisfy in order to turbulize are as follows.

Firstly, forgetting the leafwise symplectic structure, we need du = 0 to turbulize the
foliation as in Proposition 1.7.1. Secondly, provided that w™ = 0, the form
n:i=w+vAu,

is non-degenerate, so it defines a symplectic form if it is closed, i.e.

(1.7.0.4) dw+dvAu=0.

These necessary conditions precisely mean that (u,v,w) is of Tameable type as in
Definition 1.6.8, and it turns out they are also sufficient. That is, we have following
result analogous to Proposition 1.7.5.

Proposition 1.7.10. Let (v,n) be a SF-pair on M with regular boundary of Tameable
type (Definition 1.6.9) and denote the induced 0-SF triple by (u,v,w). Then, there
exists an SF-pair (5,m) on M such that:

(i) (3,7) agrees with (v,n) away from the boundary OM ;

(i1) (7,m) has tame boundary with symplectic leaf (OM,w + v A u).

The proof follows from Lemma 1.7.14 below, since the cobordism constructed there
can be realized in a collar neighborhood of the boundary. The remainder of this
section is devoted to proving this lemma.

Comparing with Lemma 1.7.3; being Tameable includes the condition w™ = 0 while
the former only requires w™ > 0. However, as we now explain, by adding a trivial
cobordism to the manifold this condition can always be satisfied.
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Lemma 1.7.11. Let (F,w) be a symplectic foliation transverse to the boundary on
M?"+1 ) representing by SF-pair (v,m). Then there exists equivalent pairs (y;,1;) ~
(v,m), i = 1,2, as in Definition 1.5.4, satisfying:

(i) The forms n; and n agree away from the boundary, and ; = v everywhere;

(ii) The Reeb vector field Ry of (n1,71) is tangent to the boundary, i.e. nf = 0;

(i) The Reeb vector field Ry of (n2,72) is everywhere transverse to the boundary
pointing outwards, i.e. ny > 0.

Proof. We denote the induced 0-SF pair by

Yo :=Ylonr, Mo :=nlom,

and and choose an admissible form 8 € Q'(dM) (Definition 1.5.9). By Proposition
1.5.14 there exists a collar neighborhood U ~ (—¢,0] x 0M on which

(1.7.0.5) v=[fve, n=mno+dtB)+p A e,

for a function f € C*(U) and an admissible form 3 € Q' (0M).

Since 8 and v are linearly independent, we can find a vector field X € X(0M) for
which
72(X) =1, B(X)=0.

Use this to define a form p; := txns € QY(0M) and note that, at points in the
boundary,
Y=, =1 +d(tB) +p1 A7,

has Reeb vector field X. Indeed,

txVo =1, tx(me+dt A B+ (txn5) Ave) = 0.

Furthermore, (v,7n) and (vy1,71) are equivalent so we can interpolate from one to the
other as explained in Lemma 1.7.13 below.

By the above argument, we can assume that we have a collar neighborhood as in
Equation 1.7.0.5 for which n} = 0. Hence, we can find a vector field R, € X(0M)
satisfying

Y(Ry) =1, B(R,)=0, wr,mo=0.
Define py := 3 € Q1 (0M) and

Y2 1=, 12 =10+ d(tB) + p2 A e

At points in the boundary, the Reeb vector field of (2, 72) equals Ry = d; + R which
points outwards along the boundary. Indeed, we have

Y(R2) =v2(Ry) =1, trym2 =1tR,(No+dt AB+p2nre)=5—-B8=0.

Again, the proof concludes by applying Lemma 1.7.13 below. O
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Remark 1.7.12. Note that the proof below actually shows which vector fields can
be obtained as the Reeb vector field by replacing the SF-pair by an equivalent one,
as in Definition 1.5.4. Indeed defining v5 = tyns works for any vector field V €
X(0M). We only need to make sure that V already satisfies the conditions 65(V) = 1
and B(V) = 0. Fixing such a vector field V' any other vector field satisfying these
conditions is of the form

V=V + X,

where X € 0(M) satisfies X € ker 8 n ker 0. A
To complete the proof of the lemma above, we need the following result, stating that

close to a hypersurface any SF-pair representing a symplectic foliation can be changed
to an equivalent pair.

Lemma 1.7.13. Let (F,w) be symplectic foliation on M, and (vi,m;), i = 0,1, two
SF-pairs representing (F,w). Then, there exists an SF-pair (v,n) representing (F,w)
such that:

(i) The pair (v,n) agrees with (y1,7m) on a neighborhood of the boundary;

(ii) The pair (v,n) agrees with (Yo, m0) away from the boundary.

Proof. Let U ~ (—¢,0] x M be a collar neighborhood of the boundary. Since
(v1,m) ~ (70,Mm0) we have:

1= v, m=mn0+B A%,
for a function f : U — R~ and B € QY (U). Choose a bump function p : (—¢,0] —
R-, satisfying
() 0 for ¢t near —¢
P = 1 for t near 0

Then,
vi=1+p)f) v, n:=mno+pt)8 A,

is a SF-pair representing (F,w), which agrees with (vy1,7;) on a neighborhood of the
boundary, and with (g, 70) away from the boundary. O

Now that we have proved the preparatory lemmas we return to the proof of Propo-
sition 1.7.10. As stated before it follows immediately from the following lemma since
the cobordism can be realized in a tubular neighborhood of the boundary.

Lemma 1.7.14. Let (u,v,w) be a 0-SF triple of Tameable type on N*", see Definition
1.6.8. Then, there exists a SF-pair (v,m) on the trivial cobordism [0,1] x N which
has:

(i) Regular left boundary of Tameable type with induced O-triple (u,v,w);

(ii) Tame right boundary with symplectic leaf (OM,w + v A u).
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Proof. Consider the pair (y,7) € Q([0,1] x N) x Q2([0,1] x N), given by:
vi=fu+gdt, n:=w+ fdt Av+gv A u+ hdo,

for functions f, g, h : [0,1] — R which will be defined later.

First we want that « describes the turbulization foliation from Lemma 1.7.2. This
means that we have to choose f, g : [0,1] — R satisfying:

(i) f=1neart=0and f =0 near t = 1;
(iil) g =0near t =0 and g = 1 near t = 1;
(iii) f2+ g2 > 0.

It remains to choose h such that (,7n) becomes the required SF-pair. If we choose h
to satisfy

t t 0
(1.7.0.6) h(t) = near ™
0 tmnear0

then (vy,n) has regular left boundary of tameable type, and tame right boundary.
Furthermore, if || is so small that it can be treated as zero in the computation, then
the conditions for (7y,7) to define a SF-pair become:

'yAdvz(fu—l—gdt)/\(fdt/\u):O
dn=w— fdt Adv+gdt A v Au+gdo Au+ hdt A dv
Y an=(h"dv" + (fdt — gu) A v A (w—l—hdv)”_l) A (fu+ gdt)
= h"dv"™ A (fu+ gdt) + (2 + ¢3)dt Av Au A (w+ hdo)"™! >0,
fy/\dn:gdt/\dw+—f2u/\dt/\dv+g2dt/\dvAu+fhuAthdv
—(f2+ ¢ —g—fh)dt Adv A

Hence, we want h to satisfy —g + f2 + g% — fh = 0. We use this equation to define h

as follows: - )
oo f 9 -9,
0 f

If we assume that the (closed) set {t € [0,1] | f(t) = 0} is strictly contained in the
(closed) set {t € [0,1] | g(t) = 1} then the integral is well-defined. It remains to check
that with this definition h can be chosen satisfying Equation 1.7.0.6 and such that
|h| is sufficiently small.

Observe that for ¢ near 0 we have f(t) = 1 and g(¢) = 0 implying:

h(t) = Jt lde =t

0
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Figure 1.5: Functions f and g satisfying the conditions in the proof of Lemma 1.7.14.

as desired. Furthermore, for ¢ near 1, the integrand is zero so that h(t) is constant.
Now we describe how to choose the functions f and g so that h(1) = 0 and |h] is
arbitrarily small, see also Figure 1.5.

Let 0 < §; be a small constant and choose f such that

1 te [O, 51]
f(t) = 51 < f(t) < 251 te [261, 1— 251] .
0 te []. — 517 ].]

Then, the integral
1
| @
0

is a positive constant C(d1) > 0 which can be made arbitrarily small by choosing ;
small. Next, let 0 < §; < d5 < 1/2 be another constant and choose g such that

. 0 te[0,52]
9lt) = {1 tell—d,1]"

With these choices the integral

1 2

J I =9 4.
o f

is well-defined and equal to a negative constant (since g> —g < 1 for 0 < g < 1)

C3(61,02) < 0. Given a fixed 1, we can choose 3 so that C; = —Cs implying that

h(1) = 0 as desired. Moreover, if we choose ¢; sufficiently small and ds sufficiently

large then |h| can be made arbitrarily small.

O
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1.7.0.4 Turbulization for symplectic foliations

If we work with symplectic foliations (F,wzx) and do not fix an SF-pair representing it,
the necessary conditions to apply turbulization live in cohomology. To describe these
cohomology classes we start by recalling the definition of the foliated cohomology,
H*(F) and the foliated cohomology with coefficients in the conormal bundle, denoted
by HY*(F,v*).

Given a foliation F on M, the inclusion ¢ : TF — TM, induces a short exact sequence
0—>TF5TM —v:=TM/TF — 0,

where v is the normal bundle of F. Dually, this induces a short exact sequence of
complexes:

(1.7.0.7) 0— Q%(M) - Q° (M) 5 Q*(F) -0,
where:

o O°(M) :=T(A*T*M) is the usual complex of differential forms on M;
o O°(F) :=T(A*T*F), is the complex of foliated forms;

e Q% (M) := T'(A*(TM/TF)*, is the complex of F-relative forms. Since,
Q% (M) is the kernel of the restriction map r, we have an identification:

Q(M) = {a € Q*(M) | ol > = 0}.

Since T'F is involutive, Q°*(F) comes with a differential d » (which is just the leafwise
deRham differential) defining the foliated cohomology

H(F) = H(Q*(F),dF).

The involutivity condition also implies that the usual deRham differential d on Q* (M)
preserves the subcomplex Q% (M), definining the F-relative cohomology

H-(M) = H(Q%(M),d).

Remark 1.7.15. By Equation 1.7.0.7 these cohomology groups fit in a short exact
sequence

0— Hx(M)— H*(M) — H*(F) =0,
which in turn induces a long exact sequence in cohomology:
(1.7.08) - — HE(M) — H*(M) — H*(F) > HE (M) — HF (M) — ...

The connecting homomorphism § : H*(F) — H3¥"' (M), can be explicitly described
by

(1.7.0.9) §([a]) = [da],

where o € QF(F) is a closed foliated form and & € QF(M) any extension of a. A
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We can now define the modular class of a (coorientable) foliation F on M. Let
v € QY(M) be any differential form satisfying F = ker . Recall that the integrability
condition on F translates into the differential condition

¥ Ady=0.
In turn, this is equivalent to
(1.7.0.10) dy =~ A p,

for some p € Q(M). It is not hard to see that (dzu|#) = 0, and that the cohomology
class [pu|7] € HY(F) is independent of the choice of v and p.

Definition 1.7.16. The modular class of a (coorientable) foliation F is the coho-
mology class
modr := [u|r] € H'(F)

The modular class measures if F is unimodular, i.e. if it can be defined by a closed
1-form.

Lemma 1.7.17. The foliation F is unimodular (i.e. can be defined by a closed form)
if and only if modr = 0.

Proof. If F can be defined by a closed 1-form -y, then it is clear that g = 0 satisfies
dy = v A p. Conversely, if modz = 0, choose any v € Q'(M) such that F = ker~y.
Then there exists p € (M) and f € C®(M), such that

dy=vAp, pry=dfany.
Then, F = ker(e/v) and
defy) =eldf ny—eluny=0.
O
Before we define the foliated cohomology with values in the conormal bundle, let us
recall the definition of differential forms with values in a (real) line bundle. Given a
line bundle 7 : L — M, consider the complex of L-valued differential forms on

M
Q' (M, L) := T((A*T*M) ® L).

Given a flat connection V : X(M) x I'(L) — I'(L) on L, the usual Koszul formula
defines a differential dy on Q°*(M, L); for a € Q¥(M, L) and X1,..., Xy € X(M) we
have:

+
(dva)(X17"'7Xk+l = Z Z+1VX (Xla-"aXiv"'7Xk+l))

Z] D[ X, X1, X1, Xy ooy Xy ooy X1

1<j
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Observe that since dy satisfies the Leibniz identity, it is uniquely determined by what
it does on Q°(M, L) = T'(L), where it is defined as

(1.7.0.11) (dyo)(X) = Vxo, VoeD(L),X e Xx(M).

The connection being flat is equivalent to dQV = 0, giving rise to the cohomology
groups:
H*(M,L):= HQ*(M,L),dy).

If the line bundle L is trivializable, then the L-valued differential forms can be related
to the usual real valued differential forms on M. In this case there exists a nowhere
vanishing section s € I'(L), and V is completely determined by the differential form
B e QY (M) defined by

(1.7.0.12) Vs = B(X)s, VX eX(M).

Note that under this identification, d2v = 0 if and only if d5 = 0. Clearly, 8 depends
on the section s, used to trivialize L, and if § := fs, f € C®(M), is any other nowhere
vanishing section, then

B =p6+df.
Hence, the class [3] € H'(M), depends only on V, and we have:

Lemma 1.7.18. Given an orientable line bundle w : L — M there is a one-to-one
correspondence between flat connections V on L, and cohomology classes in H' (M),
sending V to [B] as Equation 1.7.0.12.

Given a differential form 8 € Q' (M) we define the twisted differential dg : Q°(M) —
Q*+L(M), by:

(1.7.0.13) dga:=da+f ra, YaeQ*(M).

It is easily checked that d% = 0 if and only if dg = 0, giving rise to the twisted

cohomology groups
HE(M) := H(Q*(M),dg).

Any nowhere vanishing section s € I'(L) induces an isomorphism of differential com-
plexes

(1.7.0.14) by 1 (Q°,dg) > (M, L),dv), a—a®s,

where [ is as in Equation 1.7.0.12. In particular ¢s induces an isomorphism in

cohomology
bs - H3(M) = H*(M,L).

The above discussion applies to the (co)normal bundle of a foliation F on M. Recall
that the normal bundle v of a foliation F, is canonically equipped with a flat T F-
connection called the Bott connection. It is defined by

V:D(TF) xT(v) > (v), VxN:=[X,Y], VNeX(M),XeD(TF),
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where N := N mod TF. Dually, it induces a connection V* : ['(TF) x I'(v*) — T'(v*)
on v*, defined uniquely by the formula:

(VXa)(N) = Lx(a(N)) = a(VxN),

for any a € T'(v*), N € X(M), and X € I'(TF). As above, this connection defines a
differential

(1.7.0.15) dr: Q% (F,v¥) - QTHF,v*),
on the complex Q°(F,v*) and associated cohomology

H*(F,v*):= HQ*'(F,v"),dx).

If F is coorientable, a nowhere vanishing section of v* is the same thing as a form
v € QY (M) for which F = kery. As before, this induces an isomorhism Q°®(F, v*) ~
Q*(F), and under this identification dz is described as follows.

Lemma 1.7.19. Let (F, M) be a foliated manifold and v € Q*(M) such that F =
ker~y. Recall from Equation 1.7.0.10 that

dy=7Ap
for some € QY(M). Then the following statements hold:

(i) Under the identification Q°*(F,v*) ~ Q°(F) induced by v, the differential dx
from Equation 1.7.0.15 corresponds to d,,, as in Equation 2.2.2.4;

(i1) Under the correspondence from Lemma 1.7.18, the Bott connection on v* cor-
responds to modx € H'(F) as in Definition 1.7.16.

Proof. Tt follows directly from the definitions that
(dp)(X) = B(X)y, VX e X(M)
Hence, let N € X(M) be such that y(N) = 1, and compute:
(dry)(X)(N) = (VX7)(N)
= Lx(v(N)) =7 (Vx(N))

= _’Y([Xv N])
= —dvy(X,N)

-7 A B(X, N) = B(X).

O

The foliated cohomology allows us to give a rigorous definition of the ”the variation of
a foliated form in the direction transverse to the leaves”. Before giving the definition,
observe that there is a map:

(1.7.0.16) p: QEH(M) — QF(F,v*), pl@)(Xi1,..., Xp)(N) := a(X1,..., Xg, N).
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Suppose that F = kery for v € Q'(M). Then, similar to Equation 1.7.0.10, any
a € QFFL(M) satisfies a|7 = 0 if and only if

a=5Apu,

for some p € QF(M). This gives an isomorphism of differential complexes

1/)’7 ( ( )dﬂ) - (Q];-j_l(M)?d)v o“_’&/\r)/a

where & € Q°(M) is any extension of a. Together with the isomorphism ¢, from
Equation 1.7.0.14 this gives a commutative diagram:

(QF1(M),d) —— (Q°(F,v*),drF)

Tww mT

(Q*(F),dg) —— (2°(F),dp)

In particular, p induces an isomorphism in cohomology.

Definition 1.7.20. The transverse differential d, : H*(F) — H*(F,v*) is the
defined as the composition

H*(F) % Hy (M) 2> HY(F,v*),

where p is defined in Equation 1.7.0.16 and § is the connecting homomorphism from
Equation 1.7.0.8.

Note that, using the description of the connection homomorphism in Equation 1.7.0.9,
we have

dy[o] = [p(da)],
for any foliated form a € QF(F), and any extension & € Q'(M) of a.

Remark 1.7.21. Given a nowhere vanishing section v € v*, we can use ¢, from
Equation 1.7.0.14, to interpret the transverse differential as a map

d, : H*(F) — H3(F).

Explicitely, given a € QF(F), and any extension & € Q¥(M), we have that da|r = 0
so that
da=pnr,

for some p € Q*~1(M). Then it follows that dgp = 0, and
d,fa] = [p] € HS(P).

A

For a symplectic foliation the transverse differential allows us to measure the variation
of the leafwise symplectic form.
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Definition 1.7.22. Let (F,w) be a symplectic foliation on M. The variation of w
is the cohomology class

var, := d,[w] € H*(F,v*).

Moreover, (F,w) is called tame if var,, = 0.

The variation plays the same role for the leafwise symplectic form, as the modular
class from Definition 1.7.16 does for the foliation. That is, it measures if w can be
extended to a globally closed form. First note that from the long exact sequence in
Equation 1.7.0.8, and the definition of d,, we have an exact sequence

c— HA (M) 5 HX(F) 2% HX(Fv%) > ...

Hence, if var, = 0 then in cohomology [w] comes from a class in H2(M). By the
following lemma this also holds for any representative.

Lemma 1.7.23. A (coorientable) symplectic foliation (F,w) is tame if and only if
the leafwise symplectic form admits a closed extension & € Q?(M).

Proof. Let v € T'(v*) be a nowhere vanishing section, and use it to interpret the
transverse variation as a map d, : H*(F) — H(F), as explained in Remark 1.7.21.
Then, the assumption that var, = 0, means that given any extension n € Q%(M) of
w, we can write
dn = pn 7,
where p = dgp for some p € Q1(M). Define @ := 1 — p A v, and note that &|r = w,
and
do=dn—dpary+pady=dgpry—(dp+BArp) Ay=0.

O

Example 1.7.24. Recall that given a contact structure £ on a manifold M, and a a
contact form for £, we can define the symplectic manifold

(R x M,w :=d(e'a)) .
The definition of w requires us to choose a contact form «, however for any choice of
contact form the above formula defines a symplectic structure.

The analogous construction for symplectic foliations does not work in general. Let
(7,7m) be an SF-pair representing a symplectic foliation (F,w) on M. Then, consider

(Rx M,w:=n+dt A7).

Although, w is always non-degenerate, it is closed if and only if (v,7) is a cosymplectic

structure. Such a representing pair exists if and only if (F,w) is tame and unimodular.
A

The above discussion also applies to 0-SF manifolds, and thus in particular, to trans-
verse boundaries of SF-manifolds.
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Definition 1.7.25. Let (F,w) be a 0-SF structure on N*", as in Definition 1.5.7.
The variation of w is the cohomology class

var, = d, [w] € H*(F,v*).

Moreover, (F,w) is called tame if var,, = 0.

Consider a 0-SF structure (F,w) on a manifold N?* (Definition 1.5.7). We want
to characterize the set of symplectic forms on N which extend the leafwise form
w € Q2(F). We start by observing that not every manifold with a 0-SF structure is
symplectic.

Example 1.7.26. Consider the sphere S* < (R*, weqn) where weqy, is the standard
symplectic structure. The product D* x S! has a symplectic foliation:

(f:z U D* x {z},w:= wcan) .

z€eSt

It is transverse to the boundary, and the induced ¢-SF manifolds equals S? x S' with

0-SF structure
(.7:5 = U S? x {z},wp = wcan|§s> .

zeS?t
However, since H2(S? x S') = 0, it does not admit a symplectic structure. A

Lemma 1.7.27. Let (F,w) be a 0-SF structure on N (Definition 1.5.7), then the
following are equivalent:

(i) There exists a symplectic form & € Q?(N) such that
OlF = w;

(ii) There exists a 0-SE pair (v,m) (Definition 1.5.8) representing (F,w) and an
admissible form (3 € QY (N) satisfying

n" =0, dp=—d.fr~,

where € QY(N) is the modular form of v as in Equation 1.7.0.10.

Moreover, if either of the above holds, then (F,w) is tame conform definition 1.7.25.
In this case, if F is also unimodular, then (v, 5,n) can be chosen so they form a d-SF
triple of tameable type (Definition 1.6.8).

Proof. By Lemma 1.5.11 we can find a 0-SF pair (,n) representing (F,w) such that
7™ = 0. If @ is a symplectic extension of w, then @|r = n|r. Hence, there exists
B € QY(N) such that

W=n+pLnr~.
Then, the non-degeneracy of @ implies:

1

W'=nBAyAn"T >0,
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so that 8 is an admissible form for (v,7n). Furthermore, since & is closed we have:
do=dn+dfay—Bardy=dyp+([dB+punpB)ay=dnp+d.BArvy=0,

proving the first implication. For the converse, let (v,7n) and S be such that 5™ = 0
and dn = —d, 8 A 7, then it follows immediately that

(1.7.0.17) wi=n+p A7,

is a symplectic extension of w. By Remark 1.7.21, the condition dn = —d,8 A 7, is
precisely saying that var,, = 0 € H?(F,v*) so that (F,w) is tame. Furthermore, if
F is unimodular then « can be chosen closed. In this case Equation 1.7.0.17 implies
that (v, 8,7) is a 0-SF triple of tameable type. O

The following discussion characterizes all possible symplectic extensions, if they exist.
Thus suppose that & € Q?(NN) is symplectic and satisfies

(7}|]::w.

This implies that w is closed, and has 1-dimensional kernel. Choose a leafwise vector
field X € X(F) which is nowhere vanishing, and spans the kernel of w. Furthermore,
let Y € X(N) be nowhere vanishing, and transverse to F. This induces a splitting

TN =TF®L{X)®Y).
Since, w is determined on T'F, the extension is completely determined by the function
f=a(X,Y)e C®(N).

Hence, if a symplectic extension exists, it is unique up to a function. The integral

volg ::J feR,
N

defines an invariant of &@. The following lemma says this constant determines the ex-
tension, up to symplectomorphism. In particular, the space of symplectic extensions
of w is either empty or one-dimensional.

Lemma 1.7.28. Let (F,w) be a 0-SF structure on (a compact manifold) N*™. Given
two symplectic extensions wo, w1 € Q2(N) of w, the following are equivalent:

(i) The extensions are in the same cohomology class, [w1] = [wo] € H?(N);

(i) The extensions induce the same volume

n o__ n.
N N

(i) There exists a isotopy ¢ : N — N such that

(j)*wl = Wwy-
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Moreover, if HY(F,v*) = 0, then any two extensions satisfy the above conditions, so
that (if it exists) the extension is unique up to symplectomorphism.

Proof. The implications (i) = (4¢) and (i449) — (i) are immediate, so we only
prove (ii) == (iii). Fix v € QY(V) such that F = ker~, and let u € Q*(N) be its
modular form as in Equation 1.7.0.10. Now assume we have two symplectic forms
wo,w; € Q2(N) satisfying

wi|F = wolF = w.
Then there exists 3 € Q(M) so that

w1 =wp+ B A7Y.

Since, dw; = dwg = 0, we have

d(B A7) = (duB) Ay =0.

Furthermore, since wy and w; have the same volume we find:

(1.7.0.18) J wy = J wy + nJ Wit A B A .
N N N

Recall that deRham’s theorem states that the intersection pairing (-,-) : H*¥(N) x
H?""k(N) — R, is nondegenerate. By the equation above,

{quwg™, 18 AnD =0,
implying that 8 A v is exact. Define the 1-parameter family
wri=wo+t8 Ay, te][0,1].
To check non-degeneracy, let Q € Q2"(M) be a positive volume form. Then
W =t A B Ay = (tf + (1= 8)(f + )9,

for some functions f,g € C*(N). Since wy and w; are symplectic, it follows that f
and f + g are strictly positive, but then so is tf + (1 — ¢)(f + g) for all ¢ € [0,1].
Therefore, w; is a path of symplectic forms, constant in cohomology. A standard
Moser argument then gives the required isotopy.

Next we prove the second statement that if H!(F,v*) = 0 then the symplectic ex-
tension is unique (if it exists). Note that if wg and wy are two non-symplectomorphic,
then in particular they must have different volumes. Then, it follows from Equation
1.7.0.18 that

[ wtt8ar =l L5 A >0,
N
Therefore, 5 A « is closed but not exact. Since,

d(B A7) = (duB) A7,

this implies that [3] € H\(F) is non-zero. Conversely, if H'(F,v*) ~ H\(F) =
0, then any two symplectic extensions must have the same volume, and thus be
symplectomorphic. O
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By the above lemma, a 0-SF structure (F,w), with H(F,v*) = 0 admits at most one
symplectic extension. The following example shows that conversely if H!(F,v*) # 0,
then there exist many such extensions.

Example 1.7.29. Let (F,w) be a 0-SF structure on N2 and suppose it can be
represented by a 0-SF triple of cosymplectic type (u,v,w), as in Definition 1.6.8.
Then, for any positive constant C' there exists a symplectic extension of w, with

Jwg:C.
N

Indeed, the required extension is given by
we :=w+ Cv A u.

Note that by Lemma 1.7.28 any symplectic extension is symplectomorphic to one of
the above. A

Remark 1.7.30. A priori, the situation in the previous example seems to give some
extra freedom in using turbulization to glue SF-manifolds. It shows that (for cosym-
plectic 0-SF triples) we can define symplectic extensions with any volume. Hence
by Lemma 1.7.28 this should increase the chances of finding a gluing diffeomorphism
d) : 8M1 g aMg

However, for any two symplectic extensions w¢, and wc, , there is a path of symplectic
forms connecting them:

wr=w+ (tC1 + (1 —1)Co)v A u.

It turns out, that to glue two SF-manifolds with transverse boundary, it suffices that
the symplectic extensions on the boundary of each pieces can be connected by a path
of symplectic forms. Hence, the symplectic volumes never forms an obstruction to
gluing A

The turbulization construction for symplectic foliations is stated as follows:

Theorem 1.7.31. Let (M, F,w) be an SF-manifold such that F is transverse to the
boundary, and denote by (Fa,wg) the induced 0-SF structure (Definition 1.5.6). If
Fo is unimodular (i.e. can be defined by a closed form), then given any symplectic
extension By € Q2(OM) of wa, there exists an SF-structure (.7?,(7)) on M satisfying:

(i) (F,®) is tame at the boundary, and the induced symplectic form on the boundary
18 Wo;

(i1) (F,@) agrees with (F,w) away from the boundary.

The main ingredient of the proof, given below, is the following cobordism, based on
the turbulization construction for 0-SF triples of tameable type, see Lemma 1.7.14.

Lemma 1.7.32. Let (N, Fy,wn) be a unimodular 0-SF manifold and & € Q*(N) a
symplectic extension of wy. Then there exists an SF-structure (F,w) on the trivial
cobordism [0,1] x N such that:
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(i) F is transverse to the left boundary, and the induced 0-SF structure is (Fy,wn);

(i) (F,w) has tame right boundary, and the induced symplectic form on the bound-
ary leaf is .

Proof. By Lemma 1.7.27, there exists a 0-SF triple of tameable type (u,v,w) such
that
W=w+vAu

Then, applying Lemma 1.7.14 gives the required SF-structure. O

Proof of Theorem 1.7.31. By assumption the boundary of (M, F,w) with its induced
0-SF structure (Fz,wy) satisfies the hypotheses of Lemma 1.7.32. Thus we obtain
a cobordism [0,1] x M that can be glued to M using Proposition 1.6.22. The
resulting S F-manifold is isomorphic to M and has tame boundary with symplectic
leaf (M, @). O

1.7.1 Symplectic foliated open books

Open book decompositions, as discussed in Appendix 1.9 and Section 1.4.4, can
also be used to construct symplectic foliations. The construction is based on the
symplectic turbulization from the previous section. As we have seen, turbulization
requries rather strong conditions on the symplectic foliations under consideration.
Thus, the notion of an open book decomposition adapted to a SF-structure is much
more restrictive than Definition 1.4.21, in the contact setting. The following definition
is the SF-analogue of Remark 1.4.22.

Definition 1.7.33. An SF-pair (v,n) in M is adapted to an open book (B, ) if

(i) The binding B is a cosymplectic submanifold, i.e. the restriction (v,n)|p is a
cosymplectic structure (in particular BAF );

(i) The pair (Fr,n|r,) is a symplectic foliation, where Fr := kerdm is the foliation
induced by ™ : M\B — S' and furthermore

Loy by (A7) = 0, Voq, vy € ker dmr.

An SF-structure (F,w) is adapted to (B, ) if there is an adapted SF-pair representing
it.

As in the contact case, there is an analogous notion of adapted abstract open book:

Definition 1.7.34. An abstract SF open book consists of a symplectic manifold
(X,w) with boundary of cosymplectic type, as in Definion 1.2.10, together with a
symplectomorphism ¢ : (X, w) — (X, w) which is the identity on a neighborhood of the
boundary.
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Given a SF-structure (F,w) adapted to (B, ), any 7 (that is part of an adapter SF-
pair) defines a symplectic connection on the symplectic fibration m : M\B — S!, see
Equation 1.4.4.1. The associated parallel transport induces a symplectomorphism ¢
of the symplectic page (P,n|p). By the following lemma ¢ can be assumed to equal
the identity near the boundary 0P.

Lemma 1.7.35. Let (F,w) be a SF-structure on M adapted to an open book de-
composition (B, ). Then there exists an SF-pair (v,n) representing (F,w), and a
symplectomorphism ¢ on (P,n|p), so that (P,n,®) is an abstract SF open book.

Proof. Since (F,w) is adapted to the open book, there exists an adapted SF-pair
(v,m). By definition this implies that 7 defines a symplectic connection H on the
symplectic fibration 7 : M\B — S' (conform [62]). Observe that, for dimensional
reasons, #H is spanned by the kernel of 7.

By Example 1.6.13, on a neighborhood of the binding, (F,w) is isomorphic to the
normal form. Recall that the normal bundle of the binding is trivial. Hence, passing
to forms and using equivalences (cf. Definition 1.5.4), it means that (v, ) is equivalent
to the normal form. That is,

y=7g, n=mng+rdradf+pnaypg,

for some form p € QY(B x D?), satisfying plBxoy = 0. Moreover, for any function
g€ C®(B x D?) we have that
n+gdf A,

is equivalent to 7, conform Definition 1.5.4. Hence, we can assume without loss of
generality that p(dg) = 0.

Since (v, 7n) is adapted, we have
N Aadd=nnE tApAyeAdd >0, dyadd=dparyadd=0

implying that p(d,) > 0. Since (yg,nB + p A vB) defines an SF-pair on B, it has an
associated Reeb vector field R € X(B). It follows from the above equation that the
Reeb vector field of (v,7) also equals R, interpreted as a vector field on B x D?. In
particular,

(1.7.1.1) dr(R) =0, dO(R) = 0.

Choose a non-negative function g : [0,1] — R satisfying

) r?2 7 near 0
r) = .
g 0 rmnearl
Then
Y=g, N:=n+gdrAn~vyg=mnp+rdradf+g(r)dr vz,
defines an SF-pair on B x D? representing (F,w), and which agrees with (v, ) away
from the binding. Hence, it extends to an SF-pair representing (F,w) on M. Using
Equation 1.7.1.1, it follows that the Reeb vector field of (7,7) equals

E:RA—Q&@.
T
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Hence, if h : [0,1] — R is a non-negative function satisfying:

h(r) = 0 7 near 0O ’
1 rmnearl
then the vector field
X :=h(r)R + @69 € X(B x D?),

agrees with the Reeb vector field R away from the binding, and is a multiple of dy
near the binding. Furthermore,

(Lxn) A df = (dex7)dd = d(hdr) A df = 0.

Therefore, the flow of X, preserves the restriction of n to the fibers of 7. Thus, the
time one flow ¢ of a suitable rescaling of X defines a symplectomorphism of (P, n|p),
which equals the identity near the boundary. O

Conversely, starting from an abstract SF-open book (X, w, ¢), we can construct an
adapted SF-structure on the manifold M (3, ¢). The construction uses symplectic
turbulization defined in the previous section. Therefore, starting from an SF-structure
(F,w) on M and applying Lemma 1.7.35 and Lemma 1.7.36 successively, (in general)
we do not recover the original SF-structure, see Example 1.7.37 below.

Lemma 1.7.36. Let (X,w,®) be an abstract SF-open book. Then the manifold
M(X,¢), constructed in Lemma 1.9.5, with its canonical open book decomposition
(B,7), admits an SF-structure (F,w).

Note that the above lemma does not say that the SF-structure is adapted as in
Definition 1.7.33.

Proof. Let (3,w, ¢) be an abstract SF-open book. Thus, w has boundary B := 0%
of cosymplectic type, as in Definition 1.2.10, and we denote the induced J-symplectic
pair by (vg,ns). The SF-pair

vi=df, n:=w,
on Y x R, descends to the mapping cylinder
Y xzR:=X xR/(¢(x),0) ~ (z,0 + 1).
The boundary 0% x S' is of cosymplectic type, as in Definition 1.6.9, with induced

0-SF triple
w=dz, v=79p, w=ng.

As in Example 1.6.11, the manifold B x D? admits an SF-pair defined by

v:i=7B, 1: =1+ d(rzdf)),
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which has boundary of cosymplectic type with 0-SF triple
U = "B, v=d9, w =1pB-

By Corollary 1.7.9 the above pieces can be connected by a regular SF-cobordism
diffeomorphic to [0,1] x B x S', Hence, we obtain a symplectic foliation on M (3, ¢).
O

Example 1.7.37. Consider the manifold S' x S?, endowed with the SF-structure
F = U {2} x§?, w:=ws,
z€eSt

where wsz € Q2(S?) denotes the standard area form on S?. Clearly, all the leaves of
F are isomorphic to S2. The standard embedding S* x S? = S! x R3 is transverse
to the natural open book decomposition of S! x R3, and thus induces an open book
decomposition on S' x S?, as in Example 1.9.3. Explicitly, the binding equals

B:= (S'x§%) n (S' x {(0,0,2) | ze R}) = S' x §?,

and in the coordinates (z,¢,0) € S' x S2, where (¢, 6) € S? denote spherical coordi-
nates, the fibration is given by

7:S'xSA\B - S, (2,4,6) — 6.

The SF-pair
v:=dz, n =sin¢df A d¢ +singpdz A do,

represents (F,w) and is adapted to (B, ). Indeed,
nAdd =singdz A df Adp >0, dnAdf=0.

The resulting abstract open book is diffeomorphic to ¥ := S x [0,1]. Turbulizing
at the boundary of the mapping cylinder ¥ x S!, as in the proof of Lemma 1.7.36,
produces two torus leaves. Hence, the resulting SF-structure is not isomorphic to
(F,w) above. A

1.8 Deformations

In an oriented 3-dimensional manifold M, any cooriented hyperplane distribution is
automatically oriented. Hence, a symplectic foliation is essentially the same as a
(nowhere vanishing) form 6 € Q!(M) satisfying # A d9 = 0. On the other hand a
contact form « satisfies « A da > 0. Combining these conditions gives rise to the
notion of a confoliation, a form a € Q'(M) satisfying

anda =0,

as introduced and studied in [47]. Hence, in dimension 3, the natural type of defor-
mations to study are given by a path of confoliations ay € Q'(M), t € [0, 1] satisfying

(1.8.0.1) ag Adag =0, oy Aday >0, te(0,1].



104 CHAPTER 1. CONSTRUCTIONS

In higher dimensions, we have to handle the leafwise symplectic form making the
situation more involved. On the level of structures, the natural generalization of
confoliations is not so clear. We investigate several notions in Chapter 2. Here we
consider following type of deformation on the level of differential forms.

Definition 1.8.1. A SF-deformation on a manifold M?"*' consists of a pair
(g, wi) € QL(M) x Q2(M), t € [0,1] satisfying

(i) (co,wo) is a symplectic foliation pair as in Definition 1.5.3;
(i) «y is a contact form for all t > 0 and wy = day;

(iii) ar A w >0 for allt € [0,1].

By the third condition we can think of w; as a path of symplectic forms on ker a
interpolating between da; and wgy. Note that if n = 1, we recover the notion from
Equation 1.8.0.1

Example 1.8.2. Several of the basic examples of contact structures and symplec-
tic foliations from Example 1.3.8 and Example 1.5.5, can be connected by an SF-
deformation:

e Euclidean space: Let (x1,y1,--.,%n,Yn,2) denote the standard Euclidean
coordinates on R?"*1. Then,

n n
o = dz +t2 xidy;, wp = Z dz; A dy;,

i=1 i=1

defines a SF-deformation from the standard SF-pair to the standard contact
form.

e Tori: Let (z,y, z) be standard angular coordinates on T3. Then, for each k € N
the pair

oy = dz + t (sin(tkz)dz + cos(thz)dy), w:=dz A dy,

defines a SF-deformation. Recall that although the higher dimensional tori are
easily seen to have symplectic foliations, the analogous statement for contact
structures depends on a construction by Bourgeois [96]. Hence, it is not imme-
diate that the above deformation extends to higher dimensions. We consider
this construction in more detail in Section 2.6.4.

e Products: Let M be endowed with a SF-deformation (ay,w:), t € [0,1] and
(W,dX) be an exact symplectic manifold. Then, the product M x W admits
a SF-deformation interpolating between the product contact and SF-structures
from Example 1.3.8 and Example 1.5.5, given by:

dt = o+ t)\, Wy = wy + dA.
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In all the examples above the deformations are given by affine paths. The following
definition gives sufficient conditions for such a deformation to exist.

Definition 1.8.3. Given a manifold M endowed with a

(i) symplectic foliation pair (y,n), as in Definition 1.5.5;

(ii) contact form «;
we say that (v,n) is friendly to « if:

(i) a nda® A" % >0 forallk=0,...,n;
(i) v Ada® An"F =0 for allk =0,...,n;

(iii) a A da™ 1 A dy = 0.

The proof of the following lemma is a straightforward computation.

Lemma 1.8.4. Let (v,n) be a symplectic folation pair friendly to a contact form «
on M. Then, the affine path joining them;

Y= (1 —=t)y+ta, ni=(1—1t)n+tda,

defines a SF-deformation.

Proof. By definition (79, n9) defines a symplectic foliation pair, and 7; = dv;. To see
that ~; is contact form ¢ > 0, note that, since  defines a foliation, dy A dy = 0 and
compute:

1—t)y +ta) A (1 —t)dy + tda)"

((
(1= t)y +ta) A (t"da™ + nt" (1 — t)da” ' A dy)
t"(1 —t)y Ada™ +t""ra A da™ + nt™ (1 — t)a A da" "t A dy,

e A dyy’

which is positive for all ¢ > 0. The condition v A 1 > 0 is checked by a similar
computation:

e nn = (1 —t)y+ta) A ((1—t)n+tda)"

Since (v, 7n) and « are friendly, all the summands are non-negative. Moreover, if ¢ 5 0,
the sum contains the strictly positive term a A da™, while if (1 —t) # 0, there is the
term v A n™. Hence, v A nf* > 0 for all ¢ € [0, 1]. O
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1.8.0.1 Deformations on open book decompositions

Consider an abstract open book decomposition (X, ¢) of a manifold M. In Section
1.4.4 and Section 1.7.1 we have seen that if the page carries some additional structure
we can construct a contact structure and a symplectic foliation on M. It turns out
that under extra compatibility conditions, analogous to those in Definition 1.8.3,
these two structures can be deformed into each other through an affine deformation.
The precise statement is as follows:

Definition 1.8.5. Let (X,¢) be an abstract open book, and denote the boundary of
the page by B := 0X. If ¥ is endowed with a

(i) symplectic form w with cosymplectic boundary (B,vyp,ns), as in Definition
1.2.10, and ¢p*w = w;

(ii) exact symplectic form d\ with contact boundary (B, Ag), as in Definition 1.2.10,
and p*\ = \;

we say that w is friendly to dX if:

(i) W AdX"F =0 for allk =0,...,n;
(i) (vB,nB) is friendly to Ap on B.
(i1i) There exists a collar neighborhood (—¢,0] x 0¥ < X on which

w=mng+dtAyg, A=(1+1)AB.

Observe that it is a direct consequence of Definition 1.2.10 that each of the formulas
in condition (#ii) above can be achieved in some collar neighborhood. However, in
general these neighborhoods need not be the same. Condition (iii) requires that there
is a single collar neighborhood realizing both formulas.

The main result is:

Theorem 1.8.6. Let (X, ¢) be an abstract open book, and w,d\ € Q%(X) symplectic
forms which are friendly to each other (Definition 1.8.5). Then, the resulting manifold
M(X,¢), admits a symplectic foliation pair (v,m) and a contact form « which are
friendly to each other (Definition 1.8.3).

Moreover, the binding B is both a contact and a symplectic foliation submanifold, and
the induced pair (yp,np) is friendly to ap.

The proof follows the usual strategy of defining the required structure on each of
the pieces that make up the open book manifold M(X,¢) and then gluing them
together. Since the pieces are interesting on their own, we state them separately
before combining them in the proof.

More precisely, the following two lemma’s put together the contact structures and
symplectic foliations from Example 1.4.9 and Example 1.6.11, saying that they are
friendly, as in Definition 1.8.3. For the inside component we have:
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Lemma 1.8.7. Let B>"*! be a closed manifold, and 0 < § <1 a constant.
(i) If ap is a contact form on B, then B x D% admits a contact form
a = ap + r2de.
It has regular boundary of unimodular type with induced 0-contact pair

(u=d6,v =ap + 3Jdb).

(ii) If (yB,mB) is a symplectic foliation pair on B, then B x D2 admits a symplectic
foliation pair
v:=7B, n:=np+2rdrAdf.

It has regular boundary of Cosymplectic type with induced 0-symplectic foliation
triple
(u=~p,v=d0,w =ng).
Moreover, if (yg,nB) is friendly to ap, then so are (y,n) and a.
Proof. The existence of the contact and symplectic foliation forms follows from Ex-

ample 1.4.9 and Example 1.6.11. The boundary types are also discussed there. It
remains to check that (v, 7) is friendly to « as in Definition 1.8.3.

The first condition clearly holds for k = n, and for k¥ = 0 becomes:

ann” = (ap+r2dd) A (nh + 2nm " A rdr A d6)

= 2nap A ng_l Ardr A df =0,
while for 1 < k <n — 1 we have:
andd® An"F =ap A (2(n—k)dak; A ne R 4 2kdaly Tt A ng_k) Ardr Adf = 0.
Similarly, the second condition clearly holds for k£ = 0, and for k£ = n becomes:

v Ada™ =75 A (do/& + Qndagfl Ardr A dG)
=2nyp A doz%_l Ardr A df =0,
anda® P Ady = (ap +7°d0) A (dafy "t +2(n—1)day ® Ardr A df) A dyp

=2(n—1Dap rday?> Adyg Ardr Adf =0
while for 1 < k£ < n — 1 the computation becomes:

yada® AR =5 A (2(n— k)daky A p Tt 4 2kdat A n"_k) Ardr A df = 0.

O
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For the outside component we have:
Lemma 1.8.8. Let (X%",¢) be an abstract open book.
(i) Let w be a symplectic form on ¥ with cosymplectic type boundary (B,v5,nB)

and for which ¢ is a symplectomorphism. Then the mapping cyclinder ¥ x4 R,
admits a symplectic foliation pair (actually cosymplectic structure) induced by

v:i=dz, n:i=w.

It has regular boundary of cosymplectic type with induced 0-symplectic foliation
triple
(u=db,v=vyp,w="npg).

(ii) Let dX\ be a symplectic form on ¥ with contact type boundary (B, \p) and such
that o*\ = A. Then the mapping cylinder ¥ x 4R, admits a contact form induced

by
a:=dz+ A\

It has regular boundary of Liouville type with induced 0-contact pair

(u=Ap,v = Ap +dz).
Moreover, if
WEAANR >0, forallk=0,...,n,
then (v,n) is friendly to .
Proof. The existence of the contact and symplectic foliation forms follows from Ex-
ample 1.4.9 and Example 1.6.10. The boundary types are also discussed there. It

remains to show that (vy,7n) is friendly to « as in Definition 1.8.3. This follows by
observing that

anded AP =dzAadNF Aw
vy ada® A"k =dz A dNE A WTE

anda™tAdy=0

The middle component allows us to glue the pieces of the two lemmas above.

Lemma 1.8.9. Let B2~ ! be a closed manifold.

(i) If ap is a contact form on B, then the trivial cobordism [0,1] x B x S! admits
a contact form « which has:

o Regular left boundary of Unimodualar type with induced 0-contact pair
(u=db,v =ap + 06d0)

forany 0 <§ < 1;
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e Regular right boundary of Liowville type with induced 0-contact pair
(u=ap,v=apg+db).

(it) If (vB,nB) is a cosymplectic pair on B, then the trivial cobordism [0,1] x B x St
admits a symplectic foliation pair (y,n) which has:

e Regular left boundary of cosymplectic type with induced 0-symplectic folia-
tion triple

(U =B,V = devw = 773),

e Regular right boundary of cosymplectic type with induced 0-symplectic fo-
liation triple

(U = dev —VYB,W = UB)
o A single closed leaf
(B < ST,y +do A 73) .

Moreover, if (yg,nB) and ap are friendly, then so are (y,n) and a.

Proof. The existence of the contact form follows from Lemma 1.4.19. There the
contact form is described in terms of the J-contact pair (u,v). Here, we have an
explicit description in terms of df and ap, and for the computations at hand it is
convenient to describe the contact form in terms of these forms. Thus we consider

o = Bt + (£)d6,
for ¢, : [0,1] — R satisfying

77[1207 ¢>0u ¢1/}—¢51/1>0,

and

b= >0 fort<1/2 5= 1 for ¢ near 0 = t+ ¢ fort near 0
<0 fort >1/2° ~|2—+t fortmnearl’ IR for t near 1

The value ¢t = 1/2 is special, because the symplectic foliation defined below has

{1/2} x B x St as its compact leaf.

The existence of the symplectic foliation pair follows from Lemma 1.7.6,. That is, we
have

v = f(t)ys + g(t)dt + h(t)d0, n:=np+ f(t)dt A dO + g(t)d0 A v + h(t)vE A d,

for functions f, g,k : [0,1] — R as in Figure 1.6.

The boundary types can be checked directly from the definitions, so it remains to
show that (v,n) is friendly to a. We split the cobordism into two pieces and check
the conditions from on each of the pieces.
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Figure 1.6: Functions f,g and h satisfying the required conditions for the proof of
Lemma 1.8.9.

First we consider the part {¢ < 1/2} where h = 0. We have the following identities:

0t =0k + knl A (Fdt + gys) A d6
da® = g*dak, + ke~ 1daktdt A (g%aB + 1/}d9) .

The first condition of Definitions 1.8.3 clearly holds for £ = n and for &k = 0 becomes:

aAn" = (pap +9dl) A (nk +nnp 't A (fdt + gvp) A df)
—nefdt A ag A ngfl Adf =0,

while for 1 < £ <n — 1 we have:
anda® A"k = (pap +1db) A ((n — k)" Ik A daly R A dE A (éaB + 1/}d9)
+ k" da™ R A il A (fdt + gvB) A de)

=—(n—kF) (qbz/) — qbzb) ¢"F At A ap Al A dalyTFTE A dO

— k"L EdE A ap A da%‘k A 17]’“3_1 Adf = 0.

The second condition clearly holds for £ = 0 and for k¥ = n becomes:

¥ Ada™ = (fyp + gdt) A (q’)”da% +ng"tdaly Tt A dt A (éaB + ¢d9)>
= —nf¢" " Wdt A yp A dalyt A d6 = 0.
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while for 1 < k < n — 1 we have:

v ada® An"F = (fyp +gdt) A (N + (n— k)0 " A (fdE + gvp) A dE)
A (qbkda% + kot okt A dt A (q'SaB + z/}dﬁ))
= — (n—k)f2¢Fdt A yp A da A ng_k_l A dé
— kfeFYpdt A yp A daiTE AR A dO = 0.

Lastly we check:

anda™ P Ady = (pap +¢df) A ¢" Tt A fdt A vg
+ (pap +¢do) A (n— 1)da’y? A dt A (q.SaB + z/}de) A fdt A g
= fe"Ldt Ay A dayt A df = 0.

Next we consider the part {t > 1/2} where f = 0. We have the following identities:
n* =np + kng ' A (gd6 — hdt) A v,

while da is the same as above. The first condition clearly holds for k& = n and for
k = 0 it becomes:

ann” =(pap +¥dd) A (nh +nnpt A (gd0 — hdt) A vp)
= —nhYpdt Ayg AnE P AdO =0

while for 1 < k < n — 1 we have:

a A dak A " F = (pag + pdh) A (¢’<f A dak, + kgF1dakt A df A (q'saB + 1/}d9)>
A (ngfk + (n— k)ngfkfl A (gd@ — hdt) A ’yB)
= —(n—k)WoFh A dt Ayp AnE 7t Adaky A do
e (m/} - a}qp) dt A ap Adaf AR A do > 0.

The second condition clearly holds for £ = 0 and for £ = n it becomes:

v A da® = (gdt + hdf) A (qz)"dag +ne"Lda ! A dt A (q‘saB + ¢d9))
=noh¢" 'dt A ap A dag A db = 0.

while for 1 < k < n — 1 we have:

yAadat A" E T = — (0= k)¢M (g% + hP)dt A yp A dafy AT A Al
+ kh¢F1odt A ap A dafst AR A dO > 0.
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Lastly we check:

anda™ P Ady =(pap +1pdh) A (gzﬁ"*l A do/[;_1 +(n—1)¢" 2 A da%_Q)

AdE A <¢'>aB + zLda) A hdt A 6

— ¢"hdt A ap A do/jg1 Adf = 0.

O

Proof of Theorem 1.8.6. Choose 0 < § < 1, write B := 0%, and decompose the filled
mapping cylinder into three pieces:

M(3,¢) = (B x D2) u ([5,1] xBxSl) U (D xS,

Applying Lemma 1.8.7, Lemma 1.8.9, and Lemma 1.8.8 each of the pieces admits a
symplectic foliation pair and a contact form friendly to each other. Hence, it follows
from Lemma 1.8.4 that each of the pieces admits an affine deformation.

It remains to show that the pieces can be glued. Since the boundary types of the
contact form match, it is possible to glue the contact forms on each piece to one on
M(X, ¢). The same holds for the symplectic foliation pair. However, recall that the
gluing depends on a choice of collar neighborhood putting the contact form (resp. the
symplectic foliation pair) in the required normal form. Therefore, we need to ensure
that we can find a single collar on which both the structures are in normal form. For
the common boundary of B x D% and [6,1] x B x S! this follows directly from the
definitions. For the common boundary of [0,1] x B x S' and ¥ x S!, it is ensured by
the last condition in Definition 1.8.5. O

Example 1.8.10. Recall Giroux correspondence stating that given a closed 3-manifold,
there is a 1-1 correspondence between (cooriented) contact structures up to isotopy
and open books up to stabilization. In particular, any contact 3-manifold admits an
abstract contact open book (X, d\).

Since the binding, B := 0%, is 1-dimensional the boundary is simultaneously of
contact and cosymplectic type. In fact, the conditions of Definition 1.8.3 are trivially
satisfied, and applying Theorem 1.8.6 we obtain:

Corollary 1.8.11. Any contact structure on a closed 3-manifold can be (affinely)
deformed into a symplectic foliation.

A

As in the 3-dimensional case, any contact structure in higher dimensions admits an
adapted open book decomposition. Suppose that we start with an abstract open book
(X, ¢) that admits an exact symplectic form dA with boundary of contact type. A
necessary condition for ¥ to also admit a symplectic structure w with cosymplectic
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type boundary, is that B := 0% admits a cosymplectic structure (yg,np) for which
7p is in the image of the restriction map

L H () — H?(0%).

Here we denote by Hﬁ(Z) < H?(X) those cohomology classes which can be repre-
sented by a closed 2-form that is invariant under pullback by ¢. Note that in general
this is not the same as a cohomology class that is invariant under pullback by ¢.

Remark 1.8.12. Suppose that the monodromy satisfies ¢* = id for some k € N.
Given any class [w] € H?(X) define

k
Bi= 7 > (0" w.
i=0
Then, [@] € Hi(E) and *[0] = (*[w] since the monodromy equals the identity on
a neighborhood of the boundary. Therefore, it suffices in this case that np is in the
image of the restriction map

| =

L HA(X) — H%(0%).
A

An (affine) deformation between the resulting structures will induce a deformation on
the boundary B. Hence, for such a deformation to exist we necessarily need (vg,n5)
and Ap to be friendly.

Definition 1.8.13. An abstract open book (3, ¢) with boundary B := 0%, is said to
be of deformation type if:

(i) There exists an exact symplectic form dA on X, of contact type at the boundary,
and such that ¢*dX\ = d\;

(i) There exists a cosymplectic structure (yg,np) on B such that [ng] is in the
image of the restriction map

1 HJ(X) — H?(B);
(1ii) The contact form Ap is friendly to (yg,np).

In this situation we can use the following specialization of Theorem 1.8.14, to obtain
a contact structure and symplectic foliation on M (X, ¢) and a deformation between
them.

Theorem 1.8.14. Let (X, ¢) be an abstract open book decomposition of deformation
type. Then the resulting manifold M (X, ¢) admits a contact form o and a symplectic
foliation pair (y,n) which are friendly to each other (Definition 1.8.3).

The proof follows immediately from combining Theorem 1.8.6 with Lemma 1.8.18
below. We start by showing that the restriction map in cohomology can be lifted to
the level of forms.
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Lemma 1.8.15. Let ¢ : N — M be a submanifold. If n € Q*(N) is a closed form
whose cohomology class is in the image of the restriction map * : H*(M) — H*(N).
Then there exists w € QF(M) such that

dw =0, wly=n
Proof. Let @ € QF(M) be such that t*[@] = [w], and U a tubular neighborhood of
N. Then, using that U retracts onto N we have
w—n=dy,
for some v € QF~1(U). Hence, the required form is defined by
w =& +d(py),
where p € C®(U) is a suitable bump function. O

Remark 1.8.16. In the above proof, we can choose the bump function p to be zero on
a neighborhood of N. Hence, if the collar neighborhood is a product f = N x D™~"
then in these coordinates we have w = 1 on a neighborhood of N = N x {0}. A

For a suitable open book decomposition, the above trick allows us to extend a cosym-
plectic structure on the binding to a symplectic form on the page, which has cosym-
plectic boundary.

Lemma 1.8.17. Let (X27,0) be symplectic manifold with boundary, ¢ € Symp(X, o)
a symplectomorphism equal to the identity on a neighborhood of 0%, and (v,n) a
cosymplectic structure on 0% satisfying:

(i) The class [n] is in the image of the restriction map * : Hﬁ(E) — H?(0%);

(ii) For o5 := olos we have y A o5 A% >0 forallk=1,...,n—1.
Then, for € > 0 small enough, there exists a symplectic form w € Q*(X), for which ¢
is a symplectomorphism and with regular boundary of cosymplectic type and induced

0-symplectic pair
(7,0 +en).

Proof. By the previous lemma we find a closed extension 7 € Q2(2) of 1, which is
invariant under pullback by ¢. Hence, for € > 0 small enough

w = 0o + €7,

is symplectic, and invariant under pullback by ¢. To see that ~ is admissible for
wp 1= wl|ax observe:

YAWsTt =5 A (0 +en)"t

n—1 n—1
= Z ( )en_k_l'y PN N T )
i\ K

since all summands are non-negative and strictly positive for k = 0. O
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Going back to the proof of Theorem 1.8.14; to prove Theorem 1.8.14, we want to
apply Theorem 1.8.6. The symplectic form constructed in the lemma above satisfies
all but one of the conditions of Definition 1.8.5. More precisely, we still need to show
that there exist a collar neighborhood on which both the symplectic forms are in
the required normal form. We show this in the following lemma, by modifying the
construction above close to the boundary of the page.

Lemma 1.8.18. Let (X,d\, ¢) be an abstract contact open book, and assume the
boundary B := 0¥ admits a cosymplectic structure (yg,np) satisfying:

(i) The class [ng] is in the image of the restriction map o* : H*(X) — H?(0X);

(ii) The cosymplectic pair (vg,np) is friendly to ap.
Then, for e > 0 small enough, there exists:

) symplectic structure w € with boundary of cosymplectic type and in-
i) A lecti %% ith bound lecti d
duced 0-symplectic pair
(vB,dap +eng).

(i) A collar neighborhood U ~ (—¢,0] x B on which

a=(1+t)ap, w=(dag+eng)+dtnaag.

Proof. Since d\ has boundary of contact type we can find a collar neighborhood
U ~ (—¢,0] x B < X on which

a=(1+t)ag.

We fix this collar neighborhood for the rest of the proof. Following Lemma 1.8.17,
we can consider the symplectic form

en + da,

for € > 0 small enough, and 1 € Q?(X) a closed extension of 5. By Remark 1.8.16
we can assume that 7 =np on U.

By slightly altering the symplectic form above we can ensure that it has the desired
normal form near the boundary. More precisely, define the closed form

w:=eng +d(fag) + d(gvs),

for suitable functions f,g : (—£,0] — R to be chosen later. To have the required
normal form, close to the boundary we want

w=c¢eng +dag +dt A vg = enpg + dag + d(tvB),
while away from the boundary we want

w=en+da=enp+d((1+t)ap).
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Hence, the first conditions on the functions are:

(1.8.0.2) f=

0 for t near —¢

1 for ¢ near 0 t for ¢t near 0
1+t fortnear —¢’

The non-degeneracy condition for w reads:
w" = (fdag +en)" +n(fdag +enp)" " A dt A (faB + g’yB)
= n—1 .
=n Z fksn_k_l( i )dt A dady A ng*kfl A (faB + gyB) .
k=0
Hence, w will be symplectic if
(1.8.0.3) f2+¢*>0, f>»0whenever g <O0.
The last condition means that at points ¢ € (—¢,0] where ¢ < 0, we have that f is
much larger than 0, so that the positive summand in the equation above dominates.

It is not hard to see that functions f and g satisfying these conditions exist as shown
in Figure 1.7. O

Figure 1.7: Functions f and g satisfying the conditions in Equation 1.8.0.2 and Equa-
tion 1.8.0.3.

1.9 An application: Mitsumatsu’s construction on

S5

It was shown by Lawson[72] that the spheres S2*+3, k = 1,2, ... admit (codimension-
1) foliations. For S® Mitsumatsu[39] proved that the foliation resulting from Lawsons
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construction carries a leafwise symplectic form. Using the right openbook decomposi-
tion, this symplectic foliation can be obtained using Lemma 1.7.36. Moreover, using
the results of the previous section we show that it is part of a SF-deformation as in
Definition 1.8.1.

Theorem 1.9.1. The Lawson foliation on S® admits a leafwise symplectic form and
the resulting symplectic foliation can be deformed to a contact structure, as in Defi-
nition 1.8.1.

Proof. Consider the Hopf fibration h : S* — CP?, which is an principal S! bundle.
The map f : S° — C defined by restricting

f(z0,21,22) i= 25 + 2} + 25, (20,21, 22) € C,
satisfies
(1.9.0.1) fA-2) =Xf(2), zeC3 NeSt,

so that by the genus-degree formula its zero-locus in CP? is diffeomorphic to the torus.
The infinitesimal vector field of the S'-action is the Reeb vector field of the standard
contact form o on S°. Therefore, f defines an adapted open book decomposition by
Lemma 1.9.8, whose binding is an S'-bundle hp : B — T2. Note that ap defines a
principal S'-connection on this bundle since by definition of the Reeb vector field we
have

OzB(R)=1, ERQZO.

By definition of an adapted open book, we obtain an exact symplectic page (X, da)
with boundary of contact type (B, ap). Pulling back the standard (oriented) coframe
on T? we obtain closed forms 6y, 0, € Q(B). It is straightforward to check that

YB = 91, nB = 92/\0&}37

defines a cosymplectic structure friendly to ap (Definition 1.8.3). Finally, a standard
Mayer-Vietoris argument shows that the restriction map * : H*(X) — H?*(B) is
surjective, see for example Lemma 5.3 in [89] or Lemma 6.4.7 in [90].

The monodromy ¢ of the open book is induced by the S!-action, so that it follows
from Equation 1.9.0.1 that ¢® = id. As explained in Remark 1.8.12 this means that
it suffices to ask the restriction map ¢* : H2(X) — H?(B) to be surjective when
applying Theorem 1.8.14. So, there exists a symplectic foliation pair and a contact
structure on S® that are friendly to each other.

Observe, that Equation 1.9.0.1 actually shows that f descends to a function f on
the quotient S°/Z3, where the Zg action is induced by ¢. Moreover, the standard
contact form also descends, and f defines an adapted open book decomposition with
trivial monodromy. The same argument as above then shows that S°/Zs; admits a
symplectic foliation pair and a contact form that are friendly to each other. Pulling
back, these structures under the quotient map S® — S°/Zs3 recovers the ones from
before. O
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Appendix A: Open book decompositions

We recall here the definition and basic properties of open book decompositions.
Morally speaking an open book decomposition of a manifold M tries to fiber the
manifold over S'. Of course not every manifold, globally admits such a fibration, and
so we divide the manifold into two pieces. The first one fibers over S' and the fibers
are called the pages of the open book. The fibration is extended over the other piece,
called the binding, using a local model. This model ”glues the pages to the binding”,
so that the resulting picture is that of a "book opened so that the front touches the
back”.

Definition 1.9.2. An (geometric) open book decomposition of a manifold M,
is a pair (B, ) consisting of:
(i) A codimension-2 submanifold B < M, with trivial normal bundle vg;

(ii) A fibration 7 : M\B — S, such that there exists a neighborhood B x D?> = M
of B on which:

(1.9.0.2) m(b,x) = ﬁ

We refer to B as the binding and to P := 7—1(1) as the (closed) page of the open
book.

The normal form in Equation 1.9.0.2 implies that P is a submanifold with boundary
0P = B. The choice of 1 € S!, in the definition of the page is not important. For any
¢ € S we define the corresponding page

Py :=n1(9),
and these are all diffeomorphic.
Example 1.9.3. The following are some basic examples of open book decomposi-

tions:

e Euclidean space: Let (r, ¢, z) denote the cylindrical coordinates on R3. The
standard open book decomposition of R3 is defined by taking B := {r = 0},
and

7:RN\B - S, (r,0,2) — ¢.

Note that open books can be ”pulled back” in the sense that if (B, 7) is an open
book decomposition of M and f: M — M is a submersion then,

Bi=fY(B), #:i=mof,

defines an open book decomposition on M. Since for any n > 2 the projection
pr : R® — R? is a submersion, we obtain an open book decomposition on any
Euclidean space.
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e Submanifolds: Open books can also be "restricted” to submanifolds, in the
sense that if (B, ) is an open book decomposition of M and M < M is a
submanifold transverse to B and the fibers of 7, then

(1.9.0.3) B:=Mn B, T:= 7T|]\7['\§,

is an open book decomposition of M.

For example, the standard embedding of the sphere S* — R™*! is transverse to
the binding and the pages of the standard open book decomposition on R™+1.
Thus we obtain an open book decomposition of S* with binding S*~2 and page
Dn-L.

e Singularities: Let f : C* — C be a polynomial with an isolated singuarity
at the origin 0 € C". Then for £ > 0 small enough, the sphere S?"+! = C" of
radius ¢ consists of regular points of f. We obtain an open book decomposition
of §?"+1 by setting

Bi=f7H0) n S, w(z) = ,

whose projection is called the Milnor fibration of the hypersurface singularity,
see [37]. For example taking

f:(C2—>(C, (21,2’2)'—>21+2’2,

recovers the open book decomposition on S given above. Note that this con-
struction is a combination of the pullback and restriction in the previous exam-
ples.

e Circle bundles: Recall from Example 1.2.13 that there is a one-to-one cor-
respondence between complex line bundles L — M and principles S' bundles
P — M, by

P— L:=PxgC.
Under this identification sections o € T'(L) correspond to S'-equivariant func-
tions f € C*(P,C). Explicitly, given f we can define a section by:

c:M—>PxuC, z—|[p f(p)], x€M,peP,.
Note that since f is S'-equivariant the above formula does not depend on the

choice of p, and hence o is well-defined.

Consider a principal S'-bundle 7 : P — M and let o € T'(L) be a section
of the associated complex line bundle L, transverse to the zero section. The
transversality condition implies that

B:=n"tc"1(0) c P,

is a codimension-2 submanifold with trivial normal bundle. Furthermore, if
J € CZ(P x C) denotes the corresponding function then we obtain a fibration:

f(p)
IIf Il

W:P\B—>Sl, D>
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In fact, the map f: P — C is an open book map as in Definition 1.9.7 below.

As an example of this construction recall that the tautological bundle over CP!,
is the complex line bundle defined by

O(1) := {(2,£) e C* x CP' | z € ¢}.

The associated principal bundle can be identified with those points (z,£) such
that ||z|| = 1. That is, it is just the usual Hopf fibration h : S* — CP'. The
Sl-invariant map

[:S*=C, (21,22)— 21 + 22,

has 0 € C as a regular value and thus defines an open book decomposition of
S3. Note that this open book is isomorphic to the one obtained by viewing S3
as a submanifold of R* as in Equation 1.9.0.3 above, under the diffeomorphism

1 1
'l/) : C2 s C2, (21,21) = (2(2'1 + 22), 5(2’1 — ZQ)) .
Similarly, the principal S'-bundle associated to the tautological line bundle over
CP?, is the Hopf fibration h : S* — CP?. The S!-equivariant function

f:S5 = C, (21,22,22) — 25 + 25 + 23,
defines an open book decomposition on S°, see also Theorem 1.9.1.

A

The above definition emphasizes that the manifold M is decomposed into pieces.
Alternatively, we can think of M as constructed out of the open book decomposition.
That is, we think of open books as a method of constructing new manifolds out of old
ones. From this perspective, the above definition contains redundant information, for
example we only need to know a single page since all the others are diffeomorphic.
The minimal amount of information is given in the following definition:

Definition 1.9.4. An (abstract) open book is a pair (X, ¢) consisting of :

(i) A (compact) manifold with boundary ¥, called the page;

(ii) A diffeomorphism ¢ € Diff (%), called the monodromy, which equals the identity
near the boundary.

The two notions above are equivalent in the sense that out of an abstract open book
we can construct a manifold with a geometric open book decomposition, and the vice
versa. However, different abstract (resp. geometric) open books can give rise to the
isomorphic geometric (resp. abstract open book). Thus we consider the following
equivalences:

e An isomorphism of geometric open book decompositions (M, B, 7) and (]TJ . B, )
is a diffeomorphism ¢ : M — M satisfying:

~

#(B)=B, F=mod.
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e An isomorphism of abstract open books (2, ¢) and (3, @) is a diffeomorphism
P X — ¥ satisfying: N
pogo™ =4

Lemma 1.9.5. Given an abstract open book (X, d) there exists a manifold M (X, ¢)
endowed with a geometric open book decomposition (B, ) whose page is . Moreover,
1somorphic abstract open books give isomorphic geometric open books.

Proof. Out of the abstract open book decomposition we construct the mapping torus
Y xzR:=X x R/(x,t) ~ (¢(x),t — 1),

Since ¢ is the identity near % the above mapping torus has boundary 0% x S'. Thus
we can glue it to 0% x D?, using the identity map. This gives a smooth manifold:

M(X,¢) = (0 x D?) Ui (T xz R)

The binding of the induced geometric open book B := 0% x {0} < 0¥ x D? is
isomorphic to dX. Furthermore, the map pry : ¥ xz R — S! smoothly extends to
M (X, ¢)\B, by defining it to be

(b,z) — V(b,z) € B x D%

T
[lII”
Hence, we obtain a fibration 7 : M (X, ¢)\B — S!, by definition satisfies the required
normal form around the binding. Finally, the page equals 03 x (0,1] un X ~X. O

To pass from geometric to abstract open books, we need to produce the monodromy
map ¢. For this let us recall the following facts about connections on manifolds with
boundary.

e Associated to any fibration f : M — N, (i.e. a surjective submersion) we have
the vertical bundle
V:=kerdf cTM,

which fits inside the short exact sequence
0->V->TML TN 0.

An (Ehresmann) connection on M is a right splitting of the above sequence,
that is, a subbundle H < T'M such that

TM=V®H.

e A connection is said to be complete if for any path v : I — N, and x € M
there exists path 5, : I — M satisfying

fO’NYz =7 ﬁm(o) =T, ;Yz(t)eH'y(t)y Viel.

Note that in general, paths can only be lifted locally. However, if f: M — N
is a proper map then it admits a complete connection.
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Given a complete connection on a fibration f : M — N, any path y: [ - N
induces a diffeomorphism

Ty : Myo) = Moy, @ = Fa(1),
called the parallel transport along ~.

In particular, any connection H, on a fibration f : M — S' gives rise to a
diffeomorphism ¢ : M; — Mj, called the monodromy, by lifting the generator
of 71(S'). In turn this gives an isomorphism between M and the suspension

M~ M; xzR:= (M x R) /(¢(x),t) ~ (z,t —1).

If H is another connection on f, with monodromy (E, then there exists a diffeo-
morphism v : M; — M; satisfying

pogoyp~l =g
Hence, the resulting suspensions are isomorphic.

By a fibration of a manifold with boundary M into a manifold N (without
boundary), we mean a fibration f: M — N such that

f~Yy)hoM, Vye N.

In this case a connection H is said to be compatible if in addiction to the
conditions above it satisfies

H, < T,(0M), Ve oM.

If f: M — N is a fibration of a manifold with boundary, then the restriction
fo:= floma@M — N, is again a fibration. Moreover, any connection on f5 can
be extended to a compatible connection on f. In particular, given a fibration
f: M — S' of a manifold with boundary, such that f5 is the trivial fibration

pry : 0M; x St — St

there exists a connection on f, whose monodromy ¢ is the identity in a neigh-
borhood of M.

Going back to the main story, the following lemma shows how to pass from a geometric
open book to an abstract one.

Lemma 1.9.6. Let (B, 7) be a geometric open book decomposition of a manifold M.
Then there exists an abstract open book (X, ¢) such that M ~ M(X, ¢), as in Lemma
1.9.5, and ¥ equals the page of (B, m). Moreover, isomorphic geometric open books
give rise to isomorphic abstract open books.

Proof. The restriction of 7w to the complement of an open neighborhood of the binding
gives a fibration of a manifold with boundary

7 : M\int(B x D?) — St
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We define ¥ := #~1(1), which is isomorphic to the page of (B, 7). Furthermore, the
boundary of M\int(B x D?) is trivial, so we can take the trivial connection and extend
it to a compatible connection. Then, the monodromy ¢ € Diff(X) equals the identity
near the boundary, so that (¥, ¢) is the required abstract open book decomposition.
In fact, we have

M\int(B x D?) ~ ¥ xz R,

from which it follows that M ~ M(X, ¢). O

The two definitions above both involve dividing the manifold into two pieces, a neigh-
borhood of the binding B x D?, and the complement which is isomorphic to a mapping
torus P xzR. The following definition aims to avoid this decomposition and describe
the open book in a global way. It emphasizes that we can think of the binding as a
sort of "singularity” of a fibration.

Definition 1.9.7. An open book (map) on a manifold M, is a map f: M — R?,
onto a meighborhood of the origin and transverse to the Euler vector field

& =10, +y0o, € X(R?).

Observe that £ vanishes at the origin. Hence, the transversality condition in particular
means that 0 € R? is a regular value.

This definition is equivalent to the ones above. To obtain a one-to-one correspondence
we have the following notion of isomorphism. Two open book maps f : M — R?,
f M — R? are isomorphic if there exists a diffeomoprhism ¢ : M — M such that

fow=f.

Lemma 1.9.8. Given an open book map f : M — R? there exists a geometric open
book decomposition (Byf,ms) on M, whose binding equals By := f~'(0). Moreover,
isomorphic open book maps give rise to isomorphic geometric open books.

Proof. As remarked above, the origin 0 € R? is a regular value of f : M — R2.
Hence, By := f~1(0) is a codimension-2 submanifold in M whose normal bundle is
isomorphic to the pullback of the rank-2 vector bundle over a point R? — {0} and
hence is trivial. On the complement of the binding we define

m:M\B —S', 1z~ /(@)
Since fAE this map defines a submersion. O

The converse implication is as follows.

Lemma 1.9.9. Given a geometric open book decomposition (B, ) on M, there exists
an open book map f : M — R? such that (B,m) = (By,ns) as in Lemma 1.9.8.
Moreover, isomorphic geometric open books give rise to isomorphic open book maps.
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Proof. Using a Riemannian metric, we can define a distance function p : M — Ry
to the binding B. Then we define

MR xH{o if p(z) =0
’ (p(z),7(x)) if p(x) >0’

where we use polar coordinates (r,¢) on R?. The normal form of 7 ensures that
0 € R? is a regular value of f, and transverse to the Euler vector field away from the

binding. N
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2.1 Overview

This chapter is based on joint work with F. Presas. The theory of confoliations, intro-
duced by Eliashberg and Thurston [17], unites contact structures and codimension-
one foliations on 3-manifolds in a single framework. Following the same philosophy
we investigate the relationship between contact structures and (symplectic) foliations
in higher dimensions.

An essential property of the space of confoliations is that it contains the closure of
the space of contact structures. In Section 2.2 we generalize confoliations to higher
dimensions preserving this property. In more detail, given a contact structure £ on
M?"*1 the curvature

ce A%¢ > TM/E, (X,Y)— [X,Y]mod¢, VX,V eT(¢),

is non-degenerate. Thus, any contact distribution carries a non-degenerate (bundle
valued) form c¢ € Q%(&TM/€). Tt turns out, see Lemma 2.4.1, that if a distribution
is a limit of contact structures then it also admits such a non-degenerate form.

In light of this we consider “almost conformal symplectic hyerplane fields” (almost CS-
hyperplane fields for short). These are pairs (§,w) where £ € TM is a hyperplane
field and w € Q2(¢, TM /€) is non-degenerate. They are the generalization of confolia-
tions to higher dimensions. As expected, this notion includes contact structures and
(conformal) symplectic foliations.

In Section 2.2 and Section 2.3, we define almost CS-hyperplane fields as sections of the
“symplectic Grassmannian” bundle. This induces a natural topology on the space of
all almost CS-hyperplane fields. This topology allows us to talk about deformations
(using paths) and approximations (using sequences).

We define several types of deformations (for example “linear deformations”) and
translate the definitions in terms of (real valued) differential forms, which are easier
to work with. One conclusion following almost directly from these definitions is that
a foliation F admits a linear (Type I) deformation into contact structures if and only
if it admits a leafwise exact conformal symplectic structure, see Theorem 2.2.13 .
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In Section 2.4 we show that all the types of convergence are distinct. We also provide
explicit examples for each of them. The most important concept introduced in this
section is that of an almost CS-submanifold (Definition 2.4.4). A submanifold N of
an almost CS-manifold (M, £, w) is an almost CS-submanifold if the restriction

(€N, wln)

defines an almost CS-structure on N. Using Donaldson techniques we show that
almost CS-foliations which can be linearly deformed always admit such submanifolds
(Theorem 2.4.16).

In dimension-3 it is known [47] that any foliation except the product foliation on
St x S? can be approximated by contact structures. The key property of almost CS-
subamanifolds (Lemma 2.4.5) is that a deformation on the ambient manifold induces
a deformation on the submanifold. Therefore there is a strong interaction between the
3-dimensional case and higher dimensional one. In particular, any symplectic foliation
containing St x S§? (endowed with the product foliation) cannot be approximated by
contact structures.

It turns out that there are many foliations that cannot be approximated because
they contain S! x S2. The aim of Section 2.5 is to find different obstructions to the
existence of approximations. The classical clutching construction relates fibrations
over S? with loops of diffeomorphisms on the fiber. After discussing the clutching
construction in the setting of contact fibrations we use it to produce examples of
(conformal) symplectic foliations on S? x T? which cannot be deformed into contact
structures, see Theorem 2.5.38. As desired, these examples do not contain almost CS-
submanifolds isomorphic to St x S2.

In Section 2.6 we give more examples, both of foliations which can and cannot be
approximated by contact structures. We highlight the following two results.

The first one is based on the h-principle for isosymplectic embeddings. We use
it to show that in dimension > 7, any symplectic foliation containing a “formal”
almost CS-submanifold S' x S? cannot be approximated by contact structures. The
precise statement is given in Theorem 2.6.6. The second result is based on a construc-
tion by Bourgeois [16]. He showed that the product of a contact manifold with T? is
again contact. Under certain conditions this construction goes through for deforma-
tions. That is, if a almost CS-foliation on M can be deformed into contact structures
then so can the product foliation on M x T2. The details are given in Theorem 2.6.25.

Lastly, in Section 2.7 we briefly investigate fillability of almost CS-foliations. The
main result is Theorem 2.7.8 stating that there exist almost CS-foliations which are
not weakly fillable in the sense of [35].

2.2 Hyperplane fields

In this section we look at the problem of approximating foliations (without leafwise
symplectic forms on them) by contact structures. This is possible by viewing them
as part of a single space, that of hyperplane distributions:

Hyper(M) := {£ € TM : £ is a hyperplane distribution in TM}.
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There are various topologies one can consider on this space (some of which are dis-
cussed in the last part of this section), and one can even make sense of it as an infinite
dimensional manifold. However, all that can be avoided when discussing deforma-
tions, because given a path

[0,€) ot — & € Hyper(M)

one can make sense of its smoothness right away, by interpreting &; as a sub-bundle
of the pull-back pr*T'M via the projection pr : R x M — M. Or interpret £ as a
section of the pullback via pr of the Grassmannian bundle of M (recalled below). Of
course, one can also weaken the smoothness condition or, thinking of £ as a function
of (t,p) € R x M, one can even consider different orders of differentiability in ¢ and
p; we will be making some remarks in that direction (e.g. Remark 2.2.18) but, for
simplicity, smoothness will be the overall assumption.

Definition 2.2.1. We say that a foliation F can be deformed into contact struc-
tures if one can find a smooth path (& )iejo,c) of hyperplane distributions such that

& =F, &-contact for allt > 0.

In this case we also say that & is a contact deformation of F.

It is handy to represent hyperplanes by 1-forms; this can be achieved smoothly in ¢:

Lemma 2.2.2. For any smooth path (&t)iwcfo,e) of hyperplane distributions, with &,
co-orientable, one can write
& = ker(ay)

for some smooth path of 1-forms oy € QY (M).

Proof. Let E be the sub-bundle of pr*T'M corresponding to &; and consider the re-
sulting quotient N
T :=pr*TM/E.

This is a line bundle over M x [0, €), hence it is isomorphic to the pull-back of 7|, (0}
by the co-orientability condition, it follows that 7 is trivializable. A trivialization
precisely means a family «; as above. O

With the previous lemma at hand, we find ourselves in the following setting: a
foliation F represented by some 1-form «, and then a deformation of « into contact
forms.

Definition 2.2.3. A contact deformation of a 1-form a € QY (M) is a smooth
path oy of 1-forms, defined for t in some interval [0,€) such that

g =, ag-contact for all t > 0.
The contact deformation is called linear of it is of type
oy = o+ tIB

We say that a foliation F can be linearly deformed (into contact structures) if
some 1-form « inducing F admits a linear contact deformation.
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Starting with an arbitrary deformation a; one can define its linearization

d

(2.2.0.1) ol = o +tB, where a=ag, f:= T

Q.
t=0

2.2.1 Type I and type II contact deformations

With the notation from Definition 2.2.3, while we are interested in the case when
&o = ker(ay) is a foliation and & = ker(a;) are contact structures, it is interesting to
measure the ”order” at which a; are contact. More precisely, while being contact is
encoded in the corresponding volume form

Qt =0 N (dOét)n7

which at the limit ¢ = 0 gives Qg = 0 (since F is a foliation), the question is: what is
the order k at which one can write Q; = t*Q, with Qg # 0.

Lemma 2.2.4. If (ay) is contact deformation of an integrable 1-form «, then the
corresponding volume forms Q; satisfy

Q= O@{").
In other words, if one fixes a volume form € on M, then
Q¢ N (dOét)n = tnftQ

for some smooth family of functions f € C*(M).

Although this can be proven by a simple trick, it is interesting to interpret it via the
Taylor expansion of a; around ¢ = 0:

(2.2.1.1) ar = a+t8 +t2y + Ot?).

The foliation condition o A daw = 0 implies that da® = 0 for k > 2. Hence, if we only
take into account the quadratic part of the expansion, the contact condition for ay,
t>0,is:

0<apnday = t"(a AdB+nB A da) Adgrt
(2.2.1.2) + ¢l (na AdB Ady+ B AdBE+ny Adands
+nn—1)8 A da A dv) A dBmT2 4 O,
This discussion is particularly interesting when one starts with a foliation F, repre-
sented by some 1-form «, and then one tries to realise it as the limit of a sequence of

contact structures/forms. We see that the best scenario is when the coefficient of ¢™
in the previous formula is already strictly positive.
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Definition 2.2.5. Given an integrable form o € QY(M), a type I (contact) deforma-
tion of « is a contact deformation oy of o (as in Definition 2.2.8) with the property
that, writing

ap A day =" i)

as in the previous lemma, one has fo > 0.

A contact deformation & of a foliation F is said to be a deformation of type I if
it can be represented by a smooth path of 1-forms oy (with ag inducing F ), which is

of type 1.

Written more compactly (and without having to choose a volume form 2) the type I
condition reads

1
lim —a; A day® > 0.
t—0 "

On the other hand, it can also be further expanded and written as a condition up to
order n + 1:

(2.2.1.3)

type I a;adal = t"fQ+O(t" )  for some strictly positive function f e C*(M).

Note that the discussion leading to the definition of "type I” was based on the Taylor
expansion (2.2.1.1) where we concentrated on the first non-zero term (involving ¢");
that part clearly only depends on the linearization of «, as defined in (2.2.0.1). We
deduce that if a foliation F admits a type I deformation (by contact structures),
then it can also be linearly deformed. Actually, here are the interesting interactions
between type I and linearity.

Lemma 2.2.6. If ay is a smooth path of 1-forms with «g inducing a foliation F,
then one has

ay = type I deformation ———=> «; = contact deformation

] ﬂ

alm = type I deformation =—=> o™ = contact deformation

Example 2.2.7. One should be aware that the horizontal implications are not equiv-
alence even in the case of linear case. That is, there are linear contact deformations
which are not of type I. For example, on T? the linear path

oy = dz + ¢t (sin(z)dz + cos(z)dy) .

has
a; A day = t2dz A dy A dz,

implying that a; is not of type I (the relevant coefficient fy actually vanishes!). We
will see (Proposition 2.4.14) that there does not exist any a&; of type I representing
& = ker ay. A
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Remark 2.2.8. Although a4 is a type I deformation if and only if al® is, in general

these paths induce different contact structures. The parametric Moser trick shows
that there exists an isotopy ¢; € Diff (M) such that

¢Zk(a?n) = fiou,

for positive functions f; € C®(M). Thus, up to isotopy, the two paths of contact
structures agree. A

With the previous example in mind, let us return to the Taylor expansion 2.2.1.2 and
see what can happen beyond the type I case, i.e. when the ¢t"-term is not strictly
positive. The next simplest case is when the the linear part (in ¢) of the function in
front of t™ is strictly positive. Having in mind the characterization (2.2.1.3) for type
I, type II appears as the next step:

Definition 2.2.9. Given an integrable form o € QY (M), a type II (contact) defor-
mation of « is a contact deformation ay of o (as in Definition 2.2.3) with the property
that

(2.2.1.4) ap A (day)™ =" fQ+ 1" TLgQ + Ot 1),
for a volume form Q, f,g € C®(M) such that f + tg is strictly positive for all t > 0
close to 0.

And then, similar to Definition 2.2.5, one talks about type II deformation & of a
foliation F.

Example 2.2.10. Of course, type I implies type II. But note that, unlike for type
lin

I, the type II condition does not imply that the linearization o™ is made of contact
forms. E.g., already on R?, the path

o := dz + t2zdy
has
as A day = t?dz A dy A dz,

so ay is type II. On the other hand the linearization equals o} = dz which is never
contact. A

Remark 2.2.11. As we have already pointed out, and is seen also in the last

lin

example, if we start with a contact deformation «; and we linearize it, in general «;
may fail to be contact; and the type I case removed this ”problem”. However, since

ap A (dayg)™ — a?“ A (doz?n)" = O(t"+1),
we see that
lin

oy is of type I = o™ is a contact deformation = o is of type II

In particular, the type II condition is actually necessary for achieving the the lin-
earization is contact. A
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However, there is some analogy with the type I and type II conditions, just that one
has to look a bit closer. E.g., looking again at the Taylor expansion (2.2.1.2), we
see that the type II condition is a condition involving just «, 8 and +; i.e. only the
” quadratization” o™ of oy (defined completely similar to the linearization). One

then obtains the analogue of the diagram from Lemma 2.2.6:

ay = type II deformation =——— «; = contact deformation

11 ﬂ

auadr _ - tvpe I deformation ——= o™ = contact deformation

«

Actually, the two diagrams can be nicely merged together by making use also of the
Remark 2.2.11 (while also getting more insight into the remark itself):

oy = typel ——=ay = typell ——— 4 = contact

II W

™ — type Il ——= o™ = contact

ﬂ

alt = type] =——= al" = contact

2.2.2 Relationship with conformally symplectic structures

We know that a contact form gives rise to a rich geometry, starting already with the
basic concepts such as the induced Reeb vector fields or the induced non-degenerate
2-forms along the hyperplane distributions. How much of that is seen in the limit of
a sequence of contact forms, or at t = 0 for a contact deformation «;? It seems that
the answer is: not so much in general.

Example 2.2.12. On R3(z,y, z) consider the symplectic foliation
(F:=kerdz,w :=dz A dy)
and the following contact deformation:
oy = eY (dz — tydzx) .

Computing its Reeb vector field one finds

10 0
—e Y
Re=e (t ox < 1)6,2)'

We see that, although oy is smooth also around ¢ = 0, the Reeb vector fields (defined
for t # 0) do not have a limit as ¢ — 0. One can try to fix this by looking at the

induced Reeb directions
7t = Span(Ry),
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which go to 79 = Span(e™¥0,). But note that, while in this example 79 is tangent to
F, for other simple contact deformations of F the limit is transverse to F (e.g. even
By = e Ya; = dz — tydx, with constant Reeb vector field R; = 0,).

And similar (negative) remarks hold also for the induced non-degenerated 2-forms
along the hyperplane distributions. In our example we have

doy = €Y (t(1 + y)dz A dy + dy A dz)

which goes, as t — 0, to n = e¥dy A dz. And this is no longer nondegenerate on F.
And for the other example mentioned above, §; := dz — tydx, dF; = tdz A dy even
goes to zero. However, rescaling (; by %7 the resulting 2-form in the limit is dz A dy
which is nondegenerate on F. A

In this section we would like to point out one conclusion that can be drawn in the
limit, i.e. about the foliations F: that it admits a conformally symplectic structure.
Before we recall the necessary definitions, here is the precise statement we will be
discussing:

Theorem 2.2.13. A co-oriented foliation F admits a type I contact deformation
(Definition 2.2.5) if and only if it admits an exact leafwise CS-structure (Definition
2.2.16) with coefficients in the normal bundle of F.

In particular, if F is unimodular, the condition is that F admits an ezxact leafwise
symplectic structure.

Note that, in this case, Lemma 2.2.6 implies that the contact deformation can be
chosen to be linear (and that is what we will do in the proof anyway). To explain the
previous theorem, we start by recalling the notion of conformal symplectic structures.
Very briefly, they are generalizations of symplectic structures obtained by allowing
more general line bundles as coefficients. Furthermore by Corollary 2.4.17 the second
statement can only applies to non-compact manifolds.

Definition 2.2.14. A conformal symplectic structure (CS-structure for short)
on M is a triple (L,V,w) where m : L — M 1is a line bundle, V is a flat connection
on L, and w € Q%(M, L) is non-degenerate and dv -closed.

Here we denote by Q°(M, L) the space of L-valued differential forms and we use that
any connection V : X(M) x I'(L) — T'(L) gives rise to a DeRham differential dy on
Q°*(M, L); it can be described e.g. using the usual Koszul formula:

(2.2.2.1)
k+1

(de&)(Xl, N ,Xk-ﬁ-l) = Z (—1)i+1in ((X(Xl, ce ,Xi, . ,Xk+1))

1=1
+ Z(—l)i+ja([Xi7Xj], X17 e 7Xi; e ,Xj, ey Xk+1)7
i<j
for any o € QF(M, L) and X1,..., X1 € X(M). Note that the connection V is flat
if and only if d2v = 0, and that by the Leibniz identity dy is uniquely determined by
how it acts on sections. That is, it can be equivalently defined setting

(2.2.2.2) (dvo)(X) = Vxo, X eX(M),oeD(L).
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Note that if L = M x R, and V is the flat connection induced by the usual Lie
derivative, then the above definition reduces to the usual definition of a symplectic
structure.

If L is oriented, the notion of conformal symplectic structure can be entirely unravelled
in terms of real valued differential forms. First of all, choosing a trivialization L ~
M x R, the connection itself can be identified with a 1-form

ve Q' (M)

via the equation Vx f = v(X)f. And V being flat is equivalent to 1 being closed.
With this, dy is identified with

(2.2.2.3) d, : Q*(M) - Q' (M), dya:=da+vnaa.

Therefore, w will become a non-degenerate 2-form w € Q?(M), which is d,-closed. Of
course, one should think of (w,v) as representing the original conformal symplectic
structure. Note that if one changes the trivialization of L, the pair will be changed to
(efw,v—df), for some f € C*(M). In particular, the cohomology class [v] € H' (M)
is independent of the choices (and is associated to the flat line bundle L), while the
non-degenerate 2-form is unique up to a ”conformal factor”.

Example 2.2.15. Let (M,&) be a contact manifold, then M x S! admits a CS-
structure called the conformal symplectization of £, defined as follows. For the

line bundle we take
L= pri(TM/E),

using the projection pr :1: M x R — M. A section o of L can be identified with
I-parameter family of sections oy, § € S, of TM /. Then we define a flat connection
on L by

Vxo:=do(X g, X € X(M).

d
)3lo-0
The composition

T(M x SY) 2 7aAr > T,

can be interpreted as a differential form o € Q'(M x S, L). Tt follows that
w:=dyae Q*(M xS, L),

is non-degenerate, and it is clearly dy-closed, so defines a CS-structure. Observe that
if TM /¢ can be trivialized, so that ap; € Q'(M) is a contact form for £&. Then,

(d—agonr, —db),

is a CS-pair representing w. Lastly, if 7 : M — R — M x S! denotes the usual
covering map, and ¢ € R, then the pullback of the above CS-pair is given by

(d,dtOZM, —dt) .

This is again a CS-pair, equivalent to the pair (d(efays),0), defining the usual sym-
plectization of (M, apr). A
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We now move to the foliated version of the previous discussion. Let F be a foliation
on M. Recall that by an F-connection on a line bundle L — M, we mean a map
VvV T'(F)®T(L) — T'(L) satisfying the usual conditions for a connection. Since
F is a foliation we can consider the complex of L-valued, leafwise differential forms
O°(F, L) together with the differential dy defined as in Equation 2.2.2.1. Then the
foliated version of Definition 2.2.14 is:

Definition 2.2.16. A conformal symplectic foliation (CS-foliation for short) on
a manifold M is a triple (F,w, L), consisting of a foliation F, a line bundle L — M
endowed with a flat F-connection V, and a differential form w € Q*(F, L) which is
non-degenerate and dv-closed.

The same discussion as for CS-structures applies; if L is oriented then choosing a
trivialization identifies V with a leafwise form v € Q!(F) (via the same formula
Vxf = v(X)f as above) and then dy with d, given by the formula similar to
(2.2.2.4):

(2.2.2.4) d, : Q(F) - QTHF), dya:=dra+vaa,

where dr is the leafwise DeRham differential. Again, V being flat is equivalent
to dQV = 0, and to v being leafwise closed. We see that, as before, the conformal
symplectic foliation will be encoded in a pair (w, 1) of two leafwise forms

we Q*(F), ve QY(F),
with v leafwise closed and d,w = 0.
We will be particularly interested in the case when L is the normal bundle
L:=TM/F,
endowed with the canonical flat F-connection (the Bott connection)

Vx(V)=[X,V].

Note that the resulting cohomology class [v] is precisely the modular class of F:
mod(F) € H(F).

Working out the previous description of the representative v, we see that we need
to start with a 1-form « inducing F and then choose any v so that da = a A v.
One deduces that mod(F) = 0 if and only if one can choose a closed 1-form «
representing F, i.e. F is unimodular. With this, the statement of Theorem 2.2.13
has been explained, and we can now turn to the actual proof.

Proof of Theorem 2.2.13. Write as above F = kera, and da = a A v, so that the
coefficients L = TM/F (with the Bott connection, of course) is identified with the
trivial line bundle endowed with d,. In particular, we are looking for non-degenerate
foliated forms

we Q*(F)
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which are d,-closed, and exactness means that w = d,(8) = dx8 + v A B for some
B e QYF). We see that when this is the case then, choosing any extension of 3 to
M, still denoted by 3,

api=a+tf

has the desired properties. Indeed, choosing also an arbitrary extension of v to M
(just to be able to write the formulas below), one has:
ap A (day)" = (a+tB) A (£*(dB)™ + nt™ M (dB)" ! A da)
=t"a A ((dB)" +nvABA(dB)")+t"B A (dB)"
=t"a A (d,B)" + "B A (dB)",
and then (for small ¢) the dominating term is @ A (d,8)" = a A w™ > 0. Hence,
indeed, this is a contact deformation of type I.

For the converse, we start with any type I contact deformation a; and we look at its
Taylor expansion as in (2.2.1.1) (giving rise to « and S as in that equation) and we
read the type I condition from the resulting expansion (2.2.1.2):

(A dB+ B Ada)a (dB)" >0.
But writing da = a A v as before, this term is
andBH+rvAB)A@B)t=an(dp)"

hence the leafwise restriction of 5, and its leafwise differential, gives us the foliated
exact symplectic structure we were looking for. O

2.2.3 Using sequences instead of paths

While a deformation of a foliation F into contact structures & can be thought of
as approximating F by contact structures (F = lim;_,&;), it is sometime useful to
allow non-continuous approximations, i.e. by sequences:

(2.2.3.1) F = kim Crk (¢ € Hyper(M)).

—00
Of course, when drawing the analogy between sequences (; and paths &;, one should
think that

(2.2.3.2) =&, F=¢&:

This actually shows how to pass from paths to sequences, but the point is that
not every sequence arises in this way (and sometimes it may be easier to produce
sequences instead of paths).

However, this time, to make sense of such limits (2.2.3.1), we face the problem of
being precise about the topology one uses on Hyper(M). This comes with some
technicalities and, for simplicity of the statements, we will often assume M to be
compact.
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To make sense of Hyper(M) as a topological space, we start with the finite dimen-
sional picture. Recall that, for any 2n + 1-dimensional vector space V and any integer
d we have the Grassmannian of d-planes:

Gry(V) :={{ cV |dim¢ = d},

which is a smooth manifold as follows. To describe the a chart around a ”point”
&o € Grg(V) (fixed now for the construction of the chart), one chooses a vector sub-
space 19 < V that is complementary to &y; the subspaces transverse to 7y define an
open in the Grassmannian,

(2.2.3.3) Uy, :={€ € Gryg(V) : £ is transverse to 79} < Grg(V),
which serves as the domain of a chart x, with
(2.2.3.4) X' Hom(&,70) — Ur, ¢+ Graph(¢) = {v+ ¢(v) : v e &}

(or, a bit more conceptually: U,, is an affine space (modelled on Hom(R? R) and,
once a point & € U, is chosen, one uses it as origin to identify the affine space with
the underlying vector space).

Moving to an 2n + 1-dimensional manifold M one defines

Grg(M) := | Gra(T,, M)
peM

and then, combining the previous discussion with the charts of M one sees that
Grg(M) inherits a canonical smooth structure that makes it into a smooth fiber
bundle over M. Of course, we will be using this for d = 2n, when contact hyperplanes
and foliations can be both interpreted as sections of this bundle:

Hyper(M) = I'(Gra, (M)).

The simplest topology one can consider on such spaces of sections is the C°- compact-
open topology, with respect to which convergence means uniform C°-convergence on
compacts. Actually, let us replace for the moment Gra, (M) by an arbitrary fiber
bundle P — M so that the generality of the discussion is clearer. For convergences
that take into account also derivatives it is useful to use jets. For any section & of R
one can talk about its I-jet at any point p € M,

Jp € Jp(P)
and, varying p, the I-jet of ¢ makes sense as a section of the [-th jet bundle J!(P) — M:

7'(&) e T(J'(P)).

The map ¢ ~— j!(&) allows one to induce a topology on I'(P) from the C°-compact-
open topology on I'(J!(P)). That is the so called C'-compact-open topology on I'( P)-
simply called from now on the C!-topology on the space of sections. Finally, one
defines the C*-topology on I'(P) as the union of the previous topologies for all [.
This is the topology that we will be using by default.
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Definition 2.2.17. We say that a sequence of contact structures ({)x=0 converges
to a foliation F if it converges (for k — o0) in Hyper (M) with respect to the topology
we just described.

We say that a foliation F can be approximated by contact structures if one can
find such a sequence of contact structures converging to F.

Remark 2.2.18. Of course, using the C'-topologies one can talk about C'-convergence
and approximations. In the analogy (2.2.3.2) with paths & = £(¢, p), this corresponds
to being of class C! in p (but still smooth in #)- called C'-deformations by smooth
paths. A slightly different notion is obtained if one requires only continuity in ¢. One
ends up, for each [, with three related notions for a foliation F:

e to be C!- approximated by contact structures as in Definition 2.2.17,

e to be C!- deformed into contact structures by smooth paths as in the last
definition,

e to be C!- deformed into contact structures by continuous paths.

Are these equivalent? We did not spend much time on this question but, at a first
glance, even for [ = 0, the situation does not appear to be have an ”obvious answer”.

The main reason to use the C*-topology is to simplify the terminology and to avoid
the search for ”the best [” in each argument (which may obscure the discussion).
The choice that would probably be most natural would be [ = 1. The case [ = 0 is
too weak since it disregards the derivatives. More precisely, since we are interested
mainly on co-orientable hyperplanes and we will represent the &, above by contact
forms ay,, the problem is that convergence ay — « in the C°-topology does not imply
that day, — da; and the C'-topology takes care precisely of that. A

Here is the analogue of Lemma 2.2.2. Note that we are applying the previous discus-
sion also to the bundle P := T*M to make sense of convergence of 1-forms (again
using the C*-topology).

Lemma 2.2.19. Assume that M is compact. Then, for a sequence (&;)r of co-
oriented hyperplane distributions, and another hyperplane distribution &, the following
are equivalent:

1. limk fk = f
2. limy, o, = « for some 1-forms «ay representing & and « representing &.

3. for any 1-forms ay, and « representing & and &, and any vector field R trans-
verse to &,

1
lim

k ap(R) = a(R)

Q.

Proof. Let R be a vector field that is transverse to £ and let « the corresponding
1-form inducing £. We use the line-field 7 = R - R, and consider U, < I'(R) defined
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by applying the construction (2.2.3.3) at each point. This is open in T'(P), hence it
must contain all the & for k large enough. On the other hand, this open is identified
with the space of sections of

Po = f*

(with its topology as it follows from the previous discussion applied to the bundle
Py). Explicitly, the identification is obtained by applying (2.2.3.4) and identifying 7
with R via «; one finds:

¢:T(E") > U, 0> :={v+0(v) - R:vec}

Denoting by 0 the unique extension of § to T'M which is 1 on R, one finds that &y is
represented by the 1-form N
Qg = 0e QI(M)

Applying this to each & we find the corresponding 6, and then the desired «y.
Since the entire argument is based on passing from one fiber bundle to another, by
operations that are clearly continuous, the equivalence follows. O

2.2.4 The 3-dimensional case; confoliations

The case of 3-dimensional manifolds M is rather special. Indeed, the situation is, in
principle, pretty simple: if £ is induced by a 1-form «

£ is a foliation, or contact structure < anda =0, or anda # 0, respectively.

That is, the form a A da controls € being a foliation (and that is not only in dimension
3), as well as being contact (only in dimension 3) when one obtains a volume form
(again only in dimension 3).

With the convention of working on oriented manifolds and the subsequent compati-
bility conditions, the discussion is whether o A dax is zero or strictly positive. This is
not an honest dichotomy, as the conditions are required globally and not pointwise;
however, it clearly indicates the space in which the two structures naturally interact
each other- and that brings us to the notion of confoliation.

Definition 2.2.20. A confoliation on a 3-dimensional manifold M, is a cooriented
hyperplane distribution ¢ = ker o, for some o € QY (M) inducing the coorientation on
&, and satisfying

(2.2.4.1) aAda=0.

A confoliation ¢ on a manifold M gives a decomposition into two regions, an open
set where £ := ker « is contact and closed set where £ is a foliation:

M =Cont(€) :={zeM | (aAda), >0}uFol(§) ={xe M| (anda), =0}

The space of confoliations is closed as a subset of Hyper(M). Its interior consists of
contact structures, and the boundary consists of £ for which Fol(§) # &. Indeed,



140 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

if a confoliation £ = ker o admits a point x € M where (a A da), = 0, then there
exists a distribution ¢ := ker 8 arbitrarily close to & in Hyper(M) and satisfying
(BAdB), <O.

The interesting question (addressed already by Eliashberg-Thurston [47]) is when a
foliation can be deformed into, or approximated by, contact structures, through the
space of confoliations. Note that the linearity of deformations, or the type I condition

d
(2242) a o (Ozt A dO[t) > O7
agree with the discussion from [47].
The main findings of [47] (at least for our discussion) can be summarized into the

following:

Theorem 2.2.21. In dimension 3, looking for approximations of foliations by contact
structures:

(i) The trivial foliation of S* x S? by spheres,

(Sl x S F:= U {2} x SQ> ,

z€eSt
cannot be approximated.

(ii) Any other foliation of any other 3-dimensional manifold can be C°-approzimated.

However, a similar theory (and similar results) in higher dimensions is missing. The
reason is, we believe, that finding the correct higher dimensional analogues is more
subtle than it may seem at first. Already in part (i) of the previous theorem, if one
looks at the trivial foliation by spheres:

(2.2.4.3) <Sl x 8" F = | {2} x S%> , n#2,6,

zeSt

this cannot be deformed into contact structures for much more obvious reasons: con-
tact hyperplanes carry non-degenerate two forms and, therefore (see Remark 2.3.2),
the sphere S?" would then carry such forms- which is well-known not to be the case
for n # 2,6.

As already clear from this example, the non-degenerate two-forms on the hyperplanes
should enter the story, and we should be looking at symplectic foliations (or variations
of them) in the limit. And the reasons those two-forms are not taken into account in
dimension 3 is very simple: they are there anyway, implicitly. More precisely, fixing
a volume form Q € Q3(M), one sees that any hyperplane field ¢ € TM carries an
induced non-degenerate 2-form €¢: while Q¢ = 0 for dimensional reasons, (v, w) —
Q(v,w, ) becomes a 2-forms with coefficients in the conormal direction:

(2.2.4.4) Qe € Q& v).
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2.3 Going conformal: almost CS-hyperplane fields

2.3.1 Various symplectic Grassmannians

The previous section was basically about approximating foliations, with no reference
to symplectic foliations. I.e. we concentrated on the hyperplane distributions, dis-
regarding the induced non-degenerate 2-forms that they carry (both in the case of
contact structures as well as in that of symplectic foliations!). We now start includ-
ing those two-forms into the discussion. The need for doing so was already clearly
indicated at the end of the last section, in the 3-dimensional discussion; see also the
next remark.

Definition 2.3.1. An almost conformal symplectic hyperplane field on a man-
ifold M is a triple (§,w, L) consisting of

e a hyperplane distribution & < TM

e a non-degenerate 2-form w € Q2(€, L) along & with coefficients in a line bundle

L —- M.

We also use the acronym ACS- hyperplane field, or we even omit the reference to
L and talk about the ACS-hyperplane field (&, w). Furthermore, we say that a pair

(or,m) € Q1 (M) x Q*(M)

represents (£,w), or that it is a representing pair for (§,w), if there exists an trivi-
alization ¢ : L = R of the coefficients L of w such that

& =ker(a), ¢ow=nle.

Remark 2.3.2. The remark from the end of the previous section (when discussing
the obvious foliation by the spheres S?") is of a more general nature and clearly shows
the need for ACS-structures in higher dimensions; the remark is:

& — & with & =contact = £ can be made into an ACS-hyperplane field

(on compact manifolds) and the similar statement for deformations (on arbitrary
manifolds).

Indeed, choosing a complement 7 of £ in T'M and using the corresponding projection
pr: TM — &, if & is close to & then it will still be transverse to 7 for some k large
enough- hence

pr|£k : gk - 5

is an isomorphism; therefor ¢ will admit an ACS-structure as well. A

Remark 2.3.3. In a first attempt to add the 2-forms in the picture and compare
contact structures to symplectic foliations ”on the nose”, one has to face some mess
due to the fact that the various 2-forms floating around take values in different line
bundles. Of course, in principle there is not much of a loss of generality to assume
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that those line bundles are trivializable but (as we shall see) those trivializations
may affect the resulting notion of convergence and serious problems may arise. Any
way, here are some types of pairs (§,w) that arise, with special attention to the line
bundles:

e symplectic foliations (F,wz) for which the line bundle is always R. And simi-
larly contact forms a, with corresponding pair (ker(a), daier(a))-

e the conformal symplectic foliations that started showing up (e.g. in Theorem
2.2.13), where the coefficients can be any flat line bundle.

e the contact structures & < T'M which, by their very definition, carry a non-
degenerate two-form, the curvature c¢ of £, with coefficients in the normal
bundle vg := TM/¢:

ce € B2(&ve), ce(X,Y):=[X,Y]mod¢.
e on three-dimensional manifolds M, fixing a volume form 2, any £ carries an

induced non-degenerate 2-form )¢ € QQ(f,Vg‘) as discussed at the end of the
previous section (see (2.2.4.4)). Hence, in this case, L = /.

Each such class lives naturally in a certain ”symplectic Grassmannian manifold”,

respectively:

ACSHyper(M,R), ACSHyper(M,v), ACSHyper(M,v*), ACSHyper(M,L).
A

To explain these spaces, we start with the linear discussion, for an arbitrary vector

space V of dimension 2n + 1; then, according to the list above, there are four types
of "sympectic Grassmannians” to consider,

SGr(V), SGr(V,L), SGr(V,v), SGr(V,v*)

(to be explained). Or, to treat them at once, just think that one has a functor [
going from 1-dimensional vector spaces (with isomorphisms) to itself. For the four
Grassmannians we mentioned, one may actually just think that [ is just the d-th
power functor

(2.3.1.1) (V/€) = (V/€)®,

and we are mainly interested in the cases d = 0,1 and —1. At this level (and important
later when describing the resulting convergences), the main difference between the
different I's is that when applied to the multiplication my by A # 0 (viewed as a
linear automorphism on a/any vector space),

(2.3.1.2) [(my) = mya.

Once we fix [, it gives rise to
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e to a version of the Grassmannian with [-coeflicients:
SGr(V, 1) := {(&,w) | € € Gra,(V), w e A%6* @ [(V /€) nondegenerate}

which has a smooth structure by arguments completely similar to those for
Gr(V): for (§,wo) € SGr(V'), one considers the analogue of (2.2.3.3),

Us, := {(€,w) € SGr(V, 1) : € is transverse to 7o}

which, as in (2.2.3.4) (and actually using that chart plus the and the naturality
of I) is identified with

nondeg

Hom(&o, 1) % (A%} ® (7))

e Then, moving from V to 2n + 1 dimensional manifolds M and applying the
previous discussion to the tangent spaces 1), M one obtains a fiber-bundle over
M

SGr(M, 1) = | J SGr(T,,M, 1) — M.
peM

e And then, looking at sections of this bundle, one obtains the space of [-valued
symplectic hyperplanes

ACSHyper(M,1).

Since it is a space of sections it comes with various topologies but, as before,
we will be looking only at the C!-compact open topologies, where we assume
I = oo if not otherwise specified.

Morally, ACSHyper(M,I) is an infinite dimensional manifold (and this can even
be made precise using various frameworks) and one may think of it sitting over
Hyper(M) via the obvious projection

(2.3.1.3) pr : ACSHyper(M, ) — Hyper(M),

making it into an (infinite dimensional) bundle with the fiber above £ € Hyper(M, )
given by

ACSHyper(M, 1)e = (Q(&, 1)) """, with [¢ = (TM,€).
Note also that the constructions of the curvature c¢ of hyperplanes,
£ ce,
can now be interpreted as a section of a related bundle: the slightly larger version of

ACSHyper(M,v*) where the non-degeneracy is ignored. Of course, this is a contin-
uous (and even smooth in the appropriate sense) map.
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2.3.2 Convergence in the various symplectic Grassmannians

We would like to emphasise: even if one is interested (like us) in hyperplane distri-
butions which are coorientable (for which the various line bundles showing up can
be trivialised), one still has to pay attention to those line bundles (as, in each of the
spaces we discussed, the resulting notion of convergences depends essentially on the
actual trivializations of those bundles). Here are some details. As before, to handle
the various spaces at once, we work in the context of a general [ as above.

First of all, let us be precise about the passing to trivial bundles. For notational
simplicity let us just assume that [(R) = R. We use the terminology [-symplectic
hyperplane field (£,w) for the ACS-hyperplane fields with w having as coefficients
(TM/E), i.e. the points in ACSHyper (M, ). Given (£,w), we say that a pair

(v, ) € Q1 (M) x Q*(M)

l-represents (&, w) if
§=ker(a), o ow :77|§'

(compare with the similar notion from Definition 2.3.1). In the last equation we
interpret « as a trivialization « : TM/§ ~ R and we apply the functor [ to a to
obtain [, : (T'M/£) — R; this allows us to move to one single type of coefficients.

Remark 2.3.4. Given an [-symplectic hyperplane field (£,w), any [-representative
(a0, n) comes with an induced Reeb vector field R, uniquely characterized by

a(R)=1, irn=0.

It is immediate to see that this actually gives a 1-1 correspondence between

e [-representatives («,n) of (§,w),

e vector fields R € X(M) which are transverse to £ and such that ig(w) = 0,

Given («,7), R is the associated Reeb vector field, defined by the condition

a(R)=1, ign=0.

We now work out convergence in ACSHyper(M,[) in terms of representatives.

Lemma 2.3.5. Consider a [-symplectic hyperplane field (§,w), with some chosen
[-representative (c,n), with corresponding Reeb vector field denoted by R. For nota-
tional simplicity we assume that [ is the d-th power (2.3.1.1) and that M is compact.

Then for an arbitrary sequence (§x,wy) of I-symplectic hyperplane fields, the following
are equivalent:

1. (&, wr) — (§,w) in ACSHyper(M,1).
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2. for a/any l-representatives (o, ny) for the sequence one has

_1
ag(R)

1

CEk—)Qin Ql(M), W

cip(ak A ) — 1 in QQ(M)

3. & — & as hyperplanes and, for a/any l-representatives (ax, ny) for the sequence

one has
1

. . 2

W'ZR(ak/\T]k)—’T] m (M)

4. & — & as hyperplanes and, for a/any l-representatives (ag,nx) for the sequence
so that a, — «, one has

ir(ar Ame) =1 (in Q*(M)).

5. & — & as hyperplanes and, for a/any l-representatives (o, ny) for the sequence
so that a, — «, one has

ap A —aAn  (in Q3(M)).

6. there exist l-representatives (ay,ny) for the sequence such that
ap — a in QY (M), np —nin Q*(M).

Remark 2.3.6. When M is not compact the statement of the result is, in principle,
the same- just that one has to be careful when interpreting it. The problem is that, if
aj — « (in the compact-open topology), ax(R) will be non-zero outside any compact
C only for large enough k& > ko, with the ko depending on the compact. Hence,
strictly speaking, dividing by ay(R) as a global function, is problematic. However,
this enters a limit in the compact-open topology, hence it is something to be checked
on each compact C and then ”"the problem” becomes irrelevant. A

Remark 2.3.7. In the characterizations from 4, 5 and 6 the apparent independence
of d is misleading. Indeed, it is actually hidden in the notion of [-representative: if
(o, m) is an [-representative of (§,w) and we change « to f-«, then  must be changed
to f?-1n to get the new [-representative (f - a, f2 - 7).

On the other hand, while condition 5 is nicer, 2 (and often 4 and 5 as well) is handier
since it can be checked on whatever representatives one may have at hand. For
instance, in the contact case, once one has chosen ay, one would like to use 7, = dag
(which may not be the one ensured by 6!).

Finally, it is good to have in mind that the expressions of type a A 1 encode 7|ker -
Hence, in some sense, the condition from 5 can be thought of as saying that "¢, —
nle”. Note the related possible condition 7y|¢ — 71]¢ which makes sense without
quotes; it can be expressed algebraically as follows, giving rise to the following vari-
ation of condition 5:

5. & — & as hyperplanes and, for some l-representatives (ay, ;) for the sequence so
that oy — «, one has a A g — a A 1 in Q3(M).
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While 6 clearly implies 5°, the converse is not true: there may exist (g, wy), repre-
sented by some (ay, 7)), with

& =& Mkle = mele BUT (&, wi) = (§w).

The problem is that the Reeb vector fields Ry may behave pretty wildly; when there is
some condition on the [-representatives, then condition 5’ on those representative does
imply convergence. For example, one extreme situation would be to require that all
the resulting Reeb vector fields Ry, coincide with R (but note that, starting with &, —
¢, and with Frepresentative (o, n) with corresponding R, then such representatives
(ag,mi) can be arranged). A

Proof. The first part of the last remark immediately implies the equivalence of 2 and
3. Looking at 3 and using the fact that ax — « can be arranged (cf. Lemma 2.2.19)
allows rewriting the condition from 3 as the condition from 4 (since ax(R) will go to

1).
ip(ag Amk) =N in QQ(M)

That 5 implies 4 is obvious, while for the converse note that

Qg A M = )ozk/\iR(ak/\nk).

1
Qe (R
Next, if the condition from 4 is satisfied, we use the same trick and we change to

= in(on A ) !
TN O
Oék,(R) R k Nk Mk Oék(R)

co A TR(ME);

Then (ak,n;c) is still representing (€, wy), but now has the property required in 6.
Conversely, 6 implies 4 because the condition from 4 is independent of the choice of
N in 4.

Hence we are left with proving that 1 is equivalent to 2. For that one starts with
arbitrary l-representatives (o, k), (@, 1) (as in 2), and write the limit condition from
1 out, by looking at the topology that was explained above; the outcome is precisely
the limit condition from 2. O

Of course, when looking at contact structures, the most natural choice of [ is the
identity, so that the 2-forms on the hyperplane fields £ are with values in T'M /¢-
precisely as the curvature c¢ of £. Therefore we obtain a natural inclusion of the
space CHyper(M) of contact structures.

Proposition 2.3.8. For [ = id one obtains an embedding of the space of contact
structures:

(2.3.2.1) I :CHyper(M) — ACSHyper(M,id), & — (&, ce).

Moreover, the closure of its image contains no (§,w) € ACSHyper(M, id) with £ a
co-orientable foliation.
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Proof. Let us look at the last part (the first one is similar): when does (&, ce,)
converge to (£,w)? We apply the previous lemma and we see that we can write
represent (£, w) by some (o, ) and we find contact forms ay, — a such that ax Adag, —
aAn. But, if € was a foliation, then ax Aday — aAnda = 0 giving a contradiction. [

Remark 2.3.9. In the previous proof we used that ay — a implies day — da. This
would break down if we use the C°-topology. Hence, in principle, the situation may
not be so negative as in the previous proposition if we use C°-convergence. A

The presence of other s allow for new perspectives on contact forms (in a manner in
which the tempting sloppiness on identifying the coefficients right away is avoided):
for each [ one can look inside the corresponding space ACSHyper(M, 1) for elements
that correspond to contact forms.

Definition 2.3.10. We say that (§,w) € ACSHyper(M,1) is of contact type if it
admits an [-representative of type (o, da) for some contact form:

(2.3.2.2) ¢ =ker(a), lyoda=nl¢ for some contact form c.

Looking the other way around, we obtain for each [ an inclusion

(2.3.2.3) I QL (M) — ACSHyper(M, 1)

cont

which associates to a contact form « the hyperplane £ = kera with the 2-form
I7' odale. And this allows one, in principle, to approximate various ACS-hyperplane
fields by contact structures. Note that the case [ = id is pretty special:

e it is the only case when I is not injective (instead it factors through CHyper (M)
giving rise to the embedding from the previous proposition),

e despite being the most natural choice of [ for handling contact structures, it is
the only bad choice when trying to approximate symplectic foliations.

Note that the first point is due to the remark that, if («,7) is an [-representative for
an element (£, w), and we want to replace o by f -« to have another [-representative,
then one has to multiply by f?. For the second item, let us work out the resulting
convergence.

Lemma 2.3.11. Given (w,§) € ACSHyper(M, 1) with some chosen [-representative
(a,m), then (w,§) is the limit of a sequence of elements in ACSHyper(M, 1) of contact
type, i.e. it is in the closure of the inclusion (2.3.2.3), if and only if there exists a
sequence of contact forms oy and a sequence of smooth nowhere vanishing functions
fr such that

ap — a, g_1~ak/\dak—>a/\77.

(where d is associated to [ as in ((2.3.1.2))).

We see why the truly special case is when [ = id (i.e. d = 1); all the other cases can
be brought to the condition

ar > a, gp-ap Adag > aAn
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for some sequence of nowhere zero smooth functions g, required to be positive if d
is odd.

Proof. The hypothesis is that there are contact forms S such that the element in
ACSHyper (M, ) that is [-represented by (B, dSk) converges to (w, ). We apply the
characterization 2. form Lemma 2.3.5 and we find that

1 1

— B — ain QY (M — dBy) — n in Q*(M).
Bey e e D, g (B dBl) = i 7M)
(where, as in the Lemma, R is the Reeb vector field corresponding to («, n7)). Denoting
Bk by ai(R) - ay in the last limit we find that

A 1=

1
d—1 -

. doy) — h -
pi ig(ag A dag) —n, where fi 3R

(and conversely, since we can just set S = fik -a; ). Moreover, using again the identity
ap A dag = ag Adr(ag A dag),
we find the condition as written in the statement. O
Example 2.3.12. In R? consider the symplectic foliation
(F:=kerdz,w :=dz A dy).

One can then take the sequence of contact forms
d 1 d
ap =dz — —ydx
k ky

which has
k-aprndapy=dzrardy Andz =a A w,

hence the criterion from the previous lemma is satisfied choosing each f; to be a
constant function (d — 1-th rooth of k). Note that, for each d # 1 (or [) , the se-
quence [y, of contact forms with Iy(S) converging to the element in ACSHyper (M, )
represented by (F,w) depends on I- it is:

1
B = k™31 - ay.

A

Note that, as in the previous sections, there is a similar (and simpler) discussion
which, instead of sequences one uses smooth paths

[0,€) 2t — (&,w:) € ACSHyper(M, ).

To talk about smoothness one can, as mentioned above, make ACSHyper(M, ) into
an infinite dimensional manifold. Or, as in the previous section, just adopt the obvious
ad-hoc definition obtained by interpreting paths §; as sub-bundles ¢ of the pull-back
of TM by the projection pr: R x M — M and w; as a 2-form & on . Representing
(&, wy) by pairs (ay, ;) as discussed above, the analogue of Lemma 2.3.5 gives various
charaterizations of the smoothness of (ay,w;) for instance the analogue of condition
(2) would be a version of Lemma 2.2.2 that takes into account the 2-forms as well.
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Lemma 2.3.13. For any smooth path (s, wt)iefo,e) of I-sympectic hyperplanes, with
&o co-orientable, one can find l-representatives (g, m:) such that both «y and n; are

smooth paths (in QY(M) and Q?(M), respectively).

Of course, one has also a characterization similar to 4 from Lemma 2.3.5: if (o, w;)
are arbitrary [-representatives of (&,w;), with corresponding Reeb vector field Ry at
t =0, then

1 1

ts ——
at(RO)ah Oét(RO)d+l ZR(at N 77t)

t—

is smooth in t.

2.3.3 Going conformal; conformal convergence

With the rather negative conclusions from Proposition 2.3.8 in mind, let us start by
looking back at some of the positive results that we mentioned, on approximations of
foliations by contact structures.

Remark 2.3.14 (A brief look at the 3-dimensional case again). Let us briefly return
to the discussion of the 3-dimensional case from the end of the previous section
(subsection 2.2.4). First of all, the remark that each hyperplane field £ comes endowed
with a canonical non-degenerate 2-form Q¢ (see (2.2.4.4)) shows that, in this case,
there is yet another inclusion

I : Hyper(M) — ACSHyper(M,v*), & (& Q)

(for all hyperplane fields, not only contact ones!). Unlike the other canonical inclusion
(2.3.2.1), and in contrast with what happens in Proposition 2.3.8, the closure of the
image of this inclusion can give rise to foliations. Indeed, since the inclusion is defined
on all hyperplanes, and it is a topological embedding, the second component does not
bring anything new, i.e. we are simply looking at convergence of contact hyperplanes
to foliations.

In fact under the above inclusion convergence in Hyper(M) corresponds to conver-
gence in ACSHyper (M, v*), or more precisely:

Lemma 2.3.15. Given hyperplane fields &, & € Hyper(M) we have:

& — & if and only if  Io(&k) — Ia(E).

Proof. In this case [ is the d-th power functor with d = —1, see Equation 2.3.1.1. Write
& = ker o and let R be any vector fields such that a(R) = 1. Then (a,n := tgQ) is
an [-representative for I(€). Similarly, we find l-representatives (ag,nx) for In (&),
and observe that

o AW = ap A LR, )=,

from which it follows (using Lemma 2.3.5) that Iq (k) — Ia(§). A
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We see that the way to ”fix” the negative phenomenon from Proposition 2.3.8 is very
”cheap”: for contact structures & = ker «, instead of considering the obvious/most
natural non-degenerate 2-form de|e (and, in higher dimensions, the only available
one!), pick up a volume form and consider Q¢. How different are they? Well, being
in dimension 3, i.e. with ¢ being 2-dimensional, we can certainly write

Qg = fg . da|§

for some nowhere vanishing (or even strictly positive, under the appropriate orien-
tation conventions) smooth function fe. Therefore, one may say that the negative
phenomena from Corollary 2.3.8 can actually be fixed by working ”conformally”, i.e.
allowing to change da by multiplying by functions. And this is something that makes
a lot of sense in higher dimensions as well. A

Apart from the last remark we can also say that, by now, we have already seen
several manifestation of ”conformal factors”. Already the notion of representing pair
from Definition 2.3.1 is of a conformal nature. And similarly for the convergence
that was worked out in Lemma 2.3.11 (when [ # id). And, even when looking at
the convergence of just hyperplane fields, Theorem 2.2.13 already pointed out the
importance of the ”conformal factor”. All together, it should be clear now (in case
it wasn’t clear earlier!) what is the notion of convergence that is ”correct” (or at
least ”"most appropriate”) for our discussion on deforming contact structures into
symplectic foliations.

Definition 2.3.16. Given an ACS-hyperplane field (&,w) with w € Q2(¢,L), and a
sequence (£, wi) of ACS-hyperplane fields (with line bundles Ly ), one say that

(&g, wp) »~ (§,w)  (and one reads: conformally converges)

if there exist line bundle isomorphisms ¢y, : L, — L such that

(gka d)k S Wk) - (fa (.(.))
as ACS-hyperplane fields with fized coefficients L (i.e. in ACSHyper(M,L)).
Of course, this is a discussion that takes place at the level of ”conformal classes”. Let
us formalise this.

Definition 2.3.17. Two ACS-hyperplane fields (§;,w;), i = 1,2, are said to be con-
formally equivalent, and write

(glawl) ~ (527("}2)7

if there exists an isomorphism ¢ : Li = Lo between their coefficients such that
we = powi. We denote by [€,w] the resulting equivalence classes.

An equivalence class with respect to this equivalence relation is called an ACS-
structure on M, and the set of such structures is denoted ACS(M). Hence

ACS(M) = (U ACSHyper(M, L)) / ~.
L
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With this, v~ makes sense as a convergence defined on ACS(M) (still called confor-
mal convergence).

Remark 2.3.18. Although we do not find it particularly enlightening, it is nice
to know that ACS(M) admits a topology for which the corresponding convergence
is precisely conformal convergence. The basic opens are constructed out of opens
U < ACSHyper(M, L) (for each line bundle L), by defining

[U] :={[¢,w] € ACS(M) : ({,w) e U}.

One should be aware that, if one has an element u € ACS(M ), written as u = [£p, wo],
for u to belong to [U] it is not necessary that (wg, &) € U (it may even happen that
wo has coefficients Lo # L).

Putting all the ”opens” [U] together one obtains a topology basis, and then the
desired topology on ACS(M). A

Note that all the types of structures that we discussed in Remark 2.3.3 (all giving
rise to ACS-hyperplane fields) can now be seen inside ACS(M). Most notably, one
obtains:

e Cont(M) — ACS(M), & — [&, ce], with the remark that in dimension 3:
(€, ce] = [€, %]

e symplectic foliations or, more generally, conformal symplectic foliations (cf.
Definition 2.2.16) can be seen as ACS-structures on M.

In particular, this allows us to make sense of conformal approximation by contact:

Definition 2.3.19. We say that a (conformal) symplectic foliation (F,wx) can be
conformally approximated by contact structures if there is a sequence of contact
structures & conformally converging to (F,wx), i.e.

(gkﬁcik) A (]'—,LU]:).

Returning to general conformal classes and their convergence, it is clear that (at least
in the co-orientable case) one can pass to trivial coefficients, i.e. use representing
pairs (cf. Definition 2.3.1). Note also that, in the new terminology, given an ACS-
hyperplane field (¢, w), with w € Q2(€, L), a representing pair in the sense of Definition
2.3.1 is a pair

(a,m) € QL(M) x Q2(M)

with the property that
(67 OJ) ~ (047 77|ker 04)’

Hence, in principle, one can just use invoke Lemma 2.3.5 for d = 0 to check con-
vergence. Let us be a bit more explicit about the outcome in the case of contact
sequences.
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Lemma 2.3.20. Consider an ACS-hyperplane field (€, w) represented by a pair («,n)
as above, with corresponding R € X(M). Given a sequence of contact structures Ey,
the following are equivalent:

1. &, conformally converges to (§,w) (or (&, cep,) v (§,w)).

2. there exists a (or, equivalently, for any) sequence ap, — « with & = ker o, and
a sequence of nowhere vanishing smooth functions fi. such that

feir (o Adag) =1 (in QQ(M))

3. there exists a (or, equivalently, for any) sequence oy, — « with & = ker ay, and
a sequence of nowhere vanishing smooth functions fi. such that

fr-ap adag, > ann  (inQ3(M)).

Proof. As we mentioned, in principle we just apply Lemma 2.3.5 (for d = 0 and [
constant R); the convenient items are 4 and 5 since they allow for arbitrary choice of
ni. For each (&, ce, ) we choose a representative pair of type (8, dS); the problem
is that the By may not be the aj that will eventually converge to « (actually the S
may even ”explode”). Then items 4 and 5 of the lemma become:

4: there exists a (or, equivalently, for any) sequence oy, — « with & = ker ay,
such that
iR (Ozk AN dﬂk) —n (in QQ(M))

5: there exists a (or, equivalently, for any) sequence «y — a with & = ker ay,
such that
ap AdBr — aan  (in Q3(M)).

Writing now 8 = frag, we obtain the conditions from the statement. O

Working out the definition, from the previous discussions we deduce:

Corollary 2.3.21. A symplectic foliation (F,wx), represented by (a,n) (hence F =
ker o, wr = n|x), can be conformally approzimated by contact structures if and only
if there exists a sequence of contact forms ay and nowhere vanishing smooth functions
fr such that

ap > a, fr-agadag > aAn

(as 1-forms, and 2-forms, respectively).

Example 2.3.22. Again (as in Remark 2.3.7), while a condition of type aAnn, — aAn
is equivalent to ng|e — ¢ (§ = ker a), the condition fy - ax A dar — a A 1 should
be thought of (morally) as saying that

”dak|£k VNN 77|£77.
However (and again), this is not directly related to day|e v 1|¢, or more precisely,

gr-andag > aAn
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for some sequence of nonzero functions gx. For an example consider
(F :=kerdz,w := dz A dy),

(hence o = dz, n = dz A dy) and the sequence

oy = 1dac + e¥dz.
k
One has
fo-ap Adap =dx Ady Adz=a Andn, with f =ke™?

hence conformal convergence holds, but o A day, = 0, hence no multiple dag|+ can
converge to 7| x. A

Definition 2.3.23. We say that a (conformal) symplectic foliation (F,wx), repre-
sented by (a,m), can be naively approximated if there exists a sequence of contact
forms ay, and a sequence of nowhere vanishing smooth functions f such that:

ap —a, franday —ann (in Q(M)).

The conformal factors fj are essential, since by Proposition 2.3.8 the definition be-
comes vacuous if we additionally require fr = 1. Furthermore, the above condition
depends on the choice of contact forms, i.e. replacing oy by ap := gray does not
preserve it.

Example 2.3.24. In R3 consider (again) the symplectic foliation (F := kerdz,w :=
dz A dy). The sequence of contact forms

1
ap =dz + Emdy,

and the sequence of functions fj, := k satisfy:
fre-andag =ann,

hence (F,w) can be naively approximated by contact forms. This example might give
the wrong impression that the Reeb vector fields Ry of oy (or the induced linefields
(Ry) must converge to a vector field transverse to F. This is not true in general (see
Proposition 2.4.31), although it is true that for all k sufficiently large Ry, is transverse
both to F and ker o,. AN

This type of approximations are very special and impose severe restrictions on F.
Indeed, observe that for k sufficiently large day|# is non-degenerate (since w is) and
hence defines an exact symplectic form on F that can be extended to a globally closed
(even exact) form on M. In particular F is a taut foliation ( as in Definition 2.4.21).

Finally, note also that the discussion we had so far in this section has a rather obvious
version in which sequences are replaced by paths/deformations. For instance, a path
(&, wt) of ACS-hyperplane fields is said to be conformally smooth if, for each ¢,
there exists an isomorphism ¢; : Ly — L, such that ¢t — (&, ¢; o w;) is smooth.
Then, for a conformal symplectic foliation (F,wz), with some coefficients L, we say
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that (F,wz) can be conformally deformed into contact structures if one can find
a contact deformation & of F (smooth, as in Definition 2.2.1) and isomorphisms
¢. TM /& = L such that

t— (§t7¢t o Cgt)

is smooth in SGr(M, L). Again, this can be further simplified (similar to the last
Lemma) when the coefficients are all R.

And here it is worth having a look back at Theorem 2.2.13 and its proof: one remarks
right away that the argument there tells us something a bit more:

Corollary 2.3.25. If a foliation F admits a type I contact deformation (Definition
2.2.5) then there exists wr € Q*(M,TM/F) leafwise exact, making F into a confor-
mal symplectic foliation with the property that (F,wx) can be conformally deformed
into contact structures.

For the rest of this chapter we work with differential forms, and we use the following
convention:

From now on, unless explicitly stated otherwise,
when talking about almost CS-hyperplane fields,

convergence = conformal convergence

approximation = conformal approximation

as in Definition 2.3.19.

2.4 Comparison of the approximation types

In the previous section we introduced a generalization of confoliations, together with
several types of convergences and approximations. The aim of this section is to
provide ”isolating examples” for each type of approximation. That is, foliations
which can be approximated in the sense of one definition but not another.

2.4.1 Hyperplane fields and almost CS-hyperplane fields

We first compare the convergence (and approximation) of almost CS-hyperplane fields
(as elements of ACSHyper (M, 1)) to convergence of the underlying distributions (i.e.
as elements of Hyper(M)). Clearly, as was pointed out in Equation 2.3.1.3, con-
vergence as almost CS-hyperplane fields implies (by definition) convergence of the
underlying hyperplane fields. By Lemma 2.3.15 the converse also holds in dimension-
3, provided we consider v*-coefficients. If we pass to conformal convergence then the
claim holds with coefficients in any line bundle.

Going to higher dimensions, the situation is quite different. The first remark is that,
as was observed in the examples of Equation 2.2.4.3, there are many hyperplane fields,
in particular foliations, which do not admit any almost CS-structure. Thus (for these
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foliations) we cannot talk about being approximated by contact structures in the
space of almost CS-hyperplane fields.

The situation is not as bad as it looks however, we can still consider approximations in
Hyper(M), as in Definition 2.2.17. In fact, as observed in Remark 2.3.2, if a sequence
of contact structures £ converges (in Hyper(M)) to &, then the latter can be made
into an almost CS-hyperplane field. Clearly, the same argument holds for sequences
of almost CS-hyperplane fields (£, ws), but we repeat it here for later reference:

Lemma 2.4.1. Let & be a hyperplane field and (g, wr) a sequence of almost CS-
hyperplane fields such that & — & (in Hyper(M)). Then & admits an almost CS-
structure.

Proof. Let (&,wy) be a sequence of almost CS-hyperplane fields topologically con-
verging to a distribution &. Then, for k sufficiently large, there exists a line field
7 < T M, which is transverse to £ and &. This induces, isomorphisms

DT =TM ~§ @,

which in turn gives an isomorphism 7, : £ — &, which we think of as ”the projection
of £ onto & along 7”. Then, the pullback

w:i=m*wp e Q2(E, L),

defines an almost CS-structure on £. Observe that if w, is the (unique) extension of
wi whose kernel is 7, then

(2.4.1.1) W= wrle.
O

Remark 2.4.2. The proof actually shows the hypothesis of the lemma can be
weakened. Indeed, given a hyperplane field ¢ it suffices there exists an almost CS-
hyperplane field (§,w) and a line field 7 transverse both to ¢ and . Thus a distri-
bution ¢ which does not admit an almost CS-structure is ”far away” from the space
of almost CS-distributions. In the case of Example 2.2.4.3, being ”far away” means
that any contact structure on S' x S?” must, at some point, contain the line field
spanned by 0, . A

Remark 2.4.3. The above lemma does not say that a sequence of contact structures
& on M, converging in Hyper(M) to a foliation F, also (conformally) converges
in ACSHyper(M) to some almost CS-structure w on F. In Proposition 2.6.22, we
will see an example this situation. Moreover, the sequence of contact structures &
considered there, is C%-close to another sequence of contact structure ¢, which does
converge to an almost CS-structure on F. A

In light of this lemma, we can wonder if any distribution that can be approximated
by contact structures in Hyper(M) can be approximated by contact structures in
ACSHyper(M,1). The following discussion shows that the answer to this question
is negative in general. We introduce a class of submanifolds of manifolds endowed
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with an almost CS-hyperplane field, with the property that a sequence of almost CS-
hyperplane fields (£;,w) converging on the ambient manifold induces a converging
sequence on the submanifold. Therefore, the existence of such a submanifold en-
dowed with an almost CS-hyperplane field which cannot be approximated, gives an
obstruction to approximating the almost CS-hyperplane field on the ambient mani-
fold.

Definition 2.4.4. Let ({,w) be an almost CS-hyperplane field on M. A submanifold
N c M is called a almost CS-submanifold if the restriction

(Env:=&nTN, wy:=uwley),

defines an almost CS-hyperplane field on N.

We often consider a submanifold N < M that is already endowed with an almost CS-
hyperplane field (§,&). In this case, when we say that N is an almost CS-submanifold,
we mean that (£, @) = ({n,wn) where (En,wn) is as in the definition above.

One way of thinking about this definition is that given a manifold M, we have a

b2 99

map

{ submanifold N < M }x {almost CS—hyperplane} {distributions &v on N, with}
submanifo c .

fields (§,w) on M a 2-form wy € 0%(&n, L)

Of course, this is only well-defined if N is transverse to £. Fixing an almost CS-
hyperplane field (§,w) on M, a submanifold N is an almost CS-submanifold if the
resulting wy is nondegenerate.

The property of being an almost CS-submanifold is ”stable” in both arguments of
the above assignment. More precisely, if N ¢ (M, ¢, w) is an almost CS-submanifold,
then in particular it is transverse to £. But this is an open condition; if

N := ¢(N),

for a C'-small diffeomorphism ¢ : M — M, then N is also transverse to &. Moreover,
the induced distribution and 2-form ({3, ws;) are such that

(¢* (gjv)v d)*wﬁ) ) anda (va WN) )

are close in the compact-open topology on ACSHyper(M,[). Hence, ({7, w5) is an
almost CS-distribution.

Stability in the second argument follows from the following lemma, which says that
if we fix an almost CS-submanifold in the first argument, the above "map” is sequen-
tially continuous in the second argument (with respect to the compact-open topology
on ACSHyper(M,1)).

Lemma 2.4.5. Consider an almost CS-submanifold N < (M,&,w) with induced
almost CS-hyperplane field (§n,wn). Let (&g, wi), k € N, be a sequence of almost CS-
hyperplane fields converging to (§,w). Then, for k sufficiently large,

(Enp =& N TN, wn k= Wilen ) 5

defines a sequence of almost CS-hyperplane fields on N, converging to (n,wn).



2.4. COMPARISON OF THE APPROXIMATION TYPES 157

Proof. Choose representatives («,n) for (§,w). Then, applying Lemma 2.3.5 to find
l-representatives (g, ng) for (&, wy) satisfying

ap — «, Ne — 1.

The restriction (an := a|rn,nn = n|rN) represents ({n,wn ). Therefore, restricting
the above equation to N we find a sequence (an i, 7y k) representing (En k, wn k) and
satisfying the condition of Lemma 2.3.5, proving convergence. O

Remark 2.4.6. Observe that the above lemma also holds for paths of almost CS-
hyperplane fields (&, w;), t € (0,1] instead of sequences. Furthermore, if the path
is of type I or type II, then so is the induced path on the almost CS-submanifold
N. Similarly, if the sequence on M is conformally/naively converging then so is the
sequence on N. This can be used, for example, to show that almost CS-submanifolds
can form an obstruction to type I approximation by contact structures, see Corollary
2.4.8 below. A

Remark 2.4.7. Usually it is understood that by submanifold we mean embedded
submanifold. However, Definition 2.4.4 and Lemma 2.4.5 also make sense for im-
mersed submanifold, or even submanifolds with self-intersections. In fact, given an
almost CS-hyperplane field (£,w) on M, all we need to obstruct the existence of
approximations, is a map f : N — M such that (f*¢, f*w) defines an almost CS-
hyperplane field on N. In this case, suppose that (£, ws) is a sequence of almost CS-
hyperplane fields on M converging to (§ w). Then, essentially the same proof as that
of Lemma 2.4.5, shows that for k sufficiently large, (f*&, f*wk), defines a sequence
of almost CS-hyperplane fields on N converging to (f*¢, f*w).

Analogous to Corollary 2.4.8 below, this implies that the existence of such a map for
which (f*¢, f*w) cannot be approximated by contact structures, is an obstruction
for (£, w) to be approximated.

A

As stated before, the main use of Lemma 2.4.5, is that it provides obstructions for
an almost CS-foliation (F,w) to be approximable by contact structures.

Proposition 2.4.8. Consider an almost CS-submanifold (N,En,wn) € (M, €&, w). If
(En,wn) cannot be approximated by contact structures, then (§,w) cannot be approx-
imated by contact structures.

Combining this proposition with Theorem 2.2.21 we obtain the following corollary:
Corollary 2.4.9. If an almost CS-hyperplane field (&, w) contains
(Sl x S F = U {2} x $*,w:= wsz> ,
zeSt

as an almost CS-submanifold, then it cannot be approximated by contact structures.
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Foliations for which this corollary applies are plentiful. In fact, we will see in Section
2.5 that it takes quite a bit of work to find examples for which there exist different
obstructions to being approximable. For now we give some basic examples, more
elaborate constructions are given in Section 2.6.1.

Example 2.4.10. Let (M,wys) be a symplectic manifold. Then the symplectic
foliation

St xS%x M, F:= U{Z}XMXSQ,wzsz+wsz>,

z€eSt

cannot be approximated by contact structures. A

Slightly more generaly, let (M, Fas,wpr) be any almost CS-foliation. In this case, the
almost CS-foliation

(M X S2,.7:2= Fuar % 82,w =Wy +wS2),

cannot be approximated by contact structures. To see this recall the following lemma
from foliation theory:

Lemma 2.4.11. Let F be a coorientable foliation on a (closed) manifold M. Then
there exists a closed embedded loop S' < M transverse to F.

Proof. Choose a nowhere vanishing vector field X € X(M) transverse to F. The
flowlines of X define a 1-dimensional foliation Fx on M, whose leaves are transverse
to the leaves of F. If Fx has a leaf diffeomorphic to S! (i.e. when X has a periodic
orbit) we are done. If not all the leaves are non-compact and we proceed as follows.

Using the flow of X and compactness of M we can find a finite covering {U;};er of
M such that each Uj is a foliated chart for Fx isomorphic to D"~! x (—1,1) (where
dim M = n) and D"t x {0} is contained in a single leaf of F.

Fix a leaf of Fx, since it is non-compact it must intersect some chart U,, at least
twice. Thus we obtain an arc J transverse to JF, whose endpoints are contained in
D"t x {0} < U;,. In particular d.J is contained in a single leaf of F. This arc can
be completed inside U;, to obtain a closed transverse loop (see for example Lemma
3.3.7 in [23]). O

Choosing a closed transversal for Fj, it follows immediately that (F,w) admits
S! x S2, with the usual foliation, as an almost CS-submanifold. Thus Corollary 2.4.8
applies. It is not hard to see that the above arguments also work if, instead of S' x S2,
we use any any manifold M for which S! x M, with the obvious foliation, cannot be
approximated by contact structures. For example, we can use S! x S?”, for any n # 3,
as in Example 2.2.4.3.

Consider a distribution £ on a manifold M, and & a sequence of contact structures
converging to & in Hyper(M). Analogous to Lemma 2.4.5, we observe that if N ¢ M
is an (odd dimesnional) submanifold transverse to &, then for all k sufficiently large,

En, =& n TN,
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defines a sequence of distributions on N converging to {ny = & n T N. However,
unlike the situation in Lemma 2.4.5, in general the &y are not contact structures.
Hence almost CS-submanifolds do not necessarily obstruct convergence in Hyper (M).
We exploit this observation to show that approximation by contact structures in
Hyper(M) and ACSHyper(M) are not equivalent in higher dimensions:

Proposition 2.4.12. There exist almost CS-foliations which can be approximated by
contact structures in Hyper(M) but not in ACSHyper(M).

Proof. Let F be a foliation on M, with dim M = 2n + 1 > 7, which can be topologi-
cally approximated by contact structures. By Lemma 2.4.1 there exists an almost CS-
structure w on F. As explained in Lemma 2.4.13 below, it is possible change w to
another almost CS-structure & on F, so that (F,&) admits S* x S2, with the usual
symplectic foliation, as an almost CS-submanifold. Hence, by Proposition 2.4.8 and
Theorem 2.2.21, (F, &) cannot be approximated by contact structures. However, since
we did not change the foliation F, it can still be topologically approximated. O

Lemma 2.4.13. Let (F,w) be an almost CS-foliation on a manifold M of dimen-
sion 2n + 1 = 7. Then there exists an almost CS-structure ' on F which admits
an almost CS-submanifold S* x S2. Moreover, w' is homotopic (through almost CS-
structures on F) to w and agrees with w outside a small neighborhood of S* x S2.

Proof. Fix an embedded S' transverse to F, as in Lemma 2.4.11. There exists a
tubular neighborhood S' x D?"® — M on which

F=|J{z x D™,

z€eSt

since the restriction T F|g: is the trivial bundle. We start by making w symplectic on
a small neighborhood of S' x {0}. By a (linear) change of coordinates we can assume
that w agrees with the standard symplectic form

Wet 1= Z da; A dy; € Qz(D2),
i=1

at points (z,0) € St x D?". For € > 0 let D? := {x € R*" | ||z|| < ¢}, denote the disk

of radius €. Choose a function p. : R?" — [0, 1] satisfying:

supp(pe) © D2, pelp2, = 1.

/2

For € > 0 small enough,
W= (1 — p)w + pwe € QX(S' x D),

is a leafwise symplectic form around S! x {0} and homotopic through almost CS-forms
to w. From now on we assume, without loss of generality, that w = wg; on the entire
St x D?",
Next, we construct a suitable embedding of S' x S%. Since 2n + 1 > 7 we have an
embedding:

82 = {$%+ZL’§+IE§ = 17y1 = Y2 = Y3 IO} CDQn.
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Note that the restriction w|sz = 0 and that the normal bundle vg: ~ S? x R?"~2 is
trivial. Denote by wg2 the standard area form on S? and let p. : R?"~2 — [0,1] as
above. Then for € small enough

W= w + epwsz,

is an almost CS-form which is leafwise symplectic when restricted to S* x §2 < S! x
D?" and homotopic to w through almost CS-forms. O

Consider a foliation F on a manifold M with dimM = 2n + 1 > 7 which can
be approximated by contact structures in Hyper(M). Then, by the result above,
there exists at least one almost CS-structure w on F for which (F,w) cannot be
approximated by contact structures in ACSHyper(M). However, it is still possible
that (F, @) is approximable for a different choice of almost CS-structure @.

In Proposition 2.6.22 below, we given an example of the dual situation, i.e. we give
a sequence of contact structures converging to a foliation F (in Hyper(M)), but not
converging to any almost CS-structure on F.

2.4.2 Almost CS-hyperplane fields and Type I

Next, we compare approximation in ACSHyper(M,[) to approximation of type I in
Hyper(M). Recall from Theorem 2.2.13 that a foliation F has a type I deformation
into contact structures if and only if it admits an exact leafwise CS-structure. Further-
more, by Corollary 2.3.25, if this happens then the CS-structure can be conformally
deformed (in ACSHyper(M, (T M/F))) to contact structures.

In dimension-3 there is another characterization of type I deformations:

Proposition 2.4.14 ([17]). If F is a foliation on a (compact) 3-manifold M for
which either of the following hold:

(i) F has a closed leaf with trivial linear holonomy;
(ii) F can be defined by a closed 1-form;

(i1i) F has no holonomy.

Then, F does not admit a type I deformation (Definition 2.2.5) into contact struc-
tures.

Thus, not any foliation which can be deformed into contact structures in Hyper (M)
admits a type I deformation. For example, consider the foliation

<S1 x T%, F := U {z} x T2> .

zeSt

By Theorem 2.2.21, F can be approximated by contact structures. However, F
satisfies all the hypothesis of the proposition above, so it does not admit a type
I approximation. It turns out that these conditions are, in dimension 3, the only
obstructions to being type I approximable.
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Theorem 2.4.15 ([47]). Let F be a foliation on a 3-manifold M such that F has
holonomy, and each of its closed leaves has a curve with non-trivial linear holonomy.
Then F can be linearly approximated by contact structures.

Using Theorem 2.2.13, the obstructions from Proposition 2.4.14 can be translated to
higher dimensions. Roughly speaking, the idea is that if F can be type I approxi-
mated by contact structures, we can construct an almost CS-submanifold of the exact
leafwise CS-structure given by Theorem 2.2.13. By Remark 2.4.6 this means we ob-
tain a type I deformation on the almost CS-submanifold. Repeatedly applying this
procedure, relates the high-dimensional approximation to the 3-dimensional case.

The construction of the required almost CS-submanifold is based on Donaldson tech-
niques from [34, 67]. If oy, t € (0,1] is a type I path of contact forms converging
to F, then we can produce an almost CS-submanifold for each ;. Using that oy
converges, we can show that these almost CS-submanifolds, for ¢ sufficiently small,
are also almost CS-submanifolds for the exact leafwise CS-structure on F given by
Theorem 2.2.13. The precise statement is as follows:

Theorem 2.4.16. Let F be a foliation on M with modular class [v] € H*(F), as
in Definition 1.7.16, and d,8 any exact leafwise CS-structure, as in Theorem 2.2.13.
Then, there exists a codimension-2 closed almost CS-submanifold, as in Definition
2.4.4 intersecting all the leaves of F.

Proof. Let d, 3 for B € QY(M) be the leafwise CS-structure on F which we assume
to exists. By Theorem 2.2.13 there exists a type I path of contact forms «y, t € (0,1]
conformally converging (in ACSHyper(M)) to (F,d,B). The idea of the proof is
to apply the theorem for existence of codimension-2 contact submanifolds from [67],
to the sequence «;, := a4, where t, € [0,1], n € N is such that ¢, — 0 for n —
0. We briefly recall the argument. First, we first fix a compatible almost complex
structure J, for the symplectic vector bundle (&, := ker ay,,de,). This defines a
global Riemannian metric g, := da(-, J-) + ap ® a,. Then we define the topologically
trivial bundle L := M x C with non-trivial connection form V := d — ia. Define
Qo = kan, k €N, gpp := kgn and (Ly, := L®% V}, := d —iay,). Observe that
there is a splitting V., = 0 + 0 into complex linear and complex anti-linear part,
since for any section s € I'(Ly) the map Vi s is a linear map between complex
vector spaces. We have a notion of assymptotic holomorphic sequence of sections
Sk.n € I'(Ly) defined by the following set of conditions:

lsknll C, ([ Vipsenll <C, IVt 0sknll < k7V2C, r=1,2,3.

Here, C' > 0 is a constant that is independent of k. However note that in principle
C could depend on n. In the previous expression the norms of the higher order
derivatives are measured with respect to the norm associated to g, in the source.
Furthermore there is a notion of e-transversality that reads as follows. A section
s € I'(Ly) is said to be e-transverse to zero along &, at p € M if at least one of the
following two conditions is fulfilled:

Is@)ll > & I(Vin

sl > e
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The main result in [67] states that there is a assympotic holomorphic sequence of
sections s, that are e-transverse to &, over the whole manifold. Moreover, € does
not depend on k. This immediately implies that the zero set Z(sg,) is smooth,
transverse to &, with a minimum angle 6} ,, depending only on € and C, and such
that &, N TZ(sy ) is a contact distribution on Z (s ).

What we want to show is that Z(sy,,) is transverse to the limit foliation F with a
minimum angle ékn that does not depend on k& and n. Observe that ék,n = Op.n/2
for n large enough. This is because by the triangle inequality ékm = Ok n — 1n Where
7, is the angle between &, and F and 1, — 0 for n — 0. Hence it suffices to show
that 6, > 0 for some 6§ > 0. Observe that the angle ) ,, at a given point depends
linearly on ||Vesg,n|| and ||V g, skn||~' where Ry, is the Reeb vector field of ay .
Furthermore we have [|Vg, .|| <||Vin|| < C. Hence,

_ WVesiall =

Gk = C—
" VR skl T CT

for a universal constant c. The standard arguments in [34, 67] show that € and C are
independent of k. From a careful reading of the proofs it is clear that € and C are
bounded by the following:

(i) The topology of M. In particular, the minimum number of Darboux charts
needed to cover the manifold.

(ii) The amount of integrability of the distribution §,,, measured by ||a, A da/?||.
The smaller this quantity the better.

(iii) The natural extension Jy, of J,, to the symplectization R x M by the formula:

In(Mo + MRy + V) := M0 — MRy + )V,

where A\g, A\ € C®(R x M) and V € TM. In particular, it depends continuously
on the choice of J,.

We now check that these properties are independent of n. By Gray stability all
the contact structures &, are contactomorphic, so the minimum number of Darboux
charts needed to cover M is independent of n. The second property is clearly satisfied
since &, converges to a foliation for n — 0.

To check the third property recall that by Theorem 2.2.13 convergence of a; = a+tf
to F = ker a is equivalent to conformal convergence of (§;, dey) to (F,d, ). This just
means that there exist extensions w; of day|e, conformally converging to d, 5 along F.
Compatibility of J does not depends on the choice of representative of the conformal
class. Hence, we find a family J;, t € [0,1] of compatible complex structures and
in particular J, := J;_ is a sequence inside a compact set and so converges to J.
Similarly, the Reeb vector field R; of a; is linearly interpolating between the Reeb
vector field of o; and kerd, 3. Hence, by the same argument as before R,, converges
to Ry. This means that J, converges so that (for n big enough) the contribution
of the third property is independent of n. Therefore, the divisor is transverse to the
limit foliation F. O
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Consider a foliation F on M that can be type I approximated by contact structures.
Combining Theorem 2.2.13 and Theorem 2.4.16 we find an almost CS-submanifold
N for F with the induced CS-structure. In particular N is transverse to F, and we
denote the resulting foliation by

Fn:i=FnTN.

Together with Lemma 2.4.5 and Remark 2.4.6, it follows that Fx admits a type I
deformation into contact structures.

On the other hand, observe that if 7 can be defined by a closed 1-form, or has
no holonomy, then so does Fy. Similarly, if F has a closed leaf with trivial linear
holonomy then so does Fp, provided that N intersects all the leaves of F. We
conclude that if F satisfies any of the conditions in Proposition 2.4.14, but can be type
I approximated, then we find a foliation on a 3-manifold contradicting Proposition
2.4.14.

Corollary 2.4.17. The statement of Proposition 2.4.14 holds in any dimension.

Example 2.4.18. Recall from Chapter 1 that there exists a SF-deformation (v, wy),
t € [0,1], as in Definition 1.8.1, between the standard contact structure on S° and
the symplectic foliation (F,w) constructed in Theorem 1.9.1. Moreover, the path of
1-forms «; is of type I as in Definition 2.2.5). However, the compact leaf of F has
trivial linear holonomy since it is obtained by gluing two foliated manifolds with tame
boundaries. Therefore, Corollary 2.4.17 that (F,w) cannot be type I approximated
by contact structures. A

Using Theorem 2.2.13, the above discussion also implies:

Corollary 2.4.19. If a foliation F, with modular class [v] € H'(F), satisfies any of
the conditions of Proposition 2.4.14 (in particular M is compact), then it does not
admit admit a d,-ezact leafwise CS-structure.

Recall that an almost CS-hyperplane field is a ”formal CS-foliation” in the sense that
it forgets about the ”differential conditions” in the Definition 2.2.16. This makes sense
more generally for any geometric structure that can be defined as the solution of a
(partial) differential equation, see Chapter 3. Clearly, in this situation, the existence
of the formal data is a necessary condition for the existence of an honest solution. If
the converse holds, i.e. if out of the formal data we can build the structure, we say
that the structure satisfies the h-principle. As a consequence of Theorem 2.2.13, the
h-principle for CS-foliations does not hold in full generality:

Corollary 2.4.20. The h-principle for CSfoliations does not hold.

Proof. Analogously to the h-principle for symplectic structures [43], a formal CS-
foliation consists of an almost CS-foliation (F,w) together with a cohomology class
c € H2(F). Given this data there should exist a leafwise CS-structure & on F such
that [&] = ¢ € H2(F). However, if F does not admit a type I deformation into contact
structures, then, by Theorem 2.2.13, the class 0 € H?(n(F)) cannot be represented by
CS-structures. Hence, any foliation which cannot be type I approximated by contact
structures does not satisfy the h-principle. O
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2.4.3 Type I and naive approximation

Recall from Corollary 2.3.25 that if a foliation F admits a type I deformation into
contact structures, then it can be conformally approximated (for some carefully cho-
sen 2-form on the leaves). In this section we consider the relationship between naive
and type I approximations. We will see that the former implies the latter, but not
conversely.

Recall that a foliation F on M is called taut, if there exist an embedded loop S < M
transverse to F and intersecting all the leaves. As shown by Sullivan [102], this is
equivalent to the following definition:

Definition 2.4.21. A foliation F on M?"*! is taut if there exists a globally closed
form Q € Q**(M) which restricts to a volume form on the leaves of F.

Taut foliations are mostly studied in dimension-3 where the above definition says there
should exist a globally closed 2-form w € Q2(M) which is symplectic on the leaves
of F. Hence, in higher dimensions we also consider the following more restrictive
notion.

Definition 2.4.22. A foliation F on M?"*! is said to be strong symplectic if there
exists a globally closed form w € Q?(M) which restricts to a symplectic form on the
leaves of F.

Clearly strong symplectic foliations are taut but the converse need not be true. Fur-
thermore, by Lemma 1.7.23, a strong symplectic foliation together with a globally
closed 2-form (F,w) is a tame symplectic foliation in the sense of Definition 1.7.22.

Lemma 2.4.23. If an almost CS-foliation (F,w) can be naively approzimated by
contact structures, as in Definition 2.8.23. Then F is a strong exact symplectic
foliation.

Proof. Choose a representing pair («, n) for (F,w), and let oy, be a sequence of contact
forms satisfying (as in Definition 2.3.23)

ap — a,  frandap > a A,

for a sequence of positive functions f;. Being non-degenerate on F, is an open
condition in the space of leafwise 2-forms Q2(F). Hence, the convergence in the
above equation implies that, for k sufficiently large, day|x defines an exact leafwise
symplectic form. O

Clearly, these necessary conditions are extremely restrictive. By the following propo-
sition, they imply that F admits a type I deformation into contact structures. Hence,
together with Example 2.2.12 this means that being naively approximable is strictly
stronger condition than being type I approximable.

Proposition 2.4.24. If a conformal symplectic foliation (F,w) can be naively ap-
prozimated as in Definition 2.3.23, then it can be type I approximated by contact
structures, as in Definition 2.2.5.



2.4. COMPARISON OF THE APPROXIMATION TYPES 165

The proof follows directly from the following lemma:

Lemma 2.4.25. Let oy be a sequence of contact forms naively approximating a
conformal symplectic foliation (F = ker~y,w) as in Definition 2.3.23. Then, for any
k sufficiently large,

oy 1=y + tag,

is a type I deformation (Definition 2.2.5) of F into contact structures.

Proof. We choose a representing pair (y,7n) for (F,w), and denote the associated
Reeb vector field by R. Since a4 naively approximates (F,w), it follows that for all k
sufficiently large the associated Reeb vector field Ry is transverse to F, and can thus
be expressed as:
Ry = frR+ Vj,
for positive functions f; and Vj € ker a. Note that
1
L Rk. = —.
(R) I

If we multiply a4 by positive constants ¢, the resulting sequence still naively approx-
imates (F,w). Hence, since M is compact, we can assume that fj > € for a universal
€ > 0. Now consider the path

ap =7 +tag, te[0,1],
for which the contact condition equals
o Adal =t" (y Adaf + naady Adap™h) + " oy, A day.

For ¢ small enough the first term dominates, provided it is nonzero. By assumption

v A daj > 0 for large k. Hence, to show that oy is contact it suffices to show that

v A daj dominates noy A dy A dazfl. This condition can be checked pointwise,

and at points where dy = 0 it clearly holds. Hence, we can assume dv # 0 so that
rankdy = 2. Choose a basis R, Xi x, Y1k, ..., Xnk, Yn,r satisfying

(i) »(R) = 1;

(i) X1k, Y1 ks, Xk, Yo, € F are a sympletic basis for dag|r;

(i) dy(R,X1%) =1 and kerdy =<{Xo,..., Yo k-

Furthermore there exist €; x,d;xk € R, ¢ = 1,...,n such that )N(Zk = X +e&,R and

~

Yir =Y+ 0; xR form a basis of £;. Then we have
yAadap(R, X1k, Ynr) =1
On the other hand
ap Ady A daz_l(R, Xy Y1) = g Ady A dag_l(R, )Z'l, .. ,17")
= ap(R)dy (X1 g, Vig)day ' (Xa,.... V)

01,k

fr
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Since §, converges to F in Hyper (M), we must have 1, — 0 for & — co. Further-
more, fr, > 0 so that for k large enough v A daj! » ai A daZ_l A dB, showing that
«; 18 contact. O

2.4.3.1 Examples of naive convergence

To construct examples of foliations that can be naively approximated by contact
structures, we need to consider manifolds that admit both a taut foliation and a
contact structure. A class of manifolds which meet these criteria are those that
admit a conformally Anosov flow, see [17, 88], and satisfy an additional symmetry
condition.

Definition 2.4.26. Let (M,g) be a 3-dimensional Riemannian manifold and ¢,
t € R, the flow of a vector field X € X(M). Then ¢; is said to be:

(i) Anosov if there exists a splitting
TM =E;L ®@E_®(X),
and a constant C > 0 satisfying:
lldde ()l = e loxll,  [ldee(v-)]] < e oI,
for allvy € Ey.

(ii) Conformally Anosov if there exists a splitting as above, and a constant C > 0
satisfying:

Hd(i)t(er)H >€Ct||v+||
[|dps (v-)]| o[’

for any non-zero vectors vy € Ey.

(2.4.3.1)

The definition of an Anosov flow means that flowing along X contracts the £_ and
expands F, direction. A conformally Anosov flow generalizes this definition by re-
quiring the flow to contract £_ and expand F, only after it has been normalized to
have determinant 1 (with respect to the Riemannian metric).

In both cases, the splitting defines two foliations,
Fy :=(X,Ey)cTM,

called the stable and unstable foliations. The following proposition shows that a
conformally Anosov flow is completely determined by these foliations. Hence, such
flows can be equivalently described by a pair of differential forms:

Proposition 2.4.27 ([17]). Let X be a vector fields on M3 whose flow is conformally
Anosov, with stable and unstable foliations Fy. Then there exist differential forms
ay € QY (M) such that Fy = ker a4 and

ar Ada_ +a_ Adag > 0.
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Conversely, suppose oy satisfy the above condition, and define foliations Fy :=
keray.. Then, any non-vanishing vector field X € Fy n F_ defines a conformally
Anosov flow.

For the application we have in mind we are interested in such pairs satisfying an
additional symmetry property:

Definition 2.4.28. A conformally Anosov pair on M3, consists of 1-forms o
and a_, such that Fy := ker ay are foliations and

(2.4.3.2) oy Ada_ +a_ Adag > 0.

A conformally Anosov pair (g, a_) is called symmetric if (in addition to the above
conditions)
ar Anda_ >0, a_ Adag >0.

Observe that associated to any symmetric Anosov pair (a4, «_) we have a positive
function f e C*(M) defined by

ay nda_ = fa_ Aday.

Given a conformally Anosov pair, both the induced foliations F := ker a4 admit a
type I deformation into contact structures. In fact, they can be connected through a
path contact structures:

Proposition 2.4.29 ([17]). If («, 5) is a conformally Anosov pair, then F and G are
transversal and for all t € (0,7) different from 7w/2 the form

oy := cos(t)a + sin(t) 3,
defines a contact structure which is positive for t € (0,7/2) and negative for t €

(m/2,7).

In general the above family does not produce a naive approximation of Fi. For
example, consider T3(z, vy, 2) endowed with the conformally Anosov pair

ay :=dz + cos(z)dr, a_ :=dz+ sin(z)dy.

Then, neither F, nor F_ can be naively approximated, by Lemma 2.4.23. Indeed,
both foliations contain a leaf T2 which does not admit an exact symplectic form.

Observe that starting with a symmetric Anosov pair, both foliations F, and F_ are
taut and admit leafwise exact symplectic forms. Hence there is no obstruction to
naive approximation, in fact we have:

Proposition 2.4.30. Let (a4, a_) be a symmetric Anosov pair, then the symplectic
foliations

(Fyi=keray,wy :==da_|z,) and (F-:=kera_,w_:=day|r ),

can be naively approzimated by contact structures (as in Definition 2.5.23).
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Proof. We prove the statement for (F.,wy). Since (a4, a_) is symmetric there exists
a positive function f € C*®(M) be such that

ay Ada_ = fa_ Adag.
Then, the linear path of contact forms oy := a + ta_ satisfies
1
a A day =t(1 + ?)oz+ A da_,

showing that Definition 2.3.23 is satisfied. O
As an application of this proposition the following family of foliations can be naively
approximated.

Proposition 2.4.31. Let X, be a Riemann surface of genus g = 2. Then, the unit

cotangent bundle ST*X, admits a symmetric Anosov pair.

Proof. The Lie algebra (2,R) of the projective special linear group PSL(2,R) :=
SL(2,R)/{+1}, has an (oriented) basis

0 0 0 1 10
i (8 0) xe= (0 o) m= (g 0)

satisfying the relations [X;, X2] = R,[R, X1] = —2X; and [R, X2] = 2X5. Identi-
fying elements of the dual (2,R)* with left invariant forms on PSL(2,R) the above
relations imply that the dual basis 61, 05, «, satisfy

d91 =2a A 017 d02 = —2a A 02, da = 91 A 02.

Therefore, a is a contact form with Reeb vector field R and 6, and 65 define foliations.
In fact,
01/\d92:92Ad91:291A92AO{,

so (61, 62) is a symmetric Anosov pair.

We claim that PSL(2,R) is the total space of the unit cotangent bundle ST*X,
for ¢ = 2. Consider the uppper half plane H := {z + iy | y >} with the standard
hyperbolic metric. The action of PSL(2,R) on H given by

a b az+b
+ = :
_(C d) T td

identifies PSL(2,R) with the group of isometries of H. Since, + <\6§ T?I/Ag) g =

x + 1y, the action is transitive and the stabilizer of i is given by

Kom {a (€00 —simB) ol
sinf  cos@
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Hence, H can be identified with the left coset space PSL(2,R)/K and the action
by isometries on H corresponds to left multiplication on PSL(2,R)/K. Note that

setting
a b
A._{Jr(o 1/(1)a>0}7

this is just the Iwasawa decomposition PSL(2,R) ~ K x A, stating that any g €
PSL(2,R) can be uniquely written as g = ka with k£ € K and a € A. By the
uniformization theorem the universal cover ig is isomorphic to H and I' := 71 (Z)
act by isometries of H so can be identified with a subgroup of PSL(2,R). Hence,
Y, = I'\H and since H ~ PSL(2, R)/K we have

Hence, the quotient map
m:I\PSL(2,R) - I"\PSL(2,R)/K =3,

is a circle bundle over ,. Since the forms 61, 6, v € Q' (PSL(2,R)) are left invariant
they descend to a symmetric Anosov pair and a contact form on I'\PSL(2,R). It
remains to be shown that this bundle is the unit cotangent bundle ST*X,. Note that
the Reeb vector field R of « is tangent to K and so the bundle has Legendrian fibers.
As shown by Lutz [77] this implies that = : IN\PSL(2,R) — X, is the unit cotangent
bundle. O

2.5 An obstruction to conformal approximation

In this section we consider obstructions for a (conformal) symplectic foliation to
be approximated by contact structures in ACSHyper(M). We have seen that in
dimension three, by Theorem 2.2.21, only S' x S? with the product foliation can-
not be approximated in this sense. As shown in Proposition 2.4.8 and Corollary
2.4.9, this obstruction propagates to higher dimensions using the notion of almost CS-
submanifold from Definition 2.4.4. In fact, as illustrated by the examples in Section
2.6.1, in higher dimensions are many (conformal) symplectic foliations containing an
almost CS-submanifold isomorphic to S x S2.

In light of these examples we ask if almost CS-submanifolds form the only obstruction
to approximation. That is, if a CS-foliation cannot be approximated by contact
structures, does it contain an almost CS-submanifold whose induced foliation cannot
be approximated? The goal of this section is to proof the following result, showing
that the answer to this question is negative:

Theorem. There exists a CS-foliation (Definition 2.2.16) (F,w) on S* x T? that
does not contain any almost CS-submanifolds isomorphic to S* x S%, and cannot be
conformally approzimated by contact structures in ACSHyper(M).

The proof combines two results about loops of contactomorphisms. In Section 2.5.1
we recall the definition of a contact fibration, i.e. fibrations whose fibers consists of
contact manifolds. Analogous to the usual clutching construction for fibrations over
spheres, contact fibrations over S? correspond to loops in the space of contactomor-
phisms of the fiber. We will see that the total space of the fibration admits a contact
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structure if and only if the corresponding loop is ”positive” ( Definition 2.5.12). As
shown in [46] contact structures which do not admit (contractible) positive loops are
special in the sense that the associated group of contactomorphisms amits a partial
order.

In Section 2.5.2 we show (closely following the arguments from [29]) that some con-
tact manifolds do not admit any positive loop. Hence, there exist contact fibrations
whose total space does not admit any contact structure.

Then, in Section 2.5.3 we construct a CS-foliation (F,w) on T? x S3, with the prop-
erty that any contact structure close to it, in the space of almost CS-hyperplane fields
with the compact-open topology, would induce a contact fibration over S2, whose to-
tal space is (automatically) contact. However, we show that the (contact) fiber of
this contact fibration does not admit any positive loop, implying that (F,w) cannot
be approximated.

2.5.1 Contact fibrations

We recall here the definition and some of the basic properties of contact fibrations,
as introduced in [75]. Given a smooth fibration, 7 : M — B we denote by

T"M :=kerdr < TM,

the associated vertical bundle. Note that this is just the leafwise tangent bundle
TF of the foliation F of M by the fibers of w. If each of the leaves is endowed with
a contact structure, smoothly varying in the base coordinate, then 7 is a contact
fibration.

Definition 2.5.1. A contact fibration consists of a locally trivial fibration 7 : M —
B and a (codimension-1) distribution £&¥ < TV M of the vertical bundle such that, for
each b e B,

& =&, © T My,

defines a contact structure on the fiber M,.

As usual, we say that 7 : (M, &) — B, is orientable/oriented if each &, is orientable
on My, or equivalently, if the line bundle T M /§™u is orientable/oriented. Note that
if # : M — B is a fibration with oriented total space and base, then there is a
canonical orientation induced on the fibers. Indeed, this is the orientation making
the local trivializations ¢y : M|y — U x F orientation preserving with respect to the
product orientation. For an oriented contact fibration we assume that this orientation
agrees with the one induced by &;.

The notion of isomorphism for such fibrations is the obvious one:

Definition 2.5.2. An isomorphism of contact fibrations ¢ : (M,&") — (N, (")
is a diffeomorphism ¢ : M —> N, preserving the fibers and sending £ to (V. If the
contact fibrations are oriented, then we assume ¢ to be orientation preserving.

It is always possible to extend £” to a (codimension-1) distribution & < T'M. This
extension is not unique and does not necessarily define a contact structure on M.
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Definition 2.5.3. A full contact fibration 7 : (M,£) — B, consists of a fibration
m: M — B together with a (codimension-1) distribution & € TM, such that

& =nTVM,
defines a contact fibration in the sense of Definition 2.5.1. Moreover, we say 7 :

(M, &) > B is:

e non-negative: if £ is cooriented, and for any o € Q1 (M) such that £ = ker a,
and inducing the correct orientation on TM /¢, we have

aAda™ = 0.

e positive: if £ is a cooriented contact structure on M. That is, for a € QY(M)
as above, we have
a A da™ > 0.

Note that given an extension £ of £, there is a canonical isomorphism of line bundles
TM/¢ ~T"YM/€. Hence, the underlying contact fibration of a positive/non-negative
contact fibration is always oriented.

Definition 2.5.4. An isomorphism of full contact fibrations ¢ : (M,£) —
(N, ) is an isomorphism ¢ as in Definition 2.5.2, which additionally sends & to (,
preserving the coorientations.

If ¢ is part of a full contact fibration, then the usual curvature form c¢ € Q%(&, TM/€),
defined on sections by

ce(X,Y):=[X,Y]mod¢, X,Y eT(f),
is non-degenerate when restricted to £”. Therefore,
Him () c e,
is a horizontal distribution, so that it defines a canonical connection on 7 : M — B.

Proposition 2.5.5 ([75, 98]). Let w: (M,§) — B be a full contact fibration. Then,
H= ()" g,

defines an (Ehresmann) connection whose parallel transport is by contactomorphisms.
Moreover, if £ is co-oriented the parallel transport is coorientation preserving.

Proof. Since the construction is local, we can assume without loss of generality that
¢ = ker a for some o € Q(M). Since « is unique up to a (positive) conformal factor,
so is da|¢ implying that

Hi= (€)1 g,

depends only on £. Since £” defines contact structures on the fibers of m, it follows
that daev is non-degenerate, so we have

§=¢"OH.
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Furthermore, since £&¥ = £ n TV M, we have that H is horizontal, and defines a
connection.

To see that parallel transport is by contactomorphism let X# € X(M) denote the
horizontal lift of a vector field X € X(B) and & = ker o, where o := a|rv . Then
for any Y € I'(£”) we have

(Lx#a”)(Y) = 1y (tx#da” + d(a”(X7))) = do”(X*,Y) = 0,

using that X# € H and H = (£7)?. This implies that £yx#a” = fa¥ for a nowhere
vanishing function f : M — R. Since parallel transport depends continuously on the
endpoint of the path in the base, it follows that it preserves coorientation. O

Let 7 : (M, &) — B be a full contact fibration. The parallel transport of the canonical
connection H, allows us to find local trivializations of 7 : M — B which put £ in
normal form. To define the local model let (F?"~1 ¢r := ker ar) be a (cooriented)
contact manifold, playing the role of the fiber. Furthermore, let H € C®(F xD?) be a
smooth function which is of order 72 at r = 0, where (r,6). denote polar coordinates
on D?. More precisely, this means there exists a smooth function g € C®(F x D?)
such that
H =r?yg.

Using this data define the contact manifold
(2.5.1.1) MFap ) = (F x D? € :=ker(a := ap + Hdb)),

which together with the obvious projection 7 : F x D? — D?, defines a full contact
fibration referred to as the local model associated to (F,ap, H). Observe that the
contact condition for o equals:

anda” :=0,Hap A da}ffl Adr A do.

Hence, M(F,ap,H) is a positive/non-negative contact fibration, as in Definition
2.5.3, if ¢, H is positive/non-negative.

Lemma 2.5.6. Let 7 : (M, &) — D? be a full contact fibration. Denote by (Fy, &y :=
ker ag) the fiber of over 0 € D?. Then, there exists an isomorphism of full contact
fibrations

¢ : (M7 5) - M(F[),DL(),H))
where H € C®(D? x Fy) is uniquely determined by &. Moreover, if & is non-negative
or positive, then so is 0. H .

Proof. Choose a contact form « for £&. Let o € Q1 (M) be a contact form representing
¢, and let Fy := 771(0) denote the fiber over 0 € D?. Using the canonical contact
connection ‘H from Proposition 2.5.5, we obtain a trivialization of F,

Using the parallel transport over radial paths in D?, of the canonical contact connec-
tion H from Proposition 2.5.5, we obtain a trivialization ® : D? x FF = M. More
precisely, let ¢g, .y : Mo = M, 9y be the parallel transport of H, over the path

Yo : I —-D? ts (t,60).



2.5. AN OBSTRUCTION TO CONFORMAL APPROXIMATION 173

Then, the trivialization is defined by:
®:D*x F— M, (r,0,z)— ¢g,(z).

The parallel transport of H is coorientation preserving. It follows that in this trivi-
alization we can write:
a =elag + gdr + hr?de,

for some functions f,g,h € C*(D? x F,). Furthermore, since the velocity vector of
¢ is equal to 0, the parallel transport ¢,y equals the flow of the horizontal lift of
0r. Hence, since H is contained in the kernel of «, in the trivialization ¢, must be in
the kernel of o, implying that g = 0. If we define, H := e~7hr?, then we have

a = el (ap + Hdb),
concluding the proof. O
Recall that given a contact manifold (M, &) and a choice of contact form o € (M)

for £, there is a one-to-one correspondence between (time dependent) contact vector
fields X; € X(M), and 1-parameter families of function H; € C®(M).

Lemma 2.5.7. [52] Let o € QY (M) be a contact form representing a contact structure
&, and R € X(M) the associated Reeb vector field. Then, for (time dependent) contact
vector fields X; € X(M) and 1-parameter families of functions Hy € C* (M), the
assignments

o X;— Hy:=a(Xy);
e H, — X, uniquely defined by:
Ol(Xt) = Ht, LXtdO[ = dHt(R)Oé - dHt,

define a one-to-one correspondence. We say that X; is the Hamiltonian vector
field of H;.

The local model also provides an explicit description of the parallel transport of the
contact connection in terms of the triple (F,ap, H).

Lemma 2.5.8. Consider 7 : M(F,ap, H) — D? and the associated contact connec-
tion ‘H from Proposition 2.5.5. Then:

(i) The parallel transport along radial paths is equal to the identity;
(ii) For a point (ro,00) € D*\{0}, define a path
v:S' D%t (ro,0p —t),
and a 1-parameter family of functions
Hy := H|;-1(y0) € C*(Fp).

Then, the parallel transport along v is giwven by the flow of the Hamiltonian
vector field Xy € X(F), of Hy, as in Lemma 2.5.7.
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Proof. By definition, the parallel transport over a path ~y, equals the flow of the
(unique) horizontal lift of the velocity vector of v. Hence, it suffices to compute
the horizontal lifts of ¢; and —dy for the model M(F,ap, H) as defined in Equation
2.5.1.1. Since, the extension £ of ap is defined as the kernel of

a=ap + Hdo,

it follows immediately that 0,, viewed as a vector field on F' x D2, is the horizontal
lift of 0., proving the first claim. Similarly, observe that

Oé(XHt —89) = Ht —Ht = O,

implying that the horizontal lift of —0y is given by Xpg, — 0p, proving the second
claim. O

Before stating the clutching construction for contact fibrations, let us recall the
classical construction for smooth fiber bundles. Let F' be a smooth manifold playing
the role of the fiber, and ¢ : S*~! — Diff(F) a family of diffeomorphisms. We use
the notation ¢, := ¢(z) € Diff(F'), decompose the sphere into the upper and lower
hemisphere

(2.5.1.2) S" := D" Ugn—1 D™
Then, we can define a fiber bundle over S” by
M= D" x FUD" x Ff(z,9) ~ (v,6.(y)) ¥(z,y) € D" x F,

endowed with the obvious projection 7 : M — S™. Conversely, given a fibration
m: M — S™, with fiber F', we can restrict it to each of the pieces in the decomposition
from Equation 2.5.1.2. Thus, we obtain two fibrations over the disk D™, which can
be trivialized. Therefore, the transition functions yield a family of diffeomoprhisms
¢ : S"~1 — Diff(F), parametrized by the boundary dD". It can be shown, see for
example [66], that these constructions induce a bijection between 7,1 (Diff (F')) and
isomorphism classes of fiber bundles over S™ with fiber F'.

The same proof works for contact fibrations, replacing F by a contact manifold
(F,&r) and the group of diffeomorphisms Diff (F) by the group of contactomorphisms
Cont(F,&F) of (F,&r). The precise statement is as follows:

Proposition 2.5.9. Let (F,&r) be a contact manifold, and Cont(F,{F) its group of
contactomorphisms. Then there are one-to-one correspondences

contact fibrations over contact fibrations over
-1 (Cont(F, {r)) ~ ”0< S™ with fiber (F,&p) ) = { S™ with, fiber (F,&p) }/ ~

where the equivalence is up to fiber preserving diffeomorphism.

A similar result holds for positive contact fibrations, as defined in Definition 2.5.3.
Observe, that on a cooriented contact manifold (M, £) the tangent space at each point,
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is divided into a positive and negative region seperated by the contact hyperplane.
That is, if (locally) £ = ker «, for a positive contact form «, then

T.M={XeT,M|aX)>0ué u{XeT,M|aX) <0}
This allows us to define positive vector fields, and isotopies.

Definition 2.5.10. Let (M, &) be a cooriented contact manifold. Then X € X(M) is
said to be positive vector field if

X mod ¢ e T(TM/€),

is a strictly positive section of the oriented line bundle TM /€.

Similarly, we can define non-negative, and negative vector fields. For example Lemma
2.5.7 implies that a contact vector field is positive if and only if its associated Hamil-
tonian function is. Integrating positive vector fields, we obtain positive diffeomor-
phisms.

Definition 2.5.11. Let (M, &) be a cooriented contact manifold. Then, ¢, € Diff (M),
t € [0,1] is said to be a positive isotopy, if its infinitesimal generator X, € X(M),
defined by

d
@‘bt = X} 0 ¢y,

s a positive vector field as in Definition 2.5.10.

Again, non-negative, and negative isotopies are defined similarly. Furthermore, this
definition also makes sense for loops of diffeomorphisms and contactomorphisms.

Definition 2.5.12. A positive loop of contactomorphisms ¢ : S' — Cont(M, §)
18 positive if its infinitesimal generator is a positive contact vector field as in Definition
2.5.10.

It follows from Lemma 2.5.8 that the parallel transport around the boundary of the
local model M(F,ap,H) from Equation 2.5.1.1 is a positive loop of contactomor-
phisms if and only if £ is a contact structure. As shown in the proof below, the
transition functions in the clutching construction can be expressed in terms of this
parallel transport. Hence, we obtain the following specialization of Proposition 2.5.9.

Proposition 2.5.13. Let (F,{p) be a co-oriented contact manifold. Then there are
one-to-one correspondences

Positive loops of Positive contact Positive contact
0 (contactomorphisms) ~ o ( fibrations over S™ ) ~ { fibrations over S™ } ~,
of (F, &) with fiber (F,&p) with fiber (F,&p)

where the equivalence is up to fiber preserving diffeomorphisms. Moreover, the same
result holds when we consider non-negative loops and contact fibrations.
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Proof. Let D4 denote the disk D? with the standard and opposite orientation respec-
tively. Then the identification of their boundaries S* = 0D, ~ dD_ is by orientation
reversing diffeomorphism and we have

S? =D, ugi D_,

as an oriented manifold. Let (M,£) — S? be a positive contact fibration with fiber
(F,&r). We fix a co-oriented contact form ap € Q' (F) for £ and a basepoint 6 € S!
viewed as the equator of S?. By choosing identifications (Fy,&+) ~ (F,&r), where
F denote the fibers over the north south pole, and applying Lemma 2.5.6 we find
(oriented) trivializations

q)i :M|Di ;Di x F.

We can identify & = ker(ap + H1df), with Hy € C* (D4 x F) as in Lemma 2.5.6.
Note that & are orientation preserving diffeomorphisms with respect to the product
orientation on D4 x F. In particular, by the positivity condition this implies that
orHy >0and 0,H_ <0.

The composition ®_ o (&)~ gives a loop ¢ : S* — Cont(F,£p) and we can assume
that the identifications F. = F are chosen in such a way that ¢(6y) = id. We have
to show that ¢ defines a positive loop. Let v+ : R — dD4 be defined by t — (1,t).
Observe that for § € S* we have

p(0) = P00 (PO,

where 733379 denotes parallel transport over the path v_ from time 6y to time 6 using
the contact connection. By Lemma 2.5.8 this is just the composition of the flows of
Xpg, and —Xg_ which are both positive paths. Since the composition of two positive
paths is a positive path we conclude that ¢ : S — Cont™ (F,{F) is a positive loop.

Conversely, let ¢g € Cont(F,&p) be a positive loop and denote by ¢k, ., the flow of
the Reeb vector field R € X(F'). The loop can be written as the composition of two
positive paths

—eb 6
d)a = (d)a © RZeb) © %eeb'

Indeed, for € small enough the composition 8 — ¢g 0 ¢5=%,) is still a positive path.
The associated time dependent Hamiltonians are periodic and so define functions
Hy : F xS' - R,. Gluing the associated local models from Lemma 2.5.6, we obtain
a positive contact fibration over S2.

Both constructions can be done parametrically, giving the first equivalence between
positive loops up to homotopy and positive contact fibrations up to homotopy. For
the second correspondence note that for a contact fibration 7 : M x [0,1] — S? x
[0, 1] parallel transport gives a fiber preserving diffeomorphism between M x {0} and
M x {1}. O

Positive loops of contactomorphisms play an important role in the study of contac-
tomorphism groups. In [16] it is shown that there exists a partial order on the group
of contactomorphism Cont(M, &) provided that there does not exist a positive loop
of contactomorphisms.
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Definition 2.5.14. A contact manifold (M,£) is called orderable if there does not
exist a contractible positive loop of contactomorphism.

Note that in the above definition we mean contractible within the space of all con-
tamorphisms Cont(M, £), not contractible within the space of positive loops of con-
tactomorphisms. The existence of a single contractible positive loops implies the
existence of many positive loops.

Lemma 2.5.15. Let (M, €) be a closed contact manifold, then the following are true:

(i) If there exists a contractible positive loop of contactomorphism, then any class
in m1(Cont(M, &)) can be represented by a positive loop.

(ii) If there exists a class c € w1 (Cont(M, €)) for which both ¢ and ¢~ can be repre-
sented by a positive loop, then there exists a contractible positive loop.

Hence, M is orderable if and only if there exists a class in m1(Cont(M,€&)) which
cannot be represented by a positive loop.

Proof. Let [¢¢] € m1(Cont(M,&)) be a loop of contactomorphism, and [¢] = [0] €
m1(Cont (M, &)) a positive contractible loop of contactomorphisms. For k € N, con-
sider the loop of contactomorphisms

(2.5.1.3) Dy p= Y 0---0thy 0y € Cont(M,€), teSh

where o denotes composition of contactomorphisms, not concatenation of loops, and
the composition is taken k-times. Recall that a loop of contactomorphisms is pos-
itive if and only if the Hamiltonian function of the infinitesimal generator, as in
Lemma 2.5.7 is a positive function. Furthermore, given positive loops ¢;, and 1;, with
Hamiltonian functions H(¢;) and H(v;), and such that ¢fa = efta, for functions
fi € C*(M), then the composition ¢y o1, is again a positive loop, with Hamiltonian
function

H (¢ o)(x,t) = H(ey) (1) + e T H(vy) (61 (), 1).

Hence, if H(¢;) is positive, and k is sufficiently large, then @, j, as defined in Equation
2.5.1.3 defines a positive loop, since the associated Hamiltonian is positive. Since, 14
is contractible, we have [®; ] = [¢¢], which proves the first claim.

For the second claim, observe that the concatenation of two positive loops is again
a positive loop. Indeed, on the infinitesimal level this amounts to concatenating the
paths of positive vector fields, which yields again a path of positive vector fields.
Hence, suppose given a loop of contactomorphism ¢, € Cont(M,§) both [¢:] and
[¢¢]71, (where the latter denotes the opposite path) can be represented by positive
loops. Then, the concatination [¢;] - [¢¢] ™ = [¢: - (¢¢) 1] = [0] can be represented
by a positive loop which is contractible. O

Combining the lemma above with Proposition 2.5.13, we obtain contact fibrations
m : M — S?, whose fiberwise contact structure cannot be extended to a contact
structure on M.
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Corollary 2.5.16. Let (F,&r) be an orderable contact manifold, as in Definition
2.5.14. Then, there exists a contact fibration m : (M,£") — S? with fiber (F, &)
which cannot be extended to a positive contact fibration as in Definition 2.5.3.

Proof. By Lemma 2.5.15 there exists a class [¢] € m1(F, {r) which cannot be repre-
sented by a positive loop of contactomorphisms. Let 7 : (M, £¥) — S? be the contact
fibration associated to [7] under the correspondence of Proposition 2.5.9. If £ can
be extended to a contact structure on M, then by Proposition 2.5.13, [¢] can be
represented by a positive loop, giving a contradiction. O

Of course, if a manifold admits no contact structures, then there exist no sequences
of contact structures converging to a foliation. Thus, we can use the above idea to
construct foliations which cannot be approximated by contact structures. However,
observe that Corollary 2.5.16 does not state that M admits no contact structures,
only that there exists no contact structures extending £”. Hence, we need a compat-
ibility condition on the foliation ensuring that any contact structure close to it, is an
extension of £”.

Definition 2.5.17. Let 7 : (M,£") — B be a fibration. An almost CS-folation (F,w)
on M is said the be fibered by m, if for all b € B, the fiber M is an almost CS-
submanifold as in Definition 2.4.4.

Furthermore, the condition that there exist no contact structures on M can be weak-
ened. It suffices to require that there exist no contact structures close to (F,w) in
ACSHyper(M). To make this precise, recall that given a contact manifold (M, &),
the forgetful map Cont(M, ) — Diff (M) induces an injection in homotopy

71 (Cont (M, £)) — 71 (Diff (M)).

Definition 2.5.18. Let (F,w) be an almost CS-foliation on M, & a contact structure
on M, and [¢] € 71 (Diff (M)). We say that:

o [¢] and & are incompatible, if [¢] is not in the image under the above inclusion
of a class in w1 (Cont (M, £)) that can be represented by a positive loop.

o [¢] and (F,w) are incompatible, there is a neighborhood U of (F,w) in the
compact-open topology on on ACSHyper(M), such that ¢ and £ are incompatible
for any contact structure £ € U.

The notions of a contact structure/almost CS-foliation compatible with a loop [¢] €
71 (Diff (M)) are defined analogously.

Remark 2.5.19. The above definitions make use of the compact-open topology on
ACSHyper(M). The reason for this is that the proof of Theorem 2.5.20 depends on
Lemma 2.4.5. That is, a contact structure sufficiently close to a fibered almost CS-
foliation induces a contact structure on each of the fibers. Recall from Remark 2.4.6,
that this result also holds for conformal convergence, and type I/type IT deformations.
Hence, the above definition and Theorem 2.5.20 can be restated using these the
relevant topologies for these type of approximations
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Furthermore, here we only consider approximating almost CS-foliations by contact
structures. However, in principle, the whole discussion goes through also when
considering approximations of general almost CS-hyperplane fields by contact struc-
tures. A

With these definitions, we can generalize the observation from Corollary 2.5.16.

Theorem 2.5.20. Assume we have the following data:

(i) A fibration 7 : M — S?, with fiber F', corresponding to the class [¢] € w1 (Diff(F));

(ii) A fibered almost CS-foliation (F,w) on M, as in Definition 2.5.17, with induced
almost CS-foliation (Fr,wr) on the fiber F.

If [#] and (Fp,wr) are incompatible, then (F,w) cannot be (conformally) approxi-
mated by contact structures.

Remark 2.5.21. Note that the converse of this theorem is not true. Suppose that we
have the same data as in (i) and (i¢) of the above theorem. Furthermore, assume that
there is a sequence of contact structures £pj, k € N on F, converging to (Fp,wr),
and such that there exist positive loops ¢y : S' — Cont(F, {5 ) satisfying

(V1] = [¢] € mi (Diff (F)).

Then it follows from Proposition 2.5.13, that there is a sequence of contact structures
& on M. By construction the restriction of & to the fibers of 7, converge to (Fr,wr),
but in general the & do not need to converge to (F,w). A

Proof. Usinglemma 2.4.5 any contact structure sufficiently close to (F,w) inside
ACSHyper(M), induces a contact structure & := & n TN, on N, for each b € S2.
That is, it induces the structure of a positive contact fibration on 7 : M — S2, see
Definition 2.5.3. This structure is equivalent to a positive loop of contactomorphisms
on N by Proposition 2.5.13 and since the underlying fibration must be isomorphic
to m : M — S? this loop represents the class [¢]. That is, (Fr,wr) and [¢] are
compatible, so we arrive at a contradiction. O

We emphasize that even though both the proofs of Proposition 2.4.8 and Theorem
2.5.20 make use of Lemma 2.4.5, they are giving different obstructions. The condition
that (Fr,wpr) and [¢] on the fiber of a fibration are incompatible, as in Definition
2.5.18, or even that (Fr,wp) is completely incompatible as in Definition 2.5.22 below,
does not imply that (Fr,wpr) cannot be approximated by contact structures. In fact,
in our main example constructed in Section 2.5.3, the foliation on the fiber has many
contact structures approximating it.

Of course, if there does not exist any contact structure on N which is sufficiently
close to (Fn,wn) and a positive loop, then the hypothesis of the above theorem are
satisfied.
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Definition 2.5.22. An almost CS-hyperplane field (F,w) on a manifold M is said
to be completely incompatible, if there exist a neighborhood U of (F,w) in the
compact-open topology on ACSHyper(M), such that any contact structure & € U
admits no positive loops.

Equivalently, this means that any contact structure on M sufficiently close to (F,w)
is incompatible with every loop of diffeomorphism [¢] € Diff (M), as in Definition
2.5.18.

Corollary 2.5.23. Let m: M — S? be a fibration, and (F,w) a fibered almost CS-
foliation on M, as in Definition 2.5.17. If the induced almost CS-foliation on the fiber
(Fr,wp) is completely incompatible, then (F,w) cannot be approzimated by contact
structures.

2.5.2 Orderability of T3

Although Theorem 2.5.20 is very useful from a theoretical perspective, in practice the
main difficulty is finding examples where the hypothesis of the theorem are satisfied.
The reason for this is twofold. Firstly, as we saw in Lemma 2.5.15, Definition 2.5.18
is closely related to the notion of orderability. It is not known in general when a
contact manifold is orderable, so we have a limited number of possible examples to
look at. Secondly, both Definition 2.5.18 and Definition 2.5.22, are a condition on
all contact structures (in a neighborhood of the foliation). Thus, in order to check
this condition is satisfied, we want to consider foliations which only admit a limited
number of contact structures close to it.

The rest of this section is devoted to proving the following result, which provides the
fiber manifold for the examples of Theorem 2.5.20 constructed in Section 2.5.3.

Theorem 2.5.24. Any Reebless foliation endowed with any leafwise symplectic form
(Definition 2.5.25) on T? is completely incompatible (Definition 2.5.22).

Let us start by recalling the definition of a Reebless foliation. As in Chapter 1, that
by a 3-dimensional Reeb component we mean the foliation Fgree, on S* x D? obtained
by turbulizing the product foliation

F=|J{z} x D%,

zeSt
so that the boundary S! x S? becomes a leaf, see also Equation 2.6.4.1.

Definition 2.5.25. We say that a foliation F on M is Reebless if it does not contain
(S' x D?, Freey) as a foliated submanifold.

Observe that a foliation F with a Reeb component does not admit any transverse
loops. Indeed, the coorientation of the boundary leaf S! x S! implies that a transverse
loop has to be contained in the Reeb component, or completely disjoint from it. Thus,
the above definition is a generalization of taut foliations as in Definition 2.4.21, since
any taut foliation must be Reebless.



2.5. AN OBSTRUCTION TO CONFORMAL APPROXIMATION 181

Roughly speaking, the reason for requiring the foliation to be Reebless is that such
foliations have very few contact structures close to them. To make this more precise,
recall that there is a dichotomy of the space of all contact structures into tight and
overtwisted ones. In dimension-3 these are defined as follows. On R? with Cylindrical
coordinates (r, 0, z) the standard overtwisted contact structure &, is defined as
the kernel of the contact form

(2.5.2.1) Qo := cos(rm)dz + rsin(rm)de.

Then, the disk
Doy i={r <mz=+1-7r2}c (R3 &)

is called the standard overtwisted disk.

Definition 2.5.26. A 3-dimensional contact manifold (M,§) is said to be over-
twisted if it contains Dy as an almost CS-submanifold, and tight if it does not.

It is possible, see [83], that given a tight contact manifold (M,¢&) the pullback of ¢
to the universal cover m : M — M, becomes overtwisted. Hence, we say that a tight

contact structure is universally tight if its pullback to the universal cover remains
tight.

The definitions of overtwisted/tight contact structures and foliations with/without
Reeb foliations are very similar, in the sense that they both require the existence/absence
of a certain local behaviour. This analogy is made precise by the following result of
Bowden, which is a generalization of Proposition 2.7.1 from [47], saying that any
contact structure C%-close to a taut foliation is tight.

Theorem 2.5.27 ([17]). Any contact structure C°-close to a Reebless foliation is
(universally) tight.

Moreover, tight contact structures on T3 have been completely classified by Kanda,
so that the problem reduces to checking there exists no positive loops of contacto-
morphisms for any of the following contact structures:

Theorem 2.5.28 ([69]). Any tight contact structure on the 3-torus T3(z,y,z) is
contactomorphic to one of the following

(2.5.2.2) & = ker (ozk := cos(kz)dx + sin(kz)dy),

where k € N is a positive integer. Moreover, £ and & are contactomorphic if and
only if k =4.

Observe that (T3, £;) is contactomorphic to (ST*T?, £,;), the unit cotangent bundle
of the torus. For k > 1, define the map

T3 = T3, (z,y,2) — (z,y,kz2).

Then, it follows that any tight contact structure on T? is the pullback of (T3, &)
under one of the covering maps .
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By the preceding discussion, in order to complete the proof of Theorem 2.5.24 it
remains to be shown that the contact manifolds (T3, &), k € N, do not admit positive
loops. To see this, we first relate the existence of positive loops of contactomorphisms
to the existence of certain families of Legendrian submanifolds. Then, we use results
from the theory of generating functions to show the existence of such Legendrian
submanifolds is obstructed on (T3, &).

Recall that given a contact manifold (M?"*+1 ¢) we say that L is a Legendrian sub-
manifold if

dimL =n, TLc{|L.
That is, L is an integral submanifold of ¢ of the maximal possible dimension.

Definition 2.5.29. A path of Legendrian submanifolds in a contact manifold
(M,€) is a family Ly € M, t € [0,1], such that L; is an (embedded) Legendrian
submanifold of &.

A parametrization of L; is a map ¢ : Lo x [0,1] — M such that ¢:(Lg) = Ls. Any
such parametrization defines a section of the normal bundle X; € T'(v(L¢)) by

X)) = | 5| o@|. wern

called the velocity vector of L;. Note that given a fixed path L;, any two parametriza-
tions differ by an isotopy of Lg, implying that the velocity vector is independent of
the choice of parametrization.

If « is a contact form for &, and L < (M,€) a Legendrian, then it follows that
TL c ker a. Hence, for any section of the normal bundle, X € I'(v(L)) the function
a(X) e C*(M) is well-defined.

Definition 2.5.30. A path of Legendrian submanifolds Ly, t € [0,1], in a cooriented
contact manifold (M,§ := ker«) is said to be positive if its velocity vector X; €
T(v(Ly)) satisfies

CK(Xt) > 0.

As claimed above the existence of a positive loop of contactomorphisms, as in Defi-
nition 2.5.12 implies that each Legendrian can be displaced from itself by a positive
path as in Definition 2.5.30.

Lemma 2.5.31. Let 7 : M — B be a fibration, and £ := kera a cooriented con-
tact structure on a compact manifold M such that the fibers of m are Legendrian
submanifolds. If ¢ : St — Cont(M, &) is a positive loop of contactomorphisms, then:

(i) There exists a positive loop of embedded Legendrians v : L x St — (M, €);

(i) There exists a positive path of embedded Legendrians between different fibers of
.
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Proof. Assume that there exists a positive loop of contactomorphisms ¢; € Cont(M, £),
t € St. Since a contactomorphism sends Legendrians to Legendrians, the map

w:LXSIHMv (z,t) = ¢u(2),

defines a parametrization for the loop of Legendrians L; := ¢;(L). Furthermore, it
is positive since the velocity vector of v is equal to the Hamiltonian vector field of ¢
which is positive.

For the second statement, observe that by the compactness of M we can assume that
the Hamiltonian function of ¢; satisfies H; > ¢ for a constant € > 0. Furthermore,
we can assume

oFa = elta,

with eft < C for a constant C' > 0.

Now, choose a path of Legendrian submanifolds Fy, t € [0,1], consisting of fibers
of m, between two distinct fibers Fy and Fj. By the isotopy extension theorem for
isotropic submanifolds, see for example [53], there exists a path of contactomorphisms
Yy € Cont(M,€) such that Fy = ¢ (Fp). In general v, is not a positive path of
contactomorphisms, however by choosing by and b; close enough we can assume that
the Hamiltonian function G; of v; satisfies
Gt > 66
Hence, the composition 9, o ¢; is a path of contactomorphisms, and its Hamiltonian
function given by
G, +e Tt H, owt_l,

is strictly positive. Thus v o ¢;(Fy) parametrizes a positive path of Legendrian
embeddings connecting two distinct fibers of 7. O

It follows directly from Equation 2.5.2.2 that for each tight contact structure &, on
T3, the fibration
ﬂ:TB—)TQ’ (x’y7z)H(m7y)’

has Legendrian fibers. Note that under the identification T3 ~ ST*T?, this fibration
is just the usual projection onto T?. Thus, the above lemma applies to (T2,&), and
in combination with the following result completes the proof of Theorem 2.5.24.

Theorem 2.5.32. There exists no positive path of Legendrian embeddings between
different fibers of w : (T3, &) — T2, for any k € N.

For k = 1, we have that (T3, ¢;) is isomorphic to (ST*T?, £.qn) the unit cotangent
bundle of the torus, with the standard contact structure. Thus, in this case the result
follows from:

Theorem 2.5.33 ( [29]). There exists no positive path of Legendrian embeddings
between two different fibers of w: ST*M — M provided the universal cover of M is
R™,
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One of the main ingredients in the proof of this theorem is the so called ”hodo-
graph transformation” which is a contactomorphism between the first jet bundle
(JH(SY), €ean) and (ST*R2 &;). For the proof Theorem 2.5.32, we show that this
isomorphism can be generalized to obtain contactomorphisms between (J(S'), &can)
and (ST*R?,&;). Other than this the proofs are essentially the same.

To define the hodograph transformation, we need explicit coordinates on J!(S!) and
ST*R2. Let {-,-) denote the standard inner product on R?, and identify the tangent
space of the circle with

T,S' = {ve R? | {g,v) = 0}.

Under the identification J!(S!) ~ T*S! x R, the standard contact structure corre-
sponds to
ast :=dz — Acan,

where Acan € QY (T*S?) is the tautological 1-form. Thus, in coordinates we have:
(T*S1 X Rast) = ({(q,p,z) eR*xR? xR |{q,q) = 1,{q,p) = 0}, sy = dz —pdq) .

That is, the point (g, p) corresponds to the covector {(p,-) € T;‘S1 explicitly defined
by

{p,-y: TqS1 - R, v {pv).
Similarly, we have a coordinate description of the unit cotangent bundle

(ST*R?, ) = ({(g;p) € R? x R? | {p,p) = 1}, % = pi(p)dy)

where pi, : R?2 — R? is as in Definition 2.5.34. As before, we identify (q,p) with
{p,-) € STR>.

Definition 2.5.34. For any k € N the k-Hodograph transformation is defined to
be the map

hics (JUS") ) = (ST*R%, an), (4,p.2) = (zpila) + 255, 0),
where py, : R? — R? is defined in polar coordinates by (r,0) — (r,k0).

For k = 1, this is the usual hodograph transform defined by
(2.5.2.3) hy = JYSY — ST*R?,  (q,p,2) — (2q + p,q).

The base of J1(S!) and the fiber over the origin of ST*R? are both Legendrian circles
which the hodograph transformation maps to each other. The other fibers of ST*R?
get mapped identified with the graphs of the following functions. For x € R?, define
the function

(2.5.2.4) leg: ST >R, g (" 2).
Then, the hodograph transformation hj has the following properties:

Proposition 2.5.35. For any k € N, the map hy : (J*(S'), as) — (ST*R?, ), as
in Definition 2.5.34, is a contactomorphism sending the graph T'(j'h, ;) < J'(S!)
diffeomorphically to the fiber n~1(z) < ST*R2.
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Proof. 1t is easily seen that hy is a diffeomorphism and to check that it preserves the
contact forms we parametrize the circle by ¢ = (cos(6), sin(6), 0 € [0,2x]. In these
coordinates the map becomes:

hi(q,p, z) = hi(cos(8),sin(f), —psin(h), p cos(), z)
= (zcos(kf) — %Sin(k@), zsin(k0) + %cos(k@), cos(0),sin(6)).
We compute that the contact form is preserved:
hi(ax) = cos(k@)d (z cos(kf) — %sin(k@)) + sin(k6)d (z sin(kd) + %cos(k(‘)))
=dz — pdf = ag.
To check that hy maps the graph of j'¢, ; diffeomorphically onto the fiber over z
note that in the above coordinates j14, 5 : St — J(S!) is given by
310, 1 (cos(0),sin(0)) = (cos(0),sin(f), kz sin(k0) sin(#) — yk cos(k6) sin(0),
— ka sin(kf) cos(8) + yk cos(kd) cos(0), x cos(kd) + ysin(kh)).
Hence, the composition hy, o j11, k. is equal to:
xk sin(k@)yk cos(k0) sin(k6)
k )
(x cos(kf)+ysin(k0)) sin(kf) + (—xksin(kf) + yk cos(kf)) cos(k0), cos(h), sin(@))

hi o j s 1(q) = ((:v cos(k@) + ysin(kb)) cos(kb) +

= (x(cos2(k0) +sin®(k0)), y(cos? (k) + sin®(k0)), cos(0), sin(@))
= (z,y,cos(0),sin(h)).

O

Proof of Theorem 2.5.32. The proof follows exactly the same strategy as that of The-
orem 2.5.33 from [29]. The only difference is that for Theorem 2.5.32 the hodograph
transform from Equation 2.5.2.3 has to be replaced by the one from Definition 2.5.34,
for the case k > 1.

We give a sketch of the proof. Assume that the statement is false, and let L, = ST*T2,
t € [0,1], be a path of Legendrian embeddings between distinct fibers. Using the
projection of the universal cover m : R? — T2, this path can be lifted to a path of
Legendrian embeddings in (ST*R?, ay). Since ay, is translation invariant in the base
coordinates, we can assume without loss of generality that Ly is the fiber over 0 € R?,
and L; is the fiber over some z # 0 € R2.

By Proposition 2.5.35, using the hodograph transform, this path corresponds to a
path of Legendrian embeddings between the graph of j/g x, which is just the image
of the zero section, and the graph of jlézyk. Note that [, j is a Morse function with
2k critical points with critical values +||z||, so that at the end of the path all Viterbo
numbers must be +||z||. On the other hand o is constant equal to zero, so that at the
start of the path all Viterbo numbers (see [29]) must be 0. This contradicts the fact
that along a positive path of Legendrian embeddings (given by a generating family
quadratic at infinity) the Viterbo numbers are strictly increasing. O
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2.5.3 An example

With the results of the previous two sections, we now return to the question posed at
the beginning of the chapter; Is there an obstruction for an almost CS-foliation (F,w)
to be approximated by contact structures, different than the one from Proposition
2.4.87 As we have seen in Theorem 2.5.20, there is another obstruction based on
the non-existence of positive loops of contactomorphisms. We now show that these
obstructions are different, by providing explicit examples.

We first observe that there exist symplectic foliations which are obstructed by Propo-
sition 2.4.8, but not by Theorem 2.5.20.

Proposition 2.5.36. The product of the Reeb foliation with the sphere,
(SB X SQ,]: = ]:Reeb X 82) 5

contains an almost CS-submanifold St x S?, but does not satisfy the conditions of

Theorem 2.5.20.

Proof. Since the leaves are products of surfaces, it is clear that F carries a leafwise
symplectic structure, denoted by w € Q?(F). Furthermore, it follows directly from
Corollary 2.4.9 that (F,w) cannot be approximated by contact structures.

On the other hand, the obvious projection 7 : S? x S — S? is part of a contact fibra-
tion, as in Definition 2.5.1, with fiber the standard contact sphere (S?,&,;). Clearly,
(F,w) is fibred by 7 as in Definition 2.5.17. Since we are considering the trivial fi-
bration, the associated loop of diffeomorphisms is the trivial loop [id] € 7 (Diff(S?)).
By the following lemma, this loop is compatible with (F,w), so that the conditions
of Theorem 2.5.20 are not satisfied. O

Lemma 2.5.37. Every open neighborhood of the symplectic foliation (S, Freep,w),
in the compact-open topology on ACSHyper(M), contains a contact structure which
is compatible with the trivial loop [id] € 1 (Diff(S?)), conform Definition 2.5.18.

Proof. As shown in [39], the standard contact spheres (S?"*1, £,;) are not orderable,
i.e. they admit a contractible, positive loop of contactomorphisms, as in Definition
2.5.12. Hence, the trivial loop [id] € 71 (Diff(S?)) is compatible with & as in Defini-
tion 2.5.18. As shown in Chapter 1, £ can be deformed into Freep. More precisely,
there exists a path of contact structures &, ¢t € (0,1], such that & = &4, and &
converges to Freep. By Gray stability, & is contactomorphic to £ for any ¢ > 0, and
hence non-orderable. Since, the path converges to Freep this means that every open
neighborhood of Fgeep, contains a non-orderable contact structure. O

The following theorem shows that the converse also holds: there exists a CS-foliation
obstructed by Theorem 2.5.20 but not by Proposition 2.4.8.

Theorem 2.5.38. There exists a CS-foliation, as in Definition 2.2.16, (F,w) on
S? x T? that does not contain any almost CS-submanifolds isomorphic to S* x S?, and
cannot be approximated by contact structures.
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The remainder of this section consists of the proof of this theorem. We first construct
the CS-foliation. Let h : S® — S? denote the Hopf fibration, and consider the fibration

7:8*xS§* - §%, w(x,y) = hz),

which has fiber T3. For any (oriented, codimension-1) foliation by lines £ on T?
consider the product foliation

(2.5.3.1) (S* x T?, Fp:=§* x L),
whose basic properties are listed in the following lemma.

Lemma 2.5.39. Let F on the total space of ™ : S? x T? — S? be as above then:

(i) There is a leafwise CS-form defined by
w:= dgag = dag — 0 A ag.

Here, 0 € Q'(L) is a nowhere vanishing 1-form, and as € Q(S?) is the standard
contact form.

(ii) FEach fiber of w is an almost CS-submanifold for (Fr,w) and the induced CS-
foliation on the fiber T3(x,y, 2) is given by the product foliation

(St x £,dx A 6).
(iii) There does not exist any almost CS-submanifold S' x S? in (Fr,w).

Proof. (i) Since £ is a 1-dimensional oriented foliation on T? there exists 8 € Q! (T?)
which restricted to the leaves of £ is nowhere vanishing, positive, and closed for
dimensional reasons. Note that any two such forms are related by a positive
conformal factor. As in Example 2.2.15 it is immediate that dgas defines a
leafwise CS-structure.

(ii) The fiber of 7 is equal to S!' x T? where S! = S? is the fiber of the Hopf
fibration. Hence, F is transverse to the fibers and the induced foliation on T3
is the product S' x £. Lastly, the fibers of of the Hopf fibration are precisely
the Reeb orbits of as so that in our coordinates on T2 we identify o, with dz.

(iii) Any leaf of £ is diffeomorphic to either S! or R, so that any leaf of F. is
diffeomorphic to either S* x St or §% x R. Hence, m2(L) = 0 for any leaf L and
by the following lemma there does not exist any leaf containing (S%,ws;) as a
CS-submanifold.

O

Lemma 2.5.40. Let (M,w,n) be a conformal symplectic manifold and N a manifold
with HY(N) = 0. Then there exist no contractible, conformal symplectic embedding
¢:N—> M.



188 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

Proof. Suppose there exists a smooth map ® : N x[0,1] — M, such that ®|y 1} = ¢
and ®|y o is a constant map. Pulling back the conformal symplectic structure we
obtain forms:

wy = 0% (w), ny =0

Note that d,ywnx = 0 and since H'(N x I) = 0 there exists a positive function
feC®(N x I) such that d(fwn) = 0. By Stokes theorem this implies

O:J wa :J wa.
N x{0} N x{1}

However, since ¢ is a conformal symplectic embedding, the last integral must be
strictly positive and we arrive at a contradiction. O

Remark 2.5.41. Let £ on T? be as above and consider the product foliation S' x £
on T3(z,y, 2). Define a loop of diffeomorphism ¢; € Diff(T?) by

¢t($7yaz) = (.’IJ + t7y,Z).

The fibration over S? resulting from this loop is precisely 7 : S? x T? — S? and since
¢+ preserves each leaf of the foliation on T2 the total space of the fibration carries a
foliation, which is just F as above. In particular, taking multiples of the loop ¢y,
the same construction allows us to produce non-approximable CS-foliations on the
lens spaces L(p, 1) for p > 1. VAN

Lemma 2.5.42. The CS-foliation (Fz,w) on S* x T? constructed above cannot be
approrimated by contact structures. Moreover, the approximation is not obstructed
by Proposition 2.4.8.

Proof. By Theorem 2.2.21 we know that the only CS-foliation in dimension three
which cannot be approximated by contact structures is S* x S2. Since dim S3 x T2 = 5,
this means that the only possible almost CS-submanifold that can obstruct (F,w)
being approximated is S* x S?. By Lemma 2.5.39 we know that such an almost CS-
submanifold does not exist.

We show that the conditions in Corollary 2.5.23 are satisfied, i.e. (F,w) is completely
incompatible as in Definition 2.5.22. Using Theorem 2.5.24 it suffices to show that the
induced foliation on the fiber of 7 is Reebless as in Definition 2.5.25. By Lemma 2.5.39
the foliation on the fiber equals S' x £, and hence contains no Reeb components. [

2.6 More examples

2.6.1 Isosymplectic embedding h-principle

Using the h-principle for isosymplectic embeddings, which we recall below, we show
that in high dimensions it is common for a symplectic foliation to contain S! x S? as an
almost CS-submanifold. Hence, by Proposition 2.4.8, they cannot be approximated
by contact structures.
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Our strategy is to construct the almost CS-submanifold S* x §% of (M, F,w) out
of a suitable S? embedded in a single leaf of F. For example, consider a foliation JF
induced by a fibration 7 : M — S'. Suppose we have an embedded sphere ¢ : S < M
contained in a leaf My, := 7 '(tg) of F. If we choose a connection on 7, then the
associate parallel transport 7; : M;, — M, defined a family of embedded spheres

o, =S* > M, o,:=T,o1 tel0,1],

each contained in a leaf M; of F. Thus, 01(S?) is the image of 0o(S?) under the
monodromy map.

Definition 2.6.1. Let (M,F) be a foliated manifold and v : S* — M an embedded
sphere contained in a leaf L of F. By a transverse loop of spheres, we mean an
embedding
o:S*x[0,1] - M,

defining a family of embedded 2-spheres o; : S — M, each inside a leaf Ly of F, with
L():Ll:L a’fldO'O:L.

Remark 2.6.2. Although for our purposes it suffices to consider transverse loops
of spheres, analogous to the above definition we can define transverse loops of any

manifold N. In fact, the following discussion only uses that S? is closed and simply
connected. A

So, we can think of o1 as some kind of "monodromy” map associated to the foliation,
for the starting sphere ¢(S?). Recall that by a foliated map between foliated manifolds,
f:(M,F)— (N,G), we mean a (smooth) map sending each leaf of F into a leaf of
G. Hence, viewing S? x [0, 1] as foliated by 2-spheres, a transverse loop of spheres is
precisely a foliated embedding mapping the boundary spheres into the same leaf.

For symplectic foliations we consider the following compatibility conditions:

Definition 2.6.3. Let (M,F,w) be a symplectic foliation. A transverse loop of
spheres o, : S> — M is said to be

(i) Positive if

ofw >0,
S2

(i) Symplectic if cfw is non-degenerate for each t € [0, 1].

for allt € [0,1].

Consider a symplectic foliation (F,w) on a manifold M of dimension 2n + 1 > 5. As
shown in Lemma 2.4.11 we can find a closed embedded loop S' = M transverse to
F. This curve has a tubular neighborhood isomorphic to

(Sl x D", U {z} x D2"> .
z€eSt

Hence, by choosing an embedded sphere S? < D?", we obtain a transverse loop of
spheres with image S' xS? = M. However, loops constructed in this way can never be
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positive. Indeed, each 2-sphere is contractible so by Stokes theorem must have zero
area with respect to w. The following lemma produces loops with non-contractible
spheres.

Lemma 2.6.4. Let F be a foliation on a (closed) manifold M of dimension > 4.
Then, there always exists a transverse loop of spheres. Moreover:

(i) Any leafwise sphere S* < L inside a non-embedded leaf L can be extended to a
transverse loop of spheres;

(ii) If the foliation F is induced by a fibration m : M — S*, then any leafwise sphere
S? c L, can be extended to a transverse loop of spheres.

Proof. The above discussion shows that, using Lemma 2.4.11, a transverse loop of
spheres always exists.

If F is induced by a fibration 7 : M — S' then, as explained prior to Definition
2.6.1, taking an embedded sphere in any of the fibers, we can use parallel transport
to obtain a transverse loop of spheres.

For the other case assume that L © M is a non-embedded leaf of M, and S? = M an
embedded sphere. Let ¥ be a transverse section of F, such that L n X # ¢§. Then

recall that if L is not embedded, ¥ n L is not discrete, see for example [22]. In our
case this means that £ must intersect X at least twice, and we obtain a transverse
loop of spheres as in Definition 2.6.1. O

The previous constructions do not necessarily produce positive loops of spheres. How-
ever, as shown in the following lemma, it is often enough if the initial sphere is positive.

Lemma 2.6.5. Let (M, F,w) be a symplectic foliation and o : S* x [0,1] — M a
transverse loop of spheres starting at a positive sphere S*> < L, i.e.

J w > 0.
SZ

(i) If L is non-embedded, then there exists a positive transverse loop of spheres
starting at S?;

Then the following hold:

(i) If w is tame (Definition 1.7.22) then o is positive.
Proof. Observe that the function

p:[0,1] >R, t— | ofw
SZ
is smooth in t. We also have ;(0) > 0 so that there exists £ € (0, 1] such that u(t) > 0
for all t € [0,]. As in the proof of Lemma 2.6.4 the non-embeddedness of L implies
that L intersects the image of o(S? x [0,#]) at least twice. So by restricting o we
obtain a positive transverse loop of spheres.
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For the second case, let @ be a closed extension of w. In the coordinates defined by
the foliated embedding o : S? x [0,1] — M we can write

W= wt + ftdt,
for wy € Q2(S?) and f; € C*(S?). The condition that w is closed becomes

0=dw = w; A dt+dfs Adt,

Wi := wo + d <J¢ ftdt> .
0

Integrating an exact form over S? gives zero, so that u(t) = p(0) for all ¢. O

implying

The main result of this section is the following, and states that the existence of a
positive transverse loop of spheres implies that the foliation cannot be approximated
by contact structures.

Theorem 2.6.6. Let (M, F,w) be a symplectic foliation with dim M > 7. If there
ezists a positive transverse loop of spheres, as in Definition 2.6.3, then there exists an
almost CS-submanifold isomorphic to St x S?, as in Definition 2.4.4. In particular,
(F,w) cannot be approzimated by contact structures.

Combining this theorem with the preceding discussion we conclude that the following
classes of symplectic foliations cannot be approximated by contact structures.

Corollary 2.6.7. Let (M,F,w) be a symplectic foliation with dim M > 7. If either
of the following is satisfied then (F,w) cannot be approximated by contact structures:

1. F is induced by a fibration 7 : M — S, w is tame (Definition 1.7.22), and
(F,w) admits a positive 2-sphere in one of its leaves;

2. (F,w) has a non-embedded leaf containing a positive 2-sphere.

Proof. Combining Lemma 2.6.4 and Lemma 2.6.5 there exists a positive transverse
loop of spheres. Hence, Theorem 2.6.6 applies. O

The idea of the proof of Theorem 2.6.6 is to use the h-principle for symplectic em-
beddings from [13], to homotope the positive transverse loop into a symplectic trans-
verse loop. We also use it to ”close up the loop” so that we obtain an almost CS-
submanifold isomorphic to S* xS2, which we know obstructs approximation by contact
structures. Let us start by recalling the h-principle for isosymplectic embeddings.

Definition 2.6.8. Let (M,wys) and (N,wy) be symplectic manifolds. An isosym-
plectic embedding f : (M,wy) — (N,wn) is a smooth embedding satisfying

f*wN = WpHrs-
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The word ”iso” is meant to emphasize that the symplectic structure on the source
manifold is fixed. In other words, we do not only require f*wy to be symplectic on
M, but also to equal wys. Following the h-principle philosophy we can forget about
the integrability conditions in the definition of an isosymplectic embedding. That is,
we consider an ”almost isosymplectic embedding”, which are usually referred to as
isosymplectic homomorphisms.

Definition 2.6.9. Let (M,wys) and (N,wy) be two symplectic manifold. A isosym-
plectic homomorphism from (M,wy) to (N,wn) consists of fiberwise injective
bundle map F : TM — TN covering a map f, such that F*(wy) = wy and
F*lon] = [w] € H2(M).

Observe that an isosymplectic embedding is the same thing as an isosymplectic ho-
momoprhism satisfying F' = df. As expected, the h-principle states that

Theorem 2.6.10 ([13]). Let (M,war) and (N,wn) be symplectic manifolds such that
dim M < dim N — 4. Assume there exists an injective bundle map F : TM — TN
covering a map f: M — N satisfying:

(i) The map f is an embedding, and satisfies f*[wn] = [war] € H2(M);

(ii) The map F is an isosymplectic homomorphism, as in Definition 2.6.9, and there
exists a homotopy of injective bundle maps Fy; : TM — TN, t € [0,1] such that
F():df andFle.

Then, there exists a C°-small isotopy fi : M — N, from fo = f to an isosymplectic
embedding f1, and the differential df; is homotopic to Fy through isomosymplectic
homomorphisms. Moreover, the same statement holds parametrically.

The first consequence of this theorem is that we can homotope a positive transverse
loop of spheres into a symplectic one.

Lemma 2.6.11. Let (M, F,w) be symplectic foliation with dimM > 7, and o :
S? x [0,1] — M a positive transverse loop of spheres. Then, o is homotopic to a
symplectic transverse loop of spheres, see Definition 2.6.3.

Proof. We want to apply Theorem 2.6.10 parametrically. In the notation of the
theorem we define f; = o, interpreting o as a 1-parameter family of maps o, : S? —
M. The first condition in the theorem is trivially satisfied if we define the symplectic
forms on S? to be

(2.6.1.1) W 1= <J Jjw) ws2,
SQ

where wge is the standard form on S2.

Next, we construct the required map Fi, and show it satisfies the conditions in
the theorem. The existence of such a map is purely obstruction theoretic. Denote
n :=dim M. Standard obstruction theory and a careful (but rather straightforward)
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computation shows that the obstruction to the existence of a one parameter family
of isosymplectic homomorphisms F 5 : T'S* — T'F, lives in the relative cohomology
groups

HY(S? x [0,1],7_1(S"2);R), i<3.

Hence, since n = 7 (actually n > 5 suffices here), these obstructions vanish and F} ,
always exists. Similarly, the obstruction to the existence of a 1-parameter family of
homotopies Fy; : T'S?* — TF through injective bundle maps, connecting d f; and Fy,
lives in

HY(S* x I,m(Vau1));R), and, m(Van_1)=0, i<n-—3,

where V3,1 denotes the Stiefel manifold of orthonormal 2-frames in R™ 1. Again,
since n > 7 these obstructions vanish. Hence, Theorem 2.6.10 applies, giving a
foliated isosymplectic embedding

Fo(sxol [ $*x fth) > (M, F.w).

te[0,1]

Finally, since a symplectic form on S? is the same as an area form, and the intergrals

*
|, ote
S2

are strictly positive, it follows from Equation 2.6.1.1 that f is still a foliated isosym-
plectic embedding if we replace w; by wsz. O

The second consequence of Theorem 2.6.10 is that two homotopic, positive 2-spheres
in the same leaf, can be connected by an family of symplectic embeddings.

Lemma 2.6.12. Let (M,w) be a symplectic manifold with dim M > 6, and f; :
(S?,ws2) — (M,w), i = 0,1 be isosymplectic embedded spheres satisfying [fo] = [f1] €
mo(M). Then, there exists an isotopy of isosymplectic embeddings f; : (S?,ws2) —
(M,w), connecting fo and fi.

Proof. Let f : S? x I — M be any homotopy connecting fy and f;. Since dim L >
2dimS? + 1, we can apply the Whitney embedding theorem to perturb f 1nt0 a
homotopy f : S x I — M satisfying f; = fi, i = 0,1 and each map f : S? x {t} —

is an embedding. Then, the result follows by applying Lemma 2.6.11. D

Proof of Theorem 2.6.6. By Lemma 2.6.11 we the positive transverse loop of spheres
o :S? x [0,1] — M can be made symplectic, as in Definition 2.6.3. Then, applying
Lemma 2.6.12 to 0y and oy, we find an isotopy of symplectic embeddings f; : S* — L
such that fy = 09 and f1 = o01.

To finish the proof we need to slightly modify f;, so for each t its image is contained
in a different leaf of F. Since the image of f : S? x [0,1] — L is contained in a
simply connected region V' c L, there exists a foliated chart U ~ V x [0, ¢], such that
V =V x {0}. Let p:[0,1] — [0,1] be a smooth bump function satisfying

Plioi—e] =0, plii—es21y = 1.



194 CHAPTER 2. CONVERGENCE OF CONTACT STRUCTURES

We define
7:8? x[0,1] - M, &;:= fp_(i) o0y

For € > 0 small enough, this defines a foliated symplectic embedding of S' x S? into
M. By Corollary 2.4.9 this means that (M, F,w) cannot be approximated by contact
structures. O

2.6.2 Milnor-Wood foliation on ST%%,

We give here a family of symplectic foliations which cannot be approximated by
contact structures as a consequence of Theorem 2.5.20. These examples are also
easily seen to contain S' x S? as an almost CS-submanifold, so that we could apply
Proposition 2.4.8 instead. However, they still illustrate the general strategy for finding
applications of Theorem 2.5.20.

Given a principal S'-bundle 7 : P — %, over a closed surface ¥, of genus g, denote
by e(P) € H%(X;Z) the Euler class of P and by x(X) = 2 — 2g the Euler characteris-
tic. The classical Milnor-Wood inequality tells us exactly when P admits a foliation
transverse to the fibers:

Theorem 2.6.13 ([114]). Let P — X be a principal S*-bundle over a Riemann
surface of genus g = 1. Then there is a foliation H on P transverse to the fibers if
and only if

le(P)[E]] < —x(X) = 29 — 2.

As an immediate consequence we obtain that the unit cotangent bundle of a closed
surface ¥, for g > 1 admits a foliation # transverse to the fibers. Since all the leaves
of H are oriented surfaces, this foliation carries a leafwise symplectic form.

Proposition 2.6.14. The product foliation (ST*X, x S*,H x S?, wy + ws2) cannot
be approximated by contact structures.

Proof. Since ST*X, contains an embedded S' transverse to H, the product foliation
contains S' x S? as an almost CS-transversal and so cannot be approximated by
Proposition 2.4.8.

The following is a (sketch of the) proof using Theorem 2.5.20 instead. The product
foliation is taut and so any contact structure approximating it is tight. The tight
contact structures on circle bundles are classified, see [63, 64]. The arguments given
there show that they are all contactomorphic (through not isotopic to the identity
contactomorphisms) to the standard contact structure on the unit cotangent bundle.
Therefore, all the tight contact structures on ST*X, are orderable, as in Definition
2.5.14, and the conditions of Corollary 2.5.23 are satisfied. O

2.6.3 Open book decompositions

In this section we show that given a foliated manifold (M, F) and an almost CS-
submanifold (B, Fg), an approximation of Fg by contact structures can sometimes be
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extended to an approximation of F. More precisely, if the binding B of a (geometric)
open book decomposition of M admits a type II path of contact structures converging
to a foliation, then so does M.

Theorem 2.6.15. Let (B,7) be a (geometric) open book decomposition adapted to
(M, ), as in Definition 1.4.21, and Fp a unimodular foliation on B. Assume

(2631) apyt =79+ tap € Ql(B)

s a type 1l deformation of Fp into contact structures, as in Definition 2.2.9. Then
there exists a foliation F on M and a path of contact forms oy € QY(M), t € (0,1],
such that

(i) a1 = «, and oy is a type II deformation of F into contact structures;

(ii) F has a single closed leaf diffeomorphic to B x S', and coincides with ker
except on a small neighborhood of the binding;

(i1i) (B, m) is adapted to oy for allt >0, as in Definition 1.4.21.

Remark 2.6.16. The proof of the theorem shows that if ap; is a deformation of
type I, then a; can be chosen to be of type I, except on a small neighborhood of the
compact leaf B x S'. Since the compact leaf has trivial linear holonomy, this is to be
expected in light of Corollary 2.4.17. A

Proof. By Example 1.4.11 we can find a tubular neighborhood of the binding isomor-
phic to B x D?, on which a equals

a=f(a3+r2d9),

for f € C*(B x D?) satisfying f|pyxqo; = 1 and 0, f < 0 for r > 0. We fix such a
neighborhood for the rest of the proof.

By assumption Fpg is unimodular so there exists a positive function g € C*(B) such
that gvp is closed. Hence, multiplying ap; by g we can assume that yp as in Equa-
tion 2.6.3.1 is closed. Of course, if we multiply ap; then we are also required to
multiply a € Q'(M). However, the changed contact form still satisfies the compati-
bility conditions of Definition 1.4.21. Furthermore, since we will only need vg to be
closed on the interior of the tubular neighborhood B x D?, we can leave o unchanged
on M\(B x D?).

If vp is closed, the contact condition for ap+ = v + tap equals:
apt A o/g{tl =t"lyg A do/é_l +t"apg A do/é_l.

Thus, ap, is of type I if v A da%ﬁl > 0 (since ap is contact), while it is of type I
n—1

if and only if yp A day™ > 0.

Next we construct the foliation F on M. Choose functions p,¢,% : [0,1] — Rsq
satisfying

(i) ¢(r) > 0 for r € Op(1/2), and ¢(r) = 0 for r € Op(0) and r € Op(1);
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L reOp(0)

i > 0 f <1/2, 0,p <0 and = ;
(i) p(r) or r <1/2, 0;p <0 and p(r) {0 > 12

0 r<1/2

(iii) 9 (r) > 0 for r > 1/2, 0,4 > 0 and ¢(r) = {1 reOp(1)’

see Figure 2.1.

0 1/2 1

Figure 2.1: Functions p, ¢ and 1, satisfying the properties needed in the proof of
Theorem 2.6.15.

We define F := kery where
v = p(r)ys + ¢(r)dr + ¢(r)dd, e Q' (B x D?),

which is easily seen to satisfy v A dy = 0. We have p(1/2) = ¥(1/2) = 0 while
»(1/2) > 0 (and r = 1/2 is the only value with these properties), so that F has a
single compact leaf diffeomorphic to B x S'. Near the boundary of B x D? we have
v = df so v can smoothly extended to a global form on M by setting v := 7*(d6),
where by slight abuse of notation we also denote by 6 € S! the angle coordinate.

Hence, both «v and « are global forms on M and we define
ap = +ta, te]|0,1],
for which the contact condition equals:
(2.6.3.2) i Adal =t"y A da” + " a A da” +nt"a A da™ Tt A dy.
First note that on M\B x D? we have v = df, so the above equation becomes:

a; A dal = t"(1 —t)df A da™ + t" o A da™.
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The compatibility conditions of the open book imply df A da™ > 0, so a4 is of type
Ion M\(B x D?).

On B x D? we compute each summand of Equation 2.6.3.2 separately. As observed
at the beginning of the proof, we can assume that in this region

a= f(ag + r2de),

for a strictly positive function f € C®°(B x D?). Furthermore, f can be chosen to
satisfy 0, f <0 and 2f + fr > 0.

The first summand of Equation 2.6.3.2 equals:
yAada™ =nft1p (Zf + fr) vB Ado/é_l A (rdr) AdO—nf" ! fpap Ada%_l Adrade.

The properties of f imply that the first term is non-negative (or strictly positive on
r < 1/2 if ap, converges linearly ) and the second term is strictly positive. The
second summand of 2.6.3.2 is strictly positive since « is a contact form. For the third
summand we have:

anda™t Ady = —fprivs A da%ﬁldr AdO + fMbag A da%fl Adr A df.

Since p < 0, w > 0 and f > 0 both terms are non-negative (or strictly positive on
r>1/2if ap; converges linearly).

It follows that oy is a deformation of type II. Moreover, if ap ; is of type I then so is
ay away from r = 1/2.

Lastly, we compute the compatibility condition for c;. We have:
(2.6.3.3) da?ls, = —nt" L(1—t) "y aday t adr—nt" fP fag Adaly T Adr.

Since p < 0 and ¢ < 0 for r > 0, it follows that day|s, is an exact symplectic form
for all ¢ > 0. O

In dimension-3 the binding of an open book decomposition is a closed 1-dimensional
manifold, i.e. a union of circles. Hence, in this case the hypotheses of the above
theorem are automatically satisfied.

Corollary 2.6.17. Let & be a contact structure on a closed 3-manifold M. Then there
exists a foliation F on M admitting a type II deformation into contact structures
(Definition 2.2.9).

2.6.4 Products with T?

As shown by Bourgeois, see [10], the product of a contact manifold (M,¢) with a
genus-g surface ¥4, is again a contact manifold. In this section we use Bourgeois’ proof
to show that if M admits a foliation which can be deformed into a contact structures
then so does the product M x X,. We first consider the example S! x §? x T? in
Proposition 2.6.21, making the construction as explicit as possible. Then, we consider
the general case in Theorem 2.6.25.
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2.6.4.1 An explicit example

To describe the path of contact structures on S! x S?, we fix coordinates (z,7,6) €
S! x S? which are defined as follows. Let D? := D?(7) = R? be the disk of radius ,
endowed with polar coordinates (r,6). We view the sphere S? as the quotient D?/0D?
with induced coordinates (r,#) in which (0, 8) corresponds to the northpole and (7, §)
corresponds to the southpole. Furthermore let z € S! := R/27Z denote the standard
coordinate on the circle.

The Reeb component (S* xD?, Freep) (as in Example 1.5.5) can be explicitly described
as the kernel of

o := cos(r)dz + rsin(r)dr € Q' (S' x D*(7/2)) .

Indeed, not that at r = 7/2 we have o = 7/2dr so that the boundary is a compact
leaf. Similarly for r < 7/2 we have cos(r) > 0, so all the leaves on the interior are
open and diffeomorphic to S' x R2. Recall that by gluing two Reeb components ”with
a twist” one obtains the Reeb foliation on S?. Similarly, gluing two Reeb components
using the identity we obtain a foliation F on S' x S2, explicitely described as the
kernel of:

(2.6.4.1) 7 := cos(r)dz + r(m — r)sin(r)dr € Q*(S' x §?).

Furthermore, the standard overtwisted contact structure from Equation 2.5.2.1, in-
duces an (overtwisted) contact structure on S! x S? defined by the contact form:

(2.6.4.2) a := cos(r)dz + r(m — r)sin(r)dd e Q' (S! x §?).
As shown in the following lemma these forms produce a linear path of contact forms
on S' x S? converging to F.

Lemma 2.6.18. The foliation F on S' x S? from Equation 2.6.4.1, admits a type
I deformation (Definition 2.2.5) into contact structures. More precisely, the path of
contact forms defined by:

ay := cos(r)dz + r(m — r)sin(r) (dr + tdf), ¢e€[0,1],
defines a type I deformation of F.

Remark 2.6.19. Observe that even though F has a compact leaf diffeomorphic
T2, the linear holonomy is non-zero so that the above result does not contradict
Proposition 2.4.14. A

Proof. First observe that around r = 0 and r = 7 we have that r(m — r)sin(r) is
of order 7% and (7 — r)? respectively, so that «a; is well-defined. Furthermore, o is
essentially of the form 7 + t«, for which the contact condition equals:

+ta) A (dy + tda) = t(y A da+ a A dy) + 2a A da.
(v + ta) A (dy ) =1ty ol

Hence, to show «; it is of type I it suffices to show that v A daa + a A dy > 0. A
straight forward computation gives:

Y Aada+aady=((r—2r)sin(r)cos(r) + r(7m —r))dz A dr A df > 0.
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The contact structure on the product M x X, constructed in [16], depends on the
choice of an open book decomposition of M adapted to the contact structure. Hence,
to extend the path a; € Q'(M) defined above to the product, we need a single open
book decomposition of M, adapted to ay for each ¢ > 0.

Lemma 2.6.20. The open book decomposition of S' x S? defined by
B:=S'x{r=0,7}, w(z,r0):=0,

is adapted to ay for all t > 0, as in Definition 1.4.21.

Proof. The Reeb vector field of «y is given by:

—t(m — 2r)sin(r) + r(m — r) cos(r)) 0. — sin(r)0)
t((m = 2r) sin(r) cos(r) + r(x — 7))

R, =
Which is seen to be tangent to B and satisfy d6(R;) > 0. O

Since the open book decomposition is the same for all ¢ we can apply Bourgeois
construction [16], to obtain a 1-parameter family of contact structures on S' x §2 x T2,
As above denote by F the Reeb foliation on S' x S? from Equation 2.6.4.1.

Proposition 2.6.21. The product foliation F x T? on S' x S§? x T? admits a type
I deformation into contact structures. More precisely, for any constant ¢ # O the
family of 1-forms

Bt := oy + ctr(m —r) (sin(f)dz + cos(f)dy), te(0,1],

defines a type I deformation of F x TZ2.

Proof. The proof is the same as that in [16], using the open book decomposition given
by Lemma 2.6.20. The contact condition equals

Be A (dBy)? = 2% (r*(m — r)?sin(r) + r(m — r) (7 — 2r) cos(r)) dz Adr Adt Adz Ady,

which is positive for all ¢ > 0. [

Observe that the product foliation has a leaf T2 x T2 which does not admit an
exact symplectic structure. Hence, by Lemma 2.4.23 this foliation cannot be naively
approximated by contact structures.

Recall from Lemma 2.4.1, that a foliation which can be approximated by contact
structures (in Hyper(M)) must admit a leafwise almost CS-structure. The following
example, based on the previous lemma, shows that there are sequences of contact
structures converging in Hyper(M), but not converging in ACSHyper(M) to any
almost CS-structure on the limit foliation.

Proposition 2.6.22. On the manifold S' xS? xT? there exists an almost CS-foliation
(F,w) together with two sequences of contact structures &, (., k € N satisfying:
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(1) (&k,ce,) conformally converges to (F,w);

(ii) C converges to F in Hyper(M) but does not (conformally) converge to any
almost CS-structure on F;

(111) i can be chosen arbitrary close & as elements in Hyper(M).

Note that even though this example contains an almost CS-submanifold S! x S2, the
proof does not depend on Corollary 2.4.9.

Proof. Consider the foliation F from Proposition 2.6.21 which for ¢ = 1 gives a type
I deformation of F into contact structures. Hence, by Corollary 2.3.25 F admits an
(exact) leafwise CS-structure w which can be conformally approximated by contact
structures.

Observe that if the constant ¢ is chosen to be a function depending to ¢ which is
CP-close to 1, then (; := ker 3; is C°-close to & and converges to F in Hyper(M).
However, if ¢(t) does not converge for ¢ — 0, then neither does 8; A df;. In fact,
observe that

dB; = dag + te(t)d(r(x — r) (sin(f)dz + cos(6)dy)

and since only one of the summands depend on ¢(t), the conditions of Lemma 2.3.20
cannot be satisfied if ¢(¢) is chosen correctly. O

Remark 2.6.23. Observe that the proof above shows there exist ¢; := (X;,Y;),
i = 1,2 tangent to F, such that

dBr(X1, Y1)
dBi(X2,Y2)’

does not converge. Indeed, we can select the vector fields X;,Y; such that
dﬂt(leyl) >07 dﬁt(X27}/2) > 07

so that ¢; and ¢5 can be thought of as ”symplectic lines” for d5;. Furthermore we can
choose these lines such that ¢; is tangent to S x S? and ¢; is tangent to T?. Then their
ratio depends on c. As before, the proof follows by choosing ¢(t) non-converging. A

2.6.4.2 The general case

To state the general version of Proposition 2.6.21 we need the notion of a path of
contact forms adapted to an open book decomposition. The following definition looks
rather technical, since we need to require different properties depending on the type
of the path of contact forms. However, the conditions are completely analogous to
those in Definition 2.2.5 and Definition 2.2.9.

Definition 2.6.24. Let (B,m) be a (geometric) open book decomposition of M?"+1
and denote by df € QY (M\B) the pullback under 7 of the angular form on St. A
path of contact forms oy € QY (M), t € (0,1] is said to be adapted to the open book if



2.6. MORE EXAMPLES 201

for all t, we have that B is an almost CS-submanifold of (& := ker ay,dayle,), as in
Definition 2.4.4, and
day A df >0,

on M\B. Moreover, if o is:

(i) type I, as in Definition 2.2.5, then we additionally require
dal' A df =t""1f,Q,

for a volume form Q on M\B and a path of functions f; € C*(M\B) such that
fo is strictly positive.

(ii) type II, as in Definition 2.2.9, then we additionally require
dal A df =" fQ + t"g,Q,

for a volume form §, a non-negative function f € C®(M\B), and a path of
functions g; € C*(M\B) such that go is strictly positive.

Observe that if ker a; converges (in Hyper(M)) to a foliation F on M, then the above
conditions imply that F is transverse to B and hence induces a foliation Fp := FnTB
on the binding.

Theorem 2.6.25. Let (B,7) be an open book decomposition of M and ay, t € (0,1]
an adapted path of contact forms of type I (resp. type II), as in Definition 2.6.24.
Then M x ¥4, g = 1, admits a path of contact forms of type I (resp. type II)
converging to the product foliation

F x X,

Proof. We first prove the case ¥, = T2. Denote by ¢ = (¢1, $2) : M — R? the smooth
map constructed out of (B, ) as in [16]. Recall that this map has the property that

podp1 — p1dgy = 72d6,  déy A ddo = p A dFF A d,

where 7 : R2 — R is the radial coordinate multiplied with a suitable bump function,
such that 7 = r near 0 and 7 = 0 for » > € for some small ¢ > 0. Furthermore,
6 : R? — S' is the usual angle coordinate. If o is type I and adapted as in Definition
2.6.24, then we find:
(2.6.4.3)

By A dBy = Pt" fy (nPPQ A dz A dy +n(n—1)Qp A (FdF) A dO A dz A dy),

for a volume form Q on M\B, a volume form Qp on B and a path f; € C*(M) such
that fj is strictly positive. Hence, it suffices to show that

ni?Q A dz A dy + n(n — 1)Qpw A (7FdF) A df A dz A dy,

defines a positive volume form on M. To see this, observe that the first summand is
non-negative and vanishes only at points in B, while the second summand is positive
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at points in B and vanishes away from B. The computation for the case that a; is
type II is completely analogous.

Note that, the contact forms 3; are T2-invariant and each M x {(x¢,%0)}, (70, %0) € T?)
is an almost CS-submanifold, as in Definition 2.4.4. The general case follows from
Proposition 2.6.28 below, since ¥, for g > 1 can be expressed as a branched cover of
T? with downstairs branching locus a finite set of points. O

Corollary 2.6.26. Let (B, ) be an open book decomposition of M, and « an adapted
contact form, as in Definition 1.4.21, and Fp := keryp a unimodular foliation on
B. Assume that

ap: =Yg +tape 0Y(B),
is a type II deformation of Fp into contact structures, as in Definition 2.2.9. Then,

the product foliation
F x X,

on M x X, (where F is the foliation on M from Theorem 2.6.15) admits a type II
deformation into contact structures.

Proof. The proof is the same as that of Theorem 2.6.25, using the family of contact
forms ay, t € [0,1] on M, as constructed in Theorem 2.6.15. In this case, Equation
2.6.4.3 becomes:

BendBl = nc?t?dat A(72d0) Adz Ady+n(n—1)c*t2ap Ada 2 A (FAF) AdO Adx Ady.
We compute both summands separately. The first summand equals:
—n(n — 1) fr272 (tnﬁ’YB + t"“fozB) Ada 2 Adr A df A da A dy.

As in the proof of Theorem 2.6.15, the path ap; being of type II implies that vp A

da%_2 > 0. Furthermore, we have p < 0 and f < 0 by definition. Hence, £, is of type
II away from B x T? and is of type I precisely when ap ; is.

The second summand equals:
n(n — 1" (L =) f" 2pyp +tf* tap) A daly? A7di A df A da A dy.

Reasoning as before, we see that if y5 A da’f;2 > 0 then (; defines a path of contact
forms of type I on B x T?. If we only have v5 A do/éf2 > 0 then the path is of type
IT provided that g dominates g, which can easily be arranged by rescaling by a
constant. O

2.6.5 Branched covers

To complete the proof of Theorem 2.6.25, we show that a type I/type II deformation
can be lifted along branched covers. Recall that a branched cover is a smooth map
f: M — N between manifolds of the same dimension which is locally equivalent to
the map

(2.6.5.1) pe: D? x [-1,1]™72 - D? x [-1,1]™72,  (z,t) — (F,1),
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for some k£ € N. More precisely, each y € N has a neighborhood V such that for each
connected component U < f~1(V) there exists k € N and a commutative diagram:

D2 % [_17 1]m—2 ~ U

lpk Jf\U

D2 x [1,1]""2 «>— V

It follows that the sets No := {y € N | k(y) > 1} and My := f~!(Np) are codimension-
2 submanifolds which we call the downstairs and the upstairs branching set
respectively.

Theorem 2.6.27 ( [52]). Let (N, &) be a contact manifold and f : M — N a branched
cover for which the downstairs branching set Ng © N is a contact submanifold. Then
M admits a contact form oy whose kernel agrees with f*& outside a neighborhood
of the upstairs branching set M.

We recall from [52] the construction of the contact form on M. If £ = keray then
a = f*ay is a contact form on M\My and a|7p, is a contact form on My. Let r
be a fiberwise radial coordinate on v(Mj) and identify the disk-bundle v(d) := {r <
0} < v(My) with a tubular neighborhood of My of radius ¢. Let v be a connection
1-form on the S'-bundle associated to the normal bundle v(My) — My and p(r) a
smooth bump function satisfying p(r) = 1 near 0 and p(r) = 0 for r > §. Then

ayr = Ca+ p(r)riy,

for C' > 0 large enough, defines a contact form on M. From this description the proof
of the following is almost immediate.

Proposition 2.6.28. Let F := ker Sy be a foliation on N with modular form py €
QYN), and

ant = 6N+tOéN, te [0,1],
a type I deformation of F into contact forms. If f: M — N is a branched cover for
which the downstairs branching set is an almost CS-submanifold of (F,d,yan), asin
Theorem 2.2.13, then the pullback foliation Fpy := f*F admits a type I deformation
into contact structures. Moreover, ay = f*(an,) outside a neighborhood of M.

Proof. Note that if the downstairs branching set Ny is an almost CS-submanifold of
(F,duyan), then it is in particular a foliated submanifold of (NN, F). Hence, from
Equation 2.6.5.1 it is clear that fAJF and so the pullback foliation Fj; is well-defined.
Denote 8 := f*Bn, p:= f*un, a:= f*ay and let p and v be as above. For a large
constant C' > 0 define

(2.6.5.2) i = B+ tCa+ tp(r)r?y, te[0,1].
A direct computation shows that

(2.6.5.3) azaday = t"C"BAd,a+t"C" (rp+2p)BAad, o™ Ardr Ay +O(r? 1),
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where O(r?,t"*1) consists of all terms containing either r2 or t"*1. Observe that 8 A
d,a™ is a positive volume form on M\M, and non-negative on My. Furthermore, 5 A
d,a" ! Ardr A7 is a positive volume form on T'M |y, and zero outside a neighborhood
of My. Hence, for C > 0 large enough a; A dal = t" vol +O(¢"*1) showing «; is of
type L O

Remark 2.6.29. Although the above result is stated for type I deformations, the
same proof also works for paths of type II with the following changes.

If an, is a type II path of contact forms on N then there is no induced almost CS-
structure on Fy. Instead of requiring that Ny is an almost CS-submanifold of
(F,duyan), we require that Ny is an almost CS-submanifold of an for all ¢ > 0.
Then, a similar computation as in the above proof shows that «;, defined as in Equa-
tion 2.6.5.2 is a type II deformation of F := f*Fx into contact structures.

A

2.6.6 Mapping tori

In this section we give a construction that produces type I deformations in any di-
mension. The construction is based on [51] where it is shown that any product M x St
with dim M = 4 admits a contact structure. In fact, we use exactly the same contact
structure constructed there and show it is part of a type I deformation.

Recall from Section 1.4.4 and Section 1.7.1, that the outside component of an adapted
(geometric) open book decomposition (B, ) of a manifold M, comes with a fibration
7 : M\B — S', and admits both a contact structure and a symplectic foliation. As
in Section 1.8 we can try to extend these structures to the whole of M and deform
them into each other.

Here, we consider two outside components and glue them along their boundaries,
forgetting about the binding of the open book. This produces a fibration (or map-
ping torus) over S, whose total space admits a CS-foliation together with a type I
deformation into contact structures.

Definition 2.6.30. A Liouville domain (W,\) consists of an exact symplectic
manifold such that Maw defines a contact form on OW.
The Liouville manifold plays the role of the page of an (abstract) open book decom-

position as in Definition 1.4.25.

Theorem 2.6.31. Let (W;,\;), i = 1,2 be Liouville domains with the same con-
tact boundary (B := W B := N|ow,). Furthermore, let f; : W; — W; be exact
symplectomorphisms which are the identity near the boundary, and define

M:=W;upBx[-1,1]ugW,, f:=fiuidu fo: M = M.
Then the resulting mapping torus
X =M x[0,1]/(z,1) ~ (f(2),0)

admits a foliation F together with a type I deformation into contact structures. More-
over, F has one compact leaf diffeomorphic to B x S'.
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There are plenty manifolds which admit a decomposition as in the theorem. In
particular, examples exist in any dimension, and the argument in [54] shows that any
manifold M x S' with dim M = 4 is of this form.

Proof. The mapping torus X; := Wj x [0, 1]/ ~ with return map f;, admits a contact
structure using the standard construction for open books. That is, we let p : [0,1] —
[0,1] be a smooth bump function such that p|jp.; = 1 and p|j;_. 17 = 0. Then,

Ao = p(0)fF(M1) + (1 — p(0)) A1,

makes each fiber of 7, : X; — S! into a Liouville domain with boundary (B, 3). For
C > 0 big enough,
oy = /\1,9 + C’d&,

defines a positive contact form on X;. Similarly, we use Wy to define a mapping
torus Xo with the contact form

Qo 1= /\2,9 — Cdeé.

Since f; is assumed to be the identity near the boundary, we can find collar neigh-
borhoods (1 — &, —1] x B of dW; on which \; = e"*!3. Choose smooth functions
fig,h,0: (=1 —¢,1+¢] — R satisfying:

(i) f is an even function with f(r) = ¢"*! near (1 —¢, —1];

(ii) h,g is are odd functions with h(r) = 1 near (—1 — g, —1];
(iii) fh— fh>0;
(iv) £(0) > 0 when h = 0,
see Figure 2.2. Note that there is a lot of freedom in choosing ¢. Indeed, since for
linear convergence, the choice of g does not matter, and is only needed to ensure that

the formula for a given below, is smooth However, it is still useful to keep precise
track of g as it in turn allows us freedom in choosing h, see Corollary 2.6.32 below.

We now define a contact structure by
)\1,9 + Cdé on X1

a:=< fB+gCdl on (—1—¢e,1+¢)x B xS!
Ag,g—CdG 0nX2

We also define a foliation by

do on X1
7:=< h(r)dd + £(r)dr on (—1—¢,1+¢)x B xS!
—deo on X,
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f=t
-
1

Figure 2.2: Functions f,g,h, and ¢ satisfying the properties needed in the proof of
Theorem 2.6.31.

and consider a; := 7 + ta. Computing the contact condition for a; we find:

tn(t + h — h)do A dAT, on X,
ay A daj = tnfrt (f(tg +h)— f(tg + h)) dr ABAdB" ' Adf on X
t"(—t + h — h)do A dAg, on X,

where X := (=1 —¢,1+4+¢) x B xS'. To check that oy is of type I only the terms
containing t"™ matter, and with the functions f, g, h satisfying the above conditions
each such term is strictly positive for ¢ > 0. O

Observe that the condition fh — fh > 0 in the proof of the above theorem implies
that h has a single zero at the origin. This means that the foliation F := ker 7 has a
single compact leaf given by B x S!. Choose ¢ to be an odd function with g(r) = 1
near (—1 — ¢, —1] and also satisfying fg — fg > 0. Then, a; = 7 + ta is still contact
for all t > 0 even if ffz - fh = 0. In particular, we can choose h|[_s 5 = 0,for some
small § > 0. This implies that on [—6,5] x B x S! « X we have

U {r} x B x S

re[—6,6]

These leaves are compact and have no linear holonomy so that Corollary 2.4.17 implies
that the deformation cannot be of type I. This can also be seen directly from the
formulas in the above proof since fh — fh = 0 implies that only terms with ¢"+!
survive.

On the other hand, it can be checked that (& := keray,dayle,) still conformally
converges. Define A € Q'(X) by Ax, = Aig, t = 1,2, and A[(1_c,14e)xBxst = [B. It
is clear that dggA defines a leafwise CS-structure on X; and on (1—¢,1+¢) x B x St
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this follows from:
7 A dag(fB)" = nf" " (fh + fO)drB A dB"! A dO > 0.
A straightforward computation shows that
7 Adagar = tT AdagA, te[0,1]

showing that Definition 2.3.23 is satisfied. Although, dq¢A is an exact CS-form, df
does not represent the modular class of F so that Theorem 2.2.13 does not apply.

Corollary 2.6.32. In every dimension there exist exact CS-foliations which can be
conformally approximated but whose underlying foliation does not admit a type I
deformation into contact structures.

2.7 Preservation of structures in the limit

2.7.1 Taut versus tight.

The goal of this section is to show that with the right definitions the proof of the
following 3—dimensional statement goes through in higher dimensions:

Proposition 2.7.1 ([17]). In dimension 3, any contact structure C°-close to a taut
foliation, see Definition 2.4.21, is tight, as in Definition 2.5.26.

Recall from Definition 2.4.22 that a foliation F on M?2"*! is called strong symplectic
if there exists a globally closed form w € Q2(M) which is symplectic on the leaves of
F. This generalizes the notion of a taut foliation in dimension 3. As we have seen in
Chapter 1, contact structures and (symplectic) foliations often show up as boundaries
of symplectic manifolds. For confoliations we have the following:

Definition 2.7.2. A confoliation & on a 3-dimensional manifold M is said to be:

(i) Weakly fillable if there exist a compact symplectic manifold (W*,w) such that
M = 0W, and the restriction wp := w|pr satisfies:

wa|5 > 0.

(ii) Weakly semi-fillable if it is the connected component of fillable confoliated
manifold.

In particular, if £ is a contact structure then these definitions coincide with the usual
notions of weakly (semi-)fillability.

Remark 2.7.3. To avoid confusion about the terminology, recall that for a (3-
dimensional) contact manifold one usually considers two types of fillings by a sym-
plectic manifold. The notion of a weak symplectic filling is as in the above definition,
while we say that (W,w) is a strong symplectic filling if M = 0W, and there
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exists a Liouville vectorfield X € X(W), transverse to the boundary (and pointing
outwards) such that
€ =kerixw|y.

This also implies that £ is dominated by w by which we mean that
wa|5 > 0.

Note that by Lemma 1.2.14 this just means that (M,w) has contact type boundary
as in Definition 1.2.9, and the induced contact structure is €. A

The notion of weak fillability of contact structures was generalized to higher dimen-
sions in [85] and also makes sense for almost CS distributions whose coefficient line
bundle is trivial. That is, for the rest of this section we work with ACSHyper(M,R)
which denotes ACSHyper(M, L) with L = M x R. We also assume, for the rest of
this section, that M is compact.

Definition 2.7.4. An almost CS-hyperplane field (&, u) € ACSHyper(M,R) on a
manifold M?**~1 is said to be:

(i) Weakly fillable if there exists a symplectic manifold (W?",w) such that M =
OW and the restriction wy := w|p satisfies

(2.7.1.1) (wale +tw)" " >0,
for allt > 0;

(ii) Weakly semi-fillable when it is a connected component of a weakly fillable
almost CS-manifold.

Theorem 2.7.5. Any contact structure sufficiently close to a strong symplectic fo-
liation, in the compact-open topology on ACSHyper(M,R), is tight (as in Definition
2.5.26).

Proof. By Lemma 2.7.6 below, any strong symplectic foliation is weakly semi-fillable.
Observe that this is an open condition in the space of almost CS-hyperplane fields.
That is if Equation 2.7.1.1 is satisfied for some (£, 1) and w, then it is also satisfied
for (E ,It) and w, provided that the almost CS-hyperplane fields are sufficiently close
in the compact-open topology.

Thus, if a contact structure is sufficiently close to a strong symplectic foliation then
it is weakly semi-fillable. It is shown in [85] that, analogous to the 3-dimensional
case, any weakly fillable contact manifold is tight. Hence, the same holds for weakly
semi-fillable contact manifolds, completing the proof. O

Lemma 2.7.6. Let (F,w) be a strong symplectic foliation on M, then it is weakly
semi-fillable.

Proof. Let F = ker a be such that & Aw™ > 0 on M. Then consider W := M x [0, 1]
endowed with the closed 2—form @ := d(t«) + ew. For £ > 0 small enough this is a
symplectic manifold. We have 0W = M x {1} u M x {0} as oriented boundaries. We
extend F by F = ker —a on M x {0}. Then, since da|z = 0 we have &|r = w and
the condition of weak semi-fillability is satisfied. O
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From the above observations the following is immediate:

Proposition 2.7.7. Any contact structure sufficiently close to a strong symplectic
foliation (in the compact-open topology on ACSHyper(M,R)) is tight.

Proof. The weak filling condition is open in ACSHyper(M) (with the compact-open
topology). Hence, by Lemma 2.7.6, any contact structure sufficiently close to a strong
sympletic foliation is weakly semi-fillable. As remarked above this implies the contact
structure is tight. O

2.7.2 Non weakly fillable CS-foliations

Consider a CS-foliation (F,pu) on M?"~1 and (W,w) a symplectic manifold. Anal-
ogous to the 3-dimensional case from Remark 2.7.3, if (W,w) is a strong filling of
(F, p) then it follows that w dominates F, meaning that

w”*1|f > 0.

Hence, in this case (F,w) is a tame symplectic foliation as in Definition 2.4.22. Such
foliations are quite rare, so that there are many CS-foliations which are not strongly
fillable. For example, the product foliation of the Reeb foliation with T2,

(S* x T2, F := Fpee» x T?),

is not taut and hence not strong symplectically fillable.

If we consider instead weak symplectic fillability, as in Definition 2.7.4, then these
obvious obstructions vanish. Nevertheless we have the following:

Theorem 2.7.8. There exist almost CS-foliations (in dimension = 5) which are not
weakly fillable.

The idea is to use the result from [35] saying that weakly fillable contact structures
are tight as in Definition 2.5.26. As observed in the previous section, weak fillability is
an open condition in ACSHyper(M,R). Hence, it suffices to construct a almost CS-
foliation which can be approximated by overtwisted contact structures. To construct
the required contact structures, we use that for a branched cover with high enough
branching degree the total space admits an overtwisted contact structure. The precise
proof is as follows:

Proof. Consider the type I deformation a4, t € (0,1], on N := S' x §? x T? from
Proposition 2.6.21. As shown there a; converges to the product foliation F := F x T2
with F as in Equation 2.6.4.1. Furthermore, for each z € T?, we have that

N, :=S' x §% x {z}

is an almost CS-submanifold of an . Using Gray stability we see that the induced
contact forms, denoted by an, +, are contactomorphic to the one in Equation 2.6.4.2
and hence overtwisted.
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Let f : M — N x T? be a branched cover with branching locus N, for a fixed = € T?,
and branching degree k. By Proposition 2.6.28, the pullback foliation f*(F x T?) on
M admits a type I deformation ;.

The normal bundle v(Mj) of the upstairs branching set is a fiberwise k—fold covering
of the trivial normal bundle of M, := f~!(N,) © M x T2. Hence, in fiber coordinates
(r,0) € R?, the form v := kdf is a connection 1-form on v(My).

For € > 0 we define the e-neighborhood of the upstairs branching set:
Ve(Mp) := {r < e} < v(My).

Furthermore, in the notation of Proposition 2.6.28, assume Fy := ker Sy, and denote
B = f*(Bn) and o := f*(an,1). Then, for € small enough, the explicit description
of the family of contact forms from Equation 2.6.5.2 becomes:

ay = B + tCa + thrd.
Note that the constant C > 0 is independent of € and k. Define
ars = s(B+tCa) + (1 —s)(B + tCa)|a, + thr?dd, t,se[0,1].

The computation of the contact condition in Equation 2.6.5.3 shows that oy s is
contact for all (¢,s) € (0,1] x [0,1] on a neighborhood of M. Hence by Gray stability
oy = oy 1 is contactomorphic to oy .

Since (8 +tCa)|m, is contactomorphic to ay, + on the almost CS-submanifold down-
stairs branching set N, which is overtwisted, there exist an embedding ¢ : (R?, apy) —
(Mo, ot 1|, ) whose image we denote by U := ¢(R?). Restricting the normal bundle
to U we have v.(My)|y ~ Uy x D?(e), with coordinates (z,7,6). The map

r
vk’
satisfies ®* (1) = aor + r*df. Since, the choice of € is independent of k, we can

pick k » € as large as we want. Then, the main theorem in [26] shows that a1 is
overtwisted concluding the proof. O

D : R x D2(Vke) = ve(Mo)|y, (z,7,0) — ((x), —=, 0),

Remark 2.7.9. Although we used the concrete example S' xS? x T? from Proposition
2.6.21, the above proof holds more generally. Indeed, as observed in Remark 2.6.29,
the result of Proposition 2.6.28 holds also for type II deformations and paths in
ACSHyper(M,R). To run the above argument for these types of approximations
we need a path of contact structures & on a manifold N converging to a foliation
F, together with an almost CS-submanifold Ng ¢ N of &, for which the induced
contact structure &y, ¢ 1= &|n, is overtwisted. Then we can use Ny as the downstairs
branching locus of a branched cover f : M — N with sufficiently high branching
degree. Such examples can be constructed for example using Theorem 2.6.31. A
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3.1 Overview

This chapter is based on work in progress with A. del Pino. We study the h-principle
technique of wrinkling in the setting of jet spaces. Recall that given a (fiber) bundle
over a manifold 7 : X — M, the r-th jet bundle J"(X) — M is the space of r-order
derivatives of sections of X. For a more concrete description consider a function
f:R — R (i.e a section of the trivial bundle 7 : R? — R). Its r-order jet, denoted

by j" f, is the tuple
df d"f
<t’f(t)’dt’”" dﬂ”)’ teR.

The space of all such tuples, where we think of the derivatives as independent vari-
ables, is precisely the jet space J"(R?).

In general, given a section o of J"(X) there is no o € I'(X) such that o = j"s. When
such an s exists, o is called holonomic. We can detect if a section is holonomic using
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the Cartan distribution &.., on J"(X). It is uniquely defined by the property that a
section is holonomic if and only if it its image is tangent to &.qp.

This provides a natural framework to study (partial) differential equations. Indeed,
a differential equation R is a subset of J"(X). Its space of solutions Sol(R) (resp.
formal solutions Sol/ (R)) equals the space of holonomic sections (resp. sections) of
J"(X) whose image lies in R. Furthermore, there is a natural inclusion map

1 : Sol(R) — Sol’ (R)).

The theory of h-principles aims to study this map on the level of homotopy. In
particular we say that R satisfies the h-principle if ¢ induces an isomorphism on
homotopy groups.

Proving h-principles on open and closed manifolds requires different techniques. For
open manifolds, many h-principle results are based on the holonomic approximation
theorem, [60, 43]. On closed manifolds the so called wrinkling technique, introduced
by Eliashberg and Mishashev in [40, 42, 41], is particularly useful. Our aim is to
apply wrinkling to the study of submanifolds of jet spaces tangent to the Cartan
distribution.Note that (images of) sections are examples of such submanifolds.

In the first three sections we discuss the necessary background material on jet spaces
and the h-principle. More precisely, in Section 3.2 we recall some basic properties of
(bracket generating) distributions. Most notably, we discuss in detail the coordinate
description of the Cartan distribution, and the linear algebra necessary to manipulate
integral submanifolds. In Section 3.3 we review the Thom-Boardman stratification
of jet spaces and the notion of stability for singularities. We then introduce several
classes of singularities we want to work with, including wrinkles. In Section 3.4
we give a brief overview of the h-principle. In particular we review the holonomic
approximation theorem and the wrinkling method.

In Section 3.5 we introduce the integral Grassmannian of jet spaces Grintegral (§can; ()-
It is the space of [-dimensional subspaces of £..,. Given an integral immersion of a
submanifold f : N — J"(X) there is an associated Gauss map:

Gr(f) N — Grintegral(£can)7

sending a point x € N to the integral element (df).(T:N) © &can, f(2)- Such maps can
be interpeted as “formal integral submanifolds”. Hence, understanding Grintegral (§can)
and its homotopy type is key. Note that most of the arguments in this section are
somewhat sketchy, and a precise discussion of the material is left for future work.

The last three sections form the central part of the chapter. In Section 3.6 we define
multi-sections of jet bundles. Roughly speaking an (r-times differentiable) multi-
section is a smooth map f : N — J"(X) which is graphical over M on an open
dense set, and whose non-graphical part consists of mild singularities. Multi-sections
of jet spaces can (in some sense) be integrated and differentiated. Hence they can
be recovered from their image under certain projections (which remember only some
of the derivatives). This is similar to the way Legendrian knots can be recovered
from their Lagrangian projection. We describe the analogue of this projection in the
setting of general jet spaces, and show it provides a convenient way of manipulating
multi-sections.
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In Section 3.7 we discuss the singularities needed for our applications. We give explicit
descriptions of the singularities in coordinates, as well as their images under the
various projections mentioned before. Next, we recall Givental’s theorem (Theorem
3.7.5) and use it to conclude that our singularities are stable.

Lastly, Section 3.8 contains the proof of our main result:

Theorem (3.8.2). Let o0 : M — J"(X — M) be an arbitrary section. Then, for any
e > 0, there exists a map f : M — J"(X — M) satisfying:

e f is a holonomic multi-section with fold singularities (in zig-zag position);

o |f—oleo <e.

This is the analogue of holonomic approximation for multi-sections on closed man-
ifolds. Since multi-sections are in particular (singular) integral submanifolds of the
Cartan distribution, this theorem is a first step towards a general h-principle for
integral submanifolds of jet space.

3.2 Overview: Distributions and jet spaces

In this section we review some standard material from the theory of distributions
(Subsection 3.2.1), focusing on the particular case of jet spaces (Subsection 3.2.2). A
lot of what we do is needed simply to set up notation.

Throughout this chapter, we work in the smooth category. Given a subset K of a
topological space M, we denote by Op(K) an unspecified neighbourhood of K, whose
size is not important as long as it is sufficiently small.

3.2.1 Basics of distributions

The main objects of interest in this chapter are distributions. However, unlike
the previous chapters, here we also consider distributions which are not necessar-
ily codimension-1. Recall that by a distribution we mean:

Definition 3.2.1. Let M be a manifold. A (tangent) distribution & of rank k is a
section of the Grassmann bundle of k-planes Gr(TM, k) — M.

We will look at differential invariants of distributions and at the submanifolds tangent
to them. The reader may want to further refer to standard references [90, Chapters
2 and 4],[21], and [55].

3.2.1.1 The Lie flag

The vector fields T'(§) tangent to £ are a C*-submodule of the space of all vector
fields of M. Therefore, it is natural to analyse to what extent this subspace fails
to be a Lie subalgebra (with respect to the Lie bracket of vector fields), as we now
describe.
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Definition 3.2.2. Define a sequence of C®-modules of vector fields using the induc-
tive formula:

D) = [1(¢), ()]

The rightmost expression denotes taking the C®-span of all Lie brackets with entries
in T(€) and T(£D).

The Lie flag associated to £ is the sequence
5(0) =£C 5(1) c 5(2) c...
where £ is the pointwise span of T'(€().

Remark 3.2.3. In general T'(¢€(+1)) as defined above is only a C*-module of vector
fields, and not necessarily the module of sections of a distribution as the notation
suggests. In particular, unlike & the rank of £ may depend on the basepoint, so it
may fail to be a distribution. The precise condition for this to happen is given by the
Serre-Swan theorem; On a connected manifold M a C*-submodule I' ¢ X(M) is the
space of sections of a distribution £ < T'M if and only if it is finitely generated and
projective. A

Unless explicitly stated otherwise, we will always assume that all the entries in the
Lie flag are distributions. Under this assumption the Lie flag stabilizes after finitely
many steps since the ranké(® < dim M. That is, €7D = £ for some smallest r
and thus for all subsequent integers. We can then define:

Definition 3.2.4. The growth vector of £ is the sequence of integers

(rank(¢©), ... rank(¢™M)).

When writing a growth vector or a Lie flag, we just write the terms until it stabilizes.

Example 3.2.5. On R?® with coordinates (z,v,z2), consider the standard contact
structure
ot :=ker(dz — ydz) = (0, Y0, + 0u).

Since
[0y, Y0 + Oy] = 0,

it follows that £(1) = TM. This is true for any contact structure, since the curvature
ce A2¢ — TM /€ being non-degenerate implies that €M) = TM. Note however that
the converse is not true. AN

Example 3.2.6. On R? with coordinates (z,y,2), the Martinet distribution is
defined by
¢ := ker(dz — y?dz) = (0,90, + 0.

Observe that
[ay; y2az + aa:] = yaza [aya [ayaQQaz + a;p]] = 0,.

It follows that away from the hypersurface {y = 0}, this distribution is contact and
€D — TM. At points in the hypersurface we need to take two brackets to span
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TM, and we growth vector equals (2,2,3). Thus, in this case £ does not define a
distribution (of constant rank). Analogously, for any k € N we can define

& = ker(dz — yFdz),

which defines a contact structure away from the hypersurface {y = 0}, and stabilizer
after k steps at points in the hypersurface. A

Example 3.2.7. On R* with coordinates (z,y, z, w), the standard Engel structure
is defined as

& := ker(dz — ydz) nker(dy — wdz) = (0w, 0y + y0. + w0y).
Thus £ is a (smooth) rank-2 distribution, and its Lie flag equals:
€W = (0w, 0p +40:,0y), €% = (00, 04,0y, 0:) = TM,

so that the growth vector equals (2, 3,4). A

3.2.1.2 Involutive vs. bracket-generating

By definition, I'(¢) is a Lie subalgebra if and only if T'(¢(M)) = [['(¢),T(¢)] = T'(¢).
That is, if and only if the associated Lie flag (or, identically, the growth vector) is
constant. Such a ¢ is said to be involutive. A related notion is that of integrability:
there exists a partition of the ambient manifold M into submanifolds of dimension
k = rank(¢) all of which are integral, that is, everywhere tangent to £. Recall
that Frobenius theorem states that involutivity of a distribution is equivalent to
integrability. The growth vector is, therefore, a measure of the non-integrability of &.

For us, the more interesting case is the complete opposite: £ is said to be bracket-
generating if, for some integer r, it holds that £") = TM; i.e. I'(£) generates, as
an algebra, the space of all vector fields. In particular, all the examples given above
are bracket-generating. A well-known theorem of Chow states that any two points in
M can be connected by a path tangent to £ if £ is bracket-generating. This can be
regarded as the first result showing that submanifolds tangent to bracket-generating
distributions behave flexibly. The present chapter goes also in this direction following
an h-principle approach.

3.2.1.3 Curvature and nilpotentisation

We can define additional invariants of ¢ that measure its non-integrability in a more
refined manner. They are defined as follows: by construction, there is a map between

sections
F(f(i)) x F(g(j)) N r(f(i+j+1)/£(i+j))

induced by Lie bracket. It can be checked that this map is C®-linear, letting us write:

Definition 3.2.8. The (i,j)-curvature of £ is the tensor:

Qi5(6) €0 /=1 o () eG=1) , g(i4i+1) Je (i)
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Explicitly, the curvature Qg o(€) : A2¢ — T'M /¢ is defined on section by
Qo,0(€) : L(§) x I'(x) > D(TM/E), (X,Y)— [X,Y]mod&.

If £ is corank-1, this is just the curvature ¢ € Q?(&, TM/€). By Koszul’s formula this
map is uniquely defined by the formula:

aoQpo=dalg, Yaeael((TM/E*).
Equivalently, the dual map is defined by:
030 : TO(TM/€)*) - D(A*€¥),  a— dale.

Again, it can be checked that these maps are C®-linear, and induce maps on the level
of vector bundles.

To put all the curvatures together in a more algebraic fashion we recall the notion of
a bundle of Lie algebras:

Definition 3.2.9. A bundle of Lie algebras is a pair (E,[-,-]) consisting of a
vector bundle ™ : E — M together with a section [-,-] € T(A’E* ® E), such that for
each x € M the restriction

['a ]x : Ea: X Ew e va
defines a Lie bracket on the vector space E,.

Remark 3.2.10. The above definition should not be confused with the more restric-
tive Lie algebra bundle. In the latter case on additionally requires that for each
x € M there exists an isomorphism of bundles of Lie algebras

o (E’ ['7 '])|O;D(<T) - ((’)p(m) x L, ['7 ']L)a

for a fixed Lie algebra (L, [-,-]r). Hence, every Lie algebra bundles is a bundle of Lie
algebras but not conversely. A

We can endow the graded vector bundle
L&) i= Do L(&)i i= ®_o(§ /6 ) = c@ (€W /) @ @ (67 /€ Y)
with a fibrewise graded Lie bracket (&) = @; ;€2 ;(§).

Definition 3.2.11. The pair (L(£),Q(€)) is a bundle of fibrewise graded Lie algebras
called the nilpotentisation of &.

Note that the graded Lie algebras on each fibre may not be pairwise isomorphic (but
they will be in the cases we care about). The nilpotentisation should be thought as
a linearisation of &: it packages the infinitesimal behaviour of £ under Lie bracket at
each point of the manifold.
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3.2.1.4 Integral elements and submanifolds

Fix a manifold (M, &) endowed with a distribution (the precise nature of the distri-
butions £ we want to consider will be explained in the next Subsection).

We are interested in maps and submanifolds tangent to &:

Definition 3.2.12. Let M be a manifold endowed with a distribution &. We say that:

e A map f: N — M is integral if df (TN) c &;
o A submanifold N < M is integral if TN c &.

It is immediate that the first curvature Qg o(£) vanishes when restricted to an integral
submanifold. This leads us to consider the subspaces of T'M that might potentially
be tangent to one of them:

Definition 3.2.13. An integral element is an I-dimensional linear subspace W
& < Tp,M, for some p e M, such that:

Q0,0(&)plw = 0.

The collection Gripgegral(€p, ) of all of them, which is a subset of the usual Grassman-
nian of [-planes Gr(¢,,!) < Gr(T,M,!), is called the integral Grassmannian. The
union of all these subsets for every point p € M is denoted by Grintegrai(€,1); we call
it the integral Grassmannian bundle. This name might be misleading: the fibres
Grintegral (§p, 1) are algebraic subvarieties of Gr(T,M, 1) which often are not smooth.
We shall study this in depth in Section 3.5.

For our purposes, it will be necessary to see how integral Grassmannians relate to
one another. More precisely, given an integral element W < §, of dimension I, we
may consider the subset of Grintegral(§p,!) consisting of those I-dimensional integral
elements that contain it. We denote this by Grintegrai(§p,1; W). Related to this we
have:

Definition 3.2.14. The polar space of an integral element W < &, is

VVf = {7) € fp ‘ QO,O(g)LD(w>’U) = 07 Vw € W} < 517'

That is, the linear subspace of all those vectors in £, which yield zero when paired
with W using the curvature. Since W is integral, W& contains W. Tautologically,
extensions of W to an integral element of dimension dim(W)+1 are in correspondence
with lines in the quotient W¢/W.

An element is said to be maximal if W = WS¢, ie. if it is not contained in a
larger integral element. Similarly, an integral submanifold N < (M,¢) is (locally)
maximal if the germ of IV at any of its points cannot be extended to an integral
submanifold of greater dimension. It is immediate that if 7},/V is a maximal integral
element, IV itself is maximal at p. The converse is not necessarily true, as shown by
Example 3.2.6
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Definition 3.2.15. A vector w satisfying (w)s = &, is called a Cauchy character-
1stic.

The linear subspace spanned by all the Cauchy characteristics is an integral element
denoted by ker(&,).

If the dimension of ker(¢,,) does not vary with p € M, then their union is a distribution
ker(§) < £ that we call the characteristic foliation of £&. As the name suggests,
a simple computation using the Jacobi identity shows that ker(£) is involutive. Its
leaves are integral submanifolds.

It is immediate that any local diffeomorphism preserving £ must preserve ker(£).
Similarly, its differential can identify two vectors tangent to £ only if their polar
spaces have the same dimension. We will exploit these facts in the next subsection.

Example 3.2.16. Let (M, &) be a contact manifold. Then the curvature g (&)
is a nondegenerate form on ¢ with values on TM /€. Indeed, as in Chapter 2, if «
represents &, then we have a0 Qg o(€) = —dav.

For a subspace W < &, to be isotropic is the same as being integrali.e. W < W&, The
polar space W¢ is the usual symplectic orthogonal. The integral Grassmannians
are thus the same as the Grassmannians of isotropic subspaces. In particular, for
maximal integral elements we look at the Lagrangian Grassmannian. A

3.2.2 Basics of jet spaces

We now recall some elementary notions about jet spaces, putting particular emphasis
on their tautological distribution, which is bracket-generating. All of the results in
this chapter have to do with integral submanifolds of this tautological distribution.
A standard reference in the Geometry of PDEs literature is [70, Chapter IV], but we

also recommend [109, Section 2]. The two standard h-principle references also treat
jet spaces, namely [60, Section 1.1] and [43, Chapter 1]. Lastly, the reader may want
to look at [G1, Section 4.1], whose ideas have certainly inspired parts of this work.

One of our goals in this subsection is to stress the metasymplectic viewpoint; see
subsections 3.2.2.6, 3.2.2.7, and 3.2.2.8. This will be important later on when we
study integral elements in Section 3.5.

3.2.2.1 Jet spaces of sections

Let X be an n-dimensional manifold and let 7 : ¥ — X be a smooth fibre bundle
with k-dimensional fibres.

Definition 3.2.17. Two sections fy, f1 : X — Y define the same r-jet at a point
x € X if, in any trivialisation, their Taylor polynomials of order r at x agree.

An r-jet is thus an equivalence class of sections. It is a consequence of the chain
rule that this is a well-defined notion across different choices of charts for X and Y.
Hence, we can write J"(Y — X) for the space of all r-jets of sections X — Y, i.e.
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the space of equivalence classes for the above equivalence relation. When Y is the
trivial R¥-bundle over X we often write J"(X,RF) := J" (Y — X).

We can collect the r-order differential information of a section in the following object:

Definition 3.2.18. Let f : X — Y be a section. Its holonomic lift is the section
Jf:X->J% - X)

mapping each x € X to the r-jet of f at x. A section of J"(Y — X) is holonomic
if it is such a holonomic lift.

It follows from this definition that the spaces of r-jets, for varying r, fit in a tower
(32.21)  J(Y - X) S iy » X)L B 0y 5 X)) =Y

where each projection forgets the differential information of top order. Each projec-
tion maps holonomic sections to holonomic sections. For notational convenience, we
single out two of them:

Definition 3.2.19. The front projection and the base projection are, respec-
tively, the forgetful maps:

Tp =m0 JJ (Y = X) Y, m:J (Y - X) - X.

In the literature these maps are sometimes also called the target and source map
respectively. We will see below that J"(Y — X) is a smooth manifold and that the
. are affine bundles.

3.2.2.2 The Cartan distribution

The notion of holonomicity suggests the following construction:

Definition 3.2.20. The tautological distribution .., in J"(Y — X) is uniquely
defined by the following universal property: a section of J"(Y — X) is tangent to
Ecan if and only if it is holonomic.

The subbundle Veay = ker(dmy,—1) C &can s called the vertical distribution and
its vector subspaces are said to be vertical.

The subbundle .., is also called the Cartan distribution. The inclusion Vi, < &can
will be immediate once we introduce local coordinates in Section 3.2.2.3. Moreover,
these coordinates give a more explicit definition of £.,, as the simultaneous kernel of
a collection of differential forms, see Corollary 3.2.28.

Remark 3.2.21. Observe that the notation .., does not contain any reference to
the specific r-jet space. We have opted to do so to avoid cluttering our notation with
indices. A

The very definition of &.,, implies that images of holonomic sections are integral
submanifolds that are everywhere transverse to the vertical distribution. We define:
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Definition 3.2.22. Integral manifolds and integral elements in (J"(Y — X),&can)
transverse to Vean are said to be horizontal.

We will show that any integral manifold which is both horizontal and maximal is
necessarily the image of a holonomic section (locally).

The collection of all horizontal elements of rank [ is denoted by

Grspo (gcam l) = Grintegral(fcam l),

and we call it the horizontal Grassmannian bundle. The subscript X° is inspired
by the Thom-Boardman notation introduced in Subsection 3.3.1. If we restrict to
a point p € J"(Y — X), we write Grso((€can)p,!) for the corresponding horizontal
Grassmannian at p.

Example 3.2.23. If the fibres Y, are 1-dimensional, then (JY(Y — X),&.an) is a
contact manifold and its maximal integral submanifolds are legendrians. Similarly,
if Y, and X are 1-dimensional, (J?(Y — X),&can) is an Engel manifold. Holonomic
sections are then curves tangent to the canonical Engel structure and it can be shown
that no higher dimensional integral manifolds exist A

3.2.2.3 Local coordinates

We now provide a more explicit description of &..,, by in terms of local coordinates.
By working locally we may assume that X is a n-dimensional vector space, denoted
by B, and that the fibre of Y is a k-dimensional vector space, denoted by F'. In this
local setting the jet space J"(Y — X)) can be identified with J"(B, F'). To be explicit
we choose coordinates = := (21, - ,2,) in B and coordinates y := (y1,- - ,yr) in F.
We may then use (z,y) to endow J" (B, F) with coordinates, as we now explain.

Two maps fo, f1 : B — K have the same r-jet at € B if and only if their Taylor
expansions at x are the same. Equivalently: a point p € J"(B, F) is uniquely repre-
sented by an r-order Taylor polynomial based at m;,(p) € X. Now, the r-order Taylor
polynomial of a map f: B — F at x reads:

dx®!
fa+h)y= 3 (@' @)~ (h,....h),
o<|I|<r
where I = (iy,...,i,) ranges over all multi-indices of length at most r. Here ®

denotes the symmetric tensor product and we use the notation
dz®? = da;, ©---Odxy,, I=(i1,...,0pn).

This tells us that J"(B, F) — B is a vector bundle and that, formally, we can use

the monomials
dz©T , )
T®€j7 o<|I|<r 1<j<k

as a framing; here {e;}1<;j<r is the standard basis of F' in the (y)-coordinates.

The monomials above with |I| = ¢/ form a basis of Symr,(B*,F), the space of a
symmetric tensors with r’ entries in B and values in F. This leads us to write, in
more conceptual terms:
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Lemma 3.2.24. J"(B, F) = Bx F xHom(B, F) x Sym*(B*, F) x - - - x Sym" (B*, F).

Corollary 3.2.25. 7,1 : J"(Y — X) - J7YY — X) is an affine bundle with
fibres modelled on Sym" (B*, F).

Proof. We cannot speak, intrinsically, of a section having vanishing derivatives of
order exactly r. I.e. there is no natural choice of zero section in 7, ,_;. However,
once a reference section f : X — Y is chosen, the space of r-jets {j"g | 7719 = "1 f}
is isomorphic to Sym" (B*, F').

Once we fix a trivialisation B x F' — B of Y — X we can take this a step further.
The zero section of J"(B, F) over J"~1(B, F) is the space of polynomials of degree
r—1. O

n+r—1

o1 ) -dimensional.

In particular, the fibres of m, ,_; are k(

We can now write zj(I) for the coordinate dual to the vector dml?[ ®e; € Sym’l (B* F).

This definition depends only on the choice of coordinates (z,y) : Y — B x F. We
give these coordinates a name:

Definition 3.2.26. The coordinates
(z,y,2) = (x,y = 20,24, ..., 2"), 2= {z](»l) [1I] =7",1<j <k},

in J'(Y — X) are said to be holonomic.

3.2.2.4 The Cartan distribution in coordinates

We continue using the notation from the previous subsection. It is immediate from
the expression of the Taylor expansion shown above that:

Lemma 3.2.27. In terms of the holonomic coordinates (x,y,z) € J"(B,F), the
holonomic lift of a map f: B — F reads:

j"f:B — J(B,F)= B xF xHom(B,F) x Sym*(B* F) x --- x Sym"(B*, F),
r — ]rf(m) = (sr:,y = f($>7zl = (af)(x)722 = (aZf)(x)7 vy 2= (arf)(x))

That is, a holonomic section satisfies the relations
@)= @y (@),  T=(ir,....in), 0<|I| <7, 1<j<k.

In other words:

Corollary 3.2.28. The tautological distribution ..y is the simultaneous kernel of
the Cartan 1-forms:
(3.2.2.2)

n
of = ) = 3 A L= (i), 0< 1 < 1< G <,
a=1
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Looking at the Cartan 1-forms we deduce that n-dimensional horizontal elements are
maximal (because all the directions in V., pair non-trivially, through the curvature,
with them). The same argument shows that V., is maximal as well. Note that these
are, in general, integral elements of different dimensions.

Using the dual viewpoint allows us to write &.,, as the span of n + k(”” 1) linearly
independent vector fields:
(3.2.2.3)

ban@y2) = D @t X oHTTTTMo0) @ D @

1<a<n o<|I|<r ’ |I'|=r1<j'<k 9

where the first n vectors lift TX and the others span V.,,. The distribution deter-
mined by the first n vectors is not canonically defined and depends on the framing
chosen (and thus on our choice of coordinates).

3.2.2.5 The bracket-generating property

From Equation 3.2.2.3 we readily compute the Lie flag:

Corollary 3.2.29. The Lie flag associated to (J"(Y — X),&can) is given by the
exTPression:
géza)n = dﬂ—r_rl z(gcan)v

where the right hand side is the preimage of the Cartan distribution on J ~{(Y — X).

In particular, .., bracket-generates in r steps, i.e. fégq =TJ (Y - X).

We can additionally observe that [5&1&1, Vean] € 5512, Le. the curvature Q, 0( can )
pairs trivially Wlth the vertical space of &.,,. This is true for trivial reasons if r = 1

(because then fcan is the whole tangent space) but, in general:

Corollary 3.2.30. The following statements hold for r > 1:

o The vertical distribution Vea, is the characteristic foliation ker( CaLn) of &;an on
J(Y - X).

e Inductively, ker( C(m) = ker(dmy ,—;) for every 0 < i <.

We will say that ker(ﬁéé)n) is the ith characteristic foliation.

If we regard (J"(Y — X),&can) as an abstract manifold endowed with a distribution,
i.e. forgetting that projections m,,s, the Corollary tells us that we can recover the
fibres of ., intrinsically, as long as r’ > 0. In fact, even the front projection s
(Definition 3.2.19) can be recovered as long as k = dim(Y,) > 1. This follows by
observing that the polar space of a horizontal vector is always smaller in dimension
than the polar space of a vertical one. In this case, we say that the fibre of 7 is the
polar foliation associated to &can.

The one case in which the fibres are not defined intrinsically is when we look at
the front projection with k& = 1. This is related to the fact that (J'(X,R),&can),
as a contact manifold, has many more symmetries than those appearing as lifts of
symmetries of the front; see below.



224 CHAPTER 3. WRINKLING H-PRINCIPLES

3.2.2.6 Standard metasymplectic space

Let us revisit subsection 3.2.2.4, particularly the Cartan 1-forms (as defined in Equa-
tion 3.2.2.3). We work locally in jet space, so we may write J” (B, F') with holonomic
coordinates (z,y, 2).

Consider the collection of Cartan 1-forms of the form:

n

a]l:dzj(-)—Zz](-“' tatl Z)dxa, I=(i1,...,i0n), I|=7r—1,1<j <k,

a=1
which only depend on the coordinates z". Their differentials are the 2-forms:
n
i1, 5t t 1, in . . .
QJI:dea/\zJ(-“ tat Z), I=(i1,...,i0n), I|=7r—1,1<j <k,
a=1

which, by construction, are pullbacks of forms in the product B@&Sym" (B*, F) (which
have the same coordinate expression, so we abuse notation and denote them the
same). We can package them in the following intrinsic manner:

Definition 3.2.31. The canonical metasymplectic structure in B&Sym" (B*  F)
is the 2-form:

Qean == () r=r—1,19j<k : A(BOSym"(B*,F)) — Sym" '(B* F).

The pair (B @ Sym" (B*, F), Qcan) is called standard metasymplectic space.

We remark that we can regard standard metasymplectic space as a vector space
endowed with a linear 2-form, or as a manifold endowed with a smooth 2-form. The
tangent fibres of the latter are, of course, isomorphic to the former.

A more manageable way of expressing (¢, is provided by the following tautological
lemma:

Lemma 3.2.32. Given a point p € B@® Sym" (B*, F) and vectors v; + A; € T,(B@®
Sym"(B*, F)) ~ B® Sym"(B*, F):

Qecan(vo + Ao, v1 + A1) = Lyy A1 — Lo, Ao.

I.e. the canonical metasymplectic structure is precisely the contraction map of tensors
with vectors.

Example 3.2.33. When r = k = 1, the standard metasymplectic space (B @
B*, Qcan) is the standard 2n-dimensional symplectic space. A

3.2.2.7 The metasymplectic projection

Let us consider the map:
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Definition 3.2.34. The metasymplectic projection is the map

7 :J(B,F) — B®Sym"(B* F)

(x,y,z) - WL(l‘,y,Z) = (x7zr)'

In the contact setting this is usually called the Lagrangian projection, because
it maps legendrians to lagrangians. A similar situation holds in general, as we now
explain.

Observe first that, by construction, the differential

dprr : T,J"(B,F) — Ty, (,)(B®Sym"(B* F))
is an epimorphism that restricts to an isomorphism (can)p — T, () (B®Sym” (B*, F)).
Furthermore, using the duality between distributions and their annihilators it readily

follows that:

Lemma 3.2.35. The differential is an isomorphism of metasymplectic linear spaces:
dpmr t ((€can)py Q(can)) — (TWL(,,)(B(-BSymT(B*,F)),Qcan)7

where Q(&can) 18 the curvature of Ecan.

We can use this to study integral submanifolds of &.,y,.

Definition 3.2.36. A wvector subspace V' of the standard metasymplectic (linear)
space is said to be an isotropic element if

VSean c V,

An isotropic element is maximal if it is not contained in a larger isotropic subspace.

A submanifold of standard metasymplectic space is isotropic if all its tangent sub-
spaces are isotropic elements.

It immediately follows from the previous Lemma (and the comments preceding it)
that:

Corollary 3.2.37. Let f: N — J" (B, F) be a map. Then:

e f is integral if and only if wp o f is isotropic.

o If f is integral then f is an immersion if and only if w7y o f is an immersion.

In subsection 3.6.4.1 we will prove a converse: any isotropic map has a unique integral
lift up to choice of basepoint.



226 CHAPTER 3. WRINKLING H-PRINCIPLES

3.2.2.8 The nilpotentisation

According to the computations in the previous subsections, the nilpotentisation of
&can At any point is isomorphic to the following graded Lie algebra:

Definition 3.2.38. Let B and F' be real vector spaces of dimensions n and k, re-
spectively.

The jet Lie algebra (depending on n, r, and k) is:
e The graded vector space g := (—B::O g; with
g0 := B@® Sym" (B*, F), g; == Sym"*(B*, F).
e FEndowed with the Lie bracket defined by the contraction of vectors with tensors
[v, B8] = 0, ve B, f[eSym!(B* F).

All other brackets are either defined by the antisymmetry or zero.

We will often abuse notation and use g to denote the graded Lie algebra as a whole
(instead of just the underlying vector space). Note that the bracket and the grading
are compatible, making the jet Lie algebra a graded Lie algebra. This Lie algebra is
nilpotent; in particular, the composition of r + 1 brackets is zero. Disclaimer: the
grading we use is shifted by one with respect to the usual conventions for graded Lie
algebras found in the literature.

The degree zero part go is the direct sum B@Sym" (B*, F'). When identified with &.ay
at a point p, the first part corresponds to a lift of 7, X (in a canonical manner once we
choose local coordinates). The second term corresponds to the vertical distribution.
We will henceforth say that B is the horizontal component and Sym" (B*, F) is
the vertical component. We write 7, : gg — B for the projection to the horizontal
factor.

As claimed:

Proposition 3.2.39. The nilpotentisation of (J"(Y — X),&an), at any point, is
isomorphic to the jet Lie algebra g with parameters n = dim(X), r, and k = dim(Yy).
In particular, the zeroeth order part go corresponds to (&can)p-

Proof. The last claim is simply a consequence of the definition of nilpotentisation.
That the underlying vector space is g follows from the discussion in subsection 3.2.2.1.
The form of the Lie bracket is immediate from the local presentation of &.., given in
subsection 3.2.2.4, together with Lemmas 3.2.32 and 3.2.35. O

It readily follows from the Proposition that:

Corollary 3.2.40. Integral elements of &can correspond to vector subspaces W < gg
which are, additionally, Lie subalgebras.

Horizontal elements of {ean correspond to Lie subalgebras W < gg transverse to the
vertical component.
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Hence, a Lie subalgebra contained in g is said to be an integral element. Similarly,
an integral element transverse to Sym"(B*, F) is called a horizontal element.

For fixed [, the collection Grintegra1(g, 1) of all integral elements is called the integral
Grassmannian. It is isomorphic to Grintegral ((€can)p, ), for any p € J"(B, F'). The
collection of all horizontal elements of dimension [ is the horizontal Grassmannian,
which we denote by Gry,(g,!) © Grintegral (8, 1)-

Corollary 3.2.41. The space Grintegral(8, 1) is an algebraic subvariety of the standard
Grassmannian of l-planes Gr(g,!).

Proof. Being a Lie subalgebra and lying in zero degree are both algebraic conditions.
O

We will study the integral Grassmannian in more detail in Section 3.5.

3.2.2.9 Closing remarks

We have observed that the fibre of J*(Y — X) — J"~}(Y — X) is an exceptional
integral submanifold: its dimension k(r‘zr_ﬁl) is larger than n (i.e. the dimension of
a maximal horizontal submanifold) unless £ = 1 and r = 1 (i.e the contact setting)

or if k =1 and n =1 (the Goursat setting).

In the contact case, the fibre is locally isomorphic to any other legendrian, according
to Weinstein’s legendrian neighbourhood theorem. In particular, up to a C*-small
perturbation, it can be assumed to be in generic position with respect to the front
projection. This is related to the fact that the front projection

mp: JHR™R) = T*R™” x R - R" x R

is not canonical. That is, if a legendrian is not horizontal, we can find some other front
projection (locally) in which it is.

In the Goursat case with » > 1, the fibre has a special local model. It can be
put in generic position (through integral manifolds) if we allow the ends not to be
constrained, but it was proven in [20] that it admits no compactly-supported deforma-
tions. This phenomenon is called rigidity. A related notion is that of singularity:
an integral manifold is singular if it has less compactly-supported deformations than
expected. Many works [65, 73, 1] study these ideas for the case of curves but, to
our knowledge, this has not been studied in depth for higher dimensional integral
submanifolds in general bracket-generating distributions.

The upshot is that, for general jet spaces, the fibre is rather exceptional. In par-
ticular, there are marked differences between horizontal submanifolds and general
integral submanifolds. In particular, one cannot expect a full analogue of the Legen-
dre transform to hold. Despite of this, we will introduce some tools in Section 3.6 to
deal with the general case.
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3.2.3 Distributions modelled on jet spaces

Much like contact manifolds look locally like the 1-jet space of functions, we can,
more generally, consider manifolds with distributions locally modelled on some other
jet space.

Definition 3.2.42. Let (M,€) be a manifold endowed with a distribution. We say
that £ is modelled on the tautological distribution (J" (B, F),&can) if, for eachpe M,
there are local coordinates (x,y,z) around p, with domain a subset of J"(B,F), so
that f = gcan-

In particular, the numbers n = dim(B), k = dim(F'), and r are invariants of .

According to Corollary 3.2.29 from subsection 3.2.2.5, £ bracket-generates in r steps.
Furthermore, according to Corollary 3.2.30, M is endowed with a flag {ker(f(i))}#l,””r,l
of characteristic foliations. Indeed: in each local model these are simply the suc-
cessive fibres of the projections . ,+, 7’ > 0. When k > 1, we also have a well-defined
polar foliation, defined locally to the fibres of 7.

Our constructions of integral submanifolds will be (semi-)local in nature. Therefore,
they will apply too to integral submanifolds of distributions modelled on jet spaces.
Note that one can still talk about horizontal submanifolds in this setting (as long as
r > 1or k > 1), as those that are transverse to the first characteristic/polar foliation.

3.2.3.1 Automorphisms

In Section 3.7 we will study local models of integral submanifolds of £.,,. Under-
standing their locus of tangency with Vi., will take us into Singularity Theory (see
Section 3.3 for an overview of the concepts we need). One of our goals then will be to
show that certain models of tangency are stable (defined in Subsection 3.3.2). How-
ever, in order to discuss stability, we must fix the allowed space of automorphisms
(i.e. the left-right equivalences). To this end, we look at the symmetries of &cap.

Definition 3.2.43. Let (M, &) be a distribution modelled on a jet space. A (contact)
transformation of (M,£) is a -preserving diffeomorphism.

A more restrictive notion of symmetry (which only makes sense for jet spaces) is the
following:

Definition 3.2.44. LetY — X be a fibre bundle. LetV : Y — Y be a fibre-preserving
diffeomorphism lifting a diffeomorphism ¢ : X — X.

The point symmetry lifting ¥ is defined as:
FU (Y = X)lean) — (J(Y = X),&can)
i@ = (TG f(r) =57 (To foyT)(¥(x)).
Point symmetries form a subgroup of the group of contact transformations. It is well-

known in Contact Geometry that the space of contact transformations of J*(X,R) is
strictly larger than the space of point symmetries. However:
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Lemma 3.2.45. Assume r > 1 or dim(Y;) > 1. Any contact transformation of
J"(Y — X)) is the lift of a contact transformation of J"71(Y — X).

Proof. Suppose that » > 1 and let ¥ be a contact transformation of J"(Y — X).
Then ¥ preserves the vertical distribution. Therefore, ¥ induces a well-defined map
T in the quotient

JY = X)/Vean = JHY - X).

Furthermore, since W preserves Ecan, it preserves 5521 From this we deduce that ]
preserves the Cartan distribution in J"71(Y — X). Hence ¥ is a lift of ¥ (we will
not explain that this lift is, in fact, unique).

The same argument applies to the polar foliation if r = 1 and dim(Y;) > 1. O

3.2.3.2 Jet spaces of submanifolds

Let us provide an example of distribution (M, &) locally modelled on a jet space.

Definition 3.2.46. Let Y be a smooth manifold and fix an integer n < dim(Y). We
say that two n-submanifolds have the same r-jet at p € Y if they are tangent at p
with multiplicity r.

More precisely, two submanifolds N1, No 'Y have the same r-jet at x € Ny n Ny if,
Ny s graphical in a neighborhood of x, and the induced section vanishes up to order
r at x.

An r-jet is therefore an equivalence class of (germs of) embedded submanifolds. We
denote the space of r-jets of n-submanifolds as J"(Y,n). We have, just like in the
case of sections, a sequence of forgetful projections

Ty 2 J7(Yym) — J7 (Y, n),
with ¢ := 7, ¢ being called the front projection.

Definition 3.2.47. The holonomic lift of an n-submanifold N 'Y is the subman-
ifold j"N < J"(Y,n) consisting of all the r-jets of N at each of its points.

The Cartan distribution .., in J"(Y,n) is the smallest distribution which is tan-
gent to every holonomic lift.

JT(Y — X) was defined (when Y fibres over some base n-manifold X') using exactly
the same equivalence relation as J"(Y,n): two sections have the same r-order Taylor
polynomial at a point if and only if their images have an r-tangency. Therefore:

Lemma 3.2.48. There is a distribution preserving embedding with open and dense
mmage:
(J"(Y = X),&an) —  (J"(Y,n),&can).

The jets of submanifolds having non-trivial tangencies with the fibres of Y — X are
not in the image of this inclusion.
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Remark 3.2.49. If n = dim(Y) — 1 and r = 1, the structure we just constructed is
precisely the space of contact elements. In general, if » = 1, the space J*(Y,n) is
precisely the Grassmannian of n-planes Gr(T'Y, n).

Given an immersion f: N — Y, we often talk of its Gauss map
Gr(f) := j'f : N - Gr(TY,n)

which at every point assigns the corresponding tangent plane. A

3.2.4 The foliated setting

Due to the parametric nature of the statements we want to prove, we will need to
phrase our constructions in a foliated setting. An alternate (seemingly weaker but
ultimately equivalent way) would be to use the fibered setting [13, 6.2.E].

Let Y — (M, F) be a smooth fiber bundle over a foliated manifold. We write & for
the dimension of the fibres and n for the dimension of the leaves. We define the
bundle of foliated r-jets J"(Y — (M, F)) to be the space of equivalence classes of
leafwise sections that are r-tangent to one another. The fibres of J"(Y — (M, F)) —
M are again modelled on r-order Taylor polynomials of k£ functions in n variables.
Given a global section f : M — Y, we can consider its corresponding leafwise r-jet
Jrf M — J(Y — (M, F)). Such a section of the space of foliated jets is said to be
holonomic. Note that j% f encodes no information about the derivatives of f along
the normal bundle of F.

Given manifolds X and K, where the latter is thought of as a parameter space, we
may consider the foliated manifold

(M=XxKF=]]X x{a}).

If Y — X is a fibre bundle, we can pull it back to X x K using the obvious projection.
The corresponding space of foliated r-jets J"(Y — (M, F)) is the natural place to
carry out parametric arguments for K-families of sections of Y — X.

3.3 Overview: Singularity theory

We are interested in integral submanifolds of jet spaces. Often, we will look at them
using their front projections (see Definition 3.2.19), which we would like to regard as
"multiply-valued sections”. We will define precisely what this means in Subsection
3.6.1, but it is clear that for any approach to work one should assume that the
singularities of the front are manageable. At the very least, they should form a set
of positive codimension, so the submanifold is graphical over the zero section in an
open dense set.

As we mentioned in subsection 3.2.2.9, it is not always possible to study integral
submanifolds through their fronts. For instance, some integral submanifolds tangent
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to the vertical distribution have no homotopies making them somewhere transverse
to it. That is, no homotopy allows us to assume that the front is not a point,
which is a seemingly very degenerate situation. This tells us that the integrality
condition constrains the submanifolds heavily, and certain behaviours that are generic
for unconstrained manifolds (like being able to move them to put them in general
position with respect to a fibration) cannot be achieved. The general case contrasts
with the contact case, where one may always assume that the front singularities are
generic.

Even when one can obtain generic singularities, these might be terribly complicated.
In this Section we will review the Thom-Boardman hierarchy (Subsection 3.3.1) and
the notion of stability for singularities (Subsection 3.3.2), both of which quantify how
complicated a singularity is. Then, in Subsections 3.3.4, 3.3.5, and 3.3.6, we will
describe some of the singularities appearing later, called wrinkles and double folds.

3.3.1 The Thom-Boardman stratification theorem

Our goal in this Subsection is to state the Thom-Boardman Theorem 3.3.6. For this
we need to set up some notation first. We refer the reader to the original papers
[103, 14] and to the more modern reference [43, Chapter 2].

3.3.1.1 Types of singularities

We will look at two different notions of singularity. The first one being;:

Definition 3.3.1. Let M and N be smooth manifolds of dimensions m and n. Fiz
amap f: N — M.

A point p e N is said to be a singularity of mapping of f if

rank(d, f) < min(m,n).

Suppose instead that f has no singularities of mapping:

Definition 3.3.2. Let M be endowed with a foliation F of rank k, and f: N - M
a smooth map.

A point pe N is a singularity of tangency with F if d,f(T'N) and Fy,) are not
transverse to one another.

In particular, for inclusions ¢ : N — M of submanifolds, a point p € N is a singularity
of tangency if T,V and F, are not transverse.

We can be more precise about the structure of the loci of singular points, as we now
explain.

3.3.1.2 The stratification I

Let us focus on singularities of tangency for N < (M, F).
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Definition 3.3.3. The locus of singularities of corank j is denoted by:

YI(N,F):={pe N | dim(T,N n F,) — max(k +n —m,0) > j}.

That is, the set of points where the dimension of the intersection 7, N n F, surpasses
the transverse case by j.

Assuming that the set 37 (N; F) is a submanifold, and the restriction Flsiv,r) is a
foliation, one can recursively define:

Definition 3.3.4. The higher tangency locus of corank J = jo,...,J; is:

ot (N, ]:) .= Y (Ejojl“'jl—l7f).

Remarkable work of Thom [103] and Boardman [14] (see below) shows that one may
perturb N so that all the X7/(N, F) are well-defined smooth submanifolds. It can
further be assumed that they form a stratification: i.e. YJoji~Jji+1(N, F) lies in
the closure of XJoititliii=D(N F).

One can phrase this in more homotopical terms. Consider the Grassmannian fibra-
tions Gr(T'M,n) — M, for varying n. The presence of F defines:

Definition 3.3.5. The Schubert decomposition of Gr(T,M,n) is the partition into
smooth algebraic submanifolds:

Y = {H e Gr(T,M,n) | dim(H n F,) — max(k + n —m,0) = j}.

The stratification of the Grassmannian they provide varies smoothly with the point,
defining submanifolds 7 (n, F) < Gr(TM,n). The Poincaré duals of the %7 (n, F)
define cohomology classes in Gr(T'M,n) that may be pulled back to N using the
tangent map of the inclusion. These classes are dual to the intersections TN n
Y7 (n, F): they represent obstructions to removing the singularities of N with F by
homotoping N.

3.3.1.3 The stratification II

Instead of looking at singularities of tangency, one may look at singularities of map-
ping. This works in a completely analogous way: given a map f: N — M we define
the loci of singularity:

S(f) = {pe N | min(m, n) — rank(T'f) > j}.
And higher loci may be defined by iterating the process:

ORI (f) = T (s )
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3.3.1.4 The Thom-Boardman theorem

The two cases we have explained are examples of the same phenomenon: we look at
the 1-jet of a submanifold/map and we study how it interacts with a certain subspace
of 1-jet space. The Thom-Boardman theorem tells us, in much more generality, that
the r-jet of a submanifold/map can be assumed to intersect a stratified submanifold
of r-jet space in a transverse manner.

Theorem 3.3.6. Let A be a stratified subset of J"(M,n) and let f : N — M be an-
submanifold with holonomic lift j"f : N — J"(M,n). After a C*-small perturbation
of f, it may be assumed that j" f is transverse to each stratum of A.

In particular, the stratification of A induces a stratification of N by pullback (5" f)*.
The codimension of a stratum j" f*(A7) = N is the codimension of A7 < A.

3.3.2 Stability

We will introduce later the singularities we want to work with. We will be able
to define many of them by simply saying that they are given by a particular local
model, up to reparametrisation in domain and target. In the smooth setting, this
reparametrisation process has a name:

Definition 3.3.7. Two maps f,g : N — M are (left-right) equivalent if there
exists a pair (¢, ¢) € Diff (N) x Diff (M) such that

f=dogoy.

That is, we define a natural action of the group Diff(N) x Diff(M) on the space
C®(N, M) and two maps are equivalent if they lie in the same orbit.

One can consider the same definition where instead of maps and diffeomorphisms we
look at germs of both. Furthermore, one can restrict the notion of equivalence by
restricting the allowed diffeomorphisms in the domain or the target. This is important
when the manifolds N and M are endowed with geometric structures that should be
preserved by these automorphisms. See below.

As we deform a map, its equivalence class may change. If this is not the case we say
that:

Definition 3.3.8. A map f : N — M is stable if its orbit under the action of
Diff(N) x Diff (M) is open. Equivalently, if it has no non-trivial deformations.

A property P for maps in C* (N, M) is called generic if it is natural (i.e it is preserved
by the Diff (N) x Diff (M) action) and the set

{f e C®(N,M) | f has property P} ¢ C*(N, M),

is dense. Therefore, stable maps are generic in the sense that they satisfy every
generic property.
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3.3.2.1 Stability under constraints

One can study families of maps, defined as subsets A = C*(N, M). In the presence
of a geometric structure, one might consider classes A of maps that interact with the
structure in a meaningful manner (preserving it most likely).

It then makes sense to restrict the groups by which we reparametrise so that they
preserve A. In our setting, where we look at integral maps (Definition 3.2.12) of a
manifold N into the r-jet space M = J"(Y — X), the transformations from the right
will still be Diff (), but the transformations on the left will be the contact transfor-
mations of the Cartan distribution (or, more restrictively, the point symmetries).

When we look at the orbit O(a) of an element a € A using this restricted group of
symmetries, we have that O(a) n A might be open in A, even if @ was not stable as an
element of C*(N, M); such an a is then stable as an element of A. This tells us that
generic phenomena for maps in A might be quite different than for general maps.

For instance: any contact transformation of J"(Y — X) preserves the characteristic
and polar foliations. Hence, singularities of tangency of N with any of them cannot be
removed by applying a symmetry. In the contact case, where none of these foliations
exist, a contact transformation is instead capable of removing all the singularities of
tangency of a legendrian with a given front projection.

3.3.2.2 Unfoldings

Even if a map f € C®(N, M) is not stable, it can be part of a finite dimensional
family of maps which is stable. This happens precisely when orbit of f has finite
codimension in C®(N, M). Let us elaborate.

Definition 3.3.9. Fix a map f: N — M. A d-parametric unfolding of f is a map
F:N xR > M x R? fibered over R and satisfying:

F(z,0) = (f(z),0), zeN
Additionally:
o Two unfoldings are said to be equivalent if they are left-right equivalent as
smooth fibered maps.
° A(n )unfoldz'ng F is trivial if it is equivalent to the trivial unfolding F(x,t) =
f(z).

In this language, f is stable if and only if every unfolding is trivial.

Given a fibered map F : N x R? - M x R¢ such that

F(z,u) = (f(z,u),u),
and a map ¢ : R® — R, we define the pullback of F along ¢ by:

(b*F(mvu) = (f(x,¢(u)),u),

yielding a new unfolding.
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Definition 3.3.10. F is said to be a versal unfolding of f if any other unfolding is
fibered left-right equivalent to a pullback of F.

This means that F' contains all the possible deformations of f.

We can look at the infinitesimal action of Diff (V) x Diff (M) on C*(N, M). Given a
map f, we may compute the quotient

{%H:oft | fo= f}
{& (¢eo forhy) | do=id,1hy =id}

Here (fi)ter is a 1-parametric deformation of f and (¢, ¢:)er € Diff (V) x Diff (M)
is a 1-parametric deformation of the identity diffeomorphisms. This quotient com-
putes the difference between the deformations of f and the deformations arising from
reparametrisation.

T'(f) =

In general, T'(f) is a vector space. It corresponds to the normal bundle of the
Diff(N) x Diff(M)-orbit of f. Its dimension measures the failure of f to be stable.
However, if it is finite-dimensional, we can integrate representatives of the elements
TY(f) to yield a dim(7"(f))-parameter versal unfolding F' of f.

3.3.3 Whitney singularities

The Thom-Boardman invariants (Definition 3.3.4) are not sufficient to classify sin-
gularities of maps between manifolds of arbitrary dimension. In most cases, such a
classification is not possible due to the existence of moduli (i.e. a singularity may not
be stable even after we fix its Thom-Boardman class).

For maps between manifolds of equal dimension there is a particular countable fam-
ily of singularities, called the Whitney singularities, which are completely classified
in terms of the Thom-Boardman stratification. Let us describe them in a slightly
roundabout way.

3.3.3.1 Spaces of polynomials

Endow R"*! with coordinates (q1,-..,¢n—1,qn,2) = (4, qn,*) = (¢,x). Consider the
function

F,: R o R

2" g e+ g1+ gy

(¢,z) —
Here the g—variables function as parameters. As they vary, they parametrise the
space of all polynomials of degree n + 1 in one variable x. That is, F;, is an unfolding
of the map = — z™*! with n parameters. This unfolding is, in fact, versal.

The roots of the family of polynomials (x — F,,(g, z))4er» can be obtained by solving
for qpn:



236 CHAPTER 3. WRINKLING H-PRINCIPLES

Lemma 3.3.11. The locus of roots
Ly = {(q.2) e R"™ | Fy(q, ) = 0},
can be explicitly parametrised as the graph of:
sp:R* — T, cR!
(@2) — (3Qn(Gz)=—2"" —qa" "t = — g1z, 2).
We regard T'), as the graph of a multiply-valued function over the ¢ coordinates.

Indeed, for each ¢, the corresponding polynomial z — F, (g, z) has at most n + 1 real
roots, so I';, may be thought of as a function of ¢ with finitely many values.

The locus of roots I';, has a stratification given by the multiplicity of the root. By
definition, the locus I'}, = I'), of roots of multiplicity at least j is the common zero of

the functions .
oF 01

ox i1y

3.3.3.2 The definition

We can project down the locus of roots I',, to the g-coordinates, yielding;:

Definition 3.3.12. The n-th Whitney singularity is the germ at the origin of the
map:

Whit,, : R — R"
((L .CIJ) - (67 Qn(CL .’L') = _‘,En-ﬁ-l - Chxn_l — qn,1x).

The number n is called the index of Whit,,. Forn = 1,2, these maps are referred to
as the fold and the pleat, respectively.

(3.3.3.1)

The maps Whit,,, just like their parametrizations s,,, are fibered over R"~!. Le. we
think of Whit,, as an R™~!-family of maps R — R. Note that the higher singularity
locus X2(Whit,,) are empty.

We also need to introduce:
Definition 3.3.13. The i-fold stabilisation of Whit,, is the map:
Rn+i N Rn-‘ri
(QO7(L$) - (QO7Whltn((ja$>)7
H. Whitney proved in [113] that Whit,, is a stable map, which corresponds to the
fact that F, is a versal unfolding. In [93], Morin proved a converse:

Theorem 3.3.14. The germ at p € S1(f) of a stable map f : M — N, between
mamnifolds of the same dimension, is left-right equivalent to the germ at the origin of
a stabilisation of a Whitney map.

Let us remark that the left and right actions on germs are allowed not to fix the
origin; otherwise, the orbit of the Whitney map of index [ would have codimension [
in the space of all germs.
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3.3.3.3 Some properties

We claim that the singularity locus

S(Whity) = {(2.#) | "2 (d4) = 0}

coincides with the locus of roots:

Lemma 3.3.15. For each positive integer j:

SV (Whit,) = S (s, (0,)) = TV+! < R,

Proof. The first identity follows by definition, so we focus on the second one. We work
inductively on j. The induction hypothesis is that the claim holds. Le. X' (s,,{0,))
is the locus of common zeroes of

oF oTF

ox T w1y

SV (s0,{0,)) is the locus of tangency of XV (s,,{0,)) with the z-directions. There-
fore, the 1-forms

oF IR
Foyd—,...,d=——
d dam da?—lm

vanish precisely when restricted to 1" (s, (3,)) and evaluated on d,. But precisely:
oF OE
0z %) = oy
O

Invoking Theorem 3.3.14 we see that the Whitney singularities are adjacent to one
another:

Lemma 3.3.16. At each point in 21'70(Whitn), the map Whit,, is equivalent to the
(n —1)-fold stabilisation of Whit;.

For instance, a pleat consists of two folds coming together in a birth/death phe-
nomenon.

3.3.4 The equidimensional wrinkle

The fold and its stabilisations are the simplest (non-trivial) singularities of equidi-
mensional maps. Ideally, we would work in the category of folded maps. However,
this is not possible when we consider families of maps: we must, at the very least,
allow folds to appear and disappear in birth/death events, i.e. pleats. We will want
the pleat locus itself to be a closed submanifold. This leads to the definition:
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Definition 3.3.17. The (equidimensional) wrinkle is the map
Wrin,, : Op(D") — R"

(3.3.4.1) 23

(q,x) — (q,w(q,x) =3 +(lq)* = 1)3@) )

The region bounded by the singular locus, i.e. the interior of the disc D™ in the
domain, is called the membrane of the wrinkle.

In Subsection 3.4.4 we will introduce wrinkled submersions, which will be maps locally
modelled on the wrinkle. All these notions were introduced by Y. Eliashberg and N.
Mishachev in [40] to prove Theorem 3.4.18, which computes the homotopy type of
the space of wrinkled submersions.

3.3.4.1 Singularity locus

We see that Wrin,, is a map fibered over R"~1. Its singularities (which are of corank 1)
correspond to the vanishing of g—g’ = 22+]q|?—1, i.e. the unit sphere ¥(Wrin,,) = S"~!
bounding the membrane. If we further restrict Wrin,, to X(Wrin,,) we observe that
its singularities live in {z = 0}, i.e. the equator ' (Wrin,) = S"72. The map
Wrinn|zu(wrinn) is non-singular so

¥ (Wrin,,) = £ (Wrin,,) u £ (Wrin,, ).

Thus, the equator is a codimension-2 sphere of pleats and the two open hemispheres
consist of folds. Each two points in $'°(Wrin,,) sharing the same g—coordinate are a
local maximum and a local minimum of the corresponding function = — m—; +(lq)* —
1)z. As we move in ¢ towards the equator ¥''(Wrin,, ), these two points collapse in a
birth/death event. Hence, the singularities of the wrinkle are seemingly in cancelling
position, but not really: the domain of definition of Wrin,, is not the whole of R™ (in
which the cancellation is possible) but a small neighbourhood of the unit ball D".

3.3.4.2 Formal desingularisation

Nonetheless, the singularities of the wrinkle are homotopically inessential from the
point of view of obstruction theory: consider the homotopy of functions

Wi(g,z) = (% + |q|* = 1) + sp(q,z),  s€[0,1],

where p : Op(D™) — [0, 00) is a non-negative function which is greater than 1 over D"
and identically zero in a neighbourhood of the boundary of its domain. It provides
a compactly-supported homotopy between Wy = % and a strictly positive function.
We can use W; to construct a compactly-supported homotopy between the differential
TWrin,, and a bundle monomorphism. Indeed, we keep the formal derivatives of
Wrin,, with respect to the g-coordinates fixed, and we homotope the formal derivative
with respect to x using W,. We call this the formal desingularisation. Its existence
implies that the wrinkle, as a singularity, represents a trivial class (relative to the

boundary of the model).
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3.3.4.3 The fibered nature of a wrinkle

Let us regard the wrinkle Wrin,, ,; as a fibered over R map. Explicitly, we write
(qo) for the coordinates in R* and (q;,z) for the coordinates in R™. The restriction
of Wrin,, ; to the fibre over a fixed gq is left-right equivalent to Wrin,, if |go] < 1,
non-singular if |go| > 1, and left-right equivalent to:

Op({0}) — R"
(3.34.2) 3
(q17x) = (q17 ? + |q1|2-'15),
if |go| = 1. This singularity is called the embryo. It is precisely the event in which a
wrinkle Wrin,, is born. It follows from the previous subsection that the embryo can
be formally desingularised in a unique manner up to homotopy.

3.3.5 Double folds, wrinkles, and surgery

A wrinkle has non-empty X'!-locus. Sometimes, it is useful to work with maps whose
singularity locus is just ©19; we call such maps, folded. A key idea in wrinkling is that
one may produce a folded map out of a wrinkled map using surgery of singularities
[35, 44]. Conversely, one can pass from a map having double folds, defined below, to a
wrinkled map by a procedure called wrinkle chopping (but we will not explore this).
Hence, wrinkles and double folds are essentially equivalent.

3.3.5.1 The definition

Definition 3.3.18. We define the double fold to be the map:

f:0p(S" ! x[~1,1]) - R"
(3.3.5.1) 3
(q,x) = (Qa ? —Jf)

The region bounded by the singular locus, i.e. the open annulus S™ ! x (=1,1) in the
domain, is called the membrane of f.

The singularity locus %(f) = 319(f) is the union of the spheres bounding the mem-
brane 5
{af =z% - 1} = (S"t x {=1}) U (S"7! x {+1}).
x
At each sphere the singularity is modelled on (a stabilisation of) the usual fold. Like
the wrinkle, the two fold points sharing the same g-coordinate seem to be in cancelling
position, but they are not due to the size of the domain.

We often speak of the spheres S"~! x {£1} as being the double fold, leaving the
existence of the membrane bounding them implicit. We could also define the folds
to take place along hypersurfaces other than spheres, but for our purposes this is
unnecessary.
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3.3.5.2 Embryos

Just like wrinkles are born in an embryo event, we may define the analogous birth/death
singularity for double folds. It is given by the following expression:

. n—1 > s R
(3.3.5.2) /- Op(S {O}i K
(¢, %) — (q,2°),

which we call the (double fold) embryo. It is simply a parametric version of the
1-dimensional birth/death critical point.

3.3.5.3 Surgery: opening a wrinkle

Consider the wrinkle Wrin,,, whose domain of definition is Op(D™). We may find an
(n — 1)-disc D < Op(D") satisfying:

e 0D is the equator S*~2 (consisting of pleats),
e D intersects the unit sphere S"~! transversally at its boundary,

e the interior of D is disjoint from the unit ball.

One may picture D running very closely along the northern/southern hemisphere.

We want to modify the map Wrin,, in Op(D) to yield instead a double fold. Indeed, we
can find coordinates (g, z) in a neighbourhood of Op(D), with values in D} § x[—4, 4],
such that:

e D' x {0} =D,
e the map Wrin,, reads

1»'3
(g,0) = (¢, 5 + (1= lq|*))

I.e. at the boundary of D, which was the equator of the wrinkle, a pair of folds
appears in a birth-death event.

Consider the piecewise smooth family of functions
23
T — §+(1—|q|2)x, if |q]* > 1+ 6%/2

3
T === 5%x/2, otherwise.

It may be smooothed at |g|?> = 1 + §2/2 to yield a smooth family f, with a double
fold. Replacing Wrin,, in Op(D) by the map (q,z) — (g, fy(z)) yields a map with a
double fold. Each fold is a smoothing of the union of a slight push-off of D and one
of the hemispheres of the original wrinkle.
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3.3.6 The (first order) wrinkle in positive codimension

The main result in this chapter (see Section 3.8) says that one can control the r-
jet of an embedding/submanifold as long as one is allowed to introduce (simple)
singularities. The case of 1-jets was studied by Y. Eliashberg and N. Mishachev in
[14], and it relies on a particular model of singularity, which we now review.

3.3.6.1 The definition

Definition 3.3.19. We define the wrinkle (of dimension m into n > m, and of
order 1) to be the map
Wrin,, ,, : Op(S™™ 1) — R”

(%@Aﬂ%ﬁ+3wF*DLJ(§+MP*U%&Q~q®
0

Its projection to R™ is (the germ along the unit sphere of) the wrinkle Wrin,,, between
equidimensional manifolds.

Observe that Wrin,, , is not defined in the interior of the disc D™. The reason for
this is that, in our constructions, wrinkles will be nested inside one another. We
will assume that the wrinkles bound a disc (which we still call the membrane)
in whatever manifold we are working in, but the membrane might contain further
wrinkles.

In Subsection 3.4.4 we will introduce (first order) wrinkled embeddings, which will
be locally modelled on Wrin,, .

3.3.6.2 Singularity locus

The (m + 1)th coordinate of Wrin,, ,, is a function that has exactly the same singu-
larity locus as Wrin,,. Therefore, the singularity locus X(Wrin,, ,) is the unit sphere
S (Wring, ,) = S™~1. It is the union of the equator ' (Wrin,, ,) = S™~2 and its
complement $'%(Wrin,, ,). The singularity along 3'°(Wrin,, ,,) is a stabilisation of
the usual planar semicubic cusp. The families of cusps in each hemisphere approach
each other at the equator ¥'*(Wrin,, ), cancelling in a sphere of open semicubic
swallowtails.

3.3.6.3 Regularisation

Unlike Wrin,,, the wrinkle Wrin,,, ,, is not stable as soon as m < n. Indeed, the small
perturbation:

T

(0:2) = (05" + 3(al” ~ Ve + [ (524l = 12ds,0,...,0)

0

is a smooth embedding. A cut-off may be applied to make this perturbation compactly
supported. This smoothing process is unique up to isotopy (which may also be
assumed to be compactly supported); we call it the regularisation.
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3.3.6.4 The Gauss map

Despite being singular, Wrin,,, ,, has a well-defined Gauss map Gr(Wrin,, ,,), i.e. a
lift to the space of 1-jets of submanifolds; see subsection 3.2.3.2. This is clear along
the cusp locus %!0(Wrin,, ,,), because the planar cusp has a well-defined tangent
line at every point. We claim that the same is true along the swallowtail region
S (Wriny, ,). This is a simple computation, but we will justify it, in the setting of
integral submanifolds of general jet spaces, in Subsection 3.7.1.

3.3.6.5 Embryos

Just as in the equidimensional setting, we may think of the wrinkle Wring ,, x4n as a
fibered over R*¥ map. We write (qo) for the coordinates in R* and (g;,x) for those in
R™. For |go| < 1 given, the restriction of Wring 4, k1 to the fibre over gy is left-right
equivalent to Wrin,, ,,. For |go| > 1, it has no singularities. Lastly, for |go| = 1 the
map is equivalent to:

(q1,7) — (ql,:c3 + 3|q1|2x,f (32 + |q1|2)2d5,0, .., 0).
0

whose only singularity is the origin. This is exactly the birth/death phenomenon for
Wrin,, ,,, which we also call embryo. It can be regularised as above.

3.4 Overview: The h-principle

The h-principle is a collection of techniques and heuristic approaches whose purpose
is to describe the space of solutions of a partial differential relation/equation. The
main results of this chapter (see Section 3.8) are of this type.

In this Section we provide a quick overview of some of the h-principle techniques that
we will need. We first review some of the necessary language (Subsection 3.4.1). Then
we go over some classic techniques: holonomic approximation in Subsection 3.4.2,
triangulations in general position in Subsection 3.4.3, and wrinkling in Subsection
3.4.4.

For a panoramic view of h-principles we refer the reader to the two standard texts
[43] and [60] (which we do suggest to check in that order). Wrinkling techniques were
introduced first in the wrinkling saga [10, 42, 41, 45, 44].

3.4.1 Differential relations

Having looked at jet spaces in Section 3.2, let us explain how they fit in the geometric
formalism of PDEs: given smooth bundles Y — X and Y’ — X, a local partial
differential operator is a map taking sections I'(Y") to sections I'(Y”) which, in
local coordinates, may be written as a function of the section and its derivatives up
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to a given order. Given a section g € T'(Y’), we can define a PDE whose solutions are
the sections f € T'(Y) that are mapped to g.

Now, there exists a local differential operator of order r which is universal. Namely,
the map

JY)->T(J (Y - X))

collects all the derivatives up to order r, so any other local order-r differential operator
I'(Y) — T'(Y’) can be decomposed as A o j7; here A is the lift of a bundle map
J"(Y — X) — Y’, which we also denote by A. Given g as above, we can simply look
at the subset A=1(g) = J"(Y — X). A section f of Y such that j” f is contained in
A~Y(g) is a solution of our PDE.

In more formal terms:

Definition 3.4.1. Let Y — X be a smooth fibre bundle.

o A partial differential relation (PDR) of order r is a subset R < J" (Y — X).
e The PDR R is said to be open if it is open as a subset.
o A section F: X — R is said to be a formal solution of R.

o A section f: X — Y is a solution if j" f is a formal solution.

We have presented the framework of PDRs of sections, but we could do the same for
PDRs of n-submanifolds by looking at subsets of J"(Y,n), with ¥ a manifold and
n < dim(Y).

3.4.1.1 The h-principle

The goal of the h-principle is to determine the homotopy type of the space of solutions
of a given PDR R. For this, we need to fix topologies on the spaces I'(J" (Y — X))
and T'(Y): on I'(J"(Y — X)) we consider the C°-topology. Using the map j", this
induces the Whitney C"-topology on I'(Y'). This choice makes j” continuous.

We write Sol/ (R) for the subspace of sections in I'(J"(Y — X)) whose image lies
in R, i.e. the space of formal solutions. Similarly, we write Sol(R) for the space of
solutions, which is a subspace of I'(Y'). Then, we may look at the forgetful map:

i : Sol(R)  —  Sol/(R)
fo—= w(f):=J"1

Definition 3.4.2. We say that the (complete) h-principle holds for R if ix is a
weak homotopy equivalence.

In particular, if Sol’ (R) is non-empty and the h-principle holds, solutions of R do
exist.
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3.4.1.2 The space of solutions

By construction PDRs are local so, given open sets U ¢ V' < X, we have restriction
maps Sol(R) — Sol(R|y) — Sol(R|y). Hence, Sol(R) is the space of global sections
of the sheaf of topological spaces which assigns to each open subset in X the
space of solutions Sol(R|y).

We may then pass to the étale space viewpoint, regarding Sol(R) as the space
of germs of solutions of R. It has the structure of a (non-second-countable, non-
Hausdorff) manifold such that the projection 7 : Sol(R) — X is a local diffeomor-
phism. Local sections of Sol(R) — X correspond to local solutions of R. Using this
point of view, the Whitney topology on the space of solutions is forgotten.

Instead, we can endow the étale space Sol(R) (as a set) with the structure of a
C"-diffeological space [63]. That is, given any smooth manifold K, we have a
distinguished subset C" (K, Sol(R)) of Mapsg. (K, Sol(R)); a map in this subset is
said to be a (C"—)plot. In this case, a map is a plot if it can be extended to a K-family
of local solutions of R which is C" in the parameter. Observe that precomposing a
C"-plot by an actual C"-map is still a C"-plot. In this manner we encode the C”-
topology, but we forget the étale one.

This discussion applies as well to the étale space associated to Solf (R). It is endowed
with the CY-diffeology and the étale topology.

Remark 3.4.3. The subtlety here is that, even though Sol(R) and Sol/(R) are
sheaves of topological spaces, their stalks are not topological spaces themselves be-
cause we are taking a direct limit. We are forced to look at diffeological or quasi-
topological spaces to work with germs of sections [60, Sections 1.4 and 2.2]. A

When we think of Sol(R) and Sol’ (R) as sheaves of topological spaces, the map tx
becomes a sheaf morphism. Hence, it is a continuous map, for the étale topology,
between the corresponding étale spaces. It also takes plots to plots, so we can say
that it is continuous with respect to the diffeological structures.

In this text we will work with all these different structures on Sol(R) and Sol’ (R).
Usually, unless stated otherwise, they just denote the spaces of (global) sections and
not their sheaf or étale space structures.

3.4.1.3 Flavours of h-principle

Often, one is unable to prove that tg is a weak homotopy equivalence, but partial
results hold. For instance, if v is surjective at the level of connected components, we
say that the existence h-principle holds. Similarly, if 1z is a bijection of connected
components, we may say that the h-principle holds in m; analogous statements hold
for higher homotopy groups.

Furthermore, we may ask whether the hA-principle holds over each open set U < X
in a way that is coherent with respect to the sheaf structure. This can be phrased
as follows. The h-principle is relative in the domain when: any family of formal
solutions of R|y, which are already honest solutions in a neighbourhood of a closed set
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A c U, can be homotoped to become solutions over the whole of U while remaining
unchanged over Op(A). Le. the homotopy equivalences between solutions and formal
solutions can be assumed to respect closed subsets where they already hold.

Similarly, the h-principle is relative in the parameter when: any family of formal
solutions {F} }rek, parametrised by a closed manifold K, and with F}s holonomic for
every k' in an open neighbourhood of a fixed closed subset K’ < K, can be homotoped
to be holonomic relative to Op(K").

Lastly, we say that the h-principle is C°-close if the zeroeth order part of any formal
solution can be approximated by a genuine solution.

3.4.1.4 Local integrability

We momentarily forget the étale topology on the étale space Sol(R); we are only
interested in the diffeological structure of the germs. We look at the forgetful map
Sol(R) — J"(Y — X) which evaluates a germ to the corresponding r-jet at the point
in which it is defined. This map then necessarily takes values in R.

Definition 3.4.4. A PDR R is locally integrable if Sol(R) — R is a Serre fibration

with weakly contractible fibres.

In particular, Sol(R) is weak homotopy equivalent to R itself.

One can equivalently rephrase this as follows: any finite dimensional family of point-
wise formal solutions can be extended, relative in the parameter, to a family of
solution germs. This extension is unique up to homotopy.

3.4.1.5 Flexibility, microflexiblity

Local integrability takes into account only the stalks of the sheaf Sol(R), i.e. germs
at individual points. One would like to look at germs along higher dimensional
submanifolds of X. We denote ©; for the pair

(A=1[-1,1]",B = 8(A) u ([-1,1]" x {0})).

Definition 3.4.5. A PDR R is microflexible if, for any:

ball U and integer m,

embeddings (hy)pefo,11m : ©1 — U,

e holonomic sections (F})pero11m : Op(hp(A4)) = R

homotopy of holonomic sections

(Fp,s)pef0,1]m,se[0,1] : Op(hp(B)) = R

satisfying prs = F, for s =0 or pe Op([0,1]™).
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There exists sg € (0,1] and a family of holonomic sections

(Fp,s)pe[0,1]™ se[0,50] - OP(hp(A)) = R

satisfying:

e F,,=FE,, in Op(B).

o F,,=F, for every pe Op([0,1]™).
We say that R is flexible if sg can taken to be 1.

That is, a PDR is microflexible if any local deformation of a solution can be extended
to a global deformation, at least for small times. Note that PDRs that are open are
immediately microflexible and locally integrable.

3.4.1.6 Natural bundles and PDRs

Some PDRs can be intrinsically formulated, without referring to the particular man-
ifold in which they live. Identically, they are invariant under diffeomorphisms, so
the corresponding spaces of solutions are naturally endowed with an action by the
diffeomorphism group. PDRs of this type are ubiquitous in geometry and they will
play a role later on. Let us formalise this idea; we refer to [97].

Definition 3.4.6. A natural fibre bundle is a functor F' from the category of n-
manifolds (where we take morphisms to be embeddings) to the category of fibre bundles
(with morphisms being fibrewise diffeomorphisms lifting embeddings), satisfying:

o F(X) is a fibre bundle over X.

e F(f:X — X') covers f.

We sometimes abuse notation and say that a particular F(X) is a natural fibre
bundle (but we implicitly remember the rest of the data). Observe then that the
pseudogroup Diff},.(X) acts on F(X). The bundles associated to the tangent bundle
(frame bundles, the cotangent bundle, wedge products, symmetric products) are all
examples.

Given F', we can take r-jets, yielding a new functor j”F which is still natural. The
map F — j"F is itself a natural transformation; a fibrewise diffeomorphism f is
mapped to the corresponding point transformation ;" f.

Definition 3.4.7. A Diff-invariant PDR (of order r and for n-manifolds) is a
natural fibre bundle R together with a natural transformation R — j"F, for some F,
which realises R(X) as a subbundle of j"F(X), for any n-manifold X .

In particular, R(X) is preserved by the action of Diff},.(X). This naturality allows
us to abstract the relation from the particular manifold in which it lives.
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3.4.2 Holonomic approximation

One of the cornerstones of the classical theory of h-principles is the holonomic approxi-
mation theorem. It states that any formal section of a jet bundle can be approximated
by a holonomic one in a neighbourhood of a perturbed CW-complex of codimension
at least 1. The precise statement reads as follows:

Theorem 3.4.8 ([13]). LetY — X be a fiber bundle, K a compact manifold, A ¢ M
a polyhedron of positive codimension, and (Fio)kerx : X — J" (Y — X) a family of
formal sections. Then, for any € > 0 there exists

e a family of isotopies (¢r,t)efo,1] * X — X,

e a homotopy of formal sections (Fyt)kek tefo,1]: X — Y,
satisfying:

o Fy 1 is holonomic in Op(¢x,1(A)),
o o —id|co < e and is supported in a e-neighbourhood of A,

° |Fk,t — Fk70|00 <Ee€.
Moreover the following hold:

o If V e X(Op(A)) is a vector field transverse to A, then we can arrange that
o, (A) is transverse to V' for all t and k.

o If the Fy,+ are already holonomic in a neighborhood of a subcomplex B < A,
then we can take Fi; = Fi o and ¢ = id on Op(B), for all k.

o If F}. ; is everywhere holonomic for every k in a neighbourhood of a CW-complex
K' c K, then we can take Fi ¢ = Fj. o and ¢y = id for k € Op(K').

Remark 3.4.9. Note that in the above statement, the equations
[Pkt —idlco <&,  |Fit— Frolco <,

depend on a choice of Riemannian metric on X and Y. Alternatively, these conditions
can be phrased using the C%-Whitney topology. A

For the proof and a much longer account of its history, we refer the reader to [43].
Essentially, this theorem recasts the method of flexible sheaves due to M. Gromov
(itself a generalisation of the methods used by S. Smale in his proof of the sphere
eversion and the general h-principle for immersions) in a different light. Let us go
over the statement.

The starting point is the family of formal sections F}, g, which we want to homotope
until they become holonomic. This is not possible, but the theorem tells us that at
least we can achieve holonomicity in a neighbourhood of a set of positive codimension.
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We are not allowed to fix this set. Instead, we begin with a polyhedron A, which
we deform in a C° small way to yield an isotopic polyhedron ¢y 1(A). This isotopy
occurs in the normal directions of A (which we may prefix by taking a transverse
vector field V'), and essentially produces a copy ¢y 1(A) of A of greater length. This
process is called, descriptively, wiggling. The space we gain by wiggling is what
allows us to achieve holonomicity: the main idea is that, at each point p € A, we
approximate Fy o by the corresponding Taylor polynomial Fy ¢(p) and then we use
the directions normal to A to interpolate between these polynomials keeping control
of the derivatives. Hence, we can take the F), to be arbitrarily close to our initial
data, and the wiggling to be C°-small. However, if we desire better C°-bounds, we
will be forced to wiggle more aggressively, i.e. the isotopies @+ will become C*-large.

It is additionally possible to achieve a relative statement both in parameter and
domain: if all the formal sections Fy, ; are already holonomic over some region Op(B),
we do not have to perturb them nor wiggle there. Similarly, we can leave the F} ;
untouched close to a subset K’ of the parameter space as long as the {F} :}op(x) are
holonomic (everywhere in M).

3.4.3 Thurston’s triangulations

An important step in the application of many h-principles (including ours), is the
reduction of the global statement (global in the manifold M), to a local statement
taking place in a small ball. These reductions allow us not to worry about (global)
topological considerations, making the geometric nature of the arguments involved
more transparent. Working on small balls (i.e. “zooming-in”) usually has the added
advantage of making the geometric structures we consider seem “almost constant”;
this will play a role later on.

A possible approach to achieve this is to triangulate the ambient manifold M and then
work locally simplex by simplex. A small neighbourhood of a simplex is a smooth
ball which can be assumed to be arbitrarily small if the subdivision is sufficiently fine;
thus, this achieves our intended goal. When we deal with parametric results (phrased
using the foliated setup, see subsection 3.2.4), we want to zoom-in in the parameter
space too. This requires us to triangulate in parameter directions as well. For us,
this means that we must triangulate a foliated manifold in a manner that is nicely
adapted to the foliation.

Let (M, F) be a manifold of dimension n endowed with a foliated of rank k . Given a
triangulation 7, we write 7 for the collection of i-simplices, where i = 0, ..., dim(M) =
n. We think of each i-simplex o € T as being parametrised ¢ : A* — M, where
the domain is the standard simplex in R?. The parametrisation o allows us to pull-
back data from M to A’ In particular, if o is a top-dimensional simplex, it is a
diffeomorphism with its image and we may assume that o extends to an embedding
Op(A™) — M of a ball.

If the image of ¢ is sufficiently small, we would expect that the parametrisation o
can be chosen to be reasonable enough so that o*F is almost constant. This can be
phrased as follows:
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Definition 3.4.10. A top-dimensional simplex o is in general position with respect
to the foliation F if the linear projection (identifying T,R™ = R™)

An/(o,*]:)p _ Rn—k

restricts to a map of mazimal rank over each subsimplex of o. In particular, c*F is
transverse to each subsimplex.

The triangulation T is in general position with respect to F if all of its top-simplices
are in general position.

We may then state:

Theorem 3.4.11. Let (M, F) be a foliated manifold. Then, there exists a triangu-
lation T of M which is in general position with respect to F.

This statement was first stated and proven by W. Thurston in [104, |, playing a
central role in his h-principles for foliations. His statement is slightly more general
and works for general distributions, but this is not needed in our setting.

Given a submanifold N < (M, F), we cannot expect it to be transverse to F. How-
ever, after a C®-perturbation, we can assume that the singularities of tangency be-
tween N and F are generic: i.e. they form a smooth manifold whose singularities of
tangency are themselves generic. Recursively, this provides a stratification of N in
the sense of Thom-Boardman, as described in Subsection 3.3.1. The singular strata
may represent non-trivial homology classes in N, which are invariants of N and F
up to homotopy. Non-triviality of these invariants tells us that we cannot homotope
N to make it transverse to F.

Suppose now that IV is just a piecewise-smooth submanifold. Then, its tangent bundle
is not defined everywhere: it has discontinuities and the singularities of tangency are
not defined there. One is able, by introducing additional discontinuities, to remove all
singularities of tangency. In homotopical terms, there is a classifying map associated
to the locus of tangency and one can make the map into classifying space discontin-
uous by passing to the piecewise category. Discontinuities allow us to “jump” over
the homology classes of the classifying space. This is called an h-principle without
homotopical assumptions [4].

Theorem 3.4.11 was one of the first statements along these lines, where instead of a
submanifold we have a triangulation. The argument goes roughly as follows: we start
with a triangulation 7. We then subdivide it (in a controlled fashion called crystalline
subdivision, which ensures that angles remain controlled and that the cardinality of
the star of a vertex is uniformly bounded). As we subdivide, the foliation seems
progressively flatter from the perspective of each simplex. In particular, the measure
of the set of planes that intersect the foliation non-transversally goes to zero. This
allows us to apply Thurston’s jiggling: we tilt slightly the vertices, yielding simplices
that are transverse to F.
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3.4.4 Wrinkling

Wrinkling is an h-principle method to construct mildly singular solutions of partial
differential relations. It has been used by Y. Eliashberg and M. Mishachev to prove
flexibility results for submersions [40], equidimensional immersions with prescribed
folds [45], foliations [41], and fibrations [38]. It entered the world of Contact Topol-
ogy with [44], which would then lead to the works of E. Murphy on loose legendrians
[94] and D. Alvarez-Gavela on the simplification of front singularities of legendrians
[3, 2]. Tt is also one of the central ingredients in the construction and classification of
overtwisted contact structures in all dimensions [15] due to M.S. Borman, Y. Eliash-
berg, and E. Murphy. More recently, it has been used in Engel Geometry to classify
overtwisted Engel structures [31] and integral knots in Engel manifolds [25].

We want to phrase some of these results in a coherent light. In Section 3.8 we will
reprove and improve on some of the aforementioned works (namely [44]) to produce
and classify embedded integral manifolds in higher jet spaces.

Our approach is more general and, hopefully, more transparent/streamlined than
previous iterations in the literature. Despite having a different flavour in implemen-
tation, we present no fundamentally new geometric ingredients. Our work owes a lot
to the papers cited above.

For the reader to have a somewhat complete picture, let us provide a list of sample
theorems on wrinkling. We will refer back to them later on.

3.4.4.1 Wrinkled submersions

Let M and N be n-dimensional manifolds (we assume equidimensionality for simplic-
ity).

Definition 3.4.12. A formal submersion is a bundle map F : TM — TN which

is a fibrewise epimorphism (no assumptions on the underlying map M — N ).

It is well-known that the space of submersions M — N is not homotopy equivalent
to the space of formal submersions if M is closed. Indeed, any map M — R" with
M closed must have critical points, so it cannot be submersive.

The first wrinkling result of Y. Eliashberg and M. Mishachev [40] says that one may
salvage the h-principle by relaxing the submersion condition. They do so by allowing
mild singularities, as introduced in Subsection 3.3.4:

Definition 3.4.13. A wrinkled submersion is:

e amap f: N — M between n-dimensional manifolds,

e a finite collection of disjoint open balls {B;},
such that:

e f is a submersion in the complement of the B;.
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o f|B, is left-right equivalent to Wrin,, (Definition 3.3.17).

A wrinkled submersion with embryos has an additional collection of balls in
which f is modelled by the embryo (Equation 3.5.4.2).

As explained in subsection 3.3.4.2, the wrinkle and the embryo possess a formal
desingularisation: i.e. a homotopy of the formal derivative to a monomorphism. This
implies that there is a (well-defined up to homotopy) map from the space of wrinkled
submersions with embryos to the space of formal submersions. Then:

Theorem 3.4.14 (Eliashberg and Mishachev [40]). The space of wrinkled submer-
sions with embryos is homotopy equivalent to the space of formal submersions. This
h-principle is, additionally, C°-close.

We can similarly define submersions with double folds to be maps which are
submersions in the complement of a finite collection of disjoint annuli in which they
are modelled by a double fold. They may additionally have finitely many spheres
in which they are modelled by a double fold embryo. Then, using the surgery of
singularities from subsection 3.3.5.3 and the previous theorem, one can deduce:

Corollary 3.4.15. The space of submersions with double folds and embryos is homo-
topy equivalent to the space of formal submersions. This h-principle is, additionally,
CO-close.

3.4.4.2 'Wrinkled embeddings

Let M < N be smooth manifolds with dim(M) < dim(N).

Definition 3.4.16. A tangential homotopy M — N 1is a family of bundle monomor-
phisms
(Gs)sefo,1) : TM — TN|n, Go = id.

In [14], Y. Eliashberg and M. Mishachev study the problem of isotoping M, as an
embedded submanifold of N, to approximate a given tangential homotopy (in a holo-
nomic manner). This problem is, in general, obstructed. However, it is solvable if we
relax the embedding condition to allow for wrinkle singularities.

We take the local model of a first order, positive codimension wrinkle (from Subsection
3.3.6) and we globalise it as follows:

Definition 3.4.17. A smooth map f: M — N is a wrinkled embedding if:

e it is a topological embedding,

e it is a smooth embedding away from a collection of disjoint embedded codimension-
1 spheres S;,

o flopes,) is left-right equivalent to Wringim s, dim(n)-
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A map f: M — N is a wrinkled embedding with embryos if it is a wrinkled
embedding in the complement of a finite collection {p;} of points and it is left-right
equivalent to an embryo in each neighbourhood Op(p;).

Wrinkles provide enough flexibility to yield the following approximation result, which
is both parametric and relative in the parameter and in the domain:

Theorem 3.4.18 (Eliashberg and Mishachev [11]). Let N and K be smooth mani-
folds. Let (My)kex < N be a K-family of submanifolds of N. Assume that there is
a family of tangential homotopies (Vi s)kek,se[0,1] Starting at vy o = T Mj,.

Then, there is a K x [0, 1]-family of wrinkled submanifolds with embryos (M, s)kek,se[0,1]5
starting at My o = My, such that TMy, s is C°-close to Vs

Furthermore:

o Assume there is a closed submanifold K' < K such that vy s = TM)y, for every
ke K'. Then, we may assume that My, s = My, for all k € K'.

o Assume there are closed submanifolds M}, < My such that vy, ¢(x) = T My, for
all x € Mj,. Then we may assume that My, s agrees with My, in Op(M],).

This should be understood as an analogue of the holonomic approximation Theorem
3.4.8. A minor difference is that it is stated for submanifolds as opposed to sections.
More importantly, it applies to closed manifolds, and the price paid is that singular-
ities must be introduced. Lastly, it applies only for 1-jets. We extend it to general
r-jets; see Section 3.8.

3.5 The integral Grassmannian

Let B and F be vector spaces of dimensions n = dim(B) and k¥ = dim(F). We
are interested in I-dimensional integral submanifolds of (J" (B, F'),{can). Our goal in
this Section is to understand their linear counterpart, i.e. the corresponding integral
elements.

We will do this step by step, looking first at the horizontal elements (Subsection 3.5.2),
then at the elements that intersect the vertical distribution in a given dimension
(Subsection 3.5.3), and finally at how these different pieces glue together (Subsections
3.5.4 and 3.5.5).

Let us provide some context about integral manifolds and integral elements: the first
to regard general integral submanifolds of jet space as “generalised solutions” seems
to have been R. Thom in [24], where he sketched the proof of his famous “homological
h-principle”. Later, A.M. Vinogradov brought attention to them, in the context of
Geometry of PDEs, in [108]. Several works have followed in this direction [9, 10, 109].

It is within the Geometry of PDEs literature [70, 71] that the integral Grassmannian
has been studied. As far as the we are aware, the majority of what is currently known
can be found in the works of V. Lychagin [79, 78, 80, 81]. Despite containing beautiful
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results, these articles follow an announcement format and proofs are often missing
or just outlined. One of our goals in this Section is to provide a detailed account of
Lychagin’s work.

We note that our homotopy type computations for the integral Grassmannian in
Subsection 3.5.5 seem to be new.

3.5.1 Decomposing the integral Grassmannian

Following subsection 3.2.2.3, we identify the tangent space of J"(B, F') at any point
with the vector space

g=B@®F®Hom(B, F)®Sym?*(B*,F)@---@®Sym"(B*, F).

In Definition 3.2.38 we endowed g with a natural graded Lie algebra structure given
by the contraction of vectors with tensors. We called this the jet Lie algebra with
parameters n, k, and r. It was then proven in Proposition 3.2.39 that g models
the nilpotentisation of &.,,. Under this isomorphism, integral elements (of a given
dimension [) correspond to Lie subalgebras lying in the zero degree part

go = B®Sym" (B*, F).

The space of integral elements is denoted by Grintegral (8, 1). It decomposes into several
pieces, depending on how integral elements intersect the vertical component. We
define:

Gryi(g,1) := {W € Grintegrai (g, 1) | dim(W n Sym"(B*, F)) = i},

where the subscript X is inspired by the Thom-Boardman notation.

The piece Gry,(g,!) is precisely the horizontal Grassmannian, as introduced in sub-
section 3.2.2.8. We also call it the regular cell even though it is, in general, not
dense in Grintegrai(g,!). This is shown in subsection 3.5.3.3 below. We will describe
the spaces Gryi(g,!) in Subsections 3.5.2 and 3.5.3.

3.5.1.1 The grassmannian of multi-sections

In Section 3.6 we will introduce multi-sections, i.e. integral submanifolds that are
horizontal in a dense set. These are submanifolds that one can manipulate through
their front projection. Any integral element tangent to a multi-section must be in the
closure Gryo(g,n) of the horizontal elements; we call this space the Grassmannian
of multi-section elements.

Furthermore, we are interested in multi-sections with mild singularities of tangency,
which will be, in particular, of corank 1. Therefore, we content ourselves with de-
scribing how the two strata Grgo(g,n) and Gry:i(g,n) glue together.

Definition 3.5.1. The X2-free integral Grassmannian, is the union

GIs2_free (ga n) = Gryo (97 n) v Gryu (gv n)
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We will study its topology in Subsection 3.5.5.

We will study Gringegra1(g,!) as a whole in the future. In particular, in the present
work we do not look at the closures Gry:(g,n) with ¢ > 1.

3.5.2 Horizontal elements

We now prove Lemma 3.5.3: the Grassmannians of horizontal elements are vector
bundles with (standard) Grassmannian base. This description appeared already in
the recent work [10].

3.5.2.1 Maximal horizontal elements

A maximal horizontal element W is graphical over B. We can represent it (uniquely)
as the graph of a homomorphism A € Hom(B, Sym" (B*, F')). Then:

Lemma 3.5.2. Let W = graph(A) be a n-dimensional subspace of go graphical over
B. Then, W is integral if and only if A € Sym" ™ (B*, F).
Proof. The Lie subalgebra condition for W means that for any pair wg + A(wg), w1 +
A(wy) € W we have:

0= [wo+ A(wp), w1 + A(w1)] = twe A(wr) — Ly, A(wo)

which implies that A is symmetric with respect to the first variable as well. The
claim follows. O

This Lemma realises the correspondence between horizontal elements at a point p €
J"(Y — X) and points in the fibre of J"*1(Y — X)) over p.

3.5.2.2 General dimension

More generally, if W is horizontal and of dimension | < n, it projects down to some
[-dimensional subspace H — B, defining a map

7+ Gryo(g, 1) — Gr(B,1)

to the [-Grassmannian of the base. We claim that this is a vector bundle which can
be explicitly described in terms of the tautological bundle v over Gr(B,1).

Lemma 3.5.3. There is a canonical isomorphism of vector bundles over Gr(B,1):

Sym" ™! (B*, F)

Grso(g, 1) = MH1—M7

where v+ is the annihilator of the tautological bundle .
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Proof. We look at all the graphical I-subspaces in gy, not necessarily integral: given
H c B, its possible lifts correspond to the elements of Hom(H, Sym" (B*, F')). Pack-
aged all together, for varying H, they are elements of the total space of the vector
bundle:

Hom(~y, Sym" (B*, F)) — Gr(B, ).

We want to determine which of these are horizontal.

To do so, we use the auxiliary trivial vector bundle Sym”**(B*, F) — Gr(B,1). We
look at the bundle map given by evaluation on each [-subspace:

ev, : Sym" Y (B*, F) ¢ Hom(V,Sym" (B*, F)) — Hom(vy, Sym" (B*, F)).

The image of this map is necessarily contained in Grso(g,!). We claim that the map
is an epimorphism: this follows from the fact that any horizontal W, projecting to
H c B, may be extended to a maximal horizontal element by direct summing with
the complement of H in B.

The kernel of ev, is, by definition, the subspace of those elements of Sym" " (B*, F)
which vanish when a vector in v is plugged in. By symmetry, we deduce that there
is a exact sequence

0 — Sym" "' (y1, F) - Sym" ™ (B* F) — Gryo(g,1) — 0

of vector bundles, proving the claim. O

3.5.2.3 The subspace filtration

Let H < B be a linear subspace. In the proof above we looked at those elements in
Sym” ! (B*, F) which vanish when an element of H is plugged in. One can, more
generally, consider those tensors that vanish when a collection of elements in H is
used. This leads us to define the following filtration:

Sym™ 1 (B* F)H3) .= {A e Sym" T} (B*, F) | Ly; -ty A =0, for any v; € H},
o Sym" Y (B*, )9 < Sym"Y(B*, F)Hat) <
By the discussion in the previous subsection, we have that

Sym" ! (B*, F)H1) = Sym"™* ! (H*, F).

In general, by choosing a direct summand of H, we can identify:

Sym" ™! (B*, F)(H.1)
Sym" 1 (B*, F)(H.j-1

;= Sym’ ' (H*, F)® Sym" "2~ (H*, F).
yielding the dimension formula:
di Sym’*!(B*, F)(H:9) L(PHI= 2\ (nAr el
SymTH(B*, F)(H,jfl) N n—1 n—1 '

In Subsection 3.5.4 we will study the principal cone in Sym” ' (B*, F), i.e. the space
of tensors A of the form A € Sym" ' (H*, F), for some H  B.
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3.5.2.4 Aside: the conormal

We finish this Subsection presenting the conormal construction. Given a horizontal
submanifold of J"(Y — X), it produces a maximal integral submanifold containing
it. This will not be needed later on, but it helps us emphasise that maximal integral
submanifolds are often exotic looking (compared to those integral submanifolds that
are almost everywhere horizontal).

We first present the linear analogue of this phenomenon:

Definition 3.5.4. Let W < gg be l-dimensional and horizontal. Denoting its projec-
tion to B by H, we define the conormal of W to be the subspace:

conormal(W) := W @ Sym” (H*, F) c go.

The space Sym” (H1, F) is the intersection of the polar space of H with the vertical
component. Hence, the conormal is a maximal integral element.

In the contact case, conormal(W) is middle-dimensional and therefore a lagrangian
subspace of £ean. In the general case, Sym” (H+, F') has dimension k((";l_);r_ Tl_l) which
is often (much) larger than n — {. For instance:

e If | =n — 1, we have dim(Sym" (H*, F))

k.

e If | =n — 2, we have dim(Sym" (H*, F)) (r+1).

o If | = n — 3, we have dim(Sym” (H*, F)) = k{r20r+1),

Therefore, the conormal construction produces integral elements which are tangent
to the fibre along a large subspace, and whose dimension is often much larger than
n.

Now for the manifold version:

Definition 3.5.5. Let N < J (Y — X) be a l-dimensional, integral submanifold
with immersed projection m,(N) € X. We define its conormal to be the manifold:

conormal(N) :={pe J"(Y = X) | m,,—1(p) € Trr1(N), p 2 T, () Trr—1(IN)}
In the last inclusion we think of p € J"(Y — X) as a mazimal horizontal element in

7Tr,r—1(p) € Jr_l(Y - X)

To see how this corresponds to the linear version, we choose a trivialisation so we
may work with J"(B, F'), where B and F are vector spaces. Then the conormal is
precisely the space

{pe J"(B,F) | mrr—1(p) € Trp—1(N), p € conormal(Ty, ) 7rr—1(N))}.

Here we use the fact that both the base B and the fibre F' are vector spaces to
canonically identify the fibre of r-jet space with Sym"(B*, F') and therefore invoke
the linear definition.
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3.5.3 Integral elements of given corank

Having understood the horizontal case (which we will have to invoke repeatedly),
we may look now at more general integral elements. Namely, those intersecting the
vertical component in a subspace of dimension 3.

3.5.3.1 The setup

The space Grsi(g,l) is endowed with two canonical maps. The first is simply the
restriction of the base projection; we denote it by:

m : Gryi(g,l) — Gr(B,l —1).
The second one intersects an integral element with the vertical component. We write:

ASym" (B*, F) : Gryi(g,l) — Gr(Sym" (B*, F),1).

Given W € Gryi(g,1), the subspaces H = m,(W) and W,, = W n Sym"(B*, F) must
be orthogonal with respect to the curvature/Lie bracket. This means that W, must
be, in fact, an element of Gr(Sym”(H*, F'),i). Reasoning in this fashion for all W
simultaneously leads us to look at the total space of the bundle Gr(Sym” (v, F),i) —
Gr(B,l — i). We write v for the tautological bundle over it.

The two canonical maps defined above yield a projection 7 : Gryi (g, 1) — Gr(Sym” (y*, F), ).
It is immediate that 7 is a vector bundle in which a natural choice of zero section is:

(3.5.3.1) (H,Wy) »> HOW,,

where H € Gr(B,l —14) and W,, € Gr(Sym” (H*, F),1).

3.5.3.2 The result
We may describe Gryi(g, () explicitly:
Lemma 3.5.6. There is a canonical isomorphism of vector bundles:

Sym"™t(B*, F)
Sym" "' (y1, F) ® Hom(v,v)

Grsi(g,l) =~
over the total space of Gr(Sym” (y*+, F),i) — Gr(B,1 —i).

Proof. As before denote by Sym” ! (B*, F) — Gr(Sym”(y*, F),) the trivial vector-
bundle, with fiber Sym” ™! (B*, F). We define a vector bundle epimorphism

@ : Sym" "' (B*, F) — Grs:(g, 1)
which, at a point W, € Gr(Sym” (H*, F), ), is given by

A —  ®nw,(A) = graph(Alg) @ W,
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The tensor A is in the kernel of @p w, (i.e. gets mapped to the zero section from
Equation 3.5.3.1) if and only if the associated quotient map

A: H— Sym"(B*, F)/W,

is zero. l.e. 1,A € W, for every v € H. Therefore, after choosing a direct summand
for H, we can identify:

ker(®p,w,) = Sym" " (H*, F) ® Hom(H, W,,),
which is a vector subspace of Sym” ™! (B*, F)(#:2) ~ Sym" ' (H+, F)@Hom(H,Sym" (H*, F)).
O

3.5.3.3 Dimension counting

From the previous proof, we deduce that:

Corollary 3.5.7. The fibre of Grs:(g,1), as a vector bundle over Gr(Sym” (v*, F), ),

has dimension
n+r n—Il+i+r . .
[(n—l) _(n—l—ki—l)]k_z(l_l)'

Similarly, we deduce:

Corollary 3.5.8. The manifold Grsi(g,l) has dimension

dim(Grgi(g, 1)) = (I —i)(n—1+1i)+
[(T +n(7i l_i ;-Lj)l_ 1)k - z] i+
[ e

Proof. The space Gr(B,[—i) has dimension (I—i)(n—[+1). The fibre of Sym” (y+, F)
has dimension (”(”71“)71), so it follows that the fibre of Gr(Sym’(y+, F),4) has

n—Il+i—1
dimension:
r+(nflfz)fl v il
n—I1+i—1

Putting all these computations together, we deduce the claim. O

We are particularly interested in comparing Gryi(g,) with the regular cell Grso(g, 1),
which we want to regard as the “generic” ones. To do so with define a number, which
we call the codimension, as follows:

codim(r,n, k,1,4) := dim(Grso(g,!)) — dim(Gryi(g,1)).
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We particularise to the case n = [ and we compute:

. . . l1—2/r+i—1
codim(r,n, k,n,i) = 22+kr1+r( i ),
codim(r,n,k,n,1) = 1,
codim(r,n, k,n,2) = 4—kr,
codim(r,n,k,n,3) = 9—kr(r+2).

So we deduce:
Corollary 3.5.9. The space Grsi(g,n) has codimension 1 in Gryo(g,n).

iGi+1) .
=5 m

In the contact setting k = r = 1, the space Grysi(g,n) has codimension
Gryo(g,n).

That is: with the exception of a few cases in which r and k are small, the strata
Grxi(g,n), i > 1, are often larger than the regular cell.

The most interesting component, from a PDE perspective, is the closure Grso(g, )
of the horizontal cell. We will not attempt to look at it in depth. As pointed out in
the introduction, it is enough that we understand how Gryz_g.e0(g,!) sits inside; we
will do so in Subsection 3.5.5.

3.5.4 Principal subspaces

It is convenient that we introduce some auxiliary concepts before we look at Grsz2_fr.ee(g,1) ©
Grso(g,!). The main definition of interest in this Subsection is:

Definition 3.5.10. A horizontal element A € Gryo(g,n) = Sym” " (B*, F) is prin-
cipal if

A= fr+1 ® a,
for some (unique) f € B* and o € F. The span of a principal element is said to be
a principal subspace.

Any non-zero principal element defines a kernel subspace ker(A) := ker(f) < B which
is of codimension 1, and an image subspace Image(A) < Sym’ (B*, F') which is by
definition the 1-dimensional space spanned by " ® a.

Remark 3.5.11. As points in (r + 1)-jet space, principal elements correspond pre-
cisely to pure derivatives (i.e. derivatives of order r + 1 along a single direction in the

base). A

3.5.4.1 The principal cone

We claim that the set of all principal subspaces in Sym”*(B*, F) is the cone of
an algebraic subvariety in the projectivisation. Let us recall two constructions from
classic algebraic geometry.
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Let V and W be vector spaces. We define the Veronese mapping:

P(V) — P(Sym"(V)),
[v] o~ [

Similarly, the Segre mapping is defined by the expression:

P(V)xP(W) — PVRW),
(o], [w]) = [v@uw]
Both of them are algebraic maps.

In our setting, we can put them together to define the principal mapping:

P(B*) x P(F) — P(Sym""'(B* F)),
([fLla]) — [f*'®al.

We are interested in the cone it defines. It is given by the image of the map:

B*x F  — Sym""(B* F),
(f,a) = fT®a

We will abuse notation and still call this map the principal mapping, as long as no
confusion may arise. Its image, which we denote by Vy and we call the principal
cone, is an algebraic subvariety. By construction, a horizontal element is principal if
and only if it is contained in V.

3.5.4.2 The closure of the principal cone

Fix Ag, A; € Sym" ' (B*, F), with A, principal, and consider the linear combinations
(Ao + sA1)ser. We can see that

(Ao + 841) |ker(a,) = Aolker(as)

i.e. the graph over ker(A;) does not depend on s. However, Ag + sA4; explodes in
the complement of ker(A4;) as s goes to infinity. This implies that the sequence of
horizontal elements (Ag + sA1)ser has well-defined limit in Grsi(g,n): the integral
element

graph(Aoier(4,)) ® Image(A1).

In terms of r-jet space, this phenomenon corresponds to an explosion of a pure deriva-
tive of order r + 1. Any element in Grsi(g,n) may be written as such a limit, so we
deduce:

Lemma 3.5.12. Grxui(g,n) is contained in the closure of Grso(g,n).

Applying this reasoning with Ay = 0, we are effectively looking at the closure V := Vg
in Gryo(g,n) of the principal cone:
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Lemma 3.5.13. The principal subvariety V is the union of two pieces Vo and V;.
The latter piece is the zero section of Grs: (g, n) as a bundle over Gr(Sym” (y+, F), 1) —
Gr(B,n —1).

Proof. Any element in the closure of V; can be realised as the limit of a path (sA)qer,
with A principal. As reasoned above, its limit is then the direct sum ker(A) @
Image(A), where the first term is a hyperplane in B and the second one is a line in
Sym” (ker(A)*, F). This concludes the claim. O

Lastly, we remark that V; = Gr(Sym” (v, F), 1), as a bundle over Gr(B,n — 1), is
trivial. Indeed, an element in the fibre is a line in Sym” (y*, F'), which can be uniquely
identified with its image in F', which is again a line. This shows that:

Corollary 3.5.14. There is an identification
Vi = Gr(B,n —1) x Gr(F,1) = P(B*) x P(F).

3.5.4.3 The topology of the principal subvariety

We want to determine the homotopy type of V by putting its pieces together. This
is relevant because, as we will see in Subsection 3.5.5.2, V' is homotopy equivalent to

Grs2_free (gv n) .

Let us make a preliminary remark. We write V for be the blow-up of V at the origin.
We denote the tautological bundles over P(B*) and P(F') by vp+ and v, respectively.
We then look at the forgetful map

V — P(B*) x P(F).

One can check that it is a fibration with RP! fibres and, in fact, it is the fibrewise

compactification of the real line bundle 'y%;'“ ®~p. From this expression we see that

there is a certain asymmetry depending on the parity of r, so we must tackle each
case separately.

Write B* ~ RP" for the compactification of B* by adding P(B*) at infinity. Denote
by S(F) the unit sphere (with respect to some scalar product). Then:

Lemma 3.5.15. Let r be even. Then, there is a fibration
7y — B* x S(F) - V.
In particular, if k = dim(F) = 1, we have that V is homotopy equivalent to B* ~ RP".

Proof. We define maps

B* x S(F) — Vo,
(f,a) — oo

P(B*) x S(F) — W,
([fl,a) = ([f][a])
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Their composition defines a continuous map B* x S(F) — V, as claimed. For the
second claim we note that the bundle is trivial because S(F') = Zs. O
Similarly:

Lemma 3.5.16. Let r be odd. Then V is homotopy equivalent to the quotient

P(B*) x F
P(B*) x 0

Proof. Regard P(B*) as the quotient of the unit sphere (for some scalar product)
under the antipodal map. Consider the map:

P(B*) x F VW,
([fl.) - feaq

which is well-defined because r is odd. Together with the identity map P(B*) x
P(F) — V), this defines a mapping

P(B*) x F'> V
which is surjective, maps P(B*) x {0} to the origin in V, and is a homeomorphism in

the complement; quotienting we deduce the claim. O

3.5.4.4 The tangent variety of the principal cone

Lastly, being a subvariety of a vector space, we can look at the tangent variety
TV, < Sym" ™ (B*, F) associated to V.

To determine T'V,, we look at the map ¥(f,a) = f*™' ® a. Its differential at a
covector f € B* and a vector « € F' is readily computed:

dfotp: B¥ x F — Sym" ™Y (B* F),
dratb(9,8) = @@+ B) +(r+1)g- [T ®a.

Equivalently, if we set H = ker(f) < B, we see that the tangent space to V, at
1 ® a # 0 is the subspace:

Sym"™ " (H*, F) @ H* @ Sym" (H*, () < Sym"*!(B*, F)":2),
This identifies the normal fibre to Vy at (f, ) with the quotient

Sym"*(B*, F)
Sym" ™ (HL, F) ® H* @ Sym" (H*,{a))’

as we would expect from our description of Gryi(g,n) as a bundle over V.
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3.5.5 The X2-free integral Grassmannian

In this last subsection we state some structural results about Grsz_g.e.(g,n) and we
provide sketches of proofs. A more comprehensive account will appear in future work.

3.5.5.1 Smoothness

According to Subsections 3.5.2 and 3.5.3, the pieces Gryo(g,n) and Grsi(g,n) are
smooth manifolds. The first is a vector space. The second one is a vector bundle over
a smooth bundle with grassmannian base and fibre. The computations in subsection
3.5.3.3 show that the later has dimension one less than the former. One can put
together these facts to show:

Proposition 3.5.17. Grs2_pc.(g,n) is a smooth open manifold, embedded in Gr(go,n).
Furthermore, Grsi(g,n) sits inside as a smooth hypersurface.

Proof. Tt is sufficient to describe, at each point W € Grsi(g, n), a chart that is simul-
taneously a submanifold chart of Grsz_s...(g, ) inside of Gr(go, n) and a submanifold
chart of Grs:(g,n) inside Gryz_geo(g, ). We will just provide the latter.

Let W be presented as lim,_, 4o graph(Ag + sA;), with Ay, A; € Sym” " (B*, F) and
Aj principal. We write L for a neighbourhood of Ay within the normal fibre to the
principal cone at Ag. Additionally, we fix a (n+ k—1)-dimensional family U of rank-1
maps whose projectivisations are a neighbourhood of [A4;] in the space of principal
subspaces.

Then, the map
O:LxUx(-94,0) - Gr(g,n)

1
(A, A, s) > A+ - A
S
is a smooth embedding with image a neighbourhood of W in Grgz_f.e.(g, 7). Further,

the map @[y, 1«0y parametrises the hypersurface Grs: (g, n). O

We remark that we do not know whether Gryo(g,n) is smooth in general. In the
contact case it is known that it is.

3.5.5.2 Homotopy type

We can put together Proposition 3.5.17 with the work we did in the previous Sub-
section about the principal subvariety to show that:

Proposition 3.5.18. The X2-free Grassmannian Grsz2_geo(g,n) is homotopy equiv-
alent to the principal subvariety V.

Proof. We just provide a sketch of proof.

Let us fix a metric in gg making the horizontal and vertical components orthogonal.
This immediately defines a distance function # between lines in gy, given as the sine
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squared of the angle they make. We can readily extend this function to Gr(gg,n) as
follows:

. I
K(AA") = popex A (L,L").

We restrict £ to Grso(g,n).

Note that the horizontal cell Grso(g,n) is the set of points at distance strictly less
that 1 from the zero map. Similarly, Grsz_g.c.(g,7n) is the set at distance strictly less
than 1 from V. We may then define the distance function

d: GrEZ—free(gvn) - [07 1)
d(A) := inf £(4, B),
whose zero set is V.

The function d is smooth. It can be seen that its restriction to Grs:(g,n) is Morse-
Bott and its critical set is precisely V;. The situation in Gryo(g,n) is more delicate
because d is not Morse-Bott: its zero locus is the principal cone, which is singular,
and the additional critical points (corresponding to the cut locus of d) form a conical
algebraic subvariety S.

We may then proceed as follows: we modify d by adding a perturbation h(A) =
|A|?p; here p : Gryo(g,n) — R is a bump function supported in the intersection of
a neighbourhood of S and the complement of a ball around zero. In particular, this
perturbation is zero in the hypersurface Grgi(g,n). The effect of this is that minus
the gradient flow of d + h retracts everything to a neighbourhood of V, which itself
retracts onto V. O

3.5.5.3 The Maslov hypersurface

In the Lagrangian Grassmannian, the complement of the regular cell is usually called
the Maslov cycle. As studied by V. Maslov and V. Arnol’d [84, 5], it is a two-sided
(i.e. cooriented) and non-separating hypersurface and, it defines a first homology
class through the intersection pairing. Let us study this phenomenon in general jet
spaces. We will henceforth denote:

Definition 3.5.19. Grxi(g,n) © Grsz_gee(g,n) is called the Maslov hypersur-
face.

The Maslov hypersurface is non-separating in general. Furthermore:

Proposition 3.5.20. The Maslov hypersurface is two-sided if and only if one of the
following conditions holds:

o dim(F) =1 and r is odd, or
e dim(B) = dim(F) = 1.

These are not mutually exclusive.
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Proof. According to Proposition 3.5.18, it is sufficient that we prove that V; is coori-
entable within V. Then, we refer back to subsection 3.5.4.3, where it was explained

that V (the blow-up at the origin of V) is the fibrewise compactification of the tauto-

logical bundle A/%;H ® vF over P(B*) x P(F). Here the zero section corresponds to

the blow-up of the origin and the infinity section is precisely Vi, but their roles are
symmetric.

Now we observe that 7%1*1 ® 7y is isomorphic to the normal bundle of V; in 17, and

therefore isomorphic to the normal bundle of V; in V. Furthermore, this bundle is
trivial if and only if the terms v and 'V%QH are individually trivial. This proves the
claim. O

Furthermore:

Corollary 3.5.21. Let dim(F) = 1 and r be odd. Then a choice of orientation for
F determines a coorientation for the Maslov hypersurface.

Proof. Indeed, as computed in the proof of Proposition 3.5.20, the normal bundle to
Grsi(g,n) is precisely g, which is canonically identified with F. O
Similarly:

Corollary 3.5.22. Let dim(B) = dim(F) = 1 with r even. Then, a choice of
orientation for B* @ F determines a coorientation for the Maslov hypersurface.

Proof. The normal bundle to Gry:(g,n) is yp* ®yp, which is identified with det(B*®
F). O

In both cases, once we have oriented either F' or B* @ F', we will call the resulting
coorientation the Maslov coorientation.

3.5.5.4 The Maslov class

Under the assumptions of Proposition 3.5.20, the Maslov hypersurface is non-separating,
cooriented, and closed as a subset. This is enough to have a well-defined cohomology
class using the intersection pairing;:

Definition 3.5.23. Suppose one of the following conditions holds:
e dim(F) =1 and r is odd, or
e dim(B) = dim(F) =1,

and that a Maslov coorientation has been fized.

Then, the Maslov index or Maslov class is the non-zero, non-torsion element

Inde H' (Gr22—free (97 n)v Z)
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defined by:
Ind([7]) :== |y n Grsi(g,n)| € Z

where v is a curve representative intersecting the Maslov hypersurface transversally.
The count of intersection points takes into account signs, comparing the orientation
of v with the Maslov coorientation.

3.5.5.5 The local Maslov class

Even if the Maslov hypersurface is not two-sided, it still makes sense to talk about
a local Maslov coorientation: indeed, let W € Gryi(g,n) and consider a ball
U < Grs2_gree(g,n) containing W. In U, the intersection U n Grsi (g, n) is two-sided,
so a coorientation can be chosen.

Given a local Maslov coorientation for U n Grgi(g,n), we can reason as before to
define a local Maslov class for oriented curves

(0,1],{0,1}) = (U, (QU)\(U n Gry1(g,n)))

using the intersection pairing. It can only take the values {0,1, —1}.

This will play a role in Subsection 3.7.2.

3.6 Multi-sections: Definition and elementary prop-
erties

Having looked at the linear situation in Section 3.5, we turn our attention back to
integral submanifolds of r-jet space J" (Y — X). We always denote dim(X) = n and
dim(Y) = k. When we pass to local coordinates we replace X by a vector space B
and the fibres of Y by a vector space F'.

In Subsection 3.6.1 we set up the language of multi-sections, i.e. integral submani-
folds that are horizontal almost everywhere. In Subsection 3.6.2 we focus on X2-free
multi-sections and we explain what it means for their singularities to be in Thom-
Boardman form. We then introduce two techniques that will allow us to manipulate
Y:2-free multi-sections: generating functions (Subsection 3.6.3) and metasymplectic
lifts (Subsection 3.6.4). Using these ideas we prove some structure results (Subsec-
tion 3.6.5).

3.6.1 Multi-sections

Multi-sections are defined in subsection 3.6.1.3. Before we get there, we need to
introduce some notation.
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3.6.1.1 Grassmannian bundles

In Subsection 3.5.1 we singled out several subsets of the integral Grassmannian of g.
According to Proposition 3.2.39 we can identify g with any tangent fibre T,J" (Y —
X) (uniquely up to point symmetries). In doing so we define bundle analogues of
these subsets.

Namely: the bundle of horizontal elements will be denoted by

Gryo (€eans 1) © Grintegral (Ecans 1)-
Similarly, we use the notation
Gryi (§can, 1) := {W € Gintegral (§can, 1) | dim(W 0 Vean) = i}
For us it is of particular importance the union

Gr22—free (§Can7 l) = GrZO (fcana l) Y GrEl (gcana l),

which we call the ¥2-free Grassmannian bundle. It is a submanifold of the bundle
of multi-section elements Gryo(Ecan, ().

3.6.1.2 Singularities of integral maps

Let N be a n-dimensional manifold, and consider an integral map f: N — J" (Y —
X) (Definition 3.2.12), possibly with singularities. We will denote: X(f) for its locus
of singularities of mapping, 3 (7o f) for the locus of singularities (Definition 3.3.1) of
its front projection, and X( f, Vean) for the locus of singularities of tangency (Definition
3.3.2) with the vertical distribution V.

Lemma 3.6.1. The following statements hold:

o The sets S(f, Vean) and X(f) are not necessarily disjoint.
o X(mso f) =2(f) v E(f Vean)-

o In particular, if f is an immersion, then X(my o f) = Z(f, Vean)-

3.6.1.3 Multi-sections

At a point in the complement of (s o f), f(IN) is a submanifold graphical over X;
i.e. it can be expressed as the graph of the r-jet of a locally defined section X — Y.
Motivated by this, we introduce the following definition:

Definition 3.6.2. Let N be an n-dimensional manifold.

A (parametrised, r-times differentiable) multi-section is a smooth map f : N —
J(Y — X) which:

a. 1s tangent to gcany
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b. s transverse to V.., on an open dense set,

c. has a well-defined Gauss map Gr(f) : N — Gringegral (§can, ) with Image(df) <
ImageGr(f).

Each component of the complement of (s o f) is called a branch.

Property (b) implies that f is an immersion in an open dense set, and its Gauss
map Gr(f) takes values in the Grassmannian of multi-section elements Grso ({can, 1),
justifying its name.

The key property of multi-sections is that they are uniquely recovered from their front
projection: indeed, this holds for each of the branches and the global claim follows
by density. Thus, we can go back and forth between the multi-section f and its front
projection 7y o f. For this reason, we will sometimes be sloppy about this back and
forth and we will say that ¢ o f is @ multi-section (and, in fact, this agrees with the
usual picture of what a multi-section should be).

Sometimes the parametrisation itself is not important so:

Definition 3.6.3. An unparametrised multi-section is a subset of J"(Y — X)
which is the image of a parametrised multi-section.

3.6.1.4 The space of multi-sections

The space of all parametrised, r-times differentiable multi-sections with domain N is
denoted by CT ..(N,Y). We can then observe:

multi
Lemma 3.6.4. The projection ., : J'(Y — X) — J" 1Y — X) maps C"_,;(N,Y)
to Oty (N V).

Proof. The projection 7, ,» preserves Properties (a) and (b) in Definition 3.6.2. It is
enough that we prove that Property (c) holds as well.

Let f € CF 1i(N,Y). We then observe that, tautologically, 7, ,» o f must be tangent,
at a point p, to the horizontal element represented by f(p). Hence, under the corre-
spondence between horizontal elements and points in the fibre in one jet space higher,
f itself is the Gauss map of 7, ,» o f. In particular, the Gauss map of a projection
always takes values in the horizontal Grassmannian. O

In our definition of multi-sections we allow maps not to be immersed. In view of
its proof, dropping the immersion condition is necessary for the Lemma to hold.
Furthermore, even though we are mostly interested in embedded multi-sections, we
will need to consider multi-sections with mild singularities of mapping in the course
of our arguments.
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3.6.1.5 Scaling

We finish this Subsection with a trivial remark:

Lemma 3.6.5. Let B and F' be vector spaces and let N be a smooth manifold. Fiz
an integral mapping f : N — J" (B, F) (Definition 3.2.12) and a constant § > 0. The
following statements hold:

e J'(B,F) is a vector bundle over B.
e The Cartan 1-forms are invariant under scaling of the fibres of J" (B, F) — B.
e In particular, § f is integral.

Proof. This is immediate from the description of the Cartan 1-forms in holonomic
coordinates given in subsection 3.2.2.4, Equation 3.2.2.2. O

Despite being trivial, this Lemma plays an important role in the construction of
multi-sections with arbitrarily small derivatives that we shall need in Section 3.8.

3.6.2 Y2-free multi-sections

We further narrow the scope of our work to:

Definition 3.6.6. A multi-section f is X2-free if S'(1p o f) = & for every i > 2.

Hence, the Gauss map of a ¥2-free multi-section takes values in Grs2_free(Ecan, 7).

Despite having no singularities of higher rank, the locus El(Wf o f) may be compli-
cated, involving both singularities of tangency and of mapping. We would like to
say that, if f is generic, the singularities are nicely stratified. However, the Thom
transversality Theorem 3.3.6 does not apply because the class of integral maps is not
generic. Still, in subsection 3.6.2.2 we discuss how the singularities of an integral ¥.2-
free immersion would look if they resembled those arising from Thom transversality.
Before we do so, let us introduce a couple of auxiliary definitions.

3.6.2.1 Kernel and image

Let f: N — J"(Y — X) be an integral %2-free map (not necessarily a multi-section).
At every singular point we can single out the direction in which the rank is dropping;:

Definition 3.6.7. The kernel line field of f is defined as:
ker(f) := {ker(dy(mso f)) c Ty,N |qge N} < TN.

Note that it is not defined over the whole of N, only over ¥!(my o f).

Conversely, we have a partially defined (and possibly multiply-defined) hyperplane
distribution along the image of the singularities:
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Definition 3.6.8. The singular hyperplanes of f are defined as:

{df (TyN) < Ty(yJ" (Y = X) | ge ' (ms o f)}.

It is immediate that:
Lemma 3.6.9. The singular hyperplanes of f provide a well-defined Gauss map for

the restriction flsi(rof)-

Proof. Indeed, at a point g € X! (7 o f) we set
Gr(f‘zl(ﬂ'fof))(q) = df(TqN)

This is well-defined even if the set X! (s o f) is not smooth. O

3.6.2.2 X2-free singularities in Thom-Boardman form

In Subsection 3.3.3, Theorem 3.3.14 we recalled Morin’s result: a Y2-free generic
mapping between equidimensional manifolds has only singularities of Whitney-type.
This leads us to the following definition:

Definition 3.6.10. Let N be a smooth n-dimensional manifold. An integral X?-free
immersion [ : N —» J (Y — X) is in Thom-Boardman form if the singularities
of the base projection my, o f are of Whitney-type.

In particular, a ¥2-free immersed multi-section F' in Thom-Boardman form contains
a sequence of smooth submanifolds

l
El (f7 V;:an) = El(f|211—1 5 chan)y

each of which is a hypersurface in the previous one. The locus ' (f, Vean) is precisely

the tangency locus of n! (f, Vean) with the kernel line field of f. Similarly, df maps
TYY(f, Vean) to the singular hyperplanes, as in Definition 3.6.8, of f.

Our h-principle statements are parametric in nature. For this we must generalise
Definition 3.6.10 to families:

Definition 3.6.11. Let N be a smooth n-dimensional manifold. Fix a smooth man-
ifold K, which we regard as a parameter space. Write F for the foliation in K x N
by fibres of K x N — K.

A K-family of ¥2-free immersions (fs)sex is in Thom-Boardman form if:

o The singularities X(fs, Vean) of the fibered map (s,p) — (s,m o fs(p)) are of
Whitney type.

o The stratified locus X(fs, Vean) has generic tangencies with respect to F.
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The second item deserves some comment. The projection map st (fs, Vean) — K of
each stratum is endowed with a Thom-Boardman stratification in terms of the rank.
The dimensions of these new strata can be computed using the Thom transversality
Theorem 3.3.6, depending only on [ and dim(K). For our purposes it is not important
what these numbers are.

Remark 3.6.12. For most jet spaces, the dimension computations from subsection
3.5.3.3 show that most vertical curves are not tangent to principal directions and,
therefore, their only deformations are other vertical curves. Additionally, in subsec-
tion 3.2.2.9 we stated the following result of R. Bryant and L. Hsu [20]: under fairly
weak hypotheses on a bracket-generating distribution, there exist integral curves that
do not admit any compactly supported deformations. For jet spaces J"(R,R), r > 1,
these are the curves tangent to the vertical distribution.

That is to say, any transversality statement must bypass these two issues. The
first one is avoided by requiring integral submanifolds to have tangent spaces in
Grs2_free(&can, ). The second one can be ignored for curves as long as our curves
are somewhere not tangent to the vertical. The case of higher dimensional manifolds
will be discussed in subsection 3.6.5.3. A

3.6.3 Generating functions

V. Arnold proved in [6, 7] that front singularities of embedded legendrians/lagrangians
can always be (locally) described by generating functions. This is not true for arbi-
trary integral submanifolds of jet spaces [101, p. 14] [115], but it nonetheless holds
that front singularities are rather special compared to the singularities of a general
map. This was first explored by V. Lychagin [78] for 1-jet spaces in more than one
variable, and later by A. Givental [58] for general jet spaces.

Our goal in this Section is to define what a generating function is for a general jet
space. We do this in a possibly novel way: the key ingredient is the concept of reduc-
tion, which we introduce in subsection 3.6.3.1. This allows us, in subsection 3.6.3.4,
to provide a recipe for corank-1 front singularities admitting a generating function
description. We will see in subsection 3.7.1.2 that this recipe can be particularised to
recover Givental’s description of integral submanifolds that have Whitney type front
singularities.

3.6.3.1 Reduction

The main idea behind generating functions is that we can follow a two step process
when constructing non-horizontal integral submanifolds: first, we produce a hori-
zontal submanifold over a base of greater dimension. Then, we use a “reduction”
procedure to go down to the actual jet space we want to work in. It is in this latter
step in which the horizontality condition is lost.

The “enlarged base” will be the foliated manifold (X, F). The actual base manifold
will be the quotient space X /F, which we assume is smooth (even though part of the
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construction goes through without this assumption). We denote the quotient map by
m: X > X/F.

Let Y be another smooth manifold. We denote by C*(X,Y") the space of smooth
functions X — Y. Using the pullback of the quotient map m, we have a natural
inclusion 7* : C*(X/F,Y) — C*(X,Y), whose image we denote by C¥(X,Y). A
function in C¥(X,Y) is said to be basic. We collect all the r-jets of basic functions
to yield:

Definition 3.6.13. The space of basic r-jets is defined as:

TH(X,Y) = {ff € J'(X,Y) |z € X, f e CR(X,Y)}.

The canonical projection map
7 JRX)Y) — J(X/FY)
j;(foﬂ) = ]:r(£)fa

is called the reduction map.

In this general setting, the familiar properties of the contact reduction process still
hold. We leave the proof to the reader:

Lemma 3.6.14. The following statements hold:

o JL(X,Y) is a smooth submanifold of J"(X,Y).

o The restriction
T = Cean N TIR(X,Y)

can

has a rank(F)-dimensional characteristic foliation ker(¢L ) which is a lift of

F.

e The reduction map T preserves the Cartan distribution.

F

e Leaves of the characteristic foliation ker(&Z,,

) correspond to fibres of 7.

So we can legitimately say that J" (X /F,Y) is the reduction of J"(X,Y") with respect
to ker(&Z.).

can

We may study next how integral submanifolds interact with the reduction process:

Definition 3.6.15. Let L < J"(X,Y) be an integral submanifold. Its reduction is
the set
L/F =7(LnJe(X,Y)) c J(X/F,Y).

We say that f: X — Y is the generating function of

Ly :=TImage(j" f)/F.
As suggested by the definition, even if the intersection L n J%(X,Y) is a smooth
submanifold, it may have singularities of tangency with ker(¢Z, ). Therefore, the

reduction L/F is often not smooth. However, it is integral (in the sense that it is the
image of an integral map).
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3.6.3.2 Reduction in concrete terms

Take local coordinates (¢, z) in X with values in R”™ x R™; the z—coordinates denote
the foliation directions. Take also local coordinates in Y with values in R*. In this
manner, the reduced space is J"(R", R¥).

Lemma 3.6.16. A function G : R" x R™ — R¥ generates the subset:
(3.6.3.1)
Le ={(¢q,G(q,7),0,G(q,x),- -+ ,0,G(q,2)) | V(q,7) s.t. a‘;aﬁ;a(x,q) =0 Vb+#0,a}.

Proof. The lift of G is given by the expression:
i"Glg, %) = (¢,2,G(g,2),0,G(q, %), 0.G(q, %), 02G(q, %), 040, G(q, @), . .., 0, G(q, x)).

The intersection of j”G with the space of basic r-jets is the subset of j”G in which
all derivatives of GG involving x at least once are zero. l.e. the set of points in which
the derivatives of G take place purely in the g-directions. In particular, this set is
contained in the locus of leafwise critical points of G and the two agree if r = 1. [

3.6.3.3 Remark: dimension counting

In the contact case (i.e. # =1 and m = 1) the collection of leafwise critical points
on a given leaf ¢ x R™ is, generically, a finite collection of points and, for most
leaves, the points will be Morse. In particular, the reduction Lg is an n-dimensional
submanifold (a legendrian), which can be regarded as the 1-jet of a multiply-valued
function R™ — R.

For mr > 1, having derivative purely in the g-directions is an overdetermined condi-
tion. The expected dimension of Lg may be computed to be:

(n+m)_k;(<n+ml+l—1> _(n+zl_1))'

The expected dimension is n only in the contact setting, and it is non-negative only
if r =1 and n > (k— 1)m. Otherwise, and in particular for all higher jet spaces, the
expected dimension is negative.

This tells us that any generating function theory for higher jet spaces would not rely
on generic functions, but rather on a subclass of functions (of positive codimension
given by the formula above) with prescribed singularities. We will look at one par-
ticularly manageable example next. Developing a general theory is left as an open
question. It is worth remarking that this has been explored already in connection
with the theory of legendrian/lagrangian singularities [101], which deals with the local
existence of generating functions. In light of the extreme global flexibility results, it
is unclear whether generating functions in higher jet spaces may be useful from a
topological perspective.
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3.6.3.4 Integral expressions

Let M be an n-dimensional manifold. We set X = M x R and we endow it with the
foliation F by fibres of X — M. We restrict to the case in which the target space
is Y = R*. In this Subsection we explain how to use generating functions on X to
obtain integral manifolds in the reduction J"(M,RF). Since X is a rank-1 bundle
over M, any integral manifold we produce will have front tangencies of rank at most
1.

Let F': X — R be submersion whose zero set has generic singularities of tangency
(in the sense of Thom-Boardman; see Subsection 3.3.1) with respect to F. For di-
mensional reasons, this singularity locus is thus 2?-free. We then define a function:

G:MxR — RF

(¢,z) — <G1(q,x):=rF(q,s)Tds,o,...,o>.

0

The only relevant entry is Gy, since the other (K — 1) entries are zero and therefore
singular everywhere.

We see that 0,G1(q,x) = F(q,z)". Furthermore, using induction we can prove:

Lemma 3.6.17. Let a = 0 and b > 0 be integers. Then, there are functions Uy :
M x R — R such that

a+b—1

0305G (g m) = ), F' g, 2)Wi(q, ).
1=0

That is, all the derivatives (up to order r) involving x at least once vanish at the
fibrewise critical points of G. Therefore, according to subsection 3.6.3.2:

Corollary 3.6.18. The reduction Lg is parametrised by the locus of zeroes of F':

Lg = {(Q7G(q’w)’aqG<Q7x)7"' ,aZG(q,{L‘)) | V(Qam) s.t. F(qam) = O}

According to the Corollary, Lg is parametrised by a smooth manifold. Furthermore:

Lemma 3.6.19. L is an embedded Y2-free multi-section. Its singularities of tan-
gency with the wvertical distribution correspond to the singularities of tangency of
F~1(0) with F.

Proof. The locus of zeroes F~1(0) is a smooth hypersurface in X which is in general
position with respect to F. In particular, its locus of tangencies ¥ (F~1(0), F) with
F is of codimension 1. In each branch of F~1(0), the variable z can be regarded as
a function of q. Hence, branches of F~1(0) are mapped to branches of Lg simply by
taking the graph j"(G(q,z(q)). Conversely, the locus X(F~1(0), F) maps to the sin-
gularity locus of Lg. The singularities of Lg may be front tangencies or singularities
of mapping. We claim that they are always tangencies.
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Fix (¢,2) € £(F~'(0),F). Since F is a submersion, we have that d,, F(g, %) # 0, for
some i. We may then compute:

0:045,G1(q, %) = r[0q, F'(¢,T)]" # 0

because all other terms involve F' and are zero. Therefore, the map x — G;Gl(q, x)
is a local diffeomorphism of R to itself. This implies that (g1,...,¢i—1,¢i+1,---,qn,T)
locally parametrises Lg as a smooth embedded manifold, concluding the proof. [

We can define additional X2-free multi-sections, for every 0 <1 < r, as follows:
mri(La) = {(q,G(g, ), 9,G(q, x), - - ,651G(q,sc)) | V(q,2) s.t. 0,G(z,q) =0} < JI(M,]Rk),

which are none other than the usual projections of L to lower jet spaces. All of them
are generated by G and have a well-defined Gauss map into the horizontal Grassman-
nian. They have singularities of mapping corresponding to the front tangencies of Lg.

3.6.4 Metasymplectic projections and lifts

In Contact Topology it is fruitful to manipulate legendrian knots using their la-
grangian projection. In this Subsection we present the analogue of this process for
general jet spaces. We work locally in J" (B, F'), with B and F' vector spaces. We fix
holonomic coordinates (z,y, z).

In subsections 3.2.2.6 and 3.2.2.7 we introduced the notion of metasymplectic space
(B®Sym"(B*, F), Qcan)-

The terms B and Sym" (B*, F') were called the horizontal and vertical component,
respectively. The projection onto B was denoted by 7. Furthermore, we defined the
metasymplectic projection:

7L J"(B,F) — B®Sym’ (B*, F),

which is the natural generalisation of the lagrangian projection. The coordinates of
J7(B, F') induce coordinates (z, 2") in B@® Sym" (B*, F).

In subsection 3.6.4.1 we prove Theorem 3.6.22: isotropic submanifolds of B&Sym" (B*, F')
can always be lifted to J" (B, F'). This is sufficient to manipulate multi-sections when

B is 1-dimensional: the theory of general integral curves is then very similar to the
theory of immersed legendrian curves; see subsection 3.6.4.2.

For higher-dimensional integral submanifolds the story is more complicated, because
it is non-trivial to manipulate their metasymplectic projections directly. To address
this, we work “one direction at a time”, effectively thinking about them as parametric
families of curves. This is done in subsection 3.6.4.3.
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3.6.4.1 Integral lift of an isotropic

We want to prove that any isotropic submanifold can be lifted to an integral one.
First we need an auxiliary concept:

Definition 3.6.20. The Liouwville form
Aean € QY (B @ Sym" (B*, F); Sym” ~*(B*, F))
is defined, at a point (v, A), by the following tautological expression:
Acan (v, A)(w, B) 1= —1,, A.

The computations in subsection 3.2.2.6 imply that:
Lemma 3.6.21. Then following statements hold:

e The Liouville form can be explicitly written as:

n
Acan (1, 27) = ( D gl dea) .
(a0 g in)|=r—1

a=1

e The Cartan 1-forms o” € QY(J" (B, F);Sym" ' (B*,F)) are given by the ex-
pression
ar(‘r7y7 Z) = dZT,1 + )\can(x7 ZT)~

e In particular, dAcan = Qcan-
That is, the familiar properties for the Liouville form in the symplectic/contact setting
hold as well in more general jet spaces. Then:

Theorem 3.6.22. Let N be a smooth, connected, contractible manifold. Given an
isotropic map
g: N — (B®Sym"(B*, F), Qcan)

there exists an integral map (Definition 3.2.12)
Lift(g) : N — J" (B, F)
satisfying 7, o Lift(g) = g.
The lift Lift(g) is unique once we fix Lift(g)(z) for some x € N.
Proof. Write g(p) = (x(p), 2" (p)). By counstruction, ¢g*Qc.n = 0. Hence, g*Acan is
closed. Using the contractibility of N, we deduce that each component of g*Acan

is exact. We choose primitives, which we denote suggestively by 2"~! : N —
Sym"~!(B*, F). These functions are unique up to a shift by an element of Sym”!(B*, F).

We put together g with the chosen primitives to produce a map

h:=(z,2",2" ') : N > B®Sym"(B* F)®Sym" ! (B*, F).
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We can readily check, using Lemma 3.6.21, that

h*a" = dz""' 4+ g*Aean = 0.

Furthermore, consider the 2-form with values in Sym”~?(B*, F):

n
r—1 _ (ily"')ia+17"'~,in)
0 = (Z drg A dz; :
(i1, i, o i) | =72

It corresponds to the curvature of féﬁl, which depends only on the coordinates
(z,2"71). We can compute:

h*ngnl _ ( 2 Z§i17"‘»ia“‘l""’ib+17"'vi“')dzlia A d:Eb) = (0).
a,b=1

In the last step we get zero because cross derivatives agree. This computation tells
us that the map
(z,27"Y): N - B@Sym" *(B*, F)

is isotropic. Therefore, the argument can be iterated for decreasing r to produce a
lift. O

From the proof we see that the contractibility assumption on N is used to ensure
that the restriction of the Liouville form at each step is exact. More in general, we
could define:

Definition 3.6.23. An isotropic submanifold N of (B@® Sym" (B*, F), Qcan) is said
to be exact if it admits an integral lift to (J" (B, F),&can)-

Corollary 3.6.24. N is exact if and only if:
® Acan|n is exact.

e Its isotropic lift to (B @® Sym" ! (B*, F), Qean) is exact.

Observe that by recursion N is exact if and only if all of its lifts are exact.

3.6.4.2 Lifting curves

Let us particularise now to the case dim(B) = 1. Then, in holonomic coordinates
(x,y = 2%, 2) the Cartan 1-forms read

ol =dZt — g, [=0,...,7m—1.

The particular flexibility of curves (compared to higher dimensional integral subman-
ifolds) stems from the fact that any

g(t) = (2(t), (1)) : [0,1] > B@®Sym" (B*, F)
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is automatically isotropic. Then, following the recipe outlined in the proof of Theorem
3.6.22, we solve for the 2"~ coordinates using a":

g*a’ = z._1(t)dt — z.(t)2' (t)dt

leading to the integral expression

t

2r—1(t) = 2,-1(0) + J zr(s)x'(s)ds

0

which uniquely recovers z,._1 up to the choice of lift z._1(0). Proceeding decreasingly
in | we can solve for all the z!(t), effectively lifting g to an integral curve Lift(g) :
[0,1] - J"(B, F).

According to Lemma 3.2.37, the lift Lift(g¢) is immersed if and only if g was immersed.
Assuming ¢ is immersed, the front tangencies ¥ (Lift(g), m¢) correspond precisely to
the singularities of tangency X (g, mp). This implies that to control the singularities
of an integral curve it is sufficient to control the singularities of its metasymplectic
projection, which is a smooth curve with no constraints.

3.6.4.3 Restricted metasymplectic projection

Unlike curves, higher-dimensional isotropic/integral submanifolds cannot be deformed
freely. To get rid of differential constraints we consider instead:

Definition 3.6.25. The principal metasymplectic projection with respect to the
principal direction determined by the coordinate x,, is the map:
np:J(B,F) — B@®Sym'(R* F)

(37,%2’) — (x’z(07--.,0,r))_

That is, we only remember the pure r-order derivatives associated to x,. We then
work with X2-free maps whose rank drops along the x,-directions. We think of them
as (n — 1)-families of curves, allowing us to prove:

Lemma 3.6.26. Given a smooth map:

g:B — B®Sym"(R* F)

() = (Ftn) = (b1, .. tn)  —  (Fan(t), 2007 (1)),

there exists an integral map Lift(g) : B — J" (B, F) satisfying 7} o Lift(g) = g.

The map Lift(g) is unique up to the choice of Lift(g)|, =0y -
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Proof. The integral lift Lift(g) is given by the formula:

(t) = (ﬂ Tn;
y = 2(00.0).
o7y, 5(0,...,0,1).

)
02y, 05z 00D (00 02),

b

ey

agzl’ s agZ(O,.“,O,r—l)7 2(0,...70,7')).

All the terms on the right hand side depend only on ¢. Let us explain how the other
functions are obtained from ¢, z,, and z(0:-0:7).

The term 291 is the (formal) pure derivative of order [ in the direction of z,, and
it is defined (for decreasing l) by the integral expression:

tn

200 () 1 4000 (7 ) +J' 200D (E 9! (5. 5)ds,

0
following what we did in the previous subsection for curves. In particular, the coor-
dinate y = z(%-99) is recovered by integrating r times. At every step we can choose
the value of (%00 (£ 0).

All other functions are derivatives of the form aziz(o"“’o’j), for some integers ¢ and j.
Hence, we obtain them, uniquely, by differentiation. O

Recall from Section 3.5 that the polar space of a (n — 1)-dimensional horizontal
element is (n+k)-dimensional and intersects the vertical fibre exactly in the associated
principal direction. This implies that any construction of ¥2-free integral maps by
fixing n — 1 base directions and a (formal) derivative must necessarily use a pure
derivative. This indicates that the method presented is general.

Most of the key properties of the lift can be read from the original map:

Corollary 3.6.27. Let g be a map into a principal metasymplectic projection. Then:

e The map Lift(g) is well-defined, smooth, integral and %2-free.
o X(Lift(g)) is in correspondence with X(g).

o X(Lift(g), Vean) is in correspondence with (g, Vean). In the second term, Vean
denotes the component Sym” (R*, F') of B@® Sym" (R* F).

3.6.5 Structure results about YX*-free multi-sections

In this Subsection we exploit the ideas introduced in Subsection 3.6.4 to prove three
results about X2-free integral maps. Under some mild assumptions, they are lifts of
maps into a principal metasymplectic projection (subsection 3.6.5.1), they admit a
generating function description (subsection 3.6.5.2), and they can be put in Thom-
Boardman form (subsection 3.6.5.3).
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3.6.5.1 Y2-free multi-sections are lifts

The statement we want to prove is:

Proposition 3.6.28. Let N be a smooth n-manifold. Let f: N — J (Y — X) be a
¥2_free integral map.

Then, given p € N, there exists g mapping into a principal metasymplectic projection
such that f|opp) = Lift(g).

Proof. If p is non singular the claim is immediate. Suppose then that p is a singular
point. Choose a locally defined hyperplane L 5 p such that f|; has maximal rank.
Its image f(L) is then an (n — 1)-dimensional horizontal submanifold of J" (Y — X).
Hence, there is a trivialisation J" (B, F) of Op(f(p)) = J"(Y — X) with holonomic
coordinates (x,y, z) such that: f(L) is contained in the zero section B and, further,
is spanned by the first n — 1 coordinates (Z).

Consider the foliation F in Op(m, o f(p)) by lines parallel to the z,-axis in X. The
foliation by lines (m, o f)*F extends the kernel line field of f (Definition 3.6.7) to a
smooth line field defined everywhere in Op(p) = N. We pullback the (Z)-coordinates
on f(L) to L, where we denote them by (). Then we use the flow of a vector field
spanning (m, o f)*F to produce coordinates (t) around p.

Consider the principal metasymplectic projection 7 associated to z, (Definition
3.6.25). The composition g := m o f is fibered over the ¢ = Z coordinates and,
by construction, its integral lift is f (where the choice of initial values is zero). O

3.6.5.2 Y2-free multi-sections admit generating functions

The following is a modest generalisation to higher jets of Arnold’s result stating that
any embedded legendrian can locally be given by a generating function [6]. Note
that our result does not apply to singularities of rank greater than 1. However, we
do allow arbitrary X2-free singularities, generalising the case of Whitney singularities
studied by Givental [58].

Proposition 3.6.29. Let B and F be vector spaces with dim(F) = 1. Then, any
germ f of X2-free integral embedding into J" (B, F) admits a generating function.

It is unclear whether the assumption dim(F') = 1 can be dropped. That would require
studying more general generating functions in Subsection 3.6.3.4.

Proof. Outside of its singularity locus, f is (up to reparametrisation) a holonomic
section and it therefore admits a generating function. Consider then a singular point
p € N. Since f is embedded, the point p is a singularity of tangency. According to our
description of integral elements of corank 1 (Subsection 3.5.3), the integral element
df (T, N) intersects the vertical distribution in a principal direction: a pure r-order
derivative associated to the singular hyperplane d(m,o f)(T,N), as in Definition 3.6.8.

We can then use Proposition 3.6.28 to produce:
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e holonomic coordinates (z,y, z) in J"(B, F); we write (x) = (Z, z,),
e coordinates (t) = ({,t,) in Op(p) = N,

e a principal metasymplectic projection 7 such that: f is a lifting of o f and its
projection 7 o f is graphical over the z(®07) derivative.

In these coordinates we may write explicitly:
(mo f)(t) = (&(t) = Lan(t); 2007 (t) = t,,).

For clarity of notation we denote g(t) for the function ().

We follow the method presented in Subsection 3.6.3.4. We claim that f is generated
by a function of the form:

G:BxR —» F

Glo.s) = (H@)+ 5 [ (o0 at@o)as).

0
where H is a function (to be specified now) which depends only of the Z—coordinates.

Indeed: let T be the fibrewise singularity locus {z, = ¢(Z,s)} of G. It parametrises
the integral submanifold L. Since T is graphical over the (Z,s) coordinates, it is
a smooth manifold. Applying Lemma 3.6.19 we deduce that so is Lg. From the
computation J; G = s it follows that s parametrises the zlio""’o’r)—coordinate of L¢.
That is, both L and f are lifts of the same principal metasymplectic projection wo f.
Hence, they differ only on the initial conditions as we lift. Choosing H amounts to
choosing these initial conditions. Indeed, H specifies the front of G at ¢,, = 0, so we
set it to be H(t) = y o f(£,0), concluding the proof. O

3.6.5.3 Thom-Boardman for ¥2-free multi-sections

Before stating the result let us define:

Definition 3.6.30. Let f : N — J"(Y — X) be an integral map (Definition 3.2.12).
A curvey : I — N is said to be vertical if o~y is tangent to Vean (Definition 3.2.20).

Due to the rigidity phenomenon pointed out in Remark 3.6.12, vertical curves may
represent an obstruction to achieving transversality. Constraining them allows us to
prove the following genericity statement:

Proposition 3.6.31. Let N be an n-dimensional manifold. Let f : N — J (Y — X)

be a ¥.2-free integral immersion satisfying:

e FEvery wvertical curve in f can be extended to a curve that is somewhere not
vertical.

Then, up to a C*®-small perturbation, f can be assumed to be in Thom-Boardman
form.
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Proof. We provide a sketch. For each singular point p € N:

o We take the maximal vertical curve v containing it.

e We choose a principal metasymplectic projection 7 (Definition 3.6.25) such that
f(v) is contained in the domain of .

e As in the proof of Proposition 3.6.28 we can extend the kernel linefield of f to a
foliation by lines F everywhere on N. Let U be a neighborhood of v saturated
by integral leaves of F.

According to the last item, U can be identified with the cube [—1,1]™ so that the
last coordinate corresponds to F. We write U =~ [—1,1]""! x {£1} under this
identification. By assumption, v can be slightly enlarged to a curve that is not vertical
at its endpoint. This allows us to assume that the points in U™" are non-singular.

We can now cover N by a finite collection {U;} of such neighbourhoods. We denote the
corresponding curve, kernel line field, and projection by ~;, F;, and m;, respectively.
We also write U

Inductively on i, we regard m; o f|y, as a fibered over [—1,1]"~! family of maps of
[—1,1] into R@® Sym" (R*, F'). We apply the standard Thom transversality Theorem
3.3.6 to them so that the singularities are in Thom-Boardman form. We then apply
Lemma 3.6.26 to lift this to a perturbation of f|y, itself. In order to work inductively
in i

o We observe that, due to the lack of singularities, f ‘Op(U:') is graphical over the
zero section. Thus, it is a reparametrisation of a holonomic section. This allows
us to interpolate freely between the original value of f] Op(UH) and whatever
perturbation we choose (since the two are very close).

e Along the other end U;” we leave 7; o f untouched. Further, we choose f|,,- as
the initial value for the lifting Lemma 3.6.26.

e Additionally, we do not perturb m; o f close to the rest of the boundary of Uj;.

These requirements imply that the perturbation we construct is relative to the bound-
ary of Op(U;), allowing us to iterate the argument. O

3.7 Multi-sections: Models of singularities

In this Section we present some simple singularities for ¥2-free multi-sections. In
Subsection 3.7.1 we describe singularities of tangency of Whitney type. In Subsection
3.7.2 we use Whitney singularities to define models of singularities of tangency along
submanifolds (as opposed to germs at points). Lastly, in Subsection 3.7.3 we look at
singularities of mapping.
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Remark 3.7.1. Our naming conventions for singularities reflect the behaviour of the
integral maps themselves, not their front projections. In particular, the names we
use often refer to their singularities of tangency with the vertical distribution. When
singularities of mapping are present, we point it out explicitly. A

3.7.1 Whitney singularities in jet spaces

In Definition 3.3.12 we introduced smooth Whitney singularities. In this Subsection
we study their analogues for integral submanifolds in jet space J"(B, F).

In subsection 3.7.1.2 we use the generating function method presented in subsection
3.6.3.4 to provide explicit models of Whitney singularities. We then state Givental’s
Theorem 3.7.5: Whitney singularities are stable when dim(F') = 1 [58], generalising
the theorem of Morin [93] to jet spaces. In subsection 3.7.1.4 we use Theorem 3.7.5 to
prove a global stability result for embedded multi-sections with Whitney singularities.
Lastly, in subsections 3.7.1.5 and 3.7.1.6 we describe the fold and the pleat in detail.
They will play a role in Subsections 3.7.2 and 3.7.3.

3.7.1.1 The definition

Definition 3.7.2. Let f : N — J"(B,F) be a X-free integral mapping. The germ
of f at a point p is a Whitney singularity if:

e f is an immersion at p, and

e the base map m o f has a Whitney singularity at p.

The index of f at p is the index of my, o f. The Whitney singularities of indices 1
and 2 are called the fold and the pleat, respectively.

Sometimes, in order to stress that we are referring to Whitney singularities in jet
space, we call them r-times differentiable Whitney singularities.

Lemma 3.3.16 implies:

Corollary 3.7.3. A germ of Whitney singularity f : Op({0}) — J" (B, F) has index-j
Whitney singularities along V' °(f, Vean).

3.7.1.2 Generating functions

Recall the notation from Subsection 3.3.3: endow R"*! with coordinates (qi, .. ., gn, )
and denote ¢ = (¢1,...,qn) and ¢ = (q1,...,qi,---,qn). Consider the fibration
7 R"1 — R™ defined by (¢, z) — q. We set

1

Fl(qax) = xl+1 +q1xl7 + et q,
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and we let T; := F;*(0) be the locus of roots of  — Fj(q, ). The coordinates (¢, z)
parametrise I';; we denote s; : R"(¢;, z) — I';. Finally, I} < I'; denotes the locus of
roots of multiplicity at least j.

Define the generating functions:
GT,l . RnJrl N Rk

o = ([ B@oraso...0).

0

(3.7.1.1)

where r is the order of the jet space and [ < n.

The function Fj is of the form prescribed in the subsection 3.6.3.4: a submersion whose
zero locus is smooth with generic tangencies. Therefore, the loci Lg, , are smooth
integral manifolds which are parametrised by the locus of roots T'; =~ R"™(g,z). This
is shown as the dashed diagonal arrow in the following diagram:

s i" Gy
R"(G,z) — T, « R*+1(q,2) —2—20s Jr(R"H! RF)

Rn(q) <T LGr,l (e JT(RTL,RIC)

The composition of the parametrisation with the base projection 7, : J™(R", R¥) —
R™ is precisely the (n —[)-fold stabilisation of the I-th Whitney map. It follows that:

Lemma 3.7.4. The germ at the origin of Lg,, is a (n — I)-fold stabilization of
Whitney singularity of index [.

The main result in [58] says that the models just constructed are in fact unique up
to equivalence if k = 1. The left equivalences we consider are point symmetries (as
defined in subsection 3.2.3.1).

Theorem 3.7.5 (A. Givental). Any r-times differentiable Whitney singularity of
index | in J"(B,R) is equivalent to Lg, .

For k > 1 the same result holds as long as [ < k, due to general position arguments.
However, the general case seems not to be addressed in [31, 58] and we do not know
whether the uniqueness statement fails. We leave this as an open question.

3.7.1.3 Remark: Whitney singularities as discriminants

In [58], Givental interpreted the r-times differentiable Whitney singularities as dis-
criminants in certain spaces of polynomials. For completeness, let us review this
construction. Consider the space:

variable x, whose derivative has n + 1

Polynomials of degree r(n + 1) + 1 in one
Ponie | |
roots of multiplicity r



3.7. MULTI-SECTIONS: MODELS OF SINGULARITIES 285

We explicitly parametrise P, ,, as the space of polynomials of the form:

T
flx) = f ("M s ) ds —y = Gralg,T) — y
0

with coefficients (¢, y) € R*+1.

We let A,.,, < P, be the subset consisting of polynomials with multiple roots. Now,
f has a multiple root at z if and only if f(xz) = 0 and f’(x) = 0. By construction,
any multiple root of f has multiplicity at least r + 1, since all the roots of f'(z) have
multiplicity r. Then, the polynomials with multiple roots can be parametrised by

A, ={(g,y) e R""! | 3z € R, such that F,(q,z) =0,y = G,.(q,7)},

which is precisely the front projection of Lg, .

3.7.1.4 Global stability

The main result in this Subsection is the global counterpart of Theorem 3.7.5:

Proposition 3.7.6. Let f : N — J"(B,R) be a multi-section with Whitney singu-
larities and such that w, o f : N — B is an embedding. Then f is stable (Definition
3.8.8), up to point symmetries (Definition 3.2.44), among integral maps (Definition
3.2.12).

Proof. Let (fs)sefo,1] + N — J"(B,R) be a deformation of fy := f. Since m, o f is
topologically embedded and has Whitney singularities, it is stable. We can therefore
assume that the deformation (7, o fs)seqo,1] is trivial, so that all the f, lift the same
base map. In particular, all of them have the same singularity locus.

Now we proceed by induction, decreasingly on the index [ of the Whitney singu-
larities of f;. We assume, by induction hypothesis, that (fs)seop(o) is trivial in a
neighbourhood of Ellﬂ(f). Then, for each point p € Ello(f) we apply Theorem
3.7.5 to produce a fibrewise isotopy ¢ : Y — Y, supported on a neighbourhood of
¢ o f(p), so that

(J"L) o f8|(9p(p) = f|0p(p)'

We choose a finite collection p; € 210 guch that the domains of the corresponding
YPi cover Ello(f)\Op(ElHl(f)). Then we define a semi-local isotopy (¥s)seop(0)

on (’)p(Ell( f)) by interpolating between the 2 using a partition of unity. Note
that, indeed, we can simply interpolate linearly between the different diffeomorphisms
because, for small s, all of them are graphical over the identity.

The isotopy s makes all the (fs)seop) agree in Op(le(f)). This completes the
inductive step. O

Using the Proposition we can prove a (rather weak) version of the Weinstein neigh-
bourhood theorem in jet spaces:
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Corollary 3.7.7. Let f : N — J"(B,R) be an embedded multi-section with Whitney
singularities. Then f is stable, up to germs of contact transformations, among integral
maps.

Proof. Let (fs)sefo,1] : N — J"(B,R) be a deformation of f, := f. We claim that
there is a germ of isotopy (vs)se[o,1] in Op(Image(f)) satisfying:

d ’(/}s o fs = fa

hd ’(/};kgcan = fcan-

The key claim is the following: since f is embedded, we may assume that its front
projection 7y o f is a topological embedding. To see this first note that the claim is
true locally for any germ of Whitney singularity. We then globalise as follows: We
consider Op(Image(f)) and we quotient it by the connected components of the fibres
of the base projection. This yields a new front manifold in which the claim holds.

Now we apply the Proposition 3.7.6 to produce the family 5. O
Arguing similarly, one should be able to prove the following stronger version: the germ
of &.an along an integral embedding with Whitney singularities f : N — J"(B,R) is

fully encoded in its singularity locus, together with Maslov coorientation data (see
subsection 3.5.5.3).

3.7.1.5 Folds

We use the same notation as in subsection 3.7.1.2.

Definition 3.7.8. The As.-cusp is the germ at the origin of the map:
Ay :R® - RMTF

(3.7.1.2) (G,z) — (2% 2*""10,...,0).

We see that its singularity locus is the hyperplane
Z(AQT») = ZlO(AQT) = {J) = 0}

In subsection 3.7.1.2 we showed that the As,.-cusp is the front projection of an r-times
differentiable fold.

3.7.1.6 Pleats

We continue using the same notation.
Definition 3.7.9. The Ag,.-swallowtail is the germ at the origin of the mapping:

SWQT - R" _ R’rH—k

(3.7.1.3) (,2) — (G, —2°—qu, f (83 + q15 — 2 — q1x)"ds,0,...,0).
0
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This is the front projection of the (r-times differentiable) pleat. Its singularity locus
reads:
=t (SWQT’) = {3%2 +q1= 0}7 Ell(SWQT) = {xv q1 = 0}

The As.-swallowtail has a fibered nature: We may split the g-coordinates into two
groups ¢° = (q1,...,q) and ¢' = (qi11,-..,Gn_1). The first we regard as parameters
and the second as base variables. We write

SW%O ) Rnfl N Rank
-l
for the map obtained by fixing the ¢®-variables.

If g1 > 0, the map Swgi has no singularities and is graphical over the base. If ¢; < 0,

Sng has a pair of Ag,-cusps. At ¢; = 0 a birth/death phenomenon takes place:
Definition 3.7.10. The lift to r-jet space of the front:

(', z) — (¢* 22,21 0,...,0)

1s called the first Reidemeister mowve.

It is an embedded integral manifold whose singularity locus is not of Whitney type.

3.7.2 Semi-local singularities of tangency

We now describe several models of singularities of tangency for ¥:2-free integral em-
beddings. These models rely on the lifting techniques for submanifolds in a principal
metasymplectic projection (Definition 3.6.25); see Lemma 3.6.26 in subsection 3.6.4.3.
The singularities we present are semi-local in the sense that they are not germs at
points but around higher dimensional submanifolds.

The singularities we go through are: the double fold (subsection 3.7.2.3), the regu-
larised wrinkle (subsection 3.7.2.4) and the stabilisation (subsection 3.7.2.6). We also
discuss their birth/death phenomena.

3.7.2.1 Semi-local Maslov coorientation

To describe our singularities intrinsically (instead of through a local model), we
want to prescribe how they intersect the Maslov hypersurface Gry:(g,n) (Definition
3.5.19). We need a notion of coorientation to do so but, as seen in subsection 3.5.5.3,
Grsi(g,n) is not always coorientable. Coorientability was the necessary ingredient
for defining a global Maslov class (Definition 3.5.23).

Despite of this, in subsection 3.5.5.5 we pointed out that, in a neighbourhood of an
integral element W € Gryi(g,n), it is always possible to define a local Maslov class.
We now explain a global analogue of this; it will allow us to talk about Maslov class
and coorientation.

Our singularities will be fibered over some base manifold D, which will be either S"~!
or R"1. We set X = D x R with (x) coordinates and we let z,, be the coordinate in
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the R factor. Similarly, we let F be a vector space with coordinates (y1,...,yx). We
work in J"(X, F'). Inside of Gryi(&can,n) we define the submanifold:

Grp = {W € Grg: (Eeany ) | dmy,(W) is transverse to am} .

dy1 (W) #0

Le. Grp is the submanifold of integral planes whose projection to the base is graphical
over T'D and whose principal direction is graphical over the y; coordinate. It follows
that:

Lemma 3.7.11. Grp < Gryi(&ean, n) is open, contractible, and dense.

Contractibility of Grp implies coorientability. Then, just like in Proposition 3.5.20:
Corollary 3.7.12. Fiz a Maslov coorientation along Grp.

There non-zero, non-torsion element:
Ind([y]) := |y n Grp| € H*(Grso(€can,n) U Grp, Z),

where v is a curve representative intersecting Grp transversally. The count of in-
tersection points takes into account signs, comparing the orientation of v with the
Maslov coorientation.

3.7.2.2 Preferred principal metasymplectic projections

We will construct explicit models of our singularites using the lifting Lemma 3.6.26.
We single out a preferred principal metasymplectic projection (subsection 3.6.4.3) to
do so.

Using the coordinates (z,y) in X x F we define holonomic coordinates (z,y,z) in
J"(X, F) and we look at the projection:

WZ(LZ/, Z) = (1;, Z(O,-».,T))'

Of particular interest is the term zio’“"T), i.e. the projection onto the pure r-derivative

of y; with respect to z,.

3.7.2.3 The double fold

The reader should compare the following definition to its smooth analogue Definition
3.3.18:

Definition 3.7.13. Set D = S"~!. An integral embedding fibered over D
f:Dx0Op([0,1]) - J(X,F)

is a double fold if
Z(fv%an) =D x {O}UD X {1}

and these are folds of opposite Maslov coorientations. The image f(D x (0,1)) is
called the membrane of the double fold.



3.7. MULTI-SECTIONS: MODELS OF SINGULARITIES 289

A particular model can be provided using the lifting procedure of subsection 3.6.4.3.
We define a map into the domain of the principal metasymplectic projection 77 :

o:DxOp([0,1]) — X@®Sym"(R* F)

(#,2,) — (%,23/3 —xp; z§0’””r) = 2,,0,...0).
I.e. all the functions zl-(o """ ") are zero for i # 1. Using Corollary 3.6.27 we see that
Lift" (o) is a double fold. Its front projection reads:

Tpn [S1 Spr—1
(3.72.1) (z)— (mxixnf f J srn(s?1)dsr...dsl,0...,0>.
0 0 0 ;
J

Its singularity locus is comprised of two spheres {|z,| = 1} of Ag,-singularities.

Lemma 3.7.14. Suppose dim(F') = 1. Then any double fold f is equivalent to Lift(o)
(using point symmetries in the target, and diffeomorphisms in the domain).

Proof. The first observation is that we may assume 7, o f = 7, o Lift (o) because both
maps are the usual smooth double fold. We take the identification to preserve the
fibered structure of the maps.

Denote the singular spheres of f by Sy and S;. Sy is horizontal, so we can find a point
symmetry identifying f|s, with Lift(o)|py0}; the analogous statement holds for 5.
Since dim(F') = 1, we have that the Maslov coorientation along Sy induced by f can
be extended over the membrane to be compared with the Maslov coorientation over
Sp. The same can be done with Lift(c). By assumption, in both cases we obtain the
opposite Maslov coorientation.

We can then reason as in Proposition 3.7.6 (invoking Givental’s stability Theorem
3.7.5 pointwise and then glueing), to show that f along Sy (resp. S7) is equivalent
to Lift(o) along D x {0} (resp. D x {1}). Since any two holonomic sections are
equivalent (and the membrane is the graph of a holonomic section) we can extend
these identifications to the interior, concluding the claim. Note that we must use
the condition on the Maslov coorientation hypothesis when invoking Givental: this
allows us to restrict to point symmetries that preserve the coorientation. O

3.7.2.4 The regularised wrinkle

Compare the following notion to the smooth wrinkle (Definition 3.3.17):

Definition 3.7.15. Set D = R"~1'. A fibered over D integral embedding
JiOpST X - J(XF)

1s a regularised wrinkle if its singularities are:

o SHMO(f, Vean) = S"2 pleat locus,

d Elo(fa ‘/Can) = Sn71\8n72 fOld locus.
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If f extends to a horizontal embedding of the open disc, we say that f(D™) is the
membrane of the wrinkle.

Observe that, close to the pleat locus, the two hemispheres have opposite Maslov
coorientations, so the same is true semi-locally in the whole regularised wrinkle (note
that this statement uses the fibered nature of the map).

A particular model can be produced from the following map into the domain of 7}:
(3.7.2.2) o:0p(S™!) - X@®Sym"(R* F)
@ 2n) — (@334 (|8 = Vi ™" = 2,,0,...0).

Its lift Lift" (o) is a regularised wrinkle. Its front projection reads:

L n S1 Sr—1
(&, ) — (g&,xi/g + (|2]* - 1)xn;L jo L STH(S? + |Z|? + 1)ds, ... 51,0,. ..
J

Reasoning as in Lemma 3.7.14:

Lemma 3.7.16. Suppose dim(F) = 1. Then any regularised wrinkle [ is equivalent
to Lift(o) (using point symmetries in the target, and diffeomorphisms in the domain,).

3.7.2.5 Fibered regularised wrinkles

Usual smooth wrinkles are fibered, as explained in subsection 3.3.4.3. The same is
true for the regularised wrinkle in r-jet space. We let D = R™*"~1 where the first
m-coordinates (q) are regarded as parameters and the last (n — 1)-coordinates () are
domain coordinates. We fix X = R", with coordinates () = (Z, z,).

Definition 3.7.17. A fibered over R™ regularised wrinkle is a map
f:O0p(S™ ) R™xJ(X,F)

which we regard as a m-parameter family of integral embeddings fq(x) = f(g, ) whose
singularities are:

° leO(fq7 ‘/can) — Sm+n—27
° Elo(fq, V;:an) — Sm+n_l\Sm+"_2,
We see from the description of the singularities and the embedding and integrality

conditions that f, is a regularised wrinkle for every |¢| < 1. Similarly, if |¢| > 1, the
map fy has no singularities. We denote:

Definition 3.7.18. The integral embeddings
fe:0p(0)  —  J(X,F)
with |q| = 1 are called (regularised wrinkle) embryos.
A particular incarnation of the embryo is given by lifting the map:
() > (7,23 /3 + |#2an, ;2" = 2,,0,...0).

Lemma 3.7.16 implies that this model is unique if dim(F') = 1.

o).
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3.7.2.6 The stabilisation

Definition 3.7.19. Set D = S"~!. A fibered over D integral embedding
f:Dx0Op([0,1]) — J(X,F)

is a stabilisation if
E(fv‘/can) =D x {O} uD x {]_}

and these are folds with the same Maslov coorientation. The image f(D x (0,1)) is
called the membrane of the stabilisation.

For a model we may consider the lift Lift" (o) of the map:

(3.7.2.3) o:DxOp([0,1]) — X@®Sym"(R* F)

T, Ty, — i,x3 3 —Jcn;z(o""’r) =72 0,...0).
n 1

no

As before:

Lemma 3.7.20. Suppose dim(F') = 1. Then any stabilisation is equivalent to Lift(o)
(using point symmetries in the target, and diffeomorphisms in the domain).

However, unlike previous singularities:

Lemma 3.7.21. Suppose dim(F) = 1. Then there is no generating function G :
X xR — F such that Lg is a stabilisation.

Proof. This fact is well-known in the contact case and we will mimick the usual proof.

We assume that a generating function G does exist. Due to the fibered nature of the
stabilisation we may assume that we are looking at a curve v : Op([0,1]) — J"(R,R),
with principal metasymplectic projection z — (23/3 — x,2?). This curve must be
parametrised by the fibrewise singularity locus I' of G.

The singularity locus {z = +1} of y consists of two folds. The corresponding fronts are
As.-swallowtails: i.e. birth-death events of two As,.-singularities. In particular, if r is
even, one of them is a maximum and the other is a minimum (these are degenerate if
r > 1, but it does not matter). The maximum must be the one with greater value, i.e.
it lies above in the front projection. Reasoning in this manner at both folding points, it
follows that the only possible configuration in the front projection is that m¢o~((0, 1))
lies above (or below) both branches of the complement 75 o v(Op([0,1]\(0,1)). This
implies that the fold loci have opposite Maslov coorientations; a contradiction.

For r even the critical points of G meeting at the birth-death are both increasing
(or both decreasing). This implies, similarly, that the three consecutive branches
mgoy({x < 0}), mp 0¥((0,1)), and 7y o y({& > 0}) have increasing (resp. decreas-
ing) y-coordinates. Yet again this implies that the fold loci have opposite Maslov
coorientations. O

In the next subsection 3.7.2.7 we provide some additional details about this proof.
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3.7.2.7 Zig-zags

In the proof of Lemma 3.7.21 we see one of the incarnations of a phenomenon we call
open/closed switching. It was first observed by A. Givental in [58]. Let us explain
what it is.

Let us recall Equation 3.7.2.1, which defines the front projection of a double fold:

t S1 Spr—1
f(@,t)=|&,2, =t3/3 —t;y1 = srn(sz-—1)dsr...d51,0...,0 .
0 Jo 0 j !

The term y; is defined by an iterated integral, as explained in Lemma 3.6.26. The
way in which we obtained it was as follows: let j” f(Z, ¢) be the holonomic lift of f to
a multi-section. Consider one of its components, the odd function

("0 o ) 1) =t

We then multiply it by #? — 1, so it remains odd, and then we integrate it once to
yield the even function

1
(A0 0= 6 g Y (8, 8) = f sr(s2 — 1)ds,.
0

Inductively we see that:
Lemma 3.7.22. The function z§0”"’0’r7l) oj" f is:

e odd if | is even,

e cven if | is odd.

This alternation between even and odd is precisely what we call open/closed switch-
ing. It can be rephrased using Maslov coorientations in each (r — [)-jet space, but we
leave this for the reader. We can interpret it geometrically:

Lemma 3.7.23. The following statements hold:

e Ifr is even, the function y; increases at a fold point if and only if it increases
at the other.

e Ifr is odd, the function yi increases at a fold point if and only if decreases at
the other.

Proof. Being critical points, when we say increase/decrease we mean as continuous
functions, without considerations on the derivative. Note that the model at each fold
point tells us that y; must be either increasing or decreasing.

If r is even, the function y; is odd. This is equivalent to the first statement. Similarly,
if r is odd, the function y; is even, so the second statement follows. O
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We can reason in exactly the same manner for the stabilisation and prove that the
situation is exactly the opposite.

Lemma 3.7.24. Let g be a stabilisation:

o Ifr is odd, the function yi o g increases at a fold point if and only if it increases
at the other.

o Ifr is even, the function y; o g increases at a fold point if and only if decreases
at the other.

What this means is that if we want to have two As,-singularities in the front projection
forming a “zig-zag” shape, we must use a double fold if r is even and a stabilisation
if 7 is odd. We define:

Definition 3.7.25. Set D = S™"~!. A fibered over D integral embedding
f:Dx0p(0,1]) — J(X,F)

s a zig-zag if:

o 1 is even and [ is a double fold,

e 1 is odd and f is a stabilisation.

The front of the zig-zag is what we would call an open shape, and the other two
situations (double fold with r odd, stabilisation with  even) we would call them
closed. The importance of zig-zags is that they can be stacked on top of each other
keeping the front projection embedded. This will be central in our h-principle in
Section 3.8.

3.7.3 Singularities of mapping

The singularities we have presented so far are all of tangency, i.e. the integral maps
themselves are non-singular. We will now look at singularities of mapping having
well-defined Gauss map taking values in Grgz_gree(Ecan, 1)-

The main source of examples of singularities of mapping are projections of singular-
ities of tangency (from a higher jet space). We make some remarks in this direction
in subsection 3.7.3.1. We then define several germs: the cusp in its two incarnations
(subsections 3.7.3.2 and 3.7.3.3) and the swallowtail (subsection 3.7.3.4). These are
the pieces we need to then define some semi-local singularities: the wrinkly stabil-
isation (subsection 3.7.3.5), the double cusp (subsection 3.7.3.6), and the wrinkle
(subsection 3.7.3.7).

We continue using the notation from the previous Subsection 3.7.2.
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3.7.3.1 Projecting singularities

Let f: N — J°(B,F) be an integral map. Then the projection 7, ,_10f : N —
J'71(B, F) is integral as well. In Lemma 3.6.4 we additionally showed that if f
is a multi-section then 7, ,_1 o f is a multi-section with a well-defined Gauss map
Gr(m,r—1 0 f) = f into the horizontal elements (where we use the identification
between horizontal elements and lifts to J"(B, F')). Hence, when we project, singu-
larities of tangency become singularities of mapping.

Some of the singularities we will describe below are obtained by projecting an r-times
differentiable Whitney singularity. For instance, in subsections 3.7.1.5 and 3.7.1.6 we
already saw that the front projection of the fold and the pleat are the A, cusp and
swallowtail, respectively.

One important observation is:

Lemma 3.7.26. Assume dim(F) = 1. Let f : N — J"(B,F) be a topologically
embedded multi-section of the form f = w4, 0 g, with

g:N — J (B, F)

an embedded multi-section with Whitney singularities.

Then f is stable among multi-sections lifting to J"+'(B, F).

Proof. Let (fs)sefo,1] be a deformation of fo := f and let (gs)sefo,1] be the corre-
sponding deformation of gy := g lifting it. Observe that the lifts, when they exist,
are uniquely defined (by lifting on each branch).

According to Corollary 3.7.7, the map g is stable up to contact transformation
germs. Higher contact transformations are lifts of contact transformations in J" (B, F')
(Lemma 3.2.45). This implies that the isotopy of contact transformations identifying
gs with g is a lift of an isotopy taking fs to f, proving the claim. O

Remark 3.7.27. We will encounter below singularities of mapping that have a well-
defined Gauss map taking values in Grsi(€can, 7). Therefore, none of those singular-
ities can admit a lift to J"*1(B, F'). However, one may instead look the total space
of

Grsz_free (gcana n) - JT(B, F)

and endow it with its tautological distribution. This partially compactifies J" (B, F)
and, by definition, the singularities we describe admit a lift to Gryz_free(can, 7)-

For dim(B) = dim(F), iterating this construction yields the Monster tower, as in-
troduced by R. Montgomery and M. Zhitomirskii in the treatise [91]. They show
that there is a correspondence between points in the tower and singularities of fronts.
Their results should partly translate to our context of ¥2-free singularities, but we
point out some difficulties in Remark 3.7.34 below.

An intriguing question is whether the whole Grassmannian of multi-section elements
Grso(&can, n) is smooth. If this were true, the natural next step would be to construct
the analogue of the Monster tower. A
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3.7.3.2 The horizontal cusp

As we prove below, projecting a fold down one level yields:
Definition 3.7.28. An integral map (Definition 3.2.12)
f:0p({0})  —  J(X,F)

is a horizontal cusp if:

o The singularities of w7 o f form a hypersurface of semicubic cusps.

e Gr(f) takes values in Gryo(Ecan, ).

A explicit fibered model can be obtained by lifting

(&, 2,) — (%, 22; Z%O,...,O,r) =23.0,...,0).

no

Lemma 3.7.29. Let dim(F) = 1. Then any horizontal cusp is equivalent to the
model (using point symmetries in the target, and diffeomorphisms in the domain).

Proof. By assumption f can be lifted to an integral map Gr(f) : N — J " }(X, F).
Since its metasymplectic projection has semicubic cusps, this lift is an embedding.
The singularities of mapping of f correspond to fold singularities of tangency of Gr(f).
The claim follows from Lemma 3.7.26. O

In particular, a horizontal cusp f is a topological embedding, even if it is not an
immersion. Its front singularities are As,.;o-cusps.

3.7.3.3 The vertical cusp

We can instead consider:
Definition 3.7.30. An integral map (Definition 3.2.12)
f:0p({0})  —  J(X,F)

s a vertical cusp if:

o The singularities of m} o f form a hypersurface of semicubic cusps.

o Gr(f) takes values in Grsi(Ecan,n) along the locus E(f).

It is a topological embedding as well. Note that the singularities are both of tangency
and mapping.

A model can be obtained by lifting

- = 0,...,0,
(Z, ) — (m,xi;zi R 0,...,0).

no

However, it is unclear whether a vertical cusp has a unique local model even if we as-
sume dim(F) = 1 (but the answer may be in [91]). Additionally, one could define cusp
loci that are horizontal almost everywhere but become vertical over a submanifold of
the singularity locus.
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3.7.3.4 The swallowtail

In subsection 3.3.6.2 we defined the smooth the open semicubic swallowtail within
the context of the wrinkle in positive codimension (Subsection 3.3.6). Now we define
its jet space analogue:

Definition 3.7.31. An integral map (Definition 3.2.12)
f:0p({0})  —  JU(X,F)

is a horizontal swallowtail if:

o m} o f has a open semi-cubic swallowtail at the origin.

o Gr(f) takes values in Grso(Ecan,n)-

It is yet again a topological embedding because that is the case for 7} o f.

We can produce a model by lifting the following map into a principal metasymplectic
projection:

Ty Ln

(52 — x1)ds; Zlo,...,o,r) = f (s* — x1)%ds,0,...,0).
0

(Z,2n) — (:E,f

0

Its singularity locus T' consists of the parabola {#2 = z;}, which is tangent to the
Zp-lines along the codimension-2 linear subspace A = {z,, = 1 = 0}. A is the locus
of swallowtails, and its complement in I" consists of horizontal cusps. Hence, the
swallowtail serves as a birth/death of cusps (as is the case in the smooth setting).

Lemma 3.7.32. Let dim(F) = 1. Then any horizontal swallowtail is equivalent
(using point symmetries in the target, and diffeomorphisms in the domain) to the
model.

Proof. We lift f to Gr(f) : Op({0}) — J"1(X, F), which is smooth, embedded, and
has a pleat at the origin. Lemma 3.7.26 applies. O

One can also consider vertical swallowtails or swallowtails with singularity locus be-
coming vertical over a submanifold. We will not study this.

3.7.3.5 The wrinkly stabilisation

We explained in subsection 3.3.5.3 that there is a correspondence between smooth
wrinkles and double folds by performing surgeries. We will not provide a justification
of this, but the same is true in jet spaces. For instance, the double fold (subsection
3.7.2.3) and the regularised wrinkle (subsection 3.7.2.4) are, up to surgery, equivalent.
Similarly, there is a “wrinkle” analogue of the stabilisation, and one can pass between
them through surgeries. It is defined as follows:
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Definition 3.7.33. Set D = R"~1. An integral map (Definition 3.2.12) fibered over
D
f:0p(S" Y — J(X,F)

1s a wrinkly stabilisation if:

o 210(f) =S""2 is a locus of vertical cusps,

Zlo(fa chan) = gnily

The hemispheres S*"1\S"=2 are folds with the same Maslov coorientation.

It is a topological embeddeding and has no other singularities.

Note that along S"~2 there is discontinuity in the Gauss map. Hence, the wrinkly
stabilisation is not a multi-section in the sense of Definition 3.6.2.

Remark 3.7.34. This is a continuation of Remark 3.7.27 above. The wrinkly stabil-
isation shows the first difficulty with the Monster tower approach for higher dimen-
sional manifolds: some singularities do not admit a continuous Gauss map.

If we look at the maps induced by f on each fibre, we see that if |Z| < 1 then they are
curves with two folds, if |Z| > 1 they are curves graphical over the zero section, and if
|Z| = 1, they are vertical cusps. That is, it corresponds to the standard unfolding of
the cusp. Thus, not admitting a continuous Gauss map corresponds to a phenomenon

already observed in [91, Section 9.1]: the lifting procedure to the Monster tower is not
continuous in the unfolding parameter. This is something to be explored in future
work. A

Lemma 3.7.35. The topological embedding condition is implied, in the vicinity of its
cusp locus, from the first three items.

Proof. For |Z| smaller than but close to one, the curve 7} o f({Z} x R) is an unfolding
of the cusp. It describes a little loop when projected to (x,,, z%o"“’o”')). In particular,
it has a self-intersection point. However, according to the subsection 3.6.4.2, the two

intersection points have different lifts by integration. O

A model we may consider is the lift of

(#,2) — (3,23 /3 + (|72 = Dan; 20 =22 0,....,0).

no

The principal metasymplectic projection of any wrinkly stabilisation is equivalent, as
a smooth map, to this model. However, it is unclear whether the model is unique up
to point symmetries.

3.7.3.6 The double (horizontal) cusp

Now we consider two spheres of horizontal cusps bounding an annulus:
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Definition 3.7.36. Set D = S"~1. A fibered over D integral map (Definition 5.2.12)
f:Dx0p(0,1]) — J(X,F)

is a double cusp if

e f is a topological embedding.

o Gr(f): D x Op([0,1]) — J"TYX, F) is a stabilisation.
The image f(D x (0,1)) is called the membrane of f.

In particular, we are requiring that
2(f) =D x {0} u D x {1}

are horizontal cusps. If that is the case, the lift Gr(f) exists and is an immersion
with two folds. Hence, it may be a double fold or a stabilisation. We require that it
is the latter.

The key property here is:
Lemma 3.7.37. The front singularities of the double cusp are two Asyio-cusps in

an open configuration (i.e. a zig-zag).

This follows from the open/closed switching from Lemma 3.7.24, see subsection
3.7.2.7.

3.7.3.7 The wrinkle

The “wrinkly” analogue of the double cusp is precisely:

Definition 3.7.38. Set D = R"~L. An integral map (Definition 3.2.12), fibered over
D

7

f0pS*h - J(X,F)

is a wrinkle if

e Gr(f) : D x Op([0,1]) — J"TYX,F) is a wrinkly stabilisation (Definition
3.7.33).

e f is a topological embedding.

The image f(D x (0,1)) is called the membrane.

A possible model is the lift of the wrinkled map of positive codimension (see Subsec-
tion 3.3.6):

P, ) (i,f

0

(52 + |2 — 1)ds; 2007 :f (52 + |72 — 1)2ds,0,...,0).
0

Tn

We do not know if Lift(F') is the only possible model. However, the principal meta-
symplectic projection of a wrinkle is equivalent to F' if we let left equivalences be
diffeomorphisms preserving the base projection. From this we deduce:
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Lemma 3.7.39. Equivalently, a wrinkle is an integral topological embedding
f:0p(S"™Y) — J(X,F)
with singularity locus Y(f) = S*~! satisfying:

o The equator S*~2 consists of semicubic swallowtails.
e The hemispheres are horizontal cusps.

Remark 3.7.40. The wrinkle is unique for smooth maps (i.e. » = 0). Uniqueness
for r > 0, as we stated, is unknown. In the contact case (i.e. r =1 and dim(F) = 1),

wrinkles for legendrians were defined by D. Alvarez-Gavela in [2], providing a explicit
model. Although not stated explicitly in his paper, it seems like uniqueness follows
from the constructions he provides. A

3.7.3.8 Fibered wrinkles

Let us present the fibered version. We fix coordinates (¢) in R™ and (z) in X = R".
Definition 3.7.41. A fibered over R™ wrinkle is a map
f:Op(S™ )y - R™xJ(X,F),
which we regard as a m-parameter family of integral topological embeddings f,(x) =
f(q,x) with singularity locus ST~ satisfying:
o LM77 o f) = S™T"=2 gre open semicubic swallowtails,

o S10(x o f,) = SMTNTI\S™IN=2 gre horizontal cusps.
The maps with |q| = 1 are called (wrinkle) embryos.

A possible model for the principal metasymplectic projection of an embryo reads:
Tn T
(%, 2) — (i:,f (s + |7 ds; 200 = J (s +|&[*)%ds,0,...,0).
0 0

However, we do not know whether this model is unique.

3.8 Holonomic approximation by multi-sections

The main result of this chapter is an h-principle with PDE flavour. It states that the
holonomic approximation Theorem 3.4.8 applies to closed manifolds as long as we are
willing to be flexible and allow for multi-sections. A particular consequence is that
any open partial differential relation admits a solution in the class of multi-sections.

The interesting part of the result is that it is sufficient to work with multi-sections
with simple singularities. Namely, they will satisfy that:
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e Their only singularities are folds in a zig-zag configuration.
e Their front projection is topologically embedded.
In Subsection 3.8.1 we formulate this formally. In Subsection 3.8.2 we present the key

geometric insight needed for our arguments. Lastly, in Subsection 3.8.3 we provide
the proof.

As in previous Sections, we fix a smooth fibre bundle Y — X, with X compact. We
work on the jet space J"(Y — X). In order to quantify how close two sections of
J"(Y — X) are, we fix a metric.

3.8.1 Statement of the result

Recall the notion of zig-zag from subsection 3.7.2.7. We are interested in multi-
sections of the form:

Definition 3.8.1. A section with zig-zags is:

e an embedded multi-section f: X — J'(YV — X),

e a finite collection of disjoint annuli {A; < X},
satisfying:

e 7wy o f is a topological embedding,

e flx\(u,4,) i horizontal,

o fla, is a zig-zag.

Our main result is the obvious multi-section version of the holonomic approximation
Theorem 3.4.8:

Theorem 3.8.2. Let 0 : X — J(Y — X) an arbitrary section. Then, for any
e > 0, there exists a map f: X — J(Y — X) satisfying:

e f is a section with zig-zags;

o |f—0|co <e.

We want to stress that this statement is a proof of concept: it should be immediate to
the reader experienced in h-principles, after inspecting the proof, that a parametric
and relative (in the domain and the parameter) version also holds. Furthermore, the
theorem is the graphical case of the analogous result about approximating r-jets of
submanifolds through submanifolds with zig-zags (that is, the generalisation to higher
jets of the wrinkled embeddings Theorem 3.4.18). Lastly, it is the first step towards
a general h-principle for ¥2-free integral submanifolds of distributions modelled on
jet spaces.

The additional ingredient needed for these more general statements is a careful de-
scription of the birth/death of zig-zags. To avoid additional technical difficulties we
have chosen to leave this to future work.
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3.8.2 The key ingredient of the proof

We now present the simple observation that constitutes the basis of our work:

Definition 3.8.3. Let I = [a,b] be an interval. An asymptotically flat sequence
of zig-zag bump functions is a sequence of maps

(pN)NEN : [avb] - JO([avb]7R)

satisfying

their holonomic lifts j"pn : [a,b] — J"([a,b],R) are sections with zig-zags,

pN|Op(a)(t) = (:C =ty= 0);

pNlopw)(t) = (z =ty =1),

1207 o pN| < + forallr’ > 0.

The name follows from the fact that an element pp, with N sufficiently large, allows us
to interpolate between two given sections without introducing big derivatives (unlike
a normal bump function).

Proposition 3.8.4. An asymptotically flat sequence of zig-zag bump functions exists
on any interval.

Before we provide a proof, let us explain a Corollary that showcases this.

Corollary 3.8.5. Lete, 6 > 0 be given. Consider sections so, s1 : D" — RF satisfying
[so — s1]or < e.

Then, there exists a section with zig-zags f : D™ — J"(D", R¥) satisfying:

o (mfof)

e (170 f)lopenn) = s1,

DY s = S0,

o |j"s0 — flco < 4e.

Proof. We write (yi,...,yx) for the coordinates in the fibre R¥ and () for the coor-
dinates in the base. We break down the proof into elementary steps.

The pushing trick. Since |sg — s1|co < &, we can shift so by adding a constant in R*:

S0(z) := so(z) + (2¢,0,...,0).
Replacing sg by 59 guarantees that:
So(x) # s1(x), for every z € S"7! x [1 —6,1],

while retaining a bound |5y — s1]cr < 3e. We henceforth restrict the domain of 3
and s; to the region of interest S*~! x [1 — §,1].



302 CHAPTER 3. WRINKLING H-PRINCIPLES

First simplification. We can simplify the setup by applying the fibrewise translation:

JOSTEx [1-6,1,RF)  — JOS" ! x [1-6,1],R¥)
p — p—3o(m(p)),

It preserves the C"—distance and maps 5¢ to the zero section. The section s is mapped
to s := s1 — 5. Consequently, we just need to explain how to interpolate between the
zero section and some arbitrary section s satisfying |s|cr < 3¢ and s(z) # 0 for all x.

Second simplification. A second symmetry allows us to put s in normal form. Due to
the nature of the shift we performed, we have that

€ <y os(x)| < 3e
for all . This allows us to define a framing
A:S"x[1-6,1 — GL(RY)
A(z) = (s,ez,€3,...,€x),

where {e;};—1,. k is the framing dual to the coordinates y; in RF. The framing A
defines a fibre-preserving transformation of the R¥-bundle by left multiplication. By
construction Ae; = s.

Main construction. Apply Proposition 3.8.4 to produce an asymptotically flat se-
quence of zig-zag bump functions

(pn)Nen : [1—06,1] —  J°[1—06,1],R).

We use it to define a sequence of front projections:

Zn S x[1-6,1] — JOS" ! x[1-461],R")
(2,t) — Alpn(t)er].

We claim that, for N large enough, the holonomic lift fy := j"Zy satisfies the
properties prescribed.

Checking the claimed properties. We first observe that fy is a section with zigzags.
This follows from the fact that j"(pyer) is a section with zigzags and f is obtained
from it by applying the point symmetry j"A. In particular, the singularities of fy
are codimension-1 spheres of folds, corresponding to the values of ¢ in which py has
an Ag,.-singularity.

The second and final claim is that |fx|co < 4e if N is large enough. Equivalently,
we have to bound the C"-size of:

A(pner) = pNs.

Note that we can pretend that py is an actual function, because this is true over a
dense set. Therefore, for each multi-index I with |I| < r we compute:
2

0 (ons)2=| D) (@ pn)@"s)| < Y 10" pw[Pl" s

JETEY, I'4+17=]
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Now, each derivative |07 py| is smaller than 1/N, with the exception of |py| = 1.
Similarly, |07 s| < 3¢ for all I”.

Let K; be the maximum number of decompositions I’ + I” = I that a multi-index
|I| < r in n variables and k outputs may have. Let K3 be the number of multi-indices
|[I| < r. Then:

9K,
10T (pns)|? < 107s|% + WSQ
9K 9K 1 K.
lpns|Ze < Z (|0Is|2 + N2152) <|s|Z. + Z\}Q 22,

I

Therefore, by setting N2 > 9K Ky, we conclude:

|fN|CD = |pNS|Cr < |S|C7‘ + e < 4e.
O

Remark 3.8.6. An interesting feature of the proof is that the sections with zig-zags
we construct are obtained from the “standard” sections with zig-zags j"(pne1) by
applying a point symmetry. The same argument would work if instead of j"py we
used a particular model of wrinkle (subsection 3.7.3.7). Hence, we can bypass the
potential uniqueness issues for wrinkles pointed out in Remark 3.7.40. A

Now we construct the zig-zag bump functions:

Proof of Proposition 3.8.4. Observe that it is sufficient to prove the claim for I =
[0,1], since any two intervals are diffeomorphic by a scaling and a translation. The
scaling dilates the fibres of jet space in a homogeneous manner, so any asymptotically
flat sequence is mapped to an asymptotically flat sequence.

Fix N. We will construct py as the holonomic lift py = j"(7f o pn) of its front
projection 7y o py.

The infinite zig-zag. We first define:

Z:R — J%0,1],R),

1t t
t) - (x(t) = §f sin(s)ds, y(t) = f sin(s)%ds) .
0 0
We claim that, at each of its critical points {¢t = 0,7, 27, ...}, the map Z is modelled
on the Ag,.-singularity. To prove this we compute the Taylor expansion at each of
these points:

sin(ir + h) = g +0(h?), sin(lm + k)2 = h%" + O(h2"+2),

h2 h2r+1
x(lm+ h) = =t O(h), y(lm + h) =

Oh2r+3.
2r+1+ ( )

Which proves the claim because the Asg, singularity is stable.
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From this computation we deduce that the lift
i"Z:R— J([0,1],R)

is an integral mapping with fold singularities. Since its front is topologically embed-
ded, j"Z is embedded. Lastly, according to the definition in Subsubection 3.7.2.7,
the germ 5" Z|op([(21-1)r,217]) 1 @ zig-zag. The section with zig-zags j”Z has infinitely
many of them stacked.

A piece of the infinite zig-zag. Next, observe that Z is graphical over [0,1] in the
intervals (2im, (2] + 1)m). In particular, we can flatten Z in Op(0) so that it is
identically 0, without introducing self-intersections of the front. Similarly, for any I,
we can flatten Z in the region Op((2] + 1)m) so that it is identically Z((21 + 1)7).
Lastly, we can scale this modification of Z, dividing by the constant Z((2] + 1)7). In
this manner we obtain a front that is identically 0 and 1 in Op(0) and Op((2 + 1)),
respectively. We denote it by Zy.

We claim that, if I is large enough, then |2(*) o j"Zx| < & for all a > 0. This
follows immediately from the scaling we just did: Z was 27-periodic, so the quantities
2(®) o j7Z were bounded. The quantity Z((2] 4+ 1)7) goes to infinity as [ does, so a
sufficiently large choice guarantees that the derivatives of ;" Zy are smaller than 1/N.

Lastly, we simply reparametrise

mpopn(t) = Zn o (1),

where ¢ : [0,1] — [0, (2] + 1)7] is a suitable diffeomorphism. O

3.8.3 The proof

The proof of Theorem 3.8.2 follows the standard structure of an h-principle.

In subsection 3.8.3.2 we prove the reduction step. Its output is a holonomic section g,
defined along the codimension-1 skeleton of X and approximating the given formal
section o.

In subsection 3.8.3.3 we provide the extension argument: we extend g to the interior
of the top dimensional cells. In order to obtain a good approximation of o, the
extension to the interior must be a multi-section, as presented in Corollary 3.8.5.

3.8.3.1 Preliminaries

We must fix some auxiliary data first. Depending on the constant ¢ > 0 we fix a
finite collection of pairs {(U;, f;)} such that

e {U;} is a covering of X by balls,

o fi: Uy — J(Y|u, — U;) is a holonomic section satisfying |f; — o

U; | <E€.
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The existence of such a collection follows from the standard holonomic approximation
Theorem 3.4.8 applied to each point in X. By compactness of X we get a finite
refinement.

We then triangulate X, yielding a triangulation 7. We assume that this triangulation
is fine enough to guarantee that each simplex is contained in one of the U;. Given a
top-simplex A € T, we choose a preferred U; and we denote the corresponding section

fi by fa.

We remark that Y|y, is trivial, so we can make the identification J"(Y|y, — U;) =
J"(D",R*). We can then relate the C°-norm in the former with the standard C°-
norm in the latter. By finiteness of the cover there is a constant bounding one in
terms of the other. We assume this constant is 1 to avoid cluttering the notation.

3.8.3.2 Reduction

The codimension-1 skeleton of X is a CW-complex of positive codimension. Thus,
according to Theorem 3.4.8, there exists:

e a wiggled version T of T,

e a holonomic section g : Op(T) — Y satistying |0 — j"g| < e.

The wiggling can be assumed to be C%-small, so each top-simplex A € T is contained
in the same U; as the original simplex. Le., we have sections g (defined over Op(0A))
and fa (defined over the whole of A), both of them approximating o.

3.8.3.3 Extension

We focus on a single top-simplex A € T because the argument is the same for all of
them. We simply observe that Corollary 3.8.5 applies to g and fa over the annulus
Op(0A), producing the desired multi-section extension f of j"g to the interior of A.
The Corollary guarantees that:

|f —al <|f =3"fal + 1" fa — o] < 5e.

This concludes the proof of Theorem 3.8.2. O

We close with an extremely biased remark about the proof: the idea presented (zig-zag
bump functions together with the pushing trick) seems simpler than the path followed
in [44] (reducing to simple tangential homotopies and approximating them with a
model zig-zag). Additionally, it has a more transparent connection with holonomic
approximation. Therefore, Theorem 3.8.2 provides a new understanding even in the
classic case r = 1.
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Samenvatting

Het onderwerp van deze scriptie is de interactie tussen contact structuren en (symplec-
tische) foliaties van codimensie-één. Beiden zijn speciale gevallen van (codimensie-
één) distributies. Voor een foliatie eisen we dat deze distributie integreerbaar is,
terwijl we voor een contact structuur eisen dat hij ”maximaal niet-integreerbaar” is.
Deze definities zijn dus in zekere zin tegenovergesteld aan elkaar. Desalniettemin
vertonen deze structuren meer overeenkomsten dan hun definitie doet vermoeden.
Ze hebben bijvoorbeeld dezelfde onderliggende ”algebraische structuur”; een paar
differentiaalvormen (o, n) € QY (M) x Q?(M) die voldoen aan de vergelijking:

(3.8.3.1) annt#0.

Ook is het veel gevallen mogelijk om beide structuren in elkaar te ”vervormen”.

In Hoofdstuk 1 behandelen we constructies van symplectische foliaties en contact
structuren. Onze aanpak is als volgt; we splitsen de ruimte op in (simpelere) stukken,
daarna construeren we op elk van deze stukken de gewenste structuur, en als laatste
lijmen we de stukken weer aan elkaar zodat we de originele ruimte terugkrijgen.

Voor deze aanpak is het belangrijk om te begrijpen hoe symplectische foliaties en con-
tact structuren zich gedragen op wiskundige ruimtes met een rand. We onderscheiden
verschillende type randen (analoog aan de definities van contact/cosymplectische ran-
den van symplectische ruimtes) en bewijzen expliciete normaalvormen.

We merken op dat de resultaten (en bewijzen) voor beide structuren zo goed als
hetzelfde zijn. Dit stelt ons instaat om de constructies tegelijkertijd uit te voeren
en de resulterende structuren in elkaar te vervormen. We bewijzen een algemene
stelling die in het bijzonder toepasbaar is voor de 5-dimensionale bol (dit geeft ons
een resultaat van Mitsumatsu [39]), en elke (gesloten, georienteerde) 3-dimensionale
ruimte.

Hoofdstuk 2 is gebaseerd op gezamelijk werk met F. Presas. Hier bestuderen we
de convergentie van contact structuren naar symplectische foliaties in hoger dimen-
sionale ruimten. In dimensie-3 beschouwt men gewoonlijk convergentie als secties
van de Grasmanniaanse bundel van codimensie-een distributies, zoals in de theorie
van confoliaties. In hogere dimensies merken we op dat de (formele) symplectische
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vorm (7 in Vergelijking 3.8.3.1) een belangrijke rol speelt. We definieren verschillende
soorten convergentie en bestuderen hun relatie doormiddel van voorbeelden.

Een belangrijk resultaat in de 3-dimensionale theorie, zie [17], is dat elke foliatie
behalve die op S! x S? (doormiddel van bollen) benaderd kan worden door contact
structuren. We bewijzen dat er in hogere dimensies veel meer voorbeelden van dit
soort foliaties bestaan. Een van onze argumenten is gebaseerd op de theorie van
contact fibraties over de 2-dimensionale bol. Dit levert voorbeelden op van foliaties
die niet benadert kunnen worden om redenen die essentieel verschillen van het 3-
dimensionale geval.

Zoals we opgemerkt hebben in Vergelijking 3.8.3.1 heeft elke differentieerbare struc-
tuur een onderliggende algebraische vergelijking. Voor verscheidene structuren is het
altijd mogelijk om een oplossing van de algebraische vergelijking te vervormen in een
echte oplossing. In dit geval zeggen we dat de structuur voldoet aan het ”h-principe”.
In Hoofdstuk 3 bestuderen we een specifieke techniek, de zogenoemde ”plooi tech-
niek” in de setting van jet bundels. De inhoud van dit hoofdstuk maakt deel uit van
een lopend project met A. del Pino. Ons doel is om deze technieken toe te passen op
de vraagstukken uit de voorgaande hoofdstukken. Voor nu is ons belangrijkste resul-
taat een generalizatie van de klassieke holonome benadering stelling uit [43], die stelt
dat (onder gepaste voorwaarden) elke formele snede van een jet bundel benaderd kan
woorden door een holonome snede. We bewijzen dat als we toestaan dat de snedes
milde singulariteiten hebben dit resultaat ook op gesloten ruimtes geldt.
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