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Introduction
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1.1 Imaging and inverse problems

Imaging is the art of making hidden objects visible. Over the last century,
technological innovation has made it possible to visualize the inside of the human
body and the structure of the earth. One can think of ultrasound, Magnetic
Resonance Imaging (MRI), Computerized Tomography (CT), Positron Emission
Tomography (PET), but also maps of the layers of the subsurface via seismic
imaging. Of course, these images are not images like the ones a camera makes, but
rather, these are images in the sense that they reflect properties of a material,
which can be visualized. The common denominator among these imaging methods
is that the object of interest is not accessible, and that it is hidden beneath some
other structure that can or should not be destructed. Indeed, one can imagine that
it is undesirable to take a 3-month old baby out of the womb to see what it looks
like, or to cut open a limb to check for a broken bone. The question then is, how an
image is obtained. This is done by indirect measurements generated by some
source. For example, in MRI one measures the energy released by hydrogen
protons different tissues after they have been manipulated by a strong magnetic
field. In PET, a tracer is injected into the body that leads to radiation that can be
measured. Another popular method is wavefield imaging, where a sound source
generates waves that penetrate the object and interact with it. The waves either
penetrate the object or reflect from some material, which changes its speed and
amplitude. By measuring the waves coming out of the object one can determine the
material properties inside the object and form an image. Another example from
geosciences is gravity surveying. Here, an unknown mass distribution in the earth
generates a gravity field that can be measured at the surface. The gravity
measurements can then be used to derive various rock properties in the subsurface.

Determining the material properties inside the object is very hard because we can
only measure the radiation or waves outside of the object. However, if we would
have access to measurements that penetrate the object from all sides, the image
would reflect the actual material properties quite well. Unfortunately, the
acquisition geometry is generally limited by constraints. In CT for example, the
X-rays can have a damaging effect on the patient [19, 14]. Similarly, PET scans use
a radiative substance inside the patient’s body that is potentially damaging [1]. For
CT, this means that the acquisition time is limited, and that we cannot make too
many measurements. In PET, the data are very noisy due to scattering effects and
so called random events. In case of seismic acquisition and seismology, one only
has access to data from one side, as we do not have the luxury to place sources and
receivers around the entire globe. In addition to these difficulties, all data are noisy,
either due to imperfect measurements or due to events in the data that cannot be
explained due to imperfect modeling. To overcome acquisition and modeling
limitations, we have to resort to mathematics to provide us with the tools to make
the image.

Consider now the following scenario. Given, for example, the structure of a brain
or a detailed map of the subsurface, how would the wave penetrating the brain or
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the subsurface behave? This problem is much better understood than the problem
of determining an object from the measurements of the wave, and is called the
forward problem. The brain or the subsurface are the input for the model, or
operator, which determines how the wave behaves given a certain input, which
produces data. Forward problems are problems for which we can explicitly form an
operator mapping input to data. For example, we can explicitly form (at least
approximately) the equations based on physics that govern the behavior of the
wave in a certain medium. There is a sharp distinction that we have to make at this
point, between linear and non-linear problems. In linear problems, like CT, the
operator depends linearly on the input, whereas in non-linear problems, like
ultrasound and seismic imaging, the operator depends non-linearly on the
wavespeed.

In this thesis, we are concerned with linear inverse problems, which may be written
by the mathematical formula

Ax = b, (1.1)

where A is the model describing the physics, x is the input, and b are the
measurements. The inverse problem is now to determine x, given b, given by the
mathematical formula

x = A†b, (1.2)

where the operator A† denotes the operator that gives the input based on the
measurements. Unfortunately, in inverse problems, this operator often does not
exist, and if it does, its form may not be known, or it may be too expensive to
compute. To guarantee a solution, three conditions have to be satisfied, called the
Hadamard conditions [47]:

1. A solution has to exist,
2. The solution has to be unique,
3. The solution has to be stable with respect to perturbations in the data.

If all of these conditions are satisfied the problem is called well-posed. If one of the
conditions is not satisfied, the problem is called ill-posed. Generally, forward
problems are well-posed, whereas their associated inverse problems are ill-posed.

So if we cannot construct the operator A†, how do we obtain x given b? This can be
done by solving

min
x
‖Ax− b‖, (1.3)

where ‖ · ‖ is a measure of distance between Ax and b. If the measurements are
ideal, i.e. no noise, then this distance is, ideally, 0. However, if no solution exists,
we have to be satisfied with the minimal distance between Ax and b. Problems of
the form (1.3) are called optimization problems. These problems are solved
iteratively: at every step we try to get Ax as close to b as possible.

If the problem is ill-posed, the optimization problem (1.3) may not yield the
desired solution. Therefore, we have to resort to prior knowledge about the
solution to steer the solution in the right direction. This yields an optimization
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Figure 1.1: Schematic depiction of the gravity surveying problem.

problem of the form
min
x
‖Ax− b‖+R(Lx), (1.4)

where R encodes the prior knowledge of Lx, and L is some distinct feature of the
solution. The regularization R(·) and the operator L depend on the application at
hand. Below we will show some examples that reflect choices forR(·) and L that are
typical in inverse problems. For each example, the regularizer and the operator L
encode specific prior information about the solution. All the examples are simplified
1D problems.

Gravity surveying
Gravity surveying is a method to derive properties of the subsurface by measuring
the gravity field produced by various rocks, sedimentary and other material [30].
Figure (1.1) shows a schematic setup of this problem. Materials in the earth have
a certain density and mass distribution which produce a gravity field at the surface.
This gravity field is measured using an accelerometer. Generating the gravity field
is the forward problem. On the other hand, deriving the mass distribution in the
subsurface given the measured gravity field at the surface, is the inverse problem.
Figure (1.2) shows an example of a possible mass distribution and the reconstruction
using equation (1.2). The reconstruction does not resemble the true mass density
at all. The reconstruction has very large amplitudes, which is due to the fact that
the third Hadamard condition is violated, namely that the reconstruction is stable.
Small errors in the data yield very large errors in the reconstruction. Therefore, we
can add a penalty of the form R(x) = λ‖x‖22 = λ

∑n
i=1 x

2
i . This is a measure of

the length of x. This forces the amplitude of the reconstruction to be small, and the
result can be seen from figure (1.2c). Note that this type of regularization does not
provide any structural information about the solution, other than that the solution
should not blow up.

Traveltime tomography
Traveltime tomography is a process where the slowness, which is the inverse of
velocity, is determined from the time it takes waves to travel to only a few reflectors
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(c) Reconstruction using
the regularization λ‖x‖22.

Figure 1.2: The figure on the left shows the true mass density, the figure in the middle
shows the naive reconstruction and the figure on the right shows the reconstruction using
the regularization λ‖x‖22.
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(b) Measured traveltimes.

Figure 1.3

located at different known depths. We show an example of a possible slowness
profile in figure (1.3a) with associated traveltimes in figure (1.3b). The naïve
reconstruction by using equation (1.3) yields the slowness profile shown in figure
(1.4a). Although the reconstruction is far from perfect, the residual is actually 0.
Due to the fact that we only have the traveltimes from a limited number of
reflectors, we cannot determine the correct solution. In this case, condition 2 of the
Hadamard conditions is violated, namely that the solution is not unique.

What we can observe is that the velocity profile is smooth, which is also a valid
a-priori assumption. We can include this as prior information using the penalty
R(Lx) = λ‖∇x‖22, i.e., we want the change in slowness as a function of depth to be
small. This yields the reconstruction shown in figure (1.4b).

Spiky deconvolution

An image of the subsurface is obtained by sending in a pulse and deriving physical
properties, like the acoustic impedance, from the reflected signal, the measurement.
The reflectivity of the subsurface represents jumps in the velocity. We show an
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(a) Naive reconstruction. The
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Figure 1.4

example of a subsurface model and the associated reflectivity in figure (1.5). The
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Figure 1.5: The left panel shows a schematic drawing of the subsurface, where the different
colors represent different layers. The right figure shows the associated reflectivity.

reflected signal may be seen as a sum of the effects of the individual reflectors on the
input signal. This can be described mathematically by convolution, and the process of
retrieving the reflectors is called deconvolution [102]. Figure (1.6) shows the input
signal, the reflectivity, and the measured data. For this problem the naive solution
is also unstable and therefore, we may try to use the regularization λ‖x‖22 from the
gravity example. The reconstruction is shown in the left figure in (1.7). Note that,
although the reconstruction has picked up the correct location of the spikes, the
spikes are not reconstructed. In fact, they look like a dispersed copy of the input
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Figure 1.6: From left to right: the input signal, reflectivity and the measured data. The input
signal travels downward. When it hits a reflector the signal is reflected and we see a pulse in
the measured signal.
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Figure 1.7: The left figure shows the reconstruction using the regularization λ‖x‖22. The right
figure shows the reconstruction using the regularization λ‖x‖1.

signal. This phenomenon is due to the fact that the input signal is bandlimited and
the high frequency components are missing. Another way to look at this is to say
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that the system A cannot distinguish spikes from smoother signals, and hence A†

cannot reproduce them. In this case, our prior knowledge is that the reflectivity
consists of a only a few spikes. This is called a sparse signal, and sparsity can be
enforced by the regularization λ‖x‖1 := λ

∑n
i=1 |xi|. Using this regularization, we

get the reconstruction on the right in figure (1.7).

Brain scan

The Shepp-Logan is a famous phantom from the medical community that is a
simplified version of a brain scan [105], see figure (1.8). The image can be

(a) The Shepp-Logan phantom.
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(b) The vertical cross section in
the middle of the phantom.

Figure 1.8

reconstructed using X-rays at various angles. Figure (1.9) shows the setup and the
measured data. Figure (1.9a) shows the acquisition setup with the phantom. The
X-rays are emitted on one side of the phantom. The X-rays travel through the
phantom and are attenuated. Figure (1.9b) shows the measured intensity for the
particular angle from figure (1.9a) and figure (1.9c) shows the intensities for all
angles, called the sinogram. By measuring the difference in intensity between the
X-ray before and after passing through the phantom we can derive what material is
inside the phantom.
The quality of the reconstruction depends strongly on the acquisition setup. If we
measure at all angles, we get a perfect reconstruction. In practice, the angles at
which one can measure are generally restricted. It may be possible that one can
measure along the full 180 degrees, but only at a limited subset of angles, or there
may be a limited angle setup, where one can only measure from, for example, 0 to
60 degrees. We show the naive reconstruction for the full angle and limited angle
setup in figures (1.10c) and (1.10a). The question arises what regularization is
suited for this phantom. The answer can be found by looking at figure (1.8b). Note
that the slice has a "blocky" structure, where the function is mostly constant but
with a few jumps. This prior information can be encoded by using the
regularization λ‖∇x‖1, which means that the changes in the solution (∇x) have to
be sparse. The reconstruction using this prior is shown in figure (1.10d). It is
interesting to look at figure (1.10b), which is obtained by reconstructing the
phantom with a limited angle setup but using prior information. Note that,
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Figure 1.9

(a) Naïve reconstruction for the
limited angle setup, where we
measure only from 0-60 degrees.

(b) Reconstruction with prior
information for the limited angle
setup, where we measure only
from 0-60 degrees.

(c) Naïve reconstruction for the
full range setup, but with only a
few angles.

(d) Reconstruction with prior
information for the full range
setup, but with only a few angles.

Figure 1.10

although we have good prior information, we are not able to reconstruct the
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phantom, due to the limited angle setup. This shows that regularization is no
magic fix: the measurements have to be sufficient as well. Unfortunately, we are
not always able to obtain good measurements, and we have to be satisfied with a
sub-optimal reconstruction.

1.2 Challenges in inverse problems
Until now we have not discussed how to actually solve these optimization
problems. If R(Lx) = λ‖Lx‖22 the objective function is smooth and we can use
standard optimization techniques. However, if R(Lx) = λ‖Lx‖1, the objective is
not smooth and we need specialized algorithms that can deal with this type of
regularizer. Furthermore, algorithms for solving regularizers where L 6= I are
generally different than the algorithms used for solving problems with L = I.

So far, all of the regularizers we have described are of the form λ‖Lx‖pp, but we
have never specified the parameter λ and its role. This is a user-specified parameter
that is notoriously difficult to estimate and at the same time heavily influences the
reconstruction. It can be seen as a parameter that balances reliance on the data and
reliance on the prior information. The optimal regularization parameter is defined
as the parameter that minimizes the difference between the true input and the
reconstruction. However, the true input is never known.

Let us revisit the example of spiky deconvolution. In figure (1.11) we show the
reconstruction of the reflectivity for various values of λ. Figure (1.11a) and (1.11b)
show a value that is too small, figure (1.11c) shows the optimal value and figure
(1.11d) shows a value that is too large. What we see in figure (1.11) is the
increasing influence of the regularizer. In figure (1.11a) we see a bad
reconstruction., with waves instead of spikes. This is due to the fact that high
frequency information is lost in the convolution, because the input wavelet does
not contain them. As we start to increase λ, the reconstruction becomes more spiky,
which can be seen in figure (1.11b). For the optimal λ we get a near perfect
reconstruction, as can be seen in figure (1.11c). However, if we then increase λ, a
few reflectors are not reconstructed, because the high λ requires the solution to be
very sparse.

We see that the regularization parameter has a large influence on the
reconstruction. If the parameter is too small the reconstruction is noisy, and if the
parameter is too large we miss vital information about the solution. One might ask
whether trying for a few different values and picking the best one is a good
strategy. The problem is that for every parameter, we have to solve the entire
inverse problem. However, in seismic exploration, solving certain inverse problems
may take as long as a month, and in medical imaging, the image sometimes has to
be produced in real time, which places constraints on the computational time.
Moreover, so far we have only been able to determine the optimal regularization
parameter given the ground truth. Therefore, there is a need for criteria to
determine the regularization parameter, and for fast algorithms. It is not always
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Figure 1.11

necessary to compute a solution with very high precision. An approximate solution
that can be computed much faster is maybe even more valuable.

1.3 Outline and contributions
This thesis is organized as follows. In chapter 2 we present the necessary
background theory for the contents of the rest of the thesis. We present some
theory on regularization and describe the state-of-the-art algorithms that are used
to solve linear inverse problems with different regularizers.

In chapter 3 we present an overview of some parameter selection methods for
estimating the regularization parameter for the regularizer λ‖x‖22, and discuss how
to efficiently estimate them. We compare two different state-of-the-art model order
reduction methods, namely Krylov based model reduction and the Randomized
Singular Value Decomposition. The goal is to use these model order reduction
methods to construct a low-dimensional space to estimate the parameter λ, for the
particular regularizer R(x) = λ‖x‖22.

In chapters 4 and 5 we discuss an inverse problem from geophysics,
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Multi-Dimensional Deconvolution (MDD). This is a problem that arises in multiple
problems in geophysics. Two wavefields that hit a reflector from above and below
respectively, are related to the impulse response of the reflector via convolution,
and the objective is to solve for the impulse response. The MDD problem can be
solved either in the frequency domain or in the time domain. In chapter 4 we solve
the problem in the frequency domain. For every frequency, we have to solve a
linear inverse problem with multiple right-hand sides, that can be written as
AX = B. Every right-hand side corresponds to a particular receiver, that records
the seismic data. To exploit the abundance of data for a particular model A, we
propose using block Krylov methods and show that this is a competitive alternative
to standard methods that are used to solve the MDD problem.

The impulse response is bound by two constraints that have to be satisfied. These
are not structural constraints, where we assume that we (approximately) know
something about the structure of the solution, but instead are physical constraints,
that have to be satisfied, in order for the solution to be in accordance with the laws
of physics. In chapter 5, we describe these constraints from a mathematical
viewpoint, and discuss how they can be incorporated into the optimization
problem. In order to deal with the constraints, we propose to solve the problem in
the time domain. Hence, we solve for all frequencies at once, which amounts to
solving a large linear system where the operator A is block-diagonal. We show that
additional regularization is needed to stabilize the solution. We discuss the
additional use of Tikhonov regularization, and show that parameter selection
methods do not work for this particular problem. Our experiments are on
non-inverse crime data.

In chapter 6 we investigate algorithms for solving linear inverse problems with a
non-differentiable regularizer. We extend the analysis on a recently introduced
algorithm, called Sparse Relaxed Regularized Regression (SR3) [130]. The
algorithm essentially replaces the regularizer with its Moreau envelope by
introducing an auxiliary variable, hence the term "relaxed". SR3 is an algorithm
that applies to a large class of regularizers. Basically, it applies to any regularizer
R(Lx) for which the proximal operator of R(x) exists. The analysis in [130] shows
that if L = I, SR3 forms a new system with improved spectral properties that leads
to faster convergence. We extend this analysis to show what happens if L 6= I. We
analyze the relation between the Pareto curve of the original problem and the
relaxed problem, and quantify the distance between the curves. Furthermore, we
show that this Pareto curve can be used to get an estimate of the correct
regularization parameter. Finally, we propose an inexact version of SR3 with an
automated stopping criterion that makes the algorithm suitable for large-scale
optimization.

Lastly, in chapter 7 we draw our conclusions and give a short outlook on possible
further directions of research.



CHAPTER 2

Preliminaries
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This chapter is intended to provide some more background and explanation on the
topics in the subsequent chapters. Section 2.2 provides background for the material
treated in chapters 3 and 5 and section 2.3 provides background material for chapter
6.

2.1 The pseudoinverse
The solution to

Ax = b,

where A ∈ Rm×n can not be directly obtained unless A is invertible, in which case
we have x = A−1b and the solution is unique. If A is not square or full rank we can
not hope to get a unique solution, but we are satisfied with a solution z = A†b such
that Az = b, or, if no such z exists, a "solution" such that ‖Az − b‖2 is minimized.
The operator A† is called a pseudoinverse. The most popular pseudoinverse is the
Moore-Penrose inverse, which satisfies the following four conditions:

1. A†AA† = A†

2. AA†A = A
3.
(
AA†

)T
= AA†

4.
(
A†A

)T
= A†A

Let A ∈ Rm×n. If m < n the problem is underdetermined, and there exist many
solutions. If A is full rank, the Moore-Penrose inverse provides the minimum-norm
solution. On the other hand, of m > n, the problem is overdetermined and there
exists no solution, unless b ∈ R(A). In this case, if A is full rank,the Moore-Penrose
inverse provides the minimum residual "solution".

Assume that A is full rank. If m < n the Moore-Penrose inverse provides a right
inverse, i.e. AA† = Im, where

A† = AT (AAT )−1.

If m > n the Moore-Penrose inverse provides a left inverse, i.e. A†A = In, where

A† = (ATA)−1AT .

2.2 Tikhonov regularization
In this section we consider linear inverse problems of the form

min
x

1

2
‖Ax− b‖22 + λ‖Lx‖22, (2.1)

with A ∈ Rm×n, L ∈ Rp×n. A nice feature of this type of regularization is that the
objective is differentiable. Therefore, the solution can be given in closed-form:

xλ = (ATA+ λLTL)−1AT b. (2.2)

We distinguish the case L = I and L 6= I. If L = I, (2.2) reduces to

xλ = (ATA+ λI)−1AT b. (2.3)
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The Singular Value Decomposition
The Singular Value Decomposition (SVD) of A [42], is given by

A = UΣV T ,

where Σ = diag(σ1, . . . , σr), σi ≥ 0 is a diagonal matrix and U and V are
orthonormal. The SVD has the following important properties:

1. If Σ has k nonzero values then rank(A) = k.
2. The first k columns of U form a basis for R(A) and the last n − k columns of

V form a basis for N (A).
3. σ2

i are the eigenvalues of the matrices ATA = V ΣTΣV T and
AAT = UΣΣTUT .

These properties make the SVD a very useful tool for analyzing inverse problems,
as the singular values give information about the invertibility of the matrix A.
Moreover, the SVD is used to calculate the Moore-Penrose inverse:

A† = V Σ†UT = V diag (1/σr, . . . , 1/σ1, 0 . . . , 0)UT .

The SVD can also be used to analyze the effect of Tikhonov regularization. Plugging
in the SVD of A in (2.2) gives

xλ = V
(
ΣTΣ + λI

)−1
ΣTUT b =

n∑
i=1

vi
σ2
i

σ2
i + λ

uTi b

σi
. (2.4)

If σi is large then σi

σ2
i +λ

≈ σ−1
i and if σi is small then σi

σ2
i +λ

≈ λ−1. Therefore,
Tikhonov regularization acts as a filter for the small singular values that make the
inversion unstable.

Closely related to Tikhonov regularization is the Truncated Singular Value
Decomposition (TSVD), which produces a regularized solution via

xk =

k∑
i=1

vi
uTi b

σi
. (2.5)

Here, rather than smoothing by adding a constant to counteract the inadvertent
effects of the small singular values, we simply truncate them. The index k plays the
role of the regularization parameter.

The Generalized Singular Value Decomposition
If L 6= I the SVD is no longer useful for analyzing the system, because A and L do
not diagonalize under the same basis V , the right singular vectors of A. A natural
tool to analyze this class of problems is the Generalized Singular Value
Decomposition (GSVD) [96].
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Definition 1 (The Generalized Singular Value Decomposition (GSVD).). The GSVD
of a matrix pair (A,L), A ∈ Rm×n, L ∈ Rp×n, is given by A = UΣX, L = V ΓX,
where

Σ =

Σp 0
0 In−p
0 0

 , Γ =
[
Γp 0

]
for m ≥ n, p ≤ n,

and

Σ =
[
0 Σm

]
, Γ =

In−m 0
0 Γm
0 0

 for m < n, p > n.

The matrices Σr and Γr (where r = p or r = m) are r × r diagonal matrices satisfying
ΣTr Σr + ΓTr Γr = Ir, X is invertible and U and V are orthonormal. Moreover, we have
the following ordering of the singular values:

0 ≤ γr ≤ . . . ≤ γ1 ≤ 1,

0 ≤ σ1 ≤ . . . ≤ σr ≤ 1.

Plugging the GSVD into (2.1) gives

xλ = X−1
(
ΣTΣ + λΓTΓ

)−1
UT b. (2.6)

The usefulness of the GSVD for generalized Tikhonov regularization lies in the fact
that it diagonalizes A and L under a common basis X. The question arises whether
there exists an iterative method that approximates the GSVD like LSQR does with
the SVD. The answer is yes and this algorithm is called the Joint BiDiagonalization
algorithm (JBD) [72]. However, the iterations do not comprise of matrix-vector
multiplications, but require the solution to linear systems, which makes the method
expensive. There exists no iterative method based solely on matrix-vector
multiplications that diagonalizes the matrix pair (A,L).

The standard-form transformation
There are more or less two options to dealing with general L. The first is to use the
so-called standard-form transformation [34, 58], which transforms (2.1) to

min
y
‖AL†Ay − b‖

2
2 + λ‖y‖22, x = L†Ay + xN , xN = (A(I − L†L))†b,

where L†A is called the A-weighted pseudoinverse and is given by

L†A = (I −
(
A(I − L†L)

)†
A)L†.

The standard-form transformation may be derived as follows. Apply the substitution
y = Lx. The trick is to split the solution into two parts x = xR+xN by a projection,
where xN ∈ N (L). The component xR has to satisfy y = LxR, and should thus be
obtained by an operator L† that has to satisfy LL†L = L. Note that we do not care
about L†y containing components of N (L), because this is accounted for by xN . We
have

min
x
‖AxR +AxN − b‖22 + λ‖LxR‖22 (2.7)
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If AxR and AxN are orthogonal, then the optimization problem splits into two
separate problems, one where the component in the nullspace is determined, xN ,
and another part in which xR is determined. Requiring that AxR and AxN are
orthogonal means that xR and xN are A−orthogonal. Note that we now impose
the following two conditions on obtaining xR:

1. xR solves y = LxR, which means xR is obtained by some generalized inverse
L† satisfying LL†L = L.

2. xR is A−orthogonal to xN .
Let W be a basis for N (L). Then AW is a basis for AN (L), and AW (AW )† is an
orthogonal projector onto this space. Then I − AW (AW )† is its orthogonal
complement, and hence AxR has to be projected onto this space, yielding a vector
that is orthogonal to AN (L). This gives

(I −AW (AW )†)Ax = A(I −W (AW )†A)x.

If we now require
xR = (I −W (AW )†A)L†y := L†Ay,

xR is A-orthogonal to xN and LL†AL = L. This is an oblique projector that projects
onto W , orthogonal to R(AT ), or along N (A). This splits the problem into the parts

xR = min
y
‖A(I −W (AW )†A)L†y − b‖22 + λ‖y‖22 (2.8)

xN = min
x
‖A(W (AW )†A)(I − L†L)x− b‖. (2.9)

The regularization term in the second equation vanishes due to the fact that we have
chosen xN in the nullspace of L. Furthermore, Because I − L†L = WWT , we have

‖A(W (AW )†A)(I − L†L)x− b‖ = ‖A(W (AW )†A)WWTx− b‖ = ‖AWWTx− b‖22.
(2.10)

It remains to show that L†A = (I −W (AW )†A)L†. We have W (AW )† = (AWWT )†

and WWT is a projector onto N (L), as is I − L†L, which shows the equivalence.
The standard-form transformation has an elegant representation in terms of the
GSVD of (A,L). In this case the standard-form system is given by

min
y
‖UΣΓ†V T y − b‖22 + λ‖y‖22, xN = X−1

[
0 0
0 I

]
UT b.

It follows that the SVD of the operator AL†A is given by UΣΓ†V T .

Krylov methods
A similar approach to Tikhonov regularization is to use iterative regularization. A
popular class of methods for this purpose are Krylov methods [42]. Krylov methods
are designed to iteratively solve systems of the form

Ax = b,

by constructing the Krylov subspace Kk(A, b) = span
{
b, Ab, . . . , Ak−1b

}
, where k is

the iteration number. Well-known examples of Krylov methods are CG [65], LSQR
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[97] and GMRES [101]. For inverse problems, LSQR is popular, which, at each
iteration, minimizes

xk = min
x∈Kk(ATA,AT b)

‖Ax− b‖,

without explicitly forming ATA. For ill-posed problems, LSQR exhibits
semiconvergence [57]. Initially, the error goes down, as does the residual, but after
a certain optimal k?, the error increases whereas the residual keeps decreasing.
Therefore, for these regularization methods, the iteration number plays the role of
the regularization parameter.
The Krylov subspace Kk is inherently unstable because the factors Ajb become
linearly dependent. Therefore, algorithms based on Krylov subspaces generally
construct an orthonormal basis for the Krylov subspace. The LSQR algorithm is
based on the Lanczos bidiagonalization algorithm [42]. It constructs two
orthonormal bases such that

AVk = UkBk+1,k (2.11)

ATUk = VkB
T
k+1,k + veTk . (2.12)

The columns of Vk form an orthonormal basis for the Krylov subspace
Kk(ATA,AT b) and the columns of Uk form an orthonormal basis for the Krylov
subspace Kk(AAT , b). The matrix Bk+1,k ∈ Rk+1,k is lower bidiagonal. This can be
used to solve minx∈Kk

‖Ax− b‖22 as follows:

min
x∈Kk(ATA,AT b)

‖Ax− b‖22 = min
y=Vkx

‖AVky − b‖22

= min
y=Vkx

‖UkBk+1,ky − b‖22

= min
y=Vkx

‖Bk+1,ky − ‖b‖e1‖22,

where UTk b = ‖b‖e1 follows from orthogonality and the fact that u1 = b/‖b‖ by
choice. LSQR solves the system miny=Vkx ‖Bk+1,ky−‖b‖e1‖22 without storing Uk and
Vk and by updating the solution at every iteration using Givens rotations. Similarly,
Lanczos bidiagonalization can be used to approximate the solution to (2.1), which
yields the following system

min
y=Vkx

‖Bk+1,ky − ‖b‖e1‖22 + λ‖y‖22. (2.13)

The approximate solution is given by

xk,λ = Vk(BTk+1,kBk+1,k + λIk)−1UTk b.

This combination of Tikhonov regularization with an iterative method like Lanczos
bidiagonalization is called hybrid regularization [49, 57, 73]. It has the added
benefit of counteracting the effect of semiconvergence. Note that the subspace
Kk(ATA,AT b) is independent of the choice of λ, which allows for rapid evaluation
of the solution xk,λ for all λ. However, it remains unclear which choice of k leads to
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a satisfactory solution. Generally, for ill-posed problems, k is small compared to n,
but there is no criterion to select k.
There exists an alternative, but closely related approach, to hybrid regularization,
based on evaluating criteria for selecting the regularization parameter. Most
criteria, on the discrete level, are of the form

min
λ
uT fλ(W )u or find λ s.t. uT fλ(W )u = h(δ),

where δ is the noise level and h is some function, and W is either ATA or AAT . The
function fλ will be of the form

fλ(x) = (x+ λ)−p, p ∈ N. (2.14)

At the heart of this approach lies the observation that

uT fλ(W )u =

b∫
a

f(x)dω(x),

where

ω(λ) =


0 if λ < a = λn
n∑
j=i

[WTu]2j if λi+1 ≤ λ < λi

n∑
j=1

[WTu]2j if λ ≥ b = λ1

,

This integral can be approximated by a quadrature rule, i.e.

b∫
a

f(x)dω(x) ≈
k∑
i=1

wif(xi) := Ik(f).

The wi are called the weights and the xi are called the nodes of the quadrature.
The key idea is to use Gauss quadrature to generate the nodes and weights. The
reason for this is the deep relation between Gauss quadrature and the Lanczos
process, namely that the nodes and weights of Gauss quadrature are obtained from
the eigendecomposition of the tridiagonal matrix Tk = BTk+1,kBk+1,k or
Tk = Bk+1,kBk+1,k, obtained from the Lanczos process applied to A [107]. Gauss
quadrature is an optimal quadrature rule, in the sense that it is exact for all
polynomials up to degree 2n for n quadrature nodes, and there exists no
quadrature rule that is exact for all polynomials of degree larger than 2n [107].
There exist multiple variants of Gauss quadrature that fix one or more nodes and
hence lose a degree of freedom. One of them is the Gauss-Radau rule, that fixes
precisely one node, and is therefore exact for polynomials of degree 2n − 1 or less.
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The error for these rules has an explicit formula, given by

EGk
(f) =

f (2k)(ξ)

(2k)!

b∫
a

[
k∏
i=1

(x− xi)

]2

dω(x).

EGRk
(f) =

f (2k−1)(ξ)

(2k − 1)!

b∫
a

(x− a)

[
k−1∏
i=1

(x− xi)

]2

dω(x).

For the functions of the form (2.14) we have f
(2j)
λ > 0 and f

(2j−1)
λ < 0, which

means that the Gauss rule and the Gauss-Radau rule are a lower and an upper
bound, respectively, for uT fλu. These bounds decrease/increase monotonically, as
was shown in [50]. This approach was first presented in [43], and later extended
in [44]. This allows to design a stopping criterion to find a k? such that the bounds
are close to within a user specified tolerance. From this an approximate solution
xλ,k? may be constructed, using the already computed Bk+1,k. The solution and the
quadrature bounds are related in the following way:
Theorem 1 ([22]). Let λ > 0 be a desired value of the regularization parameter and let
xλ,k be an associated approximate solution to (2.1) of the form xλ,k = Vky determined
by the Galerkin equation

Vk(ATA+ λIn)Vky = V Tk A
T b.

Then
‖xλ,k‖ =

√
ÎGk

and
‖Axλ,k − b‖ =

√
IGRk+1

.

Generalized Krylov methods

The operator L†A is expensive to compute and therefore applying the standard-form
transformation is not suitable for large-scale problems. There exist a few other
iterative approaches to solve (2.1) with a general linear operator that we will
briefly outline here.
In [67], the authors propose an approach similar to Lanczos bidiagonalization
applied to both A and L that constructs the Krylov subspaces consisting of all the
terms of the binomial products arising from (ATA + LTL)j , j = 0, . . . , k − 1. This
builds matrices H and K that satisfy the relations

AVk = Uk+1Hk+1,k, LVk = WkKk,k

ATUk = V2k−2H
T
k,2k−2, LTWk = V2k+1K

T
k,2k+1

where the matrix H is upper Hessenberg and K is upper triangular, but both with a
particular sparsity pattern. The projected problem now becomes

min
y
‖Hk+1,ky − b‖22 + λ‖Kk,ky‖22.



Section 2.3 – Non-smooth regularization | 21

It should be noted that, unlike with Lanczos bidiagonalization, the amount of work
done at each iteration increases.
Another approach, presented in [66], is based on the Krylov subspace generated by
A, after which the QR decomposition

LVk = QR

is obtained. Generally, the product LVk can be calculated efficiently because L is
the first order finite difference operator in most applications, an operator which is
highly sparse. The QR decomposition can then be computed in reasonable time if k
is (relatively) small.
An approach similar to this idea was introduced in [76] where a subspace method is
used. At each iteration, the subspace is enlarged by computing a new vector that is
orthogonal to the current subspace. This method was extended to include multiple
regularizers in [133].

2.3 Non-smooth regularization
In this section we describe the mathematical tools that are used to solve composite
optimization problems of the form

min
x
h(x) := min

x
(f(x) + g(x)) . (2.15)

We will focus on the specific case f)(x) =
1

2
‖Ax − b‖22 and g(x) = λ‖Lx‖1, but the

theory will hold for more general f and g, specifically any convex, smooth f and
convex but nonsmooth g. An extensive overview of the material here may be found
in [18, 31], on which this section is based.
Since g is non-differentiable, gradient based methods are not applicable. We will
assume that at least the subdifferential p of g exists, where the subdifferential is
defined as

∂g(x) = {(x, p) | ∀y ∈ dom(g), g(y) ≥ g(x) + 〈p, y − x〉} . (2.16)

Hence, if g is at differentiable at x then {∂g(x)} = ∇g(x). The subdifferential of
h(x) := f(x) + g(x) where f is differentiable is

∂h(x) = ∇f(x) + ∂g(x).

Similar to gradient descent, we could use subgradient descent to find the minimizer
of the function h. However, the convergence rate of subgradient descent is
considerably lower than the convergence rate of gradient descent, making it an
unattractive option. An alternative method is based on the proximal operator,
defined as:

proxf (v) = argmin
x

(
f(x) +

1

2
c‖x− v‖22

)
.

The minimizers of f are related to the fixed point of proxcf in the following way:
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Proposition 1. x? = proxf (x?) if and only if x? minimizes f .
Given that the subdifferential of f exists, proxcf can be evaluated as follows:

proxf (v) = argmin
x

(
f(x) +

1

2
‖x− v‖22

)
⇒ 0 ∈ ∂f(x) + 1/c(x− v)

⇒ v ∈ x+ c∂f(x) = (I + c∂f)(x)

⇒ x = (I + c∂f)−1(v).

The operator I + c∂f is called the resolvent, and will be denoted by Rf . Note that
evaluating the proximal operator requires solving an entire optimization problem by
itself. However, in some cases, this optimization problem has a simple closed form
solution, which allows for efficient evaluation.

An algorithm for g(x) = λ‖x‖1: Iterative Soft-Thresholding
Algorithm
We now turn to the case (2.15) where we have to minimize the sum of two
functions. Instead of finding the proximal operator of the composed function h(x),
the general strategy is to apply the proximal operators of f and g separately.
Algorithms based on this strategy are called splitting algorithms. The simplest
splitting is called forward-backward splitting and can be derived as follows:

0 ∈ c∇f(x) + c∂g(x)

0 ∈ c∇f(x) + x− x+ c∂g(x)

(I − c∇f)(x) ∈ (I + c∂g)(x)

x? = (I + c∂g)−1 (I − c∇f) (x?)

x? = Rg(I − c∇f)(x?)

If g = λ‖ · ‖1 then the proximal operator acts component wise, and the elements are
given by

proxg(vi) =


vi − λ if vi > λ

0 if |vi| < λ

vi + λ if vi < −λ
,

an operation which is called soft-thresholding. The above algorithm is called the
Iterative Shrinkage Thresholding Algorithm, or ISTA. Note that the operator
I − c∇f is the gradient step.
There is a version of this algorithm called Fast Iterative Shrinkage Thresholding
Algorithm, FISTA, which chooses a particular combination of the previous two
iterates to form the new iterate. This trick is called Nesterov acceleration, and leads
to optimal convergence for first-order methods.

An algorithm for g(x) = λ‖Lx‖1: the Alternating Direction Method
of Multipliers
If g = λ‖Lx‖1 then proxg no longer has a closed form expression and we can no
longer apply FISTA. For this class of problems there exist different splitting
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algorithms that can cope with the presence of the operator L, resulting in the
Alternating Direction Method of Multipliers (ADMM). The splitting method used to
derive the ADMM is called Douglas-Rachford splitting. Instead of applying the
resolvent, it applies a fixed point operator called the Cayley operator, defined as

Cf := 2Rf − I = (I − c∂f)(I + c∂f)−1. (2.17)

Douglas-Rachford iteratively applies

zk+1 =

(
1

2
I +

1

2
CfCg

)
zk, xk+1 = Rgzk+1. (2.18)

Using the definition of the Cayley operator this can be written as follows:

xk+1 = Rg(zk)

yk+1 = Rf (2xk+1 − zk)

zk+1 = zk + yk+1 − xk+1.

ADMM is based on a splitting strategy for the following reformulation of (2.15)

min
x,z

f(x) + g(z) (2.19)

s.t. Ax+Bz = b. (2.20)

The choice A = I, B = −L and b = 0 leads to (2.15). The Lagrangian is given by

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c)
=

{
f(x) + λTAx

}
+
{
g(z) + λTBz

}
− λT c

:= L1(x, λ) + L2(z, λ)− λT c.

The Karush-Kuhn-Tucker conditions then state that the optimal solution is found by
evaluating

max
λ

min
x,z
L(x, z, λ) = max

λ

({
min
x
L1(x, λ)− λT c

}
+
{

min
z
L2(z, λ)

})
= max

λ
−f?(−ATλ)− λT c− g?(−BTλ) =: max

y
h(y),

where f? denotes the conjugate function, defined as

f?(v) = sup
x

(
vTx− f(x)

)
. (2.21)

Applying Douglas-Rachford splitting to the dual problem yields the ADMM. We have

∂h(y) =
{
A∂f?(−ATλ)− c

}
+
{
B∂g?(−BTλ)

}
:= k1(λ) + k2(λ), (2.22)

which, by applying Douglas-Rachford splitting, yields the algorithm

xk+1 = Rk1(zk)

yk+1 = Rk2(2xk+1 − zk)

zk+1 = zk + yk+1 − xk+1.
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The ADMM is generally not presented in this form. To obtain the conventional form,
one has to rewrite the iterations by writing the resolvent as an explicit minimization
problem, which we will describe now. Consider the problem

min
x
f(x)

s.t. Ax = b.

The Lagrangian is given by

L(x, y) = f(x) + yT (Ax− b),

and the dual problem is given by

max
y

h(y) := max
y

(
−f?(−AT y)− yT b

)
.

The subdifferential of h is given by

∂h(y) = A∂f?(−AT y)− b.

Using the optimality criteria for the Lagrangian we know

Lx = ∂f(x) +AT y 3 0

⇐⇒ x ∈ (∂f)−1(−AT y)

⇐⇒ x ∈ ∂f?(−AT y),

This means that
∂h(y) = Ax− b.

To find the point that maximizes h, or equivalently, minimizes −h, we apply the
proximal operator of h. Recall that evaluating the proximal operator is equivalent
to applying the resolvent. The resolvent Rh(y) yields

w = Rh(y) = (I + c∂h)−1y ⇐⇒ w + c(∂h)(w) = y ⇐⇒ w + c(Ax− b) = y.

Substituting the last expression in Lx yields

Lx = ∂f(x) +ATw + cAT (Ax− b).

Hence, w is a fixed point of Rh(y) if the following two conditions are satisfied

0 ∈ ∂f(x) +AT y + cAT (Ax− b)
w = y − c(Ax− b).

This means that x minimizes

Lc(x, y) := f(x) + yT (Ax− b) +
c

2
‖Ax− b‖22, (2.23)

which is called the augmented Lagrangian. This shows that the proximal operator,
and hence the resolvent, for the dual functions obtained in (2.22) are equivalent to
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the minimization problem (2.23). Using this equivalence between the resolvent and
the augmented Lagrangian, note that the first step of Douglas-Rachford splitting can
be rewritten as

z̃k+1 = argmin
{
g(z) + yTk Bz + c‖Bz‖2

}
zk+1 = yk − cBz̃k+1.

Equivalently, the second step can be rewritten as

x̃k+1 = argmin
{
f(x) + zTk+1(Ax− b) + c‖Ax− b‖2

}
xk+1 = zk+1 − c(Ax̃k+1 − b).

Finally, the last step simply yields

yk+1 = yk +Ax̃k+1 − c+Bz̃k+1.

Note that zk+1 and xk+1 are not explicitly needed. After the substitution

yk = cuk + c(Axk − b),

writing zk+1 = z̃k+1 and xk+1 = x̃k+1 and rearranging the order, we get

xk+1 = argmin
x

{
f(x) +

c

2
‖Ax+Bzk − b+ uk‖22

}
(2.24)

zk+1 = argmin
z

{
g(z) +

c

2
‖Axk+1 +Bz − b+ uk‖22

}
(2.25)

uk+1 = uk +Axk+1 +Bzk+1 − b. (2.26)

2.3.1 Sparse Relaxed Regularized Regression (SR3)
ADMM can handle any regularizer of the form λ‖Lx‖1, but convergence may be
slow. FISTA achieves the optimal convergence rate for first order methods, but it
can only be applied if L = I. Sparse Relaxed Regularized Regression is a recently
introduced algorithm that, similar to ADMM, introduces an auxiliary variable to
solve problems of the form (2.15):

min
x,y

1

2
‖Ax− b‖22 +

κ

2
‖Lx− y‖22 +R(y). (2.27)

Note the similarity to the augmented Lagrangian in (2.23). However, in SR3, the
Lagrange parameter is omitted. Rewriting (2.27) as

min
x

1

2
‖Ax− b‖22 +

{
min
y

κ

2
‖Lx− y‖22 +R(y)

}
, (2.28)

we see that SR3 essentially replaces the regularizer with its Moreau envelope. If the
regularizer is convex, like the `1 norm, the Moreau envelope has a smoothing effect.
By minimizing out the variable x, we obtain a newly formed system

min
x

1

2
‖Fκy − gκ‖22 +R(y), (2.29)
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where

Hκ = (ATA+ κLTL),

Fκ =

[
κAH−1

κ LT√
κ(I − LH−1

κ LT )

]
,

gκ =

[
I −AHκA

T
√
κLH−1

κ LT

]
.

Note that the operator L has been removed from the regularizer in (2.29). SR3
allows us to apply FISTA to problems with regularizers where the proximal operator
of R(x) has a closed form solution, but the proximal operator of R(Lx) does not.
Moreover, the operator Fκ has more desirable spectral properties, as we will show
in chapter 5. This leads to faster convergence.



CHAPTER 3

Comparing RSVD and Krylov
methods for linear inverse

problems
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Abstract In this work we address regularization parameter estimation for ill-
posed linear inverse problems with an `2 penalty. Regularization parameter
selection is of utmost importance for all of inverse problems and estimating it
generally relies on the experience of the practitioner. For regularization with an
`2 penalty there exist a lot of parameter selection methods that exploit the fact
that the solution and the residual can be written in explicit form. Parameter
selection methods are functionals that depend on the regularization parameter
where the minimizer is the desired regularization parameter that should lead to
a good solution. Evaluation of these parameter selection methods still requires
solving the inverse problem multiple times. Efficient evaluation of the parameter
selection methods can be done through model order reduction. Two popular
model order reduction techniques are Lanczos based methods (a Krylov subspace
method) and the Randomized Singular Value Decomposition (RSVD). In this
work we compare the two approaches. We derive error bounds for the parameter
selection methods using the RSVD. We compare the performance of the Lanczos
process versus the performance of RSVD for efficient parameter selection. The
RSVD algorithm we use is based on the Adaptive Randomized Range Finder
algorithm which allows for easy determination of the dimension of the reduced
order model. Some parameter selection methods also require the evaluation of
the trace of a large matrix. We compare the use of a randomized trace estimator
versus the use of the Ritz values from the Lanczos process. The examples we use
for our experiments are two model problems from geosciences.

This chapter is partially based on the following publication:

N.A. Luiken and T. van Leeuwen. Comparing RSVD and Krylov methods for linear inverse
problems. Computers & Geosciences, 137:104427, 2020.
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3.1 Introduction
Inverse problems are ubiquitous in the earth-sciences with applications ranging
from seismology to seismic exploration. Often, these inverse problems are ill-posed,
meaning that a unique, stable solution does not exist. Regularization is needed to
render the problem well-posed. In this chapter we discuss finite-dimensional, linear
inverse problems which can be posed as

min
m
‖Gm− d‖22 + λ‖Lm‖22, (3.1)

where G ∈ Rm×n is the forward operator; d ∈ Rm denotes the data; m ∈ Rn are
the parameters of interest; L ∈ Rp×n is the regularization operator and λ ∈ R+ is
the regularization parameter. The regularization operator incorporates the prior
information needed to make the problem uniquely solvable. Without loss of
generality, we assume that L = I, as every problem of the form (3.1) can be
transformed to this form [58]. The regularization parameter balances the prior
information and information from the data. The solution can be written in closed
form, given by

m̂λ = Gλd, (3.2)

with
Gλ = (GTG+ λI)−1GT . (3.3)

Although this expression is convenient for derivations, in practice it is usually not
feasible to form the matrix Gλ explicitly. Therefore, the solution m̂λ is usually
approximated using an iterative solver. A major issue in solving (3.1) is the
selection of the regularization parameter λ. Methods for selecting the
regularization parameter are called parameter selection methods. A complete
overview and comparison of parameter selection methods is given in [9].
Parameter selection methods, generally, rely on repeatedly solving (3.1) and
selecting the value of λ that satisfies some auxiliary criteria. These criteria usually
involve minimizing a functional V (λ) whose evaluation involves the solution of
(3.1). This yields a λ̂,

λ̂ = argmin
λ

V (λ). (3.4)

Solving the inverse problem even once is costly and therefore, finding the optimal
parameter λ̂ is computationally intensive. In order to overcome this computational
drawback, various methods for approximating V (λ) have been proposed.

3.1.1 Approach
The general approach is to approximate V (λ) in such a way that it is cheaper to
evaluate and thus allows for efficient estimation of λ̂. Evaluating V involves two
main tasks; evaluating a weighted norm of a given vector

uT fλ(A)u, (3.5)

and computing the trace of a matrix function

trace (fλ(A)) . (3.6)
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Here A is a positive semi-definite matrix which is either GTG or GGT and u = d or
u = GTd. G ∈ Rm×n and for notational simplicity we write A ∈ Rd×d, where d is
either m or n. An obvious approach is to replace G by a low-rank approximation
Gk and use this to approximate (3.5) and (3.6). An important aspect is the
approximation error, its influence on the approximation of V and ultimately on the
estimated λ̂. For most applications, it is not feasible to explicitly form a (truncated)
Singular Value Decomposition (SVD) of G, so we will need to approximate the
truncated SVD in order to obtain a reduced order model Gk. Traditionally, Krylov
subspace methods have been very popular for this purpose [73]. These methods
can be used to find upper and lower bounds for (3.5) as well [43, 44]. Recently,
randomized techniques have gained popularity. The Randomized Singular Value
Decomposition (RSVD) was used for defining the reduced forward operator Gk
[127, 128, 129]. The trace (3.6) can be estimated using randomized trace
estimation [68, 110].

3.1.2 Contributions and outline

In this chapter we compare the use of Krylov based subspace methods versus the
use of RSVD for solving discrete inverse problems, specifically with regard to
selecting the regularization parameter. We briefly present some parameter selection
methods and review the Lanczos process and the RSVD and cite the relevant
literature. For the Lanczos process we focus on the fact that we can obtain lower
and upper bounds for the parameter selection methods. We provide error bounds
for the parameter selection methods when approximated using the Truncated
Singular Value Decomposition (TSVD) and the RSVD. We also discuss the use of
Hutchinson’s trace estimator for the parameter selection methods. We present a
theorem that provides probabilistic bounds for the trace estimation combined with
a low dimensional approximation with the Lanczos process, based on the work by
[110]. We also show that obtaining guarantees for the accuracy of the trace
estimator is too computationally expensive. We compare the randomized trace
estimator to estimating the trace using the Ritz values obtained from the Lanczos
process or the RSVD. In our numerical examples we present two examples from
geosciences. The first example is a severely ill-posed problem and the second is a
mildly ill-posed underdetermined problem. We discuss the performance of the
Lanczos process and an adaptive RSVD algorithm for parameter selection and
discuss the performance of the randomized trace estimator and the Lanczos/RSVD
based trace estimator.
This chapter is organised as follows. In section 3.2 we review the necessary theory
on parameter selection methods and the Lanczos process and the RSVD. In section
3.3 we show template algorithms to obtain a lower dimensional approximation for
two parameter selection methods. In section 3.4 we discuss the performance of the
algorithms for two model problems from geosciences. Lastly, in section 3.5 we
draw our conclusions.
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3.2 Theory

3.2.1 Parameter Selection Methods
In this section we review the parameter selection methods that we use in this work.
Among the parameter selection methods there is an important distinction to be
made: methods that require knowledge about the noise level in the data and/or the
underlying model and methods that do not. Methods that do not require any
knowledge on the model and/or the noise level on the data are sometimes called
heuristic methods. We consider a standard deterministic approach, for a Bayesian
approach to solving linear inverse problems see, e.g. [89, 92, 132]. The main
method we cover that requires knowledge on the noise level is the Discrepancy
Principle (DP). We use a stochastic Gaussian noise model of the form

d = dtrue + ξ, (3.7)

where ξ ∼ N (0, δ2I) is uncorrelated Gaussian noise with mean zero and variance
δ2 and dtrue is defined as dtrue := Gm, i.e., the true noiseless data. The methods we
cover that do not require any knowledge on the noise level or the model are
Generalised Cross Validation (GCV), Reginska’s rule and the Quasi Optimality
Criterion (QO). An overview of the functionals V corresponding to each method is
shown in table (3.1).

Method V (λ) Noise estimate

DP
(
λ2dT

(
GGT + λI

)−2
d− δ2m

)2

Yes

GCV
λ2dT

(
GGT + λI

)−2
d

(m−1trace(I −GGλ))2
No

Reginska’s rule dTG
(
GTG+ λI

)−2
GTd · λ2dT

(
GGT + λI

)−2
d No

QO λ2dTG
(
GTG+ λI

)−4
GTd No

Table 3.1: Parameter selection methods.

In order to express these in terms of the weighted norm (3.5) and trace (3.6) we use
the following identities:

‖m̂λ‖2 = dTG
(
GTG+ λI

)−2
GTd, (3.8)

and
‖Gm̂λ − d‖2 = λ2dT

(
GGT + λI

)−2
d. (3.9)

A derivation of these identities is included in appendix (3.6). Below, we briefly
discuss each method in detail.
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Reginska’s rule
Reginska’s rule [99] is a variant of the well-known L-curve [53]. We choose to
use Reginska’s rule because it allows for an easier evaluation of the optimal λ by
minimizing

VRR(α)(λ) =
(
dTG

(
GTG+ λI

)−2
GTd

)α
· λ2dT

(
GGT + λI

)−2
d (3.10)

It has been proven in [99] that if the L-curve has maximal curvature at λ̂ and has a
tangent with slope α̂, then VRR(α̂) has a minimizer at λ̂. In practice, α is generally
chosen to be 1.

Generalized Cross Validation
Generalized Cross Validation (GCV) was first introduced by [39] as a method for
choosing the regularization parameter and is an alternative to UPRE (section 2.4)
when the noise level is not known. It is important to note that although the noise
level need not be known, there is an underlying assumption of a white Gaussian
noise model [122]. The GCV estimates the optimal λ by minimizing

VGCV(λ) =
λ2dT

(
GGT + λI

)−2
d

(m−1trace(I −GGλ))2
. (3.11)

The idea behind GCV is that it tries to estimate λ in such a way that the data is
explained well, while preventing overfitting. It is known the GCV has desirable
statistical properties, but that it deals poorly with correlated noise. It also tends to
undersmooth solutions. For further issues we refer the reader to [39], [53], [122],
[118], [57]. There exist a few variants of the GCV that are in a sense weighted forms
of the GCV that overcome some of the drawbacks of the GCV. All variants have been
shown to be more stable than the GCV [26], [86], [87]) in the sense that they
emphasize the generally flat minimum of the GCV by making it more pronounced.
The Unbiased Predictive Risk Estimator (UPRE) [121], also known as Mallow’s Cp
[88], is based on the predictive risk. It is in a sense the predecessor of the GCV, as
the GCV was developed as a noise-free alternative to the UPRE [122].

The Discrepancy Principle
The Discrepancy Principle is an easy to use method that was first introduced by [90].
The optimal λ found by the Discrepancy Principle is the λ for which the residual
equals the noise level, i.e.

dT
(
GGT + λI

)−2
d = ηδ2m,

where η ≥ 1 is a user-defined constant. The parameter η is introduced to prevent
oversmoothing of the solution. We can cast this into the desired form by introducing

VDP(λ) =
(
dT
(
GGT + λI

)−2
d− ηδ2m

)2

.

It is known that the Discrepancy Principle generally tends to oversmooth the solution
[61], i.e. the value for λ is too large. Another drawback is that the estimate of the
noise level has to be accurate, and that small errors in the estimate can lead to large
deviations in the solution [55].
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Quasi-Optimality criterion
The quasi-optimality criterion is one of the first heuristic parameter choice criteria
[8], [77], [78], [90]. The λ estimated by the quasi-optimality criterion is the
minimizer of

VQO(λ) = λ2dTG
(
GTG+ λI

)−4
GTd. (3.12)

For a derivation of this expression we refer the reader to [35].

3.2.2 Model Order Reduction and trace estimation
In this section we review various methods for approximation of quantities of the
form

W (A) = wT fλ(A)w,

and
T (A) = trace (fλ(A)) ,

where fλ(x) = (x+ λ)−p, p ∈ N and A ∈ Rd×d is a symmetric positive semi-definite
(SPSD) matrix. We define a matrix function in the conventional sense. Given the
eigenvalue decomposition A = QΛQT , the function is defined as Qfλ(Λ)QT , where
fλ(Λ) is a diagonal matrix with fλ(λi) as its entries.

Truncated SVD
In this section we provide bounds for the parameter selection rules based on the
Truncated SVD [51]. They will be the basis for the error bounds derived for the
RSVD which will be presented in section 3.2.3.
Theorem 2. Let W (A) = wT fλ(A)w and T (A) = trace (fλ(A)). Let
A =

∑d
i=1 σ

2
i uiu

T
i where (σ2

i ,ui) denotes an eigenpair of A and let
Ak =

∑k
i=1 σ

2
i uiu

T
i . Then the relative errors are bounded by

|W (A)−W (Ak)|
W (A)

≤ (d− k)
p

λp+1

σk+1

fλ(σd)
. (3.13)

|T (A)− T (Ak)|
T (A)

≤ (d− k)fλ(σk+1)∑d
i=1 fλ(σi)

. (3.14)

Proof. Using a standard error estimate using the Taylor expansion we obtain:

|W (A)−W (Ak)| ≤ sup
x
|f ′λ(x)|

∣∣wT (A−Ak)w
∣∣

= sup
x
|f ′λ(x)|

∣∣wTUd−k+1Σd−k+1U
T
d−k+1w

∣∣
≤ sup

x
|f ′λ(x)| (d− k)‖w‖2σk+1

We have an explicit expression for supx≥0 |f ′λ(x)|, given by:

sup
x≥0
|f ′λ(x)| = sup

x

∣∣−p(x+ λ)−p−1
∣∣ =

p

λp+1
.
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A different bound can be obtained by making the following observation:

wT fλ(A)w = trace(wT fλ(A)w)

= trace(fλ(A)wwT )

= trace(Ufλ(Σ)UTwwT ).

Now using the fact that wwT is a rank 1 matrix with eigenvalue ‖w‖2, we can use
von Neumann’s trace inequality to obtain:

‖w‖2fλ(σd) ≤ wT fλ(A)w ≤ ‖w‖2fλ(σ1).

Putting both inequalities together we obtain (3.13). For T (A) we get

|T (A)− T (Ak)|
T (A)

=

∑d
i=k+1 fλ(σi)∑d
i=1 fλ(σi)

≤ (d− k)fλ(σk+1)∑d
i=1 fλ(σi)

It is important to note that the above error estimate depends on λ. As λ → 0,
f ′λ → ∞. However, given a certain λ > 0, there exists a bound for the derivative,
but it will become large for small λ. This means that there is an inverse relation
between k and λ: for large λ, k can be small, whereas for small λ, k has to be large.

Krylov methods and Gauss quadrature

The approach makes use of the fact that the quantity wT f(A)w can be written as
an integral with a certain measure, i.e.

wT fλ(A)w =

b∫
a

fλ(x)dω(x), (3.15)

where ω is a piecewise constant measure with discontinuities at the eigenvalues of
A. A short, intuitive explanation of this equality is given in section3.6. The integral
can be approximated by a quadrature rule of the form

b∫
a

fλ(x)dω(x) =

k∑
i=1

wifλ(xi) + Ek(fλ) := Ik(fλ) + Ek(fλ), (3.16)

where Ik(f) denotes the approximation with k nodes and Ek(f) the associated
error. The wi are the weights and the xi are the nodes. The weights and nodes for
the Gauss quadrature rule are chosen such that the quadrature rule is exact for all
polynomials of degree 2k. It can be shown that the there is no quadrature rule that
is exact for all polynomials of order larger than 2k. A variant, the Gauss-Radau
rule, fixes one node, which means that the Gauss-Radau rule is exact for
polynomials up to degree 2k− 1. The errors for the k-point Gauss rule (Ek) and the
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k-point Gauss-Radau rule (Ẽk) are given by [107], [41]:

Ek(f) =
f (2k)(ξ1)

(2k)!

m∑
i=1

uTi w

 k∏
j=1

(σ2
i − θ

(k)
j )

2

, (3.17)

Ẽk(f) =
f (2k−1)(ξ2)

(2k − 1)!

m∑
i=1

uTi w(σ2
i − a)2

 k∏
j=2

(σ2
i − θ

(k)
j )

2

. (3.18)

Recall that the parameter selection methods are functions of the form fλ(x) = (x+
λ)−p where p ∈ N, typically, p = 1, 2 or 4. The derivatives for this class of functions
are:

f
(2k)
λ (x) = (−1)(2k)p(p+ 1) · · · (p+ 2k − 1)(x+ λ)−(p+2k) > 0 (3.19)

f
(2k−1)
λ (x) = (−1)(2k−1)p(p+ 1) · · · (p+ 2k − 2)(x+ λ)−(p+2k−1) < 0 (3.20)

The nodes and weights for the Gauss quadrature are obtained by the
eigendecomposition of the tridiagonal matrix Tk, which can be obtained by Lanczos
tridiagonalization with starting vector w. Let Tk = QΛQT , then the nodes of the
quadrature are given by the eigenvalues and the weights are given by the first entry
of the corresponding eigenvector.

3.2.3 Evaluating the Gauss and Gauss-Radau rule
Let Tk be the tridiagonal matrix obtained by the Lanczos process with starting vector
w. For a general form wT f(A)w the k-point Gauss quadrature rule is given by [21]:

Ik(f) =

k∑
i=1

wif(xi) = ‖w‖2
k∑
i=1

f(λi)(e
T
1 Qei)

2 (3.21)

= ‖w‖2eT1 QT f(Λ)Qe1 (3.22)

= ‖w‖2eT1 f(Tk)e1. (3.23)

The functions that have to be evaluated are either functions of the form
wTG(GTG + λI)−pGTw or wT (GGT + λI)−pw. For functions of the form
wT (GGT + λI)−pw the matrix Tk is obtained by using the Lanczos
bidiagonalization process with starting vector b. Let Bk denote the lower
bidiagonal matrix obtained by the Lanczos bidiagonalization algorithm and let B̄k
be Bk with its last column removed. Then the Gauss and Gauss-Radau rules are
obtained by [21]:

Ik(f) = ‖w‖2eT1 f(BkB
T
k )e1, (3.24)

Ĩk(f) = ‖w‖2eT1 f(Bk−1B
T

k−1)e1. (3.25)

For functions of the form wTG(GTG + λI)−pGTw the matrix Tk can still be
obtained by the Lanczos lower bidiagonalization process, however, it has to be
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slightly modified. Let Bk be the lower bidiagonal matrix obtained by the Lanczos
bidiagonalization process. Let Bk = QB̃k be the QR decomposition of Bk. Then the
Gauss and Gauss-Radau rules are obtained by [21]:

Ik(f) = ‖w‖2eT1 f(B̃kB̃
T
k )e1, (3.26)

Ĩk(f) = ‖w‖2eT1 f(B̃k−1B̃
T

k−1)e1. (3.27)

The QR decomposition can be carried out in O(k) steps. Alternatively, the matrix
Tk = B̃kB̃

T
k for the Gauss and Gauss-Radau rules for functions of the form

wTG(GTG + λI)−pGTw may be obtained by the Lanczos upper bidiagonalization
algorithm [44].

Randomized SVD
In this section we present the algorithms that are used to compute the RSVD.
Moreover, we provide error bounds for the parameter selection methods. Although

Algorithm 1 Randomized Range Finder (Algorithm 4.2 from [48])

Require: General matrix G ∈ Rm×n, tolerance ε and an integer r.
Ensure: Matrix Qk s.t. ‖G − QkQ

T
kG‖ < ε holds with probability at least

1−min{m,n}10−r.
1: Draw a standard normally distributed matrix Ω ∈ Rn×r.
2: Compute Y = GΩ.
3: Set j = 0. Q0 is empty.
4: while max

{
‖y(j+1)‖, . . . , ‖y(j+r)‖

}
> δ/(10

√
1/2π) do

5: j = j + 1.
6: y(j) = y(j) −Qj−1Q

T
j−1y

(j).

7: q(j) = y(j)/‖y(j)‖.
8: Qj =

[
Qj−1 q

(j)
]
.

9: Draw a random vector ω(j+r).
10: y(j+r) =

(
I −QjQTj

)
Gω(j+r).

11: Orthogonalize y(j+1), . . . ,y(j+r−1) against q(j).
12: end while

the RSVD algorithm has been used before for the purpose of solving discrete
ill-posed problems, see e.g. [128, 129, 119], the algorithms presented there are
fixed rank algorithms in the sense that they return an RSVD given an a-priori target
rank. Here, we use an two-step algorithm from [48] which similar to the Lanczos
algorithm is iterative in nature. The first step is to extract a good approximation to
the range of G, which is done iteratively. The second step is to extract the RSVD.
The first step of the algorithm, called the Adaptive Randomized Range Finder [48,
algorithm 4.2], is presented in algorithm 1. We show the RSVD algorithm, taken
from [48], in algorithm 2. We now present the error bounds for the parameter
selection methods for the RSVD.
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Algorithm 2 RSVD algorithm (Algorithm 5.1 from [48])

Require: General matrix G ∈ Rm×n, tolerance ε and an integer r.
Ensure: G ≈ UkΣkV

T
k , U and V are orthonormal and Σk diagonal.

1: Compute Qk using algorithm (1).
2: Compute B = QTkG.

3: Compute the SVD of B: B = ŨkΣkV
T
k .

4: Compute U = QkŨ .

Theorem 3. (Adapted from [48, Corollary 10.9]) Let W (A) = wT fλ(A)w and
T (A) = trace (fλ(A)). Let A =

∑n
i=1 σ

2
i uiu

T
i where (σ2

i ,ui) denotes an eigenpair of
A. Let Ãk = ŨkΣ̃kṼ

T
k with Σ̃k = diag (σ̃1, . . . , σ̃k) be the RSVD of A given by

algorithm (2). Then the relative errors are bounded by

|W (A)−W (Ak)|
W (A)

≤ p

λp+1

(
1 + 8

√
(k + p)p log p

)
σk+1 + 3

√
k + p

(∑
j>k σ

2
j

)1/2

fλ(σm)
(3.28)

with failure probability at most 6p−p,

|T (A)− T (Ak)|
T (A)

≤ p

λp+1

(∑k
i=1(σ2

i − σ̃2
i ) +

∑m
i=k+1 σ

2
i

)
∑m
i=1 fλ(σi)

. (3.29)

Proof. The proof is similar to the proof of (2) except that the errors between A and
Ak are now determined by the RSVD algorithm. The error bound is directly taken
from [48, Corollary 10.9].

Note that the RSVD in this theorem is the RSVD of A, which is either GGT or
GTG. In practice we use the RSVD of G.

Randomized trace estimation
In this section we discuss estimating the trace. The trace of a symmetric positive
definite matrix A can be estimated by a randomization approach, using Hutchinson’s
trace estimator [68]. Equivalently, we can use it to estimate the trace of the function
of a matrix:

T (A) ≈ TN (A) :=
1

N

N∑
i=1

vTi fλ(A)vi, (3.30)

This estimator is an unbiased estimator for the trace [43, theorem 1]. The entries
of the vector vi are chosen according to a uniform distribution on the interval [0, 1].
Let ti denote the ith number drawn from this distribution, then the entries of v are
given by

vi =

{
+1 if ti ≥ 1/2

−1 if ti < 1/2
(3.31)
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The vectors v drawn from the distribution (3.31) are referred to as Rademacher
vectors. For a matrix function, we can estimate its trace by the quantity vT fλ(A)v.
To increase the accuracy of the estimator, the trace can be estimated by
V TN fλ(A)VN , where VN is a matrix with N columns and each column is of the form
(3.31). We can not bound the trace exactly, but there exist probabilistic bounds for
the trace estimator. In [110] a probabilistic bound for combined randomized trace
estimation and model order reduction through Krylov subspaces is presented. The
authors present an a priori bound for the combined randomized trace estimator
and Gauss quadrature. In our case, we have to rely on an a priori bound for the
randomized trace estimator. However, the accuracy of the Gauss quadrature to the
trace estimator is estimated a posteriori based on how close the lower and upper
bound are. We state a theorem similar to theorem 4.1 in [110]. Our approximation
is either the upper or the lower bound denoted by Ĩk and Ik. The key to obtaining
bounds is to split the error into two parts:

|T (A)− TN (Ak)| ≤ |T (A)− TN (A)|+ |TN (A)− TN (Ak)| .

The first term concerns the accuracy of the trace estimator itself. The second term
is approximated using the lower and upper bounds by using the Lanczos process.
For the first term there exist standard probabilistic bounds, [110], [68]. The second
term is bounded in [110] for general functions using a different error bound for the
Gauss quadrature. Here, we present an a posteriori bound based on the lower and
upper bounds. We have

|TN (A)− TN (Ak)| ≤
∣∣∣Ĩk − Ik∣∣∣ .

To obtain a useful bound we now require∣∣∣Ĩk − Ik∣∣∣ ≤ ε

2
T (A).

Using the fact that fλ(x) = (x+ λ)
−p
, p > 0, we require∣∣∣Ĩk − Ik∣∣∣ ≤ d ε

2
fλ(σ1) ≤ ε

2
T (A).

This leads to the following theorem.
Theorem 4 (Adapted from [110]). Choose N ≥ (24/ε2) log(2/η) as the number of
starting Rademacher vectors. Carry out k iterations of the Lanczos process such that∣∣∣Ĩk − Ik∣∣∣ ≤ d ε

2
fλ(σ1).

Then the output TN (Ak) is such that:

Pr

[∣∣T (A)− TN (Ak)
∣∣ ≤ ε∣∣T (A)

∣∣] ≥ 1− η. (3.32)
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Of course, σ1 is not available. However, we can estimate σ1 using the first Ritz
value θ1. Unfortunately though, there is no estimate available for the quantity
|σ1 − θ1| that does not depend on the singular values of A. By standard
convergence theory for the Lanczos process, we do know that the largest Ritz value
converges to the largest singular value first. Therefore, we expect the
approximation to be quite accurate and use θ1 instead of σ1 to calculate the error
bound. It should be noted, however, that a theorem of this form is not particularly
useful for this application. In the limit, i.e. ε, η → 1, we have N & 16 already, which
can be prohibitively expensive. Preferably, we would like to use very few random
vectors. We will investigate the impact of increasing N for small N (roughly 1 - 10)
in our numerical experiments. It has been reported before in [7] that N = 1 has
the optimal trade-off between computational complexity and accuracy. In our
numerical experiments we investigate the influence of increasing N for small N .

Obtaining the solution
It is important be able to evaluate the parameter selection methods quickly in order
to obtain a suitable λ. However, we are ultimately interested in the solution to the
problem and the question arises whether we can obtain the solution to the problem
quickly using the reduced order model for the parameter selection method. For
the RSVD this is trivial: we simply use the RSVD we have also used to evaluate
the parameter selection method. For the Lanczos process we do the same thing.
[73, theorem 3.1] shows that the solution obtained from Lanczos process for the
norm of the solution is the same as the solution from Conjugate Gradient applied
to (GTG + λI)m = GTd. This can be obtained easily from the Bk obtained from
evaluating the norm of the residual. Hence, for every parameter selection method
we can easily obtain a solution to the problem with an estimate for λ.

3.2.4 Computational costs
We compare the computational costs for Lanczos bidiagonalization to the presented
RSVD algorithm in terms of FLOPs. We start with Lanczos bidiagonalization. The
costs for the standard Lanczos bidiagonalization algorithm for a matrix G ∈ Rm×n
are

k · nnz(A)(m+ n) + 5(m+ n), (3.33)

where the first term is for the matrix-vector multiplication and the second term
is for various subtractions, divisions and taking the norm of vectors. It should be
noted that the Lanczos bidiagonalization algorithm is known to be unstable, i.e.
the orthogonal bases lose orthogonality, and may require reorthogonalization [42].
It has been shown that a loss of orthogonalization has a strong influence on the
estimated eigenvalues, but the effect on the solution of a linear system is small
([55], page 158). The costs for algorithm (1) are reported in [48], section 6.2, and
are

kmR+ k · nnz(A)n+ k2m, (3.34)

where the first term is the cost for generating Ω, the second term is the cost of
matrix-vector multiplication and the third term is the cost for the orthogonalization
of Q, in this case done by the Gram-Schmidt algorithm. If, for numerical stability, we
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use Householder reflectors, this cost would increase to roughly 2k2m − 2
3k

3 ([42],
section 5.2.2). The costs for extracting the SVD are O(mk2) with the addition of
2mnk FLOPs for the multiplications with Q. The big advantage of the RSVD is the
possibility to easily parallelize the computation and the fact that only one pass over
the data is needed. The ability to parallelize makes that, although the number of
matrix-vector multiplications may be similar, the RSVD algorithm is faster in terms
of computational time. When access to the matrix A is prohibitively expensive the
RSVD is certainly the desired option. For an in depth discussion on this topic see
[48], section 6.2.

3.3 Algorithms
In this section we show a blueprint for an algorithm based on either Lanczos
quadrature or the RSVD for selecting the regularization parameter. We wish to
make some small clarifying notes. We use the sampling for λ in order to be able to
detect if there is a minimizer and to easily check how close the upper and lower
bounds are. If we find a minimizer where the upper and lower bounds are not close
enough, we resample around the minimizer. We always check whether the
minimizer is not at the boundary of the sampled λ. In this case we simply resample
again. Minimizing only the upper bound halves the number of evaluations we have
to do for the sampled λ. Evaluating for a given λ is cheap, as it involves solving
systems involving Bk.
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Algorithm 3 Quadrature bounds for Reginska’s rule.

Require: The data d, matrix G and tolerance ε and a range of λ ∈ [λmin, λmax].
Ensure: λUReginska and λLReginska with relative error ε.

1: while Not converged do
2: Carry out a step of Lanczos bidiagonalization yielding Bk+1,k and Bk,k.
3: Compute the matrices B̃k,k and B̃k,k−1.
4: Compute the upper bound for the norm of the solution and the norm of the

residual:

ub_ s(λ) = ‖b‖2eT1
(
B̃k,k−1B̃

T
k,k−1 + λI

)−2

e1

ub_ r(λ) = λ2‖b‖2eT1
(
Bk,kB

T
k,k + λI

)−2
e1

5: if upper bound yields a minimizer then
6: Calculate lower bound at the minimizer.
7: if relative error is smaller than ε then
8: Compute λUReginska := minλ ub(k)

Reginska(λ) and λLReginska :=

minλ lb(k)
Reginska(λ).

9: if |ubReginska(λUReginska) − lbReginska(λUReginska)| < ε and |λUReginska −
λLReginska| < ε then

10: break
11: end if
12: else
13: Resample λ around the minimizer.
14: end if
15: end if
16: k → k + 1.
17: end while



42 | Chapter 3 – Comparing RSVD and Krylov methods for linear inverse problems

Algorithm 4 Quadrature bounds for GCV with randomized trace estimator.

Require: Data d and U ∈ Rn×N , matrix G and tolerance ε and a range of λ ∈
[λmin, λmax].

Ensure: λUGCV and λLGCV with relative error ε.
1: while Not converged do
2: Carry out a step of Lanczos bidiagonalization for starting vectors b,

u1, . . . ,uk yielding Bk+1,k and Bk,k for every starting vector.
3: Sample λ. We choose 10 values on a log scale between λmin and λmax.
4: Compute the lower and upper bound for the norm of the residual and the

trace estimators:

ub_r(λ) = λ2‖b‖2eT1
(
Bk,kB

T
k,k + λI

)−2
e1

ub_ui(λ) = ‖ui‖2eT1
(
B̃k,kB̃

T
k,k + λI

)−1

e1

5: if upper bound yields a minimizer then
6: Calculate lower bound at the minimizer.
7: if relative error is smaller than ε then
8: Compute λUGCV := minλ ub(k)

GCV(λ) and λLGCV := minλ lb(k)
GCV(λ).

9: if |ubGCV(λUGCV)− lbGCV(λUGCV)| < ε and |λUGCV − λLGCV| < ε then
10: break
11: end if
12: else
13: Resample λ around the minimizer.
14: end if
15: end if
16: k → k + 1.
17: end while
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Algorithm 5 Quadrature bounds for GCV with Ritz value based trace estimator.

Require: Data d and U ∈ Rn×N , matrix G and tolerance ε and a range of λ ∈
[λmin, λmax].

Ensure: λUGCV and λLGCV with relative error ε.
1: while Not converged do
2: Carry out a step of Lanczos bidiagonalization for starting vector d yielding
Bk+1,k and Bk,k.

3: Sample λ. We choose 10 values on a log scale between λmin and λmax.
4: Compute the upper bound for the norm of the residual: ub_r(λ) =

λ2‖b‖2eT1
(
Bk,kB

T
k,k + λI

)−2

e1

5: Estimate the trace using the Ritz values BkB
T
k = UΘV T , Θ =

diag(θ1, . . . , θk). trace
(
I −A(ATA+ λI)−1AT

)
≈ λ

∑k
i=1

1

θi + λ
+ n − k :=

T (Ak)
6: if upper bound yields a minimizer then
7: Calculate error with upper bound from previous iteration.
8: if relative error is smaller than ε then
9: Compute λUGCV := minλ ub(k)

GCV(λ) and λLGCV := minλ lb(k)
GCV(λ).

10: if |ub(k)
GCV(λUGCV)− ub(k−1)

GCV (λUGCV)| < ε and |λUGCV − λLGCV| < ε then
11: break
12: end if
13: else
14: Resample λ around the minimizer.
15: end if
16: end if
17: k → k + 1.
18: end while

Algorithm 6 RSVD for any parameter selection method.

Require: Data d, matrix G, a tolerance ε and an integer r.
Ensure: λ̂ such that the inequality (3.28) holds.

1: Compute Qk using the Adaptive Randomized Range Finder algorithm.
2: Compute the RSVD of QTkA = UkΣkV

T
k . Obtain A ≈ Ãk = QkUkΣkV

T
k .

3: Use Ãk to evaluate the parameter selection methods.
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3.4 Numerical experiments

3.4.1 Gravity surveying
We consider the classical example of gravity surveying, see e.g. [57]. Let m(t) be
the mass at location t and d(s) be the measured force at the surface at location s.
Let h denote the depth of the gravity field. We then have the following relation

d(s) =

1∫
0

h

(h2 + (s− t)2)3/2
m(t)dt.

The problem is to retrieve m(t) from measurements d(s). We show the setup in
figure (3.1). Because this is a Fredholm integral operator of the first kind, the

Figure 3.1: Setup for the gravity problem. Figure is taken from [57].

problem of retrieving m(t) is ill-posed. Specifically, the gravity surveying problem is
severely ill-posed due to the severe decay of the singular values, as can be observed
from figure (3.2). We regularize the problem using standard form Tikhonov
regularization. We show the approximation error and dimension of the lower

Table 3.2: Comparison of quadrature bounds versus the RSVD for ε = 10−1. m = n = 1000.
Results are averages plus-minus one standard deviation over 10 different noise realizations.

Lanczos RSVD

Method
‖λ− λ̂‖
‖λ‖

k
‖λ− λ̂‖
‖λ‖

k

GCV 1.3 · 10−2 ± 1.2 · 10−2 11.9± 1 1.1 · 10−2 ± 1.2 · 10−2 15
Reginska 2.4 · 10−3 ± 2.5 · 10−3 9.5± 0.7 4.0 · 10−4 ± 9.0 · 10−5 15

QO 8.3 · 10−3 ± 8.8 · 10−3 9± 0 8.5 · 10−3 ± 5.1 · 10−3 15
DP 6.1 · 10−4 ± 1.6 · 10−3 7.5± 1 1.4 · 10−2 ± 1.3 · 10−2 15

dimensional space for ε = 10−1, 10−2 and 10−3 in tables (3.2), (3.3) and (3.4)
respectively. Because we use a probabilistic measure to check for convergence the
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Figure 3.2: Singular values of the matrix G for the gravity problem where m = n = 1000.

Table 3.3: Comparison of quadrature bounds versus the RSVD for ε = 10−2. m = n = 1000.
Results are averages plus-minus one standard deviation over 10 different noise realizations.

Lanczos RSVD

Method
‖λ− λ̂‖
‖λ‖

k
‖λ− λ̂‖
‖λ‖

k

GCV 1.2 · 10−3 ± 1.1 · 10−3 14.2± 1.4 1.3 · 10−3 ± 1.8 · 10−3 18
Reginska 9.5 · 10−4 ± 1.4 · 10−3 9.5± 0.5 1.6 · 10−5 ± 1.1 · 10−5 18

QO 1.1 · 10−3 ± 2.2 · 10−3 9.6± 0.5 3.2 · 10−5 ± 1.7 · 10−5 18
DP 7.5 · 10−6 ± 1.4 · 10−5 8.4± 1 1.6 · 10−4 ± 4.7 · 10−5 18

size of Qk may vary with different realizations.
In figure (3.3) we show the performance of the randomized trace estimator for
varying N , where we have averaged over 10 realizations of the random vectors u.
We show the average of the 10 realizations and the dotted lines indicate one
standard deviation. It is clear that with increasing N we obtain a better
approximation on average. Moreover, the standard deviation drastically decreases.
However, twenty random vectors is generally too computationally expensive and
with regard to theorem (4), does not give us any strong guarantees on how close it
will be to the true trace. In figure (3.4) we show the trace estimator using the Ritz
values. The accuracy of the trace estimator using the Ritz values rapidly increases
as k increases. For large values of λ the trace is well approximated early, but for
small λ we need more iterations. It is important to note that we are interested in
approximating the trace well around the optimal λ, which is unlikely to be very
small. For k = 30 we have already obtained a near perfect approximation of the



46 | Chapter 3 – Comparing RSVD and Krylov methods for linear inverse problems

Table 3.4: Comparison of quadrature bounds versus the RSVD for ε = 10−3. m = n = 1000.
Results are averages plus-minus one standard deviation over 10 different noise realizations.

Lanczos RSVD

Method
‖λ− λ̂‖
‖λ‖

k
‖λ− λ̂‖
‖λ‖

k

GCV 2.5 · 10−4 ± 2.1 · 10−4 15.5± 1.7 7.8 · 10−4 ± 2.4 · 10−3 21
Reginska 2.4 · 10−5 ± 2.5 · 10−5 10± 0 6.4 · 10−7 ± 7.9 · 10−7 21

QO 9.0 · 10−5 ± 1.2 · 10−4 9.9± 0.7 3.1 · 10−5 ± 1.9 · 10−5 21
DP 2.5 · 10−8 ± 1.8 · 10−7 9.9± 0.6 4.3 · 10−5 ± 5.3 · 10−5 21

(a) Full view. (b) Zoom.

Figure 3.3: Randomized trace estimator for increasing N for the gravity problem. We show
the average for 10 random realizations and the dashed-dotted lines are plus minus one
standard deviation.

trace. The extra work needed in calculating the Ritz values is small, as we are
computing the SVD of a k × k symmetric tridiagonal matrix. For k = 14 we have
already obtained a satisfactory approximation of the trace, as the trace around the
optimal λ is well approximated. This is due to the fact that the spectrum decays
very quickly, as can be seen from figure (3.2).

3.4.2 Cross-well tomography
We consider classical linear cross-well tomography, an example taken from the AIR
tools package [59]. We show the setup of the problem in figure (3.5). On the right
are the sources and on the left are the receivers. We show the rays travelling from
one source to all receivers. The data are the traveltimes from source i to receiver j
and the goal is to reconstruct the well. We show the data and the well in figure
(3.6). Typically, for this setup we have far less sources and receivers than
gridpoints. This means that the problem is underdetermined. The well has a
smooth structure, and since the problem is underdetermined, we use general form
Tikhonov regularization where L is the discrete Laplace operator: this enforces a
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Figure 3.4: Approximation of the trace using the Ritz values for increasing k.

Figure 3.5: Linear cross-well tomography.

smooth reconstruction. The problem is mildly ill-posed due to the fact that the
singular values decay mildly, as can be observed from figure (3.8). For the noise
level we use δ = 10−1. For the Adaptive Randomized Range Finder we use a
modified scheme based on the RSVD for underdetermined problems from [129].
Instead of using AΩ we use ΩA, or equivalently, ATΩ, to obtain the RSVD. For the
Adaptive Randomized Range Finder we use the same parameters as for the gravity
problem. Interestingly, the Adaptive Randomized Range Finder does not converge
until we have obtained the full QR decomposition. We show the true errors
‖G−QkQTkG‖F for all k in figure (3.7). The performance of the Lanczos method is
shown in table 3.5. The Quasi-Optimality Criterion did not yield a minimizer, hence
we have omitted this rule from the results. Notice that although the trace estimator
seems rather accurate, there is still a considerable error compared to the optimal λ.
This does not mean that the solution will necessarily be bad though.

We compare the randomized trace estimator versus the approximation based on
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(a) Traveltimes: entry (i,j) indicates
the traveltime from source i to receiver
j.

(b) The ground truth.

Figure 3.6: Traveltimes and the well for the tomography problem.

Figure 3.7: ‖G−QkQTkG‖F for all k.

the Ritz values in figure (3.9). We show the accuracy for varying N in figure
(3.10).
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Figure 3.8: Singular values of the matrix GL−1 for the tomography problem.

Table 3.5: Results for parameter selection using the Lanczos procedure. m = 400 and
n = 2500. Results are averages plus-minus one standard deviation over 10 different noise
realizations.

Lanczos

Method
‖λ− λ̂‖
‖λ‖

k

GCV 2.4 · 10−1 ± 1.7 · 10−1 15± 2.5
Reginska 3.1 · 10−3 ± 6.5 · 10−3 9.4± 0.8

DP 1.4 · 10−3 ± 7.6 · 10−4 20.7± 4

(a) GCV approximation using the
trace estimator.

(b) GCV approximation using the Ritz
values.

Figure 3.9: Comparison of trace estimators for the GCV for k = 30. The circles denote the
minimizers.
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(a) Full view. (b) Zoom.

Figure 3.10: Randomized trace estimator for increasing N for the tomography problem. We
show the average for 10 random realizations and the dotted line are plus minus one standard
deviation.

Figure 3.11: Approximation of the trace using the Ritz values for increasing k.
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3.5 Conclusion
In this chapter we have compared the use of the Lanczos process for parameter
selection methods versus the use of the RSVD. We have derived bounds for the
parameter selection methods when estimated using the RSVD. We have presented a
theorem that provides probabilistic bounds for trace estimation combined with a
low dimensional approximation obtained by the Lanczos method. This theorem
provides us with certain guarantees in terms of accuracy. However, these
guarantees require too many computations. We have compared the use of Lanczos
quadrature and RSVD for two model problems from geosciences: gravity surveying
and linearized cross-well tomography. We have also compared the use of
Hutchinson’s trace estimator versus the trace estimator based on the estimates for
the singular values from the Lanczos process and the RSVD. The gravity surveying
problem is severely ill-posed and we have shown that, for this problem, the Lanczos
quadrature method and the RSVD yield comparable results. We have also shown
that the trace estimator based on the Ritz values of the Lanczos process (or the
estimated singular values of the RSVD) outperforms the randomized trace
estimator for the GCV. For the tomography problem, which is a mildly ill-posed
underdetermined problem, we have shown that the RSVD failed to provide a
satisfactory low dimensional approximation to evaluate the parameter selection
methods. The Lanczos quadrature method was able to provide a lower dimensional
approximation. The key difference is that, due to the fact that we obtain lower and
upper bounds for the parameter selection methods, we obtain a lower dimensional
model given the λ estimated by the parameter selection method. For the
tomography problem this is a great advantage, because the optimal λ is quite large.
A large λ allows for a lower dimensional approximation than a small λ, something
which is reflected by the error bounds for the Lanczos quadrature method, and the
bounds derived by us for the RSVD. For the tomography problem, we have shown
that Hutchinson’s trace estimator gives a far better approximation of the trace for
small k than using the estimates obtained by the Lanczos procedure.
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3.6 Appendix
Relations
We give s short derivation of (3.9). We have

‖Gm̂λ − d‖ = ‖
(
G(GTG+ λI)−1GT − I

)
d‖. (3.35)

We now use the following relation:

(GTG+ λI)−1(GTG+ λI)GT = GT (3.36)

⇐⇒ (GTG+ λI)−1GT (GGT + λI) = GT (3.37)

⇐⇒ (GTG+ λI)−1GT = GT (GGT + λI)−1 (3.38)

Plugging this into (3.35) gives

‖Gm̂λ − d‖ = ‖
(
GGT (GGT + λI)−1 − I

)
d‖. (3.39)

Using the relation

(GGT + λI)(GGT + λI)−1 = I (3.40)

⇐⇒ GGT (GGT + λI)−1 = I − λ(GGT + λI)−1 (3.41)

Plugging this into (3.39) yields the desired result

‖Gm̂λ − d‖2 = λ2dT (GGT + λI)−2d. (3.42)

Measure
In this section we describe the relation (3.15). Our aim is to give an explanation
of how the piece-wise measure works for the reader that has no experience with
measure theory, without any mathematical rigor, but simply to give an intuitive idea.
To understand the measure in (3.15), it suffices to think of a measure as a weighted
integral. Consider the following integral where g(x) is a continuously differentiable
function: ∫

Ω

f(x)dg(x) =

∫
Ω

f(x)
dg(x)

dx
dx =

∫
Ω

f(x)g′(x)dx. (3.43)

Hence, if the measure is a continuously differentiable function we can regard the
measure as a weighted integral, where g′(x) is the weight. Now if the function g(x)
is piecewise constant it is no longer differentiable. Consider the following function:

f(x) =

{
0 if 0 ≤ x ≤ 1

1 if 0 < x ≤ 2
(3.44)

The function is everywhere differentiable except at x = 1. Now, for h > 0

f(1 + h)− f(1)

h
=

1

h
. (3.45)

If h → 0 the function will go to infinity. We can regard the derivative of this
function at x = 1 as a delta function. Hence, when integrating a function with a
piecewise constant measure we can regard this as taking point evaluations. If we
let the discontinuities be at the eigenvalues of a matrix, we get (3.15).



CHAPTER 4

Block-Krylov methods for
Multi-Dimensional Deconvolution

Abstract We address the estimation of the impulse response at a reflector by
deconvolving the up- and downgoing waves. Deconvolution in the time domain
can be written as a linear system with multiple right-hand sides in the frequency
domain. A straightforward way of solving these systems is by applying an
iterative method like LSQR. However, these solvers are dependent on the right-
hand side and for every right-hand side we have to use LSQR again. This can
be a costly process. We propose to solve the linear systems using block Krylov
methods. We show that these methods give comparable accuracy compared to
standard Krylov methods, but at a much lower computational cost. This is due to
the fact that block methods are able to exploit similarities in the data and are able
to constructs solutions in a much richer subspace. We also show that it is hard
to solve the MDD problem in the frequency domain alone, and that additional
optimization in the time domain is most likely required.

This chapter is partially based on the following publication:

N.A. Luiken and A. Garg. Block-Krylov methods for multi-dimensional deconvolution.
Society of Exploration Geophysicists, pages 5070–5074, 2019.
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4.1 Introduction
In this work we address Multi-Dimensional Deconvolution (MDD), specifically in
the context of seismic wavefield redatuming. The objective is to estimate an impulse
response, or Green’s function, of a reflector in the subsurface from the downgoing
and upgoing wavefields at the reflector. The upgoing wavefield is a convolution of
the downgoing wavefield with the impulse response in the time domain. Due to
the large size of the matrices, the problem is often transformed to the frequency
domain. In the frequency domain the convolution is simply a multiplication, which
means that deconvolving amounts to solving systems of the form XP+ = P− for
all frequencies, where P+ and P− denote the downgoing and upgoing wavefields
respectively for a number of experiments, and X is the unknown multi-dimensional
impulse response. This is a linear system of equations with multiple right-hand sides.
Usually, these systems are solved with a standard solver like LSQR, which seeks an
approximation in a Krylov subspace. However, LSQR depends on the right-hand side
and one has to solve for each right-hand side individually. There are solvers that are
specifically designed to handle multiple right-hand sides and exploit redundancy in
the data. These solvers are based on so-called block Krylov methods [40], that find
a solution in a larger Krylov subspace than standard solvers do. In certain cases, this
can lead to a considerable speed-up in computations. Through an example, we show
how these solvers can be used to obtain a considerable speed-up in computations in
the MDD process.

4.2 Block Krylov methods
In this section we shortly outline the basic theory behind block Krylov methods. For
an in depth overview we refer the reader to [46]. We start with some notation. We
are interested in solving linear systems of the form

GX = D, (4.1)

where G ∈ Cm×n, X ∈ Cn×s, D ∈ Cm×s. G is the model, D is the data and X is the
variable of interest. Equivalently, the system is solved by the following minimization
problem:

min
X
‖GX −D‖F . (4.2)

In case s = 1 we have a system with one right-hand side. Solutions to these systems
can be obtained through standard iterative methods such as LSQR, CG or GMRES.
These solvers are based on Krylov subspaces, which are defined as

Kk(G,d) := span
{
d, Gd, . . . , Gk−1d

}
.

The iterative methods build an approximate solution by projecting onto the Krylov
subspace and the number of iterations corresponds to the size of the subspace. The
methods terminate, in exact arithmetic, after n steps and find the exact solution
(provided G is nonsingular). The aim is to obtain a good approximation to the true
solution for k � n. Note that the Krylov subspaces are based on a starting vector
d. In the context of solving linear systems, this is usually the data. When s > 1 in
(4.1), we have to solve multiple linear systems with the same model. This raises
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the question whether there is a more efficient way to solve this system. Intuitively,
it is clear that when two columns of D, di and dj , are similar that they can be
approximated in the same Krylov subspace. In the extreme case where they are
orthogonal they have to be approximated in two completely different spaces. It is
reasonable to expect that for low rank D we can re-use Krylov subspaces generated
for nearly linearly dependent vectors. This idea is exploited by block methods.
The block Krylov subspace is defined as

K�
k (G,D) := block span

{
D,GD, . . . , Gk−1D

}
:=
∑k−1
i=0 G

iDCi, Ci ∈ Cs×s.

It is important to note that the coefficients Ci are not real numbers, but matrices. It
can be shown that we have the following equivalence

X = [x1| . . . |xr] ∈ K�
k (G,D)⇔ xl =

∑r
j=1

∑k−1
i=0 G

ibjβ
(l)
i,j ,

l = 1, . . . , r β
(l)
i,j ∈ C.

If we solve (4.1) using a non-block method by projecting onto a Krylov subspace
depending on dl we have

xl =

k−1∑
i=0

Gidlα
(l)
i .

Hence, we see that if we solve (4.1) using a block method, the columns xl of X are
in a much richer subspace than if we solve with a standard method. We now show
the block Arnoldi algorithm from [46], which is the basis for block-GMRES and state
the conditions under which block methods are preferred. The algorithm is shown in
7.

Algorithm 7 Block Arnoldi process

Require: Matrix G ∈ Cm×m and starting vector B ∈ Cm×s.
Ensure: Matrices Qk = [q1, . . . , qs] ∈ Cm×ks, with qHi qj = 0, qHi qi = I, and upper

block Hessenberg Hk ∈ C(k+1)s×ks with entries hij ∈ Cs×s.
1: q1h00 = B. (QR decomposition of B)
2: for i = 1 to k do
3: ri = Gqi−1

4: for j = 1 to i do
5: hji = qHj ri
6: ri = ri − qjhji
7: end for
8: qihi+1,i = ri. (QR decomposition of ri)
9: end for

After k steps of the algorithm we have the following relations

GQk = Qk+1Hk.
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Making the substitution X = QkY and inserting this into (4.2) we obtain the
reduced system

min
X
‖GX −D‖F = min

Y
‖HkY − D̃‖F .

If s = 1 then solving this reduced system is done by the GMRES algorithm. Note
that the difference between the standard Arnoldi algorithm and the block Arnoldi
algorithm is that instead of multiplying with a vector, we multiply with matrices. It is
clear that the QR factorizations in algorithm 7 can become prohibitively expensive
for large s. For solving linear systems of the form (4.1) s is equal to the size of
D. Hence if the data matrix is large, block methods become unattractive. This
drawback can be overcome through a process called deflation. There are two types
of deflation: initial deflation and Arnoldi deflation. Initial deflation concerns the
data. The linear dependencies in the data are removed which leaves a linearly
independent set of vectors. This set of vectors is then used as the start matrix for the
block method. It is clear that the larger the start matrix is, the more expensive the
block method becomes. Therefore, it is essential that for large right-hand sides we
are able to deflate the data and work with small blocks that yield the same amount
of information. Initial deflation can be done via the QR factorization of the data. Let

D = [Q1 , Q2]

[
R11 R12

0 R22

]
.

In exact arithmetic, the rank of D is the size of the block R11 and R22 will be 0.
In applications we typically choose a certain tolerance for the rank of the matrix.
R11 will then be the block corresponding to the tolerance and ‖R22‖F will be small.
Q1R11 will now be the QR decomposition of the starting matrix for the Arnoldi
process. From this process we obtain an approximate solution X1. The full solution
is now given by

X = [X1 , X2] :=
[
X1 , X1R

−1
11 R12

]
.

For a detailed derivation we refer the reader to [46].
Arnoldi deflation occurs when one of the hij becomes rank deficient. We have not
encountered this issue and therefore we do not elaborate on it. To use initial
deflation we have to determine the rank of D. Determining the rank of a matrix is a
costly procedure though, and can be as costly as factorizing the matrix G, which
again can make block methods unattractive.

4.3 Analysis via SVD
Before we attempt to solve the problem we would first like to make an analysis
of the linear systems we are solving. We will show that the nature of the problem
changes as the frequency increases. We first start by making an important distinction
between the rank of a matrix and the numerical rank of a matrix. The rank is defined
as the number of nonzero singular values. However, in finite precision arithmetic,
matrices can often have very small singular values that are not precisely 0, but are
so small that the matrix can be regarded as rank deficient. If a matrix has singular
values around machine precision these are often considered to be 0. The presence
of small singular values tells us something about the ill-posedness of our problem.
A problem is called ill-posed if it violates one of the following three conditions:
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1. there exists a solution,
2. the solution is unique,
3. the solution is stable with respect to perturbations.

Small singular values lead to a violation of the third condition. The small singular
values amplify small changes in the data in the inversion which makes the solution
unstable. If the matrix is rank deficient we only obtain a solution if bi ∈ R(A)
for i = 1, . . . , r. Otherwise, the second property is violated. Note that in finite
precision arithmetic we use the numerical rank instead of the rank to determine
rank deficiency. We show the rank of G for all frequencies in figure 4.1. We see that

Figure 4.1: Rank of G for varying frequency

for the medium and high frequencies G is full rank, but for the low frequencies G is
rank deficient. To illustrate the ill-posedness of the problem, we show the spectrum
ofG in figure 4.2 for two different frequencies: one for a low frequency and one for a
high frequency. It is clear that for the low frequencies the problem is much more ill-
posed. For the high frequencies, there are only a small number of very small singular
values. For iterative solvers like LSQR and GMRES, ill-posedness of the matrix G
(in the sense that G has small singular values), will lead to semiconvergence [57].
Semiconvergence is the phenomenon where the error between the reconstruction
and the true X goes down initially, but increases as the iterations go on. This is
due to the fact that noise, amplified by the small singular values, starts to enter the
solution. Therefore, the method has to be terminated early to obtain a good solution.
Hence, the number of iterations k takes the role of the regularization parameter. Due
to the different nature of the spectra, it is important to regularize the low and high
frequencies differently. Moreover, the rank deficiency of G for the low frequencies
may lead to instabilities when using LSQR or CG. We have not observed any issues
for this particular example.

4.4 Multi-Dimensional Deconvolution
As stated in the introduction, we investigate the usefulness of block methods on an
MDD example in the context of redatuming. The aim is to estimate the impulse
response X(xr, xr) from the down- and upgoing wavefields P+(xr, xs) and
P−(xr, xs) which satisfy the relations

XP+ = P−. (4.3)
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Spectrum for low frequency Spectrum for high frequency

Figure 4.2: Spectrum of G for two different frequencies.

Here xr denotes the receiver spacing and xs denotes the source spacing. If we
transpose (4.3) it is of the form (4.1) where P+H

is the model and P−
H

is the data.
We show our subsurface model in figure 4.3. For a description of the model used

Figure 4.3: Subsurface model. We estimate the impulse response at 680 m.

above we refer the reader to [36]. We estimate the impulse response at depth level
680 m. For this example we have chosen equal source and receiver sampling and
hence all matrices are square. In a more realistic case, there would be less source
sampling and hence the problem will become underdetermined. In this case, we
can resort to the normal equations GGH = D. In our setting, where we have the
same number of sources and receivers and in principle we don’t have to resort to
the normal equations. Interestingly, we have observed that the normal equations
seem to have a regularizing effect in the sense that it seems to filter out high
frequency components from the data. If we do not solve the normal equations but
attempt to solve GX = D instead, we get a noisy reconstruction. This is due to the
fact that we are not able to solve the system GX = D accurately enough for the
higher frequencies. The filtering is due to the product GHD and we conjecture that
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therefore it is better even for underdetermined systems to solve GHG = D instead
of GGH = D. Note that by resorting to the normal equations, the Arnoldi process
becomes mathematically equivalent to Lanczos tridiagonalization and hence block
GMRES becomes equivalent to block CG.
We now turn to the possible use of block methods. As we have stated earlier, in
order for block methods to be efficient we need to be able to use deflation. The
initial deflation is dependent on the rank of the data. We show the rank of D for all
frequencies in figure 4.4. The y-axis is scaled to the size of the matrix. We can

Figure 4.4: Rank of the data matrix

clearly see that the data is rank deficient and that the rank of the matrices increases
with the frequency number. This suggests that the block methods are efficient for
the lower frequencies, whereas for high frequencies the extra cost of the block
methods starts to dominate. We compare the results of our deconvolution to the
results obtained using the methodology in [36]. There, the deconvolution process
has three additional constraints in the time domain. The first is reciprocity, which
means that X should be symmetric. The second is a hyperbolic time window which
suppresses non causal events. The third is a sparsity constraint which suppresses so
called ringing artifacts. The deconvolution process is then solved using steepest
descent.
We show the reconstruction for the block GMRES method versus the standard
GMRES method for one source in figure 4.5. We see that the results for the
standard GMRES versus the block-GMRES are comparable. However, near the
edges the impulse response from GMRES shows a small tail that curves upwards,
which is not present in the impulse response from block-GMRES. We see that both
impulse responses show non-causal effects near the top and show some "ringing
artifacts". However, in terms of computational time, the block-GMRES method is
much faster. We’ve clocked the computational time to solve the linear systems for
all frequencies over 10 runs. Block-GMRES averaged 1.1 seconds whereas GMRES
averaged 23.1 seconds. We compare the impulse response from block-GMRES to
the reference impulse response generated by the algorithm from [36] in figure 4.6.
The impulse response obtained by deconvolution in the frequency domain is pretty
close to the reference impulse response. Note that we do not impose any
constraints: we are simply solving the linear systems. We see that if we regularize,
i.e. terminate the iterative method, properly, we get a decent reconstruction. We
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Figure 4.5: GMRES versus Block-GMRES for 1 source position.

Figure 4.6: Reference versus Block-GMRES for 1 source position.

show the relative error for GMRES and block-GMRES versus the reference impulse
response in figure 4.7. We see that the errors for GMRES and block-GMRES are

Figure 4.7: Error per frequency measured versus the reference impulse response.

comparable. Interestingly, we see that the error goes up with the frequency
although we have shown that the spectra for the higher frequencies are relatively
flat and have a small number of small singular values. We conjecture that there is
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noise, i.e. unexplained physical events, in the data that affects the higher
frequencies more than the low frequencies.

4.5 Discussion
We have shown that block methods can be used to efficiently solve the MDD problem
in the frequency domain. We have shown that the quality of the reconstruction of
the block-GMRES method is comparable to the quality of GMRES. It is however
much faster. One of the benefits of the block method is that it is easier to regularize
than normal GMRES, because the number of iterations one has to take is limited.
For this problem, block-GMRES could be terminated after one iteration. For the
low frequencies this is due to the fact that G is low-rank, whereas for the high
frequencies the number of iterations is limited due to the large size of the input
blocks. The most expensive computation of the block method is computing the rank
of the data matrix D via the QR decomposition. Due to this overhead cost, we think
that direct methods are competitive alternatives to iterative methods for MDD, e.g.
via the use of an SVD. One important factor is that the matrix G is generally full,
and due the fact that we have a large number of right-hand sides, a direct method
may be more efficient. We have also seen that we are not able to solve the MDD
problem to a satisfactory precision in the frequency domain. The block method can
however be used as an initialization, after which the problem can be solved via a
gradient based scheme with appropriate constraints in the time domain. We suspect
that due to a good initial guess the gradient scheme will have converged rapidly. We
do not see any sensible regularization in the frequency domain that could lead to a
better solution. Lastly, we would like to point out the interesting work [71], where
the authors compress the data using the Randomized Singular Value Decomposition.
To overcome the problem of high-rank matrices in the high frequency regime, the
authors propose the use of Hierarchical Semiseparable matrices (HSS matrices), the
exploit the structure of seismic data. This seems to be a promising alternative to
our work. For future research, we would like to solve the MDD problem in the time
domain.
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Abstract In seismic imaging the aim is to obtain an image of the subsurface
using reflection data. The reflection data are generated using sound waves
and the sources and receivers are placed at the surface. The target zone, for
example an oil or gas reservoir, lies relatively deep in the subsurface below
several layers. The area above the target zone is called the overburden. This
overburden will have an imprint on the image. Wavefield redatuming is an
approach that removes the imprint of the overburden on the image by creating
so-called virtual sources and receivers above the target zone. The virtual sources
are obtained by determining the impulse response, or Green’s function, in the
subsurface. The impulse response is obtained by deconvolving all up- and
downgoing wavefields at the desired location. In this chapter, we pose this
deconvolution problem as a constrained least-squares problem. We describe
the constraints that are involved in the deconvolution and show that they are
associated with orthogonal projection operators. We show different optimization
strategies to solve the constrained least-squares problem and provide an explicit
relation between them, showing that they are in a sense equivalent. We show
that the constrained least-squares problem remains ill-posed and that additional
regularization has to be provided. We show that Tikhonov regularization leads
to improved resolution and a stable optimization procedure, but that we cannot
estimate the correct regularization parameter using standard parameter selection
methods. We also show that the constrained least-squares can be posed in such
a way that additional nonlinear regularization is possible.

This chapter is partially based on the following publication:

N.A. Luiken and T. van Leeuwen. Seismic wavefield redatuming with regularized
multi-dimensional deconvolution. Inverse Problems, 36:095010, 2020.
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Figure 5.1: Schematic depiction of the redatuming procedure. A seismic survey consists of
emitting waves into the subsurface from an impulsive source (red star) and recording the
reflected response (green triangle). The goal is to transform recorded reflection data that
includes the response of both the overburden and target zone to the response of the target
zone only.

5.1 Introduction
In seismic imaging, one aims to obtain an image of the subsurface from reflection
data. Here, an impulse source sends waves into the subsurface and the reflected
response is recorded by an array of receivers. Reconstructing an image from the
reflected data is an inverse problem that has been studied extensively (for an
elaborate review see [108]). Wavefield redatuming is an inverse problem that
appears in the same context and is often considered a pre-processing procedure.
The goal of wavefield redatuming is to remove the effects of a part of the medium
that is not of primary interest for imaging purposes (called the overburden), thereby
making subsequent imaging of the target zone (e.g., an oil reservoir) easier.
Redatuming transforms the response of the medium (overburden plus target zone)
to the responses of the target zone only. This situation is depicted schematically in
figure 5.1.

For an extensive overview of the redatuming problem we refer to [12, 104, 124,
126, 114, 113, 112, 98]. Imaging methods based on redatuming are, for example,
Marchenko imaging [125] and JMI-res [36]. A key ingredient in all redatuming
methods is Multi-Dimensional Deconvolution. Here, the data and unkown response
are related through Multi-Dimensional Convolution with a given kernel. This leads
to a linear, ill-posed inverse problem

p(t, x, x′) =

∫ ∫
g(t− s, x, y)q(s, y, x′)dsdy,

where p : R3 → R and q : R3 → R are two given wavefields and g : R3 → R is the
unknown impulse response. After discretisation this yields a linear system of matrix
equations

QG = P,

where Q is a block Toeplitz matrix, P contains the measurements and G represents
the impulse response. The Toeplitz structure of the matrix is due to the convolution
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operation, see, e.g. [60, page 35]. The block structure is due to the fact that a
convolution in the time domain is multiplication in the frequency domain, and the
block sizes are nr × ns, where nr is the number of receivers and ns is the number of
sources. It should be noted here that the usual distinction between model and data
does not hold as both Q and P are contaminated with noise. This is because they
are either measured directly or derived from measured data by some preprocessing
steps. Nevertheless, we may attempt to solve the inverse problem by posing it as a
regularized least-squares problem:

min
G
‖QG− P‖2F + λ‖G‖2F , (5.1)

where ‖ · ‖F denotes the Frobenius norm and λ > 0 is the regularization parameter.
Because of the block-Toeplitz structure of Q this can be efficiently solved
block-by-block in the Fourier domain. Typical difficulties that are encountered
when solving such Multi-Dimensional Deconvolution problems are illustrated in the
following example.
Example 5.1.1. To illustrate the idea we show an example of source redatuming after
the one in [104]. Here, q(t, r, s) is the transmitted (downgoing) wavefield generated
by a point source at location (0, s) (indicated by red stars in figure 5.2 (a)) as recorded
by the receivers (indicated by green triangles) at location (500, r) and p(t, r, s) is the
reflected (upgoing) wavefield recorded at the same receivers. The impulse response g
corresponds to a virtual experiment where sources are placed at z = 500 (depicted in
5.2 (b)). The corresponding wavefields q and p for a source at (0, 0) as generated by
a finite-difference modelling code are shown in figure 5.3 (a). The resulting estimate
of g is depicted in figure 5.3 (b), alongside the true response (also generated by a
finite-difference modelling code). Although the main features are reconstructed, we see
some notable artifacts in the solution. In particular, we see non-physical events arriving
before the first arrival. To counter such artifacts, we need a regularization method that
takes into account such prior knowledge of the underlying physics.

5.1.1 Approach and challenges
To include prior physical constraints in the reconstruction, we pose the inverse
problem as a constrained least-squares problem:

min
G
‖QG− P‖2F such that G ∈ A, (5.2)

where A denotes a (convex) set of admissible solutions. Typical constraints include
causality: g(t, s, r) = 0 when t < τ(s, r) for some given function τ , and reciprocity:
g(t, s, r) = g(t, r, s). Note that even though p and q should obey this constraint
as well, noise or modelling errors may cause the unregularized solution to violate
this constraint. Moreover, if Q has nullspace we may add components from the
nullspace that violate the constraints. Enforcing reciprocity is nothing new, see e.g.
[70, 69], and is frequently used by practitioners. However, here, we analyze the
constraint from a more mathematical point of view. The difficulty in solving the
inverse problem is that it is typically underdetermined and rank deficient. This is
due to the fact that a seismic survey usually has fewer sources than receivers and
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Figure 5.2: An example of source redatuming. The dashed red line indicates a wave traveling
from source to receiver. The black line indicates a wave traveling the same path, but passing
through the receiver after which it reflects and goes to another receiver. The difference
between the two waves is the Green’s function, shown in the figure on the right.
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Figure 5.3: Wavefields q(t, r, s = 0), p(t, r, s = 0) associated with the subsurface in the
example from figure (5.2) and the corresponding true and reconstructed response g(t, r, s =
0).

the measurements are bandlimited. Therefore, further regularization besides the
constraints is needed to stabilize the solution.

5.1.2 Contribution
In this chapter we pose Multi-Dimensional Deconvolution as a constrained
least-squares problem. In particular, we treat the source-redatuming problem with
causality and reciprocity constraints. We show that these constraints are associated
with orthogonal projection operators. We describe different optimization methods
to incorporate the constraints in the optimization and show explicit relations
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between the methods. We show that the optimization methods are in a certain way
equivalent, but that solving them numerically leads to different solutions. We show
that even with incorporating the constraints, the problem exhibits
semiconvergence, which means that the optimization scheme is still not stable.
This means that the iterations have to be stopped at the appropriate point. Finally,
we show that the addition of a Tikhonov penalty can further improve the
reconstruction, but that standard parameter selection methods do not yield a good
estimate for the regularization parameter. This makes the addition of a Tikhonov
penalty impractical.

5.1.3 Outline
The chapter is organized as follows. In section (5.2) we describe the
Multi-Dimensional Deconvolution (MDD) problem and set up the discretized linear
system. In section (5.3) we describe how the reciprocity constraint and the
causality constraint can be incorporated in the optimization. In section (5.4) we
compare different optimization strategies and detail the difficulties in solving the
optimization problem. Finally, in section (5.5), we draw our conclusions and add a
short discussion and outlook.

5.2 Source redatuming
We start from the scalar wave equation in Rn:(

c(x)−2∂2
t −∇2

)
u(t, x, x′) = f(t)δ(x− x′), (5.3)

where c is the soundspeed in the medium, and f is the time-signature of the source.
The wave equation is furnished with appropriate boundary and initial conditions to
ensure causal, outward propagating solutions. We split the medium in two parts; the
overburden where c(x) = c0(x) and the target zone, where c(x) = c1(x). In essence,
the inverse problem is as follows; given measurements of u at depth level z we want
to retrieve the impulse response of the target zone that excludes any effects from the
overburden. In absence of horizontally propagating waves, we can split the solution
to (5.3) into an upgoing and downgoing part, u− and u+ [20]. The upgoing and
downgoing constituents can be obtained by solving a system of equations involving
u and its vertical derivative [27, 123]. We now consider measurements of u at xr =
(z, r) originating from a source at xs = (z0, s) and set q(t, r, s) = u+(t, xr, xs) and
p(t, r, s) = u−(t, xr, xs). These two quantities are related to the upgoing response at
(z, r) to a downward radiating source at (z, s) via convolution:

p(t, r, s) =

∫ ∞
−∞

∫ ∞
−∞

g(t− t′, r, r′)q(t′, r′, s)dt′dr′. (5.4)

The goal is to recover g from (noisy) samples pijk := p(ti, rj , sk) + εijk and qijk :=
q(ti, rj , sk) + δijk, with εijk and δijk representing the noise terms. For more details
regarding the derivation of this relation we refer to [124, 126, 98]. A concrete
example illustrating the ill-posedness of the problem is given below.
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Figure 5.4: Schematic depiction of the up- and downgoind responses of the overburden and
target. A superscript − indicates the responses of the medium to an upgoing plane wave,
while a superscript + indicates the response to a downgoing plane wave.

5.2.1 Analysis for layered media
For horizontally layered media, the wavefields and impulse response can be
expressed as

p(t, r, s) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

p̂(ω, ξ) exp(−ı(ωt+ ξ(r − s)))dωdξ,

and similary for q and g. The forward relation (5.4) can be expressed in terms of
the Fourier transformed quantities as

p̂(ω, ξ) = q̂(ω, ξ) · ĝ(ω, ξ).

We can get an explicit expression for the up and downgoing solutions as follows.
For a horizontally layered medium we can explicitly factorize the wave equation in
the Fourier domain:

û′±(z)∓ k(z)û±(z) = 0,

with k(z) =
√
c(z)−2ω2 − |ξ|2 where ω is the temporal frequency and ξ the

horizontal wavenumber. We can now think of the response of the overburden and
target in terms of incoming plane waves. We denote the transmitted and reflected
response of the overburden to an up/downgoing plane wave by T±1 , R±1 and
likewise we denote the responses of the target zone by T±2 , R±2 . Figure 5.4
illustrates the situation. The downgoing response of the entire medium to a
downgoing plane wave eık0z at z can now be expressed as

q̂ = T+
1 +R−1 R

+
2 T

+
1 + . . . =

(
1−R−1 R

+
2

)−1
T+

1 .
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Likewise, the upgoing response at z can be described by

p̂ = R+
2 T

+
1 +R+

2 R
−
1 R

+
2 T

+
1 + . . . =

(
1−R−1 R

+
2

)−1
R+

2 T
+
1 .

We immediately see that
p̂/q̂ = R+

2 ,

which is the impulse response of the target zone to a downgoing planewave
measured at z = z. The main cause of the ill-posedness of the inverse problem is
the bandlimited nature of the measured responses; they only contain propagating
modes for which |ξ| < ω/c. In practice, the measured response contains the imprint
of the source wavelet f̂(ω) and is further band-limited in ξ because it is measured
with a finite array of receivers. The estimated response is then given by

ĝ =
(q̂ + ε̂)∗(p̂+ δ̂)

|q̂ + ε̂|2 + λ
,

where ε̂ and δ̂ represent the measurement noise and λ > 0 is the regularization
parameter (cf. (5.1)). This can be decomposed as

ĝ =
|q̂ + ε̂|2

|q̂ + ε̂|2 + λ
R+

2 −
(q̂ + ε̂)∗ε̂

|q̂ + ε̂|2 + λ
R+

2 +
(q̂ + ε̂)∗δ

|q̂ + ε̂|2 + λ
.

Thus the error can be bounded as∣∣ĝ −R+
2

∣∣ ≤ λ

|q̂ + ε̂|2 + λ
· |R+

2 |+
|q̂ + ε̂|

|q̂ + ε̂|2 + λ
·
(
|ε̂| · |R+

2 |+ |δ̂|
)
,

from which we recognize a bias and variance term. Notably, we see the regularizing
effect that λ has on both sources of noise.
Example 5.2.1. As a concrete example we consider a medium with three horizontal
layers with sound speed ci for z ∈ [zi, zi+1). The redatuming level is set at z = (z1 +
z2)/2. The corresponding transmission and reflection responses can then be explicitly
expressed in terms of ki =

√
(ω/ci)2 − ξ2:

T+
1 =

2k0

k1 + k0
e−ık1h1/2, R−1 =

k1 − k0

k1 + k0
e−ık1h1 , R+

2 =
k1 − k2

k1 + k2
e−ık1h1 ,

with h1 = z2 − z1. Two typical examples of the corresponding spectra q̂, p̂ and ĝ are
illustrated in figure 5.5. We see that when c0 > c1, part of the impulse response, ĝ,
is in in the null-space of q̂ – the modes for which |ξ| > ω/c0. A properly regularized
inversion will thus at best give an estimate of ĝ that is restricted to the support of q̂ in
the (ω, ξ) domain.

5.2.2 Discretization
Assuming the signals are regularly sampled and the spatial samples are co-located,
i.e. ti = i ·∆t for i = 0 . . . nt − 1, rj = j ·∆r for j = 0 . . . nr − 1 and rk = k ·∆s for
k = 0 . . . ns − 1, we can represent the signals in terms of their samples as

p(t, r, s) =
∑
ijk

pijk sinc

(
t− ti
∆t

)
sinc

(
r − rj

∆r

)
sinc

(
s− sk

∆s

)
,
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Figure 5.5: Spectrum of the responses q̂, ĝ and p̂ for a layered medium with z0 = 0 m,
z1 = 500 m, z2 = 1000 m and c0 = 1500 m/s, c1 = 1800 m/s , c2 = 2000 m/s (top),
c0 = 1800 m/s, c1 = 1500 m/s , c2 = 2000 m/s (bottom). In the top scenario, we see that
the spectrum of q̂ has the same support as that of ĝ, making it in principle possible to retrieve
ĝ completely from q̂. In the bottom scenario, the spectrum of q̂ has a narrower support than
that of ĝ, making it impossible to recover the complete spectrum of ĝ from p̂.
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q(t, r, s) =
∑
ijk

qijk sinc

(
t− ti
∆t

)
sinc

(
r − rj

∆r

)
sinc

(
s− sk

∆s

)
,

and

g(t, r, s) =
∑
ijk

gijk sinc

(
t− ti
∆t

)
sinc

(
r − rj

∆r

)
sinc

(
r − rk

∆r

)
.

Using the orthogonality relations of the normalized sinc function, we can re-write
this as a system of matrix-equations with a block-circulant structure1:

P = QG,

with

Q =


Q0 Qnt−1 . . . Q1

Q1 Q0 . . . Q2

...
. . .

. . .
...

Qnt−1 . . . Q1 Q0

 , G =


G0

G1

...
Gn−1

 , P =


P0

P1

...
Pn−1

 .

Here, Qi ∈ Rns×nr is a matrix with elements qijk, P is a block matrix with nt
blocks Pi ∈ Rns×nr with elements pijk and G is a block matrix with nt blocks Gi ∈
Rnr×nr . Since a circulant matrix diagonalizes under the Discrete Fourier Transform,
Fnt

(with entries exp
(
ı 2πijnt

)
), we can express Q as

Q = (Fnt
⊗ Inr·ns

) Q̂
(
F−1
nt
⊗ Inr·ns

)
,

where

Q̂ = blockdiag
(
Q̂0, Q̂1, . . . , Q̂nt

)
,

and

Q̂i =

nt−1∑
j=0

exp

(
ı
2πij

nt

)
Qj .

This means we can decouple the system into nt matrix equations

Q̂iĜi = P̂i.

The constraints, however, may not decouple in this fashion. Moreover, it is not very
attractive to have to estimate a separate regularization parameter for each
frequency separately. We therefore stick with a time-domain formulation.
Matrix-vector multiplication with Q are carried out in the frequency-domain,
however, for computational efficiency.

1assuming that we are looking for a solution that is periodic in time
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5.3 Constrained least squares
In this section we describe how to solve the constrained least-squares problem
(5.2) and describe two relevant constraints, causality and reciprocity, in detail. For
each constraint we describe an orthogonal projection operator
PA : Rnt×nr×nr → Rnt×nr×nr i.e., the operator that solves

PA(G) = argmin
G′∈Rnt×nr×nr

‖G′ −G‖2F s.t. G′ ∈ A.

Related to the projection operator is the penalty operator,
LA : Rnt×nr×nr → Rnt×nr×nr , defined by

PA(G) + LA(G) = G ∀G ∈ Rnt×nr×nr .

5.3.1 The constraints
The system has to satisfy two binding constraints. The first constraint is source-
receiver reciprocity. This prior requires that a wave travels from source location
to receiver location in the same time as a wave traveling from receiver location to
source location. This means that the impulse response G has to satisfy gijk = gikj ,
for all i, j, k. The second constraint is causality which means that gijk = 0 for i < τjk
for some given symmetric matrix τ . Below, we formulate the projection and penalty
operators for each constraint.

Causality
The set of causal solutions is given by

C = {G ∈ Rnt×nr×nr | gijk = 0 for 1 ≤ i < τjk, 1 ≤ j ≤ nr, 1 ≤ k ≤ nr},

where τjk > 1 are given. The corresponding projection and penalty operators are
given by

PC(G)ijk =

{
gijk if i ≥ τjk
0 otherwise

LC(G)ijk =

{
gijk if i < τjk

0 otherwise

Reciprocity
The set of solutions satisfying reciprocity is given by

R = {G ∈ Rnt×nr×nr | gijk = gikj for 1 ≤ i ≤ nt, 1 ≤ j ≤ nr, 1 ≤ k ≤ nr}.

The dimension ofR is nt·nr·(nr+1)
2 and an orthogonal basis forR and its complement

can be easily constructed. An example for nt = 1, nr = 3 is shown in figure 5.6. The
corresponding projection and penalty operators are given by

PR(G)ijk = 1
2 (gijk + gikj) ,

LR(G)ijk = 1
2 (gijk − gikj) .
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Range

Nullspace

Figure 5.6: Basis elements for the symmetric and anti-symmetric 3 × 3 matrices. Blue is -1
and red is 1.

Intersection
To include both constraints we need the projection and penalty operators for the set
R∩C. In general, one cannot naively project on to the intersection by concatenating
the individual projection operators. However, because the causality constraint will
not violate reciprocity and vice versa, the constraints are consistent here. Therefore,
we may project onto the intersection of the two sets. The orthogonal projection on
to R∩ C is thus simply given by

PR∩C(G)ijk =

{
1
2 (gijk + gikj) if i ≥ τjk
0 otherwise

, (5.5)

and the corresponding penalty operator by

LR∩C(G)ijk =

{
1
2 (gijk − gikj) if i ≥ τjk
gijk otherwise

, (5.6)

An example of the orthogonal basis of R∩ C and its complement for nt = 1, nr = 3
is shown in figure 5.7.

Range

Nullspace

Figure 5.7: Basis elements for the symmetric matrices with G31 = G13 = 0. Note that the
second element for the symmetric and anti-symmetric matrices have been replaced by basis
elements making the corresponding entries 0.

5.3.2 Solving the constrained least-squares problem
Before continuing we first express (5.2) in a more convenient form

min
g
‖(I ⊗Q)g − p‖22 s.t. Lg = 0, (5.7)
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where g = vec(G) ∈ Rn, p = vec(P ) ∈ Rm with n = nt · n2
r and m = nt · nr · ns,

and L ∈ Rn×n is the penalty operator corresponding to the admissible set A. In the
remainder of the chapter we will refer to I ⊗Q as Q for ease of notation. Given an
orthogonal basis, A, for A we have P = AAT and L = I −AAT .

The solution to (5.7) can be expressed as g = Ay where y solves

min
y
‖QAy − p‖22.

Hence, the (minimum-norm) solution to (5.7) is given by

g = A
(
ATQTQA

)†
ATQTp. (5.8)

We note that in practical applications, Q, P and L are never formed explicitly;
their action is computed on-the-fly in a matrix-free fashion. Next, we discuss three
approaches for finding a solution to (5.7).

All-at-once
The first-order Karush-Kuhn-Tucker optimality conditions corresponding to (5.7)
lead to a saddle-point problem0 QT L

Q −I 0
L 0 0

g
r
µ

 =

0
p
0

 , (5.9)

from which the residual r can be eliminated to yield(
QTQ L
L 0

)(
g
µ

)
=

(
QTp
0

)
. (5.10)

This system of equations can be readily solved with an iterative method like MINRES
to yield the desired solution [95]. Applying the substitution g = Ay the system
reduces to

QTQAy + Lµ = QTp. (5.11)

Projecting onto AT yields ATQTQAy = ATQTp, whose solution is given by y =(
ATQTQA

)†
ATQTp, and hence g = A

(
ATQTQA

)†
ATQTp, which coincides with

(5.8).
Note that we do not need to explicitly form the matrix in order to do so; we can
easily compute matrix-vector multiplications with the system matrix on-the-fly.

Right preconditioning
We can explicitly eliminate the constraint in (5.7) via a substitution g = P g̃ :

min
g̃
‖QP g̃ − p‖22, (5.12)

where P is the projection operator in (5.5). Here, the operator P makes the solution
satisfy reciprocity and causality by projecting onto the space of causal and reciprocal
solutions. The resulting least-squares problem may not have a unique solution due
to overlap of the null-spaces of Q and P . A minimum norm solution can be readily
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obtained using LSQR. To see that this is indeed equivalent to (5.7), we note that the
minimum norm solution to (5.12) is given by

g = P
(
PQTQP

)†
PQTp,

which is indeed equivalent to (5.8). To show this, use that
(
AHAT

)†
= AH†AT

where ATA = I and H is symmetric.

Quadratic penalty
We may incorporate the constraints via a quadratic penalty and solve

min
g
‖Qg − p‖22 + ρ‖Lg‖22. (5.13)

We can solve this in a straightforward fashion using LSQR by introducing the
augmented matrix [QT ,

√
ρL]T . In [74] and [29] this method is used to analyze

symmetric solutions to matrix equations with ρ = 1. For ill-posed inverse problems,
the choice of ρ may be slightly more involved. If the system admits a symmetric
solution then this approach works for any ρ. However, if p and possibly also g are
perturbed, the solution may no longer admit a symmetric solution. In this case, we
have to find the best symmetric solution and in this case there is a trade-off
between symmetry and data misfit. To ensure a symmetric solution, we have to
choose ρ large enough. Consider the following example.

Example 5.3.1. Let A =

[
1 0 1
0 1 0

]
, X =

1 1 0
0 1 0
0 0 1

 and AX = B =

[
1 1 1
0 1 0

]
.

One can consider the matrices A and B as perturbed such that the solution is now X,
which is not symmetric. The solution using (5.10) or (5.12) is

X =

1/2 1/3 1/2
1/3 1 1/3
1/2 1/3 1/2

, and A†B =

1/2 1/2 1/2
0 1 0

1/2 1/2 1/2

. Plugging in ρ = 1 in (5.13)

gives the solution

1/2 3/8 1/2
1/4 1 3/8
1/2 1/4 1/2

, which is not symmetric. Plugging in ρ = 10000

gives the desired result. Increasing the value of ρ will gradually make the solution
more symmetric.

Equivalence between the solutions
We now show the relation between the quadratic penalty and the preconditioning
approach using the standard form transformation after [34], see also [58]. First, we
split the solution in two parts;

g = gA + gB,

where gA ∈ A represents the admissible part with LgA = 0 and gB ∈ B is the
remainder. Here, we take B to be the Q−orthogonal complement of A, meaning
that gTAQ

TQgB = 0. This leads to two different optimization in terms of gA and gA.
We introduce the corresponding oblique projection operators LQ and PQ. Given an
orthonormal basis, A, for A, these are explicitly given by

PQ = A(QA)†Q, LQ = I − PQ.
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The problem then decomposes in two parts

gA = argmin
g

‖QAg − pA‖22, (5.14)

gB = argmin
g

‖QLQL†g − pB‖22 + ρ‖g‖22, (5.15)

where pA ∈ R(QPQ) and pB ∈ R(QLQ). First note that we may replace pA in
(5.14) by p without changing the solution. The solution to (5.14) is given by g =
(ATQTQA)†ATQTp and hence gA = A(ATQTQA)†ATQTp. Thus, gA coincides
with the solution of (5.12). If the system Qg = p has an admissible solution we
have pB = 0 and any non-zero value of ρ will suffice to suppress non-admissible
solutions. The same argument holds, when all non-admissible solutions are in the
null-space of Q. If, like in our example, there is no symmetric solution, then ρ has
to be chosen large enough to make gB = 0. This means that ρ > σ1(QLQL

†),
where σ1(·) denotes the largest singular value. In practice, we can not calculate this
singular value due to the size of the system. Moreover, the singular values of QLQL†

are not related to the singular values of Q and LQ or L. Even an iterative scheme
like the power method does not work, because we can not compute the matrix LQ,
nor are matrix-vector multiplications available.

Additional regularization
Note that incorporating the reciprocity and causality constraints still allows for
additional, possibly nonlinear regularization. This excludes the use of the KKT
system, as it can only deal with linear (in)equality constraints and we can not use it
in combination with nonlinear regularizers. However, the systems (5.12) and
(5.13) allow for additional nonlinear regularization such that the constraints are
still satisfied, where the system (5.12) is preferred for simplicity.
We see two possible nonlinear regularizers. The first is an `1 penalty on the impulse
response in the curvelet domain, which has shown to be a good basis to represent
seismic data [24], [62]. This approach has been used in the specific context of
separating primaries and multiples via deconvolution, in the works
[64, 81, 80, 79]. Another possibility is low rank minimization. Seismic data is
shown to have low rank in the midpoint-offset domain [4], [75], which can be
enforced by penalizing the nuclear norm of the impulse response in the
midpoint-offset domain.

5.4 Numerical experiments
Our numerical experiments are carried on wavefields generated for the subsurface
model presented in [36]. We show the subsurface model in figure (5.8). We discuss
the deconvolution problem for two different source to receiver sampling ratios,
namely 1:1 and 1:4. The 1:4 source to receiver ratio is most realistic, but we have
added the other setup to investigate the effects of undersampling. For our
experiments we always have 151 receivers spread 20 meters apart and we have
512 time samples. Depending on the source to receiver ratio, we either have 151 or
38 sources. The free-surface multiples have been removed by a pre-processing
algorithm.
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Figure 5.8: The subsurface model. The sources and receivers are redatumed at 680 m.
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Figure 5.9: The wavefields for the different sampling scenarios. The left panel shows the
impulse response for the 1:1 sampling ratio and the right panel shows the impulse response
for the 1:4 sampling ratio. Both impulse responses correspond to one source, which is located
at the center of the domain.

5.4.1 The wavefields and the impulse response
In figures (5.9) and (5.10) we show the wavefields and the impulse response that
has to be inverted for, both for the center source. Both wavefields contain
modeling errors that have to be accounted for. We clearly see some ringing artifacts
and the wavefield P clearly contains some modeling errors near the boundary. We
also see that the wavefields for the 1:4 sampling clearly suffers from limited source
sampling. The data have been modeled by the Full Wavefield Modeling scheme
(FWMod) [13]. We benchmark our results against the impulse response obtained
in [36], which is obtained by nonlinear inversion. We will consider this the true
impulse response. For further details we refer to [36].
Firstly, it is important to investigate whether the problem is actually ill-posed. It is
clear that the system for the 1:4 source to receiver ratio is ill-posed, due to the fact
that they lead to underdetermined systems. The 1:1 source to receiver ratio leads
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Figure 5.10: The impulse response in two different domains. The top panel shows the impulse
response corresponding to a fixed source at different locations of the domain. The bottom
panel shows the impulse response for a fixed time at different moments.
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(a) 1:1 sampling. Rank of the matrix
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Figure 5.11: Singular values for different sampling scenarios.

to a square system which may be well-posed. It turns out it is not, as can be seen
from the singular values, which we show in figure (5.11a). From figure (5.11a) we
see that for the 1:1 source to receiver sampling the system is rank deficient, which
means that additional regularization is required. As we have stated before, it is not
given that the symmetry constraint and the time window will be sufficient prior
information to regularize the problem. From figure (5.11b) we see that even in the
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undersampled case the problem is rank deficient. However, in this case the very
small singular values correspond to frequencies that have very little impact anyway.
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1:4 sampling 1:1 sampling

Preconditioned 0.17 0.14
Tikhonov 0.17 0.14

KKT 0.13 0.10

Table 5.1: Relative error for three different optimization strategies.

5.4.2 Results for different optimization strategies

In this section we discuss the results for the different optimization strategies for the
two different sampling scenarios. We compare the results to the true solution using
the relative error, given by

err =
‖g − gtrue‖2
‖gtrue‖2

.

We present the errors in table (5.1). We solve the Tikhonov system and the
preconditioned system using LSQR. The KKT system is solved using MINRES. The
Tikhonov approach and the preconditioned system have almost identical solutions
but the KKT solution is slightly better. Interestingly, although the wavefields for the
1:4 sampling ratio contain much less information, the error does not increase
much. The reported results are optimal in the sense that we have chosen the
number of iterations that gives the lowest error, by comparing the solution with the
true solution.

5.4.3 Semiconvergence

The projection constraints do not stabilize the solution and semiconvergence may
still be observed. In figure (5.12) we show the semiconvergence for the three
different optimization strategies for the 1:4 sampling ratio. The Tikhonov and KKT
approach show interesting convergence behavior where the error goes down in
stages. The convergence is much slower than for the preconditioned system, but
the area around the minimizer is flat as opposed to the minimizer of the
preconditioned system. The Tikhonov approach requires half the iterations of the
KKT system. Due to the slower convergence and the plateau the solution of the
Tikhonov approach and the KKT system seem more stable.

In figure (5.13) we show the impulse response for different iteration counts. What
we see is that the effects of semiconvergence are large amplitudes and strong
ringing artifacts. Therefore the presence of ringing artifacts could potentially be
used as a stopping criterion, although that would be difficult to automate, because
it is a visual criterion. Note that the ringing artifacts are still present for the optimal
number of iterations, but only at a minimum.
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Figure 5.12: Semiconvergence for three different optimization strategies for the 1:4 sampling
ratio.

5.4.4 Additional Tikhonov regularization
In order to stabilize the solution, and possibly even improve accuracy, we can use an
additional Tikhonov penalty. This leads to the following systems:

min
g
‖QPg − p‖22 + λ‖g‖22 (5.16)

min
g
‖Qg − p‖22 + ‖Lg‖22 + λ‖g‖22 (5.17)[
QTQ+ λI L

L 0

] [
g
z

]
=

[
QTp

0

]
(5.18)

To check whether this approach is effective we first determine the optimal λopt, given
by

λopt = argmin
λ
‖gλ − gtrue‖,

where gλ is a solution of a given system for a given λ. The optimal λ and the
associated error are reported in table (5.2). The errors decrease for both sampling
scenarios and all three optimization strategies, although the improvement for the
KKT system is not as big as for the other two. In figure (5.14) we show the stabilizing
effect of Tikhonov regularization, which is in line with the results shown in [49] and
[26]. Interestingly, the optimal λ is not necessarily the one that leads to a stable
solution. The Tikhonov system and the KKT system show similar behavior.
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Figure 5.13: Some images of the impulse response as a function of the iterations
of LSQR, all for the preconditioned form. The top panel corresponds to 3 iterations
(overregularized), the middle panel to 5 iterations (optimal), and the bottom panel to 20
iterations (underregularized). The left column shows cross section corresponding to source-
receiver pairs at (1500 m, 580 m), (180 m, 180 m), and (1500 m, 180 m), from left to right.
The blue line shows the true impulse response and the orange line shows the reconstructed
impulse response. The right column shows the reconstructed impulse response for a source
at 1500 m, the true impulse response, and a cross section for a source-receiver pair at (1500
m, 1500 m).

5.4.5 Parameter selection methods
In order to make the regularization algorithm useful in practice we have to provide a
parameter selection rule. There are two types of parameter selection rules: methods
that require an estimate of the noise level and methods that do not. The latter are
sometimes referred to as heuristic methods. Here, noise is identically, independently
distributed white noise. Such noise is not present in our data. We are dealing
with noise, but the noise comes from modeling errors. Therefore, we have to rely
on heuristic parameter selection methods to give an estimate of the regularization
parameter. Parameter selection rules are designed for the preconditioned system and
the Tikhonov system, but not for the KKT system. The Tikhonov system has to be

modified, by defining the operator
[
Q
LST

]
and the data

[
p
0

]
. We will use the Lanczos
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1:1 sampling 1:4 sampling

Relative error λopt Relative error λopt

Preconditioned 0.08 1.1 · 10−5 0.12 3.1 · 10−6

Tikhonov 0.08 1.1 · 10−5 0.12 3.1 · 10−6

KKT 0.08 1 · 10−5 0.12 2.6 · 10−6

Table 5.2: Reconstruction for three different optimization strategies using additional
Tikhonov regularization.
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Figure 5.14: Reconstruction for different λ.

process to obtain a low dimensional subspace that is invariant with respect to λ and
which allows us to evaluate the parameter selection methods efficiently. We briefly
describe some heuristic parameter selection methods. For clarity of presentation we
change notation, and now assume that we are solving a system

gλ := min
g
‖Qg − p‖22 + λ‖g‖22.

We define
rλ := ‖Qgλ − p‖2.

Reginska’s rule
Reginska’s rule [99] is a variant of the L-curve [53], also known as the Pareto curve.
It estimates the optimal λ as the minimizer of

λReginska = min
λ
‖gλ‖2‖rλ‖2.

We choose Reginska’s rule over the L-curve because it is easier to evaluate. A relation
between the λ estimated by Reginska’s rule and the λ estimated by the L-curve can
be found in [99].
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Figure 5.15: Lower and upper bounds for Reginska’s rule and GCV for a standard problem.
The black dot indicates the minimizer which is an estimate for λ.

GCV

The Generalized Cross Validation [122], [39] is a parameter selection method that
estimates the optimal λ as the minimizer of

λGCV = min
λ

‖rλ‖2

trace(Q(QTQ+ λI)−1QT )
.

The denominator of the GCV can be seen as a measure for the degrees of freedom
of the system. If A is large it is costly to evaluate the trace. Therefore, it has been
proposed in [39] to use a randomized trace estimator instead. The trace is estimated
by

uTQ(QTQ+ λI)−1QTu,

where u is a vector whose entries are drawn from the Rademacher distribution. For
more information on randomized trace estimation we refer to [68].

Lower and upper bounds

Using the Lanczos bidiagonalization process, which is also the basis for LSQR, we
can obtain lower and upper bounds for these parameter selection methods. The
upper and lower bounds are calculated using a low dimensional approximation to
Q, which makes them cheap to evaluate. For details we refer to [43, 44, 21, 23].
The difference between the upper and lower bound indicates how close we are to the
true value of the parameter selection method. To show what the lower and upper
bounds should look like we show them for a standard problem in figure (5.15).
We can see from figure (5.16) that the parameter selection methods fail to give an
approximation to the regularization parameter. Although Tikhonov regularization
does improve the accuracy of the reconstruction, we can not estimate the correct
regularization parameter.



86 | Chapter 5 – Seismic wavefield redatuming with regularized Multi-Dimensional
Deconvolution

10
-6

10
-5

10
-4

10
-3

10
-9

10
-8

10
-7

10
-6

10
-5

Reginska rule

(a) Reginska’s rule.

10
-6

10
-5

10
-4

10
-3

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

GCV

(b) GCV.

10
-6

10
-5

10
-4

10
-3

10
-8

10
-7

10
-6

10
-5

Reginska rule

(c) Reginska’s rule.

10
-6

10
-5

10
-4

10
-3

10
-22

10
-21

10
-20

10
-19

10
-18

GCV

(d) GCV.

Figure 5.16: Both parameter selection methods fail to have a minimizer estimating the
optimal λ for the 1:4 source sampling. The red line shows the upper bound and the blue
line shows the lower bound. The top row is for the Tikhonov system and the bottom row for
the preconditioned system.

5.5 Conclusion, discussion and outlook
In this chapter we have discussed deconvolving two wavefields to obtain the
impulse response in the context of redatuming. We have discussed two constraints
that the impulse response has to satisfy and we have shown that they are
associated with orthogonal projection operators and a related penalty operator. We
have shown three different optimization methods that incorporate the constraints
and have shown that they are equivalent in a certain sense. Incorporating the
constraints as a penalty using a generalized Tikhonov approach should be avoided,
as it is inferior to the preconditioned system in terms of computational time and
simplicity. The KKT system was superior in our numerical experiments. However, it
is computationally more expensive and it may be difficult or impossible to
incorporate additional regularization. Lastly, we have shown that the constraints
for the impulse response do not have a stabilizing effect on the solution and that
additional regularization is necessary.
We have shown that Tikhonov regularization can be used to improve the
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reconstruction. However, we have seen that the parameter selection methods
Reginska’s rule and GCV are not able to estimate the optimal λ. Moreover, we have
to use heuristic parameter selection methods because the noise level is not known
and, perhaps more importantly, the noise consists of modeling errors and is not
Gaussian and independently and identically distributed.
To solve the MDD problem we have applied standard techniques and theory from
the inverse problem literature. The theory is developed for linear systems where
the data have been generated by a known forward model. For the MDD problem
we deal with two datasets in the form of wavefields that are related by a
convolution with the impulse response. Now, both datasets contain noise and a
strict model and data separation is artificial. An approach like Total Least Squares
(TLS) [115], where both model and data are assumed to be noisy, seems more
natural. Specifically, Restricted Total Least Squares [116], where equality
constraints can be taken into account, seems the most natural approach for the
MDD problem. However, the solution to this problem is given by the Restricted
Singular Value Decomposition, which can not be computed for the large matrices
arising in MDD problems.
Finally, we could add a regularization filter that filters out the non-recoverable
modes. As shown in our example, see figure (5.5), the support of q̂ determines how
much of ĝ can be recovered. We can stabilize the reconstruction by restricting the
support of ĝ to the support of q̂. Anything outside of this support can not be
recovered and can be considered as noise.





CHAPTER 6

Relaxed regularization for linear
inverse problems

Abstract
We consider regularized least-squares problems of the form minx

1
2‖Ax − b‖

2
2 +

R(Lx). Recently, Zheng et al. [130] proposed an algorithm called Sparse Relaxed
Regularized Regression (SR3) that employs a splitting strategy by introducing
an auxiliary variable y and solves minx,y

1
2‖Ax − b‖

2
2 + κ

2 ‖Lx − y‖
2
2 +R(x). By

minimizing out the variable x, we obtain an equivalent optimization problem
miny

1
2‖Fκy − gκ‖

2
2 + R(y). In our work, we view the SR3 method as a way to

approximately solve the regularized problem. We analyze the conditioning of
the relaxed problem in general and give an expression for the SVD of Fκ as a
function of κ. Furthermore, we relate the Pareto curve of the original problem
to the relaxed problem and we quantify the error incurred by relaxation in
terms of κ. Finally, we propose an efficient iterative method for solving the
relaxed problem with inexact inner iterations. Numerical examples illustrate the
approach.

This chapter is partially based on the following publication:

N.A. Luiken and T. van Leeuwen. Relaxed regularization for linear inverse problems. SIAM
J. Sci. Comp., Accepted for publication.
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6.1 Introduction
Inverse problems are problems where a certain quantity of interest has to be
determined from indirect measurements. In medicine, well-known examples
include MRI [131], CT [63], and ultrasound imaging [16] where the objective is to
obtain images of the interior of the human body. In the geosciences, inverse
problems arise in seismic exploration and seismology [120], where the interest lies
in exploring the elastic properties of the different layers of our planet. Other
examples include tomography [6, 91, 15], radar imaging [17], remote sensing
[109, 93], astrophysics [106], and more recently, machine learning [45].

Inverse problems are challenging for a number of reasons. There may be limited
data available, or the data may be corrupted by noise. The datasets are generally
very large, and the underlying model is generally not well-defined for retrieving
the quantity of interest. Therefore, inverse problems often have to be regularized,
meaning prior information has to be added. They can be posed in the following
way:

min
x

1

2
‖Ax− b‖22 +R(Lx), (6.1)

where A ∈ Rm×n is the linear forward operator, R(·) is the regularization term and
L ∈ Rp×n the regularization operator. The latter two encode the prior information
about x. In our work, we focus on R(·) = λ‖ · ‖pp, or, equivalently, R(·) = δ‖·‖p≤τ (·),
which is the indicator function of the set ‖ · ‖p ≤ τ 1. By equivalent we mean that
for every τ there is a λ such that the solutions of the two problems coincide [5]. A
direct solution to the problem above is generally not possible, either because a
closed-form solution does not exist, or because evaluating the direct solution is too
computationally expensive. Therefore, we have to resort to iterative methods to
solve the problem, with most algorithms being designed for specific choices of p
and L.

Traditionally, p = 2, called Tikhonov regularization, is a popular choice, because
the objective function is differentiable and allows for a closed-form expression of
the solution of eq. (6.1) in terms of A,L and λ. For this class of problems, Krylov
based algorithms have been proven very effective [22, 23, 38, 44, 57, 66, 67, 72,
73, 133]. These methods generally exploit the fact that a closed-form solution exists
by constructing a low dimensional subspace from which an approximate solution is
extracted.

The choice p = 1 has gained popularity in recent years because it gives sparse
solutions while still yielding a convex objective. Sparsity is important in a number of
applications, like compressed sensing [25], seismic imaging [62], image restoration
[100], and tomography [58]. However, the objective is no longer differentiable and
the aforementioned Krylov methods do not apply. If L = I, a proximal gradient
method (sometimes referred to as Iterative Soft Tresholding – ISTA) [28] can be

1In our work we use p for both the size of the matrix L as the norm of the regularizer. The meaning
of p is always clear from the context.
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applied, iteratively updating the solution via

xk+1 = proxαλ‖·‖1
(
xk − αAT(Axk − b)

)
,

where α ∈ (0, ‖A‖22) is the stepsize and the proximal operator is the soft
thresholding operator, which can be efficiently evaluated. Generally, ISTA achieves
a sub-linear rate of convergence of O(1/k) (unless m ≥ n and A has full rank, in
which case we have a linear rate of convergence). FISTA (Fast Iterative Soft
Thresholding Algorithm) [10] is a faster version of ISTA that generally achieves a
sublinear rate of O(1/k2).

If L = I the optimization problem is said to be in standard-form and for any
other L the algorithm is in general form. If L is full-rank and has no nullspace, the
optimization problem can be put into standard-form via the change of variables
y = Lx. Instead of the matrix A, we get AL†. In such cases we can apply the
(F)ISTA method directly at the expense of having to evaluate L†. In some
applications, we have L† = LT (e.g., when L is a tight frame). If L has a non-trivial
nullspace the algorithm can still be put in standard-form by the standard-form
transformation [34, 58], but this is nontrivial, because the nullspace has to be
accounted for.

If L 6= I, and we cannot easily transform the problem to standard form, the
proximal operator is no longer easy to evaluate in general and FISTA may no longer
be attractive. An example of this class of problems is Total Variation (TV)
regularization, where L is the discretization of the gradient, which gives blocky
solutions. A popular algorithm for this class of problems is the Alternating
Direction Method of Multipliers, ADMM [18]. ADMM solves eq. (6.1) by forming
the augmented Lagrangian

min
x,y

max
z

1

2
‖Ax− b‖22 + λ‖y‖pp + zT (Lx− y) +

ρ

2
‖Lx− y‖22,

and alternatingly minimizing over the variables x and y, and the Lagrange
multiplier z. The strength of ADMM is that it can closely approximate the solution
of any convex sparse optimization problem. However, convergence can be slow
[18].

If p < 1, the emphasis on sparsity of the solution is stronger than for the case
p = 1. However, the objective function is no longer convex which makes it more
difficult to solve.

Recently, a unifying algorithm was proposed that allows the efficient
approximation of the solution of any problem of the form eq. (6.1), called Sparse
Relaxed Regularized Regression (SR3) [130]. This algorithm makes use of a
splitting strategy by introducing an auxiliary variable y and yields:

min
x,y

1

2
‖Ax− b‖22 +

κ

2
‖Lx− y‖22 +R(y). (6.2)
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By minimizing out x, we obtain a new optimization problem of the form:

ȳκ = argmin
y

1

2
‖Fκy − gκ‖22 +R(y), (6.3)

where Fκ =

(
κ1/2

(
I − κLH−1

κ LT
)

κAH−1
κ LT

)
and gκ =

(
κ1/2LH−1

κ AT b
b−AH−1

κ AT b

)
, Hκ = ATA +

κLTL. The solution to (6.2) is then given by

x̄κ = H−1
κ

(
κLT ȳκ +AT b

)
. (6.4)

This solution is then used as an approximation of the solution of (6.1). In [130]
the particular case with LTL = I is analyzed. Using the SVD of A, the singular
values of Fκ were calculated, showing a relation between the condition number of
Fκ and A depending on κ. In short, the result shows that a small κ improves the
conditioning of Fκ and as κ→∞ the condition numbers are the same, because the
original optimization problem is obtained.

For the implementation of SR3, it is not necessary to form the operator Fκ, as
was shown in [130]. The authors propose the following algorithm for solving the
relaxed problem

xk+1 ←
(
ATA+ κLTL

)−1 (
AT b+ κLT yk

)
(6.5)

yk+1 ← proxαR (yk − ακ(yk − Lxk+1)) , (6.6)

which for the particular choice α = 1/κ simplifies to

xk+1 ←
(
ATA+ κLTL

)−1 (
AT b+ κLT yk

)
(6.7)

yk+1 ← prox1/κR (Lxk+1) . (6.8)

This method has several advantages when applied to solving inverse problems that
we highlight in the examples below.

6.1.1 Motivating examples
Below we show some typical examples encountered in various areas of science to
which SR3 can be applied. The problems we tackle are of the form

min
x

1

2
‖Ax− b‖22 s.t. ‖Lx‖1 ≤ τ. (6.9)

The main tasks are to solve this for a given value of τ and to find an appropriate value
of τ . The latter is achieved by picking the corner of the Pareto curve (sometimes
called the L-curve) φ(τ) = min‖x‖p≤τ ‖Ax − b‖2. Comparing a proximal gradient
method to SR3, we show the residual as a function of τ , the optimal reconstruction,
and the convergence history in terms of the primal-dual gap. These examples show
two favourable aspects of SR3 over the conventional proximal gradient method: i)
SR3 converges (much) faster for any fixed value of τ and ii) the corners of both
Pareto-curves coincide, allowing us to effectively use SR3 to estimate τ .
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Figure 6.1: Spiky deconvolution example. The left figure shows the Pareto curve, the middle
figure shows the solution and the right figure shows the primal-dual gap as a function of the
number of iterations. The grey line in the middle figure shows the minimum norm solution.

Figure 6.2: Compressed sensing. A signal is reconstructed from very few samples, which
requires sparse regularization. The left figure shows the Pareto curve, the middle figure shows
the solution and the right figure shows the primal-dual gap as a function of the number of
iterations. The grey line in the middle figure shows the minimum norm solution.

Spiky deconvolution (m = n, L = I)

Consider a deconvolution problem where A is a Toeplitz-matrix that convolves the
input with a bandlimited function;

aij = w(ti − tj),

where w(t) = (1 − (t/σ)2)e−(t/σ)2 and ti = i · h. We take n = 101, h = 1/n and
σ = 0.05. The results are shown infig. 6.1.

Compressed sensing (m < n, L = I)

Here, the goal is to recover a sparse signal from compressive samples. The forward
operator is a random matrix with i.i.d. normally distributed entries. We take n = 101
and m = 20. The results are shown in fig. 6.2.
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Figure 6.3: Total variation example. Here, the solution has a blocky structure. The left figure
shows the Pareto curve, the middle figure shows the solution and the right figure shows the
primal-dual gap as a function of the number of iterations. The grey line in the middle figure
shows the minimum norm solution.

Total variation (m = n, L = D)

Consider a deconvolution problem where A is a Toeplitz-matrix that convolves the
input with a bandlimited function;

aij = w(ti − tj),

where w(t) = e−(t/σ)2 and ti = i ·h. L is a finite-difference discretization of the first-
order derivative with Neumann boundary conditions. We take n = 101, h = 1/n and
σ = 0.05. The results are shown in fig. 6.3.

6.1.2 Contributions
In this chapter we set out to further analyze the SR3 method proposed in [130] and
analyze in detail the observations made in the above examples. Our contributions
are:
Conditioning of Fκ for general L. We extend the analysis of [130] and derive the

SVD of Fκ for general L. We show how the singular values and the condition
number of Fκ are related to the generalized singular values of (A,L). As a by-
product, we show that SR3 implicitly makes a standard-form transformation
[34] of eq. (6.1).

Approximation of the Pareto-curve. We show that the Pareto curve corresponding
to the relaxed problem (6.2) always underestimates the Pareto curve of the
original problem (6.1) and that the error is of order O(κ−2). A by-product of
this result is a better understanding of the Pareto curve for general p and an
intuitive explanation of the observation that the corners of the relaxed original
Pareto curves coincide.

Inexact solves. We propose an inexact inner-outer iterative version of the SR3
algorithm where the regularized least-squares problem eq. (6.7) is solved
approximately using a Krylov-subspace method. In particular, we propose an
automated adaptive stopping criterion for the inner iterations.
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6.1.3 Outline
In section 6.2 we analyze the operator Fκ. We derive the SVD of Fκ and analyse the
limiting cases κ → ∞ and κ → 0. Our main results are a characterization of the
singular values of Fκ and showing that SR3 implicitly applies a standard-form
transformation. In section 6.3, we relate the Pareto curve of SR3 to the Pareto
curve of the original problem and derive an error bound in terms of κ. Next,
section 6.4 is concerned with the implementation of SR3. We propose two
ingredients that make SR3 suitable for large-scale applications. In section 6.5, we
conduct our numerical experiments and verify the theoretical results from
section 6.2. Moreover, we numerically investigate the influence of κ on the
convergence rate. Finally, in section 6.6, we draw our conclusions.

6.2 Analysis of SR3
In this section we analyze some of the properties of the operator Fκ. We will
characterize the singular values of Fκ for general L and analyse the limits κ → 0
and κ→∞. First, we will treat some preliminaries needed for understanding what
happens in the limit κ→∞.

6.2.1 The Generalized Singular Value Decomposition
The central tool in our analysis is the Generalized Singular Value Decomposition
(GSVD) of (A,L). The definition of the GSVD depends on the size of the matrices
and the dimensions of the matrices relative to each other. We use the definitions for
the case A ∈ Rm×n and L ∈ Rp×n where m ≥ n, p < n or m < n, p > n because
this corresponds to the examples we use in our experiments.
Definition 2 (GSVD). Let A ∈ Rm×n and L ∈ Rp×n. The Generalized Singular Value
Decomposition (GSVD) of (A,L) is given by A = UΣX, L = V ΓX, where

Σ =

Σp 0
0 In−p
0 0

 , Γ =
[
Γp 0

]
for m ≥ n, p ≤ n,

and

Σ =
[
0 Σm

]
, Γ =

In−m 0
0 Γm
0 0

 for m < n, p > n.

The matrices Σr and Γr (where r = p or r = m) are r × r diagonal matrices satisfying
ΣTr Σr + ΓTr Γr = Ir, X is invertible and U and V are orthonormal. Moreover, we have
the following ordering of the diagonal elements σi of Σ and γi of Γ:

0 ≤ γr ≤ . . . ≤ γ1 ≤ 1,

0 ≤ σ1 ≤ . . . ≤ σr ≤ 1.

The decomposition of A and L in the GSVD share similar properties to the SVD.
The number of nonzero entries of Σ and Γ give the rank ofA and L respectively. If rA
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is the rank of A and rL is the rank of L then the last r − rA columns, corresponding
to Σr, of U form a basis for the range of A and the first rL columns, corresponding
to Γr, of V form a basis for the range of L. The first r − rA columns, corresponding
to Σr, of X−1 form a basis for the nullspace of A and the last r − rL columns,
corresponding to Γr, of X−1 form a basis for the nullspace of L.

6.2.2 Standard-form transformation
The standard-form transformation, see e.g. [34, 55], makes a substitution y = Lx
such that x = xM + xN , where

x̄M = L†Aȳ, ȳ = argmin
y

1

2
‖AL†Ay − b‖

2
2 +R(y), L†A =

(
I − (A(I − L†L))†A

)
L†.

(6.10)
and

x̄N =
(
A
(
I − L†L

))†
b. (6.11)

The operator L†A is called the A-weighted pseudo-inverse. The transformation splits
the solution into two parts: one part in the range of L, L†Ay, and one part in the
nullspace of L, xN . The operator L†A makes the two parts A-orthogonal. The parts
L†Ay and xN are then obtained by two independent optimization problems. If L is
invertible L†A = L−1 and if p > n and L has full rank we have L†A = L†. Hence, if
LTL = I, the standard- form is achieved by simply applying LT .
In terms of the GSVD of (A,L), the standard-form transformation has a much
simpler form. The operator L†A can be written in terms of the GSVD as

L†A = X−1Γ†V T ,

and hence eq. (6.10) can be written as

x̄M = X−1Γ†V T ȳ, ȳ = argmin
y

1

2
‖UΣΓ†V T y − b‖22 +R(y). (6.12)

Similarly, eq. (6.11) can be written in terms of the GSVD as

x̄N = X−1

[
0 0
0 Ip−rL

]
UT b. (6.13)

6.2.3 The SVD of Fκ
In this section we derive the SVD of Fκ in terms of the GSVD of (A,L).

Theorem 5. Let Fκ = Y ΛZT be the SVD of Fκ. Let the GSVD of
[
A
L

]
=

[
UΣ
V Γ

]
X.

Then

Y =

[
κ1/2V Σ̃

1/2
κ,I κV Σ̃

−1/2
κ,I Γ

(
ΣTΣ + κΓTΓ

)−1
ΣT

κUΣ
(
ΣTΣ + κΓTΓ

)−1
ΓT Σ̃

−1/2
κ,I −κ−1/2U Σ̃

1/2
m,κ

]

Λ =

[
Σ̃

1/2
κ

0

]
Z = V,
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where Σ̃κ = κ
(
Ip − κΓ(ΣTΣ + κΓTΓ)−1ΓT

)
, Σ̃κ,m =

[
Σ̃κ 0
0 Im−p

]
if m ≥ n ≥ p and

Σ̃κ,m = Σ̃κ,I if m < n ≤ p, and the square root denotes the entry wise square root. If
p > n the diagonal matrix Σ̃κ will have zeros on the diagonal. We denote Σ̃κ,I to be
the matrix Σ̃κ where the zeros have been replaced by ones.

Proof. Using the GSVD of (A,L) we have H−1
κ = X−1(ΣTΣ + κΓTΓ)−1X−T and

hence LH−1
κ LT = V Γ(ΣTΣ + κΓTΓ)−1ΓTV T . Given the fact that V is orthonormal

and Γ(ΣTΣ + κΓTΓ)−1ΓT is a diagonal matrix the above expression is the SVD of
LH−1

κ LT and we obtain the expressions for Λ and Z. To obtain Y , we first partition

Y =

[
Y11 Y12

Y21 Y22

]
. We have

FκF
T
κ = Y ΛΛTY T

⇐⇒
[

κ
(
I − κLH−1

κ LT
)2

κ
√
κ
(
I − κLH−1

κ LT
)
LH−1

κ AT

κ
√
κAH−1

κ LT
(
I − κLH−1

κ LT
)

κ2AH−1
κ LLTH−1

κ AT

]
=

[
Y11 Y12

Y21 Y22

] [
Σ̃κ 0
0 0

] [
Y T11 Y T21

Y T12 Y T22

]
=

[
Y11Σ̃κY

T
11 Y11Σ̃κY

T
21

Y21Σ̃κY
T
11 Y21Σ̃κY

T
21,

]
.

Plugging in the GSVD gives

FκF
T
κ =[

κ−1V Σ̃2
κV

T
√
κV Σ̃κΓ(ΣTΣ + κΓTΓ)−1ΣTUT√

κUΣ(ΣTΣ + κΓTΓ)−1ΓT Σ̃κV
T κ2UΣ(ΣTΣ + κΓTΓ)−1ΓTΓ(ΣTΣ + κΓTΓ)−1ΣTUT

]
.

Solving for Y11 gives:
Y11 = κ−1/2V Σ̃

1/2
κ,I .

Using this in the upper right part gives:

Y21 = κUΣ(ΣTΣ + κΓTΓ)−1ΓT Σ̃
−1/2
κ,I .

To solve for Y12 and Y22, we use

Y Y T =

[
Y11Y

T
11 + Y12Y

T
12 Y11Y

T
21 + Y12Y

T
22

Y21Y
T
11 + Y22Y

T
12 Y21Y

T
21 + Y22Y

T
22

]
=

[
Ip 0
0 Im

]
.

The upper left part yields

Y12 = κV Σ̃
−1/2
κ,I Γ

(
ΣTΣ + κΓTΓ

)−1
ΣT .

The upper right part yields

Y22 = −κ−1/2U Σ̃1/2
κ,m.
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Note that the singular values are ordered in ascending order. We have the
following corollary.
Corollary 1. If m ≥ n and p < n the singular values of Fκ are given by

ψi(Fκ) =

√
σ2
n−i+1

σ2
n−i+1/κ+ γ2

n−i+1

.

If m < n and p > n the singular values of Fκ are given by

ψi(Fκ) =



√
κ if i ≤ p− rL√

σ2
m−i+1

σ2
m−i+1/κ+ γ2

m−i+1

if p− rL < i ≤ p− rL + rA

0 if i > p− rL + rA

The question arises whether there is a direct relation between the singular values
of A and the σi. The answer is no, but we do, however, have the following result
from [52]:
Theorem 6 ([52, Thm. 2.4]). Let ψi(A) and ψi(L) denote the singular values of A
and L respectively and let σi and γi denote the nonzero entries of the matrices Σ and Γ
respectively. Then for all σi, γi 6= 0∥∥∥∥∥

[
A
L

]†∥∥∥∥∥
−1

2

≤ ψr−i+1(A)

σi
≤
∥∥∥∥[AL

]∥∥∥∥
2

,

∥∥∥∥∥
[
A
L

]†∥∥∥∥∥
−1

2

≤ ψi(L)

γi
≤
∥∥∥∥[AL

]∥∥∥∥
2

.

Remark 1. This result shows that, if the operator A has quickly decaying singular
values, the σi will have the same behavior, see also [55, p. 24]. This is an important
result because it shows how the ill-conditioning of A transfers over to Fκ. Note that if

σi ≈ 0 we have γi ≈ 1 and the singular values of ψi(Fκ) =

√
σr−i+1

σr−i+1/κ+ γr−i+1
≈√

σr−i+1

σr−i+1/κ+ 1
≈ 0. Hence, if the operator A is severely ill-posed, this ill-posedness is

inherited by the operator Fκ.

6.2.4 Limiting cases
The limit κ→∞ if p < n

If L = I the limit κ → ∞ yields the original optimization problem. However, if
L 6= I, it is not immediately clear what happens in the limit κ → ∞ due to the
presence of the operator L. In this section we derive this limit using the GSVD
of (A,L). We will show that in the limit κ → ∞ SR3 applies a standard-form
transformation. We will proceed as follows. Recall that the variable x in SR3 is
given by

x̄κ = H−1
κ

(
κLT ȳκ +AT b

)
= κH−1

κ LT ȳκ +H−1
κ AT b := x1 + x2, (6.14)
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consisting of the two parts x1 and x2. We will now show that, in the limit κ → ∞,
SR3 applies a standard-form transformation, by showing that x1 and x2 defined in
eq. (6.14) satisfy

x1 = x̄M, x2 = x̄N , (6.15)

where xM and xN are determined by the standard-form transformation, given by
eq. (6.12) and eq. (6.13) respectively.
Given the GSVD of (A,L), the matrix Fκ and the vector gκ are given by

Fκ =

[√
κV
(
Ip − κΓ

(
ΣTΣ + κΓTΓ

)−1
ΓT
)
V T

κUΣ
(
ΣTΣ + κΓTΓ

)−1
ΓTV T

]
, (6.16)

and

gκ =

[ √
κV Γ(ΣTΣ + κΓTΓ)−1ΣTUT b

U
(
Im − Σ

(
ΣTΣ + κΓTΓ

)−1
ΣT
)
UT b

]
. (6.17)

As κ→∞ we have

Fκ →
[

0
UΣΓ†V T

]
and gκ →

[
0
b

]
.

Hence, as κ→∞, we obtain

ȳκ = argmin
y

1

2
‖UΣΓ†V T y − b‖22 +R(y). (6.18)

Using the GSVD, we have

H−1
κ = X−1

(
ΣTΣ + κΓTΓ

)−1
X−T ,

and hence as κ→∞ we have(
ΣTΣ + κΓTΓ

)−1 →
[
0 0
0 Ip−rL

]
.

Hence,

H−1
κ → X−1

[
0 0
0 Ip−rL

]
X−T . (6.19)

Recall that the last columns of X are a basis for the nullspace of L and hence Hκ

projects onto the nullspace of L. Using the GSVD of (A,L) we see that

lim
κ→∞

x1 := lim
κ→∞

H−1
κ AT b = X−1

[
0 0
0 Ip−rL

]
UT b,

which is equivalent to the nullspace component from (6.13).

We now show that x1 corresponds to the part in the range of L. We have

x1 := κH−1
κ LT ȳ = κX−1

(
ΣTΣ + κΓTΓ

)−1
ΓTV T ȳ.
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The elements of the diagonal matrix κ
(
ΣTΣ + κΓTΓ

)−1
ΓT are

γi
σ2
i /κ+ γ2

i

if i ≤ rL
0 if i > rL

,

and as κ→∞
1

γi
if i ≤ rL

0 if i > rL
.

Hence, as κ→∞
κ
(
ΣTΣ + κΓTΓ

)−1
ΓT → Γ†,

and thus
κH−1

κ LT → X−1Γ†V T = L†A.

The limit for the component x1 is now given by

lim
κ→∞

x1 = X−1Γ†V T ȳκ = L†Aȳκ,

where ȳκ solves

ȳκ = argmin
y

1

2
‖UΣΓ†V T y − b‖22 +R(y),

which is equivalent to (6.12).

The limit κ→∞ if p > n

If p > n, the limit κ→∞ is a bit more subtle. For large κ, we have

Fκ ∼

V [0rL×rL 0
0

√
κIp−rL

]
V T

UΣΓ†V T

 , and gκ ∼
[
0p×1

b

]
(6.20)

Hence, for large κ, SR3 solves a system of the form[√
κVp−rLV

T
p−rL

UΣΓ†V T

]
y =

[
0p×1

b

]
,

where Vp−rL are the last p − rL columns of V , which means that Vp−rLV
T
p−rL =

PN (LT ). Because Vp−rLV
T
p−rLy = 0, the solution has no parts in N (LT ), and is

restricted to the subspace R(L). The bottom part of Fκ is equal to the case p < n,
and hence corresponds to matrix AL†A. Let ȳstd be the solution to the standard-form
transformed system. Then, as κ→∞, the minimizer ȳκ of SR3 satisfies

ȳstd = PR(L)ȳκ. (6.21)

However, looking at the original formulation in eq. (6.2), we see that as κ→∞ we
have

y = Lx,

which means that y ∈ R(L). Hence, condition eq. (6.21) is immediately satisfied
and the solutions are the same.
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6.2.5 The limit κ→ 0

The limit κ→ 0 is much easier to derive. Recall that

x̄κ = H−1
κ

(
AT b+ κLT ȳκ

)
.

As κ → 0 we have κH−1
κ LT ȳκ → 0 and Hκ → (ATA)−1. Hence limκ→0 xκ =

(ATA)−1AT b which is the unregularized minimum norm solution.

6.2.6 Relation to the standard-form transformation
The case p ≤ n
We have shown that as κ → ∞ SR3 implicitly applies a standard-form
transformation and that as κ → 0 the system is unregularized. The question arises
what happens for finite κ > 0. To show what happens, we rewrite the singular
values of Fκ as

ψi(Fκ) =

√
σ2
r−i+1

σ2
r−i+1/κ+ γ2

r−i+1

=

√√√√ σ2
r−i+1/γ

2
r−i+1

σ2
r−i+1/γ

2
r−i+1

κ + 1
=

√√√√√ ψ2
i

(
AL†A

)
ψ2
i

(
AL†A

)
/κ+ 1

.

This is equivalent to equation 9 in [130], where it was shown that if LTL = I,

ψi(Fκ) =
ψ2
i (A)

ψ2
i (A)/κ+ 1

.

This shows that SR3 is applied to the matrix AL†A. This leads to the following
theorem.
Theorem 7. Let p ≤ n. The following diagram commutes.

minx
1
2‖Ax− b‖

2
2 + λR(Lx)

ȳκ = argminy
1
2‖Fκy − gκ‖

2
2 + λR(y)

x̄κ = H−1
κ (κLT ȳκ +AT b)

z̄κ = argminz
1
2‖AL

†
Az − b‖22 + λR(z)

x̄κ = L†Az̄κ + xN

ȳκ = argminy
1
2‖Fκy − gκ‖

2
2 + λR(y)

z̄κ = H−1
κ (κȳκ + (AL†A)T b)

x̄κ = L†Az̄κ + xN

SR3

SR3

The case p > n

If p > n the situation is different. Recall that the singular values of Fκ are given by

ψi(Fκ) =



√
κ if i ≤ p− rL√√√√√ ψ2

i

(
AL†A

)
ψ2
i

(
AL†A

)
/κ+ 1

if p− rL < i ≤ p− rL + rA

0 if i > p− rL + rA
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The singular values for Fκ when SR3 is applied to AL†A are given by

ψi(Fκ) =


√√√√√ ψ2

i

(
AL†A

)
ψ2
i

(
AL†A

)
/κ+ 1

if i ≤ rA

0 if i > rA

Hence, there are extra singular values
√
κ when SR3 is applied to the general-form

system as opposed to the standard-form system. The difference may be seen from
the expression eq. (6.16). We have

κΓ
(
ΣTΣ + κΓTΓ

)
ΓT =



In−rA 0 0

0 κΓm(ΣTΣ + κΓTmΓm)ΓTm 0

0 0 0

 if p > n

[
Ip−rA 0

0 κΓm(ΣTΣ + κΓTmΓm)ΓTm

]
if p ≤ n

Hence, the top part of Fκ is different. Before we state our theorem let us introduce
some notation. For the general-form problem, let the function ϕ be defined as the
spectral cut-off function that makes the first p − rL singular values of Fκ zero.
Similarly, for the standard-form transformed problem, let % be defined as the
function that makes p − rL singular values that are 0 equal to

√
κ and accordingly

permutes the SVD. We then have ϕ ◦ % = Id. We have the following theorem.
Theorem 8. Let p > n. The following diagram commutes.

minx
1
2‖Ax− b‖

2
2 + λR(Lx)

ȳκ = argminy
1
2‖Fκy − gκ‖

2
2 + λR(y)

x̄κ = H−1
κ (κLT ȳκ +AT b)

z̄κ = argminz
1
2‖AL

†
Az − b‖22 + λR(y)

x̄κ = L†Az̄κ + xN

˜̄yκ = argminy
1
2‖F̃κy − gκ‖

2
2 + λR(y)

˜̄zκ = H−1
κ (κ˜̄yκ + (AL†A)T b)

˜̄xκ = L†Az̄κ + xN

SR3

ϕ

SR3

%

6.3 Approximating the value function
In this section we quantify the distance between the Pareto curve of the original
problem and the Pareto curve of the relaxed problem in terms of κ. We first describe
the value function of the problem and then present our theorem.

The value function of an optimization problem expresses the value of the
objective at the solution as a function of the other parameters. Using the
standard-form transformation, we can, without loss of generality, consider the
standard-form value function:

φκ(τ) = min
y
‖Fκy − gκ‖2 s.t. ‖y‖p ≤ τ.
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6.3.1 Value function for κ→∞
We have seen that for κ→∞, we retrieve the unrelaxed problem with value function

φ∞(τ) = min
y
‖Ay − b‖2 s.t. ‖y‖p ≤ τ.

Following [111] we obtain the following (computable) upper and lower bounds for
the value function

bT r̃ − τ‖AT r̃‖q ≤ φ∞(τ) ≤ ‖r̃‖2,

where ỹ is any feasible point (i.e., ‖ỹ‖p ≤ τ), and r̃ = b − Aỹ is the corresponding
residual and p−1 + q−1 = 1. Moreover, by [111, Col. 2.2] the derivative of the value
function is given by

φ′∞(τ) = −‖AT r‖q/‖r‖2,

with r = b−Ay and y = argmin‖y‖p≤τ ‖Ay − b‖2.
To gain some insight in the behaviour of the value function, we consider φ∞ and

φ′∞ at τ = 0 and τ = τ∗ = ‖A†b‖p:

φ∞(0) = ‖b‖2, φ′∞(0) = −‖AT b‖q/‖b‖2,

φ∞(τ∗) = ‖(I −AA†)b‖2, φ′∞(τ∗) = 0.

This immediately suggests that φ∞ decreases linearly near τ = 0 (the zero solution)
and flattens near τ = τ∗ (the unconstrained minimizer). Since φ∞ is known to be
convex, its second derivative is always positive and will gradually bend the curve
from decreasing to flat. How fast this happens and whether one can expect the
typical L-shape, depends on how fast the curve decreases initially. We can bound
φ′∞(0) as follows. We let b = Ay and find

‖AT b‖q = ‖ATAy‖q ≥ Cq‖ATAy‖2 ≥ Cq‖A†‖22‖y‖2,

where Cq is a constant that exists due to the equivalence of norms. Furthermore,

‖b‖2 = ‖Ay‖2 ≤ ‖A‖2‖y‖2.

From this we get
φ′∞(0) ≤ −Cqκ2(A)‖A†‖2,

with κ2(A) = ‖A‖2‖A†‖2 the condition number of A. We thus expect a steep slope
for ill-conditioned problems, giving rise for the characteristic L-shape of the curve.
While this behavior is well-established for p = 2 where it can be analysed using the
SVD of A [53], this analysis gives us new insight in the behavior of the Pareto curve
for ill-posed problems for general p. An example for p = 1, L = I is shown in figure
6.4.

6.3.2 Relaxed value function
We now present our theorem on the distance between the Pareto curve of the
original problem and the Pareto curve of the relaxed problem.
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Figure 6.4: Pareto curve for an ill-posed problem; the matrix A is diagonal with elements
e−(i−1)/2 for i = 1, 2, . . . 10; b = Ax with x = (1, 1, . . . , 1). The tangent lines at τ = 0 and
τ = τ∗ are shown in black.

Theorem 9. The distance between the Pareto curve of the original problem and the
Pareto curve of the relaxed problem is given by

(φκ(τ))
2 − (φ∞(τ))

2
= −κ−1‖AT (b−Ayκ)‖22 +O

(
κ−2

)
,

where yκ is the solution of the relaxed problem. In particular, we have

φκ(τ) ≤ φ∞(τ).

Proof. Let ε = κ−1. The relaxed value function can be expressed as

φε(τ) = min
y
‖Fεy − gε‖2 s.t. ‖y‖p ≤ τ.

For ε < ‖A‖22 we can expand H−1
ε = εI − ε2ATA+O(ε3) and get

Fε =

(
A− εAATA+O(ε2)
ε1/2ATA+O(ε3/2)

)
, gε =

(
b− εAT b+O(ε2)
ε−1/2AT b+O(ε3/2)

)
.

Introduce

f(ε) = (φε(τ))
2

= min
x,y
‖Ax− b‖22 + ε−1‖x− y‖22 s.t. ‖y‖p ≤ τ.

We have f(0) = min‖y‖p≤τ ‖Ay − b‖22 = (φ0(τ))
2. Furthermore

f ′(ε) = −ε−2‖xε − yε‖22,
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Figure 6.5: Pareto curve for an ill-posed problem; the matrix A is diagonal with elements
e−(i−1)/2 for i = 1, 2, . . . 10; b = Ax with x = (1, 1, . . . , 1). The approximations for various
values of κ are shown as well.

where xε = H−1
ε (AT b+ ε−1yε) and yε is the optimal y. With this we find

(φε(τ))
2 − (φ0(τ))

2
= εf ′(η) = −εη−2‖xη − yη‖22. (6.22)

We conclude that φε(τ) ≤ φ0(τ). Alternatively, we can express

(φε(τ))
2 − (φ0(τ))

2
= −ε−1‖xε − yε‖22 +O(ε2). (6.23)

For small ε we get
f ′(ε) = −‖AT (b−Ayε)‖22 +O(ε).

Plugging this expression into eq. (6.23) gives the desired result.

Remark 2. theorem 9 can be used to explain the behaviour of the Pareto curves
observed in the examples in section 6.1.1:
• The error gets smaller for large τ . For an unconstrained problem we have
‖AT (b−Ayκ)‖2 = 0 as κ→∞. An example is shown in fig. 6.5.

• The elbow of the Pareto curves coincide; φ∞ decreases fast initially for ill-posed
problems (cf. fig. 6.4) while φκ decreases less fast due to the implicit regularizing
effect of the relaxation. Since 0 ≤ φκ ≤ φ∞, the relaxed Pareto curve is pushed
down and is therefore likely to have the elbow at the same location as φ∞.

6.4 Implementation
Recall from the introduction that we implement SR3 as follows:

xk+1 ←
(
ATA+ κLTL

)−1 (
AT b+ κLT yk

)
(6.24)

yk+1 ← prox1/κR (Lxk) . (6.25)
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The last equation shows that for the choiceR(·) = λ‖ · ‖pp there is a relation between
the parameters κ and λ. More specifically, λ depends on κ and hence we write λ(κ).
Given the optimal λ?, we have λ(κ) = λ? · κ. Note that if we use the constrained
formulation eq. (6.9), the dependence on the stepsize is lost because the proximal
operator is the indicator function, and there is no relation between τ and κ.
The computational bottleneck is in the first step, which is the solution to the large-
scale linear system (

ATA+ κLTL
)
xk = AT b+ κLT yk−1. (6.26)

To avoid explicitly forming ATA and LTL, we instead solve the following
minimization problem

min
x

∥∥∥∥[ A√
κL

]
x−

[
b√

κyk−1

]∥∥∥∥2

2

, (6.27)

with LSQR.
We will numerically investigate how only partially solving eq. (6.27) affects the
convergence of SR3. This has been investigated for ADMM in [32, 33, 2]. The
convergence of FISTA with an inexact gradient has been analyzed in [103]. The key
message is that the error has to go down as the iterations increase.
In our implementation, we propose two extra ingredients to make SR3 suitable for
large-scale problems: warm starts and inexact solves of (6.27). Both ingredients
are also used in the implementation of ADMM [18]. However, we propose a new
stopping criterion for the inexact solves of (6.27).
A warm start is a technique used in inner-outer schemes, where the solution of the
previous inner iteration serves as an initial guess to the new inner iteration. That is,
we solve

min
x

∥∥∥∥[ A√
κL

]
x−

([
b√

κyk−1

]
−
[
A√
κL

]
xk−1

)∥∥∥∥2

2

. (6.28)

By inexact solves we mean finding an approximate solution to (6.28). The level of
inexactness is determined by the difference between the true solution and the
inexact solution. There are various ways in which one can solve the optimization
problem inexactly. One way is to simply determine a maximum number of
iterations. However, the number of iterations to solve (6.27) can vary strongly per
outer iteration. Moreover, we may not want to solve the inner system with high
precision in the first few outer iterations, because this does not result in significant
improvement in the next outer iteration. Recently, the authors in [117] proposed a
criterion to determine the amount of inexactness for inner-outer schemes. The idea
is to stop the inner iteration once the difference in the resulting outer iterate
becomes stagnant. Let xk denote the current inner iterate and yk = prox1/κR (Lxk)
the resulting outer iterate by applying the proximal operator. Then the authors in
[117] propose to stop the inner iterations if

‖xk+1 − xk‖ < ρ‖yk+1 − yk‖, (6.29)

for some user defined constant ρ. We propose a similar criterion, namely to stop if

‖yk+1 − yk‖
‖yk‖

< ε, (6.30)
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for some user defined threshold ε. The index k refers to the iteration of the iterative
method applied to the inner iteration. This yields the proposed implementation of
SR3, shown in algorithm 8. Note that in line 4 of the algorithm we use the LSQR
algorithm, and we build on the Krylov subspace from the previous step.

Algorithm 8 Implementation of SR3

Require: Operators A and L, the data b and the parameters κ, λ and ε.
Ensure: Approximate solution xk.

1: while ‖xk+1 − xk‖ > δ do
2: l = 0.

3: while
‖ỹl+1 − ỹl‖
‖ỹl‖

> ε do . Run LSQR. We do not restart LSQR every

iteration!

4: xl = argmin
x∈Kl

([
A√
κL

]
,

[
b−Axk√
κ(y0−Lxk)

]) ∥∥∥∥[ A√
κL

]
x−

([
b√
κyk

]
−
[
A√
κL

]
xk

)∥∥∥∥2

2

.

5: ỹl+1 = prox1/κR (Lxl). . Prospective update
6: l = l + 1.
7: end while
8: yk = ỹl.
9: k = k + 1.

10: end while

It is important to note that the influence of κ on the outer iteration is different
from the influence of κ on the inner iteration. The improved conditioning of the
matrix Fκ pertains to the convergence of the outer iteration. The convergence of the
inner iteration is completely determined by the properties of the matrix H−1

κ . It is
important to note that using the GSVD of (A,L) we get

Hκ = ATA+ κLTL = XT
(
ΣTΣ + κΓTΓ

)
X,

but this is not the SVD of Hκ, because X is not orthonormal. Therefore, the matrix
ΣTΣ + κΓTΓ does not tell us anything about the convergence rate when solving
linear systems involving Hκ.

6.5 Numerical experiments
In this section we verify the results from section 6.2 numerically. Furthermore, we
implement algorithm 8 and test it on two examples. We use two examples that are
regularized by TV regularization, which we solve in its constrained form, i.e.

min
x
‖Ax− b‖22 s.t. ‖Lx‖1 ≤ τ.

6.5.1 Examples
We will use two examples that are very different in nature in terms of their singular
values. For both examples, we will show how their spectra are changed as a
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function of κ by applying SR3, and how this relates to the inner and outer
iterations. After that, we will show how our inexact SR3 greatly reduces the total
number of iterations. We do not add noise to the data.

Gravity surveying
The first example is the gravity example from the regu toolbox, [56, 54]. This
example models gravity surveying. An unknown mass distribution that generates a
gravity field is located in the subsurface, and the measured data is related to the
gravity field via a Fredholm integral of the first kind, i.e.

b(s) =

∫
Ω

k(s, t)x(t)dt.

The variable x(t) is the mass density at the location t in the subsurface and b(s) is
the gravity field at location s at the surface. The kernel is given by:

k(s, t) = d(d2 + (s− t)2)−3/2,

where d is the depth. The integral is discretized using the midpoint quadrature
rule and yields a symmetric Toeplitz matrix A that is square and severely ill-posed.
We have chosen an x(t) that is piecewise constant and hence we regularize the
problem with TV regularization. The operator L = D, where D is the first-order
finite difference discretization, i.e.

D =

−1 1
. . .

. . .
−1 1

 ∈ R(n−1)×n.

The operator is underdetermined and its nullspace has dimension 1. We choose
n = 512. The true gravity profile is shown in fig. 6.6.

Tomography
Our second example is the tomography example PRtomo from the IR Tools toolbox
[37], see also [59], which models parallel tomography. It models X-ray attenuation
tomography, often referred to as computerized tomography (CT). Parallel rays at
different angles penetrate an object. The rays are attenuated at a rate proportional
to the length of the ray and the density of the object. The i-th ray can be modeled
as

bi =
∑
j∈Si

aijxj .

The set S denotes the set of pixels that are penetrated, aij denotes the length of the
i-th ray through the j-th pixel and xj is the attenuation coefficient. This is a 2D
example where the matrix A is underdetermined and the singular values decay
mildly. Again, we use TV regularization for the reconstruction. For 2D

regularization, the operator L =

[
I ⊗D
D ⊗ I

]
. Hence, the operator L is overdetermined

and has a nullspace of dimension 1. We choose 18 angles between 0 and 180
degrees and discretize the image on a 128 × 128-pixel grid. This means that
A ∈ R3258×16384. Our experiments are on the Shepp-Logan phantom, shown in
fig. 6.6.
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Parameters

For our experiments, we have adapted the implementation of the accelerated
proximal gradient algorithm from [94] for SR3 and use the same stopping criterion
for the proximal gradient algorithm. For the inexact stopping criterion for the inner
iteration we choose ε = 10−6. For the exact SR3 method, we let LSQR run to
convergence with the standard tolerance of 10−6. For τ , we choose the optimal
value τ = ‖Lxtrue‖1.

6.5.2 Singular values of Fκ
In this section we show the singular values of Fκ for the gravity and the
tomography example. For the tomography example, the generalized singular values
are calculated on a 64 × 64 grid to reduce computational time, instead of the
128 × 128 grid for our experiments. We show the generalized singular values , i.e.
the singular values of AL†A, and the singular values of Fκ for different values of κ
for the gravity example in fig. 6.7. Note that irrespective of the value of κ, the
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Figure 6.7: Spectral properties of Fκ and Hκ for the gravity example. Left figure: We show
the singular values of AL†A and the singular values of Fκ for different values of κ. Note that
the singular values of Fκ have a very similar structure to the singular values of AL†A. Right
figure: The singular values of the matrix Hκ.
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matrix Fκ remains severely ill-posed. For the tomography example, A is not
severely ill-posed. The singular values decay only mildly and the situation is
different. In this case, for small κ,

ψi (Fκ) =

√
σ2
r−i+1

σ2
r−i+1/κ+ γ2

r−i+1

≈

√
σ2
r−i+1

σ2
r−i+1/κ

=
√
κ.

Hence, for small κ the singular values of Fκ ≈
√
κ and the condition number is 1.

As κ → ∞ we have seen that ψi(Fκ) → σr−i+1

γr−i+1
. We show the singular values, the

generalized singular values, and the singular values of Fκ in fig. 6.8. Note that for
this example, the conditioning of the matrix Fκ is improved.
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Figure 6.8: Spectral properties of Fκ and Hκ for the tomography example. The left figure
shows the singular values of Fκ. Recall that the first p − rL singular values of Fκ are

√
κ.

The right figure shows the singular values of Hκ. There is an inverse relation between the
condition number of Hκ and Fκ as a function of κ.

6.5.3 The Pareto curves
In fig. 6.9 we show the Pareto curves for the original problem and SR3 for both our
examples. As we explained in section 6.3, the corner of the Pareto of the original
problem and SR3 is likely to be in the same place. This is confirmed by fig. 6.9.

6.5.4 The influence of κ on the number of iterations
To investigate the influence of κ, we show the number of inner and outer iterations
for varying values of κ and the total number of iterations. The results are shown in
fig. 6.10 and fig. 6.11. As we have stated before, the improved convergence rate
due to an improved conditioning of κ pertains to the outer iterations. The effect of
κ on the convergence of the inner iteration may be completely opposite.

For the gravity example, we see that the number of inner iterations varies very
little as κ increases, and even goes up a little bit. This is not unexpected, because
the decay of the singular values changes very little as κ increases, see fig. 6.7. The
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Figure 6.9: The left figure shows the Pareto curves for the gravity example. The right figure
shows the Pareto curves for the tomography example. The x-axis is τ and the y-axis is ‖Ax̄κ−
b‖2.
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Figure 6.10: The left panel shows the inner and outer iterations for varying κ for the gravity
example. The right panel shows the total number of iterations.
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Figure 6.11: The left panel shows the inner and outer iterations for varying κ for the
tomography example. The right panel shows the total number of iterations.

number of outer iterations goes down rapidly as κ decreases, something that is not
expected from the distribution of the singular values. This shows that the



112 | Chapter 6 – Relaxed regularization for linear inverse problems

distribution of the singular values is not the sole property explaining the
convergence behavior.
For the tomography example we see a clear trade-off between inner and outer
iterations. From fig. 6.8 we clearly see that as the condition number of Fκ
decreases, the condition number of Hκ increases. This explains that, as the number
of inner iterations goes down with increasing κ, the number of outer iterations goes
down.

6.5.5 Inexact SR3
In this section we compare the error and the total number of iterations for SR3
and inexact SR3 as a function of κ. The results are shown in fig. 6.12. We see
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Figure 6.12: Comparison of the total number of iterations for SR3 and inexact SR3 as a
function of κ. Note that the axes are on a log-log scale.

that the total number of iterations needed is greatly reduced by implementing the
automated stopping criterion. Another important contribution is that the stopping
criterion seems to mitigate the influence of κ on the total number of iterations.
fig. 6.13 and fig. 6.14 show some reconstructions for different values of κ.

6.6 Conclusion and outlook
In this chapter we have analyzed the method SR3 which was introduced in [130].
We have extended theorem 1 from [130] about the singular values of Fκ to the
general form case. We have shown that SR3, as κ → ∞, implicitly applies a
standard-form transformation, and that for finite κ > 0, the singular values of Fκ
are related to the standard-form transformed operator.
In section 6.3 we have shown that the distance between the Pareto curve of the
original problem and the Pareto curve of the relaxed problem is of O(1/κ2) plus the
norm of the gradient, which depends on κ.
In section 6.4 we have presented our implementation of the inexact SR3 algorithm,
where we have proposed an automated stopping criterion for the inner iterations.
In our numerical experiments in section 6.5 we have compared the SR3 algorithm
for two example problems with very different spectra. The gravity example is a
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Figure 6.13: Solution to the gravity example for different κ and the optimal τ . We show both
x̄κ and ȳκ.

severely ill-posed problem and we have shown, numerically, that the convergence
of inner iterations is not affected much by κ, but the convergence of the outer
iteration is. For the tomography example we saw a trade-off: as κ decreases the
outer iterations converge rapidly, but the number of inner iterations is large. We
have shown that our automated stopping criterion greatly reduces the number of
iterations needed.
For future research it would be interesting to further investigate the relation
between the Pareto curve of the original problem and of the relaxed problem.
Specifically, it would be great if we could prove that the corner of the curves are in
the same place, something that we have only been able to show qualitatively
through theorem 9. This would lead to automatic selection of the regularization
parameter λ.
Another interesting topic of research is the selection of κ. As we have seen in our
experiments, the choice of κ strongly influences the number of iterations needed
for SR3, although this is largely mitigated by the inexact stopping criterion. The
relation between the tolerance for the stopping criterion and κ should also be
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Figure 6.14: Solution to the tomography example for different κ and the optimal τ .

further investigated.



CHAPTER 7

Conclusion and outlook
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7.1 Conclusion

In this thesis we have developed algorithms for linear inverse problems. Our main
contributions are:
• Compared Lanczos- and RSVD-based algorithm for regularization

parameter estimation λ
We have compared the use of Lanczos- and RSVD-based algorithms for
estimating the regularization parameter. The goal is to obtain a
low-dimensional model that allows for rapid evaluation of linear systems for
multiple values of λ. We have implemented a new adaptive RSVD-based
algorithm that automatically determines the dimensions of the
low-dimensional model, such that it is both of low-dimension and accurately
represents the full model. Using the Lanczos process one can derive exact
lower and upper bounds for the parameter selection methods. In some cases,
this yields a favorable reconstruction as compared to the RSVD method.
Furthermore, we have compared the use of a randomized trace estimator
versus estimating the trace using estimates of the singular values obtained via
the Lanczos process or the RSVD. It turns out that the performance of each
method depends strongly on the spectrum of the matrix whose trace is
estimated.

• Defined a mathematical framework for regularizing Multi-Dimensional
Deconvolution
We have posed Multi-Dimensional Deconvolution (MDD) as a constrained
optimization problem. We have shown the ill-posedness of the MDD problem
and have discussed how to incorporate source-receiver reciprocity and
causality as constraints. We have shown that even with these constraints the
problem remains ill-posed, as it still exhibits semi-convergence. Additional
regularization has to take care of this. We have applied Tikhonov
regularization and have shown that this mitigates the effects of
semi-convergence. However, standard parameter selection methods fail to
predict a good estimate of regularization parameter λ.

• Extended the analysis on SR3
We have extended the analysis on the SR3 method from [130]. We have used
the Generalized Singular Value Decomposition (GSVD) to derive the spectrum
of the matrix formed by applying SR3. We have related this to the spectrum
of the matrix of the original problem and show that the condition number
decreases. Moreover, we have shown that in the limit κ → ∞ SR3 applies a
standard-form transformation.

• Proposed an automated stopping criterion for SR3
We have proposed an automated stopping criterion for the inner iterations of
SR3. The stopping criterion is based on the progress made in the outer
iteration with one inner iteration. When this stagnates, we stop the inner
iterations. We have shown that this stopping criterion reduces the total
number of iterations and that the total number of iterations varies far less
with κ.
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7.2 Discussion and outlook
The question whether one can obtain a good estimate for the regularization
parameter based on the data remains an open question. For Tikhonov
regularization, we have reviewed some parameter selection methods and studied
how to efficiently evaluate them. However, we have seen that for
Multi-Dimensional Deconvolution these methods all fail to provide a correct
estimate of the regularization parameter. This MDD problem is, however, an
extremely difficult problem to solve, and it stands to reason that, given that all
attempts so far have failed, a parameter selection method may not be an achievable
goal.

For SR3, there are a number of future directions based on our research. The first
one would be to obtain an estimate for κ. However, we have shown that the
influence of κ can only be determined a-priori by looking at either the singular
values or the generalized singular values. Perhaps this problem is as hard as
obtaining an estimate for the regularization parameter.

We have shown how the Pareto curve of the relaxed problem obtained by SR3
relates to the Pareto curve of the original problem. We have argued that the corner,
or elbow, of the Pareto curve for the relaxed problem and the original problem may
coincide. This is confirmed by numerical experiments. For future research it would
be interesting to see whether the exact location of the corner can be quantified for
both the original and the relaxed problem.

Finally, experiments with real data have to show whether the corner of the Pareto
curve gives a good estimate for the regularization parameter, and whether SR3 is
truly competitive with FISTA and ADMM.

This thesis has only covered linear inverse problems, and the logical extension
would be to consider also non-linear inverse problems. It is unlikely that the
contents of this thesis extend to this case. Ideally, we would like to obtain a
low-dimensional model that can be evaluated for multiple regularization
parameters, and accurately reflects the full model.

As a first attempt, we have tried to view solving the inverse problem via gradient
descent as a dynamical system. Consider the problem

min
x

1

2
‖Ax− b‖22 + λ‖Lx‖22. (7.1)

We can consider the solution to this problem as a gradient flow, namely

ẋλ(t) = F (xλ(t)) := (ATA+ λLTL)xλ(t), (7.2)

which is a parametric dynamical system. By taking snapshots of (7.2) one obtains
the iterates of gradient descent. Our goal is to use model order reduction
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approaches from the dynamical systems literature to obtain a low dimensional
model in terms of λ for (7.2). There exist various approaches in the dynamical
systems literature for model order reduction, for an overview see [11]. One
approach that seems appropriate here, is to evaluate this dynamical system for
various λ1, . . . , λp, and interpolate between these values to obtain a
low-dimensional surrogate model. The question is how to interpolate. We have
attempted to use manifold interpolation, where the λi are interpolated on the
underlying manifold, for details we refer to [11, 3]. Although it is an interesting
approach, the first results were not satisfactory. We have tested this on a
tomography example where we try to image a smooth object, and hence L is the
discretization of the first derivative operator.

We describe the approach for interpolating between two values of λ.
1. Pick two values of λ and run gradient descent. These yield snapshots of the

gradient flow.
2. Use Proper Orthogonal Decomposition (POD) (in this case the SVD) to obtain

orthonormal bases U1 and U2 for the respective gradient flows. Truncate the
POD if necessary.

3. Interpolate the orthonormal bases using manifold interpolation, yielding a
basis U3.

4. Project the gradient flow onto U3 to obtain the reduced order model and run
gradient descent.

We determined the optimal value for λ by hand, which turned out to be λ = 1000.
We then chose λ1 = 500 and λ2 = 1500 and interpolate the solution to compare the
two. We add 10% noise to the data. As a benchmark, we also compare this
approach to direct linear interpolation, which it should outperform. The true
background is shown in figure (7.1), and the solutions for λ, λ1 and λ2 are shown
in figure (7.2). We show the solution and the interpolated solutions in figure (7.3).
Unfortunately, the interpolated solution differs quite a lot from the true solution,

Figure 7.1: True background.

and does not significantly outperform linear interpolation.
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Solution for λ1 = 500 Solution for λ = 1000 Solution for λ2 = 1500

Figure 7.2: Solution for different λ. We interpolate between λ1 and λ2 to obtain the solution
for λ = 1000.

Solution for λ = 1000 Manifold interpolation Linear interpolation

Figure 7.3: Interpolated solutions.

The goal of the example is to obtain a low-dimensional model that we can evaluate
for multiple λ. If L = I and the matrix A is linear then Krylov methods are
excellent for this purpose, but for other regularization methods no such technique
exists. Unfortunately, manifold interpolation on the gradient flow does not work
and we need other approaches.
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Summary

Inverse problems arise in many applications in science and engineering. They are
characterized by the fact that directly computing a solution to an inverse problem
via a well-defined operator is generally not possible. We have measured data that
are generated by an (approximately) known model, the forward model, that
depends on some input. This forward model generates simulated data, and the
solution to the inverse problem is the input that matches the simulated data and
the measured data.

Limitations in the measurement setup, noise in the data, et cetera, add extra
difficulty to obtaining a solution. Multiple solutions may lead to roughly the same
data, and one has to choose which solution is best. Moreover, we may not want the
input to match the data exactly, since we know the data are corrupted.

Selecting the best among many possible solutions is done through a technique
called regularization. Regularization is prior information about the solution that we
want to incorporate when solving the inverse problem. We now have two elements
that we have to rely on when solving the inverse problem: how well the simulated
data fits the measured data and how well the solution is in accordance with our
prior knowledge. The balance between these two terms is determined by the
regularization parameter, which has to be specified by the user. For certain types of
regularization there exist parameter selection rules that can be evaluated to get an
estimate of the regularization parameter, but evaluating them is as expensive as
solving the inverse problem. We generally have to solve the inverse problem for
multiple regularization parameters and select the best solution.

On top of that, the type of regularization has a large influence on how the inverse
problem is solved. This is due to the fact that we have to use different
mathematical tools for different regularization methods.

The goal of this thesis has been to develop fast algorithms for inverse problems and
to investigate the estimation of the regularization parameter. We have worked on a
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number of different regularization methods for linear inverse problems. For the
simplest one, Tikhonov regularization, we have compared two algorithms that can
be used to estimate the regularization parameter efficiently. Moreover, we have
developed a new algorithm where the dimension of the low-dimensional surrogate
model is automatically determined.

We have developed a mathematical framework for a problem arising in geophysics,
called Multi-Dimensional Deconvolution. We have discussed the ill-posedness of
the problem and show how to incorporate constraints induced by the laws of
physics. Moreover, we have discussed additional regularization that is needed to
obtain a stable solution.

Finally, we have extended the analysis on SR3, which is a fast algorithm for solving
inverse problems with a certain type of regularization. Additionally, we have shown
how it may be used to estimate the regularization parameter and proposed a novel
implementation to make it suitable for large-scale problems.



Samenvatting

Inverse problemen zijn veelvoorkomend in de wetenschap en techniek. Ze worden
gekenmerkt door het feit dat een directe oplossing voor een inverse probleem over
het algemeen niet uitgerekend kan worden. Bij een inverse probleem meten we
data die gegenereerd zijn door een (deels) bekend model, het voorwaartse model,
dat afhangt van een bepaalde variabele. Het voorwaartse model genereert
gesimuleerde data, en de oplossing voor het inverse probleem is de variabele die de
kleinste fout tussen de gesimuleerde en de gemeten data genereert.

Door, onder andere, beperkingen van de meetinstrumenten en ruis op de data, is
het extra moeilijk om een oplossing voor een inverse probleem te vinden.
Verschillende oplossingen kunnen nagenoeg dezelfde gesimuleerde data genereren,
waardoor we een keuze moeten maken voor een oplossing. Daar komt bij dat we
de fout tussen de gesimuleerde data en gemeten data niet willekeurig klein willen
hebben, omdat de gemeten data ruis bevat.

Het selecteren van de beste oplossing wordt gedaan door zogeheten regularizatie.
Regularizatie is veronderstelde kennis over de oplossing die we willen meewegen
in het bepalen van de oplossing. Dit betekent dat we met twee dingen rekening
moeten houden in het oplossen van een inverse probleem. Enerzijds moet de
gesimuleerde data overeenkomen met de gemeten data, maar anderzijds moet de
oplossing voldoen aan onze veronderstelde kennis over de oplossing. De balans
tussen deze twee elementen wordt gewogen door de regularizatieparameter, die
bepaald moet worden door de gebruiker. Voor bepaalde regularizatie bestaan er
methoden om de regularizatieparameter te schatten, maar deze methoden kosten
vaak net zo veel rekentijd, zo niet nog meer, als het oplossen van het inverse
probleem. Daarom moeten we het inverse probleem vaak meerdere keren oplossen
voor verschillende regularizatieparameters, en een keuze maken voor de beste
oplossing.

Daar komt bij dat het type regularizatie bepaalt hoe we het inverse probleem
kunnen oplossen. Dit komt omdat we voor verschillende regularizaties
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verschillende algoritmen gebruiken voor het oplossen van het inverse probleem.

Het doel van dit proefschrift is geweest om snelle algoritmen te ontwikkelen voor
inverse problemen en om te onderzoeken hoe de regularizatieparameter geschat
kan worden. We hebben gewerkt aan verschillende regularizaties voor lineaire
inverse problemen. Voor het meest simpele geval, Tikhonov regularizatie, hebben
we twee algoritmen vergeleken die gebruikt kunnen worden om de
regularizatieparameter op een efficiënte manier te schatten. Daarnaast hebben we
een nieuw algoritme ontwikkeld waar de dimensie van een laag-dimensionaal
surrogaat model automatisch wordt bepaald.

We hebben een wiskundig raamwerk opgezet voor een inverse probleem in
geofysica, multi-dimensionale deconvolutie. We hebben laten zien dat het
probleem slechtgesteld is en hebben laten zien hoe constraints door de wetten van
de natuurkunde meegenomen kunnen worden in de optimalisatie. Daarbovenop
hebben we laten zien dat er nog extra regularizatie nodig is om het inverse
probleem op te lossen.

Ten slotte hebben we de analyse van het SR3 algoritme aanzienlijk uitgebreid. SR3
is een snel algoritme dat wordt gebruikt voor het oplossen van lineare inverse
problemen met bepaalde typen regularizatie. We hebben daarbij laten zien hoe het
algoritme gebruikt kan worden om de regularizatieparameter te schatten en we
hebben een nieuwe implementatie voorgesteld, die het algoritme geschikt maakt
voor grootschalige inverse problemen.
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