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CHAPTER 1

INTRODUCTION

This chapter was written for this thesis.



CHAPTER 1

This thesis describes the creation of artificial matter at the atomic scale,
molecule by molecule.
This statement might seem fantastical, but the scanning tunnelling microscope
(STM) is capable of bringing it to reality. This chapter presents a brief introduc-
tion to the thesis and a short description of STM. Chapter 2 then provides a deeper
background.
The origins of scanning probe microscopy extend as far back as half a century,2
with the STM itself being invented in 1981.3 This allowed individual atoms to be
resolved in real space for the first time in history. It was not long after the inven-
tion of STM that the first atomic-scale structure was assembled at will: researchers
at IBM wrote out their company initials with xenon atoms on nickel.4 The tech-
nique of atomic manipulation was demonstrated again to create a so-called quan-
tum corral, which herded electrons to a confined space.5 The corral was a ring of
iron atoms on the surface of copper(111). On the (111) termination of copper, there
exists a “sea” of electrons that arises from Shockley states. Adsorbates placed on
the surface scatter these electronic states, which results in standing wave patterns
measurable using scanning tunnelling microscopy. What is imaged in a typical STM
topograph is proportional to the probability density |Ψ|2, and visually it is reminis-
cent of the ripples that form when a raindrop hits a puddle.
When adsorbates are arranged in such a way as to enclose a space within (in the
1993 quantum corral work,6 the enclosure was circular), then the electrons are con-
fined, and their wave functions and energy levels become quantised. The remark-
able thing is that by merit of the quantised states, this is directly comparable to
atomic behaviour. Where atoms constrain electrons with an attractive potential at
the core, quantum corrals constrain them with a repulsive potential from the out-
side. This entails that quantum corrals can be considered artificial atoms. Quan-
tum corrals can be coupled together to form artificial molecules, exhibiting bonding
and anti-bonding orbitals specific to molecules. This idea can be extended as far as
to create entire artificial two-dimensional lattices, by sculpting the desired potential
landscape one adsorbate at a time. The first example of a lattice constructed in this
way was artificial graphene.7 Using carbon monoxide on copper(111), the electronic
surface state was confined to a hexagonal pattern. Not only did the group emu-
late the electronic behaviour of graphene, but they also (i) opened a band gap by
altering the lattice unit cell, (ii) effectively n- and p- doped the artificial graphene
by changing the lattice constant, and (iii) simulated a magnetic field by tweaking
the lattice geometry. This work revealed the value of artificial lattices produced
adsorbate-by-adsorbate: they are highly tunable and local density of states mea-
surements can be performed immediately. The crux is that we are not limited to
mimicking structures that are known to exist. In fact, since the artificial graphene
publication,7 a plethora of investigations have modelled novel systems using the
same platform of CO on Cu(111).
As a brief aside, this genre of quantum simulator is by no means the only. Cur-
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INTRODUCTION

rently, there are an array of techniques that grant control and measurement of
artificial quantum states, including (magneto-)optical lattices,8–11 photonic lat-
tices,12 (topo)electrical circuits13 and acoustic systems.14–16 Even within the realm
of STM, other methods of construction of artificial matter have been shown.17–22

1.0.1 How does one create artificial matter?

Specifically, how can one use carbon monoxide, copper and a scanning tunnelling
microscope to wield control over the behaviour of electrons? First, the copper sur-
face must be atomically flat. A copper crystal is cut and polished such that its top
surface is the (111) facet (figure 1.1a). It is then inserted into vacuum, sputtered
and annealed. This is the process of bombarding the surface with argon ions to re-
move any contaminants, and warming up the sample such that the surface atoms
relax into their minimum energy configuration, which is flat. The sample is then
moved to the STM chamber and inserted into the measurement head, all the while
remaining in ultra high vacuum. For all research described in this thesis, we made
use of the Omicron LT-STM shown in figure 1.1b, cooled to 4.5 K using liquid he-
lium. Once there, carbon monoxide can be leaked into the chamber where it ad-
sorbs onto the Cu(111).

The scanning tunnelling microscope

The STM houses an atomically sharp needle sitting at an electrical bias with re-
spect to the sample. This needle, or tip, is used to electronically “read” the surface
like braille. Before measuring, the STM tip is driven towards the copper surface
until a current on the order of nano-amperes is detected. This current arises from
quantum mechanical tunnelling between the tip and sample, and is inversely expo-
nentially dependant on the distance between them; that is to say, the smaller the
gap between tip and sample, the much more probable the tunnelling. It is this great
sensitivity that allows us to resolve features on the sub-nanoscopic scale. Using fine
piezoelectric motors, the tip scans across the surface, maintaining constant current
by slightly retracting and approaching when necessary. Figure 1.1c shows a repre-
sentation of an STM tip as it scans a quantum corral. Usually, CO molecules are
visualised as dips in the surface (as seen in figures 1.1e and f, but in figure 1.1c, the
scan was experimentally acquired with a CO-terminated tip, which results in CO
molecules appearing as protrusions. The trace of the tip’s path is shown. The tip
height is measured at each point in the scan, and is translated to a pixel intensity
in an STM image. Figure 1.1d shows an exemplary Cu(111) surface, on a length
scale 10,000 times smaller than the diameter of the sample. This figure is 500 nm
wide, which is the wavelength of cyan/green light; the atomic terraces in this figure
are smaller than could be resolved with an optical microscope, yet with STM, still
smaller and smaller (figures 1.1e and f) areas can be measured.
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N Figure 1.1: Zooming in on artificial matter. (a) A copper crystal with a (111) ter-
minated surface. (b) The Omicron LT-STM in which experiments were performed. (c)
Representation of a CO-terminated tip (black = carbon, red = oxygen) scanning a quan-
tum corral (the scan is a real experimental image). (d) A Cu(111) surface, with step-
edges visible. (e) a flat terrace on the surface, where a “quantum playground” has been
constructed. (f) a closer view of rectangular quantum corrals.
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While scanning tunnelling microscopy is a powerful tool, one limitation is the re-
quirement of heavy involvement from the user. For a crisp, atomically resolved
image, the STM tip should be atomically sharp, which can be time-consuming to
obtain. Recently, some scanning probe groups have begun to develop tools to au-
tomate the tip conditioning process. Automation has clear value in creating arti-
ficial matter adsorbate-by-adsorbate, but also more generally in scanning probe
microscopy as a whole. Part of this thesis describes the use of neural networks for
STM image recognition.

1.0.2 Thesis outline

This thesis adds to the body of work on artificial lattices produced with the
CO/Cu(111) platform in several ways.

• In chapter 2, an introduction and broad overview on electronic artificial lat-
tices is given, and most lattices that have been created with the CO/Cu(111)
platform are reviewed. We also give an outlook on how such research could
find applications in technology.

• Chapter 3 presents the goal of making STM experiments as a whole more ef-
ficient, therefore reducing the time needed to fabricate artificial lattices atom-
by-atom. To this end, we developed an algorithm that could distinguish the
state of the STM tip using neural network-based image recognition.

• The basic elements of the CO/Cu(111) platform - quantum corrals - and their
coupling into artificial molecules, were investigated in chapter 4. This allowed
us to gain a sense of the range of parameters that can be tuned in artificial
lattices of the same sort.

In the remaining chapters, we engineered and performed measurements on two arti-
ficial lattices with the CO/Cu(111) platform that have theoretically been predicted
to have interesting properties, but in nature do not exist.

• Chapter 5 reports the results of a study into an artificial crystalline topologi-
cal insulator (TCI). Specifically, we exploit the atomic scale precision to study
the influence of edge geometry on the emergence of topological states in TCIs.

• Finally, chapter 6 describes a study into how two-body interactions in 1D can
be investigated using a non-interacting 2D artificial lattice.

The thesis ends with summaries in English and Dutch.
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CHAPTER 2

2.1 Introduction

The field of (topological) electronic quantum materials is one of the major research
directions in current solid-state physics, connecting theorists, solid state chemists,
materials scientists and experimental physicists. This rapidly expanding field has its
origin in several theoretical and experimental advances starting in the 1980s, and
was boosted by the isolation and full electronic characterization of graphene.
The purpose of this review is firstly, to highlight some of the major advances in
this field; secondly, to discuss the endeavour to experimentally model and charac-
terise quantum materials that have been theoretically predicted; thirdly, to present
some examples of electronic lattices produced molecule-by-molecule in STM with
the CO/Cu(111) platform; and finally - having gone from theory to experimental
modelling - to conclude with an outlook on real materials that could make use of
novel quantum effects, and have technological applications.

2.2 The emergence of electronic quantum materials

Although the concept of a “quantum material” is not strictly defined (indeed, the
electronic properties of all materials have a basis in quantum mechanics), some
materials could be considered more “quantum” than others. In the last decades,
a number of striking macroscopic physical phenomena have emerged that can most
appropriately be explained by plain quantum physics. Notoriously, two-dimensional
electron gases exhibiting the quantum Hall23 and fractional quantum Hall effects,24

several types of (high-temperature) superconductors,25,26 semiconductors with opto-
electronic properties that depend strongly on the overall dimensionality of the crys-
tal (0D – 2D)27–29 the nanogeometry,30–37 and more recently, the rapidly expand-
ing field of quantum materials with electronic surface or edge states, topologically
protected by bulk band inversion and bulk-boundary correspondence.38–56 The
band inversion in these materials is caused by band shifts due to strong spin-orbit
coupling or certain crystal symmetries. More generally, the extended electronic
wave functions of the system and the related electronic band structure and elec-
tronic properties depend in an intricate way on (i) the atomic elements of the crys-
tal defining the strength of spin-orbit coupling or magnetic effects, (ii) the precise
atomic registry; that is to say the crystal structure including the surfaces and edges,
and the effects of strain and electron occupation; (iii) the overall dimensions of the
crystal, (iv) for 1D and 2D systems, the superimposed nanogeometry, inducing for
instance alternating weak and strong hopping, and (v) the presence of Coulomb or
spin interactions between the quasi-particles.
Theory has been dominant in the still young field of quantum materials. Several
quantum phenomena of high potential interest have been put forward by theo-
rists.55,57–67 Experimental realizations often lag behind these theoretical devel-
opments because a given “theoretically interesting” crystalline material has to be
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grown as a crystal with the right chemical composition and crystal structure, di-
mensionality, and nanogeometry. In addition, the crystal should not have (too many)
defects or impurities. Then, the material has to be structurally characterized up to
the atomic level. Study of the electronic band structure requires incorporation of
the material in an optical or electronic device for cryogenic spectroscopy and/or
transport measurements. For graphene, this cycle could be completed due to its in-
trinsic simplicity, simple growth and isolation, and chemical stability. Transport
measurements in a magnetic field unambiguously demonstrated the anomalous
quantum Hall effect, related to the electronic Dirac band structure of graphene.68

Graphene can also be deposited or grown relatively easily on a flat metallic or insu-
lator surface, allowing for atomic force69–72 and scanning tunnelling microscopy and
spectroscopy.72–79 An active and promising area of interest at present is the molec-
ular synthesis of atomically precise ribbons of graphene80 with well-defined arm-
chair or zig-zag edges. The electronic band structures of these nanoribbons can be
obtained from scanning tunnelling spectroscopy measurements. This work reveals
the direct influence of dimensions, edges and geometry on the electronic properties
of a 2D crystal, and has revealed the emergence of topologically protected electronic
phases.70,80–90

The quantum materials that arrived on the scene after graphene were generally
more complex. Strained 2D HgTe was the first material discovered that manifested
the famous quantum spin Hall effect.50,52,91 The two-dimensional crystals of HgTe
obtained a tweaked zinc blende crystal structure due to strain induced by epitaxy
with CdTe. The strained zincblende structure and the strong intrinsic spin orbit
coupling present in HgTe induces inversion of the conduction and valence bands. As
a result, a topologically protected insulating gap arises in the HgTe crystal, with
Dirac-type and helical electronic states at the edges of the crystal. Here, helicity
means that there is an edge state with the spin locked to its momentum in one di-
rection, say (k, ↑), and a second counterpropagating spin mode (−k, ↓). The states
are dissipationless to a large extent as back scattering without spin-flip is not al-
lowed without a large energy input. Later, 2D HgTe was reconsidered, but with a
superimposed honeycomb geometry with nanometre periodicity. For this system,
Dirac type hole valence- and electron conduction bands have been calculated. Due
to the strong intrinsic spin-orbit coupling, a robust 30 meV gap arises at the Dirac
point, hosting quantum spin Hall edge states.37 In this system, the quantum spin
Hall effect arises due to the honeycomb geometry combined with strong intrinsic
spin-orbit coupling.92,93 Two-dimensional crystals of HgTe with a honeycomb geom-
etry on the nanoscale have not yet been experimentally realized.

2.3 Artificial electronic lattices as model systems

The examples above show the need for - and suitability of - analogue simulations
with artificial electronic lattices. This entails the creation of lattices with certain
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geometries mimicking real materials (or sometimes, materials that are not known
to exist in nature), and characterization of the band structure including the edge or
corner states. Some materials might be so complex or difficult to fabricate that it is
worth building an artificial analogue that mimics a number of the essential elements
of the original material, and is thus described with a similar Hamiltonian. Artifi-
cial lattices provide more control and are often easier to characterize than complex
real materials.94 Such quantum simulators have addressed questions in electronic
materials science,8,9,95–99 fundamental physics,100–104 and chemistry.8,103,105 As
far as we know, the first ideas on quantum simulation originate from Richard P.
Feynman.106,107 Furthermore, with his lecture “There is plenty of room at the bot-
tom”, he anticipated the creation of quantum architectures by control over indi-
vidual atoms, nothing more than a vague concept at that time. At present, this is
fully realized with cold atoms in optical lattices and with atomic manipulations in a
scanning tunnelling microscope.
The artificial lattices presented here are electronic in nature and fabricated in a
scanning tunnelling microscope by atomic manipulation of adsorbates on a flat
metallic surface. The concept of an artificial electronic lattice, its physical elements
and its characterization will be discussed below. Briefly, artificial two-dimensional
sites can be defined by groups of adatoms or carbon monixide molecules on well-
defined positions on a metallic substrate. In such a way, the surface state electrons
are forced into artificial sites that, together, form a lattice. The atom-by-atom con-
struction by atomic manipulation provides atomically exact lattices, devoid of im-
purities. Scanning tunnelling microscopy maps the structure of the lattice. With
scanning tunnelling spectroscopy, the local density of states (LDOS) can be mea-
sured, from which the band structure can be derived. This methodology can thus
provide a one-to-one relationship between electronic band structure and the atomic
lattice.
Artificial model systems are versatile. In addition to mimicking 2D materials on an
atomic level, defects and impurities can be introduced and the consequences for the
electronic band structure can be quantified. In an artificial lattice, it is also possible
to change one parameter at a time, which is usually not the case in real materials.
Furthermore, theories often use simplified assumptions; artificial lattices enable us
to check the validity of these assumptions. For instance, band structure predictions
are often based on tight-binding calculations based on nearest-neighbour hopping
only. Measurements on artificial lattices have shown that next-nearest-neighbour
hopping may substantially change the predicted band structure, for instance show-
ing that predicted flat-bands obtain a (weak) dispersion.108

So far, electronic correlations, electron pair formation, and spin-orbit coupling have
not been fully introduced in artificial electronic lattices, although they are essential
physical elements of many real quantum materials and may result in topologically
protected electronic phases.38,109–113 These components are important next-steps
in the pursuit of the mastery of quantum materials. It is possible that a metal-
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lic substrate or adatoms of high atomic mass, such as thallium, lead or bismuth
could induce spin-orbit coupling into the surface-state electronic gas by proxim-
ity,114 and the same holds for electron pair formation. Coulomb interactions be-
tween the electrons are an essential element in many quantum materials. The arti-
ficial lattices reported so far have a high electron density and thus a strong screen-
ing of these interactions. In order to simulate Coulomb interactions, electron-poor
surface-states will be required or systems in which the density of the surface gas can
be manipulated by an electrostatic gate. This stage has not been reached yet. It
can be concluded that in the present stage, artificial lattices prepared on flat metal-
lic surfaces are appropriate to simulate the effects of lattice geometry in the single-
electron regime. Even with these limitations, interesting lattices with Dirac bands,
flat bands and topological edge states have been simulated in a convincing way.
The discussion of the rendering of topological edge states with artificial lattices is
omitted from this chapter and can be found instead in chapter 5 of this thesis, in
full. Before the rest of these systems are reviewed, analogue quantum simulations
with particles other than electrons are shortly discussed.

2.4 Quantum simulations with other platforms

A large variety of platforms are used for analogue quantum simulation, e.g. ultra-
cold atoms, trapped ions, superconducting circuits, gated semiconductors and opti-
cal lattices. The platform in which analogue quantum simulations have reached the
most advanced stage is that of ultra-cold atoms caught in optical lattices.8–11 Two-
dimensional lattices with potential wells and barriers are created with crossing laser
beams; they are loaded with ultra-cold atoms - bosons or fermions - with a temper-
ature in the nanokelvin regime.115,116 The atomic occupation of each lattice site is
measured by light scattering and monitored as a function of the on-site energies,
tunnelling barriers, lattice geometry and external fields. The average occupation
is usually smaller than one atom per lattice site. Although the lattice engineering,
length scales, particles and monitoring of the particle positions are completely dif-
ferent from that in electronic lattices, the class of physical questions that can be
investigated is similar. For instance, flat-bands in the Lieb and honeycomb lattices
have been simulated.97,108,117,118 This has also been done with artificial electronic
lattices. The advanced stage of cold-atom optical lattices has enabled the investiga-
tion of on-site interactions and spin-orbit coupling.97,119–121

A second material system that has proved successful in analogue quantum simula-
tions is that of pillar-arrays of III-V semiconductors. Each pillar contains a stacking
of quantum wells and optical cavities to increase the interaction between a quantum-
well exciton and its resonant photon. The resulting particle (or excitation) of in-
terest is hence an exciton-polariton.122 The geometry of the array of semiconduc-
tor pillars defines the lattice with lattice sites and hopping barriers for the exci-
ton polaritons.123–142 The de Broglie wave-length of exciton polaritons is large, and
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is used to control hopping and interaction. Exciton-polariton lattices are power-
ful quantum simulators and could simulate the effects of lattice geometry on the
band structure, from the single-particle regime124,143–146 to that of (strong) interac-
tions.147–149 In the limit that exciton-polaritons are nearly photons, one deals with
purely photonic lattices, which also have shown strong potential for quantum simu-
lation.
Quantum simulations with arrays of semiconductor quantum dots in which the elec-
tron occupation can be controlled by individual gates also allow the study of many-
body effects.104,150–153 These arrays are most alike the artificial lattices on metallic
surfaces that are presented below.

2.5 Methods of preparing artificial lattices in STM

This section will describe the separate physical elements underlying the modelling
of quantum materials with artificial electronic lattices. Each of these elements is the
result of extensive theoretical and experimental research, work that in some cases
has even resulted in a Nobel prize. We have chosen to construct a brief and com-
prehensive review that contains sufficient detail to understand the principles behind
the creation and electrical characterization of artificial electronic lattices and ana-
logue quantum simulation.

2.5.1 Scanning tunnelling microscopy and spectroscopy

After its invention,154,155 scanning tunnelling spectroscopy was rapidly developing
as an accurate method to map the atomic structure of metallic surfaces, adsorbed
flat molecules or two-dimensional systems. In brief, an electrically conductive tip is
scanned over a metallic surface, with the tip in quantum mechanical tunnelling con-
tact with the surface. This means that the tip is within a nanometre of the metallic
surface. A bias V is applied between the tip electrode and the metallic substrate,
inducing an electric field over the vacuum gap between the tip and the metal sur-
face. This results in a controlled difference between the Fermi-level of the tip and
that of the substrate; the thermodynamic driving force for directed electron tun-
nelling. The bias V is defined as eV = E(F,tip) − E(F,sample). The convention is
that at positive bias, the Fermi level of the tip, E(F,tip), is at higher energy than
that of the sample, E(F,sample). When V is different from zero, an electron tunnel
current flows from the tip to the substrate, or vice versa, and this current (usually
smaller than 1 nA) is measured in an external circuit. At positive bias, electrons
can tunnel from the tip to the substrate. Quantum mechanical electron tunnelling
between (the last atom on) the tip and the metal surface is exponentially depen-
dent on the tip-surface distance, which may allow the measurement of the atomic
periodicity of the metal surface, or the presence of adatoms or molecules. In other
words, a spatial map of the current variations represents the atomic corrugation of
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the surface and highlights adsorbed species. Alternatively, and more commonly, the
tip height at constant current is used to map the atomic structure of the surface.
Surface steps, adatoms and molecules can be detected.

The scanning tunnelling microscope also allows one to perform powerful spectroscopy,
providing the local electronic density of states, denoted as LDOS(E, x, y). Briefly,
the tip is positioned with atomic accuracy at a specific position (x, y) on the sam-
ple. The bias V between the tip electrode and the substrate is varied, and the tun-
nel current I and conductance dI

dV are measured as a function of the bias V ; dI
dV

vs. V corresponds then to the LDOS(E) at that position. In order to understand
this, one has to consider a quantum mechanical system with discrete energy lev-
els (e.g. an adatom, molecule, quantum dot) on the substrate surface with the tip
placed above this system. When the bias is increased above zero, a tunnel current
is detected when the Fermi-level of the tip becomes resonant with an empty energy
level of the quantum system. Hence, the empty energy level is seen as a step in the
(I, V ) curve or as a peak in the dI

dV vs. V plot. The next energy level is then seen
as a second peak in the dI

dV vs. V plot. The same holds when the bias is made neg-
ative, and the filled energy levels of the quantum system are detected by onsets of
tunnelling from the substrate to the tip. Hence, the energy levels of quantum me-
chanical objects on a metallic surface can be measured by scanning tunnelling spec-
troscopy.156–167 Two remarks should be added: First, when an electron enters an
adsorbed quantum system, it charges this object; this means that the resonance oc-
curs at an energy equal to single-particle energy + the charging energy (also noted
as self-energy). This charging energy can be expressed as e2/C , with C being the
capacitance of the quantum object. Second, if a second electron tunnels into the ob-
ject before the first one has left, double charging occurs, and the resonance for the
second electron is increased by an energy amount equal to the Coulomb repulsion
between both electrons.168 This means that, in principle, tunnelling spectroscopy
allows one to quantify the single-particle energy of the eigenstates, and the electron
interactions of the quantum mechanical system.163

Here, we focus on the spectroscopy of artificial atomic sites and artificial lattices
prepared directly on metallic surfaces. The screening of the self-energy and electron-
electron interactions is strong, and it is safe to assume that the resonances dis-
cussed below quantify the single-electron energy levels or dispersive bands of the
system. Hence, the single-particle local density of states LDOS(E) is measured
at a certain position by dI

dV vs V . The amplitude of the dI
dV is proportional to the

squared wave function of the eigen-state at given bias (given energy): dI
dV ∝ ψ(E, x, y)2.

In other words, maps of dI
dV at given bias V reflect the squared wave functions

|ψ(E, x, y)|2 of the system. Scanning tunnelling microscopy, spectroscopy and wave-
function mapping are suitable for the study of artificial lattices. A seminal example
studying an artificial honeycomb lattice prepared with CO molecules as repulsive
scatterers on Cu(111) was reported in 2012.7
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2.5.2 Metals with surface state two-dimensional electron gases

In 1939, William Shockley published an influential work on the energy levels and
bands related to the surfaces of three-dimensional metallic crystals.169 This work
commented on - and incorporated earlier work of - Tamm170,171and Goodwin.172–174

The argument begins with a finite linear chain of quantum-mechanically coupled
atoms. It is obvious that the potential energy landscape at both ends of the chain
is different from the interior of the chain. The coupling of N atoms in the chain
results in N energy levels that can form a dispersive band. Due to the deviating
potential landscape of the ends of the chain, two of the N energy levels can be en-
ergetically separated from the band, and may even be found in a gap between two
bulk bands. The two energy levels have a strong electron density localisation over
a few atoms at the ends of the chain. In the three-dimensional case, considering
a crystal of N × N × N atoms, on the order of N2 levels are localised on sur-
face atoms. Shockley anticipated that these energy levels themselves can form a
two-dimensional band, separated from the bulk bands. Such a band thus contains
electrons caught in a two-dimensional potential with free motion and wavevectors
parallel to the surface, i.e. a two-dimensional electron gas. Surface bands of energy
close to or overlapping with the bulk Fermi level are of particular importance.

N Figure 2.1: A two-dimensional electron gas residing on the surface of Cu(111).
(a) Typical surface state band of a Cu(111) surface as characterized by scanning tun-
nelling spectroscopy. The surface-state emerges at V = -0.45 V. The shaded energy
range between -0.45 V and 0.5 V is suitable to localise electrons in artificial lattices. (b)
Energy-wavevector dispersion of the Cu(111) surface state electrons presented in the
gap above a filled bulk band (grey). The Fourier-transformed scanning tunnelling spec-
troscopy data (blue) coincide with the results of photoemission spectroscopy (green) and
follow a parabola in the energy range between -0.45 V and 0.5 V. Reproduced with per-
mission from Ünal et al., Physical review B (2011).175
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The surface-state band of a Cu (111) surface, characterised by scanning tunnelling
spectroscopy, was reported by the IBM Almaden group, and confirmed by other
experiments.5,176,177 Figure 2.1 shows the results that were obtained. The sur-
face state density sets on at an energy of -0.45 eV with respect to the Fermi-level,
rises rapidly to a maximum, before slowly decaying to become negligible at 0.5
eV. With Angle Resolved Photo Emission Spectroscopy (ARPES) the energy vs.
surface-parallel wavevector dispersion is determined, being nearly the same to that
obtained with scanning tunnelling spectroscopy.176–178 The energy region between
-0.45 and +0.5 eV is thus the region in which artificial atomic sites and lattices will
be able to localise the Cu(111) surface state electrons as standing waves, see below.
More generally, the energy vs. wave vector dispersion relation of (electron-occupied)
surface bands has been investigated extensively with scanning tunnelling spectroscopy
and Angle Resolved Photoemission Spectroscopy (ARPES), for several facets of
noble metals.157,179–192 Alternatively, the oscillatory LDOS patterns of the sur-
face waves at step edges of scattering adatoms can be measured as a function of
the bias, finally providing the dispersion relation and the effective surface electron
mass, reported to be around 0.38 me to 0.42 me for Cu(111).5,193–195 Furthermore,
surface states can hybridise with the specific energy levels of an adatom, giving rise
to an atom-localised electronic state that can often be distinguished from the two-
dimensional surface band by scanning tunnelling spectroscopy. For instance, a Cu
adatom on a Cu(111) surface state gives rise to a localised state of energy just be-
low the onset of the surface band itself.196 By using atomic manipulation, chains
of Cu adatoms could be prepared. The energy levels and dI

dV maps, proportional to
the squared wave function, appear to be determined by the size and shape of the
atomic chain.18,197–200 In fact, these energy levels can be considered as arising from
standing waves in a “molecule” of ad-atoms, in other words an “artificial atomic
site” emerges. Such architectures and others can be prepared on a sample surface
with atomic accuracy, in a cryogenic scanning tunnelling microscope. Atomic ma-
nipulation is the second physical element required to prepare and study artificial
lattices.

2.5.3 Atomic manipulation of atoms or small molecules adsorbed on a metal surface

Adatoms and small molecules such as CO chemisorb on clean and flat metal ter-
races in such a way that a minimum-energy configuration is formed.201 Adatoms
on e.g. a (111) face of an fcc crystal typically take the trigonal valley between three
atoms of the metal surface, to maximise van der Waals and chemical interactions.
CO forms an interesting exception to this, as on e.g. a Cu (111) surface it binds
with is carbon atom on top of a Cu atom.202 If a metallic tip is brought closer to
a chemisorbed CO or adatom, the adatom/tip attraction can become of the same
order as the chemisorption energy, and an adatom might be transferred from the
sample to the tip and placed on another well-defined position on the surface (i.e.
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vertical manipulation203). In a subtler way, a tip can exert a force that allows to
either drag, push, or pull the adatom or CO along the sample surface, put it on a
well-defined position and retract the tip, i.e. horizontal manipulation. This atomic
manipulation technique was developed at the beginning of the 1990s in the IBM Al-
maden group and extended by other groups; it was shown that noble gas atoms and
transition metal adatoms could be positioned on a flat metallic surface.4,193,203–210

Later, CO molecules chemisorbed with the C atom on top of the surface atoms
could also be manipulated.203,209 As CO molecules act as barriers for surface state
electrons, they are suitable for the preparation of artificial atomic sites, molecules
and lattices by enclosing these electrons in a limited surface space. It is this method
that has been used extensively to prepare artificial lattices and even fractal struc-
tures, see below.

N Figure 2.2: A quantum corral or artificial atom in two dimensions prepared on a
Cu surface by atomic manipulation. (a) The quantum corral consists of 48 Fe atoms,
positioned by atomic manipulation into a circle with a radius of 7.13 nm. The scanning
tunnelling spectroscopy map (LDOS(x, y)) at given energy E) reveals the standing-wave
pattern inside the corral at a bias of V = 10 mV. (b) The LDOS(E, x, y) acquired in the
centre of the corral, shows well-defined discrete energy levels, which can be considered as
the eigenstates of the artificial atom. Reproduced with permission from Binnig, G. and
Rohrer, H. In touch with atoms.211

2.5.4 Artificial atoms and molecules defined by adatoms

In this section, we focus on the electronic properties of artificial systems assembled
with lateral manipulation. The reader that is interested in the magnetic properties
of such systems is referred to reference.212
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The ability to create atomically well-defined chains of adatoms allowed the evo-
lution of the electronic structure with system size to be studied. A characteris-
tic example was the formation of chains of Cu adatoms on Cu(111). The orbitals
of Cu adatoms interact with the Cu(111) surface band, and form new particle-
in-a-box type states predominantly localised on the chain.196–198 The interaction
of these quantum eigenstates with (i) the surface band living outside the system,
and (ii) bulk bands of the Cu substrate results in a broadening of the states.178

Experiments with other metal adatoms on metal surfaces corroborate these find-
ings.17,213–215 Such experiments have also been performed on the surface of semi-
conductors216–218 and using dangling bonds.22 Atomically well-defined systems can
also be used to study more exotic phenomena such as Majorana quasi-particles. For
example, the Wiesendanger group used lateral manipulation to construct atomi-
cally precise chains of Fe atoms on a superconducting Re(0001) surface.219 Spin-
polarized STM experiments revealed the presence of spin-spirals in these chains.
Hence, the required ingredients for the formation of Majorana quasiparticles are
present. Indeed, the ends of the chain feature pronounced zero-energy modes. Such
modes have also been observed by other groups using self-assembled molecular chains
on Pb surfaces.220–222

2.5.5 Artificial atoms, molecules and lattices defined by vacancies in an atomic layer.

Another way to prepare artificial systems is to couple the localized states of atomic
vacancies. Cl-vacancies in chlorine terminated Cu(100) can be manipulated and po-
sitioned at will, using the STM tip.223–225 The Cl-vacancies act as artificial atomic
sites with well-defined energy levels, and the ability to couple to identical neigh-
bouring artificial sites. The emergence of quasiparticle Bloch states was studied.225,226

In addition, a variety of 1D chains exhibiting topological end states and flat bands
were realized,227 as well as a two-dimensional Lieb lattice.21 The latter lattice has
strong similarities with the Lieb lattice that will be discussed below.98

2.5.6 Artificial atoms, molecules and lattices defined by confinement between adsorbates

The oscillatory patterns observed close to step edges and impurities indicated that
the surface state electron waves, moving parallel with the surface, scatter with many
sorts of adatoms. In a seminal work, corrals of such scatterers were prepared by
atomic manipulation.193 Inside the corral, the local LDOS shows a standing-wave
pattern, which indicates the squared wave function of electron states of the corral
(see above, section 1, and figure 2.2). A quantum mechanical explanation of the
energy levels and wave functions of such quantum corrals showed that they can be
considered as artificial two-dimensional atomic sites.228,229 In the next section, we
present quantum corrals as artificial atoms, forming the basis for artificial molecules
and artificial lattices.
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2.6 Artificial atoms and molecules in two dimensions

Consider a corral defined by CO atoms on the Cu surface state, see figure 2.3a.
Each carbon monoxide molecule acts as a repulsive scatterer with a potential bar-
rier height of about 0.9 eV per CO.230 By placing CO molecules in a ring, a circular
particle-in-a-box system can be approximated.5,193 Electrons within the corral take
on quantized energy and angular momentum,229 akin to real atoms. To see how
this arises, we revise the particle-in-a-circular-box problem, then we make detailed
comparisons to the hydrogen atom. We then present how a 2D artificial atom can
be realised experimentally and characterised with the CO/Cu(111) platform.

2.6.1 The particle in a circular well

We define the origin of the disk-like quantum corral at its centre, and let the radius
be a. For simplicity, a potential well of infinite height around the circular artificial
atom is assumed:

V (r) =

{
0 for r < a

+∞ for r > a.
(2.1)

By using polar coordinates (r, θ), and assuming that the radial and angular parts of
the wave functions are separable, i.e. ψ(r, θ) = Θ(θ)R(r), the Schrödinger equation
can be written

− }2

2m∗

(
∂2

∂2r
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
R(r)Θ(θ) = ER(r)Θ(θ), (2.2)

where m∗ is the effective mass of the electron. The solutions (which can be found in
e.g. references229,231,232) read, for r < a:

Ψ(r, θ) =
1√
2π
eimθJm(zm,nr/a) (2.3)

and the energy is given by

Em,n =
}2

2m∗a2
z2m,n. (2.4)

The function eimθ describes the angular dependence of the wave function, and the
allowed values of m are 0,±1,±2, ....
Jm(zm,nr/a) are the radial eigenfunctions. They are Bessel functions of order m.
The nth root of the Bessel function of order m is denoted zm,n. These roots satisfy
the boundary condition that the wave function must be 0 at the edges of the infi-
nite well. The wave functions and energy levels are presented in figure 2.3b and c
respectively. With this, we may now compare the 2D circular well to 3D atoms.
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N Figure 2.3: Artificial atoms in two dimensions. (a) An artificial atom confined by a
ring of CO molecules (black) placed on specific positions on a Cu(111) surface (orange).
(b) Analytical calculation of the real part of the wave functions labelled by their radial
quantum number n and the angular momentum quantum number m. (c) Energy scheme
of the lowest energy levels labelled by (n,m). The analogous atomic orbital character
(s, p, d) is listed next to each level. (d) The squared modulus of the wave functions pro-
viding spatial maps of electron probability density.

2.6.2 Comparison of the 2D artificial atom to the hydrogen atom

Some similarities and differences between the 2D circular well and the hydrogen
atom are listed below, with reference to the equations and quantum numbers given
above.

• The hydrogen atom introduces an extra degree of freedom compared to the
2D circular well. This ultimately leads to the existence of the quantum num-
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ber ℓ, related to associated Legendre polynomials. The Legendre polynomials
are not required for the solution to the 2D circular well, thus neither is ℓ.

• n, declared above for the 2D circular well, is a quantum number that is anal-
ogous to the principal quantum number in the hydrogen atom, also typically
referred to as n.

• The number of radial nodes in the case of the hydrogen atomic orbitals is
n − ℓ − 1. In the case of the 2D circular well, the number of radial nodes is
simply n − 1. The radial nodes in 2D are visible in the the real part of the
wave functions, see figure 2.3b.

• m, as given above for the 2D circular well, is a quantum number that defines
the angular momentum of the system. It directly corresponds to the mag-
netic quantum number (sometimes called the z-component angular momen-
tum quantum number232) that one may derive from analytical treatment of
the hydrogen atom, mℓ. In fact, the angular component of the wave function
about the z-axis of the hydrogen atom is described by the very same equation
as for the angular component of the wave function in 2D: eimϕ.

• The total angular momentum in the case of the 2D circular well is given by
L = m}. In the hydrogen atom, the total angular momentum is L =

√
ℓ(ℓ+ 1)}.

The total angular momentum in 2D is the same as the z-component of angu-
lar momentum in 3D.

• The number of nodal lines that bisect the real part of the 2D circular well
wave functions is given by m, which can be seen in figure 2.3b. In the case
of the hydrogen atomic orbitals, there are ℓ nodal planes.

In light of the above points, we adopt the same notation used to label the orbitals
of atoms, except s, p, d, f is determined by m rather than ℓ. Thus, to describe a
state in the 2D circular well, we write the value of n and follow it with s, p, d, f to
denote states with m = 0, 1, 2, 3. Figure 2.3 shows examples of labelled orbitals. In
figure 2.3b and d, the columns of increasing m parallel s, p and d orbitals in atoms,
while the rows correspond to increasing n.
A few extra points can be made in the comparison between the 2D circular well and
hydrogen:

• To find the radial component of the wave function, Bessel functions are used
in 2D, while associated Laguerre polynomials are used for the hydrogen atom.
For the hydrogen atom, the associated Laguerre polynomials give outputs de-
pendent on quantum numbers n and ℓ, and impose a restriction on ℓ such
that ℓ < n. Furthermore, in calculating the angular part of the wave func-
tion in full for the 3D case, associated Legendre polynomials are used, which
in turn place another restriction such that |mℓ| ≤ ℓ. The Bessel function used
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in the 2D case places none of its own restrictions on the angular momentum
quantum number (and the solution to the angular part of the wave function
only requires that m is an integer), thus e.g. 1p states are possible in 2D but
not in 3D.

• The energy eigenvalue for the hydrogen atom does not depend on angular mo-
mentum (only n), while the energy for the 2D circular well depends on both n
and m (via the roots of the Bessel function).

• The degeneracy of each energy level in the hydrogen atom is n2. In 2D, each
energy level is two-fold degenerate (corresponding to the +m and −m states),
except for the ground state which is non-degenerate (m = 0).

• For both the hydrogen atom and the 2D circular well, the wave functions are
complex except when m = 0. To formulate the familiar 2px and 2py orbitals
of hydrogen (commonly visualised as lobes aligned along the x and y axes),
a linear combination of 2pm=+1 and 2pm=−1 orbitals are taken. This results
in real-valued px and py orbitals. The same procedure can be performed for
the 2D states, where the angular components would be 2√

2
cos θ and 2√

2
sin θ,

corresponding to px and py orbitals, respectively. The real parts of the p wave
functions shown in figure 2.3 qualitatively correspond to the px state.

2.6.3 Other shapes of artificial atoms

The orbitals of an artificial atom depends on the shape, dimension and symmetry of
the enclosure. In 2D, the closest analogue to a real 3D atom is the circular artificial
atom, as presented here. The appearance of the orbitals are easy to relate to the 3D
case, particularly because a particle in a circular well has a well-defined angular mo-
mentum. However, it is not strictly necessary to use circular artificial atoms - it is
easier to use a shape that can be tessellated to fill a plane with no gaps to produce
a lattice. Such shapes would still have discrete energy levels and quantum numbers,
however, the angular momentum would not be well-defined, so s, p, d, f notation
may not apply. Despite this, a similar description could be used based on the ap-
pearance of the wave function. For example, a square-shaped artificial atom233,234

exhibits a central peak in its wave function for the lowest energy (s-like state), a
nodal line for the second lowest energy (p-like state), and two nodal lines for the
third lowest energy (d-like state), see chapter 4. Non-circular 2D artificial atoms
have been used as the basis for all lattices realised on the CO/Cu(111) platform to
date (most of which are described in this chapter). Notably, we show how p-like or-
bitals have been utilised in artificial graphene (section 8) and how the degeneracy
was lifted between px and py like orbitals in the Lieb lattice (section 9).
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2.6.4 Artificial atoms and molecules fabricated with the CO/Cu(111) platform: an ex-
ample

Artificial atom

We now present and discuss a circular artificial atom created on a Cu(111) sur-
face, see figure 2.4. Figure 2.4a shows the schematic of a circular corral that was
constructed. dI

dV vs. V (corresponding to the LDOS) spectra were acquired at the
positions marked at the centre and close to the boundary, and are plotted in fig-
ure 2.4b. The spectrum taken in the centre shows a resonance at -0.17 V, while the
one taken off-centre shows an additional peak at 0.21 V. The maps of dI

dV (x, y) (fig-
ure 2.4c) show that the two resonances correspond to the (n = 1,m = 0), and
(n = 1,m = −1) and (n = 1,m = 1) states. The images are reminiscent of the prob-
ability density of s−, and degenerate p−orbitals, respectively. Consequently, these
states will be referred to as s−like and p−like states.

Artificial molecule

The analogy of a quantum corral to an atom can be extended further - two corrals
can be coupled together to form a dimer, resulting in an interaction between the
on-site orbitals and the formation of bonding and antibonding molecular orbitals.
In a dimer, there is an increased probability density in between the two nuclei at
the energy of the bonding state. The reverse is true for the antibonding orbital; in
this case a node exists between the corrals. The energies of bonding and antibond-
ing orbitals are observed by measuring dI

dV spectra at different positions in the arti-
ficial dimer, see figure 2.4d for the schematic with measurement positions. Because
of the spatial extension of the molecular orbitals, a spectrum taken in between two
sites only shows one peak (-0.24 V in the blue curve, figure 2.4e, attributable to
the bonding orbital. The antibonding state is located at -0.14 V. Figure 2.4f shows
differential conductance maps at the energies of the bonding and anti-bonding or-
bitals, respectively. This concept of coupling quantum corrals is the basis behind
the construction of artificial electronic lattices.
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N Figure 2.4: Quantum corrals behaving as 2D artificial atoms and molecules.
(a) Scheme of the artificial atom and (d) artificial diatomic molecule. Black shaded dots
represent CO molecules and orange dots represent the Cu(111) surface atoms. The po-
sitions on which the spectra were taken are marked in (a) black and red, and (d) black
and blue.
(b,e) dI

dV
spectra, averaged over several measurements on each position, and divided by

the average bare Cu(111) spectrum acquired with the same tip state. The light-coloured
dots represent this data. The continuous lines represent the moving average.
(c) Differential conductance maps of the artificial atom showing the m = 0, n = 1, (1s)
and the m = 1 or −1 (in-plane 1p) states at -0.17 V and 0.21 V respectively. The spec-
tra shown have been averaged over several measurements on the same (or equivalent)
positions, and then divided by the average of many spectra on bare Cu (111).
(f) Differential conductance maps of the artificial dimer showing the bonding and anti-
bonding combinations of two 1s-orbitals at -0.24 V and -0.12 V respectively.

2.7 Simulation of the honeycomb lattice

A honeycomb lattice consists of two interpenetrated trigonal lattices (see figure 2.5)
of one type of atomic sites. Its unit cell consists of two sites (A and B), thus a site
of each trigonal sublattice. The coupling between nearest neighbor A and B sites
in this geometry results in linear dispersion around the K, K’ points of the Bril-
louin zone.235 In the generic honeycomb system where each atomic site has s, px
and py orbitals, several Dirac cones can be formed by facilitating s − s coupling,
p − p coupling, etc, provided that mixing of the orbitals does not occur.62,236 The
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two orthogonal (px, py) orbitals cannot form conventional bonding – antibonding
combinations; instead their interaction gives rise to complex interference patterns.
As a result, the four in-plane p bands consist of a non-dispersive flat band, followed
by two dispersive bands forming a Dirac cone at higher energy, followed by another
flat band (see figure 2.6f). Since the kinetic energy does not vary with momentum
in the flat bands, the main deviation in energy originates from interactions. It has
been predicted that this will lead to new quantum phases, such as the p band quan-
tum (spin) Hall effect, unconventional superconductivity, and Wigner crystals.62

The physics of in-plane p-orbitals has been studied with ultracold atoms in optical
lattices,236–238 light in photonic systems,239 and exciton-polaritons in semiconduc-
tor pillar arrays.127,143 Natural atomic monolayer materials with honeycomb ge-
ometry include graphene, silicene, and germanene.235,240–247 In graphene, the most
studied electronic honeycomb lattice, the s- and in-plane px, py orbitals of the car-
bon atoms hybridize and form sp2 electronic bands, the lower one being completely
filled.235 This filled band leads to a strong in-plane bonding between the carbon
atoms, giving graphene its mechanical strength. However, this band is far below
the Fermi-level and thus not electronically active. The remaining pz orbitals (per-
pendicular to the graphene plane) form π bonds, resulting in two bands touching at
the (K,K’) Dirac points at which the Fermi energy is situated. The linear energy-
wave vector dispersion (Dirac cone) around the (K,K’) points is responsible for the
high mobility of electrons in graphene. Solid-state electronic honeycomb systems
can be realized in two-dimensional semiconductor materials by lithographic etching,
giving access to genuine honeycomb semiconductors, hosting Dirac-type electrons
and holes.10,30–34,36,37,248–255 Alternatively, the self-assembly and epitaxial connec-
tion of nanocrystals at an interface has resulted in honeycomb semiconductors of
II-VI materials.256–260 The creation of 2D semiconductors with honeycomb nano-
geometry with minimum disorder and the study of the opto-electronic properties is
currently performed in several groups worldwide. This will be discussed in the out-
look section of this work. First, the creation of electronic honeycomb systems will
be described in detail.

2.7.1 Molecular graphene

An artificial honeycomb lattice engineered by manipulation of CO molecules on a
Cu(111) surface in a scanning tunneling microscope was reported in 2012 by the
group of Manoharan.7,10 In this work, the lattice was coined “molecular graphene”.
This seminal work revealed the potential of quantum simulations with artificial
lattices prepared in a scanning tunneling microscope. First, a graphene-type hon-
eycomb lattice with a single Dirac cone was created. Second, by changing the size
of the artificial atomic sites, the intrinsic Fermi-level (at the Dirac point) could be
changed; the connection between two domains with a different intrinsic Fermi-level
results in electronic equilibrium, simulating a “p-n” junction. Third, the manuscript
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demonstrated that the bond strength between artificial sites could be modulated by
appropriate positioning of CO molecules (introducing a Kekulé texture). Finally,
it was shown that artificial lattices allow simulation of axial strain. For graphene,
triaxial strain is equivalent to applying a magnetic field.
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N Figure 2.5: Design and realization of the first quantum simulation of a honey-
comb lattice, “molecular graphene”. (a) Schematic of CO molecules (black; shaded
area representing the approximate size as imaged in STM) atop the Cu(111) surface
atoms (orange), as formulated in.7 (b) STM topograph of the artificial graphene lat-
tice. The LDOS is higher between CO molecules, which appear as black circles in the
scan.7 (c) Differential conductance as a function of bias (green line) with a tight-binding
fit (dashed black line); The Dirac cone in momentum space is shown inset, calculated
with the fit tight-binding parameters.7 The dip in LDOS labelled ED corresponds to the
centre of the Dirac cone.

Figure 2.5a presents the design used by the Manoharan group; a hexagonal array
of single CO scatterers (black dots) was prepared by atomic manipulation; this re-
sults in lattice vectors of 1.92 nm, considerably larger than in real graphene (0.246
nm).235 Figure 2.5b shows a scanning tunneling microscopy image, in which a hon-
eycomb network can clearly be seen. Scanning tunneling spectroscopy revealed the
local density of states (LDOS) corresponding to a single Dirac cone (indicated by
ED). The width between the two maxima around the Dirac point, i.e. the two M -
points is 180 meV, resulting in a hopping value of about 90 meV (ignoring orbital
overlap). From the gradient of the linear dispersion E(k) = }vF k, the group ve-
locity (Fermi velocity) of the electrons is found to be 2.5 × 105ms−1, considerably
smaller than in real graphene. Perhaps the most compelling highlight of this work
is the deformation of the lattice to simulate triaxial strain, and thereby a pseudo-
magnetic field (gauge field) up to 60 Tesla. By such a field, a 0th order Landau
state emerges on the A sites, while the B sites exhibit a Landau gap that gives
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mass (widens the gap at the Dirac point) to the Dirac electrons with pseudospin
B.

2.8 Simulation of the generic electronic honeycomb lattice with separated s-
and p-orbital bands

Similar to the situation in real graphene, there is significant hybridization between
s - and in-plane p-orbitals in the molecular graphene lattice shown in figure 2.6a.261

To access the pure p-orbital physics, it is essential to increase the energy differ-
ence between s- and p-orbital bands, and to reduce next-nearest neighbor coupling.
This can be done by tailoring the size of the artificial lattice sites, and by using
“rosettes” of CO molecules instead on single CO molecules, respectively, see figure
2.6. Muffin-tin and tight-binding calculations predict a single Dirac cone for the lat-
tice with single CO molecule scatterers, while a double ring rosette of CO molecules
results in Dirac cones in both s- and p-orbital bands, as well as a (nearly) flat p-
band. This suggests that such lattices can be used to study the in-plane p-orbital
physics, unclouded by hybridization effects.
Figure 2.7a shows a scanning tunneling microscope image of the lattice shown in
figure 2.6c, acquired with a Cu tip. The experimental and simulated LDOS spec-
tra on the artificial lattice and bridge sites are presented in figure 2.7b; they agree
well, indicating that the realized lattice indeed features the p-orbital band struc-
ture. Likewise, the experimental and simulated differential conductance maps agree
well. The interaction of in-plane p-orbitals at the sites of a honeycomb lattice can
best be described as orbital interference by geometric frustration.62,236 Wannier-like
eigenstates with the flat band energy can be constructed around each hexagon pla-
quette of artificial sites resulting in a local density of states on the bridge sites.62

These results show that solid-state electronic honeycomb lattices can be designed in
such a way that in-plane p-orbital physics fully emerges. The design is purely based
on the lattice geometry and the degree of quantum confinement and inter-site cou-
pling.
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and a honeycomb lattice vector of 3.58 nm, corresponding to 14 Cu atoms, (c) lattice
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(d-f) Corresponding band structures calculated by the muffin-tin approximation. The
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ange) orbital bands. (g-i) The LDOS for these three designs; green for the on-site posi-
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The Gaussian broadening is 40 meV.
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2.9 Simulation of an electronic Lieb lattice

The geometry of the Lieb lattice is well-known from the AX2 planes in the 3D ABX3

perovskite structure, such as the superconducting CuO2 planes in cuprate high-
temperature superconductors,262 but does not exist as such in a natural 2D mate-
rial. It is thus valuable to perform an analogue quantum simulation of an electronic
Lieb lattice. The Lieb lattice is a depleted square lattice, consisting of three (arti-
ficial) atoms per unit cell262,263 (see figure 2.8a. The two edge sites (red) have two
nearest neighbours and the corner sites (blue) connect to four nearest neighbours.
The three-atom basis gives rise to three s-orbital bands (figure 2.8b; two bands
converge to a Dirac cone at the Brillouin zone corners, which is intersected by a
flat band). Similar to graphene, the photon-like linear dispersion in the Dirac cone
leads to massless electrons which can propagate in the lattice at a constant velocity.
On the other hand, the electrons in the flat band are entirely localized on the edge
atomic sites of each unit cell. The realization of a flat band is particularly inter-
esting for the investigation of electron-electron interactions,264–267 the (fractional)
quantum spin Hall effect139,268 and superconductivity.269 An optical equivalent
of the Lieb lattice was theoretically proposed118,270 and subsequently realized in
bosonic and fermionic cold-atom lattices.271,272 Additionally, photonic Lieb lattices
have been realized and the band structures were mapped.140,264,265,267,273,274 Only
recently, exciton-polaritons were studied in a Lieb geometry.127,275

The electronic Lieb lattice has been realized via two approaches. Drost et al. ma-
nipulated chlorine vacancies in a chlorine monolayer on Cu(100),21 the formation
of these lattices was based on seminal work performed in the group of Otte.98 It
was shown that the vacancy states can couple to form a lattice. Scanning tunnelling
spectroscopy and maps of a Lieb lattice with Cl-vacancies as artificial atoms cor-
roborated the main characteristic features of the Lieb lattice. An advantage of this
approach is that it allows the direct lattice to be patterned, in contrast to the in-
verse geometry required for the CO-on-Cu(111) platform. A disadvantage is that
the on-site energy of the vacancy states is close to the Cl-conduction band, leading
to a limited accessible energy range. As a consequence, the Dirac-band above the
flat band and possible higher bands could not be resolved.
In our work,230 the CO-on-Cu(111) platform was used. The Lieb lattice has a square-
type geometry, which means that the lattice is not entirely commensurate with the
underlying Cu(111). However, since the artificial atoms formed by CO molecules on
top of Cu atoms comprises many Cu sites, good approximations to the Lieb lattice
can be prepared, even on a hexagonal Cu(111) surface, see figure 2.8.230,262,263,276,277

Since the Lieb lattice has no dual lattice, the inverse lattice was defined using crosses
of five CO molecules, as indicated in figure 2.8b. The unit cell was chosen such
that the on-site energy was near the Fermi energy and the anisotropy of the C4-
symmetric Lieb lattice on the triangular Cu(111)-background was minimized. Scan-
ning tunnelling spectroscopy resolved the bottom and top Dirac bands (blue) and a
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Schematic of the Lieb lattice. The unit cell (contained in the dashed lines) contains
two edge sites (red) and one corner site (blue). (b) The lowest three bands of the lat-
tice, formed by s-orbitals. (c) Configuration of CO molecules (black) on Cu(111) (orange
background) to corral the Cu surface-state electrons into the Lieb geometry. (d) Wave-
function map at V = -0.2 V, corresponding to the energy of the lowest Dirac band, with
high electron density at the corner states (e) Wave-function map at V = -0.05 V, the
flat band energy, showing high electron density at the edge states of each unit cell. (f)
Wave-function map at V = +0.55 V, showing the coupling of in-plane p-orbitals in the
Lieb lattice.

nearly-flat band (red), see figure 2.8c. Furthermore, LDOS maps showed the local-
ization of the Dirac bands on both the corner and edge sites (figure 2.8d) and the
nearly-flat band only on the edge sites (figure 2.8e). The middle, nearly-flat band
had acquired a dispersion due to a substantial next-nearest-neighbour hopping and
coupling with higher-energy bands. At energies above these s-orbital bands, higher-
orbital bands were observed (see figure 2.8f). This approach thus allows for the re-
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alization and characterization of a large range of energy bands, as long as the in-
verse geometry of the lattice can be defined on the triangular Cu(111) background.
The C4-symmetric Lieb lattice is a suitable candidate to describe p-orbitals in a
convenient px- and py-orbital basis. The realization of p-orbital bands has long
been established in cold-atom and lattices.216,278 In addition, p-orbital honeycomb
and Lieb lattices were realized in photonic and exciton-polariton lattices recently.127,239,275

The first engineered p-orbital bands in artificial electronic lattices were presented in
the p-orbital Lieb-like lattice.279 Motivated by the higher-energy bands observed
in the initial Lieb lattice, the artificial-atom sites were enlarged to decrease the
on-site energy and thus shift the p-orbitals down to the appropriate energy range
−0.45 < E < 0.5eV . LDOS maps displayed nodes on the artificial-atom sites and
a finite DOS between the sites, characteristic for the low px- and py-orbital bands.
In addition, the on-site energies of the px- and py-orbitals were tuned independently
by creating an asymmetric Lieb lattice. This allowed to lift the spectral degeneracy
of the px- and py-orbital bands. The work on s- and p-orbitals in the Lieb lattice
established that the orbital degree of freedom is among the parameters that can
be tuned in electronic lattices realized using CO on Cu(111). However, the four p-
orbital bands exhibited a significant spectral overlap and were relatively close to the
s-orbital bands. The previous section discussed how the p-orbital band structure
was finetuned further and separated from the s-orbital bands for the example of the
honeycomb lattice.

2.10 Simulation of aperiodic two-dimensional systems

The presence of long-range order and translational symmetry enables the use of pe-
riodic boundary conditions in electronic structure calculations. As such, it under-
pins our understanding of the electronic structure of materials. However, not all
materials have translational symmetry. Notable examples are (i) amorphous ma-
terials, i.e. materials with no long range order, (ii) quasicrystals, which are ape-
riodic tilings built up using two or more well-defined unit cells, and (iii) fractals,
patterns that are often described as self-similar on different length scales. Figure
2.9 shows an example of a quasicrystal (Penrose tiling) and fractal (Sierpinski tri-
angle). Both types of structure are difficult to study. Many quasicrystals, experi-
mentally discovered in the early 1980’s,280,281 were synthesized in the laboratory
and are thermodynamically unstable. The few quasicrystals that have been found
in nature have been formed in outer space.282 Even though fractals are pervasive
on the macroscopic scale - Romanesco broccoli, the cardiovascular system and coast
lines are well-known examples - no naturally occurring geometric quantum frac-
tals have been identified. Molecular self-assembly can be used to form fractals in
a bottom-up fashion.283 However, the coupling between the building blocks is too
weak to result in a true electronic fractal. The ability to position adsorbates with
atomic scale precision enables the formation of well-defined electronic quasicrystals
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and fractals, as shown below. Synthetic quasicrystals have also been realized using
cold atom gases and photonics.284–286

N Figure 2.9: Aperiodic lattices created using the CO/Cu(111) platform (a) Pen-
rose tiling, built using two rhombi, indicated in blue and green. (b) Third generation
Sierpinski triangle. The first generation is shown in light blue. (c) STM image (left) of
an arrangement of CO molecules (black) that leads to a Penrose tiling for the surface-
state electrons. The corresponding normalized dI

dV
map (right) shows that the LDOS also

exhibits a Penrose geometry. Scale bar: 5 nm. (d) STM images of the first three genera-
tions of the Sierpinski triangle, indicated by G(1), G(2) and G(3), respectively. Scale bar:
2nm. (e) Plot of the dimension of the electronic states of a G(3) Sierpinski lattice as de-
termined by applying box-counting to experimental dI

dV
maps and muffin-tin calculations.

For reference, experimental and calculated data on a square lattice are also shown.

2.10.1 Formation of electronic quasicrystals and fractals

In 2017, Collins et al used the CO/Cu(111) platform to create an electronic Pen-
rose tiling, see figure 2.9c.287 Energy resolved maps of the local density of states re-
vealed that the wave functions have the same symmetry as the geometric structure
to which the electrons are confined. A Fourier analysis of these real-space differen-
tial conductance maps showed that the energy of the states is related to the local
vertex structure of the quasicrystal. We have used the same CO/Cu(111) platform
to create a geometric electronic fractal.288 The light blue triangle in figure 2.9b
shows the first generation of the Sierpinski triangle. By repeating this unit, two
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additional generations of the Sierpinski fractal were realized, see figure 2.9d. The
Hausdorff dimension of a Sierpinski triangle is log 3/ log 2 ≈ 1.58. The dimension of
the electronic wave functions can be determined by analysing the differential con-
ductance maps in segments in a process known as the box-counting method. Figure
2.9e shows the dimension of the electronic Sierpinski triangle and square lattice at
different energies. The dimension of the electronic fractal is close to the expected
value of 1.58 for all energies, while that of the square lattice is close to 2. This is
consistent with the observation for the synthetic Penrose tiling that the Cu(111)
surface state electrons are confined to the geometric structure defined by the CO
molecules.

2.11 Beyond simulations: Two-dimensional semiconductors

The topics presented thus far concern quantum simulators produced on a site-by-
site basis with STM. Although this allows one to fabricate and investigate materials
with unexplored 2D geometries, materials built this way cannot feasibly be used
in technology. The principles derived from these model studies could however be
translated to systems that have application potential. In this section, we discuss
semiconductors fabricated with pre-determined geometry, which are scalable and
have real technological applications.

2.11.1 Brief history

In semiconductors, the chemical potential of free conduction band electrons (or va-
lence band holes) can be varied with respect to the energy levels in the system.
This is possible either by incorporating specific non-isovalent impurity atoms on
specific atomic positions in the lattice, or by applying an external electric field, thus
electrostatic doping or gating. The latter requires a capacitor structure between
the semiconductor of interest and a metal electrode. In a more advanced form,
electrostatic gating leads to complementary metal-oxide-semiconductor (CMOS)
technology in transistor devices. More recently, electrolyte gating has also been ap-
plied. The ability to grow ultra-pure Si crystals, seed them with electron-donating
or electron-accepting dopants and change the chemical potential has enabled our
current information society, known as the “silicon age”.
In parallel with the development of CMOS technology based on bulk silicon, low-
dimensional, particularly 2D, semiconductors were developed and investigated.289

The electrons in 2D semiconductors corresponds to Bloch type waves in the two lat-
eral x, y directions, and are confined as standing waves in the short z direction. 2D
semiconductor crystals, also known as quantum wells, can be grown on substrates
and incorporated into devices by gas-phase deposition techniques such as chemical
vapor deposition, molecular beam epitaxy, pulsed layer deposition, and methods de-
rived from these. Two-dimensional semiconductors have boosted the opto-electronic
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industry. In addition, fundamental research on electron gases in 2D semiconduc-
tors has resulted in paradigm-shifting breakthroughs in solid state physics. In 1980,
the quantum Hall phenomenon was discovered,23,290–292 now established as the
first topological electronic band structure effect in the solid state. Around 1984,
the fractional quantum spin Hall effect was discovered and analyzed,.24,293–295 Fur-
ther theoretical and experimental research revealed the existence of composite elec-
tronic quasi-particles, some of them with exchange statistics reminiscent of neither
fermions nor bosons: non-Abelian anyons.

N Figure 2.10: Fabrication of 2D InGaAs semiconductor with a nanoscale honey-
comb geometry (a-d) the consecutive steps in the nano-lithography procedure, with
(a) growth of silica and PMMA layers on top of the InGaAS quantum well, after which
(in (b) electron beam lithography is used to write a hexagonal periodic pattern in the
PMMA. (c) presents the reactive ion etching to transfer the pattern as hole array in the
silica layer, and (d) shows the inductive coupled plasma etching to transfer the hole pat-
tern from the silica into the InGaAs layer. (e) SEM image of a honeycomb InGaAS crys-
tal with a periodicity of 60 nm, (f) SEM cross section of the conical holes with periodic-
ity of 39 nm

Another step in this field, more related to the contents of this review, was to mod-
ulate the lateral potential experienced by the electrons in a 2D semiconductor in
a periodic way. The modulating potential creates a potential on the 100 nm scale
superimposed on the atomic potential of the lattice. This superimposed potential
results in the formation of electronic mini-bands and thus provides a powerful path-
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way to alter the electronic band structure of well-known semiconductor materials by
geometry. Technically, this is achieved with electron beam lithography; a periodic
array of metal gates can be fabricated that exerts a repulsive or attractive poten-
tial, forcing the electrons to live in e.g. a honeycomb superlattice. The magnitude
of the translation vectors is between 150 and 100 nm.28,251 Alternatively, an array
of nanoscale holes in a 2D semiconductor crystal can be fabricated,248,250 result-
ing in a more robust honeycomb potential, also allowing for smaller lattice vectors.
This latter method and the resulting 2D semiconductor with a honeycomb geom-
etry with translation vector magnitudes of 40-60 nm is presented in figure 2.10. A
much later development came from the field of colloidal nanoscience: self-assembly
and oriented attachment of PbSe nanocrystals resulted in two-dimensional semi-
conductors with square or hexagonal arrays of nanovoids; the latter system is an
atomically coherent semiconductor with a honeycomb geometry.256,257 The advan-
tage of nanocrystal assembly is the much smaller period in the range of 5-10 nm,
resulting in broader, i.e. more dispersive electronic bands. Nanolithography for pe-
riodic superlattices in semiconductors is better established and applicable to more
materials.

2.11.2 Prospects for semiconductors with massless Dirac carriers

Strong evidence for the existence of massless Dirac electrons in 2D honeycomb semi-
conductors has not yet been provided. The modulation of the effect of the arrays of
metallic gates in the region of the electron gas is rather weak and is estimated to
be in the 10 meV range. Moreover, the translation vectors have magnitudes in the
100 nm range, resulting in Dirac cones with a weak energy-wave vector dispersion.
It is also clear that detection of the local density of states and energy-resolved wave
function mapping with scanning tunneling microscopy and spectroscopy can pro-
vide more direct evidence for a Dirac-type band structures than non-local methods,
especially in the early phases of the research and development.
Looking to the future of this field, it is worth mentioning that modern lithographic
techniques and state-of-the art templating with block co-polymers allow the prepa-
ration of III-V semiconductors with a honeycomb periodicity in the 30 nm range.
(see figure 2.10). This automatically results in more dispersive Dirac cones, now
over an energy scale in the tens of meV. Furthermore, self-assembled nanocrystal
honeycomb structures are predicted to have Dirac cones with widths in the 100
meV range, provided that the nanocrystal sites are well coupled.36 This opens new
perspectives for the creation of semiconductors in which electron and/or hole exci-
tations are robust massless Dirac carriers. Understanding that intrinsic spin-orbit
coupling is strong in these systems, flawless honeycomb semiconductors with small
periodicity open an entire new materials field in which the band structure can be
modulated by the nanoscale geometry, interactions and spin-orbit coupling.37,92

Strong spin-orbit coupling could open topological gaps in the 30 meV range, offer-
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ing quantum spin Hall edge states for technology under affordable conditions.
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CHAPTER 3

3.1 Introduction

During this thesis, we describe moving atoms on the nanoscale. Mostly, this refers
to moving atoms on the surface. The ultimate goal of this chapter involves reconfig-
uring atoms at the tip apex.
An atomic resolution scanning tunneling microscopy (STM) image can only be ob-
tained if one atom at the tip apex is closer to the surface than any other atom by
enough of a margin. Usually, during experiments, the tip is conditioned in-situ by
applying voltage pulses between tip and sample or, if the surface is clean and con-
ductive, by deliberately pushing the tip into the surface. During either of these pro-
cesses, atoms at the tip apex reconfigure in an unknown fashion until the user (so
far a human) is satisfied with the image resolution. However, obtaining a suitably
sharp tip is often tedious and time consuming. From a brief survey of a few scan-
ning probe microscopists, it can be estimated that roughly 30% to 40% of measure-
ment time is dedicated to tip conditioning.
This is substantial, both on a personal level (most scientists would probably pre-
fer more mental stimulation from their research), and on a societal level (not only
is scientific progress impeded by this inefficiency, but science is funded by the tax-
payer, and a significant fraction of the cost of running an STM is dedicated to tip
preparation). The process itself requires no high-level thinking - it is merely an al-
gorithmic decision that depends on the output of an image recognition task. Since
the advent296,297 and recent renaissance298 of artificial neural networks, it has be-
come possible for these “simple” tasks to be automated. Particularly, convolutional
neural networks (CNNs) have been shown to be well equipped for image recogni-
tion tasks, because the convolutional layers act as automatic feature extractors that
the network can learn from.299 A few groups have made progress in this direction
in recent years, as we outline below. The end-goal is to have a fully-automatic in-
built “tip-condition” button in SPM software that works on any surface, and that
allows for more efficient use of measurement time, e.g. tip preparation tasks could
be performed overnight.
This chapter discusses the use of a convolutional neural network as a tool to clas-
sify different tip states automatically. We do not go into detail about how neural
networks work because plenty of excellent learning resources already exist,299–302

but in addition to citations, the reader is referred to the glossary at the end of this
chapter for important definitions.

3.2 In literature

The bulk of the work carried out for this project was performed in mid-2018, how-
ever, at the time of writing, there have since been a plethora of exciting new entries
on the topic of SPM image recognition and automation to varying degrees. Below,
we chronicle the existing literature, giving honorary mentions to reports on adjacent
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topics:

• January 2011: Philip Moriarty’s group at the University of Nottingham used
genetic algorithms to modify scan parameters and change the tip apex un-
til the desired scan resolution was achieved. It suffered too many limitations
to be implemented as a robust artificial intelligence to control an SPM sys-
tem.303

• June 2016: Saoirsé Freeney’s master’s thesis at the University of Notting-
ham304 demonstrated image recognition using principal component analysis,
a type of “traditional” machine learning. It trained on only 39 images and
achieved 69% accuracy. Synthetic data was also generated algorithmically and
through the use of convolution to simulate different tip states. At this time,
neural networks were a nascent hot topic, showing promise for all kinds of im-
age recognition tasks.

• May 2017: Without the use of any artificial image recognition at all, a group
in Leiden reported that the the STM tip can be made symmetrical/sharp sim-
ply by dipping it gently into an Au(111) surface hundreds of times.305

• April 2018: The start of the project at Utrecht university that forms the sub-
ject of this chapter.

• May 2018: The first appearance of a neural network-based STM image classi-
fier was documented by Wolkow’s group at the University of Alberta, Canada.
They tried and reported several techniques for image assessment of an H-
passivated Si(100) surface. Their CNN method was of particular interest, as
it yielded over 99% accuracy for correct identification of non-sharp tips.306

• March 2019: Synthetic training data was generated using Ising models to em-
ulate SPM images on strongly correlated systems where complex patterns
form. By doing this, they could answer the question of which physical model
could describe a certain pattern formation, i.e. the ML algorithm could tell
the underlying physics of the system. No manual labelling was required.307

• September 2019: A collaboration, (based on this project) between the Uni-
versity of Nottingham and Utrecht university tested several machine learning
methods on H:Si(100), Au(111) and Cu(111) (the Au(111) dataset was ac-
quired in Utrecht and is discussed in this chapter). This included the afore-
mentioned CNN from the Alberta group, however, of the CNNs tested, this
algorithm performed worst. This highlights the point that a model that works
well for one dataset is not necessarily one-size-fits-all.308

• February 2020: Using a CNN and by generating probe-particle models, molec-
ular structure and orientation could be predicted from an AFM scan.309
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• February 2020: The Nottingham group tested a few methods to detect the
state of a tip using incomplete scans. Of particular note was the long-term
recurrent CNN310 which surprisingly achieved better accuracy on a rolling
window of scanlines than the group’s earlier project making CNN predictions
on full scans.311

• March 2020: An algorithm was developed by the Alberta group again, this
time a CNN was used in tandem with image segmentation to recognise small
defects and their positions in a “large” scan of H-Si(100). The algorithm then
picks a clean area in the large scan and performs what they call “hydrogen/
scanning probe lithography” to automatically pattern the surface.312

• March 2020: A program, DeepSPM, was created by groups in Germany and
Australia that fully automates the tip preparation process, from selecting scan
regions to image classification (again using a CNN), and, most innovatively,
using reinforcement learning to choose the best tip conditioning action.313

The source code is available on GitHub.

• May 2020: The Nottingham group produce an engaging, complete review of
literature related to artificial intelligence applied in the field of nanotechnol-
ogy, specifically STM.

• June 2020: Artificial neural networks were trained to distinguish structure in
electronic quantum matter, and, interestingly, performed well where humans
would have difficulty.314

• August 2020: The Nottingham group produced Synthetic AFM images with a
Monte Carlo algorithm. This data was used to train a CNN, which proceeded
to correctly identify features in real AFM data that the group already had.
This was done without the need to label the experimental dataset.315

• August 2020 (unpublished at the time of writing): A state of the art CNN
architecture called U-Net316 can provide predictions on a pixel-by-pixel basis,
and performs well at image segmentation. The Nottingham group attempted
numerous traditional automated segmentation procedures, and found that U-
net outperformed them at segmentation of AFM images of gold nanoparticles
on silicon.317

3.3 Methods

To train a neural network, a dataset of preferably several thousand examples should
be gathered. This should be split into training, validation and testing data. For
supervised learning, the training data should be further split into categories. The
larger the dataset, typically the better the network performs. We outline below the
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simple techniques that were applied to augment the original dataset to expand it by
several orders.

3.3.1 Data gathering

A total of 2470 STM images of a clean Au(111) surface were acquired with a Sci-
enta Omicron LT-STM system at approximately 4.5 K. The images were acquired
in constant current mode. Each pixel in the raw data represents the extension of
the piezo, or the height of the tip, in metres. The scan size was 30 nm × 30 nm,
with a resolution of 150 pixels × 150 pixels. The bias voltage was 0.1 V and the
current setpoint was 0.1 nA. A script was written to acquire the images automati-
cally in a grid with spacing 30 nm in each of the x and y directions. All images in
the dataset were acquired with the same settings.

3.3.2 Data preparation

A series of steps were taken to prepare the data for training.

• The first and last rows of each image array were removed. This was because
no settle time was specified between the acquisition of images, so it was com-
mon to see a sudden adjustment of the tip height in the first few pixels of
each image. The leftmost and rightmost columns of each image were also re-
moved to maintain a square image of 148 pixels × 148 pixels.

• A plane subtraction was applied, with step-edges taken into account. (Proce-
dure outlined in318)

• The extension of the piezo could range between -100 nm and +100 nm, how-
ever, the extension holds no relevance to the scan, which only varies by up to
a few nanometres. To eliminate any possible effects this could have, the values
were centred at 0, by subtracting the average value of the scan from the scan
itself.

• All values were converted to Ångströms so as not to have small values on the
order e-9.

• To expand the dataset, the original images were rotated 90, 180 and 270 de-
grees, and flipped horizontally and vertically. The amount of data contained
in each class was balanced as much as possible, so not all augmented data was
used. It is generally the case that if there is class imbalance, a neural network
is more likely to incorrectly classify specimens in the minority class compared
to the majority class.319

After these procedures, 72 images were separated to be used as validation data.
The remaining images were divided in a 75/25 split between training/testing data.
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3.3.3 Image categories

The 2470 original images were categorised by two people (Nadine van der Heijden
and Ingmar Swart) to divide the labour. The Au(111) surface exhibits a distinct
herringbone reconstruction, which gives some visual clues as to what the tip apex
could be like. Figure 3.1 shows six categories into which the images were divided.
The categories are as follows:

• Sharp: These images were taken with a tip apex with a small radius, prefer-
ably a single atom.

• Double: The name of this category implies repeated features, which can be
the case when there are two atoms at the tip apex. We also incorporate im-
ages taken with blunt tips into this category, as they have multiple atoms at
the end of the tip as well. The contrast between light and dark (which rep-
resents difference in tip height) is low compared to a sharp image; compare
sharp and double images in figure 3.1. A blunt tip cannot render small details
as finely because it doesn’t “fit” as well into the grooves of the surface.

• Unstable: These images exhibit evidence that the tip has undergone a change
at its apex, resulting in a sudden change in contrast. This can range from sev-
eral pixels up to a “semi-permanent” change.

• Step country: This refers to a location that appears to have many step
edges. It could either indicate a double/multiple tip, or the surface could gen-
uinely have many steps.

• Bad country: Sometimes the surface isn’t flat. When these areas are im-
aged, usually cloudy, lumpy structures are observed. We reserve images such
as this for bad country.

• Rubbish: This is like an extreme form of the unstable category, but where
nothing of the underlying surface can be discerned.

The number of images in each category after augmentation is listed in table 3.1

3.3.4 Network structure

We made use of an adapted VGG-16 network320 on the basis that this architecture
performs well for image recognition tasks (VGG achieved top results for image clas-
sification in the ImageNet Large Scale Visual Recognition Challenge of 2014321).
The VGG-16 architecture performs well for large-scale image recognition because
of its depth (16 layers) and because of the fact it uses small convolution kernels of
size 3 × 3, which can capture fine details (and is the smallest that can still convey
the sense of up/down/left/right). However, we found that using 16 layers resulted
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Step country Bad country Rubbish

Sharp Double Unstable

N Figure 3.1: Example STM scans of Au(111) from the six categories into which the
data was classified. Each image is of size 30 nm × 30 nm and the colour scale is given
on the right.

Class Training data Testing data(%) Validation data
Sharp 1743 579 72
Double 1627 521 72

Unstable 3242 1054 72
Step country 1698 612 72
Bad country 379 137 72

Rubbish 2102 694 72
Total 10791 3597 432

Table 3.1: The number of images, post-augmentation, that the networks were trained
on.
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in overfitting, so the number of layers was reduced to 12. Note that the number of
layers here refers to only those with associated weights. Figure 3.2 details the net-
work architecture.
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99.4%
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N Figure 3.2: The network used for training, based on the VGG architecture. The three
dimensional blocks represent the output volumes from each prior operation, with dimen-
sions given. The exact operations performed are specified below the arrows, and can be
read in order top - bottom, left - right. An example is given of the output of the network
(pink block) for a given input image. The probability distribution given by the network
shows that it considers this particular image sharp.

Filters

The convolution filters were of size 3 × 3 with a stride of (1, 1) (as in the original
design of the VGG network). The max pooling filters were of size 2 × 2, with a
stride of (2, 2). Zero-padding of 1 pixel was applied. For this combination of fil-
ter size, image size, stride and padding, the spatial resolution after a convolution
operation is preserved.301

Software and hardware

253 networks in total were trained using a Nvidia Geforce 1080 Ti GPU, using var-
ious hyperparameter combinations. We used Python with Keras 2.1.5, in tandem
with TensorFlow 1.7.0.
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Parameters

Adam was used as the optimizer.322 The optimum learning rate was 0.0005, with
the momentum set to 0.9 and the “learning deceleration” set to 0.999. We used
ReLU as the activation function, for its known efficiency and efficacy. The networks
were trained with up to 300 epochs, although there was no improvement in the net-
work accuracy after approximately 175 epochs. Figure 3.3 shows the decline of the
classification error as the number of epochs increases for one such network in the
final ensemble.
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N Figure 3.3: The classification error vs number of epochs for one network in the final
ensemble.

Dropout was applied after layers 2 and 4 at a rate of 0.25, layers 6 and 8 at a rate
of 0.4, layer 10 at a rate of 0.45 and layer 11 at a rate of 0.5. This is visualised in
figure 3.2
A batch size of 128 was used, which was the largest power of two that could be con-
tained in RAM.

3.4 Results and discussion

3.4.1 Ensembles

To increase accuracy by a few percentage points, it is common to use the average
prediction of an ensemble of networks.323 A preliminary check was done to gauge
how many networks should be used for the best performance. Eight ensembles of
random networks were checked against validation data. The average recall (on vali-
dation data) is shown in figure 3.4 as a function of number of networks.
Compared to a single network, an ensemble of 5 networks enjoys a 3.5% increase
in recall. There is a further increase of less than 1% as the number of networks in
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N Figure 3.4: The average recall plotted against the number of networks in the ensemble
shows a sharp increase when going from one to five networks. This is followed by shallow
general increase as the number of networks is increased to 150. There is a tradeoff to be
made between ensemble accuracy and overall computation time.

an ensemble is increased to 150. Note that because these networks were validated
on the validation data, which had few examples compared to the testing data, the
networks randomly performed poorer. When checking the performance with testing
data, which has a much broader range of examples, the performance appears to be
a few percent higher still.
Ultimately, 20 networks were chosen, not randomly, but on the basis of having a
accuracy higher than 75%. Comparing accuracies obtained on validation data, this
ensemble saw an improvement of 5% over the ensemble of 10 random networks. Ta-
ble 3.2 shows the accuracy that was achieved on testing and validation data for all
classes with this ensemble.

Class Testing data accuracy (%) Validation data accuracy
Sharp 83 83
Double 80 88

Unstable 92 90
Step country 93 92
Bad country 82 89

Rubbish 99 100
Average 88 90

Table 3.2: The accuracies obtained on the ensemble of 20 networks that themselves
achieved over 75% accuracy each.
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N Figure 3.5: Of the images with true labels sharp, double and bad country, but that the
network predicted incorrectly, these plots show which categories the network “thought”
they were.

The categories that had the lowest accuracy were sharp, double and bad country.
To get some further insight into why this might be, we examined which categories
the ensemble misclassified the data into. Figure 3.5 shows a breakdown by percent-
age of which categories the ensemble mislabelled sharp, double and bad country
images. Note that the amount of validation data is small, thus testing data should
be considered more representative of performance (also because of the fact that the
testing data is used for the final evaluation of the network.)
In distinguishing certain categories, the ensemble performs exceptionally well, with
close to 0% of sharp or double images being mislabelled as bad country or rubbish.
The ensemble also performs quite well at distinguishing sharp and double from step
country, except in the case where 20% of mislabelled testing data in the double cat-
egory is mislabelled as step country. This miscategorisation has an intuitive ex-
planation - multiple apparent step edges can either mean a double tip, or that the
surface itself really has multiple terraces, as mentioned earlier.
The double and sharp categories get confused with each other the most frequently
by the network. This comes as no surprise, given that we observed during the man-
ual categorisation process that humans contradict not only each other, but also
themselves. The difficulty of classifying sharp and double images in particular is
because there is no clear-cut division between classes, but rather a spectrum where
one must draw their own subjective line. This subjective line can shift depending on
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the examples that the person has seen very recently, and of course standards vary
from person to person.
While it’s unlikely that a bad country image would be predicted as a sharp image
(0% of validation data and 4% of training data is misclassified there), there is no
single category that gets particularly confused for bad country. More images get
misclassified into unstable or rubbish categories, which makes some sense because
scans in these categories, together with bad country, have the largest variation in z-
height. A possible explanation for the comparatively wide distribution of mislabels
is that the bad country category had fewer examples than the other categories; only
379 in the training set, compared to over 1000 in each of the other categories.
To eliminate some bias in the manually classified data, one could consider

• letting one person reclassify the entire dataset multiple times, and using ma-
jority voting. However, manually labelling several thousand images is tedious
and takes time away from the researcher.

• Alternatively, one could put a threshold on a measurable quantity in the im-
age, such the slope of step edges or the Au(111) herringbone reconstruction.

3.4.2 Reclassifying dataset based on step edge slopes

We formulated a metric by which to distinguish sharp and double images in a more
objective manner. Height profiles were measured perpendicular to the step edges.
The criterion for an image to be sharp was defined as a transition from the higher
terrace to the lower terrace in under 7 pixels. This agrees with the human percep-
tion of the two categories, and led to an equal division of data across sharp and
double.
Fifteen networks were trained on the original data, and fifteen on the data reclassi-
fied based on the step edge metric. The networks were trained with the aforemen-
tioned structure and parameters, but with 175 epochs. Table 3.3 shows the average
accuracy the two ensembles achieved for each category.
Interestingly, the accuracy was lowered by recategorising the images with this method.
A possible reason for this is that the height profile measurement was unreliable; the
angle of mearurement was not always at 90◦to the step edge, and the automatic
flattening procedure was not perfect.
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Class Original data accuracy (%) Reclassified data accuracy (%)
Sharp 79 75
Double 76 71

Unstable 90 92
Step country 87 87
Bad country 78 77

Rubbish 99 99
Average 85 83

Table 3.3: Accuracies of ensembles of 15 networks trained on the original data, classified
by humans, and the data reclassified by the step-edge metric that we formulated. The
accuracy was lowered by using this metric.

3.5 Conclusion

An ensemble of convolutional neural networks based on the VGG architecture was
built, and optimal parameters were found; 12 layers, with a learning rate of 0.0005,
using Adam as the optimizer. Different numbers of epochs were used in the final 20
networks. Overall accuracy of the final ensemble of 20 networks was 88% on testing
data and 90% on validation data.
One of the aspects that could be improved was the existence of bias in the man-
ually classified data, particularly between the sharp and double category. An at-
tempt was made to remove the subjectivity in the categorization by introducing a
metric based on step-edge profile, but this led to a reduction in accuracy. Other
ideas to improve are:

• Synthetically generate pre-categorised data, where the blur would be well-
defined.

• One person could recategorise the data several times, and the ultimate labels
could be based on a majority vote.

• More data of certain types could be acquired to better balance the amount of
data in each category.

• Reconsider the categories based on the ultimate action that the SPM software
should execute, rather than the state of the image (there is overlap in the ac-
tion, e.g. a tip conditioning action and a lateral shift in position should be
performed if a bad country or rubbish image is detected.)

• Testing different network architectures or parameters. For example, it is said
that using ELU rather than ReLU as an activator may increase the network
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performance slightly.299

3.6 Outlook

Convolutional neural networks have clearly shown themselves to be powerful tools
to assess SPM image quality, both here, and in wider literature. Each group that
has contributed to the burgeoning field of image recognition applied to SPM im-
ages; i.e. The University of Nottingham, The University of Alberta and others, have
vividly demonstrated clear proofs-of-concept, but each for different substrates. The
obvious conclusion is to build a generalised system that can correctly recognise the
tip state for any given surface, and act upon its decision appropriately. This am-
bition may require a huge dataset that includes examples of all kinds of surfaces,
and, to put a scale to it, it’s not uncommon for publicly available datasets to have
hundreds of thousands or millions of examples.324–327 We see some potential for a
collaborative, global effort across SPM groups to compile a large database of SPM
images. These images already exist; they are out there collecting metaphorical and
maybe literal dust on old hard drives, servers, CDs and floppy disks of SPM groups
worldwide. These images are useful; they represent real use-cases, including incom-
plete scans and scans of various scales and resolutions, which the ultimate algo-
rithm should be able to deal with. We note that one such data collection effort has
already been initiated,328 however, their focus is on molecular systems studied with
functionalised tips rather than generic surfaces. The elephant in the room here is
that this data would need to be labelled, which requires (a lot of) human input, and
by extension introduces (a lot of) human bias. The alternative is to generate train-
ing data in silico, with classes pre-determined. To this end, efforts are being made
at Utrecht University to create synthetic training data rather than collecting vast
amounts of experimental data. In principle, an STM image of any surface could
be simulated either algorithmically, or by using techniques like muffin tin, DFT or
other physical models. That being said, however, neural networks can serve scan-
ning probe microscopists in more ways than simple tip sharpening for imaging. The
possibilities include automatic tip functionalisation, automatic surface patterning,
tip conditioning for good spectra (a tip fit for imaging is not necessarily fit for spec-
troscopy329), continued improvement in molecule identification, feature recognition
and “superhuman” pattern recognition (314). Researchers like Robert Wolkow and
Philip Moriarty look to the distant future and imagine that AI used for scanning
probe applications could even be used to create nanoprocessors on a large scale, or
to create molecular machines. Looking perhaps even father afield, we could be on
the cusp of a shift in the very way we do science, to use neural networks to help
with discovering physical concepts.330
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3.7 Glossary

Accuracy Defined as (Number of correct predictions)/(Total
number of predictions).331

Activation function A function that determines the output of a node
in a neural network. In the brain analogy, this
is like whether a neuron fires, and with what
strength.

Batch size Since the amount of training data is so large, it
cannot be fed through the network all at once.
The batch size is the number of examples passed
to the network at a time.

Dropout Dropout is a form of regularization. With some
probability, some nodes are randomly discon-
nected from one layer to the next.332

Epoch One epoch means that the neural network has
seen all the examples in the training set once.

Filter/Kernel A small matrix that is used to perform an oper-
ation on an image (or other volume within the
network) such as convolution.

Hyperparameters Parameters that apply to the network that are
not part of the training itself, but that should be
adjusted to achieve peak performance, e.g. learn-
ing rate, decay, regularization.

55



CHAPTER 3

Learning rate The neural network learns by adjusting weights.
The adaption of these weights as the network
learns is determined by the optimizer. How fast
this adjustment takes place is the learning rate.

Max pooling A regularization technique that reduces the di-
mension from one layer to the next in a neural
network. A filter is applied across the image with
a certain stride, and only the maximum value
within that region proceeds to the next layer.

Optimizer The algorithm used to improve the weights and
biases in a network, rather than changing them
at random in the slim hope of producing a good
prediction. The most basic algorithm is stochastic
gradient descent. The one used here is Adam322

Overfitting When the network performs well at categoris-
ing images that it has seen before (i.e. examples
in the training set) but performs poorly on new
data, the network is suffering from overfitting.

Padding The data array can be expanded by placing values
at the interfaces. The method used here is zero-
padding, where zeros are placed at the edges of
the image arrays. The purpose of this is to pre-
serve information at the edges as the example pro-
ceeds through the network.

Recall Of all positive identifications by the network, the
recall is the proportion that the network got cor-
rect. It is calculated by (True positives)/ (True
positives + False positives).
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Regularization Refers to any alteration to the neural network
that reduces overfitting and improves its ability to
generalize; that is, to perform well on data that it
has never encountered before.

ReLU This stands for Rectified Linear Unit. ReLU is
an activation function that is defined by f(x) =
max(0, x). In other words, the input passes to the
next layer unless it is less than 0.

Stride A value that determines the movement of the fil-
ter as a matrix operation is performed.

Supervised learning A type of machine learning where training data
has been labelled according to classes, as opposed
to unsupervised learning where no labels are given
to the input data.299

Test Dataset The sample of data used to provide an unbiased
evaluation of a final model fit on the training
dataset.

Training dataset The sample of data used to fit the model.

Validation Dataset The sample of data used to provide an unbiased
evaluation of a model fit on the training dataset
while tuning model hyperparameters.

VGG-16 VGG refers to the Visual Geometry Group at the
University of Oxford, however it is used to refer
to the CNN architecture that they produced in
2014 which performs exceptionally well on image
databases.
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CHAPTER 4

4.1 Abstract

Quantum corrals can be considered as artificial atoms. By coupling many quantum
corrals together, artificial matter can be created at will. The atomic scale preci-
sion with which the quantum corrals can be made grants the ability to tune pa-
rameters that are difficult to control in real materials, such as the symmetry of the
states that couple, the on-site energy of these states, the hopping strength and the
magnitude of the orbital overlap. Here, we systematically investigate the accessible
parameter space for the CO on Cu(111) platform by constructing (coupled) quan-
tum corrals of different sizes and shapes. By changing the configuration of the CO
molecules that constitute the barrier between two quantum corrals, the hopping in-
tegral can be tuned between 0 eV and ∼ −0.3 eV and ∼ −0.16 eV for s- and p-like
states, respectively. Incorporation of orbital overlap is essential to account for the
experimental observations. Our results aid the design of future artificial lattices.

4.2 Introduction

The scanning tunneling microscope makes it possible to position adsorbates and va-
cancies on surfaces with atomic scale accuracy.333 This approach has been used to
explore the limits of data storage,334–337 to perform logic operations,338–341 to study
chemical reactions at the single molecule level,342–345 and to study the electronic
and magnetic structure of atomically well-defined structures.346,347

With respect to studying electronic properties of extended systems, two complemen-
tary approaches have been used. The first approach is based on coupling localized
states of either adatoms, vacancies or dangling bonds,.21,348–354 By positioning such
species with atomic scale precision, artificial electronic molecules or lattices can be
created and their electronic structure studied. Initial experiments focused on the
evolution of the electronic structure with system size. However, more complicated
and interesting phenomena can also be studied, such as topological states of matter
and Majorana bound states.21,355

The second approach, following the ideas underpinning the quantum corral, is based
on patterning a 2D electron gas (2DEG) with a (periodic) scattering potential.
In particular, the CO on Cu(111) platform has been used to study the electronic
structure of periodic and non-periodic systems.7,230,279,287,288,356,357 Here, the
CO molecules act as repulsive scattering centers for the surface state electrons of
Cu(111).358 By placing these scattering centers with atomic scale accuracy, a large
variety of potential energy landscapes can be created for electrons. For example,
by creating a triangular lattice of CO molecules, the electrons are confined to the
anti-lattice, i.e. a honeycomb geometry.7 Density of states measurements revealed
the emergence of a Dirac cone in the 2DEG, as observed in graphene. Building on
this approach, an electronic Lieb-lattice,230 quasi-crystal287 and electronic fractal288

have been realized. Recently, it was shown that this material platform can also be
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used to study topological states of matter.357,359

One of the advantages of using artificial lattices is that it allows control over pa-
rameters that cannot be controlled easily in real materials. These include the on-
site energy, the strength of the hopping parameter, orbital overlap, and which or-
bitals couple. However, the values for the hopping parameter, on-site energy of each
electronic site and overlap are not immediately obvious given a certain configura-
tion of CO/Cu(111). Currently, determining these parameters is an involved iter-
ative “reverse engineering” procedure which includes first designing the lattice and
performing a muffin-tin calculation to check that the features of interest are observ-
able, which may take several iterations of design changes. The resulting muffin-tin
band structure is compared to the output of a tight-binding calculation. The tight-
binding parameters are then adjusted such that the tight-binding band structure
matches the muffin-tin result.359

In this work, we systematically investigate the accessible tight-binding parame-
ter range for the CO/Cu(111) platform by coupling quantum corrals into artificial
molecules. The report is arranged as follows. First, a background on the subject is
given, and the experimental details are discussed. We show how changing the size
of rectangular and triangular corrals affects their on-site energy and we determine
the effective mass of the confined electrons. We specifically focus on rectangular
and triangular corrals, as these allow for space-filling artificial lattices. Further-
more, we report experiments on coupling such units into dimers and trimers and
extract the tight-binding parameters. We investigated the coupling of both s-like
and p-like orbitals. The coupling strength is adjusted with different methods; both
by changing the size of the potential barrier between the corrals, and by changing
the size of the corrals themselves. Finally, we studied the coupling of orbitals with
different symmetries.
Before describing our results, we discuss the similarities and differences between
quantum corrals and real atoms. Artificial lattices built using CO/Cu(111) can be
thought of as systems of coupled quantum corrals. The first quantum corral was
created by positioning Fe atoms in a (nearly) circular ring on Cu(111).333 The elec-
tronic behavior within the corral can be readily understood in terms of a particle-
in-a-box model.229,333 Figure 4.1a shows wavefunctions of a particle-in-a-circular-
box for a combination of the first few quantum numbers. For circular corrals, the
wavefunctions are characterized by the principle and angular quantum numbers, n,
ℓ, respectively. n − 1 defines the number of nodal lines in the radial direction from
the center, while ℓ defines how many nodes occur angularly. For non-circular sym-
metric corrals,the angular momentum quantum number is not well-defined. How-
ever, the wave functions of circular, rectangular and triangular corrals exhibit al-
ternation of sign and nodal line patterns that are reminiscent of nodal planes in
atomic orbitals.279 The lowest energy state has no nodal lines, the second lowest
has one, etc.360,361 Based on these similarities, we refer to these states of the quan-
tum corral as s-like and p-like, respectively. The nodal line pattern of a particular
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N Figure 4.1: Modeling a circular quantum corral with the particle-in-a-box model. (a)
The real part of the wavefunction enclosed in a circular well, showing its shape for differ-
ent quantum numbers. (b) |Ψ|2, which is proportional to the differential conductance in
STM. (c) Differential conductance maps of a small quantum corral at two energies; -0.17
V and 0.21 V. These correspond to the ℓ = 0, n = 1 (1s) and ℓ = 1, n = 1 (1p) states.

state of the quantum corral can be visualized by mapping the differential conduc-
tance at the energy corresponding to that state. In principle, the spin quantum
number ms is also common between a 2D particle-in-a-box and a real atom, be-
cause ms only describes whether an electron has spin + 1

2 or − 1
2 , and is a general

property of electrons.
In contrast to 2D quantum corrals, three quantum numbers appear for real atoms.
The magnetic quantum number is not present in 2D systems. However, as we show
below, px- and py-like states do emerge in rectangular corrals.279 Furthermore, the
allowed values of the quantum numbers are different for quantum corrals and real
atoms. For example, circular 2D quantum corrals feature 1p-type states (see Fig
1a,b), whereas in real atoms a 1p state does not exist.
In addition to Fe atoms, a variety of other adsorbates can be used as scattering cen-
ters. Because of the ease and reliability with which they can be manipulated, CO
molecules are often used.338,362,363 Carbon monoxide molecules on the Cu(111) sur-
face are imaged as depressions with standard metallic tips.364 A DFT study has
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suggested that this is due to destructive interference of the protruding orbital of
oxygen atom with the states in the tip.365

Throughout this document, we show the designs of various corrals and indicate cop-
per atoms as orange dots and CO molecules as black dots with shading that repre-
sents the apparent size of the CO molecule as viewed in STM. Corral dimensions
are reported in terms of the Cu(111) lattice constant a = 0.2556 nm .366

4.2.1 Tight-binding description of dimers and trimers

To create artificial dimers, we construct two connected corrals with an opening be-
tween them to accommodate coupling. Figure 4.2a shows an example of a structure
consisting of two coupled rectangular corrals.
The tight-binding parameters of interest are the on-site energy, ϵ, the nearest and
next-nearest neighbor hopping parameters, t1 and t2 (not present for dimers) re-
spectively, and the overlap integral, s,367,368 see figure 4.2. It was previously re-
ported that the next-nearest-neighbor hopping integral can be non-negligible in
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roughly represent the spatial extent of the wave functions of the individual quantum cor-
rals. (b) and (c) show the molecular orbital diagrams for a dimer and a trimer, respec-
tively. Red represents a positive value of the wavefunction and blue negative.
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artificial lattices.230,279,288,357,359 To determine the magnitude of t2, we also con-
structed and characterized trimers, see figure 4.2c.
A tight-binding calculation of a dimer, taking into account only the lowest energy
state of each corral, results in the following expressions for the two states of the
dimer

E+ =
ϵ1 + t1
1 + s

(4.1)

E− =
ϵ1 − t1
1− s

(4.2)

where the subscript indicates the sign with which the states of the corral are added.
The values of E+ and E− can be directly extracted from differential conductance
spectra acquired at suitable positions above the dimer (taking the shape and extent
of the wavefunction into account). Since the spatial confinement of the electrons
in the dimer is different from those of isolated corrals (there is an extra available
area when the barrier between two corrals is removed, the on-site energy is different
for coupled and individual corrals. The resulting set of two equations with three
unknowns (4.1 and 4.2) cannot be solved. To determine values of ϵ1, t1 and s, we
include calculations and measurements on a trimer, as represented in figure 4.2c.
We make the assumption that the overlap integral is the same for the dimer and
trimer.
In the case of a trimer, there are three energy states that correspond to bonding,
non-bonding and antibonding orbitals in molecules, as illustrated in figure 4.2(e).
The energies of these three states are given by equations 4.3, 4.4 and 4.5, respec-
tively.

E1 =
ϵ1+ϵ2−4st1+t2−

√
(−ϵ1−ϵ2+4st1−t2)2−4(1−2s2)(ϵ1ϵ2−2t21+ϵ2t2)

2(1−2s2)
(4.3)

E2 = ϵ1 − t2 (4.4)

E3 =
ϵ1+ϵ2−4st1+t2+

√
(−ϵ1−ϵ2+4st1−t2)2−4(1−2s2)(ϵ1ϵ2−2t2+ϵ2t2)

2(1−2s2)
(4.5)

where t2 is the next-nearest-neighbor hopping parameter, ϵ1 is the on-site energy of
each of the outer two atoms (the same as in the dimer) and ϵ2 is the on-site energy
of the central atom, see figure 4.2c. Since E1, E2 and E3 are also observable in ex-
periment, we now have a system of five equations (4.1 to 4.5) and five unknowns.
This allows us to obtain all tight-binding parameters ϵ1, ϵ2, s, t1, and t2.
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4.3 Methods

All experiments were performed at T ≈ 4.5 K in ultra-high vacuum with a Sci-
entaOmicron LT-STM. A Cu(111) surface was prepared by several repetitions of
sputtering with Ar+ and annealing at 550◦ C. Carbon monoxide was leaked into the
microscope chamber with a direct line of sight onto the Cu(111) crystal mounted in
the microscope head to achieve a suitable coverage. Manipulation of carbon monox-
ide molecules was performed in feedback with a bias voltage of 20 mA and a cur-
rent setpoint of approximately 50 nA, depending on the configuration of the tip
apex. STM images were acquired in constant current mode. Differential conduc-
tance spectra and maps were acquired with the tip at constant height and using a
standard lock-in amplifier technique. The frequency and amplitude of the applied
modulation was 271 Hz and 10 mV r.m.s. respectively. Integration time for signal
acquisition was 50 ms during spectra and 20 ms during maps. All differential con-
ductance spectra shown have been averaged over several measurements acquired
at the same position, and divided by an average of several spectra taken on bare
Cu(111) with the same tip apex to minimise the LDOS contribution from the tip.7
In each spectrum shown, the faded points represent the data after the aforemen-
tioned procedure, while the solid line represents the moving average of the same
data.
Muffin-tin calculations were performed to corroborate and supplement the experi-
mental data. This technique is well-established, and has been used before to simu-
late results on the CO/Cu(111) platform with reasonable accuracy.230,279,288,357,359

4.4 Results

4.4.1 Individual Corrals

We first characterize rectangular corrals. Note that because of the triangular sym-
metry of the underlying substrate, it is not possible to build perfectly square cor-
rals. Figure 4.3a shows the schematic structure and dI

dV spectra of a rectangular
corral with size 8

√
3a × 14a. Spectra taken at different positions exhibit peaks at

different positions, corresponding to specific eigenstates. For example, the lowest
energy level (approximately -0.3 V) has the highest local density of states (LDOS)
in the center of the corral (black), whereas the next highest energy level (-0.1 V) is
mainly observed away from center (at red, blue and green sites). The differential
conductance maps reveal the spatial extent of these states, see the top row in fig-
ure 4.3b. The corresponding simulated maps are shown in the bottom row of the
same figure. In the case of degenerate levels, the modulus squared of the relevant
eigenfunctions were summed. The simulations are in excellent agreement with the
experimental observations.
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For rectangular quantum corrals, there are two quantum numbers that determine
the energy of the system and the shape of the wavefunction; nx and ny. By com-
paring the experimental data to the results of the particle-in-a-box model, we can
assign wave functions to the differential conductance maps and peaks in differential
conductance spectra. For the first few energy levels, we may draw an analogy to
real atoms based on the number of nodal lines in Ψ that intersect the center of the
corral. The nx = 1, ny = 1 (no nodal lines) resembles an atomic s-orbital. Similarly,
the nx = 1, ny = 2 (and nx = 2, ny = 1) (one nodal line) and nx = 2, ny = 2 (two
nodal lines), have a similar nodal line structure as p- and d−type orbitals in atoms.
The next highest state is the 2s-like state.

nx, ny= (1,1)
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We now apply the same procedure to triangular corrals. An equilateral triangular
corral is constructed with side lengths 12

√
3a. dI

dV spectroscopy was conducted at
different positions, see figure 4.3c. The lowest energy peak is observed at approxi-
mately -0.27 eV and has the highest amplitude in the center of the corral (s−like).
state. The second energy level is mainly localized near the corners (p-like orbital).
dI
dV maps acquired at the peaks observed in the dI

dV spectra are shown in figure 4.3d.
For a particle-in-a-triangular-box, there are two quantum numbers; p and q. The
calculated eigenfunctions corresponding to the first four energy levels are shown in
the bottom row of figure 4.3b. For the first two states, there is excellent agreement
between experimental and simulated maps. The energy difference between the third
(p = 2, q = 0) and fourth (p = 5/3, q = 2/3) lowest energy states of a particle in a
triangular box is small. Consequently, both states contribute to the experimentally
observed contrast at V = 0.17 V.

4.4.2 Corral size and on-site energy

We now consider how altering the size of a corral affects the energies of the lowest
levels, i.e. the on-site energies. We first focus on rectangular corrals. Figure 4.4a
shows a series of rectangular quantum corrals that were constructed. Differential
conductance spectra acquired at the centers of the corrals are shown in figure 4.4b.
As the corral is reduced in size, the ground state shifts to higher energies. The sec-
ond peak for S1 at higher energies corresponds to a 2s-like orbital, vide infra. Note
that peaks become progressively broader with increasing energy. We attribute this
to two factors. First, the scattering potential of the CO molecules is finite (0.9
eV with respect to the onset of the surface state band when a radius of 0.3 nm is
used). Hence, electrons with higher energy effectively experience a lower barrier
height. Secondly, the number of CO molecules per unit area is larger for smaller
corals, resulting in an increased coupling between surface and bulk states.369

To rationalize the experimental observations, we model our system using a particle-
in-a-box model with finite potential barriers of height V0 = 0.9eV .361 For a 2-
dimensional rectangular box with finite barriers, the energies are given by

E = V0 −
2h̄2

m∗

(
u2nx

L2
x

+
u2ny

L2
y

)
(4.6)

where m∗ = 0.42me, the effective mass of the Cu(111) surface state electrons, and
Lx and Ly correspond to the length of the box in the x and y direction, respec-
tively.361 The variables unx and uny take the role of quantum numbers. Their val-
ues are the solutions to the following set of three equations (where i denotes the x
or y direction of the rectangular box. The lengths in x and y are distinct from one
another because our corrals are not perfect squares).

uni =
√
u20i − v2i (4.7)
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calculated using a muffin-tin model. Solid lines represent a linear fit to the experimental
data. (d)-(f) Same as (a)-(c) but for triangular corrals.

uni
= vi tan(vi) (4.8)

uni
= −vi cot(vi) (4.9)

with u0i =
√
2m∗V0Li

2h̄ , ui =

√
2m∗(V0−E)Li

2h̄ and vi =
√
2m∗ELi

2h̄ . See the appendix
of this chapter for more detail on these equations. No analytical solutions exist for
these equations and one has to rely on graphical or numerical methods. The so-
lutions are given by the values of ui where function (4.7) intersects function (4.8)
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or (4.9), and are denoted uni . For a given V0, Li and effective mass, the values
of uni

are fixed, and can be thought of as analogous to the quantum number in
the energy equation that describes a particle in a 2D rectangular box with infinite
barriers. To calculate the values of un, we use V0 = 0.9 eV230,279,288,357,359 and
m∗ = 0.42me.194,195 The values of Lx and Ly are determined by assuming that the
dimensions of the boxes are defined by the edges of the CO molecules which have a
diameter of 0.6 nm.230,279,288,357,359

Figure 4.4c shows a plot of the on-site energy versus u2nx
/L2

x + u2ny
/L2

y for the low-
est and second lowest states. Dark (light) green and red (light red) correspond to
experimental (muffin-tin) data of s-and p-like states, respectively. The experimen-
tal energies were determined by fitting Gaussian curves to each peak and finding
the centers. The muffin-tin-derived energies were calculated with the aforemen-
tioned values for V0, m∗ and CO diameter. For both states, the energy depends
linearly on u2nx

/L2
x + u2ny

/L2
y. From the gradient, we determine the effective elec-

tron masses to be 0.48 ± 0.01me and 0.46 ± 0.01me for the s-like and p-like states,
respectively. These values are close to the effective electron mass of the unconfined
surface state electrons. A small offset is visible between the lines for the s− and p-
like data, which we attribute to the fact that the confining potential is effectively
lower for higher energy states.
We applied a similar procedure to triangular corrals. Figure 4.4d shows the geom-
etry of several triangular corrals that were realized, and figure 4.4e shows spectra
acquired at the centres. The states of triangular corrals shift to higher energies the
smaller the corral becomes. The data can be rationalized using a particle-in-a-box
model using infinite barriers (analytical solutions for the finite barrier triangular
corrals with finite barriers have not been reported)). The energy eigenvalues of a
particle in an equilateral triangular box are given by

Ep,q =
h2

2
√
3m∗A

(p2 + pq + q2), (4.10)

where p, q are the quantum numbers, h is Planck’s constant, m∗ is the effective
electron mass and A is the area of the triangle.360,370,371 As shown in figure 4.4f,
the experimentally determined on-site energy depends linearly on the inverse sur-
face area, in agreement with equation (4.10).

4.4.3 Coupling Corrals

We now turn to coupled quantum corrals and show how tight-binding parame-
ters can be extracted from experimental data. After a dimer is constructed (exam-
ple shown in figure 4.5a), dI

dV spectra are acquired on two positions. We do this to
make use of the different spatial localization of the E+ and E− states. Specifically,
the anti-bonding E− state has a node between the two corrals (the position denoted
by an orange dot in the inset of figure 4.5a). Only the bonding E+ state appears
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in the differential conductance spectrum taken at that site and we can fit the spec-
trum with a single Gaussian. Conversely, the anti-bonding E− state has higher in-
tensity at the outer regions of the dimer (red dot in figure 4.5a).
Differential conductance maps were acquired at approximately the energies of the
centers of each of the two peaks. The state at lower energy is delocalized over the
entire structure, whereas the state at higher energy has a node between the two
corrals. This is reminiscent of bonding and anti-bonding molecular orbitals, respec-
tively.
Next, a trimer is constructed from the same-sized units as the dimer. To determine
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70



COUPLING QUANTUM CORRALS TO FORM ARTIFICIAL MOLECULES

the experimental values of E1, E2 and E3, we again exploit the different spatial dis-
tributions of these three states. Muffin-tin calculations show that the intensity of
the E2 state is very low at the center corral. Hence, the two peaks in the differen-
tial conductance spectrum taken at this position (grey curve in figure 4.5d) can be
assigned to E1 and E3, respectively. The obtained energies can then be used in the
fitting procedure of the spectrum acquired at a corral at the end of the trimer (red
curve in figure 4.5c and d). Taking these values and solving equations 4.1 to 4.5 re-
sults in the tight-binding parameters listed in Table 4.1.

Parameter Value
ϵ1 −0.22± 0.02 eV
ϵ2 −0.23± 0.01 eV
s 0.5± 0.3
t1 −0.14± 0.06 eV
t2 −0.02± 0.03 eV

Table 4.1: Tight-binding parameters extracted from figure 4.5.

The on-site energy of the individual corral of this size is -0.19 ± 0.02 eV, see fig-
ure 4.4c. We find an on-site energy of −0.22 ± 0.02 eV and −0.23 ± 0.01 eV for the
sites in the dimer and central site in the trimer, respectively. This lowering of the
on-site energy can be understood from the increased area that is available due to
the removal of the CO molecules to couple the sites. Two CO molecules have been
removed from the barrier, i.e. an additional area of 2 × π(0.3)2 = 0.56 nm2 is avail-
able for the electrons. The magnitude of the overlap integral, s, is significant and
therefore must be included in tight-binding parameters to yield accurate answers.
The same experiments and simulations were performed for coupling triangular cor-
rals.

4.4.4 Tuning parameters

We now systematically investigate how the tight-binding parameters depend on
changing the gap width between corrals for both s- and p-like states. For this, we
created dimers out of rectangular quantum corrals with dimensions 6

√
3a × 10a

(same as in the previous section) and 8
√
3a × 14a. (Note that to calculate the area

from these dimensions, the area that the CO molecules occupy must be subtracted).
First, two corrals of equal size were constructed directly next to each other with
the barrier fully closed; that is to say that the same barrier configuration that sep-
arates the two corrals separates the corrals from their surroundings. Figure 4.6a
shows the schematic of a lone corral with dimension 8

√
3a × 14a, and the dimer

with a full wall of CO molecules separating the corrals. The second column shows
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spectra taken at the positions marked in the designs. The peaks associated with the
s-type orbitals occur at the same energy for the two systems, indicating that there
is virtually no coupling between the corrals in the dimer with this barrier config-
uration (the hopping parameter is zero). The same observation is made for the p-
type states (right hand side of the figure). This is significant because it has been as-
sumed that coupling of electronic sites to the surrounding 2DEG plays a large role
in broadening.357 Our experiments provide an upper-limit to the coupling strength
across a ‘full barrier’: any potential splitting of the bonding and antibonding states
is smaller than the energy resolution of our experiments. A muffin-tin calculation
using small broadening finds a peak splitting of 11 meV (suggesting an upper limit
of the coupling strength of 6 meV).
Next, CO molecules are removed from the center of the barrier, see figure 4.6b-d.
As described before, dI

dV spectra were acquired at the barrier between the corrals,
and near the outer edge. By fitting Gaussian curves and finding their centers, we
determine the energy level spacing between the bonding and anti-bonding states.
Differential conductance maps were taken to verify the resemblance of these states
to bonding and antibonding orbitals. The difference in energy between the two
states increases with increasing gap width in the CO barrier between the two cor-
rals. Furthermore, the states shift down in energy due to the effectively larger area
that the electrons can occupy.
The most natural interpretation of the experimental data for the system without
barrier, figure 4.6d, is to use a particle-in-a-rectangular-box model. In this pic-
ture, the lower energy state corresponds to the ground state with quantum numbers
nx = 1 and ny = 1. The second state is the nx = 2, ny = 1 state, etc. However,
it is also possible to interpret the results in the framework of two coupled quantum
corrals. The lowest energy state of the rectangle can be thought of as the bond-
ing combination of s-like orbitals of the two quantum corrals. Similarly, the second
lowest state would be the anti-bonding combination.
The bonding combination of the px-like states, where x is the horizontal direction,
shows vertical nodal lines at the centers of the individual corrals and enhanced in-
tensity in the barrier region between the corrals (see right hand side of figure 4.6).
The nodal line pattern of the map at higher energy can be rationalized by assum-
ing that both the anti-bonding px-like state as well as the py-like state contribute to
the contrast. The energy difference between p-like bonding and antibonding states
is larger than for the s-like states.
Similar experiments were performed for coupled 6

√
3a×10a dimers (data not shown).

From the available data on both corral sizes, tight-binding parameters for coupling
of both s-like and p-like states were derived. The results are shown in figure 4.7.
The size of the gap in the barrier between the corrals is defined as the distance be-
tween the closest CO molecules of the barrier, minus two times the apparent radius
of the CO molecules (0.3 nm, see figure 4.7a). For both s- and p-like states and for
both corral sizes, the data points for the hopping parameter (t), the on-site energy
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N Figure 4.7: (a) The size of the gap in the barrier between the two corrals (red arrow)
is the distance between the closest CO molecules in the barrier (gray arrow), minus two
times the apparent size of the CO molecules (gray circle, blue arrow, 0.3 nm). (b) From
left to right: gap dependence of the hopping parameter, the on-site energy and overlap
for s-like states, respectively. Dark and bright colors represent data from rectangular cor-
rals with sizes 8

√
3a × 14a and 6

√
3a × 10a, respectively. (c) Same as (b) but now for

p-like states.

(ϵ), and the orbital overlap (s) can be fitted with an exponential function (dotted
lines). By tuning the gap width, the hopping parameter can be varied between 0 eV
and ∼ −0.3 eV and ∼ −0.16 eV for s- and p-like states, respectively. We find that
the on-site energy depends on the width of the gap in the barrier. The parameters
depend more sensitively on gap width for the smaller corral. This can be ratio-
nalized from the additional area that becomes available to the confined electrons
upon removing CO molecules (the relative increase in available area is larger for
the smaller corral). Finally, the magnitude of the orbital overlap increases with gap
width. Note that for unconfined electrons (infinite gap width) the overlap should be
one. Figure 4.7b suggests that at least up to a gap width of ≈ 1.5 nm, the hopping
parameter and overlap are similar for the two different corral sizes.
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4.4.5 State selective coupling

Since CO molecules can be removed selectively, it becomes possible to create ge-
ometries that allow coupling of p-type states only. Consider the geometries of cou-
pled rectangular and triangular corrals shown in figure 4.8a and d. The amplitude
of s-type wave functions is small at the position of the gaps in the barrier. Hence,
coupling of s-type states should be small. In contrast, p-type states have significant
amplitude at these positions and consequently these states should couple strongly.
We first focus on the rectangular corrals. Figure 4.8b shows differential conductance
spectra taken at the positions indicated in figure 4.8a. A total of three peaks are
observed. The amplitude of each peak differs from position to position. The peak
at lowest energy corresponds to the ground state, i.e. it involves s-type states. At
the energies corresponding to the s-type states, we only observe one peak, indicat-
ing that these states do not couple (coupling strength below the detection limit of
our experiment). In contrast, the spectrum of the barrier region (gray) features a
peak around 90 mV, whereas the spectrum taken at the corner of the corral (blue)
has a peak at 170 mV. The corresponding differential conductance maps, figure
4.8c, reveal that the spatial extent of these states can be understood by consider-
ing coupling of py-type states. For the triangular corral, similar observations are
made. This confirms the idea that artificial lattices allow coupling between sites by
one type of state only.279 Note that this provides a degree of freedom that is not
available in real materials.

4.4.6 Coupling corrals of different sizes

Finally, we investigate the coupling of two corrals of different sizes, i.e. with dif-
ferent on-site energies for the s- and p-like states. Fig. 4.9a shows the arrange-
ment of such a polar dimer, with the barrier between corrals fully removed to max-
imize coupling. The dI

dV spectra show the typical peaks associated with bonding
and antibonding states. The corresponding differential conductance maps reveal
that the lower (higher) energy state of the dimer is primarily localized on the larger
(smaller) corral, see figure 4.9b and c. This is in agreement with a tight-binding
model of a dimer with constituents with different on-site energy.
In general, electronic states couple if they spatially overlap and if they have a sim-
ilar energy. Hence, if the sizes of the two corrals differ sufficiently, it is possible to
couple the s-like state of a smaller corral with a p-like state of a larger corral. We
therefore created a dimer consisting of a 6

√
3a × 12a to a 4

√
3a × 8a corral, see fig-

ure 4.9d. The dI
dV spectra reveal two states with different spatial localization. The

corresponding differential conductance maps show that the lower energy s-like state
of the smaller corral couples with a p-like state of the larger corral. Similarly, the
higher energy state can be thought of as an antibonding combination between s-
and p-like states (note the nodal line at interfaces between the two corrals).
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4.5 Conclusion

To conclude, we have studied the coupling of rectangular and triangular quantum
corrals into dimer and trimer structures. These shapes were chosen as they can be
used as building blocks of artificial lattices. The electronic structure of the coupled
corrals can be understood using a tight-binding model also used for the coupling of
atoms to molecules. Importantly, we investigated the available tight-binding param-
eter space accessible with the CO/Cu(111) platform, and showed how these param-
eters depend on the configuration of the coupled quantum corrals.
We first verified that the particle in a box model provides a good qualitative de-
scription of the electronic structure of rectangular and triangular quantum corrals.
We determined the on-site energies of s- and p- like states of different sized corrals
to confirm the relationship between on-site energy of the corral and box size. From
this, we determined the effective masses of electrons in rectangular corrals to be on
the order of 0.48 me and 0.46 me for s− and p− like states respectively. These val-
ues are close to the value for unconfined Cu(111) surface state electrons (0.42 me).
In the triangular case, we used a model that assumed infinite barriers, preventing
us from determining a reliable value for the effective mass.
We outlined a method to extract tight-binding parameters (nearest and next near-
est neighbor hopping parameters, overlap and on-site energy) by constructing dimers
and trimers of corrals. By removing CO molecules from the barrier between cor-
rals, exponential relationships were found between the tight-binding parameters and
the size of the gap in the barrier between the corrals. The hopping integral can be
tuned between 0 and -0.3 eV and -0.16 eV for s- and p-like states, respectively, by
tuning the configuration of CO molecules in the barrier. In most cases, the overlap
is not negligible and this term should be taken into account when modelling artifi-
cial molecules and lattices. Finally, we showed that in these coupled quantum cor-
rals, one can control which states couple. For example, by appropriate placement
of CO molecules coupling of s− and px-like states can be inhibited, while allowing
coupling of py-like states. Furthermore, it is possible to couple s- and p-like states.
The results presented here are useful for future work on artificial lattices made us-
ing CO on Cu(111). A hypothetical lattice with certain desired coupling strengths
and on-site energies can be designed by estimating the required unit size and bar-
rier gap width from the trends reported here.
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4.6 Appendix: Further description of the finite box model

The quantum corrals we investigate are described by a finite potential well model.
In this case, the wavefunction penetrates the barrier and decays exponentially out-
side. The wavefunction is either symmetric (described by an even function) or asym-
metric (described by an odd function) about the centre of the box in one dimen-
sion. This box has width L and is centred at 0. Its boundaries are at −L

2 , L
2 . The

boundaries are defined by a potential barrier of height V0. Figure 4.10 shows a fi-
nite potential well with equations of the wavefunction defined inside and outside of
the box for even (ground state) and odd (second lowest state) functions.

Even solution

Odd solution

0
L
2

L
2

cos(kx)

sin(kx)
Ae-κx

Ae-κx

0

V0

N Figure 4.10: The description of the potential well.

4.6.1 Symmetric solution

In the even case, the wavefunction (equation 4.11) and its derivative (equation 4.12)
satisfy the following boundary conditions:

Ae−κL/2 = cos(kL/2) (4.11)

−κAe−κL/2 = −k sin(kL/2), (4.12)

where A is a normalisation constant, k is the wavevector and κ is the decay con-
stant of the exponentially decaying wavefunction outside of the box.
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Dividing (4.12) by (4.11) gives

κ = k tan(kL/2). (4.13)

4.6.2 Asymmetric solution

For the odd case, the wavefunction (equation 4.14) and its derivative (equation
4.15) satisfy:

Ae−κL/2 = sin(kL/2) (4.14)

−κAe−κL/2 = k cos(kL/2). (4.15)

Dividing (4.15) by (4.14) gives

κ = −k cot(kL/2) (4.16)

4.6.3 Finding k and κ

We can find expressions for both κ and k by substituting the second derivatives of
the wavefunction inside and outside of the box into the Schrödinger equation. The
time-independent Schrödinger equation can be written:

∂2ψ(x)

∂x2
=

−2m∗

h̄2
(E − V (x))ψ(x). (4.17)

Finding k

Inside the box, V (x) = 0 and ψ(x) = cos(kx) (arbitrarily taking the even function,
though of course we could similarly use the odd function). We can insert these into
(4.17), as well as the second derivative of the wavefunction, ψ′′(x) = −k2 cos(kx), to
give

−k2 cos(kx) = −2m

h̄2
(E − 0) cos(kx) (4.18)

k =

√
2mE

h̄
. (4.19)

Here, k is the usual interpretation of the wavevector.
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Finding κ

To find κ, we use the same logic but this time we consider the behaviour outside
the box. In the region outside the box, V (x) = V0, ψ(x) = Ae−κx and ψ′′(x) =
κ2Ae−κx. Inserting these into 4.17 gives:

κ2Ae−κx =
−2m

h̄2
(E − V0)Ae

−κx (4.20)

κ =

√
2m(V0 − E)

h̄
. (4.21)

4.6.4 Determining the “quantum numbers”

We now have expressions for κ and k, but if we insert these into equations 4.13 and
4.16, we would find that both sides depend on energy. We cannot obtain an analyt-
ical expression for energy as in the case of the infinite well. However, the energies
can be found graphically or numerically. We let u = κL/2 and v = kL/2, and find
from the definitions of κ and k that u2 = u20 − v2, where u0 = 2mV0

h̄ . To obtain the
energies, we must find the values of u that satisfy the following:

√
u20 − v2 =

{
v tan v (even solutions)
−v cot v (odd solutions)

The solutions are the graphical intersections between the function on the left hand
side of the equation with the functions on the right (all three functions are func-
tions of v). We label the values of u where the intersections occur uni

, where i de-
notes either the x− or y− dimension, since we have a 2D box. Figure 4.11a shows
a plot of the functions of u vs v. Here, the lengths of the corral in the x-direction
that were used in experiment were incorporated. This is seen in the radial functions
of increasing radius, since the quantity L is included in u0. Thus, the larger the ra-
dius of the quarter-circle seen in the plot, the longer the length of the box used in
the equation. In assigning the box lengths, we assume that our boxes are experi-
mentally defined by the edges of the CO molecules which have a diameter of 0.6
nm. The CO diameter was observed with STM, and this value is found to yield ac-
curate energy predictions using muffin-tin. Note that in u0, the quantities V0 and
m∗ also appear. We assume the values V0 = 0.9eV and m∗ = 0.42me, which have
been used before to accurately simulate experimental results using the muffin-tin
model. Intersections between the different functions of u are marked, with their
colour indicating which energy level the solution is associated with.
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navy respectively. The intersections corresponding to the lowest energy state are shown
in green, second lowest in red and third lowest in purple. (b) Using the intersections
found in (a) combined with a similar calculation for uny , the energies have been plotted
for s− and p− like states. The energies match those found from experiment.

4.6.5 Finding energies

For a given V0, Li and effective mass, the values of uni
are fixed, and can be thought

of as analogous to the quantum number in the energy equation that describes an
infinite well. Using u = κL/2, as previously defined, along with equation 4.21, the
energy can be found from the intersections uni

using

E = V0 −
2h̄2u2ni

m∗L2
i

. (4.22)

In 2-dimensions, this becomes

E = V0 −
2h̄2

m∗

(
u2nx

L2
x

+
u2ny

L2
y

)
. (4.23)

Figure 4.11b shows the energies calculated from equation 4.23 using the same box
dimensions as in the experiment. An offset of 0.445 eV has been added to each en-
ergy, because in experiment, the bottom of the potential well lies at the surface
state minimum, which sits at -0.445 eV compared to the Fermi energy that we mea-
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sure from in STM. This gives remarkably close values to those seen in experiment
as well as muffin-tin (compare figure 4.11b to figure 4.4c of the main text).
Equation 4.23 shows that the effective mass can be found by determining the gra-
dient of the graph E vs (

u2
nx

L2
x

+
u2
ny

L2
y
). In the main text, the experimental energies

are plotted on the y axis while the x axis contains the values of uni calculated as
aforementioned. Note that the gradient of this plot is inherently negative and has
an offset given by V0. To compare energies to those measured in STM, the surface
band minimum must also be considered in the offset.
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CHAPTER 5

5.1 Abstract

The boundary states of topological insulators are thought not to depend on the
precise atomic structure of the boundary. A recent theoretical study showed that
for crystalline topological insulators with given bond strengths, topological states
should only emerge for certain edge geometries. We experimentally probe this effect
by creating artificial Kekulé lattices with different atomically well-defined edge ge-
ometries and hopping ratios in a scanning tunneling microscope. Topological edge
modes are found to only appear for specific combinations of edge geometry and
hopping ratio.

5.2 Introduction

A common assumption concerning topological states of matter is that their exis-
tence should be insensitive to any detail, except the topology of the bands. This is
indeed the case for the quantum Hall effect23,372,373 or for the quantum spin Hall
effect,50,91,92 which are triggered by a magnetic field or by a strong spin-orbit cou-
pling, respectively. However, theory predicts that the edges of crystalline topolog-
ical insulators are important.374,375 The reason is that the topological invariant
depends on the choice of unit cell, which also determines the edge geometry. To
establish the relation between edge geometry and the existence of protected bound-
ary states in topological crystalline insulators experimentally, it is essential to work
with systems that have atomically precise edges.
Electrons in engineered potentials can be used to study the electronic properties
of a large variety of systems, ranging from artificial periodic lattices7,230 and qua-
sicrystals287 to fractals.288 Importantly, it is possible to control the hopping strength
between different sites.7,226 Vacancies in a chlorine monolayer on Cu(100) have
been coupled together to realize topologically non-trivial domain-wall states in 1D
Su Schrieffer Heeger (SSH) chains.21 In addition, the manipulation of Fe atoms on
the superconducting Re(0001) surface led to the realization of a topological super-
conductor.219,376 Recently, the carbon-monoxide (CO) on Cu(111) platform has
been used to create a so-called higher-order topological insulator.357 This platform
is therefore ideally suited to experimentally address the relation between the ge-
ometric structure of topological crystalline insulators and the emergence of non-
trivial states.
We investigate this relation by focusing on the Kekulé lattice, see figure 5.1. The
lattice consists of a triangular array of hexagonal molecules with intra-hexagon
bond strength t0 (light blue lines), connected to each other by bonds of strength t1
(navy lines). Gapless edge modes appear when the edge is connected only via weak
bonds to the rest of the lattice, and are protected by sublattice and mirror symme-
try.377,378

Here, we experimentally show that the same Kekulé structure may be trivial or
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N Figure 5.1: (a) and (b) give the geometries of the partially bearded and molecular
zigzag edges. The light blue and navy lines indicate the intra- and inter-hexagon hopping
parameters respectively. The edges are highlighted in pink. The unit cell is defined by
one yellow rhombus. Lattice vectors a1 and a2 are shown. To form the edge, translation
is performed along the a1 direction. (c) and (d) depict configurations of CO molecules
that lead to hopping regimes t1 < t0 and t0 < t1, respectively. (e-h) show the config-
urations of CO molecules to realize the partially bearded and molecular zigzag edges in
both hopping regimes. The gray circles represent additional CO molecules that reduce
the interactions with the surrounding 2D electron gas.

topological, depending on the termination of the sample. The experimental observa-
tions are corroborated by theoretical calculations using muffin-tin and tight-binding
approaches for the specific experimental realization, as well as investigations of the
underlying crystalline symmetries protecting the topological phase.

5.3 Methods

To experimentally realize Kekulé lattices with atomically well-defined edges, we
pattern the surface of a Cu(111) crystal with CO molecules, such that the surface
state electrons form the desired structure.7 All experiments were performed using
a commercially available Scienta Omicron Low Temperature - Scanning Tunneling
Microscope (STM). Experimental and theoretical procedures used were the same as
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described previously.230,288,357 Details are provided in the appendix.
We generate finite lattices with two different hopping parameter ratios and two dif-
ferent edge terminations (bearded or molecular zigzag377). The design of the lat-
tices is shown in figure 5.1a and figure 5.1. The leftmost column of the pictographic
table in figure 5.1 shows the precise positioning of the CO molecules on Cu(111)
for a single Kekulé unit cell. For t0 < t1, the repulsive potential introduced by the
central six CO molecules diminishes the strength of t0 (light blue). In contrast, for
t1 < t0, there is less repulsion about the single central scatterer. Additionally, for
t0 < t1, each triangularly shaped collection of four CO molecules reduces the bond
strength between hexagons, while for t1 < t0 they are rotated 60o with respect to
the opposite design. This allows for a stronger t0, while simultaneously impinging
on the connection between hexagons, decreasing t1. Since the lattice has triangu-
lar symmetry, we have chosen the overall shape of the lattice to be a triangle to
allow for the same type of edges on all sides. Symmetry is locally preserved at the
edges, including at the corners, where there is local resemblance to the edges. Inter-
actions with the surrounding 2D electron gas was minimized by adding additional
CO molecules, see the appendix.
To verify that the configuration of CO molecules leads to the appropriate hop-
ping regime, and to find the hopping parameters for use in tight-binding calcu-
lations, the band structures calculated within the tight-binding were matched to
those calculated using the muffin-tin method. Besides the hopping parameters t0
and t1, orbital overlap and next-nearest neighbor (NNN) hopping between and
within hexagons were considered in making the fit. The full list of obtained param-
eter values and a detailed description of the matching procedure and muffin-tin cal-
culations is given in the appendix. Although the orbital overlap deforms the band
structure and is therefore of vital importance to fully understand the experimental
results, it was numerically verified that it does not break the topological protection
of the edge states in the Kekulé lattice. The NNN hopping however, breaks chiral
symmetry. It was found that most NNN hopping parameters were small (≤ 0.02 t0)
due to the clustered CO structure. Only the NNN hopping within the hexagon for
the t1 < t0 design (0.2 t0) is larger, as there is only one CO in the middle of the
hexagons. Therefore, we expect that the chiral symmetry is weakly perturbed for
this case.
Two different types of termination have been investigated for each lattice: the par-
tially bearded edge and the molecular zigzag edge, as introduced in the first row of
the pictographic table in figure 5.1.377 Below each, the blueprints for the precise
arrangement of the CO molecules used to achieve such edges are shown for both
t1 < t0 and t0 < t1.
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N Figure 5.2: (a) Top: STM topograph of a Kekulé lattice with partially bearded edges
and in the t1 < t0 regime (Vgap = 100 mV, Iset = 10 pA). Navy and light blue col-
ors indicate bonds as depicted in figure 5.1. Middle: experimental differential conduc-
tance spectra acquired at bulk (black) and edge (red) sites, normalized by spectra taken
on Cu(111). Positions where spectra were acquired are indicated by colored dots in the
top panel. The bottom curves depict the local density of states calculated using tight-
binding. The bottom panel shows a differential conductance map acquired at a voltage
close to the middle of the bulk gap (V = −65mV ). The inset shows the tight-binding
LDOS map. (b) is arranged the same way as column (a), but now for a lattice with a
molecular zigzag edge in the t1 < t0 regime. Settings for the topograph: Vgap = 100
mV, Iset = 100 pA. (c) and (d) provide the same information as (a) and (b) but now
for the opposite regime of hopping parameters, i.e. t1 > t0. Scan parameters for the
topographs in (c) and (d): Vgap = 100 mV and Iset = 30 pA. Differential conductance
maps were acquired at -20 mV and the local density of states was calculated at -20 meV.
Scale bars (black) are 5 nm. All experimental differential conductance spectra were pro-
cessed by averaging over numerous equivalent sites or repeated measurements within the
same site, then dividing this average by the average of many spectra on bare Cu(111)
with the tip in the same state.
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5.4 Results and discussion

Two lattices with t1 < t0 are shown in the constant-current topographic images
in figure 5.2a and figure 5.2b. They have the same bulk but are terminated with a
partially bearded and molecular zigzag edge, respectively. Differential conductance
spectra of bulk and edge sites of both lattices are shown in the middle panels of fig-
ure 5.2a and figure 5.2b (locations indicated by the colored dots in figure 5.2a and
figure 5.2b). The spectra of bulk and edge sites of the molecular-zigzag terminated
lattice are similar, c.f. black and blue curves in the middle panel of figure 5.2b. In
contrast, the local density of states (LDOS) of bulk and edges sites of the lattice
with the partially bearded edge are markedly different. The spectrum of bulk sites
(indicated in black) shows two peaks associated with the valence (at V = −0.15 V)
and conduction bands (V = 0.05 V), separated by a gap. The spectrum of the site
indicated in red shows a large peak positioned at the energy of the bulk gap.
The experimentally observed features are reproduced in the tight-binding (lower
curves in the middle panels of figure 5.2a and figure 5.2b) and muffin-tin simu-
lations, see the appendix. For the calculated LDOS, a broadening of 80 meV was
added to account for the coupling between surface and bulk states, as was done be-
fore.230,279,288,357

The spatial extent of the in-gap state is probed by taking differential conductance
maps at energies corresponding to the middle of the gap (approximately the on-
site energy of the system). By comparing the maps, shown in the bottom panels of
figure 5.2a and figure 5.2b, it is immediately clear that the bearded edge features a
well-defined edge localized mode, whereas the lattice with molecular zigzag edges in
the same hopping regime does not. Again, the experimental features are reproduced
in the simulations, see the insets in the bottom panels of figure 5.2a and figure 5.2b.
This edge localized state is robust with respect to the introduction of defects, see
the appendix.
These results support the theoretical prediction based on calculation of the topolog-
ical invariant (the mirror winding number)377 that the edge mode at the partially
bearded edge is topological when t1 < t0.
The situation is reversed when the hopping strengths are inverted. Figure 5.2c
and 5.2d show topographs and LDOS spectra for the Kekulé lattice in the oppo-
site regime of hopping parameters, t0 < t1. In this case, for the partially bearded
edge lattice (topograph shown in figure 5.2c), the experimental spectra at different
edge positions match the behavior of the spectrum in the bulk of the crystal (figure
5.2c, middle panel): there is a dip in the experimentally measured LDOS around
V = −20 mV for all positions measured, which implies trivially insulating behavior
throughout. At the molecular zigzag edge (topograph in figure 5.2d) for the same
t0 < t1 case, there is a markedly higher LDOS at the edge positions at energies
corresponding to the bulk gap (figure 5.2d, middle panel). The differential conduc-
tance maps confirm that for this parameter regime, the molecular zigzag terminated
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lattice features a topological edge mode. The theoretical spectra and maps agree
with the experimental data, see inset in the bottom of figure 5.2d.
From these results, we conclude that non-trivial edge modes in crystalline topologi-
cal insulators in a given regime of hopping parameters only emerge for specific edge
geometries. The topological protection occurs at the Γ point and remains robust as
long as the bulk states do not mix with the edge states in the middle of the bulk
gap. Our experimental broadening is not large enough that we expect it to influ-
ence the topological protection.
Finally, we turn our attention to finite-size effects. We first study how edge states
are protected in the ribbon geometry, and then investigate how these features change
for the finite structures built experimentally. Kariyado et al.377 found that the
mirror winding number protects the zero energy crossing of the edge modes in the
Kekulé system. As the calculation of this invariant requires both chiral symmetry
and reflection symmetry My along the line passing through two directly opposite
sites in a hexagon, both symmetries need to be present to protect the edge states.
This has been confirmed by Noh et al.378 by numerically adding perturbations to
the Hamiltonian. In case of armchair terminated Kekulé lattices, the My symmetry
is broken and the edge modes become gapped.
When a system can be divided in two subsystems that only couple to each other
and never to themselves, the system possesses chiral symmetry. The chiral sym-
metry leads to a spectrum that is symmetric around zero energy. This means that
zero modes can only move away from zero energy in pairs. If there are more sites of
one subsystem than of the other on the edge, but not in the rest of the structure,
this can result in zero modes on the edge, as in graphene ribbons with a zigzag ter-
mination.379,380 The edge geometry considered here contains equally many sites
of each sublattice. Thus, chiral symmetry alone does not enforce the existence of
edge states. To understand the protection of zero modes in the system, we should
therefore also consider the reflection symmetry My. At the Γ point in the Brillouin
zone, My commutes with the Hamiltonian. Hence, the Hamiltonian needs to have
the same eigenstates as My, and states which are even and odd under My cannot
mix. This mechanism can prevent two zero modes on the edge of a Kekulé ribbon
to mix, thus pinning them at zero energy due to the chiral symmetry.
The Kekulé lattices realized here have (approximate) chiral symmetry, since the
NNN hopping is small. The My symmetry is preserved locally. In the experimental
designs, the lattice sites are locally affected by the same environment as they would
be in an infinitely long ribbon, as illustrated in figure 5.3a. However, the global
mirror symmetry present in the ribbon is broken in the finite lattice: the bound-
ary is not fully periodic due to modulations to form the corner. Moreover, the lat-
tice is relatively small; thus the momenta are not continuous and a state with zero
momentum (the Γ point) does not need to exist. By performing tight-binding cal-
culations on finite molecular zigzag terminated lattices, we determine the evolution
of the energy levels upon tuning the ratio t0/t1. Figure 5.3b and figure 5.3c show
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this for lattices with 28 and 163 hexagons respectively. Upon increasing the system
size, the states become more dense, compare figure 5.3c and figure 5.3b. Therefore,
the in-gap energy levels obtained for a fixed ratio of t0/t1 are continuous lines for
infinite systems, but become discrete dotted lines (coarse-grained) for finite sized
systems. The smaller the system, the larger the distance between the dots. Never-
theless, the spreading and the number of edge states do not change with the size of
the system. The finite size of the system also leads to hybridization, thus moving
the zero-energy modes away from zero in parameter space: while the zero modes
already deviate from zero energy at roughly 0.7 t0/t1 in figure 5.3b, in figure 5.3c,
they remain close to 0 up to a larger value, about 0.9 t0/t1. For comparison, the
molecular zigzag terminated lattice with t0 < t1 that we realized experimentally has
0.67 t0/t1 and 28 hexagons. More detail is given in the appendix. Note that since
the edge states here are dispersive, they span the entire bulk band gap.

N Figure 5.3: Finite size effects. (a) Illustration of the finite molecular-zigzag termi-
nated lattice. Green represents protruding sites that couple weakly to two blue sites, or-
ange represents sites sitting in a “cove” at the edge of the lattice. The sections shown in
pink have the same local environment. (b), (c) Energy spectrum as a function of t0/t1.
The spectrum is shown for the system size used in the experiments with 28 hexagons in
total (b) and for a theoretical structure that has the same corner and edge, but contains
163 hexagons ((c)).

5.5 Conclusion

In conclusion, we have experimentally realized four lattices by nanoscale pattern-
ing of CO adatoms on the surface state of Cu(111) using the tip of an STM. Kekulé
lattices with two different bulks and two types of edge termination were realized to
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investigate the influence of the boundary shape on the existence of topological edge
modes in crystalline topological insulators. We found that for the same bulk, edge
modes exist or not, depending on the termination of the sample. The detection of
edge modes in this finite-size system is surprising. In translationally invariant rib-
bons, the mirror and chiral symmetries pin the edge modes to zero energy at the
Γ point in the Brillouin zone. However, here we investigate a finite and relatively
small system, without translational symmetry and for which a Brillouin zone can-
not be defined. Furthermore, in the t1 < t0 regime chiral symmetry is not strictly
enforced due to a non-zero NNN hopping, and the mirror symmetry is not globally
preserved. This indicates that the edge modes are remarkably robust to weak sym-
metry breaking and finite-size effects.
Our experimental observations, which are corroborated by theoretical calculations
in the continuum (muffin-tin) and in a discrete lattice (tight-binding model) con-
firm that the existence of a topological phase in symmetry protected topological
insulators is a subtle issue. It does not depend uniquely on the form of the bulk,
and sets a boundary of validity to a naïve interpretation of the bulk-boundary cor-
respondence. Our results indicate that devices made from the same bulk, in which
the termination is adjusted accordingly, could be used to create valves and manip-
ulate the edge modes at will. Since all the results presented here are generic, they
could be promptly transferred to other kinds of condensed-matter setups, in semi-
conductors or metallic surfaces, thus extending our findings to other kinds of elec-
tronic systems. Finally, this work highlights the potential of using artificial lattices
to study topological states of matter.
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5.6 Appendix: Further details on the Kekulé lattice

5.6.1 Experimental methods

Atomic manipulation, scanning tunnelling microscopy and spectroscopy were per-
formed using a commercially available Scienta Omicron LT-STM. A Cu(111) sur-
face was prepared to atomic flatness by repeated cycles of sputtering with Ar+ and
annealing at approximately 550 ◦C. Carbon monoxide was then deposited onto the
Cu(111) surface within the cooled microscope head at a pressure of 1.3× 10−8 mbar
for 1 minute to achieve a coverage of roughly 0.5 CO molecules per nm2. Follow-
ing this, the microscope head was kept at constant UHV (in the range of 10−11

mbar) and at a temperature of 4.5 K during construction of the lattices and mea-
surements. An STM tip was cut from platinum-iridium wire, which was conditioned
in-situ by repeatedly dipping the tip into the surface and/or applying voltage pulses
between tip and sample. This procedure leaves the tip with a randomly shaped
apex made from copper atoms, and the process was considered complete when the
tip satisfactorily performed the desired task (either atom manipulation, imaging
or spectroscopy). STM topographs were acquired in constant current mode. Plane
subtraction was performed on the topographs. Atom manipulation was performed
with a bias voltage of 20 mV and constant current maintained with a feedback loop
ranging from 10 nA to 60 nA depending on the condition of the tip. Differential
conductance spectra and maps were acquired in constant height mode with bias
modulation provided by a lock-in amplifier. The amplitude of the modulation was
10 mV r.m.s at a frequency of 273 Hz. Integration time for signal acquisition was
50 ms at the lock-in amplifier for spectra and 20 ms for each pixel in the differential
conductance maps.

5.6.2 Data processing

The differential conductance spectra were processed by averaging over numerous
sites of equivalent type or repeated measurements within the same site, then divid-
ing this average by the average of many spectra on bare Cu(111). The purpose of
the division by spectra on bare Cu(111) is to eliminate LDOS contributions from
the tip and from the copper itself. Figure 5.4 shows an example of average dI/dV
spectra acquired with the same tip on bare Cu(111) and at a position in the edge.
Certain aberrations are common in both datasets, for example the dip at 0V. These
are features of the tip. In the normalised data, these features have been removed.
Processing of the differential conductance maps included alignment of the forward
and backwards scans, then averaging the two. A small amount of Gaussian blur-
ring was applied to reduce the appearance of noise in each map, except for the triv-
ial partially bearded edged lattice, for which this was not necessary. The ”sky”
color map, which is perceptually uniform, was used from the freely available open
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source program Gwyddion381 (with which all experimental image processing was
performed).
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N Figure 5.4: Data normalisation. a) Bright green: dI/dV acquired on an edge site, av-
eraged over several measurements. Orange: dI/dV averaged over numerous positions on
bare copper. Pale green: Normalised and averaged dI/dV at the edge site. b) Positions
where spectra were taken marked in corresponding colours. Scale bar is 5 nm.

5.6.3 Theoretical methods

Tight-binding: Finite-size tight-binding calculations were performed to simulate
the experimental LDOS spectra and maps. To maximise the accuracy with which
we could describe the experimental results, not only the nearest neighbour (NN)
hopping parameters were taken into account, but also the orbital overlap and next
nearest neighbour (NNN) hopping. To start with, the tight-binding parameters are
unknown, which presents an obvious difficulty when trying to model experiments.
To estimate these parameters, band structures were calculated using a periodic
tight-binding model, and using the muffin-tin approximation (described in the next
section). The tight-binding parameters were adjusted until the band structure cal-
culated from it matched that from muffin-tin. These parameters were then inserted
into the finite-size tight-binding model to produce LDOS spectra and maps, which
ultimately parallel the experimental observations.
To produce realistic spectra and maps from the finite-size tight-binding model, sev-
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eral things were taken into account. The first effect is the broadening of the peaks
in the experimental differential conductance spectra, arising dominantly from the
finite lifetime of surface electrons. The presence of CO molecules allow an addi-
tional means by which the surface electrons can enter bulk states, which decreases
the lifetime of surface electrons and broadens the LDOS. The extent of the broad-
ening depends on the concentration of CO molecules in the immediate vicinity of
the measurement; the more CO molecules per unit area, the larger the broadening.
Here, we use a broadening of 80 meV.230,279,288,357 Without broadening, the local
density of states (LDOS) for an energy ϵ is determined by the wave function Ψ and
given by

LDOS(x, y, ϵ) =
∑
i

|Ψϵi(x, y)|2δ(ϵ− ϵi), (Equation 1)

where i iterates over the energies. The broadening can be described by replacing
the delta function in Equation 1 by a Lorentzian. The LDOS is now described by

LDOS(x, y, ϵ) =
∑
i

|Ψϵi(x, y)|2
b

(ϵ− ϵi)2 + ( b2 )
2
. (Equation 2)

where b = 0.08 eV in this setup. A second significant effect is orbital overlap, which
describes the non-zero overlap between the orbitals of neighboring sites. This leads
to the generalised eigenvalue equation HΨ = ESΨ, where H is the Hamiltonian, E
is the energy, and S is the overlap matrix. In order to limit the number of parame-
ters to match and to avoid overfitting, we only considered NN overlap. Thus, there
are two orbital overlap parameters for each design: the orbital overlap of two sites
in the same hexagon, and overlap between sites of two different hexagons. If all or-
bitals are orthogonal, the generalised eigenvalue equation reduces to the standard
eigenvalue equation, HΨ = EΨ.
Finally, NNN hopping was also included. This again gives two extra parameters,
NNN hopping within and between hexagons. The magnitude of both NNN param-
eters in the t1 > t0 lattice are small due to the use of clusters of CO molecules.
In the t0 > t1 design, however, a single CO molecule is used in the centre of the
hexagon, resulting in a non-negligible intra-hexagon NNN hopping of 0.2 t0.
LDOS maps were obtained from the tight-binding eigenvectors Ψϵ with energy ϵ
according to:

LDOS(x, y, ϵ) =
∑
ϵ′

|
∑
i

exp
[
−(x− xi)

21.15a
]

×Ψi,ϵ(x, y)|2L(ϵ− ϵ′),

where a is the lattice constant of the Kekulé lattice, L is the Lorentzian broadening
function, i enumerates the sites and xi is the position of site i.
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Muffin-tin: The CO molecules in each lattice were approximated as disk shaped
”protrusions” in an otherwise constant 2D potential landscape. This is the foun-
dation of a muffin-tin calculation. For the calculations done here, a disk diameter
of 0.6 nm (based on observation from STM scans) and a potential height of 0.9 eV
were used to describe the CO molecules, as used by Slot et al.230

The periodic tight-binding Hamiltonian was expanded up to the 5th Fourier compo-
nent in the plane wave basis, making use of Bloch’s theorem. This was then solved
numerically using the analytically known Fourier components of the muffin-tin po-
tential.382 The resulting band structures were then used to identify the tight-binding
parameters (see figure 5.5, where the muffin-tin band structure and the correspond-
ing tight-binding match are shown for both designs used).

N Figure 5.5: Band structure for the periodic Kekulé lattice. (a) t1 < t0 and (b)
t0 < t1. The tight-binding fit is displayed in black, and the muffin-tin band structure in
colour (blue and red, respectively).

When comparing muffin-tin and tight-binding derived band structures, the low en-
ergy bands match each other well. For the bands at higher energy, the match be-
comes less accurate due to the interference with p-bands that are not included in
the tight-binding description, but are present in the muffin-tin model. The tight-
binding parameters that were obtained from this procedure are displayed in Table
5.1.

The experimental results (LDOS spectra and maps) were also simulated using the
muffin-tin model. For a finite system, we numerically solved the non-interacting
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Design t0 t1 tn0
tn1

s0 s1 e

t1 < t0 -0.13 eV 0.7 t0 0.2 t0 0.02 t0 0.2 0.12 -0.105 eV
t0 < t1 0.67 t1 -0.13 eV 0 0 0.1 0.15 -0.005 eV

Table 5.1: Tight-binding parameters obtained by matching to muffin-tin band structures.
Here, e is the on-site energy, t0 and t1 are NN hopping parameters, tn0 and tn1 are NNN
hopping parameters, and s0 and s1 are orbital overlaps, each of them intra- and inter-
hexagon, respectively.

Schrödinger equation for the muffin-tin potential. A flat potential landscape sur-
rounds each lattice, and the edges of the defined area are given by von Neumann
boundary conditions. After including broadening in the same way as for the tight-
binding model described above, we find that the muffin-tin results closely match
the experimental findings, as shown in figure 5.6 for the local density of states maps
and in figure 5.7 for the local density of states spectra. In these figures, tight-binding
results have also been included for comparison. Spectra on additional edge sites are
also included compared to those shown in the main text.
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N Figure 5.6: Comparison of LDOS maps. Local density of states maps at the gap
energy for both edge types obtained experimentally (top row), with muffin-tin (centre
row) and with tight-binding (bottom row). Scale bars in white indicate 5 nm.

5.6.4 Limiting interactions with the surrounding 2DEG

At the edge of artificial lattices built by confining the surface state of a metal, there
can be significant broadening as a result of the states within the lattice interacting
with the surrounding free surface state. Minimizing this interaction can be achieved
by placing additional CO molecules at the boundaries of the structure. However,
care should be taken because the positioning of CO molecules outside their regu-
lar anti-lattice may change the on-site energy of edge sites, which could lead to a
spurious modulation of the spectrum. In order to find suitable positions to place
the “blocker” CO molecules, several potential designs were calculated for each of
the four lattices using muffin-tin, and those that yielded the best fit to the tight-
binding predictions were chosen. An example using the molecule zigzag edge for
t0 < t1 is shown in figure 5.8. Here, multiple blocker positions (and an edge with
no blocking) are shown alongside the corresponding muffin-tin spectra. As before,
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N Figure 5.7: Comparison of LDOS spectra. Local density of states spectra for both
edge types obtained experimentally (top row), theoretically using a muffin-tin calculation
(middle row) and with tight-binding (bottom row). The y axis in each plot is the local
density of states in arbitrary units. Each colour refers to a type of site, as illustrated in
the STM topographs.

broadening of 80 meV was added to each plot to describe the scattering of the sur-
face state to the bulk. The additional broadening as a result of interactions of the
edge states with the surrounding 2DEG is plain to see in the LDOS calculated for
the design with no blocking (figure 5.8a) – no clear similarities to the tight-binding
calculated LDOS are seen. When blockers are introduced too far away as in fig-
ure 5.8b, similar behaviour is observed, except the on-site energy of the edge sites
are shifted to lower energies because the edge states are less confined. Upon repo-
sitioning the blocker-CO molecules one Cu(111) atom distance closer (figure 5.8c),
the on-site energies of the sites are shifted towards higher energies. Finally in fig-
ure 5.8d, after shifting the blockers one site closer still, the on-site energy becomes
approximately comparable to the bulk minimum. Thus, this was the design chosen
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for our investigation. Similar calculations were performed for the three remaining
lattices to find the best position for CO blockers.

5.6.5 Defects at the edges

One of the most exciting aspects of topological insulators is the resilience of the
edge modes to non-symmetry breaking defects. To test this, we introduce CO molecules
into the edge to behave as defects. Figure 5.9 shows experimental differential con-
ductance maps, where defects have been introduced. Sites on opposite sides of the
defect should only couple very weakly via the defect, possibly affecting the shape
of the edge. By examining figure 5.9, it can be seen that the edge modes still exist
despite the defects, even in close proximity to them, thus substantiating the topo-
logical character of the edge.
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N Figure 5.8: The effect of protective “blocker” CO molecules. The left column
shows positions of CO molecules (black circles) on the Cu(111) surface (orange dots) to
form the molecule zigzag edge of the Kekulé lattice. Grey dots represent CO molecules
that are used to shield the electronic states in the lattice from unwanted interactions
with the surrounding 2DEG. The spectra were calculated on the dots of correspond-
ing colour, except the black line, which was calculated for the bulk. A spectrum was
taken for equivalent sites at the corner and edges, thus there are multiple spectra of
each colour. (a) The lattice with no blocking CO molecules and the corresponding spec-
tra. (b) Blocking at distant positions, leading to a shift of the edge modes to lower
energy. (c) An improvement on (b), where the blocking CO molecules are shifted one
Cu(111) atom distance closer. (d) The final design used in our investigation, where the
CO molecules are pushed one additional site closer and the on-site energy of the edge
mode is comparable to the energy of the bulk gap.
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N Figure 5.9: Defects in edges. Experimental differential conductance maps showing
the effect of defects in the edge modes of the lattices. Brighter pixels represent higher
LDOS. White arrows point to the defects. Scale bars represent 5 nm. (a) The molecular
zigzag edge with t0 < t1 (acquired at -40mV). (b) The partially bearded edge with t1 <
t0 (acquired at -65mV).
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EXPLORING TWO-BODY PHYSICS
IN A 1D SSH CHAIN

This chapter was written for this thesis.



CHAPTER 6

6.1 Introduction

In this chapter, we experimentally investigate the marriage of two physical con-
cepts; two-particle interactions and non-trivial topology.
The first ingredient in this investigation concerns bound states. When a bound pair
of particles is formed, either through attractive or repulsive interactions, states out-
side of the allowed single particle bands appear.383,384 Usually in free space, at-
tractive forces drive the formation of composite objects, while for a repulsive force,
the particles diverge from one another. However, in certain environments, such as
in a periodic potential, stable composite objects can be formed for repulsive inter-
actions. A doubly-occupied site is known as a doublon. Doublons may manifest as
a pair of particles bound in the presence of repulsive interactions. The physics of
doublons can be modelled with a Hubbard model for on-site interaction only, or an
extended Hubbard model when interactions between particles are present beyond a
single site. In the experimental realm, doublons have been directly observed in op-
tical lattices385 (though not referred to as such). Doublons can exhibit interesting
behaviour even without introducing additional physics.386–389

The second ingredient in this investigation is non-trivial topology. We make use
of the Su-Schrieffer-Heeger (SSH) model for a linear chain, which is well-described
for single particles and is known to exhibit topologically protected end states.58,390

Within the last decade, there has been interest in combining interactions and topol-
ogy in theoretical studies,391–396 as well as experimental investigations.13,397 In
combining topology and interactions, one must consider three cases: single-particle
topological systems in which interactions (i) do or (ii) do not break the topology;
or (iii) systems that are non-topological in the single-particle regime, but in which
interactions can result in topological protection, such as the interaction induced
topological Kondo insulator113,395,396 Note that interactions leading to topologi-
cally non-trivial states is not a new concept; it is the underlying driver behind the
fractional quantum hall effect,294,398 although sometimes interactions can adversely
affect the non-trivial state.399

Here, we show a method of experimentally simulating two body interactions by
making use of a mapping from two particles occupying a 1D chain to one parti-
cle on a 2D lattice.400–402 We realise this 2D lattice using the CO/Cu(111) plat-
form with STM (scanning tunnelling microscopy). The lattice of interest here has a
square geometry, with bonds modulated in a fashion akin to the 1D SSH chain. An
altered on-site energy along the diagonal of this lattice is analogous to the interac-
tion strength between two particles on one site on the 1D chain. The 2D SSH lat-
tice has been realised before as a higher order topological insulator to manufacture
corner modes with excess fractional charge using the same experimental system.403

In addition to the well-known topological end modes that occur in this lattice, Di
Liberto et al395,396 predicted a variety of other phenomena when interactions be-
tween particles are considered, such as a Feshbach resonance, a doublon end state,
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and an edge bound state that appears at the strongly coupled edge (note that no
edge state is found on this edge for single particles). The Feshbach resonance in
particular leads to a signature in the 2D analogue of the 1D lattice that is possible
to observe in STM, see below.

6.2 The SSH model

The Su-Schrieffer-Heeger (SSH) chain consists of sites coupled via alternating strong
(ts) and weak (tw) hoppings.
First, we consider a single-particle model. The 1D SSH chain is presented in fig-
ure 6.1a. In each unit cell, there are two types of sites that can be distinguished
based on their environment. We denote the two sublattice sites A and B. One has
a choice to make when defining the unit cell. It could either be centred on a strong
bond, with inter-cell bonds being weak, or vice versa by shifting the cell by a sin-
gle site (blue and green cells respectively in figure 6.1a). The termination of a finite
chain differs depending on the choice of unit cell. If the final bond in the chain is
weak, an isolated end mode is manifested, and the system is considered topologi-
cally non-trivial.390 If the final bond in the chain is strong, the site at the end is
fully coupled to the rest of the lattice, and every site contributes to the bulk spec-
trum. In this case, the system is considered topologically trivial. We use Ds and
Dw to denote configurations that are terminated with strong and weak bonds re-
spectively.
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sites coupled with alternating strong (solid line) and weak (dashed line) bonds. The light
blue and light green shaded regions on the 1D chain highlight the two unit cell defini-
tions that would give rise to termination in strong or weak bonds respectively. Strongly
and weakly coupled edges are highlighted on the 2D lattice (right) in light blue and light
green respectively. (b) Positions of two particles on sites 2 and 6 on the 1D lattice are
analogous to site x = 2, y = 6 on the 2D lattice, and, since the particles are indistin-
guishable, x = 6, y = 2 also. These are indicated by green spheres. (c) The on-site
interaction between two particles is given by U and represented in black. This is also the
on-site energy of a single-particle state on the diagonal of the 2D lattice (right), with
respect to the on-site energy of off-diagonal sites. (d) Single particle hopping (green ar-
row) in the 1D case is represented by off-diagonal hopping in 2D. (e) When a particle
hops out or into its on-site doublon state in 1D, this is represented by hopping from/to a
diagonal site to/from an off-diagonal site in 2D (orange arrow). (f) Hopping of the entire
doublon in 1D is represented by hopping along the diagonal in 2D (magenta arrow).

If we use an odd number of sites in the chain, then we obtain both terminations.
Here, we consider chains of 7 sites.

The 1D SSH chain with two particles can be described by a Hubbard Hamiltonian,
H0+HU . The following description with full details can be found in reference 14.395

H0 is the kinetic term, and corresponds to the Hamiltonian of the non-interacting
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system.

H0 = −ts
∑
i

c†A,icB,i − tw
∑
i

c†A,i+1cB,i +H.c. (6.1)

where c†X,i and cX,i are the creation and annihilation operators for an electron on
lattice site X = A,B within cell i. H0 describes the Ds case; strong (in-cell) hop-
ping from site B to site A, and weak (inter-cell) hopping from site B to site A in
the preceding cell. H.c., the Hermitian conjugate, describes the particle “hopping”
in the reverse direction.
HU describes an on-site potential due to the electrostatic repulsion between two
particles at that site. The on-site interaction is described by

HU =
U

2

∑
i

(c†A,ic
†
A,icA,icA,i + c†B,ic

†
B,icB,icB,i), (6.2)

where U is the on-site interaction strength. Note that the two electrons considered
must have opposite spins in order to occupy the same lattice site.
In the fully dimerised case tw = 0, the Hamiltonian consists of three different states;
where both particles exist on site A, where one particle exists on A and one on B,
or where both particles exist on B. We let the Hilbert space of this in-cell Hamil-
tonian be spanned by |AiAi⟩, |AiBi⟩ and |BiBi⟩, which respectively correspond to
the aforementioned states. When considering only on-site and nearest neighbour
interactions, the two-particle Hamiltonian is given by

Hcell
i =

 U −
√
2ts 0

−
√
2ts 0 −

√
2ts

0 −
√
2ts U

 (6.3)

which corresponds to three dimer states, dα, with energies ϵ1,3 = 1
2 (U∓

√
16t2s + U2)

and ϵ2 = U . These are bound states. When tw is finite, these states delocalize and
form narrow bands.
To calculate the band structure, the Lippmann-Schwinger equation is used, which
allows one to calculate scattering of quantum states.404 The kinetic part of the
Hamiltonian (equation 6.1) can be transformed into a basis that depends on what
could be considered a centre of mass between two particles on the chain. If parti-
cle 1 is at position x on the chain and particle 2 on position y, this maps to a sin-
gle particle on a 2D lattice at position (x, y), and the Hamiltonian is equivalent for
both, see.395,396 An example is given for two particles (green) in figure 6.1b and
their equivalent position on the 2D lattice for x = 2, y = 6 and x = 6, y = 2. The
on-site interaction in the 1D chain, where both particles are on the same site (figure
6.1c), maps to a modified potential along x = y in the 2D lattice. This potential is
labelled U , and is given with respect to the off-diagonal sites. A single particle hop-
ping from one site to the adjacent site is represented by the green arrow in figure
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6.1d. This is mapped to off-diagonal interactions in the 2D lattice. A single parti-
cle hopping out of or into its on-site doublon state in 1D (orange arrow, figure 6.1e)
is represented in 2D as hopping between a site on the diagonal and an off-diagonal
site. Doublon hopping in 1D is represented by hopping along the diagonal in 2D
(magenta arrows, figure 6.1e).
The non-interacting SSH model produces three scattering continua, which Di Lib-
erto et al label type I.395 Two additional continua are generated for Dw around
energies ±ts, labelled type II. These type II continua correspond to states of two
particles, consisting of one particle localised at the edge (which is only permissible
on Dw, not Ds) combined with a freely propagating particle along the 1D chain.
In this scenario, one can imagine a dynamic process whereby the first particle trav-
els towards the weakly coupled edge where the second particle is localised. Once it
arrives, the two particles may form an edge bound pair if the bound pair energy is
aligned with the scattering continuum corresponding to the initial state. The two
particles can then travel back into the bulk of the chain together as a bound pair.
Figure 6.2 shows a spectrum calculated for the Dw case as a function of U/ts, where
the five (types I and II) scattering continua (black) are visible, along with bound
states (green in the left figure) which vary in energy as U (the interaction strength
between two particles) is varied. The degree to which the bound pair is localised
at the edge is conveyed by the shade of green; lighter means more localised at the
edge. At the condition U = ts, the bound state with second-lowest energy crosses
a type II scattering continuum, resulting in a mixing of states corresponding to the
aforementioned dynamic process. This is known as a Feshbach resonance, which is a
resonance between bound states and free scattering states.405 The free states in this
case are the aforementioned pair of particles that give rise to type II continua, and
the bound states are the result of when the two particles meet.
By considering the mapping from 1D to 2D (see figure 6.1), one may deduce the
equivalent picture of the dynamics in 2D. The resonance can be envisaged as two
particles (one on each of the weakly bound edges), moving along the edges and
meeting each other at the weakly bound corner. There, it forms a bound pair which
then travels along the diagonal of the lattice. A wavefunction map of this resonance
is shown inset on the right of figure 6.2. This translates to an elevated local density
of states along the diagonal and along the weakly coupled edges at the same energy,
which is observable with scanning tunnelling spectroscopy measurements. Note that
the signature of the Feshbach resonance should only be observed within some mar-
gin of U = ts (the bands have a certain width, so the condition does not have to be
exactly met to see the resonance).
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N Figure 6.2: Energy spectrum of the Dw system calculated using exact diagonali-
sation and open boundary conditions, for tw = 0.1ts. Energy is plotted as a function
of U/ts. Left: There are five scattering continua (black horizontal lines). The bound
states (green) vary in energy as U is varied. The green colour bar represents the den-
sity of states in the first two lattice cells and highlights the localization of edge bound
states. The energy region of interest in our experiment is enclosed in the red rectangle.
This is where the second lowest bound state intersects the scattering continuum shown.
Right: Zoomed in region of interest of the spectrum. Inset shows a calculated wavefunc-
tion map of the bound state of interest for U = tw and energy E ≈ 0.8tw obtained
also through exact diagonalisation. x and y extend to 7 lattice sites here. This figure has
been adapted with permission from Di Liberto,395

6.3 Methods

To realise the 2D variant of the SSH lattice, we used the CO on Cu(111) system,
whereby the CO molecules act as scattering centres for the Cu(111) surface state
electrons. Each electronic site is a pool of surface electrons that have been confined
by the CO molecules.6,234 These electronic sites can be coupled to one another, and
the hopping strengths can be tailored by altering the positions of CO molecules be-
tween sites.234 This system has demonstrated in recent years to be useful to investi-
gate electronic behaviour within engineered potentials.7,230,279,287,288,357,406

Figure 6.3a shows the bond layout and figure 6.3b shows the placement of CO molecules
used to define the electronic sites. Different gap widths between CO molecules allow
for strong or weak coupling, as discussed in chapter 4 and reference 29.234 An STM
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La�ce site La�ce site with poten�al U

Strong coupling t1

Weak coupling t2 Cu(111) atom

CO molecule (shaded region
is size observed in STM)

c)a) b)

NNN coupling (via strong)

NNN coupling (via weak)

NNN coupling (via strong & weak)

N Figure 6.3: The lattice design. (a) The full bond arrangement throughout the lattice.
The potential U is altered. (b) Diagram of how the CO molecules are to be arranged
atop the Cu(111) surface to produce the lattice with weak and strong bonds. (c) An
STM scan of a 7 × 7 lattice with diagonal sites equivalent to bulk sites, i.e. U = 0. The
CO molecules confine the electrons that constitute the artificial lattice sites.

scan of the complete 7 × 7 structure is shown in figure 6.3c. The top and right sites
are connected weakly to the rest of the lattice, while the bottom and left sites are
connected strongly. To change the on-site energy of sites along the diagonal, extra
CO molecules were added to strengthen the confinement of the electronic states.
This elevated on-site energy compared to the on-site energy of the surrounding sites
simulate the on-site interaction between two particles on the 1D chain. Ultimately,
we produce four variations of different U , see figure 6.4. In order of increasing on-
site energy, we label them U0, U1, U2 and U3. U0 represents the lattice with the
diagonal sites at the same on-site energy as the bulk sites.
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U0 U1 U2 U3(a)

(b)

N Figure 6.4: Realising the system with CO on Cu(111). (a) Diagrams of CO place-
ment that confines electrons along the diagonal for each different U . The white/grey
circles loosely represent the size of the electronic sites along the diagonal. (b) STM to-
pographs of the fully realised lattices with different U . The image of the U1 lattice was
acquired with a CO tip, thus the CO molecules appear as protrusions rather than dips.
The red line in the U3 image represents 5 nm.

6.3.1 Calculations

To help find a configuration of CO molecules that would lead to the desired physics,
muffin-tin calculations were performed. From such calculations, one can predict the
LDOS at each position in the lattice. Numerous designs were considered before set-
tling on the one shown in figure 6.3b.
Sites at the edge of the lattice require additional CO molecules for two reasons.
Firstly, to reduce broadening due to interaction with the surrounding 2D electron
gas (see e.g.406). Secondly, to make sure there is no shift of on-site energy due to
a difference in size of an edge site compared to a bulk site (the on-site energy of
an electronic site is inversely proportional to its size234). In addition to aiding the
principal design, muffin-tin calculations were used to find the best positions for
these outer CO molecules that (partially) block interactions with the surrounding
2DEG. They were chosen in such a way as to align spectra at the edges with spec-
tra in the bulk.
In these calculations, cylindrical potentials of height 0.9 eV and radius 0.31 nm
were used to model CO molecules. The band minimum of the Cu(111) surface state
was set to -0.445 eV. The effective electron mass was assumed to be 0.42 me. Ar-
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tificial broadening of 40 mV (full width at half maximum) was applied. The LDOS
plots generated from these muffin-tin calculations can be compared to experiment,
and in previous work, has modelled the results quite closely.230,234,279,288,357,403,406

Muffin-tin calculations also allow us to estimate the tight-binding parameters for
the lattice we built. To find the tight-binding parameters, a band structure calcu-
lated with the muffin-tin approach was compared to the band structure calculated
with the tight-binding approach. This was done for the periodic lattice with all
sites at potential U0. The tight-binding Hamiltonian is identical to the one found
in.403 The tight-binding parameters were adjusted until an adequate fit was found.
Figure 6.5 shows the final fit compared to the muffin-tin-derived band structure.
Three types of next-nearest neighbour coupling were included to find the best fit.
These are next-nearest neighbours (NNN) coupled “via” two strong bonds, two
weak bonds, or one weak and one strong bond, see figure 6.3b. The tight-binding
parameters for the basic lattice were estimated as follows.

Parameter Value
On-site energy -0.135 eV
Weak hopping tw 0.031 eV
Weak overlap 0.08
Weak NNN hopping tw 0.005 eV
Strong hopping ts 0.072 eV
Strong overlap 0.08
Strong NNN hopping 0.015 eV
Other NNN hopping 0.005 eV

The on-site energy here refers to off-diagonal sites, i.e. those which have not been
modified. The “other” NNN hopping refers to hopping via one weak and one strong
bond, see the thin grey lines in figure 6.3.
As mentioned earlier, the condition at which a mixing of states leads to a Feshbach
resonance is at U = ts. The strong hopping found here was 0.072 eV, thus we ex-
pect the Feshbach resonance at U = 0.072 eV. Since U is defined relative to the
on-site energy of bulk sites, the on-site energy of sites along the diagonal should be
0.072 eV + -0.135 eV = -0.063 eV.

6.3.2 Experimental procedure

Experiments were performed using a Scienta Omicron LT-STM at pressures below
10−10 mbar and a temperature of approximately 4.5 K. The Cu(111) was cleaned
by repeated cycles of sputtering with Ar+ and annealing at 550◦ C. Carbon monox-
ide was deposited onto the Cu(111) surface while the sample was in the microscope
head at 4.5 K. Differential conductance spectra and maps were acquired in constant
height mode. The modulating bias was provided by a lock-in amplifier, using an
amplitude of 10 mV r.m.s., a frequency of 273 Hz, and an integration time of 50
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N Figure 6.5: Finding the tight-binding parameters. The lowest four bands of the pe-
riodic 2D SSH system with no modification of diagonal sites (U0) are shown. The blue
lines represent the muffin-tin calculation. The red lines represent the tight-binding calcu-
lation with optimised parameters.

ms per point for spectra and 20 ms per pixel for maps. Each spectrum shown has
been averaged over varying numbers of spectra on equivalent sites. Macroscopi-
cally speaking, the same tip was used for all experiments, but the tip apex changed
unavoidably on the nanoscale during measurements. The differential conductance
measured depends on states in the sample as well as those in the tip.407 To reduce
the effect that the tip state has on the measurement, we divided the spectra taken
by the average Cu(111) spectrum acquired with the same tip.7

6.4 Results and discussion

Differential conductance spectra were measured experimentally and calculated with
muffin-tin at each electronic lattice site, for each of the four lattice variations. The
spectra can be separated by type, see the colour-labelled STM topograph in fig-
ure 6.6. The bulk and edges of the lattice are the same for all diagonal variations,
while the diagonal sites, upper right and lower left corner sites have different on-
site energy for each configuration. The colours in figure 6.6 represent the positions
at which the averaged muffin-tin LDOS and averaged, normalised (divided by bare
Cu(111) spectra) experimental dI

dV were obtained. Differential conductance maps
were also acquired experimentally and calculated with muffin-tin. In the following
sections, we go into further detail on these results.
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N Figure 6.6: Spectra per site type. The top figure shows an STM topograph of the
U3 lattice as a visual aid, with colours overlaid. Below, the calculated and experimentally
acquired spectra correspond to these colours. The solid lines are experimentally acquired
differential conductance spectra and the dashed lines represent LDOS calculated using
muffin-tin. For each site type, the four different diagonal on-site energies (U) are repre-
sented by shades (brightness) of colour. The experimental differential conductance has
been scaled in such a way that the value of differential conductance is approximately the
same at -0.25 eV for each value of U .

6.4.1 Examination of the LDOS spectra

The experimentally acquired differential conductance spectra are the upper spectra
shown as solid lines of each plot in figure 6.6. The local density of states (LDOS)116
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calculated using the muffin-tin model are the lower spectra shown as dashed lines in
figure 6.6.
We observe from the muffin-tin LDOS that spectra on bulk (black/grey) and edge
(blue and green) lattice sites do not vary in shape or magnitude when varying U .
This is intuitive as locally, these sites remain identical upon changing U . In addi-
tion, spectra on the strongly bound edge (blue) and the bulk (black/grey) closely
resemble one another. In both, the highest peak is at approximately -0.13 eV. This
holds true for the experimentally measured spectra. This similarity can be attributed
to the fact that the connectivity of the sites is similar.
The spectra on the weakly coupled edge sites are expected to have two peaks, which
are in fact visible in the muffin-tin calculated spectra (green dashed lines, figure
6.6). These two peaks are attributed to the fact that these sites are only weakly
connected to the rest of the lattice, and couple mainly to each other via a strong
bond, which yields dimer-like behaviour/a Peierls distortion. In the experimental
spectra measured at the weakly coupled edge sites, these two peaks are only visi-
ble for the U0 lattice. In the U1, U2 and U3 lattices, there is too much broaden-
ing to resolve the two peaks with certainty. Note that the resonance observed in
these spectra is much broader than the resonance observed in spectra on bulk sites.
We expect that the weakly coupled edges would yield the same spectrum for all U ,
however, while their overall positions do not shift much from one another, the shape
of each spectrum is quite dissimilar, suggesting a tip effect. This could be due to
imperfect background division of the spectra (e.g. due to tip changes during the ex-
periment). The presence of highly mobile contaminants in the measurement cham-
ber at the time of the experiment could also have influenced the measurements, see
the appendix of this chapter for details.
The rest of the sites; the diagonal, weakly bound corner and strongly bound corner;
are those that change depending on U . In the lower three plots of figure 6.6, the
peaks in the diagonal, weakly and strongly bound corner spectra shift rightwards
(to higher energy), both for experimental and muffin-tin derived LDOS. Increasing
U is represented by increasingly lighter colours. Recall that U is increased by con-
fining the diagonal sites with extra CO molecules. In the 1D picture, U represents
an on-site doublon interaction, which increases from U0 to U3. At a certain point,
the doublon bound state crosses the scattering continuum, resulting in a Feshbach
resonance. As mentioned earlier, this should occur when U is 0.072 eV greater than
the bulk on-site energy. This would be in the region of -0.063 eV (with some lee-
way, given that there is a particular bandwidth associated with the scattering con-
tinuum, and also that there exists broadening in the experiment). figure 6.7 shows
LDOS acquired only at the bulk, weakly coupled edge and diagonal sites. It can be
observed that spectra on diagonal sites (orange) shift upwards with increasing U ,
and the higher peak overlaps the higher peak of the weakly bound edge in the U1
or U2 case, which occurs close to -0.063 eV in both cases. This is the signature of
the Feshbach resonance.
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A note about broadening

There is considerable broadening in all spectra which is seen to increase for the di-
agonal sites when U is increased. This is an expected phenomenon that occurs ei-
ther because the additional CO molecules mediate scattering of surface electrons
to the bulk, thereby reducing their lifetime, or because surface electrons with higher
energy are less confined within the finite potential barrier formed by the CO molecules,
see chapter 4 of this thesis as well as references 29 and 38.234,408 In spite of this,
some observations can be made. One clearly observes that the on-site energy of
diagonal sites increases as U is increased, and remains unchanged for off-diagonal
sites. A signature of the Feshbach resonance is observed for configuration U1 or U2.

6.4.2 LDOS maps

Figure 6.8 shows LDOS maps produced with muffin-tin. The energies that the maps
were generated for are those where there is a peak in LDOS on specific parts of the
lattice. All variations of the lattices are shown. The first and third columns contain
maps produced at approximately the energies of the two peaks of the weakly bound
edge spectrum, -0.22 eV and -0.06 eV, both highlighted in green. As explained ear-
lier, sites at the weakly bound edges appear as a series of dimers aligned along the
edges - the maps at -0.22 eV and -0.06 eV appear to show the bonding and anti-
bonding orbitals of these dimers, respectively.
Sandwiched in between these two columns are LDOS maps at -0.12 eV, correspond-
ing to to the bulk and strongly bound edge peaks, highlighted in black.
The maps highlighted in orange in figure 6.8 are at the energy of U for each lattice.
At -0.06 eV, where the Feshbach resonance is expected to lie, the eigenstates of the
diagonal and the weakly bound edges co-exist for U1. This is an indication of the
Feshbach resonance. A similar image is observed for U2 at -0.046 eV. This is be-
cause the on-site energy of U1 and U2 are closer than can be resolved with the 40
mV broadening applied.
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-0.22 eV -0.12 eV 0.00 eV-0.046 eV-0.06 eV

U0U0

U2

U3

U1

N Figure 6.8: LDOS maps calculated using muffin-tin. The energies selected correspond
the particular peaks in the spectra (figure 6.7). The two green columns refer to the two
peaks in the spectra acquired at the weakly bound edges of the lattice. The black col-
umn contains spectra acquired at the energy of the bulk (and strongly bound edge)
peak. Orange highlights the on-site energy of the diagonal of each lattice. For U0, the
diagonal sites are no different from the bulk sites.

Figure 6.9 shows experimentally acquired maps on the U0 and U1 configurations
of the lattice at two different energies. In figure 6.9a, one observes the bonding-like
state of the weakly bound edge with reasonable clarity. The gradient in the image
is due to use of an incorrect plane during acquisition of this constant-height map.
That is to say, the tip was raster scanning in a plane which was at some angle (not
parallel to) the plane of the surface during the acquisition of this image. The differ-
ential conductance map of the U1 lattice is shown in figure 6.9b. Due to the large
broadening, a rather homogeneously distributed density of states is observed.
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U0
-0.22 V

U1
-0.06 V

a b

N Figure 6.9: 20 nm x 20 nm experimental dI
dV

maps of (a) The U0 lattice at -0.22 V
and (b) the U1 lattice at -0.06 eV. No evidence of the Feshbach resonance is observed in
(b), likely due to deficiencies of the tip, given that the bonding-like state of the weakly
coupled edge is quite clearly visible in (a).

6.5 Conclusion

To conclude, we have attempted to experimentally probe two body interactions in
an SSH chain by making use of a mapping to a free particle in two dimensions. We
created a 2D SSH lattice with a modified on-site energy along the diagonal to simu-
late doublon physics in 1D, with the hope of observing the Feshbach resonance that
was predicted to arise in this system.395,396 In muffin-tin calculations, we observe a
clear split in energy of the weakly coupled edge due to its dimerisation, and we see
that for two values of U , there is overlap between the higher energy of the weakly
coupled edge and the onsite energy of the diagonal, which is indicative of the Fesh-
bach resonance. Due to the broadness of the experimental peaks and aberrations
in the dI

dV spectra, we see only a hint of this behaviour. To reduce the broaden-
ing in a future experiment, one could use larger lattice sites. This would result in
a downward shift in energy of all the states, leading to narrower peaks (see figure
4.4 of chapter 4). Alternatively, another material platform could be considered (e.g.
monolayer Ag/Si(111))
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6.6 Appendix: mobile adsorbates

The presence of mobile adsorbates on the surface could have obscured results dur-
ing this project. Figure 6.10a shows an STM topograph of the U3 lattice. The CO
molecules appear as dips in the surface and remain static during the scan as usual.
The mobile adsorbates appear brightly across the lattice, as well as elsewhere in the
scan. Their structure is not well-defined and the motion of the tip appears to cause
them to shift to the left and right, evidenced by horizontal streaks. The chemical
identity of such entities remains unknown, but since they are mobile at 4.5 K, pos-
sible culprits are hydrogen or helium. The entities typically appeared after perform-
ing dI

dV spectroscopy, and were never seen on bare Cu(111), preferring to congregate
near clusters of CO molecules (thus were attracted to lattices). Sudden shifts and
sharp peaks in dI

dV spectra (figure 6.10b and 6.10c, respectively) were a common
occurrence during experiments, and could potentially be attributed to the entities
between the tip and sample. In attempts to mitigate these effects, large clusters of
CO molecules were constructed close to the lattice to trap the mobile adsorbates,
much like the cluster on the left of figure 6.10a, which has already been populated
with these adsorbates. The mobile adsorbates could be manipulated from the lat-
tice to the CO clusters using a current setpoint of approximately 10 nA and bias
voltage of 20mA without disrupting the CO molecules of the lattice (much).

5 nm
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N Figure 6.10: Mobile adsorbates. (a) Mobile adsorbates are represented as gold amor-
phous entities in this STM topograph. (b,c) Examples of spectra taken on the lattice
exhibiting undesirable features, possibly owing to the entities.
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7.1. SUMMARY IN ENGLISH

7.1 Summary in English

In this thesis, we investigated artificial atoms, molecules, lattices and intelligence
in the context of scanning tunnelling microscopy (STM). We manipulated individ-
ual carbon monoxide molecules on a copper(111) surface, which allowed us to sculpt
the electrical potential landscape at will. Figure 7.1 shows an example of a vari-
ety of quantum objects shaped into the surface in this way. Since a large part of
the electronic behaviour in a material can be attributed to its geometry, we were
able to experimentally mimic theoretical models. As highlighted in chapter 2, an
assortment of artificial lattices had already been established using this platform.
In this thesis, we expanded upon this framework with both new examples, and by
investigating the artificial atoms and molecules that make up such lattices. Aside
from this, we also developed a neural-network based algorithm that could categorise
STM images based on tip state, paving the way for more efficient scanning probe
microscopy. In the following pages, we summarise each chapter.

N Figure 7.1: A quantum playground of artificial atoms and molecules. The dips, CO
molecules, are seen to scatter the Cu(111) electronic surface state. The dips in the cen-
tres of artificial atoms are actually nodes in the wave functions of confined electrons.
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7.1.1 Automatic tip conditioning

First, in chapter 3 we sought to improve the efficiency of scanning tunnelling mi-
croscopy as a whole. Spending vast amounts of time preparing the STM tip is a
common point of lamentation among scanning probe microscopists. However, such
repetitive tasks are ripe for automation, and attempts at establishing this are al-
ready well underway. We contributed to this work by creating a neural network-
based algorithm that could distinguish the state of the tip (that is to say, to cat-
egorise an STM image by type; sharp, double, unstable, rubbish, step country or
bad country). The dataset used for training the neural network contained images
of a gold(111) surface, and the final network ensemble had an accuracy of 88 %.
Figure 7.2 shows a typical input and output to the neural network. This chapter
represented a step towards the incorporation of automation into scanning probe
microscopy. There are currently efforts underway to automate the process for the
CO/Cu(111) substrate.

Input

Step country

Bad country
Rubbish

Sharp
Double
UnstableConvolu�onal 

neural network

0.2%
0.0%

99.3%
0.0%

0.2%

... ...

0.3%

Output

N Figure 7.2: We made use of a convolutional neural network (VGG-16) to automatically
classify images. On the left, the STM image of Au(111) shows tip changes during the
scan. A typical output for an image like this is given on the right, where the prediction
for this example is correctly given as “unstable”.
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7.1.2 Artificial atoms and molecules

In chapter 4, we shifted to the CO/Cu(111) platform. There, we examined quan-
tum simulation on a more fundamental level than in prior work. We investigated
the elementary components of artificial lattices constructed with the CO/Cu(111)
platform: quantum corrals of square and triangular geometries. Numerous lattices
of this type had already been realised at the time of this project, however, the full
range of parameters available to tweak (as defined in the tight-binding description)
was not known. In a systematic way, we described how the on site energy of tri-
angular and rectangular corrals depend inversely on area, also noting the smaller
the corral, the larger the broadening of the peaks in differential conductance spec-
troscopy. Secondly, we presented a method to extract tight binding parameters by
coupling corrals into dimers and trimers, and showed how the parameters could be
varied when the size of the corral or the number of CO molecules separating them
was altered. We found that the hopping integral could be tuned between 0 and -
0.3 eV and -0.16 eV for s- and p-like states respectively, and found that typically,
overlap was an important consideration. Finally, we wielded control over artificial
orbitals level by coupling s- and p-like states. Furthermore, we selectively formed
s − py bonds while inhibiting s − px bonds. Figure 7.3 summarises the coupling
process using the p-like orbitals of triangular corrals as an example.

En
er

gy

Ean�bonding

Ebonding

p-like p-like

N Figure 7.3: Coupling the p-like states of triangular corrals yields bonding and anti-
bonding states.
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7.1.3 Concocting topology

Chapter 5 described an example of a lattice which has only been known to exist ar-
tificially, in this case, on the CO/Cu(111) platform. Underlying this experimental
project was a theoretical prediction: by modulating the bonds in graphene to pro-
duce a so-called Kekulé lattice, a gap in the band structure can be opened, but not
necessarily at the edges, which may exhibit topologically non-trivial bands, depend-
ing on their construction. This is interesting; while being insulators in the bulk,
the electronic states at the interfaces of topological insulators are known to be ro-
bust, and are not easily perturbed by simple defects. The research question was
then: could we mimic this behaviour using the CO/Cu(111) platform? To answer
this, we constructed four configurations of a Kekulé lattice, summarised in figure
7.4, where we altered the termination of the crystal (left/right), and the positioning
of the bond strengths (reversed in top/bottom). In two cases, edge states were ob-
served, indeed mimicking a topological crystalline insulator. In the other two cases,
we obtained entirely insulating systems. The results owed to the underlying symme-
tries of the system.

Par�ally bearded Molecular zigzag

Strong

Weak

LDOS

Low

High

Edge modes

Edge modes

N Figure 7.4: Edge modes manifest in two of these configurations of the Kekulé lattice.
This is determined by the unit cell, which is different in all four cases.
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7.1.4 Simulations within simulations: probing interactions

Finally, chapter 6 delved into the possibility of simulating interactions in electronic
quantum simulators. The CO/Cu(111) setup does well at simulating single particle
models, but is there a way to simulate two-body physics? The theoretical answer is
yes, the Hamiltonian describing two-body interactions on a 1D lattice is identical to
the one describing a single particle in 2D. Experimentally, we realised a 2D variant
of the Su-Schrieffer-Heeger lattice, for which a certain measurable signature of the
simulated two-body interaction was predicted. We found the hint of this signature,
however, some experimental shortcomings forbade us from making strong conclu-
sions.

The concept The realisa�on

e-
e-

Tailored on-site energy in 2D

Simula�ng  
interac�ons in 1D

N Figure 7.5: On the left is an artistic representation of the interactions we wished to
simulate, which are not typically feasible to measure with our experimental setup. On
the right is one of the lattices we realised in order to simulate the two-particle interac-
tions. The image was taken with a CO-terminated tip, and the CO molecules appear as
protrusions.
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7.1.5 Final remarks

The CO on Cu(111) platform is like a quantum playground where we can toy with
electronic wavefunctions and tight-binding parameters in lattices. It has been shown
to be useful as an experimental model system where we can probe exotic physical
phenomena, however, there are some limitations. Firstly, since the surface bands
lie at similar energy to bulk bands, the lifetime of surface electrons is diminished,
which introduces broadening into differential conductance measurements. Platforms
such as the InAs(111) surface, where the surface states are decoupled from the bulk
and therefore experience better energy resolution, are a possible remedy. Secondly,
certain interactions, such as spin-orbit interactions, cannot be modelled with the
CO/Cu(111) platform. One possibility is that by using heavier elements, Rashba
spin orbit coupling could be induced.
The efficiency of creating and investigating such artificial structures could be im-
proved using a neural network-based STM image recognition system, generalised
for many substrates. Such a system would automatically make tip conditioning de-
cisions based on its input and the type of substrate. Refined automated adsorbate
manipulation techniques could be added, as well as the ability to judge differential
conductance spectra.
Looking beyond STM-based research techniques, type III-V semiconductors can be
patterned with tiny holes using nanolithography, defining a lattice much like de-
scribed in this thesis. This paves the way to obtain extra information about sur-
faces of interest, but also the possibility to transfer model systems to technology.
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7.2 Samenvatting in het Nederlands

Dit proefschrift beschrijft de creatie van kunstmatige materie op atom-
aire schaal, molecuul voor molecuul.
Deze uitspraak lijkt misschien fantasierijk voor degenen die het bestaan van een
rastertunnelmicroscoop (RTM, STM in het Engels) niet kennen. Deze microscoop
kan individuele atomen tonen en ze vervolgens verschuiven. RTM bestaat echter al
een halve eeuw,2 waarbij de RTM zelf in 1981 werd uitgevonden.3Het duurde niet
lang tot de eerste structuur op atomaire schaal naar wens werd samengesteld; on-
derzoekers bij IBM schreven de initialen van hun bedrijf met xenon-atomen op een
nikkel oppervlak.4 Vervolgens kwam de kwantumkraal, die elektronen opsloot. De
kraal was een ring van ijzeratomen op het (111) oppervlak van koper. Op de (111)
terminatie van een koper kristal is een “zee” van elektronen die voortkomen uit de
Shockley-toestand. Adsorbaten die op het oppervlak worden geplaatst, verstrooien
deze elektronische toestanden, wat resulteert in staande golfpatronen die meetbaar
zijn met RTM. Een typisch RTM-topografie plaatje is evenredig met de waarschi-
jnlijkheidsdichtheid |Ψ|2, en doet visueel denken aan de rimpelingen die ontstaan
wanneer een regendruppel een plas raakt.
Wanneer adsorbaten zo zijn gerangschikt dat ze een beperkte ruimte omsluiten (in
het kwantumkraal-werk6 uit 1993 was de omhulling cirkelvormig), dan worden de
elektronen opgesloten en worden hun golffuncties en energieniveaus gekwantiseerd.
Het opmerkelijke is dat deze gekwantiseerde toestanden direct vergelijkbaar zijn
met atomair gedrag. Elektronen worden in atomen gevangen door de aantrekkende
potentiaal van de atoomkern, in kwantumkralen worden ze opgesloten door een
omringende repulsieve potentiaal. Kwantumcorralen kunnen dus als kunstmatige
atomen worden beschouwd. Kwantumkralen kunnen aan elkaar worden gekoppeld
om kunstmatige moleculen te vormen, die bindende- en antibindende orbitalen ver-
tonen die specifiek zijn voor moleculen. Dit idee kan worden uitgebreid tot volledige
kunstmatige twee-dimensionale roosters, door het gewenste potentiaallandschap
molecuul voor molecuul te creëren. Het eerste voorbeeld van een op deze manier
geconstrueerd rooster was kunstmatig grafeen.7 Met behulp van koolmonoxide op
Cu(111) werd de elektronische oppervlaktetoestand beperkt tot een hexagonaal
patroon. De onderzoeksgroep emuleerde niet alleen het gedrag van elektronen in
grafeen, ze openden ook een bandkloof door de eenheidscel van het rooster aan te
passen. Door veranderen van de roosterconstante werd het kunstmatige grafeen ef-
fectief n- of p- gedoteerd. Veranderingen in de roostergeometrie konden ook mag-
netische velden simuleren. Dit werk onthulde de waarde van kunstmatige roosters
die adsorbaat voor adsorbaat worden geproduceerd. Deze roosters zijn in hoge mate
instelbaar en metingen van de lokale toestandsdichtheid kunnen onmiddellijk wor-
den uitgevoerd. Al het bovenstaande onderzoek komt bij elkaar tot de kern van dit
onderzoeksgebied: we zijn niet beperkt tot het nabootsen van alleen bestaande ma-
terialen. Sinds de publicatie van kunstmatig grafeen7 is er een overvloed aan pub-
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licaties geweest over nieuwe systemen die gemodelleerd zijn met hetzelfde platform:
CO op Cu(111).
Even terzijde: dit platform als kwantumsimulator is zeker niet de enige mogeli-
jkheid. Momenteel is er een scala aan technieken die controle en meting van kunst-
matige kwantumtoestanden mogelijk maken, waaronder (magneto-) optische roost-
ers,8–11 fotonische roosters,12 (topo) elektronische circuits13 en akoestische syste-
men.14–16 Zelfs binnen het domein van RTM zijn andere methoden voor de con-
structie van kunstmatige roosters aan getoond.17–22

Hoe creëer je kunstmatige materie?

In het bijzonder, hoe kan men koolmonoxide, koper en een rastertunnelmicroscoop
gebruiken om controle uit te oefenen over het gedrag van elektronen? Allereerst
moet het koperoppervlak atomair vlak zijn. Een koperkristal wordt geslepen en
gepolijst zodat een (111) getermineerd vlak boven ligt (figuur 7.6a) wordt onder
vacuüm gebracht, gesputterd en gegloeid. Dit is het proces van het bombarderen
van het oppervlak met argonionen om eventuele verontreinigingen te verwijderen,
en het opwarmen van het monster zodat de oppervlakte-atomen ontspannen tot hun
minimale energieconfiguratie, die dus atomair vlak is. Het monster wordt vervol-
gens naar de RTM-kamer verplaatst en in de meetkop gepositioneerd, terwijl het
in ultrahoog vacuüm blijft. Tijdens dit project hebben we gebruik gemaakt van
de Omicron LT-STM getoond in figuur 7.6b, die tot 4.5 K wordt afgekoeld door
middel van vloeibaar helium. Eenmaal koud kan koolmonoxide voorzichtig in de
kamer worden gelekt, waar het op het Cu(111) oppervlak wordt geabsorbeerd. De
RTM heeft een atoomscherpe naald die op een elektrische spanning zit ten opzichte
van het monster. Deze naald, of tip, wordt gebruikt om het oppervlak elektron-
isch te “lezen” zoals braille. Voor het meten wordt de RTM-tip naar het koper op-
pervlak gebracht totdat een minuscule stroom in de orde van nano-ampère wordt
gedetecteerd. Deze stroom komt voort uit kwantummechanisch tunnelen tussen
de tip en het monster, en is omgekeerd exponentieel afhankelijk van de afstand
daartussen. Dat wil zeggen, hoe kleiner de afstand tussen de tip en het monster,
des te waarschijnlijker is het tunnel proces. Het is deze grote gevoeligheid die ons
in staat stelt om kenmerken op de subnanometer schaal te kunnen zien. Met be-
hulp van kleine piëzo-elektrische motoren scant de naald over het oppervlak, waar-
bij een constante stroom wordt gehandhaafd door deze waar nodig lichtjes terug
te trekken of te naderen. Figuur 7.6c toont een weergave van een RTM-naald ter-
wijl het een kwantumkraal scant. Gewoonlijk worden CO-moleculen gevisualiseerd
als kleine gaten in het oppervlak (zoals te zien in figuren 7.6e en f), maar in figuur
7.6c werd de scan experimenteel verkregen met een CO-getermineerde tip (zwart
= koolstof, rood = zuurstof), waardoor CO-moleculen verschijnen als uitsteeksels.
De afgelegde route van de naald wordt weergegeven. De hoogte van de naald wordt
op elk punt van de scan gemeten en vertaald naar een pixelintensiteit in een RTM-
afbeelding. Figuur 7.6d toont een voorbeeld van een Cu(111) -oppervlak, op een
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lengteschaal die 10.000 keer kleiner is dan de diameter van het monster. Dit figuur
is 500 nm breed, wat de golflengte is van cyaan/groen licht; de terrassen in deze
figuur zijn kleiner dan met een optische microscoop zou kunnen worden gezien,
maar met RTM kunnen nog kleinere (figuren 7.6e en f) gebieden worden gemeten.
Hoewel rastertunnelmicroscopie een krachtig hulpmiddel is, kan de benodigde be-
trokkenheid van de gebruiker een belemmering vormen. Voor een scherp, atom-
air beeld, moet de RTM-naald atomair scherp zijn. Het proces om een dergelijke
naaldtoestand te verkrijgen, kan tijdrovend zijn. Onlangs zijn verschillende onder-
zoeksgroepen begonnen met het ontwikkelen van gereedschappen om het condi-
tioneringsproces van de naald te automatiseren. Automatisering heeft een duideli-
jke waarde bij het creëren van kunstmatige materie gemaakt van individuele ad-
sorbaten, maar ook meer in het algemeen bij sondemicroscopie. Een deel van de
oplossing omvat beeldherkenningstechnieken, waaronder neurale netwerken.
Dit proefschrift draagt op een aantal manieren bij aan het werk aan kunstmatige
roosters geproduceerd met het CO/Cu(111)-platform.
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N Figure 7.6: Inzoomen op kunstmatige roosters. (a) Een koperkristal met een (111)
getermineerd oppervlak. (b) De Omicron LT-STM waarin experimenten werden uitgevo-
erd. (c) Schematische weergave van een CO-getermineerde naald die een kwantumkraal
scant (de scan is een echt experimenteel plaatje). (d) Een Cu(111) oppervlak, met zicht-
bare terrassen. (e) een vlak terras betere weergave van, waar een “kwantumspeeltuin” is
aangelegd. (f) een beter zicht op vierkante kwantumkralen.
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7.2.1 Automatische tipconditionering

Ten eerste hebben we in hoofdstuk 3 geprobeerd de efficiëntie van rastertunnel mi-
croscopie als geheel te verbeteren. Veel tijd besteden aan het voorbereiden van de
RTM-naald is een veelvoorkomend punt van klaagzang onder rastersondemicro-
scopisten - vertel dit aan iedereen in het veld en ze zullen je bijna zeker verrassen
met een tragisch verhaal over verloren tijd. Dergelijke repetitieve taken zijn echter
bijzonder geschikt voor automatisering, en pogingen om dit tot stand te brengen
zijn al in volle gang. We hebben aan dit werk bijgedragen door een op een neu-
raal netwerk gebaseerd algoritme te maken dat de staat van de tip kan onderschei-
den (dat wil zeggen, om een RTM-afbeelding te categoriseren in de volgende types:
scherp, dubbel, onstabiel, onzin, terrassen of slecht gebied). De dataset bevatte af-
beeldingen van een Au(111) oppervlak en het uiteindelijke netwerkensemble had een
nauwkeurigheid van 88 %. Dit hoofdstuk is een stap in de richting van de integratie
van automatisering in RTM. Er worden momenteel inspanningen geleverd om het
proces voor het CO/Cu(111)-substraat te automatiseren.
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Onzin

Scherp
Dubbel
OnstabielConvolu�oneel

neuraal netwerk

0.2%
0.0%

99.3%
0.0%

0.2%

... ...

0.3%

Uitvoer

N Figure 7.7: We hebben gebruik gemaakt van een convolutioneel neuraal netwerk
(VGG-16) om afbeeldingen automatisch te classificeren. Aan de linkerkant toont het
RTM-afbeelding van Au(111) tipveranderingen tijdens de scan. Een typisch resultaat
voor een afbeelding als deze wordt aan de rechterkant gegeven, waar de voorspelling voor
dit voorbeeld correct wordt weergegeven als ’onstabiel’.
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7.2.2 Kunstmatige atomen en moleculen

In hoofdstuk 4 zijn we overgeschakeld naar het CO/Cu(111)-platform. Daar hebben
we kwantumsimulatie op een meer fundamenteel niveau onderzocht dan in eerder
werk door letterlijk terug te gaan naar het begin. Dat wil zeggen, we onderzochten
de elementaire componenten van kunstmatige roosters geconstrueerd met het CO/Cu(111)-
platform: kwantumkralen van vierkante en driehoekige geometrieën. Talloze roost-
ers van dit type waren al gerealiseerd op het moment van dit project, maar het
volledige scala aan beschikbare parameters om te tweaken (zoals gedefinieerd in
de “tight-binding” beschrijving) was niet bekend. Op een systematische manier
hebben we beschreven hoe de energie van driehoekige en rechthoekige koralen omge-
keerd afhangt van het omsloten gebied, waarbij we ook opmerken dat hoe kleiner
de koraal is, hoe groter de verbreding van de pieken in differentiële conductiespec-
troscopie. Ten tweede presenteerden we een methode om strakke bindingsparam-
eters te extraheren door kralen in dimeren en trimeren te koppelen, en lieten we
zien hoe de parameters konden worden gevarieerd wanneer de grootte van de kraal
of het aantal CO-moleculen die ze scheiden, werd gewijzigd. We ontdekten dat de
hoppingintegraal kon worden ingesteld tussen 0 en -0,3 eV en -0,16 eV voor respec-
tievelijk s - en p -achtige toestanden, en ontdekten dat overlap doorgaans een belan-
grijke bijdrage was. Ten slotte leverden we controle op het (kunstmatige) orbitaal
niveau door s- en p-achtige toestanden te koppelen, en bovendien selectief s − py
-bindingen te vormen terwijl s− px -bindingen werden geremd.

En
er

gi
e

Ean�binding

Ebinding

p-ach�g p-ach�g

N Figure 7.8: Het koppelen van de p -achtige toestanden van driehoekige kralen levert
bonding en antibinding toestanden op.
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7.2.3 Topologie creëren

Hoofdstuk 5 beschreef een voorbeeld van een volledig kunstmatig (en dus niet in de
natuur voorkomend) rooster. In dit geval werd het gerealiseerd op het CO/Cu(111)-
platform. Aan dit experimentele project lag een theoretische voorspelling ten grond-
slag: door de bindingen in grafeen te moduleren en een zogenaamd Kekulé-rooster
te produceren, kan een gat in de bandstructuur worden geopend, maar niet noodza-
kelijk aan de randen. In feite kunnen de randtoestanden topologisch niet-triviale
banden vertonen, afhankelijk van hun constructie. Dit is interessant; terwijl ze iso-
latoren zijn aan de binnenkant, is bekend dat de elektronische toestanden op de
grensvlakken van topologische isolatoren robuust zijn en niet gemakkelijk versto-
ord worden door eenvoudige defecten. De onderzoeksvraag was toen: kunnen we dit
gedrag nabootsen met behulp van het CO/Cu(111) -platform? Om dit te beantwo-
orden, hebben we vier configuraties van een Kekulé-rooster geconstrueerd en vast-
gesteld dat in twee gevallen randtoestanden werden waargenomen en in de andere
twee gevallen niet vanwege de onderliggende symmetrieën.

Gedeeltelijk baard Moleculaire zigzag

Sterk

Zwak

LDOS

Laag

Hoog

Rand modi

Rand modi

N Figure 7.9: Rand-modi manifesteren zich in twee van deze configuraties van het
Kekulé-rooster. Dit wordt bepaald door de eenheidscel, die in alle vier gevallen anders
is.
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7.2.4 Simulaties binnen simulaties: interacties onderzoeken

Ten slotte ging hoofdstuk 6 in op de mogelijkheid om interacties te simuleren in
elektronische kwantumsimulatoren. De CO/Cu(111) -opstelling doet het goed bij
het simuleren van enkeldeeltjesmodellen, maar is er een manier om de twee-deeltjesfysica
te simuleren? Het theoretische antwoord is ja, de Hamiltoniaan die interacties tussen
twee lichamen op een 1D-rooster beschrijft, is identiek aan degene die een enkel
deeltje in een bepaald 2D rooster beschrijft. We hebben vier verschillende roosters
gebouwd. Muffin-tin simulaties lieten zien dat de relevante signaturen van twee-
deeltjes interacties te zien zouden moeten zijn in onze artificiele roosters. Echter, de
pieken in de scanning tunneling spectroscopie data waren zodanig breed dat er geen
sluitend experimenteel bewijs kon worden gevonden voor een succesvolle simulatie
van twee-deeltjes interactie.

Het concept De realisa�e

e-
e-

On-site energie op maat in 2D

Simuleren van
interac�es in 1D

N Figure 7.10: Aan de linkerkant is een artistieke weergave van de interacties die we
wilden simuleren, die doorgaans niet haalbaar zijn om te meten met onze experimentele
opstelling. Aan de rechterkant is een van de roosters die we hebben gerealiseerd om
de interacties met twee deeltjes te simuleren. De opname is gemaakt met een CO-
getermineerde naald waardoor de CO moleculen verschijnen als uitsteeksels.

173



7.2. SAMENVATTING IN HET NEDERLANDS

7.2.5 Slotopmerkingen

Het CO op Cu(111)-platform is als een kwantumspeeltuin waar we kunnen spelen
met elektronische golffuncties en tight-binding parameters in roosters. Deze kwan-
tumspeeltuin is nuttig als experimenteel modelsysteem om exotische fysische ver-
schijnselen te onderzoeken. Er zijn echter enkele beperkingen. Ten eerste, aangezien
de oppervlaktebanden op dezelfde energie liggen als bulkbanden, wordt de levens-
duur van oppervlakte-elektronen verkort, wat een verbreding van differentiële gelei-
dbaarheidsmetingen introduceert. Platforms zoals het InAs(111) -oppervlak, waar
de oppervlaktetoestanden zijn losgekoppeld van de bulk en daarom een betere en-
ergieresolutie mogelijk maken, zijn een mogelijke remedie. Ten tweede kunnen bepaalde
interacties, zoals spin-orbit-interacties, niet worden gemodelleerd met het CO/Cu(111)-
platform. Een mogelijkheid is dat door het gebruik van zwaardere elementen, Rashba
spin-orbit-koppeling kan worden geïntroduceerd.
De efficiëntie van het maken en onderzoeken van dergelijke kunstmatige structuren
zou kunnen worden verbeterd met behulp van een op neuraal netwerk gebaseerd
STM-beeldherkenningssysteem, gegeneraliseerd voor veel substraten. Een dergelijk
systeem zou automatisch beslissingen nemen over het conditioneren van de tip op
basis van de input en het type substraat. Verfijnde geautomatiseerde manipulati-
etechnieken voor adsorbaten zouden kunnen worden toegevoegd, evenals de mogeli-
jkheid om differentiële geleidbaarheidsspectra te beoordelen.
Als we verder kijken dan STM-gebaseerde onderzoekstechnieken, kunnen type III-
V halfgeleiders worden voorzien van kleine gaatjes met behulp van nanolithografie,
waardoor een rooster wordt gedefinieerd zoals beschreven in dit proefschrift. Dit
maakt de weg vrij voor het verkrijgen van extra informatie over interessante opper-
vlakken, maar ook voor de mogelijkheid om daadwerkelijk functionele materialen te
maken die kunnen worden toegepast.
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