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Chapter 1

Introduction

Reasoning with uncertainty and evidence plays an important role in decision-making

and problem solving in many domains, including medicine, engineering, forensics,

intelligence and law. To aid domain experts in performing their tasks, various tools

and techniques exist that allow them to make sense of a problem, including informal

graph-based sense-making tools such as mind maps [Okada et al., 2014]1, argument

diagrams [Bex et al., 2003, 2013; Okada et al., 2014], and Wigmore charts [Wigmore,

1913], which allow for structuring and visualising the problem and the user’s reason-

ing involved in solving it. Formal systems for reasoning about evidence have been

proposed in artificial intelligence (AI), including argumentation formalisms (see e.g.

Prakken [2018a] for an overview) and probabilistic models such as Bayesian networks

(BNs) [Pearl, 1988b; Jensen and Nielsen, 2007]. These systems allow for automated

reasoning and computation, and thus support experts in formally evaluating their

problem. In practice (e.g. in law [Prakken et al., 2020]) both sense-making tools

and instantiations of formal AI systems are used by domain experts, as both have

their merits and limitations.

Graph-based sense-making tools such as mind maps, Wigmore charts, and ar-

gument diagrams support domain experts in structuring and analysing a mass of

evidence, thereby allowing them to obtain an overview of the problem under con-

sideration [Okada et al., 2014; van den Braak, 2010]. In analyses performed using

these tools, inferences, or reasoning steps, made between claims are captured and

visualised. A limitation of these tools is that they are only intended for visualising

the user’s reasoning and thinking: they do not allow for automated reasoning or

computations. Hence, while these tools are suited for creating an initial sketch of a

problem, they do not support experts in formally evaluating the problem.

Formal systems for reasoning about evidence have been proposed in the field

of AI (see e.g. Verheij et al. [2016] for an overview), which in contrast with afore-

mentioned sense-making tools are precisely defined in terms of their notation and

semantics and allow for automated inference, formal evaluation and computation.

1See also Master’s research [Timmers, 2017].
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The inner workings of formal systems are well-known, and conditions can be studied

under which instantiations of these systems are guaranteed to be well-behaved and

satisfy desirable properties. However, domain experts typically do not have the ex-

pertise to construct instantiations of formal AI systems, and especially in data-poor

domains their construction therefore needs to be done mostly manually by an AI

expert through a knowledge elicitation procedure in consultation with the domain

expert, which is a difficult, time-consuming and error-prone task.

Accordingly, in this thesis we aim to facilitate the construction of instantiations

of formal AI systems to allow domain experts to formally evaluate their problems.

To this end, we study how domain knowledge captured in an initial sketch of a

problem expressed using a sense-making tool can be exploited to guide the con-

struction of formal representations within AI systems. We focus on two types of

formal systems proposed in AI, namely probabilistic models, more specifically Bay-

esian networks (BNs) [Pearl, 1988b; Jensen and Nielsen, 2007], and computational

argumentation [Prakken, 2018a]. Argumentation is particularly suited for adversar-

ial settings, where arguments for and against claims are constructed from evidence.

Arguments can then be formally evaluated on their acceptability. Probabilistic mod-

els such as BNs allow for reasoning with numeric uncertainty such as statistical and

probabilistic information, thereby allowing experts to evaluate their problem in a

probabilistic manner by computing probabilities of interest.

In the literature, formalisms have also been proposed that combine argumen-

tation and probabilities, e.g. [Hunter, 2013; Prakken, 2018b; Hunter et al., 2020;

Li et al., 2012; Dung and Thang, 2010]. In Chapters 4 and 5 of this thesis, we

instead focus on non-probabilistic argumentation approaches and BNs, as these are

widely different approaches that allow problems to be evaluated in a distinctly dif-

ferent manner. Probabilistic and argumentation models face different challenges

in construction, and therefore these models are considered suitable for illustrating

how the construction of formal representations within AI systems can be facilitated.

Narrative models for reasoning about evidence (e.g. Pennington and Hastie [1993];

Wagenaar et al. [1993]) have also been proposed, in which stories, i.e. coherent

sequences of events, are used to explain the evidence; however, these models are

generally less formally developed than probabilistic and argumentation models (see

Verheij et al. [2016]), and are therefore less suited for current purposes.

We will now first provide examples of analyses performed using sense-making

tools, after which formal systems are further discussed. We then proceed with a

formulation of research questions that address the difficulties regarding the con-

struction of instantiations of these formal systems. The examples considered in the

following section are taken from the legal and forensic domains. Throughout this

thesis, these domains are often taken as an example, as in recent years probabilis-

tic models and computational models of argument are increasingly being developed

and used in these domains, alongside more informal sense-making tools such as mind

maps (see e.g. Prakken et al. [2020]). These domains therefore serve as a suitable

application domain for the approaches and formalisms proposed throughout this
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thesis; however, we will argue that these approaches are not limited to legal and

forensic applications but are in fact applicable to any domain.

1.1 Examples of analyses performed using

sense-making tools

We now present examples of analyses performed using two sense-making tools famil-

iar to many legal experts, namely Wigmore charts [Wigmore, 1913] and mind maps

[Okada et al., 2014]2. These examples serve to illustrate the manner in which knowl-

edge and reasoning is typically expressed using such tools and to further illustrate

their merits and limitations. They are also used as running examples throughout

this thesis.

1.1.1 Example of an analysis performed in a Wigmore chart

First, Wigmore charts are considered, which are diagrams familiar to many legal

experts in which symbols indicating hypotheses and claims are joined by lines rep-

resenting relations between these hypotheses and claims. Wigmore charts were in-

troduced by John Henry Wigmore [1913] and were further developed and studied

from an academic perspective by the so-called ‘New Evidence Theorists’ including

Anderson, Schum and Twining [Anderson et al., 2005], who provided a modernised,

more user-friendly version of Wigmore’s charting method. Wigmore introduced his

method as an aid in structuring a mass of evidence in a legal case in detailed way.

An important aspect of his method is that it not only used for expressing sup-

porting reasons but also for revealing possible sources of doubt. Wigmore’s charts

can be considered a precursor of diagrams in argument diagramming software tools

[Buckingham Shum, 2003] including Araucaria [Reed and Rowe, 2007], as well as a

forerunner of instantiations of formal argumentation systems [Bex et al., 2003] (see

Section 1.2.1). Wigmore’s method has been used to analyse complex legal cases,

including the Dutch ballpoint case [Dingley, 1999] and the well-known Sacco and

Vanzetti case [Kadane and Schum, 1996].

An example of one of Wigmore’s original charts is depicted in Figure 1.1, which

is taken from Kadane and Schum [1996, p. 69], who adapted it from Wigmore

[1913, pp. 759–765]. Each circle or square in the diagram represents a unique claim,

where squares denote testimonies and circles denote circumstantial claims. An arc

in the chart indicates that a claim is offered as ‘... evidencing, or explaining, or

corroborating ...’ [Wigmore, 1913, p. 752]; hence, arcs can be regarded as indicating

which claims are inferred from each other.

Example 1. We now consider the Wigmore chart depicted in Figure 1.1 in more

detail. In short, in the case defendant Oliver Hatchett (H.) was accused of murdering

2See also Master’s research [Timmers, 2017].
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Figure 1.1: Wigmore chart for the Hatchett case, taken from Kadane and Schum

[1996, p. 69], who adapted it from Wigmore [1913, pp. 759–765].

Moses Young (Y.) by giving him whiskey laced with poison. One of the penultimate

claims (or probanda) in the case concerned whether or not Hatchett gave poison to

the victim. The relevant elements of the key list, which indicates for every number

in the chart to which claim it corresponds, are enumerated below. These are adapted

from Wigmore’s original key list [Wigmore, 1913, pp. 759–765]:

25 Y. died apparently in good health, within three hours after drinking defen-

dant’s whiskey.

26-28.1 Different witness testimonies concerning Y.’s time of death.

29 Neither H. nor his father are shown to have possessed any strychnine to

put in the drink.

30 Y. might have died by colic, from which he had often suffered.

31 Y. might have died from the former injury in his side.

32 Y. might have died of ptomaine poisoning in supper-food.

33 Y. might have died from poison put in his supper-food by third person; the

only third person having access being Sallie his wife.

The arcs between claims 26 − 28.1 and claim 25 indicate inferences from the testi-

monies to the claim to which is testified. Possible hypotheses are then proposed that

explain 25, namely 29 − 33, indicated by open triangles in the chart. Here, claims

30− 32 are inferred but not further backed up by further information, which is indi-

cated by paragraph symbols underneath these claims. In the bottom-left part of the
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chart, claims are depicted that further support or oppose claim 33. For instance,

38 indicates that ‘Sallie had a plan to kill Y.’, which is concluded from 39: ‘Sallie

had received strychnine from H.C. three weeks before, with instructions to put it

in Y.’s coffee or food.’, which follows from testimony to this claim (39.1). Claim 40

weakens this chain of inferences, as it states that ‘Sallie’s failure to use it during

those three weeks’ opportunity indicates abandonment of her design.’. �

1.1.2 Example of an analysis performed using a

mind mapping tool

Next, we present an example of an analysis performed using a mind mapping tool

[Okada et al., 2014], which is an example of a tool typically used by domain experts,

for instance in crime analysis3. A mind map usually takes the shape of a diagram

in which hypotheses and claims are represented by boxes and underlined text, and

undirected edges symbolise relations between these hypotheses and claims. An ex-

ample is depicted in Figure 1.2, which is based on a standard template used by the

Dutch police for criminal cases involving the suspicious death of a person. In this

template, four high-level hypotheses concerning the person’s death are considered,

namely natural death, suicide, accident and murder. For each of the four hypothe-

ses, the crime analyst tries to construct different scenario-elements by answering

the seven W questions: (1) what happened exactly?; (2) where did the event take

place?; (3) when did the event take place?; (4) who were involved in the event?; (5)

why did the event take place?; (6) which items were involved in the event (with)?;

(7) how did the event take place (in which way)? Here, the answers to the ‘Why’

question are typically connected to the answers to the ‘Who’ question to link the

different motives to the different persons. The crime analyst then uses evidence to

support or oppose the different scenario-elements, indicated in the mind map by

plus and minus symbols, respectively. Compared to Wigmore charts, which offer

a wide range of symbols and arcs to allow users to be expressive and more precise

in modelling legal reasoning, mind maps are less precise and are used to obtain an

overview of different possible alternative scenarios.

Example 2. An example of a partially filled in mind map is depicted in Figure 1.2,

which also serves as our running example for Chapters 3, 4 and 5. In this example

case, adapted from Bex [2011], the high-level hypotheses ‘Murder’ and ‘Accident’

are considered; for illustration purposes the details of the case have been changed.

The case concerns the murder of Leo de Jager, which took place in the small Dutch

town of Anjum. Leo’s body was found on the property of Marjan van der E.; we are

interested in her involvement in the murder, as well as Leo’s cause of death. First,

Marjan’s involvement is considered. As a police report (police report) indicates

that Leo’s body was found on Marjan’s property, the claim marjan murdered leo is

added as an answer to the ‘Who’ question for the high-level hypothesis ‘Murder’. By

3See Master’s research [Timmers, 2017].
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Figure 1.2: Example of a partially filled in mind map.

means of a plus symbol and an undirected edge connecting the evidence to the claim,

it is indicated that the police report supports the claim that Marjan murdered Leo.

Possible motives (motive 1 and motive 2) are provided as to why Marjan may have

wanted to murder Leo, which are connected to the ‘Why’ question via undirected

edges. Claims testimony 1 and testimony 2 support these two motives, indicated by

the plus symbols connected to these claims. In her testimony ( testimony 3), Marjan

denied any involvement in the murder of Leo, which is indicated by a minus symbol.

This opposes the claim that Marjan murdered Leo. Further testimony ( testimony 4)

indicates that Marjan had reason to lie when giving her testimony ( lie). By means of

a minus symbol and an undirected edge connecting lie to testimony 3, it is indicated

that this claim weakens the inference step from her testimony to the claim that she

did not murder Leo.

Next, Leo’s cause of death is considered, where first high-level hypothesis ‘Murder’

is examined. According to witness testimony ( testimony 5), Leo was hit with a ham-

mer (hammer); however, according to another testimony ( testimony 6), Leo was hit

with a stone ( stone). Claims hammer and stone are connected via undirected edges

to hit angular, which indicates that hammers and stones can generally be considered

to be angular. In turn, claim hit angular is connected to the ‘With’ question to indi-

cate that it provides an answer to this question. As an answer to the ‘In which way’

question, it is indicated that Leo died because of a head wound (head wound), which

is again supported by the claim that Leo was hit with an angular object (hit angular).

An autopsy report ( autopsy) further supports claim head wound.

High-level hypothesis ‘Accident’ provides a competing alternative explanation for

6



head wound. As an answer to the ‘In which way’ question, it is again indicated

that Leo died because of a head wound and that this claim is supported by autopsy;

however, in contrast to the answer to this question for high-level hypothesis ‘Murder’,

it is indicated that the head wound was caused because Leo fell on a table by accident

( fell on table), a claim supported by further testimony ( testimony 7). �

1.1.3 Limitations of sense-making tools

Sense-making tools such as mind maps and Wigmore charts support domain experts

in structuring and analysing a mass of evidence and in revealing possible sources of

doubt. As mentioned earlier, a limitation of these tools is that they are only intended

for visualising knowledge and reasoning, and do not allow for automated reasoning

or formal evaluation. Hence, evaluation of the problem under consideration takes

place in the mind of the domain expert, which has its limitations such as limited

working memory [Pirolli and Card, 2005] and which makes it difficult for others to

understand how conclusions are precisely reached upon evaluation. Furthermore, the

assumptions of domain experts underlying their analyses are typically not explicitly

stated and not all information involved in performing these analyses is explicitly

recorded; hence, such analyses may be misinterpreted by (other) experts involved in

solving the problem. In Chapter 3 these examples are revisited in the light of our

conceptual analysis of reasoning about evidence (Section 2.1) to illustrate this.

1.2 Formal systems for reasoning about evidence

We now further discuss formal systems for reasoning about evidence [Verheij et al.,

2016]. In Sections 1.2.1 and 1.2.2 we provide a general description of argumentation

approaches and probabilistic approaches, respectively, where we highlight their dif-

ferences. Argumentation formalisms and BNs each have their individual merits and

limitations, and depending on the specific application context one may be preferred

over the other. Technical details of these approaches are provided in Chapter 2.

In Sections 1.2.3 and 1.2.4 narrative models and connections between the different

formal systems are also briefly discussed to put our work into context.

1.2.1 Argumentation models

Argumentation approaches focus on how conclusions are based on the evidence.

Such approaches are particularly suited for adversarial settings such as the legal

domain, where arguments for and against claims are constructed from evidence. As

noted by Bex and colleagues [2003], Wigmore’s charting method can be considered

a forerunner of formal rule-based argumentation systems, which are the types of

systems under consideration in this thesis (e.g. Modgil and Prakken [2018]; Dung

et al. [2009]; Verheij [2003]; Vreeswijk [1997]). In such systems, arguments are

iteratively constructed from a knowledge base by chaining so-called inference rules.

Going back to the work of John Pollock [1987], these inference rules can be either
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strict or defeasible, where strict rules hold without exception and where for defeasible

rules exceptional circumstances can be provided under which the rule may not hold.

Inferences performed with strict and defeasible rules are then certain, respectively,

uncertain. Arguments can be attacked by other arguments in various ways (e.g.

rebuttal and undercutting attack [Pollock, 1987, 1995]).

Similar to Wigmore charts, formal argumentation approaches allow for describing

how specific conclusions are supported starting from the evidence, and for revealing

possible sources of doubt. However, unlike Wigmore charts, they do so in a formal,

precisely defined manner. Moreover, argumentation systems allow for actually per-

forming inference instead of only representing knowledge and reasoning. Another

important difference between Wigmore’s charts and aforementioned argumentation

approaches is that they allow for formal evaluation. In particular, given a set of

arguments and a binary attack relation over these arguments, arguments can be

evaluated using Dung’s [1995] argumentation semantics, where it can be calculated

which arguments are accepted and which are rejected. In rule-based argumentation,

efforts are made to define systems in such a way that the result of argumentation

is guaranteed to be well-behaved (e.g. Caminada and Amgoud [2007]). Argumen-

tation techniques have found applications in domains such as law, medicine and

tutoring (see e.g. Modgil et al. [2013] for an overview), for instance in supporting

legal reasoning about evidence [Bex et al., 2003; Reed et al., 2007], persuading hu-

man agents to change their stance on a subject [Chalaguine and Hunter, 2020], and

in fraud inquiry at the Dutch National Police [Odekerken et al., 2020].

Formal argumentation approaches are typically qualitative; until recently, there

was no emphasis in argumentation approaches on incorporating graded uncertainty.

In probabilistic models of argument, probabilities are used to express grades of

uncertainty in or about the arguments [Hunter, 2013]; in our chapter on related work

(Section 8.3) several approaches to probabilistic argumentation will be reviewed. In

Chapter 4 we focus on strictly qualitative argumentation.

1.2.2 Probabilistic models

Probabilistic approaches allow for reasoning with numeric uncertainty such as sta-

tistical and probabilistic information, which can increasingly be expected in many

domains due to the rise of big-data analytics. For instance, in forensic science meth-

ods such as DNA analysis are increasingly being used, where the significance of a

DNA match is established by calculating the probability of a match if the suspect

was not the donor of the trace by consulting a DNA database. More generally, a

way to probabilistically evaluate evidence is by calculating so-called likelihood ratios,

which are ratios of observing the evidence under two mutually exclusive hypotheses.

The prior probabilities of these hypotheses can then be ‘updated’ using Bayes’ the-

orem by multiplying the ratio of these prior probabilities by the likelihood ratio to

obtain a ratio of posterior probabilities of these hypotheses given the evidence. The

likelihood ratio approach to evidential reasoning has found applications in domains

such as medicine, forensics and law (see e.g. Fenton et al. [2016]).
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The Bayesian network (BN) formalism is a particularly powerful formalism for

probabilistic reasoning [Pearl, 1988b; Jensen and Nielsen, 2007] that has found ap-

plications in many fields where uncertainty and evidence plays a role [Fenton and

Neil, 2012]. For instance, in recent years legal and forensic experts have increasingly

developed and used BNs for the interpretation of different types of forensic trace ev-

idence [Taroni et al., 2014], such as glass fragments, finger marks and DNA traces,

traces found on adhesive tapes [Wieten et al., 2015], as well as entire legal cases

[Fenton et al., 2016]. A BN consists of a graph, which captures the probabilistic

independence relation among variables relevant to the domain, and locally specified

(conditional) probability distributions that collectively describe a joint probability

distribution. The required conditional probabilities can, for instance, be elicited

from domain experts as degrees of belief or they can be estimated from data sets by

calculating (frequency) statistics [Druzdzel and van der Gaag, 2000]. A BN is gen-

erally used for probabilistic inference [Jensen and Nielsen, 2007], that is, calculating

any probability of interest from the distribution over the variables represented in the

network. BNs thus allow experts to evaluate their problem in a probabilistic man-

ner. A problem with BNs is that they are generally difficult to construct; domain

experts typically do not have the expertise to construct mathematical models and

misinterpret the directed arcs of a BN as non-symmetric relations of cause and effect

instead of collectively encoding an independence relation [Dawid, 2010]. Especially

in data-poor domains, BN construction therefore needs to be done mostly manually

through a knowledge elicitation procedure in consultation with the domain expert,

which is a difficult and error-prone process [van der Gaag and Helsper, 2002].

1.2.3 Narrative models

Narrative models for reasoning about evidence have also been proposed [Pennington

and Hastie, 1993; Wagenaar et al., 1993], in which stories are used to explain the

evidence. As mentioned earlier, these models are generally less formally developed

than probabilistic and argumentation models (see Verheij et al. [2016]). In narrative

models, stories are modelled as sequences of events that explain the evidence. The

aim is to construct stories that are coherent in that they are complete, consistent

and plausible; multiple stories are then compared on their coherence, or quality, and

the extent to which they explain all the evidence in an attempt to find the ‘best’

story. Advantages of narrative models compared to the other models discussed

in this section are that they allow for keeping a global overview of a problem by

providing different explanations of observed evidence, and that the focus lies on

developing alternative stories that serve as competing hypotheses about what may

have happened, thereby reducing the risk of tunnel vision.

In the field of AI so-called formal-logical models of abductive reasoning (e.g.

Josephson and Josephson [1994]; Console and Torasso [1991]) were developed, which

basically model the process of constructing alternative stories by computing possi-

ble explanations for the available evidence. In most of these models, stories are

only compared on basic criteria such as the number of assumptions, where (subset)
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minimal explanations are preferred; criteria by which the quality of stories can be

judged such as plausibility and completeness are typically not formalised in these

models. Exceptions include the model of Josephson [2002], in which plausibility and

consistency are considered, and the story part of Bex’ [2011] formal hybrid theory

of stories and arguments, in which completeness and consistency are considered. A

disadvantage of narrative models is that atomistic reasoning about a single piece of

evidence and its conclusions is impossible, in contrast with argumentation models.

To benefit from the advantages of both the story-based approach and the argument-

based approach, Bex [2011] studied how to combine stories and arguments, in line

with a more general strand of research in which formal systems are combined and

the connections between formal systems are considered; this strand of research is

briefly discussed next.

1.2.4 Connections between formal systems

In previous work, connections between the aforementioned formal systems for rea-

soning about evidence have been theoretically investigated; an overview of this re-

search is provided by Verheij and colleagues [2016]. For instance, connections be-

tween narrative models and BNs were considered by Vlek and colleagues [2014],

a formal hybrid theory of stories and arguments was proposed by Bex [2011], an

argumentation-based explanation method for BNs was proposed by Timmer and

colleagues [2017], constraints on BNs given information specified in arguments were

derived by Bex and Renooij [2016], and a framework in which arguments, stories

and probabilities are combined was proposed by Verheij [2017]. In these approaches,

the central concepts of different formal systems are connected to help gain a better

understanding of the relations between them. In line with this work, we consider

the relations between different modes of reasoning involved in reasoning about evi-

dence, where we put special emphasis on informal aspects. In particular, we consider

both informal sense-making tools and formal systems, where we investigate how the

practical construction of formal representations within AI systems can be guided by

using domain knowledge specified using such tools.

1.3 Research questions

As explained above, in this thesis we aim to guide the construction of formal rep-

resentations of evidential knowledge and inference by exploiting domain knowledge

specified by experts in analyses performed using informal sense-making tools they

are familiar with. In particular, we address the following main research question:

Research question 1 How can domain knowledge expressed by experts in analyses

performed using informal sense-making tools be exploited to guide the

construction of formal representations within AI systems?

As discussed earlier, in this thesis we focus on the construction of formal representa-

tions within two types of AI systems, namely argumentation frameworks and BNs.
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Accordingly, research question 1 can be divided in the following two subquestions:

Research question 1a How can domain knowledge expressed by experts in

analyses performed using informal sense-making tools be exploited to guide

the construction of argumentation frameworks?

Research question 1b How can domain knowledge expressed by experts in

analyses performed using informal sense-making tools be exploited to guide

the construction of Bayesian networks?

To answer research question 1, in Chapter 3 we study the examples from Section

1.1 in the light of the conceptual analysis of reasoning about evidence we provide in

Section 2.1. Our analysis of these examples serves to illustrate that not all informa-

tion involved in performing analyses using sense-making tools is explicitly recorded

and that the assumptions of domain experts underlying their analyses are typically

not explicitly stated. From this, we conclude that there is a gap between sense-

making tools and formal systems: while the domain knowledge specified in analyses

performed using such tools conveys an initial sketch of the problem, the specified

knowledge is not formal enough to be directly used in guiding the construction of

formal representations within AI systems. In particular, while analyses performed

using such tools may be constructed according to general templates or formats,

the various elements that can be incorporated in these analyses are often ambigu-

ous and not precisely defined. Hence, in order to bridge the gap between informal

sense-making tools and formal systems, we wish to formalise analyses performed

using such tools as an intermediary step in a manner that allows for guiding the

construction of formal representations within AI systems.

Accordingly, a first step towards answering our research questions is to pro-

pose an intermediate formalism for formally representing analyses performed using

these tools in terms of the information graph (IG) formalism. Our IG-formalism

is designed to formalise and disambiguate analyses performed using informal sense-

making tools in a way that (1) allows for guiding the construction of formal rep-

resentations within AI systems and that (2) is in line with the conceptual analysis

of reasoning about evidence we provide in Section 2.1, while (3) allowing inference

to be performed and visualised in a manner that is closely related to the way in

which inference is visualised by domain experts using such tools. The IG-formalism

is graph-based instead of a logic-based to remain closely related to the way analyses

are visualised using aforementioned graph-based tools as well as the BN-formalism.

In defining an intermediary formalism between analyses performed using informal

sense-making tools and formal AI systems, we were inspired by approaches for con-

structing BNs from ontologies [Uschold and Gruninger, 1996], formally specified

knowledge representations which capture relations between concepts in a domain,

such as [Fenz, 2012] (see also Section 8.2.3), and the Argument Interchange Format

(AIF) [Rahwan and Reed, 2009], an argumentation ontology that serves as an inter-

mediary formalism between analyses performed using argument diagramming tools

[Bex et al., 2003; Okada et al., 2014] and formal argumentation frameworks [Bex
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et al., 2013]. Compared to ontologies, our IG-formalism is tailored to precisely model

the process of reasoning about evidence and hence is closely related to sense-making

tools such as mind maps as well as the formal representations whose construction

we wish to facilitate. Moreover, compared to ontologies our IG-formalism allows for

actually performing inference instead of only representing knowledge and reasoning.

In Chapter 3 we further motivate why we prefer to use the IG-formalism to other

existing formalisms as an intermediary formalism between analyses performed using

informal sense-making tools and formal AI systems.

An IG serves as a source of unambiguous information that can be used to guide

the construction of instantiations of AI systems for which a formal reasoning mech-

anism is defined. In particular, we study how knowledge expressed using this for-

malism can be exploited to guide the construction of argumentation frameworks and

BNs, thereby answering research questions 1a and 1b.

Our approach for constructing argumentation frameworks from IGs serves for

constructing an initial representation that can be directly used for formal evaluation

using argumentation semantics. For our BN construction approach this is not the

case: as (numerical) probabilities are typically not indicated using sense-making

tools, probabilities are not accounted for in our IG-formalism, and therefore our

approach can only serve for deriving some qualitative constraints on the probabilities

of the BN under construction. Hence, initial BNs constructed by our approach are

only partially specified and cannot be directly used for probabilistic inference.

Accordingly, in this thesis we investigate how the construction of BNs can be

further facilitated. Given that the two main formal AI systems under consideration

in this thesis are argumentation frameworks and BNs, we study how argumentation

techniques can be used to facilitate BN construction. In previous work [Bex and

Renooij, 2016; Wieten et al., 2018a; Timmer et al., 2015], the problem of construct-

ing BNs from information specified in arguments about the domain was investigated

(see also Section 8.2.2). In this thesis, we consider a different approach and inves-

tigate how argumentation can be used to argue about the BN under construction

instead of about the domain:

Research question 2 How can Bayesian network construction be facilitated by

exploiting expert knowledge expressed as arguments about BN elements?

In BN construction, it is typically considered good practice to document the BN

model itself; however, the importance of documenting reasons pro and con BN mod-

elling decisions has received relatively little attention, while proper documentation

can play a vital role in allowing experts involved in the construction and use of BNs

to understand and accept them. Moreover, experts involved in the construction

of BNs may disagree about modelling decisions, where existing approaches do not

provide systematic means to resolve such disagreements. Since disagreements about

BNs are essentially argumentative in nature, we investigate how argumentation tech-

niques can be used to capture and help resolve conflicts about BN elements in a BN

under construction. We propose an approach that is generally applicable to both
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BNs constructed from IGs and BNs otherwise constructed, and that serves to facil-

itate both the qualitative graph-construction step and the quantitative probability

elicitation step involved in BN construction.

1.4 Outline of this thesis

In Chapter 2 we provide the reader with the necessary preliminaries for the remain-

ing chapters. In particular, we provide a conceptual analysis of reasoning about

evidence in Section 2.1, where we introduce assumptions that demarcate the scope

of the work presented in this thesis. This analysis serves to motivate the concepts

incorporated in the IG-formalism. In Sections 2.2 and 2.3 the technical prelimi-

naries of the two main formal AI systems under consideration in this thesis are

provided, namely argumentation frameworks and BNs, respectively. In Chapter 3

we motivate and present the IG-formalism. The idea of a graph-based intermediary

formalism between analyses performed using informal sense-making tools and for-

mal AI systems was first considered by us in [Wieten et al., 2018b, 2019b] in the

form of so-called ‘argument graphs’. Based on this earlier work the IG-formalism

was introduced in [Wieten et al., 2020, 2021a], which we extended to increase its

expressivity in [Wieten et al., 2021b].

In Chapter 4 we present an argumentation formalism based on IGs and study

formal properties of our approach. The work presented in that chapter is based on

the work presented in [Wieten et al., 2020, 2021b]. Based on the results of Chapter

4 we formulate an answer to research question 1a.

In Chapter 5 BN construction is considered. The idea of constructing BNs by

exploiting knowledge captured in argument graphs was introduced in [Wieten et al.,

2018b], where in [Wieten et al., 2019b] the scope of this approach was extended

and formal properties were preliminarily investigated. In [Wieten et al., 2021a]

IGs were taken as a starting point, where a structured approach for automatically

constructing a BN graph from an IG was proposed and its formal properties were

investigated. The work presented in Chapter 5 is based on this work. Based on the

results of Chapter 5 we formulate an answer to research question 1b.

In Chapter 6 we illustrate the approaches of Chapters 4 and 5 by applying them

to parts of an actual legal case, namely the well-known Sacco and Vanzetti case. We

then compare the results obtained by applying the BN construction approach from

Chapter 5 to a BN modelling by Kadane and Schum [1996]; this part of the case

study is based on a precursory case study performed in [Wieten et al., 2018b] and

serves as a preliminary validation of our approach of Chapter 5.

In Chapter 7 we present our approach for capturing and resolving discussions

about BNs using argumentation, based on the work published in [Wieten et al.,

2019a]. Based on our results we formulate an answer to research question 2.

We discuss how the research presented in this thesis relates to other research in

Chapter 8. In Chapter 9 we conclude this thesis by summarising the problem and

our results, where we answer our research questions and discuss possible avenues for

future research.
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Chapter 2

Preliminaries

In this chapter, we provide the necessary preliminaries required in the following chap-

ters. In Section 2.1 we provide a conceptual analysis of reasoning about evidence,

where we review the terminology used to describe it and introduce assumptions that

demarcate the scope of the work presented in this thesis. In Sections 2.2 and 2.3 we

then provide the technical preliminaries on argumentation and BNs, respectively.

2.1 Reasoning about evidence

First, we provide a conceptual analysis of reasoning about evidence and review the

terminology used to describe it. Inference is the process of drawing conclusions from

premises starting from the evidence, where evidence is that what has been estab-

lished with certainty in the context under consideration. For instance, in the context

of a legal trial the evidence consists of that what is actually observed by a judge

or jury, such as documents (e.g. police and autopsy reports) and other tangible

evidence, as well as testimonial evidence [Anderson et al., 2005]. Inference is often

performed using domain-specific generalisations [Anderson et al., 2005; Bex et al.,

2003; Bex, 2011], also called defaults [Pearl, 1988a; Reiter, 1980], which capture

knowledge about the world in conditional form. Generalisations can either be strict

or defeasible, where defeasible generalisations are of the form ‘If a1, . . . , an, then usu-

ally/normally/typically b’ and strict generalisations are of the form ‘If a1, . . . , an,

then always b’. Here, claims a1, . . . , an are called the antecedents of the generalisa-

tion and b its consequent, where we assume that claims are literal propositions and

that generalisations have one or more antecedents and exactly one consequent. In

case a generalisation has multiple antecedents, it expresses that only the antecedents

together allow us to infer the consequent. We semi-formally denote generalisations

as a1, . . . , an → b, among other things to ease the description of examples in this sec-

tion and in Section 3.1.2. For defeasible generalisations, exceptional circumstances

can be provided under which the generalisation may not hold, whereas strict gener-

alisations hold without exception. An example of a (defeasible) generalisation is ‘If

fire, then typically smoke’, where ‘fire’ is its antecedent and ‘smoke’ its consequent.
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An example of an exception to this generalisation is that sufficient oxygen is present

for complete combustion to occur.

A distinction can be made between causal and evidential generalisations [Bex,

2011; Pearl, 1988a], where instead of writing these generalisations in the form ‘If . . . ,

then . . . ’, causal generalisations are written as ‘c1, . . . , cn usually/normally/typically

cause e’ (e.g. ‘fire typically causes smoke’ ) and evidential generalisations are writ-

ten as ‘e1, . . . , en are evidence for c’ (e.g. ‘smoke is evidence for fire’ ). For a causal

generalisation, its antecedents express a cause for the consequent, and for an evi-

dential generalisation, its consequent expresses the usual cause for its antecedents.

In the context of commonsense reasoning about evidence, causal and evidential gen-

eralisations are often assumed to be defeasible (see e.g. Bex [2011] and Kadane and

Schum [1996]); in this thesis, this assumption is also made. The examples consid-

ered throughout this thesis illustrate that causal and evidential generalisations are

typically not strict1. Pearl [1988a, p. 264] argued that people generally consider it

difficult to express knowledge using only causal generalisations, and in an empirical

study, van den Braak and colleagues [2008] found that while there are situations in

which subjects consistently choose either causal or evidential modelling techniques,

there are also many examples in which people use both types of generalisations in

their reasoning. For instance, subjects often considered testimonies to be evidential,

whereas a motive for committing an act is considered a cause for committing that

act. This discussion illustrates that in formal accounts of reasoning about evidence,

it is important to allow for both causal and evidential generalisations [Bex, 2011].

For causal generalisations, additional circumstances, also called enabling con-

ditions [Cheng and Novick, 1990; Ortiz Jr., 1999], or enablers, may be provided

under which the generalisation may be used in performing inference. Causal gener-

alisations that include enablers are of the general form e1, . . . , em, a1, . . . , an → b,

where e1, . . . , em are its enablers and a1, . . . , an its actual antecedents. For a causal

generalisation, only its actual antecedents and not its enablers express a cause for

the consequent. Causality is a contentious topic, and it is easy to disagree about

whether an event is an actual cause or an enabler. Cheng and Novick [1990] note

that an event is typically viewed as an actual cause if it describes a situation that

deviates from ‘normal’ circumstances. For instance, lighting a match is considered

a cause of fire, but the presence of oxygen is typically not consider a cause of fire as

it is normal that oxygen is present. This is, however, also context-dependent, and

oxygen can be considered a cause of fire in situations where oxygen is typically not

present (e.g. in space). We note that generalisations capture knowledge about the

world as perceived by the person stating the knowledge, and that the distinction

between enablers and actual causes allows domain experts to be more expressive in

stating their knowledge.

We also consider generalisations that are neither causal nor evidential. For in-

stance, abstractions [Bex, 2011; Console and Dupré, 1994; Kautz, 1991] allow for

1Note that strict generalisations such as strict rules from classical logic and definitions can be

expressed using strict generalisations of type ‘other’ and strict abstractions.
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Table 2.1: Table indicating for each generalisation type whether generalisations may

be defeasible or strict.

 Causal 
generalisations  

Evidential 
generalisations 

Abstractions Other 
generalisations 

Defeasible V V V V 
Strict X X V V 

reasoning at different levels of abstraction. More precisely, abstractions are of the

form ‘p1, . . . , pn can usually/normally/typically/always be considered a specialisa-

tion of q’ (e.g. guns can usually be considered deadly weapons), where antecedents

p1, . . . , pn are considered to be more specific than the more abstract consequent q.

As noted by Console and Dupré [1994], abstractions are syntactically the same as

causal generalisations but they are semantically different in that the antecedents

of abstractions do not express a cause for the consequent or vice versa. Abstrac-

tions may be defeasible (cf. Bex [2011]) but may also be strict (cf. Console and

Dupré [1994]); an example of a strict abstraction is generalisation lung cancer →
cancer, which states that lung cancer is a type of cancer. An example of defeasi-

ble abstraction is gun → deadly weapon, where an example of an exception to this

generalisation is that the gun is a non-functional replica, or a water gun.

Another example of a different type of generalisation is a generalisation repre-

senting a mere statistical correlation, such as a correlation between homelessness

and criminality. While there may be one or more confounding factors that cause

both homelessness and criminality (e.g. unemployment), a domain expert may be

unaware of these factors or may wish to refrain from expressing them explicitly. In

this thesis, we distinguish between generalisations that are causal, evidential, ab-

straction, or of another type, where generalisations of type ‘other’ may be defeasible

or strict. Specifically, as this category contains all possible types of generalisations

other than causal, evidential and abstraction, we allow for the option to distinguish

between strict and defeasible generalisations among these generalisations. Table 2.1

provides an overview of the different generalisation types, where for each type it

is indicated whether generalisations may be defeasible or strict. The notation →c,

→e, →a and →o is used for the different types of generalisations, respectively.

Different types of inferences can be performed with generalisations depending on

whether their antecedents or consequent are affirmed in that they are either observed

or inferred; here, a claim is inferred iff it is either deductively or abductively inferred,

where in deductive inference the consequent is inferred from the antecedents and in

abductive inference the antecedents are inferred from the consequent. These two

inference types are now considered in more detail.
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2.1.1 Deductive inference

Inference can be performed in a deductive fashion, where from a generalisation and

by affirming the antecedents, the consequent is inferred by modus ponens on the gen-

eralisation. Note that the term ‘deduction’ is not consistently used in the literature,

as it can either mean strict inference, in which the consequent universally holds given

the antecedents (e.g. Besnard and Hunter [2009]), or defeasible inference, in which

the consequent tentatively holds given the antecedents (e.g. Shanahan [1989]). To

cover both meanings, in this thesis ‘deduction’ is used as an umbrella term for both

defeasible ‘forward’ inference and strict ‘forward’ inference; hence, deduction is not

necessarily a stronger or more reliable form of inference than abduction, which is a

type of defeasible inference. Defeasible deduction can only be performed using de-

feasible generalisations (of any type) and not using strict generalisations (see Table

2.2). Strict deductive inference can only be performed using strict abstractions and

strict generalisations of type ‘other’. For a given instance of deduction, it will be

explicitly specified whether it concerns strict or defeasible deduction.

Example 3. Consider causal generalisation g : fire →c smoke. By affirming g’s

antecedent fire, its consequent smoke is defeasibly deductively inferred. �

The following example illustrates strict deductive inference.

Example 4. Consider strict abstraction g : lung cancer→a cancer. Upon observing

that a person has lung cancer, we can strictly deductively infer that the person has

cancer using generalisation g. �

Prediction [Shanahan, 1989] is a specific type of deductive inference in which the

consequent of a causal generalisation is deductively inferred by affirming its an-

tecedents. Specifically, as the antecedents of a causal generalisation express a cause

for the consequent, the consequent is said to be predicted from the antecedents in

this case. Example 3 provides an example of prediction.

2.1.2 Abductive inference

Abduction [Josephson and Josephson, 1994; Console and Torasso, 1991; Console and

Dupré, 1994], a type of defeasible inference, can be performed using causal general-

isations and abstractions: from a causal generalisation or an abstraction and by af-

firming the consequent, the antecedents are inferred, since if the antecedents are true

it would allow us to deductively infer the consequent modus-ponens-style. Follow-

ing Josephson and Josephson [1994] and Console and Torasso [1991], in case causes

c1, . . . , cn and c′1, . . . , c
′
m are abductively inferred from common effect e using causal

generalisations g1 : c1, . . . , cn →c e and g2 : c
′
1, . . . , c

′
m →c e, then sets {c1, . . . , cn}

and {c′1, . . . , c′m} are considered to be competing alternative explanations for e. We

assume that causes ci (and c
′
j) are not in competition among themselves.
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Table 2.2: Table indicating for defeasible and strict generalisations of every gener-

alisation type which types of inferences may be performed.

 Causal 
generalisations 

Evidential 
generalisations 

Defeasible 
abstractions 

Strict 
abstractions  

Defeasible 
other 
generalisations 

Strict  
other 
generalisations 

Defeasible 
deduction 

V V V X V X 

Strict 
deduction 

X X X V X V 

Abduction V X V V X X 

Example 5. Consider the following causal generalisations:

g1 : fire →c smoke;

g2 : smoke machine →c smoke.

By affirming the common consequent ( smoke), fire and smoke machine are abduc-

tively inferred, which are then competing alternative explanations of smoke. �

Abduction can also be performed using abstractions [Bex, 2011; Console and Dupré,

1994], where the used abstraction can either be defeasible (cf. Bex [2011]) or strict

(cf. Console and Dupré [1994]). An example of a model including strict abstractions

is that of Console and Dupré [1994], in which both explanatory axioms (comparable

to causal generalisations) and abstraction axioms are used to explain observations.

Multiple explanations that are inferred using abstraction axioms can then be consid-

ered competing alternative explanations. Note that an abductive inference step with

a strict abstraction is still defeasible, as it concerns an inference step from the more

abstract consequent to a more specific antecedent. Following Console and Dupré

[1994] and Bex [2011], we allow for abductive inference using both strict and defeasi-

ble abstractions, where in performing abduction with abstractions g1 : p1, . . . , pn →a

q and g2 : p
′
1, . . . , p

′
m →a q sets of antecedents {p1, . . . , pn} and {p′1, . . . , p′m} are con-

sidered to be competing alternative explanations of the common consequent q. We

assume that antecedents pi (and p
′
j) are not in competition among themselves.

Example 6. Consider the following defeasible abstractions:

g1 : gun →a deadly weapon;

g2 : knife →a deadly weapon.

By affirming the common consequent (deadly weapon), gun and knife are abduc-

tively inferred using generalisations g1 and g2, which are then competing alternative

explanations of deadly weapon. �

The following example illustrates abductive inference with strict abstractions.
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Example 7. Consider the following strict abstractions:

g′1 : lung cancer →a cancer;

g′2 : colon cancer →a cancer.

Upon observing that a person has cancer, lung cancer and colon cancer are abduc-

tively inferred, which are then competing alternative explanations of cancer. �

2.1.3 Representing causal knowledge

Abductive inference with causal generalisations and deductive inference with evi-

dential generalisations are related: in some cases, we will accept not only causal

generalisation ‘c usually/normally/typically causes e’ but also evidential generalisa-

tion ‘e is evidence for c’ [Bex, 2015; Pearl, 1988a], which we will call the evidential

counterpart of the causal generalisation. However, it can be argued that we only

accept the evidential counterpart of a causal generalisation if c is the usual cause of

e, where we assume that only one cause can be the usual cause of e.

Example 8. Fire can be considered the usual cause of smoke, so we will accept both

causal generalisation g : fire→c smoke and its evidential counterpart g′ : smoke→e

fire. In this case, abductive inference with generalisation g can be encoded as deduc-

tive inference with generalisation g′. Because a smoke machine cannot be considered

the usual cause of smoke, we will accept causal generalisation smoke machine →c

smoke but we will not accept evidential generalisation smoke →e smoke machine.�

Note that a causal generalisation g can only have an evidential counterpart g′ in
case g has a single antecedent, as we assume generalisations have a single consequent

but multiple antecedents. Furthermore, as we assume that only one cause can be

the usual cause of e, only one of the causal generalisations c1 →c e or c2 →c e can

be replaced by an evidential generalisation. Hence, we do not consider c1 and c2 to

be competing alternative explanations of e in case deductive inference is performed

using evidential generalisations e→e c1 and e→e c2.

2.1.4 Mixed inference and inference constraints

Deduction and abduction can be iteratively performed, where mixed abductive-

deductive inference is also possible.

Example 9. Suppose that from the causal generalisation g1 : fire →c smoke and

by affirming its consequent ( smoke), its antecedent (fire) is inferred. Now, if the

additional causal generalisation g2 : fire →c heat is provided, then its consequent

(heat) can be deductively inferred (or predicted) as the antecedent (fire) has been

previously abductively inferred. �
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2.1.4.1 Constraints on performing inference with causal and evidential

generalisations

Mixed deductive inference, using both causal and evidential generalisations, can

also be performed [Bex, 2015], but as noted by Pearl [1988a] care should be taken

in performing mixed inference that no cause for an effect is inferred in case an

alternative cause for this effect was already previously inferred.

Example 10. Consider the example in which a causal generalisation g1 : smoke

machine→c smoke and an evidential generalisation g2 : smoke→e fire are provided.

Deductively chaining these generalisations would make us infer that there is a fire

when seeing a smoke machine, which is clearly undesirable. �

Similarly, in performing mixed deductive-abductive inference, care should be taken

that no cause for an effect is inferred in case an alternative cause for this effect was

already previously inferred.

Example 11. Consider Example 10, where instead of an evidential generalisation

g2 : smoke→e fire a causal generalisation g2 : fire→c smoke is provided. Upon see-

ing a smoke machine, this would make us infer that there is a fire in case deduction

and abduction are performed in sequence, which is again undesirable. �

Accordingly, we wish to prohibit these types of inference patterns, and refer to the

constraint that no cause for an effect should be inferred in case an alternative cause

for this effect was already previously inferred as Pearl’s constraint [Pearl, 1988a].

The above discussion can be extended to generalisations with multiple antecedents.

Example 12. Suppose that the following generalisations are provided:

g1 : high body temperature →e fever;

g2 : smoke →c coughing;

g3 : fever, coughing →e pneumonia.

Upon observing that a person has high body temperature and that there is smoke,

this would make us infer that the person has a fever and is coughing using generali-

sations g1 and g2, respectively. In turn, this would make us infer that the person has

pneumonia using generalisation g3, which is undesirable: as a cause for coughing

was already previously inferred ( smoke), we should not be able to infer a different

cause for coughing (pneumonia). Specifically, fever is in itself not a sufficient con-

dition for inferring pneumonia: coughing is also necessary. Only in case a separate

evidential generalisation g4 : fever →e pneumonia is provided should we be able to

infer pneumonia. �

Similarly, problems can arise in performing inference using causal generalisations

that include enabling conditions, as illustrated by the following example.
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Example 13. Consider the example in which the following causal generalisations

are provided:

g1 : torch →c fire;

g2 : match, oxygen →c fire.

In this case, the presence of oxygen is an enabler of generalisation g2, as it cannot be

considered an actual cause of fire. Upon striking a match in the presence of oxygen,

we can deductively infer that there is a fire using generalisation g2. Similar to

Example 11, we should now not be able to abductively infer torch using generalisation

g1. Similarly, performing deduction and abduction in sequence using generalisations

g1 and g2 is undesirable. �

To summarise this section, we wish to prohibit (1) subsequent deductive inference

using a causal generalisation and an evidential generalisation, and (2) subsequent

deductive and abductive inference using two causal generalisations with the same

consequent. Note that, while these constraints deviate from Pearl’s original con-

straints [Pearl, 1988a] as he only considered defaults with single antecedents, we

will refer to these constraints as Pearl’s constraint throughout this thesis.

2.1.4.2 Constraints on performing inference with abstractions

When performing inference with abstractions, care should be taken that no version

of an event at a lower level of abstraction is abductively inferred if an alternative

version of this event at a lower level of abstraction was already previously inferred. In

particular, performing deduction and abduction in that order with two abstractions

with the same consequent leads to undesirable results.

Example 14. Consider generalisations g1 : gun →a deadly weapon and g2 : knife

→a deadly weapon from Example 6. Upon observing that a provided object is a

gun, this would make us deductively infer that this object is a deadly weapon using

generalisation g1. Upon performing abduction with generalisation g2, this would

make us infer that the provided object is a knife, which is clearly undesirable. �

Performing abduction and deduction in that order with two abstractions with the

same consequent does not lead to undesirable results.

Example 15. Consider abstractions g2 : knife →a deadly weapon and g3 : knife

→a metal object. Upon observing metal object, we can abductively infer knife using

generalisation g3. In turn, claim deadly weapon can be deductively inferred using

generalisation g2. �

The following example illustrates that mixed inference, using either a causal gen-

eralisation and an abstraction or an evidential generalisation and an abstraction,

does not lead to undesirable results. Hence, we argue that no additional inference

constraints need to be imposed.
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Example 16. Consider Example 7. Assume that in addition to strict abstractions

g′1 : lung cancer →a cancer and g′2 : colon cancer →a cancer, causal generalisa-

tion g′3 : smoking →c cancer is provided. Upon observing that a person smokes, we

deductively infer that the person has cancer using generalisation g′3. Using general-

isations g′1 and g′2, we can then in turn abductively infer that the person has either

lung cancer or colon cancer, which are then competing alternative explanations of

cancer (see Example 7). Note that it is not undesirable to infer lung cancer or

colon cancer from cancer in this case, as smoking and lung cancer ( colon cancer)

are not alternative explanations of cancer; instead, smoking is a cause of cancer,

while lung cancer ( colon cancer) is not a cause of cancer but instead describes claim

cancer at a lower level of abstraction. �

To summarise this section, we only wish to prohibit subsequent deductive and ab-

ductive inference using two abstractions with the same consequent and not other

inference patterns involving abstractions. Finally, note that for generalisations of

type ‘other’ no additional inference constraints are imposed.

2.1.5 Ambiguous inference

Situations may arise in practice in which both deduction and abduction can be

performed with the same causal generalisation or abstraction; the inference type is,

therefore, ambiguous.

Example 17. Consider generalisation g1 : fire →c smoke. Suppose fire and smoke

are not observed but have been previously inferred, for instance via deduction using

generalisations g2 : see fire →e fire and g3 : see smoke →e smoke, where see fire

and see smoke are provided as evidence. Then both deduction and abduction can be

performed with g1 to infer smoke from fire and fire from smoke. �

Generally, we do not wish to prohibit this type of ambiguous inference patterns as

we do not consider them to be undesirable.

2.2 Argumentation

In this section, technical preliminaries on argumentation are provided. In particular,

Dung’s abstract approach to argumentation [Dung, 1995] (Section 2.2.1) and the

ASPIC+ argumentation framework [Modgil and Prakken, 2013, 2014] (Section 2.2.2)

are reviewed.

2.2.1 Abstract argumentation frameworks

First, we provide Dung’s [1995] definition of an abstract argumentation framework,

which consists of a set of arguments along with a binary relation of defeat. Such

a framework is fully abstract as it leaves the internal structure of arguments and
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the nature of the defeat relation completely unspecified. Dung’s definitions for

argumentation semantics can then be used to evaluate the acceptability of arguments

in abstract argumentation frameworks.

Definition 1 (Abstract argumentation framework [Dung, 1995], using the terminol-

ogy of [Modgil and Prakken, 2014]). An abstract argumentation framework (AF) is

a pair (A,D), where A is a set of arguments and D ⊆ A ×A is a binary relation

of defeat.

Note that Dung called his relation ‘attack’. Instead, we follow the terminology used

in describing the ASPIC+ framework (see Section 2.2.2), where the term attack is

reserved for the basic notion of conflict which is then resolved into defeat using

preferences. Furthermore, following ASPIC+-conventions, throughout this thesis

calligraphic capitals are used to denote sets of arguments, defeats, as well as other

sets used in the ASPIC+ framework. An AF can be visualised as a directed graph

in which arguments are represented by circles and defeats are indicated by solid arcs

(→); an example of an AF is depicted in Figure 2.1.

The theory of abstract argumentation frameworks is built around the notion of

an extension, which is a set of arguments that is internally coherent and defends

itself against defeat.

Definition 2 (Dung extensions, after Modgil and Prakken [2014]). Let (A,D) be

an AF.

• A set of arguments S ⊆ A is conflict-free if there do not exist A,B ∈ S such

that (A,B) ∈ D.

• An argument A ∈ A is acceptable with respect to some set of arguments S ⊆ A
iff for all arguments B such that (B,A) ∈ D there exists an argument C ∈ S
such that (C,B) ∈ D.

• A conflict-free set of arguments S ⊆ A is an admissible extension iff every

argument A ∈ S is acceptable with respect to S.
• An admissible extension S is a complete extension iff A ∈ S whenever A is

acceptable with respect to S; S is the grounded extension iff S is the set inclusion

minimal complete extension; S is a preferred extension iff S is a set inclusion

maximal complete extension; and S is a stable extension iff it is preferred and

∀B /∈ S , ∃A ∈ S such that (A,B) ∈ D.

The acceptability of arguments in abstract argumentation frameworks can then be

evaluated by establishing whether a given argument is a member of the various

extensions. Arguments are then assigned a dialectical status that can either be

‘justified’, ‘overruled’, or ‘defensible’, where informally an argument is justified if

it survived the competition, overruled if it did not survive the competition, and

defensible if it is involved in a tie.
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Figure 2.1: Example of an AF.

Definition 3 (Justified, overruled and defensible arguments, adapted from Prakken

and Vreeswijk [2002]). Let (A,D) be an AF.

• An argument is (i) justified under grounded semantics iff it is a member of the

grounded extension, (ii) overruled under grounded semantics iff it is not justified

under grounded semantics and it is defeated by an argument that is justified under

grounded semantics, or (iii) defensible under grounded semantics iff it is neither

justified nor overruled under grounded semantics.

• Let T ∈ {complete, preferred, stable}. An argument is (i) justified under T

semantics iff it is a member of all T extensions, (ii) overruled under T semantics

iff it is not a member of any T extension, or (iii) defensible under T semantics

iff it is a member of some but not all T extensions.

Example 18. An example of an AF is depicted in Figure 2.1. In this example, set

S = {A,C} is conflict-free as neither (A,C) nor (C,A) in D. Arguments A and

C are acceptable with respect to S: for A, this holds as there is no argument in A
defeating it, and for C, this holds because only B defeats it, where B itself is defeated

by A. Hence, S is an admissible extension. S is also a complete extension, as B

is not acceptable with respect to S. Other admissible extensions such as ∅ and {C}
also exist, but these extensions are not complete as A is also acceptable with respect

to ∅ and {C}. In fact, S is the only complete extension and, therefore, also the

grounded extension and the only preferred extension. S is also a stable extension,

as only B /∈ S, where (A,B) ∈ D. It follows that under any semantics, arguments

A and C are justified and argument B is overruled. �

Compared to preferred and stable semantics, grounded semantics has stricter re-

quirements regarding what to accept as a justified belief. As for their outcomes,

these semantics mainly differ in their treatment of so-called floating arguments, as

illustrated by the following example.

Example 19. Consider the example depicted in Figure 2.2, adapted from Caminada

[2006]. The complete extensions of this AF are: S1 = ∅, S2 = {A,D} and S3 =

{B,D}. Specifically, in contrast to example 18, the empty set is a complete extension

as none of the arguments is acceptable with respect to the empty set. Furthermore,

S2 is an admissible extension, as A defends itself against defeat from B by defeating

B itself, and for defeat (C,D) ∈ D it holds that A ∈ S2 with (A,C) ∈ D. S2 is then

a complete extension as neither B nor C can be added to S2 without introducing a

conflict. Similarly, S3 is an admissible and complete extension. Hence, the grounded

extension is ∅ and under grounded semantics all arguments are defensible. S2 and S3
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Figure 2.2: AF containing floating arguments, adapted from Caminada [2006].

are set inclusion maximal complete extensions for which it holds that the arguments

in these sets defeat all arguments outside these sets; hence, S2 and S3 are preferred

and stable extensions. Compared to grounded semantics, argument D is justified

under preferred and stable semantics, C is overruled, and A and B are defensible.

In particular, it is concluded that C is overruled, as there is no need to resolve the

conflict between A and B: the status of C ‘floats’ on the status of A and B. Then,

as C is overruled, D is justified. Thus, using grounded semantics it can be said that

one is more careful in assigning the status ‘justified’. �

Dung’s abstract argumentation approach has been extended with new elements,

for instance by adding support relations to abstract argumentation frameworks (e.g.

Cayrol and Lagasquie-Schiex [2005]) or by adding preference relations (e.g. so-called

preference-based argumentation frameworks, or PAFs [Amgoud and Cayrol, 2002]),

probabilities (discussed in Section 8.3), or weights [Dunne et al., 2011] to AFs; a

more complete overview is provided in [Beirlaen et al., 2018; Prakken, 2018a]. As dis-

cussed in the introduction of this thesis, in Chapter 4 we focus on non-probabilistic

approaches to argumentation and therefore do not consider extensions of Dung’s

approach using probabilities. Instead of the other proposed extensions, we opt for

Dung’s original approach for the evaluation of arguments as it is a well-studied and

widely accepted approach in the field of computational argumentation. Moreover,

relations between Dung’s fully abstract approach and formalisms such as ASPIC+

have been previously investigated, as explained in the next subsection.

2.2.2 The ASPIC+ argumentation framework

Next, the ASPIC+ argumentation framework [Modgil and Prakken, 2013, 2014] is

reviewed. The ASPIC+ framework is an example of a framework for so-called ‘struc-

tured’ argumentation (see Besnard et al. [2014]) in that it is at an intermediate

level of abstraction between Dung’s fully abstract approach and concrete instanti-

ating logics such as those developed in [Prakken and Sartor, 1997; Simari and Loui,

1992]. In structured argumentation, a formal language for representing knowledge

is assumed, where it is specified how arguments and counterarguments can be con-

structed from that knowledge. An argument is then said to be structured in that

the premises and conclusion of the argument are made explicit and the relation be-

tween the premises and the conclusion is formally defined. Other frameworks for
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structured argumentation exist, e.g. [Besnard and Hunter, 2009; Dung et al., 2009;

Gordon et al., 2007; Simari and Loui, 1992; Verheij, 2003; Vreeswijk, 1997]; where

applicable, we will stay as close as possible to the ASPIC+ framework because it

is a flexible framework that instantiates Dung’s abstract approach by describing

what the arguments are and how the defeat relation arises. Moreover, it has been

shown [Prakken, 2010; Modgil and Prakken, 2013] that the ASPIC+ framework

subsumes, or at least closely approximates, other work on structured argumenta-

tion [Dung et al., 2009; Verheij, 2003]. The connection to classical-logic approaches

to argumentation (e.g. Besnard and Hunter [2009]) has also been studied [Mod-

gil and Prakken, 2013], and it was shown [van Gijzel and Prakken, 2012] that the

Carneades argument model [Gordon et al., 2007] can be interpreted in terms of

ASPIC+. Finally, desirable properties such as key rationality postulates [Caminada

and Amgoud, 2007] have been studied for the ASPIC+ framework, which warrants

the sound definition of specific instantiations of this framework. In Chapter 4 we

define an argumentation formalism closely related to the ASPIC+ framework which

allows us to straightforwardly prove that instantiations of our formalism also satisfy

these rationality postulates. Furthermore, in defining the approach of Chapter 7 the

ASPIC+ framework will be explicitly used.

2.2.2.1 Argumentation systems, knowledge bases, and arguments

We consider a simplified version of the ASPIC+ framework [Modgil and Prakken,

2013, 2014]. The ASPIC+ instance assumes a logical language L containing the

basic elements that can be argued about, a knowledge base K ⊆ L of premises and

a set of inference rules R that can be chained into arguments. More specifically,

inference rules are defined over L and are either strict or defeasible.

Formally, an ASPIC+ argumentation system is defined as follows.

Definition 4 (Argumentation system, after Modgil and Prakken [2013]). An argu-

mentation system is a tuple AS = (L, · ,R, n), where:
• L is a non-empty propositional language.

• · is a function from L to 2L, such that:

• φ ∈ L is a contrary of ψ ∈ L iff φ ∈ ψ and ψ /∈ φ;
• φ ∈ L is a contradictory of ψ ∈ L (denoted by ‘φ = −ψ’) iff φ ∈ ψ and

ψ ∈ φ;
• Every φ ∈ L has at least one contradictory.

• R = Rs∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the form

s : φ1, . . . , φn → φ and d : φ1, . . . , φn ⇒ φ respectively, where φ1, . . . , φn, φ are

meta-variables ranging over well-formed formulas in L and where Rs ∩Rd = ∅.
• n : Rd → L is a naming convention for defeasible inference rules.

Informally, n(d) is a well-formed formula in L which states that defeasible inference

rule d ∈ Rd is applicable. Furthermore, note that − is not a part of the logical

language L but a metalinguistic function symbol to obtain more concise definitions.
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In contrast with Section 2.1, in which the symbol ‘→’ is semi-formally used as

a connective in the notation for generalisations, in the context of ASPIC+ this

symbol indicates a strict inference rule. It is important to stress that inference rules

in Rs and Rd are not object level formulae in the language L, but are meta to

the language. These inference rules may be domain-specific in that they reference

specific formulae in L, or they may be specified as schemes.

A contrariness function · allows for defining an asymmetric notion of conflict

(which can be used to model well-known constructs like negation as failure in logic

programming), as well as symmetric conflict between formulae that are mutually

exclusive but not necessarily exhaustive: for instance, being a bachelor and being

married can be declared contradictories of each other. Classical negation, denoted

by ¬, is a special case of the symmetric contradictory relation: φ ∈ ψ iff φ is of the

form ¬ψ or ψ is of the form ¬φ (i.e. for any wff φ, φ and ¬φ are contradictories).

A knowledge base K ⊆ L in an argumentation system AS is defined as follows.

Definition 5 (Knowledge base, after Modgil and Prakken [2013]). A knowledge

base in an argumentation system AS = (L, · ,R, n) is a set K ⊆ L consisting of

two disjoint subsets Kn ( the axiom premises) and Kp ( the ordinary premises).

Here, Kn consists of the premises which are certain and cannot be attacked. Premises

in Kp are uncertain and can be undermined by other arguments (see Definition 8.3).

Definition 6 (Argumentation theory, after Modgil and Prakken [2013]). An argu-

mentation theory is a tuple AT = (AS,K), where AS = (L, · ,R, n) is an argumen-

tation system and K is a knowledge base in AS.

Arguments are iteratively constructed from the premises in the knowledge base

by chaining inference rules. In what follows, for a given argument, the operator

Prem returns all formulae in K used to construct the argument, Conc returns its

conclusion, Sub returns all its sub-arguments (including itself), and TopInf returns

the last inference rule used in constructing the argument.

Definition 7 (ASPIC+ argument, adapted from Modgil and Prakken [2014]). An

argument A on the basis of an argument theory AT with a knowledge base K and

an argumentation system AS = (L, · ,R, n) is any structure obtainable by applying

one or more of the following steps finitely many times:

1. φ if φ ∈ K, where: Prem(A) = {φ}; Conc(A) = φ;

Sub(A) = {A}; TopInf(A) = undefined.

2. A1, . . . , An ⇒ φ if A1, . . . , An are arguments such that there exists a defeasible

inference rule Conc(A1), . . . ,Conc(An)⇒ φ in Rd, where:

Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = φ;

Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
TopInf(A) = Conc(A1), . . . ,Conc(An)⇒ φ.
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Figure 2.3: ASPIC+-style argument graph for the burglary example (Example 20).

3. A1, . . . , An → φ if A1, . . . , An are arguments such that there exists a strict infer-

ence rule Conc(A1), . . . ,Conc(An)→ φ in Rs, where:

Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = φ;

Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A};
TopInf(A) = Conc(A1), . . . ,Conc(An)→ φ.

Note that we overload symbols⇒ and→ to denote an argument while it also denotes

a defeasible or strict inference rule. ASPIC+-style arguments in this section and in

Chapter 7 are depicted informally in ASPIC+-style argument graphs; an example of

such an argument graph is depicted in Figure 2.3. Nodes in ASPIC+-style argument

graphs denote propositions φ ∈ L, where shaded nodes denote propositions in Kn.

Every application of an inference rule s : φ1, . . . , φn → φ or d : φ1, . . . , φn ⇒ φ in

R is indicated by a solid (hyper)arc in the graph that is directed from the nodes

corresponding to φ1, . . . , φn to the node corresponding to φ. Every solid (hyper)arc

is annotated with the name of the applied inference rule, where di and si denote

defeasible and strict rules, respectively. Attacks are indicated by dashed (hyper)arcs

in the graph, as further discussed in Section 2.2.2.2.

Example 20. Consider the following example from the legal and forensic domains,

adapted from Bex and Renooij [2016]. Suppose that a burglary has taken place and

that we are interested in whether a given suspect is guilty of committing the burglary

(bur). Forensic analysis ( for) shows a match between a pair of shoes owned by the

suspect and footprints ( ftpr) found near the crime scene. However, there is also

evidence of a mix up at the forensic laboratory (mix): the chain-of-custody of the

footprints from the crime scene to the laboratory has not been properly documented.

The suspect had motive (mot) to commit this burglary, which is supported by at

least one reliable testimony ( tes1). Furthermore, it is argued that the suspect had

opportunity ( opp) to commit this burglary; however, this is denied (¬opp) in further

testimony provided by the suspect ( tes2).

For this example, we have the following propositional language with classical

negation: L = {bur, for, ftpr, mix, mot, opp, ¬opp, tes1, tes2, d1, d2, d3, d4}. The

following domain-specific inference rules can be identified: R = Rd = {d1 : for ⇒
ftpr; d2 : tes1 ⇒ mot; d3 : ftpr, mot, opp⇒ bur; d4 : tes2 ⇒ ¬opp}. The axiom and

ordinary premises are Kn = {for, mix, tes1, tes2} and Kp = {opp}. Proposition mix
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can be interpreted as stating that inference rule d1 is not applicable, as it provides

an exception to the inference from for to ftpr; hence, mix ∈ d1. The constructed

arguments then are: A1 : for; A2 : A1 ⇒ ftpr; A3 : tes1; A4 : A3 ⇒ mot; A5 : opp;

A6 : A2, A4, A5 ⇒ bur; B1 : mix; C1 : tes2; and C2 : C1 ⇒ ¬opp. To illustrate the

operators used in Definition 7, for A6, we have that Prem(A6) = {for, tes1, opp};
Conc(A6) = bur; Sub(A6) = {A1, A2, A3, A4, A5, A6}; TopInf(A6) = d3. �

2.2.2.2 Attack in ASPIC+

In ASPIC+, arguments can be attacked in three ways. We reiterate that attack

in ASPIC+ does not necessarily result in defeat and that preferences are applied

to determine the defeat relation, as defined in Definition 9. An argument can be

attacked on the application of a defeasible inference rule by providing exceptional

circumstances under which it may not be applicable (undercutting attack), on the

conclusion of a defeasible inference rule (rebuttal), or on an ordinary premise (un-

dermining attack). The conclusion of a strict inference rule or the application of a

strict inference rule cannot be attacked. Formally, attacks are defined as follows:

Definition 8 (ASPIC+ attack relations, after Modgil and Prakken [2013]). Let A

and B be arguments constructed on the basis of an argument theory AT . Then A

attacks B iff A undercuts, rebuts or undermines B, where:

1. A undercuts B (on B′) iff Conc(A) ∈ n(d) for some B′ ∈ Sub(B) such that

TopInf(B′) = d, d ∈ Rd.

2. A rebuts B (on B′) iff Conc(A) = −φ and Conc(B′) = φ for some B′ ∈
Sub(B) such that TopInf(B′) = d, d ∈ Rd. In such a case, A contrary-rebuts

B iff Conc(A) is a contrary of φ.

3. A undermines B (on B′) iff Conc(A) = −φ for some B′ ∈ Sub(B) with

Conc(B′) = φ ∈ Kp. In such a case, A contrary-undermines B iff Conc(A) is

a contrary of φ.

If an argument A attacks B on B, this is called a direct attack. If A attacks B on

B′ ∈ Sub(B) \ {B}, this is called an indirect attack. If A rebuts B and B rebuts

A, this is called symmetric rebuttal. If A rebuts B and B does not rebut A, this is

called asymmetric rebuttal. In ASPIC+-style argument graphs, direct undercutting

attacks are indicated by dashed hyperarcs directed from the node corresponding to

Conc(A) to a solid (hyper)arc labelled d for TopInf(B) = d ∈ Rd. Direct rebuttals

and direct undermining attacks are indicated by dashed arcs directed from the node

corresponding to Conc(A) to the node corresponding to Conc(B).

Example 21. Consider Example 20. Argument B1 directly undercuts A2 and B1

indirectly undercuts A6 (on A2), as Conc(B1) = mix, mix ∈ d1, and TopInf(A2)

= d1 ∈ Rd. Argument C2 directly undermines A5 and A5 directly rebuts C2, as

Conc(A5) = opp ∈ Kp and Conc(C2) = ¬opp. C2 then also indirectly undermines

A6 (on A5). Direct attacks for this example are indicated in Figure 2.3. �
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2.2.2.3 Defeat and instantiating Dung’s abstract approach

In ASPIC+, attack is resolved into defeat on the basis of a binary preference relation

� over the arguments. In case A � B and B � A, then B is strictly preferred to

A, denoted by A ≺ B. If an argument A undercuts, contrary-rebuts, or contrary-

undermines B on B′, then A is said to preference-independent attack B on B′,
otherwise A is said to preference-dependent attack B on B′.

Definition 9 (ASPIC+ defeat relation, after Modgil and Prakken [2013]). Let A

attack B on B′. Then A defeats B iff A preference-independent attacks B on B′,
or A preference-dependent attacks B on B′ and A ⊀ B′.

For further details as to why undercutting and contrary-attacks succeed as defeats

independently of preferences, the reader is referred to Modgil and Prakken [2013].

Example 22. Consider Examples 20 and 21. As undercutting attack is preference-

independent, B1 defeats A2 and A6. Furthermore, assuming that A5 ≺ C2, it follows

that C2 defeats A5 and A6 and that A5 does not defeat C2. �

Combining all the above, a structured argumentation framework is formally defined

as follows:

Definition 10 (Structured argumentation frameworks, after Modgil and Prakken

[2013]). A structured argumentation framework defined by an argument theory AT

is a triple SAF = (A, C,�), where A is the smallest set of all finite arguments

constructed from K in AS as defined by Definition 7, C consists of pairs of arguments

(A,B), where (A,B) ∈ C iff A attacks B as defined by Definition 8, and � ⊆ A×A
is a binary preference relation over A.

Dung’s abstract approach is then instantiated using ASPIC+ arguments and the

defeat relation as defined by Definition 9 as follows:

Definition 11 (Relating AFs to SAFs, after Modgil and Prakken [2014]). An ab-

stract argumentation framework (AF) corresponding to a SAF = (A, C,�) is a pair

(A,D) such that D is the defeat relation on A determined by (A, C,�).

Note that without preferences (i.e. � = ∅), it follows that D = C. Given an AF, we

can use any semantics for argumentation frameworks as defined in Section 2.2.1 for

determining the dialectical status of arguments.

Finally, the status of a conclusion φ ∈ L of an argument is defined. Note that

several definitions are possible; the following definition directly uses the notions of

justified, defensible and overruled arguments.
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Definition 12 (The status of conclusions, after Prakken and Vreeswijk [2002]). Let

SAF = (A, C,�) be a structured argumentation framework and let AF = (A,D) be

the corresponding abstract argumentation framework. Let T ∈ {complete, grounded,

preferred, stable}. For every φ ∈ L:
1. φ is justified under T semantics iff there exists an argument A ∈ A with Conc(A)

= φ that is justified under T semantics;

2. φ is defensible under T semantics iff φ is not justified under T semantics and

there exists an argument A ∈ A with Conc(A) = φ that is defensible under T

semantics;

3. φ is overruled under T semantics iff φ is neither justified nor defensible under T

semantics and all arguments with conclusion φ are overruled under T semantics.

Example 23. For Examples 20, 21 and 22, we have that A = {A1, A2, A3, A4, A5,

A6, B1, C1, C2} and D = {(B1, A2), (B1, A6), (C2, A5), (C2, A6)}. Under any seman-

tics, A6 is overruled as it is defeated by justified argument B1. Therefore, proposition

bur is also overruled, as A6 is the only argument in A with conclusion bur. �

2.2.2.4 Using ASPIC+ to model argument schemes

ASPIC+ can be used to model argument schemes [Walton et al., 2008], which capture

stereotypical defeasible patterns of argumentation in a given domain as a scheme

with a set of premises and a conclusion, plus a set of critical questions that need to

be answered before the scheme can be used to infer conclusions. Argument schemes

and critical questions can guide the practical construction of arguments and counter-

arguments as they provide guidelines for frequently occurring types of reasoning. An

example is the argument scheme for arguments from expert opinion (after Prakken

[2020], who adapted it from Walton and colleagues [2008]):

E is an expert in domain D.

E asserts that P .

P is within D.

Therefore, presumably, P .

This scheme includes the following critical questions:

1. How credible is E as an expert source?

2. Is E personally reliable as a source?

3. Is P consistent with what other experts assert?

4. Is E’s assertion of P based on evidence?

Argument schemes can be modelled in ASPIC+ by using defeasible inference rules

in Rd. Critical questions then correspond to undercutters, as they point towards

exceptional circumstances under which the defeasible inference represented by the

scheme may not be applicable.
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2.3 Bayesian networks

Finally, Bayesian networks (BNs) [Jensen and Nielsen, 2007] are reviewed. A BN

compactly represents a joint probability distribution Pr(V) over a finite set of dis-

crete random variables V. Each variable can take on a finite number of mutually

exclusive and exhaustive values; we will refer to these values as the variable’s value

space. In this thesis, we often assume variables to be Boolean, where we write v to

denote V = true and ¬v to denote V = false. There is a one-to-one correspondence

between nodes and variables in BNs. Therefore, throughout this thesis the terms

‘node’ and ‘variable’ are used interchangeably. Variables and their associated nodes

are indicated by capital letters, such as Vi or Bur (see e.g. Figure 2.4a). For claims

and propositions (see Sections 2.1 and 2.2), as well as values of variables, lower case

letters are used. Finally, boldface is used to indicate sets.

Formally, a BN is defined as follows:

Definition 13 (Bayesian network). A Bayesian network (BN) is a pair (GB,Pr).
GB is a directed acyclic graph (DAG) (V,AB) over nodes V representing random

variables. AB ⊆ V×V is a set of ordered pairs (Vi, Vj) representing arcs directed

from parent Vi ∈ V to child Vj ∈ V, indicated by Vi → Vj, where Par(V) denotes

the set of parents of V and Ch(V) denotes the set of children of V. Pr is a probabil-

ity function which specifies for each variable V ∈ V a conditional probability table

(CPT). This CPT describes the conditional probability distributions Pr(V | x), or
probability parameters, for each possible joint value combination x for Par(V).

The joint distribution Pr(V) now factorises into the conditional probability distri-

butions specified for the graph. The graph in fact encodes the probabilistic inde-

pendencies that hold among the represented variables (see Section 2.3.1).

The reflexive, transitive closures of V under the parent and child relations are

denoted by Par∗(V) and Ch∗(V), respectively, where nodes in Par∗(V) are called

ancestors of V and nodes in Ch∗(V) are called descendants of V. The set of neigh-

bours of node V is defined as Par(V) ∪Ch(V).

A BN is generally used for probabilistic inference [Jensen and Nielsen, 2007],

that is, calculating any probability of interest from any prior or posterior distri-

bution over the variables represented in the network. Posterior distributions are

obtained by instantiating one or more variables EV ⊆ V in that they are set to

a specific value. Instantiations are also called evidence. The inference algorithms

associated with the BN-formalism provide for computing probabilities of interest

and for processing evidence; these algorithms constitute the basic building blocks

for probabilistic reasoning with knowledge represented in the formalism. Reasoning

is also possible at a more qualitative level, using the knowledge that is represented

by a BN by means of its graphical structure GB and properties of its probability

function Pr. As the focus of this thesis lies on the latter, algorithms for probabilis-

tic inference are not further discussed. Finally, we emphasise that various sets of

instantiations EV can be used to perform probabilistic inference with the same BN

[van der Gaag and Meyer, 1996] (i.e. EV is not a fixed set).
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Figure 2.4: An example of a BN (a); CPT for node Bur (b), where Mot1 and Mot2
exhibit a negative product synergy wrt value Bur = true in presence of uninstanti-

ated parent Opp.

Example 24. An example of a BN graph and one of its CPTs is depicted in Figure

2.4, where ovals represent nodes and nodes in a chosen set EV are shaded. In this

BN graph, we are interested in whether a given suspect committed a burglary (Bur).

This node is connected by arcs to nodes Mot1, Mot2 and Opp, which describe whether

the suspect had motive(s) and opportunity to commit the burglary. In turn, nodes

Mot1, Mot2 and Opp are connected to instantiated nodes Tes1, Tes2 and Tes3, which

capture the testimonies provided to these claims. �

2.3.1 Bayesian network graphs

The BN graph GB encodes the probabilistic independence relation among its vari-

ables. Independencies can be read from the graph by means of the notion of d-

separation, which is defined by the notions of blocked and active chains. In the

following, let GB = (V,AB) be a BN graph.

Definition 14 (Chain). A chain c = (V1, Arc1, V2, . . . , Arcn−1, Vn) is a sequence of

distinct nodes V1, . . . ,Vn ∈ V and arcs Arc1, . . . ,Arcn−1 ∈ AB such that for every

Arci, 1 ≤ i < n, it holds that either Arci ≡ Vi → Vi+1 or Arci ≡ Vi+1 → Vi.

Definition 15 (Head-to-head node). A node V ∈ V is called a head-to-head node

on a chain c in GB if it has two incoming arcs on c.

Definition 16 (Blocked chain). A chain c between nodes V1 ∈ V and V2 ∈ V in

GB is blocked by a (possibly empty) set of nodes Z iff it includes a node V /∈ {V1,

V2} such that either:

• V is a head-to-head node on c and Ch∗(V ) ∩ Z = ∅, or;
• V has at most one incoming arc on c and V ∈ Z.

A chain that is not blocked by Z is called active given Z.

Definition 17 (d-separation). Two sets of nodes V1 ⊆ V and V2 ⊆ V are d-

separated by a (possibly empty) set of nodes Z ⊆ V iff there exist no active chains

between any node in V1 and any node in V2 given Z.
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If V1 and V2 are d-separated given Z ⊆ V, then their corresponding variables

are considered conditionally independent given Z. Upon performing probabilistic

inference, only nodes on active chains are involved in computations, where the set of

instantiations EV serves as the blocking set Z to determine which chains are active.

Example 25. In Figure 2.4, given the evidence for EV = {Tes1, Tes2, Tes3}
all chains between Mot1 and Mot2 are blocked, as Bur is an uninstantiated head-

to-head node on chain (Mot1, Mot1 → Bur, Bur, Mot2 → Bur, Mot2) without

instantiated descendants (i.e. Ch∗(Bur) ∩ EV = ∅); hence, variables Mot1 and

Mot2 are considered conditionally independent given the evidence for EV. Knowing

Mot1, therefore, does not affect the probabilities for Mot2 and vice versa. �

Given its Markov blanket, a node is conditionally independent from the rest of the

nodes in the graph.

Definition 18 (Markov blanket). The Markov blanket of a node V is the set

Ch(V ) ∪Par(V ) ∪Par(Ch(V )) \ {V }.
Finally, we review the following concept from graph theory.

Definition 19 (Weakly connected component). Let G = (V,A) be a directed graph

and let C = (Vc,Ac) with Vc ⊆ V and Ac ⊆ (Vc ×Vc) ∩A be a sub-graph of G.

Then C is a weakly connected component of G iff:

1. For every pair of nodes V1, V2 ∈ Vc there exists a chain between V1 and V2 in C;

2. C is a maximal sub-graph of G for which property 1 holds.

2.3.2 Intercausal interactions and qualitative probabilistic

constraints

Next, we review the concepts of intercausal interactions and qualitative probabilistic

constraints. In case a head-to-head node or one of its descendants in a BN graph

is instantiated, an active chain is induced between the parents of the head-to-head

node, allowing for intercausal interactions. Note that, while the term ‘intercausal

interactions’ is used, these interactions can also occur regardless of the type of rela-

tion between parents and child. If one of the parents takes on the value true, then

the probability of another parent taking on this value as well may change, depending

on the synergistic effect modelled in the CPT for the head-to-head node. In case

the probability that one of the other parents takes on the value true decreases, this

is called the ‘explaining away’ effect [Druzdzel and Henrion, 1993]. For Boolean

nodes, we will generally assume an ordering true > false on its values unless spec-

ified otherwise. In case this ordering is reversed, then the occurrences of these two

values need to be interchanged in the equations appearing in Definitions 20 and

22. To achieve the explaining away effect between two parents V1 and V3 of V2

for instantiation v2, the CPT for V2 needs to be constrained such that V1 and V3

exhibit a negative product synergy wrt v2. First, we review the concept of product
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synergy I [Druzdzel and Henrion, 1993], which captures the special case in which

all other parents of V2 are instantiated. In the below definitions, Pr(v2 | v1, v3, x)
denotes the conditional probability of v2 given the conjunction of v1, v3 and x.

Definition 20 (Product synergy I). Let B = (GB,Pr) be a BN and let V1,V3 ∈ V be

parents of V2 ∈ V in GB. Let X = Par(V2) \ {V1,V3} and let x be the combination

of observed values for X. Then V1 and V3 exhibit a negative product synergy wrt

v2, written X−({V1,V3}, v2), iff
Pr(v2 | v1, v3, x) · Pr(v2 | ¬v1,¬v3, x) ≤ Pr(v2 | v1,¬v3, x) · Pr(v2 | ¬v1, v3, x)

If X = ∅, then this equation simplifies by leaving out every occurrence of x. V1

and V3 exhibit a zero product synergy wrt v2, written X0({V1,V3}, v2), if ≤ in

the above equation is replaced by =. In this case, no direct intercausal interaction

effect exists between parents V1 and V3 for value v2 of V2. V1 and V3 exhibit

a positive product synergy wrt v2, written X+({V1,V3}, v2), if ≤ is replaced by ≥
in the above equation. In this case, the joint occurrence of the causes may be a

more likely explanation of the common effect than would either of them considered

individually.

Next, the case is considered in which X �= ∅ is not instantiated to a combination

of values. First, we review the concept of matrix half negative semi-definiteness.

Definition 21 (Half negative semi-definite matrix). LetM be a square n×n matrix,

n ≥ 1, and let x be any non-negative vector x of n elements. Then M is called half

negative semi-definite iff xTMx ≤ 0.

Similarly, a square matrix M is called half positive semi-definite iff xTMx ≥ 0 for

all non-negative vectors x of n elements. We now provide the definition of extended

product synergy, termed product synergy II [Druzdzel and Henrion, 1993].

Definition 22 (Product synergy II). Let B = (GB,Pr) be a BN and let V1, V3 ∈ V

be parents of V2 ∈ V in GB. Let X = Par(V2)\{V1, V3}. Let n denote the number

of possible combinations of values for X. Then V1 and V3 exhibit a negative product

synergy wrt v2 iff the n× n matrix M with elements

Mij = Pr(v2 | v1, v3, xi)·Pr(v2 | ¬v1,¬v3, xj)−Pr(v2 | v1,¬v3, xi)·Pr(v2 | ¬v1, v3, xj)
is half negative semi-definite for all combinations of values xi and xj for X.

For a positive or zero product synergy, the matrix M has to be half positive semi-

definite or zero, respectively. Note that product synergy I is a special case of product

synergy II; hence, in referring to the general concept of product synergy throughout

this thesis, we are referring to product synergy II.

Example 26. Consider the BN of Figure 2.4. The entries of the CPT of Figure

2.4b are chosen such that Mot1 and Mot2 exhibit a negative product synergy wrt

value Bur = true in presence of uninstantiated parent Opp. Specifically, the 2 × 2
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matrix M consisting of the following four elements is half negative semi-definite:

M11 = 0.9 · 0.05− 0.7 · 0.8 = −0.515;M12 = 0.9 · 0.01− 0.7 · 0.1 = −0.061
M21 = 0.2 · 0.05− 0.1 · 0.8 = −0.070;M22 = 0.2 · 0.01− 0.1 · 0.1 = −0.008 �

2.3.3 Bayesian network construction

BN construction is typically an iterative process [Druzdzel and van der Gaag, 2000].

After constructing an initial BN graph, it should be verified that it is acyclic and

that it correctly captures the (conditional) independencies. If the graph does not

yet exhibit these properties, arcs should be reversed, added or removed by the BN

modeller in consultation with the domain expert. We call this the ‘graph valida-

tion step’. We note that software tools such as Matilda [Boneh et al., 2006] exist

that can aid experts involved in BN construction in exploring whether (conditional)

independencies are correctly modelled in the (initially) constructed BN.

The conditional probabilities of the BN are elicited in a separate quantifica-

tion step. Probabilities are often taken from domain-specific literature, estimated

from data sets by calculating (frequency) statistics, or elicited from domain experts

[Druzdzel and van der Gaag, 2000]. Various techniques exist to obtain probabili-

ties through expert elicitation, such as the use of numerical probability scales and

reference lotteries [Renooij, 2001]. As the structure determines which conditional

probabilities have to be estimated, the qualitative graph-construction step and the

quantitative probability elicitation step are initially carried out sequentially. How-

ever, building a BN often requires a careful trade-off between wanting to obtain a

rich and accurate model and having a model that is too computationally and repre-

sentationally complex. Therefore, in practice the qualitative and quantitative steps

are iteratively run through until a model is obtained that is deemed satisfactory

[Druzdzel and van der Gaag, 2000].

The elicited probability estimates are inevitably inaccurate, as knowledge of the

domain is typically partial and data is typically incomplete. Sensitivity analysis can

be used to study the effects of uncertainties in probability assessments for a given

set of nodes on a probability of interest [van der Gaag et al., 1999]. For instance,

one type of sensitivity analysis involves systematically varying the probability assess-

ments for nodes in a chosen set while keeping all other assessments fixed. Sensitivity

analysis provides detailed insight into the level of accuracy that is required for the

various probabilities of the network and can hence serve to facilitate the probabil-

ity elicitation process. More specifically, in the initial phases of quantification only

rough estimates of probabilities can be elicited, after which sensitivity analyses can

be used to establish the level of accuracy that is required for the various probabilities

of the network. Probability assessments can then be further refined if required.

To facilitate BN construction, construction methods have been proposed in the

literature, including approaches for constructing BNs from information specified

in arguments and ontologies and approaches for constructing BNs from fragments.

These approaches are reviewed in Section 8.2.
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Chapter 3

The information graph formalism

As illustrated in the introduction, various graph-based sense-making tools exist that

allow domain experts such as legal experts to make sense of a mass of evidence in a

case, including Wigmore charts [Wigmore, 1913], mind maps [Okada et al., 2014]1

and argument diagrams [Bex et al., 2003, 2013; Okada et al., 2014]. In this chapter

we revisit our examples of analyses performed using informal sense-making tools

from Section 1.1 in the light of our conceptual analysis of reasoning about evidence

from Section 2.1 to illustrate that, when performing analyses using aforementioned

tools, domain experts naturally mix deductive and abductive inference with the

different types of generalisations distinguished in our conceptual analysis. In per-

forming such analyses, the used generalisations and the inference type (deduction,

abduction) are typically left implicit. Moreover, the assumptions of domain experts

underlying their analyses are typically not explicitly stated and the various elements

that can be incorporated in these analyses are often ambiguous and not precisely de-

fined; hence, we conclude that, because of their informal nature, sense-making tools

do not directly allow for guiding the construction of formal representations within

AI systems such as argumentation frameworks [Dung, 1995] and BNs [Jensen and

Nielsen, 2007].

Accordingly, in this chapter we set out to formalise and disambiguate analyses

performed using informal sense-making tools in a manner that (1) allows for guiding

the construction of formal representations within AI systems and that (2) is in line

with our conceptual analysis of reasoning about evidence as provided in Section

2.1, while (3) allowing inference to be performed and visualised in a manner that is

closely related to the way in which inference is performed and visualised by domain

experts using such tools. In particular, we propose the information graph (IG)

formalism, which formalises analyses performed using such tools in this manner.

1See also Master’s research [Timmers, 2017].
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3.1 Revisiting examples of analyses performed

using sense-making tools

In this section, we revisit the examples from Section 1.1. Based on these examples,

in Section 3.2 we then further motivate our IG-formalism.

3.1.1 Revisiting the Wigmore chart example

First, we revisit the Wigmore chart example from Section 1.1.1 to establish which

(types of) generalisations and inferences could have been used in constructing the

chart of Figure 1.1. In defining the elements of his charts, Wigmore is often am-

biguous in the language he uses. For instance, an arc in the chart indicates that

a claim is offered as ‘... evidencing, or explaining, or corroborating ...’ [Wigmore,

1913, p. 752]. Arcs can therefore be regarded as indicating which claims are inferred

from each other, where the generalisations used in performing these inferences, as

well as the inference type (deduction or abduction), are not explicitly recorded in

the chart. To be able to interpret whether inferences are deductive or abductive,

and hence what the antecedents and consequents are of generalisations used in per-

forming the inferences, the evidence in the chart also needs to be considered. One

interpretation is that the arcs between claims 26− 28.1 and claim 25 in Figure 1.1

represent deductive inferences from the testimonies to the claim to which is testified,

where evidential generalisations of the form ‘Testimony to x is evidence for x’ are

used. Possible hypotheses are then proposed that explain claim 25, namely claims

29 − 33. The arcs between 25 and claims 29 − 33 can possibly be interpreted as

deductive inferences using evidential generalisations; however, it seems contrived to

consider the claim that Y. died in good health to be evidence for a specific cause

of death (i.e. one of the claims 29 − 33). Instead, it makes more sense to consider

that Wigmore made multiple abductive inference steps in constructing the chart.

For instance, from the causal generalisation ‘Y. had a former injury in his side is

a cause for Y. dies’ and by affirming the consequent (25), the antecedent (31) is

abductively inferred. However, establishing with certainty whether the inferences

are deductive or abductive would require directly consulting John Henry Wigmore.

Lastly, we note that the manner in which claims and links conflict is also not

precisely specified in Wigmore charts. For instance, claim 40 weakens the chain of

inferences from 38.1 to 39 via 38; however, the precise manner in which claim 40

opposes (inferences between) claims 39.1, 39 and 38 is left unspecified.

3.1.2 Revisiting the mind map example

Next, we revisit the mind map example presented in Section 1.1.2. As the edges

in a mind map are undirected, it is unclear from the graphical representation alone

which types of generalisations and inferences were used in constructing the map
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depicted in Figure 1.2. Establishing this with certainty would require directly con-

sulting the domain experts involved in constructing the chart. We note, however,

that the reasoning performed in constructing this mind map can be interpreted in

multiple ways; we illustrate this for the part of the mind map concerning Leo’s

cause of death. One interpretation of this part of the mind map is that the do-

main expert first (preliminarily) inferred that Leo died because of a head wound

from the autopsy report via deductive inference using the evidential generalisation

g′1 : autopsy →e head wound, and then abductively inferred hit angular using the

causal generalisation g′2 : hit angular →c head wound. In turn, hammer and stone

are abductively inferred from hit angular using the abstractions g′3 : hammer →a

hit angular and g′4 : stone →a hit angular. These two claims are then competing

alternative explanations of hit angular and are subsequently grounded in evidence,

namely via deductive inference from the testimonies using evidential generalisations

g′5 : testimony 5 →e hammer and g′6 : testimony 6 →e stone. An alternative in-

terpretation is that the mind map was constructed iteratively from the evidence,

where from the testimonies the claims hammer and stone are inferred via deductive

inference using generalisations g′5 and g′6. Claim hit angular is then inferred modus-

ponens style: from abstractions g′3 and g′4 and the previously inferred antecedents,

the consequent is deductively inferred. In this way, hammer and stone are not in

competition for hit angular.

This example illustrates that the types of generalisations and inferences involved

in the analysis of a case using a mind mapping tool are typically left implicit. Simi-

larly, the manner in which claims and links conflict is not precisely specified: a minus

symbol can either indicate support for the opposing claim (e.g. testimony 3 sup-

ports marjan did not murder leo) or indicate an exception to the performed infer-

ence (e.g. lie opposes the inference from testimony 3 tomarjan did not murder leo).

Similarly, conflicts between competing alternative explanations such as hit angular

and fell on table are not explicitly indicated in the graph.

3.2 Motivating the information graph formalism

The examples from Section 3.1 make it plausible that both deductive and abduc-

tive inference are performed by domain experts when performing analyses using

sense-making tools they are familiar with. In performing such analyses, the used

generalisations, as well as the inference type (deduction, abduction), are left implicit.

Furthermore, the manner of conflict (e.g. negatory conflict, exception-based conflict,

conflict between competing alternative explanations) is typically not precisely spec-

ified and the assumptions of domain experts underlying their analyses are typically

not explicitly stated, making these analyses ambiguous to interpret. For current

purposes, we wish to provide a precise account of the interplay between the different

types of inferences and generalisations that formalises and disambiguates these anal-

yses in a manner that makes the used generalisations explicit. Existing formalisms

that allow for both deduction and abduction with different types of information are
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logic-based [Bex, 2011; Poole, 1989; Shanahan, 1989]; instead, we propose the graph-

based IG-formalism to remain closely related to the way analyses are visualised using

aforementioned graph-based tools as well as the BN-formalism. Moreover, in con-

trast with existing formalisms we put special emphasis on the constraints we argue

should be imposed on the types of inferences that may be performed with the differ-

ent types of generalisations. Finally, compared to the ASPIC+ framework (Section

2.2.2), which only allows for deductive reasoning, we allow for both deductive and

abductive reasoning and introduce a new type of conflict, namely conflict between

competing alternative explanations, which is currently not accounted for in that

framework. Relations to existing formalisms are further discussed in Section 8.1.

An IG serves as a source of unambiguous information that can be used to guide

the construction of instantiations of AI systems for which a formal reasoning mech-

anism is defined. In particular, in Chapter 4 we define an argumentation formalism

based on IGs that allows us to assign Dung’s argumentation semantics to argumen-

tation frameworks constructed on the basis of IGs, and in Chapter 5 we demonstrate

the use of the IG-formalism in guiding BN construction by serving as an interme-

diary formalism between analyses performed using informal sense-making tools and

BNs. Viewed this way, in the context of argumentation the IG-formalism is com-

parable to the Argument Interchange Format (AIF) [Rahwan and Reed, 2009], an

argumentation ontology that serves as an intermediary formalism between analy-

ses performed using argument diagramming tools [Bex et al., 2003; Okada et al.,

2014] and formal argumentation frameworks such as the ASPIC+ framework (see

Bex et al. [2013]). Compared to the AIF, our IG-formalism is tailored to model

the process of reasoning about evidence in that it provides a precise account of the

interplay between the different types of inferences and generalisations. Moreover,

the AIF does not have an inference engine and is only intended as a notation for

argumentation and arguments. More specifically, the elements of AIF graphs are

typed in terms of argumentation-theoretical concepts such as inference and conflict,

in contrast with the IG-formalism which allows for actually performing inference.

Accordingly, we wish to refrain from using the AIF as an intermediary formalism

between analyses performed using informal sense-making tools and formal AI sys-

tems. For similar reasons, we wish to refrain from using other ontologies for this

purpose (see also Section 8.2).

Information graphs (IGs), which we define in Section 3.3, are knowledge repre-

sentations that explicitly describe generalisations in the graph. In constructing an

IG from an analysis performed using a tool, an interpretation step may be required;

we provide examples of this interpretation step by discussing possible formalisations

of the mind map of Section 1.1.2. In Section 3.4 we then define how deductive

and abductive inferences can be read from IGs given the evidence, based on our

conceptual analysis of reasoning about evidence (Section 2.1). In Section 3.5 we

define sequences of propositions that are iteratively inferred from each other given

the evidence, termed inference chains, for which we prove a number of properties.

Finally, in Section 3.6 we discuss further extending our inference constraints.
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3.3 Information graphs

First, the syntax of IGs is defined. Throughout this thesis, boldface is used to

indicate sets used in the IG-formalism.

Definition 23 (Information graph). An information graph (IG) is a directed graph

GI = (P,AI), where P is a set of nodes representing propositions from a proposi-

tional language consisting of only literals and that is closed under classical negation,

where the negation symbol is denoted by ¬. AI is a set of (hyper)arcs that divides

into three pairwise disjoint subsets G, N and Exc of generalisation arcs, negation

arcs and exception arcs, defined in Definitions 24, 28, and 29, respectively.

For IGs, there is a one-to-one correspondence between nodes and propositions, gen-

eralisation arcs and generalisations, exception arcs and exceptions, and negation

arcs and negations. Throughout this thesis, in the context of IGs, the terms ‘node’

and ‘proposition’, ‘generalisation arc’ and ‘generalisation’, ‘exception arc’ and ‘ex-

ception’, and ‘negation arc’ and ‘negation’ are therefore used interchangeably. In fig-

ures in this thesis, rectangles represent proposition nodes. Similarly as for ASPIC+,

we write p = −q in case p = ¬q or q = ¬p. Finally, note that while we currently

only consider classical negation, our IG-formalism may be extended in future work

to allow for more general notions of conflicts such as contrariness (cf. ASPIC+).

Contrariness generalises the notion of negatory conflict to among other things al-

low conflict among more than two propositions, which can also be indicated using

certain argument diagramming tools, such as Rationale (see also Bex et al. [2013]).

Definition 24 (Generalisation arc). Let GI = (P,AI) be an IG. A generalisation

arc g ∈ G ⊆ AI is a directed (hyper)arc g : {p1, . . . , pn} → p, indicating a general-

isation with antecedents P1 = {p1, . . . , pn} ⊆ P and consequent p ∈ P \ P1. Here,

propositions in P1 are called the tails of g, denoted by Tails(g), and p is called the

head of g, denoted by Head(g). G divides into four pairwise disjoint subsets Gc,

Ge, Ga and Go of causal generalisation arcs, evidential generalisation arcs, abstrac-

tion arcs, and all other types of generalisation arcs, respectively. Generalisations in

Gc and Ge are defeasible, Ga divides into disjoint subsets Ga
s and Ga

d of strict

and defeasible abstraction arcs, respectively, and Go divides into disjoint subsets

Go
s and Go

d of strict and defeasible other types of generalisation arcs, respectively.

Defeasible and strict generalisations are then denoted by Gd = Gc ∪Ge ∪Ga
d ∪Go

d
and Gs = Ga

s ∪Go
s . For g ∈ G, Tails(g) divides into disjoint subsets Enabler(g)

and Ant(g) of propositions representing enabling conditions and actual antecedents

of the generalisation, respectively, where for g ∈ Gc it holds that Ant(g) �= ∅ and

possibly Enabler(g) = ∅, and for g ∈ Ge ∪Ga ∪Go it holds that Enabler(g) = ∅
(i.e. Tails(g) = Ant(g)).

Curly brackets are omitted in case |Tails(g)| = 1. In figures in this thesis, general-

isation arcs are denoted by solid (hyper)arcs, which are labelled ‘c’ for g ∈ Gc, ‘e’

for g ∈ Ge, and ‘a’ for g ∈ Ga, where ‘o’ labels for g ∈ Go are omitted.
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Figure 3.1: An IG corresponding to a possible interpretation of the part of the mind

map of Figure 1.2 concerning Marjan’s involvement in the murder (a), where�
is a negation arc and � is an exception arc; adjustment to the IG of Figure 3.1a,

where generalisation arc g3 : {mot1, mot2} → murder is now included instead of

arcs g3 : mot1 → murder and g5 : mot2 → murder (b).

In accordance with our assumptions stated in Section 2.1, causal and evidential

generalisations are defeasible and only causal generalisations can include enabling

conditions. Abstractions and generalisations of type ‘other’ can either be strict or

defeasible. A causal generalisation g : c → e may have an evidential counterpart

of the form g′ : e → c (see Section 2.1.3), but only if c is the usual cause of e.

Definition 24 does not prohibit the coexistence of a causal generalisation g : c → e

and its evidential counterpart g′ : e → c in an IG, and inferences can be read from

IGs including both generalisations without yielding anomalous results; hence, both

generalisations may be included if this is considered desirable. However, it should

be noted that g and g′ represent the same knowledge, and that care should be

taken in for instance modelling exceptions to generalisations (see Definition 29),

as an exception to g can also be considered an exception to g′. Ultimately, it is

the responsibility of the knowledge engineer in consultation with the domain expert

to decide which knowledge to include in the IG and to ensure this knowledge is

correctly and consistently represented.

In the following example, the mind map of Section 1.1.2 is modelled as an IG.

Example 27. In Figure 3.1a, an IG is depicted for a possible interpretation of the

part of the mind map of Figure 1.2 concerning Marjan’s involvement in the murder.

First, we consider the undirected edges connected to the testimonies and the police

report in that part of the mind map. In an empirical study in the legal domain, van

den Braak and colleagues [2008] found that subjects often considered testimonies to

be evidential, where generalisations are of the form ‘Testimony to x is evidence for

x’. Police reports can similarly be considered evidential. The IG therefore includes

generalisation arcs g1, g2, g4, g7 ∈ Ge to denote these generalisations. As tes3 con-

cerns Marjan’s testimony to denying any involvement in the murder, proposition ¬
murder is included in P and g6 : tes3 → ¬murder in Ge. A motive for commit-
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Figure 3.2: IG corresponding to a possible interpretation of the part of the mind map

of Figure 1.2 concerning Leo’s cause of death, where ‘a’ labels denote abstractions.

ting an act can be considered a cause for committing that act [van den Braak et al.,

2008]. The IG therefore includes generalisation arcs g3 : mot1 → murder and g5 :

mot2 → murder in Gc to denote these generalisations.

Consider Figure 3.2, which depicts an IG for a possible interpretation of the part

of the mind map of Figure 1.2 concerning Leo’s cause of death. The generalisations

used in the inferences from the testimonies, as well as from autopsy, are considered

to be evidential; therefore, generalisation arcs g′1, g
′
2, g

′
5 and g′8 are included in Ge.

The relation between hammer ( stone) and hit angular is neither causal nor eviden-

tial; instead, generalisation arcs g′3 and g′4 are included in Ga
d to express that, at

a higher level of abstraction, both hammers and stones can generally be considered

angular objects. These generalisations are defeasible as not all hammers and stones

are angular. Finally, hit angular and fell on table can both be considered causes of

head wound; therefore, generalisation arcs g′6 and g′7 are included in Gc. �

The following example illustrates generalisation arcs that include enablers.

Example 28. Consider g′′7 : {fell on table, no helmet} → head wound in Gc, which

is an adjustment to generalisation g′7 of Example 27 which states that falling on

a table causes a head wound in case you are not wearing a helmet. As in Ex-

ample 27, proposition fell on table expresses a cause for head wound and hence,

fell on table is included in Ant(g′′7 ). Proposition no helmet does not express a cause

for head wound and can thus be considered an enabler of g′′7 ; therefore, no helmet is

included in Enabler(g′′7 ). It should be noted that, while no helmet does not express

a cause for the consequent, it still is a necessary condition of generalisation g′′7 . �

Specific configurations of generalisation arcs express that two sets of propositions

are alternative explanations of a common proposition, as captured by Definition 25.

The terminology used is illustrated in Figure 3.3.

45



(2a)

p2

q
g

p1...
c g'

...
c

(1b)

q
g'

p2
...

c

ge
p1

(3)(1a)

p1

g

q...
e

p2

...
e g'

(2b)

q
g

p1
...

c

g'
p2

p2

q
g

p1...
a g'

...
a

... ...
e

Figure 3.3: Illustration of the terminology used in Definition 25, where p1 ∈ P1,

p2 ∈ P2.

Definition 25 (Alternative explanations). Let GI = (P,AI) be an IG. Then sets

P1 ⊆ P and P2 ⊆ P are alternative explanations of q ∈ P, as indicated by gener-

alisations g and g′ in G, iff one of the following holds:

1. P1 = {p1}, g ∈ Ge, Head(g) = p1, q ∈ Tails(g), and either:

1a) P2 = {p2}, g′ ∈ Ge, g′ �= g, Head(g′) = p2, q ∈ Tails(g′), or;
1b) g′ ∈ Gc, Head(g′) = q, P2 ⊆ Ant(g′).

2. g ∈ Gc, Head(g) = q, P1 ⊆ Ant(g), and either:

2a) g′ ∈ Gc, g′ �= g, Head(g′) = q, P2 ⊆ Ant(g′), or;
2b) P2 = {p2}, g′ ∈ Ge, Head(g′) = p2, q ∈ Tails(g′).

3. g ∈ Ga, Head(g) = q, P1 ⊆ Tails(g) and g′ ∈ Ga, g′ �= g, Head(g′) = q,

P2 ⊆ Tails(g′).

Note that cases 1b and 2b are symmetrical in terms of P1 and P2 and the used

generalisations; we opt to keep the distinction between these two cases as they

simplify the proof of Proposition 1. For singleton sets P1 = {p1} and P2 = {p2},
we will simply say that propositions p1 and p2 are alternative explanations of q

instead of sets P1 and P2. In case 1a, q is an antecedent of both g ∈ Ge and

g′ ∈ Ge; hence, both p1 and p2 are causes of q. In case 1b, propositions in P2 are

actual antecedents and not enablers of g′ ∈ Gc and thus propositions in P2 express

a cause for q, and q is an antecedent of g ∈ Ge and thus p1 is a cause of q. In

case 2a, propositions in P1 and propositions in P2 are actual antecedents of g ∈ Gc

and g′ ∈ Gc, respectively; hence, propositions in P1 and propositions in P2 are

actual causes of q. Finally, in case 3, propositions in P1 and propositions in P2 are

antecedents of abstractions g ∈ Ga and g′ ∈ Ga with the same consequent q, and

hence are considered alternative explanations of q.

Note that by Definition 25, different antecedents of the same causal generalisation

or abstraction do not express alternative explanations of the consequent (enforced

by assuming that g′ �= g), which is in accordance with our assumption that only the

antecedents together allow us to infer the consequent (see Section 2.1). Also note

that Definition 25 only captures that sets P1 and P2 are alternative explanations

of q (where possibly P1 ∩P2 �= ∅) and not whether these sets are in competition for

q; the concept of competing alternative explanations is defined in Section 3.4.5.
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Example 29. Consider the IG of Figure 3.2. According to condition 2a of Defini-

tion 25, hit angular and fell on table are alternative explanations of head wound as

indicated by generalisations g′6 and g′7. Similarly, according to condition 3 of Defini-

tion 25, hammer and stone are alternative explanations of hit angular as indicated

by generalisations g′3 and g′4. �

Generalisation chains are sequences of generalisation arcs.

Definition 26 (Generalisation chain). Let GI = (P,AI) be an IG. Generalisa-

tion arcs g1, . . . , gm ∈ G ⊆ AI form a generalisation chain [g1, . . . , gm] in GI iff

Head(gi−1) ∈ Tails(gi) for 1 < i ≤ m.

Note that a subchain of a generalisation chain is again a generalisation chain.

Example 30. In the IG of Figure 3.1a, [g2, g3] is a generalisation chain as Head(g2)

= mot1 ∈ Tails(g3).

Consider the IG of Figure 3.1b, which is an adjustment to the IG of Figure 3.1a

in which generalisation arc g3 : {mot1, mot2} → murder in Gc is included instead

of two separate generalisation arcs g3 and g5. According to Definition 26, [g2, g3] is

a generalisation chain, but mot2 is neither a head nor a tail of generalisation arc

g2; it suffices that Head(g2) = mot1 ∈ Tails(g3). �

We introduce the following terminology regarding generalisation chains.

1. A generalisation chain [g1, . . . , gm] is called non-repetitive if �i, j ∈ {1, . . . ,m}
such that Head(gi) = Head(gj).

2. A generalisation chain [g1, . . . , gm] is called consistent if �i, j ∈ {1, . . . ,m} such

that Head(gi) = −Head(gj).
The importance of the concepts ‘non-repetitive’ and ‘consistent’ generalisation chains

will become apparent in Chapter 5, namely in studying conditions on IGs under

which BN graphs constructed by the approach defined in that chapter are guaran-

teed to be acyclic (Section 5.2.1).

We define the following notion of a causal cycle.

Definition 27 (Causal cycle). Let GI = (P,AI) be an IG. Proposition p ∈ P

expresses a direct cause for q ∈ P iff ∃g ∈ G ⊆ AI with g ∈ Gc, p ∈ Ant(g),

q = Head(g) or g ∈ Ge, p = Head(g), q ∈ Tails(g). Proposition p1 ∈ P expresses

an indirect cause for p3 ∈ P iff ∃p2 ∈ P, p2 �= p1, p2 �= p3, such that p1 expresses a

direct cause for p2 and p2 expresses a direct or indirect cause for p3. A causal cycle

exists in GI iff ∃p, q ∈ P such that p expresses a direct or indirect cause for q ∈ P

and q or −q expresses a direct or indirect cause for p or for −p.
Examples of IGs including causal cycles are provided in Figure 3.4. In this thesis,

we generally assume that IGs do not include causal cycles (see also Poole [1994]).

A negation arc captures a conflict between a proposition and its negation ex-

pressed in an IG.

47



(a)

q1

p
c

q2

eg1 g'1

g'2c eg2

r

(b)

q1

p
c

q2

eg1 g'1

g'2eg2

r

s

c
q3

c

eg3 g'3

Figure 3.4: Examples of IGs including causal cycles.

Definition 28 (Negation arc). Let GI = (P,AI) be an IG. A negation arc n ∈
N ⊆ AI is a bidirectional arc n : p� q in GI that exists between a pair p, q ∈ P

iff q = −p.
Example 31. Consider the running example. As both murder and ¬murder are

included in the IG of Figure 3.1a, negation arc n : murder � ¬murder is also

included in the graph. �

As defeasible generalisations do not hold universally, exceptional circumstances can

be provided under which such a generalisation may not hold; hence, we allow ex-

ceptions to generalisations in Gd to be specified in IGs by means of exception arcs.

Definition 29 (Exception arc). Let GI = (P,AI) be an IG. An exception arc

exc ∈ Exc ⊆ AI is a hyperarc exc : p � g, where p ∈ P is called an exception to

defeasible generalisation g ∈ Gd.

An exception arc directed from p to g indicates that p provides exceptional circum-

stances under which g may not hold.

Example 32. In the running example, proposition lie, which states that Marjan

had reason to lie when giving her testimony, provides an exception to evidential

generalisation g6 : tes3 → ¬murder in Ge. In Figure 3.1a, this is indicated by a

curved hyperarc exc : lie � g6 in Exc. �

3.4 Reading inferences from information graphs

We now define how deductive and abductive inferences can be performed with con-

structed IGs. By itself, a generalisation arc only expresses that the tails together

allow us to infer the head in case this generalisation is used in deductive inference, or

that the tails together can be inferred from the head in case of abductive inference.

Only when considering the available evidence can directionality of inference actually

be read from the graph.

48



Definition 30 (Evidence set). Let GI = (P,AI) be an IG. An evidence set is a

subset Ep ⊆ P for which it holds that for every p ∈ Ep, ¬p /∈ Ep.

The restriction that for every p ∈ Ep it holds that ¬p /∈ Ep ensures that not both

a proposition and its negation are observed.

In figures in this thesis, nodes in GI corresponding to elements of Ep are shaded

and all shaded nodes correspond to elements of Ep, comparable to the manner in

which shading is used to denote evidence in BN graphs. We emphasise that various

evidence sets Ep can be used to establish (different) inferences from the same IG.

Example 33. In the running example, the evidence consists of the testimonies, the

police report and the autopsy report. In Figure 3.5, the IG of Figure 3.1a is again

depicted, with nodes in Ep = {tes1, tes2, tes3, tes4, police} shaded. Similarly, in

Figure 3.9, the IG of Figure 3.2 is again depicted, with nodes in Ep = {tes5, tes6,
tes7, autopsy} shaded. �

We now define when we consider configurations of generalisation arcs and evidence

to express deductive and abductive inference.

3.4.1 Deductive inference

First, we specify under which conditions we consider a configuration of generalisa-

tion arcs and evidence to express deductive inference, where strict and defeasible

deduction are distinguished.

Definition 31 (Deductive inference). Let GI = (P,AI) be an IG, and let Ep ⊆ P

be an evidence set. Let p1, . . . , pn, q ∈ P, with q /∈ Ep. Then given Ep, q is deduc-

tively inferred from propositions p1, . . . , pn using a generalisation g : {p1, . . . , pn} →
q in G iff ∀pi, i = 1, . . . , n:

1. pi ∈ Ep, or;

2. pi is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation

g′ : {r1, . . . , rm} → pi, where g
′ /∈ Gc if g ∈ Ge, or;

3. pi is abductively inferred from a proposition r ∈ P using a generalisation g′ : {pi,
r1, . . . , rm} → r in Gc ∪Ga, g �= g′, r1, . . . , rm ∈ P (see Definition 32).

Here, proposition q is defeasibly deductively inferred from p1, . . . , pn, denoted p1, . . . ,

pn �g q, iff g ∈ Gd, and proposition q is strictly deductively inferred from

p1, . . . , pn, denoted p1, . . . , pn ⇀g q, iff g ∈ Gs.

For ease of reference, symbols� and ⇀ are annotated with the name of the gen-

eralisation used in performing a defeasible or strict inference. In accordance with

our assumptions stated in Section 2.1.1, deduction can be performed using all types

of generalisations in G, where strict deduction can only be performed using strict

abstractions and strict generalisations of type ‘other’. The condition q /∈ Ep ensures

that deduction cannot be performed with a generalisation to infer its consequent in

case its consequent is already observed. Deduction can only be performed using a
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generalisation g ∈ G to infer its consequent Head(g) from its antecedents Tails(g)

in case every antecedent pi ∈ Tails(g) has been affirmed in that either pi is observed

(i.e. pi ∈ Ep), pi itself is deductively inferred, or pi is abductively inferred. In cor-

respondence with Pearl’s constraint (see Section 2.1.4.1), we assume in condition 2

that a proposition q ∈ P cannot be deductively inferred from p1, . . . , pn ∈ P using a

generalisation g ∈ Ge if at least one of its antecedents pi ∈ Tails(g) is deductively

inferred using a generalisation g′ ∈ Gc. In this case, q and Ant(g′) are considered

alternative explanations of pi as indicated by g and g′ (Definition 25, case 1b or

case 2b). Condition 3 of Definition 31 is explained in Section 3.4.3, after abductive

inference is defined.

Example 34. In the IG of Figure 3.5, given Ep mot1 and mot2 are deductively

inferred from tes1 and tes2 using generalisations g2 and g4, respectively, as tes1,

tes2 ∈ Ep (condition 1 of Definition 31). Similarly, murder, ¬murder and lie are

deductively inferred from police, tes3 and tes4 using generalisations g1, g6 and g7,

respectively, as police, tes3, tes4 ∈ Ep.

Proposition murder is also deductively inferred from mot1 and mot2 using causal

generalisations g3 and g5, as mot1 and mot2 are deductively inferred (condition 2 of

Definition 31). This illustrates mixed deductive inference using both evidential and

causal generalisations. �

The following example illustrates strict deductive inference.

Example 35. Consider Example 4 from Section 2.1.1. In this example, generalisa-

tion arc g : lung cancer → cancer is included in Ga
s . As lung cancer ∈ Ep, cancer

is strictly deductively inferred from lung cancer (Definition 31, condition 1). �

The next example illustrates the restrictions put on performing deduction in our

IG-formalism.

Example 36. Figure 3.6a depicts an example of an IG in which q cannot be deduc-

tively inferred from p using g1, as Head(g1) = q ∈ Ep. In Figure 3.6b, q cannot be

deductively inferred from p1 and p2 using g1, as p2 /∈ Ep and p2 is neither deductively

nor abductively inferred.
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In Figure 3.6c, Example 10 illustrating Pearl’s constraint is modelled. As smoke

machine ∈ Ep, smoke is deductively inferred from smoke machine using g1 (Defini-

tion 31, condition 1). fire cannot in turn be inferred from smoke using g2 (Definition

31, condition 2), as g2 ∈ Ge and smoke is deductively inferred using g1 ∈ Gc. �

3.4.2 Abductive inference

Next, we specify under which conditions we consider a configuration of generalisation

arcs and evidence to express abductive inference.

Definition 32 (Abductive inference). Let GI = (P,AI) be an IG, and let Ep ⊆ P

be an evidence set. Let p1, . . . , pn, q ∈ P, with {p1, . . . , pn} ∩ Ep = ∅. Then given

Ep, propositions p1, . . . , pn are abductively inferred from q using a g : {p1, . . . , pn} →
q in Gc ∪Ga, denoted q �g p1; . . . ; q �g pn, iff:

1. q ∈ Ep, or;

2. q is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation

g′ : {r1, . . . , rm} → q in G, g �= g′ (see Definition 31), where g′ /∈ Gc if g ∈ Gc

and g′ /∈ Ga if g ∈ Ga, or;

3. q is abductively inferred from a proposition r ∈ P using a generalisation g′ : {q,
r1, . . . , rm} → r in Gc ∪Ga, r1, . . . , rm ∈ P.

In accordance with our assumptions stated in Section 2.1.2, abduction is defeasible

and is modelled using only causal generalisations and abstractions. Following Con-

sole and Dupré [1994] and Bex [2011], we assume that abductive inference can be

performed with both strict and defeasible abstractions, where such an inference is

always defeasible as it concerns an inference from the more abstract consequent to

a more specific antecedent (see Section 2.1.2). The condition {p1, . . . , pn} ∩Ep = ∅
ensures that abduction cannot be performed with a generalisation to infer its an-

tecedents in case at least one of its antecedents is already observed. Furthermore,

abductive inference can only be performed using a generalisation g ∈ Gc ∪Ga to

infer its antecedents Tails(g) from its consequent Head(g) in case Head(g) has

been affirmed in that either Head(g) is observed (i.e. Head(g) ∈ Ep), Head(g) is

deductively inferred, or Head(g) is itself abductively inferred.
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example of an IG illustrating abduction with abstractions (b).

In correspondence with Pearl’s constraint (see Section 2.1.4.1), we assume in

condition 2 that propositions p1, . . . , pn ∈ P cannot be abductively inferred from a

proposition q ∈ P using a generalisation g ∈ Gc if its consequent q is deductively

inferred using a generalisation g′ �= g, g′ ∈ Gc. In enforcing this constraint, we do

not need to consider whether or not the antecedents of g or g′ include enablers, as

illustrated in Example 13 from Section 2.1.4.1. More specifically, in Definition 24

it is assumed that ∀g ∈ Gc, Ant(g) �= ∅; therefore, sets Ant(g) and Ant(g′) are

alternative explanations of q according to case 2a of Definition 25 which may not be

inferred from each other by inferring q as an intermediary step. Similarly, we assume

in condition 2 that g′ /∈ Ga if g ∈ Ga to account for our constraints on performing

deduction and abduction in that order with two abstractions (see Section 2.1.4.2).

In this case, Tails(g) and Tails(g′) are alternative explanations of q as indicated by

g and g′ according to case 3 of Definition 25.

Example 37. In the IG of Figure 3.7a, q and r1 are abductively inferred from

r using generalisation g3 : {q, r1} → r in Gc by condition 1 of Definition 32, as

r ∈ Ep. Then by condition 3 of Definition 32, p1 and p2 are abductively inferred

from q using g1 and g2, respectively. �

The following example further illustrates abductive inference with abstractions.

Example 38. In Figure 3.7b, Example 16 from Section 2.1.4.2 is modelled as an

IG. As smoking ∈ Ep, cancer is deductively inferred from smoking using g′3. Propo-

sitions lung cancer and colon cancer are then abductively inferred from cancer using

strict abstractions g′1 and g′2, respectively (Definition 32, condition 2). Hence, in this

example, a cause ( smoking) for an event ( cancer) is known, after which this event

is inferred and is in turn further specified at a lower level of abstraction ( lung cancer

or colon cancer). As noted in Section 2.1.4.2, this type of mixed inference using a

causal generalisation and abstractions does not lead to undesirable results. �

The following examples illustrate that Pearl’s constraint for mixed deductive-abductive

inference (see Section 2.1.4.1), as well as our proposed constraints on performing in-

ference with abstractions (see Section 2.1.4.2), are adhered to.
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Figure 3.8: An IG illustrating Pearl’s constraint for mixed deductive-abductive in-

ference (a); an IG illustrating our inference constraints for abstractions (b); an IG

illustrating mixed abductive-deductive inference (c).

Example 39. In Figure 3.8a, Example 11 is modelled as an IG. As smoke machine

∈ Ep, smoke is deductively inferred from smoke machine using g1. Proposition fire

cannot be inferred from smoke, as g2 ∈ Gc and smoke is deductively inferred using

g1 ∈ Gc (Definition 32, condition 2).

In Figure 3.8b, Example 14 is modelled as an IG. As gun ∈ Ep, deadly weapon is

deductively inferred from gun using g1. Proposition knife cannot in turn be inferred

from deadly weapon, as g2 ∈ Ga and deadly weapon is deductively inferred using

g1 ∈ Ga (Definition 32, condition 2). �

The following example describes the inferences that can be made based on the IG

of Figure 3.2 corresponding to the part of the mind map example of Section 1.1.2

concerning Leo’s cause of death.

Example 40. Consider the IG of Figure 3.9. Given Ep = {tes5, tes6, tes7,

autopsy}, head wound is deductively inferred from autopsy using g′5. Then, hit

angular and fell on table are abductively inferred from head wound using g′6 and

g′7, respectively (Definition 32, condition 2). head wound is also deductively in-

ferred from fell on table using g′7, as fell on table is deductively inferred from tes7
using g′8. Propositions hammer and stone are abductively inferred from hit angular

using g′3 and g′4, respectively (Definition 32, condition 3). hit angular is also deduc-

tively inferred from hammer and stone using g′3 and g′4, respectively, as hammer is

deductively inferred from tes5 using g′1 and stone is deductively inferred from tes6
using g′2. Then head wound is deductively inferred from hit angular using g′6. �

stone

hit_angular

tes5
e

a

hammer

a

tes6
e

autopsy
e head_wound

fell_on_table

c c

tes7

e

g'1 g'2

g'3 g'4

g'5
g'6 g'7

g'8

Figure 3.9: The IG of Figure 3.2, where evidence set Ep (shaded) and resulting

inference steps (�) are also indicated.
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3.4.3 Mixed abductive-deductive inference

As apparent from Definitions 31 and 32, mixed abductive-deductive inference can

be performed within our IG-formalism.

Example 41. In Figure 3.8c, Example 9 from Section 2.1.4 is modelled as an IG.

From smoke, fire is abductively inferred using g1, as smoke ∈ Ep. Then heat is

deductively inferred (or predicted) from fire using g2 (Definition 31, condition 3).�

3.4.4 Ambiguous inference

The conditions under which we consider a configuration of generalisation arcs and

evidence to express deductive and abductive inference according to Definitions 31

and 32 are not mutually exclusive. Under specific conditions, both inference types

can be established from the same causal generalisation or abstraction in an IG given

the provided evidence; the inference type is, therefore, ambiguous. As noted in

Section 2.1.5, ambiguous inference patterns may arise in practice and, therefore, we

do not wish to prohibit them from occurring.

Example 42. Consider the IG of Figure 3.5. Given Ep, murder is deductively

inferred from police using g1 and mot1 and mot2 are deductively inferred from tes1
and tes2 using g2 and g4, respectively. As murder, mot1, mot2 /∈ Ep, murder

is deductively inferred from mot1 and mot2 and mot1 and mot2 are abductively

inferred from murder using g3 and g5, respectively. �

3.4.5 Competing alternative explanations

Next, we consider how the concept of competing alternative explanations (see Sec-

tion 2.1.2) is captured within our IG-formalism.

Definition 33 (Competing alternative explanations). Let GI = (P,AI) be an IG,

and let Ep ⊆ P be an evidence set. Let g, g′ ∈ Gc or g, g′ ∈ Ga. Then given

Ep, Ant(g) is considered to be in competition with Ant(g′) for proposition q in

case Ant(g) and Ant(g′) are alternative explanations of q as indicated by g and g′

(Definition 25, case 2a or case 3) and in case Ant(g) and Ant(g′) are abductively

inferred from q given Ep using g and g′, respectively.

The above definition captures competition between sets of propositions Ant(g) and

Ant(g′) (where possibly Ant(g) ∩ Ant(g′) �= ∅), as these sets are abductively

inferred from q using g and g′, respectively (see Section 2.1.2). More specifically, in-

dividual propositions in Ant(g) are not in competition with individual propositions

in Ant(g′). In case a causal generalisation or abstraction has multiple antecedents,

then these antecedents are not in competition among themselves.

Example 43. Consider Figure 3.10a, which depicts an adjustment to the IG of

Figure 3.1a. Given Ep = {police}, propositions mot1 and mot2 are abductively
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Figure 3.10: Adjustment to the IG of Figure 3.1a involving two competing alterna-

tive explanations mot1 and mot2 for murder (a); the IG of Figure 3.1b with evidence

Ep and resulting inference steps now indicated, involving two non-competing alter-

native explanations mot1 and mot2 for murder (b).

inferred from murder using g3 and g5, respectively, as murder is deductively inferred

from police using g1. Therefore, mot1 and mot2 are in competition for common

effect murder. To allow for the possibility that both motives are true, the additional

generalisation arc {mot1, mot2} → murder can be included in Gc. In this case, mot1
and mot2 are no longer considered mutually exclusive causes for murder. In case

only mot1 and mot2 together are considered a cause for murder, only generalisation

arc {mot1, mot2} → murder should be included in the IG and separate generalisation

arcs g3 and g5 should be excluded.

In Figure 3.10b, the IG of Figure 3.1b is again depicted, where evidence Ep =

{tes1, tes2} and resulting inferences are also indicated. In this IG, murder is de-

ductively inferred from {mot1, mot2} given Ep using g3 : {mot1, mot2} → murder

in Gc; therefore, mot1 and mot2 are not in competition for murder. �

Finally, note that a causal generalisation g1 : c1 → emay be replaced by an evidential

generalisation g′1 : e→ c1 if c1 is the usual cause of e, in which case abduction with

g1 can be encoded as deduction with g′1 (see Section 2.1.3). Considering the case in

which only g1 and not g′1 is included in IG GI and additional causal generalisation

g2 : c2 → e is provided, then upon observing e propositions c1 and c2 are abductively

inferred from e using generalisation arcs g1 and g2, respectively, which are then

competing alternative explanations of e according to Definition 33. However, in

case only g′1 and g2 are included in GI and not g1, then upon observing e c1 is

deductively inferred from e using g′1 and c2 is abductively inferred from e using g2;

hence, in this case propositions c1 and c2 are not competing alternative explanations

as deduction and not abduction is performed using g′1. Hence, if the knowledge

engineer considers c1 and c2 to be competing alternative explanations of e, then the

involved generalisations should be modelled as causal generalisations. We reiterate

that it is the responsibility of the knowledge engineer in consultation with the domain

expert to decide which knowledge (including conflicts) to represent in an IG and to

ensure this knowledge is modelled correctly (see also Section 3.3, p. 44).
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3.5 Inference chains and their properties

Finally, we introduce the notion of an inference chain, which describes a sequence of

propositions that are iteratively inferred from each other given Ep. We then prove a

number of formal properties of inference chains. The importance of inference chains

will become apparent in Chapter 5, where we compare the reasoning patterns that

can be read from IGs to the reasoning patterns captured in BN graphs constructed

from IGs by the approach defined in that chapter.

First, we define the concept of a chain for IGs.

Definition 34 (Chain in an IG). Let GI = (P,AI) be an IG, and let Ep ⊆ P

be an evidence set. Let {p1, . . . , pn} ⊆ P and let G′ = {g1, . . . , gn−1} ⊆ G. Then

(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) is a chain in GI iff for all 1 < i ≤ n it either holds

that Head(gi−1) = pi, pi−1 ∈ Tails(gi−1) or Head(gi−1) = pi−1, pi ∈ Tails(gi−1).

We now define when a chain in an IG is an inference chain.

Definition 35 (Inference chain). Let GI = (P,AI) be an IG, and let Ep ⊆ P be

an evidence set. Let G′ = {g1, . . . , gn−1} ⊆ G, and let {p1, . . . , pn} ⊆ P such that

�i, j ∈ {1, . . . , n} with pi = −pj, and such that (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) is

a chain in GI . Let p1 ∈ Ep or let p1 be deductively or abductively inferred using

a generalisation g ∈ G \ G′ given Ep (see Definitions 31 and 32). Then chain

(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) is an inference chain in GI given Ep iff for all

1 < i ≤ n it holds that:

1. pi is deductively inferred using generalisation gi−1 ∈ G′ given Ep (see Definition

31), where Head(gi−1) = pi, pi−1 ∈ Tails(gi−1), or;

2. pi is abductively inferred from pi−1 using generalisation gi−1 ∈ G′ given Ep (see

Definition 32), where Head(gi−1) = pi−1, pi ∈ Tails(gi−1).

We emphasise that an inference chain (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) does not only

describe that pi−1 was used in inferring pi for all 1 < i ≤ n; it also describes that the

inference chain needs to start in a proposition p1 that is either observed or inferred,

hence the conditions regarding p1 in Definition 35. We refer to the assumption that

for inference chains (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) it holds that all pi are distinct

(enforced by assuming that {p1, . . . , pn} ⊆ P) as our non-repetitiveness assump-

tion on inference chains. We refer to the assumption that for {p1, . . . , pn} it holds

that �i, j ∈ {1, . . . , n} with pi = −pj as our consistency assumption on inference

chains. Note that a subchain (pi, gi, pi+1, gi+1, . . . , pm−1, gm−1, pm) of an inference

chain (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) for 1 ≤ i, m ≤ n is again an inference chain.

Finally, generalisation g : {p1, . . . , pn} → q is said to be on an inference chain given

Ep if there exists an inference chain (pi, g, q) or (q, g, pi) for pi ∈ Tails(g) given Ep.

Compared to generalisation chains (see Definition 26), which are solely captured

by the graphical structure of IGs, inference chains can only be read from an IG by

considering the evidence Ep. In case an inference chain only describes deductive
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Figure 3.11: The IG of Figure 3.10b, where inference chains are also indicated by

connecting arcs with open arrowheads.

inferences, then our non-repetitiveness and consistency assumptions on inference

chains coincide with our non-repetitiveness and consistency assumptions on gener-

alisation chains as described in Section 3.3 (p. 47); however, these assumptions do

not coincide in case an inference chain also describes abductive inferences.

The following example illustrates the concept ‘inference chain’ and how it com-

pares to the concept ‘generalisation chain’.

Example 44. In the IG of Figure 3.11, (tes1, g2, mot1, g3, murder) is an inference

chain given Ep, as mot1 is deductively inferred from tes1 ∈ Ep using g2, where

Head(g2) = mot1 and tes1 ∈ Tails(g2), and murder is deductively inferred from

mot1 and mot2 using g3, where Head(g3) = murder and mot1 ∈ Tails(g3). In this

IG, [g2, g3] is also a generalisation chain (see Example 30). Note that the presence of

this inference chain does not imply that mot1 is by itself sufficient to infer murder;

instead, murder can only be deductively inferred using g3 in case both mot1 and mot2
are affirmed. The broader context in which the inference from mot1 to murder is

performed using g3 is thus not directly apparent from this inference chain; instead,

the role of mot2 becomes apparent in considering other inference chains that can be

read from this IG given Ep, specifically inference chain (tes2, g4, mot2, g3, murder).

In the IG of Figure 3.5, (police, g1, murder, g3, mot1) is an inference chain

given Ep: murder is deductively inferred from police ∈ Ep using generalisation g1
and mot1 is abductively inferred from murder using generalisation g3. However,

[g1, g3] is not a generalisation chain, as Head(g1) = murder /∈ Tails(g3). �

Note that in Definition 35 it is assumed that inference chains (p1, g1, p2, g2, . . . , pn−1,

gn−1, pn) do not need to start in evidence in that it does not need to hold that

p1 ∈ Ep, as long as p1 is deductively or abductively inferred using a g ∈ G \ G′

given Ep.

Example 45. In Figure 3.11, (mot1, g3, murder) is an inference chain given Ep:

murder is deductively inferred from mot1 and mot2 using g3. However, mot1 /∈ Ep;

instead, mot1 is deductively inferred using g2 ∈ G \ {g3} given Ep. �

The next example illustrates that inference chains are generally not symmetrical.
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Example 46. In the IG of Figure 3.11, (tes1, g2, mot1, g3, murder) is an inference

chain (see Example 44), but (murder, g3, mot1, g2, tes1) is not an inference chain

as mot1 cannot be inferred from murder using g3 and tes1 cannot be inferred from

mot1 using g2. �

We prove the following properties of inference chains that will be used in Chapter

5. Lemma 1 states that for inference chains, only the first proposition can possibly

be observed.

Lemma 1. Let GI = (P,AI) be an IG, and let Ep ⊆ P be an evidence set. Let

p1, . . . , pn ∈ P, g1, . . . , gn−1 ∈ G and let (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be an

inference chain in GI given Ep. Then pi /∈ Ep for i > 1.

Proof. Let i > 1. In case pi is deductively inferred from pi−1 using gi−1, then

pi = Head(gi−1) /∈ Ep per the restrictions of Definition 31. Similarly, in case pi is

abductively inferred from pi−1 using gi−1, then pi ∈ Tails(gi−1) and hence pi /∈ Ep

per the restriction of Definition 32 that Tails(gi−1) ∩Ep = ∅. �

Lemma 2 states that an inference step between two consecutive propositions pi and

pi+1 in an inference chain can only be performed with a generalisation gi for which

it holds that Head(gi) = pi and pi+1 ∈ Tails(gi) in case gi is a causal generalisation

or an abstraction.

Lemma 2. Let GI = (P,AI) be an IG, and let Ep ⊆ P be an evidence set. Let

p1, . . . , pn ∈ P, g1, . . . , gn−1 ∈ G and let (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be an

inference chain in GI given Ep. Let i ∈ {1, . . . , n− 1} and assume that Head(gi) =

pi, pi+1 ∈ Tails(gi). Then gi ∈ Gc ∪Ga.

Proof. Assume that GI includes a generalisation arc gi with Head(gi) = pi and

pi+1 ∈ Tails(gi). Then the associated generalisation’s antecedent pi+1 cannot be

inferred from its consequent pi in case gi ∈ Ge ∪Go, as this would be an instance

of abductive inference while per the restrictions of Definition 32 abductive inference

can only be performed using generalisation arcs in Gc ∪Ga. �

In performing inference care should be taken that no cause for an effect is inferred

if an alternative cause for this effect was already previously inferred (i.e. Pearl’s

constraint, see Section 2.1.4.1). Similarly, care should be taken that no version

of an event at a lower level of abstraction is inferred if an alternative version of

this event at a lower level of abstraction was already previously inferred (i.e. our

inference constraints for abstractions, see Section 2.1.4.2). In the context of IGs, for

g ∈ Gc, propositions in Ant(g) express a cause for the common effect expressed by

Head(g), for g ∈ Ge, Head(g) expresses the usual cause for propositions in Tails(g),

and for g ∈ Ga, propositions in Tails(g) are at a lower level of abstraction than

Head(g). Hence, in defining how inferences can be read from IGs, restrictions are

put in Definitions 31 and 32 such that our inference constraints (see Section 2.1.4)

are adhered to. We now formally prove that the inference chains that can be read

from an IG given an Ep indeed never violate these constraints.
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First, we define the inference constraints of Section 2.1.4 in the context of IGs.

Definition 36 (Inference constraints). Let GI = (P,AI) be an IG, and let Ep ⊆ P

be an evidence set. Let P1 ⊆ P and P2 ⊆ P be alternative explanations of q ∈ P

as indicated by generalisations g1 and g2 in G (see Definition 25). Let p1 ∈ P1 and

p2 ∈ P2. Assume that inference chain (p1, g1, q) exists in GI given Ep. Then chain

(p1, g1, q, g2, p2) is not an inference chain in GI given Ep.

We now formally prove that these inference constraints are indeed adhered to.

Proposition 1 (Adherence to inference constraints). Let GI = (P,AI) be an IG,

and let Ep ⊆ P be an evidence set. Then any inference chain in GI given Ep

adheres to the inference constraints as defined in Definition 36.

Proof. Assume that P1 ⊆ P and P2 ⊆ P are alternative explanations of q ∈ P as

indicated by generalisations g1 and g2 in G with p1 ∈ P1 and p2 ∈ P2, and assume

that inference chain (p1, g1, q) exists in GI given Ep. Then we need to prove that

chain (p1, g1, q, g2, p2) is not an inference chain in GI given Ep. In performing the

inference from p1 to q, a generalisation g1 ∈ Ge, q ∈ Tails(g1), Head(g1) = p1
could not have been used (Definition 25, case 1) per Lemma 2. Thus, we only

need to consider cases 2 and 3 of Definition 25, which is a deductive inference with

generalisation g1 ∈ Gc, Head(g1) = q, P1 ⊆ Ant(g1) or g1 ∈ Ga, Head(g1) = q,

P1 ⊆ Tails(g1), respectively.

• First, consider case 2a of Definition 25 in which g2 �= g1, g2 ∈ Gc, Head(g2) = q,

P2 ⊆ Ant(g2). Then p2 cannot be inferred from q using g2, as in this case

abduction would be performed with g2 to infer p2 from q while per the restric-

tions in condition 2 of Definition 32 abduction cannot be performed with g2 as

Head(g2) was previously deductively inferred using g1 ∈ Gc.

• Next, consider case 2b of Definition 25 in which g2 ∈ Ge, Head(g2) = p2,

q ∈ Tails(g2). Then p2 cannot be inferred from q using g2, as in this case

deductive inference would be performed with g2 to infer p2 from q while per

the restrictions in condition 2 of Definition 31 deductive inference cannot be

performed with g2 as q ∈ Tails(g2) was previously deductively inferred using

g1 ∈ Gc.

• Finally, consider case 3 of Definition 25 in which g2 �= g1, g2 ∈ Ga, Head(g2) =

q, P2 ⊆ Tails(g2). Then p2 cannot be inferred from q using g2, as in this

case abduction would be performed with g2 to infer p2 from q while per the

restrictions in condition 2 of Definition 32 abduction cannot be performed with

g2 as Head(g2) was previously deductively inferred using g1 ∈ Ga. �

Example 47. In the IG of Figure 3.6c, [g1, g2] is a generalisation chain but (smoke

machine, g1, smoke, g2, fire) is not an inference chain, as per Pearl’s constraint fire

cannot be deductively inferred from smoke using g2. �
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Figure 3.12: Example of an IG (a); alternative IG-modelling of the problem (b).

3.6 Discussion: additional inference constraints

In this chapter we focussed on the constraints we argue should be imposed on per-

forming inference with pairs of generalisations (see Section 2.1.4), which cover Pearl’s

[1988a] original constraints (see Section 2.1.4.1) and local constraints on performing

inference with abstractions (see Section 2.1.4.2). In this section, we discuss further

extending our inference constraints. We provide an example of an IG for which pos-

sibly undesirable results are obtained upon performing inference with abstractions

and generalisations of type ‘other’ using local constraints only, and discuss possible

solutions that may be implemented in future work to help solve the problem.

Consider the IG depicted in Figure 3.12a. Upon observing that a person smokes

(i.e. given Ep = {smoking}), this would make us infer that this person has a dis-

ease that is biologically inherited (inherited) upon performing deduction in sequence

with g1 and g2 and abduction with g3. Hence, a cause for disease is inferred (i.e.

inherited) while a cause for disease (i.e. smoking) is already known, which is un-

desirable. Similar observations can be made by replacing g3 with g′3 : disease →
inherited in Ge, or by including g2 ∈ Go instead of in Ga. Figure 3.12b depicts

an alternative IG-modelling in which causal generalisation g′1 : smoking → disease

is used to express that smoking typically causes diseases. In essence, this gener-

alisation captures the knowledge expressed by generalisations g1 and g2 in Figure

3.12a without making the intermediate claim cancer explicit. Given Ep, disease is

inferred from smoking using g′1, but inherited cannot in turn be abductively inferred

from disease using g3 per the restrictions in condition 2 of Definition 32. One may

therefore argue that the undesirable results obtained for the IG of Figure 3.12a are

a result of the way the available knowledge is modelled. However, a problem with

considering this to be a knowledge modelling issue is that IGs including abstractions

and generalisations of type ‘other’ would always need to be verified by a knowledge

engineer, and that intermediate claims cannot always be made explicit in the man-

ner as depicted in Figure 3.12a. Preferably, additional constraints are imposed to

ensure undesirable results are not obtained upon performing inference.

Our definitions of deductive and abductive inference (Definitions 31 and 32) may

be adjusted and further restricted to help solve the problem; however, this would

considerably complicate our definitions, as not only single generalisations but also
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chains of generalisations would need to be considered. For instance, in the example

of Figure 3.12a generalisation arc g2 can arguably be replaced by a generalisation

chain [g′2, . . . , g
′
m] with g′2, . . . , g

′
m ∈ Ga ∪ Go, cancer ∈ Tails(g′2), Head(g

′
m) =

disease, where upon performing iterative deduction with g1, g
′
2, . . . , g

′
m given Ep,

one should not in turn be allowed to perform abductive inference with g3.

Another solution is to monitor for every proposition whether it is causally or

evidentially inferred given the evidence, as in Pearl’s [1988a] C-E system. In his

semi-formal proposal, default rules with only single antecedents are assigned causal

and evidential ‘C’ and ‘E’ labels. Each proposition is then also assigned a ‘C’ or

‘E’ label, where given the evidence a proposition is ‘E-believed’ if it is deductively

inferred using an E-rule and ‘C-believed’ if it is deductively inferred using a C-rule.

Deduction can always be performed with C-rules regardless of whether its antecedent

is C-believed or E-believed, but deduction can only be performed with E-rules in

case its antecedent is E-believed (i.e. Pearl’s constraint, see Section 2.1.4.1). In his

system, Pearl does not consider default rules with multiple antecedents, he does not

consider abductive inference, and he does not consider (strict or defeasible) default

rules that are neither causal nor evidential. In previous work, van Hooff [2004] (in

Master thesis research) preliminarily investigated extending Pearl’s C-E system with

default rules that are neither causal nor evidential and default rules with multiple

antecedents; in future work, this preliminary solution may be further elaborated and

extended upon to work for current purposes. For instance, van Hooff [2004] states

that a proposition deductively inferred using a default rule with a single antecedent

that is neither causal nor evidential should receive the same status as the status of

the antecedent of this rule. In our example, cancer is C-believed as it is deductively

inferred using causal generalisation g1. According to van Hooff [2004], disease is

then also C-believed as it is deductively inferred using abstraction g2. To ensure

undesirable results are not obtained for our example, restrictions would then need to

be imposed on performing abductive inference with a causal generalisation in case

its head is C-believed.

3.7 Concluding remarks

In this chapter, we have set out to formalise and disambiguate analyses performed

using informal sense-making tools in a manner that (1) allows for guiding the con-

struction of formal representations within AI systems and that (2) is in line with our

conceptual analysis of reasoning about evidence as provided in Section 2.1, while (3)

allowing inference to be performed and visualised in a manner that is closely related

to the way in which inference is performed and visualised by domain experts us-

ing such tools. In particular, we have proposed the IG-formalism, which formalises

analyses performed using such tools in this manner. The IG-formalism provides

a precise account of the interplay between deductive and abductive inference and

causal, evidential, abstractions, and other types of information. The inference con-

straints we impose on our IG-formalism are based on our conceptual analysis of
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reasoning about evidence of Section 2.1 and are inspired by other formal systems for

reasoning about evidence, e.g. [Bex, 2011, 2015; Console and Torasso, 1991; Poole,

1989], where we have accounted for constraints that are typically accounted for in

these systems. Given the evidence, inference chains can be read from an IG, which

are sequences of propositions that can be iteratively inferred from each other; we

have formally proven that inference chains that can be read from an IG given the

evidence indeed adhere to the identified inference constraints.

As illustrated through examples of analyses performed using informal sense-

making tools, when performing analyses domain experts naturally mix the different

types of generalisations and inferences, where the used generalisations and the in-

ference type are left implicit. Furthermore, the manner of conflict is typically not

precisely specified and the assumptions of domain experts underlying their analyses

are typically not explicitly stated, making these analyses ambiguous to interpret.

Our IG-formalism serves to formalise and disambiguate these analyses in a manner

that makes the used generalisations and conflicts explicit, where the components

and elements incorporated in the formalism are meant to represent a cross section

of elements that can typically be expressed using such tools. By precisely defining

the different elements incorporated in our formalism and by explicitly stating our

assumptions, we expect IGs to be less ambiguous to interpret than analyses per-

formed using tools, a claim that should be empirically evaluated in future work.

Such a study may also serve to evaluate the expressivity of the IG-formalism.

In interpreting a performed analysis as an IG, an additional knowledge elicita-

tion step may be required as the used generalisations and the manner of conflict

are typically left implicit in these analyses. In this chapter, we have provided an

example of this interpretation step by discussing a possible formalisation of an anal-

ysis performed using a mind mapping tool. IGs may also be directly constructed

by domain experts in case work. In the following chapters, we demonstrate that

our IG-formalism can be used to guide the construction of formal representations

within AI systems. More specifically, in Chapter 4 we define an argumentation for-

malism based on IGs that allows for formal evaluation of arguments based on IGs

using computational argumentation, and in Chapter 5 we demonstrate the use of the

IG-formalism in guiding BN construction by serving as an intermediary formalism

between analyses performed using informal sense-making tools and BNs.
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Chapter 4

An argumentation formalism based

on information graphs

Based on our IG-formalism from Chapter 3, we now define an argumentation for-

malism that allows for both deductive and abductive argumentation. Note that the

IG-formalism is not an argumentation formalism; instead, in Chapter 3 we defined

how inference can be performed with IGs and we defined different notions of conflicts

(i.e. negatory conflict, exception-based conflict, conflict between competing alter-

native explanations). In the current chapter, we define an argumentation formalism

based on IGs which allows us to assign a semantics to arguments constructed on

the basis of IGs. More specifically, our approach generates an abstract argumen-

tation framework (see Section 2.2.1) which thus allows arguments based on IGs to

be formally evaluated according to Dung’s [1995] semantics. We can then study

properties of generated AFs; in particular, we prove that Caminada and Amgoud’s

[2007] postulates are satisfied by instantiations of our formalism, which warrants

the sound definition of instantiations of our argumentation formalism and implies

that anomalous results such as issues regarding inconsistency and non-closure as

identified by Caminada and Amgoud [2007] are avoided.

In Section 4.1 we define arguments on the basis of a provided IG and an evidence

set Ep, which capture sequences of deductive and abductive inference applications

starting with elements from Ep. We then prove a number of formal properties

of arguments, among which the property that arguments constructed on the basis

of IGs conform to our inference constraints (see Section 2.1.4). In Section 4.2 we

define several types of attacks between arguments based on IGs, which are based

on the different types of conflicts defined for our IG-formalism. In Section 4.3 we

instantiate Dung’s abstract approach with arguments and attacks based on IGs. In

Section 4.4 we then formally prove that key rationality postulates [Caminada and

Amgoud, 2007] are satisfied by instantiations of our formalism.
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4.1 Arguments

In this section, we define how arguments on the basis of an IG and an evidence set

Ep are constructed. Here, we take inspiration from the definition of an argument

as defined for the ASPIC+ framework (see Section 2.2.2). By remaining close to

the ASPIC+ framework, this allows us to straightforwardly show that rationality

postulates are satisfied for our argumentation formalism based on IGs (see Section

4.4). Furthermore, Bex [2015] previously proposed an integrated theory of causal

and evidential arguments, which is a formal account of reasoning about evidence

that is based on the ASPIC+ framework; hence, by remaining close to the ASPIC+

framework we can compare his account to ours (see Section 8.1.2).

In comparison to the operators introduced for arguments in ASPIC+ (see Def-

inition 7), the following additional operators are introduced. In what follows, for

a given argument, ImmSub returns its immediate sub-arguments, Gen returns all

the generalisations used in constructing the argument, TopGen returns the last

generalisation used in constructing the argument, and DefInf and StInf return all

the defeasible and strict inferences used in constructing the argument, respectively.

Definition 37 is explained and illustrated in Examples 48 and 49.

Definition 37 (Argument). Let GI = (P,AI) be an IG, and let Ep ⊆ P be an

evidence set. An argument A on the basis of GI and Ep is any structure obtainable

by applying one or more of the following steps finitely many times, where steps 2

(i.e. step 2a or 2b) and 3 or vice versa are not subsequently applied using the same

generalisation arc g ∈ G:

1. p if p ∈ Ep, where: Prem(A) = {p}; Conc(A) = p; Sub(A) = {A}; ImmSub(A)
= ∅; Gen(A) = ∅; TopGen(A) = undefined; DefInf(A) = ∅; StInf(A) = ∅;
TopInf(A) = undefined.

2a. A1, . . . , An �g p if A1, . . . , An are arguments such that p is defeasibly de-

ductively inferred from Conc(A1), . . . ,Conc(An) using a generalisation g :

{Conc(A1), . . . ,Conc(An)} → p according to Definition 31, where it holds that

g ∈ Gd and if g is of the form g : c → e in Gc and its evidential counterpart

g′ : e → c is included in Ge, then g′ /∈ Gen(A1) ∪ . . . ∪ Gen(An). For A, it

holds that:

Prem(A) = Prem(A1) ∪ . . . ∪ Prem(An); Conc(A) = p;

Sub(A) = Sub(A1) ∪ . . . ∪ Sub(An) ∪ {A}; ImmSub(A) = {A1, . . . , An};
Gen(A) = Gen(A1) ∪ . . . ∪Gen(An) ∪ {g}; TopGen(A) = g;

DefInf(A) = DefInf(A1)∪ . . .DefInf(An)∪{Conc(A1), . . . ,Conc(An)�g

p}; StInf(A) = StInf(A1) ∪ . . .StInf(An);

TopInf(A) = Conc(A1), . . . ,Conc(An)�g p.

2b. A1, . . . , An ⇀g p if A1, . . . , An are arguments such that p is strictly deductively

inferred from Conc(A1), . . . ,Conc(An) using a generalisation g ∈ Gs, g :

{Conc(A1), . . . ,Conc(An)} → p according to Definition 31, where Prem(A),

Conc(A), Sub(A), ImmSub(A), Gen(A) and TopGen(A) are defined as in
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Figure 4.1: Adjustment to the IG of Figure 3.5b, where arguments and direct attacks

(���) on the basis of this IG and Ep are also indicated.

step 2a, and where:

DefInf(A) = DefInf(A1) ∪ . . .DefInf(An);

StInf(A) = StInf(A1) ∪ . . .StInf(An) ∪ {Conc(A1), . . . ,Conc(An) ⇀g p};
TopInf(A) = Conc(A1), . . . ,Conc(An) ⇀g p.

3. A′�g p if A′ is an argument such that p is abductively inferred from Conc(A′)
using a generalisation g ∈ Gc ∪Ga, g : {p, p1, . . . , pn} → Conc(A′) for some

propositions p1, . . . , pn ∈ P according to Definition 32, where:

Prem(A) = Prem(A′); Conc(A) = p; Sub(A) = Sub(A′) ∪ {A}; ImmSub(A)
= {A′}; Gen(A) = Gen(A′)∪{g}; TopGen(A) = g; DefInf(A) = DefInf(A′)
∪{Conc(A′)�g p}; StInf(A) = StInf(A′); TopInf(A) = Conc(A′)�g p.

Note that we overload symbols � and ⇀ to denote an argument while it also

denotes a defeasible or strict inference. Similar to ASPIC+, the set of all arguments

on the basis of GI and Ep is denoted by A.

An argument A ∈ A is called strict if DefInf(A) = ∅; otherwise, A is called

defeasible. An argument A ∈ A is called a premise argument if only step 1 of

Definition 37 is applied, deductive if only steps 1, 2a and 2b are applied, abductive

if only steps 1 and 3 are applied, and mixed otherwise. The restriction that steps 2

(i.e. step 2a or 2b) and 3 or vice versa are not subsequently applied using the same

generalisation arc g ∈ G ensures that cycles in which two propositions are iteratively

deductively and abductively inferred from each other using the same g are avoided

in argument construction. Similarly, in case causal generalisation g : c → e has an

evidential counterpart g′ : e → c (see Section 2.1.3, p. 20 and Section 3.3, p. 44),

then the restriction in step 2a that g′ /∈ Gen(A1) ∪ . . . ∪ Gen(An) ensures that

cycles in which c and e are iteratively deductively inferred from each other using

g′ and g are avoided. Note that cycles in which c and e are iteratively deductively

inferred from each other using g and g′ in that order are already avoided due to the

enforcement of Pearl’s constraint (Definition 31, condition 2).

Example 48. Consider the adjustment to the IG of Figure 3.5 depicted in Figure

4.1, in which arguments on the basis of this IG and Ep = {police, tes3, tes4} are also
indicated. According to step 1 of Definition 37, A1 : police is a premise argument.

Based on A1, deductive argument A2 : A1 �g1 murder is constructed by step 2
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of Definition 37, as murder is deductively inferred from police using g1 : police

→ murder. Then A3 : A2 �g3 mot1 is a mixed argument by step 3 of Definition

37, as mot1 is abductively inferred from murder using g3 : mot1 → murder. To

illustrate the additional operators introduced in Definition 37, for A3, we have that

ImmSub(A3) = {A2}; Gen(A3) = {g1, g3}; TopGen(A3) = g3; DefInf(A3) =

{police�g1 murder, murder�g3 mot1}; StInf(A3) = ∅. �

Step 3 of Definition 37 is now illustrated in more detail.

Example 49. On the basis of the IG of Figure 3.7a and Ep = {r}, A′
1 : r is a

premise argument. From A′
1, arguments A′

2 : A
′
1 �g3 r1 and A′

3 : A
′
1 �g3 q are

constructed by step 3 of Definition 37, as q and r1 are abductively inferred from

Conc(A′
1) using causal generalisation g3 : {q, r1} → r. Then again by step 3, A′

4 : A
′
3

�g1 p1 and A′
5 : A

′
3 �g2 p2 are constructed using g1 and g2, respectively. �

4.1.1 Properties of arguments based on IGs

We now prove a number of formal properties of arguments based on IGs. Note that

the results stated below are similar to the results as proven for inference chains in

Section 3.5 (i.e. Lemma 1 and Proposition 1). However, these results are not directly

applicable in the context of arguments constructed on the basis of IG, as there

generally does not exist a one-to-one correspondence between inference chains and

arguments. The differences between arguments and inference chains are illustrated

by the following example.

Example 50. Reconsider Example 44 from Section 3.5. As discussed in this ex-

ample, in the IG of Figure 3.11 chain c1 = (tes1, g2, mot1, g3, murder) is an

inference chain given Ep, where the presence of this inference chain does not imply

that mot1 is by itself sufficient to infer murder. Instead, murder can only be de-

ductively inferred using g3 in case both mot1 and mot2 are affirmed. The broader

context in which the inference from mot1 to murder is performed using g3 is thus

not directly apparent from this inference chain; instead, the role of mot2 becomes

apparent in considering other inference chains that can be read from this IG given

Ep, specifically inference chain c2 = (tes2, g4, mot2, g3, murder). In comparison,

the arguments that are constructed on the basis of this IG given Ep are A1 : tes1;

A2 : A1 �g2 mot1; A3 : tes2; A4 : A3 �g4 mot2; A5 : A2, A4 �g3 murder. From

argument A5, the broader context in which murder is deductively inferred using g3
is directly apparent, in contrast with inference chains c1 and c2 upon considering

them individually. This example thus illustrates that there generally does not exist a

one-to-one correspondence between inference chains and arguments. In particular,

argument A5 cannot be interpreted as a single inference chain, and neither inference

chain c1 nor c2 can be interpreted as one of the arguments A1, . . . , A5. �

Lemma 3 states that the conclusions of deductive, abductive, and mixed arguments

constructed in our argumentation formalism based on IGs are not observed.
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Lemma 3. Let A be a set of arguments on the basis of IG GI = (P,AI) and

evidence set Ep. Let A ∈ A be a deductive, abductive, or mixed argument. Then

Conc(A) /∈ Ep.

Proof. As A is not a premise argument, step 2a, step 2b or step 3 of Definition

37 is applied last in constructing A. In case step 2a or 2b of Definition 37 is

applied last, then ∃g ∈ G such that Head(g) = Conc(A) is deductively inferred

using TopGen(A) = g according to Definition 31. Hence, per the restrictions

of Definition 31, Head(g) = Conc(A) /∈ Ep. In case step 3 of Definition 37 is

applied last, then ∃g ∈ G such that Conc(A) ∈ Tails(g) is abductively inferred

using TopGen(A) = g according to Definition 32. Hence, Conc(A) /∈ Ep per the

restriction of Definition 32 that Tails(g) ∩Ep = ∅. �

In performing inference care should be taken that no cause for an effect is inferred in

case an alternative cause for this effect was already previously inferred (i.e. Pearl’s

constraint, see Section 2.1.4.1). Similarly, care should be taken that no version

of an event at a lower level of abstraction is inferred if an alternative version of

this event at a lower level of abstraction was already previously inferred (i.e. our

inference constraints for abstractions, see Section 2.1.4.2). In constructing non-

premise arguments based on IGs, step 2a, 2b, or 3 of Definition 37 is applied last,

where in applying one of these steps a deductive or abductive inference is performed

to infer the conclusion of the argument from the conclusions of its immediate sub-

arguments. Hence, we need to prove that the inference constraints of Section 2.1.4

are never violated in constructing sequences of arguments on the basis of IGs using

these steps. First, we formally define the inference constraints of Section 2.1.4 in

the context of arguments constructed on the basis of IGs.

Definition 38 (Inference constraint). Let A be a set of arguments on the basis of

IG GI = (P,AI) and evidence set Ep. Let P1 ⊆ P and P2 ⊆ P be alternative

explanations of q ∈ P as indicated by generalisations g1 and g2 in G (see Definition

25). Let p1 ∈ P1 and p2 ∈ P2. If arguments A and B exist in A with Conc(B) = q,

A ∈ ImmSub(B), and Conc(A) = p1, then there does not exist an argument C ∈ A
with B ∈ ImmSub(C) and Conc(C) = p2.

We now formally prove that this inference constraint is indeed adhered to.

Proposition 2 (Adherence to inference constraint). Let A be a set of arguments on

the basis of IG GI = (P,AI) and evidence set Ep. Then A adheres to the inference

constraint as defined in Definition 38.

Proof. Assume that P1 ⊆ P and P2 ⊆ P are alternative explanations of q ∈ P as

indicated by generalisations g1, g2 ∈ G with p1 ∈ P1 and p2 ∈ P2, and assume that

arguments A,B ∈ A exist with Conc(B) = q, A ∈ ImmSub(B), Conc(A) = p1.

Then we need to prove that no argument C exists in A with B ∈ ImmSub(C) and

Conc(C) = p2. In constructing argument B, either step 2a, step 2b or step 3 of
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Definition 37 is applied last, where generalisation g1 is used to infer Conc(B) = q.

Here, g1 cannot be of the form g1 ∈ Ge, q ∈ Tails(g1), Head(g1) = p1 (Definition 25,

case 1) as in this case antecedent q of g1 is inferred from consequent p1 of g1, which

would be an instance of abductive inference while per the restrictions of Definition

32 abductive inference can only be performed using generalisations in Gc ∪ Ga.

More specifically, argument B cannot be constructed by applying step 2a, 2b and 3

of Definition 37 last if g1 is of that form. Thus, we only need to consider cases 2 and

3 of Definition 25, where a generalisation g1 ∈ Gc, Head(g1) = q, P1 ⊆ Ant(g1)

respectively a generalisation g1 ∈ Ga, Head(g1) = q, P1 ⊆ Tails(g1) is used to

construct B, namely by applying step 2a or 2b of Definition 37 last to deductively

infer Conc(B) = q. We now show that for the given options for g1, no argument C

with B ∈ ImmSub(C), Conc(C) = p2 can be constructed using g2.

• First, consider case 2a of Definition 25 in which g2 �= g1, g2 ∈ Gc, Head(g2) =

q, P2 ⊆ Ant(g2). Then no argument C with B ∈ ImmSub(C), Conc(C) = p2
can be constructed using g2, as in this case abduction would be performed with

g2 to infer p2 from q while per the restrictions in condition 2 of Definition 32

abduction cannot be performed with g2 as Head(g2) was previously deduc-

tively inferred using g1 ∈ Gc. In particular, step 3 of Definition 37 cannot

be applied in constructing C using g2. Furthermore, neither step 2a nor step

2b of Definition 37 can be applied in constructing C using g2, as these steps

specify deductive and not abductive inferences.

• Next, consider case 2b of Definition 25 in which g2 ∈ Ge, Head(g2) = p2,

q ∈ Tails(g2). Then no argument C with B ∈ ImmSub(C), Conc(C) = p2
can be constructed using g2, as in this case deduction would be performed

with g2 to infer p2 while per the restrictions in condition 2 of Definition 31

deduction cannot be performed with g2 as q ∈ Tails(g2) was previously deduc-

tively inferred using g1 ∈ Gc. In particular, step 2a of Definition 37 cannot be

applied in constructing C using g2. Furthermore, step 2b cannot be applied

in constructing C using g2, as this step can only be applied using strict gener-

alisations and g2 /∈ Gs, and step 3 cannot be applied in constructing C using

g2, as this step specifies an abductive and not a deductive inference.

• Finally, consider case 3 of Definition 25 in which g2 �= g1, g2 ∈ Ga, Head(g2) =

q, P2 ⊆ Tails(g2). Then no argument C with B ∈ ImmSub(C), Conc(C) =

p2 can be constructed using g2, as in this case abduction would be performed

with g2 to infer p2 from q while per the restrictions in condition 2 of Definition

32 abduction cannot be performed with g2 as Head(g2) was previously deduc-

tively inferred using g1 ∈ Ga. In particular, step 3 of Definition 37 cannot

be applied in constructing C using g2. Furthermore, neither step 2a nor step

2b of Definition 37 can be applied in constructing C using g2, as these steps

specify deductive and not abductive inferences. �
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4.2 Attack

In this section, several types of attacks between arguments on the basis of IGs are

defined. Among the types of attacks that are typically distinguished in structured

argumentation (for instance in ASPIC+) are rebuttal, undermining, and undercut-

ting attack. Of these types of attacks, we only consider rebuttal and undercutting

attack and not undermining attacks, as in IGs we assume that all premises are cer-

tain and cannot be attacked (cf. ASPIC+’s axiom premises). We also distinguish a

fourth type of attack, namely alternative attack, a concept inspired by [Bench-Capon

and Prakken, 2006; Bex, 2015] based on the notion of alternative explanations that

captures conflicts between abductively inferred conclusions. In our argumentation

formalism, attacks directly follow from the constructed arguments and the specified

exception and negation arcs in an IG.

First, we define the general notion of attack, after which the different types of

attacks are defined.

Definition 39 (Attack). Let A be a set of arguments on the basis of IG GI and

evidence set Ep. Let A,B ∈ A. Then A attacks B iff A rebuts B, A undercuts B,

or A alternative attacks B, as defined in Definitions 40, 41 and 42, respectively.

4.2.1 Rebuttal attack

First, rebuttal attack is defined in a manner comparable to the way as it is defined

for ASPIC+ (see Definition 8.2).

Definition 40 (Rebuttal attack). Let A be a set of arguments on the basis of IG

GI = (P,AI) and evidence set Ep. Let A,B,B′ ∈ A with B′ ∈ Sub(B). Then A

rebuts B (on B′) iff there exists a negation arc n : Conc(A) � Conc(B′) in N

and B′ is of the form B′′
1 , . . . , B

′′
n �g p for some B′′

1 , . . . , B
′′
n ∈ A, p ∈ P.

Note that, as it is assumed that B′ is of the form B′′
1 , . . . , B

′′
n�g p (i.e. TopInf(B′)

is defeasible), it holds that B′ is a deductive, abductive, or mixed argument; hence,

by Lemma 3, Conc(B′) /∈ Ep. Furthermore, while a negation arc expresses a

symmetric conflict, our definition of rebuttal attack allows for both symmetric or

asymmetric rebuttal, as illustrated by the following example.

Example 51. Consider the IG of Figure 4.1. Let A1, A2 be the arguments introduced

in Example 48. Let B1 : tes3 and let B2 : B1�g6 ¬murder. Then A2 rebuts B2 (on

B2) and B2 rebuts A2 (on A2), as Conc(A2) = murder, Conc(B2) = ¬murder, n :

murder� ¬murder in N, TopInf(A2) is defeasible and TopInf(B2) is defeasible.

This symmetric rebuttal is indicated in Figure 4.1 by means of a bidirectional dashed

arc between these propositions.

Consider again Example 41, in which heat is predicted from fire. Assume that

contrary to this prediction we observe that there is no heat (¬heat ∈ Ep). Let A′
1 :
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smoke; A′
2 : A

′
1 �g1 fire; A′

3 : A
′
2 �g2 heat; B′

1 : ¬heat. Then B′
1 rebuts A′

3 (on

A′
3), but A

′
3 does not rebut B′

1 as B′
1 is not of the form B′′

1 , . . . , B
′′
n �g p for some

B′′
1 , . . . , B

′′
n ∈ A, p ∈ P (i.e. B′

1 is a premise argument). �

4.2.2 Undercutting attack

Next, undercutting attack is considered. In our argumentation formalism based on

IGs, undercutting attacks follow from the specified exception arcs inGI . Specifically,
as an exception arc directed from p ∈ P to g ∈ Gd specifies an exception to defeasible

generalisation g, an argument A ∈ A with Conc(A) = p undercuts an argument

B ∈ A with g ∈ Gen(B).

Definition 41 (Undercutting attack). Let A be a set of arguments on the basis

of IG GI = (P,AI) and evidence set Ep. Let A,B,B′ ∈ A with B′ ∈ Sub(B).

Then A undercuts B (on B′) iff there exists an exception arc exc ∈ Exc such that

exc : Conc(A)� g and TopGen(B′) = g ∈ Gd.

Undercutting attack is illustrated by the following example.

Example 52. Consider the IG of Figure 4.1. Let B1, B2 be the arguments intro-

duced in Example 51. Let C1 : tes4; C2 : C1 �g7 lie. Then C2 undercuts B2 (on

B2), as exc : lie � g6 in Exc and TopGen(B2) = g6. This attack is indicated in

Figure 4.1 by a dashed arc directed from lie to inference tes3 �g6 ¬murder. �

4.2.3 Alternative attack

Lastly, alternative attack is defined, a concept based on the notion of alternative

explanations that captures conflicts between abductively inferred conclusions.

Definition 42 (Alternative attack). Let A be a set of arguments on the basis of

IG GI = (P,AI) and evidence set Ep. Let P1 ⊆ P and P2 ⊆ P be alternative

explanations of q ∈ P as indicated by generalisations g and g′ in G, where either

g, g′ ∈ Gc (Definition 25, case 2a) or g, g′ ∈ Ga (Definition 25, case 3). Let

p1 ∈ P1 and p2 ∈ P2. Let A,B,B′ ∈ A with B′ ∈ Sub(B). Then A alternative

attacks B (on B′) iff there exists an argument C ∈ ImmSub(A)∩ ImmSub(B′) such
that Conc(A) = p1 and Conc(B′) = p2 are abductively inferred from Conc(C) = q

using generalisations g and g′, respectively.

Note that A only alternative attacks B on B′ iff TopInf(B′) is an abductive infer-

ence and hence iff the last used inference in constructing B′ is defeasible. Further-

more, unlike direct rebuttal attack, which can either be symmetric or asymmetric,

direct alternative attack is always symmetric in that A alternative attacks B on B

iff B alternative attacks A on A.

Under the conditions set out in Definition 42, arguments Ai : C �g pi for

pi ∈ Ant(g) constructed from C via abductive inference using g are involved in
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alternative attack with A′
j : C �g′ p′j for p′j ∈ Ant(g′) constructed from C via

abductive inference using g′. As alternative attack is based on Definition 25, ar-

guments are only involved in alternative attack iff their conclusions are elements of

two sets that are alternative explanations according to that definition, as illustrated

by the following example.

Example 53. Consider the IG of Figure 4.1. Let A1, A2, A3 be the arguments

introduced in Example 48, and let A4 : A2 �g5 mot2, where mot2 is abductively

inferred from murder. Then A3 and A4 are involved in alternative attack, as mot1
and mot2 are alternative explanations of murder as indicated by generalisations g3
and g5 in Gc (Definition 25, case 2a) and as A2 ∈ ImmSub(A3) ∩ ImmSub(A4),

where Conc(A3) = mot1 and Conc(A4) = mot2 are abductively inferred from

Conc(A2) = murder using g3 and g5, respectively. This attack is indicated in Figure

4.1 by means of a bidirectional dashed arc between the conclusions of A3 and A4.

Consider the IG of Figure 3.9. Given Ep, arguments D1 : autopsy; D2 : D1

�g′
5
head wound; D3 : D2 �g′

6
hit angular; D4 : D2 �g′

7
fell on table; D5 : D3

�g′
3
hammer; and D6 : D3 �g′

4
stone are constructed. Here, hit angular and

fell on table are abductively inferred from head wound using g′6 and g′7, respectively,
and hammer and stone are abductively inferred from hit angular using g′3 and g′4,
respectively. Then D3 alternative attacks D4 (on D4) and D4 alternative attacks

D3 (on D3), as Conc(D3) = hit angular and Conc(D4) = fell on table are alter-

native explanations of Conc(D2) = head wound as indicated by g′6 and g′7 in Gc

(Definition 25, case 2a). As D3 ∈ Sub(D5) and D3 ∈ Sub(D6), D4 also alternative

attacks D5 and D6 (on D3). Finally, D5 alternative attacks D6 (on D6) and D6

alternative attacks D5 (on D5), as Conc(D5) = hammer and Conc(D6) = stone

are alternative explanations of Conc(D3) = hit angular as indicated by g′3 and g′4
in Ga (Definition 25, case 3).

Consider Example 13 from Section 2.1.4.1. Assume that in addition to general-

isations g1 and g2, evidential generalisation g3 : see fire → fire is provided. Given

Ep = {see fire}, arguments E1 : see fire; E2 : E1 �g3 fire; E3 : E2 �g1 torch;

E4 : E2 �g2 match; and E5 : E2 �g2 oxygen are constructed. Then E3 and E4

are involved in alternative attack, as Conc(E3) = torch, Conc(E4) = match,

and Ant(g1) = {torch} and Ant(g2) = {match} are alternative explanations of

Conc(E2) = fire as indicated by g1 and g2 in Gc (Definition 25, case 2a), where

torch and match are abductively inferred from fire using g1 and g2, respectively.

E3 is not involved in alternative attack with E5, as Conc(E5) = oxygen is not an

element of Ant(g2) but instead oxygen ∈ Enabler(g2).

Consider Figure 3.7a. Let A′
1, A

′
2, A

′
3 be as defined in Example 49. Then A′

2 and

A′
3 are not involved in alternative attack, as r1 = Conc(A′

2) and q = Conc(A′
3) are

abductively inferred from r = Conc(A′
1) using the same generalisation g3; specifi-

cally, in case 2a of Definition 25 it is assumed that g �= g′, and hence r1 and q are

not alternative explanations of r by that definition. �
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Figure 4.2: AF corresponding to the IGs of Figures 3.9 and 4.1.

4.3 Argument evaluation

We now instantiate Dung’s abstract approach (see Section 2.2.1) with arguments

and attacks based on IGs.

Definition 43 (Argumentation framework). Let GI = (P,AI) be an IG, and let

Ep ⊆ P be an evidence set. An argumentation framework (AF) defined by GI and

Ep is a pair (A,D), where A is the set of all arguments on the basis of GI and Ep

as defined by Definition 37 and where (A,B) ∈ D iff A,B ∈ A and A attacks B

(see Definition 39).

Given an AF, we can use any semantics for AFs for determining the dialectical status

of arguments (see Section 2.2.1). In our IG-formalism, we opted not to account for

preferences, as these are typically not indicated using sense-making tools. As the

components of our argumentation formalism based on IGs are directly defined based

on the elements that are accounted for in our IG-formalism, preferences are currently

not accounted for in our argumentation formalism. As shown in work on structured

argumentation with preferences [Prakken, 2012; Modgil and Prakken, 2013], the

structure of arguments is crucial in determining how preferences must be applied

to attacks and one should be cautious in extending AFs with additional elements

without taking the structure of arguments into account. More specifically, it is

shown by [Prakken, 2012; Modgil and Prakken, 2013] that the use of PAFs leads

to violation of the sub-argument closure and consistency postulates [Caminada and

Amgoud, 2007] (see also Section 4.4), among other things because PAFs cannot

express how and at which points arguments attack each other. In future work, our

argumentation formalism based on IGs may be extended to account for preferences

at the structured level (cf. Modgil and Prakken [2013]).

We now illustrate the evaluation of arguments based on IGs through our running

example.

Example 54. Consider Examples 48, 51, 52 and 53, in which arguments A =

{A1, A2, A3, A4, B1, B2, C1, C2, D1, D2, D3, D4, D5, D6} were introduced. The binary
defeat relation over A follows directly from the attacks introduced in these examples:

D = {(A3, A4), (A4, A3), (A2, B2), (B2, A2), (B2, A3), (B2, A4), (C2, B2), (D3, D4),

(D4, D3), (D4, D5), (D4, D6), (D5, D6), (D6, D5)}. These arguments and defeats are
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depicted in Figure 4.2. The complete extensions of (A,D) are:

S1 = {A1, A2, B1, C1, C2, D1, D2};
S2 = {A1, A2, A3, B1, C1, C2, D1, D2};
S3 = {A1, A2, A4, B1, C1, C2, D1, D2};
S4 = {A1, A2, B1, C1, C2, D1, D2, D3, D6};
S5 = {A1, A2, B1, C1, C2, D1, D2, D4};
S6 = {A1, A2, A3, B1, C1, C2, D1, D2, D3, D5};
S7 = {A1, A2, A4, B1, C1, C2, D1, D2, D3, D5};
S8 = {A1, A2, A3, B1, C1, C2, D1, D2, D3, D6};
S9 = {A1, A2, A4, B1, C1, C2, D1, D2, D3, D6};
S10 = {A1, A2, A3, B1, C1, C2, D1, D2, D4};
S11 = {A1, A2, A4, B1, C1, C2, D1, D2, D4}.
Under complete semantics, arguments A1, A2, B1, C1, C2, D1, D2 are justified as they

are members of all complete extensions, B2 is overruled as it is defeated by a justified

argument (i.e. C2), and A3, A4, D3, D4, D5, D6 are defensible. For the other seman-

tics, the same statuses are assigned; for grounded semantics, this is the case as S1

is the set inclusion minimal complete extension. For preferred and stable semantics,

note that S6, S7, S8, S9, S10 and S11 are set inclusion maximal complete extensions

for which it holds that ∀B /∈ Si, ∃A ∈ Si such that (A,B) ∈ D for 6 ≤ i ≤ 11; hence,

S6, S7, S8, S9, S10 and S11 are preferred and stable extensions. �

4.4 Satisfying rationality postulates

Caminada and Amgoud [2007] studied rule-based argumentation systems and iden-

tified conditions under which unintuitive and undesirable results are obtained upon

performing inference. They then defined principles, called rationality postulates,

that can be used to judge the quality of a given rule-based argumentation system.

More specifically, so-called consistency and closure postulates were formulated for

systems allowing for strict and defeasible inferences. Since these postulates are

widely accepted as important desiderata for structured argumentation formalisms,

we prove in this section that these postulates are satisfied by instantiations of our

argumentation formalism based on IGs.

4.4.1 Comparison of our argumentation formalism based on

IGs to the ASPIC+ argumentation framework

In proving satisfaction of Caminada and Amgoud’s [2007] rationality postulates,

we follow Modgil and Prakken [2013], who proved satisfaction of these postulates

for the ASPIC+ framework. As noted earlier in this chapter, in defining our argu-

mentation formalism based on IGs we were inspired by the definitions of argument

and attack as given in [Modgil and Prakken, 2013]. In Definition 37, we defined

how arguments on the basis of an IG and an evidence set Ep are constructed. In

step 2a of Definition 37, it is specified that an argument A with Conc(A) = p
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can be constructed from arguments A1, . . . , An if p is defeasibly deductively inferred

from Conc(A1), . . . ,Conc(An) according to Definition 31 using a generalisation g :

{Conc(A1), . . . ,Conc(An)} → p in Gd. Hence, in terms of the terminology used in

the ASPIC+ framework, generalisations in Gd can be interpreted as domain-specific

defeasible inference rules1 in ASPIC+’s Rd that are applied when constructing ar-

guments. Similarly, in step 2b of Definition 37 it is specified that an argument A

with Conc(A) = p can be constructed from A1, . . . , An if p is strictly deductively

inferred from Conc(A1), . . . ,Conc(An) according to Definition 31 using a generali-

sation g : {Conc(A1), . . . ,Conc(An)} → p in Gs. Hence, generalisations in Gs can

be interpreted as domain-specific strict inference rules in ASPIC+’s Rs. Finally, in

step 3 it is specified that an argument A with Conc(A) = p can be constructed from

an argument A′ if p is abductively inferred from Conc(A′) according to Definition

32 using a generalisation g ∈ Gc ∪ Ga, g : {p, p1, . . . , pn} → Conc(A′) for some

propositions p1, . . . , pn ∈ P. Therefore, besides specifying aforementioned domain-

specific defeasible and strict deduction rules, generalisations g : {q1, . . . , qn} → q in

Gc ∪Ga also specify domain-specific abduction rules in ASPIC+’s Rd, namely for

every i ∈ {1, . . . , n} a rule can be specified in Rd that states that qi can be defeasibly

inferred from q.

Considering the different types of attacks that are defined in Section 4.2, rebuttal

as defined in Section 4.2.1 is identical to rebuttal as defined for a special case of

ASPIC+, namely one in which conflict is based on the standard classical notion of

negation. Undercutting as defined in Section 4.2.2 is a special case of undercutting

as defined for ASPIC+, as we only consider undercutters of defeasible inferences

in case an exception is provided to a defeasible generalisation used in a defeasible

inference step. As preferences are not accounted for in our argumentation formalism

based on IGs, attack is then resolved into defeat without considering preferences, as

defined by Definition 43 in Section 4.3.

Thus, of the types of attacks that are considered in our argumentation formalism,

only alternative attack is not accounted for in ASPIC+. Furthermore, in comparison

to our argumentation formalism, Modgil and Prakken do not impose any additional

restrictions on argument construction. Hence, to prove that instantiations of our

argumentation formalism based on IGs satisfy rationality postulates, in Section 4.4.3

we focus on showing how alternative attack and the additional restrictions that are

imposed on argument construction in our argumentation formalism can be taken

account in the results and proofs provided in [Modgil and Prakken, 2013].

4.4.2 Additional definitions and assumptions

Following Modgil and Prakken [2013], we introduce the following definitions. We

define what it means for a set of propositions to be closed under strict generalisations.

1For further details on using ASPIC+ to model domain-specific defeasible and strict inference

rules, the reader is referred to [Modgil and Prakken, 2014].
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Definition 44 (Closure under strict generalisations). Let GI = (P,AI) be an IG

and let P′ ⊆ P. Then the closure of P′ under strict generalisations, denoted Cl(P′),
is the smallest set containing P′ and the consequent Head(g) of any g ∈ Gs whose

antecedents Tails(g) are in Cl(P′).

Next, the terms directly consistent and indirectly consistent set are defined.

Definition 45 (Directly consistent set). Let GI = (P,AI) be an IG and let P′ ⊆ P.

Then P′ is directly consistent iff �p, q ∈ P′ such that p = −q.
A set P′ is indirectly consistent if its closure under strict generalisations is directly

consistent.

Definition 46 (Indirectly consistent set). Let GI = (P,AI) be an IG and let

P′ ⊆ P. Then P′ is indirectly consistent iff Cl(P′) is directly consistent.

As noted by Caminada and Amgoud [2007], one should search for ways to alter or

constrain one’s argumentation formalism in such a way that rationality postulates

are satisfied. Accordingly, following Modgil and Prakken [2013] we assume that IGs

and evidence sets satisfy a number of properties. Similar to ASPIC+, we leave the

user free to make choices as to the strict and defeasible generalisations to include in

G ⊆ AI and the observations to include in Ep; however, some care needs to be taken

in making these choices to ensure that the result of argumentation is guaranteed to be

well-behaved. Specifically, to ensure rationality postulates are satisfied, we assume

that evidence sets Ep are indirectly consistent (referred to as the axiom consistency

assumption), and we assume that G is closed under transposition. Note that per

definition every evidence set Ep ⊆ P is a directly consistent set, as it is assumed

in Definition 30 that for every p ∈ Ep, ¬p /∈ Ep. Furthermore, all examples of IGs

provided in this thesis are axiom consistent, as they do not include generalisations

g ∈ Gs for which Tails(g) ⊆ Ep. Closure under transposition is one of the solutions

proposed by Caminada and Amgoud to ‘repair’ an argumentation system to ensure

rationality postulates are satisfied [Caminada and Amgoud, 2007, p. 16], as it can

help generate rules needed to obtain an intuitive outcome.

Definition 47 (Closure under transposition). Let GI = (P,AI) be an IG. A strict

generalisation g′ ∈ Gs is a transposition of g : {p1, . . . , pn} → p in Gs iff g
′ is of the

form {p1, . . . , pi−1,−p, pi+1, . . . , pn} → −pi for some 1 ≤ i ≤ n. We say that G is

closed under transposition iff for all strict generalisations g ∈ Gs, the transpositions

of g are also in Gs.

An AF (A,D) defined by an IG GI that is axiom consistent and for which G ⊆
AI is closed under transposition is said to be well defined. In the remainder of

this section, we assume that any given AF (A,D) is well defined. Note that most

examples of IGs provided in this thesis only include defeasible generalisations and

not strict generalisations, and thus that AFs defined by these IGs are well defined.

Furthermore, note that our assumption that IGs do not include causal cycles (see
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Figure 4.3: Example of an IG for which G is not closed under transposition (a);

adjustment to this IG, in which additional generalisations are included such that G

is closed under transposition (b).

Section 3.3, p. 47) can be concurrently assumed with our assumption that IGs are

closed under transposition, as the former assumption only concerns the existence

of causal and evidential generalisations, which are defeasible by assumption. The

following example, adapted from Caminada and Amgoud [2007], illustrates closure

under transposition and how ensuring it can help repair an argumentation system.

Example 55. In the IG depicted in Figure 4.3a, strict abstractions g2 : bachelor

→ ¬has wife and g4 : married → has wife are included. G is not closed under

transposition, as generalisations has wife → ¬bachelor and ¬has wife → ¬married

are not included. Arguments A5 and A6 constructed on the basis of this IG have

strict top inferences, as only step 2b of Definition 37 can be applied in constructing

A5 from A3 and A6 from A4 using g2 and g4 in Gs, respectively. Note that, as

TopInf(A5) and TopInf(A6) are strict, A5 and A6 are not involved in rebuttal. In

fact, D = ∅ for the AF corresponding to this IG, and hence under any semantics both

A5 and A6 are justified. Thus, contradictory propositions has wife and ¬has wife

are both justified at the same time, which is clearly undesirable and among other

things violates the direct consistency postulate (see Theorem 1). In the IG depicted

in Figure 4.3b, G is closed under transposition as additional generalisations has wife

→ ¬bachelor and ¬has wife → ¬married are now included. In the corresponding

AF, A7 directly rebuts A4 and A8 directly rebuts A3 as TopInf(A3) and TopInf(A4)

are defeasible. Then A7 indirectly rebuts A6 (on A4) and A8 indirectly rebuts A5

(on A3). Therefore, for this AF the more intuitive outcome is obtained that A5 and

A6 cannot both be in the same extension at the same time. �

Lastly, the following definitions introduce some terminology used in the below re-

sults. Following Modgil and Prakken [2018], we define strict continuations in a

slightly different way than in [Modgil and Prakken, 2013], but as noted by Modgil

and Prakken [2018] this does not affect the proofs stated in [Modgil and Prakken,

2013].
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Definition 48 (Strict continuations). Let (A,D) be an AF defined by IG GI and

evidence set Ep. The set of strict continuations of a set of arguments from A is

the smallest set satisfying the following conditions:

1. Any argument A is a strict continuation of {A}.
2. If A1, . . . , An are arguments and S1, . . . , Sn are sets of arguments such that for

every i ∈ {1, . . . , n}, Ai is a strict continuation of Si and {Bn+1, . . . , Bm} is

a (possibly empty) set of strict arguments, and g : {Conc(A1), . . . ,Conc(An),

Conc(Bn+1), . . . ,Conc(Bm)} → p is a strict generalisation in Gs, then argu-

ment A1, . . . , An, Bn+1, . . . , Bm ⇀g p constructed from A1, . . . , An, Bn+1, . . . , Bm

using g by applying step 2b of Definition 37 is a strict continuation of S1∪. . .∪Sn.

The maximal fallible sub-arguments of an argument B are those with the ‘last’

defeasible inferences in B. That is, they are the maximal sub-arguments of B on

which B can be attacked.

Definition 49 (Maximal fallible sub-arguments). Let (A,D) be an AF defined by

IG GI and evidence set Ep. The set M(B) of the maximal fallible sub-arguments

of B is defined such that for any B′ ∈ Sub(B), it holds that B′ ∈M(B) iff:

1. TopInf(B′) is defeasible, and;

2. There is no B′′ ∈ Sub(B) such that B′′ �= B, B′ ∈ Sub(B′′) and B′′ satisfies
condition 1.

4.4.3 Proofs

We prove satisfaction of Caminada and Amgoud’s consistency and closure postulates

for complete semantics, which implies satisfaction of these postulates for grounded,

preferred, and stable semantics. Caminada and Amgoud [2007] also proposed pos-

tulates for the intersection of extensions and their conclusion sets, but since their

satisfaction directly follows from satisfaction of the postulates for individual exten-

sions, these postulates will not be reconsidered.

First, a number of intermediate properties are proven. The intermediate result

stated in Lemma 4 is identical to Lemma 37 of Modgil and Prakken [2013], namely

that any strict continuation B of a set of arguments {A1, . . . , An} is acceptable with
respect to a set S if all Ai are acceptable with respect to S . The proof follows

similar to Lemma 37 of Modgil and Prakken [2013], where alternative attack is now

also considered.

Lemma 4. Let (A,D) be an AF defined by IG GI and evidence set Ep. Let B ∈ A
be a strict continuation of {A1, . . . , An}, and for i = 1, . . . , n, let Ai be acceptable

with respect to S ⊆ A. Then B is acceptable with respect to S.
Proof. Let A be any argument such that (A,B) ∈ D. By Definition 39, A attacks

B iff A rebuts B (on B′), A undercuts B (on B′), or A alternative attacks B (on

B′) for some B′ ∈ Sub(B) (see Definitions 40, 41, and 42). Here, it holds that

TopInf(B′) is defeasible; more specifically:
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1. By Definition 40, A rebuts B (on B′) iff B′ is of the form B′′
1 , . . . , B

′′
n �g p for

some B′′
1 , . . . , B

′′
n ∈ A, p ∈ P and hence iff TopInf(B′) is defeasible, and;

2. By Definition 41, A undercuts B (on B′) iff there exists an exception arc exc ∈
Exc such that exc : Conc(A) � g and TopGen(B′) = g ∈ Gd. Hence, in

constructing B′ step 2b cannot be applied last, as this step can only be applied

with strict generalisations g ∈ Gs. Therefore, step 2a of step 3 of Definition 37 is

applied last in constructing B′. Thus, the last used inference in constructing B′

is a defeasible deductive inference using TopGen(B′) = g (step 2a of Definition

37) or an abductive inference using TopGen(B′) = g (step 3 of Definition 37),

and hence TopInf(B′) is defeasible, and;
3. By Definition 42, A alternative attacks B (on B′) iff TopInf(B′) is an abductive

inference and hence iff TopInf(B′) is defeasible.

Hence, by definition of strict continuations (Definition 48), it must be that (A,B) ∈
D iff (A,Ai) ∈ D for some (possibly more than one) Ai ∈ {A1, . . . , An}. Specifically,
if A does not undercut, rebut or alternative attack some Ai, then this contradicts

that (A,B) ∈ D. Thus, we have shown that if (A,B) ∈ D, then (A,Ai) ∈ D for

some Ai ∈ {A1, . . . , An}. By assumption, Ai is acceptable with respect to S , thus
∃C ∈ S such that (C,A) ∈ D. Thus, B is acceptable with respect to S . �

The intermediate result stated in Lemma 5 is similar to Proposition 8 of Modgil

and Prakken [2013]. Compared to Proposition 8 of Modgil and Prakken, in which

no assumptions are made regarding A, we now assume that A is defeasible with

a strict top inference or that A is strict, as these are the only cases needed in

our proof of Theorem 1. As Modgil and Prakken do not impose any restrictions

on argument construction in their formalism, a result proven by Caminada and

Amgoud [2007] (i.e. their Lemma 6) can be directly used to complete their proof.

Below, we show that the restrictions that are imposed on argument construction in

our argumentation formalism based on IGs do not restrict the construction of strict

continuations, and hence that the proof can similarly be completed.

Lemma 5. Let (A,D) be an AF defined by IG GI and evidence set Ep. Let A,B ∈
A such that B is defeasible, Conc(A) = −Conc(B). Let A be strict or let A be

defeasible with TopInf(A) strict. Then for all B′ ∈ M(B), there exists a strict

continuation A+ of (M(B) \ {B′}) ∪ {A} such that A+ rebuts B on B′.

Proof. Let A be strict or let A be defeasible with TopInf(A) strict. Let B be

defeasible, and let Conc(A) = −Conc(B). First, note that according to Definition

48, any strict continuation of a given set of arguments from A is either (1) A if

the set of arguments under consideration is {A} (Definition 48, condition 1), or

(2) is constructed by applying step 2b of Definition 37 one or more (but finitely

many) times (Definition 48, condition 2). As restrictions are imposed on argument

construction in our argumentation formalism based on IGs, we first show that in

constructing any strict continuation A+ of (M(B)\{B′})∪{A}, step 2b of Definition

37 can be applied without restrictions.
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Generally, in applying step 2b of Definition 37, an argument C with Conc(C) =

p is constructed from arguments C1, . . . , Cn by strictly deductively inferring p from

Conc(C1), . . . ,Conc(Cn) according to Definition 31 using a generalisation g : Conc

(C1), . . . ,Conc(Cn) → p in Gs. In Definition 31, no constraints are imposed on

performing deduction with strict generalisations g ∈ Gs; in particular, the only

constraint that is imposed is in condition 2 of this definition, where constraints are

imposed on performing deduction with defeasible generalisations in Ge (i.e. Pearl’s

constraint). The only other case in which step 2b of Definition 37 cannot be applied

in constructing an argument C using a g ∈ Gs is in case the same g was already

used in the previous construction step to construct an argument C ′ ∈ ImmSub(C),

namely by applying step 3 of Definition 37. Now again consider argument A. By

assumption, A is strict or TopInf(A) strict, and therefore step 3 of Definition 37,

which specifies a defeasible inference, could not have been applied last in construct-

ing A; therefore, no restrictions are imposed on constructing strict continuations A+

of (M(B) \ {B′}) ∪ {A} in our argumentation formalism. By assumption, (A,D)

is well defined and, therefore, closed under transposition; hence, by straightforward

generalisation of Lemma 6 in [Caminada and Amgoud, 2007] one can construct a

strict continuation A+ that continues (M(B) \ {B′}) ∪ {A} with strict inferences

and that concludes −Conc(B′). By construction of M(B), B′ has a defeasible top

inference and therefore A+ rebuts B′. But then A+ also rebuts B. �

The intermediate result stated in Lemma 6 is identical to Lemma 38 of Modgil and

Prakken [2013].

Lemma 6. Let (A,D) be an AF defined by IG GI and evidence set Ep. Let A ∈ A
be acceptable with respect to admissible extension S ⊆ A. Let S ′ = S ∪ {A}. Then

∀B ∈ S ′, neither (A,B) ∈ D nor (B,A) ∈ D.

Proof. Suppose for contradiction that: (1) ∃B ∈ S ′ such that (A,B) ∈ D. As

B ∈ S ′, it follows that B is acceptable with respect to S , as either B = A, which

is acceptable with respect to S by assumption, or B is an element of admissible

extension S . Hence, ∃C ∈ S such that (C,A) ∈ D. Then, as A is acceptable with

respect to S , ∃D ∈ S such that (D,C) ∈ D, contradicting S is conflict-free; (2)

∃B ∈ S ′ such that (B,A) ∈ D. As A is acceptable with respect to S , ∃C ∈ S such

that (C,B) ∈ D, contradicting S is conflict-free. �

The result stated in Lemma 7 is identical to Lemma 35-2 of Modgil and Prakken

[2013], namely that an argument A defeats an argument B iff A defeats some sub-

argument B′ of B. Compared to Lemma 35-2 of Modgil and Prakken [2013], alter-

native attack is now also considered in the proof.

Lemma 7. Let (A,D) be an AF defined by IG GI and evidence set Ep. Let A,B ∈
A. Then (A,B) ∈ D iff (A,B′) ∈ D for some B′ ∈ Sub(B).

Proof. By Definition 39, (A,B) ∈ D iff A rebuts B (on B′), A undercuts B (on B′),
or A alternative attacks B (on B′) for some B′ ∈ Sub(B) (see Definitions 40, 41,

and 42); hence, also (A,B′) ∈ D. �
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The intermediate result stated in Lemma 8 is identical to Proposition 10 of Modgil

and Prakken [2013].

Lemma 8. Let (A,D) be an AF defined by IG GI and evidence set Ep. Let A ∈ A
be acceptable wrt admissible extension S ⊆ A. Then S ′ = S ∪ {A} is conflict-free.

Proof. We need to show that there do not exist B,C ∈ S ′ such that (B,C) ∈ D. As

S is an admissible extension, S is conflict free: hence, there do not exist B,C ∈ S
such that (B,C) ∈ D. Thus, we need to show that (A,A) /∈ D, and neither (A,B) ∈
D nor (B,A) ∈ D for all B ∈ S . As by assumption A is acceptable with respect to

S , this follows directly from Lemma 6. �

Theorem 1, corresponding to the direct consistency postulate, states that the conclu-

sions of arguments in an admissible extension (and so by implication in a complete

extension) are directly consistent. The conclusions of arguments in an extension

should not be contradictory, as this leads to what Caminada and Amgoud call ‘ab-

surdities’ [Caminada and Amgoud, 2007, p. 15] in that two contradictory statements

can then be justified at the same time.

Theorem 1 (Direct consistency). Let (A,D) be an AF defined by IG GI and ev-

idence set Ep. Then for all admissible extensions S of AF it holds that the set

{Conc(A) | A ∈ S} is directly consistent.

Proof. Let S be an admissible extension of AF and let A,B ∈ S . We show that if

Conc(A) = q, Conc(B) = r with q = −r (i.e. {Conc(A) | A ∈ S} is not directly

consistent), then this leads to a contradiction:

1. If A is a strict argument, and:

1.1 if B is also a strict argument, then this contradicts our axiom consistency

assumption on evidence sets Ep;

1.2 if B is a defeasible argument, and:

1.2.1 if B has a defeasible top inference, then A rebuts B (on B) by

Definition 40, as a negation arc n : Conc(A)� Conc(B) exists in

N (as q = −r). Hence, this contradicts S is conflict-free.

1.2.2 if B has a strict top inference, then by Lemma 5 there exists a strict

continuation A+ of (M(B) \ {B′})∪ {A} for every B′ ∈M(B) such

that A+ rebuts B on B′; hence, (A+, B) ∈ D. By our Lemma 4,

A+ is acceptable with respect to S , and by Lemma 8, S ∪ {A+} is

conflict-free, contradicting that (A+, B) ∈ D.

2. If A is a defeasible argument and B is a strict argument, then the result follows

similar to case 1.2 with the roles of arguments A and B reversed.

3. If A and B are defeasible arguments, and:

3.1 if TopInf(A) or TopInf(B) is defeasible, then the result follows similar

to case 1.2.1 (either with the roles of arguments A and B as they currently

are or with their roles reversed).

3.2 if TopInf(A) and TopInf(B) are strict, then the result follows similar to

case 1.2.2. �

80



The result stated in Lemma 9 is identical to Lemma 35-3 of Modgil and Prakken

[2013].

Lemma 9. Let (A,D) be an AF defined by IG GI and evidence set Ep. Let S ⊆ A
and let A ∈ S with A′ ∈ Sub(A). Then A′ is acceptable with respect to S if A is

acceptable with respect to S.
Proof. Assume that A is acceptable with respect to S . We need to prove that for

every argument B such that (B,A′) ∈ D, ∃C ∈ S such that (C,B) ∈ D. Let B ∈ A
and assume that (B,A′) ∈ D. By Lemma 7, (B,A) ∈ D. Then, as A is acceptable

with respect to S , ∃C ∈ S such that (C,B) ∈ D. Hence, A′ is acceptable with

respect to S . �

Below, Caminada and Amgoud’s [2007] closure and indirect consistency postulates

are stated. Informally, the closure postulates state that the conclusions returned

by an argumentation system should be ‘complete’ [Caminada and Amgoud, 2007,

p. 16]. The sub-argument closure postulate states that for any argument A in a

complete extension S , all sub-arguments of A are also in S .
Theorem 2 (Sub-argument closure). Let (A,D) be an AF defined by IG GI and

evidence set Ep. Then for all complete extensions S of AF it holds that if an

argument A is in S then all sub-arguments A′ ∈ Sub(A) of A are in S.
Proof. Let S be a complete extension of AF, let A ∈ S and let A′ ∈ Sub(A). Then

A′ is acceptable with respect to S by Lemma 9. Then S ∪ {A′} is conflict-free by

Lemma 8. Hence, since S is complete, it holds that A′ ∈ S . �

Theorem 3, corresponding to the strict closure postulate, states that the conclusions

of arguments in a complete extension are closed under strict inference.

Theorem 3 (Closure under strict inferences). Let (A,D) be an AF defined by IG

GI and evidence set Ep. Let S be a complete extension of AF. Then {Conc(A) |
A ∈ S} = CL({Conc(A) | A ∈ S}).
Proof. It suffices to show that any strict continuation X of {A | A ∈ S} is in S . By
Lemma 4, any such X is acceptable wrt S . By Lemma 8, S ∪ {X} is conflict-free.

Hence, since S is complete, X ∈ S . �

Finally, Theorem 4, corresponding to the indirect consistency postulate, states the

mutual consistency of the strict closure of conclusions of arguments in a complete

extension.

Theorem 4 (Indirect consistency). Let (A,D) be an AF defined by IG GI and

evidence set Ep. Let S be a complete extension of AF. Then {Conc(A) | A ∈ S}
is indirectly consistent.

Proof. The result follows from Theorems 1 and 3. �

To conclude this section, we have shown that instantiations of our argumentation

formalism based on IGs satisfy Caminada and Amgoud’s [2007] consistency and
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closure postulates. Satisfaction of these postulates warrants the sound definition of

instantiations of our argumentation formalism and implies that anomalous results

as identified by [Caminada and Amgoud, 2007] are avoided.

4.5 Discussion and concluding remarks

In this chapter, we have proposed an argumentation formalism that allows for both

deductive and abductive argumentation, the latter of which has received relatively

little attention in argumentation. Our argumentation formalism is based on our IG-

formalism and generates an argumentation framework [Dung, 1995]. By formalising

analyses performed by domain experts using the informal sense-making tools they

are familiar with (e.g. mind maps) as IGs as an intermediary step, this therefore

allows us to assign Dung’s argumentation semantics to argumentation frameworks

constructed on the basis of IGs. Besides allowing for rebuttal and undercutting at-

tack, which are among the types of attacks that are typically distinguished in struc-

tured argumentation, we have also defined the notion of alternative attack among

arguments based on IGs, a concept based on the notion of alternative explanations

that is inspired by [Bench-Capon and Prakken, 2006; Bex, 2015]. Alternative attack

captures a crucial aspect of abductive reasoning, namely that of conflict between

abductively inferred conclusions [Console and Dupré, 1994; Josephson and Joseph-

son, 1994]. We have contributed to the literature on computational argumentation

by allowing for the formal evaluation of arguments involved in this type of conflict.

We have proven a number of formal properties of our approach. We have proven

that arguments constructed in our argumentation formalism based on IGs adhere

to the identified constraints on performing inferences with causal, evidential, ab-

stractions, and other types of information (see Section 2.1.4). Moreover, we have

shown that instantiations of our argumentation formalism satisfy key rationality

postulates [Caminada and Amgoud, 2007], which warrants the sound definition of

instantiations of our argumentation formalism and implies that anomalous results

such as issues regarding inconsistency and non-closure as identified by [Caminada

and Amgoud, 2007] are avoided.

Of the concepts defined in Chapter 3, only competing alternative explanations

(Section 3.4.5), inference chains (Section 3.5) and some of the concepts regarding

generalisation chains (Section 3.3, p. 47) have not been used in defining our argu-

mentation formalism based on IGs. The importance of these concepts will become

apparent in the following chapter, in which we consider BN construction from IGs.
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Chapter 5

Constructing Bayesian networks from

information graphs

In the preceding chapter, we demonstrated the use of our IG-formalism in guiding the

construction of AFs. By formalising analyses performed using sense-making tools as

IGs as an intermediary step, our approach allows for the formal evaluation of AFs on

the basis of IGs using Dung’s [1995] argumentation semantics. In the current chapter

we provide another application of our IG-formalism, where we demonstrate the use

of the IG-formalism in guiding BN construction. We propose a structured approach

for automatically constructing a directed BN graph from an IG. In our approach,

we focus on exploiting the knowledge expressed in an IG to constrain the graphical

structure of the BN and the conditional independence relation it encodes by means

of the d-separation criterion. Moreover, we demonstrate that the inferences that

can be read from an IG given the evidence provide for qualitative constraints on the

probability distribution represented by the BN.

We expect direct IG construction to be more straightforward than direct BN

construction for domain experts unfamiliar with the BN-formalism, a claim that

should be empirically evaluated in future research. We believe this to be a plausible

assumption, however, among other things due to the fact that the arcs of a BN

are easily misinterpreted by domain experts unfamiliar with BNs as non-symmetric

relations of cause and effect instead of collectively encoding an independence relation

[Dawid, 2010], making manual BN construction a difficult, time-consuming and

error-prone process (see also van der Gaag and Helsper [2002]). Moreover, it is

justified to assume that information regarding causality is present in the domain

expert’s original analysis (see Bex [2011] and van den Braak et al. [2008]), and in

manual BN graph construction, conditional independencies are typically not directly

elicited, but instead the notion of causality is commonly used as a guiding principle

[Fenton and Neil, 2012; Jensen and Nielsen, 2007].

In IGs, causality information is made explicit by means of causal and evidential

generalisations and can thus be directly used in BN graph construction. We first
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focus on IGs that only include such generalisations without enablers in Section 5.1,

where we prove a number of properties of our approach in Section 5.2. We formally

prove that BN graphs constructed by our approach capture reasoning patterns sim-

ilar to those represented by the original IG. Moreover, we identify conditions under

which the fully automatically constructed initial graph is guaranteed to be a DAG,

and identify bounds on the complexity of probabilistic inference in BNs constructed

by our approach. In Sections 5.3 and 5.4 we then discuss extending our approach

to IGs including abstractions and generalisations of type ‘other’, as well as general-

isations that include enablers.

5.1 Constructing BNs from IGs conform the

notion of causality

In this section, we motivate and present our approach for constructing BN graphs

from IGs, where we first consider the special case in which IGs only include causal

and evidential generalisations without enablers. In Sections 5.1.1 and 5.1.2 we mo-

tivate the steps of our approach for automatically constructing an initial BN graph

from an IG; the approach itself is presented in Section 5.1.3. In Section 5.1.4 we

then explain and illustrate the steps of our approach with several examples.

5.1.1 Extracting a BN graph from an IG

First, we consider the graphical structure GB = (V,AB) of the BN. For constructing

a BN graph from an IG, the IG’s structure GI = (P,AI) is used, specifically the

propositions P, generalisations G, exceptions Exc and negations N expressed in

the graph.

Information in proposition nodes. For every proposition p ∈ P in an IG,

we propose to form a single BN node in V describing both values p and ¬p, as

captured by step 1 of our approach (see Section 5.1.3). By this step, two propositions

p,−p ∈ P involved in negation are captured as two mutually exclusive values of the

same node. Negation arcs present in an IG can thus be disregarded in construction

of the BN graph, as such arcs are drawn between a pair of propositions p, q ∈ P iff

q = −p and are therefore captured in the definition of the BN nodes.

Information in causal and evidential generalisations. As noted above, in

the manual construction of BN graphs arcs are typically directed using the notion of

causality as a guiding principle. Specifically, if the domain expert indicates that p or

¬p typically causes q or ¬q, then the arc is set from node P to node Q. By following

this heuristic, causes form a head-to-head connection in the node corresponding to

their common effect. As such, possible interactions between causes, for example due

to the fact that they could be in competition, can be directly captured in the CPT
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for this node. Hence, we propose to use the same heuristic in automatically directing

arcs, where we exploit causality information explicitly expressed in an IG by means

of causal and evidential generalisations. Specifically, arcs in the BN graph are set

in the same direction as generalisation arcs in Gc and in the opposite direction for

generalisation arcs in Ge. This is captured by step 2 of our approach.

Information in exceptions. Arcs in Exc denote exceptions to generalisations.

For instance, if a generalisation is in the evidential direction, then an exception

suggests an alternative explanation for the same effect (see also Bex [2015, p. 15]).

Multiple exceptions to an evidential generalisation then express different alterna-

tive explanations for the same effect. Exceptions to causal generalisations do not

suggest alternative explanations for the same effect, but do possibly interact with

them (examples are provided in Section 5.1.4.2). Accordingly, we propose to enable

capturing possible interactions between an exception and a generalisation arc, if any,

in the CPTs for head-to-head nodes formed in the BN graph. This is captured by

step 3 of our approach.

5.1.2 Extracting qualitative probabilistic constraints from IGs

By itself, a generalisation arc only captures knowledge about the world in conditional

form; only when considering the available evidence Ep in the IG can directionality

of inference be read from the graph. In comparison, from a BN graph we can read

the chains between nodes that are active given the evidence and will be exploited

to propagate the evidence upon probabilistic inference. In our approach, we want

to ensure that the sequences of propositions that can be iteratively inferred from

each other given Ep in an IG (i.e. inference chains, see Section 3.5) are captured in

the BN graph by means of active chains given the available evidence for EV ⊆ V

corresponding to Ep ⊆ P. In Section 5.2.2 we formally prove that BN graphs

constructed by our approach indeed allow reasoning patterns similar to the inference

chains that can be read from the original IG given the evidence.

Exploiting competing alternative explanations. Probabilistic constraints on

the BN under construction are derived by considering the inferences that can be read

from an IG given Ep. In case the tails of two causal generalisations are abductively

inferred from the common head given Ep, these sets of tails are competing alter-

native explanations for the common effect expressed by the head (see Definition 33

from Section 3.4.5, illustrated in Figure 3.10a and explained in Example 43). In this

case, we propose to constrain the CPT for the variable corresponding to the head

such that the explaining away effect can occur between the variables corresponding

to the tails of the generalisations, as captured by step 5a. In case the tails of a single

causal generalisation are abductively inferred from the head given Ep, then the tails

are not in competition among themselves and the explaining away effect should not

occur, as captured by step 5b. Similarly, the tails of a causal or evidential gener-
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alisation are not in competition among themselves in case the head is deductively

inferred from the tails given Ep, which is captured by the same step (illustrated and

explained in Section 3.4.5, Figure 3.10b and Example 43). In step 5b, probabilis-

tic constraints for causal generalisations are defined on CPTs for nodes in the BN

under construction, but for evidential generalisations constraints are defined that

cannot be directly imposed on one of the CPTs as divergent connections instead of

convergent connections are formed. For evidential generalisations, we impose the

constraint that the probability that the head is true given one of its tails should not

decrease in the presence of one of its other tails.

We note that various evidence sets Ep can be used to establish inferences from

the same IG, and thus that, depending on Ep, (non-conflicting) constraints may be

derived on different CPTs or different (conditional) probabilities of the BN under

construction. The structure of the BN does not depend on Ep, as the IG’s structure

is used in BN graph construction and not the IG’s inferences.

Exploiting interactions between exceptions and generalisations. The pres-

ence of an exception to a generalisation g weakens a deductive or abductive inference

performed with g. Depending on whether the tails of g are abductively inferred from

the head given Ep or the head is deductively inferred from the tails given Ep, dif-

ferent probabilistic constraints are derived, as captured by step 6 of our approach.

5.1.3 Steps of the approach

In this subsection, we present the steps of our approach. Let Var : P → V be an

operator mapping every proposition p or ¬p ∈ P in an IG to a BN node Var(p) =

Var(¬p) ∈ V describing values p and ¬p. For an IG GI = (P,AI) with Ga = Go =

∅ and for which Enabler(g) = ∅ for every g ∈ Gc, a BN graph GB = (V,AB) is

constructed as follows:

1) ∀p,¬p ∈ P, include Var(p) in V; if p or ¬p ∈ Ep, also include Var(p) in EV.

2) For every generalisation arc g : {p1, . . . , pn} → p:

2a) If g ∈ Ge, include Var(p) → Var(pi), i = 1, . . . , n in AB.
2b) If g ∈ Gc, include Var(pi) → Var(p), i = 1, . . . , n in AB.

3) For every exception arc exc : p� g in Exc with g : {q1, . . . , qn} → q:

3a) If g ∈ Ge, include Var(p) → Var(qi), i = 1, . . . , n in AB.
3b) If g ∈ Gc, include Var(p) → Var(q) in AB.

While our approach exploits the domain knowledge captured in the IG in construct-

ing an initial BN graph, the IG may lack information needed to prevent cycles

and unwarranted (in)dependencies in the obtained BN graph; hence, we include the

following validation step, which is standard in BN construction:

4) Verify the properties of the constructed graph GB by applying the standard graph

validation step (see Section 2.3.3).
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Finally, we define several probabilistic constraints on the BN under construction:

5) For every generalisation arc g : P1 → q in G, P1 = {p1, . . . , pn} ⊆ P:

5a) ∀g′ : Q→ q in G, Q = {q1, . . . , qm} ⊆ P, g �= g′ such that both g, g′ ∈ Gc

and for which, given Ep, P1 and Q are competing alternative explanations

for the common effect expressed by q (see Definition 33), constrain the CPT

for Var(q) such that X−({Var(pi), Var(qj)}, q) for pi ∈ P1 \Q, qj ∈ Q\P1.

5b) If g ∈ Gc is on an inference chain given Ep (see Section 3.5, p. 56), constrain

the CPT for Var(q) such that Xδ({Var(pi), Var(pj)}, q) with δ �= −, pi, pj ∈
P1, pi �= pj . If g ∈ Ge is on an inference chain given Ep, constrain

the probabilities of the BN such that Pr(q | pi, pj) ≮ Pr(q | pi,¬pj) for

pi, pj ∈ P1, pi �= pj .

6) For every exc : p� g in Exc with p ∈ P and g : {q1, . . . , qn} → q in G:

6a) If g ∈ Ge and q is deductively inferred from q1, . . . , qn given Ep using

g, constrain the CPT for Var(qi) such that X−({Var(p), Var(q)}, qi), i =
1, . . . , n. If in addition ∃exc′ : p′ � g in Exc, further constrain the CPT

for Var(qi) such that X−({Var(p), Var(p′)}, qi), i = 1, . . . , n.

6b) If g ∈ Gc and q is deductively inferred from q1, . . . , qn given Ep using

g, constrain the CPT for Var(q) such that Pr(q | p, q1, . . . , qn) < Pr(q |
¬p, q1, . . . , qn).

6c) If g ∈ Gc and q1, . . . , qn are abductively inferred from q given Ep using g,

constrain the probabilities of the BN such that Pr(qi | p, q) < Pr(qi | ¬p, q),
i = 1, . . . , n.

We reiterate that the initially constructed BN by our approach should always be

verified by the BN modeller in consultation with the domain expert, which includes

verifying the derived probabilistic constraints. After this verification step, the de-

rived constraints can be used in subsequent probability assessment, thereby partially

simplifying it. In particular, since we are considering BN construction in data-poor

domains the required conditional probabilities will often need to be elicited from

domain experts, where it can be monitored whether the assessed conditional prob-

abilities satisfy the derived probabilistic constraints.

We note that the above probabilistic constraints concern (intercausal) interac-

tions between individual nodes and not sets, as to the best of our knowledge no

approaches have been proposed in the literature that allow for capturing interac-

tions between sets of parents of a node. The type of competition between sets

of proposition nodes in an IG as captured by Definition 33 can, therefore, not be

straightforwardly captured between variables in a corresponding BN; instead, in step

5a we propose to constrain the CPT for Var(q) such that X−({Var(pi), Var(qj)}, q)
for pairs of propositions pi ∈ P1 \Q, qj ∈ Q \P1, where the intersection of P1 and

Q is not considered. Similarly, in step 6a interactions between pairs of nodes and

not sets are considered. In future work, it can be investigated whether the concept

of product synergy can be extended to sets of nodes.
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Figure 5.1: The IG of Figure 3.10a (a); the BN graph constructed from this IG by

our approach (b); a possible CPT for node Murder (c).

Upon using our approach, arcs in the BN under construction are directed from

cause to effect; therefore, for nodes in the BN under construction for which prob-

abilistic constraints are directly imposed on the CPTs the necessary conditional

probabilities can be elicited in the form of likelihood ratios, which as noted in the

introduction of this thesis are commonly used in probabilistic evaluation in domains

such as forensics, law and medicine (see Section 1.2.2). In some cases probabilistic

constraints in the above steps are defined that cannot be directly imposed on one of

the CPTs for nodes in the BN under construction. We note that approaches have

been proposed that allow one to also use these probabilistic constraints in an elici-

tation procedure for obtaining the required local probability distributions [Druzdzel

and van der Gaag, 1995].

5.1.4 Explanation and illustration of the approach

In this section, we explain and illustrate the steps of our approach through our run-

ning example. In Section 5.1.4.1 we illustrate that steps 1−2 of our approach suffice

for constructing BN graphs from restricted IGs not including exception arcs, where

the (conditional) probabilities of the BN under construction should be constrained

according to step 5. In Section 5.1.4.2 we then illustrate that the BN under con-

struction needs to be further constrained in case exception arcs are present in the

IG; this is accounted for in steps 3 and 6 of our approach.

5.1.4.1 Explanation and illustration of steps 1− 2 and 5

First, we explain and illustrate the main idea behind our approach by applying it

to the IG depicted in Figure 5.1a.

Steps 1− 2. The first step is to capture every proposition in GI and its negation

as two mutually exclusive values of the same BN node in GB. In steps 2a and 2b,

arcs in the BN graph are directed using the notion of causality in that for every

g ∈ Gc, arcs in the BN graph are directed from nodes corresponding to Tails(g) to

Var(Head(g)), and vice versa for g ∈ Ge. This formalises the approach typically

taken in the manual construction of BN graphs, namely that of setting arcs in the

causal direction as a guiding principle [Fenton and Neil, 2012; Jensen and Nielsen,

2007]. The resulting BN graph is depicted in Figure 5.1b.
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Figure 5.2: Example of an IG (a); the BN graph constructed by directing arcs

according to the inferences that can be read from this IG given Ep (b); the BN

graph constructed by directing arcs according to the generalisations in the IG (c).

Step 5a. The inferences that can be read from an IG given the evidence allow us

to derive constraints on the (conditional) probabilities of the BN under construc-

tion. In the IG of Figure 5.1a, given Ep = {police} propositions mot1 and mot2
are abductively inferred from murder using g3 and g5, respectively, as given Ep

murder is deductively inferred from police using g1. Therefore, mot1 and mot2 are

competing alternative explanations for common effect murder in that accepting one

explanation will diminish our belief in the other (see Definition 33). We propose to

link this type of intercausal interaction in IGs to the explaining away effect in BNs.

Specifically, as proposed in step 5a of our approach, the CPT for Murder should be

constrained such thatX−({Mot1,Mot2},murder). Note that the IG only informs us

that there should be a negative product synergy between Mot1 and Mot2 wrt value

Murder = true; it does not inform us whether a product synergy should also be

exhibited between these variables wrt value Murder = false, as proposition ¬murder

does not appear in the IG. Figure 5.1c depicts a possible CPT for Murder, where

X−({Mot1,Mot2},murder) as 0.4 · 0.1 ≤ 0.6 · 0.5. However, as 0.6 · 0.9 ≥ 0.4 · 0.5,
it also holds that X+({Mot1,Mot2},¬murder). Care should be taken, therefore, in

eliciting the involved probabilities, as it may be undesirable that a positive product

synergy for value ¬murder is exhibited.

By following steps 2a and 2b of our approach, causes automatically form a head-

to-head connection in the node corresponding to their common effect for any given

IG; interactions between causes in an IG, for instance because they are competing

alternative explanations for the common effect, can, therefore, always be directly

captured in the CPT for the node corresponding to the common effect. We note that

directing arcs in the BN graph in the same direction as the inferences that can be

read from an IG given the evidence would lead to undesirable results. Consider the

IG depicted in Figure 5.2a. By directing arcs according to the inferences that can be

read from this IG given Ep, the BN graph of Figure 5.2b is constructed. In the IG of

Figure 5.2a, p and q are competing alternative explanations for common effect r given

Ep; however, this competition cannot be directly captured in the CPT for node R in

the BN graph of Figure 5.2b as a divergent connection is formed. Moreover, all chains

between P and Q are blocked given EV = {R}; hence, interactions between causes

expressed in an IG cannot always be captured by directing arcs in a corresponding

BN graph according to the induced inferences in an IG.
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Figure 5.3: The IG of Figure 3.10b (a); the BN graph constructed from this IG (b);

a possible CPT for node Murder (c).

Step 5b. Next, consider the IG of Figure 5.3a. Given Ep, murder is deductively

inferred from mot1 and mot2 using g3 (i.e. g3 is on an inference chain given Ep).

Therefore, mot1 and mot2 are not competing alternative explanations for murder in

this IG. By following steps 1−2 of our approach, the BN graph of Figure 5.3b is con-

structed. As mot1 and mot2 are not competing alternative explanations for murder

in this example, we need to assure that the explaining away effect cannot occur be-

tween Mot1 and Mot2 for value Murder = true. This can be achieved by constraining

the CPT for Murder such that Xδ({Mot1,Mot2},murder) for δ �= −, as captured

by step 5b of our approach. Specifically, a negative product synergy should not be

exhibited, as mot1 and mot2 are not competing alternative explanations for the com-

mon effect; hence, either a zero or a positive product synergy should be exhibited.

Figure 5.3c depicts a possible CPT for Murder, where X+({Mot1,Mot2},murder)
as 0.8 · 0.1 ≥ 0.2 · 0.2.

In the IG of Figure 5.4a, an IG including a single evidential generalisation arc

g2 is depicted. Given Ep, mot1 is deductively inferred from tes1 and tes2 using

g2. Therefore, tes1 and tes2 are not competing alternative explanations for mot1 in

this IG. The BN graph constructed from this IG is depicted in Figure 5.4b. Note

that, in contrast to the BN graph of Figure 5.3b, a head-to-head node is not formed

and probabilistic constraints are derived by step 5b that are not defined on the

CPTs for nodes in the BN under construction. Instead, probabilistic constraints on

the probabilities of the BN are derived, namely Pr(mot1 | tes1, tes2) ≮ Pr(mot1 |
tes1,¬tes2) and Pr(mot1 | tes1, tes2) ≮ Pr(mot1 | ¬tes1, tes2).

tes2

mot1

tes1

g2 e

(a) (b)

Tes1

Mot1

Tes2

Figure 5.4: Adjustment to the IG of Figure 5.3a including an evidential generalisa-

tion arc with multiple tails (a); the BN graph constructed from this IG (b).
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(c)

mot1
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murder
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tes4
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Figure 5.5: IG including exceptions to generalisations in Ge and Gc (a); the BN

graph constructed from this IG (b); a possible CPT for node Tes3 (c).

5.1.4.2 Explanation and illustration of steps 3 and 6

Next, IGs including exception arcs are considered.

Step 3a. In Figure 5.5a, an example of an IG is depicted in which exceptions to

both an evidential and a causal generalisation are provided. Proposition lie, which

states that Marjan had reason to lie when giving her testimony, provides an excep-

tion to the evidential generalisation tes3 → ¬murder. Since tes3 is either the result

of Marjan truly not committing the murder or due to a lie, ¬murder and lie can

be seen as competing alternative explanations for Marjan’s testimony; we illustrate

and explain this by discussing an alternative modelling of the same IG, depicted in

Figure 5.6b. In the IG of Figure 5.6b, evidential generalisation arc tes3 → ¬murder

of Figure 5.6a is replaced by causal generalisation arc ¬murder → tes3 (see also

Section 2.1.3). Furthermore, as exception lie can be considered a cause for tes3,

causal generalisation arc lie → tes3 is included in the IG of Figure 5.6b. Given Ep,

propositions ¬murder and lie are abductively inferred from tes3, and hence these

propositions are competing alternative explanations for tes3. Generally, exceptions

to an evidential generalisation can be considered competing alternative explanations

for the common effects expressed by the antecedents of the generalisation (see also

Bex [2015, p. 15]). We therefore propose to enable capturing such interactions be-

tween an exception and an evidential generalisation by forming head-to-head nodes

in the nodes corresponding to the tails of the generalisation arc. By step 2a of our

approach, the BN graph under construction includes arc Murder → Tes3. A head-

to-head node can, therefore, be formed in node Tes3 by adding additional arc Lie

→ Tes3 to the BN graph; this is captured by step 3a of our approach.

Step 6a. In the IG of Figure 5.5a, given Ep = {police, alibi, tes3, tes4}, ¬murder

is inferred from tes3. As proposition lie provides an exception to the generalisation

used in performing this inference and thereby weakens this inference, we propose to

constrain the CPT for Tes3 such that the explaining away effect can occur between

Lie and Murder for value Tes3 = true. This is achieved by constraining the CPT

for Tes3 such that X−({Lie,Murder}, tes3), as captured by step 6a of our approach.

In this particular example, ¬murder is one of the possible causes of tes3; therefore,
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tes3

e

¬murder

lie

tes4
e ¬murder

c

tes3

lie

tes4
e

c

Figure 5.6: Part of the IG of Figure 5.5a (a); alternative modelling of this IG

fragment (b).

for variable Murder the ordering false > true is assumed. For example, the CPT

for Tes3 can be chosen as in Figure 5.5c, as in this case it holds that Pr(tes3 |
¬murder, lie) · Pr(tes3 | murder,¬lie) = 0.2 · 0.01 ≤ Pr(tes3 | ¬murder,¬lie) ·
Pr(tes3 | murder, lie) = 0.8 · 0.3.

We note that multiple exceptions to an evidential generalisation arc g express

different alternative explanations for the common effects expressed by Tails(g). In

particular, multiple exceptions to an evidential generalisation arc can be alterna-

tively modelled using causal generalisations in a similar manner as illustrated for a

single exception in Figure 5.6, where each exception expresses a different alternative

explanation for the common effects expressed by Tails(g). We therefore propose

to constrain the CPTs for the nodes corresponding to the tails such that a nega-

tive product synergy is exhibited between the nodes corresponding to each pair of

exceptions, as captured by step 6a of our approach.

Step 3b. In the IG of Figure 5.5a, proposition ¬opp, which states that Marjan

did not have opportunity to commit the murder as she has an alibi (alibi), provides

an exception to the causal generalisation arc mot1 → murder. In contrast with the

exception to the evidential generalisation arc, this exception cannot be considered a

competing alternative explanation for the tail of the generalisation arc; the absence

of opportunity cannot be considered a cause for motive. Instead, it allows us to

infer that Marjan did not murder Leo (¬murder). For exceptions to generalisations

g ∈ Gc, we therefore propose to form a head-to-head node in Var(Head(g)) as

opposed to in Var(pi) for pi ∈ Tails(g). By step 2b of our approach, the BN

graph under construction includes arc Mot1 → Murder. A head-to-head node can,

therefore, be formed in Murder by adding additional arc Opp → Murder to the BN

graph; this is captured by step 3b of our approach. The corresponding BN graph is

depicted in Figure 5.5b.

Steps 6b-c. Bex and Renooij [2016] previously noted that, for deduction, the

presence of a proposition opposing an inference step from q1, . . . , qn to q should

decrease the probability that q is true. We propose to take a similar approach

for exceptions to causal generalisations. For generalisations q1, . . . , qn → q in Gc

for which q is deductively inferred from q1, . . . , qn given Ep using g in presence
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of an exception p, we propose to constrain the CPT for Var(q) such that Pr(q |
p, q1, . . . , qn) < Pr(q | ¬p, q1, . . . , qn), as captured by step 6b of our approach. In

case q1, . . . , qn are abductively inferred from q given Ep using g, the probability

that qi is true given q should decrease in the presence of an exception p for i =

1, . . . , n. Accordingly, we propose to constrain the probabilities of the BN such that

Pr(qi | p, q) < Pr(qi | ¬p, q), i = 1, . . . , n, as captured by step 6c of our approach.

Note that the latter constraints cannot be directly imposed on the CPTs for nodes

Var(p), Var(q), or Var(qi), as nodes Var(qi) and Var(p) are parents of node Var(q)

by steps 2b and 3b of our approach.

5.2 Properties of the approach

In this section, we prove a number of formal properties of our approach. In Section

5.2.1 we study conditions on IGs under which the fully automatically constructed

initial BN graph is guaranteed to be acyclic. In Section 5.2.2 we prove that, as

intended, BN graphs constructed by our approach capture all inference chains that

can be read from an IG given the evidence in the form of induced active chains.

In Section 5.2.3 we look into the size of the CPTs and complexity of probabilistic

inference in BN graphs constructed by our approach. Finally, in Section 5.2.4 we look

into mapping properties of our approach; specifically, we investigate conditions under

which the same BN graph is constructed from different IGs by our approach, and

discuss ways by which a distinction can be made in the (conditional) probabilities

of the BN under construction.

5.2.1 Constructing acyclic graphs

In this section, we study conditions under which the initial graph constructed by

steps 1−3 of our approach is guaranteed to be a DAG. Hence, under these conditions

the (manual) verification step of whether the obtained graph contains cycles (part

of step 4 of our approach) can be skipped.

Conditions a) and b) of Proposition 3 concern the existence of exception arcs

in IGs. Specifically, cycles are possibly introduced within weakly connected compo-

nents of the BN graph under construction in step 3 of our approach in case exception

arcs exist within weakly connected components of IGs (condition a). Furthermore,

cycles are also possibly introduced in the BN graph from a node V1 in one weakly

connected component via a node V2 in another weakly connected component in

this step in case exception arcs exist between propositions in separate weakly con-

nected components of IGs (condition b). Examples of IGs violating these conditions

are provided after the formal result. The terms ‘non-repetitive’ and ‘consistent’

generalisation chains used in condition c) were introduced in Section 3.3 (p. 47);

informally, for IGs adhering to condition c) the possibility of using a proposition p

to deductively infer itself or −p is excluded.
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Proposition 3. Let GI = (P,AI) be an IG with Ga = Go = ∅ and for which

Enabler(g) = ∅ for every g ∈ Gc. Let G∗
I = (P,A∗

I) be the possibly disconnected

sub-graph of GI with A∗
I = AI \ Exc. Let C = {C = (Pc,Ac

I) | Pc ⊆ P,Ac
I ⊆

A∗
I ,C is a weakly connected component of G∗

I} be the set of IG components. As-

sume that the following conditions are satisfied:

a) For any IG component C ∈ C, there does not exist an exc : p � g in Exc with

p ∈ Pc, g ∈ Ac
I .

b) For every pair of IG components C1, C2 ∈ C, there does not exist both an

exc1 : p1 � g1 in Exc with p1 ∈ Pc1 , g1 ∈ Ac2
I and an exc2 : p2 � g2 in

Exc with p2 ∈ Pc2 , g2 ∈ Ac1
I .

c) Generalisation chains in GI are non-repetitive and consistent (Section 3.3, p. 47).

Let GB = (V,AB) be the graph constructed from GI according to steps 1− 3 of our

approach. Then GB is a DAG.

Proof. By setting arcs in AB per step 2 of our approach, no cycles are introduced.

Specifically, our non-repetitiveness and consistency assumptions on generalisation

chains (condition c) jointly assume that for every p ∈ P there does not exist a

generalisation chain [g1, . . . , gm] with p ∈ Tails(g1) such that either Head(gm) = p

or Head(gm) = −p. Therefore, no chain of arcs exists in AB from a node P to itself.

The only other case in which cycles are possibly introduced in GB is when a causal

cycle exists in GI , which is also prohibited by assumption (see Section 3.3, p. 47).

We now prove that if C ∈ C is an IG component of GI , then the BN segment

C ′ obtained from C after step 2 is a weakly connected component of the thus far

constructed BN graphGB. Let C ∈ C be an IG component ofGI . Then propositions

within C are interconnected by arcs in G ∪ N ⊆ AI but are not connected to

other propositions in the supergraph GI ; therefore, corresponding nodes in BN

segment C ′ are interconnected but are not connected to other nodes in supergraph

GB. This is the case as per step 2, AB only includes arcs between the variables

corresponding to Tails(g) and Head(g) for every g ∈ G in the IG; no arcs are

introduced corresponding to negation arcs n ∈ N. We then call C ′ the weakly

connected component corresponding to IG component C.

In step 3 of our approach, additional arcs are included in AB for every exc ∈ Exc

in the IG. We now prove that no cycles are introduced within the weakly connected

components of BN graph GB or from a node V1 in one weakly connected component

to itself via a node V2 in another weakly connected component of GB in step 3.

Under condition a), no cycles are introduced within a weakly connected component

C ′ of GB in this step. Specifically, C ′ contains no cycles after step 2 and no cycles

are introduced in C ′ in step 3 as no exception arc is directed from a p ∈ Pc to

a g ∈ Ac
I in corresponding IG-component C. Furthermore, for every pair of IG

components C1 and C2 of GI with corresponding weakly connected components C ′
1

and C ′
2 of GB, no cycles are introduced from a node V1 ∈ C ′

1 to itself via a node

V2 ∈ C ′
2 under condition b). The resulting BN graph is therefore acyclic. �

94



Figure 5.7: Examples of IGs (a, c, e, g, i) for which a cyclic graph is constructed by

steps 1− 3 of our approach (b, d, f, h, j).

Figures 5.7a, 5.7c, 5.7e and 5.7g depict examples of IGs that do not satisfy condition

a) of Proposition 3 and hence result in cyclic graphs. An IG violating only condition

a) may contain:

1a) A generalisation chain [g1, . . . , gm], g1, . . . , gm ∈ Gc and an exception arc exc :

Head(gj)� gi for 1 ≤ i < j ≤ m (see Figures 5.7a and 5.7c), or;

1b) A generalisation chain [g1, . . . , gm], g1, . . . , gm ∈ Ge and an exception arc exc :

Head(gi)� gj for 1 ≤ i < j ≤ m (see Figure 5.7e), or;

2) Propositions r, ¬r with n : r� ¬r in N, where ¬r provides an exception to

a generalisation gi in a generalisation chain [g1, . . . , gm] with either:

2a) Head(gm) = r and g1, . . . , gm ∈ Gc (see Figure 5.7g), or;

2b) r ∈ Tails(g1) and g1, . . . , gm ∈ Ge.

For 1a), Head(gj) poses an exception to a generalisation that is used in iteratively

inferring Head(gj) in case solely deductive inferences are performed with the gen-

eralisations in the chain, as illustrated in Figure 5.7a. In case solely abductive

inferences are performed with the generalisations in the chain, Head(gj) instead

poses an exception to a generalisation that is used to iteratively abductively infer

another proposition from Head(gj), as illustrated in Figure 5.7c. Similarly, for 1b)

Head(gi) poses an exception to a generalisation that is used to iteratively deduc-

tively infer another proposition from Head(gi), as only deduction can be performed

with evidential generalisations; this is illustrated in Figure 5.7e. For 2), an example

is provided in Figure 5.7g. Finally, an example of an IG violating condition b) of

Proposition 3 is provided in Figure 5.7i.
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In the validation step that follows the initial construction of BN graphs corre-

sponding to IGs violating conditions a), b) and c) of Proposition 3, arcs can be

reversed or removed to make these graphs acyclic. The choice of arc to reverse or

remove will depend on its effect on active chains, including those between nodes

not directly incident on the arc. We note that this type of (manual) verification is

standard in BN construction, especially in data-poor domains. While the domain

knowledge expressed in the original IG has been exploited to construct an initial

BN graph, additional knowledge may need to be elicited to obtain a valid graph.

5.2.2 Capturing induced inference chains as active chains

In this section, we study whether BN graphs constructed by our approach capture

reasoning patterns similar to those that can be read from the original IG given the

evidence. Recall that an IG, by means of its inference chains (see Section 3.5),

describes sequences of propositions that can be iteratively inferred from each other

given the available evidence. In comparison, from a BN graph we can read the

chains between nodes that are active given the evidence and will be exploited to

propagate the evidence upon probabilistic inference. Note that, similar to active

chains for BNs, inference chains do not need to start in evidence (see Example 45),

but that in contrast to active chains inference chains are generally not symmetrical

(see Example 46). We now formally prove that all inference chains that can be read

from an IG given the evidence Ep ⊆ P are captured in the BN graph by means of

active chains given the available evidence for EV ⊆ V corresponding to Ep. This

result implies that, for every inference chain (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) given

Ep, Var(p1) and Var(pn) are not d-separated given the evidence for EV.

Proposition 4. Let GI = (P,AI) be an IG with Ga = Go = ∅ and for which

Enabler(g) = ∅ for every g ∈ Gc. Let Ep ⊆ P be an evidence set, and let

GB = (V,AB) be the BN graph constructed from GI according to steps 1 − 3 of

our approach. Let (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be any inference chain that can

be read from GI given Ep. Then there exists an active chain between Var(p1) and

Var(pn) in GB given the evidence for EV.

Proof. Following steps 1 − 2 of our approach, a sequence of nodes and arcs is

formed between Var(p1) and Var(pn) in GB, as for every gi, 1 ≤ i < n arcs between

Tails(gi) and Head(gi) are added to AB. By our non-repetitiveness and consistency

assumptions on inference chains, this is a sequence of distinct nodes and arcs and

thus a chain in GB. We now prove that this chain in the BN graph is active given

EV, as all options to block a chain do not occur. First, note that per Lemma 1

it holds that pi /∈ Ep for i > 1; therefore, corresponding nodes Var(pi) in the BN

graph are not instantiated and hence do not block chains. Possibly only p1 ∈ Ep.

However, in this case, the corresponding node Var(p1) is an end-point of the chain

which, therefore, does not block it. Hence, chains between Var(p1) and Var(pn) are

never blocked by EV.
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The only other option to block a chain occurs in case it includes an unin-

stantiated head-to-head node without instantiated descendants. Consider subchain

(pi−1, gi−1, pi, gi, pi+1) of our inference chain for an arbitrary 1 < i < n. We show

that the corresponding chain in the BN graph does not include a head-to-head node

Var(pi−1) → Var(pi) ← Var(pi+1). Note that by steps 2a and 2b of our approach, a

head-to-head node Var(pi−1) → Var(pi) ← Var(pi+1) is only formed by setting arcs

corresponding to generalisation arc gi−1 and gi in case:

1. gi−1 ∈ Ge, Head(gi−1) = pi−1, pi ∈ Tails(gi−1), and either:

1a) gi ∈ Ge, Head(gi) = pi+1, pi ∈ Tails(gi), or;

1b) gi ∈ Gc, Head(gi) = pi, pi+1 ∈ Tails(gi).

2. gi−1 ∈ Gc, Head(gi−1) = pi, pi−1 ∈ Tails(gi−1), and either:

2a) gi ∈ Gc, Head(gi) = pi, pi+1 ∈ Tails(gi), or;

2b) gi ∈ Ge, Head(gi) = pi+1, pi ∈ Tails(gi).

However, in performing the inference steps from pi−1 to pi and from pi to pi+1 none of

these combinations of generalisations could have been used, as proven in Proposition

1. Thus the chain between Var(p1) and Var(pn) corresponding to inference chain

(p1, g1, p2, g2, . . . , pn−1, gn−1, pn) does not include a head-to-head node Var(pi−1)→
Var(pi) ← Var(pi+1) for 1 < i < n and is therefore never blocked.

Finally, in step 3 AB is extended for exception arcs. This step does not change

the chains formed between Var(p1) and Var(pn) in step 2, which therefore remain

active given EV. �

The implication in the other direction of Proposition 4 does not generally hold.

Specifically, it does not generally hold that for every induced active chain in a BN

graph constructed from an IG GI , there exists a corresponding induced inference

chain in GI . For instance, since the notion of an active chain is a symmetrical

concept, a BN graph will also capture reasoning patterns in the direction opposite

of the inference chains that can be read from an IG. As inference chains are generally

not symmetrical (see Example 46), reasoning patterns may appear in the BN graph

that do not appear in the original IG.

5.2.3 Size and complexity of constructed BNs

The following properties concern the size and complexity of the resulting BN model.

Proposition 5 gives an upper-bound on the total number of nodes and arcs introduced

in a BN graph constructed from an IG by our approach.

Proposition 5. Let GI = (P,AI) be an IG with Ga = Go = ∅ and for which

Enabler(g) = ∅ for every g ∈ Gc. Let GB = (V,AB) be the BN graph con-

structed from GI according to steps 1 − 3 of our approach. Let Exce and Excc

be disjoint subsets of Exc consisting of exceptions to generalisation arcs in Ge

and Gc, respectively. Then |V| = |P| − |{p | p ∈ P and ¬p ∈ P}| and |AB| ≤∑

g∈G

|Tails(g)|+ |Excc|+ ∑

p�g in Exce
|Tails(g)|.
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Figure 5.8: Illustration of the terminology used in Proposition 6.

Proof. By step 1 of our approach, both p and its negation are mapped to the same

node Var(p) = Var(¬p) ∈ V. Therefore, the exact number of nodes introduced in

this step is |P \ {p | p ∈ P and −p ∈ P}|. In step 2, at most |Tails(g)| arcs are

added to AB for every g ∈ G. For every exc ∈ Excc, one additional arc is added to

AB in step 3b. For every exc : p� g in Exce, at most |Tails(g)| arcs are added to

AB in step 3a. �

Proposition 6 gives an upper-bound on the number of parents introduced by our

approach for each node Var(p) in V, which bounds both the size of the CPTs and

the complexity of probabilistic inference in the BN [Darwiche, 2009, pp. 141–142].

Informally, this bound captures the number of generalisation arcs and exception arcs

that involve either proposition p or ¬p. The terminology used in Proposition 6 is

illustrated in Figure 5.8.

Proposition 6. Let GI = (P,AI) be an IG with Ga = Go = ∅ and for which

Enabler(g) = ∅ for every g ∈ Gc. Let GB = (V,AB) be the BN graph constructed

from GI according to steps 1 − 3 of our approach. For every p ∈ P, let Parp =

{pi | pi ∈ Tails(g), g ∈ Gc, Head(g) ∈ {p,¬p}}. Let Ge
p be a subset of Ge, where

g ∈ Ge
p iff p ∈ Tails(g). Let Excp ⊆ Exc be the subset of exception arcs directed

to a g ∈ Ge
p or a g ∈ Ge

¬p. Similarly, let Exc′p ⊆ Exc be the subset of exception

arcs directed to a g ∈ Gc for which Head(g) ∈ {p,¬p}. Then an upper-bound for

the number of parents of Var(p) is:

|Parp|+ |Excp|+ |Exc′p|+ |Ge
p|+ |Ge

¬p|
Proof. For every g ∈ Gc with Head(g) ∈ {p,¬p}, Var(p) has at most |Tails(g)|
parents by step 2b of our approach; hence the term |Parp|. By steps 3a and 3b, AB
includes a single arc directed towards Var(p) for every exception exc in Excp or in

Exc′p, respectively; hence the terms |Excp| and |Exc′p|. For every g ∈ Ge with p or

¬p in Tails(g), a single arc directed towards Var(p) is included in AB by step 2a of

our approach; hence the terms |Ge
p| and |Ge

¬p|. �

Note that, in case Ge
p = Ge

¬p = ∅, it follows that Excp = ∅; hence, terms |Ge
p|,

|Ge
¬p| and |Excp| are equal to zero in this case. Similarly, Parp may be empty, in

which case Exc′p = ∅ and terms |Parp| and |Exc′p| are equal to zero.
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Figure 5.9: Examples of IGs (a-d) for which the same BN graph (e) is constructed

by our approach.

5.2.4 Mapping properties and probabilistic constraints

Finally, we investigate conditions under which the same BN graph is constructed

from different IGs by our approach, and discuss ways by which a distinction can

be made between these different cases in the (conditional) probabilities of the BN

under construction. First, we prove in Proposition 7 that for every finite BN graph

GB, there exists a finite IG such that this IG is mapped to GB by our approach.

Proposition 7. Let IG be the space of finite IGs GI = (P,AI) with Ga = Go = ∅
and for which Enabler(g) = ∅ for every g ∈ Gc. Let BN be the space of finite BN

graphs. Let F : IG → BN be the function defined by steps 1 − 3 of our approach.

Then F is a surjection.

Proof. Let GB = (V,AB) be a BN graph in BN. Then we need to find at least

one IG GI = (P,AI) ∈ IG such that F(GI) = GB. Define GI as follows. For

every node P ∈ V, include proposition p ∈ P. For every arc P1 →P2 ∈ AB, include
generalisation arc g : p1 → p2 in Gc. Then F(GI) = GB by steps 1 and 2b. �

However, F is not an injection. Figures 5.9a-d depict examples of IGs for which

the same BN graph, namely the graph depicted in Figure 5.9e, is constructed by

F . Possible differences between these IGs can be captured in the (conditional)

probabilities of the BN under construction. In Figure 5.9a, a negation arc is drawn

between r and ¬r. A possible probabilistic interpretation is that this IG informs

us on probabilities Pr(r | p, q) and Pr(¬r | p, q) (see also Prakken [2018b]), where a

preference for r over ¬r defines an ordering on these two probabilities. For reasons

mentioned in Section 4.3, we have currently not accounted for preferences in our IG-

formalism; hence, possible probabilistic constraints resulting from such preferences

are not further discussed. In Figure 5.9b, p and q can each be considered sufficient

for deductively inferring r, while in Figure 5.9c both p and q are needed. A possible

probabilistic interpretation of the IG in Figure 5.9b is that it only informs us on

probabilities Pr(r | p) and Pr(r | q) and not on Pr(r | p, q), while the reverse holds
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for the IG of Figure 5.9c. Figure 5.9c is distinguished from Figure 5.9a, as Figure

5.9c only informs us on Pr(r | p, q) while Figure 5.9a also informs us on Pr(r | q)
and Pr(¬r | p). For exception arcs, specific probabilistic constraints are derived,

as captured by step 6 of our approach. Specifically, in the example of Figure 5.9d,

constraint Pr(r | p, q) < Pr(r | ¬p, q) is derived.

5.3 Extending the approach to any IG

We now discuss extending our approach to general IGs as defined in Chapter 3,

i.e. including abstractions and generalisations of type ‘other’, as well as causal

generalisations that include enablers. For our extended approach we wish to preserve

the desirable properties as proven for our original approach, namely acyclicity of the

initially constructed graph (Proposition 3) and the properties regarding the captured

reasoning patterns in BNs constructed from IGs (Proposition 4) as much as possible.

We only focus on deriving the graphical structure of the BN, where we show that for

the solution proposed, inference chains in general IGs which only describe deductive

inferences given the evidence are captured as induced active chains in the constructed

BN graph. Furthermore, we identify conditions on general IGs under which initial

BN graphs constructed by the extended approach are guaranteed to be acyclic.

In Section 5.3.1 we motivate the steps of our extended approach. The extended

approach itself is presented in Section 5.3.2. In Section 5.3.3 we explain and illustrate

the steps of the extended approach with examples. In Section 5.4 we then prove a

number of formal properties of our extended approach.

5.3.1 Extracting a BN graph from a general IG

In this section, we motivate the steps of our extended approach for constructing BN

graphs from general IGs.

Information in enabling conditions. For causal generalisations that include

enabling conditions, we propose to direct arcs conform the notion of causality, in

the same way as specified in step 2b of our original approach (see Section 5.1.3).

Specifically, for every generalisation arc g : {p1, . . . , pn} → p in Gc, arcs Var(pi) →
Var(p), i = 1, . . . , n are included in AB regardless of whether pi is an enabler or not.

This is captured by step 2b′ of our extended approach.

Information in abstractions and generalisations of type ‘other’. In the

manual construction of BN graphs, arcs are typically directed using the notion of

causality as a guiding principle; however, non-causal relations are also considered in

the literature. For instance, in the BN construction approach of Neil and colleagues

[2000] not only causal but also definitional relations are considered, in which arcs in

the BN graph are oriented in the direction in which a sub-attribute (or combination

of sub-attributes) defines an attribute. Directing arcs in this manner increases the

interpretability of the graph; hence, for abstractions and generalisations of type
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‘other’ we propose to direct arcs in a similar manner. Specifically, for generalisation

arcs g : {p1, . . . , pn} → p in Ga ∪Go, we propose to include arcs Var(pi)→ Var(p),

i = 1, . . . , n in AB, in a similar manner as specified for causal generalisations in step

2b′; this is captured by step 2c′ of the extended approach. By directing arcs in this

manner for multiple abstractions with the same head, head-to-head connections are

formed in the node corresponding to the head which allows for directly capturing

possible interactions between the tails in the CPT for this node, for example due to

the fact that they could be competing alternative explanations.

Steps 2d′ and 4a′ are included in our extended approach to guarantee that the

initially constructed BN graph is guaranteed to be acyclic and to ensure that infer-

ence chains which only describe deductive inferences given the evidence are captured

as active chains in the BN graph given the evidence; these steps are motivated and

explained in Section 5.3.3.

Information in exceptions. Similar to exceptions to causal generalisations, ex-

ceptions to abstractions and generalisations of type ‘other’ do not suggest competing

alternative explanations for the same effect, but do possibly interact with them. Ac-

cordingly, we propose to enable capturing possible interactions between an exception

and a generalisation arc, if any, in the CPTs for head-to-head nodes formed in the

BN graph. This is captured by step 3′ of our extended approach.

5.3.2 Steps of the extended approach

In this subsection, we present the steps of our extended approach. Note that steps

1′, 2a′, 2b′ and 3a′ of the extended approach are identical to steps 1, 2a, 2b and 3a

of the original approach (see Section 5.1.3). For an IG GI = (P,AI), a BN graph

GB = (V,AB) is constructed as follows:

1′) ∀p,¬p ∈ P, include Var(p) in V; if p or ¬p ∈ Ep, also include Var(p) in EV.

2′) For every generalisation arc g : {p1, . . . , pn} → p:

2a′) If g ∈ Ge, include Var(p) → Var(pi), i = 1, . . . , n in AB.
2b′) If g ∈ Gc, include Var(pi)→ Var(p), i = 1, . . . , n in AB.
2c′) If g ∈ Ga ∪ Go and �g1 ∈ Ge such that [g, g1] is a generalisation chain,

include Var(pi)→ Var(p), i = 1, . . . , n in AB.
2d′) If g ∈ Ga ∪ Go and ∃g1, . . . , gm ∈ Ge such that [g1, . . . , gm] is a maxi-

mal generalisation chain of evidential generalisation arcs in GI following g,

include Var(pi)→ Var(Head(gm)), i = 1, . . . , n in AB.
3′) For every exception arc exc : p� g in Exc with g : {q1, . . . , qn} → q:

3a′) If g ∈ Ge, include Var(p) → Var(qi), i = 1, . . . , n in AB.
3b′) If g /∈ Ge, include Var(p) → Var(q) in AB.

4′) Verify the properties of the constructed graph GB:
4a′) Break cycles in GB introduced in step 2′ by so-called interceptors in GI (see

Section 5.3.3, Definition 51 for further details).

4b′) Apply the standard graph validation step (see Section 2.3.3).
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Figure 5.10: Example of an IG (a); BN graph constructed by steps 1− 2a′ and 2d′

of the extended approach (b); example of an IG (c) for which a cycle is introduced

upon directing arcs according to step 2′ of the extended approach (d).

5.3.3 Explanation and illustration of the extended approach

In this section, we explain and illustrate the steps of our extended approach.

Step 2b′. The steps of our original approach do not need to be reconsidered for

causal generalisations that include enablers, as in Definitions 31 and 32 the same

constraints are imposed on performing deductive or abductive inference with a causal

generalisation g regardless of whether or not Enabler(g) = ∅. Therefore, for causal
generalisations that include enabling conditions arcs we propose to direct arcs in the

BN graph in the same way as specified in step 2b of our original approach; this is

captured by step 2b′ of our extended approach.

Steps 2d′ and 4a′. In Figures 5.10a-b, step 2d′ of the extended approach is

illustrated for a medical example (taken from van der Gaag and Helsper [2002]).

After performing a CT scan (scan) on a patient who has severe difficulty swallowing,

it is established that a tumour is present in the lower (distal) part of his oesophagus.

Clinical studies indicate a strong correlation between the location of an oesophageal

tumour and its cell type; however, neither can be considered a cause of the other.

Distal tumours generally consist of cylindrical cells (cylindrical), often formed as a

result of frequent gastric reflux (reflux ). In the IG of Figure 5.10a, generalisation

arcs g1, g3 ∈ Ge and g2 ∈ Go are included. Given Ep = {scan}, (scan, g1, distal, g2,
cylindrical, g3, reflux ) is an inference chain, as no constraints are imposed in our IG-

formalism on deductively chaining a generalisation of type ‘other’ and an evidential

generalisation (i.e. g2 and g3). The BN graph constructed from this IG by steps

1− 2a′ and 2d′ of the extended approach is depicted in Figure 5.10b. As arcs Distal

→ Reflux and Reflux → Cylindrical are included in AB and the involved nodes are

not instantiated, active chains exist between Distal and Reflux and between Distal

and Cylindrical. Hence, all inference chains that can be read from the IG given Ep
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are captured as active chains in the constructed BN graph given the evidence for

EV ⊆ V corresponding to Ep. Note that we do not wish to set arcs as per step 2c′

of the extended approach, as in this case head-to-head node Distal → Cylindrical

← Reflux would be formed which would block the chain between Distal and Reflux.

The technical construction described by step 2d′ is designed to ensure that infer-

ence chains which only describe deductive inferences given the evidence are captured

as active chains for IGs including abstractions and generalisations of type ‘other’.

However, under specific conditions cycles are introduced in the BN graph by direct-

ing arcs in this manner, as illustrated in Figures 5.10c-d. In the IG of Figure 5.10c,

generalisation arc g ∈ Ga is followed by a maximal generalisation chain of eviden-

tial generalisation arcs [g1, g2]. By step 2d′ of the extended approach, arc P → S

is included in the corresponding BN graph depicted in Figure 5.10d to ensure an

active chain exists between nodes P and S given EV. By steps 2a′ and 2c′, arcs
S → R, R→ Q2 and Q2 → P are also included in AB, introducing a cycle in GB.

Generally, cycles are introduced in the BN graph by directing arcs according

to step 2′ of the extended approach in case a so-called interceptor exists in the

IG. To define interceptors, we first define the terms ‘direct precursor’ and ‘indirect

precursor’, inspired by the terms ‘direct cause’ and ‘indirect cause’ introduced in

the definition of a causal cycle (Definition 27, Section 3.3). Specifically, instead

of only considering g ∈ Gc, p ∈ Ant(g) as in the definition of a ‘direct cause’,

in the definition of a ‘direct precursor’ we also consider g ∈ Gc ∪ Ga ∪ Go, p ∈
Tails(g), thereby including abstractions, generalisations of type ‘other and causal

generalisations that include enabling conditions in our definitions.

Definition 50 (Direct and indirect precursors). Let GI = (P,AI) be an IG. Propo-

sition p ∈ P is a direct precursor of q ∈ P iff ∃g ∈ G ⊆ AI with g ∈ Gc∪Ga∪Go,

p ∈ Tails(g), q = Head(g) or g ∈ Ge, p = Head(g), q ∈ Tails(g). Proposition

p1 ∈ P is an indirect precursor of p3 ∈ P iff ∃p2 ∈ P, p2 �= p1, p2 �= p3, such that

p1 is a direct precursor of p2 and p2 is a direct or indirect precursor of p3.

Example 56. In the IG of Figure 5.10c, proposition ¬r is a direct precursor of q2,

as g′2 ∈ Ga, ¬r ∈ Tails(g′2), q2 = Head(g′2). Proposition q2 is a direct precursor of

p, as g′1 ∈ Ge, p ∈ Tails(g′1), q2 = Head(g′1). Then ¬r is an indirect precursor of

p, as ¬r is a direct precursor of q2 and q2 is a direct precursor of p. �

An interceptor is then defined as follows.

Definition 51 (Interceptor). Let GI = (P,AI) be an IG. Let g ∈ Ga ∪Go and

assume that ∃g1, . . . , gm ∈ Ge such that [g1, . . . , gm] is a maximal generalisation

chain of evidential generalisation arcs in GI following g. Then proposition p is an

interceptor of generalisation chain [g, g1, . . . , gm] iff p is a direct or indirect precursor

of a q ∈ Tails(g) and p = Head(gj) or p = −Head(gj) for a j ∈ {1, . . . ,m}.
Example 57. In the IG of Figure 5.10c, proposition ¬r is an interceptor of gen-

eralisation chain [g, g1, g2], as ¬r is an indirect precursor of p ∈ Tails(g) and

¬r = −Head(g1). �
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Cycles in the BN graph introduced by interceptors in the IG can be broken by

removing specific arcs introduced in step 2d′ of the extended approach. For instance,

in the example of Figure 5.10d, arc P → S can be safely removed, as an active chain

already exists between P and S via R and Q2. In general, cycles are broken in step

4a′ by removing arcs V ar(q) → V ar(Head(gm)) from AB introduced in step 2d′

∀q ∈ Tails(g) for which a direct or indirect precursor p of q exists such that p is an

interceptor of generalisation chain [g, g1, . . . , gm].

5.4 Properties of the extended approach

In this section, we prove a number of formal properties of our extended approach. We

focus on formally proving that our proposed technical solution allows for capturing

inference chains in general IGs which only describe deductive inferences given the

evidence as active chains in the constructed BN graph given the evidence (Section

5.4.1). Furthermore, we study conditions on general IGs under which the initially

constructed BN graph is guaranteed to be acyclic (Section 5.4.2).

5.4.1 Capturing induced inference chains as active chains

In this section, we study whether BN graphs constructed by our extended approach

capture reasoning patterns similar to those that can be read from the original IG

given the evidence. In Proposition 8 we formally prove that inference chains in

general IGs which only describe deductive inferences given the evidence are captured

as active chains in the constructed BN graph given the evidence. Hence, for general

IGs that only include generalisations with which deductive inference is performed

given Ep ⊆ P, all inference chains that can be read from the IG given Ep are

captured as active chains given the evidence for EV ⊆ V corresponding to Ep.

Proposition 8. Let GI = (P,AI) be an IG and let Ep ⊆ P be an evidence set. Let

GB = (V,AB) be the BN graph constructed from GI according to steps 1′ − 4a′ of
the extended approach. Let (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) be an inference chain

that can be read from GI given Ep, and assume that for every 1 < i ≤ n, pi
is deductively inferred given Ep using generalisation gi−1 with Head(gi−1) = pi,

pi−1 ∈ Tails(gi−1). Then there exists an active chain between Var(p1) and Var(pn)

in GB given the evidence for EV.

Proof. For the case Ga = Go = ∅ and for which Enabler(g) = ∅ for every g ∈
Gc, the proof reduces to the proof of Proposition 4. Thus, assume that Ga ∪
Go �= ∅ and that causal generalisations may include enabling conditions. First,

note that for generalisations g ∈ Gc the same constraints on performing deduction

and abduction are imposed in Definitions 31 and 32 regardless of whether or not

Enabler(g) = ∅, and that for causal generalisations that include enabling conditions

arcs in the BN graph are directed by step 2b′ in the same way as specified in step 2b
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of our original approach. Therefore, for IGs that include causal generalisations with

enabling conditions the proof again reduces to the proof of Proposition 4. Now,

consider the case that for every g ∈ Ga ∪ Go, �g1 ∈ Ge such that [g, g1] is a

generalisation chain. Following steps 1′ − 2′ of the extended approach, a sequence

of nodes and arcs is formed between Var(p1) and Var(pn) in GB, as for every gi,

1 ≤ i < n, arcs between Tails(gi) and Head(gi) are added to AB. By our non-

repetitiveness and consistency assumptions on inference chains, this is a sequence

of distinct nodes and arcs and thus a chain in GB. We now prove that this chain in

the BN graph is active given EV, as all options to block a chain do not occur.

First, note that, identical to Proposition 4, nodes Var(pi) in the BN graph are not

instantiated and hence do not block chains between Var(p1) and Var(pn). Possibly

only p1 ∈ Ep. However, in this case, the corresponding node Var(p1) is an end-

point of the chain which, therefore, does not block it. The only other option to

block a chain occurs in case it includes an uninstantiated head-to-head node without

instantiated descendants. Consider subchain (pi−1, gi−1, pi, gi, pi+1) of our inference

chain for an arbitrary 1 < i < n. We show that the corresponding chain in the

BN graph does not include a head-to-head node Var(pi−1) → Var(pi) ← Var(pi+1).

By assumption, given Ep, pi is deductively inferred from pi−1 using gi−1 and pi+1

is deductively inferred from pi using gi, where for gi−1 it holds that Head(gi−1) =

pi, pi−1 ∈ Tails(gi−1) and for gi it holds that Head(gi) = pi+1, pi ∈ Tails(gi).

Note that by steps 2a′, 2b′ and 2c′ of the extended approach, a head-to-head node

Var(pi−1) → Var(pi) ← Var(pi+1) is then only formed in case gi−1 ∈ Gc and gi ∈
Ge. However, in performing the deductive inference steps from pi−1 to pi and

from pi to pi+1, generalisations of this form could not have been used, as proven

in Proposition 1. Specifically, this would violate Pearl’s constraint for deductive

inference as enforced in condition 2 of Definition 31. Thus the chain between Var(p1)

and Var(pn) corresponding to inference chain (p1, g1, p2, g2, . . . , pn−1, gn−1, pn) does

not include a head-to-head node Var(pi−1) → Var(pi) ← Var(pi+1) for 1 < i < n

and is therefore never blocked.

Now, assume that a gj ∈ Ga ∪ Go, 1 ≤ j < n, is followed by a chain of

generalisation arcs in Ge, and let [gj+1, . . . , gj+l] be a maximal such chain. We

consider the cases j+ l > n− 1 and j+ l ≤ n− 1 separately; the difference between

these cases is illustrated in Figure 5.11. First, the case j + l > n− 1 is considered.

By step 2d′, arcs V ar(p) → V ar(Head(gj+l)) ∀p ∈ Tails(gj) are introduced in

AB. By step 2a′, AB in addition includes a directed path from V ar(Head(gj+l))

to V ar(Head(gn−1)), as gj+1, . . . , gj+l ∈ Ge. Therefore, chains between nodes in

{V ar(p) | p ∈ Tails(gj)} and V ar(Head(gn−1)) via V ar(Head(gj+l)) are active

given EV, as V ar(Head(gj+l)) is not a head-to-head node on these chains. Next,

case j + l ≤ n− 1 is considered. By step 2d′, arcs V ar(p) → V ar(Head(gj+l))

∀p ∈ Tails(gj) are introduced in AB; therefore, active chains exist between all

nodes in {V ar(p) | p ∈ Tails(gj)} and V ar(Head(gj+l)) given EV after this step.

As [gj+1, . . . , gj+l] is a maximal generalisation chain of evidential generalisation arcs

following gj , gj+l is not followed by an evidential generalisation arc. By repeatedly
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Figure 5.11: An example of an IG, where g1 ∈ Ga (a); the corresponding BN graph

constructed by the extended approach (b). In case inference chain (p1, g1, p2, g2, p3)

is considered (n− 1 = 2, j = 1, l = 2), an active chain exists between V ar(p1) (the

tail of gj) and V ar(Head(gn−1)), as arc P1 → P4 is included by step 2d′ and arc

P4 → P3 is included in AB by step 2a′; this illustrates the case in which j+l > n− 1

in the proof of Proposition 8. In case inference chain (p1, g1, p2, g2, p3, g3, p4) is

considered (n− 1 = 3, j = 1, l = 2), an active chain exists between V ar(p1) and

V ar(Head(gn−1)), as arc P1 → P4 is included in AB by step 2d′; this illustrates the
case in which j + l ≤ n− 1 in the proof of Proposition 8.

applying the same argument for all generalisation arcs in Ga∪Go followed by chains

of generalisation arcs in Ge, an active chain therefore also exists between V ar(p1)

and V ar(pn) given EV.

In step 4a′, a specific subset of the arcs introduced in step 2d′ is removed; we

prove that for every gj ∈ Ga ∪Go, 1 ≤ j < n, followed by a maximal generalisation

chain of evidential generalisation arcs [gj+1, . . . , gj+l] active chains continue to exist

between nodes in {V ar(p) | p ∈ Tails(gj)} and V ar(Head(gj+l)), and therefore

between V ar(p1) and V ar(pn), despite of this arc removal sub-step. Arcs introduced

in step 2d′ are removed in case there exists an interceptor r of generalisation chain

[gj , gj+1, . . . , gj+l] (see Definition 51). Assume that r = Head(gk) or r = −Head(gk)
for a k ∈ {j+1, . . . , j+ l} and that r is a direct or indirect precursor of a proposition

q ∈ Tails(gj). Then arc V ar(q) → V ar(Head(gj+l)) is removed in step 4a′ (see
Section 5.3.3, p. 104); however, as a directed path from V ar(Head(gj+l)) to V ar(q)

via V ar(Head(gk)) exists in AB by step 2′ as r is a direct or indirect precursor of

q and gk+1, . . . , gj+l ∈ Ge, an active chain still exists between nodes V ar(q) and

V ar(Head(gj+l)) given EV.

Finally, in step 3′ AB is extended for exception arcs. Similar to Proposition 4,

this step does not change the chains formed between Var(p1) and Var(pn) in step

2′, which therefore remain active given EV. �
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Figure 5.12: Example of an IG, where given Ep, r is abductively inferred from

q using abstraction g2 (a); BN graph constructed by our extended approach (b);

another example of an IG, where given Ep, r is abductively inferred from q using

abstraction g2 (c); BN graph constructed by our extended approach in which head-

to-head node P → Q← R is formed (d).

We now illustrate that the result stated in Proposition 8 is not guaranteed to hold

for inference chains which also describe abductive inferences given the evidence.

Figures 5.12a-b depict an example for which the desirable properties as proven for

our original approach are still preserved. In particular, as no uninstantiated head-

to-head nodes without instantiated descendants are formed, all inference chains that

can be read from the IG are captured as active chains in the constructed BN graph

given the evidence. Specifically, inference chain (p, g1, q, g2, r) is captured as an

active chain in the constructed BN graph, while the inference step from q to r given

Ep is an abductive inference with abstraction g2.

In Figure 5.12c an example of a general IG is depicted for which the desirable

properties as proven for our original approach are not preserved. Given Ep, q is de-

ductively inferred from p using g1. In turn, r is abductively inferred from q using g2;

specifically, no constraints are imposed in our IG-formalism on performing deduction

and abduction in that order with a causal generalisation and an abstraction. By

step 2b′ of the extended approach, arc P → Q is included in the BN graph of Figure

5.12d. By introducing arc R → Q, in accordance with step 2c′ of the extended ap-

proach, head-to-head node P → Q← R is formed. Hence, while (p, g1, q, g2, r) is an

inference chain given Ep, all chains between P and R are blocked given EV. Similar

observations can be made by including g1 in Go instead of in Gc, as no constraints

are imposed in our IG-formalism on performing deduction and abduction in that

order with a generalisation of type ‘other’ and an abstraction. Similarly, deduction

and abduction can be performed in that order in case g1 ∈ Go, g2 ∈ Gc. In future

work, it may be investigated how our approach can be extended or adjusted such

that inference chains in general IGs which also describe abductive inferences given

the evidence are captured as active chains in the constructed BN graph.
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5.4.2 Constructing acyclic graphs

In this section, we study conditions on general IGs under which the initial graph

constructed by steps 1′ − 4a′ of the extended approach is guaranteed to be a DAG.

Conditions a), b) and c) of Proposition 9 are identical to conditions a), b) and c) of

Proposition 3. As noted in the proof of Proposition 3, cycles are possibly introduced

in a BN graph GB constructed by our original approach when a causal cycle exists

in GI (see Section 3.3, Definition 27). To ensure cycles are not introduced in BN

graphs GB constructed by our extended approach, in condition d) of Proposition 9

it is assumed that general IGs do not include so-called IG-cycles (see Definition 52).

Our definition of an IG-cycle extends the definition of a causal cycle (Definition 27)

by also taking into account generalisation arcs in Ga∪Go and causal generalisations

that include enabling conditions.

Definition 52 (IG-cycle). Let GI = (P,AI) be an IG. An IG-cycle exists in GI
iff ∃p, q ∈ P such that p is a direct or indirect precursor of q (see Definition 50) and

q or −q is a direct or indirect precursor of p or of −p.
Example 58. An IG-cycle exists in the IG of Figure 5.13a, as p is an indirect

precursor of r and r is an indirect precursor of p. Similarly, an IG-cycle exists

in the IG of Figure 5.13b, as p is an indirect precursor of s and s is an indirect

precursor of p. �

Note that an IG-cycle is not a cycle in the IG itself; instead, it specifies a special

case under which cycles are introduced in a BN graph constructed from a general IG

by our extended approach. Furthermore, note that, unlike causal cycles, for which

it conceptually makes sense to assume IGs do not include them, this is not the case

for IG-cycles; instead, condition d) of Proposition 9 poses a technical constraint to

ensure acyclic graphs are constructed by our approach.

We now prove that under conditions a) to d) of Proposition 9, the initial graph

constructed by steps 1′ − 4a′ of the extended approach is guaranteed to be a DAG.
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Proposition 9. Let GI = (P,AI) be an IG. Let G∗
I = (P,A∗

I) be the possibly

disconnected sub-graph of GI with A∗
I = AI \Exc. Let C = {C = (Pc,Ac

I) | Pc ⊆
P,Ac

I ⊆ A∗
I ,C is a weakly connected component of G∗

I} be the set of IG compo-

nents. Assume that the following conditions are satisfied:

a) For any IG component C ∈ C, there does not exist an exc : p � g in Exc with

p ∈ Pc, g ∈ Ac
I .

b) For every pair of IG components C1, C2 ∈ C, there does not exist both an

exc1 : p1 � g1 in Exc with p1 ∈ Pc1 , g1 ∈ Ac2
I and an exc2 : p2 � g2 in

Exc with p2 ∈ Pc2 , g2 ∈ Ac1
I .

c) Generalisation chains in GI are non-repetitive and consistent (Section 3.3, p. 47).

d) IG GI does not include an IG-cycle (see Definition 52).

Let GB = (V,AB) be the graph constructed from GI according to steps 1′ − 4a′ of
the extended approach. Then GB is a DAG.

Proof. For the case Ga = Go = ∅ and for which Enabler(g) = ∅ for every g ∈ Gc,

the proof reduces to the proof of Proposition 3. Thus assume that Ga∪Go �= ∅ and
that causal generalisations may include enabling conditions. Then for generalisations

g : {p1, . . . , pn} → p inGe, arcs Var(p)→ Var(pi), i = 1, . . . , n are included inAB by

step 2a′ and for generalisations g : {p1, . . . , pn} → p in Gc, arcs Var(pi) → Var(p),

i = 1, . . . , n are included in AB by step 2b′ regardless of whether pi is an enabler or

not. Consider the case that for every g ∈ Ga ∪Go, �g1 ∈ Ge such that [g, g1] is a

generalisation chain. Then furthermore, by step 2c′ arcs in AB are set similarly for

g ∈ Ga ∪Go as for g ∈ Gc. Hence, similar to our assumption that no causal cycles

exist in GI , we now have to assume that no IG-cycle exists in GI (condition d) to

avoid introducing cycles in GB.
Now, assume that there exists a g : {q1, . . . , qn} → r in Ga ∪ Go, and that

∃g1, . . . , gm ∈ Ge such that [g1, . . . , gm] is a maximal generalisation chain of eviden-

tial generalisation arcs in GI following g. By step 2d′ of the extended approach,

AB includes arcs V ar(qi) → V ar(Head(gm)) for i = 1, . . . , n. Under specific

conditions, cycles are introduced in GB by this step, namely when an intercep-

tor p of [g, g1, . . . , gm] exists (see Definition 51). Assume that p = Head(gj) or

p = −Head(gj) for a j ∈ {1, . . . ,m} and that p is a direct or indirect precursor of a

proposition q ∈ Tails(g). Then a sequence of arcs directed from V ar(Head(gm)) to

V ar(Head(gj)) is introduced in AB by step 2a′ corresponding to evidential generali-

sations gj+1, . . . , gm. Furthermore, a sequence of arcs directed from V ar(Head(gj))

to V ar(q) is introduced in AB by step 2′, as p is a direct or indirect precursor of q;

therefore, a cycle from node V ar(q) to itself is introduced. However, these cycles are

broken in step 4a′ by removing arc V ar(q)→ V ar(Head(gm)) from AB introduced

in step 2d′ (see Section 5.3.3, p. 104).

In step 3′ of the extended approach, additional arcs are included in AB for every

exc ∈ Exc in the IG. Under conditions a) and b), the proof is completed in a

similar manner as the proof of Proposition 3 by considering the weakly connected

components of BN graph GB. �
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5.5 Discussion and concluding remarks

In this chapter, we have introduced a BN graph construction approach that exploits

a notion of causality as expressed in the generalisations and conflicts of an IG.

Moreover, by considering the inferences that can be read from such an IG given

the evidence, some qualitative constraints on the (conditional) probabilities of the

BN under construction are derived. We have formally proven that, as intended, BN

graphs constructed by our approach capture all inference chains that can be read

from the IG given the evidence in the form of induced active chains (Proposition

4). We have identified conditions on the IG under which the fully automatically

constructed initial graph is guaranteed to be a DAG (Proposition 3), simplifying

the (manual) verification step. We have identified bounds on the size of the CPTs

and the complexity of probabilistic inference in BNs constructed by our approach

(Propositions 5 and 6). Lastly, we have investigated mapping properties of our

approach (Proposition 7).

Our IG-formalism is intended to facilitate the construction of BNs by serving as

an intermediary formalism between analyses performed using informal sense-making

tools and BNs. As mentioned earlier, we expect direct IG construction to be more

straightforward than direct BN construction for domain experts unfamiliar with the

BN-formalism, a claim that should be empirically evaluated in future work. Our

approach may be evaluated in future work by assessing the quality of BNs con-

structed from IGs. Since we are considering BN construction in data-poor domains,

we assume that there is insufficient data to learn a reliable BN from and that such a

BN is therefore not available for comparison. A quality assessment should therefore

mainly be based on compliance with best practice guidelines for BN construction

[Neil et al., 2000]1.

In future work, more probabilistic constraints may be derived on BNs, for in-

stance by interpreting defeasible inferences that can be read from an IG given the

evidence as qualitative influences [Wellman, 1990]. Specifically, variable P is said

to have a positive qualitative influence on variable Q if Pr(q | p) ≥ Pr(q | ¬p) and

a negative qualitative influence if Pr(q | p) ≤ Pr(q | ¬p). Interpreting all defeasi-

ble inferences between propositions p1, . . . , pn and q that can be read from an IG

as positive qualitative influences and all defeasible inferences between propositions

p1, . . . , pn and ¬q as negative qualitative influences, a fully specified qualitative

probabilistic network (QPN) [Wellman, 1990] may be constructed by our approach

which can be used for qualitative probabilistic inference given multiple observations

[Renooij, 2001]. Quantification of QPNs can then be performed incrementally by

specifying probability intervals for CPTs for nodes in the graph as an intermedi-

ary step, resulting in so-called semi-qualitative probabilistic networks [Renooij and

van der Gaag, 2002] that can also be used for probabilistic inference. Alternatively, a

credal network [Cozman, 2000] can be constructed [de Campos and Cozman, 2005].

In Sections 5.3 and 5.4 we discussed extending our approach to IGs including

1See also Master’s research [de Leeuw, 2020].
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abstractions and generalisations of type ‘other’, as well as generalisations that in-

clude enablers. We have formally proven for such general IGs that initial BN graphs

constructed by our extended approach are guaranteed to be acyclic (Proposition

9) and that inference chains in such IGs which only describe deductive inferences

given the evidence are captured as active chains in the BN graph given the evidence

(Proposition 8). As discussed, the latter property is not guaranteed to hold for

inference chains which also describe abductive inferences. Therefore, our extended

approach does not fully preserve the desirable properties as proven for our original

approach regarding the captured reasoning patterns in BNs constructed from IGs.

In its current form, therefore, BNs constructed using our extended approach do not

fully benefit from the knowledge available in an IG. However, our description of

the problem for the general case and our solution for a special case can support

others in finding a more general solution in future work. Regardless of how much

knowledge is being exploited, our IG-formalism, together with our BN construction

approach, allow us to construct at least an initial BN graph from a domain expert’s

initial analysis; it thereby simplifies the BN elicitation process. We note that BN

construction is an iterative process in which both the domain expert and BN mod-

eller should stay involved; this also holds when applying our approach, as even the

provided IG may be incomplete or may be subject to change over time. In Chapter 7

we propose an approach that can aid experts in this iterative process. The approach

allows experts to reason and argue about a BN under construction, where possi-

ble conflicts are resolved as much as possible using computational argumentation.

In particular, this approach can be applied to both BNs constructed from IGs via

the approach presented in the current chapter and BNs otherwise constructed, and

serves to facilitate both the qualitative graph-construction step and the quantitative

probability elicitation step involved in BN construction.
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Chapter 6

Case study: the Sacco and Vanzetti

case

In this chapter, we apply the approaches from Chapters 4 and 5 to parts of an actual

legal case, namely the well-known Sacco and Vanzetti case. The case concerns Sacco

and Vanzetti, who were convicted for shooting and killing payroll guard Berardelli

during a robbery in South Braintree, Massachusetts on 15 April 1920; a detailed de-

scription of the case is provided by Kadane and Schum [1996]. Kadane and Schum

performed a probabilistic analysis of this case by first constructing Wigmore charts

of aspects of the case and then manually constructed corresponding BNs by assess-

ing the modelled independence relation and assessing the necessary (conditional)

probabilities. In this chapter, we illustrate and perform a preliminary validation of

our BN graph construction approach from Chapter 5 by formalising one of Kadane

and Schum’s Wigmore charts (chart 25, Kadane and Schum [1996, pp. 330–331]) as

an IG, where we compare the obtained BN graph to their BN graph. In addition,

we illustrate our approach of Chapter 4 by constructing and evaluating arguments

based on the same IG.

The chapter is structured as follows. In Section 6.1 Kadane and Schum’s Wig-

more chart concerning Sacco’s consciousness of guilt is presented, where a possible

formalisation of this Wigmore chart as an IG is provided in Section 6.2. In Section

6.3 we then apply the approach from Chapter 5 to this IG and compare the obtained

BN graph to that of Kadane and Schum. In Section 6.4 we illustrate our approach

of Chapter 4 by constructing and evaluating arguments based on the same IG. In

Section 6.5 we then conclude the case study.
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6.1 Wigmore chart concerning Sacco’s

consciousness of guilt

According to Kadane and Schum, the ultimate claim under consideration in the

Sacco and Vanzetti case is Π3, which states that ‘It was Sacco who, with the as-

sistance of Vanzetti, intentionally fired shots that took the life of Berardelli during

the robbery and shooting that took place in South Brain tree.’ In the prosecution’s

case against Sacco and Vanzetti, their alleged consciousness of guilt in the South

Braintree crime played an important role. However, as noted by Kadane and Schum

the inferences made based on the available evidence for this part of the case are

not particularly strong; a significant part of Kadane and Schum’s analysis is, there-

fore, devoted to this part of the case. During their arrest, Sacco and Vanzetti were

armed. According to the two arresting officers, Connolly and Spear, Sacco and

Vanzetti made suspicious hand movements, from which the prosecution concluded

that they intended to draw their concealed weapons in order to escape their arrest.

This suggests that they were conscious of having committed a criminal act. In the

remainder of this chapter, we only consider this part of the case.

In Figure 6.1, a modernised Wigmore chart concerning Sacco’s consciousness of

guilt is depicted, adapted from Kadane and Schum [1996, pp. 330–331]. Compared

to Kadane and Schum’s original chart, we consider a subset of the mapped claims;

in particular, additional claims regarding Sacco’s political beliefs (claims 471− 480

in the original chart) and claims that were provided post-trial by historians are not

considered. On the right-hand side the corresponding key list is depicted. As noted

by Kadane and Schum [1996, p. 88], vertical arcs between nodes in their version

of Wigmore’s charts indicate inferences between corresponding claims, where the

generalisations used in performing these inferences are not explicitly recorded in

the chart. Instead, in their analysis of the case some of the used generalisations

are indicated in the text (see e.g. Kadane and Schum [1996, pp. 97–98]). For

instance, generalisations used in the inferences from the provided testimonies are of

the general form ‘If a person testifying under oath tells us that event E occurred,

then this event (probably, usually, often, etc,) did occur.’ [Kadane and Schum, 1996,

p. 88]. As noted by Kadane and Schum [1996, pp. 74–76], in constructing their charts

abduction is in some instances performed to generate interim hypotheses between the

evidence and the ultimate claim Π3. However, Kadane and Schum do not explicitly

indicate which inferences in their charts are abductive and which are deductive.

In their version of Wigmore charts, Kadane and Schum make a distinction be-

tween directly relevant and ancillary claims1, where the role of an ancillary claim

is to show why a generalisation holds or fails in a particular situation [Kadane and

Schum, 1996, p. 53]. Directly relevant and ancillary claims provided by the defence

1Kadane and Schum [1996] use the terms ‘directly relevant evidence’ and ‘ancillary evidence’.

To avoid confusion with the manner in which the term ‘evidence’ is used in this thesis (i.e. that

what has been established with certainty), we instead use the term ‘claim’.
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149.   Following his arrest, Sacco attempted to put
  his hand under his overcoat.

150.   Connolly’s testimony to 149.
151.   Spear’s testimony to 149.
152.   Sacco intended to draw his concealed weapon.
153.   Sacco intended to use his weapon on 

  the arresting officers.
154.   Sacco intended to escape from his arrest.
155.   Sacco was conscious of having committed 

  a criminal act.
155a. Sacco was conscious of having been involved 

  in a robbery and shooting.
156.   Sacco was conscious of having been involved in the 
           robbery and shooting that took place in South Braintree.
Π3.     It was Sacco who, with the assistance of Vanzetti,   

 intentionally fired shots that took the life of Berardelli during 
 the robbery and shooting that took place in South Braintree.

461.   Sacco’s testimony to denying 149.
462.   Sacco carried a weapon because he 

  intended to shoot rabbits with it.
463.   Sacco’s testimony to 462.
464.   Sacco’s wife’s testimony to 462.
465.   Sacco carried a weapon because of his duties

  as a night watchman.
466.   Sacco’s testimony to 465.
467.   Sacco was not a night watchman.
468.   Sacco’s admission on cross-examination.
469.   Sacco believed he was being arrested because

  of his political beliefs.
470.   Sacco’s testimony to 469.

PROSECUTION

 DEFENCE

Figure 6.1: Wigmore chart concerning Sacco’s consciousness of guilt, along with the

corresponding key list, adapted from Kadane and Schum [1996, pp. 330–331].

are represented as diamonds and triangles, respectively; for the prosecution, these

are represented as circles and squares, respectively. Note that in the Wigmore chart

of Figure 6.1, all claims provided by the prosecution are directly relevant. All nodes

in Kadane and Schum’s charts indicate either directly relevant or ancillary claims

and nodes corresponding to the evidence are shaded. An arc directed from a node

corresponding to an ancillary claim to an arc between two or more claims indicates

that this ancillary claim either supports or weakens the applicability of the generali-

sation in the inference at hand [Kadane and Schum, 1996, p. 87]. Finally, horizontal

lines in the Wigmore chart indicate that information needs to be combined to draw

a conclusion.

6.2 Formalising the Wigmore chart as an IG

We now provide a possible formalisation of Kadane and Schum’s Wigmore chart of

Figure 6.1 as an IG. In Figure 6.2, an IG is depicted for a possible interpretation

of this Wigmore chart. For every claim p in the Wigmore chart, a proposition

node p is included in P. In establishing which generalisations could have been used

in performing the inferences indicated in the chart, we take the following general

115



approach. In case generalisations are explicitly indicated by Kadane and Schum in

the text, then these generalisations are used; otherwise, we first establish whether

or not there is a causal relation between the nodes in the chart, and if so, what the

direction of causality is. To aid in this process, we determine whether sequences of

described events can be interpreted as instances of so-called story schemes [Bex and

Verheij, 2012], which capture stereotypical patterns of causal reasoning. In case p

usually/normally/typically causes q, then we establish whether p can be considered

the usual cause for q. If this is the case, then evidential generalisation q → p is

included in Ge to explicitly capture in the IG that p is considered the usual cause of

q; otherwise, causal generalisation p→ q is included in Gc (see also Section 2.1.3). If

a relation cannot be interpreted in a causal manner, then we establish whether it can

be considered an abstraction and whether this generalisation is strict or defeasible.

If a relation can neither be classified as causal nor evidential nor an abstraction,

then a generalisation of type ‘other’ is included in the IG, where we again establish

whether the generalisation under consideration is strict or defeasible.

As noted by Kadane and Schum [1996, p. 88], the generalisations used in the

inferences from the provided testimonies are evidential (see Section 6.1). As propo-

sitions 150, 151, 463, 464, 466, 468 and 470 denote testimonies, the IG includes gen-

eralisation arcs g1 : {150, 151} → 149, g10 : {463, 464} → 462, g11 : 466 → 465,

g12 : 470 → 469 and g14 : 468 → 467 in Ge. Here, testimonies 150, 151 and 463,

464 are combined in the antecedents of generalisations g1 and g10, respectively, as

these sets of propositions concern testimonies to the same claim.

The manner in which claims and links conflict is not precisely specified in Kadane

and Schum’s Wigmore charts, as also observed by Bex and colleagues [2003] in for-

malising such charts as Pollock-style arguments [Pollock, 1995]. As we wish to for-

malise the Wigmore chart of Figure 6.1 as an IG, we consider how possible conflicts

between claims proposed by the prosecution and defence can be interpreted in terms

of the conflict relations defined in Section 3.3. As 461 concerns Sacco’s testimony to

denying 149, proposition ¬149 is included in P, generalisation arc g2 : 461 → ¬149
is included in Ge, and negation arc n1 : 149� ¬149 is included in N.

Kadane and Schum do not indicate which (types of) generalisations were used

in performing the inferences between propositions 149 and Π3. We note that the

inferences between 149 and 155 fit a so-called episode scheme for intentional actions

[Bex, 2011, p. 64], a story scheme in which someone’s psychological state causes

them to form certain goals, which in turn lead to actions that have consequences. In

this case, Sacco intended to escape from his arrest (154; goal) as he was conscious of

having committed a criminal act (155; psychological state); therefore, we consider

155 to typically cause 154. Sacco’s intention to use his weapon (153) can then be

considered a sub-goal of 154 and his intention to draw his concealed weapon (152)

a further sub-goal of 153. Sacco’s intention to draw his weapon (152) caused Sacco

to attempt to put his hand under his overcoat (149; action); more specifically, we

consider 152 to typically cause 149. Finally, we consider 153 to be the usual cause for

152, as the usual cause for wanting to draw a weapon is wanting to use this weapon;
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149.   Following his arrest, Sacco attempted to put
  his hand under his overcoat.

150.   Connolly’s testimony to 149.
151.   Spear’s testimony to 149.
152.   Sacco intended to draw his concealed weapon.
153.   Sacco intended to use his weapon on 

  the arresting officers.
154.   Sacco intended to escape from his arrest.
155.   Sacco was conscious of having committed 

  a criminal act.
155a. Sacco was conscious of having been involved 

  in a robbery and shooting.
156.   Sacco was conscious of having been involved in the 
           robbery and shooting that took place in South Braintree.
Π3.     It was Sacco who, with the assistance of Vanzetti,   

 intentionally fired shots that took the life of Berardelli during
 the robbery and shooting that took place in South Braintree.

461.   Sacco’s testimony to denying 149.
462.   Sacco carried a weapon because he 

  intended to shoot rabbits with it.
463.   Sacco’s testimony to 462.
464.   Sacco’s wife’s testimony to 462.
465.   Sacco carried a weapon because of his duties

  as a night watchman.
466.   Sacco’s testimony to 465.
467.   Sacco was not a night watchman.
468.   Sacco’s admission on cross-examination.
469.   Sacco believed he was being arrested because

  of his political beliefs.
470.   Sacco’s testimony to 469.

 
PROSECUTION

 DEFENCE

Figure 6.2: An IG corresponding to a possible interpretation of the Wigmore chart

of Figure 6.1, along with the corresponding key list.

we therefore include g4 : 152 → 153 in Ge. Generalisation arcs g3 : 152 → 149,

g5 : 154 → 153 and g6 : 155 → 154 are then included in Gc, as we do not consider

their antecedents to express the usual cause for their consequents. Alternatively, it

may be argued that some (or all) of these relations are evidential. Below, we show

that similar inferences can be performed with the constructed IG and that the same

BN graph and AF are constructed from the IG regardless of whether these relations

are interpreted as causal or evidential.

The relations between propositions 155, 155a and 156 cannot be interpreted in a

causal manner. Instead, proposition 155 can be considered an abstraction of 155a:

being involved in a robbery and shooting can generally be considered committing

a criminal act. The involved generalisation is defeasible: involvement in a robbery

and shooting does not imply that this involvement is of a criminal nature, as it may

also imply that the person under consideration is the victim. Proposition 155a can

be considered a strict abstraction of 156, as at a higher level of abstraction being

conscious of having been involved in the specific robbery and shooting that took

place in South Braintree can be considered being conscious of having been involved

in a robbery and shooting. Π3 can be considered a cause of 156; more specifically,

committing a robbery and shooting typically causes a person (in this case Sacco) to

be conscious of having been involved in this act. Moreover, Π3 can be considered

the usual cause for 156; therefore, generalisation g7 : 155a→ 155 is included in Ga
d,

g8 : 156→ 155a in Ga
s , and g9 : 156→ Π3 in Ge.

From 469 (Sacco believed he was being arrested because of his political beliefs),
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we conclude that Sacco was not conscious of having been involved in a robbery

and shooting (¬155a). We consider the relation between 469 and ¬155a to be

defeasible and neither causal nor evidential nor an abstraction, and therefore include

g13 : 469→ ¬155a in Go
d. Arc n2 : 155a� ¬155a is then included in N.

In Kadane and Schum’s Wigmore chart, it is indicated that 467 is an ancillary

claim that weakens (or supports) the applicability of generalisation g11 : 466→ 465

in the inference from 466 to 465. In this particular instance, 467 can be interpreted

as an exception to generalisation g11, as the claim that Sacco was not a night watch-

man indicates that Sacco’s veracity in providing his testimony about the reason for

carrying a weapon is questionable. Therefore, we include exc1 : 467� g11 in Exc.

Finally, the conflicts between the defence’s claims 462 and 465 and the prose-

cution’s claims 152 and 153 are considered. Multiple interpretations are possible.

One possible interpretation is that 462 and 465 indicate exceptions to generalisation

g4 : 152→ 153 in Ge. Specifically, 462 and 465 can be considered competing alter-

native explanations for 152: as Sacco carried his weapon for an innocent reason (462

or 465), this caused him to draw his weapon (152) with the intention of surrendering

it. In Figure 6.2, these exceptions are indicated by curved hyperarcs exc2 : 462� g4
and exc3 : 465� g4 in Exc. An alternative interpretation is that 462 and 465 indi-

cate support for the negation of proposition 153: as Sacco carried his weapon for an

innocent reason (either 462 or 465), he intended to surrender his weapon and, there-

fore, did not intend to use it (¬153). Accordingly, generalisations g15 : 462→ ¬153
and g16 : 465 → ¬153 can be included, as depicted in the adjusted IG of Figure

6.3a. As these generalisations are defeasible and neither causal nor evidential nor

an abstraction, g15 and g16 are included in Go
d. Negation arc n3 : 153� ¬153 is

then included in N.

In the Wigmore chart of Figure 6.1, the evidence consists of the testimonies;

hence, Ep = {150, 151, 461, 463, 464, 466, 468, 470}. Given Ep, the inferences that

can be read from the IG of Figure 6.2 coincide with the inferences indicated in the

Wigmore chart. Specifically, given Ep, propositions 149, ¬149, 462, 465, 467 and

469 are defeasibly deductively inferred from 150 and 151, 461, 463 and 464, 466, 468

and 470 using generalisations g1, g2, g10, g11, g14 and g12, respectively. Proposition

152 is then abductively inferred from 149 using g3, as 149 is deductively inferred.

Propositions 153, 154, 155, 155a, 156 and Π3 are then iteratively defeasibly inferred

using generalisations g4, g5, g6, g7, g8 and g9, respectively. Finally, from 469, ¬155a
is defeasibly deductively inferred using g13, as 469 is deductively inferred.

As mentioned earlier, instead of including causal generalisations g3 : 152→ 149,

g5 : 154 → 153 and g6 : 155 → 154, an alternative interpretation is that the an-

tecedents of these generalisations express the usual cause for their consequents;

accordingly, evidential generalisations g′3 : 149→ 152, g′5 : 153→ 154 and g′6 : 154→
155 may instead be included. Similar inferences can then be performed with the

constructed IG given Ep; specifically, propositions 152, 153, 154 and 155 are then

iteratively defeasibly deductively inferred given Ep using g′3, g4, g
′
5 and g′6 instead

of that some of these inferences are abductive.

118



466

(b)(a)

152

153

462

464463

465

466

¬153

ee

e g4 g15
g16

g10 g11
465

153

463 464

462152

149

150 151 461
150 151

149

461

¬149

c

eeg1 g2

g3

154

cg5
154

Figure 6.3: Adjustment to part of the IG of Figure 6.2, where 462 and 465 indicate

support for ¬153 (a); corresponding BN fragment constructed by our approach (b).

6.3 Constructing a BN graph from the IG

We now apply our BN graph construction approach from Chapter 5 to the IG of

Figure 6.2 and compare the obtained graph to that of Kadane and Schum.

6.3.1 Applying our BN graph construction approach

By applying our BN graph construction approach from Chapter 5 to the IG of

Figure 6.2, the BN graph depicted in Figure 6.4b is obtained. By step 1 of our

approach, every proposition and its negation are captured as two mutually exclusive

values of the same node. Arcs in the BN graph corresponding to generalisation arcs

in Ge ∪ Gc are then directed according to step 2. Furthermore, for abstractions

g7 : 155a → 155 and g8 : 156 → 155a in Ga, arcs 155a → 155 and 156 → 155a are

included in AB, and for g13 : 469 → ¬155a in Go
d, arc 469 → 155a is included in

AB, as discussed in Section 5.3.

Additional arcs are then added to AB for every exception arc in Exc by step 3

of our approach. Specifically, exc1 : 467� g11, exc2 : 462� g4 and exc3 : 465� g4
are specified in the IG, where g11, g4 ∈ Ge; therefore, additional arcs 467 → 466,

465→ 152 and 462→ 152 are included in AB by step 3a.

Note that in case causal generalisations g3, g5 and/or g6 are replaced by evidential

generalisations g′3, g
′
5 and/or g′6, the same BN graph is obtained by our approach.

More specifically, by step 2b of our approach, arc Var(p) → Var(q) is included for

every causal generalisation g : p→ q, where the same arc is included in AB by step

2a of our approach for every evidential generalisation g : q → p.
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Figure 6.4: The IG of Figure 6.2 (a); the corresponding BN graph constructed

according to our approach (b); adaptation of the BN graph constructed by Kadane

and Schum [1996, p. 232] (c).

6.3.2 Comparison to Kadane and Schum’s BN graph

The structure of the obtained graph is largely identical to that of the BN graph

that Kadane and Schum manually constructed for this part of the case, depicted

in Figure 6.4c; the differences and similarities between the two BN graphs are now

discussed. First, note that Kadane and Schum aggregate nodes 463 and 464 into

a single Boolean node K. Similarly, nodes 466, 467 and 468 are aggregated into

Boolean node J ; possible intercausal effects between 467 and 465 can, therefore, not

be explicitly captured in their BN. While aggregation as performed by Kadane and

Schum reduces the number of conditional probabilities to be assessed, we prefer to

explicitly capture all elements of the IG in the corresponding BN graph to prevent

loss of information. The only case in which IG elements are aggregated by our

approach is when two propositions p and ¬p appear in the graph, which are then

captured as two values of the same node. We note that, by step 6a of our approach,

constraints on the CPTs of the BN under construction are automatically obtained,

which partially simplifies subsequent probability assessment. Specifically, a head-to-

head node is formed in 466, which allows for directly capturing possible interactions

between 465 and 467. By step 6a, constraint X−({465, 467}, 466 = true) is derived

on the CPT for node 466. For instance, entries for this CPT can be chosen as

follows: Pr(466 | 465, 467) = 0, Pr(466 | ¬465,¬467) = 0.4,Pr(466 | 465,¬467) =

0.9,Pr(466 | ¬465, 467) = 0.2, as in this case 0 · 0.4 ≤ 0.9 · 0.2. Note that the

conditioned event of conditional probability Pr(466 | 465, 467) cannot actually occur

in practice, as Sacco cannot both be and not be a night watchman at the same time.

Hence, the exact number to which this conditional probability is set is irrelevant:
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we choose to set Pr(466 | 465, 467) = 0. In case Sacco was indeed a night watchman

(467 is not true) but Sacco did not carry a weapon because of this reason (465 is

not true), then we find it plausible that Sacco was lying under oath in providing his

testimony (Pr(466 | ¬465,¬467) = 0.4); more specifically, as he was indeed a night

watchman, he can use this as an excuse to claim that he carried his weapon because

of this reason. In case Sacco was a night watchman (467 is not true) and Sacco

actually carried a weapon because of his duties as a night watchman (465 is true),

then we consider the event that Sacco testifies to this claim (466) to be very likely

(Pr(466 | 465,¬467) = 0.9). Finally, in case Sacco was not a night watchman (467 is

true) and Sacco did not carry his weapon because of his duties as a night watchman

(465 is not true), then we set Pr(466 | ¬465, 467) = 0.2 to again take into account

the probability that Sacco may be lying under oath. We believe this probability to

be lower than Pr(466 | ¬465,¬467), as we consider it less likely for Sacco to come

up with the explanation that he carried his weapon because of his duties as a night

watchman if he was in fact not a night watchman.

In the BN graph of Figure 6.4b, a head-to-head node is also formed in node

152, which allows for directly capturing possible interactions between 462, 465

and 153. These interactions cannot be captured in the BN graph of Figure 6.4c,

as in this graph arcs 153 → 465 and 153 → 462 are included instead of arcs

465 → 152 and 462 → 152. By step 6a, constraints X−({462, 153}, 152 = true),

X−({465, 153}, 152 = true) and X−({465, 462}, 152 = true) are derived on the CPT

for node 152 in our BN graph. Note that in the BN graph of Kadane and Schum,

variables 462 and 465 are conditionally independent from 152 given 153; therefore,

in contrast with our BN under construction, for Kadane and Schum’s BN it needs

to hold that Pr(152 | 462, 465, 153) = Pr(152 | 153). As the entries for the CPT

for node 152 in our BN cannot be compared to that of Kadane and Schum, the

assessment of the involved conditional probabilities is not further discussed.

In the IG of Figure 6.4a, given Ep, proposition 149 is deductively inferred from

150 and 151 using g1 and proposition 462 is deductively inferred from 463 and 464

using g10. By step 5b of our approach, the following probabilistic constraints on

the probabilities of the BN are derived: Pr(149 | 150, 151) ≮ Pr(149 | 150,¬151);
Pr(149 | 150, 151) ≮ Pr(149 | ¬150, 151); Pr(462 | 463, 464) ≮ Pr(462 | 463,¬464)
and Pr(462 | 463, 464) ≮ Pr(462 | ¬463, 464). As mentioned earlier, these proba-

bilistic constraints can be used in an elicitation procedure for further quantifying

the BN under construction [Druzdzel and van der Gaag, 1995].

We note that for every active chain that exists between two nodes in the BN

graph of Figure 6.4b given the evidence, there exists an active chain between these

nodes in the BN graph of Figure 6.4c given the evidence and vice versa; therefore,

given EV, similar probabilistic inferences can be performed in both BN graphs,

besides the aforementioned differences. More specifically, as 152 has an instantiated

descendant in the BN graph of Figure 6.4b, chains between 465 and 462 are active.

Furthermore, as no head-to-head node is formed among nodes 155, 155a and 156 in

the BN graph of Figure 6.4b, chains between 155 and 156 are active. We note that
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the IG under consideration is of the special class of IGs including abstractions with

which abductive inference is performed given Ep (i.e. abstractions g7 : 155a→ 155

and g8 : 156 → 155a) and for which a BN graph is constructed that captures all

inference chains that can be read from the IG given the evidence as induced active

chains (as discussed in Section 5.4.1). The only other difference with the BN graph

of Figure 6.4c is that the arc between nodes 155a and 469 is reversed; a head-to-head

node is therefore formed in node 155a in the BN graph of Figure 6.4b, but as 155a

has an instantiated descendant the chain between nodes 469 and 156 is active.

From the alternative IG fragment of Figure 6.3a, the BN fragment of Figure 6.3b

is constructed. Compared to the BN graph of Figure 6.4b, a head-to-head node is

formed in 153 instead of in 152, which allows for capturing possible interactions

between 462, 465 and 154 instead of between 462, 465, and 153. This illustrates

that depending on the modelling choices made in constructing an IG, different BN

graphs may be constructed.

6.4 Constructing an AF from the IG

To further illustrate how AFs can be constructed based on IGs, in Section 6.4.1 we

apply our approach from Chapter 4 to the IG of Figure 6.4a. In Section 6.4.2 we

then evaluate the constructed arguments.

6.4.1 Applying our AF construction approach

Consider Figure 6.5, in which arguments constructed on the basis of the IG of

Figure 6.4a using our approach from Chapter 4 are indicated. According to step

1 of Definition 37, A1 : 150 and A2 : 151 are premise arguments. Based on A1 and

A2, defeasible deductive argument A3 : A1, A2 �g1149 is constructed by step 2a

of Definition 37, as 149 is defeasibly deductively inferred from 150 and 151 using

g1 ∈ Ge. Argument A4 : A3 �g3152 then is a defeasible mixed argument by step 3

of Definition 37, as 152 is abductively inferred from 149 using g3. Arguments A5 : A4

�g4153; A6 : A5 �g5154; A7 : A6 �g6155; A8 : A7 �g7155a; A9 : A8 �g8156 and

A10 : A9 �g9Π3 similarly are defeasible mixed arguments.

Let B1 : 461 and let B2 : B1�g2 ¬149. Then B2 rebuts A3 (on A3) and A3 rebuts

B2 (on B2), as Conc(A3) = 149, Conc(B2) = ¬149 (and hence n : 149� ¬149
in N), where TopInf(A3) = 150, 151�g1149 and TopInf(B2) = 461�g2¬149 are

defeasible. As rebuttal is defined on sub-arguments, B2 also asymmetrically rebuts

Ai for i ≥ 4. Similarly, let B3 : 470; B4 : B3 �g12 469; B5 : B4 �g13 ¬155a. Then

B5 rebuts A8 (on A8) and A8 rebuts B5 (on B5). Again, as rebuttal is defined on

sub-arguments, B5 also asymmetrically rebuts A9 and A10.

Let C1 : 466; C2 : C1 �g11 465. Then C2 undercuts A5 (on A5), as exc3 : 465�
g4 in Exc and TopGen(A5) = g4 ∈ Ge. As undercutting attack is defined on

sub-arguments, C2 also attacks Ai for i ≥ 6. Similarly, let C3 : 463; C4 : 464;

C5 : C3, C4 �g10 462. Then C5 undercuts A5 (on A5), as exc2 : 462 � g4 in Exc

and TopGen(A5) = g4. C5 then also attacks Ai for i ≥ 6. Lastly, let D1 : 468 and
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Figure 6.5: Annotation of the IG of Figure 6.4a, where arguments and direct attacks

(���) on the basis of the IG and Ep are also indicated.

D2 : D1 �g14 467, then D2 undercuts C2 (on C2) as exc1 : 467 � g11 in Exc and

TopGen(C2) = g11.

Finally, note that in case causal generalisations g3, g5 and/or g6 are replaced by

evidential generalisations g′3, g
′
5 and/or g′6, similar inferences can be performed with

the IG given Ep (see Section 6.2); therefore, arguments A4−A7 are again constructed

according to this alternative interpretation and the same AF is obtained.

6.4.2 Argument evaluation

Next, the constructed arguments are evaluated. The constructed AF (A,D) is vi-

sualised in Figure 6.6a. The complete extensions of (A,D) are:

S1 = {A1, A2, B1, B3, B4, B5, C1, C3, C4, C5, D1, D2};
S2 = {A1, A2, A3, A4, B1, B3, B4, B5, C1, C3, C4, C5, D1, D2};
S3 = {A1, A2, B1, B2, B3, B4, B5, C1, C3, C4, C5, D1, D2}.
Under complete semantics, A1, A2, B1, B3, B4, B5, C1, C3, C4, C5, D1, D2 are justi-

fied as they are members of all complete extensions, A5, A6, A7, A8, A9, A10 are

overruled as they are defeated by justified argument C5, C2 is overruled as it is

defeated by justified argument D2, and A3, A4, and B2 are defensible. For the other

semantics, the same statuses are assigned; for grounded semantics, this is the case

as S1 is the set inclusion minimal complete extension. For preferred and stable

semantics, note that S2 and S3 are set inclusion maximal complete extensions for
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Figure 6.6: AF corresponding to the IG of Figure 6.5, where justified, overruled

and defensible arguments are indicated by green, red, and white circles, respectively

(a); the dialectical status of the conclusions of the arguments in the AF, where the

arguments corresponding to the conclusions are indicated in parentheses (b).

which it holds that ∀B /∈ Si, ∃A ∈ Si such that (A,B) ∈ D for i = 2, 3; hence, S2

and S3 are preferred and stable extensions.

The dialectical status of the conclusions of the arguments in the AF of Figure

6.6a are depicted in Figure 6.6b. The status of the ultimate claim Π3 in the case

is overruled, as argument A10 is the only argument with conclusion Π3 and A10

is overruled. In particular, A10 is overruled as it is undercut on A5 by justified

argument C5 with justified conclusion 462. The attack of C5 on A5 captures that,

because Sacco carried his weapon as he intended to shoot rabbits with it (462), this

caused him to draw his weapon (152) with the intention of surrendering it. A10 is

also undercut by argument C2 with conclusion 465 (Sacco carried a weapon because

of his duties as a night watchman), but C2 is overruled (and hence 465 is also

overruled) as it is itself undercut by justified argument D2 with justified conclusion

467 (Sacco was not a night watchman). Hence, the crucial argument responsible

for the status of A10 is argument C5. Similarly, intermediate conclusions 153− 156

that were iteratively used in inferring Π3 are overruled, as arguments A5 − A9 are

overruled. The claims that Sacco attempted to put his hand under his overcoat (149)

and the negation of this claim (¬149) are defensible as B2 and A3 are defensible,

and the claim that Sacco intended to draw his concealed weapon (152) is defensible

as A4 is defensible. All other conclusions in P are justified.

Finally, note that, while arguments constructed on the basis of the IG of Figure

6.4a can be directly evaluated using Dung’s semantics, the BN constructed from this

IG cannot be directly used for probabilistic inference. More specifically, the BN is

partially specified as only qualitative probabilistic constraints and no exact proba-

bilities are derived on the BN under construction. Moreover, the derived qualitative

probabilistic constraints are only a subset of those required for the specification of

a QPN [Wellman, 1990] (see also Section 5.5). Therefore, the way in which the

constructed AF and BN are evaluated cannot be compared for the current case.
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6.5 Concluding remarks

In this chapter, we have illustrated our approaches from Chapters 4 and 5 and per-

formed a preliminary validation of our approach from Chapter 5 by means of a case

study. We have provided a possible interpretation of Kadane and Schum’s Wigmore

chart as an IG, which illustrates that the IG-formalism is sufficiently expressive to

model a complex case in a precise way. We have then applied our approaches from

Chapters 4 and 5 to the constructed IG. Upon comparing the BN graph constructed

by our approach from Chapter 5 to Kadane and Schum’s manually constructed BN

graph, we have concluded that the graphs are largely identical and that similar prob-

abilistic inferences can be performed for the case at hand. As Kadane and Schum

provided a thorough and extensive probabilistic analysis of the case, these similar-

ities are a positive result of our validation and offer a preliminary indication that

BNs constructed from IGs by our approach are of good quality. Moreover, the dif-

ferences obtained illustrate that our approach may provide a more principled way of

constructing BN graphs than the manner in which Kadane and Schum constructed

their BNs. In particular, Kadane and Schum in some cases aggregated multiple

claims in the Wigmore chart into single nodes in the BN graph, while by applying

our approach all elements of the IG are explicitly captured in the corresponding BN

graph to prevent loss of information. Furthermore, in comparison to the BN graph

of Kadane and Schum head-to-head nodes are formed in our BN graph, which allows

for directly capturing possible interactions between nodes in the graph.
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Chapter 7

Supporting discussions about Bay-

esian networks using argumentation

As discussed in the introduction, BNs have found applications in many fields where

uncertainty and evidence plays a role, including medicine, forensics and law [Fen-

ton and Neil, 2012]. Although in BN construction it is good practice to document

the model itself, the importance of documenting design decisions has received little

attention. Such decisions, including the (possibly conflicting) reasons behind them,

are important for experts involved in the construction and use of probabilistic mod-

els to understand and accept them. Moreover, when disagreements arise between

experts involved in BN construction, there are no systematic means to resolve them.

An example of a tool that does support experts in documenting their BN mod-

elling decisions is that of Yet and colleagues [2017] in the medical domain. Their

tool allows BN developers to document the (clinical) knowledge, including conflicts,

underlying the constructed BN in a queryable OWL ontology, which users can exam-

ine through an automatically generated free text web page. The tool, however, does

not provide experts the ability to resolve disagreements and is not based on an ar-

gumentation model. Since disagreements about probabilistic models are essentially

argumentative in nature, we prefer to use an approach for capturing and resolv-

ing conflicts based on argumentation. Other approaches that support experts in

documenting their BN modelling decisions include other ontology-based approaches

that allow experts to document the assumptions and background knowledge be-

hind a BN under construction [Helsper and van der Gaag, 2007; van der Gaag and

Tabachneck-Schijf, 2010] and a textual annotation tool [Antal et al., 2001] that al-

lows for annotating different elements of BN graphs with background knowledge.

However, these approaches similarly are not argumentation-based and do not allow

experts to resolve disagreements.

Keppens [2014] recently proposed an argumentation-based approach to criticise
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and resolve discussions about a probability distribution. In his approach, convex

sets of conditional probability values are calculated from the probabilistic con-

straints admitted by justified arguments posed by experts; hence, for a fixed BN

graph-structure these convex sets can be used in probabilistic inference using credal

networks [Cozman, 2000]. Keppens’ approach can be used when discussions about a

BN only concern its parameterisation. However, disagreements may also concern a

BN’s graph-structure including its variables, arcs, and variables’ value spaces, which

in this chapter we do not assume to be Boolean.

Accordingly, in this chapter we propose an approach that helps to capture and

resolve disagreements among experts concerning any BN element. To this end, we

allow experts to explicitly express their reasons pro and con modelling decisions

regarding the structure and parameterisation of a (fully or partially specified) BN

using argumentation. Disagreements are resolved as much as possible by utilising

preferences that are specified over the arguments by the experts. The version of

the ASPIC+ framework as presented in Section 2.2.2 is used to formally specify our

approach, which is more general purpose than our specific argumentation formalism

from Chapter 4. Our approach is based on an argument-based analysis of an actual

disagreement about a forensic BN for the interpretation of finger marks. In Section

7.1 our analysis of this disagreement is presented, on the basis of which we propose

our argumentation-based approach for capturing and resolving conflicts about BN

elements in Section 7.2.

7.1 Disagreements about a forensic finger mark

Bayesian network

In this section, we analyse an actual disagreement about a BN to identify where

disagreements about BNs typically arise and how such disagreements are typically

expressed and resolved manually. Doekhie [2012] (in Master thesis research) and

Haraksim and colleagues [2012] constructed a BN for the forensic interpretation

of two finger marks1, described in Section 7.1.1. Doshi [2013] (in Master thesis

research) criticised this BN and proposed adjustments that address the identified

shortcomings. In Section 7.1.2 we analyse the argumentation structure of Doekhie

and colleagues’ modelling decisions and Doshi’s criticism on these decisions. While

the main objective of this analysis is to identify where disagreements about BNs

typically arise and how such disagreements are resolved manually, we also analyse the

extent to which the constructed arguments can be classified as instances of existing

or newly proposed argument schemes (Section 2.2.2.4) or as applications of critical

questions of these schemes. These schemes and questions can be used alongside those

proposed by Keppens [2014] and Prakken [2020] to guide the practical construction

of arguments and counterarguments regarding BN elements.

1Compared to a fingerprint, which is a print taken from a suspect at the police station, a finger

mark is a mark recovered from a crime scene.
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Figure 7.1: BN for the interpretation of two finger marks at finger level, constructed

by Doekhie [2012] (in Master thesis research) and Haraksim and colleagues [2012].

7.1.1 BN for the interpretation of two finger marks

The BN constructed by Doekhie [2012] (in Master thesis research) and Haraksim and

colleagues [2012] is used to evaluate from which fingers two finger marks recovered

from a crime scene originated, where the assumption is made that these two finger

marks are left behind by two consecutive fingers of the same hand in the act of

a single touch. Specifically, if the fingers on the hands of a person are labelled

1 through 10, then the BN is used to calculate the (posterior) probability that

the two marks originated from a specific configuration of consecutive fingers. In a

police investigation, a fingerprint expert enters the marks into a software system

that automatically compares them to a fingerprint database. Knowing beforehand

from which finger a mark most probably originated can considerably narrow down

the search and, in turn, speed up the matching process. It should be noted that

the constructed BN cannot be used to evaluate from which person the finger marks

originated; BNs at person level instead of at finger level are used for this purpose

(see e.g. Taroni et al. [2014]).

Doekhie and colleagues’ BN is depicted in Figure 7.1. FingerCombinations is

the variable of interest for which we wish to obtain a posterior distribution. This

variable describes eight values, corresponding to the eight possible combinations

of fingers from which the two marks originated. Specifically, these values are 1&

2, . . . , 4&5, 6&7, . . . , 9&10, where the first number denotes the finger number

from which finger mark A originated and the second number indicates the finger

number from which finger mark B originated. The FingerA and FingerB variables

themselves each describe ten values, corresponding to the ten possible fingers from

which a mark can originate. The GeneralPatternA and GeneralPatternB variables

each describe a number of different values corresponding to the general patterns

which are typically observed in finger marks and fingerprints, such as loops, whorls

and arches. Upon using the BN in practice in a given case, these variables are

instantiated to the general patterns observed in marks A and B to obtain a posterior

distribution over the FingerCombinations variable, i.e. EV = {GeneralPatternA,

GeneralPatternB}. The Hand variable accounts for the hand from which the two

finger marks originated. This variable describes two values, namely left hand and
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right hand. Finally, the Gender variable accounts for the gender of the donor from

which the two marks originated. According to Doekhie and colleagues, this variable

describes three values: male, female and unlabelled.

The CPT for the Gender variable is filled using frequency statistics obtained from

a fingerprint database (D1). This database contains data on each subject’s gender

and the finger from which each print originated, as well as the general pattern of each

fingerprint as labelled by a fingerprint examiner. In some cases, the subject’s gender

was not documented in the database and the prints were classified as ‘unlabelled’.

Frequency statistics from D1 are also used to fill the CPTs for the GeneralPatternA,

GeneralPatternB and FingerCombinations variables. The manner in which these

frequencies are chosen by Doekhie and colleagues is not further discussed here, as

the parameterisation of these variables is not criticised by Doshi.

The CPTs for the Hand, FingerA and FingerB variables are filled using frequency

statistics from a finger mark database (D2). This database contains similar data as

D1, except that the data is obtained from a large number of finger marks recovered

from crime scenes instead of from fingerprints. As noted by Haraksim and colleagues

[2012], frequency statistics provide for a more informed prior than a uniform prior,

which assigns equal prior probabilities to each finger or hand. From D2, it can,

for instance, be seen that marks originating from the thumb and index finger are

recovered more often from crime scenes than marks originating from other fingers.

7.1.2 Doshi’s criticism on Doekhie and colleagues’ BN

In this section, we analyse the argumentation structure of Doekhie and colleagues’

modelling decisions (Section 7.1.1) and Doshi’s criticism on these decisions. In

the ASPIC+-style argument graphs depicted throughout this section, propositions

corresponding to Doekhie and colleagues’ claims are indicated by plain boxes and

propositions corresponding to Doshi’s claims are indicated by thick boxes.

7.1.2.1 Relevance of the Hand variable

Haraksim and colleagues [2012, p. 102] state that frequency statistics from finger

mark database D2 indicate that the probability distribution over the Hand variable

is non-uniform, from which they conclude that this variable should be included in the

BN and that this non-uniform distribution should be used for the parameterisation

of this variable. This can be interpreted as an argument from data set (defined

below): as D2 implies a property of the Hand variable, a probability distribution

(or BN) over a set of variables including the Hand variable should be constrained

by this property. Doekhie and colleagues’ arguments are depicted in the centre of

Figure 7.2 (inference d1).

The argument scheme for arguments from data sets we propose is a generalisa-

tion of the scheme originally proposed by Keppens [2014, p. 260]. Keppens’ scheme

can only be used to reason about the source of a specific parameterisation. We gen-

eralise this scheme such that it can also be used to reason about general properties
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Figure 7.2: Argument-based analysis of Doekhie and colleagues’ modelling decision

for including the Hand variable and Doshi’s criticism.

of a BN, such as whether or not a variable should be included in the BN or what

its value space should be:

S is a data set that includes variable(s) V1, . . . , Vn.

S implies a property Prop of a subset V of V1, . . . , Vn.

Therefore, a BN with variables V may be constrained by property Prop.

This scheme includes the following critical questions (adapted from Keppens [2014,

p. 261]):

1. Does data set S cover all variables and values of variables necessary to identify

the relevant circumstances covered by property Prop?

1′. Does data set S cover all variables and values of variables sufficient to identify

the relevant circumstances covered by property Prop?

2. Is the population considered in data set S representative for the population

under investigation in the present case?

3. Is the volume and precision of data set S consistent with the precision of property

Prop?

4. Is the observation of property Prop in data set S consistent with other data sets?

Doshi criticises Doekhie and colleagues’ modelling decision by stating that the value

of the Hand variable is directly determined by the values of the FingerA and FingerB

variables. Specifically, knowing from which finger a mark originated implies that we

know from which hand the mark originated. From this claim, it follows that the

non-uniformness of the distribution over the Hand variable is already captured in

the distribution over the FingerA and FingerB variables. This can be interpreted as

an undercutter of the argument from data set as posed by Doekhie and colleagues;

specifically, it is an instance of critical question 1′ of this argument scheme. This

undercutter is depicted on the left-hand side of Figure 7.2.
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Doshi provides additional reasons for not including the Hand variable by claim-

ing that this makes the BN more simple and compact. To capture this, we propose

the following argument scheme for reduced complexity :

V is a variable in BN B.

Removing variable V and its incident arcs from B makes B

less computationally and representationally complex.

Therefore, variable V should be removed from B.

We propose the following corresponding critical questions for this scheme:

1. Is variable V relevant for computing the posterior distribution over variables of

interest in B?

2. Does the complexity gain from removing V compensate for the loss of accuracy

and completeness of B?

Doshi’s argument for reduced complexity is depicted on the right-hand side of Figure

7.2. This argument and Doekhie and colleagues’ argument then rebut. Weighing the

reasons pro and con, Doshi concludes that the Hand variable along with its incident

arcs should be removed.

7.1.2.2 Possible dependency between the GeneralPatternA and

GeneralPatternB variables

Based on discussions with fingerprint examiners, Doshi found that there exists no

significant dependency (or correlation) between the general patterns that exist on

different fingers. Doshi criticises Doekhie and colleagues’ BN by stating that the

GeneralPatternA and GeneralPatternB variables are possibly dependent in their BN.

The fingerprint examiners’ claim that the GeneralPatternA and GeneralPatternB

variables are independent can be interpreted as an argument from expert opinion

(see Section 2.2.2.4). The argument for the claim that the GeneralPatternA and

GeneralPatternB variables are independent and the argument for the claim that

these variables can be dependent then rebut. Note that the latter claim is not

explicitly made by Doekhie and colleagues; it is, however, implied by the structure

of the BN they constructed. Doekhie and colleagues’ implicit argument, as well as

Doshi’s counter-argument, are depicted on the right-hand side of Figure 7.3.

Doshi notes that the GeneralPatternA and GeneralPatternB variables can be

made independent in Doekhie and colleagues’ network by reversing the directions of

arcs2 between GeneralPatternX and FingerX, for both X = A and X = B. However,

this would (1) not be in agreement with the perceived direction of causality between

2Note that by reversing the arcs between GeneralPatternX and FingerX for both X = A and

X = B, an active chain still exists between GeneralPatternA and GeneralPatternB, namely via

Gender; these variables, therefore, remain possibly dependent. In this section, we only concern

ourselves with modelling Doekhie and colleagues’ and Doshi’s arguments, and we do not pose

further (possible) (counter)arguments.
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Figure 7.3: Argument-based analysis of Doshi’s criticism on the possible dependency

between the GeneralPatternA and GeneralPatternB variables.

these variables (inference d3); and (2) would increase the number of probabilities

that need to be estimated in the CPTs for the FingerA and FingerB variables and,

therefore, would make these CPTs more complex (inference d4). The latter argu-

ment can be interpreted as an instance of a variation on the argument scheme for

reduced complexity presented in Section 7.1.2.1. Instead of concerning the removal

of a variable, this variation concerns the reversal of an arc between two variables.

Specifically, if reversing an arc between two variables makes the BN less computa-

tionally and representationally complex, this arc should be reversed. We replace

critical question 1 by ‘Does reversing the arc change the independence relation rep-

resented by the BN graph?’. Critical question 2 can be directly applied to this

scheme by replacing the words ‘removing V’ by the words ‘reversing the arc’.

Doshi’s argument for reversing arc directions and his arguments for keeping the

original arc directions then rebut, as depicted in Figure 7.3.

7.1.2.3 Conditional independence of the FingerCombinations variable

and the FingerA and FingerB variables

Upon considering the BN graph of Figure 7.1, Doshi notes that the FingerCombina-

tions variable is conditionally independent from the FingerA and FingerB variables

given Z = {Hand, GeneralPatternA, GeneralPatternB} (its Markov blanket, see

Definition 18). Doshi criticises this modelling decision by stating that, knowing

from which two fingers the marks originated, we should be able to infer the com-

bination of fingers that was used. Therefore, the FingerCombinations variable and

the FingerA and FingerB variables should not be conditionally independent given

Z. An argument-based analysis of Doshi’s criticism is depicted in Figure 7.4. Note

that the argument on the left-hand side was not explicitly made by Doekhie and col-

leagues. Instead, it follows implicitly from the structure of Doekhie and colleagues’

BN. Doekhie and colleagues’ argument and Doshi’s argument then rebut.
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The FingerCombinations variable 
should be conditionally 

independent from the FingerA 
and FingerB variables given Z =  

{Hand, GeneralPatternA, 
GeneralPatternB}

Knowing from which two 
fingers the marks originated, 

we should also be able to 
infer the combination of 

fingers that was used

The FingerCombinations 
variable should not be 

conditionally independent 
from the FingerA and FingerB 

variables given Z =  {Hand, 
GeneralPatternA, 
GeneralPatternB}

d1

Figure 7.4: Argument-based analysis of Doshi’s criticism on the independence of

the FingerCombinations variable and the FingerA and FingerB variables given Z

= {Hand, GeneralPatternA, GeneralPatternB}.

7.1.2.4 The value space of the Gender variable

Doekhie and colleagues base their design choice for using values male, female and

unlabelled as the value space of the Gender variable on the observation that the

Gender variable can take on these three values in D1. This can be interpreted as an

argument from data set; it is depicted in Figures 7.5 and 7.6 (inference d1), where

an undercutter of this argument is depicted in Figure 7.5 and a rebuttal to this

argument is depicted in Figure 7.6. First, the undercutting attack is considered.

Doshi criticises Doekhie and colleagues’ decision by arguing that, in reality, people

are either male or female, and that ‘unlabelled’ merely refers to the fact that data is

missing with respect to this variable in D1. Therefore (inference d2), Doshi concludes

that values male, female and unlabelled are not mutually exclusive. By furthermore

stating that the values of BN variables should be mutually exclusive, Doshi poses

(inference d3) an exception to the argument from data set as posed by Doekhie and

BN variable Gender should 
describe values male, 
female and unlabelled

Fingerprint database D1 is 
a database that includes 

variable Gender

In fingerprint database D1, variable 
Gender can take on values male, 

female and unlabelled

In reality, people are 
either male or female

Values male, female 
and unlabelled are not 

mutually exclusive

The values of BN 
variables should be 
mutually exclusive

¬d1

Value unlabelled only 
refers to missing data in D1

d2

d3 d1

Figure 7.5: Doshi’s undercutter of Doekhie and colleagues’ argument for using values

male, female and unlabelled as the value space of the Gender variable.
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BN variable Gender should 
describe values male, 
female and unlabelled

Fingerprint database D1 is 
a database that includes 

variable Gender

In fingerprint database D1, variable 
Gender can take on values male, 

female and unlabelled

In reality, people are 
either male or female

Values male and 
female are mutually 

exclusive

The values of BN 
variables should be 
mutually exclusive

BN variable Gender 
should describe values 

male and female

d1

d4

d5

Figure 7.6: Doshi’s rebuttal to Doekhie and colleagues’ argument for using values

male, female and unlabelled as the value space of the Gender variable.

colleagues, which can be interpreted as an instance of critical question 1′ of this

argument scheme. These arguments are depicted on the left-hand side of Figure 7.5.
In addition, Doshi claims that the Gender variable should instead describe val-

ues male and female. First, he claims that values male and female are mutually

exclusive, which is based on his claim that, in reality, people are either male or

female. This argument is depicted on the right-hand side of Figure 7.6 (inference

d4). From this claim and by again stating that the values of BN variables should be

mutually exclusive, Doshi concludes that Gender should describe values male and

female (d5). This argument and Doekhie and colleagues’ argument then rebut.

Based on his criticism, Doshi proposed to adjust the BN of Doekhie and col-

leagues by removing value unlabelled from the value space of the Gender variable.

7.1.2.5 Parameterisation of the FingerA and FingerB variables

Doekhie and colleagues’ motivation for using frequency statistics from D2 for the

parameterisation of the FingerA and FingerB variables can be considered an argu-

ment from data set. This argument is depicted in the centre of Figure 7.7 (inference

d1). Doshi criticises this modelling decision by stating that D2 cannot be used for

establishing the relevant frequencies for these variables, as this database does not

contain data regarding consecutiveness of finger marks. This can be interpreted as

an undercutter of Doekhie and colleagues’ argument from data set; specifically, it

is an instance of critical question 1 of this argument scheme. Doshi’s argument is

depicted on the left-hand side of Figure 7.7 (inference d2).

Doshi instead proposed to use uniform distributions for both values of the Hand

variable for the CPTs for these variables. His reason for using uniform distributions

is that no databases currently exist that contain data regarding consecutiveness of

finger marks and that the CPTs for the FingerA and FingerB variables should,

therefore, be uninformative (for now). These arguments are depicted on the right-

hand side of Figure 7.7; Doekhie and colleagues’ argument and Doshi’s argument

based on inferences d3 and d4 then rebut.
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The CPTs for the FingerA and FingerB 
variables can be filled using frequency 
statistics from finger mark database D2 

Finger mark database D2 is 
a database that includes 

variables FingerA, FingerB 
and Hand

Frequency statistics of 
FingerA given Hand and 

FingerB given Hand can be 
calculated from finger 

mark database D2 

A uniform distribution should be 
used for the CPTs for the FingerA 

and FingerB variables

 The CPTs for the FingerA and 
FingerB variables should be 

uninformative

Finger mark database D2 
contains no information 

regarding consecutiveness 
of finger marks

 No databases currently exist that 
contain information regarding 

consecutiveness of finger marks

¬d1 d1

d3

d4

d2

Figure 7.7: Argument-based analysis of Doekhie and colleagues’ modelling decision

regarding the parameterisation of the FingerA and FingerB variables and Doshi’s

criticism on this decision.

7.2 An argumentation-based approach to support-

ing discussions about Bayesian networks

In this section, we propose an argumentation-based approach that can be used to

capture and help resolve conflicts about BN elements in a BN under construction.

Our approach is based on our analysis of the disagreement of Section 7.1. The ap-

proach consists of two phases that are iteratively run through. In the first phase,

experts are allowed to construct arguments pro and con the outcomes of modelling

decisions underlying a given fully or partially specified BN, as well as specify prefer-

ences over these arguments. Arguments can be constructed regarding the inclusion

or exclusion of different types of BN elements (described below) which may or not

be in the existing BN. In the second phase, conflicts are then resolved by using the

dialectical status of the constructed arguments to derive probabilistic and structural

constraints on the BN (Sections 7.2.1 and 7.2.2).

Our sub-division of BN elements is inspired by our analysis of the disagreement

of Section 7.1, by the work of Pitchforth and Mengersen on the validation of expert-

elicited BNs [Pitchforth and Mengersen, 2013] and by the work of Yet and colleagues

[2017]. Below, the types of arguments that can be constructed regarding each type

of BN element are listed:

• Arguments regarding the existence of variables (Section 7.1.2.1). Conclusions of

such arguments are of the form φV = ‘Include V in V’ and ¬φV = ‘Exclude V

from V’.

• Arguments regarding whether a variable is observable or not. Typically, a fixed

set of variables EV is observed and instantiated upon using the BN in practice

in a given case. Conclusions of such arguments are of the form φVEV
= ‘Include

V in EV’ and ¬φVEV
= ‘Exclude V from EV’.
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• Arguments regarding (conditional) (in)dependencies (Sections 7.1.2.2 and 7.1.2.3).

Arguments of this type concern the inclusion or exclusion of a (conditional) in-

dependence constraint I = I(V1, V2,Z) in the set of (conditional) independence

constraints I to which the BN should adhere to, where I(V1, V2,Z) states that V1
and V2 are conditionally independent given a (possibly empty) subset of variables

Z ⊆ V. In particular, conclusions of such arguments are of the form φV1,V2,Z
I =

‘Include I = I(V1, V2,Z) in I’ and ¬φV1,V2,Z
I = ‘Exclude I = I(V1, V2,Z) from I’.

• Arguments regarding the existence of arcs (Section 7.1.2.2). Conclusions of such

arguments are of the form φV1→V2 = ‘Include arc V1 → V2 in AB’ and ¬φV1→V2 =

‘Exclude arc V1 → V2 from AB’. Arguments for arc reversal can then be indirectly

constructed by constructing arguments with conclusions ¬φV1→V2 and φV2→V1 .

• Arguments regarding the value spaces of variables (Section 7.1.2.4). Conclusions

of such arguments are of the form φVS1
= ‘Use value space 1 for variable V’. Such

arguments may either be attacked by constructing an argument for its negation

¬φVS1
= ‘Do not use value space 1 for variable V’ or by constructing an argument

for an alternative value space φVS2
= ‘Use value space 2 for variable V’, where φVS1

and φVS2
are declared contradictories of each other in L.

• Arguments regarding the parameterisation of variables (Section 7.1.2.5). Conclu-

sions of such arguments are denoted by φVPar and are similar in form to arguments

regarding value spaces of variables, and can be attacked similarly, by replacing

the words ‘value space’ by the word ‘parameterisation’. Here, we assume that

a conflict concerns part of the CPT for V. Specifically, let V1, . . . , Vn be the

parents of V. Then conflicts regarding the parameterisation of V concern a spe-

cific distribution Pr(V | V1 = v1, . . . ,Vn = vn) for given values v1 of V1, . . . , vn
of Vn. We note that probabilities Pr(V = v | V1 = v1, . . . ,Vn = vn) should

sum to 1 when summing over all possible values v of V; conflicts regarding the

parameterisation of a variable, therefore, never concern a single value of its CPT.

It should be noted that we do not propose a dialogue protocol. Instead, we first

allow experts to specify arguments regarding all the different types of BN elements

described above along with a preference relation over those arguments, after which

a priority ordering over the arguments corresponding to the different types of BN

elements is applied to establish which conflicts, if any, should be resolved first. This

process is repeated until a satisfactory BN is obtained.

7.2.1 Priority ordering for conflict resolution

The idea of a priority ordering is based on the observation that BN elements from

different types are dependent on one another. For instance, it only makes sense to

resolve conflicts regarding the value space of variable V iff V’s existence is justified.

137



We propose the following priority ordering over the types of BN elements:

P1. Existence of variables in V.

P2. Inclusion of variables in EV.

P3. Conditional independencies between variables given Z = EV.

P4. Conditional independencies between variables given subsets Z ⊆ V, Z �= EV.

P5. Existence of arcs between variables.

P6. Value spaces of variables.

P7. Parameterisation of variables.

A BN graph, by means of its arcs and their directions, represents an independence

relation, so the (conditional) independencies implied by the graph should be verified.

We note that, upon constructing BNs, arcs are typically added first, after which the

implied independence relation is verified. In our approach, we instead prioritise the

resolution of conflicts regarding independencies (P3 and P4) over those concerning

arc directions (P5), as arguments of the former type should generate new arguments

for the existence of arcs and their directions at P5 that together realise the con-

ditional independence relation implied by the arguments at P3 and P4. Since an

unjustified independence assumption can affect the behaviour of the BN, indepen-

dencies exploited in deriving conclusions in an actual case are most important to

verify. As such, we prioritise arguments regarding conditional independencies given

EV (P3) over conditional independencies given subsets Z ⊆ V, Z �= EV (P4).

After obtaining a fully specified BN graph, conflicts regarding the value spaces of

variables are considered (P6). Lastly, at P7 conflicts regarding the parameterisation

of variables are resolved. Specifically, the parameterisation of a variable V can be

considered iff V’s existence, V’s value space, the existence of V’s incoming arcs, and

the value spaces of V’s parents are justified. We note that, alternatively, conflicts

regarding value spaces can be considered directly after resolving conflicts regarding

the existence of variables at P1, as the BN elements at P2 − P5 are independent of

the value spaces of variables and the same BN would be obtained via our approach

using this alternative ordering. We opt to consider conflicts regarding value spaces

at P6 to allow for a more straightforward specification and explanation of the sec-

ond phase of our approach, as conflicts regarding value spaces of variables and the

parameterisation of variables (at P7) are resolved similarly.

We introduce the following notation. With APi we denote the set of arguments

whose conclusions concern BN elements at priority level Pi, i ∈ {1, . . . , 7}. We

assume that APi
divides into disjoint subsets of arguments Ae

Pi
concerning BN

element e at priority level Pi. For instance, AV
P1

only contains those arguments with

conclusions φV and ¬φV for the inclusion/exclusion of variable V.

7.2.2 Constraint table and default choices

In Figure 7.8, the second phase of our approach, concerning conflict resolution, is

summarised in pseudocode; throughout this section, we will explain and refer to
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1 function ConflictResolution(BN, Args):

2 Input: Partially or fully specified BN

3 Input: Set of arguments Args with preferences

4 Output: Partially or fully specified BN

5 for i ∈ {1, . . . , 7} do
6 foreach BN element e at priority level Pi do
7 Calculate dialectical status of arguments in Ae

Pi

8 Consult constraint table:

9 if constraint table states “Include e” then
10 Include e

11 end

12 else if constraint table states “Exclude e” then
13 Exclude e

14 Retain documentation regarding e

15 Disregard arguments in Ae

Pj
for j > i

16 end

17 else if constraint table states “No constraint” then

18 Ask expert to further specify Ae

Pi
:

19 if Ae

Pi
is further specified then

20 goto line 7

21 end

22 else

23 Resort to default choice

24 end

25 end

26 end

27 end

28 end

Figure 7.8: Pseudocode of our argumentation-based approach to resolving conflicts

about BN elements.

the lines in this pseudocode. As input for this phase, either a fully or partially

specified BN is used, along with a set of arguments and preferences as specified in

the first phase of our approach (lines 2 and 3 of the pseudocode). The process of

conflict resolution at priority level Pi starts by calculating the dialectical status of

conclusions in Ae
Pi

for each BN element e (line 7 of the pseudocode). Conflicts are

then resolved by consulting Table 7.1, which throughout this chapter will be referred

to as a constraint table (line 8 of the pseudocode). Depending on the priority level,

different rows of the constraint table are used. At priority levels P1 − P5, the set of

arguments Ae
Pi

can either contain arguments with ultimate conclusions φe only, ¬φe
only, or both. For these priority levels, rows 1− 3 of the constraint table are used.

At priority levels P6 − P7, arguments can also be constructed for claims regarding

alternative value spaces or parameterisations, indicated by φe′ ; row 4 is also used

at these priority levels. The second column of the constraint table indicates the

possible configurations of dialectical status of the claims in the first column. The

third column then indicates the corresponding constraints on the BN for each of

these configurations. Entries with an asterisk indicate BN constraints at priority

139



Table 7.1: Constraint table for including BN element e. Entries with an asterisk

indicate BN constraints at priority levels P6 − P7, whereas for the same dialectical

status configurations at priority levels P1 − P5 entries without an asterisk are used.

Proposed claims Dialectical status BN constraint Default choice 

e and ¬ e  

 

e justified, ¬ e overruled 

e overruled, ¬ e justified 

e defensible, ¬ e defensible 

e overruled, ¬ e overruled 

 

Include e 
 

Exclude e / No constraint* 
 

No constraint 
 

Further specification needed 
 

 

No default choice 
 
 

No default choice / Boolean variable or uniform distribution* 
Original modelling decision 
 

No default choice 
 

e only 
 
 

e justified 
e overruled 
e defensible 

 

Include e 
 

Exclude e / No constraint* 
 

No constraint 

 

No default choice 
 

No default choice / Boolean variable or uniform distribution* 
 

Original modelling decision 
 

¬ e only 
 

¬ e justified 
¬ e overruled 
¬ e defensible 

 

Exclude e / No constraint* 
 

Include e / No constraint* 
 

No constraint 
 

 

No default choice / Boolean variable or uniform distribution* 
 

No default choice / Boolean variable or uniform distribution* 
 

Original modelling decision 
 

e and e’ 

 

 

e justified, e’ overruled 

e overruled, e’ justified 

e defensible, e’ defensible 

e overruled, e’ overruled 

 

Include e 
 

Include e’ 
 

No constraint 
 

No constraint 
 

 

No default choice 
No default choice 
 

Original value space or average of the two distributions 
 

Boolean variable or uniform distribution  

levels P6−P7, whereas for the same dialectical status configurations at priority levels

P1 − P5 entries without an asterisk are used.

Depending on the entry in the third column of the table, different actions should

be taken. If the entry in the constraint table reads ‘Include e’ or ‘Exclude e’, then

the BN element should be included in the BN, respectively excluded from the BN

(lines 9-11 respectively 12-16 of the pseudocode). In the latter case, the arguments

regarding this variable should still be retained for documentation purposes in order

to keep a ‘chain-of-custody’ of the changes made to the BN. If an expert wishes to

provide further reasons as to why this element should still be included, they can then

review the existing arguments regarding this BN element and supplement it with

additional arguments or preferences. Furthermore, in case BN element e is excluded,

then arguments of inferior priority concerning e should be disregarded in that these

arguments should not be evaluated or used in conflict resolution. For instance, if a

variable V is removed from the BN at priority level P1, then arguments in APj for

j > 1 that concern this variable should be disregarded. Arguments for a conditional

independency at P3 and P4 should then be disregarded in case V is an element of

the set of variables Z ⊆ V under consideration or if V takes on the role of V1 or V2

in the argument.

For some configurations of dialectical status, a (univocal) constraint on the BN

cannot be derived (explained in more detail per priority level below). Considering

priority levels P1 − P5, two BNs are then possible: one in which e is included and

one from which e is excluded. One possible approach would be to retain two BNs at

this point, one including e and one excluding e, and to continue resolving conflicts

for both BNs by considering all BN elements at all priority levels. Following this

approach, a list (or tree) of candidate BNs is obtained after attempting to resolve
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all conflicts, from which the experts can choose one BN to continue with. However,

for larger BNs the space of candidate BNs corresponding to a set of arguments

would quickly become large. Moreover, if a list of candidate BNs is presented to

the experts, the differences between BNs in the list also need to be explained to

them in order for them to make a decision for one of these BNs, which would require

additional machinery.

We opt for an alternative approach in which the experts are asked to specify

further information every time a univocal constraint cannot be derived (line 18 of

the pseudocode). Specifically, if no constraint is derived regarding BN element e,

then the experts are asked to specify additional arguments to supplement Ae
Pi
, or

to (further) specify preferences over Ae
Pi
. In case the experts do not further specify

their arguments or preferences, a default choice is made by the approach (lines 22-24

of the pseudocode). What this default choice entails differs per priority level and per

configuration of dialectical status, as indicated in the fourth column of the constraint

table. We note that default choices are only made in case a more informed choice

cannot be made based on the specified information, and that, informally, the more

complete the specification of the arguments and preferences, the less the approach

will resort to making a default choice.

In case the experts further specify their arguments or preferences, then they can

recalculate the dialectical status of φe and/or ¬φe and establish the corresponding

constraints. This process reiterates until BN element e is either included or excluded,

or a default choice is made.

In the next subsections, the different configurations of dialectical status per pri-

ority level and their corresponding constraints are discussed in more detail.

Conflicts about variables. At priority level P1, conflicts regarding the existence

of variables are considered. For resolving conflicts at this priority level, rows 1−3 of

the constraint table are used. For row 1, in case claim φV for including variable V

is justified and ¬φV is overruled, then this variable is included in V. In case ¬φV is

justified and φV is overruled, variable V and all its incidents arcs are excluded from

V. In case φV and ¬φV are defensible, no constraint is derived; in case no further

information is specified by the experts, then the default choice is to resort to using

the original modelling decision, i.e. if variable V was included in/excluded from the

original BN, then it should be included in/excluded from the resulting BN. Lastly, if

both φV and ¬φV are overruled, then neither the choice for including nor excluding

the variable as a default is warranted. In this case, the experts should always

further specify their arguments and preferences to be able to derive a constraint

(entry ‘Further specification needed’ in the constraint table). Rows 2 and 3 of Table

7.1 are interpreted similarly.

Example 59. As an example of an application of our approach to resolving conflicts

about variables, we consider the argument-based analysis of Section 7.1.2.1. In Fig-

ure 7.2, Doekhie and colleagues’ argument for including the Hand variable in the BN
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is undercut and, therefore, overruled under any semantics, as undercutting attack is

preference-independent. It follows that Doshi’s argument for excluding this variable

is justified, as its only defeater is overruled. From the constraint table, it therefore

follows that the Hand variable should not be included in the BN graph. In case we

consider the set of arguments excluding Doshi’s undercutter, then both claims for

including and excluding the variable are defensible and no univocal constraint is de-

rived. Doshi could in this case, for instance, specify that his argument for exclusion

of the Hand variable is strictly preferred to Doekhie and colleagues’ argument for

inclusion of this variable. The dialectical status of the corresponding arguments is

then recalculated; Doshi’s argument for excluding the Hand variable is now justified,

from which a constraint on the BN to exclude this variable is derived. In case both

Doshi and Doekhie do not further specify their arguments or preferences, then an

informed choice cannot be made by the approach and the original modelling decision

is used as a default (i.e. variable Hand is included in V). �

After resolving all conflicts at priority level P1, conflicts at P2, regarding the set of

observable variables EV, are considered. Here, the terms ‘Include V’ and ‘Exclude

V’ now refer to including V in and excluding V from the set EV rather than set V.

Conflicts about independencies and arcs. At priority levels P3 and P4, con-

flicts regarding (conditional) independencies between variables are resolved using

rows 1 − 3 of the constraint table. For row 1, in case φV1,V2,Z
I is justified and

¬φV1,V2,Z
I is overruled, then (conditional) independence constraint I = I(V1, V2,Z)

should be included in the set of (conditional) independence constraints I to which

the BN should adhere to. In case ¬φV1,V2,Z
I is justified and φV1,V2,Z

I is overruled,

then this independence constraint should not be included in I. In case φV1,V2,Z
I and

¬φV1,V2,Z
I are defensible, then the default choice is to resort to the modelling deci-

sion implied by the original BN, that is, if V1 and V2 are conditionally independent

given Z then I should be included in I and otherwise I can be excluded. We note

that, if a variable V is removed from or added to EV at priority level P2, then

arguments of inferior priority concerning EV (i.e. at P3) should be disregarded in

conflict resolution.

Example 60. Consider the argument-based analysis of Section 7.1.2.3. The argu-

ments depicted in Figure 7.4 concern priority level P4, as Doshi considers the condi-

tional independencies represented by the BN graph for a set of variables Z = {Hand,
GeneralPatternA, GeneralPatternB}. As Doshi does not express an explicit prefer-

ence, the conclusions of the rebutting arguments in Figure 7.4 are defensible under

any semantics and no univocal constraint is derived. In case both Doshi and Doekhie

do not further specify their arguments or preferences, then the default choice is to

include I1 = I(FingerCombinations, FingerA, Z) and I2 = I(FingerCombinations,

FingerB, Z) in I, as these conditional independence constraints are implied by the

structure of the original BN graph. In case Doshi expresses a strict preference for

either of these arguments, then the chosen argument will be justified and the other
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overruled, in which case a constraint is derived. We note that upon using the BN

of Doekhie and colleagues in an actual case, typically only the GeneralPatternA

and GeneralPatternB variables are instantiated, while the Hand variable is typ-

ically not instantiated. Doekhie and colleagues could, therefore, possibly counter

Doshi’s arguments at P4 by constructing arguments for EV = {GeneralPatternA,

GeneralPatternB} at priority level P2 and arguments at P3 for a conditional de-

pendency between the FingerA and FingerB variables and the FingerCombinations

variable given EV. These arguments would then be prioritised over Doshi’s argu-

ments at P4 in conflict resolution. �

After resolving all conflicts at P3 and P4, our approach should generate new ar-

guments for the existence of arcs and their directions at P5 that together realise

the conditional independence relation implied by I. One way to achieve this is by

manually eliciting arc directions, as illustrated by the following example.

Example 61. Consider the argument-based analysis presented in Section 7.1.2.2.

In Figure 7.3, arguments are depicted for the claims that GeneralPatternA and

GeneralPatternB should be independent and can be dependent. Assuming that Doshi

strictly prefers his argument over Doekhie and colleagues’ implicit argument, his ar-

gument is justified under any semantics. The corresponding independence constraint

is, therefore, added to the set of independence constraints the BN should adhere to.

Doshi then proceeds by attempting to find a configuration of arc directions under

which GeneralPatternA and GeneralPatternB are independent, which generates ar-

guments at P5, specifically arguments for Doshi’s claims that the arcs between Fin-

gerA and GeneralPatternA and between FingerB and GeneralPatternB should be

reversed. The generated arguments at P5 and the arguments that were already pro-

posed by Doshi are then collectively considered, where conflicts at P5 are resolved

using rows 1− 3 of the constraint table. �

Alternatively, so-called structure learning algorithms can be used to learn the struc-

ture of a BN graph [Jensen and Nielsen, 2007, Chapter 7]. These algorithms can aid

experts unfamiliar with the BN-formalism in finding a BN graph with d-separation

properties corresponding to their set of independence constraints I.

Finally, we note that (conditional) independencies can also be enforced by con-

straining the specified probabilities, and that arguments at P3 and P4 could, there-

fore, also possibly generate new arguments at P7 that together with the arguments

for the existence of arcs and their directions at P5 help realise the conditional inde-

pendence relation implied by the arguments at P3 and P4.

Conflicts about value spaces. To resolve conflicts at priority level P6, all rows of

the constraint table are used. Note that this table can only be used if arguments for

at most two different value spaces for a variable V are constructed; similar constraint

tables can be constructed in case more than two value spaces are proposed. In row

1 of Table 7.1, if φVS is justified and ¬φVS is overruled, then value space S should
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be used for V. In case φVS and ¬φVS are defensible, then no univocal constraint is

derived. In this case, the default choice is to resort to using the value space of

this variable as specified in the original BN. In case φVS is overruled and ¬φVS is

justified, then also no constraint is derived. Specifically, the only conclusion that

can be drawn from the information specified by the experts is that value space S

should not be used, as arguments for alternative value spaces are not provided. In

this case, the default choice is to use a Boolean variable. However, if φVS already

concerns a Boolean value space, then the experts should always further specify their

arguments and preferences. Rows 2 and 3 of Table 7.1 are interpreted similarly.

In the fourth row of Table 7.1, two alternative value spaces S1 and S2 are under

consideration and arguments are constructed for both claims φVS1
and φVS2

. In case

one of these claims is justified, the other is overruled; this results in the choice for

using the value space posed in the conclusion of the justified argument. In case φVS1

and φVS2
are both defensible, then the default choice is to resort to using the value

space of this variable as specified in the original BN. In case both φVS1
and φVS2

are

overruled, then neither value space should be used. If possible, the default choice is

to again resort to using a Boolean value space for V .

Example 62. As an example of our approach to resolving conflicts about value

spaces, we consider the argument-based analysis presented in Section 7.1.2.4. In

Figures 7.5 and 7.6, arguments for two different value spaces are depicted, where the

argument for Doekhie and colleagues’ value space is overruled under any semantics

as it is undercut. It follows that the argument for Doshi’s value space is justified

under any semantics, as its only defeater is overruled. From the fourth row of the

constraint table, it therefore follows that Doshi’s value space should be used. �

We reiterate that the two phases or our approach may need to be iteratively run

through to obtain a satisfactory BN. For instance, consider the example in which an

expert wishes to include value other in variable Gender’s value space. The expert

may then specify arguments for the inclusion of this value, after which the value may

be included after conflict resolution. Suppose that upon knowing that this value is

included, the expert wishes to include additional variables and arcs that connect

to the Gender variable to be able to specify the conditional probabilities involving

this value in more detail. In case arguments for these BN elements are not specified

in the current iteration, then these may be specified in the next iteration of the

approach, after which these elements may be included after conflict resolution.

Conflicts about parameterisations. Conflicts at priority level P7 are resolved

similarly as conflicts at P6, where the default choice is to resort to using a uniform

distribution in case the claims for the provided parameterisations are overruled and

no further information is specified. Although a uniform distribution can easily be

criticised, we opt for using this distribution as a more informed choice cannot be

made based on the specified information. The default choice is also to resort to

using a uniform distribution even if the original distribution was uniform, instead

of always requiring the experts to further specify their arguments and preferences
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in this case. Arguments in AV
P7

regarding the parameterisation of a variable V

should be disregarded in conflict resolution if one of V’s incoming arcs, V’s value

space or one of V’s parents’ value spaces is overruled at P5 or P6. In this case, the

default choice is to resort to using a uniform distribution for V. Finally, in case two

alternative parameterisations Par1 and Par2 of variable V are under consideration

and both φVPar1
and φVPar2

are defensible, then the default choice is to use the average

of the two proposed distributions as this is more informative than using a uniform

distribution or the distribution of the variable as specified in the original BN.

Example 63. Consider the argument-based analysis presented in Section 7.1.2.5.

In Figure 7.7, arguments for two different parameterisations are provided. Similar

to the example discussed in the previous subsection, Doshi’s argument is justified

and Doekhie and colleagues’ argument is overruled under any semantics; therefore,

Doshi’s parameterisation should be used. �

7.3 Discussion and concluding remarks

In this chapter, we have proposed an approach for capturing and resolving con-

flicts about BN elements using computational argumentation. Our approach allows

experts to document their reasons pro and con modelling decisions and their pref-

erences in a structured manner using argumentation. The dialectical status of the

constructed arguments is then used to derive probabilistic and structural constraints

on the BN. Our approach always returns a fully or partially specified BN. Starting

with a fully specified BN, a fully specified BN is returned by resorting to default

choices in case a univocal constraint cannot be derived and the arguments and pref-

erences are not further specified. Our approach can possibly be extended in future

research by making explicit to the experts in which ways their arguments and pref-

erences can be further specified to obtain a univocal constraint. This would be

an application of research on so-called resolution semantics; see e.g. [Modgil and

Prakken, 2012]. As discussed earlier, instead of aggregating possibly incompatible

expert advice into one BN model, an alternative approach would be to retain a list

(or tree) of candidate BNs, where each BN corresponds to a Dung extension. From

a theoretical perspective, it may be worthwhile to study such an approach in future

work. For instance, it can then be established for which (types of) extensions the

same BN is obtained or a fragment of the obtained BN is identical.

In related research, Nielsen and Parsons [2007] presented a framework which

allows multiple agents equipped with a BN to agree on a possible consensus BN

graph using computational argumentation. Their approach differs from ours in that

our goal is not to propose a method for fusing different BNs. The approach of Neil

and colleagues [2019] allows multiple independently built BNs presented by different

parties in a legal case to be compared and ‘averaged’ by a trier of fact, with no

attempt to make them consistent in terms of structure or parameterisation. In their

approach, the trier of fact assigns prior probabilities to the different BN models,

which are then updated based on claims presented by different parties during the
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trial process. Models that are more heavily disconfirmed by these claims are assigned

lower weights as model plausibility measures, which are then subsequently used

in the adopted Bayesian model comparison and averaging approach to calculate

posterior probabilities of guilt and innocence of the defendant. Their approach

differs from ours in that we consider the context in which disagreements about a

single BN model are to be resolved instead of the context in which different BN

models are to be weighed and averaged.

In other related work, Nicholson and colleagues [2020] proposed BARD (Bay-

esian ARgumentation via Delphi), which is both a methodology and a software tool

that supports groups of users unfamiliar with the BN-formalism to collaboratively

build a consensus BN in a user-friendly manner. More specifically, users are guided

through a structured (but informal) Delphi-like elicitation protocol (i.e. a systematic

approach for combining multiple perspectives in a democratic, reasoned, and iter-

ative manner), where in an online platform they can incrementally and iteratively

build and evaluate their individual BNs and where feedback can be sought through

communication with other group members and a facilitator. In their approach, the

facilitator manually synthesises and combines the group’s work at every step to

develop a coherent solution that reflects the group’s thoughts. In contrast to this

informal approach, our approach is formally specified, where possibly incompatible

expert advice is (partly automatically) aggregated into one BN model by using an

algorithm based on formal (computational) argumentation.

Our approach is based on an argument-based analysis of an actual disagree-

ment about a forensic finger mark BN. In related work, Prakken [2020] performed

a similar argument-based analysis of actual court discussions regarding Bayesian

analyses of criminal cases. However, he mainly concerned himself with establish-

ing the usefulness of argumentation in structuring this kind of discussion, while

our analysis instead serves to identify how disagreements about BN elements are

typically expressed and resolved manually by experts, and how this process can be

precisely specified and (partly) automated using formal (computational) argumen-

tation. Such a specification allows formal properties of our approach to be studied

in future work. Moreover, in future work our formal model can be the basis for

developing and implementing software tools for supporting discussions about BNs

between experts and for communicating their BNs and discussions to others. For

instance, in the legal and forensic domains such software tools would allow forensic

experts and crime analysts to communicate their BNs and discussions to each other

and to judges and prosecutors.
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Chapter 8

Related research

In this chapter, various formalisms and approaches related to those proposed and

considered throughout this thesis are discussed. Note that relations between the IG-

formalism and ASPIC+ and our argumentation formalism based on IGs and ASPIC+

were already discussed in Section 3.2 and Section 4.4.1, respectively. Moreover, in

Section 3.2 we provided reasons for preferring the IG-formalism to other formalisms

for reasoning about evidence as an intermediary formalism between analyses per-

formed using sense-making tools and formal AI systems. In that section, a compar-

ison of our IG-formalism to the AIF [Rahwan and Reed, 2009] was also made.

To put our IG-formalism (Chapter 3) and our argumentation formalism based

on IGs (Chapter 4) further into context, in Section 8.1 related formalisms for in-

ference and argumentation with causality and other types of information are dis-

cussed. More specifically, we discuss work by which we were inspired and compare

our argumentation formalism based on IGs to argumentation formalisms other than

ASPIC+. In Section 8.2 related work on BN construction is considered, in particular

approaches for constructing BNs from information specified in arguments and on-

tologies that are closely related to our BN graph construction approach of Chapter

5. In Section 8.3 approaches to probabilistic argumentation are considered, which

combine argumentation and probabilities. Finally, in Section 8.4 argumentation-

based explanation methods for BNs are discussed. Note that approaches related to

our method for capturing and resolving disagreements about BNs using argumenta-

tion proposed in Chapter 7 were already discussed in motivating and discussing our

method in the introduction and conclusion of that chapter.

8.1 Inference and argumentation with causality and

other information

In Chapter 3 we presented the graph-based IG-formalism for deduction and abduc-

tion with causal, evidential, abstraction, and other types of generalisations, as well as

causal generalisations that include enabling conditions. In this section, work related

to the IG-formalism and the argumentation formalism based on it are discussed.
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8.1.1 Inference with causality and other information

Our IG-formalism is inspired by previous work on abduction, including work on

formal-logical models of causal-abductive reasoning in which causal rules are used

to explain observations; examples of such models are the models of Josephson and

Josephson [1994] and Console and Torasso [1991], as well as the work of Kakas

and colleagues [1993] on abductive logic programming, in which causal knowledge

is expressed using abductive logic programming rules.

In formal-logical models of causal-abductive reasoning, a domain theory T con-

sisting of causal rules of the form c1, . . . , cn →c e applicable to the domain is speci-

fied, along with a set of observations O and a set of abducibles C, both consisting of

literal propositions. Given a specified subset F ⊆ {o | o ∈ O, o is a positive literal}
of positive observations, possible explanations for F are then computed using the

specified rules in T. More precisely, an abduction problem is described by < T,C,O,

F >, where the objective is to find the ‘best’ explanation for F. Here, an expla-

nation for F is a set E ⊆ C which taken together with the rules in T allows for

inferring the propositions in F modus-ponens-style. Subset-minimal explanations

are called preferred explanations. In case multiple preferred explanations for F are

computed, then these are in competition with each other. Inspired by these models,

in Section 3.4.5 we defined how the notion of competing alternative explanations

can be captured in our IG-formalism.

Example 64. Consider the following example, in which T contains the following

causal rules:

r1 : fire →c smoke

r2 : smoke machine →c smoke;

Suppose that O = F = {smoke} and C = {fire, smoke machine, smoke}, then

E1 = {fire}; E2 = {smoke machine}; E3 = {fire, smoke}; E4 = {smoke machine,

smoke} are explanations for F, where E1 and E2 are preferred explanations that are

in competition with each other. �

Another logic-based approach, proposed by Console and Dupré [1994], similarly only

allows for abductive reasoning, yet also allows for performing abduction with strict

abstractions instead of only with causal rules (see also Section 2.1.2). A graph-based

instead of a logic-based model for automated diagnosis similar to the aforementioned

approaches was proposed by Lucas [1998]. In comparison, our IG-formalism allows

for performing both abductive and deductive inference, is graph-based and allows

for reasoning using more than just causal rules.

In the approach of Shanahan [1989] both deductive and abductive inference can

be performed (called prediction and explanation by Shanahan, respectively); how-
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ever, the aim of this approach is different than ours in that it serves to reason

about the time at which events occurred using an adaptation of Kowalski and Ser-

got’s [1986] Event Calculus. In comparison to our IG-formalism, Shanahan’s system

is more restricted as we provide a more general account of reasoning with mod-

elled causal (and other types of) knowledge. Poole’s [1989] Theorist framework

is a formal-logical model of causal-abductive reasoning that is extended with an

additional component that allows for predictive reasoning. More specifically, after

finding an explanation E for F for a specified abduction problem, a query can be

performed to establish whether a given proposition can be predicted given T and

E. This is illustrated through the following example.

Example 65. Consider Example 64. Assume that additional causal rule r3 : fire

→c heat is provided and suppose that we wish to query whether proposition heat

can be predicted given T and the different computed explanations. For explanations

E1 = {fire} and E3 = {fire, smoke} for F = {smoke}, the system returns yes

as an answer, along with rule r3 used in predicting heat. For explanations E2 =

{smoke machine} and E4 = {smoke machine, smoke} for F = {smoke}, answer no

is returned. �

Compared to our IG-formalism, the formalisms of Shanahan [1989] and Poole [1989]

are logic-based instead of graph-based. Moreover, these formalisms only allow for

reasoning with causal rules and do not allow for most types of mixed deductive-

abductive inference; complications with reasoning using both causal and evidential

defaults as identified by Pearl [1988a] and complications with mixed deductive-

abductive discussed in Section 2.1.4.1 are thus avoided.

In our IG-formalism, we distinguished between actual antecedents and enablers

of causal generalisations, where for a causal generalisation only its actual antecedents

and not its enablers express a cause for the consequent. In making this distinction,

we were inspired by Ortiz Jr. [1999], who also makes the distinction between enablers

and actual antecedents of causal rules in his system. Compared to our IG-formalism,

the aim of this approach is different in that Ortiz Jr. aims to identify the (causal)

role that an event played in some broad nexus of events instead of providing a way

to reason with modelled causal (and other types of) knowledge.

Besides Lucas’ [1998] graph-based approach, other graph-based formalisms for

reasoning with causality information have been proposed, notably Pearl’s [2009]

causal diagrams. Pearl provides a framework for causal inference in which diagrams

are queried to determine if the assumptions available are sufficient for identifying

causal effects. Compared to our IG-formalism, the aim of this framework is different

in that it serves to identify causality (similar to the aforementioned approach of Or-

tiz Jr. [1999]) instead of providing a way to reason with modelled causal (and other

types of) knowledge. Furthermore, causal diagrams require probabilistic quantifica-

tion to be queried, while IGs are qualitative.
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8.1.2 Argumentation with causality and other information

In Chapter 4 we proposed an argumentation formalism based on IGs that allows for

both deductive and abductive argumentation and which instantiates Dung’s [1995]

abstract approach. Earlier work by Bex [2011, 2015] is related, although only his

integrated theory [Bex, 2015] is purely argumentation-based. The hybrid theory pro-

posed by Bex [2011] is a formal account of reasoning about evidence which combines

a formal-logical model of abductive reasoning (see Section 8.1.1) with a framework

for structured argumentation based on the ASPIC+ framework. In Bex’ hybrid the-

ory, abductive and deductive inference are used in constructing causal stories (see

Section 1.2.3) and evidential arguments, where defeasible abstractions can be used

to connect one or more events in a story to more abstract versions of these events.

In Bex’ hybrid theory, arguments and stories are completely separate entities with

their own definitions related to conflict and evaluation. The theory does not allow

for most types of mixed inference with causal and evidential generalisations and

abstractions, and thus largely avoids the problems associated with mixed inference

as identified by Pearl [1988a] and in this thesis (see Section 2.1.4). Moreover, our

argumentation formalism based on IGs allows for the construction and evaluation

of both deductive and abductive arguments.

Building on his hybrid theory, Bex proposed his integrated theory of causal

and evidential arguments [Bex, 2015], which is based on the ASPIC+ framework

extended with a notion of alternative attack. In Bex’ integrated theory, causal and

evidential inference rules (comparable to causal and evidential generalisations) are

defined and arguments are constructed by forward chaining such inference rules.

Hence, Bex’ integrated theory does not allow for performing abductive inference.

The notion of alternative attack as defined in Chapter 4 is inspired by Bex’ account.

Bex also defines alternative attack in the context in which evidential inferences are

performed to infer causes c1 and c2 from effect e. By contrast, we do not consider c1
and c2 to be competing alternative explanations of e in case deduction is performed

using evidential generalisations e→e c1 and e→e c2; more specifically, in case two

causal generalisations c1 →c e and c2 →c e are provided, only one cause (either c1 or

c2) can be the usual cause of e and therefore only one of the causal generalisations can

be replaced by an evidential generalisation (see also Section 2.1.3). Bex allows for the

construction of arguments that violate Pearl’s constraint, which in his framework are

self-defeating arguments. In our formalisms we constrain deductive and abductive

inference such that Pearl’s constraint is never violated by constructing arguments, as

we generally consider these inference patterns to be undesirable. Finally, satisfaction

of rationality postulates was not proven by Bex.

Bench-Capon and Prakken [2006] introduced a logic for defeasible argumentation

that is essentially a preliminary version of ASPIC+ and offered a formalisation of

Aristotle’s practical syllogism. Their approach allows for reasoning about alternative

goals and values to justify actions. While actual abduction (i.e. ‘backward’ inference

with causal rules) is not performed using their approach, the process of generating
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alternative sub-goals and actions from goals can be considered akin to performing

abduction. In formalising this syllogism, Bench-Capon and Prakken only consider

the abductive nature of reasoning about desires on the basis of beliefs and goals,

whereas we offer a general account of abductive (and deductive) argumentation.

In defining alternative attack in Chapter 4, we were inspired by Bench-Capon and

Prakken’s definition, as well as Bex’ [2015] definition, of the same concept.

The adaptive logic framework [Batens, 2007] offers a general framework for de-

feasible reasoning. Several forms of defeasible reasoning have been explicated in

different types of adaptive logics in the framework, including defeasible deduction

[Straßer, 2014] and abduction [Meheus and Batens, 2006]. In recent studies, it

was shown that adaptive logics can be mapped to accounts of structured argumen-

tation [Borg, 2020; Heyninck and Straßer, 2016]. In comparison to our proposed

formalisms, adaptive logics that combine deductive and abductive reasoning have

not been proposed and different types of information (e.g. causal and evidential

information) are not distinguished in the proposed logics.

Booth and colleagues [2014] and Sakama [2018] studied abduction in the context

of abstract argumentation [Dung, 1995], where they see abduction as the problem

of finding changes to an AF (A,D) with the goal of explaining observations that

are substantiated by making arguments accepted. More specifically, an observation

translates into a set of arguments X ⊆ A, where additions and removals of argu-

ments and defeats from the AF serve to make the arguments in X accepted. Each

set of changes that makes the arguments in X accepted then acts as an explanation

for the observation. Booth and colleagues [2014] in addition show how their model

of abduction in abstract argumentation can be instantiated with abductive logic

programs [Kakas et al., 1993]. In comparison to our argumentation formalism, these

approaches consider argumentation at the abstract and not at the structured level

and only consider abduction and not deduction, where the instantiation of Booth

and colleagues [2014] is not an approach for structured argumentation but a logical

model of causal-abductive reasoning (see also Section 8.1.1).

8.1.3 Concluding remarks

In this section, we have compared our IG-formalism and our argumentation for-

malism based on IGs to formalisms from the literature. In comparison to our IG-

formalism, formal-logical models of abductive reasoning discussed in Section 8.1.1

only allow for performing abduction and not deduction. Related formalisms that

allow for both deduction and abduction with different types of information are logic-

based instead of graph-based like our IG-formalism, and do not consider the con-

straints on performing inference we argue should be imposed (see Section 2.1.4).

These formalisms are also in some respects less expressive than our IG-formalism as

most only allow for performing inference using causal rules.

In comparison to our argumentation formalism based on IGs, the formalisms

discussed in Section 8.1.1 do not directly allow for formal evaluation using com-
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Figure 8.1: The cause-consequence idiom, adapted from Neil and colleagues [2000,

p. 273] (a); the alibi idiom, adapted from Lagnado and colleagues [2013, p. 57] (b).

putational argumentation. Furthermore, most argumentation formalisms discussed

in Section 8.1.2 do not allow for the construction and evaluation of both deduc-

tive and abductive arguments. In comparison, we have proposed an argumentation

formalism that allows for the evaluation of deductive and abductive arguments in

one unifying framework and that takes into account the constraints on performing

inference we argue should be imposed. The closest to our argumentation formalism

is Bex’ [2015] integrated theory of causal and evidential arguments; the differences

between his theory and our formalism were discussed in Section 8.1.2.

8.2 Bayesian network construction

To facilitate BN construction, construction methods have been proposed in the

literature.

8.2.1 Constructing Bayesian networks from fragments

Throughout the literature, many (often domain-specific) BN fragments and modules,

also called idioms, have been proposed, which capture generic patterns of frequently

occurring types of knowledge and reasoning. In manual BN graph construction,

instantiations of proposed idioms can be gradually incorporated in the BN under

construction and can hence serve as building blocks to facilitate BN construction.

Neil and colleagues [2000] developed idioms that are generally applicable to any do-

main; for instance, the cause-consequence idiom depicted in Figure 8.1a allows for

straightforwardly modelling a causal process from cause(s) to effect, where the arc

direction reflects this process. In the legal domain, Fenton and colleagues [2013],

Lagnado and colleagues [2013] and Hepler and colleagues [2007] proposed BN frag-

ments to model recurring patterns of legal reasoning. For instance, the alibi idiom

by Lagnado and colleagues [2013] depicted in Figure 8.1b can be used in legal cases

in which an alibi is provided by the defendant. In case an alibi is true, it rules out

the opportunity for committing the crime, which in turn absolves the defendant of

guilt; hence, nodes Alibi, Opportunity and Guilty and the arcs between them are
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Figure 8.2: Module in an HMF, adapted from van Gosliga and van de Voorde [2008].

included in the idiom. Nodes Objectivity, Veracity and Observational Sensitivity are

included to take into account the reliability of the provided alibi. The arc between

nodes Guilty and Veracity is included to take into account that the defendant is

more likely to lie in providing their alibi if they are guilty rather than if they are

innocent. Laskey and Mahoney [1997] proposed several BN fragments in the domain

of military situation assessment, and studied how these fragments can be combined

to construct more complex networks.

Vlek and colleagues [2014] extended this work with BN idioms based on story

schemes. More specifically, inspired by the idiom-based approaches of Fenton and

colleagues [2013] and Lagnado and colleagues [2013] they proposed so-called narra-

tive idioms for representing stories and their quality (see Section 1.2.3) in a BN, as

well as a procedure for using stories to guide the construction of a BN. The proposed

idioms can be used as building blocks in BN construction to represent alternative

stories that serve as competing hypotheses about what may have happened, which

are not necessarily jointly exhaustive. In the construction process, the network is

annotated such that stories can later be extracted from the BN to form a report

about the content of the BN.

To facilitate incremental BN construction, Object-Oriented BNs (OOBNs) were

introduced by Koller and Pfeffer [1997] and later applied by Hepler and colleagues

[2007] in the legal domain. With OOBNs, it becomes possible to incrementally con-

struct a BN top-down, using fragments and modules such as proposed throughout

the literature to gradually construct a network. Unlike our BN construction ap-

proach of Chapter 5, OOBNs do not provide an automated way of constructing BN

graphs; instead, OOBNs allow experts to more quickly construct a BN manually by

allowing recurrent patterns to be incorporated.

The concept of reusable network fragments was also the basis of Hypothesis Man-

agement Frameworks (HMFs) proposed by van Gosliga and van de Voorde [2008].

HMFs are network structures that allow for straightforwardly capturing knowledge

regarding various hypotheses. HMFs are constructed in a modular way, where mod-
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ules are of the form depicted in Figure 8.2. Hypothesis variables in an HMF can

be supported or opposed by indicator variables, where source variables are used

to express the reliability of sources related to an indicator. Instantiations of such

modules can then be extended by adding alternative hypotheses and additional indi-

cators. Probability nodes in the module do not represent variables, but are instead

only used to textually display the conditional probabilities that the indicator is true

given that the hypothesis is true and given that the hypothesis is false. Probability

nodes are used as they supposedly enhance the users’ understanding of an HMF and

as they allow multiple experts to work on the same HMF simultaneously, delegating

the different tasks involved in construction to different experts. Note that an HMF

is not a BN, as probability nodes do not represent variables; instead, HMFs can be

converted to BNs.

In contrast with the manual fragment-based approaches for BN graph construc-

tion discussed in this section, our approach from Chapter 5 allows for automatically

constructing an initial BN graph from an IG that satisfies a number of desirable

properties, for instance regarding the represented independence relation, where gen-

eralisations and conflicts can be incorporated and combined in an IG without having

to conform to any predefined pattern or configuration.

8.2.2 Constructing Bayesian networks from arguments

In this subsection, approaches for constructing BNs from information specified in

arguments are discussed. Bex and Renooij [2016] identified constraints on BNs given

arguments constructed in ASPIC+, based on the inferences on which arguments

are built and the existing conflicts between arguments. These constraints suffice

for constructing an undirected skeleton of a BN graph. However, for setting arc

directions Bex and Renooij resort to using the commonly used notion of causality

as guiding principle. The resulting BN graph then has to be verified and refined

manually in terms of the independence relation it represents. In later work we

refined this approach by specifying the directions in which arcs should be directed

in BN graphs corresponding to structured arguments [Wieten et al., 2018a]. This

was achieved by comparing the reasoning patterns captured by the BN graph to the

reasoning captured by the original arguments. In comparison to the approach of

Chapter 5, in which BN graphs are constructed from information specified in IGs,

in these approaches ASPIC+ is taken as a starting point for BN graph construction;

for reasons mentioned in Section 3.2, we wish to refrain from using ASPIC+ as an

intermediary formalism in BN construction in this thesis.

Timmer and colleagues [2015] proposed a BN idiom (see Section 8.2.1) based on

a specific type of evidential argument scheme, namely the argument scheme from

position to know (see e.g. Walton et al. [2008]). Timmer [2017, Chapter 5] notes

that this approach can possibly be extended to causal and other types of evidential

argument schemes. By contrast, our approach of Chapter 5 can be generally applied

to IGs including a mixture of both causal, evidential, abstractions and other types

of generalisations, as well as generalisations that include enabling conditions.
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8.2.3 Constructing Bayesian networks from ontologies

Work on the construction of BNs from information represented in ontologies [Uschold

and Gruninger, 1996] is related to our BN construction approach based on IGs

(Chapter 5). The approaches discussed in the current subsection differ from the

approaches proposed by Yet and colleagues [2017], Helsper and van der Gaag [2007]

and van der Gaag and Tabachneck-Schijf [2010] discussed in the introduction of

Chapter 7 in that in the approaches currently under consideration the concepts and

relations represented in an ontology are used for constructing a BN instead of for

documenting the background knowledge behind a BN under construction.

The approach of Helsper and van der Gaag [2002] for constructing BNs from

information represented in ontologies is fully manual. In this paper, they provide

guidelines for manually incorporating the knowledge expressed in an ontology into

a BN. Approaches for semi-automatically constructing BNs from information rep-

resented in ontologies have also been proposed [Fenz, 2012; Ramı́rez-Noriega et al.,

2019]. To apply these approaches in practice, the problem under consideration first

needs to be specified in the formal ontology language required as input. Informal

sense-making tools such as mind maps as considered in this thesis similarly do not

directly allow for guiding BN construction due to their informal nature, but are

instead first formalised as IGs. In contrast with ontologies, these tools are used

to capture inferences made with causal, evidential, abstractions and other types of

information instead of with generic relations between concepts. In the approach of

Fenz [2012], an initial BN graph is automatically constructed after a manual selec-

tion of relevant concepts and relations from an OWL ontology. Specifically, concepts

are mapped to nodes in the BN graph and the direction of the relation between two

concepts is used to direct arcs between corresponding nodes in the graph as a first

heuristic. However, properties regarding the represented independence relation are

not investigated; instead, Fenz notes that the obtained BN graph needs to be verified

and refined manually by the BN modeller. Ramı́rez-Noriega and colleagues [2019]

proposed a similar approach in the domain of intelligent tutoring systems, where the

focus lies on obtaining the quantitative part of the BN. In this approach, the initial

BN graph is semi-automatically constructed in a manner similar to the approach

of Fenz [2012] by considering the concepts and relations in a given ontology. The

CPTs of the BN under construction are then calculated by applying text mining

approaches to the Wikipedia pages corresponding to the concepts under considera-

tion, among other things by calculating the frequencies with which a given concept

appears on the Wikipedia page of a related concept.

8.2.4 Concluding remarks

In this section we compared our approach for constructing BN graphs from IGs of

Chapter 5 to BN construction methods from the literature. Compared to idiom-

based approaches to BN graph construction (Section 8.2.1), in which instantiations

of proposed fragments can be gradually incorporated in the BN under construction,

155



our BN construction approach can be applied to IGs that are constructed without

having to conform to any predefined pattern or configuration of generalisations and

conflicts. Arguably this allows our BN construction approach to be applied more

flexibly in practice, a claim that should be empirically evaluated in future work.

In Sections 8.2.2 and 8.2.3 approaches for constructing BN graphs from informa-

tion specified in arguments and ontologies were discussed. As mentioned earlier, we

do not wish to use existing argumentation formalisms such as ASPIC+ as a start-

ing point in BN construction in this thesis, among other things because existing

argumentation formalisms only allow for the construction of either deductive or ab-

ductive arguments and do not consider the constraints on performing inference we

argue should be imposed (see also Sections 3.2 and 8.1.3). In contrast with ontolo-

gies, which capture generic relations between concepts, the IG-formalism is a formal

account of reasoning about evidence that captures the interplay between the differ-

ent types of inferences and generalisations; hence, the IG-formalism is more closely

related to informal sense-making tools such as mind maps that are under consider-

ation in this thesis. Moreover, compared to ontologies our IG-formalism allows for

actually performing inference instead of only representing knowledge and reasoning.

Accordingly, we wish to refrain from using ontologies as an intermediary formalism

between analyses performed using sense-making tools and formal AI systems.

8.3 Probabilistic argumentation

In this thesis, we have focussed on facilitating the construction of formal represen-

tations within two types of AI systems, namely probabilistic models, more specif-

ically BNs, and computational models of argument. In the literature, approaches

to so-called probabilistic argumentation have also been proposed, which combine ar-

gumentation and probabilities. In this section, a number of different approaches to

probabilistic argumentation are reviewed. We then conclude this section by compar-

ing our IG-formalism to these approaches, after which we discuss ways in which the

construction of formal representations within probabilistic argumentation systems

can possibly be facilitated in future work.

Approaches to probabilistic argumentation can be distinguished based on whether

they consider uncertainty to be in or about the arguments [Hunter, 2013]. In de-

scribing the general differences between these two approaches, we follow Prakken

[2018b]. In the first type of approach, probabilities are intrinsic to an argument

in that they express uncertainty concerning the truth of the argument’s (ordinary)

premises or the reliability of its inferences (e.g. Hunter [2013]; Prakken [2018b];

Hunter and Thimm [2017]; Hunter et al. [2020]); as noted by Prakken [2018b], this

is arguably what Hunter [2013] calls the ‘epistemic’ approach to probabilistic argu-

mentation. An example is default reasoning with probabilistic generalisations. In

the second type of approach (which arguably is what Hunter [2013] calls the ‘con-

stellations’ approach to probabilistic argumentation), probabilities are extrinsic to

arguments and are used to express grades of uncertainty about whether (elements

of) arguments or attacks and defeats are accepted as existing by some arguing agent
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(e.g. Li et al. [2012]; Dung and Thang [2010]; Rienstra [2012]). Prakken [2018b] pro-

vides the following example of extrinsic argument uncertainty, adapted from Hunter

[2014]. Suppose that an enthymeme is posed that leaves two alternative premises

implicit. A listener could then assign probabilities to these premises, which trans-

late into probabilities on which argument the speaker intended to construct. This

uncertainty is independent of the intrinsic strengths of the two possible arguments:

one argument may be stronger than the other while the other is more likely to be

the argument that the speaker had in mind.

8.3.1 Constellation approaches

We first consider constellations approaches to probabilistic argumentation in more

detail. As discussed by Timmer [2017, Section 6.2], Dung and Thang [2010] pro-

posed an argumentation framework for jury-based dispute resolution by incorporat-

ing probabilistic reasoning into AFs. A set of worlds is added to a given AF, where

each world is a set of arguments. These possible worlds are shared among the jurors

but each juror can assign their own probabilities to arguments in these worlds. In

each world, an argument A then has a probability that it is accepted according to

a given semantics (with respect to one juror), where the overall probability that A

is accepted (according to that juror) is calculated by taking the sum of the proba-

bilities in each world that A is accepted. Dung and Thang [2010] then instantiate

their approach with assumption-based argumentation [Dung et al., 2009], where

each world is a set of assumptions. Based on these assumptions arguments can be

constructed in that world, where probabilities are defined on the assumptions. This

work concerns the constellations approach to probabilistic argumentation as worlds

may contain different AFs. Li and colleagues [2012] proposed a similar approach by

associating probabilities with arguments and defeats in an AF, where these proba-

bilities represent the likelihood of existence of an argument or a defeat. This results

in a probability distribution over possible Dung frameworks. For a set of arguments,

the probability that this set is a subset of a specific Dung extension can then be

computed. This probability is used as the degree of justification of those arguments.

The incorporation of extrinsic uncertainty in structured arguments was inves-

tigated by Rienstra [2012], who proposed an instantiation of ASPIC+ in which

defeasible and strict inference rules are annotated with a number between 0 and

1 indicating the probability with which the rule is ‘active’ and may be applied in

constructing an argument. This uncertainty may, for instance, be based on not

knowing whether a given rule is a valid constituent of an argument. Rienstra then

proposed a method to calculate the uncertainty in the existence of arguments, and

subsequently uses these probabilities in calculating bounds on the probability that

a given argument has a given dialectical status.

8.3.2 Epistemic approaches

Next, epistemic approaches to probabilistic argumentation are considered. These

approaches can be distinguished based on whether they consider uncertainty at the
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abstract or at the structured level. Most approaches concern abstract argumen-

tation. In the epistemic approach by Hunter [2013], probabilities associated with

arguments in an AF represent the degree to which arguments are believed, in con-

trast to the approach of Li and colleagues [2012], in which probabilities represent

the likelihood of existence of an argument. So-called epistemic extensions are then

defined, subsets of arguments A for which Pr(A) > 0.5. By adopting appropri-

ate constraints on the probability distribution, it is then shown that the epistemic

extensions correspond to complete, grounded, preferred, stable, or semi-stable ex-

tensions [Hunter and Thimm, 2017]. Building on this approach, probabilistic mod-

els of argumentation have been introduced that can also deal with incomplete and

inconsistent probabilistic information [Hunter and Thimm, 2017]. The epistemic

abstract approach has been generalised in recent work [Hunter et al., 2020], among

other things to allow for modelling both defeat and support, context-sensitivity, and

different perspectives.

An issue with the aforementioned epistemic approaches is that their abstract na-

ture makes these approaches not easy to interpret. For instance, in these approaches

there is unclarity about what the probability of an argument means, as in proba-

bility theory probabilities are assigned to the truth of statements or to outcomes of

events, and an argument is in general neither a statement nor an event. Hence, it

has been investigated how the probability of an argument can be specified in terms

of its structure. Hunter [2013] instantiates his abstract epistemic approach with

classical-logic argumentation, providing an account of epistemic structured proba-

bilistic argumentation. In his approach, the strength of an argument is defined as the

probability of the conjunction of all its premises. As noted by Prakken [2018b], while

this makes sense when all argument are strict, it does not apply when arguments

are constructed using defeasible inferences. Prakken [2018b] accordingly generalises

Hunter’s approach to arguments that apply defeasible inferences constructed in a

simple instantiation of ASPIC+, where the strength of an argument is defined as the

probability of the conjunctions of all premises and conclusions of an argument. He

then relates his account to abstract models of epistemic probabilistic argumentation

[Hunter and Thimm, 2017]. An important idea behind Prakken’s approach is that

arguments implicitly make probabilistic independence assumptions, which implies

that the probabilistic assumptions of conflicting arguments are jointly inconsistent.

In contrast to the aforementioned epistemic approaches to structured argumenta-

tion, in which arguments are constructed from an available knowledge base and are

then assigned probabilities, in the approach of Hunter [2020] structured arguments

are instead constructed directly from a probability distribution. Methods are then

proposed to select arguments and counterarguments to present in a Dung frame-

work. This approach among other things allows for argument-based explanations of

probability distributions.

Approaches to structured argumentation using alternatives to standard proba-

bility theory have also been proposed. Pollock [1995] formulated argument strength

in terms of quantitative degrees of belief, where against Bayesian approaches he
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argued that degrees of belief and justification do not conform to the laws of proba-

bility theory. In his approach, defeasible inference rules are assigned a finite positive

strength and strict rules are assigned infinite strength. The strength of arguments is

then defined using a weakest-link principle, where an argument is at most as strong

as its weakest sub-argument and its weakest rule. Argument strength is used to

resolve attack into defeat in a manner compliant with Dung’s [1995] abstract ap-

proach, where defeat is defined in an all-or-nothing manner in that defeaters weaker

than their target cannot affect the status of their target. This approach is revisited

by Verheij [2014] in the light of probability theory and classical logic. In later work,

Pollock [2001] deviates from Dung’s [1995] original approach by using rule strengths

for defining degrees of argument justification, which allows defeaters to weaken the

justification status of their stronger targets.

Verheij [2017] proposed an entirely different approach to all aforementioned ap-

proaches in which arguments, scenarios and probabilities are combined in a single

framework. More specifically, in his approach arguments to and from different, mu-

tually incompatible scenarios are viewed in the context of classical probability theory.

Scenarios are then compared on their strength. An advantage of the formalism is

that, in contrast to BNs, which require the specification of a full probability distri-

bution, Verheij’s formalism does not require more numbers than are available. In

particular, it is not assumed that all arguments are assigned a probabilistic strength.

The formalism allows for a qualitative and a quantitative interpretation, where the

quantitative interpretation uses probability distributions and the qualitative inter-

pretation uses total preorderings. As discussed by Verheij [2020], limitations of this

approach include that it pays less attention to the internal structure of arguments

than other argumentation approaches, that it does not study the roles of causal and

evidential reasoning, and that it does not consider knowledge representation aspects.

The approaches discussed in Section 8.2.2 for constructing BNs from information

specified in arguments do not combine argumentation and probabilities and therefore

cannot be considered approaches to probabilistic argumentation in the same sense

as the epistemic approaches discussed in this section. Instead, the problem of BN

construction is considered, which is typically considered to be a difficult and error-

prone process, where methods are proposed to facilitate that process.

8.3.3 Discussion

We now compare our IG-formalism to the approaches discussed in this section.

Note that the IG-formalism is not an argumentation formalism and that we have

currently opted not to account for probabilities in our IG-formalism as (numerical)

probabilities are typically not indicated using sense-making tools. In comparing

our IG-formalism to the approaches discussed in this section, we instead consider

whether intrinsic (non-numeric) uncertainty is incorporated in IGs or whether there

is uncertainty regarding the existence of an IG’s elements. First, we note that the

IG-formalism is designed to serve as an intermediary formalism between analyses
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performed using sense-making tools and formal AI systems, where the elements of

IGs, similar to the elements of analyses performed using tools, are considered to

be fixed. In particular, while the inferences represented in these analyses and that

can be read from IGs may be uncertain, the existence of the elements represented

in analyses and IGs is undisputed. Hence, work that concerns the constellations

approach to probabilistic argumentation is irrelevant for current purposes.

Work that concerns the epistemic approach to probabilistic argumentation is

relevant to us, as in IGs only intrinsic and not extrinsic uncertainty is incorporated,

where this uncertainty concerns the reliability of its defeasible generalisations and

inferences. As mentioned earlier, most epistemic approaches to probabilistic argu-

mentation concern abstract argumentation; these are therefore irrelevant for cur-

rent purposes (cf. Section 8.3.2 above and Prakken [2018b]). Epistemic approaches

to structured probabilistic argumentation such as proposed by Hunter [2013] and

Prakken [2018b] may serve as a source of inspiration for defining an epistemic ap-

proach to structured probabilistic argumentation based on IGs in future work. In

particular, our IG-formalism may be extended with epistemic probabilities by allow-

ing strengths of generalisations to be specified, which may then serve to guide the

construction of formal representations within accounts of epistemic structured prob-

abilistic argumentation. Compared to the approaches of Hunter [2013] and Prakken

[2018b], which assign probabilistic strengths to deductive classical-logic arguments

and ASPIC+-style arguments, respectively, such an approach based on probabilis-

tic IGs would allow probabilistic strengths to be assigned to both deductive and

abductive arguments, where probabilistic arguments constructed using such an ap-

proach would adhere to the constraints on performing inference we argue should

be imposed. In addition, such probabilistic IGs may also allow for deriving more

probabilistic constraints on BNs.

8.4 Explaining Bayesian networks using

argumentation

Approaches for explaining the reasoning patterns captured in BNs in terms of ar-

gumentation have been proposed [Vreeswijk, 2004; Keppens, 2012; Timmer et al.,

2017], which are intended to allow domain experts who are not familiar with BNs but

are accustomed to argumentation to understand the probabilistic reasoning captured

in a BN. More specifically, these approaches can be used to summarise reasoning

patterns from a given evidence set to a conclusion variable in a given BN in terms of

argumentation. These approaches differ from the approach proposed in Chapter 7

for capturing and resolving disagreements about BN elements using argumentation

in that they do not allow for any argumentative discussion about the construction

of BNs. Furthermore, compared to the work on constructing BNs from information

specified in arguments (Section 8.2.2), the approaches of Vreeswijk [2004], Keppens

[2012] and Timmer and colleagues [2017] are in the reverse direction, namely from
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BNs to arguments. In particular, Timmer and colleagues introduced support graphs

as an intermediary formalism that captures general reasoning patterns represented

by a BN for the purpose of explaining such patterns in terms of ASPIC+-style

arguments; hence, this work is in the direction opposite of the work by Bex and

Renooij [2016] and Wieten and colleagues [2018a] on constructing BNs from infor-

mation specified in ASPIC+-style arguments. Similar to IGs, support graphs serve

to guide the construction of arguments, but in contrast with IGs support graphs are

designed to capture reasoning patterns represented by a BN while the IG-formalism

is designed to model the process of reasoning about evidence.
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Chapter 9

Conclusions and future research

The main motivation for this research has been to guide the construction of formal

representations of evidential knowledge and inference by exploiting knowledge spec-

ified by domain experts about the domain using informal sense-making tools they

are familiar with. More specifically, we have focussed on guiding the construction

of formal representations within two types of AI systems, namely argumentation

frameworks and BNs. In addition, we have studied how argumentation can be used

to argue about a BN under construction instead of about the domain.

In the following sections, we restate the research questions from the introduction

of this thesis and summarise our answers to these questions, after which we discuss

possible avenues for future research.

9.1 Constructing formal representations within AI

systems from informal sense-making tools

In this thesis we have addressed the following main research question:

Research question 1 How can domain knowledge expressed by experts in analyses

performed using informal sense-making tools be exploited to guide the

construction of formal representations within AI systems?

To answer research question 1, we have studied examples of analyses performed us-

ing such tools, namely Wigmore charts and mind maps, in the light of our concep-

tual analysis of reasoning about evidence. We have observed that when performing

analyses domain experts naturally mix deductive and abductive inference with the

various types of generalisations distinguished in our conceptual analysis, where the

used generalisations and the inference type are left implicit. Furthermore, the man-

ner of conflict is typically not precisely specified and the assumptions of domain

experts underlying their analyses are typically not explicitly stated; hence, we have

concluded that informal sense-making tools do not directly allow for guiding the

construction of formal representations within AI systems.
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Accordingly, we have set out to formalise and disambiguate analyses performed

using informal sense-making tools in a manner that (1) allows for guiding the con-

struction of formal representations within AI systems and that (2) is in line with

our conceptual analysis of reasoning about evidence, while (3) allowing inference

to be performed and visualised in a manner that is closely related to the way in

which inference is performed and visualised by domain experts using such tools.

In particular, we have proposed the IG-formalism in Chapter 3, which formalises

analyses performed using such tools in a manner that makes the used generalisa-

tions and conflicts explicit. Our IG-formalism is tailored to model the process of

reasoning about evidence in that it provides a precise account of the interplay be-

tween deductive and abductive inference and causal, evidential, abstractions, and

other types of generalisations. In particular, we haven taken into account important

constraints we argue should be imposed on the types of inferences that may be per-

formed with the different types of generalisations. In designing the IG-formalism,

we have opted for a graph-based formalism instead of a logic-based formalism to

remain closely related to the manner analyses are visualised using aforementioned

graph-based tools as well as the BN-formalism. Finally, inspired by formal-logical

models of abductive reasoning we have accounted for conflicts between competing

alternative explanations.

Our IG-formalism can be used to guide the construction of formal representa-

tions within AI systems by serving as an intermediary formalism between analyses

performed using informal sense-making tools and formalisms that allow for formal

evaluation. In Chapters 4 and 5 we have demonstrated the use of our IG-formalism

in guiding the construction of formal representations within two types of AI systems,

namely computational models of argument and BNs. In the following two sections,

we summarise our research regarding these two applications of our IG-formalism

and thereby provide an answer to research question 1.

9.1.1 Guiding the construction of argumentation frameworks

from information graphs

In Chapter 4 we have addressed the following subquestion of research question 1:

Research question 1a How can domain knowledge expressed by experts in

analyses performed using informal sense-making tools be exploited to guide

the construction of argumentation frameworks?

We have answered this question by defining a framework for structured argumen-

tation based on IGs that allows for the construction and evaluation of deductive

and abductive arguments in one unifying framework. Arguments based on IGs are

defined as sequences of deductive and abductive inference applications than can

be read from the IG given the evidence. We have defined several types of attacks

between arguments based on IGs, based on the different types of conflict consid-
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ered in our IG-formalism. In particular, a new notion of attack, namely alternative

attack, is defined between arguments whose conclusions are abductively inferred

competing explanations, inspired by formal-logical models of abduction. Our ap-

proach generates a Dung-style AF which allows argument frameworks based on IGs

to be formally evaluated. More specifically, while the initially constructed AF may

be further specified if desired, for instance by supplementing it with preferences,

it may also be directly evaluated using Dung’s argumentation semantics. Hence,

by formalising analyses performed by domain experts using informal sense-making

tools as IGs as an intermediary step, this allows for the construction and evaluation

of AFs on the basis of IGs.

Our approach is designed to ensure that AFs constructed on the basis of IGs

automatically satisfy a number of desirable properties. We have proven that argu-

ments constructed on the basis of IGs adhere to the constraints we argue should

be imposed on performing inferences with different types of information. More-

over, we have shown that instantiations of our argumentation formalism satisfy key

rationality postulates [Caminada and Amgoud, 2007], which are widely accepted

as important desiderata for structured argumentation formalisms. Satisfaction of

these postulates warrants instantiations of our argumentation formalism to be of

good quality, as it implies that unintuitive and undesirable results regarding incon-

sistency and non-closure as identified by [Caminada and Amgoud, 2007] are avoided.

9.1.2 Guiding the construction of Bayesian networks from

information graphs

In Chapter 5 we have considered BN construction and addressed the following sub-

question of research question 1:

Research question 1b How can domain knowledge expressed by experts in

analyses performed using informal sense-making tools be exploited to guide

the construction of Bayesian networks?

To answer this question, we have investigated the application of our IG-formalism

in guiding the construction of BN graphs. In manual BN graph construction, the

notion of causality is typically used as a guiding principle in directing arcs [Fenton

and Neil, 2012; Jensen and Nielsen, 2007]. Accordingly, we have proposed a BN

graph construction approach that exploits a notion of causality as expressed by the

knowledge captured in an IG, namely by its causal and evidential generalisations

and conflicts. Our approach serves for automatically constructing a directed BN

graph from an IG. Moreover, we have demonstrated that the inferences that can

be read from an IG allow us to derive some qualitative probabilistic constraints on

the BN under construction. These qualitative probabilistic constraints may serve as

input for a subsequent elicitation procedure for obtaining a fully specified QPN or

BN for (qualitative) probabilistic inference. Hence, our IG-formalism, together with
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our BN construction approach, allows us to construct an initial BN from a domain

expert’s initial analysis performed using an informal tool; it thereby facilitates the

BN elicitation process.

Our BN construction approach is designed to ensure that initial BN graphs

constructed from IGs automatically satisfy a number of desirable properties. In

particular, we have formally proven that BN graphs constructed by our approach

capture reasoning patterns similar to those that can be read from the original IG,

and we have identified conditions on the IG under which the fully automatically

constructed initial graph is guaranteed to be acyclic. Arguably, satisfaction of these

properties partly simplifies the (manual) validation step involved in BN graph con-

struction, in which it is verified that the initially constructed graph is acyclic and

correctly captures the (conditional) independencies.

9.2 Exploiting arguments about Bayesian networks

to facilitate their construction

As IGs only express qualitative and not quantitative (probabilistic) information, our

BN construction approach from Chapter 5 can only serve for constructing a partially

specified initial BN. Accordingly, we have investigated how the construction of BNs

can be further facilitated. In constructing BNs in practice, disagreements about BN

elements may arise among experts; as such disagreements are inherently argumen-

tative, for research question 2 we have investigated how argumentation techniques

can be used to express such disagreements and how constructed arguments about

BNs may subsequently be exploited to facilitate their construction:

Research question 2 How can Bayesian network construction be facilitated by

exploiting expert knowledge expressed as arguments about BN elements?

To answer this question, in Chapter 7 we have studied an actual disagreement about

a forensic BN, where we have analysed where disagreements about BNs typically

arise and how such disagreements are typically expressed and resolved manually by

experts in practice. Based on our argument-based analysis of this disagreement, we

have provided an answer to research question 2 by proposing a method that allows

experts to explicitly express their reasons pro and con modelling decisions regard-

ing the structure and parameterisation of a (fully or partially specified) BN using

formal argumentation. Disagreements are then resolved as much as possible by util-

ising the dialectical status of the constructed arguments to derive probabilistic and

structural constraints on the BN. Besides supporting experts in resolving conflicts

about BNs, another important aspect of our method is that it allows for structurally

documenting reasons pro and con BN modelling decisions, which can play a vital

role in allowing experts to understand, use, and accept BNs.

While disagreements may also arise about analyses performed using informal
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sense-making tools or IGs, we have proposed a method that allows for capturing and

resolving disagreements about BNs instead of about analyses or IGs, which allows

our method to be applied to both BNs constructed from IGs and BNs otherwise

constructed. Another advantage of specifying our method at the BN level is that

it allows for argumentation about probabilities, as probabilities are typically not

expressed using sense-making tools and are currently not accounted for in our IG-

formalism (see also Section 8.3.3).

9.3 Future research

We now discuss ways in which the research presented in this thesis may be ex-

tended in future work. Note that possible ways in which the IG-formalism and our

approaches for constructing argumentation frameworks and BNs from IGs may be

extended, adjusted or evaluated in future work were already discussed in Chapters

3, 4, and 5, respectively. Similarly, future work regarding our method for capturing

and resolving disagreements about BNs using argumentation proposed in Chapter

7 was already discussed in the conclusion of that chapter.

In Section 9.3.1 we discuss guiding the construction of formal representations

within formal systems other than AFs and BNs. In Section 9.3.2 we discuss ways

in which our construction approaches can be used to (theoretically) compare BNs

and AFs in future work, which may help gain a better understanding of relations

between argumentation and probabilistic approaches. In Section 9.3.3 we provide

suggestions by which the construction of AFs and BNs can be further facilitated.

9.3.1 Guiding the construction of representations within other

types of formal systems using information graphs

In this thesis, we have focussed on the construction of formal representations within

two types of AI systems using IGs, namely computational models of argument and

BNs. In future work, ways in which the construction of representations within other

types of formal systems can be facilitated may be investigated. In Section 8.3 we

have discussed guiding the construction of instantiations of probabilistic argumenta-

tion systems using (adjustments to) the IG-formalism. Other formal representations

whose construction may be guided using IGs include instantiations of formal-logical

models of abduction (see Section 8.1.1) and instantiations of Bex’ [2011] hybrid the-

ory (see Section 8.1.2). From a theoretical perspective, developing such construction

approaches is interesting as it allows for comparing the way in which evaluation

is performed using these different formal systems. More specifically, the similari-

ties and differences obtained from evaluating different formal representations within

these systems constructed from the same IG may be compared, which may then

serve to gain a better understanding of relations between these systems.

From a practical perspective, the construction of formal representations within

systems other than argumentation frameworks and BNs may be useful for specific
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application contexts. As discussed in Section 8.1.1, formal-logical models of abduc-

tion only allow for abduction and only allow for performing inference using causal

rules. However, for small and pre-defined domains (for which these models were

originally intended), these models may be adequate, as they allow for obtaining a

relatively simple global overview of a case by providing different explanations of ob-

served evidence. As noted by Bex [2011, p. 253], these approaches essentially model

the story-based approach to reasoning about evidence and hence these models have

the advantages and disadvantages of this approach (see Section 1.2.3). Another

option is to construct instantiations of Bex’ [2011] hybrid theory from IGs. An

advantage of Bex’ hybrid theory is that it combines the story-based approach to

reasoning about evidence with a framework for structured argumentation, where

stories are used to explain the evidence and to judge the global coherence of a case

while arguments constructed from the evidence are used to attack or support specific

elements of stories. Disadvantages of using Bex’ hybrid theory compared to using

our argumentation formalism based on IGs were discussed in Section 8.1.2.

9.3.2 Further investigating relations between arguments

and BNs

The two main formal AI systems under consideration in this thesis are argumentation

frameworks and BNs. In previous work, it was investigated how the central concepts

of these two systems are connected to help gain a better understanding of relations

between them; this includes work on deriving constraints on BNs given information

specified in arguments (see Section 8.2.2) and work on explaining BNs using argu-

mentation (see Section 8.4). In future work, this work may be extended upon, for

instance by considering how the dialectical status of arguments or preferences over

arguments may be used in deriving constraints on BNs, elements of argumentation

not considered by the approaches discussed in Section 8.2.2. Another option is to

apply the approach of Bex and Renooij [2016] for constructing BNs from information

specified in arguments (see Section 8.2.2) and the argumentation-based explanation

method for BNs of Timmer and colleagues [2017] (see Section 8.4) in sequence for a

given ASPIC+-style structured argumentation framework (see Section 2.2.2), where

the differences between the original arguments used as input for BN construction

and the arguments returned by explanation methods can be compared; this was

preliminarily investigated by us in [Wieten et al., 2018a].

A way in which the approaches from Chapters 4 and 5 for constructing AFs

and BNs from IGs can aid in theoretically investigating relations between BNs and

AFs is by comparing the manner in which a BN and an AF constructed from the

same IG using our approaches are formally evaluated (see also Section 9.3.1). As

discussed in Section 5.5, the defeasible inferences that can be read from an IG given

the evidence may possibly be interpreted as qualitative influences, which allows for

constructing a fully specified QPN from an IG that can be used for performing

qualitative probabilistic inference. Hence, this interpretation would allow us to

168



compare the manner in which AFs constructed from IGs are evaluated using Dung’s

semantics to the way QPNs constructed from IGs are evaluated; in particular, it

allows us to compare the dialectical status of conclusions to the signs that are

assigned to variables upon performing qualitative probabilistic inference.

9.3.3 Further facilitating the construction of argumentation

frameworks and BNs

In this thesis we have proposed approaches and methods that aid the construction of

AFs and BNs. We now provide a number of suggestions by which the construction

of AFs and BNs can be further facilitated. In our case study of Chapter 6 we con-

structed an IG corresponding to a Wigmore chart according to a number of general

heuristics. For instance, in establishing which generalisations could have been used

in constructing the chart we among other things determined whether sequences of

described events could be interpreted as instances of story schemes (see Section 6.2).

In future work general guidelines for IG construction may be formulated. For in-

stance, a database of schemes that capture general patterns of defeasible reasoning

(including argument and story schemes) may be composed, instantiations of which

can be used as building blocks in facilitating IG construction. Such an approach

would in turn facilitate AF and BN construction. In the context of BNs such an

approach is comparable to the idiom-based approaches to BN construction discussed

in Section 8.2.1.

In Chapter 6 we have also illustrated that depending on the modelling choices

made in constructing an IG different representations within AI systems may be

obtained upon applying our approaches from Chapters 4 and 5. From a practical

perspective we do not consider this to be undesirable as our approaches serve for

constructing an initial AF or BN that may be adjusted or further specified. From a

theoretical perspective it may be investigated under which conditions local adjust-

ments to the original IG result in the same AF or BN, or under which conditions

a fragment of the obtained AF or BN is identical. Instead of considering how lo-

cal adjustments to IGs can be incorporated in a BN under construction, we have

proposed a method in Chapter 7 that allows domain experts to use argumenta-

tion to argue about the BN under construction instead of about the domain, where

the dialectical status of the constructed arguments is used to derive constraints

on the BN. By comparison, in the field of argumentation approaches that allow

for meta-argumentation [Wooldridge et al., 2006] about AFs [Modgil and Bench-

Capon, 2010] and ASPIC+-style arguments [Müller et al., 2013] have been proposed

that allow one to adjust one’s AF or structured arguments, respectively. Our ar-

gumentation formalism based on IGs may similarly be extended in future work by

allowing for meta-argumentation. For instance, as causality is a contentious topic,

meta-argumentation about labels of generalisations used in constructing arguments

may be considered. Similarly, reasoning about the validity of generalisations used

in constructing arguments may be accounted for, as considered by e.g. Bex [2011].
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9.4 Final remarks

In this thesis we have set out to bridge the gap between informal sense-making

tools and formal systems by proposing approaches and methods that facilitate the

construction of instantiations of such formal systems. While sense-making tools

such as mind maps are suited for creating an initial sketch of a problem, they do not

support experts in formally evaluating the problem. The approaches, formalisms,

and methods proposed in this thesis are designed to aid the construction of BNs and

AFs, thereby allowing experts to formally evaluate their problems in a probabilistic

manner by computing probabilities of interest using BNs or to evaluate arguments

on their acceptability using AFs.

To help increase the uptake and application of AFs and BNs in practice, it is

important not only to consider facilitating their construction but also to consider

how the use of AFs and BNs can be facilitated for domain experts unfamiliar with

them by making instantiations of these systems more explainable. Explainable AI

(XAI) has recently received much attention; however, most of this work is directed

at explaining decisions of machine learning algorithms [Adadi and Berrada, 2018;

Guidotti et al., 2018] instead of explaining instantiations of symbolic knowledge-

based systems. In the context of BNs, approaches have been proposed that allow

domain experts to understand the elements of a BN model or the reasoning patterns

captured in BNs, for instance by explaining BNs using text, visualisations or argu-

ments (see Sections 6.3 and 6.4 of Timmer [2017] for an overview). In the context

of argumentation, approaches have been proposed that allow for explaining why a

conclusion or argument is accepted under a given semantics using (elements of) ar-

guments (see Borg and Bex [2021] for an overview) which may be used in the context

of argumentation frameworks constructed on the basis of IGs to explain outcomes

to domain experts.

While we focussed on facilitating the construction of instantiations of formal

systems, the formalisms and approaches we proposed are designed in a way that

hopefully makes them understandable for domain experts. For BNs documented

using our approach from Chapter 7, the reasons behind BN modelling decisions may

be returned to experts, which may aid them in better understanding BNs. Moreover,

our IG-formalism is designed to allow inference to be performed and visualised in a

way closely related to sense-making tools familiar to domain experts. Arguably, this

makes it more straightforward for domain experts to understand, construct and use

IGs rather than directly constructing and using instantiations of formal systems, a

claim that should be empirically evaluated in future work.
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Samenvatting

Redeneren met onzekerheid en bewijs speelt een belangrijke rol bij het nemen van be-

slissingen en het oplossen van problemen in vele domeinen, waaronder geneeskunde,

engineering, forensisch onderzoek en het recht. Er bestaan verscheidene technieken

om domeinexperts te ondersteunen in het uitvoeren van hun taken en te helpen een

probleem te begrijpen. Voorbeelden zijn informele graafgebaseerde sense-making

tools zoals mindmaps, argumentatiediagrammen en Wigmore-diagrammen, waar-

mee de gebruiker het probleem en de gemaakte redeneerstappen in het oplossen

ervan kan structureren en visualiseren. Een beperking van deze tools is dat ze alleen

bedoeld zijn voor het visualiseren van de redenering van de gebruiker: ze voorzien

niet in het uitvoeren van berekeningen of geautomatiseerd redeneren met de gevisu-

aliseerde informatie. Dus hoewel deze tools geschikt zijn om een initiële schets van

het probleem te maken, ondersteunen deze tools experts niet in het formeel evalueren

van het probleem. Formele systemen voor redeneren met bewijs zijn voorgesteld in

het vakgebied kunstmatige intelligentie (KI), waaronder argumentatieformalismen

en kansmodellen zoals Bayesiaanse netwerken (BNs). Deze systemen maken geauto-

matiseerd redeneren en berekenen mogelijk en ondersteunen experts daarmee wél in

het formeel evalueren van een probleem. In de praktijk worden zowel sense-making

tools als formele representaties binnen KI-systemen gebruikt door domeinexperts,

aangezien beiden hun voor- en nadelen hebben.

Formele systemen zijn, in tegenstelling tot bovengenoemde sense-making tools,

nauwkeurig gedefinieerd wat betreft hun notatie en semantiek en maken daarmee

automatische evaluatie en berekeningen mogelijk. De werking van formele systemen

is algemeen bekend en de eigenschappen van specifieke toepassingen van deze sys-

temen kunnen worden bestudeerd. Domeinexperts hebben echter doorgaans niet de

expertise om formele representaties van een probleem in een KI-systeem te bouwen.

Vooral in data-arme domeinen moet hun constructie daarom meestal handmatig

worden gedaan door een KI-expert via een kenniselicitatieprocedure in overleg met

de domeinexpert, wat een moeilijk en foutgevoelig proces is.

In dit proefschrift willen we de constructie van modelleringen in een KI-systeem

ondersteunen zodat domeinexperts hun problemen automatisch kunnen evalueren.

Hiertoe bestuderen we hoe domeinkennis die is vastgelegd met behulp van een sense-
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making tool kan worden gebruikt om de constructie van formele representaties bin-

nen KI-systemen te ondersteunen. We richten ons op twee soorten formele systemen,

namelijk kansmodellen, in het bijzonder BNs, en argumentatieraamwerken. Argu-

mentatie is geschikt voor domeinen zoals het recht, waar argumenten voor en tegen

beweringen worden opgebouwd vanuit bewijs. Argumenten kunnen dan formeel

worden geëvalueerd op hun aanvaardbaarheid. Kansmodellen zoals BNs maken re-

deneren op basis van statistische en probabilistische informatie mogelijk, waardoor

experts hun probleem kunnen evalueren aan de hand van kansberekeningen.

Dit proefschrift behandelt de volgende hoofdonderzoeksvraag:

Onderzoeksvraag 1 Hoe kan domeinkennis uitgedrukt door experts met informele

sense-making tools worden gebruikt om de constructie van formele represen-

taties binnen KI-systemen te ondersteunen?

Meer specifiek zullen we deze onderzoeksvraag beantwoorden voor de twee genoemde

KI-systemen, namelijk argumentatieraamwerken (onderzoeksvraag 1a) en BNs (on-

derzoeksvraag 1b). Om onderzoeksvraag 1 te beantwoorden hebben we voorbeelden

van analyses die gemaakt zijn met behulp van dergelijke sense-making tools bestu-

deerd. We hebben geconstateerd dat domeinexperts van nature verschillende typen

informatie en gevolgtrekkingen (deductieve en abductieve) combineren maar dit niet

expliciet maken. De gespecificeerde kennis is daarmee niet precies genoeg om di-

rect gebruikt te kunnen worden ter ondersteuning van de constructie van formele

representaties binnen KI-systemen.

Om de kloof tussen informele sense-making tools en formele systemen te over-

bruggen introduceren we het informatiegraafformalisme (IG-formalisme) waarin ana-

lyses uitgevoerd met dergelijke tools gerepresenteerd kunnen worden op een manier

die de gebruikte informatie en conflicten expliciet maakt. Ons IG-formalisme is spe-

ciaal ontworpen om het proces van redeneren over bewijs te modelleren, door het

expliciet maken van de wisselwerking tussen deductieve en abductieve gevolgtrek-

kingen en verschillende typen informatie. Bij het ontwerpen van het IG-formalisme

hebben we gekozen voor een graafgebaseerd formalisme in plaats van een op logica

gebaseerd formalisme om nauw verwant te blijven aan de manier waarop analyses

worden gevisualiseerd met behulp van bovengenoemde graafgebaseerde tools.

Door analyses die zijn uitgevoerd door domeinexperts met behulp van informele

sense-making tools te formaliseren als IGs, kan de IG dienen als tussenstap in de

constructie van formele KI-systemen. We gebruiken de IGs dan ook om onder-

zoeksvraag 1 te beantwoorden. We hebben onderzoeksvraag 1a beantwoord door

een raamwerk voor gestructureerde argumentatie op basis van IGs te definiëren dat

de constructie en evaluatie van deductieve en abductieve argumenten in één vere-

nigd raamwerk mogelijk maakt. Argumenten op basis van IGs worden gedefinieerd

als reeksen van deductieve en abductieve gevolgtrekkingstoepassingen die kunnen

worden afgelezen uit de IG op basis van het bewijs. We hebben verschillende soor-

ten aanvallen gedefinieerd tussen argumenten op basis van IGs, gebaseerd op de

verschillende soorten conflicten die we in ons IG-formalisme onderscheiden. Onze
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methode genereert een argumentatieraamwerk en maakt het daarmee mogelijk dat

argumenten op basis van IGs formeel geëvalueerd kunnen worden met behulp van

computationele argumentatie.

Onze methode is ontworpen om te garanderen dat argumentatieraamwerken die

zijn geconstrueerd op basis van IGs automatisch voldoen aan een aantal gewenste

eigenschappen. In het bijzonder hebben we aangetoond dat instantiaties van ons

argumentatieformalisme voldoen aan belangrijke rationaliteitspostulaten, wat ga-

randeert dat instantiaties van ons argumentatieformalisme van goede kwaliteit zijn

omdat tegenintüıtieve resultaten en inconsistenties worden vermeden.

Om onderzoeksvraag 1b te beantwoorden hebben we onderzocht hoe ons IG-

formalisme kan worden gebruikt om de constructie van BNs te ondersteunen. Een

BN bestaat uit een gerichte graaf die de probabilistische onafhankelijkheidsrelatie

tussen voor het domein relevante variabelen vastlegt, en een verzameling voorwaar-

delijke kansverdelingen die tezamen een gezamenlijke kansverdeling beschrijven. In

de handmatige constructie van BN-grafen wordt het begrip causaliteit vaak gebruikt

als leidraad voor het richten van pijlen. Om deze reden hebben we een methode voor

de constructie van BN-grafen voorgesteld die gebruikmaakt van een notie van cau-

saliteit zoals uitgedrukt door de kennis die is vastgelegd in een IG. Onze methode

kan worden gebruikt om automatisch een gerichte BN-graaf uit een IG te construe-

ren. Bovendien hebben we laten zien dat de gevolgtrekkingen die uit een IG kunnen

worden afgelezen gegeven het bewijs ons in staat stellen enkele randvoorwaarden

af te leiden voor de kansverdeling behorende bij de te construeren BN. Deze rand-

voorwaarden kunnen als input dienen tijdens het eliciteren van de kansen voor het

verkrijgen van een volledig gespecificeerde BN. Daarom stelt ons IG-formalisme,

samen met onze BN-constructiemethode, ons in staat om een initiële BN te con-

strueren op basis van de initiële analyse van een domeinexpert uitgevoerd met een

informele tool; het ondersteunt daarmee het BN-elicitatieproces.

Onze BN-constructiemethode is ontworpen om te garanderen dat initiële BN-

grafen die zijn geconstrueerd op basis van IGs automatisch voldoen aan een aantal

gewenste eigenschappen. We hebben aangetoond dat BN-grafen die door onze me-

thode zijn geconstrueerd redeneerpatronen vangen die soortgelijk zijn aan degene

die kunnen worden afgelezen uit de oorspronkelijke IG. We hebben bovendien voor-

waarden aan IGs gëıdentificeerd waaronder de volledig automatisch geconstrueerde

initiële graaf gegarandeerd acyclisch is.

Aangezien IGs geen kwantitatieve informatie uitdrukken kan onze BN-constructie-

methode alleen worden gebruikt om een gedeeltelijk gespecificeerde initiële BN te

construeren. Daarom hebben we onderzocht hoe de constructie van BNs verder kan

worden ondersteund. Bij het construeren van BNs kan in de praktijk onenigheid

ontstaan onder de betrokken experts over de gemaakte keuzes. Aangezien derge-

lijke onenigheden argumentatief van aard zijn hebben we voor onderzoeksvraag 2

onderzocht hoe argumentatietechnieken kunnen worden gebruikt om dergelijke on-

enigheden uit te drukken en hoe argumenten over BNs vervolgens gebruikt kunnen

worden om hun constructie te ondersteunen:
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Onderzoeksvraag 2 Hoe kan de constructie van BNs worden ondersteund door

gebruik te maken van expertkennis uitgedrukt als argumenten?

Om deze vraag te beantwoorden hebben we een daadwerkelijke discussie tussen ex-

perts over een forensisch BN bestudeerd, waarbij we hebben geanalyseerd waarover

onenigheid kan ontstaan en hoe een dergelijke onenigheid in de praktijk wordt uit-

gedrukt en opgelost. Op basis van onze op argumenten gebaseerde analyse van deze

onenigheid hebben we een antwoord gegeven op onderzoeksvraag 2 door een me-

thode voor te stellen die experts in staat stelt expliciet hun redenen voor en tegen

modelleringsbeslissingen met betrekking tot de structuur en parameters van een (ge-

heel of gedeeltelijk gespecificeerde) BN met behulp van formele argumentatie vast

te leggen. Onenigheden worden dan zoveel mogelijk opgelost door formele evalua-

tie van de geconstrueerde argumenten. Naast het ondersteunen van experts bij het

oplossen van conflicten over BNs is een ander belangrijk aspect van onze methode

dat het experts in staat stelt redenen voor en tegen BN-modelleringsbeslissingen te

documenteren, wat cruciaal is voor het begrip, gebruik en de acceptatie van BNs.
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18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web

19 Julia Efremova (Tue), Mining Social Structures from Genealogical Data

20 Daan Odijk (UVA), Context & Semantics in News & Web Search
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