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Het kan gebeuren dat je uren zit te denken en er schiet je maar niks te binnen,
en zo maar in een keer bereik je precies hetzelfde in nog geen vijf minuten.

Herman Finkers
uit: Geen spatader veranderd
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Voorwoord

WAAROM ZOU JE eigenlijk promotieonderzoek doen? Zoals Bomans1 al zei:
“De kern van deze vraag zit natuurlijk in het woordje ’eigenlijk’. Men
zou er beter aan doen het te laten.” Maar toch, op die vraag zijn veel

goede antwoorden te geven waaruit blijkt dat je het eigenlijk wèl zou willen doen.
Mijn belangrijkste goede antwoord is: omdat het leuk is! Dat wil zeggen, voor-

dat je er aan begint heb je sterk dat vermoeden. In mijn geval blijkt dat vermoeden
meer dan gegrond. Het was inderdaad heel erg leuk. Zo leuk zelfs dat ik er maar
niet mee kon stoppen, bijna tien jaar lang.

Een tweede goed antwoord is: omdat je de kans krijgt. Frans en Marc, ik ben
jullie dankbaar dat jullie mij die kans hebben gegeven. Of dat misschien fingers
crossed was hebben jullie me nooit laten merken. En Deltares heeft mij de kans ge-
geven door mij een terugkeergarantie te geven. Dat gaf toch wat prettige zekerheid
en maakte de stap gemakkelijker. Want ja, een leuke baan opzeggen voor ’vier’ jaar
onderzoek en niet te weten wat daarna komt...

Nog een goed antwoord: je leert er veel van. Dat is zeker waar, er is echter een
keerzijde heb ik gemerkt. Want bij alle kennis die je vergaart blijkt dat er nog veel
meer is dat je niet weet. En dat loopt behoorlijk op in een paar jaar tijd, kan ik
wel zeggen. Het is misschien leuk om dit proces als een Bayesiaans model te zien,
daar gaat het in dit proefschrift tenslotte ook over. Bij een Bayesiaans model mag
je een beginschatting maken van de situatie. Dat doe je met de kennis die je tot
dan toe hebt. Vervolgens voeg je kennis toe en kom je tot een aanpassing (update)
van je eerste inschatting. Stel nou dat ik aan het begin van mijn promotieonderzoek
dacht dat ik ongeveer de helft van de bestaande wiskunde wel zo’n beetje beheerste
of zou begrijpen. Zie het als jeugdige overmoed. Na jaren van bestuderen van
allerlei wiskundige onderwerpen heb ik hier heel wat kennis aan toegevoegd. Voeg
deze kennis toe aan het Bayesiaans model en wat blijkt, ik zit nu op ongeveer één
procent! En ik vrees het ergste voor als ik verder studeer.

Kom, ik gooi er nog een goed antwoord tegenaan: omdat je het niet alleen hoeft
te doen. Dat antwoord lijkt wat vreemd, het is juist de bedoeling dat je laat zien dat
je zelfstandig onderzoek kunt doen. Maar toch, hulp is onontbeerlijk. Uiteraard, je
promotoren denken mee in welke richting het onderzoek moet gaan, welke ideeën
uitgewerkt kunnen worden en wat je misschien maar beter kunt laten. Maar daar-
naast kun je nog wel wat hulp gebruiken. Je hebt bijvoorbeeld data nodig, veel. In
mijn onderzoek ging het om gegevens van de ondergrond (het REGIS model) en om

1 vrij naar Godfried Bomans, uit: Waarom schaakt u eigenlijk?
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10 Voorwoord

gegevens van een grondwatermodel (het AZURE model). Voor gegevens van het eer-
ste model hebben vooral Eppie de Heer en Jan Hummelman mij enorm geholpen
en voor het tweede model Joachim Hunink. Naast gegevens ga je ook gebruik ma-
ken van nieuwe gereedschappen, ook daar kun je wel wat hulp bij gebruiken. Alle
dataverwerking in FORTRAN oplossen leek toch wat omslachtig, een taal als R blijkt
dan een zeer goede aanvulling. Gelijk aan het begin van mijn onderzoek wilde
ik wat gedachten opschrijven en daar kwamen wat formules in voor. Vervolgens
werd ik binnen een week gillend gek van Word. Dus rende ik naar Niko Wanders of
Edwin Sutanudjaja en kreeg hulp bij R en LATEX. Wat een verademing. En dan zijn
er natuurlijk nog veel meer mensen die met van alles en nog wat geholpen hebben.
Zonder al deze hulp was het niks geworden.

Vooruit dan, nog een goed antwoord: om een schuld te vereffenen. Ik heb het
voorrecht gehad om paranimf te zijn bij de promoties van Wilbert Berendrecht en
Peter Vermeulen, samen met Peter bij Wilbert en samen met Wilbert bij Peter. Jon-
gens, ik ben blij dat jullie het geduld hebben kunnen opbrengen en nu bij mij als
paranimf op willen treden. Het figuur blijkt dan toch weer een vorm te hebben
waarbij de afstand tot het middelpunt overal gelijk is. Zo kunnen we het mooi
afsluiten.

Als ik dan toch bezig ben, een goed antwoord is ook: omdat je veel aandacht
krijgt. Oh, wil je dan graag in het zonnetje gezet worden? Nou nee, dat was niet
de insteek maar je krijgt het wel cadeau. Heel veel mensen vroegen belangstellend
hoe het met mijn onderzoek ging. Na verloop van tijd werd die vraag zelfs wat
beschroomd gesteld: “ik weet niet of ik het mag vragen, maar...” Veel vrienden,
kennissen, collega’s (of hier een combinatie van) toonden zeer regelmatig belang-
stelling, en dat is heel leuk. In het bijzonder wil ik hier mijn familie noemen. In
de eerste plaats mijn ouders. Ik ben blij dat jullie mijn strapatsen met zoveel inte-
resse hebben gevolgd. En natuurlijk mijn schoonouders, mijn broer en zussen, mijn
schoonzussen, zwagers, ooms en tantes. Van zoveel belangstelling ga je bijna naast
je schoenen lopen.

Als afsluiting het allermooiste goede antwoord: Linda! Lieve Linda, dank je wel
dat ik dit mocht doen en dank je wel voor al je steun. En natuurlijk Vera, Maarten,
Daniel en Caroline. Ook jullie hebben het mogelijk gemaakt dat ik dit kon doen.
Het is niet bepaald aan jullie voorbij gegaan dat er heel wat uurtjes in dit boekje
zijn gaan zitten. Jullie zijn geweldig. En voor wie het ontgaan is, Vera heeft het
prachtige schilderij op de voorkant gemaakt.

Ik wens iedereen veel leesplezier.
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16 Chapter 1: General introduction

MODELS are generic tools to simplify real world problems. They don’t solve
the problems but are used to approximate unknown representations of
reality to make the real world problems tangible and to assist decision

making. Models never describe reality completely but only give a more or less
rough impression of it. If a model is well defined, it may be used to obtain quantita-
tive estimates for some quantities it describes. Examples of applications of models
are found in meteorology, where models are used for the daily weather forecast, in
economics, where models are used to predict the change of the unemployment rate
caused by a certain tax measure, in (geo)hydrology, where models are applied to
predict the river stages or groundwater heads caused by precipitation, and in ex-
ploration geology, where models are used to infer the likelihood of finding natural
resources like ore and oil. Also combinations of these models exist, when, for in-
stance, the predicted precipitation of the meteorological models are used to predict
the river stages with hydrological models for the oncoming days.

All these models are based on assumptions and simplifications and have in com-
mon that they only can make predictions for certain parameters within some degree
of uncertainty. It is always a challenge to the modeler to decrease the uncertainty
of a model and improve its predictive power. The performance of a model can be
tested against the available observations of the predicted variables. For instance,
the river stages for the oncoming days can be predicted by using the weather fore-
cast, while after the predictions have been made, observed river stages are com-
pared to the predictions. The differences between the observations and the model
predictions are a measure of the accuracy of the model, and in general the smaller
the deviations the better the performance of the model. The deviation between
predictions and observations are often used to improve the model by calibration:
changing the model setup, usually its parameters, such that the deviation is mini-
mized. So the use of observations of the modeled process can improve the model
performance.

This thesis is concerned with two connected models (Figure 1.1). The first is
a hydrogeological model which describes the subsurface in terms of layers with
relatively high hydraulic conductivity materials (aquifers) and layers with low hy-
draulic conductivity materials (aquitards), and the accompanying parameterization
of the layer thickness and the conductivity. The second model is a groundwater
flow model which mimics the dynamic behavior of the groundwater in the subsur-

149884_lourens_BNW.indd   16 09-03-2021   12:22
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Figure 1.1: General problem definition. The hydrogeological model for a groundwater flow model
is derived from a general purpose hydrogeological model, (in this thesis the REGIS model). Updates
during calibration do not affect the general purpose hydrogeological model. A feedback procedure is
developed in this thesis.

face. The subsurface description of the groundwater flow model is derived from the
hydrogeological model, which creates a connection between the two models. This
derivation usually involves aggregating hydrogeological layers with high conduc-
tivities into single aquifers and estimating the aquifer transmissivities (m2/day)
by upscaling from the conductivities of the layers being aggregated. Similarly,
aquitards are defined by aggregating low-conductivity layers and estimating the
aquifer resistivity or C-value (days) from upscaling. The resulting groundwater
flow model, that also includes boundary and initial conditions, is usually cali-
brated, including its hydrogeological parameters, using, for instance, observations
of groundwater heads of the modeled area. Herewith, the groundwater flow model,
including its derived hydrogeological model, is calibrated but the underlying hy-
drogeological model is not. This causes an inconsistency between the groundwater
flow model and the underlying hydrogeological model that is generally not re-
solved. The reason that it is not resolved in practice is that there is no unique one-
to-one relationship between the calibrated transmissivities and resistivities that re-
sult from groundwater model calibration and the original conductivities and layer
thicknesses of the underlying hydrogeological model. Yet, even under conditions
of non-uniqueness and uncertainty, it must be possible to develop a method to im-
prove the underlying hydrogeological model using groundwater model calibration
results. This is the main objective of this thesis.

149884_lourens_BNW.indd   17 09-03-2021   12:22
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18 Chapter 1: General introduction

1.1 Hydrogeological model of the Netherlands
At the Geological Survey of the Netherlands (TNO-GSN), a three-dimensional digital
geological model (DGM) [Gunnink et al., 2013] has been developed and is contin-
uously maintained. With this model, the subsurface is subdivided in geological
units. The definition of the units is based on the age of the deposits and on the
depositional environment, like marine or fluvial. Most units coincide with a geo-
logical formation.

The DGM serves as a framework for multiple models, which make a refinement
within the geological units. An example of these models is the GeoTOP model
[Stafleu et al., 2011], a voxel model which describes hydrogeological parameters
of the subsurface up to a depth of about 50 meter. Each voxel of 100m × 100m
and 0.5m thick is parameterized with hydrogeological and lithological data. An-
other model is the hydrogeological model REGIS-II [Vernes et al., 2005; Vernes and
van Doorn, 2006]. This model defines the hydrogeological units (typically layers
of varying thickness and hydraulic conductivity) up to a depth of about 500 me-
ter. This REGIS model is used in this thesis. The definitions of the hydrogeological
units are based on the layers’ hydraulic properties, mainly the hydraulic conduc-
tivity. Each unit is typically modeled as a high resistance layer (aquitard) or low
resistance layer (aquifer). In this model, over one-hundred hydrogeological units
are recognized. Since REGIS is defined for the whole of the Netherlands (European
mainland), not all units are present in each area. To keep the model consistent, each
unit is defined everywhere in the model domain, but locally absent units are locally
modeled with zero thickness. REGIS is not developed for one specific purpose but
serves as a generic model for all studies that need a consistent description of the
hydrogeologic and hydraulic properties of the subsurface of the Netherlands.

Many groundwater models serve a specific purpose and are therefore devel-
oped locally and not for the country as a whole. Therefore, for each separate
groundwater modeling study a submodel (the derived hydrogeological model) is
derived from REGIS, which is further processed to meet the needs of that specific
study. Such processing often aggregates multiple REGIS units into one aquifer or
aquitard. Herewith, the REGIS model and the derived hydrogeological model are
equivalent but not equal (Figure 1.1).

As stated, all models are uncertain1, and so are the REGIS data. Therefore, a
derived hydrogeological model which serves as a hydrogeological model for a
groundwater flow model is usually calibrated. Since the derived model is sepa-
rated from the main model REGIS, the calibration of the model parameters do not
affect the REGIS model. To let REGIS benefit from the calibration, a feedback proce-
dure is needed to update the REGIS parameterization too (Figure 1.1). This update
is not directly beneficial for the readily calibrated groundwater flow model, but it

1 We should in fact say that model outcomes, model parameters and data are subject to uncertainty,
i.e. we as humans are uncertain about their real values. However, in this thesis, this formulation is
shortened to ’uncertain parameters, data or models’ for convenience.
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1.2 Groundwater flow model used in this thesis 19
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Figure 1.2: Extent of the model area of the AZURE gorundwater flow model.

will be for newly developed studies in the same area.

1.2 Groundwater flow model used in this thesis
In this thesis, the AZURE groundwater flow model [de Lange and Borren, 2014] is
used. This model covers the area around and including the lake IJsselmeer, an area
in the middle of the Netherlands. The model area of AZURE is shown in Figure 1.2.
The subsurface data of this model is obtained from REGIS-II and GeoTOP. The GeoTOP

model only incorporates the upper 50 meters of the subsurface. Therefore, only
this part of the derived hydrogeological model of the AZURE model can be obtained
from GeoTOP, and the deeper parts are derived from REGIS. To avoid the usage of a
mixture of hydrogeological models in the to be developed feedback procedure, the
calculations are applied to the deeper layers (aquifers and aquitards) of the model
only, which are taken from REGIS-II.

The AZURE model is calibrated against additional information, mostly observed
groundwater heads. Herewith, the derived hydrogeological model is adapted to
make the model results more in agreement with observations. An important as-
sumption is that the calibration of the groundwater flow model improves the pa-
rameterization of the derived hydrogeological model. This is a reasonable and com-
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20 Chapter 1: General introduction

mon assumption, which makes calibrated groundwater flow models in general a
source of information to improve the REGIS parameterization.

The objective of this thesis is the development of a feedback procedure making
use the available information of calibrated groundwater flow models. Hence, the
calibration of a groundwater flow model itself is beyond the objectives of this study.

1.3 The world ain’t Gaussian, nor piecewise linear
Every observation of whatever quantity is subject to a certain degree of uncertainty.
Every result derived from these observations is therefore uncertain too. Depending
on the application, the uncertainty may decrease or increase, but the results are
still uncertain. If the remaining uncertainty has no effect on a decision, then the
uncertainty can be neglected. In many cases however, like the models at hand
in this thesis, observations or derived quantities do have uncertainties which can
not be ignored. An appropriate and common way to describe the uncertainty of a
variable is assuming it to be random and describe the degree of uncertainty with a
probability distribution [Papoulis and Pillai, 2002, p. 75]. The added problem is that
it is often also uncertain what the exact magnitude or form of the uncertainty is.
In other words, it is, for example, unknown what the variance or the shape of the
probability distribution should be.

The quantification of the uncertainty of a quantity by a certain probability dis-
tribution is a choice, and therewith is the applied probability distribution a model
of the uncertainty. Often, the nature of the data gives some information about the
type of distribution to be used. For instance, when taking the mean value of a large
number of observations, according to the central limit theorem, the probability dis-
tributions of the mean value tends to a normal or Gaussian distribution. Or if an
observation is subject to a round-off error, a uniform distribution would be a safe
choice to describe this error. If it is less clear which distribution should be cho-
sen, it is also possible to fit several distributions of standard distribution families
(like (log)normal, exponential, gamma or many other distributions) to the data and
choose the distribution with the best fit. Examples of fit measures are the maximum
likelihood fit or the Kullback-Leibler divergence. The result of such a fit is always
a parametric distribution of some standard family.

Working with standard distributions is advantageous, as it often decreases the
calculation effort needed. Many operations on these distributions are available in
closed form solutions (analytical solutions). For instance, the maximum likelihood
estimate of the parameters of a log-normal distribution can easily be obtained by
the mean and standard deviation of the log-values of the observations. Or a joint
distribution of Gaussian distributed random variables which is completely defined
by the mean values of the marginal distributions and the covariance matrix. These
properties make it very attractive to reside to standard distributions when coping
with uncertainty, which is of course defendable to a certain degree.

Due to its properties, the Gaussian distribution is definitely favorite. But choos-
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ing a distribution function which diverges too much from the real function, if even
known, might lead to unacceptable errors and the wrong conclusions based on the
assumed uncertainties. When multiple random variables are involved in a calcula-
tion or model, the calculations may not be available in closed form solutions. And if
an analytical solution could exist, it may be a tedious job to find all these solutions,
and implement them, for large models.

To circumvent these problems, I decided to perform all calculations with ran-
dom variables by describing the probability density functions with piecewise linear
functions. Of course, a piecewise linear function is almost always an approximation
of the real distribution, but often more appropriate than choosing a wrong parame-
terized distribution instead. Thereby, calculations are always the same for a certain
operation and do not longer depend on the type of distribution. If the replacement
of an analytically described distribution by a piecewise linear function is an ap-
proximation, still the operations on these functions are analytical. This means, the
operations are performed on linear functions within a certain interval (bin). These
operations have analytical solutions within a bin or between bins of functions of
different variables. Therefore, the method of piecewise linear functions can be con-
sidered as a hybrid numerical-analytical method.

1.4 Research objectives and thesis outline
As mentioned above, the general purpose model REGIS provides subsurface infor-
mation to groundwater flow models. This abstracted information, the derived hy-
drogeological model, contains usually aggregated data from the REGIS model. This
derived hydrogeological model is often improved by calibrating the groundwater
flow model against other available data. Such a calibrated derived hydrogeological
model contains valuable information from which the REGIS model could benefit. Of-
ten, one layer (aquifer or aquitard) of the derived hydrogeological model consists
of n units of the REGIS model, then 2n parameters (layer thickness and conductivity
of each REGIS unit) are involved in the aggregated parameter of the derived hy-
drogeological model (transmissivity for aquifers or vertical hydraulic resistance for
aquitards). Due to the aggregation of layers no simple deterministic feed back pro-
cedure is possible, and currently, no formal or objective method is available to lead
these improvements back into REGIS. Therefore, the main objective of this study is:

Develop a method or procedure to let the generic hydrogeological model, in our case
REGIS, benefit from the improvements of a calibrated groundwater flow model.

This is a broad stated aim and needs to be broken into sub-objectives.
If a deterministic procedure is beyond reach, a stochastic feed back method has

to be considered. It is recognized that uncertainty is ubiquitous in all models and
data, and this uncertainty is usually described and quantified by probability distri-
butions. However, these distributions of the uncertain data, the random variables,
usually belong to a variety of families of standard distributions, or bear any non-
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22 Chapter 1: General introduction

standard distribution. Often, operations on these random variables do not yield
any closed form (analytical) solution. For instance, in the current study the trans-
missivity is formed by the product of the conductivity (k) and the layer thickness
(D). The conductivity is usually assumed to be log-normal distributed but the layer
thickness not. Their product has thus presumably no standard form. Therefore, the
feedback procedure must account for uncertainty, preferably for all kinds of distri-
butions. So a sub-objective is:

Develop a method which accounts for uncertain data of all kinds of probability distri-
butions.

REGIS is a multipurpose hydrogeological model, which holds that in the same
area multiple groundwater flow models may be available. Since every calibrated
groundwater flow model may contribute to the improvement of the subsurface
data, the method must be able to handle this. Thereby, groundwater flow mod-
els can be developed with a different objective, so the uncertainty of the calibrated
result may differ. So another sub-objective is:

Develop a method which can use multiple calibrated groundwater flow models in the
same area and with different uncertainty.

Figure 1.3 provides the thesis outline in terms of different chapters and how
they fit in the general aim of improving a general purpose hydrogeological model
by the feedback of calibration results from regional or local groundwater models.

In Chapter 2 a method is developed to perform calculations with piecewise lin-
ear probability density functions, which is used in the rest of this thesis, to account
for uncertainty in data and any derived properties from these data. As a first proof
of application it is applied to the problem of aggregation and upscaling of con-
ductivities to transmissivities, which is common in deriving hydrogeological mod-
els for local groundwater models. Here, layers and conductivities in boreholes are
first aggregated to local transmissivities at borehole locations and then interpolated
with ordinary kriging. Using piecewise linear approximations, the probability dis-
tributions of transmissivity at the interpolation locations are directly calculated.

In Chapter 3 a method is presented to find the most likely values of an un-
certain quantity, given observations. The observations are the calibrated vertical
resistances of an aquitard, and the quantities are the layer thicknesses and conduc-
tivities of sub-layers which build-up this aquitard. This procedure is applied to two
distinct areas in Chapter 4 to test if the method is able to find lateral differences in
the updated conductivity values, which were initially assumed to be spatially uni-
form.

The method in Chapter 3 is able to find one most likely parameter value, given
one observation (one value of the calibrated resistivity in each grid cell). In Chap-
ter 5 the problem is redefined in a Bayesian context, which allows for estimating
the full posterior probabilities. Thus the updated probability distributions of layer
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Figure 1.3: Thesis outline in terms of the general problem definition.

thicknesses and conductivities of the hydrogeological model are estimated, given
the calibrated resistivity. An added advantage of this approach is that multiple
observations can be used at the same location, and that observations can be uncer-
tain. This means that multiple uncertain resistivity values of multiple calibrated
groundwater models in one region can be used to improve the generic hydrogeo-
logical model.

Finally, in Chapter 6 the results are discussed and recommendations for future
research are given.
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2
Uncertainty propagation with
probability density functions

using piece-wise linear
approximations

Abstract. In many fields of study, and certainly in hydrogeology, uncertainty propagation
is a recurring subject. Usually, parameterized probability density functions (PDFs) are used
to represent data uncertainty, which limits their use to particular distributions. Often, this
problem is solved by Monte Carlo simulation, with the disadvantage that one needs a large
number of calculations to achieve reliable results. In this paper, a method is proposed based
on a piecewise linear approximation of PDFs. Herewith, the uncertainty propagation with
these discretized PDFs is distribution independent. The method is applied to the upscaling
and interpolation of conductivity data, and carried out in two steps: the vertical upscaling
of conductivity values from borehole data to aquifer scale, and the spatial interpolation of
the transmissivities. The results of this first step are complete PDFs of the transmissivities at
borehole locations reflecting the uncertainties of the conductivities and the layer thicknesses.
The second step results in a spatially distributed transmissivity field with a complete PDF
at every grid cell. We argue that the proposed method is applicable to a wide range of
uncertainty propagation problems.

This chapter is adapted from Lourens, A., and F.C. van Geer, Uncertainty Propagation of
Arbitrary Probability Density Functions Applied to Upscaling of Transmissivities,
Stochastic Environmental Research and Risk Assessment, 30, 237–249, 2016
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26 Chapter 2: Uncertainty propagation using piecewise linear PDFs

SUBSURFACE PARAMETERS are essential data for groundwater flow models. Of-
ten, these data originate from borehole descriptions in which thin layers (core
scale) are distinguished based on lithological and sedimentological informa-

tion. The thickness of these layers may vary from a few centimeters up to several
meters, depending on the subsurface structure and the drilling method. Typically,
the described layers are vertically aggregated to aquifer and aquitard classes at a
scale which fits the groundwater model requirements. This scale will be referred
to as point scale. The thickness of aquifers typically comes on the order of a few
meters to 100 m or up. The core scale layers are normally populated with hydraulic
conductivities derived from the literature or estimated in the laboratory. Next,
point values of transmissivities and resistances are calculated by vertical integra-
tion of the conductivity values. Subsequently, these point values are interpolated
to acquire a spatial parameter field at model scale. This scale has a lateral block size
of about 100 m to 1,000 m.

An important issue in the upscaling procedures is the uncertainty of the model
parameters. This uncertainty can be divided into two sources. Firstly, the available
observations, at core scale, are uncertain, introducing uncertainty in the upscaling
to point scale values. In this case, each observation is not treated as one known
value but as a random variable (RV). Secondly, there is uncertainty about the spatial
distribution of the parameter. At observed locations the point scale parameter val-
ues are the upscaled RVs. At unobserved locations, assumptions have to be made
about the spatial structure. This spatial structure can be described by regionalized
variables (ReV) [Journel and Huijbregts, 1978, p. 26].

In the Netherlands, a large database (REGIS) exists [Vernes et al., 2005; Vernes and
van Doorn, 2006], in which all differentiated layers from all boreholes are described
at core scale by litho-stratigraphical units. Ranges of possible parameter values for
hydraulic conductivity and porosity are assigned to these units. For REGIS, these
ranges are obtained from laboratory tests and literature search. When a sufficient
amount of data is available for a litho-stratigraphical unit, a probability distribution
is derived for the parameter of this unit. In this article, these probability distribu-
tions are used to measure the uncertainty about the hydraulic conductivities at core
scale.

As described extensively in the literature, the upscaling of hydraulic parameters
is far from trivial and depends highly on: the support scale of the observations, the
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required model scale, the presence of anisotropy in the hydraulic conductivity, and
boundary conditions of the flow problem at hand [Dagan, 1986; Bierkens and Weerts,
1994; Tran, 1996; Fiori et al., 2011]. Some clear overviews about these subjects are
given by Cushman et al. [2002]; Nœtinger et al. [2005]; Sanchez-Vila et al. [2006]. Up-
scaling of hydraulic conductivities needs different approaches in one, two and three
dimensions. With an increasing number of dimensions the complexity of the up-
scaling method increases even more. The upscaled one-dimensional conductivity
is calculated by the harmonic mean. In isotropic media with a two-dimensional
schematization, the upscaled conductivity can be obtained by the geometric mean
[De Wit, 1995; Hristopulos, 2003]. The three-dimensional upscaling is much more
complicated and many upscaling methods are proposed in the literature [King,
1989; De Wit, 1995; Hristopulos and Christakos, 1999; Hristopulos, 2003; Boschan and
Nœtinger, 2012]. Although in two dimensions the geometric mean yields a usable
effective conductivity in isotropic media, in strong heterogeneous media the result
may divert too much from realistic values. For the latter case, different solutions
are proposed in the literature for strong heterogeneous or binary media [King, 1989;
Pancaldi et al., 2007; Boschan and Nœtinger, 2012]. Block kriging on log-conductivity
values is equal to geometric upscaling of the two-dimensional situation. If the cor-
relation length is larger then the block size, the within block variability will be low.
In this case, block kriging will yield accurate effective conductivity values. Subse-
quently, these block average values, the model scale, can be used as a starting point
in the above mentioned upscaling methods. In the upscaling literature, this scale is
often denoted as the fine scale grid.

In this article, the vertical one-dimensional upscaling is used at point scale, and
the lateral two-dimensional upscaling is applied using kriging interpolation. In
both cases, the complete parameter distributions of the observation data, as stored
in the REGIS database, are used. Herewith, the probability density functions at each
grid cell are calculated. These parameter distributions are assumed to be represen-
tative at the model scale.

This article is not meant as a contribution to the problem of scale dependent
hydraulic conductivities but as a description of a method to propagate uncertain-
ties. Nevertheless, the proposed method can be used in conjunction with the above
mentioned upscaling methods, thus propagating the observation uncertainty, but
this is left for future work.

In this article, we will focus on the upscaling of hydraulic conductivities to
transmissivities. To be useful to groundwater models, the point scale conductiv-
ities, which in fact are RVs, have to be upscaled to spatial distributed transmissiv-
ities. Commonly, only one measure of this RV (e.g., mean) is used to perform this
upscaling. Herewith, only information about the uncertainty of the interpolated
mean is obtained, disregarding the uncertainty of the observations. Techniques
like Monte Carlo simulation (MC) are often used to obtain results reflecting the data
uncertainty. However, a disadvantage of MC is the dependence of the number of
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28 Chapter 2: Uncertainty propagation using piecewise linear PDFs

calculations, the sampling strategies used [Kyriakidis and Gaganis, 2013], and the
large number of calculations needed to obtain reasonable results.

The objective of our study is twofold: the derivation of a method to perform un-
certainty propagation calculations with complete PDFs, and the application of this
method in the upscaling and spatial interpolation of subsurface parameters. To
take full advantage of the prior knowledge of the uncertainty of data, we present a
method to propagate this uncertainty throughout all the calculations. Since the RVs

are not described by their statistical moments but by numerically discretized PDFs,
the proposed method is applicable regardless of the type of distributions used. Al-
though the described technique can be used in conjunction with techniques that
account for anisotropy, the proposed methods are applied to homogeneous exam-
ples.

The developed method is described in Section 2.1. In Section 2.2 the method is
applied to the upscaling of real world borehole data to transmissivities at model
scale, using kriging interpolation. The performance of the method is compared
with an MC calculation. Section 2.3 contains the discussion and conclusions.

2.1 Methodology
Parameters obtained from observations are always subject to uncertainty. When
this uncertainty contributes significantly to the result of calculations, it should be
accounted for. A generally applicable method to propagate the uncertainty of ran-
dom variables (RV) in a wide range of calculations is very attractive. This method
should be independent of the shape of probability density functions (PDF) and sup-
ports binary operations (+−×/) and elementary functions. In this section, we first
develop a method to perform calculations with discretized PDFs. Thereafter, this
method is implemented in the vertical upscaling of core scale conductivities. Fi-
nally, the method is integrated in the kriging interpolation to obtain the PDF of the
spatial distributed transmissivity data reflecting all sources of uncertainty.

2.1.1 Piecewise linear PDFs

Commonly, parameterized PDFs are used to perform uncertainty calculations ana-
lytically. This means that for every possible combination of types of PDFs an ana-
lytical solution must be available. When many types of PDFs and operations need
to be supported, numerous derivations have to be made. For long chains of calcu-
lations, this is highly inefficient. Moreover, the resulting PDFs should be known in
closed analytical form, which can not always be achieved [Holmes and Buhr, 2007;
Silverman et al., 2004a].

We aim at a method which is universally applicable and independent of the type
of distribution used. To achieve this, a combination of a numerical and an analytical
approach is used, that is, the PDFs are described numerically and the arithmetic is
performed analytically. A common way to discretize PDFs is to describe them piece-
wise linear [Kaczynski et al., 2012; Vander Wielen and Vander Wielen, 2015]. Herewith,
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Figure 2.1: Example of a piecewise linear discretization of a PDF. The discretized PDF (red) is a n

bins discretization of the real PDF (black). At the red points, the cumulative probabilities are equal to
those of the real PDF. In this picture is: xi the value of the PDF, pxi the probability density at value
xi, wi the width of bin i, and µx the average value of the PDF.

any probability distribution which can be approximated by a piecewise linear PDF

can be used. A drawback of this method is the introduction of inaccuracies by lin-
earization, and the need for truncation of distributions with a one or two sided
infinite domain. However, this drawback can largely be overcome by the choice of
a sufficient number of discretization points, and discretize large tails when needed.
In Figure 2.1 an example of a piecewise linear PDF is given. Between two discretiza-
tion points, the PDF is described by a linear function. This interval is referred to as a
bin [Izenman, 1991]. A calculation method with discretized PDFs is described before
in Jaroszewicz and Korzeń [2012] and Korzeń and Jaroszewicz [2014]. However, their
approach is different from ours which makes both methods applicable in different
types of problems. A comparison of both methods is described in Section 2.2.2.

2.1.2 Calculations with PDFs

Binary operations
When the PDF of an RV can be described analytically, the result of a binary operation
(+ − ×/) can be described analytically as well. Let Z be the RV formed by the
joint distribution of two independent RVs X and Y . The general formulation of
the cumulative distribution function (CDF) of Z can be described as Papoulis [1991,
p. 132 ff]

Fz(z) =

∫ ∫
fx(x)fy(y) dx dy, (2.1)

where fx(·) and fy(·) are the PDFs of X and Y , respectively. In this equation, the
integration boundaries depend on the value of z and the binary operation to be
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30 Chapter 2: Uncertainty propagation using piecewise linear PDFs

calculated. Let Z be the sum of X and Y , then the probability Pr{Z < z} can be
written as

Fz(z) =

∫ ∞

y=−∞

∫ z−y

x=−∞
fx(x)fy(y) dx dy. (2.2)

The integration boundaries for subtraction, multiplication and division are given in
Appendix A. Unfortunately, for piecewise linear PDFs such analytical formulation
can not be solved as one integral. However, the PDF of each bin of the PDFs can
be described analytically. So for each bin of the marginal distributions, the linear
functions fx,i(·) and fy,j(·) can be defined as

fx,i(x) = pxi
+ rxi

(x− xi) for x ∈ 〈xi, xi+1] (2.3)

fy,j(y) = pyj + ryj (y − yj) for y ∈ 〈yj , yj+1], (2.4)

where pxi and pyj are the probability densities at the values xi and yj , respectively.
The slopes of these functions are defined as rxi

= (pxi+1
− pxi

)/(xi+1 − xi) and
ryj = (pyj+1 − pyj )/(yj+1 − yj). With these functions, we can define the piecewise
analytical solution of the CDF of Z by integration of the probability density of the
area inside the joint bin below the line z = x + y. The integration area is split up
into four sub-areas as can be seen in Figure 2.2. Because X and Y are independent,
the probability of the rectangle sub-area a can be easily defined by the product of
its marginal probabilities

Fz,ij,a(z) = Pr{xi < X ≤ xl,i}Pr{yj < Y ≤ yl,j}. (2.5)

Equivalently, the probabilities of area b and c are expressed. The equation of the
probability of sub-area d of joint bin (i, j) can be written as

Fz,ij,d(z) =

∫ yu,j

y=yl,j

∫ z−y

x=xl,i

fx,i(x)fy,j(y) dx dy. (2.6)

The integration boundaries yl,j , yu,j , xl,i and z−y are portrayed in Figure 2.2. When
z > yj+1 + xi+1 or z < yj + xi, the line z = x + y does not intersects the joint bin
(i, j). Therefore, zij is defined to replace z in the calculations of joint bin (i, j). The
value of zij is calculated using zij = min(max(z, xi + yj), xi+1 + yj+1). Integration
of Equation (2.6) yields (see Appendix A.1.1 for its derivation)

Fz,ij,d(zij) =
1
2pxl,i

pyu,j (yu,j − yl,j)
2 − 1

3pxl,i
ryj (yu,j − yl,j)

3

+ 1
6rxi

pyu,j
(yu,j − yl,j)

3 − 1
8rxi

ryj
(yu,j − yl,j)

4.
(2.7)

To obtain the cumulative probability for a particular value of Z, a summation of
the probabilities of all joint bins is performed

Fz(z) =

ny∑

j=1

nx∑

i=1

∑

A=a,b,c,d

Fz,ij,A(z), (2.8)
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Figure 2.2: Integration boundaries of the piecewise analytical CDF. Shown is the dependence of the
integration boundaries on the position of the line z in the box of the joint bin (i, j).

where nx and ny are the numbers of bins of X and Y , respectively.
From Equation (2.7) the PDF of Z can be derived by taking the first derivative

with respect to z. The parameters depending on z have to be rewritten as a function
of z as xu,i = z−yl,j , yu,j = z−xl,i and pyu,j

= fy,j(z−xl,i). Herewith the derivative
yields

fz,ij,d(z) = pxl,i
pyu,j

(yu,j − yl,j)− 1
2pxl,i

ryj
(yu,j − yl,j)

2

+ 1
2rxi

pyu,j
(yu,j − yl,j)

2 − 1
3rxi

ryj
(yu,j − yl,j)

3.
(2.9)

The PDF of all bins writes

fz(z) =

ny∑

j=1

nx∑

i=1

fz,ij,d(z). (2.10)

Analogous to the summation, the integration can also be performed for subtrac-
tion, multiplication and division. An illustration of the equi Z-lines of four binary
operations is given in Figure 2.3. The derivations of the four binary operations can
be found in Appendix A.

Discretizing unknown variable Z

Performing a binary operation like Equation (2.8), raises the need for a proper dis-
cretization of the unknown RV Z. Due to linearization, the integral of this PDF will
usually not describe the CDF exactly. This probability error for each bin has to be as
small as possible without increasing the number of bins too much.

An algorithm is proposed which starts with at least three predefined Z-values
(e.g., zmin, zmax, and zmean). Subsequently, new Z-values are added during cal-
culation. For every Z-value, the cumulative probability (Equation (2.8)) and the
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Figure 2.3: Example of the graphical representation of CDFs of four binary operations between two
independent RVs. The gray lines are the upper boundaries of the integration area of the cumulative
probability for a certain value of Z.

probability density (Equation (2.10)) are calculated. The probability of each bin can
now be calculated in two ways: the difference of the cumulative probability at each
edge of the bin, and the integration of the linearized probability density of the bin.
Herein, the first probability is the exact solution of the calculations and the second
method yields an approximate value. The difference between these probabilities is
the error caused by the linearization of the PDF. The bin with the largest absolute
probability error will be split up at its center of mass of the probability of the lin-
earized function. This algorithm runs until all probability errors are smaller then
a certain threshold, or a predefined maximum number of bins is reached. In Fig-
ure 2.4, an example of one iteration of the summation of two independent RVs (both
N (2, 1)) is illustrated.

2.1.3 Construction of probability fields of transmissivity
This section describes a two step approach of the construction of probability fields
of transmissivity. Firstly, the borehole data is upscaled to aquifer scale at point
locations. Secondly, these upscaled values are horizontally interpolated using krig-
ing interpolation. Both steps make use of the calculation methods as described in
Section 2.1.2.

Vertical upscaling
The transmissivity of a layer at core scale is calculated from borehole data by multi-
plying the layer thickness by the conductivity

Tl = Kl(Ll − Ll+1), (2.11)

where index l denotes the layer number, Tl is the transmissivity and Kl the hy-
draulic conductivity of layer l, and Ll the height of the top of layer l, measured
relative to, for example, Amsterdam Ordnance Datum. The layer numbers increase
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Figure 2.4: Refining the PDF by adding a Z-value. The gray line is the true solution, the black line
shows the 4-point PDF, and the red line shows the effect of adding the 5th defined Z-value.

downwards, so the bottom of layer l coincides with the top of layer l+1 (i.e., Ll+1).
Subsequently, the upscaled aquifer transmissivity at point scale is defined by

T =
n∑

l=1

Tl, (2.12)

where n is the number of layers, at core scale, which are combined to one aquifer.
Equation (2.12) only holds for horizontal flow within an aquifer. As denoted in the
introduction of this chapter, we assume the conductivity parameter values appro-
priate for the scale used after upscaling. Subjects like anisotropy are beyond the
scope of this article.

Both, the layer thickness and the hydraulic conductivity are subject to uncer-
tainty. When transmissivities are upscaled from consecutive layers, these individ-
ual transmissivities are correlated because of the uncertainty of the boundaries be-
tween these layers. In order to perform the summation of transmissivities correctly,
we need to know the correlation between the layers. The covariance of the trans-
missivities of two consecutive layers can be calculated as

cov(Tl, Tl+1) = cov(Kl(Ll − Ll+1),Kl+1(Ll+1 − Ll+2))

= cov(KlLl,Kl+1Ll+1)− cov(KlLl,Kl+1Ll+2)

− cov(KlLl+1,Kl+1Ll+1) + cov(KlLl+1,Kl+1Ll+2).

(2.13)

When we assume all variables K and L mutually independent, only the third co-
variance (− cov(KlLl+1,Kl+1Ll+1)) is not equal to 0. According to Bohrnstedt and
Goldberger [1969] this covariance can be written as

cov(KlLl+1,Kl+1Ll+1) = E[Kl] E[Kl+1] var(Ll+1). (2.14)
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The correlation coefficient can now be written as

ρ(Tl,Tl+1) = −E[Kl] E[Kl+1] var(Ll+1)√
var(Tl) var(Tl+1)

. (2.15)

If the value of ρ(Tl,Tl+1) can not be neglected, we have to account for correlations
in Equation (2.12). When the correlations differ significantly from 0, also in the
calculations of Section 2.1.2 the correlations should be taken into account. The cor-
relations as calculated from the observation data are found in Section 2.2.1.

Horizontal upscaling: semivariogram
Sample semivariograms are usually derived from observations which are assumed
to be deterministic values. Since our point scale observations are RVs, this will cause
a different sample semivariogram and the way it is obtained. Our aim is to find a
semivariogram based on uncertain observations and to find the PDF of the interpo-
lation. Although the observations are of a different nature then usual (RVs instead
of deterministic), we assume the intrinsic hypothesis [Journel and Huijbregts, 1978,
p. 11] still holds.

The definition of the semivariogram is [Goovaerts, 1997, p. 96]

γ(h) = 1
2 E[(Z(u)− Z(u+ h))2], (2.16)

where Z(u) is the sample value at location u, and h is the spacing between two
observation locations. Equation (2.16) can be rewritten as

γ(h) = E

[(
1√
2
(Z(u)− Z(u+ h))

)2
]
= E

[
∆Z(h)

2
]
. (2.17)

From the intrinsic hypothesis it follows that ∆Z(h) has a symmetrical distribution
function with zero mean. So ∆Z(h) is the RV with a probability distribution de-
scribing the difference between two observations at lag h, scaled with factor 1/

√
2.

Equation (2.17) can now be written as γ(h) = var(∆Z(h)). The PDF of ∆Z(h) is
derived from the observations Z(u), which can be either deterministic values or
RVs. The effect of the observations being RVs is shown in Figure 2.5. As expected, a
nugget effect arises from the use of RVs as observations.

In general, ∆Z(h) is assumed to be Gaussian distributed, which is not always
the case [Journel and Huijbregts, 1978, p. 50]. In the procedure described here, the
shape of the distribution is derived from the observations. The assumption we
make is that the shape of ∆Z(h) is independent of h, only the variances differ.

Since we want to use the distribution of ∆Z(h) in the kriging interpolation, we
have to relate it to the covariance function. For a stationary random function, the
covariance function and the correlogram are directly related to the semivariogram
[Journel and Huijbregts, 1978, p. 32]. The covariance function can be written as

C(h) = C(0)− γ(h), (2.18)
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Figure 2.5: Example of a sample semivariogram. The black lines show the result when the obser-
vations are treated as deterministic values. The red line is the result of observations treated as RVs.
The dashed line shows the difference between the red and the black line, which is the expected nugget
effect. The smooth black lines are the fitted variogram models. At four points the PDF of ∆Z(h) is
drawn from which the variance is derived. The semivariogram is derived from the log-values of the
observations.

where C(h) is the covariance at lag h, with C(0) = γ(h → ∞) = var(∆Z(h → ∞)).
For convenience we define ∆Z = ∆Z(h → ∞). The correlogram is defined as

ρ(h) =
C(h)

C(0)
, (2.19)

where ρ(h) is the correlation coefficient at lag h. From Equation (2.19) we can write

C(h) = ρ(h)C(0) = ρ(h) var(∆Z). (2.20)

From this relation we derive that the covariance C(h) can be calculated as

C(h) = var
(√

ρ(h)∆Z

)
. (2.21)

The covariance functions must be positive definite [Journel and Huijbregts, 1978,
p. 34], so ρ(h) ≥ 0.

Horizontal upscaling: interpolation
The vertical upscaled borehole data, as described in Section 2.1.3, are used in spatial
interpolation. Since these data are subject to uncertainty, an interpolation technique
which can handle this kind of data must be chosen. We applied ordinary kriging
to perform this interpolation. In this section we describe the way we incorporate
the uncertainty of the observations, including the shape of the distributions, in the
kriging variance.
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Ordinary kriging is based on two equations [Isaaks and Srivastava, 1989, p. 280 ff].
The interpolation of the observation values is described by

Ẑ(u0) =

n∑

α=1

λαZ(uα), (2.22)

where Ẑ(u0) is the kriging estimate at the unsampled location u0, λα the weight
factor of Z(uα), and n the number of sample locations used in the estimate. The
variance of Ẑ(u0) is described by

var(Ẑ(u0)) =
n∑

α=1

n∑

β=1

λαλβC(hαβ), (2.23)

where C(·) is the covariance function as discussed in Section 2.1.3, and hαβ is the
distance between location uα and uβ .

In general, Z(uα) represents a deterministic value at each location, which yields
a deterministic value Ẑ(u0) as well. The variance of Ẑ(u0) is calculated by Equa-
tion (2.23), and if probabilities are calculated Ẑ(u0) is assumed to have a Gaussian
distribution. Together, these two results describe the conditional PDF at the interpo-
lation location (conditional to the values found at the observation locations).

Since we have PDFs available at all sample locations we use these PDFs in Equa-
tion (2.22). This yields an RV for Ẑ(u0) which honors the uncertainty, including the
distribution, of the sample data. Additionally, we want to use the distribution of
∆Z in the uncertainty of the interpolation. In Section 2.1.3 we presented a method
to obtain the PDF of C(·), described in Equation (2.21). Inserting Equation (2.21) in
Equation (2.23) yields

var(Ẑ(u0)) =

n∑

α=1

n∑

β=1

λαλβ var

(√
ρ(hαβ)∆Z

)

= var




n∑

α=1

n∑

β=1

√
λαλβρ(hαβ)∆Z


.

(2.24)

Herein,
∑n

α=1

∑n
β=1

√
λαλβρ(hαβ)∆Z is the RV describing the uncertainty of the

interpolation with a distribution based on ∆Z . When added to Ẑ(u0), the resulting
RV describes the probability distribution of the interpolation.

2.2 Results
2.2.1 Application to real world data
This section shows an example of upscaling and interpolation of borehole data,
using the proposed methods. From the REGIS database of the Geological Survey
of the Netherlands, we used data from the Kiezeloöliet Formation from an area in
the south of the Netherlands. The dataset contains about 200 boreholes with data
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Figure 2.6: PDFs of three classes of sand as used with the upscaling of the borehole data. From left to
right: fine sand, medium fine sand, and coarse sand. The horizontal axis is logarithmic which explains
the apparent difference in integrated area.

from the second aquifer [Vernes et al., 2005]. This aquifer consists mainly of sandy
deposits which are divided into three classes with significant different conductivity
distributions. Figure 2.6 shows the PDFs of these distributions.

The vertical upscaling of the borehole data is performed as described in Sec-
tion 2.1.3. The number of core scale layers at one borehole varied between 1 and
40 layers with an average of about 9 layers. During upscaling, we calculated 1645
correlations between consecutive layers using Equation (2.15). It appears that al-
most all (1638) correlations between the transmissivities of consecutive layers have
a value between -0.05 and 0, the rest has values between -0.085 and -0.05. Because of
these low correlations, we performed the upscaling without taking the correlations
into account.

The variogram model, as shown in Figure 2.5, is derived from the upscaled
borehole data. The PDFs of the conductivities are log-transformed before kriging
[Journel and Huijbregts, 1978, p. 570] and the interpolated PDFs are back transformed
afterwards. In this example we used an exponential variogram with range 300 m,
sill 0.6 ln(m/d)2, and nugget 0.27 ln(m/d)2.

The performance of the PDF calculation used at interpolation of uncertain data,
by using Equation (2.22), is compared to a Monte Carlo (MC) simulation. For this
purpose, we draw a large number of random realizations (nMC) of the PDFs of the
observations. These random realizations are treated as observations in kriging.
Since we assume that the semivariogram does not alter for each realization, the
same sets of weight factors, λα, are used for both, the PDF and the MC calculations.
Subsequently, the results of MC are transformed to a CDF and PDF, as displayed
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Figure 2.7: Result of PDF calculations compared to MC. Black: PDF calculations, red: MC with
nMC = 1, 000, blue MC with nMC = 20, 000. The black and blue line coincide.

in Figure 2.7. It can be seen that the CDFs of both MC runs (nMC = 1, 000 and
nMC = 20, 000) fit quite well with the CDF of the PDF calculations. However, the
PDFs of the MC calculations are less smooth than the PDF of the PDF calculations. The
interpolated location in this example is the same location as in Figure 2.8 indicated
by a red circle.

Some results of the kriging interpolation are shown in Figure 2.8. The results in
this example are obtained by point kriging. At every kriging location, two PDFs are
drawn. The dashed line PDFs are the results of kriging applied on deterministic ob-
servations, assuming the underlying stationary random function of conductivities
to have a log-normal PDF. The solid lines are the kriging results with observations as
random variables as described before. As expected, the widths of the PDFs of the in-
terpolated point data are smaller than those of the interpolated PDFs. This is caused
by the added uncertainty of the observations in the case of the PDF interpolations.

Another method to include uncertainty of the observations is kriging with un-
certain data [Marsily, 1986, p. 299]. There, the error variance of each observation
is subtracted from the corresponding main diagonal element of the kriging matrix.
The differences between both methods is that kriging with uncertain data relies
on Gaussian distributions, where the proposed method can handle distributions of
any shape.

2.2.2 Comparison of calculation methods
Performing calculations with RVs of which the descriptions of the PDFs are expressed
by simplified functions, is described before in the literature. In this section, the
main differences between the calculation method of Jaroszewicz and Korzeń [2012]
and the piecewise linear method, as described in this chapter, are discussed.

Both methods divide the PDFs in intervals where the probability densities are
approximated by one or more polynomial functions. The piecewise linear method
uses only one linear function, where the method of Jaroszewicz and Korzeń uses
also higher order polynomials, implemented as Chebyshev polynomials. The latter
method has the ability to describe the curve of the PDF much more accurately than
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Figure 2.8: Map with result of the kriging interpolation of conductivities. The black dashed lines show
the result of a standard ordinary kriging, the colored solid lines are the results of the new proposed
method. The dots are the observation locations where the color indicates the mean value. The plus
signs are the kriging locations.

the linear functions. Another difference between the two methods is the possibility
to describe functions with an infinite domain. The piecewise linear method has
to truncate the infinite tails at some finite value, the method of Jaroszewicz and
Korzeń is able to support infinite domains by use of exponential tails.

As an example, the summation of ten standard Gaussian distributed RVs is per-
formed. The analytical mean and variance are 0 and 10, respectively. The result of
the method of Jaroszewicz and Korzeń is about 1.2178e-15 and 10 (with 14 trailing
zeros), and the result of the piecewise linear method is 5.879e-5 and 10.1049. The
piecewise linear PDFs are discretized with 50 bins and truncated at five times the
standard deviation.

The higher accuracy is acquired at the cost of calculation time. The calculation
of the transmissivity, as described by Equations (2.11) and (2.12), is used to com-
pare the performance of both methods. In Table 2.1 the computation time is shown
for the addition of one, two and three layers The calculation time of the method of

Table 2.1: Comparison of the performance of the method of Jaroszewicz and Korzeń to the piecewise
linear method.

problem Jaroszewicz and Korzeń piecewise linear

[s] [s]

D1 ∗K1 1.35 0.00077

D1 ∗K1 +D2 ∗K2 24.1 0.0021

D1 ∗K1 +D2 ∗K2 +D3 ∗K3 834. 0.0033
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Jaroszewicz and Korzeń is much higher than the calculation time of the piecewise
linear method. Furthermore, the calculation time of the method of Jaroszewicz and
Korzeń is not proportional to the number of operations but increases much more.
Compared to the vertical upscaling at point scale and subsequently the horizontal
interpolation in the real world example in this article, this is a very small example.
In addition, in Appendix A.2 two examples from the literature containing calcula-
tions with RVs are compared to calculations using piecewise linear PDFs.

2.3 Discussion and conclusions
We developed a generic method to propagate the uncertainty of data through cal-
culations and applied it to the upscaling of hydraulic conductivity data. The un-
certain data used are represented by piecewise linear probability density functions
(PDFs), which can be of any form. A similar calculation method, with a different
implementation, has been described before by Jaroszewicz and Korzeń [2012]. How-
ever, the computation time of their method is so high that it is not easily applicable
to the calculations described in this article.

Figure 2.8 shows that the magnitude of the effect of the proposed method differs
between kriging locations. As may be expected, kriging locations close to observa-
tions show the largest effects on the interpolated PDFs. The results presented show
a good performance of the developed PDF calculations. The implementation in up-
scaling of borehole data, using kriging interpolation, yields interpolated subsurface
parameter data with complete PDFs instead of only the uncertainty of the mean val-
ues. Although these PDFs are a common feature of kriging, the propagation of the
uncertainty of the basic data in this way throughout the calculations is new. Here-
with, any distribution which can be approximated by a piecewise linear PDF can be
dealt with. Compared to Monte Carlo simulation (MC), the PDF calculations yield a
smoother PDF of the result. The smoothness of the result does not rely on a random
number generator or the number of simulations performed.

We performed kriging on the log-values of the PDFs of the observations. This
transformation relies on true log-normal distributed values when the RVs are pa-
rameterized. When the data is not exactly log-normal distributed, the back trans-
formation of the parameters may cause a bias in the mean values. Back transforma-
tion of the PDFs does not yield a bias in mean value or variance.

Compared to calculations using parameterized PDFs or other analytical solu-
tions, our method takes more computation time. However, we did not perform a
benchmark because of the research state of the software. Nevertheless, PDF calcula-
tions can be of great value in uncertainty propagation problems where no analytical
solutions are applicable. Availability of this method reduces the need for MC solu-
tions.

Compared to the analytical PDFs, the usage of piecewise linear PDFs implies loss
of accuracy in the calculated results. So care must be taken when choosing the
discretization of a PDF.
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3
Obtaining the most likely

hydrogeological model
parameter values

Abstract. Usually, subsurface data for groundwater flow models are obtained from hy-
drogeological models, which in turn are generated from borehole data, using upscaling tech-
niques. Since the assumed hydraulic properties for litho-classes in boreholes are uncertain,
and upscaling may add inaccuracies, the groundwater flow model has to be calibrated, and
therewith the hydrogeological model. In the Netherlands, a general purpose hydrogeolog-
ical model (REGIS) is developed to serve as input for multiple groundwater flow models,
among other applications. For each groundwater flow model a separate hydrogeological
model is derived from the REGIS model. These derived hydrogeological models are cali-
brated, without changing the REGIS model itself. Therewith, no direct feedback from the
calibration results to the REGIS hydrogeological model is available. In this paper, a method
is presented that uses a calibrated groundwater flow model to improve the quality of the
general purpose hydrogeological model (layer thickness and hydraulic properties). Thereto,
the uncertain layer thicknesses and conductivities are described by a joint probability den-
sity function. Subsequently, the calibrated data is used to find the most likely combination of
parameters within this joint distribution. We illustrate the proposed method to a case where
aquitard thickness and vertical hydraulic conductivity are estimated. In order to make the
problem tractable, computationally feasible, and avoid assumptions about the distribution
form, piecewise linear probability density functions are used, instead of parameterized func-
tions.
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KNOWLEDGE OF THE SUBSURFACE is of great importance to various areas of in-
terest, like drinking water supply and heat and cold storage, among others.
Characterization and modeling of the subsurface is inevitable, and geologi-

cal and hydrogeological models are widely developed. The quality or uncertainty
of these models depends highly on the available data and is worldwide a matter of
continuous concern.

In the Netherlands, a nation-wide digital geological model (DGM) [Gunnink et al.,
2013] of the subsurface is constructed and maintained by the Geological Survey of
the Netherlands (TNO-GSN). This three-dimensional model displays the geological
units, based on the lithostratigraphical classification. The definition of the units is
based on the depositional environment (e.g. marine or fluvial) and the age of the
depositions. The geological units mainly coincide with formations.

The DGM is subsequently used as a framework to define the nation-wide gen-
eral purpose hydrogeological model REGIS [Vernes et al., 2005; Vernes and van Doorn,
2006]. REGIS is also developed and maintained by TNO-GSN. Within the geological
units of the DGM, multiple litho-classes are recognized. Such a litho-class is a com-
bination of the geological unit (Formation) and the lithology of the sediments (clay,
sandy clay, fine sand, coarse sand, peat, etc.). Based on the hydraulic properties
of the litho-classes, layers of several litho-classes are aggregated to hydrogeologi-
cal units. The hydrogeological units are divided into layers with high conductivity
(aquifers) and low conductivity (aquitards). So, within one geological unit, several
hydrogeological units may be recognized. In REGIS, over one-hundred hydrogeo-
logical units are defined. Due to lateral differences in the geological processes, not
every geological and hydrogeological unit is present everywhere in the subsurface
of the Netherlands. Nevertheless, to make of REGIS a consistent hydrogeological
model, all hydrogeological units are defined everywhere in the model but do have
a zero thickness where absent.

All hydrogeological units are recognized and defined at the available boreholes.
At the borehole locations, for each hydrogeological unit the layer thickness and the
average horizontal and vertical conductivity are defined. Subsequently, these prop-
erties of all hydrogeological units are interpolated and upscaled to a grid with a
resolution of 100m × 100m. The interpolation and upscaling is guided using geo-
logical knowledge about, for instance, geological processes and presence of faults.
The upscaling of hydrogeological data is a process of major importance and has
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to be applied carefully. A vast amount of literature is available on this topic [e.g.,
Dagan, 1986; Nœtinger et al., 2005; Sanchez-Vila et al., 2006; Fiori et al., 2011]. In the
proposed method as described in this paper, the REGIS hydrogeological model is
regarded as en existing model and used at the scale it is designed for. Therefore,
the upscaling as implemented in the development of REGIS will not be discussed in
this paper.

The grid data of REGIS define a general hydrogeological model which serves as
input for multiple groundwater flow models [e.g., Snepvangers et al., 2008; Lange
et al., 2014; de Lange and Borren, 2014]. Depending on the location and the extent
of a groundwater flow model, only a certain subset of all hydrogeological units
is present in the subsurface. Therefore, a tailor-made hydrogeological model is
derived from the REGIS hydrogeological model which suits the needs of the spe-
cific groundwater flow model, hereafter denoted as the derived hydrogeological
model. So multiple adjacent hydrogeological units of the REGIS model with similar
hydraulic properties are aggregated to one aquifer or aquitard in the groundwater
flow model. Such a derived hydrogeological model, i.e. the aquifers and aquitards
of the groundwater flow model, is different from the REGIS hydrogeological model,
although the total transmissivity (horizontal) and vertical resistance are equal in
both models. The groundwater flow models are built and calibrated by parties as
engineering consultancies or research institutes, but usually not by TNO-GSN.

It is common practice in the Netherlands to calibrate the parameters of the de-
rived hydrogeological model without changing the hydrogeological model REGIS.
Calibration is generally based on the comparison of hydraulic heads simulated by
the groundwater model with observed heads in observation wells. Usually, a pro-
gram, like MODFLOW [McDonald and Harbaugh, 1988], is used with only the transmis-
sivity and the vertical resistance as hydraulic subsurface parameters. Therefore,
calibration takes only place on these parameters of the derived hydrogeological
model and not on the layer thickness and the conductivity of the hydrogeological
units as stored in REGIS. Thus, no formal feedback exists between the groundwater
flow model calibration results and the a priori hydrogeological parameters present
in REGIS.

Any inconsistencies between the calibrated groundwater flow parameters and
REGIS parameterization that occur during the calibration process are only communi-
cated from the groundwater modelers to the (hydro)geologists on an ad hoc basis.
In this paper, we introduce a more objective method to perform this communica-
tion. The proposed method makes use of the calibrated parameters of the ground-
water flow model and translates these improved data back to the hydrogeological
model REGIS. This yields the most likely layer thickness and conductivity of each
litho-class at each grid cell, given the geological borehole descriptions and the cali-
bration results (i.e. implicitly the head observations).

All models are to some extent uncertain or erroneous. Important sources of un-
certainty are errors in the schematization, identification and the parameter values
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and observations. This uncertainty, and the lack of an exhaustive number of obser-
vations, yields the possibility of different models with different parameterization
and schematization but with comparable performance (equifinality) with respect
to the observations. In the literature, the concepts of equifinality [Beven and Binley,
1992; Beven, 2006; Efstratiadis and Koutsoyiannis, 2010], and multi-objective calibra-
tion [e.g., Gupta et al., 1998; Singh et al., 2008; Efstratiadis and Koutsoyiannis, 2010] are
used to reflect the model uncertainty with multiple instances of the same model.
Currently, only one parameterization of the most recent version of the REGIS hydro-
geological model is made available, together with some uncertainty information. It
is up to the groundwater flow modeler to decide the necessity of multiple instances
of the derived hydrogeological model in the calibration process. The method pro-
posed in this paper is described for one instance of a calibrated groundwater flow
model, but may be used for multiple instances as well to find a distribution of most
likely parameter values.

This paper is organized as follows. In Section 3.1 the methodology is described,
which, in this paper, focuses on the hydraulic resistance of aquitards. Here, Sec-
tion 3.1.1 describes the core part of the proposed method. In Section 3.2 the study
area and the data used are presented. The results are presented in Section 3.3. The
applicability of the method, and the interaction with the calibration of a ground-
water flow model are discussed in Section 3.4. In Section 3.5 conclusions are drawn
and an outlook for further research is given.

3.1 Methodology
The proposed update method is an addition to the prevailing modeling practice
with groundwater flow models derived from the REGIS hydrogeological model. In
Figure 3.1 the implementation of the update method in the current modeling pro-
cess is depicted. In the top row of this figure, the REGIS hydrogeological model
serves as input to multiple groundwater flow models, but without a formal feed-
back of the calibrated results to the REGIS model. This gap in the modeling process
can be filled in by the update algorithm (bottom row in Figure 3.1). This algo-
rithm yields an updated version of REGIS, which is applicable in new studies. The
methodology described in this section consists of several steps. The flowchart in
Figure 3.2 shows the four processing steps and the three sources of input data. The
core part of the method is step 4 (Section 3.1.1), which is described first. Herein, for
each grid cell for each litho-class l the joint distribution with the marginal distri-
butions of the layer thickness (Dl) and the vertical hydraulic conductivity (Kl) is
defined. From this joint distribution, the most likely parameter values (layer thick-
ness and conductivity) of all litho-classes are found conditional on the calibrated
vertical resistance (cm) of a groundwater flow model. Here, the most likely param-
eter combination is the combination with the highest joint probability density.

To be able to build the joint distribution by using the distributions of Dl and Kl

as the marginal distributions, these marginal distributions need to be known. In the
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REGIS system, the distributions of the conductivities are defined for each litho-class.
However, no information about the uncertainty of the layer thicknesses is readily
available. Therefore, in step 1 (Section 3.1.2), a probability density function (PDF) of
the thickness is assigned to each defined litho-layer from the interpreted borehole
data from REGIS. In step 2 (Section 3.1.3), these data are aggregated to one PDF of the
total thickness of each litho-class at each borehole. In step 3 (Section 3.1.4), a kriging
interpolation of the litho-layer thickness is performed, using the result of step 2 as
observations. This yields a PDF for the thickness of each litho-class at each grid cell,
necessary as input for the algorithm in step 4 (Section 3.1.1). The resolution of this
grid is comparable to the resolution of the calibrated groundwater flow model.

3.1.1 Update algorithm
The vertical hydraulic resistance of a litho-layer can be derived from observations
of the layer thickness and the vertical conductivity of the deposits. These observa-
tions always yield uncertain parameter values and they might not be representa-
tive for the required model scale. Instead, the calibrated parameters of the derived
hydrogeological model of the groundwater flow model are used as input for the
update algorithm (Figure 3.1). The uncertain parameters (litho-layer thickness and
conductivity) are treated as random variables described by their probability density
functions (PDFs). In this paper, all random variables (RVs) are described by piecewise
linear PDFs [Kaczynski et al., 2012; Vander Wielen and Vander Wielen, 2015] from which
all calculations can be performed independent of the type of distribution assumed.
Performing elementary operations and kriging interpolation with piecewise linear
PDFs is described in Lourens and van Geer [2016].

Let the value of the vertical resistance of an aquitard at grid cell u, denoted by
cm(u), be the result of the calibration of a groundwater flow model. This calibrated
resistance is assumed to be the true value. In the proposed method, no uncertainty
of the calibrated groundwater flow model is included, so cm(u) is treated as a de-
terministic parameter. Furthermore, in accordance with the REGIS assumptions, we
assume that the PDF of the hydraulic conductivity for a given litho-layer does not
change in space.

The vertical resistance of a litho-layer is calculated as

cl(u) = dl(u)/kl(u), (3.1)

where cl(u) ∈ Cl(u) is the vertical hydraulic resistance, dl(u) ∈ Dl(u) is the layer
thickness, kl(u) ∈ Kl the vertical hydraulic conductivity, l the litho-class, and u de-
notes the location. Although Kl is assumed to be location independent, kl certainly
not. The variables Cl, Dl, and Kl are RVs. The PDFs of Dl and Kl are fDl

(dl) and
fKl

(kl), respectively. The variables D and K are assumed to be statistically inde-
pendent. Hereafter, for readability the location indicator (u) is dropped from the
equations.

The total resistance of the litho-layers 1 until l is calculated as the summation of
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the individual resistances, as

csl =

l∑

i=1

ci = csl−1 + cl for 2 ≤ l ≤ n, (3.2)

where n is the number of litho-classes in the aquitard, csl ∈ Cs
l , and Cs

1 = C1. The
superscript s denotes the summation of the vertical resistances from litho-layer 1

up to layer l. Hence, csn ∈ Cs
n is the total aquitard resistance.

With the expression of Equation (3.1), the joint PDF fCl
(θl) of Dl and Kl can be

written as
fCl

(θl) = fDl
(dl)fKl

(kl), (3.3)

with θl = (dl, kl). Note that fCl
(·) represents the joint PDF of Dl and Kl, and does

not represent the PDF of Cl. The 2n-dimensional joint distribution of Cs
n is defined

by

fC(θ) =
n∏

l=1

fCl
(θl), (3.4)

where θ = (θ1, . . . , θn), and the index C denotes the total aquitard resistance.
With the proposed method, we search for the most likely values of θ given the

observation cm. The most likely value is defined as the value with the highest prob-
ability density, or mode, of fC(θ) conditional on

∑n
l=1 cl = cm. This conditional

density function is written as

fC(θ|cm) ∝
n∏

l=1

fCl
(θl) for

n∑

l=1

cl = cm. (3.5)

In this equation, the normalizing constant is left out. Since fC(θ|cm) is only used to
find a conditional mode, this expression suffices. So the ∝ sign is interpreted as an
equality sign. Herewith, the maximization function of θ is defined as

ϑC(cm) = argmax
θ

fC(θ|cm). (3.6)

This function returns for observation cm the most likely parameter values of θ, de-
noted by θ̂. Since θ is of size 2n, and all marginal PDFs are described as piecewise
linear functions, it is infeasible to write Equation (3.6) as a workable analytical ex-
pression. Therefore, a stepwise method is derived to find the mode of fC(θ|cm).
Equivalently to Equations (3.5) and (3.6), for each litho-layer the conditional den-
sity function

fCl
(θl|cl) ∝ fCl

(θl) for dl/kl = cl, (3.7)

and the maximization function

ϑCl
(cl) = argmax

θl

fCl
(θl|cl) (3.8)
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Figure 3.3: Joint PDF of the litho-layer thickness and the conductivity. The gray lines denote equi
C-lines. The black dashed line connects the maximum density points of each value of C. The two
marginal distributions are shown at the side-panes.

are defined. Hereafter, the steps 4a until 4d refer to the steps in the flowchart in
Figure 3.2.

Step 4a is the derivation of the maximization function ϑCl
(cl) for a joint PDF with

the two marginal distributions fDl
(·) and fKl

(·). To illustrate this, Figure 3.3 shows
the joint distribution fCl

(θl). At the horizontal axes, the layer thickness (Dl) and
the conductivity (Kl) are shown with their respective marginal PDFs. The vertical
axis shows the joint probability density. The three solid gray lines are, as an exam-
ple, drawn for three different values of cl. Each line shows the conditional density
function for a given value of cl, i.e. fCl

(θl|cl). The mode of each conditional density
function in Figure 3.3, is denoted by a black dot. The maximization function ϑCl

(cl)

returns the marginal values of this point (θl). The derivation of the maximization
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functions, using piecewise linear marginal PDFs, is given in Appendix B.1. We call
the function connecting the modes for all possible values of cl the mode density
function (MDF), which is defined as

hCl
(cl) = fCl

(θl = ϑCl
(cl)). (3.9)

The mode values are calculated for a number of values of cl, which yields a piece-
wise linear MDF. In Figures 3.3 and 3.4, this MDF is denoted by a dashed black line.
In Figure 3.4, the update algorithm is depicted for n litho-layers. The MDF returns
the probability density for a reduced universe [Bolstad, 2007, p. 62] and is therewith
not a PDF since it not necessarily integrates to 1. Nevertheless, it can be used as a
marginal distribution in the next step. This is depicted with the black arrows in
Figure 3.4.

The former step yields an n-dimensional joint PDF, with as marginal distribu-
tions the MDFs hCl

(cl) for l = 1, . . . , n, which still may be too large to be evaluated
at once. Step 4b is similar to the first step, but instead of a division (dl/kl), a sum-
mation as in Equation (3.2) (csl−1 + cl) is performed. This is depicted in the right
column in Figure 3.4. Equivalently to step 4a, the next sets of functions are defined
and evaluated

fCs
l
(θsl ) = hCs

l−1
(csl−1)hCl

(cl)

ϑCs
l
(csl ) = argmax

θs
l

fCs
l
(θsl |csl )

hCs
l
(csl ) = fCs

l
(θsl = ϑCs

l
(csl )),





for l = 2, . . . , n (3.10)

where Cs
1 = C1, hCs

1
(cs1) = hC1

(c1), and θsl = (csl−1, cl). For all maximization func-
tions ϑCs

l
(csl ) the argument value of csl is unknown. However, for the last maxi-

mization function ϑCs
n
(csn) the argument value is available with csn = cm being the

total calibrated vertical resistance of the aquitard.
In the next step, 4c, all maximization functions ϑ.(·) are used to find the mode

estimates θ̂ for all marginal distributions, given cm, starting with θ̂sn = ϑCs
n
(cm),

which yields θ̂sn = (ĉsn−1, ĉn). This is shown in the top-right pane of Figure 3.4.
Herewith, θ̂sn contains the mode estimates of the total vertical resistance of litho-
layers 1 . . . n − 1, i.e. ĉsn−1, and the vertical resistance of litho-layer n, i.e. ĉn. In
general, with ĉsn being known, subsequent evaluation of

θ̂sl = ϑCs
l
(ĉsl ) for l = n, . . . , 2, (3.11)

yields θ̂sl = (ĉsl−1, ĉl). This is in Figure 3.4 depicted with the red arrows. Herewith,
all values ĉl are available.

In the last step, 4d, the values ĉl are used to find the mode values of dl and
kl. For l = 1, . . . , n, the expression θ̂l = ϑCl

(ĉl) yields θ̂l = (d̂l, k̂l). Herewith,
all conditional mode estimates of the marginal distributions fDl

(·) and fKl
(·) are

known.
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Figure 3.4: Scheme of methodology step 4. Every graph shows a joint distribution of two marginal
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the MDFs are used as marginal distributions of C (right, black arrows), and new MDFs are generated.
Thirdly, in the top right graph, the observation Cm is used to find the most likely marginal values
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are found (red arrows).
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With this method, a multidimensional joint PDF can successively be evaluated
to find the most likely conductivity and layer thickness values of all marginal dis-
tributions, conditional on an observation of the total aquitard resistance.

3.1.2 Layer thickness uncertainty
This section describes step 1 of the flowchart in Figure 3.2. The method presented
in the former section needs a quantification of the uncertainty of litho-layer thick-
nesses. However, quantitative data about this uncertainty are usually not avail-
able. In this section, a method is described to provide all litho-layers of the bore-
hole descriptions with an appropriate uncertainty of the layer thickness. There are
certainly more sources of error in borehole descriptions, like misclassification of
sand and clay layers during drilling, or the interpretations of the litho-class by the
hydrogeologist, but in this study we only evaluate the possible error in the layer
thickness.

During drilling of a borehole, the measured layer thicknesses are always round-
ed off. This causes uncertainty in the layer thickness observations. The magnitude
of the round-off error depends, among others, on the drilling method and the way
the borehole descriptions are made. Therefore, it is likely that drilling methods
which can distinguish the layers more accurately have a smaller round-off error
than drilling methods with a lower accuracy. Reversing this reasoning it may be
concluded that small round-off values give a more accurate layer thickness than
large round-off values. The question is how to recognize the order of magnitude of
a round-off error in the borehole description data, and what may be an appropriate
uncertainty to ascribe to a specific round-off error.

From the REGIS data base, about 475 000 litho-layer thicknesses of about 16 000
borehole descriptions are available. The remainder of all these thicknesses, when
dividing by one meter, is calculated and shown as a cumulative distribution in
Figure 3.5. From this figure, it can be seen that round off to one meter (remainder is
0) is done very often (44 %). Also round off to fifty (12 %), ten (30 %) and five (8 %)
centimeters is done more often than to one (6 %) centimeter. Truncation to a smaller
value than one centimeter is not stored in the data base. The number of layers
in each truncation class is counted after removing the layers counted in a higher
truncation class (a class with a higher round-off value). Obviously, values of layers
of a lower class often coincide with values of a higher class. This makes the above
counting biased. Although this can be statistically corrected for the distribution
as a whole, it can not easily be corrected for the individual layers. Therefore, no
correction is applied and this error is accepted in the described method.

Since no quantitative information is available about the uncertainty of the litho-
layer thicknesses, an arbitrary choice has to be made. This choice implies the type of
PDF and the magnitude of variance. To justify the choice, a sensitivity analysis has
been carried out to test the performance of different options. These options include
two types of distributions, and several magnitudes of the variances. When the
type of distribution is unknown, the Gaussian distribution is usually a safe choice,
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Figure 3.5: Cumulative distribution of the remainder of about 475 000 litho-layer thicknesses af-
ter division by one meter. The vertical lines show the position of the round-off values at every ten
centimeters.

Table 3.1: Three classes of standard deviation related to the truncation classes.

truncation class low medium high

[m] [m] [m] [m]

0.01 0.002 0.01 0.05

0.05 0.010 0.05 0.25

0.10 0.020 0.10 0.50

0.50 0.100 0.50 2.50

1.00 0.200 1.00 5.00

because the round-off errors may be assumed symmetric around zero. Since the
Gaussian distribution may yield negative layer thicknesses, the log-normal distri-
bution has been tested as well. We have chosen to relate the standard deviation for
each litho-layer thickness linearly to its truncation class value (Table 3.1). For the
low standard deviation class this factor is 1/5, for the medium class 1, and for the
high class 5.

When a litho-class is observed absent in a borehole, it should get a thickness
of 0 m. However, an expected thickness value of zero yields problems with the
assignment of a PDF to this observation. When a Gaussian distribution is chosen, the
layer thickness will be less then zero with a probability of 0.5. When choosing a log-
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normal distribution it is impossible to assign a variance greater than zero to the
observation. Therefore, a small positive value has to be chosen for the 0-thickness
observations. The choice of an appropriate value is described in Section 3.3.3.

3.1.3 Data preparation
The described method needs complete borehole descriptions for a model layer
(aquifer or aquitard) at all borehole locations. Therefore, when a description in
a borehole is incomplete for a model layer, this borehole is neglected for that layer.

Within the extent of a study area and within the considered model layer, a lim-
ited set of litho-classes is found. Because of heterogeneity of the subsurface, not
every litho-class is present at every borehole location. However, the absence of
a litho-class in a certain borehole is an observation as well. Therefore, when a litho-
class is absent in a borehole, it is added with a zero layer thickness. The assignment
of the variance to the layer thickness has been described in Section 3.1.2.

A litho-class may appear multiple times within one model layer in one bore-
hole. The thicknesses and variances of all these occurrences are added to one thick-
ness and variance before further processing (step 2 of the flowchart in Figure 3.2).
Consequently, the horizontal connectivity of individual litho-layers of a litho-class
between boreholes is neglected. The result of this processing step is a PDF of the
layer thickness for each litho-class at each borehole location. The term litho-layer is
used for the individual litho-layers as well as for the aggregated litho-layers.

3.1.4 Assessment of layer thickness uncertainty per grid cell
The algorithm, as described in Section 3.1.1, needs for each litho-class the PDFs of
the layer thickness (Dl(u)) and the hydraulic conductivity (Kl) at each grid cell.
This section describes the assessment of the PDF of Dl(u), which is step 3 of the
flowchart in Figure 3.2.

In the information system REGIS, a PDF of the hydraulic conductivity is assigned
to each litho-class, independent of the spatial coordinates. So everywhere in the
subsurface where a particular litho-class exists, the probability distribution of the
hydraulic conductivity is assumed to be known. Therefore, only the PDFs of the
layer thickness for each litho-class have to be spatially predicted. This spatial pre-
diction is performed by using ordinary kriging (OK). For every litho-class a semi-
variogram model for the litho-layer thickness is estimated. Since layer thicknesses
are greater than or equal to zero, the interpolation method must account for this
[Tolosana-Delgado and Pawlowsky-Glahn, 2007]. In Section 3.3.4, several interpolation
options are evaluated to select the most appropriate ones, concerning the observed
data.

Using kriging interpolation, the estimation of the interpolated thickness D̂(u0)

at the unobserved location u0 writes [Isaaks and Srivastava, 1989, p. 282]

D̂(u0) =
m∑

α=1

λαD(uα), (3.12)
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where m is the number of observations, λα are the kriging weight factors, and
D(uα) are the observations at the locations uα. Usually, the observations D(uα)

are treated as deterministic values. In this study, D(uα) is the complete PDF of
the layer thicknesses, described as a piecewise linear function. This method yields
a PDF of the interpolated litho-layer thickness D̂(u0). Subsequently, the PDF of the
interpolation (D̂(u0)) and the PDF of the interpolation error are added to achieve
a PDF containing all uncertainties. In previous work, this method is described in
detail [Lourens and van Geer, 2016]. Generation of the PDF of the litho-layer thick-
ness of the observations, and the choice of its attributes, like variance and shape, is
described in Section 3.1.2

Ordinary kriging tends to generate negative weight factors, beside the posi-
tive ones, when the spatial distribution of the observations is somehow unbalanced
around the estimation location, known as the screen effect. Apart from the physical
meaning of negative weight factors, this screen effect influences the interpolated
result [Goovaerts, 1997, p. 176]. To avoid this, the kriging algorithm is modified
following the method as described by Deutsch [1996]. Herewith, the observation lo-
cation with the most negative weight factor is removed from the subset of locations
for the current kriging location. This is repeated until no negative weight factors are
calculated anymore, or until less than the required minimum number of observa-
tions is reached. In the latter case, a missing value is assigned to the corresponding
kriged location.

Subsequently, the PDFs of the layer thickness and the PDFs of the hydraulic con-
ductivity serve as input for the update algorithm of Section 3.1.1.

3.2 Study area and available data
The method developed in this paper has been tested and evaluated using a case
study. The location of the study area is shown in Figure 3.6. The size of this area is
20 km×25 km with a grid size of 100m × 100m. The used borehole data originate
from borehole descriptions as administered by the Geological Survey of the Nether-
lands (TNO-GSN), and the hydrogeological interpretations as stored in the REGIS in-
formation system. In REGIS, litho-classes are assigned to all identified layers from
every borehole. The definition of the litho-classes is based on lithological proper-
ties and lithostratigraphical units. Each litho-class is provided with two probability
density functions (PDFs) of the hydraulic conductivity, one for the horizontal con-
ductivity and one for the vertical conductivity. Subsequently, these litho-classes
are aggregated to hydrogeological units. These data are thus suitable to be used in
numerical groundwater flow models. The data include layer depths, litho-classes,
and hydrogeological units.

The calibrated layer properties (transmissivity and hydraulic resistance values)
originate from the AZURE groundwater flow model, developed by Deltares, the
Netherlands [de Lange and Borren, 2014]. The hydrogeological model of AZURE is
derived from the hydrogeological model REGIS and therefore suitable to perform
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Figure 3.6: Study area. The gray area is the extent of the AZURE groundwater flow model. The small
rectangle denotes the study area with the vertical resistance, as shown in Figure 3.7, depicted.
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Figure 3.7: The (a) calibrated hydraulic vertical resistance of the aquitard and (b) the quotient of the
calibrated and the uncalibrated resistance. The majority of the calibrated resistance in the clay patch
is about ten times the uncalibrated resistance.

Table 3.2: Probability data of the vertical hydraulic conductivity values of each litho-classas provided
by the REGIS information system. The distributions are defined by the 2.5 and 97.5 % percentile
values and are assumed to be log-normal. The presented mean and SD are derived from the PDFs.

litho-class 2.5 % 97.5 % mean sd description

[m d−1] [m d−1] [m d−1] [m d−1]

EE-k 7.3e-5 0.0219 3.64e-3 9.74e-3 Eem Fm., clay

EE-kz 7.3e-5 0.301 4.46e-2 0.372 Eem Fm., sandy clay

EE-v 6.4e-4 0.32 5.03e-2 0.166 Eem Fm., peat

EE-zf 7.3e-5 2.88 0.548 12.4 Eem Fm., fine sand

EE-zm 1.4 29.7 8.74 7.98 Eem Fm., medium sand

UR-kz 1.7e-4 0.29 4.25e-2 0.239 Urk Fm., sandy clay

UR-zg 2.4 160.7 34.9 51.2 Urk Fm., coarse sand

this study.
In this case study, we focus on the fourth aquitard in the AZURE groundwater

flow model. This aquitard is a high vertical resistance clay patch, surrounded by
an area where the clay layer is thin or absent. This aquitard is found between 20 and
85 m below surface level. To meet the numerical requirements of the groundwater
flow model, a minimum vertical resistance of one day is used in the area where the
aquitard is absent. The calibrated vertical resistance of the aquitard and the ratio
calibrated/uncalibrated resistance are depicted in Figure 3.7. This ratio shows the
modification of the vertical resistance by the calibration procedure.

The aquitard consists in the study area of seven different litho-classes. The hy-
draulic properties of these litho-classes, as defined in REGIS, are shown in Table 3.2.
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Table 3.3: Variogram model for thickness of each litho-class. The range of litho-class UR-zg could
not be estimated and is set to an arbitrary value.

litho-class type range sill

[m] [m2]

EE-k exponential 1800 43

EE-kz exponential 2000 42

EE-v exponential 4000 0.5

EE-zf exponential 1200 6

EE-zm exponential 800 6

UR-kz exponential 300 5

UR-zg exponential (400) 4

Not all litho-classes do have characteristic properties for aquitards. The sand
classes (EE-zf, EE-zm, UR-zg) have a much higher conductivity than the clay and
peat classes (EE-k, EE-kz, EE-v, UR-kz). Since the deposits of these sand classes are
embedded in low conductivity layers, they are part of the aquitard and modeled as
such.

Table 3.3 shows the variogram models of the thickness of the litho-layers as
derived from the borehole data. The accompanying experimental variograms are
given in Figure 3.8. The range of the variogram model of litho-class UR-zg could
not be estimated due to lack of data, and is set to an arbitrary value of 400 m. The in-
terpolation, as described in Section 3.1.4, is performed using block kriging at a grid
with 250 m wide cells and a block discretization of sixteen points. A minimum of
four and a maximum of sixteen observations is used for each interpolation.

3.3 Results
3.3.1 Improved estimates of the litho-class properties
The calibrated vertical resistance of the aquitard from the groundwater flow model
has been divided over the seven litho-classes, according to the method described in
Section 3.1. This is shown in Figure 3.9. The major part of the vertical resistance is
assigned to the EE-k and EE-kz litho-classes. As may be expected, the contributions
of the litho-classes of coarser deposits to the total vertical resistance of the aquitard
is small. The resistance assigned to these classes appears to be low, compared to
the resistance of the clay deposits. Beside the high conductivity of the sediments,
these sandy litho-classes exist only in a minority of the observations. This leads to
thin litho-layers in the majority of the study area (Figure 3.10), and thus to a neg-
ligible contribution to the vertical resistance. Therefore, we focus on the two most
important litho-classes EE-k (clay) and EE-kz (sandy clay).

Figure 3.11 shows the improved layer thickness of litho-classes EE-k and EE-kz
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Figure 3.8: Experimental variograms and variogram models for the layer thickness of each litho-class
as used in this chapter. The size of the plus signs is proportional to the number of observation pairs
used to calculate the semivariance. At every fifth point the number of pairs is written. The variogram
parameters are found in Table 3.3.
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Figure 3.9: Most likely vertical resistance. The squares denote observations where the litho-class is
present, the plus signs where it is absent.
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Figure 3.10: Most likely thickness of each litho-class. The circles denote observations where the litho-
class is present, the plus signs where it is absent. The circles are colored with the observed thickness.
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Figure 3.11: Thickness of litho-class EE-k (top) and EE-kz (bottom). Mean kriging thickness (left)
compared to most likely thickness (right).

compared to the mean values of the PDFs of the interpolation. This mean value is
the result of a kriging interpolation with deterministic valued observations, which
is a common way of interpolation. As can be seen, the proposed method is able to
reduce the litho-layer thickness to negligible values in the area where the aquitard
is absent, whereas kriging interpolation results in more smooth patterns. The steep
gradient of the layer thickness is more in agreement with the calibrated resistance
in the groundwater flow model as well as the geological understanding.

The calibrated vertical resistance at a grid cell, which is used as an observation,
is the total resistance of all litho-classes within the aquitard. The proposed method
yields for each litho-class for each grid cell the most likely resistance, thickness and
conductivity values. The position of these improved values in their a priori prob-
ability distribution can be indicated by the corresponding cumulative probability
value. These cumulative probabilities of the litho-layer thickness, the vertical resis-
tance, and the hydraulic conductivity of litho-class EE-k are depicted in Figure 3.12.
The same data for litho-class EE-kz are depicted in Figure 3.13. The data of these
pictures are generated using the aquitard resistance before and after calibration of
the groundwater flow model. If randomly drawn from a PDF, these cumulative
probabilities are expected to be uniformly distributed. A large divergence from a
uniform distribution may indicate that the a priori distribution does not coincide
with the found improved data.

The uncertainties of the observations of the litho-layer thickness and the vertical

149884_lourens_BNW.indd   60 09-03-2021   12:22
62



3.3 Results 61

thickness (uncal) resistance (uncal) conductivity (uncal)

thickness (cal) resistance (cal) conductivity (cal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
[−]

Figure 3.12: Cumulative probability of the most likely values of the uncalibrated (top) and calibrated
(bottom) parameters of litho-class EE-k. The data is clipped at 0.05 m of the most likely thickness.
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Figure 3.13: Cumulative probability of the most likely values of the uncalibrated (top) and calibrated
(bottom) parameters of litho-class EE-kz. The data is clipped at 0.05 m of the most likely thickness.
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Figure 3.14: Comparison of conductivity distributions of litho-class (a) EE-k and (b) EE-kz. Shown
are the prior distribution of the REGIS system (dots), the distribution based on the uncalibrated C val-
ues (dashed line), and the distribution based on the calibrated C values (solid line). The x-axis is at
log-scale.

conductance are all represented by PDFs. In Figure 3.12, for litho-class EE-k, and in
Figure 3.13, for litho-class EE-kz, it can be seen that the cumulative probabilities of
the litho-layer thickness are mainly less than 0.5, which denotes the median of the
PDF, for both the uncalibrated and the calibrated case. The maps of the vertical con-
ductivities give a different picture. For litho-class EE-k, the majority of the values
of the uncalibrated case are above 0.5, whereas the majority of the values for the
calibrated case are below 0.5. The picture of the uncalibrated case of litho-class EE-
kz (Figure 3.13) is less pronounced, only the lower right corner of the conductivity
map shows some high values. This area may need some attention from the model-
ers. In the calibrated case the majority of the values is far below 0.5. So calibration
reduces the conductivity and increases the thickness of the litho-layers, compared
to the uncalibrated case. The distribution of the vertical conductivity is described
in more detail in Section 3.3.2.

3.3.2 Distribution of improved conductivities
The a priori distributions of the litho-class conductivities, i.e. the distributions ob-
tained from the REGIS information system, represent the best estimates given the
available hydrogeological knowledge. One goal of the proposed method is to im-
prove these distributions, or more specifically to decrease the uncertainty of the
variables. The cumulative distribution functions (CDFs) of the conductivity values
of litho-class EE-k and EE-kz, as discussed in the former section and depicted in
Figures 3.12 and 3.13, are shown in Figure 3.14.

Herein, the a priori conductivity distribution of the REGIS system and the most
likely conductivity distributions based on the uncalibrated and the calibrated re-
sistance values are depicted. In fact, these distributions are spatial frequency dis-
tributions of the most likely values. Nevertheless, when applied to unobserved
locations, these functions can act as a probability distribution. Hereafter, the distri-
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butions will be denoted by CDF or PDF.
In the study area, the majority of the calibrated resistance values is higher than

the uncalibrated values. Consequently, the corresponding conductivity values must
be lower or the layer thickness must be higher for the calibrated situation compared
to the uncalibrated one. From Figure 3.14 it is clear that the conductivities from the
calibrated case are much lower than the conductivities of the uncalibrated case.
Only conductivity values with a corresponding most likely layer thickness greater
than 0.05 m are used to create these CDFs. The presented conductivity distributions
are derived at the scale of the used groundwater flow model. Since no full down-
scaling to core scale (borehole scale) is applied, these CDFs are valid at this model
scale and can not be used as core scale distributions.

The results are based on a small study area and can currently not be extrapolated
to the whole REGIS database.

3.3.3 Evaluation of a priori litho-layer thickness uncertainty
In this section, the selection of the litho-layer thickness uncertainty is justified. The
observed litho-layer thicknesses of the available borehole data are expected to be
uncertain, but the variance and distribution type are unknown. Nevertheless, the
proposed method needs probability distributions of these observations. As stated
in Section 3.1.2, we tested the effect of several a priori distributions to describe
this thickness. The types of probability distributions tested are the Gaussian and
log-normal distribution. Both distributions are tested with different values of the
variance. The mean value of each distribution is set to the observed thickness.

For a given litho-layer the observations of the layer thickness fall into two
groups: one group with the observed litho-classes and one group with the litho-
classes observed absent. These groups are denoted as observed-thickness and zero-
thickness, respectively. Two characteristics of the PDFs are important when judging
the usability: the probability of negative values, and the width of the distribution.
We defined the latter as the width of the 95 % probability interval, which is the dis-
tance between the 2.5 and the 97.5 % quantiles. In Table 3.4, an example is shown of
the effect of the standard deviation assigned to the group of observed-thicknesses.
The mean value presented is a round-off value as defined in Table 3.1. When ap-
plied to the litho-layers, the observed litho-layer thicknesses are used as mean value
for the PDFs. Table 3.5 shows the same information for the zero-thickness observa-
tions.

Interpolation of the litho-layer thicknesses are performed using the settings as
described above. The Gaussian distribution often yields negative most likely thick-
nesses (column percentile < 0m) which makes this distribution unusable. There-
fore, the log-normal distribution is used to describe the litho-layer uncertainty.

In Figure 3.15, the effect of the different variance settings on the interpolation of
litho-class EE-kz, using log-normal distributions, is shown. In this figure, the maps
in each row are calculated using the same zero-thickness variance. The maps in
each column are calculated using the same observed-thickness variance. The maps

149884_lourens_BNW.indd   63 09-03-2021   12:22
65



64 Chapter 3: Obtaining the most likely hydrogeological parameter values

Table 3.4: Effect of SD choise (low, medium high) of the observed-thicknesses distributions. The
mean value of 1 m, which is the round-off value, is used as an example. Other round-off values show
a proportional effect.

SD distribution mean s.d. percentile thickness thickness width

< 0m 2.5 % 97.5 % 95 %

[m] [m] [m] [m] [m]

low Gaussian 1.00 0.20 0 % 0.608 1.39 0.784

med Gaussian 1.00 1.00 15.9 % −0.961 2.96 3.92

high Gaussian 1.00 5.00 42.1 % −8.80 10.8 19.6

low log-normal 1.00 0.20 0 % 0.665 1.45 0.781

med log-normal 1.00 1.00 0 % 0.138 3.62 3.48

high log-normal 1.00 5.00 0 % 0.0057 6.76 6.75

Table 3.5: Effect of SD choice (low, medium high) of the zero-thickness distributions.

SD distribution mean s.d. percentile thickness thickness width

< 0m 2.5 % 97.5 % 95 %

[m] [m] [m] [m] [m]

low Gaussian 0.005 0.10 48.0 % −0.190 0.201 0.392

med Gaussian 0.050 1.00 48.0 % −1.91 2.01 3.92

high Gaussian 0.100 2.00 48.0 % −3.82 4.02 7.84

low log-normal 0.005 0.10 0 % 2.1× 10−6 0.0304 0.0304

med log-normal 0.050 1.00 0 % 2.1× 10−5 0.304 0.304

high log-normal 0.100 2.00 0 % 4.1× 10−5 0.608 0.608
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Figure 3.15: Maps of interpolation variances of litho-class EE-kz for different settings of the obser-
vation variances. The used settings for the variances are shown in Tables 3.4 and 3.5. The squares
denote the observed-thickness locations and the plus signs the zero-thickness locations.
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with high variance of observed-thickness (right column) show unlikely high vari-
ances at the area where this litho-class is present. Therefore, this variance setting
is rejected. The difference between the low variance (left column) and the medium
variance maps (middle column) is not very pronounced. The major difference is the
sensitivity to observations with a high variance. In the center of the medium vari-
ance map (middle column), one observation location yields a very high variance. In
one borehole, the litho-layer of litho-class EE-kz is here described with forty-nine
sub-layers of one meter each, with each their own variance. After summation, this
yields a very high variance for this location. For further processing the medium
variance is used.

The lower-left and the upper-right corner of the study area are dominated by
zero-thickness observations. The variances shown in these areas of the low (upper
row) and medium variance (middle row) are low compared to areas dominated
by the observed-thickness locations. Therefore, the high variance settings (lower
row) for the zero-thickness observations are used for further analysis. Corollary,
for further calculations the medium variance for the observed-thickness locations
is used and the high variance for the zero-thickness locations.

3.3.4 Evaluation of kriging options
Depending on the nature of the observed data, and the associated assumptions of
the underlying random field model, the appropriate form of data-transformation
and kriging is chosen. Herewith, a decision has to be made whether or not to per-
form a data transformation. Hereafter, the decisions made are justified.

Layer thicknesses are, obviously, required to be greater than or equal to zero.
Therefore, not every type of PDF is appropriate to describe the uncertain thickness.
In the kriging interpolation with uncertain observations, two variables need to be
assigned a probability density function: the observations of the layer thickness
(Section 3.3.3), and the interpolation error. Usually, the interpolation error is as-
sumed to be Gaussian distributed. No accurate information is available about the
true shape of these PDFs. Therefore, the performance of the use of Gaussian and
log-normal distributions was tested. Both distributions have their own deficiency,
especially when the standard deviation is large compared to the mean value. In
that case, the Gaussian distributions may yield negative thicknesses with too high
probability, and the log-normal distribution may become very skewed. The latter
is a disadvantage in finding representative most likely values because of the differ-
ence between the mode and the mean of the distribution. Because of the potential
negative values of the Gaussian distribution, the log-normal distribution is tested
for the interpolation error as well.

One way to avoid negative interpolated values is to transform the observations
to their log values before interpolation, and back-transform them afterwards. Ap-
plied to block kriging, the different way the block average is calculated has to be
considered. When kriging the log-transformed values, the block average is the ge-
ometric mean, kriging the non-transformed values yields the arithmetic mean. In
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Figure 3.16: Mean value of interpolated layer thickness of litho-class EE-k. Shown is (a) kriging
without data transformation, and (b) kriging with log-transformed data. The circles denote observa-
tions with the litho-class present, the plus signs where it is absent. The circles are colored with the
observed thickness.

Figure 3.16, a comparison is made between interpolation of the thickness PDFs and
the log-transformed thickness PDFs. With both methods, the interpolated thick-
nesses close to the observations are quite in agreement with the observed values.
However, at larger distance the difference between the two methods is larger, with
interpolated thicknesses from the log-transformed kriging being very low. From
geological point of view this is not a feasible result. Even when the ranges of the
variograms are increased, three times larger than derived from the data, the in-
terpolated thickness remains much lower than presumed, given the observations.
Thus the non-log-transformed kriging variant provides a better option.

3.4 Discussion
Since in the Netherlands the building of a hydrogeological model and its applica-
tion in groundwater flow models is different from most other countries, the model-
ing context and the application of the proposed method is discussed here in more
detail.

Usually, when building a groundwater flow model, a hydrogeological schemati-
zation dedicated to this groundwater flow model is defined simultaneously. Here-
with, the building of the hydrogeological model is a part of the development of
the groundwater flow model. In the Netherlands, the general purpose hydroge-
ological model REGIS is developed and maintained, independent of any particular
groundwater flow model. REGIS covers the whole country up to a depth of a few
hundred meters. REGIS is not built to serve as input for just one specific groundwa-
ter flow model, but it can be used in every study where hydrogeological subsurface
information is involved. This is depicted in Figure 3.1. As mentioned in the intro-
duction, the REGIS model is very detailed in the vertical direction and is therefore
in most cases not suitable to serve directly as a hydrogeological schematization of a
specific groundwater flow model. To serve the needs of a specific groundwater flow
model a dedicated hydrogeological schematization is derived from REGIS. During
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calibration of the groundwater flow model this derived hydrogeological model is
calibrated instead of the REGIS model. But the valuable information of the calibrated
groundwater flow model should be incorporated in the REGIS model as well.

The proposed method aims to improve the hydrogeological model REGIS, by use
of the improved information of a calibrated groundwater flow model. This implies
that initially only the hydrogeological model REGIS benefits from this procedure and
not the groundwater flow model. Moreover, the proposed method guarantees that
the updated version of REGIS generates exactly the hydraulic parameters of the cali-
brated groundwater flow model. So this method has no application in an iterative
calibration procedure of the groundwater flow model. Usually, a calibration con-
tains an iterative procedure, but this is part of the calibration of the groundwater
flow model itself. Nevertheless, the method can be used for detection of unlikely
values during the calibration stage. Such unlikely values are an indication for er-
rors in the hydrogeological model or elsewhere in the groundwater flow model.

In section 3.3.1 is shown that in some cases the most likely conductivity val-
ues, obtained from the calibration of the groundwater flow model, are not likely at
all from (hydro)geological perspective. Whether or not a value is likely is decided
by the modelers, but can be assisted by the proposed method. The unlikely results
may indicate errors in the model identification. When this kind of results are found,
discussions between the groundwater flow modeler and the (hydro)geologist may
also lead to a modification of the REGIS model. Such an improved version of REGIS

can be used to derive a new dedicated hydrogeological model for the groundwa-
ter flow model at hand. This feedback is indicated in Figure 3.1 by the dashed
arrow from the most likely values to the REGIS model. In this way, the updating
method described in this paper effectively becomes part of an iterative process of
improved (hydro)geological schematization and groundwater modeling in which
both geological and hydrological data are used. However, we stress that currently
such an iterative procedure is not part of the REGIS work-flow. To make this happen
we should also adjust the method to include errors in the transmissivities and hy-
draulic resistances resulting from the groundwater model calibration. This is part
of ongoing research.

The incorrect presence or absence of, for instance, clay layers in the hydroge-
ological model can be corrected by the calibration through adjusting the vertical
resistance. In fact this is an identification error of the model, but the proposed
method is to some extent able to translate this new vertical resistance into a new
layer thickness and conductivity value in the hydrogeological model.

Corollary, the calibrated groundwater flow model does not benefit from the
reparameterization of the REGIS model, but future studies can make use of an im-
proved version of the hydrogeological model.
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3.5 Conclusions
This paper describes a method to improve the parameterization of a general pur-
pose hydrogeological model REGIS in a formal way, using information of calibrated
groundwater flow models. The parameterization of the aquifers and aquitards of
these groundwater flow models are derived from the hydrogeological units of the
general purpose hydrogeological model. Each hydrogeological unit consists of one
or more litho-classes. The proposed method appears to be able to improve the
estimates of litho-layers thickness and conductivity. From the uncertain hydrogeo-
logical data, described by a multidimensional probability density function (PDF),
the most likely parameter values are derived given the information available from
calibrated parameter values in groundwater flow models. The most likely values
are the values at the mode of the multidimensional conditional PDFs. The proposed
method is applied to layer thicknesses and vertical conductivities at litho-class sup-
port. Herewith, the most likely litho-layer thickness and vertical conductivity val-
ues are obtained for the studied aquitard.

In the REGIS database the a priori probability distributions of the vertical con-
ductivity, for a given litho-class, are assumed location independent. However, this
is not a limitation of the proposed method but of the available data. It is not un-
likely that the a priori distribution of the vertical conductivity of a litho-class is
spatially varying. When the spatial variability of the probability distributions is
known, this should be used in the described method. Until know, when applied to
a larger study area, this method can be used to find this spatial variability.

The spatial distributed most likely values of the vertical conductivity per litho-
class are used to create an a posteriori distribution of the parameter. This distri-
bution is compared with the corresponding a priori distribution. The a posteriori
distributions of the two most important litho-classes show much less variability
than the corresponding a priori distributions do. This reduction of uncertainty can
be expected since additional knowledge is added using results from a calibrated
groundwater flow model. Thereby, the obtained results hold for a small study area
and for the modeling scale of the hydrogeological model and the groundwater flow
models, whereas the a priori uncertainty information of REGIS is based on data of
the whole data base and on a smaller scale. So, to be able to update the REGIS con-
ductivity distributions a larger study area has to be processed and a downscaling
method must be applied.

One way the results are evaluated is to show the position of the obtained most
likely values in their a priori cumulative distribution function (CDF). This position
is indicated by the corresponding cumulative probability. The most likely values of
some parameters show a strong systematic deviation from the a priori distribution,
with the majority of the values either lower or higher than the median of the a priori
distribution. In case of a data update, the a posteriori distribution should of course
divert from the a priori distribution, but a strong systematic deviation may indicate
errors, either caused by data errors or a wrong perception about the hydrological
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70 Chapter 3: Obtaining the most likely hydrogeological parameter values

system. The proposed method can thus serve as a tool to guide the discussion
between experts from different domains.

With the described method, the most likely values are derived for each litho-
layer separately, neglecting the thickness of adjacent layers. Obviously, it is not
possible to change the thickness of a layer without affecting the thickness of the
adjacent layers. The present study does not take this into account and only aims
to describe a method to find the most likely combination of layer thickness and
conductivity. A future study should account for all layers of the hydrogeological
model, where the sum of all layer thicknesses is constrained.

It is quite likely that the litho-layer properties of horizontal adjacent grid cells
are correlated. The presented method is applied at one grid cell at a time, so spa-
tial correlation is not explicitly taken into account. Nevertheless, implicitly this
correlation is present in the used data. The PDFs of the layer thicknesses are ob-
tained by kriging interpolation, which has a smoothing effect. The used PDFs of
the conductivities are everywhere the same within one litho-class. Herewith, the
main source of lateral variability is the calibrated parameter field. The hydraulic
response of the groundwater flow model, and the observations, may justify highly
variable calibrated parameter fields. Since we stated that the calibrated values are
considered to be the truth, variability of this parameter should be reflected in the
results. In the results of our calculations, we haven’t discovered parameter vari-
ability on short distance which could be caused by applying the method on single
grid cells instead of taking the spatial correlation into account. Therefore, we think
that neglecting the horizontal correlation is not of great importance to the results.

In the presented method, horizontal connectivity of litho-layers is neglected.
Since litho-layers can have thicknesses at the order of centimeters, it is virtual im-
possible to find any connectivity at a distance between individual observations
(boreholes). When only groundwater flow models are used in the feedback pro-
cedure, and no transport models, the horizontal connectivity of the litho-layers is
of less importance, but especially in transport models it is an important issue. For
now, this subject is left for future research.

The proposed method assigns a PDF to the thickness of every single litho-layer
from the borehole descriptions. In Section 3.3.3 an example is shown where this
yields an unlikely high variance for a thickness observation. When within one
borehole adjacent litho-layers are of the same litho-class, aggregation of these litho-
layers before assigning a variance may give a more appropriate representation of
the uncertainty. This may yield a more realistic uncertainty description of the thick-
ness observations, and an option for future application of this method.

As with the assignment of litho-classes, also the calibrated vertical resistance
of the groundwater flow model is regarded as perfectly known. A valuable ex-
tension to the presented method is to account for uncertainty of the calibration
results. If the calibration method is able to provide probability distributions of the
calibrated parameters, these distributions can be used instead of the deterministic
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values in the presented method. Methods like Monte Carlo simulation can be ap-
plied to draw multiple values from the PDF. Herewith, multiple observations of the
same property are generated, which can be used in the calculations. For a more di-
rect solution additional research is needed. Furthermore, with the implementation
of uncertain calibrated values, results from different calibrated groundwater flow
models in the same area can be compared.

The use of piecewise linear PDFs, instead of parameterized PDFs, makes it possi-
ble to perform the necessary calculations without the burden of deriving intractable
analytical solutions or resort to time-consuming Monte Carlo analysis. Herewith,
many different calculations can be tested with relatively little effort.

149884_lourens_BNW.indd   71 09-03-2021   12:22
73



149884_lourens_BNW.indd   72 09-03-2021   12:22
74



4
Investigating lateral

differentiation of
hydrogeological parameter

values in deposits

Abstract. Determination of the hydraulic properties of deposits of the subsurface is a re-
curring subject. It is even more challenging when sparsely or uncertain data are available.
When hydrogeological models are constructed, uniform parameter values, such as hydraulic
conductivity, are often assigned to deposits of a specific origin and age. It is, however, not
likely that a specific deposit has the same hydraulic conductivity values everywhere. In
the previous chapter, a method is developed to use calibrated subsurface parameters from
a groundwater flow model to improve the parameterization of a hydrogeological model. In
this chapter, that method is applied to an area in the Netherlands to investigate if a lateral
differentiation in the hydrological parameterization of the same deposits can be found.
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74 Chapter 4: Investigating lateral hydrogeological parameter differentiation

KNOWLEDGE about unconsolidated sediments in the subsurface is of great im-
portance to (ground)water management. Usually, the knowledge about the
presence and the properties of these sediments is only available at point

scale (boreholes), or at small areas through derived data like ground penetrating
radar [e.g. Blindow et al., 2007] or seismic data [e.g. Schuck and Lange, 2007]. Ex-
haustive information of the sedimentary material of the entire area of interest, at
the appropriate scale, is seldom available. To fill this gap, geological models are
developed to serve as the basis to analyze, simulate and predict processes in the
subsurface. In sedimentary basins, such models describe the geometry and prop-
erties of geological units. Such units are often described as layers with sediments
of the same origin in time and space, and with similar lithological characteristics.
Hereafter, these layers are called litho-layers, and the sediments are denoted by
litho-class. Typically, the thickness of litho-layers described in geological models is
in the order of centimeters to decimeters or meters. We focus on the processes of
groundwater flow. Subsurface properties of particular importance for groundwater
flow are the hydraulic properties such as hydraulic conductivity and storage capac-
ity. A geological model dedicated to groundwater flow is called a hydrogeological
model. An example of a hydrogeological model is the Dutch national hydrogeo-
logical model REGIS [Vernes et al., 2005; Vernes and van Doorn, 2006]. The rational of
having a national hydrogeological model is its multiple use. Therefore, it is impor-
tant to continuously improve the hydrogeological model. In Chapter 3 a method
is presented to find the most likely parameter values of a hydrogeological model,
given the calibrated values of a groundwater flow model. That method is applied
in this chapter.

The hydraulic properties in the hydrogeological model, such as the horizon-
tal and vertical conductivity, are to a large extent based on core sample analysis,
resulting in a probability density function (PDF) for each property and each litho-
class. These distributions are a part of the REGIS model. Due to the limited number
of data, this PDF is currently independent of the spatial coordinates. However, a
litho-class can be present in an extensive area and spatial differences are likely from
geological point of view. In a groundwater flow model the litho-layers are aggre-
gated to form a limited number of aquifers and aquitards. Therefore, each aquifer
and aquitard may consist of multiple litho-layers. Furthermore, to assign values to
all grid cells of the groundwater flow model the layer properties are interpolated.
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The values of the hydraulic parameters of the aquifers and aquitards in each
grid cell are subject to uncertainty because of the interpolation, the PDF of the litho-
classes, and the aggregation of the litho-layers. In order to increase confidence in
the groundwater flow model, it is usually calibrated against observed groundwa-
ter heads. Basically, this means that the transmissivity of the aquifers and the resis-
tance of aquitards are adjusted to arrive at an acceptable fit with the observed heads
[e.g. Zimmerman et al., 1998; Valstar et al., 2004; Carrera et al., 2005; Hendricks Franssen
et al., 2009; Hoteit et al., 2012]. Since REGIS is a general purpose hydrogeological
model, the calibration of a groundwater flow model has only effect on the derived
hydrogeological model, and not on REGIS it originates from. In Chapter 3 we de-
veloped a feedback procedure to adjust the thickness and the conductivity values
of the litho-layers in the general purpose hydrogeological model, given the cali-
brated value of the aquifer or aquitard of the groundwater flow model. This leads
to different values of the conductivity of the same litho-class in different grid cells.
In this chapter, we analyze the spatial pattern of the adjusted values of the con-
ductivity of the litho-layers. We were able to identify spatially distinct subsets of a
litho-class, with less variation of conductivity inside each subset, thus providing a
better starting point for future use of the hydrogeological model.

In Section 4.1 the used models and the geological context are described. In Sec-
tion 4.2 we first describe the methodology used. Next, in Section 4.3 we present
an application of the method to an area in the Netherlands where a hydrogeologi-
cal model as well as large scale groundwater model was available. Finally in Sec-
tion 4.4 we discuss the results, and the potential applications and draw conclusions.

4.1 Material
4.1.1 Models
The Geological Survey of the Netherlands (TNO-GSN) develops and maintains a
large information system with subsurface data and models. The models include a
Digital Geological Model (DGM) [Gunnink et al., 2013] which describes the geological
units or formations, depth and extent of these units, based on a lithostratigraphical
classification. The units are described up to a depth of about 500 m. Consistent
with this DGM, the hydrogeological model REGIS [Vernes et al., 2005; Vernes and van
Doorn, 2006] is defined. The REGIS model describes the subsurface in terms of high
and low conductivity model layers, the so called hydrogeological units. These units
are based on the (assumed) hydraulic properties of the deposits. The presence or
absence of the units is mainly based on the interpretation of the borehole descrip-
tions and the classification of the units in the DGM. To all distinguished intervals in
the borehole descriptions a litho-class is assigned. These litho-classes are defined
by a combination of the geological formation and the lithological properties of the
deposits, like sand, clay and peat. So a hydrogeological unit contains one or more
litho-classes.

The hydrogeological model REGIS is designed to feed groundwater flow models
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Figure 4.1: Model area of the groundwater flow model (gray). The dots denote the boreholes in the
fourth aquitard of groundwater flow model AZURE. The colors denote the Formation. The dashed line
shows the approximate northern edge of the ice pushed ridge (after Peeters et al. [2016]) of the Saalian
glaciation.

with data for the subsurface description. For each new groundwater flow model,
a dedicated hydrogeological model from the REGIS model is derived which meets
the aim of the new model. Such a derived hydrogeological model contains typi-
cally up to about ten aquifers and aquitards, where REGIS defines over one hundred
hydrogeological units. Therefore, multiple hydrogeological units are aggregated to
form an aquifer or aquitard for each specific groundwater flow model. In case of
calibration of the groundwater flow model, the derived hydrogeological model is
calibrated and not the REGIS model. A method to conduct the feedback from the
calibrated groundwater flow model to the REGIS model is extensively described in
Chapter 3, and is briefly described in Section 4.2. This method is applied using the
calibrated data of the AZURE groundwater flow model [de Lange and Borren, 2014]
to find the most likely conductivities and layer thicknesses of the litho-classes for
each grid cell of the REGIS model. The AZURE model is a groundwater flow model
in the Netherlands. The extent of the model is depicted in Figure 4.1. This model
is in the vertical direction discretized with nine aquifers and eight aquitards. The
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4.1 Material 77

horizontal discretization is 100m × 100m.
In this study, the properties of one aquitard of the groundwater flow model

are evaluated. This aquitard consist mainly of deposits of the last interglacial, the
Eemian.

The models and data of DGM and REGIS are available through the DINO internet
portal [TNO-GSN, 2021]. The data used in this study are not obtained through this
portal but directly from the databases.

4.1.2 Geological setting
The model area of the groundwater flow model AZURE describes a large part of
the Netherlands with multiple model layers. In this study, the proposed method is
applied to one aquitard (aquitard 4) and only a part of the total groundwater flow
model. In Figure 4.1, the AZURE model area is depicted by the gray shaded area,
along with the boreholes in aquitard 4. The deposits in this aquitard are of different
origin, which is depicted by the color of the dots.

The deposits of the Stramproy Formation originate from Belgium rivers and
locally reworked deposits. In the north-west part of its extent also marine sedi-
ments are recognized as part of this formation. Deposition took place from the
Early Pleistocene (Tiglien) until the lower Middle Pleistocene (Cromerien). The de-
posits consist predominantly of medium fine to medium coarse-grained sands, and
less frequently of fine sands and clay or coarse sands [Lang and Weerts, 2003].

The deposits of the Sterksel Formation originate from the River Rhine and the
Meuse. The deposits consists predominantly of moderate to coarse-grained sands,
but also clay and fine sand are present [Westerhoff , 2003]. The majority of the de-
posits with low hydraulic conductivity are assigned to the third aquitard of the
groundwater flow model. Only a few observations are assigned to the fourth aqui-
tard and therewith of low importance to this aquitard.

The deposits of the Urk Formation originate from the River Rhine during the
late Cromerien until the mid Saalian. The majority of this formation consists of
medium-fine to very-coarse sands [Bosch et al., 2003a]. The less frequent deposits,
with lower hydraulic conductivities, are incorporated in the fourth aquitard of the
groundwater flow model.

The deposits of the Kreftenheye Formation originate from the River Rhine dur-
ing the late Saalian until the Early Holocene. The deposits consists predominantly
of medium to very coarse-grained sands. Also fine sands, clay, and sporadically
peat is found [Busschers and Weerts, 2003]. The boreholes which are used in the
fourth aquitard, as denoted in Figure 4.1, belong to a subdivision of the Kreften-
heye Formation, the Twello Member, with a prevailing lithology of fine to coarse
sands and clay.

The sediments of the Eem Formation are of marine origin. Medium fine to very
coarse sand are the prevailing lithology, but clay layers of tenth of meters are also
present [Bosch et al., 2003b]. The current study emphasizes on the deposits of the
Eem formation. The majority of these deposits are found in the Central Depocentre
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78 Chapter 4: Investigating lateral hydrogeological parameter differentiation

[Peeters et al., 2015, 2016] which basin is formed during the Saalian glaciation. The
south side of the basin is bounded by ice pushed ridges. This border is drawn as a
dashed line in Figure 4.1. At the north-east side, the River Rhine entered the Central
Depocentre [de Gans et al., 2000; Busschers et al., 2007], and deposited sediments in
the northern part of the Central Depocentre [Peeters et al., 2016]. The northern and
southern part of the Depocentre are separated by a sill in the base of the Eemian
sediments, this sill reaches a height of about 40m below present sea-level [Long
et al., 2015]. During the Saalian glaciation two deep basins where formed in the
Central Depocentre, the Amsterdam Basin and the Amersfoort Basin (Figure 4.1).
The floors of both basins reach a depth of over one hundred meter below present
sea-level [Zagwijn, 1983; Cleveringa et al., 2000]. The basins were topographically
separated from the sea by sills at a depth of about 35 to 40m below present sea-
level [Zagwijn, 1983; Cleveringa et al., 2000; de Gans et al., 2000; Peeters et al., 2016].
During the late Saalian and the early Eemian, the deposition in the southern part
of the Central Depocentre took mainly place under lake conditions [de Gans et al.,
2000]. After transgression, deposition in this area continued in a lagoonal environ-
ment [de Gans et al., 2000; Peeters et al., 2015]. A sill with a depth of about 25m
below present sea-level separates the two basins [Zagwijn, 1983], which influenced
the infill of both basins. The pollen content of the sediments show that the ma-
rine deposition in the Amersfoort Basin starts later than in the Amsterdam Basin
[Cleveringa et al., 2000]. Also hiatuses in sediments are found in the Amersfoort
locality boreholes, compared to the Amsterdam locality borehole [Cleveringa et al.,
2000; Long et al., 2015], which suggests different sedimentation circumstances of the
Eem Formation sediments in both basins. However, it can not be concluded what
this exactly means for the sediment properties, like hydraulic conductivity, for the
same litho-class in the different basins.

4.2 Methodology
In Chapter 3, a method is developed to find the most likely litho-class properties
within each grid cell of a hydrogeological model. Hereafter, a functional descrip-
tion of this method is given.

A hydrogeological model can, and often does, serve as input data for a ground-
water flow model. Such a hydrogeological model defines model layers, or hydro-
geological units, of high and low hydraulic conductivity. In the Netherlands, a
general purpose hydrogeological model REGIS [Vernes et al., 2005; Vernes and van
Doorn, 2006] is developed. This model serves as a hydrogeological model for mul-
tiple groundwater flow models. However, the number of hydrogeological units in
REGIS, which is over one hundred, is usually too large to be workable in a ground-
water flow model. Therefore, for each individual groundwater flow model a sep-
arate hydrogeological model is derived to meet the needs of this specific ground-
water flow model. So multiple hydrogeological units are aggregated to form the
aquifers and aquitards of the groundwater flow model. This collection of aquifers
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and aquitards is hereafter called the derived hydrogeological model. The param-
eterization of the (derived) hydrogeological model, is a first step in the modeling
process of the groundwater flow model. Usually, the response of this initial version
of the groundwater flow model does not replicate the groundwater observations
accurately enough. Therefore, the groundwater flow model is calibrated, i.e. the
parameterization of the derived hydrogeological model, to improve the quality of
the subsurface parameterization, among other parameters. Much literature is avail-
able about the calibration of groundwater flow models, [e.g. Zimmerman et al., 1998;
Valstar et al., 2004; Carrera et al., 2005; Hendricks Franssen et al., 2009; Hoteit et al.,
2012], but in this study no calibration of the groundwater flow model takes place.
Instead a readily calibrated groundwater flow model is used. With a known con-
nection between the derived hydrogeological model and the REGIS model layers, the
calibrated values can be used to improve the property values, layer thickness (D)
and hydraulic conductivity (K), of each litho-class of the hydrogeological model.
So the knowledge added by the calibration of the groundwater flow model can help
to improve the quality of the hydrogeological model REGIS. An important require-
ment is that the connection between the model layers of the hydrogeological model
and the aquifers and aquitards is known.

The applied method starts at the borehole descriptions in the study area. To each
interval of all borehole descriptions a litho-class identification is assigned. Each in-
terval is also assigned to a specific hydrogeological unit. Herewith, the connection
between all described intervals in the borehole descriptions and the correspond-
ing aquifer or aquitard of the groundwater flow model is known. In the presented
study, only the properties of an aquitard are investigated. Therefore, this method
description will emphasize on the aquitard properties vertical hydraulic conductiv-
ity (K), layer thickness (D), and vertical resistance (C = D/K). Nevertheless, the
method is applicable to aquifers as well. In most deposits, the vertical hydraulic
conductivity (Kv) is different from the horizontal conductivity (Kh). Since in this
study only the properties of an aquitard are discussed, we do not make this distinc-
tion here and only use variable K.

For each litho-class at each borehole location, the total layer thickness within
the processed aquitard is determined. Usually, an aquitard consists of multiple
litho-classes. These thicknesses are the observations at point scale. Subsequently,
the point scale values are interpolated to grid cell average thicknesses. Along with
the interpolation, the uncertainty of this interpolation is assessed. This uncertainty
is described by a probability density function (PDF). To calculate the vertical resis-
tance of a layer, the vertical conductivity is needed as well. Since this value is also
uncertain, it is also described by a PDF. The PDF of the vertical conductance of each
litho-class is obtained from the REGIS information system [Vernes et al., 2005; Vernes
and van Doorn, 2006]. In this information system, for each litho-class such a PDF is
defined.

Within one grid cell, the total vertical resistance of an aquitard can be calculated
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as

C =
n∑

i=1

Ci =
n∑

i=1

Di/Ki, (4.1)

where n is the number of litho-classes within the aquitard. The variables Ci, Di

and Ki are the vertical resistance, the layer thickness and the vertical hydraulic
conductivity of litho-class i, respectively. These variables are all defined as random
variables (RVs). All variables Di and Ki form an 2n-dimensional joint distribution of
C. In this joint distribution, the combination of values of Di and Ki with the highest
probability density, i.e. the mode of the distribution, can be found. If the vertical
resistance cm, as obtained by the calibration of the groundwater flow model, is
assumed to be the true value of C, the mode of the joint distribution can be searched
for, conditional to C = cm. With finding this mode, the most likely values of the
marginal variable Di and Ki are found.

In this study, this method is applied to an aquitard as defined in the AZURE

groundwater flow model [de Lange and Borren, 2014]. After finding the most likely
parameter values for each grid cell for each litho-class, the parameter values of the
hydraulic conductivity K are drawn on a map. From these maps, for some litho-
classes, areas with different ranges of conductivity can be distinguished. The differ-
ences in hydraulic conductivity can indicate differences in the sediments. Although
deposits of the same litho-class are considered to have the same properties, lateral
variation may become distinct with this method. In the next section the results are
discussed.

4.3 Results
The fourth aquitard of the AZURE groundwater flow model is processed to obtain
the most likely parameter values. These parameters include the most likely vertical
hydraulic resistance (C) for each litho-class and, subsequently, the most likely layer
thickness (D) and hydraulic conductivity (K). It is of particular interest or lateral
differences in litho-class properties are present or not.

4.3.1 Vertical conductivity
Each litho-class is a combination of a geological formation and the lithology (clay,
sand, peat, etc.), in total 36 litho-classes with a more or less significant contribu-
tion to aquitard 4 were found in the borehole data. Due to different depositional
processes, different separated groups (formations) of litho-classes are present at
sub-areas, as shown in Figure 4.1.

Figure 4.2 shows the vertical hydraulic resistance of aquitard 4 as used in this
study. This hydraulic resistance is based on the parameterization of the REGIS

hydrogeological model and the subsequent calibration of the groundwater flow
model AZURE. The resistance of 1 day is assigned to the grid cells where the aqui-
tard is absent. In the applied method in this study, this calibrated vertical resistance
is assumed to be the true value for this aquitard. As can be seen, the aquitard does
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Figure 4.2: Calibrated vertical hydraulic resistance of aquitard 4 of the AZURE groundwater flow
model.
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Figure 4.3: Fraction of total resistance explained from the most likely resistance values of the clay
and sandy clay lithoclasses in the aquitard. Only data with corresponding layer thickness greater
than 0.01 m, and resistance greater than 1 day are presented. The header of this picture shows the
included litho-classes.

not have a high vertical resistance everywhere in the model area. Although these
deposits of different formations are treated as one aquitard in the groundwater flow
model, the deposits of different formations do not overlap and can be interpreted
separately.

Seven classes of different lithology are recognized, i.e. clay (k), sandy-clay (kz),
fine sand (zf), mean sand (zm), coarse sand (zg), peat (v) and gravel (g). These
abbreviations are taken from the Dutch terminology, but are maintained to stay
consistent with the REGIS database notations. Although an aquitard is considered,
there are some litho-classes that consist of coarser material (mean sand to gravel)
with atypical hydraulic properties for aquitards. Since these litho-classes are em-
bedded in layers of higher hydraulic resistance, they are modeled as part of the
aquitard. Nevertheless, the litho-classes with lithology mean sand, coarse sand
and gravel do not contribute significantly to the vertical resistance. The most likely
vertical resistance of these three classes, after application of the proposed method,
do have a contribution of less than one percent of the total vertical resistance of the
aquitard. Figure 4.3 shows the sum of the most likely vertical hydraulic resistance
of the clay and sandy-clay lithologies as a fraction of the total aquitard resistance.
It should be noted that the data of the results is only shown for grid cells where
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Figure 4.4: Most likely vertical hydraulic conductivity of the clay deposits of the Eem Formation,
litho-class clay (left) and sandy clay (right).

the total vertical hydraulic resistance is greater than 1 day, and the total most likely
layer thickness is more than 0.05 m, and the thickness of the individual litho-layers
should be more than 0.01 m. As can be seen in Figure 4.3, almost all resistance can
be explained by these two lithologies. At locations with a fractions lower than 1,
other lithologies have a more or less significant contribution to the aquitard resis-
tance. The missing part is almost completely explained by the peat lithology. The
sand and gravel fractions do not have any significant contribution to the hydraulic
resistance.

In Figure 4.4 the most likely vertical hydraulic conductivity of the clay and
sandy-clay lithologies of the Eem Formation are depicted. The two larger separated
areas show a different range of conductivity values in both litho-classes. These ar-
eas happen to coincide with the Amsterdam Basin and the Amersfoort Basin (Fig-
ure 4.1). For the uncalibrated hydraulic resistance of aquitard 4, this difference in
hydraulic conductivity does not appear in the data. So this lateral difference in
most likely parameter values is caused by the calibration results, and this shows
how, through the groundwater model, head observations can inform on the spatial
variability of conductivities within the same formation. The most likely conduc-
tivity values of both basins are depicted as a cumulative frequency distribution in
Figure 4.5 for both, the calibrated and the uncalibrated data. It is clear that for the
uncalibrated case the distributions do not differ much, but for the calibrated case
that the conductivity in the Amersfoort Basin is much lower than in the Amsterdam
Basin.
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Figure 4.5: Frequency distributions of the most likely conductivity values of area I (Amsterdam
Basin) and II (Amersfoort Basin). Pane a): litho-class EE-kz, uncalibrated data, b): litho-class EE-kz,
calibrated data. c): litho-class EE-k, uncalibrated data, d): litho-class EE-k, calibrated data. The CDFs
of REGIS (black dots) are added to the graph for comparison, these graphs show the uncertainty of
the conductivity values of a litho-class. In REGIS the mean values of these distributions are used for
parameterization.
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4.3.2 Layer thickness
Besides the hydraulic conductivity, the most likely layer thickness is obtained. Fig-
ure 4.6 shows the most likely total layer thickness of all litho-classes. This map also
shows the observations with the total layer thickness (circles), and the locations
where the aquitard is absent in the borehole descriptions (+ signs). In the cross
sections in Figures 4.7 and 4.8 for each litho-class the most likely layer thickness is
depicted. Boreholes nearby the cross section are projected on the cross section. The
depicted layer thickness in a borehole for a litho-class is the total layer thickness in
that borehole for that specific litho-class. Which means that the layer thicknesses of
all layers with the same litho-class are summarized to one thickness. So the order of
the litho-classes and the number of described layers is not shown within a borehole.
The black dashed line in the cross sections shows the layer thickness as modeled in
the REGIS hydrogeological model, and as is applied in the AZURE groundwater flow
model. Often, the most likely layer thickness is less than the REGIS layer thickness,
which can be explained by the proximity of zero-thickness boreholes (Figure 4.6,
+ signs) during the interpolation.

4.4 Discussion and conclusions
A method is applied to identify lateral differences in hydraulic conductivity within
deposits of a certain lithology within the the same geological formation (litho-class).
In this study, an aquitard containing deposits of several litho-classes is processed.
The total vertical hydraulic resistance of the aquitard, which is an input variable of
the method, is obtained from a calibrated groundwater flow model. The applied
method searches for the most likely layer thickness and hydraulic conductivity of
deposits of different lithology (litho-class) within an aquitard.

Two litho-classes of the Eem Formation, the clay and the sandy-clay litho-class,
show a difference in the most likely vertical hydraulic conductivity in two distinct
areas. These two areas coincide with two depositional basins of the Eem Formation,
i.e. the Amsterdam Basin and the Amersfoort Basin. From the literature it is known
that the infill of these basins took place under slightly different circumstances and
timing. Both basins were during the infill (partly) separated by sills, which caused
a different sedimentation climate. Comparisons in the literature of the two basins
show that certain layers of deposits are present in the Amsterdam Basin but are
missing in the Amersfoort Basin. So it is likely that these differences in the two
basins cause the differences in most likely hydraulic properties of the two basins.
Nevertheless, a convincing geological explanation for the differences in hydraulic
conductivity of the Eem Formation deposits at the different locations can not be
claimed yet.

The method is also applied using the uncalibrated vertical hydraulic resistance
as input. From this data, no difference in most likely hydraulic conductivity be-
tween the two basins is found. So through the groundwater heads the calibration
of the groundwater flow model adds information to the data which exposes the
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Figure 4.6: Map with total most likely layer thickness and the location of the cross sections. The
circles show the total layer thickness at the borehole locations. The plus signs denote the locations
where aquitard 4 is observed absent. The triangles denote the locations which are projected in the
cross sections.
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Figure 4.7: Cross section with the cumulative most likely layer thickness for each litho-class through
the Amsterdam Basin (A-A’). The dashed line shows the corresponding layer thickness of the REGIS-II
hydrogeological model.

0 5000 10000 15000 20000 25000 30000

0

10

20

30

40

50

60

distance (m)

th
ic

kn
es

s 
(m

)

B B'

B2
6A

02
43

B2
6A

02
47

B2
6B

01
12

B2
6D

00
10

B2
6D

00
42

B2
6D

00
91

B2
6D

00
92

B2
6D

01
06

B2
6G

01
65

B2
6G

02
65

B3
2E

00
13

B3
2E

01
14

thk.ml
EE−zm
EE−zf
EE−v
EE−kz
EE−k
REGIS

Figure 4.8: Cross section with the cumulative most likely layer thickness for each litho-class through
the Amersfoort Basin (B-B’). The dashed line shows the corresponding layer thickness of the REGIS-II
hydrogeological model.
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88 Chapter 4: Investigating lateral hydrogeological parameter differentiation

differences in the hydraulic properties.
The most likely layer thickness for each litho-class is determined too. It appears

that the total most likely layer thickness is in most locations less than the layer
thickness as presented by the REGIS hydrogeological model and that has been used
in the AZURE model. A suggestion may be to adapt the method with the possibility
to use layer thickness of the aquitard, obtained from a independent source, as an
extra constraint.
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5
Improving a hydrogeological

model with a Bayesian
approach

Feedback with full uncertainty

Abstract. In this chapter, a method is presented to use the results of a calibrated ground-
water flow model to estimate updated probability density functions of layer thicknesses and
hydraulic conductivities of the underlying hydrogeological model. To this end, a Bayesian
network of aquitard properties, specifically layer thickness and hydraulic conductivity, is
built and evaluated. Such an aquitard is composed of multiple sub-layers with each their
own parameterization. Since the calculation of the aquitard hydraulic resistance is highly de-
terministic, the Bayesian network mainly consists of deterministic nodes. Probability density
functions of the layer thickness and the hydraulic conductivity are available from previous
studies, and these distributions act as prior knowledge of the network. The aim is to update
these prior distributions using observations of the total aquitard resistance. As observations
calibrated aquitard resistances of a groundwater flow model are used, which can also be sub-
ject to uncertainty, allowing the inclusion of the results of multiple calibrated groundwater
models. All probability density functions are described by piecewise linear functions, which
makes the evaluation of the network independent of the shape of the distributions.
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HYDROGEOLOGICAL MODELS describe properties of the subsurface in a geo-
logical and hydrological context, and are developed to serve as a base for
further research and application. An important application of hydrogeo-

logical models is the hydraulic parameterization of the subsurface for groundwa-
ter flow models. Like all models, hydrogeological models never describe reality
exactly but have, beside conceptual errors, a parameterization which is to some
extent subject to uncertainty. So, when applied in groundwater flow models, the
hydrogeological parameterization is usually calibrated to decrease the uncertainty
and correct errors. In general, calibration of a groundwater flow model implies
improving the hydrogeological model. In The Netherlands, this situation is differ-
ent. The nation wide hydrogeological model REGIS [Vernes et al., 2005; Vernes and
van Doorn, 2006] is developed to serve as a general purpose model. From this REGIS

model, dedicated models are extracted for specific applications, like groundwater
flow models. After calibration, the extracted models are improved, but the REGIS

model is unchanged. In Chapter 3, a method is described which finds the most
likely parameter values (layer thickness and hydraulic conductivity) for the REGIS

model, given a calibrated groundwater flow model. Herewith, an improvement
of the parameterization of the calibrated groundwater flow model can be used to
improve the parameterization of the REGIS model.

A shortcoming of the method of Chapter 3 is that only one source of calibrated
data can be used to improve the REGIS model, which consequently results in only
one most likely parameter value of the REGIS model. This one value is a good ap-
proximation of the update of the REGIS values, but it does not give information
about the uncertainty of this most likely value. Also, in this method it is assumed
that the calibrated values represent the true parameter values. Obviously, also the
calibrated values are subject to uncertainty and it would be better to quantify this
uncertainty and use it in the feedback procedure as well. In addition, in the same
area multiple calibrated models may be developed and it would be beneficial if the
results of multiple calibrated groundwater models could be used to improve pa-
rameterization of REGIS. In this chapter, a method is developed which honors all
these available data and results in full probability density functions of updated hy-
drogeological parameters. To this end, a feedback procedure in a Bayesian context
is proposed which honors prior and posterior uncertainty of the model parame-
ters. In addition, the application of uncertain observations in a Bayesian Network
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is described.
In the literature, probability theory is widely used and described. In different

areas of research a variety of notations and styles are used, but they often describe
the same phenomena. In this chapter, applications and ideas are drawn from the
variety of literature types. To see the connection between the different styles, an
overview is given in Appendix C.

The REGIS model has a relatively high vertical resolution, where over one hun-
dred hydrogeological units are defined. This resolution is usually too high to be
used in groundwater flow models. Moreover, since the REGIS model is a nation
wide model, not all defined hydrogeological units are present in all areas. There-
fore, multiple hydrogeological units of REGIS have to be aggregated to one layer
(aquifer or aquitard) to be applicable in a groundwater flow model. A hydrogeo-
logical unit may consist of multiple lithologies, like sandy clay, fine sand or peat.
Layers of these lithologies of a certain formation or member (part of a formation)
are hereafter called litho-layers. The calibration of the groundwater flow models
is performed at the level of aquifers and aquitards. So for the feedback procedure,
one calibrated value of the groundwater flow model represents multiple hydro-
geological units of the REGIS hydrogeological model. Since all parameters (layer
thickness and hydraulic conductivity) of the hydrogeological units are described
by probability density functions (Chapter 3), this feedback problem can be ade-
quately described using hierarchical Bayesian models or Bayesian networks [e.g.
Gelman et al., 2014, Ch. 5; Bishop, 2006, Ch. 8]. Such Bayesian models find wide ap-
plication in various fields of study. In this chapter, Bayesian models are applied in
the feed back procedure of the calibrated data to the hydrogeological model REGIS.

Although Bayesian models may seem straight forward, their application to the
above proposed feed back procedure is far from straightforward. Firstly, we have
probability density functions (PDFs) of the litho-layer thicknesses and the hydraulic
conductivities, but these PDFs don’t represent stochastic models in the Bayesian con-
text. Therefore, we treat these PDFs as prior predictive distributions and decompose
these into full stochastic models. This decomposition is performed by defining a
location-scale parameter model with suitable prior distributions. Secondly, the cal-
culation of litho-layer vertical resistance (quotient of the layer thickness and the
conductivity) and the calculation of the total aquitard vertical resistance (sum of
the layer resistances) are deterministic operations from a Bayesian point of view
[Cobb and Shenoy, 2005, 2006; Cinicioglu and Shenoy, 2009], nevertheless these vari-
ables represent random variables. Because of the deterministic variables, a joint
distribution of all parameters can not be formulated. Since we only have observa-
tions of the aquitard resistance, these can not directly be applied to the stochastic
model. In the Bayesian belief literature, methods are described to solve this prob-
lem [Cobb and Shenoy, 2006; Cinicioglu and Shenoy, 2009; Shenoy and West, 2011; Cobb
and Shenoy, 2017]. In this chapter we use and adapt such methods to make use
of the observations of deterministic variables. Thirdly, observations are to some
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extent uncertain but are usually treated as exact. In this chapter, we describe a
method to use uncertain observations in the inference procedure. Finally, calcula-
tion of the posterior distributions of the Bayesian model includes marginalization
of the joint distribution function. Only a limited number of distributions do have
a closed form solution for this marginalization. Performing marginalization for
other distributions need to reside to numerical solutions of the integrals. In the lit-
erature, approximations of the distributions with exponential functions [Rumı́ and
Salmerón, 2007; Langseth et al., 2009] or polynomials [Shenoy and West, 2011; Cobb
and Shenoy, 2017] or discretization of the continuous functions [Kozlov and Koller,
1997; Neil et al., 2012] are applied. As in the previous chapters, here the continu-
ous distributions are approximated by piecewise linear functions. The application
of piecewise linear PDFs makes the calculations more tractable without the need of
Monte Carlo simulations.

5.1 Methodology
In this section, a method is described to update the prior information of an aquitard
of a hydrogeological model (in our case REGIS), given additional information. Usu-
ally, a hydrogeological model contains aquitards and aquifers, but for conciseness
the method is only explained with an aquitard as an example. Nevertheless, the
method applies for aquifers as well. Only the probability density functions (PDFs)
of the hydraulic conductivity and the layer thickness of each litho-class are used
to define the hydrogeological model, which together make up the aquitard vertical
hydraulic resistance, and an observation of the total vertical resistance. The prob-
lem is approached by converting these data into a Bayesian model, and update the
prior distributions using additional data.

In this chapter, all PDFs are denoted by the function f(·) without any subscript.
When it is not clear from the arguments which variable the function describes, a
subscript will be added.

5.1.1 Overview
The described methodology in this chapter is split up into a few steps. As a first step
(Section 5.1.2), a Bayesian model (Figure 5.1 step 1, Figure 5.2) is defined which de-
scribes the dependencies between the hydraulic conductivities and the layer thick-
nesses on the one hand and the total aquitard resistance on the other hand.

The probability distributions of conductivities and layer thicknesses are known,
but they need to be turned into a stochastic model by defining their respective
marginal distributions (Figure 5.1 step 2). Since no parameterized PDFs are used,
a method to perform this task is developed in Section 5.1.3.

A Bayesian graph represents a joint probability distribution and is defined for
making inferences given evidence or observations. This joint distribution and the
method of inference is defined in Section 5.1.4 (Figure 5.3). The Bayesian graph
contains deterministic variables, and all distributions are described by piecewise
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Figure 5.1: Overview of the main steps in the methodology. Step (1) represents the setup of the
Bayesian Network (Section 5.1.2). Step (2) shows the expansion of the marginal variables of con-
ductivity (K) and layer thickness (D) into a stochastic model (Section 5.1.3). Step (3) shows the
marginalization of the nuisance parameters in favor of the update of marginal variable PDn (Sec-
tion 5.1.4). Step (4), the red arrow shows the path of the information of an observation to obtain the
likelihood function (Section 5.1.5), and, in this example, the posterior of PDn .
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PK1 SK1
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PD1 SD1
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Di
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Dn

Cn

C

... ...

stochastic node

deterministic node

observed node

Figure 5.2: Bayesian graph of the described problem. The nodes with a single border are stochastic
nodes, the nodes with a double border are deterministic nodes. The gray shaded node contains the
observed variable.

linear PDFs. This calls for methods to handle these kinds of variables. Therefore,
the implementation of deterministic variables in a joint distribution, the marginal-
ization (Figure 5.1 step 3, Figure 5.4) of nuisance variables (variables temporarily
beyond interest), and the definition of the likelihood functions are described.

Since the likelihood functions are also described by piecewise linear functions,
an adequate discretization of these functions is important. The derivation of thereof
is described in Section 5.1.5.

Usually, observations in a Bayesian inference are used as if they are determinis-
tic. In case of multiple observations it may be beneficial to weigh them differently.
In Section 5.1.6, a method is described to calculate the likelihood function with ob-
servations which are defined as random variables (Figure 5.1 step 4).

5.1.2 Bayesian network
A Bayesian network or Bayesian graph is a useful common graphical tool to present
a probability problem, and a structured way to solve an inference problem. Such a
network is drawn as a directed acyclic graph (DAG) [Pearl, 1986; Bishop, 2006, p. 362],
where the relations between nodes are denoted by edges (lines). Each node repre-
sents a random variable (RV), and each edge the relation, or conditional depen-
dency, between two RVs. In this context, directed and acyclic means that a strict
hierarchical ordering exists between the nodes, which ordering is denoted by arcs
(arrows) between the nodes. Hence, a path from any node in the network, follow-
ing the arcs, will never end in the same node. This ordering of the nodes is a typical
feature of a Bayesian network, in contrast to other graphs.

The inference problem in this chapter is finding the posterior distributions of the
hydraulic conductivity and layer thickness of litho-layers, given an observation of
the total vertical resistance of an aquitard. In Figure 5.2 this problem is depicted as
a Bayesian network. In this graph, all nodes are depicted as circles, and the depen-
dencies between the nodes by arcs. Herein, a parent of a node is the node with an
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arrow pointing to that node. For instance, in Figure 5.2 the RVs PKi
(location param-

eter or mean) and SKi (scale parameter or standard deviation) are the parents of RV

Ki (hydraulic conductivity). Similarly, a child node is a node which is pointed to by
another node. Thus Ki is a child node of PKi

and SKi
. This network in Figure 5.2

consists of several types of nodes which all represent a random variable with an
accompanying probability distribution. The single bordered circles define stochas-
tic nodes, and the double bordered circles deterministic nodes. The definition of a
deterministic node or variable is that it is completely defined by its parents without
any additional uncertainty [Shachter, 1988; Cobb and Shenoy, 2005, 2006; Cinicioglu
and Shenoy, 2009; Cobb and Shenoy, 2017]. Nevertheless, it is still a random variable.
An example of a deterministic variable is the sum of two RVs (the parents). This
sum yields a deterministic RV with a positive variance. In other words, if the values
of the parents are known, the sum is also exactly known and has zero variance.
From this definition, we may conclude that a node without parents (a so called leaf
node) always is stochastic, as long as it is not a degenerate random variable (an RV

with zero variance). Consequently, when integrating out a leaf node into a new leaf
node, the result will always be a stochastic node. In the literature, the difference
between a stochastic and deterministic variable is quite strict. In the next section
(Section 5.1.4), we show that, when making some knowledge explicit, a stochastic
variable may easily be converted into a deterministic variable.

In Figure 5.2, the node of variable C is shaded, which means that this variable
is observed. This node has no descendants (no child nodes) and is usually called
the root node. The main goal of the Bayesian inference is to propagate the informa-
tion of these observations through the network to update the distributions of the
leaf nodes. In the current study, no direct observations of variable C are available,
instead calibrated values of a groundwater flow model are used.

The top row of Figure 5.2 contains the parameters (S. and P.) of the stochastic
model. The RVs of these parameters define the prior distributions of the model. The
second row contains the parameterized distributions (Di and Ki). Initially, these
distributions represent the prior predictive distributions of the layer thickness Di

and the hydraulic conductivity Ki. The other nodes, denoted by a double border,
are deterministic nodes. These nodes are the result of an arithmetic operation on
their respective parent variables. The variable C, the total vertical hydraulic re-
sistance, is defined as C =

∑n
i=1 Di/Ki. The observations of node C are denoted

by cm.
A problem of the deterministic nodes in such a network is that the joint distri-

bution does not exist [Cobb and Shenoy, 2005, 2006; Cinicioglu and Shenoy, 2009], and
hence the likelihood function, given cm, can strictly spoken not be defined. Only the
likelihood functions of the RVs Di and Ki can be defined, but of these variables no
observations are available. In Section 5.1.4 a solution to this problem is described.
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96 Chapter 5: Improving a hydrogeological model with a Bayesian approach

5.1.3 Reverse model building
The aim of a Bayesian analysis is to find the most likely distribution, or the param-
eters of this distribution, of an observable but unknown variable. Bayesian data
analysis usually starts with the definition of a full probability model for an observ-
able variable. Such a model consists of a parameterized probability density func-
tion (PDF), of a family of density functions, which can describe the uncertainty of an
observable quantity. Since only the family of distributions is assumed to be known,
and not the parameter values itself, these parameters are described as random vari-
ables as well following marginal distributions. These marginal distributions also
have an assumed shape. All these distributions together form a joint density func-
tion. Integration of this model over the prior marginal distributions yields the so
called prior predictive distribution of the observable quantity.

In this chapter, this step of the Bayesian inference is reversed. In our study, we
have probability distributions available of the hydraulic conductivity and the layer
thicknesses of each litho-class, but no full stochastic model of these variables. These
distributions are regarded as the prior predictive distributions of their respective
variables. To arrive at a full stochastic model, each prior predictive distribution is
decomposed into a stochastic model with PDFs of the marginal distributions of the
parameters. This does not necessarily yield any standard distribution for the model
or the parameters.

In this section, the method is described as a general method. Therefore, the used
symbols do not coincide with the variables of the overall problem described in this
chapter. Hereafter, the variable Y represents the prior predictive distribution, and
can be read as either Di or Ki, which are defined in Section 5.1.2.

Data model definition
Let Y be a random variable (RV), with y being the observed data, with prior predic-
tive distribution f(y), and let θ be a vector of parameters of the data model fY (y|θ).
The data model also is the likelihood [Andreon and Weaver, 2015, p. 22], and also
called data distribution or sampling distribution [Gelman et al., 2014, p. 6]. The vec-
tor θ is of size n with n ≥ 1. In a Bayesian context, the parameters θ are uncertain,
which uncertainty is described by the probability density function (PDF) f(θ). The
PDF f(θ) is the prior distribution of θ. As mentioned above, a Bayesian analysis usu-
ally starts with the definition of f(θ) and fY (y|θ). Subsequently, the prior predictive
distribution f(y) is obtained by integrating θ out, which writes

f(y) =

∫

θ

fY (y|θ)f(θ) dθ. (5.1)

Here, this part is reversed. It is assumed that the prior predictive distribution
f(y) is known. To define the data model fY (y|θ), an unknown density function f(x)

is defined. Instead of defining f(x) as a function parameterized by θ, a transforma-
tion function is defined which describes the relation between the variables x, θ and
y. The PDF of X is called the base function of the data model [Kroese et al., 2011,
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p. 48]. The transformation function is defined as

y = gx(x, θ), (5.2)

with gx(·) being a strictly monotone function, with respect to x, within the domain
of its parameters θ and x. For the problem at hand, function gx(·) yields the same
result whether it is strictly decreasing or strictly increasing. Hereafter, the trans-
formation function is assumed to be strictly increasing. Equivalently, the inverse
function x = gy(y, θ) is defined, which must exist. Applying the change of vari-
ables [e.g. Held and Bové, 2013, p. 321], the data model can be defined as

fY (y|θ) =
f(x)

|g′x(x, θ)|
= fX(gy(y, θ))|g′y(y, θ)|, (5.3)

where g′x(x, θ) is the first derivative of gx(x, θ) with respect to x, and g′y(y, θ) is the
first derivative of gy(y, θ) with respect to y. The prior predictive distribution of
Equation (5.1) may now be written as

f(y) =

∫

θ

fX(gy(y, θ))|g′y(y, θ)|f(θ) dθ. (5.4)

Since we stated that the gx(·) is strictly increasing, both derivatives g′x(·) and g′y(·)
have positive values. So the absolute bars in Equation (5.3) can be omitted in Equa-
tion (5.4).

Still, only the prior predictive distribution f(y) is known and not the PDFs of X
and θ. In the next section, an iterative method is explained to decompose the PDF

of Y into the distributions of the data model, given a transformation function.

Transformation and marginalization
Calculation of marginal distributions of the probability model is an important part
of Bayesian modeling. This requires integration over these parameters, but the so-
lutions of these integrals are not always easily achieved. In the former section, the
use of a base function f(x) is proposed, combined with transformation function
gx(·). In this study, we have chosen for a location-scale transformation function
[Kroese et al., 2011, p. 47] with location parameter (θ1) and scale parameter (θ2),
which are related to the mean and standard deviation of the distribution, respec-
tively. Since f(x) is not parameterized by θ, the function f(x) has a fixed shape.
This is contrary to the usual definition of a location-scale model, where f(x) is
parameterized by θ. Therefore, the used model will hereafter be called a location-
scale-shape model. So the transformation function writes

y = gx(x, θ) = θ1 + θ2x, (5.5)

with its first derivative with respect to x being g′x(x, θ) = θ2. This transformation
function describes the deterministic relation between the variables, but the same
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expression can also be used to describe a combination of the respective random
variables (RVs) as

Y = Θ1 +Θ2X, (5.6)

where Θ1 and Θ2 are the RVs describing the uncertainty of θ1 and θ2, respectively.
The RVs Θ1, Θ2 and X are defined on their respective finite domains [θmin

1 , θmax
1 ],

[θmin
2 , θmax

2 ], and [xmin, xmax]. The requirement for finite domains is caused by the
piecewise linear description of all PDFs. Variable Y is known, having any arbitrary
proper probability density function. The variables Θ1, Θ2, and X have to be deter-
mined by a decomposition of Y into these three variables. Since Y and X are not
independent, the calculation of X , given Θ1 and Θ2, is not straight forward and
is therefore achieved by an iterative Monte Carlo algorithm. Details of the appli-
cation of this algorithm are found in Section 5.2.1. Equation (5.6) is split into two
equations

Y = Θ1 + U and U = Θ2X. (5.7)

First, initial guesses for the distributions of Θ1 and U are made, Θ0
1 and U0, respec-

tively. Herewith, the calculation Ŷ = Θ0
1+U0 is performed. Subsequently, the ratio

fY (y)/fŶ (y) is used to modify the PDF of U0. This is iterated until the PDF of Ŷ has,
to some rate, converged to the PDF of Y . The result is a new guess for U0

Ũ = U0 → Y ≈ Θ0
1 + Ũ → U1 = Ũ . (5.8)

Second, initial guesses for the distributions of Θ2 and X are made, Θ0
2 and X0,

respectively. This yields in an equivalent way updated PDFs of Θ2 and X as

Θ̃2 = Θ0
2 → U1 ≈ Θ̃2X

0 → Θ1
2 = Θ̃2, (5.9)

and
X̃ = X0 → U1 ≈ Θ1

2X̃ → X1 = X̃. (5.10)

Finally, Θ1 is estimated again with a fixed value of U and Y as

Θ̃1 = Θ0
1, U2 = Θ1

2X
1 → Y ≈ Θ̃1 + U2 → Θ1

1 = Θ̃1. (5.11)

In this algorithm, it is an advantage to describe all involved PDFs by piecewise
linear functions. The modification of the PDFs during the iterative process will most
probably never yield a distribution of some standard distribution family. There-
fore, no standard (analytical) solutions for the binary operations on the random
variables, like summation and multiplication, are available. By using piecewise
linear approximations of the PDFs, these calculations can be performed regardless
of the shape of the functions.

5.1.4 Inference in the Bayesian Network
As mentioned before, in a Bayesian inference an important aim is to find the pos-
terior distributions of the parameters of a stochastic model given the observations.
In this section, the inference of the posterior distributions from a stochastic model
with respect to observations at a deterministic node is described.

149884_lourens_BNW.indd   98 09-03-2021   12:22
100



5.1 Methodology 99

Joint distribution
In Figure 5.2 a Bayesian network with stochastic and deterministic nodes is de-
picted, showing the problem at hand in this chapter. Each node represents a ran-
dom variable (RV). The variables of interest are the layer thickness Di and the hy-
draulic conductivity Ki. These variables are described by a parameterized proba-
bility density function (PDF) with location parameters P. and scale parameters S..
These parameters are uncertain too and are described by their respective PDFs. The
network of Figure 5.2 is used to derive the posterior distributions of the parameters
P. and S., given an observation of C.

First, the joint distributions are defined. The presented network contains sto-
chastic and deterministic nodes. Unfortunately, a joint PDF including deterministic
nodes can not be defined [Cobb and Shenoy, 2005, 2006; Cinicioglu and Shenoy, 2009].
Therefore, we first define the joint PDF of the stochastic nodes and implement the
deterministic relations thereafter. For conciseness and readability, the parameters
of the distributions of Di and Ki are defined as θdi = {pdi , sdi} and θki = {pki , ski},
respectively. Subsequently, the set of all parameters of Ci is θi = {θdi

, θki
}, and

the set of all parameters of the network is θ = {θ1, . . . , θn}, with n being the num-
ber of litho-classes. The conditional joint distributions of the stochastic nodes, the
layer thickness Di and conductivity Ki, with their respective parameters θdi

and
θki

, write

f(di, θdi) = f(di|θdi)f(θdi) (5.12)

f(ki, θki
) = f(ki|θki

)f(θki
). (5.13)

The joint PDF of all the stochastic variables in the network writes

f(d, k, θ) = f(d, k|θ)f(θ) =
n∏

i=1

f(di|θdi
)f(ki|θki

)f(θki
)f(θdi

), (5.14)

with d = {d1, . . . , dn} and k = {k1, . . . , kn}. All variables Di and Ki and their
respective location and scale parameters are assumed to be mutually independent.

In this study, we aim to decrease the uncertainty of the variables Di and Ki

by decreasing their parameter uncertainties (θ). This is conducted by adopting the
Bayesian approach. According to Bayes’ theorem, the posterior distribution of the
parameters θ writes

f(θ|d, k) = f(θ, d, k)∫
f(θ, d, k) dθ

=
f(d, k|θ)f(θ)

f(d, k)
, (5.15)

with d and k observed. Unfortunately, in the problem at hand we do not have ob-
servations of d and k. Moreover, if we had observations of each layer thickness
and conductivity, it would not have been necessary to define the joint distribution
of all layers, but only the distributions for each variable Di or Ki. Here, only an
observation of the total vertical resistance C = cm is available. But C is a deter-
ministic variable and its distribution is no part of the joint PDF (the numerator of
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Figure 5.3: Bayesian graph with the models of the nodes Ki and Di redefined compared to Figure 5.2.
Only the marginal nodes are now stochastic, all other nodes are deterministic.

Equation (5.15)). Thereby, making inference for 4n parameters, which is the size
of θ, may be intractable. Therefore, the Bayesian network has to be reorganized to
achieve a workable expression of the equations, and it should be able to implement
the deterministic dependencies.

Deterministic variables
As said before, a joint PDF including deterministic nodes can not be defined [Cobb
and Shenoy, 2005, 2006; Cinicioglu and Shenoy, 2009]. Nevertheless, methods are
available to handle Bayesian networks with deterministic variables.

In Figure 5.3, the variables Ki and Di are redefined compared to Figure 5.2. In
this figure, the models of Ki and Di are expanded into a location-scale-shape model
according to the method as described in Section 5.1.3. Herein is X. a variable which
describes the shape or family of the corresponding distribution, and are Ki and Di

deterministically defined as Ki = PKi
+ SKi

XKi
and Di = PDi

+ SDi
XDi

, respec-
tively. The PDF of X is called the base function [Kroese et al., 2011, p. 48]. By making
information of Ki and Di explicit through variables X., these variables are now con-
verted from stochastic into deterministic, although the joint distribution functions
of these variables do not change. So, it can be seen that the distinction between
deterministic and stochastic variables in a Bayesian network is not necessarily very
strict.

Still, the deterministic nodes are not included in the joint distribution. To cir-
cumvent this problem, the deterministic nodes can be described by Dirac delta-
functions for continuous distributions [Cinicioglu and Shenoy, 2009] or indicator
functions for discrete distributions [Cobb and Shenoy, 2006]. In this study, the dis-
tributions are assumed to be continuous. In this application of the Dirac delta-
function (δ(·)), the function value is 1 when its argument is 0, otherwise the func-
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5.1 Methodology 101

tion value is 0. When integrating this function over the interval (−∞,∞) the result
is 1. The integral function of the Dirac delta-function is often denoted as the Heav-
iside function. With these definitions, the Dirac delta-function acts as a probability
mass functions (PMF), with all its mass located at domain value 0.

Before writing the joint distribution of the complete network, including the
deterministic relations, the deterministic relations of the network and the condi-
tional distributions with the corresponding Dirac delta-functions have to be de-
fined. These write

c = cm =
∑

ci → f(c|c1, ..., cn) = δ(c−∑
ci)

ci = di/ki → f(ci|di, ki) = δ(ci − di/ki)

di = pDi
+ uDi

→ f(di|pDi
, uDi

) = δ(di − (pDi
+ uDi

))

uDi
= sDi

xDi
→ f(uDi

|sDi
, xDi

) = δ(uDi
− sDi

xDi
)

ki = pKi + uKi → f(ki|pKi , uKi) = δ(ki − (pKi + uKi))

uKi
= sKi

xKi
→ f(uKi

|sKi
, xKi

) = δ(uKi
− sKi

xKi
).

(5.16)

Herewith, Equation (5.14) can be rewritten including the functions of these new
variables. For readability φ is defined as the set of marginal distributions, with φ =

{φ1, . . . , φn}, φi = {φKi
, φDi

}, φKi
= {pKi

, sKi
, xKi

}, and φDi
= {pDi

, sDi
, xDi

}.
Herewith, the equation of the Bayesian network writes

f(c, ci, ki, di, uKi , uDi , φi; i = 1, . . . , n) =

f(c|c1, ..., cn)
n∏

i=1

f(ci|di, ki)f(ki|pKi , uKi)f(di|pDi , uDi)

f(uKi
|sKi

, xKi
)f(uDi

|sDi
, xDi

)f(φi),

(5.17)

or

f(c, ci, ki, di, uKi
, uDi

, φi; i = 1, . . . , n) =

δ(c−∑
ci)

n∏

i=1

δ(ci − di/ki)δ(ki − (pKi
+ uKi

))δ(di − (pDi
+ uDi

))

δ(uKi
− sKi

xKi
)δ(uDi

− sDi
xDi

)f(φi),

(5.18)

with only the functions of the marginal distributions pertaining to stochastic vari-
ables. Naturally, this increases the size of the expression, whereas the size should
decrease to make inferences feasible. Decreasing the size of the expression can be
done when making inference of only a limited number of variables at a time. A
standard way of integrating out a deterministic node from a joint distribution of a
deterministic node and stochastic nodes [Khuri, 2004; Cinicioglu and Shenoy, 2009] is

f(y) =

∫
δ(y − gx(x))f(x) dx =

∫
δ(gy(y)− x)f(x) dx

=

∣∣∣∣
dgy(y)

dy

∣∣∣∣ f(gy(y)),
(5.19)

149884_lourens_BNW.indd   101 09-03-2021   12:22
103



102 Chapter 5: Improving a hydrogeological model with a Bayesian approach

with the deterministic relations y = gx(x), x = gy(y) and z = hx(x) and x = hz(z),
where the functions g and h must exist and gy is differentiable. In this expression
f(x) may represent a joint distribution with x of size ≥ 1. This integration is an
application of a change of variables [e.g. Held and Bové, 2013, p. 321], and is hereafter
applied in the marginalization of the deterministic variables.

Integrating out, or marginalization, of the nodes to which currently no inference
is made, is discussed in the next section.

Marginalization and Likelihood
When making inference in a Bayesian network, one may be not interested in an up-
date of all (marginal) distributions but only in a limited number, which may yield
a tractable formulation of the problem. On the other hand, when one is interested
in an update of all marginal distributions, the complete joint distribution is often
too large to make this inference at once. In such cases, the variables which are,
temporarily, of no interest are marginalized or integrated out.

In Figure 5.2 the total graph of the problem at hand is shown, and in Figure 5.3
a redefinition of the nodes Ki and Di is depicted. This graph contains 6n (n being
the number of litho-classes) marginal distributions, which is too many to update
all these distributions at once, given an observation of C. The theory allows to
perform the inference for one marginal distribution at the time. If the inference is
performed for one variable, say variable ϕ with ϕ ∈ {PKi , SKi , XKi , PDi , SDi , XDi}
and i ∈ {1, . . . , n}, then the calculation of the posterior distributions becomes
tractable. Herewith, the joint distribution writes f(c, ϕ) = f(c|ϕ)f(ϕ) = f(ϕ|c)f(c),
and the desired posterior distribution of ϕ writes as Bayes’ Theorem

f(ϕ|c) = f(c|ϕ)f(ϕ)
f(c)

. (5.20)

In this expression the likelihood function f(c|ϕ) is unknown and has to be derived
by marginalization. Consecutively, the prior distribution f(ϕ) can be updated to
the posterior distribution f(ϕ|c), which is the aim of the inference.

Since here all PDFs are described by piecewise linear functions, the marginaliza-
tion in the direction of the arrows over the deterministic nodes is easily performed,
regardless of the shape of the PDFs (see Chapter 2). If we are, for the moment, only
interested in the posterior distributions of litho-class i, all distributions of the other
litho-classes can be marginalized out by applying arithmetic operations on the RVs

of the other litho-classes. This can be written as

CJ =
∑

j∈J

(PDj + SDjXDj )/(PKj + SKjXKj ), (5.21)

with J being the set of all indices excluded index i, thus J = {1, . . . , n} \ {i}. After
this operation, CJ is the sum of all vertical resistances of litho-classes j with j ∈ J .
The node CJ contains now a marginal distribution and is therefore a stochastic
node now. The result of this marginalization is shown in Figure 5.4a. The variable
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Figure 5.4: Figure a) shows the same graph as Figure 5.3 but with the variables of all litho-classes,
except class i, marginalized out into variable CJ . Figure b) shows further marginalization of the
marginal nodes of Ci, except variable of interest PDi .

Ci has still six marginal distributions. If we pick one of these variables, e.g. the
location parameter PDi

, further simple marginalization (applying arithmetic oper-
ations on piecewise linear PDFs) yields Figure 5.4b. After these operations, Eq. 5.18
is reduced to

f(c, cJ , ci, ki, di, uDi
, pDi

) =δ(c− (cJ + ci))f(cJ)δ(ci − di/ki)f(ki)

δ(di − (pDi + uDi))f(uDi)f(pDi)

=f(c|ci, cJ)f(cJ)f(ci|di, ki)f(ki)
f(di|pDi

, uDi
)f(uDi

)f(pDi
),

(5.22)

which also may be written as Bayes’ theorem in Equation (5.20) as

f(pDi
, φ|c) = f(c|pDi

, φ)f(pDi
)

f(c)
, (5.23)

with φ = {cJ , ci, ki, di, uDi} being the variables to be integrated out. This writes in
short ∫

φ

f(pDi
, φ|c) dφ = f(pDi

|c)

=
f(pDi)

∫
φ
f(c|pDi , φ) dφ

f(c)

=
f(pDi

)f(c|pDi
)

f(c)
,

(5.24)
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104 Chapter 5: Improving a hydrogeological model with a Bayesian approach

with the to be acquired likelihood function

f(c|pDi
) =

∫

φ

f(c|pDi
, φ) dφ

=

∫

φ

δ(c− (cJ + ci))f(cJ)δ(ci − di/ki)f(ki)

δ(di − (pDi + uDi))f(uDi) dφ.

(5.25)

At this point, arc-reversal [Shachter, 1986; Shachter, 1988; Cinicioglu and Shenoy,
2009; Kjærulff and Madsen, 2012, p. 56,116] could be an option for further inference.
The arcs (Ci, C), (Di, Ci) and (Di, PDi) can be reversed to find the posterior distri-
bution of PDi

. However, the required calculations to achieve this are more compli-
cated then the forward deterministic calculations with piecewise linear PDFs. There-
fore, no arc-reversal is used hereafter but a method is applied in which the order of
calculations is not changed.

The integration of Equation (5.25) can be written as a sequence of binary opera-
tions on RVs as

C = CJ + (UDi + pDi)/Ki, (5.26)

where pDi has a deterministic value and the other variables are RVs. The PDF of C is
now equal to the likelihood function f(c|pDi

) for the given value of pDi
. The same

result is achieved by applying the method of Equation (5.19) to Equation (5.25)
which yields

f(c|pDi) =

∫∫

ci,cJ

δ(c− (cJ + ci))f(cJ)

∫∫

di,ki

δ(ci − di/ki)f(ki)

∫

uDi

δ(di − (pDi
+ uDi

))f(uDi
) duDi

dki ddi dcJ dci.
(5.27)

Subsequent integration yields integrals which are equivalent to the binary arith-
metic operations on the RVs. The integral of Di = UDi

+ pDi
writes

f(di|pDi
) =

∫

uDi

δ(di − (pDi
+ uDi

))f(uDi
) duDi

= fUDi
(di − pDi

).

(5.28)

With this result substituted in Equation (5.27), the integral of Ci = Di/Ki writes

f(ci|pDi
) =

∫∫

di,ki

δ(ci − di/ki)f(ki)f(di|pDi
) dki ddi

=

∫

di

∣∣∣∣
di
c2i

∣∣∣∣ fKi
(di/ci)f(di|pDi

) ddi

=

∫

di

f(ci|di)f(di|pDi
) ddi.

(5.29)
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Subsequent substitution in Equation (5.27) yields the integral of C = CJ +Ci which
integrates as

f(c|pDi) =

∫

ci

fCJ
(c− ci)f(ci|pDi) dci

=

∫

ci

f(c|ci)f(ci|pDi) dci.

(5.30)

If the function is evaluated for multiple values of pDi , the likelihood function
for PDi

given observations of C can be approximated as a piecewise linear function.
The choice of an appropriate discretization of pDi

is described in the next section.

5.1.5 Likelihood function discretization optimization
If parameterized likelihood functions are used then the shape of the function is
analytically defined, and for every value in the domain of the function the likeli-
hood is known. In the current application, the likelihood functions are numerically
described by piecewise linear functions. A challenging task herein is finding an ad-
equate description of the function, especially when the majority of the probability
resides in a small area of its domain [Kozlov and Koller, 1997; Neil et al., 2007; Mar-
quez et al., 2010] or when a good approximation of the tails of the distribution is
required [Zhu and Collette, 2015]. This problem is equivalent to finding an optimal
discretization of the results of the calculations with PL-PDFs, as described in Sec-
tion 2.1.2. There, the calculations are started with three discretization points, and
at each point the probability density and the cumulative probability are calculated.
Then, between two adjacent discretization points (bin) with the largest discrepancy
between the calculated cumulative probability and the probability derived from
the linearized probability densities, a new discretization point is added. This is re-
peated until at each bin the discrepancy is acceptable and an adequate number of
discretization points has been calculated.

In case of the likelihood functions this strategy is not applicable, since only one
value of a marginal distribution is used, instead of the whole marginal distribution,
for the calculation of the likelihood of that specific conditioning marginal value.
Therefore, the cumulative probability can not be calculated together with the like-
lihood density. Nevertheless, it is possible to calculate the likelihood density and
its first derivative with respect to the conditioning marginal value. If the discretiza-
tion of the piecewise linear likelihood function is adequate then the integral of the
derivatives at the same discretization should show a good approximation of the
likelihood function. This can be calculated for each bin of the discretized function.
At bins with a large discrepancy between the two functions the discretization has
to be refined.

In fact, a likelihood function is not a PDF since the function not necessarily inte-
grates to one. Therefore, instead of probability density and cumulative probability
these values will be denoted by likelihood density and cumulative likelihood, re-
spectively.
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106 Chapter 5: Improving a hydrogeological model with a Bayesian approach

Derivative of the likelihood function
As stated above, for the optimization of the discretization of the likelihood func-
tion, the likelihood density as well as its derivative with respect to its conditioning
marginal value are needed. The calculation of the likelihood function is shown
above, the calculation of its derivative is described here.

If the likelihood function f(c|pDi
) is used, as defined in Equation (5.27), then its

derivative with respect to pDi
is defined as

f ′(c|pDi) =
df(c|pDi

)

dpDi

=
f(c|pDi

+ dpDi
)− f(c|pDi

)

dpDi

, (5.31)

for lim dpDi
→ 0. Under the same conditions, this derivative may also be written as

f ′(c|pDi
) =

[f(c|pDi) + dpDif
′(c|pDi)]− f(c|pDi)

dpDi

. (5.32)

This can be applied to Equation (5.27) with substitution of Equation (5.28). If we
define for readability

f(c, cJ , ci, ki|di) = δ(c− (cJ + ci))f(cJ)δ(ci − di/ki)f(ki), (5.33)

then the likelihood function writes

f(c|pDi
) =

∫
· · ·

∫

ci,cJ ,di,ki

f(c, cJ , ci, ki|di)f(di|pDi
) dki ddi dcJ dci, (5.34)

with only the function f(di|pDi
) = fUDi

(di − pDi
) dependent on pDi

. Herewith, the
first term in the numerator of the right hand side of Equation (5.31), and applying
its expansion of Equation (5.32), writes

f(c|pDi
+ dpDi

) =
∫

· · ·
∫

ci,cJ ,di,ki

f(c, cJ , ci, ki|di) [f(di|pDi
) + dpDi

f ′(di|pDi
)] dki ddi dcJ dci. (5.35)

Applying this to Equation (5.32) yields, in accordance with Leibniz’s rule,

f ′(c|pDi
) =

∫
· · ·

∫

ci,cJ ,di,ki

f(c, cJ , ci, ki|di)f ′(di|pDi
) dki ddi dcJ dci, (5.36)

where

f ′(di|pDi
) =

dfUDi
(di − pDi

)

duDi

duDi

ddi

ddi
dpDi

= −f ′
UDi

(di − pDi), (5.37)

with f ′
UDi

being the derivative of fUDi
with respect to uDi . Obviously, this function

is not a PDF anymore, but the integral did not change. Therefore, the same algorithm
as applied on the binary operations with PDFs can be used to calculate the results,
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Figure 5.5: Example of a piecewise linear PDF (left) and its derivative function (right). In the top
row the PDF is a continuous function and in the bottom row discontinuous. The latter has singular
points in its derivative.

with the addition that negative function values have to be supported. If the variable
D′

i, from the above example, is attributed with the function f ′(di|pDi
) then the next

calculations are performed to find the derivative of the likelihood function f ′(c|pDi
)

C ′
i = D′

i/Ki (5.38)

C ′ = CJ + C ′
i, (5.39)

where the superscript quotes denote that the functions of the variables are deriva-
tives instead of PDFs. These last two equations are equal to the integral of Equa-
tion (5.36). This shows how to apply the same algorithms as used for the calculation
of the deterministic variables in the Bayesian network like in Equation (5.26).

Singular points in derivatives
The derivative function of a piecewise linear PDF has a constant value within each
bin, which is the slope of the linear function within this bin. In Figure 5.5 an exam-
ple is shown. In the top row of this figure, a PDF without discontinuities is depicted.
This yields a derivative function with finite function values (top right pane). In the
bottom row, a PDF of a uniform distribution is shown. At the begin and the end of
the area of the PDF where the density is greater than zero, the probability density
is discontinuous. These discontinuities yield singular points in the derivatives of
which the values tend to ±∞. Nevertheless, these singularities are of importance
and must be part of the integral of Equation (5.36). The singularities do not occur
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108 Chapter 5: Improving a hydrogeological model with a Bayesian approach

in all situations but are still not a rare phenomena. If in this example of the uniform
distribution the singular points of the derivative function are ignored, it is obvious
that the integration of this derivative function never yields the uniform distribution
back again. In the example of Equation (5.36) in the former section the differenti-
ation is not with respect to the same variable as the integration, but for the same
reason the singular points can not be ignored. Integration of the singular points is,
at least numerically, an infeasible problem. Hereafter is shown how this problem is
circumvented.

The derivative of f(di|pDi) with respect to pDi at a discontinuity ds can, analo-
gous to Equation (5.31), be written as

f ′
disc(ds|pDi

) =
limdi↓ds f(di|pDi)− limdi↑ds f(di|pDi)

dpDi

=
∆f(ds|pDi)

dpDi

. (5.40)

If ∆f() is written as a function of fUDi
, like in Equation (5.37), this yields

∆f(di|pDi
) = lim

uDi
↑di−pDi

fUDi
(uDi

)− lim
uDi

↓di−pDi

fUDi
(uDi

), (5.41)

in which the upper and lower limits of fUDi
are in reversed order. This yields the

negation sign as in Equation (5.37).
Assume that the function f(di|ppDi

) has m discontinuities ds,l with l = 1, . . . ,m,
and define the set with all singular points as S = {ds,1, . . . , ds,m}. Herewith, the
derivative function writes

f ′(di|pDi) =

{
f ′
disc(di|pDi), for di ∈ S,
f ′
cont(di|pDi

), otherwise,
(5.42)

where f ′
cont is defined for the continuous derivatives, and f ′

disc at the discontinuities
of the PDF. Applied to the integral of Equation (5.29) yields

f ′(ci|pDi
) =

∫

di

f(ci|di)f ′(di|pDi
) ddi

=

∫

di

f(ci|di) [f ′
cont(di|pDi) + f ′

disc(di|pDi)] ddi

=

∫

di

f(ci|di)f ′
cont(di|pDi) ddi +

∑

di∈S
f(ci|di)f ′

disc(di|pDi) ddi.

(5.43)

By substituting f ′
disc by Equation (5.40), the equation rewrites

f ′(ci|pDi) =

∫

di

f(ci|di)f ′
cont(di|pDi) ddi +

∑

di∈S
f(ci|di)∆f(di|pDi)

ddi
dpDi

. (5.44)

With di = pDi
+ uDi

(Equation (5.16)) the derivative ddi/dpDi
= 1, so the equation

reduces to

f ′(ci|pDi
) =

∫

di

f(ci|di)f ′
cont(di|pDi

) ddi +
∑

di∈S
f(ci|di)∆f(di|pDi

). (5.45)
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Figure 5.6: Example of a discretized likelihood function (a) and its derivative (b). The numbers are
the bin-numbers as used in the text. The outermost edges of bin 1 and 8 are beyond the margins of the
figure and therefore not shown.

Herewith, the singular points end up in a (finite valued) summation and are added
to the result of the integral of the continuous part of the function.

Bin selection algorithm
Discretization of the likelihood function starts with three discretization points (two
bins). The two outermost points are chosen in such a way that beyond these points
no significant density is expected. Since the piecewise linear functions have a fi-
nite domain, these outermost values are almost always known. Subsequently, it-
eratively one bin is chosen to add a discretization point. As in the former section
described, at each discretization point the likelihood density and its derivative is
calculated. Both functions are approximated to be piecewise linear functions. The
differences between the integral of the derivative function and the likelihood den-
sity function at each bin are calculated. The bin with the largest discrepancy has to
be split up into two bins. However, the difference between the likelihood density
and the integral of its derivative is not always a good measure for the goodness of
the piecewise linear approximation. Therefore, three complementary measures are
defined which are described hereafter.

In Figure 5.6 an example with eight bins is given, showing three different mea-
sures of discrepancy. Herein, the functions (gray) and their respective piecewise
linear approximations are shown. Within each bin, the integral of the derivative
function is calculated, which is shown as a solid red line in Figure 5.6a. Also the
average density of the likelihood function, and of the integral of the derivative func-
tion are shown as a blue and a red dashed line, respectively. The area between two
dashed lines is the difference in probability calculated by the two approximations.
Now we have three measures available to judge the accuracy of the approxima-
tions. First, the difference between the densities (blue and red solid line) at the
right side of each bin. In bin 4, these points coincide but in bin 2 and 7 the values
differ with the largest discrepancy in bin 2. Second, the difference in average den-
sity is used as a measure. In bin 2 this difference is (almost) 0, but is in bin 4 and
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110 Chapter 5: Improving a hydrogeological model with a Bayesian approach

7 significant with the largest value in bin 4. Third, the difference in probability is
used. In bin 2 this is 0 again, but in bin 4 and 7 this is significant with the largest
value in bin 7. Not one of these measures is in every situation distinctive, so these
three measures are alternated when selecting a next bin to be split up.

5.1.6 Likelihood with Uncertain observations
In this section, an expression for the likelihood function with uncertain observa-
tions is derived. In Denœux [2013] and Denœux [2014] such an expression is given,
but hereafter we arrive at a different formulation which is more appropriate in our
case.

Let f(x) be the unknown probability density function (PDF) of X , and let f(x|θ)
be the parameterized PDF of f(x). In a Bayesian context, the PDFs of θ are the
prior distributions of θ. Let L(θ|X) be the likelihood function of θ, where X =

{x1, . . . , xn} are n random observations of fX(·). The likelihood function can now
be written as [Held and Bové, 2013, p. 18]

L(θ|x1, . . . , xn) = f(x1, . . . , xn|θ) =
n∏

i=1

f(xi|θ). (5.46)

Assume that n is very large and that x is discrete or that the values of x can be
assigned to m classes. The values of these classes are denoted as x̄k, and the number
of observations in class k is nk, hence n =

∑m
k=1 nk. According to the definition of

likelihood functions, Equation (5.46) can be written as

L(θ|x1, . . . , xn) =

m∏

k=1




nk∏

j=1

f(x̄k|θ)


 =

m∏

k=1

[f(x̄k|θ)]nk . (5.47)

With n very large, a probability mass function (PMF) of the observations can be
written as

p(x̄k) =
nk

n
. (5.48)

Equation (5.47) can be written, using the expression of Equation (5.48) nk = np(x̄k),
as

L(θ|X) =
m∏

k=1

[f(x̄k|θ)]np(x̄k) . (5.49)

From Equation (5.49) it can be seen that it does not make any difference if, for every
value x̄, there are np(x̄) observations, or when there are n observations with the
complete PMF of x̄. So, if only one uncertain observation of x̄ is available, described
by a PMF, the same equation can be used with n = 1. When multiple uncertain
observations are available, each described by its own PMF pi(·), Equation (5.49) can
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be written as

L(θ|X1,...,ν) =
ν∏

i=1

m∏

k=1

[f(x̄k|θ)]pi(x̄k)

=
m∏

k=1

[f(x̄k|θ)]
∑ν

i=1 pi(x̄k) ,

(5.50)

where ν is the number of uncertain observations. If the PMF pi is smooth, and the
class width ∆x tends to 0, the class probability can be approximated by a PDF fi as
pi(x̄k) = fi(x̄k)∆x. Herewith, Equation (5.50) writes

L(θ|X1,...,ν) =
m∏

k=1

[f(x̄k|θ)]
∑ν

i=1 fi(x̄k)∆x . (5.51)

Now, we can define the average mixture function of fi as

f̄(x) =
1

ν

ν∑

i=1

fi(x), (5.52)

which contains all uncertain information of all observations. Rewriting Equation
(5.51) using Equation (5.52) yields

L(θ|X1,...,ν) =
m∏

k=1

[f(x̄k|θ)]νf̄(x̄k)∆x . (5.53)

The log-likelihood can now be written as

�(θ|X1,...,ν) = ν
m∑

k=1

f̄(x̄k)∆x ln (f(x̄k|θ)) . (5.54)

With m → ∞ then ∆x → dx, the log-likelihood with uncertain observations in the
continuous case writes

�(θ|X1,...,ν) = ν

∫

X

f̄(x) ln (f(x|θ)) dx. (5.55)

In Appendix D, the derivation of the likelihood marginalization with uncertain ob-
servations is given.

5.2 Results
The methods as described in the former sections are applied to a real-world case of
the REGIS hydrogeological model in combination with the calibrated groundwater
flow model AZURE [de Lange and Borren, 2014]. This study area is described in more
detail in Chapter 4. In Figure 5.7 the study area is shown with the total vertical
hydraulic resistance of aquitard 4 depicted at the current area of interest. For each
litho-class, only one prior probability density function (PDF) is available, without a
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Figure 5.7: Study area in with the total vertical hydraulic resistance of aquitard 4 depicted at the area
of interest (left pane). The cross denotes the location of the example in the next section. The gray area
denotes the extent of the groundwater flow model from which the calibrated data is used. The right
pane shows the enlarged area of interest. The rectangle area delineates the are for which the parameter
updates are presented.

lateral differentiation. In Chapter 3 an interpolation of the litho-layer thicknesses
is conducted which yields PDFs of the litho-layer thickness at each grid cell of the
study area. Those results are used here as the prior distributions of the layer thick-
nesses.

5.2.1 Stochastic model
In Section 5.1.3 the stochastic models of the variables layer thickness Di and the
vertical hydraulic conductivity Ki are defined generically as Y = Θ1 + Θ2X and
U = Θ2X . Herein is Y the random variable Ki or Di. In Figure 5.8, an example is
given of the results of the evaluation of the stochastic model of one grid cell of the
aquitard. The location of this grid cell is denoted in Figure 5.7. To make the figure
readable, for the most skew distributions only the most important part is shown,
neglecting the tail. The prior distributions (black lines) of the marginal variables
Θ1, Θ2 and X show the results of the decompositions of the layer thickness (D) and
the vertical hydraulic conductivity (K).

The decomposition of the parameters Di and Ki is performed by the Monte
Carlo algorithm as described in Section 5.1.3. This Monte Carlo algorithm starts
with arbitrary initial distributions for the marginal variables. The initial distribu-
tions of the location parameter Θ1 and the scale parameter Θ2 were formed by the
summation of three independent uniform distributions. The width of the domain
of Θ1 is chosen as the width around the top of the modeled parameter Di or Ki
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Figure 5.8: Prior PDFs (black), posterior PDFs (red) and likelihood (blue) functions of a Bayesian
update of one gridcell. Each column depicts one litho-class of the marginal variables (Θ1, Θ2, X),
the layer thickness (D), and the vertical hydraulic conductivity (K) and resistance (C). The dashed
black line denotes the value of the observation of the calibrated aquitard resistance. The y-axis units
are densities of the PDFs, the likelihood curve is scaled to fit to this axis.
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Figure 5.9: Example of an update of the location parameter Θ1 of the conductivity Ki of litho-class
EE-k. The y-axis is defined for the prior (black) and posterior (red) distributions, the graphs of the
likelihood (blue) and its derivative (green) are scaled to fit in the graph. The 0-values of these last
graphs are denoted by a horizontal dashed line.

which describes 0.2 probability of that distribution. The domain of the scale pa-
rameter Θ2 is always set to [0.1, 1], with which the Bayesian update algorithm has
the freedom of a factor 10 to scale the distribution of X . The initial distributions of
X is chosen as U/Θ2 (assumed independent) but with its domain adjusted in such
a way that the domain of Θ2X equals the domain of U .

The prior distributions of the location parameters Θ1 for most litho-classes and
for variables Di and Ki differ from their initial distributions, these priors are mostly
skewed distributions. The prior distributions of scale parameters Θ2 of variable
Ki are still quite similar to their initial distributions. For all priors holds that the
distributions are not very smooth, which is caused by the implementation of the
Monte Carlo method. Nevertheless, the distributions of Θ1 +Θ2X are smooth and
very similar to their original distributions of Di or Ki.

5.2.2 Posterior distributions
The likelihood functions of all marginal distributions of the Bayesian network are
calculated. In Figure 5.9 an example is depicted of the location parameter Θ1 of
the conductivity Ki of litho-class EE-k. The likelihood function (blue line) and
its derivative (green line) are determined by the procedure as described in Sec-
tion 5.1.5. The dots show the iteratively added discretization points of the likeli-
hood function. As desired, the more curved parts of the graph gained more dis-
cretization points than the less curved parts. The posterior distribution (red line) is
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derived by multiplication of the prior by the likelihood and subsequent normaliza-
tion. In Figure 5.8 it can be seen that for most marginal distributions the likelihood
functions (blue) is an almost straight horizontal line, which causes a negligible up-
date of the prior distribution. So most posterior distributions (red) coincide with
their respective priors (black). Only the litho-class EE-k has a significant update
of its priors. For litho-class EE-kz, marginal distribution X of conductivity K, it
can be seen that the iterative algorithm is able to find the likelihood function in
very skewed distributions. The domain of X ranges from about 0 to 1.3E4, while
the peak of the likelihood function resides between about 0 and 5.E-2. Still, the
iterative algorithm found the peak of the likelihood function quite well.

At the bottom row of Figure 5.8 the PDFs of the vertical hydraulic resistance
Ci is shown for each layer. Only the posterior distribution of litho-class EE-k di-
verges noticeable from its prior. The litho-class EE-k has the majority of all the
aquitard resistance; all other litho-classes are of minor importance in this example
grid cell. Therefore, it is no wonder that the update mainly is assigned to litho-
class EE-k. The shape of the posterior distribution of litho-class EE-k is remarkable.
Even though the posterior (predictive) distributions of the layer thickness Di and
conductivity Ki are both unimodal, their quotient Ci yields a bimodal distribution.
This effect is caused by the shape of the posterior distribution of Ki, which in turn
gains this effect by the posterior distribution of XKi

.

5.2.3 Updates of litho-class parameters
For each grid cell of the processed aquitard in the study area, the Bayesian net-
work is evaluated. This yields for each random variable in the network a posterior
distribution. The prior distribution of the layer thickness Di of each litho-class is
acquired by kriging interpolation, which yields for each grid cell a different PDF. As
an indication of the results of the Bayesian update the mean value and the standard
deviation of the prior and posterior distributions are shown in maps of the study
area. Also the difference between the posterior and prior value (∆), and relative ad-
justment, i.e. the quotient of the posterior and the prior value (ratio), are displayed.
For the hydraulic conductivity Ki only one prior distribution for each litho-class is
used. Therefore, the prior distribution of Ki has no spatial variation and the maps
of these parameters are omitted in the next pictures. For reference, the prior values
are displayed in the upper-right corner of each respective posterior variable map.

In Figure 5.10, the update of the aquitard resistance is depicted. The top row
shows the mean values of the distributions of the vertical hydraulic resistance µC

of the aquitard, and the bottom row the accompanying standard deviations. The
top-left map shows the calibrated values of the groundwater flow model which
are used as observations (obs) in the Bayesian update. The difference between the
posterior mean and prior mean (∆µC) shows that the vertical resistance mostly
decreases (blue) or is only slightly changed (yellow). In a small part of the area the
resistance increases (red). This is in agreement with the values of the observations
compared to the prior means. The maps with ratios (ratio µC and ratio σC) show

149884_lourens_BNW.indd   115 09-03-2021   12:22
117



116 Chapter 5: Improving a hydrogeological model with a Bayesian approach

 aquitard obs C

NA
 75000 

0
10

1E3

1E4

1E5

1.5E5

[d]

 aquitard prior μC

NA

 1e+05 

 1e+05 

 1e+05 

 125000 

0
10

1E3

1E4

1E5

1.5E5

[d]

 aquitard post μC

NA

 75
00

0 

 75000 

 1e+05 
0

10

1E3

1E4

1E5

1.5E5

[d]

 aquitard ΔμC

NA
−1E5
−8E4
−6E4
−4E4
−2E4

0
2E4
4E4
6E4
8E4
1E5

[d]

 aquitard ratio μC

0.25
0.33

0.5
1
2
3
4

[−]

 aquitard prior σC

NA

N
A

 700 

 900 

1E2

3E2

5E2

7E2

9E2

1.1E3

1.3E3

[d]

 aquitard post σC

NA

N
A

 300 

 300 

1E2

3E2

5E2

7E2

9E2

1.1E3

1.3E3

[d]

 aquitard ΔσC

NA

N
A

−1E3
−8E2
−6E2
−4E2
−2E2

0
2E2
4E2
6E2
8E2
1E3

[d]

 aquitard ratio σC

N
A

0.11

0.17
0.33

1
3
6
9

[−]

Figure 5.10: Aquitard vertical hydraulic resistance (days). The top row maps shows the observations
(obs), prior and posterior mean (µC ), the difference between the prior and the posterior mean (∆µC ),
and the quotient of the prior and posterior means (ratio µC ). The bottom row shows the same maps of
the standard deviations, except for the observations, of the probability distributions.
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the quotient of the posterior and the prior values. Herein, the posterior vertical
resistance is decreased by a factor up to about 0.4, and increased up to a factor of
about 1.4. The standard deviations of the posterior distributions are all lower than
the standard deviations of the prior distributions. The map with ratios show that
the standard deviations are decreased by a factor of about 0.6 to about 0.2.

The legends in the maps of the prior and posterior values are chosen to be equal,
for easy comparison of the pictures. The legend of the observations is equal to
the legend of the µC maps. The legends of the differences maps (∆µ and ∆σ) are
symmetrical around 0. The legends of the ratios maps (ratio ∆µ and ratio ∆σ)
are symmetrical around 1, which means that the interval values below 1 are the
reciprocal of the values above 1.

The aquitard is build-up of deposits of multiple litho-classes. In Figures 5.11 and
5.12 the means and the standard deviations, respectively, of the distributions of the
vertical hydraulic resistance Ci are shown for each litho-class separately. Com-
pared to the hydraulic resistance of the classes EE-k (clay) and EE-kz (sandy clay),
the other classes do hardly have any influence on the total hydraulic resistance of
the aquitard. The resistance of litho-class EE-k is decreased as well as increased sig-
nificantly, where the resistance of litho-class EE-kz is only decreased or unchanged.
The magnitude of the adjustment of litho-class EE-kz is about twice the magnitude
of the adjustment of EE-k. In the map of the prior mean resistance of EE-kz (µCi

,
Figure 5.11) an area with resistance is seen. This is clearly caused by two bore-
hole interpretations. In the prior map of EE-k the opposite is shown at the same
borehole locations. In the posterior maps these variations almost vanished, and the
borehole locations are not clearly expressed anymore. Besides these classes, only
litho-class EE-zf (fine sand) has a significant adjustment (decrease) in the resistance
up to about 5000 days. This high adjustment is located at a spot with a relative high
prior resistance. The standard deviations (Figure 5.12) are decreased for all litho-
classes, except for some grid-cells of the litho-class EE-zm (medium sand). This last
litho-class is of minor importance since its prior and posterior mean resistances are
less than 1 day. For the litho-classes EE-k and EE-kz the factor of maximum adjust-
ment of the standard deviation are about 0.4 and 0.2, respectively. Litho-class EE-zf
has even a factor of about 0.12.

Each distribution of the litho-class vertical resistance is a result of the quotient
of the random variables of the thickness and the conductivity of the litho-classes.
In Figures 5.13 and 5.14 the means and the standard deviations, respectively, of the
distributions of the layer thicknesses Di are shown for each litho-class separately.
The third row of Figure 5.13 (∆µDi ) shows that almost all mean layer thicknesses
are increased after update, especially in the grid cells of litho-class EE-kz where the
prior mean layer thickness is relatively thin. The standard deviations of the two
main litho-classes, EE-k and EE-kz, are increased as well up to a factor of about 1.4.

In Figures 5.15 and 5.16 the means and the standard deviations, respectively, of
the distributions of the vertical hydraulic conductivity Ki are shown for each litho-
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Figure 5.11: The mean vertical hydraulic resistance Ci for each litho-class is depicted per column.
From top to bottom row, the prior and posterior standard deviation, and their difference and ratio are
shown.
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Figure 5.12: The standard deviation of the vertical hydraulic resistance Ci for each litho-class is
depicted per column. From top to bottom row, the prior and posterior mean resistance, and their
difference and ratio are shown.
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Figure 5.13: The mean layer thickness Di of each litho-class is depicted per column. From top to
bottom row, the prior and posterior mean value, and their difference and ratio are shown.

149884_lourens_BNW.indd   120 09-03-2021   12:22
122



5.2 Results 121

 EE−k prior σDi

NA
1

1.1
1.2
1.3
1.4
1.5
1.6

1.65
[m]

 EE−kz prior σDi

NA

 1.7 

 1.9  1.9 

 1.9 

 1.9 

1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.52.6

[m]

 EE−v prior σDi

NA

 0.85 

 0.85 
 0.

85
 

0.55
0.65
0.75
0.85
0.95
1.05
1.15

[m]

 EE−zf prior σDi

NA

 1.5 

 1.5 

0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

[m]

 EE−zm prior σDi

NA

 1.8 

 1.8 

0.8

1.2

1.6

2

2.4
[m]

 UR−kz prior σDi

0.75
0.85
0.95
1.05
1.15
1.25
1.35

[m]

 EE−k post σDi

NA

N
A

 1.4 

 1.4 

 1.4 

 1.4 

 1.4 
1

1.1
1.2
1.3
1.4
1.5
1.6

1.65
[m]

 EE−kz post σDi

NA

N
A

 1
.9

 
 1.9 

 1
.9

 

 2.1 

 2.1 

1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.52.6

[m]

 EE−v post σDi

NA

N
A

 0.85 

 0.85 

 0.85 

 0.
85

 

0.55
0.65
0.75
0.85
0.95
1.05
1.15

[m]

 EE−zf post σDi

NA

N
A

 0.9 

 1.
1 

 1.3 

 1.3  1.5 

 1.7 

0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

[m]

 EE−zm post σDi

NA

N
A

 1.2 

 1.2 

 1.2 

 1.4 

 1.4 

0.8

1.2

1.6

2

2.4
[m]

 UR−kz post σDi

N
A

 0.85 

 1
.0

5 

 1.05 

 1.
05

 
 1

.0
5 

0.75
0.85
0.95
1.05
1.15
1.25
1.35

[m]

 EE−k ΔσDi

NA

N
A

−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4

[m]

 EE−kz ΔσDi

NA

N
A

−0.6
−0.4
−0.2

0
0.2
0.4
0.6

[m]

 EE−v ΔσDi

NA

N
A

−0.3
−0.2
−0.1

0
0.1
0.2
0.3

[m]

 EE−zf ΔσDi

NA

N
A

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

[m]

 EE−zm ΔσDi

NA

N
A

−0.9
−0.7
−0.5
−0.3
−0.1

0.1
0.3
0.5
0.7
0.9

[m]

 UR−kz ΔσDi

N
A

−0.55
−0.45
−0.35
−0.25
−0.15
−0.05

0.05
0.15
0.25
0.35
0.45
0.55

[m]

 EE−k ratio σDi

NA

N
A

0.77
0.83
0.91

1
1.1
1.2
1.3
1.4

[−]

 EE−kz ratio σDi

NA

N
A

0.77
0.83
0.91

1
1.1
1.2
1.3
1.4

[−]

 EE−v ratio σDi

NA
N

A
0.53
0.62
0.77

1
1.3
1.6
1.9

[−]

 EE−zf ratio σDi

NA

N
A

0.53
0.62
0.77

1
1.3
1.6
1.9

[−]

 EE−zm ratio σDi

NA

N
A

0.53
0.62
0.77

1
1.3
1.6
1.9

[−]

 UR−kz ratio σDi

N
A

0.53
0.62
0.77

1
1.3
1.6
1.9

[−]

Figure 5.14: The standard deviation of the layer thickness Di of each litho-class is depicted per
column. From top to bottom row, the posterior standard deviation, and the difference and ratio of
the posterior and prior values are shown. At the top-right corner the standard deviation of the prior
distribution is given.
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class separately. Since only one prior distribution is available for the hydraulic
conductivity of a litho-class, the maps with the prior means and standard devia-
tions are omitted in these figures. The mean conductivity values of litho-classes
EE-k and EE-kz are all decreased, up to a factor of about 0.3. The standard devi-
ations of litho-class EE-k show increase and decrease of the values with a factor
between about 1.3 and 0.8. The standard deviations of litho-class EE-kz show a
decrease with a factor up to about 0.3. The mean conductivities of the other four
litho-classes are either decreased or increased but do not show any lateral varia-
tion with the applied legend. The same holds for the standard deviations of these
litho-classes.

5.3 Discussion and conclusions
The aim of this chapter was to develop a method for a Bayesian update, and to
apply it to hydrogeological model parameters. The method was applied to an aq-
uitard of a groundwater flow model, which in turn is build-up of multiple layers
from the REGIS hydrogeological model. These layers are described in terms of litho-
classes, where each litho-class has its own hydraulic properties. These properties,
layer thickness D and hydraulic conductivity K, are described by probability den-
sity functions (PDFs), the prior distributions. As observations, the calibrated aqui-
tard resistances of a groundwater flow model are used.

The probability density functions of D and K are considered to be a prior predic-
tive distribution of the layer thickness and the conductivity, respectively. Thereto,
the PDFs are decomposed into stochastic models with a location parameter, a scale
parameter and a shape distribution. These three distributions can be arranged in
the Bayesian network such that all three are marginal distributions. Herewith, all
non-marginal distributions in the whole network become deterministic, which sim-
plifies the calculations. The transformation of the prior predictive distributions into
a stochastic model is performed by a Monte Carlo algorithm. This algorithm is able
to create marginal distributions with which the prior predictive distributions of D
and K are described quite well. The individual marginal distributions have, how-
ever, the need for further improvement. This is specifically noticeable by the less
smooth shape of the marginal distributions, and the shape of the posterior predic-
tive distributions of the litho-class hydraulic resistance Ci. These last distributions
show sometimes multi-modality, where this is not expected given the prior predic-
tive distributions of D and K.

In the described Bayesian network no prerequisites are made for the type of
allowed probability density functions. So, advantages of conjugate models, like
simple update algorithms, can not be used. Therefore, an iterative algorithm is de-
signed to find the desired likelihood functions. This algorithm performs well, even
in finding likelihood peaks in relatively small areas of the range of the marginal
distributions.

In the current examples of this study, only the calibrated hydraulic resistance
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Figure 5.15: The standard deviation of the vertical hydraulic conductivity Ki of each litho-class is
depicted per column. From top to bottom row, the posterior standard deviation, and the difference and
ratio of the posterior and prior values are shown. At the top-right corner the standard deviation of the
prior distribution is given.
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Figure 5.16: The mean vertical hydraulic conductivity Ki of each litho-class is depicted per column.
From top to bottom row, the posterior mean value, and the difference and ratio of the posterior and
prior values are shown. At the top-right corner the prior standard deviation is given.
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of the aquitard of one groundwater flow model was used. It is not uncommon
that multiple models are available in the same area. If so, the results of all these
models can be used as multiple observations in the update process. Since all models
are subject to uncertainty, the observations obtained from these models, i.e. the
calibrated C values, can be described by a probability density function. Different
models may be considered of different reliability, which can be expressed in the
PDFs of the observations. However, caution should be taken when using multiple
models since their results might be not completely independent.

In the current set-up of the Bayesian network, each grid-cell has its own net-
work with one observation. So the update of the marginal distributions is only
locally performed. It makes sense to assume that the probability distribution of the
layer thicknesses is local, the interpolated thickness and the uncertainty depends on
the interpretation at the borehole locations, and on the distance to the neighboring
observations. Nevertheless, a lateral correlation in the layer thickness is very likely
otherwise the performed kriging interpolation is not valid. The prior distributions
of the hydraulic conductivity consists of one distribution for each litho-class, re-
gardless of the spatial position of the grid cells. It is not unrealistic to assume that
these distributions, to some extent, are constant within an area, because they de-
scribe a deposit property. To account for a lateral consistency of the distributions,
the Bayesian network can be rearranged to have multiple grid cells with each their
own thickness marginals, and one common marginal distribution of the conduc-
tivity for each litho-class. In this case, multiple observations, i.e. the calibrated
parameters of the groundwater flow model, are available to update the conductiv-
ity distribution. Since these observations are presumably not uncorrelated, such
correlations should be taken into account in the update algorithm.

In one grid cell, the layer thickness and uncertainty for each litho-class is deter-
mined (by kriging interpolation). Adding up these individual thicknesses, includ-
ing their uncertainty, yields a thickness distribution function of the total aquitard
thickness. If the total aquitard thickness can also be obtained from another source,
an update of the layer thicknesses can be made separately. Another source can be
the interpolated total layer thickness, which usually has a lower uncertainty than
the summarized thickness of the litho-class thicknesses. With such observations,
the proposed calculation of the likelihood with uncertain observations can be ap-
plied.

The domains of the initial distributions of the marginal variables are bounded
in such a way that, when integrated out, the resulting distribution (D or K) has the
same domain as the the prior of that variable. This restriction is applied because the
nature of the parameters D and K restricts them to non-negative values. Often, the
distribution of a hydraulic conductivity is assumed to be log-normal. Therefore, a
log transformation of the distribution of K can be added to the stochastic model
to circumvent this problem. It is expected that such a transformation simplifies
the creation of the prior marginal distributions. Since a log-transformation is also
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completely deterministic this can be easily implemented in the presented Bayesian
network.
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SUBSURFACE DATA are widely used in infrastructural projects, groundwater ex-
ploitation, environmental assessments and the assessment of subsurface re-
sources (e.g. precious metals and building material). These data involve

properties like the type of material (clay, sand, rock) and material properties like
hydraulic conductivity and porosity. Such data is usually available as point data,
such as borehole descriptions and cone penetration tests, or as line data, like seismic
lines. Beyond the observations, no data is available. At the unobserved locations
an estimate of subsurface properties can be made by defining a spatial variation
model of these properties. Unfortunately, a model is always an interpretation of
reality and therefore suffers from imperfections. Moreover, even the observations
are to some extent subject to uncertainty. Nevertheless, adding more (reliable) ob-
servations will almost always improve the model.

In the Netherlands, the hydrogeological model REGIS is an important source of
subsurface data with an emphasis on groundwater flow applications. The REGIS

model is a general purpose hydrogeological model. This means that it is not de-
veloped for just one application, but it serves as a knowledge base and model for
hydrogeological projects. Like all models, also this model has room for improve-
ments. It is possible to collect more hydrogeological point data at unobserved areas,
but this is expensive and has only local impact on the model. Instead of collecting
more observations of the same properties, it may be beneficial to use available ob-
servations of other properties which do have a relation to the subsurface parame-
ters. The REGIS model and parts of it are often applied in groundwater flow models.
These groundwater flow models are calibrated using, among others, groundwater
head observations. Since these groundwater head observations are not used, or
only limited, during building of the REGIS model, this is new data with possibly
added value for improvement of REGIS. Herewith we come to the main objective of
this thesis:

Develop a method or procedure to let the generic hydrogeological model, in our case
REGIS, benefit from the improvements of a calibrated groundwater flow model.

Since all data are subject to uncertainty, a sub-objective is:

Develop a method which accounts for uncertain data of all kinds of probability distri-
butions.
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It is likely that, in the Netherlands, multiple calibrated groundwater flow models
are available in the same area which may contribute to the improvement of the
generic hydrogeological model. Herewith we come to the second sub-objective:

Develop a method which can use multiple calibrated groundwater flow models in the
same area and with different uncertainty.

With regard to the main objective of this thesis, two methods have been de-
veloped to update the hydrogeological model making use of calibration results of
groundwater flow models. The first method (Chapter 3 and Chapter 4) is able to
use calibrated data of one groundwater flow model and returns the most likely
subsurface parameter values of the litho-layers (thickness and conductivity). The
second method (Chapter 5) returns updated probability distributions of the subsur-
face parameters. Both methods make use of uncertain data of the hydrogeological
model, as mentioned in the first sub-objective. The second method is able to han-
dle data of multiple calibrated groundwater flow models, as desired in the second
sub-objective. This method is also able to use observations of different uncertainty
(also part of the third objective), which is described in Chapter 5. However, this
was not implemented yet and therefore no examples could be presented.

6.1 A common thread: uncertainty
A common thread throughout this thesis is uncertainty and how to make calcu-
lations with uncertain variables tractable. Analytical and numerical solutions are
available to perform such calculations, both with their own advantages and disad-
vantages. Analytical solutions do in general have a high performance, with regard
to calculation time and accuracy, but are not always available. Numerical solutions
are more generally applicable but are in general slower and with less accurate re-
sults. A hybrid numerical-analytical method can benefit from the advantages of
both, and is applied in this thesis.

In Chapter 2, probability density functions (PDFs) were described as piecewise
linear functions, and calculations with piecewise linear probability density func-
tions (PL-PDFs) were developed. Herewith, it was possible to perform calculations
with (continuous) random variables (RVs) of all kind of distributions with almost
no limitations on the shape of these distributions. The piecewise linear description
of a PDF is almost always an approximation of the analytical form (if exists) of the
distribution, but the description and calculations can be preformed with a negligi-
ble loss of accuracy. Even very skewed distributions, like heavy tailed log-normal
distributions with a very large standard deviation/mean ratio, can be described
adequately. In this context, a negligible loss should be understood as inaccuracies
in the calculations which have no impact on the interpretations of the results. As a
showcase of the performance of the proposed methods, two examples from the lit-
erature are chosen to reproduce their results by using piecewise linear PDFs. These
examples are found in Appendix A.2.
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The calculations with piecewise linear PDFs were first applied to the kriging in-
terpolation of transmissivities bearing uncertainty of the observations. These ob-
servations were obtained from the borehole interpretations where the described
litho-class thicknesses and the hydraulic conductivities are supplied with a PDF, de-
scribing their respective uncertainties. The PDF of each transmissivity observation,
which is the product of the conductivity and the layer thickness, were obtained
without a presumed standard or parameterized form of distribution. But by us-
ing PL-PDFs, the calculations were not hampered. These transmissivity PDFs could
be used to create experimental variograms which clearly showed a nugget effect
caused by the uncertainty of the observations. A kriging interpolation was per-
formed on the transmissivity observations which yielded interpolated transmissiv-
ity fields honoring the distributions of the observations, without residing to Monte
Carlo (MC) solutions.

A second application of the piecewise linear PDFs is finding the most likely pa-
rameter values of layer thickness and conductivity in a joint distribution, given an
observation of a compound parameter. In Chapter 3, the compound parameter is
the aquitard hydraulic resistance, which is the result of an arithmetic combination
of the parameters of the hydrogeological model. These uncertain model parameters
are described by marginal PDFs of the joint distribution. The most likely marginal
parameters are the parameters for which the joint distribution yields its maximum
density, given the compound observation. If the joint distribution has an analytical
formulation, then it might be possible to find an analytical solution for the above
problem. Such a solution has to be derived for each combination of distributions
and arithmetic operations, and might even not exist. The choice of piecewise linear
PDFs as marginal distributions yielded a tractable solution.

As a last application of PL-PDFs, an aquitard, consisting of multiple litho-layers,
was cast in a Bayesian network (BN). Again, the calibrated aquitard resistances of
a groundwater flow model served as observations. The deterministic relations be-
tween the parameters could be defined using PL-PDFs. The aim of the Bayesian
network is to update the prior uncertainty of the parameters of the layer thick-
nesses and hydraulic conductivities, given the observations. Creating a stochastic
model for these parameters had quite some freedom using PL-PDFs. It was shown
that the distinction between a stochastic node and a deterministic node in a BN is
not necessarily very strict. These nodes could often be converted from one type
into the other. The likelihood functions, needed to find the posterior marginal dis-
tributions, were also described as piecewise linear functions. In the literature, this
description of the likelihood function is often mentioned as problematic in finding
an adequate discretization of the function, especially when it has large tails or when
a large amount of the integral resides in a small area of its domain. An algorithm
was developed to circumvent this discretization problem.

No doubt, analytical solutions, when available, have a much smaller calculation
time compared to calculations with piecewise linear PDFs. But the advantage of PL-

149884_lourens_BNW.indd   130 09-03-2021   12:22
132



6.2 Update methods 131

PDFs over analytical solutions is that they are available for a wider range of PDFs. It
is not necessary to reside to distributions which have an analytical solution. And
for new problems, no additional tedious analytical derivations are needed.

6.2 Update methods
The main objective of this research was to develop a method with which extra data
can be used to improve the hydrogeological model REGIS, in particular data from
calibrated groundwater flow models. The REGIS model is horizontally discretized
in grid cells, and in vertical direction in layers called hydrogeological units. Each
hydrogeological unit can consist of multiple depositional classes, so called litho-
classes. To each combination of grid cell, hydrogeological unit and litho-class,
properties like conductivity and layer thickness are assigned. These properties are
usually the litho-class properties, but are assigned within the context of their loca-
tion in the subsurface denoted by grid cell, hydrogeological unit combination. At
each location these properties may differ.

The hydrogeological units of the REGIS model are defined by their top and bot-
tom, and by the hydraulic conductivity. For aquifers the transmissivity is given and
for aquitards the vertical resistance. As said, a hydrogeological unit may consist of
multiple litho-classes and its properties is therefore an aggregation of the proper-
ties of these litho-classes. Since in REGIS the hydraulic conductivity is defined at the
level of a litho-class, it is necessary to know the contribution of each litho-class to
the properties of the hydrogeological units at each grid cell. Therefore, the inter-
polation of the litho-class thicknesses is performed in this study. This interpolation
started from the borehole descriptions and interpretations. Borehole descriptions
usually contain interval depths which are assumed to be deterministic. Neverthe-
less, these thicknesses are subject to uncertainty. Therefore, a method is proposed
to assign a PDF to each litho-layer thickness which depends on the round-off value
of the thickness. Subsequently, these PDFs are used in the interpolation of the thick-
nesses.

Two update methods have been proposed, both with different qualities. The
first method describes, at each grid cell, the joint distribution of the layer thickness
and the hydraulic conductivity of all litho-classes. In the presented examples, 7
litho-classes are recognized, which yields a 14-dimensional joint distribution. The
14 marginal distributions are the PDFs of the layer thickness and the hydraulic con-
ductance of each litho-class. In this distribution, the most likely combination of
marginal values was determined. The most likely value is defined as the marginal
values combination with the highest joint probability density, which is the mode
of the joint PDF. Without any constraints, each marginal value would get the mode
of its marginal distribution. But the calibrated value, an aquitard resistance of the
groundwater flow model, is used as a constraint, which means that the combina-
tion of the marginal values must exactly yield the calibrated value. In general,
infinite combinations of marginal values will meet the constraint to form the cali-
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brated value but usually only a limited number of combinations, or even just one,
will yield a maximum probability density. An algorithm was developed to find this
constrained mode in a multi-dimensional joint distribution. The result is one value
for each marginal variable, so no information about the uncertainty is left.

The second method uses the same joint distributions as the first one, but these
distributions are now cast in a Bayesian network (BN). The difference between the
joint distributions is that now the distributions of the layer thickness and the con-
ductivity are converted into stochastic models. Also in this method, the calibrated
aquitard resistance is used as an observation to update the prior distributions. With
these observations, a Bayesian update of the marginal distributions is performed.

The use of a Bayesian network has some advantages over the first method (find-
ing the most likely value). Firstly, after performing an updating the parameters of
interest are still described by probability distributions. So knowledge about un-
certainty is retained. Secondly, multiple observations can be used for an update.
The Bayesian update makes use of a likelihood function which always can accept
multiple observations. Thirdly, the Bayesian update can make use of uncertain
observations. In the context of this thesis, this is especially useful when multiple
calibrated groundwater flow models are available in the same area but with a dif-
ferent reliability. This option is described in Chapter 5, although not yet applied.
The first method has also advantages over the second one. The method is easier to
implement and the calculation times are much lower.

The parameterization of the hydraulic conductivity in REGIS depends only on
the assigned litho-class, but the same litho-class may have different conductivity
properties at different locations in the Netherlands. For instance, if the deposits
of the same litho-class have been buried in one area and not in another, then the
conductivities are expected to be lower in the first area. These types of differences
are not accounted for in the current version of the REGIS model. If this difference
is reflected in the calibrated data, then it could be recognized in the updated val-
ues. This test is performed for the same aquitard in two distinct areas, with the
first update method applied. Instead of just looking at the updated values in a cell
or in an area, the update patterns of different areas were compared. As a measure
for comparison a cumulative frequency distribution (CFD) of the most likely con-
ductivity values was created per litho-class for each area. The CFDs appeared to
be clearly different, which strongly suggest different hydraulic properties between
these areas.

6.3 Some room for improvement
Several methods have been presented to improve the parameterization of a generic
hydrogeological model by using information of calibrated groundwater flow mod-
els. All given examples were applied to either an aquifer or an aquitard, but not to
both. The methods are nevertheless not restricted to a single layer type. The story
does not end here, as several improvements are recognized en described hereafter.
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In all applications in this thesis, uncertain values of hydraulic conductivity and
layer thickness of litho-layers are used. The PDFs of the conductivity are used as
defined in the REGIS system. This means, the same distribution for every grid-cell
containing the same litho-class deposits. The litho-layer thickness for each grid-
cell is obtained by interpolation and has a dedicated distribution for each grid-
cell for each litho-class. At any location in the model, the summation of all layer
thicknesses yields a PDF of the total layer thickness. This total layer thickness might
also be available from any other source with a lower uncertainty. In REGIS, the top
and bottom of all defined hydrogeological units are determined. The aquitards
and aquifers of a groundwater flow model are often an aggregation of multiple
hydrogeological units. The top and bottom of this aggregated layer can be used
as another source of the layer thickness. In the proposed update method with the
Bayesian network (Chapter 5), first a posterior layer thickness can be determined
using a BN containing only layer thicknesses. Thereafter, the newly obtained layer
thickness distributions can be used in the update with the calibrated parameters of
the groundwater flow model.

The proposed Bayesian update yields for each location (grid cell) a posterior
distribution of the hydraulic conductivity. The prior distribution is just one PDF for
all locations. The truth might be somewhere in-between, a PDF for each homoge-
neous considered area. The BN can be reconfigured to support this. An advantage
is that more data is used to update one distribution.

To make a Bayesian update of the hydrogeological model parameters (layer
thickness and conductivity) attainable, a stochastic model of the RVs must be de-
fined. In Chapter 5, this is achieved by the decomposition of a PDF into a location-
scale-shape model, with, in the context of a BN, only the leaf nodes being sto-
chastic. All other (internal) nodes are deterministic. The decomposition is per-
formed through a MC method, which did not always yield a satisfactory result.
This poor result was caused by used distributions whose shapes were hard to catch
in a location-scale-shape model. Standard stochastic models, other than location-
scale-shape models, are available which might describe the distributions more ad-
equately. Usually, these models are also described with stochastic internal nodes.
This restricts the shape of the distribution to some standard parameterized form.
With only leaf nodes being stochastic, the freedom of shape is larger. As shown
in Chapter 5, the difference between stochastic and deterministic nodes is not al-
ways very strict. So a decomposition into some standard or conjugate model, in-
stead of trying to fit every PDF into a location-scale-shape variant, could be possi-
ble. It may sound odd in the context of this thesis to promote the use of standard
stochastic models, since the use of PL-PDFs was eulogized for its independence of
such models. Nevertheless, it can be very useful when a BN has combinations of
distributions for which an analytical solution of a likelihood function does not ex-
ist, or the location-scale-shape decomposition appears not very adequate. Thereby,
one assumption is that the distributions of the hydrogeological model parameters
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are known and represent the prior predictive distributions of these. Therefore, in-
tegrating out the marginal variables of the stochastic model of these parameters
should exactly yield the prior predictive distribution. So starting with some stan-
dard model, convert eventually internal stochastic nodes to deterministic, and then
reshape the marginal distributions to meet the requirements of the prior predictive
distribution. This might be a better starting point for the stochastic model but keeps
the flexibility of the usage of PL-PDFs. As a simple example, a decomposition of an
RV with a PDF with a shape close to a log-normal distribution can yield a quite cum-
bersome result when forced into a location-scale-shape stochastic model, as seen
in the examples. An additional deterministic step could be to first take the loga-
rithm of the RV, which would yield a function close to a Gaussian distribution, and
decompose this last distribution into a location-scale-shape model.

In Chapter 5, the posterior distributions of the BN are obtained assuming the
observations have no uncertainty. This is not a realistic assumption but to some
extent defensible. However, if an uncertainty of the observations can be quantified,
it would be better to incorporate that information in the update procedure. More-
over, if multiple observations are available with different reliability, it is necessary
to account for the uncertainty. A method has been described to apply the uncer-
tain observations to the calculations of the likelihood function. This extension to
the Bayesian update has not been applied yet in the given examples, but should be
implemented in future work. Especially when multiple realizations of calibrated
groundwater flow models are available with different uncertainty.

One important source of uncertainty has not been addressed: the assignment of
a litho-class to an interval in the borehole descriptions. This classification depends
highly on the quality of the description of the depositional material, which in ad-
dition depends highly on the drilling method, and, in case a classification is made
in the field, on the experience of the field geologist. Also, from the description it
may be hard to distinguish to which class the interval should be assigned. The
assignment of the wrong litho-class to an interval does have consequences for the
assumed hydraulic properties of that interval. Since a classification system is used,
the assignment of the one or the other class may yield a conductivity which differs
one or two orders in magnitude. This is an important subject for future research.
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A.1 Elementary operations
This appendix describes the derivation of four elementary binary operations (+ −
×/) performed on piecewise linear probability density functions (PDFs) as proposed
in Chapter 2. At the end of this appendix, a performance example is given where
the piecewise linear calculations are compared to numerical examples from the lit-
erature.

A.1.1 Probability distributions of binary operations
Let X and Y be independent random variables (RVs) and Z be the result of a binary
operation on X and Y . The general formulation of the cumulative distribution
function (CDF) of Z can be written as Papoulis [1991, p. 132 ff]

Fz(z) =

∫∫
fx(x)fy(y) dx dy, (A.1)

where fx(·) and fy(·) are the PDFs of X and Y , respectively. These PDFs are linear
functions at each bin of the piecewise linear PDFs and are, for bin i and bin j, defined
as

fx,i(x) = pxi + rxi(x− xi) (A.2)

fy,j(y) = pyj
+ ryj

(y − yj), (A.3)

where pxi
and pyj

are the probability densities at the values xi and yj , respectively.
The slopes of these functions are defined as rxi

= (pxi+1
− pxi

)/(xi+1 − xi) and
ryj

= (pyj+1
− pyj

)/(yj+1 − yj). For convenience, the next variables are defined

p0,xi
= fx,i(0) = pxi

− rxi
xi

p0,yj
= fy,j(0) = pyj

− ryj
yj .

(A.4)

Since the functions fx,i(·) and fy,j(·) are only continuously within a bin, Equa-
tion (A.1) has to be defined for each joint bin as

Fz,ij(z) =

∫∫
fx,i(x)fy,j(y) dx dy, (A.5)

Furthermore, the integration area of a joint bin is split up into four sub-areas, shown
in Figure A.1. As can be seen, the integration boundaries xl,i, xu,i, yl,j and yu,j
depend on the intersection of the line z = g(x, y) with the lines x = xi, x = xi+1,
y = yj and y = yj+1. The function g(x, y) represents a binary operation.

The line z = g(x, y) for a particular value of z will not intersect all joint bins.
Therefore zij is defined as z but limited to the minimum and maximum value of z
for which g(x, y) intersects joint bin (i, j).

The probabilities of the rectangle sub-areas a, b and c can be easily defined by
the product of their marginal probabilities

Fz,ij,a(z) = Pr{xi < X ≤ xl,i} Pr{yj < Y ≤ yl,j}
Fz,ij,b(z) = Pr{xl,i < X ≤ xu,i}Pr{yj < Y ≤ yl,j}
Fz,ij,c(z) = Pr{xi < X ≤ xl,i} Pr{yl,j < Y ≤ yu,j}.

(A.6)
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xi xi+1

xl,i xu,i

yj

yj+1

yl,j

yu,j

a

c

b

d

z = g(x, y)

Figure A.1: Integration boundaries of the piecewise analytical CDF. Shown is the dependence of the
integration boundaries on the position of the line z in the box of the joint bin (i, j). The function g(·)
denotes any binary operation.

These three functions hold for the example in Figure A.1, the boundaries may be
different for other operations. The function for sub-area d (Fz,ij,d(z)) is described
by Equation (A.5) and is derived for each binary operation separately in the next
sections. The probability of Z < z for bin (i, j) for a given value of z is defined as

Fz,ij(z) = Fz,ij,a(z) + Fz,ij,b(z) + Fz,ij,c(z) + Fz,ij,d(z). (A.7)

To obtain the cumulative probability for a particular value of Z, a summation of
the probabilities of all joint bins has to be performed

Fz(z) =

ny∑

j=1

nx∑

i=1

Fz,ij(z), (A.8)

where nx and ny are the numbers of bins of X and Y , respectively.
Subsequently, the first derivative of Fz(z) with respect to z is the corresponding

PDF. The PDF is calculated as the derivative of Fz,ij,d(z) only, the probabilities of the
areas a, b and c are constant values in this context.

Summation
Let Z = X + Y . The integration boundaries for joint bin (i, j) are defined as

yu,j = max(yj ,min(yj+1, z − xi))

yl,j = max(yj ,min(yj+1, z − xi+1))

xu,i = max(xi,min(xi+1, z − yl,j))

xl,i = max(xi,min(xi+1, z − yu,j))

zij = xu,i + yl,j = xl,i + yu,j .

(A.9)
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Equation (A.5) for sub-area d can be written as

Fz,ij,d(z) =

∫ yu,j

y=yl,j

∫ zij−y

x=xl,i

fx,i(x)fy,j(y) dx dy

=

∫ yu,j

y=yl,j

∫ zij−y

x=xl,i

[
p0,xi

+ rxi
x
]
fy,j(y) dx dy.

(A.10)

Integration with respect to x yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[ (
p0,xix+ 1

2rxix
2
) ]zij−y

x=xl,i
fy,j(y) dy. (A.11)

Inserting integration boundaries yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
p0,xi(zij − y− xl,i) +

1
2rxi

(
(zij − y)2 − x2

l,i

) ]
fy,j(y) dy. (A.12)

Substituting ((zij−y)2−x2
l,i) by ((zij−y−xl,i)

2+2xl,i(zij−y−xl,i)), pxl,i
= fx,i(xl,i)

and zij − xl,i = yu,j yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
pxl,i

(yu,j − y) + 1
2rxi

(yu,j − y)2
][
p0,yj

+ ryj
y
]
dy. (A.13)

Substituting ryj
y = −ryj

(yu,j − y) + ryj
yu,j , and pyu,j

= fy,j(yu,j) yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
pxl,i

(yu,j−y)+ 1
2rxi

(yu,j−y)2
][
pyu,j

−ryj
(yu,j−y)

]
dy. (A.14)

Integration with respect to y yields

Fz,ij,d(z) =
[
pxl,i

pyu,j (− 1
2 )(yu,j − y)2 − pxl,i

ryj (− 1
3 )(yu,j − y)3

+ 1
2rxi

pyu,j
(− 1

3 )(yu,j − y)3 − 1
2rxi

ryj
(− 1

4 )(yu,j − y)4
]yu,j

y=yl,j
.

(A.15)

Inserting integration boundaries yields

Fz,ij,d(z) =
1
2pxl,i

pyu,j (yu,j − yl,j)
2 − 1

3pxl,i
ryj (yu,j − yl,j)

3

+ 1
6rxi

pyu,j
(yu,j − yl,j)

3 − 1
8rxi

ryj
(yu,j − yl,j)

4.
(A.16)

The first derivative of Equation (A.16) with respect to zij is its corresponding
PDF. The variables dependent on zij are yu,j = zij − xl,i, xu,i = zij − yl,j , and
pyu,j

= fy,j(yu,j) = p0,yj
+ ryj

(zij − xl,i). So the derivative writes

fz,ij,d(z) =
1
2pxl,i

ryj
(zij − xl,i − yl,j)

2

+ 1
2pxl,i

pyu,j
2(zij − xl,i − yl,j)

− 1
3pxl,i

ryj
3(zij − xl,i − yl,j)

2

+ 1
6rxiryj (zij − xl,i − yl,j)

3

+ 1
6rxi

pyu,j
3(zij − xl,i − yl,j)

2

− 1
8rxi

ryj
4(zij − xl,i − yl,j)

3,

(A.17)
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and can be rewritten as

fz,ij,d(z) = pxl,i
pyu,j

(yu,j − yl,j)

− 1
2pxl,i

ryj
(yu,j − yl,j)

2

+ 1
2rxipyu,j (yu,j − yl,j)

2

− 1
3rxi

ryj
(yu,j − yl,j)

3.

(A.18)

Subtraction
Let Z = X − Y . The integration boundaries for joint bin (i, j) are defined as

yu,j = max(yj ,min(yj+1, xi+1 − z))

yl,j = max(yj ,min(yj+1, xi − z))

xu,i = max(xi,min(xi+1, z + yu,j))

xl,i = max(xi,min(xi+1, z + yl,j))

zij = xu,i − yu,j = xl,i − yl,j .

(A.19)

Equation (A.5) for sub-area d can be written as

Fz,ij,d(z) =

∫ yu,j

y=yl,j

∫ zij+y

x=xl,i

fx,i(x)fy,j(y) dx dy. (A.20)

Integration with respect to x yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
p0,xi(zij + y − xl,i) +

1
2rxi

(
(zij + y)2 − x2

l,i

) ]

fy,j(y) dy.
(A.21)

Substituting ((zij+y)2−x2
l,i) by ((zij+y−xl,i)

2+2xl,i(zij+y−xl,i)), pxl,i
= fx,i(xl,i)

and zij − xl,i = −yl,j yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
pxl,i

(y − yl,j) +
1
2rxi(y − yl,j)

2
]

[
(pyj − ryjyj) + ryjy

]
dy.

(A.22)

Substituting ryj
y = ryj

(y − yl,j) + ryj
yl,j , and pyl,j

= fy,j(yl,j) yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
pxl,i

(y − yl,j) +
1
2rxi

(y − yl,j)
2
]

[
pyl,j

+ ryj
(y − yl,j)

]
dy.

(A.23)

Integration with respect to y yields

Fz,ij,d(z) =
[
pxl,i

pyl,j
( 12 )(y − yl,j)

2 + pxl,i
ryj

( 13 )(y − yl,j)
3

+ 1
2rxi

pyl,j
( 13 )(y − yl,j)

3 + 1
2rxi

ryj
( 14 )(y − yl,j)

4
]yu,j

y=yl,j
.

(A.24)

Inserting integration boundaries yields

Fz,ij,d(z) =
1
2pxl,i

pyl,j
(yu,j − yl,j)

2 + 1
3pxl,i

ryj
(yu,j − yl,j)

3

+ 1
6rxi

pyl,j
(yu,j − yl,j)

3 + 1
8rxi

ryj
(yu,j − yl,j)

4.
(A.25)
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The first derivative of Equation (A.25) with respect to z is its corresponding
PDF. The variables dependent on zij are xu,i = zij + yu,j , yl,j = xl,i − zij and
pyl,j

= fy,j(yl,j) = p0,yj + ryj (xl,i − zij). So the derivative writes

fz,ij,d(z) = − 1
2pxl,i

ryj
(yu,j − yl,j)

2

+ 2
2pxl,i

pyl,j
(yu,j − yl,j)

+ 3
3pxl,i

ryj
(yu,j − yl,j)

2

− 1
6rxiryj (yu,j − yl,j)

3

+ 3
6rxipyl,j

(yu,j − yl,j)
2

+ 4
8rxi

ryj
(yu,j − yl,j)

3,

(A.26)

and can be rewritten as

fz,ij,d(z) = pxl,i
pyl,j

(yu,j − yl,j)

+ 1
2pxl,i

ryj (yu,j − yl,j)
2

+ 1
2rxi

pyl,j
(yu,j − yl,j)

2

+ 1
3rxi

ryj
(yu,j − yl,j)

3.

(A.27)

Multiplication
Let Z = XY . For multiplication integration of probability for joint bins has to be
performed separately for each quadrant, as can be seen in Figure 2.3. In this section,
integration for quadrant 1 (z ∈ 〈0,∞〉) is derived. The integration boundaries for
joint bin (i, j) are defined as

xl,i = max(xi,min(xi+1, z/yj+1))

yl,j = max(yj ,min(yj+1, z/xi+1))

xu,i = max(xi,min(xi+1, z/yl,j))

yu,j = max(yj ,min(yj+1, z/xl,i))

zij = xu,iyl,j = xl,iyu,j .

(A.28)

Equation (A.5) for sub-area d can be written as

Fz,ij,d(z) =

∫ yu,j

y=yl,j

∫ zij/y

x=xl,i

fx,i(x)fy,j(y) dx dy. (A.29)

Integration with respect to x yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
p0,xi(zij/y − xl,i) +

1
2rxi

(
(zij/y)

2 − x2
l,i

) ]

fy,j(y) dy.
(A.30)

Integration with respect to y yields

Fz,ij,d(z) =
[
p0,xip0,yj (zij ln |y| − xl,iy) + p0,xiryj (zijy − 1

2xl,iy
2)

+ 1
2rxip0,yj (−z2ij/y − x2

l,iy) +
1
2rxiryj (z

2
ij ln |y| − 1

2x
2
l,iy

2)
]yu,j

y=yl,j
.

(A.31)
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Inserting integration boundaries yields

Fz,ij,d(z) = p0,xi
p0,yj

(zij ln |yu,j/yl,j | − xl,i(yu,j − yl,j))

+p0,xi
ryj

(zij(yu,j − yl,j)− 1
2xl,i(y

2
u,j − y2l,j))

+ 1
2rxip0,yj (−z2ij(y

−1
u,j − y−1

l,j )− x2
l,i(yu,j − yl,j))

+ 1
2rxi

ryj
(z2ij ln |yu,j/yl,j | − 1

2x
2
l,i(y

2
u,j − y2l,j)).

(A.32)

The first derivative of Equation (A.32) with respect to zij is its correspond-
ing PDF. The variables dependent on zij are xu,i = zij/yl,j , yu,j = zij/xl,i and
ln |yu,j/yl,j | = ln |zij/(xl,iyl,j)|. So the derivative writes

fz,ij,d(z) = p0,xi
p0,yj

(ln |yu,j/yl,j |+ zijz
−1
ij − xl,ix

−1
l,i )

+p0,xi
ryj

((yu,j − yl,j) + zijx
−1
l,i − 1

2xl,i2yu,jx
−1
l,i )

+ 1
2rxip0,yj (−2zij(y

−1
u,j − y−1

l,j ) + z2ijxl,iz
−2
ij − x2

l,ix
−1
l,i )

+ 1
2rxi

ryj
(2zij ln |yu,j/yl,j |+ z2ijz

−1
ij − 1

2x
2
l,i2yu,jx

−1
l,i ).

(A.33)

and can be rewritten as

fz,ij,d(z) = p0,xi
p0,yj

ln |yu,j/yl,j |
+p0,xi

ryj
(yu,j − yl,j)

−rxi
p0,yj

zij(y
−1
u,j − y−1

l,j )

+rxi
ryj

zij ln |yu,j/yl,j |,

(A.34)

where zij(y
−1
u,j − y−1

l,j ) can be replaced by −(xu,i − xl,i).

Division
Let Z = X/Y . For division integration of probability for joint bins has to be per-
formed separately for each quadrant, as can be seen in Figure 2.3. In this section,
integration for quadrant 1 (z ∈ 〈0,∞〉) is derived. The integration boundaries for
joint bin (i, j) are defined as

yu,j = max(yj ,min(yj+1, xi+1/z))

xu,i = max(xi,min(xi+1, zyu,j))

yl,j = max(yj ,min(yj+1, xl,i/z))

xl,i = max(xi,min(xi+1, zyj))

zij = xu,i/yu,j = xl,i/yl,j .

(A.35)

Equation (A.5) for sub-area d can be written as

Fz,ij,d(z) =

∫ yu,j

y=yl,j

∫ zijy

x=xl,i

fx,i(x)fy,j(y) dx dy. (A.36)
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Integration with respect to x yields

Fz,ij,d(z) =

∫ yu,j

y=yl,j

[
p0,xi

(zijy − xl,i) +
1
2rxi

(
(zijy)

2 − x2
l,i

) ]

fy,j(y) dy.
(A.37)

Integration with respect to y yields

Fz,ij,d(z) =
[
p0,xi

p0,yj
( 12zijy

2 − xl,iy) + p0,xi
ryj

( 13zijy
3 − 1

2xl,iy
2)

+ 1
2rxi

p0,yj
( 13z

2
ijy

3 − x2
l,iy) +

1
2rxi

ryj
( 14z

2
ijy

4 − 1
2x

2
l,iy

2)
]yu,j

y=yl,j
.

(A.38)

Inserting integration boundaries yields

Fz,ij,d(z) = p0,xi
p0,yj

( 12zij(y
2
u,j − y2l,j)− xl,i(yu,j − yl,j))

+p0,xi
ryj

( 13zij(y
3
u,j − y3l,j)− 1

2xl,i(y
2
u,j − y2l,j))

+ 1
2rxi

p0,yj
( 13z

2
ij(y

3
u,j − y3l,j)− x2

l,i(yu,j − yl,j))

+ 1
2rxiryj (

1
4z

2
ij(y

4
u,j − y4l,j)− 1

2x
2
l,i(y

2
u,j − y2l,j)).

(A.39)

The first derivative of Equation (A.39) with respect to zij is its corresponding
PDF. The variables dependent on zij are xu,i = zijyu,j and yl,j = xl,i/zij . So the
derivative writes

fz,ij,d(z) = p0,xi
p0,yj

( 12y
2
u,j +

1
2x

2
l,iz

−2
ij − x2

l,iz
−2
ij )

+p0,xi
ryj

( 13y
3
u,j +

1
32x

3
l,iz

−3
ij − 1

22x
3
l,iz

−3
ij )

+ 1
2rxi

p0,yj
( 132zijy

3
u,j +

1
3x

3
l,iz

−2
ij − x3

l,iz
−2
ij )

+ 1
2rxi

ryj
( 142zijy

4
u,j +

1
42x

4
l,iz

−3
ij − 1

22x
4
l,iz

−3
ij ).

(A.40)

and can be rewritten as

fz,ij,d(z) =
1
2p0,xip0,yj (y

2
u,j − y2l,j)

+ 1
3p0,xiryj (y

3
u,j − y3l,j)

+ 1
3rxi

p0,yj
zij(y

3
u,j − y3l,j)

+ 1
4rxi

ryj
zij(y

4
u,j − y4l,j).

(A.41)

A.2 Performance examples
As a showcase, two examples from the literature are chosen to reproduce the re-
sults using piecewise linear PDFs, and to compare the performance of the different
calculation methods.

If an analytical solution of a stochastic problem is not available, or hard to
achieve, then Monte Carlo simulation is a frequently used method to get an an-
swer to the problem. Calculations with piecewise linear PDFs can be a good alter-
native for Monte Carlo simulations. From the literature, two examples are selected
to demonstrate the performance differences between these two methods. In both
selected papers, a Monte Carlo simulation is performed as a reference for an ap-
proximate analytical solution.
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Figure A.2: Copied from Meija [2010] (black), showing the results of evaluating equation A.42 by
using Monte Carlo simulation. The red dots are the results of the piecewise linear PDF calculations.

A.2.1 Example 1: lowest relative uncertainty
Meija [2010] used two methods, Monte Carlo simulation (MC) and analytical deriva-
tion, to find the lowest relative uncertainty (i.e., coefficient of variation) of a formula
calculating the light absorbance value. We compared the performance of these
methods with our PDF calculations. The formula Meija used is

A = − log10
I

I0
, (A.42)

where A is the absorbance value, and I and I0 are light intensities with a standard
deviation of 0.01. To find the optimal ratio of I and I0 the mean value of I is varied
between 0.3 and 0.4 and I0 has a fixed mean of 1. These variables are assumed to
be Gaussian distributed.

The aim is to find the lowest value of relative uncertainty σA/A where σA is the
standard deviation of A. Figure A.2 shows the results (black dots) of the evaluation
of equation A.42, as calculated by Meija [2010]. The red dots are the results of the
piecewise linear PDF calculations. The lowest point of the graph is at A ≈ 0.48,
which is approximately the same value as found by Meija [2010]: 0.48 with the
Monte Carlo simulation, and 0.482 with the analytical solution.

It should be noted that the relative uncertainty of A is sensitive to the discretiza-
tion of the PDFs of I and I0. They could be described sufficiently accurate by at least
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40 bins. The truncation of the PDFs was performed two sided at five times the stan-
dard deviation. All bins were of equal width.

A.2.2 Example 2: uncertainty of calculated ratios
Holmes and Buhr [2007] addressed the uncertainty of quantities calculated from lab-
oratory measures. They developed an analytical equation to calculate the coeffi-
cient of variation (CV) of the ratio of two Gaussian distributed RVs. This equation is
defined as:

CVR
∼=

√
CV 2

X + CV 2
Y + 3CV 2

Y CV 2
X + 8CV 4

Y

1 + CV 2
Y

. (A.43)

The ratio of the RVs is written as: R = X/Y , where X and Y are known independent
and Gaussian distributed RVs. The CV of an RV is defined as the quotient of the
standard deviation and the average value of this RV. Thus CVX = σX/µX and
CVY = σY /µY , where σ and µ are the standard deviation and average value of
their respective variables. In this example, the average values of X and Y are 650

and 0.14, respectively. The variances of these values are derived from the given CVs

to be tested. These values are 0.05, 0.10, ..., 0.30 for X and 0.01, 0.02, ..., 0.30 for Y .
In figure A.3, the CVs of R are plotted against the CVs of Y for fixed CV values

of X . As can be seen, the values of the PDF calculations (red) correspond quite well
with the results of the Monte Carlo simulation (MC). The values of the MC are used
by Holmes and Buhr [2007] as a benchmark for equation A.43.

The PDFs were discretized in 50 bins, and, like Holmes and Buhr [2007] did, two
sided truncated at three times the standard deviation. To reproduce the results of
Holmes and Buhr, it was important to pursue this truncation in the same way.
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Figure A.3: Copied from Holmes and Buhr [2007] (black). The solid black lines are the result of a
Monte Carlo simulation of Holmes and Buhr [2007], the dashed lines are the results of their improved
formula, and the red dots are the results of our PDF calculations.
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B.1 Mode of the joint distribution of elementary operations 149

B.1 Mode of the joint distribution of elementary operations
Finding the mode of a multiple dimensional joint probability density function (PDF)
of independent random variables (RVs) is straight forward. The mode is found at
the position formed by the modes of the marginal distributions. When the joint PDF

is subject to any constraint, finding the mode is less obvious. This section contains
the derivations of finding the mode when the result of an elementary operation of
the marginal PDFs is conditional on a fixed value. All RVs are described by piece-
wise linear PDFs.

Hereafter, X and Y are known independent RVs and Z is the resulting RV of an
elementary operation (+ − ×/). For every value x ∈ X and y ∈ Y the probability
density of the joint distribution can be calculated as

p(x, y) = fxi
(x)fyj

(y), (B.1)

where fx(x) and fy(y) are the PDFs of X and Y , respectively. The subscripts i and j

denote the bin numbers of the piecewise linear PDFs. The PDFs are defined as

fxi
(x) =p0,xi

+ rxi
x (B.2)

fyj (y) =p0,yj + ryjy, (B.3)

where p0,xi and p0,yj are the probability densities at x = 0 for bin i and y = 0 for
bin j, respectively, and rxi

and ryj
are constant values.

Applying elementary operations, x can be written as a function of z and y as

x = g(y, z). (B.4)

Inserting Eqs. (B.2)–(B.4) into Eq. (B.1) yields

p(y, z) = (p0,xi
+ rxi

g(y, z))(p0,yj
+ ryj

y). (B.5)

The extreme values of p(g(y, z), y) for a certain value of z can be found by taking
the first derivative with respect to y, which writes

dp(y, z)

dy
= p0,xi

ryj
+ rxi

p0,yj

dg(y, z)

dy
+ rxi

ryj

dg(y, z)y

dy
. (B.6)

Setting this function equal to 0 and solve it for y yields the coordinates (x, y) with
an extreme value for p(x, y). Since this function only holds within the domain of
the joint bin (i, j), the value of y must satisfy the constraint y ∈ [yj , yj+1], where
yj and yj+1 are the boundaries of the bin j of Y . Equivalently, x is constrained
to x ∈ [xi, xi+1]. All bins which are intersected by the line x = g(y, z) have to be
evaluated to find the mode.

In the next sections this method is applied to four elementary operations.
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B.1.1 Summation
Let Z = X+Y , thus g(y, z) = z−y. The first derivative with respect to y of Eq. (B.6)
yields:

dp(y, z)

dy
=p0,xi

ryj
+ rxi

p0,yj

d(z − y)

dy
(B.7)

=p0,xi
ryj

− rxi
p0,yj

+ rxi
ryj

z − 2rxi
ryj

y.

Setting this function to 0 and solve it for y yields

y = (p0,xi
ryj

− rxi
p0,yj

+ rxi
ryj

z)/(2rxi
ryj

). (B.8)

B.1.2 Subtraction
Let Z = X−Y , thus g(y, z) = z+y. The first derivative with respect to y of Eq. (B.6)
yields

dp(y, z)

dy
=p0,xi

ryj
+ rxi

p0,yj

d(z + y)

dy
+ rxi

ryj

d(z + y)y

dy
(B.9)

=p0,xi
ryj

+ rxi
p0,yj

+ rxi
ryj

z + 2rxi
ryj

y.

Setting this function to 0 and solve it for y yields

y = (p0,xi
ryj

+ rxi
p0,yj

+ rxi
ryj

z)/(−2rxi
ryj

). (B.10)

B.1.3 Multiplication
Let Z = XY , thus g(y, z) = z/y. The first derivative with respect to y of Eq. (B.6)
yields

dp(y, z)

dy
=p0,xi

ryj
+ rxi

p0,yj

d(z/y)

dy
+ rxi

ryj

d(z/y)y

dy
(B.11)

=p0,xi
ryj

− rxi
p0,yj

zy−2.

Setting this function to 0 and solve it for y yields

y = ±
√

rxip0,yjz

p0,xi
ryj

. (B.12)

B.1.4 Division
Let Z = X/Y , thus g(y, z) = zy. The first derivative with respect to y of Eq. (B.6)
yields

dp(y, z)

dy
=p0,xi

ryj
+ rxi

p0,yj

d(zy)

dy
+ rxi

ryj

d(zy)y

dy
(B.13)

=p0,xi
ryj

+ rxi
p0,yj

z + 2rxi
ryj

zy.

Setting this function to 0 and solve it for y yields

y = (p0,xiryj + rxip0,yjz)/(−2rxiryjz). (B.14)
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In the literature, inference in probability theory is described using different
styles of notation and terminology. The derivation of rules or axioms for processing
probability data are found in the theory of the Boolean algebra, the set theory, and
the conventional probability theory. The Bayesian belief theory, as can be seen as
founded by Dempster and Shafer [Dempster, 1966, 1967; Shafer, 1976], is important
in the literature and is used in describing the inference in Bayesian networks (BNs)
or directed acyclic graphs (DAGs). All these branches of theory do have their own
notation and rules, but do often describe the same phenomena. Hereafter, a short
overview is given of the connection between the different styles as used in differ-
ent fields of the probability literature. This is not an exhaustive description of the
different theories, but only a description of the common parts to be able to see the
connections.

C.1 The connection
Let the variables A and B describe two propositions (statements) or events, and let
S define all possible events or the event space. If the variables are Boolean they
take only two values: 0 or 1, or, respectively, false or true. In the set theory they can
take any value. To the occurrence of an event a probability can be assigned, which
makes a connection between Boolean or set theory, and conventional probability
theory. This probability is always greater then or equal to 0, also known as the first
Kolmogorov axiom [Kjærulff and Madsen, 2012, p. 40]. The notation Pr(A) is defined
as the probability of event A taking place.

In the Boolean algebra [e.g. Jaynes, 2003, p. 9 ff] three basic operations on propo-
sitions are defined. The first operation is the logical product, logical AND, or con-
junction, which is symbolically written as AB, A ·B, A ∧B, or just A AND B. This
means that if both A and B are true, then AB is true, otherwise AB is false. The
second operation is the logical sum, logical OR, or disjunction, which is denoted by
A+B, A∨B, or A OR B. This disjunction is defined as true if either A or B or both
are true, thus only if both A and B are false then the disjunction evaluates to false.
The last operation is the logical NOT, or negation written as A or ¬A. This means
that if A is true, then A is false, and the reverse. These three operations are sufficient
to perform all possible logical operations [Jaynes, 2003, p. 15]. Moreover, through
the duality property AB = A + B it is even possible to define all operations with
only the negation operator and one of the conjunction or disjunction operators.

In the set theory [e.g. Papoulis and Pillai, 2002, p. 15 ff; Kjærulff and Madsen, 2012,
p. 40], objects or elements and operations are defined which are comparable to
those in the Boolean algebra but using different notations. In this context, set S is
the event space or sample space, and A and B are subsets of S. The event space S

contains elements which may be discrete or continuous. A frequently used tool is
a Venn diagram, which is a useful tool for visually reasoning. Figure C.1 shows an
example with event space S and two subsets A and B.

The area within a subset can contain discrete elements or denotes a continuous
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A B

S

A ∩ B=AB

Figure C.1: Example of a Venn diagram with subset A and B in event space S.

A ∩ B=AB

A B

S

Figure C.2: Venn diagram showing the intersec-
tion of subset A and B in event space S.

A ∪ B=A+B

A

S

B

Figure C.3: Venn diagram showing the union of
subset A and B in event space S.

area. In case of a random process, to every discrete element or every sub-area a
probability is assigned. In case of a continuous space S, every point in space can
be assigned a probability density. A Venn diagram may not be suitable to describe
all elements of probability theory [Jaynes, 2003, p. 48], but it suits all the needs for
the problems at hand in Chapter 5. For set theory, the same three basic operations
as for Boolean algebra are defined. Firstly, the intersection operation AB or A ∩ B,
related to the conjunction operation, describes the intersection of set A and B. So
the set AB contains all elements which are in set A and in set B. This is in Figure C.2
denoted by the purple area. Secondly, the union operation A+B or A∪B, related to
the disjunction operator, denotes the union of the sets A and B. So every element in
set A, in set B or in both sets is an element of set A+B. In Figure C.3 this is the red
area. An important property of sets is that all elements within a set are mutually
exclusive. In case of events, this means that two mutually exclusive events can not
happen at the same time. So even when A and B are not mutually exclusive, which
means that the intersection AB is not the empty set {∅}, still the set A+B contains
only distinct elements. Thirdly, related to the negation, the complement of a set A
is written as A, Ac, or A′. So set A contains all elements of S excluded the elements
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a) S
S\{A}=A

A

b) S
S\{B}=B

B

c) S
S\{AB}=AB=A ∪ B

Figure C.4: Venn diagrams showing the duality property of sets. Figure a) depicts the complement
of A, figure b) the complement of B, and figure c) shows that the union of the complements is equal
tot the complement of the intersection of subset A and B.

of A, also written as S \{A} (Figure C.4a). Equivalent to the Boolean algebra, in the
set theory the duality property or De Morgan’s law [Papoulis and Pillai, 2002, p. 18]
is defined as AB = A ∪ B. In Figure C.4 this is depicted as A (C.4a), B (C.4b), and
the union A ∪B (C.4c).

Further, in conventional probability theory the concepts of the former theories
are applied, or rather, probabilities are assigned to the propositions or events of
these theories. In the Boolean algebra, if A is a proposition, or Boolean expression,
which can be either true or false with a certain probability, then Pr(A) is the prob-
ability of A being true. Also, if in the set theory a probability is assigned to the
elements (or areas) of event space S, then Pr(A) is the probability of an element s
of S (s ∈ S) being in set A, or Pr(A) =

∑
s∈A Pr(s). So Pr(A) is equal to the sum

of the probabilities of all elements s which are an element of A. Although S and A

can contain much more elements than two, the probability can still be written as a
Boolean expression. Therefore, we can define the proposition ’s is an element of A’
or s ∈ A, which is either true or false with a certain probability. So we can write
Pr(A) = Pr(’s is an element of A’) in which the left hand side is written as the prob-
ability of a set, and the right hand side as the probability of a Boolean expression.
With probabilities assigned to all elements of set S, this set can be seen as a random
variable (RV), or, in other words, the RV is a function which assigns probabilities to
the elements of set S [Papoulis and Pillai, 2002, p. 15]. An important axiom of the
probability theory is that the probability of all elements s of S sum to 1, also known
as the second Kolmogorov axiom [Kjærulff and Madsen, 2012, p. 40].

When defined in this way, S seems to be a single RV. It is nevertheless easy
to define S as the combination of multiple variables. Let X and Y be random
variables with elements xi with i = 1 . . .m, and yj with j = 1 . . . n, respectively,
and let all elements of S be defined as sij = (xi, yj). Now, the joint probability
[Bishop, 2006, p. 13; Papoulis and Pillai, 2002, p. 169] of event X = xi and Y = yj
is defined as the probability of both events happening simultaneously, written as
Pr(X = xi, Y = yj). This means the probability of RV X taking the value xi and
RV Y taking the value yj simultaneously. If we define set Ai = {si1, . . . , sin} and
set Bj = {s1j , . . . , smj}, then the intersection Ai ∩ Bj = {si,j} = {(xi, yj)}, hence
Pr(Ai ∩ Bj) = Pr(xi, yj). So, the definition of the joint probability is clearly re-
lated to intersection of the set theory and the conjunction of the Boolean algebra.
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Therefore, the notations of the set theory and the Boolean algebra are found in the
probability literature as well.

In consistence with the union operation, the sum rule of probability [Jaynes, 2003,
p. 30 ff], or rule of total probability [Kjærulff and Madsen, 2012, p. 44], also known as
the third Kolmogorov axiom [Kjærulff and Madsen, 2012, p. 40], is defined. When
A and B are mutual exclusive events, then the probability of A + B equals to the
sum of the probabilities of A and B, Pr(A) + Pr(B). When A and B are not mutual
exclusive, then the probability writes

Pr(A+B) = Pr(A) + Pr(B)− Pr(AB). (C.1)

A summary of equivalent notations of the three operations is, for the conjunc-
tion or union operation

Pr(A+B) = Pr(A OR B) = Pr(A ∨B) = Pr(A ∪B)

= Pr(A) + Pr(B)− Pr(AB),
(C.2)

for the disjunction or intersection operation or joint distribution

Pr(AB) = Pr(A ·B) = Pr(A AND B) = Pr(A∧B) = Pr(A∩B) = Pr(A,B), (C.3)

and for the negation or complement

Pr(A) = Pr(¬A) = Pr(Ac) = Pr(A′) = 1− Pr(A). (C.4)

C.2 Conditional probability and Bayes’s rule
By application of the theory of the former section, the interpretation of conditional
probability can easily be explained and understood. The conditional probability
[Kjærulff and Madsen, 2012, p. 41] is a very important concept in probability the-
ory, and especially in Bayesian inference. The conditional probability is written as
Pr(A|B), which means the probability of event A given that event B has occurred.
Or in terms of sets, given that s is an element of B, what is the probability that s is
an element of A too. In Figure C.5 this concept is graphically displayed for Pr(A|B)

and Pr(B|A). In these figures, the probability of an element s being in the shaded
area is 1, because this is given. So the probability of all elements s within this area
have to be divided by the total probability of the shaded area, which obviously is
1. From Figure C.5 it can be seen that we can write

Pr(A|B) =
Pr(AB)

Pr(B)
(C.5)

Pr(B|A) = Pr(AB)

Pr(A)
(C.6)

Combining these equations yields

Pr(AB) = Pr(A|B) Pr(B) = Pr(B|A) Pr(A), (C.7)
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a)

A B

S b)

A B

S

Figure C.5: Graphical interpretation of the conditional probability. The interpretation of the inter-
section of A and B is in figure a): Pr(A|B), and in figure b): Pr(B|A).

a)

B ∩ C=BC

A B

C

S b)

A ∩ B ∩ C=ABC

A B

C

S

Figure C.6: Graphical interpretation of the chain rule. Figure a) can be interpreted as Pr(BC) =

Pr(C|B) Pr(B) = Pr(B|C) Pr(C). Figure b) depicts Pr(A|BC) Pr(BC), of which Pr(BC) can
be further expanded as in figure a).

which is called the fundamental rule of probability [Bishop, 2006, p. 13 ff; Kjærulff and
Madsen, 2012, p. 42,54], or the factorization of the joint distribution of AB [Kjærulff
and Madsen, 2012, p. 48]. Rewriting the fundamental rule of Equation (C.7) yield
Bayes’ Theorem [Kjærulff and Madsen, 2012, p. 54]

Pr(A|B) =
Pr(AB)

Pr(B)
=

Pr(B|A) Pr(A)
Pr(B)

, (C.8)

and equivalently for Pr(B|A). Recursive application of the fundamental rule yields
the chain rule [Kjærulff and Madsen, 2012, p. 62]. So the factorization of the joint
distribution Pr(ABC) writes

Pr(ABC) = Pr(A|BC) Pr(BC) = Pr(A|BC) Pr(B|C) Pr(C), (C.9)

in which A, B, and C may be freely interchanged to arrive at different expressions,
but all describing the same joint distribution. In Figure C.6 the chain rule is graph-
ically shown with a Venn-diagram. In the set theory the result of an operation on
two sets always yields one new set. But the reverse can also be stated, that one set
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a)

Z

X Y
b)

C

A B

Figure C.7: Simple Bayesian graph (left) and Markov network (right) with three stochastic nodes.

always can be written as the result of an operation on two sets. With this mind,
Eq. C.7 and C.9 can easily be seen as equivalent.

If event A is independent of B then the conditional probability of A given B

can be written as Pr(A|B) = Pr(A). This is not equal to A and B being mutual
exclusive.

C.3 Probability potentials
In the literature, inference in Bayesian networks/graphs is often described in terms
of potentials, instead of probability density functions. The notation and terminol-
ogy diverges strongly from the common practice in other areas of probability liter-
ature. The connection between these areas is described here.

A Bayesian graph (Figure C.7a), or directed acyclic graph (DAG), is a graphical
representation of a joint probability distribution containing conditional distribu-
tions. In a Bayesian graph, each node represents a random variable, and the nodes
are connected by arrows (or edges). These arrows between the nodes represent
the conditional dependencies between the variables. Together, the total graph de-
scribes a joint distribution where the probability, or probability density, depends
on the values of each node. For each variable, the probability distribution of this
variable depends on the values of its parents, and can be described by conditional
distributions. In Figure C.7, a Bayesian graph with nodes X , Y and Z is shown.
There, the set of parents of Y is pa(Y ) = {X}, where pa(Y ) denotes the parents of
Y , and the set of parents of Z is pa(Z) = {X,Y }.

In contrast to the Bayesian graph an undirected graph or Markov network can
be used to describe a probability distribution. In Figure C.7b such a graph is de-
picted. The difference between the two networks is the dependence structure of
variables, the edges in the Markov network do not contain arcs. This implies that
each node has no parents and is not defined as a conditional distribution.

A set of specific values of the domain of the variables in a probabilistic graph is
called a state. The collection of all states of a graph is often denoted by Ω, and the
collection of states of one variable, say X , is defined as ΩX . If the random variable
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X is interpreted as a function then ΩX is the domain of this function. If the state
of a variable is observed this state is often called evidence. If a node in a DAG is
observed then the dependency structure may change. This is known as directional
or d-separation [e.g. Pearl, 1993; Kjærulff and Madsen, 2012, p. 33].

In both the directed and undirected graphs the probability functions of the
nodes are denoted by probability potential. A (probability) potential is defined
as a non-negative function but is not necessarily a probability distribution, since it
not always integrates to 1 [Kjærulff and Madsen, 2012, p. 46]. Nevertheless, a po-
tential can be turned into a probability distribution by normalization. This is often
the case in an undirected graphical model, or Markov network (Figure C.7b), but in
a DAG the nodes usually represent conditional distributions which are normalized
[Bishop, 2006, p. 386]. For instance, the potential of node C in Figure C.7b, given the
state of node A and B can be written as Pr(C,A = a,B = b). Unless A and B are de-
generate random variables (with 0-variances), the potential of C is not a probability
distribution but is a subset of the joint distribution of the total network. Hence the
function does not integrate to 1. For the graph in Figure C.7a, the joint distribution
may be written as Pr(Z,X, Y ) = Pr(Z|X,Y ) Pr(Y |X) Pr(X), where the factoriza-
tion is explicitly given by the direction of the arrows. Each factor on the right hand
side of this equation coincides with the probability distribution of one node. So
given the state of X and Y , the potential of Z writes Pr(Z|X = x, Y = y). Due to
normalization, this potential is a probability distribution. It is common practice to
denote a potential by a Greek letter, so ζ = Pr(Z|X = x, Y = y).

The application of potentials in the description of Bayesian networks has its
own operations and notations. This yields a very compact notation which may
need some explanation. The domain of a potential is defined as the set of all vari-
ables involved [Cabañas et al., 2014, p. 99], which is the union of the variable and its
parents. So in the example of Figure C.7a, the domain of ζ is dom(ζ) = {Z, pa(Z)} =

{X,Y, Z}, the domain of ψ, which is the potential of Y , is dom(ψ) = {X,Y }, and
the domain of ξ, the potential of X , is dom(ξ) = {X}. Combination of potentials is
written as ξ⊗ψ, where ⊗ denotes a point-wise multiplication [Cinicioglu and Shenoy,
2009]. The domain of such a potential is the union of the domains of the individual
potentials, so dom(ξ⊗ψ) = dom(ξ)∪dom(ψ) = {X,Y }. For a specific state (x, y), the
potential is written as (ξ ⊗ ψ)(x, y), which is equivalent to Pr(x, y) = Pr(y|x) Pr(x)
in the above example.

Marginalization is an operation on a conditional distribution where a marginal
variable is integrated out of the distribution (see Section C.4). Marginalization of
potentials is denoted by ψ′ = (ξ ⊗ ψ)−X , where ψ′ is a new potential or function of
Y , in this example with X marginalized out. An equivalent expression is Pr(y) =∑

x∈X Pr(y|x) Pr(x) for discrete X , or Pr(y) =
∫
x
p(y|x)p(x)dx for a continuous

variable X .
Another frequently used operation is the projection [Cinicioglu and Shenoy, 2009],

which can be seen as the complement of a marginalization. The projection is an
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operation on the state of a potential. Let v be a state of the total graph, and let
ΩX , ΩY and ΩZ be the domain of X , Y and Z, respectively. Now the potentials
of X , Y and Z with state v can be written as ξ(v↓ΩX ), ψ(v↓ΩY ) and ζ(v↓ΩZ ), re-
spectively. So the projection can be seen as a selection of elements of the state v

needed for a specific potential. Applied to a combination of potentials this yields
(ξ ⊗ ψ ⊗ ζ)(v) = ξ(v↓ΩX )ψ(v↓ΩY )ζ(v↓ΩZ ).

C.4 Marginalization, elimination of nuisance parameters
Making inference in a Bayesian network (BN) involves updating of the marginal
distributions, given observations of some variables. Such a network may contain
a large number of marginal distributions, but one may be interested in updating
only a few of these distributions. The variables which are, for the moment, of no
interest are the so called nuisance parameters. When multiple marginal parameters
are of interest, then updating all marginal distributions at the same time may be
intractable. In such a case, a number of marginal distributions can be treated as
nuisance parameters, retaining only a small number of distributions to be updated.
The nuisance parameters can be marginalized or integrated out, which decreases
the size and the complexity of the network [Kjærulff and Madsen, 2012, p. 115; Held
and Bové, 2013, p. 200; Gelman et al., 2014, p. 63]. This marginalization can be seen as
combining the information of the nuisance parameters and transfer this informa-
tion to the variables of interest.

A Bayesian network can be written as a joint distribution and a factorization
of this distribution (see Section C.2). Let p(θ1, θ2, y) be a joint distribution of three
arbitrary variables θ1, θ2 and y. Any joint distribution of three variables can be
factorized in nine different ways. Three factorizations of p(·) are

p(θ1, θ2, y) = p(θ1|θ2, y)p(θ2, y)
= p(θ1, θ2|y)p(y),

(C.10)

and by applying the chain rule p(θ2, y) = p(θ2|y)p(y) = p(y|θ2)p(θ2) this yields

p(θ1, θ2, y) = p(θ1|θ2, y)p(θ2|y)p(y)
= p(θ1|θ2, y)p(y|θ2)p(θ2)
= p(θ1, θ2|y)p(y).

(C.11)

The other six factorizations are found by interchanging the variables. If θ2 is con-
sidered a nuisance parameter, the marginalization of Equations (C.10) and (C.11)
writes ∫

θ2

p(θ1, θ2, y) dθ2 =

∫

θ2

p(θ1|θ2, y)p(θ2|y)p(y) dθ2

=

∫

θ2

p(θ1, θ2|y)p(y) dθ2,
(C.12)

which yields
p(θ1, y) = p(θ1|y)p(y). (C.13)
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From Equation (C.12) it can be seen that
∫

θ2

p(θ1|θ2, y)p(θ2|y) dθ2 =

∫

θ2

p(θ1, θ2|y) dθ2, (C.14)

which is a useful expression for marginalization. When the marginalization of θ2 is
applied to Bayes’ Theorem, with y being observed, which may be written as

∫

θ2

p(θ1, θ2|y) dθ2 =

∫
θ2
p(y|θ1, θ2)p(θ1, θ2) dθ2

p(y)
, (C.15)

this yields

p(θ1|y) =
p(y|θ1)p(θ1)

p(y)
, (C.16)

which yields a simpler expression for the posterior distribution of θ1 given y, with-
out the burden of an extra parameter.

C.5 Arc reversal
As mentioned before, a Bayesian graph is a Directed Acyclic Graph. This means
that the nodes in the graph are connected by arrows showing the dependencies be-
tween the nodes, and that from any node in the network there is no directed path
back to itself. For making inferences in a Bayesian graph, it can be useful to change
the directions of several arcs, the so called arc reversal. Arc reversal [Shachter, 1986;
Shachter, 1988; Cinicioglu and Shenoy, 2009; Kjærulff and Madsen, 2012, p. 56,116] is a
technique to change the dependencies between RVs in a Bayesian graph, but with-
out changing the joint distribution of the total graph. The method is based on
multiple application of Bayes’ Theorem [Shachter, 1986; Kjærulff and Madsen, 2012,
p. 56,116], which subsequently is a multiple factorization of the joint distribution
[Gelman et al., 2014, p. 63]. Although the joint distribution of the network does not
change, the probability functions, or potentials, of each node mostly will change.
Furthermore, the direction of the arc means probabilistic dependency and does not
necessarily represent causality.

When a node of a Bayesian graph is observed, the probability function of the
network changes, given this observation. One may be interested in the probability
function of a certain node, the node of interest, given the observation. This proba-
bility function is the posterior distribution function of that specific node. The aim
of arc reversal is to pass the information of an observation, also called a message,
through the network to obtain the posterior distribution of the node of interest
[Bishop, 2006, p. 394]. After an arc reversal, the arcs in the graph are pointing from
the observed node to the node of interest.

A generic example of the working of an arc reversal is shown in Figure C.8,
which is proven in Shachter [1986, 1988] and replicated here. In the graph in Fig-
ure C.8a is arc (XY ) the arc to be reversed. The nodes U and W represent all parent
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a)
X Y

U V W

b)
X Y

U V W

Figure C.8: Arc reversal example, pane a) shows the original graph and pane b) the graph after arc
reversal. The red arc (Y X) is the reversed arc and the blue arcs, (UY ) and (WX), are added as a
consequence of the arc reversal.

nodes of X and Y , respectively. The node V represents the common parents of both
nodes X and Y . The joint distribution according to Figure C.8a can be factorized as

p(x, y, u, v, w) = p(y|x, v, w)p(x|u, v)p(u, v, w), (C.17)

where p(u, v, w) = p(u)p(v)p(w) because of their mutual independence in the given
graph. After the arc reversal, Y is independent of X . This can be achieved by
integrating out X from Equation (C.17), as shown in Equations (C.12) and (C.13).
This yields

p(y, u, v, w) = p(u, v, w)

∫

x

p(y|x, v, w)p(x|u, v)dx

= p(u, v, w)p(y|u, v, w),
(C.18)

where p(y|u, v, w) is the new distribution function, or potential, of Y . Herewith Y

depends on U too, so arc (UY ) has to be added to the graph (Figure C.8b). The
factorization of the joint distribution after the arc reversal can be written as

p(x, y, u, v, w) = p(y|u, v, w)p(x|y, u, v, w)p(u, v, w), (C.19)

with p(y|u, v, w) being defined through Equation (C.18), but with p(x|y, u, v, w) cur-
rently unknown. Equating Equations (C.17) and (C.19) yields

p(y|u, v, w)p(x|y, u, v, w)p(u, v, w) = p(y|x, v, w)p(x|u, v)p(u, v, w), (C.20)

which, by application of Bayes’ rule, can be rewritten as

p(x|y, u, v, w) = p(y|x, v, w)p(x|u, v)
p(y|u, v, w) . (C.21)

From the right hand side of this equation it is clear that the conditional probability
function of x depends on w as well now, which is denoted by the blue arc (WX) in
Figure C.8.
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In Section 5.1.6, an expression is given to evaluate the likelihood function using
uncertain observations. Here, the derivation of the marginalization is given.

To find the marginal distributions of any parameter θi, equation

�(θ|X1,...,ν) = ν

∫

X

f̄(x) ln (f(x|θ)) dx. (D.1)

which is Equation (5.55), needs to be integrated over X to find the likelihoods of θ.
Both functions, f̄(x) and f(x; θ) are described by piecewise linear density functions.
The two piecewise linear functions are, for interval x ∈ [a, b] and a fixed value of θ,
defined as

f̄ab(x) = r(x− a) + p, (D.2)

with r = (f̄(b)− f̄(a))/(b− a) and p = f̄(a), and

fab(x; θ) = s(x− a) + q, (D.3)

with s = (f(b; θ)− f(a; θ))/(b− a) and q = f(a; θ). So the integral with respect to x

for one bin of x ∈ [a, b] yields

�ab(θ|X1,...,ν) = ν

∫ b

x=a

(r(x− a) + p) ln (s(x− a) + q) dx, (D.4)

and for t = x− a and dt = dx

�ab(θ|X1,...,ν) = ν

∫ b−a

t=0

(rt+ p) ln (st+ q) dt, (D.5)

and further for u = st+ q and du = s du

�ab(θ|X1,...,ν) = ν

∫ s(b−a)+q

u=q

(r(u− q)/s+ p) ln (u) s du

= νr

∫ s(b−a)+q

u=q

u ln (u) du+ ν(ps− rq)

∫ s(b−a)+q

u=q

ln (u) du

= ν
[
r 1
4u

2(2 ln(u)− 1) + (ps− rq)u(ln(u)− 1)
]s(b−a)+q

q
.

(D.6)

From Equation (D.3) it can be seen that the integration boundaries of u are q =

fab(a; θ) and s(b− a) + q = fab(b; θ). For u = 0 the expression between the brackets
is 0, since limu↓0 u ln(u) = 0. The log-likelihood now writes

�(θ|X1,...,ν) =

nf∑

j=1

�j(θ|X1,...,ν), (D.7)

where nf is the number of bins in the piecewise linear function f .
The posterior distribution of θi can now be found by integrating out all the

parameters except θi. The parameter θi stands for any of the marginal parameters
PKi

, SKi
, XKi

, PDi
, SDi

or XDi
. The last step is integrating out of the marginal

distributions of Ki and Di, written in arithmetic form as Ki = PKi
+ SKi

XKi
and

Di = PDi
+ SDi

XDi
. This yields the posterior predictive distributions of Ki and

Di, which is the aim of all the effort.
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Samenvatting

EEN MODEL is een poging om de werkelijkheid te begrijpen en te beschrijven.
Het doel van een model is om uitspraken over eigenschappen van de wer-
kelijkheid te kunnen doen zonder dat die gemeten zijn of redelijkerwijs ge-

meten kunnen worden. Een voorbeeld hiervan is een model om het weer van de
komende dagen te voorspellen.

Ieder model beschrijft de werkelijkheid in meer of mindere mate, maar zal nooit
exact met de werkelijkheid overeen komen. Of een model bruikbaar is hangt af van
de toepassing daarvan. Als je wilt weten of het morgen regent dan is het voldoende
om te weten dat er met 99,8% zekerheid tussen de 5 en de 95 mm neerslag zal vallen;
het zal regenen. Als iemand wil weten of het riool morgen de neerslag kan ver-
werken dan is deze weersverwachting onvoldoende. Voor deze laatste toepassing
zal het weermodel een verbeteringsslag moeten ondergaan.

Onderzoeksvraag
In dit proefschrift wordt gebruik gemaakt van twee soorten modellen: grondwa-
ter(stromings)modellen en hydrogeologische modellen. Hierbij is het laatste mo-
del vaak een onderdeel van het eerste. Grondwatermodellen worden gemaakt om
uitspraken te kunnen doen over, hoe kan het anders, grondwater. In het kader
van dit proefschrift worden met ’grondwatermodellen’ computermodellen bedoeld
waarmee de stroming en de stijghoogte (het grondwaterniveau) van het grondwa-
ter berekend kunnen worden. De grondwaterstroming wordt door veel invloeden
bepaald zoals neerslag en verdamping, oppervlaktewater en grondwaterwinning.
Afhankelijk van het doel van het grondwatermodel zal deze data daarin gemodel-
leerd moeten worden. De basis van een grondwatermodel bestaat veelal uit de
beschrijving van de ondergrond door middel van een hydrogeologisch model. Een
dergelijk model beschrijft de samenstelling van de ondergrond en de bijbehorende
doorlatendheden voor grondwaterstroming. In de Nederlandse situatie bestaat de
ondergrond voornamelijk uit klei, zand en veen en mengvormen van deze sedi-
menten.

Een belangrijk hydrogeologisch model in Nederland is REGIS. Dit model wordt
ontwikkeld en onderhouden bij de Geologische Dienst Nederland (TNO-GDN). Voor
veel grondwatermodellen dient REGIS als basis voor de beschrijving van de onder-
grond. Het REGIS model bestaat uit meer dan honderd lagen, wat meestal onnodig
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en onwerkbaar veel is voor een grondwatermodel. Afhankelijk van de toepassing
van het grondwatermodel zal er een mate van vereenvoudiging plaatsvinden en
zullen meerdere lagen uit het REGIS model samengevoegd worden tot één laag in
het grondwatermodel. Vaak blijkt dat een grondwatermodel in eerste instantie on-
voldoende nauwkeurige resultaten oplevert voor een beoogde toepassing. Daarom
moet het model gecalibreerd worden. Bij een calibratie worden de uitkomsten (zo-
als stijghoogten en fluxen) van het model vergeleken met bekende waarden (metin-
gen). Het grondwatermodel zal tijdens de calibratie zodanig aangepast worden dat
de verschillen tussen de modeluitkomsten en de metingen acceptabel zijn. Bij de
calibratie van het grondwatermodel zullen ook de parameters van het vereenvou-
digde hydrogeologische model veranderen. En hiermee komen we bij de kern van
dit proefschrift: het vereenvoudigde hydrogeologische model van het grondwa-
termodel is aangepast, en naar we aannemen verbeterd, maar het oorspronkelijke
model REGIS niet. De belangrijkste onderzoeksvraag is daarmee:

Ontwikkel een methode of procedure waarmee het REGIS model kan profiteren van de
verbeteringen in het grondwatermodel.

Oftewel, bedenk een terugkoppeling.
De onderzoeksvraag is benaderd vanuit de wetenschap dat alle data een zekere

mate van onzekerheid kent (stochastisch is). Als bijvoorbeeld een grondwaterstand
in een peilbuis gemeten is ten opzichte van de bovenkant van de buis tot op de cen-
timeter nauwkeurig, dan ligt de echte waarde waarschijnlijk in het interval plus of
min 5 mm. Als vervolgens de hoogte van het meetpunt ten opzichte van NAP, de
bovenkant van de buis, op een decimeter nauwkeurig bekend is, dan is de hoogte
van de grondwaterstand niet meer op de centimeter maar op de decimeter nauw-
keurig bekend. Deze onzekerheid geldt, vaak zelfs in sterkere mate, ook voor de
doorlatendheden en laagdiktes van de lagen in het hydrogeologische model. Deze
laatste twee parameters, de laagdikte en de doorlatendheid, zijn van belang in de
voorliggende studie. Dergelijke parameters waarvan de waarde onzeker is zijn zo-
genaamde kansvariabelen. Om de onzekerheid van de kansvariabelen te kunnen
kwantificeren wordt gebruik gemaakt van kansverdelingen.

Onzekerheid
Bij het kwantificeren van onzekerheid wordt vaak gebruikt gemaakt van standaard
kansverdelingen, zoals Gaussische of log-normale verdelingen. Dit heeft onder an-
dere als voordeel dat bepaalde rekenkundige bewerkingen in relatief weinig reken-
tijd uitgevoerd kunnen worden en dat de uitkomst een volledig bepaalde kansver-
deling is. Het aantal bewerkingen waar dit voor geldt is echter beperkt, niet elke
bewerking levert een standaardvorm kansverdeling op. Om een hoge mate van
flexibiliteit in de kwantificering van de onzekerheid in parameters en de vrijheid
in de rekenkundige bewerkingen te hebben, is gekozen om alle kansverdelingen te
beschrijven met behulp van gelineariseerde kansdichtheidsfuncties. Meestal wordt
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een kansdichtheidsfunctie beschreven met behulp van een analytische functie, de
curve hiervan is vaak een vloeiende lijn over het hele domein van de functie. In
principe bestaat een dergelijke curve uit oneindig veel punten. Bij een gelineari-
seerde kansdichtheidsfunctie is een beperkt aantal punten (tientallen) op de curve
gekozen die verbonden zijn door rechte lijnstukken. Deze discretisatiepunten zijn
zodanig gekozen dat de fout die dit veroorzaakt minimaal is. Alle benodigde
bewerkingen voor dit onderzoek zijn uitgewerkt voor gelineariseerde kansdicht-
heidsfuncties.

Terug naar de doelstelling van dit onderzoek: is het mogelijk om met behulp
van de gecalibreerde hydrogeologische beschrijving van een grondwatermodel het
REGIS model te verbeteren? Daarnaast is de vraag: kan er rekening gehouden wor-
den met onzekerheden in de parameterwaarden? Dat wil zeggen, laat gegevens
met een grotere onzekerheid een lager gewicht krijgen in de terugkoppeling dan
gegevens met een kleinere onzekerheid. Doordat REGIS als basis dient voor meer-
dere grondwatermodellen kunnen er meerdere gecalibreerde grondwatermodellen
beschikbaar zijn op dezelfde locatie. Daarmee komen we bij de laatste vraag: is het
mogelijk om al deze modellen te gebruiken om REGIS te verbeteren? (Spoiler: ja.)

Uitwerking van de vraagstelling
De beantwoording van de onderzoeksvragen is in verschillende stappen gedaan.
De eerste stap is de ontwikkeling van berekeningsmethoden met gelineariseerde
kansdichtheidsfuncties. Bij het type berekeningen dat ondersteund moet worden,
moet gedacht worden aan rekenkundige bewerkingen zoals optellen en vermenig-
vuldigen van kansvariabelen, toepassen van functies zoals logaritme en wortel-
trekken en het zoeken naar maximum waarden in kansverdelingen onder bepaalde
voorwaarden. Voor gelineariseerde kansverdelingen is dit geen gemeengoed in de
stochastiek en het was daarom noodzakelijk om daar algoritmes en programma-
tuur voor te ontwikkelen. In hoofdstuk 2 is een groot deel van deze bewerkingen
beschreven en is de werking hiervan aangetoond op een ruimtelijke interpolatie
(kriging interpolatie) van ondergrondgegevens. Bij de vervaardiging van een hy-
drogeologisch model, zoals REGIS, zijn metingen aan de ondergrond uitgevoerd met
behulp van boringen. Hiermee is op een bepaald punt (of beter gezegd, een ver-
ticale lijn) de samenstelling van de ondergrond bekend. Afhankelijk van het type
boring zijn de eigenschappen van de ondergrond in meer of mindere mate met
zekerheid bekend. Op de locaties waar niet geboord is, is de samenstelling van
de ondergrond onbekend. Door middel van interpolatie kan op de onbemeten lo-
caties toch iets gezegd worden over de sedimenten die daar aanwezig zijn, maar
de onzekerheid hierover is groter dan op de bemeten locaties. Voor laagdiktes en
(hydraulische) doorlatendheden is deze interpolatie uitgevoerd waarbij de onze-
kerheden in de metingen meegenomen kunnen worden. Hierdoor ontstaan vlak-
dekkende kaarten waarbij op elke locatie een kansverdeling van de laagdikte en de
doorlatendheid bekend is.
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Na deze eerste stap zijn de laagdiktes en doorlatendheden van een hydrogeo-
logisch model (in dit geval REGIS) bekend, inclusief een beschrijving van de onze-
kerheid. Deze parameterwaarden zijn ruimtelijk verschillend en zijn bepaald op
een regelmatig grid met cellen van 100 m×100 m. Wanneer in hetzelfde gebied ook
een gecalibreed grondwatermodel (op basis van REGIS) beschikbaar is, waarbij de
ondergrond parameters zijn aangepast en naar we aannemen verbeterd zijn, is dat
extra informatie. Een terugkoppeling van de verbeterde parameterwaarden uit het
grondwatermodel naar het hydrogeologische model REGIS is dan waardevol. Een
probleem hierbij is dat de één op één koppeling tussen het hydrogeologisch model
en het grondwatermodel verloren is gegaan door het samenvoegen van meerdere
REGIS lagen tot één laag in het grondwatermodel. In de tweede stap (hoofdstuk 3)
worden de laagdiktes en de doorlatendheden van de REGIS modellagen, die samen
overeenkomen met één laag uit het grondwatermodel, aangepast op basis van de
gecalibreerde parameterwaarden uit het grondwatermodel. Omdat elke gridcel in
het grondwatermodel is samengesteld uit meerdere REGIS modellagen met bijbe-
horende kansverdelingen, en de gecalibreerde parameter uit het grondwatermodel
voor diezelfde gridcel slechts één waarde heeft, is er geen unieke oplossing maar
bestaan er oneindig veel oplossingen. De beschreven methode kiest nu uit deze
oneindige hoeveelheid mogelijkheden de combinatie met de hoogste waarschijn-
lijkheid. Deze stap wordt uitgevoerd op elke locatie (gridcel) van het gebied waar
beide modellen elkaar overlappen.

De sedimenten in de ondergrond worden op basis van geologische processen en
de periode van afzetting ingedeeld in verschillende eenheden (formaties). Binnen
een formatie kunnen weer subeenheden onderscheiden worden. Bij de bouw van
een hydrogeologisch model wordt dit onder andere gedaan op basis van hydrau-
lische eigenschappen van de sedimenten. Binnen een dergelijke subeenheid wordt
meestal aangenomen dat de eigenschappen (in dit geval de doorlatendheden) van
het sediment overal gelijk zijn. Of beter gezegd, er zijn onvoldoende gegevens be-
schikbaar om ruimtelijke verschillen te kunnen beschrijven. Bij de calibratie van
een grondwatermodel is het vaak noodzakelijk om een ruimtelijke variatie in de
hydraulische eigenschappen van een modellaag aan te brengen om zo een model
te krijgen waarvan de uitkomsten beter aansluiten bij de gemeten waarden. Bij toe-
passing van de terugkoppeling, zoals hiervoor beschreven, komt deze ruimtelijke
variatie ook tot uitdrukking in de parameterisatie van het REGIS model. Dit is ge-
test op een gebied in midden Nederland waar twee gescheiden gebieden met klei-
ige afzettingen van de Eem Formatie voor komen. Van deze twee gebieden zijn de
initiële doorlatendheden van deze sedimenten gelijk gekozen. In het gecalibreerde
grondwatermodel was er echter een duidelijk verschil in (relatieve) aanpassing van
de verticale weerstand te zien. Na terugkoppeling van de gecalibreerde waarden
was dit verschil terug te vinden als verschil in de doorlatendheden van de twee
gebieden binnen de REGIS eenheden. Of deze uitkomst ook met de werkelijkheid
overeenkomt moet op basis van aanvullende gegevens gevalideerd worden.
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De hiervoor beschreven methode gebruikt (per gridcel) één waarde uit het geca-
libreerde grondwatermodel en geeft als resultaat één waarde voor elke parameter
in het REGIS model. Deze methode is overzichtelijk en relatief eenvoudig toe te pas-
sen. De methode heeft echter als nadeel dat er slechts gebruik gemaakt kan wor-
den van één grondwatermodel en dat er geen informatie meer beschikbaar is over
de onzekerheid van de paramaters. Dit laatste geldt zowel voor de gecalibreerde
waarden van het grondwatermodel als voor de parameterwaarden van het REGIS

model na de terugkoppeling.
De laatste methode in dit proefschrift, beschreven in hoofdstuk 5, heeft de mo-

gelijkheid om de resultaten van meerdere gecalibreerde grondwatermodellen te
gebruiken. Die modelresultaten kunnen van een eigen onzekerheid voorzien zijn,
waardoor verschillende modellen naar betrouwbaarheid gewogen kunnen worden.
Het resultaat van de terugkoppeling is niet een enkele waarde, zoals in de eerdere
methode, maar een volledige kansverdeling. Dit heeft als groot voordeel dat het
ook na een update van de parameters van het hydrogeologisch model duidelijk
is hoe betrouwbaar de resultaten zijn. Deze methode maakt gebruik van Bayesi-
aanse statistiek, waarbij het probleem gedefinieerd is met behulp van een Bayesi-
aans netwerk. De basis van die techniek is dat het toevoegen van een waarneming
(of meting) de oorspronkelijke (a priori) kansverdelingen van de parameters aan-
gepast worden en dat de parameterwaarden in betrouwbaarheid toenemen. Hoe
meer (onafhankelijke) metingen er beschikbaar zijn, hoe betrouwbaarder de (a pos-
teriori) parameters zullen worden. Als meting worden de gecalibreerde waarden
van een grondwatermodel gebruikt. Het is met deze techniek dus mogelijk om
resultaten van meerdere grondwatermodellen te gebruiken.

In hoofdlijnen kan gesteld worden dat er in dit onderzoek twee methodes zijn
ontwikkeld om een terugkoppeling te realiseren tussen gecalibreerde grondwater-
modellen en een hydrogeologisch model zoals REGIS. Daarbij wordt de onzekerheid
in de parameterwaarden gekwantificeerd met behulp van kansverdelingen. Voor
de noodzakelijke bewerkingen zijn niet altijd analytische oplossingen beschikbaar.
Daarom zijn er ondersteunende algoritmes ontwikkeld met gelineariseerde kans-
verdelingen om die bewerkingen mogelijk te maken.
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Software

IN THE PROJECT OF THIS THESIS, software has been developed to be able to make
the required calculations. One of the main developments was to make calcula-
tions with random variables, defined by piecewise linear probabilitye density

functions (PL-PDFs), feasible. Part of this software is made publicly available. This
includes the creation of PL-PDFs, arthmetic binary operations (+−×/), as described
in Appendix A, and elementary functions like log() and exp(). The software is writ-
ten in R1, with some core functionality written in FORTRAN for speedup reasons. The
software is combined into an R package (named plPDF).

The PL-PDF objects are implemented as an S3 object class (plpdf), and methods
for generic functions are supplied. Herewith, the dispatch mechanism of R is avail-
able, which makes the use of the functionality very intuitive.

The package is available at: https://github.com/lourensa/plPDF

1 R Core Team (2021). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

149884_lourens_BNW.indd   183 09-03-2021   12:22
185



149884_lourens_BNW.indd   184 09-03-2021   12:22
186





UTRECHT STUDIES IN EARTH SCIENCES

Improving hydrogeological 
models using the results 

of calibrated groundwater 
flow models

A probabilistic approach using 

piecewise linear probability density 

functions and Bayesian networks

Aris Lourens

Utrecht University
Faculty of Geosciences
Department of Physical Geography

229ISSN  2211-4335

U
S

E
S

 2
2

9
A

ris Lo
u

ren
s – Im

p
ro

vin
g

 h
yd

ro
g

eo
lo

g
ical m

o
d

els u
sin

g
 th

e resu
lts o

f calib
rated

 g
ro

u
n

d
w

ater flo
w

 m
o

d
els

USES-229_Cover Lourens.indd   1USES-229_Cover Lourens.indd   1 01-03-2021   08:2801-03-2021   08:28188



Propositions belonging to the doctoral thesis:

Improving hydrogeological models using the results of
calibrated groundwater flow models

A probabilistic approach using piecewise linear probability
density functions and Bayesian networks

by Aris Lourens

1. Without uncertainty it is impossible to improve a model (this thesis).

2. The error made by describing a probability density function (PDF) by a
piecewise linear approximation is often smaller than the error
between the assumed PDF and the phenomena it describes (this thesis).

3. Availability of calculations with piecewise linear PDFs reduces the
need for Monte Carlo solutions (this thesis).

4. A groundwater flow model is not equal to a hydrogeological
model (this thesis).

5. A certain most likely result is more uncertain than an uncertain
Bayesian result (this thesis).

6. Often, a problem is solved in Word or LATEX, but a solution in FORTRAN

is still missing.

7. A remarkable difference between literary and scientific literature is
that in the first the frustrations of the author resonate and in the
second the euphoria.

8. It would do justice to the referendum question if the ballot paper,
besides the options ’for’ and ’against’, also would contain the
option ’42’.

9. Every attainment is the result of a change.

10. Those who want war emphasize the differences, those who want
peace the similarities.
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Stellingen behorend bij het proefschrift:

Verbeteren van hydrogeologische modellen door resultaten van
gecalibreerde grondwatermodellen te gebruiken

Een probalistische benadering met behulp van gelineairiseerde
kansdichtheidsfuncties en Bayesiaanse netwerken

door Aris Lourens

1. Zonder onzekerheid is het niet mogelijk om een model te
verbeteren (dit proefschrift).

2. De fout, die gemaakt wordt door een kansdichtheidsfunctie te
benaderen door een gelineairiseerde functie, is vaak kleiner dan de
fout tussen de veronderstelde kansdichtheidsfunctie en het
beschreven fenomeen (dit proefschrift).

3. De beschikbaarheid van berekeningen met gelineairiseerde
kansdichtheidsfuncties vermindert de behoefte aan Monte Carlo
oplossingen (dit proefschrift).

4. Een grondwaterstromingsmodel is niet gelijk aan een
hydrogeologisch model (dit proefschrift).

5. Een zekere meest waarschijnlijke uitkomst geeft minder zekerheid
dan een onzekere Bayesiaanse uitkomst (dit proefschrift).

6. Vaak is een probleem opgelost in Word of LATEX, maar ontbreekt de
oplossing in FORTRAN nog.

7. Een opmerkelijk verschil tussen taalkundige en wetenschappelijke
literatuur is dat bij de eerste de frustraties van de auteur veelal
doorklinken en bij de tweede de euforie.

8. Het zou de vraagstelling van een referendum recht doen wanneer het
stembiljet naast de opties ’voor’ en ’tegen’ ook de keuzemogelijkheid
’42’ zou bevatten.

9. Elke verworvenheid is het gevolg van een verandering.

10. Wie oorlog wil benadrukt de verschillen, wie vrede wil de
overeenkomsten.
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