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The human genome and genomic variation

A genome contains all the instructions needed to form and maintain an organism. The 
human genome is constituted by two times 3.2 billion nucleotides, which can be adenine 
(A), cytosine (C), thymine (T) or guanine (G). These are stored in long stretches that 
coil around each other forming a double helix of deoxyribonucleic acid (DNA)1,2. The 
sequential order of these nucleotides establishes the differences between not only species, 
but also individuals. DNA is generally packed into chromosomes. Humans possess 
23 pairs of chromosomes in homeostasis, with one of each pair inherited from each 
progenitor3. Parts of these chromosomes are organized into specific sequences called 
genes. Genes contain the code that the cellular machinery uses to construct proteins, the 
biomolecules that perform most of the cellular processes. There are about 20,000 protein-
coding genes in the human genome, constituting only 1-2% of the total genome4. The 
function of the vast majority of the remaining genome is not fully understood, although 
it is clear that a large fraction holds a regulatory function for the expression of the genes5. 

The large majority (~99.5%) of the genomic sequence overlaps between two individuals3,6. 
Most of the remaining alterations are neutral and have no effect, but some modify 
protein function by affecting genes or regulatory elements. Variants are responsible for 
the diversity in the population7,8, but sometimes cause or predispose to diseases such 
as congenital disorders or cancer8,9. Variants can be classified through different criteria. 
Depending on their origin, they can be germline, when inherited from the progenitors 
and therefore present in all cells of an organism; or somatic, when acquired during the 
lifetime of an individual through different processes of DNA damage and DNA repair 
errors. Germline or somatic variants can affect a single base in the genome (single 
nucleotide variants, SNVs) or several (multi nucleotide variants, MNVs), including 
small deletions and insertions (indels) (Figure 1). These small variants are the most 
common variants, although most are harmless polymorphisms7,8,10. However, variants 
can also affect large stretches of nucleotides and are then called structural variants (SVs).
SVs consist of the rearrangement of large genomic segments (over 30 base pairs) within 
or between chromosomes11,12 (Figure 1). There are two main classes of SVs: i) balanced 
or reciprocal, such as translocations and inversions, where the amount of DNA does 
not change and ii) unbalanced, such as deletions, duplications and insertions, where a 
change in the amount of DNA of a genome occurs. This amplification or loss of DNA 
segments is also called a copy number alteration (CNA). SVs are not as common as 
SNVs or MNVs. However, due to their larger size, they impact more bases in total in 
the genome13,14, they have an increased chance of impact on the homeostasis of the cell15 
and they can also be the cause of human diseases such as neurodevelopmental disorders, 
autism or cancer by directly affecting key genes and regulatory mechanisms8,11,12,16,17.
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Figure 1: Different types of genomic variation. (A) All genomic variation is defined by comparison to 
an arbitrary reference genome, of which two chromosomes are depicted here. (B) Simple variants include 
single nucleotide variants (SNVs), multi nucleotide variants (MNVs) and short insertions and deletions 
(indels). (C) Balanced structural variants (SVs) do not cause gain or loss of genomic material and include 
translocations between chromosomes and inversions. (D) Unbalanced SVs imply loss or gain of genomic 
material, and thus entail associated copy number alterations (CNAs). They can be deletions, insertions and 
duplications. 

Cancer is a genomic disease

Cancer remains a major global health problem with over 18 million cases and 9 million 
deaths each year18. Cancer is a term that englobes different diseases, all defined by an 
uncontrolled proliferation of transformed cells9. Due to a combination of inherited 
predisposing germline and acquired stochastic somatic SNVs, MNVs, SVs and 
epigenomic changes, cells may acquire selective growth advantage. Transformed cancer 
cells also acquire other characteristics to support their abnormal proliferation such 
as reduced cell death, angiogenesis stimulation, dysregulated metabolism, immune 
system evasion and migratory characteristics that allow them to metastasize to other 
tissues9. As a result of the uncontrolled proliferation and dysregulated functions, 
cancer cells often have increased genomic instability and acquire even more somatic 
mutations. There is then a distinction between passenger events, which are acquired 
somatic mutations with no effect in tumorigenesis; and driver events, which are 
mutations that affect key genes and regulatory elements and are able to confer the 
selective growth advantage19,20. Typically there are up to a dozen driver mutations in 
a tumor, while there can be hundreds to hundreds of thousands passenger mutations 
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depending on the tumor type20. Genes affected by the driver mutations are called cancer 
driver genes and can be further divided into oncogenes and tumor suppressor genes. 
Oncogenes acquire activating mutations that confer a positive selection advantage and 
act in a dominant way. Tumor suppressor genes drive cancer by inactivation or loss of 
activity often through bi-allelic mutations, which is the case for most familial cancers20,21. 
An example of a cancer driver gene is TP53. This gene encodes for the p53 protein, 
which monitors genomic integrity in the cell cycle and forces genetically damaged 
cells into senescence or apoptosis, hence its common moniker: “the guardian of the 
genome”22. The BRAF kinase is also a known cancer driver, prevalent in melanoma and 
other cancer types20. The constitutive activation of BRAF causes a dysregulation of the 
ERK-MAP signalling pathway, leading to increased cell proliferation and survival. The 
most common mutation in BRAF is the V600E substitution, although other mutations 
exist. The mutated protein is specifically targeted with BRAF inhibitors, improving the 
survival rates of patients with tumors carrying this specific alteration23. This example 
illustrates the importance of the identification of these driver mutations and genes for the 
treatment and prognosis of cancer, and can only be done through genomic technologies.

During the mid-2000s affordable high-throughput sequencing became available 
through platforms like 45424, SOLiD from Thermo Fisher25, Solexa26 and several 
others, encompassed under the umbrella term next-generation sequencing (NGS). 
Since then, throughput and price of these technologies has steadily improved, with the 
biotechnological company Illumina (after acquiring Solexa) as market leader. Thus, 
assays like whole-exome sequencing (WES), where the protein-coding part of the 
genome is sequenced, and whole-genome sequencing (WGS) have become increasingly 
important in cancer research. Among countless techniques, knowledge and milestones 
unlocked by NGS are the development of large international cancer sequencing consortia 
such as ICGC27, TCGA28, PCAWG19, HMF29 or several focused on pediatric cancer30–32. 
Through sequencing of these large cohorts our knowledge about the origin, behavior, 
evolution and actionability of tumors has greatly improved in the last decade. Although 
genomic data are already being used to guide treatment decisions in a variety of cancers, 
this is mainly done through targeted gene panels as WES and WGS are less used in 
clinical care than in research, mainly due to limitations in the availability of fresh-frozen 
tissue from the tumor biopsies in clinical practice and higher costs when compared to 
standard diagnostic techniques33–35. Nevertheless, WGS is the only technique that fully 
characterizes the genomic complexity and heterogeneity of a tumor. For this reason, 
together with technical improvements to reduce costs, there is little doubt that WGS 
will eventually be implemented routinely in cancer precision medicine36. An additional 
advantage of clinical implementation of WGS is the replacement of many standalone 
tests for different cancer types or mutation types, bringing in a single test for all cancers 
and harmonizing protocols for sample collections and data analysis36.
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Precision medicine and liquid biopsies

The genomic characterization of tumors allows the development of precision cancer 
medicine: matching the best drug or treatment with the right patient based on the specific 
mutations present in the tumor37–42. Moreover, the combination of different mutations 
or the overall mutational landscape of a tumor -also known as mutational signatures43- 
can only be discovered with WGS and also provides therapeutic opportunities44–46. Our 
knowledge of new actionable alterations evolves rapidly, therefore the comprehensiveness 
of WGS is also essential to be able to reassess data with new knowledge. Particularly, 
clinical trials can be designed based on particular cancer alterations rather than cancer 
type to increase sample sizes, which is particularly relevant to rare cancer types35,47. Other 
advantages of WGS implementation are the identification of secondary or multiple 
alterations to counterpart acquired resistance that emerge after prolonged cancer 
therapies35,48 and the application in cancer immunotherapy and antitumor activity of the 
patients’ own immune system through tumor-specific neoantigen prediction49,50.

Specific molecular profiling of each tumor is key for the development and application 
of precision oncology. Often, access to tumor material to perform WGS or other 
analyses is limited and depends on invasive procedures. There is therefore an increasing 
focus in oncology towards liquid biopsies, which are methods that analyze blood or 
other biological fluids to derive cancer diagnostic information51–53. Due to their low 
invasiveness, they can be repeated at multiple time points with less inconvenience for the 
patient. There are different analytes that can be investigated in liquid biopsies: circulating 
tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles or tumor-
educated platelets51. ctDNA are DNA molecules that are released to the bloodstream 
by dying cancer cells. These ctDNA fragments reflect comprehensively the genome of 
the tumor including SNVs, SVs and even other epigenomic alterations53–55 (Figure 2A). 
Although apoptotic or necrotic normal cells also release their genomic content to the 
bloodstream (cell-free DNA, cfDNA) ctDNA molecules show a shorter size distribution 
than normal cfDNA for unclear reasons. The tumor-specific mutations can be detected 
from ctDNA by sequencing or with other sensitive approaches like digital-droplet 
PCR. Intra- and inter-tumor heterogeneity and clonality are also reflected in ctDNA56. 
There is a linear relationship between variant allele frequency (VAF) as found in ctDNA 
and tumor mass or load57–59. Furthermore, ctDNA has been found to have prognostic 
value in clinical trials60,61. The main applications of liquid biopsies are early diagnosis 
of cancer62,63, treatment selection and monitoring54,64,65, assessment of prognosis and 
risk of relapse66,67 and minimal residual disease and recurrence monitoring through 
serial measurements67–69. The main limitations for further use of ctDNA in the clinic 
relate to the variation in ctDNA levels and VAF between patients57,59 and confounding 
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factors resulting from non-cancer related somatic mutations in different tissues70,71, 
leading to suboptimal consistency and precision. With further evidence of clinical 
utility and multiparametric assays to overcome precision limitations, liquid biopsies will 
undoubtedly reach their potential in genomic oncology51,52. 

Ovarian cancer

Ovarian cancer (OC) is a type of cancer that still has poor survival perspectives. Despite 
increased knowledge in OC etiology and molecular characteristics, patient survival rates 
have not improved in the last decades worldwide72,73. OC is a very heterogeneous disease 
with many subtypes. These subtypes differ in their cell of origin, molecular characteristics 
and disease prognosis72,74. Epithelial OC is more common and originates from different 
cell types surrounding the ovary, mainly from the fallopian tube, while the rarer non-
epithelial OC subtypes arise from within the ovary74,75. The main histopathological type 
of epithelial OC is high grade serous carcinomas (HGSCs), which accounts for 70% of OC 
cases and deaths73,76. HGSCs are genomically characterized by somatic TP53 mutations 
and large copy number aberrations and aneuploidies. Moreover, half of the HGSCs 
show homologous recombination deficiency, mainly due to mutations in BRCA1 and 
BRCA2. However, besides these, few genes are recurrently mutated in these HGSCs77,78. 
Furthermore, one fifth of the OC cases are partially explained by germline variants in 
genes involved in DNA repair like BRCA1, BRCA2, RAD51, PALB1 or CHEK279–81. 
Other subtypes of epithelial OC are low grade serous carcinomas (LGSC), endometrioid 
carcinomas (END), clear cell carcinomas (CCC) and mucinous carcinomas (MC). These 
subtypes harbor somatic mutations in different genes, such ARID1A, PTEN, PIK3CA, 
CTNNB1 and KRAS82.

The main treatment for patients with OC consists of debulking surgery and chemotherapy, 
mainly with a combination of carboplatin and paclitaxel. However, OC often recurs with 
an acquired chemotherapy resistance, so there is a need for targeted treatments with less 
harmful side effects. For example several PARP-inhibitors have been recently approved 
for patients with OC with homologous recombination (HR) deficiencies due to 
mutations in BRCA1, BRCA2 or other genes in the HR pathway83–85. Furthermore, OC, 
especially HGSCs, presents with high inter- and intra-patient genomic heterogeneity78,86, 
highlighting the need of patient-specific treatment approaches to improve prognosis in 
patients with OC.

There is however limited success in oncology when translating therapeutics and drug 
development from scientific research to the clinic87. Robust model systems of OC, 
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and other carcinomas, are essential for preclinical cancer biology research and drug 
development88,89. Traditionally, there are two main types of cancer models: cancer 
cell lines and patient-derived tumor xenografts (Figure 2B). Both have contributed 
enormously to cancer research. Cancer cell lines are derived from tumors and provide 
fast-growing everlasting models which are relatively easy to handle and experiment with. 
The first cancer cell line was HeLa, established from a cervical adenocarcinoma biopsy90. 
HeLa cells have been widely used and have contributed to numerous breakthroughs not 
only in cancer research91, but also in virology92 and even in research ethics93 through a 
highly controversial trajectory94,95. Since, cancer cell lines derived from patient material 
have been established for different cancer types, including OC96-99. Furthermore, cancer 
cell lines often lose characteristics and cell heterogeneity of the original tumor100,101. For 
example, the two most used HGSC cell lines, SKOV3 and A2780, are not representative 
of the genomic characteristics of HGSC since they lack TP53 mutations and show near-
diploid copy number profiles100. Patient-derived tumor xenografts (PDTXs) consist 
of fresh tumor material implanted subcutaneously or orthotopically into immuno-
compromised mice102,103. The initial tumor can be then transplanted serially into an 
increasing number of mice, allowing drug screening in an in vivo model that mimics the 
tumor environment104,105. PDTXs have been developed for different OC subtypes, but 
mainly HGSC106–108. They have been shown to mimic chemotherapy and targeted therapy 
response in HGSC 109–113. However, the use of PDTXs is expensive and time consuming, 
making it less suitable for rapid and high-throughput drug screening114. Additionally, 
recent evidence suggests that PDTXs might undergo mouse-specific tumor evolution 
that differ from that of the patient115, although that is currently a subject of debate116. 
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Figure 2: Origin of ctDNA and different cancer models. (A) Dying cells from a tumor, in this case an 
ovarian tumor, release their fragmented genomic material to the bloodstream. Circulating tumor DNA 
(ctDNA) carries all the genomic alterations present in the tumor, and can be used as a proxy to estimate 
tumor presence and dynamics. Cell-free DNA (cfDNA), which originates from other normal cells, is also 
present in the bloodstream. (B) The main patient-derived cancer models include: i) 2D cell cultures that 
are easy to maintain, manipulate and expand but often do not recapitulate some tumor characteristics, 
especially after extensive culturing. ii) Xenografts (PDXs), generated by transplantation of tumor cells in 
immunocompromised mice. They recapitulate tumor characteristics better in vivo, but they are costly and 
low-throughput. iii) Organoids (PDOs), which are 3D cultures of tumor cells that recapitulate faithfully 
the original tumor and are suitable for high-throughput applications such as drug screening or genetic 
manipulation. Figure created with BioRender. 
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Organoids as a cancer model

In the last decade, organoids have emerged as a novel tridimensional model system 
for normal tissues and cancer (Figure 2B). The first organoids were generated from 
intestinal stem cells, which were grown embedded in Matrigel by mimicking in vivo 
stem cell conditions to form the characteristic crypt-villus structures117. Since, organoids 
have been cultured from a plethora of normal tissues, extensively reviewed in118, 
including fallopian tube119. Organoids derived from healthy tissue have been shown to 
expand long-term while remaining genomically stable120. They have been used to study 
mutagenic processes in different tissues121 and cancer etiology by using genome editing 
to model colorectal cancer-initiating mutations122,123. 

Organoids can also be generated using patient-derived tumor tissue124,125. Successful  
tumor-derived organoids were first established from patients with colorectal120, 
pancreatic126 and prostate127 cancer. Furthermore, living tumor-derived (and matched 
healthy) organoid biobanks have been generated from multiple patients with 
colorectal128,129, pancreatic130–132, liver133, head and neck134 and breast135 cancer. These 
efforts have shown that tumor-derived organoids maintain the genomic and phenotypical 
characteristics of the original tumor they were derived from even after long term 
culturing124,125,136. Tumor-derived organoids have also been used for high throughput 
drug screening and can be xenografted into mice to assess in vivo drug response while 
maintaining the original histopathological characteristics129. 

There are several limitations of organoid technology for (translational) cancer research. 
Tumor organoid cultures might suffer overgrowth by healthy cells with less mitotic error 
rates, which can be circumvented with highly pure tumor starting material or culture with 
selective conditions depending on the driving mutations of the original tumor120,123,129,135. 
Also, organoid cultures are more time- and resource-intensive compared to traditional 
cell lines, and the tumor microenvironment is still not reflected, with missing blood 
vessels or immune cells136, although efforts towards co-cultures that better mimic the in 
vivo situation are underway137. 

Importantly, different tumor-derived organoids have been shown to recapitulate drug 
responses in the clinic138–140. Since patient-derived tumor organoids are genomically and 
phenotipically closer to original tumors than 2D cell lines, they might be a better model 
for drug screening while maintaining high-throughput characteristics. Furthermore, if 
they could be derived from patients in a sufficiently rapid manner, they might be used 
to study patient-specific tumor characteristics and to rapidly screen for the effectiveness 
of targeted treatments. Some of the different tumor-derived organoids have been readily 
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used to explore targeted treatments. Drug screening in breast cancer organoids with 
several drugs targeting the HER signalling pathway revealed that specific organoid 
responses depend on HER2 expression status135. Separately, prostate cancer organoids 
with androgen receptor (AR) amplification showed higher sensitivity to enzalutamide, 
an AR inhibitor, than the rest of the organoids127. Overall, despite several limitations and 
awaiting larger cohort clinical characterizations, organoids have emerged as exciting and 
promising in vitro models to bridge the gap between bench cancer research and clinical 
care. 

Structural variation in cancer

One of the aforementioned hallmarks of cancer, particularly relevant in OC, is 
chromosomal instability9. Directly related to genomic instability are SVs and in particular 
somatic SVs. As previously discussed, SVs and copy number alterations (CNAs) have a 
critical role in tumorigenesis141 and most tumors bear a considerable amount of somatic 
SVs. Furthermore, it has been shown that some cancers are primarily driven by somatic 
SVs, e.g. high grade serous ovarian77, esophageal142, neuroblastoma143, small-cell lung 
cancer144 and triple-negative breast cancer145, with the majority of somatic SV events 
being non-recurrent even within cancer types146.

Apart from the simple deletion, inversion, translocation, duplication and insertion SV 
events previously described, more complex SV phenomena with multiple clustered 
genomic rearrangement are very common in cancer. Breakage-fusion-bridge (BFB) 
events, which are the consequence of cycles of DNA breakage and sister-chromatid fusion 
that cause a dicentric chromosome that bridges during cell division, leading to further 
breakages. BFB events show oscillating copy number changes surrounded by fold-back 
inversions147–150. Chromoplexy is a series of chained rearrangements involving several 
chromosomes resulting from simultaneous double stranded breaks that are erroneously 
repaired150,151. Chromothripsis involves a single chromosome shattering which creates up 
to hundreds of rearrangements in a single event. Chromothripsis is localized to a single 
or a few chromosomes152–155, and recent estimates show that up to 40% of all tumors 
display chromothripsis events156. 

There are diverse mechanisms through which somatic SVs can drive cancer146: oncogene 
amplification via copy number alterations157; oncogenic gene fusions through deletions, 
translocations or inversions158; tumor-suppressor inactivation through deletion or gene 
disruption, often coupled to inactivating mutations in the other allele, common for TP53 
or BRCA1 inactivation in ovarian and breast cancer77,159; or promoter, enhancer or other 
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regulatory elements hijacking160. Overall genomic instability metrics or specific somatic 
SV signatures that reflect specific DNA damage can be clinically useful biomarkers161. 

There are examples of therapeutically actionable somatic SVs regardless of their 
oncogenic mechanisms. For example, the amplification of ERBB2 causes overexpression 
of HER2 in breast cancer patients, which can be treated with trastuzumab162. Also, the 
prototypical BCR-ABL1 gene fusion in chronic myeloid leukemia, also known as the 
Philadelphia chromosome, is treatable with the specific inhibitor imatinib37. SVs also 
represent an exciting opportunity in liquid biopsies. Copy number alterations and 
chromosomal rearrangements can be identified through WGS or targeted approaches 
in ctDNA from plasma55,163,164. Furthermore, somatic SVs may serve as a different type 
of tumor-specific biomarker to detect and quantify ctDNA with high sensitivity in liquid 
biopsies through junction-spanning quantitative and highly sensitive PCR assays165,166. 

Traditionally, SVs in cancer have been clinically detected using cytogenetic techniques 
like fluorescent in situ hybridisation (FISH)167,168, which works well for hematological 
malignancies but is restricted to specific known targets and has limited application in 
solid tumors146. An alternative technology is array comparative genomic hybridisation 
(aCGH), which offers higher throughput and has been applied in both research and the 
clinic146,169,170. However, aCGH is only applicable to unbalanced SVs and suffers from low 
resolution and higher costs than sequencing approaches146. Furthermore, sequencing 
approaches offer the possibility to identify other alterations than SVs in the same assay. 
Therefore, most of our knowledge about the role of SVs in cancer genomes stems from 
the analysis of short-read WGS data, which can be supported by additional sample 
preparation techniques like paired-end sequencing or long-insert mate pair sequencing 
to enhance the SV detection power155,171,172 (Figure 3). 

There are however some inherent pitfalls to short-read sequencing technologies regarding 
SV detection. The main problem is that SVs, especially in the germline, are enriched in 
the vicinity or within repetitive DNA16,173. Repetitive DNA complicates short-read data 
analysis since reads may map to different locations in the genome, with a greater chance 
of ambiguous mapping with shorter read length8,174,175(Figure 3). Furthermore, the short 
read-length hinders mapping across SV breakpoints. As a result, there are genomic 
regions and variation that might have remained inaccessible due to these technological 
constraints176–178. 
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Long-read sequencing 

In the last several years new sequencing technologies have become available that alleviate 
these biases, which are often referred to as third-generation or long-read sequencing 
technologies177. One approach is to generate synthetic long reads using long DNA 
fragments that are sheared and barcoded separately. The barcoded sheared fragments can 
be then sequenced on existing short-read sequencers. The relation of the short reads can 
be thus reconstructed by using the shared barcodes (Figure 3), hence the name linked 
reads179,180. This technology is commercialized by 10X Genomics and also has important 
applications for single-cell sequencing181,182. 

The other two main long-read sequencing technologies are from Pacific Biosciences 
(PacBio) and Oxford Nanopore Technology (ONT). Both have in common that they 
do single-molecule sequencing without relying on amplification of DNA fragments 
and thus eliminating those biases and allowing the sequencing of longer stretches of 
DNA, routinely reaching average read lengths of 10kb and over 100kb183,184. They also 
share a main limitation, the higher per-base error rate (typically 5-15%) which is also 
biased in indels and low complexity genomic regions177. Also, the higher amount of 
input DNA required to avoid the amplification step might be a limitation for cancer 
medicine applications. The approach from PacBio, named single-molecule real-time 
(SMRT), uses very small wells with a fixed polymerase that adds labelled nucleotides to 
a single DNA strand, coupled to an imaging system185,186. Furthermore, to mitigate the 
error rates a circular consensus sequencing (CCS) can be generated, where a circularized 
DNA molecule passes multiple times through the polymerase184. Nanopore sequencing 
records the change of electrical current when a DNA molecule traverses biological pores 
embedded in a membrane. The distinct voltage change depends on the composition of 
the specific nucleotide(s) present in the pore at a particular moment187,188. Therefore, 
ONT has unlocked new genomic applications such as direct measurements of RNA 
molecules189–191 and RNA and DNA modifications192–195. Nanopore sequencing offers 
improved read lengths, lower costs and higher throughput than PacBio, with similar 
error rates but a more biased error profile177. Efforts to improve the error profiles include 
pore bioengineering and specific base-calling models.

Long-read sequencing technologies have contributed to expanding the knowledge about 
structural variation in the last years. Thanks to the increased read length, unambiguous 
split-mapping across SV break-junctions is easier to achieve (Figure 3). Using these 
new technologies, new areas of the genome previously hidden become accessible like 
segmental duplications and centromeres 196–198. Long-read sequencing studies in healthy 
populations estimate over 25,000 SVs in the germline genome, which is a 3 to 7 fold 
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increase in SV detection over previous studies using NGS196,199–203. Other studies have 
proven the efficacy of long reads to detect SVs relevant in congenital disease204–207. 
Similarly, recent works have explored the use of long-reads to uncover somatic SVs in 
cancer genomes208–211.
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Figure 3: Structural variation detection using different sequencing technologies. Structural variants 
(SVs) are detected using different approaches for the different sequencing data, as depicted here for a deletion 
(similar approaches apply to other types of SVs). (A) To detect SVs from short-read sequencing data, there 
are three inference approaches: i) Differences in the sequencing depth, which only works for unbalanced 
SVs such as deletions (lower sequencing depth), insertions and duplications (increased depth). ii) Split read 
alignment where a read maps separately in different genomic locations. It is algorithmically challenging to 
unequivocally map the shorter fragments of a split read. iii) Unexpected distance and orientation between 
paired reads if using paired-end sequencing (B) Inconsistencies within barcode groups distance and 
orientation are used to detect SVs from linked-reads (C) SVs can be detected from long-read sequencing 
by using the split alignments, similarly to short-read data. Unambiguous mapping of these split reads is less 
challenging due to the increased length of the fragments. 

To unlock the full potential of these long-read sequencing technologies, dedicated 
bioinformatics pipelines are needed. Although the core algorithms are similar, these 
new data types present new challenges due to their increased read length and higher 
error rates176. Long-read sequencing has proven to be suitable in a clinical setting203,212, 
however analysis pipelines and best practices need to be standardized. In order to validate 
and benchmark different technologies and analysis pipelines, the availability of high-
quality unbiased reference sets is essential175. For SVs, germline benchmarks that include 
orthogonal data from multiple sequencing technologies have become available199,213. 
However in cancer genomics this type of benchmarks are only available for SNVs214, 
therefore hindering the advancement of somatic SV discovery and application.
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Thesis outline

This thesis focuses on genomic technology and its application in advancing cancer 
research and care, presenting several resources and techniques relevant for the 
community. In Chapter 2, we present an OC organoid biobank and demonstrate 
that the genomic and transcriptomic characteristics from the tumor of origin are 
maintained in the corresponding organoids. In Chapter 3, we expand on the application 
of OC organoids and include drug screening, demonstrating genomic and response 
heterogeneity in organoids also present in patients. In Chapter 4, we integrate genomic 
data from multiple technologies to develop a somatic SV truth set essential for the 
development and benchmarking of somatic SV calling methods. In Chapter 5 we use the 
nanopore sequencing technology to develop an assay to rapidly detect somatic SVs from 
a tumor. These somatic SVs were then used to track the dynamics of a tumor. In Chapter 
6 we describe the application of targeted nanopore sequencing in pediatric leukemia to 
close gaps in current diagnostic approaches to detect genomic biomarkers for minimal 
residual residual disease. Finally, in Chapter 7 I reflect on the results discussed in the rest 
of chapters and pose challenges and limitations for future research. 
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Abstract

Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Ex-
perimental in vitro models that faithfully capture the hallmarks and tumor heterogene-
ity of OC are limited and hard to establish. We present a protocol that enables efficient 
derivation and long-term expansion of OC organoids. Utilizing this protocol, we have 
established 56 organoid lines from 32 patients, representing all main subtypes of OC. 
OC organoids recapitulate histological and genomic features of the pertinent lesion from 
which they were derived, illustrating intra- and interpatient heterogeneity, and can be 
genetically modified. We show that OC organoids can be used for drug-screening assays 
and capture different tumor subtype responses to the gold standard platinum-based che-
motherapy, including acquisition of chemoresistance in recurrent disease. Finally, OC 
organoids can be xenografted, enabling in vivo drug-sensitivity assays. Taken together, 
this demonstrates their potential application for research and personalized medicine.
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Introduction

Over the past decade, the field of epithelial OC research has gone through a dramatic 
shift led by a series of recent discoveries72,73. It has become clear that OC is a heteroge-
neous disease consisting of a wide spectrum of distinct molecular and clinical entities. 
Epithelial ovarian neoplasms can be divided into three main groups: borderline tumors 
(BTs; non-carcinoma) and type I and type II tumors (carcinomas)215,216. BTs account for 
15% of OC malignancies and consist primarily of serous BT (SBT) and mucinous BT 
(MBT) subtypes. BTs are frequently found adjacent to type I tumors and share many 
of their characteristics. It is therefore believed that they can transform into type I tu-
mors215. Type I tumors are genetically stable and carry a distinct set of frequently mutated 
genes, including, KRAS, BRAF, PTEN and CTNNB1215,216. There are four main type I 
subtypes: low-grade serous (LGS), mucinous (MC), endometrioid (END) and clear cell 
(CCC) carcinomas216. Type II tumors comprise high-grade serous (HGS) tumors, which 
are the most common type of OC and account for 70–80% of mortalities73. HGS tumors 
frequently carry mutations in the TP53 (96%), BRCA1 and BRCA2 genes (20%), and are 
an extreme example of chromosomally unstable cancer77,217. HGS tumors are believed to 
develop either from the fimbria of the fallopian tube (FT)216 or from the ovarian surface 
epithelium (OSE). However, the relative contribution of these tissues to tumor develop-
ment is still under debate218.

Tumor cell lines and patient-derived tumor xenografts are the most commonly used 
human model systems for the study of OC99,219–222. Despite their contribution to cancer 
research, these models have a number of drawbacks223. Establishing a new cell line is a 
challenging and time-consuming process that involves a long period of fibroblast con-
tamination reduction and has a low success rate. Thus, in many cases, the resulting cell 
lines are the product of a strong in vitro selection, which inevitably leads to the loss of 
tumor molecular characteristics, including copy number variations (CNVs), mutations 
and intrapatient heterogeneity100. In contrast to two-dimensional cell lines, xenografts re-
liably recapitulate components of the tumor environment, such as the three-dimensional 
structure and the interaction of cancer cells with stroma and blood vessel infiltration224. 
Nevertheless, xenografts involve significant investments in resources for their mainte-
nance, are poorly suited for large-scale drug screening or for genetic manipulation, and 
undergo rapid mouse-specific tumor evolution115. To overcome these drawbacks and 
to allow personalized approaches to cancer treatment, novel OC research platforms are 
needed72,73,224. 

As first shown for colorectal cancer120, tumor organoid cultures represent robust three-di-
mensional in vitro systems that faithfully recapitulate the tumor from which they are 
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derived126–129. Organoid technology is based on the definition of a cocktail of growth 
factors and small molecules (used in conjunction with the basement membrane mimic 
Matrigel) to recreate the niche requirements for long-term growth of cells. Organoid cul-
tures can be clonally established from single cells derived from tumor tissue, allowing the 
study of tumor heterogeneity125. Organoids allow rapid assaying of phenotype–genotype 
correlations and drug sensitivity, while recapitulating patient response128,135,138,225. The po-
tential of organoid platforms for OC research was illustrated in a recent paper in which 
short-term cultured HGS organoids (7–10 d) were genomically characterized and then 
used in various assays to study DNA repair inhibitor response226. Here we present and 
characterize an OC research platform that supports the efficient derivation and long-
term expansion of OC organoids corresponding to non-malignant BTs, as well as MC, 
CCC, END, LGS and HGS carcinomas. 

Results 
Derivation of OC organoids

OC tissue and blood were obtained from consenting patients who underwent tumor re-
section and/or drainage of ascites/pleural effusion, either before or after (neoadjuvant) 
chemotherapy (Supplementary Table 1). For each cancer case, the available tissue was 
used for organoid derivation, DNA isolation and histological analysis. Tumor pieces des-
ignated for organoid derivation, were further dissociated and the isolated tumor cells 
were suspended in basement membrane extract (BME), plated and supplemented with 
medium (Extended Data Figure 1a). 

We used a recently described FT organoid medium119 as our starting point for OC me-
dium optimization. To improve organoid derivation rate, compounds that follow two 
main guiding criteria were tested as additives to the FT baseline medium: (1) compounds 
previously reported to be highly expressed in ovarian tumors and therefore hypothe-
sized to support OC growth227,228 and (2) factors used to support OC cell growth229,230 and 
other types of tumor organoids126,135. We noted that addition of hydrocortisone, forskolin 
and heregulinβ-1 to FT medium improved the efficiency of OC organoid derivation. We 
also observed that Wnt-conditioned medium, an essential component of the FT medi-
um, was not essential for all tumor organoid lines. Moreover, it had a negative effect on 
some of the lines, presumably due to the presence of serum in the conditioned medium 
and not Wnt itself. Therefore, we used two types of OC medium for organoid derivation: 
with (‘OCwnt medium’) or without (‘OC medium’) Wnt-conditioned medium (Supple-
mentary Table 2). Typically, it became obvious after two to three passages which of the 
two media was optimal for individual OC cultures. OC organoid growth rates showed 
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significant variability between cases, with passaging intervals varying from one to four 
weeks and split ratios ranging from 1:1.5 to 1:4 (Supplementary Table 3). Organoids 
could be expanded long-term, that is, at the time of final submission, 22 lines had been 
passaged more than 15 times and four lines more than 30 times without slowing down 
(Extended Data Figure 2 and Supplementary Table 3). Organoids could be cryopre-
served and efficiently recovered (85% success rate, n=33; Supplementary Table 3). 
OC is often diagnosed after the tumor has already metastasized. In some cases, we were 
able to obtain both the primary tumor and the different metastatic lesions. We were 
therefore able to derive multiple organoid lines from individual patients. In one case, 
we established primary and recurrent tumor organoids from the same patient. In total, 
we established 56 organoid lines, derived from 32 different patients. Organoids were de-
rived with a success rate of 65%, representing both pre-malignant and malignant neo-
plasms covering the spectrum of OC, including MBT, SBT, MC, LGS, CCC, END and 
HGS (Figure 1a and Supplementary Table 4). OC organoid nomenclature is based on 
their histopathological subtype and a number that refers to patient and tumor location. 
Patient clinical data are presented in Supplementary Table 1. 

Derivation of normal FT and OSE organoids from BRCA germline mutation carriers

Women with germline mutations in the BRCA1/BRCA2 genes are at high risk of de-
veloping OC231,232. Therefore, organoids from normal FT and OSE of these individuals, 
in addition to non-carriers, should provide a valuable resource for research on the early 
stages of tumor development. We obtained FT and ovarian tissue from women under-
going prophylactic bilateral salpingo-oophorectomy (pBSO). As previously reported for 
FT organoids119, pBSO-derived FT organoids were visible within 3–4 d after isolation, 
displayed a rounded, cystic phenotype and could be maintained long-term. Consistent 
with their tissue of origin, FT organoids expressed markers of both secretory and ciliated 
cells (PAX8 and acetylated-α-tubulin, respectively), and contained beating ciliated cells 
(Extended Data Figure 3a–c and Supplementary Video 1). OSE organoids displayed 
a slower growth rate compared with FT organoids. They were usually visible 1–2 weeks 
after plating and could be passaged once every 2–3 weeks for extended periods of time. 
OSE organoids displayed a cystic phenotype and expressed cytokeratin 8, demonstrat-
ing their epithelial origin (Extended Data Figure 3d). In total, we were able to derive 
(success rate >90%) FT organoids from ten pBSO-patients and OSE organoids from six 
pBSOpatients. In addition, we derived two FT lines from non-carriers. Normal organoid 
nomenclature and patient information data for each line are presented in Supplemen-
tary Table 5. 
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Morphological and histological characterization of OC organoids

Normal FT and OSE organoid lines consistently displayed a cystic morphology with 
some epithelium folds and invaginations, which appeared on organoid maturation (Ex-
tended Data Figure 3). In contrast, OC organoids showed wide morphological variation 
between and within distinct histological subtype groups (Extended Data Figure 1b,c). 
Most BT organoids were cystic, whereas MC, LGS, END and CCC organoids formed 
denser organoid structures harboring multiple lumens. HGS organoids presented a wide 
morphological spectrum, varying from cystic to dense with different degrees of circular-
ity and cellular cohesiveness (Extended Data Figure 1c,d). Scanning electron micros-
copy (SEM) revealed that morphological heterogeneity was not restricted to organoid 
shape, but also occurred at the cellular level (Extended Data Figure 1c). Moreover, SEM 
showed different degrees of cellular organization, as evidenced by cellular cohesiveness 
and microvilli alignment. 

To compare organoids to their corresponding tumor tissue, we performed hematoxylin 
and eosin (H&E) staining and evaluated expression of OC protein biomarkers, such as 
paired box gene 8 (PAX8) and tumor protein p53. Of note, the tumor organoids con-
sist of the transformed epithelial cells of a tumor, but do not contain immune, vessel or 
connective tissue elements. Histological analysis of the primary tumor tissue used for 
organoid derivation revealed different degrees of normal cell contamination as indicated 
by H&E and p53 staining (Extended Data Figure 2c). This stressed the need for histo-
logical analysis of the primary tissue used for organoid derivation, as low tumor purity 
can influence organoid derivation efficiency and genomic correlation between organ-
oids and tissue. 

H&E staining of OC organoids revealed multiple tumor characteristics, such as the pres-
ence of papillary-like structures, nuclear and cellular atypia, and features of hobnail cells 
(Figure 1 and Extended Data Figure 1d). These characteristics were not detected in 
normal FT and OSE organoids, which, in contrast, displayed well-organized epithelium 
(Extended Data Figure 3). Moreover, in an H&E-based blinded test conducted by a cer-
tified pathologist on samples from normal FT and OSE organoids (n=5) as well as OC 
organoids (n=18), only FT and OSE organoids were classified as ‘normal’. OC organoids 
were either classified as ‘non-definitive’ (n=5, 28%) or malignant (n=13, 72%). OC organ-
oids that were classified as ‘non-definitive’ corresponded to BT and LGS tumors (n=4 and 
n=1, respectively). In agreement with their histological classification, most MBT and MC 
organoid lines were positive for periodic acid–Schiff (9 out of 11) and negative for PAX8 
(7 out of 11) staining, the latter a hallmark that distinguishes ovarian mucinous and se-
rous tumors (Figure 1c and Supplementary Table 6)233. Ovarian serous organoids that 
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were tested retained PAX8 and p53 expression status as observed for their correspond-
ing tumor tissue (Figure 1d,e, Extended Data Figure 2e and Supplementary Table 6). 
Mutations in the TP53 gene can lead to diverse patterns of p53 staining, such as protein 
loss or strong nuclear staining. Such patterns were observed in different HGS organoid 
lines and their corresponding tumor tissue and were in agreement with their sequencing 
data (Figure 1e and Supplementary Table 7). Organoids displayed a high percentage 
of Ki67-positive cells (Extended Data Figure 2b). Thus, histological analysis of OC or-
ganoids demonstrated their similarity to the carcinoma fields within the corresponding 
primary tumors and their distinction from non-malignant FT and OSE organoids. 

Organoids faithfully recapitulate OC at the genomic level

To further validate that OC organoids are composed of malignant cells, we performed 
metaphase spread analysis. The majority of tested organoid lines were aneuploid, a 
well-characterized hallmark of most solid tumors234. Interestingly, in some cases, a sig-
nificant variation in average chromosome number was observed for different organoid 
lines derived from the same patient (Figure 2a). 
To determine whether OC organoids faithfully recapitulate the genomic landscape of 
the primary tumors from which they were derived, we next performed whole-genome 
sequencing (WGS) analysis. In total, we sequenced 40 organoid lines from 22 different 
patients. The corresponding tumor and normal blood samples for 35 of these lines were 
also sequenced and used as a reference (Supplementary Table 7). We first used WGS 
data to estimate the percentage of malignant cells in both organoid and tumor samples29. 
As predicted from histological analysis, in most cases, cancer cell content of organoids 
was considerably higher than that of the corresponding tumor (tumor organoids 88.1 
± 23% versus tumor tissue 45.1 ± 9.2% (mean ± s.d.) across all samples; Extended Data 
Figure 2d and Supplementary Table 7). CNV analysis revealed similar patterns between 
organoid/tumor pairs (Figure 2b and Extended Data Figure 4a). Moreover, comparing 
the genomic landscape from early and late passage HGS organoids revealed that CNVs 
were well maintained even after prolonged passaging (HGS-1, passage eight versus 32; 
HGS-2, passage six versus 15; HGS-3.1, passage four versus 32; HGS-3.2, passage four 
versus 25; HGS-6, passage eight versus 21; HGS-1-R2, passage four versus 17; Figure 2c 
and Extended Data Figure 4a). Most organoids derived from HGS tumors displayed 
many CNVs, whereas organoids derived from type I tumors and BTs revealed a relatively 
subtle number of CNVs (Figure 2b and Extended Data 4a). Thus, OC organoids reca-
pitulate the genomic characteristics of the different OC subtypes from which they are 
derived216,235.
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Figure 1: Subtype diversity and histological characterization of OC organoids. (A) An overview of 
established OC organoid lines according to their subtype distribution. Numbers in the legend represent 
the number of lines established from each subtype. (B) Histological comparison of CCC organoids and 
their corresponding tumor tissue. Top and bottom panels show H&E and PAX8 staining, respectively. 
Arrow indicates hobnail cells, which characterize CCC. Scale bar, 100 μm. (C) Histological comparison 
of representative MC organoids and their corresponding tumor tissue. Top and bottom panels show H&E 
and PAX8 staining, respectively. Tumor and organoids were negatively stained for PAX8, a marker of the 
serous subtype. Scale bar, 100 μm. (D) Histological comparison of representative LGS organoids and their 
corresponding tumor tissue. Top and bottom panels show H&E and PAX8 staining, respectively. Organoids 
maintain positive PAX8 staining. Scale bar, 100 μm. (E) Histological comparison of HGS organoids and 
their corresponding tumors (HGS-6 on the left and HGS-3.1 on the right). H&E staining of the HGS-6 
organoid line showed papillary-like structures growing into the lumen, forming a dense phenotype. 
HGS-3.1 organoids are characterized with disorganized morphology, which is evident by loss of organoid 
circularity and cellular cohesiveness. PAX8 positively stains both organoids and the tumor cells within the 

Figure 1- Subtype diversity and histological characterization of OC organoids

A OC Organoid lines B

Tissue Organoids
MC-2.1

Tissue Organoids
LGS-1.4

Tissue Organoids
HGS-6

Tissue Organoids
HGS-3.1

C

E

H
&

E
PA

X8
p5

3

7 MBT
SBT
CCC
END
MC
LGS
HGS

4

1
2
5

14
23

Tissue Organoids
CCC-1

H
&

E
PA

X8

D

H
&

E
PA

X8

H
&

E
PA

X8



26

CHAPTER 2

2 2

tissue. Mutations in the TP53 gene can lead to protein loss, as presented by the HGS-6 organoid/tumor pair, 
or strong nuclear staining, presented by the HGS-3.1 organoid/tumor pair. Histological characterization 
across the different organoid lines is presented in Extended Data Figure 2e and Supplementary Table 6. Scale 
bar, 100 μm.

To further quantify genetic correlation between organoids and corresponding tumors, 
we analyzed somatic single nucleotide variants (SNVs) and structural variants (SVs). 
Most SNVs and SVs present in the original tumor were maintained in the organoids de-
rived thereof, and vice versa (Extended Data Figs. 4b and 5a). Shared mutations were 
also maintained after extended passaging (Extended Data Figure 4b). Some organoid 
lines, such as HGS-19, HGS-3.1 and MC-2.1, presented marked differences with their 
corresponding tumor sample (Extended Data Figure 5a). We believe that these differ-
ences result from low tumor cell content within the original tumor samples as evident 
from their low number of SNVs, SVs and the lack of obvious CNVs (Extended Data 
Figure 4). 

Next, we tested whether organoids displayed known OC-associated somatic mutations, 
amplifications and deletions. Somatic mutations in KRAS and BRAF genes, which are 
frequently found in MC and LGS tumors236,237, were identified in the corresponding or-
ganoid subtypes (MC-1, MC-2 (KRAS), LGS-5 (BRAF); Figure 3 and Supplementary 
Table 7). Moreover, all organoids derived from HGS tumors showed non-silent muta-
tions including missense, stop gain and frameshifts in the TP53 gene, in some cases ac-
companied by the loss of the second allele (Figure 3 and Supplementary Table 7). Am-
plifications of MYC and CCNE1 as well as loss of RB1, PTEN and CDKN2A/B genes 
(frequent in HGS tumors77,238) were observed (Figure 3). These oncogenic modifications 
were mostly conserved between organoids and corresponding tumors (Figure 3 and 
Supplementary Table 7). 

DNA methylation analysis was performed on a subset of organoids at early and late time 
points, using Illumina Infinium methylationEPIC 850K BeadChip. Clustering of these 
organoid samples based on the methylation beta-values demonstrated that organoids 
maintained their epigenetic profile after extended passaging (Extended Data Figure 
5b), as found previously for colorectal cancer organoids125. 
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Figure 2: Organoids maintain the genomic landscape of corresponding tumors. (A) Scatter plot 
presenting chromosome number distribution and mean, based on organoid metaphase spreads. All 
the lines display aneuploidy except for the BT sample (MBT-2.1). Some of the organoid lines present a 
relatively narrow chromosome number distribution (MBT-2.1, MC-2.1, HGS-2), whereas others show a 
wide distribution (MC-1.1, MC-1.2), an indication of tumor heterogeneity. Differences between organoid 
lines that were derived from a single patient (MC-1.1/MC-1.2 and MC-2.1/MC-2.2) implies intrapatient 
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heterogeneity. n = number of analyzed metaphase spread, from left to right: 24, 33, 14, 20, 24, 40, 22, 48 and 
14. (B) Genome-wide CNV analysis of tumor and organoid pairs. For each sample, CNV profile of blood 
germline reference (orange), tumor (black) and organoids (pink) are displayed. CNVs observed in original 
tumor samples are maintained in organoid lines. MBT-2.2 organoid line displays a relatively flat CNV 
pattern in accordance with MBT-2.1 that was derived from the same patient and shows normal metaphase 
spreads (in Figure 2a). HGS lines display extreme CNV abnormalities (see also Extended Data Figure 4). (C) 
Genome-wide CNV analysis of early (organoids 1st) and late (organoids 2nd) passage organoid pairs (HGS-
2, passage six versus passage 15; HGS-6, passage eight versus passage 21). A ploidy of three was assumed for 
this sample. For each sample, CNV profile of blood germline reference (orange), early (pink) and late (blue) 
passaged organoid are displayed. CNV profiles observed in organoid samples are maintained.
	

Figure 3: Somatic mutations and amplifications/deletions in OC organoids. Somatic mutations and 
amplifications/deletions in relevant genes of ovarian cancer. For each sample, tumor/organoid pairs are 
displayed and indicated by color coding (black, tumors; pink, organoids; blue, organoids re-sequenced and 
analyzed after extended passaging). Passage number at which organoid lines were sequenced is given in 
Supplementary Table 7.

OC organoids capture tumor heterogeneity

To assess whether organoids capture intrapatient heterogeneity, we compared or-
ganoid lines derived from one primary and three metastatic sites of a patient diag-
nosed with LGS OC (Figure 4a). CNV analysis revealed losses and gains shared by 
all tumor lesions from the same patient (for example, loss of chromosome X) as well 
as copy number changes only present in the metastatic sites (for example, loss of 17p 
in LGS-1.2,3,4; Figure 4a). These CNVs are conserved between tumor tissue and the 

Figure 4- Somatic mutations and ampli�cations/ deletions in OC organoids 
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corresponding organoids (Extended Data Figure 4a) and, therefore, appear to rep-
resent genomic changes that occurred at different time points along the course of tu-
mor evolution. We next tested whether tumor heterogeneity is maintained within an 
organoid line using a novel single-cell DNA sequencing method (see Methods) and 
sequenced 791 cells from two recurrent tumor samples (HGS-1-R2 and HGS-1-R3; 
both were derived from a single patient at different time points) and corresponding 
organoid lines from either one or two time points (HGS-1-R2, passage five; HGS-
1-R3, passage four and 12). Calculation of CNV profiles for each cell was followed 
by independent component analysis that revealed five distinct clusters (Figure 4b). 

Figure 4: OC organoids capture tumor heterogeneity. (A) Schematic of tumor locations and a circos plot 
presenting CNV events (red, gain; blue, loss) in the organoid lines derived from a patient diagnosed with 
LGS OC. Outside to inside: genomic position, LGS-1.1 (adnex tumor), LGS-1.2 (metastasis left diaphragm), 
LGS-1.3 (metastasis omentum), LGS-1.4 (metastasis right diaphragm), blood germline reference. (B) t-SNE 
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plot of single-cell CNV profiles from two recurrent tumor samples and corresponding organoid lines (HGS-
1-R2, HGS-1-R3) of a single patient. Hierarchical clustering has separated the cells into five different clusters 
(color coded). Total number of analyzed cells is 791. (C) t-SNE plot presenting diploid (green) and aneuploid 
(red) cells. Total number of analyzed cells is 791. (D) Single-cell distribution into the different clusters 
according to sample of origin. T, tumor; O, organoid; -s, second time point analysis. HGS-1-R2_T, n = 351 
cells; HGS-1-R2_O, passage 5, n = 159 cells; HGS-1-R3_T, n = 93 cells; HGS-1-R3_O, passage 4, n = 122 
cells; HGS-1-R3_O, passage 12, n = 66 cells. (E) Clustered CNV heat map of aneuploid cells presenting gains 
(blue) and losses (red) across the genome. Sample origin and cluster belonging of each cell is color coded.

Clusters 1–4 comprised aneuploid cells whereas cluster 5 comprised dip-
loid cells (Figure 4c). As expected, tumor samples that were obtained from as-
cites drainage of a single patient within a one-month interval overlapped with 
each other and did not form separate clusters (Figure 4d), thus validating the
robustness of the single-cell DNA sequencing method. Organoid-derived cells over-
lapped with the same five clusters (albeit with low representation in cluster 3) demon-
strating both their heterogeneity and resemblance to the original tumor samples (Fig-
ure 4d). HGS-1-R3 relative cell abundance in cluster 5 (diploid cells) was dramatically 
reduced after extended passaging (passage four versus 12), whereas representation of 
clusters 1, 2 and 4 (aneuploid cells) increased (Figure 4d,e), suggesting that tumor cells 
overgrew normal cells over time, while maintaining tumor heterogeneity. 

Gene expression analysis of OC organoids

To assess organoid gene expression profiles, we performed RNA sequencing (RNA-seq) 
on 35 OC organoids, and six normal OSE and FT organoids. Hierarchical clustering as-
signed organoids to three independent main groups, representing (1) HGS carcinomas, 
(2) MC and END tumors and (3) mainly LGS carcinomas, FT and OSE (Figure 5). Or-
ganoids derived from multiple tumor lesions of the same patient were transcriptionally 
more similar to each other than to unrelated organoid lines (for example, MC-1.1,2 and 
HGS-3.1,2). In a similar manner, organoids that were sequenced at a second time point 
after extended passaging clustered with their corresponding samples (HGS-1, passage 
eight versus 32; HGS-3.1, passage four versus 32; HGS-1-R2 passage four versus 17). Of 
note, non-malignant MBT and malignant MC organoids clustered together. This was 
seen in eight organoid lines derived from four different patients (two MC and two MBT), 
suggesting a biological link between these samples. This finding is in agreement with a 
causality hypothesis that suggests a stepwise progression from BTs to invasive carcino-
mas239–241. Furthermore, OSE(P)7 organoids (derived from a sample collected during 
risk-reducing salpingo-oophorectomy) clustered together with OC organoids and apart 
from normal OSE and FT organoid lines. This finding, together with morphological, 
histological and metaphase spread analysis (Extended Data Figure 3e,f), suggested that 
OSE(P)7 consists of malignant cells that were not diagnosed by routine pathological ex-
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amination. 

Genetic manipulation and drug screening of OC organoids

To demonstrate the experimental potential of OC organoids, we next adapted genetic 
manipulation techniques and drug-screening methods for normal FT and OC organ-
oids. Normal FT organoids were electroporated with pSpCas9(BB)- 2A-GFP plasmid 
into which we cloned a guide RNA targeting the TP53 gene (Extended Data Figure 6a). 
Thus, we could determine the electroporation efficiency by monitoring GFP expression 
(Extended Data Figure 6c,d) and target the TP53 gene, which is believed to be mu-
tated at an early time point in the course of HGS tumor development. Three days after 
electroporation, nutlin3a (which inhibits MDM2–p53 interaction242 and, therefore, kills 
TP53 wild-type clones) was added to the medium (Extended Data Figure 6a,b). Surviv-
ing clones were picked, clonally expanded and analyzed for TP53 mutations (Extended 
Data Figure 6e). As a result, multiple clones harboring mutations in TP53 from carriers 
of BRCA germline mutations were established (Extended Data Figure 6f). In a simi-
lar manner, we have electroporated FT organoids with plasmids targeting both TP53 
and RB1 genes and established clones in which both genes were knocked out (Extended 
Data Figure 6f). Clone expansion was accompanied by morphological alterations in-
cluding transition from cystic to denser organoids and increased cell shedding into the 
organoid lumen (Extended Data Figure 6g). Hierarchical clustering based on RNA-seq 
assigned the clones into different clusters according to their genetic modifications (Ex-
tended Data Figure 6h).
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Figure 5: Gene expression analysis of OC organoids. Heat map of Spearman correlation values of normal 
FT (n = 3 independent FT lines), OSE (n = 3 independent OSE lines), non-malignant BTs (n = 3 independent 
MBT lines) and malignant organoid lines (n = 32 independent malignant lines), based on RNA-seq 
expression data. Read counts were normalized for sequencing depth and the 5,000 most-variable genes were 
used. For three organoid lines, a second time point was analyzed after extended passaging, demonstrating 
high correlation with early passaged organoids. -s, second time point analysis. HGS-1: passage eight and 32; 
HGS-3.2: passage four and 32; HGS-1-R2: passage four and 17. Passage number in which all organoid lines 
were sequenced is given in Supplementary Table 7.

To demonstrate that OC organoids can be genetically modified in a stable manner, they 
were transduced with a lentiviral vector driving expression of fluorescently tagged his-
tone-2B (H2B-Neon). H2B-Neon-transduced organoids enabled three-dimensional live 
cell imaging of mitosis and revealed multiple aberrant chromosomal segregation events 
(Supplementary Videos 2–6). 

Next, we tested organoid sensitivity to platinum/taxane drugs that are commonly used 
in OC treatment protocols, that is carboplatin, paclitaxel, as well as non-platinum/taxane 
drugs that previously have been suggested as possible treatments for OC. The drug panel 
included drugs targeting the PI3K/AKT/mTOR pathway (alpelisib, pictilisib, MK2206, 
AZD8055), poly (ADPribose) polymerase (PARP) (Niraparib), the tyrosine kinase Wee1 
(adavosertib) and gemcitabine. Organoids were disrupted into small clumps and dis-
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pensed into 384-well plates pre-coated with BME. A cell viability assay was performed 
5 days after the drugs were added and organoid drug sensitivity was represented by the 
average area under the dose–response curve (AUC) of two technical replicates243. Assay 
quality was confirmed by calculating plate Z-factor across all plates (mean=0.61; Ex-
tended Data Figure 5e) and by the correlation of AUC between technical and biological 
replicates (Pearson correlation=0.94, 0.87, respectively; Extended Data Figure 5c,d). 

Unsupervised hierarchical clustering based on platinum/taxane drug sensitivity divided 
the organoids into two main clusters: sensitive lines that consisted primarily of HGS or-
ganoids and resistant lines that consisted primarily of non-HGS organoids (Figure 6b). 
Notably, the HGS-1-R3 line, which was derived from ascites of recurrent disease, clini-
cally resistant to chemotherapy (Supplementary Table 1), clustered together with the re-
sistant cluster. HGS-1 line, which was derived from the primary, chemotherapy- sensitive 
tumor of the same patient clustered with the sensitive cluster (Figure 6a,b). 

Since the TP53 gene is mutated in the vast majority of OC, we tested whether nutlin3a 
can serve to rapidly distinguish between wild-type and mutated TP53 OC organoids. In 
total, 16 organoid lines were tested (3 normal FT lines, one genetically modified FT clone 
and 13 OC lines). As expected, all FT organoid lines were highly sensitive to nutlin3a 
treatment whereas the genetically modified clone in which we knocked out the TP53 
gene and the OC lines (with one exception) were resistant (Figure 6c,d). The only OC 
line that was sensitive to nutlin3a, was LGS-1.3 and in this organoid, indeed no point 
mutation in the TP53 gene was identified (Supplementary Table 7). 
Drug-screening assays demonstrated differential drug responses of individual organoid 
lines (Figure 6a–e). For example, HGS-3.1 organoid line was highly sensitive to gemcit-
abine, adavosertib, carboplatin and paclitaxel and resistant to drugs that target the PI3K/ 
AKT/mTOR pathway, whereas HGS-23 line demonstrated the opposite drug sensitivity 
pattern (Figure 6a–d). 

Homologous recombination-deficient cells have been shown to be sensitive to PARP 
inhibitors244,245. To determine whether this correlation is also present in OC organoids, 
a subset of organoid lines with differential responses to niraparib (Figure 6e) was test-
ed for homologous recombination by using the recombination capacity (RECAP) test, 
which assesses homologous recombination capacity using accumulation of RAD51 
protein at sites of DNA double-strand breaks246. Organoids were irradiated with 5 Gy 
X-rays, recovered for two hours, fixed and stained with antibodies against RAD51 and 
geminin (a marker for S/G2 phases of the cell cycle). The percentage of geminin+ cells 
with RAD51 foci was scored blinded for sensitivity to niraparib. Organoids with a low 
percentage of geminin+ cells with RAD51 foci were more sensitive to niraparib com-
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pared with organoids with a high percentage of geminin+ cells with RAD51 foci (with 
the exception of MC-2.1) (Figure 6e). 

Xenotransplantation of OC organoids and in vivo drug sensitivity

We next tested whether OC organoids can be orthotopically or subcutaneously trans-
planted into immunodeficient mice. For orthotopic transplantations, organoids were 
transduced with a lentiviral vector encoding luciferase and transplanted into the mouse 
bursa. Bioluminescence imaging was used to validate tumor growth (Extended Data 
Figure 5f). All three lines that were orthotopically transplanted grew into a tumor (Sup-
plementary Table 8). Six out of seven lines were successfully transplanted subcutane-
ously (Supplementary Table 8). Histological analysis of orthotopically transplanted 
HGS carcinoma organoid line demonstrated that the tumor invaded the ovary, displayed 
prominent nuclear atypia, slit-like spaces and maintained PAX8 and p53 staining (Fig-
ure 6f and Extended Data 5g). The MC organoid line that was subcutaneously trans-
planted showed characteristics of a MC tumor including goblet cells and haphazardly 
arranged neoplastic glands lined by columnar cells (Extended Data Figure 5h). 

To validate whether in vitro drug sensitivity is recapitulated in vivo, we chose the HGS-
3.1 organoid line that was highly sensitive to gemcitabine (Figure 6c), a nucleoside an-
alog that is in clinical use for HGS OC. Organoids were subcutaneously injected and 
tumor size was monitored. Once it reached 50 mm3, mice were randomly selected and 
treated with vehicle or gemcitabine. While tumors continued growing in vehicle-treated 
mice, tumor growth was completely blocked or reduced in gemcitabine-treated mice, 
as indicated by tumor size measured at the end of the experiment (vehicle and gemcit-
abine-treated mice, n=9 and n=7, respectively) (Figure 6g). 
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Figure 6: In vitro and in vivo drug sensitivity assays. (A) Representative dose–response curves of HGS 
and LGS organoid lines treated with carboplatin/paclitaxel. Organoid line derived from a recurrent 
disease (HGS-1-R3) show acquired resistance. Dots represent the mean of technical duplicates. Error bars 
represent s.e.m. of technical duplicates. (B) Heat map of Euclidean distance of 21 distinct organoid lines, 
based on AUC row Z-score values. As expected, most HGS OC organoids (6 out of 9) are more sensitive to 
carboplatin/paclitaxel drugs compared with non-HGS OC organoids (9 out of 12). The HGS-1 organoid 
line is sensitive to carboplatin/paclitaxel drugs, whereas the matching recurrent organoid line (HGS-1-R3) 
is resistant. (C) Representative dose–response curves for nutlin3a (top) and adavosertib (bottom). Normal 
FT organoids show high sensitivity for nutlin3a, whereas HGS and genetically modified FT line, which are 
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mutated in the TP53 gene, are resistant. Dots represent the mean of technical duplicates. Error bars represent 
s.e.m. of technical duplicates. (D) Heat map of Euclidean distance, based on AUC row Z-score values, 
showing organoid response to a panel of drugs, including PI3K/AKT/mTOR pathway, PARP and Wee1 
inhibitors. n = 18 distinct organoid lines. NT, not tested. (E) Top, dose–response curves for niraparib show 
differential response between organoid lines. Dots represent the mean of technical duplicates. Error bars 
represent s.e.m. of technical duplicates. Bottom, box-and-whisker plot (minimum to maximum) presenting 
RAD51 foci score after radiation. Each point represents percentage of RAD51+ cells within geminin+ 
(GMN+) cell population in one organoid. Horizontal bars and ‘+’ represent median and mean of all dots, 
respectively. Empty and full dots show results of two biologically independent experiments conducted 
one or two passages apart. Total number (n) of analyzed geminin+ cells in each organoid line is presented. 
(F) Histological analysis of organoid-derived xenograft (HGS-3.1) following orthotopic transplantation 
into the mouse bursa. Tumor cells have invaded into the mouse ovary and H&E staining (left) shows solid 
pattern with indications for slit-like spaces (arrow) as well as pleomorphic cells with prominent nuclear 
atypia. Xenograft has maintained PAX8-positive staining (right). A summary of organoid-derived xenograft 
experiments is presented in Supplementary Table 8. Scale bar, 0.5 mm. (G) Gemcitabine-sensitive organoids 
were subcutaneously injected into immunodeficient mice and tumor size was monitored. Once the tumor 
reached 50 mm3, mice were randomly selected and treated with intraperitoneal injections of gemcitabine (2 
mg per kg body weight) (n = 7 independent mice) or vehicle (n = 9 independent mice), 5 times per week for 
4 consecutive weeks (in total 20 injections). Left, an example of tumor growth over time in a vehicle (white 
dots) and a gemcitabine-treated (black dots) mouse. Right, box-and-whisker plot (minimum to maximum) 
summarizing the results across all vehicle and gemcitabine-treated mice, showing tumor size at day 55. 
Horizontal bars and ‘+’ represent the median and mean of all dots, respectively. *P < 0.001, t-test.

Discussion

Developing reliable experimental models that address clinical challenges, such as early 
detection, tumor recurrence and acquired chemotherapy resistance, is a high priority in 
OC research73. In this study, we describe an organoid platform that enables long-term in 
vitro expansion, manipulation and analysis of a wide variety of OC subtypes. A compre-
hensive analysis demonstrates that OC organoids maintain tumor histological charac-
teristics, such as nuclear and cellular atypia, and biomarker expression, such as p53 and 
PAX8. Organoids and corresponding tumors remained highly similar at the genomic 
level, even after extended passaging. Furthermore, organoids recapitulated OC hall-
marks, such as CNVs, recurrent mutations and tumor heterogeneity. Finally, unsuper-
vised hierarchical clustering of gene expression data grouped the organoids according 
to their tumor type and demonstrated that LGS organoids are more similar to normal 
samples than are HGS lines. 

During organoid biobanking of normal FT and OSE samples, obtained from risk-reduc-
ing surgeries, we encountered two samples that were apparently malignant: LGS-2 (clin-
ically diagnosed) and OSE(P)7 (indicated by organoid characterization, Extended Data 
Figure 3e,f). Interestingly, unsupervised hierarchical clustering of gene expression data 
grouped these organoid lines together, thus implying biological similarity. Both organoid 
lines were derived from patients at high risk of developing HGS tumors. Therefore, these 
samples potentially represent an early time point in HGS development. Establishing and 
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analyzing additional early/premalignant organoid lines from pBSO material might sub-
stantiate this hypothesis and provide a unique opportunity to study early HGS tumor 
development. 

An additional experimental platform, recently described to model colorectal cancer de-
velopment122,123,247,248, can be established through CRISPR-mediated mutation of tumor 
driver genes in normal organoids. Indeed, we demonstrate that normal FT organoids 
from OC high-risk donors can be efficiently CRISPR–Cas9 genome edited and clonally 
expanded afterwards, demonstrating the feasibility of such an approach in OC. 

HGS tumors are frequently sensitive to platinum-based chemotherapy, whereas non-
HGS tumors (such as LGS and MC tumors) are characterized by relative chemoresis-
tance249–252. Consistent with these clinical observations, most HGS organoids were sen-
sitive to platinum-based treatments, whereas non-HGS organoids (that is MBT, SBT 
and LGS) were more resistant (Figure 6b). In one case, we compared drug responses 
in matched organoid lines derived from primary chemosensitive (HGS-1) and recur-
rent chemoresistant (HGS-1-R3) tumors of a single patient. This experiment confirmed 
an increased resistance of the organoid line derived from the recurrent tumor to plati-
num-based chemotherapy, anecdotally substantiating the clinical relevance of OC or-
ganoids. Increasing the number of matched primary/recurrent organoid pairs is cur-
rently ongoing. The individual drug responses of OC organoids (for example, compare 
HGS-23-and HGS-3.1) illustrates the complexity of choosing the right treatment. We 
provide proof of concept that in vivo drug sensitivity of OC organoid can be tested fol-
lowing xenotransplantation. 
In summary, we present a new organoid culture-based platform for the study of OC that 
supports efficient derivation and long-term in vitro expansion of a wide variety of OC 
subtypes. This living OC organoid biobank—available to the research community—
faithfully recapitulates OC hallmarks, can be subjected to genetic manipulations and to 
drug screening and opens the door to many avenues of OC research. 

Methods

Approval of studies involving humans and patient-informed consent

The collection of patient data and tissue for the generation and distribution of normal 
FT, OSE and OC organoids was performed according to the guidelines of the European 
Network of Research Ethics Committees (EUREC) following European, national and 
local law. The medical ethical committee UMC Utrecht (METC UMCU) approved the 
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biobanking protocol: 14-472 HUB-OVI. All patients participating in this study signed 
informed consent forms and could withdraw their consent at any time. Available or-
ganoids are cataloged at www.hub4organoids.eu and can be requested at info@hub4or-
ganoids.eu. Distribution of organoids to third parties will have to be authorized by the 
METC UMCU at request of the HUB to ensure compliance with the Dutch ‘medical 
research involving human subjects’ act. 

OC tissue processing

On arrival, OC tissues were cut into 3–5 mm3 pieces (Extended Data Figure 1a). Two 
or three random pieces were snap frozen and stored at −80 °C for DNA isolation, two 
random pieces were fixed in formalin for histopathological analysis and immunohis-
tochemistry, and the remainder were processed for organoid derivation. For organoid 
derivation: tissue was minced, washed with 10 ml AdDF+++ (Advanced DMEM/F12 
containing 1x Glutamax, 10 mM HEPES and antibiotics). We let big tissue pieces to 
sink to the tube bottom with gravity (for 2–5 min), collected the supernatant and cen-
trifuged at 1,000 r.p.m. for 5 min. In case of a visible red pellet, erythrocytes were lysed 
in 2 ml red blood cell lysis buffer (Roche, 11814389001) for 5 min at room temperature 
followed by an additional wash with 10 ml AdDF+++ and centrifugation at 1,000 r.p.m. 
Remaining big tissue pieces were digested in 5–10 ml AdDF+++ supplemented with 5 
μM RHO/ROCK pathway inhibitor (Abmole Bioscience, Y-27632) containing 0.5–1.0 
mg ml−1 collagenase (Sigma, C9407) on an orbital shaker at 37 °C for 0.5–1.0 h. The di-
gested tissue suspension was sheared using 5 ml plastic pipettes. Suspension was strained 
over a 100 μm filter and large tissue pieces entered a subsequent digestion and shearing 
step. Suspension was centrifuged at 1,000 r.p.m. and the pellet was resuspended in 10 ml 
AdDF+++ and centrifuged again at 1,000 r.p.m. Once again, in case of a visible red pellet, 
erythrocytes were lysed in 2 ml red blood cell lysis buffer for 5 min at room temperature 
followed by an additional wash with 10 ml AdDF+++ and centrifugation at 1,000 r.p.m. 
Ascites/pleural effusion samples were centrifuged at 1,000 r.p.m. and treated with 2 ml 
red blood cell lysis buffer for 5 min at room temperature. Following erythrocyte lysis, 
10 ml AdDF+++ was added and suspension was centrifuged at 1,000 r.p.m. Following 
removal of a large part of the ovarian stroma and the surrounding muscle layers of FT, 
ovary and FT samples were processed as above. 

Organoid culture

The cell pellet was suspended in 10 mg ml−1 cold Cultrex growth factor reduced BME 
type 2 (Trevigen, 3533-010-02) and 40 μl drops of BME cell suspension were allowed 
to solidify on pre-warmed 24-well suspension culture plates (Greiner, M9312) at 37 
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°C for 30 min. On BME stabilization, 500 ml of appropriate organoid medium (OC/
OCwnt/OSE/FT medium, see Supplementary Table 2) was added and plates trans-
ferred to humidified 37 °C/5% CO2 incubators. In some cases, 25 ng ml−1 HGF (Pepro-
tech) was added to the medium (Supplementary Table 3). Medium was changed every 
3–4 d and organoids were passaged every 1–4 weeks. Organoid passaging: organoids 
were mechanically sheared through P1000 pipet tip connected to P200 pipet tip without 
a filter. Dense organoids that were not easily sheared mechanically were collected with 
1 ml pre-warmed (37 °C) Accutase solution (A6964, Sigma), incubated for 1–5 min at 
room temperature and mechanically sheared as before. Following the addition of 10 ml 
AdDF+++ and centrifugation at 1,200 r.p.m, organoid fragments were resuspended in 
cold BME and reseeded as above at suitable ratios (1:1 to 1:4) allowing the formation of 
new organoids. In some lines, organoids repeatedly appeared floating in medium. These 
organoid lines could be transferred to repellent plates (Greiner, 662970) and expanded 
with medium containing 5% BME (Supplementary Table 3). Genetically manipulated 
FT clones were expanded in OCwnt medium. 

Scanning electron microscopy

To remove BME, organoids were collected with Cell Recovery Solution (Corning) and 
gently shacked using tube rotator, for 30 min at 4 °C. Organoids were allowed to settle 
down with gravity, the recovery solution was removed and 1 ml of 1% (v/v) glutaralde-
hyde (Sigma) in PBS was added. Following an overnight fixation at 4 °C, organoids were 
transferred onto 12 mm poly-l-lysine coated coverslips (Corning). The organoids were 
serially dehydrated by consecutive 10 min incubations in 2 ml of 10% (v/v), 25% (v/v) 
and 50% (v/v) ethanol-PBS, 75% (v/v) and 90% (v/v) ethanol-H2O (2x) followed by 50% 
ethanol hexamethyldisilazane (HMDS) and 100% HMDS (Sigma). Coverslips were re-
moved from the 100% HMDS, air dried overnight at room temperature and mounted 
onto 12 mm specimen stubs (Agar Scientific). Following gold coating to 1 nm using a 
Q150R sputter coater (Quorum Technologies) at 20 mA, samples were examined with a 
Phenom PRO table-top scanning electron microscope (Phenom-World). 

Histology and imaging

Tissue and organoids were fixed in 4% paraformaldehyde followed by dehydration, 
paraffin embedding, sectioning and standard HE staining. For the blind test, sections 
were randomized and analyzed by an OC pathologist. Immunohistochemistry was per-
formed using antibodies as specified in Supplementary Table 9. Images were acquired 
on a Leica Eclipse E600 microscope and processed using the Adobe Creative Cloud soft-
ware package. For time-lapse imaging, organoids were plated in BME in glass-bottom 
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96-well plates and mounted on an inverted confocal laser scanning microscope (Leica 
SP8X), which was continuously held at 37 °C and equipped with a culture chamber for 
overflow of 6.0% CO2. Over 16–20 h, approximately 10 H2B-mNeon-expressing organ-
oids were imaged simultaneously in XYZT-mode using a x40 objective (NA 1.1), using 
minimal amounts of 506 nm laser excitation light from a tunable white light laser. Images 
were taken at 4 min intervals. 

Genomic analysis

For karyotyping, 0.1 μg ml−1 colcemid (Gibco, 15212012) was added to the complete 
growth medium. About 12 h later organoids were harvested, trypsinized into single cells, 
incubated in hypotonic 75 mM KCl solution for 10 min and fixed in methanol:acetic 
acid solution (3:1). Metaphase spreads were prepared, mounted with DAPI-containing 
Vectashield, imaged on a DM6000 Leica microscope and quantified by manual chromo-
some counting. A minimum of 14 spreads was analyzed for each line. For DNA isolation, 
library preparation and WGS, organoid and blood samples were processed by using the 
DNeasy Qiagen kit. DNA from tumor tissue was isolated with the Genomic Tip Qiagen 
kit, supplemented with RNase treatment. Quality and quantity of samples were checked 
with Qubit (DNA BR). DNA integrity and RNA contamination was assessed by using 
Tapestation DNA screens (Genomic screen) and Nanodrop (260/280 ratio). Per sample, 
500–1,000 ng of DNA was used for DNA library preparation, and whole-genome paired-
end sequencing (2x150 bp) was performed on Illumina HiSeq X Ten and NovaSeq 6000 
to an average coverage of 42x. Supplementary Table 10 provides a list of all commercial 
and custom code used for data collection and analysis including: name, version, source 
and link. WGS data were processed using our in-house Illumina Analysis Pipeline (IAP) 
v. 2.5.1 (https://github.com/UMCUGenetics/IAP). Briefly, reads were mapped against 
the human reference genome GRCh37 using Burrows–Wheeler Alignment with maxi-
mal exact matches (BWA-MEM), v. 0.7.5a-r405253. Read mapping was followed by mark-
ing of duplicates, and indel-realignment, according to best practice guidelines254 by the 
Genome Analysis ToolKit (GATK) v.3.4-46255. Normal cell contamination in tumor and 
organoid samples was estimated in silico using PURPLE v. 2.1429. Somatic SNVs and 
indels were called in the tumor and the organoids independently using the correspond-
ing blood sample as a reference and four different tools: Strelka, v.1.0.14256; Varscan, 
v.2.4.1257; Freebayes, v.1.0.2258; and Mutect, v.1.1.7259. The functional effect of the somatic 
SNVs and indels were predicted using SnpEff v.4.1260. Tumor/organoid pair VCF files 
were then merged by selecting high-confidence SNVs and indels with a minimum alter-
native allele read depth of five in the tumor or ten in the organoids and called by at least 
two independent somatic callers in either of the samples. In addition, high-confidence 
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SNVs that were only detected in either the tumor or the organoid sample of a pair were 
called in the corresponding sample (tumor or organoid) when supported by more than 
5% of the reads covering that position. CNV was detected for each sample independently 
using Control-FREEC, v. 7.2261 and assuming a ploidy of 2. For sample HGS-6, a ploidy 
of 3 was assumed for the plots. Structural variation calling was performed using Manta, 
v.0.29.5262. For increased sensitivity, we ran Manta in the four available analysis types: 
singlesample, multi-sample, tumor-only and tumor-normal. When comparing SVs 
called in one of the tumor/organoid pairs with the matching sample, we inspected the 
output of the tumor-normal mode of the pertinent tumor/organoid sample with the re-
sults of the four calling modes for the matching tumor/organoid sample. Somatic variant 
calling could not be performed for samples without matching reference DNA (CCC-1 
and END-1). In these cases, germline variant calling was performed jointly for tumor 
and organoid samples using GATK’s Haplotype Caller, v3.4-46255. Germline calls were 
filtered against the Genome of the Netherlands (GoNL)263 and the 1000 Genomes264 and 
only variants with a predicted ‘moderate’ or ‘high’ effect (SnpEff v.4.1260) were kept. For 
SV calling of the CCC-1 and END-1 samples, the tumor-normal mode of Manta could 
not be used, but all other Manta variant calling workflows were performed (tumor-only, 
singlesample, multi-sample). To enrich for somatic SVs, only SVs larger than 10 Kb and 
not found in the GoNL or 1000 Genomes studies were considered for these two samples. 

Single-cell WGS library preparation

Cells were sorted into 384-well plates with 5 μl of mineral oil (Sigma-Aldrich). After 
sorting cells, can be stored at −20 °C. Five-hundred nanoliters of lysis mix (0.001 U μl–1 
Qiagen Protease in NEB Buffer 4) was added to each well and lysis was performed at 55 
°C overnight followed by heat inactivation for 20 min at 75 °C and for 5 min at 80 °C. 
Five-hundred nanoliters of Restriction Enzyme mix (1 U μl–1 NLAIII in NEB Cutsmart 
buffer) was added to each well and restriction was performed for 3 h at 37 °C followed by 
heat inactivation for 20 min at 65 °C. One-hundred nanoliters of 1 μM barcoded double-
stranded NLAIII adapter was added to each well. Ligation mix (1,100 μl, 182 U μl–1 T4 
DNA Ligase in 1x T4 DNA Ligase buffer supplemented with 3 mM ATP) was added to 
each well and ligation was performed overnight at 16 °C. After ligation, single cells were 
pooled and library preparation was performed as described in Muraro et al.265. Libraries 
were sequenced on an Illumina Nextseq500 with 2 x 75-bp paired-end sequencing. 

Single-cell WGS data analysis

Reads were aligned to GRCh38 using Burrows– Wheeler Aligner v0.7.14 mapping tool 
with settings ‘bwa mem –M’266. Data were binned in 1 MB bins and normalized to the 
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expected NLAIII mappability per bin. The expected NLAIII mappability per bin was 
calculated by generating 108 reads from the reference genome, with every read starting 
at a NLAIII site. These reads were subsequently mapped and binned using the same 
procedure as for the experimental data. The number of reads per bin was then divided by 
the average number of reads per bin to acquire the expected NLAIII mappability for each 
bin. Regions where the expected NLAIII mappability was <0.9 or >1.2 were excluded 
from further analysis. After this the cells were filtered and only cells with >20,000 reads 
were kept for further analysis. The median read count of each cell was then set to 2 to 
represent a diploid genome. Data were log2 transformed to obtain log2 CN ratios and 
smoothed using a running mean (R package caTools) with a width of 20 MB. To remove 
additional low-quality cells, the variance across the genome was calculated for each cell 
and cells with a variance >0.3 were removed. For two dimensional visualization of the 
data, we first performed independent component analysis (ICA) (R package fastICA) 
followed by t-stochastic neighbor embedding (t-SNE) (R package Rtsne). Clustering 
was performed using ward.D2 hierarchical clustering on the Manhattan distances of the 
ICA-transformed data. Subsequently, the average copy number profile per cluster was 
calculated using the R package DNAcopy. Finally, a tree was constructed using ward.
D2 hierarchical clustering on the manhattan distances of the DNAcopy-derived CNV 
profiles of the non-diploid clusters. 

RNA-seq analysis

RNA was isolated from organoids with Trizol Reagent (Ambion). RNA libraries were 
generated with the Truseq Stranded Ribo-zero Sample preparation kit. RNA integrity 
was assessed by Tapestation (RNA screen) and quantified by Qubit (RNA). Libraries were 
multiplexed and paired-end sequenced (2 x 75 bp) on Illumina NextSeq. Supplementary 
Table 10 provides a list of all commercial and custom code used for data collection and 
analysis including: name, version, source and link. RNA-seq data were processed with our 
in-house RNA analysis pipeline (v.2.3.0, https://github.com/UMCUGenetics/RNASeq). 
Reads were aligned to the human reference genome GRCh37 using STAR v. 2.4.2267, 
and then read count was performed with HTSeq-count, v. 0.6.1268. Features (ENSEMBL 
definitions GRCh37, release 74) with zero read counts were filtered out (21,711 features 
out of 63,677). Gene symbols were mapped to the ENSEMBL features using the biomaRt 
package v. 2.26.1269, and features without corresponding gene symbols and with duplicate 
mappings were removed. The final count matrix consisted of 30,080 rows (genes). The 
DESeq2 package, v1.10.1270 was then used to normalize the read counts using the 
median-of-ratios method. Spearman correlation between samples was calculated 
using the normalized read counts from all 5,000 most variable genes and samples were 
clustered using hierarchical clustering with complete linkage on the correlation matrix. 
The genetically modified organoid lines were analyzed using the same DESeq2 pipeline. 
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Methylation analysis

For methylation analysis 210 ng of genomic DNA was used. DNA was sodium bisulfite 
converted with the Zymo Research EZ DNA methylation kit (Zymo Research) 
and treated with the InfiniumHD FFPE Restore kit (Illumina). Next, the DNA was 
hybridized to the Infinium MethylationEPIC 850 K BeadChip (Illumina) to analyze the 
genome-wide methylation status of 865,859 methylation sites. Supplementary Table 10 
provides a list of all commercial and custom code used for data collection and analysis 
including: name, version, source and link. For methylation data analysis, fluorescence 
intensity data (.IDAT) files were analyzed by using the minfi R package271. Beta-values 
were extracted after applying a normalization step with minfi preprocessFunnorm. 
Pearson correlation of beta-values between samples was calculated, and subsequently 
unsupervised hierarchical clustering of correlation values was performed on the 11,720 
most variable probes. 

Gene editing

Organoids derived from early passaged (P0–P3) FT organoids were dissociated into 
small clumps using pre-warmed Accutase solution (A6964, SIGMA), washed once with 
AdDF+++ and twice with Opti-MEM (11058021, Life technologies). Cells were suspended 
with 100 μl Opti-MEM containing RHO/ ROCK pathway inhibitor (10 μM) and 10 μg of 
pSpCas9(BB)-2A-GFP (a gift from F. Zhang272 from the Broad Institute of Massachusetts 
Institute of Technology (MIT) and Harvard, Cambridge, MA, USA), Addgene plasmid 
no. 48138) with guide RNA (gRNA) targeting TP53 (GACGGAAACCGTAGCTGCC)123 
or combination of gRNA targeting TP53 and RB1 (GTTCGAGGTGAACCATTAAT) 
genes, and transferred into 2 mm gap NEPA electroporation cuvette (lot no. 2S1509). For 
electroporation, we utilized NEPA21 type-II electroporator (Supplementary Table 11). 
Following electroporation, 300 μl of complete growth medium was added to the cells and 
they were incubated at room temperature for 15 min. Cells were centrifuged, suspended 
in 200 μl BME and plated as previously described. Complete medium was added after 
cell BME suspension drops had solidified. Two to three days after electroporation, 
10 μM nutlin-3 (Cayman Chemical) was added to the growth medium. Two to three 
weeks after electroporation, single organoids were picked and transferred into 1.5 ml 
microcentrifuge tubes containing 200 μl of pre-warmed Accutase. Following 2–3 min 
incubation, organoids were sheared into small cell clumps by pipetting, washed with 1 
ml AdDF+++ and centrifuged for 5 min at 2,000 r.p.m. Cells were resuspended with 40 μl 
BME and plated. For genotyping, genomic DNA was isolated using Viagen Direct PCR 
(Viagen). GoTaq Flexi DNA polymerase (Promega) was used for PCR amplification. 
Primer sequences: P53_for, 5’-CAGGAAGCCAAAGGGTGAAGA-3’; P53_rev, 
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5’-CCCATCTACAGTCCCCCTTG-3’; RB1_for, 5’-CAGAGTAGAAGAGGG 
ATGGCA-3’; RB1_rev, 5’-CAGTGATTCCAGAGTGACGGA-3’. Products were cloned 
into pGEM-T Easy vector system I (Promega) and sequenced using T7 sequencing 
primer.

Lentivirus transduction of organoids

To visualize mitoses, organoids were infected with lentivirus encoding mNeon-tagged 
histone-2B and a puromycin resistance cassette (pLV-H2B-mNeon-ires-Puro123) as 
previously described273. 

Drug screen and viability assay

Dispase II (1 mg ml−1; Invitrogen) was added to the medium of the organoids and 
these were incubated for 10 min at 37 °C to digest the BME. Subsequently, organoids 
were mechanically dissociated by pipetting and were filtrated using a 70 mm nylon cell 
strainer (Falcon), resuspended in 2% BME/ growth medium (15,000–20,000 organoids 
ml−1) before plating in 50 μl volume (Multi-drop Combi Reagent Dispenser) on BME 
pre-coated 384-well plates. The drugs and their combinations were added 1 h after 
plating the organoids using the Tecan D300e Digital Dispenser. Drugs were dispensed 
in a randomized manner and DMSO end concentration was 1% in all wells. 120 h after 
adding the drugs, ATP levels were measured using the Cell-Titer Glo2.0 (Promega BV) 
according to the manufacturer’s instructions and luminescence was measured using a 
SpectraMax microplate reader (Molecular Devices). Results were normalized to vehicle 
(DMSO=100%) and baseline control (navitoclax 20 μM). Data were analyzed using 
GraphPad Prism 6. Using the trapezoid rule for numerical integration, the AUC was 
approximated between the lowest and highest concentrations screened in the actual assay. 
Organoid drug sensitivity was represented by the average AUC of two technical replicates 
and independent experimental repetitions in a subset of treatments and visualized using 
RStudio. Experimental repetition with a subset of drugs was performed in the following 
lines: FT-1, FT(P)-1, END-1.1, END-1.2, MC-2.1, HGS-1, HGS-1-R2, HGS-3.1, HGS-
3.2, HGS-22, HGS-23. Euclidean distance between samples was measured using the 
normalized (row Z-score) AUC. Alpelisib (BYL719), catalog no. S2814, Selleckchem; 
adavosertib (MK-1775), catalog no. S1525, Selleckchem; AZD8055, catalog no. S1555, 
Selleckchem; carboplatin, catalog no. S1215, Selleckchem; gemcitabine, catalog no. 
S1714, Selleckchem; MK-2206, catalog no. S1078, Selleckchem; niraparib (MK-4827), 
catalog no. S2741, Selleckchem; nutlin-3, catalog no.10004372, Cayman Chemical; 
paclitaxel, catalog no. S1150, Selleckchem; pictilisib (GDC-0941), catalog no. S1065, 
Selleckchem.
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RECAP assay

Organoids were incubated at 37 °C/5% CO2 humidified atmosphere and an equal number 
of organoids were transferred to 3 cm Petri dishes containing 2 ml of medium. One petri 
dish was irradiated with 5 Gy X-rays (200 kV, 4 mA, YXLON Y.TU 225-D02) and the 
other Petri dish was mock-treated (that is not irradiated). EdU (0.02 mM; ThermoFisher 
Scientific, Click-iT EdU Alexa Fluor 647 Imaging Kit, catalog no. C10340) was added 
to the organoids and incubated for 2 h at 37 °C/5% CO2 humidified atmosphere on a 
60 r.p.m. rotating platform. The organoids were transferred to 15 ml falcon tubes and 
after the organoids were settled down by normal gravity at room temperature, medium 
was removed and replaced by 10 ml buffered formalin (10%). Organoids were fixed 
for 1 h on a rotating device at room temperature, washed twice with PBS and stored 
in 70% ethanol at 4 °C. The organoids were embedded into paraffin, sliced into 5 μm 
slices and incubated in 60 °C o/n on StarFrost microscope slides (76 x 26 mm, Knittel 
glass). Immunofluorescence staining was performed to stain for DAPI (ThermoFisher 
Scientific, catalog no. P36935,), geminin (primary antibody rabbit, Proteintech Europe, 
catalog no. 10802-1-AP), RAD51 (primary antibody mouse, Gene Tex, GTX70230) and 
EdU (ThermoFisher Scientific, Click-iT EdU Alexa Fluor 647 Imaging Kit, catalog no. 
C10340). RAD51 foci were scored blindly in 10 randomly chosen organoids, counting at 
least 100 geminin+ cells in total for both the irradiated and the non-irradiated organoids. 
Biological repetitions were done as indicated in figure legend (Figure 6). A nucleus was 
scored as RAD51 positive if it contained more than five foci. Organoids in which less 
than six cells were counted as geminin+ were filtered out from the analysis. 

Organoid-derived xenograft

Experiments on NSG mice were carried out at the Netherlands Cancer Institute 
according to local and international regulations and ethical guidelines, and were 
approved by the local and central animal experimental committee at the Netherlands 
Cancer Institute (AVD3010020172464; IVD 9.1 EGP 8102) 8102). Ovarian injection: 
mice were anesthetized with isoflurane (3% induction, and 2% maintenance) and a 
small incision in the flank and peritoneum was made. The ovarium was gently taken 
from the abdominal cavity and tumor cells are slowly injected with an insulin needle 
(Terumo 29 G x 1/2, 0.33 x 12 mm) into the bursa. The ovarium was positioned back in 
the abdominal cavity, and peritoneum and skin were sutured separately. IVIS-imaging: 
mice were injected with 10 μ1 per g body weight of Beetle luciferin (promega E1605) 
and after 10 min bioluminescence was measured on the IVIS Lumina. After the mice 
were killed, the ovarium was taken out and embedded in paraffin for further analysis. 
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Intervention study: experiments on NSG mice were carried out at the Netherlands 
Cancer Institute according to local and international regulations and ethical guidelines, 
and were approved by the local animal experimental committee at the Netherlands 
Cancer Institute (AVD301002015407; IVD 1.1 EGP 8583). Subcutaneous injection: 
mice are subcutaneously injected with the organoid lines. Caliper measurements were 
performed three times per week. When the tumors reached a size of 50 mm3, treatment 
started with either Vehicle (saline) or Gemcitabine (2 mg kg), intraperitoneal injection 
5 times per week (5 on, 2 off) for 4 consecutive weeks. Ten mice per treatment arm were 
included. Tumor size was monitored for 55 d; mice that died before that time point (after 
surgery or gemcitabine treatment) were excluded from the analysis. 

Statistical analyses

Where applicable, statistical methods are outlined in the respective figure legends. 
Statistical analysis was performed utilizing Microsoft Excel, GraphPad and R package. 
P values were calculated using a two-tailed Student’s t-test. DNA and RNA sequencing 
analysis details can be found in the relevant Methods sections. For karyotyping a 
minimum of 14 metaphase spreads was analyzed for each line. For single-cell DNA 
analysis 791 cells from 2 recurrent tumor samples and 3 corresponding organoid lines 
were analyzed. Drug screen killing curves show the average ± s.e.m. of two technical 
replicates. AUC of independent drug screen repetitions was averaged and presented in a 
drug sensitivity heat map (experimental repetitions (n=2) at different passage numbers 
in a subset of treatments was carried out in 11 independent organoid lines, Extended 
Data Figure 5d). For animal intervention experiments, 10 mice per treatment arm were 
included. Mice that died before the experimental end-point were excluded from analysis. 
In the case of representative results, the number of independent organoid lines or 
experimental repetitions and their relevant description are indicated in the figure legend. 

Clinical data

Patients agreed with the use of their clinical data by signing informed consent. Clinical 
data was extracted from the patient file by the Dutch Cancer Registration and included 
age at diagnosis, patient history, BRCA mutation status, tumor characteristics and 
treatment modalities. 

Reporting Summary

Further information on research design is available in the Nature Research Reporting 
Summary linked to this article.
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Data availability

BAM files for DNA and RNA sequencing data are made available through controlled 
access at the European Genome-phenome Archive (EGA) which is hosted at the EBI and 
the CRG (https://ega-archive.org), under accession number EGA: EGAS00001003073. 
Data access requests will be evaluated by the UMCU Department of Genetics Data 
Access Board (EGAC00001000432) and transferred on completion of a material transfer 
agreement and authorization by the medical ethical committee UMCU at request of the 
HUB to ensure compliance with the Dutch ‘medical research involving human subjects’ 
act. 

Code availability

Illumina data processing pipeline v2.2.1 is available at https://github.com/ 
UMCUGenetics/IAP/releases/tag/v2.2.1 and RNA analysis pipeline v2.3.0 is available at 
https://github.com/UMCUGenetics/RNASeq. All other custom code used for this study 
is available at https://github.com/UMCUGenetics/ OvCaBiobank 
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List of supplementary data
ED=extended data

ED Figure 1.	 Derivation and morphological differences of OC organoids.
ED Figure 2.	 Organoid passage number overview and normal cell contamination in tumors and
		  organoids.
ED Figure 3.	 FT and OSE organoids. 
ED Figure 4.	 Genome-wide tumor and organoid pair comparison. 
ED Figure 5.	 Molecular characterization, drug screening and xenografts of OC organoids.
ED Figure 6.	 CRISPR–Cas9 mediated genetic manipulation in FT organoids. 

*Table S1.		  Patient clinical data.
*Table S2.		  Medium recipe.
*Table S3.		  OC organoid line information.
*Table S4.		  Organoid subtype diversity and derivation efficiency
*Table S5.		  FT and OSE organoid information
*Table S6.		  OC organoid histological analysis
*Table S7.		  RNA and DNA sequencing related information of OC organoids
*Table S8.		  Organoid derived xenografts
*Table S9.		  Antibody list
*Table S10.	 Code Availability
*Table S11.	 Electroporation setup

*Table S1-11 are available online at: https://tinyurl.com/Ch2Suppl or scanning the QR code below 
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Extended Data Figure 1: Derivation and morphological differences of OC organoids. (A) Schematic of 
OC organoid derivation. (B) Bright-field images of MBT, SBT, MC, LGS, END and CCC organoids (left to 
right), depicting different organoid morphologies. Morphological description of 50 independent organoid 
lines is provided in Supplementary Table 6. Scale bar, 100 μm. (C) Bright-field (top) and SEM (bottom) 
images demonstrating main morphologies among different HGS organoid lines. Starting with cystic and 
well-organized cellular polarity, where microvilli are directed toward the organoid lumen (most left) to 
dense organoids that gradually (from left to right) show reduced circularity and cellular cohesiveness up to 
a grape-like shape morphology (most right). Scale bar, 100 μm. v High-magnification H&E staining images 
displaying representative examples of HGS organoid morphologies as well as nuclear and cellular atypia, 
typically displayed by HGS tumors. Histological description of 50 independent organoid lines is provided in 
Supplementary Table 6. Scale bar, 100 μm. 
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Extended Data Figure 2: Organoid passage number overview and normal cell contamination in 
tumors and organoids. (A) Column bar graph depicting organoid maximum passage number up until 
the moment of submission. Organoids that stopped/slowed down their growth are indicated in orange. (B) 
Representative images of Ki67 staining of six independent organoid lines show a high percentage of ki67-
positive proliferating cells. (C) Histological and immunohistochemical images of tumor tissue (derived 
from two independent patients) showing tumor cell purity within different samples, based on H&E and 
p53 staining. Scale bar, 0.5 mm. (D) Tukey box-and-whisker plot (1.5x interquartile range) presenting 
bioinformatic estimation of tumor cell purity percentage of both tissue (n=35) and organoid (n=36) based 
on WGS data using PURPLE. Horizontal bars represent the median of all dots. Mean and standard deviation 
across all samples are as follows: 45 ± 9.2% (tissue) and 88.1 ± 23% (organoids). (E) Stacked bar chart showing 
the percentage of organoid lines that are positive for p53, PAX8 and periodic acid–Schiff (PAS) staining 
(orange) and negative (blue) grouped per original tumor staining status (see also Supplementary Table 6). 
Total number (n) of tissues stained per group are indicated. 
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Extended Data Figure 3: FT and OSE organoids. (A) An overview image of normal FT organoids em-
bedded in 40 μl BME drops, displaying a cystic morphology. All FT organoid lines that were established 
(n=22) displayed cystic morphology. (B) Representative SEM image showing ciliated cells facing FT organ-
oid lumen. Scale bar, 50 μm. SEM was performed on one FT organoid line. (C) Histological analysis of FT 
organoids demonstrating H&E, Ki67, PAX8 and Ac-α-tubb staining. Histological analysis was performed 
on three independent FT organoid lines with similar results. Scale bar, 100 μm. (D) An overview image of 
normal OSE organoids embedded in 40 μl BME drops displaying cystic morphology (top left image). Seven 
out of eight OSE organoid lines that were established displayed cystic morphology. OSE organoid images of 
H&E, Ki67 and cytokeratin 8 (CK8) staining, demonstrating a cystic morphology of proliferative epithelial 
cells. Histological analysis was performed on two independent OSE organoid lines with similar results. Scale 
bar, 100 μm. (E) First row: bright-field images of LGS-2.2 (left) and OSE(P)7 (right) organoid lines. Unlike 
normal FT and OSE that display cystic morphology both lines show dense phenotype. OSE(P)7 is the only 
OSE organoid line that displays dense phenotype. Scale bar, 200 μm. Second to last rows: histological and 
immunohistochemical images demonstrate that organoids are positively stained for PAX8 and WT1, mark-
ers of OC serous subtypes. Organoids display reduced cellular organization in comparison to normal FT and 
OSE organoids. Scale bar, 100 μm. (F) Scatter plot presenting metaphase spread analysis and mean for each 
line. Both lines present aneuploidy. 
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Extended Data Figure 4: Genome-wide tumor and organoid pair comparison. (A) Genome-wide CNVs 
in tumor/organoid pairs (black, tumors; pink, organoids early passage; blue, organoids late passage) depict-
ing gains (red) and losses (blue). (B) Number of shared (yellow) and unique (blue) SNVs (on the left) and 
SVs (on the right) between tumor/organoid pairs. Shared variants are those that can be found in the corre-
sponding paired sample. Passage number at which organoid lines were sequenced is given in Supplementary 
Table 7. 
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Extended Data Figure 5: Molecular characterization, drug screening and xenografts of OC organoids. 
(A) Tukey box and whisker plot (1.5x interquartile range) summarizing the percentage of shared variants 
across all tumor (red) and organoid (green) samples. Right and left panels display SNVs and SVs, respectively. 
Horizontal bars represent the median of all dots. Mean and standard deviation across all samples are as 
follows: SNVs, 82.95 ± 8.18% (tissue, n=31) and 75.62 ± 23.13% (organoids, n=31); SVs, 78.14 ± 22.11% 
(tissue, n=31) and 60.47 ± 29.13% (organoids, n=31). Samples with a low percentage of shared variants are 
indicated. (B) Heat map of five independent organoid lines from both early and late passages based on 
11,720 methylation probes. The heat map colors represent Pearson correlation values, as calculated from the 
methylation beta-values. Clustering of the correlation values was performed using hierarchical clustering 
based on complete linkage. (C) Scatter plot of AUC values across all drug screening data, displaying high 
correlation between technical replicates (Pearson correlation=0.94, R2=0.88, n=105). (D) Scatter plot 
of AUC values of biological replicates, displaying high correlation (Pearson correlation=0.87, R2=0.74, 
n=45). Colored dots represent biological replicates in which passage differences between experimental 
repetition is as follows: 1–2 passages, n=29 (black); 3–5 passages, n=10 (blue) and 13–22 passages, n=6, 
(red), demonstrating stable drug sensitivity even after prolonged passaging. (E) Box-and-whisker plot 
(10th–90th percentile) showing Z-factor distribution and mean across all drug screening plates. Mean=0.61, 
ranging between 0.2 and 0.91, n=55. (F) Bioluminescence imaging of mice, orthotopically transplanted with 
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luciferase expressing organoid lines depicting tumor growth. A summary of organoid-derived xenograft 
experiments is presented in Supplementary Table 8. (G) p53 staining of organoid derived xenograft (HGS-
3.1) on orthotopic transplantation into the mouse bursa shows p53 overexpression in tumor cells. (H) 
Histological analysis of an organoid-derived xenograft (MC-2.1) on subcutaneous transplantation. H&E 
staining shows haphazardly arranged neoplastic glands lined by columnar cells with variable numbers 
of goblet cells (arrows), which are specific features of MC. A summary of organoid-derived xenograft 
experiments is presented in Supplementary Table 8. Left image scale bar, 1 mm. Right image scale bar, 200 
μm. 

Extended Data Figure 6: CRISPR–Cas9 mediated genetic manipulation in FT organoids. (A) 
Schematic of normal FT organoid electroporation. FT organoids were dissociated into small cell clumps 
and electroporated with either an empty vector or a vector containing a gRNA directed against TP53. Cells 
were plated and after 2 d of recovery nutlin3a was added. (B) Overview images of organoids 2 weeks after 
electroporation. Organoids that were electroporated with an empty vector and not treated with nutlin3a 
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showed nice recovery following electroporation (top), whereas the growth of organoids electroporated in a 
similar manner was dramatically inhibited when nutlin3a was added (middle). Surviving clones that are not 
inhibited by nutlin3a treatment are visible only when organoids were electroporated with a vector containing 
TP53 gRNA (bottom). Four independent electroporation experiments followed by nutlin3A treatment were 
conducted giving rise to multiple nutlin3A resistant clones. (C) A representative flow cytometry analysis 
of organoids 48 h following electroporation demonstrating 25% of the cell express GFP. Summary of six 
independent repetitions of this experiment are presented in d. (D) Box-and-whisker plot (minimum to 
maximum) showing the percentage of GFP positive cells following electroporation. Horizontal bars and 
dashed horizontal bars represent median and mean of all dots, respectively. Mean ± s.d.=23.8 ± 5.5%, 
median=25.5%. Six independent experiments that were conducted with three different FT organoid lines 
are presented, demonstrating high and robust electroporation efficiency. (E) An example of CRISPR–Cas9 
mediated editing of TP53 gene in FT organoids. Targeted locus is presented and gRNA (solid line), PAM 
sequence (red highlight) and cut point (arrow head) are indicated. Sequencing results revealed out-of-frame 
deletions induced by CRISPR–Cas9 editing. (F) Table presenting six FT genetically engineered clones derived 
from two independent donors (FT(P)1 and FT(P)2). For each clone, targeted gene description (in both TP53 
and RB1 genes) including HGVS nomenclature is presented. (HET, heterozygous; HOM, homozygous). (G) 
BF images (top) and H&E staining (bottom) of four independent clones show deviation from cystic and 
well-organized normal FT organoid morphology. Passage number is indicated. This analysis was conducted 
on three independent TP clones (loss-of-function mutations in the TP53 gene) and three independent 
TPR clones (loss-of-function mutations in the TP53 and RB1 genes) with similar results. (H) Heat map of 
Spearman correlation values of three independent normal FT organoid lines (derived from different donors) 
and genetically engineered clones (n=3 independent TP clones (loss-of-function mutations in the TP53 
gene) and 3 independent TPR clones (loss-of-function mutations in the TP53 and RB1 genes)), using RNA-
seq expression data. Read counts were normalized for sequencing depth and the 1,000 most-variable genes 
were used. Clones were assigned into different groups according to their mutational profile.
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Abstract

There remains an unmet need for preclinical models to enable personalized therapy 
for ovarian cancer (OC) patients. Here, we evaluate the capacity of patient-derived 
organoids (PDOs) to predict clinical drug response and functional consequences of 
tumor heterogeneity. We included 36 whole-genome characterized PDOs from 23 OC 
patients with known clinical histories. OC PDOs maintain genomic features of the 
original tumor lesion and recapitulate patient response to neoadjuvant carboplatin/
paclitaxel combination treatment. PDOs display inter- and intrapatient drug response 
heterogeneity to chemotherapy and targeted drugs, which can partially be explained by 
genetic aberrations. PDO drug screening identifies high responsiveness to at least one 
drug for 88% of patients. PDOs are valuable preclinical models that can provide insights 
in drug response for individual patients with OC, complementary to genetic testing. 
Generating PDOs of multiple tumor locations can improve clinical decision making and 
increase our knowledge on genetic and drug response heterogeneity.
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Introduction

Epithelial ovarian cancer (OC) is characterized by the development of chemotherapy 
resistance and poor survival. Overall survival for patients with OC has only slightly im-
proved over the past decades, despite developments in the field such as optimized surgical 
tumor resection, administration of (hyperthermic) intraperitoneal chemotherapy and 
introduction of targeted treatments such as PARP-inhibitors274. While most patients with 
OC respond well to initial treatment, the majority will develop recurrent disease with-
in the first two years and become resistant to chemotherapy. In the setting of recurrent 
disease, a wide range of chemotherapeutic and targeted drugs is available. PARP-inhibi-
tors are indicated for patients who experienced complete or partial response to previous 
platinum treatment, irrespective of BRCA1/2-mutation status275. Still, BRCA1/2-muta-
tion carriers experience more benefit from PARP-inhibition compared to patients with 
homologous recombination (HR)-proficient tumors275. However, for the majority of re-
lapsed patients and drugs, no genetic markers are available to predict response. These 
patients might benefit from patient-derived model systems that can be employed to test 
response to drugs prior to treatment in the clinic.

Traditionally, OC drug response has been studied in 2D-cell lines and xenografts. 2D-cell 
lines offer a relatively cheap and quick model system, suitable for high-throughput drug 
screening; while patient-derived xenografts offer the potential to study tumor drug re-
sponse in a living organism, but are not suitable for high-throughput drug screening 
experiments276. In the past decade patient-derived organoids (PDOs) have been estab-
lished277, a 3D-cell culture model system that maintains cellular heterogeneity of healthy 
tissues and tumors. Recently, PDOs of OC were established which represent the genom-
ic features of the original tumors278–280. Furthermore, a drug screening comparison be-
tween 2D-cultures and PDOs of OC revealed that cytostatic drug efficacy was dependent 
on the employed culture system; PDO drug responses correlated better with genomic 
aberrations compared to 2D-cell cultures280. To employ the organoid system to guide 
treatment choice in the clinic, it is vital that the correlation between PDO drug response 
and clinical drug response is established. To this extent, prospective clinical trials have 
been performed with PDOs of patients with colorectal cancer, in which in vitro drug 
screening recapitulated patient response to chemotherapy and targeted drugs138,281. For 
OC, we and others previously provided anecdotal evidence on the correlation between 
clinical and PDO drug response278,279,282, but direct comparisons are still limited.

When predicting treatment response, genetic heterogeneity should be considered. Ep-
ithelial OC, especially the high-grade serous subtype, is a heterogeneous disease with 
widespread inter- and intrapatient genetic heterogeneity78,283. A virtue of the PDO model 
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system is the possibility to study genetic and phenotypic tumor heterogeneity125.
In this study, we systematically assessed if in vitro drug response of OC PDOs correlates 
to patients’ clinical response to chemotherapeutics. We studied inter- and intrapatient 
drug response heterogeneity to a wide range of chemotherapeutics as well as targeted 
drugs, and linked differential drug response to genetic variation.

Results
PDOs can be (rapidly) established from different OC subtypes

In total, we included 36 PDOs (of which 29 were established previously278), derived from 
23 patients with different histological subtypes of OC who underwent primary or inter-
val debulking surgery or ascites drainage (Table S1). PDO sample names are informative 
of histological subtype as well as patient (first number) and tumor location (second num-
ber). We have previously demonstrated that PDOs are largely similar to the carcinoma 
fields within their matching tumor, based on histopathological assessment278. The major-
ity of PDOs in our biobank were thoroughly characterized by whole-genome sequencing 
and histopathological examination and biobanked prior to drug testing, to establish a re-
liable platform. This resulted in a considerable length of time from PDO establishment to 
drug screening. However, in order to incorporate PDO-based drug response prediction 
in clinical care, PDO establishment and screening must be executed within a short time 
span. As a pilot experiment, we successfully established and rapidly screened organoids 
from a patient with recurrent disease (HG-26; Figure S1A-C). Within 20 days of tumor 
collection the response to six therapies became available.

PDOs retained genomic features of the original tumor lesion

We characterized 36 organoids, 30 matching tumors and 31 germline samples by 
whole-genome sequencing to an average coverage of 32X. Passage numbers at which 
PDOs were sequenced are provided in Table S1. First, we compared the genomic profiles 
of PDOs and the tumors they were derived from. An average of 8,290 and 10,358 SNVs 
were identified in the parental tumor specimen and their matched PDO, respectively. On 
average 67% of variants were shared between the tumor and PDO, 6% of the SNVs were 
unique to the tumor, and 27% to the PDO (Figure S2A). Assessment of CNAs demon-
strated comparable copy-number states in the majority of pairs (Figure S2B-C). HGS-
3.1, LGS-2.2 and MC-2.1 presented with a much higher number of SNVs than their 
matched tumor specimen and considerable CNA dissimilarities within PDO-tumor 
pairs. These exceptions are likely due to a high degree of normal cell contamination in 
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the tumor samples, which was confirmed by PURPLE, a purity ploidy estimator (Table 
S7)284. In general, based on PURPLE tumor content estimates (Table S7), PDOs are en-
riched for tumor cells, whereas tumor samples are heterogeneous, representing a mix of 
tumor cells and normal cells. For tumor samples with tumor content, PDOs retained the 
genomic features of the original tumor lesions.

 
PDO drug response correlates to patients’ clinical response

Next, we evaluated the potential of PDOs to reflect patients’ drug response to chemother-
apy. For this we selected all PDOs that were derived at interval debulking surgery from 
patients with high grade serous (HGS) OC, with known clinical histories (Table S1 (clin-
ical comparison) and S2). Seven PDOs (derived from five patients) were exposed to car-
boplatin and paclitaxel combination treatment in vitro and we could directly compare 
their response to the patient’s clinical response. Related samples HGS-3.1 and HGS-3.2 
were most responsive to carboplatin and paclitaxel combination treatment (AUC=0.37 
and 0.29), while HGS-24 was the least responsive (AUC=0.88) (Figure 1). These PDO 
drug responses showed a statistically significant correlation (p<0.01) with clinical re-
sponse as measured by histopathological (chemotherapy response score (CRS)), bio-
chemical (normalization of serum biomarker CA-125) and radiological (RECIST) re-
sponses (Figure 1; Figure S1D-H). The derivation of organoids upon interval debulking 
was restricted to CRS1 and CRS2 scored samples and therefore a high-risk subgroup of 
patients, as CRS3 scored samples will not have macroscopic tumor lesions from which 
the pathologist can provide tissue for organoid derivation. PDOs derived from tumor lo-
cations with no or minimal histopathological response (CRS=1) were less responsive to 
carboplatin and paclitaxel combination treatment compared to PDOs derived from tu-
mor locations with appreciable pathological response (CRS=2) (p=5.821e-05, Wilcoxon 
signed-rank test)285. Biochemically, clinical drug response is measured according to the 
response criteria and timing of normalization of CA-125286,287. Even though all patients 
exhibited CA-125 response during primary treatment, PDOs derived from patients who 
did not reach CA-125 normalization during primary treatment were less responsive to 
the chemotherapeutics compared to PDOs from the patient in whom CA-125 levels 
normalized (<35kU/L, p=0.0004). Radiological response was assessed according to the 
RECIST criteria (version 1.1)287, comparing imaging data at initiation of chemotherapy 
to imaging data prior to interval debulking based on CT-scanning. PDOs derived from 
patients with RECIST stable disease were less responsive to carboplatin and paclitaxel 
combination treatment compared to PDOs from patients with RECIST partial response 
(p=0.0092). To compare long-term clinical response to PDO response, recurrence and 
survival were assessed. All patients experienced recurrent disease within four to 14 
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months after the last primary treatment, and 6-month progression-free survival (PFS) 
did not correlate to PDO drug response. After 17 months 50% of patients with FIGO 
stage IV HGS OC are still alive (Table S2); only one out of five patients (HGS-24) in our 
cohort lived shorter than 17 months, and this PDO exhibited the least responsiveness to 
carboplatin and paclitaxel combination treatment.

Figure 1: OC PDO drug response correlates with clinical drug response. (A) Drug dose-response curves 
of OC PDOs for carboplatin and paclitaxel combination. Dose response curves are normalized to positive 
(navitoclax, ABT-263) and negative controls (DMSO). Upper x-axis: carboplatin drug concentrations, lower 
x-axis: paclitaxel drug concentrations. Each drug concentration was tested twice (technical replicate). Data 
points and error bars represent the mean and standard deviation of one technical replicate. Non-linear 
regression analysis: log(inhibitor) vs. response fit. Red=clinically resistant, blue=clinically sensitive. (B) 
Overview of PDO drug response (area under the curve (AUC)) versus all clinical response measures, ordered 
from low responsive to high responsive based on AUC values. Histopathological tumor response: CRS1=no 
or minimal response vs CRS2=appreciable response; p=5.821e-05. Biochemical response: no normalization 
(<35 kU/L) of serum CA-125 during primary treatment vs normalization; p=0.0004. Radiological response: 
stable disease (SD) vs partial response (PR) according to RECIST criteria; p=0.0092. See also Figure S1D-H. 
*Statistically significant difference between the clinically sensitive and resistant group according to Wilcoxon 
signed-rank test corrected for multiple testing (p<0.01).

 

PDOs exhibit interpatient drug response heterogeneity which correlates partially 
with their genetic makeup

Next, we investigated the response of all PDOs (N=36) to a broader range of drugs and 
drug combinations (3-17 per PDO, on average 13; Table S3), including chemotherapeutics 
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and targeted drugs. Drugs were selected based on clinical practice or evaluation in clinical 
trials for ovarian cancer or solid tumors in general. Drug response experiments were 
performed in technical replicates and replicate AUC values highly correlated (R²=0.87) 
(Figure S3A). Passage numbers at which PDOs were screened for drug response are 
provided in Table S1. PDOs were classified into a low-responsive subgroup if the drug 
concentration that reduced viability of >50% of cells (IC50-value) was higher than the 
concentration achievable in patient plasma (concentration steady state, maximum 
concentration (Css/Cmax; Table S3)288,289, and a high-responsive subgroup if the IC50-
value was lower than the Css/Cmax.
Divergent responses were observed to chemotherapeutic drugs carboplatin (platinum/
alkylating agent), paclitaxel (taxane/antimicrotubule agent) and gemcitabine (pyrimi-
dine antagonist) (Figure 2A-C; Table S3). A minority of PDOs was classified into the 
high-responsive subgroup of carboplatin (7/31, 23%) and paclitaxel monotherapy (5/31, 
16%), while most PDOs (29/35, 83%) were in the high-responsive subgroup of gemcit-
abine. Response also correlated with OC histological subtype, all LGS-samples showed 
low responsiveness to paclitaxel and carboplatin monotherapy (except for response to 
carboplatin in LGS-3.1), while the high responsiveness was restricted to HG(S)-sam-
ples. For certain PDOs, combination treatment with two chemotherapeutic drugs had a 
greater effect on viability (lower IC50 values) than the drugs’ individual effects (Table S3) 
indicating either an additive or synergistic effect of the combined drugs. Our results, for 
example, showed that carboplatin and paclitaxel treatment alone had minimal effect on 
LGS-3.1 with an IC50-value of 1.46 and >2.5 log μM, respectively, while the IC50-value 
of carboplatin and paclitaxel was reduced to 0.56 and -0.34 log μM in the combination 
treatment.
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Figure 2. OC PDOs exhibit interpatient heterogeneity in response to chemotherapy and targeted drugs. 
Waterfall plots with IC50-values (extracted from dose-response curves) of OC PDOs for chemotherapeutics 
and targeted drugs. The steady state (Css) or maximum (Cmax) in vivo plasma concentrations are indicated 
with the dotted line (Table S3). Bars north of the dotted line represent low-responsive samples, bars south 
of the dotted line represent high-responsive samples. A-C. Response to chemotherapeutics carboplatin 
(A), paclitaxel (B) and gemcitabine (C). D-F. Response to PARP-inhibitors olaparib (D), niraparib (E) and 
rucaparib (F). All PDOs were classified as low responsive to the PARP-inhibitors which correlated with 
their HR-proficient genetic make-up (no biallelic hit in HR-related genes). Not evaluated = no CHORD 
evaluation due to missing normal reference. G-J. Response to targeted drugs afatinib (G), vemurafenib (H), 
flavopiridol (I) and adavosertib (J) could partly be explained by genetic aberrations (color-coded) (Table S6, 
S7). WT=wildtype for the genes mentioned in each panel. NR=IC50-value not reached

The responses to targeted drugs revealed differences and similarities between PDOs 
which in part correlated to their genetic makeup. For example, all PDOs were classified 
in the low-responsive subgroup of the PARP-inhibitors olaparib, niraparib, and rucapa-
rib (Figure 2D-F), consistent with the absence of biallelic inactivation of BRCA1 and 
BRCA2, and other genes involved in homologous recombination (e.g. CHEK2, FAN-
CA, PALB2, RAD50, RAD51(B/C/D); Table S6 and S7). Additionally, HR-classifier 
CHORD classified all samples as HR-proficient based on genome-wide somatic muta-
tion contexts (Table S7)290. As expected, BRAF-, KRAS-, and NRAS-mutant PDOs were 
classified in the low-responsive subgroup of pan-HER-inhibitor afatinib (12/25; Figure 
2G) and high-responsive subgroup of BRAF-inhibitor vemurafenib (5/7; Figure 2H). 
Alterations in CDKN2A and XIAP, known to affect response to CDK-inhibitor flavo-

A

Figure 2. OC PDOs exhibit interpatient heterogeneity in response to chemotherapy and targeted drugs

IC
50

 (l
og

 µ
M

)

Carboplatin Paclitaxel Gemcitabine

M
C−

3.
1

LG
S−

5.
2

M
C−

3.
2

SB
T−

3.
1

HG
S−

24
LG

S−
5.

1
HG

S−
1−

R3
LG

S−
1.

3
HG

S−
22

HG
S−

23
HG

S−
13

.3
HG

S−
1−

R2
M

BT
−2

.1
LG

S−
2.

2
HG

S−
2

HG
S−

1
HG

S−
3.

1
HG

-2
5

HG
S−

6
LG

S−
5.

4
LG

S−
5.

3
M

C−
1.

2
HG

S−
3.

2
M

C−
3.

4
CC

C−
1

EN
D−

1.
1

M
C−

3.
3

LG
S−

3.
1

LG
S−

3.
2

HG
S−

13
.4

LG
S−

2.
1

0

1

2

−2

−1

NR

0

1

2

−2

−1

NR

IC
50

 (l
og

 µ
M

)

Afatinib Vemurafenib

LG
S-

2.
1

LG
S-

1.
3

LG
S-

3.
2

LG
S-

5.
2

LG
S5

.4
LG

S-
5.

1
LG

S−
5.

3

E
N

D
−1

.2
H

G
-2

6
M

C
−3

.4
M

C
−3

.1
M

C
−3

.2
LG

S
−1

.3
M

B
T−

1
LG

S
−2

.2
H

G
S

−2
4

H
G

S
−1

H
G

S
−1

−R
3

E
N

D
−1

.1
H

G
S

−2
3

H
G

S
−1

−R
2

H
G

-2
5

S
B

T−
3.

1
M

C
−1

.2
M

C
−3

.3
H

G
S

−6
H

G
S

−2
2

M
B

T−
2.

1
C

C
C

−1
H

G
S

−2
LG

S
−3

.1
H

G
S

−1
3.

4
M

C
−2

.1
H

G
S

−1
3.

3
H

G
S

−3
.1

H
G

S
−3

.2

0

1

2

−2

−1

NR

Niraparib

KRAS
BRAF
NRAS
WT

G

EN
D

−1
.1

M
BT

−2
.1

LG
S−

2.
2

C
C

C
−1

H
G

S−
1−

R
3

SB
T−

3.
1

H
G

S−
1−

R
2

H
G

S−
22

H
G

S−
23

H
G

S−
6

H
G

S−
13

.3
LG

S−
3.

1
H

G
S−

2
H

G
S−

1
H

G
S−

3.
1

H
G

S−
13

.4
H

G
S−

3.
2

Flavopiridol

H
G

-2
6

LG
S−

1.
3

EN
D

−1
.1

C
C

C
−1

M
C

−3
.2

M
C

−3
.4

M
C

−3
.1

H
G

S−
13

.3
M

C
−1

.2
M

C
−3

.3
M

BT
−1

H
G

S−
24

H
G

S−
23

H
G

S−
1−

R
3

EN
D

−1
.2

H
G

S−
1

H
G

S−
3.

1
M

C
−2

.1
H

G
S−

3.
2

H
G

S−
22

H
G

S−
1−

R
2

H
G

-2
5

Adavosertib

0

1

2

−2

−1

NR

0

1

2

−2

−1

NR
WT

XIAP

CDKN2a WT
TP53

Cmax

CssCss

Css

Rucaparib

IC
50

 (l
og

 µ
M

)

F

Css

BRAF
NRAS
WT

B C

EOlaparibD

JIH

HR-proficient

not evaluated

M
B

T−
2.

1
H

G
-2

6
S

B
T−

3.
1

M
C

−3
.4

LG
S

−2
.2

M
C

−3
.2

LG
S

−2
.1

M
C

−3
.1

M
C

−1
.2

H
G

S
−2

4
H

G
S

−1
−R

3
M

C
−3

.3
H

G
S

−2
3

LG
S

−5
.2

E
N

D
−1

.1
LG

S
−1

.3
LG

S
−5

.1
LG

S
−3

.2
H

G
S

−1
−R

2
C

C
C

−1
LG

S
−5

.3
H

G
S

−1
3.

3
H

G
S

−2
2

LG
S

−5
.4

H
G

S
−1

H
G

-2
5

LG
S

−3
.1

H
G

S
−3

.2
H

G
S

−3
.1

H
G

S
−1

3.
4

H
G

S
−6

H
G

S
−2

H
G

S
−1

−R
3

H
G

S
−6

H
G

S
−1

3.
4

H
G

S
−2

2
H

G
S

−2
3

H
G

S
−2

4
LG

S
−1

.3
LG

S
−2

.1
LG

S
−2

.2
LG

S
−3

.1
LG

S
−3

.2
LG

S
−5

.1
LG

S
−5

.2
LG

S
−5

.3
LG

S
−5

.4
C

C
C

−1
S

B
T−

3.
1

M
C

−1
.2

M
B

T−
2.

1
M

C
−3

.1
M

C
−3

.2
M

C
−3

.4
E

N
D

−1
.1

H
G

S
−1

3.
3

H
G

S
−1

−R
2

M
C

−3
.3

H
G

S
−1

H
G

S
−2

H
G

-2
5

H
G

S
−3

.1
H

G
S

−3
.2

H
G

S
−1

−R
3

H
G

S
−1

3.
3

LG
S

−2
.2

LG
S

−5
.1

LG
S

−5
.2

M
C

−3
.1

S
B

T−
3.

1
LG

S
−3

.1
LG

S
−2

.1
M

C
−1

.2
M

C
−3

.2
M

C
−3

.3
M

C
−3

.4
C

C
C

−1
H

G
S

−6
H

G
S

−2
3

H
G

S
−1

0
LG

S
−3

.2
H

G
S

−2
4

H
G

S
−2

2
LG

S
−5

.4
M

B
T−

2.
1

LG
S

−5
.3

E
N

D
−1

.1
H

G
S

−2
H

G
S

−1
3.

4
H

G
S

−1
−R

2
H

G
S

−1
LG

S
−1

.3
H

G
S

−3
.1

H
G

S
−3

.2
E

N
D

−1
.2

M
C

−2
.1

H
G

-2
5

M
B

T−
1

0

1

2

−2

−1

NR

−2

−1

0

1

2

NR

−2

−1

0

1

2

NR

H
G

S
−1

3.
4

H
G

S
−2

2
LG

S
−2

.2
S

B
T−

3.
1

M
B

T−
2.

1
C

C
C

−1
H

G
S

−1
−R

3
H

G
S

−6
H

G
S

−2
3

H
G

S
−2

H
G

S
−1

−R
2

E
N

D
−1

.1
H

G
S

−1
3.

3
LG

S
−3

.1
H

G
S

−1
H

G
S

−3
.1

H
G

S
−3

.2

H
G

S−
1

H
G

S−
1−

R
3

H
G

S−
2

H
G

S−
3.

1
H

G
S−

3.
2

H
G

S−
6

H
G

S−
13

.3
H

G
S−

23
H

G
S−

24
LG

S−
2.

2
LG

S−
3.

1
C

C
C

−1
H

G
-2

5
SB

T−
3.

1
M

BT
−2

.1
M

C
−3

.1
M

C
−3

.2
M

C
−3

.3
M

C
−3

.4
M

C
−1

.2
H

G
S−

22
EN

D
−1

.1
H

G
S−

13
.4

H
G

S−
1−

R
2

0

1

2

−2

−1

NR

HR-proficient

not evaluated

0

1

2

−2

−1

NR

HR-proficient

not evaluated

Css
Css

Cmax

Cmax

Cmax



68

3 3

CHAPTER 3

piridol, were present in our cohort291–293. CDKN2A was affected in the two PDOs which 
were the least responsive to flavopiridol: MBT-2.1 showed loss of both alleles and END-
1.1 harbored a nonsense variant (p.(R58*); Figure 2I), while copy number loss of XIAP 
was observed in two of the flavopiridol high-responsive PDOs (Figure 2I). All TP53 
wildtype PDOs (N=7) were classified into the low-responsive subgroup of WEE1-inhib-
itor adavosertib, while TP53 mutants (N=15) were distributed among both the low- and 
high-responsive PDOs (Figure 2J). For the remaining drugs, alpelisib, AZD-8055, MK-
2206, and pictilisib, no known genotype and drug response phenotype correlations were 
observed.
Subsequently, we evaluated for each individual patient how many of the tested mono-
therapies (3-13 per patient) remained as potential treatments based on an IC50-value 
smaller than the achievable concentration in patient plasma (Css/Cmax). In case of mul-
tiple tumor locations per patient, all test results were considered. A predicted sensitive 
response (classified in the high-responsive subgroup) to at least one (and maximum five) 
drug(s) was observed for 88% of patients, except for HGS-1-R3, MC-3 and HG-26 in 
which all of the 13, seven and three tested monotherapies yielded a predicted resistant 
response (classified in the low-responsive subgroup) in at least one of their PDOs (Fig-
ure 3; Table S3).

Figure 3: Overview of OC PDO response to single drugs per patient. Overview of the number of 
monotherapies tested per patient (3-13), classified as low or high responsive, based on the IC50-value 
relative to the in vivo plasma concentration (Css/Cmax, Table S3). For the majority of patients (88%) high 
responsiveness to at least one tested drug was identified. For patients with organoids derived from multiple 
tumor locations, results from all tested samples were considered. Red=low responsive, blue=high responsive.

Legend

Figure 3. Overview of OC PDO response to single drugs per patient
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PDOs derived from individual patients revealed intrapatient drug response 
heterogeneity

In addition to assessing interpatient drug response heterogeneity, we examined intra-
patient drug response heterogeneity. For seven individual patients, two to four PDOs 
were derived from distinct cancer lesions at a single time point. For one additional pa-
tient, three PDOs were derived at subsequent time points (Table S1, heterogeneity com-
parison). To set a threshold for differential drug response, we first assessed the extent of 
biological variability. We observed low drug response variability across biological repli-
cates (N=84) with an IC50-value correlation coefficient of R²=0.82 and mean IC50-fold 
change of 2.5±1.5 (range=1.0-7.3) (Figure S3B-C; Table S4), therefore, a ten-fold change 
in IC50-value was chosen as a stringent cut-off for differential drug response.

While homogeneous responses were observed to a subset of drugs and drug combina-
tions; carboplatin combined with gemcitabine, adavosertib, or olaparib, carboplatin, 
olaparib, niraparib, rucaparib, alpelisib, AZD-8055, flavopiridol, pictilisib, and vemu-
rafenib (Figure S4), all related PDOs exhibited differential drug response to at least one 
drug, as defined by a >10-fold change in IC50-value (Figure 4). In the seven patients 
of whom multiple PDOs were derived at the same time point, differential response to 
mono-treatment was observed 11/36 times (31%). Importantly, in six cases, one of the 
samples exhibited high responsiveness whereas a related sample exhibited low respon-
siveness to the tested drugs.

To examine the impact of intratumor genetic heterogeneity on phenotypic heterogeneity, 
we assessed genetic variants in genes that are known or predicted to interact with drugs 
according to the drug-gene interaction database resource (DGIdb; Table S5)291. HGS-
13.3, LGS-2.2, LGS-5.2, MC-3.1 and MC-3.2 PDOs were markedly less responsive to 
the pan-HER-inhibitor afatinib compared to their related PDOs, while differences in re-
sponse could not be explained by differences in copy number of EGFR/ERBB2(HER2)/
ERBB3/ERBB4 (Figure 4F, Table S7). Despite meeting the criteria of differential re-
sponse, all four BRAF-mutant LGS-5 PDOs were classified in the low-responsive sub-
group of afatinib with an IC50-value above the steady state concentration of -0.8 log 
μM. The remaining related PDOs with differential response (HGS-13, LGS-2, MC-3) 
were classified in both the low- and high-responsive subgroup of afatinib. We observed 
differences in KRAS mutation status between the four PDOs derived from a patient 
with a mucinous OC (MC-3). The two least responsive PDOs (MC-3.1 and MC-3.2) 
harbored a KRAS hotspot mutation (p.G12V), whereas the other low-responsive PDO 
MC-3.4 harbored two different KRAS mutations (p.L19F and p.Q61E, both reported 
to have an attenuated phenotype compared to hotspot mutations294,295 and the high-re-



70

3 3

CHAPTER 3

sponsive PDO MC-3.3 was KRAS wildtype (WT) (Table S6). KRAS mutations were 
independently confirmed with Sanger sequencing (Figure S3C).

LGS-5 PDOs also exhibited differential responsiveness to gemcitabine and the MEK-in-
hibitor cobimetinib (Figure 4B, 4G). LGS-5.1 and LGS-5.2 were both in the low-respon-
sive subgroup of gemcitabine, whereas LGS-5.3 and LGS-5.4 were in the high-respon-
sive subgroup. LGS-5.4 was also highly responsive to cobimetinib, while the other LGS-5 
PDOs were in the low-responsive subgroup. All LGS-5 PDOs were largely genetically 
identical, and no variants or copy number changes were identified that explained differ-
ential response to these drugs (Table S6, S7).

HGS-13.3 PDOs revealed a >10-fold higher IC50-value compared to HGS-13.4 PDOs 
for gemcitabine, the combined carboplatin and paclitaxel treatment and afatinib (Figure 
4B, 4C, 4F, Table S3). Consistent with previous findings on the effect of copper-efflux 
pumps on chemotherapy sensitivity296–298, copy number losses of ATP7A and ATP7B 
were identified in the HGS-13.4 (Table S7). Additionally, six other genes previously 
associated with chemotherapy response (EIF4EBP1, EDNRB, NAT2, TLE3, BRCA2 
and NRG1)299–301, exhibited different copy-number states between HGS-13.3 and -13.4 
which may also have contributed to the observed differential response to gemcitabine 
and combined carboplatin and paclitaxel treatment (Table S7). 

END-1 PDOs, both derived from distinct parts of the tumor lesion in the same ovary, 
demonstrated differential drug response to gemcitabine, WEE1-inhibitor adavosert-
ib and AKT-inhibitor MK-2206 (Figure 4B, 4D, 4E). We identified genetic alterations 
in WWOX, ERBB2 and HRAS that might have contributed to the observed differen-
tial response (Table S6, S7)302–306. However, even though END-1.2 achieved the low-
est IC50-values for all three drugs, both END-1.1 and END-1.2 were classified in the 
high-responsive subgroup of gemcitabine and low-responsive subgroup of MK-2206 
and adavosertib (Figure 4B, 4D, 4E).

HGS-3.1 and LGS-3.1 displayed drug responses that were very similar to their related 
PDOs (Figure 4; Table S3). In these related PDOs, differential response was only ob-
served for the combined carboplatin and paclitaxel treatment, while drug responses 
were similar to carboplatin and paclitaxel mono-treatment. Two carboplatin-response 
associated genes291, CLCN6 and MTHFR, exhibited copy number loss in the high-re-
sponsive PDO LGS-3.1 (Table S7). Functional studies have not focused on CLCN6 and 
chemotherapy response, but have shown additive effects of MTHFR-inhibition and che-
motherapeutic drugs307.
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Figure 4: OC PDOs exhibit intrapatient heterogeneity in response to chemotherapy and targeted drugs. 
IC50-values (extracted from dose-response curves) for drugs that elicit a differential drug response in at least 
one patient with multiple OC PDOs: paclitaxel (A), gemcitabine (B), carboplatin+paclitaxel (C), adavosertib 
(D), MK2206 (E), afatinib (F), cobimetinib (G), vemurafenib+cobimetinib (H), vemurafenib+afatinib (I), 
vemurafenib+afatinib+paclitaxel (J). Differential drug response is defined as >10 fold-change in IC50-value 
within related samples. Left panel: unrelated and related samples without differential response. Right panel: 
related samples that exhibited differential response. A color code for each patient is shown. The dotted 
line indicates the steady state (Css) or maximum (Cmax) in vivo plasma concentrations for all single drug 
treatments (Table S3).

Additionally, drug response heterogeneity was examined in a patient from whom PDOs 
were obtained at multiple time points. HGS-1 was derived from primary chemosensi-
tive disease and HGS-1-R2 and HGS-1-R3 were derived from recurrent chemoresistant 
disease, and together these PDOs reflected the clinical course of the patient. HGS-1-R2/
R3 were less responsive to the mono- and combination treatment of carboplatin and pa-
clitaxel compared to HGS-1 (Figure 4A, 4C; Table S3). Although HGS-1-R2 and HGS-
1-R3 were derived from ascites collected within a timeframe of one month, differential 
responsiveness was observed to paclitaxel, gemcitabine and adavosertib (Figure 4A, 4B, 
4D).
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Figure 4. OC PDOs exhibit intrapatient heterogeneity in response to chemotherapy and targeted drugs
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Figure 5: OC PDOs exhibit varying degrees of genome-wide heterogeneity at both the SNV and CNA 
level. (A-H) related OC PDOs with from left to right venn diagrams showing the overlap of all identified 
SNVs, deletions, and amplifications. In parentheses, the percentage of unique variants in each PDO.
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Moreover, we assessed if SVs (including gene fusions) in genes from the DGIdb resource 
could be linked to differential drug response. In the related PDOs derived from the eight 
patients that exhibited differential drug response, no SVs were identified that could ex-
plain phenotypic heterogeneity. In addition to genetic heterogeneity in genes reported to 
influence drug response by the DGIdb, related PDOs also exhibited varying degrees of 
genome-wide heterogeneity at both the SNV and CNA levels (Figure 5). The PDOs have 
been sequenced at slightly different passage numbers, therefore the heterogeneity may 
also be influenced by tumor content (Table S7) and extended passaging, although we 
have previously shown that PDOs remained similar at the genomic level after extended 
passaging278. The average number of unique SNVs and CNAs in all related PDOs were 
24% (2 to 70%) and 17% (0 to 100%), respectively. Considerable genomic heterogeneity 
at SNV level was observed in LGS-2 and MC-3 (30-70% unique SNVs per PDO), while 
these PDOs exhibited differential drug response to only one/two drugs. On the other 
hand, END-1 and LGS-5 had the lowest degree of genomic heterogeneity (2-14% unique 
SNVs per PDO) and exhibited heterogeneous response to three drugs. In conclusion, we 
did not observe a direct correlation between genome-wide heterogeneity and differential 
drug response.

Discussion

We have performed drug screening on 36 PDOs derived from 23 patients comprising all 
major OC histopathological subtypes. OC PDOs resembled the tumors they were de-
rived from, with an average overlap of 67% of SNVs and similar CNA profiles. PDOs 
generated at interval debulking recapitulated clinical response to first-line carboplatin 
and paclitaxel combination treatment for histopathological (p=5.821e-05), biochemical 
(p=0.0004) and radiological (p=0.0092) outcomes.

Diverse responses to registered drugs for OC were observed among PDOs. Low respon-
siveness to first-line carboplatin (7/31, 23%) and paclitaxel (5/31, 16%) treatment was 
observed, compared to high responsiveness in the majority of patients to second-line 
gemcitabine treatment (29/35, 83%). All PDOs exposed to PARP-inhibition were found 
to be low responsive, in line with HR-proficiency classification based on WGS data. Re-
sponse to targeted drugs under clinical investigation could partly be explained by genetic 
variation; low responsiveness to afatinib (12/25, 48%), low responsiveness to adavosertib 
(7/17, 41%), high responsiveness to flavopiridol (N=4/17, 24%) and high responsiveness 
to vemurafenib (5/7, 71%). Importantly, we identified a high responsiveness to at least 
one tested drug in nearly all patients (22/25, 88%). Since not all PDOs were exposed to 
the same number of drugs (3-13 monotherapies tested per patient), this is likely an un-
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derrepresentation. Finally, intrapatient tumor heterogeneity assessment in seven patients 
with organoids derived from multiple tumor locations, revealed differential response to 
at least one drug for all patients, indicating the importance to evaluate multiple tumor 
locations.

In a systematic approach, we showed that PDO drug response correlated with several 
clinical response measures. This included histopathological assessment of tumor regres-
sion according to a three-tier method (CRS)285, which is recommended for assessment of 
response to neoadjuvant therapy308. Histopathological grading of tumor regression offers 
the advantage to study each tumor site separately, as opposed to patient-wide measures 
of response such as CA-125, RECIST, and survival outcomes. Furthermore, it is a direct 
measure of chemotherapy response, whereas the survival outcomes may also be influ-
enced by completeness of surgery, co-morbidity and other known prognostic factors. 
While Bohm et al.285 previously reported that the prognostic significance of the CRS on 
omental tumor lesions was greater than on primary tumor sites, we applied it to all tu-
mor locations where organoids were derived from. In this study, we present a correlation 
between CRS and PDO drug response to carboplatin and paclitaxel combination treat-
ment.

In order to bring PDO-based drug response assessment to the clinic, PDO establishment 
and drug screening needs to be performed within a short timeframe, preferably limited 
to the diagnosis-treatment interval. In line with previous studies279,309–311, we demon-
strated that PDO establishment and drug screening is feasible within three weeks. Other 
studies showed a timeframe of one to two weeks. To further validate the predictive value 
of PDOs, we plan to undertake a prospective trial in which organoids will be derived 
from both primary and recurrent tumors and tested for response to drugs provided in 
the clinic, while clinical response is systematically monitored.

Considering intrapatient drug response heterogeneity, derivation of organoids from 
multiple tumor locations of individual patients, may further improve treatment alloca-
tion312. Although sequencing studies have shown that OCs display extensive inter- and 
intratumor heterogeneity on a genetic level78,283, we could only partially link inter- and 
intratumor heterogeneous drug responses to genetic heterogeneity. Additionally, some 
of the CNAs that we identified in genes reported to be related to drug response by the 
DGIdb might be non-contributive passenger events, given the high frequency of CNAs 
in high-grade serous OC. Therefore, follow-up studies with increased sample sizes and 
deeper sequencing are required to decipher drug response associations with the candi-
date genes identified here, and to discover novel resistance mechanisms. Importantly 
however, the lack of complete correlation between genetic and functional testing at this 
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point, stresses the need for functional testing in addition to genetic testing to improve 
clinical decision making.

The establishment of a larger collection of OC PDOs will provide the opportunity to 
determine comprehensive, clinically useful genotype-phenotype correlations. When a 
large collection including drug response data is available, treatment stratification can 
potentially be performed based on genomic or transcriptomic characteristics of specific 
PDO subtypes, which could make organoid derivation dispensable in the future312. This 
transition requires an accurate classification of drug-sensitive and -resistant PDOs. Sim-
ilar to previous studies288,289, OC PDOs were considered highly responsive if the drug 
concentration that reduced viability of >50% of cells was lower than the concentration 
achievable in patient plasma (Css/Cmax). However, the Css/Cmax will vary between 
patients and is not necessarily the concentration that is achieved in the tumor313,314. In 
addition, sometimes patients require dose adjustments due to adverse events which also 
affect the drug concentration achievable in both plasma and tumor. Therefore, it should 
be taken into account that tumors predicted to be highly responsive based on the PDO 
drug response may clinically not respond. Prospective clinical trials comparing clinical 
to PDO drug response, should be complemented with plasma drug level measurements 
to further elucidate the relation between in vitro and clinical responsiveness.
To conclude, OC PDOs provide a valuable preclinical model system to guide treatment 
choice in the clinic as it satisfies the following criteria; 1) PDOs genetically resemble the 
original tumor from which they are derived, 2) PDO drug response often reflects pa-
tients’ clinical response, and 3) PDO establishment and drug screening can be performed 
within a short timeframe. Generating and testing PDOs of multiple tumor locations will 
provide insights in differential drug response as a result of tumor heterogeneity. This in-
formation could improve treatment stratification and reduce the development of drug 
resistance. Complementary PDO drug screening and genomic analysis allows the link-
age of genotypes with drug responsiveness patterns to identify candidate biomarkers for 
drug response.

STAR Methods

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and 
will be fulfilled by the Lead Contact, Ellen Stelloo (estelloo@umcutrecht.nl).
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Materials Availability
Available OC PDOs are cataloged at www.hub4organoids.eu and can be requested at 
info@hub4organoids.eu. Distribution of OC PDOs to third parties will have to be autho-
rized by the IRB UMCU at the request of the HUB to ensure compliance with the Dutch 
‘medical research involving human subjects’ act.

 
Data and Code Availability
BAM files of whole-genome sequencing data are made available through controlled 
access at the European Genome-phenome Archive (EGA) which is hosted at the 
EBI and the CRG (https://ega-archive.org), under dataset accession number EGA: 
EGAD00001005707 and EGAD00001004387. Data access requests will be evaluated 
by the UMCU Department of Genetics Data Access Board (EGAC00001000432) and 
transferred on completion of a material transfer agreement and authorization by the IRB 
UMCU at the request of the HUB to ensure compliance with the Dutch ‘medical re-
search involving human subjects’ act. Additionally, custom code for genomic analyses is 
available in https://github.com/UMCUGenetics/OvCa_organoids_heterogeneity.

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Patient samples and clinical data collection
For this study we included women diagnosed with epithelial OC (median age: 65 years). 
Each patient signed informed consent and was able to withdraw her consent at any time. 
Tumor samples, ascites and blood samples were gathered between January 2016 and 
September 2019 at the University Medical Center Utrecht, and Leiden University Medi-
cal Center, The Netherlands. Patient data and tissue collection was performed according 
to the guidelines of the European Network of Research Ethics Committees (EUREC) 
following European, national and local law. The Institutional Review Board of the UMC 
Utrecht (IRB UMCU) approved the biobanking protocol: 14-472 HUB-OVI. Clinical 
data was collected from the patient files. Patient samples were derived at primary disease 
during primary debulking surgery or interval debulking surgery, or adnex extirpation 
procedures. Upon recurrence, tissue was collected during (laparoscopic) surgery per-
formed for treatment or diagnostic purposes, or ascites was collected during palliative 
drainage procedures. No statistical test was used to predetermine sample size.
For the clinical-PDO drug response comparison we selected the samples that met all of 
the following three conditions: 1) samples were derived at interval debulking surgery; 
2) organoid drug response data to carboplatin/paclitaxel was available; 3) patient drug 
response to carboplatin/paclitaxel was available. For the intrapatient heterogeneity com-
parison we selected all patients of whom multiple PDOs were derived.



77

3 3

PATIENT-DERIVED OVARIAN CANCER ORGANOIDS MIMIC CLINICAL RESPONSE AND
EXHIBIT HETEROGENEOUS INTER- AND INTRAPATIENT DRUG RESPONSES

Organoid derivation and culture

Organoids were derived from tumor samples of patients with OC and cultured accord-
ing to our previously described protocol278. Briefly, tumor tissue was cut into small piec-
es. Two random pieces were separated for fixation in formalin for histopathological anal-
ysis and DNA isolation. The remaining tissue was minced, washed with 10 ml advanced 
DMEM/F12 containing 1x Glutamax, 10 mM HEPES and antibiotics (AdDF+++), col-
lected in a tube, and centrifuged at 300g for 5 minutes. Fragments were allowed to set-
tle under normal gravity for 1 minute, and remaining big tissue pieces were digested in 
AdDF+++ supplemented with 5 µM RHO/ROCK pathway inhibitor (Y-27632) contain-
ing 0.5–1.0 mg/ml collagenase at 37 °C for 0.5–1.0 h. Ascites/pleural effusion samples 
were centrifuged, and washed with AdDF+++. The cell pellet was allocated fixation in 
formalin, DNA isolation and organoid derivation. To eliminate erythrocytes, the samples 
for organoid derivation were incubated with 2 ml red blood cell lysis buffer for 5 min at 
room temperature followed by an additional wash with 10 ml AdDF+++ and centrifuga-
tion at 300g for 5 minutes. Finally, the cells were embedded in BME (Cultrex growth fac-
tor reduced BME type 2) on ice and seeded on pre-warmed 24-well suspension culture 
plates. Following BME polymerization, the cells were overlaid with appropriate organoid 
culture medium and incubated at 37°C in humidified air containing 5% CO2 (see Ta-
ble S1). PDO names are informative of histological subtype, patient and tumor location. 
Histological subtype: HGS/LGS=high/low-grade serous adenocarcinoma, HG=high-
grade adenocarcinoma, SBT/MBT=serous/mucinous borderline tumor, MC=mucinous 
adenocarcinoma, CCC=clear cell carcinoma, END=endometrioid carcinoma. The first 
number indicates the patient, the second number indicates tumor location.

 
METHOD DETAILS
In vitro PDO drug response testing
PDO drug response testing was performed as previously described278. In short, PDOs 
were exposed to drugs in varying concentrations and to controls (DMSO, ABT-263/
navitoclax) for 120 hours in 384-well plates, after which ATP levels were measured with 
the Cell-Titer Glo2.0 assay. All screens were performed in technical replicates. Biolog-
ical replicates were performed in a subset of PDOs and drugs (Table S4) to investigate 
biological variation. Results were normalized to vehicle (DMSO = 100%) and baseline 
control (ABT-263/navitoclax 20 μM). Data was analyzed using GraphPad Prism 6. Drug 
dose-response curves were visualized using linear regression analysis (setting: log(in-
hibitor) vs. response; least squares (ordinary) fit; top constraint 100%). Concentrations 
where 50% cell viability (IC50-value) was reached were interpolated. The area under the 
curve (AUC) was approximated between the lowest and highest concentrations screened 
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in the actual assay with the trapezoid rule for numerical integration.

 
Clinical drug response measures
Histopathological response was assessed with the chemotherapy response score (CRS) 
after three cycles of neoadjuvant chemotherapy, according to the guidelines described by 
Bohm et al.285. All available hematoxylin and eosin stained slides of each tumor location 
from which we established PDOs were assessed for tumor purity. The slide with the most 
tumor per location was subsequently blinded scored by two certified pathologists (PvD, 
CV), as CRS-1 (no or minimal pathological response), CRS-2 (appreciable pathological 
response) or CRS-3 (complete or near-complete pathological response). In case of dis-
agreement consensus was reached. Radiological response was assessed according to the 
RECIST criteria for solid tumors (version 1.1)287. A score for each patient was obtained, 
from best to worst response: complete response (CR), partial response (PR), stable dis-
ease (SD), or progressive disease (PD). Biochemical response was measured by assessing 
response and timing of normalization (<35kU/L) of biomarker cancer antigen 125 (CA-
125)286. For progression-free survival (PFS) a cut-off of six months was employed; since 
patients with less than six months PFS are predicted to be resistant to subsequent plati-
num-treatment. For overall survival, 17 months was taken as a cut-off, based on survival 
data of a recent cohort of patients (2015-2016) with HGS OC stage IV disease by the 
Dutch Cancer Registration. Seventeen months after diagnosis, 50% of patients with HGS 
OC stage IV were still alive.

DNA isolation and whole-genome sequencing
DNA was isolated with the DNeasy Qiagen kit (PDOs and blood samples) and Genom-
ic Tip Qiagen kit (tumor samples), supplemented with RNase treatment. Fresh frozen 
tumor material obtained through biopsy procedures was processed with the QiaSym-
phony DSP DNA kit for low input. For DNA library preparation, 500–1,000 ng of DNA 
was used. Subsequently, whole-genome paired-end sequencing (WGS; 2x 150 bp) was 
performed on Illumina HiSeq X Ten and NovaSeq 6000 to a median coverage of 31X 
(range 24-45X).

 
WGS data analysis
WGS data were processed using the Hartwig Medical Foundation (HMF) somatic mu-
tation workflow. We installed the pipeline (v4.8) locally using GNU Guix with the rec-
ipe from https://github.com/UMCUGenetics/guix-additions. Full details and pipeline 
description are explained in detail by Priestley et al.29 (https://github.com/hartwigmed-
ical/pipeline). Briefly, sequence reads were mapped against human reference genome 
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GRCh37 with Burrows-Wheeler Alignment (BWA-MEM) (v0.7.5a)315. Indel realign-
ment and base recalibration was performed with the Genome Analysis Toolkit (GATK, 
v3.8.1)316. Somatic single nucleotide variants (SNVs) and small insertions and deletions 
were called with Strelka (v1.0.14)317. The functional effect of the somatic SNVs and indels 
were predicted with SnpEff (v.4.3)260. Somatic structural variants (SVs) were called with 
GRIDSS (v1.8.0)318. To assess the SNV overlap between an organoid and a corresponding 
tumor sample, SNVs that were only detected in either the tumor or the organoid sample 
of a pair were in a subsequent step called in the corresponding sample (tumor or organ-
oid) when supported by at least one read.

Copy number alterations (CNAs) were called with PURPLE (v2.17)284. PURPLE also as-
sesses tumor purity. In case of low tumor purity, a “NO_TUMOR” quality flag was raised 
by PURPLE, meaning PURPLE failed to find any aneuploidy, and somatic variants were 
supplied but there were fewer than 300 with observed VAF > 0.1, indicating a high nor-
mal cell content (Table S7). For tumor samples MC-3.2, MC-3.3, MBT-2.1 and MC-1.2, 
based on manual verification, a wrong ploidy level was automatically selected by PUR-
PLE. We verified with metaphase spreads analysis on MC-3.2, MBT-2.1 and MC-1.2 
PDOs that a ploidy of 2 was most likely for those PDOs and tumor samples. Therefore, 
and due to the impossibility of manually correcting the ploidy selection in PURPLE, we 
ran Control-FREEC (v. 11.0)319 instead on all samples (tumor and PDO) from those pa-
tients. Telomeric and centromeric regions were masked for visualization.

For samples CCC-1, END-1.1, END-1.2, HGS-22 and HGS-23 no normal reference 
sample was available for somatic mutation calling. In these cases, germline SNV calling 
was performed with GATK316 and only SNVs with a “HIGH” or “MODERATE” effect 
as predicted by SnpEff were considered. Similarly, germline SV calling was performed 
using GRIDSS and SV calls were filtered against the SV Panel of Normals from the HMF 
analysis pipeline, which can be found in https://resources.hartwigmedicalfoundation.nl. 
Since PURPLE requires tumor-normal pairs, CNA calling for these five samples was per-
formed individually with Control-FREEC (v. 11.0)319.

 
Assessment of homologous recombination status
To identify homologous recombination (HR)-deficient samples, BRCA1 and BRCA2 as 
well as other genes in the HR-pathway (BARD1, BRIP1, CHEK2, FANCA, PALB2, 
RAD50, RAD51(B/C/D)) were assessed for biallelic inactivation, incorporating both 
germline and somatic WGS data. Biallelic inactivation was defined as: a deep deletion 
(i.e. full loss of both alleles); or Loss-Of-Heterozygosity (LOH) in combination with (i) 
a known pathogenic/likely pathogenic variant according to ClinVar (https://www.ncbi.
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nlm.nih.gov/clinvar/; GRCh37, database date 2018-12-07), or (ii) a frameshift, nonsense 
or essential splice variant as annotated by SnpEff (http://snpeff.sourceforge.net; v4.1h). 
Additionally, CHORD (Classifier of HOmologous Recombination Deficiency, v1.04) 
was employed to classify PDO samples as HR-proficient or -deficient based on the pres-
ence of genome-wide somatic mutation contexts (primarily deletions with flanking mi-
crohomology and 1-100kb structural duplications)290. Samples without a germline refer-
ence sample were excluded from CHORD evaluation.

 
Selection of genes from the DGIdb resource
The Drug Gene Interaction database (DGIdb) was utilized as a resource to obtain a list 
of genes that have a known interaction with drug response291. WGS data of PDOs were 
checked for SNVs, SVs and CNAs in DGIdb genes, in case differential drug response was 
observed within related PDOs. Homo-polymer regions were excluded. To identify sig-
nificantly amplified and deleted genes we applied stringent criteria adopted from Priest-
ley et al.29. An amplification was defined as [minimum exonic copy number > three times 
the sample ploidy], while a deletion was defined as [minimum exonic copy number <0.5 
times the sample ploidy]. Related samples were regarded genetically heterogeneous on 
copy number level, if they presented with different copy-number states (amplified vs 
neutral vs deleted). Furthermore, differential response among related samples was only 
considered if the ploidy-corrected copy number levels were >10% apart.

QUANTIFICATION AND STATISTICAL ANALYSIS
Descriptive statistics including mean, SD and SEM were conducted with R or GraphPad 
Prism. The significance level for 95% confidence interval was set to α=0.05. The Pearson 
correlation test was applied to evaluate the correlation between replicate experiments. The 
Wilcoxon signed-rank test was applied for the comparison of clinical response groups. 
The means of two technical replicates of each sample at all measured drug concentrations 
were compared between clinical response groups (CRS-1 vs -2, RECIST SD vs PR, no 
CA-125 normalization vs normalization, PFS <6 months vs >=6 months, OS <17 months 
vs >=17 months). We corrected for multiple testing with the Bonferroni method (alpha = 
0.05 / 5 (tests)), resulting in a statistically significant threshold of p=0.01.

 
 



81

3 3

PATIENT-DERIVED OVARIAN CANCER ORGANOIDS MIMIC CLINICAL RESPONSE AND
EXHIBIT HETEROGENEOUS INTER- AND INTRAPATIENT DRUG RESPONSES

List of supplementary data

Figure S1.		  Organoid culture and drug response correlation.
Figure S2.		  OC PDOs retained genomic features of the original tumor lesions.
Figure S3.		  Quality control: drug screening reproducibility and mutation confirmation.
Figure S4.		  Drugs that elicit similar drug responses in related OC PDOs. 

*Table S1.		  Description of study cohort. 
*Table S2.		  Clinicopathological data for HGS OC PDOs derived at interval debulking surgery. 
*Table S3.		  IC50-values per drug for OC PDOs related to the maximum (Cmax) or steady state 	
		  (Css) in vivo plasma concentrations. 
*Table S4.		  IC50-values for all biological replicates. 
*Table S5.		  Drug response associated genes from the DGIdb resource.
*Table S6.		  SNVs in drug response associated genes in OC PDOs. 
*Table S7.		  CNAs in drug response associated genes in OC PDOs and CHORD classifier scores.

 
*Table S1-7 are available online at: https://tinyurl.com/Ch3Suppl or scanning the QR code below
 



82

3 3

CHAPTER 3

Figure S1: Organoid culture and drug response correlation. Related to Figure 1. (A) Macroscopic image 
of tumor specimen of HG-26 obtained upon recurrence at palliative debulking surgery. Cross-section of the 
uterus, with exophytic and infiltrating growing tumor, obliterating the uterine cavity. Tumor is perforating 
deeply into the myometrium. Tumor sample (0.5 cm3) was obtained for organoid culture. For diagnosis of 
this tumor, the diagnostic department performed an Infinium CytoSNP-850K v1.2 array, which confirmed 
that the primary seromucinous OC, diagnosed three years earlier, was clonally related to this recurrent 
high-grade ovarian adenocarcinoma. (B-C) Representative brightfield images of PDO HG-26 at day 15 
prior to rapid drug screening. (D-H) Correlation of OC PDO drug response with specific measures of 
clinical drug response, related to Figure 1. Drug dose-response curves of OC PDOs for carboplatin and 
paclitaxel combination treatment dichotomized into clinical response groups. Each drug combina-tion was 
tested twice (technical replicate) per OC PDO. Upper x-axis: carboplatin drug concentrations, lower x-axis: 
paclitaxel drug concentrations. Dose response curves normalized to positive (navitoclax, ABT-263) and 
negative controls (DMSO). Data points represent the mean of grouped data. Non-linear regression analysis: 
log(inhibitor) vs. response fit. Red=clinically resistant, blue=clinically sensitive, (D) Histopathological tumor 
response: CRS1=no or minimal response vs CRS2=appreciable response. (E) Biochemical response: no 
normalization (<35 kU/L) of serum CA-125 during primary treatment vs normalization. (F) Radiological 
response: stable disease vs partial response according to RECIST criteria. (G) Progression-free survival: 
<6 months vs >=6 months. (H) Overall survival: <17 months vs >=17 months. *Statistically significant 
difference between the clinically sensitive and resistant group according to Wilcoxon signed-rank test 
corrected for multiple testing (p<0.01

Figure S1. Organoid culture and drug response correlation
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Figure S1. Related to figure 1. A) Macroscopic image of tumor specimen of HG-26 obtained upon recurrence at palliative 
debulking surgery. Cross-section of the uterus, with exophytic and infiltrating growing tumor, obliterating the uterine cavity. 
Tumor is perforating deeply into the myometrium. Tumor sample (0.5 cm3) was obtained for organoid culture. For diagnosis 
of this tumor, the diagnostic department performed an Infinium CytoSNP-850K v1.2 array, which confirmed that the primary 
seromucinous OC, diagnosed three years earlier, was clonally related to this recurrent high-grade ovarian adenocarcino-
ma. B-C) Representative brightfield images of PDO HG-26 at day 15 prior to rapid drug screening. D-H) Correlation of OC 
PDO drug response with specific measures of clinical drug response, related to figure 1. Drug dose-response curves of OC 
PDOs for carboplatin and paclitaxel combination treatment dichotomized into clinical response groups. Each drug combina-
tion was tested twice (technical replicate) per OC PDO. Upper x-axis: carboplatin drug concentrations, lower x-axis: 
paclitaxel drug concentrations. Dose response curves normalized to positive (navitoclax, ABT-263) and negative controls 
(DMSO). Data points represent the mean of grouped data. Non-linear regression analysis: log(inhibitor) vs. response fit. 
Red=clinically resistant, blue=clinically sensitive, D) Histopathological tumor response: CRS1=no or minimal response vs 
CRS2=appreciable response. E) Biochemical response: no normalization (<35 kU/L) of serum CA-125 during primary treat-
ment vs normalization. F) Radiological response: stable disease vs partial response according to RECIST criteria. G) 
Progression-free survival: <6 months vs >=6 months. H) Overall survival: <17 months vs >=17 months. *Statistically signifi-
cant difference between the clinically sensitive and resistant group according to Wilcoxon signed-rank test corrected for 
multiple testing (p<0.01).
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Figure S2: OC PDOs retained genomic features of the original tumor lesions. Related to Figure 5. (A) 
Stacked bar chart showing the number of shared (red) and unique (tumor-green, PDO-blue) SNVs between 
tumor and PDO pairs. (B) Comparison of genome-wide CNAs in tumor and PDO pairs. (C) Genome-wide 
CNAs in PDO-only samples. Copy-number losses are depicted in blue and gains in red.
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Figure S2. Related to figure 5. A) Stacked bar chart showing the number of shared (red) and unique (tumor-green, PDO-blue) 
SNVs between tumor and PDO pairs. B) Comparison of genome-wide CNAs in tumor and PDO pairs. C) Genome-wide CNAs 
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Figure S3: Quality control: drug screening reproducibility and mutation confirmation. Related to 
Figure 2 and 4. (A) Scatterplot of AUC values for all technical replicates of drug screening data. (B-C) 
Reproducibility between PDO biological replicates in terms of drug response. (B) Scatterplot of IC50-values 
for all biological replicates (different passage numbers) for 12 drugs and four drug combination treatments. 
(C) Fold-change in IC50-value between the biological replicates. IC50-values were extracted from the drug 
dose-response curves. A ten-fold change in IC50-value was chosen as an arbitrary cut-off for differential 
drug response (red dashed line). (D) Confirmation of KRAS muta-tion status by Sanger sequencing in 
PDOs MC-3. Sequencing chromatogram (reverse strand) for confirmation of KRAS muta-tion p.G12V in 
MC-3.1 and -3.2 and p.L19F in MC-3.4.

Figure S3. Quality control: drug screening reproducibility and mutation confirmation
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85

3 3

PATIENT-DERIVED OVARIAN CANCER ORGANOIDS MIMIC CLINICAL RESPONSE AND
EXHIBIT HETEROGENEOUS INTER- AND INTRAPATIENT DRUG RESPONSES

Figure S4: Drugs that elicit similar drug responses in related OC PDOs. Related to figure 4. IC50-values 
(extracted from dose-response curves) for drugs that elicit similar drug response in all related OC PDOs: 
carboplatin+adavosertib (A), carboplatin+gemcitabine (B), carboplatin+olaparib (C), carboplatin (D), 
olaparib niraparib (E), rucaparib (F), alpelisib (G), AZD8055 (H), flavopiridol (I), pictilisib (J), vemurafenib 
(K). A color code for each patient is shown. The dotted line indicates the steady state (Css) or maximum 
(Cmax) in vivo plasma concentrations for all single drug treatments (table S3).
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Abstract

Accurate detection of somatic structural variation (SV) in cancer genomes remains a 
challenging problem. This is in part due to the lack of high-quality gold standard datasets 
that enable the benchmarking of experimental approaches and bioinformatic analysis 
pipelines for comprehensive somatic SV detection. Here, we approached this challenge 
by genome-wide somatic SV analysis of the paired melanoma and normal lympho-
blastoid COLO829 cell lines using four different technologies: Illumina HiSeq, Oxford 
Nanopore, Pacific Biosciences and 10x Genomics. Based on the evidence from multiple 
technologies combined with extensive experimental validation, including Bionano opti-
cal mapping data and targeted detection of candidate breakpoint junctions, we compiled 
a comprehensive set of true somatic SVs, comprising all SV types. We demonstrate the 
utility of this resource by determining the SV detection performance of each technology 
as a function of tumor purity and sequence depth, highlighting the importance of as-
sessing these parameters in cancer genomics projects and data analysis tool evaluation. 
The reference truth somatic SV dataset as well as the underlying raw multi-platform se-
quencing data are freely available and are an important resource for community somatic 
benchmarking efforts.
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Introduction

Structural genomic variations (SVs) form a major class of somatic genetic variation in 
cancer genomes150,320, involving dozens to thousands of somatic SVs with varying size 
distribution and patterns150. While some SVs represent simple deletions, others tend to 
be complex, involving multiple breakpoints across a relatively short genomic interval. 
For example, chromothripsis is a form of complex SVs frequently observed in cancer 
genomes154,156, resulting from aberrant chromosome segregation or telomere dysfunc-
tion321,322. Other types of complex SVs involve oncogene amplifications arising from 
breakage-fusion-bridge cycles148,150,208. SVs in cancer genomes may promote cancer 
development through a variety of mechanisms, such as oncogene activation through 
gene-fusions, disruption of tumor suppressor genes or by affecting gene regulation323,324. 
Oncogenic fusion genes resulting from somatic SVs form important targets for cancer 
drugs, and somatic SVs may form neo-antigenic targets for immunotherapies325, demon-
strating the relevance of accurate somatic SV detection for personalized cancer treat-
ment158,324.

While classical karyotyping and FISH analyses have been instrumental in systematic 
copy number analyses in tumor samples158,324, these technologies provide limited reso-
lution or do not allow for comprehensive genome-wide analysis and are thus unable to 
resolve the complete spectrum of SV events. Most of our knowledge on genome-wide 
high-resolution SVs in cancer genomes stems from the analysis of short-read whole ge-
nome sequencing, which is currently the only scalable and cost-efficient technology for 
high-resolution genome-wide cancer genome analysis146,150. Although short reads are ef-
fective for detection of simple SV breakpoints in non-repetitive regions of the genome, 
the interrogation of complexly rearranged regions or the detection of SV breakpoints 
in low complexity genomic regions may require other sequencing techniques or target-
ed approaches326. For example, long-insert mate-pair sequencing has proven a valuable 
strategy for genome-wide mapping of somatic SVs155,327 and single-cell template strand 
sequencing enables the detection of copy number variants and copy neutral structural 
variants328. Furthermore, long-read sequencing methods, such as Pacific Biosciences and 
Oxford Nanopore and synthetic long-read approaches, such as linked-read technology 
by 10x genomics, provide a promising alternative for the detection of SVs. Initial studies 
have shown that long-read single-molecule sequencing can greatly improve detection of 
germline SVs196,199,200,204. Similarly, recent work has demonstrated the advantage of long-
range sequence information for identification of SVs in cancer genomes, such as cancer 
gene amplifications and gene fusion events179,208,211,329. 

A major limitation of studies on cancer SVs is the lack of a comprehensive ground truth 
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genome-wide somatic SV datasets including all types and sizes of somatic structural ab-
errations. Such truth sets can form a resource for benchmarking sequencing and analysis 
approaches as well as for evaluating detection problems related to intratumor hetero-
geneity and tumor purity. Gold reference truth sets have been established for germline 
SVs199,213 or somatic single nucleotide variants (SNVs)214. However, attempts at bench-
marking somatic SVs have only been performed by using in silico simulated data330,331, 
or mouse data332. 

We addressed this caveat by generating a multiplatform short-read, long-read and 
linked-read sequencing and optical mapping dataset for the COLO829 melanoma cell 
line and the paired COLO829BL lymphoblastoid reference cell line. These cell lines have 
been used before to establish somatic SNV and copy number alteration (CNA) reference 
sets214,333,334. By cross-platform comparison and extensive validation we define a gold ref-
erence set of 68 somatic SVs in COLO829. We evaluated the completeness of this validat-
ed truth set and demonstrated its use to study the effect of tumor purity and sequencing 
coverage variation on the accuracy of somatic SV calling. We believe this somatic SV 
truth set to be of broad value for benchmarking and quality control of large-scale cancer 
genome sequencing studies, which are currently undertaken in research and the clinic.

Results

Multi-platform genome-wide analysis of the COLO829 tumor-normal melanoma 
cell line pair

In this study, we aimed at obtaining a comprehensive view on the genome structure 
of the COLO829 cancer cell line and identify a high-quality set of somatic structural 
variations, for use as a reference dataset. We cultured COLO829 and the correspond-
ing lymphoblastoid cell line (COLO829BL) according to standard conditions (Materials 
and Methods). A large batch of cells expanded from one original vial directly obtained 
from the ATCC cell line repository was used for DNA isolation and subsequent genomic 
analysis using five different technology platforms: Illumina HiSeq Xten (ILL), Oxford 
Nanopore Technologies (ONT), Pacific Biosciences (PB), 10x genomics (sequenced on 
Illumina NovaSeq; 10X), and Bionano Genomics Saphyr optical mapping (BNG) (Ma-
terials and Methods).

The sequencing and optical mapping data were analyzed with respect to the reference 
human genome (GRCh37) using alignment methods specific for each technology (Ma-
terials and Methods). From the combined short and long read sequencing data of the 



94

4 4

CHAPTER 4

COLO829 sample we obtained a total average base coverage of 235X, while the BNG 
data generated an additional physical coverage of 218X. For the COLO829BL control 
cell line a combined average base coverage of 155X and a BNG physical coverage of 220X 
was reached (Figure 1A, Supplementary Table 1). Average physical molecule lengths 
were 534 bp for ILL paired-end inserts, 11 kb for ONT, 19 kb for PB and 98 kbp for BNG 
optical maps (Figure 1B, Supplementary Table 1).

To assess the consistency of each of the technologies with respect to representation of 
the sequence content of the COLO829 cancer cell line, we determined the presence of 
copy number alterations. This revealed a highly similar copy number profile for each 
of the technologies (Figure 1C), with a correlation of copy number calls in the different 
datasets of 0.87-0.96 (Supplementary Figure 1A). Furthermore, we compared our copy 
number calls with those generated in previous bulk214 and single cell335 sequencing of 
COLO829. The overall CNA landscape of the bulk sequencing and the dominant clus-
ter from single cell sequencing is very similar to the one we obtained (Supplementary 
Figure 1B), with a correlation of 0.99 (bulk) and 0.97 (single cell group A), (Supple-
mentary Figure 1C). However, the previously described subclonal single cell clusters 
(B-D) possess some distinct copy number aberrations that are not observed in our bulk 
sequencing datasets (i.e. extra copy of chromosome 8 in group D or lack of gain in short 
arm of chromosome 1), in line with the proposed continuous genomic evolution of cell 
lines and subculture-specific nature of these events. Finally, classical FISH analysis for 
six genomic locations of the culture used in our study confirmed the sequencing derived 
chromosomal copy number states (Supplementary Figure 3D).

Generation of a somatic structural variation consensus truth set 

To build an accurate and comprehensive somatic SV truth set, we used a combinatori-
al analysis approach involving the four sequencing platforms (ILL, ONT, PB and 10X). 
Somatic SVs were obtained using state-of-the art SV calling approaches defined for each 
of the sequencing datasets (Materials and Methods, Figure 2A). SV calling parameters 
were not necessarily optimized for highest precision, but to high sensitivity to not miss 
out on any real event. As a result, individual candidate call sets for each technology re-
sulted in highly variable lists of predicted somatic SVs, ranging from 92 breakpoint calls 
in ILL up to 6,412 for ONT, adding up to a total of 8,831 merged candidate somatic SV 
calls (Figure 2A). Only 18 of those somatic SV calls were found by all four sequencing 
approaches and 125 SV calls were supported by at least two call sets (Supplementary 
Figure 2A).
To make an initial assessment of accuracy, we selected 88 high-confidence SV candidates 
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for PCR validation based on visual inspection of the mapped reads using IGV. In ad-
dition, we randomly selected 296 additional SV candidates for PCR validation. Based 
on short and long read sequencing of the PCR products, 63 of these breakpoints were 
labelled as PCR validated (Supplementary Figure 2B). Moreover, we decided to per-
form a separate validation of all 8,831 somatic SV calls from the union of the four SV 
callsets, using a capture-based enrichment method using multiple probes flanking and 
overlapping each candidate break-junction (Materials and Methods). Based on the short 
read sequencing of the enriched products, 114 breakpoints were labelled as capture val-
idated (Supplementary Figure 2B). Lastly, we used the 52 BNG somatic SV calls as an 
additional layer of validation. In total, 137 SV calls were validated by at least one of the 
methods aforementioned. Additionally, 78 SV calls were not validated but still supported 
by more than one technology. (Figure 2A, Supplementary Figure 2C). 

A B

C

Figure 1: Overview of the COLO829 multi-technology genomic dataset. Sequencing depth (A) and 
log-scaled molecular analysis length (B) distributions per technology dataset for COLO829 (blue) and 
COLO829BL (red). Means are indicated by horizontal black lines. (C) Copy number profile of COLO829 
calculated independently for each of the datasets.
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Next, we manually curated these 215 SV calls that were either validated or supported by 
multiple technologies. Based on visual inspection of the genomic alignment data from 
each of the sequencing sets and the validation experiment results, we assessed each SV 
call individually. We found that 14 calls were actually duplicate calls of the same event 
(but annotated slightly different by different data analysis pipelines), 48 were real events 
but also had evidence in the germline control, and another 98 were considered false posi-
tive as the supporting or reference data was very noisy at the given genomic location (also 
in the independent validation data) and may thus reflect the impact of low confidence 
regions in the reference genome for which unambiguous mapping of sequencing reads is 
complicated due to simple sequence or repeat content. Taken together, we conclude that 
68 of the SV candidates are real somatic events and thus considered our truth set (Figure 
2A, Supplementary Figure 2C, Supplementary Table 2 with all validations and raw 
calls). To verify the efficacy of our manual curation approach, we randomly selected 179 
SV calls that were supported by a single technology and not validated, and therefore left 
out from the candidate SV curation pipeline, and also evaluated them manually. All these 
SV calls were either germline events (63, 35%) or false positive due to noisy mapping data 
(116, 65%) (Supplementary Figure 2D).

A B

C

Figure 2: Generation of a validated somatic SV truth set. (A) State-of-the-art somatic SV calling pipelines 
were used independently for each technology dataset. The number of somatic SV candidates identified 
are indicated in boxes. Overlapping variant calls obtained by the different platforms were merged and 
independently validated using a combination of targeted enrichment with hybrid capture probes followed by 
next-gen sequencing, PCR and Bionano genomics. Validated somatic SV candidates and calls supported by 
more than one dataset were manually curated, leaving a total of 68 somatic SVs in the truth set. Intersections 
between the 68 somatic SVs in the truth set and the original SV call sets (B) and the validation results (C) are 
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shown. ILL = Illumina HiseqX, ONT = Oxford Nanopore, PB = PacBio, 10x = 10x Genomics, BN = Bionano, 
MULT = support by multiple sequencing platforms.

Of the compiled set of 68 validated somatic SVs in COLO829, 55 (81%) were present in 
more than two original call sets, including the 18 SVs detected by all technologies (Fig-
ure 2B). Moreover, most of the SVs were validated at least by capture-based enrichment 
and by PCR (50, 74%). Additionally, 8 somatic SVs were validated by capture-based en-
richment but not by PCR and vice versa, 7 somatic SVs were validated by PCR but not 
by capture-based enrichment. Of the remaining 3 SVs, one was validated by BNG and 2 
were not validated by any targeted assay but are supported by multiple technologies and 
manually verified by inspection of raw sequencing data from both tumor and normal 
samples (Figure 2C). The resulting somatic SV truth set is presented in Supplementary 
Table 3 and freely available as VCF.

Characterization of the COLO829 somatic SV truth set 

The somatic SV truth set consists of 38 deletions, 3 insertions, 7 duplications, 7 inversions 
and 13 translocations (Figure 3A). Most of the deletions (24, 61%) are larger than 10kbp, 
and 7 are smaller than 100bp. There are also three duplications and three inversions larg-
er than 10kbp. Two tumor driver genes are affected by somatic SVs in COLO829 (Sup-
plementary Table 3). First, there are two large heterozygous deletions (72 kb and 141 kb) 
in FHIT, located in the fragile site FRA3B on chromosome 3, which is commonly affect-
ed by somatic SVs150. Second, there is a homozygous 12 kbp deletion affecting PTEN on 
chromosome 10. 
Frequently, SVs do not occur as simple isolated events but are part of a complex land-
scape induced in a single event like for example chromothripsis or due to a cascade of 
events over time like breakage-fusion-bridge cycles. There are also 2 clusters of com-
plex chained somatic SVs that affect 3 or more chromosomes and involve more than 5 
breakpoint junctions. Both of them resemble breakage-fusion-bridge events, since they 
are flanked by foldback inversions and show oscillating copy number profiles150. One of 
them occurred in chromosome 3 and involves four foldback inversions, two of which 
have templated insertions from chromosomes 10 and 12 and chromosome 6, respec-
tively (Figure 3C). The breakpoint and copy number profile of chromosome 3 can be 
fully explained by 4 cycles of breakage-fusion-bridge followed by chromatid duplication 
through a whole genome doubling event. Initiated by replication of unrepaired dou-
ble-stranded break, the unstable chromosome 3 (due to the presence of two centromeres 
in a single chromatid) underwent a further 3 more rounds of BFB with a fragment of 
chromosome 6 inserted prior to the third doubling cycle, fragments of chromosomes 10 
and 12 inserted immediately after the fourth doubling cycle, and a stable state achieved 
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after the final breakage through repair to one of the centromeres (Supplementary Mov-
ie). The other breakage-fusion-bridge event occurred on chromosome 15 and includes 
templated insertions from chromosomes 6 and 20 (Figure 3D). The donor locations of 
these templated insertions are not affected by SV events. 

To evaluate the completeness of the somatic SV truth set, we compared it with the somat-
ic CNA calls, since each CNA should have SV breakpoints or telomeres at either end. We 
found 43 total CNA breakpoints that are not telomeric ends of chromosomes. Of these, 
26 (60%) are concurrent with an SV breakpoint. We evaluated the rest of the CNAs in the 
raw genomic data (Supplementary table 4). Six more copy number breakpoints (14%) 
are present in the germline, flanking heterozygous germline CNA events that are homo-
zygous in the tumor through a somatic loss of the other allele. The SV break-junctions 
of these CNAs are germline and therefore not part of the truth set. Finally, there are 11 
somatic CNA breakpoints (26%) not concurrent with an SV breakpoint. Five of these 
missing CNA breakpoints are located in a centromeric region (chromosomes 1, 4, 6, 14 
and 16) and are likely due to a missing somatic SV involving the centromere, which are 
typically hard to fully resolve due to their repetitive nature. For another 2 missing CNA 
breakpoints (chromosome 3 and chromosome 9) breakends can be found in the raw ILL 
dataset, meaning an SV breakpoint was found but the SV junction partner could not 
be unequivocally determined. GRIDSS2 annotation did reveal that the chromosome 3 
single break does map to one of the centromeres. Four more missing CNA breakpoints 
flank two supposed deletions in chromosome 1, but no SV call in these locations can be 
found for either COLO829 or COLO829BL in any of the datasets. Manual inspection of 
the raw data for these CNAs (Supplementary Figure 3A, 3B) indicates that these CNAs 
may actually reflect heterozygous germline events followed by LOH as witnessed by the 
lower read coverage in the COLO829BL as compared to the flanking segments. Further-
more, one CNA involves a LINE-rich region while the other overlaps with a segmental 
duplication.

Next, we compared our somatic SV truth set to the somatic SV calls presented by Arora 
et al. They provide two different somatic SV callsets, one generated by the HiSeq plat-
form with 77 somatic SV calls and the other by the NovaSeq platform with 75 somatic SV 
calls. Since these were provided based on GRCh38 genomic coordinates, we lifted our 
somatic SV coordinates over to GRCh38. We found that 58 (75.34%) and 59 (78.6%) of 
the somatic SV calls for the HiSeq and the NextSeq callsets, respectively, overlapped with 
our somatic SV truth set on both sides of the SV (Supplementary Figure 3). We manu-
ally inspected the 20 non-overlapping somatic SV calls from the Arora et al dataset in our 
raw ILL, ONT and PB data (Supplementary Table 5). In the long-read raw data (ONT 
and PB) only 3 out of the 20 have some support (maximum 3 reads). In the ILL raw data, 



99

4 4

A MULTI-PLATFORM REFERENCE FOR SOMATIC STRUCTURAL VARIATION DETECTION

9 out of the 20 have limited evidence, with only one or a few supporting reads. Only 4 
of these 9 SV calls passed bioinformatic calling criteria in our original ILL somatic SV 
calls, but none of these were called by any other technology or independently validated 
by more sensitive PCR or targeted capture and deep-sequencing. Therefore we consid-
er these candidates as technology-specific noise and were discarded from our truth set, 
although we can formally not exclude that these are real variants that are present at very 
low frequency (<1% in the sample). Finally, 13 SVs are present in our truth set and not in 
the Arora et al. data set. All were detected by at least two different sequencing techniques 
and independently validated.
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Figure 3: Characterization of the somatic SV truth set. (A) Distribution of different types of SVs in the 
COLO829 truth set, divided in size bins. Translocations (BND) are assigned a size of 0 bp. (B) Correlation 
between CNAs and somatic SVs in the COLO829 truth set. The circos plot shows copy number gains 
(green) and losses (red) and somatic SVs. Each copy number change is expected to be flanked by an SV 
event. Two complex breakage-fusion-bridge events are present in COLO829. The first one (C) occurs in 
chromosome 3 (blue), with templated insertions from chromosomes 6 (pink), 10 (green) and 12 (red) (see 
also Supplementary Movie for an animation of the proposed mechanism shaping this event). The second 
one (D) occurs in chromosome 15, with templated insertions from chromosomes 6 (pink) and 20 (orange). 
Breakpoints are indicated by vertical lines with arrowheads showing breakpoint orientations. Dashed lines 
indicate junctions between two breakpoints. Break-junctions are labelled with truth set SV ID number 
(Supplementary Table 3).
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Effect of tumor purity and sequencing depth on somatic SV calling
To demonstrate the utility of the COLO829 somatic SV truth set, we evaluated the ef-
fect of tumor purity, which is highly variable amongst clinical samples, on SV calling. 
We used the available raw datasets and simulated tumor purities of 75% (TP75), 50% 
(TP50), 25% (TP25), 20% (TP20), and 10% (TP10) by random in silico mixing of the 
genomic data from COLO829 and COLO829BL for ILL, ONT and PB, respectively. We 
performed SV calling independently on each of these mixed sets and on the original 
tumor file (100% purity, TP100) and the normal file (0% purity, TP0). We then calculated 
the recall (percentage of truth set found) and precision (percentage of calls that belong to 
truth set). With the standard settings used, somatic SV recall and precision were found 
to be highly dependent on tumor purity for all three technologies. At TP75 and TP100, 
recall is the highest, with >94% for ILL, >67% for ONT and >65% for PB. With TP50, 
the recall slightly decreases to 90%, 52% and 61% for ILL, ONT and PB, respectively. For 
purities lower than TP50, the recall decreases further to <76%, <22% and <48% for ILL, 
ONT and PB, respectively. Precision follows a similar trend in the case of ILL, with pre-
cisions >78% for purities larger than TP50, and a drop to 63% in TP25. In the case of 
ONT and PB, the higher number of false positives impact severly on the precision rates, 
potentially reflecting maturity level of platform-specific tools for somatic SV detection 
in tumor-normal paired samples, but also presenting opportunities for further analysis 
parameter and tool optimisation. 
Sequencing depth is another essential parameter to consider in tumor sequencing proj-
ects as it represents a trade-off decision between variant detection sensitivity and costs. 
To investigate the effect of sequencing depth in combination with tumor purity in somat-
ic SV detection, we took one of the triplicates from each of the simulated ILL tumor pu-
rities (98x coverage) and subsampled them to 50x, 30x, 10x, 5x and 1x depths. We again 
performed somatic SV calling using the same standard pipeline on each of these sim-
ulated sets and calculated recall and precision. We observed that for depths of 50x and 
98x and tumor purities over 50% recall was over 82%. In the case of 98x, even at TP20 a 
recall of 71% could be obtained, whereas for 50x at TP25 the recall decreased to 42%. For 
30x sequencing depth, at TP100 recall was 84%, but at TP50 there was a decrease to 54% 
and at TP25 further to 10%. For lower coverages, recall was low. Surprisingly, depths of 
30x and 50x had a higher precision at all tumor purities than 98x, with precision around 
95% over TP50, compared to approximately 70% for 98x. While this could in theory be 
explained by the presence of subclonal SVs that are not included in the reference truth 
set but become detectable at higher sequencing depth, this might also be caused by sto-
chastic effects due to increased measurement noise at higher sequencing depth which 
increases the number of false positive and therefore reduces precision (although recall is 
not affected). Further optimization of analysis tools and settings and deeper sequencing 
may resolve these issues.
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A B

Figure 4: Recall and precision of somatic SV calling as function of tumour purity and sequencing 
depth effect. Different tumor purities (0, 10, 20, 25, 50, 75 and 100 %) were simulated by mixing data from 
COLO829 and COLO829BL for the ILL, ONT, and PB datasets. (A) Somatic SV calling was performed 
independently for each purity subset and recall (left) and precision (right) were calculated against the 
COLO829 somatic SV truth set. Lines represent the median of independent triplicate measurements. (B) 
For each tumor purity subset in the ILL dataset, different sequencing depths (1, 5, 10, 30, 50 and 98x) were 
sampled. Somatic SV calling was performed independently for each sequencing depth and tumor purity 
subset and recall (left) and precision (right) were calculated against the COLO829 somatic SV truth set.

Discussion

We produced a validated somatic SV truth set by building upon the strengths of different 
sequencing technologies. Bioinformatic integration of results and large-scale indepen-
dent validation strategies turned out to be a powerful approach for reducing the large 
number of candidate events obtained. Manual curation and inspection of raw sequenc-
ing data was however essential to exclude sequencing, mapping artefacts and remaining 
germline events. These somatic false positives are thus germline false negatives and were 
likely included in the initial somatic SV calls due to the lower sequencing analysis depths 
for the control sample as compared to the tumor (typically 3-fold lower) in combination 
with specific local genomic characteristics (e.g. lower average coverage due to for exam-
ple local GC content or involving low complexity sequences)336. 

While reconstruction of the derived chromosomal tumor genome topology based on 
the 68 truth set somatic SVs results in an overall stable genomic configuration for most 
derived chromatids harboring a single centromere and two telomeres, some breakpoint 
junctions are still clearly missing. This is corroborated by the fact that not for all copy 
number alterations breakpoint junctions were identified at either end. Our results indi-
cate that these missing events typically involve centromeric regions that are not direct-
ly accessible by any current sequencing technology. Annotation data provided by the 
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GRIDSS2 SV caller337. suggests a junction between a single break-end in chromosome 
3 and the centromere in chromosome 1, which shows a copy number change. This can 
probably not be resolved directly due to the repeated nature of the centromeric region. 
When excluding the missing events that likely involve centromeres, there are 2 copy 
number aberrations that remain unexplained by the truth set, providing room for fur-
ther improvement based on the existing or to be generated data. 

Although this study was not designed to compare performance of sequencing platforms 
or data analysis pipelines, some interesting observations can be made. First, there is clear 
complementarity between the various platforms for the comprehensive identification of 
all real events. However, bioinformatic pipelines for somatic SV detection are still clear-
ly in different stages for the different platforms with the most commonly used Illumi-
na-based approaches yielding lowest numbers of false positives. We believe future tool 
optimisation for somatic SV calling, assisted by gold reference truth sets as well as the 
development of platform-specific germline and artefact filtering data sets (‘pools of nor-
mals’) based on large numbers of samples, will effectively address this challenge. Second, 
data analysis pipelines yield different annotations for the same event. This calls for fur-
ther standardisation of variant annotation and nomenclature, although some observed 
differences are intrinsic to the use of short and long-read technologies. For example, a 
long templated insertion may be called as two independent translocations by short-read 
SV callers, while long read-based technology would detect this readily as an insertion. 
Third, despite previous studies showing the added value of long reads for SV detection 
for germline events, our somatic SV truth set is resolved almost in its entirety with the 
ILL short read dataset. While this may in part be due to the more advanced somatic SV 
calling pipelines developed for short-read data, this observation may also be explained by 
fundamental differences between germline and somatic SVs, where the latter are much 
more randomly distributed throughout the genome than inherited germline events. 
Germline variants more often involve complex or repetitive regions of the genome which 
might reflect mechanistic differences like for example the more frequent involvement of 
non-allelic homologous recombination, or be due to differences in selective pressure. As 
a consequence, somatic events may thus on average be more effectively detected. 
The COLO829 cell line has the advantage that it is, in contrast to real tumor samples, a re-
newable source that can be used for assessing the impact of future platform developments 
or the performance of completely new technologies for somatic mutation detection. Al-
though the COLO829 cell line is representative for structural variation as observed in 
cancer, including small and large copy number alterations (including aneuploidies) and 
both simple and complex SV events, it is not necessarily representative in all aspects for 
real tumor samples. First, tumor samples do typically not consist of tumor cells only but 
are a mix of tumor and normal cells (e.g. stromal cells and infiltrating immune cells). We 
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show that the raw data obtained in this study can be used effectively to mimic variable 
tumor purity and that the truth set is instrumental for assessing the performance of the 
bioinformatic data analysis tools at variable tumor purity. As expected, our results show 
that both recall and precision heavily depend on tumor purity for all platforms. Secondly, 
tumors evolve continuously and are typically genetically heterogeneous, especially pri-
mary tumors, involving potentially subclonal SV events. While the COLO829 cell line 
has been shown to be genetically heterogeneous and evolving over time and thus could 
in principle capture this tumor feature properly, this variation is dynamic and might be 
variable between cell line isolates as already demonstrated by the various studies on this 
cell line334,335 and thus limit the utility of a single defined truth set obtained as present-
ed here. Finally, tumors are in general very heterogeneous both within the context of a 
specific tumor type, but especially between tumor types. For example, microsatellite in-
stable (MSI) tumors show a high number of small indels338, homologous recombination 
deficient (HRD) tumors present many deletions with microhomology and large duplica-
tions290 and paediatric haematological cancers cancers usually show very low mutational 
load but enhanced levels of somatic SVs, although often involving specific but complex 
genomic loci (e.g. the IgH locus)31,339. The specificity for capturing such heterogeneity 
effectively or the impact of specific genomic events that may co-occur in a given tumor 
sample, like for example whole genome duplication or chromothripsis, on overall perfor-
mance of a specific sequencing technique or data analysis tool is of course not captured 
in a single cell line and requires the development of complementary datasets. Analysing 
additional cancer cell lines with matching normal cell lines provide an attractive route 
towards this goal as these represent in principle an endless source of genomic material 
for benchmarking of future DNA analysis technologies, but also for quality monitoring 
in routine production labs under accreditation. However, availability of suited cell lines 
that represent the full genetic diversity of cancer is a clear limitation. Ideally, one would 
thus resort to thoroughly analysed real tumor samples, even though in practice availabil-
ity of sufficient material for multi-lab and multi-technology analyses can be problematic 
and sharing and reusing of patient material and data may require complex consenting 
and legal procedures. 

Taken together, we believe the SV truth set described here as well as the underlying raw 
data, are a valuable resource for benchmarking and fine-tuning analysis settings of so-
matic SV calling tools, but the data may also be used for the development of novel anal-
ysis tools, for example phasing of structural variants. All analysis results and raw data 
are publicly available to enable such applications without access restrictions (ENA ac-
cession number: PRJEB27698 and an overview of the available data and specific access 
link can be found at Supplementary Table 6). We demonstrate this utility by analysing 
the impact of tumor purity and sequencing depth on SV recall and precision for different 
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technologies, thereby providing valuable insights in the potential impact of technology 
platform choice and experimental design in relation to diagnostic accuracy and overall 
costs. Furthermore, these results highlight the need of benchmarking somatic SV de-
tection methods at different tumor purities and sequencing depths rather than under 
a single fixed condition, since these parameters are highly variable within and between 
cohorts and can result in strong performance variation. 

Materials and Methods

Sample source: COLO829 (ATCC® CRL-1974™) and COLO829BL (ATCC® CRL-
1980™) cell lines were obtained from ATCC in September 2017. A single batch of cells 
was thawed and cells were expanded and grown according to standard procedures as 
recommended by ATCC. Cell pellets were split for technology-specific DNA isolation at 
33 days (COLO829 & COLO829BL for the ILL and ONT datasets), 35 days (COLO829 
for the PB, 10X and BNG datasets) and 23 days (COLO829BL for the PB, 10X and BNG 
datasets).

Genomic analyses per technology
Illumina: COLO829 and COLO829BL libraries were prepped with Truseq Nano reagent 
kit and sequenced on the HiSeq X Ten platform using standard settings and reagent kits 
(chemistry version V2.5). Reads were mapped to GRCh37 with BWA mem (version 
0.7.5)340, followed by indel realignment with GATK (v3.4-46)341. SVs were called joint-
ly for COLO829 and COLO829BL with GRIDSS (v2.0.1)337. Somatics SVs were filtered 
with the GRIDSS somatic SV filtering script (https://github.com/PapenfussLab/gridss/
blob/master/scripts/gridss_somatic_filter.R).

Nanopore: COLO829 and COLO829BL libraries were sequenced on the MinION and 
GridION platforms using R9.4 flow cells. Reads were mapped to GRCh37 with NGMLR 
(v0.2.6, default parameters)342 with default parameters. SV calling was performed with 
both NanoSV (v. 1.2.2, default parameters)204 and Sniffles (v1.0.9, parameters “--report_
BND --genotype”)342 for COLO829 and COLO829BL separately. All SV calls for both 
NanoSV and Sniffles were merged with SURVIVOR (v1.0.6)343 with a distance of 200 bp 
and calls with evidence in COLO829BL for NanoSV or Sniffles were discarded.

PacBio: COLO829 and COLO829BL libraries were sequenced on the Sequel System 
with the 5.0 chemistry (binding kit 101-365-900; sequencing kit 101-309-500). Reads 
were mapped to GRCh37 with minimap2 (v2.11-r797)344. SVs were called jointly for 
COLO829 and COLO829BL with pbsv (v2.0.1, https://github.com/pacificbiosciences/
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pbsv/ ) using default parameters. Somatic SV calls were filtered by removing any call with 
a supporting read in COLO829BL. 

10X: COLO829 and COLO829BL 10x genomics libraries were prepared on the Chro-
mium platform and sequenced on the NovaSeq platform (chemistry version V1). Reads 
were analyzed with the LongRanger WGS pipeline (v2.2.2) separately for COLO829 (so-
matic mode) and COLO829BL (default parameters). SV calls for COLO829 and COLO-
829BL were merged with SURVIVOR (v. 1.0.6)343 with an overlap distance of 200 bp and 
SV calls with evidence in COLO829BL were discarded. 

Bionano: DNA for COLO829 and COLO829BL was labelled using the Bionano Direct 
Label and Stain (DLS) kit. The labelled DNA was linearized in a Saphyr chip and imaging 
was performed on the Saphyr instrument. SV calling was performed on the Bionano Ac-
cess platform. For each sample, 1.5 million cultured cells were used to purify ultra-high 
molecular weight DNA using the SP Blood & Cell Culture DNA Isolation Kit following 
manufacturer instructions (Bionano genomics, San Diego USA). Briefly, after counting, 
white blood cells were pelleted (2200g for 2mn) and treated with LBB lysis buffer and 
proteinase K to release genomic DNA (gDNA). After inactivation of proteinase K by 
PMSF treatment, genomic DNA was bound to a paramagnetic disk, washed and elut-
ed in an appropriate buffer. Ultra-High molecular weight DNA was left to homogenize 
at room temperature overnight. The next day, DNA molecules were labeled using the 
DLS (Direct Label and Stain) DNA Labeling Kit (Bionano genomics, San Diego USA). 
Seven hundred and fifty nanograms of gDNA were labelled in presence of Direct Label 
Enzyme (DLE-1) and DL-green fluorophores. After clean-up of the excess of DL-Green 
fluorophores and rapid digestion of the remaining DLE-1 enzyme by proteinase K, DNA 
backbone was counterstained overnight before quantitation and visualization on a Sa-
phyr instrument. A volume of 8.5 microliter of labelled gDNA solution of concentration 
between 4 and 12ng/µl was loaded on the Saphyr chip and scanned on the Saphyr in-
strument (Bionano genomics, San Diego USA). A total of 1.6 Tb and 1.5 Tb of data was 
collected for the cancer and blood sample, respectively.

De novo assembly Pipeline and Copy number variants calling were performed and 
against the Genome Reference Consortium Human Build 37 (GRCh37) HG19 human 
genome assembly (RefAligner version 7520). Events detected by the de novo assembly 
pipeline were subsequently compared against the matched blood control, and those that 
are absent in the assembly or the molecules of the control were considered as somatic 
variants.

Consolidation of SV calls: Somatic SV calls for each dataset (ILL, ONT, PB and 10X) 
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were merged using SURVIVOR (v. 1.0.6) 343 with an overlap distance of 200bp.

Depth and molecular length calculations
Average base depth and depth distribution for ILL, ONT, PB and 10X was calculated 
based on 1,000,000 random positions on the genome with Sambamba (v0.6.5)345. Aver-
age base depth for BNG was calculated based on the same 1,000,000 random positions 
using Bedtools (v2.25.0)346. 
Average molecular length and length distribution was calculated based on insert size for 
ILL, read length for ONT and PB, on synthetic molecular length based on the MI tag for 
10X, on optical map length for BNG. For ILL, average insert size was calculated using 
Picard (v1.141, http://broadinstitute.github.io/picard). 

Copy number analysis
CNA calling was performed on the ILL dataset with BIC-SEQ2 (v0.7.2)347. For the re-
maining datasets, BAM and optical map (xmap) files were converted to BED format 
using Bedtools (v2.25.0)346 and CNA calling was performed with Ginkgo348. CNA calls 
from the different datasets were merged using 1MB bins to calculate Pearson’s correla-
tion between datasets and for plotting.

Validations
Capture: For each break-junction of the merged somatic SV calls 2 capture probes of 
100 bp in length were designed, one at either side of the breakpoint, with a maximum 
distance of 100bp from the breakpoint at GC percentage as close as possible to 50%, for 
a total of 18148 custom probes. These custom capture probes were then ordered from 
Twist Biosciences. Then, libraries for COLO829 and COLO829BL were prepared and 
hybridized with the biotin-labelled custom targeted probes following the manufactur-
er’s protocol (Twist Biosciences catalog IDs: 100253, 100255, 100527, 100400). Using 
streptavidin beads the hybridized DNA was pulled from the DNA pool, and amplified 
by PCR. Enriched targeted libraries were sequenced on the Illumina NextSeq platform. 
NextSeq-Capture validation sequencing data were mapped with BWA mem (v0.7.5)340 
and SV calling was performed with Manta262, independently for COLO829 and COLO-
829BL. SV calls for COLO829 and COLO829BL were merged using SURVIVOR (v1.0.6, 
overlap distance of 50bp343 and only calls with no evidence in COLO829BL were consid-
ered as somatic and validated.

PCR: We selected 88 high-confidence SV candidates for PCR validation based on an 
initial screening of the somatic SV truth set with IGV and added 296 randomly select-
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ed additional SV candidates for a total of 384 assays. We automatically designed prim-
ers for these SV breakpoints using Primer3 (v1.1.4)349. PCR assays were performed on 
COLO829 and COLO829BL genomic DNA. Libraries were prepared for PCR results 
and sequenced on both the MiSeq and ONT-MinION platforms. MiSeq-PCR valida-
tion sequencing data were mapped with BWA mem (v0.7.5)340 and SV calling was per-
formed with Manta (v0.29.5)350, independently for COLO829 and COLO829BL. ONT 
PCR validation sequencing data were mapped with minimap2 (v2.15344, and SV calling 
was performed with NanoSV (v1.2.2)204 independently for COLO829 and COLO829BL. 
Moreover, 70 additional SV calls that were shown as somatic in the Capture validation 
set were also subjected to PCR and products were sequenced on the MinION through 
the same protocol described above.
SV calls for COLO829 and COLO829BL from the Miseq-PCR and the two Nanopore-
PCR sets were merged using SURVIVOR (v1.0.6, overlap distance of 50bp)343. Only SV 
calls with no evidence in any of the COLO829BL sets were considered somatic and val-
idated. 

FISH: For FISH validation, we selected probes that bind to 6 genomic regions, includ-
ing Chromosome Enumeration Probes (CEP) for the centromeric region of chromo-
some 13, 16 and 18 (CEP13, CEP16, CEP18), labeled with SpectrumOrange (Abbott 
Vysis, Downers Grove, IL) and centromeric region of chromosome 9 (CEP9), labeled 
with SpectrumAqua (Leica Biosystems, Amsterdam). Furthermore, locus specific break-
apart probes for chromosome 2p23 fusion (SpectrumOrange/SpectrumGreen, Vysis 
ALK Break Apart, Abbott Vysis, Downers Grove, IL) and 9p24 fusion (SpectrumOr-
ange/SpectrumGreen Leica Biosystems, Amsterdam) were used. COLO829 cells were 
dissociated using trypsin, counted, washed and diluted to contain a total of 50,000 cells 
in 100 µl. Monolayer cell suspensions were concentrated on a microscope slide using 
cytospin. Then, FISH was performed according to diagnostic standards. Slides were vi-
sualized on a Leica DM5500 fluorescence microscope and for each probe, 100 cells/slide 
were recorded.

SV selection pipeline
Merged somatic SV calls were overlapped with the validation outcomes with SURVI-
VOR (v. 1.0.6)343 using an overlap distance of 50bp (PCR, CAPTURE) and 1kbp (BNG). 
Only somatic SV calls with support from multiple datasets and calls with support from a 
single dataset which were validated were selected. SVs involving unstable microsatellites 
were not considered as part of our analyses. All calls were manually curated by using 
the SV-plaudit cloud based framework 351 that uses Samplot to generate images from SV 
coordinates and BAM files. We generated such images for the somatic SV calls for each 
dataset (ILL, ONT, PB and 10x) and for the validations (PCR-ONT, PCR-MISEQ and 
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CAPTURE). We evaluated each of these image datasets independently and classified 
each somatic SV call as “somatic”, “germline” or “false positive”. We also used the Integrat-
ed Genome Viewer (IGV, v2.4.0)352 to verify some SVs. We performed the same analysis 
on 176 randomly selected SV calls belonging to a single dataset and which were not vali-
dated. Finally, we gathered the somatic SV calls and generated the final somatic VCF file. 

Comparison to external sources
CNA calls from Arora et al.214 were downloaded (HiSeq dataset, https://www.nygenome.
org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/) and lifted to GRCh37 genom-
ic coordinates with liftOver (UCSC). CNA calls from the four different single cell clusters 
were obtained from Velazquez-Villareal et al.335. These datasets were then merged using 
1MB bins to calculate Pearson’s correlation between datasets and for plotting.
The two somatic SV sets from Arora et al.214 (HiSeq and NovaSeq sets, https://www.
nygenome.org/bioinformatics/3-cancer-cell-lines-on-2-sequencers/) were download-
ed. Since these are BEDPE files based on GRCh38 genomic coordinates, we converted 
our somatic SV truth set to BEDPE format and lifted it to those coordinates using the 
liftOver tool from UCSC. We then intersected those SV sets with our truth set using Bed-
tools (v2.25.0)346 and differentiated between SVs with overlap on both sides, overlap only 
on one side and not overlapping. We lifted all SVs with no overlap or one-sided overlap 
and manually evaluated them in our data using IGV (v2.4.0)352.

Tumor purity and sequencing depth analysis
For tumor purity simulations in each of the ILL, ONT and PB datasets, COLO829 and 
COLO829BL BAM files were randomly subsampled and mixed in different ratios, de-
pendent on the sequencing depth to achieve in silico tumor purities of 10, 20, 25, 50 
and 75 with Sambamba (v0.6.5)345. The same somatic SV calling pipeline used for the 
different datasets was applied to each of the tumor purity subsets. The resulting somatic 
SV file of each tumor purity subset was overlapped using a window of 100bp with the 
truth set VCF to determine the number of true and false positives and true negatives. 
This experiment was performed in triplicate for each tumor purity and each technology 
with the original COLO829 BAM file as positive control (100% tumor purity) and the 
original COLO829BL BAM file as negative control (0% tumor purity).
For sequencing depth simulations using the ILL dataset, one of the triplicates from each 
tumor purity simulation was selected together with the COLO829 and COLO829BL 
files. Each of these BAM files was subsampled to depths of 1x, 5x, 10x, 30x and 50x (plus 
the original 98x) with Sambamba (v0.6.5)345. Somatic SV calling was performed inde-
pendently for each of the subsets and the resulting somatic SV VCF file was overlapped 
with the truth set to determine the number of true and false positives and false negatives. 
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Data availability

Genomic data is available on EGA project PRJEB27698; Raw, somatic and truth set VCF 
files, and CNA files are available in Zenodo DOI: 10.5281/zenodo.3988185;
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All code used in the preparation of the somatic SV truth set is available at: https://github.
com/UMCUGenetics/COLO829_somaticSV. The code used for simulations of tumor 
purity and sequencing depth is available at: https://github.com/UMCUGenetics/tumps 
Figure panels 2-A, 3-C and 3-D were created using Biorender.com.
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Supplementary Figure 1 (related to figure 1): Copy number correlation within our datasets and external 
datasets: Correlation index of CNA calls for (A) each of the pairwise comparisons of the datasets generated 
in our study and (B) the comparison of our ILL dataset and the external sets from bulk sequencing in NYGC 
214 and the 4 clusters differentiated by single cell sequencing (scA-D) 214,335. (C) Copy number profile of the 
ILL and the external sets. (D) Copy number status of 6 distinct genomic locations as determined by FISH
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Supplementary Figure 2 (related to figure 2): Generation of a somatic SV truth set. (A) Intersection 
of the total of 8,831 candidate SV calls merged from all platforms used and presence per in the raw call 
set per technology. (B) Number of validated somatic SV calls per validation approach including multi 
technology support (MULT). Manual curation statistics for (C) validated or multi-dataset SV calls and (D) 
non-validated and single-dataset SV calls. FP = false positive, GL = evidence in germline, DUP = duplication 
of an already called SV, SOM = real somatic variant.
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Supplementary Figure 3 (related to figure 3): Characterization of the somatic SV truth set. (A, B) IGV 
screenshots of mapped reads from the ILL, ONT and PB datasets for COLO829 (T) and COLO829BL (BL) 
of two CNAs on chromosome 1 without associated somatic SVs in the truth set. Overlap of somatic SV calls 
between our truth set and the two somatic SV sets reported by 214, the Hiseq set (C) and the Novaseq set (D). 
One-sided overlaps (i.e. when only one breakpoint of the SV overlaps) are included on the overlap. Numbers 
in parenthesis indicate the overlap from the Arora set point of view. 
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Supplementary Movie: Reconstruction of the breakage-fusion-bridge event in chromosome 3. 
Animated reconstruction of a breakage-fusion-bridge event consistent with the breakpoints and copy 
number profile of chromosome 3 in COLO829. This circos plot shows the evolution in time and over 
various cell divisions of the chromosome involving 4 cycles of breakage-fusion-bridge followed by a genome 
doubling event. The innermost track shows minor allele ploidy (orange indicates loss, blue amplification). The 
next track shows the copy number profile (purple indicates loss, green amplification). The line track shows 
the reconstructed chromosome. Breakpoints are represented by triangles and connecting arcs, telomeric 
ends of the chromosome by squares, and unrepaired double-stranded breaks by circles. DNA gained by 
replication and new breakpoints formed through DNA repair are indicated in blue, with lost DNA in orange. 
The outer track shows chromosome number and coordinate. A non-linear chromosomal coordinate scale 
is used with distances between breakpoints shown in black overlaying the copy number track. A cell cycle 
clock is shown in the upper left corner indicating at what point in the cell cycle each rearrangement occurs. 
The final stabilising repair to the centromere of another chromosome is omitted for clarity. Available online 
at https://doi.org/10.1101/2020.10.15.340497.
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Abstract

Somatic genomic structural variations (SVs) are promising personalized biomarkers to 
quantify circulating tumor DNA (ctDNA) in liquid biopsies as they represent unique 
tumor derived molecules. However, in most solid malignancies these SVs are variable 
and can be located anywhere in the genome thus the complexity of the identification of 
personalized SVs hinders routine use in the clinic. Here, we developed a novel approach 
for rapid discovery of a set of patient-specific somatic SVs. We combine low coverage 
cancer genome sketching using Oxford Nanopore sequencing with a machine learning 
approach to detect a set of somatic SVs. We analyzed tumor samples of high-grade ovar-
ian and prostate cancer patients, successfully identified candidate SVs and validated on 
average ten somatic SVs per patient with breakpoint-spanning PCR mini-amplicons. 
These SVs could be quantified in ctDNA samples of patients with metastatic prostate 
cancer using a digital PCR assay. The SV quantification in these longitudinal samples 
suggest that indeed SV dynamics correlate with and may improve other response bio-
markers such as PSA. Our work enables rapid and cost-effective identification of a set of 
patient-specific SVs that can be used to study ctDNA dynamics.
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Background

The detection of cancer recurrence as well as accurate and fast monitoring of response to 
treatment currently lacks sensitivity for detection of changes over time353,354. Liquid biop-
sies, which can be used to detect circulating tumor DNA (ctDNA) from body fluids, such 
as blood, in a minimally invasive manner, are a promising approach to improve moni-
toring of tumor burden over time52,355. Circulating tumor DNA, which originates from 
apoptotic and necrotic tumor cells, has been shown to have a positive linear correlation 
with tumor burden356. In multiple cases, ctDNA analysis identified cancer recurrence 
months before clinical symptoms presented54,69,165.

As ctDNA is only a fraction of the total circulating cell free DNA (cfDNA), it should 
be distinguished from cfDNA from normal cells by identification of ctDNA-specif-
ic genetic alterations. Genomic structural variations (SVs) represent tumor- and ctD-
NA-specific biomarkers to detect and quantify ctDNA with high sensitivity in liquid 
biopsies69,165,166,357. Most solid cancers contain dozens to hundreds of somatic SVs29,150. 
Besides some recurrent driver SV events that functionally impact tumorigenesis, the vast 
majority of these somatic SVs are patient- and tumor specific passenger events146, which 
may nevertheless be good biomarkers for tumor load tracing. SVs form a unique break-
point junction between two joined DNA strands and can be validated by straightforward 
junction-spanning (quantitative) PCR assays, which facilitates its applicability165. 

Somatic SVs are commonly detected with short-read, paired-end next generation se-
quencing (NGS). However, as SVs can be very large, short reads are less suited for SV 
detection199,200,358. Recently, long-read sequencing techniques from Oxford Nanopore 
Technologies (ONT) and Pacific Biosciences (PacBio) have emerged and their increased 
power for germline and somatic SV detection has been extensively demonstrated 
199,200,203,204,208. Moreover, ONT enables a short turnaround time and real-time data anal-
ysis188.

To enable rapid and cost-efficient identification of a set of patient-specific somatic SVs 
for ctDNA monitoring, we developed a pipeline that leverages the long-read and fast 
sequencing capabilities of nanopore sequencing in combination with a computational 
method that enables accurate selection of a subset of somatic SVs from low coverage 
nanopore sequencing data. The method detects a subset of genomic SVs and can be 
applied to tumor tissue obtained from (needle) biopsy or resection. The computational 
approach combines SV calling with random forest classification and germline SV filter-
ing against a blacklist to enrich for somatic SVs without the need of matching germline 
sequencing data, which reduces the cost and time of the assay. We were able to design 
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SV-specific PCR-assays for ctDNA tracking within three days after obtaining a tumor 
biopsy. We validated the pipeline in multiple ovarian and prostate cancer samples. In ad-
dition, we demonstrate the clinical applicability of our pipeline by retrospectively track-
ing the identified somatic SVs in longitudinal cfDNA samples of patients with metastatic 
prostate cancer, by using digital PCR. 

ResultS

Detection of somatic structural variations from low coverage nanopore 
sequencing of tumor biopsies

The first step of our analysis involves low coverage nanopore sequencing of genomic 
tumor-derived DNA (Figure 1A). A single nanopore run on the MinION or GridION 
platforms typically generates between 5-15 Gbs of data183, corresponding to 1.5-5x cov-
erage of the human genome. Next, the low coverage sequencing data are mapped to the 
reference genome followed by the detection of SV breakpoint junctions from split read 
mappings (Figure 1B)204. Subsequently, a classification and filtering pipeline is applied to 
enrich for somatic SV breakpoints irrespective of corresponding germline data (Figure 
1B). Finally, PCR assays with mini-amplicons are designed to validate the 20 most likely 
somatic SVs. SVs are confirmed as either somatic or germline by breakpoint PCR on 
tumor and corresponding lymphocyte DNA (Figure 1C). Successful breakpoint PCR 
assays for somatic SVs can then be utilized as biomarkers for ctDNA-based monitoring 
of treatment response and disease recurrence (Figure 1D).

Establishment of a somatic SV reference set

To verify the ability of our pipeline to detect somatic SVs, we used genomic data from 
the melanoma cell line COLO829333 and the ovarian cancer organoid line HGS-3278. We 
utilized short-read WGS data from both lines (90x and 30x coverage for COLO829 and 
HGS-3, respectively) and matching reference samples (30x coverage in both cases) to es-
tablish two reference sets of somatic SVs (Methods). By using a state-of-the-art somatic 
SV detection pipeline330,337,359,360, we detected 92 and 295 somatic SVs in COLO829 and 
HGS-3, respectively. Additionally, we generated long-read nanopore sequencing data for 
COLO829 and HGS-3, reaching high coverages of 59x (COLO829) and 56x (HGS-3) 
(Suppl. Figure 1 and Suppl. Table 1). To simulate low coverage long-read sequencing of 
tumor genomes, we randomly subsampled the nanopore sequencing reads to coverages 
of 4x, 3x and 2x. The subsampling was performed 20 times independently for each case, 
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to mitigate the effect of chance on the subsampling and subsequent analysis. 
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Figure 1: Schematic overview of SHARC. (A) (Needle) biopsy or resection from a tumor as well as blood 
are obtained from a patient at initial diagnosis. Germline DNA (red) and cfDNA (blue) isolated from blood 
and tumor DNA (brown) from tumor material. Tumor DNA is sequenced on one ONT flow cell. (B) Tumor-
specific SV detection and filtering is performed with the bioinformatic SHARC pipeline. (C) SV-specific 
breakpoint spanning primers are designed. Breakpoint PCR with SV-specific primers is performed on 
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germline and tumor DNA to confirm somatic SVs. (D) Somatic SVs are used as biomarkers and traced 
within cfDNA from a patient to monitor disease dynamics in a longitudinal manner. 

Next, we tested our ability to detect SVs from high and low coverage nanopore sequenc-
ing data. We used NanoSV, a previously validated nanopore SV caller203,204, to call SVs 
from the nanopore sequencing data. To maximize sensitivity, we performed SV calling 
using lenient settings on high and low coverage COLO829 and HGS-3 Nanopore data-
sets. (Suppl. Table 2). Based on the overlap with the somatic short-read reference set, 
raw SV calls were classified as somatic (true-positives) or non-somatic (false-positives). 
As expected, the vast majority of the raw SV calls in all the different coverage datasets 
were non-somatic, on average 99.84% (range 99.81-99.9%, COLO829) and 99.55% 
(range 99.4-99.74%, HGS-3) (Figure 2A).

In the high coverage Nanopore datasets, we validated 84 (91% of the short-read refer-
ence set) and 219 (74% of the short-read reference set) true-positive somatic SVs for 
COLO829 and HGS-3, respectively, representing a small fraction of the total number of 
raw SV calls (Figure 2A and Suppl. Figure 2A). Similarly, we identified an average of 23 
(25% of the short-read reference set) and 53 (18% of the short-read reference set) somatic 
SV breakpoints in each of the low coverage Nanopore sequencing datasets for COLO829 
and HGS-3, respectively. (Figure 2A). Furthermore, we compared the performance of 
the SV callers NanoSV, Sniffles342 and NanoVar205. Thus, we show that based on lenient 
SV calling of high- and low-coverage Nanopore sequencing data with NanoSV, somatic 
SVs can be identified. 

Enrichment for somatic SV calls from nanopore sequencing data

Since the somatic SVs identified among the SV call sets of the Nanopore data represent 
only a small fraction of the total raw SV calls, we implemented a panel of cumulative 
filtering steps to enrich for somatic SVs. First, we selected only “PASS” SV calls (based on 
default NanoSV filter flags204, Methods). Secondly, we excluded calls involving chromo-
some Y or the mitochondrial genome. Finally, we removed all insertions, since the exact 
inserted sequence cannot be accurately defined from low coverage nanopore sequencing 
data, thus hampering the final PCR assay development at a later step. As a result of these 
filtering steps, 72.6% (COLO829) and 76.2% (HGS-3) false-positive calls were removed 
in the high coverage sets (Figure 2B and Suppl. Table 2). For the low coverage sets, the 
filtering removed on average 50.9% (COLO829) and 49.9% (HGS-3) of false-positive 
calls (Figure 2B and Suppl. Table 2). In contrast, the vast majority of true-positive so-
matic SV calls were maintained following SV filtering (on average 76.9% in COLO829 
and 93.9% in HGS-3, Figure 2B). 



122

5 5

CHAPTER 5

To further reduce the number of false-positive SV calls, we employed a random forest 
(RF) machine learning approach (Methods), similarly as previously described for SV 
calling of nanopore data204. We applied the RF classifier to the filtered high and low cov-
erage subsets of COLO829 and HGS-3. For the high coverage sets, the RF labelled 84% 
(COLO829) and 81.3% (HGS-3) of false-positive SV calls as false (Figure 2C). For the 
low coverage sets, on average 70.6% (COLO829) and 68% (HGS-3) of false-positive SV 
calls were labelled as false (Figure 2C). In addition, in the high coverage sets, 81.25% 
(COLO829) and 97.88% (HGS-3) of true-positive somatic SV calls were labelled as true. 
Similar percentages of true-positive SV calls were labelled as true in the low coverage 
sets, on average 73.7% (COLO829) and 98.6% (HGS-3) (Figure 2C). These results show 
that the RF classifier filters out the majority of non-somatic breakpoints, while maintain-
ing true-positive somatic SV calls. However, germline SV calls are also maintained at this 
step, requiring further filtering to enrich for somatic SVs (Suppl. Figure 2B).

To reduce the number of germline SVs, we implemented a blacklist filtering step. There-
fore, the remaining SV calls were overlapped with two databases (DBFilter) as pan-
el-of-normal (PON) filtering: (i) SharcDB, containing SV calls from nanopore sequenc-
ing of 14 different samples , and (ii) RefDB, containing germline SV calls from 59 control 
samples previously sequenced using Illumina WGS in our group (Methods). Follow-
ing this filtering step, 100% of true-positive somatic SV calls from both the COLO829 
and HGS-3 high and low coverage sets were retained (Figure 2D). In contrast, 88.6% 
(COLO829, high coverage), 76.2% (HGS-3, high coverage) and on average 89.9% 
(COLO829, low coverage) and 84.5% (HGS-3, low coverage) of remaining false-positive 
SV calls were filtered out (Figure 2D). Due to this filtering, the fraction of true-positive 
somatic breakpoints among the remaining SV calls increased to 6.6%-18.7%, for the low 
and high-coverage Nanopore datasets of COLO829 and HGS-3 (Figure 2E and Suppl. 
Figure 2A). 

To further enrich for somatic SVs, we implemented a ranking method, based on the ob-
servation that large SVs are more likely to be somatic than germline SVs (Suppl. Figure 
4). This increased the percentage of true-positive somatic SVs to 85% (COLO829) and 
65% (HGS-3) in the high coverage sets, and to on average 43% (COLO829) and 64.1% 
(HGS-3) in the low coverage sets (Figure 2E). 
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Figure 2: Detection of somatic SVs with the SHARC pipeline based on high and low coverage nanopore 
data. High coverage nanopore sequencing data from COLO829 (melanoma cell line) and HGS-3 (ovarian 
cancer organoid) were subsampled to low coverages. Outer circles represent the high coverage sets (59x for 
COLO829 and 56x for HGS-3) and inner circles (continues on next page)
(Figure 2 legend continued) represent low coverage subsets (4x 3x, 2x). The following filtering steps were 
applied in a cumulative manner in the order displayed. (A) Median percentage of non-somatic (red) and 
somatic (blue) breakpoints in the raw NanoSV calls for COLO829 (top) and HGS-3 (bottom). (B) Median 
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percentage of non-somatic (left) and somatic (right) SV calls kept (green) or removed (brown) in the pre-
filtering step for COLO829 and HGS-3. (C) Median percentage of non-somatic (left) and somatic (right) SV 
calls kept (green) or removed (brown) by the Random Forest SV classifier for COLO829 and HGS-3. (D) 
Median percentage of non-somatic (left) and somatic (right) SV calls kept (green) or removed (brown) by 
the database filtering for COLO829 and HGS-3. (E) Median percentage of non-somatic (red) and somatic 
SV (blue) calls in the complete SHARC output (left) and top 20 largest SVs (right) for COLO829 and HGS-
3. (F) Total number of non-somatic (red) and somatic (blue) SV calls at each step of the pipeline for both 
COLO829 and HGS-3. In low coverage subsets, all data points are shown and the square box represents the 
median value. RF: Random forest; DBFilter: Database filter.

Altogether, our SV filtering pipeline strongly enriches for true-positive somatic break-
points and filters out the majority of false-positives and germline SVs. We demonstrate 
a total enrichment of true-positive somatic SV calls from 0.1% in the raw calls to 85% 
in the final Top20 ranked calls (17/20, COLO829, high coverage), 0.26% to 65% (13/20, 
HGS-3, high coverage), on average 0.18% to 41.7% (8.3/20, COLO829, low coverage 
sets) and on average 0.49% to 64.2% (12.8/20, HGS-3, low coverage sets) (Figure 2F). Of 
note, despite low coverage sequencing, each of the somatic SV calls identifies breakpoints 
at nucleotide resolution, providing immediate access to breakpoint PCR testing.

Validation in tumor tissue from patients with ovarian and prostate cancer

Next, we tested the pipeline on four high-grade serous ovarian cancer (Ova1-4) and six 
prostate cancer (Pros1-6) samples. We sequenced tumor DNA on one nanopore flow 
cell per sample. The ovarian cancer samples and three prostate cancer samples (Pros1-3) 
were sequenced on commercial ONT flow cells. For the ovarian cancer samples, we start-
ed library preparation with minimally 1 µg of DNA. For the prostate cancer samples lim-
ited material was available, and we started library preparation with 250 ng of DNA. For 
one sample (Pros3), not enough sequencing data was produced to confidently detect so-
matic SVs and this sample was therefore excluded from all subsequent analyses (Suppl. 
Table 1). Three additional prostate cancer samples (Pros4-6) were sequenced on ONT 
research prototype flow cells with higher sequencing sensitivity, thus requiring less DNA 
input material. In these cases, library preparation was started with an average of 108 ng 
(80-128 ng) of DNA and an average of 10 ng of library was loaded for sequencing (Suppl. 
Table 1). We obtained an average sequence coverage of 2.3x (range: 1.8 - 4.0) (Figure 3A 
and Suppl. Table 1) and average read lengths of 7.8 Kbp (range: 4.2-16.3 Kbp) (Figure 
3B and Suppl. Table 1). The sequencing throughput was not affected by the lower DNA 
input when using the high-sensitivity prototype flow cells. (Suppl. Table 1).
Following the lenient SV calling, pre-filtering, RF classification, the database filtering and 
ranking steps, an average 2.8% (range of 1.0%-4.4%) of SVs per sample were retained 
(Figure 3C). We performed breakpoint PCR assays on lymphocyte and tumor DNA 
for the top 20 ranked SVs and validated an average of 10 (50%, range 25-80%) somatic 



125

5 5

OPTIMIZING NANOPORE SEQUENCING-BASED DETECTION OF STRUCTURAL VARIANTS ENABLES
INDIVIDUALIZED CIRCULATING TUMOR DNA-BASED DISEASE MONITORING IN CANCER PATIENTS

SVs per sample (Figure 3D). Therefore, despite not having enough sequencing depth to 
provide a complete genome construction, we were able to identify several somatic SV 
biomarkers in each of the tumor samples. 

We investigated the recall of validated somatic SVs at different timepoints during the 
sequencing run. We found that, on average, 81.6% (range 50-100%) of validated somatic 
SVs were already detected within the first 24 hours of sequencing (Suppl. Figure 6). This 
offers the opportunity to reduce the sequencing time, accelerating tumor biomarker dis-
covery with one day. 
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Figure 3: SHARC identifies and validates tumor-specific SV biomarkers from low-pass nanopore 
tumor sequencing data. Plots showing the distribution of (A) coverage and (B) read length for the nine 
tumor samples sequenced on one flow cell each. Dashed lines represent averages for each sample. (C) Total 
number of somatic SVs present at each of the steps throughout the SV calling and filtering pipeline. RF: 
Random forest; DBFilter: Database filter (D). The Top20 ranked breakpoints for each sample were tested 
by breakpoint PCR using tumor and germline DNA. Graph depicts the number of breakpoints validated as 
somatic (blue), germline (green) or breakpoints that could not be validated (red). 
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Detection of somatic SVs in cfDNA from patients with ovarian and prostate cancer 

To show the applicability of the pipeline to detect clinically relevant biomarkers, we next 
tested if we could detect the validated somatic SVs in cfDNA of patients. Ascites fluid, 
which is known to contain cfDNA and ctDNA361 was available for Ova2 at time of dis-
ease recurrence. We extracted cfDNA from the ascites and tested the 16 validated so-
matic SVs out of the Top20 by PCR. 100% of somatic SVs could be detected within the 
cfDNA from ascites (Suppl. Figure 7), and not in the germline or water controls. Next, 
we tested whether validated SVs could be detected in cfDNA from blood. Therefore, 
we selected two patient-specific SVs for four prostate cancer patients (Pros1, 4, 5 and 6) 
based on a high signal to noise ratio observed in qPCR assays for SV breakpoints (Figure 
4A and Methods). 
To enable sensitive and quantitative detection, we designed digital PCR (dPCR) assays 
for the eight selected SVs (Figure 4B). For each SV, we aimed to design a probe for both 
wild-type alleles (up- and downstream) and for the mutant allele (across the breakpoint 
junction). For five SVs we could design an assay that quantified both the upstream and 
downstream wild-type allele. For the three other SVs, primers/probes for only one of 
the wild-type alleles were designed, as appropriate primer design for the other allele was 
hindered by repetitive sequences at the target site. As the amount of cfDNA within one 
liquid biopsy is limited, we used a conditional breakpoint detection approach: (i) if dPCR 
on pre-amplified cfDNA (input pre-amplification: 0.2-1 ng cfDNA) confirmed the pres-
ence of the SV within cfDNA, (ii) then subsequent dPCR on non-preamplified cfDNA 
(stock cfDNA) (input dPCR: 5 ng cfDNA) was performed. The latter enabled calcula-
tion of both the variant allele frequency (VAF) and the number of mutant molecules 
per milliliter plasma (MM/mL plasma). First, we selected two timepoints per patient, 
one at baseline and one at progression of disease and confirmed the presence of all eight 
SVs with dPCR on pre-amplified cfDNA (Suppl. Figure 8). Thereafter, dPCR on the 
stock cfDNA successfully detected all SVs in the four patients, both in baseline and pro-
gression samples (Figure 4C and 4D). Despite the fact that the VAF in pre-amplified 
cfDNA correlates to the VAF in stock cfDNA (rs = 0.928), they should be considered two 
separate outcome measurements (regression coefficient = 0.72 ≠ 1) (Suppl. Figure 9A). 
Moreover, VAF based on the wild-type upstream allele was highly similar to VAF based 
on the wild-type downstream allele in stock cfDNA (rs = 0.996, regression coefficient = 
1.05) (Suppl. Figure 9B), suggesting no significant imbalances between the two sides of 
the breakpoint. 
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Figure 4: dPCR-based quantification of SVs in blood. (A) Schematic overview of quantification of tumor-
specific SVs, identified by SHARC, in cfDNA from blood by using qPCR and dPCR. (B) Primer and probe 
design for dPCR. The wild-type upstream and wild-type downstream allele share each one primer with the 
mutant allele. Three probes with different fluorescents were designed to specifically detect the mutant allele 
or one of the wild-type alleles. (C) Detection of two tumor-specific SVs in cfDNA from blood from four 
patients with prostate cancer at baseline and at progression of disease with dPCR. Shown are VAF and (D) 
mutant molecules per mL plasma. (E) Quantification of SVs in longitudinal cfDNA samples from blood of 
patient Pros1. Graph depicts VAFs of SVs, treatment, laboratory parameters (prostate specific membrane 
antigen (PSA), alkaline phosphatase (ALP) and clinical progression of disease (PD).
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Monitoring treatment response in patients with prostate cancer

In addition to the detection of SVs in cfDNA at baseline and progression of disease, we 
explored the capacity to use SVs to monitor treatment response over time. To enable re-
liable response monitoring, measurements should be accurate and repeatable. As VAFs 
are ratios and in principle not influenced by technical variations between timepoints, we 
chose to report VAFs only. To verify the accuracy of dPCR, we performed two technical 
replicates for all pre-amplified samples of Pros5 and Pros6 and confirmed a high correla-
tion of VAFs between the replicates (rs = 0.987, regression coefficient = 0.918) (Suppl. 
Figure 9C). Finally, we quantified the eight SVs of the four prostate cancer patients in 
the longitudinally collected samples from before, during and after treatment. For Pros1, 
SV-A shows the potential to improve response evaluation as its dynamics correspond 
to the expected response to treatment with cabazitaxel and increases towards the end of 
treatment, resulting in the highest levels at clinical progression of disease (Figure 4E). 
These changes also seem to correlate with other blood biomarkers, including PSA and 
ALP. In addition, SV-B in Pros1 similarly correlates with response to treatment (Figure 
4E). Also for Pros5 both SV-A and SV-B show clear changes over time correlating with 
clinical parameters, and Pros4 and Pros6 have less compelling dynamics of the detected 
SVs (Suppl. Figure 10A-C). 

Discussion

Recent studies have utilized somatic SVs for tracking tumor burden from liquid biop-
sies69,165,166,357. Although these studies showed the potential of this methodology, they 
lacked sufficient turn-around time to provide personalized biomarkers before the ini-
tiation of patient treatment. This is due to lengthy short-read WGS approaches for SV 
detection and an associated substantial number of false-positive somatic SVs, requiring 
laborious testing to validate SVs. To overcome these limitations, we utilized the real-time 
and long-read capabilities of nanopore sequencing combined with a machine learning 
approach to efficiently identify a set of somatic SVs from tumor tissue within three days. 
The rapid and simple workflow offers great potential for routine monitoring of cancer 
dynamics. We illustrate the applicability of our method to measure tumor burden by 
using a series of longitudinally gathered blood samples from metastatic prostate cancer 
patients. 
Obtaining enough tumor material for DNA isolation is often a limiting factor for 
next-generation sequencing assays. We show that nanopore sequencing and somatic SV 
detection is possible from limited amounts of DNA that can be extracted from a meta-
static tumor needle biopsy, which is an important requisite for clinical viability. DNA in-
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put can be decreased even further to as little as 80 ng when using flow cells with increased 
sensitivity for DNA (research prototype flow cells provided by ONT). 
Long-read sequencing is an excellent method for the detection of SVs at nucleotide 
resolution, even at low sequencing depth, because each long-read that bridges a break-
point-junction provides direct information on the breakpoint position and sequence 204. 
Sequencing of a tumor sample on a single GridION/MinION nanopore flow cell gen-
erates insufficient sequencing data to accurately establish a complete genomic profile. 
However, using the pipeline developed here, we efficiently enriched for patient-specific 
somatic SV events - irrespective of their functional impact on tumor biology. Despite the 
very low coverage, the computational method functions independently of correspond-
ing germline sequencing data. These assets make our pipeline a cost-efficient assay for 
detection of personalized somatic SV biomarkers. Furthermore, on average 50% of the 
detected SVs are somatic, which minimizes the hands-on effort needed for validation 
purposes. For all analyzed tumors, we identified at least five somatic SV biomarkers per 
patient, an amount within the range of biomarkers used to trace ctDNA in previous 
work69,166,362. With expected increases in sequencing throughput from ONT sequencing, 
the performance of the pipeline will improve significantly. Furthermore, the use of cheap 
disposable flow cells (Flongle) could reduce assay costs to 1/5 of the current sequencing 
price of 800€ 363. The minimal costs of this assay would enable the broader application of 
such individualized SV monitoring in cancer patients.
We retrospectively traced levels of ctDNA with two SVs per patient for four prostate can-
cer patients and compared tumor dynamics to clinical biomarkers such as PSA and ALP. 
The quantitative measurement of SVs in ctDNA suggests that VAFs of SVs correlate with 
tumor load (Pros1 and Pros5). Moreover, the SVs would have indicated progression of 
disease earlier than PSA did in some patients (Pros1 and Pros 4). Even though we only 
tested two SVs per patient, this clearly illustrates the potential clinical utility of quanti-
fying ctDNA with SVs to monitor response to treatment. The assay could be optimized 
by not only identifying the tumor-specific SVs, but also SVs that represent the dominant 
disease clone and upcoming, targetable subclones. In addition, larger prospective studies 
should confirm that indeed measuring SVs improves clinical decision making in patients 
with metastatic prostate, and other cancer types.

Conclusions

Clinicians are well aware of the dynamic response of cancer to treatment but lack the 
tools to monitor these changes in real-time and thus generally respond to alterations too 
late for true treatment success. We present a method to overcome these limitations and 
provide a solution to immediate individualized disease monitoring. This approach could 
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increase sensitivity of disease monitoring to such levels that more intelligent treatment 
approaches could be envisioned. 

Materials and methods

DNA Isolation and nanopore sequencing: COLO829 (ATCC® CRL-1974™) cell line was 
obtained from the American Type Culture Collection (ATCC) and grown according 
to standard procedures as recommended by ATCC. DNA was isolated using a phenol 
chloroform protocol364. For some nanopore sequencing runs, DNA was sheared us-
ing g-tubes (Covaris). DNA was size selected on the PippinHT (Sage Science). Library 
preparation was performed using the Lib SQK-LSK109 kit (Oxford Nanopore Technol-
ogies) and DNA was then sequenced in 49 separate runs using R9.4 flow cells (Oxford 
Nanopore Technologies) on the MinION (44), GridION (3) and PromethION (2) in-
struments (Suppl. Table 1). 
HGS-3 organoid line was cultured following the ovarian cancer organoid culture proto-
col278. DNA was isolated by using a phenol chloroform protocol364. DNA was size select-
ed on the PippinHT (Sage Science). Library preparation was performed using the Lib 
SQK-LSK109 kit (Oxford Nanopore Technologies) and DNA was then sequenced in 40 
separate runs using R9.4 (23) and R9.5 (17) flow cells (Oxford Nanopore Technologies) 
on the MinION (35) and GridION (5) instruments (Suppl. Table 1).
Tumor DNA from patients with ovarian cancer was isolated with the Genomic-tip kit 
(Qiagen), following the manufacturer’s protocol for tissue samples. DNA was prepared 
for nanopore sequencing with the Lib SQK-LSK109 (Oxford Nanopore Technologies). 
The library from one tumor sample was loaded on one revD (Ova1) or R9.4 (Ova2-4) 
flow cell (Oxford Nanopore Technologies). Sequencing was performed on a MinION 
(Ova2, Ova4) or GridION (Ova1, Ova3) instrument (Oxford Nanopore Technologies) 
(Suppl. Table 1). Lymphocyte DNA for PCR validation assays was isolated from blood 
with the DNeasy Blood & Tissue Kit (Qiagen). 
Tumor and germline DNA from patients with prostate cancer were obtained from a fresh 
frozen core needle biopsy of a metastatic lesion and blood, respectively. DNA was isolat-
ed on an automated setup with the QiaSymphony according to the supplier’s protocols 
(DSP DNA Midi kit for blood and DSP DNA Mini kit for tissue). In the context of the 
CPCT-02 study, WGS was performed by the Hartwig Medical Foundation, Amsterdam, 
The Netherlands365. Residual tumor DNA (80-250 ng) was used for nanopore sequenc-
ing. DNA was prepared for nanopore sequencing with the Lib SQK-LSK109 (Oxford 
Nanopore Technologies). The library from one tumor sample was loaded on one R9.4 
(Pros1), revD (Pros2,3) or high-sensitivity research prototype (Pros4-6) flow cell (Ox-
ford Nanopore Technologies). Sequencing was performed on a GridION instrument 
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(Oxford Nanopore Technologies) (Suppl. Table 1).

Illumina sequencing and analysis (COLO829 and HGS-3): Short read WGS was ob-
tained for matched tumor and normal DNA from the COLO829 cell line284 and the 
HGS-3 organoid line278. 
SV calling was performed by using GRIDSS (v. 2.0.1)318 in joint calling mode (tu-
mor+reference) for COLO829 and HGS-3 separately. Somatic SV calls were filtered as 
in284 (https://github.com/hartwigmedical/pipeline/blob/master/scripts/gridss_somat-
ic_filter.R)

Benchmarking somatic SV calling from low coverage nanopore sequencing data: 
Nanopore data from COLO829 was randomly subsampled to 5x sequencing coverage 
three times independently with Sambamba345. SV calling was performed with NanoSV 
(v. 1.2.4 )204 with a 2-read support threshold; Sniffles (v. 1.0.12) 342with parameters 
“--report_BND --genotype -s 2”; and NanoVar (v. 1.3.8) 205with default parameters. In 
all cases 8 threads were used and computational resources were measured with GNU 
Time. True and false positives were calculated using the short-read somatic SV callset 
described above. 

SV calling and filtering pipeline: The SHARC pipeline is available through https://github.
com/UMCUGenetics/SHARC. Mapping is performed in parallel for each FASTQ file by 
using minimap2 (v. 2.12)344 with settings “-x map-ont -a --MD”. The reference genome 
used is version GRCh37. Sorting and merging of BAM files was done by using sambam-
ba (v. 0.6.5)345. SV calling was performed by using NanoSV (v. 1.1.2)204. Default NanoSV 
settings were used except a minimum read count of 2 (cluster_count=2) and minimum 
mapping quality of 20 (min_mapq=20). VCFs are filtered by using the command `awk 
‘$7 == “PASS” && $1 !~ /(Y|MT)/ && $5 !~ /(Y|MT):/ && $5 != “<INS>”’` to select 
PASS calls and remove insertions and SVs involving chromosomes Y or MT. VCFs are 
then annotated with the distance to the closest single repeat element in the reference ge-
nome366,367, the closest gap element in the reference genome367,368, and the closest segmen-
tal duplication element in the reference genome367. These elements were taken from the 
UCSC genome browser (http://genome.ucsc.edu)367, using the GRCh37/hg19 genome 
version. 
We trained a random forest (RF) model to filter out false-positive SV calls from nanopore 
data, similarly as previously described204. We expanded the selection of input features for 
the RF, by including read length, SV calling features, and overlap with repeat features in 
the reference genome (Suppl. Table 3). We trained the classifier on the well-character-
ized NA12878 Genome in a Bottle (GIAB) sample183,369,370, for which high-quality germ-
line SV call sets have been obtained by using Illumina370 , PacBio369 and Nanopore183 se-
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quencing. The GIAB SV truth set was generated by intersecting these three GIAB SV sets 
resulting in a set of 1,515 germline SVs. We used ⅔ of the GIAB truth set as a training set 
and ⅓ as a test set. We established a precision-recall curve from 100 bootstrapping runs 
(Suppl. Figure 4), where the training data were split into 90%-10% train-test subsets. 
Based on the precision-recall curve, we defined an operating point of 96% precision and 
99.5% recall (Suppl. Figure 4). The final model was then re-trained on the whole train-
ing set and tested on the ⅓ test set. The performance on the test set was 95.1% precision 
and 99.6% recall, representing an accuracy of 97.2% (Suppl. Figure 4). SV candidates are 
classified as “true” or “false” based on this RF model. 
We set up two databases of SV calls: (i) SharcDB: containing raw NanoSV calls from 
nanopore sequencing data of 14 samples, 11 of which belong to this study (COLO829, 
HGS-3, Ova1, Ova2, Ova3, Ova4, Pros1, Pros2, Pros4, Pros5 and Pros6; and three more 
for which we had SV calls from high coverage nanopore data: COLO829BL (lympho-
blastoid cell line, 50x sequencing depth), VCAP (prostate cancer cell line371) and the Ge-
nome in a Bottle SV calls (GIAB, 183, . For tests performed with the samples included in 
this study, the specific sample was excluded from blacklisting with SharcDB; (ii) RefDB: 
containing germline calls obtained from WGS short-read data of 59 controls: 19 blood 
controls from patients with ovarian cancer278, where germline SVs were called with Man-
ta (v. 1.0.3)350 with default parameters and 40 healthy individuals (biological parents of 
individuals with congenital abnormalities)372 where germline SVs were called with Man-
ta (v. 0.29.5)350 with default parameters.SV calls from tumor samples are overlapped 
with those two databases by using VCF-explorer (https://github.com/UMCUGenetics/
vcf-explorer). Only samples classified as “true” by the RF model and that do not overlap 
with any sample in the databases qualify for primer design. Primer design for filtered 
SV calls is automatized by using Primer3 (v. 1.1.4)349 with a product size range of 30-230 
bp. SVs with a successful primer design are ranked based on SV length and the 20 larg-
est are selected for PCR validation. Insertions are filtered out early in the pipeline since 
the inserted sequence cannot be accurately inferred from the low coverage nanopore se-
quencing data. Inter-chromosomal translocations are not present in the top20 ranked 
SVs because the final ranking is based on SV size and this cannot be determined for 
inter-chromosomal SVs. However they are available in the final VCF file and primers 
are designed by default, so they can be manually selected for PCR validation and assay 
development.

Breakpoint PCR: To validate SVs, breakpoint PCR with AmpliTaqGold (Applied Bio-
systems) was performed according to the manufacturer’s protocol. 10 ng primary tumor 
DNA (somatic) and 10 ng lymphocyte DNA (germline) per primer-pair were used as 
input. PCR products were loaded and visualized on a 2% agarose gel. 
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cfDNA isolation: cfDNA was isolated from ascites fluid of Ova2 by using the QIAamp 
Circulating Nucleic Acid Kit (Qiagen) according to the manufacturer’s protocol. Plasma 
samples from patients with prostate cancer were obtained longitudinally during treat-
ment in 3x10 ml CellSave preservative tubes (Menarini Silicon Biosystems, Huntingdon 
Valley, PA, USA) and processed within 96 hours as previously described373. Circulating 
DNA was isolated with the QIAsymphony® DSP Circulating DNA Kit (Qiagen) according 
to manufacturer’s protocol with some minor modifications374. All cfDNA samples were 
quantified by QubitTM fluorometric quantitation (Invitrogen).

Quantitative PCR: As primer specificity is essential for reliable interpretation of an end-
point assay like dPCR, primers for the detection of structural variants were validated 
by quantitative PCR (qPCR) on whole genome amplified (WGA) tumor and germline 
DNA. In brief, qPCR was performed by using the CFX96 Touch™ Real-Time PCR De-
tection System (Bio-Rad Laboratories) and the final reaction mix consisted of 10 µL Sen-
siFASTTM SYBR ® Lo-Rox mix (Bioline), 0.5 µM forward and reverse primers, 10 ng of 
WGA DNA and Ultrapure DNas/RNAse free H2O to bring up the reaction volume to 
20 µL. The Cycle conditions were as follows: 14 cycles of 10s at 95°C and 30s at from 65-
58°C (touchdown), followed by 20-40 cycles of 10s at 95°C and 30s at 60°C. In addition, 
a melt curve was generated from 56°C to 95°C to assess the generated PCR products. 
Based on qPCR results, two primer sets for the detection of SVs in each patient were 
selected for quantification by digital PCR (dPCR). Primer sets were excluded from use 
with dPCR when one of the following ocurred: >1 PCR product, Cqgermline- Cqtumor <5 
and/or Cqtumor > 20. 

DNA sonication and fragment size analysis: To mimic the length of cfDNA and improve 
DNA molecule partition, WGA DNA of both tumor and germline were sonicated to a 
peak size of ~150 bp with the S220 Focused-ultrasonicator (Covaris) according to the 
manufacturer’s protocol. The sonication conditions were as follows; 200-250 ng WGA 
DNA (concentration determined by QubitTM fluorometric quantitation) in 50 µL Ultra-
pure DNas/RNAse free H2O, Peak Incident Power: 175 W, Duty Factor: 10 %, Cycles per 
Burst: 200, Treatment Time: 280 s, Temperature: 7°C, and Water Level: 12. After soni-
cation DNA fragment sizes were analyzed with the High Sensitivity DNA kit (Agilent 
Technologies) on the Bioanalyzer (Agilent Technologies) and the sample concentration 
was re-quantified by QubitTM fluorometric quantitation (Invitrogen, Life Technologies, 
Carlsbad, CA, USA). 

Design of digital PCR assays for absolute quantification of SVs in cfDNA: To quantify 
SVs in cfDNA, dPCR was performed. First, the exact position of the breakpoint as de-
termined by nanopore sequencing was validated. We used already available sequenced 
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Illumina data from the CPCT-02 study (Pros1, Pros4, Pros5 and Pros6), but Sanger se-
quencing of the particular qPCR product could be used as well. To enable quantification 
of both mutant and wild-type alleles, additional primers for the detection of wild-type 
upstream (WT-U) allele and wild-type downstream (WT-D) allele of the breakpoint and 
fluorescent probes for both mutant and wild-type alleles were developed by using the 
Primer Express Software v3.0 (ThermoFisher) and the online tool Primer3Plus349. All 
primers and fluorescent probes (Suppl. Table 4) were ordered from Eurogentec.

Pre-amplification of cfDNA: To enable sensitive detection of multiple SVs in limited 
amounts of cfDNA, two SVs per patient were pre-amplified with 0.2-1 ng of cfDNA. 
Pre-amplified tumor and germline DNA samples were used as respectively positive and 
negative control. Pre-amplification was performed by using 4 µL of TaqMan™ PreAmp 
Master Mix (cat.no: 4488593, Life Technologies), 2 µL primer pool (0.25 µM) consist-
ing of SV forward (SV-F) and reverse (SV-R) primers and upstream (WT-U) and down-
stream (WT-D) wild-type primers, and 2 µL (cf)DNA for a total volume of 8 µL. Pre-am-
plification cycle conditions were: 10 min at 95°C followed by 14 cycles of 15 s at 95°C 
and 4 min at 60°C, and finally pause at 4°C. After the pre-amplification reaction, 72 µL of 
Ultrapure DNase/RNAse free H2O was added to each sample. Next, pre-amplified cfD-
NA was diluted 40x per 1 ng input, used for the pre-amplification, to prevent overloading 
of the dPCR chips.

Absolute quantification of SVs in cfDNA with digital PCR: For the quantification of 
SVs in (cf)DNA, dPCR was performed with the Naica Crystal PCR system (Stilla Tech-
nologies) by using the following optimized reaction mix: 1 µL of diluted pre-amplified 
(cf)DNA sample, 5.6 µL PerfeCTa Multiplex qPCR ToughMix (Cat.No: 733-2322PQ, 
Quantabio). 0.25 µM probes (SVFAM, WT-UHEX, WT-DCY5), 0.75 µM of the SV forward 
(SV-F) and reverse primer (SV-R), 0.25 µM of the WT-U and WT-D primers, 0.1 µM 
Fluorescein (Cat.No: 0681-100G, VWR) and Ultrapure DNAse/RNAse free H2O to 
bring up the total volume to 28 µL. Samples were loaded onto Stilla Sapphire chips (Cat.
no. C13000, Stilla Technologies) and dPCR was performed with the same cycle condi-
tions as for the primer validation with qPCR. Median number of analyzable droplets was 
21,357, inter quartile range 19,837-22,736. dPCR reactions were optimized with 10 ng 
sonicated tumor and germline WGA DNA. When an SV could be detected in pre-am-
plified cfDNA samples, a dPCR of all longitudinal cfDNA samples was performed on 5 
ng of stock (no pre-amplification) cfDNA to enable absolute quantification of mutant 
molecules in plasma. 

Statistics: qPCR experiments were analyzed with Bio-Rad CFX Manager version 3.1. 
dPCR experiments were analyzed with Crystal Miner™ software, version 2.1.6 (Stilla 
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Technologies). Thresholds for positive fluorescence were determined per primer pair 
based on positive and negative controls. Variant allele frequency (VAF) was calculated 
according to the following formula: 
number of mutant molecules per µl in chip (as defined by Crystal Miner™ software) / 
(number of mutant molecules per µl in chip + number of wild-type molecules per µl in 
chip) * 100%. 
Absolute number of mutant molecules per mL plasma was calculated as follows: 
number of mutant molecules per µl in chip * 28 µl (input in chip) / (used eluate/total 
volume of eluate * volume of plasma used for isolation). 
To correct for zero values on a log scale, +1 was counted to every value and axes were 
corrected with -1. Spearman’s correlation coefficient was calculated for comparisons of 
VAF based on upstream wild-type allele vs downstream wild-type allele, two replicates 
and pre-amplified vs non-pre-amplified cfDNA samples. Corresponding slope was cal-
culated by using linear regression analysis.
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Availability of data and materials
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COLO829 cell line: ENA accession ERX2765498.
HGS-3 organoid line: EGA dataset accession EGAD00001005476
Patient material: EGA study accession EGAS00001003963
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Supplementary Figure 1: Coverage and read length of COLO829 and HGS-3. Coverage (A) and read 
length (B) distribution for COLO829 and HGS-3 nanopore sequencing data. Dashed lines represent average. 
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Supplementary Figure 2: Enrichment of somatic SV calls of COLO829 and HGS-3 after subsequent 
steps of the SHARC pipeline. The filtering steps were applied in a cumulative manner in the order displayed 
for subsampled Nanopore sequencing datasets from COLO829 and HGS-3. For each level of coverage, 20 
independent subsampled datasets were generated and subjected to each filtering step in a cumulative manner. 
(A) Enrichment for somatic SVs after subsequent steps of the SHARC filtering pipeline. The blue and red 
lines/dots indicate the percentage of somatic and non-somatic SV calls after each filtering step of the pipeline 
for both COLO829 and HGS-3. The percentage of somatic and non-somatic SV calls is calculated relative 
to the sum of remaining somatic and non-somatic SV calls after each filtering step. Thus, 100% represents 
the total number of SV calls (somatic plus non-somatic) present at each step. (B) This figure panel is based 
on the same underlying data as for panel A, but here the percentage of somatic (blue) and non-somatic (red) 
SV calls is plotted relative to the total number of somatic and non-somatic SV calls detected at the first step, 
respectively. Thus, 100% represents the total number of non-somatic or somatic SV calls found initially in 
the raw data prior to filtering. While the percentage of non-somatic SV calls (red line/dots) decreases rapidly 
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to very low percentages, the percentage of true positive somatic SV calls (blue line/dots) remains substantial 
(around 20%, depending on the sequence coverage). In low coverage subsets, all data points are shown and 
the square box represents the median value. RF: Random forest; DBFilter: Database filter.
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Supplementary Figure 3: Benchmarking of nanopore SV callers on low coverage nanopore sequencing 
data. The SV callers NanoSV, Sniffles and NanoVar are compared in terms of true positives (A), false positives 
(B) and required computation memory (C) and time (D). Triplicates of 5x randomly subsampled COLO829 
data were used, and comparisons were performed against a short-read somatic SV reference set. 
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Supplementary Figure 4: Somatic vs germline SV length. Histogram and density plot of SV lengths of 
somatic and germline SVs from short-read data of COLO829 and HGS-3.
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Supplementary Figure 5: Random forest performance on the Genome in a Bottle sample (GIAB). (A) 
Precision vs recall curve on the training set. Depicted is the operating point selected of 96% precision and 
99.5% recall. (B) Random forest performance on the hold-out set. 
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Supplementary Figure 6: Nanopore sequencing time vs. somatic SV detection. Plots showing the 
sequencing time and the recall of validated somatic SVs in 6-hour cumulative bins. 
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Supplementary Figure 7: Validation of somatic SV (sSV) of Ova2 biomarkers in cfDNA. sSVs of patient 
Ova2 were tested on cfDNA from ascites (cfDNA), tumor DNA (T), germline DNA (G) and water control 
(N). M = DNA ladder.
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Supplementary Figure 8: Confirmation of presence of SVs in pre-amplified cfDNA. Detection of two 
patient-specific SVs in cfDNA from blood from four prostate cancer patients at baseline and at progression 
of disease with dPCR. Shown are VAFs. 
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Supplementary Figure 9: Technical aspects of dPCR. (A) Comparison of VAF in pre-amplified cfDNA 
and VAF in stock (non-pre-amplified) cfDNA. (B) Comparison of VAF based on up- and downstream wild 
type alleles. (C) Comparison of VAF in technical replicates of dPCR of pre-amplified cfDNA samples of 
Pros5 and Pros6. 
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Supplementary Figure 10: dPCR-based quantification of SVs in blood. Quantification of SVs in 
longitudinal cfDNA samples from blood in patient (A) Pros4, (B) Pros5 and (C) Pros6. In addition to VAFs 
of SVs, treatment, laboratory parameters (prostate specific membrane antigen (PSA), alkaline phosphatase 
(ALP)) and clinical progression of disease (PD) are visualized. Progression of disease based on a confirmed 
increase of prostate specific membrane antigen (PSA) of ≥25% above the nadir or baseline (PCWG3 criteria) 
was present in Pros5 and Pros6 (PSA PD). Doce, docetaxel; Caba, cabazitaxel; Mito, mitoxantrone.
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Abstract

Pediatric leukemias are aggressive tumors and therefore require immediate diagnosis, 
treatment initiation and appropriate biomarkers to facilitate minimal residual disease 
(MRD) tracing. The occurrence of genomic rearrangements such as fusion genes are 
hallmark events in these cancers and their unique genomic breakpoint junctions serve as 
an attractive MRD biomarker. Furthermore, leukemic cells derived from the lymphoid 
lineage (e.g. ALL and CLL) harbor clonal variable (V), diversity, (D), joining (J) rear-
rangements in the immunoglobulin (Ig) and/or T-cell receptors (TCR) which are widely 
used for PCR-based MRD tracing approaches. Timely detection of the exact genomic 
breakpoint junction of the fusion genes and/or the dominant V(D)J clones is therefore 
essential; however, this often presents as a race against the clock with current multi-step 
diagnostic processes. We here applied FUDGE -a targeted long-read nanopore sequenc-
ing assay- to a panel of ten KMT2A or SIL-TAL1 fusion-positive acute lymphoid leu-
kemia samples. We show that we can comprehensively target and obtain high coverage 
across the two fusion loci as well as the complex Ig and TCR loci with a single sequenc-
ing run. Within 48 hours we validate 86% of the diagnostically defined MRD targets for 
these patients. Furthermore, we identify an additional set of patient-specific rearrange-
ments that could be used for MRD tracing. We here utilize FUDGE to detect unique 
genomic breakpoint junctions in pediatric lymphoid leukemia samples and present it 
as an attractive alternative to current multi-step biomarker identification assays for an 
increase in speed and detection sensitivity. 
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Introduction

Leukemias are the most common form of pediatric cancers and account for approxi-
mately 30% of childhood cancer incidences375. Leukemias develop from hematopoietic 
progenitors in the bone marrow or the thymus and cause an abnormal increase of white 
blood cells376. Depending on the type of affected lineage (myeloid or lymphoid) and the 
kinetics of the disease (acute or chronic), leukemias can be subdivided into acute my-
eloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia 
(CML) and chronic lymphocytic leukemia (CLL). These subtypes can be further subdi-
vided based on molecular abnormalities or immunophenotypic presentation and pres-
ent with differing prognostic predictions377,378. While the overall survival rate of pediatric 
leukemias has drastically increased over the past decades, with 90% for ALL and 75% 
for AML, refractory or relapsed patients still face poor prognosis, therefore requiring 
accurate diagnosis at initial presentation as well as at recurrence377,379. Key to the man-
agement of leukemias is monitoring of minimal residual disease (MRD) – small traces 
of leukemic cells that can still be detected by sensitive methods like flow cytometry or 
PCR380. MRD is a strong prognostic factor widely used for risk group stratification and 
other clinical decision-making381,382. Molecular MRD monitoring relies on genetic mark-
ers that specifically identify the leukemic cells. Genetic abnormalities such as the unique 
breakpoint junctions created by genomic rearrangements are optimal biomarkers that 
reflect the disease burden69,166.

A large proportion of leukemic subtypes are characterized by recurrent genomic rear-
rangements which may lead to the formation of fusion genes383,31. Fusion gene formation 
is a complex mechanism and the originating fusion gene configurations are extreme-
ly versatile. Whereas some events involve highly recurrent fusion gene configurations, 
such as the common BCR-ABL1 fusion or the rare SIL-TAL1 deletion rearrangement, 
others mainly involve a sole recurrent fusion partner gene384–386. KMT2A for example, 
is a promiscuous fusion partner gene and has been reported in >130 different fusion 
configurations387,388. Additionally, the genomic position where the break occurs within 
the involved genes is very variable - even for highly recurrent fusion gene configurations. 
However, this high level of versatility results in unique genomic breakpoint junctions, an 
acquired and patient-specific property of the tumor cells, and can therefore be exploited 
as a distinct, trackable biomarker.

Leukemias that arise from the lymphoid lineage mainly comprise a clonal outgrowth of 
single transformed lymphoblasts389. Lymphoblasts are immature lymphocytes that will 
become the effectors of the adaptive immune system, which recognizes millions or bil-
lions of different antigens thanks to a highly diverse repertoire of antigen recognition 
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molecules on B- and T- cells390,391. This antigen receptor repertoire is generated during 
their maturation by the unique process of the variable (V), diversity (D), joining (J) re-
combination, a somatic recombination at the genetic level during which different gene 
segments rearrange392. This process, taken together with random nucleotide insertions 
and deletions at the joint sites (junctional diversity), provides a highly diverse repertoire 
of immunoglobulins (Igs) in B-cells and T-cell receptors (TCRs) in T-cells393,394. The re-
sults at the genomic level are newly formed and unique genomic junctions which con-
nect the rearranged V(D)J segments, and ultimately form the unique antigen binding do-
mains of the antigen receptor proteins. Depending on the developmental stage at which 
lymphoblasts undergo malignant transformation, they usually have already undergone 
one or more successive VDJ recombination events and thus harbor one or more unique 
rearrangements in their DNA: fingerprints of the leukemic cells that can be exploited as 
molecular markers for MRD monitoring395.

Biomarkers for MRD assays must be patient specific and are therefore often based on the 
unique properties of the underlying genomic rearrangement396. Fusion genes can easily 
be detected by breakpoint-spanning primers (i.e. one primer upstream and one primer 
downstream of the breakpoint junction), while Ig/TCR rearrangements require a break-
point-specific primer (i.e. one primer sitting on the breakpoint junction) combined with 
a germline probe and primer to ensure increased specificity396,397. Quantifications are 
usually performed with PCR-based assays, and return information on the effectiveness 
of the treatment as well as tumor dynamics396,398. Furthermore, the tumor material can be 
obtained through liquid biopsies (i.e. blood) in a minimal invasive manner. Hence, not 
only MRD but also therapy response can be effectively assessed in a longitudinal fashion.
Current diagnostic approaches to identify MRD targets mainly include PCR-based as-
says, targeted NGS or WGS/RNA-Seq399,400. Routine DNA-breakpoint PCRs have been 
developed for the Ig/TCR rearrangements, however, for some labs no standardized as-
says are available for versatile fusion events like KMT2A fusions or even the recurrent 
configurations such as the SIL-TAL1 rearrangement. For the majority of recurrent fu-
sion events transcriptomic breakpoints are utilized as the breakpoint detection is simpli-
fied through its restriction to exon-exon junctions and predeveloped probes can ensure 
high quality detection and quantification assays401. While a transcriptomic breakpoint 
may be less representative of the actual number of leukemic cells, their simple and reli-
able methodology and rapid turnaround time has made them a standardized diagnostic 
assay. (Targeted) NGS approaches are now being implemented in diagnostic labs due to 
their mostly unbiased ability to detect fusion genes at the RNA or DNA level, however, 
these come with more complex analysis strategies, validation requirements and longer 
turnaround times399. Furthermore, RNA-Seq is not suited to detect promoter fusions 
or accurately define the genomic breakpoint location402. Optimally, a diagnostic assay 
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would comprehensively identify genomic MRD targets from fusion genes and Ig/TCR 
loci, in a rapid (e.g. less than one week), comprehensive and straightforward workflow 
with minimal hands-on time requirements.

We recently developed FUDGE -a targeted and directional nanopore sequencing as-
say- to rapidly identify recurrent fusion genes with unknown fusion gene partners and 
extract the exact genomic breakpoint location30. Based on this strategy, we developed 
a nanopore sequencing assay ideally suited for the detection of personalized genomic 
MRD targets from gene fusions and Ig/TCR rearrangements in lymphoid leukemias. We 
retrospectively tested a panel of five KMT2A positive B-cell acute lymphoblastic leuke-
mias (B-ALL) and five SIL-TAL1 positive T-cell acute lymphoblastic leukemia (T-ALL) 
samples. We show the capability of the assay to comprehensively target fusion genes as 
well as the Ig and TCR loci and to detect the sequence of genomic breakpoints for use 
in the subsequent design of MRD assays. We confirm 86% of the MRD targets that were 
diagnostically determined for these patients and identify an additional 32 potential pa-
tient-specific MRD targets - all within 48 hours. 

Results

KMT2A and SIL-TAL1 assay design

We previously developed FUDGE403, a targeted and directional nanopore sequencing 
assay, to identify recurrent fusion genes irrespective of fusion partner and genomic 
breakpoint position. We here apply FUDGE to a panel of KMT2A and SIL-TAL1 fu-
sion-positive B-ALL and T-ALL patient samples, respectively, to identify unique ge-
nomic breakpoint junctions which may serve as suitable biomarkers for subsequent 
quantitative PCR-based MRD testing with breakpoint-spanning primers (Figure 1A). 
FUDGE couples target-selected and strand-specific CRISPR/Cas9 activity, which fa-
cilitates enrichment by selective sequencing adapter ligation, to long-read real-time 
nanopore sequencing (Supplementary Figure 1). KMT2A, a recurrent fusion partner 
gene in leukemias, has been reported with >130 different fusion gene configurations. 
Furthermore, there are two clusters within the KMT2A gene spanning approximatively 
12.4 kb where previous breakpoints have been reported387. Therefore, we designed two 
crRNAs (crK-e7 and crK-e19) targeting these two main breakpoint clusters (Figure 1B). 
SIL-TAL1, a specific and recurrent rearrangement between SIL and TAL1 adjacently lo-
cated on chromosome 1, is induced through a site-specific deletion between the genes 
of approximately 85 kb or chromosomal translocations in approximately 20% of T-ALL 
patients404. To identify the exact genomic breakpoint location, we designed two crRNAs 
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to guide sequencing to the 7.7 kb region within TAL1 and one crRNA to cover the 3.7 kb 
region within SIL (Figure 1C).

KMT2A and SIL-TAL1 detection

To validate our assay design, we sequenced ten acute lymphoblastic leukemia samples: 
five B-ALL (B-ALL1, B-ALL2, B-ALL3, B-ALL4, and B-ALL5) and five T-ALL (T-ALL1, 
T-ALL2, T-ALL3, T-ALL4, and T-ALL5). For the B-ALL1 and B-ALL2 samples, previ-
ous diagnostic efforts identified KMT2A-MLLT1 fusions, however, for B-ALL1 the fu-
sion could only be detected by RNA-sequencing, but could not be validated by PCR. 
For samples B-ALL3, B-ALL4, and B-ALL5 we performed a blinded analysis and did 
not know the fusion partner before our analysis. For all five T-ALL samples SIL-TAL1 
rearrangements were detected by heteroduplex analysis. 

Gene A Gene BChrA ChrB

A B-Fusion Gene

Breakpoint junction

No PCR product

PCR product

A

87 9 10 11 12 13 141 2019 21 22 23 24 36

Major 
breakpoint cluster

Minor
breakpoint cluster

KMT2A

B crK-e7 crK-e19

8,8 kb 3,6 kb

Chr1 < TAL1 < SIL

7,7 kb

< SIL-TAL1

C
3,7 kb

Figure 1. Schematic outline of fusion genes and the respective crRNA design (A) Schematic outline 
of fusion gene formation. Gene A and Gene B are fused together and provide a unique breakpoint 
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junction. PCR primers are designed on both sides of the fusion. A PCR with breakpoint-spanning 
primers will only result in a product for the rearrangement. (B) Schematic outline of 
KMT2A with its two breakpoint clusters (major: red; minor: green). Scissors indicate 
where the crRNAs target Cas9 to cut and arrows indicate the desired sequencing direction. 
(C) Schematic outline of SIL and TAL1. Common breakpoint areas are highlighted by a 
blue box. Scissors indicate where the crRNAs target Cas9 to cut and arrows indicate the 
desired sequencing direction. Genomic regions are not scaled. 

We performed target enrichment for each sample with appropriate sets of crRNAs (Sup-
plementary Table 1) and sequenced each sample on one Oxford Nanopore Technolo-
gies MinION flow cell (R9.4). After mapping to the reference genome (GRCh38), the ge-
nome wide coverage per sample was 0.028x (B-ALL1), 0.04x (B-ALL2), 0.10x (B-ALL3), 
0.54x (B-ALL4), 0.67x (B-ALL5), 0.22x (T-ALL1), 0.17x (T-ALL2), 0.032x (T-ALL3), 
0.12x (T-ALL4) and 0.037x (T-ALL5) (Supplementary Table 1). However, due to the 
targeted sequencing approach, on-target coverages increased to 2-352x for the KMT2A 
locus in the B-ALL samples and 47-290x at the SIL and TAL1 loci in the T-ALL samples. 
(Figure 2A and Supplementary Table 1). 
To detect KMT2A fusion genes we applied NanoFG, which we previously developed to 
identify fusion genes from nanopore sequencing data403. NanoFG identified, as expected, 
a KMT2A-MLLT1 fusion gene with two fusion-supporting reads in the B-ALL2 sample 
(Supplementary Table 2). For the blinded samples B-ALL3 and B-ALL5 we identified 
a KMT2A-MLLT2 fusion with four and 31 fusion-supporting reads respectively, which 
was later confirmed by comparison with outsourced results obtained from a laboratory 
specializing in KMT2A partner detection. In addition to this fusion result, a reciprocal 
MLLT2-KMT2A fusion was detected in the B-ALL5 sample with 28 fusion-supporting 
reads that was not previously detected (Supplementary Figure 2, Supplementary Table 
2). For B-ALL4, the diagnostic laboratory identified a KMT2A-MLLT2 fusion, howev-
er, neither manual investigation in IGV genome browser405 nor NanoFG could confirm 
this fusion within our targeted sequencing data. In accordance with diagnostic efforts, 
NanoFG did not identify genomic evidence of the KMT2A fusion for the B-ALL1 sam-
ple. We manually confirmed the lack of fusion-spanning reads within the KMT2A and 
MLLT1 genes with IGV. NanoFG is specifically designed to detect fusion genes with 
breakpoints within both of the involved fusion partners. 
Therefore, NanoFG did not call any of the SIL-TAL1 rearrangements within the T-ALL 
samples as the SIL-TAL1 rearrangement may be induced through breakpoints out-
side of annotated genes (including promoter, both UTRs, and exonic/intronic regions). 
Therefore, we performed SV calling with Sniffles342 within the SIL and TAL1 loci. We 
then identified all five SIL-TAL1 rearrangements with 238x (T-ALL1), 145x (T-ALL2), 
50x (T-ALL3), 177x (T-ALL4) and 49x (T-ALL5) breakpoint-spanning reads (Figure 
2B, Supplementary Table 2). While the breakpoints within SIL were located within the 
5’UTR of the gene, all breakpoints within TAL1 were located about 185 bps upstream 
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of the TAL1 gene (Supplementary Table 2), therefore restricting the detection by 
NanoFG. Hence, we show that we are able to reliably identify and confirm fusion genes 
and genomic rearrangements with a targeted sequencing approach. 

 
Figure 2. KMT2A and SIL-TAL1 coverage plots (A) Coverage plot for the samples B-ALL1, B-ALL2, 
B-ALL3, B-ALL4, and B-ALL5 between the cut-sites in KMT2A (B) Coverage plot for the samples T-ALL1, 
T-ALL2, T-ALL3, T-ALL4, and T-ALL5 between the cut-sites in TAL1 and SIL. Dotted lines (grey) show 
cut-sites and arrows indicate the desired sequencing direction. 

Ig and TCR loci assay design

Lymphocytic leukemias are clonal amplifications of cells derived from the lymphoid lin-
eage, and therefore harbor unique and clonal V(D)J rearrangements. We exploited this 
feature to detect additional MRD targets. For this reason, in addition to targeting the 
KMT2A and SIL/TAL1 loci, we comprehensively targeted the Ig (IGH, IGK, IGL) and 
TCR (TRA, TRB, TRD, TRG) loci. Each locus harbors a specific number of V, (D), and J 
segments (except IGK, IGL, TRA, and TRG which do not contain D segments)406. These 
segments, which themselves are usually <300 bps, are distributed over large genom-



156

6 6

CHAPTER 6

ic regions (range: 130 kb - 1.4 Mb). However, during genomic somatic recombination, 
one V, (D), and J segment are juxtaposed, forming a unique rearrangement comprising 
a random amount of nucleotide insertions and deletions at the junction (Figure 3A). 
Post-recombination, these V(D)J rearrangements not only encompass a much smaller 
genomic region through the removal of intermediate gene segments but also form spe-
cific breakpoint junctions which can be targeted by breakpoint-specific PCR assays (Fig-
ure 3B)396. We aimed to identify the unique breakpoint junctions within these loci as well 
as the predominant clonal V(D)J rearrangements per patient by covering the genomic 
area from the last J segment until the first D/V segment (Figure 3A). To accomplish this, 
crRNAs selectively directing sequencing reads from the last J segment towards the first 
D/V segment were designed (Figure 3C-3I). Since some of these genomic areas are large 
(up to 70 kbs between the first and last J segment), sequencing reads (average ~10 kb) 
originating from a cut adjacent to the last J segment will not reach the first D/V segment. 
For these instances we applied a tiled crRNA approach403, targeting these loci every ~8 
kb, facilitating uniform coverage across the targeted loci (Figure 3E-I). Furthermore, the 
IGK locus can undergo consecutive rearrangements involving the intron RSS and Kde-
letion (Kdel) segments407. Depending on the state of rearrangement, the Kdel is too far 
from the J segments (Figure 3D, IGK(1)) or within reach (Figure 3D, IGK(2)), requiring 
the design of two separate crRNAs.
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Figure 3. Schematic outline of VDJ recombinations and crRNA design (figure on previous page). (A) 
Schematic outline of V(D)J recombinations within the IGH locus. First, one D (green) and one J (beige) 
segment get juxtaposed, while the intersecting genomic region gets excised and random nucleotide 
insertions and deletions (xx) occur. Then, one V (orange) and one D segment get juxtaposed, while the 
intersecting genomic region gets excised and random nucleotide insertions and deletions occur. For the 
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IGK, IGL, TRA, and TRG loci, only V to J recombinations take place as these lack D segments. The evolved 
V(D)J configuration including the random nucleotide insertions and deletions presents specific genomic 
breakpoint junctions. (B) Primers spanning the newly formed breakpoint junction (black) or specific to 
the breakpoint junction (grey) can be designed and will only yield a positive PCR result in the case of a 
rearrangement. Schematic depiction of the (C) IGH (D) two possible genomic events of IGK, (E) IGL, (F) 
TRA, (G) TRB, (H) TRD, and (I) TRG. J gene segments are boxed. Scissors indicate where the crRNAs target 
Cas9 to cut and arrows indicate the desired sequencing direction. Genomic regions are not scaled. 

To validate that we can perform targeted sequencing of multiple Ig and TCR loci, we 
targeted the ten leukemia samples - in addition to the KMT2A and SIL-TAL1 loci - si-
multaneously with crRNAs for the Ig and TCR loci (Figure 3C-I and Supplementary 
Table 1). B-ALL1, B-ALL2 and T-ALL1 were targeted with the fusion crRNAs as well as 
the IGH, IGK, IGL, TRB and TRG crRNAs (Supplementary Table 1). B-ALL3, B-ALL4, 
B-ALL5, T-ALL2, T-ALL3, T-ALL4 and T-ALL5 were additionally targeted with crRNAs 
for the TRA and TRD loci, a total of 25 crRNAs per sample, providing examples of par-
allel fusion and comprehensive Ig/TCR sequencing. 
The average per-base coverage for all samples at the different Ig and TCR loci was 0.83x 
(IGH), 0.62x (IGK), 5.97x (IGL), 10.4x (TRA), 3.39x (TRB), 2.77x (TRD), and 10.60x 
(TRG) (Supplementary Table 1). We observed a sharp increase of coverage at the cut 
sites (Figure 4). For the IGH, IGK and TRG loci, where we only target with one crRNA 
adjacent to the last J segment or the crRNAs were spaced far apart, we observe reads 
longer than 20 kb (Figure 4A-B and F). Noteworthy, the utilized DNA was not specifi-
cally isolated for long-read sequencing approaches, and thus, these read lengths could be 
pushed even longer by applying appropriate extraction methods. For the IGK, IGL, TRA, 
TRB, TRD and TRG we clearly observe the effectiveness of the tiled crRNA approach to 
cover the entire loci (Figure 4B-F). For TRA, we are able to span a 60 kb window with 
eight consecutive crRNAs (Figure 4D). Visual investigation of the coverage plots already 
identifies large scale rearrangements events, e.g. by the observed drop in coverage in be-
tween crRNA cut-sites (Figure 4E-F). The average coverage at the cut-sites in the Ig and 
TCR loci varies from 19x to 230x between the different loci (Supplementary Table 1), 
which could be due to underlying biological factors or the efficiency of the crRNAs. We 
also observe differences in coverages at the cut sites within one locus (e.g. TRA), which 
would support a theory that crRNA efficiency drastically influences the enrichment ca-
pabilities. However, investigating the relationship between coverage at the cut-site and 
on/off-target scores of the crRNAs as provided by IDT408, doesn’t show an obvious in-
fluence of crRNA efficiency on the coverage (Supplementary Figure 3A and 3B). We 
do observe a correlation between sequencing throughput and coverage at the cut sites, 
indicating that a minimal sequencing throughput may be required for a successful en-
richment (Supplementary Figure 3C). 
Taken together, these data show that we are able to comprehensively target fusion genes 
and Ig as well as TCR loci in one MinION sequencing run. With the tiled crRNA design 
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we achieve enriched sequencing coverage across large areas allowing a comprehensive 
investigation of genomic rearrangements within these loci. 

MRD target detection

To validate that we can identify unique genomic breakpoint junctions from the enriched 
nanopore sequencing data, we collected diagnostic information about the 36 MRD tar-
gets there were utilized for these patients (Table 1). These targets included both gene 
fusions and Ig/TCR rearrangements. We implemented a bioinformatic pipeline to auto-
matically detect breakpoint junctions within the fused genes as well as the Ig/TCR loci. 
As the detection of the KMT2A and SIL-TAL1 fusion is already provided by NanoFG 
and Sniffles, respectively, we focussed on the detection of MRD targets within the Ig and 
TCR loci. For this, we extracted all reads falling within the genomic loci of the Ig and 
TCR loci and performed SV calling independently for each locus. We performed break-
point-spanning PCRs on the detected breakpoints, using the corresponding tumor sam-
ple and a polyclonal healthy donor as control sample. This resulted in a PCR product in 
97 out of the 140 assays (69%), highlighting the ability of our approach to identify Ig and 
TCR rearrangements from enriched nanopore sequencing data. However, we observed 
a PCR product for the control sample as well as the tumor sample in the majority of the 
cases. This was to be expected as we perform, in this step, an endpoint PCR assay without 
the use of a breakpoint-specific probe to select patient-specific clonal rearrangements. 
Furthermore, the control sample consists of a mixture of several healthy donor buffy 
coats, providing a rich background of possible rearrangements. In 38 (39%) of these 
cases, however, the amplification band in the tumor sample displayed a distinct pattern 
compared to the control sample, which presented a shifted size, lower intensity or smear, 
indicating a higher specificity of the primer to the tumor rearrangement (Supplemental 
Figure 4). 
We then annotated the resulting SVs with the genomic location of the different Ig/TCR 
genes. Through this approach, we found evidence of 31/36 (86.1%) of the MRD targets 
used in diagnostics for these patients (Table 1). For the five remaining targets, two lacked 
any evidence for the rearrangement while two other targets had only a single read sup-
porting the target, insufficient for SV detection (Table 1). Interestingly, for the remaining 
rearrangement, diagnostic documentation reported a DH3.10-JH2 rearrangement in 
the B-ALL5 sample. Our long-read sequencing data did not provide proof of this specific 
connection, however, instead reporting multiple connections between DH3.10 and JH4 
as well as an inversion between JH4 and JH2 with the same supporting reads, indicating 
a more complex rearrangement than originally assumed by short-read NGS (Supple-
mentary Figure 5). In addition to the MRD targets already used by diagnostics, we were 



160

6 6

CHAPTER 6

able to detect a total of 20 supplementary breakpoints that connect V, D or J segments 
in the Ig or TR loci, which represent potential MRD targets. Of these, 8 belong to the 
B-ALL5 sample, 4 to the T-ALL1 sample, 3 to the B-ALL4 sample, 2 to the B-ALL2, 2 
to the T-ALL4 sample and 1 to the T-ALL3 sample (Table 1, Supplementary Table 3). 
Furthermore, there are a total of 12 validated SVs that, even though they do not connect 
V(D)J segments, could be used as patient-specific biomarkers with specific break-junc-
tion assays in a similar fashion as previous studies69,409. 

Figure 4. Ig and TCR coverage plots: Coverage plots for the samples B-ALL1, B-ALL2, B-ALL3, B-ALL4, 
B-ALL5, T-ALL1, T-ALL2, T-ALL3, T-ALL4, and T-ALL5 for the (A) IGH, (B) IGK, (C) IGL, (D) TRA and 
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TRD, (E) TRB, and (F) TRG loci. Dotted lines show cut-sites and arrows indicate the sequencing direction. 

To further validate the rearrangements detected with our method, we performed Sanger 
sequencing of 16 selected rearrangements based on one of the following criteria: diag-
nostic Ig/TCR MRD target, read support ≥ 10, breakpoints connecting two V,D or J seg-
ments or a clear difference in breakpoint-PCR between the tumor and control sample. 
In parallel, we performed consensus calling on the nanopore reads to obtain the accurate 
sequence at the breakpoint junctions. In 8 cases (50%), consensus calling was not suc-
cessful, of which 6 could be traced back to insufficiently low read support. In the other 
half where we obtained consensus, in 2 cases (25%) of cases we obtained a single consen-
sus sequence whereas in 75% (6/8) of the cases, multiple consensus sequences were gen-
erated. When aligning the results from the Sanger sequencing to the nanopore consensus 
reads we observed a 100% match in 31% (4/13), one mismatch in 23%, (3/13) and two 
or more mismatches in 46% (6/13) of the cases. Taken together, this data shows that our 
targeted sequencing approach of Ig and TCR loci validated 86% of previously validated 
MRD targets and identifies an additional set of 32 PCR-validated rearrangements for 
potential MRD tracing in this cohort. However, verification of the exact sequence at the 
breakpoint by Sanger sequencing is still a requirement, especially in cases where rear-
rangements show a low read support by nanopore sequencing. 

The time window from the start of the sequencing library preparation to obtaining the 
raw data was a maximum of 48 hours. Subsequently, bioinformatic detection of fusion 
genes and genomic breakpoints of Ig and TCR rearrangements including mapping, 
SV calling and automated primer design was performed in less than 3 hours. Thereaf-
ter, PCR assays and subsequent Sanger sequencing to obtain the accurate sequence at 
the breakpoint junction for junction-specific primer design are necessary, which in our 
hands could be performed in 72 hours until sequences were obtained. Hence, depending 
on the speed of the primer delivery, sequencing data for subsequent MRD assay design 
could be ready available after five days of sample obtention. 

Table 1. Concordance of MRD targets identified by diagnostics and our assay

Sample Diagnostic target Detected Comment Additional 
VDJ targets

Additional 
rearrangements

B-ALL1
DH7.27-JH5b yes .

0 2
VH6-1-JH2 yes .

B-ALL2

Dh1.26-Jh5b no only 1 read

2 0DH4-23-Jh4b yes .

KMT2A-MLLT1 yes
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Sample Diagnostic target Detected Comment Additional 
VDJ targets

Additional 
rearrangements

B-ALL3
Dh3-9-Jh4b yes .

0 1
KMT2A-AFF1 yes .

B-ALL4
Dd2-Dd3 yes .

3 1
Vg11-Jg1.3/2.3 yes .

B-ALL5

KMT2A-MLLT2 yes .

8 2
DH2-8*02-JH4b yes .

Vd2-Dd3 yes .

Dh3-10-Jh2 no*
connection between Dh3.10-Jh4 
and Jh4-Jh2 with shared supporting 
reads

T-ALL1

Vg2-Jg1 no no

4 4Vb12-Jb1.2 yes .

Vb6-4-Jb2.1 yes .

T-ALL2

SIL-TAL1 yes .

0 1

Vd1-Dd3-Jd1 yes* V1-J1 evidence, jumping the Dd3 
segment

Vg8-Jg2.3 yes .

Vg10-Jg2.3 yes .

Vb20.1-Db2 yes* V20.1-J2.7 evidence, jumping the 
Db2 segment

Db1-Jb1.4 yes .

T-ALL3

SIL-TAL1 yes .

1 1
Vg4-Jg2.3 no only 1 read

Vb20-Db2-Jb2.3 yes* V20.1-J2.3 evidence, jumping the 
Db2 segment

Db2-Jb2.7 yes .

T-ALL4

SIL-TAL1 yes .

2 0

Db2-Jb2.1 yes .

Vg8-Jg1.1 yes .

Vg2-Jg2.3 yes .

Vb15-Db1-Jb1.1 yes* V15-J1.1 evidence, jumping the Db1 
segment.

T-ALL5

SIL-TAL1 yes .

0 0

Db2-Jb2.3 yes .

Vg4-Jg2.3 yes .

Vb29.1-Db1-Jb1.1 no no evidence

Db1-Jb1.4 yes .

Total 36 31 (86.1%) 20 12
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Discussion

Timely detection of patient and leukemia-specific biomarkers to monitor treatment re-
sponse and MRD is key for pediatric leukemia patients380,396. Currently, these biomarkers 
mainly entail transcriptomic breakpoint junctions for recurrent fusion genes or genomic 
breakpoint junctions for Ig and TCR rearrangements395,401. While the identification of 
transcriptomic breakpoint junctions has been long established and widely used for MRD 
targets, the use of e.g. cDNA-based biomarkers is suboptimal for accurate assessment of 
tumor cell quantifications. Furthermore, current techniques to detect genomic break-
point junctions, especially for the complex Ig and TCR rearrangements, are laborious, 
and often involve multi-step protocols410. Following the detection of appropriate MRD 
targets, patient-specific PCR assays need to be developed, another time-consuming ef-
fort which may encounter unexpected setbacks such as poor primer characteristics398. 
Hence, the faster an initial MRD target can be detected, the more time is available to de-
sign reliable patient-specific quantification assays. To facilitate this, we developed a tar-
geted nanopore sequencing assay, which provides comprehensive sequencing coverage 
of preselected fusion gene loci as well as the complex Ig and TCR loci within 48 hours. 
Furthermore, this data allows rapid identification of genomic breakpoint junctions with-
in these loci to be utilized as personalized MRD targets. 

We retrospectively applied the assay to five KMT2A rearranged B-ALL and five SIL-
TAL1 positive T-ALL samples. For eight of the samples we could report the genomic 
breakpoint coordinates of the fusion genes and design breakpoint-spanning primers 
within 48 hours of sequencing library preparation. Upon manual investigation as well 
as bioinformatic analysis of the sequencing data, we found proof of 86% of the diagnos-
tically defined MRD targets for these ten patients, missing only four targets in total. For 
the DH3-10-JH2 rearrangement in B-ALL5, we could not find direct evidence, however, 
our long read sequencing data suggests a more complex rearrangement involving the 
DH3-10, JH2 and JH4 segments. Additionally, unbiased and independent investigation 
of potential MRD targets with the SV caller Sniffles focussed on the Ig and TCR loci 
yielded in total 32 additional validated rearrangements, which represent potential MRD 
candidates. Most of our detected rearrangements yielded a positive PCR product, albeit 
most were not patient-specific and also showed an amplification band in the polyclonal 
healthy control. This highlights the ability to detect Ig and TCR rearrangements from 
enriched nanopore sequencing data. 

We here for the first time performed targeted genomic long-read nanopore sequencing 
on the complex human Ig and TCR loci. These loci, which are very large in their germline 
state, harbour an extensive amount of V, (D), and J segments411. After random joining 
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of one V, (D), and J segment, with the inclusion and deletion of random nucleotides in 
the joint regions, and excision of intermediate gene segments, these newly formed re-
arrangements comprise a small but highly unique genomic region of less than 1kb394. 
Furthermore, the individual gene segments (e.g. J segments) show high homology to one 
another which complicates the design of specific crRNAs and increases the chance for 
off-target effects. A recent study performed target enrichment capture using probes on 
the mRNA transcripts of these regions to track transcriptome profiles of clonal lympho-
cyte populations in a breast cancer patient412, however, no systematic targeting of these 
entire genomic loci was performed. With our approach we targeted the respective ge-
nomic loci from the last J segment, directing reads towards the D or V regions. In most 
cases, we had to apply a tiled crRNA approach to uniformly span this whole stretch. In 
total we designed 20 crRNAs to comprehensively cover all J regions of the IGH, IGL, 
IGK, TRA, TRB, TRD and TRG. While we do see enrichment at all of the targeted cut-
points, we observe varying efficiency of the enrichment within and in between loci. Even 
though we do not observe a clear correlation between predicted crRNA efficiency and 
enrichment, intra-locus differences likely point to varying efficiency of the crRNAs. Op-
timized crRNA designs and prior in vitro testing of the crRNA efficiency could help to 
achieve a maximal enrichment across all target sites413. 

The accuracy of nanopore sequencing at the single nucleotide level is currently subopti-
mal which may lead to difficulties in identifying the exact junctional sequence of V(D)
J rearrangements or with the classification of these high homology gene segments414,415. 
Some of these segments are only 10 bps in size or differ by only one nucleotide, which 
may further complicate accurate assignment of a unique V, D or J segment in case of 
suboptimal sequencing accuracy. Nonetheless, we here show that targeted nanopore se-
quencing provides sufficient data to confidently map reads to unique genomic stretches 
within the Ig and TCR loci and to identify the underlying rearranged V, D or J segments 
by manual analysis of the provided genomic breakpoint coordinates. Key for the design 
of successful Ig/TCR MRD assays is the ability to reliably report the unique sequence 
of the newly formed breakpoint junction to facilitate the design of breakpoint-specific 
primers396. Furthermore, based on the speed of the assay, additional Sanger sequencing 
could be performed, if necessary, to obtain the exact sequence composition. Finally, 
blasting of the generated output against VDJ repertoire databases such as IGMT blast416 
could offer streamlined solutions for automated analyses of the underlying V(D)J con-
figurations. 

To implement this assay as a diagnostic tool further validations need to be performed. 
Thus far, we have retrospectively investigated ten samples. To accurately define the sen-
sitivity of our assay, more samples need to be tested and additional MRD targets com-
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pared. Furthermore, the implementation of additional recurrent fusion gene targets, 
such as BCR-ABL1 or RUNX1, would broaden the target population of the assay417. A 
prospective side-by-side comparison of current diagnostic methods and our technique 
is required to confirm the advantages of our assay with respect to time, accuracy and 
sensitivity to identify appropriate MRD targets for PCR-based assays.
Taken together, we have developed a targeted nanopore sequencing assay for lymphoid 
leukemia patients to simultaneously identify recurrent fusion genes as well as the rear-
ranged Ig and TCR repertoire. Our assay detects known and novel patient specific ge-
nomic MRD targets within 48 hours after sequencing library initiation, a time-frame 
comparable diagnostic methods are unable to meet. 

Material and Methods

Patient material
This study was conducted in accordance with the Declaration of Helsinki and Good Clin-
ical Practice, and informed consent was obtained from all patients or their guardians. 
Collection and use of patient material was approved by the institutional review boards of 
the Princess Maxima Center for Pediatric Oncology in Utrecht, the Netherlands.

DNA-Isolations
Genomic DNA was extracted from blood or bone marrow with the QIAamp blood mini 
kit. Sample quality control was performed using a 4200 TapeStation System (Agilent), 
and DNA content was measured with a Qubit 3.0 Fluorometer (Thermo Fisher).

crRNA design
crRNAs were designed as previously described403. In brief, the known target fusion 
partners were designated as a 5’ or 3’ fusion partner, dependent upon known literature. 
Furthermore, the most common breakpoint locations for KMT2A, SIL, and TAL1 genes 
were extracted from a literature search and the most distal breakpoint locations were 
noted as extreme borders of the targeted area. For the Ig and TCR loci, crRNAs were de-
signed adjacent to J segments, directing sequencing towards the (D)V segments.There-
fore, genomic coordinates from the first to the last J segment were defined. If the un-
known fusion partner or the V or D segments was the 5’ partner, crRNAs were designed 
as the sequence present on the minus strand of the gene (5’->3’) until the PAM sequence. 
If the unknown fusion partner or the V or D segments was the 3’ partner, crRNAs were 
designed as the sequence present on the plus strand of the gene (5’->3’) until the PAM 
sequence. Custom Alt-R®️ crRNAs were chosen with maximum on-target and off-target 
scores (IDT). 
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Cas9-Enrichment and nanopore sequencing

Cas9 enrichment and Nanopore sequencing was performed as previously described403. 
In brief, approximately 1 µg of genomic DNA was dephosphorylated with Quick calf 
intestinal phosphatase (NEB) and CutSmart Buffer (NEB) for 10 minutes at 37 °C and 
inactivated for 2 minutes at 80 °C. crRNAs were resuspended in TE pH7.5 to 100 µM. 
For simultaneous targeting of multiple loci, crRNAs were pooled equimolarly to 100 µM. 
Ribonucleoprotein complexes (RNPs) were prepared by mixing 100 µM equimolarialy 
pooled crRNA pools with 100 µM tracrRNA (IDT) and duplex buffer (IDT), incubated 
for 5 minutes at 95°C and thereafter cooled to room temperature. 10 µM RNPs were 
mixed with 62 µM HiFiCas9 (IDT) and 1x CutSMart buffer (NEB) and incubated at RT 
for 15 minutes to produce Cas9 RNPs. Dephosphorylated DNA samples and Cas9 RNPs 
were mixed with 10mM dATP and Taq polymerase (NEB) at 37 °C for 15 minutes and 
72 °C for 5 minutes to facilitate cutting of the genomic DNA and dA-tailing. Adaptor 
ligation mix was prepared by mixing Ligation Buffer (SQK-LSK109, ONT), Next Quick 
T4 DNA Ligase (NEB) and Adaptor Mix (SQK-LSK109, ONT). The mix was carefully 
applied to the processed DNA sample without vortexing and incubated at room tem-
perature for 25 minutes. DNA was washed and bound to beads by adding TE pH8.0 and 
0.3 x volume AMPure XP beads (Agencourt) and incubated for 10 minutes at room tem-
perature. Fragments below 3 kb were washed away by washing the bead-bound solution 
twice with Long Fragment Buffer (SQK-LSK109, ONT). Enriched library was released 
from the beads with Elution Buffer (SQK-LSK109, ONT). Enriched library concentra-
tion was measured with the Qubit Fluorometer 3.0 (Thermo Fisher).
The library from one tumour sample was loaded onto one Flow Cell (R 9.4, ONT) ac-
cording to the manufacturer’s protocol. Sequencing was performed on a GridION X5 
instrument (ONT) and basecalling was performed by Guppy (ONT).

Data analysis

Nanopore sequencing data were mapped against the reference genome (GRCh38) with 
minimap2 (v2.12344) with parameters ‘-x map-ont -a --MD’. Fusion genes were detected 
and reported as previously described with NanoFG403. Mapped BAM files were split in 
the different IG and TR loci with samtools (v1.9418). SV calling per loci was performed 
with Sniffles (v1.0.12342) with parameters ‘-n -1 --report_BND --genotype -s 2 --max_
num_splits 100 -d 100 -l 20’. Primer design for SV validation is automatized by using 
Primer3 (v1.1.4349) with a product size range of 30-230 bp. Additionally, for each SV de-
tected, supporting reads were used for consensus calling with 4 rounds of read overlap 
with minimap2 (v2.12344) and Racon (v. 1.4.15419) followed by polishing with Medaka 
(v.1.0.3, https://github.com/nanoporetech/medaka). 
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Average coverages were calculated with Sambamba (v0.6.5345) with parameters ‘depth 
base --min-coverage=0’. On target coverage was defined as the average coverage at cut-
site plus 20-40bps in the desired sequencing direction. Ig and TCR loci coordinates were 
obtained from Gencode v.294.

PCR validation

PCR validations were performed using the AmpliTaq Gold DNA Polymerase (Ther-
mofisher) protocol utilizing 50 ng DNA. The PCR conditions were as follows: 95 °C for 
5 minutes, followed by 14 cycles of 95 °C for 30 seconds, 65 - 58 °C decreasing n 0.5 °C 
increments, and 72 °C for one minute, followed by a further 24 cycles of 95 °C for 30 
seconds, 58 °C for 30 seconds, and 72 °C for 1 minute, and completed by 72 °C for 10 
minutes a hold at 10 °C. 
PCR products were then run on a 2% agarose gel at 100 V for one hour for assessment of 
assay specificity. 
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Supplementary Figure 1: Schematic overview of targeted and directional sequencing. (A) Known 
sequence adjacent to the unknown sequence of interest is necessary for assay design. (B) Cas9 (grey box) 
is targeted through crRNAs (line) and the PAM sequence to the known sequence and introduces a double-
strand break (scissors) in the DNA. (C) Cas9 blocks the PAM-distal side and sequencing reads (arrows) are 
directed towards the unknown sequence. 

Supplementary Figure 2: Reciprocal KMT2A fusion reads within the MLLT2 locus (B-ALL5). IGV 
screenshot of the B-ALL5 sample of fusion-spanning reads supporting the MLLT2-KMT2A fusion (blue) 
and KMT2A-MLLT2 fusion (red) within the MLLT2 locus. Note that reads start 531 bp apart. 
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Supplementary Figure 3: On-target coverage depends on total throughput. Relation between average 
coverage at cut-site and (A) on-target and (B) off-target scores of the crRNAs show no obvious correlation. 
(C) We observe a correlation between average on-target coverage and total sequencing throughput.
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Supplementary Figure 4: Examples of breakpoint-spanning amplification bands. PCR with breakpoint-
spanning primers is performed on tumor sample (T), polyclonal healthy donor DNA (C) and water (W). 
(A-C) Successful PCR assay since amplification band is only present in tumor sample (A), presents with 
a smear in control sample (B), or shows a difference in size between tumor and control sample (C). (D) 
Amplification band in tumor as well as control sample, indicating no specificity of the rearrangement to the 
patient sample. 

DH3
chr14
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Supplementary Figure 5: Alternative configuration of DH3-JH2 target for sample B-ALL2. Despite the 
already known MRD target Dh3-Jh2 in sample B-ALL5, nanopore sequencing data links the Dh3 and Jh2 
loci through two chained rearrangements involving also the Jh4 locus.
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Cancer is a genomic disease and tumors acquire somatic mutations throughout their 
origin and evolution. Some of these mutations give a tumor growth advantage over nor-
mal cells (driver mutations) and most do not have selective effect (passenger mutations). 
Regardless, somatic mutations, including structural variants (SVs), uniquely identify and 
characterize a tumor and can be exploited in different ways. Mainly through targeted 
treatments that inhibit the growth advantages conferred by driver mutations, killing 
specifically the cancer cells. However, passenger events can also be used as cancer tags 
to differentiate tumors from normal cells and measure cancer dynamics. It is therefore 
possible to turn cancer’s biggest strengths, the acquired mutations and growth advantag-
es, into its pitfall by leveraging genomic technologies for research and patients’ benefit. 
In this final chapter, I summarize several technological contributions presented in the 
previous chapters and discuss their potential and limitations.

Organoids as a tool for ovarian cancer research

Patient-derived cell lines are useful models that are nowadays relatively easy to estab-
lish, maintain, genetically manipulate and are amenable to large high-throughput drug 
screening. However, more complex models represent the complexity and heterogeneity 
of tumors better. Patient-derived xenografts are in vivo mice models that provide a more 
realistic tumor environment, therefore increasing the predictive value of drug screens. 
They are however expensive, labor-intense and less suitable for large screening. More-
over, these xenografts might evolve towards a mouse-specific setting that, despite being 
in vivo models, deviates from the original tumor’s biology115. Patient-derived organoids 
(PDOs) are faithful in vitro representations of the tumor characteristics, such as tumor 
heterogeneity and genomic traits, while allowing for high-throughput drug screening 
and genetic manipulation. PDOs have the potential to make personalized and targeted 
treatments for patients with ovarian cancer (OC) a reality and to be important model 
systems to improve our knowledge of cancer biology. 

In chapter 2 we describe a biobank of OC PDOs. This biobank represents multiple dif-
ferent OC subtypes and is largely characterized at the histological, genomic, epigenomic 
and transcriptomic level, demonstrating the faithfulness to the original tumor material 
and stability over time. Furthermore, creating PDO biobanks of OC and other cancer 
types provides platforms for large scale drug screening and genomic and functional 
studies, as previously shown for colorectal cancer. The establishment of healthy fallopian 
tube organoids and patient-derived OC organoids has been reported independently by 
other groups279,309,310,420. All these studies show similar culture success rates to ours, which 
are lower when the obtained resected tumor material has been previously exposed to 
treatment, as is the case for most of our PDO lines. These independent studies also show 
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that the established PDOs are representative of the original tumor, with shallow genetic 
characterizations using targeted gene panels or whole-exome sequencing. We, however, 
provide a more comprehensive characterization with the use of whole genome sequenc-
ing (WGS) for genomic, RNA-seq for transcriptomic and even methylation arrays for 
epigenomic characterization, showing that the PDOs are representative of the corre-
sponding tumor and that the heterogeneity that characterizes OC is captured in the bio-
bank. Moreover, by characterizing PDOs after long term passaging we show that those 
features are maintained well over time. We also show examples of potential applications 
of the biobank by using genome editing techniques to model the origin of OC and also 
performing drug screening with drugs that are commonly used in OC treatment, even 
assessing their response in vivo after xenotransplantation into mice. 

Another strength of our biobank is the establishment of PDO lines from different tu-
mor locations of the same patient. While in chapter 2 we describe how the intra-patient 
genomic heterogeneity is preserved, in chapter 3 we expand to study how these related 
locations can respond differently to the same drug. There, we found differential respons-
es to at least one drug in each of these patients. This suggests that tumor heterogeneity 
can also involve multiple locations of the same patient, influencing treatment efficacy 
and resistance development. Establishing organoids from all the tumor locations from 
a patient can enable the screening of multiple drugs and the selection of different effec-
tive treatments that work for all of them. In order to achieve this stage, fast PDO culture 
establishment with high success rate to ensure that all locations from all patients can be 
represented in a clinically relevant timeframe, as well as standardized drug assays and 
well-defined controls to evaluate organoid response are needed. 

There are several possibilities to improve success rates when establishing organoid lines 
from patients with OC. Most of the tumors we sampled for organoid derivation had been 
previously exposed to chemotherapy, since the tissue samples were obtained during in-
terval debulking as part of the standard treatment for OC. Therefore, the tumor viability 
might be already compromised prior to culture establishment due to the genomic dam-
age induced by the chemotherapeutic agents. To overcome this, obtaining biopsies prior 
to chemotherapy exposure or selection of areas with higher tumor purity and viability 
prior to plating, would be ideal. Furthermore, different growth factors used in the medi-
um might be driving selection for certain samples depending on their specific molecular 
characteristics. For example, nicotinamide is a growth factor used in our organoid medi-
um and also in previous organoid biobanks. However, nicotinamide is also a PARP-in-
hibitor, which is a compound that inhibits DNA repair by the homologous recombina-
tion (HR) machinery. PARP-inhibitors are thus effective drugs for HR-deficient tumors, 
such as those with BRCA1 or BRCA2 inactivation. Nevertheless, in this case, it might be 
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inhibiting the growth of HR-deficient organoids that are then under-represented in our 
biobank. None of the PDOs in our biobank was defined as HR-deficient according to 
CHORD, an algorithm that detects genomic evidence of HR-deficiency421. Optimization 
of the culture media and further investigation of possible selection effects might then 
improve culture success rates.

A different approach than biobanking for the use of PDOs is the establishment of short-
term cultures that can be used to rapidly screen relevant drugs for a particular patient. 
In chapter 3 we perform this rapid organoid establishment and drug screening for one 
sample, obtaining response results within three weeks after tissue collection. Addition-
ally, other efforts show that it is possible to perform rapid and short-term culturing and 
drug screening of OC PDOs or PDO-like cultures, typically within weeks after tissue col-
lection, albeit sacrificing extensive molecular characterization279,309,310,420. Nevertheless, 
larger cohorts of OC patients are needed to demonstrate that PDO models are represen-
tative and predictive of the drug responses and clinical outcomes in patients, as proven 
in colorectal cancer138,281. Therefore, to maximize the clinical and research utility of PDOs 
rapid short term cultures for relevant drug screening should be established parallel to the 
expansion for biobanking. 

Finally, PDOs overcome practical challenges of cancer research using real tumor sam-
ples, such as sufficient material available and possibility of genomic modification and en-
gineering, while providing a more faithful model than traditional cell lines as discussed 
above. It is essential to capture all the cancer complexity in OC and other cancer types to 
advance the use of PDOs as cancer research models. For example, understanding the or-
igin of chemotherapy resistance and its prediction or detection is of utter importance in 
OC, since most patients respond well to initial chemotherapy treatments but relapse with 
resistant tumors. Paired organoids from patients before and after chemotherapy treat-
ment would be relevant to study the mechanisms behind the acquisition of resistance. 
Another limitation of PDOs is the lack of a functional immune system, which is essen-
tial to understand therapy response and tumor evolution422. To overcome this limitation 
and bring the PDO in vitro system to the in vivo situation, co-culture systems of PDOs 
and immune cells are being developed423,424. Furthermore, in order to better understand 
the culture effects and differential drug responses in these organoid cultures, it would be 
interesting to further characterize these PDOs with multi-omics approaches that also 
detect presence of proteins, metabolites or neo-antigens. Perhaps a more extensive char-
acterization beyond genomics might find explanations for the differential responses that 
we described in chapter 3. 
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Challenges for somatic structural variation detection

The role of somatic SVs in cancer has remained more concealed than for other mutation 
types. The lack of gold-standard benchmarks and best-practices workflows to detect and 
filter SV calls have reduced the impact of technological advances in the cancer SV field. 
Due to the chromosomal instability of tumors they rapidly accumulate more SVs than 
normal cells, often in clustered events. Therefore, care should be taken when transition-
ing from germline SV detection towards somatic SV detection. It is essential to perform 
joint calling of tumor and normal pairs to discard SV events present in the germline. 
Additionally, somatic SV calls might present different characteristics than germline re-
sulting from specific mechanisms of DNA damage active in tumorigenesis. Lastly, for 
somatic SV discovery a “kitchen sink” approach is often applied: try every available algo-
rithm at the data and use the ensemble result. Apart from the computational concerns 
of this approach, Cameron et al.359 demonstrated that this ensemble method does not 
necessarily improve sensitivity and specificity of somatic detection. There is therefore a 
need for enhancement of methods in the field of somatic SV detection, and truth sets and 
benchmarks are essential for these developments.

Gold reference truth sets of SVs have been established in germline individuals using 
integrative approaches with orthogonal genomic data from multiple sequencing tech-
nologies. Chaisson et al.199 and Zook et al.213 show the importance of using long-read 
data for comprehensive germline SV detection, especially when SVs fall in tandem re-
peat regions and insertions. Both studies, however, emphasize the impracticality of per-
forming this type of orthogonal approach in routine clinical practice, given the elevated 
costs and computational difficulties for data integration. Nevertheless, these benchmarks 
are essential to compare methods, algorithms and technologies and to establish optimal 
cost and sensitivity thresholds for SV detection. In chapter 4, we followed a similar or-
thogonal approach to establish a truth set for somatic SV calling using the COLO829 
melanoma and paired COLO829BL normal cell lines derived from the same individual. 
Previous efforts have focused on SNVs and have therefore used only short-read data. 
Arora et al.214 used the COLO829 cell lines and two others to benchmark two short-read 
sequencing platforms. Other somatic SV benchmarking efforts have made use of simu-
lated data330,331,359 or mouse genomic data332, while stressing the need for a high quality 
truth set to enhance somatic SV method development. 

Surprisingly and in contrast to germline SV characterization studies, the contribution 
of long-reads in our somatic SV truth set was relatively low and the truth set was almost 
completely resolved with the short-read dataset alone. There are two possible reasons for 
this. First, somatic SVs might have fundamental differences compared to germline SVs. 
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Due to the increased DNA damage or reduced DNA repair mechanisms in cancer cells, 
somatic SVs accumulate in more regions than just repeat-rich regions, perhaps mitigat-
ing the added value of long-reads in these regions. Second, algorithms for somatic SV 
detection are more mature for short-read data than for long-read data. For example, a 
joint caller that identifies somatic SVs using simultaneous input data from tumor and 
matched normal from nanopore sequencing data does not exist, hindering the somat-
ic SV discovery process for this type of data. Previous studies on somatic SV detection 
with nanopore data have reported high numbers of somatic SVs detected only by long-
reads208,209. However, in contrast to our study, no experimental validation of the novel SV 
calls was performed in these studies. It is therefore likely that a large fraction of these are 
false positives. Nevertheless, with more optimal algorithms and experimental methods 
emerging, long-read technologies will likely improve their capability of somatic SV de-
tection, and with our truth set we provide a resource to measure and benchmark this. 

Applications of somatic SV and nanopore sequencing in cancer 

Despite the current limitations of long-reads for somatic structural variation detection 
described above, long-reads in general and nanopore sequencing in particular still can 
provide novel contributions to cancer research and medicine. For example, application 
of long-read sequencing enables the identification of germline cancer-predisposing 
SVs that were not elucidated with short-read sequencing425. Also, nanopore sequenc-
ing is currently being used to close current gaps in the human reference genome, par-
ticularly regarding centromeres. An international consortium has managed to provide 
telomere-to-telomere chromosome assemblies of chromosomes 8426 and X427, and has 
ambitions to completely sequence end-to-end a human genome. Furthermore, another 
study by Ebbert et al.178 reveals that with the use of linked- and long-read technologies 
a larger fraction of the genome becomes available, revealing disease-relevant genes that 
remained inaccessible by other technologies. More complete genome references and lon-
ger reads, combined with optimal algorithms, might also aid to complete the somatic SV 
truth set that we present in chapter 4, where several copy number alterations that involve 
centromeres still miss an associated SV breakpoint.

We leveraged other characteristics of nanopore sequencing apart from the long-read 
lengths: the simplicity and the rapid nature of the sequencing approach. Oxford Nanopore 
Technologies markets sequencing devices of small size, ranging between a USB stick to a 
small desktop machine. They attempt to bring sequencing closer to the patient and pro-
mote in-house sequencing opposed to large centralized facilities, reducing the logistics 
needed in diagnostic laboratories. In chapters 5 and 6 we developed two assays to profile 
somatic SVs from tumor-only nanopore sequencing data. We show that the somatic SVs 
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that we detect can be utilized as biomarkers to monitor tumor dynamics and to detect 
minimal residual disease. The use of somatic SVs as tumor-specific biomarkers is not 
a novel approach and has been described before69,165,166. The main advantage of somatic 
SVs as opposed to other types of genomic biomarkers is that the specific break-junction 
created can be detected by high-sensitivity PCR-based methods. In the studies referred, 
tumor-specific somatic SVs are detected approximately one month after tissue collec-
tion. We, however, provide the tumor-specific biomarkers within a few days after tissue 
collection, given rapid nanopore library preparation and sequencing and the immediate 
availability of the resulting data. This is particularly relevant for evaluation of treatment 
response in patients by measuring the reduction in circulating tumor DNA (ctDNA). 

To extract relevant somatic SVs from noisy nanopore sequencing data from low cover-
age tumor samples without a germline control we used two different approaches. First, 
in chapter 5, we used random forest classification to distinguish real SVs from false 
positives, followed by ranking of the positive candidates by likelihood of being somatic, 
based on SV size and labelling of known germline variants. We are therefore not dis-
tinguishing between driver or passenger somatic SVs. Second, in chapter 6, we devise 
a wet-lab protocol with CRISPR-Cas9 technology to enrich the sequencing of regions 
that contain the relevant somatic SVs used for MRD tracing in leukemia, such as known 
fusion genes and the Ig and TCR loci. We are therefore targeting known leukemia SV 
driver events in this case.

In both of these assays, a main drawback is that they cannot be used for comprehen-
sive genome-wide SV characterization, since we perform either low-coverage genome 
sketching or targeted sequencing. Also, distinguishing true somatic SVs is a significant 
issue regardless of the cancer driver status of the event, as these SVs might be lost during 
tumor evolution especially under the strong pressure selection amid treatment. We over-
come this risk by selecting multiple somatic SVs in each sample, therefore decreasing 
the change of false negatives at the tracking step - when a biomarker is not detected even 
though there is tumor presence. We could find at least 5 biomarkers in each sample in 
chapter 5, which is in line with previous studies69,165,166. However, more data and larger 
cohorts are needed to determine an optimal number of SVs to monitor per patient, as 
well as to establish the sensitivity, specificity and prognostic value of the assays. 

Further potential improvements of our assays include the creation of large panels of ger-
mline and somatic SVs based on population approaches. With such panels, we would be 
able to better distinguish germline from somatic SVs from our tumor-only low-depth 
sequencing approaches. For example, a recent project by the Genome Aggregation Da-
tabase (gnomAD) collected 433,371 germline SVs from 14,891 genome428. Importantly, 
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these resources need to be public and fully open access for the benefit of technologi-
cal advance. Also, other groups have developed computational enrichment approaches 
with nanopore sequencing. Rather than using wet-lab Cas9-based enrichment, specific 
targeted regions are sequenced by mapping the read in real-time while it traverses the 
pore and rejecting it when it is not part of the target region429,430. This dry enrichment 
technique was used by Miller et al.431 to enrich suspected regions and discover patho-
genic SVs in Mendelian disorders. By combining these computational enrichment with 
our approaches, perhaps more target regions and higher enrichments in cancer-relevant 
regions could be achieved, increasing confidence in the biomarkers that we detect and 
reducing post-analysis validation. 
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Final remarks

In this thesis I introduced and discussed several approaches that leverage state of the art 
genomic technology for the advancement of cancer research and diagnostics. I expect 
that the assays and resources presented here will be of use to the international cancer ge-
nomics and cancer research community. Our OC PDO biobank serves the OC research 
community and shows potential to also impact the OC clinical care. Continued estab-
lishment and expansion of PDOs will help reach this potential, as discussed above. Fur-
thermore, I leverage SVs, which have been traditionally overlooked in cancer genomics, 
and long read sequencing technologies and provide community resources and personal-
ized medicine approaches that use somatic SVs, overcoming previous technological lim-
itations. With the speed that genomic technology advances, maybe these approaches will 
become outdated in the next few years with new technologies, methods and algorithms. 
Nevertheless, the contributions presented here are relevant to drive this technological 
advance by pushing the limits of the state of the art of cancer genomics.
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Summary

Cancer genomics is a thriving field with constant methodological and technological 
advances. These developments enable personalized and targeted treatments for cancer 
patients based on the unique genomic profiles of tumors. In this thesis I leveraged novel 
technologies for the advancement of cancer research and care. In chapter 1 I introduced 
the different types of genomic variation, the genomic characteristics of cancer, the im-
portance of genomic technology for personalized medicine and the potential of liquid 
biopsies for low-invasive cancer monitoring. I also introduced model systems used in 
cancer research, including patient-derived organoids (PDOs), detailing the potential for 
their use particularly in ovarian cancer (OC). Lastly, I introduced the role of somatic SV 
in cancer and the different sequencing technologies that are used to detect them, along 
with the challenges that this presents. 

In the first part of this thesis, we used organoid technology to advance OC research. In 
chapter 2 we established and characterized a PDO biobank that faithfully represented 
the disease, and presented its applications. The biobank consisted of 56 PDO lines from 
32 patients and included all the main histological subtypes of OC. We characterized the 
organoid lines at the histopathological, genomic and epigenomic levels and showed how 
these lines faithfully recapitulated the original tumors. We also demonstrated that these 
characteristics were maintained over time and extensive culturing. Furthermore, tran-
scriptomic analysis showed that the PDO lines from the different OC subtypes clustered 
together based on expression patterns. Intra- and inter-patient heterogeneity was repre-
sented in the biobank. We also presented proof-of-concept for drug screening studies 
with these PDOs, with different subtype responses to platinum-based chemotherapy. 
Resistance to chemotherapy in recurrent disease was also reflected in the biobank. Last-
ly, we showed that the PDOs could be xenografted into mice for in vivo drug-sensitivity 
assays and that PDOs were amenable to genomic modification to study tumorigenesis 
(for tumorigenesis study). Overall, our results highlighted the potential of organoids to 
advance OC research. 

Next, we expanded the OC-PDO biobank and used those PDOs for extensive drug 
screening in chapter 3. We performed screening assays on 36 PDO lines derived from 23 
patients and retrospectively compared their drug responses to clinical responses of the 
patients. Evaluating several clinical biomarkers, we showed that PDOs recapitulated pa-
tient response to chemotherapy and targeted treatments. I.e. the most responsive PDOs 
in drug screening assays had been derived from patients that had better clinical response 
to the same treatment. Furthermore, inter- and intra-patient drug response heterogene-
ity was found between different PDO lines and could be partially explained by genomic 
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aberrations. Lastly, we were able to obtain drug response results within three weeks of 
tumor sampling, illustrating the short turnaround time needed for these assays, a critical 
feature for clinical implementation. Overall, these results highlighted the importance of 
deriving PDO lines from multiple tumor locations of a patient, when applicable, to im-
prove drug response prediction and clinical decision making based on PDO assays. 

In the second part of the thesis I focused on somatic structural variation in cancer. Ac-
curate detection of structural variants (SVs) is still challenging, and truth sets and stan-
dardized workflows are lacking. We tackled the challenge of accurate somatic SV detec-
tion in cancer genomes and generated a truth set of somatic SVs that can be used for 
method development and benchmarking, which I presented in chapter 4. We performed 
genome-wide analysis of the paired melanoma and normal lymphoblastoid COLO829 
cell lines. We sequenced these cell lines to a high depth using four different sequencing 
technologies: Illumina, Oxford Nanopore, Pacific Biosciences and 10X Genomics. We 
also performed experimental validation, including Bionano optical mapping data, to en-
sure that the truth set was reliable and complete. Finally, we demonstrated the utility of 
the truth set by determining the SV detection performance of each technology as a func-
tion of tumor purity and sequencing depth. This gold-standard truth set, together with 
the underlying multi-platform genomic characterization of this cancer cell line pair, are 
an important resource for benchmarking and method development efforts in the cancer 
genomics community. 

Furthermore, we developed methods to utilize long-read sequencing and somatic struc-
tural variants (SVs) for cancer dynamics after treatment and minimal residual disease 
tracing. In chapter 5, we developed an assay that leveraged nanopore sequencing tech-
nology for rapid detection of somatic SVs from a tumor. We used low-coverage whole-ge-
nome sequencing of a tumor with nanopore technology and then used filtering and 
random-forest classification to select the most likely somatic SV candidates. We could re-
trieve these biomarker-candidates within three days after tissue obtention. These somatic 
SVs could be used, after validation, as patient-specific biomarkers for cancer tracking in 
circulating tumor DNA (ctDNA) by ultra-sensitive PCR methods. We applied our assay 
to ten ovarian and prostate cancer samples and obtained multiple biomarkers per sample 
in mere days. We demonstrated retrospectively that longitudinal monitoring of cancer 
dynamics was feasible using these somatic SV biomarkers. Summarizing, our method 
enabled rapid and cost-effective identification of a set of patient-specific SVs that can be 
used to study ctDNA dynamics. 

We also developed an assay that leverages CRISPR-Cas9 based enrichment of genom-
ic targets in pediatric leukemias from the lymphoid lineage. In chapter 6, we targeted 
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loci recurrently involved in genomic rearrangements in these leukemias, such as the im-
munoglobulin (Ig) and T-cell receptor (TCR) loci, and the KMT2A and SIL-TAL1 fu-
sion-gene loci. These loci are widely used as PCR-based minimal residual disease (MRD) 
tracing based on the patient-specific rearrangements. We applied our assay to ten acute 
lymphoid leukemia samples and showed that we successfully enriched the fusion, Ig and 
TCR loci. We successfully validated known MRD targets in these patients within two 
days after sample obtention and identified an additional set of patient-specific rearrange-
ments. Our approach poses as an attractive alternative to current multi-step biomarker 
identification assays in lymphoid leukemia, with increased speed and detection sensitiv-
ity. 

Finally, in chapter 7 I discussed and reflected on the technological advances presented 
in the previous chapters. I explained the advantages of PDO technology in OC research, 
but also the challenges for its further clinical implementation in clinical care. Similarly, I 
identify current challenges and propose several solutions for enhancing the knowledge 
of the role of somatic SVs in cancer and implementation of long-read sequencing. In 
conclusion, this thesis proposes several cancer genomics technological opportunities to 
advance cancer research and develop personalized diagnostic assays to improve patients’ 
outcomes.
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Samenvatting

Onderzoek naar het kanker genoom is dynamisch en gaat gepaard met constante 
vooruitgang op zowel methodologisch als technologisch vlak. Deze ontwikkelingen 
maken gepersonaliseerde en gerichte behandelingen voor kankerpatiënten mogelijk op 
basis van de unieke genomische profielen van tumoren. Voor dit proefschrift heb ik geb-
ruik gemaakt van nieuwe technologieën voor de verbetering van kankeronderzoek en 
-zorg. In hoofdstuk 1 heb ik de verschillende soorten genomische variatie, de genom-
ische kenmerken van kanker, het belang van genomische technologie voor gepersonali-
seerde geneeskunde en het potentieel van vloeibare biopsieën voor minimaal invasieve 
kankermonitoring geïntroduceerd. Daarnaast heb ik modelsystemen geïntroduceerd 
die worden gebruikt bij kankeronderzoek, waaronder PDO's (patiënt-afgeleide or-
ganoïden), waarin het potentieel voor hun gebruik, met name bij eierstokkanker wordt 
beschreven. Ten slotte heb ik de rol van somatische structurele variaties (SVs) bij kanker 
geïntroduceerd en de verschillende  sequencing technieken die worden gebruikt om ze 
te detecteren, samen met de uitdagingen die dit met zich meebrengt. 

In het eerste deel van dit proefschrift hebben we organoïden technologie gebruikt om 
onderzoek naar eierstokkanker te bevorderen. In hoofdstuk 2 hebben we een PDO 
biobank opgezet en de toepassingen ervan gepresenteerd. De biobank bestond uit 56 
PDO-lijnen van 32 patiënten en omvatte alle belangrijke histologische subtypes van 
eierstokkanker. We hebben de organoïde lijnen gekarakteriseerd op histopathologisch, 
genomisch en epigenomisch niveau en lieten zien hoe deze lijnen nauwgezet de oor-
spronkelijke tumoren nabootsten. We hebben ook aangetoond dat deze kenmerken na 
langdurige kweek behouden bleven. Verder toonde analyse van het transcriptoom aan 
dat de PDO-lijnen van de verschillende subtypen van eierstokkanker samen clusteren 
op basis van expressiepatronen. Ook was de heterogeniteit binnen en tussen patiënten 
vertegenwoordigd in de biobank. We presenteerden tevens een proof-of-concept voor 
drug screeningsonderzoeken op deze PDO’s met verschillende subtype-reacties op pla-
tina-bevattende chemotherapie. Resistentie tegen chemotherapie bij recidief kwam ook 
tot uiting in de biobank. Ten slotte hebben we aangetoond dat de PDO's konden worden 
getransplanteerd in muizen voor in vivo medicatie gevoeligheids assays en dat PDO's 
bruikbaar waren voor genetische modificatie voor onderzoek naar tumorgenese. Onze 
resultaten tonen het potentieel van organoïden om eierstokkankeronderzoek te bevor-
deren.

In hoofdstuk 3 hebben we de PDO biobank van eierstokkanker uitgebreid en de PDO's 
gebruikt voor uitgebreide drugsscreening. We hebben screenings uitgevoerd op 36 
PDO-lijnen die zijn afgeleid van 23 patiënten en we hebben retrospectief de reactie van 
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de PDO-lijnen op medicatie vergeleken met de klinische respons van de patiënten. Door 
verschillende klinische biomarkers te evalueren, hebben we aangetoond dat PDO's de 
respons van de patiënt op chemotherapie en gerichte behandelingen nabootsen. De 
meest responsieve PDO's in de screenings voor medicatie waren afkomstig van patiënten 
die een betere klinische respons hadden op dezelfde behandeling. Bovendien werd inter- 
en intra-patiënt heterogeniteit van medicatie respons aangetoond tussen verschillende 
PDO-lijnen en kon deze gedeeltelijk worden verklaard door genomische afwijkingen. 
Tot slot waren we in staat om binnen drie weken na het afnemen van tumorweefsel re-
sultaten te verkrijgen over de respons op medicatie, wat de korte doorlooptijd die nodig 
is voor deze assays illustreert, een cruciaal kenmerk voor klinische implementatie. Al 
met al benadrukken deze resultaten het belang van het verkrijgen van PDO-lijnen van 
meerdere tumorlocaties van een patiënt om de voorspelling van medicatie respons en 
klinische besluitvorming op basis van PDO assays te verbeteren.
In het tweede deel van het proefschrift heb ik me gericht op somatische structurele 
variatie in kanker. Nauwkeurige detectie van SV's is nog steeds een uitdaging, en vast-
gestelde referentiesets en gestandaardiseerde workflows ontbreken. We zijn de uitdag-
ing van nauwkeurige somatische SV-detectie in kankergenomen aangegaan en hebben 
een referentieset van somatische SV's gegenereerd die kan worden gebruikt voor het 
ontwikkelen van methoden en benchmarking, wat ik in hoofdstuk 4 heb besproken. We 
hebben een genoom-brede analyse uitgevoerd van de gepaarde melanoom- en normale 
lymfoblastoïde COLO829-cellijnen. We hebben deze cellijnen met diepe coverage gese-
quenced met behulp van vier verschillende sequencing technieken: Illumina, Oxford 
Nanopore, Pacific Biosciences en 10X Genomics. Ook hebben we experimentele vali-
datie uitgevoerd, inclusief Bionano optische mapping, om ervoor te zorgen dat de refer-
entieset betrouwbaar en volledig was. Ten slotte hebben we het nut van de referentieset 
aangetoond door de SV-detectie prestaties van elke technologie te bepalen afhankelijk 
van de zuiverheid van de tumor en de sequencing diepte. Deze referentieset, samen met 
de onderliggende multi-platform genomische karakterisering van dit kankercellijnen-
paar, is een belangrijke bron voor benchmarking en methodologische ontwikkeling in 
het genomics veld.

Daarnaast hebben we methoden ontwikkeld om ‘long-read’ sequencing en somatische 
SV's te gebruiken om de dynamiek van kanker na behandeling te bestuderen en om 
minimale restziekten op te sporen. In hoofdstuk 5 hebben we een assay ontwikkeld 
die gebruikmaakt van Nanopore sequencing technologie voor snelle detectie van so-
matische SV's in een tumor. We hebben met lage coverage een tumor gesequenced met 
Nanopore technologie en hebben filtering en random-forest-classificatie toegepast om 
de meest waarschijnlijke somatische SV-kandidaten te selecteren. We konden deze bio-
marker-kandidaten binnen drie dagen na ontvangst van het weefsel terugvinden. Deze 
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somatische SV's zouden, na validatie, kunnen worden gebruikt als patiënt-specifieke bio-
markers voor het volgen van kanker in circulerend tumor-DNA (ctDNA) door middel 
van ultragevoelige PCR-methoden. We hebben onze assay toegepast op tien ovarium- 
en prostaatkankermonsters en hebben in slechts enkele dagen meerdere biomarkers per 
monster verkregen. We hebben in retrospect aangetoond dat longitudinale monitoring 
van de kankerdynamiek mogelijk was met behulp van deze somatische SV-biomarkers. 
Samenvattend maakte onze methode een snelle en kosteneffectieve identificatie mogelijk 
van een reeks patiëntspecifieke SV's die kunnen worden gebruikt om ctDNA-dynamiek 
te bestuderen.

We hebben ook een assay ontwikkeld die gebruik maakt van op CRISPR-Cas9 geba-
seerde verrijking van genomische targets bij pediatrische leukemieën uit de lymfoïde lijn. 
In hoofdstuk 6 hebben we ons gericht op loci die herhaaldelijk betrokken zijn bij gen-
omische herschikkingen bij deze leukemieën, zoals de immunoglobuline (Ig) en T-cel-
receptor (TCR) loci, en de KMT2A en SIL-TAL1 fusiegenen loci. Deze loci worden veel 
gebruikt voor op PCR gebaseerde tracering van minimale restziekte op basis van de pa-
tiëntspecifieke herschikkingen. We hebben onze assay toegepast op tien acute lymfoïde 
leukemie monsters en hebben aangetoond dat we met succes de fusie, Ig en TCR loci 
hebben verrijkt. We hebben met succes bekende doelen van minimale restziekte bij deze 
patiënten gevalideerd binnen twee dagen na ontvangst van het monster en we hebben 
een aanvullende reeks patiëntspecifieke herschikkingen geïdentificeerd. Onze aanpak 
vormt een geschikt alternatief voor de huidige meerstaps biomarker-identificatie assays 
bij lymfoïde leukemie, met verhoogde snelheid en detectiegevoeligheid.

Ten slotte heb ik in hoofdstuk 7 de technologische vooruitgang die in de vorige hoofd-
stukken zijn gepresenteerd bediscussieerd. Ik heb de voordelen van PDO-technologie 
voor eierstokkankeronderzoek uitgelegd, maar ook de uitdagingen voor de verdere im-
plementatie in de klinische zorg. Daarnaast besprak ik de bestaande uitdagingen om-
trent somatische SV’s en stel ik verschillende oplossingen voor om de kennis van de rol 
van somatische SV's bij kanker en implementatie van Nanopore sequencing technologie 
te vergroten. Concluderend stelt dit proefschrift verschillende kanker genomics geba-
seerde technologische mogelijkheden voor om kankeronderzoek vooruit te helpen en 
gepersonaliseerde diagnostische assays te ontwikkelen om het ziektebeloop van patiënt-
en positief te beïnvloeden.
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