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2 1. Introduction

Cancer is one of the leading causes of death worldwide. However, despite years of on-
going effort and a myriad of developed treatments, a cure has yet to be found. Although
it may seem from the millions of published studies on cancer that science has yielded
enough information to put the pieces of the puzzle together, the enormous amount of
data is not fully understood. Ever since the first human genome sequence was com-
pleted in 2002, a large number of projects have followed to make an effort in charac-
terizing the genome sequences of different cancers. Through these studies, it became
clear that cancers differ from our healthy cells by accumulating somatic mutations in the
DNA. Mutations are found in different kinds and shapes. One highly-studied type is the
Single Nucleotide Variant (SNV), in which a single base of DNA is switched to another.
When more than 1000 base pairs of DNA are either deleted or duplicated, such muta-
tion is called a Copy Number Variant (CNV). Any other change affecting more than 50
base pairs that is either inserted, deleted, duplicated, inverted, or translocated (meaning
a break is introduced into the DNA sequence, and then stitched together with another
piece of DNA elsewhere), is called a Structural Variant (SV). These changes can originate
from external exposure such as UV radiation or smoking, but can also be left behind as a
result of incorrect DNA repair[1].

The reason that these mutations are harmful, or pathogenic, to our cells is because
they can have an effect on the expression of our genes. For example, a mutation inac-
tivating a tumor suppressor gene such as TP53 can cause the cell to lose control and
start dividing rapidly, with cancer being the result thereof[2]. Cancers can start out with
as little as one mutation, but can accumulate thousands more mutations as develop-
ment progresses[3]. However, not all mutations are actually pathogenic. Instead, per
cancer only about on average 4-5 mutations have the ability to drive the development of
the cancer, whereas the rest are passengers that do not have any functional effects[3, 4].
Although this observation may sound like good news for developing anti-cancer treat-
ment, the big problem is that we are not yet very good at identifying these driver mu-
tations in a patient. Therefore, the driver genes, which are the genes that are involved
in the development of cancer when these are affected by a driver mutation, may remain
undetected, complicating the process of selecting optimal anti-cancer therapy.

Our current knowledge of cancer-driving mutations is incomplete

One of the most challenging parts of finding suitable treatment for cancer is that each
patient accumulates vastly different mutations. Although some cancer types appear to
more often be characterized by specific driver mutations, these can be entirely different
between even patients with the same cancer type[3]. Despite that many common drivers
have been identified and collected by efforts such as the Cancer Gene Census (CGC)[5],
the catalogue is far from complete, and there remains a group of patients in which no
obvious drivers can be characterized with our current knowledge[6]. Aiming to solve this
problem, clever computational methods have been developed to utilize our knowledge
of biology to make predictions of which mutations are most likely cancer drivers.

Cancer driver mutation prediction methods

The overarching idea behind predicting which mutations drive cancer is to use existing
knowledge to make predictions about the consequences of a mutation. Initially, many
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driver prediction studies were focused on mutations directly affecting genes, resulting in
changes to the protein product.

One strategy is to identify the genes that are mutated with protein-altering changes
more often across patients than would be expected by random chance, which is applied
by methods such as MutSig[7], MuSiC[8] and oncodriveCLUST[9] (Fig 1A). A big chal-
lenge for these statistics-based methods is to define a proper background rate of pas-
senger mutations, which often varies per cancer type or even per patient, and is influ-
enced by a lot of factors including GC content, gene density, repeat regions and copy
number[6, 10, 11].

On the other hand, machine learning-based methods, such as CADD[12], FATHMM[13]
or CHASM[14], use existing knowledge by training a classifier using known driver mu-
tations and likely passenger mutations as the respective positive and negative classes
(Fig 1A). While these methods further improve our ability to predict drivers, defining the
class labels is often challenging. Although sufficient examples can be provided for the
negative class, examples of driver mutations for the positive class are a lot sparser[15].
Furthermore, mutations in the negative class are often considered to be passengers only
because they have not (yet) been identified as drivers, therefore potentially introducing
noisy labels.

Although all of these approaches have been used to successfully discover drivers in
patients, their main strength is the identification of common drivers[16, 17]. It is now
acknowledged that cancers follow the ‘long-tail phenomenon’, where only a small num-
ber of ‘mountains’ of common mutations exist, in contrast to a large number of ‘hills’
of infrequent mutations that vary between patients and cancer types[18]. For exam-
ple, studies on ovarian and breast cancer identified rare and infrequent mutations in
ERBB2 and BRAF that were overlooked by statistics-based approaches, but had clini-
cal relevance[19, 20]. These findings led to the advancement of prediction methods de-
signed to handle rare drivers (Fig 1B).

Methods to predict rare driver mutations
With the growth of efforts such as The Cancer Genome Atlas (TCGA) and Pan Cancer
Analysis of Whole Genomes (PCAWG) generating data from different –omics categories
than just Whole Genome Sequencing (WGS), many new possibilities have been opened
up for identifying (rare) driver mutations. For example, combining expression data with
CNVs in glioblastoma patients enabled the discovery of an overexpression of BRAF, which
itself was not mutated, through an amplification of its interacting partner EGFR[21].
Similarly, other interaction partners of EGFR, including FGF11, PIK3R1, and PRKACB,
also showed increased expression. Such findings suggest that combining multi-omics
data can benefit the identification of rare drivers, as more data sources should suggest a
high likelihood of the mutation being a driver than would be expected for a passenger.
Driver prediction methods integrating multi-omics data range from combining SNVs
with SVs[22] with expression data[23, 24] to including methylation and DNAseI hyper-
sensitivity data[25] (Fig 1B).

Another class of methods uses gene or protein interaction networks to identify drivers
that are not necessarily mutated themselves, but may instead be deregulated due to mu-
tations in upstream pathway partners[26–28]. These network-based methods were also
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Fig. 1. overview of driver prediction methods. (A) Prediction methods for common drivers are often either
based on statistics, or machine learning. (B) Prediction methods for rare drivers focus more on integrating data
from multi-omics sources.

shown to achieve higher predictive performance when including more data sources such
as expression data[17, 21, 29]. However, one large downside of most existing approaches
is that a lot of the interaction networks are often noisy and incomplete. Deepdriver is
a machine learning method based on deep convolutional neural networks that aims to
overcome this problem by characterizing similarity networks between genes based on
expression data[15]. Yet, expression data are often still not available for every single pa-
tient in a cohort, leaving a remaining challenge in predicting rare driver mutations in
some patients.
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Driver prediction in the non-coding genome

A lot of the methods discussed so far have focused on predicting driver mutations in
the coding part of the genome, while the vast majority of mutations occur in the non-
coding part of the genome[30]. For a long time, the non-coding genome, which makes
up about 98% of all base pairs[31], was believed to be junk. Instead, with the increase in
the number of WGS data, it has now been discovered that this part of the genome car-
ries out a lot of regulatory functions, which can be disrupted by mutations to indirectly
affect the expression of genes. For example, although the TERT gene is rarely mutated
itself, non-coding mutations in the TERT promoter are highly recurrent in bladder, thy-
roid, skin and central nervous system cancers, resulting in overexpression of the TERT
gene[32]. While still underrepresented compared to coding-based methods, more and
more methods are being developed to predict the pathogenicity of mutations in non-
coding regions[10, 13, 33–35]. Notable mentions of recent methods include DeepSEA[36]
and ExPecto[37], which use machine learning to learn which genomic features, such as
histone modifications, transcription factor binding profiles and enhancers, characterize
the regions surrounding and overlapping pathogenic SNVs.

However, such studies are especially not yet extensively performed for non-coding
SVs, which despite being seemingly more consequential due to their size, have been
largely overlooked. As these SVs are rarely recurrent between patients, their role in can-
cer remains not fully understood[10]. But recently, more and more evidence is found
that these may actually exert their function by disrupting the 3D genome[38].

Non-coding mutations may drive cancer by disrupting the
3D genome
For a long time, the genome sequence was treated as a linear structure. However, it is
now known that it is not always the nearest enhancer in linear distance that regulates
a gene, and instead the DNA can fold to bring enhancers close to genes that may be as
much as 1 Mb apart[39–41]. Recently, the development of the so called ‘C’ techniques
(including 3C, 4C, Hi-C) have enabled us to study such interactions between regions
of DNA on a large scale[42]. From these studies, it became apparent that the way the
DNA is folded, called the 3D structure, may be of enormous importance for the regula-
tion of genes[43, 44]. On a global scale, the DNA is divided into compartments, where
‘A’ compartments contain open, active chromatin, whereas ‘B’ compartments consist
of closed, inactive chromatin[45]. Within these compartments, structures exist wherein
DNA interacts more frequently with each other than with DNA elsewhere in the genome.
These structures are called Topologically Associated Domains (TADs), which typically
range from about 200 Kb to 1 Mb in size[45, 46] (Fig 2A, TADs). What is highly inter-
esting is that most interactions between enhancers and gene promoters are confined to
take place within TADs, which is ensured by the presence of boundaries between adja-
cent TADs (Fig 2A, DNA interactions). These boundaries are enriched for motifs of the
CCCTC-binding factor (CTCF), also called CTCF sites[47]. Therefore, it is believed that
TADs are formed as the result of a process called loop extrusion, in which the DNA is
pulled through a ring of cohesin until two convergent CTCF sites are encountered, form-
ing chromatin loops[48] (Fig 2B). This idea is supported by the finding that the bound-
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aries of TADs are often characterized by clusters of such convergent CTCF sites[49] (Fig
2A, CTCF binding sites). Chromatin loops are also formed within a TAD, regulating gene
expression on an even smaller scale[50]. Due to the complexity of structures that exist
to maintain proper regulation, it is not unthinkable that disrupting the 3D genome can
have major consequences for the cell. In a study across 1,962 whole genomes, Liu et
al identified 21 CTCF sites that were mutated more frequently than expected by random
chance, and could thus be explained as potential sites for cancer drivers[51]. In addition,
Hnisz et al found that T-ALL patients frequently contained microdeletions of CTCF loops
nearby well-known T-ALL oncogenes[52]. Similarly, non-coding SVs may also exert their
pathogenic effects by disrupting 3D genome structures.

CTCF binding

 sites

DNA 

interactions

TADs

Cohesin

Gene

Enhancer

A B
TAD

boundary

Fig. 2. (A) schematic overview of TADs. DNA interactions between genes and e.g. enhancers are restricted by
TAD boundaries, which show an enrichment of CTCF binding sites. These binding sites are also found within
TADs, where they regulate the formation of CTCF loops as illustrated in (B). After a loop is formed, genes can
only interact with regulators inside the loop.

Non-coding SVs can disrupt TADs to drive cancer
In a study conducted in 2015 by Lupiañez et al, the authors observed that the pres-
ence of SVs overlapping with TAD boundaries in the WNT6/IHH/EPHA4/PAX3 region
could lead to limb malformation in humans and mice[53]. Using Hi-C techniques to
determine the interactions between genomic regions, the authors discovered that the
presence of these SVs enabled contact between the genes in the TADs and enhancers
in adjacent TADs, by interfering with the separating boundaries. Interestingly, differ-
ent SV types disrupting other TAD boundaries in the region lead to different limb mal-
formation phenotypes. The study made it possible to construct a model of how TAD
boundary-disrupting non-coding SVs can enable spurious contacts between genes and
regulatory elements, such as enhancers (Fig 3). Although this study, together with follow-
ing research, proved that germline non-coding SVs can lead to developmental disorders
and congenital phenotypes[54–57], similar evidence has been found that somatic non-
coding SVs that interfere with TAD boundaries may also play a role in the development of
cancer[52, 58–61]. Despite the clear impact that SVs can exert through disrupting TADs,
it remains unclear if non-coding SVs may also drive disease by disrupting other aspects
of the 3D genome, such as CTCF loops. Although Despang et al showed in mice that
removing single CTCF sites resulted in less disruption of gene expression than when the
entire TAD structures were affected[49], it is not known if these smaller effects on gene
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expression would be enough to cause cancer in humans.

Furthermore, it is not yet known what the overall contribution of non-coding SVs af-
fecting 3D structures are in the cancer genome, compared to other types of mutations.
How often are cancers driven by non-coding SVs, rather than, for example, (non-coding)
SNVs or CNVs? Altogether, the true impact of non-coding SVs, including those that do
not affect 3D structures, has not yet been fully elucidated, and thus remain an under-
studied mutation type. Therefore, understanding the mechanisms by which non-coding
SVs play a role in cancer remain an important research topic, thereby potentially en-
abling novel treatment approaches in the clinic.

Subclonal heterogeneity negatively affects our ability to treat
cancer
Although driver prediction methods have enabled us to identify novel targets for anti-
cancer therapies, another problem that is holding us back in treating the disease is het-
erogeneity.

Rather than being one mass of cells that all have the same mutations, many cancers
typically present as a heterogeneous population of cells[62]. One striking example of
such heterogeneity is type II Testicular Germ Cell Cancer, which may contain tissue from
all 3 germ layers[63]. Heterogeneity is comprised by cells with different genetic makeup,
also called the subclones. Each time a cancer cell divides and acquires a new mutation a
new subclone is formed, which also inherits all mutations from its parent subclone[64]
(Fig 4A). These subclones continue to divide and form cell populations that either ex-
pand or decrease over time, depending on if the acquired mutation was beneficial for the
growth of the cancer[65, 66] (Fig 4B). Some mutations may, in fact, kill cancer cells. As a
result, cancers often present as a mixture of these different subclones. This characteristic
poses a problem for treatment, which often focuses on targeting a specific mutation[67].
While targeting mutations that occurred early on during cancer development may be
good candidates for treatment as these are likely present in all subclones, cancer cells
have developed a way to circumvent these therapies. Mutations that are harmful enough
to cause cancer may be too harmful for the cancer cells to stay alive themselves. There-
fore, subclones that either remove these mutations, or gain mutations that can offset
the harmful effects, may conquer selective advantage over the other subclones in the
tumor[68, 69]. Any treatment may then eradicate a large part of the cancer, but not the
subclones that became resistant to the therapy. Often, these are the subclones that will
lead to recurrence of the cancer, and may eventually metastasize[3] (Fig 4A, treatment).
Thus, knowing which mutations are present in which subclones is essential to select a
combination of treatments to ensure that all cancer cells are eradicated[67].

However, cancer biopsies are usually only taken at one point in time, sometimes
when the cancer has already developed to an advanced stage[70]. Since cancer cells
are typically sequenced in bulk, the resulting mutations represent an average across the
entire biopsy, losing information about which individual subclones are present in that
sample[71]. Such samples also complicate driver prediction, as subclonal driver muta-
tions can be present in very low frequencies that may be missed by mutation detection
algorithms. Furthermore, it is often not possible to take a biopsy of the whole cancer,
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Fig. 3. schematic model of how SVs can disrupt TAD boundaries to alter interactions between genes and reg-
ulatory elements. Deletions remove boundaries, enabling previously blocked interactions. Inversions cross-
ing boundaries can bring regulatory elements in close proximity to previously inaccessible genes. Duplications
can form ‘neo-TADs’ in which genes and regulators from different TADs can come in close contact.

as a result of which subclonal mutations may be undetected. Due to the potential lack
of mutations leading to treatment resistance being present in all tumor cells, studying
cancers as a single, partial sample may result in an incorrect overview of which drivers
to target in treatment. Therefore, taking the tumor subclones into account may lead to
more effective treatment results[72]. Over the past decade, many computational meth-
ods have been designed that aim to infer the subclones and their evolutionary history
from single cancer samples.
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Fig. 4. (A) schematic of tumor development. Existing cells divide to form new subclones. Treatment may erad-
icate all but resistant subclones, which may then continue forming new subclones. (B) New subclones develop
from existing subclones over time, represented as a phylogenetic tree. Due to selective pressure, subclones may
disappear. (C) Mutations with higher VAF are expected to have originated early on, as these should be present
in nearly all subclones. (D) If mutations are assumed to not be lost, certain phylogenies are impossible. (E)
Under the ISA, mutations cannot be gained twice independently.

Methods to reconstruct the evolutionary history of cancer

Within cancer samples, a number of interesting patterns were observed that became es-
sential in inferring subclonal evolution[73]. For example, the frequency in which muta-
tions are present in samples, called the Variant Allele Frequency (VAF), highly varies be-
tween mutations. As these mutations occurred in copy number neutral regions (mean-
ing that the copy number equals 2), it suggests that not every mutation is present in every
cell in the sample. Given that mutations are inherited from the parent cell in each divi-
sion, the mutations that are present with high VAF are expected to have originated early
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during tumor development (Fig 4C). Additionally, it is unlikely for cancers to remove
mutations once these have been introduced, unless for example the entire chromosome
arm is lost, as these were at least not detrimental to tumor growth (Fig 4D). Finally, due
to the sheer number of base pairs in the genome, it is not expected that any mutation
would be gained twice independently in two cells, which is also known as the Infinite
Sites Assumption (ISA) (Fig 4E). These observations proved to be helpful in determining
the subclones present in a sample and inferring a phylogenetic tree representing their
evolutionary history (Fig 4B), by a process known as deconvolution[74].

Deconvolution methods
Certain methods applying deconvolution to identify subclones focus only on SNVs[73,
75–79], while others use only CNVs[80–84]. Methods relying solely on SNVs are restricted
to using mutations in copy number neutral regions, as no assumptions can be made
about losses due to chromosomal events. Overall, combining different mutation types
has been shown to yield the best predictive performance[85]. However, a number of
remaining issues plague these existing methods. First of all, cancer genomes are not
routinely sequenced at very high depth (typically < 30X). Therefore, it is difficult to dis-
tinguish true passenger mutations from noise with high certainty, whereas these are of
importance especially when inferring subclones that have not necessarily each gained
novel driver mutations. Finally, the lack of ground truth data makes it difficult to vali-
date the true performance of deconvolution-based methods[86].

Sampling-based methods
To partially overcome the need for deconvolution, alternative strategies have focused
on taking samples from multiple tumor sites[73, 78, 79, 87, 88]. If certain mutations
are not present in every sample, these methods can conclude that the tumor must have
formed different branches of subclones over time[78]. However, a limitation of these
methods is that the multiple samples themselves often still represent a heterogeneous
combination of subclones. Although single-cell sequencing-based methods have shown
great promise to overcome a large portion of the deconvolution problem by sampling
individual subclones directly, it remains a technological challenge to sequence all cells
in a tumor tissue at sufficient quality[64]. Therefore, reconstructing subclonal tumor
evolution remains an open problem in understanding cancer development.

Contributions of this thesis
Despite the major progress that has been made in the field of understanding the driv-
ing factors of cancer, we are still far away from being able to provide every patient with
a successful treatment. In this thesis, we focused on using computational models and
multi-omics data to fill in more of the gap of knowledge about how, and which, muta-
tions can drive cancer.

Our first model, described in chapter 2, aims to identify better targets for cancer
treatment by constructing a phylogenetic timeline of subclones using copy numbers,
SNVs and allele frequencies acquired using deep targeted sequencing of physically sep-
arated tumor samples. In contrast to existing methods using multiple samples, our ap-
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proach specifically utilizes microdissected samples with reduced heterogeneity to over-
come the problems with noise encountered during deconvolution.

In chapter 3, we annotated TAD boundary-disrupting non-coding SVs with a large
amount of regulatory data and showed that aberrant gene expression in these TADs
can be explained by altered interactions between genes and regulatory elements. We
used these annotations to build a machine learning model to predict pathogenic TAD
boundary-disrupting non-coding SVs. To overcome the lack of a ground truth pathogenic
non-coding SV set, we used expression data between mutated and non-mutated patients
to define our labels. These models enabled us to explore the mechanisms by which non-
coding SVs disrupt gene expression in cancer.

In chapter 4, we built further on the machine learning method described in chap-
ter 3 to learn more about the overall role of non-coding SVs in cancer. We applied our
method to 12 cancer types, revealing that although non-coding SVs have similar mech-
anisms across cancer types, their contribution to the development and growth of cancer
highly varies between cancer types. We furthermore stepped away from TADs to explore
in more detail the role of non-coding SVs on disrupting CTCF loops as a driver mecha-
nism.

Chapter 5 focuses on using machine learning to identify driver genes that are not
directly affected by known pathogenic mutations, but rather through upstream distur-
bances, non-coding mutations or variants of unknown significance. As only WGS data is
available in this study, the labels of the negative set are difficult to define as it can only be
assumed that a gene is not affected if there is no evidence of mutations in the WGS data.
However, this leads to a problem where exactly the disrupted, but non-mutated, genes
that we wish to identify contaminate the negative set. As a result, it is actually a good
thing for classifiers to report more false positives, making metrics such as AUCPR unreli-
able. We introduce a swap-one-patient-out CV approach to measure how well classifiers
identify false positives as an alternative metric to AUCPR.

Lastly, in chapter 6 we discuss our findings and suggest improvements for future
studies. Although we are now a step closer to understanding the role of mutations in
cancer development, a journey of many more miles towards optimal treatment still lies
ahead.
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Abstract
Most tumors are composed of a heterogeneous population of subclones. A more detailed
insight into the subclonal evolution of these tumors can be helpful to study progression
and treatment response. Problematically, tumor samples are typically very heteroge-
neous, making deconvolving individual tumor subclones a major challenge. To over-
come this limitation, reducing heterogeneity, such as by means of microdissections, cou-
pled with targeted sequencing, is a viable approach. However, computational methods
that enable reconstruction of the evolutionary relationships require unbiased read depth
measurements, which are commonly challenging to obtain in this setting. We introduce
TargetClone, a novel method to reconstruct the subclonal evolution tree of tumors from
single-nucleotide polymorphism allele frequency and somatic single-nucleotide variant
measurements. Furthermore, our method infers copy numbers, alleles and the fraction
of the tumor component in each sample. TargetClone was specifically designed for tar-
geted sequencing data obtained from microdissected samples. We demonstrate that
our method obtains low error rates on simulated data. Additionally, we show that our
method is able to reconstruct expected trees in a testicular germ cell cancer and ovar-
ian cancer dataset. The TargetClone package including tree visualization is written in
Python and is publicly available at https://github.com/UMCUGenetics/targetclone.

Introduction
Tumors develop from the accumulation of somatic mutations over time. In a tumor,
often various subclonal populations with (partially) overlapping mutation patterns co-
exist. These subclones are formed through an evolutionary process [1–3]. Reconstruct-
ing the subclonal evolution is important, as it can assist in characterizing the mutations
driving tumor development and progression, and can be helpful to decipher the mech-
anisms underlying treatment response [4, 5].

A number of algorithms have been developed to reconstruct subclonal evolution
trees from rapidly emerging next-generation sequencing data (Fig S1). The existing meth-
ods can coarsely be divided into two categories, those based on somatic single-nucleotide
variants (SNVs) and those based on somatic copy number variations (CNVs). Somatic
SNV-based methods, such as LICHeE, PhyloSub, TrAp and AncesTree, are most often
based on two important assumptions; the sum-rule assumption and infinite sites as-
sumption (ISA) [6–9]. Based on the sum rule, a branched tree, rather than a linear tree,
can be ruled out if the sum of the variant allele frequency (VAF) of SNVs in the child sub-
clones is larger than the VAF of SNVs in the parent [7]. Under the ISA, somatic SNVs are
not expected to be gained twice independently. Furthermore, somatic SNVs are not ex-
pected to be lost once gained. An important limitation is that the VAF is affected by
CNVs. As a result, SNV-based methods are restricted to using somatic SNVs in copy
number-neutral regions. To overcome potential loss of information due to these restric-
tions, alternative methods, such as CNTMD, ThetA, TITAN, MEDICC, CloneCNA and
CLImAT-HET, have been developed that aim to either infer the copy numbers of sub-
clones, or reconstruct (subclonal) evolution trees from CNVs inferred from e.g. read
depth information [10–15]. Additionally, the PhyloWGS algorithm combines somatic
SNVs and CNVs to further increase the tree reconstruction accuracy [16]. However, us-

https://github.com/UMCUGenetics/targetclone
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ing read depth to determine the copy number of individual subclones in heterogeneous
tumor populations is a challenging problem, as such populations consist of several sub-
clones and non-tumor cells mixed in different unknown fractions [3, 15, 17]. It is there-
fore hard to distinguish between CNVs and differences in subclonal fraction, and multi-
ple combinations of subclonal fraction and subclonal CNVs may explain the overall read
depth profile.

While single-cell sequencing approaches largely mitigate the problem of sample het-
erogeneity, it is currently not yet possible to sample accurate representations of the en-
tire subclonal diversity using these techniques [18–20]. Therefore, an interesting alter-
native is to perform microdissections to obtain multiple samples of the same tumor
(Fig S2), while at the same time reducing sample heterogeneity [21–23]. However, the
typical low read depth of whole genome sequencing (WGS) data complicates the infer-
ence of somatic SNVs and CNVs in any sample, and in microdissections in particular
[16, 24, 25]. Targeted sequencing-based approaches, including whole exome sequenc-
ing (WES), have resulted in a higher coverage, but lead to variable and biased read depth
across the genome that may limit accurate detection of CNVs [17, 26–31]. Currently, no
methods exist that can be used to unravel subclonality directly from the uncorrected
read depth data measured with targeted sequencing. Here, we present TargetClone, a
method to reconstruct subclonal evolution of tumors from only SNP allele frequencies
and somatic SNVs, which does not rely on read depth or CNVs and thus does not re-
quire additional corrections. TargetClone is geared towards inferring trees from targeted
sequencing data from microdissected samples.

TargetClone is mainly based on three assumptions. First, it assumes that the in-
put samples contain one major tumor subclone, which have for example been acquired
through microdissection as was discussed in the previous paragraph. Contamination
with other subclones is allowed, as long as one subclone is dominant in the sample. Sec-
ond, due to the existence of evolutionary relationships between all subclones in a tumor
sample, the subclones are expected to exhibit (partial) overlap in their mutation patterns
[6, 9, 32]. In combination with the assumption that somatic mutations accumulate over
time and are not lost, we assume that subclones with major overlapping mutation pat-
terns are more closely related than subclones with very distinct mutation patterns (ver-
tical dependency) (Fig 1A) [7, 8]. Thus, we can add direction to the subclonal evolution
trees, as the parent of a subclone should have a smaller set of mutations. Third, as our
method aims to reconstruct evolutionary trees, we integrate the horizontal dependency
assumption to more accurately estimate evolutionary distances between subclones as
was previously described in MEDICC [13]. The horizontal dependency works by assum-
ing that two adjacent measurements on the genome are likely dependent, and thus have
a high probability of being affected by the same CNV event (Fig 1A).

We demonstrate the performance of our method on simulated data and two real
data cases. The first real dataset consists of four type II non-seminomatous (NS) Tes-
ticular Germ Cell Cancers (TGCC) with intrinsic resistance to chemotherapy [33]. For
each tumor, multiple histological elements have been macro- and microdissected. Al-
lele frequencies (AF) and somatic SNVs were measured with targeted sequencing [23].
Second, we aimed to demonstrate that TargetClone can also be applied to another tu-
mor type. Thus, we ran our method on a dataset consisting of multiple primary tumor
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Fig. 1. Overview of the TargetClone methodology. (A) A vertical dependency exists between subclones A-D.
In red a horizontally dependent region is highlighted. (B) Multiple subclones with different somatic mutation
patterns are sampled from a tumor. Sample 1 contains a mixture of tumor cells and healthy cells, while sample
2, 3 and 4 only contain tumor cells. A star indicates a somatic SNV. (C) General overview of the iterative opti-
mization used in TargetClone. (D) A sample containing healthy cells and a tumor component (each present in
50% of the sample) with a copy number of 2 can be explained by 3 possible scenarios (see left) that each result
in a different LAF measurement. Each scenario is scored using the event distance to generate a probability
distribution (right). The alleles of the tumor component can be derived from the probability distribution. (E)
The FST used to compute the event distance between subclones. Every allele can be gained or lost, which is
assigned a distance of 1. If the adjacent position is affected by the same event, the distance is not increased
further, which is indicated by the loops to the same state. (F) Two ~(Cc ) with a different combination of parent
and child subclone are highlighted with the blue and red dashed lines. (G) Computation of P(~C |T̂ ) for two
adjacent alleles. Using the horizontal dependency, the event distance equals 1.

and metastasis samples with reduced heterogeneity of an ovarian cancer patient [34]. In
this dataset, the AF were measured using a SNP array, and somatic SNVs were measured
using targeted sequencing.

Materials and methods
Definitions

The method accepts m purified samples of the tumor bulk, which can be obtained through
e.g. microdissection. As a result of the reduced heterogeneity, we make the assump-
tion that samples consist of one major tumor subclone and are potentially mixed with
healthy cells (Fig 1B), although we later show that TargetClone is robust to moderate lev-
els of contamination from other subclones. The fraction of the major tumor subclone
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in the sample is denoted as the scalar µ, and hence, the fraction of healthy cells in the
sample can be computed as 1 - µ. Each sample can have a different µ.

We assume that the AF have been measured at n heterozygous Single-Nucleotide
Polymorphism (SNP) positions in the matched healthy genome that are informative for
detecting allelic imbalance. In this text, the term AF measurements will refer to the frac-
tion of the non-reference allele measured at these SNP positions. Furthermore, we as-
sume that in every sample the AF of somatic SNVs have been measured, which will be
referred to as somatic SNV measurements. The AF measurements of the SNPs and the
AF measurements of the somatic SNVs are used as input to TargetClone.

The AF are represented in a matrix ~AF = [AFi , j ], where AFi , j represents the mea-
sured AF at SNP position i in subclone j. From the AF measurements, lesser allele fre-
quency (LAF) measurements are computed as 1 - AFi , j for every AFi , j larger than 0.5.

The LAF measurements are represented in matrix ~L AF , which is in the same format as
matrix ~AF .

The copy numbers of the subclones can be represented in matrix ~C = [Ci , j ], where
Ci , j ∈ N represents the copy number of subclone j at AF measurement position i. Con-
sistent with the assumption that every sample may contain healthy cell admixture, the
first column of ~C will always contain the copy numbers of healthy cells, which are as-
sumed to be 2 (Fig 1A). Similar to the copy numbers, the alleles of the m samples can
be represented in a matrix ~A = [Ai , j ]. Ai , j denotes the alleles that are present at this AF
measurement position, which will be referred to as allele A (reference) or B (variant). For
example, Ai , j could be AB or ABB. The total number of alleles equals the copy number

at each position. The first column of ~A also represents the alleles of healthy cells, which
are assumed to be AB. The rows in ~C and ~A are ordered by AF measurement position
on the genome. The ordering of the columns (with the exception of the first column) is
arbitrary.

TargetClone outputs estimates of the copy numbers (~C ) and alleles (~A), the tumor
fraction (µ) per sample, and an estimate of the subclonal evolution tree (T), which de-
scribes the relations between the input samples and an estimated distance between
these.

Model
The objective of TargetClone is to infer the subclonal evolution tree T from the AF and
somatic SNV measurements (Fig. 1C):

argmax
T

P(T | ~AF , ~SNV ) (1)

Eq 1 is optimized using an iterative heuristic model, consisting of a T- and C-step:

T-step: a tree T̂ is inferred from ~̂A, the AF measurements, and somatic SNV measure-

ments. ~̂A can be estimated from ~̂C and µ̂, which are both inferred by the model in the
C-step.

C-step: we maximize the likelihood of observing ~C and µ given the LAF measure-
ments per sample, which are derived from the AF measurements, and the current esti-
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mate of the subclonal evolution tree T̂ :

argmax
~C ,µ

P(~C ,µ| ~L AF , T̂ ) (2)

The model is initiated with an estimate of the subclonal evolution tree, T̂ 1. By de-
fault, we assume that all subclones have a healthy cell as the last known common pre-
cursor. Thus, in our initial tree the healthy cell is set as the parent of every tumor sub-
clone. However, starting the model from a different precursor with allele compositions
other than AB is also possible.

We demonstrate that starting the model with different initial trees does not affect the
results, showing that the method is robust for different starting points.

The T and C steps are repeated iteratively until T̂ has converged. The tree is consid-
ered converged when the edges and the total distance between all subclones equals that
of a tree that has been reconstructed in any previous iteration.

C-step
Eq 2 can be rewritten as the following using Bayes’ rule (see Supplementary Methods for
the full derivation):

P(~C ,µ| ~L AF , T̂ ) ∝P( ~L AF |~C ,µ, T̂ )P(~C | T̂ ) (3)

The computation of P( ~L AF |~C ,µ, T̂ ) and P(~C | T̂ ) are explained below.

Computing P( ~L AF |~C ,µ, T̂ )

For a single measurement position i and some subclone j, P(L AFi , j |Ci , j ,µ, T̂ ) is com-
puted by enumerating all possible alleles that can result from the copy number Ci , j ,
which can easily be performed for realistic Ci , j . For example, if Ci , j = 2, the tumor sub-
clone can contain the alleles AA, BB or AB (see Fig 1D), which we will denote as the set
Q. Subsequently, the LAF measured at position i in subclone j is computed for every ele-
ment in Q (formula in Supplementary Methods).

Under the assumption that subclone j is derived from its parent in the current es-
timate of the tree T̂ , not all alleles are equally likely to occur. For example, in case a
subclone with 4 copies (AABB) is transformed into a subclone with 3 copies, it is more
likely to result in ABB, which only requires a loss of one A allele, than BBB, which would
require a loss of two A alleles and a gain of one B allele. To quantify this, we assume
that the probability of observing Ai , j depends on Ai ,p( j ), where p(j) denotes the parent
of subclone j, which is provided in T̂ , as follows:

P(Ai , j |Ai ,p( j )) =
1

ED(Ai , j ,Ai ,p( j ))+1∑Q
q

1
ED(q,Ai ,p( j ))+1

(4)

Here, the event distance (ED) is computed as the total number of alleles that are different
between the parent and the subclone at position i. A distance of one is counted for every
loss or gain of an allele. The total event distance is computed as the sum of the event
distance at every position. P(Ai , j |Ai ,p( j )) is normalized based on the event distance to
all other alleles in the set Q. A pseudocount of one is added to avoid divisions by zero. In
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conclusion, the event distance allows us to distinguish between for example AB or AABB,
which both result in the same LAF measurement.

Following a previously published model, we assume that sequencing noise follows a
Gaussian distribution [35]. This assumption requires that the sequencing depth is larger
than 1000x. We model the overall probability distribution P(L AFi , j |Ci , j ,µ, T̂ ) as a Gaus-
sian mixture model (detailed in Supplementary Methods, see Fig 1D), where the means
are equal to the LAFs resulting from each allele combination in Q, and the noise compo-
nent is estimated from the LAF measurements in the normal samples of our real TGCC
dataset. The interval of the distribution is limited between 0 and 0.5 to adequately model
LAF measurements.

So far, we have only considered a single position i and ignored the fact that a horizon-
tal dependency exists between adjacent measurement positions. To incorporate this de-
pendency, we calculate P( ~L AFc |~Cc ,µ, T̂ ). ~Cc is a submatrix of ~C , containing ~Ci , j , ~Ci+1, j ,
~Ci ,p( j ) and ~Ci+1,p( j ) (see Fig 1F and Fig S3 for a detailed example). ~L AFc is a subma-

trix of ~L AF , containing the LAF measurements corresponding to the positions in ~Cc .
P(L AFi , j |Ci , j ,µ, T̂ ) is first computed for each copy number in ~Cc individually, which are

then multiplied to compute P( ~L AFc |~Cc ,µ, T̂ ). Starting from the first two LAF measure-
ment positions, ~Cc is iteratively shifted across ~C one position at a time. P( ~L AF |~C ,µ, T̂ ) is
calculated by taking the product of all P( ~L AFc |~Cc ,µ, T̂ ).

Computing P(~C | T̂ )

Next, we aim to assign a probability to observing a sequence of copy numbers ~C j in a
tumor subclone j given T̂ . We note that the alleles are more informative for evolutionary
distance than the copy numbers (see Fig S7 and Supplementary Results). For instance,
if the copy number is 2 in two subclones, we may conclude that the subclones are the
same at this position. However, the underlying alleles could be AB and BB, in which case
the evolutionary distance is nonzero.

To incorporate the allelic evolutionary distance in the calculation of P(~C |T̂ ), we can
sum the probability of all alleles that can be generated for a ~Ci , j as:

P(Ci , j |T̂ ) = ∑
q⊂Q

P(q |T̂ ) (5)

However, from computing P( ~L AF |~C ,µ, T̂ ) we already know that one element in Q is
much more likely than others given our LAF measurements. Thus, we reason that it is
possible to approximate P(Ci , j |T̂ ) with the probability of the most likely alleles.

To compute P(~C | T̂ ), we first obtain the most likely alleles corresponding to ~Cc (de-
scribed in Section "Deriving the most likely ~A from a combination of ~C andµ"). For these
alleles, the Finite State Transducer (FST) shown in Fig 1E is used to compute the event
distance that incorporates the horizontal dependency. The FST is used in the MEDICC
algorithm for a similar purpose [13]. In the FST, a distance of one is counted for every
loss or gain of an allele. In addition, no penalty is given when alleles at adjacent AF mea-
surement positions are affected by the same event. P(~C | T̂ ) is calculated as the product
of the event distance computed for each ~Cc using the FST. Since P( ~L AF |~C ,µ, T̂ ) and the
event distance are inversely proportional, P(~C | T̂ ) is computed as the reciprocal of the
total event distance for ~C . Examples of this step are illustrated in Figs 1G and S3.
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Maximizing P(~C ,µ| ~L AF , T̂ )

Finally, the C-step is completed by inferring a combination of ~C and µ for which
P(~C ,µ| ~L AF , T̂ ) is maximized. To achieve this, we exhaustively evaluate the values of µ
between 0 and 1 in steps of 0.01. For everyµ, we vary each copy number in ~Cc from a pre-
defined kmin to kmax and select the copy numbers that maximizeP( ~L AFc |~Cc ,µ, T̂ )P(~Cc | T̂ ).
P(~C ,µ| ~L AF , T̂ ) is computed by taking the product of everyP( ~L AFc |~Cc ,µ, T̂ )P(~Cc | T̂ ). The
~C and µ that overall maximize P(~C ,µ| ~L AF , T̂ ) are selected as the optimal solution. A
more detailed example of how P(~C ,µ| ~L AF , T̂ ) is computed for one Ĉc is provided in Fig
S3.

Deriving the most likely ~A from a combination of ~C and µ
To derive the alleles most likely corresponding to a LAF measurement, we define a thresh-
old at the average value between each adjacent LAF measurement in P( ~L AF |~C ,µ, T̂ ) (Fig
1D). We note that our model is unable to differentiate between the alleles AA and BB.
As a result of the low abundance of proximate measurements generated with targeted
sequencing, it is not possible to accurately phase alleles. Thus, when computing the
horizontal dependency, there is no guarantee that allele A at position i is on the same
haplotype as allele A at position i+1. Therefore, the method will always select the com-
bination with the highest number of B alleles in such ambiguous scenarios.

T-step
Reconstructing T
To reconstruct the evolutionary tree T of sampled subclones using the inferred alleles
(see Fig 2A for an example of T), we assume that the optimal tree has a minimum event
distance between all subclones in the tumor, and thus corresponds to the minimum
spanning arborescence (MSA) [13]. Sample by sample distance matrices are generated
to describe to relationship between each pair of subclones. The distance matrix D A (Fig
2B) is constructed by calculating the allelic event distance between all combinations of
subclones using the FST (Fig 1E). Distance matrix DS describes the distances based on
somatic SNVs, and initially only contains a value of 1 to indicate that a parental relation-
ship is possible. The values in both matrices may be penalized as discussed below. As
the distances based on alleles and somatic SNVs must both agree on a relation between
subclones, matrices D A and DS are multiplied to generate the final distance matrix DF .
This final distance matrix is used as input to Edmonds’ algorithm, which infers an MSA
[36].

The inferred alleles and the measured somatic SNVs provide additional information
that we can use to restrict or resolve the relations between subclones in the tree.

Restricting and penalizing T̂ based on LOH - Edges in T̂ can be restricted based
on regions with loss of heterozygosity (LOH), as re-gaining lost alleles is highly unlikely
(Fig 2C). By default, we consider LOH to be present in a subclone when at least 10 con-
secutive LAF measurements are smaller than 0.3, and either of the parental alleles has

been estimated as lost in ~̂A. Both settings can be changed by the user if necessary. In
Fig 2D, an example is shown where the LAF measurements are not smaller than 0.3. In
this scenario, we cannot confidently decide whether the region shows LOH and that the

percentage of normal admixture is high, or if ~̂A is incorrect. Thus, rather than restricting
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Fig. 2. (A) Example of the true T for 6 hypothetical subclones. (B) Distance matrices reconstructed from the
event distance based on alleles (D A ) and somatic SNVs (DS ). ’X’ indicates that a subclone cannot be the parent
of another subclone. (C) and (D) Edges can be restricted or penalized based on LOH. Each row in the matrix

represents a measurement position on the genome. The measured LAF and the ~̂A inferred by TargetClone are
shown in separate columns. A grey color represents a balanced situation, orange allelic imbalance, and red
LOH. The first two measurements are not shown in the tree in panel (A). (E) If different parental alleles are lost,
edges can be restricted. The ground truth alleles are AA in the grey subclone, but TargetClone will report the
alleles as BB. (F) Edges can be penalized if the loss of somatic SNVs is unlikely. (G) Example of the MSA for the
subclones shown in (A). The red cross indicates that an edge in the MSA is removed when resolving the ISA.
The dashed line indicates a newly added edge after resolving the ISA.

an edge between the subclones, we add a penalty P A to the current value in D A .
Restricting T̂ based on the loss of different parental alleles - Relations between sub-

clones can also be restricted based on AF measurements. If two subclones contain LOH
and have lost a different parental allele, the first subclone cannot be the parent of the
second subclone and vice versa (Fig 2E). Although TargetClone cannot distinguish be-
tween the parental alleles, we consider a different parental allele to be lost when the AF
is lower or higher than 0.1 and 0.9, respectively. These default values may be changed by
the user.

Restricting T̂ based on somatic SNVs - The edges between subclones can also be
restricted based on the measured somatic SNVs. One assumption is that somatic SNVs
are typically not lost, unless the allele that these are present on is also lost. If no evidence
is present of a lost allele (Fig. 2F), we assign a penalty PS to these types of relations.

Resolving the ISA by editing the MSA - It often occurs that a MSA is obtained that
violates the ISA (Fig 2G). Based on the minimum distance assumption, we reason that
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it is possible to use the MSA as a starting point, and perform edit operations until the
ISA is no longer violated. To this end, under the assumption that subclones should differ
minimally from their parents, we expect that the edge in which the most somatic SNVs
are introduced is most likely spurious. In case of a tie, a random edge is selected from the
spurious edges. Our method iteratively removes the selected edge from the tree and re-
runs Edmonds’ algorithm on all remaining possible edges between all subclones to infer
a new tree until the ISA is resolved. By default, 50 updated trees are generated from the
starting MSA, from which the tree with the lowest allelic distance between all subclones
is selected as the final solution. 50 trees are explored to prevent the method from getting
stuck in a local maximum and thus increases the likelihood that the method generates
the same tree for each run.

There are situations in which the ISA may not hold, for example in scenarios where
somatic SNVs are drivers of tumor evolution [37], and are therefore expected to indepen-
dently recur in independent subclones. For this reason, if the ISA cannot be resolved, the
edited tree with the fewest violations of the ISA and lowest total distance will be reported.
The total distance is computed by taking the sum of all edge weights in the tree, which
are obtained from the final distance matrix DF . Furthermore, we allow the user to select
somatic SNVs to be excluded from analysis with TargetClone. Furthermore, the final top
10 trees are visualized using the Bokeh plotting library [38], as described in the Supple-
mentary Methods.

Simulation data
Generation of simulation data
Starting from a healthy, diploid cell, we formed subclones with new somatic SNVs and
CNVs for 4 rounds (see Supplementary Methods and Fig S4 A for details on how the sim-
ulated data is created). On average, 5 samples are generated, including the healthy cell.
The relations between the subclones and precursors decide the ground truth T. All gen-
erated subclones and precursors were sampled, which were assigned the same tumor
fraction. Selecting the same tumor fraction allows us to additionally test what the ef-
fect is of each tumor fraction individually on the performance. In total, per sample, 500
AF/LAF and 50 somatic SNV measurements were generated based on the simulated so-
matic SNV and CNV profiles to model targeted sequencing data. These measurements
were assigned randomly to each chromosome arm, but each chromosome arm on aver-
age has an equal number of SNPs.

In our TGCC dataset, we assumed that our sequencing noise is Gaussian distributed,
and estimated the standard deviation to be 0.02 in our reference samples. Thus, we se-
lected noise levels of 0.005, 0.01, 0.015, 0.02, 0.025 and 0.03 to represent realistic levels
of noise, and 0, 0.04, 0.06, 0.08 and 0.1 representing more extreme sequencing noise lev-
els to test the limits of the method. By default, TargetClone uses a diploid precursor in
the initial tree T̂ 1. In Section "TargetClone yields high-quality trees", we also explore the
effect on the results if a random precursor ploidy is used.

All results on simulated data discussed in the main text refers to the data generated
as described in this section. In addition, we also generated a more realistic simulation
dataset closely modelling TGCC data. The generation of this data and related results are
discussed in the Supplementary Data.
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Computing the error on the simulation data

EC is the error of ~̂C , which is computed as the absolute distance with respect to the true
~C , which is normalized for the size of ~C . The error in ~̂A, E A , is defined as the average

event distance between ~A and ~̂A across all positions. The horizontal dependency is not
taken into account in the calculation of the error, as we wish to score the error at each

position in ~̂A individually. Eµ, which is the error of µ̂, is computed as the mean abso-
lute error with respect to µ. To test how well ancestry relationships are reconstructed in
our trees, we investigated how often parent-child relations were inferred incorrectly. For
each pair of samples, we computed how often a parent-child relationship was absent in
the inferred tree (false negative) and we also computed how often parent-child relation-
ships were present in the inferred tree, but not in the ground truth tree (false positive).
The total tree error, ET , is calculated as the sum of the number of false positives and false
negatives, which is normalized by the total number of sample pairs. The error calcula-
tion formulas are provided in the Supplementary Methods.

Results
Simulation data results
To test TargetClone on realistic data for which the ground truth is known, we generated
101 simulation datasets as described in the methods section. Fig 3A-D shows the error
of inferring ~C , ~A, µ and T across the simulations as a function of sequencing noise. The
grey shaded areas indicate the mean of the error and 95% confidence interval obtained
by running TargetClone on 101 simulation datasets with random data. In each random
dataset, a different µ between 0 and 1 was selected. The same AF and somatic SNV mea-
surement positions as in the non-random simulation datasets were selected. At each AF
and somatic SNV measurement position, a random AF and somatic SNV measurement
between 0 and 1 was selected. As a result, they provide a reference error rate based on
the performance of the method by random chance.

TargetClone yields high-quality trees

The error profile of ~̂C and ~̂A reveals that the inference of copy numbers and alleles is
highly accurate, in particular in the range of realistic sequencing noise levels. The error
rate increases as sequencing noise increases, ultimately reaching the error rate expected
by random chance for very high noise levels. The inference of µ is more robust to se-
quencing noise, indicating that the LAF measurements are still sufficiently informative
to estimate µ correctly despite the increase in noise level. Noteably, the error rate of pre-
dicting µ correctly by random chance has larger confidence intervals, which results from
µ estimates always being in the range of 0.7 - 0.91 in each simulated dataset. Thus, since
all µ between 0 and 1 are tested, the error decreases as the true µ of the dataset increases,
particularly showing low error rates when the true µ lies within this range of estimated
µ.

In Fig S5 we show that re-running TargetClone yields approximately the same results.
To assess the quality of the solution for different initializations, we repeated the op-

timization for random starting trees (T̂ 1). In these random trees, the relationships be-
tween all subclones were selected randomly. For each subclone that was selected as a
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Fig. 3. (A-D) The error of inferring ~C , ~A, µ and T as a function of sequencing noise. For every noise level, the
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(ground truth) compared to the tree inferred by TargetClone. The red arrows indicate incorrectly placed edges.

parent in the random tree, the ploidy of the alleles were selected randomly, which are
normally diploid. Fig S6 shows that very similar results are obtained, demonstrating ro-
bustness for the initialization of the optimization.

In Fig S7 and the Supplementary Results, we show that combining alleles and so-
matic SNVs, together with resolving the ISA, yields the largest benefit in reconstructing
the trees as compared to when the trees are reconstructed with alleles, copy numbers
or somatic SNVs individually. We additionally show that the number and distribution of
SNP measurements and the number of measured SNVs does not significantly affect the
quality of the inferred copy numbers, alleles and tumor fraction (Supplementary Results,
Fig S8 and Fig S9).

Fig 3E shows an inferred tree with two differences with respect to the ground truth
tree. Relations B-C and B-F are missed in the inferred tree (false negatives), and rela-
tions C-B, C-E, C-D, C-G, C-H and C-I are introduced (false positives). The total number
of sample pairs in this tree is 45, and thus the error rate of this tree would be 8/45 = 0.18.
For realistic noise levels, the mean tree error obtained by TargetClone is approximately
0.1. (Fig 3D, see Fig S10 for a figure showing the false positive and false negative rates
independently). Clearly, trees with so few errors are useful to investigate subclonal de-
velopment and yield similar conclusions, despite the few differences with respect to the
ground truth.

Tumor fraction is a determinant of error rate
Fig 4A and Fig S11 show that robust performance is measured at realistic and common
tumor fractions in microdissected samples [39–41]. For lower tumor fractions, a higher

error rate for ~̂C and ~̂A is obtained than for high tumor fractions. Thus, a high amount
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of healthy cell contamination, which pushes the LAF measurements towards 0.5, obfus-
cates information about the tumor subclone. Furthermore, the estimation of T is more
accurate at realistic tumor fractions. In short, obtaining high sample tumor fractions
benefits subclonal reconstruction accuracy, further justifying the advantage of microdis-
sections.

Ambiguous alleles can be correctly resolved
Many combinations of alleles and tumor fraction give rise to the same LAF. For example,
both allele combinations AABB and AB for a µ of 0.5 give rise to a LAF measurement of
0.5. Thus, the exact allele at such a position is impossible to derive based on the LAF
measurement of that position alone, and hence is considered ambiguous. In our simu-
lation data, for which the ground truth alleles are known, on average 75% of simulated
alleles are ambiguous (Fig 4B).

To investigate the effect of these ambiguities, we aimed to demonstrate how well our
method is able to resolve the correct allele. Interestingly, TargetClone is able to infer
the correct alleles for around 80% of these ambiguous positions. In part this is due to
the assumption of vertical dependency, which ensures alleles in ~A are chosen that min-
imize the event distance to its parental subclone. To investigate the importance of the
presence of the vertical dependency in a dataset for resolving ambiguities, we computed
how often the allelic event distance between a subclone and its parent is larger than the
distance to any other subclone in a tree. We correlated these values with the number of
unresolved ambiguities in the same subclones, and found a Pearson correlation coeffi-
cient of 0.23. Thus, we conclude that the ability of TargetClone to resolve ambiguities is
not significantly affected by cases where the vertical dependency between the subclones
is not as strong.

Second, LOH regions are informative of µ, and as a result greatly restrict the num-
ber of possible alleles. For example, a LAF of approximately 0.33 can be measured in a
sample with a tumor subclone with alleles ABB or ABBB at one position with tumor frac-
tions of 0.9 and 0.5, respectively. However, if LOH is present at another position, where a
LAF of for example 0.09 is measured, the ambiguity is resolved, as this LAF measurement
cannot be obtained with a tumor fraction of 0.5 at realistic sequencing noise levels.

It is also important to note that errors in ~̂A resulting from measurement ambiguities
may not necessarily negatively affect T̂ . For example, if the measured LAF is 0.5, it may
be explained by multiple combinations of ~A and µ, such as AABB or AB with a µ of 0.5.
However, the event distance between two subclones does not change if the alleles are
inferred to be AB in both subclones instead of AABB, and thus, no effect is observed on

T̂ even though an error is made in ~̂A. In conclusion, we showed that the assumptions
made in our model are sufficient to resolve measurement ambiguities.

TargetClone can reconstruct trees for polyclonal samples
To investigate the effect of multiple co-existing subclones in a sample on the perfor-
mance of TargetClone, we generated additional simulation datasets with a sequencing
noise level of 0.02. The µ of these datasets was fixed at 0.9. As is shown in Fig 4A, the
error rates of the method are low with relatively small confidence intervals at this µ, thus
allowing us to test the influence of polyclonality at a realistic µ that itself does not largely
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influence the results. Each simulated sample consists of one major subclone (at least
50% of the total tumor content), and increasing levels of contamination from random
other subclones from the same tumor. We observe that the inference of ~C , ~A, µ and T is
robust to increasing number of subclones (Fig 4C and Fig S12). For T, the error rate at
a contamination level between 40 and 50% is as low in samples containing 5 subclones
(4 minor subclones contaminating around 10%) as in samples containing 2 subclones
(major and minor subclone both present in around 50%). Thus, reducing the total level
of contaminating minor subclones yields higher performance improvement than reduc-
ing the number of contaminating subclones, which is consistent with our assumption
that samples require one major tumor subclone. It has been shown that in practice, mi-
crodissected samples can most often indeed contain one major subclone, with relatively
small contamination of minor subclones [23].

Fig. 4. (A) Mean of the error rates and 95% confidence intervals as a function of different tumor fractions at
a sequencing noise level of 0.02. Every µ was tested once. (B) The blue line shows the average fraction of
ambiguous alleles that are present in 101 simulated datasets, each with a different tumor fraction between 0
and 1. The orange line indicates the mean and 95% confidence intervals of resolved ambiguities, normalized by

the size of ~̂A. (C) Mean of the tree reconstruction error rates and 95% confidence intervals as a function of the
number of subclones in the sample. A total of 100 simulations were performed for each number of subclones,
for each of which a noise level of 0.02 and µ of 0.9 was selected. Each line shows the total percentage of the
contaminating minor subclones in each sample. Every contamination percentage within the shown range was
tested once.
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Real data results
We applied TargetClone to samples from 4 patients with TGCC (NS) with intrinsic re-
sistance to chemotherapy. Multiple histological components were microdissected from
each tumor (Fig S2), which were subjected to targeted sequencing [23]. In total, each
patient has 9, 6, 18 and 10 samples, with 15, 43, 32 and 31 measured somatic SNVs, and
427, 420, 435 and 407 AF measurements (in patient T6107, T6108, T3209 and T1382, re-
spectively).

The sequencing depth is 1000x on average. Since no ground truth is known for the
development of these specific tumors, the results are compared to knowledge previously
described in literature (Fig 5A). In summary, TGCC are expected to start development
from a tetraploid precursor GCNIS (referred to as CIS in sample names). GCNIS can fur-
ther develop into NS, which may consist of multiple histological components, includ-
ing Embryonal Carcinoma (EC), Yolk Sac Tumor (YST), Teratoma (TE) and Embryonal
Bodies (EB) [33, 42, 43]. It has been shown that TE and YST can only develop from EC
[33, 44, 45].

Based on this knowledge, we defined that in the initial tree T̂ 1, the parent of every
subclone is a tetraploid cell, rather than a healthy, diploid cell. Fig 5 shows the inferred
subclonal evolution tree for 2 patients, T6107 (Fig 5B) and T618 (Fig 5C). The trees re-
constructed for the other 2 patients are shown in Fig S13A (T3209) and Fig S13B (T1382).
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Fig. 5. (A) Expected development of TGCC based on knowledge described in literature. (B) Tree reconstructed
by TargetClone for T6107. (C) Tree reconstructed by TargetClone for T618. A few events have been annotated
to show the relations between samples. In (B), LOH at chromosome 22q is colored in blue and red to indicate
that a different parental allele has been lost. A thicker line indicates that a larger number of events is intro-
duced in the subclone. (D) Tree reconstructed by TargetClone for P1 of the ovarian cancer dataset. The two
sample groups are placed in two clusters, as highlighted in yellow and blue. A description of how the trees are
visualized can be found in the Supplementary Methods.

On average, the trees for the real data were reconstructed in 30 minutes on 1 CPU
core with 12GB of memory.
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Case 1: T6107
Fig 5B shows that the predicted evolution tree of T6107 closely resembles the predefined
expectations in Fig 5A. Interestingly, samples MET53 and EC21 are correctly placed in
different branches. Both samples contain LOH at chromosome 22q, but from the AF it
becomes clear that a different parental allele has been lost and thus there exists no direct
relation between these samples. Sample MET53 is predicted to have formed from the
early precursor CIS30. Sample MET53 lacks all somatic SNVs that have been measured
in samples other than CIS30 and FCIS31, and contains a unique pattern of LOH.

The placement of sample YS40 does not correspond to the expectations, as YST can
only originate from EC. Nevertheless, YS40 lacks one somatic SNV compared to the EC
and TE samples, and thus the ISA cannot be resolved if YS40 is placed elsewhere. As an
explanation, it is likely that an unsampled EC subclone existed after FCIS31, which gave
rise to YS40, EC21 and the other EC and TE samples.

Case 2: T618
Fig 5C shows the inferred tree for patient T618. CIS is expected to develop into BCIS,
which in turn develops into FCIS. FCIS can then develop further into the histological
components of NS. From the data, we note an indication that a different parental allele
may have been lost at chromosomes 11 and 22 in BCIS28 and FCIS27 and the primary tu-
mor (NS). Thus, it is likely that an unsampled precursor exists that branched into CIS29,
FCIS27 and into BCIS28, which then further developed into NS. In our result, sample
CIS29 is instead predicted to develop from BCIS28 for two reasons. First of all, LOH
is not detected by the model on chromosomes 11 and 22 in BCIS28 and FCIS27 as no
10 consecutive measurements support that LOH. Finally, CIS29 contains additional so-
matic SNVs that have not been measured in FCIS27 and BCIS28. The primary tumor (NS)
has acquired additional mutations, and independent runs of the primary tumor sample
(NS48, NS30, NS75) are placed at the bottom of the tree as expected.

The choice of precursor ploidy influences the quality of T̂
No proof yet exists for the assumption that TGCC are initiated by genome duplication. To
further investigate this question, we also reconstructed evolutionary trees for our TGCC
cases with an assumed diploid precursor (Fig S14). The reconstructed tree for T3209 does
not follow the biological expectations very well, as sample TE86 cannot be the precursor
of EC samples. The total distance between all subclones is higher in the trees generated
with a diploid precursor (294, 1054, 3473, 1213 with a diploid precursor and 227, 657,
578, 943 with tetraploid precursor in T618, T6107, T1382 and T3209, respectively). Al-
though the tree for T1382 could not be reliably reconstructed due to high numbers of
unsampled subclones and high levels of sequencing noise, and for T618 only a limited
number of samples was sequenced, more support is obtained for the assumption that
TGCC develop after a duplication of the diploid genome. Although no hard conclusions
about precursor ploidy can be drawn from this limited set of samples, the observation
that higher distances are obtained and that biological assumptions can be violated when
a different initial ploidy is selected, highlights the importance of choosing the correct
precursor ploidy. If the ploidy of the precursor is not known, we recommend selecting
the ploidy for which the minimum total distance between all subclones in the final tree
is reported.
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A comparison of TargetClone to existing methods on targeted sequencing data
Finally, we aimed to determine how TargetClone compares to existing tools to recon-
struct subclonal evolution trees on targeted sequencing data with microdissected sam-
ples. This comparison is challenging, as no method exists that is specifically designed to
work with targeted sequencing data from microdissected samples. For this reason, we
performed the comparisons under the assumption that one tumor subclone is present
per sample. In our comparison we included PhyloWGS, which is currently the only
method that combines SNVs and CNVs to infer evolutionary trees (see Fig S1), thus mak-
ing it the most suitable method to compare with TargetClone. Second, we selected the
SNV-only method LICHeE, which infers trees from cellular prevalences estimated with
PyClone [46]. Third, we ran LICHeE directly on VAFs to demonstrate the effect of includ-
ing cellular prevalences. Details on the settings of these methods are described in the
Supplementary Methods.

The trees inferred by PhyloWGS, PyClone + LICHeE and LICHeE are provided in Figs
S19-S21. Inspection of these trees (described in detail in the Supplementary Results) re-
veals that none of these trees match with the established knowledge on TGCC develop-
ment. PhyloWGS appears to miss many subclones and LICHeE fails to detect important
relations between subclones that are apparent from LOH patterns. Notably, all of the re-
lations missed by PhyloWGS, PyClone and LICHeE were captured by TargetClone, with
the exception of T1382, for which we cannot make a clear statement about the quality of
the inferred tree due to the large number of unsampled subclones. Thus, we conclude
that the analysis of targeted sequencing data is a difficult task that is not well dealt with
by existing methodology. TargetClone, which is tailored to deal with targeted sequencing
data, does provide insightful trees containing evolutionary relations that are missed by
the currently available tools. These findings are supported by our comparison of Target-
Clone with existing methods on simulated targeted sequencing data, which is discussed
in the Supplementary Results.

TargetClone applied to an ovarian cancer dataset
To determine how well TargetClone performs on another tumor type, we applied it to
8 samples taken from physically separated tumor sites in the abdomen of an ovarian
cancer patient [34]. Although these samples were not microdissected, it is shown in the
original paper that there exist two sample groups with independent clusters of muta-
tions, and a number of samples contain private mutations with VAF > 0.1. Based on
these observations, we expect that the topographic sampling sufficiently reduces het-
erogeneity to major clones, thus providing an additional test case for TargetClone.

In total, 58 somatic SNVs were measured with targeted sequencing and the AF was
measured at approximately 300000 SNP positions using a SNP array. It was previously
observed that sample group 1 (I1, I2, II1, II2) and 2 (IV1, IV2, IV3 and V1) contain two
clusters of mutations that are mutually exclusive, and we thus expect TargetClone to
identify that these groups to have independent origins. Noteably, sample group 2 shares
a number of mutations with group 1. However, the low allele frequencies of these muta-
tions point to likely contamination with other subclones.

TargetClone reconstructs a tree in which both groups are clustered together, match-
ing our expectations (Fig 5C). In conclusion, TargetClone provides useful insight into the
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development of this tumor, even though the data consists of non-microdissected het-
erogeneous samples.

Comparing TargetClone with existing whole genome sequencing-based methods
Finally, we aimed to determine the benefits of running TargetClone on targeted sequenc-
ing data instead of using existing tools applied to WGS data. To do so, we compared the
results of TargetClone on SNP array and targeted sequencing data (Fig 5C) with the result
obtained by PhyloWGS, PyClone coupled with LICHeE (Fig S25), and LICHeE with VAFs
(Fig S26) on WGS data of our ovarian cancer dataset.

PhyloWGS could not infer a tree. The trees reported by PyClone coupled with LICHeE
and LICHeE alone do not capture the relationships between the two sample groups with
mutual exclusive mutations (details in the Supplementary Results). These poor results
are most likely explained by the low read depth (3X on average) of our WGS dataset.
Taken together, we have shown that running TargetClone on targeted sequencing data
does not miss information that is captured by applying existing methods on WGS data.

Discussion
In this article, we described TargetClone, a novel method to infer copy numbers, alleles,
the fraction and subclonal evolution trees of tumors from SNP AF and somatic SNVs
measured in microdissected samples. We demonstrated on simulation data that our
method obtains low error rates for inferring ~C , ~A, µ and T at realistic levels of sequenc-
ing noise and realistic sample tumor fractions. Furthermore, we show that at approxi-
mately 80% of ambiguous LAF measurements the correct alleles are estimated. Existing
algorithms always rely on read depth information, either by requiring that somatic SNVs
are located in copy number-neutral regions, or by directly using CNVs. We have now
demonstrated that in samples that contain at least one major subclone, a combination
of somatic SNVs and AFs can be sufficient to accurately reconstruct copy numbers, alle-
les, fractions and evolutionary trees of tumors. These findings suggest that it is possible
to obtain a good insight into subclonal tumor evolution even if read depth information
is noisy and biased.

A current limitation of our approach is the assumption that purified samples con-
tain only one tumor subclone. We showed that, in practice, TargetClone is not markedly
affected by samples containing more than one subclone, as it still produces trees with
few errors up until on average 20% of contamination with minor subclones. Although
it has been shown that it is possible to obtain samples with at least one major subclone
and limited minor contamination [23], it may not always be known beforehand what the
total percentage of contamination in a sample is. In the future, single-cell sequencing
may mitigate this limitation.

We also note that there are some limitations to the use of the FST. In short, the FST
does not model biological constraints, allowing for example the re-gain of alleles when
inferring the most likely alleles in a subclone. To overcome this, our model limits re-

lations between subclones when inferring T if there is evidence in ~̂A that alleles would
require to be re-gained. A potential alternative would be to adapt the FST to include
restrictions based on biological constraints, removing the need for ad-hoc corrections.
However, we argue that enforcing such restrictions at an early stage in the model would
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reduce the potential to estimate ~A correctly if many subclones were unsampled. Since
the model infers alleles that minimizes the event distance, in such scenarios the inferred
alleles will be more similar between subclones, misrepresenting the actual underlying
allelic composition.

TargetClone currently does not scale to whole exome sequencing data, as our method
infers ~C and ~A for every SNP individually. Runtimes can be reduced by a pre-segmentation
of SNPs into regions with equal AF. Furthermore, resolving the ISA will become more
difficult when a higher number of, potentially noisy, somatic SNVs are measured. We
therefore recommend to either exclude somatic SNVs with low confidence and quality
from reconstructing the ISA, which is provided as an option in TargetClone, or cluster
the somatic SNVs into groups of somatic SNVs that are shared or absent across samples
to reduce the influence of noise.

We employed TargetClone on four TGCC cases and one ovarian cancer case to study
their subclonal evolution. We found that the inferred trees are mostly consistent with
our expectations of the development of these tumors. Thus, the reconstructed trees are
helpful to study relations between tumor subclones, which can assist in gaining insight
into development and progression of the tumor.
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Supplementary Data
Supplementary Methods
Derivations
The goal of TargetClone is to infer the most likely tree T given AF and SNV measure-
ments:

argmax
T

P(T | ~AF , ~SNV ) (6)

We infer the best ~C and µ by maximizing:

argmax
~C ,µ

P(~C ,µ| ~L AF , T̂ ) (7)

Applying Bayes’ rule, we can write:

P(~C ,µ| ~L AF , T̂ ) = P( ~L AF |~C ,µ, T̂ )P(~C ,µ|T̂ )

P( ~L AF |T̂ )
(8)

~C and µ are independent, so:

P(~C ,µ| ~L AF , T̂ ) = P( ~L AF |~C ,µ, T̂ )P(~C |T̂ )P(µ|T̂ )

P( ~L AF |T̂ )
(9)

µ does not depend on T̂ :

P(~C ,µ| ~L AF , T̂ ) = P( ~L AF |~C ,µ, T̂ )P(~C |T̂ )P(µ)

P( ~L AF |T̂ )
(10)

As initially every µ and topology of T̂ is equally likely, we do not need to compute the
probability of observing µ:

P(~C ,µ| ~L AF , T̂ ) ∝ P( ~L AF |~C ,µ, T̂ )P(~C |T̂ )

P( ~L AF |T̂ )
(11)

Finally, the probability of P( ~L AF |T̂ ) is constant with respect to ~C and µ, and we can
thus omit the denominator:

P(~C ,µ| ~L AF , T̂ ) ∝P( ~L AF |~C ,µ, T̂ )P(~C |T̂ ) (12)
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Computing LAF
The LAF measured at position i in subclone j is computed for every element in Q as:

L AFi , j = min(((1−µ)L Ahi +µL Ati ), ((1−µ)LBhi +µLB ti ))

((1−µ)L Ahi +µL Ati )+ ((1−µ)LBhi +µLB t i )
(13)

where L Ahi , LBhi and L Ati , LB ti are the total number of ’A’ and ’B’ alleles at position i in
the healthy cell and the tumor subclone, respectively.

As the total number of ’A’ and ’B’ alleles are always equal to 1 in healthy cells, Eq 13
simplifies to:

L AFi , j = min(((1−µ)+µL Ati ), ((1−µ)+µLB ti ))

((1−µ)+µL Ati )+ ((1−µ)+µLB t i )
(14)

Gaussian Mixture Model
As our model is based on AF measurements, noise is introduced by variation in the read
counts. For WGS data, it has been shown that the read depth can be accurately modeled
using binomial and Poission distributions [47, 48]. As was shown by Hajirasouliha et al
[35], the read depth can be approximated with a Gaussian distribution when the depth
is larger than 1000x, which is typically the case for targeted sequencing data. Therefore,
P(L AFi , j |Ci , j ,µ, T̂ ) is modeled as a Gaussian mixture model:

P(L AFi , j |Ci , j ,µ, T̂ ) =
N∑

n=1
P(qn

i , j )N (µn ,σ) (15)

where N is the total number of possible alleles that can result from Ci , j , P(qn
i , j ) is com-

puted using Eq 4 described in the main text. The means of the component µn are equal
to the LAFs that can be generated from Ci , j . The noise, σ, is estimated from the LAF
measurements in the normal samples of our real TGCC dataset. The interval of the dis-
tribution is limited between 0 and 0.5 to adequately model LAF measurements.

Visualizing T̂

For every T̂ inferred at every iteration of the algorithm, we sum the event distance be-
tween all subclones to obtain a total score. The inferred trees are divided into two groups
based on if the ISA could be resolved or not. All trees are sorted within these groups
based on the total score. To reduce the amount of information in the final output, only
the top 10 trees are reported, where the trees with a resolved ISA are prioritized. The an-
notated events include gained and lost somatic SNVs, and gained LOH. LOH events are
grouped per chromosome arm for clarity. The final visualized output is generated using
the Bokeh plotting library.

Generating TGCC-based simulation data
In addition to a generic simulation dataset, we also generated a simulation dataset based
on the expected development of TGCC (see Fig S4B). Starting from a diploid cell, the
genome is doubled to form a tetraploid precursor. This precursor further develops into
a malignant subclone by acquiring 10 whole chromosome losses, 10 chromosome arm
losses and 20 somatic SNVs in the stated order. The affected chromosomes and chro-
mosome arms are randomly selected without replacement. The somatic SNV positions
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are selected from 36 predefined genomic locations defined based on real observations
in our TGCC sequencing dataset. Finally, the malignant subclone acquires 6 copies of
chromosome 12p, which is a hallmark of TGCC, and is not allowed to be lost in subse-
quent cell divisions. All chromosome (arm) losses, gains and somatic SNVs affect only
one allele.

In the next step, the malignant precursor continues to divide and form a new sub-
clone. Every subclone also has the capability to divide and form a child subclone for a
total of 4 rounds. In each child 8 chromosome arms are gained, 3 chromosome arms are
lost, and 2 somatic SNVs are introduced, in this order. If a loss affects an allele containing
a somatic SNV, the somatic SNV is lost as well. A subclone is considered unviable if the
last allele of a chromosome is lost. In these situations, the subclone is unable to divide
further and is removed from the simulation. This process yields 8 subclones (including
the healthy cell and precursors) on average.

All generated subclones and precursors are sampled. Every sample is assigned the
same predefined tumor fraction. We tested tumor fractions between 0 and 1 in steps
of 0.01. A tumor fraction of 0 was included to show the performance of the method on
cases where the samples contain no tumor fraction, which may for example occur when
it is unclear during sampling if a region contains tumor components or not. Similarly, a
tumor fraction of 1 may not be realistic, but provides a reference for how well the method
would perform in a perfect world scenario. In each sample, we generate AF and LAF
measurements based on the CNV profiles and introduced somatic SNVs. The AF/LAF
measurement positions are selected from the real TGCC data.

Computing the error on the simulation data

The error of ~̂C compared to the true ~C across n measurement positions in m samples is
computed as:

EC = 1

nm

n∑
i=1

m∑
j=1

|Ci , j − ˆCi , j | (16)

To compute the error in the predicted alleles ~̂A, we make use of the event distance as
explained in Section "Computing P( ~L AF |~C ,µ, T̂ )" in the main text:

E A = 1

nm

n∑
i=1

m∑
j=1

ED(Ai , j , ˆAi , j ) (17)

Similarly, the error of µ̂ for m samples is computed as:

Eµ = 1

m

m∑
j=1

|µ j − µ̂ j | (18)

The error of T̂ is computed as the ratio of false positive and false negative sample
pairs, as described in the main text.

Supplementary Results
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Combining alleles and somatic SNVs improves performance
To test if the way in which TargetClone combines somatic SNVs and allele information
improves performance, we compared our results to results obtained with distance matri-
ces computed from other data types (Fig S7). In these tests, the MSA was inferred in one
method iteration, without attempting to resolve the ISA. For copy numbers, the distance
matrix was reconstructed by computing the absolute distance between the inferred copy
numbers, incorporating the horizontal dependency, which is detailed in MEDICC. For
the alleles, we computed the event distance using the FST shown in Fig 1E. For somatic
SNVs, the distance between samples was set to 1 if a relation is possible, or a penalty
was assigned if a relation is unlikely as is detailed in Section "Reconstructing T" (Fig 2B).
Finally, a distance matrix was also generated by computing the Euclidean distance be-
tween the LAF measurements.

We observe that trees based on allele information exclusively are slightly better than
those inferred from only copy number information. Both perform much better than
trees inferred from somatic SNVs only, and yield a further improvement in error rate
compared to trees inferred using the Euclidean distance computed directly on the LAF
measurements. However, the error obtained by TargetClone is lower than any other
method. This result demonstrates that the combination of distance metrics based on
alleles and somatic SNVs, including resolving the ISA, improves tree reconstruction ac-
curacy.

The number and distribution of measured SNPs does not significantly influence per-
formance
To assess the effect of the number of measured SNPs, we ran additional simulations in
which the number of SNPs was increased between 100 and 50000. As TargetClone was
not designed to handle such a large number of SNPs, we segmented the run with 50000
SNPs to chromosome arms and assigned 1 SNP to each arm. A µ of 0.9 was selected for
each dataset as the error is low at this tumor fraction in the simulation data and thus it is
easier to determine the effect of the number of SNPs. We removed all somatic SNVs from
the datasets to avoid potential bias from SNVs during tree reconstruction. Fig S8 shows
that the number of SNPs does not have a signficant effect on the performance of Target-
Clone. Furthermore, as the SNPs are distributed randomly in each simulated dataset, we
can observe from the small confidence intervals across the increasing number of SNPs
that the effect of the distribution of SNPs is small. In addition, we show in the Results
that the results of our generic simulations (with 500 randomly distrubted SNPs) differs
minimally from our results obtained with a TGCC-based simulation (450 SNPs at fixed
positions). Thus, we conclude that the effect of the number of distribution of SNPs on
the performance of TargetClone is minimal.

The number of measured SNVs does not significantly influence performance
To test if TargetClone performs better with a specific number of measured SNVs, we per-
formed additional simulations in which the number of measured SNVs was varied be-
tween 10 and 10000 SNVs. We selected a µ of 0.9 and a noise level of 0.02. We see no sig-
nificant change in the performance of TargetClone as the number of input SNVs change
(Fig S9), showing that TargetClone is robust to different numbers of somatic SNVs.
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The TGCC-based simulations yield similar results to the generic simulations

In Fig S22, we show the mean error and 95% confidence intervals for inferring ~C , ~A, µ
and T in our TGCC-based simulation dataset. The grey shared area shows the mean
error and 95% confidence interval for a 100 simulation datasets where the LAF measure-
ments and somatic SNV measurements were assigned a random value between 0 and 1.
Interestingly, the error rates differ minimally from the error rates obtained in the generic
simulation dataset. Furthermore, these results show that TargetClone is capable of accu-
rately inferring tumor evolution despite the initial duplication to a tetraploid precursor,
and the assumption of tetraploidy in the initial tree T̂ 1.

A comparison of TargetClone to existing methods on targeted sequencing data
First, we corrected the read depth of our TGCC samples using the amplicon sequencing
correction methods in CNVKit [49]. However, the segmentation immediately shows that
even after such corrections, it remains difficult to properly detect copy numbers from
our read depth data (Fig S15). In addition, the number of measurements is small and
there exists a lot of variation between adjacent measurements, complicating finding a
good segmentation.

We attempted to use ASCAT to estimate ~C and µ [50]. However, ASCAT failed to out-
put copy numbers for all but 3 of our 42 samples (Fig S16). We then used THetA2 on
the read depth corrected by CNVKit and the SNP AF to generate ~C and µ estimates as-
suming 1 tumor subclone per sample [51]. THetA failed on sample EC80 of T6107, NS30
and NS48 of T618 and EC22 of T1382. In Figs S17 and S18 we show a comparison of the
copy number estimates between THetA and TargetClone for the most notable results.
For sample EC70 of T6107, THeTA estimated a copy number of 0 for chromosomes 12,
15, 18, 21 and 22 with a normal contamination percentage of 0% (Fig S17B). However,
with LAF measurements > 0.2 at all of these chromosomes, and somatic SNVs present
with a VAF > 0.1 at chromosomes 12 and 15, it seems unlikely that the copy number is
truly 0 (Fig S17C). A similar situation can be observed for sample TE74 of T3209. Here,
THetA inferred a copy number of 2 everywhere but at chromosome 17 (Fig S18B). How-
ever, looking at the raw measurements (Fig S18C), we again do not see clear evidence for
these results in the data. The copy numbers reported by TargetClone generally match the
raw measurements profile more closely. Overall, the copy numbers are more closely dis-
tributed around a copy number of 4, which matches the assumption that TGCC develops
by first duplicating to a tetraploid genome.

Although comparingµ is difficult as no ground truth is known, we see a few examples
where µ is estimated to be 1 by THetA (Fig S16). For example, for sample EC70 of T6107,
if the copy number were truly 0 at chromosome 12 with a µ of 1, the expected AF of the
somatic SNVs would be 0, rather than 0.1 (Fig S17C).

The µ estimated by THetA were used as input to CNVKit to obtain estimates of major
and minor copy numbers for the tumor component in each sample. We used these major
and minor copy numbers together with somatic SNVs to run PhyloWGS and PyClone.

To make the comparison with PhyloWGS as equal as possible to TargetClone, we as-
sumed that each sample contained 1 tumor subclone and set the cellular prevalence
for each CNV equal to the sample µ estimated by THetA. All somatic SNVs that are not
shared between all samples had to be excluded from analysis with PhyloWGS. We used
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4 chains to run PhyloWGS and the default configuration for PyClone. When running
LICHeE, the minimum present VAF was set to 0.0001, and the maximum absent VAF to
0.9999.

Samples for which THetA could not infer a ~C and µ (Fig S16) are not reported in the
PhyloWGS and PyClone-based trees.

In Fig S19, we show the trees inferred by PhyloWGS. In short, these trees do not match
our biological knowledge of TGCC development. The reported tree for T3209 is unlikely
as it consists of 3 tumor subclones, while at least 5 different histological elements were
sampled for this tumor. For T618, the expected development of FCIS from CIS through
BCIS is not reflected in the tree. Additionally, many somatic SNVs are present in sample
NS75 only, but the only reported subclone that is unique to NS75 gains only 1 somatic
SNV. For T1382 and T6107, PhyloWGS was unable to infer a tree.

Fig S20 shows the results of coupling LICHeE with cellular prevalences estimated by
PyClone. Interestingly, PyClone reports only 3, 3, 4 and 4 subclonal clusters for T3209,
T6107, T618 and T1382, respectively, which is fewer than expected for T3209 and T6107
given that we sampled more histological elements than the reported number of sub-
clonal clusters for each patient. For all patients, we see that important relations based on
LOH are missed. For T1382, samples MET32, MET35, MET30 and MET32 share LOH on
chromosome 6q, 11q and 14q, but this relationship is not visible in the tree. For T6107,
LICHeE misses expected relations between the CIS/FCIS and EC samples.

In Fig S21, the results are shown of running LICHeE on VAFs. For T3209, the relation
between all samples other than CIS32 and CIS73 based on LOH on chromosomes 4, 14,
15 and 22 is not captured. For T618, samples NS30, NS48 and NS75 are predicted by
LICHeE to have independent origin, but these samples share LOH on chromosomes 9q
and 22. All metastasis samples of T1382 are inferred to have originated independently
from a healthy cell, while in reality these samples share at least 13 somatic SNVs.

A comparison of TargetClone to existing methods on simulated data
In addition to real data, we also tested how TargetClone compares to existing methods on
simulated data where a ground truth is known. We ran these comparisons on simulated
data based on our TGCC data, which resemble targeted sequencing data more directly
than our generic simulations. As was shown in Section "The TGCC-based simulations
yield similar results to the generic simulations", the results we obtained on this dataset
minimally differ from the results on the generic simulations, and we thus reason that our
TGCC-based simulation data is suitable enough to compare methods on.

Since our simulation data do contain ground truth copy number information, it is
possible to compare with methods that rely on copy number information and/or so-
matic SNVs. As MEDICC, a copy number based method, also uses a FST, it is interest-
ing to see how our model compares to this work. From the existing somatic SNV-based
methods listed in Fig S1, 4 methods (PhyloSub, AncesTree, CITUP and LICHeE) are able
to reconstruct trees from SNVs in multiple samples. As all of these methods are based
on similar principles related to somatic SNVs and no previous study has compared the
performance of all 4 methods, we limited our comparison to LICHeE.

To make the comparison fair, we generated a simulation dataset without sequencing
noise and normal cell contamination, as the copy numbers used as input to MEDICC do
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not contain noise and are also not affected by tumor content. For LICHeE, we considered
somatic SNVs with a frequency < 0.001 as absent, and a frequency > 0.999 as germline.
TargetClone was run with a precursor ploidy of 2.

In contrast to TargetClone, MEDICC and LICHeE reconstruct trees in which all sam-
ples are placed at leaf nodes, and thus comparing the resulting trees directly, e.g. by
computing the edit distance, is not informative. To enable a meaningful comparison, we
therefore converted each tree to a distance matrix and compared the ranked correlation
of the distances with the distance matrix of the ground truth tree. For LICHeE, we com-
puted the pairwise distance between samples as the sum of the edge weights across the
shortest path between these samples. MEDICC provides a distance matrix based on the
CNVs, which we used directly to obtain pairwise sample distances. For TargetClone, we
used the distances obtained from distance matrix Ad (see Fig 2B)).

We argue that, if the distance between two samples in the ground truth tree is small,
a small distance should also be observed in an inferred tree if the samples are placed
correctly. We first ranked each pairwise combination of samples in the ground truth
tree by their allelic distance (from matrix Ad ). For each tested tool, the sample pairs
were ordered according to this ranking, and the ranked distances were correlated with
the ground truth (Fig S23). We see that the distances inferred by TargetClone correlate
with the ground truth better than the trees reported by MEDICC and LICHeE. Noteably,
in contrast to the ground truth, LICHeE and MEDICC often report a larger distance be-
tween the precursor, Germ Cell Neoplasia In Situ (GCNIS) and pre-GCNIS than between
GCNIS and its child subclones, resulting in a negative correlation (see Fig S24 for an ex-
ample). These results do not imply that MEDICC and LICHeE generally perform badly,
but that these methods are less suitable to our specific case.

Comparing TargetClone to existing whole genome sequencing-based methods

To demonstrate the possible benefits of using TargetClone on targeted sequencing data
instead of existing methods on WGS data, we used our ovarian cancer dataset, for which
both data types are available. We downloaded the aligned BAM files (hg19) and first
merged these per patient and filtered unmapped reads using samtools [52]. The sample
names in the read groups were corrected using Picard tools [53]. The resulting BAM files
were sorted and indexed using samtools. Notably, the reported average read depth of
the samples is 3x. SNPs (no indels) were called using samtools mpileup coupled with
bcftools call of samtools. These SNPs were filtered for minimum read depth of 30, max-
imum read depth of 100 and minimum RMS mapping quality of 20 using varFilter of
vcfutils of samtools. We ran CNVKit in WGS mode coupled with THetA as described in
Section "A comparison of TargetClone to existing methods on targeted sequencing data"
to estimate major/minor copy numbers. THetA could not infer a ~C andµ for samples IV3
and V1.

We used Strelka to call somatic SNVs on autosomes and sex chromosomes [54]. These
SNVs were filtered for lowEVS or lowDepth. As the runtime of PhyloWGS increases lin-
early with the number of somatic SNVs, we initially limited the number of SNVs in the
PhyloWGS parser to 5000, which did not complete within reasonable time. Thus, we fur-
ther reduced the number of SNVs to 1000. For PyClone and LICHeE we used the same
settings as discussed in Section "A comparison of TargetClone to existing methods on
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targeted sequencing data".
PhyloWGS was unable to infer a tree. Notably, PyClone identifies 3 subclonal clusters,

but running LICHeE on the estimated cellular prevalences results in a tree in which all
samples originate from the same precursor subclone (Fig S25). Running LICHeE on VAFs
similarly results in a tree in which all samples directly originate from the germline sample
(Fig S26).

We believe that a main reason why the existing WGS tools do not output expected
results is related to the low read depth in our dataset. In conclusion, these results show
that it may be beneficial to use targeted sequencing coupled with TargetClone in cases
where the read depth of WGS analysis is low.

Supplementary Figures
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Fig. S1. (A) Existing methods that can decompose subclones from mixed samples and/or reconstruct sub-
clonal evolution trees. For each method, it is listed which data types are used and if trees are reconstructed or
not. As this paper focuses on mixed samples, single-cell-based methods have been omitted from this overview.
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Fig. S2. Example of microdissections applied to our real data case of testicular germ cell cancer (nonsemi-
noma) [23]. (A) H&E staining (original magnification x 2) of a section from T3209 showing the complexity
of this primary testicular mixed germ cell tumor. The major tumor component in this section is solid and
glandular embryonal carcinoma (EC), with in between highly vascular mesenchymal teratomatous tissue with
scattered epithelial structures (T), small areas of yolk sac tumor (YST) and trophoblastic giant cells (TGC).
Larger areas of teratoma and yolk sac tumor are present in adjacent sections of this case. A so-called embryoid
body (EB), comparable to a day 10-human embryo, derived from a single embryonal carcinoma cell, is present
in the encircled area, and shown at higher magnification in panel (B). Pictures taken from PALM-assisted pu-
rification of tumor cells from frozen tissue sections, visualized by direct alkaline phosphatase reactivity, are
shown in panels (C) and (D) (before purification), and (E) (during purification).
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Fig. S3. Toy example calculation ofP(~C ,µ| ~L AF , T̂ ) for one ~Cc , thus with two samples and two measurements.
(A) We start with estimates of ~Cc and µ given the LAF measurements and an initial tree where the parent of
each sample is diploid. (B) Computation of P( ~L AF |~C ,µ, T̂ ) for one ~Cc . In step 1, we compute the probability
distribution for the current µ estimates, which are 1 and 0.5, and each copy number in ~Cc , which are 2 and 1,
respectively. An example of how the probabilities are computed is detailed in Fig. 1. In step 2, we obtain the
actual probabilities that would be assigned to the measured LAF for these C in ~Cc and µ. All four values in ~Cc
are multiplied to obtain the final probabilities. (C) Computation of P(~C |T̂ ) for one ~Cc . In step 3, we use the
known LAF measurements to derive from the probability distributions of step 1 what the alleles would be. In
step 4, we compute the event distance based on the alleles corresponding to ~Cc as derived in step 3. Under
the horizontal dependency assumption, the FST will compute an event distance of 1. The total probability is
computed as 0.5. (D) In step 5, P(~Cc ,µ| ~L AFc , T̂ ) is computed by multiplying the probabilities obtained at step
2 and step 4.
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Fig. S4. Generation of simulation data for (A) the generic simulations and (B) the TGCC-based simulations.
Unviable subclones are not allowed to continue through further cell divisions. The final remaining subclones
at cycle 4 are sampled to generate input for TargetClone.
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Fig. S5. Re-running TargetClone 100 times on the same simulated dataset gives approximately the same
results. For each simulation re-run, we computed the difference to the error of all other re-runs, of which the
average is reported in the figure. The tumor fractions differ more often between re-runs than ~C , ~A and T , but
the low average difference indicates that this happens in a minimum number of re-runs.
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Fig. S6. Mean of the error and 95% confidence intervals for ~̂C , ~̂A, µ̂ and T̂ in the simulated datasets where a
random tree was used as T̂ 1. Only realistic noise levels are shown. At every noise level, 101 simulated datasets
were generated, each wth a unique µ between 0 and 1.
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Fig. S7. The mean of the tree reconstruction error and 95% confidence intervals when different data types
are used to reconstruct the distance matrices in comparison to the error obtained by TargetClone. A total
of 101 simulated datasets were tested, each with a different µ between 0 and 1.
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Fig. S8. Increase in the number of SNPs to show the effect of having fewer or more LAF measurements.
For each number of SNPs 100 simulated datasets were generated with a noise level of 0.02 and a µ of 0.9.
Because we measured the error rate with a µ of 0.9, Te is significantly lower than Te in Fig 3D.
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Fig. S9. The error rates obtained when the number of somatic SNV measurements are increased. For each
number of SNVs, 100 simulated datasets were generated with a noise level of 0.02 and a µ of 0.9.
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Fig. S10. The false positive and false negative rates for the trees inferred in our simulation data. The com-
bined FPR and FNR is shown in Fig 3D.
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Fig. S11. Error rates for ~̂C , ~̂A, µ̂ and T̂ as a function of µ in the simulated datasets. Every simulated dataset
has one unique µ between 0 and 1. The mean of the error and 95% confidence intervals are reported in bins of
µ. The noise levels are shown as separate lines. Not all tested noise levels are shown to improve visualization.
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Fig. S12. The mean error and 95% confidence interval of ~̂C , ~̂A and µ̂ as the number of subclones in the
sample increases. Each line incidates the total percentage of contamination of the minor subclones in the
sample. For each simulated dataset, a µ of 0.9 and a noise level of 0.02 was selected.
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we selected the second best reported tree, as the development of other histological components (other than
CIS) from EC75 instead of TE86 matches biological expectation better. For T1382 the ISA could not be resolved
and thus the MSA with the fewest ISA violations is reported. All events that are introduced multiple times
independently are highlighted in red. A thicker line indicates that a higher number of events is gained in the
subclone.
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Fig. S14. Reconstructed trees for (A) T6107, (B) T618, (C) T3209 and (D) T1382 when a diploid precursor is
used. For T1382 the ISA could not be resolved and thus the MSA with the fewest ISA violations is reported. A
thicker line indicates that a higher number of events is gained in the subclone.
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Fig. S15. Segmentation of the corrected read depth sample EC85 of T3209 by CNVKit.
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Fig. S16. Comparison of µ estimates of TargetClone to ASCAT and THetA for (A) T3209, (B) T6107, (C) T618
and (D) T1382.
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Fig. S17. Comparison of ~C estimates of (A) TargetClone to (B) THetA for sample EC70 of T6107. The SNP
(AF) and somatic SNV (VAF) measurements of this sample are shown in (C).
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Fig. S18. Comparison of ~C estimates of (A) TargetClone to (B) THetA for sample TE74 of T3209. The SNP (AF)
and somatic SNV (VAF) measurements of this sample are shown in (C). In (B), THetA estimated a copy number
of 4301 for chromosome 19, which was left out of this figure.
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Fig. S19. Trees inferred by PhyloWGS for (A) T3209 (B) T618. The most interesting events are annotated in the
trees. The order of the somatic SNVs is equal to the order of the somatic SNVs in the original input file and thus
corresponds to the events annotated in the trees generated by TargetClone. (A) Samples in subclones: each
subclone is present in every sample. (B) Samples in subclones: 1: all samples, 2, 3 and 8: CIS29, FCIS27, NS75.
4, 5 and 6: FCIS27. 7: NS75.
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Fig. S20. Trees inferred by LICHeE using the cellular prevalences inferred by PyClone for (A) T3209, (B)
T6107, (C) T618 and (D) T1382.
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Fig. S21. Trees inferred by LICHeE using the VAF of somatic SNVs for (A) T3209, (B) T6107, (C) T618 and (D)
T1382.
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Fig. S22. Mean of the inference error and 95% confidence intervals on the TGCC-based simulations for (A)
copy numbers (B) alleles (C) tumor fraction and (D) trees.
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Fig. S23. Schematic representation of trees reconstructed by TargetClone, LICHeE and MEDICC for one
simulation dataset. The precursor node indicates the 4N precursor. The numbers on the edges represent
the estimated distances between the nodes. The tree reconstructed by LiCHeE correlates negatively with the
ground truth as the distances between the precursor and pre-GCNIS nodes are larger than the distances to
subclones A,B and C, whereas the ground truth distances are the opposite. A similar pattern is observed for
MEDICC.
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Abstract
Motivation: Despite the fact that structural variants (SVs) play an important role in
cancer, methods to predict their effect, especially for SVs in non-coding regions, are
lacking, leaving them often overlooked in the clinic. Non-coding SVs may disrupt the
boundaries of Topologically Associated Domains (TADs), thereby affecting interactions
between genes and regulatory elements such as enhancers. However, it is not known
when such alterations are pathogenic. Although machine learning techniques are a
promising solution to answer this question, representing the large number of interac-
tions that an SV can disrupt in a single feature matrix is not trivial.
Results: We introduce svMIL: a method to predict pathogenic TAD boundary-disrupting
SV effects based on multiple instance learning, which circumvents the need for a tra-
ditional feature matrix by grouping SVs into bags that can contain any number of dis-
ruptions. We demonstrate that svMIL can predict SV pathogenicity, measured through
same-sample gene expression aberration, for various cancer types. In addition, our ap-
proach reveals that somatic pathogenic SVs alter different regulatory interactions than
somatic non-pathogenic SVs and germline SVs.
Availability: All code for svMIL is publicly available on GitHub:
https://github.com/UMCUGenetics/svMIL

Introduction
Pan-cancer genome sequencing projects, such the TCGA and PCAWG, have yielded un-
precedented insights into the catalogue of somatic mutations in cancer genomes. Re-
sults from these efforts revealed that, on average, cancer genomes contain between four
and five driver mutations [1]. The majority of these drivers are within the coding region
of the genome. However, due to whole genome sequencing it is now clear that non-
coding drivers also play an important role in cancer initiation and progression, although
such driving non-coding events are scarcer than may be anticipated based on the sheer
size of the non-coding genome [2].

In addition to single nucleotide variants (SNVs) and small insertions and deletions
(indels), a typical cancer genome contains tens to several hundreds of somatic structural
variants (SVs), which are broadly classified into simple SVs (e.g. deletions, duplications,
inversions and translocations), and complex SVs (e.g. deletions flanked by insertions)
[3]. While fewer in number than SNVs, due to their size, SVs affect many more bases and
therefore can have consequential deleterious effects [4]. For instance, SVs may have in-
creased impact on regulatory elements, genome architecture and the interplay between
them.

One important mechanism through which non-coding SVs can exert pathogenic ef-
fects is by disrupting the boundaries between Topologically Associated Domains (TADs).
TADs are regions in the genome wherein sequences physically interact with each other
more frequently than with sequences outside the domain [5]. As a result, TADs are im-
portant architectural features that constrain 3D regulatory interactions of enhancers to
the genes within the TAD. Disruptions of TADs and/or their boundaries, e.g. through SVs,
can lead to de novo promoter-enhancer interactions resulting in aberrant expression
patterns. This mechanism has been shown to play a role in causing different pathogenic
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Fig. 1. Overview of the steps in the svMIL method. (A) Rules applied by our model to link non-coding SVs to
their effect on genes, and some biological examples of how these effects could be caused. (B) Each SV-gene pair
is a bag, which contains instances representing regulatory elements. Each instance has its own feature vector.
The number of features is the same between each instance, but each bag can have a different number and
different types of instances. In this example, positive bags are identified by shared affected enhancers with a
specific regulatory mark. (C) In the MILES approach, bags are mapped to a feature space by constructing a bag-
to-instance similarity matrix. Positive bags will have smaller distances to positive instances than to negative
instances, which (D) allows for a separation in feature space using a standard classifier.
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congenital phenotypes [6–10], but likely also plays a role in cancer [11–15]. For this rea-
son, studying how and which genes are affected by non-coding SVs is important to com-
plete the catalogue of cancer driver genes.

Despite the clear impact of non-coding SVs on genome architecture, there are no
comprehensive tools available to prioritize which SVs are likely to contribute to cancer,
and which ones are bystander variants. This is in stark contrast to methods that predict
the effect or deleteriousness of (non-)coding SNVs and indels. Currently, VEP is the only
tool with support for SVs, but cannot assign a score for all non-coding SVs [16]. SVScore
was specifically designed to determine the effect of SVs by summarizing the pathogenic-
ity scores of individual SNVs inside the SV [17]. However, this approach does not model
the full spectrum of mechanisms by which SVs can cause cancer, such as through the dis-
ruption of TAD boundaries. The TAD fusion score method scores SVs by their effect on
the 3D genome structure, but is limited to deletions [18]. Thus, there is currently a gap
in interpreting the effects of non-coding SVs in the genome. Moreover, it was recently
shown that it is not unusual for 60% of all TADs to be affected by SVs in cancer cells [19].
When simply counting how many genes are in these affected TADs, the regulation of as
much as 20 genes could potentially be disrupted per TAD (Fig S1). Altogether, these fac-
tors make it very difficult to identify pathogenic SVs and further underscore the need for
tools that aid in distinguishing pathogenic from non-pathogenic (bystander) SVs.

In the past, the identification of pathogenic SNVs and indels has been successfully
solved with machine learning models [20–22]. However, one challenge in machine learn-
ing is defining the features that would distinguish pathogenic from non-pathogenic SVs.
As the number and types of regulatory elements that are affected can differ per SV, it be-
comes problematic to design a rich representation of SV effects that fits in a traditional
feature matrix. One approach that is particularly useful in these scenarios is known as
Multiple Instance Learning (MIL). MIL is commonly explained using the analogy of a set
of keychains and a door that is opened by one specific key [23]. The challenge is to dis-
tinguish between keychains that contain at least one key that opens the door (positive
keychains or ’bags’ in MIL terminology), from keychains that do not open the door (neg-
ative keychains or bags), without knowing which key opens the door. A keychain may
contain a variable number of keys (called instances in MIL terminology) and therefore
cannot be easily described in a regular feature representation. The keys, on the other
hand, can be described in terms of a feature representation, such as the shape of the
key and the length of the key. Several MIL classifiers have been proposed that aim to
identify the feature description of so-called concepts, i.e. the key that opens the door, or
that map the bags to a new feature space wherein regular classifiers can be applied, thus
solving the classification problem [24–27].

Here we note that the prediction of pathogenic SVs follows a similar structure and
can therefore be formulated as a MIL problem. We consider a combination of an SV and
its putative target gene as a bag. Each bag contains any number of regulatory elements
(the instances) which are either gained (e.g. by removal of insulating TAD boundaries) or
lost (e.g. by inverting the element itself outside of the TAD). Annotations such as histone
marks and chromatin states are then used as features to describe the instances.

A second challenge is defining meaningful labels, i.e. determining which bags are
pathogenic (positive) and non-pathogenic (negative). A ground truth set of pathogenic
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somatic SVs is not readily available. In a recent study from the PCAWG consortium, re-
currence was used as a measure for pathogenicity [2]. However, as the number of sig-
nificantly recurrent SVs is low, even across cancer types, using this metric on a per-SV
basis is not useful. Instead, we leveraged a high-quality breast cancer dataset, gener-
ated by the Hartwig Medical Foundation (HMF), for which high-depth whole genome
sequencing (> 90X) and RNA-sequencing was uniformly performed for all patients [28].
All somatic SV calls were provided by the HMF and were generated using standardized
pipelines. We used these data to define positive bags as those SV-gene pairs for which
the gene expression was significantly different in the sample with the SV compared to
the samples without any SVs in the genomic vicinity.

In the remainder of this work, we demonstrate that svMIL can successfully sepa-
rate pathogenic from non-pathogenic SVs (as defined by same-sample gene expression
data), and validate this in 1 additional PCAWG cancer dataset. Furthermore, we explore
the regulatory elements that are affected by the top-ranking SVs, and show that these are
highly similar to our observations for known cancer genes.

Methods
Data

Whole-genome SV, SNV and CNV calls were obtained for 182 breast cancer patients from
the Hartwig Medical Foundation (HMF). For 171 of these, RNA-seq data was also avail-
able. All data processing used hg19 as the reference genome. The RNA-seq data were
processed using an in-house pipeline (https://github.com/UMCUGenetics/RNASeq). We
excluded 9 patients that did not pass RNA-seq quality control. All 162 patients included
in this work are listed in Table S1. Read counts were normalized using the Trimmed
Mean of M-values (TMM) method in EdgeR [29]. For the PCAWG data, publicly available
SV, SNV and CNV calls and pre-processed RNA-seq data were downloaded for 70 ovarian
cancer samples from the ICGC data portal. Germline SVs were obtained from gnomAD
and were randomly subsampled to match the number of SVs in the HMF breast can-
cer cohort (73293, 56430 deletions, 16607 duplications, 256 inversions) [30]. Because
deletions are overrepresented in germline SVs, we did not select for SV type to retain the
original distribution of SVs, as these could hold information about how often, and which,
TADs are disrupted. Regulatory data were downloaded for the respective healthy tissue
type where available, using data across cell types where stated otherwise (see also Tables
S2-S3). TAD coordinates were obtained from the 3D genome browser [31]. The following
data were used as regulatory elements. eQTLs were downloaded from GTEx [32]. JEME
was used to obtain enhancers and target genes [33]. Promoters (across all cell types)
were obtained from the Eukaryotic Promoter Database [34]. Super enhancers were ob-
tained from dbSUPER [35]. CpG islands (across cell types) were obtained from the UCSC
genome annotation database. Transcription factors (across cell types) were downloaded
from ORegAnno [36]. ChromHMM states were obtained from Taberlay et al. [37]. We
downloaded intrachromosomal Hi-C matrices at 5 kb resolution from Rao et al. [38],
filtering out interactions occurring less than 6 times. Each side of a Hi-C interaction in
this matrix was treated as a separate regulatory element of 5kb in size. Histone marks,
CTCF sites, RNA pol II binding sites and DNAse I hypersensitivity sites were downloaded
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from ENCODE [39]. A full list of all data sources and processing steps can be found in
the Supplementary Data.

svMIL Model
The objective of our model is to rank input SVs from one or more patients by their likeli-
hood to be involved in the development or progression of cancer. The model consists of
2 main steps:

Step 1: identifying the genes putatively disrupted by SVs: for each SV disrupting a TAD
or TAD boundary, the genes are identified that could potentially be affected by re-wiring
regulatory interactions between the affected TADs. This results in a list of candidate SV-
gene pairs.
Step 2: learning characteristics of pathogenic SVs: for each candidate SV-gene pair, we
use a machine learning approach to learn which re-wiring patterns alter gene expression
and could therefore be indicative of pathogenic SVs.

The model enables us to assign a probability score to each SV reflecting its pathogenicity,
which can be used as a metric to rank and classify SVs.

Step 1: identifying the genes putatively disrupted by SVs
Associating genes with regulatory elements
For every gene, we define a potential regulator set as all regulatory elements that are
present within the same TAD as the gene. For eQTLs, enhancers and promoters, we
further limit this set to the elements for which the respective gene was listed as a target.

Defining rules to link structural variants to putative target genes
SVs are linked to genes through the regulatory elements that they affect. More specif-
ically, SVs cause gains and losses of regulatory elements depending on the type of SV.
Therefore, we define a set of rules to determine how the potential regulator set of each
gene in each patient is changed for different SV types, focusing on deletions, duplica-
tions, inversions and translocations (Fig 1A). We only include SVs that start and end in a
TAD.

Deletions - If a deletion overlaps a TAD boundary, all genes in the TADs on either side of
the deletion gain the regulatory elements from the TAD on the other side of the deletion.
Inversions - For inversions, genes lose regulatory elements that are inverted outside of
the respective TAD, and gain elements that are inverted into the TAD. The genes residing
in the inversion gain regulatory elements of the TAD that these genes are inverted into.
Duplications - If a duplication crosses a TAD boundary, it will generate a new TAD.
Within this new TAD, genes in the duplication on the one side of the TAD boundary will
be brought into contact with regulatory elements in the duplication on the other side of
the TAD boundary.
Translocations - For each translocation independently, a derivative TAD is constructed
based on the SV orientation. The gains and losses in the regulator set of every gene in-
side this new TAD are then determined.
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Fig. 2. (A) The z-scores of all genes in disrupted TADs (right half) compared to the adjacent, non-disrupted
TADs (left half), shown for each SV type. The two sides of the disrupted TAD pair, and the adjacent TADs on
the left and right, were collapsed. The trend indicates the median z-score in each bin. Error bars indicate the
95th and 5th percentiles. (B) The z-scores shown specifically for genes that gain or lose super enhancers, as
identified using the rules. (C) The z-scores shown in the same TADs as in (B), but when the gene expression is
randomly shuffled. (D) Gains and losses of regulatory information that are significantly different between the
positive set of SVs (effect on gene expression), negative set (no effect of gene expression), germline SVs, and
when the positions of the positive SVs are shuffled randomly.
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Applying these rules results in a list of candidate SV-gene pairs and the associated
gained and lost regulatory elements that are the result of the SV for this gene. To ensure
that we are only looking at non-coding effects on genes, we removed SV-gene pairs for
which the gene is overlapped (minimum 1 bp) by another SV, SNV, or CNV in the same
patient sample, as it is assumed that such coding events are the likely cause of any aber-
rant gene expression. As the affected genes can be overlapped by the respective SV itself,
we make an exception for duplications and inversions (Fig 1A). For inversions, we do not
remove genes that are overlapped by the inversion when these are not affected by any
other mutation. For duplications, we similarly keep the genes that are only overlapped
by the duplication. As duplications often coincide with copy number (CN) amplifica-
tions (CN > 2.3), we allow genes to be affected by such events only if these are also linked
to a duplication by the rules.

Determining genes with altered expression
For each SV-gene pair, identified using the rules, we computed a z-score by comparing
the expression of the gene in the patient with the SV to a null-distribution constructed
based on all other patients (one-sample t-test). To ensure that the expression is changed
by the non-coding SV specifically, we constructed the null-distribution only from pa-
tients that do not have an SNV, SV or CNV overlapping the gene. In addition, we removed
potential non-coding effects from the null-distribution by excluding genes in patients
where an SV disrupts the boundary of the TAD in which the gene is located. The z-scores
are used as a measure of SV effect on the respective gene.

Step 2: machine learning to learn the characteristics of pathogenic SVs
To learn which SV-gene pair is likely pathogenic, and investigate if the gain or loss of
specific regulatory elements are predictive for this, we trained a MIL model (Fig 1B).

Defining bags and instances
Every SV-gene pair is considered a bag containing regulatory elements, the instances.
The instances in each bag are defined as the regulatory elements lost or gained by the
gene affected by the SV, as determined by the rules. We used a combination of eQTLs,
enhancers and super enhancers as instances.

Instance features
Every instance is described with a feature vector combining three layers of features (Fig
1B). The first layer consists of two features, indicating if the regulatory element is gained
or lost. The second layer contains annotations of the region in which the regulatory ele-
ment is located. This includes histone marks (H3K9me3, H3K4me3, H3K27ac, H3K27me3,
H3K4me1, H3K36me3), chromHMM states (CTCF, CTCF+enhancer, CTCF+promoter, en-
hancer, promoter, poised promoter, heterochromatin, repeat, repressed, transcribed),
transcription factor binding profiles (DNASeI hypersensitivity sites, RNA polymerase II,
CTCF, transcription factor binding sites), CpG islands and Hi-C interacting regions. The
feature vector contains a 0 or 1 depending on if the regulatory element overlaps any
of these annotations (minimum 1 bp). Finally, we added a third layer to indicate the
strength of the annotations. For enhancers, the prediction confidence score was used.
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For all histone marks, RNA polymerase II and CTCF, the peak intensity was used as an in-
dicator of strength. This information was not available for any of the other annotations,
and was thus left out. All features were normalized between 0 and 1.

Bag labels
We used the z-score of gene expression compared to unaffected TADs as a proxy for
pathogenicity. Bags for SV-gene pairs with a z-score larger than 1.5 or smaller than -1.5
were labeled positive, and negative otherwise. To obtain equal class sizes, we randomly
subsampled the negative bags to the same number of positive bags.

Multiple Instance Learning model
To obtain a final classifier, we used the MILES approach [27]. One important feature
of MILES is that it allows reconstructing which features of gained or lost regulatory ele-
ments are associated with positive SV-gene pairs. In MILES, the general idea is to map
the bags to a feature space in which a standard classifier can be trained (Fig 1C). This
feature space is constructed by computing a similarity score between every bag and ev-
ery instance. Positive bags are expected to be more similar to instances of other posi-
tive bags, but dissimilar to negative instances, therefore creating a separation in feature
space (Fig 1D). As all regulatory elements in each bag could equally contribute to the ef-
fect on gene expression, we compute the similarity score by first averaging the features
of all instances in each bag, and then computing the absolute distance to all other in-
stances of the other bags (collective assumption) [40]. A random forest is trained on the
matrix of similarity scores to classify the SV-gene pairs. As the similarity matrix repre-
sents distances between bags as objects to instances as features, we used the random
forest feature importance to rank individual instances.

Performance evaluation using cross-validation
We evaluate the model performance using 3 cross-validation (CV) approaches. The first
is a bag-based CV, in which bags are randomly distributed into the training and test set
across 10 folds. To mimic a clinical setting, we use a leave-one-patient-out CV, in which
all bags of one patient are held out in each fold. Lastly, we use a leave-one-chromosome-
out CV, in which each chromosome is left out in every fold, to test for spatial correlation
between SV-gene pairs. For each approach, in every fold one similarity matrix is con-
structed for the training bags, and one for the test bags, for which the similarity is com-
puted to the instances of the training bags. Folds are stratified by randomly subsampling
the number of negative bags to match the number of positive bags. The classifier was op-
timized using a random parameter search, applying 3-fold CV directly on the similarity
matrix to reduce computational time.

Results
Altered gene expression is only visible in TADs disrupted by SVs
To show if SVs can affect gene expression by disrupting TADs and TAD boundaries, we
compared the expression of genes in disrupted to non-disrupted TADs in the breast can-
cer patients. We define the TADs that an SV ends in on the left and right side as a ’TAD
pair’. We computed the z-score of gene expression inside these TAD pairs to all patients



3

82 3. svMIL: predicting the pathogenic effect of somatic SVs

Leave-one-patient-out CV: HMF BRCA Leave-one-patient-out CV: PCAWG OVARIAN
A B

Tr
u

e
 p

o
s
it

iv
e
 r

a
te

False positive rate False positive rate

Tr
u

e
 p

o
s
it

iv
e
 r

a
te

False positive rate

Tr
u

e
 p

o
s
it

iv
e
 r

a
te

Fig. 3. ROC curves based on leave-one-patient out CV for the models trained on each SV type for (A) the
HMF BRCA dataset and (B) the PCAWG ovarian cancer dataset. (C) The TPR and FPR of svMIL compared to
3 other methods. svMIL is highlighted by the dotted oval.

in which this pair is not disrupted by an SV, and filtered out mutated genes (see Meth-
ods). As a negative control, we repeated this procedure for the TADs immediately to the
left and right of each pair, keeping only adjacent TADs that are not disrupted by SVs in
the respective patient. To account for varying TAD size, each TAD was divided into 10
bins. A minor increase in z-score is visible in the affected TADs, in particular for duplica-
tions and translocations (Fig 2A). To determine if the gene expression is altered specifi-
cally by SVs and not due to effects such as methylation, we focused on all genes gaining
or losing super enhancers as identified using the rules. Here also an overall increase in
gene expression is visible (Fig 2B), which is not observed when randomly shuffling the
expression (Fig 2C). Thus, we see that SVs are able to alter gene expression by re-shaping
interactions between genes and regulatory elements.

Somatic SVs affect a unique combination of regulatory elements

To determine if SVs alter gene expression by affecting specific classes of regulatory ele-
ments, we compared their gain and loss patterns to those of SVs that do not affect ex-
pression (Fig 2D, positive vs negative SVs). Overall, we observe significant differences
for each SV type (P < 0.05, χ2 test with Bonferroni correction). These patterns are not
observed when comparing to a case where the somatic SVs are assigned random po-
sitions (maintaining their size, type and chromosome), indicating that we do not find
these differences by random chance (Fig 2D, positive vs random SVs). Furthermore, the
different gains and losses of regulatory elements observed when comparing to germline
SVs suggest that somatic SVs occur at different genomic positions with different effects
on regulatory elements (Fig 2D, positive vs germline SVs). Taken together, these find-
ings indicate that disrupted interactions with regulatory elements contain information
on the pathogenicity of somatic SVs.

svMIL can successfully identify pathogenic SVs in various cancer types

To determine if re-wiring patterns are informative predictors of pathogenicity, we trained
MIL models with a random forest classifier to separate SV-gene pairs with large effects
on gene expression from SV-gene pairs with no effects (Methods). A model was trained
on each SV type individually, using the same number of bags in each class (deletions:
168, duplications: 906, inversions: 338 and translocations: 133).
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To mimic a clinical setting, in which prioritization of the SVs in the cancer genome
of a new and unseen patient is required, we performed leave-one-patient-out CV. We
find that svMIL can successfully identify pathogenic SVs in unseen patients with AUCs
of 0.79, 0.66, 0.78 and 0.82 for deletions, duplications, inversions and translocations, re-
spectively (Fig 3A). Notably, such classification performance is not observed when the
SV positions are shuffled randomly (Fig S2A). Thus, our method is suitable to predict
pathogenic SVs in clinical settings.

As a note of warning, bag-based CV, which is the classical CV strategy, yields much
higher performances (Fig S2B). However, we observed that patients frequently have mul-
tiple spatially clustered SVs affecting the same gene, causing gains and losses of the same
instances. Since these pairs are randomly distributed across the training and test set in
each fold, this may cause some information leakage and biased CV results. Indeed, when
validating our model in a per-chromosome CV setting, similar results were obtained
to the leave-one-patient-out CV (Fig S2C). A similar issue could arise in the leave-one-
patient-out CV if many SVs are shared between multiple patients. Therefore, caution is
advised when interpreting results of bag-based CV or leave-one-patient-out CV settings
in these situations.

Furthermore, we realize that our p-value threshold for eQTLs of P < 5e−8 is especially
stringent, and that lowering the threshold to P < 0.05 improves the AUC for deletions to
0.88. However, due to the sheer increase in the number of eQTLs, lowering the threshold
increases the run time to up to 24 hours for deletions alone, and is therefore not real-
istic to run in routine analysis. Nevertheless, these results reveal potential for further
improvement in predictive ability.

Finally, we aimed to demonstrate the performance in other cancers. To this end,
we retrained svMIL on ovarian cancer samples from the PCAWG dataset. Notably, the
number of bags is slightly larger than for our breast cancer dataset (deletions: 256, du-
plications: 1009, inversions: 818, translocations: 229). Nevertheless, the ROC curves
demonstrate that also for ovarian cancer, similar performances are obtained (Fig 3B),
indicating that our method is applicable to various cancer types.

svMIL outperforms the state-of-the-art methods
Next, we aimed to show how our method compares to the state-of-the-art. We compared
the true positive rate (TPR) and false positive rate (FPR) of our method to VEP, SVScore
and a random forest classifier without MIL (non-MIL-RF). For VEP, SVs with a ’moderate’
or ’high’ impact score were considered pathogenic. For SVScore, pathogenic SVs were
selected using scores above the 90th percentile (for each SV type separately). For the
non-MIL-RF, we used gains and losses of regulatory elements of each SV-gene pair as
binary features. If multiple regulatory elements of a type are affected, the feature value
was capped at 1. We used an operating point of 0.5 for both svMIL and non-MIL-RF and
tested performance using leave-one-patient-out CV. For each method, an SV is consid-
ered positive if it is part of a positive SV-gene pair.

Overall, we see that svMIL obtains higher TPR than the other methods when pre-
dicting SV pathogenicity in unseen patients (Fig 3C). Non-MIL-RF also scores high TPR,
but at a cost of increased FPR compared to svMIL, showing the benefit of identifying
pathogenic SVs using a MIL-based approach. VEP and SVScore both score low FPR, but
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Fig. 4. (A) Gains and losses in the top 100 instances per SV type. Values above the red dotted lines are significant
(p < 0.05, Bonferroni) with a z-score larger than 0 (more than in 100 randomly selected instances), values below
the red dotted line with a z-score smaller than 0 (less than in 100 randomly selected instances). Everything
within the red dotted lines is not significant. (B) Inversion bringing enhancers and eQTLs from another TAD
close to BRCA1, resulting in overexpression. For simplicity, only 1 enhancer and 1 eQTL is shown. (C) Top
15 genes most recurrently affected across patients by SVs within the top 100 instances of each SV type. Only
patients with positive SV-gene pairs are included in the analysis. The bars show the number of patients with a
coding mutation overlapping that same gene. Some patients have multiple mutations.

also never have TPR above 0.1. As both methods do not include TAD disruptions or gene
expression in their predictions, these results show that performance can be improved if
such additional data layers are integrated.

SVs frequently re-wire active (super) enhancers in open chromatin regions

Using our trained MIL classifiers, we investigated which regulatory elements are most
commonly associated with pathogenic SVs. We obtained a ranked list of instances for
each MIL model from the random forest feature importance scores. As a threshold, we
focused on the top 100 instances of each model, which retains the majority of informa-
tion for each SV type (Fig S3). Overall, we find that the affected regulatory elements
are significantly associated with open chromatin regions and histone marks enriched
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in active promoters and enhancers (compared to 100 randomly sampled instances, p <
0.05, Bonferroni) (Fig 4A). Each SV type affects a unique set of regulatory elements. For
instance, deletions and duplications frequently cause gains of active enhancers, while
inversions and translocations instead more often result in gains and losses of super en-
hancers, revealing a possible different mechanism by which target genes are affected. We
furthermore note that the majority of top-ranked instances are gains rather than losses
(89/100 and 58/100 gains for inversions and translocations, respectively), indicating that
gains of regulatory elements could be a preferred method to affect gene expression in
breast cancer.

To determine if the gains and losses could potentially be causal for cancer, we com-
pared the instances within the ranked top 100 that affect known cancer genes (COS-
MIC genes; 5, 5, 1 and 4 out of 100 instances for deletions, duplications, inversions and
translocations, respectively) to those affecting non-COSMIC genes (Fig S4). Overall, we
see that COSMIC genes and non-COSMIC genes show similar patterns, indicating a po-
tential similar effect on genes. Taken together, these findings suggest that our ranking
can successfully identify pathogenic mechanisms of SVs and bona fide target genes of
SVs.

svMIL can identify driver genes in unseen patients

Motivated by the similarities in gained and lost regulatory elements between known can-
cer genes and other genes, we investigated if our method can identify potential novel
driver genes. To this end, we employed leave-one-patient-out CV, specifically for the
patients with an SV linked to a known COSMIC gene. This enabled us to determine
how often a known COSMIC gene is correctly classified as pathogenic, using a classifier
trained on data that has never seen this SV-gene pair. In total, 34 (out of 64) SV-COSMIC
gene pairs were predicted correctly, which are significantly more COSMIC genes than
expected by random chance (P = 3.86e-172, t-test, compared to 100 iterations of leave-
one-patient-out CV where random SV-gene pairs were assigned to the bags after the clas-
sification step). For none of these COSMIC genes there was any other evidence, such
as SNVs or indels, that could have disrupted it, which means it would not have been
identified otherwise. Notably, 4 of these SV-gene pairs identified genes specific to breast
cancer (1 inversion targeting BRCA1, and 3 duplications targeting ERBB2 in the same pa-
tient). Of particular interest is the inversion affecting BRCA1, bringing 3 enhancers and
46 eQTLs in close proximity to the gene (Fig 4B). High BRCA1 expression has previously
been linked to worse prognosis in several cancers, including breast cancer, and could
therefore be an interesting finding for selecting treatment [41, 42]. In addition, BRCA1
is upregulated in 11.4% of breast cancer patients (CGC), indicating that this SV could
be an alternative pathway to upregulate the gene [43]. Altogether, these results demon-
strate the importance of incorporating non-coding SVs in the analysis of whole cancer
genome sequencing data of patients.

In addition, we investigated if genes linked to high-ranking SVs are recurrently af-
fected (z > 1.5 or z < -1.5) across different patients by other non-coding SVs, and could
therefore be putative cancer drivers. We obtained the genes from the top 100 ranked in-
stances of all SV types, and report the top 15 most recurrently mutated in Fig 4C. Some
patients have multiple non-coding SVs targeting the same gene, indicative of selective
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pressure. Most genes affected by deletions and duplications are only upregulated in
their respective patients, while we see both up- and downregulation for inversions and
translocations, showing that the majority of SVs can indeed be responsible for the gene
expression change. Moreover, we identify a large number of SNVs, CNVs and coding
SVs targeting the same gene in other patients, showing that non-coding SVs could be an
alternative route to affect important genes in the cancer genome.

Finally, we note that the number of patients in which the top 15 genes are recurrently
affected is not significant (P < 0.05, Bonferroni, compared to 100 distributions of ran-
domly sampled positive SV-gene pairs) and appears to be much smaller than for other
mutation types, which has also been reported previously [2]. In addition, we identify
different recurrently affected genes if we do not filter by the top-ranked instances (Fig
S5), supporting the importance of applying machine learning-based methods to iden-
tify pathogenic SVs, and including gene expression into these models.

Discussion
In this work, we described svMIL, a novel MIL-based method to rank SVs for their like-
lihood to be pathogenic based on altering interactions between genes and regulatory
elements and thereby disrupting gene expression. Not all genes in disrupted TADs show
affected expression levels. However, the genes that are affected can be pinpointed by
looking at gains and losses of regulatory elements caused by SVs. Using our MIL model,
we can now utilize this information to identify pathogenic SVs in various cancer types.
We demonstrated, by mimicking a clinical setting using leave-one-patient-out CV, that
svMIL can successfully identify pathogenic SVs in unseen patients. Within these un-
seen patients, we identified SVs affecting known cancer genes that were not disrupted
by any other mutations, such as SNVs, thus revealing the importance of also studying
non-coding SVs in clinical analyses. As such methods to predict the effect of non-coding
SVs are currently lacking, our model provides an opportunity to study existing and future
SV datasets in more detail.

We showed that top-ranking pathogenic SVs frequently affect active (super) enhancers
in open chromatin regions. Furthermore, regulatory elements are more frequently gained
than lost in the breast cancer samples, showing a possible preference to upregulate genes
in these patients. Many genes disrupted by top-ranking pathogenic SVs are recurrently
affected by non-coding SVs across multiple patients, with frequent evidence of other
mutations, such as CNVs, disrupting the same genes. These findings show that non-
coding SVs could be an important alternative strategy to disrupt genes that are impor-
tant in cancer cells. As these same genes could not be identified independent of the
ranking by pathogenicity produced by svMIL, it highlights the benefit of utilizing gene
expression information and MIL models to identify pathogenic SVs.

As more and more data are becoming available for cancer patients, our ability to
predict pathogenicity will continue to improve. For example, the absence of methylation
and 3D folding data for each patient limits our ability to perfectly label which genes are
truly affected by the SV only. Additionally, an increase in cell-type specific and validated
regulatory elements will make it possible to further fine-tune predictive models.

Nevertheless, our presented model can aid in understanding the consequences of
SVs in more detail, allowing the generation of new hypotheses about the role of SVs in
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cancer.

Data availability
The WGS breast cancer data were requested from the Hartwig Medical Foundation and
provided under data request DR-066.
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Fig. S1. Number of genes that can potentially be disrupted by SVs overlapping TAD boundaries.
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Fig. S2. ROC curves for the models trained on each SV type for the HMF BRCA dataset based on (A) leave-
one-patient-out CV with randomized bag labels, (B) leave-bags-out CV and (C) leave-one-chromosome out
CV.
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Fig. S3. Random forest feature importances of the classifiers for each SV type.
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Gains

Gains Losses

Fig. S4. Gains and losses of regulatory elements among the top 100 instances specific for (A) COSMIC genes
and (B) non-COSMIC genes. Instances within the top 100 of inversions only contain gains, and no losses,
for COSMIC genes.
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Fig. S5. Top 50 most recurrent genes across patients, selected for patients with positive SV-gene pairs.
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Table S1: Specification of all patients in the HMF dataset and if these were included in this work.

Patient Included?

CPCT02020436T yes
CPCT02110069T yes
CPCT02010434T yes
CPCT02360011T yes
CPCT02010523T yes
CPCT02020322T yes
CPCT02020347T yes

CPCT02020493TII no, missing RNA-seq data
CPCT02020345TII yes
CPCT02160009T yes
CPCT02100021T yes
CPCT02050209T yes
CPCT02210014T yes
CPCT02180007T yes
CPCT02150014T yes
CPCT02370003T yes
CPCT02300011T yes
CPCT02010504T yes
CPCT02220008T yes
CPCT02080031T yes
CPCT02010419T yes
CPCT02170014T yes

CPCT02030289TIII no, missing RNA-seq data
CPCT02080125T yes
CPCT02080069T yes
CPCT02040035T yes
CPCT02020508T yes

CPCT02100067TII no, missing RNA-seq data
CPCT02080022T yes
CPCT02040031T yes
CPCT02330067T yes
CPCT02100048T yes
CPCT02190002T yes
CPCT02080076T yes
CPCT02040097T yes
CPCT02100027T yes
CPCT02040071T no, missing RNA-seq
CPCT02080053T yes
CPCT02390001T no, failed RNA-seq quality control
CPCT02170018T yes
CPCT02160012T yes
CPCT02020369T yes
CPCT02020666T no, failed RNA-seq quality control
CPCT02160004T no, missing RNA-seq
CPCT02080127T yes
CPCT02100023T yes
CPCT02080019T yes
CPCT02330017T yes
CPCT02330035T yes
CPCT02160013T yes
CPCT02050160T yes
CPCT02210010T yes
CPCT02010520T yes
CPCT02080036T yes
CPCT02070078T yes
CPCT02020514T yes
CPCT02020344T yes
DRUP01180001T yes
CPCT02060075T yes
CPCT02080055T yes
CPCT02080029T yes
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Patient Included?

CPCT02080112T yes
CPCT02100093T yes
CPCT02300005T yes
CPCT02160022T yes

CPCT02080029TII no, missing RNA-seq data
CPCT02080073T yes
CPCT02210004T yes
CPCT02080025T yes
DRUP01010037T yes
CPCT02080063T yes
CPCT02080016T yes
CPCT02020385T yes
CPCT02030264T yes
CPCT02040055T yes
CPCT02050143T yes
CPCT02030276T yes

CPCT02010419TII no, missing RNA-seq data
CPCT02100017T yes
CPCT02010555T yes
CPCT02080128T yes
CPCT02110004T no, failed RNA-seq quality control
CPCT02100037T yes
CPCT02110023T yes
CPCT02100067T yes
CPCT02030271T yes
CPCT02080072T yes
DRUP01010065T yes
CPCT02160005T yes
CPCT02060070T yes
CPCT02330032T yes
CPCT02160001T yes
CPCT02080064T yes
CPCT02300008T yes
CPCT02010433T yes
CPCT02080067T yes
CPCT02100049T yes
CPCT02020407T yes
CPCT02020478T yes
CPCT02110020T yes

CPCT02010382TII yes
CPCT02100024T yes
CPCT02010447T yes
CPCT02100075T yes
CPCT02030289T yes
CPCT02020341T yes
CPCT02100043T yes
CPCT02100035T yes
CPCT02020345T yes
CPCT02230002T yes
CPCT02190009T yes
CPCT02040078T yes
DRUP01110005T yes
CPCT02160018T yes
CPCT02050156T yes
CPCT02160014T no, failed RNA-seq quality control
CPCT02010461T yes
CPCT02010508T yes
CPCT02020382T yes
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Patient Included?

CPCT02060011T yes
CPCT02100020T yes
CPCT02100105T yes
CPCT02040070T yes
CPCT02030265T yes
CPCT02030274T yes
CPCT02010468T yes
CPCT02020493T yes
CPCT02180028T yes
CPCT02080039T yes
CPCT02080027T yes
CPCT02050053T yes
CPCT02050060T yes
DRUP01010012T yes
CPCT02240003T yes
CPCT02050096T yes
CPCT02010359T yes
CPCT02290008T yes
CPCT02300001T yes
CPCT02100011T yes
CPCT02380020T yes
CPCT02040069T yes
CPCT02100029T yes

CPCT02080070TII no, missing RNA-seq data
CPCT02030305T yes

CPCT02390001TII no, missing RNA-seq data
CPCT02020490T yes
CPCT02100066T yes
CPCT02020475T yes
CPCT02300014T yes
CPCT02050127T yes
CPCT02080047T yes
CPCT02060059T yes
CPCT02160008T yes
CPCT02050146T yes
CPCT02040036T yes

CPCT02010359TII no, missing RNA-seq data
CPCT02050074T yes
CPCT02020371T yes
CPCT02010422T yes
CPCT02010401T yes
CPCT02240001T yes
CPCT02050337T yes
CPCT02050157T yes
CPCT02080122T yes
CPCT02080106T yes
CPCT02010351T yes
CPCT02080049T yes
CPCT02300009T yes
CPCT02100050T no, failed RNA-seq quality control
CPCT02050071T yes
CPCT02080070T yes
DRUP01020002T yes
CPCT02100132T no, failed RNA-seq quality control
CPCT02330027T yes
CPCT02010528T no, failed RNA-seq quality control
CPCT02050082T yes

CPCT02030265TII no, missing RNA-seq data
CPCT02080060T yes
CPCT02050138T yes
CPCT02160015T no, failed RNA-seq quality control

CPCT02040071TII no, failed RNA-seq quality control
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Table S2: Regulatory elements and sources used for the HMF BRCA dataset and for the germline SVs.

Dataset Source Cell type Processing steps

eQTLs GTEx v7 Breast Only accepted p-values < 5 * 10e-8
Enhancers JEME, elastic net HMEC
Promoters Eukaryotic Promoter Database All cell types Selected all promoters containing either

a TATA box, initiator motif, CCAAT box or
GC box

CpG islands UCSC genome annotation database All cell types
Transcription factors ORegAnno, version 19-01-2016 All cell types

H3K27me3 ENCODE - ENCFF291WFP HMEC
H3K36me3 ENCODE - ENCFF906MJM HMEC
H3K9me3 ENCODE - ENCFF065FJK HMEC
H3K4me1 ENCODE - ENCFF336DDM HMEC
H3K27ac ENCODE - ENCFF154XFN HMEC
H3K4me3 ENCODE - ENCFF065TIH HMEC

DNAse I hypersensitivity sites ENCODE - ENCFF301VRH HMEC
RNA pol II sites ENCODE - ENCFF433ZKP HMEC

CTCF sites ENCODE - ENCFF288RFS HMEC
ChromHMM states GSE57498 HMEC
Hi-C interactions GSE63525 - intrachromosomal contact matrices HMEC Interactions observed less than 6 times

were removed. Each side of the interac-
tion is considered a separate regulatory
element of 5kb.

Super enhancers dbSUPER HMEC
TADs 3D Genome Browser HMEC

Table S3: regulatory elements and sources used for the PCAWG ovarian dataset. For regulatory elements not
specified in this table, we used the same source as listed in Table S2.

Dataset Source Cell type Processing steps

eQTLs GTEx v7 Ovarian Only accepted p-values < 5 * 10e-8
Enhancers JEME, elastic net Ovarian
H3K27me3 ENCODE - ENCFF712UCB Ovarian
H3K36me3 ENCODE - ENCFF302DXB Ovarian
H3K9me3 ENCODE - ENCFF717WXC Ovarian
H3K4me1 ENCODE - ENCFF917PWI Ovarian
H3K27ac ENCODE - ENCFF657AUA Ovarian
H3K4me3 ENCODE - ENCFF320JHG Ovarian

DNAse I hypersensitivity sites ENCODE - ENCFF883WWT Ovarian
RNA pol II sites ENCODE - ENCFF570SMG Ovarian

CTCF sites ENCODE - ENCFF522DLJ Ovarian
Super enhancers dbSUPER Ovarian

TADs 3D Genome Browser Ovarian Liftover from hg38 using UCSC liftover
tool
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Abstract
Over the past years, large consortia have been established to fuel the sequencing of
whole genomes of many cancer patients. Despite the increased abundance in tools
to study the impact of SNVs, non-coding SVs have been largely ignored in these data.
Here, we introduce svMIL2, an improved version of our Multiple Instance Learning-
based method to study the effect of somatic non-coding SVs disrupting boundaries of
TADs and CTCF loops in 1646 cancer genomes. We demonstrate that svMIL2 predicts
pathogenic non-coding SVs with an average AUC of 0.86 across 12 cancer types, and
identifies non-coding SVs affecting well-known driver genes. The disruption of active
(super) enhancers in open chromatin regions appears to be a common mechanism by
which non-coding SVs exert their pathogenicity. Finally, our results reveal that the con-
tribution of pathogenic non-coding SVs as opposed to driver SNVs may highly vary be-
tween cancers, with notably high numbers of genes being disrupted by pathogenic non-
coding SVs in ovarian and pancreatic cancer. Taken together, our machine learning
method offers a potent way to prioritize putatively pathogenic non-coding SVs and lever-
age non-coding SVs to identify driver genes. Moreover, our analysis of 1646 cancer genomes
demonstrates the importance of including non-coding SVs in cancer diagnostics.

Introduction
On average, cancer develops through the accumulation of 4-5 driver mutations[1]. The
implications of characterizing these mutations per cancer genome for developing novel
anti-cancer therapies are undoubtedly large. Over the recent years, efforts such as the
Cancer Gene Census (CGC) have been set up to catalogue all known genes that have
been implicated by cancer-driving mutations[2]. Furthermore, a myriad of computa-
tional algorithms have been designed to predict the pathogenicity of mutations[3–10].
However, until now the majority of these studies have focused on mutations occurring
in the coding part of the genome, while it is becoming increasingly clear that non-coding
mutations may also drive cancer initiation and progression[11].

Elucidating the pathogenic effect of non-coding single-nucleotide variants (SNVs) is
under very active study[12–16], and despite the fact that this is a challenging computa-
tional task, prediction results have been gradually improving. Relatively straightforward
approaches are based on burden testing[17, 18], wherein elevated mutation densities
point to mutations that are under positive selective pressure. However, these statistics-
based approaches are not suitable for mutations with low recurrence across cancer pa-
tients, which is typically true for non-coding structural variants (SVs), as was recently
demonstrated in a Pan-Cancer Analysis of Whole Genomes (PCAWG) study[19]. More
recent work therefore focuses on using machine learning to identify patterns in genomic
features overlapping and surrounding the SNVs, such as enhancers, histone modifica-
tions or transcription factor binding information[12, 13]. Despite this progress, almost
no methods exist that allow identification of likely pathogenic non-coding SVs. This is
counterintuitive, as the impact of somatic SVs (e.g. insertions, deletions, duplications,
inversions and translocations) in terms of the number of affected bases far surpasses that
of somatic SNVs. For this reason, elucidating the role of non-coding SVs is important
for understanding cancer development and may prove to be indispensable for whole
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genome sequencing (WGS)-based patient reporting.

Although in many cases the exact mechanism through which non-coding SVs cause
cancer remains unclear, recent studies have shown that non-coding SVs may exert a
pathogenic effect by disrupting the boundaries of Topologically Associated Domains
(TADs). TADs are structures in the 3D genome in which DNA interacts more frequently
with each other than with DNA outside of the TAD[20]. TADs are separated by bound-
aries across which interactions are much scarcer. Together, these structures maintain in-
teractions between genes and regulatory elements such as enhancers. TADs are believed
to be the result of a process called loop extrusion, in which DNA is pulled through a ring
of cohesin until it is blocked by CCCTC-binding factor (CTCF)[21]. This theory is sup-
ported by the observation that convergent CTCF motifs were found to be enriched at the
boundaries of TADs[22]. Non-coding SVs were found to be capable of causing congen-
ital abnormalities[23–27] and cancer[28–32] by disrupting TAD boundaries and thereby
enabling novel interactions to form between genes and regulatory elements. However,
methods that exploit this principle for somatic SV prioritization or classification have
only recently been introduced and remain scarce[33, 34].

While there are sufficient indications that disrupting TAD boundaries can be pathogenic,
less is known about the role of disrupting CTCF-mediated chromatin loops that are formed
inside of TADs. Previous work suggests that somatic SNVs can affect the binding sites of
CTCF and thereby have cancer-driving potential[35]. On the other hand, it was found
that not all CTCF loops disrupted by germline non-coding SVs equally contributed to
the development of congenital phenotypes[36]. It therefore remains an open question
whether somatic non-coding SVs exist that exert a pathogenic effect through CTCF loop
disruption, but if they do it may be important to supplement non-coding SV prioritiza-
tion information with CTCF loop data.

State-of-the art non-coding SNV prioritization algorithms are not straightforwardly
applied to SVs. It is, for instance, much more difficult to define a suitable representation
of the large number of interactions that may be altered by SVs. Moreover, no ’ground
truth’ labels on the pathogenicity of non-coding SVs are available that can be used for
training. To this end, we previously proposed a Multiple Instance Learning (MIL)-based
approach, called svMIL[34]. A common analogy to explain MIL is the problem of a num-
ber of keychains and a door that is opened by one specific key[37]. Without knowing
beforehand which key opens the door, the goal is to distinguish the keychains contain-
ing at least one key that opens the door (positive keychains or ’bags’) from keychains
that do not open the door (negative keychains or ’bags’). As a keychain may contain a
variable number of keys (’instances’), representing all keys in a single feature matrix is
not trivial. Instead, in MIL, each key is individually described with features such as the
length or shape of the key. The challenge for MIL-based classifiers is to separate positive
bags (keychains) from negative bags (keychains) within the MIL feature space, which can
for example be achieved by mapping the bags to a new feature space in which a regular
classifier can be trained[38].

In svMIL, we formulated the prediction of pathogenic non-coding SVs as a MIL prob-
lem, wherein SV-gene pairs are considered as bags and the regulatory elements as in-
stances (Fig 1a). Labels are obtained by leveraging patient matched gene expression
data. Together, this representation enables identification of putatively pathogenic TAD
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boundary-disrupting non-coding SVs by learning the characteristics of disrupted inter-
actions between genes and regulatory elements. Here, we extend upon this framework
and improve the svMIL algorithm, which was originally tested on a maximum of 162
breast cancer patients and 70 ovarian cancer patients, to scale to larger datasets. We ad-
ditionally use feature selection to improve the AUC by around 0.1 to an average of 0.86
in 313 breast cancer patients. We apply the improved svMIL algorithm, svMIL2, to char-
acterize pathogenic non-coding SVs across 12 cancer types. For this purpose, we lever-
age a high-quality pan-cancer dataset from the Hartwig Medical Foundation (HMF)[39],
which consists of 1646 uniformly processed high-depth (>90x) metastatic tumor sam-
ples along with paired transcriptional profiling data. The availability of same-sample
whole-genome sequencing (WGS) and RNA-sequencing data across many cancer types
has already resulted in a number of novel studies[40–43], and likewise makes this dataset
extremely suitable for this study.

In this work, we show that svMIL2 can confidently predict pathogenic TAD boundary-
disrupting non-coding SV candidates across all cancer types, revealing that especially
ovarian and pancreatic cancer appear to be more strongly driven by non-coding SVs than
other cancers. Furthermore, non-coding SVs frequently disrupt active (super) enhancers
in open chromatin regions uniformly across cancer types, which supports our previous
findings in breast cancer[34]. Altogether, these findings indicate a common mechanism
by which non-coding SVs may cause cancer.

Additionally, we explore the impact of non-coding SVs disrupting intra-TAD CTCF
loops rather than TAD boundaries. Although we find that gene expression can be al-
tered through mechanisms similar to TAD boundary disruptions in breast cancer, the
frequency at which these events occur is low, confirming previous findings[36]. How-
ever, these initial results suggest that investigating the disruption of intra-TAD chro-
matin loops may be highly relevant in future studies to obtain a complete overview of
cancer development and progression.

Multiple Instance Learning effectively predicts pathogenic non-coding SVs

svMIL predicts pathogenic TAD boundary-disrupting non-coding SVs in 2 steps: first
predicting candidate pairs of somatic non-coding SVs and disrupted genes, and then
applying machine learning to identify the pairs that are pathogenic (Fig 1a, see Methods
for more details). In step 1, for every SV overlapping a TAD boundary, derivative TADs
are constructed in which the disrupted interactions between genes and regulatory ele-
ments are modeled (Fig S1). Genes that gain or lose at least 1 regulatory element and the
disrupting SV are considered a pair. In step 2, we learn pathogenic SV-gene pairs using
a MIL model. Each SV-gene pair is defined as a bag containing the gained or lost eQTLs,
enhancers and super enhancers as instances. Every instance is assigned a feature vector
(Fig 1b) describing if the instance was gained or lost, which histone marks (h3k4me3,
h3k27me3, h3k27ac, h3k4me1), chromatin states (CTCF, CTCF + enhancer, CTCF + pro-
moter, promoter, poised promoter, heterochromatin, repressed, transcribed), transcrip-
tion factor binding profiles (DNAse I hypersensitivity sites, RNA polymerase II, CTCF,
transcription factor binding sites) and CpG islands it overlaps with, the peak intensity
(used to indicate strength of the element) of these regulatory elements where available
(histone marks, RNA polymerase II), the type of the regulatory element (eQTL, enhancer
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Fig. 1. Overview of the svMIL2 method and performance. (a) svMIL2 methodology. From disrupted TADs,
pairs are identified between SVs and genes disrupted due to gained or lost regulatory elements. These SV-gene
pairs are modeled as bags (keychain), in which the regulatory elements (eQTLs, enhancers or super enhancers)
that the gene gained or lost due to the SV are instances (keys). Instances are described with features such as
histone marks (see panel b). A similarity score is constructed between bags and instances by computing the
absolute distance from the mean instance of each bag to all other instances. The resulting similarity matrix is
used as input to a random forest model to classify bags. (b) All features used in the svMIL2 model to describe
instances, grouped by feature category. (c) Performance in AUC of the svMIL2 model on 12 cancer types from
the HMF dataset.
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or super enhancer) and the number of regulatory elements disrupted by the SV (instance
count) (see Table S1 for data sources).

To obtain a final classifier, we used the MILES approach with a random forest
classifier[38]. In MILES, a feature space is created by computing a bag-to-instance sim-
ilarity matrix by computing a distance between each bag to all instances, on which a
regular classifier can then be trained. Positive bags are expected to have higher similar-
ity to positive instances, but dissimilar to negative instances, resulting in a separation in
feature space (Fig 1a). Here, an absolute distance is computed from the mean instance
of each bag to all instances.

Bags are labeled positive if the z-score of the expression of the gene in an SV-gene pair
to all other patients with no mutation affecting the gene (coding SNV, CNV, SV or non-
coding SV) is larger than 1.5 or smaller than -1.5 (i.e. the SV led to altered expression of
the paired gene), and negative otherwise.

Model performance is measured using leave-one-patient-out CV, mimicking a sce-
nario in which an unseen patient comes into the clinic. In this CV setting, all SV-gene
pairs of one patient are used as testing data, whereas the SV-gene pairs of all other pa-
tients are used as training data.

To improve svMIL, we include a rigorous feature selection approach to determine
which features optimally benefit the classification result. To this end, we first explored
the feature importance in the original model on the breast cancer samples, as this was
the cancer type used to infer this model originally. We find that certain features have low
variance across instances and do therefore not contribute to classification performance
(Fig S2). By removing non-informative features and reducing noise in our instances (see
Methods), we further enhance the ability of our previously described svMIL approach
to predict pathogenic TAD boundary-disrupting non-coding SVs. Comparing the per-
formance in a leave-one-patient-out CV setting of the original model to the updated
model reveals that these improvements yield an increase in AUC of around 0.1 for all SV
types except for duplications, which increases by 0.03 (Fig S3). Thus, the methodology
of svMIL2 is highly effective at predicting pathogenic non-coding SV-gene pairs.

svMIL2 can accurately predict driver genes disrupted by non-coding SVs across cancer
types
We applied svMIL2 to predict pathogenic non-coding SV-gene pairs in all 12 cancer types
from HMF in a leave-one-patient-out CV setting and show that the AUC is consistently
high, revealing that our method is also applicable to non-breast cancer data (Fig 1c),
even in data with lower sample and SV counts (Fig S4a-b, Table S2). Out of 204 over-
lapping (100 bp) SVs within different patients, svMIL2 predicts 172 with the same label,
showing that our method is robust.

Notably, lower performance is observed for translocations in uterus cancer and for
inversions in kidney cancer, which is likely explained by a low sample count and low
number of detected pathogenic SVs in these cancers (see Methods and Fig S4c, Table
S2). Overall, differences in performance between SV types may be caused by the varying
number of SVs of a certain type detected in each cancer.

To maximize the number of correctly identified pathogenic SV-gene pairs, the oper-
ating point of each model was individually optimized for the highest recall, requiring a
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Fig. 2. Analysis of predicted pathogenic non-coding SV pairs. (a) Genes affected by pathogenic non-coding
SVs as identified by svMIL2 with significant driver potential (showing top 50 most significant gene-cancer type
pairs). To determine significant driver potential, random gene sets were sampled 10,000 times with the same
size as the number of genes with candidate pathogenic non-coding SVs. A t-test was used to compute which
of the candidate genes have more driver coding SNVs (snpEff moderate or high impact, filtered for consensus
genes driven by SNVs from IntOGen) than expected by random chance. (b) Comparison of the number of genes
affected by pathogenic non-coding SVs with the number of genes affected by driver SNVs reveals a preference
for a different driving mechanism per cancer type.

minimum precision of 0.5. In total, 9261 candidate non-coding SV-affected driver genes
were identified, ranging between on average 6-35 genes per patient depending on the
cancer type (Fig S5a). 346 of the predicted genes are reported in the COSMIC CGC, of
which 25 are also annotated to be specific for the respective cancer type (Fig S5b).

11 of the predicted genes have been previously reported as being affected by non-
coding SVs, all of which result in significant changes to gene expression compared to
non-mutated genes (z > 1.5 or z < -1.5, see Methods). Most notably, we identify a dele-
tion (Fig S6a) and translocation (causing eQTL gains) affecting TP53 in prostate cancer,
and an inversion (Fig S6b) and translocation causing ERBB2 to gain eQTLs and a (super)
enhancer in ovarian cancer. These genes were reported to be driven by non-coding SVs
in these cancer types previously[19]. PTEN (inversion causing gain of an enhancer, su-
per enhancer and eQTL in ovarian cancer), BCL2 (deletion causing gain of an eQTL and
enhancer, colorectal cancer), VMP1 (inversion causing gain of an enhancer, super en-
hancer and eQTL in pancreatic cancer) and LSAMP (translocation causing gain of eQTL
in nervous system cancer) were also significant in the same study, albeit in different can-
cer types.

Other interesting findings include MYB, which is affected by an inversion leading to
a (super) enhancer-hijacking event in a colorectal cancer patient, a phenomenon that
has previously been observed to occur in ACC as a result of translocations[44]. We also
identify a deletion causing GFI1 to gain an eQTL, enhancer and super enhancer in col-
orectal cancer and an inversion causing a gain of an eQTL in prostate cancer. Enhancer-
hijacking was previously demonstated to lead to overexpression of GFI1 in
medulloblastoma[45].

Activation of the proto-oncogene TAL1 was linked to recurrent deletions of a nearby
TAD boundary in T-ALL[28], and we identify potential disruptions of this gene in esopha-
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gus cancer (translocation causing gain of eQTL and enhancer) and uterus cancer (translo-
cation causing gain of eQTL). In another study, mutations in the CTCF motif at a TAD
boundary nearby NOTCH1 likely resulted in misregulation through novel gene-enhancer
interactions[46]. svMIL2 identified an inversion in esophagus cancer causing the gene
to gain an eQTL and potentially cause the upregulation of the gene. Finally, recurrently
disrupted CTCF sites were observed near FOXC1 in esophagus, gastric and colon ade-
nocarcinomas, and near BCL6 in hepatocellular carcinoma[31]. We identify a deletion
causing FOXC1 to gain an eQTL and enhancer in pancreatic cancer, and a duplication
resulting in a gain of an eQTL for BCL6 in colorectal cancer.

To validate if these predicted driver genes are significant findings, we determined
how frequently they harbor predicted pathogenic SNVs. To this end, we defined the
driver potential as the number of driver SNVs affecting the gene across patients within
the respective cancer type according to snpEff (moderate or high impact). This list was
further filtered for genes driven by SNVs from the IntOGen catalog[47]. Within each can-
cer type, significance of a gene is assessed by comparing the driver potential to the av-
erage driver potential in 10,000 randomly subsampled gene sets of the same size (t-test,
Bonferroni corrected). This analysis reveals 112 genes disrupted by non-coding SVs with
significant driver potential (Fig 2a, showing the top 50 most significant gene-cancer type
combinations. The full list is provided in Table S3). 26 significant genes are also indi-
cated as driver genes by the CGC, of which ESR1, ARID1A, CDK12, ZFHX3 and SPOP are
known drivers in breast, ovarian and prostate cancer, respectively. Thus, our model can
identify non-coding SVs affecting known driver genes in various cancer types in previ-
ously unseen patients.

The number of pathogenic non-coding SVs varies between cancer types

The highest number of pathogenic non-coding SVs is detected in breast, ovarian and
prostate cancer, while only low numbers are identified in uterus and kidney cancer (Fig
S4c, Table S2). Although the number of pathogenic non-coding SVs increases with the
total number of SVs detected within a cancer type, uterus, nervous system and ovarian
cancer have more pathogenic non-coding SVs relative to their total SV count (Fig S4d,
Table S2). However, there does not appear to be a clear preference for specific SV types
in any cancer type (Fig S7). To determine if certain cancer types may be largely driven
by non-coding SVs, we plotted the number of genes affected by at least one predicted
pathogenic non-coding SV to the genes with driver SNVs from snpEff and IntOGen as
detailed above (Fig 2b). Ovarian and pancreatic cancer stand out as having relatively
more pathogenic non-coding SVs than driver SNVs. As tumorigenesis is known to be
driven by copy number alterations in these cancer types[48–50], these findings indicate
that many of these events may exert driving effects through disrupting TAD boundaries.

Pathogenic non-coding SVs disrupt similar regulatory elements across cancer types

To determine if non-coding SVs exert pathogenicity through similar mechanisms across
cancer types, we compared if gained and lost regulatory elements significantly differ be-
tween predicted pathogenic SVs and predicted non-pathogenic SVs. For each cancer
type, the top 100 instances with highest feature importance were compared to 100 ran-
domly selected instances from predicted non-pathogenic SVs (t-test, Bonferroni correc-
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Fig. 3. Heatmap showing the instances observed more (red) or less (blue) frequently than expected by ran-
dom chance in each cancer type. The colors represent the z-score. The asterisks indicate regulatory ele-
ments that were missing in a cancer type and for which GM12878 was used as default.

tion across all cancer types). Overall, we observe that highly similar regulatory elements
are disrupted across cancer types (Fig 3). This is also visible if the affected regulatory el-
ements are split into gains and losses (Fig S8). Interestingly, only breast cancer appears
to be driven more by gains than losses of regulatory elements, which is not explained
only by a higher number of deletions and duplications (Fig S7) and thus may represent a
preferential mechanism to upregulate genes in this cancer type. For kidney and uterus,
the overall lower significance is likely explained by a lower number of pathogenic SVs (Fig
S4c, Table S2). Across cancer types, we notice a frequent disruption of enhancers and the
active enhancer (h3k27ac) mark with high active signal strength (h3k27ac strength). For
breast cancer, super enhancers are disrupted. Furthermore, lack of heterochromatin,
repressed regions and h3k27me3 (marker of heterochromatin) is frequently observed,
while more DNAseI hypersensitivity marks (accessible chromatin) are affected. In con-
clusion, these patterns indicate that pathogenic non-coding SVs appear to mostly alter
active (super) enhancers in open chromatin regions, a mechanism which is recurrently
observed across cancer types.

Tissue-specific regulatory elements are important for classifier performance
As regulatory data may not always be readily available for every tissue, we aimed to as-
sess the impact of selecting less-than-optimal regulatory information on predictive per-
formance. For every cancer type, we ran svMIL2 while swapping all regulatory data with
all other cancer types and measured the effect on performance (see Methods). In ad-
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Fig. 4. The effect of swapping regulatory data between cancer types on model performance. The z-score is
computed by comparing the total AUC difference in a swap across all SV types to the mean of performance
differences from the original run to all other swaps, divided by the standard deviation of these differences.
Higher z-scores thus mean that the performance is better with data from that tissue type relative to all other
tested tissue types in the swap. For example, out of all swaps made, nervous system relatively performs best
with data from nervous system, ovary and prostate, while the performance is worst with data from skin,
urinary tract and uterus. The asterisks indicate cancer types with some missing data for which GM12878
was used.

dition, we compared the performance to a scenario where only data from GM12878 is
used, which we use as a default when tissue-specific data is missing. Overall, it appears
that the majority of swaps do not significantly alter performance, revealing the over-
lapping nature of regulatory information between tissue types (Fig 4), which has been
noted previously[51]. Using regulatory data from GM12878 and urinary tract are typi-
cally poor choices that reduce predictive performance (z < -1). As urinary tract misses a
lot of tissue-specific data and therefore already uses a lot of data from GM12878 in the
original run, this reduction may not be surprising. On the contrary, certain swaps ap-
pear to improve performance (z > 1). These results may not be unexpected given that
our samples consist of metastases, which may no longer necessarily completely repre-
sent the tissue of origin. However, as not all samples of our dataset within a cancer type
metastasized to the same region, recommending an optimal alternative that will also be
suitable for independent data is not trivial. Altogether, these findings are of particular
importance for the choice of using GM12878 as a default in case of absent tissue-specific
data. While the performance using GM12878 only in place of missing data is reasonable
(see Fig 1c, where urinary tract, esophagus and kidney used GM12878 to replace miss-
ing data), the possibility of obtaining better AUC with the actual tissue type stresses the
importance of generating regulatory datasets for each relevant tissue type.

Non-coding SVs alter gene expression by disrupting intra-TAD chromatin loops
Next, we aimed to determine if SVs disrupting intra-TAD chromatin loops may play a
role in cancer. To this end, we ran svMIL2 using chromatin loops predicted by iTAD in
place of TAD boundaries. As this software requires cohesin and CTCF peaks as input
and these tracks are only available for breast, colorectal and lung cancer, our analysis
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is limited to those tissue types. By far, most chromatin loops were predicted in breast
(breast: 22113, colorectal: 7522, lung: 9130). In contrast to the TAD-based scenario, the
number of SV-gene pairs is far lower (54%, 74% and 83% less in breast, colorectal and
lung cancer, respectively), with remarkably fewer pathogenic SV-gene pairs (breast: 101,
colorectal: 62, lung: 34) (Fig 5a-b, Fig S4c, Table S2). Taken together, these findings reveal
that pathogenic non-coding SVs are less likely to start and end within CTCF loops, but
may still alter gene expression.

Due to low counts of candidate SV-gene pairs in colorectal and lung cancer, we could
only reliably apply svMIL2 and obtain an AUC in breast cancer, where pathogenic SVs
were predicted at high AUC for all SV types (Fig 5c). As the disruption of chromatin loops
appears to also frequently result in gains of (super) enhancers in open chromatin regions
(Fig 5d, Fig S9), the mechanism by which gene expression is altered is likely similar to
that of TAD boundary disruptions.

Out of 94 predicted driver genes affected by SVs through CTCF loop disruption in
breast cancer, 2 are reported as cancer-driving by the CGC. ZNF331 is affected by an in-
version, while CHEK2, a well-known germline risk factor for breast cancer[52], is affected
by translocations in 4 different patients.

In conclusion, we find evidence that non-coding SVs may be capable of altering
gene expression in cancer by disrupting intra-TAD chromatin loops, but at a far lower
frequency than by the disruption of TAD boundaries, confirming previous findings[36].
However, as our results are limited by the lack of available cohesin measurements across
tissues and low sample counts, the importance of intra-TAD loops remains an important
topic for future studies.

Discussion
In this work, we described an improved version of svMIL, svMIL2, to predict pathogenic
TAD-boundary and CTCF-loop disrupting non-coding SVs from WGS cancer genomes
with paired whole transcriptome sequencing data. We showed that svMIL2 can lever-
age these data to accurately predict pathogenic non-coding SVs across multiple cancer
types. Across all cancer types, putative pathogenic non-coding SVs were predicted to
disrupt 9261 genes, 346 of which are known cancer driver genes. Since all validation
experiments are carried out through leave-one-patient-out CV, together with identify-
ing non-coding SVs affecting known cancer drivers, these results demonstrate that our
method is applicable to identify pathogenic non-coding SVs in a clinical setting where
somatic variants of a newly diagnosed patients need to be prioritized. We also observe
that the role of pathogenic non-coding SVs, as opposed to driver SNVs, varies between
cancers. Despite these differences, non-coding SVs appear to similarly frequently dis-
rupt active (super) enhancers in open chromatin regions in the majority of cancer types,
pointing to common mechanisms by which TAD disruptions may be pathogenic. Taken
together, these findings indicate that non-coding SVs play an important role in cancer
and should be considered in WGS-based cancer diagnostics.

As opposed to the clear impact of disrupting TAD boundaries on the development of
cancer, the effects of disrupting intra-TAD chromatin loops are not yet well understood.
Using svMIL2, we were able to identify pathogenic non-coding SVs that alter expression
of known cancer genes by disrupting CTCF loops in breast cancer. However, the num-
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ber of candidate pathogenic SV-gene pairs resulting from CTCF loop disruptions is up
to 10-fold lower than when only TADs are investigated. Therefore, SVs disrupting intra-
TAD chromatin loops rather than TAD boundaries may seemingly be less pathogenic,
which corresponds with previous experiments performed with germline SVs[36]. How-
ever, as we were only able to obtain cohesin and CTCF peak data for breast, colorectal
and lung cancer, the actual relevance of chromatin loops may be underreported in this
study. Nevertheless, these initial findings point to a potential involvement of disrupting
CTCF loops in the development of cancer, and may be a highly interesting avenue for
future studies.

While the majority of regulatory information is available in respective tissue types,
we found that selecting the most suitable alternative for cases with missing data remains
a difficult problem that potentially strongly affects classifier performance. As our dataset
is comprised of metastatic cancer data, the reference tissue type may sometimes no
longer be well-represented in the cancer at time of sampling, and thus selecting an op-
timal alternative tissue is not trivial. However, answering these questions will only really
become possible once the missing regulatory data have been acquired in the respective
tissues. Therefore, our results underscore the importance of completing the catalogue
of celltype-specific regulatory information. Such data may also help create a better un-
derstanding of the role of SVs in the mitochondrial DNA (mtDNA). Common deletions
have been identified in the mtDNA of especially gastric cancers[53], but the effect of
such SVs on regulatory information is difficult to assess as mtDNA is often missing from
regulatory datasets. While large-scale efforts to collect these data such as the ENCODE
project[54] are still ongoing, other promising alternatives to acquire these data apply
imputation from other cell types, which is performed by methods such as Avocado[51],
ChromImpute[55] and PREDICTD[56]. However, as imputation with these methods is
not yet possible for regulatory data in all tissue types, further research in this field is re-
quired.

Furthermore, our method could further benefit from improved SV calls. While our
current dataset captures many SVs in the genome, adopting long-read sequencing tech-
niques could improve detection of additional SVs in repetitive regions[57] and clear up
potentially noisy calls. SVs obtained from longer reads can improve the training labels
used in svMIL2, as expression of certain genes may be altered due to non-coding SVs
but currently remain undetected due to missing calls. Label quality would also bene-
fit from additional patient-matched datasets such as methylation data, which could be
used to exclude genes that are deregulated due to methylation rather than non-coding
SVs. However, such data is currently too costly to routinely generate for each patient.
Similar labeling problems occur when genes are affected by variants of unknown signif-
icance or upstream pathway effects, which are difficult to account for. While methods
such as DriverNet[58] or DawnRank[59] have been shown to improve driver prediction
by integrating gene networks with SNV and CNV data, non-coding SVs have not yet been
included in these studies. However, as the number of recurrent driver non-coding SVs
is smaller than for SNVs or CNVs, as was shown previously[19, 34], the statistical valida-
tion applied will need to properly deal with the imbalance in contribution to the driver
phenotype between the mutation types.

Although we demonstated that MIL is a suitable approach to identify pathogenic
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non-coding SVs and previously showed the benefits of using MIL compared to a non-
MIL random forest[34], alternative machine learning approaches may assist in learn-
ing about pathogenic non-coding SVs from a different perspective. For example, deep
learning-based methods such as DeepSEA[12] and ExPecto[13] were recently used to
prioritize non-coding SNVs by learning genomic features, such as chromatin states, of
the region around the mutation. Such an approach could similarly be used to learn the
characteristics of SV breakpoints, or disrupted TAD boundaries. These annotations on a
smaller scale could teach us more about the local environment disrupted by non-coding
SVs in detail, which is not straightforward with svMIL2.

WGS is rapidly becoming part of the routine diagnostic process of cancer centers.
However, since the driving potential of non-coding SVs remains elusive, the vast majority
of these costly WGS data remain underutilized. Our proposed svMIL2 model can accu-
rately predict pathogenic non-coding SVs among the typically vast numbers of somatic
SVs present in cancer genomes by learning from a combination of WGS, gene expres-
sion, TAD boundary and intra-TAD chromatin loop information. As more and more WGS
datasets and epigenomics tracks will become available, it can be expected that these pre-
dictions will further improve. This will further enable the inclusion of non-coding SVs in
WGS-based cancer diagnostic reporting.

Methods
Data

Pre-called whole-genome SV, CNV and SNV data and RNA-seq counts were obtained for
1944 cancer patients from the HMF, representing 29 cancer types in total. All variants
were called using the HMF pipeline (https://github.com/hartwigmedical/pipeline), as
detailed previously[60]. The RNA-seq data was processed using Isofox
(https://github.com/hartwigmedical/hmftools/tree/master/isofox). The raw expression
read counts were normalized across all patients using the Trimmed Mean of M-values
(TMM) method. Cancer types with fewer than 20 samples or with uncertain or varying
tissue origin were omitted from analysis, leaving 12 cancer types in total across 1,646 pa-
tients (breast: 313, ovary: 62, lung: 125, colon/rectum: 393, urinary tract: 118, prostate:
199, esophagus: 53, skin: 216, pancreas: 66, uterus: 26, kidney: 38, nervous system: 37).

For all data collection, hg19 was used as the reference genome. We downloaded
CpG islands (across all cell types) from the UCSC genome annotation database. Tran-
scription factors (across all cell types) were collected from the ORegAnno database[61].
ChromHMM states (HMEC) were obtained from Taberlay et al[62].

The following regulatory elements were downloaded for the tissue types closest match-
ing the cancer type. A detailed overview of all regulatory data sources can be found in
Table S1. eQTLs were downloaded from GTEx v7 (v8 for kidney, converted to hg19 using
the UCSC liftover tool)[63]. Enhancers were obtained from JEME[64]. Super enhancers
were collected from dbSUPER[65] and SEdb[66] (kidney, brain and prostate). TADs were
downloaded from the 3D genome browser[67], using the UCSC liftover tool to convert
from GRCh38 to hg19 for colorectal and ovary. CTCF, DNAse I, h3k4me3, h3k27me3,
h3k27ac, h3k4me1 and RNA pol II peaks were downloaded from ENCODE[54].

For each cancer type, regulatory data was selected for the closest matching tissue of
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origin. GM12878 was selected where tissue-specific regulatory data was missing, as this
data type is available for all regulatory data and thus represents a typical baseline. The
impact of selecting less-than-optimal tissue types is further explored in the Results and
the procedure is detailed below.

svMIL2 model
svMIL2 follows 2 steps to identify pathogenic non-coding SVs: identifying genes puta-
tively disrupted by TAD boundary-disrupting non-coding SVs, and using MIL to learn
which of these SVs are pathogenic. For full details, please refer to the original svMIL
publication[34].

In step 1, all genes are identified that are putatively affected by non-coding SVs dis-
rupting boundaries of TADs (Fig S1). Only SVs that start and end within TADs are in-
cluded, requiring at least 1 basepair overlap with the TAD. For each SV type, we deter-
mine which regulatory elements (eQTLs, enhancers and super enhancers) are disrupted
by the SV. eQTLs have been previously shown to overlap with enhancers that regulate
known cancer genes[68], and are therefore included to account for possibly undiscov-
ered enhancers.

For deletions, all genes in the TAD on one side of the deletion will gain the regula-
tory elements on the other side of the deletion. Regulatory elements and genes that are
overlapped by the deletion itself are not counted as these are not TAD-disrupting events.

For duplications, new TADs are created between the overlapped TAD boundary and
the position where this overlapped boundary is re-inserted into the genome. Within this
new TAD, genes overlapped by the duplication on one side of the TAD boundary will gain
regulatory elements overlapped by the duplication on the other side of the TAD bound-
ary. As no clear consensus exists about how many basepairs of a regulatory element need
to be affected to disrupt its function, we require a minimum overlap of 1 basepair.

For inversions, genes lose regulatory elements that are inverted out of the TAD, and
gain regulatory elements that are inverted into the TAD. Genes inside the inversion will
gain regulatory elements of the TAD that these are inverted in to, and lose regulatory
elements that were in the TAD it was inverted out of.

For translocations, we construct a derivative TAD based on the SV orientation in
which the new positions of genes and regulatory elements are modeled. Genes gain and
lose regulatory elements based on if these are introduced into or removed from the new
TAD, respectively.

From these TAD disruptions, a list of SV-gene pairs is constructed containing the
regulatory elements that the gene gained or lost as a result of the SV. All genes overlapped
(1 basepair) by any coding mutation (SVs, SNVs or CNVs) are excluded to ensure that any
effect on the gene is explained only by the non-coding SV. An exception is made for non-
coding duplications and inversions, which may overlap the affected gene itself.

In step 2, a MIL model is trained to learn which gains and losses of regulatory ele-
ments are characteristic of pathogenic non-coding SVs. Every SV-gene pair is consid-
ered a bag, with the disrupted regulatory elements (eQTLs, enhancers and super en-
hancers) as instances. Each instance is described with a single feature vector. The first
two features are binary, indicating if the regulatory element was gained or lost. The
next set of features contain either a 0 or 1 depending on if the regulatory element over-
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laps (minimum 1 bp) with any of the following annotations (Fig 1b): histone marks
(h3k4me3, h3k27me3, h3k27ac, h3k4me1), chromHMM states (CTCF, CTCF+enhancer,
CTCF+promoter, enhancer, promoter, poised promoter, heterochromatin, repressed, tran-
scribed), transcription factor binding profiles (DNAseI hypersensitivity, RNA polymerase
II, CTCF, transcription factor binding sites) and CpG islands. The third set of features
uses the peak intensity of these annotations where available to indicate their strength
(histone marks, RNA polymerase II, CTCF). Finally, binary features were used to indicate
the type of the regulatory element (eQTL, enhancer, super enhancer) and the number
of regulatory elements disrupted by this SV in total (instance count). All features were
normalized between 0 and 1.

To label the bags (SV-gene pairs) as pathogenic or non-pathogenic, a z-score was
computed from the gene expression to all patients without a disruption to the gene (e.g.
coding SV, SNV, CNV or non-coding SV). Bags with z > 1.5 or z < -1.5 were labeled pos-
itive, and negative otherwise, which was determined to be the optimal threshold in the
previous version of svMIL[34]. Negative bags were randomly subsampled to the number
of positive bags to obtain class balance.

A final classifier was obtained by applying the MILES approach[38]. In MILES, a stan-
dard feature space is constructed by computing a similarity matrix between the bags and
instances. Here, we computed the absolute distance from the mean instance of the bags
to all instances. In this space, a random forest was trained to obtain a final classifier.
A model was constructed for each SV type separately. All performances were measured
using a leave-one-patient-out CV, which models a scenario in which an unseen patient
would come into the clinic.

Using svMIL2
svMIL2 takes VCF files containing SVs per patient as input and generates SV-gene pairs
based on TAD boundary disruption as detailed above. SV-gene pairs overlapped by cod-
ing SNVs, CNVs or SVs are filtered out. SNV files should be provided as VCF files per
patient. For CNVs, a tab-delimited file is expected per patient containing the genes and
their copy numbers. SV-gene pairs of which the gene has a copy number below 1.7 or
above 2.3 are omitted from further analysis. Bags (SV-gene pairs) are labeled for MIL
using normalized expression data as described above. To prioritize pathogenic SV-gene
pairs, users can either run the MIL in a leave-one-patient-out CV setting, or train the
model on one dataset and apply to another. A ranking can be obtained through the
classifier probabilities assigned to each bag. A step-by-step tutorial for using svMIL2
is available on GitHub (see Data availability).

Feature selection to improve model performance
To improve the predictive performance of svMIL, we aimed to improve the quality of fea-
tures through feature selection. Feature importance was assessed by computing the vari-
ance of a feature across all instances of the breast cancer samples (Fig S2). Certain fea-
tures that were present in the original model (Hi-C, h3k9me3, h3k36me3, chromHMM
repeat regions and enhancer, h3k9me3 and h3k36me3 strength) contained low variance
(log(variance) < -10) and therefore did not contribute to the distinction between positive
and negative instances, and were thus omitted.
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Improving method accuracy by increasing the number of high-quality instances

To increase the number of informative instances in the model, the eQTL p-value strin-
gency threshold was increased from 5e-8 to 0.05. To account for the resulting increased
computational load, all eQTLs, histone marks, and transcription factor (TF) binding sites
were binned using a 1kb sliding window.

To account for increased memory consumption resulting from a larger number of
SV-gene pairs, bags of each SV type were randomly subsampled if their count exceeded
700, which did not significantly reduce performance on the breast cancer samples for all
SV types but inversions, for which the AUC is lowered slightly (Fig S10).

Swapping regulatory elements between cancer types

The effect on performance when swapping regulatory data between cancer types was
measured by computing the absolute difference in AUC between the original run and the
swapped run, summed across the models for each SV type. A z-score was computed by
comparing this summed difference to the mean and standard deviation of the summed
differences of all swaps made for that cancer type. Thus, a higher z-score indicates a
better performance with that tisue type relative to all other tested tissue types in the
swap. For visualization purposes, z-scores were quantized to indicate non-significant
effect (-1 < z < 1), significant effect (-2 < z < -1 and 1 < z < 2), and highly significant effect
(z < -2 and z > 2).

Running svMIL2 with CTCF loops instead of TAD boundaries

Intra-TAD chromatin loops were predicted using iTAD[69]. Due to the limited availabil-
ity of cohesin peak data, predictions were limited to tissues for which both cohesin and
CTCF peaks were available (breast, colorectal, lung). For cohesin, RAD21 TF ChIP-seq
peaks were downloaded for MCF-7 (breast), HCT-116 (colorectal) and A549 (lung). For
CTCF, the files listed in Table S1 were used. To predict pathogenic SV-gene pairs, svMIL2
was run using the predicted intra-TAD chromatin loops in place of TAD boundaries.

Data availability
All (processed) WGS and RNA-sequencing data were provided by the Hartwig Medical
Foundation under data request DR-104. This publication and the underlying study have
been made possible partly on the basis of the data that Hartwig Medical Foundation and
the Center of Personalised Cancer Treatment (CPCT) have made available to the study.
All code and processed feature data is publicly available at
https://github.com/UMCUGenetics/svMIL/. On GitHub a manual can be found repro-
ducing all paper figures and running svMIL2 on a different dataset.
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T. Madsen, R. Sallari, M. Kellis, T. Ørntoft, A. Hobolth, and J. S. Pedersen, Pan-
cancer screen for mutations in non-coding elements with conservation and cancer
specificity reveals correlations with expression and survival, npj Genomic Medicine
3, 1 (2018).

[17] N. D. Dees, Q. Zhang, C. Kandoth, M. C. Wendl, W. Schierding, D. C. Koboldt, T. B.
Mooney, M. B. Callaway, D. Dooling, E. R. Mardis, R. K. Wilson, and L. Ding, MuSiC:
Identifying mutational significance in cancer genomes, Genome Research 22, 1589
(2012).

[18] D. Tamborero, A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth,
J. Reimand, M. S. Lawrence, G. Getz, G. D. Bader, L. Ding, and N. Lopez-Bigas, Com-
prehensive identification of mutational cancer driver genes across 12 tumor types,
Scientific Reports 3, 2650 (2013).

[19] E. Rheinbay, M. M. Nielsen, F. Abascal, J. A. Wala, O. Shapira, G. Tiao, H. Horn-
shøj, J. M. Hess, R. I. Juul, Z. Lin, L. Feuerbach, R. Sabarinathan, T. Madsen,
J. Kim, L. Mularoni, S. Shuai, A. Lanzós, C. Herrmann, Y. E. Maruvka, C. Shen, S. B.
Amin, P. Bandopadhayay, J. Bertl, K. A. Boroevich, J. Busanovich, J. Carlevaro-Fita,
D. Chakravarty, C. W. Y. Chan, D. Craft, P. Dhingra, K. Diamanti, N. A. Fonseca,
A. Gonzalez-Perez, Q. Guo, M. P. Hamilton, N. J. Haradhvala, C. Hong, K. Isaev, T. A.
Johnson, M. Juul, A. Kahles, A. Kahraman, Y. Kim, J. Komorowski, K. Kumar, S. Ku-
mar, D. Lee, K.-V. Lehmann, Y. Li, E. M. Liu, L. Lochovsky, K. Park, O. Pich, N. D.
Roberts, G. Saksena, S. E. Schumacher, N. Sidiropoulos, L. Sieverling, N. Sinnott-
Armstrong, C. Stewart, D. Tamborero, J. M. C. Tubio, H. M. Umer, L. Uusküla-
Reimand, C. Wadelius, L. Wadi, X. Yao, C.-Z. Zhang, J. Zhang, J. E. Haber, A. Hobolth,
M. Imielinski, M. Kellis, M. S. Lawrence, C. von Mering, H. Nakagawa, B. J. Raphael,

http://dx.doi.org/10.1038/nrg.2015.17
http://dx.doi.org/10.1038/nmeth.3547
http://dx.doi.org/10.1038/s41588-018-0160-6
http://dx.doi.org/10.1002/humu.23014
http://dx.doi.org/10.1002/humu.23014
http://dx.doi.org/10.1186/s13059-016-0994-0
http://dx.doi.org/10.1038/s41525-017-0040-5
http://dx.doi.org/10.1038/s41525-017-0040-5
http://dx.doi.org/10.1101/gr.134635.111
http://dx.doi.org/10.1101/gr.134635.111
http://dx.doi.org/10.1038/srep02650


4

120 References

M. A. Rubin, C. Sander, L. D. Stein, J. M. Stuart, T. Tsunoda, D. A. Wheeler, R. John-
son, J. Reimand, M. Gerstein, E. Khurana, P. J. Campbell, N. López-Bigas, J. Weis-
chenfeldt, R. Beroukhim, I. Martincorena, J. S. Pedersen, and G. Getz, Analyses of
non-coding somatic drivers in 2,658 cancer whole genomes, Nature 578, 102 (2020).

[20] J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren,
Topological domains in mammalian genomes identified by analysis of chromatin
interactions, Nature 485, 376 (2012).

[21] G. Fudenberg, M. Imakaev, C. Lu, A. Goloborodko, N. Abdennur, and L. A. Mirny,
Formation of Chromosomal Domains by Loop Extrusion, Cell Reports 15, 2038
(2016).

[22] A. L. Sanborn, S. S. P. Rao, S.-C. Huang, N. C. Durand, M. H. Huntley, A. I. Jewett,
I. D. Bochkov, D. Chinnappan, A. Cutkosky, J. Li, K. P. Geeting, A. Gnirke, A. Mel-
nikov, D. McKenna, E. K. Stamenova, E. S. Lander, and E. L. Aiden, Chromatin extru-
sion explains key features of loop and domain formation in wild-type and engineered
genomes, Proceedings of the National Academy of Sciences 112, E6456 (2015).

[23] E. Giorgio, D. Robyr, M. Spielmann, E. Ferrero, E. Di Gregorio, D. Imperiale, G. Vaula,
G. Stamoulis, F. Santoni, C. Atzori, L. Gasparini, D. Ferrera, C. Canale, M. Guipponi,
L. A. Pennacchio, S. E. Antonarakis, A. Brussino, and A. Brusco, A large genomic
deletion leads to enhancer adoption by the lamin B1 gene: a second path to autoso-
mal dominant adult-onset demyelinating leukodystrophy (ADLD), Human Molecu-
lar Genetics 24, 3143 (2015).

[24] C. Redin, H. Brand, R. L. Collins, T. Kammin, E. Mitchell, J. C. Hodge, C. Hanscom,
V. Pillalamarri, C. M. Seabra, M.-A. Abbott, O. A. Abdul-Rahman, E. Aberg, R. Adley,
S. L. Alcaraz-Estrada, F. S. Alkuraya, Y. An, M.-A. Anderson, C. Antolik, K. Anyane-
Yeboa, J. F. Atkin, T. Bartell, J. A. Bernstein, E. Beyer, I. Blumenthal, E. M. H. F.
Bongers, E. H. Brilstra, C. W. Brown, H. T. Brüggenwirth, B. Callewaert, C. Chiang,
K. Corning, H. Cox, E. Cuppen, B. B. Currall, T. Cushing, D. David, M. A. Deardorff,
A. Dheedene, M. D’Hooghe, B. B. A. de Vries, D. L. Earl, H. L. Ferguson, H. Fisher,
D. R. FitzPatrick, P. Gerrol, D. Giachino, J. T. Glessner, T. Gliem, M. Grady, B. H. Gra-
ham, C. Griffis, K. W. Gripp, A. L. Gropman, A. Hanson-Kahn, D. J. Harris, M. A. Hay-
den, R. Hill, R. Hochstenbach, J. D. Hoffman, R. J. Hopkin, M. W. Hubshman, A. M.
Innes, M. Irons, M. Irving, J. C. Jacobsen, S. Janssens, T. Jewett, J. P. Johnson, M. C.
Jongmans, S. G. Kahler, D. A. Koolen, J. Korzelius, P. M. Kroisel, Y. Lacassie, W. Law-
less, E. Lemyre, K. Leppig, A. V. Levin, H. Li, H. Li, E. C. Liao, C. Lim, E. J. Lose, D. Lu-
cente, M. J. Macera, P. Manavalan, G. Mandrile, C. L. Marcelis, L. Margolin, T. Ma-
son, D. Masser-Frye, M. W. McClellan, C. J. Z. Mendoza, B. Menten, S. Middelkamp,
L. R. Mikami, E. Moe, S. Mohammed, T. Mononen, M. E. Mortenson, G. Moya, A. W.
Nieuwint, Z. Ordulu, S. Parkash, S. P. Pauker, S. Pereira, D. Perrin, K. Phelan, R. E. P.
Aguilar, P. J. Poddighe, G. Pregno, S. Raskin, L. Reis, W. Rhead, D. Rita, I. Renkens,
F. Roelens, J. Ruliera, P. Rump, S. L. P. Schilit, R. Shaheen, R. Sparkes, E. Spiegel,
B. Stevens, M. R. Stone, J. Tagoe, J. V. Thakuria, B. W. van Bon, J. van de Kamp, I. van
Der Burgt, T. van Essen, C. M. van Ravenswaaij-Arts, M. J. van Roosmalen, S. Vergult,

http://dx.doi.org/10.1038/s41586-020-1965-x
http://dx.doi.org/ 10.1038/nature11082
http://dx.doi.org/10.1016/j.celrep.2016.04.085
http://dx.doi.org/10.1016/j.celrep.2016.04.085
http://dx.doi.org/ 10.1073/pnas.1518552112
http://dx.doi.org/10.1093/hmg/ddv065
http://dx.doi.org/10.1093/hmg/ddv065


References

4

121

C. M. L. Volker-Touw, D. P. Warburton, M. J. Waterman, S. Wiley, A. Wilson, M. d. l.
C. A. Yerena-de Vega, R. T. Zori, B. Levy, H. G. Brunner, N. de Leeuw, W. P. Klooster-
man, E. C. Thorland, C. C. Morton, J. F. Gusella, and M. E. Talkowski, The genomic
landscape of balanced cytogenetic abnormalities associated with human congenital
anomalies, Nature Genetics 49, 36 (2017).

[25] M. Franke, D. M. Ibrahim, G. Andrey, W. Schwarzer, V. Heinrich, R. Schöpflin,
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Supplementary Data
Table S1-S3 are available upon request.

Supplementary figures

Fig. S1. Schematic illustration of disruptions of TAD boundaries by non-coding SVs are modeled in svMIL2.
In each example, a gain of interaction with an enhancer is shown. For inversions, the gene in the left TAD also
loses potential interactions with the enhancer.
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Fig. S2. Log of the variance across all instances. A margin of 0.00001 was added to variances of 0 to compute
the log. Features with variances lower than -10 for all SV types were removed from the model.
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Fig. S3. Performance ROC curves of svMIL2 compared to the original svMIL on all breast cancer samples in
a leave-one-patient-out CV setting per SV type.
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a

b

c

d

Fig. S4. Number of (a) samples, (b) SVs and (c) predicted pathogenic SVs in each cancer type. (d) Percentage
of predicted pathogenic SVs compared to the total number of SVs across all samples in a cancer type. The
numbers in this figure are also provided in Table S2.
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Fig. S5. Distribution of the number of predicted (a) driver genes and (b) (cancer type-specific) CGC genes
disrupted by non-coding SVs across patients.
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Fig. S6. Schematic illustration of non-coding SVs exerting possible pathogenic effects on (a) TP53 in a
prostate cancer patient and (b) ERBB2 in an ovarian cancer patient. For ERBB2, the inversion brings the
gene into a new TAD where potential new interactions can be formed with a cluster of eQTLs, an enhancer
and a super enhancer that are located in a region with high DNAse I (open chromatin). For TP53, the deletion
removes TAD boundaries, bringing the gene close to a cluster of eQTLs with high DNAse I (open chromatin).
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Fig. S7. Relative contribution of each SV type to the predicted pathogenic SVs across all samples in each
cancer type.
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Fig. S8. Regulatory elements affected by non-coding SVs, split into gains and losses. P-values are computed
from a z-score based on the frequency of that feature in a gained regulatory element compared to 100 ran-
dom gained regulatory elements. Points above the red dashed lines indicate P < 0.05 and z > 0, whereas
points below the red dashed lines indicate P < 0.05 and z < 0. Note that the significances are slightly differ-
ent from Fig 3, which is not split into gains and losses. In the majority of cancer types, (super) enhancers
are affected rather than eQTLs, which is visible in combination with active enhancer marks (h3k27ac) and
open chromatin (lack of ChromHMM heterochromatin). Gains reach higher significance as these are ob-
served more often than by random chance. For losses, the number of lost regulatory elements per patient
(instance count) stands out in breast cancer specifically.
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Fig. S9. Regulatory elements affected by non-coding SVs, split into gains and losses, specific for using CTCF
loops instead of TAD boundaries in breast cancer. P-values are computed from a z-score based on the fre-
quency of that feature in a gained regulatory element compared to 100 random gained regulatory elements.
Points above the red dashed lines indicate P < 0.05 and z > 0, whereas points below the red dashed lines in-
dicate P < 0.05 and z < 0. Note that the significances are slightly different from Fig 5c, which is not split
into gains and losses. The pattern of gaining (super) enhancers with active (h3k27ac) marks in open chro-
matin (lack of ChromHMM heterochromatin) is visible here too. Gains reach higher significance as these
are observed more often than by random chance.
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Fig. S10. Subsampling bags does not significantly impact model performance. All performances are unaf-
fected except for inversions, for which performance decreases only slightly.
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Abstract
Loss of DNA-repair genes, such as BRCA1, BRCA2 and CDK12, leaves specific signatures
of somatic structural variants (SVs) in the genome. These signatures can be used to train
machine learning classifiers to detect gene deficiency status (DS). However, obtaining
a sample-level classification while representing all genomic features of individual SVs,
such as chromatin states, in a feature matrix is a challenging task. Here, we use multi-
ple instance learning (MIL) to describe samples as bags, which may contain any number
of SVs represented by an individual feature vector. We show that MIL outperforms the
existing non-MIL state-of-the-art. Another problem is that gene deficiency caused by
pathways or variants of unknown significance are hard to detect with whole genome se-
quencing (WGS) data alone, which is often the only available data type for a patient. As
a result, the labels of especially the negative set may be noisy. We overcome this prob-
lem by combining MIL with positive unlabeled (PU) learning, a classification strategy
that deals with label noise by considering the negative set as unlabeled. We demonstrate
that PU learning moderately improves the AUCPR. However, as the ground truth labels
remain unknown, it is difficult to interpret classifier performance based on the AUCPR.
Due to label noise, a reported false positive sample may actually have the deficiency
signature, but result in a lower AUCPR. As an alternative strategy to measuring perfor-
mance, we introduce a swap-one-patient-out cross validation (sopoCV). Each positive
sample is artificially swapped to the negative set and the total number of samples cor-
rectly identified as positive is reported as classifier performance. We find that AUCPR
may result in a biased interpretation of performance, and sopoCV gives a more accurate
representation of how well a classifier detects gene DS.

Introduction
Whole-genome sequencing (WGS) of every cancer patient is becoming routine practice
in the clinic. These data have enabled personalized treatment of patients with bial-
lelic loss-of-function (LOF) mutations in genes for which effective therapies are read-
ily available, such as immunotherapy for CDK12[1], or PARP-inhibitors for BRCA1 and
BRCA2[2, 3]. However, cases of biallelic loss where one or both alleles have been in-
activated through epigenetic modifications or pathway downregulation are difficult to
detect from WGS data alone. Furthermore, the impact of non-coding mutations or vari-
ants of unknown significance (VUS) on gene LOF is difficult to assess. While this problem
could partly be solved by the acquisition of more layers of -omics data, in reality these
data are too costly for routine diagnostics. However, the ability to detect biallelic loss
would greatly benefit more cancer patients.

Recently, a study from the Pan-Cancer Analysis of Whole Genomes (PCAWG) con-
sortium revealed that DNA-repair genes harboring pathogenic mutations leave specific
signatures of somatic structural variants (SVs) in the genome[4]. For example, loss of
CDK12 was found to lead to an increase in tandem-duplications in late replicating regions[1,
4], whereas loss of BRCA1/2 results in a high frequency of small deletions[4]. Conse-
quently, these mutational signatures may serve as a valuable proxy for the deficiency
status (DS) of a gene. More importantly, leveraging machine learning to predict the DS
of a gene based on mutational signatures enables detection of indirect or non-genetic
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inactivation of genes from WGS data alone.

DS classification has been utilized previously in a method called CHORD for the de-
tection of biallelic loss of BRCA1 and BRCA2 from SV, SNV and indel signatures[3]. To
obtain a classification at the sample-level, this method aggregates mutation signatures
within a sample. For example, rather than describing each SV by length and type, fea-
tures represent the number of SVs of a specific type and length identified in that sam-
ple. This summarization into a feature matrix enables application of standard machine
learning. However, an important limitation of this summarization is that relevant infor-
mation, such as replication timing, about the individual mutations is lost.

One alternative method to circumvent summarization into a fixed feature matrix is
Multiple Instance Learning (MIL). In MIL, so-called ’bags’ are defined which contain one
or more ‘instances’. Each individual instance can be represented with a feature vector
that describes its characteristics. In the DS classification setting, each sample would be
represented as a bag, and the instances would be represented as the SVs. The SVs can
then in turn be described by (genomic) features, such as the replication timing or chro-
matin state of the region in which they are present. The model needs to learn in this
MIL-space what the characteristics are of positive bags that are not shared with the neg-
ative bags. A very simple approach (simpleMI) is to convert the MIL-space to a regular
feature space by averaging the features of all mutations in a bag (Fig 1A)[5]. In this fea-
ture space, a regular classifier can be trained to learn the bag labels. While this approach
has been reported to achieve good performance in many classification tasks[6], it does
not overcome the problem that information about individual mutations is lost. Further-
more, like other traditional MIL algorithms, it is assumed that the presence of at least one
positive instance defines the whole bag as positive. In terms of the underlying problem,
the presence of one SV of the expected type and size would define a sample as having
biallelic loss, while in reality some SVs may also be generated by other cellular processes.
Therefore, the standard MIL assumption may not be as suitable here. Some approaches
therefore employ instance selection, which would remove SVs not caused by deficiency
of the gene of interest. However, these methods discard a large portion of data, might in-
advertently discard the wrong instances, and are often not universally applicable[7]. To
overcome this problem, we introduce an alternative MIL-based approach which we call
MIL-BreakPoint (MIL-BP) (Fig 1B), that first learns whether each individual SV break-
point belongs to a deficient sample. Then, the per-breakpoint probabilities are averaged
per sample to obtain a final prediction of the biallelic loss status of a gene in that sample.
In this way, the approach robustly considers features of all mutations individually.

One of the major challenges in DS classification is defining the classification labels.
In the simplest setup, the positive class can be defined as all samples with biallelic loss
of a gene as detectable from the WGS data, and a negative class containing all samples
without evidence of gene deficiency. While seemingly straightforward, in reality, absence
of biallelic LOF mutations does not guarantee true absence of biallelic loss in case one
or both alleles are inactivated through a non-mutation pathway. In other words, the
negative set may be contaminated with samples that in reality do present with gene de-
ficiency signatures, and which should belong to the positive class.

Label uncertainty is a well-known problem in the machine learning field for which
various solutions have been proposed. Here, we apply Positive Unlabeled (PU) learning,
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a method combining semi-supervised learning with one-class classification (Fig 1C and
1D). Using this method, classifier is trained on the positive class versus all unlabeled
data. The learned boundary is applied to assign labels to the unlabeled examples scoring
above a pre-defined probability threshold. This process is repeated iteratively until all
objects in the uncertain class are labeled. PU learning is highly suitable for our dataset,
as it intrinsically models the presence of uncertain labels in the negative class.

A second, related, major hurdle is to evaluate the performance of the DS classifier. In
absence of ground truth labels, it is never known if a model truly separates classes better
when the negative class is contaminated. Since our aim is exactly to identify cases of
positives that are incorrectly labeled as negatives, a higher false positive (FP) ratio may
actually represent better performance. Therefore, commonly used performance metrics,
such as precision, that rely on FP rates may misrepresent the actual ability of a classifier
to identify biallelic loss.

In this work, we demonstrate the effects of this precision paradox in interpreting
classifier performance on 3 genes known to result in clear SV signatures when deficient:
CDK12, BRCA1 and BRCA2. We explore the simpleMI and MIL-BP models to solve the
problem of representing features on the mutation-level rather than the sample-level and
compare these to a version of CHORD modified to work specifically on SVs. To solve the
problem of label uncertainty, we build one-class classifiers and PU learning classifiers
on top of the 3 methods. Finally, we propose a different strategy to measure the abil-
ity of each classifier to correctly identify incorrectly labeled negatives as positive using
a swap-one-patient-out CV (sopoCV) approach. Using this method, every positive pa-
tient is iteratively incorrectly labeled as negative, and we measure how well the classifier
correctly reports these swaps as false positives.

We demonstrate on 4,069 high-depth (> 90X) whole cancer genomes from the Hartwig
Medical Foundation (HMF)[8] that CHORD, simpleMI and MIL-BP predict biallelic loss
better than by random chance in terms of AUCPR. PU learning is an effective approach
to improve the model performance even further. Furthermore, it appears from these re-
sults that CHORD is the best model for predicting BRCA1 deficiency, whereas MIL-BP
is most suitable for CDK12. SimpleMI is outperformed by both models on all genes but
BRCA2. However, the sopoCV approach reveals that the differences between models are
much less pronounced, and that CHORD and MIL-BP detect approximately equal num-
bers of false positives, with only a small benefit for MIL-BP on CDK12. Interestingly, no
additional benefit of using PU learning for detecting false positives with sopoCV is found.
In summary, our results demonstrate that it is not recommended to select classifiers for
predicting biallelic loss on AUCPR in the presence of label noise, as the interpretation of
this metric can be misleading.

Methods
Cancer datasets

SNV, indel, CNV and SV calls were obtained for 4,069 samples from 3,651 patients from
the HMF. All variants were called using the HMF pipeline
(https://github.com/hartwigmedical/pipeline), as described previously[3].
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Fig. 1. Method overview. (A) With simpleMI, the MIL-space is converted to a feature space by averaging fea-
tures across instances. Then, a classifier is trained in the feature space to classify bags (i.e. samples). (B) In
MIL-BP, a classifier is first trained on the breakpoints individually. The resulting probabilities are averaged per
sample to obtain a probability of the gene DS in that sample. (C) In one-class classification, outliers are de-
tected by learning the distribution of the majority class. (D) PU learning iteratively learns most likely negatives
within a set of unlabeled examples by determining a new boundary on the positives versus the identified likely
negatives.
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Machine learning-based methods to detect biallelic loss
Labels
Biallelic status was assessed using an in-house pipeline that considers copy-number as
well as germline and somatic SNV/indel data to interpret biallelic gene status
(https://github.com/UMCUGenetics/hmfGeneAnnotation). Pathogenicity was scored
following ClinVar’s (https://www.ncbi.nlm.nih.gov/clinvar/; GRCh37; database date 2020-
02-24) ranking[9]: pathogenic, likely pathogenic, variant of unknown significance, likely
benign and benign. A pathogenicity score (P-score) ranked variants from 1 (benign) to 5
(pathogenic). The process of determining gene status encompassed three steps. First, if
a gene’s copy number was < 0.3, it was considered as deep deletion, in which case both
alleles were assigned a P-score of 5. Second, if a gene’s copy number was ≥ 0.3, several
mutation events were screened for. These included somatic and germline SNVs/indels
as well as loss-of-heterozygosity (LOH), which was defined by a minor allele copy num-
ber of <0.2. P-scores of these events were then determined using ClinVar for SNVs/indels
or assigned as high pathogenicity (P-score = 5) for LOH. SnpEff
(http://snpeff.sourceforge.net/; v4.1 h) was used for SNVs/indels with no entry in Clin-
Var to estimate their pathogenicity. Out-of-frame frameshift were assigned a pathogenic
score (P-score = 5), while splice and nonsense variants were considered likely pathogenic
(P-score = 4). Missense variants, inframe frameshift and essential splice variants received
a P-score of 3. Lastly, other variant types were scored as P-scores of ≤ 2. ClinVar’s P-score
for a variant was always considered over the P-score generated with SnpEff where appli-
cable. Having computed P-scores per allele of a gene, the scores were summed up to a
biallelic pathogenicity score (BP-score) of a maximum value of 10. For genes with multi-
ple events the combination resulting in the highest BP-score was chosen and in cases of
ties greedily selected.

Each sample was labeled as belonging to one of the three following classes. (i) If the
sample’s BP-score was ≥ 9 it was considered deficient. (ii) Else, proficiency was defined
as lack of deep deletion and LOH, with all SNVs/indels having a P-score ≤ 3, and all com-
binations of SNVs/indels having a BP-score ≤ 6. (iii) If a sample did not fulfill either of
the above criteria it was defined as having an ‘uncertain’ deficiency status and excluded
from performance analyses.

Samples with fewer than 200 breakpoints in the HMF dataset were removed (n=1144)
for all analyses.

Features
To use information about the regions in which SV breakpoints occurred, each break-
point was annotated with a set of features. First, breakpoints were annotated with their
respective SV type (i.e. duplication, deletion, inversion, or translocation), size (distance
between the breakpoints of one SV) and local breakpoint homology. For translocations
the size was annotated as ’NA’. For the remaining SV types, SV sizes were binned into
bins of variable sizes. The smallest bin included all SVs < 1kb, the largest bin represented
SVs > 10 Mb, and all other bins captured SVs in steps of powers of 10, e.g. 1 kb – 10
kb. Second, the breakpoints were annotated with information about the region in which
they occurred. The region’s gene density was computed as the number of protein-coding
genes within 500 kb up- or downstream of a breakpoint. Data on chromatin states was
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obtained through the Epigenomics Roadmap
(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html), representing 15
chromatin states computed from 127 epigenomes. For each 2 kb bin, the most com-
mon chromatin state for this region was considered the consensus. Bins in which fewer
than 50% of epigenomes showed a consensus of chromatin state were annotated as cell-
type specific chromatin regions (‘0_NA’). Replication timing as measured by ENCODE
using repliSeq[10] for seven cell lines (GM12878, HeLa-S3, HepG2, HUVEC, IMR90, K562,
MCF-7) were obtained through the UCSC table browser
(http://genome.ucsc.edu/cgi- bin/hgTrackUi?db=hg19&g=wgEncodeUwRepliSeq). Per
1 kb bin, the mean replication timing was computed. Each breakpoint was then anno-
tated with information about its region’s gene density, replication timing, and chromatin
state. Categorical features were one-hot encoded.

simpleMI
In the simpleMI model (Fig 1A), bags are constructed for each sample. All SV breakpoints
are instances, each with a feature vector containing all features as described above. To
obtain a final classifier, a feature space was constructed by taking the mean across all
instances in a bag, resulting in one feature vector per bag. In this space, a random forest
classifier (scikit-learn, v0.22.1, n_estimators: 100) was trained to predict the biallelic loss
status of a sample.

MIL-BP
In the MIL-BP model, every breakpoint is first viewed individually, and a prediction is
made whether it belongs to a deficient sample using a random forest classifier (scikit-
learn, v0.22.1, n_estimators: 100). In a second step, the resulting probabilities are aggre-
gated per sample by averaging them. The result is a prediction of a sample’s biallelic loss
status.

To lower computational complexity introduced by the large number of breakpoints,
negative samples were iteratively added to the training data until a 1:10 ratio of break-
points belonged to the positive and negative class, respectively. Subsampling was exclu-
sive to MIL-BP, and is not applied to the other models.

CHORD
To compare performance of the MIL-based models to a previously published framework,
the recent context-based approach CHORD was used[3]. It differs from the MIL-based
approaches in that it aggregates breakpoints per sample into contexts, i.e. all possible
combinations of features. This way, the frequency of breakpoints belonging to a con-
text is computed per sample. Training and testing are then performed on the resulting
sample-context matrix. However, with the addition of more features many more com-
binations are possible, resulting in a sparse sample-context matrix. This dimensionality
problem therefore renders the context approach suboptimal when using many features.
Therefore, contexts were generated using only the features SV type and size. The training
procedure was consistent with the MIL methods as described above.
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PU learning
To enable PU learning, the BaggingPuClassifier (n_estimators: 15) from the pulearn pack-
age (v0.0.7) was used on top of the random forest classifier used by simpleMI, CHORD
and MIL-BP.

Measuring classifier performance
To evaluate the performance of the method, a cross-validation (CV) approach was adopted.
In it, the data was split into five folds, stratified by the number of negative and positive
samples within each fold. Within a fold, a sample can only be in either the training or the
testing data. As described above, the training data was then class-balanced and used to
train the classifier, followed by prediction on the held-out testing data. The classification
cutoff for a sample being of deficient phenotype was defined as the cutoff at which the
Matthew’s Correlation Coefficient (MCC) was maximal. This cutoff was determined in
the 5-fold CV.

Measuring classifier ability to correctly detect false positives: swap-one-patient-out
CV
To assess how well each classifier identifies false positives, we apply a swap-one-patient-
out CV (sopoCV). Every positive patient is iteratively swapped to the negative class, and
the 5-fold CV is performed as described above to determine if the classifier correctly
labels the swap as a false positive. For MIL-BP, all breakpoints of a sample are swapped.
As running MIL-BP for BRCA2 in the sopoCV setting is not computationally feasible, the
number of breakpoints was for this scenario randomly reduced to 25%. The optimal
classifier cutoff was determined based on the maximum MCC in the 5-fold CV in a non-
swapped run.

Results
The precision paradox complicates comparing classifiers by AUCPR
To demonstrate the ability of simpleMI and MIL-BP to predict biallelic loss status of
CDK12, BRCA1 and BRCA2, we applied both models to 4069 samples from the HMF
dataset and visualized the precision-recall curves alongside the performance of our mod-
ified version of CHORD (Fig 2). In general, each model reaches AUCPR higher than ran-
dom chance. However, the most suitable model varies per gene. For CDK12, best perfor-
mance is achieved by MIL-BP, whereas CHORD outperforms both simpleMI and MIL-
BP on BRCA1. Part of this variation may be explained by the intrinsic (dis)advantages of
each model. SimpleMI is robust to noise in individual breakpoints by averaging these,
but is therefore more sensitive to outliers, resulting in an overall lower performance
across the tested genes. CHORD similarly reduces noise by aggregating to a represen-
tation at sample-level, which benefits prediction for BRCA1. In contrast, the approach of
MIL-BP to initially classify on the level of breakpoints is beneficial for genes that generate
a lot of breakpoints as part of their loss phenotype, such as CDK12.

However, although the precision-recall curves are useful to estimate model perfor-
mance under the assumption that the labels are correct, the presence of label noise
makes it difficult to obtain a fair comparison between the models based on the AUCPR
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alone. For example, simpleMI and MIL-BP report lower precision than CHORD for BRCA1,
but this result may actually be good if the classifiers identify false positives that truly
show a biallelic loss phenotype. Thus, a different strategy is needed to properly assess
the ability of the models to detect biallelic loss in (independent) datasets.

CHORD (AUPRC: 0.71)

MIL-BP (AUPRC: 0.86)

simpleMI (AUPRC: 0.68)

CDK12 BRCA1

CHORD (AUPRC: 0.75)

MIL-BP (AUPRC: 0.60)

simpleMI (AUPRC: 0.69)

CHORD (AUPRC: 0.85)

MIL-BP (AUPRC: 0.81)

simpleMI (AUPRC: 0.85)

BRCA2

Fig. 2. Precision-recall curves of the 3 tested classifiers on CDK12, BRCA1 and BRCA2.

PU learning is an effective method to improve model performance based on AUCPR
To assess the performance of existing solutions for the label uncertainty problem, we
swapped out the base random forest classifier of CHORD, simpleMI and MIL-BP for a
bagging PU-learning classifier. From the precision-recall curves (Fig 3), we notice that
the PU learning classifier, which naturally handles label impurity in the negative class,
improves the AUCPR for all models except for simpleMI. However, in the absence of
’noiseless’ ground truth labels, it remains difficult to determine if higher reported AUCPR
indeed indicates a better ability to identify biallelic loss. Instead, the lower precision of
the original models may reflect a higher detection of false positives that are truly defi-
cient. Therefore, it is required to use a different performance metric than AUCPR that
allows for a fair comparison between the models to be made.

CHORD PU (AUPRC: 0.74)

MIL-BP PU (AUPRC: 0.86)

simpleMI PU (AUPRC: 0.65)

CDK12 BRCA1

CHORD PU (AUPRC: 0.85)

MIL-BP PU (AUPRC: 0.82)

simpleMI PU (AUPRC: 0.85)

BRCA2

CHORD PU (AUPRC: 0.76)

MIL-BP PU (AUPRC: 0.62)

simpleMI PU (AUPRC: 0.69)

Fig. 3. Precision-recall curves of CHORD, simpleMI and MIL-BP on predicting biallelic CDK12, BRCA1 and
BRCA2 loss when the default random forest classifier is combined with a bagging PU classifier.

Swap-one-patient-out CV: measuring the ability of classifiers to identify gene DS
Although PU learning appears to be an adequate solution to deal with uncertain labels in
the negative set based on AUCPR (Fig 3), it remains difficult to validate if the model accu-
rately detects non-genetic biallelic loss in the absence of ground truth labels. Therefore,
we aimed to solve this problem by introducing a CV-based strategy to measure the abil-
ity of a classifier to detect false positives. Within this swap-one-patient-out CV (sopoCV)
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setting, every positive sample was sequentially assigned to the negative class, and we
counted how many samples each model correctly reported as false positive within the 5-
fold CV as described previously. We combined sopoCV with simpleMI, MIL-BP, CHORD,
and their PU learning-based implementations.

While it appeared from Fig 2 that each model performed best on a different gene,
these differences are less pronounced for the ability of the classifiers to detect gene DS
in the sopoCV (Fig 4). Although simpleMI performs worst overall, the performance of
CHORD and MIL-BP are highly similar, with a small benefit for MIL-BP on CDK12. Fur-
thermore, the difference in performance of MIL-BP on BRCA1 only differs minimally
from CHORD, in contrast to the decrease measured with AUCPR. Notaby, PU learning
improves performance in the sopoCV setting for almost all classifiers. Overall, these re-
sults show that MIL-BP is a highly efficient approach to detect gene DS.

As the number of breakpoints was reduced to 25% for MIL-BP and BRCA2 in the
sopoCV setting due to computational limitations, it is uncertain if higher performance
could be achieved if all breakpoints are present. However, as the ratio of correctly identi-
fied patients is on par with CHORD and simpleMI, it reveals that the information in the
breakpoints is highly redundant for BRCA2.

In conclusion, we showed that models reaching higher AUCPR are not necessarily
better at detecting the biallelic loss phenotype in the sopoCV. Thus, when selecting the
best classifier to apply to independent data, sopoCV may be a more suitable metric than
AUCPR.

Fig. 4. Ratio of positive samples correctly identified as false positives by each model after swapping their
labels to negative in sopoCV.

Discussion
With the increased availability of WGS cancer datasets, many options are opening up for
machine learning models aiming to learn from the genetics of cancer genomes. Detect-
ing gene DS is one such example, which could benefit the selection of suitable treatment
for many cancer patients. We explored the advantage of using MIL-based strategies for
gene DS classification and showed that MIL-BP performs better than the state-of-the-art
on CDK12. However, gene deficiency acquired through non-genetic pathways cannot
be detected from WGS data alone, resulting in potential label noise in the negative set.
Therefore, a higher false positive rate may thus represent better ability to detect gene DS,
and thus metrics such as AUCPR may be unreliable. To this end, we utilized PU learn-
ing to further improve our tested classifiers. We demonstrated that PU learning slightly
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improves method performance in terms of AUCPR. However, since the noiseless ground
truth labels are not known, it remains a challenge to interpret if the models are now more
correct than their original counterparts.

To overcome this problem, we demonstrated through a sopoCV approach how well
each classification model identifies positives as false positives if the label is artificially
set to negative. Using this alternative way of measuring classifier performance, we note
that the differences in model performance are less pronounced than was initially mea-
sured through AUCPR. Furthermore, we find that MIL-BP performs well in the sopoCV
approach on all genes, and is thus a highly effective method for gene DS classification.

In conclusion, AUCPR needs to be interpreted with caution in datasets with noisy
labels. Large efforts to gather patient-specific data, such as methylation, are therefore
a great promise to obtain clean datasets for machine learning. However, we demon-
strated that for now, sopoCV is an effective alternative method to measure classifier per-
formance.
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Summary
In this thesis, our aim was to create a better understanding of cancer development. To
fulfill this goal, we focused on 3 main areas. First, chapter 2 explored how mutations
accumulate in cancer over time by reconstructing phylogenetic trees directly from mi-
crodissected samples with reduced heterogeneity. Our method contrasts the typical ap-
proach where heterogeneous samples need to be deconvolved first using complicated
models, and is thus useful to reduce an additional layer of noise. Second, the multiple
instance learning (MIL)-based models introduced in chapter 3 and chapter 4 were used
to demonstrate that non-coding structural variants (SVs) have the capability to drive
cancer by disrupting 3D genome structures, which was until now relatively poorly un-
derstood and thus has important implications for cancer diagnostics. Third, chapter 5
introduced machine learning techniques to identify gene deficiency status in presence
of label noise. We introduced a metric that measures how well the classifiers perform
without relying on AUCPR, which may be biased if measured in datasets with uncertain
labels. Not only does a better classification of patients benefit selection of optimal treat-
ment, but it also aids in further research into commonalities between groups of cancer
patients.

Although this work has provided new insights into cancer development, many ques-
tions are still unanswered, and open challenges remain.

What do we need to do to complete our understanding of
cancer evolution?
Knowing which subclones are present in a tumor is essential to determine personalized
and effective treatments. The field of studying cancer evolution has grown rapidly over
the past decade, but to date a lot of details of the phylogenetic relations between sub-
clones are still missed by the state-of-the-art deconvolution approaches[1]. To circum-
vent the need for deconvolution, our method TargetClone (as discussed in chapter 2)
reduced heterogeneity by sampling from multiple sites in the tumor. However, our ap-
proach relied on obtaining relatively homogeneous samples, which is in practice difficult
to achieve[2]. In the past few years, deconvolution techniques applied on heterogeneous
multi-region sequencing datasets have become increasingly popular[3]. However, de-
spite the continuous increase in performance, a number of challenges still remain. For
example, if subclones do not overlap between samples from different regions, it remains
difficult to detect rare subclones due to low read depth and technical errors[4]. Alterna-
tive approaches, such as REVOLVER[5], HINTRA[6] or RECAP[7], that aim to construct
consensus trees across multiple patients in a cohort also face the same challenges. If
subclones are not detected, treatments may fail, or the cancer may re-grow from sub-
clones that were not eradicated by the therapy[8].

The only currently existing approach to fully overcome the need for deconvolution
is single-cell sequencing. Although the technique sounds like an ideal solution, a lot
of hurdles need yet to be overcome. Most single-cell-based phylogeny reconstruction
methods were designed to handle common issues such as allelic dropout and coverage
biases due to low input material[9–11]. However, the most problematic issue may be the
tradeoff between sequencing depth and the number of cells sequenced[1]. In a tumor
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containing billions of cells, the chance of missing important subclones becomes larger
with a lower number of sequenced cells. However, increasing the number of cells will re-
sult in a lower read depth, making it harder to characterize all subclones due to increased
noise and technical errors[1]. If these challenges can be overcome, single-cell sequenc-
ing techniques may very well be the future standard in reconstructing clonal evolution
trees in cancer.

Finally, although single-cell sequencing can help us understand cancer evolution on
a genetic level, considering only the DNA may not be sufficient to select proper anti-
cancer therapies for patients. Despite having the same genetic code, subclones may vary
from each other on other -omics levels to confer evolutionary advantage, which could
potentially lead to unexpected treatment response if not accounted for[12]. For example,
recent studies have successfully integrated single-cell RNA sequencing data with spatial
information to obtain a more accurate overview of the tumor microenvironment[13, 14].
It would be ideal if more -omics data could be included in future models, but also present
a large effort to obtain, which this chapter will further elaborate on in the next 2 sections.

Completing the cancer driver catalogue
New machine learning approaches to predict mutation pathogenicity

Over the recent years, a lot of prediction tools have been developed to study the pathogenic-
ity of mutations across many patients and cancer types[15–22]. However, a lot of these
methods remain limited to investigating coding mutations, while the importance of non-
coding mutations is becoming increasingly clear[23]. Although interpreting the effects
of non-coding mutations is complicated by the large number of regulatory functions
that these can disrupt, detailed research into every single one of them is needed to gain
a complete understanding of how we should treat cancer. Methods like DeepSEA[21]
and ExPecto[22] have solved this problem for single-nucleotide variants (SNVs) by train-
ing deep learning models to recognize which genomic features, such as histone modi-
fications, are characteristic of pathogenic SNVs. In chapter 3 and chapter 4, we used
a similar approach by training a MIL model to learn genomic features characterizing
pathogenic non-coding SVs that disrupt boundaries of topologically associated domains
(TADs) and chromatin loops. An important benefit to this bag-based approach over tra-
ditional machine learning and deep learning is that each bag can hold information about
any disruptions to the genome across a very large range rather than just the direct sur-
roundings of an SV. However, as our model focuses on 3D structures, which comprise
only a small part of genome regulation, more studies into the role of non-coding SVs in
disrupting other regulatory functions are required. Within our MIL model, this could
potentially be achieved by updating the feature vectors to be less specific for TADs and
chromatin loops, and adding features that specify direct disruption of regulatory ele-
ments. A potential alternative approach to solve this problem could be a deep learning
model that learns the characteristic genomic features of regions around SV breakpoints,
similar to how SVs were annotated in chapter 5. The predictions of this deep learning
model and the MIL model could eventually be integrated based on model probabilities
to clear up any uncertainty about whether a non-coding SV drives cancer through dis-
rupting the 3D structure or a regulatory element it directly overlaps with, for example.
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However, a few important challenges remain to be addressed before we can fully utilize
the power of machine learning approaches in this context.

Increasing sample size can further improve pathogenicity prediction
Our research described in chapter 4 indicated that non-coding SVs target known cancer
drivers in many cancer types. Furthermore, although the mechanisms by which non-
coding SVs disrupt gene regulation appear to be similar across cancer types, the overall
contribution of driver non-coding SVs compared to driver SNVs varies greatly between
cancer types. However, our study was limited to a small sample size for most cancer
types and may thus not perfectly recapitulate the true impact of non-coding SVs. Large-
scale efforts such as the Hartwig Medical Foundation (HMF)[24] and Pan-Cancer Anal-
ysis of Whole genomes (PCAWG)[23] are already generating many high-quality cancer
datasets. As the number of samples in these consortia continues to grow, our ability to
study the role of non-coding SVs in cancer will improve further.

Establishing a reference pathogenicity database for non-coding SVs to use as labels
The increase in knowledge about mutation pathogenicity fueled the construction of large,
publicly available databases such as the Cancer Gene Census (CGC)[25] and ClinVar[26]
that allow central access of the impact of somatic mutations. These datasets have al-
lowed the application of machine learning methods to learn the characteristics of
pathogenic mutations in comparison to non-pathogenic mutations. Such methods are
extremely useful to elucidate recurring patterns in large amounts of cancer data. A par-
ticular strength of machine learning is to learn combinations of features that character-
ize pathogenic mutations specifically, which are often hard to determine otherwise. As
the role of non-coding SVs in cancer is becoming increasingly clear, the need for a good
reference database listing the pathogenicity of these is growing. Although databases
such as ClinVar contain clinical interpretation of some SVs, the number of characterized
SVs is small by machine learning standards, and the focus remains on SVs in coding re-
gions. In chapter 3 and chapter 4, we overcame the lack of a good reference database by
using expression data to label pairs of SVs and affected genes to use in machine learning.
Large consortia such as the HMF and PCAWG are already measuring expression data for
the majority of patients in their datasets. However, as these data are costly, paired WGS
and gene expression data may not be available for all cancer samples from other sources
and may not always be generated retrospectively. Therefore, the construction of a solid
reference database can be a good intermediate step to further elucidate the role of non-
coding SVs in cancer.

Switching from labels based on pathogenic mutations to pathogenic genes
Although mutations are a clear signal for identifying genes that can drive cancer, these
are not necessarily the only information we can use in the hunt for undiscovered drivers.
While our ability to correctly determine the presence of mutations has increased signif-
icantly over the years, mutation calls are not yet perfect. Biases such as lack of material,
low read depth, sequencing errors, errors made by mutation callers, and even human
errors, can result in missing important mutations[27]. This is especially relevant for SVs,
where short-read sequencing is still commonly applied[28]. Due to the short length of
the reads, it is often impossible to detect SVs in all regions of the genome, such as repeat
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regions[29]. While long-read sequencing, such as nanopore sequencing, is gaining a lot
of traction, a lot of existing data will not be re-generated using new techniques. Further-
more, even for the mutations that we do detect correctly, it sometimes remains unclear
if the mutation has any functional effect. As we addressed in chapter 5, driver genes
themselves do not always have pathogenic mutations, but may instead be deregulated
through upstream pathway effects. Therefore, it is important that we do not focus all
of our efforts into predicting the pathogenicity of mutations. Instead, there is still a lot
to gain in combining multi-omics data to identify the driver genes, rather than just the
driver mutations.

Integrating multi-omics data to clear up label noise
Machine learning models rely on correct labels to make accurate predictions. In real-
ity, as was demonstrated in chapter 3 and was a main focus of chapter 5, labels are
often extremely noisy and can lead to decreased performance. In chapter 3, the lack
of patient-specific data made it difficult to determine with full confidence if genes are
affected by non-coding SVs, or by unmeasured effects, such as methylation. In addi-
tion, despite filtering out genes affected by coding mutations, we could not account for
effects where gene expression could be altered due to mutations in upstream pathway
partners. Although recent novel methods have shown that integrating multi-omics lay-
ers with gene and protein interaction can improve driver gene prediction, such meth-
ods have not yet taken non-coding SVs into account[19, 30, 31]. While combining non-
coding SVs into existing frameworks provides a promising direction for further research,
some hurdles would need to be overcome to enable this integration. For example, the
recurrence of non-coding SVs appears limited compared to SNVs (see chapter 4) and
CNVs[23]. Thus, the (indirect) effect of non-coding SVs on genes may be crowded out
by other mutations if low frequency is not properly accounted for in the statistical mod-
els. In chapter 5, we addressed the problems in measuring classifier performance us-
ing typical methods including precision, which may misrepresent actual performance
if false positives are expected due to high levels of label uncertainty in the negative set.
To overcome this problem, model-based strategies such as one-class classification and
semi-supervised learning have been previously introduced[32, 33]. We demonstrated
that semi-supervised learning approaches, in particular PU learning, are good options
to measure performance in presence of label noise. Additionally, we introduced a swap-
one-patient-out CV approach to measure performance without relying on precision. Yet,
it remains difficult to validate the performance of any solution in absence of noiseless
ground truth labels, which is often the case in cancer datasets. Therefore, reducing label
noise remains a very important topic. In many cases, a logical step forward would be
to clear uncertainty in the labels by incorporating data from more –omics layers mea-
sured within each patient, and the potential problems with this approach which will be
discussed further in the next section.

Validating predicted pathogenicity in model systems to improve label certainty
After prediction tools have been used to obtain a ranked list of the most likely pathogenic
mutations, it is essential to validate their ability to cause cancer in model systems. This is
especially true for non-coding SVs, for which validation studies are sparse. The pathogenic-
ity of germline TAD-breaking SVs has previously been validated in mice, but this study
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focused on a single locus in the genome[34]. As for the somatic case, the reality is that up
to hundreds of potentially interesting loci exist, rendering testing each of these individu-
ally an extremely laborious and time-consuming task. Even though our machine learn-
ing approach described in chapter 3 and chapter 4 has been able to pinpoint a smaller
set of candidate driver SVs disrupting TADs and CTCF loops, the number remains in the
thousands across cancer types. Furthermore, as (non-coding) SVs may disrupt more reg-
ulatory elements than just the 3D structure, the list of potential driver SVs may be even
larger. This problem underscores the need for multiple independent studies generating
pathogenicity scores for non-coding SVs. If different strategies often report the same
driver mutations, it creates a stronger ground for lab-based validations. Furthermore,
improving driver prediction methods by incorporating more patient-specific data, for
example to be used as features, could help remove more false positives.

Improving features to improve pathogenicity prediction
Currently, it is often difficult to obtain regulatory data specific for every tissue. Filling
in these missing pieces may greatly benefit model design and performance, but also
highlights potential issues. As was demonstrated in chapter 4, training cancer-specific
classifiers using as features regulatory information from a different tissue type than the
tissue of origin does often not significantly reduce performance. While it is well-known
that overlap exists between regulatory marks across cell types[35] and thus intrinsically
increases model robustness, there also exist tissue types that unexpectedly increase per-
formance. These findings may partially be explained by our dataset consisting of metas-
tasis samples, which may no longer necessarily represent the tissue of origin well. In
addition, as regulatory data is often measured in healthy tissue, these may also not be
truly representative of primary cancers. As such, it is hard to determine the optimal reg-
ulatory dataset to use to train models without performing an exhaustive search across
available tissue types. Therefore, rather than only generating data for reference tissues,
there may be a benefit to measuring patient-specific regulatory data. With the availabil-
ity of such datasets, it will become a lot easier to construct reliable models. However,
generating and processing such huge amounts of patient data would be a gigantic effort,
which may not be computationally feasible in the way our systems are currently set up.
So what do we need to do before we can even start thinking about such enrichments?

Computational challenges in processing huge amounts of
cancer data
Unification and standardization of data from many different sources
With the collection of more (patient-specific) cancer data, the next challenge becomes
the integration of all these data from different sources, which are often provided in dif-
ferent data formats. Even though several file formats are recognized as standards in the
field, such as FASTA, BAM or GFF files, not every format is equally well-defined. There-
fore, although big consortia such as HMF and PCAWG are putting huge efforts into pro-
cessing all of their data uniformly and providing everything in the same formats, minor
differences can often be found in files between sources. Although file versions account
for a large part of these differences, these can also occur due to choices made by the data
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providers themselves. A representative format for this issue is the VCF format, which
is commonly used to store mutation calls. Although the first 8 columns of a VCF file
are standardized and well-defined, the INFO field is designed to hold any possible data.
Therefore, integrating data from different consortia may be difficult if both sources made
a choice to store the relevant data under a slightly different identifier. The same problem
occurs with gene identifiers, for which a choice can be made from ENSEMBL, Gene Sym-
bols or Entrez IDs, among others. Despite the existence of tools to map these different
identifiers together, problems may occur if data was generated with different reference
builds, and if an identifier does not exist in one of the versions.

Many of these integration tasks are now performed by individual researchers by hand,
which is a very time-consuming task prone to mistakes. The existence of standards
would definitely help in saving time and improving on the reproducibility issue in sci-
ence. The largest attempt to date to standardize has been the development of ontologies,
which aim to form a non-redundant, rich description of all possible entities in (biologi-
cal) data[36]. Such uniform data descriptions have allowed the usage of existing linked
data techniques to query these data altogether without having to perform any integra-
tion (e.g. Bio2RDF)[37]. However, despite the promising applications linked data opens
up, the majority of newly generated data is not yet suited for these purposes. Further-
more, a number of important questions remain to be answered before ontologies can
be widely applied. Who is responsible for defining ontologies, especially when existing
vocabularies are not suited for your specific type of data? Who will ensure that newly-
introduced ontologies are non-redundant? Furthermore, how will we go about retro-
spectively converting pre-existing data that is often non-standardized and sometimes
very specific to the needs of a certain project? The difficulty of introducing a standard
that fits every researcher’s needs may be one of the main reasons why these were not
developed as soon as the first large-scale data generation projects were started.

Developing smart tools to make large amounts of data accessible to researchers

After successful data integration remains the step to make the data, or findings, acces-
sible to other researchers. A lot of results of individual studies often remain scattered
across different sources and publications. However, linked data and ontologies, as dis-
cussed previously, would allow researchers to easily query many of these findings at
once. Such databases, in a way similar to Google, would make it a lot easier to prior-
itize findings that a researcher may be looking for, without having to search through
(and manually combine) the supplementary material of many different publications.
Although platforms such as canSAR[38] have already made great efforts towards facil-
itating research and drug discovery by combining various data sources, it remains a
challenge to integrate private research data with the majority of such systems. There-
fore, they are often not used by researchers who need to generate results to their specific
needs. With the availability and adherence to standards such as ontologies, it would
become a lot easier to link these data and findings together automatically and provide
platforms that allow straightforward data mining and knowledge generation across the
world.



6

156 References

Conclusions and brief outlook
As more and more cancer data are being generated, options are opening up to learn more
about the characteristics of cancer. The availability of larger datasets will not only enable
many existing driver prediction models to pick up new mutations that did previously not
meet frequency thresholds, but also allow the development of novel tools that are specif-
ically designed to handle large amounts of (multi-omics) data. As our understanding of
the non-coding genome continues to grow, like we showed in this thesis, a lot of po-
tential is opened up for models that are specifically designed to prioritize non-coding
mutations. However, every new possibility also comes with many new challenges. Al-
though large steps are already being made in processing and integrating large amounts
of multi-omics data, we are still far away from having solid standards that can be applied
by scientists in the field. Along the way, a lot of new findings will be generated, which
stresses the importance of also not overlooking solid validation of candidate mutations
and genes in the lab. Only that way will we be able to achieve personalized medicine,
and design optimal treatment programs for every patient.
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Summary

Despite years of research, our understanding of cancer remains incomplete to optimally
treat the disease. With the increasing availability of whole-genome sequencing (WGS)
cancer datasets, our knowledge on the role of mutations in cancer development has
grown. From these data, it became clear that each patient contains on average 4-5 mu-
tations that drive cancer growth, in contrast to up to thousands of passenger mutations.
The increase of the number of computational tools that aim to identify the cancer drivers
in patients has resulted in an ever-growing list of clinically actionable mutations, lead-
ing to improved treatments for cancer patients. Yet, patients remain for whom no driver
mutations can be identified, or who do not respond well to existing treatments. In this
thesis, we aimed to contribute to finding solutions to 3 challenges that currently need to
be addressed to gain a better understanding of cancer.

In chapter 2, we explore the challenge of tumor heterogeneity. Rather than being
a mass containing 1 type of cell, tumors usually present as a mixture of different cells,
called subclones. However, it is currently not typical to sample all cells in the tumor in-
dividually, and instead samples consist of a heterogeneous bulk of different cells. As a
result, any mutations called from sequencing data will often be an average across sub-
clones in the sample. Subclones that are underrepresented in samples may contain mu-
tations that are measured in such low frequencies that these cannot be distinguished
from sequencing errors and noise. This is problematic for selecting the right treatment
for a patient, since exactly those mutations that are missed may confer the tumor resis-
tance to the treatment. Therefore, reconstructing a concise overview of all subclones in a
tumor is essential for treating the disease. While conventional methods typically use sta-
tistical models to deconvolve the average mutation profile into a subclonal profile, one
important problem is that many infrequent subclones are often still missed. In chapter
2, we instead aim to reduce heterogeneity by microdissecting the tissue as a means of
obtaining more homogeneous samples. We introduce TargetClone, a method that uses
a combination of Single Nucleotide Polymorphisms (SNPs) and Single Nucleotide Vari-
ants (SNVs) to infer which subclones are present in microdissected samples. We use our
method to reconstruct phylogenetic trees representing the subclones and the most likely
order in which these developed in 4 type II Testicular Germ Cell Cancer (TGCC) patients.

In chapter 3 and chapter 4, we focus on the challenge of predicting the effect of non-
coding structural variants (SVs). From recent studies, it has become clear that mutations
in the non-coding genome play an important role in cancer. While (non-coding) SNVs
have been under active study, computational methods to study the effect of SVs in es-
pecially non-coding regions are lacking, leaving them often ignored in cancer diagnos-
tics. One important way in which non-coding SVs may be pathogenic is by disrupting
the boundaries of Topologically Associated Domains (TADs), which are regions in the
genome wherein DNA interacts more frequently with each other than with regions out-
side of the TAD. These structures maintain proper regulatory interactions in the genome.
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Therefore, disruptions of TAD boundaries can enable the formation of novel interactions
between genes and regulatory elements, such as enhancers. However, it is not known
when such re-wiring events are pathogenic. While machine learning is an ideal solution
for these problems, 2 important challenges exist. First, it is difficult to represent the large
number of possibly affected interactions in a typical feature matrix. Second, no ground
truth SV pathogenicity datasets exist that can be used as labels.

In chapter 3, we introduce svMIL, a method that learns which TAD
boundary-disrupting non-coding SVs are pathogenic. Our method is based on Multi-
ple Instance Learning (MIL), which circumvents the need for a feature matrix by repre-
senting non-coding SVs as bags that may contain any number of disrupted interactions.
Non-coding SV pathogenicity is determined from patient matched gene expression data.
We show that our method can predict pathogenic SVs in breast and ovarian cancer.

In chapter 4, we further improve on the svMIL method introduced in chapter 3. We
apply svMIL2 to 1646 whole cancer genomes and demonstrate that our method is gen-
erally applicable across 12 cancer types and identifies non-coding SVs affecting well-
known driver genes. We find that non-coding SVs exert their pathogenic effects simi-
larly across cancer types by disrupting active (super) enhancers in open chromatin re-
gions. Furthermore, non-coding SVs appear to contribute to the development of can-
cer more than driver SNVs in especially ovarian and pancreatic cancer. Finally, we also
apply svMIL2 to intra-TAD CTCF loops rather than TAD boundaries. While SVs clearly
can affect TADs, the role of disrupting the smaller CTCF loops inside TADs is not yet
understood. We identify non-coding SVs affecting known driver genes through intra-
TAD CTCF loop disruption in breast cancer, albeit with a smaller effect size than for TAD
boundaries. However, due to lack of data on CTCF loops, the role of disrupting these
loops in other cancer types remains an open question.

Finally, in chapter 5, we address the challenge of gene deficiency status (DS) classi-
fication. Pathogenic mutations in DNA-repair genes, such as BRCA1, BRCA2 or CDK12,
leave signatures of somatic SVs in the genome. These signatures are a valuable proxy
for machine learning classifiers to learn how to detect gene DS. However, obtaining a
patient-level label while representing all genomic features of each SV, such as replication
timing, in a single feature matrix is not trivial. We solve this problem using MIL, defin-
ing patients as bags which contain all SVs of a patient described with individual feature
vectors. While machine learning-based methods often are often great solutions to open
problems such as gene DS classification, there are potential pitfalls to using these mod-
els that should not be overlooked. Often, only WGS data is available for each patient.
While it is straightforward to label genes based on whether these are deficient or not in
the WGS data, in reality, genes may also be inactivated through non-genetic pathways.
These gene inactivations may be caused by processes such as methylation or non-coding
mutations, which cannot be determined from the WGS data alone. In this manner, pa-
tients in the negative set may actually contain deficient genes, leading to the use of noisy
labels in the training process. We demonstrate that Positive Unlabeled (PU) learning, in
which noise is overcome by viewing the negative set as unlabeled, is a suitable approach
to improve classifier performance. However, achieving a higher false positive ratio in
the presence of label noise may actually represent higher performance, as this patient
may have been incorrectly labeled as negative while showing the deficiency phenotype.



Summary 163

Thus, metrics that are based on the false positive rate, such as AUCPR, may not actually
be most suitable to compare model performance. In this chapter, we introduce a swap-
one-patient-out CV (sopoCV) approach which iteratively labels each positive sample as
negative, and measures how well a classifier can identify swapped patients as false posi-
tives in datasets with noisy labels. We show for 3 different machine learning models that
sopoCV may be a more accurate way of measuring classifier performance than AUCPR.

In summary, this thesis has introduced new methods to help study cancer datasets.
Using the method described in chapter 3 and chapter 4, we demonstrated the impor-
tance of including non-coding SVs in cancer diagnostics. Furthermore, in chapter 5 we
showed that it is essential to properly measure the predictions of machine learning clas-
sifiers to properly interpret their performance on cancer data. Altogether, these tools
provide researchers with new ways of learning to better understand the development of
cancer.





Samenvatting

Ondanks vele jaren aan onderzoek, begrijpen we kanker nog steeds niet genoeg om
de ziekte optimaal te behandelen. Sinds sequentiedatasets van gehele kankergenomen
steeds meer beschikbaar zijn geworden, is onze kennis over de rol van mutaties in kan-
ker gegroeid. Uit deze data is duidelijk geworden dat iedere kankerpatiënt gemiddeld
4-5 mutaties heeft die de groei van de kanker bevorderen, tegenover de tot in de duizen-
den mutaties met weinig effect. De toename van het aantal computationele methoden
om deze kanker bevorderende mutaties in patiënten op te sporen heeft geleid tot een sa-
menstelling van een lijst van mutaties met klinisch belang, wat heeft geleid tot een ver-
betering van de behandelingen tegen kanker. Toch blijft er een groep patiënten bestaan
voor wie geen kanker bevorderende mutaties kunnen worden gevonden, of wiens ziekte-
beeld niet verbetert met de bestaande behandelingen. Het doel van dit proefschrift was
om bij te dragen aan het vinden van oplossingen voor 3 uitdagingen die moeten worden
opgelost om kanker beter te begrijpen.

In hoofdstuk 2 onderzoeken we de uitdaging van tumor heterogeniteit. Tumoren
bestaan vaak uit meerdere verschillende typen cellen, in plaats van 1. Deze cellen heten
subklonen. Het is echter niet gebruikelijk om een apart monster te nemen van iedere
individuele cel in de tumor, en in plaats daarvan bestaan monsters uit een heterogene
cel populatie. Als gevolg hiervan zijn alle mutaties die worden bepaald uit sequentie-
data vaak een gemiddelde van alle subklonen in een monster. Subklonen die een klein
deel van de populatie opmaken kunnen mutaties bevatten die in zulke lage frequenties
worden gemeten dat deze niet van ruis en sequentiefouten kunnen worden onderschei-
den. Dit is problematisch voor de selectie van de beste behandeling voor een patiënt,
aangezien het precies deze gemiste mutaties kunnen zijn die een tumor resistent maken
tegen de behandeling. Hierdoor is het van groot belang om een gedetailleerd overzicht
te genereren van alle subklonen in een tumor, zodat de meest geschikte behandeling kan
worden bepaald. Conventionele methoden gebruiken vaak statistische modellen om het
gemiddelde mutatieprofiel te deconvolueren naar een profiel op het niveau van de sub-
klonen. Toch blijft het lastig om op deze manier alle laagfrequente subklonen te detecte-
ren. In hoofdstuk 2 is ons doel om in plaats daarvan de heterogeniteit te reduceren door
weefsels te microdissecteren om monsters te verkrijgen met hogere homogeniteit. We
introduceren TargetClone, een methode waarin een combinatie van enkel-nucleotide
polymorfismes (Single-Nucleotide Polymorphisms, SNPs) en enkel-nucleotide varian-
ten (Single-Nucleotide Variants, SNVs) worden gebruikt om de subklonen in microdis-
secties te bepalen. We gebruiken onze methode om fylogenetische bomen te genere-
ren waarin de subklonen en de volgorde waarin deze meest waarschijnlijk zijn ontstaan
staan gerepresenteerd voor 4 patiënten met testiculaire type II kiemceltumoren.

In hoofdstuk 3 en hoofdstuk 4 ligt de focus op de uitdaging om het effect van niet-
gecodeerde structurele varianten (SVs) te bepalen. Uit recent onderzoek is gebleken dat
mutaties in het niet-gecodeerde genoom een belangrijke rol spelen in kanker. Terwijl
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(niet-gecodeerde) SNVs actief worden bestudeerd, zijn er weinig computationele me-
thoden beschikbaar om het effect van SVs, voornamelijk niet-gecodeerd, te bestuderen.
Hierdoor worden deze vaak genegeerd in de kankerdiagnostiek. Eén belangrijke manier
waarop niet-gecodeerde SVs pathogeen kunnen zijn is door de grenzen tussen Topolo-
gisch Geassocieerde Domeinen (Topologically Associated Domains, TADs) te verstoren.
Deze TADs zijn gebieden in het genoom waarin DNA vaker met elkaar interacties vormt
dan met DNA buiten de TAD. De TAD structuren houden de juiste interacties tussen ge-
nen en regulatoire elementen in stand. Verstoringen van de grenzen tussen TADs kan
dus leiden tot het ontstaan van nieuwe interacties tussen genen en regulatoire elemen-
ten, zoals enhancers. Het is echter niet duidelijk wanneer deze verstoringen pathogeen
zijn. Machinaal leren leent zich goed voor dit soort problemen, maar hierbij bestaan 2
belangrijke problemen. Het is ten eerste lastig om de grote hoeveelheid verstoorde inter-
acties te beschrijven in een typische feature matrix. Ten tweede bestaan er geen datasets
met ware SV pathogeniteit die als labels kunnen worden gebruikt.

In hoofdstuk 3 introduceren we svMIL, een methode die leert welke TAD grens-
verstorende niet-gecodeerde SVs pathogeen zijn. Onze methode is gebaseerd op Mul-
tiple Instance Learning (MIL), waarin het gebruik van een feature matrix omzeild wordt
door niet-gecodeerde SVs als zakken weer te geven, die kunnen bestaan uit elke moge-
lijke hoeveelheid verstoorde interacties. Niet-gecodeerde SV pathogeniteit wordt afge-
leid uit patiënt-geassocieerde genexpressiedata. We laten zien dat onze methode patho-
gene SVs kan voorspellen in borst- en ovariumkanker.

In hoofdstuk 4 verbeteren we de in hoofdstuk 3 geïntroduceerde svMIL methode.
We passen svMIL2 toe op 1646 gehele kankergenomen en tonen aan dat onze methode
generiek toepasbaar is op 12 kankertypes, en dat deze niet-gecodeerde SVs identificeert
die bekende kanker-bevorderende genen verstoren. We vinden dat pathogene
niet-gecodeerde SVs actieve (super) enhancers in euchromatine gebieden aantasten, en
dat dit patroon vergelijkbaar is in alle kankertypes. Verder blijken niet-gecodeerde SVs
meer bij te dragen aan de ontwikkeling van kanker dan kanker-bevorderende SNVs in
voornamelijk ovarium- en alvleesklierkanker. Als laatste passen we svMIL2 ook toe op
intra-TAD CTCF lussen in plaats van TAD-grenzen. Ondanks dat het duidelijk is dat SVs
TADs kunnen verstoren, wordt de rol van het verstoren van de kleinere CTCF-lussen bin-
nen TADs nog niet goed begrepen. We identificeren niet-gecodeerde SVs die bekende
kanker-bevorderende genen beïnvloeden door de verstoring van CTCF-lussen in borst-
kanker, zij het met een kleinere effectgrootte dan voor TAD-grenzen. Echter blijft de rol
van het verstoren van deze lussen in andere kankertypes een open vraag door het ont-
breken van voldoende data over CTCF-lussen.

Tot slot behandelen we in hoofdstuk 5 de uitdaging van gen-deficiëntie status (DS)
classificatie. Pathogene mutaties in DNA-reparatiegenen, zoals BRCA1, BRCA2 en CDK12,
laten signaturen van somatische SVs achter in het genoom. Deze signaturen zijn een
waardevolle bron om met machinaal leren gen DS te detecteren. Het is echter niet tri-
viaal om een label op patiënt-niveau te verkrijgen waarbij alle genomische features van
SVs, zoals replicatietiming, in één feature matrix zijn weergegeven. We lossen dit pro-
bleem op met MIL, waarin alle zakken patiënten vertegenwoordigen, die alle SVs in de
patiënt beschrijven met een eigen feature vector. Machinaal leren is vaak een zeer ge-
schikte oplossing voor onopgeloste problemen, zoals gen DS-classificatie. Toch bestaan
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er valkuilen wanneer deze methoden worden gebruikt die niet over het hoofd gezien
moeten worden. Er is vaak per patiënt alleen sequentiedata van het gehele genoom be-
schikbaar. Een eenvoudig optie is om genen een label te geven op basis van of deze de-
ficiënt zijn in de genomische sequentiedata. Het is echter ook mogelijk dat deze genen
zijn geïnactiveerd via niet-genetische paden. Deze inactivaties kunnen zijn veroorzaakt
door processen als methylatie, of niet-gecodeerde mutaties, die niet direct kunnen wor-
den gedetecteerd uit alleen de genomische sequentiedata. Hierdoor kunnen patiënten
in de negatieve set deficiënte genen hebben, waardoor het trainingsproces labels met
ruis gebruikt. We tonen aan dat Positive Unlabeled (PU) learning, waarin ruis wordt
aangepakt door de negatieve set als ongelabeld te behandelen, een geschikte manier is
om de classificatieprestatie te verhogen. Een hogere ratio van fout-positieven in een sce-
nario met labelruis kan echter betere prestatie betekenen, omdat deze patiënt een foute
(negatieve) label heeft gekregen terwijl deze wel het deficiëntie fenotype heeft. Metriek
op basis van de ratio fout-positieven, zoals AUCPR, zijn hierdoor soms niet het meest ge-
schikt om modellen te vergelijken. In dit hoofdstuk introduceren we swap-one-patient-
out cross-validatie (sopoCV), waarin we iteratief iedere positieve patiënt als negatief la-
belen, en meten hoe goed een classificatiealgoritme deze nu negatieve patiënten als fout
positief kan identificeren in datasets met labelruis. We laten zien voor 3 verschillende
modellen op basis van machinaal leren dat sopoCV een geschiktere manier kan zijn om
classificatieprestatie te meten dan de AUCPR.

In dit proefschrift hebben we nieuwe methoden geïntroduceerd om kankerdata te
bestuderen. Met de methode beschreven in hoofdstuk 3 en hoofdstuk 4 hebben we het
belang laten zien om niet-gecodeerde SVs mee te nemen in kankerdiagnostiek. In hoofd-
stuk 5 hebben we aangetoond dat het essentieel is om de voorspellingen van classifica-
tiealgoritmes juist te meten om een passende interpretatie te maken van de prestatie op
kankerdata. Alles samengenomen geven deze tools wetenschappers nieuwe mogelijk-
heden om de ontwikkeling van kanker beter leren te begrijpen.
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