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Chapter 1

Introduction
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Imagine you are having your friends over for dinner later in the day and want to impress 
them with homemade sushi rolls. Unfortunately, as a novice, you lack the knowledge 
and skills required to make the perfect maki and uramaki. What do you do? Option A 
is to buy the necessary ingredients and make the sushi rolls without any assistance – 
how difficult can it be? It is possible that you would be able to make presentable sushi 
rolls yourself. However, the process of doing so would likely be very time-consuming, 
effortful, and error prone (resulting in substantial loss of time and waste of food). It is 
also possible that you would fail, because after many unsuccessful attempts, you 
might become frustrated and give up in the end. In that case, your culinary adventure 
changes to a sad last-minute order from the local fast food joint. Option B is to consult 
an example, for instance by asking someone close to you who has experience with 
making sushi to demonstrate the steps necessary to make the perfect sushi rolls. And 
if you do not know of such a person in your immediate vicinity, nowadays such experts 
are just a click away. You open YouTube on your mobile phone and search for ‘how to 
make the best maki and uramaki ever?’ and you can learn from videos by experts all 
over the world, even real Japanese Sushi chefs! After watching one or multiple 
examples, you will likely be able to roll the sushi so quickly and easily, that you even 
have time left to make some nigiri as well. So, which option would you choose? 

1.1 Example-Based Learning

Most people would presumably choose option B, because learning from examples 
(i.e., example-based learning) is a very natural and very powerful strategy for acquiring 
new knowledge and skills. And this does not only apply to knowledge and skills required 
to perform ‘everyday’ tasks such as cooking. Decades of educational research have 
shown that example-based learning is a very effective and efficient way of learning 
new skills in educational and professional settings (for reviews, see Atkinson et al., 
2000; Renkl, 2014; Sweller et al., 2011; Van Gog & Rummel, 2010; Van Gog et al., 2019). 
This is evidenced by studies that have shown that for novices (i.e., learners with little or 
no prior knowledge), example study is an effective and efficient strategy to learn new 
problem-solving skills relative to strategies that rely more heavily on learning by doing, 
such as solving practice problems. More effective refers to the finding that students 
attain higher scores on learning outcomes; that is, they perform better on test tasks 
that are isomorphic to the tasks studied or practiced in the learning phase, and 
sometimes also on transfer tasks, which are slightly different from the tasks encountered 
in the learning phase (e.g., Cooper & Sweller, 1987; Paas, 1992; Paas & Van Merriënboer, 
1994). More efficient means that this (equal or) higher performance on test tasks, is 
achieved with less investment of time or mental effort during the learning phase, or 
when solving the test problems (Paas & Van Merriënboer, 1994; Van Gog & Paas, 2008). 

But why do novices benefit so much from example study? When learners have not 
yet learned the procedures necessary for solving a problem, practice problem solving 
without any support forces them to resort to weak problem-solving strategies, such as 
trial-and-error strategies or means-ends analysis. These strategies are time-consuming, 
impose a high load on working memory, but barely contribute to learning (Sweller, 
1988). In contrast, studying examples prevents the use of weak problem-solving 
strategies and allows learners to devote all available cognitive capacity to mastering 
the solution procedure. This helps them to develop a cognitive schema of the solution 
procedure and thereby to solve similar problems in the future (e.g., Sweller et al., 2011; 
Sweller & Cooper, 1985; Sweller et al., 1998). 

The efficacy of example-based learning has been repeatedly established with 
different types of examples, originating from different theoretical perspectives (Renkl, 
2014; Van Gog & Rummel, 2010). From a cognitive perspective (e.g., cognitive load 
theory; Sweller, 1988; Sweller et al., 2011), the efficacy of example-based learning has 
mainly been established with worked examples. Worked examples are text-based and 
consist of a problem statement and a written step-by-step explanation of a full and 
correct solution procedure of how to solve a problem. Social-cognitive research 
inspired by theories such as social learning theory (e.g., Bandura, 1977, 1986) has 
predominantly focused on modeling examples, in which someone else (the model) 
demonstrates and (possibly) explains the solution procedure step by step. Modeling 
examples can be presented either live (e.g., Bjerrum et al., 2013) or on video (e.g., Van 
Gog et al., 2014). Nowadays, there are also more ‘hybrid’ examples with characteristics 
of both modeling examples and worked examples (i.e., screen-recordings in which the 
example builds up step-by-step until the end-state is basically a worked example; e.g., 
McLaren et al., 2008).

With the advent of modern technology, the popularity of example-based learning 
has increased further in recent years (Hoogerheide & Roelle, 2020), because it has 
become much easier to create examples and share them (e.g., De Koning et al., 2018; 
Fiorella & Mayer, 2018; Van der Meij & Van der Meij, 2013). YouTube is filled with ‘how to’ 
videos on a variety of topics, including educational topics, many also created by 
teachers. Moreover, teachers are experimenting more and more with relatively novel 
educational concepts in which worked examples and video modeling examples play 
an important role. Such concepts include, for instance, having learners prepare 
instructional material for classes at home and apply this material during practice at 
school (i.e., flipping the classroom; Bergmann & Sams, 2012; Van Alten et al., 2019), 
combining face-to-face and technology-mediated instruction (i.e., blended learning; 
Stein & Graham, 2020), or creating free and easily accessible online courses aimed at 
unlimited participation and open access via internet (e.g., Massive Open Online 
Courses –MOOCs; Deng et al., 2019; McAuley et al., 2010). 
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As such, students nowadays acquire new knowledge and skills increasingly via 
online learning environments (in blended or fully online courses), in which worked 
examples, video modeling examples, and practice problems are often embedded 
(e.g., Roll et al., 2011). A very popular example is Khan Academy (www.khanacademy.
org), which is an online educational platform that provides many video modeling 
examples and additional practice opportunities for a wide range of subjects. Such 
online platforms seem ideal for self-regulated and self-directed learning (e.g., when 
doing homework or studying for a test), because they give learners the opportunity to 
determine themselves where (i.e., at school or at home), when, and how they want to 
study. As a result, personalized learning paths can be created, which has been 
suggested to enhance students’ motivation and learning outcomes more than non-
personalized instruction that is the same for all students (e.g., Niemiec et al., 1996; 
Schnackenberg & Sullivan, 2000). 

Although modern technology provides many opportunities to enhance the use of 
example-based learning in education, the technological possibilities are far ahead of 
our understanding of how to provide learners with optimal sequences of examples 
and practice problems that foster their learning process (including motivational 
aspects of learning), and of how learners use examples and practice problems during 
self-regulated learning. These questions are not only theoretically relevant; they are 
also frequently asked by teachers and educational consultants. Therefore, the studies 
in this dissertation started to address those questions. 

1.2 Sequencing Example Study and Practice Problem Solving

This first part of this research project was carried out at a Dutch university of applied 
sciences, in the context of technical and primary teacher education. The aim of the 
studies in the first part of this dissertation was to investigate what sequences of 
examples and practice problems are most effective, efficient, and motivating for first 
year higher education students’ learning of new mathematical problem-solving skills. 
As mentioned earlier, decades of research have shown that instruction that relies 
heavily on example study is more effective and efficient for novices’ learning of new 
problem-solving skills than practice problem solving only (for reviews, see Atkinson et 
al., 2000; Renkl, 2014; Sweller et al., 2011; Van Gog et al., 2019). However, the question 
is what ‘heavier reliance’ means exactly (Van Gog et al., 2011); examples can be 
presented to novice learners in many ways. For example, novices can study a sequence 
of examples without any problem-solving practice (i.e., example study only), or 
alternate example study and practice problem solving. In case of the latter, sequences 
can be created in which practice problems are solved after example study (i.e., 
example-problem pairs) or before example study (i.e., problem-example pairs). 

What we already know from research on the worked example effect is that task 
sequences containing only examples (e.g., Van Gerven et al., 2002; Van Gog et al., 
2006) or example-problem pairs (e.g., Carroll, 1994; Cooper & Sweller, 1987; Kalyuga et 
al., 2001; Mclaren et al., 2008; Mwangi & Sweller, 1998; Rourke & Sweller, 2009; Sweller 
& Cooper, 1985) are more effective and efficient (less effortful during learning) for 
novices’ learning than sequences of only practice problems. Research has also shown 
that sequences of examples only and example-problem pairs do not seem to differ in 
terms of the amount of mental effort required from students and the learning outcomes 
they attain (Van der Meij et al., 2018), even when tested one week after the learning 
materials have been studied (Leahy et al., 2015; Van Gog & Kester, 2012; Van Gog et 
al., 2015; Van Gog et al., 2011). The use of problem-example pairs, however, might be 
ill-advised: Despite the fact that they offer an equal number of examples as example-
problem pairs, several studies have found that problem-example pairs were not more 
effective or efficient for learning than solving practice problems only, and less effective 
and efficient than studying example-problem pairs (e.g., Kant et al., 2017; Leppink et 
al., 2014; Van Gog et al., 2011). Although it is an open question how that finding can be 
explained, it has been suggested that motivational variables might play a role (Van 
Gog et al., 2011). 

Indeed, an important open question that is relevant for theory and educational 
practice is whether different sequences of examples and practice problems would 
differentially affect not only cognitive, but also motivational aspects of learning. 
Sequencing research has predominantly been conducted with worked examples and 
against the backdrop of cognitive load theory research, which has focused on 
cognitive variables (i.e., learning outcomes and invested mental effort). However, 
student motivation has been long ignored in research with worked examples (e.g., 
Sweller et al., 2011, with some exceptions: e.g., Crippen et al., 2009, Crippen & Earl, 
2007, Paas et al., 2005, Schnotz et al., 2009), and therefore also in sequencing research. 
Although there are indications that example study can influence important aspects of 
motivation, by fostering expectancies of one’s own abilities, such as self-efficacy and 
perceived competence (e.g., Bandura, 1997; Crippen et al., 2009; Hoogerheide et al., 
2014; Hoogerheide et al., 2018), it is an open question to what extent motivational 
variables underlie sequencing effects found in prior research (as suggested by Van 
Gog et al., 2011) and whether some sequences are more motivating than others (as 
suggested by Sweller & Cooper, 1985). 

For instance, a motivational explanation of the finding by Van Gog et al. (2011) that 
sequences of practice problems only and problem-example pairs do not work so well 
compared to sequences of examples only or example-problem pairs, would be that 
starting with a practice problem and failing to solve it could cause students to lose 
interest in the (topic of the) task or to lose confidence in their own abilities. This in turn, 
could negatively affect students’ willingness to work on other tasks (including examples) 
that follow. This would also explain why such a difference between example-problem 
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and problem-example pairs was not found for problems that were complex yet 
enjoyable or intrinsically rewarding (i.e., the puzzle problems used in Van Gog, 2011). 
Although this is speculative, in contrast to science or math problems, failing at puzzle 
problems might challenge rather than demotivate learners to study an example that 
follows. Sweller and Cooper (1985) used example-problem pairs in their study, based 
on the grounds that this would be more motivating for learners than examples only 
(although they did not test this assumption). Whereas example study only is assumed 
to be more ‘passive’, example-problem pairs give learners the opportunity to actively 
apply what they have learned and test their knowledge. If this assumption is correct, 
example-problem pairs might not necessarily be more effective and efficient for 
learning than example study only but might have a (stronger) positive effect on student 
motivation. Knowing whether some sequences are more motivating than others is very 
relevant for educational practice. Motivational aspects of learning are critical to 
learning and achievement, as they impact how likely a learner is to give up or push 
forward to reach a goal, and how much time and/or effort a learner is willing to invest 
in reaching that goal (e.g., Pintrich, 2003). As students often work on problem-solving 
tasks in online learning environments during self-study sessions (either at school or at 
home in preparation for class or a test), motivational aspects of task sequences likely 
determine whether learners decide to start, continue, or quit studying. 

Another important open question in the sequencing literature is whether the 
established sequencing effects would change with longer task sequences. Thus far, 
sequencing research has been limited to rather short learning phases of two to four 
learning tasks. The fact that learners’ knowledge gradually increases in longer learning 
phases may change the effectiveness and efficiency of certain sequences of examples 
and practice problems. For instance, once a schema of how to solve a certain type of 
problem has been acquired, additional example study no longer contributes to 
learning and students might start to benefit more from problem-solving practice (e.g., 
Kalyuga et al., 2001). Moreover, with longer sequences, student motivation becomes 
an even more important factor to consider. For instance, potential negative motivational 
effects of studying examples only (compared to example-problem pairs) might not be 
as pronounced in short sequences but might arise in longer sequences where more 
tasks have to be studied (or solved). Studying longer sequences is also relevant for 
generalizing findings to educational practice, where longer task sequences are more 
common. 

Therefore, the empirical studies in the first part of this dissertation (Chapters 2 and 3), 
addressed the question of how different short and longer sequences of examples and 
practice problems affect cognitive and motivational aspects of learning. 

1.3 Self-Regulated Learning with Examples and Practice Problems

The second part of this research project was carried out at a Dutch university of 
applied sciences, in the context of technical education. The aim of the studies in the 
second part of the dissertation was to examine how and how well first year higher 
education students regulate their learning from examples and practice problems in an 
online learning environment and whether informing them about effective, efficient, 
and motivating instructional design principles helps to improve their task-selections, 
and thereby their motivation and learning outcomes. In online learning environments, 
fixed task sequences can be pre-assigned to a learner by the teacher (or the computer 
software), but it can also be up to the learner to decide what tasks they want to work 
on and in what order. As most research on example-based learning has investigated 
effects of fixed task sequences, an important open question is what choices learners 
make when they can choose how to learn from examples and problems themselves 
(e.g., Tempelaar et al., 2020; Van Gog et al., 2019), and how well such choices align 
with what we know to be effective, efficient, or motivating for learning (see Table 1). 
When learners would make suboptimal choices, they might benefit from instructional 
support or advice during self-regulated learning from examples and practice problems. 

While providing learners with control over their task-selections might have 
motivational benefits for learning, which in turn may increase learning outcomes (e.g., 
Zimmerman, 2002), one could expect that they would struggle selecting the right task 
according to their learning needs. Self-regulated learning of problem-solving tasks is 
notoriously difficult, because learners not only need to assess their performance on 
the current task, but also use this information to select the next task with the right level 
of task complexity and support (e.g., De Bruin & Van Gog, 2012). Hence, it may not 
come as a surprise that research has shown that learners often experience problems 
with accurately assessing their own knowledge gaps and determining which (order of) 
tasks will help them improve (e.g., Corbalan et al., 2008; Kostons et al., 2012). Learners, 
especially novices, tend to focus more on irrelevant task aspects when selecting their 
own tasks such as the cover story of the task than tasks aspects that contribute to 
learning (i.e., level of support and complexity; e.g., Corbalan et al., 2009).

These findings raise the question of how and how well students regulate their 
learning when acquiring problem-solving skills. A recent study conducted by Foster 
and colleagues (2018) suggested that students made rather suboptimal decisions 
when learning from examples and problems (i.e., compared to what we know to be 
effective sequences). For instance, we know that for novices, studying examples, and 
particularly at the start of the learning phase, is effective and efficient, but their findings 
showed that on average, students opted more often for (completion) problems than 
examples and rarely started the learning phase with example study. However, given 
the paucity of studies, more research on self-regulated learning with examples and 
practice problems is needed, and especially in the context of actual study programs 
with content that is relevant to students. 
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Another important question is how we can support students’ self-regulated 
learning from examples and problems. One approach that might work well and is 
quite easy to implement in practice is to explicitly inform learners about effective and 
efficient principles derived from instructional design research (see Table 1). It has been 
suggested that explicitly informing learners might help them to become more aware 
of the value of certain strategies and to increase their metacognitive knowledge (i.e., 
knowledge about why and which strategies are beneficial for learning and which 
strategies are not). Consequently, this can increase the likelihood that strategies are 
applied (e.g., Tullis et al., 2003; Yan et al., 2014). Indeed, explicitly informing or instructing 
students about effective (meta)cognitive learning strategies has shown to be successful 
for increasing learners’ metacognitive beliefs or knowledge e.g., Endres et al., 2021; 
Lineweaver et al., 2011; McCabe, 2011; Yan et al., 2016) and their use of those learning 
strategies (e.g., Biwer et al., 2019). Ariel and Karpicke (2017) found that explicitly 
informing students about learning strategies (i.e., retrieval practice) also improved 
their learning outcomes regarding word-pair learning. When learning from examples 
and problems, it could mean that explicitly informing students about findings from 
sequencing studies, would help learners to select the right tasks (according to their 
level of expertise) faster and more often. However, it is an open question whether this 
approach would generalize to problem-solving skills, because self-regulated learning 
of problem-solving skills requires much more complex regulation decisions (e.g., De 
Bruin & Van Gog, 2012) than self-regulated learning of verbal learning tasks or text 
comprehension (as often used in research on learning strategies). 

Therefore, the studies in the second part of this dissertation (Chapters 4 and 5) 
address the questions of 1) how and how well learners regulate their learning from 
examples and problems, and 2) whether informing learners about effective, efficient, 
and motivating instructional design principles helps to improve their task-selections, 
and thereby their motivation and learning outcomes.

Table 1.
Effective, Efficient, and Motivating Principles Derived from Instructional Design Research 
on Learning New Problem-Solving Skills.

Principle Explanation References

Example-based-learning-

principle

Replacing all or a substantial 

number of practice problems 

with examples helps novices 

to learn more (i.e., is more 

effective) with less time and effort 

investment (i.e., is more efficient) 

than solving practice problems 

without any instructional support

e.g., Sweller et al. (2011), 

Van Gog et al. (2019)

Example-study-first-principle Novices should start the learning 

phase with an example instead 

of a practice problem, as this 

was found to be more efficient, 

than starting with problem-

solving only

e.g., Van Gog et al. (2011)

Lowest-level-first-principle Novices should start with a task 

at the lowest level of complexity

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Simple-to-complex-principle Novices should gradually 

increase the level of task 

complexity as their knowledge 

increases

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Start-each-level-with-

example-principle

Novices should receive a high 

level of instructional support (like 

an example) at the start of each 

new complexity level

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)
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1.4 Overview of the Studies in this Dissertation

This dissertation is divided into two parts. Part I, Sequencing Example Study and 
Practice Problem Solving, consists of two chapters (Chapters 2 and 3), each presenting 
two experimental studies in which it was investigated what sequences of examples 
and practice problems are most effective, efficient, and motivating for first year higher 
education students’ learning of new mathematical problem-solving skills. Part II, Self-
Regulated Learning with Examples and Practice Problems, contains two chapters, 
each presenting a study in which it was examined how and how well first year higher 
education students regulate their learning from examples and practice problems in 
an online learning environment (Chapters 4 and 5), and whether informing them about 
effective, efficient, and motivating instructional design principles helps to improve their 
task-selections, and thereby their motivation and learning outcomes (Chapter 5). 

PART I: Sequencing Example Study and Practice Problem Solving

Chapter 2 contains two experiments investigating whether different short sequences 
of examples and practice problems (i.e., 4 learning tasks) differ in effectiveness, 
efficiency, and how they affect motivational aspects of learning. In Experiment 1 (N = 
124), technical higher education students learned how to approximate the region 
under a graph using the trapezoidal rule (a math task) by means of example study 
only, example-problem pairs, problem-example pairs, or problem solving only. 
Subsequently, we conducted a second experiment in order to examine whether results 
would replicate with a different sample (i.e., students with a non-technical background). 
Therefore, Experiment 2 (N = 81) used the same materials and design as Experiment 1, 
but with a sample of primary teacher training students. Effectiveness was measured by 
assessing performance on the isomorphic test tasks, procedural transfer task, and 
conceptual transfer task. Efficiency was measured by logging time-on-task and rating 
invested mental effort after each task in the learning and posttest phase. Motivation 
was measured by means of short self-efficacy, perceived competence, and topic 
interest questionnaires, provided to learners before and after the learning phase. 

In Chapter 3, two experiments are described examining whether different short 
(i.e., 4 tasks) and longer (i.e., 8 tasks) sequences of example study only, example-
problem pairs, problem-example pairs, and practice problem-solving practice show 
differences in effectiveness, efficiency, and motivation. In Experiment 1 (N = 157), it was 
examined whether the results of Experiment 1 described in Chapter 2 would replicate 
with a conceptual pretest instead of a procedural pretest and whether the effects 
remain stable on a delayed test one week later. Moreover, it was investigated how self-
efficacy during learning is affected by the order of examples and practice problems. 
Technical higher education students learned how to approximate the region under a 
graph using the trapezoidal rule in a short learning phase consisting of four learning 
tasks. In Experiment 2 (N = 105), it was investigated whether the results found with short 

sequences would be different with longer sequences. Experiment 2 used the same 
materials and design as Experiment 1; however, students studied or solved eight 
learning tasks. Effectiveness was measured by assessing performance on the 
isomorphic test tasks, procedural transfer task, and conceptual transfer task. Efficiency 
was measured by logging time-on-task and rating invested mental effort after each 
task in the learning and (delayed) posttest phase. Motivation was measured by means 
of short self-efficacy, perceived competence, and topic interest questionnaires, 
provided to learners before and after the learning phase and at the start of the delayed 
posttest. Self-efficacy was also measured after each task in the learning phase. 

PART II: Self-Regulated Learning with Examples and Practice Problems

The first aim of the study presented in Chapter 4 was to explore what choices 
students make (and why) when they can regulate their own learning from different 
examples and practice problems (at different complexity levels). A second aim was to 
explore to what extent their task-selection decisions match with principles for effective, 
efficient, and motivating learning sequences derived from instructional design 
research. Finally, this study examined whether there is a relation between the extent to 
which students’ choices match with these instructional design principles and their 
scores on cognitive (isomorphic test tasks, procedural transfer task, and conceptual 
questions, mental effort, and time-on-task) and motivational variables (self-efficacy, 
perceived competence, and topic interest). Technical higher education students (N = 
147) learned how to solve problems on the trapezoidal rule in an online learning 
environment by selecting six learning tasks from a database with 45 tasks that varied 
in task format (video examples, worked examples, and practice problems), complexity 
level (three levels), and cover story. Effectiveness was measured by assessing 
performance on the isomorphic test tasks, procedural transfer task, and conceptual 
questions. Efficiency was measured by logging time-on-task and rating invested 
mental effort after each task in the learning and posttest phase. Motivation was 
measured by means of short self-efficacy, perceived competence, and topic interest 
questionnaires before and after the learning phase. Self-efficacy was also measured 
after each task in the learning phase.

In Chapter 5, a study is described in which the question was first addressed how 
students regulate their learning when they can decide for themselves how to sequence 
examples and practice problems (i.e., to replicate the study in Chapter 4). Second, it 
was investigated whether self-regulated learning would be as effective, efficient, and 
motivating as a fixed task sequence based on the principles derived from instructional 
design research. Third, this study examined whether explicitly informing learners about 
the principles derived from instructional design research would enhance their self-
regulated learning of examples and problems (at different complexity levels), 
performance, and motivation compared to self-regulated learning without such 
information, and whether this would be as effective for learning as engaging in a fixed 
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task sequence. Technical higher education students (N = 150) learned how to use the 
trapezoidal rule by engaging in a fixed task sequences condition, a self-regulated 
learning condition, or an ‘informed’ self-regulated learning condition. In the self-
regulated learning conditions, students selected six learning tasks from the task 
database (cf. Chapter 4). Before selecting their own learning tasks, students in the 
‘informed’ condition received a video instruction explaining effective and efficient 
(and motivating) principles from instructional design research. Effectiveness was 
measured by assessing performance on the isomorphic test tasks, procedural transfer 
task, and conceptual questions. Efficiency was measured by logging time-on-task and 
rating invested mental effort after each task in the learning and posttest phase. 
Motivation was measured by means of short self-efficacy and perceived competence 
questionnaires before and after the learning phase. Self-efficacy was also measured 
after each task in the learning phase.

The final chapter (Chapter 6) presents a summary of the main findings and a 
discussion of the theoretical and practical implications.
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Chapter 2

Effects of different sequences of examples 
and problems on motivation and learning

This chapter was published as: 
Van Harsel, M., Hoogerheide, V., Verkoeijen, P. P. J. L., & Van Gog, T. (2019).
Effects of different sequences of examples and problems on motivation and learning. 
Contemporary Educational Psychology, 58, 260–275.
https://doi.org/10.1016/j.cedpsych.2019.03.005 
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Abstract

Recent research has shown that example study only (EE) and example-problem pairs 
(EP) were more effective (i.e., higher test performance) and efficient (i.e., attained with 
less effort invested in learning and/or test tasks) than problem-example pairs (PE) and 
problem solving only (PP). We conducted two experiments to investigate how different 
example and problem-solving sequences would affect motivational (i.e., self-efficacy, 
perceived competence, and topic interest) and cognitive (i.e., effectiveness and 
efficiency) aspects of learning. In Experiment 1, 124 technical students learned a 
mathematical task with the help of EEEE, EPEP, PEPE, or PPPP and then completed a 
posttest. Students in the EEEE Condition showed higher posttest performance, self-
efficacy, and perceived competence, attained with less effort investment, than 
students in the EPEP and PPPP Condition. Surprisingly, there were no differences 
between the EPEP and PEPE Condition on any of the outcome measures. We 
hypothesized that, because the tasks were relevant for technical students, starting with 
a problem might not have negatively affected their motivation. Therefore, we replicated 
the experiment with a different sample of 81 teacher training students. Experiment 2 
showed an efficiency benefit of EEEE over EPEP, PEPE, and PPPP. However, only EEEE 
resulted in greater posttest performance, self-efficacy, and perceived competence 
than PPPP. We again did not find any differences between the EPEP and PEPE Condition. 
These results suggest that, at least when short training phases are used, studying 
examples (only) is more preferable than problem solving only for learning. Moreover, 
this study showed that example study (only) also enhances motivational aspects of 
learning whereas problem solving only does not positively affect students’ motivation 
at all.

Keywords: example-based learning, worked examples, problem solving, motivation, 
mental effort, instructional design

2.1 Introduction

Example-based learning is an effective and efficient instructional strategy for novices 
to acquire new problem-solving skills. Research has repeatedly shown that instruction 
that relies more heavily on example study, yields better learning outcomes than 
engaging in practice problem solving only (for reviews, see Atkinson et al., 2000; Renkl, 
2014; Sweller et al., 2011; Sweller et al., 1998; Van Gog & Rummel, 2010). This is known as 
the worked example effect. Notwithstanding several decades of research, an important 
open question in research on example-based learning is whether and when example 
study should be alternated with practice problem solving to be effective and efficient 
for learning. 

2.1.1. Different Sequences of Examples and Problems

Historically, most studies on the worked example effect have used example-
problem pairs (e.g., Carroll, 1994; Cooper & Sweller, 1987; Kalyuga et al., 2001; Mclaren 
et al., 2008; Mwangi & Sweller, 1998; Rourke & Sweller, 2009; Sweller & Cooper, 1985). 
Others used example study only (e.g., Van Gerven et al., 2002; Van Gog et al., 2006). 
Both approaches were found to be more effective and efficient for learning and 
transfer than problem solving only. Another means of implementing examples and 
problems is to use problem-example pairs (e.g., Hausmann et al., 2008; Reisslein et al., 
2006; Stark et al., 2000). In a direct comparison of all four approaches of Van Gog and 
colleagues (2011), students were randomly assigned to learn how to troubleshoot 
electrical circuits (in four training tasks) by means of example study only (EEEE), 
example-problem pairs (EPEP), problem-example pairs (PEPE), or practice problem 
solving only (PPPP). Time-on-task was kept constant. Results showed no differences in 
test performance or mental effort investment in the training phase between the EEEE 
condition and EPEP condition and between the PEPE condition and PPPP condition. 
The EEEE condition and EPEP condition were, however, more effective (i.e., attained 
significantly higher test performance; medium to large effect) and more efficient (i.e., 
attained significantly higher test performance with less invested mental effort in the 
training phase; medium to large effect) compared to the PEPE condition and PPPP 
condition (for a discussion of efficiency, see Hoffman & Schraw, 2010; Van Gog & Paas, 
2008). 

2.1.2. Example Study Only versus Example-Problem Pairs

Several studies have by now replicated the finding that learning outcomes after 
EEEE and EPEP do not differ significantly (Van der Meij et al., 2018), even on a delayed 
posttest (Leahy et al., 2015; Van Gog & Kester, 2012; Van Gog et al., 2015). Note though, 
that these studies did not include motivational variables (which have largely been 
ignored in worked example research; Renkl, 2014; Sweller et al., 2011; Van Gog & 
Rummel, 2010). It has been suggested –though not yet tested– that solving a (similar) 
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problem immediately after studying an example may be more motivating for students 
than passively studying examples only, because practice problem solving requires 
learners to actively apply what they have learned (e.g., Sweller & Cooper, 1985; Trafton 
& Reiser, 1993). If EPEP was found to be more motivating than EEEE whilst yielding 
comparable levels of learning outcomes, it would be highly relevant for educational 
practice. Outside a laboratory research setting, motivational variables might affect 
learning outcomes via persistence. That is, in (online) learning environments, students 
can decide for themselves whether they continue to work on a task (sequence) or not, 
so how motivating a task sequence is becomes important. 

2.1.3. Example-Problem Pairs versus Problem-Example Pairs

Another noteworthy finding in the Van Gog et al. (2011) study in which motivational 
aspects of learning might have played a role, was that EPEP was more effective and 
efficient for learning than PEPE, even though both received the same number of 
examples to study. Moreover, students in the PEPE condition –despite receiving two 
examples– did not outperform students in the PPPP condition. This finding, which has 
since been replicated in two other studies (e.g., Kant et al., 2017; Leppink et al., 20141), 
suggests that the order in which example study and practice problem solving is 
alternated, matters: if novice learners start with a practice problem, example study 
loses its effectiveness (see also Reisslein et al., 2006). Van Gog et al. (2011) suggested 
–but did not test– that motivational aspects of learning might explain this finding: 
“students may not be motivated to study the example because of the negative 
experience of a failed problem-solving attempt” (p. 217). That is, when novices have to 
learn how to solve a complex task that requires domain-specific knowledge and is not 
particularly intrinsically rewarding (such as the physics task in the study by Van Gog et 
al., 2011), then starting the training phase with a practice problem (i.e., PEPE) might 
lead to a decrease in student motivation. When the practice problem is being 
experienced as so difficult that students lose confidence in their own abilities or lose 
interest to learn the task, they may not be motivated to study the subsequent example 
(and possibly also the tasks that follow). Starting with an example (EPEP) gives students 
a basis for how to approach the subsequent practice problem and may therefore 
prevent students from becoming demotivated. 

2.1.4. The Role of Motivation

Three aspects of motivation that may be affected by example-problem sequences 
are self-efficacy, perceived competence, and topic interest. 

Self-efficacy is a key construct in Bandura’s (1986) social learning theory and can be 
defined as a person’s belief in their own capacity to organize or accomplish a specific 
task or challenge (see also Bandura, 1997; Schunk, 1987). Self-efficacy has been shown 
to have a positive effect on factors such as academic motivation, study behavior, and 
learning outcomes (e.g., Bandura, 1997; Bong & Skaalvik, 2003; Schunk, 2001). 
Perceived competence plays a central role in Deci and Ryan’s (2002) self-determination 
theory of motivation and has also shown to have significant influence on academic 
motivation and learning outcomes (e.g., Bong & Skaalvik, 2003). This construct is 
related to self-efficacy but covers more general knowledge and perceptions (Bong & 
Skaalvik, 2003; Hughes et al., 2011; Klassen & Usher, 2010). Topic interest is a motivational 
construct that can be described as the level of interest generated by a specific topic 
(Ainley et al., 2002; Renninger, 2000; Schiefele & Krapp, 1996) and seems to have a 
positive effect on (deeper) learning and engagement (e.g., Benton et al., 1995; 
Schiefele & Krapp, 1996; Tobias, 1996). Although research has shown that example 
study only can foster students’ self-efficacy and perceived competence (e.g., Bandura, 
1997; Crippen et al., 2009; Hoogerheide et al., 2014; Hoogerheide et al., 2018), it is an 
open question how different sequences would affect motivational aspects of learning.

In sum, it is both theoretically and practically relevant to address whether different 
sequences of examples and practice problems would differentially affect not only 
cognitive (i.e., effectiveness and efficiency), but also motivational aspects of learning 
(i.e., self-efficacy, perceived competence, and topic interest). The present study set 
out to do so, by performing a conceptual replication of Van Gog et al. (2011), extended 
with motivational measures. 

2.1.5. The Present Study

The purpose of Experiment 1 was to investigate the effects of different example and 
problem-solving sequences on motivational and cognitive aspects of learning. We 
conducted a conceptual replication of the Van Gog et al. (2011) study, with the same 
task sequences (i.e., EEEE, EPEP, PEPE, and PPPP), but a different population (i.e., higher 
education students rather than secondary education students), different training tasks 
(i.e., mathematics tasks rather than physics tasks), and a different example format (i.e., 
video modeling examples consisting of screen recordings with voice-over, rather than 
worked examples; cf. McLaren et al., 2008). In addition to performance on posttest 
tasks and reported effort investment in the training phase, we measured time-on-task 
in the training phase, as well as mental effort and time-on-task in the posttest phase as 
(explorative) indicators of efficiency of the learning process and learning outcomes. 
We added a procedural and conceptual transfer task and a delayed posttest one 
week later to investigate any effects on transfer and whether effects would remain 
stable over time (cf. Van Gog et al., 2015). The most important novelty of Experiment 1 
was that we measured the following motivational aspects of learning before and after 
the training phase: self-efficacy, perceived competence, and topic interest. 

1 �Note though, that EPEP > PEPE was not found when the examples and problems remained fully identical 
throughout the sequences (Van Gog, 2011).
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The main aim was to investigate how the different example and problem solving 
sequences (i.e., EEEE, EPEP, PEPE, and PPPP) would affect a) motivational aspects of 
learning (i.e., self-efficacy, perceived competence, and topic interest), and b) cognitive 
aspects of learning (i.e., effectiveness and efficiency). We expected that an EPEP 
sequence would result in higher levels of self-efficacy, perceived competence, and 
topic interest than an EEEE sequence (cf. the suggestion by Sweller & Cooper, 1985 
and & Trafton & Reiser, 1993; Hypothesis 1a). Based on the motivational explanation for 
the effectiveness and efficiency of EPEP over PEPE proposed by Van Gog et al. (2011), 
we also expected EPEP to be more beneficial for self-efficacy, perceived competence, 
and topic interest than PEPE (Hypothesis 1b). We had no hypotheses for the other 
condition comparisons, so we examined them in an exploratory manner (Question 1c).

Regarding cognitive aspects of learning, we expected to replicate the findings by 
Van Gog et al. (2011) regarding both isomorphic problem-solving performance (i.e., 
EEEE = EPEP > PEPE = PPPP; Hypothesis 2) and mental effort invested in the training 
phase (i.e., EEEE = EPEP > PEPE = PPPP; Hypothesis 3). That is, we expected the EEEE and 
EPEP condition to attain greater posttest performance with less effort investment in the 
training phase than the PEPE and PPPP condition, and no differences to arise on these 
variables between the EEEE and EPEP condition and between the PEPE and PPPP 
condition. Because example-based learning has been found to be effective not only 
for learning to solve similar problems, but also for solving transfer problems (e.g., 
Cooper & Sweller 1987; Paas 1992; Paas & Van Merriënboer, 1994), we expected the 
same pattern of results for performance on the procedural transfer task (i.e., EEEE = 
EPEP > PEPE = PPPP; Hypothesis 4) and conceptual transfer task (i.e., EEEE = EPEP > PEPE 
= PPPP; Hypothesis 5). 

2.2. Experiment 1

2.2.1. Method

2.2.1.1. Participants and design

An a-priori-power analysis was conducted to determine how many participants we 
would need to be able to reliably detect the effect sizes reported by Van Gog et al. 
(2011). Inserting η2

p = 0.23 (i.e., effect size for test performance found in the study by 
Van Gog et al., 2011) into G*Power and performing an a-priori-power analysis for a 
one-way ANOVA with four groups, with an alpha of 0.05, and a power of 0.95, yielded 
a total sample of 64. Participants were 124 first-year students from a Dutch University of 
Applied Sciences, enrolled in an electrical and electronic or mechanical engineering 
program (Mage = 19.25, SD = 1.90; 117 male, 7 female). At the time of the experiment, 
students were novices to the task being taught in this study (i.e., approximating the 
definite integral using the trapezoidal rule) as this topic had not yet been taught in their 
curriculum. They received study credits for their participation. The experiment consisted 
of 3 phases, namely: the pretest, training, and immediate posttest phase. Participants 

were randomly assigned to one of four conditions: 1) examples only (n = 34; EEEE), 2) 
example-problem pairs (n = 25; EPEP), 3) problem-example pairs (n = 30; PEPE), or 4) 
practice problems only (n = 35; PPPP). 

2.2.1.2. Materials

All materials were presented in a web-based online learning environment. 

Training tasks. The training phase consisted of four math tasks that were developed 
in collaboration with three mathematics teachers of a Dutch University of Applied 
Sciences. The tasks required the use of the trapezoidal rule (i.e., a numerical integration 
method which divides a specific region under the graph of a function into trapezoids 
and calculates its area) to approximate the region under the graph of a function. 

Each task had a different cover story (i.e., task 1: fitness, task 2: energy measurement, 
task 3: soapsuds, and task 4: running). These cover stories were randomly distributed 
over the four tasks that were used in the training phase. The four tasks were divided in 
two pairs (i.e., pair 1: fitness and energy measurement, pair 2: soapsuds and running), 
based on their complexity level. In the first pair of tasks (complexity level 1), only positive 
numbers were used in constructing the graph of a function, whereas in the second 
pair (complexity level 2), negative numbers were used in constructing the graph of a 
function. Requiring students to calculate with negative numbers made the second 
pair of tasks slightly more complex than the first pair of tasks. Within each pair, the two 
tasks were isomorphic (i.e., a similar problem-solving procedure was required, but 
surface features such as the cover stories and numbers used in functions were slightly 
different).

 Two versions of each task were created, a video modeling example and a practice 
problem. The video modeling example, a video screen capture, showed a digital 
recording of a female model’s computer screen demonstrating step-by step how to 
solve a problem using the trapezoidal rule. The visual demonstration was supported by 
verbal explanations and handwritten notes. The screen capture started with a brief 
introduction of the purpose of the trapezoidal rule, followed by an explanation of the 
problem state. For example, the problem state in the example format of ‘Energy 
measurement’ read as follows: “Jalil has bought a solar cell and wants to know how 
much energy the solar cell supplies during a certain amount of time. Jalil has used an 
energy meter to examine how much energy the solar cell produces during a specific 
amount of time. Jalil has measured the energy at different time points and plotted the 
results in a graph. The time (in minutes) is plotted on the horizontal axis and the power 
the solar cell supplies (Joule per minute) is plotted on the vertical axis of the graph. By 
calculating the area under the graph, Jalil can determine how much energy the solar 
cell has produced during a certain amount of time.” Subsequently, the remainder of 
the example showed and explained how to interpret the corresponding graph of a 
function with information that was given (i.e., the left border and right border of the 
area, the number of intervals, the trapezoidal rule), and showed and explained how to 
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solve the problem by using four steps: 1) ‘compute the step size of each subinterval’, 2) 
‘calculate the x-values’, 3) ‘calculate the function values for all x-values’, and 4) ‘enter 
the function values into the formula and calculate the area’ (for an example of a video 
modeling example, see Supplementary Materials B).

In the problem format, participants first received a short introduction describing 
the problem state, along with the graph of a function, the left border and right border 
of the area to be calculated, the number of intervals, and the trapezoidal rule formula. 
This information was the same as in the video modeling example. It was, however, not 
explained how to use this information to solve the problem. Participants had to solve 
the problem themselves by completing four steps: 1) ‘compute the step size of each 
subinterval’, 2) ‘calculate the x-values’, 3) ‘calculate the function values for all x-values’, 
and 4) ‘enter the function values into the formula and calculate the area’. In addition, 
they were asked to write down their solution steps (for an example of a practice 
problem, see Supplementary Materials A). 

The order of the four tasks was kept constant across conditions (i.e., the training 
phase always started with ‘fitness’ and ended with ‘running’), only the format of each 
task varied among conditions (i.e., EEEE and EPEP started with ‘fitness’ as an example, 
whereas PEPE and PPPP started with ‘fitness’ as a practice problem). 

Test tasks. The pretest consisted of two tasks that were isomorphic (i.e., same 
difficulty, different cover stories) to the training tasks (Cronbach’s alpha = .63). The 
complexity level of the first and second pretest tasks was identical to the first and 
second pair of training tasks, respectively. Students were asked to approach the region 
under the graph using the information that was given and to write down their solution 
steps. In these problems, the intermediate (four) steps were not explicitly displayed 
such as in the training tasks.

The immediate posttest consisted of four tasks. The first two tasks were isomorphic 
to the pretest and training tasks and were used to measure ‘learning’ (Cronbach’s 
alpha = .66). Students needed to apply the exact problem-solving procedure that they 
learned during the training phase, but tasks were used that differed in terms of surface 
features such as cover story and numbers used in the function. The third task was a 
procedural transfer problem in which participants were asked to use the Simpson rule 
instead of the trapezoidal rule to approximate the definite integral under a graph. The 
problem-solving procedure of the Simpson rule is similar to that of the problem-solving 
procedure of the trapezoidal rule. However, Simpson’s rule uses a different formula to 
calculate the area under a graph and approximates the curve with a sequence of 
quadratic parabolic segments instead of straight lines (such as the trapezoidal rule). 
The final conceptual transfer task consisted of five questions that aimed to measure 
students’ conceptual understanding of the underlying principles of the trapezoidal 
rule as a technique to approximate the area under a graph (Cronbach’s alpha = .54). 

Each question consisted of a multiple-choice part (from which students had to choose 
the right answer) and an ‘explanation’ part (where students had to substantiate their 
chosen answer). An example of an isomorphic posttest task, procedural transfer task 
and a question concerning conceptual transfer can be found in the Supplementary 
Materials F, G, and H.

Mental effort. Participants were asked to rate how much mental effort they had 
invested after each task on the pretest, the training phase, and the immediate posttest, 
using the 9-point mental effort rating scale developed by Paas (1992), with answer 
options ranging from (1) “very, very low mental effort” to (9) “very, very high mental 
effort”. Research has shown that this measure is an indicator of experienced cognitive 
load that is sensitive to variations in task complexity (Paas et al., 2003).

Self-efficacy, perceived competence, and topic interest. Self-efficacy was 
measured just before and directly after the training phase by asking participants to 
rate to what extent they were confident that they could approximate the definite 
integral of a graph using the trapezoidal rule on a 9-point rating scale, ranging from (1) 
“very, very unconfident” to (9) “very, very confident”. This was an adapted version of 
the item used by Hoogerheide and colleagues (2016). 

Perceived competence was measured using an adapted version of the Perceived 
Competence Scale for Learning (Williams & Deci, 1996; Williams, et al., 1988). The 
original scale consists of 4 items, namely: “I feel confident in my ability to learn this 
material”, “I am capable of learning the material in this course”, “I am able to achieve 
my goals in this course”, and “I feel able to meet the challenge of performing well in 
this course”. We adapted the scale by removing the third question on the topic of 
personal goals because this question was not relevant for the present study. For the 
remaining questions, we rephrased the word ‘course’ to focus on approximating the 
definite integral of a graph using the trapezoidal rule. Participants could rate from (1) 
“not at all true” to (7) “very true” to what degree the items applied to them. The adapted 
scale had a good reliability in our sample (Cronbach’s alpha = .96). It should be noted, 
however, that Cronbach’s alpha has a limited degree of precision due to the large 
sampling error. Nevertheless, a high alpha measure (i.e., above .80) has been 
demonstrated in previous studies (e.g., Williams & Deci, 1996; Williams et al., 1998). 

To measure students’ topic interest, we developed a topic interest scale. Our scale 
consisted of 7 items (Cronbach’s alpha = .80) adapted from the topic interest scale by 
Mason and colleagues (2008) and from the Perceived Interest Scale developed by 
Schraw and colleagues (1995). We selected the items from both scales that focused 
on feelings and emotions towards a specific topic and adjusted the items to the 
context of using or practicing the trapezoidal rule. Each item asked participants to rate 
on a 7-point scale, ranging from 1 (not at all) to 7 (very true), to what degree each of 
the items applied to them. The items are shown in the Supplementary Materials I. 



3332

2.2.1.3. Procedure

The experiment was run in sixteen sessions (i.e., eight first sessions and eight second 
sessions) in a computer classroom with 5 to 25 participants present per session. In the 
first session, which lasted 100 minutes on average, the experimenter first provided 
participants with a general introduction in which she explained the aim and procedure 
of the experiment. Participants were told that they would be able to work on the tasks 
at their own pace with a max. of 130 minutes, and that they would be provided with a 
headset, a pen, and scrap paper on which they could write down their calculations. 
Participants were instructed to do their best but could write down an ‘X’ if they really 
did not know the answer. Then, the experimenter provided students a form with a link 
to the learning environment so students could enter the environment as soon as the 
instruction was finished. 

The learning environment presented each task and questionnaire on a separate 
page, which ensured that participants could not go back to previous tasks or 
questionnaires, nor look ahead until the current task was completed. Time-on-task was 
logged. The learning environment first randomly assigned participants to one of the 
four conditions, and then presented participants with a short demographic 
questionnaire (e.g., age and gender) and the pretest. Both pretest tasks were followed 
by the mental effort rating scale, and the pretest was followed by the self-efficacy, 
perceived competence, and topic interest questionnaires. During the training phase, 
participants were provided with a combination of examples and/or practice problems, 
depending on their assigned condition. Each task was followed by the mental effort 
rating scale, and the training phase was followed by the self-efficacy, perceived 
competence, and topic interest questionnaires. Finally, participants were provided 
with the immediate posttest, which consisted of two tasks that were isomorphic to the 
tasks in first and second pair of the training phase, a procedural transfer task (i.e., 
Simpson’s rule task) and five open-ended questions to measure conceptual knowledge. 
Again, after each immediate posttest task participants were provided with the mental 
effort rating scale. Before starting with the immediate posttest, students were asked to 
put away the scrap paper they used in the training phase and received a new scrap 
paper to make notes. After completing the immediate posttest, participants gave the 
scrap paper containing their calculations to the experimenter. 

2.2.1.4. Data analysis. 

For each training task, a maximum of 8 points could be earned: two points for correctly 
computing the step size of each subinterval (step 1), two points for correctly calculating 
all the x-values (step 2), two points for correctly calculating the function values for all 
x-values (step 3), and 2 points for correctly calculating the area by using the correct 
formula and giving the right answer (step 4). Students received 1 point when half or 
more of the solution steps were correct in step two, three, and four. If fewer than half of 
the solution steps were correct, 0 points were granted. These scoring standards were 
also used to score the pretest (max. 16 points). The same procedure was used for the 

procedural transfer problem, so a maximum of 8 points could be earned for this task. 
A maximum of 9 points could be earned on the 5 open-ended questions in the 
conceptual transfer problem: one point for the first open-ended question (1 point for 
the correct answer, 0 points for an incorrect answer) and 2 points for the other open-
ended questions. The maximum score of 2 points was only granted when participants 
got the answer right and provided correct reasoning. Only 1 point was granted if the 
answer was correct but not substantiated by reasoning and 0 points were granted 
when the answer was completely incorrect. 

The data was scored by the experimenter (i.e., first author) based on a standard 
developed by the authors in collaboration with the mathematic teachers. To measure 
the reliability of the ratings, two raters independently scored 15% of the tests. The intra-
class correlation coefficient was high, with respectively scores of .91 on the pretest 
tasks, .94 on the training phase tasks, and .98 on the posttest tasks. 

Average mental effort was computed separately for the pretest tasks, training 
tasks, isomorph tasks, and transfer tasks on the immediate posttest. Average scores on 
self-efficacy, perceived competence, and topic interest were computed separately for 
the measurement that took place before the training phase and the measurement 
directly after the training phase. 

2.2.2. Results

Because several variables were not normally distributed, we analyzed the data with 
nonparametric tests (cf. Field, 2009). We tested the main effects of Test Moment with 
the Wilcoxon signed-rank test and the main effects of Instruction Condition with the 
Kruskal-Wallis test. For post-hoc tests, we used Mann-Whitney U tests, with a Bonferroni 
corrected significance level of p < .013 (i.e., 0.05/4) for the Wilcoxon signed-rank tests 
and a Bonferroni corrected alpha level of p < .008 (i.e., 0.05/6) for the Kruskal-Wallis 
test. For the post-hoc tests, the effect size of Pearson r correlation is reported (i.e., Z/√N) 
with values of 0.10, 0.30, and 0.50 representing a small, medium, and large effect size, 
respectively (Cohen, 1988). Relevant descriptive statistics of self-efficacy, perceived 
competence, and topic interest scores are presented in Table 2.1, and performance 
scores, mental effort scores, and time-on-task scores are presented in Table 2.2. 

Unfortunately, the delayed posttest data had to be excluded from the analyses. 
We had made a mistake in designing the delayed posttest, as the delayed posttest 
was not entirely isomorphic to the immediate posttest. The complexity level of the tasks 
used in the delayed posttest did not correspond to the complexity level of the tasks 
used in the immediate posttest (i.e., the tasks used in the delayed posttest were less 
complex than the tasks used in the immediate posttest because students did not have 
to calculate with fractions or negative numbers). Please see the Supplementary 
Materials J for the raw data of the delayed posttest (i.e., means, standard deviations, 
and medians per condition).



3534

We first checked for prior knowledge differences among conditions. A Kruskal-
Wallis test showed no significant differences among conditions on pretest performance, 
H(3) = 3.54, p = .315, and on pretest scores of self-efficacy, H(3) = 2.36, p = .501, 
perceived competence, H(3) = 2.47, p = .480, and topic interest, H(3) = 6.68, p = .083.

2.2.2.1. Does the sequencing of examples and problems affect self-efficacy, perceived 
competence, and topic interest?

Self-efficacy. Firstly, we analyzed whether students’ self-efficacy increased from 
before to after the training phase. We found a main effect of Test Moment, Z = 5.79, 
p < .001, r = .520. Follow-up tests showed that the self-efficacy medians of the EEEE 
(Z = 4.57, p < .001, r = .834), EPEP (Z = 3.00, p = .003, r = .514), and PEPE Condition 
(Z = 2.91, p = .004, r = .582) significantly increased over time, whereas the medians of 
the PPPP Condition did not significantly increase over time (p = .821, r = .038). Regarding 
the main question of whether there would be differences among instructional 
conditions on reported self-efficacy measured after the training phase, we found a 
main effect of Instruction Condition, H(3) = 43.46, p < .001. Our findings were not in line 
with Hypothesis 1a (EPEP > EEEE) and Hypothesis 1b (EPEP > PEPE). Post-hoc tests showed 
that self-efficacy ratings did not differ between the EPEP and PEPE Condition (p = .094, 
r = .218) and that self-efficacy was even significantly higher in the EEEE Condition than 
in the EPEP Condition (U = 293.50, p = .003, r = .375). Further explorations showed that 
self-efficacy was significantly higher in the EEEE (U = 66, p < .001, r = .759), EPEP (U = 287, 
p < .001, r = .450), and PEPE Condition (U = 144, p < .001, r = .573) than in the PPPP 
Condition.

Perceived Competence. Perceived competence showed the same pattern of 
results. We found a main effect of Test Moment, Z = 6.03, p < .001, r = .542. Perceived 
competence increased in the EEEE (Z = 4.48, p < .001, r = .818), EPEP (Z = 3.23, p = .001, 
r = .554), and PEPE Condition (Z = 3.23, p = .001, r = .646), but not in the PPPP Condition 
(p = .455, r = .133). We also found a main effect of Instruction Condition on perceived 
competence measured after the training phase, H(3) = 38.76, p < .001. In contrast to 
our expectations (i.e., Hypothesis 1a: EPEP > EEEE; Hypothesis 1b: EPEP > PEPE), perceived 
competence was significantly higher in the EEEE Condition compared to the EPEP 
Condition (U = 315.50, p = .008, r = .331) and there was no significant difference between 
the EPEP and PEPE Condition (p = .042, r = .264). Further explorations showed that 
perceived competence scores were significantly higher in the EEEE (U = 100.50, p < .001, 
r = .697), EPEP (U = 299.50, p = .001, r = .428), and PEPE Condition (U = 142.50, p = .001, 
r = .573) compared to the PPPP Condition. 

Topic Interest As for topic interest measured after the training phase, we found a 
main effect of Test Moment, Z = -3.62, p < .001, r = .325. Students’ topic interest 
significantly decreased over time in the EPEP (Z = -3.23, p = .001, r = .554) and PPPP 
Condition (Z = -2.69, p = .007, r = .455). There was no main effect of Instruction Condition 
on topic interest measured after the training phase (p = .143), indicating that there 

were no differences among conditions on topic interest. Hence, the topic interest 
results contrasted Hypothesis 1a (EPEP > EEEE) and Hypothesis 1b (EPEP > PEPE).

2.2.2.2. Does the sequencing of examples and problems affect learning and transfer? 

Isomorphic Tasks. When analyzing whether performance on the test tasks 
isomorphic to the training phase improved significantly from pretest to posttest, we 
found a main effect of Test Moment, Z = 3.86, p < .001, r = .311. Numerically, performance 
increased over time in all example conditions (see Table 2.1), but follow-up tests 
showed that only the EEEE Condition performed significantly better on the posttest 
than on the pretest (Z = 3.02, p = .003, r = .551). The other conditions did not show a 
significant increase (EPEP: p = .061, r = .321; PEPE: p = .047, r = .397; PPPP: p = .029). 

To answer our second main question of whether there would be differences among 
instructional conditions on learning, we analyzed whether there were any differences 
among conditions regarding isomorphic posttest performance. We found a main 
effect of Instruction Condition, H(3) = 20.63, p < .001. In line with our expectations (i.e., 
Hypothesis 2: EEEE = EPEP > PEPE = PPPP), we found that participants in the EEEE Condition 
scored significantly higher than those in the PPPP Condition (U = 189, p < .001, r = .551). 
The results of other post-hoc comparisons were not in line with our expectations, 
however, because we found no significant differences between the EEEE and PEPE 
Condition (p = .469, r = .097), between the EPEP and PPPP Condition (p = .218, r = .148), 
and between the EPEP and PEPE Condition (p = .131, r = .197). Performance was even 
higher in the EEEE Condition compared to EPEP Condition (U = 293.50, p = .003, r = .366), 
and the PEPE Condition performed better than the PPPP Condition (U = 254.50, 
p = .006, r = .356). 

Transfer Tasks. To test our hypotheses regarding the effects on transfer, we analyzed 
the differences among conditions on the procedural transfer task (i.e., Hypothesis 4; 
EEEE = EPEP > PEPE = PPPP) and the conceptual transfer task (i.e., Hypothesis 5; EEEE = 
EPEP > PEPE = PPPP). Contrary to our hypotheses, we found no significant performance 
differences among conditions on the procedural transfer task (p = .276) and the 
conceptual transfer task (p = .104). 

2.2.2.3. Does the sequencing of examples and problems affect invested mental effort 
and time-on-task in the training phase? 

Mental Effort. With regard to learning efficiency, we analyzed our results on self-
reported effort invested in the training tasks and found a main effect of Instruction 
Condition, H(3) = 51.48, p < .001. In line with Hypothesis 3 (EEEE = EPEP < PEPE = PPPP), 
we found that students in the EEEE (U = 971.50, p < .001, r = .730) and EPEP Condition 
(U = 964.50, p < .001, r = .535) reported significantly lower effort investment than students 
in the PPPP Condition. 



3736

The average reported effort investment was also lower in the EEEE Condition than 
the PEPE Condition (U = 571.50, p = .001, r = .449), but – in contrast to our expectations 
- no significant difference was found between the EPEP and PEPE Condition (p = .419, 
r = .105). In addition, we found that students in the EEEE Condition reported significantly 
lower effort investment than those the EPEP Condition (U = 807, p < .001, r = .501), and 
students in the PEPE Condition invested significantly less effort than students in the PPPP 
Condition (U = 741, p < .001, r = .588).2

Time-on-task. When exploring time-on-task in the training phase, we found a main 
effect of Instruction Condition, H(3) = 59.70, p < .001. The average time invested in the 
training phase was significantly shorter in the EEEE Condition than in the PEPE 
(U = 691.50, p < .001, r = .722), and PPPP Condition (U = 976, p < .001, r = .737). Surprisingly, 
students in the EEEE Condition (U = 990, p < .001, r = .808) and PEPE Condition (U = 214, 
p = .001, r = .422) invested significantly less time in the training tasks than students in the 
EPEP Condition. Other post-hoc comparisons were not significant (ps > .012, rs < .322).

2.2.2.4. Does the sequencing of examples and problems affect mental effort and time-
on-task in the posttest phase?

Mental Effort. As for the exploration of self-reported effort invested in solving the 
isomorphic posttest tasks, we found a significant main effect of Instruction Condition, 
H(3) = 21.88, p < .001. In line with our findings regarding effort invested in the training 
phase, reported effort investment while solving the isomorphic posttest tasks was 
significantly lower in the EEEE (U = 817, p < .001, r = .478), EPEP (U = 845, p = .003, r = .363), 
and PEPE Condition (U = 690.50, p < .001, r = .492) compared to the PPPP Condition. No 
other post-hoc comparisons were significant (ps > .141, rs < .184). We found the same 
pattern of results on students’ effort invested in solving the procedural transfer task: 
A significant main effect of Instruction Condition, H(3) = 15.86, p = .001, and perceived 
effort investment was lower in the EEEE (U = 759, p = .002, r = .388), EPEP (U = 812.50, 
p = .008, r = .319), and PEPE Condition (U = 659.50, p = .001, r = .436) than in the PPPP 
Condition. None of the other comparisons were significant (ps > .193, rs < .170). Lastly, 
results showed a main effect of Instruction Condition regarding students’ effort invested 
in the conceptual posttest task, H(3) = 10.02, p = .018. Invested effort was significantly 
lower in the PEPE Condition than in the PPPP Condition (U = 621, p = .005, r = .365). 
Again, no other post-hoc comparisons were significant (ps > .020, rs < .281).

Time-on-task. As for the invested time-on-task during the posttest phase, a main 
effect of Instruction Condition was found for the isomorphic posttest tasks, H(3) = 39.34, 
p < .001. The average time-on-task was significantly longer in the EEEE Condition than 
in the EPEP (U = 218.50, p < .001, r = .491), PEPE (U = 199, p = .002, r = .427), and PPPP 
Condition (U = 86, p < .001, r = .717). In addition, students in the PEPE Condition invested 
significantly less time than students in the PPPP Condition (U = 218.50, p = .001, r = .424). 
The other post-hoc comparisons were not significant (ps > .011, rs < .305). Concerning 
the transfer tasks, we found a main effect of Instruction Condition for the procedural 
transfer task, H(3) = 15.47, p < .001. The average time-on-task was significantly longer in 
the EEEE Condition compared to the PPPP Condition (U = 250.50, p < .001, r = .450). 
No other post-hoc comparisons were significant (ps > .015, rs < .292). We found no 
main effect of Instruction Condition for the conceptual transfer task (p = .057).

Table 2.1. 
Mean (M), Standard Deviation (SD) and Median (Med) of Self-Efficacy (range 1 to 9) 
Perceived Competence (range 1 to 7), and Topic Interest (range 1 to 7) per Condition 
in Experiment 1.

EEEE Condition EPEP Condition PEPE Condition PPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Self-efficacy 4.27 1.91 5.00 4.26 1.83 5.00 4.68 2.17 5.00 3.89 2.05 4.00

Perceived 
Competence

3.84 1.40 4.00 3.62 1.51 3.67 3.88 1.79 4.00 3.42 1.63 3.33

Topic Interest 4.15 0.89 4.29 3.92 1.12 4.29 3.52 1.01 3.29 4.21 1.04 4.00

Posttest 

Self-efficacy 7.07 0.87 7.00 5.71 2.01 6.00 6.48 2.14 7.00 3.80 1.98 4.00

Perceived 
Competence

5.70 0.66 5.83 4.76 1.52 5.00 5.45 1.50 5.67 3.32 1.61 3.00

Topic Interest 4.05 0.92 4.14 3.59 1.03 4.71 3.49 1.12 3.57 3.92 0.93 3.86

2  �Upon a reviewer’s request, we explored whether the mental effort invested in and performance on the 
two practice problems in the training phase differed between the EPEP and PEPE Condition. On the first 
practice problem (i.e., EPEP vs. PEPE), we found no performance difference (p = .257, r = .148), but the 
EPEP Condition reported significantly lower effort investment (p = .024, r = .294). On the second practice 
problem (i.e., EPEP vs. PEPE), the PEPE Condition attained greater performance (p = .001, r =  .428) with 
less effort investment than the EPEP Condition (p = .001, r = .436). These results are not in line with the 
motivational hypothesis, as the initial disadvantage of starting with a practice problem disappeared (and 
even reversed) on the second practice problem.
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Table 2.2. 
Mean (M), Standard Deviation (SD), and Median (Med) of Pretest (range 0 to 16), 
Training Performance (range 0 to 24), Isomorphic Tasks Performance (range 0 to 16), 
Procedural Transfer (range 0 to 8), Conceptual Transfer (range 0 to 9), Mental Effort 
(range 1 to 9), and Time-on-Task per Condition in Experiment 1.

EEEE Condition EPEP Condition PEPE Condition PPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Performance 7.17 5.27 8.00 5.26 4.57 4.00 6.92 4.93 7.00 5.57 5.00 5.00

Training 

Performance 4.06 2.68 3.75 4.82 2.01 5.00 3.64 2.14 3.50

Mental Effort 2.51 1.32 2.13 4.02 1.33 4.25 3.75 1.21 4.00 6.01 1.84 6.25

Time-on-Task 3.40 1.17 3.25 9.56 2.95 9.88 7.07 2.65 6.75 9.32 3.60 7.50

Posttest

Isomorphic Tasks 10.43 2.40 10.00 7.24 4.88 7.00 9.08 4.69 10.00 5.69 4.13 6.00

Procedural Transfer 3.77 2.78 2.00 3.12 3.24 2.00 3.00 2.97 2.00 2.49 2.89 2.00

Conceptual Transfer 4.60 2.22 5.00 4.74 2.81 5.00 5.28 2.48 5.00 3.74 2.31 3.00

Mental Effort 

 Isomorphic Tasks 4.53 1.71 4.50 5.13 1.70 5.50 4.60 1.51 5.00 6.39 1.96 6.50

 Procedural Transfer 4.00 1.97 3.00 4.44 2.08 5.00 3.72 1.97 3.00 6.03 2.65 6.00

 Conceptual Transfer 4.40 1.83 5.00 3.88 1.87 3.00 3.64 1.29 3.00 5.03 2.16 5.00

Time-on-Task 

Isomorphic Tasks 16.25 5.45 15.00 10.94 5.17 10.25 12.16 5.24 11.50 7.74 4.05 7.50

Procedural Transfer 8.63 3.60 8.00 6.97 2.90 7.00 6.72 3.94 6.00 5.14 4.19 5.00

Conceptual Transfer 8.90 4.40 8.00 7.06 3.66 6.00 8.04 3.36 7.00 6.69 2.55 7.00

2.2.3. Discussion

Our main aim was to investigate how different example and practice problem 
sequences (i.e., EEEE, EPEP, PEPE, and PPPP) would affect motivational (self-efficacy, 
perceived competence, and topic interest) and cognitive (effectiveness and efficiency) 
aspects of learning. The results were largely inconsistent with our hypotheses (see also 
Figure 2.1 for a graphical overview of the median scores on self-efficacy, perceived 
competence, and performance on isomorphic test tasks). We predicted that the EPEP 
condition would show higher levels of self-efficacy, perceived competence, and topic 
interest than the EEEE Condition (Hypothesis 1a) and the PEPE condition (Hypothesis 1b), 
but that was not the case. Instead, we found no differences among conditions on 
topic interest. Moreover, all three example conditions showed significantly higher self-
efficacy and perceived competence than the PPPP Condition, which is interesting and 
extends prior research showing that example study only can foster self-efficacy and 
perceived competence (e.g., Bandura, 1997; Crippen, et al., 2009; Hoogerheide et al., 
2014, 2018). Unexpectedly, given that problem solving after example study was 
implemented in early research on the worked example effect because it was 
considered to be more motivating (Sweller & Cooper, 1985; Trafton & Reiser, 1993), 
students in the EEEE Condition showed significantly higher self-efficacy than those in 
the EPEP Condition.

As for cognitive aspects of learning, we did not find the pattern of results that we 
expected based on the findings of Van Gog et al. (2011) either. In contrast to Hypothesis 2 
(i.e., isomorphic test performance; EEEE/EPEP > PEPE/PPPP) and Hypothesis 3 (mental 
effort invested in the training phase; EEEE/EPEP < PEPE/PPPP), we found no significant 
differences between the EPEP and PEPE conditions on both variables. We did find, 
however, that studying EEEE was more effective (i.e., higher isomorphic posttest 
performance) and efficient (i.e., with lower effort investment in the training phase) for 
learning than studying EPEP and PPPP. Furthermore, studying PEPE was more effective 
and efficient than studying PPPP. Also, while the differences in posttest performance 
(i.e., mean performance of EPEP seemed higher than PPPP) were not significant, 
studying EPEP was more efficient than PPPP. 

With regards to our exploration of mental effort invested in the isomorphic posttest 
tasks, our results suggest that all example conditions were more efficient than the PPPP 
condition. Our exploration of time-on-task in the training phase showed that the EEEE 
condition spent significantly less time on the learning phase compared to all the other 
conditions. Although this seems to be an efficiency benefit, we must note that time-on-
task was not experimenter-paced and watching video modeling examples probably 
took less time than solving the practice problems. In contrast, we found that the EEEE 
condition spent most time in the posttest phase compared to all other conditions. On 
the one hand, this might indicate that students in the EEEE condition may have needed 
more time to solve the procedure on the posttest because they did not have the 
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possibility to practice during the training phase. On the other hand, it might be possible 
that students in the EEEE condition mastered the procedure so well and therefore spent 
more time on solving the posttest tasks. If you cannot figure out how to solve such 
problems during the training phase, you might drop out and spend less time on the 
remaining practice and posttest tasks. In sum, our findings show that all example 
conditions were more efficient than practice problem solving only, as equal or higher 
performance on isomorphic posttest problems was attained with less investment of 
effort in the training phase. Example study only was most efficient, requiring less effort 
(and time) investment in the training phase than all other conditions but attaining the 
highest scores on the isomorphic posttest tasks.

Our expectations regarding procedural transfer (i.e., Hypothesis 4; EEEE/EPEP > 
PEPE/PPPP) and conceptual transfer (i.e., Hypothesis 5; EEEE/EPEP > PEPE/PPPP) were 
not confirmed either. Our results showed no significant differences among conditions 
on procedural transfer and conceptual transfer. 

A possible explanation for finding that EPEP was not more effective and efficient 
nor more motivating than PEPE, might lie in our participant sample. Although students 
were novices to this mathematical task, the fact that they were enrolled in a higher 
technical education program makes it likely that they had experience with learning 
similar types of mathematical problems that require complex mathematical 
calculations. This might have shielded those who had started with a practice problem 
from motivational issues, alleviating the negative effects of starting with a practice 
problem on motivation (i.e., self-efficacy and perceived confidence). The fact that self-
efficacy and perceived competence increased in all example conditions and did not 
differ between the EPEP condition and the PEPE condition indeed suggests that the 
confidence of those who were provided with problem-example pairs either was 
unaffected by starting with a practice problem or recovered quickly once provided 
with the opportunity of studying examples.

If this explanation is correct, the results might be different (i.e., EPEP > PEPE) with a 
sample of students who are less experienced with these types of mathematical tasks 
and who would generally be less confident about their mathematical abilities. 
Therefore, we reran the experiment with a sample of primary education teacher 
training students, who are normally much less experienced with mathematician problems 
such as learning how to approximate the definite integral by using the trapezoidal rule. 
Our hypotheses were identical to those in Experiment 1 (see paragraph 1.1).

Figure 2.1. Median scores on self-efficacy (top row; range 1 to 9), perceived competence 
(middle row; range 1 to 7), and performance on the isomorphic test tasks (range 0 to 
16) on the pretest and immediate posttest in Experiment 1 (left) and 2 (right). 
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2.3. Experiment 2

2.3.1. Method

2.3.1.1. Participants and design

Participants were 81 first year students from two Primary Education Teacher Training 
programs from two Dutch Universities of Applied Sciences (Mage = 18.98, SD = 1.64; 17 
male, 65 female). Students could earn a monetary reward (eleven 20-euro bills were 
raffled among participants). Following the design of Experiment 1, students were 
randomly assigned to one of four conditions: 1) examples only (n = 24; EEEE), 2) 
example-problem pairs (n = 19; EPEP), 3) problem-example pairs (n = 22; PEPE), or 4) 
practice problems only (n = 16; PPPP). In this experiment, only a pretest, training phase, 
and (immediate) posttest were used. 

2.3.1.2. Materials, procedure, and data analysis

The materials, procedure, and data analysis were the same as in Experiment 1. The 
reliability of the test tasks was measured again and showed the following Cronbach’s 
alpha values: .81 for pretest tasks, .33 for isomorphic posttest tasks, and .39 for the 
conceptual transfer task. The only difference with Experiment 1 was that Experiment 2 
was run in seven group sessions in a computer classroom with 5 to 16 participants per 
session instead of eight group sessions in a computer classroom with 5 to 25 participants 
present per session in Experiment 1.

2.3.2. Results

Again, most of the variables were not normally distributed, so we analyzed the 
data with nonparametric tests (cf. Experiment 1). Relevant descriptive statistics of self-
efficacy, perceived competence, and topic interest scores are presented in Table 2.3, 
and performance scores, mental effort scores and time-on-task scores are presented 
in Table 2.4. 

We checked for prior knowledge differences among conditions. Kruskal-Wallis test 
showed that there were no significant differences among conditions in terms of 
(pretest) performance, H(3) = 3.35, p = .341, perceived competence, H(3) = 5.44, p = .142, 
and topic interest, H(3) = 5.40, p = .145. We did, however, find significant differences 
among conditions on the pretest scores of self-efficacy, H(3) = 9.98, p = .019, and post-
hoc test revealed that pretest scores of self -efficacy were significantly lower in the EEEE 
Condition than in the EPEP Condition (U = 347, p = .002, r = .473). 

2.3.2.1 Does the sequencing of examples and problems affect self-efficacy, perceived 
competence, and topic interest? 

Self-efficacy. Again, we started with the analysis of whether students’ self-efficacy 
increased from before to after the training phase. We found a main effect of Test 
Moment, Z = 4.61, p < .001, r = .512. Follow-up tests showed that the self-efficacy scores 

of the EEEE Condition (Z = 3.96, p < .001, r = .807) increased significantly over time, 
whereas the EPEP (p = .044, r = .463), PEPE (p = .121, r = .331), and the PPPP Condition  
(p = .729, r = .087) did not show a significant increase over time. Regarding the main 
question of whether there would be differences among instructional conditions on 
reported self-efficacy measured after the training phase, we found a main effect of 
Instruction Condition, H(3) = 16.48, p = .001. In contrast to Hypothesis 1a (EPEP > EEEE) 
and Hypothesis 1b (EPEP > PEPE), we found no differences between the EPEP and EEEE 
Condition (p = .200, r = .195) and the EPEP and PEPE Condition (p = .152, r = .224). 
Further explorations showed that self-efficacy was significantly higher in the EEEE 
Condition than in the PEPE (U = 121, p = .001, r = .473) and PPPP Condition (U = 65, p < 
.001, r = .570). No other post-hoc comparisons were significant (ps > .056, rs < .007). 
Note that these results have to interpreted with caution, because there were pre-
existing differences among the conditions on self-efficacy before the training phase 
(i.e., EEEE > EPEP).

Perceived Competence. Perceived competence showed the same pattern of 
results. We found a main effect of Test Moment, Z = 4.64, p <.001, r = .516, indicating that 
perceived competence increased significantly over time in the EEEE Condition (Z = 4.02, 
p <.001, r = .821) but not in the EPEP (p = .028, r = .505), PEPE, (p = .151, r = .306), and PPPP 
Condition (p = .593, r = .134). We also found a main effect of Instruction Condition on 
perceived competence measured after the training phase, H(3) = 15.08, p = .002. 
These results were not in line with our expectations (Hypothesis 1a: EPEP > EEEE; 
Hypothesis 1b: EPEP > PEPE), because we did not find any differences between the EPEP 
and EEEE Condition (p = .641, r = .071) and EPEP and PEPE Condition (p = .063, r = .290). 
Further explorations showed that scores were significantly higher in the EEEE Condition 
than in the PEPE (U = 131, p = .003, r = .436) and PPPP Condition (U = 77.5, p = .001, r = .508). 
No other post-hoc comparisons were significant (ps > .015, rs < .002). 

Topic Interest. Concerning topic interest, we found that scores did not increase 
over time, since there was no significant main effect of Test Moment (p = .196). Unlike 
our expectations (i.e., Hypothesis 1a; EPEP > EEEE and Hypothesis 1b; EPEP > PEPE), we 
found no main effect of Instruction Condition (p = .562), meaning that there were no 
differences among conditions on topic interest measured after the training phase. 

2.3.2.2. Does the sequencing of examples and problems affect learning and transfer? 

Isomorphic Tasks. Subsequently, we checked whether performance on the test 
tasks isomorphic to the training phase improved significantly from pretest to posttest. 
We found a main effect of Test Moment, Z = 3.76, p < .001, r = .418. Follow-up tests 
showed that scores increased over time in the EEEE (Z = 3.51, p < .001, r = .717) and EPEP 
Condition (Z = 2.56, p = .010, r = .586), but not in the PEPE (p = .052, r = .414), and PPPP 
Condition (p = .173, r = .341). Regarding our second main aim, namely to examine if 
there are any differences among conditions on the isomorphic posttest tasks, our 
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results showed a main effect of Instruction Condition, H(3) = 17.82, p < .001. In line with 
our expectations (i.e., Hypothesis 2: EEEE = EPEP > PEPE = PPPP), participants scored 
significantly higher in the EEEE (U = 71, p < .001, r = .414) and EPEP Condition (U = 55.50, 
p = .001, r = .576) than in the PPPP Condition. However, we did not find any differences 
between the EEEE and PEPE Condition (p = .144, r = .215) and EPEP and PEPE Condition 
(p = .019, r = .366). As expected, no differences were found between the EEEE and EPEP 
Condition (p = .166, r = .211) and PEPE and PPPP Condition (p = .033 r = .377). 

Transfer Tasks. Surprisingly, no significant performance differences were found 
among conditions on the procedural transfer task (p = .257) and the conceptual 
transfer task (p = .841). Hence, the results on our transfer measures also contrasted 
Hypothesis 4 (EEEE = EPEP > PEPE = PPPP) and Hypothesis 5 (EEEE = EPEP > PEPE = PPPP). 

2.3.2.3. Does the sequencing of examples and problems affect mental effort and time-
on-task in the training phase? 

Mental Effort. When analyzing self-reported effort investment during the training 
phase as measure of efficiency, we found a main effect of Instruction Condition, H(3) 
= 28.28, p < .001. In line with Hypothesis 3 (EEEE = EPEP < PEPE = PPPP), reported effort 
investment was significantly lower in the EEEE (U = 349, p < .001, r = .689) and EPEP 
Condition (U = 277.50, p < .001, r = .707) compared to the PPPP Condition. Moreover, 
students in the EEEE Condition reported significantly lower effort investment than the 
PEPE Condition (U = 394, p = .004, r = .422), but no significant differences were found 
between the EPEP and PEPE Condition (p = .059, r = .295). As expected, we found no 
significant differences in effort investment during the training phase between the EEEE 
and EPEP Condition (p = .470, r = .110), but we did find the PEPE Condition to report 
significant less effort than the PPPP Condition while solving the tasks in the training 
phase (U = 271, p = .004, r = .458).3 

Time-on-Task. Subsequently, we analyzed the average time spent on the tasks 
during the training phase and found a main effect of Instruction Condition, H(3) = 26.17, 
p < .001. We found that average time-on-task while solving the training tasks was 
significantly longer in the EPEP Condition than in the EEEE (U = 430.50, p < .001, r = .757), 
PEPE (U = 69, p = .001, r = .573), and PPPP Condition (U = 64, p = .003, r = .493). We found 
no differences between the EEEE and PPPP Condition (p = .774, r = .122) and PEPE and 
PPPP Condition (p = .455, r = .122). 

2.3.2.4. Does the sequencing of examples and problems affect mental effort and time-
on-task in the posttest phase? 

Mental Effort. While exploring the differences among conditions on reported effort 
investment when solving the posttest tasks, we found no differences among conditions 
on the isomorphic posttest tasks (p = .165), procedural transfer task (p = .238), and 
conceptual transfer task (p = .201). 

Time-on-task. We did find a main effect of Instruction Condition for average time 
invested in the isomorphic posttest tasks, H(3) = 27.64, p < .001. The average time-on-
task was significantly longer in the EEEE Condition than in the PEPE (U = 117, p = .001, 
r = .478) and PPPP Condition (U = 33, p < .001, r = .699), and significantly longer in the 
EPEP Condition compared to the PEPE (U = 108, p = .008, r = .410) and PPPP Condition 
(U = 41.50, p < .001, r = .629). No other post-hoc comparisons were significant (ps > .026, 
rs < .370). Concerning the transfer tasks, we found a main effect of Instruction Condition 
for the procedural transfer task, H(3) = 9.53, p = .023. Average time-on-task was, 
however, only significantly longer in the EEEE Condition than in the EPEP Condition 
(U = 337.50, p = .004, r = .442). No other post-hoc comparisons were significant (ps > .048, 
rs < .353). We found no main effect of Instruction Condition for the conceptual transfer 
task (p = .086).

Table 2.3. 
Mean (M), Standard Deviation (SD) and Median (Med) of Self-Efficacy (range 1 to 9) 
Perceived Competence (range 1 to 7), and Topic Interest (range 1 to 7) per Condition 
in Experiment 2.

EEEE Condition EPEP Condition PEPE Condition PPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Self-Efficacy 1.67 1.27 1.00 2.84 1.86 2.00 2.18 2.08 1.00 2.31 1.66 2.00

Perceived 
Competence 

1.54 1.03 1.00 2.19 1.10 2.00 1.98 1.62 1.00 2.06 1.39 1.66

Topic Interest 3.53 0.88 3.43 4.20 1.26 4.29 3.49 1.35 3.43 3.46 1.13 3.29

Posttest 

Self-Efficacy 4.88 1.83 5.00 3.84 2.61 4.00 2.68 2.01 2.00 2.19 2.04 1.00

Perceived 
Competence 

3.72 1.40 4.00 3.47 2.11 3.00 2.35 1.55 2.00 1.94 1.53 1.00

Topic Interest 3.69 0.98 3.93 3.72 1.42 3.57 3.25 1.14 3.36 3.39 1.29 3.57
3  �Like for Experiment 1, we explored whether the mental effort invested in and performance on the two 

practice problems in the training phase differed between the EPEP and PEPE Condition. As one would 
expect, the EPEP Condition performed significantly better on the first practice problem (p = .001, r = .513) 
and invested less effort (p < .001, r = .574) than the PEPE Condition. However, on the second practice 
problem, we found no difference between the two conditions in terms of performance (p = .178, r = 210) 
or effort investment (p = .813, r = .037). Again, there was an advantage in favor of the EPEP Condition at 
the start, but no sign of a lasting disadvantage of starting with a (failed) practice problem solving attempt 
for those in the PEPE Condition. 
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Table 2.4.  
Mean (M), Standard Deviation (SD), and Median (Med) of Pretest (range 0 to 16), 
Training Performance (range 0 to 24), Isomorphic Tasks Performance (range 0 to 16), 
Procedural Transfer (range 0 to 8), Conceptual Transfer (range 0 to 9), Mental Effort 
(range 1 to 9), and Time-on-Task per Condition in Experiment 2. 

EEEE Condition EPEP Condition PEPE Condition PPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Performance 0.63 1.71 0.00 1.47 3.82 0.00 1.27 3.06 0.00 1.75 2.74 0.00

Training 

Performance 2.82 1.95 3.00 1.98 1.98 1.50 1.28 1.15 1.25

Mental Effort 4.79 1.83 4.50 5.09 1.93 5.00 6.40 1.94 6.25 7.99 1.35 8.50

Time-on-Task 3.58 1.56 3.63 8.16 3.09 7.25 5.03 2.00 4.88 4.75 2.86 3.63

Posttest 

Isomorphic Tasks 3.00 2.64 3.00 4.26 3.28 5.00 1.91 1.97 1.50 0.56 1.03 0.00

Procedural Transfer 0.83 0.28 0.00 0.37 0.68 0.00 0.41 0.80 0.00 0.19 0.54 0.00

Conceptual Transfer 1.46 1.64 1.00 1.63 1.54 1.00 1.41 1.30 1.00 1.13 1.09 1.00

Mental Effort 

Isomorphic Tasks 6.81 1.90 7.00 6.87 2.31 8.00 7.07 2.35 7.50 7.81 2.22 9.00

Procedural Transfer 8.04 1.57 9.00 7.11 2.51 8.00 7.86 2.44 9.00 8.00 2.22 9.00

Conceptual Transfer 7.00 1.87 7.00 6.58 2.63 8.00 7.59 2.46 9.00 7.50 2.13 8.00

Time-on-Task 

Isomorphic Tasks 7.23 5.18 6.75 6.74 5.11 5.50 2.80 2.87 2.50 0.91 1.20 0.25

Procedural Transfer 0.50 0.93 0.00 3.68 4.84 1.00 1.59 2.38 0.50 0.81 1.38 0.00

Conceptual Transfer 3.08 2.28 3.00 5.26 4.07 4.00 2.68 2.06 2.50 3.06 2.17 3.00

2.3.3. Discussion

The main aim of this experiment was to investigate whether the results of Experiment 1 
(i.e., EPEP = PEPE) on performance, mental effort invested in the learning tasks, and 
motivation would be different (i.e., EPEP > PEPE) with a sample of students who are less 
experienced with these types of mathematical tasks and who would generally be less 
confident about their mathematical abilities (i.e., teacher training students). Despite 
the different sample (i.e., primary education teacher training students), the results of 
Experiment 2 also did not show evidence in favor of our hypothesis (see also Figure 2.1); 
we expected that the EPEP condition would show higher levels of self-efficacy, perceived 
competence, and topic interest than the EEEE Condition (Hypothesis 1a) and the PEPE 
condition (Hypothesis 1b), but we found no significant differences between these 
conditions. As in Experiment 1, no differences were found among conditions regarding 
topic interest. Results did show that self-efficacy and perceived competence were 
significantly higher in the EEEE condition than in the PEPE and PPPP condition (as in 
Experiment 1). 

With regard to cognitive aspects of learning, we partially replicated the results 
from Van Gog et al., 2011. In line with our expectations on isomorphic posttest 
performance (i.e., Hypothesis 2; EEEE/EPEP > PEPE/PPPP) and invested mental effort in 
the training phase (i.e., Hypothesis 3; EEEE/EPEP < PEPE/PPPP), we found that starting 
with an example (EEEE and EPEP) was more effective and efficient for learning than 
problem solving only (PPPP). Also, while the differences in isomorphic posttest 
performance (i.e., mean performance of PEPE seemed higher than PPPP) were not 
significant, studying PEPE was more efficient than PPPP. In contrast to our expectations, 
we did not find any significant differences on both variables between the EEEE and 
EPEP and between the EPEP and PEPE conditions. 

When exploring mental effort on the isomorphic posttest tasks, we found no 
differences among conditions. Our exploration of time-on-task revealed that the EPEP 
Condition spent significantly more time in the training phase than all the other 
conditions. In addition, both conditions starting with an example (i.e., EEEE, EPEP) spent 
significantly more time on the isomorphic posttest tasks than the conditions starting 
with a problem (i.e., PEPE, PPPP). This might indicate that, considering the performance 
on the isomorphic posttest tasks, students understood the procedure and therefore 
spent more time on solving the posttest tasks. In sum, our findings show that all example 
conditions were more efficient than practice problem solving only, as equal or higher 
performance on isomorphic posttest problems was attained with less investment of 
effort in the training phase. Finally, our expectations regarding procedural transfer (i.e., 
Hypothesis 4; EEEE/EPEP > PEPE/PPPP) and conceptual transfer (i.e., Hypothesis 5; EEEE/
EPEP > PEPE/PPPP) were not confirmed. Our results showed no significant differences 
among conditions on procedural transfer and conceptual transfer. 
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2.4. General Discussion

Two experiments were conducted to conceptually replicate and extend the study 
by Van Gog and colleagues (2011) in order to investigate how different example study 
and practice problem solving sequences would affect learning and motivation. Our 
main aim was to investigate how example study only (EEEE), example-problem pairs 
(EPEP), problem-example pairs (PEPE), and problem-solving only (PPPP) sequences 
would affect motivational (i.e., self-efficacy, perceived competence, and topic interest) 
and cognitive (i.e., effectiveness and efficiency) aspects of learning.

2.4.1. Example Study Only versus Example-Problem Pairs

First, we were interested in looking from a motivational perspective at the finding by 
Van Gog et al. (2011) that EEEE did not differ from EPEP in terms of learning outcomes. 
We expected EPEP to be more motivating for students than passively studying EEEE, as 
suggested -but not tested- by Sweller and Cooper (1985; see also Trafton & Reiser, 
1993). Interestingly, our findings showed that EEEE was not less motivating than EPEP. In 
Experiment 1, students in the EEEE condition even showed higher self-efficacy (and 
better performance) than students in the EPEP condition. This finding might indicate 
that (at least when short training phases are used), the benefits of engaging in practice 
problem solving instead of further example study, seem limited for both learning and 
motivation. In general, this calls for further research into the role of practice problem 
solving in example-based learning, especially as findings from Baars, Van Gog, De 
Bruin, and Paas (2014) and Van der Meij et al. (2018) showed that even additional 
problem solving practice did not have a positive effect on learning. However, all those 
studies used relatively short training phases. It is possible that motivational differences 
will start to arise and affect learning when training phases are longer and consist of 
more training tasks, as students might get bored with studying examples only. The 
effects of longer sequences should therefore be addressed in future research.

2.4.2. Example-Problem Pairs versus Problem-Example Pairs

Second, we aimed to investigate whether motivational aspects of learning could 
account for the finding by Van Gog and colleagues (2011) that EPEP led to better test 
performance with less effort investment in the training phase than PEPE. However, in 
contrast to our expectations, we did not replicate these findings across two experiments 
with different populations. We also did not find any significant differences between 
EPEP and PEPE concerning students’ self-efficacy and perceived competence. We 
thought we had a potential explanation for this null-finding in Experiment 1, because 
those higher technical education students, despite being novices, presumably had 
experience with similar types of mathematical problems and these problems were 
relevant for them (so they would not get frustrated that easily). However, the results of 
Experiment 2 indicated that this explanation does not hold. In Experiment 2, we again 
failed to find significant differences in learning or motivation between the EPEP and 

PEPE condition, even though the sample consisted of student teachers for whom the 
tasks were less relevant, who had less experience with these types of mathematical 
tasks, and who felt less confident about their mathematical abilities, as evidenced by 
the pretest scores on performance, self-efficacy, and perceived competence. Note 
that, numerically, the EPEP and PEPE conditions did differ on isomorphic posttest 
performance (i.e., EPEP > PEPE) and average invested mental effort in the training 
phase as a whole (i.e., EPEP < PEPE). Importantly, exploratory analyses of students’ 
performance on and effort invested in the two practice problems also suggest that 
starting with a practice problem did not have a demotivating effect in either experiment. 
Whereas EPEP was more effective and/or efficient than PEPE on the first practice 
problem (i.e., equal or higher performance attained with less effort), we found no 
performance or effort advantage of EPEP over PEPE on the second practice problem. 

Given that our findings regarding the EPEP vs. PEPE comparison were not in line with 
other studies, and that the direction of the difference between conditions seemed to 
vary in our experiments (i.e., we found a non-significant, medium-sized [according to 
the Cohen’s d criterion] negative effect of EP on learning in Experiment 1, and a large 
but non-significant, positive effect of EP on learning in Experiment 2), we entered all 
EP-PE comparisons from the published studies we are aware of in a small-scale random 
effect meta-analysis, to get a better estimate of the EP-PE effect size and its heterogeneity 
(see Figure 2.2). We used Cumming’s (2012) ESCI software (www.thenewstatistics.com). 
This small-scale meta-analysis showed a significant, small to medium-sized advantage 
of EP over PE (Cohen’s d of the meta-analytic effect was 0.350). This advantage has to be 
interpreted with caution because there was substantial heterogeneity among the 
comparisons (i.e., heavy variation in the results among studies). That is, of the 10 
comparisons, 8 showed an EP advantage and 2 showed a PE advantage, and effect sizes 
varied from -0.397 (the first experiment in this study) to 0.862 (the study by Van Gog et al., 2011).

Figure 2.2. Results of the meta-analysis
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A possible reason why there is substantial variation in results among the example-
problem vs. problem-example comparisons (i.e., EP = PE vs. EP > PE) might lie in study 
characteristics that vary across studies, such as the learning material, target group, 
pair type (identical vs. isomorphic pairs), sequence length (two vs. four training tasks), 
and example format (worked vs. video modeling examples). For instance, when 
viewing the results of the studies in the small-scale meta-analysis that used video 
modeling examples, it seems that almost all of these studies did not find any learning 
differences between EP and PE4, whereas the studies that used worked examples did 
find EP to be more effective than PE. One could assume that after starting with a 
problem, demotivated learners would not pay attention to worked examples, but 
would study video modeling examples. Worked examples can be overwhelming 
because all the information is presented simultaneously, and it might be easy to ignore 
written text. Video modeling examples, however, present information step-by-step and 
the combination of dynamic visual information and the model’s narration takes the 
learner by the hand. Thus, it is possible that students might find it more motivating to 
study a video modeling example after starting with a practice problem than studying 
a worked example, which might partially explain the differences in findings.

Another factor that might explain the differences in findings is that problem-
example pairs may become more effective when the number of training tasks 
increases. When two tasks are presented in the training phase, a failed practice 
problem solving attempt means that students in the PE condition only effectively have 
one task to learn from, whereas those in the EP condition have the opportunity to first 
build a schema with the example and then learn again from problem solving (and 
repeat this again). Using four (or more) training tasks means that learners in the PE 
condition have more opportunities for learning. Note that we checked all studies used 
in the small-scale meta-analysis on whether one of these factors could explain the 
variation in results, and found that none of these factors could solely account for the 
mixed findings. Future research is recommended to investigate which (combination 
of) factors might moderate the EP-PE effect. 

2.4.3. Limitations

A limitation of the present study is the sample size of Experiment 2. While a power 
analysis indicated that our sample size was more than sufficient to reliably detect the 
effect sizes found by Van Gog and colleagues (2011), our small-scale meta-analysis 
suggests that the EP-PE effect might be significantly smaller than previously believed. 
The sample size of Experiment 2 was not sufficient to reliably detect small to medium-
sized effects, and therefore, the results of Experiment 2 should be interpreted with 
caution. A second limitation of this study is that the reliability of our test tasks (i.e., 
isomorphic posttest tasks and conceptual transfer task) was rather low, particularly in 
Experiment 2. A possible explanation for the low reliability of the test tasks might be the 
low scores on the isomorphic posttest tasks and transfer tasks. Together with the high 
mental effort scores in the training phase, this might indicate that these test tasks were 
more difficult for the students in Experiment 2 than the students in Experiment 1. Another 
explanation may lie in the small number of tasks that was used to measure isomorphic 
posttest performance (i.e., 2 tasks) and conceptual transfer (i.e., 5 open-ended 
questions).

2.4.4. Practical Implications 

Nevertheless, our findings are very interesting and relevant for educational 
practice, where example study and practice problem solving are frequently used to 
acquire new knowledge and skills (e.g., Atkinson & Renkl, 2007; Van Gog, et al., 2014). 
The results of this study suggest that, when short training phases are used, studying 
examples (only) is more preferable than problem solving only. These results complement 
previous findings on the ‘worked example effect’, that have (also) shown example 
study to result in higher learning outcomes with less reported effort investment than 
problem solving only (for reviews, see Atkinson et al., 2000; Renkl, 2014; Sweller et al., 
2011; Van Gog & Rummel, 2010). A novel finding, however, is that example study also 
enhances motivational aspects of learning, such as believing in one’s own competence 
when mastering a task, whereas problem solving only does not positively affect 
students’ motivation at all. These results could be used by teachers during their 
classroom practice when instructing novices on new knowledge or skills, or as 
guidelines for instructional designers when designing new learning materials (such as 
books or online learning environments). In addition, students could be given the 
advice to study examples (only) instead of practice problem solving only when learning 
new knowledge or skills during self-study (for example when selecting own training 
tasks in online self-paced learning environments).

4   Except for the study of Kant, Scheiter, and Oschatz (2017) that did find EP to be more effective than PE.
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Abstract

Research suggests some sequences of examples and problems (i.e., EE, EP) are more 
effective (higher test performance) and efficient (attained with equal/less mental 
effort) than others (PP, sometimes also PE). Recent findings suggest this is due to 
motivational variables (i.e., self-efficacy), but did not test this during the training phase. 
Moreover, prior research used only short task sequences. Therefore, we investigated 
effects on motivational variables, effectiveness, and efficiency in a short (Experiment 
1; 4 learning tasks; N = 157) and longer task sequence (Experiment 2; 8 tasks; N = 105). 
With short sequences, all example conditions were more effective, efficient, and 
motivating than PP. With longer sequences, all example conditions were more 
motivating and efficient than PP, but only EE was more effective than PP. Moreover, EE 
was most efficient during training, regardless of sequence length. These results suggest 
that example study (only) is more effective, efficient and more motivating than PP. 

Keywords: example-based learning, video modeling examples, problem solving, self-
efficacy, mental effort

3.1. Introduction

It is well-established that for novices who have little or no prior knowledge of a task, 
studying worked-out examples of problem solutions – or studying examples alternated 
with practice problem solving – is a more effective and efficient instructional strategy 
than practice problem solving only (for a review, see Van Gog et al., 2019). Effective 
means it often results in higher posttest performance, and efficient that this higher 
performance is often attained with equal or less effort investment in the learning and 
test phases. Example study is more effective and efficient for novices than practice 
problem solving because it gives novices the opportunity to devote all available 
cognitive capacity to study the step-by-step explanation of the solution procedure, 
which helps them develop a schema on how to solve this type of problem in the future 
(e.g., Sweller & Cooper, 1985). When solving practice problems, in contrast, novices 
(lacking prior knowledge) have to resort to weak problem-solving strategies (e.g., via 
trial-and-error, means-ends analysis), which is very effortful and time consuming, yet 
hardly contribute to learning (e.g., Sweller, 1988). For learners with higher prior 
knowledge, however, instructional strategies with a high level of support may be less 
efficient, because they have already developed proper cognitive schemata to guide 
their problem solving (cf. expertise-reversal effect; Kalyuga et al. 2001; Kalyuga and 
Sweller 2004; Kalyuga & Renkl, 2010; Roelle & Berthold, 2013). These learners might gain 
more from practice problem solving than example study.

Despite the multitude of studies on example-based learning, an important open 
question that remains is how example study and practice problem solving should be 
sequenced to be most effective (i.e., for students’ posttest performance), most efficient 
(i.e., posttest performance considered in light of mental effort investment in the training 
and test tasks), and most motivating for learning.

 3.1.1. Short Task Sequences of Example Study and Practice Problem Solving

Van Gog, Kester, and Paas (2011) were the first to compare the four most commonly 
used sequences of examples and practice problems to uncover which sequence 
would be most effective and efficient for learning. Secondary education students 
(novices) learned how to diagnose a fault in electrical circuits with the help of four 
training tasks presented as examples only (EEEE), example-problem pairs (EPEP), 
problem-example pairs (PEPE), or practice problems only (PPPP). Results showed that 
EEEE and EPEP were more effective and efficient than PEPE and PPPP. No differences 
were found, however, between the conditions starting with an example (i.e., EEEE and 
EPEP) and between the conditions starting with a practice problem (i.e., PEPE and 
PPPP). 
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Since then, follow-up research has investigated whether these findings would 
replicate and how they could best be explained. However, studies attempting to 
replicate the differences between the example-problem pairs (EP-pairs) and problem-
example pairs (PE-pairs) conditions showed mixed results (see Table 3.1 for the 
characteristics of these studies). Whereas some studies also found that EP-pairs were 
more effective and efficient for learning than PE-pairs (e.g., Kant et al., 2017; Leppink et 
al., 2014), others did not find any test performance and/or effort investment differences 
(e.g., Van Harsel et al., 2019; Coppens et al., 2019; Van Gog, 2011; Van der Meij et al., 
2018). A small-scale meta-analysis by Van Harsel et al. (2019) on all (published) studies 
available at that time showed a significant, small-to-medium meta-analytic advantage 
of EP over PE on final test performance (Cohen’s d of 0.350), albeit with a large 
heterogeneity between effects.
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3.1.2. The Role of Motivation during Example Study and Practice Problem Solving

An explanation for these mixed findings might lie in motivational aspects of 
learning. That is, when novices have to learn how to solve a complex task that requires 
domain-specific knowledge and that is not particularly intrinsically rewarding or 
enjoyable, then starting the training phase with a practice problem (PE-pairs) might 
decrease their motivation. Solving such a practice problem could be experienced as 
so difficult that learners lose interest in the topic of the learning materials (i.e., topic 
interest) or confidence in their ability to learn the task (e.g., self-efficacy and perceived 
competence). As a consequence, learners may not be motivated to study the 
subsequent example (and possibly also the tasks that follow). In this case, PE-pairs are 
probably less effective for learning than EP-pairs. However, when the complex task is 
experienced as intrinsically rewarding or enjoyable, starting the training phase with a 
practice problem (PE) might not have a detrimental effect on students’ interest or 
confidence in their ability to learn the task. In this case, studying EP is probably equally 
effective for learning as studying PE.

This motivational explanation was tested in two recent studies in which novices 
learned to solve mathematical problems (i.e., Van Harsel et al., 2019; Coppens et al., 
2019). In these studies, aspects of motivation such as topic interest, self-efficacy, and 
perceived competence were measured before and after the training phase to 
investigate whether students lose interest in the task (i.e., topic interest) or confidence 
in their ability to learn the task (i.e., self-efficacy and perceived competence) as a 
result of starting the training phase with a practice problem. Self-efficacy is defined as 
a personal judgment of one’s own capacities to organize or accomplish a specific task 
or challenge and has shown to have a positive effect on factors such as academic 
motivation, study behavior, and learning outcomes (e.g., Bandura, 1997; Schunk, 
2001). Perceived competence is related to the construct of self-efficacy but comprises 
more general knowledge and perceptions of people’s self-concept towards one’s own 
competence (e.g., Deci & Ryan, 2002; Hughes et al., 2011). Like self-efficacy, perceived 
competence is also positively linked to factors such as academic motivation and 
learning outcomes (e.g., Bong & Skaalvik, 2003). Finally, topic interest can be described 
as personal interest in a domain or activity based on previously acquired knowledge, 
personal experiences, and emotions (e.g., Ainley et al., 2002; Renninger, 2000). Topic 
interest has positive effects on cognitive functioning, (deep) learning, and engagement 
(e.g., Hidi, 1990; Schiefele & Krapp, 1996; Tobias, 1996). 

In contrast to the motivational explanation, Van Harsel et al. (2019) and Coppens 
et al. (2019) found no differences between EP-pairs and PE-pairs on test performance, 
or on self-efficacy, perceived competence, and topic interest. However, in these 
studies, these motivational constructs were only measured before and after the training 
phase. Measuring self-efficacy after each task in the training phase would be more 
insightful, because it could reveal whether self-efficacy was not negatively affected at 

all when starting the training phase with a practice problem or whether it recovered 
quickly once provided with an example. Another improvement that would allow for a 
more sensitive test is to use a conceptual pretest rather than a procedural one, as was 
the case in the study by Van Harsel et al. (2019; i.e., two practice problems isomorphic 
to the training phase). With such a procedural pretest, one could argue that all 
participants started with practice problem solving (also the example conditions: 
PPEEEE and PPEPEP). Therefore, the first aim of the present study was to investigate 
students’ self-efficacy during the training phase in four task sequences (EEEE, EPEP, 
PEPE, PPPP). The second aim was to address the open question of how motivational 
and cognitive aspects of learning would be affected by those task sequences in 
longer training phases. 

3.1.3. Longer Tasks Sequences of Example Study and Practice Problem Solving

Previous sequencing research often used a small number of training tasks (i.e., two 
tasks: Kant et al., 2017; Leppink et al., 2014; four tasks: Van Gog, 2011; Van Gog et al., 
2011; Van Harsel et al., 2019). In such short sequences, EE was found to be equally or 
more effective (and efficient) for learning as EP on an immediate posttest (e.g., Kant et 
al., 2017; Leppink et al., 2014; Van der Meij et al., 2018; Van Harsel et al., 2019) and a 
delayed posttest (e.g., Leahy et al., 2015; Van Gog & Kester, 2012; Van Gog et al., 2015). 
Moreover, no differences between EE and EP were found on motivational aspects of 
learning (i.e., self-efficacy, perceived competence, and topic interest; Van Harsel et 
al., 2019). 

However, in educational practice students may encounter (much) longer study 
sequences. Because students will gain knowledge as training progresses, longer task 
sequences may affect motivational and cognitive aspects of learning differently than 
shorter sequences. That is, studying examples only might not only become boring but 
also redundant as students gain knowledge from the first few tasks. This in turn might 
have negative effects on motivational aspects of learning (and performance; see 
Kalyuga et al., 2001) as compared to sequences in which examples and problems are 
alternated. It might be more engaging for learners to actively attempt to solve practice 
problems than to continuously study examples, which is more passive learning (as 
suggested –but not tested– by Sweller & Cooper, 1985). Examples alternated with 
practice problems might be more engaging than example study only in longer 
sequences as the interspersed practice problems give learners the opportunity to 
actively apply what they have learned and allow them to identify gaps in their 
knowledge (cf. Baars et al., 2014, 2017), which they can repair when studying 
subsequent examples. 
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3.1.4. The Present Study

In sum, the present study aimed to examine how short (i.e., Experiment 1: EEEE, 
EPEP, PEPE, and PPPP) and longer (i.e., Experiment 2: EEEEEEEE, EPEPEPEP, PEPEPEPE, and 
PPPPPPPP) task sequences of examples and/or practice problems would affect 
motivational and cognitive aspects of learning on an immediate posttest. With regard 
to short sequences, we added a delayed posttest to see whether effects remained 
stable over time. Furthermore, we measured self-efficacy after each task in the training 
phase (instead of only before and after the training phase). In this way, we were able 
to explore whether and how motivation was affected by the order of examples and 
practice problems in the training phase. Finally, a conceptual pretest was used instead 
of a procedural pretest as in the study by Van Harsel et al. (2019). 

3.2 Experiment 1

In Experiment 1, it was investigated how short task sequences of examples and/or 
practice problems (i.e., EEEE, EPEP, PEPE, and PPPP) would affect motivational (i.e., self-
efficacy, perceived competence, and topic interest measured before and after the 
training phase) and cognitive aspects of learning (i.e., invested mental effort in the 
training phase and performance on isomorphic and transfer tasks). We explored 
effects on time-on-task (training phase and posttest phases) and mental effort 
(posttest phases), because when combined with test performance, these measures 
are indicators of the efficiency of the learning process and learning outcomes (Van 
Gog & Paas, 2008). We also administered a delayed posttest to explore whether the 
pattern of results would remain stable after a one-week delay. We expect to replicate 
the pattern of results found by Van Harsel et al. (2019), because the same materials 
and population are used (see Table 3.2 for results found by Van Harsel et al., 2019). 
Note that we used a conceptual pretest instead of a procedural pretest to rule out the 
alternative explanation that when a procedural pretest is used (e.g., two practice 
problems in Van Harsel et al., 2019), one could argue that all participants start with 
practice problem solving (also the example conditions: PPEEEE and PPEPEP). As a result, 
if the motivational explanation would be valid, even students in the example-first 
conditions would lose interest and confidence in their own abilities before the first 
example. Therefore, it is possible that EPEP becomes more motivating, effective, and 
efficient for learning compared to PEPE when using a conceptual pretest (instead of 
EPEP = PEPE as found by Van Harsel et al., 2019).

Table 3.2.

Main Results of Experiment 1 of Van Harsel et al. (2019) Regarding the Effects of Short 
Sequences of Examples and Problems (EEEE, EPEP, PEPE, and PPPP) on Isomorphic 
Tasks, Transfer Tasks, Mental Effort, Self-Efficacy, Perceived Competence, and Topic 
Interest. 

Main results

Training phase

Mental effort EE, EP, PE < PP / EE < EP, PE / EP = PE

Immediate posttest phase

Isomorphic tasks EE, PE > PP / EE > EP / EE = PE / EP = PE, PP

Procedural transfer task EE = EP = PE = PP

Conceptual transfer task EE = EP = PE = PP

Self-efficacy EE, EP, PE > PP / EE > EP / EE = PE / EP = PE

Perceived competence EE, EP, PE > PP / EE > EP / EE = PE / EP = PE

Topic interest EE = EP = PE = PP

Note. Acronyms for groups: EE = example study only; EP = example-problem pairs; 
PE = problem-example pairs; PP = problem solving only. 

Regarding self-efficacy after each training task, it was expected that students in 
the EEEE and EPEP condition would show significantly higher levels of self-efficacy after 
the first training task than students in the PEPE and PPPP condition (H1a). We assumed 
that the PEPE condition would ‘recover’ after receiving an example as second training 
task (given that prior research with these tasks showed no differences in motivation 
and learning outcomes after training), and therefore we expected no significant 
differences on self-efficacy scores among the EEEE, EPEP, and PEPE conditions from the 
second training task onwards (H1b). Since students in the PPPP condition were not 
provided with an opportunity to study an example, it was predicted that self-efficacy 
scores would be significantly higher in the EEEE, EPEP, and PEPE condition than in the 
PPPP condition from the second training task onwards (H1c). 
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3.2.1. Method

3.2.1.1. Participants and design

Participants were 157 Dutch higher education students enrolled in the first year of an 
electrical and electronic mechanical engineering program (Mage = 19.13, SD = 1.75; 
155 male, 2 female). Participants were randomly assigned to one of four conditions: 
examples only (n = 33; EEEE), example-problem pairs (n = 45; EPEP), problem-example 
pairs (n = 40; PEPE), or practice problems only (n = 39; PPPP). The experiment consisted 
of four phases: (1) pretest, (2) training phase, (3) immediate posttest phase, and (4) 
delayed posttest phase. At the delayed posttest, which was completed after one 
week, 25 participants were absent, so these data are based on 132 participants (Mage 
= 19.04, SD = 1.71; 130 male, 2 female). Participants were assumed to be novices to the 
modelled task (i.e., approximating the definite integral of a function using the 
trapezoidal rule) as this subject had not (yet) been a part of their study program. 
Participants gave their informed consent prior to their inclusion in the study and 
received study credits for their participation. 

3.2.1.2. Materials

All materials were presented using a web-based learning environment. The materials 
were based on the materials developed by Van Harsel et al. (2019). 

Pretest. The pretest was a conceptual prior knowledge test that consisted of seven 
multiple-choice questions (α = .49)5 and was developed in collaboration with two math 
teachers from a higher education institute. This test was used to check whether 
participants’ ability to recognize and name the basic principles of the trapezoidal rule 
was low and whether prior knowledge did not differ among conditions. An example of 
a conceptual prior knowledge question was given in the Supplementary Materials D. 

Training phase. The training phase consisted of four tasks that required participants 
to use the trapezoidal rule. The trapezoidal rule is a numerical integration method that 
is used to give a quantitative approximation of the region under the graph of a specific 
function. Each task had its own cover story (i.e., task 1: fitness, task 2: energy 
measurement, task 3: washing machine, and task 4: soapsuds). To ensure that only the 
task format differed across conditions, the task order was identical for all participants 
(i.e., in order: fitness, energy measurement, washing machine, and soapsuds). Each 
task was part of a task pair (i.e., pair 1: fitness and energy measurement, pair 2: washing 
machine and soapsuds). 

Within a task pair, the tasks were isomorphic (i.e., a similar problem-solving procedure, 
but surface features such as the cover stories and numbers used in functions were 
slightly different). There was a minor complexity difference between the first and 
second task pair. The first pair of tasks required Participants to calculate with positive 
numbers. The second pair was slightly more complex because Participants had to 
calculate with both positive and negative numbers.

Regarding the design of the tasks, the practice problems started with a short 
description of the problem state. Then, some additional information was provided on 
how to solve the problem, such as the trapezoidal rule formula, the graph of a function, 
the left border and right border of the area to be calculated, and the number of 
intervals. It was, however, not explained how to use the information to solve the practice 
problem. At the end of the problem format, participants received the following 
assignment: “Approach the area under the graph using the information that is given. 
Write down all your intermediate steps and calculations”. Participants could solve the 
problem by completing the four steps: 1) ‘compute the step size of each subinterval’, 
2) ‘calculate the x-values’, 3) ‘calculate the function values for all x-values’, 4) ‘enter 
the function values into the formula and calculate the area’. An example of a problem 
format is given in the Supplementary Materials A. 

Each video modeling example displayed a screen capture of a female model’s 
computer screen, in which she demonstrated in a stepwise manner how to solve a 
practice problem with the help of the trapezoidal rule. While solving the problem, the 
model provided verbal explanations and on-screen handwritten notes. At the start of 
the video, the model first explained the purpose of the trapezoidal rule and then 
provided an explanation of the problem state. The problem state was exactly the same 
as in the problem format. Subsequently, the model demonstrated and explained how 
one could interpret the corresponding graph of a function with information that was 
given (i.e., the left border and right border of the area, the number of intervals, and the 
trapezoidal rule) and eventually showed how to solve the problem by calculating the 
four steps listed in the description of the problem format. A screenshot of a video 
modeling example is given in the Supplementary Materials B. 

Immediate and delayed posttest. The immediate and delayed posttest presented 
four tasks, two isomorphic and two transfer tasks. Of the two isomorphic tasks 
(immediate posttest: α = .71; delayed posttest: α = .77), one was isomorphic to the first 
pair of training tasks and the other to the second pair of training tasks. The third posttest 
task measured procedural transfer and asked participants to use the Simpson rule 
instead of the trapezoidal rule to approximate the definite integral under a graph. The 
Simpson rule is also a numerical method for approximating the integral of a function. 
The problem-solving procedure of Simpson’s rule is comparable to that of the 
trapezoidal rule, however, Simpson’s rule uses a different formula to approximate the 
definite integral of a function (i.e., with a sequence of quadratic parabolic segments 

5  �A possible explanation for the low reliability of the pretest could be the unfamiliarity of the participants 
with the subject matter (indeed, it was meant as a check that students were indeed novices regard-
ing those tasks). Because the pretest consisted of multiple-choice questions and “I do not know” was 
not included as an answer option, students would have had to guess, which likely resulted in low 
reliability of the pretest.
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instead of straight lines such as the trapezoidal rule). The fourth posttest task measured 
conceptual transfer and consisted of five open-ended questions that aimed to 
measure Participants’ understanding of the trapezoidal rule. All five questions 
comprised a multiple-choice part with four options an ‘explanation’ part (where 
participants had to justify their chosen answer). Hence, these questions were more 
complex than the conceptual pretest items, which only required participants to select 
the correct answer. Unfortunately, the data regarding the conceptual transfer questions 
had to be excluded from the analyses due to a programming error. An example of an 
isomorphic posttest task, procedural transfer task and conceptual transfer question 
can be found in the Supplementary Materials F, G, and H. 

Mental effort. After each task on the pretest, the training phase, the immediate 
posttest, and the delayed posttest, participants rated their mental effort on a 9-point 
mental effort rating scale (Paas, 1992), with answer options ranging from (1) “very, very 
low mental effort” to (9) “very, very high mental effort”. 

Self-efficacy, perceived competence, and topic interest. Self-efficacy was 
measured before, during (i.e., after each training task), and after the training phase by 
asking participants to rate to what extent they were confident that they could 
approximate the definite integral of a graph using the trapezoidal rule on a 9-point 
rating scale, ranging from (1) “very, very unconfident” to (9) “very, very confident” (Van 
Harsel et al., 2019; adapted from Hoogerheide et al., 2016). 

Perceived competence was measured using the Perceived Competence Scale for 
Learning (Van Harsel et al., 2019; based on Williams & Deci, 1996; Williams et al., 1988). 
This perceived competence scale (immediate posttest: α = .98; delayed posttest: α = .97) 
consisted of three items: “I feel confident in my ability to learn how to approximate the 
definite integral of a graph using the trapezoidal rule”, “I am capable of approximating 
the definite integral of a graph using the trapezoidal rule”, and “I feel able to meet the 
challenge of performing well when I have to apply the trapezoidal rule”. Participants 
were asked to rate on a scale of (1) “not at all true” to (7) “very true” to what degree 
these three items applied to them. 

The topic interest scale (Van Harsel et al., 2019; adapted from the topic interest 
scale by Mason et al., 2008, and the perceived interest scale by Schraw et al., 1995) 
were used to measure participants’ interest in the topic (i.e., the trapezoidal rule). The 
topic interest scale (immediate posttest: α = .81; delayed posttest: α = .82) consisted of 
7 items and participants had to rate on a 7-point scale, ranging from 1 (not at all) to 5 
(very true), to what degree each of the items applied to them. All items are shown in 
the Supplementary Materials I.

3.2.1.3. Procedure

The experiment was run in sixteen sessions (i.e., eight first sessions and eight second 
sessions) and took place in a computer classroom at the participants’ institute of 
higher education. The number of participants ranged from 2 to 23 per session. Prior to 
the first session, headsets, pens, and scrap paper (to write down calculations) were 
distributed. Once participants were seated in the computer classroom, the first session 
(ca. 106 minutes) started with a general introduction by the experimenter explaining 
the aim and procedure of the experiment. Participants were told they could work at 
their own pace (with a maximum of 135 minutes) on mathematical tasks in an online 
learning environment by means of different instructional formats (i.e., examples and/
or practice problems). They were instructed to write down as much as possible when 
solving a training task or test task, and that if they really did not know what to answer, 
to write an X. After the instruction, participants received a paper with a link and a 
password that gave access to the online learning environment. 

The learning environment was designed in such a way that each task and 
questionnaire were presented on a separate page. Participants were unable to go 
back to previous pages and had to complete each task or questionnaire before they 
could go to the next page. Time was logged for each task. When participants entered 
the learning environment, they were assigned to one of the four conditions (i.e., EEEE, 
EPEP, PEPE, or PPPP). Participants started with a short demographic questionnaire (e.g., 
age, gender, and preliminary education), followed by the conceptual pretest. After 
the pretest, participants completed the self-efficacy, perceived competence, and 
topic interest questionnaires before they started the training phase. During the training 
phase, participants received four tasks that were presented as examples and/or 
practice problems (depending on their assigned condition). After each task, 
participants were asked to indicate their perceived mental effort and self-efficacy. 
After the training phase, participants completed the self-efficacy, perceived 
competence, and topic interest questionnaires again. Lastly, participants took the 
immediate posttest. Participants had to rate their invested mental effort after each 
posttest task. Participants handed in their scrap paper before working on the posttest 
phase and received new ones to make notes. 

The delayed posttest took place exactly 7 days later (ca. 40 minutes) and started 
with a general introduction in which the procedure was explained. Again, participants 
were told they could work at their own pace, write down everything they could, and 
note an X if they were not able to answer a question. Participants were provided with 
scrap paper and a password that gave them access to the online learning environment. 
They first completed the self-efficacy, perceived competence, and topic interest 
questionnaires. Subsequently, they took the delayed posttest, which consisted of four 
tasks that were isomorphic to the tasks used in the immediate posttest phase. After 
each task, participants were asked to indicate their invested mental effort. 



6766

3.2.1.4. Data analysis

The data was scored by the experimenter (i.e., first author) and a second encoder 
based on a scoring protocol that was developed by Van Harsel et al. (2019) in 
collaboration with higher education mathematics teachers. Participants could earn a 
maximum of 8 points per training problem. Two points could be earned for calculating 
the step size of each subinterval, two for correctly calculating all x-values, two for 
correctly calculating the function values for all x-values, and two for using the correct 
formula for the area under the graph and providing the correct answer. If half or more 
of the solution steps were correct in step two, three, and four, then one point was 
granted. If less than half of the solution steps were correct in step two, three and four, 
0 points were granted. These scoring standards were also used to score the two 
isomorphic posttest tasks (i.e., max. score = 16 points) and the procedural transfer 
problem (i.e., max. score = 8 points). The intra-class correlation coefficient was .98 for 
the training tasks, .98 for the isomorphic posttest tasks, and .93 for the delayed posttest 
tasks. 

The average mental effort invested in the training phase and on the isomorphic 
posttest tasks was calculated. In addition, the average self-efficacy, perceived 
competence, and topic interest ratings were calculated. 

3.2.2. Results

Nonparametric tests were used to analyze our main research questions and 
explorative questions, because with the exception of topic interest on pretest and 
delayed posttest, and self-efficacy and perceived competence on the delayed 
posttest, none of our main variables were normally distributed (cf. Field, 2009), with 
either the kurtosis, skewness, or both coefficients being (substantially) below -1.96 or 
above +1.96. Therefore, effects of Instruction Condition (EEEE, EPEP, PEPE, and PPPP) 
were tested on motivational (i.e., self-efficacy, perceived competence, and topic 
interest) and cognitive aspects of learning (i.e., isomorphic test performance, 
procedural transfer, conceptual transfer, mental effort and time-on-task in learning 
and posttest phases) with Kruskal-Wallis tests. Significant main effects of Instruction 
Condition were followed by six Mann-Whitney U tests (EEEE vs. EPEP, EEEE vs. PEPE, EEEE 
vs. PPPP, EPEP vs. PEPE, EPEP vs. PPPP, and PEPE vs. PPPP) with a Bonferroni-corrected 
significance level of p < .008 (i.e., 0.05/6). Results are presented in the main text and 
Table 3.6. Effects of Test Moment (Immediate Posttest and Delayed Posttest) for each 
condition (EEEE, EPEP, PEPE, and PPPP) were tested with Wilcoxon signed-rank tests and 
we used four Mann-Whitney U tests as post-hoc tests (see Table 3.6), with a Bonferroni 
corrected significance level of p < .013 (i.e., 0.05/4). The effect size of Pearson r 
correlation is reported (i.e., Z/√N) with values of 0.10, 0.30, and 0.50 representing a 
small, medium, and large effect size, respectively (Cohen, 1988) for the post-hoc tests. 
The self-efficacy, perceived competence, and topic interest scores can be found in 
Table 3.4, and the test performance scores, mental effort scores, and time-on-task 
scores in Table 3.5.

Before the differences within and among conditions were analyzed, we checked 
for prior knowledge differences. Kruskal-Wallis tests showed no significant differences 
among conditions on pretest performance, H(3) = 2.58, p = .460, or on pretest scores 
of self-efficacy, H(3) = 2.59, p = .460, perceived competence, H(3) = 2.18, p = .536, and 
topic interest, H(3) = 3.22, p = .360. 

3.2.2.1. How do short sequences of examples and problems affect self-efficacy, 
perceived competence, and topic interest?

Self-efficacy. Self-efficacy ratings measured after each training task are presented 
in Figure 3.1. It was analyzed whether participants’ self-efficacy reported after each 
training task differed among conditions (see Table 3.3 for post-hoc comparisons). With 
regard to the first training task, there was a main effect of Instruction Condition, 
H(3) = 83.13, p < .001. As predicted (H1a), self-efficacy levels were higher in the EEEE 
and EPEP Condition than the PEPE and PPPP Condition. No significant differences were 
found between the EEEE and EPEP Condition or between the PEPE and PPPP Condition. 

Regarding self-efficacy from the second training task onwards, there was also a 
main effect of Instruction Condition (task 2: H(3) = 59.48, p < .001; task 3: H(3) = 68.37, 
p < .001; task 4: H(3) = 68.61, p < .001). As expected (H1b, H1c), results showed that for 
all three tasks the self-efficacy ratings were higher in the EEEE, EPEP and PEPE Condition 
compared to the PPPP Condition. No differences were found, however, between the 
EPEP and PEPE Condition. Self-efficacy ratings were also higher after task 2 and task 3 
in the EEEE Condition compared to the EPEP and PEPE Condition, but not after training 
task 4. 

Analyses of participants’ self-efficacy after the training phase revealed a main 
effect of Instruction Condition, H(3) = 66.55, p < .001, and self-efficacy ratings were 
higher in the EEEE, EPEP, and PEPE Condition compared to the PPPP Condition. No 
significant differences were found between the EEEE, EPEP and PEPE Condition. 
Measuring self-efficacy at the start of the delayed posttest phase revealed the same 
pattern of results. There was a main effect of Instruction Condition, H(3) = 46.08, p < .001, 
and follow-up tests showed that self-efficacy scores were higher in the EEEE, EPEP, and 
PEPE Condition compared to the PPPP Condition. Again, there was no significant 
difference between EEEE and EPEP or between EPEP and PEPE. 
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Figure 3.1. Median scores on self-efficacy (top row; range 1 to 9) and mental effort (top 
row; range 1 to 9) and time-on-task for each training task in Experiment 1. 
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Perceived competence. Analysis of perceived competence measured after the 
training phase showed a main effect of Instruction Condition, H(3) = 67.41, p < .001. 
Perceived competence was higher in the EEEE, EPEP, and PEPE Condition than in the 
PPPP Condition, and scores in the EPEP and PEPE Condition did not differ significantly. 
There was also no significant difference between the EEEE and EPEP Condition. The 
pattern of results was similar for the delayed posttest. There was a main effect of 
Instruction Condition, H(3) = 41.19, p < .001, as perceived competence was higher in 
the EEEE, EPEP, and PEPE Condition than in the PPPP Condition. There was no statistically 
significant difference between the EEEE and EPEP Condition or the EPEP and PEPE 
Condition. 

Topic interest. There was a main effect of Instruction Condition, H(3) = 8.93, p = .030, 
and there were no differences between the EEEE and EPEP Condition or between the 
EPEP and PEPE Condition. However, results showed that topic interest scores were lower 
in the EEEE than in the PPPP Condition. As for topic interest measured before the 
delayed posttest, there was no main effect of Instruction Condition.

3.2.2.2. How do short sequences of examples and problems affect learning and 
transfer?

Isomorphic test tasks. Analyzing whether performance on the isomorphic tasks on 
the immediate posttest differed among conditions showed a main effect of Instruction 
Condition, H(3) = 36.63, p < .001. Results showed that the EEEE, EPEP, and PEPE Condition 
scored significantly higher than the PPPP Condition. No differences were found 
between the EEEE and EPEP, EPEP and PEPE, or EEEE and PEPE Condition. 

The pattern of results was the same for the isomorphic tasks on the delayed 
posttest. There was a main effect of Instruction Condition, H(3) = 24.76, p < .001, and 
follow up tests showed that performance on the isomorphic tasks was significantly 
higher for the EEEE, EPEP, and PEPE Condition than the PPPP Condition. No differences 
were found between the EEEE and EPEP, EPEP and PEPE Condition, or EEEE and PEPE 
Condition. 

Procedural transfer task. Analyzing whether performance differed among 
conditions on the procedural transfer task revealed a main effect of Instruction 
Condition, H(3) = 27.41, p < .001. Results showed that the EEEE, EPEP, and PEPE Condition 
significantly outperformed the PPPP Condition. No differences were found, however, in 
the other condition comparisons. On the delayed posttest, there was a main effect of 
Instruction Condition, H(3) = 10.58, p = .014, and follow-up tests showed that only the 
EEEE and PEPE Condition, but not the EPEP Condition scored significantly higher than 
the PPPP Condition on procedural transfer. Again, other comparisons were not 
significant.

3.2.2.3. How do short sequences of examples and problems affect mental effort and 
time-on-task in the training phase? 

Mental effort. Mental effort ratings measured after each training task (see Figure 3.1) 
were used as a measure of learning efficiency. Results showed a main effect of 
Instruction Condition for self-reported effort ratings invested in the training tasks, 
H(3) = 64.19, p < .001, and the EEEE, EPEP, and PEPE Condition reported less effort during 
the training phase than the PPPP Condition. Moreover, the EEEE Condition reported less 
effort than the EPEP and PEPE Condition. Finally, the EPEP Condition also reported 
significantly less effort than the PEPE Condition. 

Time-on-task. Time-on-task invested in each task in the training phase is presented 
in Figure 3.1 and exploratory analyses are presented in the Supplementary Materials K. 

3.2.2.4. How do short sequences of examples and problems affect mental effort and 
time-on-task in the posttest phases? 

Exploratory analyses of mental effort and time-on-task invested in the posttest phases 
are presented in the Supplementary Materials K.

3.2.3. Discussion

Regarding the main aim of uncovering how self-efficacy develops during the 
training phase, results showed, as expected, that self-efficacy was reported to be 
significantly higher after the first task for the example-first conditions compared to the 
problem-first conditions (i.e., EEEE and EPEP > PEPE and PPPP). Throughout the rest of 
the training phase (i.e., tasks 2 to 4), all example conditions reported significantly 
higher self-efficacy than the problem solving only condition, and the EEEE condition 
reported higher self-efficacy ratings than the EPEP and PEPE condition with regards to 
training task 2 and 3.

Furthermore, we (partly) replicated the results of Van Harsel et al. (2019) regarding 
motivational and cognitive aspects of learning measured after the training phase. All 
example conditions showed higher self-efficacy and perceived competence ratings 
and test performance (i.e., isomorphic and transfer tasks), while investing less mental 
effort in the training phase compared to the PPPP condition. All example conditions 
showed lower effort investment but longer time investment on the isomorphic posttest 
tasks during the immediate posttest than the PPPP condition. This pattern remained 
stable on the delayed posttest. Topic interest scores were lower in the EEEE than the 
PPPP condition on the immediate posttest, but this difference was no longer present on 
the delayed measurement. There were also no other differences among conditions on 
topic interest. Importantly, we found no differences on motivational variables (i.e., self-
efficacy, perceived competence, or topic interest) or on posttest performance 
between the EEEE and EPEP, or between the EPEP and PEPE condition. We did find that 
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reported effort investment in the training phase was lower in the EEEE condition than in 
the EPEP (and PEPE) condition. Effort invested in the training phase was also significantly 
lower in the EPEP condition than in the PEPE condition. 

The results of Experiment 1 provide some evidence for the motivational explanation 
of differences between EP and PE on learning. Starting the training phase with a 
practice problem (PE) affected self-efficacy negatively compared to starting with an 
example. However, this did not lead students in the PE condition to disengage in the 
present study; they studied the example and after that, their self-efficacy increased to 
the level of the EP (and EE) condition. 

It is an important open question whether the findings on both cognitive and 
motivational aspects of learning would be different when the training phase is longer 
(i.e., consists of more training tasks). For example, one might expect that passively 
studying examples would become redundant and (therefore) boring when task 
sequences are longer, which in turn might lead to disengagement and lower learning 
outcomes. Hence, example-problem pairs might be more engaging and effective 
than example study only, because example-problem pairs provide the benefits of 
examples but also allow students to actively apply what they have learned. Therefore, 
a second experiment was conducted with the aim to investigate how motivational and 
cognitive aspects of learning would be affected by longer task sequences of examples 
and problems (i.e., 8 instead of 4 tasks: EEEEEEEE, EPEPEPEP, PEPEPEPE, and PPPPPPPP). 

Table 3.4.  
Mean (M), Standard Deviation (SD) and Median (Med) of Self-Efficacy (range 1 to 9) 
Perceived Competence (range 1 to 7), and Topic Interest (range 1 to 7) per Condition 
in Experiment 1.

EEEE Condition EPEP Condition PEPE Condition PPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Self-efficacy 2.18 1.84 1.00 2.40 1.86 2.00 2.33 1.31 2.00 2.00 1.34 1.00

Perceived 
Competence

1.77 1.28 1.33 2.17 1.48 1.67 1.98 1.11 1.67 2.07 1.20 1.67

Topic Interest 4.57 0.78 4.86 4.43 0.73 4.29 4.45 0.84 4.36 4.23 0.89 4.43

Training

Self-efficacy 7.09 1.39 7.26 6.06 1.36 6.00 5.53 1.11 5.38 2.72 1.90 2.00

Immediate 
Posttest

Self-efficacy 7.39 1.27 7.00 6.73 1.64 7.00 7.10 1.28 7.00 2.79 2.19 2.00

Perceived 
Competence

5.83 0.88 6.00 5.35 1.30 5.67 5.66 0.87 6.00 2.29 1.61 2.00

Topic Interest 4.68 0.86 4.86 4.45 0.93 4.43 4.50 0.98 4.57 4.03 0.98 4.29

Delayed 
Posttest

Self-efficacy 5.12 1.59 6.00 5.18 1.66 5.00 5.69 1.17 6.00 2.39 1.69 2.00

Perceived 
Competence

4.37 1.32 4.67 4.42 1.23 4.50 4.69 0.98 4.83 2.24 1.52 1.67

Topic Interest 4.26 0.97 4.14 4.13 0.88 4.00 4.11 0.86 4.00 3.95 0.86 4.14

Note. Acronyms for groups: EE = example study only; EP = example-problem pairs; 
PE = problem-example pairs; PP = problem solving only. 
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Table 3.5  
Mean (M), Standard Deviation (SD), and Median (Med) of Pretest (range 0 to 16), 
Isomorphic Tasks Performance (range 0 to 16), Procedural Transfer (range 0 to 8), 
Mental Effort (range 1 to 9), and Time-on-Task per Condition in Experiment 1. 

EEEE Condition EPEP Condition PEPE Condition PPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Performance 2.94 2.03 4.00 2.31 1.41 2.00 2.60 1.63 3.00 2.46 1.59 2.00

Training 

Mental Effort 2.57 1.05 2.50 3.42 1.18 3.25 4.21 0.96 4.13 6.44 2.41 6.75

Time-on-Task 4.35 1.63 4.50 8.68 5.07 11.00 7.67 2.07 7.00 6.27 5.02 5.50

Immediate Posttest

Isomorphic Tasks 9.67 4.06 10.00 9.89 5.07 11.00 10.20 3.34 10.50 3.77 4.64 2.00

Procedural Transfer 1.91 2.34 1.00 1.73 1.68 1.00 1.63 1.53 1.00 0.33 0.74 0.00

Mental Effort 

Isomorphic Tasks 4.89 1.52 5.00 4.73 1.69 4.50 4.94 1.38 5.00 6.51 2.56 7.00

Procedural Transfer 5.36 2.41 5.00 5.98 2.15 6.00 5.10 2.37 5.00 6.62 2.56 8.00

Time-on-Task 

 Isomorphic Tasks 16.87 6.39 14.50 10.61 4.99 10.50 11.90 3.34 11.25 4.99 4.79 4.00

 Procedural Transfer 9.27 4.87 9.00 8.38 5.29 8.00 7.88 4.29 7.00 3.87 4.13 2.00

Delayed Posttest

 Isomorphic Tasks 9.28 5.30 11.00 9.60 4.42 10.00 10.00 4.16 10.50 4.16 4.75 2.00

 Procedural Transfer 1.32 1.70 1.00 1.15 1.53 1.00 1.08 1.23 1.00 0.52 1.48 0.00

Mental Effort 

Isomorphic Tasks 4.80 1.90 4.00 4.55 1.52 4.50 4.81 1.65 5.00 6.76 2.00 7.50

Procedural Transfer 5.36 2.33 5.00 5.23 2.07 5.00 5.03 2.18 5.00 6.71 2.52 8.00

Time-on-Task 

Isomorphic Tasks 12.56 4.48 12.00 11.69 4.82 11.50 10.85 4.37 10.50 7.31 5.29 7.50

Procedural Transfer 7.52 4.72 6.00 7.45 4.91 7.00 7.53 3.56 8.00 4.71 4.17 5.00

Note. Acronyms for groups: EE = example study only; EP = example-problem pairs; PE = problem-example 
pairs; PP = problem solving only. 
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3.3. Experiment 2

In Experiment 2, we investigated how longer task sequences of examples and/or 
practice problems (i.e., EEEEEEEE, EPEPEPEP, PEPEPEPE, and PPPPPPPP) would affect 
motivational (i.e., self-efficacy, perceived competence, and topic interest measured 
before and after the training phase) and cognitive aspects of learning (i.e., invested 
mental effort in the training phase). Time-on-task in the training phase, as well as 
mental effort and time-on-task in the posttest phases were again measured as 
(explorative) indicators of efficiency of the learning process and learning outcomes 
(Van Gog & Paas, 2008). Because example study only might become redundant and 
boring when task sequences are longer and therefore might lead to disengagement 
and lower performance scores, we expected that the EPEPEPEP condition would show 
significantly higher levels of self-efficacy (H2), perceived competence (H3), and topic 
interest (H4) after the training phase than the EEEEEEEE condition, and that the EPEPEPEP 
condition would attain higher levels of isomorphic posttest performance (H5), 
procedural transfer performance (H6), and conceptual transfer performance (H7), 
while investing less effort in the training phase (H8) compared to the EEEEEEEE condition. 
All other comparisons were considered exploratory. 

3.3.1. Method

3.3.1.1. Participants and design

Participants were 105 Dutch higher education students in their first year of an electrical 
and electronic, mechanical engineering, or mechatronics program (Mage = 19.30, SD 
= 1.80; 105 male). Participants were randomly assigned to one of four conditions and 
received eight training tasks: 1) examples only (n = 32; EEEEEEEE), 2) example-problem 
pairs (n = 28; EPEPEPEP), 3) problem-example pairs (n = 23; PEPEPEPE), or 4) practice 
problems only (n = 22; PPPPPPPP). The experiment consisted of three phases: (1) pretest, 
(2) training phase, and (3) immediate posttest phase. At the time of the experiment, 
participants were novices to the modelled task as this subject had not (yet) been a 
part of their study program. Participants gave their informed consent prior to their 
inclusion in the study and received study credits for their participation.

3.3.1.2. Materials and procedure

The materials were presented using a web-based learning environment. The materials, 
procedure, and data analysis were the same as in Experiment 1 with the following 
exceptions. First, the training phase consisted of eight tasks; in addition to the four tasks 
also used in Experiment 1 two additional pairs of tasks were added. All eight tasks were 
paired based on their complexity (i.e., pair 1: fitness and energy measurement, pair 2: 
washing machine and soapsuds, pair 3: drinking water and running, and pair 4: the 
carousel and coffee consumption). The first pair of tasks required participants to 
calculate with positive numbers. The second and third pair of tasks were slightly more 
complex because participants had to calculate with both positive and negative 
numbers. The fourth pair of tasks was most complex and asked participants to 
calculate with a cubic function (polynomial of degree 3) instead of the quadratic 
function (polynomial of degree 2) that was used in the first three task pairs. The design 
of the formats (i.e., video modeling examples and practice problems) was similar to 
the formats used in Experiment 1. Second, the immediate posttest consisted of five 
instead of four tasks as in Experiment 1. Three isomorphic posttest tasks were used (α = 
.73): one isomorphic to the first pair of training tasks, one to the second and third pair 
of training tasks, and one to the fourth pair of training tasks. The fourth task was a 
procedural transfer task (i.e., Simpson rule), followed by the conceptual transfer 
questions (α = .59). 

The procedure was the same as in Experiment 1, with the exception that Experiment 
2 did not have a delayed posttest (i.e., in Experiment 1, results were consistent across 
both test moments and therefore we did not include a delayed posttest). This resulted 
in 10 single sessions with 2 – 21 participants per session that lasted ca. 116 minutes. As 
for the data analysis, we used the same scoring standards as in Experiment 1 for the 
training tasks, the three isomorphic posttest tasks (max. score = 24 points), and the 
procedural transfer task. Regarding the five conceptual transfer questions, participants 
could earn a maximum of 9 points: one point for the first open-ended question (0 
points for an incorrect answer; 1 point for the correct answer) and 2 points for the other 
open-ended questions (0 points for an incorrect answer; 1 point for the correct answer, 
2 points for the correct answer and a correct explanation).
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3.3.2. Results

Again, with the exception of pretest performance and topic interest on the 
immediate posttest, all of the main variables were not normally distributed, with either 
the kurtosis, skewness, or both coefficients being (substantially) below -1.96 or above 
+1.96. Relevant descriptive statistics of self-efficacy, perceived competence, and topic 
interest scores are presented in Table 3.8, and performance scores, mental effort 
scores, and time-on-task scores are presented in Table 3.9. Again, we used Mann-
Whitney U tests as post-hoc tests (see Table 3.10). Kruskal-Wallis tests showed that there 
were no significant differences among conditions on pretest performance, H(3) = 2.86, 
p = .414, and pretest scores of self-efficacy, H(3) = 3.94, p = .268, perceived competence, 
H(3) = 3.42, p = .331, and topic interest, H(3) = 1.29, p = .731.

3.3.2.1. How do longer sequences of examples and problems affect self-efficacy, 
perceived competence, and topic interest?

Self-efficacy. Self-efficacy ratings measured after each training task are presented 
in Figure 3.2. First it was explored whether self-efficacy ratings reported after each 
training task differed among conditions (see Table 3.7 for post-hoc comparisons). With 
regard to the first training task, there was a main effect of Instruction Condition,  
H(3) = 33.45, p < .001, and self-efficacy levels were higher in the EEEEEEEE and EPEPEPEP 
Condition than the PEPEPEPE and PPPPPPPP Condition. There were no significant 
differences between the EEEEEEEE and EPEPEPEP Condition or between the PEPEPEPE 
and PPPPPPPP Condition. 

There was also a main effect of Instruction Condition for the second training task 
onwards (task 2: H(3) = 18.58, p < .001; task 3: H(3) = 29.12, p < .001; task 4: H(3) = 32.35, 
p < .001; task 5: H(3) = 28.00, p < .001; task 6: H(3) = 29.52, p < .001; task 7: H(3) = 30.42, 
p < .001; task 8: H(3) = 30.69, p < .001). Results showed that the self-efficacy scores were 
higher in the EEEEEEEE, EPEPEPEP, and PEPEPEPE Condition compared to the PPPPPPPP 
Condition. No differences were found, however, between the EPEPEPEP and PEPEPEPE 
Condition. Also, no differences were found between the EEEEEEEE and EPEPEPEP 
Condition, except for training task 8, where self-efficacy ratings were higher in the 
EEEEEEEE than EPEPEPEP Condition. 

Concerning the main question of whether there would be differences among 
conditions on self-efficacy ratings measured after the training phase, there was a main 
effect of Instruction Condition, H(3) = 29.49, p < .001. Self-efficacy ratings were significantly 
higher in the EEEEEEEE, EPEPEPEP, and PEPEPEPE Condition compared to the PPPPPPPP 
Condition. Contrary to our expectations (H2), there were no differences between the 
EPEPEPEP and EEEEEEEE Condition. Further explorations showed that no other condition 
comparisons were significant.

Figure 3.2. Median scores on self-efficacy (top row; range 1 to 9) and mental effort (top 
row; range 1 to 9) and time-on-task for each training task in Experiment 2. 
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Perceived competence. The pattern of results was similar for perceived 
competence. There was a main effect of Instruction Condition regarding perceived 
competence measured after the training phase, H(3) = 23.83, p < .001, and the 
EEEEEEEE, EPEPEPEP, and PEPEPEPE Condition showed higher perceived competence 
ratings than the PPPPPPPP Condition. In contrast to our expectations (H3), there was no 
difference between the EEEEEEEE and EPEPEPEP Condition (p = .799, r = .033). Further 
explorations revealed that no other comparisons were significant.

Topic interest. Analyzing whether conditions differed in topic interest scores 
measured after the training phase revealed a main effect of Instruction Condition, 
H(3) = 8.30, p = .040, however, follow-up tests showed no significant differences among 
any of the condition comparisons (H4). 

3.3.2.2. How do longer sequences of examples and problems affect learning and transfer? 

Isomorphic test tasks. Analysis revealed a main effect of Instruction Condition for 
performance on the isomorphic posttest tasks, H(3) = 12.86, p = .005. Results showed 
that he EEEEEEEE Condition showed significantly higher performance on the isomorphic 
test tasks than the PPPPPPPP Condition. However, the EPEPEPEP and PEPEPEPE Condition 
did not significantly differ from the PPPPPPPP Condition. Although we expected EPEPEPEP 
> EEEEEEEE (H5), there were no performance differences on the isomorphic posttest 
tasks between the EEEEEEEE and EPEPEPEP Condition. Our explorative analyses showed 
no other condition comparisons were significant. 

Procedural transfer task and conceptual transfer questions. Subsequently, we 
analyzed whether conditions differed in scores on the procedural transfer task and 
conceptual transfer questions (H6, H7). Analysis showed there was no main effect of 
Instruction Condition for the procedural transfer task, H(3) = 6.04, p = .110, and for the 
conceptual transfer questions, H(3) = 2.85, p = .415.

3.3.2.3. How do longer sequences of examples and problems affect mental effort and 
time-on-task in the training phase?

Mental effort. The average of self-reported effort investment after each task in the 
training phase (see Figure 3.2) was analyzed as a measure of efficiency. There was a 
main effect of Instruction Condition, H(3) = 34.85, p < .001, and the EEEEEEEE, EPEPEPEP, 
and PEPEPEPE Condition invested less effort in the training tasks than the PPPPPPPP 
Condition. As expected (H8), the EEEEEEEE Condition invested significantly less effort in 
the training tasks compared to the EPEPEPEP Condition, and less effort than the 
PEPEPEPE Condition. No differences were found between the EPEPEPEP and PEPEPEPE 
Condition. .

Time-on-task. Time-on-task invested in each task in the training phase is presented 
in Figure 3.2 and exploratory analyses are presented in the Supplementary Materials L. 
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3.3.2.3. How do short sequences of examples and problems affect mental effort and 
time-on-task in the posttest phase? 

Exploratory analyses of mental effort and time-on-task invested in the posttest phase 
are presented in the Supplementary Materials L.

3.3.3. Discussion

The main aim of Experiment 2 was to investigate how longer training task sequences 
of examples and problems (i.e., EEEEEEEE, EPEPEPEP, PEPEPEPE, and PPPPPPPP) would 
affect motivational and cognitive variables. It was expected that example study only 
would result in lower scores on performance and motivational variables than example-
problem pairs. In contrast to our hypotheses, however, there were no motivational or 
test performance differences between the EEEEEEEE and EPEPEPEP condition. As 
hypothesized, the effort that students reported to invest in the training phase was lower 
in the EEEEEEEE than the EPEPEPEP condition. However, exploring effort on the posttest 
phase revealed that levels of perceived effort when solving the isomorphic posttest 
tasks were higher in EEEEEEEE than EPEPEPEP. This might be explained by the fact that 
students in the EEEEEEEE condition did not have the opportunity to practice problem 
solving in the training phase, whereas the EPEPEPEP condition did have the opportunity 
to practice problem solving in the training phase and therefore could apply and 
automate the procedure several times.

With regard to our exploratory question of how the other conditions would compare 
to each other, the pattern of results regarding motivational aspects of learning was 
similar as in Experiment 1. Our exploration of self-efficacy during the training phase 
showed that there were differences in self-efficacy ratings between the conditions 
starting with an example and the conditions starting with a practice problem (i.e., 
EEEEEEEE, EPEPEPEP > PEPEPEPE, PPPPPPPP) regarding the first training task. From the 
second training task onwards, however, self-efficacy ratings in the PEPEPEPE condition 
increased to the same level as in the conditions starting with an example, whereas 
self-efficacy in the PPPPPPPP condition remained low. This pattern of results remained 
stable during and after the training phase and was also similar for perceived 
competence. There were no differences among conditions on topic interest. 

Regarding performance, only the EEEEEEEE condition significantly outperformed the 
PPPPPPPP condition on isomorphic test performance, and there was no effect of condition 
on procedural transfer and conceptual transfer. All example conditions were more 
efficient in the sense that they reported to invest less effort in the training phase than the 
PPPPPPPP condition. Again, the EEEEEEEE condition was most efficient considering that 
they reported to invest the lowest effort levels (and time-on-task) in the training phase. 
Lastly, no differences in motivational aspects of learning, test performance, or effort 
investment were found between the EPEPEPEP and PEPEPEPE condition. 

Table 3.8.  
Mean (M), Standard Deviation (SD) and Median (Med) of Self-Efficacy (range 1 to 9) 
Perceived Competence (range 1 to 7), and Topic Interest (range 1 to 7) per Condition 
in Experiment 2.

EEEEEEEE Condition EPEPEPEP Condition PEPEPEPE Condition PPPPPPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Self-efficacy 2.50 1.85 2.00 1.93 1.09 2.00 2.91 1.88 2.00 2.59 1.56 2.50

Perceived 
Competence

2.23 1.41 2.00 1.73 1.00 1.00 2.36 1.54 2.00 1.98 0.91 2.00

Topic Interest 4.30 0.87 4.43 4.35 0.70 4.43 4.47 0.91 4.57 4.43 0.81 4.43

Training

Self-efficacy 6.94 1.45 7.13 6.57 1.19 6.50 6.18 1.57 5.88 3.32 2.24 2.36

Posttest

Self-efficacy 7.03 1.38 7.00 6.29 1.63 6.00 6.52 1.86 7.00 3.05 2.54 2.00

Perceived 
Competence

5.47 1.94 5.67 5.50 1.40 5.67 5.41 1.25 6.00 2.86 2.04 2.00

Topic Interest 4.51 0.69 4.57 4.39 0.68 4.50 3.87 1.00 4.14 4.04 0.95 4.21

Note. Acronyms for groups: EE = example study only; EP = example-problem pairs; PE = problem-example 
pairs; PP = problem solving only. 
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Table 3.9.  
Mean (M), Standard Deviation (SD), and Median (Med) of Pretest (range 0 to 16), 
Isomorphic Tasks Performance (range 0 to 24), Procedural Transfer (range 0 to 8), 
Conceptual Transfer (range 0 to 9), Mental Effort (range 1 to 9), and Time-on-Task per 
Condition in Experiment 2. 

EEEEEEEE Condition EPEPEPEP Condition PEPEPEPE Condition PPPPPPPP Condition

M SD Med M SD Med M SD Med M SD Med

Pretest

Performance 2.03 1.33 2.00 2.00 1.12 2.00 2.74 1.81 3.00 2.36 1.94 2.50

Training 

Mental Effort 2.70 1.22 2.56 3.65 1.23 3.81 3.80 1.36 3.75 6.06 2.07 6.31

Time-on-Task 2.50 1.29 2.25 7.86 3.16 7.63 5.51 2.51 5.00 6.51 4.26 5.38

Posttest

Isomorphic Tasks 11.94 6.40 12.00 10.43 7.25 11.00 8.22 5.50 8.00 5.63 6.41 5.00

Procedural 
Transfer 

2.03 2.56 1.00 1.21 1.97 0.00 2.17 3.23 0.00 0.77 1.97 0.00

Conceptual 
Transfer

3.97 2.48 4.00 3.14 2.66 2.50 4.09 2.02 4.00 3.50 2.72 3.50

Posttest
Mental Effort 

Isomorphic Tasks 5.29 1.70 5.67 4.13 1.84 4.17 3.80 1.73 4.00 6.05 2.51 6.33

Procedural 
Transfer

4.78 2.51 5.00 4.82 2.33 5.00 4.00 2.26 5.00 6.59 2.68 7.00

Conceptual 
Transfer

4.22 1.75 5.00 4.00 2.07 3.00 4.13 1.49 5.00 5.18 2.82 5.00

Posttest 
Time-on-Task 

Isomorphic Tasks 16.13 7.15 16.33 6.69 4.70 6.83 6.07 3.63 4.33 4.00 3.11 3.12

Procedural 
Transfer 

5.94 5.12 6.00 2.82 3.17 1.00 3.48 3.36 3.00 2.36 2.98 2.00

Conceptual 
Transfer

7.97 5.43 6.50 4.54 3.42 4.50 5.78 2.75 6.00 5.77 4.02 5.00

Note. Acronyms for groups: EE = example study only; EP = example-problem pairs; PE = problem-example 

pairs; PP = problem solving only.
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3.4. General Discussion

Two experiments were conducted to investigate how different sequences of example 
study and practice problem solving (i.e., example study only [EE], example-problem 
pairs [EP], problem-example pairs [PE], problem solving only [PP]) would affect 
motivational (i.e., self-efficacy, perceived competence, and topic interest) and 
cognitive aspects of learning (i.e., performance on isomorphic and transfer tasks, and 
mental effort). A short sequence of four training tasks was used in Experiment 1 and a 
longer sequence of eight training tasks in Experiment 2. We were particularly interested 
in how participants’ self-efficacy would develop during the training phase and whether 
the pattern of results would remain stable on a delayed posttest (Experiment 1), as well 
as whether findings would change when the training phase comprised more training 
tasks (Experiment 2). 

In a training phase with four training tasks, example study (alternated with practice 
problem solving) was a more effective (in terms of performance on isomorphic and 
procedural transfer tasks) and efficient (in terms of mental effort invested in the training 
and posttest phases) strategy for learning than problem solving only. We also replicated 
the findings of Van Harsel et al. (2019): self-efficacy and perceived competence scores 
were significantly higher after the training phase in all three example conditions 
compared to problem solving only. We did find, however, that studying example-
problem pairs resulted in lower mental effort investment during the training phase than 
studying problem-example pairs in Experiment 1. A novel finding is that these effects 
persisted on a delayed test one week later. Experiment 2 showed that with longer 
sequences, example study (alternated with practice problem solving) resulted in lower 
mental effort ratings during the training phase and higher ratings on self-efficacy and 
perceived competence than problem solving only. Whereas mental effort was lower 
during the training phase in the example-problem pairs condition compared to the 
problem-example pairs condition in Experiment 1, no differences were found between 
these conditions when sequences were longer as in Experiment 2.

3.4.1. Effects of Different Short Task Sequences on Motivation

The findings of Experiment 1 provide evidence for the first part of the motivational 
explanation regarding the differential effects of EP vs. PE comparisons reported in the 
literature (cf. Van Harsel et al., 2019; Coppens et al., 2019). That is, starting the training 
phase with a practice problem (PE, PP) affected self-efficacy negatively compared to 
starting with an example (EE, EP). However, we found no evidence for the second part 
of the motivational explanation (i.e., as a consequence of lower self-efficacy levels, 
students might not be motivated to study subsequent example and probably also the 
tasks that follow). It seems that in our study, learners did not disengage after starting 
with a practice problem and studied the example that was provided as a second 

training task. As a consequence, their levels of self-efficacy increased to the level of the 
EP (and EE) condition and remained stable during the entire training phase. We must 
note, though, that using a complex math task might not have resulted in lasting 
detrimental effects on students’ self-efficacy (and perceived competence), because 
our sample of technical higher education students had experience with similar types 
of tasks and did not find these tasks unpleasant or uninteresting (topic interest scores 
were relatively high). Further research is recommended to investigate whether these 
findings replicate with different learning materials and student populations. 

These findings indicate that the benefit of an EP-sequence over a PE-sequence is 
likely not as large as previously believed (e.g., Van Gog et al., 2011) and may only 
occur under specific conditions. It is, however, an open question what factor or 
combination of factors moderate(s) the (small) differential effects of EP versus PE on 
learning (see small-scale meta-analysis by Van Harsel et al., 2019). In other words, what 
factors determine whether students will or will not disengage after starting with a 
practice problem (as they presumably did in prior studies, in which their learning 
outcomes did not benefit from the examples presented to them; e.g., Kant et al., 2017; 
Leppink et al., 2014; Van Gog et al., 2011)? It is still possible that other (motivational) 
variables play a role in determining whether students would disengage. For instance, 
students in PE conditions might disengage when interest in the learning material is very 
low, or when the second task consists of a text-based worked example (cf. Van Gog et 
al., 2011) rather than a video example as used in the present study (which might more 
easily grab and hold their attention). Hence, future research should further explore 
what (combination of) factors might moderate the EP-PE effect. We recommend the 
use of large sample sizes, because a recent meta-analysis indicated that the 
effectiveness of example-problem pairs as compared to problem-example pairs is 
rather small (Van Harsel et al., 2019).

3.4.2. Effects of Longer Task Sequences on Performance and Motivation

Another noteworthy finding is that longer task sequences did not necessarily result 
in better learning outcomes when we visually compare the results of Experiments 1 
and 2, except in the examples only condition. Studying examples only remained very 
effective, efficient, and motivating even with longer sequences. This is at first glance 
surprising in light of the expertise-reversal effect, which proposes that examples 
become less conducive to learning than practice problems for learners with more 
prior knowledge (e.g., Kalyuga et al. 2001). Moreover, one might expect that studying 
examples only, which is more passive, could be less motivating (i.e., more boring) than 
alternating examples and problems (cf. Sweller & Cooper, 1985), especially with longer 
sequences. This could, in turn, lead to disengagement and lower learning outcomes, 
but we found no evidence that this was the case. It should be noted, though, that the 
training tasks increased in complexity during the training phase (i.e., after the second 
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task in Experiment 1 and 2 and after the sixth task in Experiment 2). Although the 
problem-solving procedure remained the same, this may have prevented students 
from experiencing the examples as too repetitive. Moreover, we provided participants 
the opportunity to study examples and/or solve practice problems in a self-paced 
instead of a system-paced learning environment. Although participants were instructed 
to watch the entire example, it was possible to skip (parts of) the video modeling 
example. As evidenced by the time-on-task data that was obtained during training 
phase, time spent on the examples decreased as the learning phase progressed, and 
this control over the video examples may also explain why participants did not 
disengage during example study only. Further research should investigate whether the 
overall findings replicate, and under what circumstances studying longer sequences 
of examples only remains effective, efficient, and motivating for learning. 

3.4.3. Limitations

There are also some limitations to this study. The first limitation is that we did not 
directly manipulate sequence length (i.e., four vs. eight training tasks) as a between-
subject factor in one single experiment, which would have allowed us to test for 
interaction effects between the length of the task sequence and the outcome 
variables. That being said, the pattern of results in Experiment 1 and 2 is highly similar 
and thus seems to reinforce each other. Secondly, a strength of our study was the use 
of a conceptual pretest. A procedural pretest (as used in the prior study by Van Harsel 
et al., 2019) might have led students in the example-first conditions to feel that they 
started the learning phase with practice problem solving. Yet, we did not experimentally 
vary the type of pretest within the present experiments, and therefore cannot draw 
definite conclusions about the potential effects of a procedural vs. conceptual pretest. 
That being said, when we compare the findings from the present study (with a 
conceptual pretest) to the prior study (with a procedural pretest; Van Harsel et al., 
2019) the results are highly similar: There is no evidence for an advantage of example-
problem pairs. Thirdly, we ‘only’ used two different task length sequences. The findings 
might be different with short training phases comprised of two tasks, where students 
provided with a PE-sequence would only have one example to study after starting with 
failed practice problem. Lastly, it is as of yet an open question whether example study 
would become less effective and motivating with even longer sequences. Hence, 
future research is recommended to experimentally manipulate how many tasks 
students receive during the training phase and to cover a broader range of possible 
sequence length manipulations which take into account the (increase of) complexity 
level of the training tasks. 

Another limitation concerns the self-efficacy and perceived competence 
measures. The use of a 9-point scale for the self-efficacy measurement raises the 
question of whether students are really able to report their task-specific confidence on 

such a fine-grained level – the same question arises when asking students to report 
their effort investment on a 9-point scale. A factor that might also have influenced the 
self-efficacy measurements during the learning phase is whether students could 
estimate their task-specific confidence based on an actual attempt to solve the 
problem or just the imagination of doing so after studying the example. Moreover, it 
has been questioned whether or not (task-specific) self-efficacy and perceived 
competence are really separate constructs. Literature shows that perceived 
competence may be a common core component of both self-efficacy and measures 
of self-concept (e.g., Bong & Skaalvik, 2003; Marsh et al., 2019; Schunk & Pajares, 2005). 
In line with this notion, the pattern of results on self-efficacy and perceived competence 
was nearly identical in both experiments and the correlations between these two 
constructs on the measurement after the training phase were extremely high in 
Experiment 1 (.96) and Experiment 2 (.92). As such, the use of one of the measures 
might suffice in future research in this area.

3.4.4. Conclusions 

In sum, our results have shown that studying examples only – possibly alternated 
with practice problem solving – is more effective and efficient for novices’ learning 
than practice problem solving only. These results were established with higher technical 
education students and a mathematical problem-solving task. However, based on the 
large body of research on the worked example effect (see for a review Van Gog et al., 
2019), it seems safe to assume that these effects would generalize to other problem-
solving tasks and populations as well. A new finding of our study was that examples 
had clear effects on motivational aspects of learning (i.e., self-efficacy and perceived 
competence); so far, little is known about the effects of different example and problem 
sequences on motivation (Renkl, 2014; Sweller et al., 2011; Van Gog & Rummel, 2010). 
Moreover, a new and interesting finding both from a theoretical and practical 
perspective, is that example study only can remain more effective, efficient, and 
motivating for learning than solving practice problems only when longer sequences 
are studied. However, because our study is among the first to examine the effects of 
different short and longer sequences of examples and problems on student motivation, 
an open question that needs to be addressed in future research is whether these 
results generalize to other populations, domains, and materials.

3.4.5. Implications for Practice

Our results could be interesting and relevant for educators who are instructing new 
knowledge or skills to novices, for students who have to learn new knowledge or skills 
through self-study, and also for instructional designers who are designing learning 
materials. Our results suggest that, when studying short sequences of examples and 
problems, it is more preferable to study or provide examples (probably alternated with 
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problem solving) instead of practicing problem solving only, from both a cognitive and 
a motivational perspective. Moreover, even with longer sequences, example study 
remains very effective, efficient and motivating, however, future research should further 
investigate under what specific conditions example study remains effective in longer 
learning phases. Secondly, it is advisable to start training phases with an example 
instead of a problem. Although we did not find any differences in test performance 
and student motivation between example-problem pairs and problem-example pairs, 
our results showed that starting the training phase with an example is more efficient for 
learning than starting with a practice problem. 
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Abstract

Presenting novices with examples and problems is an effective and efficient way to 
acquire new problem-solving skills. Examples and problems are increasingly presented 
in online learning environments, in which learners often have to self-regulate their 
learning (i.e., choose what type of task to work on and when). Yet, it is questionable 
how novices self-regulate their learning from examples and problems, and to what 
extent their choices match with effective principles from instructional design research. 
In this study, 147 higher education students had to learn how to solve problems on the 
trapezoidal rule. During the self-regulated learning phase, they were free to select six 
tasks from a database of 45 tasks that varied in task format (video examples, worked 
examples, practice problems), complexity level (level 1, 2, 3), and cover story. Almost 
all students started with (video) example study at the lowest complexity level. The 
number of examples selected gradually decreased and task complexity gradually 
increased during the learning phase. However, examples and lowest level tasks 
remained relatively popular throughout the entire learning phase. There was no 
relation between students total score on how well their behavior matched with the 
instructional design principles and learning outcomes, mental effort, and motivational 
variables. 

Keywords: example-based learning, self-regulated learning, self-efficacy, mental effort, 
problem solving

4.1 Introduction

Problem solving is important in many curricula, especially in the domains of science, 
technology, engineering, and mathematics (STEM; Van Gog et al., 2020). Most 
problems students encounter in (the initial years of) STEM curricula are algorithmic 
problems, in which students have to learn to perform the procedure to get from an 
initial state to a described goal state (Newell & Simon, 1972). Different types of tasks are 
commonly provided to help students learn to solve new problems, and nowadays, this 
is often done in online or blended learning environments. Such tasks include video 
modeling examples (i.e., a model demonstrating and possibly explaining the solution 
procedure step by step on video), worked examples (i.e., a written step-by-step 
explanation of a full and correct solution procedure of how to solve a problem), and 
practice problems that students have to try to solve themselves. A popular example of 
such an environment is Khan Academy (www.khanacademy.org), where students can 
decide for themselves which type of tasks to work on (i.e., examples or problems), for 
how long, and in which order.

When acquiring problem-solving skills in online learning environments, it is 
important that students can adequately self-regulate their learning from examples 
and problems, especially when guidance or support is not (directly) available. 
Although there are different theoretical models of self-regulated learning (see 
Panadero, 2017), these models all agree that self-regulated learning requires students 
to plan, execute, monitor (i.e., track), evaluate, and control their learning (i.e., adapt 
their study behavior in response to their evaluation; e.g., Nelson & Narens, 1990; Winne 
& Hadwin, 1998; Zimmerman, 1990). Self-regulated learning of problem-solving tasks 
requires students to decide which task they want to perform, monitor their progress 
while performing the task (and possibly adjust their strategies while working on the 
task), to judge their performance after the task is completed, and to use this as input 
for deciding what subsequent task to work on (i.e., which task suits their learning needs 
best, e.g., De Bruin & Van Gog, 2012; Van Gog et al., 2020). 

However, little is known about how students regulate their learning of problem-
solving tasks, that is, about when they choose examples or practice problems, and 
why (i.e., what reasons underlie their choices; e.g., Van Gog et al., 2020; Van Gog et 
al., 2019). Moreover, it is an open question how well students’ choices align with what 
we know to be effective, efficient, and motivating task sequences for acquiring new 
problem-solving skills from many years of instructional design research. Therefore, the 
present study addresses those questions.



9796

4.1.1. Learning from Examples and Problems at Different Complexity Levels

Instructional design research has uncovered several principles on how to optimize 
the acquisition of new problem-solving skills for novices (i.e., students with little if any 
prior knowledge). These principles are concerned with how to ensure that novices 
work on tasks that provide an optimal level of instructional support and complexity 
given their current level of knowledge (4C/ID Model; Van Merriënboer, 1997; Van 
Merriënboer & Kirschner, 2013). With regard to instructional support, the worked 
examples principle (Renkl, 2014; Sweller et al., 2011; Van Gog et al., 2019) states that for 
novices studying several examples (possibly alternated with solving practice problems) 
leads to better test performance (i.e., is more effective) attained with less time and/or 
effort investment (i.e., is more efficient) than practice problem solving only. Since this 
applies not only to worked examples (i.e., a written step-by-step explanation of how to 
solve a problem) but also to video modeling examples (i.e., a person demonstrating 
and/or explaining a problem-solving procedure on video), we call this the example-
based-learning-principle. 

A second robust finding is the example-first-principle, which says that novice 
learners should not only study several examples while learning, but also start the 
learning phase with an example (or several examples) instead of practice problem 
solving, because research has consistently shown that sequences of example study 
only or example-problem pairs –but not problem-example pairs– are more effective 
and efficient for learning than solving practice problems only (e.g., Van Harsel et al.,, 
2020; Kant, et al., 2017; Van Gog et al., 2011). Recent studies have also shown that 
example study only, or example study alternated with problem solving, is also more 
beneficial for motivational aspects of learning than problem solving only (e.g., Van 
Harsel et al., 2019, 2020; Coppens et al., 2019): Example-based learning led to increased 
self-efficacy (i.e., a personal judgment of one’s own capacities to organize or 
accomplish a specific task or challenge; e.g., Bandura, 1977) and perceived 
competence (i.e., related to the construct of self-efficacy, but comprises more general 
knowledge and perceptions of people’s self-concept towards their own competence; 
Deci & Ryan, 2002), but it did not affect topic interest (i.e., the level of interest triggered 
in an individual by a specific topic, which is relatively stable across time; e.g., Ainley et 
al., 2002). Such motivational effects become especially important in environments 
where students can self-regulate their learning (e.g., Pajares, 1996), because when 
novices start the learning phase with a task that demotivates them (such as a failed 
problem-solving attempt), they might lose confidence in their ability to learn the task 
and that could cause students to quit studying. We must note, though, that learners 
do not need the instructional support provided by examples anymore when their 
knowledge increases. From that point onwards, they learn more from solving problems 
than from example study (i.e., the expertise reversal effect; Kalyuga et al., 2003). 

Finally, problem-solving tasks that are presented in school curricula (either via 
online environments or in textbooks/workbooks) often span multiple complexity levels. 
Task complexity is determined by the number of elements in a learning task and the 
interaction between those elements (e.g., Sweller & Chandler, 1994). Simple learning 
tasks consist of a few information elements and a small number of interactions between 
elements that need to be processed simultaneously in working memory. With increasing 
numbers of information elements and interactions between elements, task complexity 
(and working memory load) increases (e.g., Pollock et al., 2002; Van Zundert et al., 
2012).

When tasks span multiple complexity levels, learners should not only be working on 
tasks that provide optimal support given their current level of knowledge, but also on 
tasks that are at an optimal level of complexity (see the 4C/ID model; Van Merriënboer, 
1997; Van Merriënboer & Kirschner, 2013). When learners work on tasks that are too 
complex given their prior knowledge, their learning outcomes and motivation might 
suffer (Van Merriënboer et al., 2003). Therefore, novices should start with a task at the 
lowest complexity level (i.e., lowest-level-first-principle) and build up tasks in such way 
that the level of complexity gradually increases (i.e., simple-to-complex-principle). 
When the choice is made to move up a complexity level, learners often need 
instructional support again (cf. 4C/ID model). Therefore, it becomes important to start 
each new complexity level with example study (i.e., start-each-level-with-example-
principle). 

4.1.2. Self-Regulated Learning with Examples and Problems

These instructional design principles provide clear guidelines on what works best 
when learning from examples and problems at different complexity levels. However, 
the question is whether students would spontaneously apply these principles when 
selecting tasks (i.e., examples and problems at different complexity levels) during self-
regulated learning in an online environment. As mentioned earlier, for effective self-
regulated learning of problem-solving tasks, students need to be able to self-assess 
their performance on a task just completed and then select a next task with the right 
level of support and complexity (e.g., De Bruin & Van Gog, 2012). There are, however, 
both empirical and theoretical reasons to believe that learners will engage in 
suboptimal task selection when they are left to their own devices (e.g., Azevedo et al., 
2008; Niemiec et al., 1996). 

Firstly, self-regulated learning research has shown that learners’ estimation of their 
own task performance (or knowledge) is often not in line with their actual performance 
(e.g., Bjork, 1999, 1994; Kostons et al., 2010, 2012; Rawson & Dunlosky, 2007), particularly 
for novices (e.g., Dunning et al., 2004; Koriat & Bjork, 2005). Inaccurate self-assessments 
are a major problem when learners are in control of task selection, because for 
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learning to be effective and efficient, learners need to select a task at an optimal level 
of instructional support and complexity given their current level of performance. 
Novices who overestimate their performance might select a task that is too complex 
and/or does not provide the necessary instructional support, while those who 
underestimate their performance might select a task that is too easy (e.g., Dunlosky & 
Rawson, 2012). As a result, learners will end up working on tasks that are not aligned 
with their learning needs, which might negatively affect their performance on domain 
specific knowledge or skills and motivation. 

Secondly, research has shown that novices often experience difficulties discerning 
which task aspects are relevant for learning when selecting their own learning tasks 
(e.g., Quilici & Mayer, 2002), probably because they lack domain knowledge and/or 
task-selection skills (i.e., knowing about relevant task-selection aspects and combining 
this with characteristics of available learning tasks; e.g., Van Merriënboer et al., 2006). 
As a consequence, novices might select tasks based on surface features used to 
exemplify the problem-solving procedure (e.g., cover story) rather than structural 
features that are (more) relevant for learning (e.g., the level of complexity and 
instructional support; Corbalan et al., 2008). 

A recent study conducted by Foster and colleagues (2018) provided some 
evidence for the idea that learners also show suboptimal behavior when they can 
select their own task format in the form of examples and practice problems. In their 
study, university students (novices) learned how to solve probability calculation 
problems in an online learning environment. In Experiment 1, students received 12 
probability problems (with different cover stories). The self-regulated learning group 
(i.e., SRL-group) was given a choice with each problem on whether they wanted to 
study it in the form of a worked example or a practice problem. In Experiment 2 and 3, 
students received 24 probability problems (with different cover stories). Again, one 
group (i.e., SRL-group) was given a choice with each problem of whether they wanted 
a worked example or practice problem, and another group (i.e., SRL-completion 
group) could additionally opt for completion problems, which are partially worked-out 
examples that provide a medium level of support but require learners to complete 
some steps themselves (e.g., Paas, 1992; Renkl & Atkinson, 2003; Van Merriënboer et 
al., 2002). 

Based on the effectiveness and efficiency of the example-based-learning-principle 
and the example-first-principle, one would expect that novices learn most when they 
select more examples than problems and start the self-regulated learning phase with 
a worked example rather than a (completion) problem. However, Experiment 1 of 
Foster et al. (2018) showed that problems were selected more frequently on average 
than examples (at odds with the example-based-learning-principle), and that only 
one third of the participants in the SRL-group started the learning phase with a worked 
example (at odds with the example-first-principle). Also, in Foster et al.’s Experiment 2 

and 3, example study remained the least picked strategy and problem solving the 
most popular one in both the SRL-group and the SRL-completion group. Moreover, 
students rarely chose a worked example as a first task. 

In sum, little research has been conducted on how learners regulate their learning 
from examples and problems (at different complexity levels) and how well their 
selection behavior matches with evidence-based principles from instructional design 
research. The few studies available, suggest that learners’ task-selection behavior 
does not align with these principles (Foster et al., 2018). It is important to get more 
insight in what learners do (and why) when they can determine themselves how to 
learn new problem-solving skills, as this will provide information that can be used by 
teachers and instructional designers to determine whether and what instructional 
support or advice learners might need to optimally self-regulate their learning from 
examples and practice problems (at different complexity levels).

4.1.3. The Present Study

This study investigated how higher education students (novices on the to-be-
learned topic) regulate their learning in an online environment in which they could 
select their own learning tasks from a task database comprising video modeling 
examples, worked examples, and practice problems of varying levels of complexity 
and with different cover stories. We decided to provide the option of worked examples 
and video modeling examples because both are widely used in online learning 
environments, yet it is largely unclear which example types students prefer (at which 
phase in the learning process). For example, Hoogerheide and colleagues (2014) 
compared the effects of worked examples to video modeling examples with two 
samples of secondary education students. Although they found no differences 
between the two example formats on cognitive (i.e., test performance, mental effort) 
and motivational aspects of learning (i.e., self-efficacy, perceived competence), there 
was an effect on the degree to which students preferred to receive instruction in a 
similar manner in the future. When only one example was studied (Experiment 2), the 
video modeling example condition gave a higher preference rating (at least 
numerically; p = .07), but when two examples were studied (Experiment 1), the worked 
example condition gave a higher preference rating (p = .03). 

These findings might suggest that students would prefer video modeling examples 
at the beginning of a learning phase and worked examples later in the training phase. 
A possible explanation for why students would prefer to start with a video modeling 
example instead of a worked example could be that in video modeling examples, 
information is demonstrated in a step-by-step manner and that the combination of 
dynamic visual information and the model’s narration take the learner by the hand. 
Worked examples can be overwhelming because all the information is presented 
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simultaneously, and it might be easy to ignore written text. However, because all the 
information is presented simultaneously, worked examples do allow for efficiently 
looking up difficult problem-solving steps more easily than video modeling examples 
(in which the information is presented in succession).

This study had three research questions. First, what tasks do technical higher 
education students select and why, when learning from examples and problems at 
different complexity levels? Second, to what extent do students’ task selections match 
with principles of effective, efficient, and motivating task sequences derived from 
instructional design research? Given the paucity of research on what learners do 
when they are in charge of learning a new problem-solving skill with the help of 
(different) examples and problems at different complexity levels, we refrain from 
formulating explicit hypotheses and consider this study as exploratory in nature. Third, 
we investigated whether there is a positive relation between the extent to which 
students’ choices match with the instructional design principles and their scores on 
learning outcomes, mental effort, and motivational variables. Given how much 
evidence there is for the instructional design principles, one would expect a positive 
relationship between the extent to which learners’ choices match with these principles 
and scores on learning outcomes (i.e., isomorphic tasks, procedural transfer task, and 
conceptual questions) and motivational aspects of learning (i.e., self-efficacy, 
perceived competence, and topic interest), and a negative relationship with mental 
effort during the learning phase. 

4.2. Method

4.2.1. Participants and design

Participants were 180 Dutch higher education students enrolled in the first year of 
an electrical and electronic mechanical engineering program (Mage = 19.00, SD = 1.64; 
169 male, 11 female). All participants were assigned to an online self-regulated learning 
environment in which they had to learn a mathematical problem that required them 
to approximate the region under a graph using the trapezoidal rule. The environment 
consisted of three phases: (1) pretest, (2) self-regulated learning phase, (3) and 
posttest. We excluded 10 participants who did not finish the isomorphic (and transfer) 
items on the posttest on time, and 7 participants of whom (part of the) learning phase 
data was missing due to a programming error. Because we were interested in the task-
selection behavior of novice learners, we also excluded 16 participants who had too 
much prior knowledge, indicated by a score of 5 or more (out of 10) on the prior 
knowledge test. Therefore, the final sample consisted of 147 participants (Mage = 18.90, 
SD = 1.64; 139 male, 8 female). Participants gave their informed consent in the online 
learning environment before the study began and received study credits for their 
participation. 

4.2.2. Materials

The materials were based on the materials developed by Van Harsel et al. (2019, 2020) 
and presented in a web-based learning environment. 

4.2.2.1. Learning tasks.

The task database contained 45 learning tasks. These tasks varied in complexity level, 
task format, and cover story (for an overview, see Figure 4.1). 

Complexity level. Tasks could be selected at three levels of complexity. Level 1 
tasks required participants to approximate the region under a graph using the 
trapezoidal rule in problems that always contained a polynomial degree of 2. These 
problems also required participants to calculate more than two intervals and calculate 
with fractions and positive numbers only. Level 2 tasks were more complex than Level 1 
tasks, because participants were asked to calculate with negative numbers. The 
negative number changes the relation between information elements. That is, 
calculating with negative numbers requires students to take into account an additional 
rule (i.e., relation between elements) than calculating with positive numbers (i.e., 
subtracting a negative number from a positive number, turns the two signs into a plus 
sign; 5 - - 7 = 12). Moreover, in more complex calculations with negative numbers (i.e., 
large functions using brackets, exponents, different arithmetic operations), the order of 
the arithmetic operations is important. Level 3 tasks were, in turn, more complex than 
Level 2 tasks, because students had to calculate with a cubic polynomial instead of a 
quadratic polynomial. A cubic polynomial has a term more than a quadratic 
polynomial, which increases the number of information elements and relations 
students have to calculate with. 

Figure 4.1. Screenshot of the task database. 
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Task format. Within each complexity level, participants could choose from three 
task formats, namely, video modeling examples, worked examples, and conventional 
practice problems (see Figure 4.1). Each video modeling example displayed a 
computer screen recording of a female model who demonstrated (with handwritten 
notes) and verbally explained how to solve a mathematical problem step-by-step, 
using the trapezoidal rule. The screen recording started with a brief introduction on the 
trapezoidal rule and an explanation of a specific problem state. Subsequently, the 
model explained how to interpret the information that was given to solve the problem 
(i.e., the graph of a function, the left border and right border of the area, the number 
of intervals, and the formula of the trapezoidal rule). Finally, she demonstrated and 
explained how to solve the problem by undergoing four steps: 1) ‘compute the step 
size of each subinterval’, 2) ‘calculate the x-values’, 3) ‘calculate the function values for 
all x-values’, and 4) ‘enter the function values into the formula and calculate the area’. 
The written information on previously completed steps remained visible on the screen 
while the model worked on and explained the next step.

Each worked example was presented on one page. The worked examples also 
started with a short description of the problem state and participants received some 
additional information that was needed to solve the problem (i.e., the graph of a 
function, the left border and right border of the area, the number of intervals, and the 
formula of the trapezoidal rule). This was followed by the written-out solution procedure 
that showed students how to solve each step of the problem (the problem state, 
additional information, and written explanations and correct answers on all steps were 
simultaneously visible on the screen). 

The practice problems were presented on one page and consisted of the problem 
state and some additional information on how to solve the problem (i.e., the graph of 
a function, the left border and right border of the area, the number of intervals, and 
the formula of the trapezoidal rule), with by the following assignment: “Approach the 
area under the graph using the information that is given. Write down all your 
intermediate steps and calculations”. Participants did not receive any feedback on 
their answers. A screenshot of a practice problem, video modeling example, and 
worked example are given in the Supplementary Materials A, B, and C. 

Cover story. In addition to selecting a complexity level and instructional format, 
students could also choose their own cover story. At each complexity level, participants 
could choose between five different cover stories (see Figure 4.1). For example, they 
could approximate how many liters of beer is tapped within a certain amount of time 
(i.e., drinking beer) or approximate how often the circular platform of a carousel 
rotates in a given period of time (i.e., carousel). The cover stories were similar for each 
task format that was provided within a complexity level (e.g., drinking beer could be 
selected as video modeling example, worked example, and practice problem), yet the 
numbers used differed per task format. 

4.2.2.2. Test tasks

The pretest was a conceptual prior knowledge test that consisted of five questions (i.e., 
multiple choice questions with explanation part) that aimed to measure participants’ 
understanding of the trapezoidal rule. Cronbach’s alpha in the current sample was 
.33. Each multiple-choice question had four answer options (i.e., a, b, c, and d) and 
an ‘explanation’ part where participants had to explain their answer. The posttest 
consisted of five tasks. The first three tasks were isomorphic to the tasks in the self-
regulated learning phase (i.e., a level 1, 2, and 3 task). Cronbach’s alpha in the current 
sample was .74. The fourth task was a procedural transfer task that required participants 
to use the Simpson rule (instead of the trapezoidal rule) to approximate the definite 
integral under a graph. Simpson’s rule is also a numerical integration method to 
approximate the integral of a function. Although both procedures look almost similar, 
Simpsons’ rule uses quadratic polynomials (instead of the straight-line segments). The 
fifth task consisted of five open-ended conceptual questions that aimed to measure 
participants’ understanding of the trapezoidal rule, and these were isomorphic to the 
questions in the pretest. Cronbach’s alpha in the current sample was .44. An example 
of a conceptual pretest item, an isomorphic posttest task, a procedural transfer task, 
and a conceptual posttest item is shown in the Supplementary Materials E, F, G, and H.

4.2.2.3. Mental effort

Participants rated their mental effort on a 9-point mental effort rating scale (Paas, 
1992), with answer options ranging from (1) “very, very low mental effort” to (9) “very, 
very high mental effort”. Mental effort was rated after each task in the self-regulated 
learning phase and the posttest phase, except for the five conceptual posttest 
questions (where it was rated only once after the last question). 

4.2.2.4. Self-efficacy

After the pretest, during the self-regulated learning phase (i.e., after each learning 
task), and before the posttest, participants were asked to rate to what extent they were 
confident that they could approximate the definite integral of a graph using the trapezoidal 
rule. A 9-point rating scale was used, ranging from (1) “very, very unconfident” to (9) “very, 
very confident” (Van Harsel et al., 2019, 2020; adapted from Hoogerheide et al., 2016). 

4.2.2.5. Perceived competence

Perceived competence was measured using the Perceived Competence Scale for 
Learning (Van Harsel et al., 2019, 2020, 2020b; based on Williams & Deci, 1996; Williams 
et al., 1988). This perceived competence scale consisted of three items: “I feel confident 
in my ability to learn how to approximate the definite integral of a graph using the 
trapezoidal rule”, “I am capable of approximating the definite integral of a graph using 
the trapezoidal rule”, and “I feel able to meet the challenge of performing well when I 
have to apply the trapezoidal rule”. Participants were asked to rate on a scale of (1) 
“not at all true” to (7) “very true” to what degree these three items applied to them. 
Cronbach’s alpha in the current sample was .93. 
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4.2.2.6. Topic interest.

Finally, participants interest in the topic was measured with a topic interest scale, 
comprised of 7 items (Van Harsel et al., 2019, 2020; adapted from the topic interest scale 
by Mason et al., 2008, and the perceived interest scale by Schraw et al., 1995). Participants 
were asked to rate to what degree each of the items applied to them on a 7-point scale 
(1: totally disagree, to 7: totally agree). Cronbach’s alpha in the current sample was .82. 
All items are shown in the Supplementary Materials I.

4.2.2.7. Task-selection questionnaire.

To shed light on why participants selected the learning tasks that they did, we 
developed a questionnaire. This questionnaire consisted of five questions, each with a 
multiple-choice (mc) and open-answer part, namely: 1) What was the format of the 
first task you chose (mc: video modeling example, worked example, practice problem) 
and why (open answer)?, 2) What was the level of complexity of the first task (mc: level 
1, level 2, level 3) and why (open answer)?, 3) What was the format of the second task 
you chose (mc: video modeling example, worked example, practice problem) and 
why (open answer)?”, 4) What was the level of complexity of the second task and why 
(open answer)?, and 5) Which task format did you choose most often and why (open 
answer)? 

4.2.3. Procedure

The study was run in sixteen sessions with 7 to 28 participants per session. 
The sessions lasted 116 minutes on average and took place in a computer classroom 
at participants’ higher education institute. Each participant received a headset, pen, 
and scrap paper to write down their calculations. The session started with the 
experimenter explaining the aim and procedure of the study. Participants were told 
that they were going to learn a mathematical task in an online learning environment 
by selecting their own learning tasks. Participants were also instructed that they could 
work at their own pace (with a maximum of 135 minutes). Moreover, they received the 
instructions to write down as much as possible and to write an “X” if they really did not 
know what to answer. 

After the instructions, participants entered the online learning environment. In the 
environment, tasks and questionnaires were presented on a separate page, and 
participants were unable to go back to the previous pages or to look forward to the 
next page before completing the current task or questionnaire. Time was logged for 
each task. Participants were first presented with, in order, a short demographic 
questionnaire (e.g., age, gender, and prior education), the pretest, and the self-
efficacy, perceived competence, and topic interest questionnaire. Then, participants 
entered the self-regulated learning phase. To ensure that participants had some 

knowledge of the task database and how to select their own tasks, they first received 
an explanation of the task database. A picture of the task database was presented on 
the screen. Participants were instructed to select 6 learning tasks of their own choice 
from a task database containing 45 tasks that differed in format (video modeling 
examples, worked examples, and practice problems), complexity level (level 1, 2, and 
3) and cover story. They were also told that each task could only be selected once, 
and that there was a maximum of 10 minutes to watch, study, or solve each task.

After the self-regulated learning phase, participants completed the self-efficacy, 
perceived competence, and topic interest questionnaires again. Participants were 
instructed to turn their scrap paper upside down and given a new scrap paper to use 
during the posttest. After each task on the posttest, participants rated their mental 
effort. Lastly, participants completed the task-selection questionnaire. 

4.2.4. Data Analysis

4.2.4.1. What tasks do technical higher education’s students select and why?

To shed light on participants’ task-selection behavior, we counted the task format 
(video modeling example, worked example, practice problem) and complexity level 
(1, 2, or 3) of the six learning tasks each participant had selected and converted these 
scores into percentages. Then, we counted the task formats and complexity levels 
participants said they selected on the first and second learning task, and the task 
format participants said they selected most often during the entire learning phase. We 
used Chi-Square Tests to analyze whether there was a significant relation between task 
format or complexity level and the order of the learning tasks. 

To evaluate participants’ answers on the task-selection questionnaire, we coded 
their explanations (open coding) and grouped these codes into categories (axial 
coding). Two coders scored about 20% of the data and the interrater reliability of their 
scores was assessed by calculating Cohen’s Kappa (Cohen, 1960). A Kappa value of 
0 would mean no agreement, values between 0.01–0.20 slight agreement, values 
between 0.21–0.40 fair agreement, values between 0.41– 0.60 moderate agreement, 
values between 0.61–0.80 substantial agreement, and values between 0.81–1.00 
almost perfect agreement (Landis & Koch, 1977). The agreement between the coders 
was moderate to almost perfect: Cohen’s Kappa was .65 for question 1, .82 for question 
2, .59 for question 3, .84 for question 4, and .95 for question 5. 

4.2.4.2. How do novices’ task selections match with instructional design principles?

We scored for each participant whether their task-selection behavior matched with 
the instructional design principles (i.e., example-based-learning-principle, example-
first-principle, simple-to-complex-principle, lowest-level-first-principle, and start-each-
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complexity-with-example-principle). For each of these principles, participants could 
earn 1 point in total. More specifically, for the example-based-learning-principle, 
simple-to-complex-principle, and start-each-complexity-with-example-principle, 1 
point was awarded when students’ choices matched the principle entirely, 0.5 points 
when their choices matched the principle only partially, and 0 points when their 
choices did not match the principle at all. For the example-first-principle and lowest-
level-first-principle, 1 point was awarded when students’ choices matched the principle 
entirely and 0 points when their choices did not meet the principle at all. For each 
participant, a total score was computed (maximum: 5 points). For an extended version 
of the scoring protocol and an example, see the Supplementary Materials M. Two 
coders scored about 20% of the data and the interrater reliability of their scores was 
assessed by calculating a two-way mixed, consistency, single-measures intra-class 
correlation (ICC; McGraw & Wong, 1996). According to Cicchetti (1994), ICC values 
that are below .40 are classified as poor, values between .40 and .59 are classified as 
fair, values between .60 and .74 are classified as good, and values between .75 and 1.0 
are classified as excellent. With a score of .96, the ICC was in the good and excellent 
range for the principles. 

4.2.4.3. Is there a positive relation between the extent to which students’ choices match 
with the instructional design principles and their scores on learning outcomes, mental 
effort, and motivational variables?

Lastly, we explored the extent to which students’ choices match with the instructional 
design principles correlated with cognitive (i.e., performance on the isomorphic 
posttest tasks, procedural transfer task, and conceptual questions, and mental effort) 
or motivational aspects of learning (i.e., self-efficacy, perceived competence, and 
topic interest). 

We computed averages for the perceived competence and topic interest 
measurements before and after the learning phase, as well as for the reported effort 
invested in the learning tasks and the isomorphic posttest tasks. Test performance was 
scored by the first author and the third author based on a scoring protocol that was 
developed in collaboration with higher education mathematics teachers by Van 
Harsel et al. (2019). On the conceptual pretest and conceptual posttest items, 
participants could earn a maximum of 9 points. One point could be earned for the first 
open-ended question (1 point for the correct answer, 0 points for an incorrect answer) 
and 2 points for the other open-ended questions. Participants were rewarded with the 
maximum of 2 points when they got the answer right and provided correct explanations. 
Only 1 point was awarded if the answer was correct, but the explanation was incorrect 
or missing, and 0 points were given when both the answer and explanation were 
incorrect. On the isomorphic posttest items, a maximum of 8 points could be earned 
for each task (i.e., three tasks, max. score = 24 points), with 2 points for calculating 
each step correctly: 1) the step size of each subinterval, 2) all x-values, 3) the function 

values for all x-values, and 4) using the correct formula for the area under the graph 
and providing the correct answer. In step two, three, and four, one point was granted 
if half or more of the solution steps were correct and zero points were granted if less 
than half of the solution steps were correct. The same scoring standard was used to 
score the procedural transfer task (i.e., max. score = 8 points). Again, two coders 
scored about 20% of the data and the interrater reliability of their scores was assessed 
by calculating a two-way mixed, consistency, single-measures intra-class correlation 
(ICC; McGraw & Wong, 1996). According to Cicchetti (1994), all our ICCs were all in the 
excellent range, with a score of .77 for the conceptual pretest tasks, .95 for the 
conceptual posttest tasks, .99 for the isomorphic posttest tasks, and .91 for the 
procedural transfer task. 

4.3. Results

To answer our research questions on what tasks students selected and why (i.e., 
question 1) and how well their behavior matched with evidence-based principles from 
instructional design research (i.e., question 2), we report descriptive statistics. 
Regarding the correlational analyses (i.e., question 3), the effect size of Pearson r 
correlation is reported with values of 0.10, 0.30, and 0.50 representing a small, medium, 
and large effect size, respectively (Cohen, 1988). We must note, though, that we used 
an uncorrected significance level (p < .05) for the correlational analyses reported in 
this paper and that significant findings should be regarded with caution as we could 
not control the false-positive rate in the present study. 

4.3.1. What tasks do technical higher education’s students select and why?

Participants’ task-selection behavior during the learning phase was explored. 
The percentages of selected formats are presented in Table 4.1 and Table 4.2, and the 
percentages of selected complexity levels in Table 4.3. The results of the Chi-Squared 
Tests are presented in the text. 

4.3.1.1. Examples and problems.

On average, participants selected more examples to study (64.3%) than practice 
problems to solve (35.7%). The large majority of participants started the learning phase 
with an example instead of a practice problem. However, there was a strong decrease 
in the number examples selected from task 1 to task 2, and a strong increase in the 
selection of practice problems. Surprisingly, example study remained the preferred 
task format on task 2, 3, 4, and 5 (55% or higher). Only on the last learning task (i.e., task 
6) did more participants select a practice problem than an example. Chi-Squared 
Tests revealed that the proportion selected examples depends on the order of the 
tasks, χ2 (5) = 92.48, p < .001. This suggests that students selected fewer examples (and 
more problems) as the learning phase progressed.
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4.3.1.2. Example format.

Results showed that participants, on average, selected more video modeling examples 
(36.9%) than worked examples (25.8%) during the learning phase. The majority of the 
participants selected a video example as the first learning task. However, the 
percentage of selected video modeling examples dropped considerably on the 
second learning task. This percentage remained relatively stable up to and including 
the fifth learning task but decreased further on the last learning task. The percentage 
of selected worked examples increased from the first to the second learning task and 
stayed relatively constant during the rest of the learning phase. Chi-Squared Tests 
revealed that the proportion selected video modeling examples depends on the order 
of the tasks χ2 (5) = 52.48, p < .001, meaning that students selected fewer video 
modeling examples (and more worked examples) as the learning phase progressed.

4.3.1.3. Complexity level.

The results showed that the majority of participants started the learning phase with a task 
at the lowest complexity level instead of selecting a level 2 or level 3 task. The complexity 
of the selected tasks seemed to increase as the learning phase progressed. That is, the 
percentage of level 1 tasks was highest on the first and second learning task but declined 
from the third learning task onwards. The percentage of selected level 2 learning tasks, on 
the other hand, was relatively low on the first and second learning task, was highest on the 
third and fourth learning task and declined again on the fifth and sixth learning task. Level 
3 tasks were selected seldomly during the first half of the learning phase and were selected 
most often on the last two learning tasks. Surprisingly, results showed that during the 
second half of the learning phase (i.e., learning task 4, 5, and 6), almost one third of the 
total sample still selected tasks at the lowest complexity level. Chi-Squared Tests revealed 
that the proportion selected lowest level tasks (i.e., level 1) depends on the order of the 
tasks χ2 (10) = 285.92, p < .001, suggesting that students selected fewer level 1 tasks (and 
more level 2 or level 3 tasks) as the learning phase progressed.

Table 4.1. 
Percentages of Selected Examples and Practice Problems During the 
Self-regulated Learning Phase for the Total Sample (N = 147).

Total sample

E P

Learning task 1 95.9% 4.1%

Learning task 2 55.8% 44.2%

Learning task 3 59.9% 40.1%

Learning task 4 63.9% 36.1%

Learning task 5 65.1% 34.9%

Learning task 6 45.6% 54.4%

Note. E = example, P = problem. 

Table 4.2. 
Percentages of Selected Video Modeling Examples, Worked Examples, 
and Practice Problems During the Self-regulated Learning Phase for the Total Sample 
(N = 147).

Total sample

VME WE P

Learning task 1 76.9% 19.0% 4.1%

Learning task 2 24.5% 31.3% 44.2%

Learning task 3 37.4% 22.5% 40.1%

Learning task 4 35.4% 28.6% 36.0%

Learning task 5 30.2% 34.9% 34.9%

Learning task 6 17.0% 28.6% 54.4%

Note. VME = video modeling example, WE = worked example, P = problem. 

Table 4.3. 
Percentages of Selected Complexity Levels (Level 1, 2, and 3) in the Self-regulated 
Learning Phase for the Total Sample (N = 147).

Total sample

Complexity Level 1 Complexity Level 2 Complexity Level 3

Learning task 1 88.4% 8.2% 3.4%

Learning task 2 75.5% 19.7% 4.8%

Learning task 3 47.6% 41.5% 10.9%

Learning task 4 35.4% 44.2% 20.4%

Learning task 5 28.1% 26.0% 45.9%

Learning task 6 26.5% 23.8% 49.7%

4.3.1.4. Reasons for task selections.

We also analyzed participants’ answers to the questions that asked them which tasks 
they selected and why. As shown in Table 4.4, participants reported that they 
predominantly started the learning phase with a video modeling example, because 
this format was most comfortable for them or provided the most support. The reason 
why it was common to start with tasks of the lowest complexity level is that participants 
believed that this could help them build up their level of expertise or that this suited 
their current level of expertise. Note that these were also the most common reasons 
why participants chose the lowest complexity level as a second learning task. 
Regarding the format of the second learning task, participants selected practice 
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problems most often, followed by worked examples. They mentioned that these formats 
helped them to assess their level of expertise or provided the most support (this reason 
was especially mentioned by those who selected worked examples). Finally, video 
modeling examples (followed by practice problems) were preferred most on average 
during the learning phase. Student often said it was the most comfortable way of 
learning (especially for video modeling examples because this format was most 
familiar, suited their learning preference, was most clear, etc.) or said they learned 
most from these format (especially for practice problems because participants felt 
practice helped them master the procedure). Note that participants’ memory 
regarding what format and level they selected for the first task matched their actual 
choice (see Table 4.2 and 4.3), but for the second task participants only correctly 
remembered the task format and not the complexity level. 
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4.3.2 Do novices’ task selections match with the instructional design principles? 

Thirdly, we analyzed how well students’ behavior matched the principles known to 
be effective and efficient based on instructional design research. Results showed that 
students’ choices matched with many of the principles when selecting their own 
learning tasks. As shown in Table 4.5, the majority of the students had a total score of 
4 or higher (out of 5), which means that their choices matched with (almost all of) the 
principles. When exploring how well participants’ task selections matched with the 
individual principles, results showed that most of participants’ choices matched with 
the example-based-learning-principle, example-first-principle, and lowest-level-first-
principle. Moreover, the majority of the students started each complexity level with an 
example and another 21.1% did this only partially. Finally, only half of participants’ 
choices aligned with the simple-to-complex-principle entirely, and more than a quarter 
of participants’ choices aligned with this principle only partially.

Table 4.5.
Percentages of Principles from Example-based Learning Research Applied in the  
Self-regulated Learning Phase for the Total Sample (N = 147).

Total sample

Fully Partially Not at all

Example-based learning principle 89.8% 9.5% 0.7%

Example first principle 95.9% X 4.1%

Lowest level first principle 88.4% X 11.6%

Simple-to-complex principle 49.0% 26.5% 24.5%

Start each level with example principle 76.9% 21.1% 2.0%

Total score
Principles

39.4% 53.8% 6.8%

Note. X = not a scoring option for this principle. 

4.3.3 Is there a positive relation between the extent to which students’ choices 
match with the instructional design principles and their scores on learning 
outcomes, mental effort, and motivational variables? 

Finally, we explored how whether the degree of spontaneously applying the 
instructional design principles correlated with cognitive or motivational aspects of 
learning. As shown in Table 4.6, total scores of how well students task selections 
matched with the principles did not correlate with any of the cognitive or motivational 
variables. However, some of the individual principles did correlate with some of the 
cognitive or motivational variables. Firstly, there was a positive relation between 
spontaneously applying the example-first-principle and average scores on self-efficacy 
in the learning phase (r = .183). Secondly, spontaneously applying the lowest-level-first-
principle negatively correlated with average scores of self-efficacy in the learning 
phase (r = -.257) and self-efficacy (r = -.268) and perceived competence (r = -.219) after 
the learning phase. The lowest-level-first-principle also negatively correlated with the 
scores on the procedural transfer task (r = -.235). A positive correlation was shown, 
however, between the lowest-level-first-principle and average ratings of mental effort 
invested in the conceptual questions in the posttest (r = .232). Finally, spontaneously 
applying the simple-to-complex-principle positively correlated with average scores of 
mental effort invested in the learning (r = -.180) and isomorphic posttest tasks (r = -.183). 
We must note, though, that the strength of these correlations can be referred to as 
small (because the absolute values of r are below .30; Cohen, 1988). 
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4.4. Discussion

The aim of this study was to explore the task-selection choices of first year higher 
education students (i.e., novices to the learning materials) when engaging in self-
regulated learning in an online learning environment. Students had to learn how to 
solve problems using the trapezoid rule and could select learning tasks from a 
database comprising different task formats (i.e., video modeling examples, worked 
examples, and practice problems), levels of complexity (i.e., three levels), and cover 
stories. We were particularly interested in which tasks students would choose (and 
why), and how students’ task-selection decisions would adhere to the robust principles 
from instructional design research. 

4.4.1. Students’ Task-Selection Patterns

Results showed that the selection of video modeling examples significantly 
decreased and the selection of worked examples and problems significantly increased 
during the learning phase. In addition, the selection of lowest level tasks significantly 
decreased, whereas the selection of level 2 and level 3 tasks increased. Also, findings 
showed that students’ choices matched quite well with the principles derived from 
instructional design research on the effectiveness and efficiency of different fixed 
sequences of examples and problems. The vast majority of students selected many 
examples during the learning phase (i.e., example-based-learning-principle) and 
started the learning phase with an example instead of a problem (i.e., example-first-
principle). Although the choices of approximately half our sample aligned with the 
simple-to-complex principle, almost all participants started the learning phase with a 
task at the lowest complexity level (i.e., lowest-level-principle). Moreover, most 
participants started each complexity level with example study (i.e., start-each-level-
with-example-principle). 

That students spontaneously applied almost all of the instructional design 
principles (with the exception of the simple-to-complex-principle) is surprising. Although 
there is relatively little research on this issue, the available evidence suggested that 
novices underutilize example study with respect to the amount (i.e., about 40 percent 
worked examples versus 60 percent practice problems) and timing (i.e., students rarely 
started the learning phase with example study) of their use (e.g., Foster et al., 2018). 

There are several possible reasons for why students’ choices were so well aligned 
with the instructional design principles in our study compared to the study of Foster et 
al. (2018). Firstly, our sample consisted of technical higher education students instead 
of a mixed group of students obtained from the university’s participant pool (as in the 
study of Foster et al., 2018). In the study programs of our sample, mathematics is an 
important subject and as a result, students might have already had experience with 
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learning new mathematical problem-solving skills with the help of examples (since 
examples are frequently used to learn new mathematical procedures). It is possible 
that the students used in the study of Foster et al., (2018) had less experience with 
example study when learning new (mathematical) problem-solving procedures, for 
example because mathematics might not have been not part of their courses. 

Secondly, it is possible that being able to select video modeling examples might 
have motivated our students to start the learning phase with example study. Studying 
video modeling examples could be a more familiar way of learning new problem-
solving skills for students than studying worked examples (Hoogerheide & Roelle, 2020). 
With the rise of popular video-sharing platforms such as YouTube (where people can, 
for example, watch videos to learn new knowledge and skills on many different 
subjects), it is likely that many students have at least gained some experience with (the 
effectiveness of) learning new skills by studying video examples. This explanation is 
partly supported by the answers to the open questions, where students said they 
selected video modeling examples most often during the learning phase, because 
this format was most comfortable (i.e., most recognizable, most preferred, most clear, 
etc.) for learning. 

Another explanation might be that video modeling examples are more preferred 
at the beginning of a learning phase (compared to worked examples), because 
information is demonstrated in a step-by-step manner and the combination of 
dynamic visual information and the model’s narration take the learner by the hand. In 
contrast, worked examples might be preferred later in the learning phase, because 
they allow for efficiently looking up difficult problem-solving steps. Indeed, our findings 
revealed that almost all students started with a video modeling example. However, this 
number rapidly decreased while the selection of worked examples gradually increased. 
These results correspond with the results of Hoogerheide et al. (2014) that worked 
examples were also more preferred than video modeling examples when more tasks 
had to be studied. Tentative evidence was provided by the coding of the answers on 
the open questions, as students said they selected worked examples as a second task 
mostly because this format provided them the opportunity to assess their level of 
expertise and easily check to what extent they had understood the procedure. 

 Thirdly, a more likely and more practical explanation for why our sample relied so 
heavily on example study is that we provided the opportunity to choose between two 
example formats (i.e., video modeling examples and worked examples) next to 
practice problems. As a result, two thirds of the learning tasks were examples (i.e., 67%) 
and only one third were practice problems (i.e., 33%). This might have increased the 
likelihood of selecting an example rather than a practice problem. In the study of 
Foster et al. (2018), students could only choose between worked examples next to 
(completion) problems. 

These possible explanations provide several interesting avenues for future research 
in self-regulated learning settings. For instance, it would be interesting to investigate in 
further detail whether or not familiarity with example study in one domain would affect 
the degree to which novices opt for example study relative to practice problem solving 
in the same or in a different domain. Moreover, as comparisons between (different 
sequences of) worked and video modeling examples are scarce (e.g., Hefter et al. 
2019; Hoogerheide et al., 2014), future research could investigate whether starting the 
learning phase with a video modeling example and switching to worked examples is 
not only a more preferred way of learning but also more effective, efficient, and 
motivating than the other way around. Lastly, another interesting avenue for future 
research would be to determine whether providing the option of both video modeling 
and worked examples indeed helps to optimize the frequency and timing of example 
study. 

4.4.2. Limitations 

This study also has some limitations. First, because performance on the practice 
problems was not logged, it was not possible to examine the degree to which students’ 
task-selections were adaptive to their needs. The optimal sequence (length) of 
examples and problems differs for each individual learner because there is variance 
in the speed to which students learn (e.g., due to differences in cognitive abilities). If 
we had access to practice problem solving performance, we could score whether 
students made accurate decisions following a practice problem. For instance, students 
who just failed to solve a problem should ideally select an example or another practice 
problem of the same complexity level, while students should select a more complex 
task after successfully solving a practice problem. That task-selections should ideally 
be tailored to individual progress could also explain the lack of correlations between 
the extent to which students’ task selections matched with the instructional design 
principles and learning outcomes. Moreover, had we successfully logged performance 
on the practice problems, we could determine whether students’ knowledge during 
the learning phase was so high that they would benefit more from problem solving 
than example study (cf. the expertise reversal effect; Kalyuga et al., 2003). However, it 
is unlikely that this expertise-reversal effect occurred, because performance on the 
isomorphic posttest was not that high and students were only allowed to select six 
learning tasks while having to learn three different complexity levels.

A second limitation of the present study concerns the measurement of self-efficacy 
and perceived competence. There is research showing overlap between these two 
constructs, and more specifically that perceived competence may be a common 
core component of both self-efficacy and self-concept (e.g., Marsh et al., 2019; Schunk 
& Pajares, 2005). The results of our study confirm this idea, as correlational analyses of 
these two constructs measured after the self-regulated learning phase revealed a 
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score of r = .86. One could wonder to what extent both measures differ or measure the 
same general feeling of competence regarding to what has been learned and how 
well someone considers him/herself capable of solving a similar task. Therefore, it 
might be sufficient for future research in this area to use of one of the questionnaires.

4.4.3. Conclusions and Practical Implications

In sum, our explorative study showed that students’ task-selection patterns corresponded 
fairly well with principles derived from instructional design research. This seems 
promising, because it would mean that students know quite well how to use examples 
and problems (at different complexity levels) when learning new problem-solving skills 
and therefore might need little support. However, given the paucity of research on self-
regulated learning of examples and problems (at different levels of complexity), the 
mixed findings regarding the use of examples and problems (i.e., Foster et al., 2018 vs. 
our study), and the open question of whether students’ task selections are adapted to 
their levels of expertise, we cannot say this with absolute certainty. Moreover, regarding 
the task selections (of some of the students) and test performance scores in our study 
and the study of Foster et al. (2018), there seems to be (some) room for improvement in 
how students regulate their learning from examples and problems. Therefore, more 
research is needed to gain insight in how and how well (novice) learners regulate their 
learning from examples and practice problems, and whether and how they can 
benefit from support. Moreover, future research should investigate to what extent the 
findings of this study regarding students’ task selections are problem-specific or 
generalizable, for example by using similar procedures but different problem-solving 
tasks. 
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Abstract

Nowadays, students often practice problem-solving skills in online learning 
environments. This requires them to self-regulate their learning. The present study 
investigated the open questions (1) to what extent students’ task selections align with 
instructional design principles and (2) whether informing them about these principles 
would improve their task selections, learning outcomes, and motivation. Higher 
education students (N = 150) learned a problem-solving procedure by fixed sequences 
of examples and problems (FS-condition), or by self-regulated learning (SRL). The SRL 
participants selected tasks from a database, varying in format, complexity, and cover 
story, either with (ISRL-condition) or without (SRL-condition) watching a video detailing 
the instructional design principles. Students’ task-selection patterns in both SRL 
conditions largely corresponded to the principles, although tasks were built up in 
complexity more often in the ISRL-condition than in the SRL-condition. There were no 
test performance or motivational differences among conditions. Implications for 
practice and theory are discussed. 

Keywords: example-based learning, self-regulated learning, problem-solving, task 
selection, motivation, higher education.

5.1. Introduction

Decades of research on instructional design have resulted in several principles for 
optimizing the acquisition of new problem-solving skills for novices (i.e., students with 
little if any prior knowledge). These principles are concerned with how to ensure that 
novices work on tasks that provide an optimal level of instructional support and 
complexity given their current level of knowledge (4C/ID Model; Van Merriënboer, 
1997; Van Merriënboer & Kirschner, 2013). Following these principles should make 
novices’ learning process more effective and efficient, and make them feel more self-
efficacious. Nowadays, students often have to self-regulate their learning of problem-
solving skills in online learning environments, and it is an open question to what extent 
their task selections during self-regulated learning align with those principles. Therefore, 
the present study investigates to what extent students’ task selections align with 
instructional design principles and whether informing students about such principles 
would improve their task selections, motivation, and learning outcomes. 

5.1.1 Instructional Design Principles to Support Acquisition of Problem-Solving Skills

The example-based-learning-principle postulates that replacing all or a substantial 
number of practice problems with worked examples (i.e., a written step-by-step 
explanation of how to solve a problem; e.g., Van Gog et al., 2011) or video modeling 
examples (i.e., a person demonstrating and/or explaining a problem-solving procedure 
on video; e.g., Kant et al., 2017) helps novices to learn more (i.e., is more effective) with 
less time and effort investment (i.e., is more efficient) than solving practice problems 
without any instructional support (e.g., Sweller et al., 2011; Van Gog et al., 2019). 
Moreover, recent findings show that studying examples also increases students’ self-
efficacy during learning compared to only solving practice problems (e.g., Van Harsel 
et al., 2019, 2020; Coppens et al., 2019). When alternating examples and problems, 
research has shown that novices should start with an example (instead of practice 
problem-solving), as this was found to be more efficient for learning than starting with 
problem-solving only (e.g., Van Harsel et al., 2019, 2020; Van Gog et al., 2011). We refer 
to this as the example-first-principle. 

These principles should be considered in relation to task complexity. Students should 
ideally be working on tasks that are at an optimal level of complexity given their current 
level of knowledge (4C/ID Model; Van Merriënboer, 1997; Van Merriënboer & Kirschner, 
2013). The lowest-level-first-principle postulates that novices should start with a task at 
the lowest level of complexity. From there, the level of complexity should gradually 
increase as their knowledge increases: the simple-to-complex-principle (cf. 4C/ID 
model). According to the 4C/ID model, students should receive a high level of 
instructional support (like an example) at the start of each new complexity level: The 
start-each-level-with-example-principle. 
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These principles have been mainly derived from research with fixed (or adaptive) 
sequences of examples and problems (at different complexity levels), where the 
learning environment or the experimenter determined whether, when, and for how 
long a learner should study examples or solve practice problems. However, learners, 
particularly in higher education, spend much of their time on self-study activities where 
they need to self-regulate their learning as effectively and (given that they also need 
to devote time to other coursework, part-time jobs, et cetera) as efficiently as possible. 
It is still an open question, however, how (well) learners regulate their learning from 
examples and problems when they can make their own choices (e.g., Van Gog et al., 
2020; Van Gog et al., 2019), and whether and how they could be guided in making 
choices that fit their learning needs. 

5.1.2 Self-Regulated Learning of Examples and Problems

Self-regulated learning of problem-solving tasks is notoriously difficult for novices, 
because they need to be able to accurately assess their understanding or performance 
on the just completed task and subsequently select a new task with the right level of 
complexity and support (De Bruin & Van Gog, 2012; Van Gog et al., 2020). Research 
has shown that novices often experience difficulties in accurately assessing their 
performance (e.g., Dunning et al., 2004; Koriat & Bjork, 2005) and mostly overestimate 
(though sometimes underestimate) their own performance (e.g., Hacker & Bol, 2019; 
Kostons et al., 2010, 2012). Consequently, tasks might be selected that are too complex 
or too simple, or do not provide the necessary instructional support (e.g., Dunlosky & 
Rawson 2012). Moreover, novices do not always seem to be aware which task aspects 
influence how much they learn (e.g., Kostons et al., 2010; Nugteren et al., 2018), and 
therefore tend to select tasks based on irrelevant (e.g., cover stories) instead of relevant 
task aspects (i.e., complexity and support; e.g., Corbalan et al., 2008). 

Based on these findings, one might expect that novices experience difficulties 
when self-regulating their learning from examples and problems. Indeed, a recent 
study conducted by Foster and colleagues (2018) found that novices make suboptimal 
choices when they are in control of selecting tasks to work on. In their study, university 
students had to learn how to solve probability problems and were repeatedly given the 
choice of whether to study a worked example or to practice solving a (completion) 
problem. Results showed that on average, students opted more often for (completion) 
problems than examples and rarely started the learning phase with example study. 
These choices are at odds with the example-based-learning-principle and the 
example-first-principle, as studying examples, especially at the start of the learning 
phase, is more efficient (and effective), and motivating for learning than (starting with) 
problem-solving only (e.g., Van Gog et al., 2011; Van Harsel et al., 2020). 

In contrast, Van Harsel et al. (submitted) found other results. Higher education 
students learned how to solve a math problem by selecting 6 learning tasks from a 
database that consisted of 45 learning tasks that differed in format (worked examples, 
video modeling examples, and practice problems), complexity (three levels), and 
cover story. Results showed that most of the learners’ choices matched with the 
instructional design principles: the vast majority of students selected many examples 
during the learning phase, as they started the learning phase with an example at the 
lowest complexity level and often started a new complexity level with example study as 
well. However, the complexity of tasks was built up less well by only half of the sample: 
Particularly those who performed poorly on the posttest kept selecting examples or 
practice problems at the lowest complexity level. It is, however, an open question 
whether self-regulated learning would be as effective as fixed sequences of tasks 
based on those principles. Moreover, as there still was room for improvement in 
learners’ task selections (and test performance scores), they might benefit from 
instructional support to help them self-regulate their learning, for instance by explicitly 
informing learners prior to self-regulated learning about the principles derived from 
instructional design research.

5.1.3 �Strategy Instruction to Support Self-Regulated Learning of 
Examples and Problems

Explicitly informing students about learning strategies has been found to be 
successful for increasing learners’ metacognitive beliefs and/or knowledge (e.g., 
Endres et al., 2021; Lineweaver et al., 2011; McCabe, 2011; Yan et al., 2016) and their use 
of these strategies (e.g., Biwer et al., 2019). Ariel and Karpicke (2017) even found that 
explicitly informing students about learning strategies also improved their learning 
outcomes They asked university graduates to learn Lithuanian-English word-pairs. 
Students could decide for themselves whether to restudy word-pairs, whether to 
retrieve already learnt word-pairs from memory (i.e., retrieval practice, a proven 
effective study strategy for word-pair learning; Rowland, 2014), or to stop learning. The 
experimental condition received a short-written instruction with information about the 
effectiveness and mnemonic benefits of repeated retrieval practice and how to use it, 
while the control condition did not receive this information. Results showed that 
students in the experimental condition used the repeated retrieval practice strategy 
more often than those in the control condition, and subsequently outperformed the 
control group on an immediate cued-recall test. Students in the experimental condition 
even (spontaneously) used retrieval practice to learn novel materials a week later 
more often than the control condition.

A possible explanation for why informing students about effective learning 
strategies can improve the use of such strategies and learning (cf. Ariel & Karpicke, 
2017) could be that this information helps learners become (more) aware of the value 



127126

of a strategy and increases their metacognitive knowledge (i.e., knowledge about why 
and which strategies are [not] beneficial for learning). In turn, this could increase the 
likelihood that an individual will search for, modify, and apply that strategy (e.g., Tullis 
et al., 2003; Yan et al., 2014). 

These findings are promising, given that this approach of informing students about 
effective strategies would be relatively easy to use across a variety of learning materials 
and contexts. However, it is an open question whether this approach would also be 
effective for improving self-regulated learning of problem-solving skills with examples 
and problems. Therefore, the present study investigates whether informing students on 
effective strategies for learning new problem-solving skills with examples and problems 
(at different complexity levels) would increase the likelihood that they select the right 
tasks (according to their level of expertise), and would increase performance and 
motivation.

5.1.4 The Present Study 

The first aim of this study was to investigate whether the finding that students’ 
choices during self-regulated learning aligned quite well with the instructional design 
principles for learning from examples and problems (cf. Van Harsel et al., submitted) 
would replicate (Research Question 1), because this result is rather surprising in light of 
other related research (e.g., Foster et al., 2018). To shed further light on the quality of 
students’ task selections, the present study also explored what tasks learners select 
after solving a practice problem, which was not possible in Van Harsel et al. (submitted) 
as practice problem performance data were unavailable. 

The second aim was to examine whether self-regulated learning would be as 
effective, efficient, and motivating as a fixed task sequence based on the principles 
derived from instructional design research (Research Question 2). We consider this an 
open question. It is possible that self-regulated learning would have motivational 
benefits, given that related research suggests that allowing learners to select their own 
tasks can improve other motivational variables such as interest (e.g., Corbalan et al., 
2008), however, it is questionable whether this also applies to motivational variables 
such as self-efficacy and perceived competence. At the same time, self-regulated 
learning might be less conducive to learning outcomes than a predetermined 
sequence, as self-regulated learning has been found to impair learning outcomes 
relative to teacher- or computer-controlled fixed or personalized instruction (see e.g., 
Azevedo et al., 2008; Lawless & Brown, 1997; Niemiec et al., 1996). 

Thirdly, given that there still was room for improvement in learners’ task selections 
and test performance scores in the study of Van Harsel et al. (submitted), we 
investigated whether explicitly informing learners about instructional design principles 

would enhance their self-regulated learning of examples and problems (at different 
complexity levels) compared to self-regulated learning without such information 
(Research Question 3). Assuming that students in the ‘informed self-regulated learning 
condition’ actually adopt these principles (cf., studies on other learning strategies: 
Ariel & Karpicke, 2017; Biwer et al., 2019), one could expect their choices to be better 
aligned with the principles than students’ choices in the self-regulated learning 
condition and therefore show higher test performance (i.e., on conceptual questions, 
isomorphic tasks, and procedural transfer tasks), attained with lower effort investment 
and time-on-task in the learning and posttest phase. As for the comparison between 
the informed self-regulated learning and fixed sequences condition, we consider this 
an open question. If informing students about effective principles for learning from 
examples and problems would help students select better tasks, they might show 
similar performance as the fixed sequences condition. Effects on self-efficacy and 
perceived competence are explored.

5.2 Method

5.2.1 Participants and design

Participants were 241 students from a Dutch university of applied sciences 
(Mage = 18.84, SD = 1.76; 232 male), enrolled in the first year of an electrical and electronic 
mechanical engineering program. Participants had to learn how to approximate the 
definite integral of a function using the trapezoidal rule. They were randomly allocated 
to one of three conditions, namely the 1) informed self-regulated learning condition 
(ISRL; n = 109), 2) self-regulated learning condition (SRL; n = 60), and fixed sequences 
condition (FS; n = 72). More participants were assigned to the ISRL-condition to increase 
the chances of having a sufficiently large subset of students who would follow the 
advice and to be able to explore differences between students who did and did not 
follow the advice. The experiment consisted of three phases: (1) pretest, (2) learning 
phase, and (3) posttest. Participants who did not finish the isomorphic (and transfer) 
items on the posttest on time were excluded from further analysis (n = 42). Moreover, 
we also excluded 49 participants with too much prior knowledge (indicated by a score 
of 5 or more out of 9 on the prior knowledge test), because we were specifically 
interested in the selection behavior of novice learners. Therefore, the final sample 
consisted of 150 participants (Mage = 18.68, SD = 1.57; 143 male) divided over the ISRL-
condition (n = 66), SRL-condition (n = 32), and FS-condition (n = 52). Students could 
earn study credits for participation. All participants gave informed consent in the 
learning environment.
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5.2.2. Materials

All materials were based on the materials developed by Van Harsel et al. (2019, 2020) 
and Van Harsel et al. (submitted), and presented in a web-based learning environment. 

5.2.2.1 Pretest

The pretest consisted of five conceptual knowledge questions that measured 
participants’ understanding of the trapezoidal rule (α = -.73). These questions consisted 
of a multiple-choice part with four answer options and an explanation part where 
participants had to explain their answer (see Supplementary Materials E for an example 
of a pretest question). Note that a possible reason for the poor reliability of the pretest 
is that students had (very) low prior knowledge but a 25% chance to guess the right 
answer.

5.2.2.2 Instructional video

The instructional video that was used to inform students in the ISRL-condition on 
effective instructional design principles started with a brief explanation of the procedure 
of the experiment. Students were informed that they were going to select learning tasks 
themselves and would receive help on how to select the most effective and efficient 
learning task, based on well-established findings from scientific research. Then, a total 
of four ‘rules’ were presented: a) “At the start of the learning phase, choose a task at 
the lowest complexity level”, b) “When you mastered a complexity level, choose a task 
one complexity level higher”, c) “Start each new complexity level with example study 
and alternate with practice problems when you want to check whether you understand 
how to solve the problem”, d) “Start the learning phase with a video modeling example 
and continue with written examples when more example study is necessary”. We 
added the fourth rule as there are some indications that a video modeling example is 
preferred at the start and worked examples later in the training phase (e.g., Van Harsel 
et al., submitted; Hoogerheide et al., 2014). This might be explained by the fact that in 
video modeling examples, information is demonstrated step-by-step and the 
combination of dynamic visual information and the model’s verbal explanations take 
the learner by the hand. In worked examples, information is also demonstrated step-
by-step, however, shown all at once. This allows for efficiently looking up difficult 
problem-solving steps and therefore might be preferred later in the learning phase. 
Each rule was accompanied with the necessary background information about why 
this rule would help students learn more and when/how to apply it (see Supplementary 
Materials N). The instructional video lasted 223 seconds. 

5.2.2.3. Task database

Together with three mathematics teachers from the university of applied sciences 
where the study was conducted, a task database consisting of 45 learning tasks was 
developed (see Figure 5.1). The tasks required participants to approximate a specific 
region under the graph of a function using the trapezoidal rule. The tasks varied in 
complexity level, task format, and cover story.

Complexity level. The learning tasks were developed at three levels of complexity. 
Tasks at complexity level 1 required participants to use the trapezoidal rule to 
approximate the region under the graph of a polynomial function of degree 2 (i.e., 
quadratic function). Moreover, functions were constructed in such a way that 
participants had to calculate more than two intervals and calculate with fractions and 
positive numbers only. Tasks at complexity level 2 were more difficult, since they asked 
participants to calculate with negative numbers as well. Tasks at the highest complexity 
level (i.e., complexity level 3) additionally asked participants to use the trapezoidal rule 
to approximate the region under the graph of a polynomial function of degree 3 (i.e., 
cubic function). 

Format. The learning tasks were developed in three different formats: video 
modeling examples, worked examples, and (conventional) practice problems. Video 
modeling examples consisted of a screen recording of a female model’s computer 
screen, where she demonstrated (with PowerPoint slides and handwritten notes) and 
explained step-by-step how to solve a problem using the trapezoidal rule. The model 
started with an introduction on the trapezoidal rule, followed by an explanation of the 
problem state and an explanation of how to use the information that was presented on 
the screen to solve the problem (i.e., the graph of a function, the left border and right 
border of the area, the number of intervals, and the formula of the trapezoidal rule). 
Subsequently, she showed and explained how to solve the problem by calculating 
four steps: 1) ‘compute the step size of each subinterval’, 2) ‘calculate the x-values’, 3) 
‘calculate the function values for all x-values’, and 4) ‘enter the function values into the 
formula and calculate the area’, and ended the video by providing the final answer. 

Worked examples were presented on one page and consisted of a written step-by-
step explanation of the solution procedure. Worked examples also started with a short 
description of the problem state and some additional information that was needed to 
solve the problem (i.e., the graph of a function, the left border and right border of the 
area, the number of intervals, and the formula of the trapezoidal rule). Subsequently, 
written explanations (and correct answers) were given for each of four steps on how to 
solve the problem. 

Practice problems also started with a short description of the problem state and 
the additional information that was needed to solve the problem. However, it was not 
explained how to use the information that was given to solve the problem. Participants 
received the following assignment: “Approach the area under the graph using the 
information that is given. Write down all your intermediate steps and calculations”. 
Screenshots of the three task formats are presented in the Supplementary Materials A, 
B, and C. 
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Cover story. Finally, tasks varied in cover story. For example, participants could 
solve a problem that asked them to approximate how many liters of beer were tapped 
within a certain amount of time (i.e., drinking beer) or approximate how often the 
circular platform of a carousel rotates in a given period of time (i.e., carousel). The 
cover stories were similar for each task format that was provided within a complexity 
level (e.g., drinking beer could be selected as video modeling example, worked 
example, and practice problem), yet the numbers used differed per task format. 

Figure 5.1. Screenshot of the task database. 

Task sequences. During the learning phase, participants in the two SRL conditions 
could select six tasks from the task database (see Figure 5.1; each task could be 
selected only once). They were instructed that the posttest would include tasks at all 
three complexity levels. Participants in the FS-condition received 6 tasks from the task 
database in the following order: (1) video modeling example at complexity level 1, (2) 
worked example at complexity level 1, (3) practice problem at complexity level 1, (4) 
worked example at complexity level 2, (5) practice problem at complexity level 2, and 
(6) worked example at complexity level 3. The cover stories of these tasks were randomly 
chosen. 

5.2.2.4. Posttest

The posttest consisted of five tasks. The first three tasks concerned a level 1, 2, and 3 
task; these were isomorphic to the learning phase tasks (α = .81). The fourth task was a 
procedural transfer task that required participants to use the Simpson rule to 
approximate the definite integral under a graph. Simpson’s rule is also a numerical 
integration method, however, uses quadratic polynomials (instead of the straight-line 
segments) to approximate the region under a graph. The final task consisted of five 
questions that aimed to measure participants’ understanding of the trapezoidal rule  
(α = .48), and these were isomorphic to the pretest questions. Examples of test tasks are 
shown in the Supplementary Materials F, G, and H.

5.2.2.5. Mental effort

Mental effort was measured using a 9-point rating scale (Paas, 1992), asking 
participants to rate how much mental effort they invested in studying an example or 
solving a practice problem. Answer options ranged from (1) “very, very low mental 
effort” to (9) “very, very high mental effort”. Mental effort was rated after each learning 
and posttest task, with the exception of the five conceptual posttest questions (where 
it was rated only once after the final item). 

5.2.2.6. Self-efficacy

Self-efficacy was measured by asking participants for their confidence in that they 
could approximating the definite integral of a graph using the trapezoidal rule. Answer 
options ranged from (1) “very, very unconfident” to (9) “very, very confident” (Van 
Harsel et al., 2019, 2020; adapted from Hoogerheide et al., 2016). 

5.2.2.7. Perceived competence

Perceived competence was measured using an adapted version of the Perceived 
Competence Scale for Learning (Van Harsel et al., 2019, 2020, based on Williams & 
Deci, 1996), consisting of three items (instead of the 4 items), such as “I feel confident 
in my ability to learn how to approximate the definite integral of a graph using the 
trapezoidal rule”. Participants had to rate on a scale of (1) “not at all true” to (7) “very 
true” to what degree the items applied to them (α = .95). 

5.2.3. Procedure

Fourteen single sessions (with 9 to 24 participants per session) that lasted 102 
minutes on average were run in a computer classroom at participants’ university of 
applied sciences. Before each session, a headset, pen, and scrap paper were placed 
on the tables. After participants arrived, the experimenter first explained the aim and 
procedure of the experiment. Then, participants were told that they could work at their 
own pace (with a maximum of 135 minutes), and that they had to write down as much 
as possible and to write an “X” if they really did not know what to answer. Students 
could use a calculator (different from Van Harsel et al., submitted). 

After the instructions, participants entered the online learning environment. Each 
task and questionnaire were presented on a separate page. Participants were unable 
to go to the next page before completing the current task/questionnaire and were 
unable to go back to any previously completed pages. Time-on-task was logged. 

Participants were first provided with a short demographic questionnaire (e.g., age 
and gender), the pretest, and self-efficacy and perceived competence questionnaires. 
Next, the learning environment provided written instructions about the learning phase. 
For the SRL conditions, these instructions explained that 6 tasks had to be selected 
from the task database and how to select a task to work on. Participants in the ISRL-
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condition additionally were told that they had to watch an instructional video that 
explained how to select tasks to learn most effectively and efficiently. In the FS-
condition, participants were told that they had to study or solve the tasks that were 
provided to them. In all conditions, participants had to rate their mental effort and 
self-efficacy after each task in the learning phase. After the learning phase, participants 
had to turn their scrap paper upside down and were provided with a new scrap paper. 
Then, participants completed the self-efficacy and perceived competence 
questionnaires and the posttest. After the posttest, participants handed in their 
materials and left the classroom.

5.2.4. Data Analysis

To answer our first research question, we used the same approach as Van Harsel 
et al. (submitted). We first analyzed what tasks participants selected in the SRL 
conditions and coded the task format (video modeling example, worked example, 
practice problem) and complexity level (1, 2, or 3) of the selected learning tasks, and 
converted the scores into percentages. We then coded to what degree participants’ 
task-selection behavior matched with the evidence-based instructional design 
principles (i.e., example-based-learning, example-first, simple-to-complex, lowest-
level-first, and start-each-level-with-example-principle). For each principle, participants 
could earn 1 point in total. Following the example-first-principle and lowest-level-first-
principle was awarded with 1 point and 0 points were assigned when the principle was 
not followed. For the example-based-learning-principle, simple-to-complex-principle, 
and start-each-level-with-example-principle, 1 point was granted when the principle 
was followed entirely, 0.5 points when the principle was followed partially, and 0 points 
when the principle was not followed at all (same scoring protocol as used in Van Harsel 
et al., submitted). For each participant, a total score was computed that represented 
how well all principles were followed (maximum: 5 points). 

Then, we scored participants’ performance on the practice problems. A maximum 
of 8 points could be earned for each practice problem, with 2 points for calculating 
each step correctly: 1) the step size of each subinterval, 2) all x-values, 3) the function 
values for all x-values, and 4) using the correct formula for the area under the graph 
and providing the correct answer. In step two, three, and four, 2 points were given 
when all solution steps were correct, 1 point was given if half or more of the steps were 
correct, and 0 points when less than half of the steps were correct. To explore how well 
students’ task-selection behavior matched with their performance on the practice 
problems, we scored whether students selected a new task (i.e., video modeling 
example, worked example, or practice problem) on a higher complexity level when a 
practice problem was graded with 6 or more out of 8 points (75% or more correct). We 
also scored whether students selected a new task (i.e., video modeling example, 
worked example, or practice problem) on a similar (or lower) complexity level when a 
practice problem was graded with less than 6 out of 8 points (less than 75% correct). 

To answer our second and third research question, we also used the same approach 
as Van Harsel et al. (submitted). We first scored performance on the conceptual pretest 
and posttest items. On the conceptual pretest questions and conceptual posttest 
questions, participants could earn a maximum of 9 points. One point could be earned 
for the first open-ended question (correct answer: 1 point; incorrect answer: 0 points) 
and 2 points for the other open-ended questions. Participants were only rewarded with 
the maximum of 2 points when they got the answer right and provided correct 
explanations. Only 1 point was awarded when the answer was correct but the 
explanation was incorrect or missing, and 0 points were given when the answer and 
explanation were incorrect. With regard to performance on the posttest, the isomorphic 
posttest items (i.e., three tasks, max. score = 24 points) and procedural transfer item 
(i.e., 1 task, max. score = 8 points) were scored similarly to the learning tasks. Averages 
of mental effort invested in the learning tasks and posttest tasks were calculated, as 
well as the averages of participants’ self-efficacy and perceived competence ratings 
before, during (only self-efficacy), and after the learning phase. 

5.3. Results

Descriptive statistics were used to evaluate the first research questions on how students 
behaved in the SRL conditions, how well their behavior matched with evidence-based 
principles from instructional design research, and whether students made the right 
choices in the learning phase according to their performance on the practice 
problems. Percentages are only mentioned in the text if they cannot be found in the 
Tables.

Non-parametric tests were used to answer the second and third research question 
because the main variables were not normally distributed (i.e., the kurtosis and/or 
skewness values, divided by their standard error, were below -1.96 or above +1.96; cf. 
Field, 2009). The effects of Test Moment (Pretest and Posttest) were tested with Wilcoxon 
signed-rank tests. Differences between the SRL conditions in following the instructional 
design principles were tested with Mann-Whitney U tests. Differences between the ISRL-
Condition, SRL-Condition, and FS-Condition regarding cognitive (i.e., performance on 
the conceptual tests, isomorphic test, procedural transfer test, as well as mental effort 
and time-on-task in learning and posttest phases) and motivational aspects of learning 
(i.e., self-efficacy and perceived competence) were tested with Kruskal-Wallis tests. For 
post-hoc tests, we used Mann-Whitney U tests, with a Bonferroni corrected significance 
level of p < .017 (i.e., 0.05/3) for the Wilcoxon signed-rank tests and a Bonferroni-corrected 
alpha level of p < .017 (i.e., 0.05/3) for the Kruskal-Wallis tests. For the post-hoc tests, the 
effect size of Pearson’s correlation (r) is reported (i.e., Z/√N), with values of 0.10, 0.30, and 
0.50 representing a small, medium, and large effect size, respectively (Cohen, 1988). 
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Before non-parametric analyses were conducted, we checked for pre-existing 
differences among the three conditions. Kruskal-Wallis tests showed no significant 
differences among conditions on pretest performance H(2) = 2.60, p = .273, nor on self-
efficacy H(2) = 0.73, p = .696, or perceived competence H(2) = 1.70, p = .919. We also 
checked whether participants in the ISRL-Condition actually watched the instructional 
video detailing the instructional design principles. Results showed that 57.6% of the 
participants watched the entire video (i.e., n = 38), 21.2% watched between half and 
three quarter of the video (n = 14), and 21.2% watched less than half of the video 
instruction (n = 14). Additionally, we explored whether there were differences between 
these three subgroups in terms of following the instructional design principles and 
cognitive and motivational aspects of learning (see Supplementary Materials O).

5.3.1. To what extent do novices’ task-selection patterns match with the findings 
from example-based learning research?

We first checked the percentages of selected examples and problems (see Table 
5.1 and Table 5.2) and complexity levels (Table 5.3) and analyzed how well students’ 
choices matched with the instructional design principles (Table 5.4) in the ISRL and 
SRL-Condition. Almost all participants in both conditions started the learning phase 
with an example instead of a practice problem. On the second learning task, the 
percentage of selected examples rapidly decreased whereas the percentage of 
practice problems increased in both conditions. In de ISRL-Condition, problem-solving 
was preferred over example study on the second and third learning task, however, 
example study became most popular again on the fourth and fifth learning task. In the 
SRL-Condition, example study remained most popular up to and including the fifth 
learning task. Only on the last learning task, practice problems were preferred over 
example study in both conditions. The findings of the SRL-condition seem to be in line 
with the findings of Van Harsel et al. (submitted).

Moreover, participants in the SRL-Condition preferred video modeling examples 
(37.4%) over worked examples (27.0%), however, formats were almost equally preferred 
in the ISRL-Condition (video modeling examples: 29.6%; worked examples: 28.8%). In 
both conditions, participants clearly preferred a video modeling example as the first 
learning task compared to a worked example (or a practice problem). These 
percentages dropped considerably on the second learning task, as worked examples 
became more popular. Nevertheless, the popularity of the video modeling examples 
rose again on the third and fourth learning task (especially in the SRL-Condition); 
however, these percentages dropped again on the last two learning tasks. The 
selection of worked examples remained fairly stable in the ISRL-Condition from the 
second learning task onwards, with an outlier on the fifth learning task. In the SRL-
Condition, the selection of worked examples dropped after the second learning task 
yet increased again on the last two learning tasks. The findings of the SRL-condition 
again replicate the results of Van Harsel et al. (submitted).

Findings also showed that the level of complexity was gradually built up in both 
conditions. The lowest complexity level was selected most on the first two learning 
tasks, the second complexity level was selected most on the third and fourth learning 
task, and the most difficult complexity level was selected most on the last two learning 
tasks. The results of the SRL-condition are again in line with the findings of Van Harsel et 
al. (submitted). 

Table 5.1. 
Percentages of Selected Examples and Practice Problems in the Informed Self-
Regulated Learning Condition (n = 66) and Self-Regulated Learning Condition (n = 32). 

Informed Self-Regulated 
Learning Condition

Self-Regulated 
Learning Condition

Example Practice
problem

Example Practice
problem

Learning task 1 95.5% 4.5% 100% 0%

Learning task 2 43.9% 56.1% 56.3% 43.7%

Learning task 3 46.2% 53.8% 59.4% 40.6%

Learning task 4 57.6% 42.4% 58.1% 41.9%

Learning task 5 66.7% 33.3% 71.0% 29.0%

Learning task 6 40.6% 59.4% 41.9% 58.1%
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Table 5.2. 
Percentages of Selected Video Modeling Examples, Worked Examples, and Practice 
Problems in the Informed Self-Regulated Learning Condition (n = 66) and Self-Regulated 
Learning Condition (n = 32). 

Informed Self-Regulated
Learning Condition

Self-Regulated
Learning Condition

Video 
modeling 
example

Worked 
example

Practice 
problem

Video 
modeling 
example

Worked  
example

Practice  
problem

Learning task 1 84.8% 10.6% 4.6% 81.3% 18.7% 0.0%

Learning task 2 9.1% 34.8% 56.1% 18.8% 37.5% 43.7%

Learning task 3 20.0% 26.2% 53.8% 43.8% 15.6% 40.6%

Learning task 4 34.8% 22.7% 42.4% 41.9% 16.1% 41.9%

Learning task 5 18.2% 48.5% 33.3% 29.0% 42.0% 29.0%

Learning task 6 10.9% 29.7% 59.4% 9.7% 32.3% 58.1%

Table 5.3. 
Percentages of Selected Complexity Levels (Level 1, 2, and 3) in the Informed Self-
Regulated Learning Condition (n = 66) and Self-Regulated Learning Condition (n = 32).

Informed Self-Regulated
Learning Condition

Self-Regulated
Learning Condition

Complexity 
Level 1

Complexity 
Level 2

Complexity 
Level 3

Complexity 
Level 1

Complexity 
Level 2

Complexity 
Level 3

Learning task 1 97.0% 0.0% 3.0% 87.5% 6.3% 6.2%

Learning task 2 89.4% 4.5% 6.1% 75.0% 18.8% 6.2%

Learning task 3 47.7% 46.2% 6.1% 40.6% 40.6% 18.8%

Learning task 4 18.2% 60.6% 21.2% 22.6% 45.2% 32.2%

Learning task 5 15.2% 30.3% 54.5% 16.2% 29.0% 54.8%

Learning task 6 14.1% 15.6% 70.3% 16.1% 19.4% 64.5%

Analyzing how well students’ choices matched with the instructional design 
principles revealed that participants’ choices matched very well with these principles 
(see Table 5.4). Moreover, results revealed that in both SRL conditions, many participants 
followed (almost all of) the principles entirely (as their total score was between 4.5 and 
5 out of a maximum of 5 points; ISRL: 57.6%, SRL: 46.0%) or partially (as their total score 
was between 3 and 4.5 out of a maximum of 5 points; ISRL: 37.9%, SRL: 50.1%). As a 
result, there were no significant differences between the ISRL-Condition and the SRL-
Condition on the ‘total score’ (U = 930, p = .294, r = .106), nor in the degree to which 
both conditions followed the example-based-learning-principle (U = 1022.5, p = .570, 
r = .057), example-study-first-principle (U = 1104, p = .223, r = .123), lowest-level-first-
principle (U = 956, p = .068, r = .184), or start-each-level-with-example-principle 
(U = 1170, p = .209, r = .127). There was, however, a significant difference between 
conditions in following the simple-to-complex-principle (U = 838.5, p = .042, r = .205), 
which was followed entirely by 77.3% of the participants in the ISRL-Condition and only 
by 53.1% of the participants in the SRL-Condition. 

Table 5.4.
Percentages of Example-Based Learning Principles Applied in the Informed Self-
Regulated Learning Condition (n = 66) and Self-Regulated Learning Condition (n = 32).

Informed Self-Regulated
Learning Condition

Self-Regulated
Learning Condition

Principle 
followed 
entirely

Principle 
followed 
partially

Principle 
followed 
not at all

Principle 
followed 
entirely

Principle 
followed 
partially

Principle 
followed 
not at all

Example-based-learning-
principle 93.9% 4.6% 1.5% 90.6% 9.4% 0.0%

Example-first-principle 95.5% X 4.5% 100.0% X 0.0%

Lowest level-first-principle 97.0% X 3.0% 87.5% X 12.5%

Simple-to-complex-
principle 77.3% 6.0% 16.7% 53.1% 28.1% 18.8%

Start-each-level-with-
example-principle 77.3% 18.2% 4.5% 87.5% 12.5% 0.0%

Note. X = not a scoring option for this principle. 
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5.3.2.� To what extent do novices make effective task selections after a practice 
problem-solving attempt?

 
To shed further light on the quality of students’ task selections, we categorized the 

type of decisions students made after problem-solving practice, taking into account 
whether they performed well on the practice problem (75%-100% correct; ‘standard 
achieved’) or not (less than 75% correct, ‘standard not achieved’). The results are 
presented in Table 5.5. The ISRL-Condition made many more task selections after a 
practice problem than the SRL-Condition (i.e., 125 vs. 48, respectively). Both conditions 
made more effective task-decisions (i.e., moving up a complexity level after achieving 
the standard, or not moving up a complexity level after failing to achieve the standard) 
than ineffective task-decisions (all other choices, classified as “other task-selection 
decisions”). However, there was definitely room for improvement in both conditions, as 
approximately 40% of the task selections were likely classified as ineffective for learning

Table 5.5. 
Percentages of Task-Selection Decisions After Practice Problem Solving in the Informed 
Self-Regulated Learning Condition (n = 66) and Self-Regulated Learning Condition (n = 32).

Informed Self-Regulated  
Learning Condition

125 task-selection decisions 
after practice problem solving 

Self-Regulated  
Learning Condition

48 task-selection decisions 
after practice problem solving 

Standard achieved, video modeling 
example on higher complexity level

16.8% 18.7%

Standard achieved, worked example on 
higher complexity level 

18.4% 12.5%

Standard achieved, practice problem on 
higher complexity level 

7.2% 2.1%

Standard not achieved, video modeling 
example on similar or lower complexity 
level

4.0% 14.6%

Standard not achieved, worked example 
on similar or lower complexity level 

8.0% 6.3%

Standard not achieved, practice 
problem on similar or lower complexity 
level 

5.6% 8.3%

Other task-selection decisions* 40.0% 37.5%

Note. Standard achieved = performance 75% or higher. Standard not achieved = performance lower than 75%. 

5.3.3. Comparison of conditions on cognitive and motivational aspects of learning? 

Then, we analyzed whether conditions differed on cognitive and motivational 
aspects of learning (see Table 5.6). Note that we explored whether the results would 
change if we exclude those participants in the ISRL-Condition who did not watch the 
entire video detailing the instructional design guidelines. It was decided to keep these 
students in the sample, because removing them would not change the findings.

5.3.3.1 Cognitive aspects of learning

Performance on test tasks. Analyses revealed that conceptual knowledge 
increased from pretest to posttest (Z = 5.86, p < .001, r = .478). Post-hoc analyses showed 
significant increases in the FS-Condition (Z = 3.94, p < .001, r = .547) and ISRL-Condition 
(Z = 1.97, p = .001, r = .482), but not in the SRL-Condition (Z = 5.86, p = .049, r = .348). There 
was, however, no effect of Instruction Condition on students’ performance on the 
conceptual knowledge posttest, (H(2) = 0.21, p = .900), the isomorphic posttest tasks 
(H(2) = 1.34, p = .511), or the procedural transfer task (H(2) = 0.97, p = .616). 

Mental effort. There was no significant effect of Instruction Condition on (average) 
self-reported mental effort invested in the learning tasks, (H(2) = 3.16, p = .206), nor on 
the average invested mental effort in the conceptual knowledge posttest questions 
(H(2) = 3.23, p = .199), isomorphic posttest tasks (H(2) = 5.87, p = .053), or procedural 
transfer task (H(2) = 0.50, p = .780). 

Time-on-task. There was also no significant effect of Instruction Condition on 
average time-on-task invested in the learning tasks, (H(2) = 4.22, p = .121), conceptual 
knowledge questions (H(2) = 0.08, p = .961), or procedural transfer task (H(2) = 5.92, 
p = .052). Conditions differed in the average time-on-task invested in the isomorphic 
posttest tasks, H(2) = 7.86, p = .020. Follow-up analyses revealed that the ISRL-Condition 
invested less time in the isomorphic posttest tasks compared to the FS-Condition 
(U = 1247.5, p = .011, r = .234). No differences were found between the ISRL-Condition 
and SRL-Condition (U = 1326, p = .041, r = .207), nor between the SRL-Condition and FS-
Condition (U = 812.5, p = .857, r = .020).

*�Other task-selection decisions concern ineffective decisions, such as selecting a task at a higher 
complexity level when the standard was not achieved or selecting a task at a similar or lower complexity 
level when the standard was achieved.



141140

5.3.3.2 Motivational aspects of learning

Self-efficacy. We found a main effect of Test Moment on students’ self-efficacy from 
before to after the learning phase (at a sample level), (Z = 10.45, p < .001, r = .853), 
indicating that the self-efficacy medians significantly increased over time in the ISRL-
Condition (Z = 7.09, p < .001, r = .873), SRL-Condition (Z = 4.73, p < .001, r = .836), and 
FS-Condition (Z = 6.09, p < .001, r = .845). Self-efficacy after the learning phase did not 
differ among conditions (H(2) = 4.67, p = .097). We did, however, find a main effect of 
Instruction Condition on average self-efficacy ratings during the learning phase 
(H(2) = 7.86, p = .020). Post-hoc analyses revealed that average self-efficacy ratings 
were higher in the ISRL-Condition than the SRL-Condition (U = 702.5, p = .007, r = .271). 
No significant differences were found between the ISRL-Condition and FS-Condition 
(U = 1881.5, p = .369, r = .083), nor between the SRL-Condition and FS-Condition 
(U = 680.5, p = .162, r = .129).

Perceived competence. Analyzing whether perceived competence increased 
from pretest to posttest revealed a main effect of Test Moment (Z = 10.54, p < .001, 
r = .861). Perceived competence significantly increased in the ISRL (Z = 7.07, p < .001, 
r = .870), SRL (Z = 4.94, p < .001, r = .874), and FS-Condition (Z = 6.11, p < .001, r = .847). 
No differences were found among conditions, however, with regard to perceived 
competence rated after the learning phase, H(2) = 5.34, p = .069. 

Table 5.6.  
Mean (M), Standard Deviation (SD), and Median (Med) of Conceptual Questions (range 
0 to 9), Isomorphic Tasks (range 0 to 24), Procedural Transfer Task (range 0 to 8), Mental 
Effort (range 1 to 9), Self-Efficacy (range 1 to 9), and Perceived Competence (range 1 to 
7) for the Informed Self-Regulated Learning Condition (n = 66), Self-regulated Learning 
Condition (n = 32), and Fixed Sequences Condition (n = 52). 

Informed Self-Regulated 
Learning Condition

Self-Regulated
Learning Condition

Fixed Sequences 
Condition

M SD Med M SD Med M SD Med

Pretest

Conceptual Questions 2.50 1.13 3.00 2.66 1.23 3.00 2.25 1.25 2.00

Self-Efficacy 3.09 1.65 3.00 2.91 1.97 2.00 3.04 1.86 3.00

Perceived Competence 2.62 1.50 2.33 2.49 1.40 2.17 2.65 1.47 2.17

Learning Phase
Self-Efficacy 6.71 1.00 6.83 6.14 1.16 6.08 6.42 1.45 6.67

Mental Effort 3.20 0.99 3.33 3.71 1.04 3.50 3.45 1.50 3.33

Time-on-Task 8.28 2.43 8.50 7.38 2.32 8.00 7.50 2.17 7.25

Posttest
Conceptual Questions 3.73 2.23 3.00 3.63 2.49 3.50 3.77 2.21 4.00

Isomorphic Tasks 14.62 7.84 16.50 13.41 7.05 14.50 13.38 7.67 15.50

Procedural Transfer Task 3.29 3.48 2.00 2.41 3.12 0.00 2.77 2.95 2.00

Mental Effort
Conceptual Questions

3.70 1.62 3.00 4.09 1.73 4.00 3.46 1.78 3.00

Mental effort 
Isomorphic Tasks

3.66 1.87 3.33 4.60 2.01 4.33 3.66 2.03 3.00

Mental Effort 
Procedural Transfer Task

4.59 2.78 3.00 4.81 2.82 4.00 4.35 2.52 3.00

Time-on-Task 
Conceptual Questions

4.92 2.15 5.00 4.88 2.88 5.00 5.15 2.99 5.00

Time-on-Task 
Isomorphic Tasks

8.82 3.29 8.33 10.17 3.15 10.00 10.51 3.61 9.67

Time-on-Task 
Procedural Transfer Task

4.64 2.99 5.00 5.59 4.11 6.00 6.56 4.23 6.00

Self-Efficacy 7.27 1.22 7.00 6.72 1.11 6.50 7.06 1.65 7.00

Perceived Competence 5.86 0.89 6.00 5.52 0.77 5.33 5.62 1.23 6.00
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5.4. Discussion

This study investigated higher education students’ self-regulated learning of problem-
solving tasks in an online learning environment. We investigated whether: 1) the 
findings of Van Harsel et al. (submitted) that students regulate their learning from 
examples and practice problems quite well (i.e., in alignment with what we know to be 
effective task sequences from instructional design research) would replicate (Research 
Question 1), 2) self-regulated learning of examples and problems would be as effective 
as fixed sequences of examples and problems (Research Question 2), and 3) informing 
learners prior to self-regulated learning about the principles for effective task sequences 
derived from instructional design research would enhance their task selections, and 
thereby learning and motivation compared to self-regulated learning without such 
information and studying fixed sequences of tasks (Research Question 3). 

Regarding the first research question, our results replicated the findings of Van 
Harsel et al. (submitted), as task selections of students in the self-regulated learning 
condition (and informed self-regulated learning condition) largely aligned with the 
instructional design principles. Almost all students followed the example-first-principle 
and lowest-level-first-principle by starting the learning phase with an example 
(predominantly a video modeling example) at the lowest complexity level. Also, the 
majority of students started each new complexity level with example study (and 
therefore selected more examples than problems) and built up the level of complexity 
of the learning tasks reasonably well, adhering to the start-each-level-with-example-
study, example-based-learning, and simple-to-complex-principle. When exploring in 
more detail what task selections learners make after having solved a practice problem, 
we found that students made more effective (e.g., selecting a task at a higher 
complexity level when sufficiently high performance was achieved) than ineffective 
task selections (e.g., selecting a task at a higher complexity level when sufficiently high 
performance was not yet achieved), however, there seemed to be room for 
improvement.

As for the second research question, we found no performance or motivation 
differences between the self-regulated learning and fixed sequences condition. This is 
somewhat surprising in light of previous findings that fixed learning paths are often 
more effective for novices’ learning than self-regulated learning (see e.g., Azevedo et 
al., 2008; Lawless & Brown, 1997; Niemiec et al., 1996). That self-regulated learning did 
not have additional motivational benefits might also seem surprising, as previous 
research suggests that providing learners with control over task selection can increase 
their motivation in terms of interest and involvement (e.g., Corbalan et al., 2008). 
However, self-regulated learning might not foster students’ motivation in terms of 
perceptions of their own abilities (e.g., self-efficacy and perceived competence), 
possibly because this is much more related to learning outcomes (e.g., Collins, 1982), 
where we also found no effect.

With regard to the third research question, no significant differences were found 
between the two self-regulated learning conditions in how their task selections 
matched with the instructional design principles. The only exception was that students 
in the informed self-regulated learning condition followed the simple-to-complex-
principle more often than students in the self-regulated learning condition did 
spontaneously. However, this facilitative effect did not enhance the informed self-
regulated learning condition’s learning or motivation. There were two exceptions: 
relative to the self-regulated learning condition, the informed self-regulated learning 
condition showed more confidence in their own abilities during the learning phase 
(but this effect was not found after the learning phase) and invested less time in the 
posttest tasks isomorphic to the tasks in the learning phase. Finally, we did not find any 
differences on cognitive and motivational aspects of learning between the informed 
self-regulated learning condition and fixed sequences condition. 

5.4.1. Students’ Task-Selection Patterns

These findings raise an important question: Why did we (and Van Harsel et al., 
submitted) find that students were already quite good at regulating their learning of 
examples and problems, while other studies found that having control over what 
information to study or what tasks to work on is not (entirely) effective for novices’ self-
regulated learning (e.g., Foster et al., 2018), and often less effective than learning from 
computer pre-structured or personalized sequences of tasks (e.g., Azevedo et al., 
2008; Lawless & Brown, 1997; Niemiec et al., 1996)? A possible explanation is that our 
sample may have had substantial prior experience with learning from examples (cf. 
Van Harsel et al., submitted). Although we cannot corroborate this idea with data, our 
students were likely quite experienced with example-based learning, because their 
electrical and electronic mechanical engineering programs rely heavily on 
mathematics. Example-based learning indeed is a very common strategy for learning 
mathematical problem-solving skills (Hoogerheide & Roelle, 2020). If students were 
accustomed to studying examples when learning new math problem-solving skills, this 
would explain why examples were selected earlier and more often. By contrast, Foster 
et al. (2018) tested a mixed student population (from the university’s participant pool) 
that possibly had less experience with mathematics in their curricula and therefore 
with example-based learning. If true, this could explain why students in that study 
chose example study less early and often. 

5.4.2. Explicitly Informing Students about Effective Sequences

Another important question is: Why did our intervention only show a minimal effect 
on students’ task selections and why did it not enhance their learning and motivation? 
One possible explanation could be that approximately 40% of the students in the 
informed self-regulation condition did not watch the entire instructional video. However, 
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additional exploratory analyses revealed no significant performance or motivational 
differences among conditions when those who did not watch the entire video were 
excluded (see Supplementary Materials O). A more likely explanation is that there was 
not that much room for students’ task-selection skills to improve (with the exception of 
the simple-to-complex-principle, which those who studied the video did follow more 
often). Indeed, the self-regulated learning condition already did quite a good job at 
regulating their learning. 

A second potential explanation, given that there was still room for some 
improvement, is that informing students about the principles only once may not have 
been sufficient to improve task-selection behavior to such an extent that it enhances 
students’ learning and motivation. For example, students received a lot of information 
they had to both understand and memorize in order to apply it during the learning 
phase later. Although we provided a short review/reminder at the end of the 
instructional video, it is possible they forgot some of the principles and/or how/when to 
use them during the learning phase. A solution might be to allow students to go back 
to the description and explanation of the principles during the learning phase. 

It is also questionable whether ‘merely’ informing students about instructional 
design principles and how to apply them would improve task-selection behavior to 
such an extent that it enhances students’ learning and motivation. Although providing 
knowledge is considered an important component in theories on behavioral change 
(e.g., Theory of Planned Behavior; Fishbein & Ajzen, 2011), and although it had a small 
effect on behavior in our study (i.e., the simple-to-complex-principle was followed 
more often by those who studied the video), it is questionable whether it is sufficient for 
large scale behavioral change. To achieve those changes, it is for example also 
important to allow people to experience what the planned behavior actually brings 
them (i.e., to enhance their beliefs and commitment; McDaniel & Einstein, 2020), which 
might be achieved by additionally having students practice with and/or reflect on the 
information that is provided to them (e.g., Biwer et al., 2019; Endres et al., 2021). 
Moreover, as still 40% of the task selections made after solving a problem were likely not 
effective for learning, it might be necessary to link the principles more strongly to 
students’ (self-assessments of) their understanding and performance (e.g., emphasize 
what to do when they do not yet master a task at a certain complexity level) or to 
target their self-assessment ability (cf. Kostons et al., 2012; Raaijmakers et al., 2018). 

5.4.3. Limitations

This study does have several important limitations. First, it is an open question to 
which extent our findings are generalizable, because our sample –despite being 
novices– might have had prior experience with example-based learning and/or similar 
types of (math) tasks. Less experienced samples would likely show different (i.e., worse) 

task-selection behavior. Therefore, it is unclear whether our instructional video 
intervention would have a more pronounced effect (i.e., improve task-selection, and 
thereby motivation and learning) under different circumstances, such as with less 
experienced samples. A particularly interesting avenue for future research would be to 
test this intervention with a sample that has previously been shown to show suboptimal 
task-selection behavior when learning from examples and problems (e.g., Foster et al., 
2018).

A second limitation is that, although our students had more responsibility and 
control over their learning relative to most example-based learning research, they still 
did not have full control over their learning. For instance, students had to select six 
learning tasks, yet in real learning settings there would likely be much more variation in 
the number of tasks selected, due to differences in motivation (e.g., motivated students 
would be willing to work on more tasks than unmotivated students) and abilities (e.g., 
faster learners would not need as many tasks relative to slower learners). This is an 
interesting avenue for future research.

5.4.4. Conclusion and Implications for Practice

To conclude, the findings suggest that the higher education students who 
participated in this study were relatively good at regulating their own learning with 
examples and problems in online learning environments (cf. Van Harsel et al., 
submitted). This is an important finding because providing students with control over 
their own learning is becoming more and more common, especially in higher 
education. Given that earlier studies painted a less rosy picture of students’ self-
regulated learning of problem-solving skills using examples and problems (e.g., Foster 
et al., 2018), and that the sample used in this study might have had some prior 
experience with similar mathematics problem-solving tasks, future research is needed 
to uncover under which circumstances students can and cannot regulate their 
learning of new problem-solving skills. Our findings also suggest that there is still room 
for some improvement in students’ task selections. Informing students about evidence-
based instructional design principles via an instructional video can help them to apply 
the simple-to-complex-principle more often, however, not to such an extent that it 
results in performance or motivational benefits. Therefore, future research should 
examine how the design and/or implementation of this intervention can be improved 
to (further) improve self-regulated learning of our population and other populations of 
higher education students.
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Chapter 6

Summary and discussion
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A vast body of instructional design research has shown that example study is a very 
effective and efficient instructional strategy for acquiring new problem-solving skills 
(for a review, see Van Gog et al., 2019). During the past years, example-based learning 
has become increasingly popular in formal and informal educational settings, as it 
has become much easier to create and share examples thanks to modern 
technological advances (e.g., Hoogerheide & Roelle, 2020). However, the technological 
possibilities are far ahead of our understanding of what the optimal sequences of 
(different types of) examples and practice problems would be to foster students’ 
learning and motivation. Therefore, the first aim of this dissertation was to examine 
what sequences of examples and practice problems are most effective, efficient, and 
motivating for first year higher education students’ learning of new mathematical 
problem-solving skills (Chapter 2 and 3). 

Furthermore, with the emerging popularity of educational concepts such as 
flipping the classroom, blended learning, and massive online open courses, students 
nowadays acquire new knowledge and skills increasingly via online learning 
environments (in blended or fully online courses), in which worked examples, video 
modeling examples, and practice problems are often embedded (e.g., Roll et al., 
2011). These online environments usually require students to self-regulate their learning 
(e.g., when doing homework or studying for a test) and determine themselves where 
(i.e., at school or at home), when, and how they want to study. However, relatively little 
is known about how (well) learners regulate their own learning from examples and 
practice problems and whether and how they need support for that. Therefore, the 
second aim of this dissertation was to examine how and how well first year higher 
education students regulate their learning from examples and practice problems in an 
online learning environment and whether informing them about effective, efficient, 
and motivating instructional design principles helps to improve their task-selections, 
and thereby their motivation and learning outcomes (Chapter 4 and 5).

This chapter summarizes and discusses the findings of the studies in each part of 
the dissertation, along with implications and suggestions for future research.

6.1. Part 1: Sequencing Example Study and Practice Problem Solving

6.1.1. Summary of findings

Chapter 2 reported two experiments that investigated whether different short 
sequences of examples and practice problems (i.e., 4 learning tasks) differ in 
effectiveness, efficiency, and how they affect motivational aspects of learning. In 
Experiment 1 (N = 124), technical higher education students learned how to 
approximate the region under a graph using the trapezoidal rule (a math task) by 

means of example study only, example-problem pairs, problem-example pairs, or 
problem solving only. Experiment 2 (N = 81) used the same materials and design as 
Experiment 1, but with a sample of primary teacher training students in order to 
examine whether results would replicate with a different sample (i.e., students with a 
non-technical background). Effectiveness was measured by assessing performance 
on the isomorphic test tasks, procedural transfer task, and conceptual transfer task. 
Efficiency was measured by logging time-on-task and rating invested mental effort 
after each task in the learning and posttest phase. Motivation was measured by 
means of short self-efficacy, perceived competence, and topic interest questionnaires, 
provided to learners before and after the learning phase.

Results of Experiment 1 showed that students in all three example conditions 
attained equal or higher performance on the isomorphic posttest tasks while investing 
less effort in the learning phase. Students in all three example conditions also reported 
higher levels of self-efficacy and perceived competence after the learning phase 
relative to students who engaged in practice problem solving only. Also, example 
study only resulted in higher performance on the isomorphic posttest tasks with less 
time and effort investment in the learning phase compared to the other example 
conditions, and higher levels of self-efficacy than the condition with example-problem 
pairs. This pattern was somewhat different in Experiment 2, however. In Experiment 2, 
students in all three example conditions attained equal or higher performance on the 
isomorphic posttest tasks while investing less effort in the learning phase. However, only 
students in the examples only condition reported higher self-efficacy and perceived 
competence than students in both the problem-example pairs and problem-solving 
only condition. Finally, there were no differences between example-problem and 
problem-example pairs on any of the outcome variables, except for a time-on-task 
advantage for the problem-example pairs condition in Experiment 1. No differences 
among conditions were found on the transfer measures or on topic interest in either 
experiment. 

Chapter 3 reported two experiments that examined whether different short (i.e., 4 
tasks) and longer (i.e., 8 tasks) sequences of example study only, example-problem 
pairs, problem-example pairs, and practice problem-solving practice show differences 
in effectiveness, efficiency, and motivation. Experiment 1 aimed to investigate whether 
the results of Experiment 1 described in Chapter 2 would replicate with a conceptual 
pretest (instead of a procedural pretest) and would remain stable on a delayed test 
one week later. Experiment 2 examined whether the effects found with short sequences 
would generalize to longer sequences. In both experiments, it was investigated how 
self-efficacy develops during the learning phase. Therefore, technical higher education 
students learned a mathematical procedure with the help of four (Experiment 1; N = 
157) or eight learning tasks (Experiment 2; N = 105) sequenced as (video modeling) 
examples only, example-problem pairs, problem-example pairs, or problems only. The 
outcome measures were identical to the ones described in Chapter 2, except that self-
efficacy was also measured after each task in the learning phase. 
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In both experiments, self-efficacy was higher after the first learning task when 
participants started with an example than when they started with a problem. However, 
after the second learning task, students in all example conditions (also problem-
example pairs) reported higher self-efficacy than students in the problem-solving only 
condition, and this pattern remained stable during and after the learning phase (cf. 
perceived competence). In Experiment 1, students in all three example sequences 
also attained higher performance on the isomorphic and procedural transfer tasks 
than students in the problem-solving only condition, while investing less effort in the 
learning phase. In Experiment 2, students in the example study only condition (but not 
in the other two example conditions) attained higher isomorphic posttest performance 
with lower effort investment in the learning phase than students who engaged in 
problem-solving only. No differences were found among conditions on conceptual 
transfer or on topic interest in either experiment. Finally, the amount of mental effort 
and time students reported to have invested in the learning tasks was lower in the 
example only than the other example conditions in Experiment 1 and 2, and mental 
effort was lower in the example-problem pairs than in the problem-example pairs 
condition in Experiment 1. 

6.1.2. Implications of results

The experiments reported in Chapter 2 and 3 made several important contributions 
to the literature on example-based learning. Firstly, all four experiments replicated prior 
findings that example study – possibly alternated with problem-solving practice – is 
very effective and efficient for novices’ acquisition of new problem-solving skills (cf. Van 
Gog et al., 2019). Secondly, the findings extend existing example-based learning 
research by showing that short sequences of example study (interspersed with 
problem-solving practice) are also highly beneficial for students’ expectancies of their 
own abilities (i.e., self-efficacy and perceived competence), but not for topic interest. 
Moreover, it was found that sequences containing example study remained effective, 
efficient, and motivating on a delayed test administered one week later. 

6.1.2.1. Motivational effects of example-based learning

That all three example sequences were more conducive to self-efficacy and perceived 
competence than problem solving only is in line with Bandura’s (1977, 1986) social 
learning theory, and adds to the sequencing literature. Not much was known about 
the motivational effects of different example and problem sequences, because 
sequencing research has mostly been conducted against the backdrop of cognitive 
theories (e.g., cognitive load theory) that tend to ignore student motivation (Sweller et 
al., 2011; Van Gog & Rummel, 2010). Self-efficacy and perceived competence are 
important to consider in sequencing research: Self-efficacy has been shown to 
enhance factors such as academic motivation, study behavior, and learning outcomes 
(e.g., Bandura, 1997; Bong & Skaalvik, 2003; Schunk, 2001), and perceived competence 

has also been shown to have significant influence on academic motivation and 
learning outcomes (e.g., Bong & Skaalvik, 2003). Moreover, both self-efficacy and 
perceived competence positively affect the willingness to invest effort and task 
persistence (e.g., Pintrich, 2003; Schunk, 1995). 

That sequences with examples were not more beneficial for enhancing students’ 
interest in the topic than problem solving only is at first glance a surprising finding, 
because the example conditions learned more, and research has shown that an 
increase in knowledge can lead to an increase in interest (e.g., Schmidt & Rotgans, 
2017). That being said, topic interest was relatively high in our samples and might not 
have been affected by the short (i.e., single session) interventions in the studies 
presented in this dissertation.

In sum, sequences with example study increased students’ beliefs in their own 
abilities and did not affect topic interest relative to only practice problem-solving. 
These findings indicate that, from a motivational perspective, all three sequences 
containing example study are “safe” to use in educational practice when novices 
learn new problem-solving skills. A caveat to this interpretation is that motivation is an 
incredibly broad concept, and therefore future sequencing research is recommended 
to examine effects on other aspects of student motivation. A particularly interesting 
avenue for future research might be to measure effects of different sequences on 
perceptions of autonomy, which refers to the basic need to have choices and be free 
from control. For example, it is possible that example study (only) would be too 
prescriptive and thereby impair feelings of autonomy relative to sequences that 
include practice problem solving. 

6.1.2.2. Starting with example study versus problem-solving practice?

Another important finding reported in Chapter 2 and 3 is that starting with a problem 
worked better for learning and motivation than expected based on prior research, 
provided that problem-solving was followed by an example to study (i.e., problem-
example pairs). That is, based on prior research (e.g., Kant et al., 2017; Leppink et al., 
2014; Van Gog et al., 2011), it was expected that the problem-example condition would 
perform as poorly as the problem-solving only condition and therefore be less effective 
and efficient than example-problem pairs. However, none of the experiments using 
short sequences revealed performance or motivation differences between problem-
example and example-problem pairs, and a problem-example pair sequence was 
generally more effective, efficient, and motivating than problem-solving only. We must 
note, though, that example-problem pairs were more efficient than problem-example 
pairs, as the example-problem pairs condition showed lower average scores on effort 
investment in the learning phase compared to the problem-example pairs condition. 
While conducting the four experiments, several other studies also did not find any test 
performance differences between example-problem and problem-example pairs 
(e.g., Coppens et al., 2019; Van der Meij et al., 2018). 
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These mixed findings raise the question of whether an example-problem sequence 
does or does not promote learning relative to a problem-example sequence. This 
question was explored in Chapter 2 via a small-scale meta-analysis, which showed a 
significant, small-to-medium meta-analytic advantage of example-problem pairs over 
problem-example pairs on test performance. However, there was substantial variation 
in the results, suggesting that the benefit of an example-problem sequence over a 
problem-example sequence is probably not as large as previously believed, and may 
only occur under specific conditions. This raises the question of what factors determine 
when example-problem pairs are (not) advantageous over problem-example pairs.

One factor that might explain these mixed findings is student motivation. Van Gog 
et al. (2011) proposed that when problem-solving tasks require domain-specific 
knowledge and are not inherently rewarding or enjoyable (e.g., troubleshooting 
electrical circuits), starting the learning phase with a failed problem-solving attempt 
could cause students to lose confidence in their abilities or interest in the task. As a 
consequence, this would cause them to disengage and not be motivated to study 
tasks that follow. By contrast, rewarding and enjoyable tasks (e.g., a puzzle problem; 
Van Gog, 2011) might ‘shield’ students from such motivational issues, because failing 
at puzzle problems might challenge rather than demotivate learners to study an 
example that follows. As the studies reported in Chapter 2 and 3 used problem-solving 
tasks that require domain-specific knowledge and were not intrinsically rewarding or 
enjoyable, one would expect to find performance and motivational benefits of 
example-problem pairs. Indeed, Chapter 3 did reveal that starting with an example 
was more beneficial for self-efficacy than starting with a problem. However, this 
difference quickly disappeared after studying an example as a second learning task 
and therefore, none of the experiments revealed differential effects on overall 
motivation or performance. Although one could argue that the math task was relevant 
and potentially rewarding for technical higher education students because learning 
such integration methods is important in order to carry out their future profession, this 
argument does not apply to teacher training students for whom this is less relevant. It 
is important to note, though, that student motivation in terms of topic interest was fairly 
high in both samples. As learners cope with challenging tasks more effectively when 
they maintain their interest (e.g., Ainly et al., 2002) and enjoy what they are doing (e.g., 
Linnenbrink & Pintrich, 2004), it is possible that students who are interested in a topic 
would more easily persist after failing to solve a practice problem, because a failed 
problem-solving attempt elicits feelings of enjoyment or challenge. By contrast, starting 
with a failed practice problem might have a demotivating effect when students are 
not interested in a topic and cause students to disengage.

Another factor that might explain these mixed findings (and could interact with 
motivation) is the type of example format used, since studies with worked examples 
generally reported an advantage of example-problem pairs (e.g., Leppink et al., 2014; 
Van Gog et al., 2011) while most studies with video modeling examples did not find any 

performance differences between example-problem and problem-example pairs 
(Coppens et al., 2019; Van Gog, 2011; Van Harsel et al., 2019, 2020; Van der Meij et al., 
2018)6. It is possible that after starting with a failed practice problem, (demotivated) 
learners would be less willing to pay attention to worked examples than video modeling 
examples. Worked examples might feel more overwhelming because all the information 
is presented simultaneously. Video modeling examples, however, present information 
step-by-step and the combination of dynamic visual information and the model’s 
narration takes the learner by the hand. 

In short, the advantage of example-problem pairs over problem-example pairs is 
likely smaller than previously believed. Future research will have to uncover under 
which conditions example-problem pairs are (not) more beneficial for learning than 
problem-example pairs, for instance by comparing the effects of example-problem 
and problem-example pairs with worked vs. video modeling examples and with low vs. 
highly interesting material.

6.1.2.3. Effects of example study only

A final important finding is that studying examples only was particularly effective, 
efficient, and motivating for learning (Chapters 2 and 3). Example study only resulted 
in higher motivation and test performance than problem solving only. Moreover, the 
example study only condition attained equal or higher test performance scores with 
less effort and/or time investment in the learning phase relative the other two example 
conditions. Even with longer task sequences, studying different examples remained 
very effective, efficient, and motivating. These findings are surprising in light of the 
expertise-reversal effect (e.g., Kalyuga et al., 2001), which states that learners who 
have (acquired) knowledge benefit more from activities with minimal instructional 
guidance such as problem solving than from activities with a lot of instructional 
guidance such as example study, and in light of Sweller & Cooper’s (1985) suggestion 
that additional practice could be experienced as more motivating than continuing 
with the more passive activity of studying examples. So why did example study not lose 
its benefits? 

A possible reason could be that the learning tasks increased in complexity, while 
the number of tasks per complexity level was rather limited (i.e., 2 or 4 tasks per 
complexity level). Consequently, students likely often did not qualify as advanced 
learners and may have not experienced an example only sequence as too repetitive 
or redundant. Although task complexity commonly also increases in expertise-reversal 
research, in that line of research students typically work on many more tasks that 
enable them to become advanced learners (e.g., Kalyuga et al., 2001). 

6  �Except for the study of Kant et al. (2017) that did find EP to be more effective than PE with video modeling 
examples. 
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With even longer task sequences and more learning tasks per complexity level, it 
indeed seems probable that example study would become less effective and 
motivating for learning, as studying examples without solving any practice problem 
might eventually become redundant or boring. Another contributing factor might be 
that a self-paced learning environment was used, in which learners could decide for 
themselves how long they wanted to work on tasks. Although participants were always 
instructed to watch the entire video modeling example, the online learning environment 
did allow students to skip (parts of) the example. The time-on-task data that was 
obtained during the learning phase showed that time spent on the examples 
decreased as the learning phase progressed, which in turn might have prevented 
learners from perceiving examples as redundant or demotivating. 

In sum, results have shown that example study only is very effective, efficient, and 
motivating, even with longer sequences. However, given the paucity of sequencing 
research with longer task sequences, follow-up research should further investigate 
whether the findings replicate and under what circumstances example study holds or 
loses its effectiveness, efficiency, and motivational benefits (i.e., by increasing 
sequence length or comparing self-paced versus system- or experimenter-paced 
environments). 

6.1.3 Interesting avenues for future sequencing research

In addition to the suggestions for future follow-up research raised above, there are 
several more general directions for future research that could help move the research 
on example-based learning forward. 

6.1.3.1. Extending sequencing research with different formats and sequences.

Most sequencing research has focused on the same sequences (i.e., example study 
only, example-problem pairs, problem-example pairs, and problem solving) and the 
same task formats (i.e., video modeling examples, worked examples, and practice 
problems). Yet, these sequences and task formats might be suboptimal if the aim is to 
gradually reduce instructional support during learning. Therefore, it might be interesting 
to include other formats, such as erroneous examples or a mix of correct and erroneous 
examples (e.g., Große & Renkl, 2007; Kopp et al., 2008) and completion problems (e.g., 
Renkl & Atkinson, 2003; Van Merriënboer et al., 2002). For instance, there is already 
some research showing that sequences containing worked examples, completion 
problems, and practice problems are more effective than example-problem pairs 
(Atkinson et al., 2003; Renkl et al.,2002). Less is known, however, about how including 
these formats affect motivational aspects of learning and how sequences including 
erroneous examples, or a mix of correct and erroneous examples affect motivation 
and learning compared to the sequences that have been studied so far. Moreover, it 
might be more motivating and effective for novices to study a sequence that starts 
with several examples and then continues with example-problem pairs or completion 

problems, so that students initially experience little if any extraneous load (i.e., 
demands on working memory that are due to poorly designed instructional procedures 
and do not contribute to learning; Paas et al., 2010) and can focus on learning the 
procedure before they start applying (parts of) it. 

6.1.3.2. Extending sequencing research with more classroom studies.

Another important next step in sequencing research would be to examine the effects 
of different example and problem sequences in real classroom settings, such as during 
a course or an entire curriculum, and over a longer period of time (Hoogerheide & 
Roelle, 2020; Renkl, 2014; Van Gog et al., 2019). The experiments reported in Chapter 2 
and 3 of this dissertation already answered the call for more classroom studies by 
investigating the efficacy of different sequences in a classroom setting. However, these 
settings were still fairly controlled, and the experiments were conducted within a 
relatively short period of time (e.g., one or two sessions across a time period of 
approximately 2 hours). As a result, it is possible that motivation did not play a major 
role in determining whether students stayed engaged or disengaged while working on 
certain sequences. It would therefore be interesting to study the development of 
motivation during a multi-week course (although the use of a practice problem only 
control condition would raise ethical concerns in this context, given the findings 
presented in this dissertation). 

6.2. Part 2: Self-regulating example study and practice problem solving

6.2.1. Summary of findings

Chapter 4 describes an explorative study that investigated what choices technical 
higher education students (N = 147) make and why when they learn a mathematical 
problem-solving skill by selecting six learning tasks themselves from a task-database 
with 45 tasks that varied in format (video modeling examples, worked examples, and 
practice problems), complexity level (level 1, 2, and 3), and cover story. Students were 
assumed to be novices to the modelled task. Subsequently, it was explored to what 
extent their task-selection decisions match with effective, efficient, and motivating 
principles derived from instructional design research (see Table 6). Finally, it was 
explored whether there is a positive relation between the extent to which students 
follow these instructional design principles and their scores on cognitive (isomorphic 
test tasks, procedural transfer task, and conceptual questions, mental effort, and time-
on-task) and motivational variables (self-efficacy, perceived competence, and topic 
interest).

Results showed that students’ choices aligned quite well with the instructional 
design principles, as the vast majority of students selected many examples during the 
learning phase and started the learning phase with an example instead of a problem. 
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Almost all students also started the learning phase with a task at the lowest complexity 
level. However, only half of the sample built up the learning tasks from simple to 
complex. Also, most students started each complexity level with example study. During 
the entire learning phase, examples were preferred over practice problems and 
students mostly selected items from the lowest complexity level. Finally, total scores of 
how well students task selections matched with all of the principles did not correlate 
with any of the cognitive or motivational variables.

Table 6.
Effective, efficient, and motivating principles derived from instructional design research 
on learning new problem-solving skills

Principle Explanation References

Example-based-
learning-principle

Replacing all or a substantial number 
of practice problems with examples 
helps novices to learn more (i.e., is 
more effective) with less time and effort 
investment (i.e., is more efficient) than 
solving practice problems without any 
instructional support, and also more 
motivating.

e.g., Sweller et al. (2011), 

Van Gog et al. (2019)

Van Harsel et al. (2019, 2020)

Example-study-first-
principle

Novices should start the learning phase 
with an example instead of a practice 
problem, as this was found to be more 
efficient, than starting with problem-
solving only, and also more motivating. 

e.g., Van Gog et al. (2011)

Van Harsel et al. (2019, 2020)

Lowest-level-first-
principle

Novices should start with a task at the 
lowest level of complexity

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Simple-to-complex-
principle

Novices should gradually increase 
the level of task complexity as their 
knowledge increases

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Start-each-level-with-
example-principle

Novices should receive a high level of 
instructional support (like an example) 
at the start of each new complexity 
level

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

The final study presented in Chapter 5 investigated whether the results of Chapter 4 
would replicate, and additionally explored which task-selections were made after 
working on a practice problem. It was also investigated whether self-regulated learning 
would be as effective, efficient, and motivating for learning as a fixed task sequence, 
and whether explicitly informing learners about instructional design principles would 
enhance their task-selections during self-regulated learning, and thereby performance 
and motivation. The outcome measures were identical to Chapter 4, except that topic 

interest was not measured. Technical higher education students (N = 150), who were 
assumed to be novices to the modelled task, learned a mathematical problem-solving 
procedure and were allocated to a fixed task sequences condition, a self-regulated 
learning condition, or an ‘informed’ self-regulated learning condition. In the fixed 
sequence condition, students received six learning tasks based on effective, efficient, 
and motivating instructional design principles. In both self-regulated learning 
conditions, students selected six learning tasks themselves from the task database (cf. 
Chapter 4). Before selecting their own learning tasks, students in the ‘informed’ self-
regulated learning condition watched a video instruction concerning the principles. 

Results were similar to those reported in Chapter 4, that is, students’ task-selection 
patterns in the self-regulated learning condition aligned relatively well with the 
instructional design principles, except for building up task complexity from simple to 
complex. Students in the informed self-regulated learning condition followed the 
principles slightly better, as tasks were built up more often from simple to complex 
compared to the self-regulated learning condition. However, this did not enhance 
their motivation and learning outcomes. Analyses of students’ task-selections made 
after working on a practice problem revealed that both conditions made more 
effective decisions (i.e., moving up a complexity level after achieving the standard, or 
not moving up a complexity level after failing to achieve the standard) than ineffective 
decisions (i.e., selecting a task at a higher complexity level when the standard was not 
achieved or selecting a task at a similar or lower complexity level when the standard 
was achieved) after working on a practice problem. Yet, there was still quite some 
room for improvement as more than one third of the task-selections made after solving 
a practice problem were qualified as ineffective for learning. Finally, no significant 
differences in learning outcomes or motivation were found between the self-regulated 
learning conditions and the fixed sequence condition.

6.2.2. Implications and future research 

The studies reported in Chapter 4 and 5 showed that students regulated their 
learning reasonably well, as their task selections were overall in line with what we know 
to be effective, efficient, and motivating sequences from instructional design research. 
Surprisingly, the study reported in Chapter 5 showed that self-regulated learning of 
examples and problems was as effective, efficient, and motivating for learning as a 
fixed sequence of tasks. Although informing students about instructional design 
principles via a video instruction before self-regulated learning helped students to do 
a better job at building up the complexity of tasks (i.e., sequenced from simple to 
complex), this intervention had no effect on how well the other principles were followed 
and did not enhance learning or motivational outcomes. Moreover, no differences 
were found between the informed self-regulated learning condition and the fixed 
sequence condition on any of the outcome measures. 
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6.2.2.1. Students’ self-regulated learning of examples and problems

That most students’ task selections spontaneously matched with most of the evidence-
based instructional design principles was surprising, given that Foster and colleagues 
(2018) found that novices underutilize example study with respect to the amount (i.e., 
about 40 percent worked examples versus 60 percent practice problems) and timing 
(i.e., students rarely started the learning phase with example study) of their use. Yet this 
might explain why self-regulated learning was found to be as effective and motivating 
as a fixed task sequence, which was a very interesting finding given that prior research 
has shown that providing novices with control over what information to study or what 
tasks to work on hampers learning relative to computer pre-structured or personalized 
task sequences (e.g., Azevedo et al., 2008; Lawless & Brown, 1997; Niemiec et al., 1996). 
Two possible (not mutually exclusive) explanations are discussed below for why students 
regulated their learning from examples and practice problems quite well in my studies 
(and therefore performed as well as students in the fixed sequence condition). 

The first possible explanation is that the task database in the learning environment 
contained both video modeling examples and worked examples at each complexity 
level and therefore presented more examples than problems (67% vs. 33%, respectively), 
increasing the chance of an example being selected instead of a problem. This could 
also explain why the students of Foster et al. (2018) relied more heavily on problem 
solving, as students could either select worked examples and practice problems (i.e., 
50% examples) or worked examples, completion problems, and practice problems (i.e., 
33% examples). 

A second potential explanation is that the sample used in this dissertation consisted 
only of technical higher education students instead of a mixed group of students 
obtained from a research university’s participant pool (as in the study of Foster et al., 
2018). In the study programs of the student samples in this dissertation, mathematics is 
an important subject and as a result, students might have already had experience 
with similar mathematical problem-solving procedures (i.e., using formulas or related 
integration methods). This prior experience might have helped students decide how 
much support they needed or what complexity level they should work on. As research 
has suggested, prior knowledge guides information selection, in a sense that 
individuals with extensive prior knowledge are better able to identify their knowledge 
needs and make their task-selections accordingly (e.g., Corbalan et al., 2006; Gall & 
Hannafin, 1994). Moreover, example-based learning is a very common strategy for 
learning mathematical problem-solving skills (e.g., Hoogerheide & Roelle, 2020) and 
therefore students might have been familiar with learning new mathematical problem-
solving skills with the help of examples. 

In sum, these findings suggest that higher education students can be quite 
capable of self-regulating their learning from examples and problems in an online 

learning environment, and that when they do, their learning outcomes do not differ 
significantly compared to those students who work on a fixed task sequence. However, 
future research is needed to uncover to what extent novices’ ability to regulate their 
learning from examples and problems is moderated by task database aspects (such 
as the ratio and type of examples) and sample characteristics (such as their experience 
with example-based learning and similar types of tasks). 

6.2.2.2. Supporting students’ self-regulated learning of examples and problems. 

Another key finding reported in Chapter 5 is that explicitly informing students about 
effective, efficient, and motivating instructional design principles helped students to 
do a better job at gradually building up the complexity of the tasks. However, this did 
not enhance students’ performance or motivation. It is an open question why informing 
students about instructional design principles through an instructional video was not 
that effective. 

One explanation could be that there was not that much room for students’ task-
selection skills to improve, as evidenced by the fact that students in the self-regulated 
learning condition who did not watch the video already did quite a good job regulating 
their learning from examples and practice problems. It must be noted, though, that 
the results reported in Chapter 5 showed that more than one third of the task-selections 
made after working on a practice problem were likely not effective for learning. These 
results could suggest that students experienced some difficulties with self-assessing 
their performance after working on a practice problem or selecting a suitable follow-
up task, and that there is still some room for improvement.

Another possible explanation is that students may have had trouble remembering 
and therefore applying the content of the video during self-regulated learning, because 
the instructional video was only studied once. Allowing students to study the video 
several times before self-regulated learning or to revisit the video or its principles during 
self-regulated learning might therefore increase the effectiveness of the intervention. 
Moreover, to really help people change their behavior, it is considered important to 
ensure that they experience what the “planned behavior” actually brings them (i.e., to 
enhance their beliefs and commitment; McDaniel & Einstein, 2020). This could for 
instance be achieved by additionally having students practice with and/or reflect on 
the information that is provided to them (e.g., Biwer et al., 2019; Endres et al., 2021). 
Furthermore, as the results reported in Chapter 5 showed that more than one third of the 
task-selections made after working on a practice problem were likely not effective for 
learning, it could also be suggested to investigate whether linking the principles more 
strongly to students’ (self-assessments of) their understanding and performance (e.g., 
emphasize what to do when they do not yet master a task at a certain complexity level) 
or to target their self-assessment ability (cf. Kostons et al., 2012; Raaijmakers et al., 2018) 
enhances their task-selections, and thereby performance and motivation.
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In sum, these findings revealed that informing students on how to sequences 
examples and problems with an instructional video helped students to make better 
task-selection decisions, but not to such an extent that it enhanced their learning and 
motivation. Therefore, research should further investigate whether adapting the 
(implementation of the) intervention would further enhance task-selections, performance, 
and motivation. Moreover, as the sample used in the studies of this dissertation probably 
already had some prior experience with example-based learning and with similar tasks, 
it would be interesting to investigate the effects of both interventions with a sample that 
lacks this experience (e.g., the sample of Foster et al., 2018). 

6.3 Limitations 

The research presented in this dissertation has some limitations. Firstly, given that all 
experiments relied on samples from the same student population (i.e., technical higher 
education students; except for Experiment 2, Chapter 3) and the same math problem-
solving materials (i.e., learning how to use the trapezoidal rule), it is unclear to what extent 
the findings would generalize to other contexts. This is particularly true for novel findings, 
such as the effects of different sequences of examples and problems on student motivation 
(Part I of this dissertation) and how (well) students self-regulate their learning from examples 
and problems (Part II of this dissertation). All participants were likely quite motivated (as 
evidenced by the relatively high averages of topic interest). It is possible that students with 
lower interest would have been more heavily affected by (starting with) a failed problem-
solving attempt and therefore would have learned less from problem-example pairs (Part 
I of this dissertation). Moreover, because math covers a large part of technical higher 
education students’ curriculum, students probably had prior experience with similar 
types of tasks or learning from examples, which could have helped them in making 
relatively adequate task-selection decisions (Part II of this dissertation). 

Another limitation is that students were limited in what types of tasks they could 
work on (Chapters 2 and 3, fixed sequences condition Chapter 5) and how many tasks 
they could work on (all conditions in Chapters 2, 3, 4, and 5). This choice was made to 
ensure that conditions would be comparable in all other respects. Yet in real learning 
settings there would likely be much more variation in the type and number of tasks 
selected, because an ideal task sequence hinges on students’ prior knowledge, 
speed of learning, motivation, and effort investment and therefore varies from learner 
to learner. It is likely that some students provided with a task sequence worked on tasks 
that were not optimal given their level of expertise and motivation. Similarly, even 
students in the self-regulation conditions who received some control over their learning 
were likely not always able to make choices that truly fit their level of expertise, because 
they were only allowed to select six tasks while having to master three complexity levels. 
Therefore, future research could examine what choices students make when it is up to 
them how many learning tasks they select. 

6.4 Conclusions and recommendations for practice

Based on the results of the first part of this dissertation and findings from previous 
research, it seems important to provide student with little or no prior knowledge 
(multiple) examples - possible alternated with practice problems - when learning new 
problem-solving skills. Although providing them with examples only is also effective, 
motivating and especially efficient for learning (according to these studies), in practice 
it is probably desirable to let students also practice problems themselves (as previous 
research has shown that this helps them to assess their own learning progress; Baars et 
al., 2014; 2017). The best order to provide examples and practice problems is to have 
students start their learning with an example prior to problem-solving practice instead 
of the other way around. However, this seems to apply when study time and learning 
tasks are limited. When sequences get longer, the motivation and efficiency benefit (in 
terms of effort) of starting with an compared ot starting with a practice problem seems 
to disappear. When task sequences are longer, it is still advisable to provide examples 
to students because this is more effective, efficient and motivating for learning than 
solving practice problems alone, as long as the complexity of the tasks builds up from 
simple to complex (if there is only one level of task complexity, we know from previous 
research that the advantage of studying examples disappears and that students 
benefit more from solving practice problems; Kalyuga 2001).

In view of the results of the second part of this dissertation, it seems ‘safe’ to allow 
students, perhaps after some instruction on effective instructional design principles 
(see Table 6), to independently start learning new problems-solving tasks using 
examples and problems, in the sense that this does not seem to harm their learning 
compared to a fixed set of learning tasks structured according to those principles. 
However, caution is warranted because it is unclear whether these findings generalize 
to other student populations, as the students participating in my studies may already 
have had some experience with similar tasks or learning with examples. Moreover, 
even after instruction on effective instructional design principles, there was still room 
for improvement in students’ task selections, particularly when one considers what 
tasks students selected after working on a practice problem. Follow-up research 
should therefore investigate how we can further improve self-regulated learning from 
examples and practice problems, for example by showing learners the video instruction 
more often, or by training students in making better self-assessments based on which 
they can make appropriate follow-up tasks.
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A: Example of a practice problem

Jalil has bought a solar cell and wants to know how much energy the solar cell supplies 
during a certain amount of time. Jalil has used an energy meter to examine how much 
energy the solar cell produces during a specific amount of time. Jalil has measured 
the energy at different time points and plotted the results in a graph. The time (in 
minutes) is plotted on the horizontal axis and the power the solar cell supplies (Joule 
per minute) is plotted on the vertical axis of the graph. By calculating the area under 
the graph, Jalil can determine how much energy the solar cell has produced during a 
certain amount of time.

Approaching the area under the graph can be done by using the trapezoidal rule: 

The trapezoidal rule divides the area under a graph into “strips”. By adding up the 
surface of the “strips”, you can approach the total area under the graph. To approach 
the area under the graph, you need the following information: 

a: this is the left x value of the area that has to be approached; 
b: this is the right x value of the area that has to be approached; 
n: this is the number of “strips” in which the area is divided; 
xi: �this is the x-value that belongs to the left- or right border of a “strip” and it is calculated 

using the following function: 

Approach the area under the graph using the information that is given. Write down all 
your intermediate steps and calculations. 
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B: Example of a video modeling example 

1 2

3 4

5 6
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C: Example of a worked example

Jalil has bought a solar cell and wants to know how much energy the solar cell sup-
plies during a certain amount of time. Jalil has used an energy meter to examine how 
much energy the solar cell produces during a specific amount of time. Jalil has mea-
sured the energy at different time points and plotted the results in a graph. The time (in 
minutes) is plotted on the horizontal axis and the power the solar cell supplies (Joule 
per minute) is plotted on the vertical axis of the graph. By calculating the area under 
the graph, Jalil can determine how much energy the solar cell has produced during a 
certain amount of time.

          

Approaching the area under the graph can be done by using the trapezoidal rule: 

The trapezoidal rule divides the area under a graph into “strips”. By adding up the sur-
face of the “strips”, you can approach the total area under the graph. To approach the 
area under the graph, you need the following information: 

a: this is the left x value of the area that has to be approached, this is 
b: this is the right x value of the area that has to be approached, this is 
n: this is the number of “strips” in which the area is divided, this is 
xi: this is the x-value that belongs to the left- or right border of a “strip” and it is 
calculated using the following function: 

Step 1: Compute the step of each subinterval

1.

2.

Step 2: Calculate the x-values: 

1.

2.

3.

4.

Step 3: Calculate the function values for all x-values

1.

2.

3.

4.

Step 4: Enter the function values into the formula and calculate the area

Formula: 

Adjusted formula with step 1 and 2 included:
	    

Adjusted formula with step 3 included and calculated:

The approached area under the graph is 
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b: this is the right x value of the area that has to be approached, this is 0 = 3 

n: this is the number of "strips" in which the area is divided, this is 1 = 3 

xi: this is the x-value that belongs to the left- or right border of a "strip" and it is calculated 

using the following function: 2(4) = 34" − 64 + 9 
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Jalil has bought a solar cell and wants to know how much energy the solar cell supplies during a 

certain amount of time. Jalil has used an energy meter to examine how much energy the solar 
cell produces during a specific amount of time. Jalil has measured the energy at different time 
points and plotted the results in a graph. The time (in minutes) is plotted on the horizontal axis 
and the power the solar cell supplies (Joule per minute) is plotted on the vertical axis of the 
graph. By calculating the area under the graph, Jalil can determine how much energy the solar 
cell has produced during a certain amount of time. 
 

           
 

Approaching the area under the graph can be done by using the trapezoidal rule:  
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you need the following information:  
 

a: this is the left x value of the area that has to be approached, this is / = 1 !" 
b: this is the right x value of the area that has to be approached, this is 0 = 3 

n: this is the number of "strips" in which the area is divided, this is 1 = 3 

xi: this is the x-value that belongs to the left- or right border of a "strip" and it is calculated 

using the following function: 2(4) = 34" − 64 + 9 
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Jalil has bought a solar cell and wants to know how much energy the solar cell supplies during a 

certain amount of time. Jalil has used an energy meter to examine how much energy the solar 
cell produces during a specific amount of time. Jalil has measured the energy at different time 
points and plotted the results in a graph. The time (in minutes) is plotted on the horizontal axis 
and the power the solar cell supplies (Joule per minute) is plotted on the vertical axis of the 
graph. By calculating the area under the graph, Jalil can determine how much energy the solar 
cell has produced during a certain amount of time. 
 

           
 

Approaching the area under the graph can be done by using the trapezoidal rule:  

 
 
The trapezoidal rule divides the area under a graph into "strips". By adding up the surface of the 
"strips", you can approach the total area under the graph. To approach the area under the graph, 
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b: this is the right x value of the area that has to be approached, this is 0 = 3 

n: this is the number of "strips" in which the area is divided, this is 1 = 3 

xi: this is the x-value that belongs to the left- or right border of a "strip" and it is calculated 

using the following function: 2(4) = 34" − 64 + 9 
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Jalil has bought a solar cell and wants to know how much energy the solar cell supplies during a 

certain amount of time. Jalil has used an energy meter to examine how much energy the solar 
cell produces during a specific amount of time. Jalil has measured the energy at different time 
points and plotted the results in a graph. The time (in minutes) is plotted on the horizontal axis 
and the power the solar cell supplies (Joule per minute) is plotted on the vertical axis of the 
graph. By calculating the area under the graph, Jalil can determine how much energy the solar 
cell has produced during a certain amount of time. 
 

           
 

Approaching the area under the graph can be done by using the trapezoidal rule:  

 
 
The trapezoidal rule divides the area under a graph into "strips". By adding up the surface of the 
"strips", you can approach the total area under the graph. To approach the area under the graph, 

you need the following information:  
 

a: this is the left x value of the area that has to be approached, this is / = 1 !" 
b: this is the right x value of the area that has to be approached, this is 0 = 3 

n: this is the number of "strips" in which the area is divided, this is 1 = 3 

xi: this is the x-value that belongs to the left- or right border of a "strip" and it is calculated 

using the following function: 2(4) = 34" − 64 + 9 
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Jalil has bought a solar cell and wants to know how much energy the solar cell supplies during a 

certain amount of time. Jalil has used an energy meter to examine how much energy the solar 
cell produces during a specific amount of time. Jalil has measured the energy at different time 
points and plotted the results in a graph. The time (in minutes) is plotted on the horizontal axis 
and the power the solar cell supplies (Joule per minute) is plotted on the vertical axis of the 
graph. By calculating the area under the graph, Jalil can determine how much energy the solar 
cell has produced during a certain amount of time. 
 

           
 

Approaching the area under the graph can be done by using the trapezoidal rule:  

 
 
The trapezoidal rule divides the area under a graph into "strips". By adding up the surface of the 
"strips", you can approach the total area under the graph. To approach the area under the graph, 

you need the following information:  
 

a: this is the left x value of the area that has to be approached, this is / = 1 !" 
b: this is the right x value of the area that has to be approached, this is 0 = 3 

n: this is the number of "strips" in which the area is divided, this is 1 = 3 

xi: this is the x-value that belongs to the left- or right border of a "strip" and it is calculated 

using the following function: 2(4) = 34" − 64 + 9 
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Jalil has bought a solar cell and wants to know how much energy the solar cell supplies during a 

certain amount of time. Jalil has used an energy meter to examine how much energy the solar 
cell produces during a specific amount of time. Jalil has measured the energy at different time 
points and plotted the results in a graph. The time (in minutes) is plotted on the horizontal axis 
and the power the solar cell supplies (Joule per minute) is plotted on the vertical axis of the 
graph. By calculating the area under the graph, Jalil can determine how much energy the solar 
cell has produced during a certain amount of time. 
 

           
 

Approaching the area under the graph can be done by using the trapezoidal rule:  

 
 
The trapezoidal rule divides the area under a graph into "strips". By adding up the surface of the 
"strips", you can approach the total area under the graph. To approach the area under the graph, 

you need the following information:  
 

a: this is the left x value of the area that has to be approached, this is / = 1 !" 
b: this is the right x value of the area that has to be approached, this is 0 = 3 

n: this is the number of "strips" in which the area is divided, this is 1 = 3 

xi: this is the x-value that belongs to the left- or right border of a "strip" and it is calculated 

using the following function: 2(4) = 34" − 64 + 9 

 



183182

D: Chapter 3 - Example of a conceptual prior knowledge test question

Question: What is the minimum required number of measurement points needed to be 
able to successfully apply the trapezoidal rule?

a.	 0

b.	 1

c.	 2

d.	 3

E: Chapter 4 and 5 - Example of a conceptual prior knowledgetest question

Question 1: When the number of intervals increases, what can you say about the 
accuracy of the approximation of the area under a graph?

Answer the question and explain your answer
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F: Example of a isomorphic test task

Rachel is an intern at a factory that produces different kinds of perfume. At one point, 
Rachel’s supervisor asks her to examine how many liters of perfume is produced of the 
brand ‘Scents’ in two days. Rachel has measured this and plotted the results in a 
graph. The time (in days) is plotted on the horizontal axis and the liters (liter per day) 
are plotted on the vertical axis. By approaching the area under the graph, Rachel can 
determine how much liter has been produced during a certain amount of time.

Approaching the area under the graph can be done by using the trapezoidal rule: 

The trapezoidal rule divides the area under a graph into “strips”. By adding up the 
surface of the “strips”, you can approach the total area under the graph. To approach 
the area under the graph, you need the following information: 

a: this is the left x value of the area that has to be approached;
b: this is the right x value of the area that has to be approached; 
n: this is the number of “strips” in which the area is divided; 
xi: this is the x-value that belongs to the left- or right border of a “strip” and it is calculated 
using the following function: 

Approach the area under the graph using the information that is given. Write down all 
your intermediate steps and calculations.

G: Example of a procedural transfer test task

It takes energy to stop an elevator at a certain level. This energy is proportional to the 
distance between the current and desired position. Jimmy wants to determine how 
much energy is used to stop the lift three levels higher by measuring the distance 
during a certain amount of time. Jimmy has plotted the results in a graph. The time (in 
seconds) is plotted on the horizontal axis and the distance (in meters) is plotted on the 
vertical axis. By approaching the area under the graph, Jimmy can determine the 
energy that is needed. 

Approaching the area under the graph can be done by using the Simpson rule: 

The Simpson rule divides the area under a graph into “strips”. By adding up the surface 
of the “strips”, you can approach the total area under the graph. To approach the 
area under the graph, you need the following information:

a: this is the left x value of the area that has to be approached;
b: this is the right x value of the area that has to be approached; 
n: this is the number of “strips” in which the area is divided; 
xi: this is the x-value that belongs to the left- or right border of a “strip” and it is calculated 
using the following function: 

Approach the area under the graph using the information that is given. Write down all 
your intermediate steps and calculations. 



187186

H: Example of a conceptual transfer test task

Study the graph below (this is a part of a parabola): 

You can approach the area under this graph with help of the trapezoidal rule 
in two ways:

A: Left border 2 and right border 4
B: Left border 7 and right border 9

Which surface will approach the exact surface at best? Choose one of the options and 
explain your answer.

I: Topic interest scale 

Items (in Dutch) Translation (in English) 

1. �Ik vind de opdrachten over de 
trapeziumregel erg interessant

 

1. �I think that the tasks about 
the trapezoidal rule are very 
interesting

2. �Weten hoe de trapeziumregel 
werkt is niet belangrijk voor mij

 

2. �Knowing how the trapezoidal 
rule works is not important to me

3. �Het is gemakkelijk om mijn 
aandacht bij de opdrachten over 
de trapeziumregel te houden

 

3. �It is easy to stay focused on 
tasks about the trapezoidal rule 

4. �Ik wil meer te weten komen over 
de trapeziumregel

 

4. �I am keen to learn more about 
the trapezoidal rule 

5. �Ik vind de opdrachten over de 
trapeziumregel niet boeiend

 

5. �I think that the tasks about the 
trapezoidal rule are uninteresting

6. �Ik vind andere wiskunde 
onderwerpen relevanter dan de 
trapeziumregel

 

6. �I think that other mathematics 
topics are more relevant than 
the trapezoidal rule 

7. �Ik vind dat tijdens de 
wiskundelessen aandacht 
besteed moet worden aan de 
trapeziumregel 

7. �I think that during math class, 
more attention should be paid 
to the trapezoidal rule 
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How do short sequences of examples and problems affect time-on-task in the training 
phase? There was a main effect of Instruction Condition, H(3) = 52.45, p < .001. The 
average time invested in the training tasks was shorter in the EEEE Condition than in the 
EPEP and PEPE Condition, and shorter in the PPPP Condition than in the EPEP and PEPE 
Condition. No other post-hoc comparisons were significant. 

How do short sequences of examples and problems affect mental effort and time-on-
task in the posttest phases? 

Mental effort. Mental effort during the posttest phases was also explored as a 
measure of efficiency. There was a main effect of Instruction Condition, H(3) = 18.11, p 
< .001, and the average of perceived effort was lower in the EEEE, EPEP, and PEPE 
Condition than in the PPPP Condition. No other condition comparisons were significant. 
The pattern of results was similar for average mental effort invested in the isomorphic 
tasks on the delayed posttest. There was a main effort of Instruction Condition, H(3) = 
22.52, p < .001, and mental effort ratings were again lower in the EEEE, EPEP, and PEPE 
Condition compared to the PPPP Condition. Again, no differences were found among 
other condition comparisons. Regarding mental effort invested while solving the 
procedural transfer task on the immediate posttest, there was a main effect of 
Instruction Condition, H(3) = 9.38, p = .025, and mental effort was significantly lower in 
the PEPE than the PPPP Condition. No other condition comparisons were significant. 
There was also a main effect of Instruction Condition for mental effort invested while 
solving the procedural transfer task on the delayed posttest, H(3) = 11.09, p = .011. Effort 
ratings were significantly higher in the EPEP and PEPE Condition compared to the PPPP 
Condition. Again, other comparisons were not significantly different. 

Time-on-task. As for average time-on-task invested in the isomorphic tasks on the 
immediate posttest, there was a main effect of Instruction Condition, H(3) = 64.06, p < 
.001. Average time-on-task was longer in the EEEE, EPEP, and PEPE Condition than in the 
PPPP Condition. Moreover, the average time-on-task was longer in the EEEE Condition 
compared to the EPEP and PEPE Condition. No differences were found between the 
EPEP and PEPE Condition. Regarding average time-on-task invested in the isomorphic 
tasks on the delayed posttest, there was also a main effect of Instruction Condition, 
H(3) = 26.01, p < .001. Time-on-task was longer in the EEEE, EPEP, and PEPE Condition 
compared to the PPPP Condition. No other post-hoc comparisons were significant. 
There was also a main effect of Instruction Condition for average time-on-task spent on 
the procedural transfer task during the immediate posttest, H(3) = 16.13, p = .001. The 
average time-on-task was longer in the EEEE, EPEP, and PEPE Condition than in the PPPP 
condition. Other post-hoc comparisons were not significant. Concerning average 
time-on-task spent on the procedural transfer task during the immediate posttest, 
there was a main effect of Instruction Condition, H(3) = 9.36, p = .025. Time-on-task was 
only significantly longer in the PEPE Condition compared to the PPPP Condition and no 
other condition comparisons were significant. L:
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How do longer sequences of examples and problems affect time-on-task in the training 
phase? There was a main effect of Instruction Condition, H(3) = 45.61, p < .001, and 
time-on-task was significantly shorter in the EEEEEEEE Condition than in the EPEPEPEP, 
PEPEPEPE, and PPPPPPPP Condition. Moreover, post-hoc tests showed that time-on-task 
was longer in the EPEPEPEP Condition compared to the PEPEPEPE Condition. No other 
condition comparisons were significant. 

How do longer sequences of examples and problems affect mental effort and time-on-
task in the posttest phase?

Mental effort. Analyzing self-reported effort invested in solving the isomorphic 
posttest tasks revealed a significant main effect of Instruction Condition, H(3) = 17.46, p 
= .001. Average mental effort was significantly higher in the EEEEEEEE Condition 
compared to the EPEPEPEP and PEPEPEPE Condition. Moreover, effort ratings were 
significantly higher in the PPPPPPPP Condition compared to the EPEPEPEP and PEPEPEPE 
Condition. No other comparisons were significant. There was also a main effect of 
Instruction Condition regarding invested mental effort when solving the procedural 
transfer task, H(3) = 12.23, p = .007. Post-hoc tests showed that effort ratings were lower 
in the PEPEPEPE Condition compared to the PPPPPPPP Condition but other condition 
comparisons were not significant. Finally, there was no main effect of Instruction 
Condition for mental effort invested in the conceptual transfer questions. 

Time-on-task. Exploring average time-on-task spent on the isomorphic posttest 
tasks revealed a main effect of Instruction Condition, H(3) = 45.41, p < .001. Participants 
in the EEEEEEEE Condition spent more time on the isomorphic posttest tasks than 
participants in the EPEPEPEP, PEPEPEPE, and PPPPPPPP Condition. No other comparisons 
showed significant results. As for average time spent on the procedural transfer task, 
we also found a main effect of Instruction Condition, H(3) = 9.74, p = .021. Average 
time-on-task was significantly longer in the EEEEEEEE Condition than in the PPPPPPPP 
Condition but no other post-hoc comparisons were significant. Finally, analysis 
revealed a main effect of Instruction Condition for average time spent on the 
conceptual transfer questions, H(3) = 8.51, p = .037. Post-hoc tests showed that time-on-
task was significantly longer in the EEEEEEEE Condition compared to the EPEPEPEP 
Condition, however, no other post-hoc comparisons were significant.

M: Chapter 4 - Examples of scoring how well students followed the instructional design principles 

Scoring protocol

Example-based-learning-principle
1 point for selecting 3 or more examples during the learning phase (50% or more)
0.5 point for selecting 2 examples during the learning phase (33%)
0 points for selecting less than 2 examples during the learning phase (less than 33%)

Example-study-first-principle
1 point for starting the learning phase with an example
0 points for starting the learning phase with a practice problem

Lowest-level-first-principle
1 point for starting the learning phase with a task at the lowest complexity level (level 1)
0 points for starting the learning phase with a task a higher complexity level (level 2 or 3)

Simple-to-complex-principle
1 point for selecting tasks at the same or a higher complexity level (i.e., never selecting 
a task of a lower level than already worked on)
0.5 points for building up the level of task complexity, but decreasing the level of 
complexity during the learning phase
0 points for students not building up the level of task complexity at all

Start-each-level-with-example-principle
1 point for always starting a new complexity level with an example
0.5 points for sometimes stating a new complexity level with an example and sometimes 
with a practice problem
0 points for always starting a new complexity level with a practice problem
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Example 1

Task selections of student X

Learning tasks Format Complexity level

Task 1 Video modeling example Level 1

Task 2 Worked example Level 1

Task 3 Practice problem, level 1 Level 1

Task 4 Video modeling example Level 2

Task 5 Practice problem Level 2

Task 6 Worked example Level 2

Principle Score for student X

Example-based-learning-principle 1 point

Example-study-first-principle 1 point

Lowest-level-first-principle 1 point

Simple-to-complex-principle 1 point

Start-each-level-with-example-principle 1 point

Total score 5 points (out of 5)

Example 2

Task selections of student Y

Learning tasks Format Complexity level

Task 1 Practice problem Level 2

Task 2 Practice problem Level 2

Task 3 Worked example Level 2

Task 4 Practice problem Level 1

Task 5 Practice problem Level 1

Task 6 Worked example Level 1

Principle Score for student Y

Example-based-learning-principle 0.5 points

Example-study-first-principle 0 points

Lowest-level-first-principle 0 points

Simple-to-complex-principle 0 points

Start-each-level-with-example-principle 0 points

Total score 0.5 points (out of 5)
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N: Chapter 5 – Translated script for the video instruction (in English)

Soon, you will learn all about the mathematical subject “the trapezoidal rule” in the 
online learning environment. You are free to choose 6 tasks that will help you to learn the 
trapezoidal rule to the best of your abilities. As you know, there are tasks at 3 levels of 
complexity. You can choose tasks at each of these complexity levels in the form of video 
modeling examples, worked examples, or practice problems. Do you already know what 
tasks you want to select to be able to solve all the tasks on the posttest? Here are four tips, 
derived from scientific research, that can help you learn as much as possible.

Tip 1: �First, choose a task at the lowest complexity level and build up the 
complexity of the tasks. 

If you start learning and you don’t how to use the trapezoidal rule, it might be good start 
with a task that is not too difficult. Therefore, choose a task at the lowest complexity level. 
Do you feel you’ve mastered this level? Then, choose a task at a higher complexity level. 
This way, you build up the complexity of the tasks in such a way that it fits with what you 
already know. 

Tip 2: �Start with an example at each complexity level, especially when you feel 
you (still) know too little to solve the tasks. 

If you don’t know much about how to use the trapezoidal rule, it is not only useful to start 
with a task at the lowest complexity level, but also to learn more about how to solve such 
a task. By choosing an example, you will learn how to use the trapezoidal rule, because 
an example shows you how to solve a problem step-by-step. This prevents you from 
spending a lot of time figuring out the right solution procedure yourself. Starting with an 
example is therefore also very helpful when you want to choose a task at a higher 
complexity level.

Tip 3: �Start at the very beginning with a video modeling example, then choose 
worked examples.

You can choose two different example formats. A video modeling example provides a lot 
of support during learning, because you can hear and see the solution procedure step-
by-step. This is very useful if you are studying the trapezoidal rule for the first time. You can 
also opt for a worked example. In a worked example, you can only see the entire solution 
procedure. Whereas the information in a video modeling example quickly disappears, 
all steps are always visible in a worked example. This is very useful if you already 
understand part(s) of the solution procedure, but want to look up some more (difficult) 
steps.

Do you think you understand the solution procedure presented in the examples and 
want to check whether you do? Then, choose a practice problem so you can practice 
the task. 

Tip 4: Alternate examples and practice problems 
As said before, it is recommended to select an example first before solving a practice 
problem when you want to move to a higher complexity level for the first time. This way, 
you can study the steps that you might find difficult. Moreover, you get an impression of 
the complexity of the task. When you think you understand the problem-solving 
procedure, then select a practice problem so you can test whether you actually 
understand the problem-solving task. 

Before you start, here is a short summary of the tips:

Tip 1: �First, choose a task at the lowest complexity level and build up the 
complexity of the tasks. 

Tip 2: �Start with an example at each complexity level, especially when you feel 
you (still) know too little to solve the problem

Tip 3: �Start at the very beginning with a video modeling example, then choose 
worked examples.

Tip 4: Alternate examples and practice problems 

And now it is time to get started, good luck!
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O: Chapter 5 – Explorative analyses of differences among subgroups in the ISRL-Condition

We explored to which degree participants in the ISRL-Condition followed the 
instructional design principles depended on whether they watched the entire, between 
half and three quarter, or less than half of the video. Results showed that these groups 
differed in following the lowest-level-principle (H(2) = 7.55, p = .023); however, post-hoc 
tests with a Bonferroni correction revealed no significant results (ps = .019; adjusted 
level of significance = .017). The groups also differed in following the simple-to-complex-
principle (H(2) = 13.45, p = .001), and follow-up analyses showed that watching the 
entire (U = 151, p = .002, r = .425) or between half and three quarter of the video 
instruction (U = 45.5, p = .014, r = .556) resulted in higher scores on following the simple-
to-complex-principle than watching less than half of the video. Finally, there was a 
difference among groups in the total score on following the principles (H(2) = 7.77, p = 
.021). Post-hoc tests showed that participants who watched the entire video instruction 
scored higher on following all of the principles than participants who watched less 
than half of the video instruction (U = 152.5, p = .010, r = .357). 

We also explored whether there were performance and motivational differences 
among participants in the ISRL condition, depending on whether they watched the 
entire, between half and three quarter, or less than half of the video instruction. There 
were no significant differences among these groups on any of the outcome variables 
(ps = 0.77), except for participants’ confidence in their own abilities before the learning 
phase, as indicated by a main effect on pretest self-efficacy (H(2)= 10.46, p = .005) 
and pretest perceived competence (H(2)= 7.24, p = 0.27). Post-hoc tests only showed 
one significant comparison on both motivational measures: Relative to the participants 
who only watched between half and three quarter of the video, those who watched 
the entire video indicated lower levels of pretest self-efficacy (U = 407, p = .003, r = .413) 
and perceived competence (U = 380.5, p = .016, r = .334).
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Nederlandse samenvatting
(Summary in Dutch)

Leren probleem-oplossen in het hoger onderwijs:
Het sequentiëren en zelfgestuurd leren van 
voorbeelden en oefenproblemen.
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Probleem-oplostaken vormen een belangrijk onderdeel van het curriculum op veel 
(hoge)scholen, bijvoorbeeld in vakken waarin natuurkunde, technologie, engineering 
en wiskunde de basis vormen. Veel van de probleem-oplostaken die studenten 
tegenkomen in deze vakken zijn algoritmisch, waarbij studenten moeten leren een 
procedure uit te voeren waarmee je van A (beschreven beginsituatie) naar B 
(beschreven eindsituatie) komt. Het oplossen van deze problemen vraagt om 
conceptuele en procedurele kennis over welke acties uit te voeren, hoe deze uit te 
voeren en waarom deze uit te voeren. Een effectieve manier voor novieten, dat wil 
zeggen lerenden met weinig tot geen voorkennis van een specifieke taak, om dergelijke 
kennis te verwerven is door middel van het leren van voorbeelden (Van Gog et al., 
2019). Denk hierbij aan tekst-gebaseerde voorbeelden (Sweller et al., 2011), waarin 
stap voor stap is uitgewerkt hoe een probleem opgelost moet worden, bijvoorbeeld 
een uitgewerkte wiskunde opgave in een wiskundeboek. Maar denk ook aan 
modelvoorbeelden (Bandura, 1977), waarin een model stap voor stap de 
oplossingsprocedure demonstreert en daarbij eventueel mondelinge uitleg geeft, 
bijvoorbeeld een leraar die voordoet en uitlegt hoe je een wiskunde opgave moet 
oplossen. Modelvoorbeelden kunnen live gegeven worden (de leraar die het oplossen 
van een wiskundeprobleem in de les voordoet en uitlegt), maar worden ook steeds 
vaker gegeven door middel van video (Van Gog et al., 2014). 

Met de komst van moderne technologieën waarmee videovoorbeelden gemakkelijk 
gemaakt en gedeeld kunnen worden, is de populariteit van het leren van voorbeelden 
de afgelopen jaren alleen maar toegenomen (Hoogerheide & Roelle, 2020). Denk 
bijvoorbeeld aan YouTube, dat vol staat met how-to video’s over een scala aan 
onderwerpen, die ook relevant zijn voor het onderwijs. Echter, de technologische 
mogelijkheden lopen vooruit op wat we weten over de wijze waarop voorbeelden het 
beste ingezet kunnen worden in het onderwijs om de prestaties en motivatie van 
studenten te bevorderen. Daarom was de eerste centrale vraag van dit proefschrift 
(Deel 1, hoofdstuk 2 en 3) om te onderzoeken hoe effectief, efficiënt en motiverend 
verschillende kortere en langere sequenties van (video) voorbeelden en 
oefenproblemen zijn voor eerstejaars hbo-studenten tijdens het leren oplossen van 
nieuwe wiskunde problemen?

Bovendien, met de toenemende populariteit van onderwijsconcepten zoals 
flipping the classroom, blended learning en het leren via MOOC’s (Massive Online 
Open Courses) verwerven studenten tegenwoordig steeds meer kennis en 
vaardigheden via online leeromgevingen. In dit soort omgevingen zijn vaak ook 
videovoorbeelden, uitgewerkte voorbeelden en oefenproblemen ingebed (Roll et al., 
2011). Deze online leeromgevingen vereisen doorgaans van studenten dat zij zelf 
kunnen bepalen waar (bijvoorbeeld op school of thuis), wanneer en hoe ze kennis en 
vaardigheden willen verwerven. Echter, er is relatief weinig bekend over hoe en hoe 
goed studenten hun leren reguleren met behulp van videovoorbeelden, uitgewerkte 
voorbeelden en oefenproblemen en of zij hierin ondersteuning nodig hebben. Daarom 

was de tweede centrale vraag van dit proefschrift (Deel 2, hoofdstuk 4 en 5) om te 
onderzoeken hoe (goed) eerstejaars hbo-studenten in het technisch onderwijs hun 
leren reguleren van voorbeelden en oefenproblemen in een online leeromgeving, en 
of hun taakselecties, leerresultaten en motivatie verbeteren wanneer we hen expliciet 
informeren over effectieve, efficiënte en motiverende instructieprincipes?

Deel 1: Het sequentiëren van voorbeelden en oefenproblemen

In eerdere onderzoek is onderzocht of sommige sequenties (volgorde van - en 
verhouding tussen) van voorbeelden en problemen effectiever en efficiënter zijn dan 
andere. Effectiever betekent in dit geval dat studenten beter presteren op testtaken die 
vergelijkbaar zijn met wat zij hebben geoefend (isomorfe taken) en soms op testtaken 
die nieuw zijn maar waarvoor dezelfde procedure gevolgd moeten worden als voor de 
taken die geleerd zijn (transfer taken). Efficiënter betekent in dit geval dat gelijke of 
hogere prestaties worden behaald met minder mentale inspanning of tijdsinvestering 
tijdens de leerfase of tijdens het oplossen van de testtaken. Deze sequenties bestonden 
voornamelijk uit alleen voorbeelden, een voorbeeld gevolgd door een oefenprobleem 
(voorbeeld-probleem paar), een oefenprobleem gevolgd door een voorbeeld 
(probleem-voorbeeld paar) of alleen problemen (zie Figuur 1 voor een visuele 
weergave). Uit dit onderzoek is gebleken dat het bestuderen van alleen voorbeelden 
en voorbeeld-probleem paren even effectief en efficiënt is, maar dat beiden effectiever 
en efficiënter zijn dan het bestuderen van probleem-voorbeeld paren of alleen 
oefenproblemen oplossen (Van Gog et al., 2011). 

Figuur 1: Verschillende sequenties van voorbeelden en problemen. 

We weten echter nog weinig over wat de effecten van deze verschillende 
sequenties van voorbeelden en oefenproblemen zijn op de motivatie van studenten 
(Van Gog et al., 2011). Motivatie is belangrijk voor de onderwijspraktijk. Zeker in 
leeromgevingen of -situaties waarin studenten zelf keuzes kunnen maken is het 
belangrijk om rekening te houden met het effect van (sequenties van) leertaken op 
hun motivatie, omdat het van invloed kan zijn op de mate waarin een student begint, 
doorzet of stopt met leren (Pintrich, 2003). In dit deel van het proefschrift is de impact 
van verschillende sequenties op twee belangrijke aspecten van motivatie onderzocht, 
namelijk de mate van vertrouwen in eigen kunnen (Engels: self-efficacy en perceived 
competence) en interesse in de taak (Engels: topic interest). 
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Ook is onderzocht of deze aspecten van motivatie kunnen verklaren waarom het 
starten met een oefenprobleem doorgaans minder effectief en efficiënt is voor 
novieten dan het starten met een voorbeeld. Starten met een poging een probleem 
op te lossen, zonder te weten hoe dit aangepakt moet worden, zou er voor kunnen 
zorgen dat het vertrouwen in eigen kunnen en de taakinteresse van de student 
vermindert. Als gevolg daarvan bestudeert de student het opvolgende voorbeeld (en 
andere vervolgtaken) mogelijk minder goed, wat een negatief effect op het 
leerresultaat kan veroorzaken (Van Gog et al., 2011). Het zou in dat geval beter zijn te 
starten met een voorbeeld. Het voordeel van het starten met een voorbeeld geldt 
mogelijk alleen wanneer taken als oninteressant of onplezierig worden ervaren. Als 
taken interessant en plezierig zijn, wordt het starten met een probleem wellicht als 
uitdagend ervaren, waardoor studenten eerder gemotiveerd dan gedemotiveerd 
raken als zij (nog) niet weten hoe zij een probleem moeten aanpakken. 

Ten slotte is het de vraag of resultaten op prestatie, motivatie, mentale inspanning 
en tijd anders zijn wanneer de verschillende sequenties langer worden en dus meer 
leertaken bevatten. De resultaten uit eerder onderzoek zijn namelijk vooral gevonden 
met korte taaksequenties van 2 of 4 leertaken. Het is mogelijk dat de resultaten anders 
zijn als taaksequenties langer worden. We weten bijvoorbeeld dat als voorkennis 
toeneemt, het bestuderen van voorbeelden voor studenten minder effectief is dan het 
oplossen van oefenproblemen (Kalyuga et al., 2001). Het bestuderen van alleen 
voorbeelden zou daarom minder effectief en efficiënt kunnen worden, en het 
bestuderen van probleem-voorbeeld paren effectiever en efficiënter. Daarnaast speelt 
motivatie mogelijk ook hier weer een rol. Dat wil zeggen, met langere taaksequenties 
wordt het enkel bestuderen van voorbeelden mogelijk als minder motiverend ervaren 
dan wanneer de geleerde kennis ook toegepast kan worden in oefenproblemen. 

Onderzoeksresultaten

Het doel van de twee experimenten beschreven in hoofdstuk 2 van dit proefschrift was 
om te onderzoeken hoe effectief, efficiënt en motiverend verschillende sequenties van 
(video) voorbeelden en oefenproblemen zijn. In het eerste experiment kregen 
eerstejaars hbo-studenten in het technisch onderwijs (N = 124) vier wiskunde leertaken 
aangeboden in één van de vier condities, namelijk 1) voorbeelden, 2) voorbeeld-
probleem paren, 3) probleem-voorbeeld paren, of 4) problemen. Om te onderzoeken 
of de resultaten zouden repliceren met een andere studentpopulatie (studenten met 
een niet-technische achtergrond), werd een tweede experiment uitgevoerd met 
dezelfde opzet maar met pabo-studenten (N = 81). Effecten op isomorfe taken en een 
procedurele en conceptuele transfertaak werden onderzocht (effectiviteit), alsmede 
de geleverde inspanning en geïnvesteerde tijd na iedere taak in de leerfase en testfase 
(efficiëntie). Motivatie werd voor en na de leerfase gemeten met behulp van korte 
vragenlijsten gericht op vertrouwen in eigen kunnen en taakinteresse. 

In het eerste experiment leidden de drie condities waarin voorbeelden (afgewisseld 
met oefenproblemen) werden aangeboden tot hogere prestaties op de isomorfe 
taken, met minder moeite en meer vertrouwen in eigen kunnen dan de conditie 
waarin alleen oefenproblemen werden aangeboden. Daarnaast leidde de conditie 
waarin alleen voorbeelden werden tot hogere prestaties op de isomorfe taken, met 
minder moeite, tijdsinvestering en meer vertrouwen in eigen kunnen dan de conditie 
met voorbeeld-probleem paren. In het tweede experiment leidden de drie condities 
waarin voorbeelden (afgewisseld met oefenproblemen) werden aangeboden ook tot 
hogere prestaties op de isomorfe taken, met minder moeite en meer vertrouwen in 
eigen kunnen dan de conditie waarin alleen oefenproblemen werden aangeboden. 
De resultaten op motivatie verschilden echter van het eerste experiment. In het tweede 
experiment leidde alleen de conditie met voorbeelden tot meer vertrouwen in eigen 
kunnen dan de condities waarin probleem-voorbeeld paren of alleen oefenproblemen 
werden aangeboden. Daarnaast behaalde de conditie met alleen voorbeelden 
dezelfde prestaties met minder moeite en tijdsinvestering dan de condities met 
voorbeeld-probleem paren en probleem-voorbeeld paren. In beide experimenten 
werden geen verschillen gevonden in prestatie, vertrouwen in eigen kunnen en 
mentale inspanning tussen voorbeeld-probleem paren en probleem-voorbeeld 
paren. Ook werd er in beide experimenten geen verschil gevonden tussen de vier 
condities op de transfertaken en taakinteresse. 

Omdat in de experimenten beschreven in hoofdstuk 2, in tegenstelling tot eerder 
onderzoek (Van Gog et al., 2011), geen verschillen werden gevonden tussen voorbeeld-
probleem paren en probleem-voorbeeld paren in prestatie en vertrouwen in eigen 
kunnen, en omdat studenten in de conditie met alleen voorbeelden een hogere 
prestatie en meer vertrouwen in eigen kunnen bereikte dan de conditie met voorbeeld-
probleem paren, werd in het eerste experiment beschreven in hoofdstuk 3 onderzocht 
of deze resultaten zouden repliceren en stabiel zouden blijven op een tweede test een 
week later. Daarnaast werd in het tweede experiment beschreven in hoofdstuk 3 
onderzocht of de resultaten met korte sequenties (4 leertaken) anders worden met 
langere sequenties (8 leertaken). In beide experimenten werd tevens in meer detail 
onderzocht hoe vertrouwen in eigen kunnen zich ontwikkelt tijdens het leren. 
Eerstejaarsstudenten uit het technisch hoger onderwijs leerden een wiskunde 
probleem oplossen met behulp van vier (Experiment 1; N = 157) of acht leertaken 
(Experiment 2; N = 105). Studenten werden toegewezen aan een conditie met 1) alleen 
voorbeelden, 2) voorbeeld-probleem paren, 3) probleem-voorbeeld paren, of 4) 
alleen oefenproblemen. De uitkomstmaten waren identiek aan de uitkomstmaten van 
het eerste en tweede experiment, behalve dat vertrouwen in eigen kunnen ook werd 
gemeten na elke taak in de leerfase. 

Beide experimenten lieten zien dat het vertrouwen in eigen kunnen hoger was na 
de eerste leertaak in de condities waarin studenten startten met een voorbeeld in 
plaats van een probleem. Echter, na de tweede leertaak rapporteerden alle studenten 
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in de condities met voorbeelden (ook probleem-voorbeeld paren) meer vertrouwen in 
eigen kunnen dan de conditie met alleen oefenproblemen. Dit patroon bleef stabiel 
tijdens en na de leerfase. In het eerste experiment leidden alle condities met 
voorbeelden (afgewisseld met oefenproblemen) ook tot hogere prestaties op de 
isomorfe taken, met minder moeite dan de conditie waarin alleen oefenproblemen 
werden aangeboden. In het tweede experiment leidde alleen de conditie waarin 
enkel voorbeelden werden bestudeerd tot hogere prestaties op de isomorfe taken, 
met minder mentale inspanning tijdens de leerfase dan de conditie met alleen 
oefenproblemen. Er werd in beide experimenten geen verschil gevonden tussen 
condities op de conceptuele transfer vragen of op taakinteresse. Ten slotte werd in de 
conditie met alleen voorbeelden minder moeite en tijd geïnvesteerd in de leerfase 
dan in de condities waarin voorbeelden en problemen werden afgewisseld, en werd 
in de conditie met voorbeeld-probleem paren in het derde experiment minder moeite 
geïnvesteerd dan in de conditie met probleem-voorbeeld paren. 

Conclusie 

Samengevat lieten de resultaten van de experimenten beschreven in Deel 1 van dit 
proefschrift zien dat, net zoals in eerder onderzoek is aangetoond (Van Gog et al. 
2011), het leren van voorbeelden – eventueel afgewisseld met oefenproblemen – een 
effectievere en efficiëntere strategie is om nieuwe probleemoplosvaardigheden aan 
te leren dan het alleen oplossen van oefenproblemen. Een nieuwe bevinding is dat 
het gebruik van voorbeelden (afgewisseld met oefenproblemen) ook tot meer 
vertrouwen in eigen kunnen leidt dan het alleen oplossen van oefenproblemen. Dat er 
geen effecten van verschillende sequenties zijn gevonden op taakinteresse komt 
mogelijk doordat taakinteresse al vrij hoog was en moeilijk veranderbaar is in een kort 
tijdsbestek. 

Een tweede interessante bevinding was dat, in tegenstelling tot eerder onderzoek 
(Van Gog et al., 2011), het starten met een oefenprobleem beter werkte dan verwacht, 
mits gevolgd door een voorbeeld. Hierdoor rijst de vraag in welke situaties het starten 
met een voorbeeld voorafgaand aan een probleem effectiever is voor leren dan 
starten met een probleem voorafgaand aan een voorbeeld, en wanneer niet. In dit 
proefschrift is gekeken of motivatie, in termen van taakinteresse en vertrouwen in eigen 
kunnen, het verschil in resultaten zou kunnen verklaren. Echter, de experimenten 
beschreven in Deel 1 van dit proefschrift gaven hiervoor geen duidelijk bewijs. Starten 
met een oefenprobleem resulteerde weliswaar in eerste instantie in minder vertrouwen 
in eigen kunnen, maar dit zorgde er niet voor dat studenten afhaakten bij het 
bestuderen van de voorbeelden (en oefenproblemen) die volgden. We moeten 
opmerken dat de taakinteresse van studenten redelijk hoog was: Mogelijk haken 
studenten bij een lagere taakinteresse wel af wanneer zij starten met een probleem. 
Ook is het mogelijk dat het gebruik van videovoorbeelden motiverender is dan het 
gebruik van schriftelijke voorbeelden (zoals meestal gebruikt in eerder onderzoek). 

Ten slotte lieten de bevindingen zien dat het alleen bestuderen van voorbeelden 
nog steeds effectief is wanneer er meer taken in de leerfase (en dus langere sequenties) 
worden bestudeerd. Dit is een verassende bevinding omdat we uit eerder onderzoek 
weten dat voorbeelden hun kracht verliezen naarmate lerenden meer voorkennis 
verkrijgen (Kalyuga et al., 2001). Echter, de taken namen toe in complexiteit en 
studenten bestudeerden slechts 1 of 2 voorbeelden per complexiteitsniveau, waardoor 
het leren van voorbeelden mogelijk nog steeds krachtig bleef. Daarnaast doorliepen 
studenten de leerfase in hun eigen tempo, waardoor zij zelf bepaalden hoe lang ze 
een voorbeeld wilden bestuderen of een taak wilden maken (ondanks dat studenten 
geïnstrueerd werden alles volledig te doorlopen). Hierdoor is het bestuderen van 
voorbeelden mogelijk niet als overbodig of demotiverend ervaren door studenten. 

Deel 2:   �Zelfgestuurd leren met behulp van voorbeelden en 
oefenproblemen

Studenten leren tegenwoordig steeds vaker nieuwe probleemoplosvaardigheden in 
online leeromgevingen waarin voorbeelden en oefenproblemen worden aangeboden 
en waarin zij zelf mogen kiezen wanneer en hoe (vaak) zij van voorbeelden en 
oefenproblemen leren. Het is echter de vraag of studenten zelfstandig taken kunnen 
selecteren die passen bij hun leerbehoeften. Zelfgestuurd leren van probleem
oplosvaardigheden is namelijk moeilijk, omdat studenten niet alleen hun prestaties op 
een specifieke leertaak moeten inschatten, maar deze informatie ook moeten 
gebruiken bij het selecteren van een geschikte vervolgtaak (De Bruin & Van Gog, 
2012). Het komt dan ook niet als een verrassing dat onderzoek heeft aangetoond dat 
studenten, met name novieten, vaak moeite hebben met het nauwkeurig inschatten 
van hun eigen kennislacunes en bepalen welke volgende taak hen helpt deze te 
overbruggen (Kostons et al., 2012). Deze bevindingen roepen de vraag op hoe en hoe 
goed studenten taken selecteren tijdens het verwerven van nieuwe probleem
oplosvaardigheden met behulp van voorbeelden en problemen.  

Eén recent onderzoek van Foster en collega’s (2018) heeft aangetoond dat 
studenten ook suboptimale keuzes maken wanneer zij kunnen kiezen tussen het leren 
van voorbeelden en problemen. Zij kiezen vaker voor oefenproblemen dan voor 
voorbeelden, en starten zelden de leerfase met een voorbeeld. Er is echter meer 
onderzoek nodig naar het zelfgestuurd leren van voorbeelden en problemen, in het 
bijzonder naar welke keuzes studenten maken en hoe goed deze keuzes passen bij 
wat effectief is gebleken voor leren in onderzoek met vaste sequenties (onder andere 
gebleken uit de studies beschreven in Deel 1 van dit proefschrift).

Daarnaast is het de vraag of en hoe het zelfgestuurd leren van voorbeelden en 
problemen ondersteund kan worden. Een manier die mogelijk goed werkt, en in de 
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praktijk vrij eenvoudig geïmplementeerd kan worden, is het expliciet informeren van 
studenten over effectieve instructieprincipes die zijn afgeleid uit onderzoek naar 
instructieontwerp (zie Tabel 1). Het expliciet informeren van studenten over deze 
principes zou kunnen helpen om de (metacognitieve) kennis van studenten te 
vergroten over welke principes gunstig zijn voor het leren, en welke niet. Als gevolg 
daarvan wordt de kans groter dat deze principes ook daadwerkelijk worden toegepast 
(Yan et al., 2014). Onderzoek naar leerstrategieën heeft laten zien dat het expliciet 
informeren van studenten inderdaad succesvol is gebleken in het vergroten van deze 
kennis (Endres et al., 2020) en het gebruik van deze strategieën (Biwer et al., 2019). 
Daarnaast heeft onderzoek laten zien dat het expliciet informeren van studenten over 
effectieve leerstrategieën zoals jezelf testen (Engels:‘retrieval practice’) niet alleen de 
kennis over en het gebruik van deze strategie vergroot, maar ook de prestatie kan 
verbeteren (Ariel & Karpicke, 2017). Het is de vraag of deze benadering ook werkt om 
het zelfgestuurd leren van voorbeelden en oefenproblemen te verbeteren. 

Tabel 1.
Effectieve, Efficiënte en Motiverende Instructieprincipes uit Onderzoek naar 
Instructieontwerp.

Principe Uitleg Referentie

Leren-van-voorbeelden-
principe

Door het vervangen van alle of 
een deel van de oefenproblemen 
door voorbeelden kunnen 
beginners meer leren met minder 
tijd en moeite dan door alleen 
oefenproblemen op te lossen. 
Dit is ook motiverender voor leren. 

Sweller et al. (2011), 

Van Gog et al. (2019)

Van Harsel et al. (2019, 2020)

Voorbeeld-eerst-principe Beginners moeten de leerfase 
starten met een voorbeeld in plaats 
van een probleem. Dit is efficiënter 
en motiverender voor leren

Van Gog et al. (2011)

Van Harsel et al. (2019, 2020)

Laagste-complexiteits- 
niveau-eerst-principe

Beginners moeten starten met een 
taak op het laagste complexiteits-
niveau 

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Simpel-naar-complex- 
principe

Beginners moeten het 
complexiteitsniveau van een taak 
geleidelijk aan verhogen naarmate 
hun kennis toeneemt

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Ieder-nieuw-complexiteits- 
niveau-starten-met-
voorbeeld-principe

Beginners moeten aan het begin 
van elk nieuw complexiteitsniveau 
een hoog niveau van instructie- 
ondersteuning krijgen (zoals via een 
voorbeeld)

Van Merriënboer (1997), 

Van Merriënboer & Kirschner (2013)

Onderzoeksresultaten

Hoofdstuk 4 beschrijft een exploratieve studie waarin is verkend welke keuzes eerstejaars 
technische hbo-studenten (N = 147) maakten wanneer zij een nieuw wiskunde 
probleem leerden oplossen door zelf zes leertaken te selecteren uit een taakdatabase 
met 45 leertaken. Deze taken varieerden in format (videovoorbeelden, tekst-
gebaseerde voorbeelden en oefenproblemen), complexiteitsniveau (niveau 1, 2 en 3) 
en context (zie Figuur 2). Studenten hadden nog geen voorkennis over dit specifieke 
probleem. Ook is onderzocht in hoeverre hun taakselecties overeenkwamen met 
effectieve, efficiënte, en motiverende instructieprincipes die zijn afgeleid uit 
experimenteel instructieonderzoek. Ten slotte is onderzocht of er een relatie was tussen 
de mate waarin studenten deze principes volgden en hun prestaties op isomorfe en 
transfertaken, de geïnvesteerde mentale inspanning en tijd, en hun vertrouwen in 
eigen kunnen en taakinteresse. 

De resultaten lieten zien dat de taakselecties van studenten redelijk goed overeen
kwamen met de principes uit experimenteel onderzoek naar instructieontwerp. Dat wil 
zeggen, de overgrote meerderheid van de studenten selecteerde vooral voorbeelden 
tijdens de leerfase en startte de leerfase met een voorbeeld in plaats van een 
probleem. Vrijwel alle studenten startten ook de leerfase met een taak op het laagste 
complexiteitsniveau. Echter, slechts de helft van de studenten bouwde de complexiteit 
van de taken op van simpel naar complex (van level 1 naar level 2 naar level 3). Als 
studenten voor het eerst een taak op een hoger complexiteitsniveau bestudeerden, 
was dit vaak een voorbeeld. Al met al werden er tijdens de hele leerfase meer 
voorbeelden gekozen dan oefenproblemen en kozen studenten voornamelijk taken 
op het laagste complexiteitsniveau. Ten slotte lieten de resultaten zien dat er geen 
relatie was tussen het volgen van alle instructieprincipes en prestaties op isomorfe en 
transfertaken, de geïnvesteerde mentale inspanning en tijd, en hun vertrouwen in 
eigen kunnen en taakinteresse. 

Figuur 2: Taakdatabase 
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De laatste studie van deze dissertatie, beschreven in hoofdstuk 5, onderzocht of de 
resultaten van de studie beschreven in hoofdstuk 4 zouden repliceren. Ook werd 
onderzocht welke taakselecties werden gemaakt nadat studenten geprobeerd 
hadden een oefenprobleem op te lossen (aangezien dit niet mogelijk was in de studie 
beschreven in hoofdstuk 4). Er werd ook onderzocht of het zelfgestuurd leren van 
voorbeelden en problemen (op verschillende niveaus) even effectief, efficiënt, en 
motiverend is als het leren van een door de onderzoeker vooraf vastgestelde sequentie 
van voorbeelden en problemen. Ten slotte werd onderzocht of het expliciet informeren 
van studenten over effectieve instructieprincipes hun taakselecties, prestaties en 
motivatie verbeterde. De uitkomstmaten waren identiek aan de uitkomstmaten in de 
studie beschreven in hoofdstuk 4, behalve dat taakinteresse niet werd gemeten. 
Eerstejaars hbo-studenten in het technische onderwijs (N = 150), leerden een voor hen 
nieuw wiskunde probleem oplossen, door middel van a) een vooraf vastgestelde 
sequentie van zes voorbeelden en oefenproblemen (vaste sequentie conditie), b) het 
zelf kiezen van  voorbeelden en oefenproblemen na het bekijken van een instructievideo 
over effectieve instructieprincipes (geïnformeerde zelfregulatieconditie) of c) het zelf 
kiezen van voorbeelden en oefenproblemen zonder het bekijken van een instructievideo 
(zelfregulatieconditie). In beide zelfregulatiecondities moesten studenten zelf zes 
leertaken kiezen uit een taakdatabase (zie Figuur 2). 

De resultaten t.a.v. taakselecties waren vergelijkbaar met de resultaten van de 
studie beschreven in hoofdstuk 4. Dat wil zeggen, de taakselecties van het gros van de 
studenten in de zelfregulatieconditie kwamen redelijk goed overeen met de principes 
uit onderzoek naar instructieontwerp. Uitzondering was opnieuw dat de taken slechts 
door ongeveer de helft van de studenten werden opgebouwd van simpel naar 
complex. Studenten in de geïnformeerde zelfregulatieconditie, die de instructievideo 
hadden bekeken, volgden de principes net wat beter, aangezien zij vaker de taken 
opbouwden van simpel naar complex. Echter, dit resulteerde niet in hogere prestaties 
of meer vertrouwen in eigen kunnen op de posttest dan bij studenten die deze video 
niet hebben bekeken. Ook bleek er nog ruimte voor verbetering in de taakselecties 
van studenten: Rekening houdend met de prestatie na een poging een oefenprobleem 
op te lossen, was ongeveer 40% van de taakselecties niet zo effectief voor het leren 
(bijvoorbeeld omdat studenten een nieuw oefenprobleem op een hoger 
complexiteitsniveau kozen terwijl zij het oefenprobleem op een lager complexiteitsniveau 
nog niet of niet helemaal konden oplossen). Ten slotte werden er geen verschillen in 
prestatie en motivatie gevonden tussen studenten in de twee zelfregulatie condities 
en studenten in de vaste sequentie conditie.

Conclusie

Samengevat suggereren de resultaten uit Deel 2 van dit proefschrift dat studenten 
tijdens het zelfgestuurd leren van voorbeelden en oefenproblemen (op verschillende 
complexiteitsniveaus) redelijk goed in staat zijn om leertaken te selecteren. Veel van 
de taakselecties van studenten kwamen overeen met de instructieprincipes die in 
onderzoek effectief zijn gebleken voor het aanleren van nieuwe 
probleemoplosvaardigheden. Dat studenten de principes in grote lijnen volgden, 
betekende niet per se dat ze altijd de beste keuze op dat moment maakten. Gelet op 
hun prestaties op de oefenproblemen, was er nog behoorlijk wat ruimte voor 
verbetering in het selecteren van een passende vervolgtaak. Een belangrijk resultaat 
van de studie beschreven in hoofdstuk 5 was ook dat het leren van studenten die hun 
eigen leerproces reguleerden even effectief, efficiënt en motiverend bleek te zijn als 
dat van studenten die leerden via een vaste sequentie van voorbeelden en 
oefenproblemen op verschillende complexiteitsniveaus. Samengenomen zijn dit 
interessante bevindingen, omdat eerder onderzoek liet zien dat de taakselecties van 
novieten (met name in het begin van de leerfase) nauwelijks overeenkwamen met de 
effectieve instructieprincipes (Foster et al., 2018), en dat zelfgestuurd leren voor 
novieten vaak minder effectief is dan het bestuderen van vaste sequenties (Azevedo 
et al., 2008). 

Een mogelijke verklaring voor het feit dat de deelnemers aan de studies uit dit 
proefschrift het leren van voorbeelden en problemen redelijk goed konden reguleren, 
en daar evenveel van leerden dan van een vaste sequentie aan leertaken, is dat de 
deelnemende studenten waarschijnlijk al enige ervaring hadden met soortgelijke 
taken (zoals het werken met formules) vanwege de grote hoeveelheid wiskunde in hun 
curriculum. Daarnaast is het leren van voorbeelden een veelvoorkomende strategie in 
het wiskundeonderwijs (Hoogerheide & Roelle, 2020), waardoor studenten hiermee 
mogelijk al enige ervaring hebben opgedaan. Deze ‘voorkennis’ kan hebben 
geholpen bij het maken van betere taakselectiebeslissingen, aangezien studenten 
met meer voorkennis betere taakselectiebeslissingen kunnen maken (Corbalan et al., 
2006). Daardoor rijst de vraag of studenten zonder deze mogelijke ‘voorkennis’ dezelfde 
resultaten laten zien als zij zelf taken mogen selecteren.

Een andere bevinding is dat studenten die de instructievideo hadden bekeken 
betere taakselecties leken te maken (o.a. vaker de complexiteit van de taken op te 
bouwen van simpel naar complex) dan studenten die deze video niet hadden 
bekeken. Niettemin resulteerde dit niet in verschillen op prestatie en motivatie tussen 
beide zelfregulatiecondities, noch tussen de geïnformeerde zelfregulatieconditie en 
de vaste-sequentieconditie. Een mogelijke verklaring hiervoor is dat studenten ook 
zonder video-instructie al relatief goede taakselectiebeslissingen maakten gebaseerd 
op de instructieprincipes. Echter, zoals eerder genoemd, was er nog ruimte voor 
verbetering (de taakselecties na het proberen oplossen van een oefenprobleem 



213212

pasten niet altijd bij de prestatie op dat probleem). Daarom zou een andere verklaring 
kunnen zijn dat de interventie niet ‘sterk’ genoeg was om de taakselecties van 
studenten nog beter te maken, bijvoorbeeld doordat studenten de video-instructie 
maar één keer te zien kregen voorafgaand aan het maken van keuzes en niet konden 
oefenen met de principes. Hierdoor hadden ze mogelijk moeite met het herinneren 
hoe bepaalde principes toegepast moesten worden. Ook zouden studenten mogelijk 
baat hebben bij trainingen die helpen om betere inschattingen te maken van hun 
prestaties en het kiezen van passende vervolgtaken (Raaijmakers et al., 2018), 
aangezien een deel van de taakselecties die werden gemaakt na het proberen 
oplossen van een oefenprobleem gekwalificeerd werd als minder relevant voor het 
leren van de student. Vervolgonderzoek zou moeten uitwijzen of het aanpassen van 
de interventie de taakselecties, prestaties en motivatie van studenten (verder) zou 
kunnen versterken. 

Praktische aanbevelingen en suggesties voor vervolgonderzoek

Op basis van de resultaten van het eerste deel van het proefschrift en bevindingen uit 
eerder onderzoek, lijkt het vooral van belang om studenten met weinig tot geen 
voorkennis (meerdere) voorbeelden - eventueel afgewisseld met oefenproblemen - 
aan te reiken als zij een nieuwe probleemoplosvaardigheid leren. Hoewel het enkel 
aanbieden van voorbeelden ook goed werkt (blijkens deze studies), is het in de praktijk 
waarschijnlijk wenselijk studenten wel te laten oefenen met zelf probleem-oplossen 
(ook omdat uit eerder onderzoek blijkt dat dit hen helpt met het beoordelen van hun 
eigen leerproces/vooruitgang; Baars et al. 2014, 2017). De beste volgorde om 
voorbeelden en oefenproblemen aan te bieden is om studenten te laten starten met 
een voorbeeld voorafgaand aan het oplossen van een oefenprobleem. Dit lijkt vooral 
te gelden wanneer de studietijd en het aantal leertaken beperkt is. Het motivatievoordeel 
en het efficiëntievoordeel in termen moeite van het starten met een voorbeeld in 
plaats van een oefenprobleem verdwijnen wanneer sequenties langer worden. Bij 
langere sequenties is het nog steeds aan te raden voorbeelden aan te bieden tijdens 
het leren omdat dit effectiever, efficiënter en motiverender is voor het leren dan enkel 
het oplossen van oefenproblemen, mits de complexiteit van de taken opbouwt (als dit 
niet het geval is, weten we uit eerder onderzoek, verdwijnt het voordeel van het 
bestuderen van voorbeelden en hebben studenten meer baat bij het oplossen van 
oefenproblemen; Kalyuga 2001). 

Gelet op de resultaten van het tweede deel van het proefschrift lijkt het ‘veilig’ om 
studenten, wellicht na enige instructie over effectieve, efficiënte en motiverende 
instructie-ontwerpprincipes (zie Tabel 1), zelfstandig aan de slag te laten gaan met het 
leren van nieuwe wiskunde vaardigheden met behulp van voorbeelden en problemen, 
in die zin dat dit hun leren niet lijkt te schaden vergeleken met een vaste set leertaken 
die vormgegeven is volgens die principes. Echter, er is enige voorzichtigheid geboden 

met dit soort conclusies omdat we nog niet weten of deze bevindingen generaliseren 
naar andere studentpopulaties. De deelnemende studenten in mijn studies hadden 
mogelijk al enige ervaring met het leren van soortgelijke taken en het leren van 
voorbeelden. Bovendien was er, zelfs na instructie over effectieve instructie-
ontwerpprincipes, nog ruimte voor verbetering in de taakselecties van studenten, en 
met name wanneer we keken naar hun feitelijke prestatie op de oefenproblemen. 
Vervolgonderzoek zou daarom moeten onderzoeken hoe we zelfgestuurd leren nog 
verder kunnen verbeteren, bijvoorbeeld door instructie over effectieve principes 
krachtiger te maken door deze vaker te laten zien of door studenten aanvullend te 
trainen in het maken van goede inschattingen van hun prestaties op basis waarvan zij 
een vervolgtaak moeten kiezen. 
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geholpen om de realisatie van dit proefschrift mogelijk te maken. 

De directeur van het Leer- en Innovatiecentrum van Avans Hogeschool, Mirjam 
Woutersen, wil ik bedanken voor het vertrouwen en de faciliteiten om dit promotieonderzoek 
uit te kunnen voeren. Tevens wil ik mijn voorgaande teamcoördinatoren, Esther, Josje en 
Lydia, en mijn huidige teamcoördinator, Albert-Jan, bedanken voor de tijd, ruimte en 
steun om dit proefschrift te voltooien. Lydia, speciale dank gaat uit naar jou voor de extra 
tijd die je me hebt gegund om dit proefschrift af te kunnen ronden, je enthousiasme 
en je onvoorwaardelijke steun tijdens het overlijden van mijn vader. Ook dank ik de 
(voormalig) directeuren van de academies AI&I, AE&I en de PABO van Avans Hogeschool, 
André Gehring, Martin Rodenburg, Jan Reinhard en Dominique Majoor, voor de ruimte 
die ze mij hebben gegeven om het promotieonderzoek binnen hun academies uit te 
voeren. Ook Françoise Koole-Luteijn van de PABO Hogeschool Zeeland wil ik in dit kader 
bedanken voor haar medewerking aan dit proefschrift. 
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De (oud)collega’s van het Lectoraat Brein en Leren, Anita, Anton, Eva, Han, Hans, Ilse, 
Janneke, Lara, Lottie, Marion, Marloes, Michael, Peter en Stefan, wil ik bedanken voor de 
fijne donderdagen, goede discussies, gezelligheid en gedeelde passie voor onderzoek 
en onderwijs. Ilse, wat heb ik genoten van onze samenwerking tijdens het opzetten van 
ons allereerst praktijkonderzoek naar kritisch denken bij studenten in de lab opleidingen, 
nog voordat het Lectoraat Brein en Leren startte. Marloes, Suzan, Lara en Eva, heel veel 
dank voor jullie adviezen, relativering en gezelligheid tijdens onze gesprekken over PhD-
life. Jullie zijn alle vier kanjers! Hans, dank dat je mij als PABO-docent ooit het vertrouwen 
en de moed hebt gegeven om een master Onderwijskunde te gaan volgen. Esther, 
ik kijk ontzettend uit naar onze samenwerking binnen het kenniscentrum en Lectoraat 
Digitale Didactiek! Anita, jou wil ik in het bijzonder bedanken. In november 2011 heb jij mij 
aangenomen als stagiaire binnen het Leer- en Innovatiecentrum. Wat heb ik veel van jou 
mogen leren en wat heb ik door jou veel mogen en kunnen ervaren binnen en buiten 
de muren van Avans. Je hebt me tevens aangespoord om dit promotieonderzoek te 
gaan doen. Mijn passie voor leren, onderwijs en onderzoek is door jou alleen maar sterker 
geworden. Dank voor alle mooie persoonlijke en werk gerelateerde gesprekken, onze 
gezellige conferentiebezoekjes, je adviezen, en je geloof in mij en mijn kunnen. Jij bent 
één van de mooie voorbeelden in mijn professionele carrière die ik niet snel zal vergeten!    

Mijn lieve vrienden en vriendinnen ben ik ook zeer dankbaar voor de nodige steun en 
ontspanning tijdens dit traject. Zij hebben mij regelmatig doen beseffen dat werk niet 
het belangrijkste is in het leven, al deed ik dat soms wel zo voorkomen. Vickie, Mandy, 
Sanne, Laura, Corinne, Lotte, Marion, Noortje, Dominique, Eef, Tamara, Tessa en Anouk, 
dank voor alle gezellige, mooie en hilarische momenten die we de afgelopen jaren 
hebben meegemaakt. Ook veel dank voor jullie interesse, lieve kaartjes, begrip en 
geduld (als ik weer eens een weekend moest doorwerken om iets af te krijgen). En dank 
voor jullie onvoorwaardelijke steun voor, tijdens en na het overlijden van papa. Ik ben 
dol op jullie allemaal!

Grote dank gaat ook uit naar mijn lieve paranimfen en vriendinnen, Dominique en 
Marion. Wat ben ik blij dat jullie er zijn en dat jullie mijn paranimfen willen zijn!

Do, ik ken niemand die zo lief, warm en zorgzaam is als jij. Jij bent er altijd, waar je 
ook bent. Ik word altijd zo ontzettend blij van onze (minimaal) anderhalf uur durende 
telefoongesprekken, van onze gezellige (home-cooked of chique) etentjes en van 
onze spontane bezoekjes aan de Efteling. Dankjewel voor alles wat ik op persoonlijk en 
professioneel vlak (al) van je heb mogen leren en voor alle prachtige gesprekken die we 
tot nu toe hebben gevoerd, over van alles in het leven. You’re one in a million!

Tillie, herinner je nog ons eerste gesprek in het noodgebouw van Avans? Wat 
een klik was daar! Vanaf dat moment spreken we elkaar bijna iedere dag (lang leve 
Whatsapp) en zien we elkaar regelmatig in Roosendaal, Tilburg of ergens daartussen, 
om te wandelen, te lunchen, te chillen of spelletjes te spelen met jouw fantastische 
jongens, Wouter en Pieter. Dank voor je vriendschap, openheid en gezelligheid. Fijn dat 
ik bij jou helemaal mezelf kan zijn! 

Tevens wil ik Jos van Weert, Bert Hoeks en Rob Müller heel erg bedanken voor hun 
hulp en tijd met het ontwikkelen van de taken. Jos, speciale dank gaat uit naar jou 
voor het bedenken en ontwerpen van de taken, je betrokkenheid bij het onderzoek en 
de fijne samenwerking de afgelopen jaren! Ook wil ik Fritschal Terheijden, Marieke de 
Jong, Sabine Hukema, Bianca Piek - van Wel, Dik Overdijk, Elly Cornelissen, Martijn Bogers, 
Menno Mandemaker, Onno Eerenberg, Frank Arnouts en Suzan van Brussel ontzettend 
bedanken voor hun hulp bij de organisatie van de experimenten en het enthousiasmeren 
van studenten om deel te nemen. Ook wil ik een aantal collega’s hartelijk bedanken 
voor hun hulp bij het uitvoeren van de experimenten, namelijk Suzan van Brussel, Lottie 
Raaijmakers, Maud Müskens, Divna van Driel, Niek van Hoof, Rob Denevers, Mariette 
Vissers – Machielsen, Gabriëlle Peters, Gabby op de Weegh, Verine Vissers, Catharina 
Peekstok, Annette van Overeem, Astrid van de Wijer, Mirthe van Engelen, Patricia van 
Dongen, Shau-Sha Szeto, Marlies Otten, Yvette van den Bersselaar, Sanne Damsma, 
Sabine Hukema, Marian van der Lijke – Verheij, Marleen de Haan, Hans Slabbekoorn en 
Marianne Struijs. Bedankt! Suzan Ravensbergen, jou wil ik hartelijk bedanken voor je hulp 
bij het scoren van de data. Wat een werk heb je verzet! Daarnaast dank ik Ajda Ortac 
voor haar hulp bij het ontwerpen van de video’s. Je bent een kei, Ajda!

De (oud)collega’s van de afdeling Educatie aan de Universiteit Utrecht wil ik 
bedanken voor hun interesse in mijn onderzoek, de feedback tijdens presentaties (op 
congressen) en de openheid en hartelijkheid die ik als buitenpromovendus heb ervaren 
als ik een bezoekje bracht aan de universiteit. Speciale dank gaat uit naar Margot, Eva, 
Tim en Steven voor hun adviezen en gezelligheid. 

I would also like to thank the (former) coordinators of EARLI Special Interest Group 6 
& 7 for the collaboration, especially during the preparation of our members meetings in 
2018 and 2020. Margot, Anne, Andreas, Martin, Jean-Michel, Laurie, Moritz, and Alberto, 
you’re all great researchers and lovely persons! Margot, I’m so happy we were in this 
together! 

Ook alle (oud)collega’s van AI&I, team Onderwijs en team Kennismanagement en andere 
geledingen binnen Avans wil ik bedanken voor hun interesse in mijn promotieonderzoek, 
hun collegialiteit en gezelligheid. Floor, Maud, Mirthe, Lydia, Marjolein, Lottie en Sanne, 
dank voor alle gesprekken, borrels, lunches, etentjes en andere fijne momenten. Jullie zijn 
fantastische meiden! Lottie, Han, Verine en Irma, dank voor alle interessante discussies en 
fijne gesprekken in de Expertgroep Brein en Leren. Ik ben heel trots dat ik onderdeel heb 
mogen uitmaken van deze geweldige groep van experts! Nies, Teun en Ronald, wat heb 
ik prettig met jullie samengewerkt en veel van jullie geleerd tijdens het ontwikkelen van 
de nieuwe Avans-visie op praktijkgericht onderzoek. Ingeborg, wat fijn dat jij recentelijk 
mijn collega bent geworden en wat werk ik fijn met je samen! Ann, Anita, Teun & Mariëtte, 
ik ben blij dat ik samen met jullie kan sparren over hoe we onderzoek en onderwijs 
nog sterker met elkaar kunnen verbinden. Ik geniet van onze discussies en leer iedere 
keer weer bij! Lotte, Corinne, Geert en Marion, dank voor de fijne jaren bij AI&I en de 
vriendschap die hieruit is ontstaan! 
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Tot slot wil ik mijn lieve (schoon)familie bedanken voor hun liefde en steun. 

Els & Leen, dank voor jullie interesse en zorgzaamheid. Fijn dat Bart en ik altijd bij 
jullie kunnen aanschuiven als we het weer eens druk hebben. 

Mam en pap , ik wil jullie bedanken voor jullie onvoorwaardelijke liefde en steun. 
Wat voel ik me bevoorrecht dat ik ben opgegroeid in zo’n warm en liefdevol gezin, waar 
ik altijd mezelf kon zijn en waar er altijd ruimte was voor het delen van gedachten en 
gevoelens. Pap , jij bent en blijft mijn grote voorbeeld als het gaat om zorgzaamheid, 
wilskracht en eerlijkheid. Ik weet hoe graag je de afronding van mijn promotie had 
willen meemaken, net zoals nog heel veel andere gebeurtenissen in mijn leven. Ik mis 
je verschrikkelijk, maar ik koester alle mooie herinneringen die ik heb aan jou. Mam, 
jij bent mijn grote voorbeeld als het gaat om doorzettingsvermogen, relativering en 
zelfbewustzijn. Ik ben ontzettend dankbaar voor alles wat je me hebt geleerd (en nog 
steeds leert) en ik ben trots op hoe je in het leven staat. Een lieve, krachtige en warme 
vrouw. Je bent mijn kanjer! 

Bart, wat hebben we in de afgelopen vijf jaar al veel meegemaakt samen, zowel mooie 
als verdrietige gebeurtenissen. Ik bewonder je integriteit, leergierigheid, analytische blik, 
gevoeligheid en grote inlevingsvermogen. Dank voor je geduld met mij, voor je luisterend 
oor, voor je eerlijkheid en vooral voor je warme en liefdevolle knuffels als ik het even niet 
meer zag zitten. Ik kijk uit naar de toekomst met jou! 
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Sail on silver girl
Sail on by
Your time has come to shine
All your dreams are on their way
See how they shine
Oh, if you need a friend
I'm sailing right behind

Simon & Garfunkel


