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Chapter 1 General Introduction 
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While agricultural production demands increase, crop loss to plant pathogens is 

an ever-growing threat to food production. Agricultural intensification has resulted in 

an increased production of staple crops [1, 2]. However, such practices are 

unsustainable and rely on a heavy input of industrial synthetic pesticides and fertilizers 

[3]. This can lead to a range of detrimental effects such as reductions in soil fertility, 

loss of biodiversity and environmental pollution. Such soil, water and air pollution can 

not only have negative impacts on a range of organisms in the environment, but can 

also negatively affect worker and consumer health [4]. Therefore, more sustainable 

and environmentally friendly methods to control plant pathogens are urgently needed 

to maintain and improve crop yields, and to ensure future food security for a 

continuously growing world population. Manipulation of the plant microbiome has been 

suggested as a viable and sustainable alternative to chemically-based agricultural 

production [5, 6]. However, the ability of rhizosphere microbial communities to keep 

diseases under control is influenced by many factors, including the microbial 

interactions within these communities [7]. Unfortunately, we still have relatively little 

insight into how microbial interactions affect community assembly and how such 

interactions eventually impact plant health. This thesis seeks to examine how microbial 

interactions within the rhizosphere microbiome impact the ability of plant pathogens to 

proliferate and cause plant disease. To this end, I use bacterial wilt disease in tomato 

plant, which is caused by pathogen Ralstonia solanacearum as a relevant model 

system.  
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1. Microbial communities inhabiting soil and rhizosphere 

environments 

Microbial communities living in soil habitats comprise of a vast and versatile range 

of microbial species [5]. For instance, a gram of soil can contain an estimated 6,000-

38,000 bacterial taxa with billions of individual bacterial cells [8] and 200-235 fungal 

species [9]. Such diverse soil microbial communities are responsible for a range of key 

ecosystem functions such as decomposition of organic matter and environmental 

pollutants, recycling of nutrients [9, 10] and supporting plant growth [11].  

The rhizosphere, the narrow zone of soil that surrounds and is influenced by plant 

roots, hosts a high density of microorganisms and invertebrates and is considered to 

be one of the most dynamic interfaces on Earth [12]. Bacteria, fungi, archaea, protists 

and viruses are present in high numbers in the rhizosphere (see an example for 

Arabidopsis thaliana root microbiota in Fig. 1), where they are fueled by plant-derived 

resources such as exudates and dead plant root cells [13]. These complex microbial 

communities co-exist with animals such as nematodes and arthropods, which connect 

microorganisms to higher trophic levels [14]. Together with microbes inhabiting plant 

tissues, these interacting rhizosphere communities can have such large impacts on 

plant growth and health that they have been referred to as the plant’s second genome 

[15, 16].  
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Fig. 1 Microbial consortia naturally formed on the roots of Arabidopsis thaliana. Scanning electron 

microscopy pictures of root surfaces from natural A. thaliana populations showing the complex microbial 

networks formed on roots. (a) Overview of an A. thaliana root (primary root) with numerous root hairs. 

(b) Biofilm-forming bacteria. (c) Fungal or oomycete hyphae surrounding the root surface. (d) Primary 

root densely covered by spores and protists. (e, f) Protists, most likely belonging to the Bacillariophyceae 

class. (g) Bacteria and bacterial filaments. (h, i) Different bacterial individuals showing a large varieties 

of shapes and morphological features [17].  

2. Rhizosphere microbial communities and plant health 

2.1 Pathogen invasion  

Extreme outbreaks of soil-borne diseases are relatively rare in natural habitats 

[18]. However, plant diseases caused by soil-borne microbial pathogens including fungi, 

oomycetes, bacteria and nematodes, currently cause heavy losses to a wide range of 

crops around the world [19, 20]. One of the major factors contributing to this 

phenomenon is the widespread reliance on intensive agricultural management 
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practices that have created conditions that are suitable for pathogen infestation, 

leading to crop losses due to the disease. For example, intensive agricultural practices 

such as synthetic pesticides not only kill target pathogens, may but also adversely 

affect many beneficial microorganisms [21]. Such shifts in the functional capabilities of 

the soil microbiome can for instance lead to decreased resistance to and resilience 

from pathogen invasion. Intensive agricultural practices also typically involve large 

inputs of nitrogen, which has linked to more severe damage across a range of crop 

pathogens, including fungi, bacteria, and viruses [3]. Moreover, continuous cropping 

with a susceptible plant host generally leads to a build-up of populations of specific 

plant pathogens [22]. Soil-borne pathogens can also be introduced into local 

environments by water pollution or other anthropogenic activities [23]. Once in the soil, 

recruitment from the bulk soil to the rhizosphere is necessary for a pathogen to impact 

root and plant health [24]. All these factors determine the ultimate ability to the 

pathogen to enter and proliferate in the rhizosphere, which we refer to as the level of 

pathogen invasion (Fig. 2).  

2.2 Rhizosphere microbial communities can reduce pathogen invasion 

The rhizosphere microbial community can function as a first line of defense 

against pathogen invasion (Fig. 2). Most soil-borne pathogens need to out-compete 

rhizosphere microbes in order to reach their host or to achieve sufficient density on 

their host to achieve successful infection of host plant tissue [24]. The phenomenon of 

disease-suppressive soils clearly demonstrates the potential role of the rhizosphere 

microbiome in plant disease [25]. Soil transplantation and sterilization studies have 
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demonstrated that the ability of a soil to suppress the pathogen is of biological nature 

[21, 25-27]. Furthermore, the use of nucleic acid-based approaches has implicated 

specific taxa and genes involved in pathogen suppression [21, 28], and cultivation-

based studies have yielded disease-suppressive isolates from suppressive soils [25, 

29]. A most famous example of natural disease suppressive soil is the development of 

suppression against the causal agent of take-all disease in wheat [30]. Similar findings 

have been found for other diseases and crops, such as Fusarium wilt [31], potato scab 

[32, 33] and bacterial wilt [28]. Plant root-associated microorganisms are increasingly 

being studied in relation to their ability to help keep plants healthy [34, 35]. However, 

while some microbiomes are better at preventing pathogen growth than others, it often 

remains unclear which interactions shape pathogen success.  

 

Fig. 2 Rhizosphere microbial communities and plant health. Rhizosphere microorganisms can function 

as a first line of defense against invading pathogens. The level of this defense is influenced by microbial 

community composition as well as interactions within the rhizosphere microbial community. 
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3. Microbial interactions and pathogen invasion 

Ecological interactions  

Ecological interactions can span a wide range, from antagonistic interactions such 

as through predation, competition, herbivory and parasitism, to neutral interactions 

through to beneficial interactions like mutualisms between pollinating and insects [36]. 

The direction and magnitude of such interactions are critical determinants of 

ecosystem function and stability [37]. Such interactions form ecological networks in 

which species are linked together, either directly or indirectly through intermediate 

species [38]. Therefore, functions of ecological communities are not only based on 

direct interactions between species, but also based on the indirect interactions that 

occur via chains of direct interactions or by changing the nature of direct interactions 

[39, 40]. A similar range and network structure of interactions is also evident in 

rhizosphere microbial communities, and ecological theory developed in other study 

systems can help to inform investigations coupling interactions in the rhizosphere with 

realized functions such as disease suppression.  

Ecological interactions in microbial communities  

Microorganisms in nature do not exist in isolation but form complex ecological 

interaction webs [41]. Many types of interactions between bacterial populations occur 

within the rhizosphere [42]. For instance, multiple species may interact positively via 

facilitation or negatively through competition (Fig. 3). Also, species can either influence 

each other directly, where individuals of one species affect the fitness of a second 
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species, or indirectly, where the impact of one species on the fitness of a second 

species is realized through direct interactions on other species that subsequently 

impact fitness (Fig. 3) [43]. Taken together, such interactions are important 

determinants of community assembly. A tool proposed to visualize such potential 

interactions is offered by co-occurrence network analysis based on high-throughput 

sequencing data [41, 44]. Although such approaches provide a means to depict 

complex correlations in species abundances, it remains unclear to what extent such 

approaches provide insight into true interactions in the environment. With reference to 

the rhizosphere, it is clear that correlative network analyses are insufficient to 

determine the drivers of microbial community assembly and ultimately community 

resistance to pathogen invasion. Furthermore, the contribution of competitive and 

facilitative microbe-microbe interactions to the overall community structure remains 

difficult to evaluate in nature due to strong environmental noise. To overcome these 

technical hurdles, cultivation-based approaches have been primarily used for 

assessing possible interactions among microbial isolates and identifying possible 

molecular mechanisms underlying pathogen inhibition [45-48].  
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Fig. 3 Conceptual overview of direct, indirect, positive and negative interactions among rhizosphere 

microbes. There are directly positive (blue arrows) and negative (red stopped lines) interactions between 

microbes. Microbes can also influence each other indirectly (dotted arrow). For instance, the dotted 

black curve indicates that microbe 1 (M1) can indirectly influence microbe 3 (M3) through direct 

interacting with microbe 2 (M2), or vice versa. 

3.1 Impact of direct interactions between rhizobacterial species and pathogens 

on pathogen invasion 

Pathogens must first establish themselves in the host-associated microbial 

communities in order to infect the host and later cause a disease. Many soil-borne 

microorganisms have been shown to have antagonistic activities toward plant 

pathogens. Such direct inhibition may thus be an important factor in determining 

pathogen success and numerous studies have sought to isolate and characterize such 

pathogen antagonists [25, 49, 50].  

a) Effects of direct competitive interactions between rhizobacterial species and 

pathogens on pathogen invasion 

Rhizobacterial species can inhibit pathogen invasion via several different 
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competitive mechanisms. For instance, some bacteria can produce metabolites, such 

as antibiotics and enzymes, that exhibit antagonistic activity against plant pathogens 

[49, 50]. The best-known example of a microbial group with antagonistic members is 

the fluorescent pseudomonads. Strains from this group have been shown to directly 

inhibit the growth of the pathogenic fungus Gaeumannomyces graminis var. tritici by 

producing the antifungal metabolite 2,4-diacetylphloroglucinol [25]. Alternatively, 

rhizobacteria can use indirect mechanisms to compete with the pathogen, such as 

rapid and efficient utilization of limiting resources. It has recently been shown that 

resource competition (i.e. similarity in resource preferences between the resident 

species and the invader) is an important factor explaining the level of success of 

pathogen invasion in the rhizosphere of tomato plants [51]. Nutrient sequestration is 

also recognized as an important trait of biocontrol agents to out-compete pathogens 

[48, 52]. Furthermore, different bacteria can also produce volatile organic compounds 

(VOCs) that have been shown to inhibit the growth of a broad range of plant-associated 

pathogenic bacteria [53], fungi and oomycetes [54, 55]. For instance, it has been 

shown that Streptomyces strains isolated from disease-suppressive soils can produce 

different VOCs with antifungal activity [56].   

b) Direct facilitative interactions between rhizobacterial species and pathogens 

can affect pathogen invasion success 

While most studies have primarily focused mainly on the means by which 

microbes can inhibit target pathogens [26, 57, 58], recent studies have shown that a 
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significant fraction of plant-associated microorganisms can promote pathogen growth 

and pathogenicity [59]. Facilitative microbe-microbe interactions are indeed 

widespread and may emerge for instance as the result of cross-feeding [60], molecular 

communications such as through quorum sensing [61, 62], or production of public 

goods such as siderophores [63]. For example, while the inoculation of Bacillus subtilis 

inhibited the growth of the food-borne Vibrio parahaemolyticus, Pseudomonas putida 

promoted this pathogen [64]. Some fungi like Ascomycetes, Basidiomycetes and 

Zygomycetes can develop chlamydospores, which provide living space for the 

pathogen Ralstonia solanacearum [65]. It has been also shown that toxin production 

by the bacterial endosymbiont of the plant pathogenic fungus Rhizopus is required for 

successful fungal colonization of rice plants [66], indicating that fungal-bacterial 

interactions can also promote disease. Facilitation has recently been highlighted as a 

potential determinant of pathogen success [64]. Therefore, manipulating naturally-

occurring pathogens facilitators may provide an alternative means of controlling 

pathogen development.  

3.2 Interactions within resident communities indirectly affect pathogen invasion 

The characteristics of both resident communities and the invading species are 

important for determining the outcomes of biological invasions [67, 68]. From the 

resident community perspective, species diversity may be considered a shield to 

invasions and this effect is often attributed to competition for resources [51, 69-71], 

where highly diverse communities are thought to more completely use available 
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resources, leaving little free niche space for invaders [72, 73]. In reality, diversity-

invasion resistance relationships are more varied, with some studies showing neutral 

or even negative effects [23, 74, 75]. It has been shown that the nature of species 

interactions may be more important than the sheer number of interacting species within 

the community (Wei et al. 2015). Invasion resistance may also be mediated to a large 

extent by specific keystone taxa [76]. However, the type and strength of resident 

species’ interactions, such as competition and facilitation, have often been overlooked 

in the context of how diversity mediates invasion resistance.  

a) Competitive interactions within resident communities indirectly affect 

pathogen invasion 

Competitive interactions among resident species may affect the outcomes of 

invasions in various ways. For instance, competition is likely to affect the resource 

availability, and hence the availability of free resource niche space, and the likelihood 

of invasions [23, 73, 75, 77, 78]. It is predicted that highly competitive resident 

communities are less prone to invasions if they can efficiently utilize and consume 

resources that would otherwise be available for invaders [23, 73, 79]. This effect is 

expected to be especially strong in resident communities that show a high degree of 

complementarity and hence compete less strongly with each other and collectively 

more completely with the invader. Furthermore, competing species can inhibit each 

other directly by producing toxic metabolites, such as antibiotics. Depending on the 

spectrum of their activity, antibiotic compounds could have negative effects on both 
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resident community species as well as the invader [80-85]. If the invader is particularly 

sensitive to toxins produced by the resident community, it is expected that antibiotic-

mediated interference competition will constrain invasions. In contrast, if toxins have a 

disproportionally large negative effect on members of the resident community, such 

interference competition is expected to promote invasions [83, 86].  

b) Facilitative interactions within resident communities indirectly affect 

pathogen invasion 

Invasion resistance has to date mainly been considered from the perspective of 

competitive interactions such as resource competition, niche preemption and direct 

antagonism [51, 58, 72, 73]. There is still a conspicuous lack of knowledge regarding 

how facilitative interactions between resident species influence microbial community 

establishment and pathogen invasion. Facilitative resident communities might be less 

efficient at competing for resources with the invader compared to competitive resident 

communities. Furthermore, facilitative interactions between residents could potentially 

increase the number of resource niches via production of secondary metabolites or 

public goods that can also be utilized by the invader, which could promote invasions in 

the process [87-89]. Moreover, previous studies have demonstrated that bacteria can 

show preference between different dietary glycans, which can prolong species 

coexistence in co-cultures [90]. Such dietary preference might leave some resources 

less utilized, providing an opportunity for invasion [91].  
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4. Interactions among microbes are sensitive to environmental 

factors 

The microbial interactions described above are sensitive to a range of 

environmental factors, such as resource availability [76, 92], pH [93] and temperature 

[94]. Theoretical studies have suggested that certain mutualisms can become 

competitive under high nutrient conditions [95]. It has also for instance been shown 

that two yeast strains can interact in at least seven qualitatively different ways 

depending on the nutrient concentrations encountered [96]. Moreover, the way 

microbes modify their environment and react to it influences the interactions between 

different species. For example, it has been found that modifying and reacting to the 

environmental pH can drive bacterial interactions [93]. Also, negative interactions 

between microbes have been observed to be mostly driven by competition for 

resources at low resource availability, but mostly driven by the production of toxic 

metabolites at high resource availability [97]. Therefore, although the specific 

environmental conditions may differ widely between habitats, microbes influence their 

direct environment for instance by consuming resources and excreting metabolites [98]. 

These environmental changes influence the growth and survival of both the microbes 

that originally altered the environment as well as other microbial species that are 

present, whether that be resident organisms or potential invaders. However, although 

multiple studies have observed a shift in bacterial interactions in response to changes 

in environmental factors, it is generally not known how shifts in these interactions affect 

a community’s susceptibility or resistance to pathogen invasion.  
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5. Bacterial wilt disease as a model of soil-borne disease 

In this thesis, I use bacterial wilt disease in tomato plant as a model of soil-borne 

disease, which is caused by pathogen Ralstonia solanacearum. Ralstonia 

solanacearum is a soil-borne bacterium that can cause bacterial wilt disease in over 

50 plant families and more than 200 plant species, mostly in solanaceous plants [99, 

100]. This pathogen causes enormous agricultural and economic losses due to its 

lethality, persistence, complex subspecies, wide host range and broad geographic 

distribution [101, 102]. Ralstonia solanacearum survives for long periods of time in soil 

and water and can be transmitted by water, soil particles and infected plants [49]. 

During the Ralstonia solanacearum infestation process, this soilborne pathogen 

usually enters plant roots, invades the xylem and then spreads quickly to the aerial 

parts of the plant through the vascular system. With the accumulation of Ralstonia 

solanacearum, the plant becomes stunted and wilted leading ultimately to death [103].  

6. Thesis outline 

In this thesis, I investigate how bacteria from the tomato rhizosphere interact with 

each other, and how these interactions affect resident community resistance to 

pathogen invasion. Furthermore, I examined the extent to which these interactions are 

influenced by environmental factors such as resource availability (Fig. 4).   
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Fig. 4 Overview of the chapters of this thesis.  

I start this thesis by presenting a field survey of tomato bacterial wilt disease 

across six regions in China where Ralstonia solanacearum infestation has created a 

mosaic of disease and healthy tomato plants. As mentioned above, plant health is 

intimately influenced by its rhizosphere microbiome and their interactions. Although 

differences can often be detected between the microbiomes of healthy versus 

diseased plants, the underlying mechanisms driving plant microbiome support of plant 

health often remain difficult to determine. I addressed this issue by examining soil-

borne bacterial communities associated with either healthy or diseased plants across 

the aforementioned six field locations in Chapter 2. To relate community patterns with 

potential bacterial interactions, I combined direct examination of plant-associated 

bacterial communities from healthy and diseased soils with interaction studies of 
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bacterial isolates recovered from these soils. Correlation analyses showed 

discrepancies between co-occurrence patterns and direct strain interactions. I thus 

used less complex, yet more controllable synthetic microbial communities in the 

subsequent studies to investigate the ecological interactions between rhizobacterial 

isolates and explored how these interactions impact pathogen invasion.  

In Chapter 3, I tested how antagonistic and facilitative pairwise interactions within 

resident model bacterial communities may be used to predict invasion by the Ralstonia 

solanacearum. I found that facilitative resident community interactions promoted and 

antagonistic interactions suppressed invasions both in the lab and in the tomato plant 

rhizosphere. Crucially, pairwise interactions also reliably explained observed invasion 

outcomes also in multispecies communities. Mechanistically, this was linked to direct 

inhibition of the invader by antagonistic communities (antibiosis) and to a lesser degree 

by resource competition between members of the resident community and the invader.  

There were both pathogen-antagonist bacteria and -helper bacteria in our library 

of rhizobacterial strains isolated from the tomato rhizosphere (Chapter 2). However, 

the importance of the helper bacteria in determining the success of pathogen remains 

unclear. In Chapter 4, I hypothesized that inhibiting such pathogen helpers may help 

control pathogens indirectly. I examined tripartite interactions between the model 

pathogen Ralstonia solanacearum, two model helper strains and a collection of 46 

bacterial isolates recovered from the library of rhizobacterial strains that was built in 

Chapter 2. This setting allowed me to examine the importance of direct (effects of 

rhizobacteria on pathogen growth) versus indirect (effects of rhizobacteria on helper 
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growth) pathways on pathogen growth. I found that as compared to direct impacts from 

rhizosphere isolates on the pathogen itself, the indirect impacts from interactions 

between rhizosphere isolates and the helper strains were more important determinants 

of pathogen success in vitro and in vivo.  

In Chapter 5, I examined how differences in resource availability impact pairwise 

interactions within the resident community (the same two-species community 

combinations as in Chapter 3), and how these shifts affect the resident community’s 

ability to resist the invasion of Ralstonia solanacearum. Resource availability changed 

the nature of interactions between resident community members and pathogen 

invasion. At high resource availability, competitive resident communities produced 

more antibiotics, making them less susceptible to invasion compared to more 

facilitative communities. At low resource availability, facilitative communities reached 

higher productivity, which in turn may be more important for resistance to pathogen 

invasion than competitive interactions in less productive communities.  

In Chapter 6, I synthesize the results of this thesis and discuss how the findings 

of this thesis contribute to the field of microbial ecology. I further expand upon the 

importance of direct and indirect interactions within rhizosphere microbes with respect 

to the development of disease protection systems. In addition, future research 

directions about more holistic understanding of rhizosphere ecology and sustainable 

control of soil-borne disease are proposed.  
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Chapter 2 Linking microbial community patterns and 

pairwise interactions to plant health  

Mei Li1,2, George A. Kowalchuk2, Zhong Wei1, Alexandre Jousset1, Yangchun Xu1, Qirong Shen1 and 

Thomas Pommier3 
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Abstract  

Plant disease incidence in the field is influenced by the composition of the rhizosphere 

microbiome. Although differences can often be detected between the microbiomes of 

healthy versus diseased plants, the underlying mechanisms driving plant microbiome 

support of plant health often remain difficult to determine. We addressed this issue by 

examining soil-borne bacterial communities associated with either healthy or diseased 

plants across six field locations throughout China. To relate community patterns with 

potential microbial interactions, we combined direct examination of the plant-

associated bacterial communities from healthy and diseased rhizosphere soils (HRS 

and DRS) with interaction studies of bacterial isolates recovered from these soils. Not 

surprisingly, the density of the disease-causing agent, Ralstonia solanacearum, was 

significantly higher in DRS as compared to HRS, and distinct microbiome structures 

and co-occurrence patterns were observed in healthy versus diseased rhizosphere 

soils. Upon assessing pairwise assays of 515 recovered bacterial isolates with R. 

solanacearum, we found that HRS yielded a greater proportion of strains that directly 

inhibited the pathogen as compared to DRS. We then associated these bacterial 

isolates with 16S rRNA gene sequences obtained from our rhizosphere microbiomes. 

The relative abundance of OTUs highly related to these isolates were differentially 

recovered from DRS and HRS samples, with higher abundances of Firmicutes and 

Actinobacteria in healthy soils and higher abundances of Bacteroidetes and 

Proteobacteria in diseased soils. Correlation analyses showed discrepancies between 

co-occurrence patterns and direct strains interactions. Our results may help to guide 
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efforts for targeted cultivation and application of potential biocontrol agents and offers 

opportunities for future microbiota manipulation experiments to elucidate the biological 

mechanisms and interactions driving the observed effects. 

Introduction 

A variety of soil-borne diseases are increasingly threatening agricultural 

production around the world [20, 21]. Diverse microbes inhabiting the plant rhizosphere 

can help plants avoid or limit the damage inflicted by such diseases [13, 25]. 

Understanding which microbial communities are associated with disease-suppression 

can thus provide the foundation for soil community manipulation and new opportunities 

to explore novel strategies to promote plant health in a sustainable way [104]. In line 

with this aim, a range of disease-suppressive soils has been described in which either 

specific components or general community action contributes to resistance against 

soil-borne pathogens [15, 26, 57]. To examine the diversity of plant-associated 

microbial communities, most studies have been utilized ribosomal amplicon-based 

approaches [105-108]. One limitation of ribosomal RNA-based root microbiota 

characterizations is that such approaches only provide indirect information about the 

functions carried out by its members, based upon taxonomic classification [109]. 

Culture collections of genetically tractable microbial isolates have been proposed to 

represent a valuable tool for increasing our understanding of the plant microbiome 

[110], but these too have inherent limitations. First, the vast majority of known 

microorganisms are recalcitrant to in vitro cultivation [111]. Although it has been shown 

that relatively large proportions of bacteria of the root microbiome can be isolated [112-
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114], it still requires considerable effort including largescale isolation using serial 

dilutions, multiple cultivation conditions, and subsequent high-throughput taxonomy 

identification. Second, laboratory cultivation selects isolates that are well adapted to 

the given medium, temperature and other cultivation parameters, as opposed to the 

conditions found in the environment of study. Nevertheless, despite the inherent 

limitations, both cultivation independent and dependent approaches represent 

valuable tools to our understanding of the role of rhizosphere microorganisms on plant 

health. For instance, the importance of the rhizosphere microbiome structure on plant 

health has been documented for disease-suppressive soils [25]. By tracking 

communities across a range of soil suppressive conditions, microbial community 

patterns and specific microbial taxa can be identified that are associated with disease 

suppressiveness. For instance, Gammaproteobacteria, Betaproteobacteria and 

Firmicutes have been suggested to represent important bacterial phyla associated with 

disease suppressiveness [21]. Furthermore, inferred microbial co-occurrence 

networks from community profiling or metagenomic data [41, 115] have suggested 

potential microbial associations (either positive, neutral, or negative) that may be linked 

with soil function [106, 116]. However, such correlative approach fail to reveal causal 

mechanisms through which rhizosphere microorganisms can affect each other, 

including soil-borne pathogens [110, 117]. For such purposes, microbial strains 

collections can be used to test interactions between resident populations under 

laboratory conditions [118, 119], as well as strain-strain interactions that may be 

important for plant resistance to pathogen infection [17]. For instance, Niu and 
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colleagues have employed a simplified seven-species synthetic community that was 

representative of the maize root microbiota to study the role of in planta interspecies 

interactions in altering host health and the establishment of root-associated bacterial 

communities [120]. A similar approach showed that antagonistic microbial communities 

were more efficient at suppressing pathogen than facilitative resident communities 

[121]. These studies strongly suggest that a link can be made from interactions among 

the microbiota members to impacts on plant health and disease status.  

In the present study, we combined cultivation-independent and -dependent 

approaches to integrate soil microbial community patterns associated with healthy and 

diseased rhizosphere soils with actual microbial interactions between resident 

populations. As our model pathogen, we chose Ralstonia solanacearum, the causal 

agent of bacterial wilt disease. This species represents one of the most devastating 

and globally distributed soil-borne plant pathogens across a range of important crops 

[100, 122]. Our study targeted six regions across China, where Ralstonia 

solanacearum infestation created a mosaic of disease and healthy tomato plants. We 

first sampled 139 tomato rhizosphere soils across these six different geographic 

locations and tested whether healthy and diseased rhizosphere soils differed in 

pathogen density (using qPCR), bacterial diversity and taxonomic composition as 

determined by 16S rRNA gene amplicon-based sequencing. We then generated 

bacterial isolate collections from the aforementioned healthy and diseased tomato 

rhizosphere soils, characterized their taxonomy and assessed their effects on 

Ralstonia solanacearum’s growth. Furthermore, to relate the result of our cultivation-
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independent and dependent approaches, we identified bacterial isolates within 

microbiomes of the rhizosphere soils, and compared co-occurrence patterns between 

bacterial community members and Ralstonia solanacearum in the field with the effects 

of matching bacterial isolates on the growth of Ralstonia solanacearum.  

Materials and methods 

Rhizosphere soil sampling 

The diseased and healthy rhizosphere soils (Diseased rhizosphere soil: DRS; 

Healthy rhizosphere soil: HRS) were collected from the rhizosphere of tomato plants 

in six geographically separated field sites: Changsha of Hunan province (CH), Ningbo 

of Zhejiang province (NB), Nanchang of Jiangxi province (NC), Nanjing of Jiangsu 

province (NJ), Nanning of Guangxi province (NN) and Wuhan of Hubei province (WH). 

For each field, 12 symptomatic (diseased) and 12 asymptomatic plants (healthy) were 

randomly collected. After the accidental loss of 5 samples, a total of 139 rhizosphere 

samples were used for further analysis (Table S1). The soil was detached from the 

roots by gentle shaking, and the remaining soil attached on the surface of roots was 

considered as the rhizosphere soil [123]. Each rhizosphere soil sample was then 

divided into two parts: one for isolating bacteria, the other for extracting DNA for 

bacterial community sequencing and the quantification of pathogen Ralstonia 

solanacearum (Rs) densities using qPCR.  

DNA extraction, and quantification of Ralstonia solanacearum densities  

Soil DNA was isolated from 500 mg of soil using the PowerSoil DNA Isolation Kit 
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(MoBio, Carlsbad, CA, USA) according to the manufacturer’s instructions. DNA 

extracts were quantified using a NanoDrop spectrophotometer (ND2000, Thermo 

Scientific, DE, USA).  

The Ralstonia solanacearum densities in the fields were then determined with 

qPCR using primers targeting the fliC gene (Schönfeld et al., 2003), which encodes a 

flagellar subunit (forward primer: 5′-GAA CGC CAA CGG TGC GAA CT-3′ and reverse 

primer: 5′-GGCGGC CTT CAG GGA GGT C-3′). The qPCR was carried out on an 

Applied Biosystems 7500 Real-Time PCR System (Applied Biosystems, CA, USA). We 

used SYBR Green I fluorescent dye detection in 20 μl volumes containing 10 μl of 

SYBR Premix Ex Taq (TaKaRa Bio Inc., Japan), 2 μl of DNA template extracted from 

rhizosphere soil and 0.4 μl of both forward and reverse primers (10 mM each). The 

qPCR was performed by initially denaturing step for 30 s at 95 °C with subsequent 

cycling for 40 times with a 5s denaturizing step at 95 °C and a 34s elongation/extension 

step at 60 °C, and a melt curve analysis for 15 s at 95 °C followed by 1 min at 60 °C 

and finally for 15 s at 95 °C. Melting curves were obtained based on a standard protocol 

and used to identify the characteristic peak of PCR product (400 bp) [124]. Three 

independent technical replicates were performed for each sample.  

Bacterial community analysis from diseased and healthy rhizosphere soil 

samples  

To examine bacterial community structure from our 139 tomato rhizosphere 

samples, environmental DNA extracts were used as template for high throughput 16S 

rRNA gene tag sequencing as carried out by Shanghai Biozeron Biological Technology 

Co. Ltd. We amplified the V4 hypervariable region of the bacterial 16S rRNA gene 

using the primer pair 563F (5′-AYT GGG YDT AAA GVG-3 ′) and 802R (5′-TAC NVG 

GGT ATC TAA TCC-3′) [125] with an Illumina adaptor (Illumina, CA, USA), and 
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amplicons were sequenced via an Illumina MiSeq sequencer. Recovered sequences 

were assigned to each sample using their unique barcodes, and reads were processed 

with the QIIME open-source bioinformatics pipeline [126]. Filtering of noisy sequences, 

chimera checking and OTU cutoff was assigned at 97% identity level using USEARCH 

sequence analysis tool [127]. OTUs were assigned to bacterial taxa using ribosomal 

Database Project (RDP) database with the online version of the RDP classifier [128].  

The relative abundance of a given taxonomic group per sample was calculated as 

the number of sequences affiliated to that group divided by the total number of 

sequences recovered from the given sample. The alpha diversity values (including 

Shannon diversity index, observed OTUs and Pielou evenness) were determined by 

using the R vegan package after removing sequences identical to Ralstonia 

solanacearum (Dixon, 2003). Principal Coordinates Analysis (PCoA) based on a Bray-

Curtis dissimilarity matrix was performed and plotted using the R vegan package to 

visualize the differences in microbial communities [129]. Permutational multivariate 

analysis of variance (PERMANOVA) was conducted to examine differences between 

soil-borne bacterial communities from DRS and HRS across our six field sites by using 

the R vegan package.  

Isolation and identification of rhizobacteria 

Isolation. A total of 640 bacterial strains were isolated from the 20 fresh 

rhizosphere soil samples from the Nanjing field site; half from 10 DRS samples, and 

the half from 10 HRS samples, according to an established protocol [59]. Briefly, 1 g of 

each rhizosphere sample was mixed with 9 mL MS buffer solution (50 mM Tris-HCl [pH 

7.5], 100 mM NaCl, 10 mM MgSO4, 0.01% gelatin) in a rotary shaker at 170 rpm min-

1 for 30 min at 30 °C. After serial dilution in MS buffer solution, 100-μl volumes of the 



33 
 

diluted soil suspensions were plated on 1/10 tryptone soy agar (1/10 TSA, 1.5 g L-1 

tryptone, 0.5 g L-1 soytone, 0.5 g L-1 sodium chloride, and 15 g L-1 agar, pH 7.0). After 

a 48-h incubation at 30 °C in the dark, 32 isolates were randomly picked per 

rhizosphere soil sample. To avoid potential fungal contamination, only highly diluted 

samples were used for isolation. The isolates were then re-streaked on TSA plates for 

colony purification. Approximately 5.5% (20 isolates from DRS and 15 from HRS) of 

the bacterial isolates failed to grow on the TSA plates for unknown reasons when we 

re-streaked them, resulting in a final collection consisting of 605 bacterial isolates from 

20 rhizosphere soil samples (300 strains from DRS and 305 from HRS). All purified 

isolates were cultured in 100 μl tryptone soy broth (TSB, liquid TSA) on 96-well 

microtiter plates at 30 °C with shaking (rotary shaker at 170 rpm) for 18 h before 

freezing and storing at -80 °C in 15% glycerol.  

Strain identification. For taxonomic assignment of all 605 rhizobacterial isolates, 

the full 16S rRNA gene was determined by Sanger sequencing by Shaihai Songon 

Biotechnology Co., Ltd, Shaihai Station. The PCR (25 µl) was composed of 1 µl of 

bacterial cells (overnight culture), 12.5 µl mixture, 1 µl of forward (27F: 5-AGA GTT 

TGA TCA TGG CTC AG-3) and reverse primer (1492R: 5-TAC GGT TAC CTT GTT 

ACG ACT T-3) each [130] and 9.5 µl of sterilized water. PCR was performed by initially 

denaturizing at 95 °C for 5 min, cycling 30 times with a 30-s denaturizing step at 94 °C, 

annealing at 58 °C for 30 s, extension at 72 °C for 1 min 30 s, and a final extension at 

72 °C for 10 min. The taxonomy of 16S rRNA gene sequences were assessed using 

the RDP classifier against the RDP Bacterial 16S database [131]. A total of 90 bacterial 
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isolates (70 isolates from DRS and 20 from HRS) that were identical (i.e. 100% similar 

on 1465 bp) to the sequence of Ralstonia solanacearum were removed from further 

analyses. The remaining 515 strains (230 strains from DRS and 285 from HRS) were 

retained for subsequent analyses. 

Effects of rhizobacterial strains on pathogen growth  

We used Ralstonia solanacearum strain QL-Rs1115 tagged with the pYC12-

mCherry plasmid as a model plant pathogen [51, 123]. We first tested the direct effects 

of our 515 non-Ralstonia solanacearum bacterial strains (230 isolates from DRS and 

285 from HRS) on the growth of Ralstonia solanacearum in vitro by using supernatant 

assays. Briefly, after 48 h of growth in NB (nutrient broth) medium (glucose 10.0 g l-1, 

tryptone 5.0 g l-1, yeast extract 0.5 g l-1, beef extract 3.0 g l-1, pH 7.0) on a shaker at 

170 rpm, 30°C, all bacterial cultures were filter sterilized to remove living cells (0.22 

µm filter). Subsequently, 20 µl of sterile supernatant from each strain’s culture and 2 µl 

overnight culture of the pathogen (adjusted to OD600 = 0.5 after 12 h growth at 30°C 

with shaking) were added into 180 µl of fresh NB medium (5-times diluted, in order to 

better reflect the effect of the supernatant). Control treatments were inoculated with 20 

µl of 5X diluted NB media instead of the bacterial supernatant. Each treatment was 

conducted in triplicate. All bacterial cultures were grown for 48 h at 30°C with shaking 

(170 rpm) before measuring pathogen density as red mCherry protein fluorescence 

intensity (excitation: 587 nm, emission: 610 nm) using a SpectraMax M5 plate reader 

[59, 121]. To test for significance of growth promotion or inhibition, Ralstonia 

solanacearum densities were log10-transformed prior to analyses of variance (ANOVA) 

and Bonferroni t-test to compare mean differences between each rhizobacterial 

supernatant treatment and the control treatment, with p-values below 0.05 being 
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considered statistically significant. The effect on pathogen growth was defined as the 

percentage of improvement or reduction in pathogen growth by the supernatant 

compared to the control treatment. When the effect on pathogen growth was positive, 

i.e. when the supernatants from strains significantly promoted the growth of the 

pathogen, they were considered as helpers of the pathogen. If the effect on pathogen 

growth was negative, i.e. when the supernatants from strains significantly inhibited the 

growth of the pathogen, they were considered as inhibitors of the pathogen.  

Phylogenetic tree construction 

The 16S rRNA gene sequences of the 515 non- Ralstonia solanacearum bacterial 

strains were aligned using MUSCLE [132]. Sequences in the alignment were trimmed 

at both ends to obtain maximum overlap using the MEGA X software, which was also 

used to construct taxonomic cladograms [133]. We constructed a maximum-likelihood 

(ML) tree, using a General Time Reversible (GTR) + G + I model, which yielded the 

best fit to our data set. Bootstrapping was carried out with 100 replicates retaining gaps. 

A taxonomic cladogram was created using the EVOLVIEW web tool 

(https://evolgenius.info//evolview-v2/). To show the relationship between phylogeny 

and the effects of rhizobacteria on pathogen growth, we added taxonomic status 

(phylum) of each rhizobacterial strain and its effect on pathogen growth as heatmap 

rings to the outer circle of the tree separately, and we added another heatmap ring to 

show if the strain was isolated from DRS or HRS samples (Fig. 2). 

Matching bacterial isolates with OTUs  

Because reads from high throughput sequencing were shorter than those 

produced by Sanger strain sequencing, we first extracted all sequence reads from the 

dataset of OTUs that were highly similar (>99% over full length of reads) to Sanger 

16S rRNA gene sequences using BLAST searches [134]. These reads were then re-

https://evolgenius.info/evolview-v2/
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clustered in more stringent OTUs (99% similar over full length of reads) using 

MOTHUR [135]. New BLAST searches between 99% similar OTUs and full-length 16S 

rRNA gene sequences from strains were performed to improve similarity matches 

between OTUs and isolates, and only those that were identical (100% over full 

alignment) were retained. In total, 23,829 reads could be assigned to 444 isolated 

strains. 

The relative abundance of each strain in the 99%-OTU dataset was then 

calculated to estimate the relative abundance of each identified bacterial isolate in 

each rhizosphere samples. Principal Coordinates Analysis (PCoA) based on a Bray-

Curtis dissimilarity matrix was performed and plotted using the R vegan package to 

explore the differences between strain representatives isolated from DRS vs. HRS 

[129]. Permutational multivariate analysis of variance (PERMANOVA) was conducted 

to evaluate the significance of this difference using the R vegan package.  

Statistical analyses 

All statistical tests performed in this study were considered significant at P < 0.05. 

To determine significant differences between health conditions (healthy versus 

diseased), non-parametric Kruskal-Wallis and post hoc Dunn’s tests were performed 

in R. Testing of linear discriminant analysis effect size (LEfSe) was performed to 

identify significant differences in bacterial taxa (isolated strains in the 99%-OTU 

dataset) between healthy and diseased rhizosphere soil (HRS and DRS) samples 

[136]. Welch’s t-test was used to compare mean differences between the relative 

abundance of screened OTUs (which matched sequences from bacterial isolates) 

enriched in healthy versus diseased rhizosphere soil samples using STAMP [137]. 
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Spearman's rank correlation coefficients between the relative abundance of OTUs 

which matched with bacterial isolates and abundance of Ralstonia solanacearum were 

calculated in R software (Version 4.0.2).  

Results 

Comparison of Ralstonia solanacearum density and bacterial community 

structure between healthy and diseased rhizosphere soil samples 

In this study, we recovered bacterial community data from six tomato fields across 

a wide geographic range where tomato wilt disease was observed (Table S1). 

Rhizosphere samples were examined from both diseased and healthy tomato plants 

in each field. For all sites, we detected significantly higher (p<0.001) densities of the 

disease-causing agent, Ralstonia solanacearum, in diseased rhizosphere soil (DRS) 

samples as compared to healthy rhizosphere soil (HRS) samples (Fig. 1A).  

To compared bacterial community composition between healthy and diseased 

rhizosphere samples, HRS and DRS collected from the six sites (Table S1) were 

subjected to 16S rRNA gen-based amplicon sequencing. Relative abundance analysis 

indicated that Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, 

Gemmatimonadetes and Firmicutes were most abundant bacterial communities at the 

phylum level, and the relative abundance of Proteobacteria was higher in DRS than 

HRS, while the relative abundance of Actinobacteria was higher in HRS than DRS for 

all six sites (Fig. 1B). Alpha diversity analysis revealed no difference in bacterial 

evenness or richness indices (Fig. S1). However, principal coordinate analysis, based 

on the Bray–Curtis dissimilarity index, revealed significant differences between HRS 
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and DRS samples (p=0.022, Adonis; Fig. 1C), as well as variation explained by the 

different filed sites (p = 0.001, Adonis; Fig. 1C). A clear difference was observed 

between HRS and DRS when examining data from each field separately (P < 0.05, 

Adonis; Fig. S2), with the exception of the Nanchang site (P = 0.425, Adonis; Fig. S2).  

 

Fig. 1 Differences in Ralstonia solanacearum density and bacterial community composition of 

HRS and DRS samples collected from tomato fields in Changsha (CS), Ningbo (NB), Nanchang 

(NC), Nanjing (NJ), Nanning (NN) and Wuhan (WH) in China. (A) The population of the bacterial plant 

pathogen Ralstonia solanacearum (Wilcoxon test, mean ± SD, n = 11 or 12; ***P < 0.001), (B) relative 

abundance of rhizobacteria at the phylum level in HRS and DRS samples collected across the six sites 

(t-test, mean ± SD, n = 6; **P < 0.01, *P < 0.05), and (C) PCoA analysis with Bray–Curtis distance 

showing as related to site and plant health status. Indicated p values refer to differences in bacterial 

community composition between HRS and DRS samples, and between the six field sites (PERMANOVA 

by Adonis).  

Comparison of taxonomic characterization and the effects of bacterial isolates 

from HRS and DRS on Ralstonia solanacearum growth  

Our 515 isolates (230 isolates from DRS and 285 from HRS) were classified into 
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four main phyla, with the following distribution: Proteobacteria 34.4%, Firmicutes 

31.7%, Bacteroidetes 17.5% and Actinobacteria 16.5%. This collection contained a 

total of 26 families and 52 genera (Fig. S3). A total of 37.9% of these isolated 

rhizobacteria were shown to inhibit pathogen growth, while 53.6% of them significantly 

improved pathogen growth, and these categories were referred to as pathogen 

antagonists and helpers, respectively (Fig. S4). Although HRS or DRS both yielded 

strains with a wide range of effects on Ralstonia solanacearum growth, we isolated a 

higher proportion of Ralstonia solanacearum antagonists from healthy rhizosphere 

soils (40.4%) as compared to from diseased rhizosphere soils (34.7%) (p=0.016; Fig. 

2A). Conversely, we observed a lower proportion of pathogen helper strains in HRS 

(51.9%) as compared to DRS (55.7%).  

The proportion of strains characterized as either pathogen helpers or antagonists 

varied across the four phyla represented in our collection (Fig. 2B). For instance, a 

higher proportion of the isolates affiliated with the Firmicutes inhibited Ralstonia 

solanacearum growth, while more Proteobacteria and Actinobacteria isolates were 

characterized as helpers, and this held for both DRS and HRS (Fig. 2C). We observed 

a higher proportion of inhibitors affiliated with the Firmicutes in HRS (67.3%) as 

compared to DRS (54.2%), while there was a lower proportion of helpers affiliated with 

the Actinobacteria from HRS (77.5%) than from DRS (89.7%). Moreover, the proportion 

of isolates identified as Firmicutes was higher for HRS (35.4%) than for DRS (25.6%), 

while those affiliated with Bacteroidetes were lower for HRS (13.3%) as compared to 

DRS (22.6%) (Fig. 2C).  
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Fig. 2 Taxonomic and functional differences between bacterial isolates from HRS and DRS 

samples. (A) The effects of bacterial isolates from HRS and DRS on Ralstonia solanacearum growth 

(Wilcoxon test, mean ± SD, n (diseased) = 230 isolates, n(healthy) = 285 isolates). (B) Cladogram 

depicting the phylogenetic relationship among the 515 isolates based on their full-length 16S rRNA gene 

sequences. The inner ring shows the four phyla to which the isolates belong. The middle ring indicates 

whether isolates were recovered from HRS (light yellow) or DRS (light blue) samples. The outer ring 

depicts the effect of isolate supernatants on Ralstonia solanacearum growth: positive effect (blue), 

negative effect (red) and no significant effect (gray). (C) The proportion of bacterial isolates per phylum 

whose supernatant showed inhibitory, stimulatory or no effect on Ralstonia solanacearum growth from 

HRS and DRS samples (right and left, respectively). The size of the circles represents the proportion of 

bacterial isolates identified for a given phylum from HRS and DRS samples. The thickness of lines 

represents the percentage of bacterial isolates that have the indicated effect on Ralstonia solanacearum 

growth for each phylum.  
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Linking bacterial isolates with bacterial communities of rhizosphere soils 

From our collection of 515 bacterial isolates, 444 (86.2%) were highly similar 

(100%) to one of 165 OTUs recovered by high-throughput 16S rRNA gene tag 

sequencing of extracted environmental DNA. The remaining 13.8% (71) of isolates 

showed no relative OTU in the high throughput dataset. The relative abundance of 

OTUs highly related to these isolates showed a clear pattern between bacterial strains 

isolated from DRS and HRS samples (Adonis; p=0.001; Fig. 3A). We further examined 

the correlations between bacterial OTUs related to the isolated strains, plant health 

status and the abundance of Ralstonia solanacearum in the field. Based on linear 

discriminant analysis (LDA), 39 rhizosphere bacterial OTUs related to these strains 

differed between DRS and HRS (Fig. 3B and Table S2). Among these, 10 OTUs were 

enriched in HRS, while 29 OTUs were enriched in DRS (Fig. 3B). Four OTUs enriched 

in HRS were significantly and negatively linked with the abundance of Ralstonia 

solanacearum in the field (Spearman's rank correlation analysis, p<0.05), and 6 OTUs 

enriched in DRS were positively correlated (p<0.05) with the abundance of Ralstonia 

solanacearum. Other OTUs did not show significant correlations with Ralstonia 

solanacearum in DRS or HRS samples (Fig. 3B and Table S2). Because different 

isolates could be related to the same OTU, their effects on Ralstonia solanacearum 

growth might not all align with the co-occurrence patterns of this OTU and Ralstonia 

solanacearum (Table S2). For instance, 10 bacterial isolates were closely related to 

OTU00007, which was enriched in DRS and was positively corelated with Ralstonia 

solanacearum. Of these isolates, 1 inhibited the growth of Ralstonia solanacearum, 1 
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had no effect and 8 facilitated Ralstonia solanacearum‘s growth in our laboratory assay 

(Table S2). In addition, of these 39 discriminating OTUs that could be linked with 

isolates, HRS had higher abundances of Firmicutes and Actinobacteria, while DRS had 

higher abundances of Bacteroidetes and Proteobacteria (p<0.05; Fig. 3C).  

 

Fig. 3 Differences in bacterial isolates between HRS and DRS as related to sequence-based OTUs. 

(A) Two-dimensional principal coordinate analysis (PCoA) of bacterial OTUs highly related to strains 

which were isolated from HRS and DRS samples. Significant differences in bacterial isolates 

composition in the field were detected between HRS and DRS samples (PERMANOVA by Adonis). (B) 

Spearman's rank correlations between relative abundance of discriminating OTUs (which were matched 

with isolates) and the pathogen Ralstonia solanacearum (Rs). Discriminating OTUs: enriched in HRS or 

DRS samples with linear discriminant analysis scores > 2 or < 2. (C) Differences in the abundances of 

discriminating OTUs (which were matched with isolates) between HRS and DRS samples at the phylum 

level. P values were calculated using Welch’s t-test (P < 0.05).  
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Discussion 

The rhizosphere microbiome is recognized as a major determinant of plant growth 

and health. Characterizing microbial communities in disease-suppressive soil is a 

crucial step towards developing management strategies to characterize microbial 

communities favoring crop health and productivity [32]. In the present study, we have 

examined bacterial communities occurring in healthy and diseased tomato rhizosphere 

soils collected from six geographically distant locations, where tomato wilt disease 

caused by Ralstonia solanacearum could be observed. Specifically, we analyzed 

bacterial community patterns with respect to location and disease status of the plant 

and tested effects of recovered isolates from diseased and healthy soils on Ralstonia 

solanacearum growth. As expected, diseased rhizosphere soil (DRS) samples 

harbored significantly higher densities of Ralstonia solanacearum as compared to 

healthy rhizosphere soil (HRS) samples, as previously observed for other soil-borne 

pathogens and plant species [138, 139]. HRS samples did contain an appreciable 

density of Ralstonia solanacearum (>106 CFU/g rhizosphere soil), suggesting that 

disease development may be impeded by the resident microbial community in the soil 

[28, 34]. Therefore, not only the absolute pathogen abundance, but also other 

rhizosphere microbial community feature, may determine the ultimate differences in 

disease severity in plants.  

We found differences in the bacterial taxonomic compositions of HRS versus DRS 

samples (Fig. 1C and 3A), which is in agreement with previous results related to both 

plant- and human-associated microbiomes [140, 141]. Actinobacteria and Firmicutes 
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were two phyla that showed higher abundance in HRS as compared to DRS samples. 

These two phyla are known to include strains that can produce high levels of secondary 

metabolites that can act to inhibit plant pathogens [142-144]. Interestingly, the majority 

of Actinobacterial strains recovered in our study promoted the growth of Ralstonia 

solanacearum, and this was true for both DRS and HRS samples. This apparent 

discrepancy could relate to the eubiosis of host-associated microbial communities, 

which can potentially alter disease occurrence [145, 146]. For instance, Lee and 

colleagues found that higher abundances of Actinobacteria in healthy tomato 

rhizosphere did not directly antagonize Ralstonia solanacearum but instead helped to 

activate plant immunity, which limited disease development [147]. Geographic location 

was the greatest determinant of soil-borne microbial community structure (Fig. 1C). 

This was not unexpected, given the large impact of environmental factors such as soil 

type and pH on rhizosphere soil microbial communities [116, 148-150]. Despite the 

large differences across our study locations, we were still able to observe community 

characteristics specifically related to disease status, which is in line with previous 

observations relating microbial community patterns to plant as health status [28].  

Although more than ten bacterial phyla could be recovered from the tomato 

rhizosphere samples using cultivation-independent high throughput sequencing, our 

isolated rhizobacteria were restricted to only four phyla. Disparity regarding the relative 

recovery across phyla is illustrated by the Acidobacteria, which was one of the top three 

most abundant phyla as determined by sequencing, but was not represented in our 

culture collection. In addition, we found 31.7% of our bacterial isolates were belonged 
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to Firmicutes, while this phylum was much less well represented in our ribosomal 

amplicon-based dataset. One possible explanation is that these Firmicutes are 

particularly amiable to the cultivation conditions used in our isolation procedure. 

Alternatively, Firmicutes may actually constitute a large fraction of the total microbiome, 

but their detection may be impaired by biases in PCR amplification, for instance due 

to mismatches within the priming sites used. Such biases related to the completeness 

and representativeness of strain collections is typically observed, potentially related to 

numerous factors, such as nutrient availability, oxygen level, temperature, pH, and 

growth factors [151]. Given these limitations, caution should be exercised when 

drawing conclusions from purely cultivation-based approaches, and our study could 

therefore only examine links between cultivation-dependent and -independent 

approaches for a subset of the total community. Improvements toward attaining more 

complete and representative strain collections could further help future efforts to link 

cultivation-independent and -dependent approaches. 

Here, by combining both cultivation-dependent and -independent approaches, we 

linked bacterial isolates with bacterial community in the rhizosphere soils from the 

Nanjing site. Clear separation of bacterial community compositions between DRS and 

HRS samples (as assessed by principal coordinate analysis) was observed using 

either the whole tomato rhizosphere bacterial community (Fig. S2D) or using only 

OTUs that were highly related to isolates (Fig. 3A). However, as reported recently [152], 

we observed a discrepancy when comparing co-occurrence patterns of these OTUs 

with Ralstonia solanacearum in the field to the in vitro effects of the related bacterial 
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isolates on growth of Ralstonia solanacearum. Because the Illumina high throughput 

sequencing produced shorter reads than the near full-length Sanger sequences we 

had for isolates, several isolates could be related to the same OTU. Consequently, 

different isolates from the same OTU might show differences from each other in their 

in vitro effects on Ralstonia solanacearum growth and therefore how these interactions 

compare to observed co-occurrence patterns with Ralstonia solanacearum (Table S2). 

Our results indeed demonstrate that co-occurrence patterns do not necessarily reflect 

actual species interactions, as previously observed [153]. Positive or negative links 

within co-occurrence networks have been shown to be poor predictors of actual 

interactions upon examination of one-to-one effects interactions [154]. It has also been 

suggested that co-occurrence may be a result of dispersal limitation [155, 156], or 

common selection due to specific environmental factors, without actual direct or 

indirect interaction [152, 157]. Therefore, in our subsequent studies, we will use the 

library of rhizobacterial strains from this study to investigate the ecological interactions 

between rhizobacterial isolates and their impacts on pathogen suppression, by 

constructing lower complexity, higher controllable synthetic microbial communities 

[158]. In total, our study may help to guide efforts for targeted cultivation and 

application of potential biocontrol agents, and offers opportunities for future microbiota 

manipulation experiments to elucidate the biological mechanisms and interactions 

driving the observed effects.  
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Supplementary materials 

Table S1. Rhizosphere soil collections across China. Sampling locations and experimental design.  

  Rhizosphere soil samples 

Diseased    Healthy Sites Location 

Changsha (CS) 28°11′49"N, 112°58′42"E 12          12 

12          12 

11          11 

11          12 

12          12 

11          11 

Ningbo (NB) 29°52'00"N, 121°31'00"E 

Nanchang (NC) 28°34'00"N, 115°56'00"E 

Nanjing (NJ) 32°03'00"N, 118°57'00"E 

Nanning (NN) 22°48′00"N, 108°22′00"E 

Wuhan (WH) 30°58′00"N, 114°41′00"E 

 

Table S2. The link between co-occurrence patterns and ecological interactions. The table shows co-

occurrence patterns (Spearman's correlations) between the 39 discriminating OTUs which related to 

bacterial isolates and Ralstonia solanacearum in the field (Figure 3B), and effects of the bacterial 

isolates on the growth of Ralstonia solanacearum.  

OTUs which 

related to isolates 

Correlations between relative 

abundances of OUT and Rs 

Effect of each isolate which 

related to OUT on Rs 

Enriched in DRS   

OTU00004 Positive 1 isolate facilitated Rs 

OTU00007 Positive 1 isolate inhibited Rs; 1 no effect; 8 facilitated 

OTU00012 Not significant 6 isolates facilitated Rs 

OTU00013 Positive 1 isolate inhibited Rs 

OTU00017 Not significant 1 isolate inhibited Rs 

OTU00018 Not significant 7 isolates facilitated Rs 

OTU00019 Not significant 1 isolate had no effect on Rs 

OTU00028 Not significant 3 isolates facilitated Rs 

OTU00031 Not significant 1 isolate facilitated Rs 

OTU00032 Not significant 1 isolate facilitated Rs 

OTU00033 Not significant 1 isolate facilitated Rs 

OTU00040 Not significant 1 isolate inhibited Rs 

OTU00067 Not significant 3 isolates facilitated Rs 

OTU00133 Not significant 1 isolate had no effect on Rs; 4 facilitated 

OTU00168 Not significant 1 isolate facilitated Rs 

OTU00535 Positive 1 isolate facilitated Rs 

OTU00759 Not significant 1 isolate had no effect on Rs; 2 facilitated 

OTU00885 Not significant 1 isolate facilitated Rs 

OTU01006 Not significant 6 isolates facilitated Rs 

OTU01136 Not significant 1 isolate inhibited Rs; 1 no effect; 8 facilitated 

OTU01181 Not significant 1 isolate facilitated Rs 

OTU01283 Positive 1 isolate had no effect on Rs; 5 inhibited 

OTU01317 Not significant 1 isolate facilitated Rs; 1 no effect; 5 inhibited 

OTU01365 Not significant 1 isolate facilitated Rs; 1 no effect; 5 inhibited 
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OTU01564 Not significant 1 isolate inhibited Rs 

OTU01960 Not significant 1 isolate inhibited Rs 

OTU02003 Positive 7 isolates facilitated Rs 

OTU02838 Not significant 1 isolate inhibited Rs; 4 facilitated 

OTU02991 Not significant 1 isolate inhibited Rs 

Enriched in HRS   

OTU00002 Negative 2 isolates facilitated Rs 

OTU00006 Not significant 2 isolates inhibited Rs; 3 facilitated 

OTU00008 Negative 
3 isolates inhibited Rs; 1 no effect; 10 

facilitated 

OTU00010 Not significant 2 isolates had no effect on Rs; 15 facilitated 

OTU00106 Negative 26 isolates inhibited Rs 

OTU00108 Not significant 1 isolate facilitated Rs 

OTU00150 Negative 3 isolates facilitated Rs; 14 inhibited 

OTU00263 Not significant 1 isolate inhibited Rs 

OTU01304 Not significant 2 isolates facilitated Rs 

OTU02263 Not significant 1 isolate facilitated Rs 

 

 
Figure S1. Comparison of the evenness and richness of bacteria in healthy rhizosphere soil (HRS) and 

diseased rhizosphere soil (DRS) of tomato plants using alpha diversity indices. Alpha diversity analysis 

of HRS and DRS samples collected from Changsha, Ningbo, Nanchang, Nanjing, Nanning and Wuhan 

China (Wilcoxon test, mean ± SD, n (diseased) = 69, n (healthy) = 70; ns, nonsignificant).  
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Figure S2. Principal coordinate analysis (PCoA) of bacterial community compositions in tomato 

rhizosphere in each site. Adonis was used to performed nonparametric multivariate analysis of variance 

using Bray–Curtis distance matrices for identifying the dissimilarity of bacterial community composition 

between the rhizosphere soil of diseased and healthy plants in each field. P values are indicated in each 

panel. 
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Figure S3. The diversity and taxonomic classification of rhizosphere bacterial isolates. A total of 

515 rhizosphere isolates were identified by 16s rRNA sequencing and their closest relatives were 

determined using the NCBI database. Seven bacterial groups with highest relative abundances at the 

phylum, class, order, family, and genus levels are shown in the figure, while groups with relatively low 

abundances were merged and are presented as one group ‘Others’. In all panels, percentage (%) values 

in brackets represent the proportion of each bacterial group of the total isolates (515 bacterial isolates). 

 

 

Figure S4. The histograms depict the effects of 515 rhizobacteria on Ralstonia solanacearum growth in 

vitro. The red vertical line represents no effect on Ralstonia solanacearum growth.  
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Abstract  

While several studies have established a positive correlation between community 

diversity and invasion resistance, it is less clear how species interactions within 

resident communities shape this process. Here we experimentally tested how 

antagonistic and facilitative pairwise interactions within resident model microbial 

communities predict invasion by the plant-pathogenic bacterium Ralstonia 

solanacearum. We found that facilitative resident community interactions promoted 

and antagonistic interactions suppressed invasions both in the lab and in the tomato 

plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion 

outcomes also in multispecies communities, and mechanistically, this was linked to 

direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser 

degree by resource competition between members of the resident community and the 

invader. Together our findings suggest that the type and strength of pairwise 

interactions can reliably predict the outcome of invasions in more complex multispecies 

communities.  

Introduction  

The characteristics of both resident communities and the invading species are 

important for determining the outcomes of biological invasions [67, 68]. From the 

resident community perspective, species diversity may be considered a shield to 

invasions and this effect is often attributed to competition for existing resources [51, 

69] where highly diverse communities are thought to efficiently use all the available 

resource niches leaving no free space for invaders [72, 73]. In reality, diversity-invasion 

resistance relationships are more varied ranging from having neutral to even negative 
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effects [23, 74, 75] and are sensitive to environmental conditions [79, 88, 159, 160]. 

Furthermore, it has been shown that trophic network architecture (Wei et al. 2015), 

species identity effects [76] and food web connectance [161] are important predictors 

of invasions and are often linked with community diversity. For example, how species 

interact might be more important than the number of interacting species within the 

community (Wei et al. 2015), while invasion resistance may be mediated by certain 

keystone taxa [76]. However, the type and strength of resident species interactions 

have often been overlooked in the context of diversity-invasion resistance. 

Resident species communities form complex ecological webs where multiple 

species may interact positively or negatively with each other [162]. Positive interactions 

between species at the same trophic level can result from facilitation or metabolic 

cross-feeding, where species benefit from the presence of each other [163]. Negative 

interactions may result from resource competition [51] or direct interference 

competition, where species directly suppress each other via antagonism [81-84]. 

These interactions may affect the outcomes of invasions in various ways. First, 

facilitation and competition are likely to affect the resource availability, and hence the 

availability of free resource niche space, and the likelihood of invasions [23, 73, 75, 77, 

78]. It is predicted that highly competitive resident communities are less prone to 

invasions if they can efficiently utilize and consume resources that would otherwise be 

available for invaders [23, 73, 79]. This effect is expected to be especially strong in the 

resident communities that show a high degree of complementarity and hence compete 

less strongly with each other compared with the invader. In contrast, facilitative 

interactions between residents could potentially increase the number of resource 

niches via production of secondary metabolites or public goods that can also be utilized 
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by the invader [87-89]. Furthermore, competing species can inhibit each other directly 

by producing toxic metabolites, such as antibiotics. Depending on the spectrum of their 

activity, antibiotic compounds could have negative effects on both resident community 

species and the invader [80-85]. If the invader is particularly sensitive to toxins 

produced by the resident community, it is expected that antibiotic-mediated 

interference competition will constrain invasions. In contrast, if toxins have a 

disproportionally larger negative effect on the members of the resident community, 

such interference competition is expected to promote invasions [83, 86]. Resident 

community species interactions could further affect certain community-level properties 

such as ecological stability [164], which could have indirect effects on invasions [165].  

 In the present study, we explored to what extent the type (facilitative vs 

antagonistic) and strength of two-species resident community species interactions can 

predict invasions in complex multispecies bacterial communities. Experiments 

conducted within one trophic level suggest that pairwise bacterial competitions can 

predict three-species bacterial competitions with as high as 90% accuracy [166]. While 

predicting competitions in species-rich communities might require additional 

information about potentially emerging higher-order interactions [167-169], these 

findings suggest that qualitative information regarding species growth in pairwise co-

cultures can be used to predict the competitive outcomes of up to 8-species 

communities [166]. Here we extend this approach beyond competition to concurrently 

explore the role of antagonistic and facilitative resident community interactions for 

biological invasions [170-172]. Our study system consisted of six non-pathogenic 

bacterial species (resident community), which were isolated from the tomato plant 
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rhizosphere, and the invader, the plant-pathogenic Ralstonia solanacearum bacterium. 

Specifically, we first characterized antagonistic and facilitative pairwise interactions 

within model resident bacterial communities and then directly tested how these 

interactions predict invasions in more complex multispecies communities both in vitro 

and in vivo in the tomato rhizosphere. We found that facilitative and antagonistic 

pairwise interactions reliably predicted invasions: facilitative resident communities 

were more prone to invasions, while antagonistic resident communities were invaded 

much less often. Mechanistically, this was linked to direct inhibition of the invader by 

antagonistic communities (antibiosis), and to a lesser degree by resource competition 

between the members of the resident community and the invader. Our results suggest 

that antagonism is an important determinant of community invasion resistance [72, 73], 

while facilitation might promote invasions by alleviating antagonistic interactions or by 

releasing vacant niche space for the invader.  

Materials and methods  

Bacterial strains and the assembly of resident communities  

We used Ralstonia solanacearum strain QL-Rs1115 tagged with the pYC12-mCherry 

plasmid [58] as an invading pathogen in our experiments. Ralstonia solanacearum is 

a causal driver of bacterial wilt and capable of infecting various economically important 

crop species [99]. We set up model resident communities using six bacterial strains 

isolated from the tomato rhizosphere at the same location as the pathogen (Qilin [118° 

57′ E, 32° 03′ N], Nanjing, China). Resident community species listed in Table S1 

(Flavobacterium johnsoniae WR4, Chryseobacterium daecheongense WR21, Delftia 

acidovorans WR42, Bacillus amyloliquefaciens T-5, Lysinibacillus sphaericus HR92 
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and Ralstonia pickettii QL-A6) have previously been shown to provide protection for 

associated host plants by inhibiting Ralstonia solanacearum pathogen growth via 

resource competition or direct toxin production (Figure S1). The resident community 

composition (Table S2) was manipulated using biodiversity-invasion resistance 

framework where we modulated both resident community diversity (species richness) 

and composition and then directly tested how this affected community invasion 

resistance [51]. Invasion outcomes were then explained by interactions 1) within 

resident communities and 2) between resident community and the invader. 

Determining pairwise interactions between resident community species 

To quantify the type (facilitative, neutral or antagonistic), strength and direction of each 

pairwise interaction between resident species, we compared the growth of each 

species alone and in the presence of each of the other species in two-species co-

cultures [173]. All mono-cultures were inoculated with a starting density of 105 cells per 

ml and the co-cultures were inoculated with half of this starting cell density of each 

species. Resident species were grown for 48h in liquid NA medium (glucose 10.0 g l-1, 

tryptone 5.0 g l-1, yeast extract 0.5 g l-1, beef extract 3.0 g l-1, pH 7.0) in 48-well 

microtiter plates (ending volume of 700 µl per well) at 30°C with shaking (170 rpm). 

Bacterial growth was measured as colony number units (CFU) per ml by serial dilution 

and plating on NA agar plates after 48h growth. All strains formed distinct colonies on 

agar plates and could be identified based on colony morphology (Figure S2).  

The type of pairwise interaction between two species (here i and j) was determined 

by comparing the sum of endpoint of monoculture productivity (population densities) 

of i (MPi) and monoculture productivity of j (MPj) with the ending productivity of the two-

species co-culture (CPi+j). As suggested previously, the density of a species mixture is 
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expected to be exactly the sum of their growth in the monocultures if species do not 

interact [173]. Thus, we expected that the interaction between i and j would be 

facilitative if CPi+j > MPi + MPj, antagonistic if CPi+j < MPi + MPj and neutral if CPi+j = MPi 

+ MPj. 

In order to characterize directionality of pairwise interactions, we compared the 

ending productivity of each species (CPi and CPj) in two-species co-cultures with their 

ending productivities in monocultures. We then determined the directionality of 

interaction facilitative if species j had a positive effect on i (log10(CPi / MPi) > 0), 

antagonistic if log10(CPi / MPi) < 0 and neutral if log10(CPi / MPi) = 0. We also calculated 

the mean intensity of facilitation (MIF) of co-cultures as an average of log10-

transformed pairwise interactions using the following formula: 

)]/log()/[log(
2

1
jjiiij MPCPMPCPMIF +=

 .
The two-species community was defined as 

facilitative when MIF > 0, antagonistic when MIF < 0 and neutral if MIF = 0.  

Predicting resident species interactions in multispecies communities 

We simply assumed that pairwise interactions would not change in the presence of 

additional species and then predicted resident species interactions in multispecies 

communities using two different indices: by calculating i) the proportion of facilitative 

pairwise interactions of all possible pairwise interactions and ii) predicted mean 

intensity of facilitation (PIF) in a multispecies community. For example, among the total 

number of all possible pairwise interactions of strains i, j and k, if one of these 

interactions was facilitative (CPi+j > MPi + MPj), the proportion of facilitative interactions 

in this resident community was defined as 1/3. Analogous to MIF, we calculated the 

predicted intensity of facilitation (PIF) in multispecies co-cultures as the sum of log10-

transformed interactions divided by the number of all possible pairwise interactions 
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within the given community using the following formula: =

2

1
2

1 nC

ij

n

MIF
C

PIF

, 

where MIFij 

refers the net intensity of one pairwise interaction between species i and j in a 

multispecies community, which has a total of 
2

nC
 number pairwise interactions. The 

communities were defined as facilitative when PIF > 0, antagonistic when PIF < 0 and 

neutral when PIF = 0. PIF thus accounted for both the strength and directionality of all 

potential pairwise interactions in a multispecies community.  

Validating resident species interactions in multispecies communities 

To verify resident species interactions in multispecies bacterial communities, we used 

qPCR to determine the ending densities of each resident species in monocultures and 

in all possible co-cultures (3, 4, 5 and 6 resident species communities). All communities 

were assembled in triplicate in liquid NA medium with a starting density of 105 cells per 

ml in monocultures and 33%, 25%, 20% and 16.7% of monoculture densities in 3, 4, 5 

and 6 resident species communities, respectively. After 48h in 48-well microtiter plates 

at 30°C with shaking (170 rpm), bacterial DNA was extracted using e.Z.N.A. The 

bacterial DNA kit (OMEGA bio-tek) following manufacturer’s protocol and extracted 

DNA was stored at -80°C. Species-specific primers were designed for each resident 

community member (Table S3, Figure S3) and qPCR analyses were carried out with 

an Applied Biosystems Step One Plus real-time PCR system using SYBR green I 

fluorescent dye detection in 20 - µl volumes with 10 µl of SYBR Premix Ex Taq (TaKaRa 

Bio Inc., Japan), 2 µl of template, 0.4 µl Dye I, 0.8 µl of both forward and reverse 

primers (10 mM each) and 6 µl sterile water. The PCR was performed by initially 

denaturizing at 95°C for 30 s, cycling 40 times with a 5-s denaturizing step at 95°C, 

using a 34-s elongation/extension step at 60°C, and ending with melt curve analysis at 

95°C for 15 s, at 60°C for 1 min, and at 95°C for 15 s. Each resident species community 
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sample was replicated three times. 

The observed mean intensity of facilitation (OIF) was calculated using the 

observed species proportions in the communities based on qPCR data. Similar to PIF, 

we first determined to what extent the growth of each species was affected by the 

presence of other species in a given community (growth in the community vs. growth 

alone). OIF was then calculated according to the following formula: 

)/(log
1

ii MPCP
n

OIF =
 .
 Communities were defined as facilitative when OIF > 0, 

antagonistic when OIF < 0 and neutral if OIF = 0. OIF was calculated only based on in 

vitro data and in the case of MIF, PIF and OIF, antagonism included the effects arising 

from both resource competition and direct inhibition via toxins.  

Measuring resource competition and direct antagonism between the invader and 

resident community species 

All bacteria were first grown to high densities (OD600≈1.0) in liquid NA media overnight 

at 30°C with shaking (170 rpm), washed three times in 0.85% NaCl, and adjusted to 

an optical density of 0.5 at 600 nm (OD600) with SpectraMax M5 spectrophotometer 

(Molecular Devices, Sunnyvale, CA). We then measured the growth of the invader and 

all six resident community species individually on 48 different single-carbon resources 

(see Table S4) representative of tomato root exudates (Hu, Wei [84]). When the invader 

and resident community species both grew on the same resource (OD600>0.05), their 

niches were considered to overlap regarding that given resource. In contrast, when 

only one strain grew on a specific resource, the niches were considered not to overlap 

[51]. This resource competition index estimated the ‘apparent’ resource competition 

assuming that interacting species would be competing for the same resources even 

when presented with multiple different resources. 
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Direct antagonism between the invader and resident community species was 

measured using supernatant assays [84]. Briefly, after 24h of growth in NA media, all 

bacterial monocultures were filtered to remove living cells (0.22 µm filter) after 20 µl of 

sterile supernatant from each resident species culture was mixed with 180 µl of an 

overnight-grown Ralstonia solanacearum culture (OD600 = 0.05, five-fold dilution in 

liquid NA). The control treatments were inoculated with 20 µl of sterile-filtered NA media 

instead of bacterial supernatant. All bacterial cultures were grown for 24h at 30°C with 

shaking (170 rpm) before measuring pathogen inhibition as optical density (OD 600 

nm). Antagonism was defined as the percentage of reduction in pathogen growth by 

the supernatant compared to the control treatment for all possible invader-resident 

species two-species combinations.  

Measuring invasion success in multispecies communities  

a) Invasion success measured in vitro  

All possible multispecies resident communities were assembled in triplicate in liquid 

NA medium with a starting density of 105 cells per ml (100%, 50%, 33%, 25%, 20% 

and 16.7% of monoculture densities in 1, 2, 3, 4, 5 and 6 resident species communities, 

respectively). Communities were then subsequently exposed to invasion by mCherry-

tagged Ralstonia solanacearum (104 cells per ml) in 96-well plates at 30°C with shaking 

(170 rpm). After 48h, total bacterial densities were measured as optical density (OD 

600 nm) and invasion success measured as the relative invader density to total 

bacterial densities using red mCherry protein fluorescence intensity (RFP; excitation: 

587 nm, emission: 610 nm) with SpectraMax M5 spectrophotometer.  

b) Invasion success measured in vivo  

We used a 50-day-long greenhouse experiment with tomato plants to measure 
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invasion success in vivo. The soil was collected from a rice field in Wuxi (Jiangsu 

Province, China), sieved at 5 mm and homogenized and sterilized with gamma 

radiation. Surface-sterilized tomato seeds (Lycopersicon esculentum, cultivar “Micro-

Tom”) were germinated on water-agar plates for 3 days before sowing into seedling 

plates containing cobalt-60-sterilized seedling substrate (Huainong, Huaian Soil and 

Fertilizer Institute, Huaian, China). Ralstonia solanacearum invasion was tested in all 

possible two-species resident communities, and due to practical reasons, in 18 

multispecies resident communities that varied in their predicted mean intensities of 

facilitation (Table S5).  

Three replicates were used for each resident community, and one replicate 

consisted of a seedling plate that contained six germinated tomato plants (at the three-

leaf stage of growth when grown on 700 g sterilized soil). Similar replication was also 

used for positive (only the invader) and negative (no bacteria) controls. After 3 days of 

growth on seedling plates, plants were inoculated with assembled resident 

communities using root drenching method at a final concentration of 108 CFU of 

bacteria g-1 soil [174]. Seven days after inoculation of resident communities, Ralstonia 

solanacearum was introduced to the roots of all plants at a final concentration of 107 

CFU of bacteria g-1 soil. Tomato plants were then grown for 40 days in a greenhouse 

(with natural temperature variation ranging from 25°C to 35°C) and watered regularly 

with sterile water. Seedling plates were rearranged randomly every two days and 

disease progression monitored at every seven days. Forty days after inoculation of 

Ralstonia solanacearum, rhizosphere soil was collected from one plant per replicate 

seedling tray and the abundance of the invader determined with quantitative PCR as 

the abundance of Ralstonia solanacearum-specific fliC gene copy numbers [84].  
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Statistical analyses  

To meet assumptions of normality and homogeneity of variance, invader densities 

measured in vitro and in vivo were log10-transformed. We first assessed the 

independent effects of the proportion of facilitative interactions and the mean intensity 

of facilitation based on pairwise resident community interaction on invasions (pathogen 

density and disease incidence). The type of interaction between resident community 

species pairs was included into models as a categorical variable (1= facilitation; 0= 

antagonism). In the case of multispecies communities, invasions were explained by 

three quantitative indices, the proportion of facilitative interactions within a community, 

the predicted mean intensity of facilitation (PIF) and the and observed mean intensity 

of facilitation (OIF). All indices were fitted as continuous variables and one separate 

model was used for each index that explained invader densities in vitro and in vivo and 

bacterial wilt disease incidence. Additional linear mixed models were used to test 

invasions as a function of a) niche overlap between resident community and the 

pathogen (niche preemption by the resident community), b) mean pathogen inhibition 

by the resident community and c) resident community species identity effects. All 

analyses were conducted with SPSS (V. 22) and R [175, 176].  

Results 

(a) Two-species resident species interactions predict invasions in vitro and in 

vivo  

All species had both negative and positive effects on each other while the magnitude 

and directionality of these effects varied depending on specific species (Figure 1A). In 

particular, B. amyloliquefaciens was very antagonistic to the other resident community 

species. (Figure 1A). Furthermore, we found that 9 of the communities showed 

antagonistic, and 6 facilitative pairwise interactions with each other (Figure 1B, Table 
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S6). On average, facilitative two-species communities reached higher population 

densities (R2=0.79, P<0.001, Figure S4), while antagonistic two-species communities 

were more inhibitory towards each other (R2=0.32, P=0.029, Figure S5A). No 

relationship was found between resident species’ resource niche overlap and observed 

mean intensity of facilitation (Figure S5B), which suggests that facilitation did not arise 

due to niche complementarity. Together these results suggest that the strength of direct 

inhibition was more important in explaining the type of pairwise interactions between 

resident community members compared to resource competition.  

 

Figure 1. The type and relative strength of resident species pairwise interactions. (A) Network 

diagram showing the strength and directionality of all pairwise interactions between resident community 

species. The thickness of lines represents the strength and green and red color the facilitative or 

antagonistic effects between different species. (B) Nine of the fifteen pairwise interactions were on 

average antagonistic (co-culture density < monoculture density) and six facilitative (co-culture density > 

monoculture density). Panels show two examples: Left, antagonism between species Ba and Cd; Right, 

facilitation between species Rp and Cd. *** denotes for statistical significance at p < 0.001. All error bars 

denote for ± 1 s.e.m 

To link the type of pairwise interaction with the likelihood of invasions, we compared 

Ralstonia solanacearum invasion success in facilitative and antagonistic two-species 

resident communities. Compared to positive controls (Ralstonia solanacearum-only: 



64 
 

red dashed line in Figure 2A-F), pathogen densities were significantly lower in the 

presence of resident species both in vitro and in vivo. The intensity of pathogen 

suppression could be predicted by the type of pairwise interactions between the 

resident species: pathogen density was significantly higher in facilitative compared to 

antagonistic communities in vitro (F1,43=16.02, P<0.001, Figure 2A; R2=0.49, P<0.0001, 

Figure 2B) and in vivo (F1,43=24.40, P<0.001, Figure 2C; R2=0.26, P=0.0021, Figure 

2D). In line with these results, the bacterial wilt disease incidence was also higher in 

facilitative compared to antagonistic resident communities (F1,43=9.03, P=0.004, Figure 

2E; R2=0.14, P=0.013, Figure 2F). Mechanistically, this could be explained by loss of 

pathogen inhibition as suggested by a negative correlation between the mean intensity 

of facilitation and direct invader suppression (R2=0.45, P<0.0001, Figure S6). Together 

these results suggest that antagonistic two-species resident communities were more 

inhibitory not only towards themselves but also against the invader.   
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Figure 2. The type of pairwise resident community interactions predicts invasions in vitro and in 

vivo. (A) The Ralstonia solanacearum invader abundance in antagonistic and facilitative two-species 

resident communities measured in vitro. (B) The relationship between invader abundance and the mean 

intensity of facilitation in resident communities measured in vitro. (C) The relative invader abundance in 

antagonistic and facilitative two-species resident communities measured in the tomato rhizosphere 40 

days after inoculation of the invader. (D) The relationship between invader abundance and the mean 

intensity of facilitation in resident communities measured in vivo in the tomato rhizosphere. (E) The 

bacterial wilt disease incidence (%) in antagonistic and facilitative pairwise resident communities 40 

days after inoculation of the invader. (F) The relationship between disease incidence and the mean 

intensity of facilitation in resident communities measured in vivo in the tomato rhizosphere. In all panels, 

the red dashed lines show the baseline for positive control treatments (invader-only). In panels, B, D 

and F, values below and above zero denote for antagonistic and facilitative pairwise resident 

communities, respectively. Two and three stars denote for statistical significance at p < 0.01 and p < 

0.001 significance levels, respectively. All the bars denote for ± 1 s.e.m.  
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(b) Predicting and validating invasions in multispecies communities based on 

pairwise interactions  

Interactions within the resident communities could well explain the invader abundance 

in vitro (R2: 0.45, P<0.0001) and in vivo (R2: 0.28, P<0.0001), and bacterial wilt disease 

incidence (R2: 0.18, P=0.0002) in vivo (Table 1). The proportion of facilitative 

interactions were well explained by the increase in invader density in all tested resident 

communities in vitro (R2=0.35, P<0.0001, Figure 3A). Similarly, both the density of the 

invader in the tomato rhizosphere (R2=0.22, P=0.0004, Figure 3B) and bacterial wilt 

disease incidence (R2=0.21, P=0.0004, Figure 3C) increased significantly with 

increasing proportion of facilitative interactions within the resident communities. The 

predicted mean intensity of facilitation explained well the increase in invader density in 

vitro (R2=0.45, P<0.0001, Figure 3D) and in vivo (R2=0.21, P=0.0005, Figure 3E) and 

correlated positively with bacterial wilt disease incidence (R2=0.19, P=0.0193, Figure 

3F). The predicted and observed mean intensities of facilitation correlated positively 

with each other (R2=0.44, P<0.0001, Figure S7), demonstrating that pairwise 

interactions can be used to predict interactions in multispecies communities. As 

expected, invader densities also increased with increasing observed mean intensity of 

facilitation both in vitro (R2=0.26, P<0.0001, Figure 3G) and in vivo (R2=0.17, P=0.0019, 

Figure 3H). However, the observed mean intensity of facilitation did not correlate 

significantly with bacterial wilt disease incidence (Figure 3I). 
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Figure 3. The relationship between invader abundance and disease incidence with predicted and 

observed mean intensities of facilitation within multispecies communities. (A-B) The relationship 

between invader abundance and the proportion of facilitative interactions in the resident communities 

measured in vitro and in vivo, respectively. (C) The relationship between bacterial wilt disease incidence 

(%) and the proportion of facilitative interactions in the resident communities. (D-E) The relationship 

between invader abundance and the predicted mean intensity of facilitation in the resident communities 

measured in vitro and in vivo, respectively. (F) The relationship between bacterial wilt disease incidence 

(%) and the predicted mean intensity of facilitation in the resident communities. (G-H) The relationship 

between invader abundance and the observed mean intensity of facilitation in the resident communities 

measured in vitro and in vivo, respectively. (I) The relationship between bacterial wilt disease incidence 

(%) and the observed mean intensity of facilitation in the resident communities. In all panels, red dashed 

lines show the baseline of invader densities in control treatments (invader-only). In panels D-I, values 

below and above zero denote for antagonistic and facilitative resident communities, respectively. 
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The low invasion success observed in antagonistic resident communities could be 

attributed to high levels of direct inhibition of the invader and/or high resource niche 

overlap between the invader and resident community members. We found that both 

direct pathogen inhibition and high resource niche overlap reduced invader densities 

in vitro and in vivo, while only direct pathogen inhibition significantly reduced the 

disease incidence (Table 1). Direct pathogen suppression correlated negatively with 

both predicted and observed mean intensities of facilitation suggesting that 

antagonistic multispecies communities were more inhibitory to the invader (Figure S8). 

The species B. amyloliquefaciens and F. johnsoniae had strong negative effects on 

pathogen densities in vitro and in vivo (Table S7). However, only B. amyloliquefaciens 

had a significant negative effect on disease incidence, while species C. 

daecheongense had a slightly positive effect on disease incidence (Table S7). Together 

these results suggest that pairwise resident community interactions can predict 

invasions in multispecies communities in vitro and in vivo and that these effects were 

primarily linked with direct pathogen suppression.  
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Table 1 Two different general linear mixed models (GLM) comparing the interactions within resident 

communities (a), and interactions between community and invader (b) on invader abundance in vitro 

and in vivo and disease incidence measured in vivo. 

 
Invader relative  
abundance in vitro 

Invader abundance 
 measured in vivo 

Disease incidence  
measured in vivo 

 df    F      P df    F       P df     F      P 

(a) Interactions within 
resident communities     

 
Proportion of facilitative 
interactions 1    0.02  0.885 ↑ 1    11.82  0.0009 ↑ 1 7.01 0.009 
 
Predicted Mean intensity of 
interactions ↑ 1   129.8  <2E-16 ↑ 1   14.29  0.0003 ↑ 1   12.66 0.0006 

Observed Mean intensity of 
interactions ↑ 1    8.18  0.005 ↑ 1   11.24  0.001 1    1.56 0.215 
 
No. of Residuals 167 95 95 

Model summary R2: 0.45  AIC: -303.69 R2: 0.28   AIC: 111.10 R2: 0.18  AIC: 731.07  

(b) Interaction between 
community and invader    

Niche breadth  
Niche overlap between the invader 
and resident communities ↓ 1  13.76   0.0003  ↓ 1   8.62    0.004 1   1.29   0.258 

Direct invader inhibition 
by resident communities ↓ 1  79.15  8.881E-16 ↓ 1   5.24    0.024 ↓ 1   12.46  0.0006 
 
No. of Residuals 168 96 96 

Model summary R2: 0.36  AIC: -277.97 R2: 0.13   AIC:128.58 R2: 0.13  AIC: 735.84  

 

All response variables were treated as continuous variables. The table shows the most parsimonious 

models selected based on the AIC information. The up and downwards arrows denote for positive and 

negative effects on response variables, respectively.  
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Discussion 

Here we studied how resident community interactions are linked with invasions in 

bacterial plant rhizosphere communities. We found that facilitative two- species 

communities were invaded more easily both in the laboratory and rhizosphere 

compared to antagonistic resident communities. Furthermore, we could use the 

pairwise interactions to predict invasion outcomes in multispecies communities 

containing up to 6 resident species. Specifically, communities characterized by a high 

proportion of facilitative pairwise interactions, and high predicted and observed mean 

intensities of facilitation, were more susceptible to invasions. Mechanistically, this was 

linked to direct inhibition of the invader by antagonistic communities (antibiosis), and 

to a lesser degree by resource competition between the members of the resident 

community and the invader. Together these findings suggest that outcomes of relatively 

simple pairwise interactions can be used to predict invasions in multispecies microbial 

communities especially when antagonism and facilitation are strongly linked with the 

resistance to invasion. 

 Invasion resistance has been thus far mainly considered from the perspective of 

resource competition and niche preemption [51, 69, 73]. Our results suggest that 

facilitative interactions should also be considered in the context of invasions. While it 

is difficult to pinpoint the exact mechanism between facilitation and invasion, the most 

likely explanation is the loss of pathogen inhibition along with the increase in the mean 

intensity of facilitation (Figure S6). This is in line with a previous finding where the 

increase in the antagonistic activity was found to increase the invasion resistance of 

Pseudomonas resident communities [84]. Another explanation could be that facilitative 

resident communities were less efficient at competing for resources with the invader 
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compared to antagonistic resident communities. However, this likely played a relatively 

small role as resource niche overlap had the only significant negative effect on the 

invader density when measured in vitro and in vivo but not on disease incidence (Table 

1). It is also possible that our resource competition indices measured in vitro 

overestimated the strength of resource competition or underestimated the size of the 

niche space in the rhizosphere leading to weak correlation with invasions. Furthermore, 

facilitative interactions could have increased the niche space in the resident 

communities in favor of the invader, which could have promoted invasions as a side 

effect [89]. For example, previous studies have demonstrated that bacteria can show 

diet preference between different dietary glycans, which can prolong species 

coexistence in co-cultures [90]. Such dietary preference might leave some resources 

less utilized, providing an opportunity for invasion [91]. It has also been shown that the 

breakdown of polysaccharides can allow coexistence of species that liberate 

polysaccharide breakdown products (PBPs), which are consumed by other species 

that are unable to grow on the polysaccharides alone (recipients) [177]. Facilitative 

interactions could thus potentially favor the invader if it is unable to grow on the primary 

substrates on its own [171]. While it is difficult to validate these hypotheses based on 

our data, we found that facilitative communities were more productive in general and 

reached higher total cell densities when cultured together compared to alone (Figure 

S4). This supports the idea that facilitative resident species were benefitting from the 

presence of each other (for example via cross-feeding), which could also have 

benefitted the invader by creating vacant niche space. The carrying capacity of resident 

communities could thus be an important predictor of biological invasions [178]. 

 In addition to within-resident community interactions, the interactions between 

resident communities and the invader were also good predictors of invasions, albeit to 
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a lesser extent (Figure 3 and Table 1). While it remains unclear what exact compounds 

were produced by the resident communities, previous studies have shown that soil 

bacteria are capable of producing a wide variety of antimicrobials that often suppress 

Ralstonia solanacearum [84, 85]. For example, the B. amyloliquefaciens T-5 strain 

used in this study has been shown to efficiently suppress Ralstonia solanacearum both 

in the lab and plant rhizosphere [85] and this strain also had the greatest negative 

effect on the pathogen densities and disease incidence in this study (Figure S1). In 

addition, the strain F. johnsoniae had a negative effect on pathogen densities both in 

vitro and in vivo. Together these results suggest that pathogen suppression via toxins 

was likely mediated by the presence of these species.  

 In general, pairwise resident community interactions predicted well the observed 

invasion outcomes in multispecies communities (Figure 3, Table 1). However, no 

correlation was found between the observed mean intensity of facilitation and bacterial 

wilt disease incidence (Figure 3I). This suggests that while in vitro mechanisms 

(resource competition and antibiosis) can robustly predict invasions in more complex 

in vivo environments [51, 84], they do not account for all aspects of more complex 

natural environments. There are many potential explanations for these discrepancies 

that should be validated in future studies. First, investigating the role of microbe-

mediated plant immunity is important as both pathogenic and non-pathogenic bacteria 

can trigger or suppress plant immunity [179, 180]. Furthermore, several bacterial 

secondary metabolites involved in pathogen suppression also impact plant immunity: 

for example, 2, 4-diacetylphloroglucinol (DAPG) produced by fluorescent 

Pseudomonas spp. [181] or lipopeptide surfactins produced by Bacillus subtilis [182] 

have a such dual-function. Second, the rhizosphere bacterial communities we used 

were rather simple, and hence, predictions based on pairwise species interactions 
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should be tested in more complex multi-trophic communities in the future. Lastly, our 

predictive indexes only estimated the mean net effects and did not distinguish if both 

or only one of the species benefitted and vice versa [173]. While this approach seems 

to be a good predictor of invasion outcomes, accounting for the directionality of 

interactions and potential emerging higher-order interactions [167-169] is likely to 

improve these predictions. 

 In conclusion, our results suggest that qualitative information regarding species 

growth in pairwise co-cultures can be used to predict the outcomes of invasions in 

multispecies communities. Even though our results can’t be broadly applied across 

different biological problems, they could offer direct solutions in the context of crop 

protection. Bacterial pathogens impose an ever-increasing threat for agriculture [183-

185] and recent evidence suggests that the rhizosphere microbiome plays an essential 

role in controlling the onset of disease [15, 186]. Understanding the characteristics that 

make certain microbiomes more resistant to invasions could potentially allow one to 

harness beneficial bacterial communities for crop protection. While recent studies have 

shown that microbial diversity alone may be such important characteristic [51, 84] we 

here suggest that highly antagonistic microbial communities might also be efficient at 

constraining pathogen invasions.  
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Supplementary materials 

Table S1. Bacterial strains used in this study.   

Bacterial 
strain ID 

Taxonomic affiliation (GenBank 
accession number) 

Bacterial 
abbreviation 

used in this study 
Reference 

WR4 
Flavobacterium johnsoniae 

(CP000685) 
Fj (Huang et al. 2013) 

T-5 
Bacillus amyloliquefaciens 

(JF899265) 
Ba (Tan et al. 2013) 

HR92 
Lysinibacillus sphaericus 

(CP000817) 
Ls (Huang et al. 2013) 

WR21 
Chryseobacterium daecheongense 

(HQ220102) 
Cd (Huang et al. 2013) 

WR42 Delftia acidovorans (AM180725) Da (Huang et al. 2013) 

QL-A6 Ralstonia pickettii (HQ267096) Rp (Wei et al. 2013) 

QL- Rs1115 

Ralstonia solanacearum 
(GU390462) tagged with red 

fluorescent marker (PYC12-M 
plasmid) 

Rs 
(Wei et al. 2011; Tan 

et al. 2016) 

 

Table S2. Table showing all possible resident species community combinations in all richness 

levels (N=64). Table rows show different communities and table columns show the absence (0) or 

presence (1) of given species within the community. 

Community ID 

Species abbreviation Resident community 

species richness Fj Cd Da Ba Ls Rp 

Control 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 1 

2 0 1 0 0 0 0 1 

3 0 0 1 0 0 0 1 

4 0 0 0 1 0 0 1 

5 0 0 0 0 1 0 1 

6 0 0 0 0 0 1 1 

7 1 1 0 0 0 0 2 

8 1 0 1 0 0 0 2 
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9 1 0 0 1 0 0 2 

10 1 0 0 0 1 0 2 

11 1 0 0 0 0 1 2 

12 0 1 1 0 0 0 2 

13 0 1 0 1 0 0 2 

14 0 1 0 0 1 0 2 

15 0 1 0 0 0 1 2 

16 0 0 1 1 0 0 2 

17 0 0 1 0 1 0 2 

18 0 0 1 0 0 1 2 

19 0 0 0 1 1 0 2 

20 0 0 0 1 0 1 2 

21 0 0 0 0 1 1 2 

22 1 1 1 0 0 0 3 

23 1 1 0 1 0 0 3 

24 1 1 0 0 1 0 3 

25 1 1 0 0 0 1 3 

26 1 0 1 1 0 0 3 

27 1 0 1 0 1 0 3 

28 1 0 1 0 0 1 3 

29 1 0 0 1 1 0 3 

30 1 0 0 1 0 1 3 

31 1 0 0 0 1 1 3 

32 0 1 1 1 0 0 3 

33 0 1 1 0 1 0 3 

34 0 1 1 0 0 1 3 

35 0 1 0 1 1 0 3 

36 0 1 0 1 0 1 3 
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37 0 1 0 0 1 1 3 

38 0 0 1 1 1 0 3 

39 0 0 1 1 0 1 3 

40 0 0 1 0 1 1 3 

41 0 0 0 1 1 1 3 

42 1 1 1 1 0 0 4 

43 1 1 1 0 1 0 4 

44 1 1 1 0 0 1 4 

45 1 1 0 1 1 0 4 

46 1 1 0 1 0 1 4 

47 1 1 0 0 1 1 4 

48 1 0 1 1 1 0 4 

49 1 0 1 1 0 1 4 

50 1 0 1 0 1 1 4 

51 1 0 0 1 1 1 4 

52 0 1 1 1 1 0 4 

53 0 1 1 1 0 1 4 

54 0 1 1 0 1 1 4 

55 0 1 0 1 1 1 4 

56 0 0 1 1 1 1 4 

57 1 1 1 1 1 0 5 

58 1 1 1 1 0 1 5 

59 1 1 1 0 1 1 5 

60 1 1 0 1 1 1 5 

61 1 0 1 1 1 1 5 

62 0 1 1 1 1 1 5 

63 1 1 1 1 1 1 6 
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Table S3. Specific qPCR primers designed for each resident bacterial species. 

Resident 
bacterial 
species 

Forward primer (5' - 3') Reverse primer (5' - 3') 

Fj CACTCCTATGTATAGGAGCTTGACG AGTATCAATGGCCGTTCCAC 

Cd CGTTTTTGGGTTTTCGGAT TGGTAAGGTTCCTCGCGTAT 

Da GAAGTTTCCAGAGATGGATTCG CCACCTATAAGGGCCATGAG 

Ba ACAAGTGCCGTTCAAATAGGG GCCACTGGTGTTCCTCCAC 

Ls GACATCCCGTTGACCACTG ATTAGCTCCCTCTCGCGAG 

Rp CTCGAAAGAGAAAGTGGACACAG GCTTGGCAACCCTCTGTATG 

 

  



79 
 

Table S4. List of 48 different carbon resources included in the synthetic plant exudate media, which 

was used to determine the strength of resource competition (niche breadth and overlap) between 

the invader and resident community species. 

Carbon name and abbreviation Carbon classification Carbon ID 

Acetic aicd (Ace) Organic acid 1 

L-Alanine (Ala) Amino acid 2 

β-Alanine (Bala) Amino acid 3 

L-Arginine (Arg) Amino acid 4 

Ascorbic acid (Asc) Organic acid 5 

L-Asparagine (Asn) Amino acid 6 

γ-Aminobutyric acid (Ami) Amino acid 7 

Citric acid (Cit) Organic acid 8 

Citrulline (Cin) Amino acid 9 

Ethanolamine (Eth) Other 10 

Formic acid (For) Organic acid 11 

Fructose (Fruc) Sugar 12 

Galacturonic acid (Galac) Organic acid 13 

Glucose (Glu) Sugar 14 

L-Glutamine (Gln) Amino acid 15 

Glutaric acid (Glut) Organic acid 16 

L-Glycine (Gly) Amino acid 17 

Glycolic acid (Glyc) Organic acid 18 

L-Histidine (His) Amino acid 19 

Isoleucine (Iso) Organic acid 20 

Lactic acid (Lac) Organic acid 21 

L-Lysine (Lys) Organic acid 22 

L-Leucine (Leu) Organic acid 23 

Maleic acid (Male) Organic acid 24 
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Malic acid (Mal) Organic acid 25 

Malonic acid (Malon) Organic acid 26 

L-Methionine (Met) Organic acid 27 

Myoinositol (Mino) Other 28 

2-Oxoglutaric (Oxo) Organic acid 29 

L-Phenyalanine (Phe) Organic acid 30 

L-Proline (Pro) Organic acid 31 

Pyruvic acid (Pyr) Organic acid 32 

L-Serine (Ser) Organic acid 33 

Succinic acid (Succ) Organic acid 34 

Sucrose (Sucr) Sugar 35 

Tartaric acid (Tar) Organic acid 36 

L-Threonine (Thr) Organic acid 37 

L-Tryptophan (Try) Organic acid 38 

L-Valine (Val) Organic acid 39 

Maltose (Mal) Sugar 40 

L-Arabinose (Ara) Sugar 41 

D-Galactose (Gal) Sugar 42 

D-Mannose (Man) Sugar 43 

D-Xylose (Xyl) Sugar 44 

D-Ribose (Rib) Sugar 45 

D-Mannitol (Mann) Sugar 46 

Inosine (Ino) Other 47 

Oxalic acid(Oxa) Organic acid 48 
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Table S5. The predicted mean intensity of facilitation (PIF) in 18 multi-species resident communities 

used in in vivo invasion experiments with tomato. Table rows show different communities and table 

columns show the absence (0) or presence (1) of given species in these communities. Communities 

with PIF values below and above zero were defined as antagonistic and facilitative on average, 

respectively. 

Community ID 

Species abbreviation Predicted mean 

intensity of facilitation Fj Cd Da Ba Ls Rp 

25 1 1 0 0 0 1 0.2337 

28 1 0 1 0 0 1 -0.1915 

34 0 1 1 0 0 1 0.2527 

40 0 0 1 0 1 1 0.1371 

47 1 1 0 0 1 1 0.0201 

48 1 0 1 1 1 0 -1.2193 

49 1 0 1 1 0 1 -1.1359 

52 0 1 1 1 1 0 -0.8643 

53 0 1 1 1 0 1 -0.7753 

54 0 1 1 0 1 1 0.2524 

55 0 1 0 1 1 1 -0.6039 

56 0 0 1 1 1 1 -1.0082 

58 1 1 1 1 0 1 -0.6632 

59 1 1 1 0 1 1 0.0316 

60 1 1 0 1 1 1 -0.6759 

61 1 0 1 1 1 1 -0.9325 

62 0 1 1 1 1 1 -0.5999 

63 1 1 1 1 1 1 -0.6054 
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Table S6. The interaction type and mean intensity of pairwise facilitation (MIF) of six resident 

bacterial species. Communities with MIF values below and above zero were defined as antagonistic 

and facilitative on average, respectively. 

Community ID 

(ID shown in 

Table S1) 

Community composition 

(species abbreviations 

shown in Table S1) 

Interaction type 

Mean Intensity of 

pairwise 

facilitation (MIF) 

15 Cd + Rp Facilitative 0.85 

21 Ls + Rp Facilitative 0.46 

17 Da + Ls Facilitative 0.24 

7 Fj + Cd Facilitative 0.19 

12 Cd + Da Facilitative 0.19 

14 Cd + Ls Facilitative 0.06 

8 Fj + Da Antagonistic -0.05 

18 Da + Rp Antagonistic -0.28 

11 Fj + Rp Antagonistic -0.34 

13 Cd + Ba Antagonistic -1.05 

10 Fj + Ls Antagonistic -1.1 

20 Ba + Rp Antagonistic -1.84 

9 Fj + Ba Antagonistic -1.88 

19 Ba + Ls Antagonistic -2.1 

16 Da + Ba Antagonistic -2.52 
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Table S7.General linear mixed models (GLM) comparing the resident community richness and resident 

species identities on invader abundance in vitro and in vivo and disease incidence measured in vivo. 

 
Invader relative  
abundance in vitro 

Invader abundance 
 measured in vivo 

Disease incidence  
measured in vivo 

 df    F      P df    F       P df   F      P 

Factors     
 
Resident community richness Not retained ↑ 1  25.87   <0.0001 Not retained 
 
Ba ↓ 1  95.28   <0.0001 ↓ 1  17.04   <0.0001 ↓ 1   8.90    0.004 
 
Fj ↓ 1  19.96   <0.0001 ↓ 1   6.99     0.01 Not retained 

 
Cd   1   2.20    0.14 Not retained ↑ 1   5.73    0.019 
 
Rp Not retained 1   2.1      0.15 Not retained 
 
Ls Not retained Not retained Not retained 
 
Da     Not retained Not retained 1   2.19   0.142 
 
No. of Residuals 185 94 95 

Model summary R2: 0.39  AIC: -146.37 R2: 0.36   AIC:102.34 R2: 0.15  AIC: 734.91  

 

All response variables were treated as continuous variables. The table shows the most parsimonious 

models selected based on the AIC information. The up and downwards arrows denote for positive and 

negative effects on response variables, respectively. Fj, Cd, Da, Ba, Ls, Rp represent Flavobacterium 

johnsoniae, Chryseobacterium daecheongense, Delftia acidovorans, Bacillus amyloliquefaciens, 

Lysinibacillus sphaericus, Ralstonia pickettii, respectively.  
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Figure S1. (A) All resident community species inhibited the growth of Ralstonia solanacearum in 

co-cultures. (B) The supernatant of all resident community species inhibited pathogen growth but 

in general to lesser extent compared to (A). All bars show mean ± SE of three measurement 

replicates and zero inhibition denotes for pathogen growth alone (A) or in the absence of resident 

species supernatant (B). Fj, Cd, Da, Ba, Ls, Rp represent Flavobacterium johnsoniae, 

Chryseobacterium daecheongense, Delftia acidovorans, Bacillus amyloliquefaciens, Lysinibacillus 

sphaericus, Ralstonia pickettii, respectively. 

 

 

Figure S2. Distinct colonies on agar plates formed by six resident bacterial strains used in this 

study. Fj, Cd, Da, Ba, Ls, Rp represent Flavobacterium johnsoniae, Chryseobacterium 

daecheongense, Delftia acidovorans, Bacillus amyloliquefaciens, Lysinibacillus sphaericus, 

Ralstonia pickettii, respectively.  
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Figure S3. Specificity of specific qPCR primers designed for each resident bacterial species used 

in this study.  Gel electrophoresis picture of six resident bacterial strains amplified by primers of 

(A) Fj (Flavobacterium johnsoniae), (B) Cd (Chryseobacterium daecheongense), (C) Da (Delftia 

acidovorans), (D) Ba (Bacillus amyloliquefaciens), (E) Ls (Lysinibacillus sphaericus), (F) Rp 

(Ralstonia pickettii), respectively.  
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Figure S4. The relationship between productivity (biomass measured as OD600 after 48 h growth 

in NA media) and mean intensity of facilitation (MIF) in two-species resident communities. 

Communities with MIF values below and above zero were defined as antagonistic and facilitative 

on average, respectively. 

 

 

Figure S5. The relationship between mean intensity of facilitation (MIF) and direct interference 

(antagonism via toxins, A) and indirect resource competition (resource niche overlap, B) in two-

species resident communities. Communities with MIF values below and above zero were defined 

as antagonistic and facilitative on average, respectively. 
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Figure S6. The relationship between direct invader inhibition (antagonism via toxins) and mean 

intensity of facilitation (MIF) in two-species resident communities. Communities with MIF values 

below and above zero were defined antagonistic and facilitative on average, respectively. 

 

 

Figure S7. The relationship between observed (OIF) and predicted (PIF) mean intensities of 

facilitation within resident species communities. Communities with OIF and PIF values below and 

above zero were defined on average antagonistic and facilitative, respectively. 
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Figure S8. The relationship between direct invader inhibition (antagonism via toxins) and predicted 

(PIF, A) and observed (OIF, B) mean intensities of facilitation within multi-species resident 

communities. Communities with PIF and OIF values below and above zero were defined as 

antagonistic and facilitative on average, respectively.  
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Abstract 

The rhizosphere microbiome forms a first line of defense against soilborne pathogens. 

To date, most microbiome enhancement strategies have relied on bioaugmentation 

with antagonistic microorganisms that directly inhibit pathogens. Previous studies have 

shown that some root-associated bacteria are able to facilitate pathogen growth. We 

therefore hypothesized that inhibiting such pathogen helpers may help control 

pathogens. We examined tripartite interactions between a model pathogen Ralstonia 

solanacearum, two model helper strains and a collection of 46 bacterial isolates 

recovered from the tomato rhizosphere. This setting allowed us to examine the 

importance of direct (effects of rhizobacteria on pathogen growth) and indirect (effects 

of rhizobacteria on helper growth) pathways of pathogen growth. We found that the 

interaction between rhizosphere isolates and the helper strain was the major 

determinant of pathogen inhibition in vitro and in vivo. We therefore propose that 

controlling microbiome composition to prevent the growth of pathogen helpers may 

become part of sustainable strategies for pathogen control.  
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Introduction 

Plant pathogens have a large negative impact on agricultural production, and there is 

an urgent need for sustainable strategies to prevent diseases while reducing the 

environmental footprint of modern agriculture [187]. Plant root-associated 

microorganisms are increasingly studied in relation to their ability to help keep plants 

healthy [34, 35]. However, while some microbiomes are better at preventing pathogen 

growth than others, it often remains unclear which interactions shap pathogen success. 

To date, most research has focused on pathogen inhibition by some specific plant-

associated microorganisms. In line with this logic, most microbiome management 

strategies have been centered around bioaugmentation with microorganisms that can 

directly inhibit pathogen growth [15, 84]. These biopesticides represent a promising 

approach, but are often constrained by the low density that inoculated strains can reach 

in a multispecies microbiome and the context-dependent success of microbial 

introductions [123, 188, 189]. These shortcomings are at least partly due to inadequate 

consideration of the complex microbial interactions that impact pathogen inhibition or 

proliferation [121, 190].  

We propose a new perspective on pathogen ecology by placing focus on 

microorganisms that promote pathogen growth. Recent studies have shown that a 

significant fraction of plant-associated microorganisms can promote pathogen growth 

and pathogenicity [59]. Facilitative microbe-microbe are indeed widespread and 

interactions may emerge for instance as the result of cross-feeding [60], or production 

of public goods such as siderophores [63]. Facilitation has been recently highlighted 

as a potential determinant of pathogen success [64, 121]. We therefore postulate that 

manipulating naturally-occurring helper bacteria of pathogens may provide a means of 
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controlling pathogen development without requiring the application of pesticides or 

biopesticides. To this end, we hypothesized that indirect effects via inhibition of 

pathogen helpers would have a significant impact on realized pathogen densities.  

We first established the prevalence of pathogen-helper bacteria in the rhizosphere by 

screening a library of rhizobacterial strains isolated from tomato rhizosphere. We 

specifically tested their pairwise interactions with Ralstonia solanacearum, the 

causative agent of bacterial wilt, a major disease affecting more than 200 crops at a 

global scale [99, 100]. We observed that a significant fraction of all isolates promoted 

pathogen growth in vitro. We then selected two pathogen helper strains and built 

tripartite cultivation experiments in which the pathogen was grown together with one of 

the helper strains and the supernatants of each of the selected bacterial strains that 

represent a gradient of positive, neutral or negative interactions with the pathogen. 

Pathogen growth was monitored in each community, both in vitro and in the tomato 

rhizosphere. We then expressed pathogen density as a function of a direct (effect on 

pathogen) and indirect (effect on the helper strain) pathway for each of these 

rhizobacteria (Fig. 1). Part of the resulting data was also used to model the relative 

importance of direct versus indirect effects in determining realized pathogen density. 

Based upon the results of these experiments, we subsequently discuss the potential 

utility of bioaugmentation strategies that target pathogen helpers as an element of 

integrated pathogen control.  
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Fig. 1 Conceptual overview of direct and indirect effects of rhizobacterial strains on pathogen 

growth. In this work, we split the net, apparent effect of single rhizosphere bacterial isolates (R) on 

pathogen density into direct effects on the pathogen (P) and indirect effects mediated by interactions 

with helper bacteria (H).  

Materials and methods 

Assessing strain redundancy among the 515 non-Ralstonia solanacearum 

bacteria 

We assessed possible redundancy among 515 strains of the non-Ralstonia 

solanacearum rhizobacteria, which was isolated from tomato rhizosphere (chapter 2 

this thesis). To encompass both taxonomic and functional redundancies we considered 

the 16S rRNA gene sequences as well as the direct effect of their supernatant on 

Ralstonia solanacearum. Self BLAST searches were performed on the full 515 

sequence dataset using the makeblastdb and blastn commands from the BLAST 

command line tool [134]. Sequences showing >99% identity over >95% of the full 

length were considered as taxonomically redundant. We then compared the direct 

effects on pathogen growth of the taxonomically redundant strains, and removed those 

showing same patterns of interactions (positive, negative or neutral). Accordingly (see 

the dataset “Library of rhizobacterial strains” in the supplementary information), 355 of 

the 515 strains (68.9%) were removed from the original dataset for further analyses.  
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Phylogenetic tree construction 

The 16S rRNA gene sequences of the 160 non-redundant bacteria were aligned 

using MUSCLE [132]. Sequences in the alignment were trimmed at both ends to obtain 

maximum overlap using the MEGA X software, which was also used to construct 

taxonomic cladograms [133]. We constructed a maximum-likelihood (ML) tree, using a 

General Time Reversible (GTR) + G + I model, which yielded the best fit to our data 

set. Bootstrapping was carried out with 100 replicates retaining gaps. A taxonomic 

cladogram was created using the EVOLVIEW web tool 

(https://evolgenius.info//evolview-v2/). To show the relationship between phylogeny 

and the effects of rhizobacteria on pathogen growth, we added taxonomic status 

(phylum) of each rhizobacterial strain and its effect on pathogen growth as heatmap 

rings to the outer circle of the tree separately (Fig.2B).  

Effects of pathogen helper strains on pathogen growth in vivo 

   To test the effect of pathogen helper strains on Ralstonia solanacearum growth in 

tomato rhizosphere, we first selected two model helper strains (Phyllobacterium 

ifriqiyense LM1 (Pi) and Microbacterium paraoxydans LM2 (Mp)), which showed strong 

positive effects on the pathogen’s growth both in co-culture and in supernatant assays 

(Fig. S1). Tomato seeds (Lycopersicon esculentum, cultivar “Micro-Tom”) were then 

surface-sterilized (in 3% NaClO for 5min and in 70% ethyl alcohol for 1min) and 

allowed to germinate on water-agar plates for 2 days, until the emergence of roots. 

Germinated seeds were then sown in pots (6 cm × 6 cm × 6 cm) containing 450g soil, 

which had been collected from Qilin town (118°57' E, 32°03' N), Jiangsu province, 

China and sterilized by gamma irradiation. Approximately two weeks after seedling 

transplantation, when tomato plants had reached the three-leaf stage, a cell 

suspension of either P. ifriqiyense (designated LM1) or M. paraoxydans (designated 

https://evolgenius.info/evolview-v2/
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LM2) was inoculated respectively into the soil of the seedlings to a final density of 

approximately 108 cells g-1 dry soil. A cell suspension of Ralstonia solanacearum strain 

QL-Rs1115 (107 cells g-1 dry soil) was inoculated two days later. The control treatment 

included only the pathogen without the addition of either of the helper strains. Each 

treatment was replicated three times, and each pot contained 4 tomato plants. Plants 

were then grown in a growth chamber with a 16:8-h light/dark photoperiod at 30 ± 2 °C 

to mimic greenhouse conditions. Twenty-seven days after inoculation of Ralstonia 

solanacearum, rhizosphere soil was collected from each replicate pot, resulting in total 

of 9 rhizosphere soil samples. The rhizosphere soil was collected using previously 

described methods [84] for determining Ralstonia solanacearum population densities 

(described in detail later in “Quantification of Ralstonia solanacearum at the end of the 

in vivo experiment”).  

Effects of rhizobacteria on pathogen helper strains growth in vitro 

In a next step, we assessed the potential of different rhizosphere isolates to inhibit 

helper bacteria. We defined the effect of rhizobacterial strains on the growth of helpers 

as the indirect effect on Ralstonia solanacearum growth. To study these indirect effects, 

we first chose a subset of 46 rhizobacterial strains covering a gradient of positive, 

neutral or negative effect on pathogen growth based on supernatant assays (results in 

x axis of Figure 3C and Figure 4A). We then tested the effects of these 46 rhizobacterial 

strains on the growth of each of the two helper strains using supernatant assays. Briefly, 

after 48 h growth in NB media, each of the 46 bacterial monocultures was passed 

through a 0.22 µm filters to remove living cells. Then 20 µl of sterile supernatant from 

each strain’s culture and 2 µl overnight culture of Pi or Mp (adjusted to OD600 = 0.5 

after 12 h growth at 30°C with shaking) were added into 180 µl of fresh NB medium (5-

times diluted, in order to better reflect the effect of the supernatant). Control treatments 
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were inoculated with 20 µl 5X diluted NB media instead of bacterial supernatant. Each 

treatment was replicated four times. All bacterial cultures were grown for 24 h at 30°C 

with shaking (170 rpm) before measuring helper density as optical density (OD 600 

nm). To test for significance of growth promotion or inhibition, we used analyses of 

variance (ANOVA) and Bonferroni t-test to compare mean differences of helper density 

between each rhizobacterial supernatant treatment and the control treatment, with p-

values below 0.05 being considered statistically significant. The effect of rhizobacteria 

on the helpers’ growth (results in y axis of Figure 3C and x axis of Figure 4C) was 

defined as the percentage of increase or reduction in helper growth by the supernatant 

compared to the control treatment.  

In vitro pathogen growth in the presence of a helper strain and supernatant from 

rhizobacterial isolates 

To disentangle the direct effects from the indirect effects of rhizobacteria on 

Ralstonia solanacearum growth, we compared their relative effects using in vitro 

triculture assays comprised of Ralstonia solanacearum, one of the two helper strains 

and supernatant of one of the 46 chosen rhizobacterial strains. Briefly, after 48 h of 

growth in NB media, each of the 46 bacterial monocultures was passed through a 0.22 

µm filters to remove living cells. Then, 20 µl of sterile supernatant from each strain’s 

culture and 2 µl overnight culture of Pi or Mp (densities were adjusted to ~107 cells per 

ml) were added to 180 µl of fresh NB medium (5-times diluted). Each treatment was 

replicated four times. At the same time, 2 µl overnight culture of mCherry-tagged 

Ralstonia solanacearum (density was adjusted to ~106 cells per ml) was added to each 

treatment in 96-well plates at 30°C with shaking (170 rpm). After 24 h, Ralstonia 

solanacearum density (results in y axis of Figure 4A and 4C) was measured as the red 

mCherry protein fluorescence intensity (excitation: 587 nm, emission: 610 nm) with a 
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SpectraMax M5 plate reader.  

In vivo pathogen growth in the presence of a helper strain and a rhizobacterial 

strain 

To validate in vitro results, we set up greenhouse experiments where plants were 

inoculated with a bacterial consortium consisting of Ralstonia solanacearum, one of 

the two helper strains and a test rhizobacterial strain. Tomato seeds (Lycopersicon 

esculentum, cultivar “Micro-Tom”) were first surface-sterilized (in 3% NaClO for 5min 

and in 70% ethyl alcohol for 1min) and germinated on water-agar plates for 2 days. 

Seeds were then sown into seedling plates containing 200g of cobalt-60-sterilized 

seedling substrate (Huainong, Huaian Soil and Fertilizer Institute). At the three-leaf 

stage, tomato plants were transplanted to nine-cell seedling trays with each cell 

containing 100g of homogenized, gamma irradiation-sterilized (to avoid potential 

effects of the resident community) paddy soil collected from Yixing City, Jiangsu 

Province, China (119°44′E, 31°22′N).  

We used 6 well-studied bacterial strains: Flavobacterium johnsoniae (Fj), Bacillus 

amyloliquefaciens (Ba), Lysinibacillus sphaericus (Ls), Chryseobacterium 

daecheongense (Cd), Delftia acidovorans (Da) and Ralstonia pickettii (Rp), all isolated 

from tomato rhizosphere and known to have negative effects of pathogen growth [121]. 

We tested their direct effects on the pathogen (results in x axis of Figure 4B) again in 

vitro, using the same methods as described above in “Direct effect of rhizobacteria on 

pathogen growth in vitro”. We also tested their effects on the growth of each of the two 

helper strains (results in x axis of Figure 4D) in vitro, using the same methods as 

described above in “Effects of rhizobacteria on pathogen helper strains growth in vitro”. 

Each strain was used in combination with each of the two helper strains and Ralstonia 

solanacearum mixture, resulting in a total of 14 treatments (included control and 
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Ralstonia solanacearum alone) (Table S1). For each treatment, three replicate nine-

cell seedling trays were used and each replicate seedling tray contained nine tomato 

plants. Three days after transplantation, plants of each treatment were inoculated with 

one helper plus one rhizobacterial strain using the root drenching method at a final 

concentration of 108 CFU of each bacteria g-1 soil [174]. Seven days after inoculation 

of helper plus rhizobacteria, Ralstonia solanacearum was introduced to the roots of all 

plants at a final concentration of 107 CFU of bacteria g-1 soil. The Ralstonia 

solanacearum-alone treatment inoculated only with the pathogen, and the control 

treatment was not inoculated with any bacteria. Tomato plants were maintained under 

standard greenhouse conditions (at natural temperature variation ranging from 25°C 

to 35°C) and watered regularly with sterile water. Seedling trays were rearranged 

randomly every two days. Twenty-seven days after inoculation of Ralstonia 

solanacearum, rhizosphere soil samples were collected, using previously described 

methods [84] from three randomly chosen plants from each replicate seedling tray, 

resulting in total of 42 rhizosphere soil samples for which Ralstonia solanacearum 

population densities were determined.  

Quantification of Ralstonia solanacearum at the end of the in vivo experiment 

We determined Ralstonia solanacearum densities using quantitative PCR (qPCR). 

The Ralstonia solanacearum DNA was extracted using a Power Soil DNA isolation kit 

(Mo Bio Laboratories) following the manufacturer’s protocol. DNA concentrations were 

determined by using a NanoDrop 1000 spectrophotometer (Thermo Scientific) and 

extracted DNA was used for Ralstonia solanacearum density measurements using 

specific primers (forward, 5’-GAACGCCAACGGTGCGAACT-3’; reverse, 5’-

GGCGGCCTTCAGGGAGGTC-3’) targeting the fliC gene, which encodes the 

Ralstonia solanacearum flagellum subunit [191]. The qPCR analyses were carried out 
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with a StepOnePlus Real-Time RCR Instrument using SYBR green fluorescent dye 

detection and three technical replicates as described previously [84].  

Statistical analyses 

To meet assumptions of normality and homogeneity of variance, Ralstonia 

solanacearum densities measured in vitro and in vivo were log10-transformed. When 

comparing mean differences between treatments, we used analyses of variance 

(ANOVA) and the Tukey Test, where p-values below 0.05 were considered statistically 

significant. Ralstonia solanacearum densities were explained by two quantitative 

indices, the direct effect of rhizobacteria on Ralstonia solanacearum growth (the effect 

of rhizobacteria on Ralstonia solanacearum growth) and the indirect effect of 

rhizobacteria on Ralstonia solanacearum growth (the effect of rhizobacteria on helper 

strains growth). Nonlinear regression analyses (Sigmoidal, Sigmoid, 3 Parameter) 

were used to analyze the relationship between the direct effect and pathogen density, 

as well as the relationship between indirect effects and pathogen density in the 

presence of helper strains in vitro, while the relationships between them in the 

presence of helper strains in vivo were analyzed using linear regressions. These 

analyses were carried out using R 3.6.3 program (www.r-project.org) and SigmaPlot 

(V.12.5). 

To further consider the growth inhibition of Ralstonia. solanacearum, we fitted a 

linear model to estimate the relative importance of direct effects versus indirect effects 

on the density of Ralstonia solanacearum in vitro and in vivo. This model considered 

the interaction scenario where rhizobacterial strains inhibited both the pathogen and 

its helpers (see the R script “Model” in the supplementary information). These analyses 

were performed in R version 3.6.3 [175] in conjunction with the package car, readxl 
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and dplyr, and tidyverse 1.2.1 [192]. Briefly, proportional effects were normalized using 

a folded cube root transformation as suggested in J.W. Tukey [193] and fitted using a 

linear model with direct effects, indirect effects, and an interaction between helper 

strains and indirect effects as fixed factors. Normality of residuals was tested using the 

Shapiro-Wilk normality test and visual inspection of QQ-plots with studentized 

residuals. Type-II sum of squares were calculated using the ANOVA function from car 

3.0-2 [194]. Subsequent visualization of the model outcome (results in Figure 5) 

showed the predicted Ralstonia solanacearum densities for different values of the 

inhibition via pathogen (Direct) or helper (Indirect) as estimated from the statistical 

model. For the Direct effect line, the indirect effect is set to be zero, while For the 

Indirect effect line, the direct effect is set to be zero.  

Results 

Taxonomic characterization of inhibiting and helping strains of Ralstonia 

solanacearum from the tomato rhizosphere 

The 160 non-redundant isolates we examined were classified within four main phyla, 

with the following distribution: Proteobacteria 33.1%, Firmicutes 25.0%, Bacteroidetes 

19.4% and Actinobacteria 22.5%. This collection contained a total of 23 families and 

48 genera (Fig. S2). A total of 26.9% of these isolated rhizobacteria were shown to 

inhibit pathogen growth in vitro, while 50.6% of them significantly stimulated pathogen 

growth. We refer to these two categories as pathogen inhibitors and helpers, 

respectively (Fig. 2A). Although both helpers and inhibitors were found within each 

represented phylum, there were clear phylum-level differences with respect to the 

relative proportion of inhibitors versus helpers (Fig. 2B). For instance, 42.5% of the 

isolates affiliated with the Firmicutes showed inhibition of Ralstonia solanacearum 

growth, while 49.1% of the Proteobacteria isolates, 51.6% of the Bacteroidetes isolates 
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and 63.9% of the Actinobacteria isolates were found to act as helpers (Fig. 2C).  

 

Fig. 2 Taxonomic characterization of rhizobacterial isolates that inhibited or helped the growth 

of Ralstonia solanacearum. (A) Distribution of in vitro effects of 160 rhizobacterial supernatants on 

Ralstonia solanacearum growth. The red vertical line represents no effect on Ralstonia solanacearum 

growth. (B) Cladogram depicting the phylogenetic relationship among the 160 isolates based on their 

full-length 16S rRNA gene sequences. The inner ring depicts the different effect of isolates supernatant 

on Ralstonia solanacearum growth: positive effect (blue), negative effect (red) and no significant effect 

(gray). The outer ring shows the four phyla to which the isolates belong. (C) The proportion of 

rhizobacterial isolates per phylum whose supernatant showed inhibitory, stimulatory or no effect on 

Ralstonia solanacearum growth. The size of the circles represents the number of rhizobacterial isolates 

in the given phylum. The thickness of lines represents the percentage of rhizobacterial isolates that have 

the indicated effect on Ralstonia solanacearum growth in each phylum.  

Pairwise interactions between helper strains of Ralstonia solanacearum and 

other rhizobacterial strains 

To examine direct versus indirect effects on pathogen growth, we first chose two model 

helper strains: Phyllobacterium ifriqiyense LM1 (Pi) and Microbacterium paraoxydans 

LM2 (Mp). The supernatant of Pi increased Ralstonia solanacearum density by 51.2% 

in vitro (Fig. 3A) and by 139.6% when grown in vivo with tomato plants (Fig. 3B). 

Similarly, Mp increased Ralstonia solanacearum density by 39.7% in vitro (Fig. 3A) and 

by 212.9% in vivo (Fig. 3B). 
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We then selected 46 rhizobacterial strains from the full rhizobacterial strain collection 

to represent a range of positive (50.0%), negative (34.8%) or neutral (15.2%) effects 

on Ralstonia solanacearum growth (Fig. S3). We defined these interactions as the 

direct effect of rhizobacteria on Ralstonia solanacearum growth (x axis of Figure 3C 

and Figure 4A). We tested the effects of the supernatant from each of these 46 

rhizobacterial strains on each of the helper strains, Mp and Pi. We found that 10.9% of 

the strains positively affected the growth of Pi, 82.6% reduced growth and 6.5% had 

no significant effect (Fig. S3). Following a distinct but comparable pattern, Mp was 

positively affected by 37.0% of the tested isolates and negatively by 63.0% of them 

(Fig. S3). We defined these interactions as the indirect effects of rhizobacteria on 

Ralstonia solanacearum growth (y axis of Figure 3C and x axis of Figure 4C).  

When considering the direct effect of each rhizobacterial strain with their indirect effects 

on the growth of Ralstonia solanacearum, four possible combinations were considered 

(Fig. 3C) : i) 8 strain combinations showed negative direct effects and positive indirect 

effects (P-H+), ii) 16 strain combinations showed positive direct effects and positive 

indirect effects (P+H+), iii) 30 strain combinations showed negative direct effects and 

negative indirect effects (P-H-) and iv) 38 strain combinations showed positive direct 

effects and negative indirect effects (P+H-). A large majority of strain combinations fell 

into two of these categories, with 32.6% being P-H- and 41.3% being P+H-, suggesting 

that indirect negative effects may be relevant to the control of Ralstonia solanacearum 

growth. We consequently focused the modeling approach, which is described below 

(in Figure 5 and Table 1), on examining the relative importance of direct effects versus 

indirect effects on the density of Ralstonia solanacearum on these two interaction 

combinations.  
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Fig. 3 Effects of the two helper strains Phyllobacterium ifriqiyense (Pi) and Microbacterium paraoxydans 

(Mp) on Ralstonia solanacearum (Rs) growth in vitro (A) and in the rhizosphere of tomato plants (B). 

Different letters indicate significant differences based on Tukey post hoc test. Error bars show ± 1 SE 

(n=3). (C) Effects of 46 rhizobacterial strains on the growth of Ralstonia solanacearum and the two 

model helper strains in vitro. The x-axis shows the direct effect of each rhizobacterial strain on Ralstonia 

solanacearum growth (data from the experiment in which Ralstonia solanacearum was grown in the 

presence of supernatant from each of the 46 rhizobacterial strains – these are the same data that are 

presented on the x axis of Figure 4A below). The y-axis shows the effect of each rhizobacterial strain on 

each of the two helper strains (data from the experiment in which each helper was grown in the presence 

of supernatant from each of the 46 rhizobacterial strains – these are the same data that are presented 

on the x axis of Figure 4C below). In panel C, “-1”, “0” and “1” on the x-axis denote that Ralstonia 

solanacearum growth is completely inhibited, not influenced or doubled by supernatant from the 

rhizobacteria, respectively. Similarly,“-1”, “0” and “1” on the y-axis signify these same growth effects 

with reference to growth of the helper strains. Black dots indicate results involving interactions with Pi, 

and red dots indicate results involving interactions with Mp.  

The importance of direct versus indirect effects on Ralstonia solanacearum 

density in the presence of helper strains 

To disentangle the direct effects from the indirect effects of rhizobacteria on Ralstonia 

solanacearum growth and subsequently on Ralstonia solanacearum density, we 

examined pathogen growth patterns in a series of tripartite (supernatant of each 

rhizobacteria + one of the two helpers + pathogen) in vitro and in vivo assays.  
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In the presence of the helper strain Pi, Ralstonia solanacearum density was positively 

affected by the direct effects of the rhizobacteria in vitro (R2=0.3066, black line in Fig. 

4A) and in vivo (R2=0.0545, P=0.1784, black line in Fig. 4B). When considering the 

indirect effects of the rhizobacteria, Ralstonia solanacearum density increased with the 

increasing indirect effect both in vitro (R2=0.7522, black line in Fig. 4C) and in vivo 

(R2=0.4338, P=0.0018, black line in Fig. 4D).  

Similarly, when in the presence of the helper strain Mp, Ralstonia solanacearum 

density increased with the increasing direct effect both in vitro (R2=0.3705, red line in 

Fig. 4A) and in vivo (R2=0.2661, P=0.0165, red line in Fig. 4B). Ralstonia 

solanacearum density also increased with the increasing indirect effect both in vitro 

(R2=0.7860, red line in Fig. 4C) and in vivo (R2=0.4658, P=0.0011, red line in Fig. 4D).  

In the presence of either helper, Pi or Mp, the indirect effects explained more of the 

total variation in Ralstonia solanacearum density than the direct effects, with the 

regression for indirect effects yielding higher r-square values than that for direct effects 

(Fig. 4A-D). Together, these results demonstrate that inhibition of pathogen helper 

strains has the potential to limit the growth of Ralstonia solanacearum, not only under 

controlled in vitro laboratory assay conditions but also in vivo, although it should be 

noted that the latter was limited to testing of only 6 of the rhizobacterial strains. To gain 

further insight into the potential prevalence of such a mechanism, we considered this 

strategy using a modelling approach targeting the relative importance of direct versus 

indirect effects on pathogen growth.  
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Fig. 4 The importance of direct versus indirect effects on Ralstonia solanacearum density in the 

presence of helper strains. In the presence of helper Phyllobacterium ifriqiyense (Pi) or 

Microbacterium paraoxydans (Mp), respectively, the importance of direct effects on the density of 

Ralstonia solanacearum (A) in vitro (the data on the x axis are the same data which was presented on 

the x axis of Figure 3C) and (B) in vivo (the data on x axis from the experiment in which Ralstonia 

solanacearum was grown in the presence of supernatant from each of the 6 rhizobacterial strains); the 

importance of indirect effects on the density of Ralstonia solanacearum (C) in vitro (the data on x axis 

are the same data which was presented on the y axis of Figure 3C) and (D) in vivo (the data on x axis 

from the experiment in which each helper was grown in the presence of supernatant from each of the 6 

rhizobacterial strains). In all panels, “-1”, “0” and “1” on the x-axis denote that Ralstonia solanacearum 

growth (panels A and B) or helper growth (panels C and D) is completely inhibited, not influenced or 

doubled by supernatant from the rhizobacteria, respectively.  

The relative importance of direct versus indirect effects on Ralstonia 

solanacearum density in the presence of helper strains 

To further consider growth inhibition of Ralstonia solanacearum, we focused our 
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modeling approach on the interaction scenarios where rhizobacterial strains inhibited 

both the pathogen and its helpers (quadrant “H-P-” in Fig. 3C), and where rhizobacterial 

strains facilitated the pathogen but inhibited its helpers (quadrant “H-P+” in Fig. 3C). 

We constructed a model to predict the direct effects versus indirect effects on the 

density of Ralstonia solanacearum both in vitro and in vivo. We found that indirect 

effects provided far better prediction of Ralstonia solanacearum density in the quadrant 

“P-H-” (Fig. 5A and Table 1) in vitro as compared to direct effects on the pathogen. For 

the results in vivo, neither direct nor indirect effects had a significant effect on Ralstonia 

solanacearum density (Table 1), but indirect effects were also the better predictor of 

Ralstonia solanacearum density compared to direct effects on the pathogen in the 

quadrant “P-H-” (Fig. 5B). Together, these results suggest that indirect effects of 

rhizobacteria on the helpers’ growth predicted pathogen density far better than direct 

effects on the pathogen itself.  

 

Fig. 5 Relative importance of direct versus indirect effects on Ralstonia solanacearum density in 

presence of helper strains on the interaction scenario where rhizobacterial strains inhibited both 

the pathogen and its helpers (quadrant “H-P-” in Figure 3C) both in vitro (A) and in vivo (B). This 

shows the predicted Ralstonia solanacearum densities for different values of the inhibition via pathogen 

(Direct) or helper (Indirect) as estimated from the statistical model (Table 1) which with direct effects, 

indirect effects, and an interaction between helper strains and indirect effects as fixed factors. For the 

Direct line, the indirect effect was set to zero, while for the indirect line, the direct effect was set to zero.  
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Table 1 ANOVA table comparing the contribution of direct and indirect effects of the different tested 

bacterial isolates on the density of Ralstonia solanacearum in vitro and in vivo on the interaction scenario 

where rhizobacteria inhibited both the pathogen and its helpers (quadrant “H-P-” in Figure 3C).  

 

Ralstonia solanacearum 
density  
in vitro 

Ralstonia solanacearum 
density  
in vivo 

 df      F          P df      F         P 

Direct effect 1    2.4521   0.1295    1    0.1916    0.6842 

Indirect effect    1   32.9556   4.818e-06    1    1.3481    0.3102 

Indirect effect: Mp vs Pi 1    5.0717   0.0330    1    0.0023    0.9639 

No. of Residuals 26 4 

 

Discussion 

In this study, we evaluated the prevalence of pathogen-helper bacteria in the 

rhizosphere microbiome as well as the potential of such helpers as targets for 

microbiome management strategies aiming to control pathogen growth. As a model 

pathogen, we used Ralstonia solanacearum, a widespread and problematic 

phytopathogenic bacterium that causes wilt diseases on tomatoes and more than 200 

economically important crops and ornamentals [195]. Combining in vitro and in vivo 

approaches, we compared the influence of the direct (i.e. on Ralstonia solanacearum 

growth directly) vs. the indirect (i.e. on the growth of Ralstonia solanacearum helper 

strains) effects of tomato-associated rhizobacteria on the growth of the pathogen. In 

general, indirect effects, i.e. inhibition of helper strains, were the major determinant of 

pathogen inhibition as compared to direct impacts on the pathogen itself. To our 

knowledge, this represents the first demonstration of such an indirect strategy for the 

potential inhibition of pathogen growth.  

The isolated rhizobacteria in this study belonged to four major phyla 

(Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria), which are collectively 

presumed to be copiotrophic bacteria [196, 197] and are known to be dominant phyla 

found in the rhizosphere [198]. We found a majority of our isolates (50.6%) promoted 
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pathogen growth using a supernatant assay. This result adds to the recent realization 

that many microorganisms may act as helpers of pathogens in the rhizosphere [59]. 

For example, different bacteria which were affiliated with bacillus and microbacterium 

had a mild and overall significant stimulatory effect on the growth of Ralstonia 

solanacearum [59]. Some fungi affiliated with Ascomycetes, Basidiomycetes and 

Zygomycetes can produce chlamydospores that host Ralstonia solanacearum and can 

facilitate pathogen entry into tomato roots [65]. Moreover, one Pseudomonas phylotype 

was found to exacerbate disease symptoms in tomato plants by establishing 

commensal interactions with a oomycete pathogen to maximize its access to plant 

nutrients [199]. Interestingly, most of helpers in our study belonged to the 

Proteobacteria (49.1%) and Actinobacteria (63.9%), which have often been reported 

to contain bacteria that are beneficial for plant health [26, 57]. For example, Cha et al. 

reported that Actinobacteria played a key role in the specific suppressiveness of 

Fusarium wilt in strawberry soils [57]. This discrepancy might be due to the fact that 

their results showed the cooccurrence relation based on high-throughput data, while 

we tested the real effect of isolated representatives from these phyla. The 

rhizobacterial collection we isolated in this study does not provide a full taxonomic 

inventory of the rhizosphere microbiome. For instance, the medium we used most likely 

selected for copiotrophic strains among all present bacterial strains. Such copiotrophs 

might have different effects on pathogen growth as compare to more oligotrophic 

bacteria, as they have higher growth rates and lower substrate affinities than 

oligotrophic bacteria [200].  

Several mechanisms have been put forth to explain mutualism or commensalism 

among bacteria, mainly as related to the benefits gained from the use of metabolites 

processed by another member of the community [201]. For instance, peptidoglycan 

produced by Bacillus cereus may promote the growth of several bacterial strains 
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affiliated with the Cytophaga-Flavobacterium group [202]. Siderophores produced by 

microorganisms can also be accepted as public goods by several other bacterial with 

siderophore protein receptors to obtain limited iron in the environment to maintain 

growth and metabolism, hence increasing population biomass [203]. Although beyond 

the scope of the current study, the promoting mechanisms of the helper strains towards 

Ralstonia solanacearum are most likely related to certain metabolites, as promotion 

was also observed using supernatant assays (Fig. 1A and 3A).  

Similar to the results obtained in vitro (Fig. 4A and 4C), both direct inhibition from 

rhizobacteria on pathogen growth and indirect inhibition from rhizobacteria on its helper 

growth limited the growth of Ralstonia solanacearum in vivo: by a factor of 10, from 

approximately 108 to 107 g-1 rhizosphere soil (Fig. 4B and D). The reduction in the 

pathogen growth weakens the ability of the pathogen to infect plants because 

Ralstonia solanacearum virulence gene expression is triggered by quorum sensing, 

which requires high pathogen population densities [204]. In previous studies, when the 

pathogen density in the tomato rhizosphere decrease from approximately 107.5 to 106.8 

[59], or 106.2 to 105.5 [138] g-1 rhizosphere soil, the disease incidence significantly 

decreased. However, as we sampled the plants in an early stage to focus on how 

microbe-microbe interactions influence the pathogen growth in the rhizosphere, we did 

not assess actual bacterial wilt disease incidence. Since many potential factors affect 

plant disease incidence beside pathogen density, we cannot fully claim that the 

observed patterns of helper inhibition would lead lower disease incidence. For example, 

plant immunity, and the role of microbe-mediated plant immunity is important as both 

pathogenic and non-pathogenic bacteria can trigger or suppress plant immunity [205, 

206].  

The rhizobacterial strains used in this study exhibited a wide range of effects on 

the pathogen and its bacterial helper strains. Many of them inhibited both Ralstonia 
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solanacearum as well as its helpers. A model on the interaction scenarios where 

rhizobacterial strains inhibited both the pathogen and its helpers (quadrant “H-P-” in 

Fig. 3C) show that inhibition of the helper strains was a more effective path toward 

Ralstonia solanacearum control than direct inhibition effects on the pathogen itself in 

vitro. The model shows neither direct nor indirect effects have a significant effect on 

Ralstonia solanacearum density in tomato rhizosphere (Table 1). This may be due to 

the limited number of combinations tested (just from 6 rhizobacterial strains). However, 

we did observe a trend that the indirect inhibition effect was a better predictor for 

Ralstonia solanacearum density than direct inhibition effect (Fig. 5B). Even if a 

biocontrol agent is active against Ralstonia solanacearum [51, 84], its efficiency in 

reality may be more due to its interaction with indigenous helpers. We therefore 

propose that strategies for integrated biological control of the pathogen need to be 

reconsidered to incorporate indirect effects on pathogen helpers to provide more 

ecological solutions to combat soil-borne pathogens. Although the underlying 

mechanisms of helper inhibition still need to be unraveled and our communities here 

were far less diverse and far simpler than natural communities, our findings contribute 

to our knowledge of rhizobacteria-pathogen interactions and provide a new potential 

strategy for efficient and sustainable biological control of soil-borne pathogens.  
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Supplementary materials 

Materials and methods 

Measuring the direct effects of rhizobacteria on pathogen growth by co-culture 

assay in vitro 

We used Ralstonia solanacearum strain QL-Rs1115 tagged with the pYC12-mCherry 

plasmid as an invading bacterial pathogen [51]. We first tested the effects of 515 

bacterial strains on the growth of Ralstonia solanacearum in vitro by using co-culture 

assays. All strains were first grown alone in liquid NA medium (glucose 10.0 g l-1, 

tryptone 5.0 g l-1, yeast extract 0.5 g l-1, beef extract 3.0 g l-1, pH 7.0) on a shaker at 

170 rpm, 30°C overnight. All rhizobacterial strain densities were adjusted to ~107 cells 

per ml and the density of mCherry fluorescence-tagged Ralstonia solanacearum QL-

Rs1115-RFP to ~106 cells per ml. Co-cultures with even starting volumes (50%:50%) 

were set up in 96-well plates with liquid NA medium. Each treatment was replicated 

three times. All bacterial cultures were grown for 48 h at 30°C with shaking (170 rpm) 

before measuring pathogen density as red mCherry protein fluorescence intensity 

(excitation: 587 nm, emission: 610 nm) using a SpectraMax M5 plate reader [59, 121]. 

To test for significance of growth promotion or inhibition, Ralstonia solanacearum 

densities (RFP) were log10-transformed prior to analyses of variance (ANOVA) and 

Bonferroni t-test to compare mean differences between each rhizobacterial 

supernatant treatments and the control treatment, with p-values below 0.05 were 

considered statistically significant. The effect on pathogen growth was defined as the 

percentage of improvement or reduction in pathogen growth by the supernatant 

compared with the control treatment. When the effect on pathogen growth was positive, 

i.e. when the supernatants from strains significantly promoted the growth of the 

pathogen, they were considered as helpers of the pathogen. If the effect on pathogen 
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growth was negative, i.e. when the supernatants from strains significantly inhibited the 

growth of the pathogen, they were considered as inhibitors of the pathogen. 

Table S1. Treatments used in in vivo experiments with tomato. Table rows show different communities 

and table columns show the absence (0) or presence (1) of given species in these communities.  

Community ID 

           Species abbreviation    

Fj Cd Da Ba Ls Rp Pi Mp Rs 

Control 0 0 0 0 0 0 0 0 0 

Ralstonia 

solanacearum alone 
0 0 0 0 0 0 

0 0 1 

1 1 0 0 0 0 0 1 0 1 

2 0 1 0 0 0 0 1 0 1 

3 0 0 1 0 0 0 1 0 1 

4 0 0 0 1 0 0 1 0 1 

5 0 0 0 0 1 0 1 0 1 

6 0 0 0 0 0 1 1 0 1 

7 1 0 0 0 0 0 0 1 1 

8 0 1 0 0 0 0 0 1 1 

9 0 0 1 0 0 0 0 1 1 

10 0 0 0 1 0 0 0 1 1 

11 0 0 0 0 1 0 0 1 1 

12 0 0 0 0 0 1 0 1 1 
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Fig. S1. Effects of 160 rhizobacterial strains on Ralstonia solanacearum growth in both co-

culture and supernatant assays. Phyllobacterium ifriqiyense (Pi) and Microbacterium paraoxydans 

(Mp) were considered helper strains which showed strong positive effects on Ralstonia solanacearum 

growth both in co-culture and supernatant assays. Each dot represents one rhizobacteria in the figure.  

 

 
Fig. S2. The diversity and taxonomic classification of rhizosphere bacterial isolates. A total of 160 

rhizosphere isolates were identified by 16s rRNA sequencing and their closest relatives were determined 

using the NCBI database. Seven bacterial groups with highest relative abundances at the phylum, class, 

order, family, and genus levels are shown in the figure, while groups with relatively low abundances 

were merged and are presented as one group ‘Others’. In all panels, percentage (%) values in brackets 

represent the proportion of each bacterial group of the total isolates (160 bacterial isolates).  
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Fig. S3. Effects of 46 rhizobacteria from 160 on helper (Phyllobacterium ifriqiyense Pi or 

Microbacterium paraoxydans Mp) or Ralstonia solanacearum (Rs) growth in supernatant assay. 

A subset of 46 rhizobacterial strains covering a gradient of positive, neutral or negative interaction with 

the pathogen based on supernatant assays was chosen, which also varying in their effect on two helpers. 

Each dot represents one rhizobacteria in the figure.  
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Abstract 

Microbes usually exist in communities consisting of a myriad of interacting species. 

These interactions are sensitive to various environmental factors, such as resource 

availability. Multiple studies have reported shifts in bacterial interactions in response to 

varying resource availability levels, yet, how these shifts affect community functions, 

such as resident community resistance to pathogen invasion, is still poorly understood. 

In this study, we examined how resource availability shifts the pairwise interactions 

within the resident community, and how these shifts affect the resident community’s 

ability to resist the invasion of a plant pathogenic bacterium, Ralstonia solanacearum. 

We found that resource availability changed the relationships between interactions 

within resident community members and pathogen invasion. At high resource 

availability, interactions between resident bacterial species were mostly driven by the 

production of secondary metabolites, with direct antagonism as the means of invader 

inhibition. Therefore, competitive resident communities were invaded to a lesser 

degree than facilitative communities. At low resource availability, bacteria produced 

little or no direct antagonist potential, which had little influence on the interactions 

between them, as well as their collective impact on pathogen inhibition. Rather low 

resource availability, facilitative communities reached higher community productivity, 

which in turn showed higher resistance to pathogen invasion than competitive 

communities. This framework may lay the basis to understand complex microbial 

interactions and biological invasion as modulated by environmental resource 

availability.  
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Introduction  

Host-associated microbial communities can function as a line of defense against 

pathogens, thereby protecting their associated host organism [51, 207]. This process 

can also be viewed from the perspective of biological invasions where the members of 

resident communities can impact the ability or inability of invading species to establish 

in an ecosystem [208, 209]. The characteristics of resident communities are important 

for determining the outcomes of biological invasions [121, 210]. For example, the 

interactions between microbes in resident communities can not only influence their 

survival, growth and contribution to community function [165, 211-213], but also impact 

the community’s resistance to pathogen invasion. Microbes influence their direct 

environment for instance by consuming resources and excreting metabolites [93]. 

These changes to the environment influence the growth and survival of both the 

microbe that originally altered the environment as well as other microbial species that 

are present, whether that be resident organisms of potential invaders. Facilitative 

interactions between residents can potentially increase the number of resource niches 

available via the production of secondary metabolites or public goods that can also be 

utilized by an invader [87-89]. On the other hand, competing species can inhibit each 

other, for instance via the production of toxic metabolites, which may have negative 

effects on both resident and invading species [80, 84].  

However, microbial interactions are sensitive to a range of environmental factors, 

such as resource availability [92]. Theoretical studies have suggested that certain 

mutualisms can become competitive under high nutrient conditions [95], and it has 

been shown that two yeast strains can interact in at least seven qualitatively different 

ways depending on the nutrient concentrations encountered[96]. Although multiple 
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studies have reported a shift in bacterial interactions in response to changes in 

resource availability levels, it is generally unknown how shifts in these interactions 

affect a community’s susceptibility or resistance to pathogen invasion. We have 

previously demonstrated that the interactions within the resident bacterial community 

can reliably predict pathogen invasion both in lab microcosms and the plant 

rhizosphere [121]. Facilitative resident communities were more prone to invasions, 

while antagonistic resident communities were invaded to a lesser extent. In this study, 

we aimed to specifically explore if these relationships between bacterial interactions 

and community resistance to pathogen invasion were modulated by resource 

availability. Higher nutrient concentrations would be expected to allow bacterial 

populations to metabolize larger amounts of growth substrates, hereby having a larger 

impact on their surrounding environment [98]. Accordingly, we hypothesized that higher 

nutrient concentrations would lead to stronger antagonistic interactions and invader 

inhibition. Especially, competitive communities could also produce higher levels of 

antagonism than facilitative communities. Competitive communities should therefore 

provide greater resistance to the invader at high resource availability (Figure 1). As 

opposed to conditions of high resource availability levels, resident communities at low 

resource availability conditions might produce lower levels of antagonism. We 

therefore expect that invasion success may, to some extent be driven by resident 

community productivity. If facilitative resident community are able to reach higher 

population densities than antagonistic communities [121], we expect that facilitative 

communities might better resist to the invader under these conditions (Figure 1), as 

they may be able to occupy more niche space at low resource availability.  
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Fig. 1. Schematic figure depicting invasion success as a function of interactions between 

resident species at low and high resource availability levels. Facilitative communities that reach 

higher population densities better suppress the invader at low resource availability levels, while 

competitive communities that reach lower population densities, but produce more direct antagonistic 

potential, suppress the invader more strongly at higher resource availability levels.  

To validate this hypothesis, we examined how resource availability impacted 

pairwise interactions within the resident bacterial community, and how these changes 

affected the resident community’s resistance to the invasion of the plant pathogenic 

bacterium, Ralstonia solanacearum, the causal agent of bacterial wilt disease [99, 122]. 

Specifically, we first tested the pairwise interactions between resident bacteria by co-

culture (cultured two bacteria together) and supernatant assays (cultured one 

bacterium in the presence of sterile supernatant from one of the other bacterial strains) 

at low and high resource availability levels. Two-species communities were then 

confronted by a Ralstonia solanacearum invasion at either high or low resource 

availability, with invasion success being measured as the resulting density of Ralstonia 

solanacearum. To examine the tested communities toxicity towards the Ralstonia 

solanacearum, we also tested the invasion success in the presence of sterile 

supernatant from each two-species community at low and high resource availability 

levels.  
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Materials and methods  

Bacterial strains and the assembly of pairwise resident communities  

We used Ralstonia solanacearum strain QL-Rs1115 [51] tagged with the pYC12-

mCherry plasmid [58] as the model invading pathogen in our experiments. Model 

resident communities were created using six bacterial strains isolated from the tomato 

rhizosphere from location from which the pathogen was also isolated (Qilin [118° 57′ 

E, 32° 03′ N], Nanjing, China). The strain collection used as model communities 

contained the isolates listed in Table S1 (Flavobacterium johnsoniae WR4, 

Chryseobacterium daecheongense WR21, Delftia acidovorans WR42, Bacillus 

amyloliquefaciens T-5, Lysinibacillus sphaericus HR92 and Ralstonia pickettii QL-A6), 

which have previously been shown to provide protection for associated host plants by 

inhibiting Ralstonia solanacearum pathogen growth via resource competition or direct 

toxin production [121]. These species can also be differentiated by colony morphology 

and were used in a previous interaction study [121]. Model resident communities were 

constructed by using all six resident bacterial strains in all possible one- or two-species 

combinations (21 communities in total, Supporting Information Table S2). We used a 

substitutive design so that all communities were set up with the same initial total 

bacterial density (105 cells mL-1) and evenness (i.e. multispecies communities had 

equal ratios of each species).  

Medium and bacterial culture 

We set up two different resource availability treatments in this study: 100% NB medium 

(nutrient broth: glucose 10.0 g l-1, tryptone 5.0 g l-1, yeast extract 0.5 g l-1, beef extract 

3.0 g l-1, pH 7.0) providing high resource availability (HRA), and 10% NB medium (by 

diluting 100% NB medium with sterile water) providing low resource availability (LRA). 
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Prior to each experiment, one colony of each strain, recovered from -80°C 20% 

glycerol stocks, was selected and grown in liquid NB with 170 r.p.m. agitation at 30°C 

for 12 h. Bacteria were then washed three times by centrifugation (5000 rpm, 5 min), 

resuspended in 0.85% NaCl and adjusted to a density of 107 cells mL-1 for each 

resident bacterium and 106 cells ml-1 for the invading pathogen.  

Determining pairwise interactions between resident community species at both 

high and low resource availability by coculture assay  

In order to investigate if and how the resource availability influenced the interaction 

between bacterial strains, we quantified the strength and direction of each pairwise 

interaction between resident species at high or low resource availability. To this end we 

compared the growth of each species alone and in the presence of each of the other 

species in two-species co-cultures [173]. All mono-cultures were inoculated with a 

starting density of 105 cells per ml, and co-cultures were inoculated with half of this 

starting cell density for each species. Resident species were grown for 36 h in liquid 

100% NB or 10% NB medium in 48-well microtiter plates (ending volume of 700 µl per 

well) at 30°C with shaking (170 rpm). Bacterial densities of each community were 

measured as optical density (OD 600 nm) using a SpectraMax M5 plate reader 

(Molecular Devices, Sunnyvale, CA). Bacterial growth was measured as colony 

number units (CFU) per ml by serial dilution and plating on NB agar plates after 48 h 

growth.  

To test the significance of the effects of resident bacteria on each other, the 

productivity of each species (CFU) was log10-transformed prior to a t-test to compare 

mean differences between each bacterium in co-culture as compared to mono-culture, 

with p-values below 0.05 being considered statistically significant. The strength of 
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pairwise interactions between two species (here i and j) was determined by comparing 

the final productivity of each species (CPi and CPj) in two-species co-cultures with their 

productivities (MPi and MPj) in monocultures (log10(CPi / MPi)). We then determined 

the directionality of interaction. Interactions were considered facilitative if species j had 

a significant positive effect on species i, competitive if the effect was significantly 

negative and neutral if there was not significant effect. We also calculated the mean 

intensity of interaction (MIF) of co-cultures as an average of log10-transformed pairwise 

interactions using the following formula: )]/log()/[log(
2

1
jjiiij MPCPMPCPMIF +=

. 
The 

two-species community was defined as facilitative when MIF > 0, competitive when 

MIF < 0.  

Determining pairwise interactions between resident community species at both 

high and low resource availability by supernatant assay  

To assess the impact of resource availability on direct interference competition 

between resident community species (i.e. toxicity within two-species resident 

community), we compared the growths of each bacterial strain in the presence of 

supernatant from each of the other bacteria, which was collected from high resource 

availability (100% NB) and low resource availability (10% NB) medium, respectively. 

Briefly, after 36 h of growth in NB or 10% NB medium on a shaker at 170 rpm, 30°C, 

the 6 resident bacterial monocultures were filter sterilized to remove living cells (0.22 

µm filter). Subsequently, 20 µl of sterile supernatant from each strain’s culture and 2 µl 

overnight culture of each resident bacterial strain (density of 107 cells per ml) were 

inoculated into 180 µl of fresh NB medium (10-times diluted, in order to better reflect 

the effect of the supernatant), respectively. Control treatments were inoculated with 20 

µl of 10X diluted NB media instead of the bacterial supernatant. Each treatment was 
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conducted in triplicate. All bacterial cultures were grown for 24 h at 30°C with shaking 

(170 rpm) before measuring resident bacterial density as optical density (OD 600 nm) 

using a SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, CA).  

To test the significance of direct toxicity of resident bacteria on each other, we 

conducted a t-test to compare mean differences between bacterial density (OD600) from 

the treatment with exposure to bacterial supernatants and the control treatment, with 

p-values below 0.05 being considered statistically significant. We used the same 

method as described for the co-culture assay to determine the strength and 

directionality of direct toxicity of resident bacteria on each other. We also calculated 

mean intensity of interaction between resident species in supernatant assay (MIF_S) 

via the method used to calculate the mean intensity of interaction in the co-culture 

assay. Two-species communities were defined as facilitative when MIF_S > 0, 

antagonistic when MIF_S < 0.  

Measuring resident community toxicity towards Ralstonia solanacearum at high 

and low resource availability  

In order to link pairwise interactions between resident species to resident community 

toxicity towards the pathogen at both high and low resource availability, we quantified 

pathogen growth in the presence of two-species resident community supernatants, 

which were collected after growth under the conditions of high (100% NB) or low (10% 

NB) resource availability, respectively. Briefly, after 36 h of growth in NB or 10% NB 

medium on a shaker at 170 rpm, 30°C, two-species resident community cultures were 

filter-sterilized to remove living cells (0.22 µm filter). Subsequently, 20 µl of sterile 

supernatant from each community’s culture and 2 µl overnight culture of Ralstonia 

solanacearum (density of 106 cells per ml) were added to 180 µl of fresh NB medium 
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(10-times diluted, in order to better reflect the effect of the supernatant). Control 

treatments were inoculated with 20 µl of 10X diluted NB media instead of the 

community supernatant. Each treatment was conducted in triplicate. Bacteria were 

grown for 24 h (30°C, 170 rpm) before bacterial densities were measured as optical 

density at 600 nm using a SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, 

CA). Pathogen inhibition was defined as the percentage of reduction in pathogen 

growth compared to pathogen growth in the control treatment.  

Measuring invasion success in microcosms at high and low resource availability 

Bacterial communities were constructed according to the scheme provided in 

Supporting Information Table S2. Each resident community was first inoculated into 

media of the two resource availability treatments (with a starting density of 105 cells 

per ml). The invader Ralstonia solanacearum QL-Rs1115 (tagged with the pYC12-

mCherry plasmid) was subsequently introduced into all communities (with a starting 

density of 104 cells per ml). Communities were incubated at 30°C with 170 rpm orbital 

agitation for 36 h (200 µl together with bacteria and medium per well of 96-well plate), 

a time chosen to allow all communities to reach stationary phase. Invader density was 

measured as the red mCherry protein fluorescence intensity (excitation: 587 nm, 

emission: 610 nm) using a SpectraMax M5 plate reader (Molecular Devices, 

Sunnyvale, CA, USA). Wells contained a total of 200 µl of liquid: 196 µl of media, 2 µl 

inoculum of constructed resident community and 2 µl inoculum of the invader. Control 

treatments were inoculated with 2 µl of sterile water instead of the constructed resident 

community. Each treatment was replicated four times. To control for the auto-

fluorescence of resident community, we also grew each community at the two levels 

of resource availability and subtracted these values from those obtained from co-

cultures with the invader.  
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Statistical analyses 

To test how resource availability influences the pairwise interactions between resident 

species, we used t-tests to compare mean differences between resident bacterial 

interactions at high and low resource availability levels, with p-values below 0.05 being 

considered statistically significant. We used linear regression to test whether the 

secondary metabolites from each resident strain (Mean intensity of interaction between 

resident species in supernatant) affected the pairwise interactions between resident 

species (Mean intensity of interaction between resident species in coculture) at high 

and low resource availability levels.  

In order to determine how resource availability-induced changes in pairwise 

interactions between resident species influence the community resistance to pathogen 

invasion (Invader density), we used linear regression to analyze relationships between 

pairwise resident bacterial interactions (Mean intensity of interaction between resident 

species in coculture) and invader density at low and high resource availability levels. 

Furthermore, we also used linear regression to disentangle the mechanisms behind 

the impact of resident bacterial interactions on pathogen invasion at low and high 

resource availability levels. Specifically, we focused on exploring how changes in the 

pairwise interactions between resident species, as influenced by resource availability, 

affected pathogen density via effects on resident community productivity and toxicity 

towards pathogen. Before all analyses, pathogen density data were log10-transformed 

to fulfill the parametric model assumptions (i.e. linear regression). All data were 

analyzed using the R 4.0.2 program (www.r-project.org).  
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Results 

Resource availability influences pairwise interactions between resident bacterial 

species 

Each bacterial species exhibited a different pattern of positive, negative or neutral 

effects on the other strains, and the magnitude and directionality of these effects were 

differently influenced by resource availability (Figure 2A, 2B and Figure S1). For 

example, strain Rp showed a stronger negative effect on strain Ls at low resource 

availability as compared to at high resource availability, and strain Cd showed a 

negative effect on strain Fj at low resource availability, but no significant effect on this 

strain at high resource availability. Overall, resident bacteria produced less or no toxic 

metabolites in the low-resource availability conditions (Figure 2C), but their interactions 

were stronger in coculture assays (Figure 2A). For example, the metabolites contained 

in the supernatant of strain Cd did not significantly inhibit the growth of strain Ba but 

we observed strong inhibitory effect on strain Ba in coculture (Figure S1). In contrast, 

supernatants from high-resource media cultures showed stronger negative effects on 

the growth of other strains (Figure 2D). Moreover, there was a significant relationship 

between the mean intensity of interaction in coculture and in supernatant at the high 

resource availability level (R2=0.59, P<0.001, red in Figure 2E), with no relationship 

being observed at low resource availability (R2=0.09, P=0.0519, blue in Figure 2E). 

These results suggest that the pairwise interactions between resident bacterial species 

were mostly driven by the production of secondary metabolites at high resource 

availability.  
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Fig. 2 Resource availability influences pairwise interactions between resident bacterial species. 

Pairwise interactions at low (A) and high (B) resource availability levels, and toxicity within resident 

communities at low (C) and high (D) resource availability levels. (E) Relationship between resident 

pairwise interactions (mean intensity of interaction) in coculture and in supernatant at low and high 

resource availability levels. Grey shaded areas depict 95% confidence intervals of the logistic regression. 

Horizontal and vertical lines for each point indicate error bars, which denote mean ± 2 SE. LRA and HRA 

denote low resource availability and high resource availability, respectively. Coculture refers to the test 

of pairwise interactions between bacteria in coculture. Supernatant denotes the effects of sterile 

supernatant from each strain on the other strains.  

Changes in resident pairwise interactions due to resource availability impact 

resident community resistance to pathogen invasion 

We examined model resident communities resistance to pathogen invasion as judged 

by final invader density. We found that higher resource availability led to a reduced 

density of the invader (Table 1), and there was an interactive effect between resource 

availability and interaction within the resident community (mean intensity of interaction 

in coculture) on the density of the invader (Table 1). Invader success correlated 
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positively with the mean intensity of interaction between resident species at high 

(R2=0.35, P<0.001, red in Figure 3) resource availability, but an opposite correlation 

was observed at low resource availability (R2=0.4, P<0.001, blue in Figure 3). 

Compared to positive controls (Ralstonia solanacearum-only: red and blue dashed 

lines in Figure 3), pathogen densities were lower in the presence of resident species 

at both high and low resource availability.  

 

Fig. 3 Resource availability influences the relationship between resident pairwise interactions 

and resident community resistance to pathogen invasion. The relationship between mean intensity 

of interaction between resident species in coculture and pathogen invasion success at low and high 

resource availability, respectively. Red and blue dashed lines show the baseline invader densities in 

control treatments (invader-only). For the x-axis, values below and above zero denote for competitive 

and facilitative resident communities, respectively. LRA and HRA denote low resource availability and 

high resource availability, respectively. Grey shaded areas depict 95% confidence intervals of the logistic 

regression, and horizontal and vertical lines for each point indicate error bars, which denote mean ± 2 

SE.  
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Table 1. ANOVA table summarizing the interactive effects of pairwise interactions within the resident 

community and resource availability on the productivity of resident communities, direct pathogen 

inhibition by resident communities and density of the invader. Significant effects (P < 0.05) are 

highlighted in bold and the ‘up’ and ‘down’ arrows denote positive and negative effects respectively.  

 Invader density 
Resident community 

toxicity towards invader 
Productivity of 

resident community 

 df     F      P df      F       P df      F      P 

Mean intensity of interaction in coculture (MIF) 1     1.21   0.2741   1      7.30    0.008↓ 1   108.32   <0.001↑ 

Resource availability (RA) 1   145.06  <0.001↓   1     65.96   <0.001↑ 1   230.08   <0.001↑ 

MIF * RA 1    39.32  <0.001↑   1     22.55   <0.001↓ 1     1.72    0.1938 

No. of Residuals 86   86  86 
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Mechanisms by which resource availability modulates two-species bacterial 

community resistance to pathogen invasion 

To disentangle potential mechanisms underlying the observed patterns of two-species 

bacterial community resistance to pathogen invasion at low and high resource 

availability, based on our hypothesis, we focused on exploring how changes in the 

pairwise interactions between resident species, as influenced by resource availability, 

affected pathogen density via effects on resident community productivity and toxicity 

towards pathogen.  

We found that higher resource availability led to a greater level of resident 

community toxicity towards pathogen, and there was an interactive effect between 

resource availability and interaction within the resident community (mean intensity of 

interaction in coculture) on resident community toxicity towards pathogen (Table 1). 

Higher resource availability also led to increased productivity of the resident community, 

but there was no interactive effect between resource availability and interactions within 

resident community on the productivity of the resident community (Table 1). 

At low resource availability, interactions between resident species (mean intensity 

of interaction in coculture) had no effect on resident community toxicity towards 

pathogen (R2=0.019, P=0.3622, blue in Figure 4A) which negatively influenced invader 

density (R2=0.13, P=0.017, blue in Figure 4B). However, interactions between resident 

species were positively correlated with productivity of the resident community (R2=0.39, 

P<0.001, blue in Figure 4C), which was in turn negatively linked with invader density 

(R2=0.33, P<0.001, blue in Figure 4D).  

In high resource availability conditions, the mean intensity of interaction between 

resident species in coculture was negatively correlated with resident community 

toxicity towards pathogen (R2=0.39, P<0.001, red in Figure 4A) which was negatively 
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linked with invader density (R2=0.33, P<0.001, red in Figure 4B). This result suggests 

that competitive resident communities were also more inhibitory toward the pathogen. 

Mean intensity of facilitation between resident species was positively correlated with 

productivity of the resident community (R2=0.47, P<0.001, red in Figure 4C) which was 

positively linked with invader density (R2=0.4, P<0.001, red in Figure 4D).  

Moreover, resident community toxicity towards pathogen was negatively 

correlated with productivity of the resident community at high resource availability 

(R2=0.27, P<0.001, red in Figure S2), but not at low resource availability (blue in Figure 

S2). Together these results suggest that facilitative communities that reached higher 

total densities suppressed the invader more efficiently in low resource availability 

conditions. High resource availability conditions yielded a contrasting pattern in which 

competitive communities that achieve lower total community densities, but produced 

more direct antagonist compounds, provided a stronger inhibition of the pathogen 

growth.  
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Fig. 4 The relationships between mean intensity of interaction in coculture and (A) resident community 

toxicity towards pathogen, (C) productivity of two-species resident communities at low and high 

resource availability. For the x-axis of panel A and C, values below and above zero denote for 

competitive and facilitative resident communities, respectively. The relationships between invader 

density and (B) resident community toxicity towards pathogen, (D) productivity of two-species resident 

communities at low and high resource availability. LRA and HRA denote low resource availability and 

high resource availability, respectively. Grey shaded areas depict 95% confidence intervals of the logistic 

regression, and horizontal and vertical lines for each point indicate error bars, which denote mean ± 2 

SE. 

Discussion 

Microbial communities are structured by interactions between their constituent species 

in the context of their abiotic environment [94]. Interactions within a resident community 

can have important consequences for ecosystem functions such as the ability of the 

community to resist biological invasions [121, 210]. For example, it has been observed 
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that communities with a greater proportion of competitive interactions are better able 

to constrain invader growth than more facilitative communities [121]. However, the 

nature of microbial interactions is impacted by environmental conditions such as the 

level of nutrient availability, and how such impacts are related to community resistance 

to biological invasion is generally unknown. In this study, we explored how changes in 

resource availability affect relationships between interactions within model resident 

communities and their ability to resist pathogen invasion. At high resource availability, 

we found that more competitive resident communities produced more direct 

antagonism and subsequently better resisted pathogen invasion than more facilitative 

communities. At low resource availability, facilitative communities that reached higher 

total productivity were more resistant to pathogen invasion than more competitive 

communities. Understanding how resource availability influences the interactions 

between resident bacteria is thus important for predicting the dynamics and outcomes 

of biological invasions.  

In line with a recent study, we found that interactions between resident bacterial 

species were mostly driven by the production of secondary metabolites in high 

resource availability conditions [97]. Given the results of our assays (supernatant 

assays) involving exposure to spent media, it appeared that the observed microbial 

interactions involved modification of the environment, for instance via the production 

of inhibitory compounds. In high resource availability conditions, microbes have 

sufficient substrates to produce relatively large amounts of inhibitory compounds, 

thereby leading to a greater level of influence on other microbial strains [214-216]. 

Interestingly, we found resident bacteria produced little or no toxic metabolites in low 

resource availability conditions, but there were strong competitive interactions between 

them in coculture assays. This suggests that interactions at low resource availability 
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were not driven by the production of toxic metabolites but by competition for resources, 

presumably because there were not sufficient resources to allow for large investment 

into the production of such secondary metabolites [217].  

Resource availability showed a strong negative effect on the density of the model 

pathogen invader (Table 1), which contrasts with other studies [88, 159, 218]. For 

example, Mallon et al. found that increasing resource availability may promote E. coli 

invasions due to relaxed resource competition [88]. This discrepancy may be explained 

by the fact that bacteria were likely able to consume all the available resources during 

our experiments without addition of new external resources [76]. Furthermore, resident 

communities produced inhibitory compounds that reduced the growth of invader 

Ralstonia solanacearum under conditions of high resource availability as compared to 

low resource availability conditions (Table 1 and Figure S3).  

We also observed an interactive effect between the pairwise interactions within 

the resident community and resource availability conditions on invader density. 

Mechanistically, the greater resistance to pathogen invasion of competitive 

communities at high resource availability level was linked to direct inhibition of the 

invader by antagonistic communities (Figure 4A and B). However, facilitative 

communities were more resistance to pathogen invasion at the low resource 

availability level, which can be explained by the fact that facilitative communities 

reached higher total community productivity (Figure 4C and D). Our results suggest 

that in high resource availability conditions, antagonism is an important determinant of 

community invasion resistance [97, 121]. This result is also in line with a previous 

finding, where the increase in the antagonistic activity was found to increase the 

invasion resistance of Pseudomonas resident communities [84]. As our results 

suggested that interactions in low resource availability conditions were driven by 
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competition for resources, communities that showed higher productivity may be able 

to better occupy niche spaces, thereby outcompeting invaders [69, 219, 220].  

We conclude that resource availability can modulate bacterial community 

resistance to pathogen invasion by changing pairwise interactions within the resident 

community. In many cases, microbial interactions may not be driven by a single 

parameter — resource availability in our case — but by a set of multiple parameters 

such as pH, temperature or other environmental factors. However, also in these cases, 

interactions are mediated by modifying and reacting to the environment [60, 93], which 

can influence the community functions. Consequently, our framework should be 

expandable to multivariate systems and may thus lay the basis for understanding how 

more complex microbial interactions, and the functions they yield at the community 

level, are impacted by changing environmental conditions.  
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Supplementary materials 

Table S1. Bacterial strains used in this study.   

Bacterial 
strain ID 

Taxonomic affiliation (GenBank accession 
number) 

Bacterial 
abbreviation 
used in this 

study 

Reference 

WR4 Flavobacterium johnsoniae (CP000685) Fj 
(Huang et al. 

2013) 

T-5 Bacillus amyloliquefaciens (JF899265) Ba (Tan et al. 2013) 

HR92 Lysinibacillus sphaericus (CP000817) Ls 
(Huang et al. 

2013) 

WR21 
Chryseobacterium daecheongense 

(HQ220102) 
Cd 

(Huang et al. 
2013) 

WR42 Delftia acidovorans (AM180725) Da 
(Huang et al. 

2013) 

QL-A6 Ralstonia pickettii (HQ267096) Rp (Wei et al. 2013) 

QL- 
Rs1115 

Ralstonia solanacearum (GU390462) 
tagged with red fluorescent marker (PYC12-

M plasmid) 
Rs 

(Wei et al. 2011; 
Tan et al. 2016) 
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Table S2. Combinations of resident species community at one- or two-species levels (N=21). Table 

rows show different communities and table columns show the absence (0) or presence (1) of given 

species within the community. 

Community ID 

Species abbreviation Resident community 

species richness Fj Cd Da Ba Ls Rp 

1 1 0 0 0 0 0 1 

2 0 1 0 0 0 0 1 

3 0 0 1 0 0 0 1 

4 0 0 0 1 0 0 1 

5 0 0 0 0 1 0 1 

6 0 0 0 0 0 1 1 

7 1 1 0 0 0 0 2 

8 1 0 1 0 0 0 2 

9 1 0 0 1 0 0 2 

10 1 0 0 0 1 0 2 

11 1 0 0 0 0 1 2 

12 0 1 1 0 0 0 2 

13 0 1 0 1 0 0 2 

14 0 1 0 0 1 0 2 

15 0 1 0 0 0 1 2 

16 0 0 1 1 0 0 2 

17 0 0 1 0 1 0 2 

18 0 0 1 0 0 1 2 

19 0 0 0 1 1 0 2 

20 0 0 0 1 0 1 2 

21 0 0 0 0 1 1 2 
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Figure S1. Resource availability influences pairwise interactions between resident bacterial 

species both in co-culture assay (A) and supernatant assay (B). Fj_Cd means effect of Species Fj 

on the growth of species Cd. LRA and HRA denote low resource availability and high resource 

availability, respectively. Bars show mean values ± SE (n = 3). *p<0.05, **p < 0.01, ***p<0.001, and 

ns denotes no significant difference based on t-test. 
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Figure S2. The relationship between direct pathogen inhibition by two-species resident community 

and productivity of two-species resident community at low and high resource availability, 

respectively. LRA and HRA denote low resource availability and high resource availability, 

respectively.  Grey shaded areas depict the 95% confidence interval of the logistic regression, 

horizontal and vertical lines in each dot in the figures are error bars, which denote for ± 2 SEM. 

 

 
Figure S3. Resource availability influences direct pathogen inhibition by two-species resident 

communities. LRA and HRA denote low resource availability and high resource availability, 

respectively. P<0.001 indicates significant differences between LRA and HRA based on Mann-

Whitney Rank Sum Test.  
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Chapter 6 General Discussion 
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A range of soil-borne diseases are increasingly threatening agricultural production 

around the world [20, 21]. As production demands increase, there is a pressing need 

to reduce the use of environmentally unfriendly pesticides and agrochemicals [221]. To 

achieve this, plant root-associated microbiomes are increasingly seen as a possible 

driver of natural pathogen resistance and have become a relevant target for innovative 

strategies aiming at improving crop protection [15, 34, 35]. However, while some 

microbiomes are better at preventing pathogen growth than others, it often remains 

unclear which interactions shape actual pathogen success.  

With this in mind, this thesis used bacterial wilt disease in tomato, which is caused 

by pathogen Ralstonia solanacearum, as model system, with the aim to investigate 

plant health-associated bacterial interactions in the tomato rhizosphere. I first sought 

to assess which microbiome characteristics are important for tomato bacterial wilt 

disease suppression. In doing so, I have combined direct examination of the plant-

associated microbiomes from healthy and diseased rhizosphere soils with interaction 

studies in the laboratory of bacterial isolates recovered from these soils. Results 

showed that rhizosphere bacterial communities were one of the important factors 

influencing the manifestation of disease (Chapter 2). However, it still remained unclear 

which interactions shaped microbial assemblages in this process. Furthermore, the 

contribution of microbe-microbe interactions to the overall community structure 

remained difficult to evaluate in the field due to the strong environmental noise 

encountered. Fortunately, the extensive library of rhizobacterial isolates I recovered 

from tomato rhizosphere soils provided an excellent resource to further elucidate the 

specific microbial interactions involved in community resistance to pathogen invasion.  

I subsequently used controlled systems with synthetic bacterial communities 
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which allowed me to disentangle the role of specific organisms and their interactions 

in the ecological processes that associated with bacterial wilt disease suppression. In 

these simplified systems, I identified how direct and indirect interactions among 

rhizobacteria affect community functions, such as resident community resistance to 

pathogen invasion. In particular, I assessed how interactions among pathogen 

antagonist strains influence pathogen invasion (Chapter 3) and if control of the 

pathogen can be achieved indirectly though inhibition of pathogen helper strains 

(Chapter 4). Results showed that in addition to the direct interactions between 

rhizobacterial isolates and the pathogen, indirect effects from interactions among 

rhizobacterial isolates were more important for determining pathogen success (Figure 

1, Chapter 3 and Chapter 4). However, microbial interactions are sensitive to a range 

of environmental factors, such as resource availability [92]. To take this into account, I 

examined the extent to which microbial interactions were influenced by resource 

availability and found different levels of resource availability altered bacterial pairwise 

interactions with effects on community resistance to pathogen invasion (Figure 1 and 

Chapter 5). Taken together, these results form the basis of more informed 

management strategies based on microbial interactions and community assembly, 

ultimately aiming to improve soil-borne disease suppressive potential in a targeted 

fashion without the use of pesticides.  
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Figure 1. Conceptual overview of direct and indirect effects of rhizosphere microbes and 

environmental factors on the pathogen and plant growth. Rhizosphere microbes such as pathogens 

can directly affect the plant growth; both the direct interactions between rhizosphere microbes and 

pathogen, and the indirect effects from interactions between rhizosphere microbes were important 

determinants of pathogen success and plant growth. The nature of these interactions is also influenced 

by environmental factors such as imposed levels of resource availability.  

Microbial communities contribute to the suppression of soil-borne 

plant disease 

The rhizosphere microbiome is recognized as a major determinant of plant growth 

and health. The impact of the rhizosphere microbiome on plant health is demonstrated 

most clearly by disease-suppressive soils [25]. In these soils, plants are less affected 

by pathogenic microbes due to protection afforded by their surrounding microbiota. 

Characterizing microbial communities in such soils therefore is a crucial step towards 

developing management strategies to developing microbial communities favoring crop 
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health and productivity [32] and is a necessary first step to develop informed 

management to control of soil-borne diseases [222]. In Chapter 2, I found distinct 

differences in the microbiomes of diseased versus healthy rhizosphere soil samples. 

Furthermore, although both diseased and healthy rhizosphere soils harboured 

relatively densities of Ralstonia solanacearum (>106 CFU/g rhizosphere soil), diseased 

soils contained a higher density of the pathogen. These results suggest that the plant-

associated microbiome, and interactions amongst its members may play an important 

role in inhibiting disease development [34, 223]. I therefore further sought to assess 

how interactions among rhizosphere microbial species were associated with observed 

reductions in pathogen invasion and disease incidence.  

Importance of rhizosphere microbial interactions for plant health 

Functions of ecological communities are not only based on direct interactions 

between species, but also determined by indirect interactions that occur via cascades 

of direct interactions or by changing the nature of direct interactions [39, 40]. Microbial 

systems are excellent models for analyzing these types of interactions. 

Microorganisms in the plant rhizosphere not only interact with each other positively or 

negatively, but also interact directly and indirectly. These interactions are important for 

community assembly, which will ultimately affect the community functions, such as 

community resistance to pathogen invasion and subsequent support of plant health 

[17]. 

Interactions between resident communities and pathogens directly affect 

pathogen success  

Pathogens must first establish themselves in the host-associated microbial 

communities in order to cause a disease. Thus the direct interactions between resident 
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communities and pathogen are expected to influence pathogen success. The 

rhizobacterial strains from our collection exhibited a wide range of effects on the 

pathogen, and supernatants from a sizable proportion of them inhibited Ralstonia 

solanacearum (Chapter 2). While it remains unclear what exact compounds were 

produced in the supernatant by these antagonist strains from our collection, previous 

studies have shown that soil bacteria are capable of producing a wide variety of 

antimicrobials that are capable of suppressing Ralstonia solanacearum [84, 85]. For 

example, the Bacillus amyloliquefaciens has been shown to efficiently suppress 

Ralstonia solanacearum both in the lab and plant rhizosphere [85] and this species 

also showed the strongest negative effect on the pathogen densities and disease 

incidence in this study (Chapter 3). While such antagonist strains are acknowledged 

as important resources for potential biocontrol strategies, recent studies have also 

shown that some root-associated bacteria are able to facilitate as opposed to 

antagonize pathogen growth [59, 64] (Chapter 2). Two helper strains from our 

collection whose supernatants showed facilitative effects on the growth of Ralstonia 

solanacearum in vitro also can facilitate Ralstonia solanacearum in the tomato 

rhizosphere (Chapter 4), indicating that these helper strains have high potential to 

promote disease. Several mechanisms have been put forth to explain mutualism or 

commensalism among bacteria, mainly as related to the benefits gained from the use 

of metabolites processed by another member of the community [201]. For instance, 

peptidoglycan produced by Bacillus cereus may promote the growth of several 

bacterial strains affiliated with the Cytophaga-Flavobacterium group [202]. 

Siderophores produced by microorganisms can also be accepted as public goods by 

several other bacteria with siderophore protein receptors to obtain limited iron from the 

environment to maintain growth and metabolism, hence increasing population biomass 
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[203]. Given the fact that the facilitation observed in our studies was stemming from 

used supernatant assays (Chapter 2 and Chapter 4), it is highly likely that certain 

metabolites mediate this facilitation. Although beyond the scope of this study, it would 

be of great interest to determine the exact mechanisms and metabolites involved.  

Interactions within resident communities indirectly affect pathogen success  

In Chapter 3 and Chapter 4, interactions within resident communities were 

demonstrated to be good predictors of invasion inhibition. Interestingly, the relative 

importance of direct interactions between resident community members and the 

pathogen were found to be less important than the impacts of indirect effects from 

interactions within resident communities in determining pathogen success. Together, 

these results suggest that interactions among species within the resident community 

can be an important determinant of invasion success in vivo and in vitro, in addition to 

the previously known direct interactions between resident community members and 

the invader.  

Facilitative resident community interactions promoted, and competitive 

interactions suppressed, invasions both in the lab and in the tomato rhizosphere. 

Mechanistically, this was linked to direct inhibition of the invader by antagonistic 

communities (antibiosis), and to a lesser degree by resource competition between 

members of the resident community and the invader (Chapter 3). Competing species 

can inhibit each other directly by producing toxic metabolites, such as antibiotics. 

Depending on the spectrum of their activity, antibiotic compounds could have negative 

effects on both resident community species and the invader [80-85]. In line with this, 

our results showed competitive resident communities were more inhibitory not only 

towards their members, but also against the invader (Chapter 3). While it is difficult to 
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pinpoint the exact mechanism linking facilitation and invasion, the most likely 

explanation is the loss of pathogen inhibition along with the increase in facilitative 

interactions (Chapter 3). This is in line with a previous finding where the increase in 

the antagonistic activity was found to increase the invasion resistance of 

Pseudomonas resident communities [84]. Furthermore, I found that facilitative 

communities were more productive in general and reached higher total cell densities 

when cultured together compared to alone (Chapter 3 and Chapter 5). This supports 

the idea that facilitative resident species were benefitting from the presence of each 

other (for example via cross-feeding or producing public goods), which could have also 

benefitted the invader by creating additional niche space [89].  

In Chapter 4, I found that the indirect effects, i.e. inhibition of helper strains, were 

the major determinants of pathogen inhibition as compared to direct impacts on the 

pathogen itself both in vitro and in vivo. Even if a biocontrol agent is active against 

Ralstonia solanacearum [51, 84], its efficiency in reality may be more due to its 

interaction with indigenous helpers. I therefore propose that strategies for integrated 

biological control of the pathogen need to be reconsidered to incorporate indirect 

effects on pathogen helpers to provide more ecological solutions to combat soil-borne 

pathogens.  

Context dependency of microbial interactions 

The results of this thesis illustrated that bacterial interaction/function relationships 

are context dependent. As a representative abiotic factor, I investigated different 

resource availability conditions. Our results showed that while facilitative resident 

communities were more prone to invasions and competitive resident communities were 

invaded to a lesser extent in Chapter 3, this relationship was shifted by changes in 
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resource availability (Chapter 5). At high resource availability, interactions between 

resident bacterial species were mostly driven by the production of secondary 

metabolites [97], with direct antagonism as the means of invader inhibition. Therefore, 

competitive resident communities were invaded to a lesser degree than facilitative 

communities. At low resource availability, bacteria produced little or no direct 

antagonist potential [217], which had little influence on the interactions between them, 

as well as their collective impact on pathogen inhibition. However, facilitative 

communities did reach higher community productivity (Chapter 3 and Chapter 5), 

which in turn may have more resistance to pathogen invasion than competitive 

communities at low resource availability. Due to this higher productivity, such 

communities may be able to better occupy available niche space more fully, thereby 

outcompeting invaders [69, 219, 220]. In many cases, microbial interactions may not 

be driven by a single parameter — resource availability in our case — but by a set of 

multiple parameters such as pH [93], temperature [188] or other environmental factors. 

Therefore, in the study of microbial interactions in the rhizosphere, it is important to 

consider the effects of relevant environmental factors.  

Conclusions and future perspectives 

While most previous studies have sought to examine how rhizosphere microbiota 

can directly impacts pathogen populations, this thesis has demonstrated that the 

indirect effects from interactions between plant-associated microbial community 

members can also be strong determinants of disease development. For instance as 

related to disease suppression, my work showed that in addition to the direct 

interactions between rhizobacterial isolates and the soil-borne pathogen, the indirect 

effects from interactions among rhizobacterial isolates were an important determinant 
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of pathogen success. Therefore, I propose a rethinking of the current approaches used 

to manage plant diseases in agricultural systems. Instead of a pathogen-focused view, 

better solutions for controlling plant disease outbreaks may be achieved by managing 

the composition of the soil microbiome as a whole. For example, instead of attempting 

to directly reduce pathogen densities, controlling microbiome composition to prevent 

the growth of pathogen helpers may become part of sustainable strategies of pathogen 

control.  

Organismal interactions are clearly context dependent, and there is a general 

interest in the broader field of ecology of how pairwise interactions fit into the web of 

interactions that ultimately determine community function. Within this thesis, I have 

performed experiments employing both holistic and reductionist approaches to 

investigate the importance of interactions within rhizosphere microbial communities for 

plant health. Such approaches allowed me to look at microbial interactions using a 

large number of isolates under different types of environmental conditions. Due to their 

short generation times, potential for high levels of reproducibility and manipulations in 

diverse laboratory environments, microbial systems have distinct advances of such 

experiments using plants and animals. I believe that such approaches involving 

microbial communities have the potential to play an important role in more critical 

testing and development of general ecological theory related to the roles of organismal 

interactions in community assembly functioning. For instance, it is rather 

straightforward to test effects of resource availability on interactions between microbes, 

while this would be much more difficult to test for other organisms such as birds for 

instance. 
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It should be noted that natural plant rhizosphere is far more complex than the 

simple artificial systems I have used in this thesis. In future studies, it would be 

interesting in moving toward more realistic conditions, increasing environmental 

complexity and including biotic or abiotic factors in studies on the interaction dynamics 

of microbes in plant-associated microbial communities. My goal would be to build a 

more holistic understanding of how all soil microbial taxa interact directly or indirectly, 

instead of just studying individual groups in isolation (bacterial strains in my case). In 

this context, various meta-genomic sequencing approaches could also be utilized to 

further complement the experimental approaches presented in this thesis. With such 

systematic investigations we may be able to unravel the complex interactions between 

plants, the environment, and their microbiomes, opening up new possibilities for the 

development of soil management strategies for sustainable control of soil-borne 

disease. 
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Summary 

A range of soil-borne diseases are increasingly threatening agricultural production 

around the world. As production demands increase, there is a pressing need to reduce 

the use of environmentally unfriendly pesticides and agrochemicals. To achieve this, 

plant root-associated microbiomes are increasingly seen as a possible driver of natural 

pathogen resistance and have become a target for innovative strategies aiming at 

improving crop protection. However, the ability of rhizosphere microbial communities 

to keep diseases under control is influenced by many factors, including the microbial 

interactions within these communities. Unfortunately, we still have relatively little insight 

into how microbial interactions affect community assembly and how such interactions 

eventually impact plant health. This thesis seeks examine how microbial interactions 

within the rhizosphere microbiome impact the ability of plant pathogens proliferate and 

cause plant disease. To this end, this thesis used bacterial wilt disease in tomato plant, 

which is caused by pathogen Ralstonia solanacearum as a relevant model system. 

In Chapter 2, I have combined direct examination of the plant-associated bacterial 

communities from healthy and diseased tomato rhizosphere soils with interaction 

studies in the laboratory of bacterial isolates recovered from these soils. Results 

showed that rhizosphere microbial communities were one of the important factors 

influencing the manifestation of disease. However, correlation analyses showed 

discrepancies between co-occurrence patterns and direct strain interactions, which 

suggests that positive or negative links within co-occurrence networks are poor 

predictors of actual interactions upon examination of one-to-one effects interactions.  

I subsequently used controlled systems with synthetic microbial communities which 

allowed me to disentangle the role of specific organisms and their interactions in the 
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ecological processes associated with bacterial wilt disease suppression. In these 

simplified systems, Chapter 3 assessed how interactions among pathogen antagonist 

strains influence pathogen invasion and Chapter 4 tested if control of the pathogen 

can be achieved indirectly though inhibition of pathogen helper strains. Results showed 

that in addition to the direct interactions between rhizobacterial isolates and the 

pathogen, indirect effects from interactions among rhizobacterial isolates were more 

important for determining pathogen success. These suggest that instead of a 

pathogen-focused view, better solutions for controlling plant disease outbreaks may be 

achieved by managing the composition of the soil microbiome as a whole.  

Chapter 5 examined the extent to which bacterial interactions were influenced by 

resource availability and found different levels of resource availability altered bacterial 

pairwise interactions with effects on community resistance to pathogen invasion. At 

high resource availability, competitive resident communities produced more antibiotics, 

making them less susceptible to invasion compared to more facilitative communities. 

At low resource availability, facilitative communities reached higher productivity, which 

in turn be more important for resistance to pathogen invasion than competitive 

interactions in less productive communities. Therefore, in the study of microbial 

interactions in the rhizosphere, it is important to consider the effects from relevant 

environmental factors. 

Taken together, the results of this thesis form the basis of more informed management 

strategies based on microbial interactions and community assembly, ultimately aiming 

to improve soil-borne disease suppressive potential in a targeted fashion without the 

use of pesticides.  
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Samenvatting (Dutch summary) 

Diverse uit de bodem afkomstige ziekten vormen een steeds grotere bedreiging voor 

de landbouwproductie over de hele wereld. Omdat de vraag naar productie toeneemt, 

is er een dringende noodzaak om het gebruik van milieuonvriendelijke pesticiden en 

landbouwchemicaliën te verminderen. Om hieraan te voldoen worden geassocieerd 

met plantenwortels microbiomen, steeds vaker gezien als een mogelijke oplossing om 

de natuurlijke resistentie tegen ziekteverwekkers te vergroten. 

Bodemmicroorganismen zijn het focus geworden van innovatieve strategieën die 

gericht zijn op het verbeteren van de gewasbescherming. Het vermogen van 

microbiële gemeenschappen in de rhizosfeer om ziekten onder controle te houden, 

wordt echter beïnvloed door vele factoren, waaronder de microbiële interacties binnen 

deze gemeenschappen. Helaas hebben we nog steeds relatief weinig inzicht in hoe 

microbiële interacties de samenstelling van de gemeenschap beïnvloeden en hoe 

dergelijke interacties uiteindelijk de gezondheid van planten beïnvloeden. Dit 

proefschrift wil onderzoeken hoe microbiële interacties binnen het microbioom van de 

rhizosfeer van invloed zijn op het vermogen van plantpathogenen om zich te 

vermenigvuldigen en plantenziekten te veroorzaken. Hiervoor heeft dit proefschrift de 

bacteriële verwelkingsziekte bij tomatenplanten, veroorzaakt door het pathogeen 

Ralstonia solanacearum, gebruikt als een relevant modelsysteem.  

In Hoofdstuk 2 heb ik onderzoek van de plant-geassocieerde microbiomen uit de 

bodemrhizosfeer van gezonde en zieke tomaten rechtstreeks gecombineerd met 

interactiestudies in het laboratorium met bacteriële isolaten die uit deze bodems zijn 

gewonnen. De resultaten toonden aan dat microbiële gemeenschappen in de 
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rhizosfeer een van de belangrijke factoren waren die de manifestatie van ziekte 

beïnvloedden. Correlatieanalyses lieten echter discrepanties zien tussen patronen van 

co-occurrence bepaald met behulp van moleculaire technieken t.o.v. directe microbiele 

stam interacties bepaald met kweek analyses. Dit suggereert dat positieve of 

negatieve verbanden binnen netwerken die samen voorkomen, slechte voorspellers 

zijn van daadwerkelijke één-op-één interacties van bacteriële populaties.  

Vervolgens heb ik gecontroleerde systemen met synthetische microbiële 

gemeenschappen gebruikt om de rol te ontwarren van specifieke organismen en hun 

interacties in de ecologische processen geassocieerd met de onderdrukking van 

bacteriële verwelkingsziekten. In deze vereenvoudigde systemen onderzocht 

Hoofdstuk 3 hoe interacties tussen stammen,  antagonistisch tegen het pathogeen, 

de invasie hiervan beïnvloeden. Hoofdstuk 4 testte of controle over het pathogeen 

indirect kan worden bereikt door remming van pathogene helperstammen. De 

resultaten toonden aan dat naast de directe interacties tussen rhizobacteriële isolaten 

en de ziekteverwekker, indirecte effecten van interacties tussen rhizobacteriële 

isolaten ook een sterke bepalende factor kunnen zijn voor het succes van 

ziekteverwekkers. Deze resultaten suggereren dat in plaats van een puur 

pathogeengerichte visie, betere oplossingen voor het beheersen van uitbraken van 

plantenziekten kunnen worden bereikt door de samenstelling van het 

bodemmicrobioom als geheel te beheren.  

Hoofdstuk 5 onderzocht de mate waarin microbiële interacties werden beïnvloed door 

de beschikbaarheid van hulpbronnen. Ik ontdekte dat verschillende niveaus van 

beschikbaarheid van hulpbronnen de paarsgewijze interacties van bacteriën 

veranderden met effect op de weerstand van de gemeenschap tegen invasie van 
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pathogenen. Bij een hoge beschikbaarheid van hulpbronnen produceerden 

concurrerende de al aanwezige gemeenschappen meer antimicrobiële verbindingen, 

waardoor ze minder vatbaar waren voor invasie dan in vergelijking met meer 

faciliterende gemeenschappen. Bij lage beschikbaarheid van hulpbronnen bereikten 

faciliterende gemeenschappen een hogere productiviteit, wat op zijn beurt belangrijker 

was voor de weerstand tegen invasie van pathogenen dan de competitieve interacties 

in dergelijke minder productieve gemeenschappen. Daarom is het bij de studie van 

microbiële interacties in de rhizosfeer belangrijk om rekening te houden met de 

effecten van relevante omgevingsfactoren, zoals de beschikbaarheid van 

voedingsstoffen.  

Alles bij elkaar vormen de resultaten van dit proefschrift de basis voor beter 

geïnformeerde managementstrategieën gebaseerd op kennis van microbiële 

interacties en gemeenschapsassemblage, met als uiteindelijk doel het 

ziekteonderdrukkend vermogen van de bodem op een gerichte manier te verbeteren 

zonder het gebruik van pesticiden.  
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