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General introduction
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CHAPTER 1

In the current society, humans heavily rely on livestock production as a 
source for food, and other products. To feed the seven billion people on 
this planet, the livestock industry has evolved through the years and has 
become more intensified to increase efficiency and production. Smaller 
farms were up-scaled to larger farms with higher feed efficiency and 
increased production (Thornton, 2010; Guyomard et al., 2013). In recent 
years, especially in developed countries, another trend is observed, where 
the growing consumer concern for animal welfare has led to an increase 
in free-range and organic farming, in which the animals have more space 
and spend part of their day outside (Thornton, 2010). While the access to an 
outdoor range is believed to be beneficial for the animal’s health (Bestman 
and Wagenaar, 2003), contact with an outdoor environment increases the 
likelihood for direct or indirect exposure to wild animals, thus increasing 
the risk of transmission of infections along the wildlife – livestock interface 
(Gortázar et al., 2007). 

Chicken meat and eggs are an efficient and affordable source of high 
quality protein and other nutrients, that can help feed many millions of 
people worldwide (Scanes, 2007). Feed efficiency and high performance of 
the birds are therefore crucial goals in poultry production. Currently one 
of the major concerns for the poultry industry are the global epidemics of 
highly pathogenic avian influenza. Widespread outbreaks among poultry 
in the last two decades have caused enormous economic losses and are 
a concern for the poultry’s welfare and the poultry industry in general 
(Figueroa et al., 2021).

Avian influenza viruses (AIV) are categorized as low pathogenic 
avian influenza viruses (LPAIV) or highly pathogenic avian influenza 
viruses (HPAIV), based on the pathobiological effects of the virus in 
chickens: in general LPAIV infections may be asymptomatic or may 
produce only mild disease in chickens (Gonzales and Elbers, 2018), while 
HPAIV infections produce high morbidity and mortality in poultry (Pantin-
Jackwood and Swayne, 2009; Beerens et al., 2020; Schreuder et al., 2020). 
Influenza viruses carry two glycoproteins on their surface: haemagglutinin 
(HA) and neuraminidase (NA), and on the basis of these glycoproteins are 
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divided into subtypes (Webster et al., 1992). Among the known HA subtypes 
affecting birds (H1–H16), H5 and H7 virus subtypes can be either LPAIV or 
HPAIV and infections with HPAIV are notifiable to the World Organization 
for Animal Health (OIE). Moreover, as HPAIVs have the potential to cause 
zoonotic infections and to acquire human-to-human transmissibility, the 
recurrent outbreaks of HPAIVs across the globe are also a concern for public 
health (Pohlmann et al., 2019; Chen et al., 2020). 

Over the past two decades, several outbreaks occurred in the 
Netherlands. The largest HPAI epidemic in 2003 most likely originated from 
an LPAIV infection, followed by massive between-farm transmission in a 
poultry-dense areas (Elbers et al., 2006). In more recent outbreaks, between 
2014-2018 and currently in the autumn-winter period of 2020-2021, separate 
introductions with HPAIVs of clade 2.3.4.4 occurred on poultry farms, 
which were in most cases related to indirect contact with HPAIV infected 
wild birds (Beerens et al., 2019; Adlhoch et al., 2020). It is known that free-
range layer farms have a higher risk of introduction of LPAIV and HPAIV 
compared to indoor layer farms (Terregino et al., 2007; Gonzales et al., 2013; 
Kirunda et al., 2014; Bouwstra et al., 2017), and most LPAIV introductions 
in the Netherlands occur on free-range layer farms (Gonzales et al., 2013; 
Bouwstra et al., 2017). Aquatic birds, especially wild waterfowl, are the 
natural reservoir of AIV (Webster et al., 1992; Hill et al., 2019), and infected 
waterbirds excrete high amounts of AIVs in their feces, infecting other species 
via the fecal-oral route (França et al., 2012). Although wild birds may not 
frequently visit the outdoor range during the day, and direct contact with 
the chickens is limited, known carriers of AIV, i.e. several species of gulls 
and dabbling ducks, do visit the outdoor range regularly during the night 
or between sunrise and the time the chickens enter the range (Elbers and 
Gonzales, 2020). As infectious agents like AIVs can survive in the environment 
for a long time under favourable conditions (Brown et al., 2007), indirect 
transmission via ‘same-place different-time’ spatial coincidences becomes 
possible (Richardson and Gorochowski, 2015). This means that although the 
same environment, like the outdoor range, is visited at different times, AIVs 
shed by an infected wild bird, can still result in an infection of chickens when 
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they pass the range at a different time. Transmission of AIV to poultry farms 
therefore likely occurs via (in)direct contact of poultry with infected birds or 
via an AIV contaminated environmental virus reservoir, such as water, soil, 
vectors or fomites (Breban et al., 2009; Rohani et al., 2009; Velkers et al., 2017; 
Elbers and Gonzales, 2020).

In the Netherlands, an housing order is often issued after the first 
cases of HPAI infections in wild birds have been detected. Also, poultry 
farmers are urged to follow strict biosecurity protocols to reduce the risk 
of incursion of the virus in the poultry houses, and subsequent spread 
to other farms. Although these measures have most likely contributed to 
minimizing between farm transmission, primary introductions of HPAIVs 
still regularly occur on poultry farms. The recurrence of HPAI outbreaks and 
their economic and social impact underline the need for improved control 
strategies. Therefore, government, industry and knowledge institutes are 
collaborating to improve current and develop new control strategies to 
combat HPAI outbreaks.

An approach that has been proposed to improve current control 
strategies is to improve the prediction of HPAI outbreak risk across the 
Netherlands to be able to take appropriate measures in these specific 
areas. A better prediction of the HPAI risk could be used to support timely 
decisions on a preventive housing order and increased biosecurity measures 
in specific areas. Also, it could facilitate prioritization of areas for increased 
surveillance for AIV infection and the identification of unfavourable areas 
to start new poultry farms. As wild birds play a key role in the transmission 
of AIV to farms, we looked into several possible strategies to identify and 
predict the risk for exposure of chickens to infections from wild waterbirds.

The microbiome as potential proxy for contact between wild birds and 
poultry
Microbiome research is a rapidly expanding field, and increasing knowledge 
of the relationship between microbiomes and host health has grown over 
the past two decades. Gut microbiota are influenced by their direct and 
indirect environment (Kers et al., 2018, 2019; Hubert et al., 2019). The direct 
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environment is shaped by interactions among gut-residing microbiota, 
interactions with their host, and the feed of the host. The indirect environment 
is mostly determined by the living conditions of the host, which in the case 
of poultry includes the environment of the poultry house and outdoor 
range, biosecurity level, litter and climatic conditions. Social interactions 
among hosts play a role in transmitting pathogens and parasites between 
individuals in a contaminated environment (Rohani et al., 2009; Richardson 
and Gorochowski, 2015; Woodroffe et al., 2016; Colenutt et al., 2020), and 
these social interactions can also alter and influence the composition of 
commensal microbiota in several species (VanderWaal et al., 2014; Archie 
and Tung, 2015; Tung et al., 2015; Antwis et al., 2018). Furthermore, spatial 
proximity between individuals has been shown to facilitate exchange of 
microbiota even when direct social interactions are minimal (Antwis et al., 
2018). These phenomena may also be relevant in relation to exchange of 
potential pathogens in the wildlife – livestock interface, such as AIV. Wild 
waterbirds may visit the outdoor range of layers during the night (Elbers 
and Gonzales, 2020), which means that although wild birds and chickens 
are not likely to have direct contact, they do share an environment, and 
can therefore exchange microbiota with one another via the fecal-oral 
route, according to the ‘same-place, different-time’ principle as described 
in the previous section. As the role of waterfowl in the transmission of 
infectious agents to poultry is linked to fecal contamination (Swayne and 
Pantin-Jackwood, 2006), studying transmission of fecal microbiota between 
waterfowl and chickens may reveal proxies for contact between them. 
Previously, the genetic subtypes of gut residing Escherichia coli served as 
a proxy for contact between different giraffes (Giraffa camelopardalis) and 
different wild primates (VanderWaal et al., 2014; Springer et al., 2016), as 
well as for pathogen transmission between mountain brushtail possums 
(Trichosurus vulpecula) (Blyton et al., 2014). Similarly, the fecal microbiota 
of chickens may be affected by the presence of waterfowl, and thus, the 
chicken’s fecal microbiome could be useful to assess whether contact with 
waterfowl feces has occurred. It was hypothesized that if changes in the fecal 
microbiome can be determined in chickens, then this may serve as a proxy 
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for the risk of pathogen transmission from the environment, e.g. AIV, prior 
to actual outbreaks, and may be used for risk assessment purposes.

Spatial modeling of wild bird densities
As described above, it is known that wild waterbirds play an important 
role in dissemination of HPAIVs across the globe (Verhagen et al., 2015; The 
Global Consortium for H5N8 and Related Influenza Viruses, 2016), as well 
as introduction of HPAIV on poultry farms (Beerens et al., 2019). Several 
wild bird species have been identified as high risk HPAI bird species, of 
which most belong to the order of Anseriformes (mainly duck, geese, swans) 
and Charadriiformes (gulls, turns, shorebirds) (Animal and Plant Health 
Agency (UK) et al., 2017; Hill et al., 2019). Research has shown that HPAI 
outbreaks on poultry farms are spatially associated with the proximity of 
waterbodies or the presence of wild birds (Belkhiria et al., 2018; Napp et al., 
2018; Velkers et al., 2020). The density of HPAI high-risk bird species around 
infected poultry farms in wetlands was significantly higher than around 
non-infected farms in non-water-rich areas in the Netherlands (Velkers et 
al., 2020), and wild bird densities have been used previously to quantify risk 
of HPAIV introduction on poultry farms in Great-Britain (Hill et al., 2019). 
Furthermore, disease distribution models also showed that land cover, 
particularly the presence of wetlands, were highly predictive for the HPAI 
risk in California (Belkhiria et al., 2018), and land cover and environmental 
variables were used to successfully predict outbreak risk for H5N1 in Europe 
(Si et al., 2013). This suggests that wild bird presence and abundance, as well 
as land cover data could be used as predictors in identifying HPAI high 
risk areas, which could help in prioritization of areas for surveillance and 
biosecurity measures.

Increased knowledge on how to predict introduction of HPAIV 
into poultry farms is important and will likely reduce HPAIV introduction 
risk, it is however unlikely that this will completely prevent all primary 
introductions, and subsequent between farm transmissions between 
poultry farms. Therefore, it remains important to detect infection as early 
as possible to control the spread of HPAIV to other farms and minimize 
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socio-economic impact of the disease (Elbers et al., 2004; Backer et al., 2015). 
For HPAI outbreaks, sudden increase in mortality has prompted farmers 
and veterinarians to raise suspicion of infection (Elbers et al., 2007; Malladi 
et al., 2011; Gonzales and Elbers, 2018; Ssematimba et al., 2019), as has the 
sudden onset of clinical signs (Elbers et al., 2004, 2005; Velkers et al., 2006) 
in different poultry types. However, it is yet unknown whether combining 
mortality rate and clinical signs can further enhance early detection in 
different poultry types.

THESIS AIMS AND OUTLINE

The main aim of the research described in this thesis is to evaluate tools 
that can be used to predict and detect HPAI outbreaks on poultry farms in 
order to reduce risks of HPAIV introductions and prevent further spread 
to other farms via appropriate control measures. The first part of the thesis 
explores if exposure of layers to an outdoor environment results in detectable 
changes in the gut microbiota community, and if these changes might be 
used as a proxy for contact of layers with wild birds. The second part of the 
thesis focuses on the identification of HPAI high risk areas using wild bird 
density data and the timely diagnosis of possible HPAI outbreaks on poultry 
farms. Both are important steps to reduce the risk of HPAIV introductions 
on farms on the one hand and to control the spread of HPAIV to other farms, 
in order to reduce the impact on animal welfare, public health and poultry 
production. The three main research questions that are addressed are:

1. Can the gut microbiome of layers be used as a proxy for 
contact with wild birds or the outdoor environment? 

2. Can wild bird density data and land cover variables be used 
to predict HPAI outbreak risk? 

3. What are the clinical signs and mortality rates at the onset of 
HPAI infection and can they be used for early diagnosis of 
HPAI infection on poultry farms? 

The first Chapters of this thesis address whether exposure to an outdoor 
environment results in detectable changes in the microbiota community in 
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laying chickens, and whether these changes might be used as an indicator 
for indirect contact of layers with wild birds. As layers use the outdoor 
range, they are exposed to an environment that might be contaminated 
with fecal droppings of HPAIV-infected wild birds that visited or passed 
the range, and the gut microbiome of layers might hold clues that relate to 
this exposure and the level of biosecurity on the farm. This was investigated 
in three steps. In Chapter 2, as a proof of principle, we orally inoculated 
laying hens with wild duck feces to determine if the microbiota in the 
feces could be transferred to laying hens via oral intake. In Chapter 3, we 
performed an observational field study, and studied the differences in the 
cloacal microbiota between indoor- and outdoor-housed layers. Layers from 
four indoor- and four outdoor flocks were sampled and cloacal community 
composition was compared to determine if there are differences between 
these two types of flocks in a commercial setting that can be detected with 
16S rRNA sequencing. In Chapter 4, we performed a longitudinal study 
over a period of 16 weeks in four commercial layer flocks. Here, two flocks 
were given access to an outdoor range and two flocks remained indoors. The 
community dynamics of the cloacal microbiota of the flocks were studied 
after they were exposed to this new environment to determine if community 
dynamics between both groups differed over time. 

The second part of the thesis focuses on identification of HPAI high 
risk areas and the timely diagnosis of possible HPAI outbreaks. In Chapter 
5 the locations of HPAI outbreaks in the Netherlands between 2014-2018 
were used to spatially model the HPAI infection probability in relation to 
landscape variables and wild bird densities of high risk HPAI bird species. 
This model was then used to generate a risk map for HPAI infection 
probability across the Netherlands. In addition to mapping the risk, early 
warning of an outbreak is important to control the spread of HPAIV to other 
farms and reduce the impact on animal welfare, public health and poultry 
production. In Chapter 6, we give a detailed description of species-specific 
clinical signs in the early stages of HPAI infection on poultry farms in the 
Netherlands between 2014-2018 and describe how these developed over 
time in the days before notification, as observed by poultry farmers and 
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veterinarians. For each outbreak we compared the onset of observed clinical 
signs, with the onset of increased mortality (as calculated via a mortality 
ratio), and describe how they facilitate early diagnosis of HPAIV infections.

Finally, Chapter 7 concludes with a general discussion of the results 
in this thesis in a broader context and additional analyses of ten new HPAI 
outbreaks on poultry farms in the Netherlands which occurred in the autumn 
and winter months of 2020-2021.
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CHAPTER 2

ABSTRACT

Interspecies transmission of fecal microbiota can serve as an indicator for 
(indirect) contact between domestic and wild animals to assess risks of 
pathogen transmission, e.g., avian influenza. Here, we investigated whether 
oral inoculation of laying hens with feces of wild ducks (mallards, Anas 
platyrhynchos) resulted in a hen fecal microbiome that was detectably altered 
on community parameters or relative abundances of individual genera. 
To distinguish between effects of the duck inoculum and effects of the 
inoculation procedure, we compared the fecal microbiomes of adult laying 
hens resulting from 3 treatments: inoculation with wild duck feces (duck), 
inoculation with chicken feces (auto), and a negative control group with 
no treatment. We collected cloacal swabs from 7 hens per treatment before 
(day 0), and 2 and 7 D after inoculation, and performed 16S rRNA amplicon 
sequencing. No distinguishable effect of inoculation with duck feces on 
microbiome community (alpha and beta diversity) was found compared to 
auto or control treatments. At the individual taxonomic level, the relative 
abundance of the genus Alistipes (phylum Bacteroidetes) was significantly 
higher in the inoculated treatments (auto and duck) compared to the control 
2 D after inoculation. Seven days after inoculation, the relative abundance 
of Alistipes had increased in the control and no effect was found anymore 
across treatments. These effects might be explained by the perturbation 
of the hen’s microbiome caused by the inoculation procedure itself, or by 
intrinsic temporal variation in the hen’s microbiome. This experiment shows 
that a single inoculation of fecal microbiota from duck feces to laying hens 
did not cause a measurable alteration of the gut microbiome community. 
Furthermore, the temporary change in relative abundance for Alistipes could 
not be attributed to the duck feces inoculation. These outcomes suggest that 
the fecal microbiome of adult laying hens may not be a useful indicator for 
detection of single oral exposure to wild duck feces.

Keywords: laying hen, fecal microbiota, wild duck, 16S rRNA gene 
sequencing, inoculation
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INTRODUCTION
Contact between wildlife and domestic animals can lead to transmission of 
pathogens, as wildlife can serve as a reservoir host (Gortázar et al., 2007). 
The interaction between wild birds and poultry has become more important 
in recent years, because of the increased demand for free-range poultry 
products whereby outdoor access for poultry increases the risk to pathogen 
exposure originating from wild birds (Koch and Elbers, 2006). It is therefore 
important to have alternative methods available to study transmission of 
infectious agents between wild birds and poultry to facilitate risk assessment 
and develop preventive measures to reduce potential risks for transmission 
of infectious diseases. 

The most striking example of potential risks associated with the wild 
bird-poultry interface is avian influenza virus (AIV) outbreaks in poultry 
farms. Wild migratory birds play an important role in the spread of both 
low pathogenic AIV and highly pathogenic AIV across continents (Lycett 
et al., 2016). The close genetic relationship between AIV in waterfowl and 
domestic poultry in several outbreaks supports the role of wild waterfowl 
in outbreaks (Munster et al., 2005; Berhane et al., 2009; Lebarbenchon and 
Stallknecht, 2011; Beerens et al., 2018). 

In waterfowl, low pathogenic AIV is most often detected in mallards 
(Anas platyrhynchos) (Verhagen et al., 2017). Moreover, video-camera 
monitoring at a Dutch poultry farm showed that mallards were frequent 
occupants of the outdoor range at night between November and March 
(Elbers, 2017). As AIV is shed in high concentrations in feces of infected birds 
(França et al., 2012), infected waterfowl in the vicinity of outdoor ranges can 
contaminate the farm environment. Depending on environmental conditions, 
the virus may persist in the environment for many months (Brown et al., 
2007; Stallknecht and Brown, 2017). Chickens can become infected directly 
via coprophagic behavior (Hyun and Sakaguchi, 1989; von Waldburg-Zeil 
et al., 2019), or indirectly via contact with an environmental virus reservoir 
(Brown et al., 2007; Rohani et al., 2009). 

As the role of waterfowl in the transmission of infectious agents 
to poultry is mainly linked to fecal contamination (Swayne and Pantin-
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Jackwood, 2006), studying transmission of fecal microbiota between 
waterfowl and chickens may reveal proxies for contact between them. 
Previously, the genetic subtypes of gut-residing Escherichia coli served as a 
proxy for contact between giraffes and wild primates (VanderWaal et al., 
2014; Springer et al., 2016) or for pathogen transmission between individuals 
(Blyton et al., 2014). Song et al. (2013) showed that humans in the same 
household shared fecal microbiota. If dogs were present in the household, 
humans also shared certain skin microbiota with the dogs. In wild baboons, 
social group membership and social network relationships predicted the 
taxonomic structure of the gut microbiome, and rates of social interaction 
directly explained variation in the gut microbiome (Tung et al., 2015). 
Similarly, the fecal microbiota of chickens may be affected by the presence 
of waterfowl. Thus, the chicken’s fecal microbiome may be used to assess 
whether contact with waterfowl feces has occurred. If changes in the fecal 
microbiome can be determined in chickens, then this may serve as a proxy 
for the risk of pathogen transmission, e.g., AIV, prior to actual outbreaks, 
and can be used for risk assessment purposes. 

In this study, we investigated the transmissibility of fecal microbiota 
from wild mallard feces (further referred to as duck) to antibiotic-free 
recipient laying hens in the week following an oral inoculation with these 
duck feces. In medicine, fecal microbiota transplants (FMT) are applied to 
human subjects as a treatment for gut dysbiosis, for instance in patients with 
Clostridium difficile infection (Hamilton et al., 2012; Cammarota et al., 2017). 
Although a treatment with antibiotics is often applied before FMT, Li et al. 
(2016) showed that FMT could also be successful in antibiotic-free patients 
with metabolic syndrome. We hypothesized that duck fecal microbiota 
can be transmitted to laying hens via oral inoculation with duck feces, 
causing detectable shifts in the fecal microbiome composition of laying 
hens by altering the whole microbial community or the relative abundance 
of specific bacterial taxa. To distinguish between the effects of the feces 
inoculation process and the specific effects of the duck feces inoculation, 
we compared the fecal microbiomes resulting from duck feces inoculation 
to those resulting from an inoculation with chicken feces (auto inoculation) 
and a negative control group. In particular, we expected to detect novel taxa 
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in the hen feces after inoculation which were present in the duck inoculum, 
or altered dominance patterns resulting in an altered community in the hen 
microbiome after inoculation.

MATERIALS AND METHODS

Ethics
The study protocol was approved by the Dutch Central Authority for 
Scientific Procedures on Animals and the Animal Experiments Committee 
of Wageningen University and Research, the Netherlands. The animal 
experiments were executed at the Dutch Animal Health Service (GD 
Deventer, the Netherlands) and were done in full compliance with all 
relevant legislation. The capture of free-living birds was approved by the 
Dutch Ministry of Economic Affairs based on the Flora and Fauna Act 
(permit number FF/75A/2014/054). 

Hens, Management, and Experimental Design 
A total of 54 Bovans Brown laying hens of 19 weeks of age were obtained 
from a commercial pullet-rearing farm and transported to the experimental 
facility. Upon arrival, the hens were placed in a 3-tiered aviary system. The 
tiers were divided by plastic partitions, and cages on the same tier were 
separated by wire fences, with wood shavings covering the ground. The 
hens had a habituation period of 12 weeks prior to the start of the experiment 
and were subjected to a standard light regime for laying hens. A commercial 
layer feed (ABZ Diervoeding, Nijkerk) without antibiotics and water was 
supplied ad libitum. The animals were observed daily and the presence of 
clinical signs or abnormal behavior, and mortality was recorded. 

To study the transmission of fecal microbiota from wild ducks 
to laying hens, we subjected the hens to one of 3 treatments: a single oral 
inoculation with an inoculum made from wild duck feces (duck treatment); a 
single oral inoculation with an inoculum made from the feces of the recipient 
laying hens (auto treatment); and a negative control without any treatment 
(control treatment). Each treatment group consisted of 18 laying hens.
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Inoculum preparation, inoculation, and sample collection
Fresh fecal droppings of mallards were collected opportunistically during 
avian influenza surveillance activities in wild birds in the Netherlands, 
as routinely performed by Erasmus Medical Center (Rotterdam, the 
Netherlands). Fecal droppings of a maximum of 3 wild ducks were pooled 
(a batch). In total, 39 batches with fecal droppings from 104 wild ducks were 
collected over 2 sampling days. The fecal batches were immediately stored 
on ice, and processed on the day of collection. The batches were processed 
separately to prevent cross contamination between batches with AIV. Prior 
to further processing, all batches were tested by PCR on AIV (Bouwstra et al., 
2015) and Salmonella (Halatsi et al., 2006) at GD Deventer (the Netherlands). 
Batches which tested positive for AIV or Salmonella (18 batches in total) were 
excluded from further processing to prevent introduction of these pathogens 
into the experimental facilities. Fresh fecal droppings of all chickens in the 
research facilities were collected and processed as a single pool.

The pool of chicken feces and the duck fecal batches were prepared 
according to the protocol described by Youngster et al. (2014) with slight 
modifications: batches with duck fecal droppings were diluted 1:1 and 
pooled chicken fecal droppings were diluted 1:2 with sterile PBS (DPBS, 
Gibco, ThermoFisher Scientific, the Netherlands). The mixtures were 
thoroughly homogenized, and large particles were removed by passing 
through a sterile 0.7 mm sieve. Of these fecal suspensions, 5 samples of the 
chicken inoculum and 5 samples of each duck batch were stored in −80°C 
for DNA extraction and 16S rRNA gene sequencing at a later stage. The 
suspension was centrifuged at 3,000 rpm for 30 min, and the obtained pellet 
was suspended in sterile PBS with 20% glycerol (BioXtra >99% GC, Sigma 
Aldrich, the Netherlands). The final fecal concentration in all inocula was 
approximately 1 g of pooled feces in 1 mL of PBS + 20% glycerol. Bacterial 
viability was checked for all inocula by quantifying colony-forming units 
using blood agar plates (Supplemental Table S1). All inocula were stored at 
−80°C and were thawed at 4°C for 12 h prior to further processing at day of 
inoculation.

At the day of inoculation (day 0), 10 batches with fecal duck inocula 
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were combined and homogenized to form 1 duck inoculum. Subsequently, 
the chickens (31 weeks of age) were inoculated with 6 mL of either the duck 
or auto inoculum via oral gavage. The negative control group remained 
untreated. Two cloacal swabs per hen were collected daily for all chickens 
from day 0 (prior to inoculation) until the end of the experiment at day 13. 
Cloacal swabs were stored on ice upon collection and stored at −80°C within 
2 h. On day 13, all chickens were euthanized by intravenous injection with a 
20% pentobarbital-sodium solution. 

DNA extraction and 16S rRNA gene amplicon sequencing
Per treatment, 7 chickens, from a total of 18 chickens, were selected for further 
analysis of samples taken on a subset of timepoints, i.e., 0, 2, and 7 D after 
inoculation. Cloacal swabs of 7 chickens were selected and visually assessed 
to ensure that sufficient fecal material for DNA extraction was available on 
the swabs on all 3 selected timepoints. Based on microbiota studies in laying 
hens and broilers, a sample size of 7 cloacal swabs per treatment group was 
expected to be large enough to detect differences in microbiota composition 
with sufficient statistical power (Videnska et al., 2014b; Jurburg et al., 2019). 
Day 0 was chosen as a reference baseline, and we expected to measure the 
first shift in the fecal microbiome 2 D after inoculation. The last timepoint 
chosen for analyses was day 7 after inoculation was included to determine if 
shifts in the fecal microbiota composition found on day 2 were still detectable. 
For each time × chicken combination, the duplicate swab samples were used 
for DNA extraction to ensure sufficient DNA was obtained for sequencing. 
Five of the duck and chicken fecal suspensions (Inoduck and Inochicken 
respectively), which were stored at −80°C during inoculum preparation, 
were used for DNA isolation. Swabs were thawed at room temperature, 
diluted in 1 mL of sterile PBS, and vortexed for 15 s. DNA was extracted 
from 200 μL of these diluted fecal suspension or cloacal swab samples using 
the Qiagen QIAamp Fast DNA stool mini kit (Qiagen, Hilden, Germany) and 
processed according to the manufacturer’s instructions, with an additional 
bead-beating step. DNA extracts were quantified with Invitrogen Qubit 3.0 
Fluorometer and stored at −20°C for further processing. DNA from duplicate 
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swab samples was pooled after extraction.
The V3–4 region of the 16S rRNA gene was amplified in a PCR with 

the primers CVI_V3-forw CCTACGGGAGGCAGCAG and CVI_V4-rev 
GGACTACHVGGGTWTCT. The following amplification conditions were 
used: step 1: 98°C for 2 min, step 2: 98°C for 10 s, step 3: 55°C for 30 s, and step 
4: 72°C for 10 s, step 5: 72°C for 7 min. Steps 2 to 4 were repeated 25 times. 
PCR products were checked with gel electrophoresis, and PE300 sequencing 
was performed using a MiSeq sequencer (Illumina Inc., San Diego, CA).

Processing of sequencing data 
All sequence processing and statistical analyses were performed in R 3.5.1 (R 
Core Team, 2013). The sequenced reads were filtered, trimmed, dereplicated, 
chimera-checked, and merged using the dada2 package (Callahan et al., 
2016) using standard parameters (TruncLength = 240, 210), and reads were 
assigned with the SILVA v.132 classifier (Quast et al., 2012). Downstream 
analyses were performed with the phyloseq (McMurdie and Holmes, 2013) 
and vegan (Oksanen et al., 2007) R packages. Good’s coverage was >0.999. 
Prior to all analyses, the data were rarefied to 2,658 reads per sample (rarefy_
even_depth, seed = 1), to standardize the number of reads while preserving 
all samples. The final dataset contained 1,193 amplicon sequence variants.

Statistical analysis
The number of amplicon sequence variants per sample was used as a 
measure of observed richness (alpha diversity). To test for effects of 
inoculation on richness, Kruskal–Wallis tests were performed per time x 
treatment. To evaluate whether the duck inoculation had an effect on the 
bacterial community composition, principal coordinate analysis of Bray–
Curtis distances was used to visualize differences in microbiome community 
structure across treatments and over time. Clustering patterns of samples 
were assessed visually, and the statistical significance was confirmed with 
a PERMANOVA-like adonis on Bray–Curtis distances from the vegan 
package. Homogeneity of variances in microbial communities between 
samples from the same time x treatment combination was measured with 
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betadisper from the vegan package. To examine if inoculation with duck 
feces had an effect on the relative abundance of specific genera compared 
to the auto inoculation and control on the samples taken 2 and 7 D after 
inoculation, we performed Kruskal–Wallis tests on genera with an average 
relative abundance of at least 0.5%. Genera for which P < 0.05 were selected
for further analysis. To further disentangle effects of the inoculation 
procedure itself vs. actual inoculation with duck feces, we checked for 
significant differences in selected genera between inoculated (duck + auto) 
vs. control and between duck and auto treatments with Wilcoxon rank-
sum tests. These genera were plotted in ternary plots per timepoint using 
R ggtern package (Hamilton and Ferry, 2018). Relative abundances in taxa 
over time are reported throughout the manuscript as mean ± SD.

RESULTS

Kruskal−Wallis, p = 0.15 Kruskal−Wallis, p = 0.12 Kruskal−Wallis, p = 0.016

Day 0 Day 2 Day 7

Auto Control Duck Auto Control Duck Auto Control Duck

100

200

300

Treatment

O
bs

er
ve

d

Figure 1: Observed species richness in all 3 treatments and grouped per day. Each dot represents 
an individual laying hen. Kruskal–Wallis test was used to detect significant differences in 
alpha diversity across treatment groups per day. The chicken inoculum (InoChicken; n = 5) 
exhibited mean observed species richness of 166 ± 6.2, and the duck inoculum (InoDuck; n = 
5) exhibited mean observed species richness of 112.2 ± 36.44 (results are not shown). Control: 
no treatment (n = 7). Auto: inoculation with own chicken feces (n = 7). Duck: inoculation with 
duck feces (n = 7). 
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Community level changes
To characterize the microbial community of the laying hen’s fecal microbiome, 
we first explored community diversity. Observed species richness (alpha 
diversity) exhibited no significant differences across treatments on days 0 
and 2 (Figure 1). On day 7 after inoculation, there was a lower diversity in 
the inoculated hens (auto and duck) compared to the control hens (Wilcoxon 
rank-sum, P = 0.011). No significant difference was found between the auto 
and duck treatments on day 7 (Wilcoxon rank-sum test, P = 0.20). There were 
also no significant differences within treatments over time (Kruskal–Wallis 
test, P > 0.05). A principal coordinate analysis of the Bray–Curtis distances 
(beta diversity) was used to evaluate the changes in community structure 
across treatments and over time (Figure 2). Samples did not show any 
significant clustering (P > 0.05) of hen samples according to their treatment 
on day 2 or 7 after inoculation (Supplemental Table S2). Prior to inoculation 
on day 0, a significant difference in community structure was detected 
between the control and duck treatments (PERMANOVA-like Adonis, P = 
0.048). No significant clusters were observed within treatments over time (P 
> 0.05).

Bacterial composition and temporal dynamics
In order to examine the dynamics in specific phyla and genera between 
treatment groups and over time, we selected the 10 most abundant phyla and 
15 most abundant genera among all samples collected in the study on average. 
Average relative abundances are ± standard deviation. At the phylum level, 
the relative abundance of inocula consisted mainly of the phyla Firmicutes 
(Inoduck 49.2 ± 5.3%; Inochicken 40.0 ± 0.9%) and Bacteroidetes (Inoduck 27.6 
± 3.8%; Inochicken 45.5 ± 0.9%). At the genus level, the relative abundance 
of Inoduck was dominated by Megamonas (15.7 ± 2.4%, phylum Firmicutes) 
and Bacteroides (14.2 ± 4.1%, phylum Bacteroidetes) (Supplemental Figure S1). 
Inochicken was dominated by Rikenellaceae_RC9_gut_group (13.0 ± 1.1%) 
followed by Bacteroidales (7.2 ± 0.6%), Alistipes (7.0 ± 0.8%), and Bacteroides 
(6.7 ± 0.6%), all belonging to the phylum of Bacteroidetes (Supplemental 
Figure S1). All other genera showed relative abundances below 6% in the 
inocula.
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Day 0 Day 2 Day 7
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Figure 2: Change in community composition of the fecal microbiomes in hens visualized in a 
single PCoA plot of Bray–Curtis distances per treatment group and faceted per day. Control: 
no treatment (n = 7). Auto: inoculation with own chicken feces (n = 7). Duck: inoculation with 
duck feces (n = 7).

In the fecal samples of the hens, Firmicutes was dominant across all 
treatment groups and timepoints (66.4 ± 12.8%). Fusobacteria had a much lower 
abundance (10.5 ± 12.7%). All other phyla exhibited relative abundances <10% 
(Figure 3). At the genus level (Figure 4), Romboutsia (19.8 ± 12.3%, phylum 
Firmicutes) and Fusobacterium (10.5 ± 12.6%, phylum Fusobacteria) were most 
abundant across all treatments and timepoints (Figure 4). Although highly 
present in the duck inoculum (15.7 ± 2.4%), Megamonas was not observed in 
the fecal samples of the hens. 

To further explore phyla and genera which showed consistent 
differences across treatment groups (Kruskal–Wallis test, P < 0.05), we 
selected the 10 most abundant phyla, and genera with an average relative 
abundance of > 0.5% at 2 and 7 D after inoculation, resulting in 1 phylum 
and 7 genera for further analyses. The phylum Bacteroidetes had a higher 
relative abundance in the inoculated treatments (duck and auto) compared 
to the control (Wilcoxon rank-sum test, P = 0.028 and P = 0.014 respectively) 
2 D after inoculation. Of the 7 genera, 5 were present in the duck inoculum,
and 4 of these (Alistipes, Bacteroides, Faecalibacterium, and Ruminiclostridium 9) 
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had a lower relative abundance (P < 0.05) prior to inoculation (Supplemental 
Table S3). Alistipes exhibited a higher (Wilcoxon rank-sum test, P = 0.009) 
relative abundance in samples from the inoculated treatments (auto and 
duck) compared to the control 2 D after inoculation, with no difference 
between the duck and auto treatments. The relative abundance of Alistipes 
was higher (Wilcoxon rank-sum test, P = 0.035) 2 D after inoculation than 
before inoculation in both the auto and duck treatments. However, 7 D 
after inoculation, the relative abundance of Alistipes in the auto and duck 
treatments was similar to the control (Wilcoxon rank-sum test, P = 0.12). No 
significant changes in the relative abundances of Bacteroides, Faecalibacterium, 
and Ruminiclostridium 9 were detected in the inoculated hens (duck and 
auto) over time, nor were there significant differences in the relative 
abundances of these genera between auto and duck treatments either 2 or 7 
D after inoculation (P > 0.05). Although not present in the duck inoculum, 
Enterococcus (phylum Firmicutes) exhibited higher relative abundances in 
the duck treatment compared to the auto treatment 2 D after inoculation 
(Wilcoxon rank-sum test, P = 0.03), but not compared to the control (P = 0.44). 
Seven days after inoculation, the relative abundance of Enterococcus was 
higher (Wilcoxon rank-sum test, P = 0.03) in the duck treatment compared 
to the control, but there was no significant difference in relative abundance 
of Enterococcus between duck and auto treatments (Wilcoxon rank-sum test, 
P = 0.074). Although not significant, the relative abundance of Enterococcus 
increased over time in the duck treatment (Kruskal–Wallis test, P = 0.068), 
but decreased significantly over time in the control (Kruskal–Wallis test, P 
< 0.01).

DISCUSSION

Identification of a proxy for the direct or indirect contact between domestic 
and wild animals may provide more insight into potential effects of these 
interactions and shed light on the mechanisms of pathogen transmission. 
This proxy could be used for risk assessment and identification of potential 
preventive measures to help reduce risks for disease outbreaks. In the present
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study, we investigated whether an oral inoculation of laying hens
with duck fecal microbiota resulted in a hen fecal microbiome that was 
detectably altered. We hypothesized that the inoculation would result 
in changes in microbial community parameters community diversity, 
community structure) as well as changes in the relative abundance of 
individual genera that might serve as an indicator for contact between ducks 
and laying hens.

The microbiome composition of the fecal and inoculum samples 
was markedly different. However, this was to be expected as fecal swabs 
and inocula are different matrixes, and the collection and processing after 
collection differed. Therefore, the samples are not directly comparable. 
Rather the inocula samples were meant to serve as a general reference for 
the types of shift that we could expect. 

We were not able to detect significant differences in community 
diversity in the fecal microbiomes of hens inoculated with duck feces 
compared to hens inoculated with auto treatment or controls. However, 
we found that the relative abundance of the genus Alistipes (phylum 
Bacteroidetes) was significantly higher in the inoculated treatments (auto and 
duck) compared to the control at 2 D after inoculation. Previous studies also 
reported an increase in relative abundance of Alistipes after FMT in humans 
(Shahinas et al., 2012; Hamilton et al., 2013; Lee et al., 2017b), which was 
thought to be associated with colonization properties of bacteria from the 
order Bacteroidales (Lee et al., 2017b). However, 7 D after inoculation, the 
relative abundance of Alistipes had also increased in the control group, and 
no significant differences were detected between any of the treatments. Thus, 
it is also possible that the significant difference 2 D after inoculation was a 
result of the intrinsic temporal variation of the microbiome (Li et al., 2017; 
Fu et al., 2019). Alternatively, the patterns observed for Alistipes may have 
been a result of the inoculation and sampling procedures, which may have 
been stressful, and thus affected the microbiome composition (De Palma 
et al., 2014; Li et al., 2016). It has been shown that Alistipes was higher in 
fecal samples of mice that were exposed to daily stress compared to a non-
stressed control group (Li et al., 2017). In addition, the increase in the relative 
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abundance of Alistipes in the control treatment may have been a result of 
transmission of Alistipes from inoculated hens. Humans and animals that 
live together are known to exchange microbiota (Song et al., 2013; Schloss 
et al., 2014). In animal studies, a cage effect is especially likely to occur for 
animals that are coprophagic such as mice (McCafferty et al., 2013; Laukens 
et al., 2016) and chickens (Kers et al., 2018; von Waldburg-Zeil et al., 2019). 
To avoid cage effects in chickens and to prevent the intake of particles and 
feathers containing potential intestinal microbiota “contaminants” (Meyer 
et al., 2012), studies have previously used individual housing of chickens 
(Zhao et al., 2013). For the purpose of this experiment, we decided not to 
house animals separately because this would be an additional stress factor for 
the birds, and would not be representative for the field situation. Therefore, 
all treatment groups were housed and handled in the same research unit. 
Consequently, transmission of Alistipes (and potentially other genera) from 
inoculated to control hens cannot be ruled out. 

Curiously, the change in the relative abundance of Alistipes was the 
only significant alteration. Numerous studies have been published about 
the successful colonization of donor microbiota in recipients after FMT in 
humans (Hamilton et al., 2013; Broecker et al., 2016; Li et al., 2016; Lee et al., 
2017b; Moss et al., 2017) and other animals (Diao et al., 2016; De Palma et al., 
2017; Siegerstetter et al., 2018). In humans, FMTs can be administered orally 
(Youngster et al., 2014), but are often preceded by preparatory antibiotic 
treatment or bowel cleansing, which means that the gut microbiome at the 
time of FMT was disturbed (Manichanh et al., 2010; Dethlefsen and Relman, 
2011), making it difficult to disentangle effects of FMT vs. preparatory 
treatments (Schmidt et al., 2018). In animal studies, young (Volf et al., 2016; 
Hu et al., 2018; Siegerstetter et al., 2018) or germ-free animals (Diao et al., 2016; 
De Palma et al., 2017) are often used for FMT. Volf et al. (2016) showed that 
a single inoculation of newly hatched ISA Brown pullets with cecal contents 
from donor hens of different ages could establish long-lasting measurable 
shifts in the cecal microbiota composition. However, in all these studies, the 
animals and chickens did not have fully developed gut microbiota. As we 
attempted to find a proxy for contact between wild ducks and adult laying 
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hens with outdoor range, we did not want to use younger hens as recipients 
of the duck inoculum nor did we want to use a preparatory treatment. 

In a previous study, Videnska et al. (2014b) found that the cecal 
microbiome of laying hens underwent several successional changes in the 
process of aging. The age of the hens used in this study was 31 weeks, which 
is categorized as the fourth stage (28 to 52 weeks). At this stage, the gut 
microbiome has reached an adult microbial equilibrium (Videnska et al., 
2014b). A stable microbiome forms a complex ecosystem and is characterized 
by a capacity for self-regeneration after an external perturbation (Lozupone 
et al., 2012; Lahti et al., 2014; Sommer et al., 2017). The single oral inoculation 
of healthy adult laying hens in our experiment may therefore have been 
insufficient to result in a perturbation that could cause a detectable shift in 
the established gut microbiome of the hens. 

Previous studies have also described that colonization after FMT is 
more successful for genera which were already present in the recipient before 
FMT, and that rare genera are less likely to colonize (Li et al., 2016; Schmidt et 
al., 2018). This may explain why the genus Megamonas (phylum Firmicutes), 
which was found with a high relative abundance in the duck inoculum, was 
not detected in any of the hen samples, even though Megamonas has been 
reported to be present in the cecum and feces of laying hens (Videnska et al., 
2014a; Polansky et al., 2016b). Clearly, Megamonas can inhabit the chicken 
gut, but as it was also absent in the auto inoculum, the gut conditions in the 
chickens of this study may not have been favorable for Megamonas. 

We collected cloacal swabs from the chickens because our daily 
sampling scheme and longitudinal follow-up of the same individual 
laying hens required a rapid and accurate sampling methodology, without 
sacrificing the birds. The cloacal swabs were inserted deeply into the cloacal 
opening to enter the last part of the colon and to ensure the cloacal swabs 
contained enough fecal material for DNA extraction, we visually assessed 
the swabs prior to DNA extraction. It has been found that fecal microbiota 
of chickens were qualitatively similar to the cecal microbiota, but that they 
differed quantitatively (Stanley et al., 2015) and that the fecal microbiome 
is more variable than the cecal microbiome (Oakley and Kogut, 2016). 



36

CHAPTER 2

Collection of cecal droppings might have therefore been preferable over 
collection of cloacal swabs but was not feasible in our experimental design. 
However, we anticipated that major shifts would have also been picked up 
by sampling of the fecal microbiome, which has been demonstrated before 
(Oakley and Kogut, 2016; Jurburg et al., 2019).

Furthermore, it has been proposed that to accurately determine the 
fate of donor microbiota after FMT, it is necessary to track the microbiota 
at the resolution of strains rather than at the level of genera or species as is 
done with 16S rRNA gene amplicon sequencing (Li et al., 2016; Schmidt et 
al., 2018). For example, Li et al. (2016) demonstrated that single nucleotide 
variant analysis was able to detect donor strains colonizing the recipient 
after FMT, where 16S ribosomal RNA gene-based profiling was not sensitive 
enough to distinguish colonization of donor species from the temporal 
fluctuations of new species in the recipient. Therefore, it might be possible 
that certain strains of microbiota were transmitted with the inoculation, but 
not detected with our method of analysis. Also, we chose to analyze samples 
of 2 D after inoculation and not to analyze samples collected 1 D after 
inoculation. This was decided because we expected that samples collected 
1 D after inoculation would detect the inoculum after passing through 
the intestinal tract rather than shifts in the fecal microbiome composition. 
However, we cannot rule out that minor changes in the fecal microbiome 
due to inoculation had occurred before 2 D after inoculation. 

In conclusion, our findings show that a single oral inoculation of 
adult laying hens with duck feces in an experimental set-up results in limited 
effects at the genus level in the gut microbiome of the hens. We detected an 
increase of Alistipes across all treatments, but this may have been an effect 
of intrinsic temporal fluctuation or of the inoculation procedure itself and 
could not be attributed to the inoculation with duck feces. Further studies 
are needed to determine whether repeated exposure of adult chickens to 
duck feces, which are common in the field, may result in different outcomes, 
or whether other proxies can be identified that could serve as a measure for 
contact between ducks and laying hens.
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ABSTRACT

Background: Laying hens with access to outdoor ranges are exposed to 
additional environmental factors and microorganisms, including potential 
pathogens. Differences in composition of the cloacal microbial community 
between indoor- and outdoor-housed layers may serve as an indicator for 
exposure to the outdoor environment, including its pathogens, and may 
yield insights into factors affecting the chickens’ microbiota community 
dynamics. However, little is known about the influence of outdoor housing 
on microbiota community composition in commercial layer flocks. We 
performed a cross-sectional field study to evaluate differences in the cloacal 
microbiota of indoor- vs outdoor-layers across farms.
Eight layer flocks (four indoor, four outdoor) from five commercial poultry 
farms were sampled. Indoor and outdoor flocks with the same rearing flock 
of origin, age, and breed were selected. In each flock, cloacal swabs were 
taken from ten layers, and microbiota were analysed with 16S rRNA gene 
amplicon sequencing. 
Results: Housing type (indoor vs outdoor), rearing farm, farm and poultry 
house within the farm all significantly contributed to bacterial community 
composition. Poultry house explained most of the variation (20.9%), while 
housing type only explained 0.2% of the variation in community composition. 
Bacterial diversity was higher in indoor-layers than in outdoor-layers, 
and indoor-layers also had more variation in their bacterial community 
composition. No phyla or genera were found to be differentially abundant 
between indoor and outdoor poultry houses. One amplicon sequence variant 
was exclusively present in outdoor-layers across all outdoor poultry houses, 
and was identified as Dietzia maris.
Conclusions: This study shows that exposure to an outdoor environment 
is responsible for a relatively small proportion of the community variation 
in the microbiota of layers. The poultry house, farm, and rearing flock play 
a much greater role in determining the cloacal microbiota composition of 
adult laying hens. Overall, measuring differences in cloacal microbiota 
of layers as an indicator for the level of exposure to potential pathogens 
and biosecurity seems of limited practical use. To gain more insight into 
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environmental drivers of the gut microbiota, future research should aim at 
investigating community composition of commercial layer flocks over time.

Keywords: microbiota, 16S rRNA, poultry, laying hen, outdoor range
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INTRODUCTION

In recent years the demand for free-range poultry products has increased. 
Free-range housing for commercial laying chickens allows laying hens 
to access an outdoor range during the day, which is believed to benefit 
hens welfare (Green et al., 2000; Bestman and Wagenaar, 2003). Access to 
an outdoor range leaves layers exposed to more environmental factors, 
including weather and soil and environmental micro-organisms, including 
potential pathogens (Miao et al., 2005), one of which is the avian influenza 
virus (AIV) (Koch and Elbers, 2006). Layers with access to an outdoor range 
have an increased risk of low pathogenic AIV introduction (Bouwstra et al., 
2017) via oral ingestion of infected wild bird feces directly or indirectly via 
an environmental virus reservoir (Brown et al., 2007; Rohani et al., 2009). 
These environmental factors may also affect the gut microbiota of the layers, 
and altered cloacal bacterial communities may therefore indicate exposure 
to the outdoor environment, which may potentially serve as an indicator 
for the level of biosecurity and exposure to pathogens. Furthermore, 
understanding the interactions between the gut microbiota in layers and 
other environmental factors in a commercial setting may yield insights into 
important drivers of microbiota community composition in layers. This 
could contribute to better understanding of ways to modulate the microbiota 
in favour of chicken health and production. 

A review by Kers et al. (2018) on specific factors that affect the 
composition of the intestinal microbiota in poultry revealed that in addition 
to host-related factors like age and breed, environmental factors including 
housing, litter, feed and climate also affect the composition of intestinal 
microbiota. Other studies in poultry species have demonstrated that 
husbandry systems affect the microbiota composition of Pekin ducks (Best 
et al., 2017) and broilers (Ocejo et al., 2019). In layers, access to an outdoor 
range may result in altered gut microbiota due to exposure to environmental 
factors including soil, vegetation, natural lighting and rainfall (Hubert et 
al., 2019). Additionally, it has been shown that chickens housed in a free-
range environment have different microbial community compositions, and 
increased diversity compared to indoor-housed or caged chickens (Xu et al., 
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2016; Chen et al., 2018; Hubert et al., 2019). Xu et al. (2016) also reported 
increased relative abundance of Bacteroidetes in free-range chickens, and 
Hubert et al. (2019) reported a higher similarity among the microbiota of 
free-range chickens compared to caged chickens. 
 Although in previous studies differences in the microbiota of caged 
and free-range chickens have been described (Best et al., 2017; Hubert et al., 
2019; Ocejo et al., 2019), these effects were most likely confounded by the 
effects of caged compared to non-caged chickens, the breed of the chicken or 
the age, and did not truly measure the effect of the access to the range. The 
aim of our study was to determine if there are differences in the composition 
of the cloacal microbiota in indoor- and outdoor-housed chickens under 
field conditions. We selected indoor and outdoor flocks based on breed 
and rearing flock to minimize the effect of other factors than the outdoor 
range. Cloacal swabs of laying hens from eight commercial layer flocks (four 
indoor and four outdoor flocks), were analysed to characterize differences in 
the cloacal microbiota of adult layers with and without access to an outdoor 
range.

To our knowledge, this is the first report of a cross-sectional study 
comparing the cloacal microbiota of indoor-and outdoor-housed commercial 
laying hens. We hypothesized that diversity parameters (i.e., community 
richness and structure) in outdoor-layers will be higher compared to indoor-
layers, because of greater substrate diversity and exposure of the layers to 
more diverse microbiota in the outdoor environment. Furthermore, we 
anticipated distinct clustering of the community composition of outdoor-
layers compared to indoor-layers due to specific alteration in the community 
as a result of outdoor exposure.

RESULTS 

We amplified and sequenced the V3-V4 hypervariable region of the 16S 
rRNA gene. After quality control of all samples with qPCR, samples with low 
16S DNA concentration or bad melting curves were removed from further 
analysis (14 samples in total; 4 negative controls and 10 chicken samples). 
The final dataset contained 70 samples (7–10 samples per poultry house), 
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with 35 indoor-layer and 35 outdoor-layer samples (Table S2). Each sample 
was rarefied to 13,154 reads per sample, which was the number of reads 
in the lowest sample. The final dataset contained a total of 3037 amplicon 
sequence variants (ASVs).
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Figure 1: Comparison of observed species richness (a) and Pielou’s evenness (b) between 
indoor- (blue) and outdoor-layers (red). Each box contains samples from a single poultry 
house. Each dot represents an individual chicken. Wilcoxon-Rank-Sum test were performed 
between indoor- and outdoor-layers. A lower value for Pielou’s evenness indicates less 
evenness in the microbial community of a sample

Microbial community composition
We evaluated the overall composition of the microbial community in the 
cloacal samples of all layers. At the phylum level, we observed similarities 
between the microbiotas of indoor- and outdoor-layers (Figure S1), and no 
significant differences in the relative abundances of the ten most abundant 
phyla were found between indoor- and outdoor-layers. These ten phyla 
constituted 99.4% ± 1.3 (unless otherwise indicated, results are expressed 
as mean ± SD) of the community, across all samples. The microbiota in both 
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groups were dominated by Firmicutes (54.0% ± 17.3), Proteobacteria (15.2% ± 
10.2) and Fusobacteria (13.6% ± 17.3; Figure S1). At the genus level, members 
of the genera Romboutsia (22.8% ± 16.0) and Fusobacterium (13.5% ± 17.7) were 
most dominant in both indoor- and outdoor-layers (Figure S2). Escherichia/
Shigella were significantly more abundant in outdoor- than indoor-layers 
(Wilcoxon Rank-Sum test, p < 0.005).
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Figure 2: Principal coordinate analysis of Bray-Curtis dissimilarity between samples. Color 
indicates poultry farm and the ellipses the housing type encompassing the 95% CI range of 
each housing type. Each dot represents an individual sample. Housing type explained 5.6% 
(R2, adonis, p = 0.0025) of the variation. Poultry house explained 32.8% (R2, adonis, p = 0.0001) 
of the variation

Differences in community structure
To evaluate the microbial community composition of the layers, we first 
explored community diversity. Observed species richness (number of ASVs) 
was significantly higher (Wilcoxon Rank-Sum test, p = 0.016) in indoor-
layers (302 ± 182 ASVs) compared to outdoor-layers (213 ± 136 ASVs; Figure 
1). Pielou’s evenness was also higher in indoor-layers compared to outdoor-
layers (Wilcoxon Rank-Sum test, p = 0.013). To evaluate the differences 
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in community structure between indoor- and outdoor-layers, we used a 
principal coordinate analysis (PCoA) of Bray-Curtis dissimilarities. We found 
a modest, but significant clustering of microbial communities according 
to housing type (indoor vs outdoor), explaining 5.6% of the variance in 
community structure (R2; adonis, p = 0.0025; Figure 2). The poultry house 
where the layers were kept was a much stronger driver of community 
structure, explaining 32.8% of the variance (R2; adonis p < 0.001). When ASVs 
were clustered at the phylum level, no differences between the community 
composition of different housing types were found (data not shown).

Farm Housing Type

Rearing Farm

6.5% 0.2%

1.9%

4.9%

12.6%

Residuals = 74.8%

Figure 3: Venn diagram depicting distance-based variation partitioning using Bray-Curtis 
dissimilarity. The contribution of rearing farm of origin (green, 6.5%), the farm the poultry 
houses were located in (red), and housing type (indoor or outdoor, blue) to the microbiota 
composition of layers is shown

To better explain the effect of access to an outdoor range on the 
variation in microbial community composition, we performed a variation 
partitioning analysis using Bray-Curtis dissimilarity, with factors housing 
type (indoor vs outdoor), rearing farm and farm (Figure 3). Poultry house 
was excluded from the variation partitioning, as this factor explained most 
(20.9% R2 adj) of the observed variation and its influence could not be 
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disentangled from other factors due to collinearity with the other factors in 
our study. Housing type explained the smallest part of the variation (0.2% 
R2 adj; Figure 3), whereas the interaction of farm and rearing flock explained 
most of the variation (12.6% R2 adj). This was followed by farm (6.5% R2 adj), 
the interaction of housing type and farm (4.9% R2 adj), and rearing farm 
(1.6% R2 adj). To examine the variation in microbiota among chickens of 
the same poultry house, we calculated Bray-Curtis dissimilarities between 
layers of the same poultry house. Notably, the community composition 
in the indoor poultry houses was significantly more variable than in 
outdoor poultry houses (Wilcoxon Rank-Sum test, p = 0.03; Figure 4a). In 
addition, dissimilarities between outdoor-layers, excluding within house 
comparisons, were significantly lower than dissimilarities between indoor-
layers (Wilcoxon Rank-Sum test, p = 0.002; Figure S4). Overall, the cloacal 
microbial communities of chickens within a poultry house were more similar 
to each other than to those within a housing type (Wilcoxon Rank-Sum test, 
p < 0.001; Figure 4b).

Differential abundance of individual taxa
We found five genera which were differentially abundant between indoor- 
and outdoor-layers (Wilcoxon Rank-Sum test, p < 0.005): Porphyromonas, 
Escherichia/Shigella, Sutterella, Campylobacter and Faecalibacterium (Figure 
S5). Of these, Escherichia/Shigella (7.2% contribution to overall Bray-Curtis 
dissimilarity, p = 0.003) and Porphyromonas (1.3% contribution to overall 
Bray-Curtis dissimilarity, p = 0.001) contributed most to the dissimilarity 
between the housing types according to a SIMPER analysis. However, 
Porphyromonas was found in only one outdoor poultry house (OC3) and 
was absent in samples from all other poultry houses (Figure S5). Escherichia/
Shigella was found to have a higher relative abundance in the outdoor flocks, 
but this increase was specific to poultry houses OC2 and OC3 and not to 
outdoor flocks OC1 and OC4 (Figure S5). 

Faecalibacterium was more abundant in indoor-layers (1.16% ± 2.06) 
compared to outdoor-layers (0.7% ± 1.86), as well as Sutterella (indoor 
0.76% ± 1.25; outdoor 0.37% ± 1.09). Campylobacter was higher in outdoor-
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layers (indoor 0.41% ± 0.78; outdoor 1.10% ± 2.55). However, this pattern 
was specific to individual poultry houses, and none of the genera had a 
consistently higher or lower relative abundance across all poultry houses of 
one housing type (Figure S5).
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Figure 4: A. Pairwise Bray-Curtis dissimilarity between the cloacal microbiota of layers from 
each poultry house. Greater values indicate higher dissimilarity. ‘Total’ contains all possible 
pairwise comparisons, for reference. Community composition in the indoor poultry houses 
was more variable than in outdoor poultry houses (Wilcoxon-Rank-Sum test, p = 0.03). B. 
Bray-Curtis dissimilarities between the cloacal microbiota of layers within a poultry house 
(Within Poultry House) compared to dissimilarities between cloacal microbiota of layers 
within a housing type (indoor vs outdoor), excluding within poultry house comparisons 
(Within Housing Types). The cloacal microbial communities of layers within a poultry house 
(0.46 ± 0.18, mean ± SD) were more similar to each other than to those within a housing type 
(mean 0.55 ± 0.15, Wilcoxon-Rank-Sum test, p < 0.001)

In contrast, we identified a single ASV (Wilcoxon Rank-Sum test, p 
< 0.0001; Figure 5), which was present in 20 outdoor-layers (57%) across all 
outdoor poultry houses, with a mean relative abundance of 0.05% ± 0.07% 
in these 20 layers. This ASV was not present in any of the indoor-layers. A 
BLAST search (Basic Local Alingment Search Tool) of this ASV classified it 
as a Dietzia maris (99.74% identity to strain DSM 43672), which is associated 
with soil (Rainey et al., 1995). 
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Figure 5: Relative abundance (%) of Dietzia maris (ASV499). Dietzia maris was present in 57% 
of the outdoor-layers assessed, and was detected in all outdoor poultry houses. It was not 
present in any of the indoor-layer samples. Each dot represents an individual chicken. Colors 
intensity indicates which poultry house the chickens originated from. Wilcoxon-Rank-Sum 
test was performed between all indoor-layers and all outdoor-layers (p < 0.001)

DISCUSSION

The evaluation of differences between the cloacal microbiota of indoor- 
and outdoor-layers in commercial flocks may contribute to an increased 
understanding of interactions between gut microbiota, housing conditions, 
and other environmental factors, and help to determine whether the 
microbiota composition might be used as an indicator of the risk of potential 
pathogen exposure from the farms’ outdoor environments. Furthermore, 
understanding the dynamics in microbiota community composition of adult 
layers in a field setting is relevant, as it may contribute to the insights needed 
to develop ways to modulate the chickens’ microbiota in favour of health and 
increased production performance. Although we previously found limited 
change in the hens fecal microbiota after a single oral inoculation with wild 
duck feces (Schreuder et al., 2019), we hypothesized that continued exposure 
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of laying hens to an outdoor environment would be more likely to result in 
detectable alterations in the fecal microbiota of outdoor-layers. 

In this study we found that access to an outdoor range only explained 
a small proportion (0.2% R2 adj) of the total variation in the cloacal microbiota 
of layers. Instead, poultry house was found to be the most important driver 
of community composition (20.9% R2 adj). When poultry house was excluded 
from further analysis to more precisely estimate the effect of the outdoor 
range, the farm where the poultry houses were located (6.5% R2 adj), the 
rearing farm the chickens originated from (1.9% R2 adj), and the interaction 
between these two factors (12.6% R2 adj) explained most of the variation. 
The relatively high R2 for this interaction is to be expected, considering the 
overlap between the factors rearing farm and layer farm in our study design 
(Figure 6). We also found that the diversity and evenness in indoor-layers 
were slightly higher compared to outdoor-layers, suggesting the presence 
of more dominant species in outdoor-layers. This contrasts with previous 
studies, which found higher microbial diversity in outdoor-layers (Xu et al., 
2016; Chen et al., 2018; Hubert et al., 2019; Ocejo et al., 2019). Differences in 
diversity and community composition in previous studies has been related 
to greater substrate diversity and intake of fibrous feedstuff (Xu et al., 2016), 
as well as exposure of the chickens to more abundant microbiota in the 
outdoor environment (Hubert et al., 2019). Our findings may deviate from 
those of previous studies due to several reasons. 

In the first place, we selected indoor and outdoor poultry flocks of 
the same breed (Dekalb White) and based on the rearing farm of origin to 
minimize variation due to host genetics and rearing conditions. Also, the 
in-house environment of both indoor- and outdoor-layers was similar in our 
study. Chickens were housed in cage-free aviary systems, with the same 
stocking density, feed, minimum number of perches, similar litter etc. This 
is in contrast with previous research where a comparison was made between 
either free-range poultry with access to an outdoor range and caged layers 
(Xu et al., 2016; Chen et al., 2018; Hubert et al., 2019), between fast- and slow-
growing broilers (Ocejo et al., 2019), or in a semiexperimental set-up (Xu et 
al., 2016). Effects found in these previous studies are likely confounded by 
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the effects of caged vs. non-caged chickens or the breed of the chicken, and 
not truly measure the effect of the access to the range. Additionally, two 
studies were performed on either broiler chicks of 42 days of age (Ocejo et 
al., 2019) or indigenous Chinese Dagu chickens, a dual purpose breed which 
produces both meat and eggs, of only 12 to 18 weeks of age (Xu et al., 2016). 
The microbiota of adult layers develops over time to a stable equilibrium 
(Videnska et al., 2014b), which is less sensitive to external perturbations 
(Schreuder et al., 2019) and hence, may explain the unanticipated limited 
effect of the outdoor environment in our field study. The timing of access 
to the range may also be of importance. In the study by Xu et al. (2016), 
Dagu chickens had access to the outdoor range from the beginning of the 
experiment when the chickens were 6 weeks of age. In contrast, when access 
to the outdoor range occurred in the last 4 weeks of the cycle in broiler 
chicks, no change in the richness of the broiler intestinal microbiota was 
found (Gong et al., 2008). The hens in our study were only able to access 
the range from 19 to 20 weeks of age, after transport from the rearing farm, 
which means that their microbiotas were almost fully developed and had 
likely reached a stable equilibrium prior to given access to the range. It 
is known that a well-developed normal gut microbiota protects the host 
through creating gastrointestinal resistant environments, which prevent 
external (pathogenic) bacteria from colonizing the gut (Lawley and Walker, 
2013; Han et al., 2017). 

Moreover, it is likely that only a small proportion of the hens in the 
outdoor flocks of our study visited the outdoor range. Although limited 
information is available about actual range usage of layers, in the Netherlands 
it has been estimated that in large flocks (> 10.000 layers) only 3–15% of the 
hens use the outdoor range at a certain timepoint which is partly dependent 
on the degree of cover provided by trees or artificial structures in the range 
(Bestman and Wagenaar, 2003; van Niekerk and Leenstra, 2016b). This is 
supported by Hegelund et al. (2005) who found that in commercial layer 
flocks with access to a range, on average only 9% of the chickens used the 
range area. In contrast, Gebhardt-Henrich et al. (2014) reported that 47–90% 
of chickens in outdoor flocks were registered in the outdoor range at least 
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once over a period of approximately 3 weeks; the individual hens used the 
range differently, and many of them did not enter the free-range every day. 
Furthermore, chickens tended to only use the area immediately outside 
the hen house (Hegelund et al., 2005), which has also been observed in the 
Netherlands, resulting in trampled vegetation closer to the hen house and 
hence lower availability of fibrous feedstuff for the hens (Bestman, 2017). 
The outdoor ranges in the Netherlands in general consist of open fields with 
some tree coverage and bare soil close to the poultry house (van Niekerk 
and Leenstra, 2016b). Both the limited use of the outdoor range by the 
hens, together with the low availability of fibrous feedstuff in the range, 
may explain why we only found limited effects of the outdoor range on the 
microbial community composition of layers. 

We hypothesized that the microbiota of outdoor-layers would be 
more variable due to their exposure to the outdoor environment and the fact 
that not all layers use the outdoor range. However, we found more variability 
in microbiota of indoor-layers compared to the outdoor-layers. Previous 
research has shown that microbiota of free-range layers contained a greater 
variability of bacterial species compared to caged layers (Nordentoft et al., 
2011; Cui et al., 2017). The greater variability in the bacterial community 
composition of the chickens with only indoor housing in our study could 
be a result of the spatial distribution of the hens within the poultry house. 
In all flocks in this study, compartments were present in the indoor area of 
both the flocks with indoor housing and those with access to the outdoor 
range. This is according to Dutch regulations, that stipulate that poultry 
houses need to be divided into compartments which contain no more than 
6000 hens (Schouwenburg, 2019a). Although outdoor poultry houses also 
have these compartments, layers are able to move freely between these 
compartments because they have access to the range and can enter another 
compartment from the outdoor range. This means that the outdoor-layers are 
more evenly distributed across the poultry house, whereas strictly indoor-
layers stay in the same separate compartment within the poultry house all 
the time. Consequently, this increased level of compartmentalization in 
indoor-layers can cause a so called cage-effect, which has been reported in 
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several animal studies (Nordentoft et al., 2011; Laukens et al., 2016), and 
could explain the higher variation between layers from indoor houses. 
Unfortunately, we were not able to adequately measure this effect, because 
we did not take the compartmentalization into account when sampling the 
flocks. In future studies where different housing types are being compared 
with regard to microbiota composition, potential impact of differences in 
compartmentalization should be taken into account in the study design. 

In order to sample commercial flocks, we opted for cloacal swabs, 
which served as a rapid and accurate sampling methodology that did not 
entail sacrificing the birds. The fecal microbiota of chickens are qualitatively 
similar to the cecal microbiota (Stanley et al., 2015), but more variable (Oakley 
and Kogut, 2016). While our sampling technique may explain why we found 
a high degree of variation between individual chickens, it does not explain 
the differences in variability in the microbiota of layers of different housing 
types, as the same sampling technique was used across the study. We found 
one specific ASV, Dietzia maris, that was only found in outdoor-layers and 
is related to soil (Rainey et al., 1995). However, this was a lowly abundant 
taxon, and we did not detect differences between indoor- and outdoor-
layers when we looked at the all ASVs in the genus Dietzia jointly. Moreover, 
no other genera were found to be differentially abundant across all indoor 
and outdoor poultry houses. This suggests that although the chickens can 
pick up some specific taxa from the range, access to an outdoor range does 
not cause a distinct shift in the microbial community of layers. Therefore, 
we cannot use community-wide microbiota assessments as a measure for 
biosecurity or exposure to pathogens from the outdoor environment of a 
farm. 

This study furthermore emphasises the importance of the environ-
ment of the poultry house, and the likely influence of daily management 
on the fecal microbiota, which was also found in broilers (Kers et al., 2019) 
and several murine models (Parker et al., 2018). In the study by Kers et al. 
(2019), broiler chicks were raised in different housing environments, and 
were given two diets. These feed interventions alone explained 10% (R2) 
of the variation in microbiota composition between the broilers, whereas 
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housing condition alone explained 28% (R2). The effect of the poultry house 
environment explained a similar amount of variation in our study. Future 
research should aim at better understanding the interactions between the 
gut microbiota in layers and environmental factors at the level of the poultry 
house over time. This may shed light on important drivers of microbiota 
community composition in commercial layers and could contribute to better 
understanding of ways to modulate the microbiota in favour of chicken 
health and production. 

CONCLUSIONS

This cross-sectional field study shows that exposure to an outdoor 
environment is responsible for a relatively small proportion of the community 
variation in the microbiota of layers. We did not detect unique patterns 
in the community composition of outdoor-layers compared to indoor-
layers or detect specific microbiota that could be related to contact with an 
environment contaminated by wild birds. Overall, measuring differences 
in cloacal microbiota of layers as an indicator for the level of exposure to 
potential pathogens and biosecurity seems of limited practical use. To be 
able to gain more insight into environmental drivers of the gut microbiota 
that may be associated with pathogen exposure, and hence performance, 
future research should aim at investigating community composition of 
commercial layer flocks over time. 

MATERIALS AND METHODS

Study design and sample collection
Eight commercial flocks of laying hens (Dekalb White) were selected for 
cloacal sampling: four layer flocks with access to an outdoor range (outdoor 
flocks) and four flocks without access to an outdoor range (indoor flocks). To 
minimize potential variation in the microbiota composition due to rearing 
and other environmental factors, outdoor and indoor flocks were selected 
based on the rearing farm of origin as well as on age (Figure 6, Table S1). 
All flocks consisted of layers between 27 and 40 weeks of age, which are 
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assumed to have matured to a stable gut microbiota composition (Videnska 
et al., 2014b). Flocks from the same rearing farm, were of the same age, 
and were sampled within the same week. All flocks were sampled within 
the same month (October 2017) to avoid short term weather and seasonal 
effects. The sampled flocks were kept in separate poultry houses, which were 
located on five different poultry farms: two indoor and outdoor flocks were 
kept in poultry houses at the same farm, two indoor flocks were located in 
poultry houses at the same farm, and two outdoor flocks were housed at two 
separate farms (Figure 6). All flocks were healthy at the time of sampling, 
and had not been treated with antibiotics on the layer farm. Both indoor and 
outdoor-layer flocks were kept in a cage-free aviary system with a maximum 
stocking density of nine chickens per m2, with one flock per poultry house 
(Schouwenburg, 2019a). The laying hens of the outdoor flocks had access 
to an outdoor range during the day with at least 4 m2 per hen according 
to standards of the Dutch quality assurance scheme, i.e. the Integrated 
Chain Control program, ‘IKB Egg’ (Schouwenburg, 2019b). The chickens 
had access to the outdoor range for 8 h a day on average (van Niekerk and 
Leenstra, 2016b). Outdoor ranges were mostly open grass field with some 
trees, and bare soil directly around the poultry house and drainage systems 
to prevent formation of rain puddles (van Niekerk and Leenstra, 2016b). 
Outdoor ranges were all fenced off with chicken wire. 

In each flock, two cloacal dry swabs were collected from 50 laying 
hens. The poultry houses contained several subsections, and an equal 
number of birds was randomly selected from each subsection of each flock. 
Samples were placed on ice immediately after collection and stored at −80°C 
within 5 h after collection. 

DNA extraction and 16S rRNA gene amplicon sequencing
Per flock, one cloacal swab of a selection of ten chickens, was chosen 
for further analysis. Swabs of chickens were selected based on equal 
distribution across the farm and visual assessment of the swab to ensure that 
sufficient fecal material was present for DNA extraction. DNA extraction 
was performed according to the protocol in Schreuder et al. (2019). In each 
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DNA isolation round a negative control sample containing PBS was added 
to identify possible contamination from reagents. Following extraction, the 
DNA extracts were quantified with Invitrogen ™ Qubit™ 3.0 Fluorometer 
and stored at −20°C for further processing. The V3–V4 region of the 
16S rRNA gene was amplified in a PCR with the primers CVI_V3-forw 
CCTACGGGAGGCAGCAG and CVI_V4-rev GGACTACHVGGGTWTCT. 
The following amplification conditions were used as previously described 
(Schreuder et al., 2019): step 1: 98°C for 2 min, step 2: 98°C for 10 s, step 3: 55°C
for 30 s, and step 4: 72°C for 10 s, step 5: 72°C for 7 min. Steps 2 to 4 were 
repeated 25 times. Negative controls were included at each amplification 
round to confirm sterility of PCR reagents. PCR products were checked 
with gel electrophoresis, and PE300 sequencing was performed using a 
MiSeq sequencer (Illumina Inc., San Diego, CA). An additional 16S rRNA 
gene qPCR was performed on the DNA samples, to quantify the amount of 
16S rRNA gene DNA and identify samples of poor quality (Table S2). An 
additional two samples did not have good quality melting curves, and these 
samples were discarded from further analyses. The qPCR consisted of 40 
cycles with the same primers and protocol as for the PCR.

Housing
Type

Farm

Poultry
House

A B C A D E C

IC1 IC2 IC3 IC4 OC1 OC2 OC4

Indoor Outdoor

OC3

Figure 6: Overview of the study design. Four indoor-laying hen flocks (indoor cross-sectional 
= IC) and four outdoor flocks (outdoor cross-sectional = OC), each kept in an individual 
poultry house, were sampled. Chickens from all flocks were of the same breed. Indoor and 
outdoor flocks that had the same rearing flock of origin were selected, which is indicated with 
numbers 1, 2, 3 or 4, and colors at the poultry house level. Some poultry houses were situated 
at the same farm. Hens originating from rearing farm 1 and 4 were placed in the layer farm 
houses that were situated on the same farm, A and C (Table S1). Farm B housed two flocks 
(IC2 and IC3) that came from different rearing farms (2 and 3)
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Processing of sequencing data
All sequence processing was performed in R 3.5.1 (R Core Team, 2013). The 
sequence reads were filtered, primer-trimmed (35 nucleotides), dereplicated, 
chimera-checked, and merged using the dada2 package (Callahan et al., 2016) 
using standard parameters (TruncLength = 240,210, MinOverlap = 1 and 
maxEE = (2,2)). Reads were assigned with the SILVA v.132 classifier (Quast 
et al., 2012). Negative controls from the DNA extraction did not contain any 
sequences above detection level and were discarded (n = 4). Some of the 
samples (n = 10) contained very low 16S DNA concentration after the qPCR 
or gave poor quality melting curves, and were discarded after sequencing. 
The final dataset contained 70 samples. In the final dataset the number of 
samples per poultry house ranged between seven and ten samples, with 35 
indoor-layer and 35 outdoor-layer samples (Table S2). 

Statistical analyses
All downstream analyses were performed in R (version 3.5.1) with the 
phyloseq (McMurdie and Holmes, 2013) and vegan (Oksanen et al., 2007) 
R packages. We measured diversity as the number of observed ASVs in a 
sample, and evaluated species evenness within samples with Pielou’s index 
J (Pielou, 1966) at the species level. Bray-Curtis dissimilarity measure was 
used to evaluate differences in community structure between the layers 
on Hellinger transformed ASV abundances in phyloseq (Bray and Curtis, 
1957), and selected ASVs with a total sum value of greater than 1. Factors 
that were included in further analysis were housing type (indoor- and 
outdoor-layers), poultry house (stable in which flocks were housed), rearing 
flock (rearing flock where layers from a flock originated from), and farm 
(farm where poultry houses were based, i.e. some farms had multiple 
houses, Figure 6). Feed was not included in the analyses as this could not 
be disentangled from the effect of the poultry house. Differences between 
the microbiota composition of layers were examined for each factor using 
the adonis function on Bray-Curtis dissimilarity (Anderson, 2001). To 
further assess the contribution of each factor to the observed variation in 
the microbiota composition, we performed distance-based (Bray-Curtis) 
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redundancy analysis (Anderson, 2001). A model with housing type, and 
poultry house (Figure S3) was most parsimonious, explaining 31.8% of the 
variation. As poultry house explained most of the variation in the microbiota 
composition, we further disentangled the contribution of the factors farm, 
rearing farm, and housing type with distance-based variation partitioning, 
leaving poultry house as a factor out of the model (Borcard et al., 1992). 
To test how well samples from individual layers within one poultry house 
represented the microbiota of that house, we calculated community Bray-
Curtis dissimilarity between layers within each poultry house. Additionally, 
we calculated community Bray-Curtis dissimilarity between layers of the 
same housing type, excluding the comparisons between layers of the same 
poultry house, to evaluate how well samples from individual layers of one 
housing type represented the microbiota of that housing type. 

We used two approaches, Wilcoxon Rank-Sum tests and DESeq2 
(Love et al., 2014), to check for differences in relative abundances of the ten 
most abundant phyla, 0.5% most abundant genera and 0.01% most abundant 
ASVs. We present only the result of the Wilcoxon Rank-Sum test, as this 
non-parametric test is most suitable for high variability between samples, 
and only this approach identified taxa which were consistently higher in 
one condition. Taxa for which Wilcoxon Rank-Sum test resulted in p < 0.01 
were selected for further analyses. We used a SIMPER analysis to identify 
which of the genera contributed most to the beta diversity (Warton et al., 
2012). With Wilcoxon Rank-Sum test we identified if specific ASV were 
consistently increased or decreased in either of the two housing types. The 
figures from ggplot2 and ggpubr were further refined in Adobe Illustrator 
CC (version 21.0.2.).
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ABSTRACT

Associations between animal health and performance, and the host’s 
microbiota have been recently established. In poultry, changes in the 
intestinal microbiota have been linked to housing conditions and host 
development, but how the intestinal microbiota respond to environmental 
changes under farm conditions is less well understood. To gain insight 
into the microbial responses following a change in the host’s immediate 
environment, we monitored four indoor flocks of adult laying chickens 
three times over 16 weeks, during which two flocks were given access to an 
outdoor range, and two were kept indoors. To assess changes in the chickens’ 
microbiota over time, we collected cloacal swabs of 10 hens per flock and 
performed 16S rRNA gene amplicon sequencing. The poultry house (i.e., 
the stable in which flocks were housed) and sampling time explained 
9.2 and 4.4% of the variation in the microbial community composition of 
the flocks, respectively. Remarkably, access to an outdoor range had no 
detectable effect on microbial community composition, the variability of 
microbiota among chickens of the same flock, or microbiota richness, but 
the microbiota of outdoor flocks became more even over time. Fluctuations 
in the composition of the microbiota over time within each poultry house 
were mainly driven by turnover in rare, rather than dominant, taxa and 
were unique for each flock. We identified 16 amplicon sequence variants that 
were differentially abundant over time between indoor and outdoor housed 
chickens, however none were consistently higher or lower across all chickens 
of one housing type over time. Our study shows that cloacal microbiota 
community composition in adult layers is stable following a sudden change 
in environment, and that temporal fluctuations are unique to each flock. By 
exploring microbiota of adult poultry flocks within commercial settings, our 
study sheds light on how the chickens’ immediate environment affects the 
microbiota composition.

Keywords: poultry (chicken), cloacal microbiota, 16S rRNA gene amplicon 
sequencing, temporal dynamics, host microbiome, outdoor range
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INTRODUCTION

The digestive tract of chickens is colonized by complex microbial 
communities, which play important roles in their overall health and 
performance (Yegani and Korver, 2008; Ducatelle et al., 2015; Kogut, 2019). 
Changes in the chickens’ microbiota have been linked to many factors (Kers 
et al., 2018), including host related factors such as age (Cox et al., 2014; 
Videnska et al., 2014b; Jurburg et al., 2019; Ngunjiri et al., 2019) and breed 
(Schokker et al., 2015; Richards et al., 2019). Outside of the host, differences 
in climate, soil, litter, and feed affect the host’s exposure to other microbes, 
which may colonize the animal’s intestinal tract (Björk et al., 2019). Indeed, 
under controlled settings, housing conditions have been found to modulate 
the chickens’ microbiota (Hubert et al., 2019; Kers et al., 2019). How the gut 
microbiota responds over time to changes in the housing environment under 
standard farm conditions is less well understood, however. 

In commercial settings, layers may be restricted to indoor housing, 
or may have access to an outdoor range. Layers housed in free-range 
environments have different microbial community compositions and higher 
diversity than indoor housed layers (Xu et al., 2016; Chen et al., 2018; Hubert 
et al., 2019). However, in these studies the effect of access to a free range 
was compared between caged and free-range chickens in semi-experimental 
setups (Xu et al., 2016; Chen et al., 2018; Hubert et al., 2019). Furthermore, 
chickens were given access to the outdoor range during the rearing period 
(6–11 weeks of age, Xu et al., 2016; Chen et al., 2018). An increasing amount 
of commercial layer flocks are kept in aviary systems rather than in cages 
(Miao et al., 2005), in which the layers in free-range or organic systems are 
given access to an outdoor range after the rearing period (approximately 
17 weeks of age). Previous research showed that access to an outdoor 
range only explained limited variation in the community composition in a 
cross-sectional study (Schreuder et al., 2020). However, this study sampled 
animals only once after long-term acclimation and it was not possible to 
determine whether the microbiota had been affected by outdoor exposure 
and recovered to their original composition over time, i.e., resilient, or 
whether the microbiota were resistant to outdoor range exposure, i.e., 
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resistant (Sommer et al., 2017). These temporal dynamics and the immediate 
effects of exposure to a new environment remain poorly understood. 
 Microbial communities exhibit complex, non-linear temporal 
dynamics, especially during host development (Jurburg et al., 2019; 
Kers et al., 2020). Understanding how the hosts’ microbiota respond to 
environmental fluctuations requires temporal monitoring in order to detect 
changes in the microbial community over time, following exposure to new 
conditions. To date, a limited number of studies have explored the temporal 
dynamics in the gut microbiota of layers (Videnska et al., 2014b; Ballou et 
al., 2016; Han et al., 2016; Polansky et al., 2016a; Ngunjiri et al., 2019). Most 
studies focus on young layers (aged 0–8 weeks), and are performed under 
experimental conditions (Ballou et al., 2016; Polansky et al., 2016a; Han et 
al., 2017). However, adult chickens have fully developed microbiota, which 
are more stable than microbial communities of young layers (Videnska et 
al., 2014b; Ngunjiri et al., 2019). It has been proposed that as an animal ages, 
the host’s influence on microbial selection increases due to physiochemical 
maturation of the gut and the ability of the host to curate its microbiota 
(Björk et al., 2019), likely making the microbiota of adult layers less prone to 
external perturbations or changes (Schreuder et al., 2019). 

It is essential to understand how the gut microbiota of commercial 
animals respond to environmental changes to guarantee their health in 
the face of unforeseen events, such as disease outbreaks. To examine the 
extent to which sudden environmental changes affect the gut microbiota of 
adult layers in commercial setting, we monitored the cloacal microbiota of 
four flocks of laying hens over 4 months following the lifting of mandatory 
indoor confinement regulations, which was a unique opportunity to study 
the effects of the outdoor range access on the microbiota of commercial 
chickens over time. Over a 16 weeks period, we sampled 10 chickens per 
flock three times in 8 weeks intervals. We hypothesized that as layers 
accessed an outdoor range, they would be more exposed to alternative food 
sources and novel environmental microbes, and microbial richness would 
increase over time in outdoor chickens. If the colonization of novel microbes 
occurred stochastically (i.e., randomly), we also expected the microbiota 
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of outdoor flocks to become more variable between outdoor chickens than 
indoor chickens.

MATERIALS AND METHODS

Study design
Four commercial flocks of laying hens (Dekalb White) were selected for this 
study: two layer flocks with access to an outdoor range and two flocks without 
access to an outdoor range (Figure 1). To minimize potential variation in 
the microbiota composition due to rearing and other environmental factors, 
outdoor and indoor flocks were selected based on the rearing farm of origin, 
numbers 1 and 2, respectively (Figure 1). The sampled flocks were kept 
in separate poultry houses, which were located on three different poultry 
farms: indoor (IA1) and outdoor flock 1 (OA1) were located on the same 
farm, indoor (IB2), and outdoor flock 2 (OC2) were located on two different 
farms (Figure 1). Flocks IA1 and OA1 were 33 weeks old at the start of the 
sampling, and flocks IB2 and OC2 were 24 weeks old. All flocks were well-
producing and healthy based on regular veterinary inspections during the 
study, and had not been treated with antibiotics on the layer farm.

None of the layers from the indoor or outdoor flocks had access to the 
outdoor range prior to the start of this study due to the mandatory indoor 
confinement measures, which were instated because of HPAI outbreaks in 
the winter of 2016– 2017. All flocks were sampled three times in 2017: the first 
sampling took place 1–2 days after the lift of mandatory indoor confinement 
at the end of April 2017; and the second and third sampling rounds took 
place 8 and 16 weeks after the lifting date, respectively (Figure 1). During 
each sampling round, all flocks were sampled in the same week, to avoid 
short term weather effects. We did not sample flock IB2 on the third sampling 
round, because these chickens were in the process of forced molting at that 
time, in order to reduce fipronil contamination during the fipronil affair in 
the Netherlands (Sok et al., 2020). Molting was induced by feed deprivation, 
and feed deprivation has major impact on the gut microbiota composition 
(Dunkley et al., 2007), making the samples of the chickens of flock IB2 
unsuitable for our study at the time of the third sampling.
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Figure 1: Study design. Four flocks were sampled three times (0, 8, and 16 weeks after the 
study began) each. Two indoor flocks (IA and IB) and two outdoor flocks (OA and OC) were 
sampled. Flock IB2 was not sampled on week 16. Week 0 began 1–2 days after the lift of 
mandatory indoor housing ban of all layer flocks and none of the layer flocks had access to 
the outdoor range prior to that moment. Flocks IA1 and OA1 were located on the same farm 
(1), originated from the same rearing flock (A) and were of the same age (33 weeks at the start 
of sampling). Flocks IB2 and OC2 were located on two different farms (2 and 3), originated 
from the same rearing flock (B) and were of the same age (24 weeks at start of sampling). 
Cloacal swabs of 10 chickens per flock were collected at each sampling time. 

Both indoor and outdoor layer flocks were kept in cage-free aviary 
systems with a maximum stocking density of nine chickens per m2 with one 
flock per house (Schouwenburg, 2019a). The hens of each flock were placed 
in the poultry house on the layer farm around 17 weeks of age. Flock IB2 
had a different feed supplier than OA1, IA1, and OC2, but all flocks received 
a similar standard commercial feed for layers according to their age with a 
similar regime across farms, and no changes in the feed composition occurred 
during the period of the study. The laying hens in outdoor flocks had access 
to an outdoor range during the day with at least 4 m2 per hen according to 
standards of the Dutch quality assurance scheme, i.e., the Integrated Chain 
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Control program, “IKB Egg” (Schouwenburg, 2019b). The hens had access 
to the outdoor range for 8 h per day on average (van Niekerk and Leenstra, 
2016a). Outdoor ranges were mostly open grass field with some trees, and 
bare soil directly around the poultry house, with drainage systems to prevent 
formation of rain puddles (van Niekerk and Leenstra, 2016a).

DNA sampling, extraction, and 16S rRNA gene amplicon sequencing
At each sampling time, two cloacal dry swabs per chicken were collected 
from 50 laying hens per flock. The swabs were inserted deep into the cloaca 
to ensure we would collect enough fecal material. Wired panels, dividing 
the house in multiple subsections, were present in all houses, and an equal 
number of birds was randomly selected from each subsection within each 
flock. Samples were placed on ice immediately after collection and stored 
dry at -80°C within 5 h after collection.

Per flock and sampling time, swabs of 10 of the 50 sampled chickens 
were selected based on equal distribution across the poultry house. One 
swab of each chicken was used for analysis. Prior to analysis, each swab 
was visually assessed to ensure that sufficient fecal material was present 
for DNA extraction. DNA extraction and subsequent 16S rRNA gene 
amplicon sequencing were performed according to the protocol described 
in Schreuder et al. (2020). In each DNA isolation round, a negative control 
sample containing PBS was added to identify possible contamination from 
reagents, and DNA extracts were quantified with InvitrogenTM QubitTM 
3.0 Fluorometer and stored at 20°C for further processing. The V3–V4 region 
of the 16S rRNA gene was amplified in a PCR with the primers CVI_V3-forw 
CCTACGGGAGGCAGCAG and CVI_V4-rev GGACTACHVGGGTWTCT 
and amplified as previously described (Schreuder et al., 2019): step 1: 98 
°C for 2 min, step 2: 98°C for 10 s, step 3: 55°C for 30 s, and step 4: 72°C 
for 10 s, step 5: 72°C for 7 min. Steps 2–4 were repeated 25 times. Negative 
controls were included at each amplification round to confirm sterility of 
PCR reagents. PCR products were checked with gel electrophoresis, and 
PE300 sequencing was performed using a MiSeq sequencer (Illumina Inc., 
San Diego, CA). Negative controls from the DNA extraction did not contain 
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any sequences and were discarded (n = 6). An additional 16S rRNA gene 
qPCR was performed on theDNA samples to quantify the amount of 16S 
rRNA gene DNA and identify samples of poor quality (Supplementary 
Table S1). The qPCR consisted of 40 runs with the same primers and protocol 
as for the 16S barcoding PCR. Samples which contained very low 16S rRNA 
gene DNA concentrations or low quality melting curves were excluded from 
the analysis (n = 10). The final dataset contained 100 samples. The number of 
samples per house for each sampling time ranged between 7 and 10 samples 
at each timepoint (Supplementary Table S1).

Processing of sequencing data
All sequence data processing was performed in R 3.6.3 (R Core Team, 2013). 
The sequence reads were quality-filtered, primer-trimmed (35 nucleotides), 
error-corrected, dereplicated, merged into pseudoreads and chimera-filtered 
using the dada2 package (Callahan et al., 2016) using standard parameters 
[TruncLength = (240, 210), MinOverlap = 10 and maxEE = (2,2)], and reads 
were assigned with the SILVA v.132 classifier (Quast et al., 2012). The final 
dataset contained 100 samples, which were rarefied to 8,170 reads per 
sample (rarefy_even_depth, seed = 1) and a total of 2,839 amplicon sequence 
variants (ASVs) distributed over 347 genera.

Statistical analyses
All downstream analyses were performed in R (version 3.6.3) with the 
phyloseq (McMurdie and Holmes, 2013) and vegan (Oksanen et al., 2007) 
packages. We measured diversity as the number of observed ASVs in the 
rarefied samples and taxon evenness with Pielou’s index (Pielou, 1966). 
A linear mixed effects model was fitted to both diversity measures, with 
poultry house as a random effect and sampling time and housing type as 
fixed effects using the lme4 package (Bates et al., 2015). Bray and Curtis 
(1957) and Sørensen (1948) dissimilarities were used to evaluate differences 
in community structure between the layers on Hellinger-transformed 
abundances. Community composition was visualized with principal 
coordinates analyses (PCoA) of Bray-Curtis and Sørensen dissimilarities. 
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Differences between the microbiota composition of layers were examined for 
each factor using the adonis function. Variance in community composition 
within a flock was evaluated as the Bray–Curtis and Sørensen pairwise 
distances between flock members. To assess the contribution of each factor 
to the observed variation in the microbiota composition, we performed a 
distance-based variation partitioning (Borcard et al., 1992) and distance-based 
redundancy analysis (dbRDA) using Bray–Curtis dissimilarities (Anderson, 
2001). We included housing type (indoor and outdoor layers, HousingType), 
poultry house (stable in which flocks were housed) and sampling time 
(SamplingTime) as explanatory variables. Feed, age, farm, and rearing farm 
were nested within poultry house (Figure 1 and Supplementary Table S1), 
and thus were not included. Model selection for dbRDA was performed 
with forward selection based on Akaike’s Information Criterion (AIC), with 
the lowest AIC indicating the best fit (Blanchet et al., 2008). 

To visualize the number of taxa that were shared between poultry 
houses across sampling times, we used Venn-diagrams on rarefied data. In 
the Venn-diagrams, taxa were considered as rare when the relative abundance 
was < 0.01% across all samples. We used Wilcoxon rank-sum tests to check 
for differences in relative abundances of the 10 most abundant phyla and 
of genera with a relative abundance of at least 0.5% over time within each 
housing type. Unless otherwise indicated, results are expressed as mean ± 
SD throughout the manuscript. We used DESeq2 analysis (Love et al., 2014) 
on non-rarefied data to detect ASVs that were differentially abundant over 
time between indoor and outdoor housed chickens. 

Figures made with ggplot2 and ggpubr packages.

RESULTS

Microbial community composition
We evaluated the composition of the microbial community in the cloacal 
samples of all layers. At the phylum level, we observed similarities between 
the microbiotas of indoor and outdoor layers (Supplementary Figure S1), 
and no significant differences in the relative abundances of the 10 most 
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abundant phyla were found. These 10 phyla constituted 99.8% of the 
community, across all samples. On average across all samples, the microbial 
communities were dominated by Firmicutes (63.7 ± 17.3%), Proteobacteria 
(13.4 ± 14.3%), and Fusobacteria (9.0 ± 15.4%; Supplementary Figure S1). At 
genus level, members of the genera Romboutsia (31.4 ± 22.3%), Gallibacterium 
(9.5 ± 12.1%), and Fusobacterium (8.9 ± 15.2%) were most abundant across all 
samples (Supplementary Figure S2).
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Figure 2: Temporal trends in observed species richness (A) and Pielou’s evenness (B) per 
poultry house at each sampling time. Pairwise Bray–Curtis (C) and Sørensen (D) dissimilarities 
between the cloacal microbiota of layers from poultry house at each sampling time. In C and 
D, greater values indicate higher dissimilarity. Means ± confidence interval are shown. Time 
is shown as weeks since first sampling.

We did not find temporal patterns in species richness in both indoor 
and outdoor housed chickens (Figure 2A). A modest, but significant increase 
in evenness was detected in chickens from outdoor houses over time (from 
0.59 ± 0.12 at 0 weeks to 0.70 ± 0.13 at 16 weeks; p < 0.001; Figure 2B). 

To analyze changes in community composition over time, we 
evaluated Bray–Curtis and Sørensen dissimilarities between chickens of 
each flock at each sampling time (Figures 2C,D). Although microbiota of 
chickens in outdoor flocks were more variable than those of indoor flocks 
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on average, this was not significant, and the variation did not significantly 
increase over time (Figures 2C,D). Across all samples, variation between 
chickens from each poultry house had increased at 16 weeks compared to 
the first sampling (p < 0.001). 

For both dissimilarity measures, microbial communities clustered 
according to poultry house (Figure 3), which explained most of the variance 
in the community (Bray–Curtis R2 = 14.5%, adonis, p < 0.001; Sørensen R2 = 
14.5%, adonis, p < 0.001; Table 1). Sampling time (Bray–Curtis R2 = 2.97%, 
adonis, p = 0.013, Sørensen R2 = 3.75%, adonis, p < 0.001) and housing type 
(Bray–Curtis R2 = 2.91%, adonis, p = 0.001; Sørensen R2 = 3.41%, adonis, p < 
0.001) explained limited variation, but were significant for both dissimilarity 
measures (Table 1).

Table 1: Overview of explained variation in community composition by individual factor as 
tested with a PERMANOVA-like adonis.

Factor Dissimilarity 
measure

R2 (adonis) F.Model p FDis

Time BC 2.97 2.98 0.0013 0.01
Sørensen 3.75 3.82 <0.001 0.11

Housing type BC 2.91 2.94 0.001 0.78
Sørensen 3.41 3.46 <0.001 0.19

Poultry House BC 14.49 5.42 <0.001 0.68
Sørensen 14.48 5.42 <0.001 0.26

Farm BC 11.81 6.50 <0.001 0.65
Sørensen 11.81 6.50 <0.001 0.48

Rearing farm BC 8.42 9.01 <0.001 0.46
Sørensen 7.43 7.87 <0.001 0.14

 
Both Bray–Curtis and Sørensen dissimilarity were used. R2 = Percentage of the variation between 
chickens explained. Significance was tested with 9,999 permutations.

To further disentangle the effects of poultry house, sampling time 
and housing type, we performed a distance-based variance partitioning 
using Bray–Curtis dissimilarities (Figure 4). Poultry house explained most 
of the variation in community composition (9.2% R2 adj) and sampling time 
explained 4.4% of the variation (R2 adj). In contrast, housing type alone 
did not explain any variation. This was further supported by a dbRDA 
(Supplementary Figure S2). Model selection supported a model with both 
poultry house and sampling time (AIC = 301.38) compared to a full model, 
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with housing type and the interaction between housing type and sampling 
time (AIC = 304.64). Poultry house (p = 0.005) and sampling time (p = 0.005) 
were both significant in this most parsimonious model (Supplementary 
Figure S2). 

Differential abundance of individual taxa over time
We identified ASVs that were shared by the different poultry houses over 
time (Figure 4). ASVs that were shared between all poultry houses had 
a lower percentage of rare taxa (40.1%) than ASVs that were unique to a 
poultry house (between 94.1 and 98.0%, Figure 4). Each poultry house had a 
similar number of shared taxa between all sampling times (between 257 and 
322 ASVs, with 9.3–14.9% rare ASVs), whereas the amount of unique taxa 
to a sampling time varied between 103 and 437 ASVs, but the percentage 
of rare ASVs was similar at each sampling time ranging between 66.3 and 
93.8% (Figures 5A–C). Most rare ASVs belonged to the phyla Firmicutes 
(54.6%) and Bacteroidetes (25.9%, Figure 5D). 

DESeq2 analysis was performed to determine if specific ASVs 
were differentially abundant over time between indoor and outdoor 
housed chickens. We compared a full model with factors: HousingType 
+ SamplingTime + HousingType:SamplingTime to a reduced model 
with factors HousingType + SamplingTime, and identified 16 ASVs with 
differential responses (Supplementary Figure S4). These 16 ASVs belonged 
to nine genera in two phyla, Firmicutes and Actinobacteria. Most ASVs (n = 8) 
belonged to the genus Lactobacillus (Figure 6). The 16 ASVs had an average 
relative abundance of 0.60 ± 0.65% across all samples, but none of the ASVs 
showed a consistent increase or decrease in all chickens of one housing type 
over time (Figure 5 and Supplementary Table S2). The genus Lactobacillus 
also fluctuated significantly over time in outdoor housed chickens (p < 
0.001, Kruskal–Wallis test), but not in samples from indoor housed chickens 
(p > 0.001, Kruskal–Wallis test). Furthermore, genera Akkermansia and 
Aeriscardovia (p < 0.001, Kruskal–Wallis test both) fluctuated significantly over 
time in outdoor chickens, but not in indoor housed chickens (Supplementary 
Table S3).
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circle. The model explains 14.8% of variation in community composition overall.
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DISCUSSION

Many factors in the immediate environment of the chicken can influence 
the microbiota community composition (Kers et al., 2018). In this temporal 
study in commercial laying hens, we found that of the variables measured, 
poultry house explained most variation in community composition in the 
flocks’ microbiota (9.2%), whereas access to an outdoor range (housing type) 
did not explain any of variation in the microbial community. Some temporal 
effects were found, but the proportion of variation explained by time of 
sampling (4.4%) was comparatively smaller than that of poultry house. 
At the level of community diversity, flocks which were allowed into the 
outdoor range did not become more variable or more species-rich over time, 
and the chickens’ microbiota showed a modest but significant increase in 
evenness over time in outdoor flocks, but not in indoor flocks. The latter was 
not accompanied by changes in species richness over time, which indicates 
that the increase in evenness over time in outdoor layers did not result from 
the colonization of more species in the chickens’ microbiota, but rather from 
a shift in abundances. Abundances of several ASVs were found to fluctuate 
differently between indoor and outdoor layers over time. However, none 
of the ASVs showed a consistent increase or decrease in all chickens of one 
housing type over time. Previous research found a slightly higher variation 
in community composition in indoor flocks relative to outdoor flocks, but 
also found large differences in variation between poultry houses from 
the same housing type (Schreuder et al., 2020). In this study, the poultry 
house also was the most important driver of community composition, and 
outdoor range access only had a modest effect on the microbiota community 
of chickens across eight separate flocks (Schreuder et al., 2020). The results 
of the current study further highlight that the environment of the poultry 
house is an important driver for community composition, even over time.
 We found that differences in microbial communities over time 
between layers within each flock were most likely driven by the replacement 
of rare taxa between sampling times within a poultry house. Indeed, most of 
the taxa, between 66.3 and 93.8%, at each sampling time were rare, and 94.1–
97.8% of taxa that were unique to a poultry house, were also rare. Moreover, 
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p < 0.01%). Samples are ordered by poultry house for each sampling time and divided by 
housing type (indoor vs. outdoor). Each box represents the relative abundance of an ASV in 
an individual chicken. 0 values are shown as gray boxes.

no difference in explained variation was found when communities were 
weighted by their relative abundances (Bray-Curtis dissimilarity) compared 
to using presence/absence data (Sørensen dissimilarity), indicating that taxon 
abundance was likely less relevant in differentiating these communities. 
Costa et al., (2017) also found that treatment with different antimicrobials 
resulted in changes in community membership of cecal microbiota of 
broilers, but not in community structure, suggesting that the antimicrobials 
had a greater impact on rare taxa, rather than on dominant ones. These 
findings indicate that temporal fluctuations are unique to each flock within 
each poultry house and support the need to learn more about the functional 
role of rare bacteria, and the need for techniques which focus on analyses of 
active bacteria (i.e., metatranscriptomics).

The strong influence of poultry house on the microbiota suggests 
that the living environment of the chicken is important in shaping the hens’ 
microbiota, however we found no effect of moving outdoors. One explanation 
for this phenomenon and the relatively small effect of sampling time on the 
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community composition compared to previous research (Jurburg et al., 2019; 
Kers et al., 2019), is the developmental stage of the chickens studied. Layers 
of flocks in this study were adult chickens of either 24 or 33 weeks old at the 
first time of sampling. To date, most temporal studies in chickens looked at 
the temporal dynamics of young chickens and thus at changes in the primary 
environment of the host as a result of the host’s development (Cox et al., 
2014; Oakley and Kogut, 2016; Jurburg et al., 2019; Kers et al., 2019; Richards 
et al., 2019). Here, we studied the effect of temporal changes in a secondary 
environment in adult layers (i.e., indoor or outdoor range), where the effect 
of the outdoor range was likely dampened by the adults’ host homeostatic 
responses. As an animal host ages, its influence on microbial selection in the 
development of the intestinal microbiota increases (Björk et al., 2019). Indeed, 
layers above the age of 25 weeks (Ngunjiri et al., 2019) or 28 weeks (Videnska 
et al., 2014b) reach an adult microbial equilibrium (Videnska et al., 2014b). 
It is likely that in our case the chicken microbiota was more plastic at an 
earlier stage, as we still see a strong effect of the rearing farm on the chickens 
microbiota in this study (Table 1). In the Dutch table egg production system, 
groups of laying hens reared together in one rearing farm are transported 
to the poultry houses of the final layer farm at the age of 17–18 weeks. By 
the time the layers were allowed outside in our study, the layers’ intestinal 
microbiota had likely already reached a stable equilibrium, which is less 
prone to perturbations (Schreuder et al., 2019). A well-developed intestinal 
microbiota community protects the host by creating gastrointestinal resistant 
environments, which help prevent external microbiota from colonizing, i.e., 
resistant (Lawley and Walker, 2013; Han et al., 2017), and is characterized by 
a capacity for self-regeneration after an external perturbation, i.e., resilience 
(Lozupone et al., 2012; Sommer et al., 2017). In previous research, it was not 
possible to determine whether the microbiota of adult layers were resistant 
or resilient after exposure to an outdoor range, because the temporal changes 
weren’t taken into account. The current study indicates that the microbiota 
of these adults layers was likely resistant rather than resilient.

Alternatively, the limited effect of the outdoor range on the chickens’ 
microbiota may occur if the chickens only made limited use of the outdoor 
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range, despite having access. The effects of access to an outdoor range in 
previous studies (Xu et al., 2016; Chen et al., 2018; Hubert et al., 2019; Ocejo 
et al., 2019) have been related to greater substrate diversity and intake of 
fibrous feedstuff (Xu et al., 2016), as well as exposure to more abundant 
microbiota from the outdoor environment (Hubert et al., 2019). However, 
likely only a small proportion of the hens in the outdoor flocks of our 
study used the outdoor range extensively. Previous research estimated that 
only 3–15% of layers in large commercial flocks (> 10,000 layers) used the 
outdoor range (Bestman and Wagenaar, 2003; Hegelund et al., 2005), with 
individual hens using the range differently, of which many did not enter the 
free-range every day (Gebhardt-Henrich et al., 2014). Nevertheless, chickens 
that do not go outdoors themselves could indirectly become affected by 
the altered microbiota of their flock mates that do go outside, as these also 
defecate indoors. Humans and animals that are housed together are known 
to exchange microbiota (Song et al., 2013; Schloss et al., 2014), and this 
effect may be enhanced for coprophagic animals, including chickens (Kers 
et al., 2018; von Waldburg-Zeil et al., 2019). However, with a rather stable 
microbiota community, the small changes in the chickens that go outdoors 
are also less likely to affect the stable microbiota community of the chickens 
remaining indoors. Furthermore, other studies have shown that chickens 
tend to use the area immediately outside the poultry house most (Hegelund 
et al., 2005; Bestman, 2017), resulting in trampled vegetation and hence, 
lower availability of fibrous feedstuff. Both the limited use of the outdoor 
range by the hens, and the low availability of fibrous feedstuff in the most 
frequently used part of the range, together with the age of the animals, 
may explain why we found no effect of access to an outdoor range on the 
microbial community of these adult layers. 

In order to sample commercial layer flocks, we collected cloacal 
swabs because the longitudinal follow-up required a rapid and minimally 
invasive sampling methodology, without sacrificing the birds. To ensure 
the cloacal swabs contained enough fecal material, the cloacal swabs were 
inserted deeply into the cloacal opening to enter the last part of the colon 
and the swabs were visually assessed prior to DNA extraction. Although 
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research has shown that cloacal and fecal microbiota of chickens might not 
be an accurate representative of the cecal composition and are more variable 
(Williams and Athrey, 2020), it has also been shown that fecal samples are 
qualitatively similar to the cecal microbiota (Stanley et al., 2015) and non-
shared taxa between cloacal and cecal samples accounted for a very low 
percentage of the diversity: 0.49% in one case (Andreani et al., 2020) and 
0.75% in another (Stanley et al., 2015). Furthermore, it has been reported that 
cloacal swabs are similar to fecal samples (Videvall et al., 2018), and shifts in 
microbiota composition have been detected successfully using fecal samples 
(Oakley and Kogut, 2016; Jurburg et al., 2019). Therefore, we anticipated 
that major shifts in community composition would have been detected by 
our way of sampling. Nevertheless, future studies should carefully consider 
the trade-off between applicability of a sampling technique in commercial 
practice vs. the quality of the taken sample.

CONCLUSION

In conclusion, our study gives insight into the temporal dynamics of the 
cloacal microbiota of adult layer flocks exposed to environmental change. 
We find that cloacal community composition in adult layers is rather stable, 
even after a sudden environmental change, illustrating the layers’ ability to 
maintain their own microbiota. Furthermore, we show the strong influence 
of poultry house on the microbiota composition of these layers, and that 
temporal dynamics are unique to each poultry house. Our study thus sheds 
light into the drivers of the poultry microbiota, and the stability of the adult 
chicken microbiota to environmental change, however our understanding of 
the temporal dynamics of adult animal microbiota remains limited. Future 
research should consider the influence of a host’s immediate environment 
(i.e., poultry house) and the animals’ previous exposure to environmental 
change (i.e., rearing farm). Furthermore, the stability of adult poultry 
microbiota should be tested in both healthy and diseased flocks, with shorter 
sampling intervals and larger sample sizes across multiple commercial 
flocks.
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ABSTRACT

Introduction: Introduction of highly pathogenic avian influenza viruses 
(HPAIVs) from infected wild birds in poultry farms occurs on a large global 
scale, especially in the migratory season. To map HPAI outbreak risk in 
relation to spatial differences in wild bird densities and land cover variables, 
a retrospective case control study, using locations of 16 HPAI outbreaks (i.e. 
cases) on poultry farms and 10 control farms per case was performed. 
Methods: HPAI risk was modelled in relation to bird density and land cover 
variables in the Netherlands. A random forest model was used in a leave-
one-group-out cross validation approach to predict outbreak risk based on 
densities of 54 wild bird species and five land cover categories analyzed at 
different spatial scales. 
Results: Spatial differences in the densities of 17 waterbird species, of which 
11 of the family Anatidae, and two raptor species, were most important for 
predicting HPAI outbreaks. Land cover variables had no added value and 
were excluded from the model. The model had an average precision of 88%, 
and was used to construct a HPAI outbreak risk map for the Netherlands. 
Discussion: Despite the limited number of cases, HPAI risk areas were 
accurately predicted. A similar modelling approach can be used elsewhere, 
to generate region-specific predictions, which may include land cover data 
in addition to bird data, depending on the local situation. Risk maps can 
help in prioritization of areas for surveillance and biosecurity measures, and 
support decisions on establishments of new poultry farms to reduce HPAI 
outbreak risks. 

Keywords: avian influenza, influenza A virus, poultry, disease outbreaks, 
wild birds, spatial modelling, random forest
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INTRODUCTION

Highly pathogenic avian influenza A viruses (HPAIVs) of clade 2.3.4.4 have 
spread globally causing massive outbreaks in commercial poultry farms 
(Verhagen et al., 2015b; Adlhoch et al., 2020), especially from 2014 onwards. 
The migratory movements of wild birds were shown to play an important 
role for the global spread of HPAI H5N8 in 2014, as spatial and temporal 
patterns of outbreaks coincided with migratory flyways and the timing of 
autumn migration (Verhagen et al., 2015b; Lycett et al., 2016). H5N8 (2014 
and 2016) and H5N6 (2017) have caused outbreaks in Europe on commercial 
poultry farms, as well as massive mortality in wild birds (Bouwstra et al., 
2015a; Verhagen et al., 2015a; Beerens et al., 2017; Kleyheeg et al., 2017). 
Currently, HPAI outbreaks have been reported in 18 EU countries since 
the autumn of 2020 of which most are of subtype H5N8. Until 8 February 
2021, 1527 HPAI outbreaks were reported, of which most cases in wild birds 
(n = 948), primarily in waterbirds such as barnacle goose (Branta leucopsis), 
greylag goose (Anser anser) and Eurasian wigeon (Mareca penelope), and 
numerous poultry (n = 548) (Adlhoch et al., 2020; ADNS, 2021). 

HPAI outbreaks on poultry farms are spatially associated with the 
proximity of waterbodies or the presence of wild birds (Belkhiria et al., 2018; 
Napp et al., 2018; Velkers et al., 2020). For example, Velkers et al. (2020) 
showed that the density of HPAI high-risk bird species around infected 
poultry farms in wetlands was significantly higher than around non-infected 
farms in non-water-rich areas. This was especially true for the Eurasian 
wigeon, which was one of the species with massive mortality due to HPAI 
in 2016-2017 (Kleyheeg et al., 2017). Also, dead wild birds found at sites in 
the vicinity of HPAIV infected poultry farms had phylogenetically related 
viruses, suggesting that HPAIV on these farms originated from infected wild 
birds (Beerens et al., 2017). HPAIV introduction into poultry houses most 
likely results from indirect contact with wild birds, and it is hypothesized 
that the virus enters the poultry house via vectors or fomites contaminated 
with wild bird feces (Beerens et al., 2019; Elbers and Gonzales, 2020). This 
suggests that wild bird presence and abundance can be used as predictor in 
identifying HPAI high risk areas.
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The recurrent outbreaks of HPAI underline the need for better 
prediction of HPAI risk areas to reduce outbreak risk and take appropriate 
measures. Previously, disease distribution models showed that land cover, 
particularly the presence of wetlands, were highly predictive for the HPAI 
risk in California (Belkhiria et al., 2018), and land cover and environmental 
variables were used to successfully predict HPAI outbreak risk (Si et al., 2013). 
However, landscape variables are merely a proxy for presence of wild birds, 
and we therefore hypothesize that wild bird densities can more accurately 
predict HPAI outbreak risk compared to landscape variables only. The aim 
of this study was to model HPAI outbreak risk across the Netherlands in 
relation to wild bird density data and landcover features in the Netherlands, 
to generate a HPAI risk map, and identify wild bird species and land cover 
variables that are associated with HPAI outbreak risk on poultry farms.

MATERIALS AND METHODS

Study design
Case farms
A case control study was performed retrospectively, using all 16 diagnosed 
HPAIV H5N8 and H5N6 infections on poultry farms in the Netherlands 
between the autumn-winter periods of 2014/2015, 2016/2017 and 2017/2018. 
Six outbreaks were on layer farms, seven in Pekin duck farms, and three 
on broiler breeder farms. Some farms were affected repeatedly in different 
years (Table 1). The multiple outbreaks on these farms were all primary 
introductions and occurred in different years (Table 1).

Control farms
We randomly selected 10 unique uninfected poultry farms from the 
Netherlands Food and Consumer Product Safety Authority (NVWA) 
database for each HPAI case farm in every year. Control farms were selected 
based on similar poultry type to the infected case farm (i.e. broiler breeder, 
layer, or Pekin duck farm), registration as an active poultry farm in the same 
year as the outbreak year in the case farm, and located within a 100 km 



87

Wild bird densities predict spatial HPAI outbreak risk across the Netherlands using data from 2014-2018

5

radius of the case farm. Farms that had been a case in any of the years were 
excluded for control selection and controls could only be selected for one 
case farm. We were unable to select ten controls for cases on Pekin duck 
farms due to the high number of affected Pekin duck farms relative to their 
overall abundance in the Netherlands. For these cases, we selected four to 
eight controls per case. In total, we included 132 control farms consisting of 
60 layer, 30 broiler breeder and 42 Pekin duck farms (Table S1). 

Table 1: Overview of highly pathogenic avian influenza (HPAI) cases in the Netherlands on 
individual farms (ID 1 to 12) with confirmed HPAIV infection between 2014-2018. Poultry 
type indicates the type of farm that was affected. For each year the month when the HPAIV 
infection was diagnosed on a poultry farm, is shown. For poultry farms 1 and 6, two HPAI 
outbreaks were diagnosed between 2014-2018, and on one poultry farm (CaseID 4), three 
outbreaks were diagnosed between 2014-2018.

Case-ID Poultry Type 2014-H5N8 2016-H5N8 2017-H5N6 2018-H5N6
1 Layer 11 12
2 Layer 11
3 Layer 11
4 Pekin Duck 11 12 3
5 Broiler Breeder 11
6 Pekin Duck 12 12
7 Pekin Duck 11
8 Pekin Duck 11
9 Layer 12
10 Layer 12
11 Broiler Breeder 12
12 Broiler Breeder 2

Selection of wild bird density data
We reviewed literature of wild bird associations with HPAIV infection 
from the Netherlands, but also from other countries (Bouwstra et al., 2015b; 
Verhagen et al., 2015b; Animal and Plant Health Agency (UK) et al., 2017; 
Kleyheeg et al., 2017; Beerens et al., 2018; Poen et al., 2018), to compile a 
list with species that had a known association with HPAIV infection (Table 
S2). Bird species taxonomically close to species that had been associated 
with HPAIV infection were also included. Bird species that were rare 
(<500 individuals in the winter counts across the Netherlands), had a small 
geographical range (e.g. only present in the Wadden Sea) or only present in 
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summer months, were excluded to prevent spurious negative associations.

Bird count data
Dutch bird count data collected by Sovon, the Dutch Center for Field 
Ornithology Nijmegen, the Netherlands), and published in the bird atlas 
(Sovon, 2018), were used for the analyses. The bird atlas was compiled 
through, among other things, structured bird counts across the whole of 
the Netherlands by (largely voluntary) observers in three winter seasons 
from December – February 2012/2013 – 2014/2015. We only used winter 
bird density data, as HPAI outbreaks only occurred between November and 
March. In short, for organizing the field work and processing the data the 
whole of the Netherlands was divided in 5x5 km squares. Each square was 
assigned to an observer who performed bird counts in pre-defined months. 
Sovon used the obtained data to construct maps with estimated numbers 
of wild birds per species per square (Supplement S1). For 54 of the 58 bird 
species of interest the estimates per square were available. For four bird 
species (i.e. mallard, Eurasian magpie, carrion crow and western jackdaw) 
the maps with estimates per square did not pass the internal review process. 
For these species, we transformed relative abundances maps with 1x1 km 
resolution, into maps with the estimated number of the particular species 
per 5x5 km square.

Land cover data 
Land cover data (LGN7) was available as a geographic information system 
(GIS) raster layer with 25-m resolution, and resampled (i.e. averaged) 
to obtain a 5-km resolution that aligned with the 5x5 km square bird 
density abundance. We selected land cover features based on relevance for 
distribution of high risk HPAI bird species and HPAI risk on poultry farms 
(Si et al., 2013; Belkhiria et al., 2018). These land cover classes were aggregated 
in five major classes (agriculture, freshwater systems, grasslands, swamps 
and peats area, and saltwater systems) to reduce the number of features to 
be used for further analyses (Table S3).
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Spatial scaling of environmental context
All downstream analyses were performed in R (version 3.6.3). We resampled 
all 5x5 km squares to 1x1 km resolution using nearest-neighbour allocation, 
so that all grid cells within each 5x5 km square contain the same value. To 
include the influence of landscape context (i.e. bird density and landcover 
predictors) beyond the properties of the grid cell, we applied isotropic 
bivariate Gaussian smoothers to the grid layers, with bandwidths of 2.5, 
5 and 10 km (Holland et al., 2004; de Knegt et al., 2010). The unsmoothed 
raster layers contain essentially no information on environmental context 
beyond the 5x5 km square, and thus only contain site-specific information. 
The smoothed raster layers contain information on spatial context beyond 
the 5x5 km square.

Model training and evaluation
We analysed the feature importance of wild bird densities and land cover 
data for the prediction of HPAI outbreak risk on poultry farms. Prior to the 
analyses, all features were rescaled and normalized to a range 0-1. Because 
of the large number of features compared to the limited number of cases, 
we performed a univariate conditional logistic regression analysis (using 
the survival package, (Therneau, 2020) to identify features with a negative 
association with the HPAI cases. Features with a strict negative association 
on all scales were removed from further analyses (n = 4). The final dataset for 
further analyses contained 54 bird species and five land cover classes (Table 
S2). 

Subsequently, a random forest classifier (using the ranger package, 
(Wright and Ziegler, 2017)) was performed. This was chosen because it 
can deal with a very large number of input variables, generally performs 
very well in classifying data, and by constraining the hyperparameters it 
can be robust against overfitting (Breiman, 2001). We used the following 
hyperparameters: number of trees: 100,000; number of variables per tree: 3; 
minimum node size: 2; and, maximum tree depth: 3. We applied a leave-one-
group-out cross validation approach by iteratively leaving one selected case 
farm and its matched controls out while fitting the random forest, and using 
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the fitted model to predict the left-out data. A random forest permutation 
variable importance approach to quantify feature importance values for 
all bird species and landscape variables was used (Altmann et al., 2010), 
which we summarized for each spatial scaling level in the model. Feature 
importance was standardized: importance/mean(importance), so that the 
average feature importance value is 1 (Table S2). To reduce the number 
of features for the final model, we performed another series of leave-one-
group-out cross validation (LoGo) random forest, in which we started with 
the 3 most important features at their most important scale, adding the 
subsequent most important feature for every round of leave-one-group-
out cross validation. This was used to draw a precision-recall curve, and 
determine the area under the precision-recall curve, i.e. average precision 
(Sofaer et al., 2019), of the LoGo random forest per number of most important 
features, with which we determined the optimal number of features for the 
final model (Figure S1). Average precision is a threshold independent metric 
that calculates the area under the precision-recall curve, which is defined 
by a trade-off between different aspects of performance (i.e. precision and 
recall) as the threshold to the model’s predictions varies (Sofaer et al., 2019). 
Model performance was determined by calculating its average precision, 
as well as the sensitivity and F1 scores of different decisions thresholds. A 
prediction of HPAI risk across all 5x5 km squares in the Netherlands was 
made by averaging the cross-validated predicted HPAI probability surfaces. 
Moreover, we computed the standard deviation in HPAI risk prediction (on 
a logit scale) across all squares in the Netherlands. Additionally, as a form 
of evaluation of model performance, we plotted the locations of confirmed 
HPAI infections in dead wild birds between 2014-2018. To minimize bias, 
we only included locations for which the specific bird species was known 
and only included bird species with a homogenous distribution across the 
Netherlands (n = 19 out of 68, Table S4).
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RESULTS

A random forest model with 19 features resulted in the highest average 
precision compared to the number of features ratio (Figure S1), and the 
average precision of this model to classify HPAI outbreak risk on poultry 
farms was 88% (Figure 1, Table 2). The spatial distribution of mallard (Anas 
platyrhynchos) contributed most to the prediction of HPAI risk in this model 
(mean feature importance 5.27 ± 0.80 SD), followed by mute swans (Cygnus 
olor, mean feature importance 5.23 ± 0.72) and common shelduck (Tadorna 
tadorna, mean feature importance 4.29 ± 0.51, Figure 2, Table S2). In the list 
of bird species of which the spatial distribution contributed most to model 
the HPAI risk, 11 bird species belonged to the family of Anatidae, two to 
the family of Ardeidae, two to the family of Falconidae, and four to other 
families all considered waterbird species (Figure 2). No land cover variables 
were selected in the process of variable reduction for the final model (Figure 
2). Table 2 summarizes the performance of the reduced model to predict 
HPAI outbreaks on poultry farms. The optimal F1 score of the values listed 
in Table 2, is at a predicted HPAI risk threshold of 0.5, but misclassification 
of cases is then highest (n = 3) with one misclassification of the controls 
(Figure 1, Table 2).

Table 2: Classification metrics for different classification thresholds of predicted HPAI risk 
(Figure 2). A precision-recall curve was generated to determine area under the precision-
recall-curve known as average precision, which was 88%. Accuracy is the ratio of correctly 
predicted observation to the total observations, whereas the F1 score is a weighted averaged 
of precision and recall and gives a measure of the incorrectly classified cases.

Classification 
threshold

Recall Precision F1 Accuracy

0.5 0.81 0.93 0.87 0.97
0.3 0.88 0.58 0.70 0.92
0.2 1 0.59 0.74 0.93
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Figure 1: Results of final leave-one-group-out random forest (LoGo random forest), using the 
input of the 19 most important features at their most important scale. Each dot represents an 
individual highly pathogenic avian influenza case on a poultry farm (red) or control farm 
(blue). Labels indicate case ID of each farm. The predicted probability is given for each case 
and control farms within a set, after training of the LoGo random forest on the remaining cases 
and controls. The horizontal lines represent the different cut-off values for test performance 
analyses (Table 2).

In Figure 3A, the predicted HPAI risk across the Netherlands was 
mapped. This map shows generally a high risk in the north-western parts of 
the Netherlands and around the river Rhine, and lower risk in south-eastern 
areas. A negative correlation (-0.6) between the logit-scale of the standard 
deviation of the average predicted infection probability and the predicted 
infection probability was found, indicating that variation in areas with high 
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predicted infection probability was lower than in areas where infection 
probability was low (Figure 3B). Also, the predicted HPAI risk agrees well 
with the 19 locations where dead wild birds with HPAI were found, with an 
average mean infection probability of 0.58 ± 0.20 (SD) and 68% of locations 
with a predicted infection probability of 0.5 (optimal F1 score) or higher 
(Table S4).

To include the influence of landscape context beyond the grid cell, 
we applied spatial smoothing to each variable at the raw (i.e. no spatial 
smoothing), 2.5, 5 and 10 km Scale. The distribution of three bird species 
(out of 19) had the strongest association with HPAI risk at the raw scale, 
including the Eurasian wigeon that is known to graze close to farms. Four 
species exhibited the strongest association at a 2.5 km smoothing scale, five 
species at 5 km, and seven species at 10 km scale of the Gaussian smoother 
(Figure 2), showing that the landscape contexts differs among species.

DISCUSSION

We showed that a model using wild bird species densities can accurately 
predict HPAI risk areas for poultry farms in the Netherlands. Seventeen 
waterbird and two raptor species were most strongly associated with the 
HPAI outbreak risks. The risk map of HPAI-infection probability across the 
Netherlands also correctly predicted locations where HPAI infected dead 
wild birds were reported in the same period.

The mallard and mute swan had the highest feature importance, and 
have both been found infected with HPAIVs in several studies (Beerens et al., 
2017, 2018; Napp et al., 2018). Other species selected by the model, i.e. tufted 
duck (Aythya fuligula), Eurasian wigeon, peregrine falcon (Falco peregrinus), 
and great black-backed gulls (Larus marinus), were found to have high 
mortality rates during the H5N8 epidemic in 2016 (Kleyheeg et al., 2017), 
and wild birds of the family of Anatidae and of the order of Charadriiformes 
are often mentioned as reservoir species for HPAIVs (Caron et al., 2017). 
Our model also found other species to be associated with HPAI infection 
risk, suggesting that more bird species than those often diagnosed in passive 
or active surveillance activities are involved in HPAIV transmission. AIV



94

CHAPTER 5

Eurasian Curlew

Tundra Swan

Peregrine Falcon

Northern Pintail

Brant Goose

Great Egret

Tufted Duck

Common Kestrel

Great Crested Grebe

Northern Shoveler

Smew

Eurasian Bittern

Barnacle Goose

European Golden Plover

Eurasian Wigeon

Great Black−backed Gull

Common Shelduck

Mute Swan

Mallard

2 4 6
Scaled feature importance

Sp
ec

ie
s

Best scale
0km

2.5km

5km

10km

Figure 2: Scaled importance of 19 most important features that were used for the final leave-
one-group-out random forest (LoGo random forest). Feature importance was standardized: 
importance/mean(importance), so that the average feature importance value is 1. The most 
important scale of each feature (highest median value, Table S3) was used in the final LoGo 
random forest. The boxplots indicate the variation in the feature importance across the 16 
LoGo random forest runs. Colors of the boxplots indicate the spatial scale with the highest 
feature importance for each variable that was used for smoothing of the data.
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Figure 3: Mean infection probability of highly pathogenic avian influenza (HPAI) across all 
1x1 km grid-cells in the Netherlands (A) using the final leave-one-group-out random forest 
model with 19 most important features. The prediction of HPAI risk ranges between 0 (low, 
dark green) to 1 (high, dark red). Standard deviation of the predicted HPAI probabilities on 
logit-scale across all 1x1 km grid-cells in the Netherlands (B). Locations of poultry farms with 
HPAI outbreaks (i.e. cases, blue) and selected locations with HPAIV infected dead wild birds 
between 2014-2018 (grey) are shown. 

infections among wild bird species depends on a complex multispecies 
system, influenced by ecosystem properties, bird species diversity and 
community structure, the specific circulating HPAIV strain(s), and the clinical 
impact it has among the different hosts species (Caron et al., 2017; Huang et 
al., 2019). This study does not indicate how many of the identified wild birds 
were infected, or to what extent their presence contributed to disseminating 
virus in the farms’ surroundings, nor does it allow the distinction between 
the role of migratory bird species (e.g. Eurasian wigeon and tufted duck), 
which likely play a role in long distance dispersal, and species that are less 
migratory (e.g. mute swan, and mallard), which could act as local amplifiers, 
or bridge species (Hill et al., 2012; Alarcon et al., 2018). Therefore, we have 
to be careful when drawing conclusions on the exact roles of specific wild 
bird species in the epidemiological processes at the wild bird/domestic 
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bird interface, or on that of other bird species not included in this study. 
Nevertheless, the identified bird species give important clues for target 
species for future studies with regard to infection probability.

In contrast to previous research (Si et al., 2013; Belkhiria et al., 2018), 
none of the land cover variables included in the initial model were selected 
in the final model, indicating that densities of wild bird species were better 
predictors of HPAI infection risk. However, previous studies did not 
include wild bird species distribution to analyse HPAIV introductions on 
poultry farms, but rather tried to explain variation in occurrence of HPAIV 
introductions only with environmental variables, like distance to waterways 
and vegetation index. Environmental variables can be considered a proxy 
for habitat selection of wild birds, and were in our study less suitable 
predictors than the densities of the actual bird species associated with 
HPAIV infection in poultry. This does not mean that land cover data could 
not be of great value. For example the presence of wetlands is vital as they 
are an important habitat for many waterfowl species (Belkhiria et al., 2018). 
In the current study, the original land cover classes were aggregated into five 
major classes, which decreased the resolution of land cover classification in 
the analyses, and may have reduced sensitivity of these variables for the 
prediction of infection probability. Therefore, especially in countries where 
detailed quantitative wild bird density data is not available, land cover data 
could still be a suitable proxy for predicting HPAI risk, as these data are 
likely more easily gathered across large areas compared to wild bird density 
distributions.

Our model accurately predicted the HPAI risk in 68% of the locations 
with HPAI infected dead wild birds between 2014-2018. However, during 
the 2016-outbreak, H5N8 was detected in live Eurasian wigeons and 
mallards (Poen et al., 2018), and in the current 2020 epidemic apparently 
healthy ducks and geese have also been reported to be infected in Germany, 
Italy, the Netherlands and Denmark (Adlhoch et al., 2020). These findings 
highlight that detection and reporting of dead wild birds found via passive 
surveillance is helpful, but not enough to predict HPAI outbreak risk, as 
reporting of dead wild birds can be biased by factors such as human presence, 
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and size and habitat of bird species. It is therefore not possible to know what 
other species are affected by these HPAIV strains if the species do not show 
clinical signs, including mortality (Alarcon et al., 2018; Adlhoch et al., 2020). 
Besides the spatial distribution of wild birds, seasonality and the arrival of 
migratory birds also plays a role in the prediction of HPAI outbreak risk 
(Hill et al., 2015; Alarcon et al., 2018; Gonzales et al., 2020; Velkers et al., 
2020), e.g. Velkers et al. (2020) found that the timing of peak densities of 
Anatidae species observed around farms, coincided with the timing of 
outbreaks. We only used long-term averages of bird count data, collected 
at set moments each winter between 2012/2013 – 2014/2015. However, the 
observed spatiotemporal relationships between outbreaks on poultry farms 
and HPAIV wild bird detections represent complex dynamics. For future 
research, including spatiotemporal analyses on HPAIV infection probability 
to improve predictive power, and new HPAI cases to further train and 
validate the model is recommended.

We determined the best fitting spatial scale for each species 
separately. This is in line with ecological studies assessing the influence 
of environmental context, varied over different scales, on the analysis and 
prediction of habitat selection (de Knegt et al., 2011). This is important as 
local dispersal patterns and ecology of bird species differ. Diving ducks, 
e.g. tufted ducks, are mainly found on large open waterbodies, often at 
considerable distance from farms, and have relatively few movements over 
land between foraging and roosting sites. In contrast, Eurasian wigeons and 
mallards forage on grass- and agricultural lands, and are found more closely 
to farms (Kleyheeg et al., 2017; Belkhiria et al., 2018), which is in line with 
our results. 

We realize that our dataset was limited with 16 confirmed HPAI 
cases on poultry farms. Although some farms had multiple outbreaks over 
the years, these were all new introductions, and thus independent of one 
another. Furthermore, we tuned the random forest analysis in a way to 
minimize the risk of overfitting and, used a cross-validation approach for 
the random forest, testing its robustness despite the limited dataset. 

In conclusion, we show that spatial variation in HPAI outbreak risk 
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in the Netherlands was accurately predicted based on wild bird density 
data, rather than land cover variables. The spatial distributions of several 
waterbird species were important contributors to model the HPAI outbreak 
risk. New HPAI outbreaks will be used to validate and improve the risk 
map, but already in its current form, areas classified as high risk for HPAIV 
introduction on poultry farms should be considered as important targets 
for surveillance, preventive measures against HPAIV introduction, and may 
assist in decision making on locations for new poultry farms. The described 
modelling approach allows for inclusion of the best predictors based on 
the available data, which may include land cover variables in addition to 
bird data, depending on the local situation. Identification of high-risk areas 
for development of country or region-specific control programs, would be 
a proactive strategy to combat the global threat of these recurring HPAI 
outbreaks.
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SUPPLEMENTARY INFORMATION

Supplement S1 

Dutch bird count data collected by Sovon, the Dutch Center for Field 
Ornithology (Nijmegen, the Netherlands), and published in the bird atlas 
(Sovon, 2018), were used for the analyses. The bird atlas was compiled 
through a citizen science approach of structured bird counts across the whole 
of the Netherlands by (largely voluntary) observers in three winter seasons 
from December – February 2012/2013 – 2014/2015. We only used winter bird 
density data, as HPAI outbreaks only occurred between November and 
March. For organizing the field work and processing the data the whole 
of the Netherlands was divided in 5x5 km squares (1769 squares in total, 
including open water areas of lake IJsselmeer, the Wadden Sea and the large 
river deltas). Each square was assigned to an observer who performed bird 
counts in pre-defined spring/summer and winter months. Each observer 
was instructed to perform a minimum of three bird counts in the assigned 
square between December and February, visiting all main habitats within 
the square. As a final result after counts were finished, the observer made an 
estimate of the number of individuals per bird species present in the square 
in the winter according to the following classes: 1-3; 4-10; 11-25; 26-50; 51-
100; 101-250; 251-500; 501-1000; >1000. 

Sovon used the obtained data to construct maps with numbers per species per 
square based on the estimated numbers per square. An internal reviewing 
process checked the constructed maps for each bird species. Quality checks 
entailed if the pattern of distribution of a bird species over the Netherlands 
was accurate compared to what is known from the distribution of the species 
from other projects lead by Sovon. 
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Table S1: Overview of all highly pathogenic avian influenza case farms with the selected 
control farms. Case Farm_IDs 1, 4 and 6 had multiple outbreaks over different years, which 
are indicated with Case_ID a, b and c. Poultry Type indicates the poultry type that was 
affected in the farm.
Case 
Farm_ID

Case_ID Case/Control Poultry Type Year of 
outbreak

Month of 
outbreak

1 1a Case Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
1 1a Control Layer 2014 11
2 2 Case Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
2 2 Control Layer 2014 11
3 3 Case Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
3 3 Control Layer 2014 11
4 4a Case Pekin duck 2014 11
4 4a Control Pekin duck 2014 11
4 4a Control Pekin duck 2014 11
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Case 
Farm_ID

Case_ID Case/Control Poultry Type Year of 
outbreak

Month of 
outbreak

4 4a Control Pekin duck 2014 11
4 4a Control Pekin duck 2014 11
4 4a Control Pekin duck 2014 11
4 4a Control Pekin duck 2014 11
4 4a Control Pekin duck 2014 11
5 5 Case Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
5 5 Control Broiler Breeder 2014 11
6 6a Case Pekin duck 2016 12
6 6a Control Pekin duck 2016 12
6 6a Control Pekin duck 2016 12
6 6a Control Pekin duck 2016 12
6 6a Control Pekin duck 2016 12
7 7 Case Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
7 7 Control Pekin duck 2016 11
8 8 Case Pekin duck 2016 11
8 8 Control Pekin duck 2016 11
8 8 Control Pekin duck 2016 11
8 8 Control Pekin duck 2016 11
8 8 Control Pekin duck 2016 11
8 8 Control Pekin duck 2016 11
1 1b Case Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
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Case 
Farm_ID

Case_ID Case/Control Poultry Type Year of 
outbreak

Month of 
outbreak

1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
1 1b Control Layer 2016 12
9 9 Case Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
9 9 Control Layer 2016 12
4 4b Case Pekin duck 2016 12
4 4b Control Pekin duck 2016 12
4 4b Control Pekin duck 2016 12
4 4b Control Pekin duck 2016 12
4 4b Control Pekin duck 2016 12
4 4b Control Pekin duck 2016 12
10 10 Case Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
10 10 Control Layer 2016 12
11 11 Case Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
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5

Case 
Farm_ID

Case_ID Case/Control Poultry Type Year of 
outbreak

Month of 
outbreak

11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
11 11 Control Broiler Breeder 2016 12
6 6b Case Pekin duck 2017 12
6 6b Control Pekin duck 2017 12
6 6b Control Pekin duck 2017 12
6 6b Control Pekin duck 2017 12
6 6b Control Pekin duck 2017 12
6 6b Control Pekin duck 2017 12
6 6b Control Pekin duck 2017 12
12 12 Case Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
12 12 Control Broiler Breeder 2018 2
4 4c Case Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
4 4c Control Pekin duck 2018 3
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Table S3: Several land cover classes were aggregated to five major classes which were used in 
the random forest
Class Aggregated Class used in random forest
Agricultural grass Agriculture 
Maze Agriculture 
Potatoes Agriculture 
Beets Agriculture 
Grains Agriculture
Freshwater Fresh water systems
Saltwater Salt water systems
Grass in primary built-up areas Grasslands
Grass in secondary built-up areas Grasslands
Salt marshes Salt water systems
Peat moor Swamps and peats area
Other marsh vegetation Swamps and peats area
Reed vegetation Swamps and peats area
Nature grasslands Grasslands

Table S4: List of locations of highly pathogenic avian influenza virus (HPAIV) infected dead 
wild birds. The predicted risk is the infection probability as predicted by the final random 
forest model for the location the bird was found
Year found dead Bird species HPAIV classification KM-BLOK
2018 Mallard H5N6 265234
2018 Western marsh-harrier H5N6 265234
2016 Buzzard H5N8 64244
2017 Mallard H5N8 195512
2017 Mallard H5N8 195512
2017 Mallard H5N8 254552
2017 Mallard H5N8 254552
2017 Mallard H5N8 254552
2016 Mallard H5N8 372743
2016 Buzzard H5N8 253624
2017 Peregrine falcon H5N8 311822
2018 Buzzard H5N6 435152
2017 Buzzard H5N8 314812
2016 Peregrine falcon H5N8 424445
2016 Peregrine falcon H5N8 424445
2016 Eurasian Magpie H5N8 195754
2016 White-tailed eagle H5N8 162531
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Figure S1: Average increase in precision of runs of the leave-one-group-out random forest 
(LoGo random forest) while adding the next most important feature for each run, as based 
on Table S2. On the x-axis, model size indicates the number of features included in the LoGo 
random forest. After inclusion of 19 features, the curve flattens and average precision does not 
increase any more with increasing the model size with the next most important feature. The 
black line tracks the calculated average precision estimates, and the shaded areas represents 
the 95% confidence interval
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CHAPTER 6

ABSTRACT

In recent years, different subtypes of highly pathogenic avian influenza 
(HPAI) viruses caused outbreaks in several poultry types worldwide. Early 
detection of HPAI virus infection is crucial to reduce virus spread. Previously, 
the use of a mortality ratio threshold to expedite notification of suspicion in 
layer farms was proposed. The purpose of this study was to describe the 
clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks 
on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands 
and compare them with the onset of an increased mortality ratio (MR). Data 
on daily mortality and clinical signs from nine egg-producing chicken farms 
and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and 
H5N6 (2017–2018) in the Netherlands were analysed. In 12 out of 15 outbreaks 
for which a MR was available, MR increase preceded or coincided with the 
first observation of clinical signs by the farmer. In one chicken and two Pekin 
duck outbreaks, clinical signs were observed prior to MR increase. On all 
farms, veterinarians observed clinical signs of general disease. Nervous or 
locomotor signs were reported in all Pekin duck outbreaks, but only in two 
chicken outbreaks. Other clinical signs were observed less frequently in both 
chickens and Pekin ducks. Compared to veterinarians, farmers observed and 
reported clinical signs, especially respiratory and gastrointestinal signs, less 
frequently. This case series suggests that a MR with a set threshold could be 
an objective parameter to detect HPAI infection on chicken and Pekin duck 
farms at an early stage. Observation of clinical signs may provide additional 
indication for farmers and veterinarians for notifying a clinical suspicion 
of HPAI infection. Further assessment and validation of a MR threshold in 
Pekin ducks are important as it could serve as an important tool in HPAI 
surveillance programs. 

Keywords: H5N6 subtype, H5N8 subtype, influenza A virus, mortality, 
poultry, signs and symptoms
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INTRODUCTION  
In recent years, different subtypes of highly pathogenic avian influenza A 
(HPAI) viruses have caused outbreaks in different poultry types worldwide 
(Lee et al., 2017a; Napp et al., 2018). 

Clearly, early detection of HPAI virus infection on poultry farms is 
essential to reduce risks for virus spread and minimize the socio-economic 
impact of the disease (Elbers et al., 2004; Backer et al., 2015), which is also 
increasingly reflected in legislation and contingency plans worldwide. 
European Union legislation on the control of HPAI (EU, 2005a, 2005b) 
stipulates that early detection systems, aimed at a rapid reporting of any sign 
of avian influenza in poultry and other captive birds by owners or keepers to 
the competent veterinary authority, need to be in place. For both LPAI and 
HPAI outbreaks, sudden changes in mortality have shown to be an indicator 
of infection (Elbers et al., 2007; Malladi et al., 2011; Gonzales and Elbers, 
2018), as well as clinical signs (Elbers et al., 2004, 2005; Velkers et al., 2006).

These indicators have been used to formulate criteria in European 
Union legislation for reporting suspicion of a notifiable disease such as 
avian influenza in poultry, with even more detailed criteria implemented 
in national regulations in the Netherlands (Box 1). However, the current 
reporting thresholds may not be sensitive enough for timely detection of 
HPAI virus infections (Gonzales and Elbers, 2018). Published reports on 
analyses of mortality data from previous outbreaks, that is HPAI H7N7 in 
2003 (Stegeman et al., 2004; Marian E.H. Bos et al., 2007) and HPAI H5N8 in 
2014 and 2016 (Velkers et al., 2015) have shown that (a) it takes several days 
after the start of increased mortality due to HPAI virus infections to reach 
the official reporting threshold of 0.5% mortality for two consecutive days; 
and (b) many flocks have already been depopulated well before reaching 
these thresholds. To improve sensitivity of detection of LPAI and HPAI virus 
infections and at the same time maintain a high level of specificity, Gonzales 
and Elbers (2018) developed new reporting thresholds based on increased 
mortality and drops in egg production for layer farms, and evaluated the 
performance of those indicators with HPAI H7N7 outbreak 
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Box 1 European legislation and Dutch regulations on reporting criteria for avian 
influenza detection

European Commission Decision 2005/734/EC (EU, 2005a):
Article 2 stipulates that Member States shall introduce early detection systems, aimed at 
a rapid reporting of any sign of avian influenza in poultry and other captive birds by the 
owners or keepers to the competent veterinary authority.
Annex II: criteria to be considered when applying the measure set out in Article 2: drop 
in feed and water intake higher than 20%; drop in egg production higher than 5% for 
more than two days; mortality rate higher than 3% in a week; and any clinical sign or 
post-mortem lesion suggesting avian influenza.
Dutch Ministerial Regulation TRCJZ/2005/1411 concerning the prevention, control 
and monitoring of infectious animal diseases, zoonoses and transmissible spongiform 
encephalopathies (TSEs), Article 84 (Dutch State Journal, 2005): 
Poultry keepers have to report increased mortality in layers, reproduction birds or 
broilers (older than 10 days) to the authorities in case of 0.5% mortality or more per flock 
per day for two consecutive days; in turkeys in case of 1% mortality or more per day for 
two consecutive days; and in AI susceptible birds in case of 3% or more mortality per 
week.
Poultry keepers of AI susceptible birds need to consult their veterinarian in case of a 
clinical problem; reduction in feed intake or water intake of 5% or more per day for two 
consecutive days; in layers and breeders a reduction in egg production of 5% or more per 
day for two consecutive days.
Approved veterinary programme of the Netherlands under EU Regulation 652/2014 (EC, 
2019; Elbers et al.,  2010):
Additionally, to ensure timely detection and minimize spread of infections with low 
pathogenic avian influenza (LPAI) viruses, that can mutate to HPAI viruses, an intensive 
monitoring program that includes all commercial poultry holdings in The Netherlands is 
in place. Because LPAI virus infections can be asymptomatic or might generate only mild 
symptoms, veterinarians in the Netherlands can submit cloacal or pharyngeal swabs to 
exclude LPAI virus infection as a possible cause for clinical problems.

data from 110 infected layer flocks in the Netherlands in 2003. The mortality 
ratio (MR), with a reporting threshold of 2.9 times higher mortality than the 
average weekly mortality of the previous week for that particular flock, had 
a 95.3% sensitivity to signal HPAI virus infection in laying hens and would 
have resulted in 2 days earlier detection compared with the current Dutch 
national thresholds for HPAI and in 7 days earlier detection for LPAI virus 
infection (Gonzales and Elbers, 2018).

For early detection of HPAI virus infections, the suggested MR ratio 
threshold of 2.9 may also be applicable to other poultry types. Ssematimba 
et al. (2019) recently explored efficacy of mortality-based triggers for HPAI 
virus detection in game birds, but for commercial ducks and turkeys, which 
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are also commonly affected during HPAI outbreaks, mortality thresholds 
have not yet been evaluated. Furthermore, as clinical signs have proven to 
be indicators of HPAI virus infections, taking both MR and clinical signs into 
account may potentially further enhance early detection in different poultry 
types.

Therefore, the aim of this study was to describe the clinical signs 
reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken 
and Pekin duck farms between 2014 and 2018 in the Netherlands and compare 
them with the onset of an increased MR. For this purpose, we collected data 
on mortality, production characteristics and clinical signs from 16 HPAI 
(H5N8 and H5N6) outbreaks on poultry farms between 2014 and 2018 in the 
Netherlands. We calculated the MR and daily mortality for each outbreak 
and provide an extensive inventory of the species-specific clinical signs and 
how these developed over time in the days before official notification, as 
observed by poultry farmers and veterinarians.

MATERIALS AND METHODS

Data collection
A case series study was performed on a total of 16 poultry farms that were 
diagnosed with HPAI infection caused by viruses of subtypes H5N8 or H5N6 
in the Netherlands between 2014 and 2018, which included six farms with 
laying hens, three farms with broiler breeders and seven farms with Pekin 
ducks (Table 1). The only other HPAI H5N8 outbreak in this period (OIE, 
2017) not included in the analysis, was a wild water bird trading farm, that 
also housed domestic poultry in 2016. The day of notification (Table 1; Figure 
1) refers to the day when the farmer or the veterinary practitioner reported a 
suspicion of avian influenza to the Netherlands Food and Consumer Product 
Safety Authority (NVWA). Only for outbreak D-1, samples were submitted to 
the national reference laboratory by the veterinary practitioner in the Dutch 
national diagnostic framework of excluding LPAI (as described in Box 1; EC, 
2019). In this outbreak, we considered the day of the positive result of these 
swabs as day of notification. In all outbreaks, a team consisting of a (state) 
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veterinarian of the NVWA, a poultry veterinarian from GD Animal Health, 
and in most outbreaks the veterinary practitioner, visited the farms within 
9 hr after notification for clinical inspection and official sample collection 
(referred to as veterinary inspection visit [VIV]). Inquiries on the history of 
the clinical situation observed by the farmer and clinical signs observed by 
the veterinarians during this inspection were recorded in a standardized 
form (see Section 2.3). Twenty cloacal and pharyngeal swabs were collected 
per flock. Swabs were tested at the national reference laboratory by PCR for 
antigen detection (Beerens et al., 2018). According to the protocol of HPAI 
virus-positive farms, NVWA performed an epidemiological investigation 
to trace dangerous contacts prior  to culling. This included a standardized 
interview with the farmer and collection of charts with at least daily records 
of mortality and production data, for example feed and water intake, and 
egg production. All birds on the HPAI virus-positive farms were culled 
within 1–2 days after the day of notification (Table 1).

Additionally, an in-depth epidemiological investigation was 
performed by specialized poultry veterinarians of the Faculty of Veterinary 
Medicine of Utrecht University. This investigation was performed for all 
farms between 9 days to 3 months after culling and was aimed to facilitate 
retrospective identification of the most likely moment and route of HPAI 
virus introduction and/or spread (referred to as Detailed Epidemiological 
Investigation [DEI]). For all farms, all available data collected by NVWA 
and laboratory results were evaluated, additional in-depth interviews with 
farmers and farm employees, veterinarians from NVWA, GD Animal Health 
and the farms’ veterinary practitioner were conducted retrospectively, and 
detailed production records were gathered. The farmers and veterinarians 
were inquired in detail about the course of infection and observed clinical 
and post-mortem signs in the 2 weeks prior to notification up to and 
including the day of the VIV. These data were used for further data analyses 
as described below. 



123

Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in 
Dutch poultry farms, 2014–2018: Clinical signs and mortality

6

Table 1: Highly pathogenic avian influenza (HPAI) virus-infected commercial chicken and 
duck farms in the Netherlands between 2014 and 2018 included in the study: notification and 
culling dates, flock data and HPAI virus subtype 
Outbreak 
no.a 

Date of 
notification

Date of 
culling

Poultry type Flock 
size

Affected 
houses 
/ total 
houses

Flock 
age at 
notification

HPAI 
virus 
typeb

L-1 14-Nov-14 16-Nov-14 Laying hens 124,000 1/6 55 wk H5N8
L-2 19-Nov-14 21-Nov-14 Laying hens 41,400 1/3 67 wk H5N8
BB-1 20-Nov-14 21-Nov-14 Broiler 

breeders
11,000 1/2 61 wk H5N8

D-1e 21-Nov-14c 22-Nov-14 Pekin ducks 14,500 1/2 18 d H5N8
L-3f 29-Nov-14 30-Nov-14 Laying hens 28,000 1/1 22 wk H5N8
D-2 25-Nov-16 26-Nov-16 Pekin ducks 10,000 1/1 40 d H5N8
D-3 30-Nov-16 1-Dec-16 Pekin ducks 8,500 1/1 24 d H5N8
D-4g 1-Dec-16 2-Dec-16 Pekin ducks 15,400 2/2 15 & 43 dd H5N8
L-4 12-Dec-16 14-Dec-16 Laying hens 63,000 1/3 38 wk H5N8
D-5e 16-Dec-16 17-Dec-16 Pekin ducks 14,000 1/2 23 d H5N8
L-5 17-Dec-16 19-Dec-16 Laying hens 28,500 1/2 25 wk H5N8
BB-2 19-Dec-16 20-Dec-16 Broiler 

breeders
48,000 1/4 30 wk H5N8

L-6f 24-Dec-16 25-Dec-16 Laying hens 28,000 1/1 52 wk H5N8
D-6g 7-Dec-17 8-Dec-17 Pekin ducks 16,000 1/2 29 d H5N6
BB-3 24-Feb-18 26-Feb-18 Broiler 

breeders
39,100 1/3 31 wk H5N6

D-7e 12-Mrt-18 13-Mrt-18 Pekin ducks 29,700 1/2 32 d H5N6

aOutbreaks on Laying hen (L), Broiler Breeder (BB) and Duck (D) farms.
bDiagnosis of HPAI, tested positive on real-time PCR on the matrix gene, H5-PCR and sequencing of 
the haemagglutinin and neuraminidase (Beerens et al., 2018).
cSamples were submitted to the national reference laboratory by the veterinary practitioner in the 
framework of the Dutch early-warning system, we considered the day of the positive result of these 
samples as day of notification. 
dTwo flocks infected with HPAI virus present on the farm, one flock age 15 days the other age 43 days.
eD-1, D-5 and D-7 are outbreaks of HPAI on the same duck farm.
fL-3 and L-6 are outbreaks of HPAI on the same laying hen farm.
gD-4 and D-6 are outbreaks of HPAI on the same duck farm.

Mortality and production parameters
Mortality ratio (MR) and egg production ratio (EPR) were calculated as 
described by Gonzales and Elbers (2018) for each of the flocks, using available 
flock records of at least 5 days to approximately 1 month before notification. 
The threshold of 2.9 for MR, as applied for laying hens by Gonzales and 
Elbers (2018), was used and the first day the MR exceeded the threshold was 
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considered as an increase in MR and used for further analyses. We were not 
able to calculate the MR for one Pekin duck farm (D-2) due to incomplete 
mortality data in the weeks prior to the outbreak. The current applied 
daily mortality (DM) threshold of 0.5% per flock (see Box 1) was also used 
for comparisons. In layer farms, an EPR of below 0.94 was considered as 
presence of reproduction tract signs. The use of this threshold alone, and 
in combination with the MR, was validated as a way to detect LPAI and 
HPAI outbreaks at an early stage by Gonzales and Elbers (2018). Data on 
daily growth were not recorded in any of the affected farms. In farms where 
records of water and feed intake were available, a decrease in feed or water 
intake of 5% compared with the previous day was classified under general 
clinical signs as described below. 

Clinical signs
The standardized form used to record clinical signs observed during the 
VIV included a yes or no checklist with questions on feed and water intake, 
sudden death, ruffled feathers, diarrhoea, egg quality, oedema and cyanosis, 
nervous signs, abnormal conjunctivae, lacrimation, respiratory distress and 
decreased activity. Furthermore, the veterinarians recorded findings on 
mortality, production and feed and water intake based on the flock records 
if available at time of VIV. At the DEI, poultry veterinarians of GD Animal 
Health and the farms’ veterinary practitioners were questioned in more 
detail on the clinical signs on day of notification. In two outbreaks, the 
veterinary practitioner had visited the farm prior to notification, that is for 
outbreak D-1 2 days and for BB-3 1 day prior to notification. The observed 
clinical signs did not differ from the clinical signs observed at day of the VIV 
(data not shown). The farmers were queried at the DEI on the clinical signs 
observed in the period between 14 days prior to and the day of culling, but 
only the data until day of notification were used for the analyses. Also, the 
flock records were checked for notes on clinical signs. 

A list of clinical signs, categorized in different categories, was used 
to compile all the data from the veterinarians from VIV and DEI, and only 
from de DEI for the farmers separately. The observed clinical signs were 
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categorized in six categories, that is as clinical signs attributed to nervous 
and locomotor system; mucosal membranes and skin; respiratory tract; 
gastrointestinal tract; and reproduction tract (Tables S1–S4) or as general 
clinical signs. The latter category included signs of general illness, which 
could not be related to a specific organ system or were associated with 
signs of systemic disease, for example depression, reduced feed or water 
intake, ruffled feathers or hunched posture, cold or warm extremities and 
sudden death (Tables S1–S4). Signs of the nervous and locomotor system 
were categorized together as these were difficult to distinguish based on the 
information from the farmers. Mucosal membranes and skin signs included 
discolorations or oedema, most likely because of the endothelial damage 
caused by the virus, for example cyanosis, oedema and haemorrhages, 
including those in the conjunctivae. Excessive lacrimation and conjunctivitis 
without haemorrhages were categorized under (upper) respiratory signs. 
Decreased egg production (EPR < 0.94) and abnormal eggs were classified as 
signs of the reproduction tract. These data were used to report the frequency 
of detection of clinical signs for each of the six categories in Pekin duck and 
chicken farms (layers and broiler breeders) and for veterinarians and farmers 
separately.

RESULTS

Outbreaks
Five, eight and three farms were infected in the autumn-winter period of 
2014, 2016 and 2017–2018, respectively. No outbreaks occurred in 2015. In 
2014 and 2016 six farms with laying hens, two broiler breeder farms and 
five Pekin duck farms were infected with HPAI virus H5N8. In the winter of 
2017–2018, two Pekin duck farms and a broiler breeder farm tested positive 
for HPAI virus H5N6. Some farms were affected repeatedly. This was the 
case for Pekin duck farms D-1, D-5 and D-7, for D-4 and D-6 and for laying 
hen flocks L3 and L6. On 13 farms, more than one poultry house was present, 
but only in one duck farm (D-4) two houses tested HPAI virus positive. The 
age of infected Pekin ducks varied between 15 and 43 days and chicken 
flocks were between 22 and 67 weeks of age at notification. 
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Clinical signs
A detailed list of the observed clinical signs by farmers and veterinarians 
in the chicken and duck flocks based on VIV and DEI is provided in Tables 
S1–S4.

Chicken farms
Figure 1 summarizes the clinical signs that were observed by farmers in 
their flocks in the 5 day period prior to notification to the authorities, and 
occurrences where the current official DM threshold for reporting (>0.5%) 
or the MR threshold (>2.9) were exceeded. In both parameters, the first day 
the parameter exceeded its threshold was used in the further analyses. For 
the chicken farms, the first signs observed by the farmers were those of 
general disease in outbreak L-3 at 3 days prior to notification. On the day 
of notification, the farmers of the chicken farms (n = 9 outbreaks) observed 
general clinical signs in all nine outbreaks, clinical signs of the reproduction 
tract in six outbreaks, clinical signs of mucosal membranes and skin in three 
outbreaks, clinical signs of the gastrointestinal tract in three outbreaks, and 
clinical signs of the respiratory tract in two outbreaks. MR exceeded the 
threshold in all nine outbreaks, but only in six outbreaks the DM exceeded 
0.5% per day on day of notification. 

The frequency of observed clinical signs on the chicken farms (n = 9 
outbreaks), as reported by the farmers (at day of notification) or veterinarians 
(during the VIV) for the six different categories is summarized in the left 
part of Figure 2. Similar to the farmers, the veterinarians reported general 
clinical signs in all nine chicken outbreaks. The frequency of the clinical signs 
reported by the veterinarians was higher for signs of the gastrointestinal 
tract (seven outbreaks), mucosal membranes and skin (five outbreaks), and 
respiratory tract (five outbreaks), but lower for reproduction tract (four 
outbreaks) compared with the farmers. None of the farmers reported nervous 
or locomotor signs, whereas veterinarians reported this in two outbreaks.



127

Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in 
Dutch poultry farms, 2014–2018: Clinical signs and mortality

6

 

Mortality ra�o > 2.9
Daily mortality > 0.5 %
General
Gastrointes�nal tract
Mucosal membranes and skin
Nervous or locomotor
Reproduc�on tract
Respiratory tract

Case no. 5 4 3 2 1 0

D -6

D - 7

Days prior to no�fica�on

D - 1†

D - 2‡

D - 3

D - 4

D - 5

Duck

Case no. 5 4 3 2 1 0

L - 1

L - 4

L - 5 

BB - 2

L - 6

BB - 3

Chicken

Days prior to no�fica�on

L - 2

BB - 1

L - 3

Figure 1: Clinical signs observed by the farmers, categorized by organ system, for the 
highly pathogenic avian influenza virus-infected chicken (left) and duck farms (right) and 
exceedance of daily mortality (>0.5%) and mortality ratio (MR) thresholds in the 5 day period 
prior to notification. †Day of notification for D-1 was the day a positive result was found in 
the early warning swabs sent in by the veterinary practitioner. ‡Not enough mortality data 
were available to calculate the mortality ratio
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Figure 2: Overview of the frequency of detection of clinical signs, as categorized by organ 
system, observed on day of notification by farmers (in red) and veterinarians (in blue) on the 
day of veterinary inspection on highly pathogenic avian influenza virus-infected chicken (n = 
9, left) and duck farms (n = 7, right)

Pekin duck farms
In the Pekin duck farms (n = 7 outbreaks), the first clinical signs were 
observed 2 days prior to the notification in two outbreaks (D-1 and D-5), 
which included general clinical signs and signs of the nervous or locomotor 
system and respiratory tract (Figure 1). For outbreak D-5, temporary sneezing 
was only observed at day two before notification. A day prior to notification 
farmers observed clinical signs of the nervous or locomotor system in 
three, and of the respiratory tract in one of the outbreaks. On the day of 
notification, general clinical signs were observed in all seven outbreaks, 
signs of the nervous or locomotor system in six, gastrointestinal signs in 
two and respiratory tract signs in one of the outbreaks. The DM exceeded 
the 0.5% threshold in only four outbreaks whereas the MR exceeded the 
threshold of 2.9 in six outbreaks at day of notification. For D–2, the DM was 
only available from 1 day prior to notification and therefore the MR could 
not be calculated.
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The frequency of observed clinical signs on the seven duck farms, 
as reported by the farmers (at day of notification) or veterinarians (during 
the VIV) for the six different categories are summarized in the right part of 
Figure 2. Overall, the frequency of clinical signs reported by the veterinarians 
was higher compared with the frequency of the clinical signs reported by 
the farmer. Similar to the farmers, the most prominent signs reported by 
the veterinarians were general clinical signs. Clinical signs of the nervous 
or locomotor system were observed in all seven Pekin duck outbreaks, and 
clinical signs of the respiratory tract and the gastrointestinal tract were 
observed in five outbreaks. In contrast with the veterinarians, farmers only 
reported respiratory signs in one outbreak. Unlike the clinical signs observed 
on chicken farms, no signs of the membranes and skin were observed in the 
duck flocks by farmers nor veterinarians. 

Mortality

Chicken farms
For chicken flock L-1, the MR exceeded the threshold 5 days prior to the 
day of notification, whereas in all others outbreaks the MR exceeded the 
threshold three or fewer days prior to notification (Figure 1). On the day of 
notification, the MR of all chicken farms exceeded the threshold. The DM 
exceeded the 0.5% threshold in two farms 1 day prior to notification and 
in six farms at day of notification. The MR exceeded 2.9 for only a single 
day on eight occasions on six different farms in the 30 days period prior to 
notification (Figure 3). 

In five out of nine outbreaks, the MR exceeded the proposed 
threshold prior to observing of clinical signs by the farmer, in three out of 
nine outbreaks the increase of the MR and first observation of clinical sign 
coincided, and in one outbreak the clinical signs were observed prior to an 
increased MR (Figure 1). 
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Pekin duck farms
The MR exceeded the threshold the first time 5 days prior to day of 
notification in one house of one Pekin duck farm (D-4.1; Figure 1). At the day 
of notification, the MR exceeded the threshold in all six outbreaks for which 
a MR was available. The DM exceeded 0.5% in four of seven outbreaks on 
day of notification and only in one outbreak (D-3) mortality exceeded 0.5% 
1 day prior to notification (Figure 1). The MR exceeded 2.9 for only a single 
day on seven occasions on four different farms in the 30 days period prior to 
the notification (Figure 3). On six occasions the MR exceeded the threshold 
for a single day and was <2.9 the following day. On one occasion, the MR 
exceeded the threshold on two consecutive days in one house of a farm (D-
4.1). This house also had the most occasions (five out of seven) in which the 
MR temporarily exceeded the threshold. 

The MR exceeded the threshold in three out of six outbreaks prior to 
observation of clinical signs. In one outbreak, the increase of MR coincided 
with the first observation of clinical signs, and in two out of six outbreaks the 
clinical signs were observed prior to an increase in MR (Figure 1). 

DISCUSSION

The purpose of this case series was to describe the observed clinical signs in 
HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 
2014 and 2018 in the Netherlands and compare this with the onset of an 
increased MR threshold (Gonzales and Elbers, 2018). We describe that in 12 
out of 15 outbreaks for which a MR was available on chicken and Pekin duck 
farms, the MR increase preceded or coincided with the first observation of 
clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, 
clinical signs were observed prior to a MR increase. Additionally, in most 
cases the first clinical signs were seen within a day or two after the onset of 
an increased MR. Although these observations conveyed the idea that MR 
could be an earlier indicator of HPAI infection, when MR is less affected, for 
instance for less virulent AI virus strains, the observation of clinical signs in 
combination with MR may provide additional indication for farmers and 
veterinarians and prompt them to notifying the disease. 
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It should be noted that we looked at the first day the MR exceeded 
the threshold and compared that with the first observation of clinical signs 
according to the interviews with the farmers, because we were interested 
in the timing of detection of clinical signs in relation to an increase of the 
MR. Gonzales and Elbers (2018), however, proposed that the MR should 
be implemented in practice to notify authorities only after the MR exceeds 
the threshold for two consecutive days, to reduce false-positive signals (i.e. 
increase specificity). By using that logic, an increased MR still preceded 
or coincided with the first observation of clinical signs in eight out of 15 
outbreaks (five outbreaks on chicken farms, three outbreaks on Pekin duck 
farms).

To our knowledge, this is the first report to apply this MR threshold 
in Pekin duck outbreaks. Our results show that the MR fluctuated more 
in Pekin duck farms in comparison with the layer farms and exceeded the 
threshold more often in the 30 day period prior to the HPAI virus infection. 
However, in six of the seven occasions that the MR exceeded the threshold in 
Pekin duck farms, the MR only exceeded the set threshold for 1 day, which 
would not lead to a notification to the authorities when the MR is applied 
as suggested by Gonzales and Elbers (2018). Furthermore, the MR exceeded 
the threshold in all outbreaks on Pekin duck and chicken farms, whereas 
the DM only exceeded 0.5% in four out of seven outbreaks on the Pekin 
duck farms and in six out of nine outbreaks on chicken farms. Moreover, 
in eight out of nine outbreaks in chicken and Pekin duck farms where the 
DM did exceed 0.5%, the MR had already exceeded its set thresholds 1–4 
days prior. In pheasants, however, it was found that exceeding a set absolute 
threshold on two consecutive days resulted in the best trade-off between 
false-alarm rate and early detection compared with a 7 day moving average 
or exceeding a set absolute threshold for 1 day (Ssematimba et al., 2019). 
Due to the limited data set, we were not able to evaluate these trade-offs 
appropriately, but the results obtained from these H5Nx outbreaks in the 
Netherlands suggest that the MR could be a more sensitive parameter to 
monitor for HPAI virus infection in Pekin ducks compared with the current 
DM used in Dutch legislation for notification to the authorities. As the 
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choice of an effective mortality threshold requires evaluation of the trade-off 
between lowering the threshold to enhance early detection of infected flocks 
and the corresponding increase in false alarm rates in uninfected flocks, 
more research is needed. To assess and validate the currently used MR, and 
determine the best set threshold for an optimal sensitivity and specificity 
for Pekin ducks, and where possible also for other poultry species, flock 
data from outbreaks with preferably different HPAI virus strains should be 
analysed.

In chickens, veterinarians reported general clinical signs in all nine 
outbreaks, signs of the gastrointestinal tract in seven outbreaks, mucosal 
membrane and skin in five and respiratory tract also in five outbreaks at 
the day of notification. The clinical sings were not notably different over 
the years, although the outbreaks in 2014 and 2016 were caused by subtype 
H5N8 and in 2017–2018 by H5N6. These findings are in line with earlier 
reports about H5Nx infections in chickens (Sun et al., 2016; Pohlmann et 
al., 2017). Sun et al. (2016) found that naturally infected H5Nx chickens 
developed systemic disease, congestion and haemorrhage of the comb, 
wattles and feet, subcutaneous haemorrhages and oedema around the hock 
and shanks, which are similar to the clinical signs that were reported in the 
mucosal membrane and skin (Table S1). Early in the flock infection process, 
however, the farmers in our study mainly observed clinical signs that could 
only be considered as general clinical signs, which are not specific for HPAI 
virus infection (Elbers et al., 2007; Swayne et al., 2013) suggesting that in 
early stages of the infection process it is difficult to distinguish HPAI virus 
infection from other diseases that lead to systemic disease. Clearly, when 
the farmer or veterinarian suspects HPAI infection, immediate notification is 
needed. However, in cases with rather mild clinical signs or limited increased 
mortality not specific for HPAI, the submission of cloacal or pharyngeal swabs 
to exclude AI infection is recommended to facilitate detection of circulating 
AI virus at an early stage. This is already implemented in the Netherlands, 
as mentioned in Box 1, and has shown to be effective in detecting LPAI 
outbreaks, and incidentally, as described in this study for duck farm D-1, 
also for detection of HPAI outbreaks at an early stage (Elbers et al., 2010).



134

CHAPTER 6

In Pekin ducks, veterinarians reported general clinical signs and 
nervous or locomotor signs most often and in all outbreaks. This was 
followed by respiratory and gastrointestinal signs, which were both reported 
in five out of seven outbreaks. The high incidence of nervous and locomotor 
signs, also observed by six of the Pekin duck farmers, is in contrast with 
the incidence in chickens, where nervous and locomotor signs were only 
reported in two outbreaks by veterinarians. Although the outbreaks in 2014 
and 2016 were caused by different subtypes of H5Nx, the clinical signs 
were not notably different over the years in Pekin ducks. The observation of 
neurological signs (mainly head tremors, torticollis and ataxia) in our study 
in Pekin ducks is in line with findings reported in an outbreak of H5N8 
among fattening Pekin ducks in Hungary in 2015 (Bányai et al., 2016) where 
affected ducks showed neurologic signs, including torticollis. These findings 
are further supported with the results of studies where Pekin ducks were 
infected experimentally with different H5Nx subtypes of clade 2.3.4.4 (Sun 
et al., 2016). However, in other experimental inoculated domestic ducks with 
H5N8 viruses of the same clade (2.3.4.4), a wide range of pathobiological 
outcomes, from no clinical signs to some neurological signs to severe 
disease, were reported (Kang et al., 2015; Shivaprasad et al., 2016; Pantin-
Jackwood et al., 2017). Although previous cases have shown that clinical 
manifestation and mortality in Anseriformes species highly depends on the 
phenotypic characteristics of the HPAI virus (EFSA Panel on Animal Health 
and Welfare (EFSA AHAW Panel), 2017), the current case series emphasizes 
that Pekin duck farmers and veterinarians should be aware that observation 
of neurological signs in a flock could be an indication of HPAI virus infection 
and might require further diagnostic follow-up.

Compared to the veterinarians, farmers observed and reported less 
specific clinical signs, especially regarding respiratory and gastrointestinal 
signs in both chicken and ducks. This difference may be due to the specialized 
training and experience of the veterinarians in poultry veterinary medicine 
to observe signs of disease, and veterinarians may be better equipped with 
a repertoire of specific words to indicate their observations and relate that 
to a specific organ system. The discrepancy in observation of clinical signs 
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between farmers and veterinarians is, however, smaller than we anticipated, 
suggesting that the farmers were aware of signs to look for. This shows 
that training and awareness of the farmer in detecting clinical signs is an 
important tool in detecting HPAI virus infection at an early stage. 

The willingness of the farmer and practitioners to report a suspicion 
of a notifiable disease to the authorities may be different for the very first 
suspicion compared with suspicions after the first confirmed HPAI outbreak 
(Elbers et al., 2010). To prevent the spread of HPAI viruses to other farms, it 
is crucial to notify a suspicion as early as possible to be able to adequately 
diagnose and quickly depopulate the farms. The first outbreak of a HPAI 
(H5Nx; outbreak no. L-1) in 2014 had increased mortality (>2.9) for 5 days 
prior to notification. In the outbreaks after 2014, the mortality ratios exceeded 
the threshold 0–3 days prior to notification, which suggest that farmers 
were more alert and reported a suspicion of notifiable disease more rapidly. 
Additionally, two Pekin duck farms and one chicken farm had multiple 
outbreaks of HPAI in 2014, 2016–2017 on their farms, making the farmers 
even more aware of the risk of a new outbreak. Due to the fast reporting of 
HPAI suspicion of farmers and veterinarians to the authorities, the spread of 
HPAI viruses to other poultry facilities was minimized.

To conclude, the current study gives an indication that the use 
of an objective MR with a set threshold could be a reliable parameter to 
detect HPAI virus infection on chicken and Pekin duck farms at an early 
stage and may perform even better when complemented with detection of 
clinical signs in poultry farms, provided farmers are well trained to notice 
them. These results underline the need to validate the MR in Pekin ducks 
and other poultry species, and it should encourage farmers, veterinarians 
and veterinary institutes in other countries to monitor and register mortality 
on farms more rigorously, because a poultry-specific MR could serve as an 
important indicator in HPAI poultry surveillance programs.
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The main aim of the research described in this thesis is to evaluate tools that 
can be used to predict and detect highly pathogenic avian influenza (HPAI) 
outbreaks on poultry farms in order to reduce risks of HPAIV introductions 
and prevent further spread to other farms via appropriate control measures. 
In this chapter the major findings of this research are summarized and 
discussed, and perspectives for future studies are provided. Furthermore, 
additional analyses using data from ten new HPAI outbreaks that occurred 
in the Netherlands in the autumn-winter months of 2020-2021 are presented.

Part 1 – The microbiome as a proxy for contact with wild birds

Microbiota dynamics 
The main conclusion of chapters 2-4 is that the microbiome is not a suitable 
proxy for contact between wild birds and poultry, at least not with the 
techniques that were applied during our experimental and field studies. 
We found no detectable effect of a fecal transplant with wild bird feces to 
chickens (Chapter 2) and also found little to no differences between indoor- 
and outdoor-housed chickens in a cross-sectional study of poultry flocks 
with and without access to an outdoor range (Chapter 3). Even over a period 
of 16 weeks, no major shifts in gut microbial community were detected 
when flocks were given access to an outdoor range (Chapter 4). We did find 
high temporal variability of the cloacal microbiota within chickens over time 
(Chapter 2) and between chickens within the same flock (Chapters 2, 3 and 
4). This indicates that, like in humans, the adult chickens’ gut microbiome 
is a dynamic system on the one hand, but it is also stable (Fassarella et al., 
2021). As we did not detect any effect on the microbiota community after 
a single oral inoculation of adult chickens with wild duck feces (Chapter 
2), nor found differences over time in the community composition of layer 
flocks exposed to an outdoor environment (Chapter 4), the microbiota 
communities of the laying hens in our studies were likely not only stable, 
but also resistant to the applied perturbations. 

A well-developed intestinal microbiota community is highly 
beneficial for the host. It forms a complex ecosystem which is characterized 
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by a capacity for self-regeneration after an external perturbation, i.e. it shows 
resilience (Lozupone et al., 2012; Lahti et al., 2014; Sommer et al., 2017), and 
protects the host by creating a gastrointestinal resistant environments which 
helps prevent external microbiota from colonizing, i.e. it is resistant (Lawley 
and Walker, 2013; Han et al., 2017). As an animal host ages, its influence 
on microbial selection in the development of the intestinal microbiota 
increases (Björk et al., 2019). Previous studies have shown that layers above 
the age of 25 weeks (Ngunjiri et al., 2019) or 28 weeks (Videnska et al., 
2014) reach an adult microbial equilibrium. The age of the chickens in our 
studies varied between 24 – 49 weeks, and the effect of the exposure to an 
outdoor environment was therefore likely dampened by the adults’ host 
homeostatic responses. In contrast, the developing microbiota community 
in young chickens is easily modified. Studies in broiler chickens showed 
that microbial treatment supplied after hatch did result in changes in the 
development of bacterial taxa (Ballou et al., 2016; Schokker et al., 2017), and 
that, besides age and feed, the living environment predominantly impacted 
the microbiota composition development (Kers et al., 2019b; Schokker et 
al., 2021). We also still measured an effect of the environmental conditions 
of the rearing farm on the chickens’ microbiota in both the cross-sectional 
(Chapter 3) and longitudinal field studies (Chapter 4). This indicates that the 
microbiome in young layers is more plastic compared to the community in 
adult chickens, and this is an important aspect to consider in studies of the 
microbiota composition.  

In humans, fecal transfer is often preceded by antibiotic treatment 
or bowel lavage (Schmidt et al., 2018). These treatments cause a short 
term decrease in microbial diversity, and enable the donor microbiota to 
colonize (Voigt et al., 2015; Schmidt et al., 2018). In Chapter 2, where layers 
were inoculated with duck feces, the chickens were not exposed to such 
perturbations prior to the experiment. As a consequence, the healthy adults 
layers microbiome was most likely quite resistant to change, making it 
difficult for duck microbiota to outcompete the chicken’s microbiota and 
successfully colonize the gut of the chicken. Oral inoculation with duck feces 
did not result in an increase in richness, which is a measure for the total 
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number of different observed species in a sample. Previous research has 
shown that colonization after fecal microbiota transfer is more successful for 
genera which were already present in the recipient before fecal transplant, 
and that rare genera are less likely to colonize (Li et al., 2016; Schmidt et al., 
2018), indicating that it is difficult for the unique duck microbiota to colonize 
the new environment of the layers’ gut. Hence, a detectable shift in the gut 
microbiota of the adult chicken upon exposure to duck feces could not be 
measured, making the gut microbiota composition as measured with 16S 
rRNA gene amplicon sequencing unsuitable as a proxy for contact with wild 
birds. 

It is more likely that chickens that visit the outdoor range pick up 
on soil microbiota, including possible fecal microbiota from wild birds. 
However, the microbiota they pick up from the environment are likely 
unique to each location and the abundance of these microbiota fluctuate 
over time, not resulting in one consistent signal which is unique for having 
access to an outdoor range. In the cross-sectional study in Chapter 3 it was 
found that only outdoor-housed layers harboured microbiota of Dietzia 
maris, a taxon which is related to soil (Rainey et al., 1995). However, this 
was a rare taxon, and we did not detect Dietzia maris in the fecal samples 
of outdoor layers in the longitudinal study of Chapter 4. Furthermore, we 
found that most fluctuations in the composition of the microbiota over 
time within each poultry house were unique for each flock, and were 
mainly driven by changes in the abundance of rare, rather than dominant 
taxa (Chapter 4). Indeed in baboons, it was found that variation in gut 
microbiota between populations of baboons from 14 distinct geographical 
sites was best explained by the baboons’ environments, especially the soil’s 
geologic history and exchangeable sodium (Grieneisen et al., 2019). Local 
soil effects were 15 times stronger than those of genetic distance between 
host populations, perhaps because soil predicts which foods are present, or 
because baboons are terrestrial animals and consume soil microbiota while 
foraging (Grieneisen et al., 2019). Furthermore, in zebra finches, exposure to 
distinct experimental microbial environments (i.e. high and low diversity 
environments) led to differences in the composition, richness and dynamics 
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of the cloacal microbiota (van Veelen et al., 2020). Given the latter studies, 
one would expect that the environment of the outdoor range, which reflects 
an exposure to a more diverse environment rather than just the environment 
of the poultry house, would have had an impact on the cloacal microbiota 
composition in the laying hens studied. However, in contrast to wild animals, 
which have a continuous exposure to their direct living environments, 
laying hens in the Dutch poultry industry spent most of their time in 
the poultry house, and the time spent in the outdoor range is limited. In 
general, the doors to the outdoor range in the Dutch table egg industry only 
open between 10-11 am until sunset. Furthermore, only a limited number, 
between 3-15 %, of chickens of the flock actually use the range (Bestman 
and Wagenaar, 2003; Hegelund et al., 2005), and individual hens use the 
range differently of which not all enter the outdoor range daily (Gebhardt-
Henrich et al., 2014). Therefore, it makes sense that the direct environment of 
the poultry house, which also includes feed and litter material in which the 
chickens live, explains most of the variation in cloacal microbiota between 
chickens of different flocks which was found in Chapters 3 and 4.

Perspectives for future studies
In the studies presented in this thesis, changes in the microbiota that could 
be used as an indicator for contact between poultry and wild birds could 
not be identified. As in any research field, the power to detect associations 
in microbiome research strongly depends on effect size, heterogeneity of the 
background noise, and sample size in a study (Hasin et al., 2017). In the 
study designs of Chapters 3 and 4 we randomly selected chickens during 
the sampling and did not specifically select chickens that used the outdoor 
range. This choice was made from an epidemiological perspective, as we 
wanted to gain insight into the dynamics of the microbiota community at 
the level of the population of the entire flock housed in one poultry house, 
rather than study the changes in the microbiota community of individual 
chickens. However, to specifically study the effect of the outdoor range one 
could consider an animal experiment in which chickens can be followed 
up individually and environmental conditions are more easily controlled. 



144

CHAPTER 7

Furthermore, it is advisable to sample more chickens of the same flock to 
improve the power of the study, and get a better insight into the dynamics 
and variation of the microbiota community at flock level. To study these 
microbiota dynamics on flock level, taking boot socks samples, which is a 
method to sample the microbiota composition of the feces of the chickens 
on the litter, could be considered. This is, like cloacal swabs, a minimally 
invasive technique, and has been shown to be a good representative of the 
cecal microbiota community composition and shows less variation between 
samples compared to cloacal swabs (Kers et al., 2019a). 

In Chapters 2-4 16S rRNA gene amplicon sequencing on the V3-V4 
hypervariable regions of the 16S rRNA gene was used. The ~1500 bp 16S rRNA 
gene comprises nine variable regions interspersed throughout the highly 
conserved 16S sequence. This technique is sensitive enough to accurately 
discriminate between different genera and give an approximation of 16S 
diversity, but does not sequence deep enough to capture sufficient sequence 
variation to make the distinction between different species, let alone strains 
(Yarza et al., 2014; Johnson et al., 2019). Consequently, this technique might 
not have been sensitive enough to pick up on small shifts in the microbiota 
after exposure to an outdoor environment. To accurately determine the fate 
of donor microbiota after fecal microbiota transfer, it has been proposed 
that one should track the microbiota at the resolution of strains rather than 
at the level of genera or species as is done with 16S rRNA gene amplicon 
sequencing (Li et al., 2016; Schmidt et al., 2018). In the future, sequencing the 
entire 16S rRNA may be advisable, as it was shown that when a full-length 
sequence with all variable regions was used, it was possible to classify nearly 
all sequences as the correct species (Johnson et al., 2019). 

Furthermore, instead of looking for specific microbiota indicators 
or strains in the chicken gut, a combination with other omics analyses (i.e. 
using the transcriptome, epigenome, metabolome or proteome), that can 
facilitate a more holistic understanding of biological mechanisms, may 
reveal associations between exposure to wild bird feces/pathogens from an 
outdoor range, the response of the host and disease susceptibility, and may 
help pinpoint relevant biomarkers (Hasin et al., 2017; Koh and Hwang, 2019).
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Instead of sampling chickens for contact with wild birds, another 
approach to identify areas or farms at higher risk for AIV introductions 
could be to look for bio-indicators for the presence of wild bird feces or AIVs 
in the immediate environment of the farm. Environmental sampling of feces, 
feathers, water or ice, has shown to be a promising strategy to pick up on AIV 
in the environment and might be used in AIV surveillance, particularly in the 
early detection of HPAI subtypes (Himsworth et al., 2019; Coombe et al., 2020; 
Hood et al., 2021). Also, microbial source tracking (MST) methodologies and 
environmental DNA sampling techniques that are becoming increasingly 
available, and allow for high-throughput analyses, could be considered as 
well to assess the presence of specific wild bird (feces) in the vicinity of farms 
to determine risks for exposure of poultry to these species (Harwood et al., 
2014; Ohad et al., 2016; Ushio et al., 2018).
 

Part 2 – Identification of high risk areas and identification of early 

onset

Exposure to avian influenza viruses
Although the range use of the chickens does not have a measurable effect 
on the microbiome composition of adult layers on flock level, chickens that 
use the range can still pick up AIVs, which poses a risk for AIV incursions 
for outdoor housed poultry flocks. Unlike the commensal microbiota in the 
duck inoculum of the fecal transplant in Chapter 2 (which was checked for 
absence of specific pathogens, i.e. AIV and salmonella), pathogenic microbes 
have aggressive tools for invasion of the host (Beutler, 2016; Li et al., 2019). 
As stocking densities of chickens are generally high in commercial poultry 
farms, only one or a few chickens in a susceptible flock have to become 
infected with AIVs harboured in the environment, for direct transmissions 
between the chickens in the flock to induce a major outbreak in the flock 
(Bouma et al., 2009; Rohani et al., 2009). Indeed, the risk of introduction of 
avian influenza for outdoor-layer farms is six-times higher than for indoor-
layer farms in the Netherlands (Bouwstra et al., 2017). As wild waterfowl 
excrete large amounts of virus in their feces (Webster et al., 1978; França et al., 



146

CHAPTER 7

2012), and AIVs can persist and remain infective in a water rich environment 
for several days (Stallknecht et al., 1990; Brown et al., 2007; Beerens et al., 
2020), the viral load around poultry farms may build-up due to repeated 
visits of AIV infected wild birds. This scenario especially occurs during 
autumn-winter months when conditions for viral survival are optimal due 
to increased rainfall and lower temperatures (Beerens et al., 2020), which 
also explains why the risk of low pathogenic avian influenza (LPAI) and 
HPAI incursions were four times higher in the autumn-winter months than 
in the summer months in the Netherlands (Gonzales et al., 2020), and global 
HPAIV spread among poultry starts to increase in October and peaks in 
February (Awada et al., 2018). 

Prediction of HPAI outbreaks in poultry farms 
As described in the introduction, HPAI epidemics now show a recurrent 
pattern, with great economic and social consequences during each epidemic. 
This is a major concern for the poultry industry worldwide, and underlines 
the need for a better prediction of HPAI outbreak risk. In Chapter 5 we 
showed that wild bird density data of 19 bird species could accurately 
predict HPAI outbreaks on poultry farms in the Netherlands that occurred 
between 2014-2018 with an average precision of 88%. In the most recent 
autumn-winter period of 2020-2021 a new HPAI epidemic ravaged across 
Europe and caused massive wild bird mortality and HPAI outbreaks in 
poultry farms. Many countries, bird species and poultry types were affected 
(Adlhoch et al., 2020). In the Netherlands, ten new HPAI outbreaks occurred 
on poultry farms of different poultry types, since the analyses of Chapter 5 
was made (Table 1). In contrast to previous years, this year’s outbreaks also 
occurred in broiler farms (n = 2, Table 1) and one turkey farm. Other poultry 
types that were affected were laying hens (n = 4), broiler breeders (n = 2) and 
Pekin ducks (n = 1). In Figure 1A the locations of these ten cases are plotted 
in the predicted HPAI risk map as modelled in Chapter 5. In Table 1 these 
new cases are characterized and the predicted outbreak risk using the model 
of Chapter 5 is shown. Surprisingly, case IDs 16, 20 and 21 have very low 
predicted probabilities, and in the risk map one can see that especially cases 
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20 and 21 are outliers and occur in very dark green areas. There are also no 
areas with higher predicted probabilities close to these cases (Figure 1A). 
The situation is different for Case 16, though, which is located in the vicinity 
of the river IJssel, which also has a higher predicted probability. 
 To optimize the predictive power of the model in Chapter 5, we 
used the locations of these ten new outbreaks and added them to the 
dataset of Chapter 5, and ran the model again. In short, we first selected 
four controls from the Netherlands Food and Consumer Product Safety 
Authority (NVWA) database for each new HPAI outbreak according to the 
same poultry type and within a 100 km radius of the case farm. Then, we 
ran a leave-one-group-out random forest on the full model with all 19 bird 
species that were identified in Chapter 5 at their optimal scale, i.e. raw scale, 
2.5 km, 5 km, and 10 km, to include the influence of landscape context. 
Additionally, Sovon, the Dutch Center for Field Ornithology (Nijmegen, the 
Netherlands), provided us with counts of waterbirds within a 2 km radius 
of each infected farm. These waterbird counts were carried out within 7-31 
days after a HPAI positive result on nine out of ten infected farms (Table 1). 
It is important to emphasise that these data were based on a single count. As 
such a snapshot can be influenced by many factors, such as time of the day, 
weather conditions, incidental disturbances (for instance due to activities 
of people, vehicles and other wild animals) etc., these bird counts provide 
only an impression of the situation around the time of the HPAI infection on 
each farm (R. Slaterus, pers. comm). Furthermore, the incursion of the virus 
is likely to have occurred some time before detection and diagnosis of the 
farm, suggesting that the situation may have been different at time of virus 
introduction. 

Inclusion of the 2020-2021 outbreaks to the model results in an 
average precision of 70% (Table 2), which is lower than the average precision 
in the initial model of 88% in Chapter 5. It is shown that in the new model, 
the HPAI prediction in areas around the big rivers are reduced, as well as the 
predictions in the province of Zeeland and other coastal areas (Figure 1A-
1B). Furthermore, there was some change in the order of feature importance 
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Table 1: Overview of all highly pathogenic avian influenza (HPAI) outbreaks on poultry 
farms in the Netherlands between 2014-2020. For each case ID the poultry type is indicated 
and in which year(s) the farm had a confirmed HPAI outbreak. For the cases in the autumn-
winter of 2020, the predicted probability as modelled by the model used in Chapter 5, are 
given and the days between a confirmed HPAI infection and the waterbird count which was 
carried out by Sovon.
Case 
ID

Poultry type Predicted 
probability

2014
H5N8

2016 
H5N8

2017 
H5N6

2020 
H5N8

Days between 
confirmed 
HPAI and 
bird count

1 Layer x x
2 Layer 0.785 x x 9
3 Layer x
4 Pekin duck x x x
5 Broiler Breeder x
6 Pekin duck x x
7 Pekin duck x
8 Pekin duck x
9 Layer x
10 Layer x
11 Broiler Breeder x
12 Pekin duck x
13 Broiler Breeder 0.611 x 31
14 Layer 0.598 x 24
15 Layer 0.698 x 19
16 Pekin duck 0.059 x 13
17 Broiler 0.657 x 11
18 Broiler 0.571 x 7
19 Broiler Breeder 0.751 x 7
20 Turkey 0.002 x 8
21 Layer 0.000 x

in the 19 bird species that were identified in Chapter 5. The mute swan 
(Cygnus olor) however, remains the species of which the distribution across 
the Netherlands contributes most to the prediction of the model (Figure 2). 
Of the birds with the highest feature importance, the mallard (n = 9), Eurasian 
wigeon (Mareca penelope, n = 8) and mute swan (n = 7) were observed around 
nine, eight, and seven of the infected poultry farms (Figure 3). Northern 
shoveler (Spatula clypeata, n = 2), Tufted duck (Aythya fuligula, n = 4) and 
Eurasian curlew (Numenius arquata, n = 5) were also observed within the 2 km 
radius of several poultry farms, but around less farms. Furthermore, several 
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gull and heron species were also observed often within the 2 km radius 
of the infected farms. Although the distribution of the latter birds in the 
Netherlands might not contribute a lot in the prediction of HPAI risk across 
the Netherlands (Figure 2), they may still play a role in the dissemination 
of the virus in the environment around the farm. AIV infections among 
wild bird species depend on a  complex multispecies system, influenced by 
ecosystem properties, bird species diversity and community structure, the 
specific circulating HPAIV strain(s), and the clinical impact it has among the 
different hosts species (Caron et al., 2017; Huang et al., 2019; Verhagen et al., 
2021). Bridge hosts can be an important ‘missing link’ that bring AIV from 
the habitat of the infected waterfowl (the maintenance hosts) closer to the 
poultry farm, and are likely to be common peri-domestic bird species that 
are widely distributed over the Netherlands (Caron et al., 2015). Therefore, 
we have to be careful when drawing conclusions on the exact roles of specific 
wild bird species in the epidemiological processes at the wild bird/domestic 
bird interface, or on that of other bird species not included in this study. 
 In the new model, case ID 16, 20 and 21 still have low predicted 
probabilities and lie in dark green areas (Figure 1B). However, especially 
around case ID 20, a lot of waterbirds were observed by Sovon during 
the count shortly (8 days) after the outbreak. In the direct vicinity of this 
farm, a wetland area was created in the past two years, aimed at attracting 
waterbirds. This might explain why high number of waterbirds were 
reported by Sovon. For case ID 21, Sovon did not perform a bird count. 
However, four days before the notification of the HPAI infection in case ID 
21, a 9-day frost period had passed the Netherlands, freezing a lot of waters 
and ponds. A small river flows close to this farm (at approximately 2 km), 
and although the river does not usually attract a lot of waterbirds, during 
the frost period ice holes in this river might have attracted more waterbird 
than usual because other water sources were frozen (Reperant et al., 2010). 
Although the latter could not be confirmed as we did not have bird count 
data of that location at the time of the frost period, the local situations at both 
farms underline the limitations of the model which was used to make the risk 
map. In the model, we used the spatial distribution of wild birds of Sovon 
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which was a long-term average of bird count data per 1 by 1 km square, 
collected at the set moments each winter between 2012/2013 – 2014/2015. 
Although the average bird counts over several years and months gives a 
robust estimate of the number of birds counted per square, more recent 
temporal changes in wild bird densities due to either nature development 
or for instance, weather influences, are not accounted for. Despite these 
limitations, we show with the inclusion of the ten new outbreak cases in the 
Netherlands that the model gives a more specific identification of the most 
important high risk areas. Although we also demonstrate that outbreaks 
can still occur in low risk areas, high risk areas should be considered as 
important targets for surveillance and preventive measures against HPAIV 
introduction, and may assist in decision making on locations for new poultry 
farms. To account for the local fluctuations over time that can influence HPAI 
outbreak risk, like changes in bird densities, circulating AIV virus strains 
and weather conditions, it is advised to include temporal data, for example 
data concerning specific flyway migration patterns and surveillance data on 
AIV infected wild birds and poultry farms, in the model (Astill et al., 2018). 
Ideally, the model should be able to incorporate these data real-time in order 
for rapid and accurate identification of areas that are at risk. 

Table 3: Classification metrics optimal classification thresholds of predicted HPAI risk (Figure 
1). A precision-recall curve was generated to determine area under the precision-recall-curve 
known as average precision, which was 70%. Accuracy is the ratio of correctly predicted 
observation to the total observations, whereas the F1 score is a weighted averaged of precision 
and recall and gives a measure of the incorrectly classified cases.

Classification threshold Recall Precision F1 Accuracy
0.42 0.89 0.74 0.81 0.91
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Figure 2: Scaled importance of 19 most important features that were used for the final leave-
one-group-out random forest (LoGo random forest). Feature importance was standardized: 
importance/mean(importance), so that the average feature importance value is 1. The most 
important scale of each feature was used in the final LoGo random forest. The boxplots 
indicate the variation in the feature importance across the 21 LoGo random forest runs. 
Colours of the boxplots indicate the spatial scale with the highest feature importance for each 
variable that was used for smoothing of the data.
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Figure 3: Frequency count of how often specific waterbird species were observed within 
a 2 km radius around an infected poultry farm in the autumn-winter period of 2020-2021. 
Waterbird counts were executed by Sovon on nine out of ten infected poultry farms within 
7-31 days after confirmed HPAI infection on the farm. 
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Using clinical signs and mortality to detect outbreaks
Beerens et al. (2020) compared the pathogenicity of the three recent HPAI 
viruses involved in outbreaks in the Netherlands, i.e. H5N8-2014, H5N8-
2016 and H5N6 2017, for chickens, Pekin ducks and Eurasian wigeons. They 
showed that all virus types had high intravenous pathogenicity indexes 
(IVPI values, ranges from 0, no pathogenicity, to 3.0, highest pathogenicity) 
for chickens, ranging between 2.7 – 2.8. Furthermore, all chickens died 
within two to three days after infection, and only showed some listlessness 
and ruffled feathers (Beerens et al., 2020). This is in line with the findings in 
Chapter 6, where we found that the mortality ratio’s (MR) in most affected 
chicken farms had already increased prior to the observation of general 
clinical signs by the farmer, indicating that the chickens died a sudden death, 
without showing a lot of symptoms prior to death. This is also corroborated 
by data of the ten new outbreak cases in 2020-2021. Farmers mostly reported 
general clinical signs (including sudden death) prior to notification, and the 
MR increased either before or simultaneously with the onset of clinical sign 
(Figure 4). Moreover, the MR showed a very steep increase on the day of 
notification, reaching values above 30 (Figure 5). 

In contrast, Beerens et al. (2020) reported more variation in virulence 
of different HPAI viruses strains for Pekin ducks and a wider range in 
IVPI, ranging between 0 (no ducks died) and 1.23. There was also more 
variation in the clinical signs observed compared to the infected chickens, 
and reported signs were listlessness, lethargy, ruffled feathers, sneezing, 
loss of appetite, nasal and ocular discharge, watery eyes, conjunctivitis 
and neurological signs (Beerens et al., 2020). This suggests that there was a 
difference in pathogenicity for Pekin ducks between the different virus types 
circulating every year. The broader scale of clinical signs in Pekin ducks is 
in line with our findings in Chapter 6, in which particularly the presence 
of neurological signs was more pronounced, and is corroborated with the 
broad range of clinical signs reported in the HPAI outbreak on a Pekin duck 
farm in 2020 (Figure 4). Furthermore, unlike in chicken farms, the mortality 
ratio in the Pekin duck farms was only increased in three out of seven 
affected farms between 2014-2018 prior to the first observation of clinical 
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symptoms, whereas in the other four farms, clinical signs were observed 1-2 
days before or on the same day as the increase in mortality ratio (Chapter 
6). In the outbreak of 2020, it is clear that the MR in the affected Pekin duck 
farm passed the reporting threshold of 2.9 several days prior to notification, 
although the increase in MR seems to be less steep compared to the MR in 
layers. Therefore, as the virulence of HPAIVs in Pekin duck variates more 
between strains (Beerens et al., 2020; Vergne et al., 2020) and the MR might 
be less affected, the observation of clinical signs may provide an additional 
indication for farmers and veterinarians in combination with MR and 
prompt them to notifying the disease.

In the HPAI epidemic in the autumn-winter period of 2020-2021, 
the first cases of HPAI H5N8 on two broiler farms and a turkey farm were 
reported in the Netherlands (Table 1). The clinical signs reported in the days 
prior to notification in the broiler farms vary more compared to clinical signs 
reported in layers, and are more similar to those reported in Pekin ducks 
(Figure 4). Remarkably, there was also a more insidious course of infection, 
where the MR passed the threshold already several days prior to infection, 
but the death rate did not increase as steeply as reported in laying hen farms 
(Figure 5). For the turkey farm the clinical signs were more in line with 
previous reports of HPAI infection in turkey flocks (Burcham et al., 2017), 
and were similar to the clinical signs reported in layer farms (Figure 4). The 
farmer also reported sudden death in the animals, although this cannot 
be shown in the graph with the MR (Figure 5), likely because the farmer 
reported the outbreak at a very early stage due to sudden increase in deaths.  

The above data confirm the finding in Chapter 6 that the MR threshold 
is a sensitive threshold to detect HPAI outbreaks at an early stage of infection 
of poultry farms. As this approach has mostly been developed based on 
data from layers, future outbreak data in other poultry species should be 
incorporated for further validation. For Pekin duck and broiler farms (given 
the limited data), it is shown that it remains vital to consistently monitor 
mortality, but also monitor clinical signs carefully, as the course of infection 
seems to be less severe compared to affected layer flocks and a combination 
of MR and clinical symptoms is needed to make an early diagnosis. 
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Figure 4: Clinical signs observed by the farmer in 10 new HPAI cases in the autumn-winter 
period of 2020-2021 an exceedance of daily mortality (>0.5%) and mortality ratio (MR) 
thresholds in the 5 day period prior to notification. Clinical signs are categorized by organ 
system. The symbol behind each case ID depicts the poultry type affected.  



157

General discussion

7

 

Figure 5: Calculated mortality ratio’s in the 20 day period prior to highly pathogenic avian 
influenza (HPAI) notification in 2020-2021 for the four chicken farms (top), of which three 
layer and one broiler breeder farms, and four Pekin duck, broiler or turkey farms (bottom), 
shown per case-ID as mentioned in Table 1. The mortality ratio (MR) threshold of 2.9 is shown 
in red. Cut-off on the Y-axis was set to 25 to better visualize the behaviour of the MR in days 
prior to notification. 

CONCLUSIONS 

Risk assessment and risk management strategies to inform decisions on 
preventive and control measures are important for control of AIV infections 
in poultry around the globe. For this purpose, tools for prediction and early 
detection are needed. In this thesis, several strategies were evaluated that 
could be used for this purpose. 
 The first strategy was the use of the gut microbiota of chickens as 
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a proxy for contact with wild birds. Although it was shown that the gut 
microbiota are an unsuitable proxy to identify farms with increased risk 
of exposure to AIVs, we did show that the adult microbiota community in 
chickens is a highly complex ecosystem, which is rather stable over time 
and resistant to external perturbations. This is important knowledge, as it 
gives insight into the dynamics of the microbiota dynamics in healthy layers 
and future studies should use this knowledge when looking for ways to 
modulate the microbiota of chickens in favour of health and production. 

The second strategy was the use of wild bird density data to spatially 
model HPAI outbreak risk across the Netherlands on poultry farms. It was 
shown that wild bird density data of HPAI high risk bird species could 
successfully be used for this purpose. Like the gut microbiota community, 
AIV infection among wild birds represent a complex multispecies system 
where we cannot designate one species as the most important contributor. 
However, we did identify several species of which the dispersal across the 
Netherlands robustly contributed most to the predictive model, indicating 
that these species might be important targets for future surveillance. 
Notably, the generated risk map gives insight into high risk areas for primary 
introductions, and these geographical areas should also be considered as 
important targets for surveillance and preventive measures against HPAIV 
introduction. Including the additional HPAI outbreaks of 2020-2021 resulted 
in a more robust prediction of geographical areas which have a high HPAI 
outbreak risk, and future outbreak data should be used to further improve 
and validate the model. Nevertheless, the risk map in its current form may 
already be utilized to inform decision making processes for policymakers, 
for instance regarding locations for new poultry farms, as well as nature 
development aimed at attracting more waterfowl in poultry dense areas 
which could unintentionally increase HPAI infection risks. 

Thirdly, the mortality ratio, in combination with clinical signs, was 
shown to be a sensitive tool to detect HPAI infection on poultry farms at an 
early stage. As this approach has mostly been developed based on data from 
layers, and needs further validation for more poultry species, it is already 
an important tool for poultry farmers and veterinarians to notify suspected 
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HPAI infection to the authorities at an early stage. This will facilitate 
quick implementation of appropriate measures, e.g. culling and transport 
restraints, to prevent further spread of HPAIVs to other farms and reduce 
zoonotic risks. 

As the HPAI outbreaks in the Netherlands from 2014 onwards are 
mostly considered primary introductions in poultry farms, future research 
should be aimed at further improvements of the prediction of HPAI risks 
for poultry farms. Therefore, it remains worthwhile to investigate other 
approaches, like multi-omics or environmental sampling, which could help 
identify bio-indicators for exposure of poultry to wild birds or pathogens in 
order to improve surveillance strategies and risk assessment. Also, to achieve 
a more accurate identification of areas at risk of HPAI outbreaks, temporal 
data on e.g. AIV surveillance in wild birds, flyway migration patterns and 
detections of AIV outbreaks on poultry farms should be included to the 
current model in real-time to further improve HPAI prediction based on 
current events. 
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Outbreaks of avian influenza are a major concern for the poultry industry, 
as well as for society. It is therefore important to prevent outbreaks as much 
as possible, and to detect outbreaks at an early stage when they do occur 
to prevent between-farm spread. Aquatic birds, especially wild waterfowl, 
are the natural reservoir of avian influenza viruses (AIV). Infected birds 
can excrete high amounts of AIVs in their feces and AIVs can survive in 
the environment for a long time under favourable conditions. Other species 
can become infected with AIVs via oral ingestion of infected wild bird 
feces directly or indirectly via an infected environment. Several studies 
have indicated that for laying hens with access to an outdoor range, the 
risk of AIV introduction is higher compared to indoor housed poultry, but 
outbreaks in both indoor and outdoor housed poultry occur. The main aim 
of the research described in this thesis was to evaluate tools that can be used 
to predict and detect avian influenza outbreaks on poultry farms in order to 
reduce risks of AIV introductions and prevent further spread to other farms 
via appropriate control measures.
 The first part of the thesis explored if exposure of layers to an outdoor 
environment results in detectable changes in the gut microbiota community, 
and if these changes might be used as a proxy for contact of layers with wild 
birds. In Chapter 2, as a proof of principle, laying hens were inoculated with 
wild duck feces to determine if bacteria in the feces of wild ducks could be 
transmitted to laying hens. Only limited changes in the bacterial community 
in the feces of the laying hens were found after the inoculation, indicating 
that the bacterial community of adult laying hens is rather stable. As the 
layers in the experiments of Chapter 2 were only inoculated once with wild 
duck feces and repeated exposure to microbiota from the environment 
may have different effects, a cross-sectional field study was performed in 
Chapter 3. The aim of this study was to investigate the differences between 
the bacterial community in the feces of laying hens with and without access 
to an outdoor range. This cross-sectional field study showed that exposure 
to an outdoor environment was responsible for a relatively small proportion 
of the variation in the bacterial community of the laying hens. To study the 
effect of access to an outdoor range over time, a longitudinal field study was 
performed in Chapter 4 in which two layer flocks got access to the outdoor 
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range for the first time and two layer flocks remained inside. All flocks were 
followed-up over a period of 16 weeks. Results showed that the bacterial 
community in these adult layers was rather stable over time, even after a 
sudden environmental change. Furthermore, the dynamics in the bacterial 
community over time were unique to each layer flock and a strong influence 
of poultry house on the bacterial community composition of these layers was 
found. The results of the first part of this thesis illustrate that the community 
of gut bacteria in healthy, adult laying hens reaches a stable equilibrium, 
which is relatively resistant to external perturbations. Although the bacterial 
community cannot be used as a proxy for contact with (feces of) wild birds, 
this research gives valuable insights into the healthy dynamics of gut bacteria 
in the adult layer. 
 The second part of the thesis focused on the identification of highly 
pathogenic avian influenza (HPAI) high risk areas using wild bird density 
data and the timely diagnosis of HPAI outbreaks on poultry farms. In Chapter 
5, density data of AIV high risk bird species and land cover variables were 
used to spatially model the HPAI outbreak risk across the Netherlands using 
data of HPAI outbreaks on poultry farms that occurred between 2014-2018. 
The HPAI outbreak risk in the Netherlands was accurately predicted using 
a random forest model. It was shown that the densities of several waterbird 
species were important contributors to model the HPAI outbreak risk. The 
risk map that was generated with the model, gave an accurate prediction of 
the previous HPAI outbreaks. The identification of high risk HPAI areas is 
an important tool to develop country or region-specific control programs for 
HPAI. These type of models and risk maps can help the fight against these 
recurrent outbreaks worldwide. In addition to identification of high risk 
areas for HPAI outbreaks in poultry farms, the early detection of a possible 
outbreak on a poultry farms is essential to prevent spread to other farms. In 
Chapter 6, mortality data and clinical signs of HPAI infected poultry farms 
between 2014-2018 were analysed for the early diagnosis of HPAI outbreaks. 
This study showed that the use of an objective mortality ratio with a set 
threshold could be a reliable parameter to detect HPAI virus infection at an 
early stage on chicken and Pekin duck farms. The use of a mortality ratio may 
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perform even better when complemented with detection of clinical signs in 
poultry farms, provided farmers are well trained to notice them. Further 
validation of the mortality ratio in Pekin ducks and other poultry species is 
needed, but these results should already encourage farmers, veterinarians 
and veterinary institutes in other countries to monitor and register mortality 
on farms more rigorously, because a poultry-specific mortality ratio could 
serve as an important indicator in HPAI poultry surveillance programs.
 In Chapter 7, the main results of the thesis were discussed, additional 
data of HPAI outbreaks which occurred in 2020-2021 were included in 
previous analyses and recommendations for further research are given. 
Although investigating the bacterial community of layers did not result in a 
proxy for contact with wild birds, it remains worthwhile to investigate other 
approaches, like multi-omics or environmental sampling, which could help 
identify bio-indicators for exposure of poultry to wild birds or pathogens in 
order to improve surveillance strategies and risk assessment. Inclusion of the 
2020-2021 outbreak data to the random forest model of Chapter 5, resulted 
in a more robust prediction of geographical areas which have a high HPAI 
outbreak risk. To achieve an even more accurate identification of areas at 
risk of HPAI outbreaks based on current events, real-time temporal data on 
e.g. AIV surveillance in wild birds, flyway migration patterns and detections 
of AIV outbreaks on poultry farms should be included to the current 
model. Nevertheless, the risk map in its current form may already support 
prioritization of areas for increased surveillance and biosecurity, and may 
be used to formulate recommendations for the establishment of new poultry 
farms to reduce the risk of HPAI outbreaks. Moreover, the evaluation of data 
of the 2020-2021 HPAI outbreaks underline that the use of a mortality ratio 
is a sensitive tool for the early detection and notification of suspected HPAI 
outbreaks on different types of poultry farms. In summary, the results of this 
thesis give leads for future research into the contact between layers and wild 
birds, and has resulted in an important first step towards mapping the risk 
of HPAI outbreaks across the Netherlands. Furthermore, this thesis provides 
useful criteria for the early detection of HPAI outbreaks, and together with 
the developed risk map provides important tools for the fight against avian 
flu globally. 
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Uitbraken van vogelgriep zijn een groot risico voor de pluimvee industrie 
en de samenleving. Het is daarom belangrijk om vogelgriepuitbraken te 
voorkomen, en wanneer deze toch optreden, ze zo spoedig mogelijk op te 
sporen zodat verdere tussenbedrijf transmissie voorkomen kan worden. 
Wilde watervogels zijn een natuurlijk reservoir voor vogelgriepvirussen. 
Geïnfecteerde watervogels scheidden grote hoeveelheden virus uit in 
de mest en deze virussen kunnen, onder gunstige omstandigheden, lang 
overleven in de omgeving. Op deze manier kunnen vervolgens andere dieren 
direct besmet raken via orale opname van geïnfecteerde wilde vogelmest 
of indirect via opname van virusmateriaal uit een geïnfecteerde omgeving. 
Verschillende studies hebben aangetoond dat de kans om besmet te raken 
met vogelgriep groter is voor leghennenbedrijven met uitloop dan voor 
leghennenbedrijven zonder uitloop, maar vogelgriepuitbraken komen voor 
bij pluimveebedrijven met en zonder uitloop. Het doel van het onderzoek, 
zoals gepresenteerd in dit proefschrift, was om verschillende methoden te 
evalueren die ingezet kunnen worden voor het voorspellen en opsporen 
van vogelgriepuitbraken op pluimveebedrijven. Hierdoor kan het risico op 
uitbraken gereduceerd worden en verdere verspreiding voorkomen worden 
door het tijdig nemen van passende maatregelen. 
 In het eerste deel van dit proefschrift is onderzocht of leghennen die 
toegang hebben tot een uitloop een andere samenstelling van darmbacteriën 
hebben dan leghennen die geen uitloop hebben, en of de verschillen gebruikt 
kunnen worden als een indicator voor contact van leghennen met wilde 
vogels. In Hoofdstuk 2 is bij leghennen daarom, handmatig via de bek, mest 
van wilde eenden toegediend om vast te stellen of bacteriën uit de mest van 
de wilde eenden overgedragen kunnen worden op de leghennen. Er werden 
slechts beperkte effecten gemeten op de samenstelling van darmbacteriën 
van de leghennen, wat erop wijst dat de samenstelling van bacteriën in 
de darm van de volwassen kippen relatief stabiel is en ongevoelig is voor 
verstoringen van buitenaf. Echter, de leghennen in dit experiment werden 
slechts eenmalig blootgesteld aan wilde vogelmest, terwijl herhaaldelijke 
blootstelling mogelijk wel een effect zou kunnen hebben. Daarom is in 
Hoofdstuk 3 een cross-sectionele veldstudie uitgevoerd waarbij is onderzocht 
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of de samenstelling van darmbacteriën verschilt tussen kippen die toegang 
hebben tot een uitloop en kippen die binnen blijven. Uit deze veldstudie is 
gebleken dat slechts een klein deel van de variatie in darmbacteriën verklaard 
kon worden door het hebben van toegang tot de uitloop. De meeste variatie 
werd bepaald door de plek waar de kippen werden gehuisvest, namelijk 
de pluimveestal. Om het effect van blootstelling aan een uitloop over de 
tijd te bestuderen, werd een longitudinale studie uitgevoerd in Hoofdstuk 
4. In deze studie zijn leghennen van twee pluimveestallen die voor het 
eerst toegang kregen tot een uitloop en hennen van twee pluimveestallen 
waar de kippen binnen bleven, vervolgd over een periode van 16 weken. 
Resultaten lieten zien dat ook hier de samenstelling van het darmbacteriën 
van de volwassen kippen relatief stabiel was over de tijd, zelfs na een 
plotselinge blootstelling aan een nieuwe omgeving (de uitloop). Daarnaast 
bleek dat de dynamiek in de samenstelling van de darmbacteriën over de 
tijd uniek was per pluimveestal. In lijn met de uitkomsten van de eerdere 
veldstudie verklaarde de pluimveestal het meest van de variatie over de tijd. 
Samenvattend laten de resultaten uit deze drie hoofdstukken zien dat de 
bacteriepopulatie van volwassen, gezonde leghennen relatief stabiel is en 
dat deze populatie goed in staat is om het evenwicht in samenstelling vast te 
houden en daarmee resistent is tegen verstoringen van buitenaf. Hoewel we 
de samenstelling van darmbacteriën niet kunnen gebruiken als maat voor 
de blootstelling van kippen aan (mest van) wilde vogels, heeft dit onderzoek 
wel waardevolle inzichten gegeven over de gezonde samenstelling van 
darmbacteriën in volwassen kippen.
 Het tweede deel van dit proefschrift richtte zich op het gebruik van 
gegevens van wilde vogeldichtheden voor het identificeren van gebieden 
met verhoogd risico op uitbraken met hoog-pathogene vogelgriepvirussen 
(HPAI) en het tijdig opsporen van deze vogelgriepuitbraken op 
pluimveebedrijven. In Hoofdstuk 5 is een case-control studie uitgevoerd met 
locaties van HPAI uitbraken tussen 2014-2018. Hierbij is gekeken of gegevens 
over dichtheden van wilde vogels die beschouwd worden als ‘risicosoorten’ 
voor vogelgriep en kenmerken van landbedekking gebruikt kunnen worden 
om het risico op HPAI uitbraken over geheel Nederland in kaart te brengen. 
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De dichtheden van verschillende watervogelsoorten bleken belangrijk in 
het voorspellen van het risico op HPAI uitbraken. De risicokaart die werd 
gemaakt met behulp van het model gaf een nauwkeurige voorspelling 
van de locaties van eerdere HPAI uitbraken. Het identificeren van hoog-
risicogebieden is een belangrijk hulpmiddel voor het ontwikkelen van land- 
en regiospecifieke maatregelen. Dit soort modellen en risicokaarten kunnen 
helpen bij de bestrijding van de steeds terugkerende vogelgriepuitbraken 
over de hele wereld. Daarnaast is het tijdig vaststellen van een mogelijke 
vogelgriepuitbraak op pluimveebedrijven van groot belang om verdere 
verspreiding naar andere bedrijven te voorkomen. In Hoofdstuk 6 zijn 
daarom gegevens van sterfte en van waargenomen klinische verschijnselen 
van besmette HPAI pluimveebedrijven tussen 2014-2018 geanalyseerd. 
Hieruit is gebleken dat het gebruik van een objectieve sterfteratio met een 
vaste drempelwaarde een betrouwbaar criterium kan zijn voor het tijdig 
opsporen van HPAI uitbraken op zowel kippen- als vleeseendenbedrijven. 
Het gebruik van de sterfteratio is mogelijk nog beter wanneer deze 
gecombineerd wordt met het waarnemen van klinische verschijnselen die 
passen bij HPAI uitbraken, gegeven dat de veehouders goed geïnformeerd 
zijn over de symptomen om deze goed en tijdig te kunnen waarnemen. 
Verder onderzoek naar het gebruik van de sterfteratio, bijvoorbeeld voor het 
aanpassen van de meldcriteria bij verdenking van HPAI uitbraken, is met 
name noodzakelijk in vleeseenden en andere pluimveesoorten. De resultaten 
tot nu toe geven evenwel al duidelijk aan dat registratie en monitoring van 
sterfte op pluimveebedrijven een belangrijke methode is voor veehouders, 
dierenartsen en veterinaire instituten om HPAI uitbraken tijdig te kunnen 
opsporen. 

In hoofdstuk 7 worden de belangrijkste resultaten van het proefschrift 
bediscussieerd en aanvullende gegevens van HPAI uitbraken uit 2020-
2021 toegevoegd aan eerdere analyses en worden suggesties gedaan voor 
verder onderzoek. Hoewel het onderzoek naar de samenstelling van 
darmbacteriën van leghennen niet heeft geleid tot een indicator voor het 
contact met wilde vogels, heeft dit onderzoek wel belangrijke inzichten 
gegeven voor de pluimvee-industrie. Daarnaast blijft het de moeite waard 
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om andere aanpakken te onderzoeken, zoals bijvoorbeeld multi-omics 
technieken en het onderzoeken van omgevingsmonsters met nieuwe 
moleculaire technieken, die kunnen bijdragen aan het identificeren van bio-
markers voor de blootstelling van pluimvee aan wilde vogels en mogelijke 
ziekteverwekkers. De aanvullende analyses van het random forest model 
van Hoofdstuk 5 met de gegevens van HPAI uitbraken in 2020-2021 laten een 
meer robuuste voorspelling van geografische gebieden met een verhoogd 
risico op vogelgriepuitbraken in Nederland zien. Om de voorspelling nog 
nauwkeuriger te maken en aan te passen aan specifieke omstandigheden 
in de tijd, zou het huidige model uitgebreid kunnen worden met real-time 
temporele data, zoals data van vogelgriep surveillance in wilde vogels, 
migratiepatronen van wilde watervogels en data van vogelgriepuitbraken 
op pluimveebedrijven. Desalniettemin kan de huidige risicokaart al 
helpen bij het stellen van prioriteiten voor gebieden voor monitoring 
en bioveiligheidsmaatregelen en bij het formuleren van aanbevelingen 
voor de vestiging van nieuwe pluimveebedrijven om het risico op HPAI 
uitbraken te verminderen. Daarnaast heeft de evaluatie van de gegevens 
van de HPAI uitbraken van 2020-2021 onderstreept dat het gebruik van een 
sterfteratio een gevoelig meldcriterium kan zijn voor de vroege detectie 
van vogelgriepuitbraken op verschillende typen pluimveebedrijven. 
Samenvattend geven de resultaten van dit proefschrift aanknopingspunten 
voor verder onderzoek naar het contact tussen wilde vogels en pluimvee 
en levert het een belangrijke eerste stap voor het in kaart brengen van het 
hoog-pathogene vogelgrieprisico over Nederland. Bovendien biedt dit 
proefschrift bruikbare criteria voor de vroege detectie van HPAI uitbraken, 
en biedt het samen met de ontwikkelde risicokaart belangrijke methoden 
voor de wereldwijde bestrijding van vogelgriep.
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