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Introduction

Hematopoiesis

Blood is essential for life and without it the body would stop functioning. It provides

the body of oxygen, nutrients, removes waste products, transports messengers, such

as hormones and has immunological functions. Hematopoiesis is the formation of all of
the cellular components of blood and blood plasma, which occur in the hematopoietic
organs, spleen, bone marrow and liver in humans. When the hematopoietic system does
not function properly, several severe conditions can occur, such as leukemia, multiple
myeloma, lymphoma, anaemia, and sickle cell disease, to name a few.

Hematopoiesis has been studied in several model organisms, mainly chicken, zebrafish
and mouse. Since mice and humans share a very similar embryonic development and
organogenesis, mice are widely used as model organism. As the mouse genome is
completely sequenced and annotated 2 and genetic modifications, such as knock-outs and
knock-ins are mainstream methods in molecular genetics laboratories, and have become
even easier due to CRISPR/Cas9 3, mice have extensively been used to model genetic
mutations leading to human diseases. One of the disadvantages of using mice is that, as

in humans, embryonic development occurs in utero, making it difficult to observe and
manipulate this process. Development in mice also takes relatively long, as gestation takes
around 20 days. Per litter, 7-12 pups are developing and haematopoiesis starts around one
week after fertilization.

Zebrafish are also increasingly being used as model system to study hematopoiesis.
Zebrafish lack several disadvantages of the mouse model and are therefore an attractive
alternative. Zebrafish embryos develop ex utero, and one pair of zebrafish produces
several hundreds of embryos per week. Moreover, zebrafish embryos are translucent

and develop a functional blood circulatory system within 24 hpf. Nowadays, the zebrafish
genome is fully sequenced and annotated and it was shown that 71.4% of all human genes
have at least one zebrafish ortholog and that is true for 82% of all human disease causing
genes *. Zebrafish have a highly conserved physiology and possess fully recognizable organ
systems, such as heart, liver, kidneys and the hematopoietic system. These systems fulfill
very similar functions compared to their human counterparts.

Hematopoiesis during embryonic development

Stem cells define a specific type of cells that maintain self-renewal capacity and may
differentiate into multiple cell types at the same time. Hematopoietic stem cells (HSCs) are
responsible for the production and replenishment of all blood cell types during the entire
lifespan of an organism. HSCs are defined as cells that have the ability to reconstitute
multi-lineage hematopoiesis in lethally irradiated recipient mice upon transplantation.

In zebrafish, it is yet unclear what the exact markers are to identify true HSCs, therefore
the term hematopoietic stem/progenitor cells (HSPCs) is used to identify the cells that
produce all blood lineages. McCulloch and Till * identified HSCs for the first time in mice in
1960. By 1988, HSCs were isolated for the first time ® and later on HSCs were purified to an
increasing purity 78, Between species the developmental processes, genes and molecular
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signalling pathways are highly conserved °*2, whereas the sites of hematopoiesis are less
conserved. Hematopoiesis during development occurs in two waves: the primitive wave, in
which primitive erythrocytes and macrophages are produced. Subsequently, the definitive
wave occurs, in which HSCs are formed that will differentiate into all blood lineages and
will continue to replenish themselves for the rest of the life of the organism.

Primitive wave

The primitive wave starts when vascular and hematopoietic cells differentiate from
mesodermal progenitors and form the blood islands in the extra-embryonic yolk sac,
where the first primitive erythroblasts are produced at embryonic day (E) E2 (chicken) and
E7.25 of mouse development 1314, At the same time in mouse development progenitors

of macrophages and platelets are formed, which play a role in the development of blood
and lymphatic vasculatures >, The equivalent of the extra-embryonic yolk sac is found

in zebrafish at two sites: the anterior lateral mesoderm (ALM) and the posterior lateral
mesoderm (PLM) that later forms the intermediate cell mass (ICM) and is located intra-
embryonically. Primitive myelopoiesis occurs in the ALM, whereas primitive erythropoiesis
occurs in the ICM 728, The primitive wave transiently produces cells that do not last to
adulthood, except for the macrophages that are formed in this period. These macrophages
later on produce microglia in the brain in both adult mice and zebrafish -2,

In zebrafish, both the ALM and PLM express hematopoietic markers, such as scl, Imo2 and
gata2 as well as vascular transcription factors such as fli1 and flk1, indicating formation

of HSCs and angioblasts *2. It is suggested that bipotent hemangioblasts exist, which

can give rise to both endothelial and hematopoietic cells 2. Primitive erythropoiesis
forms proerythroblasts that later mature into erythrocytes. In mice, only the embryonic
erythrocytes are nucleated, whereas in zebrafish all erythrocytes are nucleated, both
during embryonic development and in adulthood. In the ALM, cells express similar
transcription factors as in the PLM, except gatal, since no erythroblasts are formed here.
Two distinct populations of primitive myeloid progenitors can be found in the ALM, a
granulocyte population and a population that represents monocytes and macrophages

24 In the ICM, the myeloid specific factor pu.1 (spilb) is expressed with gatal and the
balance between these two factors regulates the formation of erythroid and myeloid cells.
Loss of gatal results in a transformation of erythroid progenitors into myeloid progenitors
% and loss of pu.1 induced the formation of erythrocytes in the ALM 2¢. This also holds
true in mice. When GATA1 was overexpressed, myeloid progenitors were transformed into
erythroid progenitors and when PU.1 was overexpressed, erythroid progenitors turned
into myeloid progenitors %8, This suggests that gatal and pu.1 regulate the balance
between myeloid and erythroid progenitors during primitive hematopoiesis either by
promoting their respective fates or by suppressing the opposite population 7%,

10
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AGM CHT

head kidney

thymus

o

Figure 1. Sites of the definitive wave of hematopoiesis in mice and zebrafish. (a) in mice definitive
hematopoiesis starts with HSCs emerging in the dorsal aorta at E10.5, after which they migrate to the fetal liver
to mature and proliferate. Finally, HSCs will migrate to the adult hematopoietic organ, the bone marrow. (b) in
zebrafish definitive hematopoiesis starts in the AGM at 36 hpf with the emerging of HSPCs, which then migrate
to the CHT (the equivalent of the mammalian fetal liver). After several days of maturing and proliferating in the
CHTs HSPCs will then migrate to the adult hematopoietic organs, the head kidney and the thymus. AGM, aorta-
gonad-mesonephros. CHT, caudal hematopoietic tissue. Like colors represent organs with similar function during
definitive hematopoiesis.

Definitive wave

In both mammals and zebrafish, the first HSCs arise in the ventral wall of the dorsal aorta
(VDA) in the aorta-gonad-mesonephros (AGM) 2732, through an endothelial-hematopoietic-
transition (EHT) 3*% (figure 1). In the mouse embryo, intra-aortic hematopoietic clusters
(IAHCs) have been found in the large arteries, such as the aorta, vitelline and umbilical
arteries starting at E10.5 %, but also in the vasculature of the placenta starting at
E11-E11.5 3837, These IAHCs express various hematopoietic markers (c-kit, CD41, CD45)
that are also expressed by embryonic HSCs 3%, as well as endothelial markers (VE-cadherin,
CD31, CD34) 33, It was shown that IAHCs have a hematopoietic identity 3° and that both
IAHCs and HSCs have an endothelial origin %1, Later on, ex vivo culturing and overnight
time lapse imaging showed that endothelial CD31+ cells underwent cell shape remodelling
and started budding into the lumen of the aorta. Moreover, these cells then also started

11
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expressing the HSC markers CD41 and c-kit *® (figure 2a). In zebrafish, EHT can be followed
in vivo using an endothelial transgenic kdrl:eGFP reporter line. Here, endothelial cells
undergo a specific set of remodelling between 33 and 54 hours post fertilization (hpf)

a mouse

dorsal aorta

dorsal aorta

b1 zebrafish b2 b3

dorsal aorta

@@@
ce® ee® Eate

(_ ‘ Q axial vein
O &&= X

Figure 2. In both mice and zebrafish hemogenic endothelial cells transdifferentiate into HSPCs. (a) in mice
hemogenic endothelial cells (yellow) from the dorsal aorta start a process in which they agcuire a round shape
and form clusters (IAHCs) (purple) that express HSC markers (c-kit, CD41, CD45). (b) in zebrafish hemogenic
endothelial cells in the floor of the VDA (yellow) undergo a series of remodeling steps to become HSPCs. (b1)
First, an endothelial cell in the VDA bends towards the subaortic space, (b2) then rounds up and (b3) lastly buds
off from the VDA into the subaortic space, and is now a HSPCs (purple) and then migrates into the axial vein and
joins circulation.

12
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before they become HSPCs and enter circulation 3. First, cells in the floor of the VDA
start to bend towards the subaortic space, then cells round up and bud off from the

VDA to enter the sub-aortic mesenchyme, where they either divide or directly enter the
circulation via the axial vein * (figure 2 b). The start of HSPCs emergence in the zebrafish
coincides with the expression of several HSC markers, such as cd41, runx1, Imo2, scl and
c-myb %, It is estimated that in zebrafish around 3 HSPCs per hour enter the circulation
4 with some of them being true HSCs *>*¢, The peak of HSPCs emergence is at 48 hpf
and around that time, 30 different HSC clones have emerged that contribute to definitive
hematopoiesis ¥, which seems to be in line with the numbers found during mouse
development. There it is estimated that 2 HSCs and at least 12 transplantable pre-HSCs
8 are present in the aorta that contribute to the 66 HSCs found at E12 in the fetal liver

49, After HSPCs enter circulation they migrate to the caudal hematopoietic tissue (CHT) in
zebrafish ¥ and the fetal liver in mice, where they expand and further mature >3, Next,
HSPCs migrate to the thymus and whole kidney marrow in zebrafish and bone marrow in
mice, which are the adult hematopoietic organs 124344,

Several transcription factors and signalling pathways have been shown to be essential

for HSCs emergence in both mice and zebrafish. Runx1 is a key regulator of definitive
hematopoiesis and is an HSC marker. In mutant Runx1 mice definitive hematopoiesis is
severely affected, with HSCs not being able to generate in the embryonic aorta 3. More
specifically, Runx1 is essential during EHT. When Runx1 is conditionally knocked-out in
endothelial cells, no IAHCs or HSCs are formed in mice “. In zebrafish runxl knockdown
embryos EHT events are initiated, but much less than in normal embryos and the events
are abortive. Right before the cell buds off from the VDA to become a HSPC, the cell

bursts into pieces. As a consequence, the CHT and thymus are not seeded **. GataZ2 is

also essential during EHT and for HSC formation in the AGM as Gata2 knockout mice are
embryonically lethal and die of severe anaemia **. Both Sc/ (Tal1) and Lmo2 are individually
essential for development of both primitive and definitive hematopoiesis >>. Embryos
lacking either Sc/ or Lmo2 are not forming any blood cells and it is thought that these
factors specify a blood rather than a vascular fate in the hemogenic endothelium. BMP
signalling restricts haemato-vascular development of the lateral mesoderm, possibly acting
through a pathway involving Lmo2 and possibly Gata2 *. Whereas these studies elucidated
pathways to understand the complex signals needed for HSC production, we are still far
away from understanding the whole complexity of HSC formation.

Phosphatases

Cellular signalling is regulated by many different factors, one being the phosphorylation
and de-phosphorylation of proteins. Proteins are phosphorylated on tyrosine residues by
protein tyrosine kinases (PTKs) and dephosphorylated by protein tyrosine phosphatases
(PTPs). PTPs are important regulators of cellular processes, such as proliferation,
differentiation, stem cell fate and development *’. Mutations in PTPs often results in
disrupted cell signalling and disease. To date, 125 PTPs have been identified in the human
genome and they can mainly be divided in three classes: the classical PTPs, dual-specificity

13
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PTPs and the low molecular weight PTPs 8% (reviewed in ).

Here, | will highlight two PTPs, Pten and Ptpn11, that have a central role in cell signaling
and are involved in multiple processes, including stem cell fate determination and
hematopoiesis.

PTEN

Phosphatase and Tensin homolog (PTEN) belongs to the PTP family and more specifically
to the dual-specificity PTPs .. PTEN is involved in the PI3K-AKT pathway. Upon receptor
activation by a ligand and subsequent PI3K activation, Akt signaling is activated,

which causes an intracellular response. PTEN antagonizes catalytic PI3K activity by
dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) to phosphatidylinositol
4,5-biphosphate (PIP2), and thereby balancing Akt signaling (figure 3). Loss of PTEN
causes hyperactivation of the PI3K signalling pathway and results in increased tumour
susceptibility and increased proliferation, survival and self-renewal of stem cells 6%,
Mice that lack Pten are embryonically lethal, indicating an important role for Pten during
development 546,

Zebrafish have two pten genes, ptena and ptenb, that are redundant in function and highly
homologous to human PTEN. Zebrafish lacking both ptena and ptenb are embryonically
lethal around 5-7 dpf and furthermore are characterized by an enlarged head en heart
oedema ®’. These pten mutant embryos also show disrupted angiogenesis, as they have
upregulated levels of Vegfaa and show hyper-vascularization %. However, it is the lipid

ligand

i O

extracellular

intracellular PIP2 PIP3$ -

v

Cellular responses

Figure 3. PTEN antagonizes PI3/Akt signaling. Simplified scheme of PTEN signaling. Ligand binding to its receptor
activates the receptor and subsequently PI3K activation, resulting in increased levels of phosphatidylinositol
(3,4,5) triphosphate (PIP3) and activation of downstream signaling via Akt. PTEN dephosphorylates PIP3 and loss
of PTEN results in hyperactivation of the signaling pathway. Adapted from Stumpf et al. (2015)%.

14
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phosphatase activity of Pten and the spatial expression that is essential for regulation of
angiogenesis, instead of the protein phosphatase activity. Pten-mutants with an increased
plasma membrane localization in mammalian and zebrafish cells rescue the phenotype of
hyper-vascularization in pten mutant embryos 7,

When PTEN is overexpressed in mice, a reduction in endothelial cell proliferation,
vascular density and abnormal angiogenesis is observed 7. This suggests that a fine
balance between low and high PTEN activity is needed for proper angiogenesis. Loss of
function mutations in PTEN are often identified in many different types of cancer 774 and
additionally missense mutations have been identified in rare human autosomal dominant
cancer syndromes, such as Cowden syndrome 7>,

PTPN11

PTPN11 is a gene that encodes for cytoplasmic SHP2 and is a ubiquitously expressed

PTP with two Src homology 2 (SH2) domains 7678, SHP2 positively regulates extracellular
regulated kinase (ERK)/MAPK signalling, downstream of most receptor tyrosine kinases
(RTKs). Other signaling pathways are regulated by SHP2 as well, including the Jak-

STAT pathway and the PI3K-AKT pathway 7”78, Various mutations, both activating and
inactivating SHP2 function, are associated with human disease 7. Mutations that either
increase or decrease the catalytic activity of SHP2 are associated with Noonan syndrome
(NS) and Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD
syndrome). These patients have characteristic cranio-facial abnormalities, heart defects,
short stature and an increased risk of developing juvenile myelomonocytic leukemia
(JMML). NS is caused by mutations that activate SHP2 catalytic activity (e.g. D61G),
whereas NS-ML is caused by mutations in SHP2 that reduce the catalytic activity (e.g.
A461T). Recently, several NS-ML mutations in SHP2 have been found to have reduced
catalytic activity but show the structural properties that are typically observed in activating
mutations, possibly explaining why NS and NS-ML patients show similar symptoms®8, The
SHP2 mutant proteins of NS and NS-ML patients appear to have an increased tendency
to adopt an open conformation and have a longer interaction with scaffolding adaptors,
prolonging substrate turnover, and in this way compensate for the reduced catalytic
activity 88, It is evident that the RAS/MAPK pathway has a role in NS and NS-ML, but

it is yet unclear what the exact mechanism is that causes mutant SHP2 to induce these
syndromes.

SHP2 is also involved in hematopoiesis. In mice it has been observed that SHP2 promotes
embryonic stem cells to differentiate into hemogenic endothelium 82, Later on, SHP2

is essential for the maintenance of the HSC pool and differentiation into all blood
lineages. Loss of Ptpn11 in HSCs in mice resulsd in loss of almost all HSCs and progenitors
of hematopoietic lineages, with lethal consequences within 6-8 weeks after birth .,
Overexpression of SHP2 or gain-of-function mutations lead to abnormal differentiation
and proliferation in HSCs 3°#48¢ Zebrafish have two ptpn11 genes, ptpnlla and ptpnilb,
encoding Shp2a and Shp2b, respectively *’. Both Shp2a and Shp2b are highly homologous
to human SHP2 and harbor catalytic activity, but they differ in expression levels during

15
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early embryonic development. Ptpnlla is constantly expressed up until 5 dpf and ptpniib
expression increases over time ¥, Ptpnl11a”-mutant embryos are embryonically lethal from
5-6 dpf onwards, whereas ptpn11b7 mutant embryos are developing normally and are
viable and fertile &. Whereas Shp2a and Shp2b have similar biochemical activities, the in
vivo function is distinct, which appears to be due to the difference in expression pattern.

Outline Thesis

The general aim of this thesis is to study hematopoiesis in developing zebrafish, with an
emphasis on the role of two phosphatases, pten and ptpnl1. The zebrafish is used as a
model organism, exploiting its genetic manipulability, transparency and ease of analysis. In
chapter 2, we study the role of pten during hematopoiesis in zebrafish using live imaging
techniques and single cell RNA sequencing. In chapter 3 we introduce a novel zebrafish
genetic mutant, created by CRISPR/Cas9 knock-in of a common NS-patient associated
mutation, Shp2-D61G. We demonstrate that the phenotype developed by the Shp2-D61G
zebrafish mutant is very similar to the phenotype observed in human NS-patients with this
mutation. In chapter 4 ptpn11b is found to have a role during the onset of the definitive
wave. Ptpn11b mutants show abortive events during EHT, but hematopoiesis seems
unaffected after this stage. In chapter 5 we provide evidence that kdrl marks the shift
from embryonic to adult HSPCs, in that kdrl/cd41"" cells represent embryonic HSPCs and
cd41'v cells without kdrl adult HSPCs. Chapter 6 aims to put the results of this thesis in
perspective, in the form of a summarizing discussion.
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Chapter 2

Abstract

Hematopoietic Stem and Progenitor Cells (HSPCs) are multipotent cells giving rise to all
blood lineages during life. HSPCs emerge from the ventral wall of the dorsal aorta (VDA)
during a specific timespan in embryonic development through endothelial hematopoietic
transition (EHT). We investigated the ontogeny of HSPCs in mutant zebrafish embryos
lacking functional pten, an important tumor suppressor with a central role in cell signaling.
Through in vivo live imaging, we discovered that in pten mutant embryos a proportion
of the HSPCs died upon emergence from the VDA, an effect rescued by inhibition of
phosphatidylinositol-3 kinase (PI3K). Surprisingly, inhibition of PI3K in wild type embryos
also induced HSPC death. Surviving HSPCs colonized the caudal hematopoietic tissue (CHT)
normally and committed to all blood lineages. Single cell RNA sequencing indicated that
inhibition of PI3K enhanced survival of multi-potent progenitors, whereas the number of
HSPCs with more stem-like properties was reduced. At the end of the definitive wave, loss
of Pten caused a shift to more restricted progenitors at the expense of HSPCs. We conclude
that PI3K signaling tightly controls HSPCs survival and both up- and downregulation of
PI3K signaling reduces stemness of HSPCs.
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PI3K signaling controls survival and stemness of HSPCs

Introduction

Stem cells define a particular type of cells that maintain self-renewal capacity and may
differentiate into multiple cell types at the same time. HSPCs are multipotent cells giving
rise to all blood lineages during life'™. In all vertebrates, an initial primitive wave of
hematopoiesis occurs in the embryo, giving rise to primitive erythrocytes and myeloid
cells. A definitive wave follows in which HSPCs are generated that will found multi-lineage
hematopoiesis in developmentally successive hematopoietic organs up to adulthood. Our
understanding of the emergence of HSPCs during the definitive wave is derived primarily
from pioneer live in vivo imaging®®. HSPCs emerge in a process whereby cells in the ventral
wall of the dorsal aorta (VDA) undergo an endothelial to hematopoietic transition (EHT)®
and then transiently colonize the fetal liver in mammals’, or the caudal hematopoietic
tissue (CHT) in zebrafish®. There, HSPCs expand and differentiate into all blood lineages
and supply the developing embryos with mature blood cells. Subsequently, HSPCs migrate
again to colonize the thymus and the bone marrow in mammals 7 or whole kidney marrow
in fish® to produce blood cells in the adult.

HSPCs are tightly regulated in terms of dormancy, self-renewal, proliferation and
differentiation. Disrupting this balance can have pathological consequences such as

bone marrow failure or hematologic malignancy. The tumor suppressor, PTEN, has an
important role in hematologic malignancies, particularly T-lineage acute lymphoblastic
leukemia (T-ALL). Deleterious mutations in PTEN appear in 5-10% of T-ALL cases and about
17% of patients lack PTEN expression in the hematopoietic lineage®*°. PTEN counteracts
phosphatidylinositol-3 kinase (PI13K) and hence acts upstream in the PI3K-Akt (also known
as Protein kinase B, PKB) pathway**. Loss of PTEN function results in hyperactivation of
the PI3K-Akt signaling pathway. Clonal evolution of leukemia-propagating cells in zebrafish
highlights the role of Akt signaling in the process*. Conditional deletion of Pten in mice

in hematopoietic stem cells (HSCs) in adult bone marrow promotes HSC proliferation,
resulting in depletion of long-term HSCs, indicating that Pten is essential for the
maintenance of HSCs*.

The zebrafish genome encodes two pten genes with redundant function designated

ptena and ptenb®®. Single mutants display no morphological phenotype and are

viable and fertile, but mutants that retain only a single wild type copy of pten develop
hemangiosarcomas during adulthood*®. Ptena”ptenb” mutants lack functional Ptena and
Ptenb, are embryonic lethal at 5-6 days post fertilization (dpf) and display hyperplasia

and dysplasia®®. We reported that double mutant zebrafish larvae lacking functional Pten
display increased numbers of HSPCs in the CHT at 4-5 dpf. Whereas these HSPCs commit to
different blood lineages, they fail to differentiate into mature blood cells. Inhibition of PI3K
using LY294002, which compensates for the loss of Pten, restores differentiation of HSPCs
into mature blood cells. Hence loss of Pten enhances HSPCs proliferation and arrests
differentiation®.

The past decades have led to an increase in our knowledge of hematopoiesis, but we are
still far from a complete understanding of how HSPCs are established. Likewise, the role of
Pten in steady-state hematopoiesis has been studied, but its potential role in the ontogeny
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of HSPCs is not fully understood. We have addressed these questions in zebrafish larvae.
We imaged the emergence of HSPCs from the VDA in vivo in ptena”ptenb”-embryos and
in PI3K-inhibitor treated wild type embryos, which showed surprisingly similar defects.
Furthermore, we performed single cell RNA sequencing (scRNA-seq) during the onset
and at the end of the definitive wave. Our results indicate that elevated and reduced PI3K
signaling had opposite effects on HSPCs at the end of the definitive wave.

Results

The onset of the definitive wave of hematopoiesis is independent of Pten

The onset of the definitive wave starts at 32 hours post fertilization (hpf) with the
specification of endothelial cells that will become HSPCs in the floor of the dorsal

aorta (DA) in the AGM region (Figure 1a), a conserved process between mammals and
zebrafish*®. Runx1 expression from 32 hpf onwards and c-myb expression from 35 hpf
onwards mark the hemogenic endothelium of the VDA and its HSPC progeny®8. We found

wildtype ptena’ptenb”

tg(kdrl:eGFP)

|DA
|PCV o

*

acridine orange 07/07
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that ptena”ptenb” mutant embryos expressed runx1 and c-myb along the VDA during
the period that HSPCs emerge (between 30 and 44 hpf) just like their siblings (Figure S1),
indicating that loss of Pten does not affect the number of hemogenic endothelial cells.

Loss of Pten results in apoptosis of HSPCs during EHT in ptena-/-ptenb-/- mutant embryos.

In zebrafish, endothelial cells from the VDA transform into HSPCs in a process called EHT®.
Subsequently, HSPCs join the blood flow in the underlying posterior cardinal vein (PCV) to
transiently seed the CHT*58, We monitored EHT events in the AGM by time-lapse confocal
imaging of an area spanning two adjacent intersegmental vessels in the tg(kdrl:eGFP)
transgenic background from 35 to 48 hpf (Figure 1a,b). The vasculature of ptena”

ptenb”- mutants and siblings was indistinguishable at this stage'®. The floor of the aorta

in ptena”-ptenb”- mutant embryos displayed the characteristic contraction then bending
of cells towards the subaortic space®, indicating that the initiation of EHT was normal in
ptena”’-ptenb”- mutant embryos. However, half of the EHT events in ptena”’-ptenb”- mutant
embryos were abortive, in that 13 out of 24 HSPCs (54% in 9 embryos) failed to detach
and disintegrated (Figure 1c-h, Movie S1). In contrast, siblings or wild type embryos did
not display abortive EHT (n=75 in total). Live imaging using acridine orange?° revealed
apoptotic cells in the DA of ptena”ptenb” mutant embryos, but not siblings (Figure 1i-l).
Activated-caspase-3 immunostaining?* confirmed apoptosis of kdrl:eGFP-positive cells

at the VDA in ptena”-ptenb”- mutant embryos (Figure 1m-p). Hence, about half of the
HSPCs in ptena”ptenb” mutant embryos failed to complete EHT and instead underwent
apoptosis.

The number of HSPCs that colonize the CHT is reduced in ptena-/-ptenb-/- mutant embryos

Following EHT, HSPCs transiently colonize the CHT®. We generated a tg(kdrl:Dendra2)
transgenic line. The Dendra2 protein along the entire VDA was photoconverted green-to-
red between 26 and 28 hpf, i.e. before the onset of EHT events (Figure 2a). Photoconverted
HSPCs in ptena” ptenb”- mutant embryos colonized the CHT between 50 and 60 hpf, albeit
less HSPCs were detected than in the CHT of siblings (Figure 2 b,c). We quantified the
number of HSPCs that colonized the CHT at 48 hpf, i.e. by the peak of HSPC emergence

Figure 1. A population of HSPCs fails to complete EHT and undergoes apoptosis in ptena”-ptenb”- mutant
embryos. (a, b) Brightfield image of a wild type or ptena”ptenb’ mutant zebrafish embryo at 35 hpf. The

area from which HSPCs originate is indicated with a yellow box. A close up is indicated with a white box. (c-h)
Four-dimensional imaging of tg(kdrl:eGFP) wild type or ptena’ptenb”- mutant embryos between 35 hpf and 48
hpf. Still frames from Movie S1. Arrowheads: HSPCs undergoing EHT; asterisk: disintegrating HSPCs. Confocal
image z-stacks (2um step size, with 40x objective and 2x zoom; anterior to the left; maximum projections of a
representative embryo; time in hh: mm. (I-I) Acridine orange staining. Arrows and circles: HSPCs in VDA of 40-45
hpf embryos. Asterisks: apoptotic HSPCs. Scale bar: 50um. Representative embryos are shown and the number of
embryos that showed this pattern/total number of embryos is indicated. DA: dorsal aorta; PCV: posterior cardinal
vein. (m-p) confocal images of apoptotic endothelial cells in the VDA of fixated wild type or ptena”ptenb”- mutant
zebrafish embryos. In green: tg(kdrl:eGFP); in red: anti-activated caspase-3 immunohistochemistry staining.
Apoptotic cells are indicated with an asterisk. Representative embryos are shown and the number of embryos
displaying this particular pattern/total number of embryos is indicated in the bottom right. Anterior to the left;
2um step size; maximum projections; scale bar: 100um.
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from the VDA, using tg(cd41:eGFP) embryos, which express low GFP (GFP™") in HSPCs?>2,
Consistent with the initial apoptosis of half of the EHT derived HSPCs, 51% less GFP'""
HSPCs were detected in the CHT of ptena” ptenb”- mutant embryos at 48 hpf compared
to siblings (Figure 2d-f, Figure S2). When injected with ptenb-mRNA at the one-cell stage,

ptena*™-ptenb*-
g

L ¥

sibling
f
80
. %k %k %k
G 1
§ 60 o
2
8 40-
H
ﬁ_ — —
[
O 204
x
8
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1

cd41-GFP" cells (48hpf)
N N
T 9

o

ptena’ptenb”

o

T
Sib

T
Mut

Figure 2. Less HSPCs colonize the CHT in ptena’ptenb’- mutant embryos than in wild type. (a) The VDA of
tg(kdrl:Dendra2) was photoconverted green-to-red at 26-28 hpf. By 50-60 hpf red HSPCs derived from the
photoconverted VDA had colonized the CHT in (b) sibling and (c) ptena”ptenb” larvae. (d) The number of GFP""
HSPCs at 48 hpf in the CHT of tg(cd41:eGFP) siblings (sib)(n=25) (e) and ptena” ptenb”- mutants (mut) (n=12) (f)
is expressed as average number of cells in siblings (n=41) or ptena”ptenb” . mutants (n=18). (g) is expressed as
average number of cells in siblings (n=33) or ptena”ptenb”- mutants after injection with synthetic ptenb mRNA
(n=15). Error bars indicate standard error or the mean (SEM). Shapiro Wilk Test for normal distribution and
Welch’s two-tailed t-test were used for statistical analysis; ***p<0.001. Representative embryos are shown and
the number of embryos that showed this pattern/total number of embryos is indicated.
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ptena’ptenb” tg(kdrl:eGFP) + 5uM LY294002

A 1Y294002

{

" 74

cd41'v cells (50hpf)

60 -

30 1

LY

L

19/19

3

cd41'v cells (4dpf)

100 4

a
o
1

]
L,_.- o 1

o

s

2

+4

Figure 3. Inhibition of PI3K
rescued EHT in ptena”
ptenb”-mutant embryos,

but induced abortive EHT

in wild type embryos. (a-g)
Four-dimensional imaging

of tg(kdrl:eGFP) transgenic
embryos. (a-c) ptena”-ptenb”
mutant embryos and (d-g) wild
type embryos. Imaging was
done from 35 hpf onwards
following treatment with 5
UM LY294002 from 32 hpf.
Still frames from movie S3
(a-c) and movie S4 (d-g).
arrowheads: HSPCs. Asterisks:
disintegrating HSPCs.
Different colors of arrowheads
distinguish separate EHT
events. Images were taken
with 40x objective and 1x
zoom. Time in hh:mm; DA:
dorsal aorta; PCV: posterior
cardinal vein. (h, i) CHTs

of tg(kdrl:mCherry-CAAX/
cd41:eGFP) control (n=10)

and LY294002 treated (5 uM,
32-50 hpf) (n=16) embryos
were imaged at 50 hpf. The
vasculature is highlighted in
red (mCherry) and some GFP""
HSPCs are indicated by arrows.
(j-k) CHTSs of tg(cd41:eGFP)
control(n=11) and LY294002-
treated (5uM, 30-60 hpf)
(n=19) embryos were imaged
at 4 dpf. Anterior to the left; 2
um step size. Representative
embryos are shown and

the number of embryos

that showed this pattern/
total number of embryos is
indicated. (I-m) the number of
GFP"*" HSPCs was determined
at 50 hpf (1) and 4 dpf (m)

and is expressed as average
number of cells; error bars
indicate standard error of the
mean (SEM). Shapiro Wilk Test
for normal distribution and
Welch’s two-tailed t-test were
used for statistical analysis;
%% n<0.001.
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Figure 4. HSPCs of LY294002-treated embryos engage in all blood lineages, but show impaired colonization

of definitive hematopoietic organs. (a-h) Control and LY294002-treated (from 32-60 hpf) embryos were fixed

at 4 dpf. Markers for definitive blood lineages were assessed by in situ hybridization in the CHT: c-myb (HSPCs;
a,b), globin (erythrocyte lineage; c,d), ikaros (lymphocyte lineage; e,f), I-plastin (leukocytes; g,h). Representative
embryos are shown, with anterior to the left. The number of embryos that showed a particular pattern/total
number of embryos is indicated in the bottom right corner of each panel. (i-j) GFP"¢" thrombocytes were imaged
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ptena’ptenb” mutant embryos did no longer show a significant loss of HSPCs compared to
their siblings (Figure 2g), indicating that the observed defects indeed were caused by loss
of functional Pten.

PI3K inhibition rescues EHT events in ptena” ptenb”- mutant embryos but is detrimental for
HSPCs in wild type embryos.

To address whether apoptosis of half of the EHT-derived HSPCs was due to enhanced

PI3K signaling, embryos were treated with the PI3K inhibitor LY294002 from the onset of
EHT (32 hpf) onwards. Inhibition of PI3K prevented apoptosis of HSPCs in ptena”’ ptenb”-
mutant embryos, in that none of the HSPCs that we imaged disintegrated (table 1) (Fisher’s
exact test, p=0.0013) (Figure 3a-c). Surprisingly, in wild type and sibling embryos that were
treated with LY294002 in parallel with the ptena”ptenb”- mutant embryos, disintegrating
HSPCs in the VDA were observed (n=6) (Figure 3d-g, Movie S2) (Fisher’s exact test,
p=0.021).

HSPCs
embryos | apoptosis | escapers % %escapers
(n) apoptosis
Wildtype | control 13 0 24 0 100
LY294002 9 40 60
ptena” control 13 11 54 46
ptenb” LY294002 0 21 0 100

Table 1. Number of apoptotic cells during EHT. The number of cells undergoing apoptosis during EHT was
determined in control and LY294002 (5uM from 32 hpf onwards) treated wild type and ptena”ptenb”-embryos
(35-48 hpf) by confocal time lapse imaging. The number of embryos that was imaged is given as well as the
number of apoptotic HSPCs or surviving HSPCs. The percentages of emerging or apoptotic HSPCs, relative to the
total number of HSPCs are also indicated.

Consistent with abortive EHT events upon LY294002 treatment, significantly less GFP""
HSPCs in tg(cd41:eGFP) transgenic embryos colonized the CHT of LY294002-treated wild
type embryos at 50 hpf (Figure 3h-i,l), comparable to the reduction observed in ptena-/-
ptenb-/- mutant embryos (Figure 2d). This reduction of HSPCs persisted through 4 dpf in
LY294002-treated embryos (Figure 3j-k,m). These data suggest that normal, i.e. not too

high and not too low PI3K activity levels are essential for emergence of HSPCs.

at 5dpf in tg(cd41:eGFP) embryos. Scale bar: 100um. (k-n) High-resolution imaging at 12 dpf of kidney (I, m,
dorsal view) (control, n=6; LY294002-treated, n=8; 4 um step size) and thymus (n, o, lateral view) (control, n=6;
LY294002-treated, n=7; 2 um step size). Anterior to the left; maximum projections of representative larvae. Scale

bar: 100 pm.
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Figure 5. scRNA-seq reveals two types of HSPCs, one of which is lost upon inhibition of the PI3K-pathway.
Tissue from control and LY294002-treated embryos (~2,000 each) was dissected, the AGM regions pooled,
dissociated and FACS sorted, after which the SORT-seq protocol was performed. (a-e) t-SNE maps highlighting
the expression of marker genes for each of the different cell types found. Transcript counts are given in a linear
scale. (a) HSPCs |, (b) HSPCs Il, (c) EHT progenitor, (d) Myeloid/monocyte progenitors, (e) Myeloid/neutrophil
progenitors. (f) t-SNE map highlighting the distribution of cells from LY294002-treated embryos and their controls
(g). Visualization of k-medoid clustering and cell-to-cell distances using t-SNEs. Each dot represents a single cell.
Colors and numbers indicate cluster and correspond to colors in (i). The distribution of in total 2,512 cells over
the five clusters are shown as percentage of total for control and LY294002-treated embryos. Fisher’s Exact test
with multiple testing correction (Fdr) were used for statistical analysis. *** p<0.001. cl1: Myeloid/neutrophil
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expression level of ENSDARG00000080337_AC024175.4 for HSPC | and HSPC Il cluster using violin plots.
Normalized expression is plotted on a log10 scale.
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PI3K inhibition in wild type embryos results in HSPCs that engage in all blood lineages

In situ hybridization was performed using a panel of blood progenitor markers. LY294002-
treatment reduced expression of the HSPC marker c-myb at 4 dpf (Figure 4 a,b). The
lineage markers globin (erythroid lineage), ikaros (lymphoid lineage) and /-plastin (pan-
leukocytic, including myeloid lineage) were expressed, but reduced in LY294002-treated
larvae compared to controls (Figure 4c-h). LY294002-treated HSPCs also committed to the
thrombocytic lineage as demonstrated by GFP"¢" cells in tg(cd41:eGFP) embryos at 5 dpf?
(Figure 4i,j). The number of GFP™ cells in the definitive hematopoietic organs, thymus
and kidney of 8 and 12 dpf tg(cd41:eGFP) larvae was reduced in response to LY294002
(Figure 4k-n). These results show that reduced PI3K signaling did not block specification of
particular blood lineages, but that the reduction in HSPC numbers affected founding of the
definitive hematopoietic organs by HSPCs.

Singe cell RNA sequencing reveals two types of HSPCs, one of which is preferentially lost
upon inhibition of the PI3K-pathway.

To investigate transcriptomic changes in HSPCs between LY294002-treated embryos and
their controls during EHT, we performed scRNA-seq. Transgenic tg(kdrl:mCherry-CAAX/
cd41:eGFP) embryos were treated with LY294002 and AGM regions were isolated by
dissection at 36 hpf. The AGM regions of approximately 2000 control embryos were pooled
and likewise, 2000 LY294002-treated embryos. The cells were dissociated and sorted for
mCherry*/ eGFP"°" using FACS, after which the SORT-Seq protocol was performed?* (Figure
S3). Isolation of 3,219 cells in total, i.e. less than one kdrl*/cd41'" (mCherry*/GFP"*) HSPC
per embryo, was in line with earlier reports (3 HSPCs per embryo per hour®?). After FACS
filtering, 2512 cells remained. RacelD3% was used for differential gene expression analysis
and clustering of the cells (Figure 5). The resulting t-SNE map highlighted particular cell
types, in line with recent scRNA-seq studies of hematopoietic organs of zebrafish?’-3,
which expressed validated hematopoietic lineage markers (Table S1). Cells in cluster 2

and 4 expressed HSPC-related genes, such as gata2b, gfilaa, meislb, myb and pmp22b,
consistent with expression in mammalian HSCs and zebrafish HSPCs?*-%-*3 (Figure 5a,b).
RacelD3 subdivided the main HSPC cluster into two, HSPCs | and HSPCs Il. Expression of
ENSDARG00000080337_AC024175.4 and tmed1b was higher in the HSPCs Il cluster (cl2)
than the HSPCs | cluster (cl4) (Figure 5h, S3) and the expression of several other genes was
also significantly different between these clusters (Figure S4). Cells in cluster 5 expressed
endothelial transcripts, that are known to be involved in the EHT-process (cdh53>3¢,
adgrg1*7’), indicating an EHT-progenitor lineage (Figure 5c, S3). Signature genes mpx, lyz,
marco, and mfap4 were expressed in cluster 1 and 3%, indicating a myeloid/neutrophil-
and myeloid/monocyte- progenitor lineage, respectively (Figure 5d,e, S3). All markers that
were used to identify clusters are listed in Table S1 and the distribution of expression of
selected markers is depicted in Figure S5.

Cells from LY294002-treated embryos had an uneven distribution over all clusters. In
HSPCs Il and myeloid/neutrophil progenitors, cells from LY294002-treated embryos were
overrepresented compared to control embryos (Fisher’s Exact test, p<0.001). In HSPCs

I, EHT- and myeloid/monocyte progenitors, cells from LY294002-treated embryos were
underrepresented (Fisher’s Exact test, p<0.001) (Figure 5f,i). These data indicate that
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Figure 6. SCRNA-seq seq reveals a shift towards HSPCs in LY294002-treated 5dpf old embryos. CHTs of control
and LY294002-treated embryos (5 dpf, ~100 embryos each) were dissected, pooled, dissociated, FACS-sorted
and submitted to SORT-seq. (a) Visualization of k-medoid clustering and cell-to-cell distances using t-SNEs. Each
dot represents a single cell. Colors and numbers indicate cluster and correspond to colors in (h). In total 684
cells are shown. (b-f) t-SNEs maps highlighting the expression of marker genes for each of the different cell types
found. Transcript counts are given in a linear scale. (b) Erythrocyte progenitors, (c), Thrombocyte/erythrocyte
progenitors, (d) HSPCs, (e) Myeloid progenitors, (f) Neutrophil progenitors. (g) t-SNE map highlighting the
distribution of LY294002-treated embryos and their controls (h). The percentage of cells from LY294002-treated
embryos and their controls in the different clusters. Fisher’s Exact test with multiple testing correction (Fdr) were
used for statistical analysis. ** p<0.01, *** p<0.001.

32



PI3K signaling controls survival and stemness of HSPCs

1 t-SNE b Erythrocyte progenitor c Thrombocyte/erythrocyte
. progenitor
29 i 2 o
\.‘-';z\ ““-‘ ©
Sady & o o
R’ H "'}.‘ st ° «
o 2 .-\-- ~5
[} o
.:..: .. N DR ) .. 8
Ay . ,‘,ﬁ%ﬁ_‘. < - 5
@ i v .
N g
i HSPCs e Myeloid progenitor f Neutrophil progenitor
. .s . o
= Z& I 15}
kL
o "b"‘ i g
By )
. © AT -' ..
"::‘;.-_.F.'fh_:l"' =)
; S
o~ /.
\\g¢ '1 .
e "‘“*"-!Rf e . °
-.c N
) Distribution genotypes h 100 Legend
N
- ~u:,_- . 75 B clI5: Erythrocyte progenitor ***
'-f: k (»&' H
‘. -t

cl3: Thrombocyte/
50 u erythrocyte progenitor

cl1: HSPCs ***
25
[ cl2: Myeloid progenitor
0 ) .

[ cl4: Neutrophil progenitor *

* Mutant
Sibling

Proportion of cells per cluster (%)

sibling mutant
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multiple testing correction (Fdr) were used for statistical analysis. * p<0.05, *** p<0.001.

33



Chapter 2

LY294002-treatment led predominantly to loss of cells from HSPCs | cluster, which is
consistent with the imaging data where half of the HSPCs fail to complete EHT (Figure
3d-g). The loss of HSPCs | in response to PI3K inhibition is accompanied by an increase in
HSPCs Il and myeloid/neutrophil progenitors.

More HSPCs upon inhibition of PI3K and less HSPCs in pten mutants

The CHTs of approximately 100 control and 100 LY294002-treated embryos were
processed for scRNA-seq. Of the 928 cd41"°" cells that were analyzed, 684 remained

after filtering. RacelD3 separated the cells in distinct clusters (Figure 6a). Cells in cluster

2 expressed erythrocyte progenitor-related genes (hbbe2, alas2 and cahz) (Figure 6b).
Cluster 3 is characterized by cells expressing genes related to thrombocyte/erythrocyte
progenitors (gatala, klf1?73%%) (Figure 6c). Cells in cluster 1 express genes indicative of
HSPCs, including c-myb (Figure 6d). Cluster 4 represents early myeloid progenitors, as
runx3, pu.1 (also known as spilb) and cebpb?® are highly expressed (figure 6e). Cluster 5 is
characterized by neutrophil progenitor-related gene expression (mpx) (figure 6f). Analysis
of the distribution of hematopoietic cells, using a Fisher’s exact test indicated that the
thrombocyte/erythrocyte progenitor cells were underrepresented in the LY294002-treated
embryos (p<0.01) and HSPCs were significantly overrepresented (p<0.001) (Figure 6g,h).
These results indicate a significant shift towards HSPCs at the expense of the thrombocyte/
erythrocyte progenitor cluster in response to LY294002 treatment.

Likewise, we assessed transcriptomic differences by scRNA-seq in HSPCs from the CHT
between ptena”ptenb” mutant embryos and their siblings at 5 dpf. Approximately

100 ptena”-ptenb” mutant embryos and siblings were selected based on phenotype®’,
which yielded 614 cd41"" cells after filtering. RacelD3 indicated that clusters emerged
representing the same hematopoietic lineages as described for the wild type and
LY294002- treated data (cf. Figure 6 and 7). Analysis of the distribution of hematopoietic
cells from pten mutants and their siblings over the five clusters indicated that the
erythrocyte- and neutrophil progenitor cells were overrepresented in the pten mutant
(p<0.001 and p<0.05) and that HSPCs were significantly underrepresented (p<0.001)(
Figure 7g-h, S6). These results indicate a significant shift in ptena”ptenb”- mutant embryos
towards erythrocyte progenitor and neutrophil progenitors at the expense of HSPCs.

Discussion

We used zebrafish mutant embryos lacking functional Pten to investigate how loss of
Pten affects the ontogeny of hematopoiesis. Characterization of zebrafish ptena” ptenb”
mutant embryos led to the unexpected finding that half of the HSPCs undergo apoptosis
upon emergence from the VDA during EHT at the onset of the definitive wave (Figure 1).
Loss of function of Pten is usually linked to enhanced cell survival, such as for instance
in Pten knock-out mice*. We reported that y-irradiation reduces apoptosis in ptena
/ptenb”- mutant embryos®®. Apoptosis of zebrafish HSPCs has been reported before,

in that grechetto mutants display decreasing numbers of HSPCs due to apoptosis®.
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Runx1 knockdown also induced abortive EHT events due to apotosis®. Runx1 expression
was not affected in the VDA of ptena”ptenb”- mutants (Figure S1), suggesting that

the mechanism underlying EHT defects in ptena”’ ptenb”- mutant embryos and Runx1
morphants are distinct. Apoptosis of HSPCs in pten mutants is due to enhanced PI3K-
mediated signaling, because treatment with a PI3K inhibitor rescued apoptosis of HSPCs.
Surprisingly, treatment of wild type embryos with the PI3K inhibitor induced death of
half of the HSPCs upon emergence from the VDA as well (Figure 3). These results suggest
that upon emergence from the VDA, HSPCs require a moderate level of PI3K signaling, as
hyperactivation of PI3K signaling in Pten mutants as well as inhibition of PI3K signaling
induced apoptosis of emerging HSPCs.

After emerging from the VDA, the surviving HSPCs enter circulation and seed the CHT,

as demonstrated by photoconversion of endothelial cells prior to EHT in ptena” ptenb”
mutant embryos and siblings (Figure 2). Half of the HSPCs of ptena”ptenb”- mutant
embryos and LY294002-treated embryos colonized the CHT, compared to wild type
embryos (Figure 2,3, Table 1). In LY294002-treated embryos the decrease in HSPCs
remained, whereas in ptena’ptenb”-mutant embryos the surviving HSPCs hyperproliferate
leading to an increase in HSPCs at later stages'’. Surviving HSPCs from ptena” ptenb”
mutants engage in all blood lineages’. However, definitive differentiation of major blood
lineages is arrested in the ptena”-ptenb”-mutants, consistent with the inverse correlation
of proliferation and differentiation of stem cells**. The surviving HSPCs of LY294002-treated
embryos also engaged in all blood lineages (Figure 4), demonstrating pluripotency of the
HSPCs.

Using scRNA-seq at the onset of the definitive wave (36hpf) of hematopoiesis two HSPC
clusters were identified, that both expressed HSPC markers. In control embryos equal
numbers of cells populated the HSPCs | and HSPCs Il clusters. Predominantly the cells from
the HSPCs | cluster were lost upon PI3K-inhibition (Figure 5). Our imaging data indicated
that half of the HSPCs disintegrated upon treatment with LY294002 (Figure 3). It is
tempting to speculate that the surviving half of the HSPCs all belong to the HSPCs Il cluster.
Whereas both HSPCs clusters expressed HSPC markers, several genes are significantly
differentially expressed (Figure S4), albeit subtle. Expression of ENSDARG00000080337_
AC024175.4 and to a lesser extent tmed1b distinguished the HSPCs Il cluster from the
HSPCs | cluster. In situ hybridization using an ENSDARG00000080337_AC024175.4-specific
probe indicated high expression throughout the embryo, which did not allow validation

of the difference in expression in HSPCs | and HSPCs Il cells (Figure S3). Little is known
about ENSDARG00000080337_AC024175.4, except that it is a mitochondrial ribosomal
gene (mt rDNA). Interestingly, HSCs have significantly lower rates of protein synthesis than
other hematopoietic cells*’. The protein product of ENSDARG00000080337_AC024175.4
may have a role in protein synthesis. Hence, the difference in expression levels may
indicate that the HSPCs Il cells that survive PI3K-inhibition are less stem cell-like and more
progenitor-like, poised to differentiate.

In response to LY294002-treatment the number of cd41'°¥ HSPCs was reduced in the CHT
at 4 dpf and in the definitive hematopoietic organs at 8 and 12 dpf (Figure 3,4). scRNA-seq
of putative HSPCs (cd41'v, kdrl* cells) at the end of the definitive wave (5dpf) indicated
initiation of differentiation in different blood lineages (Figure 6), consistent with in situ
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hybridization (Figure 4). Yet, inhibition of PI3K arrested differentiation, i.e. increased HSPC
fate, predominantly at the expense of thrombocyte/erythrocyte progenitor fate (Figure
6). Overall, it is evident that there is a significant reduction in hematopoietic cell number
(Figure 4, 6), which may be caused by preferential loss of HSPCs with more stem cell-like
properties (Figure 5).

ScRNA-seq at the end of the definitive wave showed a significant increase in erythrocyte-
and neutrophil- progenitors in ptena”ptenb” mutant embryos (Figure 7, S6), consistent
with earlier in vivo data'’. However, we reported an overall increase in HSPCs, due to
hyperproliferation, whereas here, we observed a decrease in HSPCs in the scRNA-seq
data. An explanation for this apparent discrepancy is that the hyperproliferating HPSCs
we observed earlier'” actually have initiated differentiation already and are scored as
erythrocyte and neutrophil progenitors by scRNA-seq.

Conditional knock-out of Pten in HSCs in mouse adult bone marrow, drives HSCs

into the cell cycle, resulting in transient expansion of the spleen and eventually in
depletion of HSCs in the bone marrow. These conditional PTEN-deficient mice die of a
myeloproliferative disorder that resembles acute myeloid/lymphoid leukemia, indicating
that PTEN is required for maintenance of HSCs'*4, It is noteworthy that there are
differences between the conditional mouse models and the zebrafish model we used.

In the mouse, Pten is deleted in adult bone marrow cells, well after HSCs have formed,
whereas in zebrafish, Pten is systemically deleted and therefore effective prior to the
emergence of HSPCs. Studies in mice showed that regardless of cell state, HSCs and multi-
potent progenitors had a lower protein synthesis rate than more restricted hematopoietic
progenitors. Loss of PTEN in HSCs caused depletion of HSCs, due to a higher rate of protein
synthesis*?, which is consistent with our observation that loss of Pten in zebrafish caused
HSPCs to hyperproliferate and become less stem-cell like.

Long-term HSCs are quiescent, whereas short-term HSCs proliferate more?. It would

be tempting to speculate that the HSPCs that undergo apoptosis upon loss of Pten or
upon PI3K-inhibition are involved in long-term colonization of definitive hematopoietic
organs. The surviving HSPCs in pten mutants at the onset of the definitive wave would
then represent multi-potent progenitors that only have limited potential for self-renewal.
Investigating the regulatory network underlying the surviving and disintegrating HSPCs
will further expand our understanding of short- and long-lived HSPCs and will eventually
contribute to the development of efficient stem cell based therapies****.
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Methods

Ethics statement

All animal experiments described in this manuscript were approved by the local animal
experiments committee (Hubrecht Institute: Koninklijke Nederlandse Akademie van
Wetenschappen-Dierexperimenten commissie protocol HI180701 and University
Montpellier: Direction Sanitaire et Vétérinaire de I’'Hérault and Comité d’Ethique pour
I’Expérimentation Animale under reference CEEA-LR-13007) and performed according to
local guidelines and policies in compliance with national and European law.

Zebrafish husbandry

Ptena” ptenb”, ptena”, ptenb”*>, Tg(kdrl:eGFP)*>, Tg(kdrl:mCherry-CAAX)*¢, and
Tg(cd41:eGFP)* were maintained according to FELASA guidelines, crossed, raised and
staged as described*~*. Pten mutant fish (embryos) were genotyped by sequencing®.
The tg(kdrl:Dendra2) line was derived by Tol2-mediated transgenesis® of a construct
containing the ~7.0kb kdrl-promoter (a kind gift from D. Stainier), driving the expression
of Dendra2®. From 24hpf onwards, all embryos were grown in PTU-containing medium to
block pigmentation.

LY294002 treatment

Embryos were treated with 5 uM LY294002 (Calbiochem, San Diego, CA, USA) or DMSO
control in the dark. For early treatment, embryos were incubated with LY294002 from

32 hpf onwards and mounted after 4 hours for time-lapse confocal imaging. For late
treatment and to investigate thymus and kidney colonization, embryos were treated with 5
UM LY294002 from 32 to 60 hpf and imaged.

Constructs, mRNA synthesis and microinjections

The Ptenb-mCherry fusion construct in the vector pCS2+ was obtained as described in 1**?
and linearized with Notl. To synthesize 5’ capped sense mRNA, the mMessage mMachine
SP6 kit (Ambion) was used. mRNA injections were performed at the one-cell stage using a
total of 300 pg of mRNA.

Confocal, fluorescence, brightfield microscopy and time-lapse imaging

Fluorescence images of transgenic embryos were acquired using TCS-SPE and time-lapse
imaging using TCS-SP2 as described*? and processed with ImageJ®*. For all live imaging
embryos were anesthetized with tricaine*®, mounted on a glass cover dish with 0.7% low
melting agarose and covered with standard E3 medium. Whole mount bright field images
were taken with a Leica DC 300F stereomicroscope.
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In situ hybridization

Whole mount in situ hybridization was performed according to standard protocols® and
images were taken using a Zeiss Axioplan microscope connected to a Leica DFC480 camera.

Acridine orange staining and whole mount immunohistochemistry

Embryos were incubated with 5 pg/ml acridine orange? for 20 minutes between 35 and
40 hpf and subsequently washed with standard E3 medium. Embryos were then imaged as
described above. Immunohistochemical labeling performed using fixed (40 hpf) embryos
to detect apoptosis using an activated caspase-3-specific antibody (BD Pharmingen)?.
After confocal images were collected embryos were genotyped.

Photoconversion

Fluorescent tracing of VDA-derived HSPCs colonizing the CHT was done using the
tg(kdrl:Dendra2) line as described before®®>” with a Leica SP5 confocal microscope with

a 20x dry objective. At 28 hpf an area of approximately 40x750 nm around the VDA,
parallel to the yolk sac extension was photoconverted. The 405nm UV laser intensity and
exposure time were optimized for strong Dendra2-conversion without cell damage. After
photoconversion embryos were transferred to E3 medium and at 50-60 hpf their CHT areas
were imaged on a Leica SPE Live confocal microscope using a 20x dry objective. To exclude
bleed-through of Dendra-green, red channel detection was set stringently (630-680nm).

Quantification of GFP®" progenitor cells using tg(cd41:eGFP)

GFP'"** and GFP"e" expressing cells were quantified in the CHT at 48 hpf ,50 hpf or 4 dpf
using confocal imaging and Volocity and Imaris software. Ptena* ptenb”- mutants on
tg(cd41:eGFP) background were crossed and offspring was mounted at 48 hpf. Wild
type tg(cd41:eGFP) embryos were treated with 5 uM LY294002 as described above and
mounted and imaged at 50 hpf or 4 dpf. All GFP" expressing cells were counted in the
entire CHT.

Flow cytometry

The aorta-gonad-mesonephros (AGM) of approximately 4000 36 hpf and 400 CHTs of 5
dpf old tg(kdrl:mCherry/cd41:eGFP) embryos were dissected and collected in Leibovitz-
medium. After washing with phosphate-buffered saline the AGMs were deyolked using
calcium-free Ringer’s solution (116mM NaCl, 2.9mM KCl and 5mM HEPES) and then
AGMs and CHTs were dissociated in TrypLE Express (Gibco) for 45 minutes at 32°C. The
resulting cell suspension was washed in phosphate-buffered saline and passed through
a 40-um filter after resuspension in phosphate-buffered saline supplemented with 2mM
ethylenediaminetetraacetic acid, 2% fetal calf serum and 0.5ug/ml 4’,6-diamidino-2-
phenylindole (DAPI), to exclude dead cells. Cells with kdrl- and cd41'"°*-positive signal
were subjected to fluorescence-activated cell sorting (FACS) using a BD FACSAriall and BD
FACSFusion.
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ScRNA-seq with SORT-seq

ScRNA-seq was performed by Single Cell Discoveries BV (Utrecht, the Netherlands),
according to an adapted version of the SORT-seq protocol?*8, with adapted primers
described in®°.

Data analysis

During sequencing, Read1 used for identification of the llumina library barcode, cell
barcode and UMI. Read2 was used to map to the reference transcriptome of Zv9 Danio
rerio. Data was demultiplexed as described®. Single cell transcriptomics analysis was done
using the RacelD3 algorithm, following an adapted version of the RacelD manual (https://
cran.r-project.org/web/packages/RacelD/vignettes/RacelD.html). Cells that had less than
1500 UMls and genes that were detected in less than 5 UMls in 5 cells were discarded. The
number of initial clusters was set at 5. Differential gene expression analysis was done as
described in?* with an adapted version of the DESseq?2 algorithm®.

Data sharing statement

For original data, please contact j.denhertog@hubrecht.eu.

scRNA data are available at GEO under accession number GSE166900
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Figure S1. Hemogenic endothelium markers are present in ptena”ptenb”- mutants during onset of definitive
hematopoiesis. Related to figure 1. Ptena*ptenb” fish were incrossed and embryos were fixed at different time
points as indicated (30, 35 and 44 hpf). In situ hybridization using HSPC markers runx1 (a-f) and c-myb (g-j) was
done, pictures were taken and subsequently the genotypes of these embryos was established by sequencing.
No differences were observed between ptena”ptenb”- mutant embryos and siblings. Representative embryos
are depicted with anterior to the left; the number of embryos that showed a particular pattern/total number of
embryos is indicated in the bottom right corner of each panel.
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Figure S2. Reduced number of GFP"", but not GFP"e" cells in the CHT of tg(cd41:eGFP). Ptena” ptenb”- mutant
embryos, compared to siblings. Related to figure 2. (a) the number of GFP"e" thrombocytes at 48 hpf in the CHT
of tg(cd41:eGFP) siblings (sib) and ptena”ptenb” mutants (mut), expressed as average number of cells. (b,c) the
number of GFP"" HSPCs (b) and GFP"&" thrombocytes (c) in the CHT of 60 hpf in the CHT of tg(cd41:eGFP) siblings
(sib) and ptena”ptenb”- mutants (mut), expressed as average number of cells. Note that the diference in GFP'"
HSPCs is smaller due to enhanced proliferation and the apparent difference in GFP"e" cells is almost significant,
due to an arrest in differentiation. Error bars indicate standard error of the mean (SEM). Shapiro Wilk test for
normal distribution and two-tailed t-test were used for statistical analysis; p-values are: (a) 0.57 (not significant,
ns), (b) 0.013 (**), (c) 0.066 (not significant, ns).

Figure S3. Single cell RNA seq of control and PI3K inhibitor treated embryos at the onset of definitive
hematopoiesis. Related to Figure 5. (a) Workflow of scRNA seq. Tissue from control and LY294002-treated
embryos (~2,000 each) was dissected, the AGM regions pooled, dissociated and FACS sorted, after which the
SORT-seq protocol was performed. (b) Normalized expression of ENSDARG00000080337_AC024175.4 and
tmed1b over all clusters. Normalized expression is plotted on log10 scale using violin plots and boxplots. cl1:
Myeloid/neutrophil progenitor, cl2: HSPC Il, cl4: HSPC |, cl5: EHT progenitor, cI3: myeloid/monocyteprogenitor.
(c) Normalized expression of signature genes for cluster identities using violin plots. Normalized expression
value is plotted on a log10 scale. (d) whole mount ISH of 36 hpf wild type embryos using a probe specific for
ENSDARG00000080337_AC024175.4. Forwardprimer: 5’TTAAAGCCCCGAATCCAGGT 3’, reverse primer with

T7 promoter: GAGTAATACGACTCACTATAGGTTTTGGTAAACAGGCGAGGC. At this stage, this gene is expressed
throughout the embryo at a very high level, which does not allow to distinguish between individual blood cells.
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Figure S4. Cluster identities at 5 dpf for wild type and LY294002-treated embryos. Related to Figure 6.
Normalized expression of signature genes for cluster identities using violin plots. Normalized expression value is
plotted on a log10 scale.
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Normalized expression of signature genes for cluster identities using violin plots. Normalized expression value is
plotted on a log10 scale.
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Figures S6. Cluster identities at 36 hpf for LY294002-treated embryos and their controls for only HSPCs clusters.
Related to figure 5. Normalized expression of signature genes for HSPCs Il (a) and HSPCs | (b) using violin plots.
Normalized expresssion value is plotted on a log10 scale. All genes are significantly different expressed between
clusters (t-test, p<0.001). Cluster 4 is HSPCs |, cluster 2 is HSPCs II.
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table S1. Marker genes for scRNA-seq

Cluster/Cell type Gene ENSDARG
hmbsb ENSDARGO00000055991
prdx3 ENSDARG00000032102
urod ENSDARG00000006818
Thrombocyte/erythrocyte | uros ENSDARG00000027491
progenitors tubb1 ENSDARGO00000053066
kiIf1 ENSDARG00000017400
gatala ENSDARG00000013477
epb41b ENSDARG00000029019
alas2 ENSDARG00000038643
cahz ENSDARG00000011166
hbbe2 ENSDARG00000045143
Erythrocyte progenitors

hbae3 ENSDARGO00000079305
rhag ENSDARG00000019253
epor ENSDARGO00000090834
myb ENSDARG00000053666
her6 ENSDARGO00000006514
ahcy ENSDARG00000005191
pmp22b ENSDARG00000060457
ncl ENSDARG00000002710
adh5 ENSDARG00000080010
hmgala ENSDARG00000028335
fbl ENSDARG00000053912
HSPCs mycbh ENSDARG00000007241
dkcl ENSDARG00000016484
pes ENSDARG00000018902
meis1b ENSDARG00000012078
tall (scl)(Davidson & Zon ENSDARG00000019930

2004)
gata2b ENSDARGO00000009094
gfilaa ENSDARG00000020746
adgrg1 ENSDARG00000027222
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Cluster/Cell type Gene ENSDARG
crema ENSDARG00000023217
itm2bb ENSDARGO00000041505
runx3 ENSDARG00000052826
cebpb ENSDARGO00000042725
Myeloid progenitor cxcrdb ENSDARG00000041959
zfp36lla ENSDARG00000016154
corola ENSDARGO00000054610
nr4a3 ENSDARGO00000055854
pu.1 (spilb) ENSDARG00000000767
cpas ENSDARG00000021339
lect2] ENSDARG00000033227
npsn ENSDARG00000010423
sms ENSDARGO00000008155
Neutrophil progenitor abcb9 ENSDARGO00000056200
ch25h12 ENSDARG00000038728
mpx ENSDARG00000019521
lyz ENSDARG00000057789
srgn ENSDARGO0O0000077069
mmp9 ENSDARGO00000042816
marco ENSDARG00000059294
ctss2.2 ENSDARGO00000013771
mfap4 ENSDARG00000090783
marcklsla ENSDARGO00000039034
Monocyte progenitor ctsba ENSDARGO00000055120
cxcr3.3 ENSDARGO0O0000070669
timp2b ENSDARGO00000075261
Ilgmn ENSDARGO00000039150
ndrgla ENSDARGO00000032849
edn2 ENSDARG00000017255
efnalb ENSDARG00000018787
EHT markers cdh5 ENSDARGO0000075549
krt18 ENSDARGO00000018404
krt8 ENSDARGO00000058358
dab2 ENSDARG00000031761
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Cluster/Cell type Gene ENSDARG

serpinhlb ENSDARG00000019949

anxa2a ENSDARGO00000003216

ctsla ENSDARGO0O0000007836

EHT markers hapinlb ENSDARG00000068516

clic2 ENSDARG00000010625

cd81a ENSDARGO00000036080

tiel ENSDARGO00000004105

HSPCs Il 36hpf AC024175.4 ENSDARG00000080337
tmed1b ENSDARGO00000017255
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Chapter 3

Abstract

The RASopathy Noonan syndrome (NS) is a frequent, yet poorly understood genetic
disorder which affects the development systemically. Among other features, NS children
are predisposed to develop juvenile myelomonocytic leukemia (JMML). Here we present
a novel zebrafish genetic mutant, generated by a CRISPR/Cas9 knock-in of a common NS-
patient associated mutation Shp2-D61G. Shp2D61G zebrafish recapitulate major NS traits,
including a JMML-like phenotype originating from defective hematopoietic stem and
progenitor cells (HSPCs). Single cell RNA sequencing of mutant HSPCs revealed expansion
of monocyte/macrophage progenitor cells associated with developmentally regulated
cytokine production and elevated inflammation. Importantly, an anti-inflammatory agent
rescued the JMML-like phenotype. Our results reveal a role for developmentally-induced
inflammation in genesis of NS/JIMML blood phenotypes and suggest anti-inflammatory
drugs as potential new therapies.
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Introduction

RAS signaling plays a central role in fundamental cellular processes, such as proliferation,
cellular growth and differentiation, and is frequently altered during oncogenesis *.
Additionally, germline mutations in components of the RAS pathway are associated with a
group of developmental disorders, termed RASopathies 3. The most common RASopathy
is Noonan syndrome (NS), affecting 1:1,500 individuals %. NS has a systemic impact on
development, causing short stature, congenital heart defects (predominantly pulmonary
valve stenosis) and specific craniofacial characteristics, such as hypertelorism, low set
ears and webbed neck. NS is a dominant autosomal disorder and 50% of NS patients carry
heterozygous mutations in the protein-tyrosine phosphatase SHP2 (PTPN11), which is a
positive regulator of RAS signaling >”. Most of the mutations are affecting residues found
at the N-SH2/PTP interface, disrupting the autoinhibitory allosteric regulatory mechanism
and consequently increasing the basal activity of SHP2 #°. Importantly, D61 is one of the
most commonly mutated residues found in Noonan syndrome patients 7°,

A portion of NS children develop a hematological defect resembling transient juvenile
myelomonocytic leukemia (JMML)-like myeloproliferative disease (MPD) (NS/JIMML-like
MPD), which can progress into the aggressive and often fatal JIMML form (NS/JMML) -2,
NS/JMML-like MPD and NS/JMML phenotypes are most commonly present in patients
carrying a mutation in SHP2 213, JMML is characterized by excessive proliferation of

the monocyte and macrophage lineage and hypersensitivity of myeloid progenitors to
granulocyte-macrophage colony stimulating factor (GM-CSF) *#**, Other blood lineages
also seem to be affected, since patients, in addition to monocytosis, often present with
thrombocytopenia, anemia and increased fetal hemoglobin (HbF) levels . NS/JIMML-like
MPD and NS/JMML are considered to be polyclonal diseases arising from multipotent
hematopoietic stem cells (HSCs). However, little is known about the mechanisms that
remodel the hematopoietic stem and progenitor cells (HSPCs) compartment during early
pathogenesis.

Zebrafish (Danio rerio), having a conserved RAS signaling network, rapid development,
transparent embryos, and a capacity for in vivo drug screens, serves as a robust tool to
study the effect of mutations found in RASopathies on various developmental lineages 78,
Ectopic expression of NS-associated mutants affects zebrafish embryonic development
profoundly, inducing shorter body axis length, craniofacial defects, defective gastrulation
and impaired heart looping °2. Due to the challenges in gene knock-in editing
technologies in zebrafish %, studying the effects of RASopathies-associated activating
mutations still relies on ubiquitous overexpression of mutant proteins.

Here we describe a novel genetic zebrafish model of NS, which carries the patient
associated Shp2D61G mutation at the endogenous locus, and reconstitutes major
NS-associated traits. Interestingly, embryos of the Shp2D61G zebrafish developed
hematological defects originating in defective HSPCs and resembling NS/IMML. In

the search for novel mechanisms and potential treatment strategies for JMML-like
hematological malignancies in NS, transcriptomes of the HSPCs derived from the
Shp2D61G zebrafish mutant were studied on a single cell level. We identified a profound
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Figure 1. Shp2°%'¢ zebrafish display NS-like traits. (a) Sequencing trace derived from Shp2P%6/°616 zebrafish.
Oligonucleotide sequence used to generate the model is underlined. Nucleotide substitutions for D61G mutation
(red), silent mutations close to the PAM site (green) and the PAM site (blue) are indicated. (b) Immunoblot of
Shp2 levels from 5 pooled Shp2a*'Shp2b”- or Shp2aP%é/°%16Shp2b7-embryos using antibodies for Shp2 and tubulin
(loading control). (c) Representative images of typical Shp2P®'¢ zebrafish embryonic phenotypes at 5dpf. Blue
arrows: jaw, green arrows: heart, red arrows: swim bladder. (d) Quantification of phenotypes of Shp2*"t, Shp20616/wt
and Shp2P61¢/°%616 embryos scored as in (c) normal, mild and severe. (e) Body axis length of Shp2"*t, Shp2°61¢/*t and
Shp2P616/0616 embryos at 5dpf. (f) Representative images of Alcian blue stained head-cartilage of 4dpf Shp2*t and
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role of Shp2 evoked inflammatory program in the monocyte/macrophage primed
population of HSPCs in NS/JMML pathogenesis.

Results

Novel Shp2D61G mutant generated by CRISPR/Cas9 mediated knock-in

The zebrafish genome contains two ptpn11 genes (ptpnlla and ptpnll1b), encoding Shp2a
and Shp2b. Shp2a is indispensable during zebrafish development, whereas loss of Shp2b
function does not affect development *°. We established a zebrafish genetic model of NS
by knock-in of a patient-associated mutation in codon 61 (Asp to Gly) of the zebrafish
ptpnlla gene using CRISPR/Cas9-mediated homology directed repair approach (figure S1
a) . Sequencing confirmed that the oligonucleotide used for the homology repair was
incorporated correctly into the genome (figure 1 a) and the introduced mutations did not
have a detectable effect on Shp2a protein expression (figure 1 b). Prior to phenotypical
analyses, the mutant lines were outcrossed twice to ensure that potential background
mutations due to the CRISPR/Cas9 approach were removed. Henceforth, the mutant
zebrafish line will be referred to as Shp2°%¢ mutant and when necessary Shp2°%1¢/*t and
Shp2P81e/P61e mytant to further specify hetero- and homozygosity, respectively.

Shp2D61G mutant zebrafish display typical Noonan syndrome traits

The effect of the Shp2-D61G mutation was obvious during early development in 32% and
45% of 5 days post fertilization (dpf) old Shp2P%¢/*t and Shp2P616/°616 embryos, respectively
(figure 1 d). The observed phenotypical defects were mostly mild, but in some cases
severe defects were found, including severely stunted growth, edemas of the heart and
jaw, and absence of the swim bladder (figure 1 c). Since the mutant embryos were mostly
mildly affected, just as the NS patients, we performed more meticulous characterization
of the typical NS traits. Body axis length was significantly reduced in Shp2°%'¢ mutant
embryos at 5dpf (figure 1 e). Furthermore, imaging of Alcian blue stained cartilage
revealed NS-reminiscent craniofacial defects in the 4dpf Shp2°¢!¢ mutant embryos,
characterized by broadening of the head (figure 1 f), leading to increased ratio of the width
of the ceratohyal and the distance to Meckel’s cartilage (figure 1 g). We also assessed the
function and general morphology of the mutant embryonic hearts. A decrease in heart
rate (figure 1 1), ejection fraction and cardiac output (figure S1 c,d) was detected from the
ventricular kymographs obtained from high speed video recordings of the Shp2°%'¢ mutant

Shp2Psi6/t embryos. (x) width of ceratohyal, (y) distance to Meckel’s cartilage. (g) Quantified craniofacial defects
(x/y ratio). (h) Representative ventricular kymographs derived from high-speed video recordings of beating hearts
of 5dpf Shp2*t and Shp2°%1¢/*t embryos. Red dotted lines indicate one heart period. (i) Heart rates derived from
the ventricular kymographs. (j) Representative images of typical Shp2P®!¢ zebrafish adult phenotypes at 24wpf.
Scale bar is 0.5cm. Insets, zoom-in of boxed regions. (k) Body axis lengths of 10 Shp2*t, 25 Shp2°%¢/*t and 10
Shp2P616/0616 zehrafish measured weekly between 5dpf and 20wpf of age. (d,e,g,i) Measurements originate from
three distinct experiments. Number on bars: number of embryos. (e,g,i,k) Error bars: standard error of the mean
(SEM), *p < 0.05; **p < 0.01, ANOVA complemented by Tukey HSD.

79



Chapter 3

hearts at 5dpf (figure 1 h)?. Effects on cardiac function varied from embryo to embryo,
which is reminiscent of variable heart defects in human patients. Whole-mount in situ
hybridization (WISH) with cardiomyocyte (myl7), ventricular (vhmc) and atrial (ahmc)
markers identified no obvious morphological heart defects, such as change in the heart
size or its looping, as well as the heart chamber specification at 3dpf (figure S1 b).

Since most of the embryos with obvious phenotypical defects did not develop a swim
bladder, they did not survive to adulthood. The rest of both Shp2P516/%t gnd Shp20616/0616
mutant zebrafish grew up normally and displayed rather mild obvious defects in adult
stages, such as shorter body axis (figure 1 j), with markedly reduced length observed
from the embryonic stage of 5dpf until the fully developed adults (figure 1 k). In 10% of
Shp2P5i¢ mutants the phenotypes were more severe, with markedly reduced body axis
length compared to their siblings, they were skinny and with overall redness, especially
in the head and gill region (figure 1 j). Taken together, the NS Shp2P%¢ mutant zebrafish
we established phenocopied several of the typical NS traits, such as stunted growth,
craniofacial defects, and heart defects.

Shp2D61G zebrafish embryos develop NS/IMML-like phenotype

NS/JIMML-like MPD and NS/JMML phenotype are mostly linked to mutations in SHP2 213,
Thus, we explored hematopoietic abnormalities in the Shp2P¢'¢ zebrafish. We were not
able to observe any effect of the Shp2P¢!¢ mutation on primitive hematopoiesis in embryos
at 2dpf using WISH for markers of erythroid progenitors (gata-1), myeloid progenitors
(pu.1) and white blood cells (WBCs) (/-plastin) (figure S2). On the other hand, a significant
effect of the Shp2-D61G mutation on definitive hematopoiesis at 5dpf was observed
(figure 2). An increase of I-plastin positive cells, marking all WBCs, was detected in both
caudal hematopoietic tissue (CHT) and head kidney region of the Shp2P®'¢ mutants (figure
2 a,b). These cells appear not to be lymphocytes, since the size of the ikaros-positive
thymus, was not affected (figure 2 c,d). By contrast, the myeloid lineage was markedly
expanded, evident from the increase in the number of mpx-GFP positive neutrophils
(figure 2 e,f), and mpeg-mCherry positive macrophages (figure 2 e,g), in the tg(mpx:GFP/
mpeg:mCherry) double transgenic mutant embryos. One of the clinical hallmarks of
JMML is the hypersensitivity of myeloid progenitors to GM-CSF. In zebrafish, effects of

Figure 2. Myeloid bias and increased sensitivity to Gesfa, Gesfb is observed in the Shp2°%¢/*t zebrafish. (a) WISH
of 5dpf Shp2*t and Shp2°%¢/*t embryos using I-plastin specific probe. Head kidney (arrow) and CHT (box) are
indicated and zoom-in in insert. Scale bars,150um. (b) Quantification of P expression in Shp2*, Shp2P61¢/*t and
Shp2P616/0616 embryos scored as low, mid and high. (c) WISH of 5dpf Shp2*t and Shp2°5!¢/*“t embryos using ikaros
specific probe. Thymus is indicated (arrow). (d) Size of ikaros-positive thymus. (e) Representative images of Shp2*t
and Shp2°¢1¢ zebrafish embryos in Tg(mpx:GFP/ mpeg:mCherry) background at 5dpf. Mpx:GFP marks neutrophils
and mpeg:mCherry macrophages. Scale bars,150um. (f, g) Number of mpx:GFP and mpeg:mCherry positive cells.
(h) Representative images of colonies developed from WKM cells prepared from Shp2*t, Shp2°1¢/“t and Shp2°5:¢/
be16 adult zebrafish, grown in methylcellulose with zebrafish cytokines Gesfa and Gesfb for 2 days. Scale bar,

20um. (i) Quantification of number of colonies from (h). (j) Number of cd41:GFPhigh cells in Shp2*t, Shp206te/wt
and Shp2P61e/P616 zehrafish embryos at 5dpf were counted and percentage of embryos with either 0-50, 50-75 or
75-100 cd41:GFPhigh cells was plotted. (k) WISH of 5dpf Shp2*t and Shp2°%1¢/“t embryos using 8-globin specific
probe. Scale bar,150um. (I) Quantification of 8-globin expression in Shp2"t, Shp2°®16/"t and Shp2°616/%616 embryos
scored as low, mid and high. (b,d,f,g,j,|) Measurements originate from at least three distinct experiments. Number
on bars: number of embryos. (e,i) Error bars represent SEM. NS, not significant; *p < 0.05, ANOVA complemented
by Tukey HSD.
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stimulation by Gesfa and Gesfb corresponds to the GM-CSF stimulation in human ?7.
Compared to their wt siblings, colonies developed from the whole kidney marrow (WKM)
cells from Shp2P®1¢ zebrafish exposed to Gesfa and Gesfb were larger in size and number,
demonstrating an enhanced GM colony forming ability (figure 2 h,i). Additionally, Shp2P®¢
mutant embryos displayed a mild decrease in number of thrombocyte, marked by CD41-
GFP"e" in the Tg(cd41:GFP/ kdrl:mCherry-CAAX) transgenic line, and number of 8-globin
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Figure 3. Shp2°®*¢ induces JMML-like phenotype that originates in HSPCs, depends on MAPK and PI3K
pathway and is transplantable into secondary recipient. (a) Representative images of the CHT region of Shp2*t
and Shp2°%'¢ zebrafish embryos in the Tg(cd41:GFP/ kdrl:mCherry-CAAX) background at 5dpf. cd41:GFP"* cells
mark HSPCs and cd41:GFP"e" cells thrombocytes. Scale bar, 20um. (b) The low intensity cd41:GFP positive cells
in the CHT region were counted. Error bars represent standard error of the mean (SEM). *p < 0.05, ANOVA
complemented by Tukey HSD. (c) WISH of 5dpf Shp2*t and Shp2P%¢/*t embryos using c-myb specific probe. Head
kidney (arrow) and CHT (box) are indicated; zoom-in in insert. Scale bars, 150um. (d) Quantification of c-myb
WISH. C-myb expression in Shp2*, Shp2Ps16/%t and Shp2P616/°616 embryos was scored as low, mid and high. (e)
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positive erythrocytes (figure 2 j-k). The observed defects on all different blood lineages
examined here were stronger in the homozygous Shp2P61¢/°616 than heterozygous Shp2°%¢/
wtembryos. Our findings suggest that the Shp2P%'¢ mutant zebrafish embryos develop
multilineage hematopoietic defects reminiscent of NS/JMML like MPD and NS/JMML
observed in NS patients, all in a Shp2-D61G dose dependent manner.

NS/IMML-like phenotype has its origin in defective HSPCs and is dependent on both MAPK
and AKT signaling

NS/IMML-like MPD and NS/JIMML are considered to have their origin in defective HSCs.
Correspondingly, an increased number of HSPCs marked by CD41-GFP"* was observed

in the CHT region of Shp2P%¢ zebrafish embryos in the Tg(cd41:GFP/ kdrl:mCherry-CAAX)
transgenic line (figure 3 a,b). This was further supported by the increased c-myb signal
both in the CHT region and the head kidney of the mutant embryos (figure 3 c,d). Shp2P®1¢
mutation seems to affect both proliferation and apoptosis of HSPCs, evident by an
increase in CD41-GFP cells positive for phosphohistone H3 (pHis3), a marker for late G2
and M phase and a decrease in Acridine orange positive cells in the CHT region, marking
apoptotic cells (figure S3).

To determine whether the observed blood defects were driven by the Shp2-mediated RAS-
MAPK and PI3K signaling pathways, c-myb and I-plastin markers were investigated by WISH
in embryos treated continuously between 2 and 5dpf with either MEK inhibitor CI1040 or
PI3K inhibitor LY294002 (figure 3e). MEK inhibitor led to strong inhibition of expansion of
both HSPCs and myeloid lineage in mutant embryos (figure 3 f,g), indicating an essential
role of the RAS-MAPK pathway in the observed defects. The PI3K pathway appeared

to affect Shp2-D61G driven expansion of HSPCs strongly (figure 3g), whereas its role in
expansion of the myeloid lineage in mutant embryos was less prominent (figure 3f).

Finally, we tested whether the observed myeloid expansion was reconstituted upon
transplantation of the WKM cells harvested from Shp2P6'¢/*t animals in the Tg(mpx:GFP/
mpeg:mCherry) background into the optically clear recipient prkdc”- immunodeficient
zebrafish 8. Animals injected with mutant WKM cells (3/5) accumulated GFP- and
mCherry- positive cells near the site of injection starting at 14 days and increasing until 28
days. By contrast, animals injected with WKM cells from control sibling animals with wt
Shp2a (5/5) lacked any GFP- and mCherry- positive cells (figure 3h).

These data indicate that the IMML-like blood defect developed in the Shp2P%¢ zebrafish
has its origin in malignant HSPCs, is dependent on both MAPK and AKT signaling pathways
and is transplantable into a secondary recipient.

Schematic overview of the treatments with MEK inhibitor CI1040 and PI3K inhibitor LY294002. Embryos were
continuously treated from 48hpf until 5dpf, when WISH was performed and expression of the (f) I-plastin and (g)
c-myb marker was scored as low, mid and high. NS, not significant; *p < 0.05, **p<0.01, ***p<0.001, Chi-squared
test. (h) WKM cells harvested from Shp2*t and Shp2°%¢ zebrafish in the Tg(mpx:GFP/ mpeg:mCherry) background
were injected into the peritoneum of adult prkdc” zebrafish. Recipients were monitored by fluorescence imaging.
(b,d,f,g) Measurements originate from at least three distinct experiments. Number on bars: number of embryos.
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Figure 4: Transformation of Shp2P%¢ HSPCs studied by single cell RNA sequencing. (a) Schematic representation
of the experimental procedure. At 5dpf, CHTs from Shp2*t, Shp2P516/"t and Shp2P61e/°616 embryos in the
Tg(cd41:GFP/ kdrl:mCherry-CAAX) background were isolated. Cells were dissociated and separated by FACS, based
on cd41:GFP"" expression, prior to single cell RNA sequencing, as described in the Methods section. (b) Number
of cells of distinct genotypes used in single cell RNA sequencing analysis. (c) tSNE maps generated using the

cells of all three (Shp2", Shp2°°1/t gnd Shp2Pe16/P616) genotypes. Single cells from 4 major clusters are marked in
violet, blue, pink and green and their identities based on marker gene expression are indicated. Minor clusters
are marked in grey. (d) Barplots showing the percentage of cells of Shp2*t, Shp2P616/*t and Shp2P616/P616 genptype
in distinct clusters. (e) Cells of distinct genotypes Shp2*t, Shp2°51¢/“t and Shp2Pe1e/P816 gre visualized in tSNE maps
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Myeloid bias is established during the early differentiation of Shp2D61G HSPCs

In an effort to better understand the pathogenesis mechanisms in the Shp2P¢¢ mutant
HSPCs, single cell RNA sequencing was performed on CD41-GFP"" cells derived from 5dpf
Shp2*t, Shp2P616/%t gnd Shp2P81e/P816 zebrafish embryos in the Tg(cd41:GFP/ kdrl:mCherry-
CAAX) transgenic background (figure 4 a,b). To group cells based on their transcriptional
program, unsupervised clustering was performed using the RacelD3 package?®, clusters
were visualized by t-distributed stochastic neighbor embedding (t-SNE) and 4 major
clusters were further analyzed (figure 4c). Based on the differentially expressed genes and
GO term analysis, cells from Cluster 1 were determined to be thrombocyte and erythroid
progenitors, Cluster 2 HSC-like HSPCs, Cluster 3 early myeloid progenitors and Cluster 4
monocyte/macrophage progenitors (figure 4c, figure S4 a, table S1). A small subset of cells
in Cluster 4 represented more differentiated neutrophils (figure S4 b).

HSPCs of either Shp2"t or mutant Shp2°8¢/*t gnd Shp2P51e/P616 genotypes were present in all
4 major HSPCs compartments, indicating that distinct HSPCs phenotypes were maintained
on a gene transcription level. However, the distribution of cells in clusters differed among
genotypes. An overrepresentation of mutant Shp2P51/*t and Shp2P616/%%16 cells was
observed in the HSC-like HSPCs cluster and monocytes/macrophages progenitors cluster,
whereas these were underrepresented in the thrombocyte and erythroid progenitors
cluster (figure 4 d,e). To validate this observation, we investigated the expression of pu.1
and alas2 markers in Shp2P®'¢ embryos of different genotypes by WISH. In the single cell
RNA sequencing dataset, expression of pu.1 and alas2 was upregulated in the myeloid
progenitors and erythroid progenitors, respectively (figure 4 f,i). An increased number

of pu.1 positive cells was detected by WISH in 5dpf old Shp2P%'¢ embryos compared to
their Shp2*t siblings (figure 4 g,h), whereas the number of alas2 positive cells in Shp2°¢!¢
mutants was decreased (figure 4 j,k). Taken together, single cell RNA sequencing suggests
that defects during early HSPCs differentiation initiate the multilineage NS/JMML-like
phenotype observed in Shp2°%¢ embryos.

Excessive proinflammatory response contributes to the pathogenesis of the NS/JIMML-like
phenotype

We further analyzed the cluster of monocyte/macrophage progenitors, in which we
observed an overrepresentation of mutant Shp2P°®1¢ cells (figure 5a). Functional annotation
of the differentially expressed genes and the GO-term enrichment analysis revealed
presence of genes involved in inflammation (figure 5a, table S1). Among the top 10
differentially expressed genes was the known JMML-associated inflammatory cytokine il1b
3031 Also other proinflammatory genes were highly expressed, such as gcsfa, gcsfb, irg1,
tnfaip3, nfkbiaa, ccl35.2 and ccl34b.1 (figure 5 a,b, table S1). Interestingly, expression of
inflammation-related genes, such as gcsfa, gcsfb, il1b, irg1 and nfkbiaa, was constrained

in red. (f) tSNE maps showing log2-transformed read-counts of pu.1. (g) Representative images of the WISH
staining for pu.1 expression in 5dpf Shp2*t and Shp2°61¢ zebrafish embryos. Scale bar,100um. (h) Expression of
the pu.1 marker scored as low, mid and high. (i) tSNE maps showing log2-transformed read-counts of alas-2. (j)
Representative images of the WISH staining for alas-2 expression in the tail region of 5dpf Shp2*t and Shp2°¢i¢
zebrafish embryos. Scale bar, 100um. (k) Expression of the alas-2 marker scored as low, mid and high. (h,k)
Number on bars: number of embryos.
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to the cells of mutant Shp2P®!¢ genotype in the monocyte/macrophage progenitors cluster,
while a monocyte marker timp2a was equally expressed by cells of distinct genotypes
(figure 5b).

The high expression of IL-1B was validated in mutant embryos in vivo, in which IL-1B -eGFP
positive cells were present in the CHT region of Shp2P%'¢ embryos in the Tg(il1b:eGFP/
mpeg:mCherry) transgenic background (figure 5c). The IL-1B -eGFP positive cells
overlapped partially with the branched cells that contained a high mpeg:mCherry signal,
indicating macrophages, while the remaining IL-1 -eGFP positive cells were round in
shape and contained little or no mpeg-mCherry signal.

Finally, we asked whether the excessive inflammatory response has a role in the
pathogenesis of the observed phenotype. We exposed embryos to the anti-inflammatory
corticosteroid dexamethasone continuously between 2 and 5dpf. A robust effect of the
dexamethasone treatment on both expansion of myeloid lineage and HSPCs was observed,
as determined by WISH for the c-myb and I-plastin markers (figure 5 d,e). These results
show that the expanded monocyte/macrophage progenitors exhibited a pro-inflammatory
phenotype and uncovered a profound role for inflammation in pathogenesis of NS/JMML.
Strikingly, these monocyte/macrophage progenitors seem to have an essential role during
initiation of the NS/JMML-like phenotype, in that an anti-inflammatory agent rescued the
expansion of the myeloid lineage and HSPCs, revealing a new angle for combating (NS)/
JMML.

Discussion

Here, we focused on the hematological phenotype observed in Shp2P%¢ zebrafish
embryos. In line with the characteristics typical for NS/JIMML-like MPD and NS/JMML in
human patients *2, Shp2°51¢ embryos displayed expansion of the myeloid lineage, increased
sensitivity to GM-CSF, mild anemia and thrombocytopenia (figure 2). Furthermore, the
observed blood defect was transplantable to secondary recipients and had its origin in

the defective HSPCs compartment. A similar phenotype was observed in NS Ptpn11P%¢
mouse model, which develops NS/JMML-like MPD. However, these defects were observed
in mice of 5 months old and they were never studied at the earlier, embryonic stages,
which may be more relevant for disease initiation, since NS/JIMML-like MPD and NS/JIMML
in patients appears at the very early age, often immediately after birth3-*3, To uncover
novel pathogenesis mechanisms during early HSPCs differentiation, we investigated the
transcriptomes of these cells. The HSPCs compartment is heterogeneous, consisting of
multipotent stem cells and progenitors of distinct blood lineages. Since in the Shp2P®1¢
mutants multiple blood lineages are affected simultaneously, single cell RNA sequencing
was performed in order to separate subpopulations of HSPCs and uncover subtle gene
expression differences, which would not be possible by bulk sequencing. A single cell RNA
sequencing dataset of the GFP-CD41"°" cells, corresponding to HSPCs, was generated both
for Shp2P®1¢ mutants and their wt siblings. The identities of HSPCs subpopulations matched
the ones previously described 34, and they were all recognized in both Shp2°¢¢ mutant and
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Figure 5: Inflammatory response in monocyte/ macrophage progenitors in Shp2°%¢ embryos. (a) The monocyte/
macrophage progenitors cluster (boxed on the tSNE map on left) was analyzed in detail. log2-transformed sum

of read-counts of selected inflammation-related genes from the top 50 differentially expressed genes in the cells
of the monocyte/macrophage progenitors cluster, with genotype and number of cells (n) indicated above. (b)
Violin plots show the expression of specific genes in monocyte/macrophage progenitors of Shp2*t, Shp2°61¢/*t and
Shp2P616/0616 ganotypes. NS, not significant, ***p < 0.001, t-test. (c) In vivo imaging of the CHT region of Shp2*t
and Shp2°%16/*t zebrafish embryos in the Tg(il1b:eGFP/ mpeg:mCherry) background at 5dpf. Representative images
are shown. Scale bar is 20um.Embryos were continuously treated from 48hpf until 5dpf with Dexamethasone,
when WISH was performed and expression of the (d) I-plastin and (e) c-myb marker was scored as low, mid and
high. Measurements originate from at least three distinct experiments. Number on bars: number of embryos. NS,
not significant; *p < 0.05, **p<0.01, Chi-squared test.
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wt genotype. Remarkably, we observed an enrichment of mutant HSPCs in the monocyte/
macrophage progenitor cluster and their depletion in thrombocyte and erythroid
progenitor cluster, corresponding to phenotypes observed for the more differentiated
blood lineages. The generated dataset represents a valuable resource for future studies on
mechanisms involved in initiation of NS/JMML and NS/JMML-like MPD.

Our exploration of the differentially expressed genes in the cells of monocyte/macrophage
progenitor cluster uncovered upregulation of pro-inflammatory genes specifically in the
cells derived from Shp2P%¢ mutants (figure 5). A proinflammatory status, with high levels
of cytokines, such as IL-1B, TNF-a, GM-CFS, has been previously assigned to JMML in
human patients and mouse models, and shown to be generated by myeloid cells303135-37,
The inflammatory response may be initiated in a cell autonomous way or in response

to signals from the microenvironment. Dong et al. suggested that IL-1B is secreted by
differentiated monocytes which get recruited upon the Chemokine (C-C motif) ligand 3
(CCL3) secretion by the cells of bone marrow microenvironment containing activating SHP2
mutations3!. However, the levels of CCL3 in the bone marrow of four NS patients varied.
Our findings indicate that the proinflammatory status of the monocyte/macrophage
lineage is initiated early during their differentiation. Hence, proinflammatory reprograming
of the monocyte/macrophage lineage might be endogenously driven at least in part, and
detailed mechanisms remain to be elucidated in the future. The role of inflammation as
one of the drivers in myeloid leukemogenesis is emerging 3%, For instance, IL-1pB is known
to induce proliferation of HSCs and their differentiation into the myeloid lineage 3**°. Here
we demonstrate that dampening inflammation using the glucocorticoid dexamethasone,
partially rescued the observed blood phenotype in Shp2P®1S, suggesting that the
inflammatory response evoked in the cells of myeloid/macrophage lineage is important
driver of the NS/JIMML-like blood defect and may be a potential drug target for (NS)/JMML
and (NS)/JIMML-like MPD. In addition to the effect of anti-inflammatory treatment (figure
5), we demonstrated that targeting MAPK and PI3K pathway also led to partial reversal

of the blood phenotype in Shp2P¢'€ zebrafish embryos (figure 3 e-g), further emphasizing
previously assigned role of these pathways in transformation of HSCs upon Shp2 activation
41 and their therapeutic potential. Treatment of IMML and JMML-like MPD remains
challenging, with no existing drug therapies. Our results emphasize the potential of the NS
zebrafish model as a powerful tool for future in vivo drug screens.

To our knowledge, the Shp2°¢!¢ mutant zebrafish we developed is the first NS zebrafish
model carrying a Shp2a-D61G mutation at its endogenous locus generated by CRISPR/
Cas9- based knock-in technology. Strikingly, phenotypes developed by the Shp2Ps¢
zebrafish corroborate closely with the phenotypes displayed by human NS patients and
the existing NS mouse models (figure 1). Our model presents an exciting novel tool for
depicting pathogenesis mechanisms of NS with its complex traits and for finding novel
therapies for this as yet poorly treatable condition.

Embryonic lethality is only partial in the Shp2°®*¢ homozygous zebrafish, while in the NS
Shp2P%¢ homozygous mice it is fully penetrant, due to severe heart valvoseptal defects
3, Valvoseptal defects are also the most common cardiac defects in NS patients carrying
a Shp2 mutation #2. Shp2P®1¢ zebrafish displayed mild and severe heart edemas and
changes in the heart rate, ejection fraction and cardiac output, while the striking heart
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malformations were not present (figure 1, figure S1). However, to obtain a better insight, a
thorough assessment of the heart structure, focusing on valvoseptal components would be
required in the future. The observed difference in penetrance of embryonic lethality might
also be due to underlying genetic modifiers *. Finally, the genetic background of mice

was shown to significantly affect embryonic lethality in distinct NS mouse models ***> and
might also be important in Shp2P®1¢ zebrafish. In conclusion, we identified a profound role
of proinflammatory phenotype initiated during early priming of monocyte/macrophage
progenitor cells in NS/JIMML and suggest treatment with anti-inflammatory agents as a
possible therapeutic strategy for this poorly treatable condition.
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Methods

Zebrafish husbandry

All procedures involving experimental animals were approved by the animal

experiments committee of the Royal Netherlands Academy of Arts and Sciences (KNAW),
Dierexperimenten commissie protocol HI18-0702, and performed under the local
guidelines in compliance with national and European law. The following zebrafish lines
were used in the study: Tibingen longfin (TL, wild type), Tg(cd41:GFP/kdrl:mCherry-CAAX)
4647 Tg(mpx:GFP/ mpeg:mCherry)*®*, TgBAC(il1b:eGFP)sh445 *°, ptpn11b”-*°, prkdc’ %
and the novel Shp2P¢'€ zebrafish line. Raising and maintenance of zebrafish was performed
according to 2. When required, pigmentation of embryos was blocked by adding
phenylthiourea (PTU) (Sigma Aldrich, St. Louis, MO, USA, Ref: P7629) at a concentration of
0.003% (v/v) to the E3 medium at 24hpf.

Generation of the Shp2°1¢ zebrafish line

The Shp2P®1¢ zebrafish line was generated using the previously described CRISPR/
Cas9-based knock-in approach %. The sgRNA targeting exon 3 of the ptpn1la gene (5'-
GGAGACTATTACGACCTGTA-3’) was designed using the CHOP-CHOP database (http://
chopchop.cbu.uib.no/), further processed according to the previously published guidelines
3 and finally transcribed using the Ambion MEGAscript T7 kit (TermoFisher Scientific,
Waltham, MA, USA, Ref: AMB13345). The sgRNA, constant oligonucleotide and template
oligonucleotide were all generated by Integrated DNA Technologies (IDT, Coralville, IA,
USA) as standard desalted oligos and template oligonucleotide was further purified

using the QlAquick Nucleotide Removal Kit (Qiagen, Hilden, Germany, Ref: 28304). The
oligonucleotide used for the homology repair is 59 nucleotides long and besides the
D61G mutation, contains three additional silent mutations in proximity of the PAM site.
The sequence of template oligonucleotide is 5SB-GAGTGGCAAACTTCTCTCCACCATATAA
ATCGTAATAGCCTCCTGTGTTTTGAATCTTA-3E. Tubingen longfin wt zebrafish embryos at
the one-cell-stage were injected directly in the cell with 1 nl of the injection mixture
containing 18.75 ng/ml of sgRNA, 37.5 ng/ml of template oligonucleotide and 3.6 mg/ml
of Cas9 protein in 300 mM KCI. Cas9 protein was a gift from the Niels Geijsen laboratory
at the Hubrecht Institute. The injected embryos were grown into the adulthood. FO
generation zebrafish were outcrossed with the wt zebrafish. DNA extracted from the

12 distinct 1dpf old F1 generation embryos was screened for the correct insertion of

the template oligonucleotide. Screening was done by Sanger sequencing (Macrogen
Europe B.V., Amsterdam, The Netherland) of the 225 bp long PCR product encompassing
the genomic regions of the CRISPR target sites, which was generated using the forward
5’-TCATCTCCTCACTAGGCGAAAT-3’ and reverse primer 5’- TATGTATGTGCTCACCTCTCGG-3".
The efficiency of the knock-in was 1.8% (1 founder zebrafish in 54 screened primary
injected zebrafish). F1 generation was then established from the FO founder. F1 generation
adults were finclipped and sequenced for the presence of the mutation. All experiments
were performed in zebrafish embryos and adults from the F3 and F4 generation. For most
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of the experiments, embryos were derived from an incross of Shp2P°'¢/*t animals. After the
experimental procedure, embryos were lysed and genotyped by sequencing as described
above. Western blotting was performed as previously described ** using the Shp2

(Santa Cruz Biotechnology, Dallas, TX, USA, Ref: SC-280) and B-tubulin (Merck Millipore,
Burlington, MA, USA Ref: CP06) antibodies.

Phenotyping of the NS traits

Body axis lengths were measured from the tip of the head to the end of the trunk in

the bright-field images of laterally positioned embryos, larva and adults, which were
anesthetized in 0.1% MS-222. Alcian blue (Sigma Aldrich, Ref: A5268) staining was
performed as previously described %, on PTU-treated 4dpf old embryos, which were
anesthetized in 0.1% MS-222 and fixed in 4% PFA overnight. Embryos were positioned

on their back in 70% glycerol in PBS and imaged with Leica M165 FC stereomicroscope.
Analysis was performed in ImagelJ. In vivo high-speed brightfield imaging of the embryonic
hearts from PTU-treated embryos at 5dpf, which were anesthetized in 0.1% MS-222 and
embedded in 0.3% UltraPure agarose (Thermo Fisher Scientific) prepared in E3 medium
containing 16 mg/ml MS-222. Measurements were performed at 28°C using a Leica DM
IRBE inverted light microscope (Leica Microsystems) with a Hamamatsu C9300-221 high-
speed CCD camera (Hamamatsu Photonics, Hamamatsu, Japan). Imaging was conducted at
150 frames per seconds (fps) using Hokawo 2.1 imaging software (Hamamatsu Photonics)
for a period of 10 seconds (approximately 30 cardiac cycles). Heart rate measurements and
contractility parameters were analysed using Imagel. Volumes were analysed using Image)
by drawing an ellipse on top of the ventricle at end-diastole and end-systole. Averages of
three measurements per heart were determined. End diastolic and end systolic volume
(EDV/ESV) were calculated by: (4/3)*(nt)*(major axis/2)*((minor axis/2)"2). Stroke volume
(SV) by: EDV-ESV. Ejection fraction (EF) by: (SV/EDV)*100. Cardiac output (CO) by: SV*Heart
rate.

Whole mount in situ hybridization

PTU-treated embryos were anesthetized in 0.1% MS-222 (Sigma Aldrich, Ref: A5040) and
fixed in 4% PFA for at least 12h at 4°C. WISH was performed as described in >°. Probes
specific for myl7, vhmc and ahmc were described in *°. Probes specific for c-myb, I-plastin,
pu.1, gatal, ikaros, b-globin and alas-2 were described in **%’. Subsequently, embryos
were mounted in 70% glycerol in PBS and imaged with Leica M165 FC stereomicroscope
(Leica Microsystems, Wetzlar, Germany). Images were processed in ImageJ (U. S. National
Institutes of Health, Bethesda, MD, USA). Abundance of the probe signal was scored as
low, mild or high.

Inhibitors treatment

PTU-treated embryos were incubated with either 0.15uM of CI1040 (Sigma Aldrich, Ref:
PZ0181), 4uM LY294002 (Sigma Aldrich, Ref: L9908) or 10uM of Dexamethasone (Sigma
Aldrich, Ref: D4902) continuously from 24hpf until 5dpf. At 5dpf embryos were fixed and
half of the embryos was processed for WISH using probe specific for c-myb and the other
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half using probe specific for I-plastin. Images were processed in Imagel. Abundance of the
probe signal was scored as low, mild or high.

Confocal microscopy

All confocal imaging was performed on a Leica SP8 confocal microscope (Leica
Microsystems). Embryos were mounted in 0.3% agarose. Live embryos were anesthetized
in MS-222. Whole embryos were imaged using a 10X objective and z-stack step size of
3um, while the CHT area with 20X objective and z-stack step size of 1um. The number of
CD41-GFP"" cells was determined by imaging the CHT of the living 5dpf old embryos of
the Shp2*t, Shp2P®1e/"t gnd Shp2Psie/PeiC giblings in the Tg(cd41:GFP/ kdrl:mCherry-CAAX)
transgenic background, while the number of CD41-GFP"e" cells was determined by imaging
whole embryos, which were fixed for 2h in 4% PFA prior to imaging. To determine the
number of mpx-GFP and mpeg-mCherry cells, whole live 5dpf old embryos of the Shp?*,
Shp2P8ie/wt gnd Shp2P6ie/P816 |ine in the Tg(mpx:GFP/ mpeg:mCherry) transgenic background
were imaged. Imaris V9.3.1 (Bitplane, Zurich, Switzerland) was used to reconstruct 3D
images and count individual GFP and/or mCherry positive cells.

Phosphorylated Histone 3 (pHis3) staining

PTU-treated 5dpf old Shp2P5i¢ embryos in the Tg(cd41:GFP/ kdrl:mCherry-CAAX) transgenic
background were fixed in 2% PFA overnight and stained as described in *8. Primary pHis3
antibody (1:500 in blocking buffer, Abcam, Cambridge, UK, Ref: ab5176) and secondary
GFP antibody (1:200 in blocking buffer, Aves Labs Inc. Tigard, OR, USA, GFP-1010) were
used. Embryos were mounted in 0.3% agarose, their CHT was imaged using the SP8
confocal microscope and 3D images were subsequently reconstructed using Imaris.

Acridine orange staining

PTU-treated embryos at 5dpf were incubated in 5ug/ml of Acridine orange (Sigma Aldrich,
Ref: A6014) in E3 medium, for 20 minutes at room temperature. They were then washed
5 times for 5 minutes in E3 medium, anesthetized in MS-222 and mounted in 0.3%
agarose. Whole embryos were imaged with SP8 confocal microscope and 3D images were
reconstructed using Imaris.

Isolation of CD41-GFP*" cell population and single-cell RNA sequencing

From 24hpf onwards embryos were grown in PTU-containing medium. The CHTs

of approximately 50 Shp2*t, Shpt®%/*t and Shp2P616/%%1¢ embryos in Tg(cd41:GFP/
kdrl:mCherry-CAAX) transgenic background at 5dpf were dissected and collected in
Leibovitz-medium (TermoFisher Scientific, Gibco, Ref: 11415049). After washing with PBSO
the CHTs were dissociated with TryplE (TermoFisher Scientific, Gibco, Ref: 12605036) for
45 minutes at 32°C. The resulting cell suspension was washed with PBSO, resuspended

in PBSO supplemented with 2mM EDTA, 2% FCS and 0.5ug/ml DAPI (Sigma Aldrich, Ref:
D9542) and passed through a 40um Falcon cell strainer. DAPI staining was used to exclude
dead cells *°. Cells with CD41-GFP"" positive signal were subjected to fluorescence-
activated cell sorting (FACS) with an influx cytometer (BD Biosciences, San Jose, CA,
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USA). Single-cell RNA sequencing was performed according to an adapted version of

the SORT-seq ° with adapted primers described in . In short, single cells were FACS
sorted, as described above, on 384-well plates containing 384 primers and Mineral oil
(Sigma Aldrich). After sorting, plates were snap-frozen on dry ice and stored at -80°C. For
amplification cells were heat-lysed at 65°C followed by cDNA synthesis using the CEL-
seq2 ®% and robotic liquid handling platforms. After the second strand cDNA synthesis,
the barcoded material was pooled into libraries of 384 cells and amplified using in vitro
transcription. Following amplification, the rest of the CEL-seq2 protocol was followed for
preparation of the amplified cDNA library, using TruSeq small RNA primers (lllumina, San
Diego, CA, USA). The DNA library was paired-end sequenced on an lllumina Nextseq™
500 (Illumina), high output, with a 1x75 bp lllumina kit (R1:26 cycles, index read: 6 cycles,
R2:60 cycles).

Data analysis of single-cell RNA sequencing

During sequencing, Read1 was assigned 26 base pairs and was used for identification

of the llumina library barcode, cell barcode and unique molecular identifier. Read2 was
assigned 60 base pairs and used to map to the reference transcriptome of Zv9 Danio
rerio. Data was demultiplexed as described in . Single cell transcriptomics analysis was
done using the RacelD3 algorithm %, following an adapted version of the RacelD manual
(https://cran.r-project.org/web/packages/RacelD/vignettes/RacelD.html) using R-3.5.2. In
total 768 cells per genotype were sequenced for the datasets. After removing cells with
less than 1000 UMIs and only keeping genes that were detected with al least 3 UMIs in 1
cell, 439 wt, 384 D61G/wt and 543 D61G/D61G cells were left for further analysis. Batch
effects observed for plates which were prepared on different days was removed using the
scran function. 4 major clusters and 5 minor clusters were identified. The minor clusters
contained 130 cells in total and were excluded from further analysis for statistical reasons.
Differential gene expression analysis was done as described in % with an adapted version
of the DESseq2 . GO term enrichment analysis for differentially expressed genes of each
major cluster was performed using the DAVID Bioinformatics Resources 6.8 (https://david.
ncifcrf.gov/).

Colony forming assay

Whole kidney marrows (WKMs) of the three adult Shp2*t, Shp2P51/"t and Shp2P616/616
siblings in the Tg(mpx:GFP/ mpeg:mCherry) transgenic background were dissected and
collected in PBS supplemented with 5% FBS. The tissue was mechanically dissociated and
filtered through a 70 um and 40 um Falcon cell strainer. Cell pellet was resuspended in
PBS supplemented with 5% FBS. 1.6 ml of solution containing 20 000 cells in media, which
was prepared as described in ?7, and 100 ng/ml of granulocyte colony stimulating factor a
and b (Gscfa and Gcsfb, gift from the Petr Bartunek lab, Institute of Molecular Genetics,
Academy of Sciences of the Czech Republic v.v.i. Prague) was plated per well of a 12 well
plate in a duplicate. Cells were grown in humidified incubators at 32°C, 5% CO2. After 2
days colonies were imaged using the EVOS microscope (TermoFisher Scientific), examined
for the presence of GFP and mCherry fluorescence, and enumerated.
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Transplantation experiments

Zebrafish kidney marrow transplantation were performed as previously described 244, In
short, tissues were isolated from donor Shp2P¢¢/*t or wild type animals in the Tg(mpx:GFP/
mpeg:mCherry) background following Tricaine (Western Chemical, Brussels, Belgium)
overdose. Excised tissues from dissected fish are placed into 500 pl of 0.9x PBS + 5% FBS
on a 10-cm Petri dish. Single-cell suspensions were obtained by maceration with a razor
blade, followed by manual pipetting to disassociate cell clumps. Cells were filtered through
a 40-pum Falcon cell strainer, centrifuged at 1,000 g for 10 min, and resuspended to the

2 x 107 cells/ml. 5-ul suspension containing 105 kidney marrow cells were injected into
the peritoneal cavity of each recipient fish using a 26s Hamilton 80366 syringe. Cellular
engraftment was assessed at 0, 7, 14, 28 dpt by epifluorescence microscopy.

Statistical analysis

Data was plotted in GraphPad Prism 7.05 (GraphPad Software Inc., San Diego, CA, USA),
except for the violin plots of gene expression, which were plotted in R using ggplot2 .
Statistical difference analysis was performed using the one-way ANOVA supplemented by
Tukey’s HSD test in GraphPad Prism 7.05, except for the gene expression differences in
single cell RNA sequencing data, where T-test was performed in Rstudio 1.1.463 (Rstudio,
Boston, MA, USA), and the treatment WISH experiments, where Chi-squared test was
performed in GraphPad Prism 7.05. Significant difference was considered when p<0.05
(*p<0.05, **p<0.01, ***p<0.001, NS=non significant).
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Figure S1. Heart function, but not heart morphology, is defective in Shp2°%¢ zebrafish embryos. (a) Schematic
representation of the procedure used to establish the Shp2°'¢ mutant line, as described in the Materials and
Methods section. (b) Representative images of the WISH staining for myl/7, ahmc and vhmc expression in the
hearts of 3dpf old Shp2*, Shp2P61&/“t and Shp2Pe1/P616 zebrafish embryos. Numbers in the pictures indicate the
number of embryos with the phenotype represented in the image. (c) Ejection fraction and (d) cardiac output
determined from the high speed videos of the heart of 5dpf old Shp2*, Shp22¢1&/“t and Shp2Pe1%/P616 zebrafish
embryos. Measurements originate from at least three distinct experiments. Numbers on the bars depict the
number of embryos. Error bars represent standard error of the mean (SEM). *p < 0.05; **p < 0.01, ***p < 0.001,
NS, non significant, ANOVA complemented by Tukey HSD.
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Figure S2. Shp2°%¢ zebrafish display normal primitive hematopoiesis. Representative images of the WISH
staining for gatal, pu.1 and I-plastin expression in the tail region of 48hpf old Shp2“t, Shp2°61¢/#t and Shp2°61/
D616 zebrafish embryos. Scale bar is 250um. Numbers in the pictures indicate the number of embryos with the
phenotype represented in the image.
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Figure S3. Enhanced proliferation and reduced apoptosis in the CHT of Shp2°°:¢ zebrafish embryos. (a) Cell
proliferation was assessed in the CHT region of 5 dpf old Shp2*, Shp2251/™ and Shp2P61/261¢ embryos in the
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both GFP and pHis3 are indicated with white arrows in the Merge panel. Scale bar is 10um. (b) Representative

images of the Acridine orange staining of the CHT region of the 5dpf old Shp2* and Shp2°¢1%“t embryos. Scale bar

is 50um.
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Figure S4. Identities of different HSPCs subpopulations based on expression of representative genes. (a) Heat
map showing scaled expression [log TPM (transcripts per million) values] of representative genes (y-axis) in all
cells (x-axis). Cells belonging to distinct clusters are squared with a dashed line and cluster identity is indicated
on the top of the heat map. Cells from cluster 2 express typical hematopoietic stem cell markers, such as
c-myb and her6 (HES1 analogue in human). Cluster 1 is characterized by expression of genes characteristic for
thrombocyte and erythroid differentiation, such as gatala and kif1. Cells from cluster 3 express early myeloid
progenitor markers, such as runx3 and cxcr4b. Cells from cluster 4 expresse genes typical for both monocyte
and macrophages, such as marco and ctsba. (b) tSNE maps showing the sum of total read-counts of selected
neutrophil specific genes.
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Shp2b is Required for Normal Ontogeny of
Hematopoietic Stem and Progenitor Cells
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Abstract

Hematopoiectic Stem and Progenitor cells (HSPCs) are multipotent cells giving rise to
all blood lineages during life. In zebrafish, HSPCs emerge from the ventral wall of the
dorsal aorta (VDA) in an endothelial hematopoietic transition (EHT). PTPN11 encodes an
essential protein tyrosine phosphatase (PTP), that is required for normal development.
We investigated the role of ptpnila and ptpn11b in hematopoiesis in zebrafish. Through
in vivo live imaging, we discovered that ptpn11b mutant embryos showed disintegrating
cells upon emergence from the VDA, an effect that is rescued after micro-injection with
ptpnllb. Ptpnlla mutants do not show this phenotype. The surviving HSPCs in ptpn11b
mutant embryos colonized the CHT normally, albeit in lower numbers, and committed
to all blood lineages. We conclude that ptpn11b is essential during the definitive wave
of hematopoiesis, but that knock-out of ptpni1b does not lead to adult zebrafish with
developmental defects.
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Introduction

Stem cells are a particular type of cells that maintain self-renewal capacity and may
differentiate into multiple cell types at the same time. HSPCs are multi-potent cells

giving rise to all blood lineages during life 13, All vertebrates undergo two waves of
hematopoiesis: the primitive wave in which primitive erythrocytes and myeloid cells are
produced and the definitive wave in which HSPCs are generated that will later found the
adult hematopoietic organs 2*. At the start of the definitive wave, HSPCs emerge from the
floor of the dorsal aorta (VDA) in a process called endothelial hematopoietic transition >,
During EHT cells bend from the VDA after which they detach and then transiently colonize
the fetal liver in mammals ® or the caudal hematopoietic tissue (CHT) in zebrafish °. In the
CHT HSPCs expand and differentiate into all blood lineages and supply the developing
embryo with mature blood cells. Next, HSPCs migrate to colonize the thymus and bone
marrow in mammals & or the thymus and whole kidney marrow in fish ° to produce adult
blood cells of all lineages.

HSPCs are tightly regulated in terms of dormancy, self-renewal and differentiation by
environmental cues, such as cytokines and growth factors. Dysregulation of these cues
can result in blood disorders, including hematologic malignancies. SHP2, encoded by
PTPN11, is a ubiquitously expressed protein tyrosine phosphatase (PTP) with two Src
homology 2 (SH2) domains that are essential for normal development %2, SHP2 is a
positive effector of extracellular regulated kinase (ERK)/MAPK signaling, downstream

of most receptor tyrosine kinases (RTKs) 2. SHP2 is also involved in other signaling
pathways, such as the Jak-STAT pathway ** and the PI3K-AKT pathway *. Alterations in the
catalytic activity of SHP2 due to missense mutations in PTPN11 have been implicated in
pathogenesis of Noonan syndrome (NS), NS with Multiple Lentigenes (NS-ML, formerly
known as LEOPARD syndrome) and juvenile myelomonocytic leukemia (JMML) 34, SHP2
also plays an important role during hematopoiesis ***°. Mouse models with conditional
deletion of Ptpn11, encoding SHP2, show a depleted functional HSPCs pool and fail to
reconstitute recipients because of defects in homing, self-renewal and survival **. Given
the pathways in which Ptpn11 plays a role, deregulation of SHP2 has broad consequences
for hematopoiesis.

Zebrafish are an excellent model to further investigate the role of ptpn11 in hematopoiesis
in vivo as development occurs externally and embryos are transparent 2. The zebrafish
genome encodes two ptpnll genes: ptpnlla and ptpnllb, encoding Shp2a and

Shp2b, respectively 2. Both Shp2a and Shp2b are highly homologous to human SHP2

and harbor catalytic activity, but they differ in their expression during early embryonic
development, with ptpnlla being constantly expressed up until 5 dpf and ptpnlib
becoming upregulated over this time 2. Ptpnl1la’ mutant embryos as well as ptpnila”
ptpnl11b” double mutant embryos are embryonically lethal from 5-6 dpf onwards, whereas
ptpnl11b” embryos do not show developmental defects, grow up to adulthood and are
viable and fertile 2. We imaged the emergence of HSPCs from the VDA in vivo in ptpn11
mutant embryos, which showed surprising defects. Furthermore, we performed in situ
hybridization to analyze expression patterns during the definitive wave of hematopoiesis.
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Our results indicate that lack of Shp2b resulted in less HSPCs during the definitive wave,
but that this effect did not influence the ability to engage in all blood lineages.

Results

Ptpnl11b knock-out results in disintegrating HSPCs during EHT

In zebrafish, endothelial cells from the ventral wall of the dorsal aorta (VDA) transform into
HSPCs in a process called endothelial hematopoietic transition (EHT) 7. Next, HSPCs join the
blood flow in the underlying posterior cardinal vein (PCV) to transiently seed the caudal
hematopoietic tissue (CHT) >”° and afterwards reside in the adult hematopoietic organs,
the thymus and head kidney. We imaged EHT events in the aorta gonad mesonephros
(AGM) by time-lapse confocal imaging of an area spanning five adjacent intersegmental
vessels in ptpnlla and ptpnllb mutant embryos in the tg(kdrl:eGFP) background from

35 to 48 hpf (figure 1 a-1). The floor of the aorta in ptpnila and ptpnllb mutant embryos
displayed the characteristic contraction then bending of cells towards the subaortic

space ’, indicating that the initiation of EHT was normal in these mutant embryos. In
ptpnlla”ptpnllb** and ptpnlla” ptpllb*- embryos EHT progressed normally and we

did not observe any abortive EHT events (n=3 and n=5, table s1). However, the majority

of ptpnb11b”- mutant embryos (78%) showed EHT events that were abortive, in that they
failed to detach and disintegrated (n=50) (figure 1 i-l, table 1). In contrast, in ptpn11b**
(n=21) or ptpn11b*- (n=18) mutant embryos in total only 4 disintegrating HSPCs were
observed (figure 1a-h, table 1, Fisher’s exact test with multiple testing correction p<0.001).
To verify that the observed effects were caused by the lack of functional ptpn11b, we
microinjected synthetic ptpn11b mRNA in ptpn11b7 mutant embryos at the one-cell

stage and monitored EHT events in the AGM by time-lapse confocal imaging. 47% of the
imaged embryos showed no abortive events (figure 1n, Fisher’s Exact test, p<0.05). Hence,
ptpnl11b” mutant embryos show disintegrating HSPCs during EHT which are rescued upon

Number of embryos
showing normal emerging

Number of embryos
showing disintegrating

pg ptpnllb mRNA

HSPCs HSPCs
Ptpn11b** 18 3
Ptpn11b*- 17 1
Ptpn11b” 11 39
Ptpn11b” injected with 120 9 10

Table 1. The number of embryos showing disintegrating HSPCs after EHT in the AGM was determined in
all ptpni1b genotypes by confocal time lapse imaging. A Chi square test and Fisher’s exact test was used for
statistical analysis (¥*** p<0.001, * p<0.05)
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microinjection of ptpn11b mRNA. This suggests that ptpn11b, but not ptpnila, is required
for normal emergence of HPSCs during EHT.

pton11b** pton11b** pton11b** pton11b**

pton11b*-
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Figure 1. HSPCs disintegrate upon emergence from the VDA in ptpn11b”- embryos. (a-) Four-dimensional
imaging of tg(kdrl:eGFP) ptpn11b**, ptpn11b*-or ptpnllb” mutant zebrafish embryos between 35 hpf and

48 hpf. Arrowheads: HSPCs undergoing EHT; asterisk: disintegrating HSPCs. Confocal image z-stacks (2um step
size, with 20x objective and 1.5 zoom; anterior to the left; maximum projections of a representative embryo;
time in hh:mm. Scale bar: 20um; DA: dorsal aorta; PCV: posterior cardinal vein). (m) The percentages of
embryos that show normal EHT and disintegrating EHT events. Percentages of normal EHT events are displayed.
Original observations are shown in table 1. Fisher’s exact tests were performed on table 1 (*** p<0.001). (n)
The percentage of embryos that show normal EHT and disintegrating EHT events after microintjection at the
one-cell stage with synthetic ptpn11b mRNA (120pg). Percentages of normal EHT events are displayed. Original
observations are shown in table 2. Fisher’s Exact test was used for statistical analysis on table 2. * p<0.05.
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The number of HSPCs that colonize the CHT is reduced in ptpn11b”- mutant embryos

Following EHT, HSPCs transiently colonize the CHT °. We quantified the number of HSPCs
that seeded the CHT at 48 hpf, i.e. by the peak of HSPC emergence from the VDA, using
tg(cd41:eGFP) embryos, which express low GFP (GFP"") in HSPCs %%, Consistent with
our earlier imaging where 78% of the ptpnb11b” embryos showed disintegrating HSPCs,

48 hpf 4 dpf
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Figure 2. Reduced numbers of HSPCs in ptpn11b”7- embryos. (a, f) The number of GFP HSPCs at 48 hpf (a, c, e)
or 4 dpf (b, d, f) in the CHT of tg(cd41:eGFP) ptpn11b**, ptpn11b*-and ptpnb”-is expressed as average number
of cells (g,h). Selected GFP'** HSPCs are indicated by arrowheads (a-f). GFPhigh cells are thrombocytes circulating
swiftly through the vasculature. Anterior to the left; Images were taken with a 40x objective and 2um z-stepsize.
Scale bar = 50um. Representative embryos are shown and the number of embryos that showed this pattern/
total number of embryos is indicated. Error bars indicate standard error of the mean (SEM). Shapiro Wilk test for
normal distribution and One-Way ANOVA were used for statistical analysis; *p<0.05, **p<0.01.
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23% less GFP"" HPSCs were detected in the CHT of ptpn11b7 mutant embryos at 48 hpf
compared to ptpn11b** mutant embryos (figure 2), which was statistically signficicant
(One-way ANOVA, p<0.05). Ptpn11b*- mutant embryos showed no statistically significant
difference compared to ptpnb** mutant embryos, even though numbers of cd41' cells
appear to be decreasing. After seeding, HSPCs start to proliferate in the CHT before
migrating to their final destination, the adult hematopoietic organs, the thymus and
whole kidney marrow. This reduction of HSPCs in the CHT at 48 hpf persisted through

4 dpf in ptpnb11b”- mutant embryos (figure 2n). These data suggest that the effect of
disintegrating HSPCs around EHT persists during seeding of the CHT and later on during
proliferation and maturation of HSPCs in the CHT.

ptpn11b™* ptpn11b* ptpn11b”

32 hpf 32hpf ¢ 32 hpf
32/32 47/50 c-myb 1717
32 hpf 32 hpf f 32 hpf

L% .. oy ey T—
7/8 18/18 gatat 44/46
32 hpf i 32 hpf
26/29 I-p 28/32

Figure 3. HSPCs of ptpn11b7-embryos at 48hpf engage in all blood lineages and show no differences compared
to their siblings. (a-1) ptpn11b**, ptpn11b*-and ptpn11b” embryos were fixed at 32 hpf. Markers for primitive
blood lineages were assessed by whole mount in situ hybridization. C-myb (HSPCs, a-c), gatal (primitive erythroid
lineage, d-f), I-plastin and pu.1 (primitive myeloid lineage, g-l). Representative embryos are shown, with anterior
to the left. The number of embryos that showed a particular pattern/total number of embryos is indicated in the
bottom right corner of each panel.

The onset of the definitive wave is independent of ptpn11lb

The onset of the definitive wave starts at 32 hours post fertilization (hpf) with the
specification of the endothelial cells that will become HSPCs in the floor of the dorsal
aorta (DA) in the AGM region, a conserved process between mammals and zebrafish >,
The hemogenic endothelium of the DA and its HSPCs progeny is marked by c-myb >%’. We
found that c-myb is not differently expressed in ptpn11b”- mutant embryos compared

to their siblings at the onset of the definitive wave (figure 3 a-c). Lineage markers

for primitive erythroid (figure 3 d-f) and myeloid (figure 3 g-I) fate also did not show
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differences in expression levels between ptpn11b7 embryos and their siblings at 32hpf.
These data suggest that ptpn11b does not affect the onset of the definitive wave.

pton11b*- pton11b”

Figure 4. HSPCs of ptpn11b7 embryos at 5 dpf engage in all blood lineages and show no differences

compared to their siblings. Ptpn11b*- and ptpn11b” mutant embryos were fixed at 5 dpf. Markers for definitive
bloodlineages were assessed by whole mount in situ hybridization. C-myb (HSPCs, a, b), gatal and b-globin
(erythroid lineage, c-f) and ikaros (lymphocyte lineage, g-h). Representative embryos are shown, with anterior
to the left. The number of embryos that showed a particular pattern/total number of embryos is indicated in the
bottom right corner of each panel.

Ptpn11b is not essential for HSPCs to engage in all blood lineages

To investigate the consequences of lack of Shp2b function for the various definitive
blood lineages originating from HSPCs we performed in situ hybridization with a panel of
blood progenitor markers. First, we determined expression of c-myb (HSPCs) at 5 dpf. We
detected expression in the CHT, indicating that homing of HSPCs was not dependent on
ptpnllb. We did not see any differences in expression levels between ptpnllb mutant
embryos and their siblings (figure 4 a, b). To assess the erythroid lineages gatal and
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b-globin markers were evaluated, together with ikaros to evaluate the lymphoid lineage.
The erythroid lineage showed no differences in expression between ptpn11b7 mutant
embryos when compared to ptpn11b*- (figure 4 c-f). Ptpn11b mutant embryos also did
not show altered expression levels of the lympoid marker ikaros, when compared to their
siblings (figure 4 g, h). These results show that lack of ptpn11b signaling did not block
specification of particular blood lineages.

Discussion

We used zebrafish mutant embryos lacking functional Shp2 to investigate how loss of
Shp2 affects early stages of hematopoiesis. Zebrafish have two ptpni1 genes, which
both encode functional Shp2 proteins. Ptpn1la is an essential gene, in that ptpnlla
knock-out embryos are embryonic lethal at 5-6 dpf. In contrast, ptpn11b knock-outs do
not show obvious developmental defects and grow up to adulthood. Surprisingly, knock-
out of ptpnlla did not affect the ontogeny of HSPCs, but knock-out of ptpn11b did.
Characterization of zebrafish ptpn11b7 mutant embryos led to the unexpected finding
that 78% of ptpn11b” mutant embryos show disintegrating HSPCs upon emergence from
the VDA during EHT at the onset of the definitve wave (figure 1). The difference between
ptpnlla and ptpnllb in early stages of hematopoiesis remains to be determined. Perhaps
there is a subtle difference in function of Shp2a and Shp2b. Alternatively, the difference
in expression pattern of ptpnlia and ptpni1b ** may be responsible for the difference in
consequences of knock-out of ptpnila and ptpniib. Ptpnlla is abundantly expressed
at all developmental stages, whereas ptpn11b expression levels are low early on, and
increase to the same level as ptpnila at 5 dpf.

Apoptosis of zebrafish HSPCs has been reported before. Grechetto mutants harbor an
inactivating mutation in the cleavage and polyadenylation specificity factor 1 (cpsf1)

gene and display defects in maintenance of HSPCs later in development. Appropriate
numbers of HSPCs are specified initially, but their numbers are decreasing in the CHT

due to apoptosis %8 The defects in definitive hematopoiesis in grechetto mutants occur
later than in ptpn11b”-mutants, and are likely caused by different mechanisms. Runx1
expression is required in the endothelial cell to achieve EHT . Consistently, Runx1
knockdown in zebrafish embryos results in abortive EHT events, in that endothelial cells
contract and initiate EHT, but then disintegrate ’. As very few HSPCs escape this fate and
the CHT is not seeded 7, as opposed to in the ptpn11b” mutant embryo, it is likely that

the mechanisms underlying these EHT defects are distinct. Recently we have shown that
ptena’ptenb”- mutant embryos show disintegrating HSPCs after emergence from the
VDA, which is caused by hyperactivation of the PI3K-pathway *. The involvement of the
PI3K pathway is complex, because inhibition of PI3K in wild type zebrafish embryos also
results in disintegration of part of the HSPCs upon emergence from the VDA. It has been
shown that SHP2 is required for PI3K activation upon EGF binding/activation 32 and other
receptor tyrosine kinases 33, It has also been reported that Shp2 acts upstream of Akt/
PKB signaling ***’. However, in Ptpnlla” and ptpn11b” zebrafish mutants Akt-activation
was not affected ?*. Therefore, it is likely that the mechanism underlying the EHT defects in
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ptena’ptenb” mutants is distinct from the defects in ptpn11b” embryos.

After emerging from the VDA, the surviving HSPCs enter circulation and seed the CHT.
Approximately 20% less HSPCs colonized the CHT at 48 hpf and the number of HSPCs in
the CHT at 4 dpf was also approximately 20% less in ptpn11b7- mutant embryos, compared
to ptpn11b** embryos (figure 2). We observed a trend that ptpn11b*- mutant embryos
had fewer HSPCs in the CHT than ptpn11b wild type embryos, but more than ptpn11b”
mutant embryos. These differences were not signficant and it remains to be determined
definitively whether there is a ptpn11b dose-dependent effect in the number of HSPCS in
the CHT.

Surviving HSPCs from ptpn11b”- mutants engage in all blood lineages and expression
levels of markers are similar between mutants and their siblings (figure 3 and 4). This

is in contrast with studies in other species. In an in vitro hematopoietic differentiation
assay, homozygous Shp2 mutant embryonic stem (ES) cells exhibited severely decreased
differentiation capacity to erythroid and myeloid progenitors . This in vitro result was
supported by in vivo chimeric animal analyses, in which neither erythroid nor myeloid
progenitor cells of Shp2 mutant origin were detected in the fetal liver or bone marrow

of chimeric animals that were derived from mutant ES cells and wild-type embryos *.
Moreover, development of lymphoid lineages was blocked in Shp27-chimeric mice *°. An
explanation for this discrepancy may be that zebrafish have 2 ptpn11 genes, ptpnlla
and ptpnl1b, that are differentially expressed as discussed above. It is interesting to note
that previously it was thought that ptpn11b did not play a role during early embryonic
development due to its low expression 2%, Here, we show that ptpn11b”- mutants do show
developmental defects early on in the definitive wave of hematopoiesis, but overcome
these defects at the end of the definitive wave.

In conclusion, we characterized mutant zebrafish embryos lacking functional Shp2 during
the definitive wave of hematopoiesis. We found that ptpn11b, but not ptpnlia, is required
for normal emergence of HSPCs from the VDA. Despite that ptpn11b” mutants have fewer
numbers of HSPCs, they do not seem to be affected by this and are fertile and viable.
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Methods

Ethics statement

All animal experiments described in this manuscript were approved by the local animal
experiments committee (Hubrecht Institute: Koninklijke Nederlandse Academie van
Wetenschappen-Dierexperimenten commissie) and performed according to local
guidelines and policies in compliance with national and European law.

Zebrafish husbandry

Ptpnlla” , ptpn11b” ?* Tg(kdrl:eGFP)** and Tg(cd41:eGFP)* were maintained according

to FELASA guidelines, crossed, raised and staged as described**™**. Ptpn11 mutant fish
(embryos) were genotyped by sequencing®*. From 24hpf onwards, all embryos were grown
in phenylthiourea (PTU)-containing medium at a concentration of 0.003% (v/v) to block
pigmentation.

Constructs, mRNA synthesis and microinjections

Ptpn11 was cloned previously . Ptpn11b was cloned in the vector pCS2+ using Gibson

Assembly and linearized with Notl. To synthesize 5’capped sense mRNA, the mMessage
mMachine SP6 kit (Ambion) was used. mRNA injections were performed at the one-cell
stage using a total of 120 pg of mRNA.

Confocal, fluorescence and time-lapse imaging

Fluorescence images of transgenic embryos were acquired using Leica SP8 using a 40x
objective and 2um z-stack stepsize and time-lapse-imaging using Leica SPE, SPE Live and
SP5 with a 20x objective and 2um z-stack stepsize as described 73°. The number of CD41-
GFP'"** cells was determined by imaging the CHT of living 48hpf or 4dpf ptpnb**, ptpnb*
or ptpnb”-old embryos in the tg(CD41:eGFP) background. Imaris (Bitplane) was used to
reconstruct 3D images and count individual GFP"" cells. For all live imaging, embryos were
anesthetized with tricaine*?, mounted on a glass cover dish with 0.7% low melting agarose
and covered with standard E3 medium.

In situ hybridization

Whole mount in situ hybridization was performed according to standard protocol *¢ and
images were taken using a Leica M165 FC stereomicroscope. Probes specific for c-myb,
I-plastin, pu.1, gatal, ikaros and b-globin were described in 4%,

Statistical analysis
Data was plotted in Graphpad Prism 9.01. Statistical difference analysis was performed

using Fisher’s Exact test with multiple testing correction (FDR) (figure 1) and Shapiro-Wilk
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test to test for Gaussian distribution and One-Way ANOVA supplemented by Tukey’s HSD
test (figure2). Significant difference was considered when p<0.05 (p<0.05= *, p<0.01 = **,
p<0.001= **%*),
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Loss of kdrl Marks the Shift From Embryonic
to Adult HSPCs
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Chapter 5

Abstract

Hematopoietic stem/progenitor cells (HSPCs) are multipotent cells giving rise to all blood
cells during life. Hematopoiesis occurs in two waves in all vertebrates during embryonic
development. During the second wave, HSPCs are generated that produce all blood
lineages during the rest of the organism’s life. Using a combination of an endothelial
expression marker (kdrl) and a HSPC marker (cd41) in zebrafish embryos, we isolated a
subpopulation of cd41'°" HSPCs, which expressed kdrl. Using scRNA sequencing, we found
that this subpopulation has a distinct differentiation fate compared to cd41'°* HSPCs. Live
imaging of both kdrl/cd41"°" and cd41'°* HSPCs showed that both HSPCs existed at the
same time in the caudal hematopoietic tissue (CHT) in zebrafish. In an in vitro colony
forming unit (CFU) assay, we observed that particularly the embryonic kdrl/cd41'°" HSPCs
formed colonies. Surprisingly, kdrl/cd41'"°" cells were also observed in adult whole kidney
marrow (WKM). In adults, predominantly cd41°¥ cells lacking kdrl expression formed
colonies. We conclude that the loss of kdrl marks a shift in potential of cd41'°* HSPCs from
embryos to adults.
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Loss of kdrl marks the shift from embryonic to adult HSPCs

Introduction

Hematopoietic stem/progenitor cells (HPSCs) are at the base of the hematopoietic
system. They have the essential function of long-term maintenance and production of
all mature blood cell lineages during the lifespan of an organism. During development
they have the unique capacity for self-renewal and differentiation into multiple cell
types at the same time 2. In all vertebrates, two waves of hematopoiesis occur during
embryonic development. First, a primitive wave, independent of HSPCs?, in which primitive
erythrocytes and myeloid cells are produced. The main function for the primitive wave
is production of red blood cells that facilitate oxygenation, which is required because
the embryo is growing quickly. This is followed by a definitive wave in which HSPCs

are generated. Cells differentiate into separate blood lineages and colonize the adult
hematopoietic organs. These processes take place in all vertebrates in a similar manner,
although small differences have been observed between species.

In zebrafish, HSPCs emerge from the ventral wall of the dorsal aorta (VDA), then migrate to
the caudal hematopoietic tissue (CHT) where they mature and then migrate to the thymus
and whole kidney marrow (WKM). The definitive wave starts in zebrafish around 32 hours
post fertilization (hpf) with the emergence of HSPCs from a subpopulation of endothelial
cells in the VDA *>. After emerging from the VDA, HSPCs migrate to the CHT®, where they
expand and mature over the course of approximately two days, resulting in an increase in
HSPC numbers’. At around 4 dpf, HSPCs begin to seed the WKM, where they remain, self-
renew, and differentiate to produce blood for the rest of the lifespan of the zebrafish 8.

Our understanding of early hematopoiesis in the zebrafish is mainly derived from in vivo
live imaging. Unique properties of the zebrafish model organism facilitated pioneering
imaging experiments due to the optical transparency during embryonic development.

A variety of transgenic zebrafish lines have been generated, which mark specific cell
populations through use of tissue-specific promoters driving expression of fluorescent
proteins. HSPCs can be followed using transgenic lines expressing a fluorescent protein
under HSPC-specific promotors, such as c-myb, cd41 and runx1 °>*2. When combined with
endothelial transgenic markers, such as kdrl, HSPCs can be imaged when they start to
emerge from the VDA #>3, The past years we have gained an increasing understanding of
how HSPCs are established and how they produce blood for a lifetime, but we are still far
away from a complete understanding of how HSPCs are formed, how they are maintained
and how they manage to produce blood of all lineages for the rest of the lifetime of the
organism.

Here, we used single cell RNA sequencing to investigate RNA expression in cd41"°% HSPCs
and a kdrl-positive subpopulation during embryonic development. Furthermore, we
used live imaging to investigate the fate of this subpopulation and an in vitro functional
assay to show a shift in potential of cd41'°" HSPCs between embryonic development and
adulthood.
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Results

Flow cytometry reveals the existence of both kdrl/cd41°" and cd41"" cells in the CHT of 5dpf
old embryos.

The transgenic tg(cd41:eGFP) line is widely used to visualize developing HSPCs in the
zebrafish embryo >'4%5, as these embryos express low levels of GFP (cd41"°") in HSPCs *°,
These low levels of GFP are easily distinguished from the high levels of GFP (cd41"") in
thrombocytes in this transgenic line °. Often tg(cd41:eGFP) embryos are combined with an
endothelial line tg(kdrl:mCherry-CAAX) to visualize nascent HSPCs derived from hemogenic
endothelium. Intuitively, kdrl-positive cells are the origin of HSPCs, as the kdrl marker is
carried over from the endothelial cells where they derived from. Cells from CHTs of 5 dpf
old tg(kdrl:mCherry-CAAX/cd41:eGFP) embryos were subjected to FACS sorting, selecting
for expression of both markers. We observed that there was not only a population of
cd41"°¥ HSCPs, as expected, but also a population of kdrl/cd41'°" HSPCs (figurel). Cd41""
HSPCs were more abundant than kdrl/cd41'°* HSPCs. Note that gating of the FACS was
chosen such that cd41"e" cells were not selected at all (figure 1).

5 dpf CHT

105 p5 Yoo+ p9

0 102 10° . 10* 10°
GFP (488nm)

Figure 1. Flow cytometry reveals the existence of both kdrl/cd41°" and cd41" in the CHTs of 5 dpf old
tg(kdrl:mCherry-CAAX/cd41:eGFP) embryos. CHTs of wildtype embryos (5dpf, ~500) were sorted for kdrl/cd41'"
expression, dissected, pooled, dissociated and submitted to FACS sorting. Final FACS gating for sorting after
selecting only single, viable cells. P8= negative cells, p6=cd41"" cells, p5=kdrl cells, p9=kdrl/cd41"" cells.
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Loss of kdrl marks the shift from embryonic to adult HSPCs

SCRNA seq reveals distinct differentiation fates of kdrl/cd41°" and cd41" cells in the CHT of
5 dpf old embryos.

To investigate transcriptomic differences between kdrl/cd41"" and cd41'°¥ HSPC
populations, we sorted kdrl+/cd41" and cd41"" cells from the CHTs of 5 dpf old embryos
from the double transgenic tg(kdrl:mCherry-CAAX/cd41:eGFP) background. The CHTs of
~500 embryos were isolated by dissection at 5 dpf and then pooled. The cells were then
dissociated and sorted for kdrl+/cd41"° or only cd41"" expression using FACS, after which
the SORT-Seq protocol was performed *7. Of the 747 cells in total, 527 cells remained
after filtering. RacelD3 was used for differential gene expression analysis and clustering
of the cells *® (figure 2). The resulting t-SNE map highlighted particular cell types, in line
with recent scRNA-seq studies of hematopoietic organs of zebrafish 2%, which expressed
validated hematopoietic lineage markers (table S1). Kdrl/cd41'" cells had an uneven
distribution over cluster 1 and 2. In cluster 1, kdrl/cd41"" cells were overrepresented
compared to cd41°" cells, whereas they were underrepresented in cluster 2. Cd41"°" cells
had the opposite uneven distribution (Fisher’s exact test, p<0.001). Cells from cluster

3 were evenly distributed between kdrl/cd41"" and cd41'" cells (p=0.11) (figure 2 b,c).
Cells in cluster 1 expressed myeloid progenitor-related genes, such as runx3, pu.1 (also
known as spilb) and cebpb * (figure 2 d). Cluster 2 is characterized by cells expressing
genes related to thrombocyte/erythrocyte progenitors (TEP) (gatala, kif1'>%) (figure 2 f).
Cells in cluster 3 express genes indicative of HSPCs, including c-myb, pmp22b and her6,
consistent with expression in mammalian HSCs and zebrafish HSPCs °2%2227 (figure 2 e).
All markers that were used to identify clusters are listed in table S1 %, the distribution of
expression of selected markers is depicted in t-SNE maps or using violin plots (figure 2d-i)
and upregulated genes per cluster (in descending order, with fold change >1 and p<0.01)
is listed in table S2. These data indicate that kdrl/cd41'" cells might have the tendency to
differentiate slightly more towards common myeloid progenitors, whereas cd41'" cells
might have a more thrombocyte/erythrocyte progenitor cell fate. Despite the apparent
difference in cell fates between kdrl/cd41'" cells and cd41'" cells, the HSPC cluster did not
show a significant difference based on these two markers, suggesting that both cell types
have similar capacities to produce HSPCs.

Imaging of Kdrl/cd41" and cd41"" cells in the CHT

To verify the FACS results that the CHT contains both kdrl/cd41"" and cd41'°* HSPC
populations, the CHTs of 48 hpf and 5 dpf old wild type zebrafish embryos in the
tg(kdrl:mCherry-CAAX/cd41:eGFP) background were imaged. At both timepoints kdrl/
cd41"°¥ and cd41"°v positive cells were present in the CHT (figure 3 a,b). Our scRNA-seq
data indicated that the cell fates of kdrl/cd41'" and cd41"* cells were distinct. Kdrl/
cd41"°" positive HSPCs were more myeloid progenitor oriented and cd41"" positive HSPCs
more thrombocyte/erythrocyte progenitor oriented. Next, we used the double transgenic
tg(gata:dsRED/kdrl:eGFP) line, marking erythrocytes (gata) and endothelial cells (kdrl).
The more myeloid fate of kdrl/cd41'" cells would suggest that in tg(gata:dsRED/kdrl:eGFP)
embryos we would not expect any double positive cells. As expected, we observed no
gata/kdrl positive cells in the CHT of 5 dpf old embryos (figure 3 c). In double transgenic
tg(gata:dsRED/cd41:eGFP) embryos, we expected gata/cd41"°" positive cells, because
cd41"°" positive cells had a more thrombocyte/erythrocyte progenitor fate. Indeed, we
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Figure 2. scRNA seq reveals CMP and TEP fates, respectively in kdrl/cd41'" and cd41'" HSPCs. CHTs of
wildtype embryos (5dpf, ~500) were dissected, pooled, dissociated, FACS sorted and submitted to SORT-seq.

(a) Visualization of k-medoid clustering and cell-to-cell distances using t-SNEs. Each dot represents a single

cell. Colors and numbers indicate cluster and correspond to colors in b. In total 527 cells are shown. (b) The
percentage of kdrl/cd41™" or cd41"" cells from the different clusters. Fisher’s exact test with multiple testing
correction (Fdr) were used for statistical analysis ***p<0.001. (c) t-SNE map highlighting the distribution of kdrl/
cd41" or cd41"" cells. (d-f) t-SNEs maps highlighting the expression of marker genes for each of the different
cell types found. Transcript counts are given in a linear scale. (g-i) Normalized expression of signature genes for
cluster identities using violin plots. Normalized expression value is plotted on a log10 scale. Common myeloid
progenitors (CMP), hematopoietic stem/progenitor cell (HSPCs), Thrombocyte/erythrocyte progenitors (TEP).
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found gata/cd41'" positive cells in the CHT of 5 dpf old embryos (figure 3 d). This further
strengthens the finding that two populations of HSPCs might be distinguished based on
the kdrl and cd41 markers, with one being oriented towards the myeloid progenitor fate,
whilst the other is more oriented towards a thrombocyte/erythrocyte progenitor fate.

Figure 3. Live imaging of embryos with various transgenic backgrounds. (a,b) CHTs of tg(kdrl:mCherry-CAAX/
cd41:eGFP) 48 hpf (a) or 5 dpf (b) old embryos. The vasculature is highlighted in red (mCherry) and GFP'** HSPCs
are highlighted in green. (c) CHTs of tg(gata:dsRED/Kdrl:eGFP) of 5 dpf old embryos. Vasculature is highlighted in
green (GFP) and blood cells are highlighted in red (dsRED). (d) CHTs of tg(gata:dsRED/CD41:eGFP). Blood cells are
highlighted in red (dsRED) and GFP"" HSPCs are highlighted in green. Yellow arrowheads indicate double positive
cells, white arrowheads indicate single positive cells. Scale bar is 30 um.

In vitro kdrl/cd41"°" cells, but not cd41"°" cells from 5dpf old CHTs differentiated into different
lineages

To further investigate functional differences between kdrl/cd41°" and cd41'°* HSPCs, we
used an in vitro clonal differentiation assay, the colony forming unit assay (CFU-assay). Cells
from the CHT of 5 dpf old embryos in the tg(kdrl:mCherry-CAAX/cd41:eGFP) background
were first selected for expression of the two markers, then dissected, dissociated and
sorted for kdrl/cd41'", cd41'°v, kdrl-positive and negative expression (figure 1). Cells were
then plated in a semi-solid medium and cultured for several days in the presence of growth
factors specific for either an erythroid or myeloid lineage 2. We noticed that kdrl/cd41'°
HPSCs from the CHTs of 5 dpf old embryos gave rise to significantly more colonies in both
the erythroid lineage as well as the myeloid lineage compared to kdrl-positive, cd41'°* and
negative cells (p<0.05) (figure 4 a-d). Moreover, cd41"°" cells gave rise to significantly more
colonies compared to negative cells in both conditions (p<0.05) (figure 4 c, d). However
only when differentiated to a myeloid fate the number of colonies from cd41'" cells was
significantly different from kdrl-positive cells (p<0.01) (figure 4 d). In both conditions, kdrl-
positive cells gave rise to a similar number of colonies as negative cells (p=ns) (figure 4 c,
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d). All comparisons are listed in table S3. These data suggest that at 5 dpf kdrl/cd41"" cells
are the main population of cells with the ability to give rise to colonies. Cd41°" cells do
have the ability to give rise to some colonies, but to a significantly lesser extent than the
kdrl/cd41"" double positive cells.
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Figure 4. kdrl/cd41'" cells are the main HSPCs population with the ability to differentiate into different lineages
at 5 dpf. (a,b) Representative images of colonies grown in methylcellulose for 2 or 5 days in the presence of Epo
for an erythroid lineage (a), or Gesfa and Gesfb for myeloid lineages (b). Colonies developed from kdrl/cd41""

or cd41°¥ cells from the CHT at 5dpf from embryos in the tg(kdrl:mCherry-CAAX/cd41:eGFP) background. (c,d)
Quantification of colony numbers from 2 different experiments from kdrl/cd41'°" or cd41' cells from CHTs of
5dpf old embryos. Scale bar is 50um. White arrowheads indicate colonies. Error bars represent standard error of
the mean (SEM). Ns non-significant, *p<0.05, **p<0.01, ***p<0.001, one-way ANOVA complemented by Tukey
HSD test. For all comparisons see table S1.

Kdrl/cd41"°" and cd41° HSPCs exist in adult WKM, with cd41"° HSPCs having the ability to
differentiate into different lineages

Next, we wondered whether kdrl was still a marker for adult HSPCs and whether kdrl and
cd41 together mark HSPCs in the adult WKM. To investigate this, we used FACS to isolate
kdrl/cd41"" and cd41' cells from adult whole kidney marrow (WKM), the site of adult
hematopoiesis & from tg(kdrl:mCherry-CAAX/cd41:eGFP) fish. Double positive kdrl/cd41'
cells were indeed isolated, indicating that in the adult blood producing organ, these cells
persist, although in much fewer numbers than cd41"°" HSPCs (figure 5 a). To investigate
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whether the kdrl/cd41"°" and cd41"" cells were functional HSPCs, we performed CFU-
assays in a similar manner as described above for 5 dpf embryos, but used adult WKM
tissue as source of HSPCs. Surprisingly, only cd41'" cells gave rise to significant colony
formation of both the erythroid and myeloid lineages (figure 5 b-d).

Double positive kdrl/cd41"¥ cells, single positive kdrl cells and negative cells did not lead
to significant colony formation (figure 5 b-d). All comparisons are listed in table S3. These
results indicate that in adult zebrafish, cd41"" cells represent the only population that
has the capacity to give rise to colonies. This suggests that a shift takes place from the
embryonic phase to the adult phase. First, double positive kdrl/cd41'"* HSPCs form the
main population of HSPCs that are able to differentiate into different lineages, and later,
during adulthood, single positive cd41'" HSPCs take on this role.

Discussion

We used zebrafish in a tg(kdrl:mCherry-CAAX/cd41:eGFP) background to isolate cd41'"
HSPCs from the CHTs of 5 dpf old embryos. Surprisingly, we also found kdrl/cd41'"

HSPCs in the CHT of 5 dpf old embryos (figure 1). This is interesting, as only cd41'°¥ is
normally used to mark HSPCs at this stage %43, Using scRNA sequencing we characterized
transcriptional differences between kdrl/cd41"°* and cd41'°* HSPCs in 5 dpf old embryos.
Kdrl/cd41"°% and cd41'" HSPCs did not show distinct differences at their most stem cell
like state, but, unexpectedly, showed distinct differentiation capabilities in our scRNA
sequence dataset. It seems that kdrl/cd41'°¥ HSPCs have a more myeloid progenitor fate,
whereas cd41'°% HSPCs have a more thrombocyte/erythrocyte progenitor fate (figure 2).
Functional analyses using CFU assays indicated that kdrl/cd41'" cells and to a much lesser
extent cd41' cells give rise to colonies. Surprisingly, colonies formed to a similar extent
under conditions that favor myeloid cells as that favor erythroid cells, despite the apparent
difference in cell fate observed by scRNAseq (cf. figure 2 and 4). The discrepancy with our
scRNA sequencing data might be due to the sensitivity of the in vitro assay, in that the
results of the scRNA sequencing data might be too subtle to pick up. Another explanation
is that the potential to differentiate in either direction is present in kdrl/cd41" cells and
exogenous factors in the CFU assay drive colony formation under both conditions. In vivo,
lower concentrations of these factors or other factors may be involved in determining the
fate of HSPCs 73122,

In adults, we also observed both kdrl/cd41" and cd41'" cells, albeit the proportion of
kdrl/cd41'" was greatly reduced. The CFU assay using adult kdrl/cd41°" and cd41"" cells
showed that predominantly the cd41"°" cells formed colonies. Again, colonies formed
under conditions that favor either myeloid or erythroid cells (figure 5). It has been shown
before in adult hematopoietic tissue that cd41 is not only expressed in HSPCs (cd41'°*) and
thrombocytes (cd41Me"), but also in erythroid and myeloid lineages, in both zebrafish and
mice >*>3334 This might explain why cd41'" cells gave rise to multiple lineages. Our results
suggest that kdrl/cd41"" cells represent colony forming stem cells in embryos, whereas
cd41"" cells that do not express kdrl have this capacity in adults.
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Loss of kdrl marks the shift from embryonic to adult HSPCs

As cd41 is expressed in both myeloid and erythroid lineages, it is possible that we captured
these cells and that another mechanism is responsible for the different lineages we

find in our scRNA sequencing data. It has been shown in mice that the fate of common
myeloid-erythroid progenitors to become either megakaryocyte/erythroid progenitors

or myeloid progenitors is dependent on relative levels of GATA1 and PU.1 (reviewed in

). Overexpression of GATA1 leads to reprogramming of myeloid cells into erythroid and
megakaryocytic differentiation 3¢, and overexpression of PU.1 represses erythropoiesis

and promotes myeloid differentiation in erythroid lineages *’. In zebrafish, loss of gatal
transforms primitive blood precursors into myeloid cells at the expense of erythrocytes

3 indicating a similar mechanism as in the previously described studies. Another study

in mice suggests that within the HSC population (Lin-,Scal+,cKit+, LSK), CD41 marks

the earliest common myeloid progenitors, as opposed to the orginal common myeloid
progenitor which resides outside of the LSK fraction, and inititiates the priming of both
GATA1 and PU.1 transcription factors in early hematopoiesis *°. It would be interesting to
perform a differential gene expression comparison by scRNA seq between cd41"¥ cells and
kdrl/cd41'v cells from adult WKM, which would allow us to compare the levels of gatal
and pu.1 and many other genes in our dataset.

Recently, scRNA sequencing has been widely used to study the process of HSPCs
differentiation, using various transgenic zebrafish lines. Athanasiadis et al. used 8 different
transgenic lines to capture the whole differentiation continuum in adult WKM tissue,
which resulted in a differentiation lineage tree, based on transcriptional changes. Even
though global transcriptional changes before and after the branching point are continuous,
the probability of HSPCs transitioning to either erythroid, monocytic, neutrophilic or
thromboid state is determined only by a subset of highly relevant genes *°. Xue et al.
showed that the lineage-restricted process that HSPCs undergo in the adult WKM also
takes place in the CHT, based on subclustering of HSPCs into different lineage fates .
These results are consistent with our results, where we observed subtle differentiation
states within the HSPCs population. We suggest that HSPCs that already tend towards

a more myeloid fate might be distinguished by the kdr/ marker in addition to cd41""
expression.

In the context of cd41'°" HSPCs with and without kdrl, it would be interesting to speculate
about long-term HSPCs and short-term HSPCs. Long term-HSCs are quiescent, whereas
short-term HSCs proliferate more . The kdrl/cd41°" HSPCs may represent the short-term
HSPCs, as these HSPCs proliferate quickly in the CHT during embryonic development, after
which they migrate to the adult hematopoietic organs. During adulthood, only the long-
term cd41'°" HSPCs survive and are responsible for the production of blood for the rest of
the lifespan of the zebrafish. Future work should focus on analysis of cell proliferation of
cd41"° and kdrl/cd41"" cells in adult WKM to verify the proliferative state of these two
groups of cells. In addition, scRNA seq of cd41"" and kdrl/cd41"" cells from adult WKM
may provide insight into differences of these two groups of cells and into differences with
embryonic HSPCs. Investigating the regulatory mechanism underlying the two different
cd41"°" populations at different stages will further expand our knowledge about HSPCs
and may provide insight into short- and long-term HSPCs. Eventually, these insights may
contribute to development of efficient stem cell-based therapies 394,
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Methods

Ethics statement

All animal experiments described in this manuscript were approved by the local animal
experiments committee (Hubrecht Institute: Koninklijke Nederlandse Academie van
Wetenschappen-Dierexperimenten commissie) and performed according to local
guidelines and policies in compliance with national and European law.

Zebrafish husbandry

Tg(kdrl:eGFP)*, tg(cd41:eGFP)° and gatal:dsRED?® were maintained according to FELASA
guidelines, outcrossed, raised and staged as described ****. When needed embryos were
grown in phenylthiourea (PTU)-containing medium (0.003%, v/v) to block pigmentation.

Confocal microscopy

All confocal imaging was performed on a Leica SP8 confocal microscope (Leica
Microsystems). Embryos were mounted in 0.7% low-melting agarose. Live embryos were
anesthetized in MS-222. CHTs at 5dpf were imaged using a 40x objective and z-stack step
size of 2 um. AGMs at 36 hpf were imaged using a 20x objective and z-stack step size of
2um. Imaris (Bitplane) was used to reconstruct 3D images.

Flow cytometry

Whole kidney marrows (WKMs) from adult zebrafish in the tg(kdrl:mCherry-CAAX/
cd41:eGFP) background were dissected and collected in PBS supplemented with 5% FBS.
The tissue was mechanically dissociated and filtered through a 70um and 40um filter.
Cell pellet was resuspended in PBS supplemented with 5% FBS and 0.5ug/ml (DAPI) 4B6-
diamidino-2-phenylindole. Cells with kdrl*, cd41', kdrl*/cd41'" signal and negative cells
were subjected to FACS using a BD FACS Ariall and BD FACS Fusion.

Embryos (5 dpf) in the tg(kdrl:mCherry-CAAX/cd41:eGFP) background were first sorted for
expression of both kdrl and cd41 expression, then CHTs were dissected and collected in
Leibovitz-medium (L15). After washing with PBSO, CHTs were deyolked with calcium-free
Ringerfls solution (116mM NacCl, 2.9mM KCl and 5 mM HEPES) and cells were dissiociated
with TrypLE (Gibco) for 45 minutes at 32°C. The resulting cell suspension was washed with
PBSO and resuspended in PBSO supplemented with 5% FBS and 0.5ug/ml DAPI and passed
through a 40um filter. DAPI staining was used to exclude dead cells. Cells with kdrl*/cd41""
and kdrl-/cd41'" signal were subjected to FACS using a BD FACS Ariall and BD FACS Fusion

28
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Colony Forming Unit assay

Cells from either WKM or 5dpf CHT were isolated by flow cytometry as described above.
900ul of solution containing 1000 cells in media, which was prepared as described %, and
100 ng/ml granulocyte colony stimulation factor a and b (gcsfa, gesfb) or erythropoietin
(epo) (gift from the Petr Bartunek lab, Institute of Molecular Genetics, Academy of
Sciences of the Czech Republic v.v.i Prague) was plated per well of a 24 well plate in
duplicate. Cells were grown in humidified incubators at 32°C, 5% CO2. Colonies were
imaged and enumerated using EVOS microscope (Thermo Fisher Scientific after 2 or 5 days
for myeloid or erythoid lineages, respectively.

SCRNA-seq with SORT-seq

Single cell RNA sequencing was performed by Single Cell Discoveries BV (Utrecht, The
Netherlands), according to an adapted version of the SORT-seq protocol 7, with adapted
primers described in *. In short, single cells were FACS sorted as described above, in
384-well plates containing 384 primers and Mineral oil (Sigma). After sorting, plates were
snap-frozen on dry ice and stored at -80°C. For amplification cells were heat-lysed at 65°C
followed by cDNA synthesis using the CEL-seq2 protocol*® and robotic liquid handling
platforms. After second strand cDNA synthesis, the barcoded material was pooled into
libraries of 384 cells and amplified using IVT. Following amplification, the rest of the CEL-
seq2 protocol was followed for preparation of the amplified cDNA library, using TruSeq
small RNA primers (lllumina). The DNA library was paired-end sequenced on an lllumina
NextseqTM 500, high output, with a 1x75bp lllumina kit (R1:26 cycles, index read 6 cycles,
R2:60 cycles).

Data analysis of sScRNA-seq

During sequencing, Read1 was assigned 26 base pairs and was used for identification of
the lllumina library barcode, cell barcode and unique molecular identifier (UMI). Read2
was assigned 60 base pairs and used to map to the reference transcriptome of Zv9 Danio
rerio. Data was demultiplexed as described in #’. Single cell transcriptomics analysis was
done using the RacelD3 algorithm, following an adapted version of the RacelD manual
(https://cran.r-project.org/web/packages/RacelD/vignettes/RacelD.html) using R. In
total 747 cells were sequenced for the datasets. After removing cells with less than 1500
UMIs and only keeping genes that were detected with at least 5 UMlIs in 5 cells, 527 cells
were left for further analysis. The number of initial clusters was set at 3 after careful
consideration %, Differential gene expression analysis was done as described in 7 with an
adapted version of the Deseq .

Data sharing

For original data, please contact j.denhertog@hubrecht.eu.

scRNA data are available at GEO under accession number GSE173100
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table S1. Marker genes

Loss of kdrl marks the shift from embryonic to adult HSPCs

Cluster/Cell type Gene ENSDARG

hmbsb ENSDARGO00000055991

prdx3 ENSDARG00000032102

urod ENSDARGO00000006818

Thrombocyte/erythrocyte | uros ENSDARG00000027491

progenitors tubb1 ENSDARGO0O0000053066

klf1 ENSDARGO00000017400

gatala ENSDARG00000013477

epb41b ENSDARG00000029019

alas2 ENSDARG00000038643

cahz ENSDARGO00000011166

hbbe2 ENSDARG00000045143

Erythrocyte progenitors

hbae3 ENSDARGO00000079305

rhag ENSDARGO00000019253

epor ENSDARGO00000090834

myb ENSDARGO0000053666

heré ENSDARG00000006514

ahcy ENSDARGO00000005191

pmp22b ENSDARGO00000060457

ncl ENSDARGO00000002710

adh5 ENSDARGO00000080010

hmgala ENSDARG00000028335

HSPCs fbl ENSDARGO00000053912

mycb ENSDARG00000007241

dkcl ENSDARGO00000016484

pes ENSDARG00000018902

meis1b ENSDARG00000012078

tall (scl)(Davidson & Zon ENSDARG00000019930

2004)

gata2b ENSDARG00000009094

HSPCs gfilaa ENSDARGO00000020746
adgrg1 ENSDARG00000027222_
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Cluster/Cell type Gene ENSDARG
crema ENSDARG00000023217
itm2bb ENSDARGO00000041505
runx3 ENSDARG00000052826
cebpb ENSDARGO00000042725
Myeloid progenitor cxcrdb ENSDARG00000041959
zfp36lla ENSDARG00000016154
corola ENSDARGO00000054610
nr4a3 ENSDARGO00000055854
pu.1 (spilb) ENSDARG00000000767
cpas ENSDARG00000021339
lect2] ENSDARG00000033227
npsn ENSDARG00000010423
sms ENSDARGO00000008155
Neutrophil progenitor abcb9 ENSDARGO00000056200
ch25h12 ENSDARG00000038728
mpx ENSDARG00000019521
lyz ENSDARG00000057789
srgn ENSDARGO0O0000077069
mmp9 ENSDARGO00000042816
marco ENSDARG00000059294
ctss2.2 ENSDARGO00000013771
mfap4 ENSDARG00000090783
marcklsla ENSDARGO00000039034
Monocyte progenitor ctsba ENSDARGO00000055120
cxcr3.3 ENSDARGO0000070669
timp2b ENSDARGO00000075261
Ilgmn ENSDARGO00000039150
ndrgla ENSDARGO00000032849
edn2 ENSDARG00000017255
efnalb ENSDARG00000018787
EHT markers cdh5 ENSDARGO00000075549
krt18 ENSDARGO00000018404
krt8 ENSDARGO00000058358
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Cluster/Cell type Gene ENSDARG
dab2 ENSDARG00000031761
serpinhlb ENSDARGO00000019949
anxa2a ENSDARGO00000003216
EHT markers ctsla ENSDARGO0000007836
hapinlb ENSDARG00000068516
clic2 ENSDARGO00000010625
cd81a ENSDARGO00000036080

tiel ENSDARG00000004105
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table S2. Upregulated genes 5 dpf old embryos

1 2 3
ENSDARG00000057789_lyz ENSDARG00000087390_hbbel.3 ENSDARG00000082180
ENSDARG00000010423_npsn ENSDARG00000089124_hbael.3 ENSDARG00000058337

ENSDARG00000019521_mpx

ENSDARG00000079305_hbae3

ENSDARG00000014329_npm1la

ENSDARG00000042816_mmp9 ENSDARG00000011166_cahz ENSDARG00000080337_
AC024175.4

ENSDARG00000075664 _si:ch1073- | ENSDARG00000038643_alas2 ENSDARG00000084962

429i10.1

ENSDARG00000012395_mmp13a ENSDARG00000089475_hbael ENSDARG00000096145

ENSDARG00000077069_srgn

ENSDARG00000045143_hbbe2

ENSDARG00000060457_pmp22b

ENSDARG00000023188_Icpl

ENSDARG00000077504 _si:ch211-
103n10.5

ENSDARG00000041895_cad

ENSDARG00000044129_
FP015823.1

ENSDARG00000089963_hbbel.1

ENSDARG00000043317_kita

ENSDARG00000077777_tmsb4x

ENSDARG00000088330_
AL935210.1

ENSDARG00000070212

ENSDARG00000021339_cpa5

ENSDARG00000055991_hmbsb

ENSDARG00000006514_her6

ENSDARG00000033227_lect2|

ENSDARG00000006818_urod

ENSDARG00000012820_nop56

ENSDARG00000054610_corola

ENSDARG00000042310

ENSDARG00000082753_
AC024175.17

ENSDARG00000006029_Itadh

ENSDARG00000012881_slc4ala

ENSDARG00000016484 _dkcl

ENSDARG00000027063_arpclb

ENSDARG00000045144_hbz

ENSDARG00000053666_myb

ENSDARG00000026829_cotl1

ENSDARG00000026655_tspo

ENSDARG00000028323

ENSDARG00000091038

ENSDARG00000096667_si:dkey-
25016.2

ENSDARG00000062138_ranbp10

ENSDARG00000042725_cebpb

ENSDARG00000053066_tubbl

ENSDARG00000022410_rrp12

ENSDARG00000004034_arhgdig

ENSDARG00000090689_hbbe1.2

ENSDARG00000077264_wdr43

ENSDARG00000079736 ENSDARG00000029019_epb41b ENSDARG00000030789_ddx18
ENSDARG00000095351_ ENSDARG00000008840_hmbsa ENSDARG00000031756_mef2aa
CU914776.2

ENSDARG00000041959_cxcrdb

ENSDARG00000030490_sptb

ENSDARG00000055868_rsl1d1

ENSDARG00000035326_nccrpl

ENSDARG00000057206_nmt1b

ENSDARG00000002710_ncl

ENSDARG00000070398

ENSDARG00000023713_agpla.1l

ENSDARG00000041088

ENSDARG00000008155_sms

ENSDARG00000034852_nt5c2l1

ENSDARG00000043126_blf

ENSDARG00000093124_scpp8

ENSDARG00000006260_tubasl4

ENSDARG00000036549_agpat3

ENSDARG00000058348_scinlb

ENSDARG00000045142_hbae5

ENSDARG00000030441_ppalb

ENSDARG00000014348_stk17b

ENSDARG00000020890_tmod4

ENSDARG00000053912_fbl
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1 2 3

ENSDARG00000041524 ENSDARG00000025200 ENSDARG00000073850_hdac7b
ENSDARG00000031153 ENSDARG00000017400_klIf1 ENSDARG00000040503_sb:cb81
ENSDARG00000095556_ ENSDARG00000044212_ ENSDARG00000007241_mycb
CR318588.4 CR735126.1

ENSDARG00000063295_myh9a

ENSDARG00000027491_uros

ENSDARG00000087504

ENSDARG00000086337_si:dkey-
102g19.3

ENSDARG00000018461_zgc:56095

ENSDARG00000045776_cnbpa

ENSDARG00000068784_VSIR

ENSDARG00000013110_dmtn

ENSDARG00000018902_pes

ENSDARG00000086869 ENSDARG00000008678_snx3 ENSDARG00000043304_nop2

ENSDARG00000071437_ptprc ENSDARG00000052815 ENSDARG00000005191_ahcy

ENSDARG00000088091_pfnl ENSDARG00000054929_ ENSDARG00000033440_metapl
zgc:110540

ENSDARG00000090730_
zgc:158446

ENSDARG00000002790_ap2m1la

ENSDARG00000039887_clqgbp

ENSDARG00000025147_cd63

ENSDARG00000025350_prdx2

ENSDARG00000076526_garl

ENSDARG00000056600_papss2b

ENSDARG00000009315_clgn

ENSDARG00000016548_eifSb

ENSDARG00000038458 ENSDARG00000032102_prdx3 ENSDARG00000070670_crip2
ENSDARG00000017653_rgs13 ENSDARG00000088554 ENSDARG00000070228_cdké
ENSDARG00000055186_ccr9a ENSDARG00000015551_fthla ENSDARG00000017568
ENSDARG00000039884 ENSDARG00000004926 ENSDARG00000014123

ENSDARG00000058593_sri

ENSDARG00000010792_cdc25b

ENSDARG00000056186_eif5a2

ENSDARG00000037870_actb2

ENSDARG00000023330_anp32b

ENSDARG00000060065_ubap2b

ENSDARG00000032868_pde4ba

ENSDARG00000008333_znfl2a

ENSDARG00000052480_pdcd11

ENSDARG00000089706_ANPEP

ENSDARG00000054447_slc29alb

ENSDARG00000014587_slc38a5b

ENSDARG00000002021_pygh

ENSDARG00000042894_tyms

ENSDARG00000014591 _ilf2

ENSDARG00000075989_arpc2

ENSDARG00000038792_kIf17

ENSDARG00000023290_fabp3

ENSDARG00000041505_itm2bb

ENSDARG00000068822_purba

ENSDARG00000056160_hspd1

ENSDARG00000039007_eno3

ENSDARG00000035423

ENSDARG00000010246_prmt1

ENSDARG00000007769_sult5al

ENSDARG00000003462_fech

ENSDARG00000056167_hspel

ENSDARG00000026350_wasb

ENSDARG00000071697_zgc:66433

ENSDARG00000078691_gigyfl

ENSDARG00000010556_
CABZ01030094.1

ENSDARG00000093572_lamc3

ENSDARG00000039578_pa2g4a

ENSDARG00000038010_rac2

ENSDARG00000058725_rfesd

ENSDARG00000010194_eif4bb

ENSDARG00000020929_fam49ba

ENSDARG00000038097_pigq

ENSDARG00000096403_
CT027638.1

ENSDARG00000038728_ch25hl2

ENSDARG00000019507_mcm5

ENSDARG00000006200_eif4gla

ENSDARG00000023217_crema

ENSDARG00000040163_prim1

ENSDARG00000044220

ENSDARG00000042876_abracl

ENSDARG00000068820_h2afva

ENSDARG00000035751_ipo7
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1

2

3

ENSDARG00000068233_CD53

ENSDARG00000014013_Ibr

ENSDARG00000076532_si:ch211-
222121.1

ENSDARG00000076562

ENSDARG00000020944_ezra

ENSDARG00000070657_pa2gdb

ENSDARG00000056200_abch9

ENSDARG00000075180_tmem14ca

ENSDARG00000021702_pdcd4a

ENSDARG00000018283_cyba

ENSDARG00000058226_ak3

ENSDARG00000011125_snrpb

ENSDARG00000074656_ctss2.1

ENSDARG00000055498_si:ch1073-
184j22.1

ENSDARG00000008109

ENSDARG00000033735_ncfl

ENSDARG00000020442_snx5

ENSDARG00000016173_cct3

ENSDARG00000058225_arpc4l

ENSDARG00000087554_cdk1

ENSDARG00000019253_rhag

ENSDARG00000000767_spilb

ENSDARG00000074581_add2

ENSDARG00000070083_atp5b

ENSDARG00000043257_ckbb

ENSDARG00000024295_slc11a2

ENSDARG00000052856_khdrbsila

ENSDARG00000059110

ENSDARG00000043493_cltca

ENSDARG00000013351_cirbpb

ENSDARG00000058647_hck

ENSDARG00000043665_gIrx5

ENSDARG00000028335_hmgala

ENSDARG00000071491_nrros

ENSDARG00000014017_rrm1

ENSDARG00000009447_atp5g3b

ENSDARG00000016939_itgh2

ENSDARG00000017864

ENSDARG00000010149_atp5al

ENSDARG00000058858

ENSDARG00000077620_cdca7a

ENSDARG00000029150_hsp90ab1

ENSDARG00000012987_gpia

ENSDARG00000045618_clta

ENSDARG00000059654_eif3ba

ENSDARG00000035652_satla.1

ENSDARG00000022934

ENSDARG00000015862_rpl5b

ENSDARG00000015343_pgd

ENSDARG00000085091

ENSDARG00000030602_rps19

ENSDARG00000057882_arpc3

ENSDARG00000043250_ppm1ab

ENSDARG00000011201_rplp2!

ENSDARG00000078547_si:ch211-
264f5.2

ENSDARG00000058471_plk1

ENSDARG00000011405_rps9

ENSDARG00000035018_thy1

ENSDARG00000042533_gstm.1

ENSDARG00000056119_eeflg

ENSDARG00000062049_hmhalb

ENSDARG00000057432

ENSDARG00000039641

ENSDARG00000055276_rel

ENSDARG00000086112_si:ch211-
266i6.3

ENSDARG00000036074 _cebpa

ENSDARG00000059473_kank4

ENSDARG00000075748_NCKAP1L

ENSDARG00000020504_h3f3b.1

ENSDARG00000002131_celf2

ENSDARG00000093182_eif2akl

ENSDARG00000034427_hn1l|

ENSDARG00000040485_dfnaSb

ENSDARG00000088283_si:ch73-
248e21.5

ENSDARG00000077383_anxalla

ENSDARG00000078092_limd2

ENSDARG00000076590_atad2

ENSDARG00000052656_si:ch211-
193e13.5

ENSDARG00000043137_cdca8

ENSDARG00000021113_ptmaa

ENSDARG00000038066_kpna2

ENSDARG00000017298

ENSDARG00000002659_maprelb

ENSDARG00000007682_ppdpfa

ENSDARG00000005454_tacc3
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2

ENSDARG00000024314_herpud1

ENSDARG00000061591_abcb10

ENSDARG00000053836_si:ch211-
284019.8

ENSDARG00000013477_gatala

ENSDARG00000037746_actbl

ENSDARG00000001558_kifcl

ENSDARG00000056615_cybb

ENSDARGO00000054155_pcna

ENSDARG00000087188_nfil3-6

ENSDARG00000071863_itgbla

ENSDARG00000055713_fmnlla

ENSDARG00000020114_slc20ala

ENSDARG00000078619_pnp5a

ENSDARG00000002194_rhd

ENSDARG00000075261_timp2b

ENSDARG00000063345

table S3. All comparisons used in the Colony Forming Unit assay.

Tukey’s multiple 5dpf erythroid 5dpf myeloid WKM erythroid WKM myeloid
comparisons test

kdrl/cd41 vs kdrl * *k ns ns

kdrl/cd41 vs cd41 * * *Axk **

kdrl/cd41 vs neg * *k ns ns

kdrl vs cd41 ns *x HoHAk *x

kdrl vs neg ns ns ns ns

cd41 vs neg * * HAAK **
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Chapter 6

The molecular program regulating hematopoiesis is a highly conserved process in
vertebrates, even though sites of hematopoiesis differ between fish and mammals,

which makes new findings in zebrafish applicable to mammalian hematopoiesis *.
Zebrafish (Danio rerio) have a number of unique advantages, such as external fertilization,
transparency during embryonic development and large numbers of eggs produced by a
single adult zebrafish pair. The combination of translucent embryos and the feasibility of
genetic modifications, including the generation of transgenic (reporter) lines as well as
knock-outs and knock-ins of genes make it possible to visualize in vivo early hematopoietic
processes ranging from following the birth of hematopoietic stem/progenitor cells
(HSPCs) to following the migratory route to the different hematopoietic organs. In the last
century, HSPCs have been the intense focus of research and we gained numerous insights
into hematopoiesis during embryonic development. The work described in this thesis
contributes to the understanding of zebrafish hematopoiesis by identifying two protein
tyrosine phosphatases (PTPs) that are necessary for normal hematopoiesis: phosphatase
and tensin homologue ten (Pten) and Src homology domain 2 containing phosphatase
(Shp2). In addition, we identified a marker that marks the shift from embryonic to adult
hematopoietic stem/progenitor cells (HSPCs) in zebrafish. Below we describe our major
findings, highlighting the roles of Pten and Shp2 in hematopoiesis.

The tumour suppressor PTEN is required for zebrafish
hematopoiesis (chapter 2)

The tumor suppressor Phosphatase and Tensin homologue Ten (PTEN) is a PTP that
counteracts phosphatidylinositol-3-kinase (PI3K) and acts upstream in the PI3K/Akt
pathway 2. In chapter 2, we demonstrated for the first time that loss of Pten results in
aberrant hematopoiesis in zebrafish. During the endothelial-hematopoietic transition
(EHT) in the aorta-gonad-mesonephros (AGM) when HSPCs emerge, embryos lacking Pten
showed apoptotic HSPCs and 50% less HSPCs than their siblings. Restoring Pten expression
or inhibiting PI3K activity during this stage rescued the emergence of HSPCs in embryos
lacking Pten expression. Surprisingly, inhibition of PI3K activity in wild type embryos
induced a similar phenotype as observed in embryos lacking Pten. This suggests that a
moderate level of PI3K activity is required during the emergence of HSPCs. Both too high
and too low activity is detrimental for emerging HSPCs.

Loss of Pten is known to lead to increased Akt signalling and increased proliferation in
tumour cells 4. There is an inversed correlation between proliferation and differentiation °.
Embryos lacking Pten expression show increased proliferation of HSPCs ¢ and subsequently,
arrested differentiation of the different blood lineages, supporting this notion.

Using single cell RNA sequencing, we observed two HSPCs clusters at the onset of
definitive hematopoiesis, one having more stem cell-like characteristics and the other
having more progenitor-like characteristics. Upon PI3K-inhibition, predominantly

the HSPCs cluster exhibiting the more stem cell-like properties was lost. It would be
very interesting to explore if a similar phenotype is observed in embryos lacking Pten
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expression. Currently this is not feasible, as mutant embryos cannot be distinguished

from their siblings at this stage. At the end of definitive hematopoiesis, PI3K inhibition
arrested differentiation, increasing HSPCs fate, in contrast to loss of Pten expression, which
showed an increased differentiation at the expense of HSPCs fate. Together, this suggests
the requirement of balanced PI3K activity to regulate the stemness of HSPCs at the end of
definitive hematopoiesis.

Overall, our results suggest that PI3K signalling controls the survival and stemness of
HSPCs. Future research should include an in-depth validation of the genes we found to
distinguish between the two HSPCs populations we observed at the onset of definitive
hematopoiesis. These genes should be validated by whole mount in situ hybridization,
quantative PCR and eventually by creating genetic knock-out zebrafish embryos or
transgenic zebrafish lines. Furthermore, research should investigate long-term and short-
term HSCs regarding the surviving HSPCs in embryos lacking Pten expression. Long-term
HSCs are quiescent, whereas short-term HSCs show increased proliferation 7. As a first
step, in vitro differentiation assays, such as colony-forming-unit assays (as described

in Chapter 3 and Chapter 4), might give additional information about self-renewal and
differentiation properties of the surviving HSPCs. Moreover, it would be interesting, but
very challenging, to perform transplantation experiments to see if the surviving HSPCs in
either embryos lacking Pten expression or embryos with inhibited PI3K signalling have the
ability to fully reconstitute hematopoiesis in lethally irradiated zebrafish 8. Transplantation
experiments are the gold standard for identifying long-term HSCs based on their ability

to self-renew and differentiate into all blood lineages in a recipient host. However, there
are a few challenges. First, enrichment of long-term HSCs is difficult, as there are few
antibodies to zebrafish cell surface proteins that reliably mark HSCs. The use of transgenic
lines that mark HSCs would be the logical step, but the genes used for these lines (for
example c-myb, runx1 or cd41) often express fluorescent proteins not only in HSCs but also
in more progenitor-like cells, making it difficult to enrich for HSCs °. Second, the immune
system fends off all foreign cells, creating a potential barrier for transplanted HSPCs. For
successfull transplantation assays the major histocompatibility genes (MHC) should be
compatible between host and donor, something that is exceedingly difficult to obtain, due
to lack of true inbred zebrafish strains 1%, Thirdly, zebrafish have multiple MHCI and MHCII
loci on different chromosomes, in contrast to mammals, resulting in unreliable predictions
after genotyping if host and donor are compatible 2,

Generating a novel zebrafish mutant of a common
Noonan Syndrome associated mutation Shp2-D61G
(chapter 3)

Src homology domain 2 (Shp2) mutations are frequently found in patients with Noonan
Syndrome (NS) and Noonan Syndrome with multiple lentigines (NS-ML) 1375, Asp61 is one
of the most commonly mutated residues in NS patients >°. Hematological defects are
observed in NS patients. Juvenile myelomonocytic leukemia (JMML)-like myeloproliferative
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diseases, which can progress into the aggressive and often fatal JIMML form (NS/JMML) 718
are observed in a proportion of NS children. In chapter 3, we generated a mutant zebrafish
line carrying a Shp2a-D61G (Asp to Gly) mutation that displayed several characteristic traits
of NS and NS-ML patients. We focused on the hematological phenotype, as we observed
an expansion of the myeloid lineage, an increased sensitivity to myeloid differentiation
factors, mild anemia and thrombocytopenia (low platelet count). The expansion of the
myeloid lineage was both observed using scRNA sequencing and in in vitro differentiation
assays and these myeloproliferative defects resemble hallmarks of JMML in human
patients. We observed an upregulation of pro-inflammatory genes in the myeloid lineage
early during differentiation, suggesting that the inflammatory response might be involved
in the onset of JIMML. High levels of cytokines, produced by myeloid cells, have been
reported in JMML patients and mouse models *2. The hematological phenotype of
Shp2P61¢ mutant zebrafish embryos was partially rescued by inhibition of inflammation.
This is especially interesting, because to date, there are no drug therapies for NS/IMML.

Overall, our results show that we were able to generate a novel zebrafish model that
displays several characteristics of NS and NS-ML patients and NS mouse models,

and notably the hematological phenotype. Our model is particularly interesting as
hematological defects in NS patients often appear at a very young age and zebrafish are
ideally suited as a tool to study defects during embryonic development 242425 Further
research should focus on the therapeutic potential of dampening the inflammatory
response by different drugs. This could be tested with an in vivo drugs screen in zebrafish
embryos for instance with a panel of inflammation inhibitors. Furthermore, research into
heart defects in NS and NS-ML patients should be performed, as these are quite common
%, The zebrafish mutant we generated did not show similar heart malformations as in NS
patients, but these mutant fish did display heart oedemas and changes in heart rate and
cardiac output. It would be interesting to see if our zebrafish mutant is a good tool to
investigate the heart defects in NS patients, especially as nowadays there are exciting new
techniques available in zebrafish to study in vivo cardiac electrophysiology ¥/, facilitating
identification of mild defects in heart function.

The role of Shp2b during zebrafish hematopoiesis
(chapter 4)

Shp2, encoded by Ptpnll, is not only important in NS and NS-ML, but is also essential
during development and is involved in several signalling pathways, such as the (ERK)/MAPK
signalling pathway, the Jak-STAT pathway and the PI3K pathway #*-*°. Moreover, Shp2

has been found to be involved in hematopoiesis, with mouse models lacking conditional
Ptpnll, showing a depleted HSC pool and defects in homing, self-renewal and survival

of HSCs 334, Zebrafish harbor two ptpni1 genes, ptpnila and ptpnl11b, both encoding
functional Shp2 proteins, Shp2a and Shp2b. In chapter 4, we investigated the role of Shp2a
and Shp2b in zebrafish embryos during hematopoiesis. Surprisingly, we found that lack

of Shp2a did not affect the ontogeny of HSPCs, but that lack of Shp2b did. The majority
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of zebrafish embryos lacking Shp2b showed disintegrating HSPCs upon emergence

from the AGM during EHT at the onset of definitive hematopoiesis. This is interesting,

as it was shown earlier that ptpnlla is abundantly expressed during all developmental
stages, whereas ptpn11b has a very low expression early on that increases to the same
levels as ptpn1la at 5 dpf *. The effect of abortive events during the onset of definitive
hematopoiesis is still seen at later stages, in that fewer HSPCs were observed to seed the
next transient hematopoietic organ. However, the surviving HSPCs did engage in all blood
lineages and we observed no differences at later stages between embryos lacking Ptpnl1lb
expression and their siblings. This is in contrast with several studies performed in mice,
where the lack of Shp2 leads to decreased differentiation towards erythroid, lymphoid and
myeloid cell fates 3¢-%,

Together, our results suggest that ptpn11b is required for normal emergence of HSPCs at
the onset of definitive hematopoiesis and that ptpnl11b mutants overcome these defects
at the end of definitive hematopoiesis. It would be interesting to investigate if lack of
ptpnllb expression shows earlier defects in hematopoiesis, for instance during the
primitive wave.

Further research should focus on the interaction between Pten and Ptpnllin
hematopoiesis in zebrafish during development. We show that both Pten (chapter 2)
and ptpn1l (chapter 4) are essential for normal hematopoiesis. In adult mice it has been
shown that Pten and Shp2 have opposite effects on myelopoiesis and leukemogenesis.
Selective loss of Pten in mice results in a long-term decline of HSCs and development

of myeloproliferative disorders, indicating a preventive role of Pten for these disorders
3940 Whereas loss of Shp2 leads to suppressed HSPCs self-renewal and differentiation
313241 dominant-activating mutations of Shp2 lead to increased risks of developing
myeloproliferative disorders >8 (see also chapter 3). When Shp2 is deleted in mice that
already lack Pten in hematopoietic cells, the effect of loss of Pten is negated and the
phenotype is rescued *2. However, these mice suffer from lethal anemia, indicating that
Pten and Shp2 cooperate in erythropoiesis *2. It would be very interesting to study in more
depth how these pathways interact with each other in zebrafish.

Loss of kdrl marks the shift from embryonic to adult
HSPCs in zebrafish (chapter 5)

It is possible to visualize HSPCs in the zebrafish embryo using fish in different transgenic
backgrounds. HSPCs are marked by several genes, such as c-myb, cd41, and runx1 ¢ and
when combined with an endothelial marker, for example kdr/, HSPCs can be followed when
they start to emerge from the AGM at the onset of the definitive wave . In chapter 5
we demonstrated for the first time that loss of the endothelial marker kdrl marks the shift
of embryonic HSPCs to adult HSPCs. In 5 dpf old zebrafish embryos expressing fluorescent
markers for cd41 (HSPCs) and kdrl (endothelial) we observed both kdrl/cd41'* and cd41'*"
HSPCs. Surprisingly, scRNA sequencing revealed transcriptional differences between kdrl/
cd41"°" and cd41'" HSPCs, not in their most stem cell-like state, but in their differentiation
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capabilities. Kdrl/cd41'°" HSPCs appeared to have a more myeloid progenitor fate,
whereas cd41'°% HSPCs had a more thrombocyte/erythrocyte progenitor fate. Functional
in vitro assays indicated that kdrl/cd41"°" HSPCs were mainly able to form colonies and
differentiate into different blood cell fates. In adult zebrafish with the same transgenic
background, we also observed both kdrl/cd41°" and cd41"°" HSPCs. Unexpectedly, cd41'"
HSPCs were now the only HSPCs that were able to differentiate into different blood cell
fates. Cd41 is not only expressed in HSPCs, but also in erythroid and myeloid lineages,
which might explain the differentiation into different lineages *°.

Overall, our results suggest that in both embryos and adult zebrafish a subpopulation of
HSPCs exist, that in addition to expression of cd41, also express kdrl. In embryos, kdrl/
cd41"°¥ HSPCs are able to differentiate into several lineages in vitro, whereas in adults only
cd41"°¥ HSPCs, that do not express kdrl, have this ability. Hence, loss of kdrl expression
marks the shift from embryonic to adult HSPCs. Future research should focus on the
relation of long-term and short-term HSPCs in combination with these markers. Kdrl/
cd41"" cells possibly represent short-term HSPCs, as these cells proliferate quickly in the
CHT during embryonic development, whereafter they migrate to the adult hematopoietic
organs. During adulthood, long-term cd41'°" HSPCs are responsible for replenishing the
HSPCs pool and producing all different blood cells. Analysing cell proliferation properties
of kdrl/cd41"°* and cd41'" HSPCs in adult WKM using scRNA sequencing might give

us insights into transcriptional differences between these two groups of cells and into
differences compared to embryonic HSPCs. It would be interesting to investigate if the
HSPCs also show distinct differentiation capabilities and if these are comparable with
embryonic HSPCs. Moreover, future work should focus on young adolescent zebrafish, to
validate the results we have observed in embryonic and adult HSPCs and to see if there is a
gradual shift from embryonic HSPCs to adult HSPCs or that there is a more abrupt shift.

Concluding remarks

To conclude, we show that zebrafish embryos lacking functional Pten or Shp2 show
disrupted hematopoiesis during development, attributed to perturbed PI3K and MAPK
signalling, respectively (Chapters 2,3 and 4). We show that a fine balance of PI3K signalling
is required for normal hematopoiesis and that the level of PI3K influences the level of
stemness of HSPCs (chapter 2). Lack of ptpn11b expression leads to disrupted emergence
of HSPCs, but surprisingly these defects were overcome at a later stage and led to viable
and fertile zebrafish (chapter 4). We generated a novel zebrafish model carrying a common
NS-patient associated mutation and demonstrated that this model recapitulates major

NS traits in human patients and is a good model to study this disorder (chapter 3). Lastly,
we show that loss of an endothelial marker marks the transition from embryonic to adult
HSPCs (chapter 5). All together, we show that the zebrafish is a versatile model organism
which is powerful in modelling human disease and in unravelling more fundamental
research questions.
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Addendum

Nederlandse samenvatting

Hematopoiese

Zonder bloed kan ons lichaam niet functioneren. Bloed voorziet het lichaam van zuurstof
en voedingsstoffen, het verwijdert afvalstoffen, vervoert hormonen en speelt een grote rol
in het immuunsysteem. Bloed bestaat uit een mix van cellen die deze functies uitvoeren
(figuur 1). Rode bloedcellen verzorgen het transport van zuurstof, witte bloedcellen

maken deel uit van de immuunrespons, bloedplaatjes zorgen ervoor dat het bloed kan
stollen als er schade aan een bloedvat optreedt. Voor het grootste deel bestaat bloed uit
plasma (ongeveer 55%), wat bestaat uit water waarin eiwitten, mineralen, vetten, suikers,

rode bloedcel

T ey

bloedvat "#Q
: SR

Wy S

witte bIoedceI@ %

plasma—

e,

© 2006 Encyclopaedia Britttanica, Inc. bloedplaatje

Figuur 1. De verschillende componenten waaruit bloed bestaat. Rode bloedcellen, witte bloedcellen,
bloedplaatjes en plasma vormen de vier hoofdbestanddelen van bloed.

antilichamen en hormonen zijn opgelost. De hoofdfunctie van plasma is het transport van
bloedcellen en deze componenten door het lichaam.

Bloedcellen hebben een beperkte levensduur. Rode bloedcellen leven ongeveer 3
maanden, bloedplaatjes 10 dagen en witte bloedcellen 2 dagen. Er is dus een constante
aanvoer nodig van nieuwe bloedcellen. Hematopoiese is het proces waarbij alle cellulaire
componenten waaruit bloed bestaat worden geproduceerd. De cel die voornamelijk
verantwoordelijk is voor de productie van bloedcellen is de hematopoietische stamcel
(HSC). Stamcellen zijn cellen die instaat zijn om te kunnen delen in een stamcel en in een
meer gedifferentieerde cel.

Een HSC kan dus delen en een nieuwe HSC vormen, en tegelijkertijd een (voorloper

van een) meer gespecialiseerde cel vormen, bijvoorbeeld een rode of witte bloedcel. In
volwassen zoogdieren bevinden HSCs zich in het beenmerg, van waaruit alle bloedcellen
worden geproduceerd. Dit is echter niet de locatie waar HSCs gevormd worden. Tijdens
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de embryonale ontwikkeling en latere ontwikkeling verandert de locatie waar HSCs zich
bevinden. HSCs komen voort uit speciale cellen uit het endotheel van de aorta tijdens de
embryonale ontwikkeling, zogenaamde hemogene endotheelcellen. Deze endotheelcellen
van de aorta ondergaan een transformatie in een serie stappen wat uiteindelijk leidt tot
de vorming van HSCs (figuur 2). De hemogene endotheelcellen nemen een ronde vorm
aan, waar ze eerst een meer ovale vorm hadden en dan start de expressie van genen die
karakteristiek zijn voor HSCs. Vanuit de aorta migreren de HSCs dan naar de volgende,
tijdelijke locatie, de lever en milt. Daar vermeerderen en rijpen de HSCs verder, waarna de
uiteindelijke locatie wordt bereikt, het beenmerg.

Figuur 2. De transitie van een endotheelcel naar een hematopoietische stamcel in muis. De wand van de aorta.
(a) In geel een hemogene endotheelcel die op het punt staat de transformatie naar een HSC te ondergaan. (b) de
endotheelcel heeft een ronde vorm aangenomen en start met de expressie van genen karakteristiek voor HSCs
(paars).

Onderzoek naar hematopoiese

Onderzoek naar hematopoiese wordt gedaan in meerdere model organismes, waaronder
de kip, de muis en de zebravis. Mensen en muizen hebben een zeer vergelijkbare
embryonale ontwikkeling, waarbij de vorming van organen ook grote overeenkomsten
vertoont. Dit is een van de redenen dat muizen vaak gebruikt worden als model organisme.
Een groot nadeel van het gebruik van muizen tijdens de embryonale ontwikkeling is dat

bij muizen, net als mensen, de embryo’s intern ontwikkelen. Dit maakt het observeren en
manipuleren van processen tijdens de ontwikkeling erg lastig. De embryonale ontwikkeling
van zebravissen is goed te vergelijken met de ontwikkeling van mensen en muizen, maar
zebravissen hebben niet de nadelen die muizen wel hebben. Zebravissen worden daarom
steeds vaker als model organisme gebruikt voor embryonaal onderzoek (figuur 3a). Het
grootste voordeel van de zebravis is dat de embryonale ontwikkeling buiten het lichaam
van de vis plaats vindt en dat embryo’s de eerste vijf dagen transparant zijn. Dit maakt

het observeren en manipuleren van processen tijdens de embryonale ontwikkeling
eenvoudiger dan in model organismes met een interne ontwikkeling. Daar komt bij dat de
embryonale ontwikkeling in zebravissen erg snel gaat, binnen 24 uur na de bevruchting
lijkt het embryo al op een vis, beweegt het en klopt het hartje (figuur 3 b-f).

Fysiologisch lijken zebravissen erg op zoogdieren. Zo hebben zebravissen een hart,
lever, nieren en hematologisch systeem, met vergelijkbare functies als bij mensen. Er
zijn echter wel verschillen, zo ook tijdens hematopoiese. Het eerste verschil is dat we
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Figuur 3. De zebravis. (a) volwassen zebravissen. (b) bevruchte zygote, 1-cel stadium, enkele minuten na
bevruchting. (c) 8-cel stadium, 75 minuten na bevruchting. (d) dome-stadium, 4 uur na bevruchting. (e)
4-somieten stadium, 11 uur na bevruchting. Het oog wordt nu zichtbaar (pijl). (f) 24 uur na bevruchting. Links de
kop en rechts de staart. De pijl wijst het oog aan.

in zebravissen de pure HSCs niet kunnen onderscheiden van HSCs die al iets meer zijn
gedifferentieerd naar een specifiek type bloedcel. We noemen deze mix van cellen daarom
hematopoietische stam/progenitor cellen (HSPCs). HSPCs komen voort uit de aorta, in
eenzelfde soort proces als beschreven voor zoogdieren. Maar waarin HSPCs in zoogdieren
in kleine clusters verschijnen, die nog aan de wand van de aorta vastgehecht zijn, verschilt
dit proces in zebravissen. In zebravissen ondergaan hemogene endotheelcellen ook een
serie van transformaties wat leidt tot een HSPC. Het proces begint met een hemogene
endotheelcel die weg buigt van de aorta (figuur 4 a) en daarna een ronde vorm aanneemt
(figuur 4b) en van de wand van de aorta afsplitst (figuur 4c). Op dit moment is de
transformatie compleet en is de expressie van genen die karakteristiek zijn voor HSPCs
begonnen. HSPCs betreden nu de bloedsomloop in de ader liggend onder de aorta. In
zebravissen is dit proces goed ‘live’ te volgen met behulp van confocale microscopie
(hoofdstuk 2, figuur 1). Nadat de HSPCs de bloedcirculatie hebben betreden lokaliseren ze
naar de ‘caudal hematopoietic tissue’ (CHT) in de staart. Dit is te vergelijken met de lever
in zoogdieren. In de CHT vermeerderen de HSPCs zich en rijpen ze verder voordat ze zich
naar de uiteindelijke hematopoietische organen in de zebravis verplaatsen: de nieren en
de thymus.

Inhoud van dit proefschrift

In hoofdstuk 1 beschrijf ik uitgebreid de achtergrondinformatie om de komende vier
hoofdstukken goed te kunnen plaatsen. Het gaat dieper in op de moleculaire signalering
mechanismen die tijdens hematopoiese plaatsvinden en wat de consequenties zijn als
deze mechanismen verstoord zijn.
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Figuur 4. De transitie van een endotheelcel naar een hematopoietische stam/progenitor cel in zebravissen.
Afgebeeld is de aorta. (a) een hemogene endotheelcel (in geel) start met de transitie naar een HSC, waarbij de cel
doorbuigt. (b) Vervolgens buigt de cel naar binnentoe en is zo in staat om van de wand van de aorta af te splitsen.

(c) De endotheelcel is nu volledig getransformeerd tot HSPC en betreedt de bloedsomloop in de daaronder
liggende ader.

In hoofdstuk 2 beschrijven we het effect van PI3K signalering op hematopoiese in
zebravissen. PI3K signalering is een belangrijk cel signaleringsmechanisme dat de
cellulaire respons op externe factoren reguleert, onder andere cel proliferatie (figuur 5).
Cel proliferatie is een proces dat sterk gereguleerd moet worden, daar ongecontroleerde
cel proliferatie kan leiden tot kanker. Onder normale omstandigheden wordt de PI3K
signalering gereguleerd door Pten, dat de respons van PI3K remt, en uiteindelijk de
cellulaire respons. In hoofdstuk 2 beschrijven we voor de eerste keer dat een deel van de
HSPCs die voortkomen uit de aorta desintegreerden in zebravissen die geen functioneel
Pten hadden. Als we de Pten functie herstelden of als we PI3K signalering remden, dan
observeerden we normale hematopoiese in deze embryo’s. Tot onze verrassing zagen
wij, wanneer we in normale embryo’s PI3K signalering remden, een soortgelijk beeld

als in embryo’s die geen functioneel Pten bezaten. Dit suggereert dat de hoeveelheid
PI3K activiteit belangrijk is voor het ontstaan van HSPCs. Te veel PI3K signalering leidt

tot de dood van HSPCs, maar te weinig PI3K signalering ook. Een gematigde hoeveelheid
lijkt noodzakelijk voor normale hematopoiese. Om beter te begrijpen waardoor de ene
helft van de HSPCs overleefde bij een te hoog of te laag niveau van PI3K signalering
hebben we gebruik gemaakt van single cell RNA sequencing. Dit stelde ons in staat

om van één cel heel nauwkeurig vast te stellen welke genen actief zijn, en zo subtiele
verschillen tussen cellen te vinden. In de periode dat HSPCs uit de aorta voortkomen,
observeerden we twee subtiel verschillende soorten HSPCs: HSPCs die meer stamcel-
achtige kenmerken vertoonden en HSPCs die al iets meer gedifferentieerd leken te zijn.
Wanneer PI13K signalering geremd wordt, verloren we de HSPCs met de meest stamcel-
achtige kenmerken. Later tijdens de hematopoiese konden we deze twee HSPCs soorten
niet meer van elkaar onderscheiden, maar zagen we dat remming van PI3K signalering
leidde tot meer HSPCs en verminderde differentiatie tot de verschillende bloedcellen.
Overactivatie van PI3K signalering leidde juist tot vermindering van HSPCs en toegenomen
differentiatie tot de verschillende bloedcellen. Al met al laten we in dit hoofdstuk zien dat
PI3K signalering de overleving en stamcelgehalte van HSPCs reguleert.

In hoofdstuk 3 hebben we de zebravis gebruikt om een specifieke patiént mutatie die
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vaak voorkomt in Noonan Syndroom (NS) beter te begrijpen. Noonan Syndroom is een
ontwikkelingsstoornis die ongeveer 1:1500 mensen treft en kenmerken zijn een korte
lichaamslengte, hart defecten en uitgesproken gelaatstrekken, zoals wijd uiteenstaande
ogen, laaggeplaatste oren en een korte brede hals. Andere kenmerken zijn dat een deel
van de kinderen met deze aandoening een zeer zeldzame vorm van leukemie ontwikkelt
(juveniele myelomonocytaire leukemie, JMML), met een mogelijk erg agressief en fataal
verloop. Mutaties in het eiwit SHP2 veroorzaken vaak NS, waarbij SHP2-D61G een van

de meest voorkomende mutaties is. Deze mutatie hebben we via CRISPR/Cas9 in het
genoom van de zebravis aangebracht, zodat we de hematologische defecten konden
bestuderen tijdens de embryonale ontwikkeling om zo tot een beter begrip te komen

van het ontstaan van JMML in deze patiénten. De zebravissen die deze mutatie droegen
ontwikkelden dezelfde kenmerken als NS-patiénten, zoals een kortere lichaamslengte,
wijd uiteenstaande ogen en hematologische defecten die kenmerkend zijn voor JMML. We
ontdekten dat de ontstekingsrespons mogelijk betrokken is bij de aanvang van JMML, en
dat wanneer onstekingsremmers werden toegediend aan zebravissen met de Shp2a-D61G
mutatie de hematologische defecten minder ernstig waren. Dit is interessant, want tot nu
toe zijn er geen medicijnen voor JMML in NS-patiénten. Al met al laten we in dit hoofdstuk
zien dat de zebravis geschikt is om menselijke ziektes te modelleren en dat het bestuderen
tijdens de embryonale ontwikkeling daarvan goed mogelijk is.

In hoofdstuk 4 richten we ons verder op de rol van Shp2 tijdens hematopoiese in
zebravissen. Afgezien van de rol die Shp2 in Noonan Syndroom speelt, is het ook betrokken
bij embryonale ontwikkeling, verschillende signaleringsmechanismes, waaronder het PI3K
signaleringsmechanisme en is het betrokken bij hematopoiese. Door een duplicatie van
een groot deel van het genoom bevatten zebravissen twee varianten van Shp2, Shp2a en
Shp2b, die beide functioneel zijn. Om de rol van Shp2a en Shp2b te bestuderen tijdens
hematopoiese in de embryonale ontwikkeling hebben we gebruik gemaakt van ‘live’
microscopie en in situ hybridisatie, een techniek om genexpressie mee te bestuderen. We
ontdekten dat zebravissen die geen functioneel Shp2a bezaten geen defecten vertoonden
tijdens hematopoiese, maar dat embryo’s zonder functionerend Shp2b wel defecten lieten
zien. Deze embryo’s vertoonden HSPCs die in stukken uit een spatten wanneer de HSPCs
uit de aorta voortkwamen. Op latere tijdstippen tijdens de embryonale ontwikkeling was
dit effect nog steeds zichtbaar, in de vorm van een lager aantal HSPCs in het tijdelijke
hematopoietische orgaan in de staart, de CHT. De overlevende HSPCs waren wel in staat
om te differentiéren naar alle typen bloedcellen en aan het eind van de embryonale
ontwikkeling en in volwassen vissen zagen we geen hematologische defecten meer. Dit
laat zien dat Shp2b nodig is tijdens het proces waarin HSPCs worden gevormd, maar dat
embryo’s zonder Shp2b deze defecten later overwinnen.

De zebravis is uitermate geschikt om te gebruiken in ‘live” microscopie doordat embryo’s
transparant zijn tijdens de embryonale ontwikkeling. Door middel van transgene

lijnen kunnen we specifieke cellen, weefsels of structuren markeren met een gekleurd
fluorescent label, bijvoorbeeld groen of rood. Zo kunnen we bijvoorbeeld het vaatstelsel
labelen met de kleur groen, terwijl we tegelijkertijd al het bloed rood labelen. Op deze
manieren zijn er tientallen combinaties te maken. Om de allereerste HSPCs te vinden
wanneer deze uit de aorta komen, wordt vaak een transgene lijn gebruikt waarbij de
endotheelcellen rood gelabeld zijn (deze marker heet ‘kdrl’) en de HSPCs groen gelabeld
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zijn (deze marker heet ‘cd41’). Aan het eind van de embryonale ontwikkeling gebruiken
we vaak alleen de transgene lijn waarbij de HSPCs groen zijn gelabeld. In hoofdstuk 5
ontdekten we dat aan het eind van de embryonale ontwikkeling er een subpopulatie van
HSPCs lijkt te bestaan, die niet alleen cd41 tot expressie brengen, maar ook kdrl. Single cell
RNA sequencing liet zien dat deze populaties verschilden in de genen die ze tot expressie
brachten. Beide populaties toonden expressie van HSPCs-kenmerken, maar kdrl/cd41 HSCs
leken meer gedifferentieerd te zijn naar myeloide cellen, terwijl cd41 HSPCs meer neigden
naar thrombocyt/erythrocyt cellen. Om dit te verifiéren hebben we gebruik gemaakt van
een in vitro differentiatie analyse, waarbij cellen in medium geplaatst worden met de
desbetreffende differentiatie factoren voor een bepaald type bloedcel. Aan het einde van
de embryonale ontwikkeling waren alleen kdrl/cd41 HSPCs in staat om te differentiéren
naar beide type bloedcellen, terwijl cd41 HSPCs hier niet toe in staat waren. In volwassen
zebravissen was dit juist omgekeerd, hier waren alleen cd41 HSPCs, zonder kdrl expressie,
in staat om te differentiéren naar de verschillende type bloedcellen. Al met al, lijkt het
verlies van kdrl expressie de overgang van embryonale HSPCs naar volwassen HSPCs te
markeren.

Als laatste plaats ik in hoofdstuk 6 onze bevindingen van de vorige hoofdstukken in een
grotere context aan de hand van recente vakliteratuur en ik bespreek de implicaties voor
verder onderzoek.
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English summary

This thesis describes the use of zebrafish, Danio rerio, to unravel the complexity
of hematopoiesis in the developing embryo with an emphasis on the role of two
phosphatases.

In chapter 1, we provide a background for the following four chapters, with a general
introduction to hematopoiesis during embryonic development and the similarities
between hematopoiesis between zebrafish and mice. Furthermore, we highlight the
role of two phosphatases, Pten and Ptpn11, during embryonic development and more
specifically during hematopoiesis. Last, we give a short overview of the role of PTEN and
PTPN11 in human health and disease.

Chapter 2 focuses on the role of Pten during hematopoiesis. To analyse the role of Pten
we used embryos lacking Pten expression with various transgenic markers to visualize
hematopoiesis. Embryos lacking Pten expression display, among other things, increased
PI3K activity. We found that embryos lacking Ptenshowed less hematopoietic stem/
progenitor cells (HSPCs) compared to their siblings, with a striking phenotype when
HSPCs emerge in the aorta. When we compensated the lack of Pten expression by either
restoring Pten expression or by inhibiting PI3K activity, we observed normal emergence
of HSPCs and normal numbers of HSPCs. To our surprise, when we inhibited PI3K activity
in wild type embryos, we observed a similar phenotype as in embryos lacking Pten
expression. These results suggests that a moderate level of PI3K activity is required for
emerging HSPCs.

When using single cell RNA sequencing, we observed two, subtly different, HSPCs clusters
when HSPCs emerge from the aorta, one having more stem cell-like properties and the
other having more progenitor-like characteristics. When PI3K activity was inhibited,

we lost the more stem cell-like HSPCs. At the end of hematopoiesis during embryonic
development, we observed that inhibiting PI3K activity led to increased HSPCs fate and
arrested differentiation. In contrast to this, we observed increased differentiation and loss
of HSPCs fate in embryos lacking Pten expression. Overall, this chapter shows that PI3K
signalling controls the survival and stemness of HSPCs.

In chapter 3 we used the zebrafish to model a specific patient mutation commonly
observed in Noonan Syndrome (NS). We generated a mutant zebrafish line carrying a
Shp2a-D61G mutation using the CRISPR/Cas9-technique. This mutant zebrafish displayed
several characteristics of NS patients. Focusing on the hematological phenotype, these
fish showed an expansion of the myeloid lineage, an increased sensitivity to myeloid
differentiation factors, mild anemia and thrombocytopenia. Using both single cell RNA
sequencing and an in vitro differentiation assay we observed this expansion of the
myeloid lineage and we found that these defects resemble the hematological defects
observed in human patients. Furthermore, we observed an upregulation of the pro-
inflammatory genes in the myeloid lineage early during differentiation, indicating that
the inflammatory response might be involved in the expansion of the myeloid lineage.
The hematological phenotype of our mutant zebrafish line was partially rescued upon
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inflammatory inhibition. Overall, we generated a novel zebrafish model that displays
several characteristics of NS patients, which is particularly interesting as the hematological
defects in human patients often appear at a very young age and zebrafish are ideally suited
as a tool to study defects during embryonic development.

In chapter 4 we focused on the role of Shp2a and Shp2b during zebrafish hematopoiesis.
To this end, we performed live imaging and whole mount in situ hybridization on ptpnlla
and ptpnl11b mutant zebrafish embryos. Surprisingly, we found that lack of Shp2a did

not affect the ontogeny of HSPCs, but that lack of Shp2b did. The majority of zebrafish
embryos lacking Shp2b showed disintegrating HSPCs upon emergence from the aorta

at the onset of definitive hematopoiesis. The effect of these abortive events is still seen
at later stages during embryonic development, in that fewer HSPCs were observed to
seed the next transient hematopoietic organ. However, the surviving HSPCs did engage

in all blood lineages and we observed no differences at later stages between embryos
lacking Ptpn11b expression and their siblings. Together, our results suggest that ptpn11b
is required for normal emergence of HSPCs at the onset of the definitive wave of
hematopoiesis and that ptpn11b mutants overcome these defects at the end of definitive
hematopoiesis.

In chapter 5 we unveil a subpopulation of HSPCs. These HSPCs do not only express the
hematopoietic stem cell marker cd41, but also express the endothelial marker kdrl.
Single cell RNA sequencing in zebrafish embryos revealed transcriptomic differences
between HSPCs that express both kdrl/cd41"°* and HSPCs that only express cd41'". Kdrl/
cd41"°" HSPCs appear to have a more myeloid progenitor fate, whereas cd41"°* HSPCs had
a more thrombocyte/erythrocyte progenitor fate. When we used in vitro differentiation
assays, we found that only kdrl/cd41'°" HSPCs were able to differentiate into different
blood cell fates. In adult zebrafish we observed both kdrl/cd41°% and cd41'°" HSPCs as well,
but found that only cd41'" HSPCs were able to differentiate into different blood cell fates.
Overall, our results suggest that in both embryos and adult zebrafish a subpopulation of
HSPCs exist. In embryos kdrl/cd41"°" HSPCs are able to differentiate into several lineages
in vitro, whereas in adults only cd41'" HSPCs, that do not express kdrl, have this ability.
Hence, the loss of kdrl expression marks the shift from embryonic HSPCs to adult HSPCs.

Finally, chapter 6 provides a summarizing discussion of the work presented in each
previous chapter in the context of the latest publications in the field and the implications
of our findings for future research.
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gymnasium diploma aan het Twents Carmel College, locatie Lyceumstraat te Oldenzaal
met het profiel Natuur en Techniek en Natuur en Gezondheid. In september van hetzelfde
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Dankwoord

Op een zonnige zomeravond is het moment dan ineens daar. Na bijna zes jaar is mijn
promotie onderzoek dan echt afgerond, alleen de verdediging zelf staat nog op het
programma. De afgelopen jaren zijn een groot avontuur geweest. Gelukkig heb ik dit
avontuur niet alleen hoeven te beleven, anders ben ik bang dat ik al snel verdwaald zou
zijn geweest en dan zou dit boekje er niet zijn geweest.

Allereerst wil ik Jeroen bedanken. Ik heb mijn eerste mailtje dat ik ooit aan je heb
verstuurd nog gevonden, verzonden in oktober 2013 om te vragen of ik mijn masterstage
in jouw lab kon uitvoeren. Ik had niet verwacht dat ik er vervolgens van december 2013 tot
december 2020 zou rondlopen en mijn PhD bij je zou afronden. Dank voor het vertrouwen
dat je altijd uitstraalde, voor de wetenschappelijke discussies en voor de ruimte die je me
gaf om me persoonlijk te ontwikkelen. Tijdens de eerste lock-down in maart 2020 heb

ik het enorm gewaardeerd dat je me de flexibiliteit gaf om te doen wat ik kon en niet te
hameren op resultaten. We hebben heel wat meetings gehad waarin we niet alleen het
project bespraken, maar ook of het thuiswerken te doen was met een dreumes in huis die
de aandacht opeistte.

Verder wil ik mijn promoter Jeroen Bakkers bedanken. Dank voor je input tijdens onze
meetings om mijn project in goede banen te leiden.

Lieve leden van het Jeroen den Hertog-lab. Het lab is de afgelopen jaren aanzienlijk
gegroeid, en in dit geval was het zeker ‘hoe meer zielen, hoe meer vreugd’. John, het
gebeurt me echt niet vaak dat ik iemand tegen kom die nég meer kan kletsen dan ik

doe, maar in jou heb ik mijn meerdere gevonden. Dank voor al onze gesprekken, maar
ook voor je enorme ervaring met kloneren en DNA isolatie en je bereidheid om deze te
delen. Jelmer, ik snap werkelijk niet hoe je het doet, vroeg op de ochtend al zo ontzettend
goedgemutst zijn. Dank voor alle jaren gezelligheid op ons kantoor en voor het accepteren
dat ik tot 10.00 maar beter met rust gelaten kan worden en soms beter de hele dag. Ik
ben ontzettend blij dat je op 7 september als mijn paranimf naast me staat tijdens de
verdediging, met jouw positieve houding moet het goed komen. Ik hoop dat ik binnenkort
je eigen boekje mag bewonderen! Wouter, onze eerste ontmoeting was op z’n zachts
gezegd een ramp en dat was compleet mijn fout. Laten we het er maar op houden dat het
zo’n dag was dat het beter zou zijn geweest als ik geen contact had gehad met mensen.
Gelukkig is het later helemaal goed gekomen en bleken we erg goed te kunnen kletsen
over van alles en nog wat. Dank voor alle goede gesprekken op kantoor, in het lab en op
onze fietstochtjes naar huis. Ik bewonder je enthousiasme in de wetenschap enorm en
denk dat je iets ontzettends gaafs van je project gaat maken. Ik kijk er naar uit dat je naast
me staat op 7 september als mijn paranimf! Petra, we begonnen zo ongeveer gelijk en
vonden elkaar al snel in onze organiseer-drang op het lab. Het ‘oude-mannen-hok’ werd
steeds opgeruimder en bleef opgeruimd en zelfs John’s bench moest er aan geloven.
Gelukkig was jij ‘s ochtends ook niet altijd een held en dat maakte een kamer delen met
retreats, masterclasses of de ochtend na de Christmas party een verademing. Allebei stil
tegenover elkaar met een kop thee en allebei gelukkig. Ik wens je al het goeds toe samen
met Sjoerd! Maaike, ik kan enorm bewonderen hoe strak, duidelijk en georganiseerd jij
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kan werken. Ik klaagde altijd al over hoeveel genotypeer werk de Pten vissen met zich
mee brachten, maar jij hebt me ruimschoots overtroffen met al je lijnen. Dank je wel
voor je nuchterheid en directheid en het komt echt goed met je boekje! Maja, you didn’t
know anything about zebrafish when you started, but you caught on really quick. I'm
happy we could incorporate the methylcellulose assay in the D61G manuscript (which will
hopefully really soon turn into a paper). Thank you for our chats and discussions, they
really helped finishing this thesis. Ouyang, thank you for all our chats. I’'m super happy

to hear you are almost defending yourself, well done! | wish you all the best in your life.
Daniélle, als PhD-student heb ik je maar heel kort meegemaakt, maar als student gelukkig
wat langer. Ontzettend leuk dat je het JdH lab gaat versterken. Heel veel succes met je
PhD, en echt, uiteindelijk komt het goed! Lennart, je was mijn enige student en zonder
jou zou hoofdstuk 4 er niet geweest zijn. Samen ontdekten we dat Shp2b ook kan zorgen
voor spectaculaire plaatjes tijdens de hematopoiese. Dank voor de leuke tijd die we gehad
hebben!

Of all ex-members of the JdH-lab, | should start with Miriam. Miriam, after a very quiet
student, you got me as a student. It was quite a shock, but | think we managed well. |
would have never guessed that our lives would run parallel so much, with both of us doing
our PhD on Pten and later, becoming moms within two days of eachother. Thank you
teaching me the ins- and outs of zebrafish work and later for all our chats about pregnancy
and baby-related stuff. | wish you, Enric and Elba all the best. Suma, we actually never
were ‘official’ labmates in the JdH-lab, but as | took over your project, we interacted a

lot. Thank you for teaching me how to mount those 36 hpf embryos and how to image
them overnight. | admire how you kept enthousiastic about this project, even years later.
We finally managed to finish the project with a nice publication and I’'m lookin forward
discussing my thesis with you when | defend. Alex, thank you for all your elaborate
explanations, either in protocols or in real live. You taught me a lot, even after you left the
Hubrecht. | wish you all the best! Marieke, je was relatief kort bij ons op het lab, maar je
bracht wel een heleboel gezelligheid met je mee. Ik hoop dat je het heel erg naar je zin
hebt op het AMC en dat je over een aantal jaar ook een boekje hebt.

Zonder onze buren en mede zebrafish mensen, het Bakkers lab was mijn tijd op het
Hubrecht een stuk saaier geweest. Melanie, we hebben heel wat uurtjes afgekletst, en
toen je nog lang haar had heb ik heel wat haarstijlen op je uitgeprobeerd. Ik denk niet dat
ik ooit zo knuffelig wordt als jij, maar het is wat beter geworden. Ik ben ontzettend blij om
je zo gelukkig te zien met je gezin en ik wens je al het goeds toe! Sven, onze kant was toch
wel de ‘lefty’ side. Dank je wel voor alle gezelligheid, het kunnen klagen over de PhD, de
pogingen om er bij ons een Japanse auto in te krijgen (helaas niet gelukt), hulp met R en
het kunnen meepraten over gebroken nachten. Ik vond het maar niks dat je ons kantoorje
verliet! Succes met de allerlaatste loodjes! Sarah, without you | wouldn’t have survived
the last months of PhD-life, especially in the weekends when almost nobody was around
(except us two). Thank you for your infinite supply of energy boosters (aka candy, cake and
chocolate) and the chats that went with it, it did help save the day. Good luck with the end
of your PhD, you can do it! Silja, Laurence, Dennis, Federico, Hessel, Phong and Sonja,
thank you all for your company in all fish-related spaces at the Hubrecht and for help and
advice when | needed some. You really made being a fish-person awesome!
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Ik wil de mensen van de fish facility heel erg graag bedanken voor al hun goede zorgen

al die jaren. Mark, dank voor alle hulp als ik embryos moest opsturen naar de VS of
binnen Europa en voor het begrip als ik weer eens iets te laat was met het doorzetten

van mijn vislijnen. Erma, zonder jou zou ik het overzicht van de Pten lijnen helemaal zijn
kwijtgeraakt. Dank je wel voor alle goede zorgen voor mijn baby-visjes! Rob, dank je wel
voor al je tips om te zorgen dat mijn vissen ‘s ochtends wel wilden leggen en voor alle
gezellige praatjes die we gemaakt hebben. Bert, Luuk en Martijn, dank je wel voor alle
goede zorgen voor mijn vissen en voor het (bijna) nooit klagen als ik weer eens enorme
hoeveelheden single boxes nodig had voor mijn genotyperingen. Zonder jullie allen was de
fish facility lang niet zo gezellig geweest!

Gelukkig bestond het Hubrecht uit meer dan alleen ‘Fish-people’. Rianne, dank je wel voor
de gezelligheid tijdens celkweek, het maakte het daar een stuk minder eenzaam. Wessel,
dank je wel voor de praatjes bij de koffiemachine (eigenlijk mijn kantoor, maar dat was
bijna hetzelfde). Succes met het laatste deel van je PhD! Zu, the Hubrecht became a less
bright place without our unicorn-girl. Thank you for all our nice chats, your support when |
didn’t see how my project could ever finish and for letting me play with your pink hair and
different hairstyles. Maybe we live closer one day again! Yuni, you were secretly a member
of the JdH lab for a little while. Thank you for our fun conversations! Anna, thank you for
all your help with the mice-side of hematopoiesis. You taught me a lot about the field and
we had big plans for the Pten mice. Sadly they didn’t work out, but | enjoyed our time

as lab-buddies. Carla, dank je wel voor het onderhouden van de Pten muislijn. Ik ben je
eeuwig dankbaar dat ik niet de muis-faciliteit in hoefde! Laurent and Bart, thank you for all
the help with either the mice side or the fish side of hematopoiesis and the discussions we
had about it.

Ik kan er niet onderuit, mijn ‘walk-of-shame’ — mensen. Alle mensen die het aandurfden
om me te helpen tijdens mijn R-tocht en geduldig al mijn vragen beantwoorden. Dank
jullie wel. Zonder jullie was dit boekje er echt niet geweest en had ik nooit geleerd dat ik
het stiekem best wel leuk vind om met R bezig te zijn. Judith, dank je wel voor alle hulp
in het begin, wat was ik blij dat je ooit ook met HSCs had gewerkt en dat je me die eerste
single cell experimenten op weg hebt kunnen helpen. Marloes, kleuren in expressie plotjes
moeten er wel goed uit zien! Ik ben je ontzettend dankbaar dat je daar zoveel tijd in hebt
gestoken en dat ik het zo van je mocht overnemen. Het ziet er nu toch wel heel strak uit!
Dank je wel voor alle keren dat je me op weg hebt geholpen en voor alle gesprekken die
daar uit voort vloeiden, tot verbazing van Jelmer. Bas C, je was een van de eersten die me
hielp om echt te snappen wat ik aan het doen was, door duidelijk uit te leggen waarom
code op een bepaalde manier geschreven moest worden. Ineens vielen een heleboel
puzzelstukjes op hun plaats. Dank voor de uren die je me hebt geholpen en je geduldige
uitleg. Lennart, Mauro, Chloé, Maria and all others who sacrificed precious hours to help
me with R, thank you!

Dan de FACS faciliteit, Stefan, wat een eemalig experiment zou zijn groeide uit tot mijn
regelmatige terugkeer voor het weer FACSen van zebrafish materiaal. Dank je wel voor het
helpen met het opzetten van het experiment, zodat het enigszins te doen was en voor de
leuke gesprekken die we hadden tijdens het FACSen. Reinier, toen ik later me meer ging
focussen op het FACSen van volwassen zebrafish materiaal en het kweken hiervan heb
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ik enorm kunnen profiteren van je enorme ervaring in de hematologie. Dank je wel voor
alle hulp om de experimenten zo goed mogelijk voor elkaar te krijgen en voor de rust en
kalmte die je op FACS dagen met je meebracht.

Ik zou nog vele malen langer kunnen doorgaan met het bedanken van alle mensen op het
Hubrecht, maar dat zou een boekwerk op zichzelf kunnen zijn. Ik heb me altijd ontzettend
thuis gevoeld op het Hubrecht en het was echt een ontzettend fijne plek om te werken,
en dat komt voornamelijk door alle mensen die er werkten. Lotte B, Caro, Tim, en Sven,
dank jullie wel een geweldig PV-jaar! Bas M, Hester, Jenny, Maya, Sebastiaan, Josi, Juri,
Jarjon, Roel, Maaike, Bram, Sanne, Stijn, Christa, Euclides, Jonas, Anko, Bastiaan, Pim,
Alice, Wouter, Kim, Silke, Lotte van R, Angelica, Joep E, the IT-guys, the ladies from HR,
reception, finance and the guys from technical services and domestic services, thank you
for all the fun times and making the Hubrecht such a special place!

Tijdens mijn PhD-traject kreeg ik de mogelijkheid om een ‘teaching-sabbatical’ te doen en
ik heb hier ontzettend van genoten. Marc, dank voor je enthousiasme voor onderwijs en
voor het vertrouwen dat ik dat wel kon. Elianne, Myrthe, Bob, Laurens, Rianne, Charlotte,
Sietske, Nilda, Jonas, Ron, Gisella, Krijn, Simone en alle anderen van het BMW onderwijs
team, dank jullie wel voor het warme bad waarin ik terecht kwam toen ik ineens bij
Genoom als docent aan de slag ging. Ik heb heel erg veel van jullie geleerd en een heel erg
leuke tijd gehad!

Lotte, ooit kende ik je alleen maar als de buurvrouw van Melanie, maar dat is op de een
of andere manier veranderd in een hechte vriendschap. Ik mis het ontzettend dat we niet
meer samen naar het werk fietsen, onze gezamelijke etentjes en onze klets momentjes.
Gelukkig is Utrecht niet zo ver weg, maar toch. Je bent een ontzettend prachtig mens en ik
mag me gelukkig prijzen dat ik je ken.

Marieke, we kennen elkaar ondertussen al een hele tijd. Als eerstejaars studenten
Psychobiologie kwamen we in hetzelfde introductieweek-groepje en vanaf toen hebben we
samen het studie-avontuur beleefd. Dank je wel voor alle leuke avonturen die we tijdens
onze studietijd hebben beleefd, en ook nu nog gebeurt er van alles. Ik ben blij dat ik je heb
leren kennen!

Jeske, ik weet niet anders dan dat we vriendinnen zijn, al heeft dat wel wat voeten in aarde
gehad als ik onze moeders moet geloven. Dank je wel voor je vriendschap en eeuwige
interesse in mijn studie projecten en later PhD project. Ik kan het enorm waarderen als we
afspreken en heerlijk theeleuten of juist iets leuks ondernemen. Ik kan me niet voorstellen
dat je geen vriendin van me zou zijn. Zorg goed voor jezelf!

Lieve Blokazijl familie, wat ben ik blij dat ik jullie als extra familie heb. Herman en José, ik
had me geen lievere schoonouders kunnen wensen. Dank jullie wel dat jullie me altijd
welkom hebben laten voelen en voor alle interesse in mijn project. Jurjen en Inge, Hidde
en Rutger en Nicole, gratis en voor niets kreeg ik 3 knotsgekke, lieve zwagers en hun
vriendinnen kado. Dank voor de gezelligheid en leuke gesprekken die we hebben! Nicole,
we hadden net ontdekt dat die Blokzijl broers wel erg leuk waren en toen heb ik je denk ik
al gevraagd of je ooit de omslag van mijn boekje zou willen ontwerpen. 10 jaar verder en
eindelijk zijn we zo ver, dank je wel voor het prachtige ontwerp, ik vind het heel bijzonder
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dat je het voor mij gemaakt hebt!

Lieve zusjes, Loes en Jasmijn, eindelijk is het af. Geen geklets meer over zebravissen, geen
gezeur meer over de PhD. Maar maak je geen zorgen, ik verzin wel iets anders om over

te mopperen. Ik ben ontzettend blij dat we nu zo dicht bij elkaar wonen en kan enorm
genieten van het feit dat we zo even langs kunnen wippen bij elkaar. Jullie zijn de beste
zusjes!

Jeffrey en Mickel, weer gratis en voor niets kreeg ik er twee hele toffe zwagers bij. Voor
jullie geldt hetzelfde: ik vind het super dat we nu zo dichtbij wonen en jullie zoveel
makkelijker kunnen bezoeken, ik had geen leukere zwagers kunnen wensen!

Lieve pap en mam, dank jullie voor alles. Het geeft heel veel vertrouwen dat ik altijd op
jullie steun en liefde kan rekenen. Ik ben blij dat we nu weer dicht bij elkaar wonen!

Lars, je hebt ons leven aardig op de kop gezet en de PhD zeker niet altijd makkelijker
gemaakt. Het maakte het leven wel heel bijzonder. Samen met jou op de fiets na het werk
liedjes zingen over de dingen die we onderweg zagen relativeerde de PhD enorm. Net als
die twee kleine armpjes om me heen als je even wilde knuffelen. Dank je wel dat je er
bent, je bent een prachtig ventje!

Lieve, lieve Maarten, zonder jou was ik nooit zo ver gekomen. Dank je wel voor alle steun,
bemoedigende woorden en voor het er gewoon zijn voor me. Op naar het volgende
avontuur met ons gezinnetje. Ik houd van je!
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