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CHAPTER 1
General introduction

1.1 Radiotherapy

1.1.1 A brief overview of Radiotherapy in Oncology

In approximately half of the yearly diagnosed cancer patients radiotherapy will be
a crucial component of the treatment [1,2]. Radiotherapy is a non-invasive treat-
ment modality that uses high-energy ionizing radiation to sterilize the tumor [3,4].
The amount of deposited energy (dose) to the tumor is directly correlated to the
desired therapeutic effect of local tumor control. The optimal tumor dose to max-
imize this therapeutic effect is in theory as high as possible [5], but is in practice
limited by the collateral damage to healthy tissue (toxicity). In particular, the
dose to the healthy tissues that are crucial for physiological function, called organs
at risk (OAR), needs to be minimized to prevent severe toxicity [6]. Therefore,
many innovations in the field of radiotherapy have been driven by the promise to
minimize the dose to the OAR while maximizing the dose to the tumor, which is
often referred to as conformal radiotherapy [7]. The remainder of Section 1.1 pro-
vides a brief summary on the three parallel innovations tracks that have improved
the dose conformality over the last couple of decades.

1.1.2 Radiotherapy delivery

To improve the treatment conformality, one major line of innovation has been
the optimization of the physical delivery of the radiation. The radiation is of-
ten delivered in the form of external beam radiotherapy using linear accelerators.
Linear accelerators (linacs) generate directional X-rays, which induce scattered
electrons that locally deposit the radiation. The linac’s system properties are
nowadays carefully characterized and modelled, which enables precise predictions
of the delivered dose given a set of machine configurations (forward planning) [8].
These precise predictions of the system response in combination with advances
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Chapter 1 General introduction

in inverse computing [9, 10] have enabled inverse radiotherapy planning [11, 12],
which finds the optimal configurations of the linac to maximize the dose confor-
mality. The concept of inverse planning in conjunction with the implementation
of multi leaf collimators (MLCs) [13], an additional configurable directionality
filter for the X-rays, has led to the modern day radiotherapy delivery modes
of intensity modulated radiotherapy (IMRT) [14, 15] and volumetric arc therapy
(VMAT) [16]. IMRT and VMAT are advanced radiotherapy planning techniques
that provide a controlled distribution of the dose over the tumor and healthy
tissue. The high precision of these radiotherapy delivery modes accentuates the
importance of precise imaging to prepare the treatment, as small geometric errors
in the tumor position translate to relatively large losses in the delivered dose [17].

1.1.3 Imaging for treatment simulation

Parallel to the advances in the physical delivery of the radiation, technological
innovations have integrated imaging technology for the localization of the tumor
into the radiotherapy treatment planning workflow (treatment simulation). The
use of imaging has been primarily driven by computed tomography (CT), which
captures the spatial distribution of the X-ray attenuation, expressed in Hounsfield
Units(HU), which can be converted into a relative electron densities using a look-
up table [18]. The electron density is subsequently used in two distinct ways: 1)
the electron density describes how the radiation beam interacts with the tissue (re-
quired for treatment planning); 2) the electron density provides image contrast
for the radiation oncologist to locate the gross target volume (GTV) and the
OARs. The delineation of the GTV is a key step during treatment simulation,
where any geometric error in the simulation model will persist throughout the
complete course of the radiotherapy treatment. To account for potential micro-
scopic tumor infiltration that is not visible on the imaging, the GTV is expanded
with an additional safety margin termed the clinical treatment volume (CTV).

The radiotherapy treatment typically consists of 3-35 fractions distributed over a
period of 1-7 weeks. For each treatment fraction, the patient’s simulation model
(position) needs to be accurately reproduced. However, the assumption of a re-
producible patient anatomy is inherently flawed, as limited positioning accuracy
and physiological processes impose geometrical uncertainties. These physiological
processes include relaxation of muscular tissue, peristalsis in the gastrointestinal
tract, filling of the bladder/rectum and respiratory/cardiac motion. These phys-
iological processes are often distinguished based on the time-constant of how
the anatomy is altered. Processes which change the anatomy between fractions
cause interfraction motion, while processes that change the anatomy within a
fraction cause intrafraction motion. The total geometric uncertainty imposed by
the delineation uncertainty, the physiological processes and the limited position-
ing accuracy are covered in the so called planned target volume (PTV) [19, 20].
The PTV’s are volumetric expansions of the CTV and GTV, that ensures that
the CTV and GTV receives the intended dose and is currently determined by
population-based averages [21]. Expansion of the CTV and GTV (into the PTV)
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1.2 MRI in radiotherapy

leads to larger treatment volumes, which in the case of a homogeneous dose distri-
bution, vastly increases the total delivered dose. However, the dose distribution
is not required to be uniform over the PTV, instead tumor probability control
(TCP) models indicate that the dose distribution should approximately follow
the density of the tumor cells [22]. The tumor cell density is difficult to estimate
with current imaging methods, but the density can be assumed to be lower in the
CTV than the GTV. Therefore, the dose to the CTV is typically lower than the
dose to the GTV. However, the expansion of the GTV to CTV is typically less
than 5 mm and therefore relies on accurate positioning.

1.1.4 Image guided-radiotherapy (IGRT)

In response to the successful integration of imaging into the treatment simula-
tion, technical innovations have also directly integrated imaging technology onto
the linacs, which is referred to as image guided radiotherapy (IGRT) [23]. The
primary function of IGRT is the (daily) localization of the tumor and OAR, while
the patient is on the treatment table, to accurately reproduce the patient posi-
tioning as in the simulation model. In other words, IGRT has to minimize the
expansion of the PTV margin by measuring the position of the patient prior
to (pre-beam imaging) and during (beam-on imaging) the radiotherapy delivery.
Modern day linacs are equipped with megavoltage planar (MV) or cone beam com-
puted tomography (CBCT) imaging modalities. These imaging modalities typi-
cally acquire images with relatively poor soft-tissue contrast, but provide valuable
information to localize the interfaces between air, bone and soft-tissue. As a con-
sequence, the primary use of IGRT is the daily positioning of the patient’s bony
landmarks with respect to the simulation model, while potential internal soft-
tissue deformations, both prior to and during the treatment, are not captured.
These internal soft-tissue deformations lead to residual treatment uncertainties,
which expand the PTV and therefore reduce the treatment conformality. Note
that recent innovations in CBCT technology are improving soft-tissue visualiza-
tion [24], however the image quality is still considerably poorer than CT. The
combined clinical workflow of creating a static patient model in conjunction with
accurate daily patient positioning using MV or CBCT is currently the standard
of care in radiotherapy.

An illustrative overview of the three innovations tracks that have improved treat-
ment conformality is shown in Figure 1.1.

1.2 MRI in radiotherapy

1.2.1 Rationale

Over the last decade the use of CT in radiotherapy has been augmented with other
imaging modalities such as positron emission tomography (PET) and magnetic
resonance imaging (MRI) [26, 27]. The MRI and PET images are fused with the
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Chapter 1 General introduction

Figure 1.1: An overview of the improvements in treatment conformality using
CT imaging, IMRT and IGRT. A) The CT scan of a patient with a prostate tumor (red)
and the bladder (white) and rectum (green) as the primary OAR. B) Radiotherapy without
a CT scan requires a large PTV, which leads to high dose regions in the bladder/rectum. C)
Radiotherapy with the CT scan and IMRT reduces the high dose regions in the bladder/rectum.
D) Radiotherapy with CT + IMRT + IGRT further reduces the dose to the heart and provides
the most conformal therapy. Dose calculations were performed using the open-source dose
calculation and optimization toolkit matRad [25].

CT images to provide additional anatomical, functional or metabolic information
to provide multiple illuminations of the GTV and OARs. In particular, MRI
is an especially versatile imaging modality that is capable to encode multiple
tissue properties, ranging from the diffusivity of water molecules, to estimates
of the (relative) proton density, to the physical properties such as T1 and T2

relaxation (Figure 1.2). The inclusion of these additional imaging modalities
enables comprehensive soft-tissue characterization and is the primary motivation
for the use of MRI in radiotherapy [28].

The secondary advantages of MRI in radiotherapy include: the 3D visualization
of the anatomy in any desired orientation, the measurement of physiological mo-
tion such as cardiac, respiratory and peristaltic motion, the non-ionising nature
of the imaging that enables precise and repeated examinations [29]. The exact
mechanisms through which the motion measurements can be incorporated in the
treatment planning will be discussed in Section 1.2.2. All these three advantages
improve the characterization of the tissue during treatment planning, which ulti-
mately contribute to improved conformality of the therapy.

1.2.2 MRI for treatment simulation

The primary use of MRI in the radiotherapy treatment simulation is the genera-
tion of multi-contrast MR images, which typically consist of the tissue properties
shown in Figure 1.2. Note that these specific multi-contrasts scans are often fur-
ther tailored to a specific organ such that the contrast between the tumor and
native tissues is maximized. The multi-contrast images are then used by the ra-
diation oncologist, along with the CT images, to precisely delineate the GTV and
the OAR.

While MRI provides considerable theoretical advantages in terms of image con-
trast, MRI comes with additional challenges related to image artefacts that
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1.2 MRI in radiotherapy

Figure 1.2: Versatility of MR image contrast in comparison with CT in a patient
with pancreas cancer. Sequential MRI scans that encode different tissue properties into the
image, while CT only encodes the relative electron density. The MR derived tissue properties
shown are longitudinal relaxation (T1), transverse relaxation (T2), proton density (PD) and the
diffusivity (D). Note that both the CT scan and the T1 scan are acquired with administration
of contrast agent.

degrade image quality. Image artefacts are especially pronounced in the ab-
dominothoracic region, where the artefacts often originate from physiological mo-
tion (Figure 1.3-A) [30]. The physiological motion is often controlled for during
acquisition, by using breath-hold scans or respiratory triggered/gated scans (Fig-
ure 1.3-B) [31, 32]. While these motion synchronization techniques are effective
for mitigating motion-induced image artefacts, these techniques often fail in un-
cooperative patients that are unable to suspend their breath or are unable to
breath in a controlled pattern [33].

Instead of using imaging techniques that control the respiratory motion, free-
breathing techniques can be used that resolve the motion. These techniques are
often referred to as respiratory correlated 4D-MRI [34, 35], which provide means
to both correct for the motion in the images [36] (Figure 1.3-C) and to quantify
the time-averaged respiratory motion. The respiratory motion quantification is
of particular interest to radiotherapy, because the motion provides information
on the uncertainty of the GTV delineation, which is subsequently included in the
PTV margin (Figure 1.3-D). However, not all MRI vendors provide commercial
solutions for 4D-MRI scans [35] and the ones that do provide these solutions
require very specific MRI scans. In conclusion, a robust and generic solution
for respiratory correlated 4D-MRI remains an unsolved problem, but is key for
radiotherapy treatment planning in the abdomen/thorax.
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Chapter 1 General introduction

Figure 1.3: An overview of respiratory motion compensation methods for abdomi-
nal imaging in radiotherapy. A) Free-breathing standard MR scans results into considerable
loss of resolution and artefacts. B) Respiratory triggered MR scans only acquire data during ex-
hale, which restores the loss of resolution. C) 4D-MR scans acquire data during free-breathing,
which restores the loss of resolution for all respiratory phases. D) The respiratory phases can
be aligned to estimate the average respiratory motion across the MR scan. GTV is shown with
the red contour.

1.2.3 MR-linac for MR-guided radiotherapy

In response to the advantages of using MRI in radiotherapy treatment planning,
the conceptualization of using MRI for online image-guided radiotherapy was first
proposed in 1999 [37]. The key idea was that MRI provides the optimal imaging
to localize the GTV and OARs prior to and during the radiotherapy delivery.
The idea of hybrid MR-linacs was implemented in a proof-of-concept in 2009 by
the UMCU [38] and subsequently industrialized by multiple health technology
companies. The two MR-linac systems that are currently clinically certified are:
The 0.35T MRIdian system (ViewRay, Mountain View, CA, United States), which
has been used clinically as of 2014 [39, 40]; The 1.5T Elekta Unity (Elekta AB,
Stockholm, Sweden), which has been used clinically as of 2017 [41–43]. The Elekta
Unity system is installed at the UMCU and the system design will be discussed
in more detail in the next subsection 1.2.4.

The clinical availability of these hybrid MR-linac systems allow daily online (pre-
beam + beam-on) MR imaging during radiotherapy, which provides much more
informative imaging in comparison to MV and CBCT. The online MR imaging
could be used to improve the daily positioning, based on soft-tissue landmarks,
to reduce the PTV. However, the majority of the geometric error in the PTV
margin resides in the intrafraction and interfraction motion of the anatomy with
respect to the static patient simulation model. Instead, the online MR imaging
should be used to adapt the patient simulation model as a response to interfrac-
tion and intrafraction motion. This adaptation presents a radically new approach
to account for geometric errors in radiotherapy, with the potential to eliminate a
large part of the PTV. For example, the interfraction motion could be corrected
for by replanning the radiotherapy treatment on-the-fly (online replanning) [44].
Another example could be to act upon excessive internal organ motion during
the radiation delivery by pausing the radiation beam (beam-gating) [45]. The
complete set of all these possible interventions to modify the treatment plan in
response to the imaging during the treatment is called adaptive radiotherapy
(ART) [46]. ART is fundamentally different from the conventional radiotherapy
workflow, as discussed in Section 1.1, which relies upon the precise reproduction of
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the static patient model that is built during the radiotherapy simulation. The ulti-
mate promise of ART is to deliver the most precise radiotherapy treatment with
the smallest possible PTV. However, optimal implementation of ART requires
high performance MR imaging techniques that necessitate complete system con-
trol over the MR-linac scanner. The requirements of the high performance MR
imaging are discussed later in Section 1.3 and an overview of the MR-linac system
design adjustments that affect the imaging are discussed in the next Section 1.2.4.

1.2.4 MR-linac system design

The Elekta Unity MR-linac system combines a whole-body 1.5T cylindrical diag-
nostic MRI scanner (Ingenia, Philips, Best, the Netherlands), with a 7 MV linac
(Elekta, AB, Stockholm, Sweden), which is mounted on a ring-shaped gantry.
The MR-linac system design required considerable hardware adjustments such
that the magnetic interaction between the two systems was minimized. The first
major adjustment was the modification of the active shielding of the MRI’s main
magnet [47, 48], such that the gun of the linear accelerator and the MRI are
magnetically decoupled (Figure 1.4).

The second major adjustment was the adjustment of the superconducting wires of
the main magnet (15 cm gap) and the design of a split gradient coil (20 cm gap)
to accommodate a (nearly) attenuation-free passage of the radiation beam. The
split magnet design reduces the main magnetic field uniformity, which can largely
be corrected for by installing additional passive shim gantry shims [49–51]. The
split gradient coil design has considerable impact on the imposed linear magnetic
fields (gradients) used in MRI, which increases gradient system imperfections. To
mitigate the impact of the system imperfections the clinical certification of the
system constrains the software to a maximum gradient strength of 15.0 mT/m
(instead of 34.0 mT/m) and to a maximum slew rate of 65 T/m/s (instead of 120
T/m/s) [52]. The constraint configuration mitigates the impact of eddy currents
sufficiently in the center of the field-of-view [53], while substantial residual effects
remain in the periphery [54,55].

The third major adjustment was the use of a 2x4 channel radiolucent receive
coil that displaced all attenuating components outside of the radiation window.
These receive coils provide reduced signal-to-noise ratio and parallel imaging per-
formance compared to diagnostic quality receive coils [56, 57].

1.3 Adaptive MR-guided radiotherapy: an imaging
perspective

1.3.1 A conceptual introduction to adaptive radiotherapy

Section 1.1 and Section 1.2 have described the process of conventional radiother-
apy and have explained how deeply (MR) imaging is intertwined in the workflow.
The conventional radiotherapy workflow can be summarized as a static process
consisting of three building blocks, a single simulation phase, repeated radiother-
apy delivery and finally tumor response monitoring after the complete treatment.
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Chapter 1 General introduction

Figure 1.4: Overview of the modified MR-linac hardware components. Left side
shows a schematic front view of the arrangement of hardware components. The right side shows
a 3D rendered side view of the same system. Figures are adapted from [49,50].

The static simulation model of the patient limits the precision of radiotherapy
treatment, as interfraction and intrafraction processes impose geometric uncer-
tainties. These geometric uncertainties can be resolved by using an adaptive
radiotherapy workflow on the MR-linac, as already briefly hinted on in Section
1.2.3. The adaptive radiotherapy workflow consists of multiple sequentially con-
nected static workflows (Figure 1.5). These multiple static workflows can be
cycled on different time-scales, ranging from once over the course of the entire
treatment to multiple times per second. The temporal resolution of the cycling
speed is, to a large extent, dictated by the MR imaging required to support the
three workflow building blocks.

The optimal cycling speed for ART heavily depends on the type of geometric
uncertainty that needs to be resolved. A convenient classification of the types of
geometric uncertainties is obtained by distinguishing between interfraction and
intrafraction processes, as described in Section 1.1.3. The uncertainties induced
by interfraction processes are addressed with ART by online replanning, which
includes recontouring of the GTV/OAR on the daily anatomy. The imaging
required to support the recontouring is referred to as pre-beam imaging and is
on the time-scale of minutes. The uncertainties induced by the intrafraction
processes are addressed with ART by online motion management [58], which
involves real-time adjustments to the radiation delivery. The imaging required to
support the real-time adjustments is referred to as beam-on imaging and is on the
time-scale of subseconds. The third building block of the radiotherapy workflow
is the tumor response monitoring. Tumor response monitoring in ART is, unlike
the simulation and delivery, not used to reduce geometric uncertainties. Instead,
tumor response monitoring is used to assess whether the on-going therapy is
efficacious or not, with the ultimate promise to alter the entire treatment strategy
(e.g. to increase the dose or to completely stop the radiotherapy). The imaging
required to support the tumor response monitoring is referred to as beam-off
imaging and is on the time-scale of days.
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1.3 Adaptive MR-guided radiotherapy: an imaging perspective

The introduction of this section has provided a very coarse description of ART
and explained that different types of MR imaging are required to optimally guide
the individual building blocks. A detailed discussion on these image requirements
will follow in Sections 1.3.2-1.3.4 below.

Figure 1.5: Overview of adaptive radiotherapy on an MR-linac. The ART workflow
triangle, which consists of three building blocks. The first block is the online treatment setup,
which consists of patient positioning, tumor delineation and online replanning and is supported
with pre-beam imaging. The second block is the real-time guided dose delivery, which consists
of motion estimation, MLC adjustments, dose delivery and dose accumulation and is supported
with beam-on imaging. This cycle is repeated many times within a single treatment fraction.
The third block is the therapy response monitoring, which consists of functional/quantitative
imaging to derive the tumor response followed by a change in the treatment plan and is supported
with beam-off imaging.

1.3.2 Pre-beam imaging

The primary objective of pre-beam imaging is to provide a high resolution 3D and
large field-of-view volume that visualizes the daily anatomy. The current clini-
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cal practice of pre-beam imaging uses accelerated free-breathing 3D MR scans
derived from MR simulation protocols. These pre-beam scans provide decent
image quality, but are not optimized with respect to the clinical workflow. The
clinical workflow consists of deformable image registration of the pre-beam im-
ages to the pretreatment CT, followed by precise recontouring of the GTV/OAR
for online replanning. Therefore, the pre-beam images should be acquired and
reconstructed with minimal latency to initialize the online replanning in order
to facilitate a fast clinical workflow. An acceptable acquisition + reconstruction
time for the pre-beam scans is less than 5 minutes. The pre-beam imaging has
to be robust to imaging artefacts, because rescanning is not a practical scenario.
The secondary objective of pre-beam imaging is to quantify the organ motion,
derived from the 4D-MRI, to determine adequate PTV margins. In case of ab-
dominothoracic tumors, the motion can also be used to reconstruct the images in
the desired respiratory phase (i.e. exhale or mid-position) [59, 60]. The 4D-MRI
can also be used to aid beam-on imaging to quantify time-resolved 4D motion,
which will be discussed in more detail in the next Section 1.3.3.

1.3.3 Beam-on imaging

The primary objective of beam-on imaging is to quantify the time-resolved 4D
motion in the entire radiation window with high spatiotemporal resolution for
real-time gating/tracking. The current clinical practice of beam-on imaging is the
acquisition of 3D MR scans (±2 mm spatial resolution and ±10 s temporal resolu-
tion), which are not yet used to adapt the therapy. This spatiotemporal resolution
is sufficient for anatomical sites that are not affected by respiratory/cardiac mo-
tion such as the pelvis and rectum. However, the abdominothoracic sites require a
temporal resolution of ±200 ms. The required spatial resolution varies for differ-
ent anatomical sites, but is often reduced with respect to diagnostic imaging, as
deformable image registration can quantify the motion with sub-voxel accuracy.
A spatial resolution of ± 3-4 mm is likely to be sufficient for many cases [61].
The combined requirements of the moderate spatial + high temporal resolution
is not feasible for conventional 3D imaging techniques as these require at least an
order of magnitude longer scan time. Novel time-resolved 4D imaging techniques
have been proposed in literature to speed-up the acquisition. These methods are
based on compressed sensing techniques that will be discussed later in Section
1.4.1. However, compressed sensing based techniques require long reconstruction
time that make them impractical for real-time gating and tracking. Alternatively,
hybrid time-resolved 4D imaging techniques have been proposed that relate 2D
beam-on imaging to the respiratory correlated pre-beam 4D-MRI and infer the
time-resolved 4D motion from the relationship. These methods do provide suffi-
cient spatiotemporal resolution, but rely on strong assumptions in the consistency
of the internal anatomy. In conclusion, a robust and generic solution for real-time
time resolved 4D-MRI is still an unsolved problem, but is key for MR-guided ART.

The secondary objective of beam-on imaging is to quantify the time-resolved 4D
motion with high spatiotemporal resolution for retrospective dose accumulation.
Dose accumulation couples the time-resolved motion estimates with the linac’s
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machine output to calculate the delivered dose for the fraction. The delivered dose
is then compared with the planned dose and possible underdosage or overdosage
can then be corrected in the next fraction. Retrospective dose accumulation has
relaxed requirements regarding the imaging latency, as the motion estimation
does not have to be available in real-time. The relaxed requirements on the
temporal resolution opens up this application for novel time-resolved 4D imaging
techniques with long reconstruction times.

1.3.4 Tumor response monitoring

The primary objective of tumor response monitoring is to assess early radiation-
induced tissue changes. These changes could potentially be used to distinguish
responders from non-responders or to intensify or reduce the (local) radiation
during the radiotherapy treatment [62]. The current clinical practice of response
monitoring is limited to qualitative MR scans, which could be used to derive
macroscopic biomarkers such as the tumor size. However, these biomarkers are
not used yet to adapt the therapy, because the correlation with respect to lo-
cal tumor control is not well established. Alternatively, quantitative MR scans
could be used to derive functional biomarkers such as the T1,T2 or the diffu-
sivity. The biomarkers derived from quantitative MRI could be more sensitive
to radiation-induced tissue changes and are increasingly being used in the pre-
treatment setting for tumor staging [63–65]. Quantitative MR scans typically
require long acquisition times, which pose a considerable practical challenge as
the patient on table time is almost completely filled with anatomical imaging
(pre-beam + beam-on). Typical MR-linac treatment fractions have at most a
couple of minutes of free imaging time available such that it does not interfere
with the clinical workflow [43]. Therefore, fast and precise quantitative MR scans
are required for a practical implementation of online tumor response monitoring.

1.3.5 The case for Non-Cartesian readouts

The three building blocks for ART need varying type of image guidance, which
differ considerably in terms of spatiotemporal resolution (imaging performance).
However, the one requirement that these imaging techniques do have in common
is the need for fast and motion-robust scans. These two properties are in part
dictated by the selected k-space readout, which is therefore a crucial lever in the
sequence design. Conventional MR sequences are mostly sampled using Carte-
sian readouts with varying phase encode view-ordering schemes, which control
the imaging speed through incoherent sampling patterns [66, 67] and control the
motion robustness through repetitively sampling of the low frequencies [68]. How-
ever, the imaging speed and motion robustness of Cartesian scans is inherently
limited, because the readout orientation is fixed and therefore can only provide
additional encoding in this single direction. Contrarily, non-Cartesian readouts
continuously rotate the readout direction and therefore provide improved spa-
tiotemporal encoding. Commonly used non-Cartesian readouts include golden
angle stack-of-stars [69], golden angle stack-of-spirals [70], golden mean koosh-
ball [71] and golden mean hybrid radial cones [72] (Fig 1.6). From left to right
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these trajectories provide improved spatiotemporal encoding, but are counter-
balanced by an increased sensitivity to measurement imperfections [73]. These
measurement imperfections include off-resonances, concomitant gradient field ef-
fects [74] and gradient system imperfections [75]. The measurement imperfections
must be adequately addressed in the image reconstruction to effectively capitalize
on the advantages of these non-Cartesian readouts, which considerably increases
the implementational complexity. This thesis focuses on the characterization of
the gradient systems imperfections for non-Cartesian MRI, which will be further
discussed in the next Section 1.3.6.

Figure 1.6: Commonly used non-Cartesian trajectories for rapid and motion robust
imaging. A) Stack-of-stars trajectory that samples radial lines on Cartesian planes. B) Stack-
of spiral trajectory that samples spiral interleaves on Cartesian planes. C) Kooshball trajectory
that samples radial lines in a 3D sphere. D) Hybrid radial cones that samples spirals in a 3D
sphere.

1.3.6 MR gradient system characterization

Non-Cartesian trajectories rely on fast time-varying magnetic fields (gradient)
and the resulting image quality rapidly degrades when deviations of the gradi-
ents occur. In practice, the imposed gradients significantly differ from the actual
produced gradients due to system imperfections. The dominant system imper-
fections are thermal variation in hardware components, bandwidth limitations of
the gradient amplifiers, mechanical vibrations caused by gradient switching and
eddy currents induced in the gradient coil and other conducting structures [76].
Most of these effects are expected to be more severe in the MR-linac system, in
comparison to the diagnostic system, due to the split gradient coil and magnet
design (Figure 1.3). Therefore, a comprehensive characterization of the gradient
system of the MR-linac is crucial for implementation of advanced non-Cartesian
MR imaging techniques for ART.

1.4 Advancements in MRI physics

The optimal implementation of MRI in radiotherapy requires advanced MR imag-
ing techniques that generate images with high quality. The image quality is a
combination of both the image acquisition and image reconstruction technique.
While innovations in MR imaging have historically been driven by advancements
on the image acquisition side, the current wave of innovation is clearly driven
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by advancements in image reconstruction. The switch from the focus on the ac-
quisition to the reconstruction was guided by the realization that any type of
prior knowledge on the imaging process, such as image structure or model errors
(e.g. motion or system imperfections), could be included in an inverse problem
reconstruction formulation. The inclusion of the prior knowledge into the recon-
struction speed-ups the imaging and reduces the sensitivity to artefacts. The
inclusion of prior knowledge is especially alluring for the repeated imaging in
adaptive radiotherapy. The work presented in this thesis follows this philosophy
and therefore the remainder of Section 1.4 provides the reader with the basic
principles on inverse image reconstruction in order to understand the concepts
and methods developed in this thesis. A detailed and comprehensive review of
the complete image acquisition and reconstruction theory can be found in these
works [77,78].

1.4.1 A brief overview of MR image reconstruction

Consider an MR acquisition that uses the gradients for spatial encoding to sample
k-space points of the steady-state transverse magnetization (m). The k-space

coordinates (~k) represent specific spatial frequencies in 3D that are connected
to the object through the Fourier transform. Therefore, an MR system is, in
essence, a machine that performs an analogue Fourier transform of the object
and samples discrete spatial frequencies. The sampled signal yc(t) at the receive
coil (c) is given by the following forward model (Eq 1.1):

yc(t) =

∫
Ω

m(~r) sc(~r) e−2πi~k(t)·~r d~r 1 ≤ c ≤ Nc (1.1)

With sc(~r) as the complex receive coil sensitivity at spatial position ~r and Nc as
the total number of coils. The forward model can be described with matrix-vector
notation for all measurements and coils in compact notation (Eq 1.2):

y = FSm (1.2)

With y ∈ CNcN×1, m ∈ CM×1, S ∈ C(NcM)×(M) as the coil sensitivities and
F ∈ C(NcN)×(NcM) as the discrete Fourier transform operator. Here M is the
number of pixels in the image and N as the number of k-space samples. Now
for the special case where we have sampled all k-space coordinates (N ≥M) the
image can be reconstructed with the adjoint model (Eq 1.3):

m = SHFHy (1.3)

However, in practical scenarios we have limited sampling time (N < M) and the
corresponding evaluation of the adjoint model reconstructs images with artefacts,
often referred to as aliasing. To restore the aliasing in the images the additional
spatial encoding of the parallel receive coils can be included in the reconstruction
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with a technique called parallel imaging. Parallel imaging can be included in the
image reconstruction with a least square problem formulation (Eq 1.4):

m∗ = arg min
m
||FSm− y||22 (1.4)

An intuitive explanation for parallel imaging is the following: each coil multiplies
the image with a smooth function sc(~r) with wide support, which is equivalent to
convolution in k-space with a compact kernel. Therefore, the sampling function
of a each coil is not a delta function, but provides information on a small neigh-
borhood surrounding the k-space coordinate. This additional information can be
used to infer missing samples in k-space from the multicoil data. The imaging
acceleration performance of parallel imaging can be further enhanced by adding
prior information on the image structure in the reconstruction formulation in the
form of regularization. A particular case of regularization is the l1 norm in com-
bination with a sparsifying transformation, which is referred to as compressed
sensing. Compressed sensing transforms the image to a sparse domain, where
less coefficients are required to represent the image, which effectively reduces the
size of M and therefore requires less samples N for reconstruction (Eq 1.5):

m∗ = arg min
m
||FSm− y||22 + λ||Ψm||1 (1.5)

Here Ψ is the sparsifying transform and λ the regularization parameters that
regulates the trade-off between the image consistency and regularization term.
Compressed sensing is increasingly being used in clinical MR scans and is cur-
rently the standard for highly accelerated MR imaging.

1.4.2 Gradient system imperfections in image reconstruction

The previous Section 1.4.1 described the theoretical forward signal model (Eq 1.1)
and explained how this forward model was inverted in the image reconstruction.
However, the forward model is not fully accurate in practical imaging scenarios
where gradient system imperfections cause considerable deviations. These de-
viations can be interpreted as additional space-time magnetic fields ξ(~r, t) that
modulate the measured signal (1.6):

yc(t) =

∫
Ω

ξ(~r, t) m(~r) sc(~r) e−2πi~k(t)·~r d~r (1.6)

With |ξ(~r, t)| = 1, such that gradient system imperfections only modulate the
phase of the complex magnetization m(~r). These additional spatio-temporal mag-

netic fields are fully dependent on the input gradient waveforms ~G(t) and can be
modeled as a linear and time-invariant system (LTI) [76]. LTI systems allow the

gradient impulse response function (GIRF) to map ~G(t) to the gradient-induced
space-time magnetic fields ξ(~r, t). The GIRF H(~r, t) can be characterized using
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specialized magnetic field probes or customized MR scans that directly mea-
sure ξ(~r, t) given ~G(t). However, accurate estimation of H(~r, t) is difficult and
very time-consuming. Therefore, in practice H(~r, t) is often approximated using
Laplace’s spherical harmonic functions with order l and phase m (H̃lm(t)) and
corresponding expansion coefficients ωlm.

∠ ξ(~r, t) =

∫ t

0

~G(t) ∗H(~r, t) dt ≈
∫ t

0

~G(t) ∗
L∑
l=0

l∑
m=−l

ωlmH̃lm(t) (1.7)

The neat property of the spherical harmonic decomposition is that specific l and
m combinations provide a simple physical interpretation. For example, l = 0 and
m = 0 describe the space-time field modulations that are uniform over space,
i.e. ∆B0(t), which can be corrected for in k-space with a global phase demod-
ulation. Another example, l = 1 and m = −1, 0, 1 describe the space-time field
modulations that vary linearly over space, i.e. deviations of ~G(t), which can be

corrected for by modifying ~k(t) in the image reconstruction. Therefore, correc-
tions for zeroth and first order gradient imperfections effectively reduce Eq 1.6
to Eq 1.1, which again allows conventional image reconstruction as outlined in
Section 1.4.1. However, higher order terms do not have these quick-fixes and can
only be corrected for by inclusion in the forward model, which requires the inver-
sion of a very large (modified) signal model [79]. The quantification of the higher
order terms and the subsequent adjustments in the image reconstruction were not
considered in this thesis, because these currently do not provide practical use for
MRI in radiotherapy.

While ξ(~r, t) only affected the phase of m(~r), gradient system imperfections can
also lead to magnitude deviations. Deviations in magnitude are often referred to
as steady-state disruptions and are induced by residual phase errors at the end
of the repetition time φtr(~r):

φtr(~r) =

∫ TR·tr

TR·(tr−1)

ξ(~r, t) dt (1.8)

Here lowercase tr refers to the readout number and capital TR refers to the
repetition interval. The impact of φtr(~r), at a specific readout (tr), on the |m(~r)|
depends on the tissue-specific properties T1,2, which is described with the Bloch
equations. As a consequence, the modulation of |mtr(~r)| at readout number tr
depends on the entire sequence history φ1,2..tr(~r):

yctr(t) =

∫
Ω

ξtr(~r, t) mtr(~r, φ1,2..tr(~r)) s
c(~r) e−2πi~ktr(t)·~r d~r (1.9)

Eq 1.9 provides the complete forward model of the MR signal, which includes the
linear part of the gradient system imperfections. The use of the GIRF to correct
for zeroth and first order space-time magnetic fields is currently the state-of-the-
art in clinical MR scans.
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1.4.3 Modelling motion in image reconstruction

Another source of error in the forward signal model is the movement of the sub-
ject during the MR scan. The origin of the subject motion was already discussed
in Section 1.2.2 and therefore the current Section focuses on the mathematical
description of motion for image reconstruction. Motion is often modelled using
deformation vector fields (DVF) that describe a warping operation from a refer-
ence state to another motion state. The warping operation can be included in the
forward signal model to relate the measured signal at the second motion state to
the reference state:

yc(t) =

∫
Ω

m(V (~r)) sc(~r) e−2πi~k(t)·~r d~r (1.10)

Here V (~r) is the warping operation, where we assumed that the total mass is
conserved, i.e. det ∇V (~r) = 1. The new forward model can also be described in
matrix form and reconstructed using compressed sensing (Eq 1.11):

m∗ = arg min
m
||FSUm− y||22 + λ||Ψm||1 (1.11)

With U ∈ RM×M as the linear operator of V (~r). Now that the motion can be
accurately modelled in the image reconstruction the challenge is the estimation
of the deformation vector fields V . The concept of considering U as a warping
operator in image space leads to a difficult conundrum, namely to accurately esti-
mate U multiple images m for different motion states are required in image space.
However, U is required to accurately estimate a high quality image m. There-
fore, most approaches that estimate U select parts of the data y to reconstruct
low-quality images m. These low-quality images are subsequently registered with
deformable image registration algorithms that are robust to image artefacts to
obtain the motion fields. This approach is inherently limited by the amount of
data required for the Fourier transform to reconstruct m with sufficient quality
for deformable image registration.

Another strategy to estimate U is to rewrite the forward model from a k-space
perspective:

yc(t) =

∫
Ω

m(~r) sc(~r) e−2πi~k(t)·V −1(~r) dr (1.12)

Here V −1 is the inverse of the warping operator, which appears in the expo-
nential function that encodes the k-space. Therefore, V effectuates a change of
coordinates of ~r. From this perspective it is possible to invert Eq 1.12 to solve
for V (~r) given an adequate image m. The advantages of this approach is that it
is not limited by the amount of data required for the Fourier transform, but is
limited by the amount of data required to sufficiently encode the motion. Image
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reconstruction using Eq 1.10 is currently gaining popularity and inverting Eq 1.11
is the state-of-the-art in a research setting and will be further explored in this
thesis.

1.5 Scientific contributions and thesis outline

MRI is going to disrupt the field of radiotherapy in the next decade through real-
time image guidance and frequent tumor response monitoring to optimize the
treatment. The development of advanced MR imaging techniques that are specif-
ically tailored for these adaptive radiotherapy applications are going to be crucial.
This thesis focuses on the development of these MR techniques along/throughout
the whole imaging spectrum in the radiotherapy workflow, including treatment
simulation (Chapter 2-3), pre-beam imaging (Chapter 4-5), beam-on imaging
(Chapter 6) and tumor response monitoring (Chapter 7).

Chapter 2 quantifies the typical tumor motion in patients with head-and-neck
cancer to determine PTV margins for treatment simulation. Standard available
available (spoiled) 2D cine MR scans scans were acquired in 100 patients and the
motion was estimated using non-rigid image registration. The motion estimates
were used to determine population-based PTV margins, which were significantly
smaller than the current clinically used PTV margins, therefore the clinical proto-
col was adjusted in response to these findings. In addition to the PTV margins,
the imaging data provided insight on the soft-tissue motion dynamics and the
limitations of currently available MR imaging techniques for motion estimation
in more challenging anatomical regions.

Balanced steady-state free precession (bSSFP) scans offer shorter repetition times
and higher signal-to-noise efficiency compared to spoiled scans and therefore are
highly useful for real-time beam on imaging. However, bSSFP scans are suscepti-
ble to image artefacts arising from gradient system imperfections. These gradient
system imperfections are characterized in Chapter 3 by measuring the GIRF.
We show that the GIRF provides the information to accurately model the bSSFP
image artefacts and we provide a novel method to correct for these artefacts. The
measured GIRFs are subsequently used to enable robust non-Cartesian imaging
in Chapters 4,6-7.

Chapter 4 focuses on the design of a novel pre-beam MR-linac scan (MR-
RIDDLE) that optimally integrates with the online radiotherapy workflow. MR-
RIDDLE uses non-Cartesian golden angle radial data sampling to reconstruct
multiple resolution images during the acquisition. Low-resolution images are
available after a very short acquisition window, after which the data collection
continues for subsequent high-resolution image updates. We anticipate that this
novel concept of parallelising the MR imaging and the clinical tasks has the poten-
tial to considerably speed-up and streamline the online MR-guided radiotherapy
workflow.

Chapter 5 focuses on the design of a generic free-breathing imaging technique
that simultaneously quantifies and corrects for the respiratory motion. We pro-
pose a novel rewinded Cartesian Acquisition with spiral profile ordering (rCASPR)
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sampling scheme, which provides similar image contrast to conventional clinically
used T2-w scans, while enabling the self-navigation and robustness to motion arte-
facts required to reconstruct the 4D-MRI. The 4D-MRI is used to estimate the
motion, which is subsequently used for the motion compensated image reconstruc-
tion. The key philosophy of this technique is that clinically used motion-triggered
scans can easily be replaced by free-breathing rCASPR implementations without
loss of image contrast or an increase in scan time. Therefore, rCASPR could be
a robust and generic solution for pre-treatment and pre-beam imaging to obtain
high resolution images for GTV delineation.

Chapter 6 focuses on the implementation of a novel beam-on imaging framework
to retrospectively reconstruct time-resolved non-rigid motion-fields with very high
spatiotemporal resolution (> 10 Hz for 3D). Here, we build upon a previously
(theoretically) described motion estimation framework called MR-MOTUS [80]
and expand the method with a low-rank signal model and develop a prospective
implementation. Low-rank MR-MOTUS exploits spatiotemporal correlations in
internal body motion with a low-rank motion model, and inverts a signal model
that relates motion-fields directly to a reference image and k-space data. The
time-resolved motion-fields are required for retrospective dose accumulation and
could form the basis for prospective real-time motion estimation for real-time
gating/tracking. Note that my contribution to this work primarily consisted of
the k-space trajectory development, the prospective scanner implementation and
the signal preprocessing of low-rank MR-MOTUS on the MR systems.

Chapter 7 investigates the technical feasibility of magnetic resonance finger-
printing (MRF) for daily tumor response monitoring for MR-linac. MRF is a
rapid multiparametric quantiative MRI technique that relies on adequate control
over system imperfections, such as eddy currents and B1

+, which differ signif-
icantly on MR-linac scanners compared to diagnostic scanners. We investigate
whether MRF is feasible on MR-linac systems and conclude that the precision
and accuracy of the parametric maps are sufficient for further investigation of the
clinical utility of MRF for online quantitatively MRI-guided radiotherapy.

Lastly, Chapter 8 summarizes the most important findings of this thesis, crit-
ically reflects on the individual chapters and speculates on the potential impact
for MRI in radiotherapy. Finally, I will provide my perspective on the future of
MRI in radiotherapy and how the technologies described in this thesis fit into this
narrative.



1.5 Scientific contributions and thesis outline

He who thinks great thoughts, often makes great errors.

- Martin Heidegger
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Chapter 2 2D Head-and-neck tumor motion quantification

Abstract

Purpose: To quantify intrafractional motion to determine population-
based radiotherapy treatment margin determination for head-and-neck
tumors.

Methods: Cine MR imaging was performed in 100 patients with head-
and-neck cancer on a 3T scanner in a radiotherapy treatment setup. MR
images were analyzed using deformable image registration (optical flow
algorithm) and changes in tumor contour position were used to calculate
the tumor motion. The tumor motion was used together with patient
setup errors (450 patients) to calculate population-based PTV margins.

Results: Tumor motion was quantified in 84 patients (12/43/29 na-
sopharynx/oropharynx/larynx, 16 excluded). The mean maximum
(95th percentile) tumor motion (swallowing excluded) was: 2.3 mm in
superior, 2.4 mm in inferior, 1.8 mm in anterior and 1.7 mm in posterior
direction. PTV margins were: 2.8 mm isotropic for nasopharyngeal tu-
mors, 3.2 mm isotropic for oropharyngeal tumors and 4.3 mm in inferior-
superior and 3.2 mm in anterior-posterior for laryngeal tumors, for our
institution.

Conclusions: Intrafractional head-and-neck tumor motion was quanti-
fied and population-based PTV margins were calculated. Although the
average tumor motion was small (95th percentile motion <3.0 mm), tu-
mor motion varied considerably between patients (0.1-12.0 mm). The
intrafraction motion expanded the CTV-to-PTV with 1.7 mm for laryn-
geal tumors, 0.6 mm for oropharyngeal tumors and 0.2 mm for nasopha-
ryngeal tumors.

Keywords: Intrafraction motion, head-and-neck cancer, MRI, radio-
therapy, margins
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2.1 Introduction

2.1 Introduction

Radiotherapy is used as a primary or secondary treatment in up to 75% of patients
with head-and-neck cancer [81]. Head-and-neck tumors are often in close vicinity
of multiple organs at risk and therefore require highly conformal treatment plans.
These treatment plans are characterized by steep dose gradients that minimize
the dose to the organs at risk while maintaining an adequate tumor dose. These
steep dose gradients generate effective treatment plans in theory, but rely heavily
on accurate geometrical dose delivery.

To deliver the dose with high geometric accuracy, the treatment needs to be set
up precisely and the intrafractional and interfractional tumor motion needs to be
accounted for. Treatment setup is improved using immobilization devices such as
thermoplastic masks and a personalized head support [82–84]. The residual inter-
fractional motion is accounted for by adding an uncertainty margin that expands
the clinical target, called the planning target volume (PTV), which accounts for
setup errors [85, 86] patient weight loss and tumor shrinkage [87, 88]. Intrafrac-
tional motion is accounted for by either a personalized margin or a population-
based margin that is included in the PTV. Intrafractional motion could be defined
as the internal motion; that is, the result of respiration, swallowing, tongue move-
ments and slow motions induced by organ relaxation. These movements must be
accurately quantified either to determine population-based margins or personal-
ized margins to account for the internal motion. For head-and-neck tumors this
margin is not explicitly reported but generally an additional margin is used for
laryngeal tumors. In our institute an additional margin of 5 mm is added to the
standard PTV margin [89].

Thus far, the quantification of the intrafractional motion has primarily focused on
the impact of swallowing on the accumulated dose. Swallowing-induced motion
of head-and-neck tumors or surrogate structures such as the larynx was in the
range of 15–29 mm [90–96]. Although the tumor motion is large, the incidence
and total duration of swallowing was 1% of the irradiation time. In addition,
the tumor is only at the maximum position during a small part of the complete
swallowing event. Therefore, the sole effect of swallowing on the accumulated
tumor dose was considered small [91, 92,95].

Non-swallowing induced tumor motion, on the other hand, could have a larger
effect on the accumulated dose and has been investigated in three studies. Prevost
et al. used video fluoroscopy in 15 patients to track platinum markers, as a
surrogate for tumor motion, and concluded that the motion was insignificant for
clinical practice [92]. Bradley et al. used 2D cine MRI in 11 patients to quantify
intrafraction tumor motion and concluded that the tumor motion required a PTV
expansion [95]. Gurney-Champion et al. used dynamic contrast enhanced MRI
in 56 patients to quantify intrafractional tumor motion in 3D and concluded that
the tumor motion required a PTV expansion [97].

Although these studies analyzed patients with head-and-neck cancer in radiother-
apy treatment setup, the extent of the quantified (non-swallowing) tumor motion
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varied a lot. The variation could be due to differences in imaging setup and pa-
tient population, but we believe that the different imaging methods are the main
cause. In particular, the temporal resolution of the imaging method determines
the sensitivity to measure fast occurring motions such as respiration. While the
3D method [97] is superior to quantify slower shifts throughout the treatment, the
method lacks the temporal resolution (0.34 Hz) to accurately quantify respiratory-
induced tumor motion. This hypothesis is supported by the lower respiratory-
induced tumor motion found with the 3D method compared to the 2D methods
by Bradley et al. That study, however, had a limited sample size (11 patients)
and too short imaging window (15 s) to describe the respiratory-induced tumor
motion on a population-based level.

In this study we quantify the intrafractional motion to calculate PTV margins
of head-and-neck tumors in supine radiotherapy treatment position. We quantify
tumor motion using 2D cine MRI and deformable image registration. We show
that respiratory-induced tumor motion varies considerably among patients (larger
than 10 mm) and we calculate population-based PTV margins for nasopharyngeal,
oropharyngeal and laryngeal tumors.

2.2 Methods

2.2.1 Study population

Cine MR scans were acquired in 100 consecutive patients with head-and-neck can-
cer that were selected for radiotherapy treatment in our department between June
2016 and July 2017. From the 100 selected patients, 16 were excluded due to one
of three reasons: image quality was insufficient for analysis (2 patients), the 2D
image was not positioned correctly (7 patients), or the patient was retracted from
the treatment (7 patients). The patient characteristics are described in Supple-
mentary information I. MR scans were acquired during pretreatment imaging for
which the requirement to obtain informed consent was waived by the institutional
review board.

2.2.2 MR image acquisition

The patients underwent CT and MRI scans prior to the first week of treatment.
The scans were acquired in radiotherapy treatment setup, which consisted of a
custom-fit five-point thermoplastic immobilization mask and an individualized
head support (Civco Radiotherapy, Reeuwijk, the Netherlands). The MRI scans
were acquired on a 3T MR scanner (Ingenia, Philips, Best, the Netherlands) with
two flexible surface coils and an integrated posterior coil for signal reception (Fig.
2.1-A).

Two 2D cine MR scans of 60 s were added to the clinical protocol, which were
acquired approximately 5 and 13 min after the start of the MR examination. The
time between the two cine scans was 8.8±1.5min and the range was 4–11 min.
The cine MR scans were acquired in the sagittal plane because the motion in the
left–right direction was found to be small [95,97]. Since the tumor position is not
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Figure 2.1: Methods used to quantify the tumor motion. (A) Imaging setup including
the immobilization mask, personalized head support and surface receiver coils. (B) Diffusion
weighted image used to estimate tumor position. (C) RF and gradient spoiled gradient echo
image from a cine MR scan. (D) Method to calculate the tumor motion by comparing maximum
contour coordinates (black dots) between time-points. (E) Applying the method of (D) for each
time-point yields motion profiles that can be evaluated over time.

delineated prior to pretreatment imaging, the radiotherapy technicians used the
diffusion weighted image (Fig. 2.1-B) along with the localizer images to estimate
the slice position such that it was placed through the center of the tumor. From
84 scanned patients, 17 did not receive a second cine MR scan due to logistical
reasons.

The cine MR scans were acquired using a 2D spoiled gradient echo sequence with
the following sequence parameters: field of view = 250 × 250 mm2, slice thickness
= 10 mm, flip angle = 5°, echo time = 1.45 ms and repetition time = 3.16 ms. The
scans were accelerated using partial Fourier sampling of 70% and parallel imaging
(R = 2.3) to increase the temporal resolution to 158 ms with 1.5 mm in-plane
spatial resolution (Fig. 2.1-C). We did not give the patients any instructions
regarding breathing patterns or swallowing behavior prior to the exam.

2.2.3 MR image analysis

As part of the clinical workflow, the radiation oncologist delineated the gross tar-
get volume (GTV) using the MRI and CT scans. The GTV was transferred onto
a single image (reference) of the cine MR scan using a 2D-to-3D rigid normal-
ized mutual information registration in Volumetool (an in-house built software
package) [98]. The other images of the cine MR scan were then registered to the
reference image using the RealTITracker [99]. The RealTITracker uses an optical
flow algorithm to estimate deformable tissue motion and the algorithm returns
pixel-wise deformation vector fields (DVFs). The RealTITracker has been vali-
dated for cine MR scans in multiple anatomical locations and for multiple image
contrasts [100].

First, the two cine MR scans were analyzed separately to quantify the tumor
motion within the one minute scan. The images were registered using the Re-
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alTITracker to obtain DVFs for the entire field-of-view. The DVFs were used
to propagate the GTV to the next time-point and were used to calculate the
outermost contour position of the GTV for each direction. The outermost GTV
contour position was then compared to the contour positions of the reference im-
age (Fig. 2.1-D). The differences in the contour positions were used to quantify
the tumor motion and will be referred to as motion profiles x(t) (Fig. 2.1-E).
To investigate whether the first and second scans showed significant systematic
differences a paired t-test was performed between the motion profiles. Second, for
both cine MR scans the average GTV contour positions (~xcine) were calculated
and then the difference was used to quantify the tumor shift between the scans.

To investigate the contribution of respiration to the tumor motion, the maximum
tumor displacement was calculated for both the cine MR scans. In the calculation
we excluded the images that were affected by swallowing motion or tongue motion.
Swallowing was identified according to the definition of Matsuo et al. [101] and we
discarded these frames from the analyses to calculate the maximum tumor motion.
We did not discard the frames in the analysis for the PTV margin determination.

2.2.4 PTV margin determination

The measured tumor motion was used together with the treatment setup errors to
calculate a population-based PTV (expansion from clinical target volume (CTV)).
The tumor motion within and between the cine MR scans, which included swal-
lowing motion and tongue motion, was separated into systematic errors (Σmotion)
and random errors (σmotion). The different components of the systematic and
random errors were added in quadrature, i.e. Σmotion =

√
(Σ2

shift + Σ2
resp) and

σmotion = σresp. The tumor shift between the scans was described as a linear
occurring translation such that Σshift = SD(~xcine1 − ~xcine2) , with SD as the
standard deviation over the patients. The tumor motion within the scans was
calculated as Σresp = σresp =

√
(1/NΣ(0.5SD(~xcine1) + 0.5SD(~xcine2))) with

N is the number of patients. The Σresp was used to account for the mismatch
between the planning CT and the treatment setup cone beam CT [102].

The treatment setup errors were calculated from positioning verification data in
450 patients with head-and-neck cancer treated in the last two years at our insti-
tute. Note that the 100 patients selected for the cine imaging are a subgroup of
the 450 patients used for the position verification data. The treatment followed an
extended no action level (eNAL) protocol [103], in which imaging was performed
for the first three fractions and subsequently once per week. We calculated the
setup errors by registering the on board cone beam CT images to the reference
CT. The images were registered in XVI using bone matching with a clipping box.
All the patients received thermoplastic masks and all the registration were per-
formed by the radiotherapy technicians. We then calculated Σresp by taking the
standard deviation of the mean systematic error over all the patients and σsetup
as the mean of all the average standard deviations over all the fractions.

The tumor motion errors and the treatment setup errors were then applied in the
margin recipe of van Herk et al. (PTV = 2.5

√
(Σ2

motion+Σ2
setup)+0.7

√
(σ2
motion+
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σ2
setup)) to calculate the population-based PTV [20,21].

2.3 Results

2.3.1 Tumor motion quantification

The maximum tumor motion (swallowing excluded) was more pronounced in la-
ryngeal tumors than in oropharyngeal and nasopharyngeal tumors (Fig. 2.2).
Typical motion profiles for tumors that move due to respiration, swallowing or
do not move at all are shown in Fig. 2.3. Furthermore, tumor motion was most
pronounced in the superior and inferior direction and was significantly differ-
ent between all directions and anatomical locations (repeated factorial ANOVA).
Tumor motion varied considerably between patients and some large tumor dis-
placements were detected (Supplementary information II). The mean maximum
tumor motion was 2.3 (range: 0.3–12.0) mm in superior, 2.4 (range: 0.3–7.8) mm
in inferior, 1.8 (range: 0.2–5.2) mm in anterior and 1.7 (range: 0.3–4.1) mm in
posterior direction (Table. 1). The measured maximum tumor displacements of
the first and second MR scans did not differ significantly (p¿0.05).

Figure 2.2: Maximum (95th percentile) tumor motion (swallowing excluded) over
the cine MR scans. Patients are arranged according to the anatomical position of the tumor,
with I denoting the nasopharyngeal tumors, II the oropharyngeal tumors and III the laryngeal
tumors. The different colors and shapes are used to distinguish neighboring points.

2.3.2 PTV margin determination

To determine the systematic motion errors and the random motion errors the
standard deviation of the tumor motion profiles was calculated for all patients
(Fig. 2.4). The Σmotion over all patients was 0.9 mm in superior, 0.7 mm in
inferior, 0.6 mm in anterior and 0.6 mm in posterior direction. The standard
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Figure 2.3: Examples of motion in the superior direction for tumors that showed
almost no motion, for tumors that showed respiratory-induced motion and tumors
that showed swallowing-induced motion. The graphs have a break on the horizontal axis
to differentiate the data from the two different cine MR scans.

deviation (σmotion) over all the patients was 0.8 mm in superior, 0.7 mm in
inferior, 0.5 mm in anterior and 0.5 mm in posterior direction. The Σmotion and
σmotion for all the directions and anatomical subsites are shown in Supplementary
information III.

The systematic setup errors, calculated from positioning verification data in 450
patients, were 0.7 mm in the anterior and posterior direction and 0.7 mm in
the superior and inferior direction. The random setup errors were 1.6 mm in the
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Figure 2.4: Sorted distribution of the standard deviation of the tumor motion
profiles and colored by the anatomical location.

anterior and posterior direction and 1.4 mm in the superior and inferior direction.
Note that these setup errors are institution specific and therefore require separate
validation in other clinics.

The setup errors (450 patients) and the motion errors (84 patients) were used
to calculate PTV margins according to the recipe of van Herk et al. (Table. 2).
In general, the tumor motion expanded the CTV-PTV margin for nasopharyn-
geal tumors with <0.2 mm (compared to the static case). The PTV margin for
oropharyngeal tumors was isotropically expanded with about 0.6 mm. The PTV
margin for laryngeal tumors was expanded with 1.7 mm expansion in the supe-
rior and inferior direction and 0.7 mm expansion in the anterior and posterior
direction.

2.4 Discussion

We quantified the 2D intrafractional tumor motion in 84 patients using cine MRI
and deformable image registration. The maximum tumor motion (swallowing
excluded) was small on average, with 2.8 mm in the superior–inferior direction
and 2.1 mm in the anterior-posterior direction. However, we found that some
laryngeal tumors showed respiratory-induced tumor motion larger than 10 mm
in the superior–inferior direction. The intrafractional tumor motion (swallowing
included), together with treatment setup errors, was used to calculate population-

29



Chapter 2 2D Head-and-neck tumor motion quantification

based PTV margins for nasopharyngeal, oropharyngeal and laryngeal tumors.

Head-and-neck tumor motion was quantified in three studies before: Prevost et al.
used videofluoroscopy (10 Hz) to measure 2D tumor motion (swallowing excluded)
in 15 patients with oropharyngeal cancer over 20 s and found mean maximum mo-
tion of 1.4 mm (range: 0.4–3.1) in superior–inferior and 1.3 mm (range: 0.4–3.4) in
anterior–posterior [92]. Bradley et al. used cine MRI (6.5 Hz) to measure 2D tu-
mor motion (swallowing excluded) in 11 patients (4 oropharyngeal and 7 laryngeal
cancer), over 15 s and found mean maximum motion of 3.1 mm (range: 0.0–8.2) in
superior–inferior and 1.8 mm (range: 0.0–6.0) in anterior–posterior [95]. Gurney-
Champion et al. used dynamic contrast MRI (0.34 Hz) to measure 3D tumor
motion in 56 patients (48 oropharyngeal and 8 laryngeal cancer) over 223 s and
found 95th percentile systematic tumor motion of 0.6 mm in anterior-posterior
and 1.1 mm in superior–inferior [97]. These studies did not have sufficient data
to report the tumor motion separate for the anatomical subsites, however our
findings indicate that the motion depends considerably on the anatomical subsite
and therefore requires comparison accordingly. Here we will compare the motion
reported in the aforementioned studies versus our study and discuss the resulting
PTV margins. Nasopharyngeal tumors are in practice considered as non-moving
tissue and thus no margin is added to account for the internal motion. The mean
maximum tumor motion was approximately 1 mm and expanded the PTV with
less than 0.2 mm. Therefore, our findings support the clinical practice of not
adding a margin to account for the internal motion for nasopharyngeal tumors.
Oropharyngeal tumors showed mean maximum motion of 2.0 mm in superior-
inferior direction and 1.7 mm in anterior-posterior direction. While the average
tumor motion was small, some patients had respiratory patterns that involved a
structural component of tongue displacement that resulted into increased tumor
motion (Video: Supplementary information IV). The tumor motion in our study
slightly differed from Prevost et al. and Bradley et al. which is presumably due
to the difference in imaging time and difference in patient population. However,
the tumor motion reported by Gurney-Champion et al. was considerably smaller
than the 95th percentile systematic motion found in our study, which was 1.5 mm
in anterior–posterior and 2.0 mm in superior–inferior. The clinically used PTV
for oropharyngeal tumors is typically between 3 and 5 mm depending on the
availability of daily image guided radiotherapy [104]. Our findings suggest that a
isotropic 0.7 mm PTV expansion is required to account for the internal motion
for oropharyngeal tumors. Laryngeal tumors showed mean maximum motion of
3.8 mm in superior–inferior direction and 2.2 mm in anterior-posterior direction.
While the average tumor motion was small, some patients had tumors that moved
more than 10 mm due to respiration (Video: Supplementary information IV). The
tumor motion in our study is larger than reported by Bradley et al. which was
presumably due to the longer period of imaging that was considered. Our find-
ings suggest that a 2.0 mm PTV expansion in superior-inferior and a 0.7 mm
in anterior-posterior is required to account for the internal motion for laryngeal
tumors. Here we want to emphasize that relatively small margins of 2.0 mm in
superior-inferior are sufficient to account for the large displacements of up to 12
mm.
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Tumor motion was quantified using cine MRI in combination with deformable im-
age registration. While deformable image registration is widely used [105], a gen-
eral geometric validation in the radiotherapy setting remains difficult [106]. The
accuracy of deformable image registration is dependent on both the parametriza-
tion of the algorithm and the contrast of the images. In this work we validated the
deformable image registration algorithm by tracking local landmarks (epiglottis,
posterior oral cavity) in a small number of patients and adjusted the parametriza-
tion such that the best match was obtained. In addition, we subtracted the defor-
mation vector field from each image and inspected the residual motion to ensure
that the registration fully resolved the motion around the tumor. Deformable im-
age registration was used to quantify tumor with sub-voxel precision. Sub-voxel
precision of the specific algorithm used in this work was demonstrated to detect
deformations at approximately 1/3 of the pixel size [61].

Tumor motion was quantified over a 8 min period approximately 5 and 13 min
after the patient entered the MR scanner. While these times correspond with typ-
ical step-and-shoot intensity modulated radiotherapy (IMRT) treatment at our
institute, typical volumetric modulated arc therapy treatment times are approxi-
mately half [107]. For the volumetric modulated arc therapy (VMAT) treatment
times we calculated the PTV margins by halving the tumor shift between the two
cine MR scans (Supplementary information V). Note that VMAT and hypofrac-
tionation will counterbalance the assumption that swallowing has a relatively low
contribution to total accumulated dose. However, ultimately it is the percentage
of time per fraction that the person is swallowing which is important, which does
not differ between VMAT or IMRT.

The motion analysis provides a representative overview of the tumor motion in a
large group of patients with head-and-neck cancer, however the analysis has some
inherent limitations: (1) Left–right (through-plane) motion can affect the image
registration, however previous studies reported the motion to be small compared
to slice thickness of 10 mm used in our acquisition [97]. (2) The tumor motion
between the two cine MR scans was processed as a linear trend. This assumption
is not completely valid but it is the most reasonable approach for the presented
data [20]. (3) The persistence of the tumor motion over a prolonged period of
treatment is unclear. For example, swallowing incidence is known to vary over
the course of the treatment [91].

Intrafractional tumor motion was quantified in 84 patients using cine MRI with
deformable image registration and population-based PTV margins were calcu-
lated for patients with head-and-neck tumors. Although the average tumor mo-
tion was small (95th percentile motion <3.0 mm), tumor motion varied consid-
erably between patients (0.1–12.0 mm). Incorporating the tumor motion in the
margin recipe expanded the CTV to PTV with 0.2 mm for nasopharyngeal tu-
mors, with 0.6 mm for oropharyngeal tumors and with 1.7 mm for laryngeal
tumors.
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Abstract

Purpose: To propose an explicit bSSFP signal model that predicts eddy
current-induced steady–state disruptions and to provide a prospective,
practical and general eddy current compensation method.

Theory and Methods: Gradient impulse response functions (GIRF)
were used to simulate trajectory-specific eddy current-induced phase er-
rors at the end of a repetition block. These phase errors were included in
bloch simulations to establish a bSSFP signal model to predict steady-
state disruptions and their corresponding image artefacts. The signal
model was embedded in the MR system and used to compensate the
phase errors by prospectively modifying the phase cycling scheme of the
RF pulse. The signal model and eddy current compensation method
were validated in phantom and in vivo experiments. In addition, the
signal model was used to analyze pre-existing eddy current mitigation
methods, such as 2D tiny golden angle radial and 3D paired phase en-
coded Cartesian acquisitions.

Results: The signal model predicted eddy current-induced image arte-
facts, with the zeroth order GIRF being the primary factor to predict
the steady–state disruption. Prospective RF phase cycling schemes were
automatically computed online and considerably reduced eddy current-
induced image artefacts. The signal model provides a direct relationship
for the smoothness of k-space trajectories, which explains the effective-
ness of phase encode pairing and tiny golden angle trajectory.

Conclusion: The proposed signal model can accurately predict eddy
current-induced steady–state disruptions for bSSFP imaging. The sig-
nal model can be used to derive the eddy current-induced phase errors
required for trajectory specific RF phase cycling schemes, which consid-
erably reduce eddy current-induced image artefacts.

Keywords: MRI, Eddy current, bSSFP, GIRF, RF phase cycling, non-
Cartesian
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3.1 Introduction

Balanced steady-state free precession (bSSFP) sequences offer the highest signal-
to-noise ratio (SNR) [108–110] and encode multiple physical parameters into the
signal [111,112]. However, the sequence is prone to eddy current-induced steady-
state disruptions that can severely compromise image quality or the physical
parameter quantification [113,114]. These eddy currents are a direct consequence
of the gradients used for the spatial encoding [115,116]. In particular, the gradi-
ents that change dynamically over repetition blocks disrupt the steady–state (e.g.
phase encode gradient), while the static gradients do not (e.g. slice–selection gra-
dient). Here a repetition block is defined as the pulse sequence diagram with
length of one repetition time. These eddy current effects alter the signal evolu-
tion and therefore have to be corrected prospectively. One strategy to reduce the
impact of the eddy currents is to select an encoding scheme that smoothly varies
the gradient waveforms across sequential repetition blocks. This strategy has
been applied to reduce the impact of eddy currents in Cartesian bSSFP imaging
using phase encode rearranging [114, 116, 117], phase encode grouping [115, 118]
or phase encode averaging [119]. Similar developments were reported in non-
Cartesian bSSFP imaging that primarily aim to minimize angular increments
while maintaining incoherent aliasing properties and robustness to motion arte-
facts [120–122].

While these smoothly varying encoding schemes are effective at reducing eddy
current artefacts, they considerably constrain the k-space trajectory design pa-
rameter space, leading to sub-optimal encoding efficiency. Further, the effec-
tiveness of these smoothly varying encoding schemes is dependent on sequence
parameters, such as the resolution, and therefore do not provide a general solu-
tion. A second, and more general, proposed strategy is to annihilate the eddy
current effect through partial slice dephasing (through-slice equilibration) [115].
However, this method requires modification of the slice select gradient and is
therefore not applicable to 3D acquisitions. A third proposed method is to mon-
itor the eddy current-induced magnetic field perturbations during a calibration
scan using a dynamic field camera [123] and to subsequently correct the corre-
sponding phase errors by prospectively inserting small gradients and adjusting
the RF phase cycling (RF-PC) scheme of the excitation pulse [124]. While these
”run-time” adjustments require only minor sequence modifications and provide a
direct and effective compensation method, they require additional hardware and
a calibration scan, which considerably reduces the practicality for clinical imple-
mentation. From these observations it is evident that there is a clear need for a
deterministic signal model that can relate system-dependent eddy current prop-
erties to sequence specific steady-state disruptions and subsequently to bSSFP
image artefacts. Such a general signal model could be taken into account for
numerical or empirical sequence optimization or could be used for the direct com-
pensation method [124].

Recently, the Gradient Impulse Response Function (GIRF) has been proposed as
a comprehensive method to characterize the linear and time-invariant behaviour
of the entire gradient system [76]. This characterization includes the eddy current
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behavior and therefore we hypothesize that the GIRF should contain all the infor-
mation required to describe the steady-state disruptions in bSSFP acquisitions.
In this work we show that these eddy current effects are indeed deterministic and
can be predicted given the gradient waveform and the system-specific GIRF. We
propose an explicit bSSFP signal model, based on the GIRF, that predicts the
impact of the eddy currents on the steady-state. First we use this signal model
to show that the largest component in the steady-state disruption originates from
the zeroth order eddy currents. Second, we show with phantom experiments that
the proposed signal model can accurate predict eddy current image artefacts for
both Cartesian and non-Cartesian acquisitions. Third, we revisit the prospec-
tive compensation method that adjusts the phase of the excitation pulse and
we derive the input for RF-PC directly from the GIRF. We demonstrate that
GIRF-based RF-PC counteracts the eddy current effects and therefore reduces
steady–state disruptions. Finally, we show that the proposed method works for
2D/3D Cartesian and non-Cartesian sequences and is in principle applicable to
any MRI trajectory.

3.2 Theory

3.2.1 Eddy currents and bSSFP signal model

Balanced steady-state free precession sequences converge to a steady-state if the
following three conditions are met: 1) TR << T2; 2) The gradients must be
zeroth moment nulled; 3) The total phase accumulation (φ) due to B0, gradient
waveforms (G(t)) and RF-pulses must be constant over repetition block n. Bieri
et al. showed that eddy currents can violate condition 3) and therefore disrupt
the steady-state [110, 115]. The effect of steady-state disruption can be directly
related to eddy current-induced time-varying magnetic fields that accumulate
additional phase ∆φ(n) in the transverse magnetization (mxy). This ∆φ(n) can
be decomposed in spatially uniform (0th order), spatially linear varying (1st order)
and higher order (nth order) magnetic field components. In this work we refer
to these components as ∆B0(n, t) that induces ∆φ0(n) and ∆G(n, t) that induce
∆φ1(n) with total phase error ∆φ(n, r) = ∆φ0(n) + ∆φ1(n, r). Fischer et al.
showed that higher order field contributions are unlikely to exhibit a considerable
effect on these phase errors and therefore they are ignored in the signal model
[124]. Note that ∆φ1(n, r) is a function of distance r from isocenter. The ∆φ(n, r)
over the entire repetition block can then be described as Eq.3.1.

∆φ(n, r) =
∑

ax∈x,y,z
γ

∫ TR

0

[∆B0,ax(n, t) + ∆Gax(n, t) r] dt (3.1)

Here γ is the gyromagnetic ratio and ax are the x,y,z axes of the physical gra-
dient coils. The eddy current-induced time-varying magnetic fields ∆Gax and
∆B0,ax are a function of the gradient waveforms Gax(t). The relationship be-
tween these fields and G(t) can be approximated using the zeroth and first order
Gradient Impulse Response Functions (GIRF 0,1) [76]. The zeroth order GIRF
(GIRF 0) describes the spatially uniform field modulations and the first order
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GIRF (GIRF 1) describes the spatially linear field modulations. The GIRFs can
be used to express Eq.3.1 in terms of the known quantity G(t) Eq.3.2.

∆φ(n, r) =
∑

ax∈x,y,z
γ

∫ TR

0

[GIRF 0
ax ∗Gax(n, t) +GIRF 1

ax ∗Gax(n, t) r] dt (3.2)

The process of computing ∆φ(n, r) for a standard 2D Cartesian gradient echo se-
quence is illustrated in Figure 3.1. Note that Figure 3.1 shows actually measured
field responses where ∆φ1 is calculated at r = 10 cm (off iso-center). Eq.3.2 pro-
vides the full description of eddy current-induced phase accumulation ∆φ(n, r),
just before the next RF pulse, that could be used to simulate the steady-state
disruption.

Figure 3.1: Eddy currents and bSSFP signal model: Top image shows the gradient
waveforms corresponding to a typical 2D Cartesian bSSFP acquisition. Left column: The
gradient waveform is processed with the GIRF 0, which induces a field modulation ∆B0 that
decays slowly in time. Integrating ∆B0 over time gives the eddy current-induced phase error
∆φ0, which is nonzero at the end of the repetition block (red dashed line). Right column:
The gradient waveform is processed with the GIRF 1, which induces a gradient modulation
∆Gstr that decays rapidly in time. Integrating the ∆Gstr at 10 cm off iso-center gives eddy
current-induced phase error ∆φ1, which is nonzero at the end of the repetition block (red dashed
line). Bottom image: Shows a zoom image of the last 200 µs of the repetition block, which
demonstrates the nonzero phase errors. Note that ∆φ0 >> ∆φ1 for both axes. Note that the
blue shades indicate the X-axis and the green shades indicate the Y-axis. Lighter colors indicate
the zeroth order effects and darker colors indicate the first order effects.
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3.2.2 Reduced bSSFP signal model

In Eq.3.2, the total phase error ∆φ(n, r) is dependent on the spatial coordinate
r, which complicates a straightforward signal model. We observed from system
measurements that in general ∆φ0 >> ∆φ1 holds true for all sequences. Fig-
ure 3.2 provides evidence to support this assumption by showing measured field
responses for three sequences. These sequences were selected to have minimal
dead-time between the spatial encoding gradients and the sequential RF pulse
to maximize the impact of first order effects. A physical explanation to justify
∆φ0 >> ∆φ1 could be that short lived eddy currents are more prevalent in the
first order effects, compared to longer lived eddy currents in the zeroth order
effects. Using this assumption we can simplify Eq.3.2 to Eq.3.3.

∆φ(n) =
∑

ax∈x,y,z
γ

∫ TR

0

[GIRF 0
ax ∗Gax(n, t)] dt (3.3)

Figure 3.2: Comparison of zeroth order vs first order eddy current-induced phase
errors: The three rows represent three different sequences where the RF pulse is positioned
as close to the gradient waveform as possible. This setup provides a scenario where the faster
decaying first order effects could induce large phase errors. Column 1 indicates the investigated
gradient waveform. Column 2 represents the corresponding phase errors. Column 3 represents
a zoom of the phase error focused on the sequential RF pulse. The phase error at t = TR
(center RF pulse) were for Cartesian: ∆φ0M,P = [−20.2◦,−7.3◦] vs ∆φ1M,P = [0.9◦, 0.0◦].

Radial: ∆φ0M,P = [−18.7◦,−6.9◦] vs ∆φ1M,P = [0.6◦,−0.3◦]. Spiral: ∆φ00M,P = [3.5◦, 1.4◦]

vs ∆φ1M,P = [0.2◦, 0.3◦]. Here you can observe that ∆φ0 >> ∆φ1 with an average factor of

more than 20. The subscripts in the second column follow the structure of ∆φ1X,M , which
correspond to the impact of the x gradient coil on the M gradient waveform.

Eq.3.3 is valid when we consider the repetition blocks individually, but becomes
incomplete when we take the sequence history into account. The actual phase ac-
cumulation ∆φ(n) at repetition block n will also be a function of the (unfinished)
phase accumulation during repetition block n-1 ∆φ(n− 1). For clearer notation
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we write ∆φ(n) = ∆φn(n) + ∆φn−1(n), where the subscript denotes the repeti-
tion block from where the phase errors are generated and the brackets denote the
repetition block where the phase errors are evaluated. In particular, for balanced
gradient waveforms, the unfinished phase accumulation ∆φn−1(n−1) will compen-
sate in the repetition block n to zero. In other words, ∆φn−1(n−1) = −∆φn−1(n),
where we assume that eddy currents are long enough to induce phase errors in
the first block, but short enough to decay within the second block. This compen-
sation of the phase accumulation is related to the linear time-invariant behavior
of the gradient system, where bipolar gradient waveforms induce opposing and
time-delayed phase errors. Therefore, the total phase error in repetition block n
becomes Eq.3.4.

∆φtot(n) = ∆φn(n)−∆φn−1(n) (3.4)

Here ∆φtot(n) is the total eddy current-induced phase error experienced by the
magnetization, which is induced by gradient waveforms from the previous repe-
tition block ∆φn−1(n) and the current repetition block ∆φn(n). Note that this
equation directly relates to the concept of using smooth trajectories, which in-
herently minimize the change of gradient waveforms from TR-to-TR ( dB

dTR ). Low
dB
dTR ensures that ∆φn(n)−∆φn−1(n) ≈ 0 and therefore little phase accumulation
occurs. Throughout this work we calculate ∆φtot(n) for every repetition block
and we incorporate the phase error as additional phase accumulation prior to the
next RF pulse.

3.2.3 Prospective GIRF-based RF phase cycling

The signal model in Eq.3.3 assumes that ∆φ(n) is spatially uniform and can
accurately be predicted based on the GIRF 0. These spatially uniform effects
can be compensated by adjusting the transmit phase of the sequential RF pulse,
i.e. setting Θ(n) equal to ∆φ(n) [124]. This adjustment restores the refocusing
mechanism of the bSSFP sequences and therefore prevents the disruption of the
steady–state. We refer to this method as prospective RF phase cycling (RF-PC)
and the mechanism is illustrated in Figure 3.3. The RF-PC scheme then becomes
a function of the gradient waveform and can simply be superimposed on conven-
tional phase cycling schemes. Note that RF-PC is only valid under the instanta-
neous RF pulse assumption, extension to finite-length RF pulses would require a
frequency modulated RF pulse design to accommodate the varying ∆φ(n, t) errors
during the pulse. However, basic Bloch simulations showed that the instantaneous
RF pulse assumption provides satisfying results for short pulses (< 1ms), which
are generally used in bSSFP acquisitions.

3.3 Methods

Gradient impulse response functions were measured to parameterize the signal
model. The signal model was then used to simulate single isochromat steady–
state disruptions for varying off-resonance conditions (∆B0). These simulations
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Figure 3.3: Schematic overview of the prospective RF phase cycling (RF-PC)
method. Top row: Consider the spin ensemble (M0(0)), which experiences ∆B0 field modula-
tions due to eddy currents. The ∆B0 induces phase accumulation ∆φ, which rotates the trans-
verse magnetization 45◦ along the longitudinal axis (z) (M0(TR). This rotation is nonzero when
the sequential RF pulse is applied, which misaligns the newly excited longitudinal magnetization
(red arrow) with the transverse magnetization (M1(0)) (black arrow). This misalignment prop-
agates over multiple repetition blocks and eventually leads to considerable signal disruptions.
Bottom row: Consider the same spin ensemble with the same eddy current-induced phase
accumulation. Now the phase of the RF pulse Θ is modified such that the RF pulse aligns the
newly excited longitudinal magnetization with the transverse magnetization, therefore restoring
the refocusing mechanism.

provided insight on how to setup the validation experiments. The first validation
experiment included phantom acquisitions, where simulated artefact images were
compared to measured artefact images. During these experiments linear shim
gradients were applied to emphasize the dependence of the steady–state disruption
on ∆B0. The second validation experiments included brain acquisitions, where
prospective RF phase cycling was used to reduce eddy current artefacts.

3.3.1 GIRF measurements

To characterize the gradient system we measured the zeroth and first order field
responses on a 1.5T MRI (Ingenia, Philips). Twenty-one triangular gradients
with maximum slew rate (180 T/m/s) and varying gradient amplitudes (8.0-22.5
mT/m) were measured using a 15 cm spherical phantom. The zeroth and first
order field responses were measured using a variation of the thin slice method
[75, 125, 126]. A more detailed description of the measurements are reported in
Supporting Information I.

3.3.2 bSSFP signal simulations

To investigate the impact of the eddy current-induced phase errors on the steady–
state we computed ∆φ(n) for three different spatial encoding schemes: 1) Lin-
ear phase encoding (Lin-PE); 2) Random phase encoding (Rnd-PE) and; 3)
Golden angle radial (GA-Rad) encoding. Lin-PE was selected because of its
widespread usage in clinical protocols and robustness to eddy current effects.
Rnd-PE was selected because it resembles the relatively large jumps in k-space
that are commonly seen in highly undersampled acquisitions for compressed sens-
ing [66, 127, 128], low-high profile ordering for low latency imaging [129] or k-t
sampling patterns [114,130] for dynamic imaging. GA-Rad was selected to repre-
sent non-Cartesian with widespread utility in dynamic imaging [131]. The ∆φ(n)

42



3.3 Methods

depend on the sequence parameters and were based on the acquisitions described
in Table-1. The maximum ∆φ(n) can be expressed per gradient axes and were
∆φx = 6.5◦ for the Cartesian scans and ∆φx = −8.8◦ / ∆φy = −10.2◦ for the
radial scans. These ∆φ(n) were included in the Bloch model to simulate a single
isochromat’s convergence to the steady-state. The isochromat that was simulated
had the following properties: T1 = 1000 ms, T2 = 80 ms and B1 = 1.0. Note that
the simulations start in the fully relaxed spin state (Mz = 1). The simulations
were repeated for a range of off-resonances ∆B0 ∈ [−300Hz; 300Hz] to create
bSSFP signal profiles.

3.3.3 Artefact simulation and experimental validation

To validate the proposed bSSFP signal model we designed two phantom experi-
ments (Cartesian and Radial encoding) that were compared with simulations. In
both experiments we acquired artefact-free images using a Lin-PE bSSFP acqui-
sition and we acquired a B0-map. These data were acquired with a linear shim
gradient (1 mT/m) in one direction to highlight the signal dependence on the
∆B0. Both the B0-map and the artefact-free image were used with the GIRFs to
predict the eddy current-induced image artefacts. The predicted eddy current-
induced artefact images were visually compared with measurements with and
without RF-PC. All experiments were preceded with 5 seconds of dummy TRs
to reduce transient state oscillations and all experiments used a short Gaussian
shaped RF pulse with time-bandwidth product = 2.

Random phase encoded 3D Cartesian acquisition 3D k-space data were ac-
quired using a random phase encoded (Rnd-PE) scheme with sequence parameters
that facilitate minimal repetition time. Relevant sequence parameters are shown
in Table 1. Subsequently the scan was re-acquired with a random paired phase
encoded (Rnd-P-PE) scheme, which is known to reduce eddy current-induced im-
age artefacts [115]. The acquisitions were repeated using RF-PC with maximum
phase errors of ∆φx = −6.5◦ / ∆φy = −8.1◦. Note that the phase errors of all
the phase encode lines are a linear combination of ∆φx and ∆φy.

Golden angle 2D Radial acquisition: 2D k-space data were acquired using
a golden angle radial (GA-Rad) scheme with sequence parameters that facilitate
a minimal repetition time. Relevant sequence parameters are shown in Table
1. Subsequently the scan was re-acquired with a tiny golden angle (tGA-Rad)
scheme, which is known to reduce eddy current-induced image artefacts [121]. The
acquisitions were repeated using RF-PC with maximum phase errors of ∆φx =
−8.8◦ / ∆φy = −10.2◦. Note that the phase errors corresponding to a specific
radial angle is a linear combination of ∆φx and ∆φy.

3.3.4 In vivo experiments:

This study was approved by the local institutional review board. Following writ-
ten informed consent, two healthy volunteers were scanned. Three-dimensional
random encoded Cartesian and 2D golden angle radial scans were acquired in
the brain with and without RF-PC. Sequence parameters were equivalent to the
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phantom experiments (Table 1), besides the linear shim that was disabled. Scans
were acquired with volume shimming and B0-maps were acquired to emphasize
the dependency of the eddy current artefacts on B0. Images were reconstructed
on the scanner and visually compared.

3.4 Results

3.4.1 GIRF measurements

The measured GIRFs are shown in Figure 3.4. The spectral resolution for the
measurements was 33 Hz. The GIRF 0 show distinct profiles for the three different
axes. The GIRF 0

X,Y show larger magnitudes than the GIRF 0
Z around the low

frequency range, which corresponds to larger eddy current-induced ∆B0 errors.
The GIRF 0 show distinct peaks around 1780 Hz and 6800 Hz, which could be
related to mechanical oscillation frequencies [76]. Note that the SNR of the
measurements was too low for adequate response determination outside the 10
kHz range. The GIRF 1 show similar behavior for all three axes and have close to
zero gradient delay around the low frequencies. The SNR of these measurements
was sufficient up to the 20 kHz range.
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Figure 3.4: Gradient impulse response functions (GIRF): Top row shows GIRF 0 with
the magnitude on the left and the complex argument on the right. The bottom row shows
GIRF 1 with magnitude on the left and the complex argument on the right.

3.4.2 bSSFP signal simulations

The impact of the eddy currents corresponding to the three spatial encoding
schemes are shown in Figure 3.5. The first ≈100 readouts show oscillations due
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to the normal transient behavior of the magnetization. The Lin-PE Cartesian
acquisition showed minor differences from the nominal (default) signal evolution
across the entire off-resonance range. However, the Rnd-PE Cartesian acquisition
showed strong deviations across the entire off-resonance range. Note that these
deviations are erratic and highly coupled to the ”randomness” of the encoding
pattern. The bSSFP signal profile shows only small deviations in the average
signal in time, but shows large standard deviations. The GA-Rad scheme shows
minor magnitude deviations for the on-resonant case, but shows very large devia-
tions slightly off-resonance. The bSSFP signal profile shows an additional pair of
banding artefacts that are not seen with the other encoding schemes. The posi-
tion of the bands depend on both the repetition time and the angular increment
of the radial acquisition.

Figure 3.5: BSSFP bloch simulations in combination with the gradient impulse
response functions (GIRF) for three different acquisitions: Top row: Linear phase
encoded (Lin-PE) Cartesian acquisition induces smoothly varying phase errors ∆φx0 = 6.5◦,
which do not disrupt the steady–state across the entire off-resonance range. Middle row: Ran-
dom phase encoded (Rnd-PE) Cartesian acquisition induces erratic phase errors (∆φx0 = 6.5◦),
which considerably disrupt the steady–state across the entire off-resonance range. Bottom
row: Golden angle encoded radial (GA-Rad) acquisition induces sinusoidal varying phase error
(∆φx0 = −8.8◦ and ∆φy0 = −10.2◦), which disrupt the steady–state across the entire off-
resonance range. At specific off-resonance frequencies additional zero signal bands occur. Note
that the signal profiles represent the magnitude of the mean and the standard deviation of the
complex signal intensities over the last 200 repetition blocks in time. NOM = nominal (without
eddy current). GIRF is with eddy current.

3.4.3 Artefact simulation and experimental validation

Random (paired) phase encoded 3D Cartesian acquisitions: The eddy
current-induced image artefacts induced by the random phase encoded sampling
patterns are shown in Figure 3.6. The simulated Rnd-PE image closely resembles
the measured artefact image. Both the images show a hypo-intense streak in the
center and show large intensity fluctuations from top to bottom. The Rnd-paired-
PE measured image shows reduced intensity fluctuations compared to the Rnd-
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PE. The reduction is also reflected in the simulated image, which is similar to the
measured image in magnitude of the intensity fluctuations. RF-PC considerably
reduced these artefacts for the Rnd-PE as well as Rnd-paired-PE acquisitions.
Note that both images have small residual artefacts left compared to the artefact
free image, where the Rnd-paired-PE showed the smallest residual artefacts.

Artefact free

B
0
 map

Rnd-PE

Rnd-paired-PE

Bloch(∆φ
tot

(n))

Bloch(∆φ
tot

(n))

Simulated Measured RF-PC

Simulated Measured RF-PC100 Hz

-100 Hz

lin
e
a

r sh
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Figure 3.6: Random (paired) phase encoded 3D Cartesian acquisitions - artefact
simulation and experimental validation: First column shows the measured artefact-free
image and the measured B0 map. Second column illustrates the 3D Cartesian sampling patterns.
Top row of the remaining columns shows the random phase encoded (Rnd-PE) acquisition and
the bottom row shows the random paired phase encoded (Rnd-paired-PE) acquisition. Third
column shows the simulated artefact images that were based on the artefact-free image, B0

map and the proposed bSSFP signal model. Fourth column shows the measured artefact image.
Fifth column shows the measured RF phase cycled images.

(Tiny) golden angle 2D radial acquisitions: The eddy current-induced image
artefacts due to the golden angle radial sampling are shown in Figure 3.7. The
simulated GA-Rad artefact image closely resembles the measured artefact image.
Both the images show hypointense and hyperintense lines at the same locations.
Note that these lines exactly coincide with the shape of the B0-map and with the
locations of the additional bands in the bSSFP signal profile shown in Figure 3.5.
The RF-PC acquisitions considerably reduced the artefacts, but small residual
artefacts remain compared to the artefact free image. The simulated tGA-Rad
artefact image and the measured artefact image are almost identical, both show no
visual artefacts. The RF-PC acquisition does not introduce additional artefacts
and maintains the image quality.

3.4.4 In vivo experiments - Brain imaging

Random phase encoded 3D Cartesian acquisitions: Three-dimensional
brain scans were acquired in a healthy volunteer that include a B0-map, Lin-PE,
Rnd-PE with/without RF-PC and Rnd-P-PE with/without RF-PC (Figure 3.8).
The B0-map shows that large field inhomogeneity that is typically seen around the
tissue/air interfaces. The Rnd-PE acquisition shows large image artefacts that
completely obscure the image structures in the brain. Repeating the acquisition
with RF-PC considerably reduces these artefacts. Note that small residual arte-
facts are still visible. The Rnd-P-PE acquisition shows less image artefacts then
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Figure 3.7: (Tiny) golden angle 2D radial acquisitions - artefact simulation and
experimental validation: First column shows the measured artefact-free image and the mea-
sured B0 map. Top row of the remaining columns shows the golden angle radial (GA-Rad)
acquisition and the bottom row shows the tiny golden angle (tGA-Rad) acquisition. Third
column shows the simulated artefact images that were based on the artefact-free image, B0

map and the proposed GIRF-based bSSFP signal model. Fourth column shows the measured
artefact image. Fifth column shows the measured RF phase cycled images.

the Rnd-PE acquisition. Repeating the acquisition with RF-PC further reduces
the image artefacts and the image appears similar to the Lin-PE acquisition.

Figure 3.8: In vivo random phase encoded 3D Cartesian acquisitions. First column
shows the B0-map. Second column shows the Cartesian acquisition with linear profile ordering
(Lin-PE). Third column shows the Cartesian acquisition with random phase encode ordering
(Rnd-PE). Fourth column shows Rnd-PE with RF phase cycling (RF-PC). Fifth column shows
the Cartesian acquisition with random paired phase encode ordering (Rnd-P-PE). Last column
shows Rnd-P-PE with RF-PC. Sequence parameters are shown in Table.1.

Golden angle 2D radial acquisitions: Two slices were examined using six ac-
quisitions that include a B0-map, Lin-PE, GA-RAD, GA-RAD-RFPC,tGA-RAD
and tGA-RAD-RFPC (Figure 3.9). The first slice shows large field inhomogeneity
around the auditory canals, which leads to eddy current-induced image artefacts
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around these areas in the GA-RAD image. These artefacts include hypo-and-
hyper-intense regions, which are clearly visible in the zoom image. These artefacts
are not present in the tGA and Lin-PE images and are considerably reduced in
the GA-RAD-RFPC image. The second slice shows large field in-homogeneity’s
around the frontal lobe, which leads to eddy current-induced image artefacts in
the GA-RAD image. These artefacts include dark and bright tight bands with
curvature similar to the B0-map. These artefacts are not present in the tGA and
Lin-PE images and are considerably reduced in the GA-RAD-RFPC image, but
residual artefacts remain. Note that there are subtle differences in image contrast
between lin-PE and the GA-Rad/tGA-Rad acquisitions. These differences are
presumably related to off-resonance effects or small k-space trajectory errors in
the reconstruction.

Figure 3.9: In vivo 2D golden angle radial acquisitions. Two slices were acquired with
a B0-map, artefact-free reference (Lin-PE), golden angle radial (GA-RAD), golden angle radial
with RF phase cycling (GA-RAD-RFPC), tiny golden angle radial (tGA-RAD) and tiny golden
angle radial with RF phase cycling (tGA-RAD-RFPC). In both slices the GA-RAD shows eddy
current-induced image artefacts that are considerably reduced after RF phase cycling. Tiny
golden angle images show no deviations from the reference image and adding RF phase cycling
does not introduce new artefacts.

3.5 Discussion

In this study we used the gradient impulse response function to formulate an
explicit bSSFP signal model that predicts the impact of eddy currents on the
steady–state. In particular, we showed that the zeroth order impulse response
function is the primary factor to describe the impact of eddy currents on the
steady–state, while the first order impulse response functions play only a minor
role. The proposed signal model was validated using computer simulations and
experimental imaging which showed good correspondence. Secondly, we revisited
a prospective eddy current compensation method that uses RF phase cycling
(RF-PC) schemes to reduce the steady–state disruptions. We showed that RF-
PC is viable without additional field monitoring hardware by using the gradient
impulse response function. The gradient impulse response functions were used in
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combination with the spatial encoding gradients to prescribe RF phase cycling
schemes that can easily be computed on-the-fly. The proposed RF-PC method
does not require any pre-scans or significant sequence modifications and is in
principle applicable to any MRI examination.

The proposed bSSFP signal model provides insight into the effectiveness of sev-
eral pre-existing methods to mitigate eddy currents effects. First, we consider the
phase encode pairing method proposed by Bieri et al., in which the method mit-
igated eddy currents artefacts in a wide off-resonance range for relatively small
phase errors (∆φ) [115]. In this work we verified their findings that phase en-
code pairing reduces the eddy current effects, however for larger phase errors
considerable residual artefacts remain (Figure 3.6) [124]. In [115] an explana-
tion was given for the effectiveness of the pairing method, which was that the
default [0 180◦] bSSFP phase cycling scheme cancels out two sequential near
identical phase errors. Our proposed signal model provides an alternative ex-
planation for the effectiveness of the phase encode pairing, which is related to
the approximation of the eddy current behavior as a linear time invariant sys-
tem. The approximation implies that the total phase error in repetition block n
is the contribution of the current repetition block (n) minus the contribution of
the previous repetition block (n-1 ), i.e. (∆φ(n) = ∆φn(n) − ∆φn−1(n). From
this observation it is apparent that phase encode pairing would make the total
phase error zero every other repetition block, therefore considerably reducing the
steady–state disruption. The second pre-existing method we consider is the use of
tiny golden angles in radial sampling. The effectiveness of the tiny golden angles
can be explained using the same observation as for the paired phase encoding.
The tiny golden angles induce smoother changes in ∆φ(n) than the golden angle
and therefore induce a smaller ∆φtot(n+ 1). The overall underlying observation
is that eddy current-induced steady–state disruption are minimized if the phase
error varies smoothly between sequential repetition blocks. This view of looking
at eddy currents has some consequences for the design of sampling patterns in
bSSFP. The primary consequence is that smoothness of the sampling patterns
should be prioritized over phase encode pairing, because it minimizes ∆φtot in-
stead of nulling it every other repetition block. Alternatively, sampling patterns
could be designed such that these minimize d∆φtot/dn instead of ∆φtot. These
sequences would yield large, but constant, phase errors which do not disrupt the
steady-state and offer more flexibility in pattern design.

The RF-PC method provides a general prospective compensation strategy to re-
duce eddy current-induced steady–state disruptions in bSSFP imaging. The com-
pensation method is based on the observation that zeroth order eddy currents
(global) effects were the dominant contributor to the steady–state disruption.
However, this observation is only valid for the MR systems that were investigated
in this study. Other systems could, for example, exhibit stronger mechanical res-
onances that could enhance the phase errors of the first order eddy currents for
specific frequencies. These strong resonances were not observed on our systems
and therefore the eddy current effects were considered global. As a consequence of
these effects being global, the compensation method only requires minor sequence
modification (RF phase adjustments) that does not deteriorate the performance
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(e.g. smooth encoding schemes). RF-PC can therefore be used in conjunction
with other methods, enabling more robust artefact suppression. The second ad-
vantage of our method is that the specific RF phase cycling schemes can be
computed on the fly and is easy to generalize for any MRI acquisition.

The proposed bSSFP signal model and RF-PC method have several limitations
that require discussion. The primary uncertainty in the signal model is coupled
to the assumption that gradient system was modeled as a linear time-invariant
system. Previous work showed that the assumption is valid to a certain extent,
but may be violated due to for example gradient heating [132, 133]. The second
limitation is that we did not perform higher order gradient impulse response mea-
surements, which may induce additional phase errors that we did not account for.
However, including the higher order phase errors in the RF-PC compensation
strategy is not straightforward because these errors have heterogeneous spatial
distributions. The third limitation is that the RF-PC method operates under the
instantaneous RF pulse assumption, which approximates the real system only for
very short RF pulses. In reality, we have a time-varying phase error ∆φ(t) during
the RF pulse that requires frequency modulated RF pulses for exact compensa-
tion. All these limitations contributed to the small residual artefacts observable
in the RF-PC images. In the future, we envision that the second and third
limitation could be jointly tackled by designing dedicated frequency modulated
RF pulses, supplemented by small correction gradients [124], that generate the
exact spatio-temporal transmit distribution to compensate higher order phase
errors. However, implementation of such complex pulse sequences requires dedi-
cated multi-transmit hardware and is out of scope for this study.

Overall, we believe this work contributes to the general understanding of the
impact that eddy currents can play in bSSFP sequences. The proposed RF-PC
method could improve the robustness of bSSFP sequences for clinical usage. In
particular, the implementation of non-Cartesian sequences could benefit greatly
from this method, since they in general exhibit less smooth encoding schemes.
In addition, the proposed GIRF-based signal model can be used for numerical
sequence optimization or to predict the impact of eddy currents on other sequences
such as spoiled SSFP sequences or spin-echo sequences. In addition, we believe
that a rigorous understanding of the impact of eddy current on the signal evolution
is crucial for quantitative imaging applications that require precise modeling of
the physical MR acquisition [112,134].

3.6 Conclusion

To conclude, the zeroth order gradient impulse response function is the primary
factor to predict eddy current-induced steady-state disruption in bSSFP imaging
and the severity of this disruption strongly depends on the local off-resonance fre-
quency. The eddy current-induced steady-state fluctuations can be considerably
reduced by prospectively adapting the RF phase cycling based on the gradient
impulse response function. We demonstrated a straightforward implementation
of the prospective RF phase cycling method, which we believe could improve the
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robustness of bSSFP imaging for clinical usage and may have considerable impact
on bSSFP based quantitative MRI.

Acknowledgments

This work is part of the research program HTSM with project number 15354,
which is (partly) financed by the Netherlands Organization for Scientific Research
(NWO) and Philips healthcare.

51



If I have seen further it is by standing on the shoulders of Giants.

- Isaac Newton



CHAPTER 4
Multiresolution radial MRI

in pre-beam imaging
(MR-RIDDLE)

Bruijnen, Tom
Stemkens, Bjorn
Lagendijk, Jan J.W.
van den Berg, Cornelis A.T.
Tijssen, Rob H.N.

The following chapter is based on:
Multiresolution radial MRI to Reduce IDLE time in pre-beam imaging on an
MR-Linac (MR-RIDDLE), 2019, Physics in Medicine and Biology ;
27;64(5):055011

53



Chapter 4 MR-RIDDLE

Abstract

Online adaptive MR-guided radiation therapy improves treatment qual-
ity at the expense of considerable longer treatment time. The treat-
ment lengthening partially originates from the preparatory (pre-beam)
MR imaging required to encode all the information needed for contour
propagation, contour adaptation and replanning. MRI requires several
minutes of scan time before the encoded information is converted to
usable images, which results in long idle times before the first clinical
tasks are performed. In this study we propose a novel imaging sequence,
called MR-RIDDLE, that reduces the idle time and therefore speeds-
up the workflow in online MR-guided radiation therapy. MR-RIDDLE
enables multiresolution image reconstruction to commence during data
acquisition where low resolution images are available within one minute,
after which the data collection continuous for subsequent high-resolution
image updates. We demonstrate that the low resolution images can be
used to accurately propagate contours from the pre-treatment scan. For
abdominothoracic tumours MR-RIDDLE inherently captures a motion-
blurred representation of the mid-position, which we were able to deblur
using a combination of an internal motion surrogate and auto-adaptive
soft-gating filters. Our results demonstrate that MR-RIDDLE provides
a robust, flexible and time-efficient strategy for pre-beam imaging, even
for cases with large respiratory movements or baseline shifts within the
acquisition. We anticipate that this novel concept of parallelising the MR
imaging and the clinical tasks has the potential to considerably speed-up
and streamline the online MR-guided radiation therapy workflow.

Keywords: radiotherapy, MR-guided radiation therapy, MRI guidance,
multiresolution, golden angle radial, pre-beam imaging, MR-linac, radio-
therapy workflow
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4.1 Introduction

Hybrid MRI-radiotherapy systems have emerged as powerful platforms to simul-
taneously visualize and treat patients with cancer [38, 40, 42, 135, 136]. Online
adaptive MR-guided radiation therapy improves treatment quality at the expense
of considerable longer treatment time. Long treatment times reduce patient com-
fort, reduce the effectiveness of the therapy, and decrease total patient treat-
ment capacity per MR system. The treatment lengthening partially originates
from the preparatory (pre-beam) MR imaging required to encode all the infor-
mation needed for online treatment planning. The current online workflow of
the Elekta Unity 1.5T MR-Linac (Elekta AB, Stockholm, Sweden) is illustrated
in Fig 4.1 [43]. The design of dedicated online MR scans (pre-beam scans) that
speed-up and support this clinical workflow is a completely unexplored line of
research.

Figure 4.1: Overview of the online MR-guided workflow for a patient with a spine
tumor. First the daily MR scan is required (≈ 4min). The MR scan is registered to the
pre-treatment CT or MR scan (≈ 1min). The obtained deformation is used to propagate
the contours to the daily MR. The contours are manually adapted to the current anatomy
(≈ 10min, dependent on anatomy). The updated contours are used to generate a new treatment
plan (≈ 5min). When the treatment plan is almost finished a second MR scan is acquired for
position verification (≈ 2min). If no large shifts occurred between the first and the second MR
scan the treatment can commence.

Pre-beam imaging in online MR–guided radiation therapy has vastly different de-
sign considerations than in the offline setting of diagnostic imaging in radiology.
The online workflow strongly relates to that of an interventional setting where the
first images have to be available with minimal idle time to initialize the replan-
ning. Furthermore, subsequent images should be available on demand to check
the validity of the anatomical state before starting radiation therapy. Further,
for abdominothoracic tumors the anatomy needs to be captured in a represen-
tative motion state (e.g. mid-position) [59, 60]. Typical (diagnostic) sequences
are unable to meet these requirements simultaneously. The ability to encode all
the required information in a single MR scan that is also able to reconstruct
the desired information at the correct moment in time would be invaluable for
MR-guided radiation therapy.

In this work we describe the design and implementation of such a single MR scan
that is optimised in conjunction with the clinical workflow to facilitate fast online
treatment planning. We named the combination of the MR scan and the corre-
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sponding processing MR-RIDDLE: Multiresolution Radial MRI to Reduce IDLE
time in pre-beam imaging on an MR-Linac. The scan is based on a continuous
3D gradient echo golden angle stack-of-stars trajectory that enables reconstruc-
tion with flexible spatial and temporal resolution [33, 131]. The golden angle
stack-of-stars trajectory enables image reconstruction to commence during data
acquisition, where the reconstruction resolution is flexible and optimised with re-
spect to the amount of data acquired at each instance in time. As a consequence,
low resolution images are available after just a few seconds of scanning, which we
hypothesize can be used to propagate the pre-treatment contours and therefore
accelerate the clinical workflow [61,137].

The proposed method extends to anatomies affected by respiratory motion by
combining a free-breathing acquisition with a motion-weighted image reconstruc-
tion. The stack-of-stars trajectory inherently portrays the time-averaged (blurred)
position (mid-position) [138], while simultaneously providing a self-navigated mo-
tion surrogate [139]. The combination of these two enables a motion-weighted
image reconstruction that is able to reconstruct a deblurred mid-position volume
with minimal processing time [140,141]. The method will be especially attractive
for patients that are unable to suspend respiration for a sufficient amount of time.
We envision that our proposed method will provide a robust and relatively simple
approach for online mid-position-based MR-guided radiation therapy treatment
planning.

4.2 Methods

4.2.1 Conceptual overview

Figure 4.2 provides an overview of the MR-RIDDLE pre-beam imaging method,
which consist of radial k-space data acquisition, multiresolution image reconstruc-
tion and motion-weighted image reconstruction. K-space data are continuously
acquired during free-breathing using a golden angle stack-of-stars trajectory. The
image reconstruction commences at multiple time-points during the data acqui-
sition and aliasing-free images are obtained by optimizing the reconstruction res-
olution with respect to the amount of acquired k-space data. Upon reaching the
maximum spatial resolution, respiratory motion surrogates are estimated directly
from the k-space data to perform motion-weighted image reconstructions that
reduce motion-induced blurring. Note that the proposed method is a form of an
expanding window image reconstruction and not a (conventional) sliding window
reconstruction.

4.2.2 MRI data acquisition

MRI data were acquired using a golden angle stack-of-stars trajectory where all
phase encodes along kz were scanned sequentially. The trajectory has four ma-
jor advantages for the radiation therapy workflow. First, the radial trajectory
repeatedly samples the k-space centre and therefore is inherently robust against
motion-induced artefacts [33,142]. Second, each readout contributes equivalently
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Figure 4.2: Overview of the MR-RIDDLE protocol: K-space data are acquired during
free breathing using a golden angle stack-of-stars trajectory. Top row: The acquired k-space
data is block-filtered (red) such that the residual k-space (blue) complies with the Nyquist
criterion and aliasing-free (multiresolution) images can be reconstructed at any moment in
time. Upon reaching the acquisition spatial resolution, the k-space data is motion-weighted
using a soft-gating filter to reduce motion-induced blurring (middle row). The soft-gating filter
is parametrised with the coefficients c1 and c2. The light-blue in the soft-gating filters indicates
the downweighting of the data, which is also shown in the middle row.

in k-space content to the complete image and therefore inherently portrays the
time-averaged (blurred) position of the anatomy [138]. Third, the repeated sam-
pling of the k-space centre enables extraction of a motion-state surrogate sig-
nal that allows a motion-weighted image reconstruction to effectively deblur the
motion-blurred anatomy [140]. Fourth, the golden angular increment ensures near
uniform k-space filling at any instance in time, which enables image reconstruction
from arbitrary imaging windows [131].

4.2.3 MRI data processing

Radially acquired MR data are prone to geometrical distortions and image arte-
facts due to gradient systems imperfections [69, 143, 144]. To mitigate the arte-
facts, the zeroth and first spatial order gradient impulse response functions of the
gradient system were characterised and used for k-space trajectory correction and
phase corrected image reconstructions [53,76].

The centre k-space sample along the partition direction (kz) was used as a surro-
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gate for the global motion [139]. The surrogate was calculated by concatenating
the projections for all the receivers coils into one 2D matrix and applying prin-
cipal component analysis to detect the main variation in the frequency range
(0.0-0.5 Hz) [145]. The motion surrogate was determined for each radial angle in
the partition and thus the temporal resolution of the surrogate depends on the
number of partitions (kz) times the repetition time.

4.2.4 MR-RIDDLE reconstruction for non-moving organs

The proposed method reconstructs aliasing-free images at multiple time-points
during the acquisition by optimizing the reconstruction resolution with respect
to the amount of acquired data. The reconstruction resolution is controlled by
filtering the in-plane k-space with a block filter with isotropic width (W ) that
corresponds to reconstruction resolution (N). The relationship between the width
of the block filter and the number of acquired projections (Nproj) for golden angle
radial stack-of-stars is defined by Equation 4.1, assuming no undersampling in the
partition direction and isotropic in-plane image size. The final image resolution
will equal the acquisition resolution (Nacq).

W (t) ∝ N(t) =

{
2Nproj(t)

π if
2Nproj(t)

π < Nacq
Nacq otherwise

(4.1)

After in-plane resolution filtering, the k-space data of the individual coils were
multiplied by a fixed Ram-Lak filter for density compensation followed by the
non-uniform fast Fourier transform (NUFFT) [146]. The coil images were com-
bined using a Roemer coil combination [147] where the coil sensitivity maps were
estimated from the low resolution images using ESPIRiT [148].

4.2.5 MR-RIDDLE reconstruction for moving organs

For abdominothoracic anatomies the multiresolution approach extends to the
motion dimension in the form of a motion-weighted image reconstruction (soft-
gating) [140]. Imaging data that are acquired far away from the target motion
position are downweighted in the reconstruction using soft-weights. These soft-
weights (sw) are optimised with respect to the acquired k-space data (y) for a
certain set of parameters (c = [c1, c2, c3]) for the exponential weighting function
shown in Equation 4.2 [141,149].

sw(y,c) =

{
−c2(|d(y)|−c1−c3k2r(y) if |d(y)| > c1

1 otherwise
(4.2)

c2 = min
c2
||π

2
Nacq −

1

Nsamp

∑
sw(y, c)||2 (4.3)
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The soft-weights are derived from both the set of parameters c and the normalized
distance d(y) between the current motion state and the target motion state. Here
d(y) is defined as a normalized proxy (d(y) ∈ [0, 1]) for the physical distance to
the target motion state. The threshold c1 defines the region that is considered
motion-free and parameter c2 controls the downweighting in the regions where
|d(y)| > c1. In addition, the penalty term c3kr(k

2
r = k2

x + k2
y) differentiates

between low and high frequencies within a readout to equalise their contribution to
the total artefact power [150]. The parameters c1 and c3 were fixed to c1 = 0.5 and
c3 = 0.1 based on empirical observations, while c2 was adapted dynamically over
the acquisition. Soft-gating is in essence a sub-sampling operator and therefore c2
can be optimised to fulfil the Nyquist theorem at any point in time, which for the
stack-of-stars case can be defined as in Equation (4.3). Here, Nsamp is defined as
the number of samples acquired per k-space readout. The optimization effectively
imposes the maximum amount of soft-gating without sub-Nyquist sampling. The
search for the optimal c2 can be approximately solved very fast using a brute-
force search in the parameter space ∈ [0 : 0.01 : 20]. The k-space data were then
multiplied with the soft-weights followed by the image reconstruction as explained
in the previous paragraph.

4.3 Experiments

4.3.1 Digital phantom (XCAT) simulations on non-moving
organs: proof of concept

To establish whether MR-RIDDLE reconstructs aliasing-free images from arbi-
trary imaging windows, we performed in-silico experiments using the 4D extended
cardiac-torso (XCAT) digital phantom [151]. In short, the simulations were single
receive channel acquisitions on discrete temporal volumetric XCAT data and did
not include a magnetization model. The k-space data were obtained by applying
the adjoint NUFFT and adding complex Gaussian noise ℵ(0, 0.5% |k(0, 0, 0)|).
A detailed description of the simulation setup can be found in Supplementary
information I.

Multiresolution images were reconstructed at 10s intervals, using all the available
data, and were qualitatively analysed for residual aliasing artefacts. The mul-
tiresolution images were effectively reconstructed with a different aperture and
therefore show different point-spread functions.

4.3.2 Digital phantom (XCAT) simulations on moving
anatomy: mid-position validation

To assess the capability of MR-RIDDLE to cope with respiratory motion and
tumour drift in the thorax, we performed in silico experiments similar to the
non-moving experiment. The XCAT phantom was parametrised such that the
maximum respiratory amplitude of the diaphragm in the feet-head direction was
at the higher end of physiological reported motion (±3 cm) [152, 153]. In ad-
dition, we superimposed a gradual baseline shift of up to 2 cm. We inserted a
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spherical tumour (1 cm diameter) in the left lung that moved along with the
prescribed motion. A detailed description of the simulation setup can be found
in supplementary information I.

Images were reconstructed every 10 seconds using all the available imaging data,
where the spatial resolution and extent of soft-gating increased in time. These re-
constructions were used to assess the ability of MR-RIDDLE to effectively deblur
the motion-induced image artefacts while portraying the tumour mid-position.
The mid-position was defined as the average position over the whole examined
period. The mid-position of the tumour was estimated by registering the recon-
structed volumes to the XCAT exhale volume. The registration was done using a
masked, cross-correlation, based rigid registration method [154] and the tumour
position in feet-head was extracted. The measured tumour position from the re-
constructed (multiresolution) volumes was then compared against the analytical
tumour positions provided by XCAT (Supplementary information II). Note that
the proposed method is a form of an expanding window image reconstruction and
not a (conventional) sliding window reconstruction.

4.3.3 MRL imaging: contour propagation to low resolution
images

To demonstrate one example of the potential workflow gain of MR-RIDDLE we
implemented the sequence on an Elekta Unity 1.5T MR-Linac (Elekta AB, Stock-
holm, Sweden). The key idea is that a low resolution image already suffices to
accurately propagate the organ contours from the pre-treatment scan and there-
fore speed-up the clinical workflow. We acquired multiple MR-RIDDLE scans in
six volunteers in the upper abdomen with different contrasts. The sequence pa-
rameters for the scans are specified in supplementary information I. MR-RIDDLE
images were reconstructed at 10s intervals, using all the available data, without
any image acceleration such as parallel imaging. The final reconstructed image
was then selected as the reference and used to delineate the liver, the right kid-
ney and the aorta. Note that the reference is from the same acquisition, i.e. not
from a separate scan. All the reconstructed images were then deformable regis-
tered to the reference image using an in-house validated optical flow algorithm
(α = 0.3) [99, 100]. The resulting deformation vector fields were used to prop-
agate the contours to the MR-RIDDLE images. The propagated contours were
quantitatively compared on each time-point versus the reference using the Dice
coefficient and the mean deformation vector (|DV Fxyz|) (Equation 4.4). Note
that in the case that no significant drift occurred within the 180s scanning the
Dice should be close to 1 and the |DV Fxyz| close to 0 for all time-points.

|DV Fxyz| =
1

N2

√√√√ N∑
n=1

DV F 2
x +DV F 2

y +DV F 2
z (4.4)
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Figure 4.3: MR-RIDDLE simulations on non-moving organs: A) Spatial resolution
and reconstruction matrix size (reciprocal to spatial resolution) as a function of the acquisition
time. B) In-plane (kx,ky) point-spread-function as a function of the acquisition time. C)
Multiresolution images reconstructed at four time-points for the sagittal and transverse planes.
The inserts in the top left indicate the width of the block filter to adjust the spatial resolution.
Red samples are discarded while the blue samples are accepted.

4.4 Results

4.4.1 Digital phantom (XCAT) simulations on non-moving
anatomy: proof of concept

The relationship between the acquisition time and the in-plane (kx,ky) spatial
resolution of the reconstructed images is shown in Fig.4.3A. Images with 5 mm res-
olution were reconstructed within 25 s of scanning time, while 180 s were required
to achieve acquisition resolution (0.8 mm). The effect of the multiresolution filter
(i.e. block filter width) is shown in Fig.4.3B, which shows reduced Gibbs ringing
and a narrower point spread function with increasing scan time. The multiresolu-
tion images showed no residual aliasing artefacts at any reconstructed time-points
(Fig.4.3C). The signal-to-noise (SNR) increased with acquisition time linearly un-
til reaching the acquisition resolution. The SNR increases linearly because both,
the widening of the block filter and the prolonged scanning, include more samples
for image reconstruction.
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4.4.2 Digital phantom (XCAT) simulations on moving organs:
mid-position validation

Multiresolution images were reconstructed and showed no aliasing artefacts (Fig4.4.A).
From left to right the spatial resolution increases and the motion-induced blur-
ring reduces by gradually increasing the soft-gating. The reconstructions at time-
points < 10 s showed differences in tumour position of more than 5 mm compared
to the true mid-position in the feet-head direction (Fig4.4.B). This difference in
tumour position is presumably caused by the inability of the reconstruction and
registration algorithms to function at very coarse image resolution (12 mm). Note
that the proposed method was able to follow the systematic tumour drift inferred
by the motion waveform shown in the top of Figure 4.4B. The tumour position
was within 1 mm of the true mid-position after 20 s of acquisition time with mean
difference of 0.6± 0.3mm in the feet-head direction.

4.4.3 MRL imaging: contour propagation to low resolution
images

Multiresolution images were reconstructed on a five second interval and typical
image quality for spoiled gradient echo and balanced gradient echo are shown
in Figure 4.5. The final reconstruction was used to delineate the liver, the right
kidney and the aorta. The reconstructions on different time-points show the same
improvements in image quality as observed in the simulations. The image acquisi-
tion time is shown in the left bottom corner of the axial slices while the additional
reconstructions times were approximately 10 seconds for the first volume and 20
seconds for 3 minutes of acquisition.

The multiresolution images were deformable registered to the final reconstructed
image using optical flow and the obtained DVFs were used to analyse the prop-
agated contours for the aorta, kidney and the liver. The mean |DV Fxyz| were
around 0.5 mm after 30 seconds of scanning time and gradually approached zero
over all six volunteers. Note that the mean |DV Fxyz| should converge to zero,
because the final image is the reference. The DVFs were used to warp to prop-
agate the contours and the corresponding Dice coefficients were larger than 0.97
after 30 seconds of scanning and were approximately 1 after 150 seconds.
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Figure 4.4: MR-RIDDLE simulations on a moving thoracic anatomy. A) Multireso-
lution images reconstructed at four time-points for the coronal and transverse planes. First and
second column indicate different reconstruction resolutions while the third and fourth column
have different soft-gating filters. B) Drift analysis. XCAT was parametrised such that the
diaphragm moved up to 5 cm in feet-head between the maximum and minimum points of the
motion surrogate (solid black line). The boxplots cover the range of the tumour positions in the
feet-head direction up till the current point in time. The stars indicate the center position of
the tumour both in the MR-RIDDLE reconstructions (blue) and the true XCAT mid-positions
(green).
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Figure 4.5: In vivo MR-RIDDLE reconstructions on a 1.5T MR-Linac. A) 3D golden
angle stack-of-stars spoiled gradient echo with short inversion time inversion recovery (STIR).
Sequence parameters were: flip angle=12◦ , TR/TE=4.8/2.0 ms, field-of-view=330x330x152
mm3, acquisition resolution=1.5x1.5x4.0 mm3. B) 3D golden angle stack-of-stars balanced
gradient echo with STIR. Sequence parameters were: flip angle=30◦, TR/TE=4.2/2.1 ms, field-
of-view=330x330x152 mm3, acquisition resolution=1.5x1.5x4.0 mm3.
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Figure 4.6: Analysis of the propagated contours for the multiresolution MR-
RIDDLE reconstructions. A) The methodology used to assess the contours. All the recon-
structed images were registered to the final reconstruction using optical flow (α = 0.3). The
obtained DVFs were analysed using the total displacement vector in the aorta, kidney and liver.
Additionally, the DVFs were used to deform the organ segmentations to calculate the corre-
sponding Dice coefficients. B) The mean displacement vector and mean Dice coefficient across
six volunteers are shown as a function of the acquisition time.

4.5 Discussion

Here, we are the first to design and to implement a method that encodes all
the information required for treatment planning in a single pre-beam scan to re-
duce the idle time in the clinical workflow. In particular, we showed in digital
simulations that MR-RIDDLE produces usable (low-resolution) images after 30
seconds of imaging, after which higher-resolution image-updates are available on
demand. Then we showed with a 4D digital phantom that MR-RIDDLE inher-
ently captures the mid-position of the anatomy, with a precision better than 1
mm, even for cases with large respiratory movements or baseline shifts. Finally,
we demonstrated on a 1.5T MR-Linac, in six volunteers and multiple contrasts,
that MR-RIDDLE reliably produces high quality mid-position volumes for ini-
tialization of contouring in well under a minute without introducing additional
registration uncertainties.

The major advantage of MR-RIDDLE is the ability to provide usable low-resolution

65



Chapter 4 MR-RIDDLE

images for contouring within one minute. These low-resolution images reduce the
time required to start recontouring with 2:34 min for the protocol used in [43],
while simultaneously allowing even higher resolution acquisitions (Supplementary
information III). In addition, MR-RIDDLE enables images to be reconstructed
from arbitrary temporal windows, which could be used for position verification
scans that are commonly performed just prior to irradiation. These position veri-
fication scans would be instantly available on demand with our proposed method,
which further reduces the idle time in the workflow (1:40 min for the example in
Fig.4.1). Moreover, MR-RIDDLE does not rely on prospective motion compen-
sation techniques (e.g. gating). Instead, our free-breathing approach captures
all the information and as a consequences makes the method applicable even to
patients that are not able to suspend their breath. In addition, the soft-gated
image reconstruction is able to reconstruct a deblurred mid-position volume with
minimal processing time (< 5s). The proposed method considerably simplifies
the currently used mid-position method, which requires the reconstruction of a
4D volume followed by multiple 3D image registrations [60]. We envision that our
proposed method will provide a robust and relative simple approach for online
mid-position based MR-guided radiation therapy treatment planning.

Aside from pre-beam imaging, MR-RIDDLE could potentially be used as a real-
time method to track the mid-position of slower moving anatomy, such as the
prostate. In these type of applications we could increase the temporal resolu-
tion (decrease spatial resolution) together with sliding window reconstructions to
provide robust and consistent large field-of-view 3D volumes for tracking. The
sliding windows used for these reconstructions are completely flexible and can be
tailored in terms of temporal and spatial resolution for targeted applications. For
these reconstructions we could use a 95% DICE score cut-off (Figure 4.6) and
get accurate deformation vector fields with a temporal window of only 22 seconds
without acceleration methods.

Besides online MR-guided radiation therapy, MR-RIDDLE could be used in di-
agnostic scans for patients that are unable to remain sufficiently still. For these
patients the longest scanning period without bulk motion could be detected in
retrospect and the motion-free images can be recovered using a lower-resolution
reconstruction, which would reduce the number of failed scans. The current
implementation of MR-RIDDLE supports spoiled gradient echo or balanced gra-
dient echo contrast, but not pure T2 contrast. However, emerging approaches to
generate T2 contrast with stack-of-stars sequences are promising [155].

MR-RIDDLE has several limitations that require discussion. First, the method
enables high resolution pre-beam acquisitions at a cost of a minor increase in rep-
etition time compared to conventional low-resolution acquisitions. The increase
in repetition time is a function of machine hardware parameters and is discussed
in supplementary information IV. Second, the quality of the soft-gated image re-
construction to deblur the anatomy in the mid-position depends largely on the
motion surrogate. Systematic shifts of this motion surrogate could introduce a
position bias, however the inclusion of multiple surrogates could tackle this is-
sue. Note that the MR-RIDDLE reconstructions will always have a small delay
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in detecting these systematic shifts due to the intrinsic blurring caused by the
temporal window. Third, MR-RIDDLE is not easily translatable to spin-echo
type of sequences that are commonly used in radiation therapy.

So far, MR-RIDDLE was only evaluated in volunteers in an offline setting. In
future work we aim to embed the image reconstruction in the online workflow to
perform treatment simulations. Using the treatment simulations we can begin to
determine optimal reconstruction timings, investigate the convergence to sharp
reconstructions in abdominal/thoracic regions and to examine the overall practi-
cality of the method in the clinical workflow. Moreover, MR-RIDDLE could be
extended to reconstruct respiratory resolved 4D MRI’s from the exactly the same
dataset [156] [157]. These respiratory-resolved 4D MRI’s do not capture system-
atic baseline shifts and therefore could be supplemented with a low spatial/high
temporal resolution sliding window (as discussed in the real-time method) for
complete motion estimation. Both these extensions are excellent examples of the
potential of the flexibility of the golden angle sampling scheme that allows the
user to encode information of multiple temporal and spatial resolutions in a single
scan.

The current implementation of MR-RIDDLE did not use acceleration techniques
such parallel imaging due to the long processing times required for 3D non-
Cartesian sensitivity encoding. The longer processing time would counteract the
saved acquisition time and therefore not speed-up the workflow. An alternative
method to accelerate the imaging would be to use partial Fourier, Cartesian sen-
sitivity encoding in the partition direction or use variable density or asymmetric
field-of-view stack-of-stars sampling schemes. Using these methods we believe to
gain a factor of 2-3 acceleration on top of the imaging times reported in this work.

4.6 Conclusion

MR-RIDDLE is capable of producing a mid-position volume for initialization of
contouring or contour propagation in well under a minute, after which the image
acquisition continues to collect data for high-resolution image updates. Moreover,
continuing the data acquisition during the recontouring enables the final image
reconstruction to be very high resolution, which is infeasible with conventional
sequences. MR-RIDDLE creates a more streamlined and time-efficient workflow
where continuous data acquisition and human interaction are performed in par-
allel.
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Abstract

Purpose: To develop and evaluate a free-breathing respiratory motion
compensated 4D (3D+respiration) T2-weighted turbo spin echo sequence
with application to radiology and MR-guided radiotherapy.

Methods: k-space data are continuously acquired using a rewound
Cartesian acquisition with spiral profile ordering (rCASPR) to provide
matching contrast to the conventional linear phase encode ordering and
to sort data into multiple respiratory phases. Low-resolution respiratory-
correlated 4D images were reconstructed with compressed sensing and
used to estimate non-rigid deformation vector fields, which were subse-
quently used for a motion compensated image reconstruction.

rCASPR sampling was compared to linear and CASPR sampling in
terms of point-spread-function (PSF) and image contrast with in sil-
ico, phantom and in vivo experiments. Reconstruction parameters for
low-resolution 4D-MRI (spatial resolution and temporal regularization)
were determined using a grid search. The proposed motion compen-
sated rCASPR was evaluated in eight healthy volunteers and compared
to free-breathing scans with linear sampling. Image quality was com-
pared based on visual inspection and quantitatively by means of the
gradient entropy.

Results: rCASPR provided a superior PSF (similar in ky and nar-
rower in kz) and showed no considerable differences in images con-
trast compared to linear sampling. The optimal 4D-MRI reconstruc-
tion parameters were spatial resolution=4.5 mm3 (3x reduction) and
λt = 1 · 10−4. The groupwise average gradient entropy was 22.31 ± 0.07
for linear, 22.20± 0.09 for rCASPR, 22.14± 0.10 for soft-gated rCASPR
and 22.02 ± 0.11 for motion compensated rCASPR.

Conclusion: The proposed motion compensated rCASPR enables high
quality free-breathing T2-TSE with minimal changes in image contrast
and scan time. The proposed method therefore enables direct transfer
of clinically used 3D TSE sequences to free-breathing.

Keywords: Motion correction, turbo spin-echo, fast spin-echo, motion
compensated image reconstruction, compressed sensing
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5.1 Introduction

Respiratory motion during Magnetic Resonance Imaging (MRI) has been a long
standing problem that leads to considerable reductions in image quality [30].
The solutions traditionally proposed in the radiology workflow are breathhold
or respiratory triggered scans, which are effective at reducing motion artefacts
at the cost of limited spatial resolution, increased scan time and reduced pa-
tient comfort. The solutions traditionally proposed in the MR-guided radio-
therapy workflow are respiratory correlated 4D-MRI scans [35], which sort the
data into multiple motion states based on a respiratory surrogate signal. These
4D-MRI scans simultaneously reduce motion artefacts and quantify the respira-
tory motion, but require considerably longer scan times and often show reduced
image quality compared to breathhold and gated scans. This reduction in im-
age quality is one of the main reasons why 4D-MRI methods are not widely
adopted in clinical exams. Recent advances using motion robust sampling trajec-
tories [33, 131], self-navigation [139, 158], compressed sensing image reconstruc-
tion [159,160] and motion compensated image reconstruction [161,162] have im-
proved image quality considerably, but are often limited to T1-weighted (T1-w)
gradient echo (GRE), while many clinical applications require T2-weighted (T2-
w) turbo spin-echo (TSE) scans [163, 164]. T2-w TSE has clinical utility in
multiple abdominal applications, ranging from the diagnostics of focal hepatic
masses [165] and biliary disorders [166] to contouring of pancreatic tumours for
radiation therapy [152]. Therefore, there is a clear need for a motion robust 4D
(3D+respiration) free-breathing sequence that is able to provide similar image
contrast as conventional T2-w TSE exams.

T2-w TSE scans are typically acquired using 2D multi-slice methods, which offer
lower spatial resolution in the slice direction (compared to 3D). The low spa-
tial resolution in the slice direction impedes retrospective reformatting into freely
selectable view orientations, which is diagnostically favorable for specific appli-
cations [167]. Motion robust 3D T2-w TSE scans in free-breathing are currently
uncommon in clinical applications and have sparked little interest in research.
One of the reason is the inherent challenges accompanied with high quality 4D
(3D+respiration) T2-w TSE. The main challenge is the reduced flexibility in selec-
tion of k-space trajectory, because non-Cartesian schemes (e.g. radial) repetitively
sample the k-space center and therefore impact the T2-weighting. These differ-
ences in T2-weighting lead to an undefined image contrast and, as pointed out
by Benkert et al. [168], can only be circumvented by using k-space filtering [169]
techniques or model-based reconstructions [170]. Alternatively, Benkert et al.
proposed a stack-of-stars trajectory to place the echo train along the Cartesian
sampled direction (kz) [168], which directly couples the echo train length to the
number of partitions in the kz direction. The second challenge is that the acqui-
sition times of 3D T2-w TSE are longer than for GRE (2-3 times), which requires
aggressive undersampling to reduce scan times to clinically acceptable levels and
subsequently requires efficient image reconstruction algorithms to cope with the
highly undersampled data [171].

In this work we further develop motion robust free-breathing 4D (3D+respiration)
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T2-w TSE imaging in order to improve the image quality to make it comparable
to respiratory triggered or breathhold examinations. First, we propose a novel
k-space trajectory called a rewound spiral acquisition with spiral profile ordering
(rCASPR), which is an extension of the regular CASPR trajectory [172]. A kin
to CASPR, rCASPR provides self-navigation, golden angle profile ordering and
inherent motion robustness due to variable density sampling [173]. In addition,
rCASPR increases the maximum viable echo train length to better accommodate
T2-contrasts for TSE imaging, which allows direct matching of the T2 contrast
to the conventional linear sampled 3D TSE scans. Second, we perform a motion
compensated image reconstruction [161] similar to the work of Kolbitsch et al.
[174], in which the motion fields are estimated from a high resolution respiratory-
correlated 4D-MRI. Instead of using the high resolution 4D-MRI, we propose to
estimate the motion fields from a low resolution 4D-MRI, which according to
previous works does not significantly reduce the quality of the deformation vector
fields [175] [80]. The reduction in spatial resolution is more aggressive than the
approaches of previous works that used only a 1.5x reduced spatial resolution [176]
or high spatial regularization [177] and considerably speeds-up the computation
of the 4D-MRI.

The proposed free-breathing 4D T2-w TSE implementation is investigated in eight
healthy volunteers. First, we assess the point-spread-function (PSF) and similar-
ity in image contrast between rCASPR and conventional linear sampling. Second,
we determine the optimal hyperparameters (spatial resolution and regularization
parameter) for 4D-MRI based motion estimation. The quality of the motion
fields are evaluated by using them in the motion compensated image reconstruc-
tion and subsequently evaluating the reconstructed images using the gradient
entropy metric [178]. Third, the general image quality of motion compensated
rCASPR is compared against conventional linear sampling, rCASPR without mo-
tion correction and rCASPR with soft-gating [140,141] using the gradient entropy
metric [178].

5.2 Methods

5.2.1 MRI acquisition and preprocessing

All subjects were scanned on a 1.5T radiotherapy MR system (Philips, Ingenia,
Best, the Netherlands) using a 12 channel posterior and 16 channel anterior receive
coil. This study was approved by the local institutional review board and informed
consent was obtained from all the participants. Eight volunteers were scanned
with a TSE sequence with variable refocusing flip angle train to maximize the
shot length for the desired T2 contrast. Relevant sequence parameters for both
acquisitions are shown in Table 5.1. All scans were acquired two times, once with
the standard linear scheme and once with the proposed golden angle rCASPR
scheme (Fig 5.1).

rCASPR samples phase encodes on rotated spiral interleaves, including the ky,z =
(0, 0) for each interleave, similar to CASPR. However, rCASPR starts at the
periphery and samples half of the phase encodes going inwards and samples the
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Table 5.1: Scanner and sequence parameters of the volunteer imaging experiments.

Sequence settings
T2-TSE

Field strength 1.5T
Spatial resolution 1.3 x 1.3 x 2.0 mm3

Matrix size 308 x 270 x 133
Field-of-view 400 x 350 x 400 mm3

Repetition time 1000 ms
Effective echo time 230 ms
Echo train length 114
Echo spacing 3.7 ms
Readout bandwidth 855 Hz/pixel
Scan time 248 s

other half of the phase encodes going outwards (Fig 5.1C). In other words, CASPR
samples a spiral-out while rCASPR samples a spiral-in-out. The rCASPR phase
encodes are selected with a nearest neighbour interpolation from an analytical
Archimedean spiral with one revolution per shot. The rCASPR sampling scheme
ensures that no duplicate phase encodes are acquired within one spiral interleave.
Between the different spiral interleaves, the ky,z = (0, 0) phase encode is repeated
in order to enable self-navigation and motion estimation. Contrast control to
specific effective echo times can be achieved by shifting the entire spiral interleave.
This will shift the acquisition of the ky,z = (0, 0) phase encodes earlier/later in
the TSE train. The shifted phase encodes are added to the start or end of the
TSE train, depending on the direction of the shift. More details on the sampling
scheme are provided on github [179].

Prior to the TSE sequences a reference scan, implemented by the vendor, was
acquired to generate the coil sensitivity maps (CSM) [180]. K-space data were
exported using Reconframe (Gyrotools, Zurich, CH) and were prewhitened and
coil compressed to 16 virtual channels. The multi-channel kx,y = (0, 0) projections
were used to estimate the respiratory motion surrogate using the coil clustering
method [158, 160]. The motion surrogate was subsequently used to soft-gate or
to reorder the data across respiratory phases using amplitude binning. Note that
both the soft-gating and data reordering operate on complete spiral interleaves
and not on partial spiral interleaves. All images were reconstructed offline in
Matlab.

5.2.2 Respiratory-correlated 4D-MRI reconstruction

Prior to image reconstruction the k-space data were cropped to lower spatial
resolution to reduce the undersampling factor. The extent of reduction in spatial
resolution will be addressed in subsection 2.8. The surrogate signal was used
to reorder the k-space data across 8 respiratory phases using soft-gating with
a Gaussian kernel that partially included data from neighbouring phases [140,
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Figure 5.1: K-space sampling schemes for turbo spin-echo imaging. A) The linear
scheme samples phase encodes along linear lines, which is widely used in clinical TSE sequences.
B) The CASPR scheme samples phase encodes along spiral interleaves starting in the center
and moving to the periphery (spiral-out). The order of phase encodes is indicated with the
numbers, starting from 1 and moving to 13. Subsequent spirals are rotated with the golden
ratio 137.5◦. C) The rCASPR scheme samples phase encodes along spiral interleaves, starting
on the periphery, moving inwards and moving outwards again, i.e. spiral-in-out (as indicated
by the numbers). CASPR = Cartesian acquisition with spiral profile ordering, rCASPR =
rewound Cartesian acquisition with spiral profile ordering, TSE = turbo spin-echo.

Figure 5.2: Overview of the proposed image reconstruction framework. Input
consists of measured k-space data and a pre-scan to estimate the CSM and noise levels. The k-
space data is prewhitened and coil compressed using information from the pre-scan. In parallel,
the self-navigation profile is estimated from the multi-coil kz projections. The k-space data
is binned in respiratory phases and subsequently cropped to lower spatial resolution. The low
resolution k-space is reconstructed using PICS and registered to obtain the DVFs. The DVFs
are inverted (DVFs−1) and interpolated to high resolution. The high resolution DVFs are
used together with the high resolution binned k-space data for the motion compensated image
reconstruction. CSM = coil sensitivity maps, PICS = parallel imaging and compressed sensing,
DVF = deformation vector field

141,181]. The soft-weights (Wt) were constrained to restrict the total number of

samples to
∑Nspirals

i=1 Wt,i = 1.5 · Nspirals

Nphases
, with Nspirals as the number of acquired

spiral interleaves and Nphases as the number of respiratory phases. Respiratory
resolved images were reconstructed using parallel imaging and compressed sensing
(PICS) with locally low-rank constraints [182] using the BART toolbox [183]:
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xt = min
xt

||Wt(FSxt − yt)||2 + λt||xt||∗ (5.1)

With Wt as the soft-weights for the different respiratory phases, F as the Fast
Fourier Transform, S as the coil sensitivities, xt as the respiratory phases images,
yt as the respiratory sorted k-space data, λt as the regularization parameter and
||xt||∗ as the nuclear norm.

5.2.3 Motion estimation

The low-resolution 4D images were interpolated (cubic) to the original high res-
olution matrix size. The respiratory phase images were registered to the exhale
position to obtain the deformation vector fields (DVF) using Matlab’s imple-
mentation of the diffeomorphic demons algorithm (imregdemons) [184,185]. The
demons algorithm uses the mean squared error as an image similarity metric. The
algorithm used three resolution levels with regularization parameter (α) set to
the voxel equivalent of 5 mm. Note that we also evaluated two other registration
methods [100,186], but found that the demons algorithm was better at handling
residual aliasing artefacts in the images (not reported). Subsequently, the reg-
istration was repeated in the opposing direction to get an initial guess for the
inverse DVFs (DVF-1). The DVF and DVF-1 were subsequently post-processed
to enforce inverse consistency as reported in [187].

5.2.4 Motion compensated 3D-MRI reconstruction

The final motion compensated image is reconstructed by incorporating the DVFs
in the signal model:

x = min
x
||FSUHx− y||2 + λw||Ψx||1 (5.2)

With UH as the operator that warps the exhale image to the different respiratory
phases and x as the ideal exhale image, y as the k-space data, λw as the regular-
ization parameter (0.001) and Ψ as the wavelet transform as a sparse prior. The
data consistency problem was solved using a modified version of the non-linear
conjugate gradient algorithm provided by Feng et al. [160] with gradient update
step as proposed by Polak and Ribiere [188]. More implementation details can
be found in the publicly available code [179].

5.2.5 Soft-gated 3D-MRI reconstruction

To compare the proposed motion compensated image reconstruction rCASPR
with a retrospectively gated reconstruction, the data were reconstructed using
soft-gating. All the k-space data were included to generate soft-weights (W ) with

an effective acceleration factor of 2, i.e.
∑Nspirals

i=1 Wi =
Nspirals

2 . The soft-weights
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were generated with the exhale position as a reference with a Gaussian weighting
kernel [189]. The weights were included in the PICS reconstruction using the
BART toolbox [183]:

x = min
x
||FSx− y||2 + λw||Ψx||1 (5.3)

With W as the soft-weights.

5.2.6 Point spread function analysis: Linear vs. rCASPR

The key concept of rCASPR sampling is to maintain the contrast of the conven-
tional T2 TSE sequences, which often use linear sampling. However, rCASPR
samples high frequencies with a mix of short and long echo times, which in-
evitably leads to a small difference in image contrast and the corresponding T2

point spread function. To investigate the difference in T2 point spread function
we setup a small in silico experiment. The refocusing flip angle trains along with
the subscribed phase encode scheme of the in vivo scans were extracted from the
MR system. The flip angle patterns were used to simulate a TSE scan for a tissue
type with T1 = 1000 ms and T2 = 100 ms using extended phase graphs [190].
The phase encode schemes were used to calculate echo time maps. The signal re-
sponse and echo time maps were used to sample a single point in image space that
exhibits T2 decay along the echo train. The fully sampled k-space data was sub-
sequently reconstructed using a fast Fourier Transform (with zero-padding) and
the resulting 1D and 2D point spread functions (PSF) were compared between
rCASPR and linear sampling.

5.2.7 Comparison of image contrast: Linear vs. rCASPR

The rCASPR sampling scheme was introduced to facilitate 4D image reconstruc-
tion, while minimizing differences in image contrast. To assess these differences
in image contrast two experiments were performed. First, a gel tube phantom
with varying T1 and T2 values was measured with linear, CASPR and rCASPR
scans. The mean value within the tubes was computed and compared using the
normalized root mean squared error. Second, one dataset of a volunteer was
analyzed to inspect differences in image contrast between linear and rCASPR
reconstructions (no motion correction). The root mean square error between the
images was calculated and line profiles were extracted from static anatomy and
qualitatively compared.

5.2.8 Optimal spatial resolution for 4D-MRI based motion
estimation

The rCASPR scheme samples the k-space with variable density and therefore has
an increasing undersampling factor with respect to the radial coordinate. This
property is exploited in the respiratory-correlated 4D-MRI reconstruction to re-
duce the undersampling factor by reducing the spatial resolution. The key idea
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here is that lowering the spatial resolution reduces residual aliasing artefacts and
motion blurring in the PICS reconstruction, while not affecting the final motion
estimation [175]. In addition, a reduction in spatial resolution considerably re-
duces the computational requirements. The reduction in spatial resolution could
improve the motion estimation and ultimately lead to higher image quality for
the motion compensated rCASPR. However, the quality of the motion estimation
is difficult to quantify from the DVFs directly [191]. Therefore we propose to
measure the image quality of the motion compensated rCASPR reconstructions
as a surrogate for the quality of the 4D-MRI based motion estimation. For the
optimization a grid search was performed for one volunteer with spatial resolu-
tion ∈ [1.5 : 1.5 : 7.5] mm3 and λt ∈ [5.0, 10.0, 20.0, 50.0, 100.0] · 10−4. In total 25
4D-MRIs were used for motion compensated image reconstructions. These recon-
structions were subsequently analyzed using the global gradient entropy (GE)
to determine the optimal hyperparameters [178]. These hyperparameters were
expected to be representative for the complete group and were therefore used for
all volunteer motion compensated image reconstructions.

5.2.9 Comparison of image quality: Linear vs rCASPR

The proposed motion compensated rCASPR was compared to linear, rCASPR
and soft-gated rCASPR in eight healthy volunteers for T2-w TSE. The image
quality was compared by computing the (global) gradient entropy for all the
reconstructed images [178]. A reduction of the gradient entropy corresponds to
an increase an image quality. Note that all reconstructions were performed with
the same spatial regularization parameter (λw) such that the gradient entropy is
reflective of the removal of motion artefacts.

5.3 Results

5.3.1 Point spread function analysis: Linear vs rCASPR

Figure 5.3 shows the result of the in silico point spread function analysis. Figures-
5.3A shows the flip angle train and B the corresponding T2 decay that is used
in combination with the echo time maps (Figure-5.3C) for linear and rCASPR
sampling. Note that the echo time map of linear sampling shows that the phase
encode scheme is optimized for acquisition efficiency and therefore does not sample
straight columns. The echo time maps leads to the 1D and 2D point spread
functions shown in Figure-5.3D+E. The point spread function is similar in the Y
direction and narrower for rCASPR sampling in the Z direction.

5.3.2 Comparison of image contrast: Linear vs. rCASPR

Figure 5.4A shows the phantom scan of the gel tube phantom with varying T1 and
T2 values. Note that the image contrast of rCASPR is more similar to the linear
scan then CASPR, which is also reflected in the normalized root mean squared
error values that are 0.018 and 0.08 for rCASPR and CASPR respectively. These
findings are also reflected in the mean signal intensities per tube as shown in the
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Figure 5.3: Point spread function analysis of linear and rCASPR sampling. A)
Refocusing angle train used for the experiments. B) Extended phase graph signal simulation
for a spin with T1/T2 = 1000/100 ms. C) Echo time maps of all the sampled phase encodes.
D) 1D point spread functions in the Y and Z directions. Note that the PSF of rCASPR is
superior in the Z direction and similar in the Y direction compared to linear. E) 2D point
spread functions for both linear and rCASPR.

barplot in Figure 5.4B. Figure 5.4C shows in vivo data of the linear and rCASPR
sampling with RMSE = 0.051. The rCASPR reconstructions show reduced mo-
tion artefacts (green arrow) compared to linear sampling. The right side of the
figure shows line intensity profiles, which are well aligned between the scans.

Figure 5.4: Image contrast comparison of linear vs rCASPR sampling schemes
in T2-TSE. A) Gel tube phantom measurements of CASPR, rCASPR and Linear sampling
schemes. B) Bar plots of the mean image intensities of the gel tubes for CASPR, rCASPR
and Linear sampling. Note that rCASPR and Linear provide similar image intensities. C)
Free-breathing abdominal 3D scans of a volunteer with Linear and rCASPR with identical scan
parameters. Note that rCASPR shows reduced motion artefacts and slight blurring compared to
the linear sampling scheme (green arrows). D) Line intensity profiles through the dashed lines
from C). Acronyms: rCASPR = rewound Cartesian acquisition with spiral profile ordering,
TSE = turbo spin echo.
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5.3.3 Optimal spatial resolution for 4D-MRI based motion
estimation

Figure 5.5-A shows a coronal slice of the exhale position in the 4D-MRI for the
different spatial resolution levels. The low resolution images show reduced alias-
ing artefacts, which are especially pronounced in the liver. Figure 5.5-B shows
the magnitude of the DVFs for the same coronal slice with varying temporal reg-
ularization and spatial resolution levels. There are two obvious trends within the
data; the |DV F | increases with reducing spatial resolution and that the |DV F |
also decreases with increasing regularization parameter λt. These trends seem to
be stronger on the left side of the image, which corresponds with the anatomical
position of the liver. The DVFs were subsequently used in the motion com-
pensated image reconstruction. Figure 5.5-C shows the gradient entropy of the
motion compensated image reconstructions for the varying varying regularization
parameters and spatial resolution levels. The minimum within the parameter
space is indicated with the red dot and corresponds with spatial resolution =
4.5 mm3 and λt = 1 · 10−3.

Figure 5.5: Hyperparameter grid search for optimal spatial resolution and tem-
poral regularization (λt). A) Top row shows a coronal slice reconstructed with five differ-
ent spatial resolutions (1.5 − 7.5mm3). B) The magnitude of the exhale-inhale motion fields
derived from the 4D-MRIs with varying spatial resolution and temporal regularization. The
investigated hyperparameters were in range: for spatial resolution ∈ [1.5 : 1.5 : 7.5] mm3 and
λt ∈ [5.0, 10.0, 20.0, 50.0, 100.0] ·10−4. C) The optimization landscape that describes the gradi-
ent entropy for the motion compensated image reconstructions with the DVFs shown in panel
B). Note that a lower gradient entropy corresponds with higher image quality and that the
minimum of the function is indicated with red sphere. Acronyms: DVF = deformation vector
field.
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Figure 5.6 shows the respiratory-correlated 4D-MRI reconstructions for four of the
volunteers with the optimal hyperparameters described in the previous paragraph.
The figure also shows the |DV F | that describes the transformation between the
exhale and inhale respiratory phase. Most volunteers show maximum displace-
ment at the top of the liver larger than 1 cm, only volunteer 2 shows considerably
smaller motion. As expected, almost no motion is visible in the static regions of
the image (e.g. spine), indicating that residual aliasing artefacts do not affect the
motion estimation.

Figure 5.6: Respiratory correlated low-resolution 4D image reconstructions with
the corresponding deformation vector fields. The different volunteers are indicated with
”Vx”, where ”x” refers to the volunteer index. The two grayscale images show the image
reconstructed at the inhale and exhale position and the color coded images show the |DV F |
that describes the motion between these respiratory positions. Note that all volunteers show
peak motion ≈ 1 cm with the exception of volunteer 2. The blue dashed line indicates the
position of the liver/spleen in the exhale phase and aids in the visualization for the inhale
phase. Acronyms: DVF = deformation vector field.

5.3.4 Comparison of image quality: Linear vs rCASPR

The comparison of image quality in two out of the eight volunteers are shown
in Figures 5.7-5.8. The results of two other volunteers are shown in Supporting
information I. Figure panels A-D show the linear, rCASPR, soft-gated rCASPR
and motion compensated rCASPR reconstructions. Note that the soft-gated and
motion compensated rCASPR are reconstructed at the exhale position. Zoom
images of regions of interest are shown in blue boxes. Blue numbers at the left
bottom display the gradient entropy calculated from the entire image. In general,
image quality slightly increases when changing the sampling scheme from linear
to rCASPR. The addition of soft-gating to rCASPR further increases the image
quality. The largest improvement in image quality is observed when transitioning
from no correction to the motion compensated image reconstruction.

The groupwise average gradient entropy was 22.31± 0.07 for linear, 22.20± 0.09
for rCASPR, 22.14 ± 0.10 for soft-gated rCASPR and 22.02 ± 0.11 for motion
compensated rCASPR. Supporting Information II shows a video of the motion
compensated rCASPR reconstruction warped with the DVFs for all the volun-
teers.
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Figure 5.7: Volunteer 1: Comparison of image quality in in T2-w free-breathing 3D
turbo spin echo scans for linear, rCASPR, soft-gated rCASPR and motion compen-
sated rCASPR. For all the reconstructions the residual peak-to-peak motion was estimated
using the 4D-MRI. For rCASPR the residual motion was ±9.8 mm, soft-gating rejected 50% of
the data such that the residual motion was ±4.9 mm and motion compensation had residual
intrabin motion of ±1.2 mm. The numbers in left bottom corner indicate the global gradi-
ent entropy. Blue boxes present zoomed regions. Acronyms: rCASPR = rewound cartesian
acquisition with spiral profile ordering.

5.4 Discussion

The key idea of this study was to develop a free-breathing 4D (3D+respiration)
T2-w TSE scan that matches the T2 contrast of conventional linearly sampled 3D
TSE scans while providing high quality motion corrected images. We proposed
a sequence based on a novel golden angle rCASPR k-space trajectory that can
maintain the desired T2 contrast, while enabling self-navigation and respiratory
correlated 4D-MRI. We proposed to reconstruct the 4D-MRI with reduced spatial
resolution to obtain higher quality motion estimates with less computation time.
The 4D-MRI reconstruction parameters (spatial resolution and temporal regu-
larization) were optimized with a grid search guided by gradient entropy of the
motion compensated image reconstruction. The optimal hyperparameters were
spatial resolution = 4.5 mm3 (3x reduction) and λt = 1 · 10−3. The deformation
vector fields were subsequently incorporated in the motion compensated rCASPR
reconstruction, which was compared to linear, rCASPR and soft-gated rCASPR
reconstructions. The image analysis indicated that motion compensated rCASPR
provided the highest image quality in terms of the gradient entropy for all cases.
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Figure 5.8: Volunteer 2: Comparison of image quality in in T2-w free-breathing 3D
turbo spin echo scans for linear, rCASPR, soft-gated rCASPR and motion compen-
sated rCASPR. For all the reconstructions the residual peak-to-peak motion was estimated
using the 4D-MRI. For rCASPR the residual motion was ±9.1 mm, soft-gating rejected 50% of
the data such that the residual motion was ±4.6 mm and motion compensation had residual
intrabin motion of ±1.1 mm. The numbers in left bottom corner indicate the global gradi-
ent entropy. Blue boxes present zoomed regions. Acronyms: rCASPR = rewound cartesian
acquisition with spiral profile ordering.

An important aspect of this study that warrants discussion is the reliability and
generalizability of the hyperparameters for the low resolution 4D-MRI recon-
struction. The reliability is mainly dependent on the performance of the gradi-
ent entropy metric used as a surrogate for image quality. The gradient entropy
was used in previous works on motion correction [141, 177, 192, 193] and McGee
et al. [178] reported that the gradient entropy corresponded best with observer
scores out of 24 metrics in the context of motion correction. However, other
image quality metrics may yield different optimal hyperparameters, which could
potentially improve the image reconstructions. An alternative approach could
be to use a metric directly on the motion fields, such as biomechanical quality
assurance criteria [191]. Note that the 4.5mm3 found in this work correspond
well with findings by Glitzner et al. [175]. The generalizability of the optimal
hyperparameters is primarily dependent on the combination of the following vari-
ables: the acceleration factor, the image registration method and the scale of the
physiological motion. For example, high acceleration will require reduced spatial
resolution or high spatial regularization to mitigate aliasing artefacts or require
an image registration algorithm that is resilient to aliasing artefacts [194]. There-
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fore, the findings of optimal hyperparameters reported in this work are likely to be
method-specific and therefore do not necessarily generalize to other combinations
of acquisition and reconstruction methods.

Overall, we believe that this work demonstrates the feasibility of free-breathing
respiratory-correlated 4D (3D+respiration) T2-w TSE. The combination of the
rCASPR sampling scheme and motion estimation from low-resolution 4D-MRI al-
lows high quality image reconstruction from a relatively short scan time (< 5min).
For radiology, the proposed motion compensated rCASPR could potentially re-
place respiratory triggered 3D T2-w TSE scans, which could lead to simpler imag-
ing workflows and improved robustness. Examples of these applications include:
magnetic resonance urography, magnetic resonance cholangio-pancreatography
and dynamic contrast enhanced imaging of the liver. However, future studies are
required to compare the proposed free-breathing motion compensated rCASPR
scan to prospectively respiratory triggered scans. For MR-guided radiotherapy,
the motion compensated rCASPR provides a practical and efficient solution to
quantify motion and ensure that the tumor is always covered by the radiation
beam during free-breathing. In addition, the high quality motion compensated
rCASPR images allow the definition of a highly accurate target contour, which is
crucial for radiotherapy treatment planning. motion compensated rCASPR could
also be used on a hybrid MRI-Linac to robustly assess day-to-day variations of
the anatomy in free-breathing [38]. For PET/MRI, the motion compensated
rCASPR could be used to conveniently maintain clinically used contrasts while
concurrently quantifying the motion for the motion compensated PET reconstruc-
tion [174,195].

5.5 Conclusion

The proposed rCASPR sampling scheme, in combination with motion estimation
from low-resolution 4D-MRI, enables high quality motion compensated image
reconstruction. The proposed implementation enables direct transfer of contrast
of 3D T2-w TSE sequences to the free-breathing 4D (3D+respiration) T2-w TSE
counterparts with minimal changes in image contrast and scan time. Future
studies are required to compare the image quality of the proposed method to
respiratory triggered acquisitions, which are often the clinical standard.
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Abstract

Purpose: With the recent introduction of the MR-LINAC, an MR-
scanner combined with a radiotherapy LINAC, MR-based motion esti-
mation has become of increasing interest to (retrospectively) character-
ize tumor and organs-at-risk motion during radiotherapy. To this extent,
we introduce low-rank MR-MOTUS, a framework to retrospectively re-
construct time-resolved non-rigid 3D+t motion-fields from a single low-
resolution reference image and prospectively undersampled k-space data
acquired during motion.

Theory: Low-rank MR-MOTUS exploits spatio-temporal correlations
in internal body motion with a low-rank motion model, and inverts a
signal model that relates motion-fields directly to a reference image and
k-space data. The low-rank model reduces the degrees-of-freedom, mem-
ory consumption and reconstruction times by assuming a factorization
of space-time motion-fields in spatial and temporal components.

Methods: Low-rank MR-MOTUS was employed to estimate motion in
2D/3D abdominothoracic scans and 3D head scans. Data were acquired
using golden-ratio radial readouts. Reconstructed 2D and 3D respira-
tory motion-fields were respectively validated against time-resolved and
respiratory-resolved image reconstructions, and the head motion against
static image reconstructions from fully-sampled data acquired right be-
fore and right after the motion.

Results: Results show that 2D+t respiratory motion can be estimated
retrospectively at 40.8 motion-fields per second, 3D+t respiratory mo-
tion at 7.6 motion-fields per-second and 3D+t head-neck motion at 9.3
motion-fields per second. The validations show good consistency with
image reconstructions.

Conclusion: The proposed framework can estimate time-resolved non-
rigid 3D motion-fields, which allows to characterize drifts and intra and
inter-cycle patterns in breathing motion during radiotherapy, and could
form the basis for real-time MR-guided radiotherapy.

Keywords: Motion estimation, Model-based reconstruction, MR-
guided radiotherapy, MR-LINAC
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6.1 Introduction

Uncertainty in tumor and organs-at-risk locations due to unknown respiratory-
induced organ motion diminishes the efficacy of radiotherapy in the abdomen and
thorax in two ways. Firstly, tumors are irradiated with larger treatment margins,
which results in increased radiation dose and toxicity to healthy tissue. Secondly,
it prevents an accurate (retrospective) estimation of the actual dose accumulated
in the targeted tumor and healthy surrounding tissue during the treatment.

Recently, the MR-LINAC was introduced as the combination of an MR-scanner
and a linear accelerator (LINAC) in a single device [38, 40, 41, 135], which has
the potential to address both points above. Achieving this goal, however, poses
the following technical challenge: real-time reconstructions at 5 Hz [196, 197]
of internal body motion during the treatments. A fundamental step towards
real-time reconstructions is the retrospective estimation of time-resolved motion-
fields. Additionally, these retrospectively calculated motion-fields are valuable
for the calculation of accumulated dose and can be taken into account for more
accurate radiation planning of subsequent treatments. To this extent, we focus on
the retrospective reconstruction of time-resolved 3D+t respiratory motion with a
temporal resolution of 5 motion-fields-per-second. We envision that this frame-
work could eventually be adapted to prospective real-time reconstructions [80].

In MR-guided radiotherapy, tumor and organs-at-risk motion is typically esti-
mated from cine-MR-images followed by image registration. For time-resolved
motion estimation, these cine-MR-images would thus require sufficient temporal
resolution and spatial coverage to resolve the targeted motion. This is in gen-
eral achievable in 2D, and also in 3D for slowly moving targets such as pelvic
tumors [198]. However, in 3D it is more challenging for faster moving targets like
lung tumors, that require at least 5 motion-fields-per-second [196,197].

Several strategies have previously been proposed to extract tumor and organ-at-
risk motion from MR-images, three of which will be reviewed below. With the
first strategy, average respiratory motion is estimated from a respiratory-resolved
3D+t MRI. This approach retrospectively sorts image slices or k-space readouts in
3D acquisitions according to their respective respiratory phases, extracted using
a respiratory motion surrogate (e.g. pneumatic belt, self-navigation signal or
navigator). Examples include the works in [160, 181, 199–201] (see [35] for a
more complete overview). Although the retrospective sorting in these methods
allows for efficient use of all acquired data, it makes strong assumptions on the
periodicity of respiratory motion and characterizes only average 3D+t breathing
motion. Although this is useful to reduce treatment margins, it may not be
sufficient for accurate accumulation of the delivered dose.

A different strategy uses multi-slice/orthogonal 2D+t cine-MRI for 3D+t mo-
tion estimation [138,202–208]. The reduction in the spatial dimension allows for
higher temporal resolution, and is combined with a model that links the lower-
dimensional image data to 3D motion-fields. This strategy assumes, however, that
a good fit on lower-dimensional images implies a good fit in the full 3D domain.
Although this is reasonable for small volumes, since slices cover a large fraction
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of the volume in such a case, it may be less valid for larger volumes which may
be required for dose accumulation.

The third strategy does not rely on sorting, but reconstructs images from highly
undersampled k-space data. Even with parallel imaging [180, 209], this typically
eventually results in lower SNR, lower spatial resolution, and/or undersampling
artifacts. Nevertheless, it has been shown that motion-fields can be estimated
from these images with sufficient accuracy [61, 210–212]. Additionally, iterative
reconstructions based on compressed sensing [66] have been proposed to exploit
the spatio-temporal sparsity of images. However, for the intended application
the reported temporal resolution was too low [212–214], or the FOV was too
small [215,216].

Following a different approach, we have previously introduced MR-MOTUS [80]
(Model-based Reconstruction of MOTion from Undersampled Signal), a new
framework that allows to reconstruct whole-body non-rigid 3D motion-fields di-
rectly from k-space data. The key ingredient of MR-MOTUS is a signal model
that explicitly relates dynamic k-space data to the combination of a static refer-
ence image and dynamic motion-fields. Assuming a reference image is available,
and data is acquired in steady-state, motion-fields can be reconstructed directly
from k-space data by solving the corresponding non-linear inverse problem. Since
motion-fields are spatially correlated and therefore compressible, few data are
required for the reconstructions.

The possibility to reconstruct motion from few k-space data makes MR-MOTUS
a natural candidate for time-resolved 3D+t motion estimation, which is not di-
rectly restricted to the achievable temporal resolution in MR-images. Our work
presented in [80], however, represents a proof-of-concept, and demonstrates MR-
MOTUS in an experimental setting. Four points of improvement should be ad-
dressed for the extension of MR-MOTUS to time-resolved 3D+t motion estima-
tion:

1. Only spatial correlation in motion-fields was exploited, and a single static
motion-field was reconstructed for each single snapshot of k-space data.
Additionally exploiting temporal correlation, and jointly reconstructing the
3D+t motion-field series at once, could improve the reconstruction quality
and lower requirements of computing time and memory.

2. Only the body coil was used for data acquisition to obtain homogeneous
coil sensitivity. This did not represent a practical setting and multi-coil
acquisitions would be favorable in terms of SNR.

3. The required reference image was obtained from a separate MR-scan during
breath-hold. Ideally, no breath-holds are required and reconstructions can
be performed on data acquired in free-breathing conditions.

4. 3D motion-fields were previously reconstructed from retrospectively un-
dersampled Cartesian k-space data, while the motion estimation applica-
tion requires prospectively undersampled acquisitions with an efficient non-
Cartesian trajectory.
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In this work we address the aforementioned points of improvement and extend the
framework to experiments in a realistic setting, in which reference image and time-
resolved 3D+t motion-fields can be reconstructed from multi-coil, free-breathing,
prospectively undersampled non-Cartesian 3D k-space data. The reconstruction
of time-resolved motion-fields yields a large number of unknowns in 3D, which
are needed to represent 3D motion-fields over a large number of timepoints (>
100). We propose to use a spatio-temporal low-rank motion model, which yields
a compressed representation of motion-fields in space and time. Several works
have previously proposed low-rank motion models for motion estimation [138,
217–221], and the analyses in [138, 217, 218] suggest that a rank-2 motion model
can accurately describe respiratory motion. Consequently, the low-rank motion
model can reduce the number of unknowns by two orders of magnitude, thereby
introducing a regularization in both space and time and significantly reducing
memory consumption and reconstruction times for 3D+t reconstructions. We
will refer to the extended framework as low-rank MR-MOTUS.

We demonstrate and validate low-rank MR-MOTUS in a total of 6 in-vivo exper-
iments on 2 healthy subjects and several moving anatomies. 2D/3D whole-body
respiratory motion is included in view of the MR-guided radiotherapy applica-
tion, and 3D head-and-neck motion is included for additional validation and as
a demonstration to handle different types of motion. The 2D respiratory motion
reconstruction is validated against 2D time-resolved compressed sensing, the 3D
respiratory motion reconstruction against respiratory-resolved 3D image recon-
struction, and the 3D head-and-neck motion against 3D static images acquired
right before and right after the motion.

6.2 Theory

6.2.1 Background MR-MOTUS

We assume a general d-dimensional setting, with targeted case d = 3, and we
follow the convention that bold-faced characters denote vectorizations. We define
x0 7→ xt as the mappings from coordinates x0 ∈ Rd in a reference image to new
locations xt ∈ Rd at time t. The mappings are characterized by the motion-fields
dt through xt = x0 + dt(x0). This will be written in concatenated vector-form as

Xt = X0 + Dt (6.1)

where Xt,X0,Dt ∈ RNd×1 denote the vertical concatenations over N spatial
points in a d-dimensional setup. The MR-MOTUS forward model [80] explicitly
relates the motion-fields Dt and a static reference image q0 ∈ CN to dynamic,
single-channel (and possibly non-Cartesian) k-space measurements st ∈ CNk :

st = F(Dt|q0) + εt. (6.2)

Here εt ∈ CNk is the complex noise vector and F : RNd 7→ CNk is the vectorization
of the forward operator defined as

F (dt)[k] =

∫
Ω

q0(x0)e−i2πk·[x0+dt(x0)] x0 (6.3)
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where k ∈ Rd denotes the k-space coordinate. By fitting the non-linear sig-
nal model in Equation 6.3 to acquired k-space data, motion-fields can be recon-
structed directly from k-space measurements.

6.2.2 Reconstruction problem formulation for space-time
reconstructions

In this work we follow [222] and formulate the reconstruction problem for space-
time motion-fields D as follows:

min
D

M∑
t=1

‖F(Dt)− st‖22 + λRR(D). (6.4)

Here R(D) > 0 is a regularization functional, with corresponding parameter
λR > 0, which models a-priori assumptions in order to exploit correlations in
both space and time.

Parameterization with a low-rank space-time motion model

A straightforward parameterization of D considers one motion-field per dynamic,
i.e. D = [D1, . . . ,DM ] ∈ RNd×M . This is, however, impractical from a compu-
tational point-of-view, since the number of parameters scales with the number of
dynamics: |D| = NMd ∼ M . For a typical scenario, N ∼ 106,M ∼ 102 and
d = 3, in which case

|D| ∼ 108. (6.5)

Hence, this parameterization is inconvenient since it results in high memory con-
sumption and long reconstruction times.

Instead, we propose a parameterization with a low-rank motion model, to simul-
taneously reduce the number of parameters for the reconstruction and introduce
a natural regularization in both space and time. The model enforces the fol-
lowing factorization of the motion-fields that separates the spatial and temporal
contributions:

D =

 D1 . . . DM

=

 Φ1 . . . ΦR


 Ψ1

...
ΨR

 = ΦΨT .

(6.6)

Here R denotes the number of components of the model; Φ ∈ RNd×R denotes
the matrix with spatial components, and Ψ ∈ RM×R denotes the matrix with
temporal components. The model (6.6) will be referred to as the low-rank model,
since rank(D) ≤ R. The upper limit is achieved for R linearly independent
components. A similar explicit low-rank factorization was recently proposed in the
context of image reconstructions in [213], with the same motivations as mentioned
above.
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The number of parameters in the low-rank model is |D| = |Φ|+|Ψ| = (Nd+M)R.
Analyses in the works [138,217,218] suggest that R = 2 is sufficient to accurately
model respiratory motion. Hence, for the typical scenario considered above (N ∼
106,M ∼ 102, d = 3), this implies

|D| ∼ 106, (6.7)

which is two orders of magnitude lower than Equation 6.5 and makes the recon-
structions more convenient in practice.

We follow a standard approach in non-rigid medical image registration [223] and
represent both the spatial components Φ and the temporal components Ψ of the
motion-fields in cubic B-spline bases. This results in representation coefficients
α,β for respectively Φ and Ψ.

Regularization functional

The motion-field reconstruction problem in Equation 6.4 is typically ill-posed,
and requires incorporation of a-priori knowledge of the motion-fields in terms of
additional regularization terms. Since organs such as the liver, spleen and kidney
consist of liquid filled tissue structures, they can be assumed incompressible and
thus volume-preserving under motion [224]. This assumption can be incorporated
into the reconstruction problem with the following regularization, based on the
determinant of the Jacobian of the transformation corresponding to the motion-
fields [225]:

R(D) :=

M∑
t=1

‖W(J (Dt)− 1)‖22. (6.8)

Here J (·) computes the determinant of the Jacobian, and W is a diagonal matrix
with weights per voxel. The weights are added to exclude regions where the
regularization is less realistic, e.g. in the lungs. As weights we have taken the
magnitude of the reference image, scaled to unit norm. For the implementation
of this regularization term we follow the approach in [225], and compute spatial
derivatives analytically using the spline parameterization of the motion-fields.

Final reconstruction problem formulation

Substituting the spline representation, low-rank model (6.6) and regularization
(6.8) into the objective function (6.4) results in the following minimization prob-
lem to reconstruct space-time motion-fields:

{α†,β†} = argmin
ΦΨT =[D1,...,DM ]

M∑
t=1

‖F(Dt)− st‖22 +λR

M∑
t=1

‖W(J (Dt)−1)‖22, (6.9)

where λR ∈ R+ is the regularization parameter that balances the terms. Note
that no temporal regularization is added, since the low-rank model already acts
as a strong regularization in both space and time.
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6.3 Methods

Experiments overview
The following data were acquired in three different experiments per volunteer for
two volunteers:

1. 2D+t abdominothoracic data;

2. 3D+t abdominothoracic data;

3. 3D+t head-and-neck data.

The 2D+t abdominothoracic data allows for a validation against time-resolved
image reconstruction at a high temporal resolution. The 3D+t abdominotho-
racic data is the targeted case for the application in MR-guided radiotherapy.
The 3D+t head-and-neck data is included as a demonstration to handle different
types of motion, and for additional validation. All reconstructions are analyzed
by comparison with image reconstructions on the same data. The Jacobian de-
terminant of the transformation corresponding to the motion-fields is analyzed
as an additional sanity check: x0 7→ x0 + dt(x0). More details regarding the
experiments is provided below, organized per subsection.

Data acquisition
All data were acquired on a 1.5T MRI scanner (Ingenia, Philips Healthcare, Best,
the Netherlands) using a steady-state spoiled gradient echo sequence (SPGR)
with anterior and posterior receive arrays. As readouts we employed golden-
angle radial for 2D [131], and golden-mean kooshball radial for 3D [71]. The
volunteers provided written informed consent prior to the scans, and all scans
were approved by the institutional review board of the University Medical Center
Utrecht and carried out in accordance with the relevant guidelines and regulations.
See Table 6.1 for other relevant acquisition parameters.

Reconstruction details
We followed the approach outlined in section 6.2.2, and reconstructed motion-
fields from multi-coil k-space data acquired during motion by solving the min-
imization problem (6.9). The low-rank MR-MOTUS workflow is schematically
summarized in 6.1. The reconstruction problem (6.9) was solved with L-BFGS
[226], using the MATLAB implementation from [227]. The L-BFGS memory pa-
rameter was set to 20 and sampling density compensation [228, 229] was applied
to improve the conditioning of the reconstruction. The multi-coil data was com-
pressed to a single channel prior to all reconstructions, see Supporting Information
Section 1 for more details. The regularization parameter λR was chosen according
to λR ∼ 1/M and the data st were scaled by the norm of the density-compensated
k-space data in order to obtain consistent values between experiments. The re-
construction parameters were determined with a heuristic parameter search (see
Supporting Information Section 3). We refer to Table 6.1 for all parameter set-
tings and to Supporting Information Section 4 and the Supporting Information
in [80] for more implementation details.
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Figure 6.1: Overview of the low-rank MR-MOTUS framework. First, data is acquired during
free-breathing with a golden-ratio radial trajectory (2D: golden-angle radial [131], 3D: golden-
mean radial kooshball [71]). Then, DC-based phase-binning is performed on end-inhale to
reconstruct a motion-free reference image. Finally, the reference image and free-breathing data
are fed into the low-rank MR-MOTUS reconstructions, resulting in time-resolved 3D motion-
fields. The motion-fields are reconstructed with an explicit constraint on the maximum rank.
That is, as a sum of component motion-fields with each a different temporal behavior. The
number of such components is pre-determined.

6.3.1 Experiment 1: 2D+t in-vivo respiratory motion
reconstructions from abdominothoracic data

In the first experiment, a reference image and motion-fields were reconstructed
from the same 2D+t data acquired during 20 seconds of free-breathing. The
reference image was reconstructed from the end-inhale bin after phase-binning
based on the self-navigation signal of k = 0 values per readout (denoted as k0-
values), see Supporting Information Section 2 for more details. The motion-
fields were reconstructed at 40.8 Hz, i.e. 24.5 ms/frame, by assigning every 5
consecutive non-overlapping spokes to one dynamic. The low-rank model (6.6)
was employed with R = 3, yielding motion-fields with rank ≤ 3. Additional
relevant reconstruction and acquisition parameters can be found in Table 6.1.

The motion-fields were analyzed by comparison with a time-resolved compressed
sensing 2D+t reconstruction (CS2Dt) on the same free-breathing data, and by
means of the Jacobian determinant. For the comparison with CS2Dt, the MR-
MOTUS reference image was warped with the reconstructed motion-fields to ob-
tain a dynamic image sequence as follows. First, the motion-fields are interpolated
to the same spatial resolution as the image reconstruction using cubic interpola-
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Acquisition details

Parameter 2D resp. motion 3D resp. motion 3D head-and-neck motion
FOV [m] 0.50× 0.50× 0.01 0.44× 0.44× 0.44 0.38× 0.38× 0.38
Acquisition matrix size 164× 164× 1 146× 146× 146 126× 126× 126
Spatial acq. resolution [mm] 3.00× 3.00× 10.00 3.00× 3.00× 3.00 3.00× 3.00× 3.00
Repetition time [ms] 4.90 4.40 5.40
Echo time [ms] 2.30 1.80 2.30
Flip angle [°] 20 20 20
Bandwidth [Hz] 298.72 541.48 284.73
Trajectory 2D golden-angle radial 3D golden-mean radial kooshball 3D golden-mean radial kooshball
Pulse sequence 2D SPGR 3D SPGR 3D SPGR
Coils (#Channels) Anterior + Posterior (24) Anterior + Posterior (24) Anterior + Posterior (24)
Scanner Philips Ingenia 1.5T Philips Ingenia 1.5T Philips Ingenia 1.5T

Reconstruction details

Parameter 2D resp. motion 3D resp. motion 3D head-and-neck motion
Motion model components R = 3 R = 3 R = 6
Reference image resolution [mm] 6.70× 6.70× 10.00 6.70× 6.70× 6.70 9.05× 9.05× 9.05
Regularization parameter λR = 1.5 · 101 λR = 1.5 · 101 λR = 1.4 · 103

Number of iterations 50 50 300
Splines per spatial dimension 18 16 3
Splines in time 1.28 / second 8.25 / second 5 / second
Temporal motion resolution 40.8 Hz: 5 spokes / dynamic 7.6 Hz: 30 spokes / dynamic 9.3 Hz: 20 spokes / dynamic
Reconstructed motion duration [s] 20 33 40
Reconstruction time 4 minutes 50 minutes 2 hours

Table 6.1: Details of the in-vivo experiments as described in section 6.3.1-section 6.3.3: the top
half lists acquisition details, and the bottom half lists reconstruction details for the time-resolved
experiments. For the respiratory-resolved reconstruction in section 6.3.2 the same parameters
were used as listed in the ‘3D resp. motion’ column, but effectively resulted in a temporal
motion resolution of about 5Hz, with 18062 spokes per dynamic, due to the sorting.

tion. Second, the forward model (6.2) was evaluated on a Cartesian k-space grid
using the reconstructed motion-fields Dt. Finally, an inverse Fourier transform
was performed to obtain one image per dynamic. The CS2Dt was reconstructed
at a temporal resolution of 122.5 ms/frame by assigning every 25 consecutive
non-overlapping spokes to one dynamic, and was performed with the BART tool-
box [183] using spatial L1-wavelet and temporal total variation regularization.
The temporal resolution of the CS2Dt was chosen as an integer multiple of the
MR-MOTUS resolution to allow comparison at the coarser CS2Dt temporal res-
olution. The comparison was performed by means of the relative error norm

(REN). The REN between vectors a,b was defined as REN(a,b) = ‖a−b‖
‖b‖ .

6.3.2 Experiment 2: 3D+t in-vivo respiratory motion
reconstructions from abdominothoracic data

In the second experiment we considered the targeted case for MR-guided ra-
diotherapy: a reference image and motion-fields were reconstructed from 3D+t
data acquired during 33 seconds of free-breathing. The targeted high temporal
resolution does not allow for a straightforward validation by comparison with dy-
namic 3D image reconstruction. For validation purposes, we therefore compared
MR-MOTUS with respiratory-resolved image reconstruction by performing both
reconstructions on respiratory-sorted data.

Finally, we performed 3D+t time-resolved motion reconstruction to demonstrate
the ability to reconstruct motion at high temporal resolution from time-resolved k-
space data. The reference image for both reconstructions was reconstructed from
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the end-inhale bin after phase-binning based on the k0-value per readout (see
Supporting Information Section 2), and the low-rank model (6.6) was employed
with R = 3. See Table 6.1 for all reconstruction and acquisition parameters.

For the respiratory-resolved reconstructions phase-binning was performed in 20
equal-sized bins based on the k0-value per readout. The images were indepen-
dently reconstructed for each bin using 28 iterations of CG-SENSE [229]. The
motion-fields were reconstructed over all bins simultaneously with low-rank MR-
MOTUS by solving Equation 6.9 with 20 dynamics. The quality of the MR-
MOTUS reconstruction was assessed by means of the Jacobian determinant and
by comparison with the respiratory-resolved image reconstruction. For the lat-
ter, a reference image was warped with the reconstructed motion-fields to obtain
a dynamic image sequence, as described in subsection 6.3.1, and the two image
sequences were compared in terms of REN. The reference image that was warped
using the MR-MOTUS motion-fields was selected as the end-inhale phase of the
respiratory-resolved image reconstruction (motion state #10) in order to reduce
effects of image intensity, image quality, or contrast differences on the comparison
of the two image sequences.

For the time-resolved 3D+t reconstructions, motion-fields were reconstructed at
7.6 Hz, i.e. 132 ms/frame, by assigning every 30 consecutive non-overlapping
spokes to one dynamic. The reconstructions were analyzed by means of the Jaco-
bian determinant and the average motion of the kidney was compared between the
time-resolved and respiratory-resolved MR-MOTUS reconstructions. This mo-
tion was computed as the mean of the displacements over a manually segmented
mask of the right kidney. For comparison between respiratory-resolved and time-
resolved, the motion magnitudes of each respiratory bin in the respiratory-resolved
reconstruction were assigned to the original, time-resolved, spoke indices that were
sorted into that particular bin.

6.3.3 Experiment 3: 3D+t in-vivo head-and-neck motion
reconstructions

With the third experiment, 3D+t motion-fields were reconstructed from data
acquired during head-and-neck motion. The subject was instructed to hold still
in position 1 during the first 70 seconds of the acquisition, then move to position
2 and hold still for 70 seconds, then move freely for 40 seconds, and finally hold
still afterwards in position 3 for 70 seconds. Data acquired in position 1 was used
to reconstruct a reference image, data acquired during movement from position
2 to position 3 was used to reconstruct motion-fields, and position 2 and 3 were
used as fully-sampled ”checkpoints” to serve as validation; the beginning and end
of the dynamic motion reconstruction should respectively coincide with positions
2 and 3. To verify this, the reference was warped with the reconstructed motion-
fields as described in section 6.3.1, and the first and last dynamic of the resulting
image sequence were visually compared with the fully-sampled checkpoints. As
a second analysis, the mean and standard deviation of the determinant of the
Jacobian were computed for all dynamics, over all voxels within the body. The
latter were determined by a threshold on the magnitude of the signal per voxel.
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The low-rank motion model was employed with R = 6 to accommodate the
head-and-neck motion which includes rotations in multiple planes. The motion-
fields were reconstructed at a temporal resolution of 9.3 Hz, i.e. 108 ms/frame, by
assigning every 20 consecutive non-overlapping spokes to one dynamic. Additional
reconstruction and acquisition parameters can be found in Table 6.1.

6.4 Results

6.4.1 Experiment 1: 2D in-vivo respiratory motion
reconstructions from abdominothoracic data

The time-resolved 2D respiratory motion was reconstructed with 40.8 motion-
fields-per second. The Jacobian determinant and the comparison with CS2Dt
is shown in Figure6.2. The visual comparison with 2D+t compressed sensing
image reconstruction corresponding to 6.2B is shown in 6.9. It can be observed
that good agreement is obtained for most phases of the respiratory cycle, with
a small mismatch in end-exhale in the upper back near the spine-liver interface.
The Jacobian determinants show small deviations from unity within the organs
(green), and compression in the lungs (blue) except for the arteries. The quali-
tative results are supported by the quantitative results in 6.2B, which show that
the warped MR-MOTUS images considerably reduce the REN.

The warped reference images corresponding to the reconstructed motion-field,
overlayed with the motion-field are shown in 6.10 and 6.11. Moreover, these show
the decomposition in the reconstructed low-rank components. For volunteer 1,
the first two components show pseudo-periodic temporal behaviours, and the first
is most prominent in magnitude. Both components show realistic movement of
organs such as the liver and kidney, but also small unrealistic motion in the spine
near the liver in end-exhale. Interestingly, the third component shows a temporal
behavior with a slight drift upwards, and the corresponding spatial motion-field
indicates a global rotation. Similar movement can also be observed in the ground-
truth CS2Dt reconstruction in 6.9. This movement could be caused by relaxation
of the gluteus maximus muscle in the upper leg and buttocks. Similar motion
patterns can be observed in 6.11 for volunteer 2, but the global rotation is less
pronounced in the ground-truth CS2Dt reconstruction.

6.4.2 Experiment 2: 3D in-vivo respiratory motion
reconstructions from abdomen/thorax data

The comparison between MR-MOTUS and respiratory-resolved image reconstruc-
tion is shown in 6.3, 6.4, 6.15 and 6.12. It can be observed that good visual
agreement is obtained between the two reconstructions for both volunteers. This
is especially visible from the position of the top of the liver dome. The Jacobian
determinants of the reconstructed motion-fields are shown in 6.4A. The lungs show
compression (blue), except for the arteries, and small deviations from unity can
be observed in the rest of the body. Deviation from unity can be observed at the
spine-liver interface, where a large volumetric compression is reconstructed. We
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Figure 6.2: A) Jacobian determinants of the reconstructed motion-fields in end-inhale (left)
and end-exhale (right). The first end-exhale and second end-inhale positions were selected
from all dynamics for this visualization. B) Relative error norm (REN) between MR-MOTUS
warped reference images and CS2Dt reconstruction over all dynamics (blue), and a baseline REN
between the fixed MR-MOTUS end-exhale warped reference image and CS2Dt. The top row (I)
shows the results for volunteer 1, whereas the bottom row (II) shows the results for volunteer
2. The comparison is also visualized in 6.9, and the reconstructed motion-fields decomposed in
the low-rank model components are visualized in 6.10 and 6.11.

expect this is related to the attachment of liver tissue to the spine during exhala-
tion. The quantitative comparison in 6.4B shows best agreement at motion state
10 (inhale) and worst agreement in motion state 19 (exhale). The sharp peak at
motion state 10 can be explained by the fact that we took motion state 10 as the
reference image to compute the warped reference images for MR-MOTUS. The
warped reference images reconstructed from the respiratory-sorted data, over-
layed with the motion-field, are visualized for both volunteers in 6.13 and 6.14.
Moreover, these show the decomposition in the reconstructed low-rank compo-
nents. For both volunteers the first component shows a pseudo-periodic behavior
in time and is most prominent in magnitude; the other components make only
minor contributions. These large contributions of pseudo-periodic components
could be due to the periodicity assumption underlying the respiratory-sorting.
Small unrealistic motion can be observed for volunteer 1 at the spine-liver inter-
face and at the back of the spine, similar to the 2D reconstructions. Additionally,
a small rotating motion can be observed in the motion-field for volunteer 1 at the
interface with the rib cage in the coronal slice on the bottom right. We expect
the latter is caused by a combination of the volume-preservering regularization
and the inability of the motion model to resolve the sliding motion that is present
in this area.

97



Chapter 6 Low rank MR-MOTUS

Figure 6.3: Respiratory-resolved image reconstruction (Resp. Resolved IR, left), MR-MOTUS
warped reference image (middle), and pixel-wise absolute difference between the two reconstruc-
tions (right), as mentioned in section 6.3.2 and section 6.4.2. The red and yellow horizontal
lines indicated respectively end-exhale and end-inhale positions. A video corresponding to this
figure of volunteer 1 is provided in 6.15. A similar video for volunteer 2 is provided in 6.12.

The time-resolved 3D respiratory motion was reconstructed with 7.6 motion-
fields-per-second. The warped reference images reconstructed from the time-
resolved data, overlayed with the motion-field, are visualized for both volunteers
in 6.16 and 6.17. Similar motion is obtained as with the respiratory-sorted data,
but the reconstructed motion components are now similar in magnitude. All
components show pseudo-periodic temporal behavior, and the first component
of volunteer 1 indicates a small drift. Similar to the respiratory-resolved recon-
structions, small unrealistic motion at the spine-liver interface and anterior side
of the spine can be observed for volunteer 1. Additionally, the same small rota-
tion can be observed near the rib cage in the bottom right of the coronal slice.
The Jacobian determinants of the reconstructed motion-fields are shown in 6.5.
Similar patterns can be observed in end-exhale as for the respiratory-resolved
motion reconstructions. Interestingly, the end-inhale image for volunteer 1 shows
a small expansion in the lungs, possibly indicating that a deeper inhale than the
reference image was reconstructed while the reference image was obtained using
respiratory-sorting on end-inhale. Finally, the comparison between the average
kidney motion in the time-resolved and respiratory-resolved MR-MOTUS recon-
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Figure 6.4: A) Jacobian determinants of the reconstructed respiratory-resolved motion-fields in
end-inhale (top) and end-exhale (bottom). The first end-exhale and second end-inhale positions
were selected from all dynamics for this visualization. B) Relative error norm (REN) with
respiratory-resolved image reconstruction (RR-IR) for every motion state. The blue graph
indicates the REN between MR-MOTUS and respiratory-resolved image reconstruction. The
orange graph indicates a baseline comparison between the (fixed) end-inhale image of the MR-
MOTUS reconstruction and the (dynamic) respiratory-resolved image reconstruction. The sharp
peak is caused by taking the 10th dynamic as the reference image for this comparison. The top
row shows the results for volunteer 1, and the bottom row shows the results for volunteer 2.
Videos corresponding to the comparisons in (B) are provided in 6.15 and 6.12.

structions is visualized in 6.6. The phase of the reconstructions are most similar
in feet-head (FH) and anterior-posterior (AP), while in left-right (LR) different
patterns can be observed. However, it should be noted that the motion in FH and
AP is two orders of magnitude higher than in LR. The motion magnitude is sim-
ilar for both reconstructions, but the respiratory-resolved reconstruction shows
a constant amplitude over time since it only reconstructs an average breathing
cycle. The time-resolved reconstruction shows changing motion amplitudes over
time. The phase difference between the two reconstructions may be explained by
imperfect respiratory-sorting.

6.4.3 Experiment 3: 3D in-vivo head-and-neck motion
reconstructions

The time-resolved 3D head-and-neck motion was reconstructed with 9.3 motion-
fields-per-second. The MR-MOTUS warped reference images from 3D data ac-
quired during head-and-neck motion are visualized for both volunteers in 6.18
and 6.19. Clearly, rigid motion-fields are reconstructed within the skull, and
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Figure 6.5: Jacobian determinants of the reconstructed time-resolved motion-fields in end-
inhale (top) and end-exhale (bottom). The left figure shows the results for volunteer 1 and
the right figure the results for volunteer 2. Videos corresponding to the reconstructions in this
figure are provided in 6.16 and 6.17.

non-rigid motion-fields at the neck. 6.7 shows the Jacobian determinants of the
reconstructed motion-field over time (A), and the reconstructed temporal com-
ponents (B) for both volunteers. The Jacobian determinant is close to 1 over the
whole reconstructed time, with slightly more deviations for volunteer 1. These
can be attributed to larger and more irregular motion than volunteer 2. The
temporal components are relatively flat at the start and the end, corresponding
to the static begin and end positions. The more extreme motion of volunteer
1 can also be observed from the larger magnitudes of the temporal components
and from 6.18. 6.8 shows the checkpoint validation for volunteer 2. It can be
observed that good agreement is obtained between the fully-sampled checkpoint
images and the MR-MOTUS reconstructions.

6.5 Discussion

We have previously introduced MR-MOTUS [80], a framework to estimate motion
directly from minimal k-space data and a reference image by exploiting spatial
correlation in internal body motion. In this work, we introduce low-rank MR-
MOTUS: an extension of MR-MOTUS from 3D to 3D+t reconstructions in a
realistic experimental setting, where both reference image and motion-fields are
reconstructed from data acquired during free-breathing. Low-rank MR-MOTUS
employs a low-rank motion model that constrains the degrees of freedom in space
and time, thereby reducing memory consumption and functioning as a regulariza-
tion in both space and time. It was demonstrated that the proposed method can
reconstruct high quality whole-body 3D motion-fields with a temporal resolution
of more than 7.6 motion-fields-per-second, while showing consistency with static,
respiratory-resolved and time-resolved image reconstructions. Prospectively un-
dersampled data were acquired with a non-Cartesian trajectory and multi-channel
receivers, thereby bridging the gap towards clinical application.

The ability of the proposed framework to estimate time-resolved rather than
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Figure 6.6: This figure shows the average motion of the right kidney over time, for both
the respiratory-resolved and the time-resolved MR-MOTUS reconstructions mentioned in sec-
tion 6.3.2 and section 6.4.2. The respiratory-resolved MR-MOTUS reconstruction was projected
back on the time axis, as described in section 6.3.2 and section 6.4.2. The average motion
magnitudes were computed over a manually segmented mask of the right kidney. Videos of
reconstructions corresponding to these figures are provided in 6.16 and 6.17.

respiratory-resolved motion is promising as it allows to characterize drifts and
intra and inter-cycle breathing patterns. This is in contrast with respiratory-
resolved methods that require sorting to obtain suitable images [138, 160, 171,
181, 199–201, 230, 231]. The sorting effectively results in (a motion model for)
average breathing motion, which may have trouble capturing drifts and inter-
cycle variations. Some works have been proposed to reconstruct time-resolved
MR-images without the need of retrospective sorting. However, the reported
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Figure 6.7: This figure corresponds to the head-and-neck reconstructions in section 6.3.3 and
section 6.4.3. A) The mean (solid line) and standard deviation (shaded area) of the Jacobian
determinants of the reconstructed motion-fields over time. B) The reconstructed temporal
profiles Ψi, scaled by the norm of the corresponding Φi to be able to compare their magnitudes.
The top row and bottom rows respectively show the results for volunteer 1 and 2. Videos
corresponding to the reconstructions in these figures are provided in 6.18 and 6.19.

temporal resolution was too low [212–214], or the FOV was too small [215, 216].
The time-resolved motion estimation of low-rank MR-MOTUS in combination
with an MR-LINAC can be particularly beneficial for MR-guided radiotherapy;
the (retrospective) reconstruction of 3D+t time-resolved tumor and organs-at-
risk motion during treatment can be used for accurate dose accumulation [220],
allowing for an accurate assessment of the treatments.

The resulting motion model explicitly separates a high-dimensional static spa-
tial component from a low-dimensional dynamic temporal component. The low-
dimensional compression of the dynamic behavior could be exploited to reduce
the number of parameters and reconstruction times of future real-time recon-
structions, analogously to recently proposed approaches in [138, 208, 232, 233].
Our method could thereby form the basis for future work on real-time MR-based
motion estimation, where reconstructions are performed on-the-fly to track tumor
and organs-at-risk motion.

Low-rank models in the context of motion estimation have been investigated
before in several works, most of which retrospectively perform compression to a
low-rank model using principal component analysis [138, 217, 219, 220]. Others
decouple the motion-fields into spatial components and temporal components
based on surrogate signals [207, 208, 221]. The approach in this work is different
in the sense that it explicitly and a-priori enforces a structure that yields low-
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Figure 6.8: This figure shows the checkpoint validation for the head-and-neck reconstructions
of volunteer 2, as mentioned in section 6.3.3 and section 6.4.3. The left columns shows the
fully-sampled checkpoint image, the middle column shows the MR-MOTUS warped reference
images and the right column shows the absolute pixel-wise difference. The top part corresponds
to the comparison with the checkpoint acquired right before the start of the motion, and the
bottom part corresponds to the checkpoint acquired right after the start of the motion. A video
corresponding to this figure is provided in 6.19. A similar video for volunteer 1 is provided in
6.18.
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rank motion-fields, and does not assume dependence on surrogate signals for the
motion model. Similar approaches have been studied in the context of image
reconstruction [213,215,234–238].

This work includes some limitations and assumptions that should be addressed.
Both the respiratory-resolved and time-resolved 3D respiratory motion recon-
structions in section 6.3.2 and section 6.4.2 look realistic in general. Yet, small
unrealistic motion is reconstructed near discontinuities in the true motion-fields
that are present near sliding or attaching/detaching organ surfaces. This can
be observed in for example 6.10, at the spine/liver interface in end-exhale; the
increase in compression due to the attaching tissue is compensated by unrealistic
movement in the spine. This could possibly be resolved with region-specific [239]
or non-parametric motion models [240], but is beyond the scope of this work.

Another point of improvement is the compression of multi-channel data to a
single channel (Supporting Information Section 1). Contrary to standard coil
compression techniques, the aim of the compression in this work is homogeneous
coil sensitivity. Consequently, this compression is suboptimal in terms of SNR
[147,241]. 6.20 analyzes the loss between between a Roemer coil combination [147]
and the proposed coil compression on the 2D data. This shows an SNR loss factor
between 1.5 and 2.5 in most of the body, which increases towards the boundary
of the body. Good results were obtained with the coil compression introduced in
this work, but more advanced techniques could possibly be used to improve the
SNR after the compression.

The last point of improvement is the validation of time-resolved 3D motion-fields.
In general this is not straightforward, and we considered three viable options for
this: (1) in-silico with a digital phantom, (2) with an MR-compatible motion
phantom, and (3) in-vivo with respiratory-resolved image reconstruction. We
have opted for the third option, since this was considered the closest to a prac-
tical use-case. The in-silico validation does not consider real acquisition-related
data corruption (e.g. eddy currents, flow effects), and can, in case of e.g. the
XCAT phantom [151], yield unstable motion-fields [242]. MR-compatible motion
phantoms, although useful for proof-of-principle validations, have limitations re-
garding the representation of realistic in-vivo anatomies.

The intended application of MR-MOTUS is MR-guided radiotherapy, possibly
in real-time. However, the current reconstruction times in MATLAB on a desk-
top workstation are around 4 minutes for 2D+t with 40 motion-fields/second,
around 6 minutes for the respiratory-resolved 3D reconstruction, and around 50
minutes for 3D+t time-resolved respiratory motion with 7.6 motion-fields/second.
Hence, the current implementation of the method is not directly applicable for
real-time processing, but reconstruction times may be reduced with a different
programming language, improved hardware, GPU-accelerations or deep learning.

6.6 Conclusion

We have introduced low-rank MR-MOTUS, an extension of MR-MOTUS, that al-
lows to retrospectively reconstruct whole-body time-resolved 3D+t motion-fields
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from prospectively undersampled k-space data and one reference image. Re-
constructions were performed for 2D/3D respiratory motion and 3D head-and-
neck motion. A temporal resolution of more than 7.8 motion-fields-per-second
was obtained, and the motion-fields were consistent with image reconstructions.
For MR-guided radiotherapy, the time-resolved 3D motion-fields could be used
to reconstruct the respiratory-motion-compensated accumulated dose during the
treatment. Furthermore, the explicit decomposition of motion-fields in static and
dynamic components could form the basis for future work towards real-time MR-
guided radiotherapy.
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Abstract

Hybrid MRI-linac (MRL) systems enable daily multiparametric quan-
titative MRI to assess tumor response to radiotherapy. Magnetic Reso-
nance Fingerprinting (MRF) may provide time efficient means of rapid
multiparametric quantitative MRI. The accuracy of MRF, however, re-
lies on adequate control over system imperfections, such as eddy currents
and B+

1 , which are different and not as well established on MRL systems
compared to diagnostic systems. In this study we investigate the techni-
cal feasibility of gradient spoiled 2D MRF on a 1.5T MRL. We show with
phantom experiments that the MRL generates reliable MRF signals that
are temporally stable during the day and have good agreement with spin-
echo reference measurements. Subsequent in-vivo MRF scans in healthy
volunteers and a patient with a colorectal liver metastasis showed good
image quality, where the quantitative values of selected organs corre-
sponded with the values reported in literature. Therefore we conclude
that gradient spoiled 2D MRF is feasible on a 1.5T MRL with similar
performance as on a diagnostic system. The precision and accuracy of
the parametric maps are sufficient for further investigation of the clinical
utility of MRF for online quantitatively MRI-guided radiotherapy.

Keywords: Radiotherapy, Magnetic Resonance Fingerprinting, MRI-
Linac, Tumor response monitoring
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7.1 Introduction

One of the promises of magnetic resonance guided radiation therapy on hy-
brid MRI-linac (MRL) systems [38, 40, 135, 136] is the ability to assess tumor
response on a daily basis. The daily response is currently assessed using anatom-
ical imaging, but could be replaced with precise quantitative imaging techniques
[55, 243, 244]. Traditional quantitative imaging techniques based on steady-state
methods, such as variable flip angle (T1-mapping) [245] or multi-echo spin echo
(T2-mapping) [246], however, require long acquisition times. The long scan time
poses a considerable practical challenge as the on table time is almost entirely
filled with anatomical imaging (i.e., high-resolution 3D anatomical imaging for
daily plan adaptation and fast real-time imaging for tumor tracking). Typical
MRL treatment fractions have at most a couple of minutes of free imaging time
available such that it does not interfere with the clinical workflow [43](Fig.1-A).
Therefore, the dual requirement of both fast and precise measurements mandates
a sequence with a high precision per unit of time, i.e. quantification efficiency, for
a practical implementation of online quantitative MRI-guided radiotherapy. Re-
cently, transient-state-based quantitative imaging methods have been proposed
to considerably improve this quantification efficiency. Magnetic resonance fin-
gerprinting (MRF) [112, 231, 247] is such a transient-state method that enables
rapid multiparametric imaging and therefore could be the ideal tool for therapy
monitoring on the MRL.

Figure 7.1: Schematic of a MRL radiotherapy treatment schedule. A) Example of a
fractionation scheme where a patient is treated over multiple radiation fractions (F) distributed
across multiple days. During each fraction, MR images are required for multiple purposes. Dur-
ing the first ≈ 5 minutes anatomical images are acquired for radiotherapy treatment planning.
The treatment planning takes around 5 min (depending on plan complexity), which can be used
for quantitative imaging. Finally the irradiation is started and requires continuous anatomical
imaging for motion management. B) Impression of the MRL (Unity, Elekta) with the split
gradient coil shown in yellow and the linear accelerator gun shown in red, as indicated with
number 1 and 2 respectively.

Unlike steady-state methods, which aim to produce a constant MR signal over
time, MRF deliberately creates a fluctuating signal (fingerprint) over the course
of the acquisition, which is matched on a per voxel basis to a precomputed dictio-
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nary of signal responses during image reconstruction. The dictionary is populated
with simulated responses for all possible tissue types, in terms of T1, T2 and pro-
ton density, to the imposed transient-state MR sequence. Realistic simulations
of these MR sequences are essential to accurately quantify the tissue proper-
ties [248, 249]. Therefore, the simulation of the MR sequences requires adequate
control over system imperfections such as eddy currents and heterogeneous mag-
netic fields (B0 and B+

1 ). These system imperfections are well characterised and
controlled for diagnostic MR systems and MRF has been applied in multiple clini-
cal studies [250–257]. However, these system imperfections are not yet accurately
mapped in MRL systems. The 1.5T MRL system used in our institution (Unity,
Elekta, Crawley, UK) differs from diagnostic systems in the split gradient and
split magnet coil design, the radiolucent 2x4 channel receive coil and a paramag-
netic rotating gantry that holds all the beam generating components (Fig.1-B).
These hardware modifications have an impact on the system imperfections, such
as reduced signal-to-noise ratio [56,57], reduced uniformity of the static magnetic
fields (B+

1 and B0) [49, 51], reduced spatial region of gradient linearity [50] and
different behavior of the eddy currents [53]. The impact of these system imperfec-
tions on the accuracy and precision of MRF parameter quantification is unknown.
Therefore, an experimental study on the precision and accuracy of MRF is crucial
for the potential application of daily quantitative tumor response monitoring on
a 1.5T MRL.

In this work we investigate the technical feasibility of 2D MRF in phantoms and
in-vivo on a 1.5T MRL. We assess the accuracy, precision and temporal stability
of the parameter quantification in a phantom. In addition, we showcase typical
image quality of the parameter maps in comparison with clinically used qualita-
tive scans in volunteers and patients.

7.2 Methods

7.2.1 MRF pulse sequence and reconstruction method

A 2D gradient spoiled MRF pulse sequence was implemented on a 1.5T Unity MR-
linac equiped with a 2x4 channel radiation translucent receive array. The anterior
coil was positioned 5 cm above the subject and the posterior coil was positioned
7 cm beneath the subject. More details on the radiation translucent coils are
described by Hoogcarpsel et al. [56]. Imaging data were acquired using the MRF
sequence described by Jiang et al. [247], which consists of an adiabatic inversion
pulse and a sinusoidal flip angle train. The repetition time was constant along the
flip angle train. One radial line was acquired per time-point [258] and subsequent
readouts were azimuthally incremented using the tiny golden angle to minimize
eddy current effects [121, 259] (Fig.2). The gantry angle of the linear accelerator
was kept fixed across and during all the experiments (0 degrees). For each 2D slice
active shimming was applied to correct for the first order spherical harmonics.
K-space data and k-space trajectory were corrected using the zeroth and first
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Figure 7.2: MRF acquisition overview. A) The MRF scan consists of an adiabatic
inversion pulse followed 1000 radial readouts. The radial readouts are rotated with the tiny
golden angle for each repetition time. B) The flip angle train used for all experiments. Note
that the four flip angles shown in panel A) reflect the first four flip angles in the train.

order gradient impulse response functions [53, 76]. The impact of the gradient
impulse response function correction on the MRF parameter maps is shown in
Supporting Information I. Tissue fingerprints were simulated with extended phase
graphs [190] with T1 ∈ [100 : 20 : 3000], T2 ∈ [20 : 10 : 1000] and inclusion
of the slice profile [248]. All data were used to estimate the coil sensitivities
using ESPIRiT [148]. MRF k-space data were reconstructed into singular value
images with low rank inversion [260] using the BART toolbox [183]. The singular
value images were subsequently matched with the dictionary to reconstruct the
parametric maps. The code to perform the image reconstruction code and one
MRF dataset are available on https://github.com/tombruijnen/mrf-mrl .

7.2.2 Phantom studies

MRF data were acquired in a 2D transverse slice of 14 gadolinium-doped gel
tubes (TO5, Eurospin II test system, Scotland). Relevant sequence parameters
for all scans are shown in Table.1. One fully sampled dataset was acquired,
which consists of 276 repeated measurements of the MRF flip angle train, where
for each measurement the azimuthal angle of the first spoke was rotated with
the golden angle (111.2◦). The measurements had a 10 second interval between
repetitions to allow for full spin relaxation. Three and sixteen hours later MRF
measurements were repeated with two minutes intervals for 30 minutes. Note that
the fully sampled MRF scans were reconstructed with the maximum correlation
method [112]. In total these scans provide 306 MRF measurements, which are
used to estimate the precision, temporal stability and accuracy of the parameter
quantification. The precision was quantified by calculating the standard deviation
of parameter values within a tube. The temporal stability was quantified by
calculating the standard deviation of the mean value within the tube over the
repeated measurements. The accuracy was quantified by calculating the mean
value within a tube and comparing it to reference measurements. The reference
measurements were acquired using two separate inversion recovery (T1) and spin-
echo (T2) scans. The reference data were acquired with single echo spin-echo
measurements with: voxel size = 3x3x10 mm3 scan time = 60 min, repetition
time = 10 s and 10 inversion times ∈ [100:3000] ms or 10 echo times ∈ [20:500]
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ms.

7.2.3 In-vivo studies

This study was approved by the institutional review board of the UMC Utrecht
(Medisch Ethische Toetsingscommissie Utrecht (METC), ID:17-010, ”MRI pro-
tocol development for MR-linac”) and informed consent was obtained from all
the participants. MRF data were acquired in the brain and upper abdomen of
a healthy volunteer. One patient with a recurrent colorectal liver metastasis,
after hepatic surgery, was scanned using the described MRF sequence with the
addition of an custom developed abdominal compression corset to reduce motion
artefacts [152]. The complete MRI protocol consisted of multiple 2D MRF scans
and qualitative T1 and T2-w scans derived from the clinical protocol. The MRF
scans in the upper abdomen were scanned in breathhold for the volunteer and
in free-breathing for the patient. Regions of interest were manually selected on
specific organs to compute the mean values, which were compared to literature
values [261,262]. Relevant sequence parameters for all scans are shown in Table.1.

Table 7.1: Scanner and sequence parameters of the phantom and in vivo experi-
ments.

MRF Sequence settings
Phantom Brain Abdomen

Field strength 1.5T 1.5T 1.5T
Spatial resolution 2.0 x 2.0 mm2 1.5 x 1.5 mm2 2.0 x 2.0 mm2

Matrix size 125 x 125 186 x 186 175 x 175
Field-of-view 250 x 250 mm2 280 x 280 mm2 350 x 350 mm2

Slick thickness 10 mm 5 mm 10 mm
Repetition time 5.2 ms 7.7 ms 5.3 ms
Echo time 2.5 ms 3.3 ms 2.5 ms
Readout bandwidth 386 Hz/pixel 285 Hz/pixel 379 Hz/pixel
N Flip angles 1000 1000 1000
Scan time 5.2 s 7.7 s 5.3 s

7.3 Results

7.3.1 Phantom studies

An exemplary time-point image of the fully sampled MRF scan along with the
MRF proton density, T1 and T2 parameter maps are shown in Fig.3. The bottom
row shows the raw time domain signal (fingerprint) of voxels in tube 1 and 11
along with the match to the dictionary. For both these voxels the time domain
signal shows close agreement with the dictionary match. The agreement holds for
all the pixels within the tubes with a mean normalized root mean square error
(NRMSE) = 0.06. Small differences between the MRF signal and the dictionary
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match are primarily observed during the first 50 snapshots directly after the in-
version pulse and during the higher flip angles in time-points 500-600. The MRF
reconstructions time was approximately 10 seconds per slice, which does not con-
sider the pre-computation of the dictionaries.

Figure 7.3: Analysis of the raw MRF time domain signal. Top row shows the images
reconstructed from the fully sampled MRF measurements. From left-to-right a single time-
point image(snapshot) and the reconstructed parameters maps. The bottom row shows the
time domain signal of a voxel in tube 1 and a voxel in tube 11. Note that the time signals are
in close agreement with the match to the dictionary. See the following link for an animated
version: https://surfdrive.surf.nl/files/index.php/s/KavixXHVaQ4c9Ue

The parameter quantification of the fully sampled (R=1) and undersampled
(R=276) MRF reconstructions are compared against the spin-echo reconstruc-
tions in Fig.4. Both the R=1 and R=276 MRF reconstructions showed good
correlation in average values compared to the spin-echo measurements. The un-
dersampled MRF has coefficients of determination R2

T1
= 0.999 and R2

T2
= 0.975

for T1 and T2, respectively. Note that the accuracy of the T1-maps was slightly
higher than the T2-maps. The precision over all the tubes for the undersampled
MRF was σT1

= 8.6 ms and σT2
= 3.0 ms.

The temporal stability of the parameter quantification (reproducibility) of the
repeated measurements is shown in Fig.5. The T1 values were very stable, while
the higher T2 values show slightly higher deviation over time. The mean values
within the tubes had an average standard deviation over time of σT1

= 6.4 ms
and σT2

= 2.3 ms. A more detailed overview of these data is shown in Supporting
Information II.
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Figure 7.4: Accuracy and precision analysis of MRF parameter quantification
in a phantom. Top row shows the spin-echo, fully sampled MRF and undersampled MRF
parameter maps. The bottom row shows the correlation of the accuracy estimations for MRF
versus the spin-echo. Data show the mean and standard deviation of MRF over a 25 pixel region
in the center of the phantom. The dashed green line is the standard deviation of the spin-echo
measurements in the same region.

Figure 7.5: Repeated MRF measurement to assess the temporal stability of the
parameter quantification. Top row shows the evolution of the mean T1 values within
the tubes and the bottom row shows the evolution of the T2 values. Note that the tube
numbers are added at the right side of the graph and they correspond with the num-
bers in Fig.3. See the following link for video that shows the parameter maps over time:
https://surfdrive.surf.nl/files/index.php/s/aOB3B2YlAxeT4mo

7.3.2 In-vivo studies

Brain volunteer data
Two slices of the brain MRF scans in the volunteer are shown in Fig.6. The
T1 and T2 maps show clear boundaries between white and gray matter. The
mean parameter values for gray and white matter are within the range of report
literature values (Table.2). Note that the T2 values are on the low side, which is
also reported in other MRF publications [247]. The regions of interest that were
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used to compute the mean values are projected on the proton density image. The
MRF reconstructions time was approximately 15 seconds per slice, which does
not consider the pre-computation of the dictionaries.

Figure 7.6: 2D brain MRF measurement in a healthy volunteer. Top row shows slice
1 of the MRF parameter maps and bottom row shows slice 2. Averaged T1,2 values for white
matter (green) and gray matter (blue) are shown in Table.2.

Table 7.2: Comparison of MRF T1 and T2 quantification to literature reported
values.

MRF parameter quantification
Reference T1 MRF T1 Reference T2 MRF T2

White matter 608 - 756 ms 626 ± 34 ms 54 - 81 ms 56 ± 4 ms
Gray matter 998 - 1304 ms 1113 ± 91 ms 78 - 98 ms 76 ± 7 ms
Liver 547 - 625 ms 612 ± 42 ms 40 - 52 ms 46 ± 5 ms
Kidney (medulla) 1354 - 1470 ms 1510 ± 144 ms 74 - 96 ms 51 ± 6 ms
Kidney (cortex) 908 - 1024 ms 954 ± 85 ms 83 - 91 ms 54 ± 5 ms
Pancreas 570 - 598 ms 540 ± 59 ms 40 - 52 ms 47 ± 8 ms

Volunteer abdomen data
Two slices of the abdomen MRF scans in the volunteer are shown in Fig.7-8. The
boundaries between the medulla and cortex of the kidney are well defined on both
the T1-map and the T1-w image, while the boundary is not visible on the T2-w
image and T2-map. On the left side of the liver a small benign lesion is clearly
visible on both the T1 and T2 map, which is characterised with a high T1 and high
T2. The T2 values differ between the right and left kidney, which are 35 and 51 ms
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respectively. Region of interest analysis for multiple organs are shown in Table.2.
The kidney T2 values also differ slightly between the two scans. However, the T1

values were constant between the left and right kidney and between slice 1 and 2.
The regions of interest that were used to compute the mean values are shown on
the proton density image. The MRF reconstructions time was approximately 14
seconds per slice, which does not consider the pre-computation of the dictionaries.

Figure 7.7: Breathhold 2D MRF measurement in a healthy volunteer. Top row shows
the MRF parameter maps. Bottom row shows the qualitative images from the clinical protocol.
The T1-w scan is a spoiled gradient echo sequence, the T2/T1-w is a balanced gradient echo
scan and FS = fat suppression. Note that the lesion that is visible in the liver is a benign cyst
indicated by the white arrow. Mean T1 and T2 values were analyzed in regions of interest for
liver (green), pancreas (orange), medulla (red) and cortex (blue) of the kidney.

Patient abdomen data
One slice of the abdomen MRF scan in the patient with a recurrent colorectal liver
metastasis after hepatic resection is shown in Fig.9. The metastasis is positioned
in the anterior side of the liver and is clearly visible on the T1-map, T1-w image
and on the diffusion-w image, while the lesion is less well defined on the T2-map
and T2-w image. The T2-map shows lower values in the liver and spleen compared
to the volunteer scans, which could be due to patient motion.

7.4 Discussion

In this study we demonstrated technical feasibility of 2D MRF on a 1.5T MRL
system. The phantom study indicated good agreement of parameter quantifica-
tion (R2

T1
= 0.999 and R2

T2
= 0.975) with reference measurements, high precision

(σT1
= 8.6ms and σT2

= 3.0ms) and temporally stable measurements during the
day (σT1

= 6.4ms and σT2
= 2.3ms). The in vivo study showed high image qual-

ity of the fast MRF scans, where image features in the quantitative maps nicely
corresponded with the qualitative scans. We believe these observations provide
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Figure 7.8: Breathhold 2D MRF measurement in a healthy volunteer. Top row shows
the MRF parameter maps. Bottom row shows the qualitative images from the clinical protocol.
The T1-w scan is a spoiled gradient echo sequence, the T2/T1-w is a balanced gradient echo
scan and FS = fat suppression.

Figure 7.9: Free-breathing 2D MRF measurement in a patient with a colorectal
liver metastasis. Top row shows the MRF parameter maps. Bottom row shows the qualitative
images from the clinically used protocol. The T1-w scan is a spoiled gradient echo sequence,
the T2-w is a turbo spin echo sequence and the diffusion-w is a spin-echo sequence with EPI
readout. The lesion is indicated with the red arrow on the diffusion-weighted image and is also
clearly visible on the T1 scans.

sufficient evidence that MRF is technically feasible on MRL systems and there-
fore could be further explored for online MR-guided radiotherapy applications on
a 1.5T MRL. Besides MRF, these findings also apply for other transient-state
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parameter quantification methods [134].

It is important to emphasize that the methodology presented in this work does
not necessarily reflect the optimal approach for MRF on a MRL. The use of ra-
dial readouts, SSFP and the basic flip angle train reported by Jiang et al. [247]
provides a well established basis that we used to determine the general technical
feasibility of MRF on a MRL. Future work will focus on the use of spiral readouts
or potentially 3D based MRF sequences that would be more optimal for radia-
tion therapy [263]. However, 3D MRF sequences are generally challenging in body
imaging due to physiological motion, requiring substantial technical innovation
to apply motion correction [264].

The in-vivo results presented in this work show some anomalies in the T2 param-
eter maps that require some further discussion. The brain images show slightly
higher T2 values in the more inferior positioned slices and the T2 abdomen images
show relatively larger differences between the right and left kidney, while the T1

values are unaffected for both sites. One possible explanation for these anomalies
is uncontrolled B0 in-homogeneity, however previous research has shown that the
B0 is well controlled for on MRL systems [50, 51]. Another explanation could
be that these anomalies are caused by B+

1 inhomogeneity’s, which were not cor-
rected for in these experiments. Other work’s have reported on the relevance of
B+

1 effects on liver MRF [255], which primarily affects accuracy of the T2 quan-
tification (T1 is relatively unaffected due to the adiabatic inversion pulse). Future
work should therefore focus on MRL specific B+

1 inhomogeneity’s and investigate
how these compare to inhomogeneity’s on diagnostic systems.

A possible use case for the quantitative maps could be patient-specific contrast
optimization of the anatomical turbo spin-echo sequences, i.e. the reference MRI
on which the treatment is planned. For example, liver metastasis are a heteroge-
neous group of lesions that show variable signal characteristics on both T1w and
T2w imaging depending on the primary origin [265, 266]. In this context, MRF
could function as a contrast scout scan followed by an on-the-fly flip angle train
optimization to maximize the contrast-to-noise ratio between the lesion and the
liver. Contrast optimization techniques are well described in literature [267], but
have never been applied in an on-the-fly setting for online contrast optimization
on either diagnostic MR systems or MRL systems. Future work will focus on
the implementation of these patient-specific contrast optimization techniques to
investigate the potential improvement in image quality.

The rapid acquisition scheme of MRF (≈ 5 s per slice) could facilitate the inte-
gration of quantitative imaging to the clinical MRI-guided radiotherapy workflow
without significantly lengthening of the treatment. The primary application of
MRF would be for tumor response monitoring over multiple fractions during the
treatment. The optimal timing to image changes in quantitative parameters post
radiotherapy is an active topic of research [65, 268, 269] and could be pushed
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forward with daily MRF on the MRL. The ability to pick up subtle changes in
T1 and T2 values could be used to distinguish responders from non-responders.
Ultimately, these potential changes in T1 and T2 could be used to intensify or
reduce the (local) radiation during the radiotherapy treatment period based on
the measured response.

7.5 Conclusion

Gradient spoiled 2D magnetic resonance fingerprinting is feasible on a 1.5T MRI-
Linac with similar performance as on a diagnostic system. The precision and
accuracy of the parametric maps are sufficient for further investigation of the
clinical utility of magnetic resonance fingerprinting for online quantitatively MRI-
guided radiotherapy.
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CHAPTER 8
Summary and Discussion

MRI will disrupt the field of radiotherapy in the next decade through optimal tar-
get visualization (pre-treatment/pre-beam), real-time image guidance (beam-on)
and frequent tumor response monitoring (beam-off) to optimize the treatment
for the patient. The most important aspect of imaging in all these stages in
the radiotherapy workflow is the image quality. High image quality during pre-
treatment/pre-beam imaging leads to more precise GTV delineations and even-
tually enables the concept of dose modulation within the tumor, often referred to
as dose painting [270,271]; high image quality during beam-on imaging improves
the motion estimation, which subsequently reduces the PTV margin; high image
quality during beam-off imaging leads to a sensitive assessment of early radiation
induced tissue changes, which enables the differentiation between responders and
non-responders. In addition to the requirement of high image quality, the imaging
process on the MR-linac needs to be fast and with low latency to minimize the
duration of the online/real-time workflow. Therefore, MR imaging requirements
in radiotherapy are considerably different compared to the MR imaging require-
ments in radiology. Besides the different imaging requirements, the imaging is of-
ten performed on MR-linac systems, which differ considerably from conventional
diagnostic MR systems. Therefore, the development of dedicated MR imaging
techniques that are specifically tailored for adaptive radiotherapy are going to be
crucial for optimal clinical implementation of MR-guided ART. This thesis fo-
cused on the conceptualization and development of such MR imaging techniques.

8.1 A progressive knowledge reflection

8.1.1 Baseline for fast 2D MRI

Chapter 2 focused on the relatively simple problem of quantifying the 2D mo-
tion of tumors in patients with head-and-neck cancer with the primary objective
to determine PTV margins for MR simulation. While adequate PTV margins are
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relevant in the clinic, another important motivation for this project was to ob-
tain a fundamental understanding of the possibilities and limitations of fast MR
imaging techniques, that are readily available on commercial MRI systems, and
their interaction with non-rigid image registration techniques. The interaction
can be interpreted as the ability of the non-rigid registration algorithm to filter
out residual aliasing artefacts and therefore facilitate further acceleration of the
imaging. This interaction between imaging and registration is what ultimately
dictates the quality of the motion estimates and is therefore the crucial endpoint.
The available MR techniques for fast imaging included spoiled gradient echo se-
quences with Cartesian k-space sampling, which were accelerated with parallel
imaging and partial Fourier. The resulting images were subsequently non-rigidly
registered using optical-flow [99,100] to obtain the motion estimates. The combi-
nation of accelerated imaging and optical-flow provided an optimization landscape
with two tuneable parameters, namely the imaging acceleration factor and the
spatial regularization factor for the registration. A volunteer study determined
that the optimal parameters were an image acceleration of R = 3 (≈ 6Hz) with
a spatial regularization of the optical flow of α = 0.2. Further acceleration of
the imaging generated coherent aliasing artefacts that the optical-flow algorithm
was unable to resolve, which lead to artefacts in the motion estimates (Figure
8.1A-B).

Figure 8.1: Motion estimation of retrospectively undersampled 2D MR scans. All
images are reconstructed with parallel imaging. The three zoom images in the right-top show
the motion field, within in the dashed red box, obtained with optical flow image registration.
A) Cartesian scan with R=3 shows high image quality and high quality motion estimates. B)
Cartesian scan with R=6 shows residual aliasing artefacts in the image, which translates into
a loss of information in the motion fields with respect to A). C) Radial scan with R=9 shows
high image quality with minor streaking artefacts, which provide high quality motion estimates.

8.1.2 Theoretically optimal approach for fast 2D MRI

Parallel to the acquisition of the 2D MRI patient data with readily available MR
imaging techniques, we investigated novel imaging techniques that could acceler-
ate the motion estimation [272]. These techniques included balanced SSFP se-
quences with a golden angle radial k-space trajectory in combination with tempo-
ral regularization. In theory, bSSFP sequences are superior to spoiled sequences in
terms of signal-to-noise and the golden angle radial trajectory provides incoherent
sampling for highly accelerated compressed sensing in the time domain [273,274].
In addition, residual aliasing artefacts arising from radial undersampling man-
ifest as high frequency streaking artefacts, opposed to coherent artefacts with
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regular Cartesian undersampling, which the optical-flow algorithms is more re-
silient towards [194, 210] (Figure 8.1C). However, in practice the golden angle
radial bSSFP images were accompanied with a complex arsenal of image arte-
facts. These artefacts included excessive streaking, introduction of bias fields,
occurrences of signal voids that were tightly coupled to the off-resonances (Fig
chapter 3). These artefacts completely impede a straightforward use of golden
angle radial bSSFP for 2D cine imaging. Many of these artefacts were already
described in previous works and were attributed to system imperfections that
result into gradient delays [69, 275], phase errors [143, 276], k-space trajectory
errors [75,277] and steady-state disruptions [110,115,121]. These individual arte-
facts all arise from the overarching problem of gradient system imperfections,
which are caused by thermal variations in the hardware, bandwidth limitations
of the amplifiers, mechanical vibration caused by gradient switching and eddy
currents in the gradient coil and other conducting structures [76]. All these indi-
viduals components have complex behavior and are difficult to accurately model
to obtain useful information for the image reconstruction. Therefore, the most
practical approach is to lump all these effects together and quantify the linear
time-invariant behavior of the entire system in the so called gradient impulse
response function [76,278,279], as described in Section 1.4.2.

8.1.3 Gradient system characterization

The gradient impulse response functions (GIRFs) were measured on the diag-
nostic MR systems [53] and were used to analyze the artefacts observed in the
2D radial bSSFP images. The GIRFs were used in combination with existing
theory [278] to assess the impact of gradient delays, k-space trajectory errors and
global phase errors. The outcome of the assessment was that the impact of the
first order eddy current effects, i.e. gradient delays and k-space trajectory errors,
were small for radial sampling and corrections did not lead to an improvement in
image quality. However, the impact of the zeroth order eddy current effects, i.e.
global phase errors, were large and corrections lead to a considerable improve-
ment in image quality. The finding that the zeroth order eddy current effects are
more relevant is contradictory to most of the scientific literature on eddy cur-
rent in radial MRI. Most of the (recent) literature focuses on the gradient delays
and trajectory errors [69, 280, 281] and not on the impact of the global phase
errors [143]. This discrepancy could in part be explained by differences in the
gradient coil hardware between the MRI vendors. Where one vendor provides
accurate control over the zeroth order effects with compromised control over the
first order effects, while the other vendor’s implementation functions vice versa.
Nevertheless, measuring the GIRF and applying both the zeroth and first order
eddy current correction should provide the best image quality. Note that the ob-
servations on the relevance of the zeroth and first order eddy current effects are
only valid for projection imaging and do not necessarily hold for center-out radial
or spiral acquisitions. The center-out acquisitions typically sample the data on
the ramps of gradient waveforms and as a result experience larger deviations of
the k-space trajectory.
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While the retrospective eddy current corrections improved image quality of the 2D
bSSFP golden angle radial scans, considerable image artefacts remained. These
artefacts varied over the dynamics (time), followed the shape of the underlying B0

field and could not be explained using the GIRFs with a conventional eddy cur-
rent model [278]. The conventional eddy current models only consider the current
repetition block and do not consider the long-term history of the eddy currents
and their impact on the spin dynamics/steady-state. This relation between the
spin dynamics and eddy currents in bSSFP imaging was described before in lit-
erature [115] but was not yet completely understood and was therefore the focus
of Chapter 3. Chapter 3 described a new bSSFP signal model that included the
GIRFs and describes this relationship between the eddy currents and the disrup-
tion of the steady-state. Digital simulations showed that these disruptions were
strongly dependent on the local B0 field and also on the smoothness of the spa-
tial encoding schemes. The simulations explained the effectiveness of pre-existing
methods that showed strong resilience towards steady-state disruptions, such as
tiny golden angle increments for radial or phase encode pairing for Cartesian ac-
quisitions. In addition, using the new signal model we could accurately explain
the residual image artefacts in the 2D bSSFP golden angle radial scans, but the
model did not yet provide means to correct the artefacts. Subsequently we revis-
ited a previously described prospective eddy current compensation method [124]
that adjusts the phase of the RF excitation pulse. The method previously re-
quired labour-intensive sequence-specific calibration measurements, which made
the method impractical for clinical implementation. Using the new signal model
we could accurately drive this RF eddy current compensation method without
any prior calibration. The signal model was embedded in the MR system and
used to compensate the residual eddy current induced phase errors by prospec-
tively modifying the phase cycling scheme of the RF pulse based on the GIRFs.
The prospective eddy current correction further improved the image quality of
the 2D bSSFP golden angle radial scans and could provide a solid basis for the
use of (bSSFP) non-Cartesian scans for MRI in radiotherapy.

8.1.4 MR-RIDDLE for pre-beam imaging

The know-how of using the GIRFs to correct 2D golden angle radial imaging
stimulated further investigation of golden angle radial for pre-beam imaging. The
golden angle stack-of-stars scans provide advantages over conventional Cartesian
scans, which include robustness to motion artefacts, inherent depiction of the
time-averaged position, self-navigation of the respiratory cycle and flexibility in
the spatiotemporal resolution during image reconstruction. These advantages
make the golden angle stack-of-stars scan a possible one-stop-shop solution that
obtains all the information required for online radiotherapy treatment planning.
Chapter 4 describes the implementation of such a golden angle stack-of-stars
scan, which we named MR-RIDDLE: Multiresolution radial MRI to reduce IDLE
time in pre-beam imaging on an MR-linac. MR-RIDDLE capitalizes on the ad-
vantages of golden angle stack-of-stars, with the ultimately goal to speed-up and
reduce the idle time in the online workflow. The anticipated speed-up primarily
comes from the flexibility in the spatiotemporal resolution for image reconstruc-
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tion during the MR acquisition. For example, after one minute MR-RIDDLE can
reconstruct low-resolution images, after which the data acquisition continues for
subsequent higher-resolution updates (e.g. one update every 10 seconds). Finally,
the acquired data can also be used to reconstruct a respiratory-resolved 4D-MRI
scan [160]. Such a flexible image reconstruction could improve the online clinical
workflow in multiple ways, with some concrete examples are listed below: 1) the
multi-resolution image reconstruction could be coupled to multi-resolution image
registration for faster access to the propagated contours on the daily anatomy; 2)
the daily anatomy could be acquired with higher resolution, because lower reso-
lution images are readily available to start the workflow; 3) Golden angle stack-
of-stars inherently reconstructs the time-averaged position (e.g. mid-ventilation)
position for moving tumors, which reduces the position uncertainty; 4) Access
to the 4D-MRI just prior to radiation without additional scans [282, 283]; 5) A
low-resolution sliding window reconstruction could be run in parallel to detect
possible bulk motion of the patient. 6) The position verification scan prior to
irradiation could be performed instantly with the sliding window reconstruction.

The concepts of MR-RIDDLE have the potential to considerably improve the
pre-beam MR-linac workflow in theory. In practice, we encountered multiple
obstacles that need to be addressed for a successful clinical implementation: 1)
Parallel imaging reconstructions of non-Cartesian trajectories take approximately
10 times longer than for Cartesian trajectories, which introduces reconstruction
latency’s of over a minute for high resolution images. The reconstruction time
could be reduced with high performance software implementations with dedicated
computation hardware, but would require a significant implementation effort; 2)
the golden angle stack-of-stars scan did not provide robust image quality on the
MR-linac system since we observed a large inter-subject variability. The vari-
ability of the image quality was hypothesized to be caused by the sensitivity of
radial scans to off-resonance/chemical shift and residual effects of gradient sys-
tem imperfections. The residual gradient system imperfections were primarily
attributed to higher spatial order eddy currents, which are more prominent fur-
ther away from the iso-center. The higher order gradient system imperfections
were not further investigated, as these would have required additional gradient
impulse response measurements [126]; 3) the golden angle stack-of-stars trajec-
tory is mostly restricted to T1-w GRE sequences, because the repetitive sampling
of the k-space center leads to an undefined T2-w contrast for TSE sequences. The
restriction to mostly T1-w sequences presents a contradiction with the clinical re-
ality, where many tumors are contoured on T2-w TSE sequences. This restriction
of pre-beam image contrast to T1-w reduces the applicability of MR-RIDDLE in
a generic clinical setting. The image contrast of the pre-beam imaging should, in
my opinion, not be determined by technical aspect of the sequence, but should
solely be determined by the optimal contrast to delineate the target. Therefore,
the use of golden angle stack-of-stars as a generic solution for pre-beam imaging
on an MR-linac is probably not optimal.
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8.1.5 rCASPR for pre-beam/pre-treatment imaging

The shortcomings of MR-RIDDLE were tackled in Chapter 5 with the goal
of developing a pre-treatment/pre-beam scan with an improved perspective for
clinical implementation. Chapter 5 was inspired by the golden angle Cartesian
Acquisition with SPiRal profile ordering (CASPR) work by Prieto et al. [172,284],
which effectively proposed a Cartesian sampling scheme that provides many of the
favorable properties of the golden angle stack-of-stars trajectory, while not being
susceptible to the disadvantages. The CASPR work was initially developed for
respiratory motion compensated cardiac MRI using bSSFP sequences and shown
by Greer et al. [173] to work for 3D T1-w TSE for motion robust arterial spin
labeling. Chapter 5 proposed to modify CASPR scheme to a rewinded (in-out)
CASPR scheme (rCASPR), which facilitates scanning of T2-w TSE sequences
with clinically relevant echo times. The key feature of rCASPR is that it allows
the 3D TSE used in the clinical workflow (on the Unity system) to be transformed
to free-breathing 4D TSE scans, without changing the image contrast.

In practice rCASPR proved to be less resilient to motion artefacts and required
more imaging data to obtain a high quality 4D in comparison to the stack-of-
stars trajectory. To compensate for the data insufficiency a low-resolution 4D-
MRI was reconstructed, which significantly reduces the data requirement. The
low-resolution 4D-MRI was used to estimate respiratory motion fields at the orig-
inal resolution of the imaging. The motion fields were subsequently used in a
final high resolution motion compensated image reconstruction [161, 177]. The
key assumption in this reconstruction framework is that low-resolution images
are sufficient for deformable image registration to estimate the motion at sub-
voxel resolution [58, 80]. The question that then naturally arises is: what is the
optimal (low) resolution of the 4D-MRI to estimate high quality motion fields?
The answer depends on the complex interplay between the registration technique,
the magnitude of the motion and the quality of the images. The quality of the
images in turns, depends on the temporal regularization and spatial resolution
of the image reconstruction, where a high resolution/low temporal regularization
leads to more residual aliasing than low resolution/high temporal regularization.
Therefore, the optimal resolution for the 4D-MRI reconstruction is likely to be
application-specific and requires a grid-search over the entire tuneable parameters
range. The grid search was performed by varying the spatial resolution and the
temporal regularization of the 4D-MRI reconstruction and subsequently assessing
the image quality of the motion compensated image reconstruction using the gra-
dient entropy metric [178]. The grid search resulted into a λ = 1×10−4 temporal
regularization with 4.5 mm3 spatial resolution. The reduction in spatial resolution
to 4.5 mm3 was also reported in the study by Glitzner et al. [61], which investi-
gated retrospective spatial downsampling of 3D MRI in combination with image
registration. The resulting rCASPR motion compensated image reconstructions
showed consistent and high quality, which was a considerable improvement in
comparison with the golden angle stack-of-stars scan.

The motion compensated rCASPR technique is currently being evaluated for
other types of sequences, e.g. T1-w GRE, T1-w TSE and magnetic resonance
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cholangiopancreatography (MRCP) and so far has displayed consistent and high
image quality. The case for the MRCP imaging will be further discussed in Section
8.2.3. In the future rCASPR will be evaluated versus respiratory triggered 2D
multi-slice scans, which would be the highest quality reference for many sequences.
In addition, future work will include the evaluation of rCASPR for non-respiratory
related motion correction, for example for 3D imaging in the pelvis. The only
remaining drawback of rCASPR is the relatively long reconstruction times, that
are accompanied with the motion compensated image reconstruction (>30min),
which currently impedes directly application of rCASPR for pre-beam imaging.

8.1.6 MR-MOTUS for real-time 3D beam-on imaging

Chapter 2 focused on fast 2D time resolved motion estimation for head-and-neck
imaging and chapter 5 focused on 3D respiratory resolved motion estimation for
abdominothoracic imaging. The scans proposed in these works use most of the
available image acceleration techniques such as non-Cartesian trajectories, paral-
lel imaging and compressed sensing. However, the extension of these methods to
time-resolved 3D motion estimation still requires an additional order of magnitude
acceleration to obtain the required temporal resolution of approximately 5 Hz for
real-time imaging [196]. The fundamental bottleneck of this conventional process
of motion estimation is the large amount of data that needs to be re-acquired to
reconstruct 3D images with sufficient quality, even though the data is strongly
correlated between subsequent images in both space and time. Recent works in
literature focus on the optimal compression of these spatiotemporal correlations,
which included low-rank image models [213, 285] and neural networks [286, 287],
but these compressed representations do not offer sufficient acceleration for real-
time time resolved 3D MRI. Instead, one would argue that the spatiotemporal
correlations are best described directly by compressed motion fields. Consider
the toy example shown in Figure 8.2, where the digital phantom moves along
a straight line. A low-rank decomposition applied directly on the images yields
many basis images. Consider the equivalent low-rank decomposition of corre-
sponding motion fields with respect to the reference image, which yields just one
single motion field. Every time-point is then a scalar multiplication of the motion
field applied to the reference image. The toy example can be extrapolated to
multiple positions, which would further exacerbate the difference in compression
ratio’s of low-rank models on images opposed to motion fields. The observation
that the spatiotemporal correlations are better captured in a low-rank represen-
tation of the motion fields is the primary motivation for MR-MOTUS and forms
the basis of Chapter 6.

Low-rank MR-MOTUS relates the measured k-space data to a low-rank motion
model using a low-resolution image as reference. MR-MOTUS requires a k-space
trajectory that provides efficient spatiotemporal encoding, such as golden mean
cones and kooshball readouts [71,72]. A robust implementation of these readouts
was enabled by the measured GIRFs from Chapter 4. The translation of the appli-
cation of MR-MOTUS from simulated and retrospectively undersampled data [80]
to prospectively undersampled data presented a major implementation effort. As
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Figure 8.2: Conceptual illustration for the motivation to use low-rank MR-MOTUS
over image based motion estimation techniques. Consider a simple rectangle moving
rigidly to the top and bottom over a dynamic MR scan. Top row: Singular value decomposition
of the dynamic images yield multiple basis images with large singular values. Bottom row:
Singular value decomposition of the dynamic vector fields only yields one set of basis vectors,
which can exactly describe all the possible motion states. This toy example provides motivation
for the use of low-rank compression directly on the motion fields instead of the images, to better
describe the spatiotemporal correlations and therefore enable higher imaging acceleration.

MR-MOTUS reconstructs the motion fields directly based on the k-space data,
any imperfect measurement condition, such as off-resonances, eddy currents, flow
encoding, low signal-to-noise and inhomogeneity of the receive coils, has the po-
tential to affect the motion estimates. For image-based motion estimates tech-
niques these measurement imperfections reside in the phase information, which is
generally discarded during image registration. For MR-MOTUS, however, these
imperfections need to be addressed or at least suppressed in the motion field re-
constructions. The inhomogeneity of the receive coils was solved with a novel
k-space coil compression algorithm, while the other imperfections were passively
tackled in the sequence design with volume shimming and flow compensation.
The remaining measurement imperfections were filtered out in the reconstruction
with the low-rank approximation. The current implementation of low-rank MR-
MOTUS provides high quality motion estimates with good reproducibility across
volunteers in the upper abdomen and thorax for respiratory motion.

8.1.7 MR Fingerprinting for beam-off imaging

Chapter 7 focused on the only remaining imaging phase of the MR workflow
which was not yet described in this thesis, the beam-off imaging. The beam-off
imaging was defined as the online imaging performed on an MR-linac that is
not directly used to adapt the therapy. Instead the beam-off imaging is used to
monitor the longitudinal response of the tumor to the therapy. The inclusion of
beam-off scans in the online workflow is not straightforward, because the scans
require additional imaging time which increases the duration of the fraction. The
total duration of the fraction will be one of the key factors for widespread integra-
tion/adoption of MR-linac in oncology, as the fraction times are currently signif-
icantly longer than conventional linac fractions [43]. Therefore, the development
of fast quantitative MRI techniques for MR-linac is crucial for tumor response
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monitoring. MR Fingerprinting is such a rapid multiparametric scan that could
be the ideal candidate. High quality MR fingerprinting reconstructions require
reliable fingerprinting signals, which depend upon a stable MR system. As the
MR-linac system includes modified hardware components, such as the gradient
coil, the main magnet and the receive coils, we did not know whether MRF would
be technically feasible. Therefore we implemented a radial MRF sequence on the
MR-linac and acquired experimental phantom and in vivo data. The experi-
mental results were promising and warrant further investigation into the clinical
utility for MRF on the MR-linac. Future work is required to slightly improve
the image quality of the body MRF, which include improved flip angle pattern
designs [288,289] and the use of spiral readouts for more efficient encoding [247].

8.2 Future perspectives

The design and the development of dedicated MR methods for adaptive radiother-
apy, described in this thesis, could ultimately lead to an improved treatment for
the patient. However, these methods need to be further developed before they can
be made accessible for integration into patient care. Further development is likely
to pursue one of the following trajectories: 1) An industrial partner (e.g. Philips)
includes the technology into the product portfolio, which makes the technology
widely available. However, industrial partners necessitate a strong business-case
with low risk involvement, which requires strong evidence on the clinical and eco-
nomic added value of the technology. The evidence has to be provided by the
researchers in a clinical setting, which in turn requires a (local) clinical implemen-
tation of the technology; 2) An in-house built clinical implementation where we
have to overcome a number of challenges. These challenges include the use of own
reconstructed images in the clinical workflow, which will require thorough quality
assurance. A part of the quality assurance is writing the software according to
the in-house quality management system regulations (QMS). Other research sites
have already demonstrated the feasibility of such a setup [283]. Another challenge
is to program high quality image reconstruction code such that the reconstructed
images provide similar quality as the vendor’s reconstruction framework. The
vendor’s reconstruction framework often includes many signal processing meth-
ods, which are difficult and time-consuming the implement. Relevant examples
of these processing methods include robust coil sensitivity map estimation [180],
fold-over suppression using SENSE [290] or image uniformity correction [291].
Therefore, the optimal approach would be to either program the MR methods
directly into the vendor’s reconstruction framework or to build a software plat-
forms that allows real-time interfacing within the vendors framework [292]. The
realization of such a robust interface is crucial for the clinical implementation of
dedicated MR methods for adaptive radiotherapy and enables us to speculate on
the optimal MR-linac imaging workflow for the future.

8.2.1 MR-linac imaging workflow in 2025

The current clinical MR-linac online workflow has multiple shortcomings, as dis-
cussed in Chapter 4, which reduce the time efficiency and treatment quality of
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the adaptive radiotherapy. These shortcomings include for the pre-beam phase:
static MR scans without motion correction; no simultaneous motion monitoring
for bulk movements or respiration; no motion quantification for mid-position re-
constructions or internal target volume margin determination. For the beam-on
phase: no real-time 3D motion estimation for MLC tracking or dose accumula-
tion. For the beam-off phase: no rapid multiparametric quantitative imaging for
tumor response monitoring. These shortcomings will be addressed in the future
and are likely to change the MR-linac imaging workflow completely by 2025. Most
of the shortcomings are individually addressed by the chapters included in this
thesis, but the proposed solutions do not necessarily function effectively in union.
Therefore, the remainder of this section describes the merger of the proposed
solutions in this thesis for a unified, comprehensive and time-efficient MR-linac
imaging workflow.

The way I envision the MR-linac imaging workflow in 2025 is conceptually illus-
trated in Figure 8.3. One single MR scan is acquired for the whole length of the
treatment session, which consists of a combined T1-w and T2-w MR scan [293]
with a rCASPR readout. The rCASPR data is subsequently streamed to three
separate data processing pathways. Pathway 1 is the ”Daily MRI” stream that
generates highly quality images for contouring using a motion compensated mid-
position image reconstruction. These images will be continuously reconstructed
with increased spatial resolution, depending on the amount of imaging data that
is available, similar to MR-RIDDLE. The Daily MRI stream also reconstructs
a respiratory correlated 4D-MRI that could be used for internal target volume
determination. Pathway 2 is the ”Bulk motion detection” stream that gener-
ates low-resolution images with a high frame rate for bulk motion detection using
sliding window image reconstruction. The key idea here is to tune the sliding
window width to approximately 3 breathing periods, which makes the scan rela-
tively insensitive to variations in respiration and therefore allows easy detection
of bulk motion and tumor drifts [259]. The quantified bulk motion/drifts could
be used to correct the image reconstruction of the Daily MRI or to adapt the
treatment plan. Pathway 3 is the ”Real-time motion estimation” stream that
uses offline MR-MOTUS to learn the spatial basis of the motion fields during the
pre-beam imaging phase. The learned spatial basis can subsequently be used in
online MR-MOTUS to estimate motion fields with very high temporal resolution
(> 10 Hz) [233]. The real-time motion estimates are subsequently used for real-
time motion management systems such as MLC tracking or dose accumulation.
These three data pathways present a unified, comprehensive and time-efficient
MR-linac imaging workflow for adaptive delivery of the radiotherapy.

The proposed MR-linac imaging workflow does not provide room for quantitative
MRI prior to or during the radiation delivery. Therefore, the MRF scan has to be
positioned at the end of the fraction, which lengthens the treatment (Figure 8.4).
However, positioning the MRF scan at the end of the treatment session has some
considerable advantages. Advantage 1: The MRF could be seen as a continuation
of the single CASPR scan, where only the flip angles are dynamically adjusted
while the other sequence parameters remain the same. This continuation enables
the MRF reconstruction to include the data acquired prior to the MRF scan
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Figure 8.3: Proposed MR-linac imaging workflow for 2025. The imaging consists
of a single rCASPR scan with simultaneous acquisition of both T1 and T2 contrast. The k-
space data is processed in three different pathways. Pathway 1 reconstructs the Daily MR and
includes a multi-resolution motion compensated image reconstruction. Pathway 2 reconstruct
low resolution images with a soft-weighted sliding window (soft-weights indicated with the blue
curve) to monitor bulk motion. Pathway 3 calibrates MR-MOTUS during the pre-beam phase
and estimates real-time 3D motion during the beam-on phase. These three pathways are also
interconnected, for example the bulk motion monitor could correct the MR imaging data for the
Daily MR recon and the Daily MR recon could provide a high quality reference image required
for MR-MOTUS.

as additional measurements, which provides a lot of extra information for the
parameter quantification. Advantage 2: The spatial basis for the motion fields
reconstructed by MR-MOTUS could be correlated to a motion surrogate that
is not dependent on the flip angle [294, 295], which could enable highly efficient
motion compensated 3D MRF reconstructions [264].

Figure 8.4: Proposed MR-linac beam-off imaging for 2025. The beam-off imaging
has to be positioned at the end of the treatment fraction. The beam-off scan can be seen as
a continuation of the rCASPR scan, where only the flip angles are dynamically varied. This
continuation ensures that all prior data can be included in the MRF reconstruction and the
real-time motion information, derived from MR-MOTUS, can be used for motion correction.
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8.2.2 MR-linac system: ready for 2025?

The MR-linac imaging workflow for 2025, as described in the previous section,
requires a high performing MR system for highly accelerated imaging. The current
MR-linac system differs from a diagnostic system in the split gradient and split
magnet coil design, the radiolucent 2x4 channel receive coil and a paramagnetic
rotating gantry, as outlined in Chapter 7. Some of these differences have, in my
opinion, a relatively small impact on the imaging workflow, e.g. the modified
magnet coil design and the rotating paramagnetic gantry, while the impact of the
split gradient coil and modified receive coil are more relevant. The split gradient
coil currently restricts the maximum achievable slew rate to 65 T/m/s (opposed
to 200 T/m/s) and the maximum gradient strength to 15 mT/m (opposed to 40
mT/m), which increases the repetition time by up to ≈ 40% for spoiled gradient
echo sequences. These gradient restrictions are imposed by software to reduce
eddy current artefacts and to limit heating of the gradient coil and surrounding
structures [296].

Future work could focus on hardware upgrades of the gradient coil to improve
the cooling or software upgrades to improve active eddy current compensation
(while maintaining gradient linearity). However, I anticipate that future work
will head in the opposite direction (hardware downgrades), namely a reduced
region of linearity with an increased slew rate / maximum gradient strength. I
believe that the non-linearity and eddy current problems will be largely be re-
solved using signal processing methods. These signal processing methods include
higher order gradient impulse response measurements coupled with a non-Fourier
based higher order image reconstruction, which is already in use for over a decade
for distortion correction in diffusion weight imaging [79]. An especially interest-
ing topic is the development of the image reconstruction techniques in the Patloc
project, which reconstruct images encoded with highly nonlinear gradient coils
for accelerated imaging [297, 298]. An intuitive explanation of how these meth-
ods can recover signal pile-up due to gradient non-linearity’s is that the varying
spatial sensitivities of the receive coils can unfold these signals similar to a conven-
tional SENSE reconstruction. Note that these higher order image reconstruction
methods could provide a accurate solution for gradient non-linearity correction
for MRI in radiotherapy, which recently some groups have picked up [299]. The
only downsides of higher order image reconstruction techniques are the necessity
of accurate gradient impulse response measurement (one time measurement), a
considerable increase in computational load for image reconstruction (less suit-
able for real-time) and the requirement of a dense receive coil array. Note that a
reduction of the linear region could increase the maximum gradient strength and
therefore also benefit diffusion weighted imaging.

The current radiolucent 2x4 channel receive coil is, in my opinion, the largest limi-
tation of the Unity MR-linac system. The low amount of receive coils considerably
reduces the ability to accelerate the imaging and also restricts the acceleration
direction to the axial plane (no sensitivity variation in Z). In addition, the low
amount of receive coils impedes the use of an effective higher order image recon-
struction, as discussed in the previous paragraph. Therefore the development of
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radiolucent dense receive arrays, as pioneered by Zijlema et al. [300,301], will be
relevant for the MR-linac imaging workflow.

Another important aspect of the MR-linac, which can be considered as the sys-
tem hardware, is the high performance computing infrastructure. The current
MRI reconstruction computer has 32 Gb of RAM, 12 CPUs and does not contain
any GPUs. The lack of GPUs and limited RAM will impede direct integration
of the technology described in this thesis and will also impede fast application of
deep learning for example for synthetic CT generation [302, 303]. New comput-
ing hardware could either replace the MRI reconstruction computer or could be
integrated inline with the reconstruction computer. The inline integration was
already investigated by Borman et al. [292] via a 1 GBit full-duplex Ethernet
link, which could stream raw data with ≈ 4 ms latency. Therefore, the inline
integration is a viable approach to increase the computing infrastructure of the
MR-linac.

To summarize, the current gradient performance restrictions limit the image ac-
celeration, but should be tractable with advanced image reconstruction methods
and therefore does not require redesign of the hardware. However, the current
radiolucent receive coil and computing infrastructure do not provide sufficient
performance to accommodate advanced MR methods to prepare the MR-linac
system for 2025.

8.2.3 Dissemination of technology to diagnostic applications

Some of the methods developed in this thesis may also provide value for appli-
cations in MR diagnostics. For example, the CASPR work in Chapter 5 de-
scribes techniques for high quality free-breathing 3D T2-w imaging, which are
crucial sequences to visualize the biliary and pancreatic ducts in magnetic res-
onance cholangio-pancreatography (MRCP) [304, 305]. Another example is the
MR-MOTUS work in Chapter 6, which describes techniques for high spatiotem-
poral resolution imaging of motion fields, which could also be effective for motion
correction in integrated PET-MRI systems. Both these examples will be discussed
in more detail in the following two subsections.

Free-breathing motion corrected MRCP using rCASPR

MRCP scans consists of heavy T2-w 3D turbo spin-echo sequences that are cru-
cial for the diagnosis of biliary and pancreatic duct disease. These MRCP scans
are typically acquired with long acquisitions, which are prospectively triggering
using a respiratory bellows, but are often still hampered by motion artefacts that
reduce diagnostic accuracy [306,307]. The likelihood of these artefacts is reduced
at the radiology department in the UMC Utrecht by building in redundancy, in
the form of two MRCP scans within a single protocol. However, these MRCP
scans take a long time (≈ 7 min each) and therefore take up to 50% of the total
examination time. Therefore, the implementation of one single robust MRCP
scan has considerable clinical value. One strategy to reduce the motion artefacts
is to acquire the data in one single breathhold with high compressed sense ac-
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celeration, however these acquisitions do not yet provide similar image quality
as successful respiratory triggered scans [308]. An alternative strategy is to use
the free-breathing motion compensated rCASPR pipeline, as described in Chap-
ter 5, which could potentially reduce motion artefacts while due to the motion
correction and simultaneously reduce scan time due to the continuous acquisition.

In collaboration with the radiology department we have setup a small clini-
cal study in which we acquired the respiratory triggered MRCP as well as the
rCASPR MRCP scans in patients with biliary or pancreatic disease. One example
of such a dataset is shown in Figure 8.5, where the triggered reference scan is on
the left and the continuously acquired rCASPR scan on the right. The rCASPR
scan shows a large reduction in motion and flow related image artefacts (green
arrows), while showing slightly residual motion blurring (red arrows). Note that
the scan time was reduced with approximately 40 %. Future work will include
validation in multiple patients and the corresponding clinical evaluation with a
radiologists. The initial results nicely demonstrate the versatility of the proposed
motion corrected 4D-MRI rCASPR for MR scans with different image contrasts.

Figure 8.5: Magnetic Resonance Cholangio-Pancreatography (MRCP) scans in
a patient with biliary disease. The top and bottom rows shows the axial and coronal
maximum intensity projection across 10 slices. The left column shows the images obtained
with the conventionally clinically used respiratory triggered scan with linear phase encoding.
The right columns shows the images obtained with the proposed motion corrected rCASPR
scan. Red arrows indicate regions where the rCASPR scan shows residual motion blurring in
comparison with the linear scan. Green arrows indicate regions where the rCASPR scan shows
reduced image artefacts in comparison with the linear scan. The scan time for the linear scan
was 8 minutes and the scan time for rCASPR scan was 5 minutes. Sequence parameters such
as the field-of-view and image resolution were identical for both scans.
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Motion corrected PET-MRI for treatment of oligometastatic disease

Integrated PET-MRI systems have been clinically used in radiology as of 2010
[309]. Approximately 80% of the clinical applications, so far, have been focused on
oncology and were primarily directed at prostate, brain and head-and-neck can-
cer [310]. Another emerging application is the detection of small lesions or metas-
tasized lymph nodes in the body [311, 312]. In particular, small tumors/lymph
nodes that are affected by respiratory motion will benefit the most from the in-
tegrated PET-MRI systems [313]. The ability to detect oligometastatic disease
with high precision, coupled with recent clinical insights into the advantages for
local treatment for oligometastasis [314,315], could provide a new treatment regi-
ment for MR-linac systems. The inclusion of such a hybrid PET-MRI system into
the MR-linac stereotactic radiotherapy workflow could provide the precision re-
quired to irradiate multiple oligometasis within a single fraction [316]. Such novel
treatment modality would be a radical departure from the traditional oncology
and could redefine the treatment for patients with metastatic disease. The phi-
losophy of using the PET signal directly for targeting of oligometastatic disease
has recently attracted a 100M USD dollar investment for the development of the
RefleXion X1 system, developed by Medical (Hayward, CA) [317]. The RefleX-
ion systems is a PET-CT based linear accelerator and therefore does not provide
the same possibilities for motion correction of the PET signal compared to the
PET-MRI MR-linac pipeline. RefleXion termed the treatment of oligometastatic
disease by targeting via the PET signal Biology-guided radiotherapy.

One crucial component for the success of biology-guided radiotherapy is the high
target precision of the oligometastasis, which is absolutely required to prevent a
too high integral dose. To provide the best possible PET image quality high spa-
tiotemporal motion fields, throughout the entire PET examinations, are required
for motion correction. These requirements are very similar to the the online real-
time imaging workflow for MR-linac and therefore would equally benefit from the
technology described in 8.2.1. The radiotherapy department of the UMC Utrecht
is currently developing such an integrated PET-MRI systems with very similar
imaging hardware to the Unity MR-linac. In the future I hope to continue to
work on the clinical implementation of the MR-linac imaging workflow for 2025
to ultimately contribute to a successful implementation of biology-guided radio-
therapy.

8.3 Concluding remarks

The technical developments of this thesis contribute to the usage of MRI in radio-
therapy with the ultimate goal to improve the clinical outcomes for patients with
cancer. These improvements are partially effectuated through the use of MRI in
treatment simulation, but the pinnacle of these improvements resides in the use of
the MR-linac system. The MR-linac enables us to continuously monitor the pa-
tient’s internal anatomy prior to, during and after treatment fractions. The high
imaging imaging rate provides us with the unique possibility to not only work
towards a 0 mm positioning related margin through real-time replanning, but to
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also provide comprehensive soft-tissue characterization to inform us on the local
response of the tumor and organs at risk to the therapy. The implementation of
such an advanced treatment modality will allow us to accurately determine nor-
mal tissue complication probability models and to revisit traditional radiotherapy
concepts such as fractionation schemes. However, the current software embedding
of the MR-linac does not yet provide sufficient functionality to become the plat-
form to achieve these goals. Some of these software functionalities are related the
MR imaging, as discussed in this thesis, while others involve auto-segmentation,
real-time image registration and fast plan adaptation. The further development
and integration of these new software modules will be absolute essential for the
long term clinical impact of the MR-linac.
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CHAPTER 9
Samenvatting

Radiotherapie is een therapeutische modaliteit die tumoren door het gehele lichaam
niet-invasief kan behandelen. De werkzaamheid van radiotherapie wordt groten-
deels bepaald door de hoeveelheid straling (de dosis) die aan de tumor kan worden
afgegeven. De maximale tumor dosis wordt in de praktijk vaak beperkt aangezien
dit leidt tot een te hoge dosis aan de omliggende gezonde organen. Veel innovatie
binnen de radiotherapie is daarom ook gericht op het nauwkeuriger bestralen
van tumoren met behulp van medische beeldvorming. MRI is zo’n beeldvor-
mende modaliteit met uitstekende en veelzijdige zacht-weefsel contrast waardoor
die zeer geschikt is voor het visualiseren van de tumoren en de omliggende orga-
nen. Tevens biedt MRI de flexibiliteit en de snelheid om de fysiologische beweging
van de anatomie te visualiseren, in willekeurige oriëntaties, zonder het gebruik van
ioniserende straling. Deze voordelen maken MRI de ultieme modaliteit voor de
beeldgestuurde radiotherapie.

De radiotherapie afdeling in het UMC Utrecht is volledig ingericht op de hier-
boven beschreven visie en is al vanaf 2002 bezig met de technische ontwikkeling
en vanaf 2017 met de klinische implementatie van de MR-linac. De MR-linac
is een combinatie van een radiotherapie versneller met een diagnostische MRI.
De MR-linac kan zowel vooraf als tijdens de bestraling beelden opnemen die ge-
bruikt kunnen worden om de behandeling in real-time aan te passen. Echter,
zijn de huidige MRI sequenties, afkomstig uit de diagnostiek, niet toereikend om
de MR-linac optimaal in te kunnen zetten. Dit proefschrift draagt bij aan de
ontwikkeling van nieuwe MRI technieken die specifiek op maat zijn gemaakt voor
de beeldgestuurde radiotherapie. Deze MRI technieken worden ingezet tijdens de
simulatie van de behandeling (pre-treatment, hoofdstuk 2-3), vlak voor bestraling
(pre-beam, hoofdstuk 4-5), gedurende de bestraling (beam-on, hoofdstuk 6) en
na afloop van de bestraling (beam-off, hoofdstuk 7).

In hoofdstuk 2 wordt de beweeglijkheid van de tumoren in patiënten met hoofd-
hals kanker bepaalt om onzekerheidsmarges (PTV) uit te rekenen voor de be-
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handeling. Hiervoor zijn standaard beschikbare spoiled gradient echo MRI scans
opgenomen van 100 patiënten en werd de beweging gequantificeerd met niet-rigide
beeldregistratie. De beweging werd vervolgens gebruikt om PTV marges op pop-
ulatie niveau te bepalen. Deze marges waren significant kleiner dan de huidige
klinische marges en hebben daarom geleid tot een adaptatie van de marges in de
kliniek. Daarnaast gaf dit onderzoek ons inzicht in de limitaties van de standaard
beschikbare MRI scans voor het quantificeren van de beweging.

Balanced steady-state free precession (bSSFP) scans zijn, vanuit theoretisch oog-
punt, geschikter voor snelle imaging (in vergelijking met de spoiled scans van
hoofdstuk 2). bSSFP scans zijn echter gevoeliger voor beeld artefacten die ontstaan
door imperfecties in het gradient systeem. Deze imperfecties worden gequan-
tificeerd in hoofdstuk 3 door het meten van de zogenaamde gradientspoel im-
pulse response functie. We laten zien dat de impulse response alle informatie
bevat om deze artefacten te kunnen voorspellen. Ook beschrijven we een nieuwe
methode om deze artefacten to corrigeren. De impulse response wordt vervol-
gens gebruikt in de latere hoofdstukken om robuuste niet-Cartesische scans te
faciliteren.

Hoofdstuk 4 richt zich op het ontwerp van een nieuwe pre-beam MR-linac
scan (genaamd MR-RIDDLE) die optimaal integreert met de online radiotherapie
workflow. MR-RIDDLE gebruikt niet-Cartesische golden angle radieele opnames
om beelden te reconstrueren met verschilllende resoluties gedurende de MR scan.
Hierbij zijn lage resolutie beelden na een hele korte scan tijd beschikbaar, waarna
de data opname doorgaat en er continue hogere resolutie updates komen. Wij
anticiperen dat dit nieuwe concept, betreffende de parallelisatie van de beeld-
vorming en de klinische taken, potentie heeft om de online workflow significant
te stroomlijnen en te versnellen.

Hoofdstuk 5 richt zich op het ontwerp van een generieke doorgeademde imag-
ing techniek die simultaan de ademhalings beweging quantificeert en corrigeert.
Wij stellen een nieuwe acquisitie voor, genaamd rCASPR. rCASPR zorgt voor
een vergelijkbaar beeld contrast t.o.v. reguliere klinische scans, terwijl rCASPR
het mogelijk maakt om de data te gebruiken voor een 4D-MRI reconstructie.
De 4D-MRI wordt vervolgens gebruikt om de ademhalings beweging te quantifi-
ceren, hetgeen benodigd is voor de bewegings gecorrigeerde beeld reconstructie.
De kerngedachte is dat klinische ademhalings getriggerde scans hiermee eenvoudig
vervangen zouden kunnen worden voor doorgeademde rCASPR scans zonder ver-
lies van beeld contrast of toename van de scan tijd. Hiermee zou rCASPR een
robuuste en generieke oplossing kunnen bieden voor de pre-treatment of pre-beam
imaging om de tumoren in te tekenen.

Hoofdstuk 6 focust op de implementatie van een nieuwe beam-on imaging meth-
ode om retrospectief tijdsopgeloste niet-rigide bewegingsvelden te reconstrueren
met zeer hoge tijdruimtelijk resolutie (> 10 Hz voor 3D). Hier bouwen wij verder
op een, voorafgaand beschreven, bewegings quantificatie framework genaamd MR-
MOTUS, wat wordt uitgebreid met een low-rank signaal model en een prospec-
tieve implementatie op de MR-linac. Low-rank MR-MOTUS maakt gebruik
van tijdruimtelijke correlaties in de beweging en inverteert een signaal model
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dat rechtsstreeks de bewegingsvelden correleert met de k-space data. Deze tijd-
sopgeloste bewegingsvelden zijn benodigd voor dosis accumulatie en zouden het
fundament kunnen vormen voor real-time bewegings quantificatie for ”gaten” en
”tracken”. Mijn aandeel in dit project bestaat hoofdzakelijk uit de ontwikkeling
van de k-space trajectory, de prospectieve implementatie op de MR-linac en het
voorbewerken van het ruwe MRI signaal voorafgaande aan MR-MOTUS.

Hoofdstuk 7 onderzoekt de technische haalbaarheid van magnetic resonance
fingerprinting (MRF) voor het dagelijks monitoren van de tumorresponse op de
MR-linac. MRF is een snelle multi-parametrische kwantitatieve MRI techniek
die afhankelijk is van afdoende controle over de systeem imperfecties. Onder deze
imperfecties vallen ongewilde wervelstromen en ∆B+

1 , welke significant verschillen
op een MR-linac t.o.v. een diagnostisch systeem. In dit onderzoek concluderen
wij dat MRF haalbaar is op een MR-linac systeem waarbij de precisie en de
nauwkeurigheid ruim voldoende zijn voor verder onderzoek naar de toepassing
van MRF voor online kwantitatieve MRI-gestuurde radiotherapie.

De technische ontwikkelingen beschreven in dit proefschrift dragen bij aan het
gebruik van MRI in radiotherapie met het uiteindelijke doel om de klinische re-
sultaten van patiënten met kanker te verbeteren. Deze verbeteringen worden
deels bewerkstelligd door het gebruik van MRI in de simulatie fase, maar het
hoogtepunt van deze verbeteringen zit in het gebruik van het MR-linac systeem.
De MR-linac stelt ons in staat om de interne anatomie van de patiënt continue
te monitoren, zowel voorafgaande, gedurende en na de individuele fracties. Deze
hoge frequentie van beeldvorming voorziet ons van de unieke mogelijkheid om niet
alleen naar een 0 mm positie gerelateerde onzekerheidsmargin te werken, maar
ook om naar een alomvattende zacht-weefsel karakterisatie toe te werken. Hier-
door worden wij beter gëınformeerd over de lokale response van de tumor. De
klinische implementatie van zo’n geavanceerde therapeutische modaliteit zal ons
in staat stellen om nauwkeurig vast te stellen wanneer in gezonde weefsel compli-
caties optreden en om traditionele radiotherapie concepten zoals de fractionatie
schemas opnieuw onder de loep te nemen. Echter, biedt de huidige software em-
bedding van de MR-linac niet voldoende functionaliteit om het platform te worden
om deze doelen te bereiken. Een aantal van deze software functionaliteiten zijn
gerelateerd aan de MR beeldvorming, zoals beschreven in dit proefschrift, terwijl
andere betrekking hebben op auto-segmentatie, beeld registratie en snelle plan
adaptatie. De verdere ontwikkeling en integratie van deze nieuwe softwaremod-
ules zal absoluut essentieel zijn voor de lange termijn klinische impact van de
MR-linac.
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In no-time had jij me geënthousiasmeerd voor de MRI-gestuurde radiotherapie
waardoor ik nu inmiddels al 5 jaar op de afdeling werk. Ik heb altijd met veel
plezier met jouw samengewerkt en ik hoop dat we in de toekomst nog contact
zullen blijven houden en wellicht samen met Rob de langeverwachte ISMRM
benelux zuid-oost editie kunnen organiseren.

Nico, tijdens mijn promotieonderzoek heb ik iedere 2-3 maanden korte perioden
van een aantal dagen gehad waarin ik de relevantie van mijn werk sterk in twijfel
trok. Deze perioden kwamen altijd meteen ten einde na een discussie met jou.
Jouw enorme enthousiasme, passie en interesse in praktisch elk MRI-gerelateerd
onderwerp is wat mij betreft ongeëvenaard. Vier jaar geleden heb ik exact deze
zelfde eigenschap beschreven in ”the acknowledgements” van mijn master thesis.
Voor mij ben jij echt een enorme motivator en ideeën generator, twee eigenschap-
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alles aankunnen. Ik hoop dat we dit jaar (eindelijk) ons eigen huis kunnen kopen
en zodoende kunnen bouwen aan onze gezamenlijke toekomst.

166



Curriculum vitae

Tom Bruijnen was born on July 17, 1992 in Beringe,
the Netherlands. After primary school in Beringe he
attended the Bouwens van der Boije College in Pan-
ningen, where he obtained his VWO diploma. In
2011, he enrolled at Eindhoven University of Tech-
nology and obtained his master degree (cum laude)
in biomedical engineering in 2016. During this mas-
ter he did an internship at the cardiac MRI group
of King’s College London on cardiac Magnetic Res-
onance Fingerprinting and subsequently conducted
his master thesis at the department of radiother-
apy at the University Medical Center Utrecht on
the quantification of head-and-neck tumor motion
using MRI. Fascinated by the use of MRI in radiotherapy he further pursued
this topic with a PhD within the MR-linac project. The results of this research
on the ”Technical developments for quantitative and motion resolved MR-guided
radiotherapy” are presented in this thesis.

Tom is currently a post-doctoral researcher at the Utrecht radiotherapy depart-
ment. He continues his research and development for integrated MR imaging for
MR-linac with a strong focus on the translation of research software to clinical
prototypes.

167


	List of Acronyms
	General introduction
	Quantifying head-and-neck tumor motion using 2D cine MRI
	GIRF-based RF phase cycling to reduce eddy currents in bSSFP
	Multiresolution radial MRI in pre-beam imaging (MR-RIDDLE)
	Free-breathing 3D T2-weighted turbo spin-echo body MRI
	Non-rigid 3D motion estimation using low-rank MR-MOTUS
	Magnetic Resonance Fingerprinting on a 1.5T MRI-Linac
	Summary and Discussion
	Samenvatting
	Bibliography
	List of Publications
	Acknowledgements
	Curriculum vitae

